
Sharan

US $49.99

Shelve in
Programming Languages/Java

User level:
Beginning–Intermediate

www.apress.com

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Beginning Java 8 APIs, Extensions
and Libraries
Beginning Java 8 APIs, Extensions and Libraries completes your learning Java journey
with Apress and is a comprehensive approach to learning the Java programming
language extensions and available APIs and libraries.

This book covers the key extensions of the Java programming language such
as Swing, JavaFX, network programming, and JDBC. A step-by-step process, with
small snippets of Java code, provides easy-to-follow instructions and at the end of a
topic, a complete and ready-to-run Java program is provided. This book contains over
130 images and diagrams to help you visualize and better understand the topics.
More than 130 complete programs allow you to practice and quickly learn the topics.

The chapter on network programming covers the basics of network technologies,
and then, the advanced topics of network programming, using a Java class library.
It covers IPv4 and IPv6, addressing schemes, subnetting, supernetting, multicasting,
TCP/IP sockets, UPD sockets, asynchronous socket I/O, etc.

The chapter on JDBC provides the details of connecting and working with data-
bases such as Oracle, SQL Server, MySQL, DB2, Java DB (Apache Derby), Sybase,
and Adaptive Server Anywhere. It contains a complete discussion on processing
a ResultSet and a RowSet. It discusses how to use the RowSetFactory, to obtain a
RowSet object of a specific type. Finally, it covers working with Large Objects (LOBs),
such as Blob, Clob, and NClob, with Java code examples and database scripts.

RELATED

9 781430 266617

54999
ISBN 978-1-4302-6661-7

www.it-ebooks.info

http://www.it-ebooks.info/

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.it-ebooks.info

http://www.it-ebooks.info/

v

Contents at a Glance

About the Author�� xxi

About the Technical Reviewer�� xxiii

Acknowledgments��� xxv

Foreword��� xxvii

Introduction�� xxix

Chapter 1: Introduction to Swing■■ ���1

Chapter 2: Swing Components■■ ���81

Chapter 3: Advanced Swing■■ ���195

Chapter 4: Applets■■ ��249

Chapter 5: Network Programming■■ ��293

Chapter 6: JDBC API■■ ���385

Chapter 7: Java Remote Method Invocation■■ ���525

Chapter 8: Java Native Interface■■ ��549

Chapter 9: Introduction to JavaFX■■ ��591

Chapter 10: Scripting in Java■■ ���677

Index��759

www.it-ebooks.info

http://www.it-ebooks.info/

xxix

Introduction

How This Book Came About
My first encounter with the Java programming language was during a one-week Java training session in 1997.
I did not get a chance to use Java in a project until 1999. I read two Java books and took a Java 2 Programmer
certification examination. I did very well on the test, scoring 95 percent. The three questions that I missed on the test
made me realize that the books I read did not adequately cover all of the details on all of the necessary Java topics.
I made up my mind to write a book on the Java programming language. So I formulated a plan to cover most of the
topics that a Java developer needs understand to use the Java programming language effectively in a project,
as well as to get a certification. I initially planned to cover all essential topics in Java in 700 to 800 pages.

As I progressed, I realized that a book covering most of the Java topics in detail could not be written in 700 to
800 hundred pages; one chapter that covered data types, operators, and statements spanned 90 pages. I was then
faced with the question, “Should I shorten the content of the book or include all the details that I think a Java
developer needs?” I opted for including all the details in the book, rather than shortening the content to keep the
number of pages low. It has never been my intent to make lots of money from this book. I was never in a hurry to
finish this book because that rush could have compromised the quality and the coverage of its contents. In short,
I wrote this book to help the Java community understand and use the Java programming language effectively, without
having to read many books on the same subject. I wrote this book with the plan that it would be a comprehensive
one-stop reference for everyone who wants to learn and grasp the intricacies of the Java programming language.

One of my high school teachers used to tell us that if one wanted to understand a building, one must first
understand the bricks, steel, and mortar that make up the building. The same logic applies to most of the things that
we want to understand in our lives. It certainly applies to an understanding of the Java programming language. If you
want to master the Java programming language, you must start by understanding its basic building blocks. I have used
this approach throughout this book, endeavoring to build each topic by describing the basics first. In the book, you
will rarely find a topic described without first learning its background. Wherever possible, I have tried to correlate the
programming practices with activities in our daily life. Most books about the Java programming language either do
not include any pictures at all or have only a few. I believe in the adage, “A picture is worth a thousand words.” To a
reader, a picture makes a topic easier to understand and remember. I have included plenty of illustrations in this book
to aid readers in understanding and visualizing concepts. Developers who have little or no programming experience
can have difficulty putting things together to make a complete program. Keeping them in mind, the book contains
over 216 complete Java programs that are ready to be compiled and run.

I spent countless hours doing research for this book. My main sources of research were the Java Language
Specification, white papers and articles on Java topics, and Java Specification Requests (JSRs). I also spent quite a bit
of time reading the Java source code to learn more about some of the Java topics. Sometimes it took a few months to
research a topic before I could write the first sentence on it. It was always fun to play with Java programs, sometimes
for hours, to add them to the book.

www.it-ebooks.info

http://www.it-ebooks.info/

■ Introduction

xxx

Structure of the Book
This is the third book in the three-book Beginning Java series. This book contains 10 chapters. The chapters cover the
Java libraries and extensions such as Swing, JavaFX, Nashorn, Java Native Interface, network programming, etc. If you
have intermediate level Java experience, you can pick up chapters in any order. The new features of Java 8 are included
wherever they fit in the chapter. The Nashorn script engine, which was added in Java 8, is covered in depth.

Audience
This book is designed to be useful for anyone who wants to learn the Java programming language. If you are a
beginner with little or no programming background in Java, you are advised to read the companion books,
Beginning Java 8 Fundamentals and Beginning Java 8 Language Features, before reading this book.

If you are a Java developer with an intermediate or advanced level of experience, you can jump to a chapter or a
section in a chapter directly.

If you are reading this book to get a certification in the Java programming language, you need to read almost all
of the chapters, paying attention to all of the detailed descriptions and rules. Most of the certification programs test
your fundamental knowledge of the language, not advanced knowledge. You need to read only those topics that are
part of your certification test. Compiling and running over 216 complete Java programs will help you prepare for
your certification.

If you are a student who is attending a class in the Java programming language, you should read the chapters of
this book selectively. You need to read only those chapters that are covered in your class syllabus. I am sure that you,
as a Java student, do not need to read the entire book page by page.

How to Use This Book
This book is the beginning, not the end, of gaining knowledge of the Java programming language. If you are reading this
book, it means you are heading in the right direction to learn the Java programming language, which will enable you to
excel in your academic and professional career. However, there is always a higher goal for you to achieve and you must
constantly work hard to achieve it. The following quotations from some great thinkers may help you understand the
importance of working hard and constantly looking for knowledge with both your eyes and mind open.

The learning and knowledge that we have is, at the most, but little compared with that of which
we are ignorant.

—Plato

True knowledge exists in knowing that you know nothing. And in knowing that you know nothing,
that makes you the smartest of all.

—Socrates

Readers are advised to use the API documentation for the Java programming language as much as possible while
using this book. The Java API documentation is where you will find a complete list of everything available in the Java
class library. You can download (or view) the Java API documentation from the official web site of Oracle Corporation
at www.oracle.com. While you read this book, you need to practice writing Java programs yourself. You can also
practice by tweaking the programs provided in the book. It does not help much in your learning process if you just
read this book and do not practice by writing your own programs. Remember that “practice makes perfect,” which is
also true in learning how to program in Java.

www.it-ebooks.info

http://www.oracle.com
http://www.it-ebooks.info/

■ Introduction

xxxi

Source Code and Errata
Source code and errata for this book may be downloaded from www.apress.com/source-code.

Questions and Comments
Please direct all your questions and comments for the author to ksharan@jdojo.com.

www.it-ebooks.info

www.apress.com/source-code
http://ksharan@jdojo.com
http://www.it-ebooks.info/

1

Chapter 1

Introduction to Swing

In this chapter, you will learn

What Swing is•	

The difference between a character-based interface and a graphical user interface•	

How to develop the simplest Swing program•	

What a JFrame is and how it is made up of different components•	

How to add components to a JFrame•	

What a layout manager is and different types of layout managers in Swing•	

How to create reusable frames•	

How to handle events•	

How to handle mouse events and how to use the adapter class to handle mouse events•	

What Is Swing?
Swing provides graphical user interface (GUI) components to develop Java applications with a rich set of graphics
such as windows, buttons, checkboxes, etc. What is a GUI? Before I define a GUI, let me first define a user interface (UI).
A program does three things:

Accepts inputs from the user•	

Processes the inputs, and•	

Produces outputs•	

A user interface provides a means to exchange information between a user and a program, in terms of inputs
and outputs. In other words, a user interface defines the way the interaction between the user and a program takes
place. Typing text using a keyboard, selecting a menu item using a mouse, or clicking a button can provide input to
a program. The output from a program can be displayed on a computer monitor in the form of character-based text,
a graph such as a bar chart, a picture, etc.

You have written many Java programs. You have seen programs where users had to provide inputs to the program
in the form of text entered on the console, and the program would print the output on the console. A user interface
where the user’s input and the program’s output are in text form is known as a character-based user interface. A GUI
lets users interact with a program using graphical elements called controls or widgets, using a keyboard, a mouse, and
other devices.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

2

Figure 1-1 shows a program that lets users enter a person’s name and date of birth (DOB), and save the
information by using the keyboard. It is an example of a character-based user interface.

Figure 1-1.  An example of a program with a character-based user interface

Figure 1-2.  An example of a program with a graphical user interface

Figure 1-2 lets the user perform the same actions, but using a graphical user interface. It displays six graphical
elements in a window. It uses two labels (Name: and DOB:), two text fields where the user will enter the Name and DOB
values, and two buttons (Save and Close). A graphical user interface, compared to a character-based user interface,
makes the user’s interaction with a program easier. Can you guess what kind of application you are going to develop in
this chapter? It will be all about GUI. GUI development is interesting and a little more complex than character-based
program development. Once you understand the elements involved in GUI development, it will be fun to work with it.

This chapter attempts to cover the basics of GUI development using Swing’s components and top-level
containers. Care has been taken to explain GUI-related details for those programmers who might not have used any
programming languages/tools (e.g. Visual C++, Visual Basic, VB.NET, or PowerBuilder) to develop a GUI before. If
you have already used a GUI development language/tool, it will be easier for you to understand the materials covered
in this chapter. Swing is a vast topic and it is not possible to cover every detail of it. It deserves a book by itself. In fact,
there are a few books in the market dedicated to only Swing.

A container is a component that can hold other components inside it. A container at the highest level is called a
top-level container. A JFrame, a JDialog, a JWindow, and a JApplet are examples of top-level containers. A JPanel is
an example of a simple container. A JButton, a JTextField, etc. are examples of components. In a Swing application,
every component must be contained within a container. The container is known as the component’s parent and the
component is known as container’s child. This parent-child relationship (or container-contained relationship) is
known as containment hierarchy. To display a component on the screen, a top-level container must be at the root of
the containment hierarchy. Every Swing application must have at least one top-level container. Figure 1-3 shows the
containment hierarchy of a Swing application. A top-level container contains a container called “Container 1,” which
in turn contains a component called “Component 1” and a container called “Container 2,” which in turn contains two
components called “Component 2” and “Component 3.”

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

3

The Simplest Swing Program
Let’s start with the simplest Swing program. You will display a JFrame, which is a top-level container with no
components in it. To create and display a JFrame, you need to do the following:

Create a •	 JFrame object.

Make it visible.•	

To create a JFrame object, you can use one of the constructors of the JFrame class. One of the constructors
takes a string, which will be displayed as the title for the JFrame. Classes representing Swing components are in the
javax.swing package, so is the JFrame class. The following snippet of code creates a JFrame object with its title set to
“Simplest Swing”:
 
// Create a JFrame object
JFrame frame = new JFrame("Simplest Swing");
 

When you create a JFrame object, by default, it is not visible. You need to call its setVisible(boolean visible)
method to make it visible. If you pass true to this method, the JFrame is made visible, and if you pass false,
it is made invisible.
 
// Make the JFrame visible on the screen
frame.setVisible(true);
 

That is all you have to do to develop your first Swing application! In fact, you can wrap the two statements,
to create and display a JFrame, into one statement, like so:
 
new JFrame("Simplest Swing").setVisible(true); 

Top-level Container

Container 1

Container 2

Component 2

Component 3

Component 1

Figure 1-3.  Containment hierarchy in a Swing application

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

4

Tip■■   Creating a JFrame and making it visible from the main thread is not the correct way to start up a Swing
application. However, it does not do any harm in the trivial programs that you will use here, so I will continue using this
approach to keep the code simple to learn, so you can focus on the topic you are learning. It also takes an understanding
of event-handling and threading mechanisms in Swing to understand why you need to start a Swing application the other
way. Chapter 3 explains how to start up a Swing application in detail. The correct way of creating and showing a JFrame
is to wrap the GUI creation and make it visible in a Runnable and pass the Runnable to the invokeLater() method of
the javax.swing.SwingUtilities or java.awt.EventQueue class as shown:

import javax.swing.JFrame;

import javax.swing.SwingUtilities;

...

SwingUtilities.invokeLater(() -> new JFrame("Test").setVisible(true));

Listing 1-1 has the complete code to create and display a JFrame. When you run this program, it displays a JFrame
at the top-left corner of the screen as shown in Figure 1-4. The figure shows the frame when the program was run on
Windows XP. On other platforms, the frame may look a little different. Most of the screenshots for the GUIs in this
chapter were taken on Windows XP.

Listing 1-1.  Simplest Swing Program

// SimplestSwing.java
package com.jdojo.swing;
 
import javax.swing.JFrame;
 
public class SimplestSwing {
 public static void main(String[] args) {
 // Create a frame
 JFrame frame = new JFrame("Simplest Swing");
 
 // Display the frame
 frame.setVisible(true);
 }
}
 

This was not very impressive, was it? Do not despair. You will improve this program as you learn more about
Swing. This was just to show you the tip of the iceberg of what Swing offers.

You can resize the JFrame shown in the Figure 1-4 to make it bigger. Place your mouse pointer on any of the four
edges (left, top, right, or bottom) or any of the four corners of the displayed JFrame. The mouse pointer changes its
shape to a resize pointer (a line with arrows at both ends) when you place it on the JFrame’s edge. Then just drag the
resize mouse pointer to resize the JFrame in the direction you want to resize it.

Figure 1-4.  The Simplest Swing frame

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

5

Figure 1-5 shows the resized JFrame. Note that the text “Simplest Swing” that you passed to the constructor when
you created the JFrame is displayed in the title bar of the JFrame.

Figure 1-5.  The Simplest Swing frame after resizing

How do you exit a Swing application? How do you exit when you run the program listed in Listing 1-1? When you
click the close button in the title bar (right-most button on the title bar with an X), the JFrame is closed. However, the
program does not exit. If you are running this program from a command prompt, the prompt does not return when you
close the JFrame. You will have to force exit the program, for example, by pressing Ctrl + C if you are running it from a
command prompt on Windows. So, how do you exit a Swing application? You can define one of the four behaviors of a
JFrame to determine what happens when the JFrame is closed. They are defined in the javax.swing.WindowsConstants
interface as four constants. The JFrame class implements the WindowsConstants interface. You can reference all
these constants using JFrame.CONSTANT_NAME syntax (or you can use the WindowsConstants.CONSTANT_NAME syntax).
The four constants are

•	 DO_NOTHING_ON_CLOSE: This option does not do anything when the user closes a JFrame. If you
set this option for a JFrame, you must provide some other way to exit the application, such as
an Exit button or an Exit menu option in the JFrame.

•	 HIDE_ON_CLOSE: This option just hides a JFrame when the user closes it. This is the default
behavior. This is what happened when you clicked the close button from the title bar to close
the program listed in Listing 1-1. The JFrame was just made invisible and the program was
still running.

•	 DISPOSE_ON_CLOSE: This option hides and disposes of the JFrame when the user closes it.
Disposing a JFrame releases any operating system-level resources used by it. Note the difference
between HIDE_ON_CLOSE and DISPOSE_ON_CLOSE. When you use the option HIDE_ON_CLOSE,
a JFrame is just hidden, but it is still using all the operating system resources. If your JFrame
is hidden and shown very frequently, you may want to use this option. However, if your
JFrame consumes many resources, you may want to use the DISPOSE_ON_CLOSE option, so the
resources may be released and reused while it is not being displayed.

•	 EXIT_ON_CLOSE: This option exits the application. Setting this option works when a JFrame is
closed, as if System.exit() has been called. This option should be used with some care. This
option will exit the application. If you have more than one JFrame or any other type of window
displayed on the screen, using this option for one JFrame will close all other windows. Use this
option with caution as you may lose any unsaved data when the application exits.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

6

You can set the default close behavior of a JFrame by passing one of the four constants to its
setDefaultCloseOperation() method as shown:
 
// Exit the application when the JFrame is closed
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 

You solved one problem with the first example. Another problem is that the JFrame is displayed with no viewable
area. It displays only the title bar. You need to set the size and position of your JFrame before or after it is visible. The
size of a frame is defined by its width and height in pixels that you can set using its setSize(int width, int height)
method. The position is defined by the (x, y) coordinates in pixels of the top-left corner of the JFrame with respect to
the top-left corner of the screen. By default, its position is set to (0, 0) and this is the reason the JFrame was displayed
at the top-left corner of the screen. You can set the (x, y) coordinates of the JFrame using its setLocation(int x, int y)
method. If you want to set its size and its position in one step, use its setBounds(int x, int y, int width, int height)
method instead. Listing 1-2 fixes these two problems in the Simplest Swing program.

Listing 1-2.  Revised Simplest Swing Program

// RevisedSimplestSwing.java
package com.jdojo.swing;
 
import javax.swing.JFrame;
 
public class RevisedSimplestSwing {
 public static void main(String[] args) {
 // Create a frame
 JFrame frame = new JFrame("Revised Simplest Swing");
 
 // Set the default close behavior to exit the application
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 
 // Set the x, y, width and height properties in one go
 frame.setBounds(50, 50, 200, 200);
 
 // Display the frame
 frame.setVisible(true);
 }
} 

Tip■■   You can position a JFrame in the center by calling its setLocationRelativeTo() method with a null argument.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

7

Components of a JFrame
You displayed a JFrame in the previous section. It looked empty; however, it was not really empty. When you create a
JFrame, the following things are automatically done for you:

A container, which is called a •	 root pane, is added as the sole child of the JFrame. The root pane
is a container. It is an object of the JRootPane class. You can get the reference of the root pane
by using the getRootPane() method of the JFrame class.

Two containers called •	 glass pane and layered pane are added to the root pane. By default, the
glass pane is hidden and it is placed on top of the layered pane. As the name suggests, the glass
pane is transparent, and even if you make it visible, you can see through it. The layered pane
is named as such because it can hold other containers or components in its different layers.
Optionally, a layered pane can hold a menu bar. However, a menu bar is not added by default
when you create a JFrame. You can get the reference of the glass pane and the layered pane by
using the getGlassPane() and getLayeredPane() methods of the JFrame class, respectively.

A container called a •	 content pane is added to the layered pane. By default, the content pane
is empty. This is the container in which you are supposed to add all your Swing components,
such as buttons, text fields, labels, etc. Most of the time, you will be working with the
content pane of the JFrame. You can get the reference of the content pane by using the
getContentPane() method of the JFrame class.

Figure 1-6 shows the assembly of a JFrame. The root pane, layered pane, and glass pane cover the entire viewable
area of a JFrame. The viewable area of a JFrame is its size minus its insets on all four sides. Insets of a container consist
of the space used by the border around the container on four sides: top, left, bottom, and right. For a JFrame, the top
inset represents the height of the title bar. Figure 1-6 depicts the layered pane smaller than the size of the root pane for
better visualization.

Menu Bar

contentPane

Title Bar A JFrame

The rootPane

The layeredPane, which holds
a menu bar and a contentPane

The glassPane, which is at
top of the layeredPane

Menu Bar

contentPane

Figure 1-6.  The making of a JFrame

Are you confused? If you are confused with all the panes of a JFrame, here is a simpler explanation. Think of a
JFrame as a picture frame. A picture frame has a glass cover, and so does a JFrame, in the form of a glass pane. Behind
the glass cover, you place your picture. That is your layered pane. You can place multiple pictures inside one picture
frame. Each picture will make up one layer behind the glass cover. As long as one picture is not fully overlapped by
another, you can view it wholly or partly. All pictures taken together in different layers form the layered pane of your
picture frame. The picture layer, which is farthest from the glass cover, is your content pane. Usually your picture

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

8

frame contains only one picture in it. So does the layered pane; by default, it contains one content pane. The picture
in the picture frame is the content of interest and paintings are placed there. So is the case with the content pane; all
components are placed in the content pane.

The containment hierarchy of a JFrame is listed below. A JFrame is at the top of the hierarchy, and the menu
bar (it is not added by default; it is shown here for completeness) and the content pane are at the bottom of the
containment hierarchy.
 
JFrame
 root pane
 glass pane
 layered pane
 menu bar
 content pane
 

If you are still not able to understand all of the “pains” (read panes) of a JFrame, you can revisit this section later.
For now, you have to understand only one pane of the JFrame, and that is the content pane, which holds the Swing
components of a JFrame. You should add all components you want to add to a JFrame to its content pane. You can get
the reference of the content pane as follows:
 
// Create a JFrame
JFrame frame = new JFrame("Test");
 
// Get the reference of the content pane
Container contentPane = frame.getContentPane();

Adding Components to a JFrame
This section explains how to add components to the content pane of a JFrame. Use the add() method of a container
(note that a content pane is also a container) to add a component to the container.
 
// Add aComponent to aContainer
aContainer.add(aComponent);
 

The add() method is overloaded. The arguments to the method, apart from the component being added, depend
on other factors such as how you want the component to be laid out in the container. The next section discusses all
versions of the add() method.

I will limit the current discussion to adding a button, which is a Swing component, to a JFrame. An object of the
JButton class represents a button. If you have used Windows, you must have used a button such as an OK button on a
message box, Back and Forward buttons on an Internet browser window. Typically, a JButton contains text that is also
called its label. This is how you create a JButton:
 
// Create a JButton with Close text
JButton closeButton = new JButton("Close");
 

To add closeButton to the content pane of a JFrame, you have to do two things:

Get the reference of the content pane of the •	 JFrame.

Container contentPane = frame.getContentPane();

Call the •	 add() method of the content pane.

contentPane.add(closeButton);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

9

That is all it takes to add a component to the content pane. If you want to add a JButton using one line of code,
you can do so by combining all three statements into one, like so:
 
frame.getContentPane().add(new JButton("Close"));
 

The code to add components to a JFrame is shown in Listing 1-3. When you run the program, you get a JFrame
as shown in the Figure 1-7. Nothing happens when you click the Close button because you have not yet added any
action to it.

Listing 1-3.  Adding Components to a JFrame

// AddingComponentToJFrame.java
package com.jdojo.swing;
 
import javax.swing.JFrame;
import javax.swing.JButton;
import java.awt.Container;
 
public class AddingComponentToJFrame {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Adding Component to JFrame");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container contentPane = frame.getContentPane();
 
 // Add a close button
 JButton closeButton = new JButton("Close");
 contentPane.add(closeButton);
 
 // set the size of the frame 300 x 200
 frame.setBounds(50, 50, 300, 200);
 frame.setVisible(true);
 }
}

Figure 1-7.  A JFrame with a JButton with Close as its text

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

10

The code did its job of adding a JButton with the Close text to the JFrame. However, the JButton looks very big
and it fills the entire viewable area of the JFrame. Note that you have set the size of the JFrame to 300 pixels wide and
200 pixels high using the setBounds() method. Since the JButton fills the entire JFrame, can you set the JFrame’s size
little smaller? Alternatively, can you set the size for the JButton itself? Both suggestions are not going to work in this
case. If you want to make the JFrame smaller, you need to guess how much smaller it needs to be made. If you want
to set the size for the JButton, it will fail miserably; the JButton will always fill the entire viewable area of the JFrame.
What is going on? To get a complete understanding of what is going on, you need to read the next section about the
layout manager.

Swing provides a magical and quick solution to the problem of computing the size of the JFrame and JButton.
The pack() method of the JFrame class is that magical solution. The method goes through all the components you
have added to the JFrame and decides their preferred size and sets the size of the JFrame just enough to display all
the components. When you call this method, you do not need to set the size of the JFrame. The pack() method will
calculate the size of the JFrame and set it for you. To fix the sizing problem, remove the call to the setBounds() method
and add a call to the pack() method instead. Note that the setBounds() method was setting the (x, y) coordinates for
the JFrame too. If you still want to set the (x, y) coordinates of the JFrame to (50, 50), you can use its setLocation(50, 50)
method. Listing 1-4 contains the modified code and Figure 1-8 shows the resulting JFrame.

Listing 1-4.  Packing All Components of a JFrame

// PackedJFrame.java
package com.jdojo.swing;
 
import javax.swing.JFrame;
import java.awt.Container;
import javax.swing.JButton;
 
public class PackedJFrame {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Adding Component to JFrame");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 
 // Add a close button
 JButton closeButton = new JButton("Close");
 Container contentPane = frame.getContentPane();
 contentPane.add(closeButton);
 
 // Calculates and sets appropriate size for the frame
 frame.pack();
 
 frame.setVisible(true);
 }
}
 

Figure 1-8.  Packed JFrame with a JButton

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

11

So far, you have been successful in adding one JButton to a JFrame. Let’s add another JButton to the same JFrame.
Call the new button helpButton. The code will be similar to Listing 1-4, except that this time you will add two instances
of the JButton class. Listing 1-5 contains the complete program. Figure 1-9 shows the result when you run the program.

Listing 1-5.  Adding Two Buttons to a JFrame

// JFrameWithTwoJButtons.java
package com.jdojo.swing;
 
import javax.swing.JFrame;
import java.awt.Container;
import javax.swing.JButton;
 
public class JFrameWithTwoJButtons {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Adding Component to JFrame");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 
 // Add two buttons - Close and Help
 JButton closeButton = new JButton("Close");
 JButton helpButton = new JButton("Help");
 Container contentPane = frame.getContentPane();
 contentPane.add(closeButton);
 contentPane.add(helpButton);
 frame.pack();
 frame.setVisible(true);
 }
} 

Figure 1-9.  A JFrame with two buttons: Close and Help. Only the Help button is visible

When you added the Help button, you lost the Close button. Does this mean that you can add only one button
to a JFrame? The answer is no. You can add as many buttons to a JFrame as you want. So, where is your Close button?
You need to understand the layout mechanism of a content pane before I can answer this question.

A content pane is a container. You add components to it. However, it hands over the task of laying out all
components within it to an object known as a layout manager. A layout manager is simply a Java object whose sole
job is to determine the position and size of components within a container. The example in Listing 1-5 was carefully
chosen to introduce you to the concept of the layout manager. Many types of layout managers exist. They differ in the
way they position and size components within the container.

By default, the content pane of a JFrame uses a layout manager called BorderLayout. Only the Help button was
displayed in the previous example because of the way the BorderLayout lays out the components. In fact, when you
added two buttons, the content pane received both of them. To confirm that both buttons are still there in the content
pane, add the following snippet of code at the end of the main() method in Listing 1-5 that displays the number
of components that the content pane has. It will print a message on the standard output: "Content Pane has 2
components." Each container has a getComponents() method, which returns an array of components added to it.
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

12

// Get the components added to the content pane
Component[] comps = contentPane.getComponents();
 
// Display how many components the content pane has
System.out.println("Content Pane has " + comps.length + " components.");
 

With this background, it is time to learn various layout managers. You will solve the puzzle of the missing Close
button when I discuss the BorderLayout manager in a later section. But before I discuss the various layout managers,
I will introduce you to some utility classes that are frequently used when working with Swing applications.

Tip■■  A component can be added to only one container at one time. If you add the same component to another container,
the component is removed from the first container and added to the second one.

Some Utility Classes
Before you start developing some serious Swing GUIs, it is worth mentioning some utility classes that are used
frequently. They are simple classes. Most of them have some properties that can be specified in their constructors,
and have getters and setters for those properties.

The Point Class
As the name suggests, an object of the Point class represents a location in a two-dimensional space. A location in
a two-dimensional space is represented by two values: an x coordinate and a y coordinate. The Point class is in the
java.awt package. The following snippet of code demonstrates its use:
 
// Create an object of the Point class with (x, y) coordinate of (20, 40)
Point p = new Point(20, 40);
 
// Get the x and y coordinate of p
int x = p.getX();
int y = p.getY();
 
// Set the x and y coordinate of p to (10, 60)
p.setLocation(10, 60);
 

The main usage of the Point class in Swing is to set and get the location (x and y coordinates) of a component.
For example, you can set the location of a JButton.
 
JButton closeButton = new JButton("Close");
 
// The following two statements do the same thing.
// You will use one of the following statements and not both.
closeButton.setLocation(10, 15);
closeButton.setLocation(new Point(10, 15));
 
// Get the location of the closeButton
Point p = closeButton.getLocation();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

13

The Dimension Class
An object of the Dimension class wraps the width and height of a component. The width and height of a component
are collectively known as its size. In other words, an object of the Dimension class is used to represent the size of a
component. You can use an object of the Dimension class to wrap any two arbitrary integers. However, in this chapter,
it will be used in the context of the size of a component. The class is in the java.awt package.
 
// Create an object of the Dimension class with a width and height of 200 and 20
Dimension d = new Dimension(200, 20);
 
// Set the size of closeButton to 200 X 20. Both of the statements have the same efecct.
// You will use one of the following two statements.
closeButton.setSize(200, 20);
closeButton.setsize(d);
 
// Get the size of closeButton
Dimension d2 = closeButton.getSize();
int width = d2.width;
int height = d2.height;

The Insets Class
An object of the Insets class represents spaces that are left around a container. It wraps four properties named top,
left, bottom, and right. Their values represent the spaces left on the four side of a container. The class is in the
java.awt package.
 
// Create an object of the Insets class
// using its constructor Insets(top, left, bottom, right)
Insets ins = new Insets(20, 5, 5, 5);
 
// Get the insets of a JFrame
Insets ins = frame.getInsets();
int top = ins.top;
int left = ins.left;
int bottom = ins.bottom;
int right = ins.right;

The Rectangle Class
As its name suggests, an instance of the Rectangle class represents a rectangle. It is in the java.awt package. You can
define a rectangle in many ways. A Rectangle is defined by three properties:

(x, y) coordinates of the upper-left corner•	

Width•	

Height•	

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

14

You can think of a Rectangle object as a combination of a Point object and a Dimension object; the Point object
holds the (x, y) coordinates of the upper left corner and the Dimension object holds the width and height. You can
create an object of the Rectangle class by specifying different combinations of its properties.
 
// Create a Rectangle object whose upper-left corner is at (0, 0)
// with width and height as zero
Rectangle r1 = new Rectangle();
 
// Create a Rectangle object from a Point object with its width and height as zero
Rectangle r2 = new Rectangle(new Point(10, 10));
 
// Create a Rectangle object from a Point object and a Dimension object
Rectangle r3 = new Rectangle(new Point(10, 10), new Dimension(200, 100));
 
// Create a Rectangle object by specifying its upper-left corner's
// coordinate at (10, 10) and width as 200 and height as 100
Rectangle r4 = new Rectangle(10, 10, 200, 100);
 

The Rectangle class defines many methods to manipulate a Rectangle object and to inquire about its properties,
such as the (x, y) coordinate of its upper-left corner, width, and height.

An object of the Rectangle class defines the location and size of a component in a Swing application. The location
and size of a component are known as its bounds. Two methods, setBounds() and getBounds(), can be used to set
and get the bounds of any component or container. The setBounds() method is overloaded and you can specify x, y,
width, and height properties of a component, or a Rectangle object. The getBounds() method returns a Rectangle
object. In Listing 1-2, you used the setBounds() method to set the x, y, width, and height of the frame. Note that
the “bounds” of a component is a combination of its location and its size. The combination of the setLocation()
and setSize() methods will accomplish the same as the setBounds() method does. Similarly, you can use the
combination of getLocation() (or, getX() and getY()) and getSize() (or, getWidth() and getHeight()) instead of
using the getBounds() method.

Layout Managers
A container uses a layout manager to compute the position and size of all its components. In other words, the job of
a layout manager is to compute four properties (x, y, width, and height) of all components in a container. The x and y
properties determine the position of a component within the container. The width and height properties determine
the size of the component. You might ask, “Why do you need a layout manager to perform a simple task of computing
four properties of a component? Can’t you just specify these four properties in the program and let the container use
them for displaying the components?” The answer is yes. You can specify these properties in your program. If you do
that, your component will not be repositioned and resized when the container is resized. In addition, you will have
to specify the size of the component for all platforms on which your application will run because different platforms
render components a little differently. Suppose your application displays text in multiple languages. The optimal
size for a JButton, say a Close button, will be different in different languages and you will have to calculate the size
of the Close button in each language and set it, depending on the language the application is using. However, you do
not have to take all of these into consideration if you use a layout manager. The layout manager will do these simple,
though time-consuming, things for you.

Using a layout manager is optional. If you do not use a layout manager, you are responsible for computing and
setting the position and size of all components in a container.

Technically, a layout manager is an object of a Java class that implements the LayoutManager interface. There is
another interface called LayoutManager2 that inherits from the LayoutManager interface. Some of the layout manager
classes implement the LayoutManager2 interface. Both interfaces are in the java.awt package.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

15

There are many layout managers. Some layout managers are simple and easy to code by hand. Some are very
complex to code by hand and they are meant to be used by GUI builder tools such as NetBeans. If none of the
available layout managers meet your needs, you can create your own. Some useful layout managers are available for
free on the Internet. Sometimes you need to nest them to get the desired effects. I will discuss the following layout
managers in this section:

•	 FlowLayout

•	 BorderLayout

•	 CardLayout

•	 BoxLayout

•	 GridLayout

•	 GridBagLayout

•	 GroupLayout

•	 SpringLayout

Every container has a default layout manager. The default layout manager for the content pane of a JFrame is
BorderLayout, and for a JPanel, it is FlowLayout. It is set when you create the container. You can change the default
layout manager of a container by using its setLayout() method. If you do not want your container to use a layout
manager, you can pass null to the setLayout() method. You can use the getLayout() method of a container to get
the reference of the layout manager the container is currently using.
 
// Set FlowLayout as the layout manager for the content pane of a JFrame
JFrame frame = new JFrame("Test Frame");
Container contentPane = frame.getContentPane();
contentPane.setLayout(new FlowLayout());
 
// Set BorderLayout as the layout manager for a JPanel
JPanel panel = new JPanel();
panel.setLayout(new BorderLayout());
 
// Get the layout manager for a container
LayoutManager layoutManager = container.getLayout()
 

Starting from Java 5, the calls to add() and setLayout() methods on a JFrame are forwarded to its content pane.
Before Java 5, calling these methods on a JFrame would throw a runtime exception. That is, from Java 5, the two calls
frame.setLayout() and frame.add() will do the same as calling frame.getContentPane().setLayout() and
frame.getContentPane().add(). It is very important to note that the getLayout() method of a JFrame returns
the layout manager of the JFrame and not its content pane. To avoid this trouble of asymmetric call forwarding
(some calls are forwarded and some not) from the JFrame to its content pane, it is better to call the content pane’s
methods directly rather than calling them on a JFrame.

FlowLayout
The FlowLayout is the simplest layout manager in Swing. It lays out the components horizontally, and then vertically.
It lays the components in the order they are added to the container. When it is laying the components horizontally, it
may lay them left to right, or right to left. The horizontal layout direction depends on the orientation of the container.
You can set the orientation of a container by calling its setComponentOrientation() method. If you want to set

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

16

the orientation of a container and all its children, you can use the applyComponentOrientation() method instead.
Here is a snippet of code that sets the orientation of a container:
 
// Method – 1
// Set the orientation of the content pane of a frame to "right to left"
JFrame frame = new JFrame("Test");
Container pane = frame.getContentPane();
pane.setComponentOrientation(ComponentOrientation.RIGHT_TO_LEFT);
 
// Method – 2
// Set the orientation of the content pane and all its children to "right to left"
JFrame frame = new JFrame("Test");
Container pane = frame.getContentPane();
pane.applyComponentOrientation(ComponentOrientation.RIGHT_TO_LEFT);
 

If your application is multilingual and the component orientation will be decided at runtime, you may want to
set the components locale and orientation in a more generic way rather than hard-coding it in your program. You can
globally set the default locale for all Swing components in your application like so:
 
// "ar" is used for Arabic locale
JComponent.setDefaultLocale(new Locale("ar"));
 

When you create a JFrame, you can get the component’s orientation according to the default locale and set it to
the frame and its children. This way, you do not have to set the orientation for every container in your application.
 
// Get the default locale
Locale defaultLocale = JComponent.getDefaultLocale();
 
// Get the component's orientation for the default locale
ComponentOrientation componentOrientation = ComponentOrientation.getOrientation(defaultLocale);
 
// Apply the component's default orientation for the whole frame
frame.applyComponentOrientation(componentOrientation);
 

A FlowLayout tries to place all components into one row, giving them their preferred size. If all components do
not fit into one row, it starts another row. Every layout manager has to compute the height and width of the space
where it needs to lay out all components. A FlowLayout asks for width, which is the sum of the preferred widths of all
components. It asks for height, which is the height of the tallest component in the container. It adds extra space to the
width and height to account for horizontal and vertical gaps between the components. Listing 1-6 demonstrates how
to use a FlowLayout for the content pane of a JFrame. It adds three buttons to the content pane. Figure 1-10 shows the
screen with three buttons using the FlowLayout.

Listing 1-6.  Using a FlowLayout Manager

// FlowLayoutTest.java
package com.jdojo.swing;
 
import java.awt.Container;
import java.awt.FlowLayout;
import javax.swing.JButton;
import javax.swing.JFrame;
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

17

public class FlowLayoutTest {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Flow Layout Test");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 
 Container contentPane = frame.getContentPane();
 contentPane.setLayout(new FlowLayout());
 
 for(int i = 1; i <= 3; i++) {
 contentPane.add(new JButton("Button " + i));
 }
 
 frame.pack();
 frame.setVisible(true);
 }
} 

Figure 1-10.  Three buttons in a JFrame with a FlowLayout Manager

Figure 1-11.  After the JFrame using a FlowLatout has been expanded horizontally

When you expand the frame horizontally, the buttons are displayed as shown in Figure 1-11.

By default, a FlowLayout aligns all components in the center of the container. You can change the alignment by
calling its setAlignment() method or passing the alignment in its constructor, like so:
 
// Set the alignment when you create the layout manager object
FlowLayout flowLayout = new FlowLayout(FlowLayout.RIGHT);
 
// Set the alignment after you have created the flow layout manager
flowLayout.setAlignment(FlowLayout.RIGHT);
 

The following five constants are defined in the FlowLayout class to represent the five different alignments: LEFT,
RIGHT, CENTER, LEADING, and TRAILING. The definitions of the first three constants are obvious. The LEADING alignment
may mean either left or right; it depends on the orientation of the component. If the component’s orientation is
RIGHT_TO_LEFT, the LEADING alignment means RIGHT. If component’s orientation is LEFT_TO_RIGHT, the LEADING
alignment means LEFT. Similarly, TRAILING alignment may mean either left or right. If the component’s orientation

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

18

is RIGHT_TO_LEFT, the TRAILING alignment means LEFT. If component’s orientation is LEFT_TO_RIGHT, the TRAILING
alignment means RIGHT. It is always a good idea to use LEADING and TRAILING instead of RIGHT and LEFT, so you do
not have to worry about the orientation of your component.

You can set the gaps between two components either in the constructor of the FlowLayout class or using its
setHgap() and setVgap() methods. Listing 1-7 has the complete code that adds three buttons to a JFrame. The
content pane uses a FlowLayout with the LEADING alignment and the JFrame's orientation is set to RIGHT_TO_LEFT.
When you run the program, the JFrame will look as shown in Figure 1-12.

Listing 1-7.  Customizing a FlowLayout

// FlowLayoutTest2.java
package com.jdojo.swing;
 
import java.awt.ComponentOrientation;
import java.awt.Container;
import java.awt.FlowLayout;
import javax.swing.JButton;
import javax.swing.JFrame;
 
public class FlowLayoutTest2 {
 public static void main(String[] args) {
 int horizontalGap = 20;
 int verticalGap = 10;
 JFrame frame = new JFrame("Flow Layout Test");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 
 Container contentPane = frame.getContentPane();
 FlowLayout flowLayout =
 new FlowLayout(FlowLayout.LEADING, horizontalGap, verticalGap);
 contentPane.setLayout(flowLayout);
 frame.applyComponentOrientation(
 ComponentOrientation.RIGHT_TO_LEFT);
 
 for(int i = 1; i <= 3; i++) {
 contentPane.add(new JButton("Button " + i));
 }
 
 frame.pack();
 frame.setVisible(true);
 }
}
 

Figure 1-12.  A JFrame having three buttons and a customized FlowLayout

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

19

You must remember that a FlowLayout tries to lay out all components in only one row. Therefore, it does not ask
for a height that will fit all components. Rather, it asks for the height of the tallest component in the container.
To demonstrate this subtle point, try adding 30 buttons to the JFrame so they all do not fit into one row. The following
snippet of code demonstrates this:
 
JFrame frame = new JFrame("Welcome to Swing");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.getContentPane().setLayout(new FlowLayout());
 
for(int i = 1; i <= 30; i++) {
 frame.getContentPane().add(new JButton("Button " + i));
}
 
frame.pack();
frame.setVisible(true);
 

The JFrame is shown in Figure 1-13. You can see that not all 30 buttons are displayed. If you resize the JFrame
to make it bigger in height, you will be able to see all the buttons, as shown in Figure 1-14. The FlowLayout hides the
components that it cannot display in one row.

Figure 1-13.  A JFrame with 30 buttons. Not all buttons are displayed

There is a very important implication of the feature of the FlowLayout where it tries to lay out all components
in only one row. It asks for the height just enough to display the tallest component. If you nest a container with a
FlowLayout manager inside another container that also uses a FlowLayout manager, you will never see more than
one row in the nested container. Just to demonstrate this, add 30 instances of the JButton to a JPanel. A JPanel is
an empty container with a FlowLayout as its default layout manager. Set the layout manager of the content pane of
the JFrame to a FlowLayout and add the JPanel to the content pane of the JFrame. This way, you have the container
JPanel with a FlowLayout nested within another container (a content pane), with a FlowLayout. Listing 1-8 contains
the complete program to demonstrate this. When you run the program, the resulting JFrame is shown in Figure 1-15.
You will always see only one row of buttons even if you resize the JFrame to make it bigger in height.

Figure 1-14.  A JFrame with 30 buttons after it is resized

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

20

Listing 1-8.  Nesting FlowLayout Managers

// FlowLayoutNesting.java
package com.jdojo.swing;
 
import java.awt.FlowLayout;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JPanel;
 
public class FlowLayoutNesting {
 public static void main(String[] args) {
 JFrame frame = new JFrame("FlowLayout Nesting");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 
 // Set the content pane's layout to FlowLayout
 frame.getContentPane().setLayout(new FlowLayout());
 
 // JPanel is an empty container with a FlowLayout manager
 JPanel panel = new JPanel();
 
 // Add thirty JButtons to the JPanel
 for(int i = 1; i <= 30; i++) {
 panel.add(new JButton("Button " + i));
 }
 
 // Add JPanel to the content pane
 frame.getContentPane().add(panel);
 
 frame.pack();
 frame.setVisible(true);
 }
} 

Figure 1-15.  A nested FlowLayout always display only one row

I would like to finish the discussion about FlowLayout with a note that it has very limited use in a real world
applications because of the limitations discussed in this section. It is typically used for prototyping.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

21

BorderLayout
The BorderLayout divides a container’s space into five areas: north, south, east, west, and center. When you add a
component to a container with a BorderLayout, you need to specify to which of the five areas you want to add the
component. The BorderLayout class defines five constants to identify each of the five areas. The constants are NORTH,
SOUTH, EAST, WEST, and CENTER. For example, to add a button to the north area, you write
 
// Add a button to the north area of the container
JButton northButton = new JButton("North");
container.add(northButton, BorderLayout.NORTH);
 

The default layout for the content pane of a JFrame is a BorderLayout. Listing 1-9 contains the complete program
that adds five buttons to the content pane of a JFrame. The resulting JFrame is shown in Figure 1-16.

Listing 1-9.  Adding Components to a BorderLayout

// BorderLayoutTest.java
package com.jdojo.swing;
 
import java.awt.BorderLayout;
import javax.swing.JFrame;
import java.awt.Container;
import javax.swing.JButton;
 
public class BorderLayoutTest {
 public static void main(String[] args) {
 JFrame frame = new JFrame("BorderLayout Test");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container container = frame.getContentPane();
 
 // Add a button to each of the five areas of the BorderLayout
 container.add(new JButton("North"), BorderLayout.NORTH);
 container.add(new JButton("South"), BorderLayout.SOUTH);
 container.add(new JButton("East"), BorderLayout.EAST);
 container.add(new JButton("West"), BorderLayout.WEST);
 container.add(new JButton("Center"), BorderLayout.CENTER);
 
 frame.pack();
 frame.setVisible(true);
 }
}
 

Figure 1-16.  Five areas of the BorderLayout

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

22

You can add at most one component to one area of a BorderLayout. You may leave some areas empty. If you
want to add more than one component to an area of a BorderLayout, you can do so by adding those components to a
container, and then adding that container to the desired area.

The five areas in a BorderLayout (north, south, east, west, and center) are fixed in direction and are not
dependent on the orientation of components. Four more constants exist to specify areas in a BorderLayout. These
constants are PAGE_START, PAGE_END, LINE_START, and LINE_END. The PAGE_START and PAGE_END constants are the
same as the NORTH and SOUTH constants, respectively. The LINE_START and LINE_END constants change their positions
depending on the orientation of the container. If the container’s orientation is left to right, LINE_START is the same as
WEST, and LINE_END is the same as EAST. If the container’s orientation is right to left, LINE_START is the same as EAST,
and LINE_END is the same as WEST. Figure 1-17 and Figure 1-18 depict the differences in positioning of the areas of a
BorderLayout with different component orientations.

Figure 1-18.  A BorderLayout’s areas when the container’s orientation is right to left

Figure 1-17.  A BorderLayout’s areas when the container’s orientation is left to right

If you do not specify the area for a component, it is added to the center. The following two statements have the
same effect:
 
// Assume that the container has a BorderLayout
// Add a button to the container without specifying the area
container.add(new JButton("Close"));
 
// The above statement is the same as the following
container.add(new JButton("Close"), BorderLayout.CENTER);
 

I have already stated that you can add at most five components to a BorderLayout, one in each of the five areas.
What happens if you add more than one component to the same area of a BorderLayout? That is, what happens if you
write the following code?
 
// Assume that container has a BorderLayout
container.add(new JButton("Close"), BorderLayout.NORTH);
container.add(new JButton("Help"), BorderLayout.NORTH);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

23

You will find that the north area of the BorderLayout displays only one button: the button that was added to
it last. That is, the north area will only display the Help button. This is what happened in Listing 1-5. You added
two buttons called Close and Help to the content pane of the JFrame. Since you did not specify the area of the
BorderLayout in which you wanted to add them, both of them were added to the center area. Since you can have only
one component in each area of a BorderLayout, the Help button replaced the Close button. This is the reason that you
did not see the Close button when you ran the program in Listing 1-5. To fix this problem, specify the areas for both
buttons when you add them to the container.

Tip■■   If you are missing some components in a BorderLayout managed container, make sure that you have not added
more than one component in the same area. If you add components to a BorderLayout mixing the area constants, the
PAGE_START, PAGE_END, LINE_START, and LINE_END constants take precedence over the NORTH, SOUTH, EAST, and WEST
constants. That is, if you add two components to a BorderLayout using add(c1, NORTH) and add(c2, PAGE_START), c2
will be used, not c1.

How does a BorderLayout compute the size of the components? It computes the size of the components based
on the area in which they are placed. It respects the preferred height of the component in north and south. However, it
stretches the component’s width horizontally according to the available space in north and south. That is, it does not
respect the preferred width of the components in north and south. It respects the preferred width of the components
in east and west and gives them height necessary to fill the entire space vertically. The component in the center area
is stretched horizontally as well as vertically to fit the available space. That is, the center area does not respect its
component’s preferred width and height.

CardLayout
The CardLayout lays out components in a container as a stack of cards. Like a stack of cards, only one card (the card at
the top) is visible in a CardLayout. It makes only one component visible at a time. You need to use the following steps
to use a CardLayout for a container:

Create a container such as a •	 JPanel.

JPanel cardPanel = new JPanel();

Create a •	 CardLayout object.

CardLayout cardLayout = new CardLayout();

Set the layout manager for the container. •	

cardPanel.setLayout(cardLayout);

Add components to the container. You need to give a name to each component. To add a •	
JButton to the cardPanel, use the following statement:

cardPanel.add(new JButton("Card 1"), "myLuckyCard");

You have named your card myLuckyCard. This name can be used in the show() method of the
CardLayout to make this card visible.

Call its •	 next() method to show the next card.

cardLayout.next(cardPanel);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

24

The CardLayout class provides several methods to flip through components. By default, it shows the first
component that was added to it. All flipping-related methods take the container it manages as its argument. The
first() and last() methods show the first and the last card, respectively. The previous() and next() methods show
the previous and the next card from the card currently being shown. If the last card is showing, calling the next()
method shows the first card. If the first card is showing, calling the previous() method shows the last card.

Listing 1-10 demonstrates how to use a CardLayout. Figure 1-19 shows the resulting JFrame. When you click the
Next button, the next card is flipped. The program adds two JPanels to the content pane of the JFrame. One JPanel,
buttonPanel, has the Next button, and it is added to the south area of the content pane. Note that, by default, a JPanel
uses a FlowLayout.

Listing 1-10.  The CardLayout in Action

// CardLayoutTest.java
package com.jdojo.swing;
 
import java.awt.Container;
import javax.swing.JFrame;
import java.awt.CardLayout;
import javax.swing.JPanel;
import javax.swing.JButton;
import java.awt.Dimension;
import java.awt.BorderLayout;
 
public class CardLayoutTest {
 public static void main(String[] args) {
 JFrame frame = new JFrame("CardLayout Test");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container contentPane = frame.getContentPane();
 
 // Add a Next JButton in a JPanel to the content pane
 JPanel buttonPanel = new JPanel();
 JButton nextButton = new JButton("Next");
 buttonPanel.add(nextButton);
 contentPane.add(buttonPanel, BorderLayout.SOUTH);
 
 // Create a JPanel and set its layout to CardLayout
 final JPanel cardPanel = new JPanel();
 final CardLayout cardLayout = new CardLayout();
 cardPanel.setLayout(cardLayout);
 
 // Add five JButtons as cards to the cardPanel
 for(int i = 1; i <= 5; i++) {
 JButton card = new JButton("Card " + i);
 card.setPreferredSize(new Dimension(200, 200));
 String cardName = "card" + 1;
 cardPanel.add(card, cardName);
 }
  
 // Add the cardPanel to the content pane
 contentPane.add(cardPanel, BorderLayout.CENTER);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

25

 // Add an action listener to the Next button
 nextButton.addActionListener(e -> cardLayout.next(cardPanel));
 
 frame.pack();
 frame.setVisible(true);
 }
}
 

Figure 1-19.  A CardLayout in action. Click the Next JButton to flip through the cards

The program adds an action listener to the Next button. I have not discussed how to add an action listener to a
button yet. It is necessary to see the CardLayout in action. I will discuss how to add an action to a button in detail in
the event handling section. For now, it is sufficient to mention that you need to call the addActionListener() method
of the JButton class to add an action listener to it. This method accepts an object of type ActionListener interface
and has one method called actionPerformed(). The code in the actionPerformed() method is executed when
you click the JButton. The code that flips the next card is the call to the cardLayout.next(cardPanel) method. The
ActionListener interface is a functional interface and you can use a lambda expression to create its instance, like so:
 
// Add an action listener to the Next JButton to flip the next card
nextButton.addActionListener(e -> cardLayout.next(cardPanel)); 

Tip■■  A CardLayout is not used very often because all but one component are hidden from the user. A JTabbedPane,
which is easier to use, provides functionality similar to a CardLayout. I will discuss the JTabbedPane in Chapter 2.
A JTabbedPane is a container, not a layout manager. It lays out all components as tabs and lets the user switch between
those tabs.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

26

BoxLayout
The BoxLayout arranges components in a container either horizontally in one row or vertically in one column.
You need to use the following steps to use a BoxLayout in your program:

Create a container, for example, a •	 JPanel.

JPanel hPanel = new JPanel();

Create an object of the •	 BoxLayout class. Unlike other layout managers, you need to pass the
container to the constructor of the class. You also need to pass the type of box you are creating
(horizontal or vertical) to its constructor. The class has four constants: X_AXIS, Y_AXIS,
LINE_AXIS, and PAGE_AXIS. The constant X_AXIS is used to create a horizontal BoxLayout
that lays out all components from left to right. The constant Y_AXIS is used to create a
vertical BoxLayout that lays out all components from top to bottom. The other two constants,
LINE_AXIS and PAGE_AXIS, are similar to X_AXIS and Y_AXIS. However, they use the
orientation of the container in laying out the components.

// Create a BoxLayout for hPanel to lay out
// components from left to right
BoxLayout boxLayout = new BoxLayout(hPanel, BoxLayout.X_AXIS);

Set the layout for the container. •	

hPanel.setLayout(boxLayout);

Add the components to the container. •	

hPanel.add(new JButton("Button 1"));
hPanel.add(new JButton("Button 2"));

Listing 1-11 uses a horizontal BoxLayout to display three buttons, as shown in Figure 1-20.

Listing 1-11.  Using a Horizontal BoxLayout

// BoxLayoutTest.java
package com.jdojo.swing;
 
import java.awt.Container;
import javax.swing.JFrame;
import javax.swing.JButton;
import javax.swing.JPanel;
import javax.swing.BoxLayout;
import java.awt.BorderLayout;
 
public class BoxLayoutTest {
 public static void main(String[] args) {
 JFrame frame = new JFrame("BoxLayout Test");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container contentPane = frame.getContentPane();
  
 JPanel hPanel = new JPanel();
 BoxLayout boxLayout = new BoxLayout(hPanel, BoxLayout.X_AXIS);
 hPanel.setLayout(boxLayout);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

27

 for(int i = 1; i <= 3; i++) {
 hPanel.add(new JButton("Button " + i));
 }
 
 contentPane.add(hPanel, BorderLayout.SOUTH);
 frame.pack();
 frame.setVisible(true);
 }
}
 

Figure 1-20.  A JFrame with a horizontal BoxLayout with three buttons

A BoxLayout tries to give the preferred width to all components in a horizontal layout and the preferred height in
a vertical layout. In a horizontal layout, the height of the tallest component is given to all other components. If it cannot
adjust the height of a component to match the tallest component in the group, it aligns the component horizontally along
the center. You can change this default alignment by setting the component’s alignment or the container alignment by
using the setAlignmentY() method. In a vertical layout, it tries to give the preferred height to all components, and tries
to make the size of all components the same width as the widest component. If it cannot make all components have the
same width, it aligns them vertically along their centerlines. You can change this default alignment by changing either the
component’s alignment or the container’s alignment using the setAlignmentX() method.

The javax.swing package contains a Box class that makes using a BoxLayout easier. A Box is a container that uses
a BoxLayout as its layout manager. The Box class provides static methods to create a container with a horizontal or
vertical layout. The methods createHorizontalBox() and createVerticalBox()create a horizontal and vertical box,
respectively.
 
// Create a horizontal box
Box hBox = Box.createHorizontalBox();
 
// Create a vertical box
Box vBox = Box.createVerticalBox();
 

To add a component to a Box, use its add() method, like so:
 
// Add two buttons to the horizontal box
hBox.add(new JButton("Button 1");
hBox.add(new JButton("Button 2");
 

The Box class also allows you to create invisible components and add them to a box, so you can adjust spacing
between two components. It provides four types of invisible components:

Glue•	

Strut•	

Rigid Area•	

Filler•	

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

28

A glue is an invisible, expandable component. You can create horizontal and vertical glues using the
createHorizontalGlue() and createVerticalGlue() static methods of the Box class. The following snippet of code
uses horizontal glue between two buttons in a horizontal box layout. You can also create a glue component using the
createGlue() static method of the Box class that can expand horizontally as well as vertically.
 
Box hBox = Box.createHorizontalBox();
hBox.add(new JButton("First"));
hBox.add(Box.createHorizontalGlue());
hBox.add(new JButton("Last"));
 

The buttons with a glue in between look as shown in Figure 1-21. Figure 1-22 shows them after the container is
expanded horizontally. Notice the horizontal empty space between the two buttons, which is the invisible glue that
has expanded.

Figure 1-22.  A horizontal box with two buttons and a horizontal glue between them after resizing

Figure 1-21.  A horizontal box with two buttons and a horizontal glue between them

A strut is an invisible component of a fixed width or a fixed height. You can create a horizontal strut using the
createHorizontalStrut() method that takes the width in pixels as an argument. You can create a vertical strut using
the createVerticalStrut() method that takes the height in pixels as an argument.
 
// Add a 100px strut to a horizontal box
hBox.add(Box.createHorizontalStrut(100));
 

A rigid area is an invisible component that is always the same size. You can create a rigid area by using the
createRigidArea() static method of the Box class. You need to pass a Dimension object to it to specify its width and
height.
 
// Add a 10x5 rigid area to a horizontal box
hBox.add(Box.createRigidArea(new Dimesnion(10, 5)));
 

A filler is an invisible custom component that you can create by specifying your own minimum, maximum, and
preferred sizes. The Filler static nested class of the Box class represents a filler.
 
// Create a filler, which acts like a glue. Note that the glue is
// just a filler with a minimum and preferred size set to zero and
// a maximum size set to Short.MAX_VALUE in both directions

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

29

Dimension minSize = new Dimension(0, 0);
Dimension prefSize = new Dimension(0, 0);
Dimension maxSize = new Dimension(Short.MAX_VALUE, Short.MAX_VALUE);
Box.Filler filler = new Box.Filler(minSize, prefSize, maxSize);
 

You can get a very powerful layout by nesting boxes with a horizontal and vertical BoxLayout. The Box class
provides convenience methods to create glue, strut, and rigid areas. However, they are all objects of the Box.Filler class.
When the minimum and preferred sizes are set to zero, and the maximum size to Short.MAX_VALUE in both directions,
a Box.Filler object acts as a glue. When the maximum height of a glue is set to zero, it acts like a horizontal glue.
When the maximum width of a glue is set to zero, it acts like a vertical glue. You can create a horizontal strut using the
Box.Filler class by using its minimum and preferred sizes of a specified width and zero height, and a maximum size
as the specified width and Short.MAX_VALUE height. Can you think of a way to create a rigid area using the Box.Filler
class? All sizes (minimum, preferred, and maximum) will be the same for a rigid area. The following snippet of code
creates a rigid area of 10x10:
 
// Create a 10x10 rigid area
Dimension d = new Dimension(10, 10);
JComponent rigidArea = new Box.Filler(d, d, d);
 

Listing 1-12 demonstrates how to use the Box class and glue. Figure 1-23 shows the resulting JFrame after you
expand it horizontally. When the HFrame is opened, there is no gap between the Previous and Next buttons.

Listing 1-12.  A BoxLayout Using the Box Class and Glue

// BoxLayoutGlueTest.java
package com.jdojo.swing;
 
import java.awt.Container;
import javax.swing.JFrame;
import javax.swing.JButton;
import javax.swing.Box;
import java.awt.BorderLayout;
 
public class BoxLayoutGlueTest {
 public static void main(String[] args) {
 JFrame frame = new JFrame("BoxLayout with Glue");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 
 Container contentPane = frame.getContentPane();
 Box hBox = Box.createHorizontalBox();
 hBox.add(new JButton("<<First"));
 hBox.add(new JButton("<Previous"));
 hBox.add(Box.createHorizontalGlue());
 hBox.add(new JButton("Next>"));
 hBox.add(new JButton("Last>>"));
 
 contentPane.add(hBox, BorderLayout.SOUTH);
 frame.pack();
 frame.setVisible(true);
 }
} 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

30

GridLayout
A GridLayout arranges components in a rectangular grid of equally sized cells. Each component is placed in exactly
one cell. It does not respect the preferred size of the component. It divides the available space into equally sized
cells and resizes each component to the cell’s size.

You can specify either the number of rows or the number of columns in the grid. If you specify both, only the
number of rows is used, and the number of columns is computed. Suppose ncomponents is the number of components
added to the container, and nrows and ncols are the specified number of rows and columns. If nrows is greater than
zero, the number of columns in the grid is computed using the following formula:
 
ncols = (ncomponents + nrows - 1)/nrows
 

If nrows is zero, the number of rows in the grid is computed using the following formula:
 
nrows = (ncomponents + ncols - 1)/ncols
 

You cannot specify a negative number for nrows or ncols, and at least one of them must be greater than zero.
Otherwise, a runtime exception is thrown.

You can create a GridLayout using one of the following three constructors of the GridLayout class:

•	 GridLayout()

•	 GridLayout(int rows, int cols)

•	 GridLayout(int rows, int cols, int hgap, int vgap)

You can specify the number of rows, the number of columns, a horizontal gap, and a vertical gap between two
cells in the grid. You can also set these properties using the methods setRows(), setColumns(), setHgap(), and
setVgap().

The no-args constructor creates a grid of one row. The number of columns is the same as the number of
components added to the container.
 
// Create a grid layout of one row
GridLayout gridLayout = new GridLayout();
 

The second constructor creates a GridLayout by a specified number of rows or columns.
 
// Create a grid layout of 5 rows. Specify 0 as the number of columns.
// The number of columns will be computed.
GridLayout gridLayout = new GridLayout(5, 0);
 
// Create a grid layout of 3 columns. Specify 0 as the number of rows.
// The number of rows will be computed.
GridLayout gridLayout = new GridLayout(0, 3);
 

Figure 1-23.  A BoxLayout with glue

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

31

// Create a grid layout with 2 rows and 3 columns. You have specified
// a non-zero value for rows, so the value for columns will be ignored.
// It will be computed based on the number of components.
GridLayout gridLayout = new GridLayout(2, 3);
 

The third constructor lets you specify the number of rows or the number of columns, and horizontal and vertical
gaps between two cells. You can create a GridLayout of three rows with a horizontal gap of 10 pixels and a vertical gap
of 20 pixels between cells, as shown:
 
GridLayout gridLayout = new GridLayout(3, 0, 10, 20);
 

Listing 1-13 demonstrates how to use a GridLayout. Note that you do not specify in which cell the component
will be placed. You just add the component to the container and the layout manager decides the placement.

Listing 1-13.  Using GridLayout

// GridLayoutTest.java
package com.jdojo.swing;
 
import java.awt.GridLayout;
import javax.swing.JPanel;
import java.awt.BorderLayout;
import javax.swing.JFrame;
import java.awt.Container;
import javax.swing.JButton;
 
public class GridLayoutTest {
 public static void main(String[] args) {
 JFrame frame = new JFrame("GridLayout Test");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container contentPane = frame.getContentPane();
 
 JPanel buttonPanel = new JPanel();
 buttonPanel.setLayout(new GridLayout(3,0));
 
 for(int i = 1; i <= 9 ; i++) {
 buttonPanel.add(new JButton("Button " + i));
 }
 
 contentPane.add(buttonPanel, BorderLayout.CENTER);
 frame.pack();
 frame.setVisible(true);
 }
}
 

Figure 1-24 shows a container with a GridLayout that has three rows and nine components. Figure 1-25
shows a container with a GridLayout that has three rows and seven components. If you resize the container with a
GridLayout, all components will be resized and they will be of the same size. Try resizing the JFrame by running the
program in Listing 1-13.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

32

A GridLayout is a simple layout manager to code by hand. However, it is not very powerful, for two reasons.
First, it forces each component to have the same size, and second, you cannot specify the row and column number
(or exact location) of a component in the grid. That is, you can only add a component to the GridLayout. They will be
laid out horizontally, and then vertically in the order you add them to the container. If the container’s orientation is
LEFT_TO_RIGHT, components are laid out from left-to-right, and then top-to-bottom. If the container’s orientation is
RIGHT_TO_LEFT, components are laid out from right-to-left, and then top-to-bottom. One good use of the GridLayout
is to create a group of buttons of the same size. For example, suppose you add two buttons with the text OK and Cancel
to a container and want them to have the same size. You can do this by adding the buttons to a container managed by
a GridLayout layout manager.

GridBagLayout
The GridBagLayout lays out components in a grid of rectangular cells arranged in rows and columns similar to the
GridLayout. However, it is much more powerful than the GridLayout. Its power comes with an added complexity in
its usage. It is not as easy to use as the GridLayout. There are so many things you can customize in the GridBagLayout
that it becomes hard to learn and use all of its features quickly.

It lets you customize many properties of the components, such as size, alignment, expandability, etc. Unlike the
GridLayout, all cells of the grid do not have to be of the same size. A component does not have to be placed exactly
in one cell. A component can span multiple cells horizontally as well as vertically. You can specify how a component
inside its cell should be aligned.

The GridBagLayout and GridBagConstraints classes are used while working with a GridBagLayout layout
manager. Both classes are in the java.awt package. An object of the GridBagLayout class defines a GridBagLayout
layout manager. An object of the GridBagConstraints class defines constraints for a component in a GridBagLayout.
The constraints of a component are used to lay out the component. Some of the constraints include the component’s
position in the grid, width, height, alignment inside the cell, etc.

Figure 1-24.  A GridLayout with three rows and nine components

Figure 1-25.  A GridLayout with three rows and seven components

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

33

The following snippet of code creates an object of the GridBagLayout class and sets it as the layout manager
for a JPanel:
 
// Create a JPanel container
JPanel panel = new JPanel();
 
// Set GridBagLayout as the layout manager for the JPanel
GridBagLayout gridBagLayout = new GridBagLayout();
panel.setLayout(gridBagLayout);
 

Let’s use GridBagLayout in the simplest form: create a frame, set the layout for its content pane to
GridBagLayout, and add nine buttons to the content pane. This is accomplished in Listing 1-14. Figure 1-26 shows
the screen you get when you run the program.

Listing 1-14.  A GridBagLayout Used in Its Simplest Form

// SimplestGridBagLayout.java
package com.jdojo.swing;
 
import javax.swing.JFrame;
import java.awt.Container;
import javax.swing.JButton;
import java.awt.GridBagLayout;
 
public class SimplestGridBagLayout {
 public static void main(String[] args) {
 String title = "GridBagLayout in its Simplest Form";
 JFrame frame = new JFrame(title);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container contentPane = frame.getContentPane();
 contentPane.setLayout(new GridBagLayout());
 
 for(int i = 1; i <= 9; i++) {
 contentPane.add(new JButton("Button " + i));
 }
 frame.pack();
 frame.setVisible(true);
 }
}
 

Figure 1-26.  Nine buttons in a GridBagLayout

At first, it seems that a GridBagLayout behaves like a FlowLayout. The effect is the same as if you used a
FlowLayout. However, a GridBagLayout is not the same as a FlowLayout, although it has the ability to work like a
FlowLayout. It is much more powerful (and error prone too!) than a FlowLayout. When you added nine buttons, you
did not specify their cells. You used the contentPane.add(Component c) method to add the buttons. The result was
that it placed one button after another in a single row.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

34

You can specify the cell in which a component in a GridBagLayout should be placed. To specify the cell for a
component, you need to call the add(Component c, Object constraints) method, where the second argument
is an object of the GridBagConstraints class. If you do not specify the constraints object for a component in a
GridBagLayout, it places the component in the next cell. The next cell is the cell after the cell that was used to place
the previous component. If you do not use constraints for any components in a GridBagLayout, all components are
placed in one row, as shown in Figure 1-26. I will discuss more about this when I cover the gridx and gridy properties
of a GridBagConstraints object.

Let’s set the record straight for the GridBagLayout by showing that it is really a grid layout and that it places
components in a grid of cells. To prove this, you will display nine buttons in the previous example in a grid of cells
with three rows and three columns. This time, there will be only one difference: you will specify the position of the cell
in the grid for the buttons. The combination of the row number and column number denotes the position of a cell in
the grid. All properties for the components and its cells are specified using an object of the GridBagConstraints class.
It has many public instance variables. Its gridx and gridy instance variables specify the column number and row
number of a cell, respectively. The first column is denoted by gridx = 0, the second column by gridx = 1, and so on.
The first row is denoted by gridy = 0, the second row by gridy = 1, and so on.

Which one is the first cell in a grid—the upper-left corner, the upper-right corner, the lower-left corner, or
the lower-right corner? It depends on the orientation of the container. If the container uses the LEFT_TO_RIGHT
orientation, the cell in the upper-left corner of the grid is the first cell. If the container uses the RIGHT_TO_LEFT
orientation, the cell in the upper-right corner of the grid is the first cell. Table 1-1 and Table 1-2 show the cells with
their corresponding gridx and gridy values in a GridBagLayout with different container orientations. These tables
show only nine cells. A GridBagLayout is not limited to having only nine cells. You can have as many cells as you want.
To be exact, you can have a maximum of Integer.MAX_VALUE number of rows and columns, which you will never use
in any application for sure.

Table 1-2.  Values of gridx and gridy for Cells in a Container with RIGHT_TO_LEFT Orientation

gridx=2, gridy=0 gridx=1, gridy=0 gridx=0, gridy=0

gridx=2, gridy=1 gridx=1, gridy=1 gridx=0, gridy=1

gridx=2, gridy=2 gridx=1, gridy=2 gridx=0, gridy=2

Table 1-1.  Values of gridx and gridy for Cells in a Container With LEFT_TO_RIGHT Orientation

gridx=0, gridy=0 gridx=1, gridy=0 gridx=2, gridy=0

gridx=0, gridy=1 gridx=1, gridy=1 gridx=2, gridy=1

gridx=0, gridy=2 gridx=1, gridy=2 gridx=2, gridy=2

Setting the gridx and gridy properties of a component is easy. You create a constraint object for your
component, which is an object of the GridBagConstraints class; set its gridx and gridy properties; and pass the
constraint object to the add() method when you add your component to the container. The following snippet of
code shows how to set the gridx and gridy properties in a constraint for a JButton. When you call the
container.add(component, constraint) method, the constraint object is copied for the component being added,
so that you can change some of its properties and reuse it for another component. This way, you do not have to create
a new constraint object for each component you add to a GridBagLayout. However, this approach is error prone.
You may set a constraint for a component and forget to change that when you reuse the constraint object for another
component. So, be careful when you reuse a constraint object.
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

35

// Create a constraint object
GridBagConstraints gbc = new GridBagConstraints();
 
// Set gridx and gridy properties in the constraint object
gbc.gridx = 0;
gbc.gridy = 0;
 
// Add a JButton and pass the constraint object as the
// second argument to the add() method.
container.add(new JButton("B1"), gbc);
 
// Set the gridx property to 1. The gridy property
// remains as 0 as set previously.
gbc.gridx = 1;
 
// Add another JButton to the container
container.add(new JButton("B2"), gbc);
 

Listing 1-15 demonstrates how to set gridx and gridy values (or cell number) for a component. Figure 1-27
shows the JFrame that you get when you run the program.

Listing 1-15.  Setting gridx and gridy Properties for Components in a GridBagLayout

// GridBagLayoutWithgridxAndgridy.java
package com.jdojo.swing;
 
import java.awt.GridBagLayout;
import java.awt.Container;
import javax.swing.JFrame;
import javax.swing.JButton;
import java.awt.GridBagConstraints;
 
public class GridBagLayoutWithgridxAndgridy {
 public static void main(String[] args) {
 String title = "GridBagLayout with gridx and gridy";
 JFrame frame = new JFrame(title);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 
 Container contentPane = frame.getContentPane();
 contentPane.setLayout(new GridBagLayout());
 
 // Create an object for GridBagConstraints to set
 // the constraints for each JButton
 GridBagConstraints gbc = new GridBagConstraints();
  
 for(int y = 0; y < 3; y++) {
 for(int x = 0; x < 3; x++) {
 gbc.gridx = x;
 gbc.gridy = y;
 String text = "Button (" + x + ", " + y + ")";
 contentPane.add(new JButton(text), gbc);
 }
 }
  

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

36

 frame.pack();
 frame.setVisible(true);
 }
}
 

Table 1-3.  Instance Variables of the GridBagConstraints Class

Instance Variable Default Value Possible Values Usage

gridx
gridy

RELATIVE RELATIVE
An integer

Column number and row
number of the cell in the grid
in which the component is
placed.

gridwidth
gridheight

1 An integer
RELATIVE
REMAINDER

Number of grid cells used to
display the component.

fill NONE BOTH
HORIZONTAL
VERTICAL
NONE

Specifies how the
component will fill the
cell(s) allotted to it in the
grid.

ipadx
ipady

0 An integer Specifies the internal
padding of a component
that is added to its minimum
size. A negative integer is
allowed, which will decrease
the minimum size of the
component.

insets (0,0,0,0) An Insets object Specifies the external
padding between edges of
the components and its cell
in the grid. Negative values
are allowed.

Figure 1-27.  A GridBagLayout with nine buttons

You can specify other constraints for a component using a GridBagConstraints object. All constraints in a
GridBagConstraints object are set using one of the instance variables listed in Table 1-3. The class also defines many
constants such as RELATIVE, REMAINDER, etc. Note that all instance variables are in lowercase.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

37

The following sections discuss the effects of each constraint in detail.

The gridx and gridy Constraints
The gridx and gridy constraints specify the cell in the grid in which the component is placed. A component can
occupy multiple cells horizontally as well as vertically. All the cells that a component occupies, when taken together,
are known as the display area of the component.

Let’s have a precise definition of the gridx and gridy constraints. They specify the starting cell of the display area
of a component. By default, each component occupies only one cell. I will discuss how to make a component occupy
multiple cells in the next section when I discuss the gridwidth and gridheight constraints. Please refer to Listing 1-15
for more details on setting gridx and gridy constraints values for a component.

You can specify a RELATIVE value for either or both gridx and gridy constraints. If you specify the values for
gridx and gridy (an integer greater than or equal to zero), you decide where the component will be placed. If you
specify either or both constraint values as RELATVE, the layout manager will determine the value for gridx and/or
gridy. If you read the API documentation for the GridBagLayout class, the description of the RELATIVE value for gridx
and/or gridy is not very clear. All it says is that when you specify the value for gridx and/or gridy as RELATIVE, the
component will be placed next to the component that was added before this component. This description in the API
documentation is as clear as mud! The following paragraphs will describe setting the values for gridx and gridy in
full detail with examples.

Case #1

You have specified values for both gridx and gridy. This is the case of absolute positioning in the grid. Your
component is placed according to the value of gridx and gridy that you have specified. You have already seen an
example of this kind in Listing 1-15.

Instance Variable Default Value Possible Values Usage

anchor CENTER CENTER, NORTH, NORTHEAST, EAST, SOUTHEAST,
SOUTH, SOUTHWEST, WEST, NORTHWEST,
PAGE_START, PAGE_END, LINE_START, LINE_END,
FIRST_LINE_START, FIRST_LINE_END,
LAST_LINE_START, LAST_LINE_END, BASELINE,
BASELINE_LEADING, BASELINE_TRAILING,
ABOVE_BASELINE, ABOVE_BASELINE_LEADING,
ABOVE_BASELINE_TRAILING,BELOW_BASELINE,
BELOW_BASELINE_LEADING,
BELOW_BASELINE_TRAILING

Where in the display area the
component is placed.

weightx
weighty

0.0 A positive double value How the extra space
(horizontally and vertically)
is distributed among the grid
cells when the container is
resized.

Table 1-3.  (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

38

Case #2

You have specified a value for gridx and you have set the value for gridy to RELATIVE. In this case, the layout manager
needs to determine the value for gridy. Let’s look at an example. Assume that you have three buttons to place in the
grid, and you have a container object whose layout manager is set to a GridBagLayout. The following snippet of code
adds the three buttons to the grid. Figure 1-28 shows the screen with three buttons.
 

GridBagConstraints gbc = new GridBagConstraints();
JButton b1 = new JButton("Button 1");
JButton b2 = new JButton("Button 2");
JButton b3 = new JButton("Button 3");
 
gbc.gridx = 0;
gbc.gridy = 0;
container.add(b1, gbc);
 
gbc.gridx = 0;
gbc.gridy = GridBagConstraints.RELATIVE;
container.add(b2, gbc);
 
gbc.gridx = 1;
gbc.gridy = GridBagConstraints.RELATIVE ;
container.add(b3, gbc);
 

There is no confusion about the placement of the button b1 because you have specified both gridx and gridy
values. It is placed in the first row (gridy = 0) and first column (gridx = 0).

For button b2, you have specified gridx = 0. You want it to be placed in the first column and the result is the
same as you expected. You have specified gridy as RELATIVE for b2. This means that you are telling the GridBagLayout
to find an appropriate row for b2 by placing it in the first column (gridx = 0). Since the first row is already occupied
by b1 in the first column, the next row available for b2 is the second row and it is placed there.

You have set gridx = 1 for the button b3. This means that it should be placed in the second column. You have
specified its gridy as RELATIVE. It means that the layout manager needs to find a row for it in the second column.
Since the very first row does not have any component placed in the second column, the layout manager places it in
the first row. Where will b3 be placed if you had specified its gridx as 0? Apply the same logic again. Since the first
column already had b1 and b2 in the first row and the second row, respectively, the only next row available for b3 is the
third row and the layout manager would place it just below b2.

Figure 1-28.  Specifying gridx and Setting gridy to RELATIVE

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

39

Case #3

You have specified a value for gridy and you have set the value for gridx to RELATIVE. In this case, the layout manager
needs to determine the value for gridx. That is, based on the specified value of the row number, the layout manager
has to determine its column number. Figure 1-29 shows the three buttons laid out when you use the following snippet
of code. The logic to lay out the buttons this way is the same as in the previous example, except that this time the
layout manager decides the column numbers for b2 and b3 instead of their row numbers.
 

gbc.gridx = 0;
gbc.gridy = 0;
container.add(b1, gbc);
 
gbc.gridx = GridBagConstraints.RELATIVE;
gbc.gridy = 0;
container.add(b2, gbc);
 
gbc.gridx = GridBagConstraints.RELATIVE;
gbc.gridy = 1;
container.add(b3, gbc); 

Case #4

This is the last of the four possibilities in which you specify both gridx and gridy as RELATIVE. The layout manager
has to determine the row number as well as the column number for the component being added. It will determine the
row number first. The row for the component will be the current row. Which row is the current row? By default, the
first row (gridy = 0) is the current row. When you add a component, you can also specify its gridwidth constraint.
One of its values is REMAINDER, which means that this is the last component in the row. If you add a component to
the first row with its gridwidth set to REMAINDER, the second row becomes the current row. Once the layout manager
determines the row number for a component, which is the current row, it will place the component in the column
next to the last component added in that row. The default value for gridx and gridy is RELATIVE. Now you can
understand why Listing 1-14 placed all buttons in the first row, which used RELATIVE as gridx and gridy for all
buttons, by default. Since the default gridwidth is 1, the first row was always the current row. Whenever you added a
button, the first row (the current row) was assigned as its row and its column was the next to the last button added in
that row. Let’s have some examples in which you will set both gridx and gridy to RELATIVE.

Example 1:

The following snippet of code lays out the buttons as shown in Figure 1-30:
 
gbc.gridx = 0;
gbc.gridy = 0;
container.add(b1, gbc);
 

Figure 1-29.  Specifying gridy and setting gridx to RELATIVE in a GridBagLayout

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

40

gbc.gridx = GridBagConstraints.RELATIVE;
gbc.gridy = GridBagConstraints.RELATIVE;
container.add(b2, gbc);
 
gbc.gridx = GridBagConstraints.RELATIVE;
gbc.gridy = 1;
container.add(b3, gbc);
 

Figure 1-31.  Specifying gridx and gridy as RELATIVE with gridwidth as REMAINDER

You used absolute positioning for b1 by specifying its gridx = 0 and gridy = 0. It resulted in placing b1 in the
first row and the first column. You have specified both gridx and gridy for b2 as RELATIVE. The layout manager has
to determine the row number and the column number for b2. It looks at the current row, which is the first row by
default. Therefore, it sets b2’s row number to 0. It finds that there is already one component (b1) placed in the first
column. Therefore, it sets the next column, which is the second column, for b2. And here you see b2 placed in the
first row and the second column. It is simple to understand the placement of b3. Since you have specified its
gridy = 1, it is placed in the second row. Its gridx is RELATIVE and since the first column is available in the second
row, it is placed in the first column.

Example 2:

The following snippet of code lays out the buttons as shown in Figure 1-31. Note that the b1 button is placed
in the center of its available space, which is the default behavior. You can customize the placement of a component
inside its allocated space using the anchor property that I will discuss shortly.
 

Figure 1-30.  Specifying Both gridx and gridy as RELATIVE

gbc.gridx = 0;
gbc.gridy = 0;
gbc.gridwidth = GridBagConstraints.REMAINDER;// Last component in the row
container.add(b1, gbc);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

41

gbc.gridx = GridBagConstraints.RELATIVE;
gbc.gridy = GridBagConstraints.RELATIVE;
gbc.gridwidth = 1; // Reset to the default value
container.add(b2, gbc);
 
gbc.gridx = GridBagConstraints.RELATIVE; gbc.gridy = 1;
container.add(b3, gbc);
 

You specified gridx = 0 and gridy = 0 for b1. This time, you specified gridwidth for b1 as REMAINDER. This means
that b1 is the last component in the first row. Since this is the only component added to the first row, it becomes the first
and the last component in this row. After b1 is added with its gridwidth as REMAINDER, the second row becomes the
current row. For b2, gridx and gridy are set to RELATIVE. The layout manager will set the second row (gridy = 1) as
its row number. Since there is no component placed in the second row before b2, it will be the first one in the row. This
results in placing b2 in the second row and the first column. Note that you set the value for gridwidth to 1 for b2 and b3.
Determining the position of b3 is simple. Since you specified its gridy to 1 (the second row), it is placed in the second
row. Its gridx is RELATIVE. Since b2 is already in the first column, it is placed in the second column.

The gridwidth and gridheight Constraints
The gridwidth and gridheight constraints specify the width and height of the display area of a component,
respectively. The default value for both is 1. That is, by default, a component is placed in one cell. If you specify
gridwidth = 2 for a component, its display area will be two cells wide. If you specify gridheight = 2 for a
component, its display area will be two cells high. If you have worked with HTML tables, you can compare gridwidth
with colspan and gridheight with rowspan properties of a cell of an HTML table.

You can specify two predefined constants for gridwidth and gridheight. They are REMAINDER and RELATIVE. The
REMAINDER value for gridwidth means that the component will span from its gridx cell to the remainder of the row.
In other words, it is the last component in the row. The REMAINDER value for the gridheight indicates that it is the last
component in the column. The RELATIVE value for gridwidth indicates that the width of the display area of the
component will be from its gridx to the second last cell in the row. The RELATIVE value for gridheight indicates that
the height of the display area of the component will be from its gridy to the second last cell. Let’s take an example of
each kind for gridwidth. You can extend this concept for gridheight. The only difference is that the gridwidth affects
the width of a component’s display area, whereas the gridheight affects the height.

The following snippet of code adds nine buttons to a container—three in the first row and six in the second row:
 
// Expand the component to fill the whole cell
gbc.fill = GridBagConstraints.BOTH;
 
gbc.gridx = 0;
gbc.gridy = 0;
container.add(new JButton("Button 1"), gbc);
 
gbc.gridx = 1;
gbc.gridy = 0;
gbc.gridwidth = GridBagConstraints.RELATIVE;
container.add(new JButton("Button 2"), gbc);
 
gbc.gridx = GridBagConstraints.RELATIVE; gbc.gridy = 0;
gbc.gridwidth = GridBagConstraints.REMAINDER;
container.add(new JButton("Button 3"), gbc);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

42

// Reset gridwidth to its default value 1
gbc.gridwidth = 1;
 
// Place six JButtons in second row
gbc.gridy = 1;
for(int i = 0; i < 6; i++) {
 gbc.gridx = i;
 container.add(new JButton("Button " + (i + 4)), gbc);
}
 

The very first statement is new to you. It sets the fill instance variable of GridBagConstraints to BOTH, which
indicates that the components added to cells will be expanded in both directions (horizontally and vertically) to fill
the entire cell area. I will discuss this in more detail later. The first button is placed in the first row and the first column.

The second button is placed in the first row and the second column. Its gridwidth is set to RELATIVE, which
means it will span from the second column (gridx = 1) to the second to last column in the row. Which column is the
last column in the first row? You do not know yet. You must look at all components that are added to a GridBagLayout
to find out the maximum number of rows and columns in the grid. For now, you know that the second button starts in
the second column, but you do not know in which column it will end (or up to what column it will extend).

Let’s look at the third button. You have specified its gridy = 0, which means that it should be placed in the first
row. You have set its gridx to RELATIVE, which means that it will be placed after the second button in the first row.
You have set its gridwidth value as REMAINDER, which means this is the last component in the first row. There is an
interesting point to note. The second button will expand as needed from the second column to the second to last
column. You are saying that the third button is the last component in the first row and it should occupy the rest of the
cells. The result is that there will always be only one cell (the last cell) left for the third button because of the greedy
value of RELATIVE for the gridwidth of the second button.

In the second row, you have added six buttons. The total number of cells in each row is decided by the maximum
number of columns in a row. Therefore, each row (first and second) will have six cells. You have set the gridwidth to its
default value of 1, so each button in the second row will occupy only one cell. In the first row, the first button occupies
one cell, the third one occupies one cell, and the second one occupies the remaining four, as shown in Figure 1-32.

Figure 1-32.  Specifying gridwidth and gridheight

The fill Constraint
A GridBagLayout gives the preferred width and height to each component. The width of a column is decided by the
widest component in the column. Similarly, the height of a row is decided by the highest component in the row. The
fill constraint value indicates how a component is expanded horizontally and vertically when its display area is bigger
than its size. Note that the fill constraint is only used when the component’s size is smaller than its display area.

The fill constraint has four possible values: NONE, HORIZONTAL, VERTICAL, and BOTH. Its default value is NONE,
which means “do not expand the component.” The value HORIZONTAL means “expand the component horizontally
to fill its display area.” The value VERTICAL means “expand the component vertically to fill its display area.” The value
BOTH means “expand the component horizontally and vertically to fill its display area.”

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

43

The following snippet of code adds nine buttons to a grid of three rows and three columns, as shown in Figure 1-33.
 

gbc.gridx = 0; gbc.gridy = 0;
container.add(new JButton("Button 1"), gbc);
gbc.gridx = 1; gbc.gridy = 0;
container.add(new JButton("Button 2"), gbc);
gbc.gridx = 2; gbc.gridy = 0;
container.add(new JButton("Button 3"), gbc);
 
gbc.gridx = 0; gbc.gridy = 1;
container.add(new JButton("Button 4"), gbc);
gbc.gridx = 1; gbc.gridy = 1;
container.add(new JButton("This is a big Button 5"), gbc);
gbc.gridx = 2; gbc.gridy = 1;
container.add(new JButton("Button 6"), gbc);
 
gbc.gridx = 0; gbc.gridy = 2;
container.add(new JButton("Button 7"), gbc);
gbc.gridx = 1; gbc.gridy = 2;
gbc.fill = GridBagConstraints.HORIZONTAL;
container.add(new JButton("Button 8"), gbc);
gbc.gridx = 2; gbc.gridy = 2;
gbc.fill = GridBagConstraints.NONE;
container.add(new JButton("Button 9"), gbc);
 

The fifth button decides the width of the second column because it is the widest JButton in that column. Note the
empty space in the second column of the first row. It has empty space because for the second button the fill value is
NONE, which is the default and the second button was not expanded to take the entire width of its display area. It was
left to its preferred size. Look at the eighth button. You specified that it should expand horizontally, and it did so to
match the width of its display area.

The ipadx and ipady Constraints
The ipadx and ipady constraints are used to specify internal padding for a component. They increase the preferred
size and the minimum size of the component. By default, both constraints are set to zero. Negative values are allowed.
The negative value for these constraints will decrease the component’s preferred and minimum size. If you specify the
value for ipadx, the component’s preferred and minimum width will be increased by 2*ipadx. Similarly, if you specify
the value for ipady, the component’s preferred and minimum height will be increased by 2*ipady. These options are
rarely used. The values for ipadx and ipady are specified in pixels.

Figure 1-33.  Specifying the fill constraint for a component in a GridBagLayout

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

44

The insets Constraints
The insets constraint specifies the external padding around the component. It adds spaces around the component.
You specify the insets value as an object of the java.awt.Insets class. It has one constructor called
Insets(int top, int left, int bottom, int right). You can specify the padding for all four sides of the
component. By default, the value for insets is set to an Insets object with zero pixels on all four sides. The following
snippet of code adds nine buttons in a 3X3 grid with five pixels insets on all four sides for all buttons. The resulting
layout is shown in Figure 1-34. Note that you have specified the fill constraint as BOTH for all buttons but you still see
the gap between adjacent buttons because of their insets constraints. The insets constraints tell the layout manager
to leave a space between the edge of the component and the edge of the display area.
 

gbc.fill = GridBagConstraints.BOTH;
gbc.insets = new Insets(5, 5, 5, 5);
int count = 1;
for(int y = 0; y < 3; y++) {
 gbc.gridy = y;
 for(int x = 0; x < 3; x++) {
 gbc.gridx = x;
 container.add(new JButton("Button " + count++), gbc);
 }
} 

The anchor Constraint
The anchor constraint specifies where a component should be placed within its display area when its size is smaller
than that of its display area. By default, its value is set to CENTER, which means that the component is centered within
its display area.

There are many constants defined in the GridBagConstraints class that can be used as a value for the anchor
constraint. All constants can be categorized in three categories: absolute, orientation-based, and baseline-based.

The absolute values are NORTH, SOUTH, WEST, EAST, NORTHWEST, NORTHEAST, SOUTHWEST, SOUTHEAST, and CENTER.
Figure 1-35 shows how a component is placed inside a cell with different absolute anchor values. Note that all nine
components in the figure have their fill constraint set to NONE.

Figure 1-34.  Specifying insets for components in a GridBagLayout

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

45

The orientation-based values are used based on the ComponentOrientation property of the container. They are
PAGE_START, PAGE_END, LINE_START, LINE_END, FIRST_LINE_START, FIRST_LINE_END, LAST_LINE_START, and
LAST_LINE_END. Figure 1-36 and Figure 1-37 show the effects of using orientation-based anchor values when the
container’s orientation is set to LEFT_TO_RIGHT and RIGHT_TO_LEFT. You may notice that the orientation-based values
adjust themselves according to the orientation used by the container.

Figure 1-36.  Orientation-based anchor values and their effects when the container’s orientation is LEFT_TO_RIGHT

Figure 1-37.  Orientation-based anchor values and their effects when the container’s orientation is RIGHT_TO_LEFT

Figure 1-35.  Absolute anchor values and their effects on component location in the display area

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

46

The baseline-base anchor’s values are used when you want to align the components in a row along their baseline.
What is the baseline of a component? The baseline is relative to text. It is an imaginary line on which the characters
of the text rest. A component may have a baseline. Generally, the baseline for a component is the distance in pixels
between its top edge and the baseline of the text it displays. You can get the baseline value for a component by
using its getBaseline(int width, int height) method. Note that you need to pass the width and height of the
component to get its baseline. Not every component has a baseline. If a component does not have a baseline, this
method returns –1. Figure 1-38 shows three components, a JLabel, a JTextField and a JButton, that are aligned
along their baseline in a row in a GridBagLayout.

Table 1-4.  List of Baseline-Based Anchor’s Values and Descriptions

Baseline-Based Anchor Values Vertical Alignment Horizontal Alignment

BASELINE Row baseline Center

BASELINE_LEADING Row baseline Aligned along the leading edge**

BASELINE_TRAILING Row baseline Aligned along the trailing edge***

ABOVE_BASELINE Bottom edge touches baseline of the
starting row

Center

ABOVE_BASELINE_LEADING Bottom edge touches baseline of the
starting row*

Aligned along the leading edge**

ABOVE_BASELINE_TRAILING Bottom edge touches baseline of the
starting row

Aligned along the trailing edge***

Figure 1-38.  A JLabel, a JTextField, and a JButton aligned along their baselines

Figure 1-39.  Some baseline-based anchor values in action

Each row in a GridBagLayout can have a baseline. Figure 1-38 shows the baseline for a row that has three
components. A solid horizontal line in the figure indicates the baseline. Note that this solid horizontal baseline
is an imaginary line and it does not really exist. It is shown only to demonstrate the baseline concept. A row in a
GridBagLayout has a baseline only if at least one component has a valid baseline and whose anchor value is BASLINE,
BASELINE_LEADING, or BASELINE_TRAILING. Figure 1-39 shows some of the baseline-based anchor values in action.
Table 1-4 lists all possible values and their descriptions.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

47

The weightx and weighty Constraints
The weightx and weighty constraints control how the extra space in the container is distributed among rows and
columns. The default values for weightx and weighty are zero. They can have any non-negative value.

Figure 1-40 shows a JFrame using the GridBagLayout with nine buttons. Figure 1-41 shows the same JFrame
expanded horizontally and vertically.

Figure 1-40.  A JFrame with a GridBagLayout having nine buttons with no extra spaces

Figure 1-41.  A JFrame with a GridBagLayout having nine buttons after resizing

Baseline-Based Anchor Values Vertical Alignment Horizontal Alignment

BELOW_BASELINE Top edge touches baseline of the
starting row*

Center

BELOW_BASELINE_LEADING Top edge touches baseline of the
starting row

Aligned along the leading edge**

BELOW_BASELINE_TRAILING Top edge touches baseline of the
starting row*

Aligned along the trailing edge***

*starting row: The phrase “starting row” applies only when a component spans multiple rows. Otherwise, read it as the
row in which the component is placed. If a row has no baseline, the component is vertically centered
**Leading edge is left edge for LEFT_TO_RIGHT orientation and right edge for RIGHT_TO_LEFT orientation
***Trailing edge is right edge for LEFT_TO_RIGHT orientation and left edge for RIGHT_TO_LEFT orientation

Table 1-4.  (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

48

Notice the extra spaces generated around the group of buttons. You have set the fill constraint as BOTH for all
buttons, so all buttons represent the grid of cells in the GridBagLayout. The weightx and weighty constraints were left
to their default values of zero. When all the components have their weightx and weighty constraints set to zero, any
extra space in the container appears between the edge of the container and the edge of the grid of cells.

The weightx value determines the distribution of extra horizontal space among the columns, whereas the
weighty value works on distributing the extra vertical space among rows. If all components have the same weightx
and weighty, extra space is distributed equally among them. Figure 1-42 shows all nine buttons when their weightx
and weighty are set to 1.0. You could have set any positive values for weightx and/or weighty. As long as they are the
same for all components, extra space will be distributed equally among them.

Figure 1-42.  A JFrame with a GridBagLayout having nine buttons after resizing. All buttons have their weightx and
weighty set to 1. Extra space is distributed among the display area of all buttons equally

Here is how the extra space for each column is computed based on the weightx values. Suppose a container
with a GridBagLayout is expanded horizontally to make ES pixels of additional space available. Suppose there are
three columns in the grid with three rows. The layout manager will find the maximum value of weightx value for the
components in each column. Suppose cwx1, cwx2, and cwx3 are the maximum values for weightx for column 1,
column 2, and column 3, respectively. Column 1 will get (cwx1 * ES)/(cwx1 + cwx2 + cwx3) amount of the
additional space. Column 2 will get (cwx2 * ES)/(cwx1 + cwx2 + cwx3) amount of the additional space. Column 3
will get (cwx3 * ES)/(cwx1 + cwx2 + cwx3) amount of the additional space. It is necessary to compute the extra
space given to a column by using the maximum weightx value in that column to maintain the grid of cells. The
computation for distributing extra vertical space among the cells using weighty is similar

Tip■■  T he weightx and weighty constraints affect the size of the display area of a component and the size of the
component itself. It is customary to use a value between 0.0 and 1.0 for weightx and weighty. However, you can use any
non-negative value. The size of the component is affected by other constraints such as fill, gridwidth, gridheight,
etc. If you want your component to expand as the extra space becomes available, you need to set its fill constraint to
HORIZONTAL, VERTICAL, or BOTH. You can also set the constraints for a component in a GridBagLayout after you have
added it to the container by using the setConstraints(Component c, GridBagConstraints cons) method of the
GridBagLayout class.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

49

SpringLayout
An instance of the SpringLayout class in the javax.swing package represents a SpringLayout manager. Recall that the
job of a layout manager is to compute four properties (x, y, width, and height) of components in a container. In other
words, it is responsible for positioning the components inside the container and computing their size. A SpringLayout
manager represents these four properties of a component in terms of springs. It is cumbersome to code by hand. It is
meant for GUI builder tools. I will cover the basics of this layout in this section by hand-coding some simple examples.

What is a spring? In the context of a SpringLayout manager, you can think of a spring the same way as a
mechanical spring, which can be stretched, compressed, or stay in its normal state. An object of the Spring class
represents a spring in a SpringLayout. A Spring object has four properties: minimum, preferred, maximum, and
current value. You can think of these four properties as its four types of length. A spring has its minimum value when
it is most compressed. In its normal state (neither compressed nor stretched), it has its preferred value. In its most
stretched state, it has its maximum value. Its value at any given point in time is its current value. When the minimum,
preferred, and maximum values of a spring are the same, it is known as a strut.

How do you create a spring? The Spring class has no public constructors. It contains factory methods to create
springs. To create a spring or strut from scratch, you can use its overloaded constant() static method. You can also
create a spring using the width or height of a component. The minimum, preferred, and maximum values of the
spring are set from the corresponding values of the width or height of the component
 
// Create a strut of 10 pixels
Spring strutPadding = Spring.constant(10);
 
// Create a spring having 10, 25 and 50 as its minimum,
// preferred, and maximum value respectively.
Spring springPadding = Spring.constant(10, 25, 50);
 
// Create a spring from the width of a component named c1
Spring s1 = Spring.width(c1);
 
// Create a spring from the height of a component named c1
Spring s2 = Spring.height(c1);
 

The Spring class has some utility methods that let you manipulate spring properties. You can create a new spring
by adding two springs using the sum() method, like so:
 
// Assuming that s1 and s2 are two springs
Spring s3 = Spring.sum(s1, s2);
 

The computation sum is not performed at the time the statement is executed. Rather, the spring s3 stores the
references of s1 and s2. Whenever s1, s2, or both change, the value for s3 is computed. In this case, s3 behaves as if
you have connected springs s1 and s2 in series.

You can also create a spring by subtracting one spring from another. However, you do not have a method named
subtract(). There is a method called minus() that gives you the negative of a spring. You can use the combination of
the sum() and minus() methods to perform a subtraction, like so:
 
// Perform s1 – s2, which is the same as s1 + (-s2)
Spring s4 = Spring.sum(s1, Spring.minus(s2));
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

50

To get the maximum of two springs s1 and s2, you can use Spring.max(s1, s2). Note that there is no
corresponding method called min(). However, you can simulate it by using the combination of the minus() and max()
methods, like so:
 
// Minimum of 2 and 5 is the minus of the maximum of –2 and –5.
// To get the minimum of two spring s1 and s2, you can use minus
// of maximum of –s1 and –s2
Spring min = Spring.minus(Spring.max(Spring.minus(s1), Spring.minus(s2)));
 

You can also get a fraction of another spring using the scale() method. For example, if you have a spring s1
and you want to create a spring that is 40% of its value, you can do so by passing 0.40f as the second argument to the
scale() method, like so:
 
String fractionSpring = Spring.scale(s1, 0.40f); 

Tip■■   You cannot change the minimum, preferred, and maximum values of a spring after you have created it. You can
set its current value by using its setValue() method.

You just had a great deal of discussion about springs. It is time to see them in action. How do you add a
component to a container with a SpringLayout? In the simplest form, you use the add() method of the container
to add a component. Listing 1-16 sets the layout for the content pane of a JFrame to a SpringLayout and adds two
buttons to it. Figure 1-43 shows the JFrame when you run the program.

Listing 1-16.  The Simplest SpringLayout

// SimplestSpringLayout.java
package com.jdojo.swing;
 
import java.awt.Container;
import javax.swing.JFrame;
import javax.swing.SpringLayout;
import javax.swing.JButton;
 
public class SimplestSpringLayout {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Simplest SpringLayout");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container contentPane = frame.getContentPane();
 
 // Set the content pane's layout as SpringLayout
 SpringLayout springLayout = new SpringLayout();
 contentPane.setLayout(springLayout);
 
 // Add two JButtons to the content pane
 JButton b1 = new JButton("Button 1");
 JButton b2 = new JButton("Little Bigger Button 2");
 contentPane.add(b1);
 contentPane.add(b2);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

51

 frame.pack();
 frame.setVisible(true);
 }
}
 

Figure 1-43 shows that you see only the title bar of the JFrame. When you expand the JFrame, you see the screen
as shown in Figure 1-44. Note that both of your buttons are in the JFrame. However, they overlap. The simplest
SpringLayout example may be the simplest to code; however, it is not that simple to see the result.

Figure 1-43.  The JFrame when you run the SimplestSpringLayout class

Figure 1-44.  After expanding the JFrame when you run the SimplestSpringLayout class

So, what was wrong with your simplest SpringLayout example? I mentioned that a SpringLayout was hard to
hand code and you saw it now! You used the pack() method on the frame to give it an optimal size. But your frame
is shown with no display area. When you use a SpringLayout, you must specify the x, y, width, and height for all
components and the container. It is too much work for developers, and this is why I stated that this layout manager is
meant for a GUI builder, not for coding by hand.

Let’s examine the screens shown in Figure 1-43 and Figure 1-44 one more time. You see that the container got
a position (x and y) and the buttons got size (width and height). A JFrame is displayed at (0, 0) by default, and this
is how you see the position for the container (in fact, your container is a content pane). Buttons get their default
minimum, preferred, and maximum size (all set to the same value) and this is how you see the buttons after you
expand the screen. By default, a SpringLayout positions all components at (0, 0) within the container. In this case,
both buttons are positioned at (0, 0). To fix this problem, specify the x, y, width, and height of two buttons and the
content pane.

A SpringLayout uses constraints to arrange components. An object of the Constraints class, which is a static
inner class of the SpringLayout class, represents constraints for a component and the container. A Constraints
object lets you specify x, y, width, and height of a component using its methods. All four properties must be specified
in terms of a Spring object. When you specify these properties, you need to specify them using one of the constants
defined in the SpringLayout class, listed in Table 1-5.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

52

You can set the x and y constraints of a component relative to the container or to another component. An object
of the Constraints class specifies the constraints for a component. You need to create an object of the SpringLayout.
Constraints class and use its methods to set the constraints’ values. When you add a component to a container, pass
this constraint object to the add() method. Listing 1-17 sets the x and y constraints for the two buttons. Note that the
values (10, 20) and (150, 20) are specified in terms of Spring objects and they are measured from the edges of the
content pane. Figure 1-45 shows the screen when you run the program and after you expand the JFrame.

Listing 1-17.  Setting x and y Constraints for Components

// SpringLayout2.java
package com.jdojo.swing;
 
import javax.swing.SpringLayout;
import java.awt.Container;
import javax.swing.JFrame;
import javax.swing.JButton;
import javax.swing.Spring;
 
public class SpringLayout2 {
 public static void main(String[] args) {
 JFrame frame = new JFrame("SpringLayout2");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container contentPane = frame.getContentPane();
 
 // Set the content pane's layout to a SpringLayout
 SpringLayout springLayout = new SpringLayout();
 contentPane.setLayout(springLayout);
 
 // Add two JButtons to the content pane
 JButton b1 = new JButton("Button 1");
 JButton b2 = new JButton("Little Bigger Button 2");
  

Table 1-5.  List of Constants Defined in the SpringLayout Class

Constant Name Description

NORTH It is synonymous with y. It is the top edge of the component.

WEST It is synonymous with x. It is the left edge of the component.

SOUTH It is the bottom edge of the component. Its value is the same as NORTH + HEIGHT.

EAST It is the right edge of the component. It is the same as WEST + WIDTH.

WIDTH The width of the component.

HEIGHT The height of the component.

HORIZONTAL_CENTER It is the horizontal center of the component. It is the same as WEST + WIDTH/2.

VERTICAL_CENTER It is the vertical center of the component. It is the same as NORTH + HEIGHT/2.

BASELINE It is the baseline of the component.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

53

 // Create Constraints objects for b1 and b2
 SpringLayout.Constraints b1c = new SpringLayout.Constraints();
 SpringLayout.Constraints b2c = new SpringLayout.Constraints();
 
 // Create a Spring object for y value for b1 and b2
 Spring yPadding = Spring.constant(20);
  
 // Set (10, 20) for (x, y) for b1
 b1c.setX(Spring.constant(10));
 b1c.setY(yPadding);
 
 // Set (150, 20) for (x, y) for b2
 b2c.setX(Spring.constant(150));
 b2c.setY(yPadding);
  
 // Use the Constraints object while adding b1 and b2
 contentPane.add(b1, b1c);
 contentPane.add(b2, b2c);
 
 frame.pack();
 frame.setVisible(true);
 }
}
 

You have not fixed the size of the JFrame yet. When you run the program, the JFrame is still displayed with no
display area. At least the two buttons are not overlapping this time. You picked an arbitrary value of 150 pixels as the
value of x for b2. That is, the left edge of b2 is 150 pixels from the left edge of the content pane. There is a way to specify
that the left edge of b2 should be at a specified distance from the right edge of b1. To achieve this, you need to add b1
to the container first. When you add a component to the container, SpringLayout associates a Constraints object to
the component, irrespective of whether you pass a constraints object to the add() method of the container or not. You
can get the constraint for any edge for a component using the getConstraint(String edge, Component c) method
of the SpringLayout class. The following snippet of code does the same. It sets (x, y) for b1 to (10, 20) and sets (x, y) for
b2 to (b1’s right edge + 5, 20). If you replace the code for adding two buttons in Listing 1-17 with the following snippet
of code, b2 will appear 10 pixels right of b1:
 
// Create a Spring object for y value for b1 and b2
Spring yPadding = Spring.constant(20);
 
// Set (10, 20) for (x, y) for b1
b1c.setX(Spring.constant(10));
b1c.setY(yPadding);
 

Figure 1-45.  After expanding the JFrame when the (x, y) are set for two buttons

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

54

// Add b1 to the content pane first
contentPane.add(b1, b1c);
 
// Now query the layout manager for b1's EAST constraint,
// which is the right edge of b1
Spring b1Right = springLayout.getConstraint(SpringLayout.EAST, b1);
 
// Add a 5-pixel strut to the right edge of b1 to define the
// left edge of b2 and set it using setX() method on b2c
Spring b2Left = Spring.sum(b1Right, Spring.constant(5));
b2c.setX(b2Left);
b2c.setY(yPadding);
 
// Now add b2 to the content pane
contentPane.add(b2, b2c);
 

There is an easier and more intuitive way to set the constraints for components in a SpringLayout. First, add
all components to the container without worrying about their constraints and then define the constraints using the
putConstraint() method of the SpringLayout class. Here are two versions of the putConstraint() method:

•	 void putConstraint(String targetEdge, Component targetComponent, int padding,
String sourceEdge,Component sourceComponent)

•	 void putConstraint(String targetEdge, Component targetComponent, Spring padding,
String sourceEdge, Component sourceComponent)

The first version uses a strut. The third argument (int padding) defines a fixed spring, which will behave as a strut
(a fixed distance) between the edges of two components. The second version uses a spring instead. You can read the
method description as, “The targetEdge of the targetComponent is at a padding distance from the sourceEdge of the
sourceComponent.” For example, if you want the left edge of b2 to be 5 pixels from the right edge of b1, you call this method:
 
// Set b2's left edge 5 pixels from b1's right edge
springLayout.putConstraint(SpringLayout.WEST, b2, 5,
 SpringLayout.EAST, b1);
 

To set the left edge of b1 (left edge defines the x value) 10 pixels from the left edge of the content pane, you use
 
springLayout.putConstraint(SpringLayout.WEST, b1, 5,
 SpringLayout.WEST, contentPane);
 

Let’s go back to the sizing problem of your JFrame when you call its pack() method. You need to set the position
for the bottom and right edges for the content pane so that the pack() method will resize it correctly. You set its
bottom edge to 10 pixels below the bottom edge of b1 (or b2, whichever is the closest to its bottom edge). In this
example, both are at the same distance from the bottom edge of the content pane. You set its right edge 10 pixels from
the right edge of b2, which is the rightmost JButton in the content pane. The following snippet of code does this:
 
// Set the bottom edge of the content pane
springLayout.putConstraint(SpringLayout.SOUTH, contentPane, 10,
 SpringLayout.SOUTH, b1);
 
// Set the right edge of the content pane
springLayout.putConstraint(SpringLayout.EAST, contentPane, 10,
 SpringLayout.EAST, b2);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

55

Listing 1-18 contains the complete program and Figure 1-46 shows the JFrame when you run the program.

Listing 1-18.  Using the putConstraint() Method of the SpringLayout Class

// NiceSpringLayout.java
package com.jdojo.swing;
 
import javax.swing.JFrame;
import java.awt.Container;
import javax.swing.SpringLayout;
import javax.swing.JButton;
 
public class NiceSpringLayout {
 public static void main(String[] args) {
 JFrame frame = new JFrame("SpringLayout2");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container contentPane = frame.getContentPane();
 
 // Set the content pane's layout to a SpringLayout
 SpringLayout springLayout = new SpringLayout();
 contentPane.setLayout(springLayout);
 
 // Create two JButtons
 JButton b1 = new JButton("Button 1");
 JButton b2 = new JButton("Little Bigger Button 2");
 
 // Add two JButtons without using any constraints
 contentPane.add(b1);
 contentPane.add(b2);
 
 // Now add constraints to both JButtons
 // Set x for b1 as 10
 springLayout.putConstraint(SpringLayout.WEST, b1, 10,
 SpringLayout.WEST, contentPane);
 // Set y for b1 as 20
 springLayout.putConstraint(SpringLayout.NORTH, b1, 20,
 SpringLayout.NORTH, contentPane);
 
 // Set x for b2 as 10 from the right edge of b1
 springLayout.putConstraint(SpringLayout.WEST, b2, 10,
 SpringLayout.EAST, b1);
 // Set y for b1 as 20
 springLayout.putConstraint(SpringLayout.NORTH, b2, 20,
 SpringLayout.NORTH, contentPane);
 
 /* Now set height and width for the content pane as the bottom
 edge of b1 + 10 and right edge of b2 + 10. Note that source
 is b1 for content pane's height and b2 for its width
 */
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

56

 // Set the bottom edge of the content pane
 springLayout.putConstraint(SpringLayout.SOUTH, contentPane, 10,
 SpringLayout.SOUTH, b1);
 
 // Set the right edge of the content pane
 springLayout.putConstraint(SpringLayout.EAST, contentPane, 10,
 SpringLayout.EAST, b2);
 
 frame.pack();
 frame.setVisible(true);
 }
}
 

SpringLayout is a very powerful layout to mimic many complex layouts. The following snippet of code has some
more examples. The comments explain what it is supposed to do.
 
// Place a JButton b1 horizontally centered at the top of the content pane, you
// would set its constraints as below. Replace HORIZONTAL_CENTER with
// VERTICAL_CENTER to center the JButton vertically
springLayout.putConstraint(SpringLayout.HORIZONTAL_CENTER, north, 0,
 SpringLayout.HORIZONTAL_CENTER,
 contentPane);
 
// You can set the width of two JButtons, b1 and b2, to be the same by
// assigning the maximum width to the both of them. Assuming that you have
// already added b1 and b2 JButtons to the container
SpringLayout.Constraints b1c = springLayout.getConstraints(b1);
SpringLayout.Constraints b2c = springLayout.getConstraints(b2);
  
// Get a spring that represents the maximum of the width of b1 and b2,
// and set that spring as width for both b1 and b2
Spring maxWidth = Spring.max(b1c.getWidth(), b2c.getWidth());
b1c.setWidth(maxWidth);
b2c.setWidth(maxWidth);

GroupLayout
The GroupLayout is in the javax.swing package. It is meant to be used by GUI builders. However, it is easy enough to
be hand-coded as well.

A GroupLayout uses the concept of a group. A group consists of elements. An element of a group may be a
component, a gap, or another group. You can think of a gap as an invisible area between two components.

Figure 1-46.  Nice SpringLayout with the JFrame sized automatically

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

57

You must understand the concept of groups before using a GroupLayout. There are two types of groups:

Sequential group•	

Parallel group•	

When the elements in a group are placed in series, one after another, it is called a sequential group. When the
elements in a group are placed in parallel, it is called a parallel group. A parallel group aligns its elements in one of
the four ways—baseline, centered, leading, and trailing. In a GroupLayout, you need to define the layout for each
component twice—once along the horizontal axis and once along the vertical axis. That is, you need to specify
separately how all components form a group horizontally and vertically. Let’s look at some examples of groups.
Figure 1-47 shows a group of two components.

C1 C2

Horizontal Axis

Vertical Axis

Vertically aligned at the top (LEADING)

Figure 1-48.  Groupings for components C1 and C2

C1 C2

Horizontal Axis

Vertical Axis

Figure 1-47.  Two components, C1 and C2, form a sequential group along the horizontal axis and a parallel group
along the vertical axis

In Figure 1-47, the two axes have been shown only for discussion purpose and they are not part of the layout.
Components are placed one after another (left to right), forming a sequential group along the horizontal axis. They
form a parallel group along the vertical axis. Along the vertical axis, in the parallel group, the two components are
aligned along their top edges. If you have a problem visualizing the sequential and parallel groups along the horizontal
and vertical axes, you can redraw Figure 1-47 as Figure 1-48. The two dashed arrows in the horizontal direction (left to
right) represent C1 and C2 when you visualize their grouping in the horizontal direction. You can see that two arrows
are in series and therefore C1 and C2 form a sequential group along the horizontal axis. The two dashed arrows in the
vertical direction (top to bottom placed left of the component C1) represent C1 and C2 when you visualize them along
the vertical axis. You can see that these two arrows are not in series. Rather, they are in parallel. Therefore, C1 and C2
form a parallel group along the vertical axis. You need to figure out the alignment for a parallel group. In this case,
C1 and C2 are aligned along their top edges, which is called leading alignment in the GroupLayout terminology.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

58

What are the other possible alignments for C1 and C2? There are four possible alignments in a parallel group:
baseline, centered, leading, and trailing. If the parallel group occurs along the vertical axis, all four types of alignment
are possible. If the parallel group occurs along the horizontal axis, only three alignments (centered, leading, and
trailing) are possible. Along the vertical axis, leading is the same as top edge, trailing is the same as bottom edge.
Along the horizontal axis, leading is left edge if the component orientation is LEFT_TO_RIGHT, and it is right edge if the
component orientation is RIGHT_TO_LEFT. Figure 1-49 and Figure 1-50 show the possible alignments along the vertical
and horizontal axes. The alignment is shown by dashed lines. Note that along the vertical axis, the alignment line is
horizontal and along horizontal axis, it is vertical. The four constants in the GroupLayout.Alignment enum, LEADING,
TRAILING, CENTER, and BASELINE, are used to represent the four alignment types.

C1
C2

LEADING

C1 C2

TRAILING

C1 C2 CENTERED

C1 C2 BASELINE

Figure 1-49.  The four possible alignments in a parallel group along the vertical axis in a group

C1

C2

LEADING

C1

C2

CENTER

C1

C2

TRAILING

Figure 1-50.  The three possible alignments in a parallel group along the horizontal axis in a group for component
orientation of LEFT_TO_RIGHT. For RIGHT_TO_LEFT orientation, LEADING and TRAILING will swap edges

How do you create sequential and parallel groups for a GroupLayout? The GroupLayout class contains three
inner classes: Group, SequentialGroup, and ParallelGroup. Group is an abstract class and the other two classes are
inherited from the Group class. You do not have to create an object of these classes directly. Rather, you use the factory
methods of the GroupLayout class to create their objects.

The GroupLayout class provides two separate methods to create groups: createSequentialGroup()and
createParallelGroup(). It is obvious from the name of these methods the kind of groups they create. Note that you
need to specify the alignment for a parallel group. The createParallelGroup() method is overloaded. The version
with no arguments defaults the alignment to LEADING. Another version lets you specify the alignment. Once you have
a group object, you can add components, gaps, and groups to it using its addComponent(), addGap(), and addGroup()
methods, respectively.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

59

How do you use the GroupLayout manager? Here are the steps you need to follow to use a GroupLayout. Assume
that you have to place two buttons in a JFrame, as shown in Figure 1-51.

Figure 1-51.  The simplest GroupLayout in which two buttons are placed side by side

Assume that the JFrame is named frame and the two JButtons are named b1 and b2. First, you need to create an
object of the GroupLayout class. It contains only one constructor that takes the container reference as an argument.
This means that you need to get the reference to the container for which you want to create the GroupLayout, before
you can create an object of the GroupLayout class.
 
// Get the reference of the container
Container contentPane = frame.getContentPane();
 
// Create a GroupLayout object
GroupLayout groupLayout = new GroupLayout(contentPane);
 
// Set the layout manager for the container
contentPane.setLayout(groupLayout);
 

Second, you need to create the group of components along horizontal axis (called horizontal group) and set that
group to the GroupLayout using the setHorizontalGroup() method. Note that a group can be sequential or parallel
along any axis—horizontal and vertical. In your case, two buttons, b1 and b2, form a sequential group along the
horizontal axis.
 
// Create a sequential group
GroupLayout.SequentialGroup sGroup = groupLayout.createSequentialGroup();
 
// Add two buttons to the group
sGroup.addComponent(b1);
sGroup.addComponent(b2);
 
// Set the horizontal group for the GroupLayout
groupLayout.setHorizontalGroup(sGroup);
 

You can combine all steps into one, like so:
 
groupLayout.setHorizontalGroup(groupLayout.createSequentialGroup()
 .addComponent(b1)
 .addComponent(b2));
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

60

Finally, create the group of components along the vertical axis (called vertical group) and set that group to the
GroupLayout using the setVerticalGroup() method. Two buttons form a parallel group along vertical axis. You can
accomplish this as follows:
 
groupLayout.setVerticalGroup(
 groupLayout.createParallelGroup(GroupLayout.Alignment.BASELINE)
 .addComponent(b1)
 .addComponent(b2)); 

Tip■■   In a GroupLayout, you do not add a component to the container using its add() method. Rather, you add
a component to a group along the horizontal and vertical axes and add the group to the GroupLayout using the
setHorizontalGroup() and setVerticalGroup() methods.

Listing 1-19 demonstrates how to use a GroupLayout to display two buttons side by side in a JFrame. When you
run the program, the JFrame is displayed as shown in Figure 1-51. I will discuss more complex examples shortly.

Listing 1-19.  The Simplest GroupLayout

// SimplestGroupLayout.java
package com.jdojo.swing;
 
import java.awt.Container;
import javax.swing.JFrame;
import javax.swing.JButton;
import javax.swing.GroupLayout;
 
public class SimplestGroupLayout {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Simplest GroupLayout");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container contentPane = frame.getContentPane();
 
 // Create an object of the GroupLayout class for contentPane
 GroupLayout groupLayout = new GroupLayout(contentPane);
 
 // Set the content pane's layout to a GroupLayout
 contentPane.setLayout(groupLayout);
 
 // Add two JButtons to the content pane
 JButton b1 = new JButton("Button 1");
 JButton b2 = new JButton("Little Bigger Button 2");
 
 groupLayout.setHorizontalGroup(
 groupLayout.createSequentialGroup()
 .addComponent(b1)
 .addComponent(b2));
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

61

 groupLayout.setVerticalGroup(
 groupLayout.createParallelGroup(GroupLayout.Alignment.BASELINE)
 .addComponent(b1)
 .addComponent(b2));
 
 frame.pack();
 frame.setVisible(true);
 }
}
 

A GroupLayout has two more features that are worth discussing:

It lets you add a gap between two components.•	

It lets you specify the resizing behaviors for the components, gaps, and groups.•	

You can think of a gap as an invisible component. There are two types of gaps: the gap between two components,
and the gap between a component and the container. You can add a gap between two components using the addGap()
method of the Group class. You can add a rigid gap as well as a flexible gap (as a spring). A rigid gap is fixed in size.
A flexible gap has a minimum, a preferred, and a maximum size, and it acts like a spring when the container is resized.
To add a rigid gap of 10 pixels between b1 and b2 in your previous example, you set up your horizontal group like so:
 
groupLayout.setHorizontalGroup(groupLayout.createSequentialGroup()
 .addComponent(b1)
 .addGap(10)
 .addComponent(b2));
 

There are three ways to add gaps between two components. They are based on the gap size and their
ability to resize.

You can add a rigid gap between two components using the •	 addGap(int gapSize).

You can add a flexible (spring-like) gap between two components, which has a minimum, a •	
preferred, and a maximum size, using the addGap(int min, int pref, int max) method.
To add a flexible gap with 5, 10, and 50 as the minimum, preferred, and maximum size
respectively, you set up your horizontal group like so:

groupLayout.setHorizontalGroup(groupLayout.createSequentialGroup()
 .addComponent(b1)
 .addGap(5, 10, 50)
 .addComponent(b2));

You can add a preferred gap between two components. In this case, you have the option to •	
specify the size of the gap or let the layout manager compute it for you. However, you must
specify the way in which these two components are related as far as this gap is concerned. There
are three kinds of such gaps: RELATED, UNRELATED, and INDENT. If you are adding a preferred
gap between a label and its corresponding field, you add a RELATED gap between them. For
example, if you have a login form, and you want to add a preferred gap between “User ID:” and
the text field to enter the user id, you add a RELATED gap between them. You use an UNRELATED
gap when two components belong to different groups. When you are adding a gap just to indent
a component, you add an INDENT gap. Three types of gaps are represented by three constants,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

62

RELATED, UNRELATED and INDENT, defined in the LayoutStyle.ComponentPlacement enum.
Use the addPreferredGap() method to add a preferred gap. The following snippet of code adds
a RELATED preferred gap between b1 and b2:

groupLayout.setHorizontalGroup(
groupLayout.createSequentialGroup()
 .addComponent(b1)
 .addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)
 .addComponent(b2));

You need to use the addContainerGap() method of the GroupLayout.SequentialGroup class
to add a gap between edges of a component and a container. The method is overloaded. It also
lets you specify the preferred and maximum size of the gap.

Setting hard-coded gaps may create problems when you run your application on different platforms. This is the
reason that the GroupLayout has two methods that let you specify that you want the GroupLayout to compute the preferred
gaps depending on the platform your application is running on. To let the GroupLayout compute and set the gaps
between two components, you need to call its setAutoCreateGaps(true) method. To let it compute and set gaps between
components and the container edges, you need to call its setAutoCreateContainerGaps(true) method. By default, the
auto-computing of gaps is disabled. Replace the statement
 
// Create an object of the GroupLayout class
GroupLayout groupLayout = new GroupLayout(contentPane);
 
in Listing 1-19 with the following statements
 
// Create an object of the GroupLayout class and setup gaps
GroupLayout groupLayout = new GroupLayout(contentPane);
groupLayout.setAutoCreateGaps(true);
groupLayout.setAutoCreateContainerGaps(true);
 

Now, the JFrame will look as shown in Figure 1-52. You can see that the layout manager added the necessary
gaps for you.

Figure 1-52.  The simplest GroupLayout with auto gaps enabled

A GroupLayout respects the minimum, preferred, and maximum size of a component. When the container is
resized, the layout manager asks the components for their sizes and resizes them accordingly. However, you can
override this behavior by using the addComponent(Component c, int min, int pref, int max) method that lets
you specify the minimum, preferred, and maximum size of a component. You need to understand the meaning of
the two constants defined in the GroupLayout class. They are DEFAULT_SIZE and PREFERRED_SIZE. They can be used
for the min, pref, and max arguments in the addComponent() method. DEFAULT_SIZE means that the layout manager

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

63

should ask the component for this size type and use it. PREFERRED_SIZE means that the manager should use the
component’s preferred size. For example, if you want the JButton b2 in your previous example to expand (by default,
a JButton has the same min, pref, and max size), you add it to the horizontal group like so:
 
groupLayout.setHorizontalGroup(groupLayout.createSequentialGroup()
 .addComponent(b1)
 .addComponent(b2,
 GroupLayout.PREFERRED_SIZE,
 GroupLayout.PREFERRED_SIZE,
 Integer.MAX_VALUE));
 

By specifying PREFERRED_SIZE as the minimum size and preferred size, you are telling the layout manager that
b2 should not be shortened below its preferred size. Integer.MAX_VALUE as its maximum size tells the layout manager
that it can expand it infinitely. To make a component not resizable, you can use all three of its sizes the same as
GroupLayout.PREFERRED_SIZE.

You can nest groups in a GroupLayout. Let’s look at a layout of four buttons named b1, b2, b3, and b4 as shown in
Figure 1-53.

Figure 1-53.  Nested groups in GroupLayout

Horizontal Axis

Four arrows represent
four JButtons along

horizontal axis

Figure 1-54.  Four buttons represented by four arrows along horizontal axis

Let’s look at components layout along horizontal axis. You can see two parallel groups (b1, b3) and (b2, b4) and
these two groups are placed sequentially. Let’s use PG and SG to represent parallel and sequential groups, respectively,
in the pseudo code. Note that in PG(b1, b3), the components are aligned along the LEADING edge (here, the left edge)
and in PG(b2, b4), they are aligned along the TRAILING edge (here, the right edge). Let’s insert the alignment to your
pseudo code and the groups will look like this: PG[LEADING](b1, b3) and PG[TRAILING](b2, b4). I have made
up this syntax for the purpose of discussing this example. You will see the Java code shortly. If you have a problem
visualizing the arrangement, you can refer to Figure 1-54, where each button has been shown by an arrow along the
horizontal axis.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

64

The arrows are aligned the same as the buttons. You can observe that arrows for b1 and b3 are parallel, and that
the arrows for b2 and b4 are parallel. If you visualize the two parallel groups, you can observe that these two groups
make up one sequential group along the horizontal axis. To help you visualize this final arrangement, the arrow
arrangements have been refined in Figure 1-55.

Horizontal Axis

A sequential group of
two parallel groups

Figure 1-55.  Four buttons represented by four arrows along horizontal axis

Each parallel group is shown inside a dashed rectangle. The arrow coming out of the dashed rectangle shows that
these groups are sequential along the horizontal axis. It may take a while to understand these parallel and sequential
arrangements of components along an axis. Once you get it, it will be quite easy to use a GroupLayout in a complex
scenario. Most likely, you will be using a GUI builder tool to arrange your components, and you won’t care about the
complexity of the groups. However, it always helps to understand the concept behind a layout.

To finalize this discussion along the horizontal axis, the pseudo code looks as follows:
 
Horizontal Group = SG(PG[LEADING](b1, b3), PG[TRAILING](b2, b4))
 

Similarly, you can visualize the grouping arrangements along the vertical axis. If you have a problem visualizing
this, you can draw all four buttons as arrows pointing from top to bottom and see how they form groups along the
vertical axis. Here is the vertical groupings arrangement:
 
Vertical Group = SG(PG[BASELINE](b1, b2), PG[BASELINE](b3, b4))
 

Now, it is easy to translate the pseudo code into Java code, as shown in Listing 1-20.

Listing 1-20.  Nested Groups in GroupLayout

// NestedGroupLayout.java
package com.jdojo.swing;
 
import java.awt.Container;
import javax.swing.JFrame;
import javax.swing.JButton;
import javax.swing.GroupLayout;
import static javax.swing.GroupLayout.Alignment.*;
 
public class NestedGroupLayout {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Nested Groups in GroupLayout");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container contentPane = frame.getContentPane();
 
 // Set the content's pane layout to GroupLayout
 GroupLayout groupLayout = new GroupLayout(contentPane);
 groupLayout.setAutoCreateGaps(true);
 groupLayout.setAutoCreateContainerGaps(true);
 contentPane.setLayout(groupLayout);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

65

 // Add four JButtons to the content pane
 JButton b1 = new JButton("Button 1");
 JButton b2 = new JButton("Little Bigger Button 2");
 JButton b3 = new JButton("3");
 JButton b4 = new JButton("Button 4");
 
 groupLayout.setHorizontalGroup(
 groupLayout.createSequentialGroup()
 .addGroup(groupLayout.createParallelGroup(LEADING)
 .addComponent(b1)
 .addComponent(b3))
 .addGroup(groupLayout.createParallelGroup(TRAILING)
 .addComponent(b2)
 .addComponent(b4))
);
 
 groupLayout.setVerticalGroup(
 groupLayout.createSequentialGroup()
 .addGroup(groupLayout.createParallelGroup(BASELINE)
 .addComponent(b1)
 .addComponent(b2))
 .addGroup(groupLayout.createParallelGroup(BASELINE)
 .addComponent(b3)
 .addComponent(b4))
);
 
 frame.pack();
 frame.setVisible(true);
 }
}
 

How do you make the sizes of two components the same? Let’s try to make b1 and b3 the same size. You need
to consider two things when making a component resizable. First, you need to consider the resizable behavior of
the group. Second, you need to consider the resizable behavior of the components inside the group. The size of a
parallel group is the size of the largest element. If you consider PG{LEADING](b1, b3), the width of this group would
be the size of b1 because b1 is the largest component in this group. By default, a JButton has a fixed size. To make
b3 stretch to the size of the group (which is the size of b1), you must add it to the group specifying that it can expand
as addComponent(b3, GroupLayout.DEFAULT_SIZE, GroupLayout.DEFAULT_SIZE, Integer.MAX_VALUE). This will
force b3 to stretch to the same size as its group, which in turn is the same as the b1 width. If two components are not in
the same parallel group, to make them the same size, you can use the linkSize() method of the GroupLayout class.
When you use the linkSize() method to make components the same size, the components become non-resizable
irrespective of their minimum, preferred, and maximum size.
 
// Make b1, b2, b3 and b4 the same size
groupLayout.linkSize(b1, b2, b3, b4);
 
// Make b1 and b3 the same size horizontally
groupLayout.linkSize(SwingConstants.HORIZONTAL, new Component[]{b1, b3});
 

You can also make a group resizable when you create a parallel group using the
createParallelGroup(GroupLayout.Alignment a, boolean resizable) method. If you place resizable components
in a resizable group, the group will resize when you resize the container, which in turn makes the components resize.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

66

The null Layout Manager
By now, you may have realized that a layout manager handles the positioning and resizing of components within a
container. If a container is resized, the layout manager will take care of repositioning and resizing of the components
within it. If you do not want to have a layout manager, you lose this benefit and you are responsible for positioning and
resizing of all components within a container. It is simple to tell a container that you do not want a layout manager.
Just set the layout manager to null, like so:
 
// Do not use a layout manager for myContainer
myContainer.setLayout(null);
 

You can set the layout manager of a JFrame’s content pane to null, like so:
 
JFrame frame = new JFrame("No Layout Manager Frame");
Container contentPane = frame.getContentPane();
contentPane.setLayout(null);
 

The phrase “null layout manager” simply means that there is no layout manager. It is also known as absolute
positioning. Note that your program may run on different platforms. The size of components may differ when they are
displayed on different platforms, and your null layout manager cannot account for this inconsistency. When you are using
a null layout manager, make sure that your component’s size is big enough to be displayed properly on all platforms.

Listing 1-21 uses a null layout manager for the content pane of a JFrame. It adds two buttons to it. It also sets the
position and size of buttons and JFrame using the setBounds() method. Figure 1-56 shows the resulting JFrame.

Listing 1-21.  Using a null Layout Manager

// NullLayout.java
package com.jdojo.swing;
 
import javax.swing.JFrame;
import java.awt.Container;
import javax.swing.JButton;
 
public class NullLayout {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Null Layout Manager");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container contentPane = frame.getContentPane();
 contentPane.setLayout(null);
  
 JButton b1 = new JButton("Small Button 1");
 JButton b2 = new JButton("Big Big Big Button 2...");
 contentPane.add(b1);
 contentPane.add(b2);
 
 // Must set (x, y) and (width, height) of components
 b1.setBounds(10, 10, 100, 20);
 b2.setBounds(120, 10, 150, 20);
  

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

67

 // Must set the size of JFrame, because it uses a null layout.
 // Now, you cannot use the pack() method to compute its size.
 frame.setBounds(0, 0, 350, 100);
 frame.setVisible(true);
 }
}
 

Note that the labels for buttons are not displayed fully. This is one of the problems that you will face when using
a null layout manager. If you try to resize the JFrame at runtime, you will notice that the buttons are not resized
automatically, as they would have been if you had used a layout manager. A layout manager computes the size of a
JButton based on the platform, its text, and font whereas with a null layout manager you are supposed to compute
(most of the time, you just guess) the button’s size considering all these factors. It is not good practice in Java to use a
null layout manager, except when you are prototyping or learning the null layout manager.

Creating a Reusable JFrame
In previous sections, you created a JFrame by instantiating the JFrame class and you used the main() method of the
class to write the code to build the GUI. The JFrames in your examples were not reusable. So far, you were fine because
the Swing programs were simple and their sole purpose was to display some components in a JFrame. As you start
writing more complex Swing programs, this way of programming is not going to work well. For example, suppose you
want to make a JButton in a JFrame invisible or disabled after the JFrame is displayed. Since you have been declaring
all your JButtons as local variables inside the main() method, you will not have access to their references once the
main() method has finished executing. To make your JFrame reusable and keep the references of the components
added to the JFrame handy, so you can refer to them later, you need to change the approach of creating a JFrame.

Here is your new approach to creating a JFrame. You create your own class, inheriting it from the JFrame class
as shown:
 
public class CustomFrame extends JFrame {
 // Code for CustomFrame goes here
}
 

All your components are declared as instance variables in your custom class, as shown:
 
public class CustomFrame extends JFrame {
 // Declare all components in the JFrame as instance variables
 JButton okButton = new JButton("OK");
 JButton cancelButton = new JButton("Cancel");
}
 

Figure 1-56.  A JFrame using a null layout manager

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

68

You have an initFrame() method to add components to the JFrame’s content pane. You call this method from
the constructor of your custom JFrame. The method initFrame() is not required by Java. It is just your convention for
writing code for your Swing applications. To display your JFrame, you instantiate your class and make it visible. This
approach has similar code, arranged differently, so you can write some more serious Swing programs. Listing 1-22
accomplishes the same thing as the code in Listing 1-19.

Listing 1-22.  Creating a Cutom JFrame

// CustomFrame.java
package com.jdojo.swing;
 
import javax.swing.JFrame;
import javax.swing.GroupLayout.Alignment;
import javax.swing.JButton;
import java.awt.Container;
import javax.swing.GroupLayout;
 
public class CustomFrame extends JFrame {
 // Declare all components as instance variables
 JButton b1 = new JButton("Button 1");
 JButton b2 = new JButton("Little Bigger Button 2");
 
 public CustomFrame(String title) {
 super(title);
 initFrame();
 }
 
 // Initialize the frame and add components to it.
 private void initFrame() {
 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container contentPane = this.getContentPane();
 GroupLayout groupLayout = new GroupLayout(contentPane);
 contentPane.setLayout(groupLayout);
 
 groupLayout.setHorizontalGroup(
 groupLayout.createSequentialGroup()
 .addComponent(b1)
 .addComponent(b2)
);
 
 groupLayout.setVerticalGroup(
 groupLayout.createParallelGroup(Alignment.BASELINE)
 .addComponent(b1)
 .addComponent(b2)
);
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

69

 // Display the CustomFrame
 public static void main(String[] args) {
 CustomFrame frame = new CustomFrame("Custom Frame");
 frame.pack();
 frame.setVisible(true);
 }
}

Event Handling
What is an event? The literal meaning of an event is

“An occurrence of something at a specific point in time.”

The meaning of an event in a Swing application is similar. An event in Swing is an action taken by a user at a
particular point in time. For example, pressing a button, pressing a key down/up on the keyboard, and moving the
mouse over a component are events in a Swing application. Sometimes the occurrence of an event in Swing (or any
GUI-based application) is also known as “triggering an event” or “firing an event.” When you say that a clicked event
has occurred on a button, you mean that the button has been pressed using the mouse, the spacebar, or by any other
means your application allows you to press a button. Sometimes you can use the phrase “clicked event has been
triggered or fired on a button” to mean the same that the button has been pressed.

When an event occurs, you want to respond to the event. Taking an action in a program is nothing but executing a
piece of code. Taking an action in response to the occurrence of an event is called event handling. The piece of code that
is executed when an event occurs is called an event handler. Sometimes an event handler is also called an event listener.

How you write an event handler depends on the type of event and the component that generates the event.
Sometimes the event handler is built into a Swing component, and sometimes you need to write the event handler
yourself. For example, when you press a JButton, you need to write the event handler yourself. However, when you
press a letter key on the keyboard when the focus is in a text field, the corresponding letter is typed in the text field
because of the key pressed event has a default event handler that is supplied by Swing.

There are three participants in an event:

The source of the event•	

The event•	

The event handler (or the event listener)•	

The source of an event is the component that generates the event. For example, when you press a JButton,
the clicked event occurs on that JButton. In this case, the JButton is the source of the clicked event.

An event represents the action that takes place on the source component. An event in Swing is represented by
an object that encapsulates the details about the event such as the source of the event, when the event occurred, what
kind of event occurred, etc. What is the class of the object that represents an event? It depends on the type of the
event that occurs. There is a class for every type of event. For example, an object of the ActionEvent class in
the java.awt.event package represents a clicked event for a JButton.

I will not discuss all types of events in this chapter. I will list the important events for a component when I discuss
components in Chapter 2. This section will explain how to handle any type of event in a Swing application.

An event handler is the piece of code that is executed when an event occurs. Like an event, an event handler
is also represented by an object, which encapsulates the event handling code. An object of what class represents
an event handler? It depends on the type of event that the event handler is supposed to handle. An event handler
is also known as an event listener because it listens for the event to occur in the source component. I will use the
phrases “event handler” and “event listener” interchangeably in this chapter. Typically, an event listener is an object
that implements a specific interface. The specific interface an event listener has to implement depends on the type

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

70

of event it will listen for. For example, if you are interested in listening for a clicked event of a JButton (to rephrase,
if you are interested in handling the clicked event of a JButton), you need an object of a class that implements the
ActionListener interface, which is in the java.awt.event package.

Looking at the descriptions of the three participants of an event handling, it seems you need to write a lot of code
to handle an event. Not really. Event handling is easier than it seems. I will list the steps to handle an event, followed
by an example of how to handle the clicked event of a JButton. Here are the steps to handle an event. These steps
apply to handle any kind of event on any Swing component.

Identify the component for which you want to handle the event. Assume that you have named •	
the component as sourceComponent. So your event source is sourceComponent.

Identify the event that you want to handle for the source component. Assume that you are •	
interested in handling Xxx event. Here Xxx is an event name that you will have to replace by
an event name that exists for the source component. Recall that an event is represented by an
object. The Java naming convention for event classes comes to your rescue in identifying the
name of the class whose object represents Xxx event. The class whose object represents Xxx
event is named XxxEvent. Usually the event classes are in the java.awt.event and
javax.swing.event package.

It is time to write an event listener for the •	 Xxx event. Recall that an event listener is nothing
but an object of a class that implements a specific interface. How do you know what specific
interface you need to implement in your event listener class? Here again, the Java naming
convention comes to your rescue. For Xxx event, there is an XxxListener interface that you
need to implement in your event listener class. Usually the event listener interfaces are in
the java.awt.event and javax.swing.event package. The XxxListener interface will have
one or more methods. All methods for XxxListener take an argument of type XxxEvent
because these methods are meant to handle an XxxEvent. For example, suppose you have an
XxxListener interface that has a method named aMethod() as

public interface XxxListener {
 void aMethod(XxxEvent event);
}

Your event listener class will look as follows. Note that you will be creating this class. •	

public class MyXxxEventListener implements XxxListener {
 public void aMethod(XxxEvent event) {
 // Your event handler code goes here
 }
}

You are almost done. You have identified the event source, the event you are interested in, and •	
the event listener. There is only one thing missing. You need to let the event source know that
your event listener is interested in listening to its Xxx event. This is also known as registering
an event listener with the event source. You register an object of your event listener class with
the event source. In your case, you will create an object of the MyXxxEventListener class.

MyXxxEventListener myXxxListener = new MyXxxEventListener();

How do you register an event listener with the event source? Here again, the Java naming •	
convention comes in handy. If a component (an event source) supports an Xxx event, it will
have two methods, addXxxListener(XxxListener l) and removeXxxListener(XxxListener l).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

71

When you are interested in listening for an Xxx event of a component, you call the
addXxxListener() method, passing an event listener as an argument. When you do not want
to listen for Xxx event of a component anymore, you call its removeXxxListener() method.
To add your myXxxListener object as the Xxx event listener for sourceComponent, you write

sourceComponent.addXxxListener(myXxxListener);

That is all you need to do to handle an Xxx event. It may seem that you have to perform many steps to handle
an event. However, that is not the case. You can always avoid writing a new event listener class, which implements
the XxxListener interface by using an anonymous inner class, which implements the XxxListener interface. For
example, you could have written the above pieces of code in two statements, like so:
 
// Create an event listener object using an anonymous inner class
XxxListener myXxxListener = new XxxListener() {
 public void aMethod(XxxEvent event) {
 // Your event handler code goes here
 }
};
 
// Add the event listener to the event source component
sourceComponent.addXxxListener(myXxxListener);
 

If the listener interface is a functional interface, you can use a lambda expression to create its instance. Your
XxxListener is a functional interface because it contains only one abstract method. You can avoid creating the bulky
anonymous class and rewrite the above code as follows:
 
// Add the event listener using a lambda expressions
sourceComponent.addXxxListener((XxxEvent event) -> {
 // Your event handler code goes here
});
 

I have discussed enough theories about handling events. It is time to look at an example. Add an event listener
to a JButton, and then add a JButton with text Close to a JFrame. When the JButton is pressed, the JFrame is closed
and the application exits. A JButton generates an Action event when it is pressed. Once you know the name of the
event, which is Action in this case, you just need to replace Xxx in the previous generic example with the word Action.
You will come to know the class and method names you need to use to handle the Action event of JButton. Table 1-6
compares the names of classes/interfaces/method used to handle Action event for a JButton to that of generic names
I had used in the discussion.

Table 1-6.  A Comparison Between Generic Event Handlers With Action Event Handlers for a JButton

Generic Event Xxx Action Event for JButton Comments

XxxEvent ActionEvent An object of ActionEvent class in java.awt.event
package represents Action event for JButton.

XxxListener ActionListener An object of a class that implements ActionListener
interface represents Action event handler for a JButton.

addXxxListener
(XxxListener l)

addActionListener
(ActionListener l)

The addActionListener() method of a JButton is used to
add a listener for its Action event.

removeXxxListener
(XxxListener l)

removeActionListener
(ActionListener l)

The removeActionListener() method of JButton is used
to remove a listener for its Action event.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

72

The ActionListener interface is simple. It has one method called actionPerformed(). The interface declaration
is as follows:
 
public interface ActionListener extends EventListener {
 void actionPerformed(ActionEvent event);
}
 

All event listener interfaces inherit from the EventListener interface, which is in the java.util package.
The EventListener interface is a marker interface, and it does not have any methods. It just acts as the ancestor for
all event listener interfaces. When a JButton is pressed, the actionPerformed() method of all its registered Action
listeners is called.

Using a lambda expression, here is how you add an Action listener to a JButton:
 
// Add an ActionListener to closeButton
closeButton.addActionListener(e -> System.exit(0));
 

Listing 1-23 displays a JFrame that contains a JButton. It adds an Action listener to the JButton. The Action
listener simply exits the application. Clicking the Close button in the JFrame will close the application.

Listing 1-23.  A JFrame with a Close JButton With an Action

// SimplestEventHandlingFrame.java
package com.jdojo.swing;
 
import java.awt.FlowLayout;
import javax.swing.JFrame;
import javax.swing.JButton;
 
public class SimplestEventHandlingFrame extends JFrame {
 JButton closeButton = new JButton("Close");
 
 public SimplestEventHandlingFrame() {
 super("Simplest Event Handling JFrame");
 this.initFrame();
 }
 
 private void initFrame() {
 this.setDefaultCloseOperation(EXIT_ON_CLOSE);
 
 // Set a FlowLayout for the content pane
 this.setLayout(new FlowLayout());
 
 // Add the Close JButton to the content pane
 this.getContentPane().add(closeButton);
 
 // Add an ActionListener to closeButton
 closeButton.addActionListener(e -> System.exit(0));
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

73

 public static void main(String[] args) {
 SimplestEventHandlingFrame frame =
 new SimplestEventHandlingFrame();
 frame.pack();
 frame.setVisible(true);
 }
}
 

Let’s have one more example of adding an Action listener to JButton. This time, add two buttons to a JFrame:
a Close button and another to display the number of times it is clicked. Every time the second button is clicked, its
text is updated to show the number of times it has been clicked. You need to use an instance variable to maintain the
click count. Listing 1-24 contains the complete code. Figure 1-57 shows the JFrame when it is displayed and after
the counter button has been clicked three times.

Listing 1-24.  A JFrame With Two Buttons With Actions

// JButtonClickedCounter.java
package com.jdojo.swing;
 
import javax.swing.JFrame;
import java.awt.FlowLayout;
import java.awt.event.ActionEvent;
import javax.swing.JButton;
import java.awt.event.ActionListener;
 
public class JButtonClickedCounter extends JFrame {
 int counter;
 JButton counterButton = new JButton("Clicked #0");
 JButton closeButton = new JButton("Close");
 
 public JButtonClickedCounter() {
 super("JButton Clicked Counter");
 this.initFrame();
 }
  
 private void initFrame() {
 this.setDefaultCloseOperation(EXIT_ON_CLOSE);
  
 // Set a FlowLayout for the content pane
 this.setLayout(new FlowLayout());
  
 // Add two JButtons to the content pane
 this.getContentPane().add(counterButton);
 this.getContentPane().add(closeButton);
  
 // Add an ActionListener to the counter JButton
 counterButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 // Increment the counter and set the JButton text
 counter++;
 counterButton.setText("Clicked #" + counter);
 }
 });
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

74

 // Add an ActionListener to closeButton
 closeButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 // Exit the application, when this button is pressed
 System.exit(0);
 }
 });
 }
 
 public static void main(String[] args) {
 JButtonClickedCounter frame = new JButtonClickedCounter();
 frame.pack();
 frame.setVisible(true);
 }
}
 

Figure 1-57.  A JFrame when it is displayed and after the counter JButton is clicked three times

Figure 1-58 shows the class diagram for the classes and interfaces involved in handling the Action event.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

75

Note that you do not create an object of the ActionEvent class. The JButton, when pressed, creates an object
of the ActionEvent class, and passes it to the actionPerformed() method of your event handler object. The
getActionCommand() method of the ActionEvent returns, by default, the text of the JButton. You can explicitly set the
action command text for a JButton using its setActionCommand() method. The getModifiers() returns the state of
the modifier keys such as Shift, Ctrl, Alt held down during the action event. A modifier key is a key on the keyboard
that is meaningful only when used in combination with other keys. The paramString() method returns a string
describing the action event. It is usually used for debugging purposes.

One of the uses of the getActionCommand() method is to take some action, depending on the text displayed on
the JButton. For example, you may have a JButton that is used to show or hide some details on the screen. Suppose
you want to display the text of a JButton as Show or Hide. You can write its Action listener as follows:
 
JButton showHideButton = new JButton("Hide");
showHideButton.addActionListener(e -> {
 if (e.getActionCommand().equals("Show")) {
 // Show the details here...
 showHideButton.setText("Hide");
 }

Figure 1-58.  A class diagram for classes and interfaces realted to Action Event

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

76

 else {
 // Hide the details here...
 showHideButton.setText("Show");
 }});
 

In this section, you learned how to add an event handler for a component. The examples were simple. They
added action event handlers to JButtons. The ActionListener interface is a functional interface and you took
advantage of lambda expression to write the action event listener. Swing was developed a long time before the
lambda expressions. All event listener interfaces are not functional interfaces, so you cannot use lambda expressions
for creating their objects. In those cases, you can use an anonymous class, a member inner class, or implement the
listener interface in your main class.

Handling Mouse Events
You can handle mouse activities (clicked, entered, exited, pressed, and released) on a component. You will experiment
with mouse events using a JButton. An object of the MouseEvent class represents a Mouse event on a component. Now,
you can guess that to handle Mouse events, you will need to work with the MouseListener interface. Here is how the
interface is declared:
 
public interface MouseListener extends EventListener {
 public void mouseClicked(MouseEvent e);
 public void mousePressed(MouseEvent e);
 public void mouseReleased(MouseEvent e);
 public void mouseEntered(MouseEvent e);
 public void mouseExited(MouseEvent e);
}
 

The MouseListener interface has five methods. You cannot use a lambda expression to create mouse event
handler. One of the methods of the MouseListener interface is called when a specific mouse event occurs. For
example, when a mouse pointer enters a component’s boundary, a mouse entered event occurs on the component,
and the mouseEntered() method of the mouse listener object is called. When the mouse pointer leaves the boundary
of the component, a mouse exited event occurs, and the mouseExited() method is called. The names of other
methods are self-explanatory.

The MouseEvent class has many methods that provide the details about a mouse event:

 The •	 getClickCount() method returns the number of clicks a mouse made.

The •	 getX() and getY() methods return the x and y positions of the mouse with respect to the
component when the event occurs.

The •	 getXOnScreen() and getYOnScreen() methods return the absolute x and y positions of
the mouse at the time the event occurs.

Suppose you are interested in handling only two kinds of mouse events for a JButton: the mouse entered and mouse
exited events. The text of the JButton changes to describe the event. The mouse event handler code is as follows:
 
mouseButton.addMouseListener(new MouseListener() {
 @Override
 public void mouseClicked(MouseEvent e) {
 // Nothing to handle
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

77

 @Override
 public void mousePressed(MouseEvent e) {
 // Nothing to handle
 
 }
 
 @Override
 public void mouseReleased(MouseEvent e) {
 // Nothing to handle
 }
 
 @Override
 public void mouseEntered(MouseEvent e) {
 mouseButton.setText("Mouse has entered!");
 }
 
 @Override
 public void mouseExited(MouseEvent e) {
 mouseButton.setText("Mouse has exited!");
 }
});
 

In this code, you provided an implementation for all five methods of the MouseListener interface even though
you were interested in handling only two kinds of mouse events. You left the body of three methods empty.

Listing 1-25 demonstrates the mouse entered and exited event for a JButton. When the JFrame is displayed,
try moving your mouse in and out of the boundary of the JButton to change its text to indicate the appropriate
mouse event.

Listing 1-25.  Handling Mouse Events

// HandlingMouseEvent.java
package com.jdojo.swing;
 
import java.awt.FlowLayout;
import javax.swing.JFrame;
import javax.swing.JButton;
import java.awt.event.MouseListener;
import java.awt.event.MouseEvent;
 
public class HandlingMouseEvent extends JFrame {
 JButton mouseButton = new JButton("No Mouse Movement Yet!");
 
 public HandlingMouseEvent() {
 super("Handling Mouse Event");
 this.initFrame();
 }
 
 private void initFrame() {
 this.setDefaultCloseOperation(EXIT_ON_CLOSE);
 this.setLayout(new FlowLayout());
 this.getContentPane().add(mouseButton);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

78

 // Add a MouseListener to the JButton
 mouseButton.addMouseListener(new MouseListener() {
 @Override
 public void mouseClicked(MouseEvent e) {
 }
 
 @Override
 public void mousePressed(MouseEvent e) {
 }
 
 @Override
 public void mouseReleased(MouseEvent e) {
 }
 
 @Override
 public void mouseEntered(MouseEvent e) {
 mouseButton.setText("Mouse has entered!");
 }
 
 @Override
 public void mouseExited(MouseEvent e) {
 mouseButton.setText("Mouse has exited!");
 }
 });
 }
 
 public static void main(String[] args) {
 HandlingMouseEvent frame = new HandlingMouseEvent();
 frame.pack();
 frame.setVisible(true);
 }
}
 

Do you always have to provide implementation for all event-handling methods of an event listener interface,
even though you are not interested in all of them? No, you do not. Swing designers thought of this inconvenience
and devised a way to avoid this. Swing includes a convenience class for some XxxListener interfaces. The class is
named XxxAdapter. I will call them adapter classes. An XxxAdapter class is declared abstract and it implements the
XxxListener interface. The XxxAdapter class provides empty implementation for all methods in the XxxListener
interface. The following snippet of code shows the relationship between an XxxListener interface having two
methods m1() and m2() and its corresponding XxxAdapter class.
 
public interface XxxListener {
 public void m1();
 public void m2();
}
 
public abstract class XxxAdapter implements XxxListener {
 @Override
 public void m1() {
 // No implementation provided here
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

79

 @Override
 public void m2() {
 // No implementation provided here
 }
}
 

Not all event listener interfaces have corresponding adapter classes. The event listener interface, which declares
more than one method, has a corresponding adapter class. For example, you have an adapter class for the MouseListener
interface that is called MouseAdapter. What good will the MouseAdapter do for you? It can save you a few lines of
unnecessary code. If you only want to handle a few of the mouse events, you can create an anonymous inner class
(or regular inner class) that inherits from the adapter class and overrides the only methods that are of interest to you.
The following snippet of code rewrites the event handler used in Listing 1-28 using the MouseAdapter class:
 
mouseButton.addMouseListener(new MouseAdapter() {
 @Override
 public void mouseEntered(MouseEvent e) {
 mouseButton.setText("Mouse has entered!");
 }
 
 @Override
 public void mouseExited(MouseEvent e) {
 mouseButton.setText("Mouse has exited!");
 }
});
 

You may notice that you did not have to worry about three other methods of the MouseListener interface because
the MouseAdapter class provided empty implementation for you.

There is no adapter class named ActionAdapter for the ActionListener interface. Can you guess why there is no
ActionAdapter class? Since the ActionListener interface has only one method in it, providing an adapter class will
not save any keystrokes for you.

Note that using an adapter class to handle an event has no special advantage, except for saving some keystrokes.
However, it does have a limitation. If you want to create an event handler by using the main class itself, you cannot use
an adapter class. Typically, your main class is inherited from the JFrame class and Java does not allow you to inherit a
class from multiple classes. So you cannot inherit your main class from the JFrame class as well as the adapter class. If
you are using an adapter class to create an event handler, you must use either an anonymous inner class or a regular
inner class.

Summary
Swing is a widget toolkit to develop Java applications with GUIs. Most classes used in developing Swing applications
are in the javax.swing package. A GUI consists of several parts; each part represents a graphic that displays
information to the user and lets them interact with the application. Each part in a Swing-based GUI application
is called a component that is a Java object. A component that can contain other components is called a container.
Containers and components are arranged to form a parent-child hierarchy. Components are contained within a
container that, in turn, can be contained within another container. Two types of containers exist: top-level containers
and non-top-level containers. A top-level container is not contained within another container and it can be displayed
directly on the desktop. For example, an instance of the JFrame class represents a top-level container, which is a
window that can have a title bar, a menu bar, a border, and other components. An instance of the JButton class
represents a component.

A top-level container consists of many layers such as root pane, layered panes, a glass pane, and a content pane.
Components are added to the content pane.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Swing

80

Swing provides layout managers that are responsible for laying out components in a container. A layout manager
is an object that is responsible for determining the position and size of components to be displayed in a container.
Each container has a default layout manager. For example, BorderLayout is the default layout manager for a JFrame.
You can use the setLayout() method of the container to set a different layout manager. If the layout manager of
a component is set to null, no layout manager is used and you are responsible for laying out the components in a
container.

FlowLayout is the simplest of all layout managers that lays out components horizontally, and then vertically.
BorderLayout divides the container’s space into five areas (north, south, east, west, and center) that can be used to
lay out components. CardLayout lays out components in a container as a stack of cards in which only one component
is visible at a time. BoxLayout arranges components in a container either horizontally in one row or vertically in one
column. GridLayout arranges components in a rectangular grid of equally sized cells placing each component in
exactly one cell. GridBagLayout lays out components in a grid of rectangular cells arranged in rows and columns
where each component occupies one or multiple cells. SpringLayout lays out components by defining constraints
between their edges; constraints are defined in terms of springs. GroupLayout lays out components by forming
sequential and parallel groups of components.

An event indicates a user action, for example, clicking of a button by the user. Users interact with Swing
component through events. Taking an action in a program in response to an event is called event handling. There
are three participants in an event: the event source, the event, and the event handler. The source of an event is the
component that generates the event. The event is represented by an object that encapsulates the details of the user’s
action that led to the occurrence of the event. The event handler is an instance of a specific interface that is executed
in response to the occurrence of the event. Components that let you handle events contain methods to add and
remove event handlers. The classes, interfaces, and methods used in event handling follow a naming convention that
makes names easy to remember.

www.it-ebooks.info

http://www.it-ebooks.info/

81

Chapter 2

Swing Components

In this chapter, you will learn

What Swing components are•	

Different types of Swing components•	

How to validate input in a text component•	

How to use menus and toolbars•	

How to edit tabular and hierarchical data using JTable and JTree components•	

How to use custom and standard dialogs•	

How to customize a component’s properties such as colors, borders, fonts, etc.•	

How to paint components and how to draw shapes•	

Immediate painting and double buffering•	

What Is a Swing Component?
Swing provides a huge set of components to build GUIs. In Java programs, a Swing component is an instance of the
JComponent class. The JComponent class is in the javax.swing package and it serves as the base class for all Swing
components. Its class hierarchy is shown in Figure 2-1.

Figure 2-1.  The class hierarchy for the JComponent class

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

82

The JComponent class inherits from the java.awt.Container class, which in turn inherits from the
java.awt.Component class. JComponent is an abstract class. You cannot instantiate it directly. You must use one of its
subclasses, such as JButton, JTextField, etc.

As the JComponent class inherits from the Container class, every JComponent can also act as a container. For
example, a JButton can act like a container for another JButton or other JComponents. You would not use (or need) a
JComponent as a container unless a JComponent such as a JPanel has been provided by the Swing library to be used as
a container. However, this hierarchy allows you to write code like this:
 
JButton btn = new JButton("Container JButton");
btn.setLayout(new FlowLayout());
btn.add(new JButton("Container JButton. Do not use."));
 

The JComponent class, as a base class for all Swing components, provides the following basic functionalities that
are inherited by all Swing components. I will discuss these features in detail later in this chapter.

It provides support for tool tips. A tool tip is short text that is displayed when the mouse •	
pointer is paused on a component for a certain period of time.

It provides support for a pluggable look and feel. All aspects of a component related to how •	
it looks (painting and layout) and how it feels (responding to the user’s interaction with a
component such as event handling) is handled by a UI delegate object. Like the JComponent
class, ComponentUI in the javax.swing.plaf package is the base class used as a UI delegate
object. Each descendant of JComponent uses a different kind of UI delegate object, which is
derived from the ComponentUI class. For example, a JButton uses ButtonUI, a JLabel uses
LabelUI, and a JToolTip uses ToolTipUI as a UI delegate.

It provides support for adding a border around a Swing component. The border can be any •	
one of the predefined types (Line, Bevel, Titled, Etched, etc.) or a custom border type.

It provides support for accessibility. Accessibility of an application is the degree to which it can •	
be used by people with varying abilities and disabilities. For example, it has features that can
display text in a bigger font size for vision-impaired users. This book does not cover the Java
Accessibility API.

It provides support for double buffering that facilitates smooth on-screen painting. When a •	
component is erased and painted on-screen, a flicker may occur. To avoid any flickering, it
provides an off-screen buffer. The erasing and repainting (updating a component) is done in
an off-screen buffer, and the off-screen buffer is copied to on-screen.

It provides binding of a key on the keyboard to a Swing component. You can bind any key on •	
the keyboard with an ActionListener object to a component. When that key is pressed, the
actionPerformed() method of the associated ActionListener is called.

It provides support for laying out the component when a layout manager is used. It contains •	
methods to get and set the minimum, preferred, and maximum size of a component. The
three different type size settings for a JComponent serves as a hint to a layout manager in
deciding the size of the JComponent.

It allows associating multiple arbitrary properties (key-value pairs) to a Swing component and retrieving those
properties. The putClientProperty() and getClientProperty() methods of the JComponent allows working with
component properties.

Table 2-1 lists some of the commonly used methods of the JComponent class that are available to be used in all
Swing components.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

83

Table 2-1.  Commonly Used Methods of the JComponent Class and Their Descriptions

Method Name Description

Border getBorder() Returns the border of the component or null if the component has
no border.

void setBorder(Border border) Sets the border for the component.

Object getClientProperty(Object key) Returns the value associated with the specified key. The value must
have been set using the putClientProperty (Object key, Object
value) method.

void putClientProperty(Object key,
Object value)

Adds an arbitrary key-value pair to the component.

Graphics getGraphics() Returns the graphics context object for the component, which can
be used to draw on the component.

Dimension getMaximumSize()
Dimension getMinimumSize()
Dimension getPreferredSize()
Dimension getSize(Dimension d)
void setMaximumSize(Dimension d)
void setMinimumSize(Dimension d)
void setPreferredSize(Dimension d)
void setSize(Dimension d)
void setSize(int width, int height)

Gets/sets the maximum, minimum, preferred, and actual size of the
component. When you call the getSize() method, you can pass
a Dimension object and the size will be stored in it and the same
object is returned. This way, the method may avoid creating a new
Dimension object. If you pass null, it creates a Dimension object,
stores the actual size in it, and returns that object.

String getToolTipText() Returns the tool tip text for this component.

void setToolTipText(String text) Sets the tool tip text, which is displayed when mouse pointer pauses
on the component for a specified amount of time.

boolean isDoubleBuffered() Returns true if the component uses double buffering. Otherwise,
it returns false.

void setDoubleBuffered(boolean db) Sets if the component should use double buffering to paint or not.

boolean isFocusable() Returns true if the component can gain focus. Otherwise,
it returns false.

void setFocusable(boolean focusable) Sets if the component can gain focus or not.

boolean isVisible() Returns true if the component is visible. Otherwise, it returns
false.

void setVisible(boolean v) Sets the component visible or invisible.

boolean isEnabled() Returns true if the component is enabled. Otherwise, it returns
false.

void setEnabled(boolean e) Enables or disables the component. A component is enabled by
default. An enabled component responds to the user inputs and
generates events.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

84

Table 2-2 lists some of the commonly used events that are available for all Swing components. Each Swing
component also supports some specialized events. I will explain those specialized events when I discuss those
components. Note that all the events listed in the table follow the XxxEvent class, XxxListener interface, XxxAdapter
abstract class, and addXxxListener() method naming convention unless noted otherwise. That is, to handle Xxx
event for a component, you need to call its addXxxListener(XxxListener l) method and pass object of a class that
implements an XxxListener interface. All the methods in an XxxListener interface accept an argument of the type
XxxEvent. If there is more than one method in XxxListener, there is a corresponding XxxAdapter abstract class that
implements the XxxListener interface and it provides empty implementations for the XxxListener methods.

Table 2-1.  (continued)

Method Name Description

boolean requestFocus(boolean temporary)
boolean requestFocusInWindow()
boolean requestFocusInWindow(boolean
temporary)

Both requestFocus() and requestFocusInWindow() methods
request that the component should get the input focus. You
should use the requestFocusInWindow() method instead of the
requestFocus() method because its behavior is consistent across
all platforms. The boolean argument indicates if the request is
temporary. These methods return false if the request is guaranteed
to fail. They return true if the request will succeed unless it is
vetoed.

boolean isOpaque() Returns true if the JComponent is opaque. Otherwise, it returns
false.

void setOpaque(boolean opaque) Sets the opacity of the JComponent. If a JComponent is opaque, it
will paint every pixel within its bounds. If it is non-opaque, it may
paint some or no pixels in its bounds, allowing the pixels behind it
to show through. By default, the JComponent class sets this value to
false, making it transparent. However, the default value for opacity
for its subclasses depends on the look and feel, and the specific
component.

Table 2-2.  Some Commonly Used Events Available for All Swing Components

Event Class Name Event Listener Interface Description

ComponentEvent ComponentListener

Methods:
componentShown()
componentHidden()
componentResized()
componentMoved()

The event occurs when a component’s visibility,
size, or location is changed.

FocusEvent FocusListener

Methods:
focusGained()
focusLost()

The event occurs when a component gains or loses
the focus.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

85

Table 2-2.  (continued)

Event Class Name Event Listener Interface Description

KeyEvent KeyListener

Methods:
keyPressed()
keyReleased()
keyTyped()

The event occurs when the component has the focus
and a key on the keyboard is pressed, released, or typed.
The key pressed and released events are triggered when
you press or release any key on the keyboard. The key
typed event is triggered only when a Unicode character
is typed. For example, when you type character ’a’ on the
keyboard, a key pressed, a key typed, and a key released
event are triggered in sequence.

MouseEvent MouseListener

Methods:
mousePressed()
mouseReleased()
mouseClicked()
mouseEntered()
mouseExited()

The mouse pressed, released, and clicked events
are triggered when the mouse is pressed, released,
and clicked on a component. When a mouse enters
the component’s bound, a mouse entered event is
triggered. A mouse exited event is triggered when a
mouse leaves the component’s bounds.

Note that the MouseAdapter class implements three
interfaces: MouseListener, MouseMotionListener,
and MouseWheelListener (see two more mouse
events below).

MouseEvent MouseMotionListener

Methods:
mouseDragged()
mouseMoved()
Note: It uses a MouseEvent
object as an argument
in the event methods.
There is no corresponding
MouseMotionEvent class.

A mouse dragged event is triggered when you drag the
mouse over a component by pressing a mouse button.
The mouse dragged event continues to trigger even
if the mouse leaves the component until the mouse
button is released.

The mouse moved event is triggered when you move
the mouse over a component, but no mouse button is
pressed.

You can use either the MouseAdapter or
MouseMotionAdapter abstract class to write your
listener object for this event.

MouseWheelEvent MouseWheelListener

Method:
mouseWheelMoved()

A mouse wheel moved event is triggered if the wheel of
the mouse is rotated when the component is in focus.
If a mouse does not have a wheel, this event is not
triggered.

In the beginning, Java provided the AWT (Abstract Window Toolkit) for building a GUI. All AWT components
were in the java.awt package and they used peers to handle how they worked. If you create a button using AWT, there
is a corresponding button created by the operating system, which is called the peer, to handle most of how the AWT
button works. Because of the fact that each AWT component has a peer, AWT components are called heavyweight
components.

Swing became part of the Java class library in JDK 1.2 as an alternative to AWT. Most of the Swing components
do not use peers, and hence, they are called lightweight components. For every AWT component, you will find a
corresponding Swing component. Swing provides some additional components that are not present in AWT such as
JTabbedPane. Swing components have their names prefixed with a J. For example, to use a button component, AWT
provides a Button class and Swing provides a JButton class. To display a decorated window, AWT provides a Frame
class and Swing provides a JFrame class. Some components in Swing are still heavyweight components. After all, basic

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

86

GUI capabilities are always provided by the operating system. All top-level containers in Swing (JFrame, JDialog,
JWindow, and JApplet) are heavyweight components, and they have peers. Swing components, other than top-level
containers, are lightweight components. Swing’s lightweight components use their heavyweight containers’ area to
paint. Swing’s lightweight components are written in Java.

The main disadvantage of AWT is that a GUI may look different on different operating systems. AWT supports
features that are available on all platforms. Because of their dependence on operating system peers, AWT can provide
only rectangular components. None of these limitations exist with Swing lightweight components. In Swing, you can
have a component of any shape because Swing paints lightweight components using Java code. Swing offers pluggable
look and feel, so that you are not limited to seeing GUI components only in the way the operating system paints them.
It is not advisable to mix Swing and AWT components in the same application, although it is allowed. Mixing them
may result in problems that are hard to debug. This book covers only Swing.

In the next sections, I will discuss several Swing components in detail.

JButton
A JButton is also known as a push button or a command button. The user presses or clicks a JButton to perform an
action. Typically, it displays text that describes the action it performs when it is clicked. The text is also known as the
label. A JButton also supports displaying an icon. You can use one of the constructors listed in Table 2-3 to create an
instance of a JButton.

Table 2-3.  Constructors of the JButton Class

Constructor Description

JButton() Creates a JButton without any label or icon.

JButton(String text) Creates a JButton and sets the specified text as its label.

JButton(Icon icon) Creates a JButton with an icon and no label.

JButton(String text, Icon icon) Creates a JButton with the specified label and icon.

JButton(Action action) Creates a JButton with an Action object. You will have an example of
using an Action object for a JButton later in this section.

You can create a JButton with its text as Close, like so:
 
JButton closeButton = new JButton("Close");
 

To create a JButton with an icon, you need to have an image file. An icon is a fixed-sized image. An object of a
class that implements the javax.swing.Icon interface represents an icon. Swing provides a very useful ImageIcon
class that implements the Icon interface. You can create an icon in your program using the ImageIcon class from
an image file or a URL that contains a GIF, JPEG, or PNG image. The following snippet of code shows how to create
buttons with icons:
 
// Create icons
Icon previousIcon = new ImageIcon("C:/images/previous.gif");
Icon nextIcon = new ImageIcon("C:/images/next.gif");
 
// Create buttons with icons
JButton previousButton = new JButton("Previous", previousIcon);
JButton nextButton = new JButton("Next", nextIcon);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

87

It is advised that you use a forward slash (/) in the file path in the constructor of the ImageIcon class. The file path
you specify is converted to a URL and the forward slash works on all platforms. This file path example (C:/images/
next.gif) is for the Windows platform. Figure 2-2 shows a JFrame with three buttons. Two buttons have icons and one
has only text.

Figure 2-2.  Buttons with an icon and text, and with only text

There is only one event for a JButton that you will be using in your Java program most of the time. It is called the
ActionEvent. It is triggered when you click the JButton. The ActionListener interface is a functional interface and it
contains only one method called actionPerformed(ActionEvent e). You can use a lambda expression to represent
an ActionListener. Here is how you add code using a lambda expression for the ActionEvent for a closeButton:
 
closeButton.addActionListener(() -> {
 // The code to handle the action event goes here
});
 

A JButton supports keyboard mnemonic, which is also known as a keyboard shortcut or keyboard indicator. It is a
key that, when pressed, activates the JButton if the focus is in the window that contains the JButton. The mnemonic
key is often pressed in combination with a modifier key such as an Alt key. The modifier key is platform-dependent;
however, it is usually an Alt key. For example, suppose you set the C key as a mnemonic for a Close JButton. When
you press Alt + C, the Close JButton is clicked. If the character that is represented by the mnemonic key is found in
the JButton text, its first occurrence is underlined.

The following snippet of code sets C as a mnemonic key for a Close JButton:
 
// Set the 'C' key as mnemonic key for closeButton
closeButton.setMnemonic('C');
 
// You can also use the following code to set a mnemonic key.
// The KeyEvent class is in the java.awt.event package.
closeButton.setMnemonic(KeyEvent.VK_C);
 

The code shows two methods to set the mnemonic key. The second method can be used when you do not use
a character key as a mnemonic key. For example, if you want to set the F3 key as a mnemonic key, you can use the
KeyEvent.VK_F3 constant using the second method. Figure 2-3 shows the Close JButton in which the first character of
the text is underlined. When you press Alt + C, the Close JButton is activated (the same as if you clicked it with the
mouse). Table 2-4 shows commonly used method in the JButton class.

Figure 2-3.  A Close button with C as its keyboard mnemonic

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

88

Table 2-4.  Commonly Used Methods of the JButton Class

Method Description

Action getAction() Returns the Action object associated with the JButton.

void setAction(Action a) Sets an Action object for the JButton. When this method is called, all properties
for the JButton are refreshed from the specified Action object. If there was an
Action object already set, the new one replaces the old one. The new Action
object is registered as an ActionListener. Any other ActionListener registered
with the JButton using addActionListener() method remains registered.

Icon getIcon() Returns the Icon object associated with the JButton.

void setIcon(Icon icon) Sets an icon for the JButton.

int getMnemonic() Returns the keyboard mnemonic for this JButton.

void setMnemonic(int n)
void setMnemonic(char c)

Sets the keyboard mnemonic for the JButton.

String getText() Returns the text for the JButton.

void setText() Sets the text for the JButton.

Let’s use an Action object to create a JButton. So far, you have seen that a JButton has only four commonly used
properties: text, icon, mnemonic, and action listener. Using these properties of a JButton is easy and straightforward.
How does using an Action object help you deal with a JButton? Let’s take an example where you have a button, say
Close, placed in different areas of the window, say different tab pages. If the button is placed four times on a window,
and all of them have to look and behave the same, an Action object will help you write the code for the Close button
only once and use it at multiple times.

An Action object encapsulates the state and the behavior of a button. You set the text, icon, mnemonic, tool
tip text, other properties, and the ActionListener in an Action object, and use the same Action object to create all
instance of the JButton. One obvious benefit of doing this is that if you want to enable/disable all four JButtons, you
do not need to enable/disable all of them separately. Rather, you set the enabled property in the Action object and it
will enable/disable all of them. Let’s extend this usage to the menu item and tool bar. It is common to provide a menu
item, a tool bar item, and a button to perform the same action in a window. In such cases, you create all three of them
(a menu item, a tool bar item and a button) using the same Action object to keep their states synchronized. Now
you can realize the benefits of an Action object is in reusing the code and keeping the state of multiple components
synchronized.

Action is an interface. The AbstractAction class provides the default implementation for the Action interface.
AbstractAction is an abstract class. You need to inherit your class from it. Listing 2-1 defines a CloseAction inner
class, which inherits from the AbstractAction class.

Listing 2-1.  Using an Action Object to Create and Configure a JButton

// ActionJButtonTest.java
package com.jdojo.swing;
 
import java.awt.FlowLayout;
import javax.swing.JFrame;
import javax.swing.JButton;
import java.awt.event.ActionEvent;
import javax.swing.AbstractAction;
import javax.swing.Action;
import java.awt.Container;
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

89

public class ActionJButtonTest extends JFrame {
 // Inner Class starts here
 public class CloseAction extends AbstractAction {
 public CloseAction() {
 super("Close");
 }
 
 @Override
 public void actionPerformed(ActionEvent event) {
 System.exit(0);
 }
 } // Inner Class ends here
 
 JButton closeButton1;
 JButton closeButton2;
 Action closeAction = new CloseAction(); // See inner class above
 
 public ActionJButtonTest() {
 super("Using Action object with JButton");
 this.initFrame();
 }
 
 private void initFrame() {
 this.setDefaultCloseOperation(EXIT_ON_CLOSE);
 this.setLayout(new FlowLayout());
 Container contentPane = this.getContentPane();
  
 // Use the same closeAction object to create both Close buttons
 closeButton1 = new JButton(closeAction);
 closeButton2 = new JButton(closeAction);
 
 contentPane.add(closeButton1);
 contentPane.add(closeButton2);
 }
 
 public static void main(String[] args) {
 ActionJButtonTest frame = new ActionJButtonTest();
 frame.pack();
 frame.setVisible(true);
 }
}
 

The ActionJButtonTest class creates an Action object, which is of type CloseAction, and uses it to create two
buttons, closeButton1 and closeButton2. The CloseAction class sets the text to Close, and in its actionPerformed()
method, it simply exits the application. Figure 2-4 shows the JFrame that you get when you run the program. It shows
two Close buttons. Clicking either of them will call the actionPerformed() method of the Action object and that will
exit the application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

90

If you want to set any property for the JButton while using the Action object, you can do so by using
putValue(String key, Object value) method of the Action interface. For example, the following snippet of code
sets the tool tip text and mnemonic key for the object closeAction:
 
// Set the tool tip text for the Action object
closeAction.putValue(Action.SHORT_DESCRIPTION, "Closes the application");
 
// Set the mneminic key for the Action object
closeAction.putValue(Action.MNEMONIC_KEY, KeyEvent.VK_C); 

Tip■■   If you use an Action object to configure a JButton, and later change a property for the JButton directly, the
changed property will be in effect until you change that property in the Action object again. Suppose you have created
two Close buttons using a CloseAction object. If you call closeButton1.setText("Exit"), the first button will display
the text as Exit. If you call closeAction.putValue(Action.NAME, "Close/Exit"), both buttons will display the text as
Close/Exit.

JPanel
A JPanel is a container that can contain other components. You can set its layout manager, border, and background
color. Typically, you use a JPanel to group related components and add it to another container such as to a content
pane of a JFrame. Note that a JPanel is a container, but not a top-level container, whereas a JFrame is a top-level
container. Therefore, you cannot display a JPanel by itself in a Swing application, unless you add it to a top-level
container. Sometimes, a JPanel is inserted between two components to create a gap. You can also use a JPanel as a
canvas for drawing such as for drawing lines, rectangles, circles, etc.

The default layout manager for a JPanel is FlowLayout. Note that the default layout manager of the content pane
of a JFrame is a BorderLayout. You have the option to specify its layout manager in the constructor of the JPanel class.
You can change its layout manager after you create it by using its setLayout() method. Table 2-5 lists the constructors
of the JPanel class.

Figure 2-4.  Two Close buttons created using the same Action object

Table 2-5.  Constructors for the JPanel Class

Constructor Description

JPanel() Creates a JPanel with FlowLayout and double buffering.

JPanel(boolean isDoubleBuffered) Creates a JPanel with FlowLayout and the specified double buffering flag.

JPanel(LayoutManager layout) Creates a JPanel with the specified layout manager and double buffering.

JPanel(LayoutManager layout,
boolean isDoubleBuffered)

Creates a JPanel with the specified layout manager and double
buffering flag.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

91

The following snippet of code shows how to create a JPanel with a BorderLayout and add four buttons to it. Note
that the buttons are added to the JPanel, which in turn is added to the content pane of a JFrame. You can also add a
JPanel to another JPanel to create a nested, complex components layout.
 
// Create a JPanel and four buttons
JPanel buttonPanel = new JPanel(new BorderLayout());
JButton northButton = new JButton("North");
JButton southButton = new JButton("South");
JButton eastButton = new JButton("East");
JButton westButton = new JButton("west");
 
// Add buttons to the JPanel
buttonPanel.add(northButton, BorderLayout.NORTH);
buttonPanel.add(southButton, BorderLayout.SOUTH);
buttonPanel.add(eastButton, BorderLayout.EAST);
buttonPanel.add(westButton, BorderLayout.WEST);
 
// Add the buttonPanel to the JFrame's content pane assuming that
// the content's pane layout is set to a BorderLayout
contentPane.add(buttonPanel, BorderLayout.SOUTH);

JLabel
As the name suggest, a JLabel is a label used to identify or describe another component on the screen. It can display
text, an icon, or both. Typically, a JLabel is placed next to (to the right or left) or at the top of the component it
describes. Figure 2-5 shows a JLabel with its text set to Name:, which is an indicator for the user that he is supposed to
enter a name in the field that is placed next to it.

A JLabel with the text Name:

Figure 2-5.  A JLabel component with the text Name: and the mnemonic set to N

Another common use of a JLabel is to display an image. Swing does not include a component such as a JImage
to display an image. You need to use a JLabel with an Icon to display an image. Table 2-6 lists the constructors of the
JLabel class.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

92

The following snippet of code shows some examples of how to create a JLabel:
 
// Create a JLabel with a Name: text
JLabel nameLabel = new JLabel("Name:");
 
// Display an image warning.gif in a JLabel
JLabel warningImage = new JLabel(new Icon("C:/images/warning.gif"));
 

A JLabel does not generate any interesting events. However, it has some useful methods that you can use
to customize it. You will use three of its methods very frequently: setText(), setDisplayedMnemonic(), and
setLabelFor(). The setText() method is used to set the text for the JLabel. The setDisplayedMnemonic() method
is used to set a keyboard mnemonic for the JLabel. If the keyboard mnemonic is a character that occurs in the
text of the JLabel, that character is underlined to give a hint to the user. The setLabelFor() method accepts a
reference to another component and it indicates that this JLabel describes that component. The two methods -
setDisplayedMnemonic() and setLabelFor() work in tandem. When the mnemonic key for the JLabel is pressed,
the focus is set to the component that was used in the setLabelFor() method. The JLabel shown in Figure 2-5 has its
mnemonic set to the character N and you can see that the character N in its text is underlined. When the user presses
Alt + N, the focus will be set to the JTextField that is displayed to the right of the JLabel. The following snippet of
code shows how to create the component arrangements shown in Figure 2-5:
 
// Create a JTextField where the user can enter a name
JTextField nameTextField = new JTextField("Please enter your name...");
 
// Create a JLabel with N as its mnemonic and nameTextField as its label-for component
JLabel nameLabel = new JLabel("Name:");
nameLabel.setDisplayedMnemonic('N');
nameLabel.setLabelFor(nameTextField);
 

Table 2-6.  Constructors of the JLabel Class

Constructor Description

JLabel() Creates a JLabel with an empty string as its text and no icon.

JLabel(Icon icon) Creates a JLabel with an icon and an empty string as its text.

JLabel(Icon icon, int
horizontalAlignment)

Creates a JLabel with an icon and the specified horizontal alignment.
A JLabel is aligned vertically in the center inside its display area. You can
specify its horizontal alignment in its display area as one of the following
constants defined in the SwingConstants class: LEFT, CENTER, RIGHT, LEADING,
or TRAILING.

JLabel(String text) Creates a JLabel with the specified text. This is the most commonly used
constructor. It is aligned in the center vertically and with the leading edge
horizontally inside its display area. The leading edge is determined by the
component’s orientation.

JLabel(String text, Icon icon,
int horizontalAlignment)

Creates a JLabel with the specified text, icon, and horizontal alignment.

JLabel(String text, int
horizontalAlignment)

Creates a JLabel with the specified text and horizontal alignment.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

93

// Add name label and field to a container, say a contentPane
contentPane.add(nameLabel);
contentPane.add(nameTextField);
 

There are other methods defined in the JLabel class that let you set/get its alignments inside the display area
and its text inside its bounds. If you look at a JLabel component’s features, you will find that it exists only to describe
another component—a truly altruistic component!

Text Components
In simple terms, you can define text as a sequence of characters. Swing provides a rich set of features to work with text.
Figure 2-6 shows a class diagram for classes representing text components in Swing.

Figure 2-6.  A class diagram for text-related components in Swing

Swing provides so many text-related features that it has a separate package, javax.swing.text, which contains
all text related classes. The JTextComponent class is in the javax.swing.text package. The rest of the classes are in the
javax.swing package.

There are different Swing components to work with different kinds of text. We can categorize the text components
based on two criteria: the number of lines in text and the type of text they can handle. Based on the number of lines of
text that a text component can handle, you can further categorize them as follows:

Single-line text component•	

Multiline text component•	

A single line text component is designed to handle one line of text, for example, a user name, a password, a birth
date etc. Instances of the JTextField, JPasswordField, and JFormattedTextField classes represent single-line text
components.

A multiline text component is designed to handle multiple lines of text, for example, comments, the description
of an item in a store, a document, etc. Instances of the JTextArea, JEditorPane, and JTextPane classes represent
multiline text components.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

94

Based on the type of the text that a text component can handle, you can categorize text components as follows:

Plain text component•	

Styled text component•	

The style of text (or parts of text) is the way the text is displayed, such as bold, italic, underlined, etc., font, and
color. In the context of a text component, a plain text means that the entire text contained in the text component is
displayed using only one style. JTextField, JPasswordField, JFormattedTextField, and JTextArea are examples of
plain text components. That is, you cannot display multiline text in a JTextArea in which some parts of the text is in
boldface font and others not. You can display either the entire text in a JTextArea in boldface font or the entire text in
a regular font. Note that plain text does not mean that text cannot have a style. It means that there is only one style that
applies to the entire text (all characters comprising the text).

In styled text, you can apply different styles to different parts of the text. In styled text, some part of the text can be
in boldface (or italic, bigger font size, underlined, etc.) and some part not in boldface. JEditorPane and JTextPane are
examples of styled components.

All Swing components, including Swing text components, are based on a model-view-controller (MVC) pattern.
An MVC pattern uses three components: a model, a view, and a controller. The model is responsible for storing the
contents (the text). The view is responsible for displaying the contents. The controller is responsible for responding
to user actions. Swing combines the view and the controller into one object called the UI, which is responsible for
displaying the content and reacting to the user’s actions. It keeps the model separate and it is represented by an
instance of the Document interface, which is in the javax.swing.text package. The model of a text component is
sometimes also referred to as its document. Figure 2-7 depicts the different parts of a Swing text component.

STRANGE fits of passion have I

STRANGE fits of passion have I known:
And I will dare to tell,
But in the lover's ear alone,
What once to me befell.

Controller

View

Model

A Swing text
component

Figure 2-7.  Components of the model-view-controller pattern for Swing text components

Note that the view may not always display the entire contents of a text component. In Figure 2-7, the model
contains four lines of the part of a poem by William Wordsworth, whereas the view displays only some words from the
first line.

Swing provides a default implementation of the Document interface, which makes is easy for developers to work
with commonly used text types. When you use a text component, it creates an appropriate model (sometimes I will
refer to it as a document in the discussion) for you, which is suitable to store the content of the text component.
Figure 2-8 shows a class diagram for the Document interface, plus related classes and interfaces. All classes and
interfaces shown in the figure are in the javax.swing.text package.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

95

You can set the model for a text component using the setDocument(Document doc) method. The getDocument()
method returns the model for a text component.

By default, JTextField, JPasswordField, JFormattedTextField, and JTextArea use an instance of the
PlainDocument class as their models. If you want to customize the models for these text components, you need to
create a class inheriting from the PlainDocument class and override some of the methods.

The model for JEditorPane and JTextPane depends on the content type that is being edited and/or displayed.
The position of the characters in a text component uses a zero-based index. That is, the first character in the text
occurs at index 0.

JTextComponent
JTextComponent is an abstract class. It is the ancestor of all Swing text components. It includes common
functionalities that are available to all text components. Table 2-7 lists some commonly used methods of text
components that are included in the JTextComponent class.

Figure 2-8.  A class diagram for the document interface and related interfaces and classes

Table 2-7.  Commonly Used Methods in the JTextComponent Class

Method Description

Keymap addKeymap(String name,
Keymap parentKeymap)

Adds a new keymap to the keymap hierarchy of the component.

void copy() Copies the selected text to the system clipboard.

void cut() Moves the selected text to the system clipboard.

Action[] getActions() Returns the command list for the text editor.

Document getDocument() Returns the model for the text component.

Keymap getKeymap() Returns the currently active keymap for the text component.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

96

Method Description

static Keymap getKeymap
(String keymapName)

Returns the keymap associated with this document with the name
keymapName.

String getSelectedText() Returns the selected text in the component. It returns null if there is no
selected text or the document is empty.

int getSelectionEnd() Returns the end position of the selected text.

int getselectionStart() Returns the start position of the selected text.

String getText() Returns the text that is contained in this text component. It returns the
text contained in the model of the component and not what is displayed
by the view.

String getText(int offset,
int length) throws
BadLocationException

Returns a portion of the text contained in the text component starting
at the offset position and number of characters equal to the length. It
throws BadLocationException if offset or length is invalid. For example,
if a text component contains Hello as its text, getText(1,3) will return ell.

TextUI getUI() Returns the user-interface factory for the text component.

boolean isEditable() Returns true if the text component is editable. Otherwise, returns false.

void paste() Transfers the content of the system clipboard to the text component
model. If text is selected in the component, the selected text is replaced. If
there is no selection, the content is inserted before the current position. If
the system clipboard is empty, it does nothing.

void print() It displays a print dialog and lets you print the content of the text
component without a header and footer. This method is overloaded.
Other versions of this method provide more functionality to print the
content of a text component.

void read(Reader source, Object
description) throws IOException

Reads the content from the source stream into the text component,
discarding the component’s old content. The description is an object
that describes the source stream. For example, to read the text of file
test.txt into a JTextArea named ta you would write

FileReader fr =
new FileReader("test.txt");
ta.read(fr, "Hello");
fr.close();

void replaceSelection(String
newContent)

Replaces the selected content with the newContent. If there is no selected
content, it inserts the newContent. If newContent is null or an empty
string, it removes the selected content.

void select(int start, int end) Selects the text between the start and end positions.

void selectAll() Selects all text in a text component

void setDocument(Document doc) Sets the document (that is, the model) for the text component.

void setEditable(boolean editable) Sets a text component as editable if editable is true. If editable is
false, sets the text component as non-editable.

void setKeymap(Keymap keymap) Sets the keymap for the text component.

Table 2-7.  (continued)

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

97

The most commonly used methods of text components are getText() and setText(String text). The
getText() method returns the contents of a text component as a String, and the setText(String text) method sets
the content of a text component specified in the argument.

JTextField
A JTextField can handle (display and/or edit) one line of plain text. You can create a JTextField in a number of
different ways using its constructors. Its constructors accept a combination of

A string•	

The number of columns•	

A •	 Document object

The string specifies the initial text. The number of columns specifies the width. The Document object specifies
the model. The default value for the initial text is null, the number of columns is zero, and document (or model) is an
instance of the PlainDocument class.

If you do not specify the number of columns, its width is determined by the initial text. Its preferred width will be
wide enough to display the entire text. If you specify the number of columns, its preferred width will be wide enough
to display as many m characters in the current font of the JTextField as the specified number of columns. Table 2-8
lists constructors of the JTextField class.

Table 2-7.  (continued)

Method Description

void setSelectionEnd(int end) Sets the end position of selection.

void setSelectionStart(int start) Sets the start position of selection.

void setText(String newText) Sets the text of the text component.

void setUI(TextUI newUI) Sets new UI for the text component.

void updateUI() Reloads the pluggable UI for the text component.

void write(Writer output) Writes the contents of the text component to a stream defined by output.
For example, to write the text of a JTextArea named ta into a file named
test.txt, you would write

FileWriter wr = new FileWriter("test.txt");
ta.write(wr);
wr.close();

Table 2-8.  Constructors of the JTextField Class

Constructor Description

JTextField() Creates a JTextField with default values for initial text, number of columns,
and document.

JTextField(Document document,
String text, int columns)

Creates a JTextField with the specified document as its model, text as its
initial text, and columns as its number of columns.

JTextField(int columns) Creates a JTextField with the specified columns as its number of columns.

JTextField(String text) Creates a JTextField with the specified text as its initial text.

JTextField(String text,
int columns)

Creates a JTextField with the specified text as its initial text and columns as
its number of columns.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

98

The following snippet of code creates many instance of JTextField using the different constructors:
 
// Create an empty JTextField
JTextField emptyTextField = new JTextField();
 
// Create a JTextField with an initial text of Hello
JTextField helloTextField = new JTextField("Hello");
 
// Create a JTextField with the number of columns of 20
JTextField nameTextField = new JTextField(20);
 

How many characters can you enter in a JTextField? There is no limit to the number of characters that you can
enter in a JTextField. If you want to limit the number of characters in a JTextField, you need to customize its model.
Note that the model of the JTextField stores its contents. Before you see a custom model in action, let’s see the power
of separating the model and the view for a text component in Swing.

Let’s create two instances of JTextField named name and mirroredName. You will set the model for mirroredName
to be the same as that of name. You are doing a very simple thing. You are using the same model for both text fields.
This makes both fields as mirror fields of each other. If you enter text in one of them, the same text is automatically
displayed for you in the other. How does this happen? When you enter text in a JTextField, its model is updated.
Any update in its model sends a notification to its views (in this case, the two components act as views) to update
themselves. Since two text fields are two views with the same model, any update in the model (through either of the
text fields) will send a notification to both text fields, and both will update their views to display the same text.

Listing 2-2 demonstrates how to share a model between two text fields. Run this program and enter some text in
either of the text fields. You will see that the other text field is updated simultaneously with the same text.

Listing 2-2.  Mirroring a JTextField by Sharing Its Model With Another JTextField

// MirroredTextField.java
package com.jdojo.swing;
 
import javax.swing.JFrame;
import javax.swing.JTextField;
import javax.swing.JLabel;
import java.awt.GridLayout;
import java.awt.Container;
import javax.swing.text.Document;
 
public class MirroredTextField extends JFrame {
 JLabel nameLabel = new JLabel("Name:") ;
 JLabel mirroredNameLabel = new JLabel("Mirrored Name:") ;
 JTextField name = new JTextField(20);
 JTextField mirroredName = new JTextField(20);
 
 public MirroredTextField() {
 super("Mirrored JTextField");
 this.initFrame();
 }
 
 private void initFrame() {
 this.setDefaultCloseOperation(EXIT_ON_CLOSE);
 this.setLayout(new GridLayout(2, 0));
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

99

 Container contentPane = this.getContentPane();
 contentPane.add(nameLabel);
 contentPane.add(name);
 contentPane.add(mirroredNameLabel);
 contentPane.add(mirroredName);
  
 // Set the model for mirroredName to be the same
 // as name's model, so they share their content's storage.
 Document nameModel = name.getDocument();
 mirroredName.setDocument(nameModel);
 }
 
 public static void main(String[] args) {
 MirroredTextField frame = new MirroredTextField();
 frame.pack();
 frame.setVisible(true);
 }
}
 

To have your own model for a JTextField, you need to create a new class. The new class can either implement
the Document interface or inherit from the PlainDocument class. The latter approach is easier and most commonly
used. Listing 2-3 contains the code for a LimitedCharDocument class, which inherits from the PlainDocument class.
You can use this class as a model for a JTextField when you want to limit the number of characters in a JTextField.
By default, it lets a user enter an unlimited number of characters. You can set the number of allowed characters in its
constructor.

Listing 2-3.  A Class That Represents a Plain Document With a Limited Number of Characters

// LimitedCharDocument.java
package com.jdojo.swing;
 
import javax.swing.text.PlainDocument;
import javax.swing.text.BadLocationException;
import javax.swing.text.AttributeSet;
 
public class LimitedCharDocument extends PlainDocument {
 private int limit = -1; // < 0 means an unlimited characters
 
 public LimitedCharDocument() {
 }
 
 public LimitedCharDocument(int limit) {
 this.limit = limit;
 }
 
 @Override
 public void insertString(int offset, String str, AttributeSet a)
 throws BadLocationException {
 String newString = str;
 if (limit >=0 && str != null) {
 // Check for the limit
 int currentLength = this.getLength() ;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

100

 int newTextLength = str.length();
 if (currentLength + newTextLength > limit) {
 newString = str.substring(0, limit - currentLength);
 }
 }
 
 super.insertString(offset, newString, a);
 }
}
 

The code of interest in the LimitedCharDocument class is the insertString() method. The Document interface
declares an insertString() method. The PlainDocument class provides the default implementation. The
LimitedCharDocument class overrides the default implementation and checks whether the inserted string will exceed
the number of characters allowed. If the inserted string exceeds the maximum number of characters allowed, it chops
off the extra characters. If you set the limit to a negative number, an unlimited number of characters are allowed. At
the end, the method simply calls its implementation in the PlainDocument class to execute the real action.

The insertString() of the model is called every time a text is inserted into the JTextField. This method gets the
following three arguments:

•	 int offset: It is the position where the string is inserted in the JTextField. The first
character is inserted at offset 0, the second at offset 1, and so on.

•	 String str: It is the string that is inserted into the JTextField. When you enter a text in
a JTextField, the insertString() method is called for each character you enter and this
argument will contain only one character. However, when you paste text into a JTextField or
use its setText() method, this argument may contain more than one character.

•	 AttributeSet a: The attributes that have to be associated with the inserted text.

You can use the LimitedCharDocument in your code as follows:
 
// Create a JTextField, which will only allow 10 characters
Document tenCharDoc = new LimitedCharDocument(10);
JTextField t1 = new JTextField(tenCharDoc, "your name", 10);
 

There is another way to set a document for a JTextField. You need to create a new class inheriting from
JTextField and override its createDefaultModel() method. It is declared protected in the JTextField class, and by
default, it returns a PlainDocument. You can return an instance of your custom document class from this method. The
code for your custom JTextField would look as follows:
 
public class TenCharTextField extends JTextField {
 @Override
 protected Document createDefaultModel() {
 // Return a document object that allows maximum 10 characters
 return new LimitedCharDocument(10);
 }
 
 // Other code goes here
}
 

You can use an instance of the TenCharTextField class whenever you need a JTextField with a capacity of ten
characters.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

101

The createDefaultModel() method is called from the constructor in the JTextField class. Therefore, you
should not pass an argument to your custom JTextField and use that argument’s value to construct the model in
the createDefaultModel() method in your class. For example, the following snippet of code will not produce the
desired result:
 
static class LimitedCharTextField extends JTextField {
 private int maxChars = -1;
 
 public LimitedCharTextField(int maxChars) {
 this.maxChars = maxChars;
 }
 
 protected Document createDefaultModel() {
 /* Wrong use of maxChars!!! By the time this method is called,
 maxChars will have its default value of zero. This method will be
 called from the constructor of the JTextField class and at that time
 the constructor for this class would not start executing.
 */
 return new LimitedCharDocument(maxChars);
 }
}
 

Sometimes, you may want to force the user to enter text in a text field in a specific format, such as entering a date
in mm/dd/yyyy format or entering digits only. This is possible using a custom model for the JTextField component.
Swing contains another text component called JFormattedTextField that lets you set the format for a text field.
A JFormattedTextField makes the job a lot easier if you need a component that should allow a user to add text in a
specific format. I will discuss JFormattedTextField shortly.

JPasswordField
A JPasswordField is a JTextField, except that it allows hiding the actual characters being displayed in the field. For
example, when you are using a login form to enter your password, you do not want others looking over your shoulders
to see your password on the screen. By default, it displays an asterisk (*) character for each actual character in the
field. This is called the echo character. The default echo character also depends on the look-and-feel used for the
application. You can set your own echo character by using its setEchoChar(char newEchoChar) method.

The JPasswordField class has the same set of constructors as the JTextField class. You can use a combination of
the initial text, the number of columns, and a Document object to create a JPasswordField object.
 
// Create a password field 10 characters wide
JPasswordField passwordField = new JPasswordField(10);
 

The getText() method for JPasswordField has been deprecated for security reasons. You should use its
getPassword() method instead, which returns an array of char. You should reset all the elements in the char array
to zero value after you are done using it. The following snippet of code shows how to validate a password entered in a
JPasswordField:
 
// Get the password entered in the field
char c[] = passwordField.getPassword();
 
// Suppose you have the correct password in a string.
// Usually, you will get it from a file or database
String correctPass = "Hello";
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

102

// Do not convert your password in c[] to a String. Rather, convert the correctPass
// to a char array. Or, better you would have correctPass as char array in the first place.
char[] cp = correctPass.toCharArray();
 
// Use the equals() method of the java.util.Arrays class to compare c and cp for equality
if (Arrays.equals(c, cp)) {
 // The password is correct
}
else {
 // The password is incorrect
}
 
// Null out the password that you have in the char arrays
Arrays.fill(c, (char)0);
Arrays.fill(cp, (char)0);
 

You can set an echo character of your choice using the setEchoChar() method as follows:
 
// Set # as the echo character
password.setEchoChar(‘#');
 

You can use a JPasswordField as a JTextField by setting its echo character to zero as follows:
 
// Set the echo character to 0, so the actual password characters are visible.
passwordField.setEchoChar((char)0);

 Tip■■   You need to set the echo character of a JPasswordField to a character value whose ASCII value is zero so
the JPasswordField will show the actual characters. If you set the echo character to '0' (ASCII value of 48), the actual
password will not be displayed. Rather, a '0' character will be echoed for each actual character.

JFormattedTextField
A JFormattedTextField is a JTextField with the following two additional capabilities:

It lets you specify the format in which the text will be edited and/or displayed.•	

It also lets you specify a format when the value in the field is •	 null.

In addition to the getText() and setText() methods, which let you get and set the text in the field, the
JFormattedTextField offers two new methods called getValue() and setValue(), which let you work with any type
of data instead of just text.

The JFormattedTextField comes preconfigured to work with three kinds of data: numbers, dates, and
strings. However, you have the ability to format any object to be displayed in this field. You can set the format for a
JFormattedTextField in many ways using its different constructors, which are listed in Table 2-9.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

103

It is necessary to understand the difference between format, formatter, and formatter factory. A java.text.
Format object defines the format of an object in a string form. That is, it defines how an object looks as a string; for
example, a date object in mm/dd/yyyy format would look like 07/09/2008.

A formatter is represented by a JFormattedTextField.AbstractFormatter object and it uses a java.text.
Format object to format an object. Its job is to convert an object to a string and a string back to an object.

A formatter factory is a collection of formatters. A JFormattedTextField uses a formatter factory to get a
formatter of a specific type. A formatter factory object is represented by an instance of the JFormattedTextField.
AbstractFormatterFactory class.

The following snippet of code configures dobField to format the text in it as a date in the current locale format:
 
JFormattedTextField dobField = new JFormattedTextField();
dobField.setValue(new Date());
 

The following snippet of code configures a salaryField to display a number in the current locale format:
 
JFormattedTextField salaryField = new JFormattedTextField();
salaryField.setValue(new Double(11233.98));
 

You can also create a JFormattedTextField with a formatter. You need to use the DateFormatter,
NumberFormatter, and MaskFormatter classes to format a date, a number, and a string, respectively. These classes are
in the javax.swing.text package.
 
// Have a field to format a date in mm/dd/yyyy format
DateFormat dateFormat = new SimpleDateFormat("mm/dd/yyyy");
DateFormatter dateFormatter = new DateFormatter(dateFormat);
dobField = new JFormattedTextField(dateFormatter);
 

Table 2-9.  Constructors of the JFormattedTextField Class

Constructor Description

JFormattedTextField() Creates a JFormattedTextField with no formatter. You
need to use its setFormatterFactory() or setValue()
method to set a formatter.

JFormattedTextField(Format format) Creates a JFormattedTextField and it will use the specified
format to format the text in the field.

JFormattedTextField(
JFormattedTextField.AbstractFormatter
formatter)

Creates a JFormattedTextField with the specified
formatter.

JFormattedTextField(JFormattedTextField.
AbstractFormatterFactory
factory)

Creates a JFormattedTextField with the specified factory.

JFormattedTextField(
JFormattedTextField.AbstractFormatterFactory
factory, Object initialValue)

Creates a JFormattedTextField with the specified factory
and the specified an initial value.

JFormattedTextField(Object value) Creates a JFormattedTextField with the specified value.
The field will configure itself to format the value based on
the class of the value. If a null is passed as the value, the
field has no way to know which type of value it needs to
format and it will not attempt to format the value at all.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

104

// Have field to format a number in $#0,000.00 format
NumberFormat numFormat = new DecimalFormat("$#0,000.00");
NumberFormatter numFormatter = new NumberFormatter(numFormat);
salaryField = new JFormattedTextField(numFormatter);
 

You need to use a mask formatter to format a string. A mask formatter uses the special characters listed in
Table 2-10 to specify a mask.

Table 2-10.  Special Characters Used to Specify a Mask

Character Description

A number

? A letter

A A letter or a number

* Anything

U A letter, with lowercase characters mapped to their uppercase equivalents

L A letter, with uppercase characters mapped to their lowercase equivalents

H A hexadecimal digit (A-F, a-f, 0-9)

' A single quote. It is an escape character that is used to escape any of the special
formatting characters.

To let the user enter a social security number in the ###-##-#### format, you create a JFormattedTextField as
follows. Note that the constructor, MaskFormatter(String mask), throws a ParseException.
 
MaskFormatter ssnFormatter = null;
JFormattedTextField ssnField = null;
try {
 ssnFormatter = new MaskFormatter("###-##-####");
 ssnField = new JFormattedTextField(ssnFormatter);
}
catch (ParseException e) {
 e.printStackTrace();
}
 

When you use a mask formatter, you are forced to use only as many characters as you have specified in the mask.
All non-special characters (see Table 2-10 for the list of special characters) are displayed as they appear in the mask.
A placeholder (a space by default) is displayed for each special character in the mask. For example, if you specify the
mask as "###-##-####", the JFormattedTextField displays " - - " as the placeholder. You can also specify
a placeholder character for special characters using the setPlaceHolderCharacter(char placeholder) method of
the MaskFormatter class. To display 000-00-0000 in a SNN field, you need to use ’0’ as a placeholder character for the
mast formatter, as shown:
 
ssnFormatter = new MaskFormatter("###-##-####");
ssnFormatter.setPlaceholderCharacter('0');
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

105

You can use the setFormatterFactory() method of JFormattedTextField to change the formatter after you have
created the component. For example, to set a date format to a JFormattedTextField named payDate, after you have
created it, you write
 
DateFormatter df = new DateFormatter(new SimpleDateFormat("mm/dd/yyyy"));
DefaultFormatterFactory dff = new DefaultFormatterFactory(df, df, df, df);
dobField.setFormatterFactory(dff);
 

A JFormattedTextField lets you specify four types of formatters:

•	 A null formatter: It is used when the value in the field is null.

•	 An edit Formatter: It is used when the field has focus.

•	 A display Formatter: It is used when the field does not have focus and it has a non-null value.

•	 A default Formatter: It is used in the absence of any of the above three formatters.

You can specify all four formatters by using a formatter factory in the constructor of the JFormattedTextField
class or calling its setFormatterFactory() method. An instance of the JFormattedTextField.
AbstractFormatterFactory abstract class represents a formatter factory. The javax.swing.text.
DefaultFormatterFactory class is an implementation of the JFormattedTextField.AbstractFormatterFactory
class. When you specify a formatter, the same formatter is used in place of four formatters. When you specify a
formatter factory, you have the ability to specify different formatters for four different situations.

Suppose you have a JFormattedTextField named dobField to display a date. When this field has focus, you
want to let the user edit the date in the format mm/dd/yyyy (e.g. 07/07/2008). When it does not have focus, you want to
display a date in the mmmm dd, yyyy (e.g. July 07, 2008) format. The following snippet of code will do the job:
 
DateFormatter df = new DateFormatter(new SimpleDateFormat("mmmm dd, yyyy"));
DateFormatter edf = new DateFormatter(new SimpleDateFormat("mm/dd/yyyy"));
DefaultFormatterFactory ddf = new DefaultFormatterFactory(df, df, edf, df);
dobField.setFormatterFactory(ddf);
 

If you have configured the JFormattedTextField to format a date, you can use its getValue() method to get a
Date object. The getValue() method’s return type is Object and you will need to cast the returned value to the type
Date. You can place the cursor in the month, day, year, hour, minute, and second parts of the date value in the field
and use up/down arrow key to change that specific part. If you want to overwrite the value in the field as you type, you
need to set the formatter in overwrite mode by using the method setOverwriteMode(true).

Another advantage of using a JFormattedTextField is to set a limit on the number of characters that can be
entered in a field. Recall that you achieved this by using a custom document for a JTextField in the previous section.
You can achieve the same by setting a mask formatter. Suppose you want to let the user enter a maximum of two
characters in a field. You can accomplish this as follows:
 
JFormattedTextField twoCharField = new JFormattedTextField(new MaskFormatter("**"));

JTextArea
A JTextArea can handle multiline plain text. Most often, when you have multiline text in a JTextArea, you will need
scrolling capabilities. A JTextArea does not provide scrolling by itself. Rather, you need to get help from another
Swing component called JScrollPane when you need to have scrolling capability for any Swing component.

You can specify the number of rows and columns for a JTextArea that are used to determine its preferred size.
The number of rows is used to determine its preferred height. If you set the number of rows to N, it means that its
preferred height will be set to display N number of lines of text in the current font settings. The number of columns is
used to determine its preferred width. If you set the number of columns to M, it means that its preferred width is set to
M times the width of the character m (lowercase M) in the current font settings.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

106

A JTextArea provides a number of constructors to create a JTextArea component using a combination of the
initial text, the model, the number of rows, and the number of columns as arguments, as shown in Table 2-11.

Table 2-11.  Constructors of the JTextArea Class

Constructor Description

JTextArea() Creates a JTextArea with a default model, initial string as null, and
rows/columns as zero.

JTextArea(Document doc) Creates a JTextArea with the specified doc as its model. Its initial
string is set to null, and rows/columns to zero.

JTextArea(Document doc, String text,
int rows, int columns)

Creates a JTextArea with all its properties (model, initial text, rows,
and column) as specified in its arguments.

JTextArea(int rows, int columns) Creates a JTextArea with a default model, initial string as null, and
the specified rows/columns.

JTextArea(String text) Creates a JTextArea with the specified initial text. A default model is
set and rows/columns are set to zero.

JTextArea(String text, int rows,
int columns)

Creates a JTextArea with the specified text, rows, and columns.
A default model is used.

The following snippet of code creates many instances of JTextArea using different initial values:
 
// Create a blank JTextArea
JTextArea emptyTextArea = new JTextArea();
 
// Create a JTextArea with 10 rows and 50 columns
JTextArea commentsTextArea = new JTextArea(10, 50);
 
// Create a JTextArea with 10 rows and 50 columns with an initial text of "Enter resume here"
JTextArea resumeTextArea = new JTextArea("Enter resume here", 10, 50);
 

It is very important to remember that when you work with a JTextArea, most often your text size will be bigger
than its size on the screen and you will need a scrolling capability. To add the scrolling capability to a JTextArea, you
need to add it to a JScrollPane, and add the JScrollPane to the container, not the JTextArea. The following snippet
of code demonstrates this concept. It is assumed that you have a JFrame named myFrame whose content pane’s layout
is set to BorderLayout and you want to add a scrollable JTextArea in the center region.
 
// Create JTextArea
JTextArea resumeTextArea = new JTextArea("Enter resume here", 10, 50);
 
// Add JTextArea to a JScrollPane
JScrollPane sp = new JScrollPane(resumeTextArea);
 
// Get the reference of the content pane of the JFrame
Container contentPane = myFrame.getContentPane();
 
// Add the JScrollPane (sp) to the content pane, not the JTextArea
contentPane.add(sp, BorderLayout.CENTER);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

107

Table 2-12 has some of the commonly used methods of a JTextArea. Most of the time, you will use its setText(),
getText(), and append() methods.

Table 2-12.  Commonly Used Methods of JTextArea

Method Description

void append(String text) Appends the specified text to the end of the JTextArea.

int getLineCount() Returns the number of lines in the JTextArea.

int getLineStartOffset(int line)
throws BadLocationException

int getLineEndOffset(int line)
throws BadLocationException

Returns the start and end offset (also called position, which is zero
based) for a specified line number. Throws an exception if the line
number is out of range.

This method is useful when you combine it with the getLineCount()
method. You can parse the text contained in the JTextArea line by
line using these three methods inside a loop.

int getLineOfOffset(int offset)
throws BadLocationException

Returns the line number in which the specified offset occurs.

boolean getLineWrap() Returns true if line wrapping has been set. Otherwise, it returns false.

int getTabSize() Returns the number of characters used for a tab. By default, it returns 8.

boolean getWrapStyleWord() Returns true if word wrapping has been set to true. Otherwise, it
returns false.

void insert(String text, int offset) Inserts the specified text at the specified offset. If the model is null
or the specified text is empty or null, calling this method has no effect.

void replaceRange(String text,
int start, int end)

Replaces the text between the start and end positions with the
specified text.

void setLineWrap(boolean wrap) Sets the line-wrapping policy for the JTextArea. If line-wrapping is
set to true, a line is wrapped if it does not fit into the width of the
JTextArea. If it is set to false, lines are not wrapped even though it is
longer than the width of the JTextArea. By default, it is set to false.

void setTabSize(int size) Sets the number of characters that a tab will expand to the
specified size.

void setWrapStyleWord(boolean word) Sets the word-wrapping style when line wrapping is set to true. When
it is set to true, the line wraps at a word boundary. Otherwise, the line
wraps at a character boundary. By default, it is set to false.

JTextArea uses configurable policies for wrapping lines and words in its displayable area. If the line wrapping
is set to true and a line is longer than the width of the component, the line will be wrapped. By default, the line
wrapping is set to false. The line wrapping is set using the setLineWrap(boolean lineWrap) method.

A line can wrap at a word boundary or at a character boundary, which is determined by the word wrapping
policy. The word wrapping policy is set using the setWrapStyleWord(boolean wordWrap) method. Calling this
method takes effect only if the setLineWrap(true) is called. That is, a word wrapping policy defines the details of the
line wrapping policy. Figure 2-9 shows three JTextArea components displayed in a JFrame.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

108

For the three JTextArea components in the figure (left to right), the line wrapping and word wrapping settings
are (true, true), (true, false) and (false, true). The first one wrapped the line at the word boundaries. The second
one wrapped the lines at a character boundary. The third one did not wrap the line at all and you are not able to view
the entire text in its width. Note that each of the three JTextArea components were added to the JFrame without
adding it to a JScrollPane.

JEditorPane
A JEditorPane is a text component that is designed to handle different kinds of text. By default, it knows how to
handle plain text, HTML, and Rich Text Format (RTF). Although it is designed to edit and display many types of
content, it is primarily used to display an HTML document, which contains only basic HTML elements. The support
for RTF content is very basic.

A JEditorPane handles a specific type of content using a specific EditorKit object. If you want to handle new
types of content in this component, you will need to create a custom EditorKit class, which is a subclass of the
javax.swing.text.EditorKit class. If you are using this component only to display HTML content, you do not need
to worry about an EditorKit; the component will handle the EditorKit related functionalities for you. It takes only
one line of code to use a JEditorPane to display a HTML page, as shown:
 
// Create a JEditorPane to display yahoo.com web page
JEditorPane htmlPane = new JEditorPane("http://www.yahoo.com");
 

Note that some of the constructors of the JEditorPane class throw an IOException. When you specify a URL, you
must use the full form of the URL, starting with the protocol. You can let JEditorPane know what type of an EditorKit
it needs to install to handle its content in the following three different ways:

By calling the •	 setContentType(String contentType) method

By calling the •	 setPage(URL url) or setPage(String url) method

By calling the •	 read(InputStream in, Object description) method

JEditorPane is preconfigured to understand three types of contents: text/plain, text/html, and text/rtf. You can
use the following code to display the text Hello, using the <h1> tag in HTML:
 
htmlPane.setContentType("text/html");
htmlPane.setText("<html><body><h1>Hello</h1></body></html>");
 

When you call its setPage() method, it uses an appropriate EditorKit to handle the content provided by the
URL. In the following snippet of code, the JEditorPane uses an EditorKit depending on the content type:
 
// Handle an HTML Page
editorPane.setPage("http://www.yahoo.com");
 

Figure 2-9.  The effects of line and word wrapping in a JTextArea

www.it-ebooks.info

http://yahoo.com
http://www.yahoo.com/
http://www.yahoo.com/
http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

109

// Handle an RTF file. When you use a file protocol, you may use three slashes instead of one
editorPane.setPage("file:///C:/test.rtf");
 

The JEditorPane reads the contents from a stream into the editor pane. If its editor kit is already set to handle the
HTML content and the specified description is of type javax.swing.text.html.HTMLDocument, the content will be
read as HTML. Otherwise, the content will be read as plain text.

When you work with an HTML document, you may want to navigate to a different page when you click
a hyperlink. In order to use a hyperlink, you need to add a hyperlink listener to the JEditorPane, and in the
hyperlinkUpdate() method of the event listener, navigate to the new page using the setPage() method. One of the
three type of actions, ENTERED, EXITED, and ACTIVATED, on a hyperlink triggers the hyperlinkUpdate() method.
The ENTERED event occurs when the mouse enters a hyperlink area, the EXITED event occurs when the mouse leaves
the hyperlink area, and the ACTIVATED event occurs when a hyperlink is clicked. Make sure you check for an ACTIVATED
event in the hyperlinkUpdate() method in your hyperlink listener when you want to navigate to another page using a
hyperlink. The following snippet of code uses a lambda expression to add a HyperlinkListener to a JEditorPane:
 
editorPane.addHyperlinkListener((HyperlinkEvent event) -> {
 if (event.getEventType() == HyperlinkEvent.EventType.ACTIVATED) {
 try {
 editorPane.setPage(event.getURL());
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
});
 

If you want to know when a new page is loaded in the JEditorPane, you need to add a property change listener to
listen to its property change event and to check if the property with the name page has changed. Listing 2-4 contains
the complete code that uses a JEditorPane as a browser to view a web page. When you run the program, you can
enter a web page address in the URL field and press the Enter key (or press the Go button), and the browser will
display the contents of the new URL. You can also click a hyperlink in the contents to navigate to another web page.
The code is simple and contains enough comments to assist you in understanding the program logic.

Listing 2-4.  An HTML Browser Using the JEditorPane Component

// HTMLBrowser.java
package com.jdojo.swing;
 
import javax.swing.JFrame;
import java.awt.Container;
import javax.swing.JLabel;
import javax.swing.JScrollPane;
import javax.swing.Box;
import javax.swing.JEditorPane;
import javax.swing.JTextField;
import javax.swing.JButton;
import java.awt.BorderLayout;
import java.net.URL;
import javax.swing.event.HyperlinkEvent;
import java.beans.PropertyChangeEvent;
import java.net.MalformedURLException;
import java.io.IOException;
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

110

public class HTMLBrowser extends JFrame {
 JLabel urlLabel = new JLabel("URL:");
 JTextField urlTextField = new JTextField(40);
 JButton urlGoButton = new JButton("Go");
 JEditorPane editorPane = new JEditorPane();
 JLabel statusLabel = new JLabel("Ready");
 
 public HTMLBrowser(String title) {
 super(title);
 initFrame();
 }
 
 // Initialize the JFrame and add components to it
 private void initFrame() {
 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container contentPane = this.getContentPane();
 Box urlBox = this.getURLBox();
 Box editorPaneBox = this.getEditPaneBox();
 
 contentPane.add(urlBox, BorderLayout.NORTH);
 contentPane.add(editorPaneBox, BorderLayout.CENTER);
 contentPane.add(statusLabel, BorderLayout.SOUTH);
 }
 
 private Box getURLBox() {
 // URL Box consists of a JLabel, a JTextField and a JButton
 Box urlBox = Box.createHorizontalBox();
 urlBox.add(urlLabel);
 urlBox.add(urlTextField);
 urlBox.add(urlGoButton);
 
 // Add an action listener to urlTextField, so when the user enters a url
 // and presses the enter key, the appplication navigates to the new URL.
 urlTextField.addActionListener(e -> {
 String urlString = urlTextField.getText();
 go(urlString);
 });
 
 // Add an action listener to the Go button
 urlGoButton.addActionListener(e -> go());
 
 return urlBox;
 }
 
 private Box getEditPaneBox() {
 // To display HTML, you must make the editor pane non-editable.
 // Otherwise, you will see an editable HTML page that doesnot look nice.
 editorPane.setEditable(false);
 
 // URL Box consists of a JLabel, a JTextField and a JButton
 Box editorBox = Box.createHorizontalBox();
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

111

 // Add a JEditorPane inside a JScrollPane to provide scolling
 editorBox.add(new JScrollPane(editorPane));
 
 // Add a hyperlink listener to the editor pane, so that it
 // navigates to a new page, when the user clicks a hyperlink
 editorPane.addHyperlinkListener((HyperlinkEvent event) -> {
 if (event.getEventType() == HyperlinkEvent.EventType.ACTIVATED) {
 go(event.getURL());
 }
 else if (event.getEventType() == HyperlinkEvent.EventType.ENTERED) {
 statusLabel.setText("Please click this link to visit the page");
 }
 else if (event.getEventType() == HyperlinkEvent.EventType.EXITED) {
 statusLabel.setText("Ready");
 }
 });
 
 // Add a property change listener, so we can update
 // the URL text field with url of the new page
 editorPane.addPropertyChangeListener((PropertyChangeEvent e) -> {
 String propertyName = e.getPropertyName();
 if (propertyName.equalsIgnoreCase("page")) {
 URL url = editorPane.getPage();
 urlTextField.setText(url.toExternalForm());
 }
 });
 
 return editorBox;
 }
 
 // Navigates to the url entered in the URL JTextField
 public void go() {
 try {
 URL url = new URL(urlTextField.getText());
 this.go(url);
 }
 catch (MalformedURLException e) {
 setStatus(e.getMessage());
 }
 }
 
 // Navigates to the specified URL
 public void go(URL url) {
 try {
 editorPane.setPage(url);
 urlTextField.setText(url.toExternalForm());
 setStatus("Ready");
 }
 catch (IOException e) {
 setStatus(e.getMessage());
 }
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

112

 // Navigates to the specified URL specified as a string
 public void go(String urlString) {
 try {
 URL url = new URL(urlString);
 go(url);
 }
 catch (IOException e) {
 setStatus(e.getMessage());
 }
 }
 
 private void setStatus(String status) {
 statusLabel.setText(status);
 }
 
 public static void main(String[] args) {
 HTMLBrowser browser = new HTMLBrowser("HTML Browser");
 browser.setSize(700, 500);
 browser.setVisible(true);
 
 // Let us visit yahoo.com
 browser.go("http://www.yahoo.com");
 }
}
 

The following are the important parts of the program:

The •	 getURLBox() method packs a JLabel, a JTextField, and a JButton in a horizontal box,
and it is added to the north region of the frame. It adds an action listener to the JTextField
and to the JButton, so that when a user presses the Enter key or the Go button after typing the
new URL, the browser navigates to the new URL.

The •	 getEditPaneBox() method packs a JEditorPane inside a JScrollPane and it is added in
the center region of the frame. It also adds a hyperlink listener and a property change listener
to the JEditorPane. The hyperlink listener is used to navigate to a URL when the user clicks
a hyperlink. It also displays an appropriate help message in the status bar when the mouse
enters and exits a hyperlink area.

A •	 JLabel is used to display a brief message in the south area of the frame.

The •	 go() method has been overloaded and its main job is to navigate to a new page using the
setPage() method.

The •	 main() method is used for testing. It displays Yahoo’s home page in the browser.

As an assignment, you can add the Back and Forward buttons to the browser to let the user navigate back and
forth between the already visited web pages.

Tip■■   In order to display an HTML page in a nice format, you need to make the JEditorPane non-editable by calling
its setEditable(false) method. You should not use a JEditorPane to display all kinds of HTML pages because it does
not handle all kinds of different things that can be embedded in an HTML page. Rather, you should only use it to display
HTML pages that contain basic HTML content, such as an HTML help file for your application.

www.it-ebooks.info

http://yahoo.com
http://www.yahoo.com/
http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

113

JTextPane
The JTextPane class is a subclass of the JEditorPane class. It is a specialized component to handle the styled
document with embedded images and components. You can set attributes for characters and paragraphs. If you want
to display an HTML, RTF, or plain document, the JEditorPane is your best choice. However, if you need the rich set
of functionalities provided by a word processor to edit/display styled text, you need to use the JTextPane. It is a mini
word processor. It always works with a styled document, even if its contents are plain text. It is not possible to discuss
all of its features in this section; it deserves a small book by itself. I will touch upon its features, such as setting styled
text, embedding images, and components.

A JTextPane uses a styled document, which is an instance of the StyledDocument interface. The StyledDocument
interface inherits the Document interface. DefaultStyledDocument is an implementation class for the StyledDocument
interface. A JTextPane uses a DefaultStyledDocument as its default model. A document in a Swing text component
consists of elements that are organized in a tree-like structure. The top element is called the root element. An element
in a document is an instance of the javax.swing.text.Element interface.

A plain document has a root element. The root element can have multiple child elements. Each child element
consists of one line of text. Note that in a plain document, all characters in the document have the same attributes (or
formatting style).

A styled document has a root element, which is also known as a section. The root element has branch elements,
which are also known as paragraphs. A paragraph has character runs. A character run is a set of contiguous characters
that share the same attributes. For example, the “Hello world” string defines one character run. However, the “Hello
world” string defines two character runs. Note that the word “world” is in boldface font and “Hello” is not. That is
why they define two different character runs. In a styled document, a paragraph ends with a newline character unless
it is the last paragraph, which need not end in a newline. You can define attributes at the paragraph level, such as
indenting, line spacing, text alignment, etc. You can define attributes at character run level, such as font size, font
family, bold, italics, etc. Figure 2-10 and Figure 2-11 show the structures of a plain document and a styled document,
respectively.

Line 1 Line 2

Root Element
(Plain Document)

Line 2

Figure 2-10.  Structure of a plain document

Root Element
(Styled Document)

Paragraph 1 Paragraph 2

Character Run 1 Character Run 2 Character Run 3 Character Run 4 Character Run 5

Figure 2-11.  Structure of a styled document

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

114

The program in Listing 2-5 develops a basic word processor using a JTextPane. It lets you edit text and apply
styles such as bold, italics, color, and alignment to the text.

Listing 2-5.  A Simple Word Processor Using JTextPane and JButtons

// WordProcessor.java
package com.jdojo.swing;
 
import javax.swing.JFrame;
import java.awt.Container;
import javax.swing.JTextPane;
import javax.swing.JButton;
import java.awt.BorderLayout;
import javax.swing.JPanel;
import javax.swing.text.StyledDocument;
import javax.swing.text.BadLocationException;
import javax.swing.text.Style;
import javax.swing.text.StyleContext;
import javax.swing.text.StyleConstants;
import java.awt.Color;
 
public class WordProcessor extends JFrame {
 JTextPane textPane = new JTextPane();
 
 JButton normalBtn = new JButton("Normal");
 JButton boldBtn = new JButton("Bold");
 JButton italicBtn = new JButton("Italic");
 JButton underlineBtn = new JButton("Underline");
 JButton superscriptBtn = new JButton("Superscript");
 JButton blueBtn = new JButton("Blue");
 JButton leftBtn = new JButton("Left Align");
 JButton rightBtn = new JButton("Right Align");
 
 public WordProcessor(String title) {
 super(title);
 initFrame();
 }
 
 private void initFrame() {
 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container contentPane = this.getContentPane();
 
 JPanel buttonPanel = this.getButtonPanel();
 contentPane.add(buttonPanel, BorderLayout.NORTH);
 contentPane.add(textPane, BorderLayout.CENTER);
 
 this.addStyles(); // Add styles to the text pane for later use
 insertTestStrings(); // Insert some texts to the text pane
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

115

 private JPanel getButtonPanel() {
 JPanel buttonPanel = new JPanel();
 buttonPanel.add(normalBtn);
 buttonPanel.add(boldBtn);
 buttonPanel.add(italicBtn);
 buttonPanel.add(underlineBtn);
 buttonPanel.add(superscriptBtn);
 buttonPanel.add(blueBtn);
 buttonPanel.add(leftBtn);
 buttonPanel.add(rightBtn);
 
 // Add ation event listeners to buttons
 normalBtn.addActionListener(e -> setNewStyle("normal", true));
 boldBtn.addActionListener(e -> setNewStyle("bold", true));
 italicBtn.addActionListener(e -> setNewStyle("italic", true));
 underlineBtn.addActionListener(e -> setNewStyle("underline", true));
 superscriptBtn.addActionListener(e -> setNewStyle("superscript", true));
 blueBtn.addActionListener(e -> setNewStyle("blue", true));
 leftBtn.addActionListener(e -> setNewStyle("left", false));
 rightBtn.addActionListener(e -> setNewStyle("right", false));
 
 return buttonPanel;
 }
 
 private void addStyles() {
 // Get the default style
 StyleContext sc = StyleContext.getDefaultStyleContext();
 Style defaultContextStyle = sc.getStyle(StyleContext.DEFAULT_STYLE);
 
 // Add some styles to the document, to retrieve and use later
 StyledDocument document = textPane.getStyledDocument();
 Style normalStyle = document.addStyle("normal", defaultContextStyle);
 
 // Create a bold style
 Style boldStyle = document.addStyle("bold", normalStyle);
 StyleConstants.setBold(boldStyle, true);
 
 // Create an italic style
 Style italicStyle = document.addStyle("italic", normalStyle);
 StyleConstants.setItalic(italicStyle, true);
 
 // Create an underline style
 Style underlineStyle = document.addStyle("underline", normalStyle);
 StyleConstants.setUnderline(underlineStyle, true);
 
 // Create a superscript style
 Style superscriptStyle = document.addStyle("superscript", normalStyle);
 StyleConstants.setSuperscript(superscriptStyle, true);
 
 // Create a blue color style
 Style blueColorStyle = document.addStyle("blue", normalStyle);
 StyleConstants.setForeground(blueColorStyle, Color.BLUE);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

116

 // Create a left alignment paragraph style
 Style leftStyle = document.addStyle("left", normalStyle);
 StyleConstants.setAlignment(leftStyle, StyleConstants.ALIGN_LEFT);
 
 // Create a right alignment paragraph style
 Style rightStyle = document.addStyle("right", normalStyle);
 StyleConstants.setAlignment(rightStyle, StyleConstants.ALIGN_RIGHT);
 }
 
 private void setNewStyle(String styleName, boolean isCharacterStyle) {
 StyledDocument document = textPane.getStyledDocument();
 Style newStyle = document.getStyle(styleName);
 int start = textPane.getSelectionStart();
 int end = textPane.getSelectionEnd();
 if (isCharacterStyle) {
 boolean replaceOld = styleName.equals("normal");
 document.setCharacterAttributes(start, end - start,
 newStyle, replaceOld);
 }
 else {
 document.setParagraphAttributes(start, end - start, newStyle, false);
 }
 }
 
 private void insertTestStrings() {
 StyledDocument document = textPane.getStyledDocument();
 try {
 document.insertString(0, "Hello JTextPane\n", null);
 }
 catch (BadLocationException e) {
 e.printStackTrace();
 }
 }
 
 public static void main(String[] args) {
 WordProcessor frame = new WordProcessor("Word Processor");
 frame.setSize(700, 500);
 frame.setVisible(true);
 }
}
 

The word processor program is little lengthy. However, it does simple, repetitive things. I have broken the
program’s logic down into smaller pieces for easier understanding. The intent of this program is to show a JTextPane
where a user can edit text and apply styles to the text using some buttons

There are eight buttons. Five of them are used to format text: normal, bold, italic, underline, and superscript. The
Blue button is used to set the text color to blue. The last two buttons, Left Align and Right Align, are used to set the
paragraph alignment to left and right.

What is a style and how do you set a style to text and a paragraph? In simple terms, a style is a collection of attributes
(name-value pairs). It is simple to set the style; however, you need to write a few lines of code to have the style itself.
You add styles to the document of a JTextPane and to the JTextPane itself. You need to use the addStyle(String
styleName, Style parent) method of the StyledDocument class. It returns a Style object. The parent argument

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

117

can be null. If it is not null, unspecified attributes are resolved in the parent style. Once you have a style object,
you can use a setXxx() method of the StyleConstants class to set the appropriate attributes in that style. If you are
confused, here is a recap.

Think of a style as a table with two columns: name and value. The addStyle() method of the StyledDocument
class returns an empty style (meaning an empty table). By using the setXxx() methods of StyleConstants, you are
adding new rows to the style (that is, to the table). Once you have at least one row in the table (that is, at least one
style attribute defined), you can apply that style to characters or paragraphs depending on the type of the style. Note
that you can have an empty style. An empty style may be used to remove all current styles from a range of characters
or from a paragraph. The following snippet of code creates two styles: the first one is bold and second one is bold +
italic. If you apply the first style to text, it will format the text in boldface font. If you apply the second style to a text, it
will format the text in boldface font and italic. Note that you are setting the parent style to null.
 
// Get the styled document from the text pane
StyledDocument document = textPane.getStyledDocument();
 
// Add an empty style named "bold" to the document
Style bold = document.addStyle("bold", null);
 
// Add bold attribute to this style
StyleConstants.setBold(bold, true);
 
// From this point on, you can use the bold style
 
// Let's create a bold + italic style called boldItalic.
// Add an empty style named boldItalic to the document
Style boldItalic = document.addStyle("boldItalic", null);
 
// Add bold and italic attributes to the boldItalic style
StyleConstants.setBold(boldItalic, true);
StyleConstants.setItalic(boldItalic, true);
 
// From this point on, you can use the boldItalic style
 

You may need the reference of the style object after you add it to a StyledDocument. You can retrieve the
reference of the same style by using its getStyle(String styleName) method.
 
// Get the bold style from document
Style myBoldStyle = document.getStyle("bold");
 

Once you have a Style object, you can use the setCharacterAttributes(int offset, int length,
AttributeSet s, boolean replace) and setParagraphAttributes (int offset, int length, AttributeSet s,
boolean replace) methods of the StyledDocument class to set the style to a character range or to a paragraph. If the
replace argument is specified as true, any old style for that range will be replaced with the new one. Otherwise, the
new style is merged with the old one.
 
// Suppose a text pane has more than five characters in it.
// Make the first three characters bold
document.setCharacterAttributes(0, 3, bold, false);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

118

A StyleContext object defines a pool of styles for their efficient use. You can get the default collection of styles
as follows:
 
StyleContext sc = StyleContext.getDefaultStyleContext();
Style defaultContextStyle = sc.getStyle(StyleContext.DEFAULT_STYLE);
 
// Let's add a default context style as normal style's parent.
// We do not add any extra attribute to normal styles
StyledDocument document = textPane.getStyledDocument();
Style normal = document.addStyle("normal", defaultContextStyle);
 

Table 2-13 contains a list of important methods with their descriptions, which may assist you in understanding
the code in Listing 2-5. Figure 2-12 shows how the simple word processor looks like after you enter E = mc2 in it. 

Table 2-13.  Methods of the WordProcessor Class With Their Descriptions

Method Description

initFrame() Initializes the frame by adding components to it and setting the default behavior of the
JFrame.

getButtonPanel() Returns a JPanel, which contains all JButtons for formatting. It also adds action listeners
to all JButtons.

addStyles() It adds styles to the document. The default context style is named “normal” and it is
used as the parent for all other styles. Styles such as bold, italic, etc., are character level
styles, whereas left and right are paragraph level styles. These styles are retrieved from the
document for using them in the setNewStyle() method.

setNewStyle() It sets the style to a character range or a paragraph range as indicated by its
isCharacterStyle argument. Note that if you set the “normal” style, you replace the
entire style by this style. Otherwise, you merge the style. This logic is determined by the
following statement:

boolean replaceOld = styleName.equals("normal");

insertTestStrings() Inserts a string to the JTextPane’s document using the insertString() method.

main() Creates and displays the word processor frame.

Figure 2-12.  A simple word processor using a JTextPane and JButtons

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

119

The word processor does not have a save feature. In a real world application, you would prompt the user for a
location and the name of the saved file. The following snippet of code saves the contents of the JTextPane to a file
named test.rtf in the current working directory:
 
// Save the contents of the textPane to a file
FileWriter fw = new java.io.FileWriter("test.rtf");
textPane.write(fw);
fw.close();
 

The write() method of JTextPane writes the text contained in its document as plain text. If you want to save the
formatted text, you need to use an RTFEditorKit object as its editor kit, and use that editor kit’s write() method to
write to a file. The following snippet of code shows how to save formatted text in a JTextPane using an RTFEditorKit
object. Note that RTFEditorKit contains a read() method to read the formatted text back to a JTextPane.
 
// Set an RTFEditorKit to a JTextPane right after you create it
JTextPane textPane = new JTextPane();
textPane.setEditorKit(new RTFEditorKit());
 
// Other code goes here
 
// Save formatted text from the JTextPane to a file
String fileName = "test.rtf";
FileOutputStream fos = new FileOutputStream(fileName);
RTFEditorKit kit = (RTFEditorKit)textPane.getEditorKit();
StyledDocument doc = textPane.getStyledDocument();
int len = doc.getLength();
kit.write(fos, doc, 0, len);
fos.close(); 

Tip■■   If you want to save icons and components added to a JTextPane, you need to serialize the document object of a
JTextPane to a file, and load it back to display the same contents.

You can add any Swing components and icons to a JTextPane. It is just a matter of wrapping a component or an
icon in a style, and using that style in the insertString() method. The following snippet of code shows how to add a
JButton and an icon to a JTextPane:
 
// Add a Close button to our document
JButton closeButton = new JButton("Close");
closeButton.addActionListener(e -> System.exit(0));
 
Style cs = doc.addStyle("componentStyle", null);
StyleConstants.setComponent(cs, closeButton);
 
// Insert the component at the end of the text.
try {
 document.insertString(doc.getLength(), "Close Button goes", cs);
}
catch (BadLocationException e) {
 e.printStackTrace();
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

120

Adding an icon to a JTextPane is similar to adding a component to it, except that you use the setIcon() method
of the StyleConstants class instead of the setComponent() method and an ImageIcon object instead of a component,
as shown:
 
// Add an icon to a JTextPane
StyleConstants.setIcon(myIconStyle, new ImageIcon("myImageFile")); 

Tip■■   You can also use the insertComponent(Component c) and insertIcon(Icon g) methods of a JTextPane to
insert a component and an icon into it, respectively.

You can take a look at the element structures of a JTextPane document by using the dump(PrintStream p)
method of the AbstractDocument class. The following snippet of code displays the dump on the standard output:
 
// Display the document structure on the standard output
DefaultStyledDocument doc = (DefaultStyledDocument)textPane.getStyledDocument();
doc.dump(System.out);
 

The following is the dump of a JTextPane’s document with text, as shown in Figure 2-12. It gives you an idea
about the structure of a styled document.
 
<section>
 <paragraph
 resolver=NamedStyle:default {bold=false,name=default,foreground=sun.swing.PrintColorUIResource
[r=51,g=51,b=51],family=Dialog,FONT_ATTRIBUTE_KEY=javax.swing.plaf.FontUIResource[family=Dialog,
name=Dialog,style=plain,size=12],size=12,italic=false,}
 >
 <content>
 [0,16][Hello JTextPane
]
 <paragraph
 resolver=NamedStyle:default {bold=false,name=default,foreground=sun.swing.PrintColorUIResource
[r=51,g=51,b=51],family=Dialog,FONT_ATTRIBUTE_KEY=javax.swing.plaf.FontUIResource[family=Dialog,
name=Dialog,style=plain,size=12],size=12,italic=false,}
 >
 <content>
 [16,17][
]
 <paragraph
 resolver=NamedStyle:default {bold=false,name=default,foreground=sun.swing.PrintColorUIResource
[r=51,g=51,b=51],family=Dialog,FONT_ATTRIBUTE_KEY=javax.swing.plaf.FontUIResource[family=Dialog,
name=Dialog,style=plain,size=12],size=12,italic=false,}
 >
 <content
 bold=true
 name=bold
 resolver=NamedStyle:normal {name=normal,resolver=AttributeSet,}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

121

 >
 [17,21][E=mc]
 <content
 bold=true
 name=bold
 resolver=NamedStyle:normal {name=normal,resolver=AttributeSet,}
 superscript=true
 >
 [21,22][2]
 <content>
 [22,23][
]
<bidi root>
 <bidi level
 bidiLevel=0
 >
 [0,23][Hello JTextPane
 
E=mc2
]

Validating Text Input
You have seen examples of validating text input in a text component: using a custom model and using a
JFormattedTextField. You can attach an input verifier object to any JComponent, including a text component. An
input verifier object is simply an object of a class, which inherits from the abstract class named InputVerifier. The
class is declared as shown:
 
public abstract class InputVerifier {
 public abstract boolean verify(JComponent input);
 
 public boolean shouldYieldFocus(JComponent input) {
 return verify(input);
 }
}
 

You need to override the verify() method of the InputVerifier class. The verify() method contains the logic
to verify the input in the text field. If the value in the text field is valid, you return true from this method. Otherwise,
you return false. When the text field is about to lose focus, the verify() method of its input verifier is called. The
text field loses focus only if its input verifier’s verify() method returns true. The setInputVerifier() method of a
text component is used to attach an input verifier. The following snippet of code sets an input verifier to an area code
field. It will keep the focus in this field until the user enters a three-digit numeric area code. It lets the user navigate to
another field if the field is empty.
 
// Create an area code JTextField
JTextField areaCodeField = new JTextField(3);
 
// Set an input verifier to the area code field
areaCodeField.setInputVerifier(new InputVerifier() {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

122

 public boolean verify(JComponent input) {
 String areaCode = areaCodeField.getText();
 if (areaCode.length() == 0) {
 return true;
 }
 else if (areaCode.length() != 3) {
 return false;
 }
 
 try {
 Integer.parseInt(areaCode);
 return true;
 }
 catch(NumberFormatException e) {
 return false;
 }
 }
});
 

You can set an input verifier to any JComponent using the setInputVerifier() method. Typically, it is used only
for text fields. As a good GUI design practice, you should add some visual hints about the valid input values, so the
user can understand what kind of values are expected in the field. For example, you may want to add a label for the
area code field with a text “Area Code (three digits):” or display an error message when the user enters an invalid value
in the field. If there is no visual clue about the valid values for the field with an input verifier, users will be stuck in the
field without knowing what kind of value to enter.

Making Choices
Swing provides the following components that let you make a selection from a list of choices:

•	 JToggleButton

•	 JCheckBox

•	 JRadioButton

•	 JComboBox

•	 JList

The number of choices available to select from a list may vary from 2 to N, where N is a number greater than 2.
There are different ways to make a selection from the list of choices:

The selection may be mutually exclusive. That is, the user can only make one selection from •	
the list of choices. In mutually exclusive choices, if the user changes the current selection, the
previous selection is automatically deselected. For example, the list of gender selection with
three choices of Male, Female, and Unknown is mutually exclusive. The user must only select
one of the three choices, but not two or more of them at the same time.

There is a special case of selection where the number of choice N is 2. In this case, the choices •	
are of type boolean: true or false. Sometimes they are also referred to as a Yes/No choice, or
an On/Off choice.

Sometimes the user can have multiple selections from a list of choices. For example, you may •	
present the user with a list of hobbies and the user can choose more than one hobby from
the list.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

123

Swing components provide you with the ability to present different kinds of choices to the user and let the user
select zero, one, or multiple choices. Figure 2-13 shows the Swing components with four season names: Spring,
Summer, Fall, and Winter. The figure shows the look of the five different types of Swing components that can be used
for selecting choices from a list. Some of the components shown in this figure may not be the appropriate way for the
choices it displays. For example, even though it is possible to use a group of checkboxes to display a list of mutually
exclusive choices, it is not a good GUI practice. When choices are mutually exclusive, a group of radio buttons is
considered more appropriate than a group of checkboxes.

Figure 2-13.  Swing components to make a selection from a list of choices

A JToggleButton is a two-state button. The two states are selected and unselected. When you press the toggle
button, it toggles between being depressed and undepressed. Depressed is its selected state and undepressed is its
unselected state. Note that a JButton is different from a JToggleButton in the way it works and in its usage. A JButton
is pressed only when mouse is pressed over it, whereas a JToggleButton toggles between depressed and undepressed
states. A JButton is used to initiate an action whereas a JToggleButton is used to select a choice from a list of possible
choices. Typically, a group of JToggleButtons is used to let the user select one choice from a list of mutually exclusive
choices. One JToggleButton is used when the user has a boolean choice where he needs to indicate true or false (or,
Yes or No). The depressed state indicates the choice of true and the undepressed state indicates the choice of false.

A JCheckBox also has two states: selected and unselected. A group of JCheckBoxes is used when the user can select
zero or more choices from a list of two or more choices. One JCheckBox is used when the user has a boolean choice to
indicate true or false.

A JRadioButton also has two states: selected and unselected. A group of JRadioButtons is used when there is a
list of two or more mutually exclusive choices and the user must select one choice. A JRadioButton is never used as a
standalone component for making a choice from two boolean choices of true and false. It is always used in a group
of two or more. A JCheckBox (not a JRadioButton) should be used when you have to let the user select between two
boolean choices, true or false.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

124

Constructors for JToggleButton, JCheckBox, and JRadioButton let you create them using a combination of
different arguments. You can use a combination of an Action object, a string label, an icon, and a boolean flag (to
indicate if it is selected by default) to create them. By default, JToggleButton, JCheckBox, and JRadioButton are
unselected. The following snippet of code shows some of the ways to create them:
 
// Create them with no label and no image
JToggleButton tb1 = new JToggleButton();
JCheckBox cb1 = new JCheckBox();
JRadioButton rb1 = new JRadioButton();
 
// Create them with text as "Multi-Lingual"
JToggleButton tb2 = new JToggleButton("Multi-Lingual");
JCheckBox cb2 = new JCheckBox("Multi-Lingual");
JRadioButton rb2 = new JRadioButton("Multi-Lingual");
 
// Create them with text as "Multi-Lingual" and selected by default
JToggleButton tb3 = new JToggleButton("Multi-Lingual", true);
JCheckBox cb3 = new JCheckBox("Multi-Lingual", true);
JRadioButton rb3 = new JRadioButton("Multi-Lingual", true);
 

To select/unselect a JToggleButton, JCheckBox, and JRadioButton, you need to call their setSelected()
methods. To check if they are selected, use their isSelected() methods. The following snippet of code shows how to
use these methods:
 
tb3.setSelected(true); // Select tb3
boolean b1 = tb3.isSelected(); // will store true in b1
tb3.setSelected(false); // Unselect tb3
boolean b2 = tb3.isSelected(); // will store false in b2
 

If the selection is mutually exclusive, you must group all your choices in a button group. In a mutually exclusive
group of choices, if you select one choice, all other choices are unselected. Typically, you create a button group for a
group of mutually exclusive JRadioButtons or JToggleButtons. Theoretically, you can also create a button group for
JCheckBoxes to have mutually exclusive choices. However, it is not recommended to use a group of mutually exclusive
JCheckBoxes in a GUI.

An instance of the ButtonGroup class represents a button group. You can add and remove a JRadioButton or
JToggleButton to a button group by using its add() and remove() methods, respectively. Initially all members of a
button group are unselected. To form a button group, you need to add all mutually exclusive choice components to
an object of the ButtonGroup class. You do not add (in fact, you cannot add) a ButtonGroup object to a container. You
must add all choice components to the container. Listing 2-6 contains the complete code that shows a group of three
mutually exclusive JRadioButtons.

Listing 2-6.  A Group of Mutually Exclusive Three Choices Represented By Three JRadioButtons

// ButtonGroupFrame.java
package com.jdojo.swing;
 
import java.awt.BorderLayout;
import java.awt.Container;
import javax.swing.Box;
import javax.swing.ButtonGroup;
import javax.swing.JFrame;
import javax.swing.JRadioButton;
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

125

public class ButtonGroupFrame extends JFrame {
 ButtonGroup genderGroup = new ButtonGroup();
 JRadioButton genderMale = new JRadioButton("Male");
 JRadioButton genderFemale = new JRadioButton("Female");
 JRadioButton genderUnknown = new JRadioButton("Unknown");
 
 public ButtonGroupFrame() {
 this.initFrame();
 }
 
 private void initFrame() {
 this.setTitle("Mutually Exclusive JRadioButtons Group");
 this.setDefaultCloseOperation(EXIT_ON_CLOSE);
 
 // Add three gender JRadioButtons to a ButtonGroup,
 // so they become mutually exclusive choices
 genderGroup.add(genderMale);
 genderGroup.add(genderFemale);
 genderGroup.add(genderUnknown);
 
 // Add gender radio button to a vertical Box
 Box b1 = Box.createVerticalBox();
 b1.add(genderMale);
 b1.add(genderFemale);
 b1.add(genderUnknown);
 
 // Add the vertical box to the center of the frame
 Container contentPane = this.getContentPane();
 contentPane.add(b1, BorderLayout.CENTER);
 }
 
 public static void main(String[] args) {
 ButtonGroupFrame bf = new ButtonGroupFrame();
 bf.pack();
 bf.setVisible(true);
 }
}
 

A JComboBox<E> is another type of Swing component that lets you make one selection from a list of choices.
Optionally, it can include an editable field that lets you type a new choice value. The type parameter E is the
type of the elements it contains. You can use a JComboBox instead of a group of JToggleButtons, JCheckBoxes, or
JRadioButtons when the space on the screen is limited. You save space on the screen using a JComboBox. However, the
user has to perform two clicks to make a selection. First, the user has to click on the arrow button to display the list of
choices in a drop-down list, and then he has to click on a choice from the list. The user can also use up/down arrow
keys on the keyboard to scroll through the list of choices and select one when the component is in focus. You can
create a JComboBox by passing the list of choices in one of its constructors, as shown:
 
// Use an array of String as the list of choices
String[] sList = new String[]{"Spring", "Summer", "Fall", "Winter"};
JComboBox<String> seasons = new JComboBox<>(sList);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

126

// Use a Vector of String as the list of choices
Vector<String> sList2 = new Vector<>(4);
sList2.add("Spring");
sList2.add("Summer");
sList2.add("Fall");
sList2.add("Winter");
JComboBox<String> seasons2 = new JComboBox<>(sList2);
 

You can create a JComboBox with no choices and afterwards add choices to it by using one of its methods. It also
includes methods to remove a choice from the list and get the value of the selected choice. Table 2-14 shows a list of
commonly used methods of the JComboBox class.

Table 2-14.  Commonly Used Methods of the JComboBox class

Method Description

void addItem(E item) Adds an item as a choice in the list. The toString() method on
the added object is called and the returned string is displayed as a
choice.

E getItemAt(int index) Returns the item at the specified index from the list of choices. The
index starts at zero and ends at the size of the list minus one. If the
specified index is out of bound, it returns null.

int getItemCount() Returns the number of items in the list of choices.

int getSelectedIndex() Returns the index of the selected item. It returns –1, if the selected
item is not in the list. Note that for an editable JComboBox, you can
type in a new value in the field and that may not exist in the list of
choices. In this case, this method will return –1. It also returns –1 if
there is no selection.

Object getSelectedItem() Returns the currently selected item. Returns null if there is no
selection.

void insertItemAt(E item, int index) Inserts the specified item at the specified index in the list.

boolean isEditable() Returns true if the JComboBox is editable. Otherwise, it returns
false. By default, a JComboBox is non-editable.

void removeAllItems() Removes all items from the list.

void removeItem(Object item) Removes the specified item from the list.

void removeItemAt(int index) Removes the item at the specified index.

void setEditable(boolean editable) If the specified editable argument is true, the JComboBox is
editable. Otherwise, it is non-editable. The user can type in a value
in an editable JComboBox, which is not in the list of choices. Note
that the new typed in value is not added to the list of choices.

void setSelectedIndex(int index) Selects the item at the specified index in the list. If the specified
index is –1, it clears the selection. If the specified index is less
than –1 or greater than the size of the list minus 1, it throws an
IllegalArgumentException.

void setSelectedItem(Object item) Selects the item in the field. If the specified item exists in the list, it
is always selected. If the specified item does not exist in the list, it is
selected in the field only if the JComboBox is editable.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

127

If you want to be notified when an item is selected or deselected in the JComboBox, you can add an item listener to
it. An item listener is notified whenever an item is selected or deselected. Note that when you change a selection in a
JComboBox, it fires the deselected item event followed by a selected event. The following snippet of code shows how to
add an item listener to a JComboBox. You can use the getItem() method of the ItemEvent class to find out which item
has been selected or deselected.
 
String[] sList = new String[]{"Spring", "Summer", "Fall", "Winter"};
JComboBox<String> seasons = new JComboBox<>(sList);
 
// Add an item listener to the combobox
seasons.addItemListener((ItemEvent e) -> {
 Object item = e.getItem();
 if (e.getStateChange() == ItemEvent.SELECTED) {
 // Item has been selected
 System.out.println(item + " has been selected");
 }
 else if (e.getStateChange() == ItemEvent.DESELECTED) {
 // Item has been deselected
 System.out.println(item + " has been deselected");
 }
});
 

A JList<T> is another Swing component that displays a list of choices and lets you select one or more choices
from that list. The type parameter T is the type of elements it contains. A JList differs from a JComboBox mainly in the
way it displays the list of choices. A JList can show multiple choices on the screen whereas a JComboBox shows the list
of choices when you click the arrow button in it. In this sense, a JList is an expanded version of a JComboBox. A JList
can display a list of choices in one column or multiple columns. You can create a JList the same way you create a
JComboBox, as shown:
 
// Create a JList using an array
String[] items = new String[]{"Spring", "Summer", "Fall", "Winter"};
JList<String> list = new JList<>(items);
 
// Create a JList using a Vector
Vector<String> items2 = new Vector<>(4);
items2.add("Spring");
items2.add("Summer");
items2.add("Fall");
items2.add("Winter");
JList<String> list2 = new JList<>(items2);
 

A JList does not have scrolling capability. You must add it to a JScrollPane and add the JScrollPane to the
container to get the scrolling capability, like so:
 
myContainer.add(new JScrollPane(myJList));
 

You can configure the layout orientation of a JList to arrange the list of choices in three ways:

Vertical•	

Horizontal Wrapping•	

Vertical Wrapping•	

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

128

In a vertical arrangement, which is the default, all items in a JList are displayed using one column and
multiple rows.

In a horizontal wrapping, all items are arranged in a row and multiple columns. However, if not all items can fit
into a row, new rows are added to display them as necessary. Note that the item can flow horizontally left-to-right or
right-to-left depending on the orientation of the component.

In a vertical wrapping, all items are arranged in a column and multiple rows. However, if all items cannot fit into a
column, new columns are added to display them as necessary.

You can use the setVisibleRowCount(int visibleRows) method of the JList class to set the number of visible
rows you would prefer to see in the list without a need to scroll. When you set the number of visible rows to zero or
less, the JList will decide the number of visible rows based on width/height of the field and its layout orientation. You
can set its layout orientation using its setLayoutOrientation(int orientation) method, where orientation value
could be one of the three constants defined in the JList class: JList.VERTICAL, JList.HORIZONTAL_WRAP, and
JList.VERTICAL_WRAP.

You can configure the mode of selection for a JList using its setSelectionMode(int mode) method.
The mode value could be one of the following three values. The mode values are defined as constants in the
ListSelectionModel interface.

•	 SINGLE_SELECTION

•	 SINGLE_INTERVAL_SELECTION

•	 MUTIPLE_INTERVAL_SELECTION

In a single selection mode, you can only select one item at a time. If you change your selection, the previously
selected item will be deselected.

In a single interval selection mode, you can select multiple items. However, the items selected must always be
contiguous. Suppose you have ten items in a JList and you have selected the seventh item. Now you can select the
sixth item or the eighth item in the list, but not any other items. You can keep selecting more contiguous items.
You can use the combination of Ctrl key or Shift key and the mouse to make contiguous selections.

In a multiple interval section, you can select multiple items without any restrictions. You can use the
combination of Ctrl key or Shift key and the mouse to make selections.

You can add a list selection listener to a JList, which will notify you when a selection is changed. The
valueChanged() method of ListSelectionListener is called when a selection is changed. This method may also be
called multiple times in the middle of one selection change. You need to use the getValueIsAdjusting() method of
the ListSelectionEvent object to make sure that selection changing is finalized, as shown in following snippet of code:
 
myJList.addListSelectionListener((ListSelectionEvent e) -> {
 // Make sure selection change is final
 if (!e.getValueIsAdjusting()) {
 // The selection changed logic goes here
 }
});
 

Table 2-15 lists the commonly used methods of the JList class. Note that a JList does not have a direct method
to give you the size of the list (the number of choices in a JList). As every Swing component uses a model, so does a
JList. Its model is an instance of the JListModel interface. To know the size of the list of choices of a JList, you need
to call the getSize() method of its model, like so:
 
int size = myJList.getModel().getSize();
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

129

JSpinner
A JSpinner component combines the benefits of a JFormattedTextField and an editable JComboBox. It lets you set a
list of choices in a JComboBox, and at the same time, you can also apply a format to the displayed value. It shows only
one value at a time from the list of choices. It lets you enter a new value. The name “spinner” comes from the fact that
it lets you spin up or down through the list of choices by using up and down arrow buttons. One thing that is special
about the list of choices in a JSpinner is that it must be an ordered list. Figure 2-14 shows three JSpinners that are used
to select a number, a date, and a season value.

Table 2-15.  Commonly Used Methods of the JList Class

Method Description

void clearSelection() Clears the selection made in the JList.

void ensureIndexIsVisible(int
index)

Makes sure the item at the specified index is visible. Note that to make
an invisible item visible, the JList must be added in a JScrollPane.

int getFirstVisibleIndex() Returns the smallest visible index. If there is no visible item or list is
empty, it returns –1.

int getLastVisibleIndex() Returns the largest visible index. If there is no visible item or list is
empty, it returns –1.

int getMaxSelectionIndex() Returns the largest selected index. Returns –1 if there is no selection.

int getMinSelectionIndex() Returns the smallest selected index. Returns –1 if there is no selection.

int getSelectedIndex() Returns the smallest selected index. If JList selection mode is single
selection, it returns the selected index. Returns –1 if there is no
selection.

int[] getSelectedIndices() Returns the indices of all selected items in an int array. The array will
have zero elements if there is no selection.

E getSelectedValue() Returns the first selected item. If the JList has single selection mode,
it is the value of the selected item. Returns null if there is no selection
in the JList.

List<E> getSelectedValuesList() Returns a list of all the selected items in increasing order based on
their indices in the list. It there is no selected item, an empty list is
returned.

boolean isSelectedIndex(int index) Returns true if the specified index is selected. Otherwise, it returns
false.

boolean isSelectionEmpty() Returns true if there is no selection in the JList. Otherwise,
it returns false.

void setListData(E[] listData)
void setListData(Vector<?> listData)

Sets the new list of choices in the JList.

void setSelectedIndex(int index) Selects an item at the specified index.

void setSelectedIndices(int[]
indices)

Selects items at the indices in specified array

void setSelectedValue(Object item,
boolean shouldScroll)

Selects the specified item if it exists in the list. Scrolls to the item to
make it visible if the second argument is true.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

130

Figure 2-14.  JSpinner components in action

Since a JSpinner provides the spinning capability to a variety of list of choices, it depends heavily on its model for
its creation. In fact, you must provide a model for the JSpinner in its constructor unless you want a trivial JSpinner
with just a list of integers. It supports three different kinds of ordered lists of choices: a list of numbers, a list of dates,
and a list of any other objects. It provides three classes to create a model of three different kinds of lists:

•	 SpinnerNumberModel

•	 SpinnerDateModel

•	 SpinnerListModel

A spinner model is an instance of the SpinnerModel interface. It defines the getValue(), setValue(),
getPreviousValue(), and getNextValue() methods to work with values in the JSpinner. All these methods work
with objects of the Object class.

The SpinnerNumberModel class provides a model for a JSpinner that lets you spin through an ordered list of
numbers. You need to specify the minimum, maximum, and current values in the list. You can also specify the step
value that is used to step through the number list when you use up/down buttons of a JSpinner. The following
snippet of code creates a JSpinner with a list of numbers from 1 to 10. It lets you spin through the list in steps of 1.
The current value for the field is set to 5. The SpinnerNumberModel class also has methods that let you get/set different
values for the spinner model after you create it.
 
int minValue = 1;
int maxValue = 10;
int currentValue = 5;
int steps = 1;
SpinnerNumberModel nModel = new SpinnerNumberModel(currentValue, minValue, maxValue, steps);
JSpinner numberSpinner = new JSpinner(nModel);
 

The SpinnerDateModel class provides a model for a JSpinner that lets you spin through an ordered list of dates.
You need to specify the start date, the end date, the current value, and the step. The following snippet of code creates
a JSpinner to spin through a list of dates from January 1, 1950 to December 31, 2050 in steps of one day at a time. The
current system date is set as the current value for the field.
 
Calendar calendar = Calendar.getInstance();
calendar.set(1950, 1, 1);
Date minValue = calendar.getTime();
calendar.set(2050, 12, 31);
Date maxValue = calendar.getTime();
Date currentValue = new Date();
int steps = Calendar.DAY_OF_MONTH; // Must be a Calendar field
SpinnerDateModel dModel = new SpinnerDateModel(currentValue, minValue, maxValue, steps);
dateSpinner = new JSpinner(dModel);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

131

Note that the date value will be displayed in the default locale format. The step value is used when you use the
getNextValue() method on the model. A JSpinner with a list of dates lets you spin through any of the displayed
date fields by highlighting a part of the date field and using the up/down button. Suppose the date format that your
JSpinner uses is mm/dd/yyyy. You can place your cursor in the year part of the field (yyyy) and use up/down buttons
to step through the list based on the year.

The SpinnerListModel class provides a model for a JSpinner that lets you spin through an ordered list of objects.
You just specify an array of objects or a List object, and the JSpinner will let you spin through the list as it appears
in the array or the List. The returned String from the toString() method of the object in the list is displayed as the
value in the JSpinner. The following snippet of code creates a JSpinner to display a list of four seasons:
 
String[] seasons = new String[] {"Spring", "Summer", "Fall", "Winter"};
SpinnerListModel sModel = new SpinnerListModel(seasons);
listSpinner = new JSpinner(sModel);
 

A JSpinner uses an editor object to display the current value. It has the following three static inner classes to
display three different kinds of ordered lists:

•	 JSpinner.NumberEditor

•	 JSpinner.DateEditor

•	 JSpinner.ListEditor

If you want to display a number or a date in a specific format, you need to set a new editor for the JSpinner.
The editor classes for the number and date editors let you specify the formats. The following snippet of code sets the
number format as “00”, so numbers 1 to 10 are displayed as 01, 02, 03...10. It sets the date format to mm/dd/yyyy.
 
// Set the number format to "00"
JSpinner.NumberEditor nEditor = new JSpinner.NumberEditor(numberSpinner, "00");
numberSpinner.setEditor(nEditor);
 
// Set the date format to mm/dd/yyyy
JSpinner.DateEditor dEditor = new JSpinner.DateEditor(dateSpinner, "mm/dd/yyyy");
dateSpinner.setEditor(dEditor);

 Tip■■   You can use the getValue() method defined of a JSpinner or SpinnerModel to get the current value in the
JSpinner as an Object. SpinnerNumberModel and SpinnerDateModel define the getNumber() and getDate() method
that return the Number and Date objects, respectively.

JScrollBar
If you want to view a component that is bigger than the available space, you want to use a JScrollBar or a
JScrollPane component. I will discuss the JScrollPane in the next section. A JScrollBar has an orientation property
that determines whether it is displayed horizontally or vertically. Figure 2-15 depicts a horizontal JScrollBar.

Figure 2-15.  A horizontal JScrollBar

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

132

A JScrollBar is made up of four parts: two arrow buttons (one at each end), a knob (also known as a thumb),
and a track. When the arrow button is clicked, the knob moves on the track towards the arrow button. You can drag
the knob towards either end with the help of a mouse. You can also move the knob by clicking on the track.

You can customize various properties of a JScrollBar by passing their values in its constructor or by setting them
after you create it. Table 2-16 lists some commonly used properties and methods to manipulate them.

Table 2-16.  Commonly Used Properties of a JScrollBar and Methods to Get/Set Those Properties

Property Method Description

Orientation getOrientation()
setOrientation()

Determines whether the JScrollBar is horizontal or vertical. Its
value could be one of the two constants, HORIZONTAL or VERTICAL,
which are defined in the JScrollBar class.

Value getValue()
setValue()

The position of the knob is its value. Initially, it is set to zero.

Extent getVisibleAmount()
setVisibleAmount()

It is the size of the knob. It is expressed in proportion to the size of
the track. For example, if the track size represents 150 and you set
the extent to 25, the knob size will be one sixth of the track size. Its
default value is 10.

Minimum Value getMinimum()
setMinimum()

The minimum value that it represents. The default value is zero.

Maximum Value getMaximum()
setMaximum()

The maximum value that it represents. The default value is 100.

The following snippet of code demonstrates how to create a JScrollBar with different properties:
 
// Create a JScrollBar with all default properties. Its orientation
// will be vertical, current value 0, extent 10, minimum 0, and maximum 100
JScrollBar sb1 = new JScrollBar();
 
// Create a horizontal JScrollBar with default values
JScrollBar sb2 = new JScrollBar(JScrollBar.HORIZONTAL);
  
// Create a horizontal JScrollBar with a current value of 50,
// extent 15, minimum 1 and maximum 150
JScrollBar sb3 = new JScrollBar(JScrollBar.HORIZONTAL, 50, 15, 1, 150);
 

The current value of a JScrollBar can be set only between its minimum and (maximum – extent)
value. A JScrollBar by itself does not add any value to a GUI. All it has are some properties. You can add an
AdjustmentListener to a JScrollBar that is notified when its value changes.
 
// Add an AdjustmentListener to a JScrollBar named myScrollBar
myScrollBar.addAdjustmentListener((AdjustmentEvent e) -> {
 if (!e.getValueIsAdjusting()) {
 // The logic for value changed goes here
 }
});
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

133

It is not simple to use a JScrollBar to scroll through a component that is bigger in size than its display area.
You need to write a significant amount of code to achieve that task if you ever want to use a JScrollBar alone.
A JScrollPane makes this task easier. It takes care of the scrolling without writing any extra code.

JScrollPane
A JScrollPane is a container that can hold and display up to nine components, as shown in Figure 2-16. It uses its
own layout manager that is an object of the class JScrollPaneLayout.

C1 Column Header C2

R
H Viewport

V
S
B

C3 HSB C4

Figure 2-16.  The components of a JScrollPane

The nine components that a JScrollPane manages are two JScrollBars, a viewport, a row header, a column
header, and four corners.

•	 Two JScrollBars: In the diagram, the two scrollbars are named HSB and VSB. They are two
instances of the JScrollBar class: one horizontal and one vertical. A JScrollPane will create
and manage the two JScrollBars for you. You do not need to write any code for that. The only
things you need to indicate are whether you want them or not, and when you want them to
appear.

•	 A Viewport: The viewport is the area where a JScrollPane displays the scrollable component
such as a JTextArea. You can think of a viewport as a peephole through which you view
the component by scrolling up/down and right/left using scrollbars. A viewport is a Swing
component. An object of the JViewport class represents a viewport component. A JViewport
is simply a wrapper for a Swing component to implement a scrollable view of that component.
The JScrollPane creates a JViewport object for your component and uses it internally.

•	 Row and Column Headers: The row header is abbreviated as RH in the diagram.
Row/Column headers are two optional viewports you can use in a JScrollPane. When you
use the horizontal scrollbar, the column header scrolls with it horizontally. When you use the
vertical scrollbar, the row header scrolls with it vertically. A good use of row/column headers is
to display horizontal and vertical rulers for a picture or drawing in the viewport. Typically, you
do not use row/column headers.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

134

•	 Four Corners: Four corners can exist in a JScrollPane. A corner exists when two components
meet vertically. The four corners are named C1, C2, C3, and C4 in the diagram. These are not
the names given to the corners by the JScrollPane. I gave them a name for the discussion
purpose. The corner C1 exists if you add a row header and a column header. The corner C2
exists if you add a column header and the vertical scrollbar is visible. The corner C3 exists
if you add a row header and the horizontal scrollbar is visible. The corner C4 exists if both
horizontal and vertical scrollbars are visible. You can add any Swing component as a corner
component. The only limitation is that you cannot add the same component in more than one
corner. Note that adding a corner component does not guarantee that it will be visible.
A corner component will be visible in a corner only if that corner exists according to the rules
discussed. For example, if you add a corner component for the C4 corner, it will be visible
only if both scrollbars, horizontal and vertical, are visible. If either or both scrollbars are not
visible, the corner C4 does not exist and the component that you add for that corner will not
be visible.

A scrollbar in a direction (horizontal or vertical) is needed to view the component in the viewport when the
component’s size is bigger than the JScrollPane size. A JScrollPane lets you set a scrollbar policy for the vertical and
horizontal scrollbars. A scrollbar policy is a rule to control when it should appear. You can set one of the following
three scrollbar policies:

•	 Show as needed: It means that a JScrollPane should show the scrollbar when it is needed.
A scrollbar is needed when the component in the viewport in a direction, horizontal or vertical,
is bigger than its display area. It is up to the JScrollPane to decide when a scrollbar is needed,
and if it is needed, it will make the scrollbar visible. Otherwise, it will make the scrollbar
invisible.

•	 Show Always: It means that a JScrollPane should always show the scrollbar.

•	 Show Never: It means that a JScrollPane should never show the scrollbar.

The scrollbar polices are defined by six constants in the ScrollPaneConstants interface. Three constants
are for a vertical scrollbar and three are for a horizontal scrollbar. The JScrollPane class implements the
ScrollPaneConstants interface. So you can also access these constants using the JScrollPane class. The constants
that define scrollbar policies are XXX_SCROLLBAR_AS_NEEDED, XXX_SCROLLBAR_ALWAYS, and XXX_SCROLLBAR_NEVER,
where you need to replace XXX with VERTICAL or HORIZONTAL, depending on which scrollbar’s policy you are referring
to. The default value of the scrollbar policy for both vertical and horizontal scrollbars is “Show as needed”. The
following snippet of code demonstrates how to create a JScrollPane with different options:
 
// Create a JScrollPane with no component as its viewport and
// with default scrollbars policy as "As Needed"
JScrollPane sp1 = new JScrollPane();
 
// Create a JScrollPane with a JTextArea as its viewport and
// with default scrollbars policy as "As Needed"
JTextArea description = new JTextArea(10, 60);
JScrollPane sp2 = new JScrollPane(description);
 
// Create a JScrollPane with a JTextArea as its viewport and
// both scrollbars policy set to "show always"
JTextArea comments = new JTextArea(10, 60);
JScrollPane sp3 = new JScrollPane(comments,
 JScrollPane.VERTICAL_SCROLLBAR_ALWAYS,
 JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

135

As noted before, when you add a component to a JScrollPane, you add the JScrollPane to the container, not the
component. The viewport of a JScrollPane keeps the reference to the component you add to the JScrollPane. You
get the reference of the component in a JScrollPane by querying its viewport as shown:
 
// Get the reference to the viewport of the JScrollPane sp3
JViewport vp = sp3.getViewport();
 
// Get the reference to the comments JTextArea added
// to the JScrollPane, sp3, using its viewport reference
JTextArea comments1 = (JTextArea)vp.getView();
 

If you create a JScrollPane without specifying the component for its viewport, you can add a component to its
viewport later using its setViewportView() method as shown:
 
// Set a JTextPane as the viewport component for sp3
sp3.setViewportView(new JTextPane());

JProgressBar
A JProgressBar is used to display the progress of a task. It has an orientation, which can be horizontal or vertical. It
has three values associated with it: the current value, the minimum value, and the maximum value. You can create a
progress bar as shown:
 
// Create a horizontal progress bar with current, minimum, and maximum values
// set to 0, 0, and 100, respectively.
JProgressBar hpBar1 = new JProgressBar();
 
// Create a horizontal progress bar with current, minimum, and maximum values
// set to 20, 20, and 200, respectively.
JProgressBar hpbar2 = new JProgressBar(SwingConstants.HORIZONTAL, 20, 200);
 
// Create a vertical progress bar with current, minimum, and maximum values
// set to 5, 5 and 50, respectively.
JProgressBar vpBar1 = new JProgressBar(SwingConstants.VERTICAL, 5, 50);
 

As the task progresses, you need to set the current value for the progress bar using its setValue(int value)
method to indicate the progress. The component will update itself visually to reflect the new value. The progress
is reflected differently depending on the look and feel of the application. Sometimes a solid bar is used is show the
progress and sometimes solid rectangles are used to show the progress. You can use the getValue() method to get the
current value.

You can also display a string that describes the progress bar’s current value using the setStringPainted()
method. Passing true to this method displays the string value and passing false does not display the string value.
The string to be painted is specified by calling the setString(String s) method.

Sometimes the current value of the progress of a task is unknown or indeterminate. In such cases, you cannot set
the current value for the progress bar. Rather, you can indicate to the user that the task’s execution is in progress. You
can set a progress bar in an indeterminate mode using its setIndeterminate() method. Passing true to this method
places the progress bar in an indeterminate mode and passing false places the progress bar in a determinate mode.
A JProgressBar component displays an animation to indicate its indeterminate state.

Figure 2-17 shows a JFrame with two JProgressBars. The horizontal JProgressBar is in determinate mode and it
displays a string to describe the progress. The vertical JProgressBar has been placed in an indeterminate mode; note
the solid rectangular bar in the middle that is displayed as an animation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

136

JSlider
A JSlider lets you select a value graphically from a set of values between two integers by sliding a knob along a
track. It has four important properties: an orientation, a minimum value, a maximum value, and a current value. The
orientation determines whether it is displayed horizontally or vertically. You can use SwingConstants.VERTICAL and
SwingConstants.HORIZONTAL as valid values for its orientation. The following snippet of code creates a horizontal
JSlider with the minimum value of 0, the maximum value of 10, and the current value set to 5:
 
JSlider points = new JSlider(0, 10, 5);
 

You can get the current value of a JSlider using its getValue() method. Typically, the user sets the current value
of a JSlider by sliding the knob right/left for the horizontal JSlider and up/down for the vertical one. You can also
set its value programmatically by using its setValue(int value) method.

You can display the minor and major ticks on a JSlider. You need to set the interval at which these ticks need to
be displayed, and call its method to enable the tick paintings, as shown:
 
points.setMinorTickSpacing(1);
points.setMajorTickSpacing(2);
points.setPaintTicks(true);
 

You can also display the labels showing values along the track in a JSlider. You can display standard
labels or custom labels. The standard labels will display the integer values along the track. You can call its
setPaintLabels(true) method to display the integer values at major tick spacing. Figure 2-18 shows a JSlider with
ticks and standard labels.

Figure 2-17.  JProgressBars in action

Figure 2-18.  A JSlider component with minimum = 0, maximum = 10, current value = 5, minor tick spacing = 1,
major tick spacing = 2, tick painting enabled, and showing standard labels

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

137

JSlider also lets you set custom labels. A label on a JSlider is displayed using a JLabel component. You need to
create a Hashtable with value-label pairs and use its setLabelTable() method to set the labels. A value-label pair
consists of an Integer-JLabel pair. The following snippet of code sets the label Poor for value 0, Average for value 5,
and Excellent for value 10. Setting a label table does not display the labels. You must call the setPaintLabels(true)
method to display them. Figure 2-19 shows a JSlider with custom labels produced by the following snippet of code:
 
// Create the value-label pairs in a Hashtable
Hashtable labelTable = new Hashtable();
labelTable.put(new Integer(0), new JLabel("Poor"));
labelTable.put(new Integer(5), new JLabel("Average"));
labelTable.put(new Integer(10), new JLabel("Excellent"));
 
// Set the labels for the JSlider and make them visible
points.setLabelTable(labelTable);
points.setPaintLabels(true); 

Figure 2-19.  A JSlider with custom labels

JSeparator
A JSeparator is a handy component when you want to add a separator between two components or two groups of
components. Typically, a JSeparator is used in a menu to separate groups of related menu items. You can create
a horizontal or a vertical JSeparator by specifying its orientation. You can use it anywhere you would use a Swing
component.
 
// Create a horizontal separator
JSeparator hs = new JSeparator(); // By default, the type is horizontal
 
// Create a vertical separator
JSeparator vs = new JSeparator(SwingConstants.VERTICAL);
 

A JSeparator will extend itself to fill the size provided by the layout manager. You can use the setOrientation()
and getOrientation() methods to set and get the orientation of the JSeparator.

Menus
A menu component is used to provide a list of actions to the user in a compact form. You can also provide a list of
actions by using a group of JButtons, where each JButton represents an action. It is a matter of preference to use a
menu or a group of JButtons to present a list of actions. However, there is a noticeable advantage to using a menu; it
uses much less space on the screen compared to a group of JButtons. A menu uses less space by folding (or nesting)
a group of options under another option. For example, if you have used a file editor, the options such as New, Open,
Save, and Print are nested under a top-level File menu option. A user needs to click the File menu to see the list of
options that are available under it. Typically, in case of a group of JButtons, all JButtons are visible to the user all the
time, and it is easy for users to know what actions are available. Therefore, there is a little tradeoff between the amount
of space and usability when you decide to use a menu or JButtons.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

138

There is another kind of menu called a pop-up menu. It does not take any space on the screen at all. Usually, it is
displayed when the user clicks the right mouse button. It disappears as soon as the user makes a choice or clicks the
mouse outside the displayed pop-up menu area. It is a super compact menu component. However, it makes it difficult
for the user to know that any options are available. Sometimes, a text message is displayed on the screen stating that
the user needs to right click to view the list of available options. An object of the JPopupMenu class represents a pop-up
menu in Swing. Now let’s see menus in action.

Creating and adding a menu to a JFrame is a multistep process. The following steps describe the process in detail.
Create an object of the JMenuBar class and add it to a JFrame using its setJMenuBar() method. A JMenuBar is an

empty container that will hold a list of menu options, and each option in a JMenuBar represents a list of options.
 
// Create a JMenuBar and set it to a JFrame
JMenuBar menuBar = new JMenuBar();
myFrame.setJMenuBar(menuBar);
 

At this point, you have an empty JMenuBar associated with a JFrame. Now, you need to add the list of options,
also called top-level menu options, to the JMenuBar. An object of the JMenu class represents a list of options. A JMenu is
also an empty container that can hold menu items that represent the options. You will need to add menu options to a
JMenu. A JMenu does not always display the options that are added to it. Rather, it displays them when the user selects
the JMenu. This is where you get the compactness when you use menus. When you select a JMenu, it pops up a window
that displays the options contained in it. Once you select an option from the pop-up window or click somewhere
outside the JMenu, the pop-up window disappears.
 
// Create two JMenu (or two top-level menu options):
// File and Help, and add them to the JMenuBar
JMenu fileMenu = new JMenu("File");
JMenu helpMenu = new JMenu("Help");
menuBar.add(fileMenu);
menuBar.add(helpMenu);
 

At this point, your JFrame will display a menu bar at its top area with two options called File and Help, as shown
in Figure 2-20. If you select or click File or Help, nothing happens at this point.

Figure 2-20.  A JMenuBar With Two JMenu Options

Let’s add some options to your JMenu. You want to display three menu options under File and they are New, Open,
and Exit. You want to add a separator (a horizontal line as a divider) between the Open and Exit options. An object of
the JMenuItem class represents an option inside a JMenu.
 
// Create menu items
JMenuItem newMenuItem = new JMenuItem("New");
JMenuItem openMenuItem = new JMenuItem("Open");
JMenuItem exitMenuItem = new JMenuItem("Exit");
 
// Add menu items and a separator to the menu
fileMenu.add(newMenuItem);
fileMenu.add(openMenuItem);
fileMenu.addSeparator();
fileMenu.add(exitMenuItem);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

139

At this point, you have added three JMenuItems to the File menu. When you click the File menu, it will display
the options shown in Figure 2-21. You can scroll through options under the File menu by using down/up arrow key
on the keyboard or select one of them by using the mouse. When you select any one of the options under the File
menu, nothing happens because you have not added any actions to them.

Figure 2-21.  A File JMenu with three options

You may want to have two suboptions under a menu item such as under the New option. That is, the user can
create two different things, Policy and Claim, and you want those two options available under the New option. You
not trying to nest options within an option. The File menu is an instance of the JMenu class, which represents a list
of options, and you want to add a New menu that should also display a list of options. You can do this easily. The only
thing you need to understand is that a JMenu represents a list of options, whereas a JMenuItem represents only one
option. You can add a JMenuItem or JMenu to a JMenu. To achieve this, you need to make a little modification to the
snippet of code shown earlier. Now the New menu will be an instance of the JMenu class, not the JMenuItem class. You
will add two JMenuItems to the New menu. The following snippet of code will do the job:
 
// New is a JMenu – a list of options
JMenu newMenu = new JMenu("New");
JMenuItem policyMenuItem = new JMenuItem("Policy");
JMenuItem claimMenuItem = new JMenuItem("Claim");
newMenu.add(policyMenuItem);
newMenu.add(claimMenuItem);
 
JMenuItem openMenuItem = new JMenuItem("Open");
JMenuItem exitMenuItem = new JMenuItem("Exit");
 
fileMenu.add(newMenu);
fileMenu.add(openMenuItem);
fileMenu.addSeparator();
fileMenu.add(exitMenuItem);
 

Now, the menu is displayed as shown in Figure 2-22. When you select the File menu, the New menu displays an
arrow next to it indicating that it has sub menus. When you select the New menu, it displays the two submenus labeled
Policy and Claim.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

140

There is no limit on the number of levels a menu can be nested. However, more than two levels of nesting is not
considered good GUI practice because the user would have to drill down several levels just to get to the available
options.

The final piece to make menus work is to add actions to the menu items. You can add action listeners to a
JMenuItem. The associated action listener is notified when the user selects the JMenuItem. The following snippet of
code adds an action listener to the Exit menu item that will exit the application:
 
// Add an action listener to the Exit menu item
exitMenuItem.addActionListener(e -> System.exit(0));
 

Now you have added an action to the Exit menu item. If you select it, the application will exit. Similarly, you can
add action listeners to other menu items to perform actions when they are selected.

You can enable/disable a menu using the setEnabled() method. Although it is possible to make a menu
visible/invisible, it is not good practice to do it. It makes it hard for a user to learn an application. If you keep all menu
options available (either in an enabled or disabled state) all the time, the user will be able to work with the application
faster by knowing where the menu options are located. If you make menu options visible/invisible, the locations of
the menu options keep changing and the user will have to pay more attention to the location of menu options each
time he wants to use them.

You can also assign shortcuts to menu options. You can use the setMnemonic() method to add a shortcut to
a menu item by specifying a shortcut key. You can invoke the action represented by that menu item by pressing a
combination of the Alt key and the shortcut key. Note that the menu item must be visible for its mnemonic to work.
For example, if you have a mnemonic (the N key) set for a New menu option, you must select the File menu so the New
menu option is visible, and press Alt + N to invoke the action represented by the New menu item.

If you want to invoke the associated action to a menu item irrespective of whether it is visible or not, you need
to set its accelerator key by using the setAccelerator() method. The following snippet of code sets the E key as a
mnemonic and Ctrl + E as an accelerator for the Exit menu option:
 
// Set E as mnemonic for Exit menu and Ctrl + E as its accelerator
exitMenuItem.setMnemonic(KeyEvent.VK_E);
KeyStroke cntrlEKey = KeyStroke.getKeyStroke(KeyEvent.VK_E, ActionEvent.CTRL_MASK);
exitMenuItem.setAccelerator(cntrlEKey);
 

Now you can invoke the Exit menu option in two ways: you can press Alt + E key combination when it is visible,
or you can press Ctrl + E keys combination any time.

You can use a pop-up menu, which is displayed on demand. The creation of a pop-up menu is similar to a JMenu.
You need to create an instance of the JPopupMenu class, which represents an empty pop-up menu container, and then
add instances of JMenuItem to it. You can also have nested menus in a pop-up menu, as you had in a JMenu.
 

Figure 2-22.  Nesting menus

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

141

// Create a popup menu
JPopupMenu popupMenu = new JPopupMenu();
 
// Create three menu items for our popup menu
JMenuItem popup1 = new JMenuItem("Poupup1");
JMenuItem popup2 = new JMenuItem("Poupup2");
JMenuItem popup3 = new JMenuItem("Poupup3");
 
// Add menu items to the popup menu
popupMenu.add(popup1);
popupMenu.add(popup2);
popupMenu.add(popup3);
 

Since a pop-up menu does not have a fixed location and it is displayed on demand, you need to know where to
display it and when to display it. You need to use its show() method to display it at a location. The show() method
takes three arguments: the invoker component whose space will be used to display the pop-up menu, plus x and y
coordinates on the invoker component where it will be displayed.
 
// Display the popup menu
popupMenu.show(myComponent, xPos, yPos);
 

Typically, you display a pop-up menu when the user clicks the right mouse button. Different look and feel
options use a different key event to display the pop-up menu. For example, one look and feel scenario displays it when
a right mouse button is released, whereas another displays it when a right mouse button is pressed. Swing makes this
job easy for you to display the pop-up menu by providing a isPopupTrigger() method in the MouseEvent class. In a
mouse pressed or released event, you need to call this method. If this method returns true, display the pop-up menu.
The following snippet of code associates a mouse listener to a component and displays the pop-up menu:
 
// Create a mouse listener
MouseListener ml = new MouseAdapter() {
 @Override
 public void mousePressed(MouseEvent e) {
 if (e.isPopupTrigger()) {
 popupMenu.show(e.getComponent(), e.getX(), e.getY());
 }
 }
 
 @Override
 public void mouseReleased(MouseEvent e) {
 if (e.isPopupTrigger()) {
 popupMenu.show(e.getComponent(), e.getX(), e.getY());
 }
 }
};
  
// Add a mouse listener to myComponent
myComponent.addMouseListener(ml);
 

Whenever the user right clicks on myComponent, a pop-up menu will appear. Note that you need to add the same
code in both mousePressed() and mouseReleased() methods. It is decided by the look and feel which event should
display the popup menu.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

142

Listing 2-7 contains a complete program showing how to use menus. The program is long. It does the repetitive
work of creating and adding menu items and adding action listeners to them.

Listing 2-7.  Working With Menus and Pop-up Menus

// JMenuFrame.java
package com.jdojo.swing;
 
import javax.swing.JFrame;
import java.awt.Container;
import javax.swing.JMenuBar;
import javax.swing.JMenu;
import javax.swing.JMenuItem;
import javax.swing.JLabel;
import java.awt.event.ActionListener;
import javax.swing.JTextArea;
import java.awt.BorderLayout;
import java.awt.event.KeyEvent;
import javax.swing.KeyStroke;
import javax.swing.JPopupMenu;
import java.awt.event.MouseAdapter;
import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;
import javax.swing.JScrollPane;
 
public class JMenuFrame extends JFrame {
 JLabel msgLabel = new JLabel("Right click to see popup menu");
 JTextArea msgText = new JTextArea(10, 60);
 JPopupMenu popupMenu = new JPopupMenu();
 
 public JMenuFrame(String title) {
 super(title);
 initFrame();
 }
 
 // Initialize the JFrame and add components to it
 private void initFrame() {
 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container contentPane = this.getContentPane();
 
 // Add the message label and text area
 contentPane.add(new JScrollPane(msgText), BorderLayout.CENTER);
 contentPane.add(msgLabel, BorderLayout.SOUTH);
 
 // Set the menu bar for the frame
 JMenuBar menuBar = getCustomMenuBar();
 this.setJMenuBar(menuBar);
 
 // Create a popup menu and add a mouse listener to show it
 createPopupMenu();
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

143

 private JMenuBar getCustomMenuBar() {
 JMenuBar menuBar = new JMenuBar();
 
 // Get the File and Help menus
 JMenu fileMenu = getFileMenu();
 JMenu helpMenu = getHelpMenu();
 
 // Add the File and Help menus to the menu bar
 menuBar.add(fileMenu);
 menuBar.add(helpMenu);
 
 return menuBar;
 }
 
 private JMenu getFileMenu() {
 JMenu fileMenu = new JMenu("File");
 
 // Set Alt-F as mnemonic for the File menu
 fileMenu.setMnemonic(KeyEvent.VK_F);
  
 // Prepare a New Menu item. It will have sub menus
 JMenu newMenu = getNewMenu();
 fileMenu.add(newMenu);
 
 JMenuItem openMenuItem = new JMenuItem("Open", KeyEvent.VK_O);
 JMenuItem exitMenuItem = new JMenuItem("Exit", KeyEvent.VK_E);
 
 fileMenu.add(openMenuItem);
 
 // You can add a JSeparator or just call the convenience method
 // addSeparator() on fileMenu. You can replace the following statement
 // with fileMenu.add(new JSeparator());
 fileMenu.addSeparator();
 fileMenu.add(exitMenuItem);
 
 // Add an ActionListener to the Exit menu item
 exitMenuItem.addActionListener(e -> System.exit(0));
 
 return fileMenu;
 }
 
 private JMenu getNewMenu() {
 // New menu will have two sub menus - Policy and Claim
 JMenu newMenu = new JMenu("New");
 
 // Add submenus to New menu
 JMenuItem policyMenuItem = new JMenuItem("Policy", KeyEvent.VK_P);
 JMenuItem claimMenuItem = new JMenuItem("Claim", KeyEvent.VK_C);
 newMenu.add(policyMenuItem);
 newMenu.add(claimMenuItem);
 
 return newMenu;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

144

 }
 
 private JMenu getHelpMenu() {
 JMenu helpMenu = new JMenu("Help");
 helpMenu.setMnemonic(KeyEvent.VK_H);
  
 JMenuItem indexMenuItem = new JMenuItem("Index", KeyEvent.VK_I);
 JMenuItem aboutMenuItem = new JMenuItem("About", KeyEvent.VK_A);
 
 // Set F1 as the accelerator key for the Index menu item
 KeyStroke f1Key = KeyStroke.getKeyStroke(KeyEvent.VK_F1, 0);
 indexMenuItem.setAccelerator(f1Key);
  
 helpMenu.add(indexMenuItem);
 helpMenu.addSeparator();
 helpMenu.add(aboutMenuItem);
  
 // Add an action listener to the index menu item
 indexMenuItem.addActionListener(e ->
 msgText.append("You have selected Help >>Index menu item.\n"));
  
 return helpMenu;
 }
 
 private void createPopupMenu() {
 // Create a popup menu and add a mouse listener to the frame,
 // so a popup menu is displayed when the user clicks a right mouse button
 JMenuItem popup1 = new JMenuItem("Popup1");
 JMenuItem popup2 = new JMenuItem("Popup2");
 JMenuItem popup3 = new JMenuItem("Popup3");
 
 // Create an action listener
 ActionListener al = e -> {
 JMenuItem menuItem = (JMenuItem)e.getSource();
 String menuText = menuItem.getText();
 String msg = "You clicked " + menuText + " menu item.\n";
 msgText.append(msg);
 };
  
 
 // Add the same action listener to all popup menu items
 popup1.addActionListener(al);
 popup2.addActionListener(al);
 popup3.addActionListener(al);
 
 // Add menu items to popup menu
 popupMenu.add(popup1);
 popupMenu.add(popup2);
 popupMenu.add(popup3);
  

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

145

 // Create a mouse listener to show a popup menu
 MouseListener ml = new MouseAdapter() {
 @Override
 public void mousePressed(MouseEvent e) {
 displayPopupMenu(e);
 }
  
 @Override
 public void mouseReleased(MouseEvent e) {
 displayPopupMenu(e);
 }
 };
  
 // Add a mouse listener to the msg text and label
 msgText.addMouseListener(ml);
 msgLabel.addMouseListener(ml);
 }
 
 private void displayPopupMenu(MouseEvent e) {
 // Make sure this mouse event is supposed to show the popup menu.
 // Different platforms show the popup menu in different mouse events
 if (e.isPopupTrigger()) {
 this.popupMenu.show(e.getComponent(), e.getX(), e.getY());
 }
 }
 
 // Display the CustomFrame
 public static void main(String[] args) {
 JMenuFrame frame = new JMenuFrame("JMenu and JPopupMenu Test");
 frame.pack();
 frame.setVisible(true);
 }
}
 

You can also use JRadioButtonMenuItem and JCheckBoxMenuItem as menu items in a menu. As the names
suggest, they are displayed as radio buttons and checkboxes, and work the same as radio buttons and checkboxes.
You can add any swing component to a JMenu. To use radio button-type menu items, you need to group multiple
JRadioButtonMenuItem components into a button group so they represent exclusive choices. To handle the radio
button selection change, you can add an ActionListener or ItemListener to the JRadioButtonMenuItem. To handle a
change of state in JCheckBoxMenuItem, you need to use an ItemListener.

Tip■■   I’ll finally reveal the secret of menus in Swing. A menu item in Swing is a button. Aha! You were working with
buttons and calling them menus. Yes, that is correct. A JMenuBar and a JPopupMenu are simply containers with a
BoxLayout. Go ahead and play with these containers by setting their properties and adding different Swing components
to them. A JMenuItem is a simple button. A JMenu is a button and it has an associated container that is displayed when
you select it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

146

JToolBar
A toolbar is a group of buttons that provides commonly used actions to the user in a JFrame. Typically, you provide a
toolbar along with a menu. The toolbar contains small buttons with small icons. Typically, it only contains a subset of
options available in the menu.

An object of the JToolBar class represents a toolbar. It acts as a container for the toolbar buttons. It is a little
smarter container than other containers such as a JPanel. It can be moved around at runtime. It can be floatable. If
it is floatable, it displays a handle that you can use to move it around. You can also use the handle to pop it out in a
separate window. The following snippet of code creates some toolbar components:
 
// Create a horizontal JToolBar
JToolBar toolBar = new JToolBar();
 
// Create a horizontal JToolBar with a title. The title is
// displayed as a window title, when it floats in a separate window.
JToolBar toolBarWithTitle = new JToolBar("My ToolBar Title");
 
// Create a Vertical toolbar
JToolBar vToolBar = new JToolBar(JToolBar.VERTICAL);
 

Let’s add some buttons to the toolbar. The buttons in a toolbar need to be smaller in size than usual buttons. You
make a JButton smaller in size by setting its margin to zero. You should also add a tool tip to each toolbar button to
give a quick hint to the user about its usage.
 
// Create a button for the toolbar
JButton newButton = new JButton("New");
 
// Set the margins to 0 to make the button smaller
newButton.setMargin(new Insets(0, 0, 0, 0));
 
// Set a tooltip for the button
newButton.setToolTipText("Add a new policy");
 
// Add the New button to the toolbar
toolBar.add(newButton);
 

Typically, you display only small icons in a toolbar button. You can use another constructor of the JButton that
only accepts an Icon object as an argument. Finally, you need to add action listeners to the buttons, as you have been
adding to other JButtons. When a user clicks a button in a toolbar, the action listener is notified, and the specified
action is performed.

You can set the toolbar floatable/non-floatable using its setFloatable(boolean floatable) method. By default,
a toolbar is floatable. Its setRollover(boolean rollOver) method lets you specify if you want to draw the border of
the toolbar buttons only when the mouse hovers on them.

A toolbar should be added to the north, south, east, or west region in a BorderLayout to make it nicer to move
the toolbar around in different regions. Listing 2-8 displays a JToolBar in a JFrame. Figure 2-23 shows a JFrame with a
toolbar in its north region. Figure 2-24 shows the same JFrame with the toolbar floating in a separate window.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

147

Listing 2-8.  Using a JToolBar in a JFrame

// JToolBarFrame.java
package com.jdojo.swing;
 
import java.awt.Container;
import javax.swing.JFrame;
import javax.swing.JToolBar;
import javax.swing.JButton;
import java.awt.Insets;
import java.awt.BorderLayout;
import javax.swing.JTextArea;
import javax.swing.JScrollPane;
 
public class JToolBarFrame extends JFrame {
 JToolBar toolBar = new JToolBar("My JToolBar");
 JTextArea msgText = new JTextArea(3, 45);
 
 public JToolBarFrame(String title) {
 super(title);
 initFrame();
 }
 
 // Initialize the JFrame and add components to it
 private void initFrame() {
 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container contentPane = this.getContentPane();
 prepareToolBar();
 
 // Add the toolbar in the north and a JTextArea in the center
 contentPane.add(toolBar, BorderLayout.NORTH);
 contentPane.add(new JScrollPane(msgText), BorderLayout.CENTER);
 msgText.append("Move the toolbar around using its" +
 " handle at the left end");
 }
 
 private void prepareToolBar() {
 Insets zeroInset = new Insets(0, 0, 0, 0);
  
 JButton newButton = new JButton("New");
 newButton.setMargin(zeroInset);
 newButton.setToolTipText("Add a new policy");
 
 JButton openButton = new JButton("Open");
 openButton.setMargin(zeroInset);
 openButton.setToolTipText("Open a policy");
  
 JButton exitButton = new JButton("Exit");
 exitButton.setMargin(zeroInset);
 exitButton.setToolTipText("Exit the application");
  

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

148

 // Add an action listener to the Exit toolbar button
 exitButton.addActionListener(e -> System.exit(0));
  
 toolBar.add(newButton);
 toolBar.add(openButton);
 toolBar.addSeparator();
 toolBar.add(exitButton);
 
 toolBar.setRollover(true);
 }
 
 // Display the frame
 public static void main(String[] args) {
 JToolBarFrame frame = new JToolBarFrame("JToolBar Test");
 frame.pack();
 frame.setVisible(true);
 }
} 

Figure 2-24.  A JToolBar floating in a separate window

Figure 2-23.  A JToolBar with three JButtons placed in the north region of a JFrame

JToolBar Meets the Action Interface
What is common in all three components: JButton, JMenuItem, and an item in a JToolBar? All of them represent
an action. Sometimes you give the user the same option as a menu item, as a toolbar item, and as a JButton. How
would you disable an option that you had provided using three components? Don’t you think that you need to disable
them separately at least in three places because they are three different components representing the same option?
You may be right. However, there is an easier way to handle this kind of situation in Swing. Whenever you have to
provide an option for an action in different ways, you should work with the Action interface. You need to wrap your
option’s logic and properties in an Action object and use that object to construct the JButton, the JMenuItem, and the

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

149

item in the toolbar. If you need to disable the option, you just need to call setEnabled(false) on the Action object
only once and all options will be disabled. In such situations, the use of an Action object makes your programming
life easier. Let’s see it in action. Let’s create an ExitAction class that is inherited from the AbstractAction class.
Its actionPerformed() method simply exits the application. You set some properties in its constructor using its
putValue() method, as shown:
 
public class ExitAction extends AbstractAction {
 public ExitAction(String action) {
 super(action);
  
 // Set tooltip text for the toolbar
 this.putValue(SHORT_DESCRIPTION, "Exit the application");
  
 // Set a mnemonic key
 this.putValue(MNEMONIC_KEY, KeyEvent.VK_E);
 }
 
 @Override
 public void actionPerformed(ActionEvent e) {
 System.exit(0);
 }
}
 

If you want to add an Exit menu item, a JButton, and a toolbar button, you can do so by first creating an object of
the ExitAction class, and using it to create all your option items, as shown:
 
ExitAction exitAction = new ExitAction("Exit");
JButton exitButton = new JButton(ExitAction);
JMenuItem exitMenuItem = new JMenuItem(exitAction);
 
JButton exitToolBarButton = new JButton(exitAction);
exitToolBarButton.setMargin(new Insets(0,0,0,0));
 

Now you can add the exitButton to your JFrame, the exitMenuItem to your menu, and the exitToolBarButton
to your toolbar. They all behave the same way because they are sharing the same exitAction object. If you want to
disable the exit option in all three places, you can do so by calling exitAction.setEnabled(false) only once.

JTable
Swing lets you display and edit data in a tabular form using the JTable component. A JTable displays data using rows
and columns. You can set the labels for column headers. You can also sort the table’s data at runtime. Working with a
JTable can be as simple as writing a few lines of code, or it can be as complex as writing a few hundred lines of code.
A JTable is a complex and powerful Swing component that it deserves a chapter by itself. This section explains the
basics of working with a JTable and provides you with some hints about its powerful features. A JTable uses many
other classes and interfaces, which are in the javax.swing.table package. The JTable class itself is in the
javax.swing package.

Let’s start with the simplest JTable example. You can create a JTable by using its no-args constructor.
 
JTable table = new JTable();
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

150

Well, that was easy. However, what happens to its columns, rows, and data? All you got is an empty table with no
visual components. You will fix these problems in a minute.

A JTable does not store data. It only displays data. It uses a model that stores the data, the number of
columns, and the number of rows. An instance of the TableModel interface represents the model for a JTable. The
DefaultTableModel class is an implementation of the TableModel interface. When you use the default constructor
of the JTable class, Java sets an instance of the DefaultTableModel class as its model. If you want to add or remove
columns/rows, you must work with its model. You can get the reference of the model of a JTable using its getModel()
method. Let’s add two rows and three columns to the table.
 
// Get the reference of the model of the table
DefaultTableModel tableModel = (DefaultTableModel)table.getModel();
 
// Set the number of rows to 2
tableModel.setRowCount(2);
 
// Set the number of columns to 3
tableModel.setColumnCount(3);
 

Let’s set the value for a cell in the table. You can use the setValueAt(Object data, int row, int column)
method of the table’s model or the table to set a value in its cell. You will set “John Jacobs” as the value in the first row
and the first column. Note that the first row and the column start at 0.
 
// Set the value at (0, 0) in the table's model
tableModel.setValueAt("John Jacobs", 0, 0);
 
// Set the value at (0, 0) in the table
// Works the same as setting the value using the table's model
table.setValueAt("John Jacobs", 0, 0);
 

If you add the table to a container, it will look as shown in Figure 2-25.

Figure 2-25.  A JTable with two rows and three columns with default column header labels

Make sure that you add the table inside a JScrollPane. Note that you get two rows and three columns. The labels
for the column headers are set as A, B, and C. You can double-click any cell to start editing the value in the cell. To
get the value contained in a cell, you can use the getValueAt(int row, int column) method of the table’s model or
the JTable. It returns an Object. You can also add more columns or rows to the JTable by using the addColumn() and
addRow() methods of the DefaultTableModel class. You can use the removeRow(int row) method of the its model
class to remove a row from the model and thus from the JTable.

You can set custom labels for column headers using the model’s setColumnIdentifiers() method as follows:
 
// Store the column headers in an array
Object[] columnHeaderLabels = new Object[]{"Name", "DOB", "Gender"};
 
// Set the column headers for the table using its model
tableModel.setColumnIdentifiers(columnHeaderLabels);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

151

With the custom column headers, the table looks as shown in Figure 2-26.

Figure 2-26.  A JTable with two rows, three columns, and custom column header labels

You must add a JTable to a JScrollPane if you want the column headers to be visible all the times. If you do not
add it to a JScrollPane, the column headers will not be visible when the number of rows exceeds the height available
for the component. You can get the column headers component using JTable’s getTableHeader() method and
display it yourself (e.g. in the north region of a BorderLayout if the JTable is in the center region). You can select a row
by clicking on the row. By default, a JTable lets you select multiple rows. You can use the getSelectedRow() method
of a JTable to get the first selected row number, and the getselectedRows() method to get the row numbers of all
selected rows. The getSelectedRowCount() method returns the selected row count.

You started with the simplest JTable. It was not, however, an easy experience working with the so-called simplest
JTable, but now you know the basics of working with a JTable.

Let’s repeat the example by creating the JTable using another constructor. The JTable class has another
constructor that accepts the number of rows and columns as arguments. You can create a JTable with two rows and
three columns as shown:
 
// Create a JTable with 2 rows and 3 columns
JTable table = new JTable(2, 3);
 

If you want to set the value for the first row and the first column to “John Jacobs”, you do not need to use the
table’s model. You can use the setValueAt() method of the JTable to do the same.
 
table.setValueAt("John Jacobs", 0, 0);
 

This one was a little easier than the previous one. However, you will still get the default column header’s labels set
to A, B, and C. Two other constructors for the JTable let you set the number of rows and columns, and data in one go.
They differ only in argument types: one lets you use an array of Object and another lets you use a Vector object. They
are declared as follows:

•	 JTable(Object[][] rowData, Object[] columnNames)

•	 JTable(Vector rowData, Vector columnNames)

If you use a two-dimensional array of Object to set the row data, the number of the first dimension of the array
decides the number of rows. If you use a Vector, the number of elements in the Vector decides the number of rows
in the table. Each element in the Vector should be a Vector object that contains the data for a row. Here is how you
construct a JTable using a two-dimensional array of Object. Figure 2-27 shows the table displaying all the data set in
the code. 

Figure 2-27.  A JTable with two rows, three columns, and data

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

152

// Prepare the column headers
Object[] columnNames = {"ID", "Name", "Gender" } ;
 
// Create a two-dimensioanl array to contain the table's data
Object[][] rowData = new Object[][] {
 {new Integer(100), "John Jacobs", "Male" },
 {new Integer(101), "Barbara Gentry", "Female"}
};
 
// Create a JTable with the data and the column headers
JTable table = new JTable(rowData, columnNames);
 

So far, your table’s data were hard-coded. The JTable treated all data as String and all cells in the table were
editable. For example, you set the values for the ID column as integers and they were still displayed as left-justified
text. A number should be right-justified in a cell. If you want to customize a JTable, you need to use your own model
for the table. Recall that the TableModel interface defines the model for a JTable. Here is the declaration of the
TableModel interface:
 
public interface TableModel
 public int getRowCount();
 public int getColumnCount();
 public String getColumnName(int columnIndex);
 public Class<?> getColumnClass(int columnIndex);
 public boolean isCellEditable(int rowIndex, int columnIndex);
 public Object getValueAt(int rowIndex, int columnIndex);
 public void setValueAt(Object aValue, int rowIndex, int columnIndex);
 public void addTableModelListener(TableModelListener l);
 public void removeTableModelListener(TableModelListener l);
}
 

The AbstractTableModel class implements the TableModel interface. It provides an empty implementation for
the methods of the TableModel interface. It does not mention the way data should be stored. If you want to implement
your own table model, you need to inherit your class from the AbstractTableModel class. If you implement at least
the following three methods in your custom table model class, you will get a read-only table model:

•	 public int getRowCount();

•	 public int getColumnCount();

•	 public Object getValueAt(int row, int column);

The DefaultTableModel class inherits from the AbstractTableModel class. It provides a default implementation
for all methods in the TableModel interface. It uses a Vector of Vectors to store the table’s data.

You have greater control over workings of a JTable if you use your own table model. Listing 2-9 implements a
simple table model using an array of arrays to store data.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

153

Listing 2-9.  Implementing a Simple Table Model

// SimpleTableModel.java
package com.jdojo.swing;
 
import javax.swing.table.AbstractTableModel;
 
public class SimpleTableModel extends AbstractTableModel {
 private Object[][] data = {};
 private String[] columnNames = {"ID", "Name", "Gender"};
 private Class[] columnClass = {Integer.class, String.class, String.class};
 private Object[][] rowData = new Object[][]{
 {new Integer(100), "John Jacobs", "Male"},
 {new Integer(101), "Barbara Gentry", "Female"}
 };
 
 public SimpleTableModel() {
 }
 
 @Override
 public int getRowCount() {
 return rowData.length;
 }
 
 @Override
 public int getColumnCount() {
 return columnNames.length;
 }
 
 @Override
 public String getColumnName(int columnIndex) {
 return columnNames[columnIndex];
 }
 
 @Override
 public Class getColumnClass(int columnIndex) {
 return columnClass[columnIndex];
 }
 
 @Override
 public boolean isCellEditable(int rowIndex, int columnIndex) {
 boolean isEditable = true;
 if (columnIndex == 0) {
 isEditable = false; // Make the ID column non-editable
 }
 return isEditable;
 }
 
 @Override
 public Object getValueAt(int rowIndex, int columnIndex) {
 return rowData[rowIndex][columnIndex];
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

154

 @Override
 public void setValueAt(Object aValue, int rowIndex, int columnIndex) {
 rowData[rowIndex][columnIndex] = aValue;
 }
}
 

In the getColumnClass() method, you specify the class of the column’s data; the JTable will use this information
to display the column’s data appropriately. For example, it will display numbers in a column as right-justified. If
you specify the type Boolean for a column, the JTable will use a JCheckBox in each cell of that column to display the
Boolean value. Note that you have made the ID column non-editable by returning false from the isEditable()
method for the columnIndex of 0. In the example, you have again hard-coded the table’s data. However, you can read
data from a database, a data file, network, or any other data source. The following snippet of code uses the custom
model to create a JTable:
 
// Use the SimpleTableModel as the model for the table
JTable table = new JTable(new SimpleTableModel());
 

Note that your table model does not allow adding and deleting rows/columns. If you want these extended
functionalities, you are better off inheriting the model class from the DefaultTableModel class and customizing the
behavior you want to change.

You can have data sorting capability added to your JTable by calling its method setAutoCreateRowSorter(true).
You can sort data in a column by clicking the column’s header. After you call this method, a JTable will display an
up/down arrow as part of a column header to indicate that a column is sorted in ascending or descending order.
You can also use a row filter that will hide rows in a JTable based on some criteria, as shown:
 
// Set a row sorter for the table
TableRowSorter sorter = new TableRowSorter(table.getModel());
table.setRowSorter(sorter);
 
// Set an ID filter for the table
RowFilter<SimpleTableModel, Integer> IDFilter = new RowFilter<SimpleTableModel, Integer> () {
 
 @Override
 public boolean include(Entry<? extends SimpleTableModel,
 ? extends Integer> entry) {
 SimpleTableModel model = entry.getModel();
 int rowIndex = entry.getIdentifier().intValue();
 Integer ID = (Integer) model.getValueAt(rowIndex, 0);
 if (ID.intValue() <= 100) {
 return false; // Do not show rows with an ID <= 100
 }
 return true;
 }
};
 
sorter.setRowFilter(IDFilter);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

155

The above snippet of code sets a filter for a JTable, which is named table, so that rows with IDs less than or
equal to 100 are not shown. The RowFilter is an abstract class; you must override its include() method to specify
your filter criteria. It also has several static methods that return RowFilter objects of different kinds that you can use
directly with a RowSorter object. The following are some examples of creating row filters:
 
// Create a filter that will show only rows that starts
// with "John" in the second column (column index = 1)
RowFilter nameFilter = RowFilter.regexFilter("^John*", 1);
 
// Create a filter that will show only rows that has a
// "Female" value in its third column (column index = 2)
RowFilter genderFilter = RowFilter.regexFilter("^Female$", 2);
 
// Create a filter that will show only rows that has 3rd,
// 5th and 7th columns values starting with "A"
RowFilter anyFilter1 = RowFilter.regexFilter("^A*", 3, 5, 7);
 
// Create a filter that will show only rows that has any
// column whose value starts with "A"
RowFilter anyFilter2 = RowFilter.regexFilter("^A*");
 

You can add a TableModelListener to a TableModel to listen for any changes that are made to the table’s model.

Tip■■   A JTable has many features that cannot be described in this section because of space limitation. It also lets you
set a custom cell rendered to display a value in a cell. For example, you can display radio buttons in a cell that user can
choose from instead of letting them edit plain text values.

JTree
A JTree is used to display hierarchical data in a tree-like structure as shown in Figure 2-28. You can think of a JTree as
displaying a real tree upside down.

Figure 2-28.  A JTree showing departments and a list of employees in the departments

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

156

Each item in a JTree is called a node. In the figure, Departments, Sales, John, etc. are nodes. A node is further
categorized as a branch node or a leaf node. If a node can have other nodes underneath, which are called its
children, it is called a branch node. If a node does not have children, it is called a leaf node. Departments, Sales, and
Information Technology are examples of branch nodes, whereas John, Elaine, and Aarav are examples of leaf nodes.
There is always a special branch in a real-world tree called the root. Similarly, a JTree always has a special branch
node that is called the root node. Your JTree has a root node called Departments. In a JTree, you have the ability to
make the root node visible or invisible by using its setRootVisible(boolean visibility) method.

A branch node is called a parent node for its children. Note that a child node can also be a branch node. Sales,
Information Technology, and Advertising are child nodes of the Departments node. The Sales node has two children:
John and Elaine. Both John and Elaine have the same parent node, which is the Sales node.

Nodes at the same level are called siblings. In other words, nodes that have the same parent node are called
siblings. Sales, Information Technology, and Advertising are siblings; John and Elaine are siblings; Tejas and Aarav are
siblings. Two terms, ancestor and descendant, are used frequently in the context of nodes. Nodes that are the parent of
the parent of the parent and so on are all called ancestors. That is, nodes starting from grandpa and up are all ancestor
nodes. Nodes starting from grandchild and down are all called descendants. For example, the Departments node is an
ancestor of the Elaine node, and the Elaine node is a descendant of the Departments node.

You have learned enough terms related to a JTree. It’s time to see a JTree in action. Classes related to JTree are
the in javax.swing and javax.swing.tree packages. A JTree is composed of nodes. An instance of the TreeNode
interface represents a node. The TreeNode interface declares methods that give you basic information about a node,
such as its node type (branch or leaf), its parent node, its children nodes, etc.

MutableTreeNode is an interface that extends the TreeNode interface. It declares additional methods
that allow you to change a node by inserting/removing child nodes or by changing the node object. The
DefaultMutableTreeNode class is an implementation of the MutableTreeNode interface.

Before you start creating a node, you need to understand that a node is a visual representation (usually one line of
text) of a Java object. In other words, a node wraps an object and usually displays a one-line text representation of that
object. The object that a node represents is called the user object of that node. Therefore, before you build a node, you
must have an object that your node will represent. Don’t worry about creating a new class to build a node. You can just
use a String to build your nodes. The following snippet of code creates some nodes that can be used in a JTree:
 
// Create a Departments node
DefaultMutableTreeNode root = new DefaultMutableTreeNode("Departments");
 
// Create a Sales node
DefaultMutableTreeNode sales = new DefaultMutableTreeNode("Sales");
 
// Create a John node
DefaultMutableTreeNode john = new DefaultMutableTreeNode("John");
 
// Create a customer node, assuming you have a Customer class.
// In this case, the node will wrap a Customer object
Customer cust101 = new Customer(101, "Joe");
DefaultMutableTreeNode c101Node = new DefaultMutableTreeNode(cust101);
 
// If you want to get the user object that a node wraps, you would
// use the getUserObject() method of the DefaultMutableTreeNode class
Customer c101Back = (Customer)c101Node.getUserObject();
 

Once you have a node, it is easy to add children to it using the add() or insert() method. The add() method
appends the node to the end; the insert() method lets you specify the position of the new node. For example, to add
a Sales node as a child node to the Departments root node you write
 
root.add(sales);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

157

To add John as a child node to sales, you write
 
sales.add(john);
 

Once you have your nodes ready, it is easy to put them in a JTree. You need to create a JTree by specifying its
root node.
 
JTree tree = new JTree(root);
 

Other constructors for the JTree class let you create a JTree in different ways. The no-args constructor is not very
useful unless you are learning JTree. It creates a JTree with some nodes added to it, which are good in terms of saving
you the hassle of adding nodes if you want to experiment with a JTree. You can also create a JTree by passing an array
of Object or a Vector of Object to its constructors as the child nodes for the root of the JTree. A root will be added to
the new JTree before adding the passed in objects as its child nodes. For example,
 
// Create a JTree. It will create a default root node called Root
// and it will add two, "One" and "Two", child nodes for Root.
// The Root node is not displayed by default.
JTree tree = new JTree(new Object[]{"One", "Two"});
 

Once you get your JTree component created, it is time to display it in a Swing container. Typically, you add a
JTree to a JScrollPane, so it will have scrolling capability.
 
myContainer.add(new JScrollPane(tree));
 

How do you access or navigate through JTree nodes? There are two ways to access a node in a JTree: using a row
number and using a tree path.

A JTree consists of nodes. How does a JTree display nodes? Recall that a node is an instance of the TreeNode class
and it wraps an object of any type. Therefore, you may say that a node is a wrapper for an object. By default, a JTree
calls the toString() method of the node object to get the text for the node to be displayed. If your node wraps an
object whose toString() method does not return a meaningful string to be displayed in a JTree node, you can supply
a custom string for that node by creating a custom JTree and overriding its convertValueToText() method. In the
examples, you have wrapped a String object inside a node and the toString() method of a String object returns the
string itself. Suppose you want to create a node for Customer objects. Make sure to override the toString() method of
the Customer class and return a meaningful string to display in the Customer nodes such as customer name and id.

If you look at JTree nodes from top to bottom, each node is displayed in a separate horizontal row. The very
first node (the root node, if the root node is visible) is row number zero. The second one is at row number 1, and so
on. In Figure 2-28, the row numbers for Departments, Sales, John, Elaine, and Information Technology are 0, 1, 2, 3,
and 4, respectively. Note that a row number is assigned to a node only if it is displayed. A node may not be displayed
when its parent is collapsed. For example, the Advertising node has some child nodes that are not displayed and they
do not have a row number assigned to them because Advertising node, which is their parent node, is collapsed. The
getRowCount() method of a JTree returns the number of viewable nodes. Note that the number of viewable nodes
changes as you expand and collapse nodes in a JTree.

An object of the TreePath class represents a node uniquely in a JTree. Its structure is similar to the path used
to represent a file in a file-system. A file path represents a file uniquely by specifying its path starting from the root
folder such as /Departments/Sales/John represents a file named John, which is under a Sales folder, which is under
a Departments folder, which is under the root. A TreePath object encapsulates the same kind of information to
represent a node in a JTree. It consists of an ordered array of nodes starting from the root. For example, if you need to
construct a TreePath object for the node John in the example, you can do it as follows:
 
Object[] path = new Object[] {root, sales, john};
TreePath johnNodePath = new TreePath(path);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

158

The getPath() method of the TreePath class returns the Object array and the getLastPathComponent() method
returns the last element of the array, which is the reference to the node, which the TreePath object represents the
path to. Typically, you will not construct a TreePath object when you work with a JTree. Rather, a TreePath object
will be available to you in the JTree events. If you work with a JTree, each element of the array object that represents
a TreePath object is an instance of TreeNode. If you are using the default tree model, the TreePath will consist of an
array of DefaultMutableTreeNode objects. Having a TreePath to a node, you can get to the object that the node wraps
as follows:
 
// Suppose path is an instance of the TreePath class and it represents a node
DefaultMutableTreeNode node = (DefaultMutableTreeNode)path.getLastPathComponent();
Object myObject = node.getUserObject();
 

A JTree provides two methods called getRowForPath() and getPathForRow() to convert a row number to a
TreePath and vice versa. You will work with a TreePath when you learn about the JTree events shortly.

If you are not writing the code for an event of a JTree, you will not have a TreePath for a node (unless you stored
the node reference itself, which is not required). In such cases, you can always start from the root node and keep
navigating down the tree. A model for a JTree is an instance of the TreeModel class, which has a getRoot() method.
Once you get the handle of the root node, you can use the children() method of the TreeNode class that returns an
enumeration of all child nodes of a TreeNode. The following snippet of code defines a method navigateTree() that
traverses all tree nodes, if you pass it the reference to the root node:
 
public void navigateTree(TreeNode node) {
 if (node.isLeaf()) {
 System.out.println("Got a leaf node: " + node);
 return;
 }
 else {
 System.out.println("Got a branch node: " + node);
 Enumeration e = node.children();
 
 while(e.hasMoreElements()) {
 TreeNode n = (TreeNode)e.nextElement();
 navigateTree(n); // Recursive method call
 }
 }
}
 

You can select a tree node by clicking it. A JTree uses a selection model to keep track of the selected nodes. You
need to interact with its selection model to select nodes or get information about the selected nodes. The selection
model is an instance of the TreeSelectionModel interface. A JTree allows the user to select nodes in three different
modes. They are represented by three constants defined in the TreeSelectionModel interface:

•	 SINGLE_TREE_SELECTION: It allows users to select only one node at a time.

•	 CONTIGUOUS_TREE_SELECTION: It allows users to select any number of contiguous nodes.

•	 DISCONTIGUOUS_TREE_SELECTION: It allows users to select any number of nodes without any
restrictions.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

159

The following snippet of code demonstrates how to use some of the methods of the selection model of a JTree:
 
// Get selection model for JTree
TreeSelectionModel selectionModel = tree.getSelectionModel();
 
// Set the selection mode to discontinuous
selectionModel.setSelectionMode(TreeSelectionModel.DISCONTIGUOUS_TREE_SELECTION);
 
// Get the selected number of nodes
int selectedCount = selectionModel.getSelectionCount();
 
// Get the TreePath of all selected nodes
TreePath[] selectedPaths = selectionModel.getSelectionPaths();
 

You can add a TreeSelectionListener to a JTree, which will be notified when a node is selected or deselected.
The following snippet of code demonstrates how to add a TreeSelectionListener to a JTree:
 
// Create a JTree. Java will add some nodes
JTree tree = new JTree();
 
// Add selection listener to the JTree
tree.addTreeSelectionListener((TreeSelectionEvent event) -> {
 TreeSelectionModel selectionModel = tree.getSelectionModel();
 TreePath[] paths = event.getPaths();
 for (TreePath path : paths) {
 Object node = path.getLastPathComponent();
 if (selectionModel.isPathSelected(path)) {
 System.out.println("Selected: " + node);
 }
 else {
 // Node is deselected
 System.out.println("DeSelected: " + node);
 }
 }
});
 

You can expand a node by clicking the plus sign or by clicking the node itself. You can collapse a node by clicking
its minus sign or by clicking the node itself. A JTree triggers two events when a node expands or collapses. It triggers
a tree-will-expand event and a tree-expansion event in sequence. The tree-will-expand event is triggered just before
a node is expanded or collapsed. If you throw an ExpandVetoException from this event, expansion (or collapse) is
stopped. Otherwise, a tree-expansion event is triggered. The following snippet of code demonstrates how to write
code for these events:
 
// Add a TreeWillExpandListener
tree.addTreeWillExpandListener(new TreeWillExpandListener() {
 @Override
 public void treeWillExpand(TreeExpansionEvent event)
 throws ExpandVetoException {
 System.out.println("Will Expand:" + event.getPath());
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

160

 @Override
 public void treeWillCollapse(TreeExpansionEvent event) throws ExpandVetoException {
 System.out.println("Will Collapse: " + event.getPath());
 }
});
 
// Add TreeExpansionListener
tree.addTreeExpansionListener(new TreeExpansionListener() {
 @Override
 public void treeExpanded(TreeExpansionEvent event) {
 System.out.println("Exapanded: " + event.getPath());
 }
 
 @Override
 public void treeCollapsed(TreeExpansionEvent event) {
 System.out.println("Collapsed: " + event.getPath());
 }
});

Tip■■   A JTree is a powerful and complex Swing component. It lets you customize almost everything in it. Each node is
displayed in a JLabel. The icons that are displayed are different for branch and leaf nodes. The default icons depend on
the look-and-feel. You can customize the default icons by creating your own tree cell renderer. You can also add a
TreeModelListener to a JTree, which will notify you of any changes in its model. You can make a JTree editable by
using its setEditable(true) method. You can edit a node’s labels by double-clicking it.

JTabbedPane and JSplitPane
Sometimes, because of space limitation, it is not possible to display all pieces of information in a window. You can
group and separate pieces of information in a window using a JTabbedPane. Figure 2-29 shows a JFrame that has a
tabbed pane with two tabs titled General Information and Contacts to display the general and contact information
of a person.

Figure 2-29.  A JTabbedPane with two tabs

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

161

A JTabbedPane component acts like a container for other Swing components, arranging them in a tabbed fashion.
It can display tabs using a title, an icon, or both. The user needs to click on a tab to view the tab’s contents. The
greatest advantage of using a JTabbedPane is space sharing. The contents of only one tab in a JTabbedPane are visible
at a time. Users can switch between tabs to view the contents of another tab.

A JTabbedPane also lets you specify where to display the tabs. You can specify the tabs to be placed at the top,
bottom, left, or right. Figure 2-29 displays the tabs at the top. If you have a JFrame named a frame, the following
snippet of code produces the frame shown in Figure 2-29. The code adds a JLabel to the both tabs represented by two
JPanels.
 
JPanel generalInfoPanel = new JPanel();
JPanel contactInfoPanel = new JPanel();
JTabbedPane tabbedPane = new JTabbedPane();
generalInfoPanel.add(new JLabel("General info components go here..."));
contactInfoPanel.add(new JLabel("Contact info components go here..."));
 
tabbedPane.addTab("General Information", generalInfoPanel);
tabbedPane.addTab("Contacts", contactInfoPanel);
frame.getContentPane().add(tabbedPane, BorderLayout.CENTER);
 

The getTabCount() method returns the number of tabs in a JTabbedPane. Every tab inside a JTabbedPane has
an index. The first tab has an index of 0, the second tab has an index of 1, and so on. You can get the component that
represents a tab using its index.
 
// Get the reference of the component for the Contact tabs
JPanel contactsPanel = tabbedPane.getTabComponentAt(1);
 

A JSplitPane is a splitter that can be used to split space between two components. The splitter bar can be
displayed horizontally or vertically. When the available space is less than the space needed to display the two
components, the user can move the splitter bar up/down or left/right, so one component gets more space than the
other. If there is enough space, both components can be shown fully.

The JSplitPane class provides many constructors. You can create it using its default constructor and add two
components using its setXxxComponent(Component c), where Xxx could be Top, Bottom, Left, or Right. It also lets
you specify the way redrawing of components occurs when you change the position of the splitter bar. It could be
continuous or non-continuous. If it is continuous, components are redrawn as you move the splitter bar. If it is non-
continuous, the components are redrawn when you stop moving the splitter bar.

The following snippet of code shows two instances of the JPanel class added to a JSplitPane, which in turn is
added to the content pane of a JFrame named frame. Figure 2-30 shows the resulting JFrame.
 
// Create two JPanels and a JSplitPane
JPanel generalInfoPanel = new JPanel();
JPanel contactInfoPanel = new JPanel();
JSplitPane splitPane = new JSplitPane();
generalInfoPanel.add(new JLabel("General info components go here..."));
contactInfoPanel.add(new JLabel("Contact info components go here..."));
 
// Add two JPanels to the JSplitPane and the JSplitPane
// to the content pane of the JFrame
splitPane.setLeftComponent(generalInfoPanel);
splitPane.setRightComponent(contactInfoPanel);
frame.getContentPane().add(splitPane, BorderLayout.CENTER);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

162

Custom Dialogs
A JDialog is a top-level Swing container. It is used as a temporary top-level container (or as a popup window) to aid
in the working of the main window to get the user’s attention. I am using the term window loosely to mean a Swing
top-level container. Suppose you have a JFrame in which you have to display information about a person. You may
not have enough room in the JFrame to display all details about a person. In this case, you can only display the basic
personal minimum information on a JFrame and provide a button labeled “Person Details”. When the user clicks this
button, you can open a JDialog that displays detailed information about that person. This is an example of using
a JDialog to display information to users. Another example of using a dialog window is to let the user choose a file
from a file system. You can display a dialog to the user that would let him navigate through the file system and let him
choose a file. You can also use a JDialog in other occasions as listed:

•	 When you want to confirm an action from the user: This is called a confirmation dialog. For
example, when the user selects a person record in a window and tries to delete the person
record, you display a confirmation message of “Are you sure you want to delete this person?”
The dialog box displays two buttons labeled Yes and No’ to indicate the user’s choice.

•	 When you want some input from the user: This is referred to as an input dialog. For example,
when focus moves to a date field, you may display a calendar in a JDialog and want the user
to select a date. An input dialog can be as simple as entering/selecting one value or entering
multiple values, such as a person’s details.

•	 When you want to display some message to the user: This is called a message dialog. For
example, when a user saves some information to a database, you want to inform the user with
a message that indicates the status of the database transaction.

Creating a dialog window is very simple: just create a new class that inherits from the JDialog class. You can add
any number of Swing components to your custom JDialog as you have been adding to a JFrame. A JDialog makes it a
little easier to add components to it. You do not need to get the reference to its content pane to set its layout manager
and add components. Rather, you can invoke the setLayout() and add() methods on the JDialog itself. These
methods route the calls to its content pane. By default, a JDialog uses a BorderLayout as the layout manager.

Listing 2-10 lists a custom JDialog that displays current date and time in a JLabel and an OK JButton. When the
user clicks the JButton, the JDialog is closed.

Figure 2-30.  Using a JSplitPane to split space between two components

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

163

Listing 2-10.  A Custom JDialog That Displays Current Date and Time

// DateTimeDialog.java
package com.jdojo.swing;
 
import java.awt.BorderLayout;
import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;
import javax.swing.JButton;
import javax.swing.JDialog;
import javax.swing.JLabel;
 
public class DateTimeDialog extends JDialog {
 JLabel dateTimeLabel = new JLabel("Datetime placeholder");
 JButton okButton = new JButton("OK");
 
 public DateTimeDialog() {
 initFrame();
 }
 
 private void initFrame() {
 // Release all resources when JDialog is closed
 this.setDefaultCloseOperation(JDialog.DISPOSE_ON_CLOSE);
 
 this.setTitle("Current Date and Time");
 this.setModal(true);
 
 String currentDateTimeString = getCurrentDateTimeString();
 dateTimeLabel.setText(currentDateTimeString);
 
 // There is no need to add components to the content pane.
 // You can directly add them to the JDialog.
 this.add(dateTimeLabel, BorderLayout.NORTH);
 this.add(okButton, BorderLayout.SOUTH);
 
 // Add an action listeenr to the OK button
 okButton.addActionListener(e -> DateTimeDialog.this.dispose());
 }
 
 private String getCurrentDateTimeString() {
 LocalDateTime ldt = LocalDateTime.now();
 DateTimeFormatter formatter =
 DateTimeFormatter.ofPattern("EEEE MMMM dd, yyyy hh:mm:ss a");
 String dateString = ldt.format(formatter);
 return dateString;
 }
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

164

The DateTimeDialog class is a simple example of a custom JDialog. To use it in your application, you need to
create an instance of this JDialog, pack it, and make it visible, as shown:
 
DateTimeDialog dateTimeDialog = new DateTimeDialog();
dateTimeDialog.pack();
dateTimeDialog.setVisible(true);
 

If you are displaying a JDialog from another top-level container, say a JFrame or another JDialog, you
may want to display it in the center of the top-level container. Sometimes you may want to display it in the
center of the screen. You can place a JDialog in the center of a top-level container or a screen by using its
setLocationRelativeTo(Component c) method. If you pass null as its argument, the JDialog is centered on the
screen. Otherwise, it will be centered within the component that you pass as the argument.
 
// Center the JDialog within a frame, assuming that myFrame exists
dateTimeDialog.setLocationRelativeTo(myFrame);
 
// Place the JDialog in the center of screen
dateTimeDialog.setLocationRelativeTo(null);
 

You can create a JDialog with an owner, which could be another JDialog, a JFrame, or a JWindow. By specifying
an owner for a JDialog, you are creating a parent-child relationship. When the owner (or the parent) of a JDialog
is closed, the JDialog is also closed. When the owner is minimized or maximized, the JDialog is also minimized or
maximized. A JDialog with an owner is always displayed on top of its owner. You can specify an owner of a JDialog in
its constructors. When you create a JDialog using its no-args constructor, a hidden Frame is created as its owner. Note
that it is a java.awt.Frame, not javax.swing.JFrame. The JFrame class inherits from the Frame class. You can also
create a JDialog with null as its owner, and in that case, it does not have an owner.

By default, a JDialog is resizable. If you do not want users to resize your JDialog, you can do so by calling its
setResizable(false) method.

Based on focus behavior of a JDialog, it can be categorized as

Modal•	

Modeless•	

When a modal JDialog is displayed, it blocks other displayed windows in the application. In other words, if a
modal JDialog is displayed, you must close it before you can work with any other windows in that application. To
make a JDialog modal, you can use its setModal(true) method. Some of the constructors of the JDialog class also let
you specify whether the JDialog should be modal or modeless.

A modeless JDialog does not block any other displayed windows in the application. You can switch focus
between other windows and the instances of modeless JDialog. By default, a JDialog is modeless.

You can also set the scope of modality for a modal JDialog. A JDialog can have one of the four types of
modalities. They are defined by the four constants in java.awt.Dialog.ModalityType enum:

•	 MODELESS

•	 DOCUMENT_MODAL

•	 APPLICATION_MODAL

•	 TOOLKIT_MODAL

You can specify the modality type of a JDialog in its constructor or by using its setModalityType() method.
The modality type of MODELESS means that the JDialog will not block any windows.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

165

The modality type of DOCUMENT_MODAL means that the JDialog will block any windows in its parent hierarchy
(its owner, owner of owner and so on). It will not block any window in its child hierarchy (its child, child of child, and
so on). Suppose you have three windows displayed: frame is a JFrame; dialog1 is a JDialog whose owner is frame;
dialog2 is another JDialog whose owner is dialog1. If you specify the modality type of DOCUMENT_MODAL for dialog1,
you can work with dialog2, but not with frame. If dialog2 has a modality type of MODELESS, you can work with both
dialog1 and dialog2, because dialog2 will not block any windows.

The modality type of APPLICATION_MODAL means that the JDialog will block any windows in that Java application,
except those in its child hierarchy.

The modality type of TOOLKIT_MODAL means that the JDialog will block any windows run from the same toolkit,
except those in its child hierarchy. In a Java application, it is the same as APPLICATION_MODAL. It is useful when you use
it in applets or applications started using Java Web Start. You can think of a browser as an application, and multiple
applets as top-level windows. All applets are loaded by the same toolkit. If you display a JDialog with its modality
type as TOOLKIT_MODAL in one applet, it will block inputs to any other applets in the same browser. You must grant
“toolkitModality” AWTPermission to for the applet to use a TOOLKIT_MODAL modality. The same behavior goes with
multiple applications started with Java Web Start.

Listing 2-11 contains a program to experiment with modality types of JDialog. Use different values for the
dialog1Modality and dialog2Modality variables and see how it affects blocking input in other windows.

Listing 2-11.  Experimenting With Modality Types of JDialog

// JDialogModalityTest.java
package com.jdojo.swing;
 
import javax.swing.JButton;
import javax.swing.JDialog;
import javax.swing.JFrame;
import java.awt.Dialog.ModalityType;
 
public class JDialogModalityTest {
 public static void main(String[] args) {
 JFrame frame = new JFrame("My JFrame");
 frame.setBounds(0, 0, 400, 400);
 frame.setVisible(true);
 
 final ModalityType dialog1Modality = ModalityType.DOCUMENT_MODAL;
 final ModalityType dialog2Modality = ModalityType.DOCUMENT_MODAL;
 final JDialog dailog1 = new JDialog(frame, "JDialog 1");
 
 JButton openBtn = new JButton("Open JDialog 2");
 openBtn.addActionListener(e -> {
 JDialog d2 = new JDialog(dailog1, "JDialog 2");
 d2.setBounds(200, 200, 200, 200);
 d2.setModalityType(dialog2Modality);
 d2.setVisible(true);
 });
 
 dailog1.add(openBtn);
 dailog1.setBounds(20, 20, 200, 200);
 dailog1.setModalityType(dialog1Modality);
 dailog1.setVisible(true);
 }
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

166

A JDialog is used frequently in a Swing application, for example, to display an error message to users. It is time
consuming to create a custom JDialog every time you need a dialog window. The Swing designers realized this. They
gave us the JOptionPane class that makes our life easier when using the frequently used JDialog types. I will discuss
JOptionPane in the next section.

Standard Dialogs
The JOptionPane class makes it easy for you to create and show standard modal dialogs. It contains many static
methods to create different kinds of JDialog, fill them with details, and show them as a modal JDialog. When a
JDialog is closed, the method returns a value to indicate the user’s action on the JDialog. Note that the JOptionPane
class is inherited from the JComponent class. The JOptionPane class is not related to the JDialog class in any way,
except that it is used as a factory to create standard dialogs. It also contains methods that return a JDialog object,
which you can customize and use in your application. You can display the following four kinds of standard dialogs:

Message Dialog•	

Confirmation Dialog•	

Input Dialog•	

Option Dialog•	

The static methods of the JOptionPane class to display a standard JDialog has name like showXxxDialog(). The
Xxx can be replaced with Message, Confirm, Input, and Option. You also have another version of the same method as
showInternalXxxDialog(), which uses a JInternalFrame to display the dialog details instead of a JDialog. All four
types of standard dialogs accept different types of arguments and return different types of values. Table 2-17 shows the
list of arguments of these methods and their descriptions.

Table 2-17.  List of Standard Argument Types and Their Values Used With JOptionPane

Argument Name Argument Type Description

parentComponent Component The JDialog is centered on the specified parent component. The top-level
container that contains this component becomes the owner of the
displayed JDialog. If it is null, the JDialog is centered on the screen.

message Object Typically, it is a string that needs to be displayed as a message in the
dialog box. However, you can pass any object. If you pass a Swing
component, it is simply displayed in the dialog box. If you pass an Icon,
it is displayed in a JLabel. If you pass any other object, the toString()
method is called on that object and the returned string is displayed. You
can also pass an array of objects (typically an array of strings) and each
element of the array will be displayed vertically one after another.

messageType Int It denotes the type of the message you want to display. Depending on
the type of message, a suitable icon is displayed in the dialog box. The
available message types are defined by the following constants in the
JOptionPane class:

ERROR_MESSAGE,
INFORMATION_MESSAGE,WARNING_MESSAGE,
QUESTION_MESSAGE,PLAIN_MESSAGE.

The PLAIN_MESSAGE type does not display any icon. Another argument,
which is of the Icon type, lets you specify your own icon to be displayed
in the dialog box.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

167

Argument Name Argument Type Description

optionType Int It denotes the buttons that need to be displayed in the dialog box. The
following is the list of constants defined in the JOptionPane class that
you can use to get the standard buttons in a dialog box:

DEFAULT_OPTION, YES_NO_OPTION,
YES_NO_CANCEL_OPTION, OK_CANCEL_OPTION

The DEFAULT_OPTION displays an OK button. Other options display a
set of buttons, as their names suggest. You can customize the number
of buttons and their text by supplying the options arguments to the
showOptionDialog() method.

options Object[] This argument lets you customize the set of buttons that are displayed in
a dialog box. If you pass a Component object in the array, that component
is displayed in the row of buttons. If you specify an Icon object, the icon is
displayed in a JButton. For any other types of objects that you pass, a
JButton is displayed and the text of the JButton is the string returned
from the toString() method of that object. Typically, you pass an array
of strings as this argument to display a custom set of buttons in the
dialog box.

title String It is the text that is displayed as the title of the dialog box. A default title is
supplied if you do not pass this argument.

initialValue Object This argument is used in input dialogs. It denotes the initial value that is
displayed in the input dialog.

Table 2-17.  (continued)

Typically, when the user closes a dialog box, you want to check what button the user used to close the dialog box.
There is an exception, though, when the dialog box has only one button, say an OK button. In such a case, either the
method you use to display the dialog box does not return a value, or you simply ignore the returned value. Here is the
list of constants that you can use to check for equality with the retuned value:

•	 OK_OPTION

•	 YES_OPTION

•	 NO_OPTION

•	 CANCEL_OPTION

•	 CLOSED_OPTION

The CLOSED_OPTION indicates that the user closed the dialog box using the close (X) menu button on the title bar
or using other means such as by pressing Ctrl + F4 keys on the keyboard on the Windows platform. Other constants
denote the normal button usage on the dialog box; for example, OK_OPTION denotes that the user clicked the OK
button on the dialog box to close it.

JOptionPane also lets you customize the labels for the buttons that it shows. You are not limited to the
standard set of buttons either. That is, you can display any number of buttons in the dialog box. In such cases, the
JOptionPane’s method used to display the dialog box will return 0 for the first button click, 1 for the second button
click, 2 for the third button click, and so on. You will see an example of this type, when the showOptionDialog()
method of the JOptionPane class is discussed shortly.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

168

You can show a message dialog by using one of the showMessageDialog() static methods of the JOptionPane
class. A message dialog always shows some kind of information to the user with one button, usually the OK button.
The method does not return any value because all the user can do is click the OK button to close the dialog box.
Signatures of the showMessageDialog() methods are as shown:

•	 showMessageDialog(Component parentComponent, Object message)

•	 showMessageDialog(Component parentComponent, Object message, String title,
int messageType)

•	 showMessageDialog(Component parentComponent, Object message, String title,
int messageType, Icon icon)

The following snippet of code shows a message dialog, as shown in Figure 2-31.
 
// Show an information message dialog
JOptionPane.showMessageDialog(null, "JOptionPane is cool!", "FYI",
 JOptionPane.INFORMATION_MESSAGE); 

Figure 2-31.  An information message dialog using the JOptionPane .showMessageDialog() method

You can display a confirmation dialog box by using the showConfirmDialog() method. When you use this
method, you are interested in knowing the user’s response, which is indicated by the return value of the method. The
following snippet of code displays a confirmation dialog, as shown in Figure 2-32, and handles the user’s response:
 
// Show a confirmation dialog box
int response = JOptionPane.showConfirmDialog(null,
 "Are you sure you want to save the changes?",
 "Confirm Save Changes",
 JOptionPane.YES_NO_CANCEL_OPTION,
 JOptionPane.QUESTION_MESSAGE);
 
 switch (response) {
 case JOptionPane.YES_OPTION:
 System.out.println("You chose yes");
 break;
 case JOptionPane.NO_OPTION:
 System.out.println("You chose no");
 break;
 case JOptionPane.CANCEL_OPTION:
 System.out.println("You chose cancel");
 break;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

169

 case JOptionPane.CLOSED_OPTION:
 System.out.println("You closed the dialog box.");
 break;
 default:
 System.out.println("I do not know what you did ");
 }
 

Figure 2-32.  A confirmation dialog box using the JOptionPane.showConfirmDialog() method

You can ask the user for an input using the showInputDialog() method. You can specify an initial value for the
user’s input. If you want the user to select a value from a list, you can pass an object array that contains the list. The UI
will display the list in a suitable component such as a JComboBox or a JList. The following snippet of code displays an
input dialog, as shown in Figure 2-33.

 
// Ask the user to enter some text about JOptionPane
String response = JOptionPane.showInputDialog("Please enter your opinion about input dialog.");
 
if (response == null) {
 System.out.println("You have cancelled the input dialog.");
}
else {
 System.out.println("You entered: " + response);
}
 

Figure 2-33.  A simple input dialog

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

170

The version of the showInputDialog() method that you have used returns a String, which is the text the user
enters in the input field. If the user cancels the input dialog, it returns null.

The following snippet of code displays an input dialog with a list of choices. The user may select one of the
choices from the list. The dialog box is shown in Figure 2-34 This version of the showInputDialog() method returns
an Object, not a String.
 
// Show an input dialog that shows the user three options: "Cool!", "Sucks", "Don't know".
// The default selected value is "Don't know".
JComponent parentComponent = null;
Object message = "Please select your opinion about JOptionPane";
String title = "JOptionPane Input Dialog";
int messageType = JOptionPane.INFORMATION_MESSAGE;
Icon icon = null;
Object[] selectionValues = new String[] {"Cool!", "Sucks", "Don't know"};
Object initialSelectionValue = selectionValues[2];
Object response = JOptionPane.showInputDialog(parentComponent, message,
title, messageType, icon, selectionValues, initialSelectionValue);
  
if (response == null) {
 System.out.println("You have cancelled the input dialog.");
}
else {
 System.out.println("You entered: " + response);
}
 

Figure 2-34.  An input dialog with a list of choices

Finally, you can customize the option buttons using the showOptionDialog() method that is declared as follows:
 
int showOptionDialog(Component parentComponent, Object message,
String title, int optionType, int messageType, Icon icon, Object[] options,
Object initialValue)
 

The options parameter specifies the user’s options. If you pass components in the options parameter, the
components are displayed as options. If you pass any other objects such as strings, a button is displayed for each
element in the options array.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

171

The following snippet of code shows how to display custom buttons in a dialog box. It asks the user his opinion
about a JOptionPane. The resulting dialog box is shown in Figure 2-35.
 
JComponent parentComponent = null;
Object message = "How is JOptionPane?";
String title = "JOptionPane Option Dialog";
int messageType = JOptionPane.INFORMATION_MESSAGE;
Icon icon = null;
Object[] options = new String[] {"Cool!", "Sucks", "Don't know" };
Object initialOption = options[2];
int response = JOptionPane.showOptionDialog(null, message, title,
 JOptionPane.DEFAULT_OPTION,
 JOptionPane.QUESTION_MESSAGE,
 icon, options, initialOption);
switch(response) {
 case 0:
 case 1:
 case 2:
 System.out.println("You selected:" + options[response]);
 break;
 case JOptionPane.CLOSED_OPTION:
 System.out.println("You closed the dialog box.");
 break;
 default:
 System.out.println("I don't know what you did.");
}
 

Figure 2-35.  Customizing the Option buttons using the JOptionPane.showOptionDialog() method

By default, all dialog boxes, which you have displayed in this section, are not resizable. You want to customize
them so that they are resizable. You can customize the dialog box displayed by the static methods of the JOptionPane
by using the createDialog() methods of JOptionPane and performing a sequence of steps.

	 1.	 Create an object of JOptionPane.

	 2.	 Optionally, customize the properties of JOptionPane using its methods.

	 3.	 Use createDialog() method to get the reference of the dialog box.

	 4.	 Customize the dialog box.

	 5.	 Display the dialog box using its setVisible(true) method.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

172

The following snippet of code displays the custom resizable dialog box shown in Figure 2-36.
 
// Show a custom resizable dialog box using
JOptionPane pane = new JOptionPane("JOptionPane is cool!", JOptionPane.INFORMATION_MESSAGE);
String dialogTitle = "Resizable Custom Dialog Using JOptionPane";
JDialog dialog = pane.createDialog(dialogTitle);
dialog.setResizable(true);
dialog.setVisible(true); 

Figure 2-36.  A custom dialog box using the JOptionPane.createDialog() method

File and Color Choosers
Swing has two built-in JDialogs that makes it easier to select a file/directory from the file system or a color graphically.
A JFileChooser lets the user select a file from the file system. It provides non-static methods, unlike those you have
seen in a JOptionPane, which create and show a file chooser component in a JDialog.

A JColorChooser is a Swing component that lets you choose a color graphically in a JDialog. It provides a static
method, as you have seen in a JOptionPane, which creates and shows a color chooser component in a JDialog.

Tip■■   The JFileChooser class provides non-static methods to create and show JDialogs, whereas the
JColorChooser class provides a static method for the same purpose. The implication of having a static or a non-static
method is that a non-static method lets you customize the JDialog whereas a static method lets you customize the
JDialog only through its arguments. It means that you can customize the JDialog being displayed by a JFileChooser,
but not the JColorChooser. Another difference is that you must create an object of the JFileChooser class to use it.
It is preferred to reuse the same JFileChooser object because it remembers the last visited directory, so when you
reuse it, it navigates you to the last visited directory by default.

JFileChooser
Here are the steps you need to perform to display a file chooser in a JDialog.

	 1.	 Create an object of the JFileChooser class.

	 2.	 Optionally, customize its properties using its methods. You can customize properties such
as should it let the user choose only files, only directories, or both; should it let the user
select multiple files; apply a file filter criteria to show files based on your criteria, etc.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

173

	 3.	 Use one of the three non-static methods, showOpenDialog(), showSaveDialog(), or
showDialog(), to display it in a JDialog.

	 4.	 Check for the return value, which is an int, from the method call in the previous step. If it
returns JFileChooser.APPROVE_OPTION, the user made a selection. The other two possible
return values are JFileChooser.CANCEL_OPTION and JFileChooser.ERROR_OPTION, which
indicate that either user cancelled the dialog box or some kind of error occurred. To get the
selected file, call the getSelectedFile() or getSelectedFiles() method, which returns a
File object and a File array, respectively. Note that a JFileChooser component only lets
you select a file from a file system. It does not save or read a file. You can do whatever you
like with the file reference returned from it.

	 5.	 You can reuse the file chooser object. It remembers the last visited folder.

By default, a JFileChooser starts displaying files from the user’s default directory. You can specify the initial
directory in its constructor or using its setCurrentDirectory() method.
 
// Create a file chooser with the default initial directory
JFileChooser fileChooser = new JFileChooser();
 
// Create a file chooser, with an initial directory of C:\myjava.
// You can specify a directory path according to your operating system syntax.
// C:\myjava is using Windows file path syntax.
JFileChooser fileChooser = new JFileChooser("C:\\myjava");
 

By default, a file chooser only allows files to be selected. Let’s customize it so you can select a file or a directory.
It should also allow multiple selections. The following snippet of code does this customization:
 
// Let the user select files and directories
fileChooser.setFileSelectionMode(JFileChooser.FILES_AND_DIRECTORIES);
 
// Aloow multiple selection
fileChooser.setMultiSelectionEnabled(true);
 

Let’s display an open file chooser dialog box and check if the user selected a file. If the user makes a selection,
print the file path on the standard output. The following snippet of code displays the dialog box shown in Figure 2-37.
 
// Display an open file chooser
int returnValue = fileChooser.showOpenDialog(null);
 
if(returnValue == JFileChooser.APPROVE_OPTION) {
 File selectedFile = fileChooser.getSelectedFile();
 System.out.println("You selected: " + selectedFile);
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

174

All the three methods of the JFileChooser class accept a Component argument. It is used as the owner for the
JDialog it displays and for centering the dialog box. Pass null as its parent component to center it on the screen.

Note that, in Figure 2-37, there are two buttons. One is labeled Open and another Cancel. The Open button
is called the approve button. The title of the dialog box is Open. When you use the showSaveDialog() method of
JFileChooser, you get the same dialog box, except that the text Open for the button and the title are replaced with the
text Save. You can customize the dialog box title and the approve button text before displaying it as follows:
 
// Change the dialog's title
fileChooser.setDialogTitle("Open a picture file");
 
// Change the button's text
fileChooser.setApproveButtonText("Open File");
 

The third method, showDialog(), lets you specify the approve button text and dialog title as shown:
 
// Open a file chooser with Attach as its title and approve button's text
int returnValue = fileChooser.showDialog(null, "Attach");
if (returnValue == JFileChooser.APPROVE_OPTION) {
 File selectedFile = fileChooser.getSelectedFile();
 System.out.println("Attaching file: " + selectedFile);
}
 

Note that setting the approve button’s text does not change the return value of the method. You still need to check
if it returned a JFileChooser.APPROVE_OPTION so you can proceed with getting the selected file.

Figure 2-37.  An open file chooser dialog box using a JFileChooser

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

175

Tip■■   The default text for the approve button, when you use the showOpenDialog() and showSaveDialog() methods,
depends on the look-and-feel. On Windows, they are Open and Save, respectively.

A JFileChooser lets you set a file filter. A file filter is a set of criteria that it applies before it shows a file in the
dialog box. A file filter is an object of the FileFilter class, which is in the javax.swing.filechooser package. The
FileFilter class is an abstract class. To create a file filter, you need to create a class inheriting it from the FileFilter
class and override the accept() and getDescription() methods. The accept() method is called with a file reference
when the file chooser wants to show a file. If the accept() method returns true, the file is shown. Otherwise, the file is
not shown. The following snippet of code creates and sets a file filter to only show either a directory or a file with a doc
extension. Keep in mind that user needs to navigate to the file system and you must show the directories.
 
// Create a file filter to show only a directory or .doc files
FileFilter filter = new FileFilter() {
 @Override
 public boolean accept(File f) {
 if (f.isDirectory()) {
 return true;
 }
 
 String fileName = f.getName().toLowerCase();
 if (fileName.endsWith(".doc")) {
 return true;
 }
 
 return false; // Reject any other files
 }
 
 @Override
 public String getDescription() {
 return "Word Document";
 }
};
 
// Set the file filter
fileChooser.setFileFilter(filter);
 
int returnValue = fileChooser.showDialog(null, "Attach");
if (returnValue == JFileChooser.APPROVE_OPTION) {
 // Process the file
}
 

Setting a file filter based on a file extension is so common that there is a direct support for it through the
FileNameExtensionFilter class that inherits from the FileFilter class. Its constructor accepts the file extensions
and its description. The second argument is a variable length argument. Note that a file extension is the part of the file
name after the last dot. If a file name does not have a dot in its name, it does not have an extension. After you create
an object of the FileNameExtensionFilter class, you need to call the addChoosableFileFilter() method of the file
chooser to set a filter. The following snippet of code adds “java” and “jav” as file name extension filters.
 
FileNameExtensionFilter extFilter =
 new FileNameExtensionFilter("Java Source File", "java", "jav");
fileChooser.addChoosableFileFilter(extFilter);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

176

You can add multiple file name extension filters to a file chooser. They are shown in a file chooser drop-down list
as file types. If you want to restrict users to selecting only the files that you have set as the file filter, you need to remove
the one file filter that lets the user select any files, which is called “accept all files filter”. It is displayed as
“All Files(*.*)” as file type on Windows.
 
// Disable "accept all files filter"
fileChooser.setAcceptAllFileFilterUsed(false);
 

You can check if “accept all files filter” is enabled by using the isAcceptAllFileFilterUsed() method,
which returns true if a file chooser is using this filter. You can get the reference of “accept all files filter” using the
getAcceptAllFileFilter() method. The following snippet of code sets the “accept all files filter” if it is not already
set.
 
if (!fileChooser.isAcceptAllFileFilterUsed()) {
 fileChooser.setAcceptAllFileFilterUsed(true);
} 

Tip■■   A JFileChooser has many features that you can use in your application. Sometimes you may want to get
the associated icon for a file type. You can get the associated icon for a file type by using the file chooser’s
getIcon(java.io.File file) method, which returns an Icon object. Note that you can display an Icon object
using a JLabel component. It also provides a mechanism to listen for selection changes and other actions performed
by the user when it is shown in the dialog box.

JColorChooser
A JColorChooser lets you select a color using a dialog box. It is customizable. You can add more panels to the default
color chooser. You can also embed the color chooser component in a container. It provides ways to listen to the user
actions on the color chooser component. Its common use is very simple. You need to call its showDialog() static
method, which will return a java.awt.Color object that represents the color that the user selects. Otherwise,
it returns null. I will cover the Color class later in this chapter.

The showDialog() method’s signature is as follows. It lets you specify the parent component and the title for the
dialog box. You can also set the initial color, which will be displayed in the dialog box.

•	 static Color showDialog(Component parentComponent, String title, Color
initialColor)

The following snippet of code lets the user select a color using a JColorChooser and prints a message on the
standard output:
 
// Display a color chooser dialog
Color color = JColorChooser.showDialog(null, "Select a color", null);
 
// Check if user selected a color
if (color == null) {
 System.out.println("You cancelled or closed the color chooser");
}
else {
 System.out.println("You selected color: " + color);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

177

JWindow
Like a JFrame, a JWindow is another top-level container. It is as an undecorated JFrame. It does not have features like
a title bar, windows menu, etc. It is not a very commonly used top-level container. You can use it as a splash window
that displays once when the application is launched and then automatically disappears after a few seconds. Please
refer to the API documentation of the java.awt.SplashScreen class for more details on how to display a splash screen
in a Java application. Like a JFrame, you can add Swing components to a JWindow.

Working with Colors
An object of the java.awt.Color class represents a color. You can create a Color object using its RGB (Red, Green,
and Blue) components. RGB values can be specified as float or int values. As a float value, each component in RGB
ranges from 0.0 to 1.0. As an int value, each component in RGB ranges from 0 to 255. There is another component
called alpha that is associated with a color. The alpha value of a color defines the transparency of the color. As a float,
its value ranges from 0.0 to 1.0, and as an int, its value ranges from 0 to 255. The value of 0.0 or 0 for alpha indicates
that a color is fully transparent, whereas the value of 1.0 or 255 indicates that it is fully opaque.

You can create a Color object as follows. Note the value of the RGB components in the constructor Color(int
red, int green, int blue).
 
// Create red color
Color red = new Color(255, 0, 0);
 
// Create green color
Color green = new Color(0, 255, 0);
 
// Create blue color
Color blue = new Color(0, 0, 255);
 
// Create white color
Color white = new Color(255, 255, 255);
 
// Create black color
Color black = new Color(0, 0, 0);
 

The alpha component is implicitly set to 1.0 or 255, which means that if you do not specify the alpha component
for a color, the color is opaque. The following snippet of code creates a red transparent color by specifying the alpha
component as 0:
 
// Create a transparent red color. The last argument of 0 is the alpha value.
Color transparentRed = new Color(255, 0, 0, 0);
 

The Color class defines many color constants for commonly used colors. For example, you do not need to create
a red color. Rather, you can use Color.red or Color.RED constant. The Color.red constant exists since Java 1.0. The
uppercase version of the same constants Color.RED has been added in Java 1.4 to follow the naming convention for
constants (a constant’s name should be in uppercase). Similarly, you have Color.black, Color.BLACK, Color.green,
Color.GREEN, Color.darkGray, Color.DARK_GRAY, etc. If you have a Color object, you can obtain its red, green, blue,
and alpha components using its getRed(), getGreen(), getBlue(), and getAlpha() methods, respectively.

There is another way to specify a color, and that is by using HSB (Hue, Saturation, and Brightness) components.
The Color class has two methods called RGBtoHSB() and HSBtoRGB() that let you convert from the RBG model to the
HSB model and vice versa.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

178

A Color object is used with the setBackground(Color c) and setForeground(Color c) methods of the Swing
components. All Swing components inherit these methods from JComponent. These method calls may be ignored
by a look-and-feel. The background color is the color with which a component is painted, whereas the foreground
color is usually the color of the text displayed in the component. There is one important thing, called transparency, to
consider when you set the background color of a component. If a component is transparent, it does not paint pixels
in its bounds. Rather, it lets the container’s pixels show through. In order for the background color to take effect, you
must make the component opaque by calling its setOpaque(true) method. The following code creates a JLabel and
sets its background color to red and foreground (or text) color to black:
 
JLabel testLabel = new JLabel("Color Test");
 
// First make the JLabel opaque. By default, a JLabel is transparent.
testLabel.setOpaque(true);
testLabel.setBackground(Color.RED);
testLabel.setForeground(Color.BLACK);

 Tip■■   The object of the Color class is immutable. It does not have any method that will let you set the color
component values after you create a Color object. This makes it possible to share Color objects.

Working with Borders
Swing gives you the ability to draw a border around the edges of components. There are different kinds of borders:

Bevel Border•	

Soft Bevel Border•	

Etched Border•	

Line Border•	

Titled Border•	

Matte Border•	

Empty Border•	

Compound Border•	

Figure 2-38 shows how the different kinds of borders appear using the Windows look-and-feel.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

179

Although you can set a border for any Swing component, the implementation of the Swing component may
ignore it. It is very common to use a titled border with a JPanel to give a grouping effect. Many GUI tools have a group
box GUI component to group the related components. Java does not have a group box component. If you need a
grouping effect, you need to place your related components inside a JPanel, and set a titled border to it. Figure 2-39
shows a JPanel that has five address related fields, with a titled border with a title set to Address.

Figure 2-38.  Different types of borders

Figure 2-39.  Creating a group box effect using a JPanel with a titled border

Setting a border for a Swing component is easy: you need to create a border object and use the
setBorder(Border b) method of the component. Border is an interface that is implemented by all classes whose
instances represent a specific kind of border. There is one class for each kind of border. You can also create a custom
border by inheriting a class from the AbstractBorder class. All border-related classes and the Border interface are in
the javax.swing.border package.

Border objects are designed to be shared. Although you can create a border object using the border class
directly, it is advisable to use the javax.swing.BorderFactory class to create a border so that the border objects
can be shared. The BorderFactory class takes care of caching and sharing of border objects. You just need to use its
createXxxBorder() method to create a specific type of border, where Xxx is a border type. Table 2-18 lists the border
classes for all border types.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

180

The following snippet of code creates different kinds of borders:
 
// Create bevel borders
Border bevelRaisedBorder = BorderFactory.createBevelBorder(BevelBorder.RAISED);
Border bevelLoweredBorder = BorderFactory.createBevelBorder(BevelBorder.LOWERED);
 
// Create soft bevel borders
Border softBevelRaisedBorder = BorderFactory.createSoftBevelBorder(BevelBorder.RAISED);
Border softBevelLoweredBorder = BorderFactory.createSoftBevelBorder(BevelBorder.LOWERED);
 
// Create etched borders
Border etchedRaisedBorder = BorderFactory.createEtchedBorder(EtchedBorder.RAISED);
Border etchedLoweredBorder = BorderFactory.createEtchedBorder(EtchedBorder.LOWERED);
 
// Create line borders
Border lineBorder = BorderFactory.createLineBorder(Color.BLACK);
Border lineThickerBorder = BorderFactory.createLineBorder(Color.BLACK, 3);
 
// Create titled borders
Border titledBorderAtTop =
 BorderFactory.createTitledBorder(etchedLoweredBorder,
 "Title text goes here",
 TitledBorder.CENTER,
 TitledBorder.TOP);
Border titledBorderAtBottom =
 BorderFactory.createTitledBorder(etchedLoweredBorder,
 "Title text goes here",
 TitledBorder.CENTER,
 TitledBorder.BOTTOM);
 
// Create a matte border
Border matteBorder = BorderFactory.createMatteBorder(1,3,5,7, Color.BLUE);
 
// Create an empty border
Border emptyBorder = BorderFactory.createEmptyBorder();
 

Table 2-18.  Available Border Classes

Type of Border Border Class

Bevel Border BevelBorder

Soft Bevel Border SoftBevelBorder

Etched Border EtchedBorder

Line Border LineBorder

Titled Border TitledBorder

Matte Border MatteBorder

Empty Border EmptyBorder

Compound Border CompoundBorder

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

181

// Create compound borders
Border twoCompoundBorder = BorderFactory.createCompoundBorder(etchedRaisedBorder,
lineBorder);
Border threeCompoundBorder =
 BorderFactory.createCompoundBorder(titledBorderAtTop, twoCompoundBorder);
 

You can set a border to a component as follows:
 
myComponent.setBorder(matteBorder);
 

A bevel border gives you a three-dimensional effect by using shadows and highlights to the inside and
outside edges of the border. You can have a raised or lowered effect. A soft bevel border is a bevel border with
softer corners.

An etched border gives you a carved effect. It comes in two flavors: raised and lowered.
A line border simply draws a line. You can specify the color and thickness of the line.
You can supply a title to any border type. The title of a border is text that can be displayed at a specified

position in the border, such as in the middle of the top/bottom border or above top/below bottom. You can
also specify the justification of the title text, its color, and font. Note that you must have another border object
to use a title border. A title border just lets you supply the title text to another kind of border.

A matte border lets you decorate a border with an icon. If you do not have an icon, you can specify the
border’s thickness.

An empty border, as the name implies, doesn’t display anything. Can you guess why you need an empty
border? A border adds spaces around a component. If you just want to add spaces around a component, you
can use an empty border. An empty border lets you specify the spacing to be used for all four sides separately.

A compound border is a composite border that lets you combine any two kinds of borders into one border
object. There are no restrictions on the number of levels of nesting. You can combine three borders by creating
a compound border with the first two borders, and then combine the compound border with the third border
to create the final compound border.

Working with Fonts
A font is used to represent text visually such as on a computer screen, printed paper, or any other device. An
object of the java.awt.Font class represents a font in a Java program. You have been using the Font object
in almost every program without referring to the Font class directly. Java took care of displaying the text
in a specific font for you. For example, you have been using buttons, which display a label. To display the
button’s label, Java has been using a default font. You can specify a font for any text that you display in a Java
program using a Font object. Using a Font object in code is easy: create an object of the Font class, and use the
setFont(Font f) method of the component. Let’s define the term “font” and related terms before using the
Font class.

In the computer’s memory, everything is a number represented in terms of 0s and 1s. So a character is
also represented by 0s and 1s in memory. How do you represent a character on a computer screen or a piece of
paper? A character is presented on a screen or a paper using a symbol. The shape of the symbol that represents
a character is called a glyph. You can think of a glyph as a graphic representation (or image) of a character. The
relationship between a character and a glyph is not always one-to-one.

A specific design of glyphs for a set of characters is called a typeface. Note that a typeface is the design
aspect of the visual representation of characters (glyphs) and it does not refer to a specific implementation
of glyphs. Table 2-19 lists some of the categories of typefaces with their descriptions and sample texts. The
sample text in the table may not show in the same typeface if this is viewed on a device (e.g. a Kindle) that does
not support all typefaces. Some names of typefaces are Times, Courier, Helvetica, Garamond, etc.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

182

Apart from its shape design, the visual representation of a character has two other components: a style and a size.
The style refers to its characteristics such as bold (blackness or lightness), italic, and regular (or roman). The size is
measured in 10, 12, 14, etc. The height of a character is specified in points, where a point is 1/72 of an inch. The width
of a character is specified in a pitch. A pitch determines how many characters can be shown in an inch. A typical value
for a pitch ranges from 8 to 14.

Now let’s define the term “font.” A font is a set of glyphs in a specific typeface, style, and size to represent a set
of characters. You can have fonts that use the same typeface, but they are of different styles and sizes. This collection
of such fonts (the same typeface but different styles and sizes) is known as a font family. For example, Times is a font
family name that contains fonts like Times Roman, Times Bold, Times Bold Italic, etc.

A font may be categorized as a bitmapped font or a vector font (also known as an object-oriented font or outline
font) depending on the way it is stored and rendered. In a bitmapped font, each character is stored in a bitmap form
(representing every bit) of a particular style and size. When you need to render a character on a screen or print it on
a piece of paper, you need to locate the bitmap of the character of that style and size and render it. In a vector font,
a geometrical algorithm defines each character’s shape without referring to a specific size. When a character needs
to be rendered in a vector font in a specific size, the algorithm is applied for that size. This is the reason a vector font
is also known as a scalable font. TrueType and PostScript are the font technologies that use vector fonts. All Java
implementation are required to support a TrueType font.

The number of fonts available on a computer may vary considerably. Your operating system may install some
fonts, you may add some fonts, or you may delete some fonts. Since Java was designed to work on various operating
systems, it lets you use a logical font family name of a font and it will figure out the best physical (the real one) font
for you. This way, you do not have to worry about the actual font names, and if they will be available on all computers
on which your programs will be executed. Java defines five logical font family names and maps them to physical font
family names depending on the computer it is running on. The five logical font family names are as follows:

Serif•	

SansSerif•	

Dialog•	

DialogInput•	

Monospace•	

Table 2-19.  Examples of Typefaces

Typeface Description Sample Text

Serif Glyphs have finishing strokes at the end of the line. Note the difference
in how the ending stroke of each character ends for serif and sans serif.
On Windows, it is called Roman. Example: Times New Roman.

The quick brown fox...

Sans serif Unlike serif, glyphs have no ending strokes. Compare the text sample
for this category and for serif. You will find that glyphs for sans serif are
made up of plain lines. On Windows, it is called Swiss. Example: Arial.

The quick brown fox...

Cursive It looks like handwritten text where subsequent glyphs in a word are
often joined. It is typically used in calligraphy. On Windows, it is called
Script. Example: Mistral AV.

The quick brown fox...

Fantasy It is a decorative typeface. On Windows, it is called Decorative.
Example: Impact.

The quick brown fox...

Monospace All glyphs that represent all characters are of the same width. On
Windows, it is called Modern. Typically, it is used in computer programs.

The quick brown fox...

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

183

You need to specify three elements when you create a font object: the logical family name, the style, and the size.
The following snippet of code creates some Font objects:
 
// Create serif, plain font of size 10
Font f1 = new Font(Font.SERIF, Font.PLAIN, 10);
 
// Create SansSerif, bold font of size 10
Font f2 = new Font(Font.SANS_SERIF, Font.BOLD, 10);
 
// Create dialog, bold font of size 15
Font f3 = new Font(Font.DIALOG, Font.BOLD, 15);
 
// Create dialog input, bold and italic font of size 15
Font f4 = new Font(Font.DIALOG_INPUT, Font.BOLD|Font.ITALIC, 15);
 

The Font class contains constants for the logical font family names. If you want to apply more than one style to
a font object, such as bold as well as italic, you need to use a bit mask union of Font.BOLD and Font.ITALIC as in
Font.BOLD|Font.ITALIC.

To set the font for a Swing component, you need to use its setFont() method of the component, like so:
 
JButton closeButton = new JButton("Close");
closeButton.setFont(f4);
 

The Font class has several methods that let you work with a font object. For example, you can use the
getFamily(), getStyle(), and getSize() methods to get the family name, style and size of a font object, respectively.

Validating Components
A component can be valid or invalid. The phrase “component” in this section also includes containers, unless
specified otherwise. You can use the isValid() method to check if a component is valid. The method returns true
if the component is valid. Otherwise, it returns false. A component is said to be valid if its size and position have
been computed and its children are also valid. If a component is invalid, it means that its size and position need to be
recomputed and it needs to be laid out again in its container.

When you add/remove a component to/from a container, the container is marked invalid. Before the container is
made visible for the first time, the container is validated. The validation process of a container computes the size and
location of all children in its containment hierarchy. Consider the following the snippet of code to show a frame:
 
MyFrame frame = new MyFrame("Test Frame");
frame.pack();
frame.setVisible(true);
 

The pack() method does two things:

First, it computes the size and position of all children of the frame (that is, validates the frame).•	

Second, it resizes the frame, so its children just fit into it.•	

The setVisible() method in the code is smart enough not to validate the frame again because the pack()
method has already validated the frame. If you do not call the pack() method, before calling the setVisible()
method, the setVisible() method will validate the frame.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

184

So, a component is valid before it is displayed for the first time. How does a component become invalid?
Adding/removing a component to/from a container makes a container invalid. Setting some properties such as the size
of a component will also make that component invalid. When a component becomes invalid, its invalidity is propagated
up the containment hierarchy. You can also invalidate a component or container by calling its invalidate() method.
Note that calling the invalidate() method will make the component invalid, and it propagates the invalidity up the
containment hierarchy. The reason it needs to mark all containers up the containment hierarchy as invalid is that if a
component is laid out again (by recomputing its size/location), it will also affect the other component’s size/position. So,
if a component is invalidated, all components and containers up the containment hierarchy are also marked invalid.

What can you do to validate a component again? You need to use the validate() method of the component or
the container. Unlike the invalidate() method, the validate() method propagates down the containment hierarchy
and it validates all child components/containers of the component on which it is called. You may need to call the
repaint() method after you call the validate() method so that the screen is repainted.

You can also revalidate a component. Note that the revalidation option is only available for a JComponent and
it is not applicable to a container. You can revalidate a component by calling its revalidate() method. It schedules
a validate() method call on the parent container. Which parent container of the component is validated? Is it the
immediate parent, grandparent, or great-grandparent, etc.? A container can be a validation root. You can test if a
container is a validation root by using the isValidateRoot() method. If this method returns true, the container is
a validation root. When you call the revalidate() method on a component, it keeps going up in the containment
hierarchy until it find a container that is a validation root. JRootPane and JScrollPane are validation roots. The call to
the validate() method for the validation root is scheduled on the event dispatching thread. If there are multiple calls
to revalidate(), they are all combined and a component is revalidated only once.

Painting Components and Drawing Shapes
The painting mechanism is central to any GUI. Do you know what it takes to show you a JFrame on the screen? It is
a very complex process. It is done through painting an image, which you see on the screen as a JFrame. When you
press a JButton inside a JFrame, the region occupied by that JButton is repainted using different shades and colors to
give you an impression that the button has been pressed. Most of the time, Swing paints the appropriate region of the
screen at the appropriate time. You may encounter situations where it is necessary for you to repaint a region of your
Swing component. For example, when you add or remove a component from a Swing container after it is visible, you
need to validate and repaint the container so that the modified area on the screen is repainted properly.

There is a manager for everything in Swing! You also have a repaint manager that is an instance of the
RepaintManager class. It provides the painting service. You can request to repaint a component by calling the
repaint() method on the component. The repaint() method is overloaded. You can also repaint only a part of the
component instead of the entire component. The calls to the repaint() method are queued to the event dispatching
thread. The repaint manager will repaint the component only once if many requests for repainting are pending when
it starts repainting the component.

How would you perform custom painting on a Swing component? Swing lets you perform custom
painting on a component using a callback mechanism. The JComponent class has a callback method called
paintComponent(Graphics g). The Graphics class is in the java.awt package. It is used to draw on a component.
Note that drawing can be realized on various devices such as on a computer screen, an off-screen image, or a printer.
To implement a custom painting for a component, override its paintComponent() method. The paintComponent()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

185

method in the JComponent class takes care of painting the background of the component. To make sure that the
component’s background is painted properly, you need to invoke the JComponent’s paintComponent() method from
the paintComponent() method of your component. Typical code for the paintComponent() method is as follows:
 
import java.awt.Graphics;
 
public class YourCustomSwingComponent extends ASwingComponent {
 @Override
 public void paintComponent(Graphics g) {
 // Paint the background
 super.paintComponent(g);
 
 // Your custom painting code goes here
 }
}
 

The paintComponent() method of a component is called whenever repainting is needed or when the program
calls the repaint() method.

When you call the repaint() method on a Swing component, the repaint manager may paint more than just
the component that you requested to paint. There are many things to consider before a component is painted. When
painting a component, the background of a component and its overlapping area with other components are the two
most important things to consider. If a component is not opaque, the component’s container must be painted before
this component is painted. This is necessary so you do not see through the component’s garbage background. If a
component overlaps another component, at least the overlapping area must be painted with a consideration that
shows the proper color and shape for the overlapping area. The painting of the overlapping area will include painting
of all overlapped components.

A Graphics object has many methods that you can use to draw geometrical shapes and strings. You can draw
different shapes such as rectangles, ovals, arcs, etc. A Graphics object has many drawing properties, such as a font, a
color, a coordinate system (called translation), a clip (defines the area for drawing), a component on which to draw,
etc. A Graphics object in the paintComponent() method argument has many properties already set. For example,

The font is set to the font of the component.•	

The color is set to the foreground color of the component.•	

The translation is set to the upper-left corner of the component. The upper-left corner of the •	
component represents the origin, that is, coordinate (0, 0).

The clip is set to the area of the component that needs to be painted.•	

You can change these properties of the Graphics object inside the paintComponent() method. However, you
need to be careful if you want to change the translation or clip. You should create a copy of the Graphics object and
use the copy for drawing instead of changing the original Graphics object’s properties. You can use the create()
method of the Graphics class to create a copy of a Graphics object. Make sure that you call the dispose() method
on the copy of the Graphics object to release the system resources that it used up. A typical logic to copy and use the
Graphics objects is as shown:
 
public void paintComponent(Graphics g) {
 // Create a copy of the passed in Graphics object
 Graphics gCopy = g.create();
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

186

 // Change the properties of gCopy and use it for drawing here
 
 // Dispose the copy of the Graphics object
 gCopy.dispose();
}
 

There are few things to note when you use a Graphics object for a component that is passed in to the
paintComponent() method.

It uses a Cartesian coordinate system with its origin at the upper-left corner of the component.•	

The x-axis extends to the right and y-axis extends down, as shown in Figure •	 2-40.

(0,0) (600, 0)

A 600 X 200 JPanel

(0, 200) (600, 200)

X-axis

Y-axis

Figure 2-40.  The coordinate system used by a graphics object inside the paintComponent() method of a component.
It shows the coordinates of four corners of a 600 X 200 JPanel

When you draw using a •	 Graphics object, your drawings may extend outside the boundary of
the component. However, any drawing that is outside of the clip area set in a Graphics object
by the repaint manager will be ignored. In fact, the repaint manager will use only the clip
area of the painted component to show it on the screen after the paintComponent() method
returns. This is the reason why you should not change the clip property of the Graphics object
inside a paintComponent() method. The clip property is set to the area of the component that
needs to be painted.

The translation property of a •	 Graphics object is used to set up a coordinate system for
drawing. The Graphics object that is passed in to the paintComponent() method already
has the translation property set up, so the upper-left corner of the component represents the
origin (0,0) of the coordinate system. If you change the translation property of the Graphics
object inside the paintComponent() method, you better know what you are trying to do.

The drawing is performed using the current color and font of the •	 Graphics object.

There are numerous methods in the Graphics class to let you draw different kinds of shapes, such as a round
rectangle, an arc, a polygon, etc. Table 2-20 lists a few of those methods. For the complete list of the methods, please
refer to the API documentation of the Graphics class.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

187

Typically, you use a JPanel as a canvas for custom drawing. Listing 2-12 has the code that shows a class called
DrawingCanvas, which is inherited from the JPanel class. In its constructor, it sets its preferred size. It overrides
the paintComponent() method to draw some custom shapes and strings. Figure 2-41 shows the screen when a
DrawingCanvas class is run.

Listing 2-12.  A Custom JPanel Used as a Canvas for Drawing

// DrawingCanvas.java
package com.jdojo.swing;
 
import javax.swing.JPanel;
import java.awt.Graphics;
import java.awt.Dimension;
import java.awt.Graphics2D;
import java.awt.BasicStroke;
import javax.swing.JFrame;
 
public class DrawingCanvas extends JPanel {
 public DrawingCanvas() {
 this.setPreferredSize(new Dimension(600, 75));
 }
 
 @Override
 public void paintComponent(Graphics g) {
 // Paint its background
 super.paintComponent(g);
  
 // Draw a line
 g.drawLine(10, 10, 50, 50);
  

Table 2-20.  Methods of the Graphics Class

Method Description

void drawLine(int x1, int y1,
int x2, int y2)

Draws a straight line from point (x1, y1) to point (x2, y2).

void drawRect(int x, int y,
int width, int height)

Draws a rectangle whose upper-left corner’s coordinate is (x, y). The
specified width and height are the width and height of the rectangle,
respectively.

void fillRect(int x, int y,
int width, int height)

It is the same as drawRect() method with two differences. It fills the area
with the current color of the Graphics object. Its width and height are
one pixel less than the specified width and height.

void drawOval(int x, int y,
int width, int height)

Draws an oval that fits into a rectangle defined with point (x, y) as its
upper left corner and the specified width and height. If you specify the
same width and height, it will draw a circle.

void fillOval(int x, int y,
int width, int height)

It draws an oval and fills the area with the current color.

void drawstring(String str,
int x, int y)

It draws the specified string str. The baseline of the leftmost character is
at point (x, y).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

188

 // Draw a rectangle
 g.drawRect(80, 10, 40, 20);
 
 // Draw an oval
 g.drawOval(140, 10, 40, 20);
 
 // Fill an oval
 g.fillOval(200, 10, 40, 20);
 
 // Draw a circle
 g.drawOval(250, 10, 40, 40);
 
 // Draw an arc
 g.drawArc(300, 10, 50, 50, 60, 120);
 
 // Draw a string
 g.drawString("Hello Swing!", 350, 30);
 
 // Draw a thicker rectangle using Graphics2D
 Graphics2D g2d = (Graphics2D)g;
 g2d.setStroke(new BasicStroke(4));
 g2d.drawRect(450, 10, 50, 50);
 }
 
 public static void main(String[] args) {
 JFrame frame =
 new JFrame("Sample Drawings Using a Graphics Object");
 frame.getContentPane().add(new DrawingCanvas());
 frame.pack();
 frame.setVisible(true);
 }
}
 

Figure 2-41.  Drawing shapes on a custom JPanel using a graphics object

At runtime, you get an instance of Graphics2D class passed in to the paintComponent() method. The Graphics2D
class inherits from the Graphics class and it has a very powerful API to draw geometrical shapes. For example, when
you use a Graphics object, it draws shapes with a stroke (line width) of 1.0. If you use Graphics2D, you can use a

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

189

custom stroke. The following snippet of code in the paintComponent() method of your DrawingCanvas class uses a
stroke of 4.0 to draw a rectangle. To use the Graphics2D API inside the paintComponent() method, cast the passed in
Graphics object to Graphics2D as shown:
 
Graphics2D g2d = (Graphics2D)g;
g2d.setStroke(new BasicStroke(4));
g2d.drawRect(450, 10, 50, 50);
 

The JComponent class has a getGraphics() method that returns a Graphics object for the component. If you
need to draw on a component outside its paintComponent() method, you can use this method to get the Graphics
object for the component to use it for drawing.

Immediate Painting
Swing takes care of repainting the regions of components that are visible at appropriate time. You can also request
a repainting of a component by calling its repaint() method. The call to the repaint() method is asynchronous.
That is, it is not carried out immediately. It is queued on the event dispatching thread and it will be carried out
sometime in future. Sometimes a situation may warrant immediate painting. Use the paintImmediately() method
of the component to carry out the painting immediately. The method is overloaded. The two versions are
declared as follows:

•	 void paintImmediately(int x, int y, int w, int h)

•	 void paintImmediately(Rectangle r)

Tip■■   It is more efficient to call the repaint() method if you need to paint more frequently or in a loop. Multiple calls
to the repaint() method are coalesced into one call, whereas the calls to the paintImmediately() method are carried
out individually.

Double Buffering
Different techniques can be used to paint a component on the screen. If a component is painted directly on the
screen, it is known as an onscreen painting. If a component is painted using an off-screen buffer and that buffer is
copied on to the screen in one step, it is called double buffering. There is another technique to paint a component
that is called page flipping. Page flipping uses the computer’s graphics card’s capability to be used a video pointer,
which is the address of the video contents, to display a video. Similar to double buffering, you draw the content to
be displayed on an off-screen buffer. When you are done drawing onto an off-screen buffer, you change the video
pointer of the graphics card to this off-screen buffer, and the graphics card will take care of displaying the images on
the screen. Unlike double buffering, page flipping does not copy the contents from an off-screen buffer to an onscreen
buffer. Rather, it redirects the graphics card to the new buffer. Double buffering and page flipping provide a better user
experience by avoiding screen flickering when components are being painted.

Swing uses double buffering to paint all components. It lets you disable double buffering for a component. There
is a catch when you disable the double buffering. Sometimes, disabling double buffering may not really do anything.
If a container is being painted, Swing checks if the double buffering is enabled for the container. If the double buffering
is enabled for the container, all its child components will use double buffering. Therefore, it does not help too simply

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

190

disable double buffering on a component. If you want to disable double buffering, you may just want to disable it
at the top-most level of the containment hierarchy that is the JRootPane. The repaint manager also lets you enable/
disable double buffering globally for an application, as shown:
 
RepaintManager currentManager = RepaintManager.currentManager(component);
currentManager.setDoubleBufferingEnabled(false);
 

When double buffering is enabled, Swing will create an off-screen image and pass the graphics of that off-screen
image to the paintComponent() method of the JComponent. When you draw anything using a Graphics object in the
paintComponent() method, essentially you are drawing on the off-screen image. Finally, Swing will copy the off-
screen image to the screen.

Double buffering also lets you create an off-screen image in your program. You can draw to that off-screen
image and use that image wherever you want it in your application. You need to use the createImage() method of a
component to create an off-screen image. The following code creates a custom JPanel called OffScreenImagePanel.
In its paintComponent() method, it creates an off-screen image, fills the image with the color red, and uses that image
to draw on to the JPanel. This is a trivial example. However, it demonstrates the steps that you need to perform to use
an off-screen image in an application.
 
public class OffScreenImagePanel extends JPanel{
 public OffScreenImagePanel() {
 this.setPreferredSize(new Dimension(200, 200));
 }
 
 public void paintComponent(Graphics g) {
 super.paintComponent(g);
  
 // Create an offscreen image and fill a rectangle with red
 int w = this.getWidth();
 int h = this.getHeight();
 Image offScreenImage = this.createImage(w, h);
 Graphics imageGraphics = offScreenImage.getGraphics();
 imageGraphics.setColor(Color.RED);
 imageGraphics.fillRect(0, 0, w, h);
 
 // Draw the offscreen image on the JPanel
 g.drawImage(offScreenImage, 0, 0, null);
 }
}

JFrame Revisited
You have been using JFrames in this chapter in almost every program you have written. In this section, I will discuss
some important events and properties of the JFrame.

You can set the state of a JFrame programmatically using the setExtendedState(int state) method. The state is
specified using constants defined in the java.awt.Frame class from which the JFrame class is inherited.
 
// Display the JFrame maximized
frame.setExtendedState(JFrame.MAXIMIZED_BOTH);
 

Usually, you would change the state of a JFrame using the state buttons or state menu provided in its title bar’s
corners. Table 2-21 lists the constants that can be used to change the state of a JFrame.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

191

Sometimes you may want to use a default button in your JFrame or JDialog. A default button is an instance of the
JButton class, which is activated when the user presses a key on the keyboard. A key that activates the default button
is defined by the look-and-feel. Typically, the key to activate the default button is the Enter key. You can set a default
button for a JRootPane, which is present in a JFrame, JDialog, JWindow, JApplet, and JInternalFrame. Usually,
you set the OK button as a default button on a JDialog. If a JRootPane has a default button set, pressing the Enter
key will activate that button, and if you have an action-performed event handler added to that button, your code
will be executed.
 
// Create a JButton
JButton okButton = new JButton("OK");
 
// Add an event handler to okButton here...
 
// Set okButton as the default button
frame.getRootPane().setDefaultButton(okButton);
 

You can add a window listener to a JFrame or any other top-level Swing window that will notify you of the seven
kinds of changes in a window’s state. The following snippet of code adds a window listener to a JFrame named frame.
If you are interested in listening for only few window state changes, you can use the WindowAdapter class instead of
the WindowListener interface. The WindowAdapter class provides an empty implementation of all the seven methods
in the WindowListener interface.
 
frame.addWindowListener(new WindowListener() {
 @Override
 public void windowOpened(WindowEvent e) {
 System.out.println("JFrame has been made visible first time");
 }
 
 @Override
 public void windowClosing(WindowEvent e) {
 System.out.println("JFrame is closing.");
 }
 
 @Override
 public void windowClosed(WindowEvent e) {
 System.out.println("JFrame is closed.");
 }
 

Table 2-21.  The List of Constants That Define States of a JFrame

JFrame State Constants Description

NORMAL JFrame is displayed in normal size.

ICONIFIED JFrame is displayed in minimized state.

MAXIMIZED_HORIZ JFrame is displayed maximized horizontally, but in normal size vertically.

MAXIMIZED_VERT JFrame is displayed maximized vertically, but in normal size horizontally.

MAXIMIZED_BOTH JFrame is displayed maximized horizontally as well as vertically.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

192

 @Override
 public void windowIconified(WindowEvent e) {
 System.out.println("JFrame is minimized.");
 }
 
 @Override
 public void windowDeiconified(WindowEvent e) {
 System.out.println("JFrame is restored.");
 }
 
 @Override
 public void windowActivated(WindowEvent e) {
 System.out.println("JFrame is activated.");
 }
 
 @Override
 public void windowDeactivated(WindowEvent e) {
 System.out.println("JFrame is deactivated.");
 }
});
 
// Use the WindowAdapter class to intercept only the window closing event
frame.addWindowListener(new WindowAdapter() {
 @Override
 public void windowClosing(WindowEvent e) {
 System.out.println("JFrame is closing.");
 }
});
 

When you are done with a window (JFrame, JDialog or JWindow), you should call its dispose() method, which
will make it invisible and release the resources to the operating system. Note that the dispose() method does not
destroy or garbage collect the window object. As long as you hold the window’s reference and it is reachable, Java
would not destroy your window and you can again display it calling its setVisible(true) method.

Summary
Swing provides a huge set of components to develop GUI applications. Most of the Swing components are lightweight
components that redraw using Java code without having using native peers. The JComponent class is the base class
for all Swing components. A component that can contain other components is called a container. Swing provides two
types of containers: top-level containers and non top-level containers. A top-level container is not contained within
another container and it can be displayed directly on the desktop. An instance of the JFrame class represents a
top-level container.

An object of the JButton class represents a button. A button is also known as a push button or a command button.
The user presses or clicks a JButton to perform an action. A button can display text, an icon, or both.

An object of the JPanel class represents a container that can contain other components. Typically, a JPanel is is
used to group related components together. A JPanel is a non top-level container.

An object of the JLabel class represents a label component that displays text, an icon, or both. Typically, the text
in a JLabel is describes another component.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

193

Swing provides several text components that let you display and edit different types of text. An object of the
JTextField class is used to work with one line plain text. An object of the JTextArea is used to work with multiline
plain text. An object of the JPasswordField is used to work with one line text in which the actual characters in the text
are replaced with echo characters. An object of the JFormattedTextField lets you work with one line plain text where
you can specify the format for the text such as displaying a date in mm/dd/yyy format. An object of the JEditorPane
lets you work with styled text such as in HTML and RTF formats. An object of the JTextPane lets you work with styled
documents with embedded images and components. You can add an input verifier to a text component to validate the
text entered by the user. An instance of the InputVerifier class acts as an input verifier. You can set an input verifier
for a text component using the setInputVerifier() method of the JComponent class.

Swing provides many components that let you select one or more items from a list of items. Such components
are objects of the JToggleButton, JCheckBox, JRadioButton, JComboBox, and JList classes. A ToggleButton can be
in depressed or undepressed state and it represents a yes/no choice. A JCheckBox can be used to represent a yes/no
choice. Sometimes a group of CheckBoxes is used to let the user select zero or more options. A group of JRadioButton
is used to present users a set of mutually exclusive options. A ComboBox is used to provide the user with a mutualy
exclusive set of choices where the user, optionally, can enter a new choice value. A ComboBox takes less space on the
screen as compared to other choices, providing components because it folds all its choices and the user has to open
the list of choices before he can make a selection. A JList lets the user select zero or multiple choices from a list of
choices. All choices in a JList are visible to the user.

A JSpinner component combines the benefits of a JFormattedTextField and an editable JComboBox. It lets you
set a list of choices as you set in a JComboBox, and at the same time, you can also apply a format to the displayed value.
It shows only one value at a time from the list of choices. It lets you enter a new value.

A JScrollBar is used to provide scrolling capability for viewing a component that is bigger in size than the
available space. A JScrollBar can be placed vertically or horizontally. The scolling is performed by dragging a
knob along the track of the JScrollBar. You need to write the logic to provide the scolling capability using the
JScrollBar component.

A ScollPane is a container that is used to wrap a component that is bigger in size than the available space. The
ScrollPane provides automatic scolling capabilities in horizontal and vertical directions.

A JProgressBar is used to display the progress of a task. It can have a horizontal or vertical orientation. It has
three values associated with it: the current value, the minimum value, and the maximum value. If the progress of a
task is not known, the JProgressBar is said to be in indeterminate state.

A JSlider lets you select a value graphically from a set of values between two integers by sliding a knob
along a track.

A JSeparator is a handy component when you want to add a separator between two components or two groups
of components. Typically, a JSeparator is used in a menu to separate groups of related menu items. Typically,
it appears as a horizontal or vertical solid line.

A menu component is used to provide a list of actions to the user in a compact form. An object the JMenuBar class
represents a menu bar. An object of the JMenu, JMenuItem, JCheckBoxMenuItem, and JRadioButtonMenuItem class
represent a menu item.

A toolbar is a group of small buttons that provides commonly used actions to the user in a JFrame. Typically, you
provide a toolbar along with a menu.

A JTable is used to display and edit data in the tabular form. It presents the data in the form of rows and columns.
Each column has a column header. Rows and columns are references using indexes starting at 0.

A JTree is used to display hierarchical data in a tree-like structure. Each item in a JTree is called a node. A node
that has children is called a branch node. A node that has no children is called a leaf node. A branch node is called the
parent node for its child nodes. The first node in the JTree that has no parent is called the root node.

A JTabbedPane component acts like a container for other Swing components, arranging them in a tabbed fashion.
It can display tabs using a title, an icon, or both. Contents of only one tab are visible at a time. A JTabbedPane lets you
share the space between multiple tabs.

A JSplitPane is a splitter that can be used to split space between two components. The splitter bar can be
displayed horizontally or vertically. When the available space is less than the space needed to display the two
components, the user can move the splitter bar up/down or left/right so one component gets more space than the
other. If there is enough space, both components can be shown fully.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Swing Components

194

A JDialog is a top-level Swing container. It is used as a temporary top-level container (or as a pop-up window)
to aid in the working with the main window to get the user’s attention or user’s input. The JOptionPane class provides
many static methods to show different types of dialogs to the user using an instance of the JDialog class.

A JFileChooser lets the user select a file/directory from the file system using a built-in dialog. A JColorChooser
is lets the user choose a color graphically using a built-in dialog.

A JWindow is an undecoarated top-level container. It is not a commonly used top-level container, except as a
splash window that is displayed once when the application is launched and automatically disappears after a
few seconds.

Swing lets you set the background and foreground colors of a component. An object of the java.awt.Color
class represents a color. You can specify the color using the red, green, blue, and alpha components or using the hue,
saturation, and brightness components. The Color class is immutable. It provides several constants that represent
commonly used colors, for example, Color.RED and Color.BLUE constants represent the red and blue colors.

In Swing, you can draw a border around components. A border is represented by an instance of the Border
interface. Different types of borders exist: bevel border, soft bevel border, etched border, line border, titled border,
matte border, empty border, and compound border. The BorderFactory class provides factory methods to create all
types of borders.

Swing lets you set the font for text displayed in components. An object of the java.awt.Font class represents a
font in a Java program.

A component can be valid or invalid. The isValid() method of the component returns true if the component
is invalid. An invalid component indicates that its position and size need to be recomputed and it needs to be laid
out again. A component is valid before it is made visible the first time. Adding/removing components and changing
properties that may change component’s position, size, or both may make the component invalid. Calling the
validate() method makes the component valid again.

Swing lets you draw many types of shapes (circles, rectangles, lines, polygons, etc.) using the Graphics object.
Typically, you use a JPanel as a canvas for drawing shapes.

Swing provides two ways to repaint components: asynchronously and synchronously. Calling the repaint()
method paints the componet asynchronously, Calling the paintImmediately() method paints the component
immediately.

Painting of components can be perfomed onscreen or off-screen. The onscreen painting may result in flickers.
The painting can be performed off-screen using a buffer and the buffer can be copied in one shot onscreen to avoid
flickering. Such an off-screen painting is called double buffering and it provides better user experience by providing
smooth painting on the screen.

www.it-ebooks.info

http://www.it-ebooks.info/

195

Chapter 3

Advanced Swing

In this chapter, you will learn

How to use labels in Swing components in HTML format•	

About the threading model in Swing and how the event dispatch thread works•	

How to execute a long-running task off the event dispatch thread•	

How to use pluggable look and feel in Swing•	

How to use skinnable look and feel using Synth•	

How to perform drag and drop between Swing components•	

How to create a multiple document interface (MDI) application•	

How to use the •	 Toolkit class to make a beep and know the screen details

How to decorate Swing components using JLayer•	

How to create translucent windows•	

How to create shaped windows•	

Using HTML in Swing Components
Usually, you display the text on a component using one font and color, and in one line. If you want to display text on a
component using different fonts and color or in multiple lines, you can do so using an HTML string as the text for the
component. Swing components have built-in support for displaying HTML text as their labels. You can use an
HTML-formatted string as a label for a JButton, JMenuItem, JLabel, JToolTip, JTabbedPane, JTree, etc. using an
HTML string, which should start and end with the <html> and </html> tags, respectively. For example, if you want to
display the text “Close Window” on a JButton as its label (Close in boldface font and Window in plain font), you can
do so as follows:
 
JButton b1 = new JButton("<html>Close Window</html>");
 

Most of the time, placing an HTML string inside <html> and </html> tags will work fine. However, if a line in
an HTML string starts with a slash (/), it may not display correctly. For example, <html>/Close Window</html> will
display nothing and <html>/Close Window Problem</html> will display only Problem. To avoid this kind of
problem, you can always place your HTML-formatted string inside the <body> HTML tag as in <html><body>/Close
Window</body></html> and it will display as /Close Window. How can you display a string that contains HTML tags as

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

196

a label? Swing lets you disable the default HTML interpretation using the html.disable component’s client property.
The following snippet of code disables the HTML property for a JButton and uses HTML tags in its label:
 
JButton b3 = new JButton();
b3.putClientProperty("html.disable", Boolean.TRUE);
b3.setText("<html><body>HTML is disabled</body></html>");
 

You must set the text for the component after you disable the html.disable client property. The following
snippet of code shows some examples of using HTML formatted string as text for a JButton. The buttons are shown in
Figure 3-1 when the code was run on Windows XP.
 
JButton b1 = new JButton();
JButton b2 = new JButton();
JButton b3 = new JButton();
b1.setText("<html><body>Close Window</body></html>");
b2.setText("<html><body>Line 1
Line 2</body></html>");
 
// Disable HTML text display for b3
b3.putClientProperty("html.disable", Boolean.TRUE);
b3.setText("<html><body>HTML is disabled</body></html>"); 

Figure 3-1.  Using an HTML-formatted string as text for Swing components’ labels

Threading Model in Swing
Most classes in Swing are not thread safe. They were designed to work with only one thread. It does not mean that you
cannot use multiple threads in a Swing application. All it means is that you must understand Swing’s thread model to
write a thread-safe Swing application.

Swing’s thread safety rule is very simple. It states that once a Swing component has been realized, you must
modify or access that component’s state on the event dispatch thread. A component is considered to be realized if
it has been painted or it is ready to be painted. A top-level container in Swing is realized when you call its pack(),
setVisible(true), or show() method for the first time. When a top-level container is realized, all of its children are
also realized.

What is the event dispatch thread? It is a thread automatically created by the JVM when it detects that it is
working with a Swing application. The JVM uses this thread to execute the Swing component’s event handlers.
Suppose you have a JButton with an action listener. When you click the JButton, the code in the actionPerformed()
method (which is the JButton’s clicked event handler code) is executed by the event dispatch thread. You
used a JButton in examples in previous chapters. You never paid attention to the thread that executed the
actionPerformed() method of its action listener. Typically, you need not concern yourself about the threading issue
in simple Swing applications like the ones you have been using. Now that you know an event dispatch thread exists
in every Swing application, let’s unravel the mystery of how it works. You will be using two classes throughout this

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

197

discussion in this section. They are helper classes used in a Swing application to deal with its threading model.
The classes are

•	 SwingUtilities

•	 SwingWorker

How do you know that your code is executing in the event dispatch thread? It is very simple to know whether
your code is executing in the event dispatch thread or not, by using the static method isEventDispatchThread() of
the SwingUtilities class. It returns true if your code is executing in the event dispatch thread. Otherwise, it returns
false. For debugging purposes, you can write the following statement anywhere in your Java code. If it prints true, it
means your code was executed in the event dispatch thread.
 
System.out.println(SwingUtilities.isEventDispatchThread());
 

Consider the program shown in Listing 3-1.

Listing 3-1.  A Bad Swing Application

// BadSwingApp.java
package com.jdojo.swing;
 
import javax.swing.SwingUtilities;
import java.awt.BorderLayout;
import java.awt.Container;
import javax.swing.JFrame;
import javax.swing.JComboBox;
 
public class BadSwingApp extends JFrame {
 JComboBox<String> combo = new JComboBox<>();
  
 public BadSwingApp(String title) {
 super(title);
 initFrame();
 }
 
 private void initFrame() {
 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container contentPane = this.getContentPane();
 contentPane.add(combo, BorderLayout.NORTH);
 
 // Add an ItemEvent listener to the combobox
 combo.addItemListener(e ->
 System.out.println("isEventDispatchThread(): " +
 SwingUtilities.isEventDispatchThread()));
 
 combo.addItem("First");
 combo.addItem("Second");
 combo.addItem("Third");
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

198

 public static void main(String[] args) {
 BadSwingApp badSwingApp = new BadSwingApp("A bad Swing App");
 badSwingApp.pack();
 badSwingApp.setVisible(true);
 }
}
 

The program is a simple Swing application, but it contains a potential bug. It displays a JComboBox in a JFrame.
In the initFrame() method, it adds an item listener to the JComboBox. Then it adds three items to the JComboBox. The
item listener simply prints a message showing whether it is executed by the event dispatch thread. As usual, you run
the application by creating the frame, packing it, and making it visible. The application prints the following text on the
standard output:
 
isEventDispatchThread(): false
 

Did I not say that it is the job of the event dispatch thread to execute events of all Swing components? Let’s not
lose hope, so select another item from the combo box such as "Second" or "Third" when the application is running.
You would see the following message printed on the standard output:
 
isEventDispatchThread(): true
 

The first time, the item listener event for the combo box is executed on a non-event-dispatch thread, and from
the second time onward, it is executed on the event dispatch thread. To know why this is happening in this small
application, you need to know when the event dispatch thread is created, and when it starts handling events. The
event dispatch thread waits for the events that are generated from the user’s interaction with the GUI. Once the GUI
is created, all the users’ interactions with it are automatically handled by the event dispatch thread. In this case, the
“main” thread created the BadSwingApp frame in the main() method. The item event was triggered when the code
added the first item to the JComboBox even before GUI was created and shown. Since the “main” thread ran the
creation of the BadSwingApp frame, the main thread also handled the item event. There are two problems with this
program:

It is not a good practice to add event handlers to a component first, and then do something •	
that fires that event handler before the GUI is shown. Make it a rule of thumb to add all event
handlers to a component at the end of the GUI-building code. You can fix this problem by just
moving the addItem() calls before the addItemListener() call in the initFrame() method.

You need to run all GUI code—from GUI building to making it visible—on the event dispatch •	
thread. This is also a simple thing to do. You need to use the invokeLater(Runnable r)
static method of the SwingUtilities class. The method takes a Runnable as its argument. It
schedules the Runnable to run on the event dispatch thread. Here is the correct way to start
a Swing application. You have not followed this way of starting your Swing application in any
examples in the previous chapters. You always created and showed your frames in the main()
method, which used the main thread to build and show the GUI. I did not follow the correct
way of building and showing the GUI, because my focus was to demonstrate the topic that
I was discussing. This is the right time for you to learn how to start your Swing applications
correctly.

// Correct way to start a Swing application
SwingUtilities.invokeLater(() -> {
 BadSwingApp badSwingApp = new BadSwingApp(“A bad Swing App”);
 badSwingApp.pack();
 badSwingApp.setVisible(true);
});

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

199

If you replace the existing code inside the main(String[] args) method of Listing 3-1 with
this code, the application will print isEventDispatchThread(): true when it is run, because
invokeLater() method of the SwingUtilities class will schedule the GUI-building code to
run on the event dispatch thread. Once you start your application this way, it guarantees that
all event handlers for your application will be executed on the event dispatch thread. The
call to the SwingUtilities.invokeLater(Runnable r) method will start the event dispatch
thread if it is not already started.

The SwingUtilities.invokeLater() method call returns immediately and the run() method of its Runnable
argument is executed asynchronously. That is, its run() method’s execution is queued to the event dispatch thread for
later execution.

There is another important static method called invokeAndWait(Runnable r) in the SwingUtilities class.
This method is executed synchronously and it does not return until the run() method of its Runnable argument
has finished executing on the event dispatch thread. This method may throw an InterruptedException or
InvocationTargetException.

Tip■■  T he SwingUtilities.invokeAndWait(Runnable r) method should not be called from the event dispatch
thread because the thread that executes this method call waits until the run() method has finished. If you execute this
method call from the event dispatch thread, it will be queued to the event dispatch thread and the same thread (the event
dispatch thread) will be waiting. Executing this method call in the event dispatch thread generates a runtime error.

Sometimes you may want to use the invokeAndWait() method of the SwingUtilities class to start a Swing
application instead of the invokeLater() method. For example, the following snippet of code starts a Swing
application and prints a message on console that the application has started:
 
try {
 SwingUtilities.invokeAndWait(() -> {
 JFrame frame = new JFrame();
 frame.pack();
 frame.setVisible(true);
 });
 
 System.out.println("Swing application is running...");
 
 // You can perform some non-swing related work here
}
catch (Exception e) {
 e.printStackTrace();
}
 

Sometimes you may have to perform a time-consuming task in a Swing application. If you perform the time-
consuming task on the event dispatch thread, your application will become unresponsive, which users are not
going to like. You should perform long tasks in a separate thread other than the event dispatch thread. Note that it
is likely that when the task is finished, you will want to update the GUI or display a result in a component, which is
part of your GUI. This will require you to access Swing components from a non-event dispatch thread. You can use
the invokeLater() and invokeAndWait() methods of the SwingUtilities class to update the Swing component
from your separate thread. However, Swing provides a SwingWorker class, which makes it easy to work with multiple

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

200

threads in a Swing application. It takes care of starting a new thread and executing some pieces of code in a new
background thread and some pieces of code in the event dispatch thread. You need to know which methods in the
SwingWorker class will be executed in the new thread and the event dispatch thread.

The SwingWorker<T,V> class is declared abstract. The type parameter T is the result type produced by this
class and the type parameter V is the intermediate result type. You must create your custom class inheriting from it.
It contains few methods of interest where you would write your custom code:

•	 doInBackground(): This is the method where you write the code to perform a time-consuming
task. It is executed in a separate worker thread. If you want to publish intermediate results, you
can call the publish() method of the SwingWorker class from this method, which in turn will
call its process() method. Note that you are not supposed to access any Swing component in
this method, as this method does not execute on the event dispatch thread.

•	 process(): This method is called as a result of a publish() method call. This method executes
on the event dispatch thread, and you are free to access any Swing component in this method.
A call to the process() method may be a result of many calls to the publish() method. Here
are the method signatures for these two methods:

protected final void publish(V... chunks)
protected void process(List<V> chunks)

The •	 publish() method accepts a varargs argument. The process() method passes all
arguments to the publish() method packed in a List. If more than one call to the publish()
method are combined together, the process() method gets all those arguments in its List
argument.

•	 done(): When the doInBackground() method finishes, normally or abnormally, the done()
method is called on the event dispatch thread. You can access Swing components in this
method. By default, this method does nothing.

•	 execute(): You call this method when you want to start executing your task in a separate
thread. This method schedules the SwingWorker object to be executed on a worker thread.

•	 get(): This method returns the result of the task as returned from the doInBackground()
method. If the SwingWorker object has not finished executing the doInBackground() method,
the call to this method blocks until the result is ready. It is not suggested to call this method on
the event dispatch thread, as it will block all events until it returns.

•	 cancel(boolean mayInterruptIfRunning): This method cancels the task if it is still running.
If the task has not been started, the task never runs. Make sure to check for the cancelled state
and for any interruptions in the doInBackground() method and exit the method accordingly.
Otherwise, your process will not respond to the cancel() call.

•	 isCancelled(): It returns true if the process has been cancelled. Otherwise, it returns false.

•	 isDone(): It returns true if the task has completed. A task may complete normally or by
throwing an exception or by cancellation. Otherwise, it returns false.

Tip■■  I t is important to note that a SwingWorker object is of a use-and-throw kind. That is, you cannot use it more than
once. Calling its execute() method more than once does not do anything.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

201

Let’s start discussing a simple use of the SwingWorker class. Suppose you want to perform a time-consuming
task that computes a number, say an integer, in a separate thread. You want to retrieve the result of the processing
by polling. That is, you will periodically check if the process has finished processing. Here is a simple use of the
SwingWorker class:
 
// First, create a custom SwingWorker class, say MySwingWorker.
public class MySwingWorker extends SwingWorker<Integer, Integer> {
 @Override
 protected Integer doInBackground() throws Exception {
 int result = -1;
 // Write code to perform the task
  
 return result;
 }
}
 
// Create an object of your SwingWorker class and execute the task
MySwingWorker mySW = new MySwingWorker();
mySW.execute();
 
// Keep checking for the result periodically. You need to wrap the get()
// call inside a try-catch to handle any exceptions.
if (mySW.isDone()) {
 int result = mySW.get();
}
 

Listing 3-2 and Listing 3-3 demonstrate how the SwingWorker class works. When you run the code in Listing 3-3,
it displays a frame, shown in Figure 3-2. You can start the task by clicking the Start button. You can cancel the task
anytime by clicking the Cancel button. The intermediate result is displayed in a JLabel. The SwingWorkerProcessor
class is simple. It accepts a SwingWorkerFrame, a counter, and a time interval. It computes the sum of 1 to the number
to the counter. It sleeps for the specified time interval after it adds a number to the result. It displays the intermediate
iteration and the final result using the process() and done() methods.

Listing 3-2.  A Custom SwingWorker Class

// SwingWorkerProcessor.java
package com.jdojo.swing;
 
import javax.swing.SwingWorker;
import java.util.List;
 
public class SwingWorkerProcessor extends SwingWorker<Integer, Integer> {
 private final SwingWorkerFrame frame;
 private int iteration;
 private int intervalInMillis;
 
 public SwingWorkerProcessor(SwingWorkerFrame frame, int iteration,
 int intervalInMillis) {
 this.frame = frame;
 this.iteration = iteration;
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

202

 if (this.iteration <= 0) {
 this.iteration = 10;
 }
 
 this.intervalInMillis = intervalInMillis;
 
 if (this.intervalInMillis <= 0) {
 this.intervalInMillis = 1000;
 }
 }
 
 @Override
 protected Integer doInBackground() throws Exception {
 int sum = 0;
 for (int counter = 1; counter <= iteration; counter++) {
 sum = sum + counter;
 
 // Publish the result to the GUI
 this.publish(counter);
 
 // Make sure it listens to an interruption and exits this
 // method by throwing an appropriate exception
 if (Thread.interrupted()) {
 throw new InterruptedException();
 }
 
 // Make sure the loop exits, when the task is cancelled
 if (this.isCancelled()) {
 break;
 }
 
 Thread.sleep(intervalInMillis);
 }
 
 return sum;
 }
 
 @Override
 protected void process(List<Integer> data) {
 for (int counter : data) {
 frame.updateStatus(counter, iteration);
 }
 }
 
 @Override
 public void done() {
 frame.doneProcessing();
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

203

Listing 3-3.  A Swing Application to Demonstrate How a SwingWorker Class Works

// SwingWorkerFrame.java
package com.jdojo.swing;
 
import javax.swing.JFrame;
import java.awt.Container;
import javax.swing.JLabel;
import javax.swing.JButton;
import java.awt.BorderLayout;
import java.util.concurrent.ExecutionException;
 
public class SwingWorkerFrame extends JFrame {
 String startMessage = "Please click the start button...";
 JLabel statusLabel = new JLabel(startMessage);
 JButton startButton = new JButton("Start");
 JButton cancelButton = new JButton("Cancel");
 SwingWorkerProcessor processor;
 
 public SwingWorkerFrame(String title) {
 super(title);
 initFrame();
 }
 
 private void initFrame() {
 this.setDefaultCloseOperation(EXIT_ON_CLOSE);
 Container contentPane = this.getContentPane();
 cancelButton.setEnabled(false);
 
 contentPane.add(statusLabel, BorderLayout.NORTH);
 contentPane.add(startButton, BorderLayout.WEST);
 contentPane.add(cancelButton, BorderLayout.EAST);
 
 startButton.addActionListener(e -> startProcessing());
 cancelButton.addActionListener(e -> cancelProcessing());
 }
 
 public void setButtonStatus(boolean canStart) {
 if (canStart) {
 startButton.setEnabled(true);
 cancelButton.setEnabled(false);
 }
 else {
 startButton.setEnabled(false);
 cancelButton.setEnabled(true);
 }
 }
 
 public void startProcessing() {
 setButtonStatus(false);
 processor = new SwingWorkerProcessor(this, 10, 1000);
 processor.execute();
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

204

 public void cancelProcessing() {
 // Cancel the processing
 processor.cancel(true);
 setButtonStatus(true);
 }
 
 public void updateStatus(int counter, int total) {
 String msg = "Processing " + counter + " of " + total;
 statusLabel.setText(msg);
 }
 
 public void doneProcessing() {
 if (processor.isCancelled()) {
 statusLabel.setText("Process cancelled ...");
 }
 else {
 try {
 // Get the result of processing
 int sum = processor.get();
 statusLabel.setText("Process completed. Sum is " + sum);
 }
 catch (InterruptedException | ExecutionException e) {
 e.printStackTrace();
 }
 }
 setButtonStatus(true);
 }
 
 public static void main(String[] args) {
 SwingUtilities.invokeLater(() -> {
 SwingWorkerFrame frame
 = new SwingWorkerFrame("SwingWorker Frame");
 frame.pack();
 frame.setVisible(true);
 });
 }
}

Figure 3-2.  Demonstrating the use of the SwingWorker class

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

205

Pluggable Look and Feel
Swing supports pluggable look and feel (L&F). You can change the L&F for a Swing application using the
setLookAndFeel(String lafClassName) static method of the UIManager class. The method throws checked
exceptions that will require you to handle exceptions. The lafClassName argument of the method is the fully qualified
name of the class providing the L&F. The following snippet of code sets the L&F for Windows using a generic catch
block to handle all types of exceptions:
 
String windowsLAF= "com.sun.java.swing.plaf.windows.WindowsLookAndFeel";
try {
 UIManager.setLookAndFeel(windowsLAF);
}
catch (Exception e) {
 e.printStackTrace();
}
 

Typically, you set the L&F before you start a Swing application. If you change the L&F after the GUI has
been shown, you will need to update the GUI using the updateComponentTreeUI(container) method of the
SwingUtilities class. Changing the L&F may force changes in the component’s size and you may want to pack your
container using the pack() method again. You may end up writing the following three lines of code when you change
the L&F of an application after the GUI has been shown:
 
// Assuming that frame is a reference to a JFrame object and windowsLAF contains the
// L&F class name for Windows L&F, set the new L&F, update the GUI, and pack the frame.
UIManager.setLookAndFeel(windowsLAF);
SwingUtilities.updateComponentTreeUI(frame);
frame.pack();
 

The following two methods of the UIManager class return the class names for the default Java L&F and the
system L&F:

•	 String getCrossPlatformLookAndFeelClassName()

•	 String getSystemLookAndFeelClassName()

The system L&F gives the Swing components an L&F of the native system and it will differ from system to
system. If you want your application to look the same as the native L&F, you can achieve that by using the following
piece of code without worrying about the actual name of the class representing the system L&F on the machine your
application will run:
 
// Set the system (or native) L&F
UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
 

It is not always necessary to set the L&F for your Swing application. Swing will use the default Java L&F on its
own when you start the application. If the call to UIManager.setLookAndFeel() fails, your Swing application will use
the current L&F, which is the default Java L&F if it is the first time you tried to set a new L&F. Although it is possible
to create your own L&F, it is not easy to do so. However, Java 5.0 added the Synth L&F to facilitate the creation of a
skinnable L&F. I will discuss Synth L&F in the next section.

You can use the UIManager class to list all installed L&F on your computer that you can use in your Swing
application. The program in Listing 3-4 lists all available L&F on your machine. The output was obtained when the
program was run on Windows; you may get a different output.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

206

Listing 3-4.  Knowing the Installed L&F on Your Machine

// InstalledLookAndFeel.java
package com.jdojo.swing;
 
import javax.swing.UIManager;
import javax.swing.UIManager.LookAndFeelInfo;
 
public class InstalledLookAndFeel {
 public static void main(String[] args) {
 // Get the list of installed L&F
 LookAndFeelInfo[] lafList = UIManager.getInstalledLookAndFeels();
 
 // Print the names and class names of all installed L&F
 for (LookAndFeelInfo lafInfo : lafList) {
 String name = lafInfo.getName();
 String className = lafInfo.getClassName();
 System.out.println("Name: " + name +
 ", Class Name: " + className);
 }
 }
} 

Name: Metal, Class Name: javax.swing.plaf.metal.MetalLookAndFeel
Name: Nimbus, Class Name: javax.swing.plaf.nimbus.NimbusLookAndFeel
Name: CDE/Motif, Class Name: com.sun.java.swing.plaf.motif.MotifLookAndFeel
Name: Windows, Class Name: com.sun.java.swing.plaf.windows.WindowsLookAndFeel
Name: Windows Classic, Class Name: com.sun.java.swing.plaf.windows.WindowsClassicLookAndFeel

Listing 3-5 builds a JFrame that lets you experiment with the installed L&F for the current platform. By default,
the current L&F is selected. Select a different L&F from the list and the application's L&F is changed accordingly. You
will get a different list of L&F on different platforms. Figure 3-3 and Figure 3-4 show the frame when the application
was run on Windows and Linux, respectively.

Listing 3-5.  Experimenting With Installed Look and Feels on the Current Platform

// InstalledLAF.java
package com.jdojo.swing;
 
import java.awt.BorderLayout;
import java.awt.Container;
import java.awt.event.ItemEvent;
import java.util.Map;
import java.util.TreeMap;
import javax.swing.AbstractButton;
import javax.swing.BorderFactory;
import javax.swing.Box;
import javax.swing.ButtonGroup;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

207

import javax.swing.JPanel;
import javax.swing.JRadioButton;
import javax.swing.JTextField;
import javax.swing.LookAndFeel;
import javax.swing.SwingUtilities;
import javax.swing.UIManager;
import javax.swing.UIManager.LookAndFeelInfo;
import javax.swing.border.Border;
import javax.swing.border.EtchedBorder;
 
public class InstalledLAF extends JFrame {
 JLabel nameLbl = new JLabel("Name:");
 JTextField nameFld = new JTextField(20);
 JButton saveBtn = new JButton("Save");
 JTextField lafClassNameFld = new JTextField();
 ButtonGroup radioGroup = new ButtonGroup();
 static final Map<String, String> installedLAF = new TreeMap<>();
 
 static {
 for (LookAndFeelInfo lafInfo : UIManager.getInstalledLookAndFeels()) {
 installedLAF.put(lafInfo.getName(), lafInfo.getClassName());
 }
 }
 
 public InstalledLAF(String title) {
 super(title);
 initFrame();
 }
 
 private void initFrame() {
 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container contentPane = this.getContentPane();
 
 // Get the current look and feel
 LookAndFeel currentLAF = UIManager.getLookAndFeel();
 String currentLafName = currentLAF.getName();
 String currentLafClassName = currentLAF.getClass().getName();
 
 lafClassNameFld.setText(currentLafClassName);
 lafClassNameFld.setEditable(false);
 
 // Build the panels
 JPanel topPanel = buildTopPanel();
 JPanel leftPanel = buildLeftPanel(currentLafName);
 JPanel rightPanel = buildRightPanel();
 contentPane.add(topPanel, BorderLayout.NORTH);
 contentPane.add(leftPanel, BorderLayout.WEST);
 contentPane.add(rightPanel, BorderLayout.CENTER);
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

208

 private void setLAF(String lafClassName) {
 try {
 UIManager.setLookAndFeel(lafClassName);
 SwingUtilities.updateComponentTreeUI(this);
 this.pack();
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
 
 private JPanel buildTopPanel() {
 JPanel panel = new JPanel();
 panel.add(lafClassNameFld);
 panel.setBorder(getBorder("L&F Class Name"));
 return panel;
 }
 
 private JPanel buildLeftPanel(String currentLafName) {
 JPanel panel = new JPanel();
 panel.setBorder(getBorder("L&F Name"));
 Box vBox = Box.createVerticalBox();
 
 // Add a radio button for each installed L&F
 for (String lafName : installedLAF.keySet()) {
 JRadioButton radioBtn = new JRadioButton(lafName);
 if (lafName.equals(currentLafName)) {
 radioBtn.setSelected(true);
 }
 
 radioBtn.addItemListener(this::changeLAF);
 vBox.add(radioBtn);
 radioGroup.add(radioBtn);
 }
 
 panel.add(vBox);
 return panel;
 }
 
 private JPanel buildRightPanel() {
 JPanel panel = new JPanel();
 panel.setBorder(getBorder("Swing Components"));
 
 Box hBox = Box.createHorizontalBox();
 hBox.add(nameLbl);
 hBox.add(nameFld);
 hBox.add(saveBtn);
 panel.add(hBox);
 
 return panel;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

209

 
 private void changeLAF(ItemEvent e) {
 if (e.getSource() instanceof AbstractButton) {
 AbstractButton btn = (AbstractButton) e.getSource();
 String lafName = btn.getText();
 String lafClassName = installedLAF.get(lafName);
 this.lafClassNameFld.setText(lafClassName);
 try {
 UIManager.setLookAndFeel(lafClassName);
 SwingUtilities.updateComponentTreeUI(this);
 this.pack();
 }
 catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 }
 
 private Border getBorder(String title) {
 Border etched = BorderFactory.createEtchedBorder(EtchedBorder.LOWERED);
 Border titledBorder = BorderFactory.createTitledBorder(etched, title);
 return titledBorder;
 }
 
 public static void main(String[] args) {
 SwingUtilities.invokeLater(() -> {
 InstalledLAF lafApp = new InstalledLAF("Swing L&F");
 lafApp.pack();
 lafApp.setVisible(true);
 });
 }
} 

Figure 3-3.  The InstalledLAF frame on Windows

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

210

Skinnable Look-and-Feel
Swing supports a skin-based L&F called Synth. What is a skin? A skin in a GUI is a set of attributes that defines the
appearance of GUI components. Synth lets you define skins in an external XML file, and apply the skin at runtime
to change the appearance of your Swing application. Before Synth was introduced, you needed to write a lot of Java
code to have a custom L&F. With Synth, you do not need to write even one line of Java code to have a new custom L&F.
Synth L&F is defined in an XML file. You need to perform the following steps to use the Synth L&F:

Create an XML file and define the Synth L&F.•	

Create an instance of the •	 SynthLookAndFeel class.

SynthLookAndFeel laf = new SynthLookAndFeel();

Use the •	 load() method of the SynthLookAndFeel object to load the Synth L&F from the XML
file. The load() method is overloaded. You can use a URL or an input stream to the XML file.

laf.load(url_to_your_synth_xml_file);

or

laf.load(input_steam_for_your_synth_xml_file, MyClass.class);

Set the Synth L&F using the •	 UIManager.

UIManager.setLookAndFeel(laf);

Let’s discuss the loading process that can be used to load the XML file. A Synth L&F may use two different kinds
of external resources.

The XML file that defines the Synth L&F•	

The resources such as images that are used in the Synth XML file•	

Figure 3-4.  The InstalledLAF frame on Linux

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

211

When you use a URL to load a Synth XML file, the URL points to the XML file, and all paths for the resources referred
to in that XML file will be resolved relative to the URL. The following snippet of code loads a Synth XML file using a URL:
 
URL url = new URL("file:///C:/synth/synth_look_and_feel.xml");
laf.load(url);
 

You can load a Synth XML file using a URL that may refer to a local file system or a network. You can use an http
or ftp protocol to load a Synth XML file. You can also load a Synth XML file from a JAR file.

When you use the load(InputStream input, Class resourceBase) method to load the Synth XML file, the
input parameter is the InputStream for the XML file to be loaded and the resourceBase class object is used to resolve
the resources that are referred to inside that XML file. Suppose that you have the following folder structure on your
computer on a Windows operating system:
 
C:\javabook
C:\javabook\images\myimage.png
C:\javabook\synth\synthlaf.xml
C:\javabook\book\chapter3\images\myimage.png
C:\javabook\book\chapter3\synth\synthlaf.xml
C:\javabook\book\chapter3\MyClass.class
 

Suppose C:\javabook is set in the CLASSPATH and MyClass is a Java class defined in the com.jdojo.chapter3
package. The following snippet of code loads the synthlaf.xml:
 
// It will load C:\javabook\synth\synthlaf.xml because you are
// using a forward slash in the file path "/synth/synthlaf.xml"
Class cls = MyClass.class;
InputStream ins = cls.getResourceAsStream("/synth/synthlaf.xml");
laf.load(ins, cls);
  
// It will load C:\javabook\book\chapter3\synth\synthlaf.xml because you are
// not using a forward slash in the file path "synthlaf.xml"
Class cls = MyClass.class;
InputStream ins = cls.getResourceAsStream("synthlaf.xml");
laf.load(ins, cls);
 

In both cases, the class reference cls will be used to resolve the path to the resources referenced in the XML file.
For example, if an image is referred as images/myimage.png, it will be loaded from C:\javabook\book\chapter3\
images\myimage.png. If the image is referred to as /images/myimage.png", the C:\javabook\images\myimage.png
file will be loaded.

Use the second version of the load() method, which is more flexible. You can package all your Synth L&F files
and related resource files in a JAR file without worrying about their actual location at runtime. During development,
you can place all your Synth files in a separate folder, which should be in your CLASSPATH. The only thing you need
to pay attention to is that if the file name starts with a forward slash, the path is resolved using the CLASSPATH. If your
file name does not start with a forward slash, the package path for that class is added in front of the file name and then
the CLASSPATH is used to resolve the path to your file.

Let’s start building your Synth L&F XML file. Set your goal before you start defining your Synth L&F. Figure 3-5
shows a sample JFrame that uses the Java default L&F.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

212

The JFrame contains three components: a JLabel, a JTextField, and a JButton. You will build an XML file to
define a Synth L&F for these components. The Java code to create this screen is shown in Listing 3-6. The code that is
of interest is in the main() method (shown below). For now, just create an empty XML file named synthlaf.xml and
save it in the CLASSPATH.
 
try {
 SynthLookAndFeel laf = new SynthLookAndFeel();
 Class cls = SynthLookAndFeelFrame.class;
 InputStream ins = cls.getResourceAsStream("/synthlaf.xml");
 laf.load(ins, cls);
 UIManager.setLookAndFeel(laf);
}
catch (Exception e) {
 e.printStackTrace();
}

Listing 3-6.  Using a Synth L&F for Swing Components

// SynthLookAndFeelFrame.java
package com.jdojo.swing;
 
import java.io.InputStream;
import java.awt.Container;
import java.awt.FlowLayout;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JTextField;
import javax.swing.UIManager;
import javax.swing.plaf.synth.SynthLookAndFeel;
 
public class SynthLookAndFeelFrame extends JFrame {
 JLabel nameLabel = new JLabel("Name:");
 JTextField nameTextField = new JTextField(20);
 JButton closeButton = new JButton("Close");
 
 public SynthLookAndFeelFrame(String title) {
 super(title);
 initFrame();
 }
 
 private void initFrame() {
 this.setDefaultCloseOperation(EXIT_ON_CLOSE);
 Container contentPane = this.getContentPane();

Figure 3-5.  A sample JFrame using the default Java L&F

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

213

 contentPane.setLayout(new FlowLayout());
 contentPane.add(nameLabel);
 contentPane.add(nameTextField);
 contentPane.add(closeButton);
 }
 
 public static void main(String[] args) {
 try {
 SynthLookAndFeel laf = new SynthLookAndFeel();
 Class c = SynthLookAndFeelFrame.class;
 InputStream ins = c.getResourceAsStream("/synthlaf.xml");
 laf.load(ins, c);
 UIManager.setLookAndFeel(laf);
 }
 catch (Exception e) {
 e.printStackTrace();
 }
  
 SynthLookAndFeelFrame frame =
 new SynthLookAndFeelFrame("Synth Look-and-Feel Frame");
 frame.pack();
 frame.setVisible(true);
 }
}
 

In its simplest form, a Synth XML file looks as shown:
 
<?xml version="1.0"?>
<synth version="1">
</synth>
 

The root element is <synth>, and optionally, you may specify a version number, which should be 1. You have not
defined any L&F-related styles in the XML file. Let’s run the SynthLookAndFeelFrame class with these contents in the
synthlaf.xml file. If you encounter a problem in running the class because it does not find the synthlaf.xml file,
change the load() method call in the main() method to use a URL instead of an InputStream. Figure 3-6 shows the
JFrame that you get when you run the SynthLookAndFeelFrame class.

Figure 3-6.  A JFrame with a Synth L&F where the Synth XML file does not define any styles

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

214

You did not expect a JFrame like this, did you? You will fix it in a minute. By default, a Synth L&F sets a white
background with no border for all components. This is the reason why the JLabel, JTextField, and JButton run
together on the screen. A JTextField is still there on the screen, but it has no border.

Let’s define a style. A style is defined using a <style> element. It has a mandatory attribute named id that is a
unique identifier for the style. The id attribute's value is used when you bind the style to a component.
 
<?xml version="1.0"?>
<synth version="1">
 <style id="buttonStyle">
 <!-- Style specific elements go here -->
 </style>
</synth>
 

Defining the style itself does not have any effect. You must bind a style to one or more components to see the style
in action. Binding a style to a component is accomplished using a <bind> element, which has the three attributes:

•	 style

•	 type

•	 key

The style is the value of the id attribute of a style element that you are binding to this component.
The type attribute determines the type of binding. Its value is either region or name. Each Swing component

has at least one region. Some components have more than one region. All regions of a component have a name.
Regions are defined by constants in the Region class, which is in the javax.swing.plaf.synth package. For example,
a JButton has one region called Button that is represented by the Region.BUTTON constant; a JTextField has one
region called TextField that is represented by the Region.TEXT_FIELD constant; a JTabbedPane has four regions
called TabbedPaneContent, TabbedPaneTabArea, TabbedPaneTab, and TabbedPane. Please refer to the documentation
for the Region class for the complete list of regions. If you use the value name, it refers to the value returned by the
getName() method of the component. You can set a name for a component using its setName() method.

The key attribute is a regular expression that is used to match the region or name depending on the value used
for the type attribute. For example, the regular expression ".*" matches any region or name. Typically, you use ",*"
as a key value to bind a default style to all components.

Here are some examples of using the <bind> element to bind a style to a component:
 
<!-- Bind a buttonStyle style to all JButtons -->
<bind style="buttonStyle" type="region" key="Button" />
  
<!-- Bind a defaultStyle to all Swing components -->
<bind style="defaultStyle" type="region" key=".*" />
  
<!-- Bind myDefaultStyle to all components whose name returned by their getName() method starts with
"com.jdojo". Here \. means one dot and .* means any characters zero or more times -->
<bind style="mydefaultStyle" type="name" key="com\.jdojo.*" /> 

Let’s define some styles for a JButton. All styles must be defined inside a <style> element. You can set the
opacity in a style using a <opaque> element. It has a value attribute that could be true or false, as shown:
 
<opaque value="true"/> 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

215

A component can be in one of the seven states: ENABLED, MOUSE_OVER, PRESSED, DISABLED, FOCUSED, SELECTED, or
DEFAULT. Not all components support all seven states. You can define style properties that apply to a specific state or
all states. You define state specific properties using a <state> element. You need to specify a value attribute with one
of the seven state values if the style properties only apply to a specific state. If you want to define some style properties
for more than one state, you can separate state names with an AND. The following <style> element will define styles
for a component when a mouse is over it and it is also focused:
 
<state value="MOUSE_OVER AND FOCUSED">
...
</state>
 

If multiple styles exist for the same state, the style definition associated with the most specific state is used.
Suppose you have defined styles for two states: MOUSE_OVER and FOCUSED and MOUSE_OVER. When the component has
the mouse over its region and it is in focus, the first style is applied; if the component is not in focus, but it has a mouse
over its region, the second style is applied.

Modify the synthlaf.xml file with the contents shown and rerun the application:
 
<?xml version="1.0"?>
<synth version="1">
 <style id="buttonStyle">
 <opaque value="true"/>
 <insets top="4" bottom="4" left="6" right="6"/>
 <imageIcon id="closeIconId" path="/images/close_icon.png"/>
 <property key="Button.textShiftOffset" type="Integer" value="2"/>
 <property key="Button.icon" type="idref" value="closeIconId"/>
 <state>

 <color value="LIGHT_GRAY" type="BACKGROUND"/>
 <color value="BLACK" type="TEXT_FOREGROUND"/>
 </state>
 <state value="PRESSED">
 <color value="GRAY" type="BACKGROUND"/>
 <color value="BLACK" type="TEXT_FOREGROUND"/>
 </state>
 </style>
 <bind style="buttonStyle" type="region" key="Button"/>
</synth>
 

Press the Close button and you will find that it works much better than before. Its background color changes
when you press it. Its text shifts right and down when it is in pressed.

Let’s discuss all styles used in this XML file:

The •	 buttonStyle style defines styles for a JButton. The <opaque> element defines that the
JButton will be opaque. The <insets> element sets the insets for the JButton.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

216

The •	 <imageIcon> element defines an image resource. This element does not do anything by
itself. You will need to refer to its id attribute’s value in some other place when you need to
use an image. Its path attribute refers to the path of the image file. It uses the getResource()
method of the class object you pass to the load() method to locate the image file. You have
used /images/close_icon.png as the path. It means that you need to have a folder named
images under a folder, which is in the CLASSPATH, and you need to place a close_icon.
png file under the images folder. If you used a URL to load a synth XML file, your path for
the image will change accordingly. Suppose you loaded a Synth XML file using a URL string
"file:///c:/mysynth/synthlaf.xml". This URL has file:///c:/mysynth/ as the base and
all paths in your XML will be resolved relative to this base. For example, if you specify images/
close_icon.png as a path in a <imageIcon> element, file:///c:/mysynth/images/close_
icon.png will be the path used to load your image file. If you specify /images/close_icon.
png as the path for in a <imageIcon> element, it will be treated as an absolute path, and Synth
will attempt to load the image file using a file://images/close_icon.png path. It is very
important that you understand how a resource lookup is affected by your choice of using
different versions of the load() method of the SynthLookAndFeel class. It is better to use a
URL and place all resources under the base folder of the URL. You can pack all resources
including the Synth XML file in a JAR file and use a URL version of the load() method.

A <property> element is used to set a property for a component. You cannot set any property of a component using
a <property> element. A <property> element has three attributes: key, type, and value. The key attribute specifies the
property name. The type attribute is the type of property, and its value could be idref, boolean, dimension, insets,
integer, or string. The type attribute is optional, and it defaults to idref, which means the value attribute’s value is
an id referring to another element. You have set two properties for the JButton. One is the Button.textShiftOffset
property, which is used to shift the JButton’s text when it is pressed. Another property is an image icon for the JButton
called Button.icon. You have not specified the type attribute, which is defaulted to idref. The value attribute for the
<property> element is closeIconId, which is the id of an <imageIcon> element that defines the close image.

You can define a color attribute using a <color> element. You set the value for the type and value attributes of
a <color> element. The type attribute can have one of the four values: FOREGROUND, BACKGROUND, TEXT_FOREGROUND,
TEXT_BACKGROUND, and FOCUS. You can specify the value for the value attribute using constant names from the java.
awt.Color class or a hex value in #RRGGBB or #AARRGGBB form. In the hex form, AA, RR, GG, and BB are values for alpha,
red, green, and blue components of the color.

You can define a font style using a element. It has three attributes: name, size, and style. The style
attribute is optional and it defaults to PLAIN. Other values for style attribute are BOLD and ITALIC.

Finally, you combine different styles and put them under a <state> element. You have set one set of styles for
all states and one set for the PRESSED state in your buttonStyle. Note that your JButton will have a background
color of LIGHT_GRAY by default. Its background color will change to GRAY when it is pressed. When you run the
SynthLookAndFeel class with this XML file, the screen looks as shown in Figure 3-7. Note that you have set an icon for
the Close button. The background color changes when you press the Close button.

Figure 3-7.  Using an icon with the Synth look and feel

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

217

You do not have a border for the JButton and JTextField. There are two ways to set a border in Synth: you can
use an image or write Java code. I will discuss both ways to set a border. If you want a border to be painted by an
image, you need to use an <imagePainter> element, as shown:
 
<imagePainter path="/images/line_border.png"
 sourceInsets="2 2 2 2"
 paintCenter="false"
 method="buttonBorder" /> 

The path attribute specifies the path of the image that is used to paint the border. The sourceInsets attribute
specifies insets of the source image. The painterCenter attribute specifies if the center of the image should be drawn
or just the border. If you want to draw a border, you should set this attribute to false. If you want to draw an image
as a background, you should set this attribute to true. The method attribute is the name of the paint method in the
javax.swing.plaf.synth.SynthPainter class. This class has a paint method to paint every component. The method
name is of the form paintXxxYyy(), where Xxx is a component name and Yyy is an area to paint. The value of the
method attribute is set to xxxYyy by leaving the “paint” word out and using a lowercase first character. For example, to
paint a button’s border, the paint method name is paintButtonBorder(). The method attribute value for this method
is buttonBorder. You can also set an image as a background for a component using a <imagePainter> element. The
following style will set button_background.png as the background for a JButton:
 
<imagePainter path="/images/button_background.png"
 sourceInsets="2 2 2 2"
 paintCenter="true"
 method="buttonBackground" /> 

Tip■■   By default, the image used in the <imagePainter> element is stretched to fit the size of the component. It means
that if you want the same border around multiple components, you need to create only one image to represent that border.
If you do not want the image stretched, you can set the stretch attribute of the <imagePainter> element to false.

If you want to write Java code to draw a border, you need to create a new class, which will inherit from the
SynthPainter class as listed in Listing 3-7. You need to override a specific paint method. This class overrides the
paintTextFieldBorder() and paintButtonBorder() methods. They simply draw a rectangle using a custom color
and stroke value.

Listing 3-7.  A Custom Synth Border Painter Class for a JTextField and a JButton

// SynthRectBorderPainter.java
package com.jdojo.swing;
 
import javax.swing.plaf.synth.SynthPainter;
import javax.swing.plaf.synth.SynthContext;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.BasicStroke;
import java.awt.Color;
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

218

public class SynthRectBorderPainter extends SynthPainter {
 @Override
 public void paintTextFieldBorder(SynthContext context, Graphics g,
 int x, int y, int w, int h) {
 Graphics2D g2 = (Graphics2D)g;
 g2.setStroke(new BasicStroke(2));
 g2.setColor(Color.BLUE);
 g2.drawRect(x, y, w, h);
 }
 
 @Override
 public void paintButtonBorder(SynthContext context, Graphics g,
 int x, int y, int w, int h) {
 Graphics2D g2 = (Graphics2D)g;
 g2.setStroke(new BasicStroke(4));
 g2.setColor(Color.RED);
 g2.drawRect(x, y, w, h);
 }
}
 

Now, you need to specify in your Synth XML file that you want to use your custom painter class to paint your
JButton’s border. An <object> element represents a Java object in a Synth XML file. To specify a custom Java painter,
you use a <painter> element, which needs an idref of an <object> element’s id and a method name, as shown:
 
<object id="borderPainterId" class="com.jdojo.swing.SynthRectBorderPainter"/>
<painter idref="borderPainterId" method="buttonBorder"/> 

You final version of the Synth XML file is shown below. You have used a custom Java code to paint the border for
the Close button when it is pressed, and an image icon when it is not pressed. The border for the JTextField is drawn
using your custom Java code. You can modify the XML content to set styles for the JLabel. Finally, the JFrame looks as
shown in Figure 3-8.
 
<?xml version="1.0"?>
<synth version="1.0">
 <style id="buttonStyle">
 <opaque value="true"/>
 <insets top="4" bottom="4" left="6" right="6"/>
 <imageIcon id="closeIconId" path="/images/close_icon.png"/>
 <property key="Button.textShiftOffset" type="Integer" value="2"/>
 <property key="Button.icon" type="idref" value="closeIconId"/>
 <state>
 <imagePainter path="/images/line_border.png" sourceInsets="2 2 2 2"
 paintCenter="false" method="buttonBorder"/>

 <color value="LIGHT_GRAY" type="BACKGROUND"/>
 <color value="BLACK" type="TEXT_FOREGROUND"/>
 </state>
 <state value="PRESSED">
 <object id="borderPainterId"
 class="com.jdojo.swing.SynthRectBorderPainter"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

219

 <painter idref="borderPainterId" method="buttonBorder"/>
 <color value="GRAY" type="BACKGROUND"/>
 <color value="BLACK" type="TEXT_FOREGROUND"/>
 </state>
 </style>
 <bind style="buttonStyle" type="region" key="Button"/>
  
 <style id="textFieldStyle">
 <insets top="4" bottom="4" left="4" right="4"/>
 <state>
 <color value="WHITE" type="BACKGROUND"/>
 <object id="textFieldPainterId" class="com.jdojo.swing.SynthRectBorderPainter"/>
 <painter idref="textFieldPainterId" method="textFieldBorder"/>
 </state>
 </style>
 <bind style="textFieldStyle" type="region" key="TextField"/>
</synth> 

Figure 3-8.  Using borders in a Synth L&F

Drag Source Drop TargetA Transferable Object

Figure 3-9.  The data transfer mechanism used in DnD

Drag and Drop
Drag and drop (DnD) is a way to transfer data in an application. You can also transfer data using a clipboard with cut,
copy, and paste actions.

DnD lets you transfer data by dragging a component and dropping it onto another component. The component
that is dragged is called the drag source; it supplies the data to be transferred. The component onto which the drag
source is dropped is called the drop target; it is the receiver of the data. It is the responsibility of the drop target to
accept the drop action and import the data supplied by the drag source. The data transfer is accomplished using a
Transferable object. Transferable is an interface in the java.awt.datatransfer package. The DnD mechanism is
shown in Figure 3-9.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

220

The Transferable interface contains the following three methods:

•	 DataFlavor[] getTransferDataFlavors()

•	 boolean isDataFlavorSupported(DataFlavor flavor)

•	 Object getTransferData(DataFlavor flavor) throws UnsupportedFlavorException,
IOException

Before you learn the three methods of the Transferable interface, you need to know why you need a
Transferable object to transfer data using DnD. Why does the drag target not get the data directly from the drag
source? You can transfer data using DnD within the same Java application, between two Java applications, from
a native application to a Java application, and from a Java application to a native application. The scope of a data
transfer is very wide, and it supports the transfer of a wide variety of data. The Transferable interface provides a
mechanism to pack the data and its type in an object. The receiver can query this object about the data type it holds,
and import the data if it fits the receiver’s requirements. An object of the DataFlavor class represents the details about
the data. I will not discuss the DataFlavor class in detail. It contains several constants to define the type of data; for
example, DataFlavor.stringFlavor represents Java’s Unicode string class. The first two methods of the Transferable
interface give details about the data. The third one returns the data itself as an Object. The drop target will use the
getTransferData() method to get the data supplied by the drag source.

Using DnD in Swing is easy. Most of the time, you need to write only one line of code to start using DnD. All you
need is to enable the dragging on the component, like so:
 
// Enable DnD for myComponent
myComponent.setDragEnabled(true);
 

After that, you can start using DnD on myComponent. Using DnD is UI-dependent. On a Windows platform, you
need to press the left mouse button on the drag source to start the drag action. To keep dragging the drag source, you
need to move the mouse while holding the left mouse button down. Releasing the left mouse button while the mouse
pointer is on a drop target performs the drop action. Throughout the DnD process, the user receives visual feedbacks.

All text components (JFileChooser, JColorChooser, JList, JTree, and JTable) have built-in drag support for
DnD. All text components and JColorChooser have built-in drop support for DnD. For example, suppose you have
a JTextField named nameFld and a JTextArea named descTxtArea. To start using DnD between them, you need to
write the following two lines of code:
 
nameFld.setDragEnabled(true);
descTxtArea.setDragEnabled(true);
 

You can select text in the JTextField, drag it, and drop it onto the JTextArea. The selected text in the JTextField
is transferred to the JTextArea. You can also drag text from the JTextArea to the JTextField.

How is the data transferred from one text component to another? Does it get copied or moved? The answer
depends on the drag source and the user’s action. A drag source declares the actions it supports. The user’s action
determines what action took place. For example, on the Windows platform, simple dragging indicates a MOVE action
whereas dragging with the Ctrl key down indicates a Copy action, and dragging with Ctrl + Shift keys down
indicates a LINK action. Actions are represented by the constants declared in the TransferHandler class:

•	 TranferHandler.COPY

•	 TranferHandler.MOVE

•	 TranferHandler.COPY_OR_MOVE

•	 TranferHandler.LINK

•	 TranferHandler.NONE

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

221

The drop action is not built-in for the JList, JTable, and JTree components. The reason is that the user’s
intention cannot be predicted when a drag source is dropped onto these components. You will need to write code
to get the drop action in place for these components. Note that they have built-in support for the drag action. DnD
provides you with appropriate information about the drop location on these components. These components let
you specify the drop mode using their setDropMode(DropMode dm) method. A drop mode determines how the drop
location is tracked during a DnD operation. Drop modes are represented by constants in the java.swing.DropMode
enum as listed in Table 3-1.

Table 3-1.  The List of DropMode Enum Contants for JList, JTree, and JTable

DropMode Enum Constant Using Component Description

ON JList
JTree
JTable

The drop location is tracked using the index of existing items.

INSERT JList
JTree
JTable

The drop location is tracked as the position where the data
will be inserted.

INSERT_COLS JTable The drop location is tracked in terms of the column index
where the new columns will be inserted.

INSERT_ROWS JTable The drop location is tracked in terms of the row index where
the new rows will be inserted.

ON_OR_INSERT JList
JTree
JTable

Tracks drop location as both ON and INSERT.

ON_OR_INSERT_ROWS
ON_OR_INSERT_COLS

JTable Tracks ON or INSERT with respect to row or column.

USE_SELECTION JList
JTree
JTable

It works the same as ON. It is the default drop mode. If you
drag onto a component that is already selected, this mode
changes the selection to the item on which the mouse cursor
is being dragged. However, the ON drop mode keeps the
user’s selection intact and selects the item temporarily on
which a mouse cursor is dragged. ON is a better choice for the
user’s experience. This option is only provided for backward
compatibility.

Let’s write some code to use DnD with a JList. You need to do the following:

Create a new class inheriting from the •	 javax.swing.TransferHandler class.

Override some of the methods in the new class to handle the data transfer.•	

Use the •	 JList’s setTransferHandler() method to set an instance of your transfer
handler class.

Listing 3-8 contains the code for a custom TransferHandler for a JList.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

222

Listing 3-8.  A Custom TransferHandler for a JList

// ListTransferHandler.java
package com.jdojo.swing;
 
import java.awt.datatransfer.DataFlavor;
import java.awt.datatransfer.StringSelection;
import java.awt.datatransfer.Transferable;
import java.awt.datatransfer.UnsupportedFlavorException;
import java.io.IOException;
import javax.swing.DefaultListModel;
import javax.swing.JComponent;
import javax.swing.JList;
import javax.swing.TransferHandler;
 
public class ListTransferHandler extends TransferHandler {
 @Override
 public int getSourceActions(JComponent c) {
 return TransferHandler.COPY_OR_MOVE;
 }
 
 @Override
 protected Transferable createTransferable(JComponent source) {
 // Suppress the unchecked cast warning
 @SuppressWarnings("unchecked")
 JList<String> sourceList = (JList<String>)source;
  
 String data = sourceList.getSelectedValue();
 
 // Uses only the first selected item in the list
 Transferable t = new StringSelection(data);
 return t;
 }
 
 @Override
 protected void exportDone(JComponent source, Transferable data, int action) {
 // Suppress teh unchecked cast warning
 @SuppressWarnings("unchecked")
 JList<String> sourceList = (JList<String>)source;
  
 String movedItem = sourceList.getSelectedValue();
 
 if (action == TransferHandler.MOVE) {
 // Remove the moved item
 DefaultListModel<String> listModel
 = (DefaultListModel<String>) sourceList.getModel();
 listModel.removeElement(movedItem);
 }
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

223

 @Override
 public boolean canImport(TransferHandler.TransferSupport support) {
 // We only support drop, not copy-paste
 if (!support.isDrop()) {
 return false;
 }
 
 return support.isDataFlavorSupported(DataFlavor.stringFlavor);
 }
 
 @Override
 public boolean importData(TransferHandler.TransferSupport support) {
 // This is necessary to handle paste
 if (!this.canImport(support)) {
 return false;
 }
 
 // Get the data
 Transferable t = support.getTransferable();
 String data = null;
 try {
 data = (String) t.getTransferData(DataFlavor.stringFlavor);
 if (data == null) {
 return false;
 }
 }
 catch (UnsupportedFlavorException | IOException e) {
 e.printStackTrace();
 return false;
 }
 
 // Get the drop location for the JList
 JList.DropLocation dropLocation
 = (JList.DropLocation) support.getDropLocation();
 
 int dropIndex = dropLocation.getIndex();
  
 // Suppress the unchecked cast warning
 @SuppressWarnings("unchecked")
 JList<String> targetList = (JList<String>)support.getComponent();
 
 DefaultListModel<String> listModel
 = (DefaultListModel<String>)targetList.getModel();
 
 if (dropLocation.isInsert()) {
 listModel.add(dropIndex, data);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

224

 else {
 listModel.set(dropIndex, data);
 }
 
 return true;
 }
}
 

If you want to support the drop action for only a JList, you only need to override two methods: canImport()
and importData() in your transfer handler class. The canImport() method returns true if the drop target wants to
transfer the data. Otherwise, it returns false. In your code, you are making sure that this operation is a drop operation
and that the drag source supplies a string data. Note that if you set a custom TransferHandler object to a component,
the same TransferHandler object will also be used for cut-copy-paste operations. You code supports only a drop
operation. The importData() method reads the data from a Transferable object and inserts or replaces the item in
the JList based on the user’s action.

The default TransferHandler for the JList handles the drag action and supplies the data. However, once you
set your own TransferHandler, you lose the default feature, and you are responsible for adding that feature to your
TransferHandler. If you want to support a drag action, you need to write custom code for the createTransferable()
and getSourceActions() methods. The first method packs the data into a Transferable object and the second one
returns the kind of actions supported by the drag source. StringSelection is an implementation of the Transferable
interface to transfer Java strings.

If your drag source supports a MOVE action, you are supposed to provide code that will remove the item after the
move action. You get a placeholder to write cleanup code in the exportDone() method, as shown in Listing 3-9.

Listing 3-9 has the code that displays a JTextField and two JLists, which lets you demonstrate DnD for a
JList. Figure 3-10 shows the JFrame you get when you run the program in Listing 3-9. You can use DnD among any
of the three components: the JTextField and two JLists. There is one bug in the code. If you drag an item in the
JList and drop it in the same JList, nothing happens. It is left as an exercise for you to figure out this bug and fix it.
I will give you a hint: try removing the element before adding it to the same List in the importData() method of the
ListTransferHandler class. Also, this custom code supports only a single selection in the JList. You can customize
the code in the ListTransferHandler class to handle multiple selections in the JList.

Listing 3-9.  Using DnD to Transfer Data Between Swing Components

// DragAndDropApp.java
package com.jdojo.swing;
 
import java.awt.BorderLayout;
import java.awt.Container;
import javax.swing.Box;
import javax.swing.DefaultListModel;
import javax.swing.DropMode;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JList;
import javax.swing.JScrollPane;
import javax.swing.JTextField;
import javax.swing.ListSelectionModel;
import javax.swing.SwingUtilities;
 
public class DragAndDropApp extends JFrame {
 private JLabel newLabel = new JLabel("New:");
 private JTextField newTextField = new JTextField(10);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

225

 private JLabel sourceLabel = new JLabel("Source");
 private JLabel destLabel = new JLabel("Destination");
 private JList<String> sourceList = new JList<>(new DefaultListModel<>());
 private JList<String> destList = new JList<>(new DefaultListModel<>());
 
 public DragAndDropApp(String title) {
 super(title);
 populateList();
 initFrame();
 }
 
 private void initFrame() {
 Container contentPane = this.getContentPane();
 
 Box nameBox = Box.createHorizontalBox();
 nameBox.add(newLabel);
 nameBox.add(newTextField);
 
 Box sourceBox = Box.createVerticalBox();
 sourceBox.add(sourceLabel);
 sourceBox.add(new JScrollPane(sourceList));
 
 Box destBox = Box.createVerticalBox();
 destBox.add(destLabel);
 destBox.add(new JScrollPane(destList));
 
 Box listBox = Box.createHorizontalBox();
 listBox.add(sourceBox);
 listBox.add(destBox);
 
 Box allBox = Box.createVerticalBox();
 allBox.add(nameBox);
 allBox.add(listBox);
 
 contentPane.add(allBox, BorderLayout.CENTER);
 
 // Our lists support only single selection
 sourceList.setSelectionMode(
 ListSelectionModel.SINGLE_SELECTION);
 destList.setSelectionMode(
 ListSelectionModel.SINGLE_SELECTION);
 
 // Enable Drag and Drop for components
 newTextField.setDragEnabled(true);
 sourceList.setDragEnabled(true);
 destList.setDragEnabled(true);
 
 // Set the drop mode to Insert
 sourceList.setDropMode(DropMode.INSERT);
 destList.setDropMode(DropMode.INSERT);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

226

 // Set the transfer handler
 sourceList.setTransferHandler(new ListTransferHandler());
 destList.setTransferHandler(new ListTransferHandler());
 }
 
 public void populateList() {
 DefaultListModel<String> sourceModel
 = (DefaultListModel<String>) sourceList.getModel();
 
 DefaultListModel<String> destModel
 = (DefaultListModel<String>) destList.getModel();
 for (int i = 0; i < 5; i++) {
 sourceModel.add(i, "Source Item " + i);
 destModel.add(i, "Destination Item " + i);
 }
 }
 
 public static void main(String[] args) {
 SwingUtilities.invokeLater(() -> {
 DragAndDropApp frame = new DragAndDropApp("Drag and Drop Frame");
 frame.pack();
 frame.setVisible(true);
 });
 }
} 

Figure 3-10.  A JFrame with a few Swing components supporting DnD

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

227

Multiple Document Interface Application
Broadly speaking, there are three types of applications based on how windows are organized within an application to
present information to users. They are

Single Document Interface (SDI)•	

Multiple Document Interface (MDI)•	

Tabbed Document Interface (TDI)•	

In an SDI application, only one window is opened at any time. In an MDI application, one main window (also the
called parent window) is opened, and multiple child windows are open within the main window. In a TDI application,
one window is opened, which has multiple windows open as tabs. Microsoft Notepad is an example of an SDI
application, Microsoft Word 97 is an example of an MDI application (newer versions of Microsoft Word are SDI), and
Google Chrome browser is an example of a TDI application.

You can use Swing to develop SDI, MDI, and TDI applications. In an MDI application, you can open multiple
frames that will be instances of the JInternalFrame class. You can organize multiple internal frames in many ways.
For example, you can maximize and minimize them; you can view them side by side in a tiled fashion, or you can view
them in a cascaded form. The following are four classes you will be working with in an MDI application:

•	 JInternalFrame

•	 JDesktopPane

•	 DesktopManager

•	 JFrame

An instance of the JInternalFrame class acts as a child window that is always displayed inside the area of its
parent window. For the most part, working with it is the same as working with a JFrame. You add Swing components
to its content pane, pack them using the pack() method, and make it visible using the setVisible(true) method. If
you want to listen to window events such as activated, deactivated, etc., you need to add an InternalFrameListener
to the JInternalFrame instead of a WindowListener, which is used for a JFrame. You can set various properties
in its constructor or using setter methods. The following snippet of code shows how to use an instance of the
JInternalFrame class:
 
String title = "A Child Window";
Boolean resizable = true;
Boolean closable = true;
Boolean maximizable = true;
Boolean iconifiable = true;
JInternalFrame iFrame =
 new JInternalFrame(title, resizable, closable, maximizable, iconifiable);
 
// Add components to the iFrame using iFrame.add(...)
 
// Pack eth frame and make it visible
iFrame.pack();
iFrame.setVisible(true);
 

An instance of the JDesktopPane class is used as a container (not as a top-level container) for all child windows
that are instances of the JInternalFrame class. It uses a null layout manager. You add it to a JFrame. You would like
to store the reference to the desktop pane as an instance variable to the JFrame, so that you can get to it to work with
child windows later.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

228

 
// Create a desktop pane
JDesktopPane desktopPane = new JDesktopPane();
 
// Add all JInternalFrames to the desktopPane
desktopPane.add(iFrame);
 

You can get all JInternalFrames that are added to a JDesktopPane using its getAllFrames() method.
 
// Get the list of child windows
JInternalFrame[] frames = desktopPane.getAllFrames();
 

A JDesktopPane uses an instance of the DesktopManager interface to manage all internal frames. The
DefaultDesktopManager class is an implementation of the DesktopManager interface. If you want to customize
the way a desktop manager manages the internal frames, you need to create your own class inheriting from
DefaultDesktopManager. You can set your custom desktop manager using the setDesktopManager() method of
JDesktopPane. The desktop manager has many useful methods. For example, if you want to close an internal frame
programmatically, you can use its closeFrame() method. The user can also close an internal frame using the context
menu that is provided if you make it closable. You can get the reference of the desktop manager using the desktop
pane’s getDesktopManager() method.
 
// Close the internal frame named frame1
desktopPane.getDesktopManager().closeFrame(frame1);
 

The JFrame class is used as a top-level container and it acts as the parent window of JInternalFrames. It contains
an instance of JDesktopPane. Note that the pack() method of JFrame will not do any good in a MDI application
because its only child, the desktop pane, uses a null layout manager. You must set its size explicitly. Typically, you
display the JFrame maximized.

Listing 3-10 demonstrates how to develop an MDI application. Swing does not provide ways to organize your
internal frames as tiled or cascaded windows, which is normal in any Windows-based MDI application. You can build
the tiled and cascaded features into your Swing MDI application by applying simple logic to organize your internal
frames and providing menu items to use them. Figure 3-11 shows the screen that is displayed when you run the
program in Listing 3-10.

Listing 3-10.  Developing an MDI Application Using Swing

// MDIApp.java
package com.jdojo.swing;
 
import java.awt.BorderLayout;
import java.awt.Dimension;
import javax.swing.JDesktopPane;
import javax.swing.JFrame;
import javax.swing.JInternalFrame;
import javax.swing.JLabel;
import javax.swing.SwingUtilities;
import javax.swing.UIManager;
 
public class MDIApp extends JFrame {
 private final JDesktopPane desktopPane = new JDesktopPane();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

229

 
 public MDIApp(String title) {
 super(title);
 initFrame();
 }
 
 public void initFrame() {
 JInternalFrame frame1
 = new JInternalFrame("Frame 1", true, true, true, true);
 
 JInternalFrame frame2
 = new JInternalFrame("Frame 2", true, true, true, true);
 
 JLabel label1 = new JLabel("Frame 1 contents...");
 frame1.getContentPane().add(label1);
 frame1.pack();
 frame1.setVisible(true);
 
 JLabel label2 = new JLabel("Frame 2 contents...");
 frame2.getContentPane().add(label2);
 frame2.pack();
 frame2.setVisible(true);
 
 // Default location is (0,0) for a JInternalFrame.
 // Set the location of frame2, so that both frames are visible
 int x2 = frame1.getX() + frame1.getWidth() + 10;
 int y2 = frame1.getY();
 frame2.setLocation(x2, y2);
 
 // Add both internal frames to the desktop pane
 desktopPane.add(frame1);
 desktopPane.add(frame2);
 
 // Finally add the desktop pane to the JFrame
 this.add(desktopPane, BorderLayout.CENTER);
 
 // Need to set minimum size for the JFrame
 this.setMinimumSize(new Dimension(300, 300));
 }
 
 public static void main(String[] args) {
 try {
 // Set the system look and feel
 UIManager.setLookAndFeel(
 UIManager.getSystemLookAndFeelClassName());
 }
 catch (Exception e) {
 e.printStackTrace();
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

230

 
 SwingUtilities.invokeLater(() -> {
 MDIApp frame = new MDIApp("MDI Frame");
 frame.pack();
 frame.setVisible(true);
 frame.setExtendedState(frame.MAXIMIZED_BOTH);
 });
 }
}

Figure 3-11.  An MDI application in Swing run on Windows

 
When you work with an MDI application, you need to use the showInternalXxxDialog() methods of

JOptionPane instead of the showXxxDialog() methods. For example, in an MDI application, you use the
JOptionPane.showInternalMessageDialog() method instead of the JOptionPane.showMessageDialog(). The
showInternalXxxDialog() version displays the dialog box, so they are always displayed within the top-level
container, whereas the showXxxDialog() version displays a dialog box that can be dragged outside the boundary of
the top-level container of the MDI application.

Tip■■  I t is important to decide upfront whether you want to develop an SDI, MDI, or TDI application. Changing from one
type to another is not an easy task.

The Toolkit Class
Java needs to communicate with the native system to provide most of the basic GUI functionalities. It uses a specific
class on each platform to achieve that. The java.awt.Toolkit is an abstract class. Java uses a subclass of the
Toolkit class on each platform to communicate with the native toolkit system. The Toolkit class provides a static
getDefaultToolkit() factory method to get the toolkit object used on a particular platform. The Toolkit class
contains useful methods to let you work with screen size and resolution, get access to the system clipboard, and to
make a beeping sound, etc. Table 3-2 lists a few of the methods of the Toolkit class. The table contains methods that
thorw a HeadlessExceotion. A HeadlessException is thrown when code that is dependent on a keyboard, display, or
mouse is called in an environment that does not support a keyboard, display, or mouse.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

231

The following snippet of code shows some examples of how to use the Toolkit class:
 
/* Copy the selected text from a JTextArea named dataTextArea to the system clipboard.
 If there is no text selection, beep and display a message.
*/
Toolkit toolkit = Toolkit.getDefaultToolkit();
String data = dataTextArea.getSelectedText();
if (data == null || data.equals("")) {
 toolkit.beep();
 JOptionPane.showMessageDialog(null, "Please select the text to copy.");
}
else {
 Clipboard clipboard = toolkit.getSystemClipboard();
 
 // Pack data as a string in a Transferable object
 Transferable transferableData = new StringSelection(data);
 clipboard.setContents(transferableData, null);
}
 
/* Paste text from the system clipboard to a TextArea, named dataTextArea.
 If there is no text in the system clipboard, beep and display a message.
*/
Toolkit toolkit = Toolkit.getDefaultToolkit();
Clipboard clipboard = toolkit.getSystemClipboard();
Transferable data = clipboard.getContents(null);
if (data != null && data.isDataFlavorSupported(DataFlavor.stringFlavor)) {
 try {
 String text = (String)data.getTransferData(DataFlavor.stringFlavor);
 dataTextArea.replaceSelection(text);
 }
 catch (Exception e) {
 e.printStackTrace();
 }
}

Table 3-2.  The List of a Few Useful Methods of the java.awt.Toolkit Class

Method of Toolkit Class Description

abstract void beep() Makes a beeping sound. It is useful in alerting the user when a
severe error occurs in the application.

static Toolkit getDefaultToolkit() Returns the current Toolkit instance used in the application.

abstract int getScreenResolution()
throws HeadlessException

Returns the screen resolution in terms of dots per inch.

abstract Dimension getScreenSize() throws
HeadlessException

Returns a Dimension object that contains the width and the
height of the screen in pixels.

abstract Clipboard getSystemClipboard()
throws HeadlessException

Returns an instance of the Clipboard class that represents a
system clipboard.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

232

else {
 toolkit.beep();
 JOptionPane.showMessageDialog(null, "No text in the system clipboard to paste");
}
 
/* Set the size of a JFrame to the size of the screen. Note that you can also use the
 frame.setExtendedState(JFrame.MAXIMIZED_BOTH) method to use full screen area for a Jframe.
*/
JFrame frame = new JFrame("My Frame");
frame.setSize(Toolkit.getDefaultToolkit().getScreenSize());

Decorating Components Using JLayer
The JLayer class represents a Swing component. It is used to decorate another component, which is called the target
component. It lets you perform custom painting over the component it decorates. It can also receive notifications of
all events that are generated within its border. In other words, a JLayer lets you perform custom processing based on
events occurring in the component it decorates.

When you work with the JLayer class, you also need to work with the LayerUI class. A JLayer delegates its work
to a LayerUI for custom painting and event handling. To do anything meaningful with a JLayer, you need to create a
subclass of the LayerUI class and override its appropriate methods to write your code.

The following steps are needed to use a JLayer in a Swing application.

	 1.	 Create a subclass of the LayerUI class. Override its various methods to implement the
custom processing for the component. The LayerUI class takes a type parameter that is the
type of the component it will work with.

	 2.	 Create an object of the LayerUI subclass.

	 3.	 Create a Swing component (target component) that you want to decorate with a JLayer
such as a JTextField, a JPanel, etc.

	 4.	 Create an object of the JLayer class, passing the target component and the object of the
LayerUI subclass to its constructor.

	 5.	 Add the JLayer object to your container, not the target component.

Let’s see a JLayer in action. Suppose you want to use a JLayer to draw a blue rectangular border around a
JTextField component. Your first step is to create a subclass of the LayerUI. Listing 3-11 contains the code for a
BlueBorderUI class that inherits from the LayerUI class. It overrides the paint() method of the LayerUI class.

Listing 3-11.  A Subclass of the LayerUI Class to Draw a Blue Border Around the Layer

// BlueBorderUI.java
package com.jdojo.swing;
 
import java.awt.Color;
import java.awt.Graphics;
import java.awt.Graphics2D;
import javax.swing.JComponent;
import javax.swing.JTextField;
import javax.swing.plaf.LayerUI;
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

233

public class BlueBorderUI extends LayerUI<JTextField> {
 @Override
 public void paint(Graphics g, JComponent layer) {
 // Let the superclass paint the component first
 super.paint(g, layer);
  
 // Create a copy of the Graphics object
 Graphics gTemp = (Graphics2D) g.create();
  
 // Get the dimension of the layer
 int width = layer.getWidth();
 int height = layer.getHeight();
  
 // Draw a blue rectangle that is custom your border
 gTemp.setColor(Color.BLUE);
 gTemp.drawRect(0, 0, width, height);
  
 // Destroy the copy of the Graphics object
 gTemp.dispose();
 }
}
 

The paint() method of the LayerUI is called whenever the target component needs to be painted. The method of
the LayerUI class receives two arguments. The first argument is the reference of the Graphics object that you can use
to draw on the component. The second argument is the reference of the JLayer object, not the target component. You
can get the reference of the target component, the component the JLayer is decorating, using the second argument.
You can cast the second argument to a JLayer type and use the getView() method of the JLayer class, which returns
the reference of the target component. The logic inside the paint() method is simple. It creates a copy of its Graphics
argument and draws a blue rectangle around the component. The passed-in Graphics object to this method is set
up for painting this component. Copying the passed-in Graphics object is advised because making changes to the
passed-in Graphics object may result in unexpected results.

Now you are ready to use the BlueBorderUI with a JLayer to draw a blue border around a JTextField. The
following snippet of code shows the logic:
 
// Create a JTextField as usual
JTextField firstName = new JTextField(10);
 
// Create an object of the BlueBorderUI
LayerUI<JTextField> ui = new BlueBorderUI();
 
// Create a JLayer object by wrapping the JTextField and BlueBorderUI
JLayer<JTextField> layer = new JLayer(firstName, ui);
 
// Add the layer object to a container, say the content pane of a frame.
// Note that you add the layer and not the component to a container.
contentPane.add(layer)
 

The target component and LayerUI may be passed to a JLayer when you create it. If you do not know the target
component and/or the LayerUI for a JLayer, you may pass them later using the setView() and setUI() methods
of the JLayer class. The getView() and getUI() methods of the JLayer class let you get the reference of the current
target component and the LayerUI for a JLayer, respectively.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

234

Listing 3-12 demonstrates how to use a JLayer to draw a border around two JTextField components. The code
is simple and self-explanatory. When you run this program, it will display two JTextField components with blue
borders in a JFrame.

Listing 3-12.  Decorating JTextFeild Components Using JLayer

// JLayerBlueBorderFrame.java
package com.jdojo.swing;
 
import java.awt.FlowLayout;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JLayer;
import javax.swing.JTextField;
import javax.swing.SwingUtilities;
import javax.swing.plaf.LayerUI;
 
public class JLayerBlueBorderFrame extends JFrame {
 private JLabel firstNameLabel = new JLabel("First Name:");
 private JLabel lastNameLabel = new JLabel("Last Name:");
 private JTextField firstName = new JTextField(10);
 private JTextField lastName = new JTextField(10);
 
 public JLayerBlueBorderFrame(String title) {
 super(title);
 initFrame();
 }
 
 public void initFrame() {
 this.setLayout(new FlowLayout());
 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 
 // Create an object of the LayerUI subclass - BlueBorderUI
 LayerUI<JTextField> ui = new BlueBorderUI();
 
 // Wrap the LayerUI and two JTextFields in two JLayers.
 // Note that a LayerUI object can be shared by multiple JLayers
 JLayer<JTextField> layer1 = new JLayer<>(firstName, ui);
 JLayer<JTextField> layer2 = new JLayer<>(lastName, ui);
 
 this.add(firstNameLabel);
 this.add(layer1); // Add layer1, not firstName to the frame
 
 this.add(lastNameLabel);
 this.add(layer2); // Add layer2, not lastName to the frame
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

235

 public static void main(String[] args) {
 SwingUtilities.invokeLater(() -> {
 JLayerBlueBorderFrame frame
 = new JLayerBlueBorderFrame("JLayer Test Frame");
 frame.pack();
 frame.setVisible(true);
 });
 }
}
 

Let’s look at an example of how to handle events of a target component using a JLayer. A JLayer delegates
the event processing task to the associated LayerUI. You need to perform the following steps to handle events in a
LayerUI subclass.

	 1.	 Register for the events that a JLayer will process.

	 2.	 Write the event handler code in an appropriate method of the LayerUI subclass.

You need to call the setLayerEventMask(long layerEventMask) method of the JLayer class to register for all
events that a JLayer is interested in. The layerEventMask parameter of this method must be a bitmask of the AWTEvent
constants. For example, if a JLayer named layer is interested in key and focus events, you call this method as shown:
 
int layerEventMask = AWTEvent.KEY_EVENT_MASK | AWTEvent.FOCUS_EVENT_MASK;
layer.setLayerEventMask(layerEventMask);
 

Typically, a JLayer registers for events in the installUI() method of the LayerUI subclass. You need to override
the installUI() method of the LayerUI class in your subclass. You need to set the event mask for the JLayer to zero
when the UI is uninstalled. This is accomplished in the uninstallUI() method. The following snippet of code shows
a JLayer registering for a focus event and resetting its event mask:
 
public class SmartBorderUI extends LayerUI<JTextField> {
 @Override
 public void installUI(JComponent c) {
 super.installUI(c);
 JLayer layer = (JLayer)c;
 
 // Register for the focus event
 layer.setLayerEventMask(AWTEvent.FOCUS_EVENT_MASK);
 }
 
 @Override
 public void uninstallUI(JComponent c) {
 super.uninstallUI(c);
 JLayer layer = (JLayer)c;
  
 // Reset the event mask
 layer.setLayerEventMask(0);
 }
 
 // Other code goes here
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

236

When a registered event is delivered to the JLayer, the eventDispatched(AWTEvent event, JLayer layer)
method of the associated LayerUI is called. You may be tempted to override this method in your LayerUI subclass to
handle all registered events. Technically, you are correct in overriding this method to handle events. However, there
is a better way to provide the event handling code in a LayerUI subclass. The eventDispatched() method of the
LayerUI class calls an appropriately named method when it receives an event. Those methods are declared as
 
protected void processXxxEvent(XxxEvent e, JLayer layer).
 

Here, Xxx is the name of the registered event. The following snippet of code shows examples of the event type and
the declaration of the method that is called when the JLayer receives that kind of event:
 
public class SmartBorderUI extends LayerUI<JTextField> {
 @Override
 protected void processFocusEvent(FocusEvent e, JLayer layer) {
 // Process the focus event here
 }
  
 @Override
 protected void processKeyEvent(KeyEvent e, JLayer layer) {
 // Process the key event here
 }
  
 @Override
 protected void processMouseEvent(MouseEvent e, JLayer layer) {
 // Process the mouse event here
 }
 
 // Other code goes here...
}
 

That is all you need to do to process events in a JLayer. Let's improve the previous example. This time, the JLayer
will draw a border around a JTextField whose color will depend on whether the JTextField has focus. When it has
focus, a red border is drawn. When it loses focus, a blue border is drawn.

Listing 3-13 contains the code for a SmartBorderUI class, which inherits from LayerUI. Its paint() method
draws a red or blue border depending on whether the target component has focus. Its installUI() method registers
for the focus event. The unInstallUI() method deregisters for the focus event by setting the event mask to zero. Its
processFocusEvent() method handles the focus event. Note that this method is called when a focus event occurs on
the target component. It calls the repaint() method, which in turn will call the paint() method, which paints the
border according to the focus state of the component.

Listing 3-13.  A Subclass of LayerUI for Decorating JTextField Based on Focus

// SmartBorderUI.java
package com.jdojo.swing;
 
import java.awt.AWTEvent;
import java.awt.Color;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.event.FocusEvent;
import javax.swing.JComponent;
import javax.swing.JLayer;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

237

import javax.swing.JTextField;
import javax.swing.plaf.LayerUI;
 
public class SmartBorderUI extends LayerUI<JTextField> {
 @Override
 public void paint(Graphics g, JComponent layer) {
 // Let the superclass paint the component first
 super.paint(g, layer);
  
 Graphics gTemp = (Graphics2D) g.create();
 int width = layer.getWidth();
 int height = layer.getHeight();
  
 // Suppress the unchecked warning
 @SuppressWarnings("unchecked")
 JLayer<JTextField> myLayer = (JLayer<JTextField>)layer;
  
 JTextField field = (JTextField)myLayer.getView();
  
 // When in focus, draw a red rectangle. Otherwise, draw a blue rectangle
 Color bColor;
 if (field.hasFocus()) {
 bColor = Color.RED;
 }
 else {
 bColor = Color.BLUE;
 }
  
 gTemp.setColor(bColor);
 gTemp.drawRect(0, 0, width, height);
 gTemp.dispose();
 }
  
 @Override
 public void installUI(JComponent c) {
 // Let the superclass do its job
 super.installUI(c);
  
 // Set the event mask for the layer stating that it is interested
 // in listening to the focus event for its target
 JLayer layer = (JLayer)c;
 layer.setLayerEventMask(AWTEvent.FOCUS_EVENT_MASK);
 }
  
 @Override
 public void uninstallUI(JComponent c) {
 // Let the superclass do its job
 super.uninstallUI(c);
  
 JLayer layer = (JLayer) c;
  

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

238

 // Set the event mask back to zero
 layer.setLayerEventMask(0);
 }
  
 @Override
 protected void processFocusEvent(FocusEvent e, JLayer layer) {
 layer.repaint();
 }
}
 

Listing 3-14 contains the code that uses the SmartBorderUI class with a JLayer. When you run this program,
it will display a JFrame with two JTextField components. Changing focus between the JTextField components will
change their border colors.

Listing 3-14.  Decorating JTextField Components Using Jlayer Based on Focus

// JLayerSmartBorderFrame.java
package com.jdojo.swing;
 
import java.awt.FlowLayout;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JLayer;
import javax.swing.JTextField;
import javax.swing.SwingUtilities;
import javax.swing.plaf.LayerUI;
 
public class JLayerSmartBorderFrame extends JFrame {
 private JLabel firstNameLabel = new JLabel("First Name:");
 private JLabel lastNameLabel = new JLabel("Last Name:");
 private JTextField firstName = new JTextField(10);
 private JTextField lastName = new JTextField(10);
 
 public JLayerSmartBorderFrame(String title) {
 super(title);
 initFrame();
 }
 
 public void initFrame() {
 this.setLayout(new FlowLayout());
 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 
 // Create an object of LayerUI subclass - SmartBorderUI
 LayerUI<JTextField> ui = new SmartBorderUI();
 
 // Wrap the LayerUI and two JTextFields in two JLayers
 JLayer<JTextField> layer1 = new JLayer<>(firstName, ui);
 JLayer<JTextField> layer2 = new JLayer<>(lastName, ui);
 
 this.add(firstNameLabel);
 this.add(layer1); // Add layer1 and not firstName to the frame
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

239

 this.add(lastNameLabel);
 this.add(layer2); // Add layer2 and not lastName to the frame
 }
 
 public static void main(String[] args) {
 SwingUtilities.invokeLater(() -> {
 JLayerSmartBorderFrame frame
 = new JLayerSmartBorderFrame("JLayer Test Frame");
 frame.pack();
 frame.setVisible(true);
 });
 }
}

Translucent Windows
Before discussing translucent windows in Swing, let's define three terms:

Transparent•	

Translucent•	

Opaque•	

If something is transparent, you can see through it; clear water is transparent. If something is opaque, you
cannot see through it; a concrete wall is opaque. If something is translucent, you can see through it, but not clearly.
If something is translucent, it partially allows light to pass through; a plastic curtain is translucent. The terms
“transparent” and “opaque” describe two opposite states, whereas the term “translucent” describes a state between
transparent and opaque.

You can define the degree of translucency of a window such as a JFrame. A 90% translucent window is 10%
opaque. The degree of translucency of a window can be defined using the alpha value of the color component for a
pixel. You can define the alpha value of a color using the constructors of the Color class:

•	 Color(int red, int green, int blue, int alpha)

•	 Color(float red, float green, float blue, float alpha)

The value for the alpha argument is specified between 0 and 255, when the color components are specified in
terms of int values. For the float type arguments, its value is between 0.0 and 1.0. The alpha value of 0 or 0.0 means
transparent (100% translucent and 0% opaque). The alpha value of 255 or 1.0 means opaque (0% translucent and not
transparent at all).

Three forms of translucency in a window are supported. They are represented by the following three constants of
the WindowTranslucency enum:

•	 PERPIXEL_TRANSPARENT: In this form of translucency, a pixel in a window is either opaque or
transparent. That is, the alpha value for a pixel is either 0.0 or 1.0.

•	 TRANSLUCENT: In this form of translucency, all pixels in a window have the same translucency,
which can be defined by an alpha value between 0.0 and 1.0.

•	 PERPIXEL_TRANSLUCENT: In this form of translucency, each pixel in a window can have its
own alpha value between 0.0 and 1.0. It lets you define the translucency in a window on a per
pixel basis.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

240

Not all platforms support all the three forms of translucency. You must check for the supported
forms of translucency in your program before using them. Otherwise, your code may throw an
UnsupportedOperationException. The isWindowTranslucencySupported() method of the GraphicsDevice class
lets you check the forms of translucency that are supported on a platform. Listing 3-15 demonstrates how to check for
translucency support on a platform. The code in this listing is short and self-explanatory. I have omitted checking in
subsequent examples to keep the code shorter.

Listing 3-15.  Checking for the Translucency support on a Platform

// TranslucencySupport.java
package com.jdojo.swing;
 
import java.awt.GraphicsDevice;
import java.awt.GraphicsEnvironment;
import static java.awt.GraphicsDevice.WindowTranslucency.*;
 
public class TranslucencySupport {
 public static void main(String[] args) {
 GraphicsEnvironment graphicsEnv
 = GraphicsEnvironment.getLocalGraphicsEnvironment();
 
 GraphicsDevice graphicsDevice
 = graphicsEnv.getDefaultScreenDevice();
 
 // Print the translucency supported by the platform
 boolean isSupported
 = graphicsDevice.isWindowTranslucencySupported(
 PERPIXEL_TRANSPARENT);
 System.out.println("PERPIXEL_TRANSPARENT supported: "
 + isSupported);
 
 isSupported
 = graphicsDevice.isWindowTranslucencySupported(TRANSLUCENT);
 System.out.println("TRANSLUCENT supported: " + isSupported);
 
 isSupported = graphicsDevice.isWindowTranslucencySupported(
 PERPIXEL_TRANSLUCENT);
 System.out.println("PERPIXEL_TRANSLUCENT supported: "
 + isSupported);
 }
}
 

Let’s see a uniform translucent JFrame in action. You can set the translucency of a JFrame using the
setOpacity(float opacity) method. The value for the specified opacity must be between 0.0f and 1.0f. Before you
call this method on a window, the following three conditions must be met:

The platform must support the •	 TRANSLUCENT translucency. You can use the logic from Listing 3-15
to check if the TRANSLUCENT translucency is supported by the platform.

The window must be undecorated. You can make a •	 JFrame or JDialog undecorated by calling
the setUndecorated(false) method on them.

The window must not be in full-screen mode. You can put a window in full-screen mode using •	
the setFullScreenWindow(Window w) method of the GraphicsDevice class.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

241

If all conditions are not met, setting the opacity of a window other than 1.0f throws an
IllegalComponentStateException.

Listing 3-16 demonstrates how to use a uniform translucent JFrame. The following two statements in the
initFrame() method in the listing is of interest to get a translucent JFrame. The first statement makes sure that the
frame is undecorated, and the second one sets the translucency of the frame in terms of opacity.  

Listing 3-16.  Using a Uniform Translucent JFrame

// UniformTranslucentFrame.java
package com.jdojo.swing;
 
import java.awt.BorderLayout;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.SwingUtilities;
 
public class UniformTranslucentFrame extends JFrame {
 private JButton closeButton = new JButton("Close");
 
 public UniformTranslucentFrame(String title) {
 super(title);
 initFrame();
 }
 
 public void initFrame() {
 this.setDefaultCloseOperation(EXIT_ON_CLOSE);
 
 // Make sure the frame is undecorated
 this.setUndecorated(true);
 
 // Set 40% opacity. That is, 60% translucency.
 this.setOpacity(0.40f);
 
 // Set its size
 this.setSize(200, 200);
 
 // Center it on the screen
 this.setLocationRelativeTo(null);
 
 // Add a button to close the window
 this.add(closeButton, BorderLayout.SOUTH);
 
 // Exit the aplication when the close button is clicked
 closeButton.addActionListener(e -> System.exit(0));
 }
 
 public static void main(String[] args) {
 SwingUtilities.invokeLater(() -> {
 UniformTranslucentFrame frame
 = new UniformTranslucentFrame("Translucent Frame");
 frame.setVisible(true);
 });
 }
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

242

// Make sure the frame is undecorated
this.setUndecorated(true);
  
// Set 40% opacity. That is, 60% translucency.
this.setOpacity(0.40f);
 

When you run this program, you can see the contents on your screen through the JFrame display area. A Close
button is added to the frame to close it.

Let’s see a per-pixel translucent JFrame in action. You will create a gradient effect (fading effect) inside a JPanel
by setting the alpha value for its background color different for different pixels in its display area. You can get a
per-pixel translucency in different ways. The easiest way to see it in action is to use a JPanel with a background color
and setting the alpha component to a desired translucency. The following snippet of code illustrates this:
 
// Create a frame and set its properties
JFrame frame = new JFrame();
frame.setUndecorated(true);
frame.setBounds(0, 0, 200, 200);
  
// Set the background color of the frame to all zero, so that the per-pixel translucency works
frame.setBackground(new Color(0, 0, 0, 0));
 
// Create a blue JPanel with 128 alpha component
JPanel panel = new JPanel();
int alpha = 128;
Color bgColor = new Color(0, 0, 255, alpha);
panel.setBackground(bgColor);
  
// Add the JPanel to the frame and display it
frame.add(panel);
frame.setVisible(true);
 

Two things are different in the code. First, it sets the background color of the frame with all color components
set to 0 to achieve the per-pixel translucency. Second, it sets the background color of the JPanel, which has an alpha
component, to 128. You can add another JPanel with a different alpha component for its background color to the
JFrame. This will give you two areas on the JFrame whose pixels use different translucency.

You can achieve a fancier result if you use an object of the GradientPaint class to paint your JPanel. A
GradientPaint object fills a Shape with a linear gradient pattern. It requires you to specify two points, p1 and p2, and
colors for each point, c1 and c2. The color on the connecting line between p1 and p2 will proportionally change from
c1 to c2.

Listing 3-17 contains the code for a custom JPanel that uses a GradientPaint object to paint its area. The
background color for the JPanel is specified in its constructor. It has overridden the paintComponent() to provide
the custom painting effect. The gradient color pattern is provided by Graphics2D. The method checks if it have a
Graphics2D object. The starting point, p1, is the upper left corner of the JPanel. The color for the starting point, c1, is
the same as the one passed in the constructor. It uses 255 as its alpha component. The second point, p2, is the upper
right corner of the JPanel, with the same color that uses a zero alpha component. This will give the JPanel a gradient
effect from opaque at the left edge to gradually turning transparent at the right edge. You can experiment by changing
the two points and the alpha component values for them to get a different gradient pattern. It sets the GradientPaint
object as the Paint object for the Graphics2D object and calls the fillRect() method to paint the area of the JPanel.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

243

Listing 3-17.  A Custom JPanel With a Gradient Color Effect Using the Per-Pixel Translucency

// TranslucentJPanel.java
package com.jdojo.swing;
 
import java.awt.Color;
import java.awt.GradientPaint;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.Paint;
import javax.swing.JPanel;
 
public class TranslucentJPanel extends JPanel {
 private int red = 240;
 private int green = 240;
 private int blue = 240;
 
 public TranslucentJPanel(Color bgColor) {
 this.red = bgColor.getRed();
 this.green = bgColor.getGreen();
 this.blue = bgColor.getBlue();
 }
 
 @Override
 protected void paintComponent(Graphics g) {
 if (g instanceof Graphics2D) {
 int width = this.getWidth();
 int height = this.getHeight();
 float startPointX = 0.0f;
 float startPointY = 0.0f;
 float endPointX = width;
 float endPointY = 0.0f;
 Color startColor = new Color(red, green, blue, 255);
 Color endColor = new Color(red, green, blue, 0);
  
 // Create a GradientPaint object
 Paint paint = new GradientPaint(startPointX, startPointY,
 startColor,
 endPointX, endPointY,
 endColor);
 
 Graphics2D g2D = (Graphics2D) g;
 g2D.setPaint(paint);
 g2D.fillRect(0, 0, width, height);
 }
 }
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

244

Listing 3-18 contains the code to see the per-pixel translucency in a JFrame in action. It adds three instances of the
TranslucentJPanel class with the background color of red, green, and blue. A Close button is added to close the frame.

Listing 3-18.  Using Per-Pixel Translucency in a JFrame

// PerPixelTranslucentFrame.java
package com.jdojo.swing;
 
import java.awt.Color;
import java.awt.GridLayout;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.SwingUtilities;
 
public class PerPixelTranslucentFrame extends JFrame {
 private JButton closeButton = new JButton("Close");
 
 public PerPixelTranslucentFrame(String title) {
 super(title);
 initFrame();
 }
 
 public void initFrame() {
 this.setDefaultCloseOperation(EXIT_ON_CLOSE);
 
 // Make sure the frame is undecorated
 this.setUndecorated(true);
 
 // Set the background color with all components as zero,
 // so per-pixel translucency is used
 this.setBackground(new Color(0, 0, 0, 0));
 
 // Set its size
 this.setSize(200, 200);
 
 // Center it on the screen
 this.setLocationRelativeTo(null);
 
 this.getContentPane().setLayout(new GridLayout(0, 1));
 
 // Create and add three JPanel with different color gradients
 this.add(new TranslucentJPanel(Color.RED));
 this.add(new TranslucentJPanel(Color.GREEN));
 this.add(new TranslucentJPanel(Color.BLUE));
 
 // Add a button to close the window
 this.add(closeButton);
 closeButton.addActionListener(e -> System.exit(0));
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

245

 public static void main(String[] args) {
 SwingUtilities.invokeLater(() -> {
 PerPixelTranslucentFrame frame
 = new PerPixelTranslucentFrame("Per-Pixel Translucent Frame");
 frame.setVisible(true);
 });
 }
}
 

Figure 3-12 shows the JFrame when the program is run. Notice the gradient effect in the frame. Each panel is
more translucent as you move from left to right. The text shown the figure is not part of the JFrame. The text was
displayed in the background when the JFrame was displayed. You can see through the translucent part of the JFrame.

Shaped Window
Swing lets you create a custom shaped window such as a round shaped JFrame, an oval shaped JDialog, etc. You
can give a window a custom shape by using the setShape(Shape s) method of the Window class. The shape of the
window is limited only by your imagination. You can create a shape by combining multiple shapes using the classes
in the java.awt.geom package. The following snippet of code creates a shape that contains an ellipse placed above a
rectangle. At the end, it sets the custom shape to a JFrame.
 
// Create a shape with an ellipse over a rectangle
Ellipse2D.Double ellipse = new Ellipse2D.Double(0, 0, 200, 100);
Rectangle2D.Double rect = new Rectangle2D.Double(0, 100, 200, 200);
  
// Combine an ellipse and a rectangle into a Path2D object to get a new shape
Path2D path = new Path2D.Double();
path.append(rect, true);
path.append(ellipse, true);
 

Figure 3-12.  A JFrame using per-pixel translucency

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

246

// Create a JFrame
JFrame frame = new JFrame("A Custom Shaped JFrame");
 
// Set the custom shape to the JFrame
Frame.setShape(path);
 

A Window owns a rectangular area on the screen. If you give a custom shape to a window, some of its parts may
be cut off. The part of a shaped window that does not belong to the custom shape is not visible and not clickable.
Figure 3-13 shows a custom shaped window with an ellipse placed above a rectangle. The window contains a Close
button. The areas around the four corners of the ellipse are not visible and not clickable.

Figure 3-13.  A custom shaped window with an ellipse placed above a rectangle

The following three criteria must be met to use a shaped window:

The platform must support •	 PERPIXEL_TRANSPARENT translucency. You can use the logic from
Listing 3-15 to check whether the PERPIXEL_TRANSPARENT translucency is supported.

The window must be undecorated. You can make a •	 JFrame or JDialog undecorated by calling
the setUndecorated(false) method on them.

The window must not be in full-screen mode. You can put a window in full-screen mode using •	
the setFullScreenWindow(Window w) method of the GraphicsDevice class.

Listing 3-19 contains the code that displays a shaped JFrame that was shown in Figure 3-13.

Listing 3-19.  Using a Custom Shaped JFrame

// ShapedFrame.java
package com.jdojo.swing;
 
import java.awt.BorderLayout;
import java.awt.geom.Path2D;
import java.awt.geom.Ellipse2D;
import java.awt.geom.Rectangle2D;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.SwingUtilities;
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

247

public class ShapedFrame extends JFrame {
 private JButton closeButton = new JButton("Close");
 
 public ShapedFrame() {
 initFrame();
 }
 
 public void initFrame() {
 // Make sure the frame is undecorated
 this.setUndecorated(true);
 
 this.setDefaultCloseOperation(EXIT_ON_CLOSE);
 this.setSize(200, 200);
 
 // Create a shape with an ellipse placed over a rectangle
 Ellipse2D.Double ellipse = new Ellipse2D.Double(0, 0, 200, 100);
 Rectangle2D.Double rect = new Rectangle2D.Double(0, 100, 200, 200);
 
 // Combine the ellipse and rectangle into a Path2D object and
 // set it as the shape for the JFrame
 Path2D path = new Path2D.Double();
 path.append(rect, true);
 path.append(ellipse, true);
 this.setShape(path);
 
 // Add a Close button to close the frame
 this.add(closeButton, BorderLayout.SOUTH);
 closeButton.addActionListener(e -> System.exit(0));
 }
 
 public static void main(String[] args) {
 SwingUtilities.invokeLater(() -> {
 // Display the custom shaped frame
 ShapedFrame frame = new ShapedFrame();
 frame.setLocationRelativeTo(null);
 frame.setVisible(true);
 });
 }
}
 

The following part of the code inside the initFrame() method in this listing is of interest:
 
// Make sure the frame is undecorated
this.setUndecorated(true);
 
// Create a shape with an ellipse placed over a rectangle
Ellipse2D.Double ellipse = new Ellipse2D.Double(0, 0, 200, 100);
Rectangle2D.Double rect = new Rectangle2D.Double(0, 100, 200, 200);
 
// Combine the ellipse and rectangle into a Path2D object and
// set it as the shape for the JFrame

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Swing

248

Path2D path = new Path2D.Double();
path.append(rect, true);
path.append(ellipse, true);
this.setShape(path);
 

The first statement makes sure that the JFrame is undecorated. Two shapes, an ellipse and a rectangle, are
created. Their coordinates and size are set to place the ellipse over the rectangle. A Path2D.Double object is used to
connect the ellipse and rectangle together into a custom Shape object. Path2D is an abstract class in the java.awt.geom
package. It declares two static inner classes, Path2D.Double and Path2D.Float, to store the coordinates of a shape
in double precision and single precision floating-point numbers, respectively. Shape is an interface declared in the
java.awt package. The Path2D class implements the Shape interface. Note that the setShape() method in the Window
class takes an instance of the Shape interface as an argument. The append() method of the Path2D class appends
the geometry of the specified Shape object to the path. The second argument to the append() method is an indicator
whether you want to connect two shapes using a line segment. If it is true, a call to the moveTo() method is translated
to the lineTo() method. In this case, the value of true for this argument is of no significance. Please explore the
classes in the java.awt.geom package to learn more about the many interesting shapes that you can use in your
Java application.

Summary
Swing components have built-in support for displaying HTML text as labels. You can use an HTML-formatted
string as a label for a JButton, JMenuItem, JLabel, JToolTip, JTabbedPane, JTree, etc. using an HTML string,
which should start and end with the <html> and </html> tags, respectively. If you do not want Swing to
interpret text enclosed in HTML tags as HTML for a component, you can disable the feature by calling the
putClientProperty("html.disable", Boolean.TRUE) method on the component.

Swing components are not thread-safe. You are supposed to update the component's states from a single
thread called an event dispatch thread. All event handlers for components are executed in the event dispatch thread.
Swing creates the event dispatch thread automatically. Swing provides a utility class called SwingUtilities to
work with the event dispatch thread; its invokeLater(Runnable r) method schedules the specified Runnable to
be executed on the event dispatch thread. It is safe to build the Swing GUI and show it on the event dispatch thread.
The isEventDispatchThread() of the SwingUtilities class returns true if this method is executed by the event
dispatch thread.

Running long-running tasks on the event dispatch thread will make your GUI unresponsive. Swing provides a
SwingWorker class to execute long-running tasks on worker threads that are threads other than the event dispatch
thread. The SwingWorker class provides features to publish the results of the task on the event dispatch thread that can
update the Swing components safely.

Swing provides pluggable L&F. It ships with some predefined L&F. You can use the UIManager.setLookAndFeel()
method to set a new L&F for your application.

Swing supports skinnable L&F called Synth that lets you define the L&F in an external XML file.
Drag and drop (DnD) is a way to transfer data between components in an application. Swing supports DnD

between Swing component, and Swing components and native components. Using DnD, you can copy, move, and
link data between two components.

Using Swing, you can develop a multiple document interface (MDI) application that consists of multiple frames
managed by a desktop manager. Frames in an MPI application can be arranged in different ways; for example, they
can be arranged in layers, they can be cascaded, they can be placed side by side, etc.

Swing provides an instance of the Toolkit class to communicate with the native system. The class contains many
useful methods such as for making a beep sound, knowing the screen resolution and size, etc.

Swing lets you have translucent windows. Translucency can be defined to be the same for all pixels in the window
or on a per-pixel basis.

In Swing, you are not limited to having only rectangular windows. It lets you create shaped windows. A shaped
window can be of any shape, such as circular, oval, or any custom shape.

www.it-ebooks.info

http://www.it-ebooks.info/

249

Chapter 4

Applets

In this chapter, you will learn

What an applet is•	

How to develop, deploy, and run applets•	

How to use the •	 <applet> tag to embed an applet in an HTML document

How to install and configure Java Plug-in, which runs the applets•	

How to use the •	 appletviewer program to run applets

The life cycle of applets•	

How to pass parameters to applets•	

How to publish an applet’s parameters and applet’s description•	

How to use images and audio clips in applets•	

How to customize the Java policy file to grant permissions to applets•	

How to sign applets•	

What Is an Applet?
An applet is a Java program that is embedded in an HTML document and run in a web browser. The compiled Java
code that makes up an applet is stored on a web server. The web browser downloads the applet code from the web
server over the Internet, and runs the code locally in the browser’s context. Typically, an applet has a graphical
user interface (GUI). An applet has many security restrictions as far as what it can or cannot access on the client’s
computer. Restrictions on applets are necessary because applets may not be developed and used by the same person.
An applet written with bad intentions may do harmful things to the client’s machine if it is allowed full access to the
client’s machine. For example, security restrictions do not allow an applet to access the file system or start a program
on the client machine. Suppose you open a web page with an applet that can read files on your machine. Without
your knowledge, a rogue applet could send your private information stored on your machine to its server. To protect
the applet users from this kind of mischief, it is necessary to have security restrictions in place when an applet is run.
There are many security restrictions that can be configured using a policy file. I will discuss how to configure applet
security policies later in this chapter.

Although a servlet is not related to an applet, I’ll explain the difference between the two. Like an applet, a servlet
is also a Java program that is deployed on a web server. Unlike an applet, a servlet runs on the web server itself and it
does not include a GUI.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Applets

250

Developing an Applet
Developing an applet is a four-step process:

Writing the Java code for the applet•	

Packaging and deploying the applet files•	

Installing and configuring Java Plug-in•	

Viewing the applet•	

Writing Java code for an applet is not much different from writing code for a Swing application. You just need to
learn a few standard classes and methods for applets that you will use in your code.

An applet is deployed on a web server and viewed in a web page using a web browser over the Internet/intranet.
You can also view an applet using an applet viewer during development and testing. JDK ships an appletviewer
program. The appletviewer program is installed in the JAVA_HOME\bin directory on your machine when you install the
JDK. I will discuss using the appletviewer in detail later in this chapter.

To view an applet in a web page, you need to embed the reference to the applet in an HTML document. You can
use any of the three HTML tags, <applet>, <object>, or <embed> to embed an applet in an HTML document. I will
discuss using these tags in detail shortly.

The next two sections discuss how to write Java code for an applet, and how to view the applet.

Writing an Applet
Your applet class must be a subclass of the standard applet classes supplied by Java. There are two standard applet
classes:

•	 java.applet.Applet

•	 javax.swing.JApplet

The Applet class supports AWT GUI components whereas the JApplet class supports Swing GUI components.
The JApplet class inherits from the Applet class. I will discuss only JApplet in this chapter. Listing 4-1 shows the code
for the simplest applet you can have.

Listing 4-1.  The Simplest Applet

// SimplestApplet.java
package com.jdojo.applet;
 
import javax.swing.JApplet;
 
public class SimplestApplet extends JApplet {
 // No extra code is needed for your simplest applet
}
 

The SimplestApplet does not have any GUI parts or logic. Technically, it is a complete applet. If you test this
applet in a browser, all you see is a blank area inside the web page.

Let’s create another applet with a GUI, so you can see something in the browser. The new applet is called
HelloApplet and it’s shown in Listing 4-2.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Applets

251

Listing 4-2.  A HelloApplet Applet That Displays a Message Using a JLabel

// HelloApplet.java
package com.jdojo.applet;
 
import java.awt.Container;
import java.awt.FlowLayout;
import javax.swing.JApplet;
import javax.swing.JButton;
import javax.swing.JLabel;
import javax.swing.JOptionPane;
import javax.swing.JTextField;
import static javax.swing.JOptionPane.INFORMATION_MESSAGE;
 
public class HelloApplet extends JApplet {
 @Override
 public void init() {
 // Create Swing components
 JLabel nameLabel = new JLabel("Your Name:");
 JTextField nameFld = new JTextField(15);
 JButton sayHelloBtn = new JButton("Say Hello");
  
 // Add an action litener to the button to display the message
 sayHelloBtn.addActionListener(e -> sayHello(nameFld.getText()));
  
 // Add Swing components to the content pane of the applet
 Container contentPane = this.getContentPane();
 contentPane.setLayout(new FlowLayout());
 contentPane.add(nameLabel);
 contentPane.add(nameFld);
 contentPane.add(sayHelloBtn);
 }
  
 private void sayHello(String name) {
 String msg = "Hello there";
 if (name.length() > 0) {
 msg = "Hello " + name;
 }
  
 // Display the hello message
 JOptionPane.showMessageDialog(null,
 msg, "Hello", INFORMATION_MESSAGE);
 }
}
 

Does the code for the HelloApplet class look familiar? It is similar to working with a custom JFrame. The JApplet
class contains an init() method. You need to override the method and add GUI parts to the applet. I will discuss
writing code in the init() method of an applet in detail shortly. Like a JFrame, a JApplet has a content pane that holds
the components for the applet. You added a JLabel, a JTextField, and a JButton to the content pane of the JApplet.
The program logic is simple. The user may enter a name and click the Say Hello button that displays a message.

Unlike a Swing application, you should not add any GUI to your applet in its constructor even though it would
work most of the time. The constructor for an applet is called to create an object of the applet class. The applet object

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Applets

252

does not get its “applet” status at the time it is created. It is still an ordinary Java object. If you use any features of an
applet inside its constructor, these features will not work correctly because the applet object is just a simple Java
object, not an “applet” in a real sense. After its creation, it gets the status of an applet, and its init() method is called
by the environment (typically a browser) that displays it. This is the reason why you need to place all your GUI code
(or any initialization code) in its init() method. The Applet class provides some other standard methods that you
can override and write your logic to perform different kinds of work inside an applet.

You do not run an applet the same way you run a Swing application. Note that an applet class does not have
a main() method. However, technically, it is possible to add a main() method to an applet, which does not help
in running an applet in any way. To see an applet in action, you need to have an HTML file. You should have basic
knowledge of HTML to work with an applet, but you do not need to be an expert in HTML. I will discuss how to view
an applet in the next section. At this time, you should compile the HelloApplet class. You will have a class file named
HelloApplet.class.

Deploying an Applet
Applets are Java programs. However, they are not run directly as any other Java programs. You need to do some
plumbing before you can run an applet. An applet needs to be deployed before it can be used. There are two parts in
the applet deployment:

The Java Code that defines the applet GUI and logic•	

An HTML document that contains applet’s details such as its class name, archive file name •	
containing the class file, width, height, etc.

You saw how to write the Java code for an applet in the previous section.
You embed the applet details in an HTML document using the <applet> tag. Both the applet code and the

HTML document are deployed to the web server. The browser on the client machine requests the HTML document
from the web server. When the browser finds the <applet> tag in the HTML document, it reads the applet’s details,
downloads the applet code from the web server, and runs the code as an applet in the browser. Does this mean that
you need to have a web server to see your applets in action? The answer is no. You can test your applets without
using a web server. You will need a web server to deploy your applets if you want to make your applets available for
users. The following sections describe how to create an HTML document for an applet and how to deploy an applet
to different environments.

Creating the HTML Document
An <applet> tag is used to embed an applet in an HTML document. The following is an example of an <applet> tag:
 
<applet code="com.jdojo.applet.HelloApplet" width="300" height="100" archive="myapplets.jar">
 This browser does not support Applets.
</applet>
 

You need specify the following mandatory attributes of the <applet> tag:

•	 code

•	 width

•	 height

•	 archive

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Applets

253

The code attribute specifies the fully qualified class name of the applet. Optionally, you can append .class to the
applet’s fully qualified name. For example, both of the following <applet> tags work the same:
 
<!-- Use fully qualified name of the applet class as code -->
<applet code="com.jdojo.applet.HelloApplet">
...
</applet>
 
<!-- Use fully-qualified name of the applet class followed by .class -->
<applet code="com.jdojo.applet.HelloApplet.class">
...
</applet>
 

You can also use a forward slash instead of a dot to separate the sub-package names. For example, you can also
specify the code attribute’s value as "com/jdojo/applet/HelloApplet" and “com/jdojo/applet/HelloApplet.class”.

The width and height attributes specify the initial width and height of the applet’s area in the web page,
respectively. You can specify the width and height attributes in pixel or in percentage. If the values are numbers,
they are considered in pixels; for example, width="150" denotes a width of 150 pixels. If the values are followed by
a percent sign (%), it denotes the percentage of the dimension of the container in which the applet is displayed; for
example, width="50%" denotes that the width of the applet will be 50% of its container. Typically, the container is the
browser window.

If you are using Java 7 Update 51 or later to view the applet, the archive attribute is mandatory. You need to
bundle all files—class files and other resource files—for an applet in a JAR file. Bundling applet files in a JAR file makes
the files smaller in size and results in a faster download for the applet’s users. The value of the archive attribute is the
name of the JAR file containing the files for the applet.

You may want to display a message in the web page if the browser does not support the <applet> tag. The
message should be placed between the <applet> and </applet> tags as follows. The browser will ignore the message
if it supports applets.
 
<applet>
 Inform the user that the browser does not support applets.
</applet>
 

Listing 4-3 shows the contents of the helloapplet.html file that you will use to test the applet. Note that the
<applet> tag does not contain the archive attribute that will let you test the applet without having to create a JAR file.

Listing 4-3.  Contents of the helloapplet.html File

<html>
 <head>
 <title>Hello Applet</title>
 </head>
 <body>
 <h3>Hello Applet in Action</h3>
 
 <applet code="com.jdojo.applet.HelloApplet" width="200" height="100">
 This browser does not support Applets.
 </applet>
 </body>
</html>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Applets

254

Deploying Applets in Production
In a production environment, you must deploy your applet using a JAR file and sign the JAR file using a certificate
issued by a trusted authority. A self-signing the JAR will not work. In a test environment, you can ignore this
requirement, and you can use an unsigned JAR files or simply use class files. I will show you how to ignore this
requirement to test the applets in this chapter. If you are learning applets for the first time, you may skip to the next
section. You can revisit this section when you need to deploy your applet in the production environment.

Use the following steps to package and deploy applets. The steps refer to terms and commands related to created
JAR files. Please refer to Chapter 8 in the book Beginning Java Language Features (ISBN: 978-1-4302-6658-7) for more
details on creating JAR files.

	 1.	 Create a manifest file (say manifest.mf). It must contain a Permissions attribute. The
following shows the contents of the manifest file:
 
Manifest-Version: 1.0
Permissions: sandbox
 
The other value for the Permissions attribute is all-permissions. The value of sandbox
indicates that the applet will run in the security sandbox and it does not require access to
any additional resources on the client’s machine. The value of all-permissions indicates
that the applet needs access to the client’s machine.

	 2.	 Create a JAR file that contains all class files for the applet and the manifest file created in
the previous section. You can use the following command to create the JAR file named
helloapplet.jar:
 
jar cvfm helloapplet.jar manifest.mf com\jdojo\applet*.class
 

	 3.	 Sign the helloapplet.jar file with the certificate you obtained from a trusted authority.
Obtaining a certificate costs money (approximately $100). If you are just learning applets,
you can skip this step. The “Signing Applets” section later in this chapter explains in detail
how to sign an applet.

	 4.	 Deploy the signed helloapplet.jar file to the web server. You will need to consult the
documentation of your web server on how to deploy applets. Some web servers provide
deployment screens to let you deploy your JAR files and some let you drop the JAR file
into a specific directory. The typical way of deploying files to a web server is to let the
development IDE such as NetBeans and Eclipse package and deploy the necessary project
files for you.

Deploying Applets for Testing
It will be too much trouble to package and deploy an applet for testing if you need to follow the steps described in the
previous section. You can keep all class files and HTML files in the file system and test your applet. I assume that you
have the applet files and that their full paths are similar to the following paths:

•	 C:\myapplets\helloapplet.html

•	 C:\myapplets\com\jdojo\applet\HelloApplet.class

The paths are shown using the file path syntax used on Windows. Please change them to the path syntax used by
your operating system if you are not using Windows.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Applets

255

You are not required to store the applet files in a specific directory such as C:\myapplets. You can replace the
directory C:\myapplets with a path to any directory. However, you must preserve the file paths after the C:\myapplets
directory. You will be able to play with the directory structures for storing applet files after you read few more sections later.

If you have created the helloapplet.jar file to test the applet, I assume that you have added the archive
attribute to the <applet> tag as archive="helloapplet.jar" in the helloapplet.html file and that the file paths will
look as shown:

•	 C:\myapplets\helloapplet.html

•	 C:\myapplets\helloapplet.jar

Installing and Configuring Java Plug-in
Browsers use Java Plug-in to run applets. You must install and configure Java Plug-in before you can run your applet.

Installing the Java Plug-in
The Java Runtime Environment (JRE) is also known as Java Plug-in or Java add-on. The JRE (and hence Java Plug-in)
is installed for you when you install JDK. The client machine running your applets does not need to install the JDK.
It can just install the JRE. You can download the latest version of the JRE, which is 8.0 at the time of this writing, from
www.oracle.com. The JRE is free to download, install, and use.

On Windows 8, using 64-bit JRE 8.0, I was able to run my applets only in Internet Explorer. I had to uninstall
64-bit JRE 8.0 and install 32-bit JRE 9.0 for my applets to work in all browsers, such as Google Chrome, Mozilla Firefox,
and Internet Explorer.

On Linux, you need to do some manual setup to install Java Plug-in for the Firefox browser. Please follow the
instructions at www.oracle.com/technetwork/java/javase/manual-plugin-install-linux-136395.html to set up
the Java Plug-in on Linux.

Opening the Java Control Panel
You can configure Java Plug-in using the Java Control Panel program. The Java Control Panel program launches the
window shown in Figure 4-1.

www.it-ebooks.info

http://www.oracle.com/
http://www.oracle.com/technetwork/java/javase/manual-plugin-install-linux-136395.html
http://www.it-ebooks.info/

Chapter 4 ■ Applets

256

On Windows 8, you can access the Java Control Panel via the following steps.

	 1.	 Open Search by pressing the Windows logo key + W. Make sure to select “Everywhere” for
the search location. By default “Settings” is selected.

	 2.	 Enter “Java,” “Java Control Panel,” or “Configure Java” as the search term.

	 3.	 Click the Java icon to open the Java Control Panel.

	 4.	 If you could not find the Java Control Panel using Search, open the Control Panel by right-
clicking the Start icon and selecting Control Panel from the menu. In the top-right corner
in the Control Panel, you get a Search field. Enter “Java” in the Search field and you will see
a program named Java. Click the program name to open the Java Control Panel.

On Windows 7, you can access Java Control Panel via the following steps.

	 1.	 Click the Start button, and then select the Control Panel option from the menu.

	 2.	 Enter Java Control Panel in the Search field in Control Panel.

	 3.	 Click the Java icon to open the Java Control Panel.

Figure 4-1.  The Java Control Panel

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Applets

257

Tip■■   On Windows, you can directly launch the Java Control Panel by running the file javacpl.exe that is located
under the JRE_HOME\bin directory. For JRE 8, the default path is C:\Program Files\Java\jre8\bin\javacpl.exe.

On Linux, you can access the Java Control Panel by running the ControlPanel program from the Terminal
window. The ControlPanel program is installed in the JRE_HOME\bin directory where JRE_HOME is the directory in
which you have installed the JRE. Suppose you have installed the JRE in /java8/jre directory. You need to run the
following command from the Terminal window:
 
[/java8/jre/bin]$./ControlPanel
 

On Mac OS X (10.7.3 and above), you can access the Java Control Panel using the following steps:

Go to the System Preferences by clicking the Apple icon in the upper left of screen.•	

Click the Java icon to access the Java Control Panel.•	

Configuring Java Plug-in
You can configure a variety of settings for Java Plug-in using the Java Control Panel. In this section, I will describe how
to bypass the signed JAR requirement for running applets. Open the Java Control Panel and select the Security tab, as
shown in Figure 4-2.

Figure 4-2.  Configuring the security settings in the Java Control Panel

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Applets

258

The checkbox labeled “Enable Java content in the browser” lets you enable/disable the support for running
applets in the browser. By default, this checkbox is checked and applets can run in the browser. If this checkbox is
unchecked, you cannot run applets in the browser.

The second setting is the security level, which you can set by sliding the knob of the vertical slider control. It can
be set to the following three values:

Very High: This is the most restrictive security level setting. Only signed applets with a valid •	
certificate and that include the Permissions attribute in the manifest for the main JAR file are
allowed to run with security prompts. All other applets are blocked.

High: This is the minimum recommended and default security level setting. Applets that •	
are signed with a valid or expired certificate and that include the Permissions attribute in
the manifest for the main JAR file are allowed to run with security prompts. Applets are also
allowed to run with security prompts when the revocation status of the certificate cannot be
checked. All other applets are blocked.

Medium: Only unsigned applets that request all permissions are blocked. All other applets are •	
allowed to run with security prompts. Selecting this security level is not recommended. It will
make your computer more vulnerable if you run a malicious applet.

For your testing purposes, you can set the security level to Medium. This will allow you to test applets packaged
in an unsigned JAR file. You do not need to include the Permissions attribute in the manifest file either. It will also
allow you to test your applets from the file system, avoiding the need for a web server to deploy your applets. You
should change the security setting back to the recommended High or Very High as soon as you are done with testing.
Note that using the Medium security level setting will show you warnings when you attempt to run any applets not
meeting the security requirements. You will need to confirm when you get the warnings that you want to continue
with running the applets despite the security risks.

The third setting on the Security tab is called Exception Site List. This lets you bypass the security requirements
needed by the Security Level setting for the specified sites. Click the “Edit Site List” button to open the Exception Site
List dialog box shown in Figure 4-3.

Figure 4-3.  The Exception Site List Dialog Box

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Applets

259

Click the Add button. You will see a blank row added for the location. Enter file:/// (Note the three ///) for the
location. Click the Add button again. Clicking the Add button second time displays a Security Warning message stating
that adding file:// (note two //) is a security risk. Click the Continue button on the warning dialog box. You get
another blank row location. Enter http://localhost:8080. Repeat this step to add one more location,
 http://www.jdojo.com. The Exception Site List dialog box should look as shown in Figure 4-4. Now, click the OK
button to return to the Security tab.

Figure 4-4.  The Exception Site List Dialog Box

From now on, irrespective of the “Security Level” setting, you will be able to run all applets from the three sites:

•	 file:/// means applets from your file system using the file protocol.

•	 http://localhost:8080 means any web server running at port 8080 on your machine using
the http protocol.

•	 http://www.jdojo.com means applets running from the website www.jdojo.com using
the http protocol. I maintain jdojo.com. You can access the hello applets using the URL
http://www.jdojo.com/myapplets/helloapplet.html.

Once you are done with the testing your applets, please remove these sites from the exception list so your
computer is protected from running malicious applets.

www.it-ebooks.info

http://www.jdojo.com/
http://www.jdojo.com/
http://www.jdojo.com/
http://jdojo.com
http://www.jdojo.com/myapplets/helloapplet.html
http://www.it-ebooks.info/

Chapter 4 ■ Applets

260

Viewing an Applet
If you have been following the steps in the previous sections, viewing an applet is as simple as entering the URL of the
hellapapplet.html file in the browser. Follow these steps to view the applet.

	 1.	 Open the browser of your choice, such as Google Chrome. Mozilla Firefox, or Internet
Explorer.

	 2.	 Press Ctrl + O or select the Open menu option from the File menu. You will get a browse/
open dialog box. Navigate to the directory in which you have stored the helloapplet.html
file and open it in the browser.

	 3.	 Depending on the settings in the Java Control Panel, you may get security warnings, which
you need to ignore.

	 4.	 Alternatively, you can enter the URL for the HTML file directly. If you saved the
helloapplet.html file in the C:\myapplets directory in windows, you can enter the URL
as file:///C:/myapplets/helloapplet.html.

	 5.	 If everything was set up correctly, you will see the applet running in your browser as
shown in Figure 4-5. Enter your name and click the Say Hello button to display a greeting
dialog box. 

Figure 4-5.  The Hello Applet running from the file system in the Google Chrome browser

If you are not able to view the applets using these steps, please read on the next section, which will describe how
to view applets during testing using the appletviewer.

Using the appletviewer to Test Applets
You can use the appletviewer command to view an applet. It is available as appletviewer program in the
JAVA_HOME\bin folder, where JAVA_HOME is the JDK installation folder on your machine. Here is the generic form
of the command syntax:
 
appletviewer <options> <urls>
 

In <options>, you can specify various options for the command. You must specify one or more URLs separated
by a space that contain the applet documents. You can use any of the following commands to view the applet
described in the previous section. On Microsoft Windows, you can use the command prompt to enter the command.
On Linux, use the Terminal window.
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Applets

261

appletviewer http://www.jdojo.com/myapplets/helloapplet.html
 

or
 
appletviewer file:///C:/myapplets/helloapplet.html
 

You may get the following error when you run the above command:
 
'appletviewer' is not recognized as an internal or external command, operable program or batch file.
 

If you received the above error, you need to specify the full path for the appletviewer command, such as
C:\java8\bin\appletviewer, assuming you have installed the JDK in C:\java8 directory. You can try the following
command on the Windows command prompt:
 
C:\java8\appletviewer http://www.jdojo.com/myapplets/helloapplet.html
 

Figure 4-6 shows the applet running in the appletviewer window. Note that the appletviewer displays only the
applet from the document specified in the URL. All other HTML contents are ignored. For example, the applet does
not display the text from the helloapplet.html file that you had added inside the <h3> tag.

Figure 4-6.  The Hello Applet running from the file system in the Google Chrome browser

If you want to view multiple applets using the appletviewer command, you can do so by specifying multiple
URLs on the command line. Each applet will be displayed in a separate applet viewer window. The following
command may be used to display two applets from two different web servers, where URL_PART1 could be
http://www.myserver1.com/myapplets1 and URL_PART2 could be http://www.myserver2.com/myapplets2:
 
appletviewer URL_PART1/applet1.html URL_PART2/applet2.html
 

The appletviewer command displays each applet found in the documents in a separate window. For example,
if applet1.html contains two applets and applet2.html contains three applets, the above command will open
five applet viewer windows. If the document referred to by the URL does not contain any applet, the appletviewer
command does not do anything. The content in the document referred to by the URL is ignored except for the part
that is related to an applet. The appletviewer window has a main menu called “Applet” that lets you reload an applet,
restart it, stop it, save it in serialized form, etc.

You can specify three options to the appletviewer command:

•	 -debug

•	 -encoding

•	 -Jjavaoptions

www.it-ebooks.info

http://www.jdojo.com/myapplets/helloapplet.html
http://www.jdojo.com/myapplets/helloapplet.html
http://www.myserver1.com/myapplets1
http://www.myserver2.com/myapplets2
http://www.it-ebooks.info/

Chapter 4 ■ Applets

262

The –debug option lets you start the appletviewer in debug mode. You can specify the encoding of your document
referred to by the URLs using the –encoding option. The –Jjavaoptions option lets you specify any Java options
for the JVM. The –J part of the option is removed and the remaining part is passed to the JVM. The following are
examples of using these options. Note that to specify the classpath environment variable for the appletviewer, you
need to specify the –J options twice.
 
appletviewer –debug your_document_url_goes_here
appletviewer –encoding ISO-8859-1 your_document_url_goes_here
appletviewer –J-classpath -Jc:\myclasses your_document_url_goes_here 

Tip■■   If you are using the NetBeans IDE to develop your applets, right-clicking the applet’s file, such as
HelloApplet.java in the IDE, and selecting the Run File menu option runs your applet in the appletviewer.

Using the codebase Attribute
In the HelloApplet example, you placed the Java class file and the HTML file under the same parent directory. You
files were placed as follows:

•	 ANY_DIR\html_file

•	 ANY_DIR\package_directories\class_file

You do not have to follow the above directory structure to use your applet. The parent directory in which the
HTML file for the applet is stored is called the document base. The parent directory where the Java class files (always
consider the directory structure needed for the package in which the applet class is placed) are stored is called the
code base. You can specify a code base for your applet in the <applet> tag using the codebase attribute. If you do not
specify the codebase attribute, the document base is used as codebase. The codebase attribute could be a relative URL
or an absolute URL. Using an absolute URL for the code base opens up another possibility for storing applet class files.
You can store an applet’s HTML file on one web server and the Java classes on another. In such cases, you must specify
an absolute codebase for the java classes.

A relative URL for the codebase attribute is resolved using the href attribute’s value for the <base> tag in the
HTML document. If a <base> tag is not specified in the HTML document, the URL from where the HTML document
was downloaded is used to resolve the relative codebase URL. Let’s look at some examples.

Example 1
The content of a helloapplet.html file is as follows. Note that you include a <base> tag and you do not specify the
codebase attribute for the <applet> tag.
 
<html>
 <head>
 <title>Hello Applet</title>
 <base href="http://www.jdojo.com/myapplets/myclasses">
 </head>
 <body>
 <applet code="com.jdojo.applet.HelloApplet" width="150" height="100">
 This browser does not support Applets.

www.it-ebooks.info

http://www.jdojo.com/myapplets/myclasses
http://www.it-ebooks.info/

Chapter 4 ■ Applets

263

 </applet>
 </body>
</html>
 

The document is downloaded using the URL http://www.jdojo.com/myapplets/helloapplet.html. Since you
have specified the <base> tag, the browser will look for the applet’s class file at http://www.jdojo.com/myapplets/
myclasses/com/jdojo/applet/HelloApplet.class.

Example 2
The content of a helloapplet.html file is as follows. Note that you include the <base> tag and you do not specify the
codebase attribute for the <applet> tag as mydir.
 
<html>
 <head>
 <title>Hello Applet</title>
 <base href="http://www.jdojo.com/myapplets/myclasses">
 </head>
 <body>
 <applet code="com.jdojo.applet.HelloApplet" width="150" height="100"
 codebase="mydir">
 This browser does not support Applets.
 </applet>
 </body>
</html>
 

The document is downloaded using the URL http://www.jdojo.com/myapplets/helloapplet.html. Since you
have specified the <base> tag, the browser will look for the applet’s class file at http://www.jdojo.com/myapplets/
myclasses/mydir/com/jdojo/applet/HelloApplet.class. Note that the codebase value of mydir is resolved using
the <base> tag’s href value. If you had specified the codebase value as ../xyzdir (two dots means one directory
up), the browser will look for the class file at http://www.jdojo.com/myapplets/xyzdir/com/jdojo/applet/
HelloApplet.class. Note that some browsers do not let you specify two dots to indicate one level up in a directory
hierarchy as part of a codebase URL for security reasons.

Example 3
The content of a helloapplet.html file is as follows. Note that you have not included the <base> tag and you have
specified the codebase attribute for the <applet> tag.
 
<html>
 <head>
 <title>Hello Applet</title>
 </head>
 <body>
 <applet code="com.jdojo.applet.HelloApplet"
 width="150" height="100" codebase="abcdir">
 This browser does not support Applets.
 </applet>
 </body>
</html>
 

www.it-ebooks.info

http://www.jdojo.com/myapplets/helloapplet.html
http://www.jdojo.com/myapplets/myclasses/com/jdojo/applet/HelloApplet.class
http://www.jdojo.com/myapplets/myclasses/com/jdojo/applet/HelloApplet.class
http://www.jdojo.com/myapplets/myclasses
http://www.jdojo.com/myapplets/helloapplet.html
http://www.jdojo.com/myapplets/myclasses/mydir/com/jdojo/applet/HelloApplet.class
http://www.jdojo.com/myapplets/myclasses/mydir/com/jdojo/applet/HelloApplet.class
http://www.jdojo.com/myapplets/xyzdir/com/jdojo/applet/HelloApplet.class
http://www.jdojo.com/myapplets/xyzdir/com/jdojo/applet/HelloApplet.class
http://www.it-ebooks.info/

Chapter 4 ■ Applets

264

The document is downloaded using the URL http://www.jdojo.com/myapplets/helloapplet.html. Since you
have not specified the <base> tag, the relative URL for the codebase will be resolved using the URL used to download
the HTML file and the browser will look for a class file at http://www.jdojo.com/myapplets/abcdir/com/jdojo/
applet/HelloApplet.class.

If you use an absolute URL for the codebase, the browser will look for the applet’s class files using that absolute
URL, irrespective of the presence of a <base> tag in the HTML file and from where the HTML file is downloaded. Let’s
consider the following <applet> tag:
 
<applet code="com.jdojo.applet.HelloApplet" width="150" height="100"
 codebase="http://www.jdojo.com/myclasses">
 This browser does not support Applets.
</applet>
 

The browser will look for the applet’s class files at http://www.jdojo.com/myclasses/com/jdojo/applet/
HelloApplet.class. If you want to store the applet’s class files and HTML files on different servers, you need to
specify the codebase value as an absolute URL.

The Applet class provides two methods called getDocumentBase() and getCodeBase() to get the document base
URL and the code base URL, respectively. The getDocumentBase() method returns the URL of the document that has
an embedded <applet> tag. For example, if you enter the URL http://www.jdojo.com/myapplets/helloapplet.html
in your browser to view the applet, http://www.jdojo.com/myapplets/helloapplet.html will be returned from the
getDocumentBase() method. The getCodeBase() method returns the URL of the directory that is used to download
the Java classes for the applet. The URL returned from this method depends on many factors, as you have just seen in
the examples.

The Life Cycle of an Applet
An applet goes through different stages during its existence. It is created, initialized, started, stopped, and
destroyed. An applet is first created by calling its constructor. At the time of its creation, it is a simple Java object
and it does not get its “applet” status. After its creation, it gets its applet status and there are four methods in the
Applet class that are called by the browser. You can place code in those methods to perform different kinds of logic.
These methods are as follows:

•	 init()

•	 start()

•	 stop()

•	 destroy()

The init() Method
The init() method is called by the browser after an applet has been instantiated and loaded. You can override this
method to place any code that performs initialization logic for your applet. Typically, you will place code to create a
GUI for your applet in this method. This method is called only once during the lifetime of the applet.

The start() Method
The start() method is called just after the init() method. It may be called multiple times. Suppose you are viewing
an applet in a web page, and you open another web page in the same browser window (or tab) by replacing the
applet’s web page. If you go back to the previous web page, and if the applet was cached, its start() method will be

www.it-ebooks.info

http://www.jdojo.com/myapplets/helloapplet.html
http://www.jdojo.com/myapplets/abcdir/com/jdojo/applet/HelloApplet.class
http://www.jdojo.com/myapplets/abcdir/com/jdojo/applet/HelloApplet.class
http://www.jdojo.com/myclasses
http://www.jdojo.com/myclasses/com/jdojo/applet/HelloApplet.class
http://www.jdojo.com/myclasses/com/jdojo/applet/HelloApplet.class
http://www.jdojo.com/myapplets/helloapplet.html
http://www.jdojo.com/myapplets/helloapplet.html
http://www.it-ebooks.info/

Chapter 4 ■ Applets

265

called again. If the applet was destroyed when you replaced the applet’s web page by another web page, its life cycle
will start over, and its init() and start() methods will be called in sequence. You can place any code in this method
that starts a process, such as an animation when the applet is shown on a web page.

The stop() Method
The stop() method is the counterpart of the start() method. It may be called multiple times. Typically, it is called
when the web page showing the applet is replaced by another web page. It is also called before the destroy() method
is called. Typically, you place code in this method that stops any process such as an animation that was started in the
start() method.

The destroy() Method
The destroy() method is called when the applet is destroyed. You can place code that performs logic to release any
resources that were held during the lifetime of the applet. The stop() method is always called before the destroy()
method is called. This method is called only once during the lifetime of an applet.

Listing 4-4 contains the code for an applet that displays a dialog box when the applet’s init(), start(), stop(),
and destroy() methods are called. It includes the number of times the start() and stop() methods are called in
the messages.

Listing 4-4.  An Applet to Demonstrate the Life Cycle of an Applet

// AppletLifeCycle.java
package com.jdojo.applet;
 
import javax.swing.JApplet;
import javax.swing.JLabel;
import javax.swing.JOptionPane;
 
public class AppletLifeCycle extends JApplet {
 private int startCount = 0;
 private int stopCount = 0;
  
 @Override
 public void init() {
 this.getContentPane().add(new JLabel("Applet Life Cycle!!!"));
 JOptionPane.showMessageDialog(null, "init()");
 }
 
 @Override
 public void start() {
 startCount++;
 JOptionPane.showMessageDialog(null, "start(): " + startCount);
 }
 
 @Override
 public void stop() {
 stopCount++;
 JOptionPane.showMessageDialog(null, "stop(): " + stopCount);
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Applets

266

 @Override
 public void destroy() {
 JOptionPane.showMessageDialog(null, "destroy()");
 }
}
 

Listing 4-5 contains the contents of the HTML file to view the AppletLifeCycle applet. It assumes that the HTML
file and Java class file will be placed in a directory structure as shown:
 
ANY_DIR\appletlifecycle.html
ANY_DIR\com\jdojo\applet\AppletLifeCycle.class
 

If you have a different directory structure, you may need to include the codebase attribute in an <applet> tag. You
can view applets using the steps described previously.

Listing 4-5.  The Contents of the appletlifecycle.html File to View the AppletLifeCycle Applet

<html>
 <head>
 <title>Lifecycle of an Applet</title>
 </head>
 <body>
 <applet code="com.jdojo.applet.AppletLifeCycle"
 height="200" width="200">
 This browser does not support Applets.
 </applet>
 </body>
</html>

Passing Parameters to Applets
You can let the users of your applets configure the applet by passing parameters to it in the HTML document. You can
pass parameters to an applet using the <param> tag inside the <applet> tag. The <param> tag has two attributes called
name and value. The name and value attributes of a <param> tag are used to specify a name and value of the parameter,
respectively. You can pass multiple parameters to an applet using multiple <param> tags. The following HTML snippet
passes two parameters to an applet:
 
<applet code="MyApplet" width="100" height="100">
 <param name="buttonHeight" value="20" />
 <param name="buttonText" value="Hello" />
</applet>
 

The parameter names are buttonHeight and buttonText and their values are 20 and Hello, respectively. Make
sure you have meaningful names for your applet parameter that make sense to the user who reads them. Technically,
any string for a parameter name is fine. For example, technically, p1 and p2 are as good parameter names as
buttonHeight and buttonText. However, the latter are more meaningful to the users.

The Applet class provides a getParameter() method that accepts the parameter name as its argument
and returns the parameter value as a String. Note that it always returns a String irrespective of the value set
for a parameter. For example, if you want to use the value 20 for the parameter buttonHeight as an integer,
you need to convert the String into an integer in inside the applet’s Java code. The name of the parameter
that you pass to the getParameter() method is case-insensitive; both getParameter("buttonHeight") and

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Applets

267

getParameter("BUTTONHEIGHT") return the same value of 20 as a String. If the specified parameter has not been set
in the HTML document, the getParameter() method returns null. The following snippet of code demonstrates how
to use the getParameter() method in the code for an applet:
 
// buttonHeight and buttonText will get the values 20 and Hello
String buttonHeight = getParameter("buttonHeight");
String buttonText = getParameter("buttonText") ;
 
// bgColor will be null as there is no backgroundColor parameter set
String bgColor = getParameter("backgroundColor");
 

You can customize a few aspects of your applet using parameters. You do not have to change your code if the
value of the parameter changes. If you pass parameters to your applet, make sure to assign a default value to each
parameter, in case it is not set in the HTML document. For example, you can set the background color of your applet
as an applet’s parameter. If it is not set, you can default to a color such as gray or white.

Listing 4-6 shows the code for an AppletParameters applet. It uses two GUI components, a JTextArea to display
a welcome message and a JButton. The welcome message and the button’s text can be customized passing two
parameters called welcomeText and helloButtonText. The applet code reads the two parameter values in its init()
method. It sets the default values for parameters if they are not set in the HTML document. Listing 4-7 contains the
HTML file’s content and Figure 4-7 shows the applet in action. Figure 4-8 shows the message box that is displayed
when you click the Say Hello button.

Listing 4-6.  Passing Parameters to an Applet Using the <param> Tag

// AppletParameters.java
package com.jdojo.applet;
 
import java.awt.Container;
import java.awt.FlowLayout;
import javax.swing.JApplet;
import javax.swing.JButton;
import javax.swing.JOptionPane;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;
 
public class AppletParameters extends JApplet {
 private JTextArea welcomeTextArea = new JTextArea(2, 20);
 private JButton helloButton = new JButton();
 
 @Override
 public void init() {
 Container contentPane = this.getContentPane();
 contentPane.setLayout(new FlowLayout());
 
 contentPane.add(new JScrollPane(welcomeTextArea));
 contentPane.add(helloButton);
 
 // Show parameters when the button is clicked
 helloButton.addActionListener(e -> showParameters());
 
 // Make the welcome JTextArea non-editable
 welcomeTextArea.setEditable(false);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Applets

268

 // Display the welcome message
 String welcomeMsg = this.getParameter("welcomeText");
 if (welcomeMsg == null || welcomeMsg.equals("")) {
 welcomeMsg = "Welcome!";
 }
 welcomeTextArea.setText(welcomeMsg);
 
 // Set the hello button text
 String helloButtonText = this.getParameter("helloButtonText");
 if (helloButtonText == null || helloButtonText.equals("")) {
 helloButtonText = "Hello";
 }
 
 helloButton.setText(helloButtonText);
 }
 
 private void showParameters() {
 String welcomeText = this.getParameter("welcomeText");
 String helloButtonText = this.getParameter("helloButtonText");
 
 String msg = "Parameters passed from HTML are\nwelcomeText="
 + welcomeText + "\nhelloButtonText=" + helloButtonText;
 JOptionPane.showMessageDialog(null, msg);
 }
} 

Listing 4-7.  Contents of the appletparameters.html File Used to View the AppletParameters Applet

<html>
 <head>
 <title>Applet Parameters</title>
 </head>
 <body>
 <applet code="com.jdojo.applet.AppletParameters"
 width="300" height="50">
 <param name="welcomeText"
 value="Welcome to the applet world!"/>
 <param name="helloButtonText"
 value="Say Hello"/>
 This browser does not support Applets.
 </applet>
 </body>
</html>  

Figure 4-7.  The AppletParameters applet running in a browser

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Applets

269

Tip■■   You can also use the getParameter() method of the Applet class to get the value of attributes of a <applet>
tag. For example, you can use getParameter("code") to get the value of the code attribute of the <applet> tag.

Publishing the Applet’s Parameter Information
An applet lets you publish information about the parameters it accepts. You may develop an applet that knows about
its parameters. Your applet may be viewed using different applet viewers and by users other than you. Publishing the
parameters that your applet accepts may be helpful for the program that is hosting the applet and to the user who is
viewing it. For example, an applet viewer may let the user change the applet’s parameters interactively and reload the
applet. The Applet class provides a getParameterInfo() method, which you need to override in your applet class to
publish information about your applet’s parameters. It returns a two-dimensional (nX3) array of String. By default, it
returns null. The array should have rows equal to the number of parameters it accepts. Each row should have three
columns containing the parameter’s name, type, and description. Implementing the getParameterInfo() method in
your applet is not necessary for your applet to work. However, it is good practice to provide information about your
applet’s parameters through this method. Let’s assume that the following <applet> tag is used to display your applet:
 
<applet code="MyApplet" width="100" height="100">
 <param name="buttonHeight" value="20" />
 <param name="buttonText" value="Hello" />
</applet>
 

One possible implementation for a getParameterInfo() method for the MyApplet class is as follows. Note that as
a developer, you are just the publisher of the applet’s parameter information. It is up to the applet viewer programs to
use it in any way they choose.
 
public class MyApplet extends JApplet {
 // Other code for applet goes here...
 
 // Public applet's parameter info
 public String[][] getParameterInfo() {
 String[][] parametersInfo =
 { {"buttonHeight",
 "integer",
 "Height for the Hello button in pixel"
 },
 {"buttonText",
 "String",

Figure 4-8.  The AppletParameters applet running in a browser

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Applets

270

 "Hello button's text"
 }
 };
  
 return parametersInfo;
 }
}

Publishing the Applet’s Information
The Applet class provides a getAppletInfo() method that should return a text description of the applet. The default
implementation of this method returns null. It is good practice to return a brief description of your applet from this
method, so your applet users can know a little more about your applet. This description may be displayed in some
manner by the tool that is used to view the applet. The following snippet of code illustrates using the getAppletInfo()
method to provide information about your applet:
 
public class MyApplet extends JApplet {
 // Other applet's logic goes here...
 
 public String getAppletInfo() {
 return "My Demo Applet, Version 1.0, No Copyright";
 }
}

Other Attributes of the <applet> Tag
Table 4-1 lists all attributes for the <applet> tag and their usage. In addition to the attributes listed in this table, you
can also use some other standard HTML attributes such as id, style, etc. with the <applet> tag.

Table 4-1.  The List of Attributes for the <applet> tag

Name Usage

Code Specifies the fully qualified name of the applet’s class or the applet’s class file name.

codebase Specifies the URL for the base directory that contains the applet’s classes. If it is not specified,
the document’s base URL, specified in the <base> tag, or the URL from where the document is
downloaded is used as its value. Its value could be a relative or absolute URL. A relative URL is
resolved based on a document base URL in the <base> tag’s value if present, or a URL from where the
document is downloaded.

Width Specifies the width of the applet in pixels or percentage of its container’s width. For example,
width="100" specifies the applet’s width as 100 pixels whereas width="30%" specifies the applet’s
width as 30% of its container’s width.

height Specifies the height of the applet in pixel or percentage of its container’s height. For example,
height="200" specifies applet’s height as 200 pixels whereas height="20%" specifies the applet’s
height as 20% of its container’s height.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Applets

271

Name Usage

archive Specifies a list of comma-separate archive files (JAR or ZIP files). The archive files may contain classes
and other resources such as images, audios, etc., that are used by the applet. The archive file may
use a relative or absolute URL. The relative URL is resolved using the codebase attribute’s value.
The download time is reduced significantly if your applet uses multiple classes and other resources
that are packaged in archive files. If you do not use archives, each class and resource for your applet
will be downloaded separately when they are needed. If you archive them, all files contained in the
archives are downloaded using one connection to the server, thus reducing the download time. You
can choose to place some files in archives and some in directories. If your applet needs a resource,
it first looks for it in the archive, and then on the server in directories as specified by the codebase
attribute value.

object Specifies the name of the file that contains the serialized form of the applet. You can specify
either a code attribute or an object attribute, but not both. When the applet is displayed, it will
be deserialized, and its init() method will not be called. Its start() method will be called. This
attribute is not used often.

Name Specifies the name of the applet. You can use the name of the applet to find other applets running in
the same web page. You can also specify the name of the applet by using a <param> tag with its name
attribute value as “name”. Both of the following will set the name of the applet to myapplet1:

<applet name="myapplet1" ...>
...
</applet>

or

<applet ...>
<param name="name" value="myapplet1"/>
</applet>

You can get the name of an applet by using the getParameter("name") method of the Applet class.

alt Specifies alternate text to be displayed if the browser understands the <applet> tag but cannot run
the applet. It is preferred to use text between the <applet> and </applet> tags to display the alternate
text that can also include HTML formatting in your alternate text.

align Specifies the position of the applet with respect to the surrounding contents. Its value could be
bottom, middle, top, left, or right. Note that this attribute specifies the applet’s position relative to
its surrounding, not relative to its container. For example, using align="middle" will not make the
applet appear in the middle of the browser window. If you want to place your applet in the middle
of the browser window, you need to use another HTML technique such as placing the <applet> tag
inside another container such as <p> and then setting the align attribute. For example, the following
HTML piece of code will place an applet in the center of the browser window:

<p align="center">
 <applet ...>...</applet>
</p>

hspace Specifies the space in pixels that is left to the left and right of the applet.

vspace Specifies the space in pixels that is left to the top and bottom of the applet.

Table 4-1.  (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Applets

272

Using Images in an Applet
Using images in an applet is simple. The Applet class has an overloaded getImage() method that returns a
java.awt.Image object. Here are the two version of this method:

•	 Image getImage(URL imageAbsoluteURL)

•	 Image getImage(URL baseURL, String imageURLPath)

The first version takes an absolute URL of the image such as http://www.jdojo.com/myapplets/images/
welcome.jpg. The second version takes a base URL and a URL path to the image. The URL for the image is resolved
using the first argument, which is the base URL. Consider the following snippet of code in an applet:
 
URL baseURL = new URL("http://www.jdojo.com/myapplets/abc.html");
Image welcomeImage = getImage(baseURL, "images/welcome.jpg");
 

The contents of the welcome.jpg file will be fetched using the base URL and the relative image’s URL from
http://www.jdojo.com/myapplets/images/welcome.jpg. Consider the following snippet of code in an applet:
 
URL baseURL = new URL("http://www.jdojo.com/myapplets/abc.html");
Image welcomeImage = getImage(baseURL, "/images/welcome.jpg");
 

This time, the image URL path (/images/welcome.jpg) starts with a forward slash. This URL path will be resolved
to http://www.jdojo.com/images/welcome.jpg. You can store all images under the directory where you store the
HTML document, and always use the document base URL returned from getDocumentBase() method as the base
URL to fetch the images.

The getImage() method returns immediately. The image is downloaded when the applet needs to paint it.
Listing 4-8 contains the code for an applet that uses an image. Listing 4-9 has the HTML content to view the applet.

Listing 4-8.  Using Images in an Applet

// ImageApplet.java
package com.jdojo.applet;
 
import java.awt.Container;
import java.awt.Image;
import javax.swing.ImageIcon;
import javax.swing.JApplet;
import javax.swing.JLabel;
 
public class ImageApplet extends JApplet {
 JLabel imageLabel;
 
 @Override
 public void init() {
 Container contentPane = this.getContentPane();
 Image img = this.getWelcomeImage();
 if (img == null) {
 imageLabel = new JLabel("Image parameter not set...");
 }
 else {

www.it-ebooks.info

http://www.jdojo.com/myapplets/images/welcome.jpg
http://www.jdojo.com/myapplets/images/welcome.jpg
http://www.jdojo.com/myapplets/abc.html
http://www.jdojo.com/myapplets/images/welcome.jpg
http://www.jdojo.com/myapplets/abc.html
http://www.jdojo.com/images/welcome.jpg
http://www.it-ebooks.info/

Chapter 4 ■ Applets

273

 imageLabel = new JLabel(new ImageIcon(img));
 }
 contentPane.add(imageLabel);
 }
 
 private Image getWelcomeImage() {
 Image img = null;
 String imageURL = this.getParameter("welcomeImageURL");
 if (imageURL != null) {
 img = this.getImage(this.getDocumentBase(), imageURL);
 }
 return img;
 }
} 

Listing 4-9.  Contents of the imageapplet.html File

<html>
 <head>
 <title>Using Images in Applet</title>
 </head>
 <body>
 <applet code="com.jdojo.applet.ImageApplet"
 width="250" height="200">
 <param name="welcomeImageURL"
 value="images/welcome.jpg"/>
 This browser does not support Applets.
 </applet>
 </body>
</html>
 

This example assumes the following directory structure, where ANY_DIR means a directory in your web server or
local file system:

•	 ANY_DIR\myapplets\imageapplet.html

•	 ANY_DIR\myapplets\images\welcome.jpg

•	 ANY_DIR\myapplets\com\jdojo\applet\ImageApplet.class

The image URL path relative to the document base is specified as a parameter. If the image URL is not specified in
the HTML code, the applet displays a string to that effect in a JLabel. If your directory structure is not the same as listed
above, you will need to modify the applet’s code or HTML contents before you can run this example successfully.

Playing Audio Clips in an Applet
It is easy to play an audio clip in an applet. The Applet class has an overloaded getAudioClip() method that returns
an instance of the java.applet.AudioClip interface. Here are the two version of this method:

•	 AudioClip getAudioClip(URL audioAbsoluteURL)

•	 AudioClip getAudioClip(URL baseURL, String audioURLPath)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Applets

274

The getAudioClip() method works the same way as the getImage() method. It returns immediately. The audio
clip is loaded when it is played. The AudioClip interface is declared as follows:
 
package java.applet;
 
public interface AudioClip {
 void play();
 void stop();
 void loop();
}
 

You can start playing an audio clip using the play() method. You can stop playing the audio clip using the stop()
method. You can play an audio clip in a loop using its loop() method. The following code snippet demonstrates how
to use an audio clip in an applet:
 
// Assuming that audios/myaudio.wav is stored under a directory
// where the HTML file for the applet is stored
AudioClip clip = getAudioClip(getDocumentBase(), "audios/myaudio.wav");
clip.play(); //* Play the clip
 
// Other logic goes here
 
clip.stop(); // Stop the clip
 

The Applet class contains some convenience methods that let you play an audio clip without dealing with the
AudioClip interface. The applet will download the audio clip and play it for you. You just need to specify the URL of
the audio clip and use the play() method of the Applet class as shown:
 
// Assuming that the following code is inside your applet class
this.play(this.getDocumentBase(), "audios/myfav.wav");
 

If you want to play an audio clip in a Java application, use the newAudioClip() static method of the Applet class
to get the AudioClip object as shown:
 
URL myFavAudioURL = new URL("http://www.jdojo.com/myfav.wav");
AudioClip clip = Applet.newAudioClip(myFavAudioURL);
clip.play();

Interacting with the Applet’s Environment
An applet context refers to the environment that runs the applet, such as a browser, an applet viewer, etc. An
instance of the java.applet.AppletContext interface represents the applet’s context. The Applet class provides a
getAppletContext() method that returns the applet’s context. Using an AppletContext object, you can open a new
document, display a message in the applet’s container status bar, and get reference to another applet running in the
same document. The following snippet of code demonstrates some of the uses of the AppletContext object:
 
// Get the applet context object
AppletContext context = getAppletContext();
  
// Open the Yahoo's home page in a new window
URL yahooURL = null;

www.it-ebooks.info

http://www.jdojo.com/myfav.wav
http://www.it-ebooks.info/

Chapter 4 ■ Applets

275

try {
 yahooURL = new URL("http://www.yahoo.com");
 context.showDocument(yahooURL, "_blank");
}
catch (MalformedURLException e) {
 e.printStackTrace();
}
 
// Show a brief message in the status bar
context.showStatus("Welcome to the applet world!");
 
// Get reference of another applet named "crazyApplet"
Applet crazyApplet = context.getApplet("crazyApplet");
if (crazyApplet != null) {
 context.showStatus("Found the crazy applet...");
 
 // Now you can invoke methods on crazyApplet
}
 

The showDocument() method opens another document specified by the first parameter. By using its second
parameter, you can control the window in which it displays the new document. The valid values for the second
parameter are: "_self", "_parent", "_top", "_blank", and "any existing/non-existing frame/window name".
The same values are also used in standard HTML/JavaScript code.

The showStatus() method is used to display a short, but not very important, message in the status bar of a
browser. The browser also uses the same status bar to display messages. You should not display an important message
that needs the user’s attention using this method. The user may not see your message, or it may be overwritten before
the user has a chance to see it. If you need to display important messages, you should consider displaying it in the
applet area.

The getApplet() and getApplets() methods are used to find other applets running in the same document.
Refer to the next section for more details on how an applet may communicate with other applets.

Tip■■  T he applet context is not available when the applet object is created. Calling the getAppletContext() method in
an applet’s constructor returns null. The getImage() and getAudioClip() methods invoke a corresponding method in
the AppletContext object. Since the AppletContext object for an applet is not available when the applet’s constructor is
executing, do not use the getImage() and getAudioClip() methods of Applet class in its constructor.

Communion of Applet, HTML, and JavaScript
An applet can open another HTML document using its showDocument() method. It can also display a brief message
on the status bar of the browser by using its showStatus() method. There are many other possibilities when you work
with applets. In fact, applets, HTML, and JavaScript coexist happily and they can comminute with each other. Here are
some of the possibilities:

An applet can communicate with another applet in the same HTML document.•	

An applet can communicate with JavaScript by invoking JavaScript functions.•	

JavaScript can communicate with an applet by accessing an applet’s methods and fields.•	

Figure 4-9 shows a possible interaction among applets, HTML, and JavaScript.

www.it-ebooks.info

http://www.yahoo.com/
http://www.it-ebooks.info/

Chapter 4 ■ Applets

276

Before an applet can communicate with another applet, it must find the applet it wants to communicate with.
The AppletContext class has two methods that let an applet find another applet in the same HTML document:

•	 Applet getApplet(String appletName)

•	 Enumeration<Applet> getApplets()

The getApplet() method requires you to pass the name of the applet you are looking for and it returns the
reference of the applet if it is found. If it does not find the applet, it returns null. You must specify a name for your
applet to be found for this method to work. You use this method as shown:
 
import java.applet.Applet;
...
Applet app = getAppletContext().getApplet("applet2");
if (app == null) {
 // applet2 is not found
}
else {
 // Work with applet2 object.
}
 

The getApplets() method returns the Enumeration of all applets on the page including the one that calls this
method. You can use this method as shown:
 
import java.applet.Applet;
import java.util.Enumeration;
...
Enumeration<Applet> e = getAppletContext().getApplets();
while(e.hasMoreElements()) {
 Applet app = e.nextElement();
 // Work with app applet now
}
 

An applet can communicate with JavaScript using the netscape.javascript.JSObject class. The JSObject
class is not part of the standard Java library. If you have installed JRE, it is packaged in the plugin.jar file, which is
stored in a JRE_HOME\lib folder. If you use JSObject in your applet, you need to include the plugin.jar file in your

An HTML Document

Applet 1 Applet 2

JavaScript

Figure 4-9.  Communication between applets, HTML, and JavaScript

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Applets

277

CLASSPATH in order for your applet’s code to compile. You can get the reference of the browser window using the
JSObject.getWindow() static method. You need to pass the reference of the applet to the JSObject.getWindow()
method. The following snippet of code demonstrates how to call a JavaScript method from an applet:
 
// Need to import the JSObject class
import netscape.javascript.JSObject;
 
// Get the reference of the browser window
JSObject browserWindow = (JSObject)JSObject.getWindow(this);
 
 
/* You need to use the call() method of the browserWindow passing the
 JavaScript function name as a string and arguments as an Object array.
 Assume that helloJS(msgText) is a JavaScript function which accepts a
 string argument and returns some value.
*/
String methodName = "helloJS";
Object[] methodArgs = {"Hello from applet"};
Object returnValue = browserWindow.call(methodName, methodArgs);
 

To access JavaScript from inside an applet, you must include a MAYSCRIPT attribute in your <applet> tag. Your
applet tag will look as follows:
 
<applet code="MyApplet" width="100" height="100" MAYSCRIPT>
...
</applet>
 

JavaScript provides references to all applets in the document as an applets property of the document object.
The property is an array. You can access it using a zero-based index or an applet name. Suppose you have two
applets in a document named applet1 and applet2. The following JavaScript functions have the code to call the
pushMessage() method of all applets and applet1 on the page, assuming the all applets in the HTML document have
a pushMessage(String msg) method:
 
// A JavaScript function.
// Call the pushMessage() method of all applets on the page
function pushMessageToAllApplets() {
 for(var i = 0; i < document.applets.length; i++) {
 document.applets[i].pushMessage("Hello");
 }
}
 
// A JavaScript function.
// Call the pushMessage() method of applet1 on the page
function pushMessageToApplet1() {
 document.applets["applet1"].pushMessage("Hello applet1");
}
 

You can access any public methods or fields of an applet from JavaScript code. Note that JavaScript is not a
compiled language and it may throw runtime errors if the method or field name of the applet does not exist.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Applets

278

Packaging Applets in Archives
You can package all Java classes and resources such as images, audios, etc. for an applet in archives (JAR or ZIP files).
You can use one or more archives to package your applet resources. All archive file names are specified in a comma-
separated list as the value for archive attribute of the <applet> tag. The archive files names are resolved using the
codebase attribute value.
 
<applet code="MyApplet"
 width="200"
 height="200"
 codebase="resources"
 archive="myclasses1.jar, myclasses2.jar, myimages.zip">
</applet>
 

If you package all your resources in archives, you do not have to maintain the specific directory structures on
your web server to store your classes and other resources. Packaging all your resources for an applet in archives has a
huge advantage with regards to applet loading time. It improves the applet loading time significantly, as it downloads
the entire archive using one connection rather than connecting once for each file to download. However, if, for some
reason, you cannot package all your applet classes and resources in archives, you may keep some in directories and
package some in archives. If the applet needs a resource (class file, image, audio clips, etc.), it looks for it first in
archives, and then on the server.

The Event Dispatching Thread and Applets
I covered a great deal about the role of the event-dispatching thread in a Swing application in Chapter 3. The
discussion about the event-dispatching thread and Swing also applies to applets because applets also use Swing
components. The four applet life cycle methods of init(), start(), stop(), and destroy() are called by applet
viewers (typically a web browser) and they are not called on the event-dispatching thread. You are supposed to write
your program so that all Swing-related code executes on the event-dispatching thread. You have been building your
GUI in the init() method, and now you know that the init() method is not executed on the event-dispatching
thread. So, you have not been following the correct way of working with Swing components. You have not come across
any problems in your applets related to the event-dispatching thread because the examples so far have been trivial. If
you are developing production-level applets, you need to follow the guidelines suggested.

You need to use the invokeAndWait() and invokeLater() methods of the SwingUtilities class to run your
code on the event-dispatching thread. Usually, you use the invokeLater() method so your code is scheduled to
run on the event-dispatching thread later. The invokeLater() method returns immediately. You should not use the
invokeLater() method to build a GUI from the init() method of the applet. The reason is very obvious. An applet
viewer (usually a web browser) calls the applet’s init() and start() methods in sequence. When the init() method
returns, it calls the start() method. If you use the invokeLater() method in the init() method to build the GUI,
the init() method will return immediately (not necessarily after running the code to build the GUI, but just after
scheduling the GUI building code to run later) and the applet viewer will call the start() method. That is, when
the start() method executes, your GUI may not be ready. However, the assumption is that your applet must be
initialized before the init() method returns, so that you can perform the next steps in its start() method. This is the
reason why you need to use the invokeAndWait() method to build a GUI inside an applet’s init() method, so you
can be sure that when the start() method is called, your GUI is already in place. Here is the correct way to code the
init() method of an applet. Listing 4-10 rewrites the HelloApplet class and calls it BetterHelloApplet. It uses the
initApplet() method to build the GUI for the applet. The initApplet() method is called on the event-dispatching
the thread from the init() method.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Applets

279

Listing 4-10.  Using the Event-Dispatching Thread to Build a GUI in an Applet

// BetterHelloApplet.java
package com.jdojo.applet;
 
import javax.swing.JApplet;
import javax.swing.SwingUtilities;
import java.awt.Container;
import java.awt.FlowLayout;
import java.lang.reflect.InvocationTargetException;
import javax.swing.JButton;
import javax.swing.JLabel;
import javax.swing.JOptionPane;
import javax.swing.JTextField;
import static javax.swing.JOptionPane.INFORMATION_MESSAGE;
import static javax.swing.JOptionPane.ERROR_MESSAGE;
 
public class BetterHelloApplet extends JApplet {
 @Override
 public void init() {
 try {
 // Build the GUI on thw event-dispatching thread
 SwingUtilities.invokeAndWait(() -> initApplet());
 }
 catch (InterruptedException | InvocationTargetException e) {
 JOptionPane.showMessageDialog(null, e.getMessage(),
 "Error", ERROR_MESSAGE);
 }
 }
 
 private void initApplet() {
 // This method is supposed to be executed on the
 // event-dispatching thread
 
 // Create Swing components
 JLabel nameLabel = new JLabel("Your Name:");
 JTextField nameFld = new JTextField(15);
 JButton sayHelloBtn = new JButton("Say Hello");
 
 // Add an action litener to the button to show the hello message
 sayHelloBtn.addActionListener(e -> sayHello(nameFld.getText()));
 
 // Add Swing components to the content pane of the applet
 Container contentPane = this.getContentPane();
 contentPane.setLayout(new FlowLayout());
 contentPane.add(nameLabel);
 contentPane.add(nameFld);
 contentPane.add(sayHelloBtn);
 }
 
 private void sayHello(String name) {
 String msg = "Hello there";

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Applets

280

 if (name.length() > 0) {
 msg = "Hello " + name;
 }
 
 // Display the hello message
 JOptionPane.showMessageDialog(null, msg, "Hello", INFORMATION_MESSAGE);
 }
}
 

The choice of using the invokeAndWait() and invokeLater() methods of the SwingUtilities class in other
places depends on the situation at hand. As a rule of thumb, you need to execute the code for the init(), start(),
stop(), and destroy() methods of your applet in the event-dispatching thread using one of the two methods of the
SwingUtilities class. You can use the SwingWorker class to perform any task in a background thread and coordinate
with Swing components using the event-dispatching thread. Please refer to the Chapter 3 for details on using threads
in a Swing application.

Painting in Applets
The Applet class is inherited from the java.awt.Panel class. The JApplet class is inherited from the Applet class.
If you want to draw graphics or strings on an applet surface directly, you need to override its paint(Graphics g)
method and write your code. Note that if you add Swing components and draw onto their surface, you need to
override the paintComponent(Graphics g) method of those Swing components. Alternatively, you can override the
paint() method of the Applet class and perform the drawing as shown in Listing 4-11.

Listing 4-11.  An Applet Using the paint() Method to Draw a String

// DrawingHelloApplet.java
package com.jdojo.applet;
 
import javax.swing.JApplet;
import java.awt.Graphics;
 
public class DrawingHelloApplet extends JApplet {
 @Override
 public void paint(Graphics g) {
 super.paint(g);
 g.drawString("Hello Applet!", 10, 20);
 }
}

Is the Java Code Trusted?
There are two kinds of Java code that may run on your machine: trusted code and untrusted code. There are no hard
and fast rules to designate which Java code is always trusted and which one is not. However, there are a few rules
you can go by. By default, you should categorize all Java code that your web browser downloads over the Internet to
run applets as untrusted because you do not know who wrote the code for the applets. You can categorize all local
Java code that is run as applications on your machine as trusted code. The difference between trusted and untrusted
code comes into picture when the code tries to access some privileged resources such as the local file system. By
default, Java treats all locally stored code as trusted to give full access to the privileged resources. It treats the code
downloaded over the network as untrusted. It does not grant access to the privileged resources to untrusted code.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Applets

281

Java lets you grant access to the privileged resources to some code and not to others using policy files. Let’s consider
an example to understand how you can customize security in Java using policy files. Listing 4-12 contains the code
for the SecurityTest class. It writes a text message to a file called c:\sec_demo.txt. The file path is for the Windows
platform. You can modify the file path when you run this program according to your choice.

Listing 4-12.  A SecurityTest Class That Writes a Text Message to a File

// SecurityTest.java
package com.jdojo.applet;
 
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
 
public class SecurityTest {
 public static void main(String[] args) throws IOException {
 // Message to be written to the file
 String msg = "Testing Java filee permission security...";
  
 // Change the path C:\sec_demo.txt to conform to the
 // syntax supported by your operating system
 Path filePath = Paths.get("C:\\sec_demo.txt");
  
 // Write message to the file
 Files.write(filePath, msg.getBytes());
  
 // Print a message
 System.out.println("Test message written to " + filePath);
 }
}
 

You can run this class using the following command:
 
java com.jdojo.applet.SecurityTest
 

The above command will print the following message on the standard output:
 
Test message written to c:\sec_demo.txt
 

Running the same SecurityTest class using the following command generates a runtime error. A partial error
message is shown:
 
java -Djava.security.manager com.jdojo.applet.SecurityTest
 
Exception in thread "main" java.security.AccessControlException: access denied
("java.io.FilePermission" "C:\sec_demo.txt" "write")
...
 

You passed -Djava.security.manager as a JVM option when you ran the SecurityTest class the second
time. This option tells the JVM to run the class using a security manager. When you ran this class the first time, it
was run without a security manager, and the program was able to access the file system and write to a file. When a

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Applets

282

security manager is present, it checks for the permissions granted to the executing code, which needs to access some
resources. Since you have not granted your code the permission to write to a file, you received the security exception
when you ran the class the second time.

Policy files control Java security. Two default policy files grant permissions to Java code. JRE_HOME\jre\lib\
security\java.policy is a system-wide policy file, where JRE_HOME is the directory where the Java Runtime environment
is installed. Another policy file is user-specific and it is stored in USER_HOME\.java.policy, where USER_HOME is the user’s
home directory defined by a user.home system property. Note the dot in front of the user-specific default Java policy file
name (.java.policy). You can also have custom policy files and specify their URLs at the command line when you run
your application.

There is a configuration file stored in JRE_HOME\lib\security\java.security that contains detailed information
about the default policy files locations and other security related details. The following is the partial content of the
java.security file that is supplied with the JRE installation. It states the name of the two Java policy files—one in
the Java home directory and one in the user’s home directory. You can add some more default policy files to this by
following the pattern for the key.
 
The default is to have a single system-wide policy file,
and a policy file in the user's home directory.
policy.url.1=file:${java.home}/lib/security/java.policy
policy.url.2=file:${user.home}/.java.policy
 

To make the example work and let it write to a C:\sec_demo.txt file, let’s create a file named jsec.policy and
add the following text to this file:
 
grant {
 permission java.io.FilePermission "c:\\sec_demo.txt", "read, write"; };
};
 

Save the custom security file as C:\jsec.policy. The grant statement in your custom policy file states the
following: grant read and write permissions on C:\sec_demo.txt file to any code. The write permission is good
enough to run the example. However, you have granted both read and write permissions in your policy file. Note the
two backslashes in the file path (C:\\sec_demo.txt) in the grant statement. The policy file parser will translate the
two backslashes into one and the file path will be treated as C:\sec_demo.txt. Run the SecurityTest class with the
following command. The entire command is entered in one line.
 
java -Djava.security.manager -Djava.security.policy=file:/C:/jsec.policy com.jdojo.applet.SecurityTest
 

The following message will be printed on the standard output:
 
Test message written to c:\sec_demo.txt
 

This time you instructed the JVM to run the SecurityTest class using a security manager and a policy file at
file:/C:/jsec.policy URL. Note that you use a URL to locate a policy file, not a file path. It means you can store your
policy files at a web server and use a URL like http://www.jdojo.com/mysec.policy to locate the custom policy file.
Note that, by default, the two policy files—one system-wide policy file and one user-specific policy file—are still used
along with your custom policy file. If you did not want to create a custom policy file, you could have added the above
permissions in any of the two default policy files and the application would have run the same.

I will not discuss Java security policy file formats in detail. JDK/JRE ships with a utility application called
policytool that lets you work with a Java policy file graphically. It is installed in the JAVA_HOME\bin folder, where
JAVA_HOME is the JDK or JRE installation folder on your machine.

To start the discussion on security restrictions and customization for applets, I will discuss a little more about the
policy file format. Here are some more examples of granting permissions in a policy file. You can use Java comments
in a policy file as well.

www.it-ebooks.info

http://www.jdojo.com/mysec.policy
http://www.it-ebooks.info/

Chapter 4 ■ Applets

283

The simplified general syntax of granting permissions in policy files is
 
grant signedby "<signer names>", codebase "<code base URL>" {
 permission <permission class name> "<target name>", "<actions>";
};
 

The text in <...>is supplied by the writer of the policy file. Many of the options are optional. You can include
multiple permission clauses in one grant block. You can have multiple grant blocks in one policy file. The signedby
option indicates that the permissions are granted only to the code that is signed by the signers. For example, consider
the following grant block:
 
grant signedby "John" {
 ...
};
 

The grant block indicates that the permissions are granted if the code is signed by John.
Consider the following grant block:

 
grant signedby "John, Robert, Cheryl" {
 ...
};
 

The grant block indicates that permissions are granted if the code is signed by John, Robert, and Cheryl. I will
discuss more about code signing in the next section. If the signedby option is not present, the permissions are granted
to the code based on other criteria, irrespective of whether the code is signed or not.

The codebase option is used to grant permissions to the code that is executed from a specific URL. Consider the
following grant block:
 
grant codebase "file:/c:/classes" {
 ...
};
 

The grant block indicates that the code from file:/c:/classes URL will be granted the permissions. If the
codebase option is not present, permissions are granted to the code that is downloaded and executed from any
locations. Some examples of granting permissions in a Java policy file are as follows:
 
/* Grant read and write permission to the file c:\sec_demo.txt
 to code signed or unsigned and downloaded from any location.
*/
grant {
 permission java.io.FilePermission "c:\\sec_demo.txt", "read, write";
};
 
/* Grant write permission to the file c:\sec_demo.txt to code signed or
 unsigned and downloaded from file:/C:/classes/ URL.
*/
grant codebase "file:/C:/classes/" {
 permission java.io.FilePermission "c:\\sec_demo.txt", "write";
};
 
/* Grant two permissions to the code signed by John and downloaded
 from the file:/C:/classes/ URL.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Applets

284

 1. Grant the execute permission on the file c:\crazy.exe
 2. Grant the read permission for the system property user.home, so
 the code can execute the statement System.getProperty("user.home").
 If this permission is not granted, reading the property "user.home"
 will throw a security exception.
*/
grant signedby "John", codebase "file:/C:/classes/" {
 permission java.io.FilePermission "c:\\crazy.exe", "execute";
 permission java.util.PropertyPermission "user.home", "read";
};
 

You can grant java.io.FilePermission to a file or directory. You can use a file or directory path and a set of
actions to grant the permissions on a file. You can grant any combinations of read, write, delete, and execute
permissions on a file/directory. Multiple actions are separated by a comma. A policy file supports different formats to
specify a file/directory path, such as those listed in Table 4-2.

Table 4-2.  The List of File/Directory Path Format Used in Granting the java.io.FilePermission

File/Directory Path Format Description

File path:
C:\mydir\test.txt

Grants permissions only on this file.

Directory path:
C:\mydir or C:\mydir\

Grants permissions only on this directory. (One trailing file separator is
treated the same as no trailing separator for a directory. It is a forward slash
on UNIX such as /usr/mydir or /usr/mydir/, and a backslash on Windows.

C:\mydir* Grants permissions on all files under the C:\mydir directory. Note that it
does not grant permissions on the C:\mydir directory itself.

* Grants permissions on all files under the current directory.

C:\mydir\- Grants permissions to all files and folders under C:\mydir and its
subdirectories, recursively.

- Grants permissions to all files and folders under the current directory and
its subdirectories, recursively.

<<ALL FILES>> Grants permissions on all files and folders under the file system. For
example, the following grant clause grants read permission to all code on
all files in the file system:

grant {
 permission java.io.FilePermission "<<ALL FILES>>", "read";
};

Security Restrictions for Applets
By default, the code for an applet is treated as untrusted code and it is run under a security manager. If you run
an applet from a local file system using a file protocol, the browser may relax some of these restrictions. These
restrictions apply if the applet’s code is downloaded using a network protocol such as http or https. The code for an

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Applets

285

applet that is downloaded over the network is considered untrusted by default, even if the web server from which the
code is downloaded is running locally. The following is a partial list of restrictions that are applied to untrusted code
and applets:

It cannot access a local file system.•	

It cannot connect to any machine, except the machine from which its code was downloaded.•	

It cannot load a native library.•	

It cannot start a program on the machine it is running on.•	

It can read only a few system properties, which are considered harmless. It can read system •	
properties, such as the OS.name, OS.version, java.version, etc. It cannot read potentially
risky system properties, such as user.home, user.dir, java.class.path, etc.

It cannot exit the JVM using the •	 System.exit() method call.

It displays pop-up windows with some visual hints to the users to indicate that the pop-up •	
windows are being displayed from an applet and it is untrusted.

How can an applet perform some of the tasks that are restricted? There are two ways to let an applet perform the
otherwise restricted tasks:

You can customize the policy file and grant the specific permissions.•	

You can use a signed applet.•	

Listing 4-13 contains the code for an applet that attempts to read the user.home system property. Listing 4-14
contains the HTML code to view the applet.

Listing 4-13.  An Applet That Attempts to Read the user.home System Property

// ReadUserHomeApplet.java
package com.jdojo.applet;
 
import javax.swing.JApplet;
import javax.swing.JTextArea;
import java.io.StringWriter;
import java.io.PrintWriter;
import javax.swing.JScrollPane;
import java.awt.Container;
 
public class ReadUserHomeApplet extends JApplet {
 JTextArea msgTextArea = null;
 
 @Override
 public void init() {
 String msg = "";
 try {
 String userHome = System.getProperty("user.home");
 msg = "User's Home Directory is '" + userHome + "'";
 }
 catch (Throwable t) {
 msg = this.getStackTrace(t);
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Applets

286

 this.msgTextArea = new JTextArea(msg, 10, 40);
 Container contentPane = this.getContentPane();
 contentPane.add(new JScrollPane(msgTextArea));
 }
 
 public String getStackTrace(Throwable t) {
 StringWriter sw = new StringWriter();
 PrintWriter pw = new PrintWriter(sw, true);
 t.printStackTrace(pw);
 pw.close();
 return sw.toString();
 }
} 

Listing 4-14.  Contents of the readuserhomeapplet.html File Used to View the ReadUserHomeApplet Applet

<html>
 <head>
 <title>Read User Home Directory</title>
 </head>
 <body>
 <applet code="com.jdojo.applet.ReadUserHomeApplet"
 width="400"
 height="300">
 This browser does not support Applets.
 </applet>
 </body>
</html>
 

The applet code in Listing 4-13 is very simple. It uses the System.getProperty("user.home") method to read the
user’s home directory. By default, an applet is not allowed to read the user.home system property. When you view this
applet, you get a security exception. The partial exception message is as follows:
 
java.security.AccessControlException: access denied ("java.util.PropertyPermission" "user.home"
"read")
...
 

The exception message is stating that the applet’s code does not have a read permission of type java.util.
PropertyPermission to read the user.home system property. The following grant block grants this permission
to all code:
 
grant {
 permission java.util.PropertyPermission "user.home", "read";
};
 

Add this grant block to a .java.policy file in your home directory. If a .java.policy file does not exist in your
home directory, you can create a new file with this name and add the above grant to it. On Windows XP, your home
directory is C:\Documents and Settings\<your-user- name>. You can also get your user’s home directory path

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Applets

287

by executing System.getProperty("user.home") statement in a standalone Java application that is not running
under a security manager. After adding the above grant in a .java.policy file in the user’s home directory, the
ReadUserHomeApplet applet displays a message similar to the following:
 
User’s Home Directory is 'C:\Documents and Settings\sharan'
 

Make sure that you remove the grant block from your .java.policy file after working on this example. Otherwise,
any applet will be able to read your user’s home directory on your machine without your knowledge. I will go through
the same example in the next section using a signed applet.

Signing Applets
When an applet is run in a browser, it cannot access anything on the client’s machine, except some information like
OS name, version of the JVM, etc. When you want to give access to an applet the same as a Java application, you need
to use a signed applet.

The concept behind a signed applet is the same as the concept behind a signed document. By signing a
document, you approve it, and, by approving it, you take responsibility for what is contained in the document. It does
not guarantee that someone else cannot tamper with the document after you have signed it. However, in case of any
doubts about the document’s authenticity, you can be contacted for verification. Whoever can verify your signature
and trusts you can take your signed document to be authentic. The concept works the same for an applet. Recall that
an applet’s code is untrusted by default. If an applet is a signed applet, the user of the applet grants permissions to a
signed applet in a Java policy file or he can trust the applet and grant permissions on the fly.

Before you can sign an applet, you must have a key pair called private/public key. You can generate a key pair
using the keytool command that is installed in JAVA_HOME\bin folder, where JAVA_HOME is the folder in which you
have installed the JDK or JRE. The generated keys are stored in a database known as a keystore. The keytool command
also lets you create a keystore database. The private key is a secret key for you and the public key is for the public who
wants to verify your signature. Once you have a key pair, you need to generate a certificate request (you can use the
keytool command with a –certreq option to generate a certificate request) to send to a Certification Authority (CA)
to get a certificate. A CA is an organization that issues a digital certificate. The digital certificate comprises the public
key supplied by you and your identity. CA will charge you a moderate fee for issuing the certificate. DigiCert, Thawte,
and VeriSign are some of the CAs available. You can also issue a certificate yourself and this is what you will do for the
demonstration purpose in this section. However, if you are deploying your applet on the web for public use, you need
to spend some money and get a certificate from a trusted CA to add more authenticity to your applet’s signature. It is
more likely that the public will trust a certificate issued by Thawte, rather than by you. Note starting from Java 7, your
applet must be signed, packages in a JAR file with a manifest file having the attribute Permissions. Otherwise, your
applet will not run by default.

You need to package your applet classes into a JAR file so that you can sign it. You can sign the JAR file with your
secret private key using the jarsigner command that is available under the JAVA_HOME\bin folder, where JAVA_HOME
is the installation folder for JDK or JRE. There are other tools available that you can use to sign a JAR file. The signing
process will place the certificate and the public key in the JAR file for the users of the JAR file to verify the signature.

The following steps walk you through the process of signing and using an applet.

Step 1: Developing an Applet
You need to write the applet’s source code and compile it to class files. Use the ReadUserHomeApplet class as listed in
Listing 4-13. At the end of this step, you will have a ReadUserHomeApplet.class file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Applets

288

Step 2: Packaging Class Files into a JAR File
Create a manifest.mf file with the following contents. Remember to add a blank line at the end of the file.
 
Manifest-Version: 1.0
Permissions: sandbox
 

Use the following command to create a signedapplet.jar file. The jar command is available in your
JDK_HOME\bin folder.
 
jar cvfm signedapplet.jar manifest.mf com/jdojo/applet/ReadUserHomeApplet.class
 

Make sure that, in the JAR file, the path for the class file is set to com/jdojo/applet, which is the same as its
package. To make sure that your JAR file contains the correct path for the class file, use the following command:
 
jar -tf signedapplet.jar
 
META-INF/
META-INF/MANIFEST.MF
com/jdojo/applet/ReadUserHomeApplet.class
 

At the end of this step, you will have a signedapplet.jar file.

Step 3: Generating Private/Public Key Pair
Use the keytool command to generate a private/public key pair as follows:
 
keytool -genkey -keystore mykeystore –alias Kishori
 

The above command will create a keystore file named mykeystore. It will generate a private/public key pair,
which you can work with using an alias Kishori. Note that you need to specify an alias for your key pair. From now
on, you will use the alias, Kishori in this case, to refer to your key in your keystore. The above command will ask
for details that will identify you. You will need to enter those pieces of information. The keystore file is password
protected. The private key is also password protected. You will need to use new passwords when you use the above
command. Memorize those passwords because you will be asked for those passwords to access the keystore or the key
pair referred to by alias Kishori.

You can certify the generated key yourself by using the following command:
 
keytool -keystore mykeystore -selfcert –alias Kishori
 

At the end of this step, you will have a file named mykeystore and you will have generated a key pair with
an alias Kishori.

Step 4: Signing the JAR File
Use the following command to sign the JAR file:
 
jarsigner -keystore mykeystore signedapplet.jar Kishori
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Applets

289

The above command will prompt you for a keystore password. At the end of this step, you will have a signed
signedapplet.jar file. If you list the table of contents for the signedapplet.jar file, you will notice that the
jarsigner command has added more files to it, as shown:
 
jar -tf signedapplet.jar
 
META-INF/MANIFEST.MF
META-INF/KISHORI.SF
META-INF/KISHORI.DSA
META-INF/
com/jdojo/applet/ReadUserHomeApplet.class

Step 5: Creating the HTML File
Create an HTML file to view the signed applet, as shown in Listing 4-15. Note the use of an archive attribute
for the <applet> tag.

Listing 4-15.  Contents of the signedreaduserhomeapplet.html File

<html>
 <head>
 <title>Read User Home Directory (signed Applet)</title>
 </head>
 <body>
 <applet code="com.jdojo.applet.ReadUserHomeApplet"
 width="400" height="300"
 archive="signedapplet.jar">
 This browser does not support Applets.
 </applet>
 </body>
</html>

Step 6: Viewing the Signed Applet
A security-warning window is displayed by Java Plug-in when you attempt to view a signed applet. It lets you view
the details of the signature that is used to sign the applet. You can click the Run button to run the applet. Checking
“Always trust content from this publisher” checkbox and clicking Run will make Java Plug-in import the certificate as a
trusted certificate, as shown in Figure 4-10.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Applets

290

Once Java Plug-in stores the certificate in its trusted certificate repository, it will trust this certificate in the future
without prompting you. You can delete a once-trusted certificate from the repository later by going to Java Control
Panel ➤ Security Tab ➤ Manager Certificate.

By trusting a signed applet, you give all permissions to it. If you still want to apply permissions using a Java policy
file to a signed and trusted applet, you need to use the usePolicy java.lang.RuntimePermission in the Java policy
file, which will direct Java Plug-in not to prompt the user to accept the signed applet’s certificate. Rather, it will apply
the permissions granted to that applet from the policy file.

The following entry in the policy file (system-wide or user specific policy file) will direct Java Plug-in to use the
policy file all the time:
 
grant {
 permission java.lang.RuntimePermission "usePolicy";
};
 

Your applet will be able to access resources as granted by you in the policy file. Java Plug-in will not prompt the
user to trust an applet.

You can also direct Java Plug-in not to prompt users to grant access to a signed applet by switching off its “Allow
user to grant permission to signed content” option by going to Java Control Panel ➤ Advanced Tab ➤ Secure User
Environment. If this option is unchecked, users will get a security warning when they try to view the applet. By default,
this option is enabled.

Figure 4-10.  The Certificates dialog in the Java Control Panel

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Applets

291

Summary
An applet is a Java program designed to be embedded in an HTML document and run in a web browser. Technically,
an applet is a Java class that inherits from the Applet or JApplet class. If you inherit your applet’s class from the
JApplet class, writing code for applets is very similar to writing for Swing applications. Applets use Swing components
to build the GUI.

An applet is embedded in an HTML document using the <applet> tag. The HTML document may be a static
HTML file or generated dynamically such as in a JSP page. Typically, an applet’s Java class files and resources such
as images and audios are packaged in JAR files and stored on the web server. On the client machine, the browser
requests the HTML document, parses the <applet> tag in the HTML document, downloads the applet’s code, and
runs the code inside the browser. By default, applets run in a security sandbox and they do not have access the client’s
machine resources such as the local file system. These restrictions may be relaxed using the Java policy files or signing
the applet’s JAR files.

The <applet> tag is used to embed an applet in an HTML document. The <applet> tag contains four mandatory
attributes called code, width, height, and archive. The code attribute specifies the fully qualified name of the applet
class. The width and height attributes specify the width and height of the applet’s display area in the browser. The
archive attribute specifies the archive files (JAR/ZIP) containing the applet’s files. Note that the archive attribute is
mandatory if you want to run your applet using the default Java Plug-in settings.

You need to install Java Plug-in (part of the JRE) to run the applets in the browser on your machine. You can
configure Java Plug-in using the Java Control Panel program that is installed with Java Plug-in.

An applet has a life cycle. Its four methods called init(), start(), stop(), and destroy() are automatically
called during its life cycle. The init() method is called by the browser after the applet has been instantiated and
loaded. The start() method is called just after the init() method, and it may be called multiple times. The stop()
method is the counterpart of the start() method, and it may be called multiple times. The destroy() method is
called at the end of the life cycle of an applet when the applet is destroyed. These methods are not called on the event-
dispatching thread. Use the SwingUtilities class, which was described in Chapter 3, to run any GUI-related code in
the event-dispatching thread.

An instance of AppletContext object represents the context of the applet ruing it. You can use this object to
interact with the applet’s context such as the browser from the Java code.

In Java 7 and later, by default, applets are blocked if the following conditions are not met:

The applet should be packaged in a signed JAR file.•	

The manifest file in the applet’s JAR file should contain a •	 Permissions attribute whose value
can be sandbox or all-permissions.

The applet’s JAR file should be signed with a certificate issues by a trusted authority.•	

You can relax these restrictions, though it’s not recommended, by configuring Java Plug-in settings using the Java
Control Panel.Borem dignis nullaor sustis aliquisl inim del ilisisci bla feugiate elit iuscidunt lobore te do dolobor si.

Raessed mod tem euis exero ero odiam in veliquat et iusto consequipsum nis num iustrud tatue velit aliquis
nullaore eum aut amcons at luptat, quam aliquis aliquatie dolor iriurerit iurerostio ea feugiam iureet dipisit wismod
ex esse dolor suscidunt lorpercilis amet aliquat eumsandit, vulla feui exer ip eros adiat praesseniam zzrit la commy
nonsent ing eugait autpatem nonsequat iustis eum veliquisi.

Xer sequis adipis eugiat, quat lor amcommy nonsectem nisi.
Lum nibh essit laore eraestie dolorer iriliquat amcommy nim ea facilluptat. Ut iuscipisis duisci bla facilisl iriure

doloborpero cons nim iuscinit nullummy non ex euissim irit, quatummolore facilla orperos ad exeraessi.
Quam, sectet nullutpat landio ero diamcon el ing enit ulluptat, quat ut eum ipis er augait, sit lut augiam, susci

tet in er augueraestie feuguercing eu faci er at alissendipis auguer sequis nostion ulputat wisit praessequis ercip ea
facidunt luptate et lum nonsecte facil dio od dionsectem ero commolutem ilisis aliquipit praesed magnibh et atie dit
nissit vulla facinit vendio eum ero odolore tinissim dunt velisis nonum quisi te consendignim augiam, quipsus cidunt
veliquat wis aut augue vel ullaore commolutpat. Duis del iuscidunt volutat ueraesequam voluptat. Duisim el inibh et,

www.it-ebooks.info

http://www.it-ebooks.info/

293

Chapter 5

Network Programming

In this chapter, you will learn

What network programming is•	

What the network protocol suite is•	

What an IP address is and what the different IP addressing schemes are•	

Special IP addresses and their uses•	

What port numbers are and how they are used•	

Using TCP and UDP client and server sockets for communication between remote computers•	

The definitions of URI, URL, and URN and how to represent them in Java programs•	

How to use non-blocking sockets•	

How to use asynchronous socket channels•	

Datagram-oriented socket channels and multicast datagram channels•	

The first few sections are intended to give a quick overview of basics related to network technologies for those
readers who do not have a computer science background. If you understand terms like IP address, port number,
network protocol suites, etc., you may skip these sections and start reading from the “Socket API and Client-Server
Paradigm” section.

What Is Network Programming?
A network is a group of two or more computers or other types of electronic devices such as printers that are linked
together with a goal to share information. Each device linked to a network is called a node. A computer that is linked
to a network is called a host. Network programming in Java involves writing Java programs that facilitate the exchange
of information between processes running on different computers on the network.

Java makes it easy to write network programs. Sending a message to a process running on another computer is
as simple as writing data to a local file system. Similarly, receiving a message that was sent from a process running
in another computer is as simple as reading data from a local file system. Most of the programs in this chapter will
involve reading and writing data over the network, and they are similar to file I/O. Please refer to Chapters 7 through
10 in the book Beginning Java Language Features (ISBN: 978-1-4302-6658-7) for more details on file I/O. You will learn
about a few new classes in this chapter that facilitate the communication between two computers on a network.

You do not need to have advanced level knowledge of networking technologies to understand or write
Java programs in this chapter. This chapter covers high-level details of a few things that are involved in network
communication.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

294

A network can be categorized based on different criteria. Based on the geographical area that a network is spread
over, it is categorized as

•	 Local Area Network (LAN): It covers a small area such as a building or a block of buildings.

•	 Campus Area Network (CAN): It covers a campus such as a university campus,
interconnecting multiple LANs within that campus.

•	 Metropolitan Area Network (MAN): It covers more geographical area than a LAN. Usually,
it covers a city.

•	 Wide Area Network (WAN): It covers a larger geographical area such as a region of a country or
multiple regions in different countries in the world.

When two or more networks are connected using routers (also known as gateways), it is called internetworking,
and the resulting combined network is called an internetwork, in short, internet (note the lowercase i). The global
internetwork, which encompasses all networks in the world connected together, is referred to as the Internet
(note the uppercase I).

Based on the topology (the arrangement of nodes in a network), a network may be categorized as star, tree,
ring, bus, hybrid, etc.

Based on the technology a network uses to transmit the data, it can be categorized as Ethernet, LocalTalk,
Fiber Distributed Data Interface (FDDI), Token Ring, Asynchronous Transfer Mode (ATM), etc.

I will not cover any details about the different kinds of networks. Please refer to any standard textbook on
networks to learn more about networks and network technologies in detail.

Communication between two processes on a computer is simple and it is achieved using interprocess
communication as defined by the operating system. It is a very tedious task when two processes running on two
different computers on an internet need to communicate. You need to consider many aspects of the communication
before the two processes on two computers on an internet may start communicating. Some of the points that you
need to consider are as follows:

The two computers may be using different technologies such as different operating systems, •	
different hardware, etc.

They may be on two different networks that use different network technologies.•	

They may be separated by many other networks, which may be using different technologies. •	
That is, two computers are not on two networks that are interconnected directly. You need to
consider not just two networks, but all networks that the data from one computer has to pass
to reach another computer.

They may be a few miles apart or on other sides of the globe. How do you transmit the •	
information efficiently without worrying about the distance between the two computers?

One computer may not understand the information sent by the other computer.•	

The information sent over a network may be duplicated, delayed, or lost. How should the •	
receiver and the sender handle these abnormal situations?

Simply put, two computers on a network communicate using messages (sequences of 0s and 1s). There must be
well-defined rules to handle the above-mentioned issues (and many more). The set of rules to handle a specific task
is known as a protocol. Many types of tasks are involved in handling network communication. There is a protocol
defined to handle each specific task. There is a stack of protocols (also called protocol suite) that are used together to
handle a network communication.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

295

Network Protocol Suite
Modern networks are called packet switching networks because they transmit data in chunks called packets. Each
packet is transmitted independent of other packets. This makes it easy to transmit the packets from the same
computer to the same destination using different routes. However, it may become a problem if a computer sends two
packets to a remote computer and the second packet arrives before the first one. For this reason, each packet also has
a packet number along with its destination address. There are rules to rearrange the out-of-order arrival of the packets
at the destination computer. The following discussion attempts to explain some of the mechanisms that are used to
handle packets in a network communication.

Figure 5-1 shows a layered protocol suite called the Internet Reference Model or TCP/IP Layering Model.
This is the most widely used protocol suite. Each layer in the model performs a well-defined task. The main advantage
of having a layered protocol model is that any layer can be changed without affecting others. A new protocol can be
added to any layer without changing other layers.

Application

Transport

Internet

Network Interface

Physical

Figure 5-1.  The Internet Protocol Suite showing its five protocol layers

Each layer knows about only the layer immediately above and below it. Each layer in the protocol suite has two
interfaces—one for the layer above it and one for the layer below it. For example, the transport layer has interfaces
to the application layer and internet layer. That is, the transport layer knows how to communicate only with the
application layer and the internet layer. It knows nothing about the network interface layer or the physical layer.

A user application such as a Java program uses the application layer to communicate to a remote application.
The user application has to specify the protocol that it wants to use to communicate with the remote application.
A protocol in an application layer defines the rules for formatting messages and associating the meaning to the
information contained in the messages such as the message type, describing whether it is a request or a response, etc.
After the application layer formats the message, it hands over the message to the transport layer. The examples of protocols
in an application layer are Hypertext Transfer Protocol (HTTP), File Transfer Protocol (FTP), Gopher, Telecommunication
Network (Telnet), Simple Mail Transfer Protocol (SMTP), and Network News Transfer Protocol (NNTP).

The transport layer protocol handles the ways messages are transported from one application on one computer
to another application on the remote computer. It controls the data flow, error handling during data transmission,
and connections between two applications. For example, a user application may hand over a very large chunk of data
to the transport layer to transmit to a remote application. The remote computer may not be able to handle that large
amount of data at once. It is the responsibility of the transport layer to pass a suitable amount of data at a time to the
remote computer, so the remote application can handle the data according to its capacity. The data passed to the
remote computer over a network may be lost on its way due to various reasons. It is the responsibility of the transport
layer to retransmit the lost data. Note that the application layer passes data to be transmitted to the transport layer
only once. It is the transport layer (not the application layer) that keeps track of the delivered and the lost data during
a transmission. There may be multiple applications running, all of which use different protocols and exchange
information with different remote applications. It is the responsibility of the transport layer to hand over messages
sent to a remote application correctly. For example, you may be browsing the Internet using the HTTP protocol from
one remote web server and downloading a file using the FTP protocol from another FTP server. Your computer is
receiving messages from two remote computers and they are meant for two different applications running on your

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

296

computer—one web browser to receive HTTP data and one FTP application to receive FTP data. It is the responsibility
of the transport layer to pass the incoming data to the appropriate application. You can see how different layers of the
protocol suite play different roles in data transmission over the network. Depending on the transport layer protocol
being used, the transport layer adds relevant information to the message and passes it to the next layer, which is the
internet layer. The examples of protocols used in the transport layer are Transmission Control Protocol (TCP),
User Datagram Protocol (UDP), and Stream Control Transmission Protocol (SCTP).

The internet layer accepts the messages from the transport layer and prepares a packet suitable for sending over
the internet. It includes the Internet Protocol (IP). The packet prepared by the IP is also known as an IP datagram. It
consists of a header and a data area, apart from other pieces of information. The header contains the sender’s IP address,
destination IP address, time to live (TTL, which an integer), a header checksum, and many other pieces of information
specified in the protocol. The IP prepares the message into datagrams, which are ready to be transmitted over the
internet. The TTL in the IP datagram header specifies how long, in terms of the number of routers, an IP datagram can
keep traveling before it needs to be discarded. Its size is one byte and its value could be between 1 and 255. When an IP
datagram reaches a router in its route to the destination, the router decrements the TTL value by 1. If the decremented
value is zero, the router discards the datagram and sends an error message back to the sender using Internet Control
Message Protocol (ICMP). If the TTL value is still a positive number, the router forwards the datagram to the next router.
The IP uses an address scheme, which assigns a unique address to each computer. The address is called an IP address.
I will discuss the IP addressing scheme in detail in the next section. The internet layer hands over the IP datagram to the
next layer, which is the network interface layer. The examples of protocols in an internet layer are Internet Protocol (IP),
Internet Control Message Protocol (ICMP), Internet Group Management Protocol (IGMP), and Internet Protocol
Security (IPsec).

The network interface layer prepares a packet to be transmitted on the network. The packet is called a frame.
The network interface layer sits just on top of the physical layer, which involves the hardware. Note that the IP layer
uses the IP address to identify the destination on a network. An IP address is a virtual address, which is completely
maintained in software. The hardware is unaware of the IP address and it does not know how to transmit a frame
using an IP address. The hardware must be given the hardware address, also called Media Access Control (MAC)
address, of the destination that it needs to transmit the frame to. This layer resolves the destination hardware address
from the IP address and places it in the frame header. It hands over the frame to the physical layer. The examples of
protocols in a network interface layer are Open Shortest Path First (OSPF), Point-to-Point Protocol (PPP), Point-to-Point
Tunneling Protocol (PPTP), and Layer 2 Tunneling Protocol (L2TP).

The physical layer consists of the hardware. It is responsible for converting the bits of information into signals
and transmitting the signal over the wire.

Tip■■   Packet is a generic term that is used to mean an independent chunk of data in network programming. Each layer
of protocol also uses a specific term to mean the packet it deals with. For example, a packet is called a segment in the
TCP layer; it is called a datagram in the IP layer; it is called a frame in the network interface and physical layers. Each layer
adds a header (sometimes also a trailer) to the packet it receives from the layer before it, while preparing the packet to be
transmitted over the network. Each layer performs the reverse action when it receives a packet from the layer below it.
It removes the header from the packet; performs some actions, if needed; and hands over the packet to the layer above it.

When a packet sent by an application reaches the remote computer, it has to pass through the same layer of
protocols in the reverse order. Each layer will remove its header, perform some actions, and pass the packet to the
layer immediately above it. Finally, the packet reaches the remote application in the same format it started from the
application on the sender’s computer. Figure 5-2 shows the transmission of packets from the sender and the receiver
computer. P1, P2, P3, and P4 are the packets in different formats of the same data. A protocol layer at a destination
receives the same packet from the layer immediately below it, which the same protocol layer had passed to the layer
immediately below it on the sender’s computer.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

297

IP Addressing Scheme
IP uses a unique address, called an IP address, to route an IP datagram to the destination. An IP address uniquely
identifies a connection between a computer and a router. Normally, it is understood that an IP address identifies a
computer. However, it should be emphasized that it identifies a connection between a computer and a router, not just
a computer. A router is also assigned an IP address. A computer can be connected to multiple networks using multiple
routers and each connection between the computer and the router will have a unique IP address. In such cases, the
computer will be assigned multiple IP addresses and the computer is known as multi-homed. Multi-homing increases
the availability of the network connection to a computer. If one network connection fails, the computer can use other
available network connections.

An IP address contains two parts—a network identifier (I will call it a prefix) and a host identifier (I will call it
a suffix). The prefix identifies a network on the Internet uniquely; the suffix identifies a host uniquely within that
network. It is possible for two hosts to have IP addresses with the same suffix as long as they have a different prefix.

There are two versions of Internet Protocol—IPv4 (or simply IP) and IPv6, where v4 and v6 stand for version 4
and version 6. IPv6 is also known as Internet Protocol next generation (IPng). Note that there is no IPv5. When IP was
in its full swing of popularity, it was at version 4. Before IPng was assigned a version number 6, version 5 was already
assigned to another protocol called Internet Stream Protocol (ST).

Both IPv4 and IPv6 use an IP address to identify a host on a network. However, the addressing schemes in the two
versions differ significantly. The next two sections will discuss the addressing schemes used by IPv4 and IPv6.

Since an IP address must be unique, its assignment is controlled by an organization called Internet Assigned
Numbers Authority (IANA). IANA assigns a unique address to each network that belongs to an organization.
The organization uses the network address and a unique number to form a unique IP address for each host on the
network. IANA divides the IP address allocations to five Regional Internet Registry (RIR) organizations, which allocate
IP addresses in specific regions as listed in Table 5-1. You can find more information on how to get a network address
in your area from IANA at www.iana.com.

Application

Transport

Internet

Network Interface P4 P4

P3 P3

P2 P2

P1 P1

Network
Router Router

Sender Receiver

Application

Transport

Internet

Network Interface

Figure 5-2.  Transmission of packets through the protocol layers on the sender’s and receiver’s computers

www.it-ebooks.info

http://www.iana.com/
http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

298

IPv4 Addressing Scheme
IPv4 (or simply IP) uses a 32-bit number to represent an IP address. An IP address contains two parts—a prefix and a
suffix. The prefix identifies a network and the suffix identifies a host on the network, as shown in Figure 5-3.

Table 5-1.  The List of Regional Internet Registries for Allocating Network IP Addresses

Regional Internet Registry Organization Name Regions Covered

African Network Information Centre (AfriNIC) Africa Region

Asia-Pacific Network Information Centre (APNIC) Asia/Pacific Region

American Registry for Internet Numbers (ARIN) North America Region

Latin American and Caribbean Internet Address Registry (LACNIC) Latin America and some Caribbean Islands

Réseaux IP Européens Network Coordination Centre (RIPE NCC) Europe, the Middle East, and Central Asia

Figure 5-3.  IPv4 addressing scheme

Figure 5-4.  Parts of an IPv4 address in binary and decimal formats

It is not easy for humans to remember a 32-bit number in binary format. IPv4 allows you to work with an
alternate form using four decimal numbers. Each decimal number is in the range from 0 to 255. Programs take care
of converting decimal numbers into a 32-bit binary number that will be used by the computer. The decimal number
format of IPv4 is called dotted decimal format because a dot is used to separate two decimal numbers. Each
decimal number represents the value contained in 8 bits of the 32-bit number. For example, an IPv4 address of
11000000101010000000000111100111 in the binary format can be represented as 192.168.1.231 in the dotted
decimal format. The process of converting binary IPv4 to its decimal equivalent is shown in Figure 5-4.
In 192.168.1.231, the part 192.168.1 identifies the network address (the prefix) and the part 231 (the suffix)
identifies the host on that network.

How do you know that 192.168.1 represents a prefix in an IPv4 address 192.168.1.231? A rule governs the value
of a prefix and a suffix in an IPv4. I will discuss how to identify a prefix and suffix in an IPv4 later in this section,
when I discuss the class type of a network.

How does an IPv4 address divide its 32 bits between a prefix and a suffix? IPv4 address space is divided in five
categories called network classes, named A, B, C, D, and E. A class type defines how many bits of the 32 bits will be used
to represent the network address part of an IP address. The leading bit (or bits) in the prefix defines the class of the IP
address. This is also known as a self-identifying or classful IP address because you can tell which class it belongs to by
looking at the IP address.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

299

Table 5-2 lists the five network classes and their characteristics in IPv4. The leading bits in an IP address identify
the class of the network. For example, if an IP address looks like 0XXX, where XXX is the last 31 bits of the 32 bits, it
belongs to the class A network; if an IP address looks like 110XXX, where XXX is the last 29 bits of 32 bits, it belongs to
the class C network. There can be only 128 networks of class A type and each network can have 16777214 hosts.
The number of hosts that a class A network can have is very big and it is very unlikely that a network will have that
many hosts. In a class C type of network, the maximum number of hosts that a network can have is limited to 254.

Table 5-2.  Five Classes of IPv4 in the Classful Addressing Scheme

Network
Class

Prefix Suffix Leading Bit(s)
in Prefix

Number of
Networks

Number of Hosts per Network

A 8 bits 24 bits 0 128 16777214

B 16 bits 16 bits 10 16384 65534

C 24 bits 8 bits 110 2097152 254

D Not Defined Not defined 1110 Not defined Not defined

E Not Defined Not defined 1111 Not defined Not defined

What happens if an organization is assigned a network address from class C and it has only 10 hosts to attach to
the network? The remaining slots in the IP addresses in that network remain unused. Recall that the host (or suffix)
part in an IP address must be unique within the network (the prefix part). On the other hand, if an organization needs
to connect 300 computers to a network, it needs to get two class C network addresses because getting a class B network
address, which can accommodate 65534 hosts, will again waste a great many IP addresses.

Note that if the number of bits allocated for a suffix is N, the number of hosts that can be used is 2N -2. Two bits
patterns—all 0s and all 1s—cannot be used for a host address. They are used for special purposes. This is the reason
a class C network can have a maximum of 254 hosts and not 256. Class D addresses are used as multicast addresses.
Class E addresses are reserved.

The fast growth of the Internet and the large number of IP addresses not being used prompted for a new
addressing scheme. This scheme is simply based on one criterion—one should be able to use an arbitrary boundary
between the prefix and suffix parts of an IP address, instead of predefined boundaries at 8, 16, and 24 bits. This will
keep the unused addresses at a minimum. For example, if an organization needs a network number for a network
with only 20 hosts, that organization can use only a 27-bit prefix and a 5-bit suffix.

Two terminologies called subnetting and supernetting are used to describe the situations when some bits from
the suffix are used for the prefix and some bits from the prefix are used as the suffix. When bits from the suffix are used
as the prefix, essentially, it creates more network addresses at the cost of host addresses. The extra network addresses
are called subnets. Subnetting is achieved by using a number called a subnet mask or an address mask. A subnet mask
is a 32-bit number that is used to compute the network address from an IP address. Using a subnet mask eliminates
the restriction that the class of a network must predefine the network number part of the IP address. A logical AND is
performed on the IP address and the subnet mask to compute the network number. In this scheme of addressing, an
IP address is always specified with its subnet mask. A forward slash and subnet mask follows an IP address.
For example, 140.10.11.9/255.255.0.0 denotes an IP address of 140.10.11.9 with a subnet mask 255.255.0.0. It is
possible to use any subnet mask whose four decimal parts ranges from 0 to 255. In this example, 140.10.11.9 is a
class B address. A class B address uses 16 bits for the prefix and 16 bits for the suffix. Let’s take 6 bits off the suffix and
add it to the prefix. Now, the prefix is 22 bits and the suffix is only 10 bits. By doing this, you have created additional
network numbers at the cost of host numbers. To describe an IP address in this scheme of subnetting, you need to use

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

300

a subnet mask of 255.255.252.0. If you write an IP address using this subnet mask as 140.10.11.9/255.255.252.0,
the network address is computed as 140.10.8.0, like so:
 
IP Address: 10001100 00001010 00001011 00001001
Subnet Mask: 11111111 11111111 11111100 00000000
--
Logical AND: 10001100 00001010 00001000 00000000
 (140) (10) (8) (0)
 

Classless Inter-Domain Routing (CIDR) is another IPv4 addressing scheme in which an IPv4 address is
specified as four dotted decimal numbers along with another decimal number separated by a forward slash such
as 192.168.1.231/24, where the last number 24 denotes the prefix-length (or number of bits used for a network
number) in the 32-bit IPv4 address. Note that the CIDR addressing scheme lets you define the prefix/suffix boundary
at any bits in 32-bit IPv4. By moving the bits from the prefix to the suffix, you can combine multiple networks and
increase the number of hosts per network. This is called supernetting. You can create supernets as well as subnets
using CIDR notation.

Some IP addresses in an IPv4 addressing scheme are reserved for broadcast and multicast IP addresses. I will
discuss broadcasting and multicasting later in this chapter.

IPv6 Addressing Scheme
IPv6 is a new version of IP and it is the successor for IPv4. The address space in IPv4 was running out of addresses in
the fast growing Internet world. IPv6 is aimed at providing enough address space, so that every computer in the world
may get a unique IP address in the decades to come. Here are some of the main features of IPv6:

IPv6 uses a 128-bit number for an IP address instead of a 32-bit number used in IPv4.•	

It has different header formats for IP packets than IPv4. IPv4 has only one header per •	
datagram, whereas IPv6 has one base header followed by multiple variable-length extension
headers per datagram.

IPv6 supports datagrams of a bigger size than IPv4.•	

In IPv4, the routers performed an IP packet fragmentation. In IPv6, the sender host is •	
supposed to perform a packet fragmentation rather than the routers. This means that the host
that uses IPv6 must know in advance the path of the maximum transmission unit (MTU) that
is the minimum of the maximum packet size allowed by all networks to the destination host.
The IP datagram’s fragmentation occurs when it has to enter a network that has a lower size
transmission capacity than the network the datagram is leaving. In IPv4, the fragmentation
is performed by the router, which detects a lower transmission capacity network in the route.
Since IPv6 allows only the host to perform the fragmentation, the host must discover the
minimum size datagram that can be routed through all possible routes from the source to the
destination host.

IPv6 supports specifying routing information for the datagrams in the headers so that routers •	
can use it to route the datagrams through a specific route. This feature is helpful in delivering
time-critical information.

IPv6 is extensible. Any number of extension headers can be added to an IPv6 datagram, which •	
can be interpreted in a new way.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

301

IPv6 uses a 128-bit IP address. It uses an easy-to-understand notation to represent an IP address in a textual
form. The 128 bits are divided into 8 fields of 16 bits each. Each field is written in hexadecimal form and separated by a
colon. The following are some examples of IPv6 addresses:

•	 F6DC:0:0:4015:0:BA98:C0A8:1E7

•	 F6DC:0:0:7678:0:0:0:A21D

•	 F6DC:0:0:0:0:0:0:A21D

•	 0:0:0:0:0:0:0:1

It is common to have many fields in an IPv6 address with zero values, especially for all IPv4 addresses. The IPv6
address notation lets you compress contiguous fields of zero values by using two consecutive colons. You can use two
colons to suppress contiguous zero value fields only once in an address. The above IPv6 address may be rewritten
using the zero compression technique:

•	 F6DC::4015:0:BA98:C0A8:1E7

•	 F6DC:0:0:7678::A21D

•	 F6DC::A21D

•	 ::1

Note that we could suppress only one of the two sets of contiguous zero fields in the second address,
F6DC:0:0:7678::A21D. Rewriting it as F6DC::7678::A21D would be invalid as it uses two colons more than once.
You can use two colons to suppress contiguous zero fields, which may occur in the beginning, middle, or end of the
address string. If an address contains all zeros in it, you can represent it simply as ::.

You can also mix hexadecimal and decimal formats in an IPv6 address. The notation is useful when you have an
IPv4 address and want to write it in IPv6 format. You can write the first six 16-bit fields using a hexadecimal notation
as described above and use dotted decimal notation for IPv4 for the last two 16-bit fields. The mixed notation takes
the form X:X:X:X:X:X:D.D.D.D, where an X is a hexadecimal number and a D is a decimal number. You can rewrite
the above IPv6 addresses using this notation as follows:

•	 F6DC::4015:0:BA98:192.168.1.231

•	 F6DC:0:0:7678::0.0.162.29

•	 F6DC::0.0.162.29

•	 ::0.0.0.1

Unlike IPv4, IPv6 does not assign IP addresses based on network classes. Like IPv4, it uses CIDR addresses, so
that the boundary between the prefix and suffix in an IP address can be specified at any arbitrary bit. For example, ::1
can be represented in CIDR notation as ::1/128, where 128 is the prefix length.

Tip■■  IP v6 address should be enclosed in brackets ([]) when it is used inside a literal string as part of a URL. This rule
does not apply to IPv4. For example, if you are accessing a web server on a loopback address using IPv4 address, you
can use a URL like http://127.0.0.1/index.html. In an IPv6 address notation, you need to use a URL like
http://[::1]/index.html. Make sure your browser supports IPv6 address notation in its URLs before using it.

www.it-ebooks.info

http://127.0.0.1/index.html
http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

302

Special IP Addresses
Some IP addresses are used for special purposes. Some of such IP addresses are as follows:

Loopback IP Address•	

Unicast IP Address•	

Multicast IP Address•	

Anycast IP Address•	

Broadcast IP Address•	

Unspecified IP Address•	

The following sections describe the use of these special IP addresses in detail.

Loopback IP Address
You need at least two computers connected via a network to test or run a network program. Sometimes it may not be
feasible or desirable to set up a network when you want to test your network program during the development phase
of your project. The designers of IP realized this need. There is a provision in the IP addressing scheme to treat an IP
address as a loopback address to facilitate testing of network programs using only one computer. When the Internet
layer in the protocol suite detects a loopback IP address as the destination for an IP datagram, it does not pass over the
packet to the protocol layer below it (that is network interface layer). Rather, it turns around (or loops back, hence the
name loopback address) and routes the packet back to the transport layer on the same computer. The transport layer will
deliver the packet to the destination process on the same host as it would have done had the packet come from a remote
host. A loopback IP address makes testing of a network program using one computer possible. Figure 5-5 depicts the
way an Internet packet, which is addressed to a loopback IP address, is processed by the IP. The packet never leaves the
source computer. It is intercepted by the internet layer and routed back to the same computer it started from.

Application

Transport

Internet

Physical

Network Interface

Packets with a
loopback IP address as
the destination address

Source
Application

Destination
Application

Figure 5-5.  An Internet packet that has a loopback IP address as its destination is routed back to the same computer
from the Internet protocol in the internet layer

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

303

Loopback IP addresses are reserved addresses and the IP is required not to forward a packet with a loopback IP
address as its destination address to the network interface layer.

In an IPv4 addressing scheme, 127.X.X.X block is reserved for loopback addresses, where X is a decimal number
between 0 and 255. Typically, 127.0.0.1 is used as a loopback address in IPv4. However, you are not limited to
using only 127.0.0.1 as the only loopback address. If you wish, you can also use 127.0.0.2 or 127.3.5.11 as a valid
loopback address. Typically, the name localhost is mapped to a loopback address of 127.0.0.1 on a computer.

In an IPv6 addressing scheme, there is only one loopback address, which is sufficient to perform any local testing
for a network program. It is 0:0:0:0:0:0:0:1 or simply ::1.

Unicast IP Address
Unicast is one-to-one communication between two computers on a network in which an IP packet is delivered to a single
remote host. A unicast IP address identifies a unique host on a network. IPv4 and IPv6 support unicast IP addresses.

Multicast IP Address
Multicast is a one-to-many communication where one computer sends an IP packet that is delivered to multiple
remote computers. Multicasting lets you implement the concept of group interaction such as audio or video
conferencing, where one computer sends information to all computers in the group. The benefit of using multicasting
in place of multiple unicasts is that the sender sends only one copy of the packet. One copy of the packet travels along
the network as long it can. If receivers of the packet are on multiple networks, a copy of the packet is made when
needed, and each copy of the packet is routed independently. Finally, each receiver is delivered an individual copy of
the packet. Multicasting is an efficient way of communication between group members as it reduces network traffic.

An IP packet has only one destination IP address. How is an IP packet delivered to multiple hosts using
multicasting? IP contains some addresses in its address space as multicast addresses. If a packet is addressed to
a multicast address, the packet will be delivered to multiple hosts. The concept of multicast packet delivery is the
same as a group membership for an activity. When a group is formed, the group is given a group ID. Any information
addressed to that group ID is delivered to all group members. In a multicast communication, a multicast IP address
(similar to a group ID) is used. Multicast packets are addressed to that multicast address. Each interested host
registers its IP address with the local router that it is interested in communication made on that multicast address.
The registration process between a host and the local router is accomplished using an Internet Group Management
Protocol (IGMP). When the router receives a packet with a multicast address, it delivers a copy of the packet to each
host registered with it for that multicast address. A receiver may choose to leave the multicast group any time by
informing the router.

A multicast packet may travel through many routers before it finds its way to the receiver hosts. All receivers of
a multicast packet may not be on the same network. There are many protocols, such as Distance Vector Multicast
Routing Protocol (DVMRP), that deal with routing of multicast packets.

Both IPv4 and IPv6 support multicast addressing. In IPv4, Class D network addresses are used for multicasting.
That is, the four highest order bits are 1110 in a multicast address in IPv4. In IPv6, a multicast address has the first
8 bits set to 1. That is, a multicast address in IPv6 always starts with FF. For example, FF0X:0:0:0:0:0:2:0000 is a
multicast address in IPv6.

Anycast IP Address
Anycast is a one-to-one_from_a_group communication where one computer sends a packet to a group of computers,
but the packet is delivered to exactly one computer in the group. IPv4 does not support anycasting. IPv6 supports
anycasting. In anycasting, the same address is assigned to multiple computers. When a router receives a packet, which
is addressed to an anycast address, it delivers the packet to the nearest computer. Anycasting is useful when a service
has been replicated at many hosts and you want to provide the service at the nearest host to the client. Sometimes,
anycast addressing is also called cluster addressing. An anycast address is used from the unicast address space.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

304

You cannot distinguish a unicast address from an anycast address by looking at their bit arrangements. When the
same unicast address is assigned to multiple hosts, it is treated as an anycast address. Note that the router must know
about the hosts that are assigned an anycast address, so that it can deliver the packets addressed to that anycast
address to one of the nearest hosts.

Broadcast IP Address
Broadcast is a one-to-all communication where one computer sends a packet and that packet is delivered to all computers
on the network. IPv4 assigns some addresses as broadcast addresses. When all 32 bits are set to 1, it forms a broadcast
address and the packet is delivered to all hosts on the local subnet. When all bits in the host address are set to 1 and a
network address is specified, it forms a broadcast address for the specified network number. For example, 255.255.255.255
is a broadcast address for a local subnet and 192.168.1.255 is a broadcast address for a network 192.168.1.0. IPv6 does
not have a broadcast address. You need to use a multicast address as the broadcast address in IPv6.

Unspecified IP Address
0.0.0.0 in IPv4 and :: in IPv6 (note that :: denotes 128-bit IPv6 address with all bits set to zero) are known as
unspecified addresses. A host uses this address as a source address to indicate that it does not have an IP address yet,
such as during the boot up process when it is not assigned an IP address yet.

Port Numbers
A port number is a 16-bit unsigned integer ranging from 0 to 65535. Sometimes a port number is also referred to
simply as a port. A computer runs many processes, which communicate with other processes running on remote
computers. When the transport layer receives an incoming packet from the Internet layer, it needs to know which
process (running in the application layer) on that computer should this packet be delivered to. A port number is a
logical number that is used by the transport layer to recognize a destination process for a packet on a computer.

Each incoming packet to the transport layer has a protocol; for example, the TCP protocol handler in the
transport layer handles a TCP packet and the UDP protocol handler in the transport layer handles a UDP packet.

In the application layer, a process uses a separate protocol of each communication channel it wants to communicate
on with a remote process. A process uses a unique port number for each communication channel it opens for a specific
protocol and registers that port number with the specific protocol module in the transport layer. Therefore, a port number
must be unique for a specific protocol. For example, process P1 can use a port number 1988 for a TCP protocol and
another called process P2 can use the same port number 1988 on the same computer for a UDP protocol. A process on a
host uses the protocol and the port number of the remote process to send data to the remote process.

How does a process on a computer start communicating with a remote process? For example, when you visit
Yahoo’s web site, you simply enter http://www.yahoo.com as the web page address. In this web page address, http
indicates the application layer protocol, which uses TCP as a transport layer protocol and www.yahoo.com is the
machine name, which is resolved to an IP address using a Domain Name System (DNS). The machine identified by
www.yahoo.com may be running many processes, which may use the http protocol. Which process on www.yahoo.com
does your web browser connect to? Since many people use Yahoo’s web site, it needs to run its http service at a
well-known port, so that everyone can use that port to connect to it. Typically, the http web server runs at port 80.
You can use http://www.yahoo.com:80, which is the same as using http://www.yahoo.com. It is not always necessary
to run the http web server at port 80. If you do not run your http web server at port 80, people who want to use your
http service must know the port you are using. IANA is responsible for recommending which port numbers to use for
well-known services. IANA divides the port numbers into three ranges:

Well-known Ports: 0 -1023•	

Registered Ports: 1024 - 49151•	

Dynamic and/or Private Ports: 49152 - 65535•	

www.it-ebooks.info

http://www.yahoo.com/
http://www.yahoo.com/
http://www.yahoo.com/
http://www.yahoo.com/
http://www.yahoo.com/
http://www.yahoo.com/
http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

305

Well-known port numbers are used by most commonly used services provided globally such as HTTP, FTP, etc.
Table 5-3 lists some of the well-known ports that are used for well-known application layer protocols. Generally,
you need administrative privileges to use a well-known port on a computer.

Table 5-3.  A Partial List of Well-Known Ports Used for Some Application Layer Protocols

Application Layer Protocol Port Number

echo 7

FTP 21

Telnet 23

SMTP 25

HTTP 80

POP3 110

NNTP 119

An organization (or a user) can register a port number with IANA in the registered ports range to be used by an
application. For example, 1099 (TCP/UDP) port has been registered for the RMI Registry (RMI stands for Remote
Method Invocation).

Any application can use a port number from dynamic/private port number range.

Socket API and Client-Server Paradigm
I have not yet started discussing Java classes that make network communication possible in a Java program. In this
section, I will cover sockets and the client-server paradigm that is used in a network communication between two
remote hosts.

I covered briefly the different lower layers of protocols and their responsibilities in the previous sections. It is time
to move up in the protocol stack and discuss the interaction between the application layer and the transport layer.
How does an application use these protocols to communicate with a remote application? Operating systems provide
an application program interface (API) called a socket, which lets two remote applications communicate, taking
advantage of lower level protocols in the protocol stack. A socket is not another layer of protocol. It is an interface
between the transport layer and the application layer. It provides a standard way of communication between the two
layers, which in turn provides a standard way of communication between two remote applications.

There are two kinds of sockets:

A Connection-Oriented Socket•	

A Connectionless Socket•	

A connection-oriented socket is also called a stream socket. A connectionless socket is also called a datagram socket.
Note that the data is always sent one datagram at a time from one host to another on the Internet using IP datagrams.

Transmission Control Protocol (TCP), which is used in a transport layer, is one of the most widely used protocols
to provide connection-oriented sockets. The application hands over data to a TCP socket and the TCP takes care of
streaming the data to the destination host. The TCP takes care of all issues like ordering, fragmentation, assembly, lost
data detection, duplicates data transmission, etc., on both sides of the communication, which gives the impression to
the applications that data is flowing like a continuous stream of bytes from the source application to the destination
application. No physical connection at the hardware level exists between two hosts that use TCP sockets. It is all
implemented in software. Sometimes it is also called a virtual connection. The combination of two sockets uniquely
defines a connection.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

306

In a connection-oriented socket communication, the client and the server create a socket at their ends, establish
a connection, and exchange information. TCP takes care of the errors that may occur during data transmission.
TCP is also known as a reliable transport level protocol because it guarantees the delivery of the data. If it could not
deliver the data for some reasons, it will inform the sender application about the error conditions. After it sends the
data, it waits for an acknowledgment from the receiver to make sure that the data reached the destination. However,
the reliability that TCP offers comes at a price. The overhead as compared to a connectionless protocol is much
more significant, and it is slower. TCP makes sure that a sender sends the amount of data to the receiver, which can
be handled by the receiver’s buffer size. It also handles traffic congestion over the network. It slows down the data
transmission when it detects traffic congestion. Java supports TCP sockets.

User Datagram Protocol (UDP), which is used in a transport layer, is the most widely used protocol that provides
a connectionless socket. It is unreliable, but much faster. It lets you send limited sized data—one packet at a time,
which is different from TCP, which lets you send data as a stream of any size, handling the details of segmenting them
in appropriate size of packets. Data delivery is not guaranteed when you send data using UDP. However, it is still used
in many applications and it works very well. The sender sends a UDP packet to a destination and forgets about it.
If receiver gets it, it gets it. Otherwise, there is no way to know—for the receiver—that there was a UDP packet sent to it.
You can compare the communication used in TCP and UDP to the communication used in a telephone and mailing a
letter. A telephone conversation is reliable and it offers acknowledgment between two parties that are communicating.
When you mail a letter, you do not know when the addressee receives it, or if he received it at all. There is another
important difference between UDP and TCP. UDP does not guarantee the ordering of data. That is, if you send five
packets to a destination using UDP, those five packets may arrive in any order. However, TCP guarantees that packets
will be delivered in the order they were sent. Java supports UDP sockets.

Which protocol should you use: TCP or UDP? It depends on how the application will be used. If data integrity is
of utmost significance, you should use TCP. If speed is prioritized over lower data integrity, you should use UDP.
For example, a file transfer application should use TCP, whereas a video conferencing application should use UDP.
If you lose video data of a few pixels, it does not matter much to the video conference. It can continue. However, if you
lose a few bytes of data when a file is being transferred, that file may not be usable at all.

How do two remote applications start communicating? Which application initiates the communication? How
does an application know that a remote application is interested in communicating with it? Have you ever dialed a
customer service number of a company to talk to a customer service representative? If you have talked to a company’s
customer service representative, you already have experienced two remote applications communicate. I will refer to
the mechanism of using a company’s customer service to explain remote communication in this section. You and a
company’s representative are at two remote locations. You need a service and the company provides that service. In
other words, you are the client and the company is a service provider (or a server). You do not know when you will
need a service from the company. The company provides a customer service phone number, so you can contact the
company. There is one more thing the company does. What is it that the company must do to provide you a service?
Can you guess? It waits for your calls at the phone number that it gave you. The communication has to happen between
you and the company, and the company has already taken one step forward in that communication by passively waiting
for your call. As soon as you dial the company’s number, a connection is established and you exchange information
with the company’s representative. Both of you hang up, at the end, to discontinue the communication. The network
communication using sockets is similar to the communication that happens between you and the company’s
representative. If you understand this example of communication, understanding sockets is easy.

Two remote applications use a pair of sockets to communicate. You need two endpoints for any communication
to occur. A socket is a communication endpoint on each side of the communication channel. Communication over
a pair of sockets follows a typical client-server communication paradigm. One application creates a socket and
passively waits to be contacted by another remote application. The application that waits for a remote application
to contact it is called a server application or simply a server. Another application creates a socket and initiates the
communication with the waiting server application. This is called a client application or simply a client. Many other
steps must be performed before a client and a server can exchange information. For example, a server must advertise
the location and other details about itself so a client may contact it.

A socket passes through different states. Each state marks an event. It is the state of the socket that tells us what a
socket can do and what it cannot do. Generally, a socket’s lifecycle is described by eight primitives listed in Table 5-4.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

307

The following sections elaborate each socket primitive.

The Socket Primitive
A server creates a socket by specifying what kind of socket it is: a stream socket or a datagram socket.

The Bind Primitive
The bind primitive associates the socket to a local IP address and a port number. Note that a host can have multiple IP
addresses. A socket can be bound to one of the IP addresses of the host or all of them. Binding a socket to all available
IP addresses for the host is also known as binding to a wildcard address. Binding reserves the port number for this
socket. No other socket can use that port number for communication. The bound port will be used by the transport
protocol (TCP as well as UDP) to route the data intended for this socket. I will explain more about transferring
data between the transport layer and a socket little later in this section. For now, it is sufficient to understand that,
in binding, the socket tells the transport layer that here is my IP address and port number, and if you get any data
addressed to this address, please pass that data to me. The IP address and the port number to which a socket is bound
are called the local address and the local port for the socket, respectively.

The Listen Primitive
A server informs the operating system to place the socket in a passive mode so it waits for the incoming client
requests. At this point, the server is not yet ready to accept any client request. A server also specifies a wait queue size
for the socket. When a client contacts the server at this socket, the client request is placed in that queue. Initially, the
queue is empty. If a client contacts the server at this socket and the wait queue is full, the client’s request is rejected.

Table 5-4.  The List of Typical Socket Primitives and Their Descriptions

Primitives Description

Socket Creates a socket, which is used by an application to serve as a communication endpoint.

Bind Associates a local address to the socket. The local address includes an IP address and
a port number. The port number must be a number between 0 and 65535. It should be
unique for the protocol being used for the socket on the computer. For example, if a TCP
socket uses port 12456, a UDP socket can also use the same port number 12456.

Listen Defines the size of its wait queue for a client request. It is performed only by a
connection-oriented server socket.

Accept Waits for a client request to arrive. It is performed only by a connection-oriented server
socket.

Connect Attempts to establish a connection to a server socket, which is waiting on an accept
primitive. It is performed by a connection-oriented client socket.

Send/Sendto Sends data. Usually send indicates a send operation on a connection-oriented socket
and Sendto indicates a send operation on a connectionless socket.

Receive/ReceiveFrom Receives data. They are counterparts of Send and Sendto.

Close Closes a connection.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

308

The Accept Primitive
A server informs the operating system that this socket is ready to accept client requests. This step is not performed
if the server is using a socket using a connectionless transport protocol such as UDP. This step is performed for TCP
server sockets. When a socket sends an accept message to the operating system, it blocks until it receives a client
request for a new connection.

The Connect Primitive
Only a connection-oriented client socket performs this step. This is the most important phase in a socket
communication. The client socket sends a request to the server socket to establish a connection. The server socket
has issued accept and has been waiting for a client request to arrive. The client socket sends the IP address and the
port number of the server socket. Recall that a server socket binds an IP address and a port number before it starts
listening and accepting connections from outside. Along with its request, a client socket also sends its own IP address
and the port number to which it is already bound.

An important question arises at this point. How does the transport layer such as TCP know that the packet
(in the form of a request for a connection) that came from a client has to be handed over to the server socket? During the
binding phase, a socket specifies its local IP address and a local port number as well as a remote IP address and a remote
port number. If the server socket wants to accept a connection only from a specific remote host IP address and port
number, it can do so. Usually, the server socket will accept a connection from any client and it will specify an unspecified
IP address and a zero port number as its remote address. A server socket passes five pieces of information—a local IP
address, a local port number, a remote IP address, and a remote port number, and a buffer—to the transport layer. The
transport layer stores them for future use in a special structure called a Transmission Control Block (TCB). When a packet
from outside arrives at the transport layer, it looks up its TCB based on the four pieces of information contained in the
incoming packet, <source IP address, source port number, destination IP address, destination port number>. Recall that
the client sends the source and destination addresses in each TCP packet to the server. The transport layer attempts to
find a buffer that is associated with the source and destination addresses. If it finds a buffer, it transfers the incoming data
to the buffer and notifies the socket that there is some information for it in the buffer. If the server socket is accepting
requests from any client (all zeroes in the remote address), the data from any client will be routed to its buffer.

Once a server socket detects a request from a client, it creates a new socket with the remote client’s address
information. The new socket is bound using a <local IP address, local port number (the same as server socket’s port
number), remote IP address, and remote port number> and a new buffer is created and bound to this combined
addresses. In fact, two buffers are created for a socket: one for the incoming data and one for the outgoing data. At this
point, a server socket lets the new socket communicate with the client socket that requested a connection. The server
socket itself can close itself (accepting no more client requests for a connection) or it can start waiting again to accept
another client request for a connection.

After a connection is established between two sockets (a client and a server), they can exchange information.
A TCP connection supports full duplex connection. That is, data can be sent or received in both directions simultaneously.

A client socket knows its local IP address, local port number, remote IP address, and remote port number before
it attempts to connect to a server. At the client end, the creation of a TCB follows similar rules.

Once the client and server sockets are in place, two sockets (the client socket and the server socket dedicated to
the client) define a connection.

A server socket acts like a receptionist sitting at the front desk in an office (server). A client comes in and talks to
the receptionist first. A connection request comes from a client to the server and contacts the server socket first. The
receptionist hands over the client to another staff. At this point, the job of the receptionist is over with that client. She
continues her work of waiting to welcome another client coming to the office. Meanwhile, the first client can continue
talking to another staff as long as he needs. Similarly, the server socket creates a new socket and assigns that new
socket to the client for any further communication. As soon as the server socket assigns a new socket to the client,
its job is over with that client. It will wait for another incoming request for connection from another client. Note that
apart from many other details, a socket has five important pieces of information associated with it: a protocol, a local
IP address, a local port number, a remote IP address, and a remote port number.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

309

The Send/Sendto Primitive
It is the stage when a socket sends data.

The Receive/ReceiveFrom Primitive
It is the stage when a socket receives data.

The Close Primitive
It is time to say goodbye. Finally, the server and client sockets close the connection.

Subsequent sections will discuss Java classes that support different kinds of sockets to facilitate network
programming. Java classes that are related to network programming are in java.net, javax.net, and javax.net.ssl
packages.

Representing a Machine Address
Internet protocol uses the IP addresses of machines to deliver packets. Using IP addresses in a program is not always easy
because of its numeric format. You may be able to memorize and use IPv4 addresses because they are only four decimal
numbers in length. Memorizing and using IPv6 addresses is a little more difficult because they are eight numbers in a
hexadecimal format. Every computer also has a name such as www.yahoo.com. Using a computer name in your program
makes your life much easier. Java provides classes that let you use a computer name or an IP address in a Java program.
If you use a computer name, Java takes care of resolving the computer name to its IP address using a DNS.

An object of the InetAddress class represents an IP address. It has two subclasses, Inet4Address and
Inet6Address, which represent IPv4 and IPv6 addresses, respectively. The InetAddress class does not have a public
constructor. It provides six factory methods to create its object. They are as follows. All of them throw a checked
UnknownHostException.

•	 static InetAddress[] getAllByName(String host)

•	 static InetAddress getByAddress(byte[] addr)

•	 static InetAddress getByAddress(String host, byte[] addr)

•	 static InetAddress getByName(String host)

•	 static InetAddress getLocalHost()

•	 static InetAddress getLoopbackAddress()

The host argument refers to a computer name or an IP address in the standard format. The addr argument refers
to the parts of an IP address as a byte array. If you specify an IPv4 address, addr must be a 4-element byte array.
For IPv6 addresses, it should be a 16-element byte array. The InetAddress class takes care of resolving the host name
to an IP address using DNS.

Sometimes a host may have multiple IP addresses. The getAllByName() method returns all addresses as an array
of InetAddress objects.

Typically, you create an object of the InetAddress class using one of the four factory methods and pass that
object to other methods during a socket creation and connection. The following snippet of code demonstrates some
of its uses. You will need to handle exceptions when you use the InetAddress class or its subclasses.
 

www.it-ebooks.info

http://www.yahoo.com/
http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

310

// Get the IP address of the yahoo web server
InetAddress yahooAddress = InetAddress.getByName("www.yahoo.com");
 
// Get the loopback IP address
InetAddress loopbackAddress = InetAddress.getByName(null);
 
/* Get the address of the local host. Typically, a name "localhost" is
 mapped to a loopback address. Here, we are trying to get the IP address
 of the local computer where this code executes and not the loopback address.
*/
InetAddress myComputerAddress = InetAddress.getLocalHost();
 

Listing 5-1 demonstrates the use of the InetAddress class and some of its methods. You may get a different
output when you run the program.

Listing 5-1.  Demonstrating the Use of the InetAddress Class

// InetAddressTest.java
package com.jdojo.net;
 
import java.io.IOException;
import java.net.InetAddress;
 
public class InetAddressTest {
 public static void main(String[] args) {
 // Print www.yahoo.com address details
 printAddressDetails("www.yahoo.com");
 
 // Print the loopback address details
 printAddressDetails(null);
 
 // Print the loopback address details using IPv6 format
 printAddressDetails("::1");
 }
 
 public static void printAddressDetails(String host) {
 System.out.println("Host '" + host + "' details starts...");
 
 try {
 InetAddress addr = InetAddress.getByName(host);
 System.out.println("Host IP Address: " + addr.getHostAddress());
 System.out.println("Canonical Host Name: " + addr.getCanonicalHostName());
 
 int timeOutinMillis = 10000;
 System.out.println("isReachable(): " + addr.isReachable(timeOutinMillis));
 System.out.println("isLoopbackAddress(): " + addr.isLoopbackAddress());
 }
 catch (IOException e) {
 e.printStackTrace();
 }

www.it-ebooks.info

http://www.yahoo.com/
http://www.yahoo.com/
http://www.yahoo.com/
http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

311

 finally {
 System.out.println("Host '" + host + "' details ends...");
 System.out.println("");
 }
 }
} 

Host 'www.yahoo.com' details starts...
Host IP Address: 98.139.183.24
Canonical Host Name: ir2.fp.vip.bf1.yahoo.com
isReachable(): false
isLoopbackAddress(): false
Host 'www.yahoo.com' details ends...
 
Host 'null' details starts...
Host IP Address: 127.0.0.1
Canonical Host Name: 127.0.0.1
isReachable(): true
isLoopbackAddress(): true
Host 'null' details ends...
 
Host '::1' details starts...
Host IP Address: 0:0:0:0:0:0:0:1
Canonical Host Name: BHMIS-J00BXFL-D.corporate.local
isReachable(): true
isLoopbackAddress(): true
Host '::1' details ends...

Representing a Socket Address
A socket address contains two parts, an IP address and a port number. An object of the InetSocketAddress class
represents a socket address. You can use the following constructors to create an object of the InetSocketAddress class:

•	 InetSocketAddress(InetAddress addr, int port)

•	 InetSocketAddress(int port)

•	 InetSocketAddress(String hostname, int port)

All constructors will attempt to resolve a host name to an IP address. If a host name could not be resolved, the
socket address will be flagged as unresolved, which you can test using the isUnresolved() method. If you do not
want this class to resolve the address when creating its object, you can use the following factory method to create the
socket address:

static InetSocketAddress createUnresolved(String host, int port)

The getAddress() method returns an InetAddress object. If a host name is not resolved, the getAddress()
method returns null. If you use an unresolved InetSocketAddress object with a socket, an attempt is made to resolve
the host name during the bind process.

Listing 5-2 shows how to create resolved and unresolved InetSocketAddress objects. You may get a different
output when you run the program.

www.it-ebooks.info

http://www.yahoo.com/
http://www.yahoo.com/
http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

312

Listing 5-2.  Creating an InetSocketAddress Object

// InetSocketAddressTest.java
package com.jdojo.net;
 
import java.net.InetSocketAddress;
 
public class InetSocketAddressTest {
 public static void main(String[] args) {
 InetSocketAddress addr1 = new InetSocketAddress("::1", 12889);
 printSocketAddress(addr1);
 
 InetSocketAddress addr2 =
 InetSocketAddress.createUnresolved("::1", 12881);
 printSocketAddress(addr2);
 }
 
 public static void printSocketAddress(InetSocketAddress sAddr) {
 System.out.println("Socket Address: " + sAddr.getAddress());
 System.out.println("Socket Host Name: " + sAddr.getHostName());
 System.out.println("Socket Port: " + sAddr.getPort());
 System.out.println("isUnresolved(): " + sAddr.isUnresolved());
 System.out.println();
 }
} 

Socket Address: /0:0:0:0:0:0:0:1
Socket Host Name: HYE6754
Socket Port: 12889
isUnresolved(): false
 
Socket Address: null
Socket Host Name: ::1
Socket Port: 12881
isUnresolved(): true

Creating a TCP Server Socket
An object of the ServerSocket class represents a TCP server socket in Java. A ServerSocket object is used to accept
a connection request from a remote client. The ServerSocket class provides many constructors. You can use the
no-args constructor to create an unbound server socket and use its bind() method to bind it to a local port and a
local IP address. The following snippet of code shows how to create a server socket:
 
// Create an unbound server socket
ServerSocket serverSocket = new ServerSocket();
 
// Create a socket address object
InetSocketAddress endPoint = new InetSocketAddress("localhost", 12900);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

313

// Set the wait queue size to 100
int waitQueueSize = 100;
 
// Bind the server socket to localhost and at port 12900 with
// a wait queue size of 100
serverSocket.bind(endPoint, waitQueueSize);
 

There is no separate listen() method in the ServerSocket class that corresponds to the listen socket primitive.
Its bind() method takes care of specifying the waiting queue size for the socket.

You can combine create, bind, and listen operations in one step by using any of the following constructors of
the ServerSocket class. The default value for the wait queue size is 50. The default value for a local IP address is the
wild-card address, which means all IP addresses of the server machine.

•	 ServerSocket(int port)

•	 ServerSocket(int port, int waitQueueSize)

•	 ServerSocket(int port, int waitQueueSize, InetAddress bindAddr)

You can combine the socket creation and bind steps into one statement as shown:
 
// Create a server socket at port 12900, with 100 as the wait
// queue size and at the localhost loopback address
ServerSocket serverSocket =
 new ServerSocket(12900, 100, InetAddress.getByName("localhost"));
 

Once a server socket is created and bound, it is ready to accept incoming connection requests from remote
clients. To accept a remote connection request, you need to call the accept() method on the server socket.
The accept() method call blocks until a request from a remote client arrives in its wait queue. When the server socket
receives a request for a connection, it reads the remote IP address and the remote port number from the request and
creates a new active socket. The reference of the newly created active socket is returned from the from the accept()
method. An object of the Socket class represents the new active socket. The accept() method returns a new active
socket because it is not a passive socket like a server socket, which waits for a remote request. It is an active socket
because it is created for an active communication with the remote client. Sometimes this active socket is also called a
connection socket because it handles the data transmission on a connection.
 
// Wait for a new remote connection request
Socket activeSocket = serverSocket.accept();
 

Once the server socket returns from the accept() method call, the number of sockets in the server application
increases by one. You have one passive server socket and one more active socket. The new active socket is the
endpoint at the server for the new client connection. At this point, you need to handle the communication with the
client using the new active socket.

Now you are ready to read and write data on the connection represented by the new socket. A Java TCP socket
provides a full duplex connection. It lets you read data from the connection as well as write data to the connection.
The Socket class contains two methods called getInputStream() and getOutputStream() for this purpose. The
getInputStream() method returns an InputStream object that you can use to read data from the connection.
The getOutputStream() method returns an OutputStream object that you can use to write data to the connection.
You use InputStream and OutputStream objects as if you are reading from and writing to a file on a local file system.
I assume that you are familiar with Java I/O. If you are not familiar with Java I/O, please refer to Chapter 7 in the book
Beginning Java Language Features (ISBN: 978-1-4302-6658-7) before you proceed in this section. However, you can
still read about the UDP socket in the section later in this chapter. When you are done with reading/writing data on
the connection, you close the InputStream/OutputStream, and finally close the socket. The following snippet of code

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

314

reads a message from a client and echoes it to the client. Note that the server and the client must agree on the format
of the message before they start communicating. The following snippet of code assumes that the client sends one line
of text at a time:
 
// Create a buffered reader and a buffered writer from the socket's
// input and output streams, so that we can read/write one line at a time
BufferedReader br = new BufferedReader(
 new InputStreamReader(activeSocket.getInputStream()));
 
BufferedWriter bw = new BufferedWriter(
 new OutputStreamWriter(activeSocket.getOutputStream()));
 

You can use br and bw the same way you will use them to read from a file or write to a file. An attempt to read from
an input stream blocks until data becomes available on the connection.
 
// Read one line of text from the connection
String inMsg = br.readLine();
 
// Write some text to the output buffer
bw.write('hello from server");
bw.flush();
 

At the end, close the connection using the socket’s close() method. Closing the socket also closes its input and
output streams. In fact, you can close one of the three (the input stream, the output stream, or the socket) and the other
two will be closed automatically. An attempt to read/write on a closed socket throws a java.net.SocketException.
You can check if a socket is closed by using its isClosed() method, which returns true if the socket is closed.
 
// Close the socket
activeSocket.close(); 

Tip■■  O nce you close a socket, you cannot reuse it. You must create a new socket and bind it before using the
new socket.

A server handles two kinds of work: accepting new connection requests and responding to already connected
clients. If responding to a client takes a very small amount of time, you can use the strategy as shown:
 
ServerSocket serverSocket = create a server socket here;
while(true) {
 Socket activeSocket = serverSocket.accept();
 
 // Handle the client request on activeSocket here
}
 

The above strategy handles one client at a time. It is suitable only if the number of concurrent incoming
connections is very low and a client’s request takes a very small amount of time to respond. If a client request takes a
significant amount of time to respond, all other clients will have to wait before they can be served.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

315

Another strategy to work with multiple client requests is to handle each client’s request in a separate thread so
the server can serve multiple clients at the same time. The following pseudo code outlines this strategy:
 
ServerSocket serverSocket = create a server socket here;
while(true) {
 Socket activeSocket = serverSocket.accept();
 Runnable runnable = () -> {
 // Handle the client request on the activeSocket here
 };
 new Thread(runnable).start(); // start a new thread
}
 

The above strategy seems to work fine until you have too many threads that are created for concurrent client
connections. Another strategy that works well in most of the situations is to have a thread pool to serve all client
connections. If all threads in the pool are busy serving clients, the request should wait until a thread becomes free
to serve it.

Listing 5-3 contains complete code for an echo server. It creates a new thread to handle each client request.
You can run the echo server program now. However, it is not going to do much as you do not have a client program to
connect to it. You will see it in action after you learn how to create the TCP client socket in the next section.

Listing 5-3.  An Echo Server Based on TCP Sockets

// TCPEchoServer.java
package com.jdojo.net;
 
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.net.InetAddress;
import java.net.ServerSocket;
import java.net.Socket;
 
public class TCPEchoServer {
 public static void main(String[] args) {
 try {
 // Create a Server socket
 ServerSocket serverSocket = new ServerSocket(12900, 100,
 InetAddress.getByName("localhost"));
 System.out.println("Server started at: " + serverSocket);
 
 // Keep accepting client connections in an infinite loop
 while (true) {
 System.out.println("Waiting for a connection...");
 
 // Accept a connection
 final Socket activeSocket = serverSocket.accept();
 
 System.out.println("Received a connection from " +
 activeSocket);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

316

 // Create a new thread to handle the new connection
 Runnable runnable =
 () -> handleClientRequest(activeSocket);
 new Thread(runnable).start(); // start a new thread
 }
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
 
 public static void handleClientRequest(Socket socket) {
 BufferedReader socketReader = null;
 BufferedWriter socketWriter = null;
 
 try {
 // Create a buffered reader and writer for teh socket
 socketReader = new BufferedReader(
 new InputStreamReader(socket.getInputStream()));
 socketWriter = new BufferedWriter(
 new OutputStreamWriter(socket.getOutputStream()));
 
 String inMsg = null;
 while ((inMsg = socketReader.readLine()) != null) {
 System.out.println("Received from client: " + inMsg);
 
 // Echo the received message to the client
 String outMsg = inMsg;
 socketWriter.write(outMsg);
 socketWriter.write("\n");
 socketWriter.flush();
 }
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 finally {
 try {
 socket.close();
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

317

Creating a TCP Client Socket
An object of the Socket class represents a TCP client socket. You have already seen how an object of the Socket class
works with a TCP server socket. For a server socket, you got an object of the Socket class as the return value from the
server socket’s accept() method. For a client socket, you will have to perform three additional steps: create, bind, and
connect. The Socket class provides many constructors that let you specify the remote IP address and port number.
These constructors bind the socket to a local host and an available port number. The following snippet of code shows
how to create a TCP client socket:
 
// Create a client socket, which is bound to the localhost at any
// available port; connected to remote IP of 192.168.1.2 at port 3456
Socket socket = new Socket("192.168.1.2", 3456);
 
// Create an unbound client socket. bind it, and connect it.
Socket socket = new Socket();
socket.bind(new InetSocketAddress("localhost", 14101));
socket.connect(new InetSocketAddress("localhost", 12900));
 

Once you get a connected Socket object, you can use its input and output streams using the getInputStream()
and getOutputStream() methods, respectively. You can read/write on the connection the same way you would
read/write from/to a file using the input and output streams.

Listing 5-4 contains the complete code for an echo client application. It receives input from the user, sends
the input to the echo server as listed in Listing 5-3, and prints the server’s response on the standard output.
Both applications, the echo server and the echo client, must agree on the format of the messages that they will
be exchanging. They exchange one line of text at a time. It is important to note that you must append a new
line with every message that is sent across the connection because you are using the readLine() method of the
BufferedReader class, which returns only when it encounters a new line. The client application must use the same IP
address and port number where the server socket is accepting the connection.

Listing 5-4.  An Echo Client Based on TCP Sockets

// TCPEchoClient.java
package com.jdojo.net;
 
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.net.Socket;
 
public class TCPEchoClient {
 public static void main(String[] args) {
 Socket socket = null;
 BufferedReader socketReader = null;
 BufferedWriter socketWriter = null;
 try {
 // Create a socket that will connect to localhost
 // at port 12900. Note that the server must also be
 // running at localhost and 12900.
 socket = new Socket("localhost", 12900);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

318

 System.out.println("Started client socket at " +
 socket.getLocalSocketAddress());
 
 // Create a buffered reader and writer using the socket's
 // input and output streams
 socketReader = new BufferedReader(
 new InputStreamReader(socket.getInputStream()));
 socketWriter = new BufferedWriter(
 new OutputStreamWriter(socket.getOutputStream()));
 
 // Create a buffered reader for user's input
 BufferedReader consoleReader =
 new BufferedReader(new InputStreamReader(System.in));
 
 String promptMsg = "Please enter a message (Bye to quit):";
 String outMsg = null;
 
 System.out.print(promptMsg);
 while ((outMsg = consoleReader.readLine()) != null) {
 if (outMsg.equalsIgnoreCase("bye")) {
 break;
 }
 
 // Add a new line to the message to the server,
 // because the server reads one line at a time.
 socketWriter.write(outMsg);
 socketWriter.write("\n");
 socketWriter.flush();
 
 // Read and display the message from the server
 String inMsg = socketReader.readLine();
 System.out.println("Server: " + inMsg);
 
 System.out.println(); // Print a blank line
 System.out.print(promptMsg);
 }
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 finally {
 // Finally close the socket
 if (socket != null) {
 try {
 socket.close();
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

319

Putting a TCP Server and Clients Together
Figure 5-6 shows the setup in which three clients are connected to a server. Two Socket objects, one at each end,
represent a connection. The ServerSocket object in the server keeps waiting for incoming connection requests
from a client.

Server

Server Socket

Socket 1

Socket 2

Socket 3

Client 1

Client 2

Client 3

Figure 5-6.  A client-server setup using ServerSocket and socket objects

Listing 5-3 and Listing 5-4 list the complete program for a TCP echo server and client application. You need
to run the TCPEchoServer class first, and then the TCPEchoClient class. The server application waits for the client
application to connect. The client application prompts the user to enter a text message on the console. Once the
user enters a text message and presses the Enter key, the client application sends that text to the server. The server
responds back with the same message. Both applications print the details about the conversation on the standard
output. The following are the outputs for an echo server and an echo client. You can run multiple instances of the
TCPEchoClient application. The server application handles each client connection in a separate thread.

The following is a sample output for the server application:
 
Server started at: ServerSocket[addr=localhost/127.0.0.1,port=0,localport=12900]
Waiting for a connection ...
Received a connection from Socket[addr=/127.0.0.1,port=1698,localport=12900]
Waiting for a connection ...
Received from client: Hello
 

The following is a sample output for the client application:
 
Started client socket at /127.0.0.1:1698
Please enter a message (Bye to quit):Hello
Server: Hello
Please enter a message (Bye to quit):Bye

Working with UDP Sockets
A socket based on UDP is connectionless and is based on datagrams, as opposed to a TCP socket, which is
connection-oriented and is based on streams. The effect of being a connectionless socket is that the two sockets
(client and server) do not establish a connection before they communicate. Recall that TCP has a server socket whose
sole function was to listen for a connection request from remote clients. Since UDP is a connectionless protocol,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

320

there will not be a server socket when you work with UDP. In TCP sockets, the impression of having a stream-oriented
data transmission between the client and server was produced by TCP in the transport layer because of its
connection-oriented features. TCP maintained the state of the data being transmitted on each side of the connection.
The implication of UDP being a connectionless protocol is that each side (client and server) sends or receives a chunk
of data without any prior knowledge of communication between them. In a communication using UDP, each chunk
of data that is sent to the same destination is independent of the previously sent data. The chunk of data that is sent
using UDP is called a datagram or a UDP packet. Each UDP packet has the data, the destination IP address, and the
destination port number. UDP is an unreliable protocol because it does not guarantee the delivery and the order of
delivery of packets to the intended recipient.

Tip■■  A lthough UDP is a connectionless protocol, you can build a connection-oriented communication using UDP in
your application. You will need to write the logic that will handle the lost packets, out of order packet delivery, and many
more things. TCP provides all these features at transport layer and your application does not have to worry about them.

Writing an application using UDP sockets is easier than writing an application using TCP sockets. You have to
deal with only two classes:

•	 DatagramPacket

•	 DatagramSocket

An object of the DatagramPacket class represents a UDP datagram that is the unit of data transmission over a
UDP socket. An object of the DatagramSocket class represents a UDP socket that is used to send or receive a datagram
packet. Here are the steps you need to perform to work with UDP sockets:

	 1.	 Create an object of the DatagramSocket class and bind it to a local IP address and a local
port number.

	 2.	 Create an object of the DatagramPacket class to hold the destination address and the data
to be transmitted.

	 3.	 Use the send() method to send the datagram packet to its destination. On the receiving
end, use the receive() method to read the datagram packet.

You can use one of the constructors to create an object of the DatagramSocket class. All of them will create the
socket and bind it to a local IP address and a local port number. Note that a UDP socket does not have a remote IP
address and a remote port number because it is never connected to a remote socket. It can receive/send a datagram
packet from/to any UDP socket.
 
// Create a UDP Socket bound to a port number 15900 at localhost
DatagramSocket udpSocket = new DatagramSocket(15900, "localhost");
 

The DatagramSocket class provides a bind() method, which lets you bind the socket to a local IP address and a
local port number. Typically, you do not need to use this method as you specify the socket address to which it needs to
be bound in its constructor, as you just did.

A DatagramPacket contains three things: a destination IP address, a destination port number, and the data.
The constructors for the DatagramPacket class fall into two categories. Constructors in one of the categories let you
create a DatagramPacket object to receive a packet. They require only the buffer size, offset, and length of data in that
buffer. Constructors in the other category let you create a DatagramPacket object to send a packet. They require you
to specify the destination address along with the data. If you have created a DatagramPacket without specifying the
destination address, you can set the destination address afterwards using the setAddress() and setPort() methods.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

321

Constructors of the DatagramPacket class to create a packet to receive data are as follows:

•	 DatagramPacket(byte[] buf, int length)

•	 DatagramPacket(byte[] buf, int offset, int length)

Constructors of the DatagramPacket class to create a packet to send data are as follows:

•	 DatagramPacket(byte[] buf, int length, InetAddress address, int port)

•	 DatagramPacket(byte[] buf, int offset, int length, InetAddress address,
int port)

•	 DatagramPacket(byte[] buf, int length, SocketAddress address)

•	 DatagramPacket(byte[] buf, int offset, int length, SocketAddress address)

The following snippet of code demonstrates some of the ways to create a datagram packet:
 
// Create a packet to receive 1024 bytes of data
byte[] data = new byte[1024];
DatagramPacket packet = new DatagramPacket(data, data.length);
  
// Create a packet that a has buffer size of 1024, but it will receive
// data starting at offset 8 (offset zero means the first element in
// the array) and it will receive only 32 bytes of data.
byte[] data2 = new byte[1024];
DatagramPacket packet2 = new DatagramPacket(data2, 8, 32);
 
// Create a packet to send 1024 bytes of data that has a destination
// address of "localhost" and port 15900. Will need to populate data3
// array before sending the packet.
byte[] data3 = new byte[1024];
DatagramPacket packet3 = new DatagramPacket(data3, 1024,
 InetAddress.getByName("localhost"), 15900);
 
// Create a packet to send 1024 bytes of data that has a destination
// address of "localhost" and port 15900. Will need to populate data4
// array before sending the packet. The code sets the destination
// address by calling methods on the packet instead of specifying it
// in its constructor.
byte[] data4 = new byte[1024];
DatagramPacket packet4 = new DatagramPacket(data4, 1024);
packet4.setAddress(InetAddress.getByName("localhost"));
packet4.setPort(15900);
 

It is very important to understand that data in the packet always has offset and length specified. You need to
use those two pieces of information while reading the data from a packet. Suppose that a receivedPacket object
reference represents a DatagramPacket that you have received from a remote UDP socket. The getData() method of
the DatagramPacket class returns the buffer (a byte array) of the packet. A packet can have a bigger buffer than the size
of the received data from a remote client. In such cases, you must use the offset and the length to read the data from
the buffer that was received without touching the garbage data in the buffer. If a packet’s buffer size is smaller than
the size of the data received, the extra bytes are silently ignored. You should use the code similar to the one shown
below to read data that a socket receives. The point is that you should use data in the receiving buffer starting from its
specified offset and as many bytes as indicated by its length property.
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

322

// Get the packet's buffer, offset, and length
byte[] dataBuffer = receivedPacket.getData();
int offset = receivedPacket.getOffset();
int length = receivedPacket.getLength();
 
// Copy the received data using offset and length to receivedData array,
// which will hold all good data
byte[] receivedData = new byte[length];
System.arraycopy(dataBuffer, offset, receivedData, 0, length);
 

Creating a UDP socket (client as well as server) is as simple as creating an object of the DatagramSocket class.
You can use its send() method to send a packet. You can use the receive() method to receive a packet from a remote
socket. The receive() method blocks until a packet arrives. You supply an empty datagram packet to the receive()
method. The socket populates it with information that it receives from the remote socket. If the supplied datagram
packet has a smaller data buffer size than that of the received datagram packet, the received data is truncated silently
to fit into the supplied datagram packet. If the supplied datagram packet has a bigger data buffer size than that of the
received one, the socket will copy the received data to the supplied data buffer in its segment indicated by its offset
and length properties and would not touch the other parts of the buffer. Note that the available data buffer size is not
the size of the byte array. Rather, it is defined by the length. For example, suppose you have a datagram packet with
a byte array of 32 elements with an offset of 2 and a data buffer length of 8. If you pass this datagram packet to the
receive() method, the maximum of 8 bytes of received data will be copied. The data will be copied from the third
element in the buffer to the eleventh element as indicated by the offset 2 and the length 8, respectively.
 
// Create a UDP socket bound to a port number 15900 at localhost
DatagramSocket socket = new DatagramSocket(15900,
 InetAddress.getByName("localhost"));
 
// Send a packet assuming that you have a datagram packet in p
socket.send(p);
 
// Receive a packet
DatagramPacket p2 = new DatagramPacket(new byte[1024], 1024);
socket.receive(p2);

Creating a UDP Echo Server
Creating an echo server using UDP is very easy. It takes only four lines of real code. Use the following steps to create
an UDP echo server:

	 1.	 Create a DatagramSocket object to represent a UDP socket.

	 2.	 Create a DatagramPacket object to receive the packet from a remote client.

	 3.	 Call the receive() method of the socket to wait for a packet to arrive.

	 4.	 Call the send() method of the socket passing the same packet that you received. When a
UDP packet is received by a server, it contains the sender’s address. You do not need to
change anything in the packet to echo back the same message to the sender of the packet.
When you prepare a datagram packet for sending, you need to set a destination address.
When the packet arrives at its destination, it contains its sender’s address. This is useful in
case the receiver wants to respond to the sender of the datagram packet.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

323

The following snippet of code shows how to write a UDP echo server:
 
DatagramSocket socket = new DatagramSocket(15900);
DatagramPacket packet = new DatagramPacket(new byte[1024], 1024);
while(true) {
 // Receive the packet
 socket.receive(packet);
 
 //Send back the same packet to the sender
 socket.send(packet);
}
 

Listing 5-5 has the expanded version of the same code for a UDP echo server. It contains the same basic logic as
shown above. Additionally, it has code to handle errors and print the packet’s details on the standard output.

Listing 5-5.  An Echo Server Based on UDP Sockets

// UDPEchoServer.java
package com.jdojo.net;
 
import java.io.IOException;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.InetAddress;
 
public class UDPEchoServer {
 public static void main(String[] args) {
 final int LOCAL_PORT = 15900;
 final String SERVER_NAME = "localhost";
 
 try {
 DatagramSocket udpSocket =
 new DatagramSocket(LOCAL_PORT,
 InetAddress.getByName(SERVER_NAME));
 
 System.out.println("Created UDP server socket at " +
 udpSocket.getLocalSocketAddress() + "...");
 
 // Wait for a message in a loop and echo the same
 // message to the sender
 while (true) {
 System.out.println("Waiting for a UDP packet" +
 " to arrive...");
  
 // Prepare a packet to hold the received data
 DatagramPacket packet =
 new DatagramPacket(new byte[1024], 1024);
 
 // Receive a packet
 udpSocket.receive(packet);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

324

 // Print the packet details
 displayPacketDetails(packet);
 
 // Echo the same packet to the sender
 udpSocket.send(packet);
 }
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
 
 public static void displayPacketDetails(DatagramPacket packet) {
 // Get the message
 byte[] msgBuffer = packet.getData();
 int length = packet.getLength();
 int offset = packet.getOffset();
 
 int remotePort = packet.getPort();
 InetAddress remoteAddr = packet.getAddress();
 String msg = new String(msgBuffer, offset, length);
 
 System.out.println("Received a packet:[IP Address=" +
 remoteAddr + ", port=" + remotePort +
 ", message=" + msg + "]");
 }
}
 

Listing 5-6 contains the program for the client application that uses a UDP socket to send/receive messages
to/from the UDP echo server. Note that the client and server exchange one line of text at a time.

Listing 5-6.  An Echo Client Based on UDP Sockets

// UDPEchoClient.java
package com.jdojo.net;
 
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.InetAddress;
import java.net.UnknownHostException;
 
public class UDPEchoClient {
 public static void main(String[] args) {
 DatagramSocket udpSocket = null;
 BufferedReader br = null;
 try {
 // Create a UDP socket at localhost using an available port
 udpSocket = new DatagramSocket();
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

325

 String msg = null;
 
 // Create a buffered reader to get an input from a user
 br = new BufferedReader(new InputStreamReader(System.in));
 
 String promptMsg = "Please enter a message (Bye to quit):";
 System.out.print(promptMsg);
 
 while ((msg = br.readLine()) != null) {
 if (msg.equalsIgnoreCase("bye")) {
 break;
 }
 
 // Prepare a packet to send to the server
 DatagramPacket packet = UDPEchoClient.getPacket(msg);
 
 // Send the packet to the server
 udpSocket.send(packet);
 
 // Wait for a packet from the server
 udpSocket.receive(packet);
 
 // Display the packet details received from
 // the server
 displayPacketDetails(packet);
 
 System.out.print(promptMsg);
 }
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 finally {
 // Close the socket
 if (udpSocket != null) {
 udpSocket.close();
 }
 }
 }
 
 public static void displayPacketDetails(DatagramPacket packet) {
 byte[] msgBuffer = packet.getData();
 int length = packet.getLength();
 int offset = packet.getOffset();
 int remotePort = packet.getPort();
 InetAddress remoteAddr = packet.getAddress();
 String msg = new String(msgBuffer, offset, length);
 System.out.println("[Server at IP Address=" + remoteAddr +
 ", port=" + remotePort + "]: " + msg);
 
 // Add a line break
 System.out.println();
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

326

 public static DatagramPacket getPacket(String msg)
 throws UnknownHostException {
 // We will send and accept a message of 1024 bytes in length.
 // longer messages will be truncated
 final int PACKET_MAX_LENGTH = 1024;
 byte[] msgBuffer = msg.getBytes();
 
 int length = msgBuffer.length;
 if (length > PACKET_MAX_LENGTH) {
 length = PACKET_MAX_LENGTH;
 }
 
 DatagramPacket packet = new DatagramPacket(msgBuffer, length);
 
 // Set the destination address and the port number
 int serverPort = 15900;
 final String SERVER__NAME = "localhost";
 InetAddress serverIPAddress =
 InetAddress.getByName(SERVER__NAME);
 packet.setAddress(serverIPAddress);
 packet.setPort(serverPort);
 
 return packet;
 }
}
 

To test the UDP echo application, you need to run the UDPEchoServer and UDPEchoClient classes. You need
to run the server first. The client application will prompt you to enter a message. Enter a text message and press
the Enter key to send that message to the server. The server will echo the same message. Both applications display
the messages being exchanged on the standard output. They also display the packet details, such as the sender’s
IP address and port number. The server application uses port number 15900 and the client application uses any
available UDP port on the computer. If you get an error, it means that port number 15900 is in use, so you need
to change the port number in the server program and use the new port number in the client program to address
the packet. The server is designed to handle multiple clients at a time. You can run multiple instances of the
UDPEchoClient class. Note that the server runs in an infinite loop and you must stop the server application manually.

The following is a sample log on the server console:
 
Created UDP server socket at /127.0.0.1:15900...
Waiting for a UDP packet to arrive...
Received a packet:[IP Address=/127.0.0.1, port=1522, message=Hello]
Waiting for a UDP packet to arrive...
Received a packet:[IP Address=/127.0.0.1, port=1522, message=Nice talking to you]
Waiting for a UDP packet to arrive...
 

The following is a sample log on the client console:
 
Please enter a message (Bye to quit):Hello
[Server at IP Address=localhost/127.0.0.1, port=15900]: Hello
 
Please enter a message (Bye to quit):Nice talking to you
[Server at IP Address=localhost/127.0.0.1, port=15900]: Nice talking to You
 
Please enter a message (Bye to quit):bye

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

327

A Connected UDP Socket
UDP sockets do not support an end-to-end connection like the TCP sockets. The DatagramSocket class contains a
connect() method. This method allows an application to restrict sending and receiving of UDP packets to a specific
IP address at a specific port number. Consider the following snippet of code:
 
InetAddress localIPAddress = InetAddress.getByName("192.168.11.101");
int localPort = 15900;
DatagramSocket socket = new DatagramSocket(localPort, localIPAddress);
  
// Connect the socket to a remote address
InetAddress remoteIPAddress = InetAddress.getByName("192.168.12.115");
int remotePort = 17901;
socket.connect(remoteIPAddress, remotePort);
 

The socket is bound to the local IP address 192.168.11.101 and local UDP port number 15900. It is connected to
a remote IP address of 192.168.12.115 and a remote UDP port number 17901. It means that the socket object can be
used to send/receive a datagram packet only to/from another UDP socket running at an IP address of 192.168.12.115
at the port number 17901. After you have called the connect() method on a UDP socket, you do not need to set the
destination IP address and the port number for the outgoing datagram packets. The socket will add the destination
IP address and port number that were used in the connect() method’s call to all outgoing packets. If you do supply a
destination address with a packet before you send it, the socket will make sure the destination address supplied in the
packet is the same as the remote address used in the connect() method call. Otherwise, the send() method will throw
an IllegalArgumentException.

Using the connect() method of a UDP socket has two advantages:

It sets the destination address for the outgoing packets every time you send a packet.•	

It restricts the socket to communicate only to the remote host whose IP address was used in •	
the connect() method’s call.

Now you understand that UDP sockets are connectionless and you do not have a real connection using a UDP
socket. The connect() method in the DatagramSocket class does not provide any kind of connection for UDP sockets.
Rather, it is useful for restricting the communication to a specific remote UDP socket.

UDP Multicast Sockets
Java supports UDP multicast sockets that can receive datagram packets sent to a multicast IP address. An object of the
MulticastSocket class represents a multicast socket. Working with a MulticastSocket socket is similar to working
with a DatagramSocket with one difference: a multicast socket is based on a group membership. After you have
created and bound a multicast socket, you need to call its joinGroup(InetAddress multiCastIPAddress) method to
make this socket a member of the multicast group defined by the specified multicast IP address, multiCastIpAddress.
Once it becomes a member of a multicast group, any datagram packet sent to that group will be delivered to this
socket. There can be multiple members in a multicast group. A multicast socket can be a member of multiple
multicast groups. If a member decides not to receive a multicast packet from a group, it can leave the group by calling
the leaveGroup(InetAddress multiCastIPAddress) method.

In IPv4, any IP address in the range 224.0.0.0 to 239.255.255.255 can be used as a multicast address to send a
datagram packet. The IP address 224.0.0.0 is reserved and you should not use it in your application. A multicast IP
address cannot be used as a source address for a datagram packet, which implies that you cannot bind a socket to a
multicast address.

A socket itself does not have to be a member of a multicast group to send a datagram packet to a multicast address.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

328

Java 7 added the IP multicast capability to the DatagramChannel class. Please refer to the “Multicasting Using
Datagram Channels” section later in this chapter on how to use a datagram channel for IP multicasting. Note that the
DatagramChannel class was added in Java 1.4, which did not have the IP multicast capability.

Listing 5-7 contains a program that creates a multicast socket that receives datagram packets addressed to
the 230.1.1.1 multicast IP address.

Listing 5-7.  A UDP Multicast Socket That Receives UDP Multicast Messages

// UDPMultiCastReceiver.java
package com.jdojo.net;
 
import java.io.IOException;
import java.net.DatagramPacket;
import java.net.InetAddress;
import java.net.MulticastSocket;
 
public class UDPMultiCastReceiver {
 public static void main(String[] args) {
 int mcPort = 18777;
 String mcIPStr = "230.1.1.1";
 MulticastSocket mcSocket = null;
 InetAddress mcIPAddress = null;
 try {
 mcIPAddress = InetAddress.getByName(mcIPStr);
 mcSocket = new MulticastSocket(mcPort);
 System.out.println("Multicast Receiver running at:" +
 mcSocket.getLocalSocketAddress());
 
 // Join the group
 mcSocket.joinGroup(mcIPAddress);
 
 DatagramPacket packet =
 new DatagramPacket(new byte[1024], 1024);
 
 while (true) {
 System.out.println("Waiting for a multicast message...");
 mcSocket.receive(packet);
 String msg = new String(packet.getData(),
 packet.getOffset(),
 packet.getLength());
 System.out.println("[Multicast Receiver] Received:" + msg);
 }
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 finally {
 if (mcSocket != null) {
 try {
 mcSocket.leaveGroup(mcIPAddress);
 mcSocket.close();
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

329

 catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 }
}
 

Listing 5-8 contains a program that sends a message to the same multicast address. Note that you can run
multiple instances of the UDPMulticastReceiver class and all of them will become a member of the same multicast
group. When you run the UDPMulticastSender class, it will send a message to the group, and all members in
the group will receive a copy of the same message. The UDPMulticastSender class uses a DatagramSocket, not a
MulticastSocket to send a multicast message.

Listing 5-8.  A UDP Datagram Socket, a Multicast Sender Application

// UDPMultiCastSender.java
package com.jdojo.net;
 
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.InetAddress;
 
public class UDPMultiCastSender {
 public static void main(String[] args) {
 int mcPort = 18777;
 String mcIPStr = "230.1.1.1";
 DatagramSocket udpSocket = null;
 
 try {
 // Create a datagram socket
 udpSocket = new DatagramSocket();
 
 // Prepare a message
 InetAddress mcIPAddress = InetAddress.getByName(mcIPStr);
 
 byte[] msg = "Hello multicast socket".getBytes();
 DatagramPacket packet =
 new DatagramPacket(msg, msg.length);
 packet.setAddress(mcIPAddress);
 packet.setPort(mcPort);
 udpSocket.send(packet);
 
 System.out.println("Sent a multicast message.");
 System.out.println("Exiting application");
 }
 catch (Exception e) {
 e.printStackTrace();
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

330

 finally {
 if (udpSocket != null) {
 try {
 udpSocket.close();
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
 }
 }
}

URI, URL, and URN
A Uniform Resource Identifier (URI) is a sequence of characters that identifies a resource. The Request for Comments
(RFC) 3986 defines the generic syntax for a URI. The full text of this RFC is available at http://www.ietf.org/rfc/
rfc3986.txt. A resource identifier can identify a resource by a location, a name, or both. This section gives an
overview of the URI. If you are interested in details about the URI, you are advised to read RFC3986.

A URI that uses a location to identify a resource is called Uniform Resource Locator (URL). For example,
http://www.yahoo.com/index.html represents a URL that identifies a document named index.html at the host
www.yahoo.com. Another example of a URL is mailto:ksharan@jdojo.com in which the mailto protocol instructs the
application that interprets it to open up an email application to send an email to the email address specified in the
URL. In this case, the URL is not locating any resources. Rather, it is identifying the details of an email. You can also
set the subject and the body parts of an email using the mailto protocol. Therefore, a URL does not always imply a
location of a resource. Sometimes the resource may be abstract, as in the case of the mailto protocol. Once you locate
a resource using a URL, you can perform some operations, such as retrieve, update, or delete, on the resource.
The details of how the operations are performed depend on the scheme being used in the URL. A URL just identifies
the parts of a resource location and scheme to locate it, not the details of any operations that can be performed
on the resource.

A URI that uses a name to identify a resource is called a Uniform Resource Name (URN). For example,
URN:ISBN:978-1-4302-6661-7 represents a URN, which identifies a book using International Standard Book Numbers
(ISBN) namespace.

URL and URN are subsets of URI. Therefore, the discussion about URI applies to both URL and URN. The detailed
syntax of a URI depends on the scheme it uses. In this section, I will cover a generic syntax of the URI, which is
typically a URL. The next section will explore Java classes that are used to represent URIs and URLs in Java programs.

A URI can be absolute or relative. A relative URI is always interpreted in the context of another absolute URI,
which is called the base URI. In other words, you must have an absolute URI to make a relative URI meaningful.

An absolute URI has the following generic format:
 
<scheme>:<scheme-specific-part>
 

The <scheme-specific-part> depends on the <scheme>. For example, an http scheme uses one format, and a
mailto scheme uses another format. Another generic form of a URI is as follows. Typically, but not necessarily,
it represents a URL.
 
<scheme>://<authority><path>?<query>#<fragment>
 

www.it-ebooks.info

http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.yahoo.com/index.html
http://www.yahoo.com/
http://ksharan@jdojo.com
http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

331

Here, <scheme> indicates a method to access a resource. It is the protocol name such as http, ftp, etc. We all use
the term “protocol” for what is termed a “scheme” in the URI specification. If the term “scheme” throws you off, you
can read it as “protocol” whenever it appears in this section. The <scheme> and <path> parts are required in a URI.
All other parts are optional. The <path> part may be an empty string.

The <authority> part indicates the server name (or IP address) or a scheme-specific registry. If the <authority>
part represents a server name, it may be written in the form of <userinfo>@host:port. If a <authority> is present in
a URI, it begins with two forward slashes; it is an optional part. For example, a URL that identifies a file in a local file
system on a machine uses the file scheme as file:///c:/documents/welcome.doc.

The URI syntax uses a hierarchical syntax in its <path> part, which locates the resource on the server. Multiple
parts of the <path> are separated by a forward slash (/).

The <query> part indicates that the resource is obtained by executing the specified query. It consists of
name-value pairs separated by an ampersand (&). The name and value are separated by an equal sign (=). For example,
id=123&rate=5.5 is a query, which has two parts, id and rate. The value for id is 123 and the value for rate is 5.5.

The <fragment> part identifies a secondary resource, typically a subset of the primary resource identified by
another part of the URI.

The following is an example of a URI, which is also broken into parts:
 
URI: http://www.jdojo.com/java/intro.html?id=123#conclusion
Scheme: http
Authority: www.jdojo.com
Path: /java/intro.html
Query: id=123
Fragment: conclusion
 

The URI represents a URL that refers to a document named intro.html on the www.jdojo.com server. The scheme
http indicates that the document can be retrieved using the http protocol. The query id=123 indicates that the
document is obtained by executing this query. The fragment part conclusion can be interpreted differently by
different applications that use the document. In case of an HTML document, the fragment part is interpreted by the
web browser as the part of the main document.

Not all parts of a URI are mandatory. Which parts are mandatory and which parts are optional depend on the
scheme that is used. One of the goals of using a URI to identify a resource was to make it universally readable. For this
reason, there is a well-defined set of characters that can be used to represent a URI. URI syntax uses some reserved
characters that have special meaning and they can only be used in specific parts of a URI. In other parts, the reserved
characters need to be escaped. A character is escaped by using a percent character followed by its ASCII value in a
hexadecimal format. For example, ASCII value of space is 32 in decimal format, and it is 20 in hexadecimal format.
If you want to use a space character in a URI, you must use %20, which is the escaped form for a space. Since the percent
sign is used as part of an escape character, you must use %25 to represent a % character in a URI (25 is the hexadecimal
value for number 37 in decimal. The ASCII value for % is 37 in decimal). For example, if you want to use a value of
5.2% in a query, the following is an invalid URI:
 
http://www.jdojo.com/details?rate=5.2%
 

To make it a valid URI, you need to escape the percent sign character as %25 as shown:
 
http://www.jdojo.com/details?rate=5.2%25
 

It is important to understand the usage of a relative URI. A relative URI is always interpreted in the context of an
absolute URI, which is called the base URI. An absolute URI starts with a scheme. A relative URI inherits some parts of
its base URI. Let’s consider a URI that refers to an HTML document as shown:
 
http://www.jdojo.com/java/intro.html
 

www.it-ebooks.info

http://www.jdojo.com/java/intro.html?id=123#conclusion
http://www.jdojo.com/
http://www.jdojo.com/
http://www.jdojo.com/details?rate=5.2%25
http://www.jdojo.com/details?rate=5.2%25
http://www.jdojo.com/java/intro.html
http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

332

The document referred to in the URI is intro.html. Its path is /java/intro.html. Suppose two documents
named brief_intro.html and detailed_intro.html reside (physically or logically) in the same path hierarchy as
intro.html. The following are the absolute URIs for all three documents:

•	 http://www.jdojo.com/java/intro.html

•	 http://www.jdojo.com/java/brief_intro.html

•	 http://www.jdojo.com/java/detailed_intro.html

If you are already in the intro.html context, it will be easier to refer to the other two documents using their
names instead of their absolute URI. What does it mean by being in the intro.html context? When you use the
http://www.jdojo.com/java/intro.html URI to identify a resource, it has three parts: a scheme (http), a server
name (www.jdojo.com), and a document path (/java/intro.html). The path indicates that the document is under
the java path hierarchy, which in turn is at the root of the path hierarchy. All details—scheme, server name, path
details, excluding the document name itself (intro.html)—make up the context for the intro.html document. If you
look at the URI for the other two documents listed above, you will notice that all details about them are the same as
for intro.html. In other words, you can state that the context for the other two documents is the same as for intro.html.
In this case, with an absolute URI of the intro.html document as base URI, the relative URIs for the other two
documents are their names: brief_intro.html and detailed_intro.html. It can be listed as follows:

•	 Base URI: http://www.jdojo.com/java/intro.html

•	 Relative URI: brief_intro.html

•	 Relative URI: detailed_intro.html

In the list, the two relative URIs inherit the scheme, server name, and path hierarchy from the base URI. It is to be
emphasized that a relative URI never makes sense without specifying its base URI.

When a relative URI has to be used, it must be resolved to its equivalent absolute URI. The URI specification lays
down rules to resolve a relative URI. I will discuss some of the most commonly used forms of relative URIs and their
resolutions. There are two special characters used to define the <path> part of a URI. They are a dot and two dots.
A dot means the current path hierarchy. Two dots mean one up in the path hierarchy. You must have seen these two
sets of characters being used in a file system to mean the current directory and parent directory. You can think of their
meanings in a URI the same way, but a URI does not assume any directory hierarchy. In a URI, a path is considered as
hierarchical, and it is not tied to a file system hierarchical structure at all. However, in practice, when you work with
web-based applications, URLs are usually mapped to a file system hierarchical structure. In the normalized form of a
URI, dots are replaced appropriately. For example, s://sn/a/./b is normalized to s://sn/a/b, and s://sn/a/../b is
normalized to s://sn/b. The non-normalized and normalized forms refer to the same URL. The normalized form has
extra characters removed. By just looking at two URIs, you cannot say that they are referring to the same resource or
not. You must normalize them before you compare them for equality. During the comparison process, scheme, server
name, and hexadecimal digits are considered case-insensitive. Here are some rules to resolve a relative URI:

If a URI starts with a scheme, it is considered an absolute URI.•	

If a relative URI starts with an authority, it inherits scheme from its base URI.•	

If a relative URI is an empty string, it is the same as the base URI.•	

If a relative URI has a fragment part only, the resolved URI uses the new fragment. If a base •	
URI had a fragment, it is replaced with the fragment of the relative URI. Otherwise, the
fragment of the relative URI is added to the base URI.

A relative URI’s path does not start with a forward slash (•	 /). If the base URI has a path, remove
the last component of the path in the base URI and append the relative URI. Note that the last
component of the path may be an empty string as in http://www.abc.com/.

If a relative URL starts with a path, which in turn starts with a forward slash (•	 /), the base URI’s
path is replaced with the relative URI’s path.

www.it-ebooks.info

http://www.jdojo.com/java/intro.html
http://www.jdojo.com/java/brief_intro.html
http://www.jdojo.com/java/detailed_intro.html
http://www.jdojo.com/java/intro.html
http://www.jdojo.com/
http://www.jdojo.com/java/intro.html
http://www.abc.com/
http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

333

Table 5-5 contains examples of using these rules. The examples in the table conform to the rules followed in Java
URI and URL classes. Java rules deviate slightly in a few cases from the rules set in the URI specification.

Table 5-5.  Examples of How a Relative URI is Resolved to an Absolute URI Using a Base URI

Base URI Relative URI Resolved Relative URI Description of the Relative URI

h://sn/a/b/c http://sn2/foo h://sn2/foo It is an absolute URI.

h://sn/a/b/c //sn2/h/k h://sn2/h/k It starts with an authority

h://sn/a/b/c h://sn/a/b/c It is an empty string.

h://sn/a/b/c #k h://sn/a/b/c#k It contains a fragment only.

h://sn/a/b/c#a #k h://sn/a/b/c#k It contains a fragment only.

h://sn/a/b/ foo h://sn/a/b/foo The path does not start with a /.

h://sn/a/b/c foo h://sn/a/b/foo The path does not start with a /.

h://sn/a/b/c?d=3 foo h://sn/a/b/foo The path does not start with a /.

h://sn/ foo h://sn/foo The path does not start with a /.

h://sn foo h://sn/foo The path does not start with a /.

h://sn/a/b/ /foo h://sn/foo The path starts with a /.

h://sn/a/b/c /foo h://sn/foo The path starts with a /.

h://sn/a/b/c?d=3 /foo h://sn/foo The path starts with a /.

h://sn/ /foo h://sn/foo The path starts with a /.

h://sn /foo h://sn/foo The path starts with a /.

Tip■■   You can also use a host name or IP address as an authority in a URI. IPv4 can be used in its dotted
decimal format such as http://192.168.10.178/docs/toc.html. IPv6 must be enclosed in brackets such
as http://[1283::8:800:200C:A43A]/docs/toc.html.

URI and URL as Java Objects
Java represents a URI and a URL as objects. It provides the following four classes that you can use to work with a URI
and a URL as objects in a Java program:

•	 java.net.URI

•	 java.net.URL

•	 java.net.URLEncoder

•	 java.net.URLDecoder

www.it-ebooks.info

http://192.168.10.178/docs/toc.html
http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

334

An object of the URI class represents a URI. An object of the URL class represents a URL. URLEncoder and
URLDecoder are utility classes that help encode and decode URI strings. I will discuss other Java classes in the next
sections that are used to retrieve the resource identified by a URL.

The URI class has many constructors. They let you pass variable combinations of parts (scheme, authority,
path, query, and fragment) of a URI. All constructors throw a checked exception called URISyntaxException. They
throw an exception because strings, which you use to construct a URI object, may not be in conformity with the URI
specification.
 
// Create a URI object
URI baseURI = new URI("http://www.yahoo.com");
 
// Create a URI with relative URI string and resolve it using baseURI
URI relativeURI = new URI("welcome.html");
URI resolvedRelativeURI = baseURI.resolve(relativeURI);
 

Listing 5-9 demonstrates how to use the URI class in a Java program.

Listing 5-9.  A Sample Class That Demonstrates the Use of the java.net.URI Class

// URITest.java
package com.jdojo.net;
 
import java.net.URI;
import java.net.URISyntaxException;
 
public class URITest {
 public static void main(String[] args) {
 String baseURIStr = "http://www.jdojo.com/javaintro.html?" +
 "id=25&rate=5.5%25#foo";
 String relativeURIStr = "../sports/welcome.html";
 
 try {
 URI baseURI = new URI(baseURIStr);
 URI relativeURI = new URI(relativeURIStr);
 
 // Resolve the relative URI with respect to the base URI
 URI resolvedURI = baseURI.resolve(relativeURI);
 
 printURIDetails(baseURI);
 printURIDetails(relativeURI);
 printURIDetails(resolvedURI);
 }
 catch (URISyntaxException e) {
 e.printStackTrace();
 }
 }
 
 public static void printURIDetails(URI uri) {
 System.out.println("URI:" + uri);
 System.out.println("Normalized:" + uri.normalize());

www.it-ebooks.info

http://www.yahoo.com/
http://www.jdojo.com/javaintro.html
http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

335

 String parts = "[Scheme=" + uri.getScheme() +
 ", Authority=" + uri.getAuthority() +
 ", Path=" + uri.getPath() +
 ", Query:" + uri.getQuery() +
 ", Fragment:" + uri.getFragment() + "]";
 
 System.out.println(parts);
 System.out.println();
 }
} 

URI:http://www.jdojo.com/javaintro.html?id=25&rate=5.5%25#foo
Normalized:http://www.jdojo.com/javaintro.html?id=25&rate=5.5%25#foo
[Scheme=http, Authority=www.jdojo.com, Path=/javaintro.html, Query:id=25&rate=5.5%, Fragment:foo]
 
URI:../sports/welcome.html
Normalized:../sports/welcome.html
[Scheme=null, Authority=null, Path=../sports/welcome.html, Query:null, Fragment:null]
 
URI:http://www.jdojo.com/../sports/welcome.html
Normalized:http://www.jdojo.com/../sports/welcome.html
[Scheme=http, Authority=www.jdojo.com, Path=/../sports/welcome.html, Query:null, Fragment:null] 

You can also get a URL object from a URI object using its toURL() method as shown:
 
URL baseURL = baseURI.toURL();
 

You can also create a URI object using the create(String str) static method of the URI class. The create()
method does not throw a checked exception. It throws a runtime exception. Therefore, its use will not force you to
handle the exception. You should use this method only when you know that a URI string is well-formed.
 
URI uri2 = URI.create("http://www.yahoo.com");
 

An instance of the java.net.URL class represents a URL in a Java program. Although every URL is also a URI,
Java does not inherit the URL class from the URI class. Java uses the term protocol to refer to the scheme part in the URI
specification. You can create a URL object by providing a string that has all URL’s parts concatenated, or by providing
parts of a URL separately. If strings that you supply to create a URL object are not valid, the constructors of the URL class
will throw a MalformedURLException checked exception. You must handle this exception when you create a URL object.

Listing 5-10 demonstrates how to create a URL object. The URL class lets you create an absolute URL from a
relative URL and a base URL using one of its constructors.

Listing 5-10.  A Sample Class That Demonstrates the Use of the java.net.URL Class

// URLTest.java
package com.jdojo.net;
 
import java.net.URL;
 
public class URLTest {
 public static void main(String[] args) {
 String baseURLStr = "http://www.ietf.org/rfc/rfc3986.txt";
 String relativeURLStr = "rfc2732.txt";

www.it-ebooks.info

http://www.jdojo.com/javaintro.html?id=25&rate=5.5%25#foo
http://www.jdojo.com/javaintro.html?id=25&rate=5.5%25#foo
http://www.jdojo.com/
http://www.jdojo.com/sports/welcome.html
http://www.jdojo.com/sports/welcome.html
http://www.jdojo.com/
http://www.yahoo.com/
http://www.ietf.org/rfc/rfc3986.txt
http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

336

 try {
 URL baseURL = new URL (baseURLStr);
 URL resolvedRelativeURL = new URL(baseURL, relativeURLStr);
 System.out.println("Base URL:" + baseURL);
 System.out.println("Relative URL String:" + relativeURLStr);
 System.out.println("Resolved Relative URL:" + resolvedRelativeURL);
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
} 

Base URL:http://www.ietf.org/rfc/rfc3986.txt
Relative URL String:rfc2732.txt
Resolved Relative URL:http://www.ietf.org/rfc/rfc2732.txt 

Typically, you create a URL object to retrieve the resource identified by the URL. Note that you can create an
object of the URL class as long as the URL is well formed textually and the protocol to handle the URL is available.
The successful creation of a URL object in a Java program does not guarantee the existence of the resource at the
server specified in the URL. The URL class provides methods that you can use in conjunction with other classes to
retrieve the resource identified by the URL.

The URL class makes sure that it can handle the protocol specified in the URL string. For example, it will not let
you create a URL object with a string as ppp://www.sss.com/ unless you develop and supply it a protocol handler for a
ppp protocol. I will discuss in detail how to retrieve the resource identified by a URL in the next section.

Sometimes you do not know the parts of the URL string in advance. You get the parts of the URL at runtime as
input from other parts of the program or from the user. In such cases, you will need to encode the parts of the URL
before you can use them to create a URL object. Sometimes you get a string in encoded form and you want it to be
decoded. An encoded string will have all the restricted characters properly escaped.

The URLEncoder and URLDecoder classes are used to encode and decode strings, respectively.
The URLEncoder.encode(String source, String encoding) static method is used to encode a source string
using the specified encoding. The URLDecoder.decode(String source, String encoding) static method is used
to decode a source string using a specified encoding. The following snippet of code shows how to encode/decode
strings. Typically, you encode/decode the value part of name-value pairs in the query part of a URL. Note that you
should never attempt to encode the entire URL string. Otherwise, it will encode some of the reserved characters such
a forward slash and the resulting URL string will be invalid.
 
String source = "this is a test for 2.5% and &" ;
String encoded = URLEncoder.encode(source, "utf-8");
String decoded = URLDecoder.decode(encoded, "utf-8");
System.out.println("Source: " + source);
System.out.println("Encoded: " + encoded);
System.out.println("Decoded: " + decoded); 

Source: this is a test for 2.5% and &
Encoded: this+is+a+test+for+2.5%25+and+%26
Decoded: this is a test for 2.5% and &

www.it-ebooks.info

http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc2732.txt
http://www.sss.com/
http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

337

Accessing the Contents of a URL
A URL has a protocol that is used to communicate with the remote application that hosts the URL’s contents. For example,
the URL http://www.yahoo.com/index.html uses the http protocol. In a URL, you specify a protocol that is used by the
application layer in the protocol suite. When you need to access the URL’s contents, the computer will use some kind
of protocols from lower layers in the protocol suite (transport, Internet layers, etc.) to communicate with the remote
host. The http application layer protocol uses TCP/IP protocols in lower layers. In a distributed application, it is very
frequent that you need to retrieve (or read) the resource (could be text, html content, image files, audio/video files or
any other kind of information) identified by a URL. Although it is possible to open a socket every time you need to read
the contents of URL, it is time consuming and cumbersome for programmers. After all, programmers need some way
to be more productive than writing repetitive code for what seems to be a routine job. Java designers realized this need
and they have provided a very easy (yes, it is very easy) way to read/write data from/to a URL. This section will explore
some of the ways, from very simple to quite complex, to read/write data from/to a URL.

As the data passes from one layer to another in the protocol suite, each layer adds a header to the data. Since
a URL uses a protocol in the application layer, it also contains its own header. The format of the header depends on
the protocol being used. When the http request is send to a remote host, the application layer in the source host
adds the http header to the data. The remote host has an application layer that handles the http protocol and it uses
the header information to interpret the contents. In summary, a URL data will have two parts: a header part and a
contents part. The URL class along with some other classes let you read/write both header and content parts of a URL.
I will start with the simplest case of reading the contents of a URL.

Before you read/write from/to a URL, you need to have a working URL that you can access. You can read content
of any URL that is publicly available on the Internet. For this discussion, I will assume that you are familiar with Java
Server Pages (JSP) and you have access to a web server where you can deploy a JSP page. If you do not know JSP,
you can just replace the URL used in examples of this section with any publicly available URL; for example, the URL
http://www.yahoo.com will work fine, and you should be able to run all examples. Writing data to a URL is a little
different. It will be easier if you can run your JSP to see how writing to a URL works. I assume that you have deployed a
web application on a web server and it has a web page called echo_params.jsp.

Listing 5-11 shows the content of this JSP page. It performs two things. It reads the HTTP request method, which
can be GET or POST, and prints it. It reads all the parameters passed in with the HTTP request and prints the list of
parameter names and values.

Listing 5-11.  The Contents of the echo_params.jsp File

<%@ page contentType="text/html;charset=windows-1252"%>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=windows-1252"/>
 <title>Echo Request Method and Parameters</title>
 </head>
 <body>
 <h1>URL Connection Test</h1>
 <%
 out.println("Request Method: " + request.getMethod());
 out.println("

");
 
 out.println("<u>List of Parameter Names and Values</u>
");
 java.util.Enumeration paramNames =
 request.getParameterNames();

www.it-ebooks.info

http://www.yahoo.com/index.html
http://www.yahoo.com/
http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

338

 while(paramNames.hasMoreElements()) {
 String paramName = (String)paramNames.nextElement();
 String paramValue = request.getParameter(paramName);
 out.println("Name: " + paramName + ", Value: " + paramValue);
 out.println("
");
 }
 %>
 </body>
</html>
 

The URL class lets you read the contents (not header) of a URL by just writing two lines of code as shown:
 
URL url = new URL("your URL string goes here");
InputStream ins = url.openStream();
 

Listing 5-12 has the complete program that reads a URL’s contents. You will need to change the URL in this
program according to your web server setup. The output shows that you do access the JSP, and the JSP gets the query
(id=123) passed to it and transmits back the generated HTML contents. The HTML request was sent using the GET
method. If you want to use the POST method to send a request to a URL, you will need to use the URLConnection class,
which I will discuss next. I have formatted the output for better readability.

Listing 5-12.  A Simple URL Contents Reader Program

// SimpleURLContentReader.java
package com.jdojo.net;
 
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.net.URL;
 
public class SimpleURLContentReader {
 public static String getURLContent(String urlStr) {
 BufferedReader br = null;
 try {
 URL url = new URL(urlStr);
 
 // Get the input stream
 InputStream ins = url.openStream();
 
 // Wrap input stream into a reader
 br = new BufferedReader(new InputStreamReader(ins));
 
 StringBuilder sb = new StringBuilder();
 String msg = null;
 while ((msg = br.readLine()) != null) {
 sb.append(msg);
 sb.append("\n"); // Append a new line
 }
 
 return sb.toString();
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

339

 catch (IOException e) {
 e.printStackTrace();
 }
 finally {
 if (br != null) {
 try {
 br.close();
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 
 // If we get here it means there was an error
 return null;
 }
 
 public static void main(String[] args) {
 String urlStr = "http://localhost:8080/docsapp/" +
 "echo_params.jsp?id=123";
 String content = getURLContent(urlStr);
 System.out.println(content);
 }
} 

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=windows-1252"/>
 <title>Echo Request Method and Parameters</title>
 </head>
 <body>
 <h1>URL Connection Test</h1>
 Request Method: GET

 <u>List of Parameter Names and Values</u>

 Name: id, Value: 123

 </body>
</html> 

Once you get the input stream, you can use it for reading the content of the URL. Another way of reading the
content of a URL is by using the getContent() method of the URL class. Since getContent() can return any kind of
content, its return type is the Object type. You will need to check what kind of object it returns before you use the
contents of the object. For example, it may return an InputStream object, and in that case, you will need to read data
from the input stream. The following are the two versions of the getContent() method:

•	 final Object getContent() throws IOException

•	 final Object getContent(Class[] classes) throws IOException

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

340

The second version of the method lets you pass an array of class type. It will attempt to convert the content object
to one of the classes you pass to it in the specified order. If the content object does not match any of the types, it will
return null. You will still need to write if statements to know what type of object was returned from the getContent()
method, as shown:
 
URL baseURL = new URL ("your url string goes here");
Class[] c = new Class[] {String.class, BufferedReader.class, InputStream.class};
 
Object content = baseURL.getContent(c);
if (content == null) {
 // Contents are not of any of the three kinds
}
else if (content instanceof String) {
 // You got a string
}
else if (content instanceof BufferedReader) {
 // You got a reader
}
else if (content instanceof InputStream) {
 // You got an input stream
}
 

If you read the contents of a URL using the openStream() or getContent() method, the URL class handles many
of the complexities of using sockets internally. The downside of this approach is that you do not have any control over
the connection settings. You cannot write data to the URL using this approach. Also, you do not have access to the
header information for the protocol used in a URL. Don’t despair; Java provides another class named URLConnection
that lets you do all of these in a simple and concise manner. URLConnection is an abstract class and you cannot
create its object directly. You need to use the openConnection() method of the URL object to get a URLConnection
object. The URL class will handle the creation of an URLConnection object, which will be appropriate to handle the
data for the protocol used in the URL. The following snippet of code shows how to use an URLConnection object to
read and write data to a URL:
 
URL url = new URL("your URL string goes here");
 
// Get a connection object
URLConnection connection = url.openConnection();
 
// Indicate that you will be writing to the connection
connection.setDoOutput(true);
 
// Get output/input streams to write/read data
OutputStream ous = connection.getOutputStream();
InputStream ins = connection.getInputStream(); // Caution. Read below
 

The openConnection() method of the URL class returns a URLConnection object, which is not connected to the
URL source yet. You must set all connection-related parameters to this object before it is connected. For example,
if you want to write data to the URL, you must call the setDoOutput(true) method on the connection object before it
is connected. A URLConnection object gets connected when you call its connect() method. However, it is connected
implicitly when you call its methods that require a connection. For example, writing data to a URL and reading the
URL’s data or header fields will connect the URLConnection object automatically, if it is not already connected.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

341

Here are few things you must follow if you want to avoid problems when you work with an URLConnection to read
and write data to a URL:

When you are only reading data from a URL, you can get the input stream using its •	
getInputStream() method. Use the input stream to read data. It will use a GET method for the
request to the remote host. That is, if you are passing some parameters to the URL, you must
do so by adding the query part to the URL.

If you are writing as well as reading data from a URL, you must call the •	 setDoOutput(true)
before you connect. You must finish writing the data to the URL before you start reading the
data. Writing data to a URL will change the request method to POST. You cannot even get
the input stream before you finish writing data to the URL. In fact, the getInputStream()
method sends a request to the remote host. Your intention is to send the data to the
remote host and read the response from the remote host. This one gets as tricky as it can.
Here is a little more explanation, using a snippet of code, assuming that connection is an
URLConnection object:
 
// Incorrect – 1. Get input and output streams
// you must get the output stream first
InputStream ins = connection.getInputStream();
OutputStream ous = connection.getOutputStream();
 
// Incorrect – 2. Get output and input streams
// you must get the output stream and finish writing
// before you should get the input stream
OutputStream ous = connection.getOutputStream();
InputStream ins = connection.getInputStream();
 
// Correct. Get output stream and get done with it.
// And, then get the input stream and read data.
OutputStream ous = connection.getOutputStream();
 
// Write logic to write data using ous object here. Make sure
// you are done writing data before you call the
// getInputStream() method as shown below
InputStream ins = connection.getInputStream();
 
// Write logic to read data
 
Using the •	 getInputStream() method and reading header fields, using any method such as
getHeaderField(String headerName), have the same effect. The URL's server supplies both
header and content. An URLConnection must send the request to get them.

Listing 5-13 contains the complete code that writes/reads data to/from the echo_params.jsp page as listed in
Listing 5-11. Note that you will need the echo_params.jsp page deployed to a web server for this example to work.
I have formatted the output for better readability.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

342

Listing 5-13.  A URL Reader/Writer Class That Writes/Reads Data to/from a URL

// URLConnectionReaderWriter.java
package com.jdojo.net;
 
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.OutputStreamWriter;
import java.io.UnsupportedEncodingException;
import java.net.URL;
import java.net.URLConnection;
import java.net.URLEncoder;
import java.util.Map;
 
public class URLConnectionReaderWriter {
 public static String getURLContent(String urlStr, String input) {
 BufferedReader br = null;
 BufferedWriter bw = null;
 
 try {
 URL url = new URL(urlStr);
 URLConnection connection = url.openConnection();
 
 // Must call setDoOutput(true) to indicate that we
 // will write to the connection. By default, it is fals
 // By default, setDoInput() is set to true.
 connection.setDoOutput(true);
 
 // Now, connect to the remote object
 connection.connect();
 
 // Write data to the URL first before reading the response
 OutputStream ous = connection.getOutputStream();
 bw = new BufferedWriter(new OutputStreamWriter(ous));
 bw.write(input);
 bw.flush();
 bw.close();
 
 // Must be placed after writing the data. Otherwise,
 // it will result in error, because if write is performed,
 // read must be performed after the write
 printRequestHeaders(connection);
 
 InputStream ins = connection.getInputStream();
 
 // Wrap the input stream into a reader
 br = new BufferedReader(new InputStreamReader(ins));
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

343

 StringBuffer sb = new StringBuffer();
 String msg = null;
 while ((msg = br.readLine()) != null) {
 sb.append(msg);
 sb.append("\n"); // Append a new line
 }
 
 return sb.toString();
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 finally {
 if (br != null) {
 try {
 br.close();
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 
 // If we arrive here it means there was an error
 return null;
 }
 
 public static void printRequestHeaders(URLConnection connection) {
 Map headers = connection.getHeaderFields();
 System.out.println("Request Headers are:");
 System.out.println(headers);
 System.out.println();
 }
 
 public static void main(String[] args) {
 // Change the URL to point to the echo_params.jsp page
 // on your web server
 String urlStr = "http://www.jdojo.com/docsapp/echo_params.jsp";
 String query = null;
 try {
 // Encode the query. We need to encode only the value
 // of the name parameter. Other names and values are fine
 query = "id=789&name=" +
 URLEncoder.encode("John & Co.", "utf-8");
 
 // Get the content and display it on the console
 String content = getURLContent(urlStr, query);
 System.out.println(content);
 }

www.it-ebooks.info

http://www.jdojo.com/docsapp/echo_params.jsp
http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

344

 catch (UnsupportedEncodingException e) {
 e.printStackTrace();
 }
 }
} 

Request Headers are:
{null=[HTTP/1.1 200 OK], Date=[Fri, 19 Dec 2008 02:15:14 GMT], Content-Length=[402],
Set-Cookie=[JSESSIONID=567B1B9F853DD22DD73AB8452E220E0A; Path=/examples],
Content-Type=[text/html;charset=windows-1252], Server=[Apache-Coyote/1.1]}
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=windows-1252"/>
 <title>Echo Request Method and Parameters</title>
 </head>
 <body>
 <h1>URL Connection Test</h1>
 Request Method: POST

<u>List of Parameter Names and Values</u>
Name: name, Value: John & Co.

Name: id, Value: 789

 </body>
</html> 

This time, you are using the POST method to send data to the URL. Note that the data that you send has been
encoded using the URLEncoder class. You needed to encode only the value of the name field, which is "John & Co."
because the ampersand in the value will conflict with the name-value pair separator in the query string. The program
has plenty of comments to warn you of any dangers if you change the sequence of any statements.

The program prints information about all headers that are returned in a java.util.Map object. The
URLConnection class provides several ways to get the header field’s values. For commonly used headers, it
provides a direct method. For example, the methods called getContentLength(), getContentType(), and
getContentEncoding() return the value of the header fields that indicate length, type, and encoding of the URL’s
contents, respectively. If you know the header field name or its index, you can use the getHeaderField(String
headerName) or getHeaderField(int headerIndex) method to get its value. The getHeaderFields() method
returns a Map object whose keys represent the header field names and the values represent the header field values.
Use caution when reading a header field because it has the same effect on the URLConnection object as reading the
contents. If you wish to write data to a URL, you must first write the data before you can read the header fields.

Java lets you read the contents of a JAR file using the jar protocol. Suppose you have a JAR file called myclasses.jar,
which has a class file whose path is myfolder/Abc.class. You can get a JarURLConnection from a URL and use its
methods to access the JAR file data. Note that you can only read JAR file contents from a URL. You cannot write to
a JAR file URL. The following snippet of code shows how to get a JarURLConnection object. You will need to use its
methods to get the JAR specific data.
 
String str = "jar:http://www.abc.com/myclasses.jar!/myfolder/Abc.class";
URL url = new URL(str);
JarURLConnection connection = (JarURLConnection)url.openConnection();
 
// Use the connection object to access any jar related data.
 

www.it-ebooks.info

http://www.abc.com/myclasses.jar!/myfolder/Abc.class
http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

345

Tip■■   You have read many words of caution in this section about using a URLConnection object. Here is one more: a
URLConnection object must be used for only one request. It works on the concept of obtain-use-and-throw. If you wish to
write or read data from a URL multiple times, you must call the URL’s openConnection() each time separately.

Non-Blocking Socket Programming
In previous sections, I discussed TCP and UDP sockets. The connect(), accept(), read(), and write() methods of
the Socket and ServerSocket classes block until the operation is complete. For example, a client socket’s thread is
blocked if it calls the read() method to read data from a server until the data is available. Would it not be nice if you
could call the read() method on a client socket and start doing something else until the data from the server arrives?
When data is available from the server, the client socket will be notified, which will read the data at an appropriate time.
Another big issue that you face with socket programming is the scalability of a server application. In previous sections,
I suggested that you would need to create a new thread to handle each client connection or you would have a pool of
threads to handle all client connections. Both ways, you will be creating and maintaining a bunch of threads in your
program. Wouldn’t it be nice if you didn’t have to deal with threads in a server program to handle multiple clients?
Non-blocking socket channels offer all of these nice features. As always, a good feature has a price tag associated with
it; so too with the non-blocking socket channel. It has a bit of a learning curve. You are used to programming where
things happen sequentially. With non-blocking socket channels, you will need to change your mindset about the way
you think about performing things in a program. Changing your mindset takes time. Your program will be performing
multiple things that will not be performed sequentially. If you are learning Java for the first time, you can skip this
section and revisit it later when you gain some more experience in writing complex Java programs.

It is assumed that you have a good understanding of socket programming using ServerSocket and Socket classes.
It is further assumed that you have a basic understanding of New Input/Output in Java using buffers and channels. This
section uses some classes that are contained in java.nio, java.nio.channels, and java.nio.charset packages.

Let’s start by comparing classes that are involved in blocking and non-blocking socket communications.
Table 5-6 lists the main classes that are used in blocking and non-blocking socket applications.

Table 5-6.  Comparison of Classes Involved in Blocking and Non-Blocking Socket Programming

Classes Used in Blocking Socket-Based
Communication

Classes Used in Non-Blocking Socket-Based Communication

ServerSocket ServerSocketChannel

The ServerSocket class still exists behind the scenes.

Socket SocketChannel

The Socket class still exists behind the scenes.

InputStream
OutputStream

No corresponding classes exist. A SocketChannel is used to
read/write data

No corresponding class exists. Selector

No corresponding class exists. SelectionKey

You will work with a ServerSocketChannel object primarily to accept a new connection request in a server instead
of using a ServerSocket. The ServerSocket has not disappeared. It is still at play behind the scenes. If you need
the reference of the ServerSocket object being used internally, you can get it by using the socket() method of the
ServerSocketChannel object. You can think of a ServerSocketChannel object as a wrapper for a ServerSocket object.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

346

You will work with a SocketChannel to communicate between a client and a server instead of a Socket. A Socket
object is still at play behind the scenes. You can get the reference of the Socket object using the socket() method of
the SocketChannel class. You can think of a SocketChannel object as a wrapper for a Socket object.

Before I start discussing the mechanism that is used by the non-blocking sockets to give you a more efficient and
scalable application interface, it would be helpful to look at a real-world example. Let’s discuss the way orders are placed
and served in a fast food restaurant. Suppose the restaurant expects the maximum ten customers and the minimum
of zero customers at any time. A customer comes to the restaurant, places his order, and is served the food. How many
servers should that restaurant employ? In the best case, it may employ only one server that can handle receiving orders
from all customers and serving their food. In the worst case, it can have ten servers—one server reserved for one
customer. In the latter case, if there are only three customers in the restaurant, seven servers will be idle.

Let’s take the middle path in the restaurant management. Let’s have a few servers in the kitchen to cook and one
server at the counter to receive orders. A customer comes, places an order with the server at the counter, the customer
gets an order id, the customer leaves the counter, the server at the counter passes on the order to one of the servers
in the kitchen, and the server starts taking an order from the next customer. At this point, the customer is free to do
something else while his order is being prepared. The server at the counter is dealing with other customers. Servers in
the kitchen are busy preparing the food according to the orders placed. No one is waiting for anyone. As soon as the food
item in an order is ready, the server at the counter receives it from the server in the kitchen and calls the order number
so the customer who placed that order will pick up his food. A customer may get his food in multiple installments. He
can eat the food that he has been served while the remaining items in his order are being prepared in the kitchen. This
architecture is the most efficient architecture you can have in a restaurant. It keeps everyone busy most of the time and
makes efficient use of the resources. This is the approach that non-blocking socket channels follow.

Another approach would be that the customer comes in, places his order, waits until his order is complete and he
is served, and then the next customer places his order and so on. This is the approach that blocking sockets follow. If
you understand the approach taken by the fast food restaurant for the efficient use of resources, you can understand
the non-blocking socket channels easily. I will compare the people used in the restaurant example with objects used
in non-blocking sockets in the following discussion.

Let’s first discuss the situation on the server side. The server side is your restaurant. The person at the counter,
who interfaces with all customers, is called a selector. A selector is an object of the Selector class. Its sole job is to
interact with the outside world. It sits between remote clients interacting with the server and the things inside the
server. A remote client never interacts with objects working inside the server, as a customer in the restaurant never
interacts directly with servers in the kitchen. Figure 5-7 shows the architecture of non-blocking socket channels
communication. It shows where the selector fits into the architecture.

Server

Socket Channel 1

Socket Channel 2

Socket Channel 3

Server Socket Channel

S
E
L
E
C
T
O
R

Client 1

Client 2

Client 3

Figure 5-7.  Architecture of Non-Blocking Client-Server Sockets

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

347

You cannot create a selector object directly using its constructor. You need to call its open() static method to get a
selector object as shown:
 
// Get a selector object
Selector selector = Selector.open();
 

A ServerSocketChannel is used to listen for a new connection request from clients. Again, you cannot create a
new ServerSocketChannel object using its constructor. You need to call its open() static method as shown:
 
// Get a server socket channel
ServerSocketChannel ssChannel = ServerSocketChannel.open();
 

By default, a server socket channel or a socket channel is a blocking channel. You need to configure it to make it a
non-blocking channel as shown:
 
// Configure the server socket channel to be non-blocking
ssChannel.configureBlocking(false);
 

Your server socket channel needs to be bound to a local IP address and a local port number, so a remote client
may contact it for new connections. You bind a server socket channel using its bind() method. The bind() method
has been added to the ServerSocketChannel and the SocketChannel in Java 7. Prior to Java 7, you need to call the
bind() method on the socket that is associated with the channels.
 
InetAddress hostIPAddress = InetAddress.getByName("localhost");
int port = 19000;
 
// Prior to Java 7
ssChannel.socket().bind(new InetSocketAddress(hostIPAddress, port));
 
// Java 7 and later
ssChannel.bind(new InetSocketAddress(hostIPAddress, port));
 

The most important step is taken now. The server socket has to register itself with the selector showing interest
in some kind of operation. It is like a pizza maker in a restaurant letting the server at the counter know that he is
ready to make pizza for customers and he needs to be notified when an order for pizza is placed. There are four kinds
of operations for which you can register a channel with the selector. They are defined as integer constants in the
SelectionKey class listed in Table 5-7.

Table 5-7.  The List of Operations Recognized by the Selector

Operation
Type

Value
(Constants in SelectionKey class)

Who Can Register for
This Operation

Description

Connect OP_CONNECT SocketChannel

at client

Selector will notify about the connect
operation progress.

Accept OP_ACCEPT ServerSocketChannel

at server

Selector will notify when a client
request for a new connection arrives

Read OP_READ SocketChannel

at client and server

Selector will notify when the channel
is ready to read some data.

Write OP_WRITE SocketChannel

at client and server

Selector will notify when channel is
ready to write some data.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

348

A ServerSocketChannel only listens for accepting a new client connection request, and therefore, it can register
for only one operation as shown:
 
// Register the server socket channel with the selector for accept operation
ssChannel.register(selector, SelectionKey.OP_ACCEPT);
 

The register() method of ServerSocketChannel returns an object of type SelectionKey. You can think of this
object as a registration certificate with the selector. You can store this key object in a variable if you need to use it later.
The example ignores it. The selector has a copy of your key (registration details) and it will use it in the future to notify
you of any operation for which your channel is ready.

At this point, your selector is ready to intercept an incoming request for a client connection and pass it on to
the server socket channel. Suppose a client attempts to connect to the server socket channel at this time. How does
interaction between the selector and the server socket channel take place? When the selector detects that there is
a registered key with it, which is ready for an operation, it places that key (an object of the SelectionKey class) in a
separate group called the ready set. A java.util.Set object represents a ready set. You can determine the number of
keys in a ready state by calling the select() method of a Selector object.
 
// Get the key count in the ready set
int readyCount = selector.select();
 

Once you get at least one ready key in the ready set, you need to get the key and look at the details, You can get all
ready keys from the ready set as shown:
 
// Get the set of ready keys
Set readySet = selector.selectedKeys();
 

Note that you register a key for one or more operations. You need to look at the key details for its readiness for a
particular operation. If a key is ready for accepting a new connection request, its isAcceptable() method will return
true. If a key is ready for a connection operation, its isConnectable() method will return true. If a key is ready for
read and write operations, its isReadable() and isWritable() methods will return true. You may observe that there
is a method to check for the readiness for each operation type. When you are processing a ready set, you will also need
to remove the key from the ready set. Here is some typical code that processes the ready set in a server application.
An infinite loop is typical on a server application because you need to keep looking for the next ready set once you are
done with the current ready set.
 
while(true) {
 // Get count of keys in the ready set. If ready key count is
 // greater than zero, process each key in the ready set.
}
 

The following snippet of code shows the typical logic that you can use to process all keys in a ready set:
 
SelectionKey key = null;
Iterator iterator = readySet.iterator();
 
while (iterator.hasNext()) {
 // Get the next ready selection key object
 key = (SelectionKey)iterator.next();
 
 // Remove the key from ready set
 iterator.remove();
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

349

 // Process the key according to the operation
 if (key.isAcceptable()) {
 // Process new connection
 }
 
 if (key.isReadable()) {
 // Read from the channel
 }
 
 if (key.isWritable()) {
 // Write to the channel
 }
}
 

How do you accept a connection request from a remote client on a server socket channel? The logic is similar
to accepting a remote connection request using a ServerSocket object. A SelectionKey object has a reference to
the ServerSocketChannel that registered it. You can get to the ServerSocketChannel object of a SelectionKey
object using its channel() method. You need to call the accept() method on the ServerSocketChannel object to
accept a new connection request. The accept() method returns an object of the SocketChannel class that is used to
communicate (read and write) with a remote client. You need to configure the new SocketChannel object to be a
non-blocking socket channel. The most important point that you need to understand is that the new SocketChannel
object must register itself for read, write, or both operations with the selector to start reading/writing data on the
connection channel. The following snippet of code shows the logic to accept a remote connection request:
 
ServerSocketChannel ssChannel = (ServerSocketChannel)key.channel();
SocketChannel sChannel = (SocketChannel)ssChannel.accept();
sChannel.configureBlocking(false);
 
// Register only for read. Your message is small and you write it back
// to the client as soon as you read it.
sChannel.register(key.selector(), SelectionKey.OP_READ);
 

If you wish to register the socket channel with a selector for a read and a write, you can do so as shown:
 
// Register for read and write
sChannel.register(key.selector(), SelectionKey.OP_READ | SelectionKey.OP_WRITE);
 

Once your socket channel is registered with the selector, it will be notified through the selector’s ready set when it
receives any data from the remote client or when you can write data to the remote client on its channel.

If data becomes available on a socket channel, the key.isReadable() will return true for this socket channel.
A typical read operation looks as follows. You must have a basic understanding of Java NIO (New Input/Output) to
read data using channels and buffers.
 
SocketChannel sChannel = (SocketChannel) key.channel();
ByteBuffer buffer = ByteBuffer.allocate(1024);
int bytesCount = sChannel.read(buffer);
String msg = "";
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

350

if (bytesCount > 0) {
 buffer.flip();
 Charset charset = Charset.forName("UTF-8");
 CharsetDecoder decoder = charset.newDecoder();
 CharBuffer charBuffer = decoder.decode(buffer);
 msg = charBuffer.toString();
 System.out.println("Received Message: " + msg);
}
 

If you can write to a channel, the selector will place the associated key in its ready set whose isWritable()
method will return true. Again, you need to understand Java NIO to use the ByteBuffer object to write data on a
channel.
 
SocketChannel sChannel = (SocketChannel)key.channel();
String msg = "message to be sent to remote client goes here";
ByteBuffer buffer = ByteBuffer.wrap(msg.getBytes());
sChannel.write(buffer);
 

What happens on a client side is easy to understand. You start with getting a selector object, and you get a
SocketChannel object by calling the SocketChannel.open() method. At this point, you need to configure the socket
channel to be non-blocking before you connect to the server. Now you are ready to register your socket channel with
the selector. Typically, you register with the selector for connect, read, and write operations. Processing the ready set
of the selector is done the same way you processed the ready set of the selector in the server application. The code for
reading and writing to the channel is similar to the server side code. The following snippet of code shows the typical
logic used in a client application:
 
InetAddress serverIPAddress = InetAddress.getByName("localhost");
int port = 19000;
InetSocketAddress serverAddress = new InetSocketAddress(serverIPAddress, port);
 
// Get a selector
Selector selector = Selector.open();
 
// Create and configure a client socket channel
SocketChannel channel = SocketChannel.open();
channel.configureBlocking(false);
 
// Connect to the server
channel.connect(serverAddress);
 
// Register the channel for connect, read and write operations
int operations = SelectionKey.OP_CONNECT | SelectionKey.OP_READ | SelectionKey.OP_WRITE;
channel.register(selector, operations);
 
// Process the ready set of the selector here
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

351

When you get a connect operation on a client side SocketChannel, it may mean either a successful or failed
connection. You can call the finishConnect() method on the SocketChannel object to finish the connection process.
If the connection has failed, the finishConnect() call will throw an IOException. Typically, you handle a connect
operation as follows:
 
if (key.isConnectable()) {
 try {
 // Call to finishConnect() is in a loop as it is non-blocking
 // for your channel
 while(channel.isConnectionPending()) {
 channel.finishConnect();
 }
 }
 catch (IOException e) {
 // Cancel the channel's registration with the selector
 key.cancel();
 e.printStackTrace();
 }
}
 

It is time to build an echo client application and an echo server application using these channels. Listing 5-14
and Listing 5-15 contain the complete code for a non-blocking socket channel for an echo server and an echo client,
respectively.

Listing 5-14.  A Non-Blocking Socket Channel Echo Server Program

// NonBlockingEchoServer.java
package com.jdojo.net;
 
import java.io.IOException;
import java.net.InetAddress;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.CharBuffer;
import java.nio.channels.SelectionKey;
import java.nio.channels.Selector;
import java.nio.channels.ServerSocketChannel;
import java.nio.channels.SocketChannel;
import java.nio.charset.Charset;
import java.nio.charset.CharsetDecoder;
import java.util.Iterator;
import java.util.Set;
 
public class NonBlockingEchoServer {
 public static void main(String[] args) throws Exception {
 InetAddress hostIPAddress = InetAddress.getByName("localhost");
 int port = 19000;
 
 // Get a selector
 Selector selector = Selector.open();
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

352

 // Get a server socket channel
 ServerSocketChannel ssChannel = ServerSocketChannel.open();
 
 // Make the server socket channel non-blocking and bind it to an address
 ssChannel.configureBlocking(false);
 ssChannel.socket().bind(new InetSocketAddress(hostIPAddress, port));
 
 // Register a socket server channel with the selector for accept operation,
 // so that it can be notified when a new connection request arrives
 ssChannel.register(selector, SelectionKey.OP_ACCEPT);
 
 // Now we will keep waiting in a loop for any kind of request
 // that arrives to the server - connection, read, or write
 // request. If a connection request comes in, we will accept
 // the request and register a new socket channel with the selector
 // for read and write operations. If read or write requests come
 // in, we will forward that request to the registered channel.
 while (true) {
 if (selector.select() <= 0) {
 continue;
 }
 processReadySet(selector.selectedKeys());
 }
 }
 
 public static void processReadySet(Set readySet) throws Exception {
 SelectionKey key = null;
 Iterator iterator = null;
 iterator = readySet.iterator();
 while (iterator.hasNext()) {
 // Get the next ready selection key object
 key = (SelectionKey) iterator.next();
 
 // Remove the key from the ready key set
 iterator.remove();
 
 // Process the key according to the operation it is ready for
 if (key.isAcceptable()) {
 processAccept(key);
 }
 
 if (key.isReadable()) {
 String msg = processRead(key);
 if (msg.length() > 0) {
 echoMsg(key, msg);
 }
 }
 }
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

353

 public static void processAccept(SelectionKey key) throws IOException {
 // This method call indicates that we got a new connection
 // request. Accept the connection request and register the new
 // socket channel with the selector, so that client can
 // communicate on a new channel
 ServerSocketChannel ssChannel = (ServerSocketChannel)key.channel();
 SocketChannel sChannel = (SocketChannel) ssChannel.accept();
 sChannel.configureBlocking(false);
 
 // Register only for read. Our message is small and we write it
 // back to the client as soon as we read it
 sChannel.register(key.selector(), SelectionKey.OP_READ);
 }
 
 public static String processRead(SelectionKey key) throws Exception {
 SocketChannel sChannel = (SocketChannel) key.channel();
 ByteBuffer buffer = ByteBuffer.allocate(1024);
 int bytesCount = sChannel.read(buffer);
 String msg = "";
 
 if (bytesCount > 0) {
 buffer.flip();
 Charset charset = Charset.forName("UTF-8");
 CharsetDecoder decoder = charset.newDecoder();
 CharBuffer charBuffer = decoder.decode(buffer);
 msg = charBuffer.toString();
 System.out.println("Received Message: " + msg);
 }
 
 return msg;
 }
 
 public static void echoMsg(SelectionKey key, String msg) throws IOException {
 SocketChannel sChannel = (SocketChannel) key.channel();
 ByteBuffer buffer = ByteBuffer.wrap(msg.getBytes());
 sChannel.write(buffer);
 }
} 

Listing 5-15.  A Non-Blocking Socket Channel Echo Client Program

// NonBlockingEchoClient.java
package com.jdojo.net;
 
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.InetAddress;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.CharBuffer;
import java.nio.channels.SelectionKey;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

354

import java.nio.channels.Selector;
import java.nio.channels.SocketChannel;
import java.nio.charset.Charset;
import java.nio.charset.CharsetDecoder;
import java.util.Iterator;
import java.util.Set;
 
public class NonBlockingEchoClient {
 private static BufferedReader userInputReader = null;
 
 public static void main(String[] args) throws Exception {
 InetAddress serverIPAddress = InetAddress.getByName("localhost");
 int port = 19000;
 InetSocketAddress serverAddress = new InetSocketAddress(serverIPAddress, port);
 
 // Get a selector
 Selector selector = Selector.open();
 
 // Create and configure a client socket channel
 SocketChannel channel = SocketChannel.open();
 channel.configureBlocking(false);
 channel.connect(serverAddress);
 
 // Register the channel for connect, read and write operations
 int operations =
 SelectionKey.OP_CONNECT | SelectionKey.OP_READ | SelectionKey.OP_WRITE;
 channel.register(selector, operations);
 
 userInputReader = new BufferedReader(new InputStreamReader(System.in));
 while (true) {
 if (selector.select() > 0) {
 boolean doneStatus = processReadySet(selector.selectedKeys());
 if (doneStatus) {
 break;
 }
 }
 }
 
 channel.close();
 }
 
 public static boolean processReadySet(Set readySet) throws Exception {
 SelectionKey key = null;
 Iterator iterator = null;
 iterator = readySet.iterator();
 while (iterator.hasNext()) {
 // Get the next ready selection key object
 key = (SelectionKey) iterator.next();
 
 // Remove the key from the ready key set
 iterator.remove();
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

355

 if (key.isConnectable()) {
 boolean connected = processConnect(key);
 if (!connected) {
 return true; // Exit
 }
 }
 
 if (key.isReadable()) {
 String msg = processRead(key);
 System.out.println("[Server]: " + msg);
 }
 
 if (key.isWritable()) {
 String msg = getUserInput();
 if (msg.equalsIgnoreCase("bye")) {
 return true; // Exit
 }
 processWrite(key, msg);
 }
 
 }
 
 return false; // Not done yet
 }
 
 public static boolean processConnect(SelectionKey key) {
 SocketChannel channel = (SocketChannel) key.channel();
 
 try {
 // Call the finishConnect() in a loop as it is non-blocking
 // for your channel
 while (channel.isConnectionPending()) {
 channel.finishConnect();
 }
 }
 catch (IOException e) {
 // Cancel the channel's registration with the selector
 key.cancel();
 e.printStackTrace();
 return false;
 }
 
 return true;
 }
 
 public static String processRead(SelectionKey key) throws Exception {
 SocketChannel sChannel = (SocketChannel) key.channel();
 ByteBuffer buffer = ByteBuffer.allocate(1024);
 sChannel.read(buffer);
 buffer.flip();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

356

 Charset charset = Charset.forName("UTF-8");
 CharsetDecoder decoder = charset.newDecoder();
 CharBuffer charBuffer = decoder.decode(buffer);
 String msg = charBuffer.toString();
 return msg;
 }
 
 public static void processWrite(SelectionKey key, String msg) throws IOException {
 SocketChannel sChannel = (SocketChannel) key.channel();
 ByteBuffer buffer = ByteBuffer.wrap(msg.getBytes());
 sChannel.write(buffer);
 }
 
 public static String getUserInput() throws IOException {
 String promptMsg = "Please enter a message(Bye to quit): ";
 System.out.print(promptMsg);
 String userMsg = userInputReader.readLine();
 return userMsg;
 }
}

You need to run the NonBlockingEchoServer class first, and then one or more instances of the
NonBlockingEchoClient class. They work similar to your other two echo client-server programs. Note that, this time,
you may not see the messages from the server just after you enter a message in the client application. The client
application sends a message to the server and it does not wait for the message to be echoed back. Rather, it processes
the server message when the socket channel receives the notification from the selector. Therefore, it is possible to get
the two messages echoed back from the server at one time. Exception handling has been left out in these examples to
keep the code simple and readable.

Socket Security Permissions
You can control the access for a Java program to use sockets using an instance of the java.net.SocketPermission
class. The generic format used to grant a socket permission in a Java policy file is as follows:
 
grant {
 permission java.net.SocketPermission "target", "actions";
};
 

The target is of the form <host name>:<port range>. The possible values of actions are accept, connect, listen,
and resolve.

The listen action is meaningful only when “localhost” is used as the host name. The resolve action refers to
DNS lookup and it is implied if any of the other three actions is present.

A host name could be either a DNS name or an IP address. You can use an asterisk (*) as a wildcard character
in the DNS host name. If an asterisk is used, it must be used as the leftmost character in the DNS name. If the host
name consists only of an asterisk, it refers to any host. The “localhost” for the host name refers to the local machine.
You can indicate the port range for the host name in different formats as described below. Here N1 and N2 indicate
port numbers (0 to 65535) and it is assumed that N1 is less than N2. Table 5-8 lists the format used for indicating
the port range.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

357

The following are examples of using a java.net.SocketPermission in a Java policy file:
 
// Grant to all codebase
grant {
 // Permission to connect with 192.168.10.123 at port 5000
 permission java.net.SocketPermission "192.168.10.123:5000", "connect";
  
 // Connect permission to any host at port 80
 permission java.net.SocketPermission "*:80", "connect";
 
 // All socket permissions to on port >=1024 on the localhost
 permission java.net.SocketPermission "localhost:1024-", "listen, accept, connect";
};

Asynchronous Socket Channels
Java 7 added support for asynchronous socket operations such as connect, read, and write. The asynchronous socket
operations are performed using the following two socket channel classes:

•	 java.nio.channels.AsynchronousServerSocketChannel

•	 java.nio.channels.AsynchronousSocketChannel

An AsynchronousServerSocketChannel serves as a server socket that listens for new incoming client
connections. Once it accepts a new client connection, the interaction between the client and the server is
handled by an AsynchronousSocketChannel at both ends. Asynchronous socket channels are set up very similar
to the synchronous sockets. The main difference between the two setups is that the request for an asynchronous
socket operation returns immediately and the requestor is notified when the operation is completed, whereas
in a synchronous socket operation the request for a socket operation blocks until it is complete. Because of the
asynchronous nature of the operations with the asynchronous socket channels, the code to handle the completion or
failure of a socket operation is a bit complex.

In an asynchronous socket channel, you request an operation using one of the methods of the asynchronous
socket channel classes. The method returns immediately. You receive a notification about the completion or failure
of the operation later. The methods that allow you to request asynchronous operations are overloaded. One version
returns a Future object that lets you check the status of the requested operation. For details on using a Future object,
please refer to Chapter 6 in the book Beginning Java Language Features (ISBN: 978-1-4302-6658-7). Another version
of those methods lets you pass a CompletionHandler. When the requested operation completes successfully, the
completed() method of the CompletionHandler is called. When the requested operation fails, the failed() method
of the CompletionHandler is called. The following snippet of code demonstrates both approaches of handling the
completion/failure of a requested asynchronous socket operation. It shows how a server socket channel accepts a
client connection asynchronously.
 

Table 5-8.  The <port range> Format for java.net.SocketPermission Security Settings

Port Range Value Description

N1 Only one port number—N1

N1-N2 Port numbers from N1 to N2

N1- Port numbers from N1 and greater

-N1 Port numbers from N1 and less

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

358

/* Using a Future Object */
// Get a server socket channel instance
AsynchronousServerSocketChannel server = get a server instance...;
 
// Bind the socket to a host and a port
server.bind(your_host, your_port);
 
// Start accepting a new client connection. Note that the accept()
// method returns immediately by returning a Future object
Future<AsynchronousSocketChannel> result = server.accept();
 
// Wait for the new client connection by calling the get() method of
// the Future object. Alternatively, you can poll the Future object
// periodically using its isDone() method
AsynchronousSocketChannel newClient = result.get();
 
// Handle the newClient here and call the server.accept() again to accept
// another client connection
 
/* Using a CompletionHandler Object */
// Get a server socket channel instance
AsynchronousServerSocketChannel server = get a server instance...;
 
// Bind the socket to a host and a port
server.bind(your_host, your_port);
 
// Start accepting a new client connection. The accept() method returns
// immediately. The completed() or failed() method of the ConnectionHandler
// will be called upon completion or failure of the requested operation
YourAnyClass attach = ...; // Get an attachment
server.accept(attach, new ConnectionHandler());
 

The above version of the accept() method accepts an object of any class as an attachment. It could be a null
reference. The attachment is passed to the completed() and failed() methods of the completion handler, which is
an object of ConnectionHandler in this case. The ConnectionHandler class may look as follows.
 
private static class ConnectionHandler implements CompletionHandler<AsynchronousSocketChannel,
YourAnyClass> {
 @Override
 public void completed(AsynchronousSocketChannel client, YourAnyClass attach) {
 // Handle the new client connection here and again start
 // accepting a new client connection
 }
 
 @Override
 public void failed(Throwable e, YourAnyClass attach) {
 // Handle the failure here
 }
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

359

In this section, I will cover the following three steps in detail. During the discussion, I will build an application
that consists of an echo server and a client. Clients will send messages to the server asynchronously and the server
will echo back the message to the client asynchronously. It is assumed that you are familiar working with buffers
and channels.

Setting up an asynchronous server socket channel•	

Setting up an asynchronous client socket channel•	

Putting the asynchronous server and client socket channels in action•	

Setting Up an Asynchronous Server Socket Channel
An instance of the AsynchronousServerSocketChannel class is used as an asynchronous server socket channel
to listen to the new incoming client connections. Once a connection to a client is established, an instance of
the AsynchronousSocketChannel class is used to communicate with the client. The static open() method of the
AsynchronousServerSocketChannel class returns an object of the AsynchronousServerSocketChannel class, which is
not yet bound.
 
// Create an asynchronous server socket channel object
AsynchronousServerSocketChannel server = AsynchronousServerSocketChannel.open();
 
// Bind the server to the localhost and the port 8989
String host = "localhost";
int port = 8989;
InetSocketAddress sAddr = new InetSocketAddress(host, port);
server.bind(sAddr);
 

At this point, your server socket channel can be used to accept a new client connection by calling its accept()
method as follows. The code uses two classes, Attachment and ConnectionHandler, which are described later.
 
// Prepare the attachment
Attachment attach = new Attachment();
attach.server = server;
 
// Accept new connections
server.accept(attach, new ConnectionHandler());
 

Typically, a server application runs indefinitely. You can make the server application run forever by waiting on
the main thread in the main() method as follows:
 
try {
 // Wait indefinitely until someone interrups the main thread
 Thread.currentThread().join();
}
catch (InterruptedException e) {
 e.printStackTrace();
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

360

You will use the completion handler mechanism to handle the completion/failure notification for the server
socket channel. An object of the following Attachment class will be used to serve as an attachment to the completion
handler. An attachment object is used to pass the context for the server socket that may be used inside the
completed() and failed() methods of the completion handler.
 
class Attachment {
 AsynchronousServerSocketChannel server;
 AsynchronousSocketChannel client;
 ByteBuffer buffer;
 SocketAddress clientAddr;
 boolean isRead;
}
 

You need a CompletionHandler implementation to handle the completion of an accept() call. Let’s call your
class as ConnectionHandler as shown:
 
private static class ConnectionHandler implements CompletionHandler<AsynchronousSocketChannel,
Attachment> {
 @Override
 public void completed(AsynchronousSocketChannel client, Attachment attach) {
 try {
 // Get the client address
 SocketAddress clientAddr = client.getRemoteAddress();
 
 System.out.format("Accepted a connection from %s%n", clientAddr);
  
 // Accept another connection
 attach.server.accept(attach, this);
  
 // Handle the client connection by invoking an asyn read
 Attachment newAttach = new Attachment();
 newAttach.server = attach.server;
 newAttach.client = client;
 newAttach.buffer = ByteBuffer.allocate(2048);
 newAttach.isRead = true;
 newAttach.clientAddr = clientAddr;
 
 // Create a new completion handler for reading to and writing
 // from the new client
 ReadWriteHandler readWriteHandler = new ReadWriteHandler();
  
 // Read from the client
 client.read(newAttach.buffer, newAttach, readWriteHandler);
 }
 catch (IOException e) {
 e.printStackTrace();
 }
  
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

361

 @Override
 public void failed(Throwable e, Attachment attach) {
 System.out.println("Failed to accept a connection.");
 e.printStackTrace();
 }
}
 

The ConnectionHandler class is simple. In its failed() method, it prints the exception stack trace. In its
completed() method, it prints a message that a new client connection has been established and starts listening for
another new client connection by calling the accept() method on the server socket again. Note the reuse of the
attachment in another accept() method call inside the completed() method. It uses the same CompletionHandler
object again. Note that the attach.server.accept(attach, this) method call uses the keyword this to refer to the
same instance of the completion handler. At the end, it prepares a new instance of the Attachment class, which wraps
the details of handling (reading and writing) the new client connection, and calls the read() method on the client
socket to read from the client. Note that the read() method uses another completion handler, which is an instance of
the ReadWriteHandler class. The code for the ReadWriteHandler is as follows:
 
private static class ReadWriteHandler implements CompletionHandler<Integer, Attachment> {
 @Override
 public void completed(Integer result, Attachment attach) {
 if (result == -1) {
 try {
 attach.client.close();
 System.out.format("Stopped listening to the client %s%n",
 attach.clientAddr);
 }
 catch (IOException ex) {
 ex.printStackTrace();
 }
 return;
 }
  
 if (attach.isRead) {
 // A read to the client was completed
  
 // Get the buffer ready to read from it
 attach.buffer.flip();
  
 int limits = attach.buffer.limit();
 byte bytes[] = new byte[limits];
 attach.buffer.get(bytes, 0, limits);
 Charset cs = Charset.forName("UTF-8");
 String msg = new String(bytes, cs);
  
 // Print the message from the client
 System.out.format("Client at %s says: %s%n", attach.clientAddr, msg);
 
 // Let us echo back the same message to the client
 attach.isRead = false; // It is a write
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

362

 // Prepare the buffer to be read again
 attach.buffer.rewind();
 
 // Write to the client again
 attach.client.write(attach.buffer, attach, this);
 }
 else {
 // A write to the client was completed.
 // Perform another read from the client
 attach.isRead = true;
 
 // Prepare the buffer to be filled in
 attach.buffer.clear();
  
 // Perform a read from the client
 attach.client.read(attach.buffer, attach, this);
 }
 }
 
 @Override
 public void failed(Throwable e, Attachment attach) {
 e.printStackTrace();
 }
}
 

The first argument called result of the completed() method is the number of bytes that is read from or written
to the client. Its value of -1 indicates the end-of-stream, and in that case, the client socket is closed. If a read operation
was completed, it displays the read text on the standard output and writes back the same text to the client. If a write
operation to a client was completed, it performs a read on the same client.

Listing 5-16 contains the complete code for your asynchronous server socket channel. It uses three inner classes:
one for the attachment, one for the connection completion handler, and one for the read/write completion handler.
The AsyncEchoServerSocket class can be run now. However, it will not do any work as it needs a client to connect to
it to echo back messages that are sent from the client. You will develop your asynchronous client socket channel in the
next section, and then, in the subsequent section, you will test both server and client socket channels together.

Listing 5-16.  A Server Application That Uses Asynchronous Server Socket Channel

// AsyncEchoServerSocket.java
package com.jdojo.net;
 
import java.io.IOException;
import java.net.SocketAddress;
import java.nio.ByteBuffer;
import java.nio.charset.Charset;
import java.net.InetSocketAddress;
import java.nio.channels.CompletionHandler;
import java.nio.channels.AsynchronousSocketChannel;
import java.nio.channels.AsynchronousServerSocketChannel;
 
public class AsyncEchoServerSocket {
 private static class Attachment {
 AsynchronousServerSocketChannel server;
 AsynchronousSocketChannel client;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

363

 ByteBuffer buffer;
 SocketAddress clientAddr;
 boolean isRead;
 }
  
 private static class ConnectionHandler implements
 CompletionHandler<AsynchronousSocketChannel, Attachment> {
 @Override
 public void completed(AsynchronousSocketChannel client, Attachment attach) {
 try {
 // Get the client address
 SocketAddress clientAddr = client.getRemoteAddress();
 System.out.format("Accepted a connection from %s%n",
 clientAddr);
  
 // Accept another connection
 attach.server.accept(attach, this);
  
 // Handle the client connection by using an asyn read
 ReadWriteHandler rwHandler = new ReadWriteHandler();
 Attachment newAttach = new Attachment();
 newAttach.server = attach.server;
 newAttach.client = client;
 newAttach.buffer = ByteBuffer.allocate(2048);
 newAttach.isRead = true;
 newAttach.clientAddr = clientAddr;
 client.read(newAttach.buffer, newAttach, rwHandler);
 }
 catch (IOException e) {
 e.printStackTrace();
 }
  
 }
 
 @Override
 public void failed(Throwable e, Attachment attach) {
 System.out.println("Failed to accept a connection.");
 e.printStackTrace();
 }
 }
  
 private static class ReadWriteHandler
 implements CompletionHandler<Integer, Attachment> {
 @Override
 public void completed(Integer result, Attachment attach) {
 if (result == -1) {
 try {
 attach.client.close();
 System.out.format(
 "Stopped listening to the client %s%n",
 attach.clientAddr);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

364

 catch (IOException ex) {
 ex.printStackTrace();
 }
 return;
 }
  
 if (attach.isRead) {
 // A read to the client was completed
  
 // Get the buffer ready to read from it
 attach.buffer.flip();
  
 int limits = attach.buffer.limit();
 byte bytes[] = new byte[limits];
 attach.buffer.get(bytes, 0, limits);
 Charset cs = Charset.forName("UTF-8");
 String msg = new String(bytes, cs);
  
 // Print the message from the client
 System.out.format("Client at %s says: %s%n",
 attach.clientAddr, msg);
  
 // Let us echo back the same message to the client
 attach.isRead = false; // It is a write
  
 // Prepare the buffer to be read again
 attach.buffer.rewind();
  
 // Write to the client
 attach.client.write(attach.buffer, attach, this);
 }
 else {
 // A write to the client was completed. Perform
 // another read from the client
 attach.isRead = true;
  
 // Prepare the buffer to be filled in
 attach.buffer.clear();
  
 // Perform a read from the client
 attach.client.read(attach.buffer, attach, this);
 }
 }
 
 @Override
 public void failed(Throwable e, Attachment attach) {
 e.printStackTrace();
 }
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

365

 public static void main(String[] args) {
 try (AsynchronousServerSocketChannel server =
 AsynchronousServerSocketChannel.open()) {
 // Bind the server to the localhost and the port 8989
 String host = "localhost";
 int port = 8989;
 InetSocketAddress sAddr =
 new InetSocketAddress(host, port);
 server.bind(sAddr);
  
 // Display a message that server is ready
 System.out.format("Server is listening at %s%n", sAddr);
  
 // Prepare the attachment
 Attachment attach = new Attachment();
 attach.server = server;
  
 // Accept new connections
 server.accept(attach, new ConnectionHandler());
  
 try {
 // Wait until the main thread is interrupted
 Thread.currentThread().join();
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Setting up an Asynchronous Client Socket Channel
An instance of the AsynchronousSocketChannel class is used as an asynchronous client socket channel in a client
application. The static open() method of the AsynchronousSocketChannel class returns an open channel of the
AsynchronousSocketChannel type that is not yet connected to a server socket channel. The channel’s connect()
method is used to connect to a server socket channel. The following snippet of code shows how to create an
asynchronous client socket channel and connect it to a server socket channel. It uses a Future object to handle the
completion of the connection to the server.
 
// Create an asynchronous socket channel
AsynchronousSocketChannel channel = AsynchronousSocketChannel.open();
 
// Connect the channel to the server
String serverName = "localhost";
int serverPort = 8989;
SocketAddress serverAddr = new InetSocketAddress(serverName, serverPort);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

366

Future<Void> result = channel.connect(serverAddr);
System.out.println("Connecting to the server...");
 
// Wait for the connection to complete
result.get();
 
// Connection to the server is complete now
System.out.println("Connected to the server...");
 

Once the client socket channel is connected to a server, you can start reading from the server and writing to
the server using the channel’s read() and write() methods asynchronously. Both methods let you handle the
completion of the operation using a Future object or a CompletionHandler object. You will use an Attachment class as
shown to pass the context to the completion handler:
 
class Attachment {
 AsynchronousSocketChannel channel;
 ByteBuffer buffer;
 Thread mainThread;
 boolean isRead;
}
 

In the Attachment class, the channel instance variable holds the reference to the client channel. The buffer
instance variable holds the reference to the data buffer. You will use the same data buffer for reading and writing. The
mainThread instance variable holds the reference to the main thread of the application. When the client channel is done,
you can interrupt the waiting main thread, so the client application terminates. The isRead instance variable indicates if
the operation is a read or a write. If it is true, it means it is a read operation. Otherwise, it is a write operation.

Listing 5-17 contains the complete code for an asynchronous client socket channel. It uses two inner classes
called Attachment and ReadWriteHandler. An instance of the Attachment class is used as an attachment to the read()
and write() asynchronous operations. An instance of the ReadWriteHandler class is used as a completion handler
for the read() and write() operations. Its getTextFromUser() method prompts the user to enter a message on the
standard input and returns the user-entered message. The completed() method of the completion handler checks if
it is a read or a write operation. If it is a read operation, it prints the text that was read from the server on the standard
output. It prompts the user for another message. If the user enters Bye, it terminates the application by interrupting
the waiting main thread. Note that the channel is closed automatically when the program exits the try block because
it is opened inside a try-with-resources block in the main() method.

Listing 5-17.  An Asynchronous Client Socket Channel

// AsyncEchoClientSocket.java
package com.jdojo.net;
 
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.InetSocketAddress;
import java.net.SocketAddress;
import java.nio.ByteBuffer;
import java.nio.charset.Charset;
import java.util.concurrent.Future;
import java.nio.channels.CompletionHandler;
import java.util.concurrent.ExecutionException;
import java.nio.channels.AsynchronousSocketChannel;
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

367

public class AsyncEchoClientSocket {
 private static class Attachment {
 AsynchronousSocketChannel channel;
 ByteBuffer buffer;
 Thread mainThread;
 boolean isRead;
 }
  
 private static class ReadWriteHandler
 implements CompletionHandler<Integer, Attachment> {
 
 @Override
 public void completed(Integer result, Attachment attach) {
 if (attach.isRead) {
 attach.buffer.flip();
  
 // Get the text read from the server
 Charset cs = Charset.forName("UTF-8");
 
 int limits = attach.buffer.limit();
 byte bytes[] = new byte[limits];
 attach.buffer.get(bytes, 0, limits);
 String msg = new String(bytes, cs);
 
 // A read from the server was completed
 System.out.format("Server Responded: %s%n", msg);
  
 // Prompt the user for another message
 msg = this.getTextFromUser();
 if (msg.equalsIgnoreCase("bye")) {
 // Interrupt the main thread, so the program terminates
 attach.mainThread.interrupt();
 return;
 }
 
 // Prepare buffer to be filled in again
 attach.buffer.clear();
 byte[] data = msg.getBytes(cs);
 attach.buffer.put(data);
 
 // Prepared buffer to be read
 attach.buffer.flip();
  
 attach.isRead = false; // It is a write
  
 // Write to the server
 attach.channel.write(attach.buffer, attach, this);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

368

 else {
 // A write to the server was completed. Perform another
 // read from the server
 attach.isRead = true;
  
 // Prepare the buffer to be filled in
 attach.buffer.clear();
  
 // Read from the server
 attach.channel.read(attach.buffer, attach, this);
 }
 }
 
 @Override
 public void failed(Throwable e, Attachment attach) {
 e.printStackTrace();
 }
  
 private String getTextFromUser() {
 System.out.print("Please enter a message (Bye to quit):");
 String msg = null;
  
 BufferedReader consoleReader =
 new BufferedReader(new InputStreamReader(System.in));
 try {
 msg = consoleReader.readLine();
 }
 catch (IOException e) {
 e.printStackTrace();
 }
  
 return msg;
 }
 }
  
 public static void main(String[] args) {
 // Use a try-with-resources to open a channel
 try (AsynchronousSocketChannel channel
 = AsynchronousSocketChannel.open()) {
 // Connect the client to the server
 String serverName = "localhost";
 int serverPort = 8989;
 SocketAddress serverAddr =
 new InetSocketAddress(serverName, serverPort);
  
 Future<Void> result = channel.connect(serverAddr);
 System.out.println("Connecting to the server...");
 
 // Wait for the connection to complete
 result.get();
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

369

 // Connection to the server is complete now
 System.out.println("Connected to the server...");
 
 // Start reading from and writing to the server
 Attachment attach = new Attachment();
 attach.channel = channel;
 attach.buffer = ByteBuffer.allocate(2048);
 attach.isRead = false;
 attach.mainThread = Thread.currentThread();
  
 // Place the "Hello" message in the buffer
 Charset cs = Charset.forName("UTF-8");
 String msg = "Hello";
 byte[] data = msg.getBytes(cs);
 attach.buffer.put(data);
 attach.buffer.flip();
  
 // Write to the server
 ReadWriteHandler readWriteHandler = new ReadWriteHandler();
 channel.write(attach.buffer, attach, readWriteHandler) ;
  
 // Let this thread wait for ever on its own death until interrupted
 attach.mainThread.join();
 }
 catch (ExecutionException | IOException e) {
 e.printStackTrace();
 }
 catch(InterruptedException e) {
 System.out.println("Disconnected from the server.");
 }
 }
}

Putting the Server and the Client Together
At this point, your asynchronous server and client programs are ready. You need to use the following steps to run the
server and the client.

Running the Server Application
Run the AsyncEchoServerSocket class as listed in Listing 5-16. You should get a message on the standard output
as follows:
 
Server is listening at localhost/127.0.0.1:8989
 

If you get the above message, you need to proceed to the next step. If you do not get the above message, it is most
likely that the port 8989 is being used by another process. In such a case, you should get the following error message:
 
java.net.BindException: Address already in use: bind
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

370

If you get “Address already in use” error message, you need to change the port value in the
AsyncEchoServerSocket class from 8989 to some other value and retry running the AsyncEchoServerSocket class.
If you change the port number in the server program, you must also change the port number in the client program
to match the server port number. The server socket channel listens at a port and the client must connect to the same
port on which the server is listening.

Running the Client Applications
Before proceeding with this step, make sure that you were able to perform the previous step successfully. Run one or
more instances of the AsyncEchoClientSocket class that is listed in Listing 5-17. You should get the following message
on the standard output if the client application was able to connect to the server successfully:
 
Connecting to the server...
Connected to the server...
Server Responded: Hello
Please enter a message (Bye to quit):
 

You might receive the following error message when you attempt to run the AsyncEchoClientSocket class:
 
Connecting to the server...
java.util.concurrent.ExecutionException: java.io.IOException: The remote system refused the
network connection.
 

Typically, this error message indicates one of the following problems:

The server is not running. If this is the case, make sure that server is running.•	

The client is attempting to connect to the server on a different host and port than the host and •	
the port on which the server is listening. If this is the case, make sure that the server and the
client are using the same host names (or IP addresses) and the port numbers.

You will need to stop the server program manually such as by pressing Ctrl + C keys on the command prompt
on Windows.

Datagram-Oriented Socket Channels
An instance of the java.nio.channels.DatagramChannel class represents a datagram channel. By default, it is
blocking. You can configure it to be non-blocking by using the configureBlocking(false) method.

To create a DatagramChannel, you need to invoke one of its open() static methods. If you want to use it for IP
multicasting, you need to specify the address type (or protocol family) of the multicast group as an argument to its
open() method. The open() method creates a DatagramChannel object, which is not connected. If you want your
datagram channel to send and receive datagrams only to a specific remote host, you need to use its connect() method
to connect the channel to that specific host. A datagram channel that is not connected may send datagrams to and
receive datagrams from any remote host. The following sections outline the steps that are typically needed to
send/receive datagrams using a datagram channel.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

371

Creating the Datagram Channel
You can create a datagram channel using the open() method of the DatagramChannel class. The following snippet of
code shows three different ways to create a datagram channel:
 
// Create a new datagram channel to send/receive datagram
DatagramChannel channel = DatagramChannel.open();
 
// Create a datagram channel to receive datagrams from a multicast group
// that uses IPv4 address type
DatagramChannel ipv4MulticastChannel = DatagramChannel.open(StandardProtocolFamily.INET);
 
// Create a datagram channel to receive datagrams from a multicast group
// that uses IPv6 address type
DatagramChannel iPv6MulticastChannel = DatagramChannel.open(StandardProtocolFamily.INET6);

Setting the Channel Options
You can set the channel options using the setOption() method of the DatagramChannel class. Some options must
be set before binding the channel to a specific address, whereas some can be set after the binding. The setOption()
method was added to the DatagramChannel class in Java 7. If you are using a prior Java version, you will need to use
the socket() method to get the DatagramSocket reference and use one of the methods of the DatagramSocket
class to set the channel options. The following snippet of code shows how to set the channel options. Table 5-9
contains the list of socket options and their descriptions. The socket options are defined as constants in the
StandardSocketOptions class.
 
// To bind multiple sockets to the same socket address,
// you need to set the SO_REUSEADDR option for the socket
 
// In Java 7 and later
channel.setOption(StandardSocketOptions.SO_REUSEADDR, true)
 
// Prior to Java 7
DatagramSocket socket = channel.socket();
socket.setReuseAddress(true); 

Table 5-9.  The List of Standard Socket Options

Socket Option Name Description

SO_SNDBUF The size of the socket send buffer in bytes. Its value is of Integer type.

SO_RCVBUF The size of the socket receive buffer in bytes. Its value is of Integer type.

SO_REUSEADDR For datagram sockets, it allows multiple programs to bind to the same address. Its value
is of Boolean type. This option should be enabled for IP multicasting using the datagram
channels.

SO_BROADCAST Allows transmission of broadcast datagrams. Its value is of type Boolean.

IP_TOS The Type of Service (ToS) octet in the Internet Protocol (IP) header. Its value is of the
Integer type.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

372

Binding the Datagram Channel
Bind the datagram channel to a specific local address and port using the bind() method of the DatagramChannel
class. If you use null as the bind address, this method will bind the socket to an available address automatically. The
bind() method was added to the DatagramChannel class in Java 7. If you are using a prior Java version, you can bind a
datagram channel using its underlying socket. The following snippet of code shows how to bind a datagram channel:
 
/* In Java 7 and later */
// Bind the channel to any available address automatically
channel.bind(null);
 
// Bind the channel to "localhost" and port 8989
InetSocketAddress sAddr = new InetSocketAddress("localhost", 8989);
channel.bind(sAddr);
 
/* Prior to Java 7 */
// Get the socket reference
DatagramSocket socket = channel.socket();
 
// Bind the channel to any available address automatically
socket.bind(null);
 
// Bind the channel to "localhost" and port 8989
InetSocketAddress sAddr = new InetSocketAddress("localhost", 8989);
socket.bind(sAddr);

Sending Datagrams
To send a datagram to a remote host, use the send() method of the DatagramChannel class. The method accepts
a ByteBuffer and a remote SocketAddress. If you call the send() method on an unbound datagram channel, the
send() method binds the channel automatically to an available address.
 
// Prepare a message to send
String msg = "Hello";
ByteBuffer buffer = ByteBuffer.wrap(msg.getBytes());
  

Socket Option Name Description

IP_MULTICAST_IF The network interface for Internet Protocol (IP) multicast datagrams. Its value is a
reference of NetworkInterface type.

IP_MULTICAST_TTL The time-to-live for Internet Protocol (IP) multicast datagrams. Its value is of type Integer
in the range of 0 to 255.

IP_MULTICAST_LOOP Loopback for Internet Protocol (IP) multicast datagrams. Its value is of type Boolean.

Table 5-9.  (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

373

// Pack the remote address and port into an object
InetSocketAddress serverAddress = new InetSocketAddress("localhost", 8989);
  
// Send the message to the remote host
channel.send(buffer, serverAddress);
 

The receive() method of the DatagramChannel class lets a datagram channel receive a datagram from a
remote host. This method requires you to provide a ByteBuffer to receive the data. The received data is copied to
the specified ByteBuffer at its current position. If the ByteBuffer has less space available than the received data,
the extra data is discarded silently. The receive() method returns the address of the remote host. If the datagram
channel is in a non-blocking mode, the receive() method returns immediately by returning null. Otherwise, it waits
until it receives a datagram.
 
// Prepare a ByteBufer to receive data
ByteBuffer buffer = ByteBuffer.allocate(1024);
 
// Wait to receive data from a remote host
SocketAddress remoteAddress = channel.receive(buffer);

Close the Channel
Finally, close the datagram channel using its close() method.
 
// Close the channel
channel.close();
 

Listing 5-18 contains a program that acts as an echo server. Listing 5-19 has a program that acts as a client. The
echo server waits for a message from a remote client. It echoes the message that it receives from the remote client.
You need to start the echo server program before starting the client program. You can run multiple client programs
simultaneously.

Listing 5-18.  An Echo Server Based on the Datagram Channel

// DGCEchoServer.java
package com.jdojo.net;
 
import java.io.IOException;
import java.net.InetSocketAddress;
import java.net.SocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.DatagramChannel;
 
public class DGCEchoServer {
 public static void main(String[] args) {
 DatagramChannel server = null;
  
 try {
 // Create a datagram channel and bind it to localhost at port 8989
 server = DatagramChannel.open();
 InetSocketAddress sAddr = new InetSocketAddress("localhost", 8989);
 server.bind(sAddr);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

374

 ByteBuffer buffer = ByteBuffer.allocate(1024);
  
 // Wait in an infinite loop for a client to send data
 while (true) {
 System.out.println("Waiting for a message from" +
 " a remote host at " + sAddr);
 
 // Wait for a client to send a message
 SocketAddress remoteAddr = server.receive(buffer);
 
 // Prepare the buffer to read the message
 buffer.flip();
 
 // Convert the buffer data into a String
 int limits = buffer.limit();
 byte bytes[] = new byte[limits];
 buffer.get(bytes, 0, limits);
 String msg = new String(bytes);
 
 System.out.println("Client at " + remoteAddr +
 " says: " + msg);
 
 // Reuse the buffer to echo the message to the client
 buffer.rewind();
 
 // Send the message back to the client
 server.send(buffer, remoteAddr);
 
 // Prepare the buffer to receive the next message
 buffer.clear();
 }
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 finally {
 // Close the channel
 if (server != null) {
 try {
 server.close();
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 }
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

375

Listing 5-19.  A Client Program Based on the Datagram Channel

// DGCEchoClient.java
package com.jdojo.net;
 
import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.DatagramChannel;
 
public class DGCEchoClient {
 public static void main(String[] args) {
 DatagramChannel client = null;
 try {
 // Create a new datagram channel
 client = DatagramChannel.open();
  
 // Bind the client to any available local address and port
 client.bind(null);
  
 // Prepare a message for the server
 String msg = "Hello";
 ByteBuffer buffer = ByteBuffer.wrap(msg.getBytes());
 InetSocketAddress serverAddress =
 new InetSocketAddress("localhost", 8989);
  
 // Send the message to the server
 client.send(buffer, serverAddress);
  
 // Reuse the buffer to receive a response from the server
 buffer.clear();
  
 // Wait for the server to respond
 client.receive(buffer);
  
 // Prepare the buffer to read the message
 buffer.flip();
  
 // Convert the buffer into a string
 int limits = buffer.limit();
 byte bytes[] = new byte[limits];
 buffer.get(bytes, 0, limits);
 String response = new String(bytes);
 
 // Print the server message on the standard output
 System.out.println("Server responded: " + response);
 }
 catch (IOException e) {
 e.printStackTrace();
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

376

 finally {
 // Close the channel
 if (client != null) {
 try {
 client.close();
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 }
}

Multicasting Using Datagram Channels
Java 7 added support for IP multicasting to a datagram channel. A datagram channel that is interested in receiving
multicast datagrams joins a multicast group. The datagrams that are sent to a multicast group are delivered to all
its members. The following sections outline the steps that are typically needed to set up a client application that is
interested in receiving a multicast datagram.

Creating the Datagram Channel
Create a datagram channel to use a specific multicast address type as follows. In your application, you will be using
IPv4 or IPv6, not both.
 
// Need to use INET protocol family for an IPv4 addressing scheme
DatagramChannel client = DatagramChannel.open(StandardProtocolFamily.INET);
 
// Need to use INET6 protocol family for an IPv6 addressing scheme
DatagramChannel client = DatagramChannel.open(StandardProtocolFamily.INET6);

Setting the Channel Options
Set the options for the client channel using the setOption() method as shown:
 
// Let other sockets reuse the same address
client.setOption(StandardSocketOptions.SO_REUSEADDR, true);

Binding the Channel
Bind the client channel to a local address and a port as shown:
 
int MULTICAST_PORT = 8989;
client.bind(new InetSocketAddress(MULTICAST_PORT));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

377

Setting the Multicast Network Interface
Set the socket option IP_MULTICAST_IF that specifies the network interface on which the client channel will join the
multicast group.
 
// Get the reference of a network interface named "eth1"
NetworkInterface interf = NetworkInterface.getByName("eth1");
 
// Set the IP_MULTICAST_IF option
client.setOption(StandardSocketOptions.IP_MULTICAST_IF, interf);
 

Listing 5-20 contains the complete program that prints the names of all network interfaces available on your
machine. It also prints whether a network interface supports multicast and whether it is up. You may get a different
output when you run the code on your machine. You will need to use the name of one of the available network
interfaces that supports multicast and that network interface should be up. For example, as shown in the output, the
network interface named eth1 is up and support multicast on my machine, so I used eth1 as the network interface for
working with multicast messages.

Listing 5-20.  Listing the Available Network Interface on a Machine

// ListNetworkInterfaces.java
package com.jdojo.net;
 
import java.net.NetworkInterface;
import java.net.SocketException;
import java.util.Enumeration;
 
public class ListNetworkInterfaces {
 public static void main(String[] args) {
 try {
 Enumeration<NetworkInterface> e =
 NetworkInterface.getNetworkInterfaces();
 while (e.hasMoreElements()) {
 NetworkInterface nif = e.nextElement();
 System.out.println("Name: " + nif.getName() +
 ", Supports Multicast: " + nif.supportsMulticast() +
 ", isUp(): " + nif.isUp()) ;
 }
 }
 catch (SocketException ex) {
 ex.printStackTrace();
 }
 
 }
} 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

378

Name: lo, Supports Multicast: true, isUp(): true
Name: eth0, Supports Multicast: true, isUp(): false
Name: wlan0, Supports Multicast: true, isUp(): false
Name: eth1, Supports Multicast: true, isUp(): true
Name: net0, Supports Multicast: false, isUp(): false
Name: net1, Supports Multicast: false, isUp(): true
Name: wlan1, Supports Multicast: true, isUp(): false
Name: eth2, Supports Multicast: true, isUp(): false
Name: eth3, Supports Multicast: true, isUp(): false
Name: eth4, Supports Multicast: true, isUp(): false
Name: wlan2, Supports Multicast: true, isUp(): false
Name: wlan3, Supports Multicast: true, isUp(): false
Name: wlan4, Supports Multicast: true, isUp(): false
Name: wlan5, Supports Multicast: true, isUp(): false
Name: wlan6, Supports Multicast: true, isUp(): false
Name: wlan7, Supports Multicast: true, isUp(): false
Name: wlan8, Supports Multicast: true, isUp(): false
Name: wlan9, Supports Multicast: true, isUp(): false
Name: wlan10, Supports Multicast: true, isUp(): false 

Joining the Multicast Group
Now it is time to join the multicast group using the join() method as follows. Note that you must use a multicast IP
address for the group.
 
String MULTICAST_IP = "239.1.1.1";
// Join the multicast group on interf interface
InetAddress group = InetAddress.getByName(MULTICAST_IP);
MembershipKey key = client.join(group, interf);
 

The join() method returns an object of the MembershipKey class that represents the membership of the
datagram channel with the multicast group. If a datagram channel is not interested in receiving multicast datagrams
anymore, it can use the drop() method of the key to drop its membership from the multicast group.

Tip■■  A datagram channel may decide to receive multicast datagrams only from selective sources. You can use the
block(InetAddress source) method of the MembershipKey class to block a multicast datagram from the specified
source address. Its unblock(InetAddress source) lets you unblock a previously blocked source address.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

379

Receiving a Message
At this point, receiving datagrams that are addressed to the multicast group is just a matter of calling the receive()
method on the channel as shown:
 
// Prepare a buffer to receive the message from the multicast group
ByteBuffer buffer = ByteBuffer.allocate(1048);
 
// Wait to receive a message from the multicast group
client.receive(buffer);
 

After you are done with the channel, you can drop its membership from the group as shown:
 
// We are no longer interested in receiving multicast message from the group.
// So, we need to drop the channel's membership from the group
key.drop();

Closing the Channel
Finally, you need to close the channel using its close() method as shown:
 
// Close the channel
client.close();
 

To send a message to a multicast group, you do not need to be a member of that multicast group. You can send a
datagram to a multicast group using the send() method of the DatagramChannel class.

Listing 5-21 contains a class with three constants that are used in the subsequent two classes to build the
multicast application. The constants contain the multicast IP address, multicast port number, and multicast
network interface name that will be used in the subsequent example. Please make sure that the value eth1 for the
MULTICAST_INTERFACE_NAME constant is the network interface name on your machine that supports multicast and it is
up. You can get the list of all network interfaces on your machine by running the program in Listing 5-20.

Listing 5-21.  A DatagramChannel-Based Multicast Client Program

// DGCMulticastUtil.java
package com.jdojo.net;
 
public class DGCMulticastUtil {
 public static final String MULTICAST_IP = "239.1.1.1";
 public static final int MULTICAST_PORT = 8989;
 
 /* You need to change the following network interface name "eth1"
 to the network interface name that supports multicast and is up
 on your machine. Please run class ListNetworkInterfaces to get
 the list of all available network interface on your machine.
 */
 public static final String MULTICAST_INTERFACE_NAME = "eth1";
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

380

Listing 5-22 contains a program that joins a multicast group as a member. It waits for a message from a multicast
group to arrive, prints the message, and quits. Listing 5-23 contains a program that sends a message to the multicast
group. You can run multiple instances of the DGCMulticastClient class and then run the DGCMulticastServer class.
All client instances should receive and print the same message on the standard output.

Listing 5-22.  A DatagramChannel-Based Multicast Client Program

// DGCMulticastClient.java
package com.jdojo.net;
 
import java.io.IOException;
import java.net.InetAddress;
import java.net.InetSocketAddress;
import java.net.NetworkInterface;
import java.net.StandardProtocolFamily;
import java.net.StandardSocketOptions;
import java.nio.ByteBuffer;
import java.nio.channels.DatagramChannel;
import java.nio.channels.MembershipKey;
 
public class DGCMulticastClient {
 public static void main(String[] args) {
 MembershipKey key = null;
  
 // Create, configure and bind the client datagram channel
 try (DatagramChannel client =
 DatagramChannel.open(StandardProtocolFamily.INET)) {
 // Get the reference of a network interface
 NetworkInterface interf = NetworkInterface.getByName(
 DGCMulticastUtil.MULTICAST_INTERFACE_NAME);
  
  
 client.setOption(StandardSocketOptions.SO_REUSEADDR, true);
 client.bind(new InetSocketAddress(DGCMulticastUtil.MULTICAST_PORT));
 client.setOption(StandardSocketOptions.IP_MULTICAST_IF, interf);
  
 // Join the multicast group on the interf interface
 InetAddress group =
 InetAddress.getByName(DGCMulticastUtil.MULTICAST_IP);
 key = client.join(group, interf);
 
 // Print some useful messages for the user
 System.out.println("Joined the multicast group:" + key);
 System.out.println("Waiting for a message from the" +
 " multicast group....");
 
 // Prepare a data buffer to receive a message from the multicast group
 ByteBuffer buffer = ByteBuffer.allocate(1048);
 
 // Wait to receive a message from the multicast group
 client.receive(buffer);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

381

 // Convert the message in the ByteBuffer into a string
 buffer.flip();
 int limits = buffer.limit();
 byte bytes[] = new byte[limits];
 buffer.get(bytes, 0, limits);
 String msg = new String(bytes);
 
 System.out.format("Multicast Message:%s%n", msg);
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 finally {
 // Drop the membership from the multicast group
 if (key != null) {
 key.drop();
 }
 }
 }
} 

Listing 5-23.  A DatagramChannel-Based Multicast Program That Sends a Message to a Multicast Group

// DGCMulticastServer.java
package com.jdojo.net;
 
import java.io.IOException;
import java.net.InetSocketAddress;
import java.net.NetworkInterface;
import java.net.StandardSocketOptions;
import java.nio.ByteBuffer;
import java.nio.channels.DatagramChannel;
 
public class DGCMulticastServer {
 public static void main(String[] args) {
 // Get a datagram channel object to act as a server
 try (DatagramChannel server = DatagramChannel.open()) {
 // Bind the server to any available local address
 server.bind(null);
 
 // Set the network interface for outgoing multicast data
 NetworkInterface interf = NetworkInterface.getByName(
 DGCMulticastUtil.MULTICAST_INTERFACE_NAME);
 
 server.setOption(StandardSocketOptions.IP_MULTICAST_IF, interf);
 
 // Prepare a message to send to the multicast group
 String msg = "Hello from multicast!";
 ByteBuffer buffer = ByteBuffer.wrap(msg.getBytes());
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

382

 // Get the multicast group reference to send data to
 InetSocketAddress group
 = new InetSocketAddress(DGCMulticastUtil.MULTICAST_IP,
 DGCMulticastUtil.MULTICAST_PORT);
 
 // Send the message to the multicast group
 server.send(buffer, group);
  
 System.out.println("Sent the multicast message: " + msg);
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Further Reading
Network programming in Java is a vast topic. There are a few books written especially on this topic. This chapter
covers only the basics of the network programming support that is available in Java. Java also supports secured
socket communications using a Secured Socket Layer (SSL) protocol. The classes for secured socket communication
programming are in the javax.net.ssl package. This chapter does not cover SSL sockets. I have not covered many of
the options for sockets that you can use in your Java programs. If you want to do advanced level network programming
in Java, it is recommended that you read a book that devotes itself solely to network programming in Java after you
finish this chapter.

Summary
A network is a group of two or more computers or other types of electronic devices such as printers, linked together
with a goal to share information. Each device linked to a network is called a node. A computer that is linked to a
network is called a host. Network programming in Java involves writing Java programs that facilitate exchange of
information between processes running on different computers on the network.

The communication between two remote hosts is performed by a layered protocol suite called the Internet
Reference Model or TCP/IP Layering Model. The protocol suite consists of five layers named application, transport,
internet, network interface, and physical. A user application such as a Java program uses the application layer to
communicate to a remote application. The transport layer protocol handles the ways messages are transported
from one application on one computer to another application on a remote computer. The internet layer accepts
the messages from the transport layer and prepares a packet suitable for sending over the internet. It includes the
Internet Protocol (IP). The packet prepared by IP is also known as an IP datagram and it consists of a header and a
data area, apart from other pieces of information. The network interface layer prepares a packet to be transmitted on
the network. The packet is called a frame. The network interface layer sits on top of the physical layer, which involves
the hardware. The physical layer consists of the hardware. It is responsible for converting the bits of information into
signals and transmitting the signal over the wire.

An IP address uniquely identifies a connection between a computer and a router. There are two versions of
Internet Protocol—IPv4 (or simply IP) and IPv6, where v4 and v6 stand for version 4 and version 6. IPv6 is also known
as Internet Protocol next generation (IPng). An object of the InetAddress class represents an IP address in Java
programs. The InetAddress class has two subclasses, Inet4Address and Inet6Address, which represent IPv4 and
IPv6 addresses, respectively.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Network Programming

383

A port number is a 16-bit unsigned integer ranging from 0 to 65535 that is used to uniquely identify a process for
a specific protocol.

An object of the InetSocketAddress class represents a socket address that combines an IP address and a
port number.

An object of the ServerSocket class represents a TCP server socket for accepting connections from remote hosts.
An object of the Socket class represents a server/client socket. The client and server applications exchange information
using objects of the Socket class. The Socket class provides the getInputStream() and getOutputStream() methods to
obtain the input and output streams of the socket, respectively. The input stream of the socket is used to read the data
from the socket and the output stream of the socket is used to write data to the socket.

An object of the DatagramPacket class represents a UDP datagram that is the unit of data transmission over a
UDP socket. An object of the DatagramSocket class represents a UDP server/client socket.

A Uniform Resource Identifier (URI) is a sequence of characters that identifies a resource. A URI that uses a
location to identify a resource is called Uniform Resource Locator (URL). A URI that uses a name to identify a resource
is called a Uniform Resource Name (URN). URL and URN are subsets of URI. An object of the java.net.URI class
represents a URI in Java. An object of the java.net.URL class represents a URL in Java. Java provides classes to access
the contents identified by a URL.

Java supports non-blocking socket channels using the ServerSocketChannel, SocketChannel, Selector, and
SelectionKey classes in the java.nio.channels package.

Java also supports asynchronous socket channels through the AsynchronousServerSocketChannel and
AsynchronousSocketChannel classes in the java.nio.channels package.

Java supports datagram-oriented socket channel through the DatagramChannel class. IP multicasting is also
supported on datagram channels.

www.it-ebooks.info

http://www.it-ebooks.info/

385

Chapter 6

JDBC API

In this chapter, you will learn

What JDBC API is•	

Types of JDBC drivers•	

A brief overview of Java DB•	

How to connect to a database using a JDBC driver•	

What transaction isolation levels are•	

JDBC-data-types-to-Java-data-types mapping•	

How to execute SQL statements in Java programs and processing the results•	

Using rowsets, batch updates, and large objects (LOBs)•	

How to retrieve SQL warning and enable JDBC tracing•	

What Is the JDBC API?
The JDBC API provides a standard database-independent interface to interact with any tabular data source. Most of
the time, it is used to interact with a relational database management system (RDBMs). However, using the JDBC API,
it is possible to interact with any tabular data source, such as an Excel Spreadsheet, a flat file, etc. Typically, you
use the JDBC API to connect to a database, query the data, and update the data. It also lets you execute SQL stored
procedures in a database using a database-independent syntax.

The main purpose of using a database is to manage business data. Every database provides developers with the
following three things to manage data:

A standard SQL syntax•	

An extension to the standard SQL syntax called a proprietary SQL syntax•	

A proprietary programming language•	

For example, Oracle databases use PL/SQL as a programming language that you can use to write stored
procedures, functions, and triggers. Microsoft SQL Server uses Transact-SQL (T-SQL) as the programming language to
write stored procedures, functions, and triggers. If you want to process a set of rows in a database, you need to know
the syntax and logic to process cursors in a specific database-dependent language. Using the JDBC API relieves you
of the pain of learning a different syntax to process a cursor in different databases. It requires you to write a query
(a SELECT statement) using a standard SQL syntax. It provides Java APIs to process the result set of that query in a
database-independent manner.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

386

Using the JDBC API to access data in a database hides the implementation differences that exist in different
types of databases. It achieves database transparency by defining most of its API using interfaces and letting the
database vendors (or any third-party vendors) provide the implementations for those interfaces. The collection of
the implementation classes that is supplied by a vendor to interact with a specific database is called a JDBC driver.
There are different kinds of JDBC drivers that exist for different databases (or for the same database). They differ
in the way they are implemented. Some JDBC drivers are written in pure Java. For purely Java-implemented JDBC
drivers, you just need to include the vendor-supplied classes in your application CLASSPATH. Some JDBC drivers need
a proprietary software installation on the client machine to interact with a database. The next section discusses the
JDBC driver types.

System Requirements
This chapter is all about interacting with databases using Java programs. You must have access to a database such
as an Oracle database, Microsoft SQL Server, Sybase database, DB2, MySQL, Java DB, etc. You will also need to
have a JDBC driver for your database. Some JDBC drivers do not need special installation. Rather, you can use them
by placing the supplied JDBC driver files (usually a JAR file) in the CLASSPATH on your machine. If you do not have
access to a database and the required JDBC driver, you will not be able to run the examples listed in this chapter.
All major database vendors make the JDBC driver available for download from their official web sites for free.
Whenever necessary, this chapter provides the syntax and the script to create database objects and routines in the few
DBMSs—MySQL, Java DB (Apache Derby), Oracle Database, DB2, Microsoft SQL Server, and Sybase Adaptive Server
Anywhere. If you are using a DBMS to run the JDBC programs in this chapter, other than the ones listed here, you will
need to refer to your DBMS documentation for the syntax to create database objects.

Types of JDBC Drivers
You can use three types of JDBC drivers in your Java programs to connect to a DBMS. Figure 6-1 shows the
architecture of those JDBC drivers. This section describes those types of JDBC drivers in brief.

Java Application

JDBC Driver Manager

JDBC-Native API Driver

Native Library

Database

JDBC-Net Driver

Server

Database

JDBC Driver

Database

Figure 6-1.  The architecture of JDBC drivers

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

387

Note■■  P rior to Java 8, the JDBC API provided one more type of JDBC driver called the JDBC-ODBC bridge. This driver
has been removed in Java 8.

JDBC Native API Driver
The JDBC-Native API driver uses a DBMS-specific native library to perform all database activities. It translates
JDBC calls into DBMS-specific calls, and the DBMS native library communicates with the database. You must install
DBMS-specific client software to use this type of driver. It is platform-dependent.

JDBC-Net Driver
The JDBC-Net driver is written in pure Java. It needs a server to work with a database. The driver translates the
JDBC calls into a network protocol and passes the calls to the server. The server translates the network calls to
DBMS-specific calls. The JDBC driver running at the client machine is unaware of the technology (or DBMS driver types)
that the server will use to perform the database activities. The server can use different types of database drivers to
connect to different databases and it will be transparent to the client. It is a platform-independent driver. The client
machine needs to include only the Java classes required to use the driver. There is no additional installation needed
on the client machine.

JDBC Driver
The JDBC driver is also known as a direct-to-database pure Java driver. It is written in pure Java. It converts the JDBC
calls into DBMS-specific calls and sends the calls directly to the database. It is the best suitable driver type to be used
in applets. All you need to do is to include the driver JAR/ZIP files with your application or applet. All major DBMS
vendors supply this type of JDBC driver.

A Brief Overview of Java DB
You will need access to a relational database to run the example in this chapter. If you do not have access to a database,
you can use the Java DB database that is installed on your machine when you install the JDK. The Java DB is a relational
database management system that is based on the Java programming language and SQL. It is the Oracle release of the
Apache Derby project. Technical documentation on the Java DB can be found at http://docs.oracle.com/javadb/.

In the following sections, I will discuss the minimum required information to get you started with Java DB, such
as how to start, stop, and run SQL commands in Java DB.

Java DB Installation Files
Suppose JDK_HOME is the directory where you have installed the JDK. For example, if you have installed the JDK in
C:\java8 on Windows, the value for JDK_HOME will be C:\java8; if you have installed the JDK in /home/ksharan/java8
on UNIX-like operating system, the value for JDK_HOME will be /home/ksharan/java8. The Java DB files are installed
in the db subdirectory of the JDK_HOME. The db directory contains two subdirectories called bin and lib. The bin
subdirectory contains many command files to work with the database. For example, the startNetworkServer.bat file
is used to start the network Java DB server on Windows and startNetworkServer is used to start the network Java DB
server on UNIX; you can use the ij.bat command on Windows and the ij command on UNIX to connect to the
Java DB and run SQL commands (ij stands for interactive Java DB). The lib subdirectory contains all JAR files that
are used to work with Java DB.

www.it-ebooks.info

http://docs.oracle.com/javadb/
http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

388

Configuring Java DB
Typically, you do not need to configure Java DB when you have installed JDK8. If you come across any errors
in starting up the database or running SQL commands from the command line, you need to set the following
environment variables:

Set the •	 DERBY_HOME environment variable to the JDK_HOME\db directory.

Set the •	 JAVA_HOME environment variable to the JDK_HOME directory.

Include the •	 JDK_HOME\bin directory in the PATH environment variable.

When you work with Java DB server and client applications, you need to include some Java DB libraries in
CLASSPATH. All libraries are JAR files located in JDK_HOME\db\lib directory. Table 6-1 contains the list of Java DB libraries.

Table 6-1.  Libraries Used in Java DB Server and Client Applications

Library Name Description

derby.jar Contains the Java DB database engine code. Used for Java DB running in embedded mode.
For Java DB running in server mode, it is needed on the server.

derbytools.jar Required for running all Java DB tools such as ij, dblook, etc.

derbyrun.jar An executable JAR file used to start Java DB tools. Including this file in the CLASSPATH also
includes derby.jar, derbyclient.jar, derbytools.jar, derbynet.jar files in the CLASSPATH.

derbynet.jar Contains the Java DB Network Server code. It is required to start the Java DB Network Server.

derbyclient.jar Contains the Java DB Network Client JDBC driver. It is required for a Java application to
connect to a Java DB server over a network.

Running the Java DB Server
Java DB can run in two modes:

Embedded Mode•	

Server Mode•	

In embedded mode, Java DB is started for a single user Java application inside the same JVM as the Java
application. The Java application starts and stops the Java DB. This is the most suitable mode for learning the database
programming using JDBC API. You will not need to perform any setup to use Java DB in this mode. I will explain how to
use this mode in detail later. All examples in this chapter use Java DB running in this mode unless specified otherwise.

In server mode, Java DB can be used by multiple users concurrently over the network. The Java DB runs in a
separate JVM. Applications running in separate JVMs may connect to Java DB running in this mode.

You can use command prompts or NetBeans IDE for Java DB administration. The following sections explain both.

Using Command Prompts
Use the following command to start Java DB in server mode:
 
c:\java8\db\bin> startNetworkServer
 
Tue Jun 17 23:25:27 CDT 2014 : Security manager installed using the Basic server security policy.
Tue Jun 17 23:25:27 CDT 2014 : Apache Derby Network Server - 10.10.1.3 - (1557168) started and ready
to accept connections on port 1527
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

389

You may get an AccessControlException in starting the server. The error message may read as follows:
 
java.security.AccessControlException: access denied ("java.net.SocketPermission" "localhost:1527"
"listen,resolve")
 

To resolve the AccessControlException, you can start the server with no security manager installed as follows:
 
c:\java8\db\bin> startNetworkServer -noSecurityManager
 

You can also resolve the AccessControlException by granting the listen and resolve access to the host and
port on which the server is starting in the JRE_HOME\lib\security\java.policy file. The following entry in the
java.policy file grants the required access:
 
grant {
 permission java.net.SocketPermission "localhost:1527", "listen";
};
 

By default, in server mode, Java DB starts at localhost (or the loopback IP address) and at port 1527. If you want
to access Java DB from other computers, you need to configure some properties on the command line or in the
properties file.

The easiest way to configure the Java DB properties is to set them on the command line. The following command
starts the Java DB server that listens at myhost at port number 1537:
 
c:\java8\db\bin>startNetworkServer -h myhost -p 1537
 

You can also use the java command to start the Java DB server. The following command starts the Java DB server,
additionally setting the CLASSPATH and the derby.system.home property:
 
C:\java8\db\bin>java -classpath C:\java8\db\lib\derbynet.jar -Dderby.system.home=C:\myderbyhome
org.apache.derby.drda.NetworkServerControl start -h localhost
 

You can set the Java DB properties in the text file named derby.properties located in a directory specified by the
derby.system.home property. You can specify the derby.system.home property when you start the Java DB server.
If the derby.system.home property is not specified, it defaults to the current working directory.

I used NetBeans to run Java DB on Windows and Linux for the user ksharan. By default, the NetBeans IDE sets
the derby.system.home property to a .netbeans-derby subdirectory under the user’s home directory. Using the
NetBeans IDE, the derby.properties file was placed on my machines as follows:

On Windows: •	 C:\Users\ksharan\.netbeans-derby\derby.properties

On Linux: •	 /home/ksharan/.netbeans-derby/derby.properties

Set the derby.drda.host property to the host name or the IP address on which you want to start the Java DB in
sever mode. If you set this property to 0.0.0.0, Java DB listens on all network interfaces. Set the derby.drda.portNumber
property to listen to a port different from the default port 1527. The following are the contents of the derby.properties
file that sets a custom host and port number:
 
Contents of the derby.properties file
Set the IP address 192.168.1.1 as the host
derby.drda.host=192.168.1.1
 
Set 1528 as the port number
derby.drda.portNumber=1528
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

390

Use the following command to stop the Java DB running in server mode. Note that you will need to run this
command using a separate command prompt.
 
c:\java8\db\bin>stopNetworkServer
Tue Jun 17 23:26:49 CDT 2014 : Apache Derby Network Server - 10.10.1.3 - (1557168) shutdown 

Tip■■  T he Java DB database server can have several databases. A database in Java DB is portable. Files for each
database are stored in a separate directory. Moving a Java DB database is as simple as moving the directory for that
database. The directory is named the same as the database name. By default, all database directories are stored in the
directory specified in the derby.system.home property.

After you start the Java DB server, you can connect to it and execute SQL commands, using the ij command-line
tool. The ij tool is located in the JDK\db\bin directory. Assuming that the Java DB server is running at localhost at
port 1527, the following commands start the ij tool, connect to a Java DB database named beginningJavaDB, execute
a SELECT SQL statement, and exit the tool using the exit command. If you do not have a person table in the database,
you may get an error when you execute the SELECT statement.
 
c:\java8\db\bin>ij
ij version 10.10
ij> connect 'jdbc:derby://localhost:1527/beginningJavaDB';
ij> select * from person;
PERSON_ID |FIRST_NAME |LAST_NAME |&|DOB |INCOME
--
 
0 rows selected
ij> exit;
c:\java8\db\bin>
 

You do not need to start the Java DB server if you want to work with a Java DB database in embedded mode.
The following command sets the classpath, sets the derby.system.home property, and starts the ij tool. Note that
the command was entered on one line. After starting the ij tool, I connected to the beginningJavaDB database in
embedded mode and executed SQL commands, as shown. If you do not have a person table in the database, you may
get an error when you execute the SELECT statement.
 
c:\java8\db\bin>java -classpath C:\java8\db\lib\derbyrun.jar;
-Dderby.system.home=C:\Users\ksharan\.netbeans-derby org.apache
.derby.tools.ij
ij version 10.10
ij>connect 'jdbc:derby:beginningJavaDB';
ij> select * from person;
PERSON_ID |FIRST_NAME |LAST_NAME |&|DOB |INCOME
--
 
0 rows selected
ij> exit;
c:\java8\db\bin>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

391

Using the NetBeans IDE
Working with Java DB is easy when you use the NetBeans IDE. You can use the Services tab in Navigator in the
NetBeans IDE to start, stop, and run SQL commands in Java DB. Figure 6-2 shows the Java DB under the Databases
node on the Services tab in the NetBeans IDE. If you do not see the Services tab, you can show it by choosing the
menu option Windows > Services or by pressing Ctrl + 5.

Figure 6-2.  Using Java DB on the Services tab from inside the NetBeans IDE

To start and stop the Java DB, select the Java DB node on the Services tab, right-click, and choose the
appropriate option.

All databases in Java DB are listed under the Java DB node. Java DB is installed with a pre-built database named
sample. You can create your own databases by choosing the Create Database option as shown in Figure 6-2.

To connect to a specific database, select the database name under the Java DB node, right-click it, and select the
Connect menu option as shown in Figure 6-3.

Figure 6-3.  Connecting to a Java DB database from inside the NetBeans IDE

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

392

After you are connected to a database, you can execute SQL commands in that database using the NetBeans IDE.
The Databases node in the Services tab contains one Database Connection node for each Java DB database. Select
the Database Connection node for your database, right-click, and select the Execute Command menu option as shown
in Figure 6-4. It will open a SQL editor. You can enter SQL commands in the SQL editor. To execute the SQL command,
use the Run SQL toolbar button or press Ctrl + Shift + E.

Figure 6-4.  Executing SQL commands in Java DB from inside the NetBeans IDE

Figure 6-5.  Setting properties for Java DB in the NetBeans IDE

By default, the NetBeans IDE stores all Java DB databases in the subdirectory named .netbeans-derby in the
user’s home directory. You can change the default location by using the Java DB properties dialog. You can open the
Java DB properties dialog by choosing the Databases > Data DB > Right-click > Properties menu shown in
Figure 6-5.

You can change the default Java DB installation directory and the database location using the Java DB properties
dialog shown in Figure 6-6. The figure shows that I changed the default database location to the C:\kishori\books\
java_8\projects\Test directory on Windows.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

393

Creating a Database Table
The primary goal of using the JDBC API is to manipulate data contained in tables in a database. You may manipulate
data in tables using the SQL statements SELECT, INSERT, UPDATE, and DELETE, which use table names directly.
Sometimes you may not refer to the table names in your JDBC calls directly. Rather, you may execute a stored
procedure using the JDBC API, and the stored procedure uses table names. One way or the other, you end up using
tables when you work with JDBC. Most of the time in this chapter, you will work with one table. You will name
your table person. You may create more tables along the way when you need to work on specific types of database
processing using JDBC. It is assumed that you have created a table named person in the database of your choice.
The table description is shown in Table 6-2.

Figure 6-6.  The Java Db Properties dialog

Table 6-2.  Generic Description of a Database Table Named Person

Column Name Data Type Length Null Value Allowed Comments

person_id integer No Primary Key

first_name string 20 No

last_name string 20 No

gender string 1 No

Dob date Yes

income double Yes

The data types of columns shown in this table are generic. You will need to use data types specific to your
DBMS. For example, for the first_name column, you can use the data type of varchar2(20) in the Oracle database
and varchar(20) in the SQL Server database. Similarly, for the person_id column, you can use a data type of
number(8, 0) in the Oracle database and int in the SQL Server database.

Every DBMS provides a tool, either character-based, graphical, or both, that lets you work with database objects
such as tables, stored procedures, functions, etc. For example, you can use the Oracle SQL*PLUS tool for Oracle DBMS
from Oracle, the SQL Server Management Studio tool for SQL Server DBMS from Microsoft, the Interactive SQL tool
for Adaptive Server Anywhere (ASA) from Sybase, etc.

The following sections show the database scripts to create the person table in different databases. You will need
to consult the documentation for your database on how to run the script to create the person table.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

394

Note■■  A ll database scripts such as to create tables and stored procedures are available under the
dbscripts\<DBMS-Name> directory with the source code for this book where <DBMS-Name> is the name of the DBMS such
as Oracle, DB2 etc.

Oracle Database
create table person (
 person_id number(8,0) not null,
 first_name varchar2(20) not null,
 last_name varchar2(20) not null,
 gender char(1) not null,
 dob date,
 income number(10,2),
 constraint pk_person primary key(person_id)
);

Adaptive Server Anywhere Database
create table person (
 person_id integer not null default null,
 first_name varchar(20) not null default null,
 last_name varchar(20) not null default null,
 gender char(1) not null default null,
 dob date null default null,
 income double null default null,
 primary key (person_id)
);

SQL Server Database
create table person (
 person_id int NOT NULL,
 first_name varchar(20) NOT NULL,
 last_name varchar(20) NOT NULL,
 gender char(1) NOT NULL,
 dob datetime NULL,
 income decimal(10,2) NULL,
 constraint pk_person primary key (person_id)
);

DB2 Database
create table person (
 person_id integer not null,
 first_name varchar(20) not null,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

395

 last_name varchar(20) not null,
 gender character (1) not null,
 dob date,
 income double,
 constraint pk_person_id primary key (person_id)
);

MySQL Database
create table person (
 person_id integer not null primary key,
 first_name varchar(20) not null,
 last_name varchar(20) not null,
 gender char(1) not null,
 dob datetime null,
 income double null
);

Java DB Database
create table person (
 person_id integer not null,
 first_name varchar(20) not null,
 last_name varchar(20) not null,
 gender char(1) not null,
 dob date,
 income double,
 primary key(person_id)
);
 

You can run the program shown later in Listing 6-3 to create the person table in Java DB. To create the person
table in another database, you may have to change the CREATE TABLE syntax in the program.

Connecting to a Database
Here are the steps that you need to follow to connect to a database.

Obtain the JDBC driver and add it to the •	 CLASSPATH environment variable on your machine.

Register the JDBC driver with the •	 DriverManager.

Construct a connection URL.•	

Use the •	 getConnection() static method of DriverManager to establish a connection.

The following sections describe these steps in detail.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

396

Obtaining the JDBC Driver
You need to have the JDBC driver for your database before you can connect to the database using JDBC. You can get
a JDBC driver from the vendor of your database. For example, if you are using the Oracle DBMS, you can download
the JDBC driver from its official web site at www.oracle.com. All database vendors that support JDBC will let you
download the JDBC driver for their DBMS from their official web sites for free. Typically, a JDBC driver is bundled in
one or more JAR/ZIP files.

If you are using Java DB, the JDBC drivers were copied on your machine when you installed the JDK. You do not
need to download any additional JDBC drivers.

Setting up the CLASSPATH
If you are using a JDBC driver, you need to place the JAR/ZIP files for your JDBC driver in the CLASSPATH on your
machine, so that your Java programs can use the Java classes that implement the JDBC driver for your database.

If you are using Java DB, please refer to Table 6-1 for the JAR file that you will need to use in your case. To run all
examples in this chapter that use Java DB in embedded mode, you will need the derby.jar file in the CLASSPATH. The
derby.jar file is the JDBC driver needed to use the Java DB in embedded mode. If you are connecting to Java DB over
a network, you will need to include the derbyclient.jar file in the CLASSPATH.

Registering a JDBC Driver
You need to register a JDBC driver, which you want to use to connect to a database. A JDBC driver is registered with
the java.sql.DriverManager class.

What is a JDBC driver? Technically, a JDBC driver is a class that implements the java.sql.Driver interface.
DBMS vendors supply the JDBC driver class along with any other classes it uses. You must know the name of the JDBC
driver class before you can register it with the DriverManager class. If you do not know the name of the driver class,
please refer to the documentation of the JDBC driver for your DBMS.

In the next section, I will list the driver class names for some DBMSs. The name may vary depending on the
version of DBMS or the supplier of the driver class. Sometimes different vendors supply the drivers for the same
DBMS. Different vendors will use different driver class names and different connection URL formats to connect to the
same DBMS.

Why do you need to register a JDBC driver with the DriverManager? Java does not know how to connect to
a database. It depends on the JDBC driver to connect to a database. Think of a JDBC driver as a Java class whose
object will be used by the DriverManager to connect to a database. The question is, “How does the DriverManager
know about the JDBC driver you want to use to connect to a database?” Of course, it has no way to know about the
JDBC driver by itself. Therefore, registering a driver with the DriverManager is simply telling the DriverManager
about your JDBC driver class name. By registering a JDBC driver, you are telling the DriverManager that if you ask
the DriverManager to establish a connection to a database, it needs to try using this driver. Can you register multiple
JDBC drivers with the DriverManager? Yes. You can register multiple JDBC drivers. When you need to establish a
connection to a database, you must pass a connection URL to the DriverManager. The DriverManager passes the
connection URL to all registered drivers one by one, and asks them to connect to the database using information
that you supply in the connection URL. If a driver recognizes the connection URL, it connects to the database and
returns the connection to the DriverManager. An object of the java.sql.Connection interface represents a database
connection in a Java program. If none of the registered drivers recognize a connection URL, the DriverManager will
throw a SQLException stating that it could not find a suitable driver.

There are three ways to register a JDBC driver with the DriverManager:

By setting the •	 jdbc.drivers system property

By loading the driver class into the JVM•	

By using the •	 registerDriver() method of the DriverManager class

www.it-ebooks.info

http://www.oracle.com/
http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

397

Setting the jdbc.drivers System Property
You can register a JDBC driver class name using the jdbc.drivers system property. You can set this property in your
computer globally; you can pass this property on the command line when you run your application, or you can set this
property in your application using the System.setProperty() method. A colon separates each driver to be registered.
Here are some examples:
 
// Register Sybase and Oracle drivers in the Java code
String drivers = "com.sybase.jdbc2.jdbc.SybDriver:oracle.jdbc.driver.OracleDriver";
System.setProperty("jdbc.drivers", drivers);
 
// Pass driver names to be registered as command-line arguments.
// The following command is entered in one line.
java -Djdbc.drivers=com.sybase.jdbc2.jdbc.SybDriver:oracle.jdbc.driver.OracleDriver
com.jdojo.jdbc.Test

Loading the Driver Class
You can create an object of the driver class. When the driver class is loaded in the JVM, it registers itself with the
DriverManager. For a class to be loaded, you can use a Class.forName("driver class name") method or create an
object of the class as follows:
 
// Register the Oracle JDBC driver
new oracle.jdbc.driver.OracleDriver();
 
// Register the Oracle JDBC driver using the Class.forName() method.
// Exception handling has been omitted.
Class.forName("oracle.jdbc.driver.OracleDriver")
 
// Register the Java DB embedded driver
new org.apache.derby.jdbc.EmbeddedDriver();
 
// Register the Java DB network client driver
new org.apache.derby.jdbc.ClientDriver();
 

You do not need to keep the reference of the driver object because the goal is to load the driver class in the JVM.
When the driver’s class is loaded into the JVM, the static initializer of the driver’s class is executed in which the driver
class registers itself with the DriverManager.

Using the registerDriver() Method
You can call the registerDriver(java.sql.Driver driver) static method of the DriverManager class with an object
of a JDBC driver class to register the JDBC driver.
 
// Register the Oracle JDBC driver with DriverManager
DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 
// Register the Java DB embedded driver
DriverManager.registerDriver(new org.apache.derby.jdbc.EmbeddedDriver());
 
// Register the Java DB network client driver
DriverManager.registerDriver(new org.apache.derby.jdbc.ClientDriver());
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

398

You can follow one of the above three methods to register a JDBC driver. The first way offers more flexibility. It lets
you change the JDBC driver without changing your Java code. You can also specify a connection URL (discussed next)
using a system property or as a command-line argument. This way, not only can you use a different JDBC driver, but
also a different DBMS without modifying the Java code.

Constructing a Connection URL
A database connection is established using a connection URL. The format of a connection URL is dependent upon the
DMBS and a JDBC driver. There are three parts of a connection URL. A colon separates two parts of the connection
URL. The syntax to define the connection URL is
 
<protocol>:<sub-protocol>:<data-source-details>
 

The <protocol> part is always set to jdbc. The <sub-protocol> part is vendor-specific. The <data-source-details>
part is DBMS specific that is used to locate the database. In some cases, you can also specify some connection
properties in this last part of the URL. The following is an example of a connection URL that uses Oracle’s thin JDBC
driver to connect to an Oracle DBMS:
 
jdbc:oracle:thin:@localhost:1521:chanda
 

As always, the protocol part is jdbc. The sub-protocol part is oracle:thin, which identifies the Oracle
Corporation as the vendor, and the type of the driver it will use, which is thin. The data source details part is
@localhost:1521:chanda. It has three subparts. The @localhost identifies the server name. You could use an IP
address or a machine name of your Oracle database server instead. Then, it contains the port number at which Oracle’s
Transport Network Substrate (TNS) listener is running. The last part is an Oracle’s instance name, which is chanda in
this example. The following is another example of a connection URL that identifies a database in a Java DB server:
 
jdbc:derby://192.168.1.3:1527/beginningJavaDB;create=true
 

As always, the protocol part is jdbc. The subprotocol part is derby, which identifies the Apache Derby DBMS.
Recall that Java DB is an Oracle’s release of the Apache Derby project. The 192.168.1.3:1527 part the machine’s IP
address and the port number where Java DB server is running. The database name is beginningJavaDB. The last part,
create=true, is the connection property that indicates that if a database named beginningJavaDB does not exist,
create a new database with this name.

The following sections describe the formats for a connection URL for some DBMSs. You need to visit the official
web site of a vendor to download a specific JDBC driver. You can also get the detailed information about using the
JDBC drivers at the vendor’s web site.

Oracle Database
DBMS: Oracle 10g
Vendor: Oracle Corporation
Web Site: http://www.oracle.com
Driver Type: JDBC Driver (thin - Pure Java)
URL Format: jdbc:oracle:thin:@<server>:<port>:<instance>
URL Example: jdbc:oracle:thin:@localhost:1521:chanda
Driver Class: oracle.jdbc.driver.OracleDriver
 

www.it-ebooks.info

http://www.oracle.com/
http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

399

It is implemented 100% in Java. If you are using a thin Oracle driver, you do not need to install any Oracle-specific
configuration software. If you are using JDBC to connect to an Oracle database in an applet, this is the driver you
should use:
 
DBMS: Oracle 10g
Vendor: Oracle Corporation
Web Site: http://www.oracle.com
Driver Type: JDBC-Native Driver (OCI - Oracle Call Interface)
URL Format: jdbc:oracle:oci:@<tns-alias>
URL Example: jdbc:oracle:oci:@orcl
Driver Class: oracle.jdbc.driver.OracleDriver
 

You need to install the Oracle client software to use the OCI driver. The JDBC driver converts the standard
JDBC calls to OCI calls, which are sent to the database. The <tns-alias> part of the URL comes from an entry in the
tnsnames.ora file. A typical TNS alias entry in a tnsnames.ora file looks as follows:
 
ORCL =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = HYE6754)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = orcl)
)
)
 

The Oracle JDBC driver also lets you specify the entire text for a TNS alias as the part of the JDBC connection URL
as shown:
 
String dbURL="jdbc:oracle:oci:@(DESCRIPTION =" +
 "(ADDRESS = (PROTOCOL = TCP)(HOST = HYE6754)(PORT = 1521))" +
 "(CONNECT_DATA =(SERVER = DEDICATED)(SERVICE_NAME = orcl)))";

Adaptive Server Anywhere Database
DBMS: Adaptive Server Anywhere 9.0
Driver Type: JDBC Driver (Pure Java)
Vendor: Sybase Inc.
Web Site: http://www.sybase.com
URL Format: jdbc:sybase:Tds:<server>:<port>
URL Example: jdbc:sybase:Tds:localhost:2638
Driver Class: com.sybase.jdbc2.jdbc.SybDriver 

SQL Server Database
You can use either of the following two JDBC drivers to connect to a SQL Server database:
 
// Driver #1
DBMS: SQL Server
Vendor: Microsoft Corporation
Web Site: http://www.microsoft.com
Driver Type: JDBC Driver (Pure Java)

www.it-ebooks.info

http://www.oracle.com/
http://www.sybase.com/
http://www.microsoft.com/
http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

400

URL Format: jdbc:SQLserver://<server>:<port>
URL Example: jdbc:SQLserver://HYE6754:1433;Database=chanda
Driver Class: com.microsoft.SQLserver.jdbc.SQLServerDriver
 
// Driver #2
DBMS: SQL Server
Vendor: SourceForge Inc.
Web Site: http://www.sourceforge.net
Driver Type: JDBC Driver (Pure Java)
URL Format: jdbc:jtds:<server_type>://<server>:<port>/<database>;<props>
URL Example: jdbc:jtds:sqlserver://HYE6754:1433/chanda
Driver Class: net.sourceforge.jtds.jdbc.Driver
 

When you use the driver #2, you can specify sqlserver or sybase as <server_type> to connect to SQL Server or
Sybase DBMS, respectively. <props> is a comma-separated list of property=value pairs, where property is the name
of the database property and value is its value. For example, if you want to specify the user and password as part of the
URL, you can use <props> as user=myuserid;password=mysecretpassword.

The parts of the URL, <port>, <database>, and <props>, are optional. If you do not specify them, their default
values will be used. The default value for <port> is 1433 for SQL Server and 7100 for Sybase.

MySQL Database
DBMS: MySQL Server 5.0
Vendor: Oracle Corporation
Web Site: http://www.oracle.com
Driver Type: JDBC Driver (Pure Java)
URL Format: jdbc:mySQL://<server>:<port>/<database>?<props>
URL Example: jdbc:mySQL://HYE6754:3306/chanda
Driver Class: com.mySQL.jdbc.Driver
 

Most parts in the connection URL are optional for MySQL databases. For example, you can use the shortest
connection URL for MySQL as jdbc:mySQL://, and all other parts will be assumed as their default values. The default
value for <server> and <port> are localhost and 3306. You can supply a comma-separated list of <server>:<port>
values to be used as fail-over servers. If you do not supply the value for <database>, you can either call the
setCatalog("catalog name") method on the Connection object after establishing the connection, or supply the
catalog name as part of all your queries. You have specified chanda as your database in the example URL. The <props>
is an ampersand(&)-separated list of name=value pairs. For example, you can pass the user id and password with the
connection URL as follows. It uses root as the user id and chanda as the password.
 
jdbc:mySQL://localhost:3306/chanda?user=root&password=chanda.

DB2 Database
DBMS: DB2
Vendor: IBM
Web Site: http://www.ibm.com
Driver Type: JDBC Driver (Pure Java)
URL Format: jdbc:db2://<server>:<port>/<database>?<props>
URL Example: jdbc:db2://localhost:50000/chandaDB
Driver Class: com.ibm.db2.jcc.DB2Driver
 

www.it-ebooks.info

http://www.sourceforge.net/
http://www.oracle.com/
http://www.ibm.com/
http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

401

You can use jdbc:db2: or jdbc:db2j:net: as the initial part of the URL. If the URL starts with jdbc:db2:, it
indicates that the connection is to a server in the DB2 UDB family. If the URL starts with jdbc:db2j:net:, it indicates
that that the connection is to a remote IBM(R) Cloudscape(TM) server. The <props> part in the URL is a comma-separated
list of name=value pairs of properties for the database connection. For example, the following URL specifies the user
and password properties as admin and secret, respectively:
 
jdbc:db2://localhost:5021/chandaDB:user=admin;password=secret;
 

Please visit IBM’s official web site for more details about the properties that you can set in the JDBC connection URL.

Java DB Database
DBMS: Java DB (Apache Derby)
Web Site: http://www.oracle.com
Driver Type: JDBC Driver (Pure Java)
URL Format: jdbc:derby://<server>:<port>/<database>;<props>
URL Example: jdbc:derby://localhost:1527/beginningJavaDB;create=true
Driver Class: org.apache.derby.jdbc.ClientDriver
 

The default user name and password are app and app, respectively. The property create=true is specified to
create an empty database, if it does not exist. There are other types of JDBC drivers for Java DB. The client driver lets
you connect to it when the Java DB is running as a server and your application accesses it as a client. You can also
start the Java DB in the same JVM your application is running, and your application and Java DB will run in the same
process. When Java DB runs in the same process as your application, you can use the embedded JDBC driver to access
the database.

Loading the JDBC driver for the embedded Java DB starts the Java DB database. The following is an example of
the connection URL to start the Java DB in embedded mode and connect to a database named beginningJavaDB:
 
jdbc:derby:beginningJavaDB
 

Recall that a Java DB database has a directory with the same name as the database name. How will the JDBC
driver find the beginningJavaDB directory using this connection URL? It will use the directory specified by the
derby.system.home property. If the property is not specified, it will use the current directory. The following java
command starts a Java application by specifying the derby.system.home property:
 
java -Dderby.system.home=C:\myDatabases com.jdojo.jdbc.MyApp
 

If you use the database name inside the MyApp class, it will be searched in the C:\myDatabases directory.
You can also specify the full path of the database directory in the connection URL. The following connection URL

specifies the full path of the database on Windows:
 
jdbc:derby:C:/myDatabases/beginningJavaDB
 

In the database full path, you can use a forward slash as the path separator on Windows as well as UNIX.
If your database directory is in the CLASSPATH, you can construct a connection URL using the classpath

sub-protocol as follows:
 
jdbc:derby:classpath:beginningJavaDB
 

www.it-ebooks.info

http://www.oracle.com/
http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

402

The connection URL will look for a beginningJavaDB directory in the CLASSPATH. If your database in the test
directory under a directory in the CLASSPATH, you can construct the connection URL as follows:
 
jdbc:derby:classpath:test/beginningJavaDB
 

Java DB is very flexible in letting you specify the connection URL. It also lets you access a read-only database from
a JAR/ZIP file. The following connection URL looks for the beginningJavaDB database under the test directory in the
C:\myDatabases.jar file:
 
jdbc:derby:jar:(C:/myDatabases.jar)test/beginningJavaDB

Establishing the Database Connection
It is time to connect to the database. You need to use the getConnection() static method of the DriverManager class
to establish a connection to a database. It returns an object of the java.sql.Connection interface, which represents
the database connection. The getConnection() method takes a connection URL, a user id, a password, and any
number of name-value pairs using a java.util.Properties object. The getConnection() method is overloaded:

•	 static Connection getConnection(String url) throws SQLException

•	 static Connection getConnection(String url, Properties info) throws SQLException

•	 static Connection getConnection(String url, String user, String password) throws
SQLException

You will find it annoying that you need to handle the java.sql.SQLException exception for almost every
operation with a database using a JDBC driver. It is a checked exception and the compiler will force you to handle it
either by placing your code in a try-catch block or by using a throws clause. Even though you write only one line of
code, you will end up using a try-catch block. You will create a utility class with some static methods for a one-liner
code that will handle the exceptions for you. Whenever you need to use that one-liner code functionality, you will use
the utility class methods instead of using the JDBC methods directly. This approach will avoid bloated code in the
examples in this chapter.

The following snippet of code establishes a connection to a database named beginningJavaDB in Java DB
running in embedded mode:
 
// Register the JDBC driver
Driver derbyEmbeddedDriver = new org.apache.derby.jdbc.EmbeddedDriver();
DriverManager.registerDriver(derbyEmbeddedDriver);
 
// Prepare the connection URL
String dbURL = "jdbc:derby:beginningJavaDB;create=true";
 
Connection conn = null;
 
try {
 conn = DriverManager.getConnection(dbURL, "root", "chanda");
 System.out.println("Connected to database successfully");
 
 // Perform database activities here...
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

403

catch(SQLException e) {
 e.printStackTrace();
}
finally {
 if (conn != null) {
 try {
 // Close the connection
 conn.close();
 }
 catch (SQLException e) {
 e.printStackTrace();
 }
 }
}
 

The Connection interface inherits from the java.lang.AutoCloseable interface. That means you can also use
a try-with-resources block to obtain a Connection that will be automatically closed when the control exits the try
block. You can rewrite the above code using a try-with-resources block as follows:
 
// Register the JDBC driver
Driver derbyEmbeddedDriver = new org.apache.derby.jdbc.EmbeddedDriver();
DriverManager.registerDriver(derbyEmbeddedDriver);
 
// Prepare the connection URL
String dbURL = "jdbc:derby:beginningJavaDB;create=true";
 
try (Connection conn = DriverManager.getConnection(dbURL, "root", "chanda")) {
  
 System.out.println("Connected to database successfully");
 
 // Perform database activities here...
}
catch (SQLException e) {
 e.printStackTrace();
}
 

If you need to connect to any other database, you will need to change two things: the JDBC driver that you
register and the connection URL. Both the driver and the connection URL are DBMS-specific. Note the use of a
try-catch-finally block in the code. When you are done with a database connection, you need to close it by using
the close() method of the Connection object. The close() method of the Connection object throws a SQLException,
which forces you to use another try-catch block. In a typical Java program, you will not close a connection just after
connecting to a database. You will use the Connection object to perform some database activities, and then, you close
the connection.

Listing 6-1 contains the code for a JDBCUtil class, which you will use throughout this chapter to work with
database connections. All of its methods are static and they are used to establish and close a database connection,
close a Statement, close a ResultSet, commit a transaction, rollback a transaction, etc. I will discuss the Statement
and ResultSet objects later in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

404

Listing 6-1.  A Utility Class That Will be Used to Work With a Database

// JDBCUtil.java
package com.jdojo.jdbc;
 
import java.sql.Connection;
import java.sql.Driver;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
 
public class JDBCUtil {
 public static Connection getConnection() throws SQLException {
 // Register the Java DB embedded JDBC driver
 Driver derbyEmbeddedDriver = new org.apache.derby.jdbc.EmbeddedDriver();
 DriverManager.registerDriver(derbyEmbeddedDriver);
 
 // Construct the connection URL
 String dbURL = "jdbc:derby:beginningJavaDB;create=true;";
 String userId = "root";
 String password = "chanda";
 
 // Get a connection
 Connection conn = DriverManager.getConnection(dbURL, userId, password);
 
 // Set the auto-commit off
 conn.setAutoCommit(false);
 
 return conn;
 }
 
 public static void closeConnection(Connection conn) {
 try {
 if (conn != null) {
 conn.close();
 }
 }
 catch (SQLException e) {
 e.printStackTrace();
 }
 }
 
 public static void closeStatement(Statement stmt) {
 try {
 if (stmt != null) {
 stmt.close();
 }
 }
 catch (SQLException e) {
 e.printStackTrace();
 }
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

405

 public static void closeResultSet(ResultSet rs) {
 try {
 if (rs != null) {
 rs.close();
 }
 }
 catch (SQLException e) {
 e.printStackTrace();
 }
 }
 
 public static void commit(Connection conn) {
 try {
 if (conn != null) {
 conn.commit();
 }
 }
 catch (SQLException e) {
 e.printStackTrace();
 }
 }
 
 public static void rollback(Connection conn) {
 try {
 if (conn != null) {
 conn.rollback();
 }
 }
 catch (SQLException e) {
 e.printStackTrace();
 }
 }
 
 public static void main(String[] args) {
 Connection conn = null;
 try {
 conn = JDBCUtil.getConnection();
 System.out.println("Connetced to the database.");
 }
 catch (SQLException e) {
 e.printStackTrace();
 }
 finally {
 JDBCUtil.closeConnection(conn);
 }
 }
}
 

To connect to a database, you will use the JDBCUtil.getConnection() method. To close a connection, you will
use the JDBCUtil.closeConnection() method. The getConnection() method uses Java DB-specific JDBC driver class
and connection URL format. You must change the code in the getConnection() method, which will be specific to the
DBMS that you want to connect to. It is important to note that you must be able to run the JDBCUtil class and make
sure that you are able to connect to a DBMS successfully, before you can run other examples in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

406

Tip■■   One of the most common mistakes that beginners make is not including the JDBC driver’s Java classes (usually
a JAR/ZIP file) in the CLASSPATH. Make sure that you have your JDBC driver-related classes included in the CLASSPATH.
For example, include the derby.jar file in the CLASSPATH to use the Java DB embedded JDBC driver.

Setting the Auto-Commit Mode
When you connect to a database, the auto-commit property for the Connection object is set to true by default. If a
connection is in an auto-commit mode, a SQL statement is committed automatically after its successful execution.
If a connection is not in an auto-commit mode, you must call the commit() or rollback() method of the Connection
object to commit or rollback a transaction. Typically, you disable the auto-commit mode for a connection in a JDBC
application, so your application logic controls the final outcome of the transaction. To disable the auto-commit mode,
you need to call the setAutoCommit(false) on the Connection object after connection has been established.
If a connection URL allows you to set the auto-commit mode, you can also specify it as part of the connection URL.
You set the auto-commit mode of your connection in the JDBCUtil.getConnection() method to false after you get
 a Connection object.
 
// Get a connection
Connection conn = DriverManager.getConnection(dbURL, userId, password);
 
// Set the auto-commit off
conn.setAutoCommit(false);
 

If you have enabled the auto-commit mode for your connection, you cannot use its commit() and rollback()
methods. Calling the commit() and rollback() methods on a Connection object, which has enabled the auto-commit
mode, throws an exception. JDBC also lets you use save points in a transaction, so that you can apply a partial rollback
to a transaction. I will have an example of using save points later in this chapter.

If the setAutoCommit() method is called to change the auto-commit mode of a connection in the middle
of a transaction, the transaction is committed at that time. Typically, you would set the auto-commit mode of a
connection just after connecting to the database.

Committing and Rolling Back Transactions
If the auto-commit mode is disabled for a connection, you can use the commit() or rollback() method to commit or
rollback a transaction. A typical pseudo code in a JDBC application that performs a database transaction is as shown:
 
Connection conn = get a connection;
 
// Disable auto-commit mode
conn.setAutoCommit(false);
 
// Perform database transaction activities here
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

407

IF transaction is successful THEN
 conn.commit(); // Commit the transaction
ELSE
 conn.rollback(); // Rollback the transaction
END IF
 
conn.close(); // Close the connection
 

The error handling code is not shown. Typically, a try-catch or try-catch-finally block replaces the
IF statement shown above.

Transaction Isolation Level
In a multi-user database, you will often come across the following two terms:

Data concurrency•	

Data consistency•	

Data concurrency refers to the ability of multiple users to use the same data concurrently. Data consistency refers
to the accuracy of the data that is maintained when multiple users are manipulating the data concurrently. As the
data concurrency increases (i.e. more users work on the same data), care must be taken to maintain a desired level of
data consistency. A database maintains data consistency using locks and by isolating one transaction from another.
How much a transaction is isolated from another transaction depends on the desired level of data consistency. Let’s
look at three phenomena where data consistency may be compromised in a multi-user environment where multiple
concurrent transactions are supported.

Dirty Read
In a dirty read, a transaction reads uncommitted data from another transaction. Consider the following sequence of
steps, which results in inconsistent data because of a dirty read:

Transaction A inserts a new row in a table and it has not committed it yet.•	

Transaction B reads the uncommitted row inserted by the transaction A.•	

Transaction A rollbacks the changes.•	

At this point, transaction B is left with data for a row that does not exist.•	

Non-Repeatable Read
In a non-repeatable read, when a transaction re-reads the data, it finds that the data has been modified by another
transaction that has been already committed. Consider the following sequence of steps, which results in inconsistent
data because of a non-repeatable read:

Transaction A reads a row.•	

Transaction B modifies or deletes the same row and commits the changes.•	

Transaction A re-reads the same row and finds that the row has been modified or deleted.•	

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

408

Phantom Read
In a phantom read, when a transaction re-executes the same query, it finds more data that satisfies the query.
Consider the following sequence of steps, which results in inconsistent data, because of a phantom read:

Transaction A executes a query (say Q) and finds X number of rows matching the query.•	

Transaction B inserts some rows that satisfy the query Q criteria and commits.•	

Transaction A re-executes the same query (Q) and finds Y number of rows (Y > X) matching •	
the query.

Note that the difference between a non-repeatable read and a phantom read is that the former finds that the rows
have changed between reads and the latter finds that there are more rows matching the same query.

The ANSI SQL-92 standard defines four transaction isolation levels in terms of the above-described three
situations for data consistency. Each isolation level defines what kinds of data inconsistencies are allowed, or not
allowed. The four transaction isolation levels are as follows:

Read Uncommitted•	

Read Committed•	

Repeatable Read•	

Serializable•	

Table 6-3 shows the four isolation levels and the three permitted situations. It is up to a DBMS to decide how they
implement these isolation levels. A DBMS may offer additional isolation levels. A DBMS may implement the same
isolation level a little differently. Please consult your DBMS documentation for more details about the isolation levels
that your DBMS supports.

Table 6-3.  Four Isolation Levels Defined by ANSI SQL-92

Isolation Level Dirty Read Non-Repeatable Read Phantom Read

Read Uncommitted Permitted Permitted Permitted

Read Committed Not Permitted Permitted Permitted

Repeatable Read Not Permitted Not Permitted Permitted

Serializable Not Permitted Not Permitted Not Permitted

Java defines the following four constants in the Connection interface that correspond to the four isolation levels
defined by the ANSI SQL-92 standard:

•	 TRANSACTION_READ_UNCOMMITTED

•	 TRANSACTION_READ_COMMITTED

•	 TRANSACTION_REPEATABLE_READ

•	 TRANSACTION_SERIALIZABLE

You can set the isolation level of a transaction for a database connection using the
setTransactionIsolation(int level) method of the Connection interface.
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

409

// Get a Connection object
Connection conn = get a connection object...;
 
// Set the transaction isolation level to read committed
conn.setTransactionIsolation(Connection.TRANSACTION_READ_COMMITTED);
 

You can use the getTransactionIsolation() method of the Connection interface to get the current setting for
the transaction isolation level for the connection. The default transaction isolation level is JDBC driver-dependent.
You can also use the following three methods of the DatabaseMetaData interface to get more insight about the
transaction isolation levels supported by a DBMS. The method names are self-explanatory.

•	 int getDefaultTransactionIsolation() throws SQLException

•	 boolean supportsTransactions() throws SQLException

•	 boolean supportsTransactionIsolationLevel(int level) throws SQLException

The Connection interface defines a TRANSACTION_NONE constant to indicate that a JDBC driver does not support
transactions and it is not a JDBC-compliant driver. This constant is not used with the setTransactionIsolation()
method. The getTransactionIsolation() method may return this constant. You can change the transaction isolation
for a Connection object any time. However, the effect of changing the transaction isolation of a connection is JDBC
driver-dependent if it is changed when a transaction is in progress.

JDBC-Types-to-Java-Types Mapping
The JDBC API allows you to access and manipulate data stored in a database in a Java environment. The database
uses its own data types, whereas Java uses its own. Table 6-4 lists the mappings between JDBC data types and Java
data types.

Table 6-4.  Data Types Mapping Between JDBC and Java

JDBC Type Java Type

ARRAY java.sql.Array

BIGINT long

BINARY byte[]

BIT boolean

BLOB java.sql.Blob

BOOLEAN boolean

CHAR String

CLOB java.sql.Clob

DATALINK java.net.URL

DATE java.sql.Date

DATE java.time.LocalDate

DECIMAL java.math.BigDecimal

DISTINCT Mapping of underlying type

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

410

Table 6-4.  (continued)

JDBC Type Java Type

DOUBLE double

FLOAT double

INTEGER int

JAVA_OBJECT underlying Java class

LONGNVARCHAR String

LONGVARBINARY byte[]

LONGVARCHAR String

NCHAR String

NCLOB java.sql.NClob

NUMERIC java.math.BigDecimal

NVARCHAR String

REAL float

REF java.sql.Ref

REF_CURSOR Java.sql.ResultSet

ROWID java.sql.RowId

SMALLINT short

SQLXML java.sql.SQLXML

STRUCT java.sql.Struct

TIME java.sql.Time

TIME java.time.LocalTime

TIME_WITH_TIMEZONE java.time.OffsetTime

TIMESTAMP java.sql.Timestamp

TIMESTAMP_WITH_TIMEZONE java.time.OffsetDateTime

TINYINT byte

VARBINARY byte[]

VARCHAR String

Java 8 added the JDBC types named REF_CURSOR, TIME_WITH_TIMEZONE, and TIMESTAMP_WITH_TIMEZONE. Prior to
Java 8, you could work with date, time, and timestamp JDBC types using the Date, Time, and Timestamp classes in the
java.sql package. In Java 8, the date- and time-related JDBC types have also been mapped to the new date and time
classes in the java.time package. For example, you can use a java.sql.Date or a java.time.LocalDate object for the
DATE JDBC type. If you are using the date- and time-related objects from the java.time package for a JDBC DATE type,
you will need to use them as objects and use methods like getObject() and setObject() to get and set their values.
Several methods have been added in the Date, Time, and Timestamp classes in the java.sql package to facilitate
conversion between SQL dates/times and new dates/times in the java.time package.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

411

Tip■■  A t the time of this writing, there is no support for new JDBC types in the JDBC drivers offered by Java DB and
Oracle DBMSs.

All values listed in the JDBC Type column are defined as constants in the Types class. Java 8 added a new enum
type called JDBCType that contains constants with the same name as the constants in the Types class. The JDBCType
enum inherits from the SQLType interface that was also added in Java 8. When a data types expected in a method’s
argument, you will see the argument’s type as int in old methods and you will need to pass one of the constants in the
Type class. Java 8 has overloaded some these methods to use the JDBCType enum instead. Whenever possible, use the
constants in the JDBCType enum for the data types for type safety.

If you have to refer to a JDBC type in your Java code, you need to use the corresponding constant from the
Types class. For example, suppose you need to set a null value for a parameter in a PreparedStatement object.
The parameter type is of int type. The PreparedStatement interface provides a setNull() method as follows:

•	 void setNull(int parameterIndex, int sqlType) throws SQLException

The second parameter to the setNull() method accepts sqlType, which is the JDBC data type and is defined by
the constants in the java.sql.Types class. Suppose the index of the parameter in PreparedStatement is 2. You will
call the setNull() method as shown:
 
myPreparedStmt.setNull(2, java.sql.Types.INTEGER);
 

This table also tells you about the type of the Java variables you need to use to read data from a database. Suppose
a column is declared varchar(20) in a database table. Table 6-4 maps the JDBC VARCHAR data type to the Java String
type. It means that you need to use a String reference type variable in your Java program to hold the value of a
VARCHAR type in the database. Suppose you are reading the value of a first_name column from a database table using
a ResultSet object, which is declared as varchar(20). Your code would be similar to the following code:
 
String firstName = myResultSet.getString("first_name");
 

The mapping shown in this table is used throughout this chapter when you get, set, or update values that cross a
JDBC-JAVA boundary. You will be using three sets of methods while working with data in JDBC programs: getXxx(),
setXxx(), and updateXxx(), where Xxx indicates a data type such as int, String, Date, etc. These methods are found
in many interfaces that are used in this chapter such as PreparedStatement, ResultSet, etc.

A getXxx() method is used to read data from a JDBC environment to a Java program. A setXxx() method is used
to set a value in a Java program that will finally be passed to a JDBC environment. An updateXxx() method is used
to update a data element that was retrieved from a JDBC environment and the updated value will be passed again to
a JDBC environment. For example, you use getInt(), setInt(), and updateInt() to read, set, and update a value
that is of type INTEGER in a database and is represented as int data type in Java code. You can use the getObject(),
setObject(), and updateObject() methods to work with all data types provided the supplied arguments to the
method are assignment compatible with the actual data types. Wherever possible, an implicit data type conversion
is performed internally by the JDBC API. For example, if a JDBC type maps to a short type in Java, you can use the
getShort() method to read its value. If you use the getInt() method to read a short value, the short value is implicitly
converted to int. Another example of this is to read a JDBC INTEGER value using a getString() method. Suppose you
want to read the value of an INTEGER type column, person_id, from a result set. You can use either of the following two
statements. The JDBC driver will perform implicit conversion from int to String in the second statement.
 
int personIdInt = myResultSet.getInt("person_id");
String personIdStr = myResultSet.getString("person_id");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

412

Knowing About the Database
The same database feature may be supported differently, or not supported at all, by different DBMSs. Sometimes a
JDBC driver may implement a wrapper around the feature supported by the underlying DBMS. An instance of the
DatabaseMetaData interface gives you detailed information about the features supported by a DBMS through the
JDBC driver. The JDBC driver vendor supplies the implementation class for the DatabaseMetaData interface. You can
get a DatabaseMetaData object using the getMetaData() method of the Connection object as shown:
 
Connection conn = JDBCUtil.getConnection();
 
// Get DatabaseMetaData object
DatabaseMetaData dbmd = conn.getMetaData();
 

Listing 6-2 contains the complete code that prints some pieces of information about the database you are
connected to. The output shows the database information about the Java DB, supported features, and JDBC driver.
You may get a different output.

Listing 6-2.  Using a DatabaseMetaData Object to Know About a DBMS

// DatabaseMetaDataTest.java
package com.jdojo.jdbc;
 
import java.sql.Connection;
import java.sql.SQLException;
import java.sql.DatabaseMetaData;
 
public class DatabaseMetaDataTest {
 public static void main(String[] args) {
 Connection conn = null;
 try {
 conn = JDBCUtil.getConnection();
 
 // Get DatabaseMetaData object
 DatabaseMetaData dbmd = conn.getMetaData();
 
 System.out.println("About the database...");
 
 String dbName = dbmd.getDatabaseProductName();
 String dbVersion = dbmd.getDatabaseProductVersion();
 String dbURL = dbmd.getURL();
 System.out.println("Database Name:" + dbName);
 System.out.println("Database Version:" + dbVersion);
 System.out.println("Database URL:" + dbURL);
  
 System.out.printf("%nAbout JDBC driver...%n");
 String driverName = dbmd.getDriverName();
 String driverVersion = dbmd.getDriverVersion();
 System.out.println("Driver Name:" + driverName);
 System.out.println("Driver Version:" + driverVersion);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

413

 System.out.printf("%nAbout supported features...%n");
 boolean ansi92BiEntry = dbmd.supportsANSI92EntryLevelSQL();
 boolean ansi92Intermediate =
 dbmd.supportsANSI92IntermediateSQL();
 boolean ansi92Full = dbmd.supportsANSI92FullSQL();
 boolean supportsBatchUpdates = dbmd.supportsBatchUpdates();
 System.out.println("Supports Entry Level ANSI92 SQL:" +
 ansi92BiEntry);
 System.out.println("Supports Intermediate Level ANSI92 SQL:" +
 ansi92Intermediate);
 System.out.println("Supports Full Level ANSI92 SQL:" +
 ansi92Full);
 System.out.println("Supports batch updates:" +
 supportsBatchUpdates);
 }
 catch (SQLException e) {
 e.printStackTrace();
 }
 finally {
 JDBCUtil.closeConnection(conn);
 }
 }
}
 

About the database...
Database Name:Apache Derby
Database Version:10.10.1.3 - (1557168)
Database URL:jdbc:derby:beginningJavaDB
 
About JDBC driver...
Driver Name:Apache Derby Embedded JDBC Driver
Driver Version:10.10.1.3 - (1557168)
 
About supported features...
Supports Entry Level ANSI92 SQL:true
Supports Intermediate Level ANSI92 SQL:false
Supports Full Level ANSI92 SQL:false
Supports batch updates:true

 
The DatabaseMetaData interface has many methods. Please refer to the API documentation on this interface for

more details. Typically, a tool uses this interface to present the user with features supported by a DBMS. If you are
working on a JDBC project that may use different DBMS and JDBC drivers, you will need to use a DatabaseMetaData
object, so you can inform the user at runtime what features your application will support based on the JDBC driver
and the DBMS they use.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

414

Executing SQL Statements
You can execute different types of SQL statements using a JDBC driver. Based on the type of work that a SQL statement
performs in a DBMS, it can be categorized as follows:

•	 A Data Definition Language (DDL) Statement: Examples of DDL statements are CREATE
TABLE, ALTER TABLE, etc.

•	 A Data Manipulation Language (DML) Statement: Examples of DML statements are SELECT,
INSERT, UPDATE, DELETE, etc.

•	 A Data Control Language (DCL) Statement: Examples of DCL statements are GRANT
and REVOKE.

•	 A Transaction Control Language (TCL) Statement: Example of TCL statements are COMMIT,
ROLLBACK, SAVEPOINT, etc.

You can execute DDL, DML, and DCL statements using different types of JDBC statement objects. An instance
of the Statement interface represents a SQL statement in a Java program. You can execute TCL statements using the
methods of a Connection object.

Java uses three different interfaces to represent SQL statements in different formats:

•	 Statement

•	 PreparedStatement

•	 CallableStatement

The PreparedStatement interface inherits from the Statement interface and the CallableStatement interface
inherits from the PreparedStatement interface. You need not worry about the implementation details of these
interfaces at all. The vendor of the JDBC driver will supply the implementation classes for these interfaces. You just
need to know which method to call on a Connection object to get a specific type of the Statement object.

If you have a SQL statement in the form of a string, you can use a Statement object to execute it. The SQL
statement may or may not return a result set. Typically, a SELECT statement returns a result set with zero or more
records. The SQL statements in the string format are compiled each time they are executed.

You can use a PreparedStatement, if you want to precompile a SQL statement once and execute it multiple times.
It lets you specify a SQL statement in the form of a string that uses placeholders. You need to supply the values of the
placeholders before you execute the statement. Using a PreparedStatement object is preferred over using a Statement
object for the following three reasons:

The SQL statement in a string form may be subject to hackers attack using a SQL injection •	
technique. Consider a trivial example of a SQL injection as shown in the following code for a
getSQL() method:
 
public String getSQL(String personID) {
 String SQL = "select * from person " +
 "where person_id = " + personId;
 return SQL;
}
 
The method accepts a •	 personId and returns a SELECT statement. If this method is called as
getSQL("101"), you do not have any problems. You will get a SQL statement as shown:

 
select * from person where person_id = 101

 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

415

This query will return a maximum of one record from the database assuming that •	 person_id is
the primary key for the person table.

However, if this method is called as •	 getSQL("101 or 1 = 1"), it will return a SELECT
statement as follows:

 
select * from person where person_id = 101 or 1 = 1

 
The above statement is dangerous to execute in a production database. It will return all •	
records from the person table to the client, which may pose a security risk. It may also degrade
the performance of the database server and/or application server, which may result in a denial
of service for other users.

A •	 PreparedStatement constructs a SQL in a string format using placeholders. The above
SELECT statement will be written as follows:

 
String pSQL = "select * from person where person_id = ?";

 
Note the use of the question mark in the statement. A question mark is used as a placeholder. •	
Its value is supplied later using a method of the PreparedStatement object. Using a
PreparedStatement eliminates the threat of a SQL injection.

The •	 PreparedStatement improves the performance of your JDBC application by compiling a
statement once and executing it multiple times.

A •	 PreparedStatement lets you use Java data types to supply values in a SQL statement instead
of using strings. For example, say you want to write a query to get person records whose birth
date is later than January 1, 1970. You may write a query as follows:

 
select * from person where dob > '1970-01-01'

 
However, this query will not execute properly in all databases. It assumes that a date literal •	
can be specified in the yyyy-mm-dd format. Different databases use different formats for a date
string literal. If you use a PreparedStatement, you can rewrite this query as shown:

 
select * from person where dob > ?

 
You can use a •	 java.sql.Date object to specify the value for the dob criterion and the JDBC
driver will take care of converting it into a DBMS-specific value of the date data type.

You can use a CallableStatement object to execute a database-stored procedure or function in a database.
The stored procedure may return result sets.

Let’s look at the three types of Statement objects one at a time in subsequent sections.

Results of Executing a SQL Statement
When you execute a SQL statement, the DBMS may return zero or more results. The results may include update
counts (number of records affected in the database) or result sets (a group of records).

When you execute a SELECT statement, it returns a result set. When you execute an UPDATE or DELETE statement,
it returns an update count, which is the number of records affected in the database by the SQL.

When you execute a stored procedure, it may return multiple update counts as well as multiple result sets. When
there is a possibility of mixed results of update counts and result sets being returned from a SQL execution, it becomes
trickier to process the results. A JDBC driver will let you get to the results in the order they were returned from the
database. Please refer to the “Handling Multiple Results from a Statement” section later in this chapter for a complete
discussion and examples of how to process multiple result sets and update counts.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

416

Using the Statement Interface
You can use a Statement to execute any kind of SQL statement, provided the SQL statement is supported by the
JDBC driver and the DBMS. Typically, you use one of its three methods called execute(), executeUpdate(), and
executeQuery() to execute a SQL statement. These methods are overloaded. The following is a list of one of their
versions that accept a SQL statement as a string:

•	 boolean execute(String SQL) throws SQLException

•	 int executeUpdate(String SQL) throws SQLException

•	 ResultSet executeQuery(String SQL) throws SQLException

Before I discuss which one the three methods of a Statement object to use in the code, here are the steps to
execute a SQL statement using a Statement object:

	 1.	 Get a connection object.
 

Connection conn = JDBCUtil.getConnection();

	 2.	 Create a Statement object using the createStatement() method of the Connection
object.

 
Statement stmt = conn.createStatement();

	 3.	 Execute one or more SQL statements by calling one of the three methods of the
Statement object.

 
// Increase everyone's income by 10%
String sql = "update person set income = income * 1.1";
int rowsUpdated = stmt.executeUpdate(sql);

 
// Execute other SQL statements using stmt

	 4.	 Close the Statement object to release the resources.
 

stmt.close();

	 5.	 Commit the transaction.
 

conn.commit();

The execute() method in the Statement interface is a general-purpose method that you can use to execute any
types of SQL statements. Typically, it is used to execute a SQL statement that does not return a result set, such as a
DDL statement like CREATE TABLE. The returned value from the execute() method indicates the status of the returned
result set. If the first result is a ResultSet object, it returns true. It returns false if the first result is an update count or
no result is returned from the DBMS.

The executeUpdate() method is used to execute a SQL statement that updates the data in the database such as
INSERT, UPDATE and DELETE statements. It returns the number of rows affected in the database by the execution of the
statement. You may use this method to execute other kinds of SQL statements, such as a CREATE TABLE statement,
which do not return anything. The method returns zero when the SQL statement does not return anything. You should
not use this method to execute a SELECT statement.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

417

Tip■■   Java 8 has added a executeLargeUpdate() method that works the same as the executeUpdate() method,
except that it returns a long instead of an int. Use this method when you expect the update count to exceed
Integer.MAX_VALUE.

The executeQuery() method is especially designed to execute a SQL statement that produces one and only one
result set. It is best suited for executing a SELECT statement. Although you can execute a stored procedure, which
produces a result set, using this method of the Statement interface, you should instead use the specially designed
CallableStatement interface’s execute() method to execute a stored procedure.

A Statement object executes a SQL statement stored in a string. Databases have their own data types. How do you
pass everything in a string format? Sometimes you may need to use some objects in a SQL statement that may not be
expressed in a string format such as a binary large object. You can use a PreparedStatement to have more control over
preparing a SQL statement, which cannot be expressed in a string format.

Most commonly, you will encounter problems in expressing date, time, and timestamp values in a string format.
Suppose you want to increase the income of all persons by 20% whose date of birth is greater than January 25, 1970.
Your update statement may look like the one shown:
 
String sql = "update person " +
 "set income = income * 1.2 " +
 "where dob > '1970-01-25'";
 

Not all DBMSs will recognize '1970-01-25' as a date. JDBC defines escape sequences for the date, time, and
timestamp data types. It is of the form
 
{<type> '<value>'}
 

Table 6-5 lists the format and examples for date, time and timestamp escape sequences that you need to use in
your SQL strings. A JDBC driver will convert the escape sequences in a format, which is appropriate for the database.
You can rewrite the above update statement using a date escape sequence as follows:
 
String sql = "update person " +
 "set income = income * 1.2 " +
 "where dob > {d '1970-01-25'}"; 

Table 6-5.  JDBC Escape Sequences for Date, Time, and Timestamp Data Types

Data Type <type> <value> format Example

Date d yyyy-mm-dd {d '1970-01-25'}

Time t hh:mm:ss {t '01:09:50'}

Timestamp ts yyyy-mm-dd hh:mm:ss.f... {ts '1970-01-25 01:09:50'}

The (.f...) part in a timestamp format is the fractional part of a second, which is optional.
yyyy – Four digits year
mm - Two digits month
dd – Two digits date
hh – Hour
mm – Minute
ss – Second
f – Fractional part of second

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

418

Most of the examples in this chapter use the person table in the database. It is assumes that you have created
the person table in the database you are using. The generic definition of the person table is shown in Table 6-2. If you
have not created the table yet, you can run the program in Listing 6-3. The program uses the CREATE TABLE syntax for
Java DB. If you are using a DBMS other than Java DB, please change the syntax before running the program. It prints
the following message when the person table is created successfully:
 
Person table created.
 

If the person table already exists, the program prints the following error message for Java DB:
 
Table/View 'PERSON' already exists in Schema 'ROOT'.
 

The error message may be different for the DBMS other than Java DB, but it will convey the same meaning that
the person table already exists in the database.

Listing 6-3.  Creating the person Table in the Database

// CreatePersonTable.java
package com.jdojo.jdbc;
 
import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;
 
public class CreatePersonTable {
 public static void main(String[] args) {
 Connection conn = null;
 try {
 conn = JDBCUtil.getConnection();
 
 // Create a SQL string
 String SQL = "create table person (" +
 "person_id integer not null, " +
 "first_name varchar(20) not null, " +
 "last_name varchar(20) not null, " +
 "gender char(1) not null, " +
 "dob date, " +
 "income double," +
 "primary key(person_id))";
 
 Statement stmt = null;
 try {
 stmt = conn.createStatement();
 stmt.executeUpdate(SQL);
 }
 finally {
 JDBCUtil.closeStatement(stmt);
 }
  

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

419

 // Commit the transaction
 JDBCUtil.commit(conn);
 
 System.out.println("Person table created.");
 }
 catch (SQLException e) {
 System.out.println(e.getMessage());
 JDBCUtil.rollback(conn);
 }
 finally {
 JDBCUtil.closeConnection(conn);
 }
 }
}
 

Listing 6-4 contains the complete code that inserts three records in the person table. Note that it uses utility
methods of the JDBCUtil class (see Listing 6-1) to perform some of the activities such as getting a Connection object,
closing Statement object, committing/rolling back a transaction, etc. If you run the program in Listing 6-4 more than
once, it will print an error message stating that you are trying to insert duplicate key in the person table because you
have defined the person_id as the primary key in the table, and every time you run the program, it inserts the same
set of person_id values.

Listing 6-4.  Executing a SQL INSERT Statement Using a Statement Object

// InsertPersonTest.java
package com.jdojo.jdbc;
 
import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;
 
public class InsertPersonTest {
 public static void main(String[] args) {
 Connection conn = null;
 try {
 conn = JDBCUtil.getConnection();
  
 // Insert 3 person records
 insertPerson(conn, 101, "John", "Jacobs",
 "M", "{d '1970-01-01'}", 60000);
 insertPerson(conn, 102, "Donna", "Duncan",
 "F", "{d '1960-01-01'}", 70000);
 insertPerson(conn, 103, "Buddy", "Rice",
 "M", "{d '1975-01-01'}", 45000);
 
 // Commit the transaction
 JDBCUtil.commit(conn);
 
 System.out.println("Inserted persons successfully.");
 }
 catch (SQLException e) {
 System.out.println(e.getMessage());
 JDBCUtil.rollback(conn);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

420

 finally {
 JDBCUtil.closeConnection(conn);
 }
 }
 
 public static void insertPerson(Connection conn, int personId,
 String firstName, String lastName, String gender, String dob,
 double income) throws SQLException {
  
 // Create a SQL string
 String SQL = "insert into person " +
 "(person_id, first_name, last_name," +
 " gender, dob, income) " +
 "values " +
 "(" + personId + ", " +
 "'" + firstName + "'" + ", " +
 "'" + lastName + "'" + ", " +
 "'" + gender + "'" + ", " +
 dob + ", " +
 income + ")";
 
 Statement stmt = null;
 try {
 stmt = conn.createStatement();
 stmt.executeUpdate(SQL);
 }
 finally {
 JDBCUtil.closeStatement(stmt);
 }
 }
}
 

You can execute any other SQL statements such as an UPDATE or DELETE statement using a Statement object. Listing 6-5
and Listing 6-6 demonstrate how to execute UPDATE and DELETE statements using a Statement object.

Listing 6-5.  Executing a SQL UPDATE Statement Using a Statement Object

// UpdatePersonTest.java
package com.jdojo.jdbc;
 
import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;
 
public class UpdatePersonTest {
 public static void main(String[] args) {
 Connection conn = null;
 try {
 conn = JDBCUtil.getConnection();
 
 // Give everyone a 5% raise
 giveRaise(conn, 5.0);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

421

 // Commit the transaction
 JDBCUtil.commit(conn);
  
 System.out.println("Updated person records successfully.");
 }
 catch (SQLException e) {
 System.out.println(e.getMessage());
 JDBCUtil.rollback(conn);
 }
 finally {
 JDBCUtil.closeConnection(conn);
 }
 }
 
 public static void giveRaise(Connection conn, double percentRaise)
 throws SQLException {
 String SQL = "update person " +
 "set income = income + income * " + (percentRaise/100);
 Statement stmt = null;
 try {
 stmt = conn.createStatement();
 int updatedCount = stmt.executeUpdate(SQL);
 
 // Print how many records were updated
 System.out.println("Gave raise to " +
 updatedCount + " person(s).");
 }
 finally {
 JDBCUtil.closeStatement(stmt);
 }
 }
} 

Listing 6-6.  Executing a SQL DELETE Statement Using a Statement Object

// DeletePersonTest.java
package com.jdojo.jdbc;
 
import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;
 
public class DeletePersonTest {
 public static void main(String[] args) {
 Connection conn = null;
 try {
 conn = JDBCUtil.getConnection();
 
 // Delete the person with person_id = 101
 deletePerson(conn, 101);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

422

 // Commit the transaction
 JDBCUtil.commit(conn);
 }
 catch (SQLException e) {
 System.out.println(e.getMessage());
 JDBCUtil.rollback(conn);
 }
 finally {
 JDBCUtil.closeConnection(conn);
 }
 }
 
 public static void deletePerson(Connection conn, int personId)
 throws SQLException {
 String SQL = "delete from person " +
 "where person_id = " + personId;
 Statement stmt = null;
 try {
 stmt = conn.createStatement();
 int deletedCount = stmt.executeUpdate(SQL);
 
 // Print how many persons were deleted
 System.out.println("Deleted " +
 deletedCount + " person(s).");
 }
 finally {
 JDBCUtil.closeStatement(stmt);
 }
 }
}

Using the PreparedStatement Interface
The PreparedStatement interface inherits from the Statement interface. It is preferred over the Statement
interface to execute a SQL statement. It precompiles the SQL statement provided DBMS supports a SQL statement
precompilation. It reuses the precompiled SQL statement if the statement is executed multiple times. It lets you
prepare a SQL statement, which is in a string format, using placeholders for input parameters.

A question mark in a SQL string is a placeholder for an input parameter whose value will be supplied before the
statement is executed. Suppose you want to use a PreparedStatement to insert a record in the person table. Your SQL
statement in a string format would be as follows:
 
String sql = "insert into person " +
 "(person_id, first_name, last_name, gender, dob, income) " +
 "values " +
 "(?, ?, ?, ?, ?, ?)";
 

In this example, each of the six question marks is a placeholder for a value. The first question mark is a
placeholder for person_id, the second one for first_name, and so on. Each placeholder has an index. The first
placeholder in a SQL string is given an index of 1, the second placeholder an index of 2, and so on. Note that the index
of the placeholder starts at 1, not 0.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

423

You can create a PreparedStatement using the prepareStatement() method of the Connection object.
The prepareStatement() method is overloaded. In its simplest form, it accepts a SQL string as follows:
 
String sql = "your sql statement goes here";
Connection conn = JDBCUtil.getConnection();
 
// Obtain a PreparedStatement for the sql
PreparedStatement pstmt = conn.prepareStatement(sql);
 

The next step is to supply the values for the placeholders one-by-one using a setXxx() method of the
PreparedStatement interface, where Xxx is the data type of the placeholder. The setXxx() method accepts two
parameters: the first one is the index of the placeholder and the second one is the value for the placeholder.
The second argument for the setXxx() method must be compatible with Xxx, which is the data type of the placeholder.
If you want to set the values for the six placeholders for the INSERT statement to insert a record in the person table,
you do it as follows:
 
pstmt.setInt(1, 301); // person_id
pstmt.setString(2, "Tom"); // first name
pstmt.setString(3, "Baker"); // last name
pstmt.setString(4, "M"); // gender
 
/* Set dob as January 25, 1970. This time, you have a lot more control
 on the data type. You need to use the java.sql.Date data type to set
 the dob. You can use the valueOf() static method to get a java.sql.Date
 object from a date in a string format
 */
java.sql.Date dob = java.sql.Date.valueOf("1970-01-25");
 
pstmt.setDate(5, dob); // dob
pstmt.setDouble(6, 45900); // income
 

Now it is time to send the SQL statement with the values for the placeholders to the database. You execute a SQL
statement in a PreparedStatement using one of its execute(), executeUpdate(), and executeQuery() methods.
These methods take no arguments. Recall that the Statement interface has the same methods, which take SQL strings
as their arguments. The PreparedStatement interface has added three methods with the same name, which take no
arguments, because it gets its SQL string when it is created.
 
// Execute the INSERT statement in pstmt
pstmt.executeUpdate();
 

How do you reuse a PreparedStatement? Simply repopulate the placeholder values and call one of its execute()
methods again. When you invoke the setXxx() method on a PreparedStatement object again, its previously set value
for the specified placeholder is overwritten with the new value. A PreparedStatement keeps holding the set values
for its placeholder even after it is executed. Therefore, if you want to set the same value for a placeholder for multiple
executions, you need to set the value for that placeholder only once. If you want to clear the values of all placeholders,
you can use the clearParameters() method of the PreparedStatement interface. The following snippet of code sets
the values for all six placeholders again, and executes the statement:
 
// Set new values for placeholder
pstmt.setInt(1, 401); // person_id
pstmt.setString(2, "Pam"); // first name
pstmt.setString(3, "Baker"); // last name

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

424

pstmt.setString(4, "F"); // gender
pstmt.setDate(5, java.sql.Date.valueOf("1970-01-25")); // dob
pstmt.setDouble(6, 25900); // income
 
// Execute the INSERT statement in pstmt to insert another row
pstmt.executeUpdate();
 

When you are done with executing the statement in a PreparedStatement object, you need to close it using its
close() method.
 
// Close the PreparedStatement
pstmt.close();
 

Listing 6-7 demonstrates how to use a PreparedStatement object to execute an INSERT SQL statement. Note that
this example reuses the PreparedStatement to insert two records in the person table.

Listing 6-7.  Using a PreparedStatement Object to Execute an INSERT Statement

// PreparedStatementTest.java
package com.jdojo.jdbc;
 
import java.sql.Connection;
import java.sql.Date;
import java.sql.PreparedStatement;
import java.sql.SQLException;
import java.sql.Types;
 
public class PreparedStatementTest {
 public static void main(String[] args) {
 Connection conn = null;
 PreparedStatement pstmt = null;
 try {
 conn = JDBCUtil.getConnection();
 pstmt = getInsertSQL(conn);
 
 // Need to get dob in java.sql.Date object
 Date dob = Date.valueOf("1970-01-01");
 
 // Insert two person records
 insertPerson(pstmt, 401, "Sara", "Jain", "F", dob, 0.0);
 insertPerson(pstmt, 501, "Su", "Chi", "F", null, 10000.0);
 
 // Commit the transaction
 JDBCUtil.commit(conn);
  
 System.out.println("Updated person records successfully.");
 }
 catch (SQLException e) {
 System.out.println(e.getMessage());
 JDBCUtil.rollback(conn);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

425

 finally {
 JDBCUtil.closeStatement(pstmt);
 JDBCUtil.closeConnection(conn);
 }
 }
 
 public static void insertPerson(PreparedStatement pstmt,
 int personId, String firstName, String lastName,
 String gender, Date dob, double income) throws SQLException {
 // Set all the input parameters
 pstmt.setInt(1, personId);
 pstmt.setString(2, firstName);
 pstmt.setString(3, lastName);
 pstmt.setString(4, gender);
 
 // Set the dob value properly if it is null
 if (dob == null) {
 pstmt.setNull(5, Types.DATE);
 }
 else {
 pstmt.setDate(5, dob);
 }
 
 pstmt.setDouble(6, income);
 
 // Execute the statement
 pstmt.executeUpdate();
 }
 
 public static PreparedStatement getInsertSQL(Connection conn)
 throws SQLException {
 String SQL = "insert into person " +
 "(person_id, first_name, last_name, gender, dob, income) " +
 "values " +
 "(?, ?, ?, ?, ?, ?)";
 PreparedStatement pstmt = conn.prepareStatement(SQL);
 return pstmt;
 }
}

CallableStatement Interface
The CallableStatement interface inherits from the PreparedStatement interface. It is used to call a SQL stored
procedure or a function in a database. You can also call a stored procedure or a function using the Statement object.
However, using a CallableStatement is the preferred way.

The JDBC API makes it possible to call SQL stored procedures and functions using a standard syntax.
To execute a stored procedure, a different DBMS may use a different syntax. If you are using the JDBC API to call a
stored procedure, you need to learn only one standard way to execute stored procedures in all DBMSs. The JDBC
specification defines an escape sequence for stored procedures/functions to execute them in a database.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

426

To find out if your DBMS supports stored procedures, you can call the supportsStoredProcedures() method
of a DatabaseMetaData object. It returns true if the DBMS supports stored procedures. A JDBC driver may let you
call a DBMS function using the same syntax. To know if you can call a DBMS function using the same syntax, use
the supportsStoredFunctionsUsingCallSyntax() method of a DatabaseMetaData object. If it returns true, you can
use the same syntax to call a database function. From here on, I will use the phrase “stored procedure” to mean both
database stored procedures and functions.

The general syntax for calling a stored procedure is as follows:
 
{? = call <procedure_name>(param1, param2, param3, ...)}
 

The call to a stored procedure is placed within braces ({}). The first question mark is a placeholder for the return
value from the stored procedure. The placeholder for the return value is followed by = call. If the stored procedure does
not return a value, the ? = part is omitted. <procedure_name> is the name of a stored procedure. If the stored procedure
accepts any parameters, the list of parameters is enclosed in parentheses after the procedure name. If a stored procedure
does not accept any parameters, the opening parenthesis, parameter lists, and closing parenthesis after <procedure_name>
are omitted. Table 6-6 lists some examples using the general syntax for calling stored procedures.

Table 6-6.  Examples of Using Stored Procedure Escape Syntax for Calling Database Stored Procedures

Stored Procedure Description The Syntax to Call the Stored Procedure

Accepts no parameters
Returns no value

{call <procedure_name>}

Accepts two IN parameters
Returns no value

{call <procedure_name>(?, ?)}

Accepts two IN and one OUT parameters
Returns no value

{call <procedure_name>(?, ?, ?)}

Accepts no parameters
Returns a value

{? = call <procedure_name>}

Accepts two IN parameters
Returns a value

{? = call <procedure_name>(?, ?)}

Accepts two IN and one OUT parameters
Returns a value

{? = call <procedure_name>(?, ?, ?)}

A stored procedure may accept different type of parameters: IN, OUT, and INOUT. You can use placeholders
(question marks) for all types of parameters. You cannot distinguish the type of parameters by just looking at a SQL
string that uses placeholders. It is up to you to know which placeholder is of type IN, OUT, or INOUT parameter, and
treat them accordingly. The next three sections will describe how to treat IN, OUT and INOUT parameter types in a
CallableStatement.

Using IN Parameters
An IN parameter type means that caller has to pass a value for that parameter when it calls the stored procedure.
Before executing a CallableStatement, you must call one of the setXxx() methods to set the value for all IN type
parameters. Otherwise, you will get an error when you try to execute a CallableStatement with some IN parameters
not set.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

427

Suppose there are two IN parameters in a SQL statement and their placeholders are at index 1 and index 2.
The IN parameter at index 1 is of int type and at index 2 is of double type. Your code logic would resemble the
code shown:
 
CallableStatement cstmt = prepare the call...;
 
// Set the value of the IN parameter at index 1
cstmt.setInt(1, 101);
 
// Set the value of the IN parameter at index 2
cstmt.setDouble(2, 22.56);
 
// Execute the statement here

Using OUT Parameters
An OUT parameter type means that the caller has to pass a placeholder to the stored procedure for that parameter
and the stored procedure will set the value, which the caller can read after the stored procedure has finished executing.
Before executing a CallableStatement, you must register an OUT parameter by calling the registerOutParameter
(int placeholderIndex, int sqlType) or the registerOutParameter(int parameterIndex, java.sql.SQLType
sqlType) method of the CallableStatement interface. After executing the stored procedure, you need to use one of
the getXxx() methods to read the value of the OUT parameter.

Suppose there is an OUT parameter in a SQL statement that is at index 2 and it is of type double. Here is how you
would register it and read its value:
 
CallableStatement cstmt = prepare the call...;
 
// Register the OUT parameter at index 2
cstmt.registerOutParameter(2, java.sql.Types.DOUBLE);
 
// Execute the statement here
 
// Read the value of the OUT parameter
double outParamValue = cstmt.getDouble(2);

Using INOUT Parameters
An INOUT parameter works as a combination of IN and OUT parameter types. The caller can pass a value to the stored
procedure using an INOUT parameter type. The stored procedure changes the value of the INOUT parameter during
its execution and the caller can read the value set by the stored procedure after the stored procedure has finished
executing. You must register the INOUT parameter using the registerOutParameter(int placeholderIndex,
int sqlType) or the registerOutParameter(int parameterIndex, java.sql.SQLType sqlType) method of the
CallableStatement interface before executing the stored procedure. You need to use one of the setXxx() methods of
the CallableStatement interface to set the value for an INOUT parameter. After a stored procedure has been executed,
you need to use one of the getXxx() methods of the CallableStatement interface to read the value passed back from
the stored procedure.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

428

Suppose there is an INOUT parameter in a SQL statement that is at index 1 and it is of type double. Here is how you
would register it, pass a value in it, and read its value:
 
CallableStatement cstmt = prepare the call...;
 
// Register the INOUT parameter at index 1
cstmt.registerOutParameter(1, java.sql.Types.DOUBLE);
 
// Set a value of 55.78 for the INOUT parameter
cstmt.setDouble(1, 55.78);
 
// Execute the statement here
 
// Read the value of the INOUT parameter
double inOutParamValue = cstmt.getDouble(1);

Return Parameter is OUT Parameter Type
If a stored procedure returns a value and you want to capture the returned value, its placeholder (the first question
mark) must be registered as an OUT parameter using the registerOutParameter() method of the CallableStatement
interface. If a return value placeholder is present in the call syntax, it is always the first OUT parameter and you need to
use 1 as its index in the registerOutParameter() and getXxx() methods

Executing a CallableStatement
Before you execute a stored procedure, you need to prepare a CallableStatement by calling the prepareCall()
method of the Connection object. The prepareCall() method accepts a SQL string as a parameter. The following
snippet of code shows how to prepare a CallableStatement:
 
Connection conn = JDBCUtil.getConnection();
String SQL = "{call myProcedure}";
CallableStatement cstmt = conn.prepareCall(SQL);
 

The CallableStatement interface does not add any new methods to execute a SQL statement. To execute the
SQL statement, you need to call one of the following three methods with no parameters. All three methods are
inherited from the PreparedStatement interface.

•	 execute()

•	 executeUpdate()

•	 executeQuery()

The method you need to use to execute a SQL statement in a CallableStatement object depends on what is
returned from the execution of the stored procedure.

If it returns mixed results (result sets and update counts), use the •	 execute() method.

If it returns an update count, use the •	 executeUpdate() method.

If it returns a •	 ResultSet, use the executeQuery() method.

Let’s look at some examples of calling a stored procedure with different types of parameters and with/without a
return value.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

429

Example #1

Stored Procedure: process_salary
Comments: It accepts no parameters and returns no value
 
Connection conn = JDBCUtil.getConnection();
String sql = "{call process_salary}";
CallableStatement cstmt = conn.prepareCall(sql);
cstmt.execute();

Example #2

Stored Procedure: give_raise(integer person_id IN, double raise IN)
Comments: It accepts two IN parameters and does not return any value.
 
Connection conn = JDBCUtil.getConnection();
String sql = "{call give_raise(?, ?)}";
CallableStatement cstmt = conn.prepareCall(sql);
 
// Set the value for person_id parameter at index 1
cstmt.setInt(1, 101);
 
// Set the value for raise parameter at index 2
cstmt.setDouble(2, 4.5);
 
// Execute the stored procedure
cstmt.execute();

Example #3

Stored Procedure: get_employee_count(integer dept_id IN) RETURNS integer
Comments: It accepts an IN parameter and returns an integer value.
 
Connection conn = JDBCUtil.getConnection();
String sql = "{? = call get_employee_count(?)}";
CallableStatement cstmt = conn.prepareCall(sql);
 
// Register the first placeholder - the return value as an OUT parameter
cstmt.registerOutParameter(1, java.sql.Types.INTEGER);
 
// Set the value for dept_id parameter at index 2
cstmt.setInt(2, 1001);
  
// Execute the stored procedure
cstmt.execute();
  
// Read the returned value - our first OUT parameter has an index of 1
int employeeCount = cstmt.getInt(1);
 
System.out.println("Employee Count is " + employeeCount);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

430

Example #4

Stored Procedure: give_raise(person_id int IN, raise double IN, old_income double OUT, new_income
double OUT)
Comments: It accepts two IN parameters and two OUT parameters.
 
Connection conn = JDBCUtil.getConnection();
String sql = "{call give_raise(?, ?, ?, ?)}";
  
CallableStatement cstmt = conn.prepareCall(sql);
 
// Register the OUT parameters: old_income(index 3), new_income(index 4)
cstmt.registerOutParameter(3, Types.DOUBLE);
cstmt.registerOutParameter(4, Types.DOUBLE);
 
// Set values for person_id at index 1 and for raise at index 2
cstmt.setInt(1, 1001);
cstmt.setDouble(2, 4.5);
  
// Execute the stored procedure
cstmt.execute();
  
// Read the values of the OUT parameters old_income(index 3)
// and new_income (index 4)
double oldIncome = cstmt.getDouble(3);
double newIncome = cstmt.getDouble(4);
System.out.println("Old Income:" + oldIncome);
System.out.println("New Income:" + newIncome); 

Tip■■   You can pass the value for an IN parameter using a literal value or a placeholder. If you use a placeholder for
an IN parameter, you will need to use the setXxx() method to set its value before executing the stored procedure. It is
preferred to use a placeholder for an IN parameter and use a setXxx() to set its value. For example, suppose a stored
procedure, process_person(integer person_id IN), accepts an IN type parameter. You can prepare the call syntax
as "{call process_person(1001)}" or "{call process_person(?)}". In the latter case, you will need to use the
setInt(1, 1001) method to set the value for the person_id parameter.

Let’s discuss an example in which you create a stored procedure in a database and call it using a CallableStatement
in a Java program. You create a stored procedure named give_raise. It accepts two IN parameters called person_id and
raise. It accepts two OUT parameters to pass back the old and new values of the income for a person_id. If the person’s
income is null, it sets the income to 20000. If a person is not found, it passes back null in both OUT parameters.

The following are the SQL scripts for give_raise procedure for some DBMSs. You need to run the script for your
DBMS before you can run the program in Listing 6-9. If you do not find a script for the DBMS you are using, you can
easily write the code for your DBMS by looking at the code in this table for any DBMS whose syntax looks familiar to
you. You will see an example of a stored procedure that generates a result set later in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

431

Adaptive Server Anywhere Database
create procedure give_raise(IN @person_id integer, IN @raise double,
 OUT @old_income double, OUT @new_income double)
begin
 select @old_income = null, @new_income = null;
  
 if exists(select null from person where person_id = @person_id) then
 select income into @old_income
 from person
 where person_id = @person_id;
  
 if @old_income is null then
 select 20000.00 into @new_income;
 else
 select @old_income * (1 + @raise/100) into @new_income;
 end if;
  
 update person
 set income = @new_income
 where person_id = @person_id;
 end if;
end;

MySQL Database
DELIMITER $$
 
DROP PROCEDURE IF EXISTS give_raise $$
 
CREATE PROCEDURE give_raise(in person_id_param int, in raise double,
 out old_income double, out new_income double)
BEGIN
 
set old_income = null, new_income = null;
 
if exists(select null from person where person_id=person_id_param) then
 select income into old_income
 from person
 where person_id = person_id_param;
 
 if old_income is null then
 select 20000.00 into new_income;
 else
 select old_income * (1 + raise/100) into new_income;
 end if;
 
 update person
 set income = new_income
 where person_id = person_id_param;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

432

end if;
 
END $$
 
DELIMITER ;

Oracle Database
create or replace procedure give_raise(person_id_param number,
 raise_param number,
 old_income out number,
 new_income out number)
is
 person_count number;
begin
 old_income := null;
 new_income := null;
 
 select count(*)
 into person_count
 from person
 where person_id = person_id_param;
  
 if person_count = 1 then
 select income into old_income
 from person
 where person_id = person_id_param;
  
 if old_income is null then
 new_income := 20000.00;
 else
 new_income := old_income * (1 + raise_param/100) ;
 end if;
 update person
 set income = new_income
 where person_id = person_id_param;
 end if;
  
end give_raise;

SQL Server Database
-- Drop stored procedure if it already exists
IF EXISTS (
 SELECT *
 FROM INFORMATION_SCHEMA.ROUTINES
 WHERE SPECIFIC_SCHEMA = N'dbo'
 AND SPECIFIC_NAME = N'give_raise'
)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

433

 DROP PROCEDURE dbo.give_raise
GO
 
CREATE PROCEDURE dbo.give_raise
 @person_id int,
 @raise decimal(5, 2),
 @old_income decimal(10, 2) OUTPUT,
 @new_income decimal(10, 2) OUTPUT
AS
BEGIN
 SET NOCOUNT OFF
 
 SELECT @old_income = null, @new_income = null;
 
 IF EXISTS (SELECT null FROM person WHERE person_id = @person_id)
 BEGIN
 SELECT @old_income = income
 FROM person
 WHERE person_id = @person_id;
 
 IF @old_income is null
 SELECT @new_income = 20000.00;
 ELSE
 SELECT @new_income = @old_income * (1 + @raise/100);
 
 update person
 set income = @new_income
 WHERE person_id = @person_id;
 END;
END;
GO

DB2 Database
create procedure give_raise(IN person_id_param int,
 IN raise_param double,
 OUT old_income double,
 OUT new_income double)
language sql
begin
 
 declare person_count int;
 
 set old_income = null;
 set new_income = null;
 
 select count(*) into person_count
 from person
 where person_id = person_id_param;
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

434

 if person_count = 1 then
 select income into old_income
 from person
 where person_id = person_id_param;
 
 if old_income is null then
 set new_income = 20000.00;
 else
 set new_income = old_income * (1 + raise_param/100) ;
 end if;
 
 update person
 set income = new_income
 where person_id = person_id_param;
 end if;
end
@
 

Note: @ is used as statement terminator in the above syntax to create the stored procedure.

Java DB Database
Java DB lets you write stored procedure using the Java programing language. You can use a static method of a class
as a stored procedure in Java DB. To get the reference of the database connection that executes the stored procedure,
you pass jdbc:default:connection as the connection URL to the DriverManager. Listing 6-8 contains the code for
the JavaDBGiveRaiseSp class whose giveRaise() static method will be used as a stored procedure. You will need to
do some setup work, which is described next, before you can use this method as a stored procedure. For now, just
compile the class and include it in CLASSPATH.

Listing 6-8.  The Java Code for the give_raise Stored Procedure in Java DB

// JavaDBGiveRaiseSp.java
package com.jdojo.jdbc;
 
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
 
public class JavaDBGiveRaiseSp {
 public static void giveRaise(int personId, double raise,
 double[] oldIncomeOut, double[] newIncomeOut) throws SQLException {
 double oldIncome = 0.0;
 double newIncome = 0.0;
 
 // Must use the following URL to get the reference of the Conenction
 // object in whose context this method is called.
 String dbURL = "jdbc:default:connection";
 Connection conn = DriverManager.getConnection(dbURL);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

435

 String sql = "select income from person where person_id = ?";
 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setInt(1, personId);
 
 ResultSet rs = pstmt.executeQuery();
 if (!rs.next()) {
 return;
 }
 
 oldIncome = rs.getDouble("income");
 if (rs.wasNull()) {
 newIncome = 20000.00;
 }
 else {
 newIncome = oldIncome * (1 + raise / 100);
 }
 
 String updateSql = "update person " +
 "set income = ? " +
 "where person_id = ?";
 PreparedStatement updateStmt =
 conn.prepareStatement(updateSql);
 updateStmt.setDouble(1, newIncome);
 updateStmt.setInt(2, personId);
 updateStmt.executeUpdate();
 
 // Close the statement
 updateStmt.close();
 
 oldIncomeOut[0] = oldIncome;
 newIncomeOut[0] = newIncome;
 }
}
 

After you have written the Java code for the stored procedure, you need to create the stored procedure in your
Java DB database. Use the following command to create the give_raise stored procedure:
 
--Command to create a stored procedure
CREATE PROCEDURE give_raise(IN person_id integer, IN raise double, OUT old_income Double, OUT
new_income Double)
PARAMETER STYLE JAVA
LANGUAGE JAVA
MODIFIES SQL DATA
EXTERNAL NAME 'com.jdojo.jdbc.JavaDBGiveRaiseSp.giveRaise';
 

You can execute the command using the ij command-line tool or NetBeans IDE. Please refer to the “A Brief
Overview of Java DB” section earlier in this chapter for more details on how to execute SQL commands in Java DB.

To get the give_raise stored procedure working in Java DB, you need to install the JavaDBGiveRaiseSp class into
the database after bundling it into a JAR file. Please refer to the Java DB documentation on how to install a Java JAR
into the database. Another way (and the easier way) of making the Java stored procedure code available to the Java DB
is to include the class in the user’s CLASSPATH. You do not need to perform this step if you are running the examples
in this chapter using the NetBeans IDE. The JavaDBGiveRaiseSp class is included in the NetBeans project, and
therefore, the class is already in the CLASSPATH when the examples are run from inside the NetBeans IDE.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

436

Listing 6-9 shows the complete code to execute the stored procedure give_raise. You can run the
CallableStatementTest class by using different values for person_id and raise in its main() method.

Listing 6-9.  Using a CallableStatement Statement to Call a Stored Procedure

// CallableStatementTest.java
package com.jdojo.jdbc;
 
import java.sql.CallableStatement;
import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Types;
 
public class CallableStatementTest {
 public static void main(String[] args) {
 Connection conn = null;
 try {
 conn = JDBCUtil.getConnection();
 
 // Give a 5% raise to person_id 101
 giveRaise(conn, 102, 5.0);
 
 // Give a 5% raise to dummy person_id
 giveRaise(conn, -100, 5.0);
 
 // Commit the transaction
 JDBCUtil.commit(conn);
 }
 catch (SQLException e) {
 System.out.println(e.getMessage());
 JDBCUtil.rollback(conn);
 }
 finally {
 JDBCUtil.closeConnection(conn);
 }
 }
 
 public static void giveRaise(Connection conn, int personId,
 double raise) throws SQLException {
 String SQL = "{call app.give_raise(?, ?, ?, ?)}";
 CallableStatement cstmt = null;
 try {
 // Prepare the call
 cstmt = conn.prepareCall(SQL);
 
 // Set the IN parameters
 cstmt.setInt(1, personId);
 cstmt.setDouble(2, raise);
 
 // Register the OUT parameters
 cstmt.registerOutParameter(3, Types.DOUBLE);
 cstmt.registerOutParameter(4, Types.DOUBLE);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

437

 // Execute the stored procedure
 int updatedCount = cstmt.executeUpdate();
 
 // Read the OUT parameters values
 double oldIncome = cstmt.getDouble(3);
 boolean oldIncomeisNull = cstmt.wasNull();
 
 double newIncome = cstmt.getDouble(4);
 boolean newIncomeisNull = cstmt.wasNull();
 
 // Display the results
 System.out.println("Updated Record: " + updatedCount);
 
 System.out.println("Old Income: " + oldIncome +
 ", New Income: " + newIncome);
 
 System.out.println("Old Income was null: " +
 oldIncomeisNull +
 ", New Income is null: " +
 newIncomeisNull);
 }
 finally {
 JDBCUtil.closeStatement(cstmt);
 }
 }
}

Processing Result Sets
A set of rows obtained by executing a SQL SELECT statement in a database is known as a result set. JDBC lets you
execute a SELECT statement in the database and process the returned result set in the Java program using an instance
of the ResultSet interface. The following sections discuss different ways of processing result sets using the JDBC API.

What Is a ResultSet?
When you execute a query (a SELECT statement) in a database, it returns the matching records in the form of a
result set. You can consider a result set as a data arranged in rows and columns. The SELECT statement determines
the number of rows and columns that is contained in the result set. The Statement (or PreparedStatement or
CallableStatement) object returns the result of a query as a ResultSet object. I am using two phrases here: “result
set” and “ResultSet.” By “result set,” I mean the data in the form of rows and columns, and by “ResultSet,” I mean
an instance of a class that implements the ResultSet interface that lets you access and manipulate that data.
A ResultSet object also contains information about the properties of the columns in the result set such as the data
types of the columns, names of the columns, etc.

A ResultSet object maintains a cursor, which points to a row in the result set. It works similar to a cursor object
in database programs. You can scroll the cursor to a specific row in the result set to access or manipulate the column
values for that row. The cursor can point to only one row at a time. The row to which it points at a particular point in
time is called the current row. There are different ways to move the cursor of a ResultSet object to a row in the result
set. I will discuss all different ways to move the cursor shortly.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

438

The following three properties of a ResultSet object need to be discussed before you can look at an example:

•	 Scrollability

•	 Concurrency

•	 Holdability

Scrollability determines the ability of the ResultSet to scroll through the rows. By default, a ResultSet is
scrollable only in the forward direction. When you have a forward-only scrollable ResultSet, you can move the cursor
starting from the first row to the last row. Once you move to the last row, you cannot reuse the ResultSet object
because you cannot scroll back in a forward-only scrollable ResultSet. You can also create a ResultSet that can scroll
in the forward as well as the backward direction. I will call this ResultSet a bidirectional scrollable ResultSet.
A bidirectional scrollable ResultSet has another property called update sensitivity. It determines whether the changes
in the underlying database will be reflected in the result set while you are scrolling through its rows. A scroll sensitive
ResultSet shows you changes made in the database, whereas a scroll insensitive one would not show you the changes
made in the database after you have opened the ResultSet. The following three constants in the ResultSet interface
are used to specify the scrollability of a ResultSet:

•	 TYPE_FORWARD_ONLY: Allows a ResultSet object to move only in the forward direction.

•	 TYPE_SCROLL_SENSITIVE: Allows a ResultSet object to move in the forward and backward
directions. It makes the changes in the underlying database made by other transactions or
statements in the same transaction visible to the ResultSet object. This type of ResultSet is
aware of the changes made to its data by other means.

•	 TYPE_SCROLL_INSENSITIVE: Allows a ResultSet object to move in the forward and backward
directions. It does not make the changes in the underlying database made by other
transactions or statements in the same transaction visible to the ResultSet object while
scrolling. This type of ResultSet determines its data set when it is open and the data set does
not change if it is updated through any other means except through this ResultSet object
itself. If you want to get up-to-date data, you must re-execute the query.

Concurrency refers to its ability of the ResultSet to update data. By default, a ResultSet is read-only and it does not
let you update its data. If you want to update data in a database through a ResultSet, you need to request an
updatable result set from the JDBC driver. The following two constants in the ResultSet interface are used to specify
the concurrency of a ResultSet:

•	 CONCUR_READ_ONLY: Makes a result set read-only.

•	 CONCUR_UPDATABLE: Makes a result set updatable.

Holdability refers to the state of the ResultSet after a transaction that it is associated with has been committed.
A ResultSet may be closed or kept open when the transaction is committed. The default value of the holdability of
a ResultSet is dependent on the JDBC driver. The holdability of a ResultSet is specified using one of the following
two constants defined in the ResultSet interface:

•	 HOLD_CURSORS_OVER_COMMIT: Keeps the ResultSet open after the transaction is committed.

•	 CLOSE_CURSORS_AT_COMMIT: Closes the ResultSet after the transaction is committed.

You need to verify your JDBC driver’s documentation for support for these properties before using them. You
can get information about the supported properties by a JDBC driver of a ResultSet object using the following
three methods of the DatabaseMetaData interface. Recall that you can get a DatabaseMetaData object using the
getMetaData() method of a Connection object.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

439

•	 supportsResultSetType()

•	 supportsResultSetConcurrency()

•	 supportsResultSetHoldability()

Listing 6-10 demonstrates how to use these methods to check for these ResultSet properties. The calls to these
methods are placed inside a try-catch block to catch a Throwable, because some JDBC drivers throw a runtime
exception when they do not support a feature. The output is for the Java DB DBMS. You may get a different output
when you are connected to a different DBMS.

Listing 6-10.  Checking for Properties of a ResultSet Supported by a JDBC Driver

// SupportedResultSetProperties.java
package com.jdojo.jdbc;
 
import java.sql.Connection;
import java.sql.DatabaseMetaData;
import static java.sql.ResultSet.CLOSE_CURSORS_AT_COMMIT;
import static java.sql.ResultSet.CONCUR_READ_ONLY;
import static java.sql.ResultSet.CONCUR_UPDATABLE;
import static java.sql.ResultSet.HOLD_CURSORS_OVER_COMMIT;
import static java.sql.ResultSet.TYPE_FORWARD_ONLY;
import static java.sql.ResultSet.TYPE_SCROLL_INSENSITIVE;
import static java.sql.ResultSet.TYPE_SCROLL_SENSITIVE;
import java.sql.SQLException;
 
public class SupportedResultSetProperties {
 public static void main(String[] args) {
 Connection conn = null;
 try {
 conn = JDBCUtil.getConnection();
 DatabaseMetaData dbmd = conn.getMetaData();
 
 System.out.println("Supported result set scrollability.");
 printScrollabilityInfo(dbmd);
 
 System.out.println();
 System.out.println("Supported result set concurrency.");
 printConcurrencyInfo(dbmd);
 
 System.out.println();
 System.out.println("Supported result set holdability.");
 printHoldabilityInfo(dbmd);
 }
 catch (SQLException e) {
 e.printStackTrace();
 }
 finally {
 JDBCUtil.closeConnection(conn);
 }
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

440

 public static void printScrollabilityInfo(DatabaseMetaData dbmd) {
 try {
 boolean forwardOnly
 = dbmd.supportsResultSetType(TYPE_FORWARD_ONLY);
 
 boolean scrollSensitive
 = dbmd.supportsResultSetType(TYPE_SCROLL_SENSITIVE);
 
 boolean scrollInsensitive
 = dbmd.supportsResultSetType(TYPE_SCROLL_INSENSITIVE);
 
 System.out.println("Forward-Only: " + forwardOnly);
 System.out.println("Scroll-Sensitive: " + scrollSensitive);
 System.out.println("Scroll-Insensitive: " + scrollInsensitive);
 }
 catch (SQLException e) {
 System.out.println("Could not get scrollability information.");
 System.out.println("Error Message:" + e.getMessage());
 }
 }
 
 public static void printConcurrencyInfo(DatabaseMetaData dbmd) {
 try {
 boolean forwardOnlyReadOnly
 = dbmd.supportsResultSetConcurrency(TYPE_FORWARD_ONLY,
 CONCUR_READ_ONLY);
 
 boolean forwardOnlyUpdatable
 = dbmd.supportsResultSetConcurrency(TYPE_FORWARD_ONLY,
 CONCUR_UPDATABLE);
 
 boolean scrollSensitiveReadOnly
 = dbmd.supportsResultSetConcurrency(
 TYPE_SCROLL_SENSITIVE,
 CONCUR_READ_ONLY);
 
 boolean scrollSensitiveUpdatable
 = dbmd.supportsResultSetConcurrency(
 TYPE_SCROLL_SENSITIVE,
 CONCUR_UPDATABLE);
 
 boolean scrollInsensitiveReadOnly
 = dbmd.supportsResultSetConcurrency(
 TYPE_SCROLL_INSENSITIVE,
 CONCUR_READ_ONLY);
 
 boolean scrollInsensitiveUpdatable
 = dbmd.supportsResultSetConcurrency(
 TYPE_SCROLL_INSENSITIVE,
 CONCUR_UPDATABLE);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

441

 System.out.println("Scroll Forward-Only and " +
 "Concurrency Read-Only: " +
 forwardOnlyReadOnly);
 
 System.out.println("Scroll Forward-Only and " +
 "Concurrency Updatable: " +
 forwardOnlyUpdatable);
 
 System.out.println("Scroll Sensitive and " +
 "Concurrency Read-Only: " +
 scrollSensitiveReadOnly);
 
 System.out.println("Scroll Sensitive and " +
 "Concurrency Updatable: " +
 scrollSensitiveUpdatable);
 
 System.out.println("Scroll Insensitive and " +
 "Concurrency Read-Only: " +
 scrollInsensitiveReadOnly);
 
 System.out.println("Scroll Insensitive and " +
 "Concurrency Updatable: " +
 scrollInsensitiveUpdatable);
 }
 catch (SQLException e) {
 System.out.println("Could not get concurrency information.");
 System.out.println("Error Message:" + e.getMessage());
 }
 }
 
 public static void printHoldabilityInfo(DatabaseMetaData dbmd) {
 try {
 boolean holdOverCommit
 = dbmd.supportsResultSetHoldability(
 HOLD_CURSORS_OVER_COMMIT);
 
 boolean closeAtCommit
 = dbmd.supportsResultSetHoldability(
 CLOSE_CURSORS_AT_COMMIT);
 
 System.out.println("Hold Over Commit: " + holdOverCommit);
 System.out.println("Close At Commit: " + closeAtCommit);
 }
 catch (SQLException e) {
 System.out.println("Could not get concurrency information.");
 System.out.println("Error Message:" + e.getMessage());
 }
 }
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

442

Supported result set scrollability.
Forward-Only: true
Scroll-Sensitive: false
Scroll-Insensitive: true
 
Supported result set concurrency.
Scroll Forward-Only and Concurrency Read-Only: true
Scroll Forward-Only and Concurrency Updatable: true
Scroll Sensitive and Concurrency Read-Only: false
Scroll Sensitive and Concurrency Updatable: false
Scroll Insensitive and Concurrency Read-Only: true
Scroll Insensitive and Concurrency Updatable: true
 
Supported result set holdability.
Hold Over Commit: true
Close At Commit: true

Getting a ResultSet
You can get a result set from a database using a Statement, a PreparedStatement, or a CallableStatement. In simple
cases, you call executeQuery() method of a Statement object or a PreparedStatement object with a SELECT statement
that will return a ResultSet. Here is a typical way to get a forward-only scrollable result set:
 
Connection conn = JDBCUtil.getConnection();
Statement stmt = conn.createStatement();
String sql = "select person_id, first_name, last_name, dob, income " +
 "from person";
 
// Execute the query to get the result set
ResultSet rs = stmt.executeQuery(sql);
 
// Process the result set using the rs variable
 

The returned ResultSet from the executeQuery() method is already open, and it is ready to be looped through
to get the associated data. In the beginning, the cursor points before the first row in the result set. You must move the
cursor to a valid row before you can access the column’s values for that row. The next() method of the ResultSet is
used to move the cursor to the next row. When the next() method is called for the first time, it moves the cursor to the
first row in the result set.

It is very important to consider the return value of the next() method. It returns a boolean value. It returns
true if the cursor is positioned to a valid row. Otherwise, it returns false. If you call the next() method on an empty
ResultSet object for the first time, it will return false, because there is no valid row to move to. If the current row
is the last row in the result set, calling the next() method will position the cursor after the last row and it will return
false. A typical snippet of code for processing a forward-only scrollable ResultSet object is as follows:
 
ResultSet rs = get a result set object;
 
// Move the cursor to the next row by calling the next() method
while(rs.next()) {
 // Process the current row in rs here
}
// Done with the ResultSet
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

443

When a cursor is positioned after the last row in a forward-only scrollable ResultSet object, you cannot do anything
with it, except close it using its close() method. A forward-only scrollable object is like a create-use-and-throw item.
You cannot reopen a ResultSet either. To iterate through the result set data again, you must re-execute the query and
obtain a new ResultSet. However, things are different for a bidirectional scrollable ResultSet, which lets you iterate
through the rows as many times as you want. You will look at a bidirectional scrollable ResultSet object shortly.

After the program exits the while-loop, the cursor points to the row after the last row in the result set. What is the
row after the last row and before the first row? They are just two imaginary rows. They do not exist in reality. These
two positions of the cursor of the ResultSet object let you make decisions when you want to loop through the result
set multiple times or when you get a ResultSet object as an argument in your method. When you do not create the
ResultSet, you must know the cursor position correctly in order to process the rows in a specific order. The following
four methods of the ResultSet interface let you know if the cursor is before the first row, on the first row, on the last
row, or after the last row.

•	 boolean isBeforeFirst() throws SQLException

•	 boolean isFirst() throws SQLException

•	 boolean isLast() throws SQLException

•	 boolean isAfterLast() throws SQLException

The method names are self-explanatory. Support for these methods is optional for a forward-only scrollable
ResultSet. Typically, you do not need to use these methods for a forward-only scrollable ResultSet.

A ResultSet object lets you read the value of a column from its current row using one of its getXxx() method,
where Xxx is the data type of the column. There is one getXxx() method for each Xxx data type supported by JDBC. For
example, to read an int, double, String, Object, and Blob value from a column, you can use the getInt(), getDouble(),
getString(), getObject(), and getBlob() methods of the ResultSet interface, respectively. You must specify the index
or name of the column in the getXxx() method whose value you want to read. The getXxx() methods are overloaded.
One version accepts an int parameter, which lets you use the column index and another version accepts a String
parameter, which lets you use the column label. If the column label is not specified in the query, you can specify the
column name. The first column in the result set has an index of 1. Suppose you have the following ResultSet of a query:
 
select person_id as "Person ID", first_name, last_name from person
 

In the ResultSet, the person_id column has a column index of 1, the first_name column has a column index
of 2, and the last_name column has a column index of 3. You have specified Person ID as the column label for the
person_id column. You have not specified the column labels for the first_name and last_name columns. To get the
value of the person_id column, you need to use either getInt(1) or getInt("PERSON ID"). To get the value of the
first_name column, you need to use either getString(2) or getString("first_name").

Tip■■   Using a column label or name in the getXxx() methods is case-insensitive. That is, you can use
getInt("person id") or getInt("PERSON ID") to get the value of a person_id column. I will use the term “column
name” in this chapter to refer to the column label or name.

The following snippet of code shows how to read column’s values of the current row in a result set:
 
Connection conn = JDBCUtil.getConnection();
Statement stmt = conn.createStatement();
String SQL = "select person_id, first_name, last_name, dob, income " +
 "from person";
ResultSet rs = stmt.executeQuery(SQL);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

444

// Move the cursor to the next row one by one
while(rs.next()) {
 // Process the current row in rs
 int personId = rs.getInt("person_id");
 String firstName = rs.getString("first_name");
 String lastName = rs.getString("last_name");
 java.sql.Date dob = rs.getDate("dob");
 double income = rs.getDouble("income");
 
 // Do something with column values
}
 

You can rewrite the code inside the while-loop using the column indexes.
 
while(rs.next()) {
 // Process the current row in rs
 int personId = rs.getInt(1);
 String firstName = rs.getString(2);
 String lastName = rs.getString(3);
 java.sql.Date dob = rs.getDate(4);
 double income = rs.getDouble(5);
 
 // Do something with column values
}
 

It is a matter of personal preference whether to use a column index or a column name in a getXxx() method
of the ResultSet. Sometimes you may not know the name of the columns in advance, such as when the user
passes you a query to execute, and you have to use the data from the result set. When you do not know the column
names, you should use the column indexes. You can get the names of columns in a ResultSet object using the
ResultSetMetaData object. Please refer to the “ResultSetMetaData” section for more details.

In a ResultSet, when a column has a null value, the getXxx() method returns the default value for the Xxx
data type. For example, for numeric data types (int, double, byte, etc.), the getXxx() method returns zero when the
column has a null value. The reason behind returning the default value for the data type instead of returning a null
is that a primitive data type cannot have a null value in Java. A getXxx() method returns false for the boolean data
type when the column has a null value. The getXxx() returns null if Xxx is a reference type. If you want to know
whether the column value, which you read using a getXxx() method, is null, you need to call the wasNull() method
immediately after calling the getXxx() method. If the wasNull() method returns true, the column value is null in
the result set. If the wasNull() method returns false, the column value is not null in the result set. Note that the
wasNull() method does not accept any parameter and it returns null value status of the last read column using a
getXxx() method. Here is a snippet of code to demonstrate the null value check for a column:
 
ResultSet rs = get a result set object;
java.sql.Date dob = rs.getDate("dob");
if (rs.wasNull()) {
 System.out.println("DOB is null");
}
else {
 System.out.println("DOB is " + dob);
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

445

The getDate() method of the ResultSet object returns a java.sql.Date object. The toString() method of
the java.sql.Date class returns a string in a yyyy-mm-dd format. If you need the date value converted to any other
format, you need to work with an object of the java.text.SimpleDateFormat class to format your date value. The
getTime() and getTimestamp() methods of a ResultSet return a java.sql.Time object and a java.sql.Timestamp
object, respectively. The toString() method of the java.sql.Time class returns a string in an hh:mm:ss format. The
toString() method of the java.sql.Timestamp class returns a string in a yyyy-mm-dd hh:mm:ss.fffffffff format.

Let’s look at a complete example of processing a ResultSet using a Statement object and a PreparedStatement
object. Listing 6-11 demonstrates how to execute a query in a database and process the results.

Listing 6-11.  Getting and Processing a ResultSet Using a Statement and a PreparedStatement

// QueryPersonTest.java
package com.jdojo.jdbc;
 
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.util.Date;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.text.SimpleDateFormat;
 
public class QueryPersonTest {
 // Will be used to format dates
 private static final SimpleDateFormat sdf =
 new SimpleDateFormat("MM/dd/yyyy");
 
 public static void main(String[] args) {
 Connection conn = null;
 try {
 conn = JDBCUtil.getConnection();
 
 System.out.println("Using Statement Object...");
 displayPersonUsingStatement(conn, 101);
 displayPersonUsingStatement(conn, 102);
 
 System.out.println("Using PreparedStatement Object...");
 displayPersonUsingPreparedStatement(conn, 101);
 displayPersonUsingPreparedStatement(conn, 102);
 
 // Commit the transaction
 JDBCUtil.commit(conn);
 }
 catch (SQLException e) {
 System.out.println(e.getMessage());
 JDBCUtil.rollback(conn);
 }
 finally {
 JDBCUtil.closeConnection(conn);
 }
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

446

 public static void displayPersonUsingStatement(Connection conn,
 int inputPersonId) throws SQLException {
 String SQL = "select person_id, first_name, last_name, " +
 " gender, dob, income from person " +
 " where person_id = " + inputPersonId;
 
 Statement stmt = null;
 ResultSet rs = null;
 try {
 stmt = conn.createStatement(
 ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_UPDATABLE);
 rs = stmt.executeQuery(SQL);
 printResultSet(rs);
 }
 finally {
 // Closing the Statement closes the associated ResultSet
 JDBCUtil.closeStatement(stmt);
 }
 }
 
 public static void displayPersonUsingPreparedStatement(
 Connection conn, int inputPersonId) throws SQLException {
 
 String SQL = "select person_id, first_name, last_name, " +
 " gender, dob, income from person " +
 " where person_id = ?";
 
 PreparedStatement pstmt = null;
 ResultSet rs = null;
 try {
 pstmt = conn.prepareStatement(SQL);
 
 // Set the IN parameter for person_id
 pstmt.setInt(1, inputPersonId);
 
 // Execute the query
 rs = pstmt.executeQuery();
 printResultSet(rs);
 }
 finally {
 // Closing the Statement closes the ResultSet
 JDBCUtil.closeStatement(pstmt);
 }
 }
 
 public static void printResultSet(ResultSet rs) throws SQLException {
 while (rs.next()) {
 int personId = rs.getInt("person_id");
 String firstName = rs.getString("first_name");
 String lastName = rs.getString("last_name");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

447

 String gender = rs.getString("gender");
 Date dob = rs.getDate("dob");
 boolean isDobNull = rs.wasNull();
 
 double income = rs.getDouble("income");
 boolean isIncomeNull = rs.wasNull();
 
 // Format the dob in MM/dd/YYYY format
 String formattedDob = null;
 if (!isDobNull) {
 formattedDob = formatDate(dob);
 }
 
 System.out.print("Person ID:" + personId);
 System.out.print(", First Name:" + firstName);
 System.out.print(", Last Name:" + lastName);
 System.out.print(", Gender:" + gender);
  
 if (isDobNull) {
 System.out.print(", DOB:null");
 }
 else {
 System.out.print(", DOB:" + formattedDob);
 }
 
 if (isIncomeNull) {
 System.out.println(", Income:null");
 }
 else {
 System.out.println(", Income:" + income);
 }
 }
 }
 
 public static String formatDate(Date dt) {
 if (dt == null) {
 return "";
 }
 
 String formattedDate = sdf.format(dt);
 return formattedDate;
 }
}
 

The displayPersonUsingStatement() method accepts a Connection object and a person id as parameters. It
uses a Statement object to retrieve the person details in a ResultSet. It calls the printResultSet() method to print
all rows in the ResultSet. Your ResultSet will have a maximum of one row, because person_id is a primary key in
your person table, and you are using it in the where clause of the query. Look at the details of how the cursor is moved
in a while-loop, and each column’s value is read using an appropriate getXxx() method in the printResultSet()
method. The value for the dob column is formatted in the mm/dd/yyyy format before printing it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

448

The displayPersonUsingPreparedStatement() method uses a PreparedStatement object to execute the query.
Note that you must use a setXxx() method on a PreparedStatement to set the input parameter for the query.
The code uses pstmt.setInt(1, inputPersonId) to set the person id value in the where clause of the query.

The main() method calls both of these methods to print the details of the same person id. In this example, you are
not benefiting from precompilation of the PreparedStatement object, because you are calling this method separately
for each person id. If you want to execute the same PreparedStatement with different inputs multiple times, you store
the reference of the PreparedStatement in your program and reuse it. The intent of this example is to show you how to
use a PreparedStatement to process a query, and I tried to keep the program logic as simple as possible.

Getting the Number of Rows in a ResultSet
How would you know the number of rows in a ResultSet? The simple answer is that a ResultSet does not know how
many rows it contains. There is no method in the ResultSet interface that returns the number of rows in the result set.

The ResultSet interface contains a getRow() method that returns the current row number in the ResultSet. It
returns zero if there is no current row, such as when the cursor is before the first row or after the last row. The support
for the getRow() method is optional in a forward-only scrollable ResultSet. You can say that the getRow() method is
of no help in determining the number of rows in a ResultSet object. You will need to apply some custom logic to get
the number of rows in a result set. The following are some of the methods you can use to get the number of rows in a
result set. None of them are without disadvantages.

Scrolling Through All Rows
This method applies a logic that loops through all rows using the next() method after getting the ResultSet. It
maintains a counter variable, which is incremented by one for each loop-iteration. After exiting the loop, the counter
variable contains the number of rows in the ResultSet. The following snippet of code shows this logic:
 
ResultSet rs = get a result set object;
 
// Initialize rowCount to 0
int rowCount = 0;
 
while(rs.next()) {
 // Increment rowCount by 1
 rowCount++;
 
 // Process the result set data for the current row
}
 
// Now, the rowCount variable contains the number of rows in rs
System.out.println("Row Count: " + rowCount);
 

If you need the number of rows in a result set before you process its rows, this logic will force you to get the result
set twice: once for getting the number of rows and once for processing the rows. Between the time when you get the
first result set and when you get the second result set, the data in the database might change, which will make the row
count from the first execution invalid. This method is foolproof only if you need the number of rows in the result set
after you have looped through all the rows.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

449

Executing a Separate Query
This method executes a separate query to get the number of rows in a result set. Suppose you want to know the
number of rows returned in a result set by executing a query, as shown:
 
select person_id, first_name, last_name, gender, dob, income
 from person
 where dob > {d '1970-01-25'}
 

To get the number of rows returned by this query, you may execute a query as follows:
 
select count(*)
 from person
 where dob > {d '1970-01-25'}
 

The value for the first column of the first row in the result set will give you the number of rows returned from your
main query. However, this method suffers from the same drawback that rows in the database may change between the
executions of the two queries.

Using a Bidirectional Scrollable ResultSet
In this method, you will need to create a ResultSet object that can scroll in both directions, forward and backward.
You can specify the scrollable property of a ResultSet when you create a Statement object. Please refer to the next
section for more details on creating a scrollable ResultSet object that can scroll in both directions. Make sure that
your JDBC driver supports a ResultSet that can scroll in both directions. After you get the ResultSet, call its last()
method to move its cursor to the last row in the result set. Call the getRow() method when the cursor is at the last row.
The getRow() method will return the row number of the last row, which will be the number of rows in the result set.
If you want to process the result set after getting the number of rows, you can call its beforeFirst() method to scroll
the cursor before the first row and start a while-loop to process the rows in the result set again.

A JDBC driver may not support a ResultSet object that can scroll in both directions. In such cases, it may
return a forward-only scrollable ResultSet object. After getting a ResultSet object, it is very important to check if it
supports bidirectional scrolling before you call the last() method on it. A forward-only ResultSet object will throw
a SQLException if you call the last() method. You can get the scrollable property of a ResultSet object by calling its
getType() method. Listing 6-12 demonstrates this approach to get the number of rows in a result set.

Listing 6-12.  Getting the Number of Rows in a Bidirectional Scrollable ResultSet

// ResultSetRowCountTest.java
package com.jdojo.jdbc;
 
import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import static java.sql.ResultSet.CONCUR_READ_ONLY;
import static java.sql.ResultSet.TYPE_SCROLL_INSENSITIVE;
 
public class ResultSetRowCountTest {
 public static void main(String[] args) {
 Connection conn = null;
 Statement stmt = null;
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

450

 try {
 // Get a Connection
 conn = JDBCUtil.getConnection();
 
 // Request a bi-directional scrollable ResultSet
 stmt = conn.createStatement(TYPE_SCROLL_INSENSITIVE,
 CONCUR_READ_ONLY);
 String SQL = "select person_id, first_name, last_name, dob, " +
 "income from person";
 
 // Execute the query
 ResultSet rs = stmt.executeQuery(SQL);
 
 // Make sure you got a bi-directional ReseutSet
 int cursorType = rs.getType();
 if (cursorType == ResultSet.TYPE_FORWARD_ONLY) {
 System.out.println("JDBC driver returned a " +
 "forward - only cursor.");
 }
 else {
 // Move the cursor to the last row
 rs.last();
 
 // Get the last row number, which is the row count
 int rowCount = rs.getRow();
 System.out.println("Row Count: " + rowCount);
 
 // Place the cursor before the first row to
 // process all rows again
 rs.beforeFirst();
 }
 
 // Process the result set
 while (rs.next()) {
 System.out.println("Person ID: " + rs.getInt(1));
 }
 }
 catch (SQLException e) {
 e.printStackTrace();
 }
 finally {
 JDBCUtil.closeStatement(stmt);
 JDBCUtil.commit(conn);
 JDBCUtil.closeConnection(conn);
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

451

Bidirectional Scrollable ResultSets
You can request a JDBC driver for a bidirectional scrollable ResultSet by specifying the scrollability property when
you create a Statement, prepare a PreparedStatement, or prepare a CallableStatement using different methods of
the Connection interface. The following is the list of methods of the Connection interface that implicitly or explicitly
let you specify the scrollability property of a ResultSet object. The throws clause from the methods declarations has
been excluded. They all throw a SQLException.

•	 Statement createStatement()

•	 Statement createStatement(int scrollability, int concurrency)

•	 Statement createStatement(int scrollability, int concurrency, int holdability)

•	 PreparedStatement prepareStatement(String SQL)

•	 PreparedStatement prepareStatement(String SQL, int scrollability, int
concurrency)

•	 PreparedStatement prepareStatement(String SQL, int scrollability, int
concurrency, int holdability)

•	 CallableStatement prepareCall(String SQL)

•	 CallableStatement prepareCall(String SQL, int scrollability, int concurrency)

•	 CallableStatement prepareCall(String SQL, int scrollability, int concurrency,
int holdability)

Not all JDBC drivers support all three types of scrollability properties for a result set. However, all drivers will support
at least the forward-only result set. The default value of the scrollability of a ResultSet object is TYPE_FORWARD_ONLY.
When you specify a result set’s scrollability in one of these methods and if the JDBC driver does not support that type of
scrollability, the driver will not generate an error. Rather, it will return a result set with the scrollability type that closely
matches the requested scrollability type. If you specify a scrollability of a ResultSet other than forward-only, it is good
practice to check the scrollability type of the returned ResultSet object using the getType() method. The following
snippet of code shows how to test for the scrollability property of a ResultSet object:
 
Connection conn = JDBCUtil.getConnection();
 
// Request a bi-directional change insensitive ResultSet
Statement stmt = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);
 
String SQL = "your select statement goes here";
 
// Get a result set
ResultSet rs = stmt.executeQuery(SQL);
  
// Let's see what type of result set the JDBC driver returned
int cursorType = rs.getType();
 
if (cursorType == ResultSet.TYPE_FORWARD_ONLY) {
 System.out.println("ResultSet is TYPE_FORWARD_ONLY");
}
else if (cursorType == ResultSet.TYPE_SCROLL_SENSITIVE) {
 System.out.println("ResultSet is TYPE_SCROLL_SENSITIVE");
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

452

else if (cursorType == ResultSet.TYPE_SCROLL_INSENSITIVE) {
 System.out.println("ResultSet is TYPE_SCROLL_INSENSITIVE");
}
 

The default value for the concurrency of a ResultSet is read-only, as indicated by the constant
ResultSet.CONCUR_READ_ONLY. You can only read data from a ResultSet that has read-only concurrency. If you
want to update data using a ResultSet such as change a column’s value, insert new rows, or delete existing rows,
you must have a ResultSet whose concurrency is ResultSet.CONCUR_UPDATABLE. Not all JDBC drivers support
the updatable concurrency. You may request a JDBC driver that you want a ResultSet object with an updatable
concurrency. If a JDBC driver does not support it, it will return a read-only ResultSet object. You can check for the
concurrency of a ResultSet object as follows:
 
Connection conn = JDBCUtil.getConnection();
 
// Request a bidirectional change insensitive ResultSet
// with concurrency as CONCUR_UPDATABLE
Statement stmt = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_UPDATABLE);
  
String SQL = "your select statement goes here";
 
// Get a result set
ResultSet rs = stmt.executeQuery(SQL);
 
// Let's see what type of concurrency the JDBC driver returned
int concurrency = rs.getConcurrency();
 
if (concurrency == ResultSet.CONCUR_READ_ONLY) {
 System.out.println("ResultSet is CONCUR_READ_ONLY");
}
else if (concurrency == ResultSet.CONCUR_UPDATABLE) {
 System.out.println("ResultSet is CONCUR_UPDATABLE");
}
 

The JDBC driver determines the default value for the holdability of a ResultSet. Different JDBC drivers have
different default values for this property. You can check for the holdability of a ResultSet using the getHoldability()
method of the ResultSet. You can also use the getHoldability() method of the Connection to get this property of a
ResultSet object. Here is how you check the holdability of a ResultSet:
 
Connection conn = JDBCUtil.getConnection();
 
// Request a bidirectional change insensitive ResultSet with concurrency
// as CONCUR_UPDATABLE and holdability of HOLD_CURSORS_OVER_COMMIT
Statement stmt = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 �ResultSet.CONCUR_UPDATABLE,

ResultSet.HOLD_CURSORS_OVER_COMMIT);
 
String SQL = "your select statement goes here";
 
// Get a result set
ResultSet rs = stmt.executeQuery(SQL);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

453

// Let's see what type of holdability the JDBC driver returned
int holdability = conn.getHoldability(); // Java 1.4 and later
//int holdability = rs.getHoldability(); // Java 6 and later
 
if (holdability == ResultSet.HOLD_CURSORS_OVER_COMMIT) {
 System.out.println("ResultSet is HOLD_CURSORS_OVER_COMMIT");
}
else if (holdability == ResultSet.CLOSE_CURSORS_AT_COMMIT) {
 System.out.println("ResultSet is CLOSE_CURSORS_AT_COMMIT");
} 

Tip■■  T he getType(), getConcurrency(), and getHoldability() methods throw a SQLException that you will have
to handle in your code.

Scrolling Through Rows of a ResultSet
There are many methods in the ResultSet interface that let you move the cursor position to a row in the result set.
There are two sets of rows that a cursor may point to. One set of rows consists of two imaginary rows–one before the
first row and one after the last row. Another set of rows consists of the rows that match the query. Table 6-7 shows
the rows and column structure of a ResultSet. The cursor in a ResultSet is positioned before the first row when it is
created as shown by > in the table.

Table 6-7.  Rows and Column Structures of a ResultSet

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6

Before First Row > An imaginary row

Row 1 101 John Jacobs M 01/01/1970 45000.00

Row 2 102 Donna Duncan F 01/01/1960 35000.00

Row 3 102 Buddy Rice M 01/01/1965 25000.00

After Last Row An imaginary row

The table shows three rows in the result set with data that match the query criteria. Note that a ResultSet does
not retrieve all rows for a query at once. The number of rows a ResultSet will retrieve from the database is JDBC
driver-dependent. It may choose to retrieve one row at a time from a database. You can give a hint to the JDBC driver
using the setFetchSize(int fetchSize) method of the ResultSet object to fetch a specified number of rows from
the database whenever more rows are needed. When does a ResultSet need to fetch more rows from the database?
A ResultSet needs to fetch more rows if you position its cursor to a row that is not in its cache. For example, calling
the next() method of a ResultSet may trigger a fetch from the database. Suppose a ResultSet fetches 10 records at
a time. If you call the next() method the first time, it will fetch and cache 10 records and, for nine subsequent calls to
its next() method, it will give you rows from its cache. Fetching and caching rows for a ResultSet is dependent on a
JDBC driver and the underlying DBMS.

You can use the getRow() method of the ResultSet interface to get the row number of the row at which the
cursor is currently positioned. If the cursor is positioned before the first row or after the last row, the getRow() method
returns zero.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

454

If you have a ResultSet object that has its scrollability set to forward-only, you can only use its next() method
to move the cursor, which moves its cursor one row in the forward direction. Once the cursor is pointing after the
last row, calling the next() method has no effect. The next() method returns true if it is pointing to a row that was
returned from the query. Otherwise, it returns false.

If a ResultSet has a bidirectional scrollability, you have many methods to change its cursor position. The next()
method can also be used in this type of ResultSet to move the cursor one row forward from its current position. All
cursor movement methods can be put into two categories:

Relative cursor movement methods•	

Absolute cursor movement methods•	

The relative cursor movement methods move the cursor in the forward or backward direction relative to the
current position of the cursor. You have two types of methods in this category: one that moves the cursor one row
forward or backward from the current position, and one that moves the cursor forward or backward a specified
number of rows. An example of this type of cursor movement is moving the cursor to the next/previous row from the
current position. Table 6-8 lists relative cursor movement methods whose categories are shown as Relative.

Table 6-8.  The Cursor Movement Methods of the ResultSet Interface

Method Category Description

boolean next() Relative Moves the cursor one row forward from its current position.
It returns true if the cursor is positioned to a valid row in the
result set. It returns false if the cursor is positioned after the
last row. It may throw an exception or return false if you call
it when cursor is already positioned after the last row. This
behavior is JDBC driver-dependent.

boolean previous() Relative It is the counterpart of the next() method. It moves the cursor
one row backward from its current position. It returns true
if the cursor is positioned to a valid row in the result set. It
returns false if the cursor is positioned before the first row.

boolean relative(int rows) Relative Moves the cursor forward or backward by the specified
number of rows from its current position. A positive value
for rows such as relative(5) moves the cursor forward. A
negative value for rows such as relative(-5) moves the
cursor backward. Calling relative(0) has no effect. Calling
relative(1) and relative(-1) has the same effect as calling
next() and previous(), respectively.
If the number of specified rows to move is beyond the range of
rows (including before the first row and after the last row), the
cursor will be positioned before the first row or after the last
row depending on the direction of the specified movement.
It returns true if the cursor is positioned to a valid row.
Otherwise, it returns false.
Some JDBC drivers throw a SQLException when you call this
method and the cursor is not positioned to a valid row, for
example, when it is positioned before the first or after the last
row. Some JDBC drivers just return false in such cases.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

455

Table 6-8.  (continued)

Method Category Description

boolean first() Absolute Moves the cursor to the first row in the result set. It returns
true if the cursor is positioned to the first row. It returns false
if the result set is empty.

boolean last() Absolute Moves the cursor to the last row in the result set. It returns
true if the cursor is positioned to the last row. It returns false
if the result set is empty.

void beforeFirst() Absolute Positions the cursor before the first row. Calling this method
has no effect on an empty result set.

void afterLast() Absolute Positions the cursor after the last row. Calling this method has
no effect on an empty result set.

boolean absolute(int row) Absolute Moves the cursor to the specified row number. It accepts a
positive as well as a negative row number. If a positive row
number is specified, the row is counted from the beginning.
If a negative row number is specified, the row number is
counted from the end.
Suppose there are 10 rows in a result set. Calling absolute(1)
will position the cursor to the first row. Calling absolute(2)
will position the cursor to the second row. Calling
absolute(-1) will position the cursor to the first row from
the end, which would be the last row. Calling absolute(-2)
will position the cursor to the second-last row. Calling
absolute(8) and absolute(-3) will have the same effect as
positioning the cursor on the eighth row in a 10-row result set.
Calling absolute(0) positions the cursor before the first row.
It returns true if the cursor is positioned to a valid row.
Otherwise, it returns false.
Any attempt to move the cursor beyond the valid row range
will position the cursor either before the first row or after the
last row depending on the direction of the movement.
Calling absolute(1) is same as calling first(). Calling
absolute(-1) is same as calling last().

The absolute cursor movement methods move the cursor to a specific row irrespective of the current cursor
position. You have two types of methods in this category: one that accepts a row number to move the cursor to
that row such as the row number 8 and another that moves the cursor to a known position such as to the last row.
Examples of this type of cursor movement are moving the cursor to the eighth row, the first row, the last row, before
the first row, or after the last row, etc. Table 6-8 lists the absolute cursor movement methods whose categories are
shown as Absolute. All methods in the table throw a SQLException.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

456

Tip■■   You can only use the next() method to move the cursor in a forward-only scrollable ResultSet. Using any other
methods on a forward-only scrollable ResultSet will throw an exception. All cursor movement methods can be used
with a bidirectional scrollable ResultSet object. Use the last() method with caution. This method call will force the
JDBC driver to retrieve all rows from the database. If a DBMS does not support a bidirectional scrollable cursor, a JDBC
driver will have to cache all rows on the client. For a very large result set, it may affect the performance of the application
adversely.

Knowing the Cursor Position in a ResultSet
The five methods in the ResultSet interface let you know where the cursor is currently positioned. Four methods
return a boolean value of true if cursor is at the specific position. These methods are isBeforeFirst(), isFirst(),
isLast(), and isAfterLast(). The method names are self-explanatory. They return false if they are called on an
empty result set. The fifth method, called getRow(), returns the current row number as an int. It returns 0 If the
cursor is positioned before the first row, after the last row, or result set is empty.

Closing a ResultSet
You can close a ResultSet object by calling its close() method. Calling the close() method on an already closed
ResultSet has no effect.
 
ResultSet rs = get a result set object;
 
// Process the rs object...
 
// Close the result set
rs.close();
 

Closing the ResultSet object frees the resources associated with it. A ResultSet object can also be closed
implicitly in the following situations:

When the •	 Statement object that produces the ResultSet object is closed, it automatically
closes the ResultSet object.

When a •	 Statement object is re-executed, its previously opened ResultSet object is closed.

If a •	 Statement object produces multiple result sets, retrieving the next result set closes the
previously retrieved ResultSet.

If it is a forward-only scrollable •	 ResultSet, a JDBC driver may choose to close it when its
next() method returns false as the part of optimization. Once the next() method returns
false for a forward-only scrollable ResultSet, you cannot do anything with that ResultSet
anyway.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

457

You cannot perform any activities on a closed ResultSet, except calling its close() or isClosed() method.
Calling any other methods will throw a SQLException. However, all is not lost when a ResultSet object is closed.
You can still get to the following pieces of information on a closed ResultSet:

If you have accessed a •	 Blob, Clob, NClob, or SQLXML object from a result set when it was open,
those objects are still valid after the ResultSet has been closed. They are valid at least until the
duration of the transaction.

If you have a •	 ResultSetMetaData object from a ResultSet object when it was open, you can
still use it to get metadata information about the result set. The following snippet of code
shows the correct and incorrect sequence of statements:

ResultSet rs = get a result set object;
ResultSetMetaData rsmd = rs.getMetaData();
rs.close(); // rs is closed
 
// You can still use rsmd object to get info about rs
System.out.println("Column Count:" + rsmd.getColumnCount());
 
// Can use only isClosed() and close() method on rs because it is closed.
ResultSetMetaData rsmd = rs.getMetaData(); // An error 

Making Changes to a ResultSet
You can use a ResultSet to perform insert, update, and delete operations on database tables. The concurrency for
the ResultSet object must be ResultSet.CONCUR_UPDATABLE in order to perform updates on the ResultSet. Inserting
a new row and updating an existing row in a ResultSet is a two-step process, whereas deleting a row is a one-step
process. In the two-step process, you need to make changes in the ResultSet object first and then call one of its
methods to send changes to the database. In the one-step process, changes to the ResultSet are propagated to the
database automatically.

Inserting a Row Using a ResultSet
So far, you are aware of only two imaginary rows in a result set. They were rows before the first row and after the last
row. However, there is one more imaginary row that exists in a ResultSet and that is called an insert row. You can
think of this row as an empty new row, which acts as a staging area for a new row that you want to insert. You can
position the cursor to the insert row using the ResultSet object’s moveToInsertRow() method. When the cursor
moves to the insert row, it remembers its previous position. You can call the moveToCurrentRow() method to move the
cursor from the insert row back to the previously current row. So, the first step in inserting a new row is to move the
cursor to the insert row.
 
// Move the cursor to an insert row to add a new row
rs.moveToInsertRow();
 

At this point, a new row has been inserted in the staging area and all columns have undefined values. Calling
a getXxx() method to read column values may throw an exception at this point. Once the cursor is positioned at
the insert-row, you need to set the values for all the columns (at least for non-nullable columns) using one of the

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

458

updateXxx() methods of the ResultSet interface, where Xxx is the data type of the column. The first argument to an
updateXxx() method is either the column index or the column name, and the second argument is the column value. If
you want to insert a new row in the person table using a ResultSet, your updateXxx() method call will look as follows:
 
// Leave dob and income unset to use null values for them
rs.updateInt("person_id", 501);
rs.updateString("first_name", "Richard");
rs.updateString("last_name", "Castillo");
rs.updateString("gender", "M");
 

Once you update the value for a column, you can use a getXxx() method to retrieve the new values from the
ResultSet.

You are not done yet with the new row. You must send the changes to the database before your new row becomes
part of the ResultSet. You can send the newly inserted row to the database by calling the insertRow() method of the
ResultSet interface as shown:
 
// Send changes to the database
rs.insertRow();
 

The call to the insertRow() method may or may not make the inserted row a permanent row in the database.
If the auto-commit mode is enabled for the Connection, the insertRow() call will also commit your transaction.
In that case, the new row becomes part of the database permanently. If the auto-commit mode is disabled for the
Connection, you can make the insert permanent by committing the transaction, or cancel the insert by rolling back
the transaction. Note that committing or rolling back a transaction will commit or rollback all pending activities, not
only the newly inserted row.

Once you have sent your inserted row to the database, you can move to the previously current row by calling
the moveToCurrentRow() method. Moving to another row before calling the insertRow() method after calling the
moveToInsertRow() method discards the new row.

Listing 6-13 demonstrates how to use a ResultSet to insert a new row. After getting the ResultSet object in the
addRow() method, it checks if it is updatable. If the ResultSet object is not updatable, it prints a message to indicate
that and does not do anything. In the end, it prints all rows in the result set. The printed records also include the new
row. Note that you do not update the values for dob and income columns for new rows and the JDBC driver will use
null values for them when it inserts a new row in the person table. If you run the program more than once in the
same database, an error message is printed because the program will attempt to insert a person record with the same
person_id again causing a duplicate row in the table.

Listing 6-13.  Inserting a New Row Using a ResultSet

// ResultSetInsert.java
package com.jdojo.jdbc;
 
import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import static java.sql.ResultSet.CONCUR_UPDATABLE;
import static java.sql.ResultSet.TYPE_FORWARD_ONLY;
 
public class ResultSetInsert {
 public static void main(String[] args) {
 Connection conn = null;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

459

 try {
 conn = JDBCUtil.getConnection();
 
 // Add a new row
 addRow(conn);
 
 // Commit the transaction
 JDBCUtil.commit(conn);
 }
 catch (SQLException e) {
 System.out.println(e.getMessage());
 JDBCUtil.rollback(conn);
 }
 finally {
 JDBCUtil.closeConnection(conn);
 }
 }
 
 public static void addRow(Connection conn) throws SQLException {
 String SQL = "select person_id, first_name, "
 + "last_name, gender, dob, income "
 + "from person";
 
 Statement stmt = null;
 try {
 stmt = conn.createStatement(TYPE_FORWARD_ONLY,
 CONCUR_UPDATABLE);
 
 // Get the result set
 ResultSet rs = stmt.executeQuery(SQL);
 
 // Make sure your resultset is updatable
 int concurrency = rs.getConcurrency();
 
 if (concurrency != ResultSet.CONCUR_UPDATABLE) {
 System.out.println("The JDBC driver does not " +
 "support updatable result sets.");
 return;
 }
 
 // First insert a new row to the ResultSet
 rs.moveToInsertRow();
 rs.updateInt("person_id", 501);
 rs.updateString("first_name", "Richard");
 rs.updateString("last_name", "Castillo");
 rs.updateString("gender", "M");
 
 // Send the new row to the database
 rs.insertRow();
 
 // Move back to the current row
 rs.moveToCurrentRow();
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

460

 // Print all rows in the result set
 while (rs.next()) {
 System.out.print("Person ID: " +
 rs.getInt("person_id") +
 ", First Name: " +
 rs.getString("first_name") +
 ", Last Name: " +
 rs.getString("last_name"));
 System.out.println();
 }
 }
 finally {
 JDBCUtil.closeStatement(stmt);
 }
 }
}

Updating a Row Using a ResultSet
Here are the steps involved in updating an existing row in a ResultSet object.

	 1.	 Move the cursor to a valid row in the result set. Note that you can update data only for an
existing row. It is obvious that the cursor should not be positioned before the first row or
after the last row if you want to update the data in a row.

	 2.	 Call an updateXxx() method for a column to update the column’s value.

	 3.	 If you do not want to go ahead with the changes made using updateXxx() method calls,
you need to call the cancelRowUpdates() method of the ResultSet to cancel the changes.

	 4.	 When you are done updating all the column’s values for the current row, call the
updateRow() method to send the changes to the database. If the auto-commit mode is
enabled for the Connection, changes will be committed. Otherwise, you need to commit
the changes to the database.

	 5.	 If you move the cursor to a different row before calling the updateRow(), all your changes
made using the updateXxx() method calls will be discarded.

	 6.	 There is another way to lose your updates to columns in a row. If you call the
refreshRow() method after calling updateXxx(), but before calling updateRow(), your
changes will be lost because the JDBC driver will refresh the row’s data from the database.

Listing 6-14 demonstrates how to update a row using a ResultSet object. It increases the income of every person
with non-null income by 10%. If a person’s income is null, it updates the income to 10000.00.

Listing 6-14.  Updating Data Using a ResultSet

// ResultSetUpdate.java
package com.jdojo.jdbc;
 
import java.sql.Connection;
import java.sql.ResultSet;
import static java.sql.ResultSet.CONCUR_UPDATABLE;
import static java.sql.ResultSet.TYPE_FORWARD_ONLY;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

461

import java.sql.SQLException;
import java.sql.Statement;
 
public class ResultSetUpdate {
 public static void main(String[] args) {
 Connection conn = null;
 try {
 conn = JDBCUtil.getConnection();
 
 // Give everyone a 10% raise
 giveRaise(conn, 10.0);
 
 // Commit the transaction
 JDBCUtil.commit(conn);
 }
 catch (SQLException e) {
 System.out.println(e.getMessage());
 JDBCUtil.rollback(conn);
 e.printStackTrace();
 }
 finally {
 JDBCUtil.closeConnection(conn);
 }
 }
 
 public static void giveRaise(Connection conn,
 double raise) throws SQLException {
 String SQL = "select person_id, first_name, last_name, " +
 "income from person";
 
 Statement stmt = null;
 
 try {
 stmt = conn.createStatement(TYPE_FORWARD_ONLY,
 CONCUR_UPDATABLE);
 
 // Get the result set
 ResultSet rs = stmt.executeQuery(SQL);
 
 // Make sure our resultset is updatable
 int concurrency = rs.getConcurrency();
 
 if (concurrency != CONCUR_UPDATABLE) {
 System.out.println("The JDBC driver does not "+
 "support updatable result sets.");
 return;
 }
 
 // Give everyone a raise
 while (rs.next()) {
 double oldIncome = rs.getDouble("income");
 double newIncome = 0.0;
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

462

 if (rs.wasNull()) {
 // null income starts at 10000.00
 oldIncome = 10000.00;
 newIncome = oldIncome;
 }
 else {
 // Increase the income
 newIncome =
 oldIncome + oldIncome * (raise / 100.0);
 }
 
 // Update the income column with the new value
 rs.updateDouble("income", newIncome);
 
 // Print the details about the changes
 int personId = rs.getInt("person_id");
 String firstName = rs.getString("first_name");
 String lastName = rs.getString("last_name");
 
 System.out.println(firstName + " " + lastName +
 " (person id=" + personId +
 ") income changed from " +
 oldIncome + " to " + newIncome);
  
 // Send the changes to the database
 rs.updateRow();
 }
 }
 finally {
 JDBCUtil.closeStatement(stmt);
 }
 }
}

Deleting a Row Using a ResultSet
Deleting a row from a ResultSet is easier than updating and inserting a row. Here are the steps to delete a row.

	 1.	 Position the cursor at a valid row.

	 2.	 Call the deleteRow() method of the ResultSet to delete the current row.

The deleteRow() method deletes the row from the ResultSet object and, at the same time, it deletes the row
from the database. There is no way to cancel the delete operation except by rolling back the transaction. If the auto-
commit mode is enabled on the Connection object, deleteRow() will permanently delete the row from the database.

Typical code for deleting a row from a ResultSet object is as follows:
 
ResultSet rs = get an updatable result set object;
 
// Scroll to the row you want to delete, say the first row
rs.next();
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

463

// Delete the current row
rs.delete(); // Row is deleted from the result set and the database
 
// Commit or rollback changes depending on your processing logic

Handling Multiple Results from a Statement
Sometimes executing a SQL statement may return multiple results. Typically, you get multiple results by executing
a stored procedure. The results include the update counts and result sets. For example, if you execute a stored
procedure that updates some records and returns a result set, you get two results. The first one will be the update
count and the second will be the result set. Some DBMSs let you suppress sending back the update counts. For
example, you can use SET NOCOUNT ON and SET NOCOUNT OFF options inside your stored procedure in SQL Server
DBMS to disable or enable the update count results. Consult your DBMS documentation for the options that are
available to suppress the update count results.

Use the execute() method of the Statement object if it may return multiple results. You need to work with four
things to process multiple results. You may or may not know the order in which the results are returned. The first thing
you need to consider is the return value of the execute() method. You need to work with the following three methods
of the Statement interface to access all results:

•	 getMoreResults()

•	 getUpdateCount()

•	 getResultSet()

The execute() method may generate many results or no results. You must read one result at a time. You must
first scroll to a result before you can read it. The execute() method scrolls to the first result, if there is one. If the first
result is a ResultSet, the execute() method returns true. If the first result is an update count or there is no result, it
returns false. You can retrieve a ResultSet result by calling the Statement object’s getResultSet() method. You can
retrieve an update count by calling its getUpdateCount() method.

You can scroll to the next result by calling the getMoreResults() method of a Statement. The getMoreResults()
method returns true if it scrolls to a ResultSet result. It returns false if it scrolls to an update count result or there are
no more results.

Aren’t the rules to process multiple results confusing? So, what criteria determine that you do have more results
to process? It is a little tricky to tell. You will need to write a few lines of code to process multiple results returned by
executing a statement. The following snippet of code puts the logic together. It uses a CallableStatement object. You
can also use a Statement or PreparedStatement object. The following logic does not depend on the order or the count
of the multiple results:
 
Callable cstmt = get a callable statement object;
boolean hasResultSet = cstmt.execute();
int updateCount = cstmt.getUpdateCount();
 
while (hasResultSet || updateCount != -1) {
 if (hasResultSet) {
 // The cursor is pointing to a ResultSet object
 ResultSet rs = cstmt.getResultSet();
 
 // Process the result set here
 System.out.println("Got a result set");
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

464

 else {
 System.out.println("Got an update Count: " + updateCount);
 }
 
 // Move the cursor to the next result
 hasResultSet = cstmt.getMoreResults();
 
 // Get the new update count
 updateCount = cstmt.getUpdateCount();
}
 
// When we get to this point, all results have been processed. 

Tip■■   When you call the getMoreResults() method, the ResultSet that was previously obtained by using the
getResultSet() method is closed. If you want to keep the previously accessed ResultSet, you can use another version
of the getMoreResults() method that accepts an argument, which lets you specify what to do with the open ResultSet
objects. As usual, closing the Statement object will close all ResultSets.

Getting a ResultSet from a Stored Procedure
I have covered a great deal of details on processing result sets that are produced by executing a SELECT statement
(see Listing 6-11). A stored procedure can also produce a result set. Producing a result set in a stored procedure is easy
in most of the databases. It is just a matter of writing a SELECT statement inside a stored procedure. The following is
an example of creating a stored procedure in Adaptive Server Anywhere DBMS that returns a result set. The name of
the stored procedure is get_person_details. It accepts one parameter, which is of type integer and is the value for
person_id. To return a result set, it simply selects columns from the person table for the person_id that is passed in.
 
-- Adaptive Server Anywhere 9.0
create procedure get_person_details(@person_id integer)
as
begin
 select person_id, first_name, last_name, gender, dob, income
 from person
 where person_id = @person_id
end
 

Producing a result set inside a stored procedure in Oracle database is a little different. You need to work with
a REF CURSOR type in an Oracle database to produce a result set. First, you work with an example of dealing with
result sets produced by a stored procedure by a DBMS other than Oracle. Please refer to your DBMS and its JDBC
documentation on how it supports producing a result set inside a stored procedure. At the end of this section, you will
see an example of producing a result set in a stored procedure using Oracle DBMS.

This section contains the database script to create a get_person_details stored procedure in some DBMSs. If
you are working with one of these DBMSs, you need to run the script for your DBMS before you can run the examples
in this section. If your DBMS is not listed, you can duplicate the logic and create a get_person_details stored
procedure in your DBMS, which produces a result set.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

465

If your stored procedure produces only one result set, it is straightforward to process that result set. Here are the
steps to process one result set from a stored procedure:

Construct the stored procedure call in a string format using the JDBC standard syntax.•	
 
String sql = "{call get_person_details(?)}";

Prepare a •	 CallableStatement using the SQL syntax created in the previous step.
 
CallableStatement cstmt = conn.prepareCall(sql);

Set any •	 IN parameters that need to be passed to the stored procedure. In your case, you will
pass a person_id to the stored procedure and you need to set a person_id as the IN parameter.
 
cstmt.setInt(1, 101);

Call the •	 executeQuery() method of the CallableStatement object, which will return the
result set produced by the stored procedure as a ResultSet.
 
ResultSet rs = cstmt.executeQuery();

Process the •	 ResultSet object as usual by looping through its rows and using the getXxx()
methods to read the columns values.

Tip■■   If your stored procedure returns multiple result sets, you need to use the execute() method of the
CallableStatement interface instead of the executeQuery() method. Please refer to the “Handling Multiple Results
from a Statement” section for more details on how to handle multiple result sets produced by a stored procedure.

The following are the database scripts for creating the get_person_details stored procedure in different DBMSs.

MySQL Database
DELIMITER $$
 
DROP PROCEDURE IF EXISTS get_person_details $$
 
CREATE PROCEDURE get_person_details(in person_id_param int)
BEGIN
 select person_id, first_name, last_name, gender, dob, income
 from person
 where person_id = person_id_param;
END $$
 
DELIMITER ;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

466

Adaptive Server Anywhere Database
create procedure get_person_details(@person_id integer)
as
begin
 select person_id, first_name, last_name, gender, dob, income
 from person
 where person_id = @person_id
end

Oracle Database
CREATE OR REPLACE
PACKAGE JDBC_TEST_PKG
AS
 type person_cursor_type is ref cursor;
END JDBC_TEST_PKG;
  
create or replace PROCEDURE GET_PERSON_DETAILS
(person_id_param IN NUMBER,
 person_cursor OUT jdbc_test_pkg.person_cursor_type
)
AS
BEGIN
 open person_cursor for
 select person_id, first_name, last_name, gender, dob, income
 from person
 where person_id = person_id_param;
END GET_PERSON_DETAILS;

SQL Server Database
-- Drop stored procedure if it already exists
IF EXISTS (
 SELECT *
 FROM INFORMATION_SCHEMA.ROUTINES
 WHERE SPECIFIC_SCHEMA = N'dbo'
 AND SPECIFIC_NAME = N'get_person_details'
)
 DROP PROCEDURE dbo.get_person_details
GO
 
CREATE PROCEDURE dbo.get_person_details
 @person_id int
AS
BEGIN
 SELECT person_id, first_name, last_name, gender, dob, income
 FROM person
 WHERE person_id = @person_id;
END;
GO

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

467

DB2 Database
create procedure get_person_details(in person_id_param int)
result sets 1
language sql
begin
 declare c1 cursor with return for
 select person_id, first_name, last_name, gender, dob, income
 from person
 where person_id = person_id_param;
 open c1;
end
@
 

The @ sign is used as the statement terminator in the above syntax.

Java DB Database
For the Java DB database, you need to write the stored procedure as a method in a Java class as shown in Listing 6-15.

Listing 6-15.  The Java Code for the get_person_details Stored Procedure in Java DB

// JavaDBGetPersonDetailsSp.java
package com.jdojo.jdbc;
 
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
 
public class JavaDBGetPersonDetailsSp {
 public static void getPersonDetails(int personId,
 ResultSet[] personDetailRs) throws SQLException {
  
 // Must use the following URL to get the reference of
 // the Connection object in whose context this method
 // is called.
 String dbURL = "jdbc:default:connection";
 Connection conn = DriverManager.getConnection(dbURL);
  
 String sql = "select person_id, first_name, " +
 "last_name, gender, dob, income " +
 "from person " +
 "where person_id = ?";

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

468

 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setInt(1, personId);
 ResultSet rs = pstmt.executeQuery();
 personDetailRs[0] = rs;
 
 /* Do not close pstmt or rs here. They are meant to be
 procssed and closed by the caller of this stored
 procedure.
 */
 }
}
 

The command to create the get_person_details stored procedure in the Java DB database is as follows. For
more details on working with stored procedures in Java DB, please refer to Listing 6-8 and the related steps in the
section containing this listing.
 
-- Command to create the stored procedure
CREATE PROCEDURE get_person_details(IN person_id integer)
PARAMETER STYLE JAVA
LANGUAGE JAVA
READS SQL DATA
DYNAMIC RESULT SETS 1
EXTERNAL NAME 'com.jdojo.jdbc.JavaDBGetPersonDetailsSp.getPersonDetails';
 

Listing 6-16 contains the complete code that executes a stored procedure and processes the result set produced
by the stored procedure. It uses the printResultSet() static method of the QueryPersonTest class (see Listing 6-11)
to print a person’s details. This program is valid for a database that has native support for a result set on the server
side. Please refer to the example later in this section to process a result set produced by a stored procedure in an
Oracle database.

Listing 6-16.  Processing a ResultSet Produced by a Stored Procedure

// StoredProcedureResultSetTest.java
package com.jdojo.jdbc;
 
import java.sql.CallableStatement;
import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
 
public class StoredProcedureResultSetTest {
 public static void main(String[] args) {
 Connection conn = null;
 try {
 conn = JDBCUtil.getConnection();
 
 // Print details for person_id 101
 printPersonDetails(conn, 101);
 
 JDBCUtil.commit(conn);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

469

 catch (SQLException e) {
 System.out.println(e.getMessage());
 JDBCUtil.rollback(conn);
 }
 finally {
 JDBCUtil.closeConnection(conn);
 }
 }
 
 public static void printPersonDetails(Connection conn,
 int personId) throws SQLException {
 String SQL = "{ call get_person_details(?) }";
 CallableStatement cstmt = null;
 try {
 cstmt = conn.prepareCall(SQL);
 
 // Set the IN parameters
 cstmt.setInt(1, personId);
 ResultSet rs = cstmt.executeQuery();
 
 // Process the result set
 QueryPersonTest.printResultSet(rs);
 }
 finally {
 JDBCUtil.closeStatement(cstmt);
 }
 }
}
 

Now, it is time to work with an Oracle database only. Here are the steps that you will need to use to process a
result set produced by a stored procedure in an Oracle database.

	 1.	 Construct the stored procedure call in a string format using the JDBC standard syntax.
You will have an additional OUT parameter for an Oracle stored procedure. In an Oracle
database, the stored procedure will pass back the reference of a REF CURSOR type in
that OUT parameter. In your case, the first parameter is of the IN type and it will be used
to pass a person_id. The second parameter is an OUT parameter of type oracle.jdbc.
OracleTypes.CURSOR. Note that you must have the JAR file(s) for the Oracle JDBC driver
included in the CLASSPATH to use the oracle.jdbc.OracleTypes.CURSOR interface.

String sql = "{call get_person_details(?, ?)}";

	 2.	 Prepare a CallableStatement using the SQL syntax created in the previous step.

CallableStatement cstmt = conn.prepareCall(sql);

	 3.	 Set any IN parameters that need to be passed to the stored procedure. In your case, you
will pass a person_id to the stored procedure and you need to set that person_id as an IN
parameter. Register the OUT parameter as oracle.jdbc.OracleTypes.CURSOR type.

cstmt.setInt(1, 101);
cstmt.registerOutParameter(2, oracle.jdbc.OracleTypes.CURSOR);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

470

	 4.	 Call the execute() method of the CallableStatement object.

cstmt.execute();

	 5.	 Get the ResultSet object, which is passed back in the second OUT parameter using the
getObject() method and cast it as ResultSet.

ResultSet rs = (ResultSet)cstmt.getObject(2);

	 6.	 Process the ResultSet object as usual by looping through its rows and using its getXxx()
methods to read the column values.

Listing 6-17 contains the complete code that executes the get_person_details stored procedure in an
Oracle database and processes the result set produced by the stored procedure. Make sure that you have the
JDBCUtil.getConnection() method (see Listing 6-1) that returns a connection to an Oracle database. You must also
compile the necessary package and procedure in the Oracle database as listed in this section for Oracle before you can
run the program in Listing 6-17. Note that you will need to uncomment the following statement that appears inside
the printPersonDetails() method:
 
//cstmt.registerOutParameter(2, oracle.jdbc.OracleTypes.CURSOR);
 

I have commented it so the entire class will compile. You will need to add the Oracle JDBC driver JAR file in
CLASSPATH to compile the class, after uncommenting this statement.

Listing 6-17.  Processing a ResultSet from a Stored Procedure in Oracle Database

// OracleStoredProcedureResultSetTest.java
package com.jdojo.jdbc;
 
import java.sql.CallableStatement;
import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
 
public class OracleStoredProcedureResultSetTest {
 public static void main(String[] args) {
 Connection conn = null;
 try {
 conn = JDBCUtil.getConnection();
 
 // Print details for person_id 101
 printPersonDetails(conn, 101);
 
 JDBCUtil.commit(conn);
 }
 catch (SQLException e) {
 System.out.println(e.getMessage());
 JDBCUtil.rollback(conn);
 }
 finally {
 JDBCUtil.closeConnection(conn);
 }
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

471

 public static void printPersonDetails(Connection conn,
 int personId) throws SQLException {
 String sql = "{ call get_person_details(?, ?) }";
 CallableStatement cstmt = null;
 try {
 cstmt = conn.prepareCall(sql);
 
 // Set the IN parameters
 cstmt.setInt(1, personId);
 
 
 /* Uncomment the following statement after you have
 the Oracle JDBC driver in CLASSPATH.
 Register the second parameter as an OUT parameter
 which will return the REF CURSOR (the ResultSet) */
 //cstmt.registerOutParameter(2,
 // oracle.jdbc.OracleTypes.CURSOR);
 
 // Execute the stored procedure
 cstmt.execute();
 
 // Get the result set from the OUT parameter
 ResultSet rs = (ResultSet) cstmt.getObject(2);
 
 // Process the result set
 QueryPersonTest.printResultSet(rs);
 }
 finally {
 JDBCUtil.closeStatement(cstmt);
 }
 }
}
 

Many databases support the REF CURSOR type. Java 8 has added direct support for REF CURSOR data type in the
JDBC API by adding the JDBCType.REF_CURSOR enum constant that represents REF CUSROR data type in Java. Using
this JDBC type, you will be able to work with the REF CURSOR type without using proprietary JDBC classes in your
Java program. For example, you will be able to register the OUT parameter of the REF CURSOR database type in the
printPersonDetails() method as follows:
 
cstmt.registerOutParameter(2, JDBCType.REF_CURSOR); 

Tip■■  A t the time of this writing, the JDBCType.REF_CURSOR type has not been implemented in the Oracle JDBC driver.
If you use this type to register a REF CURSOR database type, you will get a runtime error with an error message that this
data type has not been implemented yet. Use the supportsRefCursors() method of the DatabaseMetaData interface,
which was added in Java 8, to know if the database supports REF CURSOR.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

472

ResultSetMetaData
A ResultSet object contains the rows of data returned by executing a query and detailed information about the
columns. The information that it contains about the columns in the result set is called the result set metadata. An
object of the ResultSetMetaData interface represents the result set metadata. You can get a ResultSetMetaData
object by calling the getMetaData() method of the ResultSet interface.
 
ResultSet rs = get result set object;
ResultSetMetaData rsmd = rs.getMetaData();
 

A ResultSetMetaData contains a lot of information about all columns in a result set. All of the methods, except
getColumnCount(), in the ResultSetMetaData interface accept a column index in the result set as an argument.
It contains the table name, name, label, database data type, class name in Java, nullability, precision, etc. of a column.
It also contains the column count in the result set. Its getTableName() method returns the table name of a column;
the getColumnName() method returns the column’s name; the getColumnLabel() method returns the column’s label;
the getColumnTypeName() method returns the column type in database; and the getColumnClassName() method
returns Java class used to represent the data for the column. Its getColumnCount() method returns the number of
columns in the result set.

The column label is a nice printable text that is used in a query after the column name. The following query uses
"Person ID" as the column label for the person_id column. The first_name column does not have a specified label.
 
select person_id as "Person ID", first_name from person
 

The getColumnLabel(1) method call will return "Person ID", whereas getColumnName(1) will return person_id
if the above query is used for a result set. If the column label is not specified in a query, the getColumnLabel() method
returns the column name.

Listing 6-18 demonstrates how to use a ResultSetMetaData object to know more about a result set. The output
is shown for Java DB. You may get a different output when you use a different JDBC driver because database-column-
type-to-JDBC-column-type mapping depends on the JDBC driver.

Listing 6-18.  Using a ResultSetMetaData Object to Get Information About a ResultSet

// ResultSetMetaDataTest.java
package com.jdojo.jdbc;
 
import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.ResultSetMetaData;
import java.sql.SQLException;
import java.sql.Statement;
 
public class ResultSetMetaDataTest {
 public static void main(String[] args) {
 Connection conn = null;
 try {
 conn = JDBCUtil.getConnection();
 String SQL = "select person_id as \"Person ID\", " +
 "first_name as \"First Name\", " +
 "gender as Gender, " +
 "dob as \"Birth Date\", " +
 "income as Income " +
 "from person";
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

473

 // Print the reSult set matadata
 printMetaData(conn, SQL);
  
 JDBCUtil.commit(conn);
 }
 catch (SQLException e) {
 System.out.println(e.getMessage());
 JDBCUtil.rollback(conn);
 }
 finally {
 JDBCUtil.closeConnection(conn);
 }
 }
 public static void printMetaData(Connection conn, String SQL)
 throws SQLException {
 Statement stmt = conn.createStatement();
 try {
 ResultSet rs = stmt.executeQuery(SQL);
 ResultSetMetaData rsmd = rs.getMetaData();
 int columnCount = rsmd.getColumnCount();
 System.out.println("Column Count:" + columnCount);
 
 for (int i = 1; i <= columnCount; i++) {
 System.out.println("Index:" + i +
 ", Name:" + rsmd.getColumnName(i) +
 ", Label:" + rsmd.getColumnLabel(i) +
 ", Type Name:" + rsmd.getColumnTypeName(i) +
 ", Class Name:" + rsmd.getColumnClassName(i));
 }
 }
 finally {
 JDBCUtil.closeStatement(stmt);
 }
 }
}
 

Index:1, Name:Person ID, Label:Person ID, Type Name:INTEGER, Class Name:java.lang.Integer
Index:2, Name:First Name, Label:First Name, Type Name:VARCHAR, Class Name:java.lang.String
Index:3, Name:GENDER, Label:GENDER, Type Name:CHAR, Class Name:java.lang.String
Index:4, Name:Birth Date, Label:Birth Date, Type Name:DATE, Class Name:java.sql.Date
Index:5, Name:INCOME, Label:INCOME, Type Name:DOUBLE, Class Name:java.lang.Double

 
If you have to write generic code to process any or an unknown result set, you will find a ResultSetMetaData

object indispensable. For example, suppose you want to develop a Swing application that will let the user enter
in a query and you will display the query data in a JTable. To construct the JTable, you must know the number
of columns in the result set. You can use the getColumnCount() method of a ResultSetMetaData object to know
the number of columns in a result set. You can use many other methods available in this object to construct an
appropriate JTable.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

474

Using RowSets
An instance of the RowSet interface is a wrapper for a result set. The RowSet interface inherits from the ResultSet
interface. In simple terms, a RowSet is a Java object that contains a set of rows from a tabular data source. The tabular
data source could be a database, a flat file, a spreadsheet, etc. The RowSet interface is in the javax.sql package.
The following are the advantages of the RowSet over the ResultSet:

A •	 RowSet makes JDBC programming simpler. When you use a ResultSet object, you must deal
with the Connection and Statement objects at the same time. A RowSet hides the complexities
of using the Connection and Statement objects from the developers. All you have to work with
is only one object, which is a RowSet object.

A •	 ResultSet is not Serializable and therefore, it cannot be sent over the network or saved to
the disk for later use. A RowSet is Serializable. It can be sent over the network or saved to a
disk for later use.

A •	 ResultSet is always connected to a data source. A RowSet object does not need to be
connected to its data source all the time. It can connect to the database when needed such as
to retrieve/update data in the data source.

A •	 RowSet is by default scrollable and updatable.

The two properties of a •	 RowSet, serialization and connectionlessness, makes it very useful in
a thin client environment such as a mobile device or a web application. A thin client does not
need to have a JDBC driver. It may get the data in a disconnected RowSet from a middle tier.
It may modify the data and send the modified RowSet to the middle tier, which can connect to
the data source and update the data. You can use this technique in an applet or a web page.
You can have a servlet that can connect to a database, retrieve data in a disconnected RowSet,
and pass it to an applet. The applet can modify the data and send the modified RowSet to the
servlet, which can connect to the database to update the data. This way, an applet does not
need to use a JDBC driver or anything related to database connectivity at all. There is also a
RowSet type available for web usage that works with XML data.

A •	 ResultSet uses a database as its data source. You are not restricted to using only a database
as a data source with a RowSet. You can implement a RowSet to use any tabular data source.

A •	 RowSet follows the JavaBeans model for properties setting and events notifications, which makes
it possible to develop a RowSet using a visual tool that supports the JavaBeans development.

A •	 RowSet also supports filtering of data after the data has been retrieved. Filtering of data
is not possible in a ResultSet. You must use a WHERE clause in a query to filter data in the
database itself if you use a ResultSet.

A •	 RowSet makes it possible to join two or more data sets based on their column’s values
after they have been retrieved from their data sources. One data set can be retrieved from a
database and another from a flat file. This is simply not possible when you use a ResultSet.
When you use a ResultSet, joining multiple data sets is possible using SQL joins in the query
that fills the ResultSet.

You also need to be aware of a few disadvantages of using a RowSet.

A specific •	 RowSet implementation may cache data in memory. You need to be careful when
using such type of RowSets. You should not fetch large volumes of data using these RowSets.
Otherwise, it may slow down the application.

With cached data in a •	 RowSet, there are more possibilities of data inconsistency between the
data in the RowSet and data in the data source, when changes are applied to the data source.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

475

The following interfaces in the javax.sql.rowset package define five types of rowsets:

•	 JdbcRowSet

•	 CachedRowSet

•	 WebRowSet

•	 FilteredRowSet

•	 JoinRowSet

Each type of rowset has features that are suitable for specific needs. All these rowset interfaces inherit, directly
or indirectly, from the RowSet interface. The RowSet interface is inherited from the ResultSet interface. Therefore,
all methods in the ResultSet interface are also available in all types of rowsets. Figure 6-7 depicts a class diagram for
rowset interfaces.

Figure 6-7.  A class diagram for the interfaces defining rowsets

Who provides the implementation classes for the rowsets interfaces? Typically, database vendors are supposed
to provide implementation classes for rowsets. They may provide them as part of their JDBC driver or as a separate
bundle. Third parties can also provide rowset implementation classes. As a developer, you can also provide rowset
implementations to suit specific needs.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

476

 Creating a RowSet
An instance of the RowSetFactory interface lets you create different types of RowSet objects without caring about
the rowset implementation classes. To get a RowSetFactory, you need to use the newFactory() static method of the
RowSetProvider class. The RowSetFactory interface has five methods to create five types of rowsets. Those methods
are named as createXxxRowSet(), where Xxx can be Cached, Filtered, Jdbc, Join, and Web. For example, you will use
the createJdbcRowSet() method of a RowSetFactory to create a JdbcRowSet. The following snippet of code shows
how to create a JdbcRowSet:
 
import java.sql.SQLException;
import javax.sql.rowset.JdbcRowSet;
import javax.sql.rowset.RowSetFactory;
import javax.sql.rowset.RowSetProvider;
...
 
JdbcRowSet jdbcRs = null;
try {
 // Get the RowSetFactory implementation
 RowSetFactory rsFactory = RowSetProvider.newFactory();
 
 // Create a JdbcRowSet object
 jdbcRs = rsFactory.createJdbcRowSet();
 
 // Work with jdbcRs here
}
catch (SQLException e) {
 e.printStackTrace();
}
finally {
 if (jdbcRs != null) {
 try {
 // Close the RowSet
 jdbcRs.close();
 }
 catch (SQLException e) {
 e.printStackTrace();
 }
 }
}
 

The newFactory() method of the RowSetProvider class searches for the implementation class for the
RowSetFactory interface as follows:

It looks for the value of the •	 javax.sql.rowset.RowSetFactory system property. You can specify
this property value on the command line. The following command sets this property value to
the com.jdojo.MyRowSetFactoryImpl class when running the com.jdojo.jdbc.Test class:
 
java -Djavax.sql.rowset.RowSetFactory=com.jdojo.MyRowSetFactoryImpl com.jdojo.jdbc.Test

The service provider API looks for a class name in all available JAR files to the runtime under •	
META-INF/services/javax.sql.rowset.RowSetFactory.

It looks for the platform’s default implementation for the •	 RowSetFactory interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

477

The RowSetProvider class has another static method called newFactory(String factoryClassName,
ClassLoader cl) that lets you specify the class name of the RowSetFactory implementation to use. This method is
useful when multiple RowSetFactory providers are available at runtime and you want to use a specific one. Suppose
you have created a class com.jdojo.jdbc.MyRowSetFactory that implements the RowSetFactory interface. The
following snippet of code shows how to use this version of the newFactory() method to use your own implementation
of the RowSetFactory class:
 
String factoryClassName = "com.jdojo.jdbc.MyRowSetFactory";
 
// Use null as the second argument to use the current Thread's context classLoader
RowSetFactory factory = RowSetProvider.newFactory(factoryClassName, null);
 
// Create a JdbcRowSet
JdbcRowSet jdbcRs = factory.createJdbcRowSet();

Setting RowSet Connection Properties
A RowSet is a JavaBeans component. You can set its properties at design time using a visual development tool. You can
also set its properties at runtime. Typically, a RowSet will need to connect to a data source to retrieve and update data.
You can set the database connection properties for a RowSet in terms of a JDBC URL or a data source name. When you
use a JDBC URL, the RowSet will use a JDBC driver to connect to the database registered with the DriverManager class.
You can set the JDBC connection properties for a RowSet object as follows:
 
// Register the JDBC driver with the DriverManager here
 
// Create a RowSet
RowSet rs = create a RowSet;
 
// Set the conection properties for the RowSet
rs.setUrl("jdbc:derby:beginningJavaDB");
rs.setUsername("root");
rs.setPassword("chanda");
 

You do not need to establish a connection to the database. The RowSet will take care of establishing connection
when it is needed.

Alternatively, you can set a data source name for the RowSet object. It will look up the data source name using a
JNDI service to get a DataSource object for connecting to the database.
 
RowSet rs = create a RowSet;
rs.setDataSourceName("jdbc/myTestDB");
 

You need to set either a data source name or a JDBC URL. If you set both, the most recently set non-null value will
be used to connect to the database.

Not all RowSets connect to a database. For example, if you use a RowSet to send data over the network, you do not
need to set its connection properties. However, if a RowSet object needs to interact with a database, you must set these
properties before you call any methods of that RowSet needing a database connection.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

478

Setting a Command for a RowSet
You learned in the previous section that you do not need to worry about a Connection object to use a RowSet.
The benefits of using a RowSet do not stop there. When you work with a RowSet, you do not need to worry about
Statement, PreparedStatement, and CallableStatement objects either. However, you must specify a command
that will generate the result set for the RowSet object. The command will be in a string in the form of a SQL SELECT
statement or a stored procedure call. You can use a question mark as a placeholder for any parameter that you
would like to pass to your command at runtime. To set a parameter value at runtime, you need to use one of
setXxx(int paramIndex, Xxx paramValue) methods of the RowSet interface. Working with parameters in a
command for a RowSet is the same as working with parameters for a PreparedStatement. The following snippet of
code contains some examples of setting a command for a RowSet object:
 
RowSet rs = create a RowSet;
 
/* Example 1 */
// Command to select all rows from the person table
String sqlCommand = "select person_id, first_name, last_name from person";
 
// Set the command to the RowSet object
rs.setCommand(sqlCommand);
 
/* Example 2 */
// Command to select rows from the person table with two parameters that
// will be the range of the income
String sqlCommand = "select person_id, first_name, last_name, income " +
 "from person " +
 "where income between ? and ?;
 
// Set the command to the RowSet object
rs.setCommand(sqlCommand);
 
// Set the range of income between 20000.0 and 30000.0
rs.setDouble(1, 20000.0);
rs.setDouble(2, 30000.0);
 
/* Example 3 */
// Command to execute a stored procedure that accepts two parameters that will //be the
// range of the income. The getPersons() stored procedure produces a result set
String sqlCommand = "{call getPersons(?, ?)}";
 
// Set the command to the RowSet object
rs.setCommand(sqlCommand);
 
// Set the range of income between 20000.0 and 30000.0
rs.setDouble(1, 20000.0);
rs.setDouble(2, 30000.0);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

479

Populating a RowSet with Data
A RowSet may be populated with data in many ways:

By executing a command such as a SQL •	 SELECT or a stored procedure

By supplying it with a •	 ResultSet in which it will read all its data from the supplied ResultSet

By reading XML data into it•	

By using any other custom methods•	

If you want to populate a RowSet with data by executing its command, you need to call its execute() method
as shown:
 
// Execute its command to populate the RowSet
rs.execute();
 

After the execute() method is executed, the RowSet has the data in it and you need to scroll to a row to read/
update its column’s value. Other methods of populating a RowSet depend on the type of the RowSet. I will discuss an
example of each type shortly in the section that describes the specific types of RowSets.

Scrolling Through Rows of a RowSet
In simple terms, a RowSet is a wrapper for a ResultSet. It inherits all cursor movement methods from the
ResultSet interface. By default, all RowSet objects are bidirectional scrollable and updateable. However, check the
implementation documentation for your RowSet to see if it imposes any restrictions on scrollability or updatability.
The following snippet of code shows a typical while-loop that is used to scroll through all rows and read some column
values from rows. It is the same as what you have been using to scroll through a ResultSet object.
 
RowSet rs = create a RowSet;
...
while(rs.next()) {
 // Read values for person_id and first_name from the current row
 int personID = rs.getInt("person_id");
 String firstName = rs.getString("first_name");
 
 // Perform other processing here
}

Updating Data in a RowSet
Updating data in a RowSet is similar to updating data in a ResultSet. To update a column’s value, you need to move
the cursor to a row, use one of the updateXxx() methods to set the new value for a column, and call the updateRow()
method of the RowSet to make the changes permanent in the RowSet.

To insert a new row, you need to move the cursor to the insert row by calling the moveToInsertRow() method of
the RowSet. You need to set values for columns in the insert row using one of updateXxx() methods. Finally, you call
the insertRow() method of the RowSet.

To delete a row, you need to move the cursor to the row you want to delete and call the deleteRow() method of
the RowSet.

How and when the changes made to a RowSet object are propagated to the database depends on the type of the
RowSet. I will discuss updating different types of RowSet in the next few sections.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

480

Tip■■   You can make a RowSet read-only by calling its setReadOnly(true) method.

The RowSetUtil Class
You need to use repetitive code in examples in using rowsets such as to supply database connection properties, to get
a RowSetFactory instance, and to print rows of a RowSet. Listing 6-19 contains the complete code for a RowSetUtil
class that you will use in this section. Its setConnectionParameters() method loads a JDBC driver and sets its
connection parameters. Its getRowSetFactory() method returns a RowSetFactory instance. Its printPersonRecord()
method prints records from a RowSet, assuming that the RowSet contains at least person_id, first_name, and last_name
columns from the person table.

Listing 6-19.  A Utility Class to Help Working With a RowSet

// RowSetUtil.java
package com.jdojo.jdbc;
 
import java.sql.Driver;
import java.sql.DriverManager;
import java.sql.SQLException;
import javax.sql.RowSet;
import javax.sql.rowset.RowSetFactory;
import javax.sql.rowset.RowSetProvider;
 
public class RowSetUtil {
 private static boolean driverLoaded = false;
 
 public static void setConnectionParameters(RowSet rs) throws SQLException {
 // Register the JDBC driver only once for your database
 if (!driverLoaded) {
 // Change the JDBC driver class for your database
 Driver derbyEmbeddedDriver =
 new org.apache.derby.jdbc.EmbeddedDriver();
 DriverManager.registerDriver(derbyEmbeddedDriver);
 
 driverLoaded = true;
 }
 
 // Set the rowset database connection properties
 String dbURL = "jdbc:derby:beginningJavaDB;create=true;";
 String userId = "root";
 String password = "chanda";
 rs.setUrl(dbURL);
 rs.setUsername(userId);
 rs.setPassword(password);
 }
  

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

481

 public static RowSetFactory getRowSetFactory() {
 try {
 RowSetFactory factory = RowSetProvider.newFactory();
 return factory;
 }
 catch (SQLException e) {
 throw new RuntimeException(e);
 }
 }
  
 // Print person id and name for each person record
 public static void printPersonRecord(RowSet rs) throws SQLException {
 while (rs.next()) {
 int personId = rs.getInt("person_id");
 String firstName = rs.getString("first_name");
 String lastName = rs.getString("last_name");
 System.out.println("Row #" + rs.getRow() + ":" +
 " Person ID:" + personId +
 ", First Name:" + firstName +
 ", Last Name:" + lastName);
 }
 
 System.out.println();
 }
}

JdbcRowSet
A JdbcRowSet is also called a connected rowset because it always maintains a database connection. You can think of
a JdbcRowSet as a thin wrapper for a ResultSet. As a ResultSet always maintains a database connection, so does a
JdbcRowSet. It adds some methods that let you configure the connection behaviors. You can use its setAutoCommit()
method to enable or disable the auto-commit mode for the connection. You can use its commit() and rollback()
methods to commit or rollback changes made to its data.

A JDBC driver or underlying database may not support a bidirectional scrollable and updatable result set. In
such cases, a JdbcRowSet implementation may provide such features. Listing 6-20 uses a JdbcRowSet to read records
for all person_id in a specified range from the person table. Note that the code attempts to print the number of rows
retrieved by using the last() method of the RowSet. At the end, it uses the printPersonRecord() method of the
RowSetUtil class to print the records in the rowset.

Listing 6-20.  Using a JdbcRowSet to Read Records from a Table

// JdbcRowSetTest.java
package com.jdojo.jdbc;
 
import java.sql.SQLException;
import javax.sql.rowset.JdbcRowSet;
import javax.sql.rowset.RowSetFactory;
 
public class JdbcRowSetTest {
 public static void main(String[] args) {
 RowSetFactory factory = RowSetUtil.getRowSetFactory();
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

482

 // Use a try-with-resources block
 try (JdbcRowSet jdbcRs = factory.createJdbcRowSet()) {
 // Set the connection parameters
 RowSetUtil.setConnectionParameters(jdbcRs);
 
 // Set the command and input parameters
 String sqlCommand = "select person_id, first_name, " +
 "last_name from person " +
 "where person_id between ? and ?";
  
 jdbcRs.setCommand(sqlCommand);
 jdbcRs.setInt(1, 101);
 jdbcRs.setInt(2, 301);
 
 // Retrieve the data
 jdbcRs.execute();
 
 // Scroll to the last row to get the row count It may throw an
 // exception if the underlying JdbcRowSet implementation
 // does not support a bi-directional scrolling result set.
 try {
 jdbcRs.last();
 System.out.println("Row Count: " + jdbcRs.getRow());
 
 // Position the cursor before the first row
 jdbcRs.beforeFirst();
 }
 catch(SQLException e) {
 System.out.println("JdbcRowSet implementation" +
 " supports forward-only scrolling");
 }
 
 // Print the records in the rowset
 RowSetUtil.printPersonRecord(jdbcRs);
 }
 catch (SQLException e) {
 e.printStackTrace();
 }
 }
}
 

Updating data using a JdbcRowSet is similar to updating data using a ResultSet. Make sure that you set the
auto-commit mode for the rowset appropriately. In case of a JdbcRowSet, all methods will be used on a JdbcRowSet
object instead of a ResultSet object.

Listing 6-21 contains the complete code that retrieves a person record and updates its income to 65000.00. Note
that you must call the updateRow() method of the JdbcRowSet after updating the column’s value and before you scroll
to another row. Otherwise, your changes will be lost as it is lost in the case of updating data in a ResultSet. In case of
JdbcRowSet, you do not have a direct access to the Connection object. You need to use JdbcRowSet object’s commit()
and rollback() methods to commit and rollback changes to the database.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

483

Listing 6-21.  Updating Data in a JdbcRowSet

// JdbcRowSetUpdateTest.java
package com.jdojo.jdbc;
 
import java.sql.SQLException;
import javax.sql.rowset.JdbcRowSet;
import javax.sql.rowset.RowSetFactory;
 
public class JdbcRowSetUpdateTest {
 public static void main(String[] args) {
 RowSetFactory factory = RowSetUtil.getRowSetFactory();
 
 // Use a try-with-resources block
 try (JdbcRowSet jdbcRs = factory.createJdbcRowSet()) {
 // Set the connection parameters
 RowSetUtil.setConnectionParameters(jdbcRs);
  
 // Set the auto-commit mode to false
 jdbcRs.setAutoCommit(false);
 
 // Set the command and input parameters
 String sqlCommand = "select person_id, first_name, " +
 "last_name, income from person " +
 "where person_id = ?";
 jdbcRs.setCommand(sqlCommand);
 jdbcRs.setInt(1, 101);
 
 // Retrieve the data
 jdbcRs.execute();
 
 // If a row is retrieved, update the first row's income
 // column to 65000.00
 if (jdbcRs.next()) {
 int personId = jdbcRs.getInt("person_id");
 jdbcRs.updateDouble("income", 65000.00);
 jdbcRs.updateRow();
 
 // Commit the changes
 jdbcRs.commit();
 
 System.out.println("Income has been set to " +
 "65000.00 for person_id=" + personId);
 }
 else {
 System.out.println("No person record was found.");
 }
 }
 catch (SQLException e) {
 e.printStackTrace();
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

484

CachedRowSet
A CachedRowSet is also called a disconnected rowset because it is disconnected from a database when it does not
need a database connection. It keeps the database connection open only for the duration it needs to interact with the
database. Once it is done with the connection, it disconnects. For example, it connects to a database when it needs to
retrieve or update data.

It retrieves all data generated by the command and caches the data in memory. Care should be taken not to
retrieve a large volume of data in a CachedRowSet. Otherwise, it may degrade the performance of the application. It
provides a new feature called paging, which lets you deal with large volume of data in chunks. You will see an example
of paging in this section.

A CachedRowSet is always serializable, scrollable, and updatable. You can save it to a disk or send it over the
network. Not all CachedRowSet will need a connection to a data source. For example, you can retrieve data in a
CachedRowSet and send its copy to another application, say an applet running in a web browser. In this case, the
applet can read/update the data in the CachedRowSet without needing a database connection. When the applet is
done working with the CachedRowSet, it can send the updated rowset to the server. The CachedRowSet does not need
to have a database connection while it is being used in an applet. You can use one of the following four methods to
populate data in a CachedRowSet object:

•	 void execute() throws SQLException

•	 void execute(Connection conn) throws SQLException

•	 void populate(ResultSet data) throws SQLException

•	 void populate(ResultSet rs, int startRow) throws SQLException

If you have set the database connection properties for a CachedRowSet, you can use the execute() method. It
will connect to the database using the connection properties, which were already set, and execute the command for
the rowset to populate it with the data. Another version of the execute() method accepts a Connection, which will be
used to populate the CachedRowSet with the data. Use the populate() method to populate a CachedRowSet with data
from a ResultSet. Another version of the populate() method accepts a starting row number from where it reads the
rows from the ResultSet into the CachedRowSet.

You need to be aware of some restrictions when using the populate() method of the CachedRowSet. This method
uses a ResultSet object, which supplies the data. Before you pass the ResultSet to this method, you might move the
cursor to a specific row. For example, suppose the cursor is on the tenth row in the ResultSet when you pass it to
the populate() method. What would happen when you call the first version the populate() method? Would it try to
read all rows in the ResultSet object or would it read the data from the eleventh row? What would happen when you
call the second version of the populate() method starting at row 5 when the current row is 10? Java documentation
for these methods in the CachedRowSet interface does not provide any information for these situations. It is up to the
implementation class to decide the details. However, if you just retrieve the ResultSet object and pass it to either
versions of the populate() method, it will behave as expected.

You can obtain the number of rows in a CachedRowSet using its size() method. Note that for a JdbcRowSet,
you need to move the cursor to the last row and call its getRow() method to get the number of rows in it. Since a
CachedRowSet caches all its rows in memory, it can provide you a count of all rows any time. Note that the size()
method is not available for a JdbcRowSet.
 
// Get the row count in a CachedRowSet
int rowCount = myCachedRowSet.size();
 

Listing 6-22 demonstrates how to use a CachedRowSet to retrieve rows from a database. It is similar to using a
JdbcRowSet except that you are able to use its size() method to get the number of rows retrieved. A CachedRowSet is
always bidirectional scrollable.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

485

Listing 6-22.  Retrieving Data Using a CachedRowSet

// CachedRowSetTest.java
package com.jdojo.jdbc;
 
import java.sql.SQLException;
import javax.sql.rowset.CachedRowSet;
import javax.sql.rowset.RowSetFactory;
 
public class CachedRowSetTest {
 public static void main(String[] args) {
 RowSetFactory factory = RowSetUtil.getRowSetFactory();
 
 // Use a try-with-resources block
 try (CachedRowSet cachedRs = factory.createCachedRowSet()) {
 // Set the connection parameters
 RowSetUtil.setConnectionParameters(cachedRs);
 
 String sqlCommand = "select person_id, first_name, last_name " +
 "from person " +
 "where person_id between 101 and 501";
 
 cachedRs.setCommand(sqlCommand);
 cachedRs.execute();
 
 // Print the records in cached rowset
 System.out.println("Row Count: " + cachedRs.size());
 RowSetUtil.printPersonRecord(cachedRs);
 }
 catch (SQLException e) {
 e.printStackTrace();
 }
 }
}
 

A CachedRowSet provides an additional feature called paging to let you retrieve rows generated by a command in
chunks. The chunk of rows that is retrieved at one time is called a page. You can think of a page as a set of rows, where you
decide the number of rows in the set. The maximum number of rows in a page is called the page size. The CachedRowSet
lets you set the page size by calling its setPageSize(int size) method. Suppose a command for a CachedRowSet
generates 500 rows. By calling its setPageSize(90), it will retrieve a maximum of 90 rows at a time. When you call its
execute() method, it will retrieve the first 90 rows. To retrieve the next 90 rows, you need to call its nextPage() method.
When it has retrieved five pages (450 rows), calling the nextPage() will retrieve the remaining 50 rows. It also provides
a previousPage() method to retrieve the previous page. You can use the nextPage() and previousPage() methods of
a CachedRowSet to retrieve and process a large result set in chunks. Both methods return true if there are more pages
to retrieve. Otherwise, they return false. Typically, you use a do-while loop and a while-loop when you use the paging
feature. The outer do-while loop will scroll through pages and the inner while-loop will scroll through the rows in the
current page. The following snippet of code shows the typical processing logic for a CachedRowSet using paging:
 
CachedRowSet cachedRs = create and set properties for a cached rowset here;
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

486

// Set the page size to 90
cachedRs.setPagesize(90);
 
// Retrieves the first page
cachedRs.execute();
 
do {
 // Process each row in the page
 while(cachedRs.next()) {
 // Process a row here...
 }
 
 // Retrieve the next page of rows
}
while (cachedRs.nextPage());
 

Listing 6-23 contains the complete code for demonstrating the paging feature of a CachedRowSet. It retrieves all
records from the person table a page at a time using a page size of 2. Typically, you do not retrieve all rows from a table
in your program. The person table has only a few rows. I have done it only for demonstration purpose to keep the code
simpler and smaller.

Listing 6-23.  Using Paging Feature of a CachedRowSet

// CachedRowSetPagingTest.java
package com.jdojo.jdbc;
 
import java.sql.SQLException;
import javax.sql.rowset.CachedRowSet;
import javax.sql.rowset.RowSetFactory;
 
public class CachedRowSetPagingTest {
 public static void main(String[] args) {
 RowSetFactory factory = RowSetUtil.getRowSetFactory();
  
 // Use a try-with-resources block
 try (CachedRowSet cachedRs = factory.createCachedRowSet()) {
 // Set the connection parameters
 RowSetUtil.setConnectionParameters(cachedRs);
 
 // Set the command and teh page size
 String sqlCommand = "select person_id, first_name, last_name " +
 "from person";
 cachedRs.setCommand(sqlCommand);
 cachedRs.setPageSize(2); // page size is 2
  
 // Execute the command
 cachedRs.execute();
 
 int pageCounter = 1;
  

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

487

 // Retrieve and print person records one page at a time
 do {
 System.out.println("Page #" + pageCounter +
 " (Row Count=" + cachedRs.size() + ")");
 
 // Print the record in the current page
 RowSetUtil.printPersonRecord(cachedRs);
  
 // Increment the page count by 1
 pageCounter++;
 }
 while (cachedRs.nextPage());
 }
 catch (SQLException e) {
 e.printStackTrace();
 }
 }
}
 

You can update the data in a CachedRowSet and save the changes back to the database. The process of saving
changes to the database for a CachedRowSet is different from that of a JdbcRowSet. There are two main reasons to keep
the save process a little different for a CachedRowSet. First, it is disconnected and you do not want to connect to the
database often. Second, the updated data may have conflicts with the data stored in the database.

The process of inserting, updating, and deleting rows in a CachedRowSet is the same as in a JdbcRowSet.
After changing the values for the current row, you need to call the updateRow() method. Unlike a JdbcRowSet, a
CachedRowSet does not send the changes to the database when you call the updateRow() method. You use the
insertRow() and deleteRow() methods the same way as you do with a ResultSet or a JdbcRowSet. These methods
do not send changes to the database when used with a CachedRowSet.

After you make changes to a CachedRowSet, you can send changes to the database by calling its acceptChanges()
method that may commit the changes if you have set the commit-on-accept-change value to true. You need to refer
to the implementation details of the CachedRowSet on how it lets you set the commit-on-accept-change value. If
it is set to false, you need to use the commit() or rollback() method of the CachedRowSet interface to commit or
rollback changes.

A CachedRowSet has to deal with conflicts that may exist between the data in it and the data in the database.
For example, you might have retrieved a row from the database, changed the data, and kept the changes in the
CachedRowSet for a long time. When you are ready to save your changes, another user might have changed the values
for the same rows before you. A CachedRowSet uses a synchronization provider object to synchronize the changes
with the database. It uses another object, a synchronization resolver, to resolve any conflicts that it detects during
the synchronization process. When conflicts are detected during the acceptChanges() method call, it throws a
SyncProviderException. You can get the synchronization resolver object that is an instance of the SyncResolver
interface, using the getSyncResolver() method of the SyncProviderException object. A SyncResolver object lets
you navigate through all conflicts and change the values in the rows with conflicts to new resolved values. You need to
use the setResolvedValue() method of a SyncResolver object to set the resolved value when a conflict is detected.

Listing 6-24 demonstrates how to update a CachedRowSet. It does not set a resolved value for a data element
when it detects a conflict. Rather, it just prints the details about the conflict.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

488

Listing 6-24.  Updating and Detecting Conflicts in a CachedRowSet

// CachedRowSetUpdateTest.java
package com.jdojo.jdbc;
 
import java.sql.SQLException;
import javax.sql.rowset.CachedRowSet;
import javax.sql.rowset.RowSetFactory;
import javax.sql.rowset.spi.SyncProviderException;
import javax.sql.rowset.spi.SyncResolver;
import static javax.sql.rowset.spi.SyncResolver.DELETE_ROW_CONFLICT;
import static javax.sql.rowset.spi.SyncResolver.INSERT_ROW_CONFLICT;
import static javax.sql.rowset.spi.SyncResolver.UPDATE_ROW_CONFLICT;
 
public class CachedRowSetUpdateTest {
 public static void main(String[] args) throws SQLException {
 RowSetFactory factory = RowSetUtil.getRowSetFactory();
 CachedRowSet cachedRs = factory.createCachedRowSet();
 
 try {
 // Set the connection parameters for the CachedRowSet
 RowSetUtil.setConnectionParameters(cachedRs);
 
 String sqlCommand = "select person_id, first_name, last_name, "
 + "gender, dob, income "
 + "from person "
 + "where person_id between 101 and 301";
 
 cachedRs.setKeyColumns(new int[]{1});
 
 cachedRs.setCommand(sqlCommand);
 cachedRs.execute();
 
 // Print the records in the cached rowset
 System.out.println("Before Update");
 System.out.println("Row Count: " + cachedRs.size());
 RowSetUtil.printPersonRecord(cachedRs);
 
 // Update income to 23000.00 for the first row
 if (cachedRs.size() > 0) {
 updateRow(cachedRs, 1, 23000.00);
 }
 
 // Insert a new row
 insertNewRow(cachedRs);
 
 // Send changes to the database
 cachedRs.acceptChanges();
 
 System.out.println("After Update");
 System.out.println("Row Count: " + cachedRs.size());
 cachedRs.beforeFirst();
 RowSetUtil.printPersonRecord(cachedRs);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

489

 catch (SyncProviderException spe) {
 // When acceptChanges() detects some conflicts
 SyncResolver resolver = spe.getSyncResolver();
 
 // Print the details about the conflicts
 printConflicts(resolver, cachedRs);
 }
 catch (SQLException e) {
 e.printStackTrace();
 }
 finally {
 if (cachedRs != null) {
 try {
 cachedRs.close();
 }
 catch (SQLException e) {
 e.printStackTrace();
 }
 }
 }
 }
 
 public static void insertNewRow(CachedRowSet cachedRs) throws SQLException {
 // Move cursor to the insert-row
 cachedRs.moveToInsertRow();
 
 // Set the values for columns in the new row
 cachedRs.updateInt("person_id", 751);
 cachedRs.updateString("first_name", "Mason");
 cachedRs.updateString("last_name", "Baker");
 cachedRs.updateString("gender", "M");
 cachedRs.updateDate("dob", java.sql.Date.valueOf("2006-01-02"));
 cachedRs.updateDouble("income", 0.00);
 
 // Insert the new row in the rowset. It is not sent to the
 // database, until the acceptChanges() method is called
 cachedRs.insertRow();
 
 // Must move back to the current row
 cachedRs.moveToCurrentRow();
 }
 
 public static void updateRow(CachedRowSet cachedRs, int row, double newIncome)
 throws SQLException {
 // Set the values for columns in the new row
 cachedRs.absolute(row);
 cachedRs.updateDouble("income", newIncome);
 cachedRs.updateRow();
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

490

 public static void printConflicts(SyncResolver resolver, CachedRowSet cachedRs) {
 try {
 while (resolver.nextConflict()) {
 int status = resolver.getStatus();
 String operation = "None";
 if (status == INSERT_ROW_CONFLICT) {
 operation = "insert";
 }
 else if (status == UPDATE_ROW_CONFLICT) {
 operation = "update";
 }
 else if (status == DELETE_ROW_CONFLICT) {
 operation = "delete";
 }
 
 // Get person_id from the database
 Object oldPersonId
 = resolver.getConflictValue("person_id");
 
 // Get person ID from the cached rowset
 int row = resolver.getRow();
 cachedRs.absolute(row);
 Object newPersonId = cachedRs.getObject("person_id");
 
 // Use setResolvedValue() method to set resolved value
 // for a column
 // resolver.setResolvedValue(columnName,resolvedValue);
 System.out.println("Conflict detected in row #"
 + row
 + " during " + operation + " operation."
 + " person_id in database is " + oldPersonId
 + " and person_id in rowset is " + newPersonId);
 }
 }
 catch (SQLException e) {
 e.printStackTrace();
 }
 }
}

WebRowSet
The WebRowSet interface inherits from the CachedRowSet interface. It adds two more features to the CachedRowSet:
reading data and metadata from an XML document, and exporting data and metadata to an XML document. The
two methods that it adds to provide XML support are readXML() and writeXML(). Both of them are overloaded.
They accept either a stream-based or a character-based source/sink. Use the readXML() method to read XML data,
properties, and metadata from a source (a java.io.InputStream or a java.io.Reader) into a WebRowSet, and use the
writeXML() method to write the data, properties, and metadata from a WebRowSet object to a destination, which could
be a java.io.OutputStream or a java.io.Writer. The following snippet of code shows how to export the contents
and properties of a WebRowSet to a string:
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

491

WebRowSet webRs = get a web rowset with data...;
 
// Create a StringWriter object to hold the exported XML
StringWriter sw = new StringWriter();
 
// Write the XML representation of webRs into sw
webRs.writeXml(sw);
 
// Get the String object from sw
String webRsXML = sw.toString();
 

At this point, the webRsXML contains the XML representation of the webRs object. You can pass it to another
module of your application, where you would be able to recreate the WebRowSet with the same data, properties, and
metadata. The following snippet of code shows how to import an XML document into a WebRowSet:
 
// Create a StringReader object from an XML string
StringReader sr = new StringReader(webRsXML);
 
// Create an empty WebRowSet object
RowSetFactory factory = RowSetUtil.getRowSetFactory();
WebRowSet newWebRs = factory.createWebRowSet();
 
// Import (or read) the XML contents into the new, empty WebRowSet
newWebRs.readXml(sr);
 

At this point, webRs and newWebRs are in the same state. A WebRowSet makes it easy to export its contents as XML
and import an XML document into it. You can use these processes to get an XML document and to send it to another
application, say an applet, which does not need to have JDBC connectivity to a database. When the applet is done
making changes to the WebRowSet, it can export it as an XML document and pass it to another application that has a
JDBC connectivity to synchronize the changes with the database.

The exported XML from a WebRowSet contains three sets of information: properties, metadata, and data. The
properties refer to the properties that are set for the rowset. The metadata contains information about columns in
the rowset such as the column count, column name, column data type, etc. The data section in the XML contains the
original and changed data from the rowset.

Listing 6-25 demonstrates how to export a WebRowSet object as XML. You will find three elements in the output
for this listing: <properties>, <metadata>, and <data>. The program changes the last name of the first row that was
retrieved in the rowset. You may observe that the rowset keeps track of the changes that are made in its data, as shown
by the presence of a <updateRow> element for the first row. You may get a different output when you run this program.
The output depends on the data you have in the person table.

Listing 6-25.  Exporting State of a WebRowSet as an XML Document

// WebRowSetXMLTest.java
package com.jdojo.jdbc;
 
import java.io.StringWriter;
import java.sql.SQLException;
import javax.sql.rowset.RowSetFactory;
import javax.sql.rowset.WebRowSet;
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

492

public class WebRowSetXMLTest {
 public static void main(String[] args) {
 RowSetFactory factory = RowSetUtil.getRowSetFactory();
  
 // Use a try-with-resources block
 try (WebRowSet webRs = factory.createWebRowSet()) {
 // Set the connection parameters for the WebRowSet
 RowSetUtil.setConnectionParameters(webRs);
 
 String sqlCommand = "select person_id, first_name, last_name " +
 "from person " +
 "where person_id between ? and ?";
 
 webRs.setCommand(sqlCommand);
 webRs.setInt(1, 101);
 webRs.setInt(2, 102);
 webRs.execute();
 
 // Change the last name for the first record
 if (webRs.first()) {
 webRs.updateString("last_name", "Who knows?");
 }
  
 // Get the XML representation of of the WebRowSet
 StringWriter sw = new StringWriter();
 webRs.writeXml(sw);
 String webRsXML = sw.toString();
  
 // Print the exported XML from the WebRowSet
 System.out.println(webRsXML);
 }
 catch (SQLException e) {
 e.printStackTrace();
 }
 }
}
 

<?xml version="1.0"?>
<w�ebRowSet xmlns="http://java.sun.com/xml/ns/jdbc" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/jdbc http://java.sun.com/xml/ns/jdbc/webrowset.xsd">
 <properties>
 <co�mmand>select person_id, first_name, last_name from person where person_id between ? and

?</command>
 <concurrency>1008</concurrency>
 <datasource><null/></datasource>
 <escape-processing>true</escape-processing>
 <fetch-direction>1000</fetch-direction>
 <fetch-size>0</fetch-size>
 <isolation-level>2</isolation-level>
 <key-columns>
 </key-columns>

www.it-ebooks.info

http://java.sun.com/xml/ns/jdbc
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/jdbc
http://java.sun.com/xml/ns/jdbc/webrowset.xsd
http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

493

 <map>
 </map>
 <max-field-size>0</max-field-size>
 <max-rows>0</max-rows>
 <query-timeout>0</query-timeout>
 <read-only>true</read-only>
 <rowset-type>ResultSet.TYPE_SCROLL_INSENSITIVE</rowset-type>
 <show-deleted>false</show-deleted>
 <table-name>person</table-name>
 <url>jdbc:derby:beginningJavaDB;create=true;</url>
 <sync-provider>
 <sync-provider-name>com.sun.rowset.providers.RIOptimisticProvider</sync-provider-name>
 <sync-provider-vendor>Oracle Corporation</sync-provider-vendor>
 <sync-provider-version>1.0</sync-provider-version>
 <sync-provider-grade>2</sync-provider-grade>
 <data-source-lock>1</data-source-lock>
 </sync-provider>
 </properties>
 <metadata>
 <column-count>3</column-count>
 <column-definition>
 <column-index>1</column-index>
 <auto-increment>false</auto-increment>
 <case-sensitive>false</case-sensitive>
 <currency>false</currency>
 <nullable>0</nullable>
 <signed>true</signed>
 <searchable>true</searchable>
 <column-display-size>11</column-display-size>
 <column-label>PERSON_ID</column-label>
 <column-name>PERSON_ID</column-name>
 <schema-name>ROOT</schema-name>
 <column-precision>10</column-precision>
 <column-scale>0</column-scale>
 <table-name>PERSON</table-name>
 <catalog-name></catalog-name>
 <column-type>4</column-type>
 <column-type-name>INTEGER</column-type-name>
 </column-definition>
 <column-definition>
 <column-index>2</column-index>
 <auto-increment>false</auto-increment>
 <case-sensitive>true</case-sensitive>
 <currency>false</currency>
 <nullable>0</nullable>
 <signed>false</signed>
 <searchable>true</searchable>
 <column-display-size>20</column-display-size>
 <column-label>FIRST_NAME</column-label>
 <column-name>FIRST_NAME</column-name>
 <schema-name>ROOT</schema-name>
 <column-precision>20</column-precision>
 <column-scale>0</column-scale>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

494

 <table-name>PERSON</table-name>
 <catalog-name></catalog-name>
 <column-type>12</column-type>
 <column-type-name>VARCHAR</column-type-name>
 </column-definition>
 <column-definition>
 <column-index>3</column-index>
 <auto-increment>false</auto-increment>
 <case-sensitive>true</case-sensitive>
 <currency>false</currency>
 <nullable>0</nullable>
 <signed>false</signed>
 <searchable>true</searchable>
 <column-display-size>20</column-display-size>
 <column-label>LAST_NAME</column-label>
 <column-name>LAST_NAME</column-name>
 <schema-name>ROOT</schema-name>
 <column-precision>20</column-precision>
 <column-scale>0</column-scale>
 <table-name>PERSON</table-name>
 <catalog-name></catalog-name>
 <column-type>12</column-type>
 <column-type-name>VARCHAR</column-type-name>
 </column-definition>
 </metadata>
 <data>
 <currentRow>
 <columnValue>101</columnValue>
 <columnValue>John</columnValue>
 <columnValue>Jacobs</columnValue>
 <updateRow>Who knows?</updateRow>
 </currentRow>
 <currentRow>
 <columnValue>102</columnValue>
 <columnValue>Donna</columnValue>
 <columnValue>Duncan</columnValue>
 </currentRow>
 </data>
</webRowSet>

 
Who decides the format of the XML that a WebRowSet implementation should understand? If all implementations

of the WebRowSet use different XML formats, the XML exported from a WebRowSet using one implementation cannot
be imported into a WebRowSet object that uses another implementation. To avoid this kind of portability issues, Oracle
provides an XML schema for the format of the standard WebRowSet XML. The schema is available at
http://java.sun.com/xml/ns/jdbc/webrowset.xsd. A standard WebRowSet implementation should use this schema
to export and import a WebRowSet implementation to ensure portability with other implementations.

FilteredRowSet
The FilteredRowSet interface inherits from the WebRowSet interface. It provides filtering capability to a rowset at the
client side. You can apply a filter to the rowset by using a where clause in its SQL command, which is executed in a
database. A FilteredRowSet lets you filter the rows of a rowset after it has retrieved the data from a database. You

www.it-ebooks.info

http://java.sun.com/xml/ns/jdbc/webrowset.xsd
http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

495

can think of a FilteredRowSet as a rowset that lets you view its rows based on a set of criteria, which is called a filter.
Setting a filter to a rowset does not delete the rows from the rowset. Rather, it lets you access only those rows that meet
the filter criteria. The filter also applies to inserting, updating, and deleting the rows in the rowset. You can only read,
insert, update, and delete rows that meet the filter criteria. You can reset the filter any time you want to view all rows of
a rowset. A filter is an object of a class that implements the javax.sql.rowset.Predicate interface. The following is
the declaration of the Predicate interface:
 
public interface Predicate {
 boolean evaluate(RowSet rs);
 boolean evaluate(Object value, int colIndex) throws SQLException;
 boolean evaluate(Object value, String colName) throws SQLException;
}
 

If the evaluate() method returns true for a row, it is visible. Otherwise, it is filtered out and you cannot access it.
All of the three versions of the evaluate() methods are called internally. The reference implementation for the rowset
by Oracle does not supply an implementation for the Predicate interface. I will discuss an implementation of the
Predicate interface in this section.

The FilteredRowSet interface adds two methods, one to set a filter and one to get the filter:

•	 Predicate getFilter()

•	 void setFilter(Predicate filter) throws SQLException

The setFilter() method sets a filter to the rowset. Setting null as a filter resets (or removes) the filter from a
FilteredRowSet and makes all rows accessible. You can set a filter to a FilteredRowSet as follows:
 
// Create a FilteredRowSet
FilteredRowSet filteredRs = create a filtered row set;
 
// Set properties and retrieve data in the rowset
 
// Create a Filter
Predicate filter = create a filter object;
 
// Set the filter
filteredRs.setFilter(filter);
 
// Work with the filtered rowset here
 
// Remove the filter
filteredRs.setFilter(null);
 

Listing 6-26 contains the code that implements a range filter. It is based on a range of a numeric column.

Listing 6-26.  An Implementation of the Predicate Interface

// RangeFilter.java
package com.jdojo.jdbc;
 
import java.sql.SQLException;
import javax.sql.RowSet;
import javax.sql.rowset.Predicate;
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

496

public class RangeFilter implements Predicate {
 private final int columnIndex;
 private final String columnName;
 private final double min;
 private final double max;
 
 public RangeFilter(int columnIndex, String columnName,
 double min, double max) {
 this.columnIndex = columnIndex;
 this.columnName = columnName;
 this.min = min;
 this.max = max;
 }
 
 @Override
 public boolean evaluate(RowSet rs) {
 // Make sure we have a good row number to evaluate
 try {
 if (rs.getRow() <= 0) {
 return false;
 }
 }
 catch (SQLException e) {
 e.printStackTrace();
 }
 
 boolean showRow = false;
 Object value = null;
 
 try {
 value = rs.getObject(columnName);
 if (value instanceof Number) {
 double num = ((Number) value).doubleValue();
 showRow = (num >=min && num <= max);
 }
 }
 catch (SQLException e) {
 showRow = false;
 e.printStackTrace();
 throw new RuntimeException(e);
 }
 return showRow;
 }
 
 @Override
 public boolean evaluate(Object value, int columnIndex) {
 boolean showRow = false;
 if (columnIndex == this.columnIndex
 && value instanceof Number) {
 double num = ((Number) value).doubleValue();
 showRow = (num >=min && num <= max);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

497

 return showRow;
 }
 
 @Override
 public boolean evaluate(Object value, String columnName) {
 boolean showRow = false;
 if (this.columnName.equalsIgnoreCase(columnName)
 && value instanceof Number) {
 double num = ((Number)value).doubleValue();
 showRow = (num >=min && num <= max);
 }
 return showRow;
 }
}
 

Suppose person_id is the first column in your rowset and you want to see only rows that have person_id between
101 and 501. You can set a filter for the rowset using an object of the RangeFilter class as follows:
 
FilteredRowSet filteredRs = get a filtered row set...;
Predicate filter = new RangeFilter(1, "person_id", 101, 501);
filteredRs.setFilter(filter);
 

The RangeFilter class is a simple implementation of the Predicate interface. You need to have a little more
sophisticated implementation that can be used in a production environment. For example, you may allow a filter
criteria based on multiple columns.

Listing 6-27 demonstrates how to use a FilteredRowSet. The output of this program will depend on the data
in the person table. A FilteredRowSet is not an alternative to using a filter in a SQL SELECT (using a WHERE clause).
You should not retrieve a large number of rows in a FilteredRowSet and set a filter. It may degrade your application
performance. You should use it when you get a disconnected (or cached) rowset in your program and you do not have
control over its retrieval process. It is also useful if your FilteredRowSet is not representing rows from a database
table such as if you are retrieving data from a flat file.

Listing 6-27.  Using a FilteredRowSet

// FilteredRowSetTest.java
package com.jdojo.jdbc;
 
import java.sql.SQLException;
import javax.sql.rowset.Predicate;
import javax.sql.rowset.FilteredRowSet;
import javax.sql.rowset.RowSetFactory;
 
public class FilteredRowSetTest {
 public static void main(String[] args) {
 RowSetFactory factory = RowSetUtil.getRowSetFactory();
 
 // Use a try-with-resources block
 try (FilteredRowSet filteredRs
 = factory.createFilteredRowSet()) {
 // Set the connection parameters
 RowSetUtil.setConnectionParameters(filteredRs);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

498

 // Prepare, set, and execute the command
 String sqlCommand= "select person_id, first_name, last_name " +
 "from person";
 filteredRs.setCommand(sqlCommand);
 filteredRs.execute();
 
 // Print the retrieved records
 System.out.println("Before Filter - Row count: " +
 filteredRs.size());
 RowSetUtil.printPersonRecord(filteredRs);
 
 // Set a filter
 Predicate filter = new RangeFilter(1, "person_id", 101, 102);
 filteredRs.setFilter(filter);
 
 // Print the retrieved records
 System.out.println("After Filter - Row count: " +
 filteredRs.size());
 filteredRs.beforeFirst();
 RowSetUtil.printPersonRecord(filteredRs);
 }
 catch (SQLException e) {
 e.printStackTrace();
 }
 }
}

JoinRowSet
The JoinRowSet interface inherits from the WebRowSet interface. It provides the ability to combine (or join) two or
more disconnected rowsets into one rowset. Rows from two or more tables are joined in a query using a SQL JOIN.
A JoinRowSet lets you have a SQL JOIN between two or more rowsets without using a SQL JOIN in a query.

Using a JoinRowSet is easy. You retrieve data in multiple rowsets: CachedRowSet, WebRowSet, or FilteredRowSet.
Create an empty JoinRowSet and add all rowsets to it by calling its addRowSet() method. The first rowset that is added
to the JoinRowSet becomes the reference rowset for establishing the joins when more rowsets are added. You can
specify the JOIN columns in a rowset individually or when you add a rowset to a JoinRowSet.

There are five standard types of SQL JOIN:

•	 INNER_JOIN

•	 LEFT_OUTER_JOIN

•	 RIGHT_OUTER_JOIN

•	 FULL_JOIN

•	 CROSS_JOIN

A JoinRowSet lets you establish all of the above-mentioned SQL JOINs between rowsets. Except for CROSS_JOIN,
which gives you a Cartesian product of rows in the rowsets, all other joins are based on matching columns in the
joined rowsets. There are two ways to specify matching columns:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

499

If a rowset that is participating in the •	 JOIN implements the Joinable interface, you can use
one of its setMatchColumn() methods to specify the JOIN columns. The Joinable interface
defines multiple versions of the setMatchColumn() method and other methods to work with
JOIN columns.

You can set the •	 JOIN columns when you add a rowset to a JoinRowSet using one of its
addRowSet() methods.

An implementation of the JoinRowSet interface may not support all five types of JOINs. You can use the following
five methods of the JoinRowSet interface to check if an implementation supports a specific SQL JOIN type:

•	 boolean supportsInnerJoin()

•	 boolean supportsLeftOuterJoin()

•	 boolean supportsRightOuterJoin()

•	 boolean supportsFullJoin()

•	 boolean supportsCrossJoin()

You can specify a JOIN type in a JoinRowSet using its setJoinType() method, which accepts one of the five JOIN
constants: INNER_JOIN, LEFT_OUTER_JOIN, RIGHT_OUTER_JOIN, FULL_JOIN, and CROSS_JOIN. By default, it uses
INNER_JOIN, which is based on equality of matching columns.

You must have at least two rowsets to work with a JoinRowSet. It does not make sense to have a JoinRowSet to hold
rows from only one rowset. Its name, “Join,” itself implies that it represents a JOIN between at least two rowsets. The
names or indexes of the columns in the joined rowsets do not have to be the same. The data types of the join columns
need not be the same. However, data types of the join columns must be such that their values can be compared.

You have only been working with the person table in the previous examples. You can still work with only one
table to form a SQL JOIN based on person_id column. Your first rowset will select person_id and first_name from
the person table. The second rowset will select person_id and last_name from the person table. You will join the
two rowsets based on person_id using INNER_JOIN, which is the default for a JoinRowSet. Listing 6-28 shows how to
achieve this using a JoinRowSet.

Listing 6-28.  Establishing SQL JOINs Using a JoinRowSet

// JoinRowSetTest.java
package com.jdojo.jdbc;
 
import java.sql.SQLException;
import javax.sql.rowset.CachedRowSet;
import javax.sql.rowset.JoinRowSet;
import javax.sql.rowset.RowSetFactory;
 
public class JoinRowSetTest {
 public static void main(String[] args) {
 RowSetFactory factory = RowSetUtil.getRowSetFactory();
  
 // Use a try-with-resources block
 try (CachedRowSet cachedRs1 = factory.createCachedRowSet();
 CachedRowSet cachedRs2 = factory.createCachedRowSet();
 JoinRowSet joinRs = factory.createJoinRowSet()) {
 // Set the connection parameters
 RowSetUtil.setConnectionParameters(cachedRs1);
 RowSetUtil.setConnectionParameters(cachedRs2);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

500

 String sqlCommand1 = "select person_id, first_name " +
 "from person " +
 "where person_id in (101, 102)";
 
 String sqlCommand2 = "select person_id, last_name " +
 "from person " +
 "where person_id in (101, 102, 103)";
  
 cachedRs1.setCommand(sqlCommand1);
 cachedRs2.setCommand(sqlCommand2);
  
 cachedRs1.execute();
 cachedRs2.execute();
  
 // Create a JoinRowSet for cachedRs1 and cachedRs2
 // joining them based on the person_id column
 joinRs.addRowSet(cachedRs1, "person_id");
 joinRs.addRowSet(cachedRs2, "person_id");
  
 System.out.println("Row Count: " + joinRs.size());
 RowSetUtil.printPersonRecord(joinRs);
 }
 catch (SQLException e) {
 e.printStackTrace();
 }
 }
}
 

You can add only a non-empty rowset to a JoinRowSet. Adding an empty rowset to a JoinRowSet throws a
SQLException. The JoinRowSet can implement the SQL JOIN based on multiple columns. There is no limit on the
number of rowsets added to a JoinRowSet. However, care should be taken not to add too many rowsets with a large
number of rows to a JoinRowSet. This may slow down the application because of the processing needed to perform
the JOIN operation on large number of rows.

The toCachedRowSet() method of the JoinRowSet returns a CachedRowSet that represents the rows based on
the JOIN established in it. The returned CachedRowSet does not contain any changes made to the data through the
JoinRowSet. You can make modifications to the data in a JoinRowSet and apply the changes back to the database, as
you would do with a CachedRowSet. Make sure that you set the required properties for the JoinRowSet before you call
the acceptChanges() method. For example, you will need to set its database connection properties, its command,
etc., so it will have the required pieces of information to apply the changes to the database.

Working with a Large Object (LOB)
The JDBC API has support for working with large objects stored in a database. The type of a large object could be one
of the following.

Binary Large Object (Blob)•	

Character Large Object (Clob)•	

National Character Large Object (NClob)•	

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

501

The data for LOB columns is usually not stored in a database table itself. The database stores the data for a LOB
at some other location. It stores a reference (or pointer) to the data location in the table. The reference for a LOB
stored in the table is also called a locator. Whether a LOB column’s data is stored with the table or at other location is
determined by the DBMS based on some criteria. For example, a DBMS may decide that if the size of a LOB is smaller
than 10k, it will store it in the table and if it grows bigger, it will be stored at some other location and the table will
store a locator instead. When you retrieve the data for a column of a LOB type, usually a JDBC driver retrieves only
the locator for the LOB. When you need the actual data, you need to perform some more operations on the locator to
fetch the data. Usually a locator for a LOB has more information about the data than just being a pointer to the actual
data, such as it knows the length of the data.

A Blob is used to store binary data. A Clob is used to store character data. An NClob is used to store Unicode
character data. Consult your DBMS documentation about the data type name that it uses for Blob, Clob, and NClob
types of LOBs. Oracle DBMS has the same names as Blob, Clob, and NClob, as data types that you can use to define
columns in a table. The JDBC API lets you work with Blob, Clob, and NClob using the java.sql.Blob, java.sql.Clob,
and java.sql.NClob interfaces, respectively.

You will work through an example of using Blob and Clob data types. The example will use a Java DB database.
Java DB supports Blob and NClob types for LOBs through its Blob and Clob database data types, respectively.

Let’s create a table named person_detail, which is used to store a person’s picture as Blob and his text-only
resume in a Clob column. The following is the script to create the table in Java DB:
 
create table person_detail (
 person_detail_id integer not null,
 person_id integer not null,
 picture blob,
 resume clob,
 primary key (person_detail_id),
 foreign key (person_id) references person(person_id)
);
 

You can run the program in Listing 6-29 to create the person_detail table in a Java DB database, assuming that
the JDBCUtil.getConnection() method is configured to return a Connection to a Java DB database. If you are using a
DBMS other than Java DB, please change the CREATE TABLE script of the program in Listing 6-29 to match the syntax
of your database.

Listing 6-29.  Create the person_detail Table in Java DB

// CreatePersonDetailTable.java
package com.jdojo.jdbc;
 
import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;
 
public class CreatePersonDetailTable {
 public static void main(String[] args) {
 Connection conn = null;
 try {
 conn = JDBCUtil.getConnection();
 
 // Create a SQL string
 String SQL = "create table person_detail(" +
 "person_detail_id integer not null, " +
 "person_id integer not null, " +

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

502

 "picture blob, " +
 "resume clob, " +
 "primary key (person_detail_id), " +
 "foreign key (person_id) references person(person_id))";
 
 Statement stmt = null;
 try {
 stmt = conn.createStatement();
 stmt.executeUpdate(SQL);
 }
 finally {
 JDBCUtil.closeStatement(stmt);
 }
  
 // Commit the transaction
 JDBCUtil.commit(conn);
 System.out.println("Person table created successfully.");
 }
 catch (SQLException e) {
 System.out.println(e.getMessage());
 JDBCUtil.rollback(conn);
 }
 finally {
 JDBCUtil.closeConnection(conn);
 }
 }
}

Retrieving LOB Data
You can retrieve Blob, Clob and NClob column’s data from a result set using the getBlob(), getClob(), and getNClob()
methods of the ResultSet interface, respectively. These methods return an object of the java.sql.Blob, java.sql.Clob,
and java.sql.NClob interfaces, respectively. These interfaces include many methods that let you query the LOB
object and manipulate the data they represent. The following snippet of code reads rows from the person_detail
table for the person_detail_id equal to 1001:
 
Connection conn = JDBCUtil.getConnection();
String SQL = "select person_id, picture, resume " +
 "from person_detail " +
 "where person_detail_id = ?";
 
PreparedStatement pstmt = null;
pstmt = conn.prepareStatement(SQL);
pstmt.setInt(1, 1001);
ResultSet rs = pstmt.executeQuery();
 
while(rs.next()) {
 int personId = rs.getInt("person_id");
 Blob pictureBlob = rs.getBlob("picture");
 Clob resumeClob = rs.getClob("resume");
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

503

After you get a Blob or Clob object from the ResultSet, you will need to read the data. Blob and Clob interfaces
contain a length() method, which returns the number of bytes in a Blob object and the number of characters in a
Clob object. The NClob interface inherits the Clob interface. The discussion for the Clob interface also applies to the
NClob interface. If you want to read a Blob’s data in a byte array and the Clob’s data in a String object, here is how you
do it. Note that the length() method of the Blob and Clob interfaces returns long.
 
// Read picture in a byte array
int pictureLength = (int)pictureBlob.length();
byte[] pictureData = pictureBlob.getBytes(1, pictureLength);
 
// Read resume in a string
int resumeLength = (int)resumeClob.length();
String resume = resumeClob.getSubString(1, resumeLength);
 

In the getBytes(int start, int length) method of the Blob interface, the first parameter is the starting
position of the byte in the Blob object from where you want to start, and the second parameter is the number of bytes
you want to read. The position of the first byte in a Blob object is 1, not 0. Similarly, the getSubString(int start,
int length) method of the Clob interface accepts the starting position of the character in a Clob object and the
number of characters to return. The position of the first character in a Clob object is 1, not 0.

Tip■■   Be careful when using the starting position in any context in JDBC programs. In the JDBC API, things start at
position 1, and in other parts of Java such as arrays, things start at position 0.

Most of the time, you will not read the Blob’s and Clob’s data in an array or a String object. They may contain
big amounts of data. The Blob and Clob interfaces let you read their data in chunks using an InputStream and a
Reader, respectively. Typically, you would read the data from Blob and Clob objects and store them in a file on a disk.
Here is how you do it. The Blob interface contains a getBinaryStream() method, which returns an InputStream.
You can use that InputStream to read data contained in the Blob object. Similarly, the Clob interface contains a
getCharacterStream() method, which returns a Reader. You can use that Reader object to read characters contained
in the Clob object.
 
// Read picture data and save it to a file
String pictureFilePath = "c:\\mypicture.bmp";
FileOutputStream fos = new FileOutputStream(pictureFilePath);
InputStream in = pictureBlob.getBinaryStream();
int b = -1;
 
while((b = in.read()) != -1) {
 fos.write((byte)b);
}
 
fos.close();
 
// Read resume data and save it to a file
String resumeFilePath = "c:\\myresume.txt";
FileWriter fw = new FileWriter(resumeFilePath);
Reader reader = resumeClob.getCharacterStream();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

504

int b = -1;
while((b = reader.read()) != -1) {
 fw.write((char)b);
}
 
fw.close();

Creating a LOB Data
In the previous section, you learned how to read LOB data from the database into a Java program. In this section, you
will learn how to create a LOB in a Java program and send the LOB data to the database to store it in a table’s column.
The Connection interface contains three methods to create a LOB:

•	 Blob createBlob() throws SQLException

•	 Clob createClob() throws SQLException

•	 NClob createNClob() throws SQLException

You can use one of the methods to create an empty LOB of a specific type. For example, to store a picture and
resume in a database, you would create a Blob object and a Clob object as follows:
 
Connection conn = JDBCUtil.getConnection();
Blob pictureBlob = conn.createBlob();
Clob resumeClob = conn.createClob();
 

Once you get the Blob and Clob objects, there are two ways to write data to them. You can write data to a
Blob object using its setBytes() method, which accepts the position in the Blob object where you want to write,
and the data in a byte array. You can also write data to a Blob object using an OutputStream. You need to call its
setBinaryStream() method, which accepts the starting position for writing the data and returns an OutputStream.
You need to use that OutputStream to write data to the Blob. Here are the two method’s signatures:

•	 int setBytes(long pos, byte[] bytes) throws SQLException

•	 OutputStream setBinaryStream(long pos) throws SQLException

The following snippet of code shows how to write data to a Blob. It reads data from a file, which stores a picture,
and writes all bytes to a Blob object. The while-loop reads one byte at a time from the file to keep the code simple and
readable. In real-world programs, you will read and write a bigger chunk of data at a time.
 
// Get the output stream of the Blob object to write the picture data to it.
int startPosition = 1; // start writing from beginning
OutputStream out = pictureBlob.setBinaryStream(startPosition);
 
// Get ready to read from a file
String picturePath = "picture.jpg";
FileInputStream fis = new FileInputStream(picturePath);
 
// Read from the file and write to the Blob object
int b = -1;
while ((b = fis.read()) != -1) {
 out.write(b);
}
fis.close();
out.close();
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

505

The Clob interface provides the following three methods to write data to a Clob object:

•	 int setString(long pos, String str) throws SQLException

•	 int setString(long pos, String str, int offset, int len) throws SQLException

•	 Writer setCharacterStream(long pos) throws SQLException

The setString() method lets you write a String to it at a specified position. The second version of the
setString() method lets you specify the offset into the source string to start reading and the number of characters to
be read from the source string. The setCharacterStream() method returns a Writer, which you can use to write data
in Unicode characters to the Clob. The Clob interface also contains a setAsciiStream() method, which returns an
OutputStream that you can use to write the ASCII-encoded characters.

The following snippet of code shows how to write data to a Clob. It reads data from a file, which stores a resume
in a text format and writes all characters to a Clob object. The while-loop reads one character at a time from the file
to keep the code simple and readable. In real-world programs, you will read and write a bigger chunk of characters at
a time.
 
// Get the Character output stream of the Clob object to write the resume data to it.
int startPosition = 1; // start writing from beginning
Writer writer = resumeClob.setCharacterStream(startPosition);
 
// Get ready to read from a file
String resumePath = "resume.txt";
FileReader fr = new FileReader(resumePath);
 
// Read from the file and write to the Clob object
int b = -1;
while ((b = fr.read()) != -1) {
 writer.write(b);
}
fr.close();
writer.close();
 

Finally, it is time to write the LOB’s data to a database. You can use the setBlob() and setClob() methods of the
PreparedStatement interface to set the Blob and Clob data as shown:
 
Connection conn = JDBCUtil.getConnection();
String SQL = "insert into person_detail " +
 "(person_detail_id, person_id, picture, resume) " +
 "values " +
 "(?, ?, ?, ?)";
 
PreparedStatement pstmt = null;
pstmt = conn.prepareStatement(SQL);
pstmt.setInt(1, 1); // set person_detail_id
pstmt.setInt(2, 101); // Set person_id
 
Blob pictureBlob = conn.createBlob();
 
// Write data to pictureBlob object here
 
pstmt.setBlob(3, pictureBlob);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

506

Clob resumeClob = conn.createClob();
 
// Write data to resumeClob object here
 
pstmt.setClob(4, resumeClob);
 
// Insert the record into the database
pstmt.executeUpdate();

The ResultSet interface also includes the updateBlob() and updateClob() methods, which you can use to
update Blob and Clob objects through a ResultSet object. Blob and Clob objects may require a lot of resources. Once
you are done with them, you need to free the resources held by them by calling their free() method.

Tip■■  A nother way to set a Blob object’s data in a PreparedStatement is to use its setBinaryStream() and
setObject() methods. Another way to set Clob object’s data in a PreparedStatement is to use its setAsciiStream(),
setCharacterStream(), or setObject() method.

Listing 6-30 contains the complete code that shows how to insert a record in a table that contains Blob and Clob
columns. It has been tested in Java DB. It reads the data of a picture from a file named picture.jpg and a resume from a
file named resume.txt. Both files are assumed to be in the current directory. If the files do not exist, the program prints
a message with their expected full path. Please change the file paths in the main() method if you want to use different
files. The program inserts a record in the person_detail table and retrieves the same data and saves it to the local disk
in the current directory. Running the program more than once will print an error message because it will try inserting a
duplicate record in the person_detail table. Person details will be retrieved every time you run the program.

Listing 6-30.  Reading and Writing Blob and Clob Data Database Columns

// LOBTest.java
package com.jdojo.jdbc;
 
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.Reader;
import java.io.Writer;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.sql.Blob;
import java.sql.Clob;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

507

public class LOBTest {
 public static void main(String[] args) {
 Connection conn = null;
 try {
 conn = JDBCUtil.getConnection();
  
 // Insert a record in the person_detail table. Files
 // picture.jpg and resume.txt are assumed to be in
 // the working directory
 String inPicturePath = "picture.jpg";
 String inResumePath = "resume.txt";
  
 // Make sure that the files exist
 ensureFileExistence(inPicturePath);
 ensureFileExistence(inResumePath);
  
 try {
 // Insert a person_detail record
 insertPersonDetail(conn, 1, 101,
 inPicturePath, inResumePath);
  
 // Commit the transaction
 JDBCUtil.commit(conn);
  
 System.out.println(
 "Inserted person details successfully");
 }
 catch(SQLException e) {
 System.out.print("Inserting person details failed: ");
 System.out.println(e.getMessage());
 JDBCUtil.rollback(conn);
 }
  
 // These files will be created in the current directory
 String outPicturePath = "out_picture.jpg";
 String outResumePath = "out_resume.txt";
  
 try {
 // Read the person_detail record
 retrievePersonDetails(conn, 1,
 outPicturePath, outResumePath);
 
 // Commit the transaction
 JDBCUtil.commit(conn);
  
 System.out.println(
 "Retrieved and saved person details successfully.");
 }
 catch(SQLException e) {
 System.out.print("Retrieving person details failed: ");
 System.out.println(e.getMessage());

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

508

 JDBCUtil.rollback(conn);
 }
 }
 catch (Exception e) {
 System.out.println(e.getMessage());
 JDBCUtil.rollback(conn);
 }
 finally {
 JDBCUtil.closeConnection(conn);
 }
 }
 
 public static void insertPersonDetail(Connection conn,
 int personDetailId,
 int personId,
 String pictureFilePath,
 String resumeFilePath)
 throws SQLException {
  
 String SQL = "insert into person_detail " +
 "(person_detail_id, person_id, picture, resume) " +
 "values " +
 "(?, ?, ?, ?)";
 
 PreparedStatement pstmt = null;
 try {
 pstmt = conn.prepareStatement(SQL);
 pstmt.setInt(1, personDetailId);
 pstmt.setInt(2, personId);
 
 // Set the picture data
 if (pictureFilePath != null) {
 // We need to create a Blob object first
 Blob pictureBlob = conn.createBlob();
 readInPictureData(pictureBlob, pictureFilePath);
 pstmt.setBlob(3, pictureBlob);
 }
 
 // Set the resume data
 if (resumeFilePath != null) {
 // We need to create a Clob object first
 Clob resumeClob = conn.createClob();
 readInResumeData(resumeClob, resumeFilePath);
 pstmt.setClob(4, resumeClob);
 }
 
 pstmt.executeUpdate();
 }
 catch (IOException | SQLException e) {
 throw new SQLException(e);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

509

 finally {
 JDBCUtil.closeStatement(pstmt);
 }
 }
 
 public static void retrievePersonDetails(Connection conn,
 int personDetailId,
 String picturePath,
 String resumePath) throws SQLException {
 
 String SQL = "select person_id, picture, resume " +
 "from person_detail " +
 "where person_detail_id = ?";
 
 PreparedStatement pstmt = null;
 try {
 pstmt = conn.prepareStatement(SQL);
 pstmt.setInt(1, personDetailId);
 ResultSet rs = pstmt.executeQuery();
 
 while (rs.next()) {
 int personId = rs.getInt("person_id");
 Blob pictureBlob = rs.getBlob("picture");
 if (pictureBlob != null) {
 savePicture(pictureBlob, picturePath);
 pictureBlob.free();
 }
 
 Clob resumeClob = rs.getClob("resume");
 if (resumeClob != null) {
 saveResume(resumeClob, resumePath);
 resumeClob.free();
 }
 }
 }
 catch (IOException | SQLException e) {
 throw new SQLException(e);
 }
 finally {
 JDBCUtil.closeStatement(pstmt);
 }
 }
 
 public static void readInPictureData(Blob pictureBlob,
 String pictureFilePath)
 throws FileNotFoundException, IOException, SQLException {
 
 // Get the output stream of the Blob object to write
 // the picture data to it.
 int startPosition = 1; // start writing from the beginning
 OutputStream out = pictureBlob.setBinaryStream(startPosition);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

510

 FileInputStream fis = new FileInputStream(pictureFilePath);
 
 // Read from the file and write to the Blob object
 int b = -1;
 while ((b = fis.read()) != -1) {
 out.write(b);
 }
 
 fis.close();
 out.close();
 }
 
 public static void readInResumeData(Clob resumeClob,
 String resumeFilePath)
 throws FileNotFoundException, IOException, SQLException {
 
 // Get the character output stream of the Clob object
 // to write the resume data to it.
 int startPosition = 1; // start writing from the beginning
 Writer writer = resumeClob.setCharacterStream(startPosition);
 FileReader fr = new FileReader(resumeFilePath);
 
 // Read from the file and write to the Clob object
 int b = -1;
 while ((b = fr.read()) != -1) {
 writer.write(b);
 }
 fr.close();
 writer.close();
 }
 
 public static void savePicture(Blob pictureBlob, String filePath)
 throws SQLException, IOException {
 FileOutputStream fos = new FileOutputStream(filePath);
 InputStream in = pictureBlob.getBinaryStream();
 
 int b = -1;
 while ((b = in.read()) != -1) {
 fos.write((byte) b);
 }
 
 fos.close();
 }
 
 public static void saveResume(Clob resumeClob, String filePath)
 throws SQLException, IOException {
 FileWriter fw = new FileWriter(filePath);
 Reader reader = resumeClob.getCharacterStream();
 
 int b = -1;
 while ((b = reader.read()) != -1) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

511

 fw.write((char) b);
 }
 
 fw.close();
 }
  
 public static void ensureFileExistence(String filePath) {
 Path path = Paths.get(filePath);
 if (!Files.exists(path)) {
 throw new RuntimeException("File " +
 path.toAbsolutePath() + " does not exist");
 }
 }
}

Batch Updates
You saw examples of using the Statement, PreparedStatement, and CallableStatement interfaces that let you send
one SQL command (or stored procedure call) at a time to the database. The JDBC API includes a batch update feature
that lets you send multiple update commands to a database in a batch (in one bundle) for execution. A batch update
greatly improves performance. The update commands that you can use in a batch update are SQL INSERT, UPDATE,
DELETE, and stored procedures. A command in a batch should not produce a result set. Otherwise, the JDBC driver
will throw a SQLException. A command should generate an update count that will indicate the number of rows
affected in the database by the execution of that command.

If you are using a Statement to execute a batch of commands, you can have heterogeneous commands in the
same batch. For example, one command could be a SQL INSERT statement and another could be a SQL UPDATE
statement.

If you are using a PreparedStatement or CallableStatement to execute a batch of commands, you will execute
one command with multiple set of input parameters. A CallableStatement used in a batch update must return an
update count and it should not produce a result set. Otherwise, the JDBC driver will throw a SQLException.

Tip■■   Batch update is an optional feature that may be provided by a JDBC driver. If a JDBC driver supports a batch
update, the supportsBatchUpdates() method of the DatabaseMetaData object will return true. You can get the
DatabaseMetaData object using the getMetaData() method of a Connection object. You should turn off the auto-commit
mode when executing batch updates, so you should be able to commit or rollback the entire batch. If the auto-commit
mode is turned on, the commit behavior depends on the JDBC driver implementation when an error occurs executing one
of the commands in the batch.

How do you execute multiple commands in a batch? It is a multi- step process.

	 1.	 Create a Statement, a PreparedStatement, or a CallableStatement by using an
appropriate method of a Connection object. At this point, there is no difference between
executing one command and using a batch of commands.

	 2.	 Use the addBatch() method to add a command to the batch. Each type of statement
object maintains a list of batch commands internally. The addBatch() method adds the
command to the internal list of batch commands. You need to call the addBatch() method
once for each command in the batch that you want to bundle together for execution.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

512

	 3.	 If you want to clear the list of batch commands without executing them, you can call the
clearBatch() method of the Statement interface to do so.

	 4.	 Use the executeBatch() method to send the batch of commands to the database for
execution in one go.

It is important to understand the behavior of the executeBatch() method of the Statement interface. It returns
an array of int if all commands in the batch are executed successfully. The array contains as many elements as the
number of commands in the batch. Each element in the array contains the update count that is returned from the
command. The order of the element in the array is the same as the order of commands in the batch. Sometimes, a
command in a batch may execute without an error, but the JDBC driver was not able to get the update count value. In
such a case, a value of Statement.SUCCESS_NO_INFO is returned in the array.

Tip■■   Java 8 has added an executeLargeBatch() method to the Statement interface that works the same as the
executeBatch method, except that it returns a long[] instead of an int[]. Use this method when you expect the update
counts of any commands in the batch to exceed Integer.MAX_VALUE.

A JDBC driver throws a BatchUpdateException if a command in the batch fails to execute successfully. It is up to
the JDBC driver whether it continues to execute the subsequent commands in the batch upon failure or stops the batch
execution upon the first failure. How do you know which command failed in a batch? When a BatchUpdateException
is thrown, you can use its getUpdateCounts(), which returns an array of int. The update count array contains the
update counts of the commands that were executed in the batch. If a JDBC driver executes all commands in a batch
irrespective of a failure, the returned array will contain as many elements as the number of commands in the batch. If
a command failed, its corresponding value in the array will be Statement.EXECUTE_FAILED. If the getUpdateCounts()
method of BatchUpdateException object returns fewer number of elements than the number of commands in the
batch, it means that the JDBC driver stopped processing any commands after the first failure.

The following snippet of code shows how to use a Statement object to execute a batch update:
 
Connection conn = JDBCUtil.getConnection();
Statement stmt = conn.createStatement();
 
// Add batch update commands
stmt.addBatch("insert into t1...);
stmt.addBatch("insert into t2...);
stmt.addBatch("update t3 set...);
stmt.addBatch("delete from t4...);
 
// Execute the batch updates
int[] updateCount = null;
 
try {
 updatedCount = stmt.executeBatch();
 System.out.println("Batch executed successfully.");
}
catch (BatchUpdateException e) {
 System.out.println("Batch failed.");
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

513

The following snippet of code shows how to use a PreparedStatement object to execute a batch update. The
logic will be the same if you use a CallableStatement, except for the construction of the SQL in the string format. The
addBatch() method in the PreparedStatement interface does not accept any parameter.
 
String sql = "delete from person where person_id = ?";
 
Connection conn = JDBCUtil.getConnection();
PreparedStatement pstmt = conn.prepareStatement(sql);
 
// Add two commands to the batch.
// Command #1: Set the input parameter and add it to the batch.
pstmt.setInt(201);
pstmt.addBatch();
 
// Command #1: Set the input parameter and add it to the batch.
pstmt.setInt(301);
pstmt.addBatch();
 
// Execute the batch update
int[] updateCount = null;
 
try {
 updatedCount = pstmt.executeBatch();
 System.out.println("Batch executed successfully.");
}
catch (BatchUpdateException e) {
 System.out.println("Batch failed.");
}
 

Listing 6-31 contains the complete code to demonstrate how to use a batch update. It also shows how to handle
the results of a batch update returned from the executeUpdate() method and from a BatchUpdateException.
The insertPersonStatement() and insertPersonPreparedStatement() methods do the same work: the first
one uses a Statement and the second one uses a PreparedStatement. In the main() method, the call to the
insertPersonPreparedStatement() method is commented. You need to use one of these methods, but not both.

Listing 6-31.  Using the Batch Update Feature of the JDBC API

// BatchUpdateTest.java
package com.jdojo.jdbc;
 
import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;
import java.sql.BatchUpdateException;
import java.sql.PreparedStatement;
import java.sql.Types;
import java.sql.Date;
 
public class BatchUpdateTest {
 public static void main(String[] args) {
 Connection conn = null;
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

514

 try {
 conn = JDBCUtil.getConnection();
 
 // Prepare the data
 int[] personIds = {801, 901};
 String[] firstNames = {"Matt", "Greg"};
 String[] lastNames = {"Flower", "Rice"};
 String[] genders = {"M", "M"};
 String[] dobString = {"{d '1960-04-01'}",
 "{d '1962-03-01'}"};
 double[] incomes = {56778.00, 89776.00};
 
 // Use batch update using the Statement objects
 insertPersonStatement(conn, personIds, firstNames,
 lastNames, genders, dobString, incomes);
 
 // Use batch update using the PreparedStatement objects
 /*
 java.sql.Date[] dobDate = {Date.valueOf("1960-04-01"),
 Date.valueOf("1962-03-01") };
 insertPersonPreparedStatement(conn, personIds,
 firstNames,lastNames, genders, dobDate, incomes);
 */
  
 // Commit the transaction
 JDBCUtil.commit(conn);
 }
 catch (SQLException e) {
 System.out.println(e.getMessage());
 JDBCUtil.rollback(conn);
 }
 finally {
 JDBCUtil.closeConnection(conn);
 }
 }
 
 public static void insertPersonStatement(Connection conn,
 int[] personId,
 String[] firstName, String[] lastName,
 String[] gender, String[] dob,
 double[] income) throws SQLException {
 
 int[] updatedCount = null;
 Statement stmt = null;
 
 try {
 stmt = conn.createStatement();
 for (int i = 0; i < personId.length; i++) {
 String SQL = "insert into person " +
 "(person_id, first_name, last_name," +
 " gender, dob, income) " +

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

515

 "values " +
 "(" + personId[i] + ", " +
 "'" + firstName[i] + "'" + ", " +
 "'" + lastName[i] + "'" + ", " +
 "'" + gender[i] + "'" + ", " +
 dob[i] + ", " +
 income[i] + ")";
 
 // Add insert command to the batch
 stmt.addBatch(SQL);
 }
 
 // Execute the batch
 updatedCount = stmt.executeBatch();
 System.out.println("Batch executed successfully.");
 printBatchResult(updatedCount);
 }
 catch (BatchUpdateException e) {
 // Let us see how many commands were successful
 updatedCount = e.getUpdateCounts();
 
 System.out.println("Batch failed.");
 int commandCount = personId.length;
 if (updatedCount.length == commandCount) {
 System.out.println(
 "JDBC driver continues to execute all"
 + " commands in a batch after a failure.");
 }
 else {
 System.out.println(
 "JDBC driver stops executing subsequent"
 + " commands in a batch after a failure.");
 }
  
 // Re-throw the exception
 throw e;
 }
 finally {
 JDBCUtil.closeStatement(stmt);
 }
 }
 
 public static void insertPersonPreparedStatement(
 Connection conn, int[] personId,
 String[] firstName, String[] lastName,
 String[] gender, java.sql.Date[] dob,
 double[] income) throws SQLException {
 
 int[] updatedCount = null;
 String SQL = "insert into person " +
 "(person_id, first_name, last_name, gender, dob," +

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

516

 " income) " +
 " values " +
 "(?, ?, ?, ?, ?, ?)";
 
 PreparedStatement pstmt = null;
 try {
 pstmt = conn.prepareStatement(SQL);
 
 for (int i = 0; i < personId.length; i++) {
 // Set input parameters
 pstmt.setInt(1, personId[i]);
 pstmt.setString(2, firstName[i]);
 pstmt.setString(3, lastName[i]);
 pstmt.setString(4, gender[i]);
 if (dob[i] == null) {
 pstmt.setNull(5, Types.DATE);
 }
 else {
 pstmt.setDate(5, dob[i]);
 }
 
 pstmt.setDouble(6, income[i]);
 
 // Add insert command with current input parameters
 pstmt.addBatch();
 }
 
 // Execute the batch
 updatedCount = pstmt.executeBatch();
 System.out.println("Batch executed successfully.");
 printBatchResult(updatedCount);
 }
 catch (BatchUpdateException e) {
 // Let us see how many commands were successful
 updatedCount = e.getUpdateCounts();
 System.out.println("Batch failed.");
 int commandCount = personId.length;
 if (updatedCount.length == commandCount) {
 System.out.println(
 "JDBC driver continues to execute all" +
 "commands in a batch after a failure.");
 }
 else {
 System.out.println(
 "JDBC driver stops executing subsequent" +
 "commands in a batch after a failure.");
 }
  
 // Re-throw the exception
 throw e;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

517

 finally {
 JDBCUtil.closeStatement(pstmt);
 }
 }
 
 public static void printBatchResult(int[] updateCount) {
 System.out.println("Batch Results...");
 for (int i = 0; i < updateCount.length; i++) {
 int value = updateCount[i];
 if (value >=0) {
 System.out.println("Command #" + (i + 1)
 + ": Success. Update Count=" + value);
 } else if (value >=Statement.SUCCESS_NO_INFO) {
 System.out.println("Command #" + (i + 1)
 + ": Success. Update Count=Unknown");
 } else if (value >=Statement.EXECUTE_FAILED) {
 System.out.println("Command #" + (i + 1) + ": Failed");
 }
 }
 }
}

Savepoints in a Transaction
A database transaction consists of one or more changes as a unit of work. A savepoint in a transaction is like a marker
that marks a point in a transaction so that, if needed, the transaction can be rolled back (or undone) up to that point.
Let’s take an example of inserting five records in the person table, like so:
 
Connection conn = JDBCUtil.getConnection();
Statement stmt = conn.createStatement();
stmt.execute("insert into person..."); // insert 1
stmt.execute("insert into person..."); // insert 2
stmt.execute("insert into person..."); // insert 3
stmt.execute("insert into person..."); // insert 4
stmt.execute("insert into person..."); // insert 5
 

At this point, you have only two choices: either you commit the transaction, which will insert all five records in
the person table, or you roll back the transaction, so that none of the five records will be inserted. You can perform a
commit or rollback as
 
conn.commit(); // Save all five records
 
or
 
conn.rollback(); // Do not save any of the five records
 

A savepoint will let you set a marker in between any of the above two INSERT statements. An object of the
Savepoint interface represents a savepoint in a transaction. To mark a savepoint in a transaction, you simply call
the setSavepoint() method of the Connection. The setSavepoint() method is overloaded. One version accepts

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

518

no argument and another accepts a string, which is the name of the savepoint. The setSavepoint() method returns
a Savepoint object, which is your marker and you must keep it for future use. Let’s rewrite the above logic using a
savepoint after every INSERT statement.
 
Connection conn = JDBCUtil.getConnection();
Statement stmt = conn.createStatement();
stmt.execute("insert into person..."); // insert 1
Savepoint sp1 = conn.setSavepoint(); // savepoint 1
stmt.execute("insert into person..."); // insert 2
Savepoint sp2 = conn.setSavepoint(); // savepoint 2
stmt.execute("insert into person..."); // insert 3
Savepoint sp3 = conn.setSavepoint(); // savepoint 3
stmt.execute("insert into person..."); // insert 4
Savepoint sp4 = conn.setSavepoint(); // savepoint 4
stmt.execute("insert into person..."); // insert 5
 

At this point, you have finer control on the transaction if you want to undo any of the above five inserts into the
person table. Now you can use another version of the rollback() method of the Connection object, which accepts a
Savepoint object. If you want to undo all changes that were made after savepoint 4, you can do so as follows:
 
// Rolls back insert 5 only
conn.rollback(sp4);
 

If you want to undo all changes that were made after savepoint 2, you can do so as follows:
 
// Rolls back inserts 3, 4, and 5
conn.rollback(sp2);
 

If you roll back up to save point 1, only the first insert will remain in the transaction. Can you change your mind
after you have rolled back to a save point? Suppose, after you call conn.rollback(sp2), you realize that you have
made a mistake and you wanted to roll back insert 4, and 5 only, and not insert 3. The call to conn.rollback(sp2)
will rollback three inserts: 3, 4, and 5. Do you have any choice to go back only up to savepoint 3 after you have gone
back to save point 2? No. You do not have any choice in such cases. Once you roll back up to a savepoint (say, spx),
all savepoints that were created after the savepoint spx are released and you cannot refer to them again. If you
refer to a released savepoint, the JDBC driver will throw a SQLException. The following snippet of code will throw a
SQLException:
 
conn.rollback(sp2); // Will release sp3, and sp4
conn.rollback(sp3); // Will throw an exception. sp3 is already released.
 

Note that when you roll back a transaction to a savepoint, that savepoint itself is not released. When you call
conn.rollback(sp2), savepoint sp2 remains valid. You can add more savepoints afterwards and roll back up to
savepoint sp2 again.

You can also release a savepoint explicitly by calling releaseSavepoint(Savepoint sp) method of a Connection
object. Releasing a savepoint also releases all subsequent savepoints that were created after this savepoint. For
example, calling conn.releaseSavepoint(sp2) will release savepoints sp2, sp3, and sp4. All savepoints in a
transaction are released when the transaction is committed or rolled back entirely. A JDBC driver will throw a
SQLException if you use the savepoint that has been released by any of the above-described means. Listing 6-32
shows how to use a savepoint in a transaction.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

519

Listing 6-32.  Using Savepoints in a Transaction

// SavePointTest.java
package com.jdojo.jdbc;
 
import java.sql.Connection;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.Savepoint;
 
public class SavePointTest {
 public static void main(String[] args) {
 Connection conn = null;
 try {
 // Connect to the database
 conn = JDBCUtil.getConnection();
 conn.setAutoCommit(false);
 
 // SQL Statement
 String SQL = "update person " +
 "set income = ? " +
 "where person_id = ?";
 
 PreparedStatement pstmt = conn.prepareStatement(SQL);
 pstmt.setDouble(1, 20000);
 pstmt.setInt(2, 101);
 pstmt.execute();
 
 // Set a save point
 Savepoint sp1 = conn.setSavepoint();
 
 // Change the income to 25000 and execute the SQL again
 pstmt.setDouble(1, 25000);
 pstmt.execute();
 
 // Set a save point
 Savepoint sp2 = conn.setSavepoint();
 
 // Perform some more database changes here
 // Roll back the transaction to the save point sp1,
 // so that income for person_id 101 will remain set
 // to 20000 and not the 25000
 conn.rollback(sp1);
 
 // Commit the transaction
 JDBCUtil.commit(conn);
 }
 catch (SQLException e) {
 System.out.println(e.getMessage());
 JDBCUtil.rollback(conn);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

520

 finally {
 JDBCUtil.closeConnection(conn);
 }
 }
}

Tip■■   You can check if a JDBC driver supports savepoints by using the supportsSavepoints() method of the
DatabaseMetaData object.

Using a DataSource
You need a Connection to communicate with a database. So far, you have been obtaining a Connection using the
DriverManager class. You need to register the database driver with the DriverManager and specify the details of
the database connection properties. All these things have to be done in the Java code that resides with the main
application logic. If anything related to the database connectivity changes, you must change your code that deals with
establishing the database connection.

The JDBC API provides another way to obtain a Connection in a Java application. You can use the javax.sql.
DataSource interface to get a connection to a database. In this alternative way of working with database connections,
things are separated into two logical modules: connection management and connection consumption.

One module is responsible for configuring and deploying the •	 DataSource objects on a server that
allows lookup using a Java Naming and Directory Interface (JNDI) service. The configuration
involves setting the properties for the DataSource object, which it will use to establish a
connection to the database such as server name, port number, network protocol, etc. The
deployment involves storing the configured DataSource object on a JNDI server by giving it a
logical name. The deployment is also known as binding, because a DataSource object is bound to
a logical name. Usually, a system administrator performs this step. The logical name that is given
to a DataSource object is announced to the developers who need to look up the DataSource
object. Typically, you use a DataSource in an application server, which uses J2EE technology. The
application server provides you with a GUI tool to configure and deploy DataSource objects.

The Java application, which needs an instance of a •	 Connection object, performs a lookup
using the JNDI API using the logical name of a DataSource. The lookup operation returns
an instance of the DataSource interface. You can get a Connection object from a DataSource
object using its getConnection() method. The getConnection() method is overloaded.
One version accepts no parameter and another version accepts userId and password as
parameters. The getConnection() method works similar to the getConnection() method of
the DriverManager class. A developer performs this step.

Usually, you configure and deploy a DataSource on a server, which is available using a JNDI service. The
following is a sample snippet of code that you can use to configure and deploy a DataSource programmatically. It
creates a DataSource provided by MYSQL JDBC driver.
 
import com.mySQL.jdbc.jdbc2.optional.MySQLDataSource;
import javax.naming.InitialContext;
import javax.naming.Context;
...
// Create a DataSource object
MySQLDataSource mds = new MySQLDataSource();
mds.setServerName("localhost");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

521

mds.setPortNumber(3306);
mds.setUser("root");
mds.setPassword("chanda");
 
// Get the initial context
Context ctx = new InitialContext();
 
// Bind (or register) the DataSource object under a logical name "jdbc/mydb"
ctx.bind("jdbc.mydb", mds);
 

The Java application that needs a connection to a database will perform a lookup using the logical name of the
DataSource that was given to it at the time of binding. Here is a typical snippet of Java code that you need to write
when you need a Connection object:
 
import javax.sql.DataSource;
import java.sql.Connection;
import javax.naming.InitialContext;
import javax.naming.Context;
...
// Get the initial context
Context ctx = new InitialContext();
 
// Perform a lookup for the DataSource using its logical name "jdbc/mydb"
DataSource ds = (DataSource)ctx.lookup("jdbc/mydb");
 
// Get a Connection object from the DataSource object
Connection conn = ds.getConnection();
 
// Perform other database related tasks...
 
// Close the connection
conn.close()
 

The JDBC API provides two other types of data source interfaces: javax.sql.ConnectionPoolDataSource
and javas.sql.XADataSource. The ConnectionPoolDataSource interface contains a getPooledConnection()
method, which returns an instance of the PooledConnection interface. The XADataSource interface contains a
getXAConnection() method, which returns an instance of the XAConnection interface.

An implementation of the ConnectionPoolDataSource interface provides the connection pooling feature
to improve the application’s performance. The basic DataSource implementation connects when a Connection
object is obtained from it and disconnects from the database when the Connection object is closed. A
ConnectionPoolDataSource implementation maintains a pool of database connections. When a database connection
is needed, it gives a connection from its pool. When a database connection is closed, it does not disconnect the
Connection object from the database physically. Rather, it returns the connection object to the pool for reuse.
Establishing a database connection is a time-consuming process. By using a connection pool in an application
using a ConnectionPoolDataSource, you improve your application’s performance greatly. The connection pooling
mechanism is also useful when the number of connections you can establish to a database is limited. In such cases,
you can maintain a pool of limited number of connections and users will take turns using these connections.

The implementation of the XADataSource interface provides support for distributed transactions, which involve
multiple databases. A transaction manager is used to manage a distributed transaction in conjunction with a
XADataSource object. Typically, a XADataSource also supports connection pooling.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

522

Retrieving SQL Warnings
Sometimes, a DBMS issues a SQL warning instead of throwing an exception. A SQL warning indicates that the
database interaction has been completed; however, everything was not right. The JDBC API lets you retrieve
SQL warnings signaled by a DBMS using a java.sql.SQLWarning object. The SQLWarning class inherits from the
SQLException class. A SQLWarning stores chains of SQL warnings. A SQL warning may be issued on a Connection, a
Statement (including PreparedStatement and CallableStatement), or a ResultSet. You can retrieve the first warning
object associated with any of these objects using their getWarnings() methods. If there are no warnings reported in
an object, the method returns null. Once you call the getWarnings() method on these objects, their warnings are
cleared. You can also clear their warnings by calling their clearWarnings() method. Note that these objects must be
open to access warnings reported on them. Once you execute or re-execute a Statement object, its warnings are reset.
The following snippet of code may be used to print warnings details reported on any object—Connection, Statement
or ResultSet:
 
// Check for warnings.
// Here xxx is either a Connection, Statement or ResultSet object
SQLWarning warning = xxx.getWarnings();
while(warning != null) {
 int errorCode = warning.getErrorCode();
 String sqlState = warning.getSQLState();
 String warningMsg = warning.getMessage();
 
 // Print the details
 System.out.println("Warning: " + warningMsg +
 "SQL State: " + sqlState +
 "Error Code:" + errorCode);
 
 // Get the next warning
 warning = warning.getNextWarning();
}

Enabling JDBC Trace
You can enable JDBC tracing that will log JDBC activities to a PrintWriter object. You can use the
setLogWriter(PrintWriter out) static method of the DriverManager to set a log writer if you are using the
DriverManager to connect to a database. If you are using a DataSource, you can use its setLogWriter(PrintWriter
out) method to set a log writer. Setting null as a log writer disables the JDBC tracing. The following snippet of code
sets a log writer to a C:\jdbc.log file on Windows:
 
// Sets the log writer to a file c:\jdbc.log
PrintWriter pw = new PrintWriter("C:\\jdbc.log");
DriverManager.setLogWriter(pw);
 

When you call the setLogWriter() method of the DriverManager class with the Java security enabled, Java
checks for a java.sql.SQLPermission. You can grant this permission to an executing code in a security policy file. The
following is an example of an entry in a security policy file that grants a permission to execute the setLogWriter()
method on the DriverManager:
 
grant {
 permission java.sql.SQLPermission "setLog";
};

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

523

Summary
The JDBC API provides a standard database-independent interface to interact with any tabular data source, including
a relational database management system (RDBMS) such as Oracle, SQL Server, DB2, Java DB, MySQL, etc. JDBC
drivers facilitate connection to a database in Java programs. The JRE does not include any JDBC drivers. JDBC drivers
are supplied by the DBMS vendors. Classes and interfaces in the JDBC API are in the java.sql and javax.sql
packages.

The DriverManager class facilitates registration of JDBC drivers to connect to different types of databases. When
passed in database connection properties such as the server location, protocol, database names, user id, password,
etc., the DriverManager uses the registered JDBC drivers to connect to the database and returns an object of the
Connection interface that represents a connection to the database.

You can use the getMetaData() method for a Connection object to get a DatabaseMetaData object. A
DatabaseMetaData object contains information about the database such as the features are supported by the
database, all tables in the database, etc.

The JDBC API provides mappings between SQL types and Java types. JDBC drivers perform the translation
between the two types. This hides the differences in data type names and their internal representations in different
databases. For example, you can use a java.sql.Date object to represent a SQL date value in your Java program
irrespective of the DBMS you are using. The JDBC driver will take care of converting the value in the java.sql.Date to
the DBMS-specific date value and vice versa.

A Statement is used to execute SQL statements in string forms from a Java program. The result set returned by a
SQL statement is made available in the Java program as an object of the ResultSet interface.

A PreparedStatement is used to execute SQL statement with parameters. The SQL statement is pre-compiled
to provide a faster execution on repeated use of the same SQL statement with different parameters. Using input
parameters in the SQL statement as placeholders also prevents attacks from hackers that use SQL injections.

A CallableStatement is used to call a SQL stored procedure or a function in a database. Different DBMSs use
different syntax to call stored procedures and functions. The JDBC API provides a DBMS-independent syntax to call
stored procedures and functions using a CallableStatement.

A ResultSet represents tabular data defined in terms of rows and columns. Typically, you get a ResultSet by
executing a SQL statement that returns a result set from the database. A ResultSet may scroll only in the forward
direction or in both forward and backward directions. All JDBC drivers will support at least a forward-only ResultSet.
A ResultSet may also be used to update data in the database.

A RowSet is a wrapper for a ResultSet. A RowSet hides the complexities that are involved in working with a
ResultSet. A JdbcRowSet, which is also known as a connected rowset, maintains a database connection all the time.
A CachedRowSet, which is also called a disconnected rowset, uses a database connection only for the duration it
is needed. A WebRowSet is a CachedRowSet that supports importing data from an XML document and exporting its
data to an XML document. A FilteredRowSet is a WebRowSet that provides filtering capability at the client side. A
JoinRowSet is a WebRowSet that provides the ability to combine (or join) two or more disconnected rowsets into one
rowset.

The JDBC provides support for working with database large objects, typically called, Blob, Clob, and NClob.
For a better performance, you can send multiple SQL commands to the database in one shot using the batch

update feature of the JDBC API. Batch updates are supported through the Statement, PreparedStatement, and
CallableStatement interfaces. The addBatch() method of the Statement object is used to add a SQL command to the
batch. The executeBatch() method sends all SQL commands in the batch to the database for execution.

A database transaction consists of one or more changes as a unit of work. A savepoint in a transaction is a marker
that marks a point in a transaction so that, if needed, the transaction can be rolled back up to the marked point. An
instance of the Savepoint interface represents a savepoint. You can create a savepoint in a transaction using the
setSavepoint() method of the Connection object. You can specify a savepoint in the rollback() method of the
Connection object to roll back the transaction to the specified savepoint.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ JDBC API

524

A DBMS may issue SQL warnings instead of throwing an exception. An instance of the SQLWarning class
represents a set of SQL warnings. SQL warnings are nested in one SQLWarning object. Use the getWarnings()
method of the Connection, Statement, or ResultSet objects to get SQL warnings associated with them. Use the
getNextWarning() method of the SQLWarning class to retrieve the next SQL warning from the set.

You can enable JDBC tracing that will log JDBC activities to a PrintWriter object. You can use the
setLogWriter(PrintWriter out) static method of the DriverManager to set a log writer.

www.it-ebooks.info

http://www.it-ebooks.info/

525

Chapter 7

Java Remote Method Invocation

In this chapter, you will learn

What Java Remote Method Invocation (RMI) is and the RMI architecture•	

How to develop and package RMI server and client applications•	

How to start the •	 rmiregistry, RMI server, and client applications

How to troubleshoot and debug RMI applications•	

Dynamic class downloading in an RMI application•	

Garbage collections of remote objects in RMI applications•	

What Is Java Remote Method Invocation?
Java supports a variety of application architectures that determine how and where the application code is deployed
and executed. In the simplest application architecture, all Java code resides on a single machine and one JVM
manages all Java objects and the interaction among them. This is an example of a standalone application, where all
that is needed is a machine that can launch a JVM. Java also supports a distributed application architecture in which
the application’s code and execution can be distributed among multiple machines.

In Chapter 4, you saw Java applets where Java classes are deployed on a web server. The applet classes are
downloaded to the client machine by the web browser and executed inside a JVM that runs on the client machine.
In the case of an applet, the Java code is still executed inside one JVM. In Chapter 5, you learned network
programming in Java that involves at least two JVMs running on different machines that execute the Java code
for the client and server sockets. Typically, sockets are used to transfer data between two applications. In socket
programming, it is possible for the client program to send a message to the server program. The server program
creates a Java object, invokes a method on that object, and returns the result of the method invocation to the client
program. Finally, the client program reads the result using sockets. In such cases, the client is able to invoke a method
on a Java object that resides in a different JVM. This possibility opens up doors for new application architectures,
called distributed programming, in which an application may utilize multiple machines, running multiple JVMs to
process the business logic. Although it is possible to invoke a method on an object that resides in a different JVM
(possibly on a different machine too) using socket programming, it is not easy to code. To achieve this, Java provides
a separate mechanism called Java Remote Method Invocation (Java RMI).

Java RMI enables a Java application to invoke a method on a Java object in a remote JVM. I will use the term
“remote object” to refer to a Java object that is created and managed by a JVM, other than the JVM that manages the
Java code that calls methods on that “remote object.” Typically, a remote object also implies that it is managed by a
JVM that runs on a machine other than the machine from which it is accessed. However, it is not a requirement for a
Java object to be a remote object that it should exist in a JVM on a different machine. For learning purposes, you will
use one machine to deploy the remote object in one JVM and launch another application in a different JVM to access

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Java Remote Method Invocation

526

the remote object. RMI lets you treat the remote object as if it is a local object. Internally, it uses sockets to handle
access to the remote object and to invoke its methods.

An RMI application consists of two programs, a client and a server, that run in two different JVMs. The server
program creates a number of Java objects and makes them accessible to the remote client programs to invoke
methods on those objects. The client program needs to know the location of the remote objects on the server, so it
can invoke methods on them. The server program creates a remote object and registers (or binds) its reference to an
RMI registry. An RMI registry is a name service that is used to bind a remote object reference to a name, so a client can
get the reference of the remote object using a name-based lookup in the registry. An RMI registry runs in a separate
process from the server program. It is supplied as a tool called rmiregistry. When you install a JDK/JRE on your
machine, it is copied in the bin subdirectory under the JDK/JRE installation directory.

After the client program gets the remote reference of a remote object, it invokes methods using that reference as
if it were a reference to a local object. RMI technology takes care of the details of invoking the methods on the remote
reference in the server program running on a different JVM on a different machine. In an RMI application, Java code
is written in terms of interfaces. The server program contains implementations for the interfaces. The client program
uses interfaces along with the remote object references to invoke methods on the remote object that exists in the
server’s JVM. All Java library classes supporting Java RMI are in the java.rmi package and its subpackages.

The RMI Architecture
Figure 7-1 shows the RMI architecture in a simplified form. A rectangular box in the figure represents a component in
an RMI application. An arrow line shows a message sent from one component to another in the direction of the arrow.
The ovals showing numbers from 1 to 11 represent the sequence of steps that take place in a typical RMI application.
I will discuss all steps in detail in this section.

Stub Skeleton

Network Layers

69105

Client Program Server Program

4 7811

RMI Registry

1
23

Figure 7-1.  The RMI architecture

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Java Remote Method Invocation

527

Let’s assume that you have developed all Java classes and interfaces that are needed for an RMI application to
run. In this section, you will walk through all the steps that are involved when you run an RMI application. You will
develop the Java code that is needed for each step in the next few sections.

The first step involved in an RMI application is to create a Java object in the server. The object will be used as
the remote object. There is an additional step that needs to be performed to make an ordinary Java object a remote
object. The step is known as exporting the remote object. When an ordinary Java object is exported as a remote
object, it becomes ready to receive/handle calls from remote clients. The export process produces a remote object
reference (also called a stub). The remote reference knows the details about the exported object such as its location
and methods that can be called remotely. This step is not labeled in Figure 7-1. It happens inside the server
program. When this step finishes, the remote object has been created in the server and is ready to receive a remote
method invocation.

The next step is performed by the server to register (or bind) the remote reference with an RMI registry. The
server chooses a unique name for each remote reference it registers with an RMI registry. A remote client will need to
use the same name to look up the remote reference in the RMI registry. This is labeled as #1 in Figure 7-1. When this
step finishes, the RMI registry has registered the remote object reference and a client interested in invoking a method
on the remote object may ask for its reference from the RMI registry.

Tip■■   For security reasons, an RMI registry and the server must run on the same machine so that a server can register
the remote references with the RMI registry. If this restriction is not imposed, a hacker may register his own harmful Java
objects to your RMI registry from his machine.

This step involves interaction between a client and an RMI registry. Typically, a client and an RMI registry run on
two different machines. The client sends a lookup request to the RMI registry for a remote reference. The client uses
a name to look up the remote reference in the RMI registry. The name is the same as the name that was used by the
server to bind the remote reference in the RMI registry in step #1. The lookup step is labeled as #2 in Figure 7-1. The
RMI registry returns the remote reference (or stub) to the client labeled as step #3 in Figure 7-1. If a remote reference
is not bound in the RMI registry with the name used by the client in the lookup request, the RMI registry throws
a NotBoundException. If this step finishes successfully, the client has received the remote reference (or stub) of the
remote object running in the server.

In this step, the client invokes a method on the stub. It is shown as step #4 in Figure 7-1. At this point, the stub
connects to the server and transmits the information required to invoke the method on the remote object, such as
the name of the method, the method’s arguments, etc. The stub knows about the server location and the details about
how to contact the remote object on the server. This step is labeled as step #5 in Figure 7-1. Many different layers at
the network level are involved in transmitting information emanating from stub to the server.

A skeleton is the server side counterpart of a stub on the client side. Its job is to receive the data sent by
the stub. This is shown as step #6 in Figure 7-1. After a skeleton receives the data, it reassembles it into a more
meaningful format and invokes the method on the remote object, which is shown as step #7 in Figure 7-1. Once
the remote method call is over on the server, the skeleton receives the result of the method call (step #8) and
transmits the information back to the stub (step #9) through the network layers. The stub receives the result
of the remote method invocation (step #10), reassembles the result, and passes the result to the client
program (step #11).

The steps #4 through #11 may be repeated to call the same or different methods on the same remote object.
If a client wants to call a method on a different remote object, it will have to first perform steps #2 and #3 before
initiating a remote method call.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Java Remote Method Invocation

528

It is typical in an RMI application that a client contacts an RMI registry to get the stub of a remote object in the
beginning. If the client needs the stub of another remote object running in the server, it may get it by calling a method
on the stub that it already has. Note that a remote object’s method can also return a stub to a remote client. This way,
a remote client may perform a lookup in the RMI registry only once at startup. The Java code that you write for an RMI
application is no different from that of a non-RMI application, except for looking up for a remote object reference in
the RMI registry.

Developing an RMI Application
This section will walk you through the steps to write the Java code to develop an RMI application. You will develop a
remote utility RMI application that will let you perform three things: echo a message from the server, get the current
date and time from the server, and add two integers. The following steps are involved in writing an RMI application:

Writing a remote interface.•	

Implementing the remote interface in a class. An object of this class serves as the remote •	
object.

Writing a server program. It creates an object of the class that implements the remote interface •	
and registers it with the RMI registry.

Writing a client program that accesses the remote object on the server.•	

Writing the Remote Interface
A remote interface is like any other Java interface whose methods are meant to be called from a remote client running
in a different JVM. It has four special requirements:

It must extend the •	 Remote interface. The Remote interface is a marker interface that does not
declare any methods.

All methods in a remote interface must throw a •	 RemoteException or an exception, which is its
superclass such as IOException or Exception. The RemoteException is a checked exception.
A remote method can also throw any number of other application-specific exceptions.

A remote method may accept the reference of a remote object as a parameter. It may also •	
return the reference of a remote object as its return value. If a method in a remote interface
accepts or returns a remote object reference, the parameter or return type must be declared of
the type Remote rather than of the type of the class that implements the Remote interface.

A remote interface may only use three data types in its method’s parameters or return value. •	
It could be a primitive type, a remote object, or a serializable non-remote object. A remote
object is passed by reference, whereas a non-remote serializable object is passed by copy. An
object is serializable if its class implements the java.io.Serializable interface.

You will name your remote interface RemoteUtility. Listing 7-1 contains the code for the RemoteUtility remote
interface. It contains three methods called echo(), getServerTime(), and add(), which provide your three intended
functionalities.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Java Remote Method Invocation

529

Listing 7-1.  A RemoteUtility Interface

// RemoteUtility.java
package com.jdojo.rmi;
 
import java.rmi.Remote;
import java.rmi.RemoteException;
import java.time.ZonedDateTime;
 
public interface RemoteUtility extends Remote {
 // Echoes a string message back to the client
 String echo(String msg) throws RemoteException;
 
 // Returns the current date and time to the client
 ZonedDateTime getServerTime() throws RemoteException;
 
 // Adds two integers and returns the result to the client
 int add(int n1, int n2) throws RemoteException;
}

Implementing the Remote Interface
This step involves creating a class that implements the remote interface. You will name the class RemoteUtilityImpl.
It will implement the RemoteUtility remote interface and will provide implementations for three methods: echo(),
getServerTime(), and add(). You can have any number of other methods in this class. The only thing you must
do is provide implementations for all methods defined in the RemoteUtility remote interface. The remote client
will be able to call only remote methods of this class. If you define methods in this class other than those defined
in the remote interface, those methods are not available for remote method invocations. However, you can use the
additional methods to implement the remote methods. Listing 7-2 contains the code for the RemoteUtilityImpl class.

Listing 7-2.  An Implementation Class for the RemoteUtility Remote Interface

// RemoteUtilityImpl.java
package com.jdojo.rmi;
 
import java.time.ZonedDateTime;
 
public class RemoteUtilityImpl implements RemoteUtility {
 public RemoteUtilityImpl() {
 }
 
 @Override
 public String echo(String msg) {
 return msg;
 }
 
 @Override
 public ZonedDateTime getServerTime() {
 return ZonedDateTime.now();
 }
 
 @Override
 public int add(int n1, int n2) {
 return n1 + n2;
 }
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Java Remote Method Invocation

530

The remote object implementation class is very simple. It implements the RemoteUtility interface and provides
implementations for three methods of the interface. Note that these methods in the RemoteUtilityImpl class
do not declare that they throw a RemoteException. The requirement to declare that all remote methods throw a
RemoteException is for the remote interface, not the class implementing the remote interface.

There are two ways to write your implementation class for a remote interface. One way is to inherit it from the
java.rmi.server.UnicastRemoteObject class. Another way is to inherit it from no class or any class other than the
UnicastRemoteObject class. Listing 7-2 took the latter approach. It did not inherit the RemoteUtilityImpl class from
any class.

What difference does it make if the implementation class for a remote interface inherits from the
UnicastRemoteObject class or some other class? The implementation class of a remote interface is used to create
remote objects whose methods are invoked remotely. The object of this class must go through an export process,
which makes it suitable for a remote method invocation. The constructors for the UnicastRemoteObject class
export the object automatically for you. So, if your implementation class inherits from the UnicastRemoteObject
class, it will save you one step in the entire process later. Sometimes your implementation class must inherit from
another class and that will force you not to inherit it from the UnicastRemoteObject class. One thing you need to
note is that the constructors for the UnicastRemoteObject class throw a RemoteException. If you inherit the remote
object implementation class from the UnicastRemoteObject class, the implementation class’s constructor must
throw a RemoteException in its declaration. Listing 7-3 rewrites RemoteUtilityImpl class by inheriting it from the
UnicastRemoteObject class. There are two new things in this implementation—it uses the extends clause in the class
declaration and it uses a throws clause in the constructor declaration. Everything else remains the same. I will discuss
the difference in using the implementation of the RemoteUtilityImpl class shown in Listing 7-2 and Listing 7-3 when
you write the server program later in this chapter.

Listing 7-3.  Rewriting the RemoteUtilityImpl Class by Inheriting It from the UnicastRemoteObject Class

// RemoteUtilityImpl.java
package com.jdojo.rmi;
 
import java.rmi.RemoteException;
import java.rmi.server.UnicastRemoteObject;
import java.time.ZonedDateTime;
 
public class RemoteUtilityImpl extends UnicastRemoteObject implements RemoteUtility {
 // Must throw RemoteException
 public RemoteUtilityImpl() throws RemoteException {
 }
  
 @Override
 public String echo(String msg) {
 return msg;
 }
 
 @Override
 public ZonedDateTime getServerTime() {
 return ZonedDateTime.now();
 }
 
 @Override
 public int add(int n1, int n2) {
 return n1 + n2;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Java Remote Method Invocation

531

Writing the RMI Server Program
The responsibility of a server program is to create the remote object and make it accessible to remote clients. A server
program performs the following things:

Installs the security manager.•	

Creates and exports the remote object.•	

Registers the remote object with the RMI registry application.•	

The subsequent sections discuss these steps in detail.

Installing the Security Manager
You need to make sure that the server code is running under a security manager. An RMI program cannot download
Java classes from remote locations if it is not running with a security manager. Without a security manager, it can only
use local Java classes. In both RMI servers and RMI clients, programs may need to download class files from remote
locations. You will look at examples of downloading Java classes from remote locations shortly. When you run a Java
program under a security manager, you must also control access to the privileged resources through a Java policy file.
The following snippet of code shows how to install a security manager if it is not already installed. You can use an
object of the java.lang.SecurityManager class or java.rmi.RMISecurityManager class to install a security manager.
 
SecurityManager secManager = System.getSecurityManager();
if (secManager == null) {
 System.setSecurityManager(new SecurityManager());
}
 

A security manager controls the access to privileged resources through a policy file. You will need to set
appropriate permissions to access the resources used in a Java RMI application. For this example, you will give all
permissions to all code. However, you should use a properly controlled policy file in a production environment.
The entry that you need to make in the policy file to grant all permissions is as follows:
 
grant {
 permission java.security.AllPermission;
};
 

Typically, a Java policy file resides in the user’s home directory on a computer and it is named .java.policy.
Note that the file name starts with a dot.

Creating and Exporting the Remote Object
The next step the RMI server program performs is to create an object of the class that implements the remote
interface, which will serve as a remote object. In your case, you will create an object of the RemoteUtilityImpl class.
 
RemoteUtilityImpl remoteUtility = new RemoteUtilityImpl();
 

You need to export a remote object so remote clients can invoke its remote methods. If your remote object
class (RemoteUtility class in this case) inherits from the UnicastRemoteObject class, you do not need to
export it. It is exported automatically when you create it. If your remote object’s class does not inherit from the

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Java Remote Method Invocation

532

UnicastRemoteObject class, you need to export it explicitly using one of the exportObject() static methods of the
UnicastRemoteObject class. When you export a remote object, you can specify a port number where it can listen for
a remote method invocation. By default, it listens at port 0, which is an anonymous port. The following statement
exports a remote object:
 
int port = 0;
RemoteUtility remoteUtilityStub =

(RemoteUtility)UnicastRemoteObject.exportObject(remoteUtility, port);
 

The exportObject() method returns the reference of the exported remote object, which is also called a stub or
a remote reference. You need to keep the reference of the stub, so you can register it with an RMI registry.

Registering the Remote Object
The final step that the server program performs is to register (or bind) the remote object reference with an RMI
registry using a name. An RMI registry is a separate application that provides a name service. To register a remote
reference with an RMI registry, you must first locate it. An RMI registry runs on a machine at a specific port. By default,
it runs on port 1099. Once you locate the registry, you need to call its bind() method to bind the remote reference.
You can also use its rebind() method, which will replace an old binding if it already exists for the specified name. The
name used is a String. You will use the name MyRemoteUtility as the name for your remote reference. It is better to
follow a naming convention for binding a reference object in the RMI registry to avoid name collisions.
 
Registry registry = LocateRegistry.getRegistry("localhost", 1099);
String name = "MyRemoteUtility";
registry.rebind(name, remoteUtilityStub);
 

That is all needed to write a server program. Listing 7-4 contains the complete code for the RMI server. It assumes
that the RemoteUtilityImpl class does not inherit from the UnicastRemoteObject class as listed in Listing 7-2.

Listing 7-4.  An RMI Remote Server Program

// RemoteServer.java
package com.jdojo.rmi;
 
import java.rmi.RemoteException;
import java.rmi.registry.LocateRegistry;
import java.rmi.registry.Registry;
import java.rmi.server.UnicastRemoteObject;
 
public class RemoteServer {
 public static void main(String[] args) {
 SecurityManager secManager = System.getSecurityManager();
 if (secManager == null) {
 System.setSecurityManager(new SecurityManager());
 }
 
 try {
 RemoteUtilityImpl remoteUtility = new RemoteUtilityImpl();
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Java Remote Method Invocation

533

 // Export the object as a remote object
 int port = 0; // an anonymous port
 RemoteUtility remoteUtilityStub
 = (RemoteUtility) UnicastRemoteObject.exportObject(
 remoteUtility, port);
 
 // Locate the registry
 Registry registry = LocateRegistry.getRegistry("localhost", 1099);
 
 // Bind the exported remote reference in the registry
 String name = "MyRemoteUtility";
 registry.rebind(name, remoteUtilityStub);
 
 System.out.println("Remote server is ready...");
 }
 catch (RemoteException e) {
 e.printStackTrace();
 }
 }
}
 

If you use the implementation of the RemoteUtilityImpl class as listed in Listing 7-3, you will need to modify the
code in Listing 7-4. The code in the try-catch block will change to the code as follows. All other code will remain the
same.
 
RemoteUtilityImpl remoteUtility = new RemoteUtilityImpl();
 
// No need to export the object
 
// Locate the registry
Registry registry = LocateRegistry.getRegistry("localhost", 1099);
 
// Bind the exported remote reference in the registry
String name = "MyRemoteUtility";
registry.rebind(name, remoteUtility);
 
System.out.println("Remote server is ready...");
 

You are not ready to start your server program yet. I will discuss how to start an RMI application in the sections
to follow.

For security reasons, you can bind a remote reference to an RMI registry only from the RMI server program
that is running on the same machine as the RMI registry. Otherwise, a hacker may be able to bind any arbitrary
and potentially harmful remote references to your RMI registry. By default, the getRegistry() static method of the
LocateRegistry class returns a stub for a registry that runs on the same machine at port 1099. You may just use the
following code to locate a registry in the server program.
 
// Get a registry stub for a local machine at port 1099
Registry registry = LocateRegistry.getRegistry();
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Java Remote Method Invocation

534

Note that the call to the LocateRegistry.getRegistry() method does not try to connect to a registry application.
It just returns a stub for the registry. It is the subsequent call on this stub, bind(), rebind() or any other method call
that attempts to connect to the registry application.

Writing the RMI Client Program
The RMI client program calls the methods on remote objects, which exist on the remote server. The first thing that
a client program must do is to know the location of the remote object. It is the RMI server program that creates and
knows the location of the remote object. It is the responsibility of the server program to publish the location details of
the remote object so a client can locate it and use it. The server program publishes the remote object’s location details
by binding it with an RMI registry and gives it a name, which is MyRemoteUtility in your case. The client program
contacts the RMI registry and performs a name-based lookup to get the remote reference. After getting the remote
reference, the client program calls methods on the remote reference, which are executed in the server. Typically,
the RMI client program performs the following:

It makes sure that it is running under a security manager.•	

 SecurityManager secManager = System.getSecurityManager();
if (secManager == null) {
 System.setSecurityManager(new SecurityManager());
}

 It locates the registry where the remote reference has been bound by the server. You must
know the machine name or IP address, and the port number at which the RMI registry
is running. In a real-world RMI program, you would not be using localhost in the client
program to locate the registry. Rather, an RMI registry will be running on a separate machine.
For your example, you will run all three programs—RMI registry, server, and client—on the
same machine.

 
// Locate the registry
Registry registry = LocateRegistry.getRegistry("localhost", 1099);

 It performs the lookup in the registry using the •	 lookup() method of the Registry interface.
It passes the name of the bound remote reference to the lookup() method and gets back the
remote reference (or stub). Note that the lookup() method must use the same name that was
used to bind/rebind a remote reference by the server. The lookup() method returns a Remote
object. You must cast it to the type of your remote interface. The following snippet of code
casts the returned remote reference from the lookup() method to the RemoteUtility interface
type:

 
String name = "MyRemoteUtility";
RemoteUtility remoteUtilStub = (RemoteUtility)registry.lookup(name);

 It calls methods on the remote reference (or stub). The client program treats the •	
remoteUtilStub reference as if it is a reference to a local object. Any method call made on it
is sent to the server for execution. All remote methods throw a RemoteException. You must
handle the RemoteException when you call any remote method.

 
// Call the echo() method
String reply = remoteUtilStub.echo("Hello from the RMI client.");

 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Java Remote Method Invocation

535

Listing 7-5 contains the complete code for your client program. Do not run this program yet. You will go through
the step-by-step process in the next few sections to run your RMI application. You may notice that writing RMI code is
not complex. It is the plumbing of different components in RMI that is complex.

Listing 7-5.  An RMI Remote Client Program

// RemoteClient.java
package com.jdojo.rmi;
 
import java.rmi.NotBoundException;
import java.rmi.RemoteException;
import java.rmi.registry.LocateRegistry;
import java.rmi.registry.Registry;
import java.time.ZonedDateTime;
 
public class RemoteClient {
 public static void main(String[] args) {
 SecurityManager secManager = System.getSecurityManager();
 if (secManager == null) {
 System.setSecurityManager(new SecurityManager());
 }
 
 try {
 // Locate the registry
 Registry registry =
 LocateRegistry.getRegistry("localhost", 1099);
 
 String name = "MyRemoteUtility";
 RemoteUtility remoteUtilStub =
 (RemoteUtility) registry.lookup(name);
 
 // Echo a message from the server
 String msg = "Hello";
 String reply = remoteUtilStub.echo(msg);
 System.out.println("Echo Message: " + msg +
 ", Echo reply: " + reply);
 
 // Get the server date and time with the zone info
 ZonedDateTime serverTime = remoteUtilStub.getServerTime();

 System.out.println("Server Time: " + serverTime);
 
 // Add two integers
 int n1 = 101;
 int n2 = 207;
 int sum = remoteUtilStub.add(n1, n2);
 System.out.println(n1 + " + " + n2 + " = " + sum);
 }
 catch (RemoteException | NotBoundException e) {
 e.printStackTrace();
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Java Remote Method Invocation

536

Separating the Server and Client Code
It is important that you separate the code for the server and client programs in an RMI application. The server
program needs to have the following three components:

The remote interface•	

The implementation class for the remote interface•	

The server program•	

The client program needs to have the following two components.

The remote interface•	

The client program•	

The client program should not know about the implementation class that implements the remote interface.
Having this class accessible to the client program defeats the purpose of developing an RMI application. You can have
additional classes accessible to server and client programs, which are needed to run them.

For your example, you can separate the server and client class files, either in two directory structures, or in two JAR files.
You will package the class files for the server and the client programs in utilserver.jar and utilclient.jar, respectively.

The files in the utilserver.jar file are

•	 RemoteUtility.class

•	 RemoteUtilityImpl.class

•	 RemoteServer.class

The files in the utilclient.jar file are

•	 RemoteUtility.class

•	 RemoteClient.class

Generating Stub and Skeleton
RMI needs a stub class when a remote object is exported using the UnicastRemoteObject class. You can do one of the
following two things:

You can use the •	 UnicastRemoteObject class to inherit your remote interface implementation
class, which will export your remote object automatically.

You can use the •	 exportObject() method of the UnicastRemoteObject class to export the
remote object explicitly.

In either case, when a remote object is exported, RMI needs a stub class. Prior to Java 5, you need to perform
one extra step to generate the stub class for your remote interface implementation class. It is done by using an rmic
command that is included in the bin subdirectory of your JDK installation folder. You run this command, passing the
fully qualified name of the remote interface implementation class as shown:
 
rmic com.jdojo.rmi.RemoteUtilityImpl
 

You may need to set the CLASSPATH environment variable appropriately so that rmic will be able to find the class
you specify as its argument. The above command will generate the following two class files in the same folder where
the RemoteUtilityImpl.class file resides.

•	 RemoteUtilityImpl_Stub.class

•	 RemoteUtilityImpl_Skel.class

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Java Remote Method Invocation

537

You need to include these two class files in the utilserver.jar file. Note that this step is needed only if you are
using Java version prior to Java 5. You also need to perform this step if you have a client program that is running Java
version prior to Java 5 and your server is running on Java 5 or later. If you are interested in looking at the Java source
code that is generated for these two class files, you can use the –keep (or -keepgenerated) option with the rmic
command, which will generate the Java source files for these classes. The following command will generate four files,
two .class files and two .java files.
 
rmic –keep com.jdojo.chapter5.RemoteUtilityImpl

Running the RMI Application
You need to start all programs involved in an RMI application in the following specific sequence:

Run the RMI registry.•	

Run the RMI server program.•	

Run the RMI client program.•	

Please refer to the “Troubleshooting an RMI Application” section later in this chapter if you have any problem in
running any of the programs.

Your server and client programs use security managers. You must have your java policy file properly configured
before you can run the RMI application successfully. You can grant all security permissions to an RMI application for
learning purposes. You can do so by creating a text file named rmi.policy (you can use any other file name you want)
and entering the following content, which grants all permissions to all code:
 
grant {
 permission java.security.AllPermission;
};
 

When you run the RMI client or server program, you need to set the rmi.policy file as your Java security policy
file using the java.security.policy JVM option. It is assumed that you have saved the rmi.policy file in the C:\
folder on Windows.
 
java -Djava.security.policy=file:/c:/rmi.policy <other-options>
 

This approach of setting a Java policy file is temporary. It should be only used for learning purposes. You will
need to set a fine-grained security in a production environment.

Running the RMI Registry
The RMI registry application is supplied with the JDK/JRE installation. It is copied in the bin subfolder of the
respective installation main folder. On the Windows platform, it is the rmiregistry.exe executable file. You can
run the RMI registry by starting the rmiregistry application using a command prompt. It accepts a port number
on which it will run. By default, it runs on port 1099. The following command starts it at port 1099 using a command
prompt on Windows:
 
C:\java8\bin> rmiregistry
 

The following command starts the RMI registry at port 8967:
 
C:\java8\bin> rmiregistry 8967
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Java Remote Method Invocation

538

The rmiregistry application does not print any startup message on the prompt. Usually, it is started as a
background process.

Most likely, the command is not going to work on your machine. Using this command, you will be able to
start the rmiregistry successfully. However, you will get ClassNotFoundException when you run the RMI server
application in the next section. The rmiregistry application needs access to some of the classes (the registered ones)
used in the RMI server application. There are three ways to make the classes available to rmiregistry:

Set the CLASSPATH appropriately.•	

Set the •	 java.rmi.server.codebase JVM property to the URL that contains the classes needed
by the rmiregistry.

Set the JVM property named •	 java.rmi.server.useCodebaseOnly to false. From JDK 7u21
(also in JDK 6u45 and JDK 5u45), this property is set to true by default. Earlier it was set to
false by default. If this property is set to false, the rmiregistry can download the needed
class files from the server.

The following command adds the serverutil.jar file to the CLASSPATH, before starting the rmiregistry:
 
C:\java8\bin> SET CLASSPATH=C:\utilserver.jar
C:\java8\bin> rmiregistry
 

Instead of setting the CLASSPATH to make classes available to the rmiregistry, you can also set the java.rmi.
server.codebase JVM property that is a space-separated list of URLs, as shown:
 
rmiregistry -J-Djava.rmi.server.codebase=file:/C:/utilserver.jar
 

The following command resets the CLASSPATH and sets the java.rmi.server.useCodebaseOnly property for the
JVM to false so the rmiregistry will download any class files needed from the RMI server. Your example will work
using this command:
 
C:\java8\bin> SET CLASSPATH=
C:\java8\bin> rmiregistry -J-Djava.rmi.server.useCodebaseOnly=false

Running the RMI Server
The RMI registry must be running before you can run the RMI server. Recall that the server runs under a security
manager that requires you to grant permissions to perform certain actions in a Java policy file. Make sure that you
have entered the required grants in a policy file. You can use the following command to run the server program. The
command text is entered in one line; it has been shown in multiple lines for clarity. Each part in the command text
should be separated by a space, not a new line. In the command, you will need to change the path to the JAR and
policy files that will reflect their paths on your machine.
 
java -cp C:\utilserver.jar
 -Djava.rmi.server.codebase=file:/C:/utilserver.jar
 -Djava.security.policy=file:/c:/rmi.policy
 com.jdojo.rmi.RemoteServer
 

The –cp option sets the CLASSPATH to utilserver.jar file. If you do not want to use a JAR file to package server-
related class files, you can use any other CLASSPATH settings, so that the server program may run. If you have already
set the appropriate CLASSPATH, you can remove the –cp option and the CLASSPATH value from the command text.

You need to set a java.rmi.server.codebase property. This is used by an RMI registry and a client program if
they need to download class files that they do not have. The value of this property is a URL, which can point to a local

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Java Remote Method Invocation

539

file system, a web server, a FTP server, or any other resource. The URL may point to a JAR file, as it does in this case, or
it can point to a directory. If it points to a directory, the URL must end with a forward slash. The following command
uses a folder as its codebase. If an RMI registry and a client need any class files, they will attempt to download the
class files from the URL file/C:/myrmi/classes/.
 
java -cp C:\utilserver.jar
 -Djava.rmi.server.codebase=file:/C:/myrmi/classes/
 com.jdojo.rmi.RemoteServer
 

You can also set a java.rmi.server.codebase property to point to a web server, where you can store your
necessary class files as shown:
 
java -cp C:\utilserver.jar
 -Djava.rmi.server.codebase=http://www.jdojo.com/rmi/classes/
 com.jdojo.rmi.RemoteServer
 

If you store class files at multiple locations, you can specify all locations separated by a space as follows:
 
java -cp C:\utilserver.jar
 -Djava.rmi.server.codebase="http://www.jdojo.com/rmi/classes/
 ftp://www.jdojo.com/rmi/some/classes/c.jar"
 com.jdojo.rmi.RemoteServer
 

It specifies one location as a directory and another as a JAR file. One uses the http protocol and another ftp. The
two values are separated by a space and they are on one line, not on two lines as shown. A ClassNotFoundException
may occur when you run the server or client program, which is most likely caused by an incorrect setting for the
 java.rmi.server.codebase property, or by not setting this property at all.

Running an RMI Client Program
After the RMI registry and server applications are started successfully, it is time to start the RMI client application.
You can use the following command to run the client program:
 
java -cp C:\utilclient.jar
 -Djava.rmi.server.codebase=file:/C:/utilclient.jar
 -Djava.security.policy=file:/c:/rmi.policy
 com.jdojo.rmi.RemoteClient
 

You do not have to include a java.rmi.server.codebase option when you run the above command. The client
program can also be run with the following command. You should be able to see an output on the console when
the client program runs successfully. You may get a different output when you run the program because it prints the
current date and time with the zone information for the server machine running the server application.
 
java -cp C:\utilclient.jar
 -Djava.security.policy=file:/c:/rmi.policy
 com.jdojo.rmi.RemoteClient

Echo Message: Hello, Echo reply: Hello
Server Time: 2014-06-22T13:11:31.790-05:00[America/Chicago]
101 + 207 = 308

www.it-ebooks.info

http://www.jdojo.com/rmi/classes/
http://www.jdojo.com/rmi/classes/
ftp://www.jdojo.com/rmi/some/classes/c.jar
http://www.it-ebooks.info/

Chapter 7 ■ Java Remote Method Invocation

540

Troubleshooting an RMI Application
It is very likely that you will get many exceptions before you will be able to run the RMI application the very first time.
This section will list a few exceptions that you may receive. It will also list some possible causes for those exceptions
and some possible solutions. It is not possible to list all possible errors that you might get when you attempt to run an
RMI application. You should be able to figure out most of the errors by looking at the stack prints of the exceptions.

java.rmi.StubNotFoundException
You get a StubNotFoundException when you try to run a server program. The exception stack trace will be similar to
the following:
 
java.rmi.StubNotFoundException: Stub class not found: com.jdojo.rmi.RemoteUtilityImpl_Stub;
nested exception is:
java.lang.ClassNotFoundException: com.jdojo.rmi.RemoteUtilityImpl_Stub
 at sun.rmi.server.Util.createStub(Util.java:292)...
 

This exception could occur because of many reasons. Here are some of the reasons you could look for and fix:

You may be running the server program using a Java version prior to Java 5. You must create the •	
stub and skeleton using the rmic command and make them accessible to the JVM when you run
the server program. Please refer to the “Generating Stub and Skeleton” section for more details.

You may get this error when you are exporting a remote object and not passing a port number:•	

  RemoteUtility remoteUtilityStub =
 (RemoteUtility)UnicastRemoteObject.exportObject(remoteUtility);

 If you do not pass a port number to the exportObject() method of the UnicastRemoteObject
class to export a remote object, you must generate the stub and skeleton using the rmic
command first. Please refer to the “Generating Stub and Skeleton” section for more details.
Another way to resolve this is to pass a port number to the exportObject() method. The port
number 0 (zero) means an anonymous port.

 
RemoteUtility remoteUtilityStub =
 (RemoteUtility)UnicastRemoteObject.exportObject(remoteUtility,0);

java.rmi.server.ExportException
You get an ExportException when you try to run the rmiregistry application or the server application. The
exception stack trace will be similar to the one shown if you get this exception when you attempt to run the
rmiregistry application.
 
java.rmi.server.ExportException:Port already in use: 1099; nested exception is:
java.net.BindException: Address already in use: JVM_Bind...
 

It states that the port number 1099 (may be a different number in your case) is already in use. Maybe you have
already started the rmiregistry application at port 1099 (which is the default port number for an rmiregistry
application) or some other application is using the port 1099. You can do one of the following two things to fix this
problem:

You can stop the application that is using the port 1099 and start the •	 rmiregistry application
at port 1009.

You can start the •	 rmiregistry application at a port other than 1099.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Java Remote Method Invocation

541

If you get an ExportException when you run the server program, it is caused by the failure of the export process
of the remote object. There are many reasons for the export process to fail. The following exception stack trace
(partial trace is shown) is caused by exporting the same remote object twice:
 
java.rmi.server.ExportException: object already exported
 at sun.rmi.transport.ObjectTable.putTarget(ObjectTable.java:189)
 at sun.rmi.transport.Transport.exportObject(Transport.java:92)...
 

Check your server program and make sure that you are exporting your remote object only once. It is a common
mistake to inherit the remote object implementation class from the UnicastRemoteObject class and also use the
exportObject() method of the UnicastRemoteObject class to export the remote object. When you inherit the remote
object’s implementation class from the UnicastRemoteObject class, the remote object, which you create, is exported
automatically. If you try to export it again using the exportObject() method, you will get this exception. I have
stressed this point a few times when discussing the remote interface implementation class. When you are developing
an RMI application, remember the saying, “To err is programmer, to punish Java.” Even a little mistake in the setup of
an RMI program may cost you hours of your time to detect and fix.

java.security.AccessControlException
You get this exception when your Java policy file does not have grant entries that are necessary to run the RMI
application. The following is the partial stack trace of an exception, which is caused when you attempt to run the
server program, and it attempts to bind a remote object to the RMI registry:
 
java.security.AccessControlException: access denied (java.net.SocketPermission 127.0.0.1:1099
connect,resolve)...
 

Communications among registry, server, and client are performed using sockets. You must grant appropriate
socket permission in the Java policy file for security, so that the three components of your RMI application may be
able to communicate. Most of the security-related exceptions can be fixed by granting appropriate permissions in the
Java policy file.

java.lang.ClassNotFoundException
You get a ClassNotFoundException exception when a class file that is needed by Java runtime is not found. You must
have received this exception many times by now. Most of the time, you receive this exception when the CLASSPATH is
not appropriately set. In an RMI application, this exception may be the cause for another exception.
The following stack trace shows that the java.rmi.ServerException exception was thrown, which has its cause in
a ClassNotFoundException exception:
 
java.rmi.ServerException: RemoteException occurred in server thread; nested exception is:
 java.rmi.UnmarshalException: error unmarshalling arguments; nested exception is:
 java.lang.ClassNotFoundException: com.jdojo.rmi.RemoteUtility
...
Caused by: java.lang.ClassNotFoundException: com.jdojo.rmi.RemoteUtility
 at java.net.URLClassLoader$1.run(URLClassLoader.java:220)
 at java.net.URLClassLoader$1.run(URLClassLoader.java:209)
 

This type of exception is thrown when the java.rmi.server.codebase option is not set properly or not set at all
when you run the server or the client application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Java Remote Method Invocation

542

This exception was thrown when the server program was started without using the java.rmi.server.codebase
option and the rmiregistry application was run without setting the CLASSPATH. When you try to bind/rebind
a remote reference with an rmiregistry application, the server application sends the remote reference to the
rmiregistry application. The rmiregistry application must load the class before it can represent the remote
reference as a Java object in its JVM. At this time, the rmiregistry will try to download the required class files from the
location that was specified at the server startup using the java.rmi.server.codebase property.

If you get this exception when you run the client program, make sure you have set the java.rmi.server.
codebase property when you run the client program.

Please check the CLASSPATH and java.rmi.server.codebase property when you run the server and the client
program to avoid this exception.

You get a ClassNotFoundException when you run the client program because the server was not able to find
some class definitions that were required in unmarshalling the client call on the server side. The sample partial stack
trace of the exception is shown:
 
java.rmi.ServerException: RemoteException occurred in server thread; nested exception is:
java.rmi.UnmarshalException: error unmarshalling arguments; nested exception is:
java.lang.ClassNotFoundException: com.jdojo.rmi.Square
 at sun.rmi.server.UnicastServerRef.dispatch(UnicastServerRef.java:336)
 at sun.rmi.transport.Transport$1.run(Transport.java:159)...
 

A remote method defined in a remote interface may accept a parameter, which may be of an interface or a class
type. The client may pass an object of a class that implements the interface or an object of a subclass of type defined in
the remote interface’s method signature. If the class definition does not exist on the server, the server will attempt to
download the class using the java.rmi.server.codebase property that was set in the client application. You need to
make sure the class for which you are getting this error (exception stack trace shows com.jdojo.rmi.Square as class
name) is either in the CLASSPATH of the server JVM or set the java.rmi.server.codebase property when you run the
remote client, so that this class can be downloaded by the sever.

Debugging an RMI Application
You can turn on RMI logging for an RMI server application by setting the JVM property named java.rmi.server.
logCalls to true. By default, it is set to false. The following command launches your RemoteServer application
setting the java.rmi.server.logCalls property to true:
 
java -cp C:\utilserver.jar
 -Djava.rmi.server.logCalls=true
 –Djava.rmi.server.codebase="http://www.myurl.com/rmiclasses"
 com.jdojo.rmi.RemoteServer
 

When the java.rmi.server.logCalls property for the server JVM is set to true, all incoming calls to the server
and stack trace of any exceptions that are thrown during execution of an incoming call are logged to the standard
error.

The RMI runtime also lets you log the incoming calls in a server application to a file, irrespective of the value set
for the java.rmi.server.logCalls property for the server JVM. You can log all incoming call details to a file using the
setLog(OutputStream out) static method of java.rmi.server.RemoteServer class. Typically, you set the file output
stream for logging in the beginning of the server program code such as the very first statement in the main() method
of your com.jdojo.rmi.RemoteServer class. The following snippet of code enables the calls logging in a remote server
application to a C:\rmi.log file. You can disable call logging by using null as the OutputStream in the setLog()
method.
 

www.it-ebooks.info

http://www.myurl.com/rmiclasses
http://www.it-ebooks.info/

Chapter 7 ■ Java Remote Method Invocation

543

try {
 java.io.OutputStream os = new java.io.FileOutputStream("C:\\rmi.log");
 java.rmi.server.RemoteServer.setLog(os);
}
catch (FileNotFoundException e) {
 System.err.println("Could not enable incoming calls logging.");
 e.printStackTrace();
}
 

When a security manager is installed on the server, the running code, which enables logging to a file, must have
a java.util.logging.LoggingPermission with permission target as “control”. The following grant entry in the Java
policy file will grant this permission. You will also have to grant the “write” permission to the log file (C:\rmi.log in
this example) in the Java policy file.
 
grant {
 permission java.io.FilePermission "c:\\rmi.log", "write";
 permission java.util.logging.LoggingPermission "control";
};
 

If you want to get debugging information about an RMI client application, set a non-standard
sun.rmi.client.logCalls property to true when you launch the RMI client application. It will display the debugging
information on the standard error. Since this property is not the part of a public specification, it may be removed in
future releases. You need to refer to the RMI specification for more details on debugging options.

Dynamic Class Downloading
The JVM loads the class definition before it can create an object of a class. It uses a class loader to load a class at
runtime. A class loader is an instance of the java.lang.ClassLoader class. A class loader must locate the byte codes
for a class before it can load its definition into the JVM. A Java class loader is capable of loading the byte codes of a
class from any location such as a local file system, a network, etc. There could be multiple class loaders in one JVM
and they could be system or custom defined.

The JVM creates a class loader at startup, which is called a bootstrap class loader. The bootstrap class loader
is responsible for loading initial classes required for basic JVM functions. Class loaders are organized in a tree-like
structure based on a parent-child relationship. The bootstrap class loader has no parent. All other class loaders have
the bootstrap class loader as their direct or indirect parent. In a typical class loading process, when a class loader is
asked to load the bytecode for a class, it asks its parent to load the class, which in turn asks its parent and so on, until
the bootstrap class loader gets the request to load the class. If none of the parent class loaders are able to load the
class, the class loader that received the initial request to load the class will attempt to load the class.

The RMI runtime uses a special RMI class loader that is responsible for loading the classes in an RMI application.
When an object is being passed around in an RMI application from one JVM to another, the sending JVM has to
serialize and marshal the object, and the receiving JVM has to deserialize and unmarshal it. The sending JVM adds the
value of the property java.rmi.server.codebase to the object’s serialized stream. When the object stream is received
at other end, the receiving JVM must load the class definition of the object using a class loader before it can convert
the object stream into a Java object. The JVM instructs the RMI class loader to load the class definition of the object,
which it has received in a stream form. The class loader attempts to load the class definition from its JVM CLASSPATH.
If the class definition is not found using the CLASSPATH, the class loader uses the value of the java.rmi.server.
codebase property from the object’s stream to load the class definition.

Note that the java.rmi.server.codebase property is set in one JVM and it is used to download the class
definition in another JVM. This property can be set when you run the RMI server or client program. When one
side (server or client) transmits an object to another side, which does not have the bytecode to represent the class

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Java Remote Method Invocation

544

definition for the object being received, the sending side must have set the java.rmi.server.codebase property at
the time of sending the object, so that the receiving end can download the class bytecode using this property. The
value for the java.rmi.server.codebase property is a space-separated list of URLs.

Downloading code from an RMI server to the client may be fine from a security point of view. Sometimes it may
not be considered safe to download code from a client to the server. By default, downloading the classes from remote
JVMs is disabled. RMI lets you enable/disable this feature by using a java.rmi.server.useCodebaseOnly property.
By default, it is set to true. If it is set to true, the JVM’s class loader will load classes only from local CLASSPATH or
locally set java.rmi.server.codebase property. That is, if it is set to true, the class loader will not read the value of
java.rmi.server.codebase from the received object’s stream to download the class definition. Rather, it will look
for the class definition in its JVM CLASSPATH and use URLs that are set as the value of the java.rmi.server.codebase
property for its own JVM. That is, when the java.rmi.server.useCodebaseOnly property is set to true, the RMI
class loader ignores the value for the codebase that is sent from the sending JVM in an object’s stream. The property
name useCodebaseOnly seems to be a misnomer. It could have conveyed its meaning better had it been named
useLocallySetCodebaseOnly. Here is how you can set this property when you run the RMI server:
 
java -cp C:\utilserver.jar
 –Djava.rmi.server.codebase="http://www.myurl.com/rmiclasses"
 -Djava.rmi.server.useCodebaseOnly=true
 com.jdojo.rmi.RemoteServer

 Tip■■   Starting in JDK 7u21 (also in JDK 6u45 and JDK 5u45), the default value for the java.rmi.server.codebase
property is set to true. Its default value used to be false. It means, by default, the application is not allowed to download
classes from other JVMs.

There are two implications of setting the java.rmi.server.useCodebaseOnly property to true:

If the server needs a class as part of a remote call from a client, it will always look in its •	
CLASSPATH or it will use the value of java.rmi.server.codebase that you set for the server
program. In the above example, all classes in the server must be found in its CLASSPATH or at
the URL http://www.myurl.com/rmiclasses.

If a client needs to use a new class type in a remote method call, the new class type must be •	
known to the server in advance because the server will never use the client’s instruction
(set by using java.rmi.server.codebase property at the client side) about the location
from where to download the required new classes. This means that you must make the new
classes that will be used by a remote client available in server’s CLASSPATH or at the URLs
specified as the java.rmi.server.codebase property for the server. This situation may arise
when a remote method accepts an interface type and the client sends an object of a class that
implements that interface. In this case, the server may not have the same definition of the
new implementation of the interface as the client.

The above argument applies to running an RMI client application as well if you set the java.rmi.server.
useCodebaseOnly property to true for the JVM running the RMI client application. If this property is set to true for the
client application, you must make all required classes available to the client either by placing them in its CLASSPATH or
placing them at URLs and setting the URLs as the value for the java.rmi.server.codebase property at the client side.

www.it-ebooks.info

http://www.myurl.com/rmiclasses
http://www.myurl.com/rmiclasses
http://www.it-ebooks.info/

Chapter 7 ■ Java Remote Method Invocation

545

Garbage Collection of Remote Objects
In an RMI application, remote objects are created in the JVM on the server. The RMI registry and remote clients
keep references of the remote objects. Does a remote object ever get garbage collected? And, if it does get garbage
collected, when does it happen and how does it happen? Garbage collection of a local object is easy. A local object is
created and referenced in the same JVM. It is an easy task for a garbage collector to determine that a local object is no
longer referenced in the JVM.

In an RMI application, you need a garbage collector that can keep track of the references of a remote object
in remote JVMs. Suppose an RMI server creates a remote object of RemoteUtilityImpl class and five clients get its
remote reference. An RMI registry is also a client that gets the remote reference as part of the bind/rebind process.
When and how does the server garbage collect the lone object of the RemoteUtilityImpl class, which is being
referenced by five clients?

The JVM on the server, which has the remote object, and the five JVMs at five different clients must interact,
so the remote object in the server’s JVM can be garbage collected when it is no longer used by any remote clients.
Let’s ignore the local references of the remote object in the server JVM for this discussion. The interaction between
a remote client and an RMI server depend on many unreliable factors. For example, the network may go down
and a remote client may not be able to communicate with the server. The second consideration is who initiates the
interaction between the remote client and the server? Is it the server that keeps asking a remote client if it has a live
remote reference? Is it the remote client who keeps telling the server that it still has a live remote reference? The
responsibility of interaction between client and server is shared by both. The remote client needs to update the server
about the aliveness of its remote references. If the server does not hear from any clients for a specific period of time,
it takes a unilateral decision to make the remote object a candidate for a future garbage collection.

The RMI garbage collector is based on reference count. A reference count has an associated lease. A lease has a
time period for which it is valid. When a remote client (including an RMI registry) gets a reference to a remote object,
it sends a message to the RMI runtime on the server requesting a lease for that remote object reference. The server
grants a lease for a specified time period to that client. The server increments the reference count for that remote
object by one and sends back the lease to the client. By default, an RMI server grants a lease for 10 minutes for a
remote object. Now, the following are some possibilities:

The client may be done with the remote object reference within the time period for which it •	
had acquired the lease from the server.

The client may want to renew the lease for another extended time period.•	

The client crashes. The server does not receive any message from the client, and the lease •	
period for a remote reference that was acquired by the client expires.

Let’s look at each possibility. A client sends messages to the server on three different occasions. It sends a
message the very first time it receives a remote reference. It tells the server that it has a reference of the remote object.
The second time, it sends a message to the server when it wants to renew the lease for a remote reference. The third
time, it sends a message to the server when it is done with the remote reference. In fact, when a remote reference
is garbage collected in a client application, it sends a message to the server that it is done with the remote object.
Internally, there are only two types of messages that a remote client sends to a server: dirty and clean. The dirty
message is sent to get a lease and the clean message is sent to remove/cancel the lease. These two messages are sent
from a remote client to a server using the dirty() and clean() methods of the java.rmi.dgc.DGC interface. As a
developer, you do not have any control over these messages (sending or receiving) except that you can customize the
lease time period. The lease time period controls the frequency of these messages sent to the server.

When a client is done with a remote object reference, it sends a message to the server that it is done with it. The
message is sent when the remote reference in the client’s JVM is garbage collected. Therefore, it is important that you
set the remote reference in the client program code to null as soon as you are done with it. Otherwise, the server will
keep holding on to the remote object, even if it is no longer used by the remote client. You do not have any control on
the timing of this message, which is sent from the remote client to the server. All you can do to expedite this message

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Java Remote Method Invocation

546

sending is to set the remote object reference in the client code to null, so the garage collector will attempt to garbage
collect it and send a clean message to the server.

The RMI runtime keeps track of the leases for remote references in a remote client JVM. When a lease is half-way
through its expiration period, the remote client sends a lease renewal request to the server and gets the lease renewed.
When a lease for a remote client is renewed for a remote reference, the server keeps track of the lease expiration
time and it will not garbage collect the remote object. It is important that you understand the importance of setting
the lease period for a remote reference. If it is too small, a significant amount of network bandwidth will be used for
renewing the lease frequently. If it is too large, the server will keep the remote object alive for a longer time in case a
client is done with its remote reference and it does not inform the server to cancel the lease. I will discuss shortly how
to set a lease period value in an RMI application.

If the server does not hear anything from a remote client about the lease of a remote reference that the client had
acquired, after the expiration of the lease period, it simply cancels the lease and decrements the reference count for
that remote object by one. This unilateral decision that is made by the server is important to handle the cases of
ill-behaved remote clients (not telling the server that it is done with a remote reference) or any network/system
hiccups that may prevent the remote client from communicating with the server.

When all clients are done with a remote reference of a remote object, its reference count in the server will go
down to zero. A remote client is considered done with a remote reference when either its lease is expired or it has sent
a clean message to the server. In this case, the RMI runtime will reference the remote object using a weak reference,
so if there is no local reference to the remote object, it may be garbage collected.

By default, the lease period is set for 10 minutes. You can set the lease period using the java.rmi.dgc.
leaseValue property when you start the RMI server. The value for the lease period is specified in milliseconds.
The following command starts the server program with a lease period set to 5 minutes (300000 milliseconds). The
command text is entered on one line with two parts separated by a space, not by a newline as shown; I have used
a newline to separate the parts of the command for clarity.
 
java -cp C:/utilserver.jar
 -Djava.rmi.dgc.leaseValue=300000
 -Djava.rmi.server.codebase=file:/C:/utilserver.jar
 com.jdojo.rmi.RemoteServer
 

Except for setting the lease time period, everything is handled by the RMI runtime. The RMI runtime gives you
one more piece of information about the garbage collection of a remote object. It can tell you when the reference
count of the remote object has gone down to zero. It is important to get this notification if a remote object holds some
resources that you would like to free when no remote client is referencing it. It is easy to get this notification. All you
have to do is to implement the java.rmi.server.Unreferenced interface in your remote object implementation class.
Its declaration is as follows:
 
public interface Unreferenced {
 void unreferenced()
|
 

The unreferenced() method is called when the remote reference count for a remote object becomes zero. If you
want to get a notification in your example for the RemoteUtility remote object, you need to modify the declaration of
the RemoteUtilityImpl class, as shown in Listing 7-6.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Java Remote Method Invocation

547

Listing 7-6.  A Modified Version of the RemoteUtilityImpl Class That Implements the Unreferenced Interface

// RemoteUtilityImpl.java
package com.jdojo.rmi;
 
import java.rmi.server.Unreferenced;
import java.time.ZonedDateTime;
 
public class RemoteUtilityImpl implements RemoteUtility, Unreferenced {
 public RemoteUtilityImpl() {
 }
 
 @Override
 public String echo(String msg) {
 return msg;
 }
 
 @Override
 public ZonedDateTime getServerTime() {
 return ZonedDateTime.now();
 }
 
 @Override
 public int add(int n1, int n2) {
 return n1 + n2;
 }
 
 @Override
 public void unreferenced() {
 System.out.println("RemoteUtility unreferenced at: " +
 ZonedDateTime.now());
 }
}
 

You may notice that, this time, the RemoteUtilityImpl class implements the Unreferenced interface and
provides implementation for the unreferenced() method, which prints a message on the standard output with the
time when its reference count becomes zero. The unreferenced() method will be called by the RMI runtime. To test
that the unreferenced() method is called, you can start the RMI registry application, and then start the RMI server
application. The RMI registry will keep renewing the lease for the remote object. As long as an RMI registry is running,
you will never see the unreferenced() method being called. You need to shut down the RMI registry application and
wait for the remote object reference’s lease to expire or to be cancelled by the RMI registry when you shut it down.
After the RMI registry is shut down, you will see the message on the standard output for the server program that will
be printed by the unreferenced() method.

An RMI registry should be used just as a bootstrap means to start the remote client. Later on, the remote client
can receive a remote object’s reference as a method call to another remote object. If a remote client receives a remote
object reference by a remote method call on a remote object, that remote object’s reference need not be registered
with the RMI registry. In this case, after the last remote client is finished with the remote reference, the server will
garbage collect the remote object instead of keeping it in memory when it is bound to an RMI registry.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Java Remote Method Invocation

548

Summary
Java Remote Method Invocation (RMI) allows a program running in one JVM to invoke methods on Java objects
running in another JVM. RMI provides an API to develop distributed applications using the Java programming
language.

An RMI application involves three applications running in three JVMs: the rmiregistry application, a server
application, and a client application. The rmiregistry application is shipped with the JDK. You are responsible for
developing the server and client applications. The server application creates Java objects called remote objects and
registers them with the rmiregistry for later name lookup by clients. The client application looks up the remote
object in the rmiregistry using a logical name and gets back a reference of the remote object. The client application
invokes methods on the remote object reference that is sent to the server application for execution of the method
on the remote object The results of the method execution is sent back from the server application to the client
application.

An RMI application must follow a few rules to develop the classes and interfaces involved the remote
communication. You need to create an interface (called remote interface) that must inherit from the Remote interface.
All methods in the interface must include a throws clause that throws at least the RemoteException. The class
for the remote object must implement the remote interface. The server application creates an object of the class
implementing the remote interface, exports the object to give a status of a real remote object, and registers it with the
rmiregistry. The client application needs only the remote interface.

If any of the three applications needs classes that are not locally available, they can download them dynamically
at runtime. For a JVM to download classes dynamically, the java.rmi.server.useCodebaseOnly property must be
set to false. By default, it is set to true, which disables dynamic downloading of the classes in a JVM. Along with a
remote object reference, the JVM also receives the value of a property named java.rmi.server.codebase, which is
the URLs from where the JVM may download (if permitted by its own java.rmi.server.useCodebaseOnly property
setting) the classes needed to work with the remote object reference.

There are several components working together in an RMI application that make it hard to debug. You can log
all calls to the RMI server by running it with the JVM property java.rmi.server.logCalls set to true. All calls to the
server will be logged to a standard error. You can also log RMI server calls to a file.

RMI provides automatic garbage collection for remote objects running in the RMI server. The garbage collection
of remote objects is based on reference counts and leases. When the client application gets the reference of the
remote object, it also obtains a lease for the remote object from the server application. The lease is valid for a period.
The client application keeps renewing the lease periodically as long it keeps the remote object reference. The server
application keeps track of the reference count and the leases for the remote objects. When the client application is
done with the remote reference, it sends a message to the server application and the server application reduces the
reference count for the remote object by 1. When the reference count of the remote object reduces to zero in the
server application, the remote object is garbage collected.

www.it-ebooks.info

http://www.it-ebooks.info/

549

Chapter 8

Java Native Interface

In this chapter, you will learn

What the Java Native Interface (JNI) is•	

How to write Java programs that uses native methods•	

How to write C++ programs to implement native methods•	

How to create a shared library on Windows and Linux for the native implementation of •	
methods used in Java

The data type mapping between Java types and JNI types•	

How to work with Java strings and arrays in native code•	

How to create Java objects, and access fields and methods of those objects in native code•	

Exception handling in native code•	

How to embed the JVM in native code•	

How to handle thread synchronization using the JNI in native code•	

What Is the Java Native Interface?
The Java Native Interface (JNI) is a programming interface that facilitates interaction between Java code and code
written in native languages such as C, C++, FORTRAN, etc. The JNI supports calling C and C++ functions directly from
Java. If you need to use native code written in any other language such as FORTRAN, you can use a C/C++ wrapper
function to call it from Java. Interaction can take place both ways. Java code can call native code and vice versa, as
shown in Figure 8-1.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

550

Java calls native code using native methods. A native method in a Java context is a method that is declared in
Java and implemented in a native language such as C/C++. The native method implementation is compiled into a
shared library, which is loaded by the JVM. A shared library is called a dynamic link library (DLL) on Windows, and a
shared object (SO) on UNIX. In Java code, you call a Java method and a native method the same way. A Java program
is compiled into a platform-independent format called byte code. Native code is compiled into a platform-dependent
format. Therefore, if a Java application uses native code, it is no longer portable to other platforms unless you develop
the same shared library on all platforms. Sometimes you may access platform-specific features inside the native code,
which is used from the Java application; in that case, you should be aware that your Java application cannot be run on
other platforms.

Why would someone use the JNI when Java provides a rich set of features through its class libraries? It may be
necessary to use the JNI to access native code in Java for the following reasons:

If a Java application needs to implement some platform-specific features that are not possible •	
to implement using the Java APIs.

You may already have legacy code written in native languages and you want to reuse it in your •	
Java application.

You are developing a time-critical Java application where Java code does not perform as fast as •	
expected. You can move the time-critical section of your Java code to native code.

You should consider using the JNI in a Java application as a last resort. You must explore all possibilities of
implementing the needed features using the Java APIs. Using the JNI also changes the skill set that is required to
develop an application. Either the developers who are working on Java application are trained in the native language
(C/C++) or new developers are brought into the team who know the native language. Using native code in a Java
application makes the application less stable and prone to security risks because the native code is run outside the JVM.

I will use C++ to implement native methods in this chapter. You can use the C language instead. All code examples
in C++ listed in this chapter can be moved to the C language with minor changes. I will specify the differences
between C++ code and C code whenever you need to make changes in C++ code to convert it to C.

System Requirements
You need a C or C++ compiler that can create a shared library. You also need a JDK installed on your computer to
generate C/C++ header files. The native code referenced in this chapter has been developed using NetBeans 8.0 with
Cygwin as the C++ compiler on the Windows platform. Java 8 was used to compile and run the Java code. However,
using Cygwin as the C++ compiler is not a requirement to run any examples. You can use any other C/C++ compiler to
create a shared library on your platform. Please visit https://netbeans.org/kb/trails/cnd.html for more details on
how to configure NetBeans to use C++.

Java
Application

JNI
Native

Application

Figure 8-1.  The JNI architecture

www.it-ebooks.info

https://netbeans.org/kb/trails/cnd.html
http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

551

Getting Started with the JNI
Developing a Java application that uses the JNI involves the following steps:

Writing the Java program•	

Compiling the Java program•	

Creating a C/C++ header file•	

Writing a C/C++ program•	

Creating a shared library•	

Running the Java program•	

Subsequent sections discuss each step in detail.

Writing the Java Program
A Java program that uses the JNI differs from a Java-only program only in two aspects:

Loading the shared library•	

Declaring the native method•	

The shared library that contains the native method implementation must be loaded before Java can call the
native method. A shared library is loaded using the loadLibrary(String libraryNameWithoutExtension) static
method of the java.lang.System class as shown:
 
// Load a shared library named beginningjava
System.loadLibrary("beginningjava");
 

You can also load a shared library using the loadLibrary() method of the java.lang.Runtime class. Internally,
the loadLibrary() method of the System class calls the loadLibrary() method of the Runtime class. The above code
can be rewritten as follows:
 
// Load the shared library
Runtime.getRuntime().loadLibrary("beginningjava");
 

Note that you need to pass a shared library name without any platform-specific prefix and file extension to
the loadLibrary() method. For example, if your shared library file name is beginningjava.dll on Windows or
beginningjava.so on UNIX, you need to use beginningjava as the shared library name. The loadLibrary() method
will append the file extension to find the shared library. This way, you do not need to change your Java code, which
loads the shared library if you intend to run the same Java code on different platforms.

You can also load a shared library using the load() method of the System or Runtime class. The load() method
accepts the absolute path of the shared library with the file extension. If a beginningjava.dll file on Windows
platforms is in the C:\myjni directory, the call to the load() method will look as follows:
 
// Load the shared library
System.load("C:\\myjni\\beginningjava.dll");
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

552

Note that using the load() method forces you to use the absolute path and the file extension of the shared library,
which makes your Java code non-portable to other platforms. You will use the loadLibrary() method of the System
class to load shared library in your examples in this chapter. The load() and loadLibrary() methods throw a
java.lang.UnsatisfiedLinkError if the specific library cannot be loaded.

How does the loadLibrary() method find the shared library file in the file system by just knowing the library
name? You have two ways to let the JVM know about the location of your shared library:

Include the directory that contains the shared library into the •	 PATH environment variable on
Windows and LD_LIBRARY_PATH environment variable on UNIX.

Specify the directory (or directories, separated by semicolon) that contains the shared •	
library using the java.library.path JVM property as a command line option. The following
command assumes that the beginningjava shared library is placed in the
C:\myjni\lib directory:

java -Djava.library.path=C:\myjni\lib your-class-name-to-run

A native method that is used in Java does not have a body written in Java because its implementation exists in
the native code. However, you need to declare the native method in Java before you can use it. It is declared using the
native keyword. A native method declaration in Java code ends with a semicolon. The following snippet of code
declares a native method named hello(), which has no parameters and returns void.
 
public class Test {
 // Declare a native method called hello()
 public native void hello();
}
 

Calling a native method in Java code is the same as calling any other Java methods.
 
Test test = new Test();
test.hello();
 

You can declare a native method to have public, private, protected, or package-level scope. A native method
can be declared static or non-static. You can have as many native methods in a Java class as you want.

You cannot declare a native method as abstract. This implies that an interface cannot have a native method
because all methods declared in an interface are abstract if they are not declared static or default. An abstract
method means that the method’s implementation is missing and it will be implemented in Java, whereas native
method means that the method’s implementation is missing and it is implemented in native code. Declaring a method
as native and abstract at the same time will be confusing as to where to look for the implementation of the method—in
the Java code or in the native code. This is the reason why a method declaration cannot use the combination of the
two modifiers abstract and native.

The native keyword must be used only to declare methods. You cannot declare a field as native. The following
snippet of code declares two classes named WillCompile and WontCompile. Class WillCompile contains valid uses of
the native keyword, whereas class WontCompile demonstrates the invalid uses of the native keyword.
 
public class WillCompile {
 public native void m1();
 private native void m2();
 protected native void m3();
 native void m4();
 
 public static native void m5();
 
 public native int m6(String str);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

553

 // A non-native method (Java-only method)
 public int add(int a, int b) {
 return a + b;
 }
}
 
// Sample of Illegal use of native keyword in a Java class
public class WontCompile {
 // A field cannot be native
 private native String name;
 
 // A method cannot be abstract as well as native
 public abstract native String getName();
}
 

Now you are ready to write Java code to call your first native method. You will name your native method
hello(). It does not accept any parameters and does not return any value. You will implement it in C++ later and it
will print a message, Hello JNI, on the standard output. Listing 8-1 has the complete code for the HelloJNI class.

Listing 8-1.  A HelloJNI Class That Uses a Native Method Named hello( )

// HelloJNI.java
package com.jdojo.jni;
 
public class HelloJNI {
 static {
 // Load the shared library using its name only
 System.loadLibrary("beginningjava");
 }
  
 // Declare the native method
 public native void hello();
 
 public static void main(String[] args) {
 // Create a HelloJNI object
 HelloJNI helloJNI = new HelloJNI();
  
 // Call the native method
 helloJNI.hello();
 }
}
 

The HelloJNI class performs three things:

It loads a •	 beginningjava shared library (beginningjava.dll on Windows and
beginningjava.so on UNIX-like OS) in the static initializer. Note that you do not need to have
the beginningjava shared library when you write and compile the HelloJNI class. The shared
library is required when you run the HelloJNI class.
 
static {
 System.loadLibrary("beginningjava ");
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

554

It declares a •	 native method named hello(), which will be implemented in C++ code later.
 
public native void hello();
 
The Java compiler will compile the HelloJNI class with the hello() native method
declaration without having the native code that implements the method. The implementation
of the method will be required when it is called at runtime.

It creates an object of the •	 HelloJNI class in the main() method and calls the hello() method
on the object.
 
HelloJNI helloJNI = new HelloJNI();
helloJNI.hello();

The code for the HelloJNI class is simple. There is nothing extraordinary that you have to do inside the Java
code to use a native method. You cannot run this class yet, because when you run it, it will look for a beginningjava
shared library with the native code for the hello() method, which you have not written yet.

Compiling the Java Program
Compiling a Java program that uses native methods is the same as compiling any other Java programs. There is no
special setting that you need to apply when you compile the HelloJNI class. You can compile it using the javac
command, like so:
 
javac HelloJNI.java
 

This command will generate a HelloJNI.class file, which will contain the class definition of the HelloJNI class,
whose fully qualified name is com.jdojo.jni.HelloJNI. Make sure that you have the HelloJNI.class file available
because it is necessary to perform the next step.

Creating the C/C++ Header File
Before you start writing the code for a native method in C/C++, you need to generate a header file that will contain
the declaration of your method in C/C++. You will use this header file when you write the implementation of your
hello() native method. The method signature for the hello() method in Java and C/C++ differs significantly.

You do not need to worry about the details about how to write the signature of a method in C/C++, which will
be used by the Java code. The JDK provides a tool called javah that generates all required header files for you. The
javah tool is located in the JDK_HOME\bin folder, where JDK_HOME is the installation folder for the JDK. For example, if
you have installed the JDK in the C:\java8 directory on Windows, the javah tool is in C:\java8\bin. The tool accepts
the fully qualified class name of a Java class and generates a header file with extension .h that contains the method
signature for all native methods declared in the specified class. The following command will generate a C/C++
header file for all native methods declarations in the HelloJNI class:
 
javah com.jdojo.jni.HelloJNI
 

The javah tool will look for the HelloJNI class in the CLASSPATH. If it is not in the CLASSPATH, you can specify
CLASSPATH using a –classpath or -cp command line option as follows:
 
javah –cp C:\myclasses com.jdojo.jni.HelloJNI
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

555

This command will generate a header file named com_jdojo_jni_HelloJNI.h in the current directory. By default,
the generated file name is based on the fully qualified name of the class. A dot in the class name is replaced with an
underscore and the file has an .h extension. You can also specify the header file name that the javah command will
generate by using an –o option. You can look at other options supported by the javah command by executing a
javah –help command. The contents of the com_jdojo_jni_HelloJNI.h file are shown in Listing 8-2.

Listing 8-2.  Contents of the com_jdojo_jni_HelloJNI.h File

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class com_jdojo_jni_HelloJNI */
 
#ifndef _Included_com_jdojo_jni_HelloJNI
#define _Included_com_jdojo_jni_HelloJNI
#ifdef __cplusplus
extern "C" {
#endif
/*
 * Class: com_jdojo_jni_HelloJNI
 * Method: hello
 * Signature: ()V
 */
JNIEXPORT void JNICALL Java_com_jdojo_jni_HelloJNI_hello
 (JNIEnv *, jobject);
 
#ifdef __cplusplus
}
#endif
#endif
 

You do not need to worry about the details in the header file. You only need the method signature that is
generated for your native hello() method. The method signature void hello() in the Java code has been translated
into the following method signature for the C/C++ code:
 
JNIEXPORT void JNICALL Java_com_jdojo_jni_HelloJNI_hello (JNIEnv *, jobject);
 

JNIEXPORT and JNICALL are two macros. The keyword void denotes that the native method does not return any
value. The javah command uses a rule to generate the name of the native method in the header file. In this case, the
method name is Java_com_jdojo_jni_HelloJNI_hello. I will discuss the details of the naming rules used by the javah
tool later. Although the method declaration of the hello() method in the Java code does not accept any parameters,
the native method declaration in the header file accepts two parameters. Take it as a rule that all native method
declarations in a native language will accept two additional parameters than the number of parameters declared in
the Java code. The additional parameters are added as the first and second parameters for the method in the native
language. The first parameter is a pointer to a JNIEnv type object, which is a table of function pointers to facilitate
interaction between the native environment and Java environment. The second parameter is of type either jobject or
jclass. If the native method is declared non-static in the Java code, the second parameter is of type jobject, which
is a reference to the Java object on which the native method is called. It is similar to the this reference that is available
inside every non-static method in Java. Since the native hello() method in Java has been declared non-static, the
second parameter type is of type jobject. If the native method is declared as static in Java, the second parameter will
be of type jclass and it will be the reference to the class object in the JVM on which the native method is called.

At the end of this step, you should have a header file named com_jdojo_jni_HelloJNI.h with the contents shown
as in Listing 8-2.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

556

Writing the C/C++ Program
Listing 8-3 shows the C/C++ code that you need to write for the hello() native method. The next section describes the
step-by-step process to set up a project and write the C++ code using the NetBeans IDE. The source code file for C++ is
named hellojni.cpp. In this case, the code will be the same if you choose to use the C language instead. Note that hello
is the name of your native method in Java code, whereas in C/C++ it is named Java_com_jdojo_jni_HelloJNI_hello.

Listing 8-3.  A C/C++ Implementation for the hello( ) Native Method

// hellojni.cpp
#include <stdio.h>
#include <jni.h>
#include "com_jdojo_jni_HelloJNI.h"
 
JNIEXPORT void JNICALL Java_com_jdojo_jni_HelloJNI_hello(JNIEnv *env, jobject obj) {
 printf("Hello JNI\n");
 return;
}
 

Here are the things that this program does. It uses three C/C++ compiler preprocessor include directives to
include three header files: stdio.h, jni.h, and com_jdojo_jni_HelloJNI.h. It includes stdio.h to use the standard
Input/Output functionalities, jni.h to use the JNI-related functionalities, and com_jdojo_jni_HelloJNI.h to include
functionalities related to your hello() native method.

The jni.h file is copied to JDK_HOME\include directory when you install the JDK. For example, if you installed
the JDK in C:\java8, the jni.h file will be in the C:\java8\include directory. There is a subdirectory that is created
under the JDK_HOME\include directory. The subdirectory name is platform-dependent. It is named win32 on
Windows, linux on Linux, etc.. You need to use the following two directoroes as an include-path option when you
compile the hellojni.cpp file:

•	 C:\java8\include

•	 C:\java8\include\win32

These inlcude paths are for Windows. Please change them according to your platform.
You can place the com_jdojo_jni_HelloJNI.h file in any directory on your machine. You will need to include the

directory that contains this file in the include-path option when you compile the hellojni.cpp file.
The function signature is copied from the com_jdojo_jni_HelloJNI.h header file. You have named the two

parameters as env and obj. It does not matter what name you use for these parameters in your code.
 
JNIEXPORT void JNICALL Java_com_jdojo_jni_HelloJNI_hello
(JNIEnv *env, jobject obj)
 

You have provided the implementation for the native method by adding two statements. The first statement uses
the printf() function to print a message, Hello JNI, on the standard output, and the second one returns from the
function, as shown:
 
printf("Hello JNI\n");
return;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

557

Creating a Shared Library
In this section, you will compile the hellojni.cpp file into a shared library named beginningjava. The shared library
will be a file named beginningjava.dll on Windows and beginningjava.so on a UNIX-like OS. Your operating
system may use a different file extension for a shared library. Many compilers are available that can be used to create a
shared library from C/C++ code. This section explains how to create a shared library on

Windows using a GNU C++ compiler named •	 g++, known as a MinGW compiler (Minimalist GNU
for Windows).

On Fedora Linux using a GNU C++ compiler named •	 g++.

To create a shared library, you can use the C/C++ compiler on a command prompt or an IDE such as Microsoft Visual
Studio on Windows or NetBeans on Windows and Linux. Note that NetBeans does not ship with a C/C++ compiler. You
will need to download a compiler such as MinGW or Cygwin to use the NetBeans IDE to create a shared library.

Creating a Shared Library on Windows
The following sections describe how to install the MinGW C++ compiler called g++ on Windows and how to use it via
the command prompt to create the shared library named beginningjava.dll.

Installing MinGW C/C++ Compiler

Follow these steps to install the MinGW compiler:

Download the MinGW compiler from •	 http://sourceforge.net/projects/mingw and install
it on your machine.

Assume that you have installed MinGW in the •	 C:\MinGW directory. You need to install the
following packages of MinGW: mingw-developer-toolkit, migw32-base, mingw32-gcc-g++,
and msys-base. If you have installed MinGW in another directory, please replace this directory
path with your installation directory path in the following discussions in this section.

Add the •	 C:\MinGW\bin directory to the system PATH environment variable. If you do not set the
system PATH environment variable, you will be able to work with MinGW by setting the PATH
environment variable on the command prompt.

Verify that the •	 C:\MinGw\bin\g++.exe file exists on your machine. g++ is the C++ compiler
and gcc is the C compiler used by MinGW. You will use C++ code in this chapter and the g++
compiler to compiler the C++ code.

Using the g++ Command

You need to use the g++ command to create a shared library. You will need two types of files to create the shared library:

The C++ source file that contains the C++ code. In this case, you have named it •	 hellojin.cpp
as shown in Listing 8-3.

The •	 com_jdojo_jni_HelloJNI.h header file shown in Listing 8-2.

The JNI-related header files that are located in •	 JDK_HOME\include and JDK_HOME\include\
win32 directories where JDK_HOME is the directory in which you have installed the JDK.

www.it-ebooks.info

http://sourceforge.net/projects/mingw
http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

558

You can pass several options to the g++ compiler. The following command shows the minimum options needed
to create your shared library:
 
g++ -Wl,--kill-at -shared –I<include-dir> -o <output-file> <source-files>
 

Here,

The •	 -Wl,<option> is used to pass options to the linker. The <option> is a comma-separated
list of linker options. In this command, you are passing the --kill-at option to the linker to
strip the stdcall suffixes (@nn) from symbols before they are exported. If you do not specify this
option, you will get a java.lang.UnsatisfiedLinkError when you run the Java program that
uses the shared library.

The •	 –shared option indicates that you want to create a shared library.

The •	 –I<include-dir> option is used to pass the directory that contains the header files
(.h files). You can repeat this option once for each directory.

The •	 –o <output-file> option specifies the output file name. In your case, you will use the
output file named beginningjava.dll.

The •	 <source-files> is a space-separated list of C++ source files.

To simplify the command syntax to generate the shared library, I will assume that the following directories and
files on your machine exist:

•	 C:\dll\hellojni.cpp

•	 C:\dll\com_jdojo_jni_HelloJNI.h

•	 C:\java8\include

•	 C:\java8\include\win32

The following command will generate the beginingjava.dll file in the C:\dll directory. Each part of the
command is shown in a separate line for clarity; you will enter the entire command in one line.
 
C:\> g++ -Wl,--kill-at -shared
 -IC:/java8/include -IC:/java8/include/win32 -IC:/dll
 -o C:/dll/beginningjava.dll
 C:/dll/hellojni.cpp
 

Note the use of the forward slashes in file paths. With the g++ command on Windows, you can use either a
forward slash or a backslash as the path separator. Please change the path in the command to match the paths of
these files and directories on your machine.

If you have not set the PATH environment variable to the C:\MinGW\bin directory, you may get the following error
when you run the g++ command:
 
'g++' is not recognized as an internal or external command,operable program or batch file 

Note■■   On Windows, if you want to use NetBeans IDE with MinGW, please refer to the following link for the setup
instruction: https://netbeans.org/community/releases/80/cpp-setup-instructions.html.

www.it-ebooks.info

https://netbeans.org/community/releases/80/cpp-setup-instructions.html
http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

559

Creating a Shared Library on Linux
The following sections describe how to install the GNU C++ compiler called g++ on Fedora Linux and how to use it on
a terminal to create the shared library named beginningjava.so.

Installing MinGW C/C++ Compiler

Installing the g++ compiler on Linux is easy. Running the following command on a terminal in Linux will install the
g++ compiler:
 
$ yum install gcc-c++
 

When you run the command, you may get the following message:
 
$ yum install gcc-c++
You need to be root to perform this command.
$
 

If you get this message, you need to log in as root to install the compiler. Use the su – command to login as root,
enter the root password when prompted, and then run the yum command.
 
$ su –
Password: Enter Your Password Here
yum install gcc-c++
 

During the installation, the yum command will prompt you several times to confirm downloads of the compiler
setup files. You need to answer yes when you get those prompts. If the g++ compiler is already installed on your
machine, the yum command will print a message to that effect.

That’s all it takes install the g+= compiler on Linux.

Using the g++ Command

You need to use the g++ command to create a shared library. You will need two types of files to create the shared library:

The C++ source file that contains the C++ code. In this case, you have named it •	 hellojni.cpp
as shown in Listing 8-3.

The •	 com_jdojo_jni_HelloJNI.h header file shown in Listing 8-2.

The JNI-related header files that are located in •	 JDK_HOME/include and JDK_HOME/include/
win32 directories where JDK_HOME is the directory in which you have installed the JDK.

You can pass several options to the g++ compiler. The following command shows the minimum options needed
to create your shared library:
 
g++ -shared –I<include-dir> -o <output-file> <source-files>
 

Here,

The •	 –shared option indicates that you want to create a shared library.

The •	 –I<include-dir> option is used to pass the directory that contains the header files
(.h files). You can repeat this option once for each directory.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

560

The •	 –o <output-file> option specifies the output file name. In your case, you will use the
output file name of beginningjava.so.

The •	 <source-files> is a space-separated list of C++ source files.

To simplify the command syntax to generate the shared library, I will assume that the following directories and
files on your machine exist:

•	 /home/ksharan/slib/hellojni.cpp

•	 /home/ksharan/slib/com_jdojo_jni_HelloJNI.h

•	 /home/ksharan/java8/include

•	 /home/ksharan/java8/include/linux

The following command will generate the beginingjava.so file in the /home/ksharan/slib directory. Each part
of the command is shown in a separate line for clarity; you will enter the entire command in one line.
 
$ g++ -shared
 -I/home/ksharan/java8/include -I/home/ksharan/java8/include/linux -I/home/ksharan/slib
 -o /home/ksharan/slib/beginningjava.so
 /home/ksharan/slib/hellojni.cpp
 

Please change the path in the command to match the paths of these files and directories on your machine.

Note■■   On Linux, if you want to use NetBeans IDE with the g++ compiler, please refer to the following link for the
setup instruction: https://netbeans.org/community/releases/80/cpp-setup-instructions.html.

Running the Java Program
Before proceeding to run the Java class, please make sure that you were able to create the shared library
(the beginningjava.dll file on Windows and beginningjava.so file on a UNIX-like OS). If you were not able to
create the shared library, you can use the shared libraries provided with the source code for this book. The shared
libraries are located in a directory named cplusplus.

Now you are ready to run your HelloJNI Java class as shown in Listing 8-1. Suppose you have placed the
beginningjava shared library file in the C:\myjni\lib directory. Run the HelloJNI class using the following command:
 
C:\> java -Djava.library.path=C:\myjni\lib com.jdojo.jni.HelloJNI
 

The -Djava.library.path=C:\myjni\lib option instructs the JVM to look for shared libraries in the C:\myjni\
lib directory. If the above command runs successfully, it will print a message, Hello JNI, on the standard output.
Alternatively, you can also add the directory that contains the shared library to the PATH environment variable and
the Java runtime will find it. Windows will also find the shared library without setting the java.library.path option
if the shared library is in the current directory. The following commands show how to set the PATH environment
variable (on Windows) for the current session and run the class:
 
C:\> SET PATH=C:\myjni\lib;%PATH%
C:\> java com.jdojo.jni.HelloJNI

www.it-ebooks.info

https://netbeans.org/community/releases/80/cpp-setup-instructions.html
http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

561

Native Function Naming Rules
The javah command uses a naming rule, which is based on name mangling, to generate native method names in the
C/C++ header file. The Java runtime uses the same rule to resolve the Java native method name to the native function
name in a shared library. The name mangling rule is used so that the name generated for the native function is a valid
C/C++ name without a name collision. You can think of name mangling as simply replacing invalid characters with
characters that make up a valid function name. The native function name is generated based on the following parts,
which are concatenated using an underscore:

The method name starts with the word •	 Java.

The mangled fully qualified name of the package of the Java class that contains the native •	
method’s declaration. An underscore is used as a package/sub-package separator.

The native method name in Java.•	

For an overloaded native method, two underscores followed by the mangled method’s signature•	

Java runtime uses two names for a native function—a short name and a long name. The short name does not
use two underscores followed by the mangled method’s signature. The Java runtime searches the shared library for
the short name first. If it does not find a function using the short name, it searches with the long name. The mangled
name uses a conversion table shown in Table 8-1.

Table 8-1.  The Escape Sequence Used in the Name-Mangling Process

Original Character Substituted Character

Any non-ASCII Unicode character _0xxxx

Note that alphabets used in _oxxxx are all lowercase such as _0abcd

_ (an underscore) _1

; (a semi-colon) _2

[(a beginning square bracket) _3

Table 8-2.  Examples of Java Method’s Declaration and Internally Used Method Signatures

Method Declaration Internally Used Method Signature

public static void javaPrintMsg(java.lang.String) (Ljava/lang/String;)V

public void javaCallBack() ()V

public static void main(java.lang.String[]) ([Ljava/lang/String;)V

Characters such as a semicolon and beginning with a square bracket may occur as part of a method’s parameter
signature that is used internally by Java. Table 8-2 shows few examples of method declarations in .Java code and the
method signature used internally by Java.

If you declare a parameter of type java.lang.String, it is used internally as Ljava/lang/String;. To know about
the signature of a method that is used internally by Java, you need to use the javap command with a –s option. The
following command will print the method signatures for all methods in the com.jdojo.jni.HelloJNI class. You can
use a –private option to print signatures of all methods including the private ones.
 
javap -s -private com.jdojo.jni.HelloJNI
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

562

If you are required to use a method signature of a Java method inside a JNI function in native code, you should
run the javap command to get the signatures instead of entering them by hand. You can learn the rules used to make
up the method signature that is used internally by Java. However, using the javap command makes it easy to get this
information. Let’s consider the declaration of some native methods in a class Test as shown in Listing 8-4.

Listing 8-4.  A Test Class with Some Native Method Declarations

package com.jdojo.jni;
 
public class Test {
 private native void sayHello();
 private native void printMsg(String msg);
 private native int[] increment(int[] num, int incrementValue);
 private native double myMethod(int i, String s[], String ss);
 private native double myMethod(double i, String s[], String ss);
 private native double myMethod(short i, String s[], String ss);
}
 

If you compile the Test class and run the command
 
javah com.jdojo.jni.Test
 

you get a com_jdojo_jni_Test.h header file that has the contents shown in Listing 8-5.

Listing 8-5.  The Header File Generated for the Class com.jdojo.jni.Test

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class com_jdojo_jni_Test */
 
#ifndef _Included_com_jdojo_jni_Test
#define _Included_com_jdojo_jni_Test
#ifdef __cplusplus
extern "C" {
#endif
/*
 * Class: com_jdojo_jni_Test
 * Method: sayHello
 * Signature: ()V
 */
JNIEXPORT void JNICALL Java_com_jdojo_jni_Test_sayHello
 (JNIEnv *, jobject);
 
/*
 * Class: com_jdojo_jni_Test
 * Method: printMsg
 * Signature: (Ljava/lang/String;)V
 */
JNIEXPORT void JNICALL Java_com_jdojo_jni_Test_printMsg
 (JNIEnv *, jobject, jstring);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

563

/*
 * Class: com_jdojo_jni_Test
 * Method: increment
 * Signature: ([II)[I
 */
JNIEXPORT jintArray JNICALL Java_com_jdojo_jni_Test_increment
 (JNIEnv *, jobject, jintArray, jint);
 
/*
 * Class: com_jdojo_jni_Test
 * Method: myMethod
 * Signature: (I[Ljava/lang/String;Ljava/lang/String;)D
 */
JNIEXPORT jdouble JNICALL Java_com_jdojo_jni_Test_myMethod__I_3Ljava_lang_String_2Ljava_lang_
String_2
 (JNIEnv *, jobject, jint, jobjectArray, jstring);
 
/*
 * Class: com_jdojo_jni_Test
 * Method: myMethod
 * Signature: (D[Ljava/lang/String;Ljava/lang/String;)D
 */
JNIEXPORT jdouble JNICALL Java_com_jdojo_jni_Test_myMethod__D_3Ljava_lang_String_2Ljava_lang_
String_2
 (JNIEnv *, jobject, jdouble, jobjectArray, jstring);
 
/*
 * Class: com_jdojo_jni_Test
 * Method: myMethod
 * Signature: (S[Ljava/lang/String;Ljava/lang/String;)D
 */
JNIEXPORT jdouble JNICALL Java_com_jdojo_jni_Test_myMethod__S_3Ljava_lang_String_2Ljava_lang_
String_2
 (JNIEnv *, jobject, jshort, jobjectArray, jstring);
 
#ifdef __cplusplus
}
#endif
#endif
 

You can look at the native function names that are generated for different native method’s declarations. Do not
worry about the data types used for the function’s parameters. I will cover data type mapping between Java and native
language in the next section.

Data Type Mapping
The JNI defines mapping between data types used in Java and native functions. Table 8-3 lists the mapping for
primitive data types between Java and native C/C++ language. Note that all you have to do is to add a j in front of the
name of a primitive data type in Java and you get the equivalent data type name in C/C++. JNI also defines a data type
named jsize, which is used to store the length, such as the length of an array or a string.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

564

The JNI defines reference type equivalents for Java reference types. It is not possible to define a separate type in
the JNI for all reference types that can be created in Java. All Java reference types can be mapped to the JNI reference
type called jobject. You have some specialized JNI reference types that represent commonly used reference types in
Java, such as jstring in JNI represents java.lang.String in Java. Table 8-4 lists the reference type mapping between
Java and the JNI.

Table 8-4.  The Reference Type Mapping Between Java and JNI

Java Reference Type JNI Type

Any Java object jobject

java.lang.String jstring

java.lang.Class jclass

java.lang.Throwable jthrowable

Table 8-3.  The Mapping Between Java Primitive Data Types and JNI Native Data Types

Java Primitive Types Native Primitive Type Description

boolean jboolean Unsigned 8 bits

byte jbyte Signed 8 bits

char jchar Unsigned 16 bits

double jdouble 64 bits

float jfloat 32 bits

int jint Signed 32 bits

long jlong Signed 64 bits

short jshort Signed 16 bits

void void N/A

The JNI defines separate reference types to represent Java arrays. The type jarray is a generic array type that
represents any Java array type. There is a specialized array type for each type of array in Java. In JNI, an array type
is named like jxxxArray, where xxx could be object, boolean, byte, char, double, float, int, long, and short.
For example, jintArray in C/C++ represents an int array in Java. Note that all reference type arrays in Java are
represented by jobjectArray type in C/C++.

While working with C/C++ code using the JNI, you will come across another type called jvalue. It is a union type
defined in C/C++ as follows:
 
typedef union jvalue {
 jboolean z;
 jbyte b;
 jchar c;
 jshort s;
 jint i;
 jlong j;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

565

 jfloat f;
 jdouble d;
 jobject l;
} jvalue
 

Note that the jvalue union type does not have an equivalent type in Java. Typically, the jvalue type is defined as
a parameter type in built-in functions that are part of the JNI API.

Using JNI Functions in C/C++
JNI functions let you access the JVM data structures and objects in native code. Sometimes they let you convert the
data in a particular format that is passed between Java and the native environments. All native functions have their
first parameter, which is always a pointer to JNIEnv, which in turn is a pointer to a table of all JNI function pointers.

There are always two versions of functions that you can call on type JNIEnv: one for C and one for C++. The C
version of the function accepts a pointer to JNIEnv as the first parameter, and C++ will not have that first parameter.
The two versions of the same methods, C and C++, are called differently. The following snippet of code shows the
difference in calling a JNI function in C and C++, assuming FuncXxx is the function name and env is a pointer to
JNIEnv type:
 
// C style
(*env)->FuncXxx(env, list-of-arguments...);
 
// C++ style
env->FuncXxx(list-of-arguments...);
 

This chapter uses the C++ way of calling JNI functions. You can convert the code to C style easily by using the
above snippet of code as a reference.

As a concrete example, the following are the function signatures for the GetStringUTFChars() JNI function that
let you convert a Java string to a UTF-8 string format:
 
// C Version of the GetStringUTFChars() JNI function
const char * GetStringUTFChars(JNIEnv *env, jstring string, jboolean *isCopy);
 
// C++ Version of the GetStringUTFChars() JNI function
const char * GetStringUTFChars(jstring string, jboolean *isCopy);
 

If you want to call this function in C or C++, your code will look as follows:
 
// C Code
const char *utfMsg = (*env)->GetStringUTFChars(env, msg, iscopy);
 
// C++ Code
const char *utfMsg = env->GetStringUTFChars(msg, iscopy);

Working with Strings
Strings are represented differently in Java and C/C++. In Java, a string is represented as a sequence of 16-bit Unicode
characters, whereas in C/C++ a string is a pointer to a sequence of null-terminated characters. The jstring reference
type in the native code represents an instance of the java.lang.String class, which is a sequence of 16-bit Unicode

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

566

characters. The JNI has functions to convert a Java string to a native string and vice versa. One set of string functions
works with UTF-8 strings and the other set works with Unicode strings. When Java passes a string to the native code,
you must convert the string in native code to native format (UTF-8 or Unicode) before using it. The same logic goes for
returning a string from native code to Java. You must convert the native string to an instance of jstring before it can
be returned to Java.

Let’s start with an example in which you will pass a string from Java code to C/C++ code. The C/C++ code will
convert the Java string to a native UTF-8 format and print it on the standard output using the printf() function. The
native methods’ declaration in Java would be as follows:

•	 public native void printMsg(String msg);

•	 public native String getMsg();

The printMsg() method accepts a Java string and its native function will print it on the standard output. The
getMsg() method returns a native string to Java and Java will print it on the standard output. Listing 8-6 contains
the Java code that declares these two native methods. Note that the static initialize loads the shared library named
beginningjava that you had created in the previous section. This time, you will need to include the C++ code for the
new native method in the shared library.

Listing 8-6.  Passing Strings from Java to a Native Function and Vice Versa

// JNIStringTest.java
package com.jdojo.jni;
 
public class JNIStringTest {
 static {
 System.loadLibrary("beginningjava");
 }
 
 public native void printMsg(String msg);
 public native String getMsg();
 
 public static void main(String[] args) {
 JNIStringTest stringTest = new JNIStringTest();
 
 String javaMsg = "Hello from Java to JNI";
 stringTest.printMsg(javaMsg);
 
 String nativeMsg = stringTest.getMsg();
 System.out.println(nativeMsg);
 }
}
 

The following are the native function declarations for printMsg() and getMsg() in C/C++:

•	 JNIEXPORT void JNICALL Java_com_jdojo_jni_JNIStringTest_printMsg(JNIEnv *env,
jobject obj, jstring msg);

•	 JNIEXPORT jstring JNICALL Java_com_jdojo_jni_JNIStringTest_getMsg(JNIEnv *env,
jobject obj);

Note that the first two parameters in the native functions are of type JNIEnv and jobject. The printMsg()
function contains a third parameter of type jstring and its return type is void. The getMsg() function contains only
two standard parameters and it returns a jstring.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

567

To convert a jstring to a UTF-8 native string, you need to use the GetStringUTFChars() JNI function that you can
access using a JNIEnv reference. The GetStringUTFChars() JNI function has two versions: one for C and one for C++.

The GetStringUTFChars() function converts a Java string (in a jstring in C/C++ code) to a UTF-8 format and
returns a pointer to the converted UTF-8 string. If it fails, it returns NULL. The GetStringUTFChars() function may have
to make a copy of the original Java string object in memory for converting it to UTF-8 format. The isCopy parameter
to the functions, which is a pointer to a boolean variable, can be used to check if this function had to copy the original
Java string. If isCopy is not NULL, it is set to JNI_TRUE if a copy of the Java string was made. Otherwise, it is set to
JNI_FALSE. Once you are done with the returned value of this function, you must call the ReleaseStringUTFChars()
method to release the memory. The C and C++ style signatures of this method are as follows:
 
// C Style
void ReleaseStringUTFChars(JNIEnv *env, jstring string, const char *utf);
 
// C++ Style
void ReleaseStringUTFChars(jstring string, const char *utf);
 

Listing 8-7 contains the implementations for the printMsg() and getMsg() native methods in C++. The code
is in the jnistringtest.cpp file in the source code for this book. The code for getMsg() is simple. It uses the
NewStringUTF() JNI function to get a Java string from the native string.

Listing 8-7.  Contents of the jnistringtest.cpp File

// jnistringtest.cpp
#include <stdio.h>
#include <jni.h>
#include "com_jdojo_jni_JNIStringTest.h"
 
JNIEXPORT void JNICALL Java_com_jdojo_jni_JNIStringTest_printMsg
(JNIEnv *env, jobject obj, jstring msg) {
 const char *utfMsg;
 jboolean *iscopy = NULL;
 
 // Get the UTF string
 utfMsg = env->GetStringUTFChars(msg, iscopy);
 if (utfMsg == NULL) {
 printf("Could not convert Java string to UTF-8 string.\n");
 return;
 }
 
 // Print the message on the standard output
 printf("%s\n", utfMsg);
 
 // Release the memory
 env->ReleaseStringUTFChars(msg, utfMsg);
}
 
JNIEXPORT jstring JNICALL Java_com_jdojo_jni_JNIStringTest_getMsg
(JNIEnv *env, jobject obj) {
 const char *utfMsg = "Hello from JNI to Java";
 jstring javaString = env->NewStringUTF(utfMsg);
 return javaString;
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

568

Run the javah command for the JNIStringTest class to create the com_jdojo_jni_JNIStringTest.h C++ header file.
 
javah com.jdojo.jni.JNIStringTest
 

To include the C++ contents of the hellojni.cpp and jnistringtest.cpp files in the same shared library named
beginningjava, you need to pass both files as the source files to the g+= command. The following is the command on
Windows, assuming that you have placed the header files for both source files in the C:\dll directory.
 
C:\> g++ -Wl,--kill-at -shared
 -IC:/java8/include -IC:/java8/include/win32 -IC:/dll
 -o C:/dll/beginningjava.dll
 C:/dll/hellojni.cpp C:/dll/jnistringtest.cpp
 

Please refer to the “Creating a Shared Library on Linux” section for creating the shared library with both C++
source files on Linux.

Now you are ready to run the JNIStringTest class as listed in Listing 8-6. It will generate the following output:
 
Hello from JNI to Java
Hello from Java to JNI
 

You can use the GetStringUTFLength(jstring string) JNI function to get the length of a jstring in bytes to
represent it in UTF-8 format. The JNI also has functions that let you work with Unicode native strings. The Unicode
string functions are named UTF string functions without the word “UTF”. For example, to get the length of a jstring
in terms of Unicode characters, you have a GetStringLength() function as opposed to the GetStringUTFLength()
function. To construct a new Java String (a jstring) from Unicode characters, you have a NewString() JNI function
as opposed to the NewStringUTF() JNI function, which creates a Java string from a UTF-8 native string. Sometimes you
may need to convert a Java String in jstring to a native encoding and vice versa. You can use the java.lang.String
class, which has a rich set of constructors and methods that let you convert string in one encoding to byte array and
vice versa. I will cover how to access Java classes in the native code in a later section.

Working with Arrays
The JNI lets you pass an array of primitive or reference types from Java to native code and vice versa. You cannot
access or work with Java arrays directly in native code. You will need to use JNI functions to work with Java arrays
in native code. The JNI provides a different set of functions for primitive and reference arrays. Some functions are
common to both types. All array-related methods used in this section use the C++ version. Add JNIEnv *env as the
first parameter to them to get the corresponding C version.

The GetArrayLength() method returns the length of an array of a primitive or reference type. Its declaration is
 
jsize GetArrayLength(jarray array)
 

You can use the New<Xxx>Array() method to create an array of a primitive type, where <Xxx> is one of the
primitive types of Boolean, Byte, Char, Double, Float, Int, Long, or Short. You need to pass the length of the primitive
type array as a parameter to this method. It returns NULL if an array could not be created. The following snippet of
code creates an int array and a double array each of length 10:
 
jintArray iArray = env->NewIntArray(10);
jdoubleArray dArray = env->NewDoubleArray(10);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

569

You can use Get<Xxx>ArrayElements() to get the contents of a primitive array, where <Xxx> is one of the
primitive types of Boolean, Byte, Char, Double, Float, Int, Long, or Short. It is declared as follows:
 
<RRR> *Get<Xxx>ArrayElements(<AAA> array, jboolean *isCopy)
 

Here, <RRR> is the JNI native data type such as jint or jdouble, and <AAA> is a JNI array type such as jintArray,
jdoubleArray, etc. The isCopy parameter indicates if the returned array elements are copies of the original array. If
isCopy is not NULL, it is set to JNI_TRUE if a copy of original array was made. It is set to JNI_FALSE if a copy of original
array was not made. You can also make changes to the array elements in the native code that will be reflected to the
original array. You need to release the elements, which you get using this method after you are done with them. You
need to use the Release<Xxx>ArrayElements() method to release the array elements, which is declared as follows:
 
void Release<Xxx>ArrayElements(<AAA> array, <RRR> *elems, jint mode)
 

The last parameter mode in the Release<Xxx>ArrayElements() function indicates how the buffer, which was
used in native code for array elements, is released. Its value can be 0, JNI_COMMIT, or JNI_ABORT. 0 means copy back
the content and free the elems buffer; JNI_COMMIT means copy back the content, but do not free the elems buffer; and
JNI_ABORT means free the buffer without copying back the possible changes. The following snippet of code accesses
an int Java array in native code and prints all of its element values on the standard output:
 
jintArray num = get a Java array...;
const jsize count = env->GetArrayLength(num);
jboolean isCopy;
jint *intNum = env->GetIntArrayElements(num, &isCopy);
  
for (jsize i = 0; i < count; i++) {
 printf("%i\n", intNum[i]);
}
 
// Release the intNum buffer without copying back any changes made to the array elements
env->ReleaseIntArrayElements(num, intNum, JNI_ABORT);
 

Reference type Java arrays in the native code are treated differently. You can use the NewObjectArray() function
to create a new reference type array. The method is declared as follows:
 
jobjectArray NewObjectArray(jsize length, jclass elementClass, jobject initialElement)
 

Note that you need to use the array element’s class type object to create a reference array. The last parameter is
the initial element with which all elements of the array will be initialized.

Unlike primitive type arrays, you do not need to get array elements for reference type arrays to access
them. You can access one element at a time using the GetObjectArrayElement() function. You can use the
SetObjectArrayElement() function to set the value of an array element of a reference type. These methods are
declared as follows:

•	 jobject GetObjectArrayElement(jobjectArray array, jsize index)

•	 void SetObjectArrayElement(jobjectArray array, jsize index, jobject value)

Let’s look at examples of using arrays in a JNI application. Listing 8-8 contains the Java code that declares three
native methods using arrays.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

570

Listing 8-8.  An Example of Accessing and Manipulating Arrays in Native Code

// JNIArrayTest.java
package com.jdojo.jni;
 
import java.util.Arrays;
 
public class JNIArrayTest {
 static {
 System.loadLibrary("beginningjava");
 }
 
 // Three native method declarations
 public native int sum(int[] num);
 public native String concat(String[] str);
 public native int[] increment(int[] num, int incrementBy);
 
 public static void main(String[] args) {
 JNIArrayTest test = new JNIArrayTest();
  
 int[] num = {1, 2, 3, 4, 5};
 String[] str = {"One", "Two", "Three", "Four", "Five" } ;
  
 System.out.println("Original Number Array: " + Arrays.toString(num));
  
 System.out.println("Original String Array: " + Arrays.toString(str));
 int sum = 0;
 sum = test.sum(num);
 System.out.println("Sum: " + sum);
  
 String concatenatedStr = test.concat(str);
 System.out.println("Concatenated String: " + concatenatedStr);
  
 int increment = 5;
 int[] incrementedNum = test.increment(num, increment);
 System.out.println("Increment By: " + increment);
 System.out.println("Incremented Number Arrays: " +
 Arrays.toString(incrementedNum));
 }
}
 

The sum() native method accepts an int array and returns the sum of all its elements as int. Be careful not to
pass big numbers in the int array when you call the sum() method. Otherwise, the result may overflow. The concat()
native method accepts a String array. It concatenates all elements in the array and returns a String object. The
increment() native method accepts an int array and an int number. It returns a new int array, which contains all
elements of the original array that are incremented by the specified number. The main() method contains the code to
test the three native methods.

Run the javah command for the JNIArrayTest class to create the com_jdojo_jni_JNIArrayTest.h C++ header
file.
 
javah com.jdojo.jni.JNIArrayTest
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

571

Listing 8-9 contains the C++ implementation of the three native methods in the jniarraytest.cpp file. The
concat() method’s implementation assumes that the length of all elements in String array will not exceed 500 bytes.
Please refer to the previous section on how to include the C+= source file in the shared library.

Listing 8-9.  Contents of the jniarraytest.cpp File with the C++ Implementation of the sum( ), concat( ), and
increment( ) Native Methods

// jniarraytest.cpp
#include <jni.h>
#include <cstring>
#include "com_jdojo_jni_JNIArrayTest.h"
 
JNIEXPORT jint JNICALL Java_com_jdojo_jni_JNIArrayTest_sum
(JNIEnv *env, jobject obj, jintArray num) {
 jint sum = 0;
 const jsize count = env->GetArrayLength(num);
 
 jboolean isCopy;
 jint *intNum = env->GetIntArrayElements(num, &isCopy);
 
 for (jsize i = 0; i < count; i++) {
 sum += intNum[i];
 }
 
 // Release the intNum buffer without copying back any changes made to the array elements
 env->ReleaseIntArrayElements(num, intNum, JNI_ABORT);
 
 return sum;
}
 
JNIEXPORT jstring JNICALL Java_com_jdojo_jni_JNIArrayTest_concat
(JNIEnv *env, jobject obj, jobjectArray strArray) {
 const int MAX_LENGTH = 500;
 char dest[MAX_LENGTH];
 
 for (int i = 0; i < MAX_LENGTH; i++) {
 dest[i] = (char)NULL;
 }
 
 const jsize count = env->GetArrayLength(strArray);
 
 for (jsize i = 0; i < count; i++) {
 // Get the string object from the array
 jstring strElement =
 (jstring) env->GetObjectArrayElement(strArray, i);
 const char *tempStr = env->GetStringUTFChars(strElement, NULL);
 
 if (tempStr == NULL) {
 printf("Could not convert Java string to UTF-8 string.\n");
 return NULL;
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

572

 // Concatenate tempStr to dest
 strcat(dest, tempStr);
 
 // Release the memory used by tempStr
 env->ReleaseStringUTFChars(strElement, tempStr);
 
 // Delete the local reference of jstring
 env->DeleteLocalRef(strElement);
 }
 
 jstring returnStr = env->NewStringUTF(dest);
 return returnStr;
}
 
JNIEXPORT jintArray JNICALL Java_com_jdojo_jni_JNIArrayTest_increment
(JNIEnv *env, jobject obj, jintArray num, jint incrementBy) {
 
 const jsize count = env->GetArrayLength(num);
 
 jboolean isCopy;
 jint *intNum = env->GetIntArrayElements(num, &isCopy);
 
 jintArray modifiedNumArray = env->NewIntArray(count);
 jboolean isNewArrayCopy;
 jint *modifiedNumElements =
 env->GetIntArrayElements(modifiedNumArray, &isNewArrayCopy);
 
 for (jint i = 0; i < count; i++) {
 modifiedNumElements[i] = intNum[i] + incrementBy;
 }
 
 if (isCopy == JNI_TRUE) {
 env -> ReleaseIntArrayElements(num, intNum, JNI_COMMIT);
 }
 
 if (isNewArrayCopy == JNI_TRUE) {
 env -> ReleaseIntArrayElements(modifiedNumArray,
 modifiedNumElements,
 JNI_COMMIT);
 }
 
 return modifiedNumArray;
}
 

Running the JNIArrayTest class as shown in Listing 8-8 will produce the following output:
 
Original Number Array: [1, 2, 3, 4, 5]
Original String Array: [One, Two, Three, Four, Five]
Sum: 15
Concatenated String: OneTwoThreeFourFive
Increment By: 5
Incremented Number Arrays: [6, 7, 8, 9, 10]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

573

Accessing Java Objects in Native Code
You can use Java objects in native code in different ways: You can

Create Java objects in native code.•	

Access Java objects and classes existing in the JVM from the native code.•	

Access/modify fields of a Java object inside the native code.•	

Invoke a Java instance and static methods of Java objects from the native code.•	

The following sections describe the steps needed to use Java objects in native code.

Getting a Class Reference
An instance of the jclass type represents a class object in native code. If you invoke a native function, which is
declared as static and native in a Java class, your native function always gets the reference of the class object as the
second parameter. Sometimes you may have a reference of a Java object in the jobject type and you want to get its
class object reference. You need to use the GetObjectClass() JNI function to get the reference of the class object of a
Java object as shown:
 
jobject obj = get the reference to a Java object;
jclass cls = env->GetObjectClass(obj);
 

Use the FindClass() JNI function to get the reference of a class object using the class name. You need to use the
fully qualified name of the class in the FindClass() method by replacing a dot in the package name with a forward
slash. If you are trying to get the reference of a class object for an array, you need to use the array class signature. To
get the reference of the class object for the java.lang.String class, you need to use java/lang/String as the class
name. To get the class object reference for int[], you need to use [I as the class name. To know the correct signature
for the class of an array type, you can declare a field in a class of that array type and use the javap command with the
–s and –private options. The following snippet of code demonstrates how to get the reference of the class object for
some Java reference types:
 
jclass cls;
 
// Get the reference of the java.lang.String class object
cls = env->FindClass("java/lang/String");
 
// Get the reference of the int[] array class object
cls = env->FindClass("[I");
 
// Get the reference of the int[][] array class object
cls = env->FindClass("[[I");
 
// Get the reference of the String[] array class object. Note a semi-colon in signature
cls = env->FindClass("[Ljava/lang/String;");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

574

Accessing Fields and Methods of a Java Object/Class
Before you can access the fields of a Java object/class in native code, you must get the field ID. You need to use the
GetFieldID() JNI function to get the field ID of an instance field and the GetStaticFieldID() JNI function to get the
field ID for a static field. The signatures of these two methods are as follows:

•	 jfieldID GetFieldID(jclass cls, const char *name, const char *sig)

•	 jfieldID GetStaticFieldID(jclass cls, const char *name, const char *sig)

The cls parameter is the reference of the class object, which defines the instance/static field. The name parameter
is the name of the field. The sig parameter is the signature of the field. You need to use the javap command with the –s
 and –private options to get the signature of a field defined in a class.

You need to use a Get<Xxx>Field() JNI function to get the value of an instance field and a
GetStatic<Xxx>Field() JNI function to get the value of a static field, where <Xxx> is the type of field whose
value can be Boolean, Byte, Char, Double, Float, Int, Long, Short, or Object. The Set<Xxx>Field() and
SetStatic<Xxx>Field() JNI functions let you set the value of instance and static fields, respectively. The declaration
for these methods are as follows where <RRR> is a native data type, for example, if <Xxx> is int, <RRR> is jint:

•	 <RRR> Get<Xxx>Field(jobject obj, jfieldID fieldID)

•	 <RRR> GetStatic<Xxx>Field(jclass clazz, jfieldID fieldID)

•	 void Set<Xxx>Field(jobject obj, jfieldID fieldID, <RRR> value)

•	 void SetStatic<Xxx>Field(jclass clazz, jfieldID fieldID, <RRR> value)

Suppose obj is an instance of jobject (that is, a Java object reference) and cls is its class reference. There are
two fields, num and count, of type int in the class represented by cls. The num field is an instance field and count field
is a static field. The following snippet of code shows how to access these two fields in native code and increment their
values by 1:
 
// Get the field ID of num and count fields
jfieldID numFieldId = env->GetFieldID(cls, "num", "I");
jfieldID countFieldId = env->GetStaticFieldID(cls, "count", "I");
 
// Get the field values
jint numValue = env->GetIntField(obj, numFieldId);
jint countValue = env->GetStaticIntField(cls, countFieldId);
 
// Increment the values by 1 and set them back to the fields
numValue = numValue + 1;
countValue = countValue + 1;
env->SetIntField(obj, numFieldId, numValue);
env->SetStaticIntField(cls, countFieldId, countValue);
 

The steps to use a method of Java object/class in native code are similar to using their fields. You need to get the
method ID of a method before you can access the method. You can use GetMethodID() and GetStaticMethodID()
JNI functions to get the method ID for an instance method and a static method, respectively. Their declarations are
as follows:

•	 jmethodID GetMethodID(jclass clazz, const char *name, const char *sig)

•	 jmethodID GetStaticMethodID(jclass clazz, const char *name, const char *sig)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

575

The name of the method is its simple name, and its signature can be obtained using the javap command with the
–s and –private options. The following snippet of code shows how to get the method ID from a few methods of a Java
class assuming that cls represents the class object reference:
 
jmethodID methodID
 
// Method is "void objectCallBack()"
methodID = env->GetMethodID(cls, "objectCallBack", "()V");
 
// Method is "static void classCallBack()"
methodID = env->GetStaticMethodID(cls, "classCallBack", "()V");
 
// Method is "int getLength(String str)"
methodID = env->GetMethodID(cls, "getLength", "(Ljava/lang/String;)I");
 
// Method is "int[] increment(int[], int)"
methodID = env->GetMethodID(cls, "increment", "([II)[I");
 

Calling an instance or static method is easy. You need to use an object/class, the method ID, and method
arguments, if any, to call a method. You can use any of the following methods to call an instance method of an object:

•	 <RRR> Call<Xxx>Method(jobject obj, jmethodID methodID, arg1, arg2...)

•	 <RRR> Call<Xxx>MethodA(jobject obj, jmethodID methodID, const jvalue *args)

•	 <RRR> Call<Xxx>MethodV(jobject obj, jmethodID methodID, va_list args)

Here, <Xxx> in the method name is the return type of the method and it could be Boolean, Byte, Char, Double,
Float, Int, Long, Short, Object, or Void. The <RRR> is the return type of the method and it could be jboolean, jbyte,
jchar, jdouble, jfloat, jint, jlong, jshort, jobject, or void depending on the corresponding <Xxx> value. The
difference between Call<Xxx>Method(), Call<Xxx>MethodA(), and Call<Xx>MethodV() is how you want to pass
the arguments to the method. The Call<Xxx>Method() method lets you pass arguments to a method as a comma-
separated list. The Call<Xxx>MethodA() method lets you pass arguments to a method as an array of jvalue type. The
Call<Xxx>MethodV() method lets you pass arguments to a method as va_list. The following snippet of code shows
how to call an instance method assuming that obj is a reference of jobject type and the method ID is methodID:
 
// Method is "void m1()"
env->CallVoidMethod(obj, methodID);
 
// Method is "void m2(int a)"
env->CallVoidMethod(obj, methodID, 109);
 
// Method is "int m2(double a)"
jint value = env->CallIntMethod(obj, methodID, 109.23);
 

Calling a static method is similar to calling an instance method. You need to use a class object reference to call
a static method. You need to use one of the following JNI functions to call a static method. Note that the JNI function
names, which are used to call static methods, contain the word Static.

•	 <RRR> CallStatic<Xxx>Method(jclass cls, jmethodID methodID, arg1, arg2...)

•	 <RRR> CallStatic<Xxx>MethodA(jclass cls, jmethodID methodID, jvalue *args)

•	 <RRR> CallStatic<Xxx>MethodV(jclass cls, jmethodID methodID, va_list args)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

576

The JNI lets you call an instance method on an object from any class in its class hierarchy. When you use a
Call<Xxx>Method() function, it uses the object’s class to call the method. Consider the following class hierarchy:
 
// A.java
package com.jdojo.jni;
 
public class A {
 public int m1() {
 return 1;
 }
}
 
// B.java
package com.jdojo.jni;
 
public class B extends A {
 @Override
 public int m1() {
 return 3;
 }
}
 
// C.java
package com.jdojo.jni;
 
public class C extends B {
 @Override
 public int m1() {
 return 3;
 }
}
 

Classes B and C override the m1() method. If you use CallIntMethod() to call the m1() method of an object of
class C, it will call m1() method in class C and it returns 3. The JNI lets you call the m1() method in class A or class B
using an object of class C. To call a method on an object from its superclass, you need to use one of the following JNI
methods:

•	 <RRR> CallNonvirtual<Xxx>Method(jobject obj, jclass cls, jmethodID methodID,
arg1, arg2...)

•	 <RRR> CallNonvirtual<Xxx>MethodA(jobject obj, jclass cls, jmethodID methodID,
const jvalue *args)

•	 <RRR> CallNonvirtual<Xxx>MethodV(jobject obj, jclass cls, jmethodID methodID,
va_list args)

You need to use the reference of the object and its class in these versions of the methods. The methodID must be
obtained using the class from which the method needs to be called. For example, the following snippet of code calls
the m1() method from class B on an object of class C. The code also creates an object of class C.
 
// Get the class references for B and C
jclass bCls = env->FindClass("com/jdojo/jni/B");
jclass cCls = env->FindClass("com/jdojo/jni/C");
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

577

// Get method ID for the constructor of class C
jmethodID cConstrctorID = env->GetMethodID(cCls, "<init>", "()V");
 
// Create an object of class C
jobject cObject = env->NewObject(cCls, cConstrctorID);
 
// Get the method ID for the m1() method in class B
jmethodID bMethodID = env->GetMethodID(bCls, "m1", "()I");
 
// Call the m1() method in class B using an object of class C
jint h = env->CallNonvirtualIntMethod(cObject, bCls, bMethodID);
 
// will print 2, which is returned from m1() in class B
printf("%i\n", h);
 

Let’s look at a complete example of accessing fields and methods of a Java object in native code. Listing 8-10 contains
the Java code in which a class named JNIJavaObjectAccessTest contains two fields named num and count. It also
contains two methods named objectCallBack() and classCallBack(). You will access the fields and methods in
native code. It has a native method called callBack(). The callBack() native method increments the num and count fields
by 1 and calls the objectCallBack() and classCallBack() methods. Before you can run the JNIJavaObjectAccessTest
class, you will need to generate the com_jdojo_jni_JNIJavaObjectAccessTest.h C++ header file and the shared
library including the contents from the jnijavaobjectaccesstest.cpp file as shown in Listing 8-11.

Listing 8-10.  Accessing Fields and Methods of Java Objects/Classes from Native Code

// JNIJavaObjectAccessTest.java
package com.jdojo.jni;
 
public class JNIJavaObjectAccessTest {
 static {
 System.loadLibrary("beginningjava");
 }
 
 private int num = 10;
 private static int count = 1001;
  
 public void objectCallBack() {
 System.out.println("Inside objectCallBack() method.");
 }
  
 public static void classCallBack() {
 System.out.println("Inside classCallBack() method.");
 }
  
 public native void callBack();
  
 public int hashCode() {
 return -9999;
 }
  
 public static void main(String[] args) {
 JNIJavaObjectAccessTest test = new JNIJavaObjectAccessTest();
  

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

578

 System.out.println("Before calling native method...");
 System.out.println("num = " + test.num);
 System.out.println("count = " + count);
  
 // Call native method
 test.callBack();
  
 System.out.println("After calling native method...");
 System.out.println("num = " + test.num);
 System.out.println("count = " + count);
 }
} 

Before calling native method...
num = 10
count = 1001
Inside objectCallBack() method.
Inside classCallBack() method.
After calling native method...
num = 11
count = 1002 

Listing 8-11.  Contents of the the jnijavaobjectsaccesstest.cpp File That Contains the C++ Implementation of the
callBack( ) Native Methods Declared in JNIJavaObjectAccessTest Class

// jnijavaobjectaccesstest.cpp
#include <stdio.h>
#include <jni.h>
#include "com_jdojo_jni_JNIJavaObjectAccessTest.h"
 
JNIEXPORT void JNICALL Java_com_jdojo_jni_JNIJavaObjectAccessTest_callBack
(JNIEnv *env, jobject obj) {
 jclass cls;
 
 // Get the class reference for the object
 cls = env->GetObjectClass(obj);
 if (cls == NULL) {
 return;
 }
 
 // Access the fields
 jfieldID numFieldId = env->GetFieldID(cls, "num", "I");
 jfieldID countFieldId = env->GetStaticFieldID(cls, "count", "I");
 
 jint numValue = env->GetIntField(obj, numFieldId);
 jint countValue = env->GetStaticIntField(cls, countFieldId);
 
 numValue = numValue + 1;
 countValue = countValue + 1;
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

579

 env->SetIntField(obj, numFieldId, numValue);
 env->SetStaticIntField(cls, countFieldId, countValue);
 
 // Call the instance method
 jmethodID instanceMethodID = env->GetMethodID(cls,
 "objectCallBack",
 "()V");
 if (instanceMethodID != 0) {
 env->CallVoidMethod(obj, instanceMethodID);
 }
 
 // Call the static method
 jmethodID staticMethodID = env->GetStaticMethodID(cls,
 "classCallBack",
 "()V");
 if (staticMethodID != 0) {
 env->CallStaticVoidMethod(cls, staticMethodID);
 }
 
 return;
}

Creating Java Objects
The JNI lets you create Java objects in native code without invoking any constructor or by invoking a specific
constructor. You need to use the AllocObject() JNI function to allocate memory for a Java object without invoking
any of its constructors. Note that all instance fields will have their default values according to their data types. Instance
fields will not be initialized when you use AllocObject() JNI function and no instance initializer will be invoked
either. Here is the snippet of code to allocate memory for an object of a class in Java:
 
jclass cls = get the class reference;
jobject obj = env->AllocObject(cls);
if (obj == NULL) {
 // The object could not be created. Handle the error condition.
}
 

You can create a Java object by invoking a specific constructor of a Java class using one of the following JNI
functions. The functions differ only in how to pass the parameters for a constructor.

•	 jobject NewObject(jclass clazz, jmethodID methodID, arg1, arg2...)

•	 jobject NewObjectA(jclass clazz, jmethodID methodID, const jvalue *args)

•	 jobject NewObjectV(jclass clazz, jmethodID methodID, va_list args)

The methodID parameter is the method ID of the constructor that you want to invoke. There is a special string that
is used for a method name when you want to get the method ID for a constructor of a class. You need to use <init> or
$init$ as the method name for a constructor. Consider the code for a class named IntWrapper as shown in Listing 8-12.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

580

Listing 8-12.  A Sample Class to Demonstrate the Java Object Creation in Native Code

// IntWrapper.java
package com.jdojo.jni;
 
public class IntWrapper {
 private int value = -1;
 
 public IntWrapper() {
 }
 
 public IntWrapper(int value) {
 this.value = value;
 }
  
 public int getValue() {
 return value;
 }
}
 

You can get the reference of the IntWrapper class in native C++ code as shown:
 
jclass wrapperCls = env->FindClass("com/jdojo/jni/IntWrapper");
 

The following C++ code allocates memory for an IntWrapper object without invoking a constructor:
 
jobject wrapperObject = env->AllocObject(wrapperCls);
 

At this point, wrapperObject exists in memory and its instance field value still has the default value of 0. If you
call the getValue() method on wrapperObject at this point, it will return 0 and not –1, as you might expect.

You need to use the NewObject() JNI function if you want to create an object of a Java class by invoking one
of its constructors. The following snippet of code creates an object of the IntWrapper class by invoking its no-args
constructor. The signature for a constructor depends on the number and type of parameters it accepts. For the no-args
constructor, the signature is ()V. If a constructor accepts an int parameter, its signature would be (I)V. You can get
the signature of a constructor of a class by using the javap command with the –s option. Use the –private option with
javap if you also want to include the private member’s signatures.
 
// Get the method ID for the default constructor of class IntWrapper
jmethodID mid = env->GetMethodID(wrapperCls, "<init>", "()V");
 
// Create an object of class IntWrapper using the default constructor
jobject wrapperObject = env->NewObject(wrapperCls, mid);
 

At this point, if you call the getValue() method on wrapperObject, it will return -1, which is the initial value of
the value instance field. When a constructor is called, all instance fields are initialized.

The following snippet of code calls the second version of the constructor of the IntWrapper class, which accepts
an int parameter. It passes 999 as the value for the parameter for the constructor IntWrapper(int value).
 
// Get the method ID for the constructor for class IntWrapper
jmethodID wrapperConstrctorID = env->GetMethodID(wrapperCls, "<init>","(I)V");
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

581

// Create an object of class IntWrapper passing 999 to the constructor
jobject wrapperObject = env->NewObject(wrapperCls, wrapperConstrctorID, 999);
 

At this point, if you call the getValue() method on abcObject, it will return 999, which is set in its constructor
during its creation.

Tip■■   The AllocObject() and NewObject() JNI functions can be used only to create objects of a non-array reference
type. You need to use the NewObjectArray() JNI function to create an array of a specific type.

Exception Handling
The JNI lets you handle exceptions in native code. Native code can detect and handle exceptions that are thrown in
the JVM as a result of calling a JNI function. Native code can also throw an exception that can be propagated to Java
code. The exception handling mechanism in the native code differs from that of the Java code. When an exception is
thrown in Java code, the control is transferred immediately to the nearest catch block that can handle the exception.
When an exception is thrown during native code execution, the native code keeps executing and the exception
remains pending until the control returns to the Java code. Once an exception is pending, you should not execute
any other JNI functions except the ones that free native resources. There are two ways to detect if an exception has
occurred as a result of a JNI function call in the native code:

By checking for the special return value from the function•	

By checking if an exception has occurred after the function returns•	

Some JNI functions return a special value if an exception occurs. For example, if you call the FindClass()
JNI function and the class is not found, any one of the four exceptions may be thrown: ClassFormatError,
ClassCircularityError, NoClassDefFoundError, or OutOfMemoryError. The FindClass() JNI function returns NULL
as a special value if any of the four exceptions is thrown. You should check for NULL as a return value just after a call to
the FindClass() JNI function and write code to handle the exception. Typically, you return the control to the caller so
that the caller can handle the exception as shown:
 
jclass cls = env->FindClass("abc/xyz/NonExistentClass");
if (cls == NULL) {
 /* �Here, free up any resources you had held and return. Exception is pending at

this time. It will be thrown when the control returns to the Java code.
 */
 return;
}
 

In some cases, it is not possible to return a special value from a JNI function to indicate that an exception has
occurred. Suppose you are accessing a Java array in native code and you have exceeded the array’s boundary. In this
case, an exception of type ArrayIndexOutOfBoundsException is thrown by the JVM. You may call a method of a Java
object where an exception occurs. In such cases, you need to use either ExceptionOccurred() or ExceptionCheck()
JNI function immediately after such JNI function call to check if an exception has occurred. These functions have the
following signatures:

•	 jthrowable ExceptionOccurred()

•	 jboolean ExceptionCheck()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

582

If an exception occurred during a function call, the ExceptionOccurred() function returns the reference of that
exception object. Otherwise, it returns NULL. If an exception occurred during the function call, the ExceptionCheck()
function returns JNI_TRUE. Otherwise, it returns JNI_FALSE. The following snippet of code demonstrates how to use
these functions. You only need to use one of the two functions, not both at the same time.
 
// Using method ExceptionOccurred()
 
// Call a JNI function, which may throw an exception
 
jthrowable e = env->ExceptionOccurred();
if (e != NULL) {
 /* Free up any resources that you had held and return. Exception is pending at this
 time. It will be thrown when the control returns to the Java code.
 */
 return;
}
 
// Using method ExceptionCheck()
 
// Call a JNI function, which may throw an exception
 
jboolean gotException = env->ExceptionCheck();
 
if (gotException) {
 /* Free up any resources that you had held and return. Exception is pending at
 this time. It will be thrown when the control returns to the Java code.
 */
 return;
}
 

Once you have detected an exception that has occurred in native code, you have three options:

Clear the exception and handle it in native code.•	

Return the control to Java code and let the Java code handle the exception.•	

Clear the exception, handle it in native code, and throw a new exception from native code that •	
Java code can handle.

The following sections explain the three ways of handling the exceptions.

Handle the Exception in Native Code
You can clear the exception and handle the exceptional condition in the native code. Use the ExceptionClear()
JNI function to clear a pending exception, as shown:
 
// Call a JNI function, which may throw an exception
 
jboolean gotException = env->ExceptionCheck();
if (gotException) {
 // Clear the exception
 env->ExceptionClear();
 
 // Write some code to take care of the exceptional condition
}
 

Once you clear the exception, that exception is not pending anymore.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

583

Handling the Exception in Java Code
You can return the control to the caller by using a return statement and let the caller handle the exception as shown:
 
// Call a JNI function, which may throw an exception
 
jboolean gotException = env->ExceptionCheck();
if (gotException) {
 /* �Free up any resources that you had held and return. Exception is pending at this time.

It will be thrown when the control returns to the caller.
 */
 return;
}

Throwing a New Exception from Native Code
You can handle the exception in the native code, clear the exception, and throw a new exception. Note that throwing
an exception from the native code does not transfer the control back to the Java code. You must write code such as a
return statement to transfer the control back to the Java code, so the exception you throw is handled in Java. You can
throw an exception in the native code using either of the following two JNI functions. Both functions return zero on
success and a negative integer on failure.

•	 jint Throw(jthrowable obj)

•	 jint ThrowNew(jclass clazz, const char *message)

The Throw() function accepts a jthrowable object. The ThrowNew() function accepts the exception’s class
reference and a message. The following snippet of code shows how to throw a java.lang.Exception using the
ThrowNew() function:
 
if (someErrorConditionIsTrue) {
 jclass cls = env->FindClass("java/lang/Exception");
 
 // Check for exception here (omitted)
 env->ThrowNew(cls, "your error message goes here");
 return;
} 

Tip■■   If you want to print the stack trace of an exception in the native code, you can use the ExceptionDescribe()
JNI function. It prints an exception stack trace on the standard error. If you want to raise a fatal error from the native code,
you can use the FatalError(const char *msg) JNI function. The FatalError() function does not return and the JVM
will not recover from this error either. A native method declared in Java code can also use a throws clause the same way
as a Java non-native method can. The following is a valid native method declaration inside a Java class:

public native int myMethod() throws Exception;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

584

Creating an Instance of the JVM
So far, you have seen Java applications using native code. Now you are ready to see the reverse. That is, a native
application using Java code. Why would you use Java code from a native application? You may want to use Java code
from a native application for the following reasons:

You may already have an application coded in Java and you want to use the existing code.•	

Java provides a rich set of class libraries. You may want to take advantage of Java class libraries •	
in your native application.

The part of the JNI API that lets you create and load a JVM in native code is known as the Invocation API. The
JNI lets you embed a JVM inside a native application. That is, you can create a JVM from a native application and use
Java classes as you use them in a Java application. It takes just a few lines of code to create a JVM in native code. All
you need to do is to prepare the initial arguments that you want to pass to a JVM and call the JNI_CreateJavaVM()
Invocation API function to create the JVM.

The initial argument that is passed to a JVM is a JavaVMInitArgs structure that is defined as follows:
 
typedef struct JavaVMInitArgs {
 jint version;
 jint nOptions;
 JavaVMOption *options;
 jboolean ignoreUnrecognized;
} JavaVMInitArgs;
 

The version field indicates the JNI version and it must be set to at least JNI_VERSION_1_2. The nOptions field
is set to the number of options you want to pass to a JVM. The options field is an array of a JavaVMOption structure,
which is defined as follows:
 
typedef struct JavaVMOption {
 char *optionString;
 void *extraInfo;
} JavaVMOption;
 

If ignoreUnrecognized is set to JNI_TRUE, the JNI_CreateJavaVM() function will ignore the unrecognized
options. If it is set to JNI_FALSE, the JNI_CreateJavaVM() function will return JNI_ERR as soon as it encounters an
unrecognized option.

The optionString field in the JavaVMOption structure is a string that is the value for the option to a JVM in the
default platform encoding.

The extraInfo field is used for special kinds of JVM arguments. It represents a function hook for redirecting
a JVM message, a JVM exit hook, or a JVM abort hook. The type of hook the extraInfo field represents depends
on the value for the optionString field. If the optionString field has the value of vfprintf, exit, or abort, the
extraInfo field represents a JVM message redirection hook, a JVM exit hook, or a JVM abort hook, respectively. Note
that vfprintf hook redirects only the JVM message to the hook. It does not redirect the System.out and System.
err messages to the hook. If you have set a vsprintf hook in native code and used one of the print()/println()
methods of System.out/System.err in Java code, those messages would not be redirected to your vfprintf hook.
You need to use the setOut() and setErr() methods of the System class to redirect System.out and System.err
messages. The exit hook for a JVM is called upon a normal termination of the JVM such as by calling

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

585

the System.exit(int exitCode) method in Java code. The abort hook for a JVM is called upon abnormal termination
of the JVM. The following snippet of code shows how to populate the extraInfo field with a different VM hook. First,
three functions are defined that will serve as the three types of hooks. Note that the functions must have the same
signatures as shown in the following snippet of code:
 
jint JNICALL jvmMsgRedirection_hook(FILE *stream, const char *format, va_list args) {
 // You can log the VM message here.
 // Let us just print the VM message on the standard output.
 return vfprintf(stdout, format, args);
}
 
void JNICALL jvmExit_hook(jint code) {
 // You can do some cleanup work here
 
 printf("VM exited with exit code %i\n", code);
}
 
void JNICALL jvmAbort_hook() {
 printf("VM was aborted\n");
}
 
JavaVMOption jvmOption[3];
 
// Add JVM hooks
options[0].optionString = "vfprintf";
options[0].extraInfo = jvmMsgRedirection_hook;
  
options[1].optionString = "exit";
options[1].extraInfo = jvmExit_hook;
 
options[2].optionString = "abort";
options[2].extraInfo = jvmAbort_hook;
 

The following snippet of code shows how to populate a JavaVMInitArgs structure with initial arguments for the
JVM. It sets only two arguments, java.class.path and java.lib.path. You can set more JVM arguments if you need to.
 
// Populate the JVM options in JavaVMOption structure
const jint MAX_OPTIONS = 2; // will pass two arguments to the JVM
 
JavaVMOption options[MAX_OPTIONS];
 
// Our first argument is java.class.path (CLASSPATH for JVM)
options[0].optionString = "-Djava.class.path=.;c:\\myjni\\classes";
 
// Our second argument is java.library.path (PATH to find a shared library)
options[1].optionString = "-Djava.library.path=c:\\myjni\\libs";
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

586

// Populate JavaVMInitArgs structure with options details
JavaVMInitArgs vm_args;
vm_args.version = JNI_VERSION_1_2;
vm_args.nOptions = MAX_OPTIONS;
vm_args.options = options;
vm_args.ignoreUnrecognized = true;
 

Once you have the JVM arguments ready in a JavaVMInitArgs structure, you are just one JNI function call away
from creating a JVM in your native code. The JNI_CreateJavaVM() JNI function accepts three arguments. The first
argument is a pointer to a JavaVM structure that represent the JVM. The second argument is a pointer to a JNIEnv
structure, which is the JNI interface. The third argument is the initial argument to the JVM. The following snippet
of code shows how to create a JVM in native code. You need to check for any errors that the JNI_CreateJavaVM()
function might return. It returns JNI_ERR if cannot create a JVM.
 
JNIEnv *env;
JavaVM *jvm;
long status;
status = JNI_CreateJavaVM(&jvm, (void**)&env, &vm_args);
 
if (status == JNI_ERR) {
 printf("Could not create VM. Exiting application...\n");
 return 1;
}
 

Once you get the JNIEnv structure, you can use it to find a class, create an object of that class, and execute any
methods on that object. In fact, it lets you access the entire JVM using JNI.

After you are done with the JVM, you need to destroy it.
 
// Destroy JVM
jvm->DestroyJavaVM();
 

Listing 8-13 contains the code for a EmbeddedJVMJNI class with a printMsg() static method to print a message on
the standard output. Later, you will create a JVM in native code, and call the printMsg() method.

Listing 8-13.  An EmbeddedJVMJNI Java Class

// EmbeddedJVMJNI.java
package com.jdojo.jni;
 
public class EmbeddedJVMJNI {
 public static void printMsg(String msg) {
 System.out.println(msg);
 }
}
 

The C++ console application listed in Listing 8-14 creates a JVM and calls the printMsg() method of the
EmbeddedJVMJNI class. The book’s source code contains the C++ code in createjvm.cpp file. The program lets you
specify the CLASSPATH as the command line argument. If you do not specify the CLASSPATH, it uses the current
directory as the CLASSPATH.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

587

Listing 8-14.  Contents of the createjvm.cpp File That Creates a JVM in a Native Application

// createjvm.cpp
#include <jni.h>
#include <iostream>
#include <string>
 
int main(int argc, char **argv) {
 std::string classpath("");
  
 if (argc < 2) {
 std::cout << "You did not pass the classpath."
 << " Using the current directory as the classpath.\n";
 classpath = ".";
 }
 else {
 classpath = argv[1];
 }
  
 std::string classpathOption("-Djava.class.path=");
  
 classpathOption = classpathOption + classpath;
  
 // Pass the classpath as an argument to the JVM
 const jint MAX_OPTIONS = 1;
 JavaVMOption options[MAX_OPTIONS];
 options[0].optionString = (char *)(classpathOption.c_str());;
  
 // Prepare the JVM initial arguments
 JavaVMInitArgs vm_args;
 vm_args.version = JNI_VERSION_1_2;
 vm_args.nOptions = MAX_OPTIONS;
 vm_args.options = options;
 vm_args.ignoreUnrecognized = true;
 
 // Create the JVM
 JavaVM *jvm;
 JNIEnv *env;
 long status = JNI_CreateJavaVM(&jvm, (void**) &env, &vm_args);
 if (status == JNI_ERR) {
 std::cout << "Could not create VM. Exiting application...\n";
 return 1;
 }
 
 const char *className = "com/jdojo/jni/EmbeddedJVMJNI";
 jclass cls = env->FindClass(className);
 if (cls == NULL) {
 // Print exception stack trace and destroy the JVM
 env->ExceptionDescribe();
 jvm->DestroyJavaVM();
 return 1;
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

588

 if (cls != NULL) {
 jmethodID mid = env->GetStaticMethodID(cls, "printMsg",
 "(Ljava/lang/String;)V");
 if (mid != NULL) {
 jstring m = env->NewStringUTF("Hello from C++...\n");
 env->CallStaticVoidMethod(cls, mid, m);
 if (env->ExceptionCheck()) {
 env->ExceptionDescribe();
 env->ExceptionClear();
 }
 }
 }
 
 // Destroy JVM
 jvm->DestroyJavaVM();
 return 0;
}
 

You will need to compile the createjvm.cpp file into an executable. When you compile this program, you need to
provide the path of the jvm.lib file, which is installed in the JAVA_HOME\lib directory on Windows. Assuming that you
have installed the JDK in C:\java8 on Windows, you can use the following command to create the createjvm.exe file
on Windows:
 
C:> g++ -IC:/java8/include -IC:/java8/include/win32
 -o createjvm
 createjvm.cpp
 C:/java8/lib/jvm.lib
 

The command is entered on one line, but it is shown on multiple lines for readability. The first two lines in the
command are the same as you were using to create the shared libraries before. The –o option is used to specify the
executable output file name, which is createjvm in this case. The last option is the path of the library called jvm.lib
that needs to be statically linked.

The following command will create a createjvm executable file on Linux, assuming that you have installed the
JDK in the /home/ksharan/java8 directory:
 
$ g++ -I/home/ksharan/java8/include -I/home/ksharan/java8/include/linux
 -o createjvm
 createjvm.cpp
 /home/ksharan/java8/jre/lib/i386/client/libjvm.so
 

On Windows, when you run the createjvm.exe application, it will look for the jvm.dll shared library, which is
found in JRE_HOME\bin\client directory. You need to include the directory that contains the jvm.dll file in the PATH
environment variable.
 
C:\> SET PATH=C:\java8\bin\client;%PATH%
C:\> createjvm C:\myclasses
Hello from C++...
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

589

When you run the createjvm.exe file, you may get the following error:
 
Exception in thread "main" java.lang.NoClassDefFoundError: com/jdojo/jni/EmbeddedJVMJNI
Caused by: java.lang.ClassNotFoundException: com.jdojo.jni.EmbeddedJVMJNI
...
 

The error indicates that the CLASSPATH was not set properly and the JVM was not able to find the
EmbeddedJVMJNI class. Using the above command, the class is searched in the C:\myclasses directory. To fix this
error, either run the createjvm application with correct argument for the CLASSPATH or move the com\jdojo\jni\
EmbeddedJVMJNI.class file into the C:\myclasses directory.

On Linux, you will need to set the LD_LIBRARY_PATH, so the libjvm.so file is loacted when the createjvm
aplication is run. You can set this as follows:
 
$ export LD_LIBRARY_PATH=/home/ksharan/java8/jre/lib/i386/client
 

Now you are ready to run the createjvm application as shown:
 
$./createjvm /home/ksharan/myclasses
Hello from C++...
 

The command will search for the com/jdojo/jni/EmbeddedJVMJNI.class in the /home/ksharan/
myclasses directory.

Synchronization in Native Code
The JNI provides two functions called MonitorEnter() and MonitorExit() to synchronize access to native code
in a multithreaded environment. These functions are used in tandem and their use is equivalent to using the
synchronized keyword in Java code. These functions are declared as follows:

•	 jint MonitorEnter(jobject obj)

•	 jint MonitorExit(jobject obj)

Both functions return 0 (JNI_OK is defined as 0 in the jni.h header file) on success and a negative number on
failure. You must check their return values to handle the code synchronization properly. Here is the sample Java code
that uses synchronization:
 
Object someObject = get the reference of a java object;
 
// Other logic goes here
 
synchronized(someObject) {
 // Synchronized code goes here
}
 

The equivalent native code is as follows:
 
jobject someObject = get the reference of a java object;
 
// Other logic goes here
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Java Native Interface

590

jint enterStatus = env->MonitorEnter(someObject);
if (enterStatus != JNI_OK) {
 // Handle the error condition here
}
 
// Synchronized code goes here
 
jint exitStatus = env->MonitorExit(someObject);
if (exitStatus != JNI_OK) {
 // Handle the error condition here
}
 

There are no equivalent JNI functions for Java wait() and notify() to aid in thread synchronization. However,
you can always invoke these two Java methods from native code.

Summary
The Java Native Interface (JNI) is a programming interface that facilitates interaction between Java programs and
programs written in native languages such as C, C++, FORTRAN, etc. The JNI makes it possible to use a method in Java
code and to implement that method in a native language such as C or C++. The JNI also makes it possible to embed
the JVM in a native application that can access the Java class libraries.

The method used in Java but implemented in a native language is called a native method, and it is declared using
the keyword native. The native method in Java does not have a body. Its body is represented by a semicolon. The
implementation of the native method is written in a native language and compiled into a shared library. The shared
library is made available to the Java runtime using the java.library.path JVM option or they are located in the PATH
environment variable.

The javah command is used to generate the required header file for the native language. It takes the fully
qualified class name of the class containing the native method as an argument.

The JNI defines mapping between data types used in Java and native code. For example, jboolean, jchar, jint,
etc. are the native equivalent of the boolean, char, int, etc. primitive data types in Java. The jclass, jobject, and
jstring types in native code are mapped to the Class, Object, and String classes in Java.

The JNI provides functions to facilitate the conversion between the Java and native representation of strings. It
also provides special functions to access the length of Java arrays and array elements.

The JNI also lets you create Java objects inside the native code. You can also access the fields and methods of the
Java objects inside the native code.

The Throwable type in Java is mapped to the type jthrowable in native code. The JNI lets you handle exceptions
in native code. Native code can detect and handle exceptions that are thrown in the JVM as a result of calling a JNI
function. Native code can also throw an exception that can be propagated to Java code. When an exception is thrown
during native code execution, the native code keeps executing and the exception remains pending until the control
returns to the Java code.

The JNI lets you embed the JVM in a native application giving full access to the rich Java class library to them.
The part of the JNI API that lets you create and load a JVM in native code is known as the Invocation API. The JVM is
created in native code using the JNI_CreateJavaVM() method of provided by the Invocation API.

In a multithreaded environment, it is possible to synchronize access to a critical section in native code by using
the two JNI functions called MonitorEnter() and MonitorExit(). These functions are used in tandem and their use is
equivalent to using the synchronized keyword in Java code.

www.it-ebooks.info

http://www.it-ebooks.info/

591

Chapter 9

Introduction to JavaFX

In this chapter, you will learn

What JavaFX is•	

How to write simple JavaFX programs•	

Properties, bindings, and observable collections in JavaFX•	

Event handling•	

Using layout panes, controls, 2D shapes, and drawing on a canvas•	

Applying effects, transformations, and animations•	

Using FXML to build UIs in JavaFX applications•	

Printing nodes in JavaFX•	

JavaFX is a vast topic and it deserves a book by itself. This is an introductory chapter to show you the features
offered by JavaFX. None of these topics are covered comprehensively.

What Is JavaFX?
JavaFX is an open source Java-based GUI framework for developing rich client applications. It is comparable to other
frameworks on the market such as Adobe Flex and Microsoft Silverlight. JavaFX is also seen as the successor of Swing
in the arena of GUI development technology in the Java platform. The JavaFX library is available as a public Java API.
JavaFX contains several features that make it a preferred choice for developing rich client applications:

JavaFX is written in Java, enabling you to take advantage of all Java features such as •	
multithreading, generics, lambda expressions, etc. You can use any Java editor of your choice,
such as NetBeans, to author, compile, run, debug, and package your JavaFX application.

JavaFX supports data binding through its libraries.•	

JavaFX code can be written using any JVM-supported scripting languages such as Visage, •	
Groovy, Scala, Nashorn, etc.

JavaFX offers two ways to build a UI: using Java code and using FXML. FXML is an XML-based •	
scriptable markup language to define a UI declaratively. Oracle provides a tool called Scene
Builder that is a visual editor for building FXML.

JavaFX provides a rich set of multimedia support such as playing back audios and videos. It •	
takes advantage of available codecs on the platform.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

592

JavaFX lets you embed web content in applications.•	

JavaFX provides out-of-the-box support for applying effects and animations, which are •	
important for developing gaming applications. In JavaFX, you can achieve sophisticated
animations by writing just a few lines of code.

The JavaFX platform consists of the following components to take advantage of the Java native libraries and the
available hardware and software on the platform. The arrangement of those components is shown in Figure 9-1.

JavaFX Public API•	

Quantum Toolkit•	

Prism•	

Glass Windowing Toolkit•	

Media Engine•	

Web Engine•	

JavaFX Public API

Prism Glass Windowing Toolkit Media Engine Web Engine

Quantum Toolkit

Figure 9-1.  Components making up the JavaFX platform

The GUI in JavaFX is constructed as a scene graph. A scene graph is a collection of visual elements called nodes
that are arranged in a tree-like hierarchy. A scene graph is built using the public JavaFX API. Nodes in a scene graph
can handle user inputs and gestures. They can have effects, transformations, and states. Types of nodes in a scene
graph include simple user interface (UI) controls such as buttons, text fields, 2D and 3D shapes, images, media
(audios and videos), web content, charts, etc.

Prism is a hardware accelerated graphics pipeline used for rendering the scene graph. If hardware-accelerated
rendering is not available on the platform, Java 2D is used as the fallback rendering mechanism. For example, before using
Java 2D for rendering, JavaFX will try using DirectX on Windows and OpenGL on Mac, Linux, and embedded platforms.

The Glass Windowing Toolkit provides graphics and windowing services such as windows and the timer using
the native operating system. The toolkit is also responsible for managing event queues. In JavaFX, event queues
are managed by a single, operating system level thread called JavaFX Application Thread. All user input events are
dispatched on the JavaFX Application Thread. JavaFX requires that a live scene graph must be modified only on the
JavaFX Application Thread.

Prism uses a separate thread, other than the JavaFX Application Thread, for the rendering purpose. It accelerates
the rendering process by rendering a frame while the next frame is being processed. When a scene graph is modified,
for example, by entering text in a text field, Prism needs to re-render the scene graph. Synchronizing the scene graph
with Prism is accomplished using an event called a pulse event. A pulse event is queued on the JavaFX Application
Thread when the scene graph is modified and it needs to be re-rendered. A pulse event is an indication that the scene
graph is not in sync with the rendering layer in Prism and the latest frame at the Prism level should be rendered. Pulse
events are throttled at 60 frames per second maximum.

The media engine is responsible for providing media support in JavaFX, for example, playing back audios and
videos. It takes advantage of the available codecs on the platform. The media engine uses a separate thread to process
media frames and the JavaFX Application Thread to synchronize the frames with the scene graph. The media engine
is based on GStreamer, which is an open source multimedia framework.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

593

The web engine is responsible for processing web content (HTML) embedded in the scene graph. Prism is
responsible for rendering the web content. The web engine is based on Webkit, which is an open source web browser
engine. It supports HTML5, Cascading Style Sheets (CSS), JavaScript, and Document Object Model (DOM).

The Quantum toolkit is an abstraction over the low-level components such as Prism, Glass, Media Engine, and
Web Engine. It also facilitates coordination between low-level components.

The History of JavaFX
JavaFX was originally developed by Chris Oliver at Seebeyond and it was called F3 (Form Follows Function).
F3 was a Java scripting language for easily developing GUI applications. It offered declarative syntax, static typing,
type inference, data binding, animation, 2D graphics, Swing components, etc. Seebeyond was bought by Sun
Microsystems, and F3 was named as JavaFX in 2007. Oracle acquired Sun Microsystem in 2010. Oracle open sourced
JavaFX in 2013.

The first version of JavaFX was released in the fourth quarter of 2008. The current release for JavaFX is version 8.0.
The version number of JavaFX jumped from 2.2 to 8.0. From Java 8, the version numbers of Java SE and JavaFX will be
the same. In future, the major versions of Java SE and JavaFX will be released at the same time and their versions will
be kept in sync. For example, JavaFX 9 will be released with Java SE 9, JavaFX 10 will be released with Java SE 10,
and so on.

Table 9-1 contains the list of releases of JavaFX. Starting with the release of Java SE 8, JavaFX is part of the Java SE
runtime library and you do not need to perform any additional setup to compile and run your JavaFX programs.

Table 9-1.  JavaFX Releases

Release Date Version Comments

Q4, 2008 JavaFX 1.0 It was the initial release of JavaFX. It used a declaration language called
JavaFX Script to write the JavaFX code.

Q1, 2009 JavaFX 1.1 Support for JavaFX Mobile was introduced.

Q2, 2009 JavaFX 1.2

Q2, 2010 JavaFX 1.3

Q3, 2010 JavaFX 1.3.1

Q4, 2011 JavaFX 2.0 Support for JavaFX script and JavaFX Mobile was dropped. It used the Java
programming language to write the JavaFX code.

Q2, 2012 JavaFX 2.1 Support for Mac OS for desktop only was introduced.

Q3, 2012 JavaFX 2.2

Q1, 2014 JavaFX 8.0 JavaFX version jumped from 2.2 to 8.0. JavaFX and Java SE versions will match
from Java 8.

System Requirements
To use the examples in this chapter, you need to have JDK8 installed. It is not necessary to have the NetBeans IDE to
compile and run the programs in this book. However, the NetBeans IDE has special features for creating, running, and
packaging JavaFX applications that makes developing JavaFX applications using NetBeans easier. You can use any
other IDE such as Eclipse, JDeveloper, IntelliJ IDEA, etc. or just use the command prompt to compile and run
JavaFX programs.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

594

The JavaFX Runtime Library
All JavaFX classes are packaged in a JAR file named jfxrt.jar that is located in the JRE_HOME\lib\ext directory
where JRE_HOME is the installation directory for the JRE.

If you compile and run JavaFX programs on the command line, you do not need to worry about setting the
JavaFX runtime JAR file in the CLASSPATH. Java 8 compiler (the javac command) and launcher (the java command)
automatically include the JavaFX runtime JAR file in the CLASSPATH.

The NetBeans IDE automatically includes the JavaFX runtime JAR file in the CLASSPATH when you create a
Java or JavaFX project. If you are using an IDE other than NetBeans, you may need to include jfxrt.jar in the IDE
CLASSPATH to compile and run a JavaFX application from inside the IDE.

JavaFX Source Code
Experienced developers sometimes prefer to look at the source code of the JavaFX library to learn how things are
implemented behind the scenes. Oracle provides the JavaFX source code. The Java 8 installation copies the source
in the JDK home directory. The file name is javafx-src.zip. Unzip the file in a directory and use your favorite Java
editor to open the source code.

Your First JavaFX Application
Your first JavaFX application will display the text Hello JavaFX in a window. You will take an incremental step-by-step
approach to developing your first JavaFX application by adding as few lines of code as possible and learning what the
code does and why it is needed.

Creating the HelloJavaFX Class
A JavaFX application is a class that must inherit from the Application class. The Application class is in the
javafx.application package. You will name your class HelloFXApp and it will be stored in the com.jdojo.jfx
package.
 
// HelloFXApp.java
package com.jdojo.jfx;
 
import javafx.application.Application;
 
public class HelloFXApp extends Application {
 // Application logic goes here
}
 

The program includes a package declaration, an import statement, and the class declaration. There is nothing
like JavaFX in the code. It looks like any other Java code. However, you have fulfilled one requirement of the JavaFX
application by inheriting the HelloFXApp class from the Application class. The HelloFXApp class will not compile
at this point.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

595

Overriding the start() Method
If you try compiling the HelloFXApp class, it will result in the following compile-time error:
 
HelloFXApp is not abstract and does not override abstract method start(Stage) in Application
 

The error is stating that the Application class contains an abstract start(Stage stage) method, which has
not been overridden in the HelloFXApp class. As a Java developer, you know what to do next: you either declare
the HelloJavaFX class as abstract or provide an implementation for the start() method. You need to provide an
implementation for the start() method in this class. The start() method in the Application class is declared
as follows:

•	 public abstract void start(Stage stage) throws java.lang.Exception

The following is the revised code for your application:
 
// HelloFXApp.java
package com.jdojo.jfx;
 
import javafx.application.Application;
import javafx.stage.Stage;
 
public class HelloFXApp extends Application {
 @Override
 public void start(Stage stage) {
 // The logic for starting the application goes here
 }
}
 

In the revised code, you have incorporated two things:

You have added one more •	 import statement to import the Stage class from the
javafx.stage package.

You implemented the •	 start() method. The throws clause for the method is dropped, which is
fine by the rules for overriding methods in Java.

The start() method is the entry point for a JavaFX application. It is called by the JavaFX application launcher.
Notice that the start() method is passed an instance of the Stage class, which is known as the primary stage of the
application. You can create more stages as necessary in your application. However, the primary stage is always created
by the JavaFX runtime for you.

Tip■■   Every JavaFX application class must inherit from the Application class and provide the implementation for the
start(String stage) method.

Showing the Stage
Similar to a stage in the real world, a JavaFX stage is used to display a scene. A scene has visuals—such as text,
shapes, images, controls, animations, effects, etc.—with which the user may interact, as is the case with all GUI-based
applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

596

In JavaFX, the primary stage is a container for a scene. The stage look-and-feel is different depending on the
environment your application is run in. You do not need to take any action based on the environment because the
JavaFX runtime takes care of all the details for you. For example, if the application runs as a desktop application,
the primary stage will be a window with a title bar and an area to display the scene; if the application is run in a web
browser as an applet, the primary stage will be an embedded area in the browser window.

The primary stage created by the application launcher does not have a scene. You will create a scene for your
stage in the next section.

You must show the stage to see the visuals contained in its scene. Use the show() method to show the stage.
Optionally, you can set a title for the stage using the setTitle() method. The revised code for the HelloFXApp class
is as follows:
 
// HelloFXApp.java
package com.jdojo.jfx;
 
import javafx.application.Application;
import javafx.stage.Stage;
 
public class HelloFXApp extends Application {
 @Override
 public void start(Stage stage) {
 // Set a title for the stage
 stage.setTitle("Hello JavaFX Application");
 
 // Show the stage
 stage.show();
 }
}

Launching the Application
You are ready to run your first JavaFX application. You can use one of the following two options to run a
JavaFX application:

It is not necessary to have a •	 main() method in the class to start a JavaFX application. When
you run a Java class that inherits from the Application class, the java command launches the
JavaFX application if the class being run does not contain the main() method.

Include a •	 main() method in the JavaFX application class. Inside the main() method, call
the launch() static method of the Application class to launch the JavaFX application. The
launch() method takes a String array as an argument, which is the parameters passed to the
JavaFX application.

If you are using the first option, you do not need to write any additional code for the HelloJavaFX class. If you
are using the second option, the revised code for the HelloFXApp class with the main() method will be as shown
in Listing 9-1.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

597

Listing 9-1.  A JavaFX Application Without a Scene

// HelloFXApp.java
package com.jdojo.jfx;
 
import javafx.application.Application;
import javafx.stage.Stage;
 
public class HelloFXApp extends Application {
 public static void main(String[] args) {
 // Launch the JavaFX application
 Application.launch(args);
 }
 
 @Override
 public void start(Stage stage) {
 stage.setTitle("Hello JavaFX Application");
 stage.show();
 }
}
 

The main() method calls the launch() method, which will do some setup work and call the start() method of
the HelloFXApp class. Your start() method sets the title for the primary stage and shows the stage.

Compile the HelloFXApp class using the following command:
 
javac com/jdojo/intro/HelloFXApp.java
 

Run the HelloFXApp class using the following command:
 
java com.jdojo.jfx.HelloFXApp
 

A window with a title bar as shown in Figure 9-2 is displayed.

Figure 9-2.  A JavaFX stage without a scene

The main area of the window is empty. This is the content area in which the stage will show its scene. Because
you do not have a scene for your stage yet, you see an empty area. The title bar shows the title that you have set in the
start() method.

You can close the application using the Close menu option in the window title bar. Use Alt + F4 to close the
window on Windows. You can use any other option to close the window as provided by your platform.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

598

Tip■■  T he launch() method of the Application class does not return until all windows are closed or the application
exits using the Platform.exit() method. The Platform class is in the javafx.application package.

You have not seen anything exciting in JavaFX yet. You need to wait for that until you create a scene in the
next section.

Adding the main() Method
As described in the previous section, the Java 8 launcher (the java command) does not require a main() method to
launch a JavaFX application. If the class that you want to run inherits from the Application class, the java command
launches the JavaFX application by automatically calling the Application.launch() method for you.

If you are using NetBeans IDE to create the JavaFX project, you do not need to have a main() method to launch
your JavaFX application if you run the application by running the JavaFX project. However, the NetBeans IDE requires
you to have a main() method when you run the JavaFX application class as a file, for example, by selecting the
HelloFXApp file, right-clicking it, and selecting the Run File option from the menu.

Some IDEs still require the main() method to launch a JavaFX application. All examples in this chapter will
include the main() method that will launch the JavaFX applications.

Adding a Scene to the Stage
An instance of the Scene class, which is in the javafx.scene package, represents a scene. A stage contains one scene.
A scene contains visual contents.

The contents of the scene are arranged in a tree-like hierarchy. At the top of the hierarchy is the root node. The root
node may contain child nodes, which in turn may contain their child nodes, and so on. You must have a root node to
create a scene. You will use a VBox as the root node. VBox stands for vertical box, which arranges its children vertically.
 
VBox root = new VBox(); 

Tip■■  A ny node that inherits from the javafx.scene.Parent class can be used as the root node for a scene. Several
nodes, known as layout panes or containers, for example, VBox, HBox, Pane, FlowPane, GridPane, TilePane, etc., can be
used as a root node. Group is a special container that groups its children together.

A node that can have children provides a getChildren() method that returns an ObservableList of its children.
To add a child node to a node, simply add the child node to the ObservableList. The following snippet of code
adds a Text node to a VBox:
 
// Create a VBox node
VBox root = new VBox();
 
// Create a Text node
Text msg = new Text("Hello JavaFX");
 
// Add the Text node to the VBox as a child node
root.getChildren().add(msg);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

599

The Scene class contains several constructors. You will use the one that lets you specify the root node and the size
of the scene. The following statement creates a scene with the VBox as the root node, 300px width, and 50px height:
 
// Create a scene
Scene scene = new Scene(root, 300, 50);
 

You need to set the scene to the stage by calling the setScene() method of the Stage class.
 
// Set the scene to the stage
stage.setScene(scene);
 

That’s it. You have completed your first JavaFX program with a scene. Listing 9-2 contains the complete program.
The program displays a window as shown in Figure 9-3.

Listing 9-2.  A JavaFX Application with a Scene Having a Text Node

// HelloFXApp.java
package com.jdojo.jfx;
 
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.VBox;
import javafx.scene.text.Text;
import javafx.stage.Stage;
 
public class HelloFXApp extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }
 
 @Override
 public void start(Stage stage) {
 Text msg = new Text("Hello JavaFX");
 VBox root = new VBox();
 root.getChildren().add(msg);
 
 Scene scene = new Scene(root, 300, 50);
 stage.setScene(scene);
 stage.setTitle("Hello JavaFX Application");
 stage.show();
 }
} 

Figure 9-3.  A JavaFX application with scene having a Text node

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

600

Improving the HelloFX Application
JavaFX is capable of doing much more than you have seen so far. Let’s enhance the first program and add some more
user interface elements such as buttons and text fields. This time, the user will be able to interact with the application.
Use an instance of the Button class to create a button as shown:
 
// Create a button with "Exit" text
Button exitBtn = new Button("Exit");
 

When a button is clicked, an ActionEvent is fired. You can add an ActionEvent handler to handle the event.
Use the setOnAction() method to set an ActionEvent handler for the button. The following statement sets an
ActionEvent handler for the button. The handler terminates the application. You can use a lambda expression or an
anonymous class to set the ActionEvent handler. The following snippet of code shows both approaches:
 
// Using a lambda expression
exitBtn.setOnAction(e -> Platform.exit());
 
// Using an anonymous class
import javafx.event.ActionEvent;
import javafx.event.EventHandler;
...
exitBtn.setOnAction(new EventHandler<ActionEvent>() {
 @Override
 public void handle(ActionEvent e) {
 Platform.exit();
 }
});
 

The program in Listing 9-3 shows how to add more nodes to the scene. The program uses the setStyle()
method of the Label class to set the fill color of the Label to blue. I will discuss using CSS in JavaFX briefly later.

Listing 9-3.  Interacting with Users in a JavaFX Application

// ImprovedHelloFXApp.java
package com.jdojo.jfx;
 
import javafx.application.Application;
import javafx.application.Platform;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;
 
public class ImprovedHelloFXApp extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

601

 @Override
 public void start(Stage stage) {
 Label nameLbl = new Label("Enter your name:");
 TextField nameFld = new TextField();
  
 Label msg = new Label();
 msg.setStyle("-fx-text-fill: blue;");
  
 // Create buttons
 Button sayHelloBtn = new Button("Say Hello");
 Button exitBtn = new Button("Exit");
  
 // Add the event handler for the Say Hello button
 sayHelloBtn.setOnAction(e -> {
 String name = nameFld.getText();
 if (name.trim().length() > 0) {
 msg.setText("Hello " + name);
 }
 else {
 msg.setText("Hello there");
 }
 });
  
 // Add the event handler for the Exit button
 exitBtn.setOnAction(e -> Platform.exit());
  
 // Create the root node
 VBox root = new VBox();
  
 // Set the vertical spacing between children to 5px
 root.setSpacing(5);
  
 // Add children to the root node
 root.getChildren().addAll(nameLbl, nameFld, msg, sayHelloBtn, exitBtn);
 
 Scene scene = new Scene(root, 350, 150);
 stage.setScene(scene);
 stage.setTitle("Improved Hello JavaFX Application");
 stage.show();
 }
}
 

The improved HelloFX program displays a window as shown in Figure 9-4. The window contains two labels,
a text field, and two buttons. A VBox is used as the root node for the scene. Enter a name in the text field and click
the Say Hello button to see a hello message. Clicking the Say Hello button without entering a name displays
the message Hello there. The application displays a message in a Label control. Click the Exit button to exit
the application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

602

The Life Cycle of a JavaFX Application
JavaFX runtime creates several threads that are used to perform different tasks at different stages in the application. In
this section, you are interested in only those threads that are used to call methods of the Application class during its
life cycle. The JavaFX runtime creates, among other threads, two threads named

JavaFX-Launcher•	

JavaFX Application Thread•	

The launch() method of the Application class create these threads. During the lifetime of a JavaFX application,
the JavaFX runtime calls the following methods of the JavaFX application class in order:

The no-args constructor•	

The •	 init() method

The •	 start() method

The •	 stop() method

The JavaFX runtime creates the instance of the specified application class on the JavaFX Application Thread.
The JavaFX-Launcher thread calls the init() method of the application class. The init() method

implementation in the Application class is empty. You can override this method in your application class. It is not
allowed to create a Stage or a Scene on the JavaFX-Launcher thread. They must be created on the JavaFX Application
Thread. Therefore, you cannot create a Stage or a Scene inside the init() method. Attempting to do so throws a
runtime exception. It is fine to create UI controls, for example, buttons, shapes, etc. in the init() method.

The JavaFX Application Thread calls the start(Stage stage) method of the application class. Note that
the start() method in the Application class is declared abstract, and you must override this method in your
application class.

At this point, the launch() method waits for the JavaFX application to finish.
When the application finishes, the JavaFX Application Thread calls the stop() method of the application class.

The default implementation of the stop() method is empty in the Application class. You will have to override this
method in your application class to perform your logic when your application stops.

The program in Listing 9-4 illustrates the life cycle of a JavaFX application. It displays a stage an Exit button. You
will see the first three lines of the output when the stage is shown. You will need to close the stage by clicking the Exit
button to see the last line of the output.

Figure 9-4.  A JavaFX Application with two labels, a text field, and two buttons

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

603

Listing 9-4.  The Life Cycle of a JavaFX Application

// FXLifeCycleApp.java
package com.jdojo.jfx;
 
import javafx.application.Application;
import javafx.application.Platform;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.stage.Stage;
 
public class FXLifeCycleApp extends Application {
 public FXLifeCycleApp() {
 String name = Thread.currentThread().getName();
 System.out.println("FXLifeCycleApp() constructor: " + name);
 }
 
 public static void main(String[] args) {
 Application.launch(args);
 }
 
 @Override
 public void init() {
 String name = Thread.currentThread().getName();
 System.out.println("init() method: " + name);
 }
 
 @Override
 public void start(Stage stage) {
 String name = Thread.currentThread().getName();
 System.out.println("start() method: " + name);
  
 // Add an Exit button to the scene
 Button exitBtn = new Button("Exit");
 exitBtn.setOnAction(e -> Platform.exit());
  
 Scene scene = new Scene(new Group(exitBtn), 300, 100);
 stage.setScene(scene);
 stage.setTitle("JavaFX Application Life Cycle");
 stage.show();
 }
 
 @Override
 public void stop() {
 String name = Thread.currentThread().getName();
 System.out.println("stop() method: " + name);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

604

FXLifeCycleApp() constructor: JavaFX Application Thread
init() method: JavaFX-Launcher
start() method: JavaFX Application Thread
stop() method: JavaFX Application Thread

Terminating a JavaFX Application
A JavaFX application may be terminated explicitly or implicitly. You can terminate a JavaFX application explicitly
by calling the Platform.exit() method. When this method is called, after or from within the start() method, the
stop() method of the Application class is called, and then the JavaFX Application Thread is terminated. At this point,
if there are only daemon threads running, the JVM will exit. If this method is called from the constructor or the init()
method of the Application class, the stop() method may not be called.

Tip■■   A JavaFX application may be run in web browsers. Calling Platform.exit() method in web environments may
not have any effect.

A JavaFX application may be terminated implicitly when the last window is closed. This behavior can be turned
on or turned off using the static setImplicitExit(boolean implicitExit) method of the Platform class. Passing
true to this method turns this behavior on. Passing false to this method turns this behavior off. By default, this
behavior is turned on. This is the reason that in most of the examples so far, your applications were terminated when
you closed the windows. When this behavior is turned on, the stop() method of the Application class is called before
terminating the JavaFX Application Thread. Terminating the JavaFX Application Thread does not always terminate
the JVM. The JVM terminates if all running non-daemon threads terminate. If the implicit terminating behavior of the
JavaFX application is turned off, you must call the exit() method of the Platform class to terminate the application.

What Are Properties and Bindings?
A property is a publicly accessible attribute of a class that affects its state, behavior, or both. Even though a property
is publicly accessible, its use (read/write) invokes methods that hide the actual implementation to access the data.
Properties are observable, so interested parties are notified when its value changes. A property can be read-only,
write-only, or read-write. A read-only property has a getter, but no setter. A write-only property has a setter, but no
getter. A read-write property has a getter and a setter.

Unlike other programming languages such as C#, properties in Java are not supported at the language level. Java
support for properties comes through the JavaBeans API and design patterns. For more details on properties in Java,
please refer to the JavaBeans specification, which can be downloaded from www.oracle.com/technetwork/java/
javase/documentation/spec-136004.html.

In programming, the term binding is used in many contexts. Here, I want to define it in the context of data binding.
Data binding defines a relationship between data elements (usually variables) in a program to keep them synchronized. In
a GUI application, data binding is frequently used to synchronize the elements in the data model with the corresponding
UI elements. Consider the following statement, assuming that x, y, and z are numeric variables:
 
x = y + z;
 

The statement defines a binding between x, y, and z. When the statement is executed, the value of x is
synchronized with the sum of the values of y and z. A binding also has a time factor. In the above statement, the value

www.it-ebooks.info

http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html
http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html
http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

605

of x is bound to the sum of y and z, and is valid at the time the statement is executed. The value of x may not be equal
the sum of y and z before and after the statement is executed. Sometimes it is desired for a binding to hold over a
period. Consider the following statement that defines a binding using listPrice, discounts, and taxes:
 
soldPrice = listPrice - discounts + taxes;
 

For this case, you would like to keep the binding valid forever, so the sold price is computed correctly
whenever listPrice, discounts, or taxes change. In this binding, listPrice, discounts, and taxes are known
as dependencies, and it is said that soldPrice is bound to listPrice, discounts, and taxes.

For a binding to work correctly, it is necessary that it is notified whenever its dependencies change. Programming
languages that support binding provide a mechanism to register listeners with the dependencies. When dependencies
become invalid or when they change, all listeners are notified. A binding may synchronize itself with its dependencies
when it receives such notifications.

A binding may be an eager binding or a lazy binding. In an eager binding, the bound variable is recomputed
immediately when the dependencies change. In a lazy binding, the bound variable is not recomputed when its
dependencies change; it is recomputed when its value is read next time. A lazy binding performs better as compared
to an eager binding.

A binding may be unidirectional or bidirectional. A unidirectional binding works only in one direction: changes
in the dependencies are propagated to the bound variable. A bidirectional binding works in both directions in which
the bound variable and the dependency keep their values synchronized with each other. Typically, a bidirectional
binding is defined only between two variables. For example, a bidirectional binding, x = y and y = x, declares that
the values of x and y are always the same.

Mathematically, it is not possible to define a bidirectional binding between multiple variables uniquely. In the
above example, the sold price binding is a unidirectional binding. If you want to make it a bidirectional binding, it
is not uniquely possible to compute the values of the list price, discounts, and taxes when the sold price is changed.
There are an infinite number of possibilities in the other direction.

Applications with GUIs provide users with UI widgets such as text fields, check boxes, buttons, etc., to manipulate
data. The data displayed in UI widgets has to be synchronized with the underlying data model and vice versa. In this
case, a bidirectional binding is needed to keep the UI and the data model synchronized.

Properties and Bindings in JavaFX
JavaFX supports properties, events, and binding through Properties and Binding APIs. Support for properties in JavaFX
is a huge leap forward from the JavaBeans properties. All properties in JavaFX are observable. They can be observed
for invalidation and value changes. You can have read-write or read-only properties. All read-write properties support
binding. A property in JavaFX can represent a value or a collection of values.

In JavaFX, properties are objects. There is a property class hierarchy for each type of property. For example,
the IntegerProperty, DoubleProperty, and StringProperty classes represent properties of int, double, and
String types, respectively. These classes are abstract. There are two types of implementation classes for them:
one to represent a read-write property and one to represent a wrapper for a read-only property. For example,
the SimpleDoubleProperty and ReadOnlyDoubleWrapper classes are concrete classes whose objects are used as
read-write and read-only properties of type double, respectively. The following is an example of how to create an
IntegerProperty with an initial value of 100:

IntegerProperty counter = new SimpleIntegerProperty(100);

Property classes provide two pairs of getter and setter methods:

The •	 get() and set() methods

The •	 getValue() and setValue() methods

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

606

The get() and set() methods get and set the value of the property, respectively. For primitive type properties,
they work with primitive type values. For example, for IntegerProperty, the return type of the get() method and the
parameter type of the set() method are int. The getValue() and setValue() methods work with object type; for
example, their return type and parameter type are Integer for IntegerProperty.

For reference type properties, such as StringProperty and ObjectProperty<T>, both pairs of getter and setter
work with object type. That is, both get() and getValue() methods of StringProperty return a String, and set()
and setValue() methods take a String parameter. With auto-boxing for primitive types, it does not matter which
version of getter and setter is used. The getValue() and setValue() methods exist to help you write generic code in
terms of object types.

The following snippet of code uses an IntegerProperty, and its get() and set() methods. The counter property
is a read-write property because it is an object of the SimpleIntegerProperty class.
 
IntegerProperty counter = new SimpleIntegerProperty(1);
int counterValue = counter.get();
System.out.println("Counter:" + counterValue);
 
counter.set(2);
counterValue = counter.get();
System.out.println("Counter:" + counterValue);

Counter:1
Counter:2 

Working with read-only properties is a bit tricky. A ReadOnlyXxxWrapper class wraps two properties of Xxx type:
one read-only and one read-write. Both properties are synchronized. Its getReadOnlyProperty() method returns a
ReadOnlyXxxProperty object. The following snippet of code shows how to create a read-only Integer property:
 
// Create a read-only wrapper property
ReadOnlyIntegerWrapper idWrapper = new ReadOnlyIntegerWrapper(100);
 
// Get the read-only version of the read-only wrapper property object
ReadOnlyIntegerProperty id = idWrapper.getReadOnlyProperty();
 
System.out.println("idWrapper:" + idWrapper.get());
System.out.println("id:" + id.get());
 
// Change the value
idWrapper.set(101);
 
System.out.println("idWrapper:" + idWrapper.get());
System.out.println("id:" + id.get());

idWrapper:100
id:100
idWrapper:101
id:101 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

607

The idWrapper property is read-write, whereas the id property is read-only. When the value in idWrapper
is changed, the value in id is changed automatically. To define a read-only property in a class, you declare the
idWrapper as a private instance variable. If its value is needed outside the class, you return the id, so the outside world
can read the value but cannot change it.

Tip■■  T ypically, a wrapper property is used as a private instance variable of a class. The class can change the property
internally. One of its methods returns the read-only property object of the wrapper class, so the same property is
read-only for the outside world.

You can use seven types of properties that represent a single value. The base classes for those properties are
named as XxxProperty, read-only base classes are named as ReadOnlyXxxProperty, and wrapper classes are named
as ReadOnlyXxxWrapper. The values for Xxx for each type are listed in Table 9-2.

Table 9-2.  Property Classes That Wrap a Single Value

Type Xxx Value

int Integer

long Long

float Float

double Double

boolean Boolean

String String

Object Object

A property object wraps three pieces of information:

The reference of the bean that contains it•	

A name•	

A value•	

When you create a property object, you can supply all or none of the above three pieces of information.
Concrete property classes, named like SimpleXxxProperty and ReadOnlyXxxWrapper, provide four constructors
that let you supply combinations of the three pieces of information. The following are the constructors for the
SimpleIntegerProperty class:

•	 SimpleIntegerProperty()

•	 SimpleIntegerProperty(int initialValue)

•	 SimpleIntegerProperty(Object bean, String name)

•	 SimpleIntegerProperty(Object bean, String name, int initialValue)

The default value for the initial value depends on the type of the property. It is zero for numeric types, false for
boolean type, and null for reference types.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

608

A property object may be part of a bean or it may be a standalone object. The specified bean is the reference to
the bean object that contains the property. For a standalone property object, it can be null. Its default value is null.

The name of the property is its name. If not supplied, it defaults to an empty string.
The following snippet of code creates a property object as part of a bean and sets all three values. The first

argument to the constructor of the SimpleStringProperty class is this, which is the reference of the Person bean; the
second argument, "name", is the name of the property; and the third argument, "Li", is the value of the property.
 
public class Person {
 private StringProperty name = new SimpleStringProperty(this, "name", "Li");
 
 // More code for the Person goes here
}
 

Every property class contains the getBean() and getName() methods that return the bean reference and the
property name, respectively.

Using Properties in JavaFX Beans
In the previous section, you saw the use of JavaFX properties as standalone objects. In this section, you will use them
in classes to define properties. Let’s create a Book class with three properties (ISBN, title, and price) that will be
modeled using JavaFX properties classes.

In JavaFX, you do not declare the property of a class as one of the primitive types. Rather, you use one of the
JavaFX property classes. The title property of the Book class will be declared as follows. It is declared private
as usual.
 
public class Book {
 private StringProperty title =
 new SimpleStringProperty(this, "title", "Unknown");
}
 

You declare a public getter for the property, which is named, by convention, as XxxProperty, where Xxx is the
name of the property. The getter returns the reference of the property. For your title property, the getter will be
named titleProperty as shown:
 
public class Book {
 private StringProperty title =
 new SimpleStringProperty(this, "title", "Unknown");
  
 public final StringProperty titleProperty() {
 return title;
 }
}
 

The declaration of the Book class is fine to work with the title property as shown in the following snippet of code
that sets and gets the title of a book:
 
Book beginningJava8 = new Book();
beginningJava8.titleProperty().set("Beginning Java 8");
String title = beginningJava8.titleProperty().get();
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

609

According to the JavaFX design patterns (not for any technical requirements), a JavaFX property has a getter and
a setter that are similar to the getters and setters in JavaBeans. The return type of the getter and the parameter type
of the setter are the same as the type of the property value. The getTitle() and setTitle() methods for the title
property are declared as follows:
 
public class Book {
 private StringProperty title =
 new SimpleStringProperty(this, "title", "Unknown");
  
 public final StringProperty titleProperty() {
 return title;
 }
 
 public final String getTitle() {
 return title.get();
 }
 
 public final void setTitle(String title) {
 this.title.set(title);
 }
}
 

Note that the getTitle() and setTitle() methods use the title property object internally to get and set the
title value.

Tip■■   In JavaFX, by convention, getters and setters for a property of a class are declared as final. Additional getters
and setters, using JavaBeans naming convention, are added to make the class interoperable with the older tools and
frameworks that use the old JavaBeans naming conventions to identify properties of a class.

The following snippet of code shows the declaration of a read-only ISBN property for the Book class:
 
public class Book {
 private ReadOnlyStringWrapper ISBN =
 new ReadOnlyStringWrapper(this, "ISBN", "Unknown");
  
 public final String getISBN() {
 return ISBN.get();
 }
 
 public final ReadOnlyStringProperty ISBNProperty() {
 return ISBN.getReadOnlyProperty();
 }
 
 // More code for the Book class goes here
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

610

Note the following points about the declaration of the read-only ISBN property:

It uses the •	 ReadOnlyStringWrapper class instead of the SimpleStringProperty class.

There is no setter for the property value. You may declare one; however, it must be private.•	

The getter for the property value works the same as for a read-write property.•	

The •	 ISBNProperty() method uses ReadOnlyStringProperty as the return type, and not
ReadOnlyStringWrapper. It obtains a read-only version of the property object from the
wrapper object and returns the same.

For the users of the Book class, its ISBN property is read-only. However, it can be changed internally and the
change will be reflected in the read-only version of the property object automatically. Listing 9-5 shows the complete
code for the Book class.

Listing 9-5.  A Book Class with a Read-Only and Two Read-Write Properties

// Book.java
package com.jdojo.jfx;
 
import javafx.beans.property.DoubleProperty;
import javafx.beans.property.ReadOnlyStringProperty;
import javafx.beans.property.ReadOnlyStringWrapper;
import javafx.beans.property.SimpleDoubleProperty;
import javafx.beans.property.SimpleStringProperty;
import javafx.beans.property.StringProperty;
 
public class Book {
 private StringProperty title =
 new SimpleStringProperty(this, "title", "Unknown");
 private DoubleProperty price =
 new SimpleDoubleProperty(this, "price", 0.0);
 private ReadOnlyStringWrapper ISBN =
 new ReadOnlyStringWrapper(this, "ISBN", "Unknown");
 
 public Book() {
 }
 
 public Book(String title, double price, String ISBN) {
 this.title.set(title);
 this.price.set(price);
 this.ISBN.set(ISBN);
 }
 
 public final String getTitle() {
 return title.get();
 }
 
 public final void setTitle(String title) {
 this.title.set(title);
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

611

 public final StringProperty titleProperty() {
 return title;
 }
 
 public final double getprice() {
 return price.get();
 }
 
 public final void setPrice(double price) {
 this.price.set(price);
 }
 
 public final DoubleProperty priceProperty() {
 return price;
 }
 
 public final String getISBN() {
 return ISBN.get();
 }
 
 public final ReadOnlyStringProperty ISBNProperty() {
 return ISBN.getReadOnlyProperty();
 }
}
 

Listing 9-6 tests the properties of the Book class. It creates a Book object, prints the details, changes some
properties, and prints the details again. Note the use of the ReadOnlyProperty parameter type for the printDetails()
method. All property classes implement, directly or indirectly, the ReadOnlyProperty interface.

The toString() methods of the property implementation classes return a well-formatted string that contains all
relevant pieces of information for a property. I did not use the toString() method of the property objects because I
wanted to show you the use of different methods of the JavaFX properties.

Listing 9-6.  A BookPropertyTest Class to Test Properties of the Book Class

// BookPropertyTest.java
package com.jdojo.jfx;
 
import javafx.beans.property.ReadOnlyProperty;
 
public class BookPropertyTest {
 public static void main(String[] args) {
 Book book = new Book("Beginning Java 8", 49.99, "1430266619");
 
 System.out.println("After creating the Book object...");
 
 // Print Property details
 printDetails(book.titleProperty());
 printDetails(book.priceProperty());
 printDetails(book.ISBNProperty());

 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

612

 // Change the book's properties
 book.setTitle("Harnessing JavaFX 8.0");
 book.setPrice(9.49);
 
 System.out.println("\nAfter changing the Book properties...");
 
 // Print Property details
 printDetails(book.titleProperty());
 printDetails(book.priceProperty());
 printDetails(book.ISBNProperty());
 }
 
 public static void printDetails(ReadOnlyProperty<?> p) {
 String name = p.getName();
 Object value = p.getValue();
 Object bean = p.getBean();
 String beanClassName =
 (bean == null) ? "null" : bean.getClass().getSimpleName();
 String propClassName = p.getClass().getSimpleName();
 
 System.out.print(propClassName);
 System.out.print("[Name:" + name);
 System.out.print(", Bean Class:" + beanClassName);
 System.out.println(", Value:" + value + "]");
 }
}

After creating the Book object...
SimpleStringProperty[Name:title, Bean Class:Book, Value:Beginning Java 8]
SimpleDoubleProperty[Name:price, Bean Class:Book, Value:49.99]
ReadOnlyPropertyImpl[Name:ISBN, Bean Class:Book, Value:1430266619]
After changing the Book properties...

SimpleStringProperty[Name:title, Bean Class:Book, Value:Harnessing JavaFX 8.0]
SimpleDoubleProperty[Name:price, Bean Class:Book, Value:9.49]
ReadOnlyPropertyImpl[Name:ISBN, Bean Class:Book, Value:1430266619]

Handling Property Invalidation Events
A property generates an invalidation event when the status of its value changes from valid to invalid for the first time.
Properties in JavaFX use lazy evaluation. When an already invalid property becomes invalid again because of the
status of its value changed again, an invalidation event is not generated. An invalid property becomes valid when it is
recomputed, such as by calling the get() or getValue() method of the property.

Listing 9-7 is the program to demonstrate when invalidation events are generated for properties. The program
includes enough comments to help you understand the logic.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

613

Listing 9-7.  Testing Invalidation Events for JavaFX Properties

// InvalidationTest.java
package com.jdojo.jfx;
 
import javafx.beans.Observable;
import javafx.beans.property.IntegerProperty;
import javafx.beans.property.SimpleIntegerProperty;
 
public class InvalidationTest {
 public static void main(String[] args) {
 // Create a property
 IntegerProperty counter = new SimpleIntegerProperty(100);
 
 // Add an invalidation listener to the counter property using a
 // method reference. The invalidated() method of thi class will
 // be called when the counter property becomes invalid..
 counter.addListener(InvalidationTest::invalidated);
 
 System.out.println("Before changing the counter value-1");
 counter.set(101);
 System.out.println("After changing the counter value-1");
 
 /*
 * At this point counter property is invalid and further changes
 * to its value will not generate any invalidation events.
 */
 System.out.println();
 System.out.println("Before changing the counter value-2");
 counter.set(102);
 System.out.println("After changing the counter value-2");
 
 // Make the counter property valid by calling its get() method
 int value = counter.get();
 System.out.println("Counter value = " + value);
 
 /* At this point the counter property is valid and further changes
 to its value will generate invalidation events.
 */
  
 // Try setting the same value
 System.out.println();
 System.out.println("Before changing the counter value-3");
 counter.set(102);
 System.out.println("After changing the counter value-3");
 
 // Try setting a different value
 System.out.println();
 System.out.println("Before changing the counter value-4");
 counter.set(103);
 System.out.println("After changing the counter value-4");
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

614

 public static void invalidated(Observable prop) {
 System.out.println("Counter is invalid.");
 }
}

Before changing the counter value-1
Counter is invalid.
After changing the counter value-1
 
Before changing the counter value-2
After changing the counter value-2
Counter value = 102
 
Before changing the counter value-3
After changing the counter value-3
 
Before changing the counter value-4
Counter is invalid.
After changing the counter value-4 

In the beginning, the program creates an IntegerProperty named counter and adds an invalidation listener to
the property.
 
// Create the counter property
IntegerProperty counter = new SimpleIntegerProperty(100);
 
// Add an invalidation listener to the counter proeprty
counter.addListener(InvalidationTest::invalidated);
 

When you create a property object, it is valid. When you change the counter property to 101, it fires an
invalidation event. At this point, the counter property becomes invalid. When you change its value to 102, it does not
fire an invalidation event because it is already invalid. You use the get() method to read the counter value, which
makes it valid again. Now, you set the same a value of 102 to the counter, which does not fire an invalidation event, as
the value did not really change; its value was already 102. The counter property is still valid. At the end, you change its
value to a different value, and sure enough, an invalidation event is fired.

Tip■■   You are not limited to adding only one invalidation listener to a property. You can add as many invalidation
listeners as you need. If you do not need an invalidation listener anymore, make sure to remove it by calling the
removeListener() method of the property; otherwise, it may lead to memory leaks.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

615

Handling Property Change Events
You can register a ChangeListener to receive notifications about property change events. A property change event is
fired every time the value of a property changes. The changed() method of a ChangeListener receives three values:

The reference of the property object•	

The old value of the property•	

The new value of the property•	

You will run a similar test case for testing property change events as you did for invalidation events in the
previous section. Listing 9-8 contains the program to demonstrate change events that are generated for properties.

Listing 9-8.  Testing Change Events for JavaFX Properties

// ChangeTest.java
package com.jdojo.jfx;
 
import javafx.beans.property.IntegerProperty;
import javafx.beans.property.SimpleIntegerProperty;
import javafx.beans.value.ObservableValue;
 
public class ChangeTest {
 public static void main(String[] args) {
 // Create a counter property
 IntegerProperty counter = new SimpleIntegerProperty(100);
 
 // Add a change listener to the counter property
 counter.addListener(ChangeTest::changed);
 
 System.out.println("Before changing the counter value-1");
 counter.set(101);
 System.out.println("After changing the counter value-1");
 
 System.out.println();
 System.out.println("Before changing the counter value-2");
 counter.set(102);
 System.out.println("After changing the counter value-2");
 
 // Try setting the same value
 System.out.println();
 System.out.println("Before changing the counter value-3");
 counter.set(102); // No change event will be fired.
 System.out.println("After changing the counter value-3");
 
 // Try setting a different value
 System.out.println();
 System.out.println("Before changing the counter value-4");
 counter.set(103);
 System.out.println("After changing the counter value-4");
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

616

 public static void changed(ObservableValue<? extends Number> prop,
 Number oldValue,
 Number newValue) {
 System.out.print("Counter changed: ");
 System.out.println("Old = " + oldValue + ", new = " + newValue);
 }
}

Before changing the counter value-1
Counter changed: Old = 100, new = 101
After changing the counter value-1
 
Before changing the counter value-2
Counter changed: Old = 101, new = 102
After changing the counter value-2
 
Before changing the counter value-3
After changing the counter value-3
 
Before changing the counter value-4
Counter changed: Old = 102, new = 103
After changing the counter value-4 

In the beginning, the program creates an IntegerProperty named counter.
 
// Create a counter property
IntegerProperty counter = new SimpleIntegerProperty(100);
 

It’s little tricky to add a ChangeListener. The addListener() method in the IntegerPropertyBase class is
declared as follows:

•	 void addListener(ChangeListener<? super Number> listener)

If you are using generics, the ChangeListener for an IntegerProperty must be written in terms of the Number
class or a superclass of the Number class. Three ways to add a ChangeListener to the counter property are as follows.
The code uses anonymous classes that I will translate to lambda expressions at the end.
 
// Method-1: Using generics and the Number class
counter.addListener(new ChangeListener<Number>() {
 @Override
 public void changed(ObservableValue<? extends Number> prop,
 Number oldValue,
 Number newValue) {
 System.out.print("Counter changed: ");
 System.out.println("Old = " + oldValue + ", new = " + newValue);
 }});
 
// Method-2: Using generics and the Object class
counter.addListener(new ChangeListener<Object>() {
 @Override

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

617

 public void changed(ObservableValue<? extends Object> prop,
 Object oldValue,
 Object newValue) {
 System.out.print("Counter changed: ");
 System.out.println("Old = " + oldValue + ", new = " + newValue);
 }});
  
// Method-3: Not using generics. It may generate compile-time warnings.
counter.addListener(new ChangeListener() {
 @Override
 public void changed(ObservableValue prop,
 Object oldValue,
 Object newValue) {
 System.out.print("Counter changed: ");
 System.out.println("Old = " + oldValue + ", new = " + newValue);
 }});
 

Listing 9-8 uses the first method that makes use of generics; as you can see, the signature of the changed()
method in the ChangeTest class matches with the changed() method signature in method-1. You have used a lambda
expression with a method reference to add a ChangeListener as shown:
 
// Add a change listener using a method reference
counter.addListener(ChangeTest::changed);
 

The output shows that a property change event is fired when the property value is changed. Calling the set()
method with the same value does not fire a property change event.

Unlike generating invalidation events, a property uses an eager evaluation for its value to generate change events
because it has to pass the new value to the property change listeners.

Property Bindings in JavaFX
In JavaFX, a binding is an expression that evaluates to a value. The binding consists of one or more observable
values known as its dependencies. The binding observes its dependencies for changes and recomputes its value
automatically when needed. JavaFX uses lazy evaluation for all bindings. When a binding is initially defined or
when its dependencies change, its value is marked as invalid. The value of an invalid binding is computed when it
is requested next time, usually using its get() or getValue() method. All property classes in JavaFX have built-in
support for bindings.

Let’s discuss a quick example of binding in JavaFX. Consider the following expression that represents the sum of
two integers x and y:
 
x + y
 

The expression x + y represents a binding, which has two dependencies, x and y. You can give it a name sum as
follows:
 
sum = x + y
 

To implement the above logic in JavaFX, you create two IntegerProperty variables, x and y:
 
IntegerProperty x = new SimpleIntegerProperty(100);
IntegerProperty y = new SimpleIntegerProperty(200);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

618

The following statement creates a binding named sum that represents the sum of x and y:
 
NumberBinding sum = x.add(y);
 

A binding has an isValid() method that returns true, if it is valid; otherwise, it returns false. You can get the
value of a NumberBinding using the methods intValue(), longValue(), floatValue(), and doubleValue() as int,
long, float, and double, respectively. The program in Listing 9-9 shows how to create and use a binding.

Listing 9-9.  Using a Simple Binding in JavaFX

// BindingTest.java
package com.jdojo.jfx;
 
import javafx.beans.binding.NumberBinding;
import javafx.beans.property.IntegerProperty;
import javafx.beans.property.SimpleIntegerProperty;
 
public class BindingTest {
 public static void main(String[] args) {
 // Create two properties x and y
 IntegerProperty x = new SimpleIntegerProperty(100);
 IntegerProperty y = new SimpleIntegerProperty(200);
 
 // Create a binding: sum = x + y
 NumberBinding sum = x.add(y);
 
 System.out.println("After creating sum");
 System.out.println("sum.isValid(): " + sum.isValid());
 
 // Let us get the value of sum, so it computes its value and
 // becomes valid
 int value = sum.intValue();
 
 System.out.println();
 System.out.println("After requesting value");
 System.out.println("sum.isValid(): " + sum.isValid());
 System.out.println("sum = " + value);
 
 // Change the value of x
 x.set(250);
 
 System.out.println();
 System.out.println("After changing x");
 System.out.println("sum.isValid(): " + sum.isValid());
 
 // Get the value of sum again
 value = sum.intValue();
 
 System.out.println();
 System.out.println("After requesting value");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

619

 System.out.println("sum.isValid(): " + sum.isValid());
 System.out.println("sum = " + value);
 }
}

After creating sum
sum.isValid(): false
 
After requesting value
sum.isValid(): true
sum = 300
 
After changing x
sum.isValid(): false
 
After requesting value
sum.isValid(): true
sum = 450 

When the sum binding is created, it is invalid and it does not know its value. This is evident from the output. Once
you request its value, using the sum.intValue() method, it computes its value and marks itself as valid. When you
change one of its dependencies, it becomes invalid until you request its value again.

Tip■■   A binding, internally, adds invalidation listeners to all its dependencies. When any of its dependencies become
invalid, it marks itself as invalid. An invalid binding does not mean that its value has changed. All it means is that it needs
to recompute its value when the value is requested next time.

In JavaFX, you can also bind a property to a binding. Recall that a binding is an expression that is synchronized
with its dependencies automatically. Using this definition, a bound property is a property whose value is computed
based on an expression, which is automatically synchronized when the dependencies change. Suppose you have
three properties called x, y, and z as follows:
 
IntegerProperty x = new SimpleIntegerProperty(10);
IntegerProperty y = new SimpleIntegerProperty(20);
IntegerProperty z = new SimpleIntegerProperty(60);
 

You can bind the property z to expression x + y, using the bind() method of the Property interface as follows:
 
// Bind z to x + y
z.bind(x.add(y));
 

Note that you cannot write z.bind(x + y) because the + operator does not know how to add values of two
IntegerProperty objects. You need to use the binding API to create a binding expression.

Now, when x, y, or both change, the z property becomes invalid. The next time you request the value of z, it
recomputes the expression x.add(y) to get its value.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

620

You can use the unbind() method of the Property interface to unbind a bound property. Calling the unbind()
method on an unbound or never bound property has no effect. You can unbind the z property as follows:
 
// Unbind the z proeprty
z.unbind();
 

After unbinding, a property behaves as a normal property, maintaining its value independently. In other words,
unbinding a property breaks the link between the property and its dependencies. Listing 9-10 shows how to bind a
property to an expression made up of other properties.

Listing 9-10.  Binding a Property to an Expression

// BoundProperty.java
package com.jdojo.jfx;
 
import javafx.beans.property.IntegerProperty;
import javafx.beans.property.SimpleIntegerProperty;
 
public class BoundProperty {
 public static void main(String[] args) {
 // Create three properties
 IntegerProperty x = new SimpleIntegerProperty(10);
 IntegerProperty y = new SimpleIntegerProperty(20);
 IntegerProperty z = new SimpleIntegerProperty(60);
 
 // Create the binding z = x + y
 z.bind(x.add(y));
 
 System.out.println("After binding z: Bound = " +
 z.isBound() + ", z = " + z.get());
 
 // Change x and y
 x.set(15);
 y.set(19);
 System.out.println("After changing x and y: Bound = " +
 z.isBound() + ", z = " + z.get());
 
 // Unbind z
 z.unbind();
 
 // Will not affect the value of z as it is not bound
 // to x and y anymore
 x.set(100);
 y.set(200);
 System.out.println("After unbinding z: Bound = " +
 z.isBound() + ", z = " + z.get());
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

621

After binding z: Bound = true, z = 30
After changing x and y: Bound = true, z = 34
After unbinding z: Bound = false, z = 34 

A binding has a direction, which is the direction in which changes are propagated. JavaFX supports two types of
binding for properties: unidirectional binding and bidirectional binding. A unidirectional binding works only in one
direction; changes in dependencies are propagated to the bound property, not vice versa. A bidirectional binding
works in both directions; changes in dependencies are reflected in the property and vice versa.

The bind() method of the Property interface creates a unidirectional binding between a property and an
ObservableValue, which could be a complex expression. The bindBidirectional() method creates a bidirectional
binding between a property and another property of the same type.

The statement z.bind(x.add(y)) in the previous example create a unidirectional binding. In a unidirectional
binding, the bound property cannot be changed. Its value is always computed using its dependencies. Attempting to
change the value of a unidirectional bound property throws a RuntimeException.

A bidirectional binding works in both directions. It has some restrictions. It can only be created between
properties of the same type. That is, a bidirectional binding can only be of the type x = y and y = x, where x and y are of
the same type.
 
// Create two properties called x and y
IntegerProperty x = new SimpleIntegerProperty(10);
IntegerProperty y = new SimpleIntegerProperty(20);
 
// Create bidirectional binding between x and y
x.bindBidirectional(y);
 
// Now, both x and y are 20. The values and x and y are
// always the same when x or y is changed.
 
// Remove the bidirectional binding between x and y
x.unbindBidirectional(y);
 
// Now, x and y maintain their values independent of each other.
 

Bindings are used a lot in JavaFX application to bind properties of UI elements to properties of other UI elements
or to the data model. Let’s look at an example of a JavaFX GUI application that uses bindings. You will create a screen
with a circle that will be centered on the screen. The circumference of the circle will touch the closer sides of the screen.
If the width and height of the screen is the same, the circumference of circle will touch all four sides of the screen.

Attempting to develop the screen with a centered circle without bindings is a tedious task. The Circle class in
the javafx.scene.shape package represents a circle. It has three properties, centerX, centerY, and radius of the
DoubleProperty type. The centerX and centerY properties define the (x, y) coordinates of the center of the circle. The
radius property defines the radius of the circle. By default, a circle is filled with black color. You create a circle with
centerX, centerY, and radius set to the default value of 0.0 as follows:
 
Circle c = new Circle();
 

Next, add the circle to a group and create a scene with the group as its root node as shown:
 
Group root = new Group(c);
Scene scene = new Scene(root, 150, 150);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

622

The following bindings will position and size the circle according to the size of the scene:
 
// The center of the circle is always in the center of the scene
c.centerXProperty().bind(scene.widthProperty().divide(2));
c.centerYProperty().bind(scene.heightProperty().divide(2));
 
// The radius of the circle will be always the half of the minimum
// of the width and height of the scene
c.radiusProperty().bind(Bindings.min(scene.widthProperty(), scene.heightProperty())
 .divide(2));
 

The first two bindings bind the centerX and centerY of the circle to the middle of the width and height of the
scene, respectively. The third binding binds the radius of the circle to the half (see divide(2)) of the minimum of
the width and the height of the scene. That’s it! The binding API does the magic of keeping the circle centered when
the application is run.

Listing 9-11 contains the complete program. Figure 9-5 shows the screen when the program is initially run. Try
resizing the window and you will notice that the center of the circle is always in the middle of the scene.

Listing 9-11.  Using the Binding API to Keep a Circle Centered on a Scene

// CenteredCircle.java
package com.jdojo.jfx;
 
import javafx.application.Application;
import javafx.beans.binding.Bindings;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.shape.Circle;
import javafx.stage.Stage;
 
public class CenteredCircle extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }
 
 @Override
 public void start(Stage stage) {
 Circle c = new Circle();
 Group root = new Group(c);
 Scene scene = new Scene(root, 100, 100);
 
 // Bind circle's centerX, centerY, and radius
 // to scene's properties
 c.centerXProperty().bind(scene.widthProperty().divide(2));
 c.centerYProperty().bind(scene.heightProperty().divide(2));
 c.radiusProperty().bind(Bindings.min(scene.widthProperty(),
 scene.heightProperty())
 .divide(2));
 
 // Set the stage properties and make it visible
 stage.setTitle("A Centered Circle");
 stage.setScene(scene);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

623

 stage.sizeToScene();
 stage.show();
 }
} 

Figure 9-6.  A partial class diagram for observable collection interfaces in JavaFX

Figure 9-5.  A circle centered on the scene

Observable Collections
Observable collections in JavaFX are an extension to collections in the Java programming language. The Collections
framework in Java has the List, Set, and Map interfaces. JavaFX adds the following three types of observable
collections that may be observed for changes in their contents:

An observable list•	

An observable set•	

An observable map•	

JavaFX supports observable collections through the following three new interfaces:

•	 ObservableList

•	 ObservableSet

•	 ObservableMap

The three interfaces inherit List, Set, and Map from the java.util package. In addition to inheriting from the
Java collection interfaces, JavaFX collection interfaces also inherit the Observable interface. All JavaFX observable
collection interfaces and classes are in the javafx.collections package. Figure 9-6 shows a partial class diagram for
the interfaces representing observable collections.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

624

The observable collections in JavaFX have two additional features:

They support invalidation notifications as they are inherited from the •	 Observable interface.

They support change notifications. You can register change listeners that are notified when •	
their contents change.

The FXCollections class is a utility class to work with JavaFX collections. It consists of all static methods. JavaFX
does not expose the implementation classes of lists, sets, and maps. You need to use one of the factory methods in
the FXCollections class to create objects of the ObservableList, ObservableSet, and ObservableMap interfaces. The
following snippet of code shows how to create observable collections:
 
// Create an observable list with two elements
ObservableList<String> list = FXCollections.observableArrayList("One", "Two");
  
// Create an observable set with two elements
ObservableSet<String> set = FXCollections.observableSet("one", "two");
  
// Create an observable map and two key-value pairs
ObservableMap<String, Integer> map = FXCollections.observableHashMap();
map.put("one", 1);
map.put("two", 2);
 

You can add invalidation and change listeners to observable collections. Adding an InvalidationListener
to observable collections is the same as adding an InvalidationListener to a property that you have seen in the
previous section. Each type of observable collection has its own change listener type:

An instance of the •	 ListChangeListener interface represents a change listener for an
ObservableList.

An instance of the •	 SetChangeListener interface represents a change listener for
an ObservableSet.

An instance of the •	 MapChangeListener interface represents a change listener for an
ObservableMap.

Use the addListener() method of the observable collections to add a change listener to them. All change listener
interfaces for the observable collections declare a static inner class called Change that encapsulates the changes in the
respective type of collections. For example, you have a ListChangeListener.Change static inner class to encapsulate
changes in an ObservableList. The change listener is passed an instance of the Change class. You need to use the
next() method of the Change class to iterate over all changes. The Change class contains several methods to provide
the details of the changes made to the particular collection. The following snippet of code shows how to add a change
listener to an ObservableList and an ObservableSet:
 
// Create an observable list with two elements
ObservableList<String> list = FXCollections.observableArrayList("One", "Two");
  
 // Add a change listener to the list
list.addListener((ListChangeListener.Change<? extends String> change) -> {
 System.out.println("The list has changed.");
});
  

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

625

// Create an observable set
ObservableSet<String> set = FXCollections.observableSet("one", "two");
  
// Add a change listener to the set
set.addListener((SetChangeListener.Change<? extends String> change) -> {
 System.out.println("The list has changed.");
});
 

Let’s look at a detailed example of how to handle changes in an ObservableList. Observing an ObservableList
for changes is a bit tricky. There could be several kinds of changes to a list. Some of the changes could be exclusive,
whereas some can occur along with other changes. Elements of a list can be permutated, updated, replaced, added,
and removed. You can add a change listener to an ObservableList using its addListener() method, which takes an
instance of the ListChangeListener interface. The changed() method of the listeners is called every time a change
occurs in the list. The following snippet of code shows how to add a change listener to an ObservableList<String>.
The onChanged() method is simple; it prints a message on the standard output when it is notified of a change.
 
// Create an observable list
ObservableList<String> list = FXCollections.observableArrayList();
 
// Add a change listener to the list
list.addListener((ListChangeListener.Change<? extends String> change) -> {
 System.out.println("List has changed.");
});
 

Listing 9-12 contains a complete program that shows how to detect changes in an ObservableList. After adding
a change listener, it manipulates the list and the listener is notified each time, as is evident from the output. This
program is simplified to keep it short and readable. The ListChangeListener.Change object contains all details about
the changes in the list such as the affected range, size of addition and removal, etc.

Listing 9-12.  Detecting Changes in an ObservableList

// ObservableListTest.java
package com.jdojo.jfx;
 
import javafx.collections.FXCollections;
import javafx.collections.ListChangeListener;
import javafx.collections.ObservableList;
 
public class ObservableListTest {
 public static void main(String[] args) {
 // Create a list with some elements
 ObservableList<String> list =
 FXCollections.observableArrayList("one", "two");
  
 System.out.println("After creating the list: " + list);
 
 // Add a ChangeListener tp teh list
 list.addListener(ObservableListTest::onChanged);
 
 // Add some more elements to the list
 list.addAll("three", "four");
 System.out.println("After addAll() - list: " + list);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

626

 // We have four elements. Remove the middle two
 // from index 1 (inclusive) to index 3 (exclusive)
 list.remove(1, 3);
 System.out.println("After remove() - list: " + list);
 
 // Retain only the element "one"
 list.retainAll("one");
 System.out.println("After retainAll() - list: " + list);
 
 // Replace the first element in the list
 list.set(0, "ONE");
 System.out.println("After set() - list: " + list);
 }
 
 public static void onChanged(ListChangeListener.Change<? extends String> change) {
 while (change.next()) {
 if (change.wasPermutated()) {
 System.out.println("A permutation is detected.");
 }
 else if (change.wasUpdated()) {
 System.out.println("An update is detected.");
 }
 else if (change.wasReplaced()) {
 System.out.println("A replacement is detected.");
 }
 else {
 if (change.wasRemoved()) {
 System.out.println("A removal is detected.");
 }
 else if (change.wasAdded()) {
 System.out.println("An addition is detected.");
 }
 }
 }
 }
 
}

After creating the list: [one, two]
An addition is detected.
After addAll() - list: [one, two, three, four]
A removal is detected.
After remove() - list: [one, four]
A removal is detected.
After retainAll() - list: [one]
A replacement is detected.
After set() - list: [ONE]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

627

Event Handling
In general, the term event is used to describe an occurrence of interest. In a GUI application, an event is an occurrence
of a user interaction with the application. Clicking of the mouse, pressing a key on the keyboard, etc. are examples of
events in a JavaFX application.

An event in JavaFX is represented by an object of the javafx.event.Event class or any of its subclasses. Every
event in JavaFX has three properties:

An event source•	

An event target•	

An event type•	

When an event occurs, you typically perform some processing by executing a piece of code. The piece of code
that is executed in response to an event is known as an event handler or an event filter. I will clarify the difference
between an event handler and an event filter shortly. For now, think of both as a piece of code and I will refer to both
of them as event handlers. When you want to handle an event for a UI element, you need to add event handlers to the
UI element. When the UI element detects the event, it executes your event handlers.

The UI element that calls event handlers is the source of the event for those event handlers. When an event
occurs, it passes through a chain of event dispatchers. The source of an event is the current element in the
event dispatcher chain. The event source changes as the event passes through one dispatcher to another in the
event dispatcher chain.

The event target is the destination of an event. The event target determines the route through which the event
travels during its processing. Suppose a mouse click occurs over a Circle node. In this case, the Circle node is the
event target of the mouse-clicked event.

The event type describes the type of the event that occurs. Event types are defined in a hierarchical fashion. Each
event type has a name and a supertype.

The three properties that are common to all events in JavaFX are represented by objects of three different classes.
Specific events define additional event properties; for example, the event class to represent a mouse event adds
properties to describe the location of the mouse cursor, state of the mouse buttons, etc.

Table 9-3 lists the classes and interfaces involved in event processing. JavaFX has an event delivery mechanism
that defines the details of the occurrence and processing of events.

Table 9-3.  The List of Classes Involved in Events Processing

Name Class/Interface Description

Event Class An instance of this class represents an event. Several subclasses of the Event
class exist to represent specific types of events.

EventTarget Interface An instance of this interface represents an event target.

EventType Class An instance of this class represents an event type, such as mouse pressed,
mouse released. mouse moved, etc.

EventHandler Interface An instance of this interface represents an event handler or an event filter.
Its handle() method is called when the event for which it has been
registered occurs.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

628

Event Processing Mechanism
When an event occurs, several steps are performed as part of the event processing:

Event Target Selection•	

Event Route Construction•	

Event Route Traversal•	

Event Target Selection
The first step in the event processing is the selection of the event target. Recall that an event target is the destination
node of an event. The event target is selected based on the event type. For mouse events, the event target is the node
at the mouse cursor. Multiple nodes can be at the mouse cursor. For example, you can have a circle placed over a
rectangle. The topmost node at the mouse cursor is selected as the event target.

The event target for key events is the node that has focus. How a node gets the focus depends on the type of the
node. For example, a TextField may get focus by clicking the mouse inside it or using the focus traversal keys such
as Tab or Shift-Tab on the Windows operating system. Shapes such as Circles, Rectangles, etc. do not get focus, by
default. If you want them to receive key events, you can give them focus by calling the requestFocus() method of the
Node class.

Event Route Construction
An event travels through event dispatchers in an event dispatch chain. The event dispatch chain is the event route.
The initial and default route for an event is determined by the event target. The default event route consists of the
container-children path starting at the stage to the event target node.

Suppose you have placed a Circle and a Rectangle in an HBox and the HBox is the root node of the Scene of a
Stage. When you click on the Circle, the Circle becomes the event target. The Circle constructs the default event
route, which is the path starting at the stage to the event target (the Circle).

In fact, an event route consists of event dispatchers that are associated with nodes. However, for all practical and
understanding purposes, you can think of the event route as the path made up of the nodes. Typically, you do not deal
with event dispatchers directly.

Figure 9-7 shows the event route for the mouse-clicked event. The nodes on the event route are shown in gray
background fills. The nodes on the event route are connected by solid lines. Note that the Rectangle that is part of the
scene graph is not part of the event path when the Circle is clicked.

Stage

Scene

HBox

Circle Rectangle

Figure 9-7.  Construction of the default event route for an event

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

629

An event dispatch chain (or event route) has a head and a tail. In this case, the Stage and the Circle are the head
and the tail of the event dispatch chain, respectively. The initial event route may be modified as the event processing
progresses. Typically, but not necessarily, the event passes through all nodes in its route twice during the event
traversal step as described in the next section.

Event Route Traversal
An event route traversal consists of two phases:

Capture Phase•	

Bubbling Phase•	

An event travels through each node in its route twice: once during capture phase and once during bubbling
phase. You can register event filters and event handlers to a node for specific events types. The event filters are
executed as the event passes through the node during the capture phase. The event handlers are executed as the
event passes through the node during the bubbling phase. The event filters and handlers are passed in the reference
of the current node as the source of the event. As the event travels from one node to another, the event source keeps
changing. However, the event target remains the same from the start to the finish of the event route traversal.

During the route traversal, a node can consume the event in event filters or handlers, thus completing the
processing of the event. Consuming an event is simply calling the consume() method on the event object. When an event
is consumed, the event processing is stopped, even though some of the nodes in the route were not traversed at all.

Event Capture Phase

During the capture phase, an event travels from the head to tail of its event dispatch chain. Figure 9-8 shows the
travelling of a mouse-clicked event for the Circle in this example in the capture phase. The down arrows in the figure
denote the direction the event travels. As the event passes through a node, the registered event filters for the node are
executed. Note that the event capture phase executes only event filters, not event handlers, for the current node.

Stage

Scene

HBox

Circle Rectangle

Figure 9-8.  The event capture phase

In this example, the event filters for the Stage, Scene, HBox, and Circle are executed in order, assuming none of
the event filters consumes the event.

You can register multiple event filters for a node. If the node consumes the event in one of its event filters, its
other event filters, which have not been executed yet, are executed before the event processing stops. Suppose you
have registered five event filters for the Scene in your example, and the first event filter that is executed consumes the
event. In this case, the other four event filters for the Scene will still be executed. After executing the fifth event filter
for the Scene, the event processing will stop, without the event travelling to the remaining nodes (HBox and Circle).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

630

In the event capture phase, you can intercept events (and provide a generic response) that are targeted at the
children of a node. For example, you can add event filters for the mouse-clicked event to the Stage in this example to
intercept all mouse-clicked events for all its children. You can block events from reaching its target by consuming the
event in event filters for a parent node. For example, if you consume the mouse-clicked event in a filter for the Stage,
the event will not reach its target, say, the Circle.

Event Bubbling Phase

During the bubbling phase, an event travels from the tail to head of its event dispatch chain. Figure 9-9 shows the
travelling of a mouse-clicked event for the Circle in your example, in the bubbling phase.

Stage

Scene

HBox

Circle Rectangle

Figure 9-9.  The event bubbling phase

The up arrows in the figure denote the direction of the event travel. As the event passes through a node, the
registered event handlers for the node are executed. Note that the event bubbling phase executes event handlers for
the current node, whereas the event capture phase executes the event filters.

In your example, the event handlers for the Circle, HBox, Scene, and Stage are executed in order, assuming none
of the event filters consumes the event. Note that the event bubbling phase starts at the target of the event and travels
up to the topmost parent in the parent-children hierarchy.

You can register multiple event handlers for a node. If the node consumes the event in one of its event handlers,
its other event handlers, which have not been executed yet, are executed before the event processing stops. Suppose
you have registered five event handlers for the Circle in your example, and the first event handler that is executed
consumes the event. In this case, the other four event handlers for the Circle will still be executed. After executing the
fifth event handler for the Circle, the event processing will stop without the event travelling to the remaining nodes
(HBox, Scene, and Stage).

Typically, event handlers are registered to target nodes to provide specific response to events. Sometimes,
event handlers are installed on parent nodes to provide a default event response for all its children. If an event target
decides to provide a specific response to the event, it can do so by adding event handlers and consuming the event,
thus blocking the event from reaching the parent nodes in the event bubbling phase.

Let’s discuss a trivial example. Suppose you want to display a message box when the user clicks anywhere inside
a window. You can register an event handler to the window to display the message box. When the user clicks inside a
circle in the window, you want to display a specific message. You can register an event handler to the circle to provide
the specific message and consume the event. This will provide a specific event response when the circle is clicked,
whereas for other nodes, the window provides a default event response.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

631

Creating Event Filters and Handlers
Creating event filters and handlers are as simple as creating objects of the class that implements the EventHandler
interface. Before Java 8, you would use inner classes to create event filters and handlers.
 
EventHandler<MouseEvent> aHandler = new EventHandler<MouseEvent>() {
 @Override
 public void handle(MouseEvent e) {
 // Event handling code goes here
 }
};
 

From Java 8, using a lambda expression is the best choice for creating the event filters and handlers, as shown:
 
EventHandler<MouseEvent> aHandler = e -> {
 // Event handling code goes here
};
 

This chapter uses lambda expressions to create event filters and handlers. If you are not familiar with lambda
expressions in Java 8, it is suggested that you learn at least the basics, so you can understand the event handling code.
The following snippet of code creates a MouseEvent handler. It prints the type of the mouse event that occurs.
 
EventHandler<MouseEvent> mouseEventHandler =
 e -> System.out.println("Mouse event type: " + e.getEventType());

Registering Event Filters and Handlers
If a node is interested in processing events of specific types, you need to register event filters and handlers for those
event types with the node. When the event occurs, the handle() method of the registered event filters and handlers
for the node are called following the rules discussed in the previous sections. If the node is no longer interested
in processing the events, you need to unregister the event filters and handlers from the node. Registering and
unregistering event filters and handlers are also known as adding and removing event filters and handlers, respectively.

JavaFX provides two ways to register and unregister event filters and handlers with nodes:

Using the •	 addEventFilter(), addEventHandler(), removeEventFilter(), and
removeEventHandler() methods

Using the •	 onXxx convenience properties

You can use the addEventFilter() and addEventHandler() methods to register event filters and handlers with
nodes, respectively. These methods are defined in the Node class, Scene class, and Window class. Some classes such as
MenuItem and TreeItem can be event targets; however, they are not inherited from the Node class.

•	 <T extends Event> void addEventFilter(EventType<T> eventType, EventHandler<?
super T> eventFilter)

•	 <T extends Event> void addEventHandler(EventType<T> eventType, EventHandler<?
super T> eventHandler)

These methods take two parameters. The first parameter is the event type and the second one is an object of the
EventHandler interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

632

You can handle mouse-clicked events for a Circle using the following snippet of code:
 
import javafx.scene.shape.Circle;
import javafx.event.EventHandler;
import javafx.scene.input.MouseEvent;
...
// Create a circle
Circle circle = new Circle (100, 100, 50);
 
// Create a MouseEvent filter
EventHandler<MouseEvent> mouseEventFilter =
 e -> System.out.println("Mouse event filter has been called.");
  
// Create a MouseEvent handler
EventHandler<MouseEvent> mouseEventHandler =
 e -> System.out.println("Mouse event handler has been called.");
 
// Register the MouseEvent filter and handler to the Circle
// for mouse-clicked events
circle.addEventFilter(MouseEvent.MOUSE_CLICKED, mouseEventFilter);
circle.addEventHandler(MouseEvent.MOUSE_CLICKED, mouseEventHandler);
 

The code creates two EventHandler objects, which print a message on the console. At this stage, they are not
event filters or handlers. They are just two EventHandler objects. Note that giving the reference variables names and
printing messages that use the words filter and handler does not make any difference in their status as filters and
handlers. The last two statements register one of the EventHandler objects as an event filter and another as an event
handler; both are registered for the mouse-clicked event.

The Node, Scene, and Window classes contain event properties to store event handlers of some selected event
types. The property names use the event type pattern. They are named as onXxx. For example, the onMouseClicked
property stores the event handler for the mouse-clicked event type, the onKeyTyped property stores the event handler
for the key-typed event, and so on. You can use the setOnXxx() methods of these properties to register event handlers
for a node. For example, use the setOnMouseClicked() method to register an event handler for the mouse-clicked
event and use the setOnKeyTyped() method to register an event handler for the key-typed event, and so on. The
setOnXxx() methods in various classes are known as convenience methods for registering event handlers.

You need to remember some points about the onXxx convenience properties:

They only support the registration of event handlers, not event filters. If you need to register •	
event filters, use the addEventFilter() method.

They only support the registration of •	 one event handler for a node. Multiple event handlers for
a node may be registered using the addEventHandler() method.

These properties exist only for the commonly used events for a node type. For example, the •	
onMouseClicked property exists in the Node and Scene classes, but not the Window class; the
onShowing property exists in the Window class, but not in the Node and Scene classes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

633

The following snippet of code shows how to use the convenience onMouseClicked property to set an event
handler for a circle:
 
// Create a circle
Circle circle = new Circle (100, 100, 50);
 
// Create a MouseEvent handler
EventHandler<MouseEvent> eventHandler =
 e -> System.out.println("Mouse event handler has been called.");
 
// Register the handler using the setter method for the onMouseClicked
// convenience event property
circle.setOnMouseClicked(eventHandler);
 

The following snippet of code show how to add an ActionEvent handler to a Button using the setOnAction()
convenience method of the Button class:
 
// Create a button
Button exitBtn = new Button("Exit");
  
// Add the event handler for the Exit button
exitBtn.setOnAction(e -> Platform.exit());
 

The convenience event properties do not provide a separate method to unregister the event handler. Setting the
property to null unregisters the event handler that has already been registered.
 
// Unregister the mouse-clicked event handler for the circle
circle.setOnMouseClicked(null);
 

Classes that define the onXxx event properties also define getOnXxx() getter methods that return the reference of
the registered event handler. If no event handler is set, the getter method returns null.

Listing 9-13 contains a program that shows the event routing and handling mechanisms. It also shows how to
consume an event and its effect. Figure 9-10 shows the screen when you run the program.

Listing 9-13.  Handling and Consuming Events

// EventHandling.java
package com.jdojo.jfx;
 
import javafx.application.Application;
import javafx.event.EventHandler;
import javafx.geometry.Insets;
import javafx.scene.Scene;
import javafx.scene.control.CheckBox;
import javafx.scene.input.MouseEvent;
import static javafx.scene.input.MouseEvent.MOUSE_CLICKED;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Circle;
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

634

public class EventHandling extends Application {
 private CheckBox consumeEventCbx =
 new CheckBox("Consume Mouse Click at Circle");
 
 public static void main(String[] args) {
 Application.launch(args);
 }
 
 @Override
 public void start(Stage stage) {
 Circle circle = new Circle(50, 50, 50);
 circle.setFill(Color.CORAL);
 
 Rectangle rect = new Rectangle(100, 100);
 rect.setFill(Color.TAN);
 
 HBox root = new HBox();
 root.setPadding(new Insets(20));
 root.setSpacing(20);
 root.getChildren().addAll(circle, rect, consumeEventCbx);
 
 Scene scene = new Scene(root);
 
 // Register mouse-clicked event handlers to all nodes,
 // except the rectangle and checkbox
 EventHandler<MouseEvent> handler = e -> handleEvent(e);
 EventHandler<MouseEvent> circleMeHandler =
 e -> handleEventforCircle(e);
 
 stage.addEventHandler(MOUSE_CLICKED, handler);
 scene.addEventHandler(MOUSE_CLICKED, handler);
 root.addEventHandler(MOUSE_CLICKED, handler);
 circle.addEventHandler(MOUSE_CLICKED, circleMeHandler);
 
 stage.setScene(scene);
 stage.setTitle("Event Handling");
 stage.show();
 }
 
 public void handleEvent(MouseEvent e) {
 print(e);
 }
 
 public void handleEventforCircle(MouseEvent e) {
 print(e);
 if (consumeEventCbx.isSelected()) {
 e.consume();
 }
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

635

 public void print(MouseEvent e) {
 String type = e.getEventType().getName();
 String source = e.getSource().getClass().getSimpleName();
 String target = e.getTarget().getClass().getSimpleName();
 
 // Get coordinates of the mouse relative to the event source
 double x = e.getX();
 double y = e.getY();
 
 System.out.println("Type=" + type + ", Target=" + target +
 ", Source=" + source +
 ", location(" + x + ", " + y + ")");
 }
} 

Figure 9-10.  Handling and consuming events

The program adds a Circle, a Rectangle, and a CheckBox to an HBox. The HBox is a container that lays out its
children horizontally on one row. The HBox is added to the scene as the root node. An event handler is added to the
Stage, Scene, HBox, and Circle. Notice that you have a different event handler for the Circle just to keep the program
logic simple. When the CheckBox is selected, the event handler for the Circle consumes the mouse-clicked event,
thus preventing the event from travelling up to the HBox, Scene, and Stage. If the CheckBox is not selected, the
mouse-clicked event on the Circle travels from the Circle to the HBox, Scene, and Stage. Run the program and
using the mouse, click on the different areas of the scene to see the effect. Notice that the mouse-clicked event handler
for the HBox, Scene, and Stage are executed, even if you click on a point outside the Circle, because they are in the
event dispatch chain of the clicked nodes.

Clicking on the CheckBox does not execute the mouse-clicked event handlers for the HBox, Scene, and Stage,
whereas clicking on the Rectangle does. Can you think of a reason for this behavior? The reason is simple. The CheckBox
has a default event handler that takes a default action and consumes the event, preventing it from travelling up the
event dispatch chain. The Rectangle does not consume the event, allowing it to travel up the event dispatch chain.

Tip■■   Consuming an event by the event target in an event filter has no effect on the execution of any other event filters.
However, it prevents the event bubbling phase from happening. Consuming an event in the event handlers of the topmost
node, which is the head of the event-dispatch chain, has no effect on the event processing at all.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

636

Layout Panes
You can use two types of layouts to arrange nodes in a scene graph:

Static Layout•	

Dynamic Layout•	

In a static layout, the position and size of nodes are calculated once and they stay the same as the window is
resized. The user interface looks good when the window has the size for which the nodes were originally laid out.

In a dynamic layout, nodes in a scene graph are laid out every time a user action necessitates a change in their
position, size, or both. Typically, changing the position or size of one node affects the position and size of other nodes
in the scene graph. The dynamic layout forces recomputation of the position and size of some or all nodes as the
window is resized.

Both static and dynamic layouts have advantages and disadvantages. A static layout gives developers full
control over the design of the user interface. It lets you make use of the available space as you see fit. A dynamic
layout requires more programming work and the logic is much more involved. Typically, programming languages
supporting GUIs such as JavaFX support dynamic layouts through libraries. Libraries solve most of the use-cases for
dynamic layouts. If they do not meet your needs, you must do the hard work to roll out your own dynamic layout.

A layout pane is a node that contains other nodes, which are known as its children (or child nodes). The
responsibility of a layout pane is to lay out its children whenever needed. A layout pane is also known as a container or
a layout container.

A layout pane has a layout policy that controls how the layout pane lays out its children. For example, a layout
pane may lay out its children horizontally, vertically, or in any other fashion. The layout policy of a container is a set of
rules to compute the position and size of its children. A node has three type sizes called preferred size, minimum size,
and maximum size. Most of the containers attempt to give its children their preferred size. The actual (or current) size
of a node may be different from its preferred size. The current size of a node depends on the size of the window, the
layout policy of the container, and the expanding and shrinking policy for the node, etc.

JavaFX contains several container classes. Figure 9-11 shows a class diagram for the container classes. A container
class is a subclass, direct or indirect, of the Parent class.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

637

A Group lets you apply effects and transformations to all its children collectively. The Group class is in the
javafx.scene package.

Subclasses of the Region class are used to lay out children. They can be styled with CSS. The Region class and
most of its subclasses are in the javafx.scene.layout package.

It is true that a container needs to be a subclass of the Parent class. However, not all subclasses of the Parent
class are containers. For example, the Button class is a subclass of the Parent class; however, it is a control, not
a container. A node must be added to a container to be part of a scene graph. The container lays out its children
according to its layout policy. If you do not want the container to manage the layout for a node, you need to set the
managed property of the node to false.

A node can be a child node of only one container at a time. If a node is added to a container while it is already the
child node of another container, the node is removed from the first container before being added to the second one.
Often times, it is necessary to nest containers to create a complex layout. That is, you can add a container to another
container as a child node.

The Parent class contains three methods to get the list of children of a container:

•	 protected ObservableList<Node> getChildren()

•	 public ObservableList<Node> getChildrenUnmodifiable()

•	 protected <E extends Node> List<E> getManagedChildren()

The getChildren() method returns a modifiable ObservableList of the child nodes of a container. If you want to
add a node to a container, you add the node to this list. This is the most commonly used method of the container classes.
You have been using this method to add children to containers like Group, HBox, VBox, etc. from the very first program.

Figure 9-11.  A class diagram for container classes in JavaFX

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

638

Notice the protected access for the getChildren() method. If the subclass of the Parent class does not want
to be a container, it will keep the access for this method as protected. For example, control-related classes such as
Button and TextField keep this method as protected, so you cannot add child nodes to them. A container class
overrides this method and makes it public. For example, the Group and Pane classes expose this method as public.

The getChildrenUnmodifiable() method is declared as public in the Parent class. It returns a read-only
ObservableList of children. It is useful in two scenarios:

You need to pass the list of children of a container to a method that should not modify the list.•	

You want to know what makes up a control, which is not a container.•	

The getManagedChildren() method has the protected access. Container classes do not expose it as public.
They use it internally to get the list of managed children during layouts. You will use this method to roll out your own
container classes.

Table 9-4 contains brief descriptions of the container classes in JavaFX. It is not possible to discuss all types of
containers in this chapter. In this section, I will show you examples of using some of them.

Table 9-4.  Container Classes with a Brief Descriptions in JavaFX

Container Class Description

Group Applies effects and transformations collectively to all its children.

Pane Used for absolute positioning of its children.

HBox Arranges children horizontally in a single row.

VBox Arranges children vertically in a single column.

FlowPane Arranges children horizontally or vertically in rows or columns. If they do not fit in a single
row or column, they are wrapped at the specified width or height.

BorderPane Divides the layout area in the top, right, bottom, left, and center regions, and places each of
its children in one of the five regions.

StackPane Arranges children in a back-to-front stack.

TilePane Arranges children in a grid of uniformly sized cells.

GridPane Arranges children in a grid of variable sized cells.

AnchorPane Arranges children by anchoring their edges to the edges of the layout area.

TextFlow Lays out rich text whose contents may consist of several Text nodes.

A container is meant to contain children. You can add children to a container when you create the container
object or after creating it. All container classes provide constructors that take a varargs Node type argument to add the
initial set of children. Some containers provide constructors to add an initial set of children and set initial properties
for the containers.

You can also add children to a container at any time after the container is created. Containers store their children
in an observable list, which can be retrieved using the getChildren() method. Adding a node to a container is as
simple as adding a node to that observable list. The following snippet of code shows how to add children to an HBox
when it is created and after it is created.
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

639

// Create two buttons
Button okBtn = new Button("OK");
Button cancelBtn = new Button("Cancel");
 
// Create an HBox with two buttons as its children
HBox hBox1 = new HBox(okBtn, cancelBtn);
 
// Create an HBox with two buttons with 20px horizontal spacing between them
double hSpacing = 20;
HBox hBox2 = new HBox(hSpacing, okBtn, cancelBtn);
 
// Create an empty HBox, and afterwards add two buttons to it
HBox hBox3 = new HBox();
hBox3.getChildren().addAll(okBtn, cancelBtn); 

Tip■■   When you need to add multiple child nodes to a container, use the addAll() method of the ObservableList
rather than using the add() method multiple times.

The program in Listing 9-14 shows how to use a BorderPane, a HBox, and a VBox to arrange UI elements as shown
in Figure 9-12.

Listing 9-14.  Using the BorderPane Container

// BorderPaneTest.java
package com.jdojo.jfx;
 
import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.scene.Node;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TextArea;
import javafx.scene.control.TextField;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.HBox;
import javafx.scene.layout.Priority;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;
 
public class BorderPaneTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }
 
 public void start(Stage stage) {
 // Set the top and left child nodes to null
 Node top = null;
 Node left = null;
  

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

640

 // Build the content nodes for the center region
 VBox center = getCenter();
 
 // Create the right child node
 Button okBtn = new Button("Ok");
 Button cancelBtn = new Button("Cancel");
 
 // Make the OK and cancel buttons the same size
 okBtn.setMaxWidth(Double.MAX_VALUE);
 VBox right = new VBox(okBtn, cancelBtn);
 right.setStyle("-fx-padding: 10;");
 
 // Create the bottom child node
 Label statusLbl = new Label("Status: Ready");
 HBox bottom = new HBox(statusLbl);
 BorderPane.setMargin(bottom, new Insets(10, 0, 0, 0));
 bottom.setStyle("-fx-background-color: lavender;" +
 "-fx-font-size: 7pt;" +
 "-fx-padding: 10 0 0 0;");
 
 BorderPane root =
 new BorderPane(center, top, right, bottom, left);
 root.setStyle("-fx-background-color: lightgray;");
  
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using a BorderPane");
 stage.show();
 }
 
 private VBox getCenter() {
 // A Label and a TextField in an HBox
 Label nameLbl = new Label("Name:");
 TextField nameFld = new TextField();
 HBox.setHgrow(nameFld, Priority.ALWAYS);
 HBox nameFields = new HBox(nameLbl, nameFld);
 
 // A Label and a TextArea
 Label descLbl = new Label("Description:");
 TextArea descText = new TextArea();
 descText.setPrefColumnCount(20);
 descText.setPrefRowCount(5);
 VBox.setVgrow(descText, Priority.ALWAYS);
  
 // Box all controls in a VBox
 VBox center = new VBox(nameFields, descLbl, descText);
 
 return center;
 }
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

641

Figure 9-12.  A BorderPane using some controls in its top, right, bottom, and center regions

Notice the use of the setStyle() method for the containers in Listing 9-14. You can customize the visual
appearance of the containers and controls in JavaFX using CSS. The CSS attributes in JavaFX are named and work
very similar to CSS attributes used to customize HTML contents in browsers. CSS attributes in JavaFX starts with
-fx-; for example, the CSS attribute name for specifying the font size is -fx-font-size. You can also set styles to a
JavaFX application using a CSS file. Listing 9-15 shows how to add padding and a rounded, blue border around the
scene by adding a style to the root node of the scene. Figure 9-13 shows the resulting scene in a window.

Listing 9-15.  Using CSS to to Add a Padding and a Rounded, Blue Border to a Scene

// CSSTest.java
package com.jdojo.jfx;
 
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.layout.GridPane;
import javafx.stage.Stage;
 
public class CSSTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }
 
 @Override
 public void start(Stage stage) {
 TextField fNameFld = new TextField();
 Label fNameLbl = new Label("First Name:");
 
 TextField lNameFld = new TextField();
 Label lNameLbl = new Label("Last Name:");
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

642

 GridPane root = new GridPane();
 root.addRow(0, fNameLbl, fNameFld);
 root.addRow(1, lNameLbl, lNameFld);
  
 // Set a CSS for the GridPane
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");
 
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using CSS");
 stage.show();
 }
} 

Figure 9-13.  Using CSS to add pading and a rounded, blue border around the scene

Using CSS in JavaFX is a big topic. This chapter does not discuss CSS in JavaFX in detail. Please refer to the
following web page for the CSS reference guide that lists all CSS attributes for all nodes that can be styled using CSS:
 
docs.oracle.com/javase/8/javafx/api/javafx/scene/doc-files/cssref.html

Controls
JavaFX lets you create applications using GUI components. An application with a GUI performs three tasks:

Accepts inputs from the user through input devices such as a keyboard, a mouse, etc.•	

Processes the inputs (or takes actions based on the input)•	

Displays outputs•	

A user interface provides a means to exchange information in terms of input and output between an application
and users. Entering text using a keyboard, selecting a menu item using a mouse, and clicking a button are examples
of providing inputs to a GUI application. The application displays output on a computer monitor using text, charts,
dialog boxes, etc.

Users interact with a GUI application using graphical elements called controls or widgets. Buttons, labels, text
fields, text area, radio buttons, and checkboxes are a few examples of controls. Devices like a keyboard, a mouse, and
a touch screen are used to provide input to controls. Controls can also display output to the users. Controls generate

www.it-ebooks.info

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/doc-files/cssref.html
http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

643

events that indicate occurrences of some kind of interaction between the user and the control. For example, pressing a
button using a mouse or a spacebar generates an action event indicating that the user has pressed the button.

JavaFX provides a rich set of easy-to-use basic as well as advanced controls. Controls are typically added to
layout panes that position and size them. It is not possible to discuss all controls. I will list most controls in JavaFX and
provide a brief description of what they do.

Each control in JavaFX is represented by an instance of a class. If multiple controls share basic features, they
inherit from a common base class. Control classes are in the javafx.scene.control package. A control class is a
subclass, direct or indirect, of the Control class, which in turn inherits from the Region. Recall that the Region class
inherits from the Parent class. Therefore, technically, a Control is also a Parent.

A Parent can have children. Typically, a control is composed of another node (sometimes, multiple nodes) that is
its child node. Control classes do not expose the list of its children through the getChildren() method, and therefore
you cannot add any children to them.

Control classes expose the list of their internal unmodifiable children through the getChildrenUnmodifiable()
method, which returns an ObservableList<Node>. You are not required to know about the internal children of a
control to use the control. However, if you need the list of their children, the getChildrenUnmodifiable() method will
give you that.

Figure 9-14 shows a class diagram for classes of some commonly used controls. The list of control classes is a lot
bigger than the one shown in the class diagram. Table 9-5 contains a list of most of the controls in JavaFX with their
brief description.

Figure 9-14.  A partial class diagram for control classes in JavaFX

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

644

Table 9-5.  JavaFX Controls

Control Description

Label A non-editable text control that is typically used to display the label for another control.

Button Represents a command button control. It can display text and an icon. It generates an
ActionEvent when it is activated.

Hyperlink Represents a hyperlink control, which looks like a hyperlink in a webpage. It generates an
ActionEvent when it is activated.

MenuButton Looks like a button and behaves like a menu. When it is activated, it shows a list of options
in the form of a pop-up menu. To execute a command when a menu option is selected,
you need to add the ActionEvent handler to the MenuItems added to the MenuButton.

ToggleButton Represents a two-state button control. The two states are selected and unselected.

RadioButton Represents a radio button. It is used to provide a mutually exclusive choice from the
list of choices.

CheckBox Represents a three-state selection control. The three states are checked, unchecked, and
undefined.

ChoiceBox Allows users select an item from a small list of predefined items.

ComboBox An advanced version of the ChoiceBox control. It has many features, such as the ability to
be editable, changing appearance of the items in the list, etc., which are not offered by in
ChoiceBox.

ListView Provides users an ability to select multiple items from a list of items. Typically, all or more
than one item in a list is visible to the user all the time.

ColorPicker Allows users select a color from a standard color palette or define a custom color
graphically.

DatePicker Allows users to select a date from a calendar pop-up.

TextField Represents a single-line text input control.

PasswordField Represents a single-line text input control to enter passwords or sensitive text where the
actual text is masked.

TextArea Represents a multi-line text input control.

ProgressIndicator Used to display the progress of a task in a circular area.

ProgressBar Used to display the progress of a task in a rectangular area.

TitledPane Used to display contents (typically, a group of controls) with a title bar that may contain title
text and a graphic. It can be in the expanded or collapsed state. In the collapsed state, only
the title bar is visible. In the expanded state, both the contents and the title bar are visible.

Accordion Used as a container for a group of TitledPane controls in which only one TitledPane is
visible at a time.

Pagination Used to display a large single content by dividing it into smaller chunks called pages, such as
the results of a search.

Tooltip Used to show additional information about a control in a pop-up window for a short time
when the mouse hovers over the control.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

645

Control Description

ScrollBar Used to add scrolling capability to a control.

ScrollPane Provides a scrollable view of a node.

Separator A horizontal or vertical line used to separate two groups of controls.

Slider Used to select a numeric value from a numeric range graphically by sliding a thumb
(or knob) along a track.

MenuBar A horizontal bar that acts as a container for menus.

Menu Contains a list of actionable items, which are displayed on demand, for example,
by clicking it.

MenuItem Represents an actionable option in a menu.

ContextMenu A pop-up control that displays a list of menu items on request.

ToolBar Used to display a group of nodes, which provide the commonly used action items
on a screen.

TabPane Displays multiple tab pages represented by instances of the Tab class. The contents of only
one tab page are visible at a time.

Tab Represents a tab page in a TabPane.

HTMLEditor Provides rich text editing capability in JavaFX.

FileChooser Allows you to select files from the file system graphically.

DirectoryChooser Allows you to select directories using a platform-dependent directory dialog

TableView Used to display and edit tabular data using rows and columns.

TreeView Used to display and edit hierarchical data arranged in a tree-like structure.

TreeTableView A combination of TableView and TreeView controls. Provides the ability to have a
drill-down table.

WebView Displays a web page.

Listing 9-16 creates a form using JavaFX controls to enter person details such as first name, last name, birth
date, and gender as shown in Figure 9-15. Enter the data and click the Save button to display the entered data in the
TextArea at the bottom of the window. The form uses the following controls:

Two instances of the •	 TextField control to enter the first and last names.

A •	 DatePicker control to enter the birth date.

A •	 ChoiceBox control to select a gender.

A •	 Button control to save the data.

A •	 Button control to close the window.

A •	 TextArea control to display the entered data when the Save button is clicked.

Table 9-5.  (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

646

Listing 9-16.  Creating a Form Using JavaFX Controls to Enter Person Details

// PersonView.java
package com.jdojo.jfx;
 
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.ChoiceBox;
import javafx.scene.control.DatePicker;
import javafx.scene.control.Label;
import javafx.scene.control.TextArea;
import javafx.scene.control.TextField;
import javafx.scene.layout.GridPane;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;
 
public class PersonView extends Application {
 // Labels
 Label fNameLbl = new Label("First Name:");
 Label lNameLbl = new Label("Last Name:");
 Label bDateLbl = new Label("Birth Date:");
 Label genderLbl = new Label("Gender:");
  
 // Fields
 TextField fNameFld = new TextField();
 TextField lNameFld = new TextField();
 DatePicker bDateFld = new DatePicker();
 ChoiceBox<String> genderFld = new ChoiceBox<>();
 TextArea dataFld = new TextArea();
  
 // Buttons
 Button saveBtn = new Button("Save");
 Button closeBtn = new Button("Close");
 
 public static void main(String[] args) {
 Application.launch(args);
 }
 
 @Override
 public void start(Stage stage) throws Exception {
 // Populate the gender choice box
 genderFld.getItems().addAll("Male", "Female", "Unknown");
  
 // Set the preferred rows and columns for the text area
 dataFld.setPrefColumnCount(30);
 dataFld.setPrefRowCount(5);
  
 GridPane grid = new GridPane();
 grid.setHgap(5);
 grid.setVgap(5);
  

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

647

 // Place the controls in the grid
 grid.add(fNameLbl, 0, 0); // column=0, row=0
 grid.add(lNameLbl, 0, 1); // column=0, row=1
 grid.add(bDateLbl, 0, 2); // column=0, row=2
 grid.add(genderLbl, 0, 3); // column=0, row=3
  
 grid.add(fNameFld, 1, 0); // column=1, row=0
 grid.add(lNameFld, 1, 1); // column=1, row=1
 grid.add(bDateFld, 1, 2); // column=1, row=2
 grid.add(genderFld, 1, 3); // column=1, row=3
 grid.add(dataFld, 1, 4, 3, 2); // column=1, row=4, colspan=3, rowspan=3
  
 // Add buttons and make them the same width
 VBox buttonBox = new VBox(saveBtn, closeBtn);
 saveBtn.setMaxWidth(Double.MAX_VALUE);
 closeBtn.setMaxWidth(Double.MAX_VALUE);
  
 grid.add(buttonBox, 2, 0, 1, 2); // column=2, row=0, colspan=1, rowspan=2
 
 // Show the data in the text area when the Save button is clicked
 saveBtn.setOnAction(e -> showData());
  
 // Close the window when the Close button is clicked
 closeBtn.setOnAction(e -> stage.hide());
  
 // Set a CSS for the GridPane to add a padding and a blue border
 grid.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");
  
 Scene scene = new Scene(grid);
 stage.setScene(scene);
 stage.setTitle("Person Details");
 stage.sizeToScene();
 stage.show();
 }
  
 private void showData() {
 String data = "First Name = " + fNameFld.getText() +
 "\nLast Name=" + lNameFld.getText() +
 "\nBirth Date=" + bDateFld.getValue() +
 "\nGender=" + genderFld.getValue();
 dataFld.setText(data);
 }
} 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

648

Using 2D Shapes
JavaFX offers variety nodes to draw different types of shapes, such as lines, circles, rectangles, etc. You can add shapes
to a scene graph. You can draw 2D and 3D shapes. In this section, I will show you how to draw 2D shapes. Using 3D
shapes in JavaFX has a learning curve. Because of space limitation, I will not discuss 3D shapes in this book. All 2D
shape classes are in the javafx.scene.shape package. Classes representing 2D shapes are inherited from the abstract
Shape class as shown in Figure 9-16.

Figure 9-16.  A class diagram for 2D shapes

A shape has a size and a position that are defined by its properties. For example, the width and height properties
define the size of a rectangle; the radius property defines the size of a circle, the x and y properties define the position
of the upper-left corner of a rectangle, the centerX and centerY properties define the center of a circle.

Shapes are not resized by their parents during layout. The size of a shape changes only when its size-related
properties are changed. You may see a phrase like “JavaFX shapes are non-resizable.” It means shapes are
non-resizable by their parent during layout. They can be resized only by changing their properties.

Shapes have an interior and a stroke. All properties for defining the interior and stroke of a shape are declared in
the Shape class. The fill property specifies the color to fill the interior of the shape. The default fill is Color.BLACK.
The stroke property specifies the color for the outline stroke, which is null by default, except for Line, Polyline, and
Path that have Color.BLACK as their default stroke color.

Figure 9-15.  A form using JavaFX controls to enter person details

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

649

The Shape class contains a smooth property, which is true by default. Its true value indicates that an antialiasing
hint should be used to render the shape. If it is set to false, the antialiasing hint will not be used, which may result in
the edges of shapes being not crisp.

The program in Listing 9-17 creates a circle, a rectangle, a line, a polygon to represent a parallelogram, a polyline
to represent a hexagon, and an arc with a chord. The shapes are shown in Figure 9-17. Note the following points about
creating the shapes in this program:

It creates a circle of radius 40px.•	

It creates a rectangle of 100px width and 75px height.•	

It creates a line from (0, 0) and (50, 50).•	

It creates a polygon representing a parallelogram, by connecting four points: (30.0, 0.0), •	
(130.0, 0.0), (100.00, 50.0), and (0.0, 50.0). The polygon is automatically closed by connecting
the first and the last points.

It creates a polyline representing a hexagon. A polyline is similar to a polygon, except that it is •	
not closed automatically. Notice that the first point (100.0, 0.0) and the last point (100.0, 0.0)
are the same in the polyline constructor, so it is closed.

It creates an arc using the constructor •	 Arc(double centerX, double centerY, double
radiusX, double radiusY, double startAngle, double length) of the Arc class. An arc
can be chord, round, or open. The program uses the arc type as ArcType.CHORD to connect the
two extreme points on the arc by a straight line (a chord).

Listing 9-17.  Using 2D Shapes in JavaFX

// ShapeTest.java
package com.jdojo.jfx;
 
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Arc;
import javafx.scene.shape.ArcType;
import javafx.scene.shape.Circle;
import javafx.scene.shape.Line;
import javafx.scene.shape.Polygon;
import javafx.scene.shape.Polyline;
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;
 
public class ShapeTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }
 
 @Override
 public void start(Stage stage) {
 // Create a circle with an yellow fill and a black stroke of 2.0px
 Circle circle = new Circle(40);
 circle.setFill(Color.YELLOW);
 circle.setStroke(Color.BLACK);
 circle.setStrokeWidth(2.0);
  

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

650

 // Create a rectangle
 Rectangle rect = new Rectangle(100, 75);
 rect.setFill(Color.RED);
 
 // Create a line
 Line line = new Line(0, 0, 50, 50);
 line.setStrokeWidth(5.0);
 line.setStroke(Color.GREEN);
 
 // Create a parallelogram
 Polygon parallelogram = new Polygon();
 parallelogram.getPoints().addAll(30.0, 0.0,
 130.0, 0.0,
 100.00, 50.0,
 0.0, 50.0);
 parallelogram.setFill(Color.AZURE);
 parallelogram.setStroke(Color.BLACK);
 
 // Create a hexagon
 Polyline hexagon = new Polyline(100.0, 0.0,
 120.0, 20.0,
 120.0, 40.0,
 100.0, 60.0,
 80.0, 40.0,
 80.0, 20.0,
 100.0, 0.0);
 hexagon.setFill(Color.WHITE);
 hexagon.setStroke(Color.BLACK);
  
 // A CHORD arc with no fill and a stroke
 Arc arc = new Arc(0, 0, 50, 100, 0, 90);
 arc.setFill(Color.TRANSPARENT);
 arc.setStroke(Color.BLACK);
 arc.setType(ArcType.CHORD);
 
 // Add all shapes to an HBox
 HBox root =
 new HBox(circle, rect, line, parallelogram, hexagon, arc);
 root.setSpacing(10);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");
 
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("2D Shapes");
 stage.show();
 }
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

651

The Path class, along with many other classes such as MoveTo, LineTo, HLineTo, and VLineTo, can be used to draw
very complex shapes in JavaFX. JavaFX also supports Scalable Vector Graphics (SVG) using the SVGPath class from
path data in an encoded string. The SVG specification is can be found at www.w3.org/TR/SVG. The detailed rules of
constructing the path data in string format can be found at www.w3.org/TR/SVG/paths.html. JavaFX partially supports
the SVG specification. This book does not cover creating 2D shapes using the Path and SVGPath class in detail.
Listing 9-18 shows how to create triangles using the Path and SVGPath classes as shown in Figure 9-18. Please refer to
the JavaFX API documentation for details on how to use these classes.

Listing 9-18.  Using Path and SVGPath Classes to Create 2D Shapes

// PathTest.java
package com.jdojo.jfx;
 
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.LineTo;
import javafx.scene.shape.MoveTo;
import javafx.scene.shape.Path;
import javafx.scene.shape.SVGPath;
import javafx.stage.Stage;
 
public class PathTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }
 
 @Override
 public void start(Stage stage) {
 // Create a triangle using a Path
 Path pathTriangle = new Path(new MoveTo(50, 0),
 new LineTo(0, 50),
 new LineTo(100, 50),
 new LineTo(50, 0));
 
 pathTriangle.setFill(Color.LIGHTGRAY);
 pathTriangle.setStroke(Color.BLACK);
  

Figure 9-17.  Some 2D shapes in JavaFX

www.it-ebooks.info

http://www.w3.org/TR/SVG
http://www.w3.org/TR/SVG/paths.html
http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

652

 // Create a triangle using a SVGPath
 SVGPath svgTriangle = new SVGPath();
 svgTriangle.setContent("M50, 0 L0, 50 L100, 50 Z");
 svgTriangle.setFill(Color.LIGHTGRAY);
 svgTriangle.setStroke(Color.BLACK);
 
 // Add all shapes to an HBox
 HBox root = new HBox(pathTriangle, svgTriangle);
 root.setSpacing(10);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");
 
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("2D Shapes using Path and SVGPath Classes");
 stage.show();
 }
} 

Figure 9-18.  Creating triangles using the Path and SVGPath classes

Drawing on a Canvas
Through the javafx.scene.canvas package, JavaFX provides the Canvas API that offers a drawing surface to draw
shapes, images, and text using drawing commands. The API also gives pixel-level access to the drawing surface where
you can write any pixels on the surface. The API consists of the following two classes:

•	 Canvas

•	 GraphicsContext

A canvas is a bitmap image that is used as a drawing surface. An instance of the Canvas class represents a canvas.
It inherits from the Node class. Therefore, a canvas is a node that can be added to a scene graph, and effects and
transformations can be applied to it. A Canvas has a graphics context associated with it that is used to issue drawing
commands to the Canvas. An instance of the GraphicsContext class represents a graphics context.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

653

The Canvas class contains two constructors. The no-args constructor creates an empty Canvas. Later, you can set
the size of the canvas using its width and height properties. The other constructor takes the width and height of the
Canvas as parameters. The following snippet of code shows how to create canvases:
 
// Create a Canvas of zero width and height
Canvas canvas = new Canvas();
 
// Set the canvas size
canvas.setWidth(400);
canvas.setHeight(200);
  
// Create a 400X200 canvas
Canvas canvas = new Canvas(400, 200);
 

Once you create a Canvas, you need to get its graphics context using the get getGraphicsContext2D()
method as shown:
 
// Get the graphics context of the canvas
GraphicsContext gc = canvas.getGraphicsContext2D();
 

All drawing commands are provided in the GraphicsContext class as methods. Drawings that fall outside the
bounds of the Canvas are clipped. The Canvas uses a buffer. The drawing commands push necessary parameters to
the buffer. It is important to note that you should use the graphics context from any one thread before adding the
Canvas to the scene graph. Once the Canvas is added to the scene graph, the graphics context should be used only on
the JavaFX Application Thread.

The program in Listing 9-19 shows how to draw a round rectangle, an oval, and text on a Canvas. Figure 9-19
shows the canvas with all drawings. The strokeRoundRect(double x, double y, double w, double h, double
arcWidth, double arcHeight) method is used to draw a round rectangle; the fillOval(double x, double y,
double w, double h) method is used to draw a filled oval. The strokeText(String text, double x, double y)
method is used to draw text.

Listing 9-19.  Drawing on a Canvas

// CanvasTest.java
package com.jdojo.jfx;
 
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.canvas.Canvas;
import javafx.scene.canvas.GraphicsContext;
import javafx.scene.layout.Pane;
import javafx.scene.paint.Color;
import javafx.stage.Stage;
 
public class CanvasTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

654

 @Override
 public void start(Stage stage) {
 // Create a canvas
 Canvas canvas = new Canvas(300, 100);
  
 // Get the graphics context of the canvas
 GraphicsContext gc = canvas.getGraphicsContext2D();
 
 // Set line width and fill color
 gc.setLineWidth(2.0);
 gc.setFill(Color.RED);
 
 // Draw a rounded rectangle
 gc.strokeRoundRect(10, 10, 50, 50, 10, 10);
  
 // Fill an oval
 gc.fillOval(70, 10, 50, 20);
  
 // Draw text
 gc.strokeText("Hello Canvas", 150, 20);
 
 Pane root = new Pane();
 root.getChildren().add(canvas);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Drawing on a Canvas");
 stage.show();
 }
} 

Figure 9-19.  A rectangle, an ellipse, and text drawn on a canvas

Applying Effects
An effect is a filter that accepts one or more graphical inputs, applies an algorithm on the inputs, and produces an
output. Typically, effects are applied to nodes to create visually appealing user interfaces. Examples of effects are
shadow, blur, warp, glow, reflection, blending, different types of lighting, etc. The JavaFX library provides several
effect-related classes. An effect is a conditional feature. Effects applied to nodes will be ignored if they are not available
on the platform. Figure 9-20 shows four Text nodes using the drop shadow, blur, glow, and bloom effects.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

655

Applying effects to a node in JavaFX is easy. The Node class contains an effect property that specifies the effect
applied to the node. By default, it is null. To apply an effect, create an object of the specific effect class and set it to the
node using the setEffect() method. The following snippet of code applies a drop shadow effect to a Text node:
 
Text t1 = new Text("Drop Shadow");
t1.setFont(Font.font(24));
t1.setEffect(new DropShadow());
 

An instance of the Effect class represents an effect. The Effect class is the abstract base for all effect classes.
All effect classes are in the javafx.scene.effect package.

The program in Listing 9-20 creates Text nodes and applies effects to them. The Text nodes look as shown
in Figure 9-20.

Listing 9-20.  Applying Effects to Nodes

// EffectTest.java
package com.jdojo.jfx;
 
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.effect.Bloom;
import javafx.scene.effect.BoxBlur;
import javafx.scene.effect.DropShadow;
import javafx.scene.effect.Glow;
import javafx.scene.layout.HBox;
import javafx.scene.layout.StackPane;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.scene.text.Font;
import javafx.scene.text.FontWeight;
import javafx.scene.text.Text;
import javafx.stage.Stage;
 
public class EffectTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }
 
 @Override
 public void start(Stage stage) {
 Text t1 = new Text("Drop Shadow!");
 t1.setFont(Font.font(24));
 t1.setEffect(new DropShadow());
 

Figure 9-20.  Text nodes with different effects

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

656

 Text t2 = new Text("Blur!");
 t2.setFont(Font.font(24));
 t2.setEffect(new BoxBlur());
 
 Text t3 = new Text("Glow!");
 t3.setFont(Font.font(24));
 t3.setEffect(new Glow());
 
 Text t4 = new Text("Bloom!");
 t4.setFont(Font.font("Arial", FontWeight.BOLD, 24));
 t4.setFill(Color.WHITE);
 t4.setEffect(new Bloom(0.10));
 
 // Stack the Text node with bloom effect over a Reactangle
 Rectangle rect = new Rectangle(100, 30, Color.GREEN);
 StackPane spane = new StackPane(rect, t4);
 
 HBox root = new HBox(t1, t2, t3, spane);
 root.setSpacing(20);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");
 
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Applying Effects");
 stage.show();
 }
} 

Tip■■  A n effect applied to a Group is applied to all its children. It is also possible to chain multiple effects where the
output of one effect becomes the input for the next effect in the chain.

Applying Transformations
A transformation is a mapping of points in a coordinate space to themselves, preserving distances and directions
between them. Several types of transformations can be applied to points in a coordinate space. JavaFX supports the
following types of transformation:

Translation•	

Rotation•	

Shear•	

Scale•	

Affine•	

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

657

An instance of the abstract Transform class represents a transformation in JavaFX. The Transform class contains
common methods and properties used by all types of transformations on nodes. It contains factory methods to create
specific types of transformations. Figure 9-21 shows a class diagram for the classes representing different types of
transformations. The name of the classes match the type of transformation they provide. All classes are in the
javafx.scene.transform package.

Figure 9-21.  A class diagram for transform-related classes

An affine transformation is the generalized transformation that preserves the points, lines, and planes. The
parallel lines remain parallel after the transformation. It may not preserve the angles between lines and the distances
between points. However, the ratios of distances between points on a straight line are preserved. Translation, scale,
homothetic transformation, similarity transformation, reflection, rotation, and shear are examples of the affine
transformation.

An instance of the Affine class represents an affine transformation. The class is not easy to use for beginners. Its
use requires advanced knowledge of mathematics such as matrix. If you need a specific type of transformation, use
the specific subclasses such as Translate, Shear, etc. rather than using the generalized Affine class. You can also
combine multiple individual transformations to create a more complex one.

Using transformations is easy. However, sometimes it is confusing because there are multiple ways to create and
apply them. There are two ways to create a Transform instance:

Use one of the factory methods of the •	 Transform class, for example, the translate() method
to create a Translate object, the rotate() method to create a Rotate object, etc.

Use the specific class to create a specific type of transform, for example, the •	 Translate class
for a translation, the Rotate class for a rotation, etc.

Both of the following Translate objects represent the same translation:
 
double tx = 20.0;
double ty = 10.0;
 
// Using the factory method in the Transform class
Translate translate1 = Transform.translate(tx, ty);
 
// Using the Translate class constructor
Translate translate2 = new Translate(tx, ty);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

658

There are two ways to apply a transformation to a node:

Use the specific properties in the •	 Node class. For example, use the translateX, translateY,
and translateZ properties of the Node class to apply a translation to a node. Note that you
cannot apply a shear transformation this way.

Use the •	 transforms sequence of a node. The getTransforms() method the Node class returns an
ObservableList<Transform>. Populate this list with all the Transform objects. The Transforms
will be applied in sequence. You can apply a shear transformation using only this method.

The two methods of applying Transforms work little differently. I will discuss the differences when I discuss the
specific types of transformation. Sometimes it is possible to use both methods to apply transformations, and in that case,
the transformations in the transforms sequence are applied before the transformation set on the properties of the node.

The following snippet of code applies three transformations called shear, scale, and translation to a Rectangle:
 
// Create a rectangle
Rectangle rect = new Rectangle(100, 50, Color.LIGHTGRAY);
  
// Apply transforms using the transforms sequence of the Rectangle
Transform shear = Transform.shear(2.0, 1.2);
Transform scale = Transform.scale(1.1, 1.2);
rect.getTransforms().addAll(shear, scale);
  
// Apply a translation using the translatex and translateY
// properties of the Node class
rect.setTranslateX(10);
rect.setTranslateY(10);
 

The shear and scale transformations are applied using the transforms sequence. The translation is applied using
the translateX and translateY properties of the Node class. The transformations in the transforms sequence, shear
and scale, are applied in sequence followed with the translation. Discussing all types of transformations is beyond the
scope of this book. Please refer to the JavaFX API documentation for more details.

Listing 9-21 shows how to apply translate, rotate, scale, and shear transformations to a rectangle. It creates
two rectangles of the same size and located at the same place. The rectangles use different fill colors to distinguish
between them. Translate, rotate, scale, and shear transformations are applied to the rectangle with the yellow fill. No
transformations are applied to the rectangle with the light gray fill. Figure 9-22 shows both rectangles.

Listing 9-21.  Applying Transformations to Nodes

// TransformationTest.java
package com.jdojo.jfx;
 
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.Pane;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.scene.transform.Rotate;
import javafx.scene.transform.Scale;
import javafx.scene.transform.Shear;
import javafx.scene.transform.Translate;
import javafx.stage.Stage;
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

659

public class TransformationTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }
 
 @Override
 public void start(Stage stage) {
 Rectangle rect1 = new Rectangle(100, 50, Color.LIGHTGRAY);
 rect1.setStroke(Color.BLACK);
 
 Rectangle rect2 = new Rectangle(100, 50, Color.YELLOW);
 rect2.setStroke(Color.BLACK);
 
 // Apply a translation, rotate, scale and shear transformations
 // to rect2
 Translate translate = new Translate(50, 10);
 Rotate rotate = new Rotate(30, 0, 0);
 Scale scale = new Scale(0.5, 0.5);
 Shear shear = new Shear(0.5, 0.5);
 rect2.getTransforms().addAll(translate, rotate, scale, shear);
  
 Pane root = new Pane(rect1, rect2);
 root.setPrefSize(200, 100);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Applying Transformations");
 stage.show();
 }
} 

Figure 9-22.  Two rectangles, one with transformations and one without transformations

Animation
In the real world, animation implies some kind of motion that is generated by displaying images in quick succession.
For example, when you watch a movie, you are watching images that change so quickly that you get an illusion
of motion.

In JavaFX, animation is defined as changing the property of a node over time. If the property that changes
determines the location of the node, the animation in JavaFX will produce an illusion of motion as found in movies.
Not all animations have to involve motion; for example, changing the fill property of a Shape over time is an
animation in JavaFX that does not involve motion.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

660

To understand how animation is performed, it is important to understand some key concepts:

Timeline•	

Key Frame•	

Key Value•	

Interpolator•	

Animation is performed over a period of time. A timeline denotes the progression of time during animation with
an associated key frame at a given instant. A key frame represents the state of the node being animated at a specific
instant on the timeline. A key frame has associated key values. A key value represents the value of a property of the
node along with an interpolator to be used.

Suppose you want to move a circle in a scene from left to right horizontally in 10 seconds. Figure 9-23 shows the
circle at few positions. The thick horizontal line represents a timeline. Circles with a solid outline represent the key
frames at specific instants on the timeline. The key values associated with key frames are shown at the top line.
For example, the value for translateX property of the circle for the key frame at the fifth second is 500, which is
shown as tx=500 in the figure.

Timeline

5s0s 2.5s 7.5s 10s

tx=0 tx=250 tx=500 tx=750 tx=1000

Figure 9-23.  Animating a circle along a horizontal line using a timeline

Timeline, key frames, and key values are provided by the developer. In your example, you have five key frames.
If JavaFX shows only five key frames at the five respective instants, the animation will look jerky. To provide a smooth
animation, JavaFX needs to interpolate the position of the circle at any instant on the timeline. That is, JavaFX needs to
create intermediate key frames between two consecutive key frames. JavaFX does this with the help of an interpolator.
By default, it uses a linear interpolator that changes the property being animated linearly with time. That is, if the time
on the timeline passes x%, the value of the property will be x% between the initial and final target values. In the figure,
circles with the dashed outline are created by JavaFX using an interpolator.

Classes providing animation in JavaFX are in the javafx.animation package, except the Duration class, which is
in the javafx.util package. Figure 9-24 shows a class diagram for the animation-related classes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

661

The abstract Animation class represents an animation. It contains common properties and methods used by all
types of animations. JavaFX supports two types of animations:

Timeline Animations•	

Transitions•	

In a timeline animation, you create a timeline and add key frames to it. JavaFX creates the intermediate key
frames using an interpolator. An instance of the Timeline class is represented by a timeline animation. This type of
animation requires more coding on your part, but it gives you more control.

Several types of animations are commonly performed, for example, moving a node along a path, changing the
opacity of a node over time, etc. These types of animations are known as transitions. They are performed using an
internal timeline. An instance of the Transition class represents a transition animation. Several subclasses of the
Transition class exist to support specific types of transitions. For example, the FadeTransition class implements a
fading effect animation by changing the opacity of a node over time. You create an instance of one of the subclasses
of the Transition class, specify the initial and final values for the property to be animated, and the duration for the
animation. JavaFX takes care of creating the timeline and performing the animation. This type of animation is
easier to use.

Sometimes you may want to perform multiple transitions sequentially or simultaneously. The
SequentialTransition and ParallelTransition classes let you perform a set of transitions sequentially and
simultaneously, respectively.

The Duration class is in the javafx.util package. It represents a duration of time in milliseconds, seconds,
minutes, and hours. It is an immutable class. A Duration represents the amount of time for each cycle of an
animation. A Duration can represent a positive or negative duration.

An instance of the KeyValue class represents a key value that is interpolated for a particular interval during
animation. It encapsulates three things:

A target•	

An end value for the target•	

An interpolator•	

Figure 9-24.  A class diagram for core classes used in animation

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

662

The target is a WritableValue, which qualifies all JavaFX properties to be a target. The end value is the value for
the target at the end of the interval. The interpolator is used to compute the intermediate key frames.

A key frame defines the target state of a node at a specified point on the timeline. The target state is defined by the
key values associated with the key frame. A key frame encapsulates four things:

An instant on the timeline•	

A set of •	 KeyValues

A name•	

An •	 ActionEvent handler

The instant on the timeline to which the key frame is associated is defined by a Duration, which is an offset of the
key frame on the timeline. The set of KeyValues define the end value of the target for the key frame. A key frame may
optionally have a name that can be used as a cue point to jump to the instant defined by it during the animation. The
getCuePoints() method of the Animation class returns an ObservableMap of cue points on the Timeline. Optionally,
you can attach an ActionEvent handler to a KeyFrame. The ActionEvent handler is called when the time for the key
frame arrives during animation. An instance of the KeyFrame class represents a key frame.

Using the Timeline Animation
A timeline animation is used for animating any properties of a node. An instance of the Timeline class represents a
timeline animation. Using a timeline animation involves the following steps:

Construct key frames•	

Create a •	 Timeline object with key frames

Set the animation properties•	

Use the •	 play() method to run the animation

You can add key frames to a Timeline at the time of creating it or after. The Timeline instance keeps all key
frames in an ObservableList<KeyFrame> object. The getKeyFrames() method returns the reference of the list. You
can modify the list of key frames at any time. If the timeline animation is already running, you need to stop and restart
it to pick up the modified list of key frames.

The Timeline class contains several constructors:

•	 Timeline()

•	 Timeline(double targetFramerate)

•	 Timeline(double targetFramerate, KeyFrame... keyFrames)

•	 Timeline(KeyFrame... keyFrames)

The no-args constructor creates a Timeline with no key frames with animation running at the optimum rate.
Other constructors let you specify the target frame rate for the animation, which is the number of frames per second,
and the key frames. Note that the order in which the key frames are added to a Timeline is not important. The
timeline will order them based on their time offset.

The program in Listing 9-22 starts a timeline animation that scrolls a text horizontally from right to left across the
scene forever. Figure 9-25 shows a screenshot of the animation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

663

Listing 9-22.  Scrolling a Text Node Using a Timeline Animation

// ScrollingText.java
package com.jdojo.jfx;
 
import javafx.animation.KeyFrame;
import javafx.animation.KeyValue;
import javafx.animation.Timeline;
import javafx.application.Application;
import javafx.geometry.VPos;
import javafx.scene.Scene;
import javafx.scene.layout.Pane;
import javafx.scene.text.Font;
import javafx.scene.text.Text;
import javafx.stage.Stage;
import javafx.util.Duration;
 
public class ScrollingText extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }
 
 @Override
 public void start(Stage stage) {
 Text msg = new Text("JavaFX animation is cool!");
 msg.setTextOrigin(VPos.TOP);
 msg.setFont(Font.font(24));
 
 Pane root = new Pane(msg);
 root.setPrefSize(500, 70);
 Scene scene = new Scene(root);
 
 stage.setScene(scene);
 stage.setTitle("Scrolling Text");
 stage.show();
 
 /* Set up a Timeline animation */
 // Get the scene width and the text width
 double sceneWidth = scene.getWidth();
 double msgWidth = msg.getLayoutBounds().getWidth();
 
 // Create the initial and final key frames
 KeyValue initKeyValue =
 new KeyValue(msg.translateXProperty(), sceneWidth);
 KeyFrame initFrame = new KeyFrame(Duration.ZERO, initKeyValue);
 
 KeyValue endKeyValue =
 new KeyValue(msg.translateXProperty(), -1.0 * msgWidth);
 KeyFrame endFrame =
 new KeyFrame(Duration.seconds(3), endKeyValue);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

664

 // Create a Timeline object
 Timeline timeline = new Timeline(initFrame, endFrame);
 
 // Let the animation run forever
 timeline.setCycleCount(Timeline.INDEFINITE);
 
 // Start the animation
 timeline.play();
 }
} 

Figure 9-25.  Scrolling text using a timeline animation

The logic to perform the animation is in the start() method. The method starts with creating a Text object, a
Pane with the Text object, and setting up a scene for the stage. After showing the stage, it sets up an animation. First, it
gets the width of the scene and the Text object.
 
double sceneWidth = scene.getWidth();
double msgWidth = msg.getLayoutBounds().getWidth();
 

Two key frames are created: one for time = 0 seconds and one for time = 3 seconds. The animation uses the
translateX property of the Text object to change its horizontal position to make it look scroll. At zero seconds, the
Text is positioned at the scene width, so it is invisible. At 3 seconds, it is placed to the left of the scene at a distance
equal to its length, so again it is invisible.
 
KeyValue initKeyValue = new KeyValue(msg.translateXProperty(), sceneWidth);
KeyFrame initFrame = new KeyFrame(Duration.ZERO, initKeyValue);
 
KeyValue endKeyValue = new KeyValue(msg.translateXProperty(), -1.0 * msgWidth);
KeyFrame endFrame = new KeyFrame(Duration.seconds(3), endKeyValue);
 

A Timeline object is created with two key frames.
 
Timeline timeline = new Timeline(initFrame, endFrame);
 

By default, the animation will run only one time. That is, the Text will scroll from right to left once and the
animation will stop. You can set the cycle count for an animation, which is the number of times the animation needs
to run. You run your animation forever by setting the cycle count to Timeline.INDEFINITE as follows:
 
timeline.setCycleCount(Timeline.INDEFINITE);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

665

Finally, the animation is started by calling the play() method.
 
timeline.play();
 

This example has a flaw. The scrolling text does not update its initial horizontal position when the width of the
scene changes. You can rectify this problem by updating the initial key frame whenever the scene width changes.
Append the following statement to the start() method of Listing 9-22. It adds a ChangeListener for the scene’s width
that updates key frames and restarts the animation.
 
scene.widthProperty().addListener((prop, oldValue , newValue) -> {
 KeyValue kv = new KeyValue(msg.translateXProperty(), scene.getWidth());
 KeyFrame kf = new KeyFrame(Duration.ZERO, kv);
 timeline.stop();
 timeline.getKeyFrames().clear();
 timeline.getKeyFrames().addAll(kf, endFrame);
 timeline.play();
});
 

It is possible to create a Timeline animation with only one key frame. The key frame is treated as the last key
frame. The Timeline synthesizes an initial key frame (for time = 0 seconds) using the current values for the property
being animated. To see the effect, replace the statement
 
Timeline timeline = new Timeline(initFrame, endFrame);
 
in Listing 9-22 with the following statement
 
Timeline timeline = new Timeline(endFrame);
 

The Timeline will create an initial key frame with the current value of translateX property of the Text object,
which is 0.0. This time, the Text scrolls differently. The scrolling starts by placing the Text at 0.0 and scrolling it to the
left, so it goes beyond the scene.

FXML
FXML is an XML-based language for building a user interface for JavaFX applications. You can use FXML to build
an entire scene or part of a scene. FXML allows application developers to separate the logic for building the UI from
the business logic. If the UI part of the application changes, you do not need to recompile the JavaFX code; you can
change the FXML using a text editor and rerun the application. You still use JavaFX to write business logic using the
Java programming language. An FXML document is an XML document. A basic knowledge of XML is required to
understand FXML.

A JavaFX scene graph is a hierarchical structure of Java objects. The XML format is well suited for storing
information representing some kind of hierarchy. Therefore, using FXML to store the scene graph is very intuitive.

It is common to use FXML to build a scene graph in a JavaFX application. However, the use of FXML is not
limited to building only scene graphs. It can build a hierarchical object graph of Java objects. In fact, it can be used to
create just one object, for example, an object of a Person class.

Let’s get a quick preview of what an FXML document looks like. You want to create a simple UI. It consists of a
VBox with a Label and a Button. Listing 9-23 contains the JavaFX code to build the UI, which is familiar to you.
Listing 9-24 contains the FXML version for building the same UI.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

666

Listing 9-23.  Building an Object Graph in JavaFX

import javafx.scene.layout.VBox;
import javafx.scene.control.Label;
import javafx.scene.control.Button;
 
VBox root = new VBox();
root.getChildren().addAll(new Label("FXML is cool"),
 new Button("Say Hello"));

Listing 9-24.  Building an Object-Graph in FXML

<?xml version="1.0" encoding="UTF-8"?>
 
<?import javafx.scene.layout.VBox?>
<?import javafx.scene.control.Label?>
<?import javafx.scene.control.Button?>
 
<VBox>
 <children>
 <Label text="FXML is cool"/>
 <Button text="Say Hello"/>
 </children>
</VBox>
 

The first line in FXML is the standard XML declaration that is used by XML parsers. It is optional in FXML. If it
is omitted, the version and encoding are assumed to be 1 and UTF-8, respectively. The next three lines are import
statements that correspond to the import statements in Java code. Elements representing UI (for example, VBox,
Label, and Button) have the same name as the name of JavaFX classes. The <children> tag specifies the children of
the VBox. The text property for the Label and Button are specified using the text attributes of the respective elements.

An FXML document is simply a text file. Typically, the file name has a .fxml extension such as hello.fxml.
For example, you can use Notepad to create an FXML document on Windows. If you have used XML, you know
that it is not easy to edit a large XML document in a text editor. Oracle provides a visual editor called Scene Builder
for editing FXML documents. Scene Builder is open source. You can download its latest version from
www.oracle.com/technetwork/java/javase/downloads/javafxscenebuilder-info-2157684.html. Scene Builder
can also be integrated into NetBeans IDE, so you can edit FXML documents using Scene Builder from inside the
NetBeans IDE. Using Scene Builder is not discussed in this book.

In this section, I will cover the basics of FXML. You will develop a simple JavaFX application using FXML. The
application consists of the following:

A •	 VBox

A •	 Label

A •	 Button

The spacing for the VBox is set to 10px. The text properties for the Label and Button are set to FXML is cool!
and Say Hello. When the Button is clicked, the text in the Label changes to Hello from FXML!. Figure 9-26 shows
two instance of the window displayed by the application.

www.it-ebooks.info

http://www.oracle.com/technetwork/java/javase/downloads/javafxscenebuilder-info-2157684.html
http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

667

The program in Listing 9-25 is the JavaFX implementation of this example application using the Java
programming language to build the UI.

Listing 9-25.  The JavaFX Version of the FXML Example Application

// SayHelloFX.java
package com.jdojo.jfx;
 
import javafx.application.Application;
import javafx.event.ActionEvent;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;
 
public class SayHelloFX extends Application {
 private Label msgLbl = new Label("FXML is coll!");
 private Button sayHelloBtn = new Button("Say Hello");
  
 public static void main(String[] args) {
 Application.launch(args);
 }
 
 @Override
 public void start(Stage stage) {
 // Set the preferred width of the lable
 msgLbl.setPrefWidth(150);
  
 // Set the ActionEvent handler for the button
 sayHelloBtn.setOnAction(this::sayHello);
 
 VBox root = new VBox(10);
 root.getChildren().addAll(msgLbl, sayHelloBtn);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

Figure 9-26.  Two instances of a window whose scene graph is created using FXML

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

668

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Hello FXML");
 stage.show();
 }
  
 public void sayHello(ActionEvent e) {
 msgLbl.setText("Hello from FXML!");
 }
}
 

Now let’s build another version of the program in Listing 9-25 in which the UI will be built using FXML. Create an
FXML file sayhello.fxml with the contents shown in Listing 9-26. Listing 9-26 is the FXML document for your example.
It will create the root element for the scene shown in Figure 9-26. Save the sayhello.fxml file in the resources/fxml
directory where the parent directory of the resources directory is included in the CLASSPATH for the application.
Suppose, on Windows, you have added C:\myjavafx in the CLASSPATH; the path of sayhello.fxml will be
 
 C:\myjavafx\resources\fxml\sayhello.fxml

Listing 9-26.  The Contents of the sayhello.fxml File

<?xml version="1.0" encoding="UTF-8"?>
<?language javascript?>
<?import javafx.scene.Scene?>
<?import javafx.scene.layout.VBox?>
<?import javafx.scene.control.Label?>
<?import javafx.scene.control.Button?>
 
<VBox spacing="10" xmlns:fx="http://javafx.com/fxml">
 <Label fx:id="msgLbl" text="FXML is cool!" prefWidth="150"/>
 <Button fx:id="sayHelloBtn" text="Say Hello" onAction="sayHello()"/>
 <style>
 -fx-padding: 10;
 -fx-border-style: solid inside;
 -fx-border-width: 2;
 -fx-border-insets: 5;
 -fx-border-radius: 5;
 -fx-border-color: blue;
 </style>
 <fx:script>
 function sayHello() {
 msgLbl.setText("Hello from FXML!");
 }
 </fx:script>
</VBox>
 

You have set the spacing property for the VBox, the fx:id attribute for the Label and Button controls. You have
set the style property of the VBox using a <style> property element. You had an option to set the style using a style
attribute or a property element. You used a property element because the style value is a big string and it is more
readable if entered on multiple lines. The <fx:script> element defines a script block with one function, sayHello().
The function sets the text property of the Label identified by the msgLbl fx:id attribute. You have set the sayHello()
function as the onAction attribute of the Button, so when the Button is clicked, the sayHello() function is executed.

www.it-ebooks.info

http://javafx.com/fxml
http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

669

To build the UI from an FML, you need to load it into the JavaFX program. Loading an FXML is performed by an
instance of the FXMLLoader class, which is in the javafx.fxml package.

The FXMLLoader class provides several constructors that let you specify the location, charset, resource bundle,
etc. to be used for loading the document. You need to specify at least the location of the FXML document, which is
a URL. The class contains a load() method to perform the actual loading of the document. The following snippet of
code loads an FXML document from a local file system in Windows:
 
// Build the URL to locate the FXMl file
String fxmlDocUrl = "file:///C:/resources/fxml/test.fxml";
URL fxmlUrl = new URL(fxmlDocUrl);
 
// Create an FXMLLoader object and set its location that is the URL of the
// FML contents
FXMLLoader loader = new FXMLLoader();
loader.setLocation(fxmlUrl);
 
// Load the FXML that will return a VBox
VBox root = loader.<VBox>load();
 

The load() method is has a generic return type. In the above snippet of code, you made your intention clear
in the call to the load() method (loader.<VBox>load()) that you are expecting a VBox instance from the FXML
document. If you prefer, you may omit the generic parameter as shown:
 
// The return type of the load() method will be inferred as VBox
VBox root = loader.load();
 

The FXMLLoader class supports loading an FXML document using an InputStream. The following snippet of code
loads the same FXML document using an InputStream:
 
FXMLLoader loader = new FXMLLoader();
String fxmlDocPath = "C:\\resources\\fxml\\test.fxml";
FileInputStream fxmlStream = new FileInputStream(fxmlDocPath);
VBox root = loader.<VBox>load(fxmlStream);
 

Internally, the FXMLLoader reads the document using streams, which may throw an IOException. All versions
of the load() method in FXMLLoader class throws an IOException. I have omitted the exception handling in these
snippets of code to keep the simple. In your application, you will need to handle the exception.

What do you do next after loading an FXML document? At this point, the role of FXML is over and your JavaFX
code should take over.

The program in Listing 9-27 contains the JavaFX code for the example. It loads the FXML document stored in the
sayhello.fxml file. The program loads the document from the CLASSPATH. The loader returns a VBox, which is set as
the root for the scene. Rest of the code is the same you have used before. Note one difference in the declaration of the
start() method. The method declares that it may throw an IOException, which you have to add because you have
called the load() method of the FXMLLoader inside the method. When you run the program, it displays a window as
shown in Figure 9-26. Click the button and the text for the Label will change.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

670

Listing 9-27.  Using FXML to Build the GUI

// SayHelloFXML.java
package com.jdojo.jfx;
 
import javafx.application.Application;
import javafx.fxml.FXMLLoader;
import java.io.IOException;
import java.net.URL;
import javafx.scene.Scene;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;
 
public class SayHelloFXML extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }
 
 @Override
 public void start(Stage stage) throws IOException {
 // Construct a URL for the FXML document
 URL fxmlUrl = this.getClass()
 .getClassLoader()
 .getResource("resources/fxml/sayhello.fxml");
 
 // Load the FXML document
 VBox root = FXMLLoader.<VBox>load(fxmlUrl);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Hello FXML");
 stage.show();
 }
}
 

FXML offers a lot more than what you have seen in this example. Using FXML, you can bind the UI elements to
variables in JavaFX, data binding, and event handling, create custom controls, etc. Discussing these features is beyond
the scope of this book.

Printing
JavaFX 8 has added support for printing nodes through the Print API in the javafx.print package. The API consists of
the following classes and a number of enums (not listed):

•	 Printer

•	 PrinterAttributes

•	 PrintResolution

•	 PrinterJob

•	 JobSettings

•	 Paper

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

671

•	 PaperSource

•	 PageLayout

•	 PageRange

Instances of these classes represent different components of the printing process. For example, a Printer
represents a printer that can be used for printing jobs; a PrinterJob represents a print job that can be sent to a
Printer for printing; a Paper represents the paper sizes available on printers, etc.

The Print API provides support for printing nodes that may or may not be attached to a scene graph. It is a
common requirement to print the contents of a web page, not the WebView node that contains the web page. The
javafx.scene.web.WebEngine class contains a print(PrinterJob job) method that prints the contents of the web
page, not the WebView node.

If a node is modified during the printing process, the printed node may not appear correct. Note that the printing
of a node may span multiple pulse events, resulting in a concurrent change in the content being printed. To ensure
correct printing, make sure that the node being printed is not modified during the print process.

Nodes can be printed on any thread including the JavaFX Application Thread. It is recommended that a large,
time-consuming print job be submitted on a background thread to keep the UI responsive.

Classes in the Print API are final as they represent existing printing device properties. Most of them do not
provide any public constructors as you cannot make up a printing device. Rather, you obtain their references using
factory methods in the classes.

The Printer.getAllPrinters() static method returns an observable list of installed printers on the machine.
Note that the list of printers returned by the method may change over time as new printers are installed or old printers
removed. Use the getName() method of the Printer to get the name of the printer represented by the Printer. The
following snippet of code lists all installed printers on the machine running the code. You may get a different output.
 
import javafx.collections.ObservableSet;
import javafx.print.Printer;
...
ObservableSet<Printer> allPrinters = Printer.getAllPrinters();
for(Printer p : allPrinters) {
 System.out.println(p.getName());
} 

ImageRight Printer
Microsoft XPS Document Writer
PDF995
Sybase DataWindow PS
\\pro-print1\IS-HP4000
\\pro-print1\IS-HP4650(Color) 

The Printer.getDefaultPrinter() method returns the default Printer. The method may return null if no
printer is installed. The default printer may be changed on a machine. Therefore, the method may return different
printers from call to call, and the printer returned may not be valid after some time. The following snippet of code
shows how to get the default printer:
 
Printer defaultPrinter = Printer.getDefaultPrinter();
if (defaultPrinter!= null) {
 String name = defaultPrinter.getName();
 System.out.println("Default printer name: " + name);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

672

else {
 System.out.println("No printers installed.");
}
 

Printing a node is easy: create a PrinterJob and call its printPage() method passing the node to be printed.
Printing a node using the default printer with all default settings takes only three lines of code:
 
PrinterJob printerJob = PrinterJob.createPrinterJob();
printerJob.printPage(myNode); // myNode is the node to be printed
printerJob.endJob();
 

In a real-world application, you want to handle the errors, and the above code is rewritten as follows:
 
// Create a printer job for the default printer
PrinterJob printerJob = PrinterJob.createPrinterJob();
if (printerJob!= null) {
 // Print the node
 boolean printed = printerJob.printPage(node);
 if (printed) {
 // End the printer job
 printerJob.endJob();
 }
 else {
 System.out.println("Printing failed.");
 }
}
else {
 System.out.println("Could not create a printer job.");
}
 

You can use the createPrinterJob() static method of the PrinterJob class to create a printer job. The method is
overloaded as shown:

•	 static PrinterJob createPrinterJob()

•	 static PrinterJob createPrinterJob(Printer printer)

The method with no-args creates a printer job for the default printer. You can use the other version of the method
to create a printer job for the specified printer.

You can change the printer for a PrinterJob by calling its setPrinter() method. If the current printer job
settings are not supported by the new printer, the settings are reset automatically for the new printer.
 
// Set a new printer for the printer job
printerJob.setPrinter(myNewPrinter);
 

Setting null as the printer for the job will use the default printer. Use one of the following printPage() methods
of the PrinterJob class to print a node:

•	 boolean printPage(Node node)

•	 boolean printPage(PageLayout pageLayout, Node node)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

673

The first version of the method takes only the node to be printed as the parameter. It uses the default page layout
for the job for printing. The second version lets you specify a page layout for printing the node. The method returns
true if the printing was successful. Otherwise, it returns false.

When you are done printing, call the endJob() method. The method returns true if the job can be successfully
spooled to the printer queue. Otherwise, it returns false, which may indicate that the job could not be spooled or it
was already completed. After a successful completion of the job, the job can no longer be reused.

You can cancel a print job using the cancelJob() method of the PrinterJob. The printing may not be cancelled
immediately, for example, when a page is in the middle of printing. The cancellation occurs as soon as possible. The
method does not have any effect if

The job has already been requested to be cancelled.•	

The job is already completed.•	

The job has error.•	

The PrinterJob class contains a read-only jobStatus property that indicates the current status of the print job.
The status is defined by one of the following constants of the PrinterJob.JobStatus enum:

•	 NOT_STARTED

•	 PRINTING

•	 CANCELED

•	 DONE

•	 ERROR

The NOT_STARTED status indicates a new job. In this status, the job can be configured and printing can be initiated.
The PRINTING status indicates that the job has requested to print at least one page and it has not terminated printing.
In this status, the job cannot be configured.

The other three statuses, CANCELED, DONE, and ERROR, indicate terminated state of the job. Once the job is in
one of these statuses, it should not be reused. There is no need to call the endJob() method when the status goes to
CANCELED or ERROR. The DONE status is entered when the printing was successful and the endJob() method was called.

The program in Listing 9-28 shows how to print nodes. It displays a TextArea where you can enter text. Two
Buttons are provided: one prints the TextArea node and the other the entire scene. When printing is initiated, the
print job status is displayed in a Label. The code in the print() method is the same code you have seen in the
examples. The method includes the logic to display the job status in the Label. The program displays a window as
shown in Figure 9-27. Run the program, enter text in the TextArea, and click one of the two buttons to print.

Listing 9-28.  Printing Nodes

// PrintingNodes.java
package com.jdojo.jfx;
 
import javafx.application.Application;
import javafx.print.PrinterJob;
import javafx.scene.Node;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TextArea;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

674

public class PrintingNodes extends Application {
 private Label jobStatus = new Label();
 
 public static void main(String[] args) {
 Application.launch(args);
 }
 
 @Override
 public void start(Stage stage) {
 VBox root = new VBox(5);
 
 Label textLbl = new Label("Text:");
 TextArea text = new TextArea();
 text.setPrefRowCount(10);
 text.setPrefColumnCount(20);
 text.setWrapText(true);
 
 // Button to print the TextArea node
 Button printTextBtn = new Button("Print Text");
 printTextBtn.setOnAction(e -> print(text));
 
 // Button to print the entire scene
 Button printSceneBtn = new Button("Print Scene");
 printSceneBtn.setOnAction(e -> print(root));
 
 HBox jobStatusBox =
 new HBox(5, new Label("Print Job Status:"), jobStatus);
 HBox buttonBox = new HBox(5, printTextBtn, printSceneBtn);
 
 root.getChildren().addAll(textLbl, text, jobStatusBox, buttonBox);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Printing Nodes");
 stage.show();
 }
 
 private void print(Node node) {
 jobStatus.textProperty().unbind();
 jobStatus.setText("Creating a printer job...");
 
 // Create a printer job for teh default printer
 PrinterJob job = PrinterJob.createPrinterJob();
 if (job != null) {
 // Show the printer job status
 jobStatus.textProperty().bind(job.jobStatusProperty().asString());
 
 // Print the node
 boolean printed = job.printPage(node);
 if (printed) {
 // End the printer job
 job.endJob();
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

675

 else {
 jobStatus.textProperty().unbind();
 jobStatus.setText("Printing failed.");
 }
 }
 else {
 jobStatus.setText("Could not create a printer job.");
 }
 }
} 

The Printing API provides more printing features, such as displaying the print dialog. Please refer to the JavaFX
API documentation for classes in the javafx.print package for more details.

Summary
JavaFX is an open source Java-based GUI framework for developing rich client applications. It is the successor of
Swing in the arena of GUI development technology in the Java platform.

The GUI in JavaFX is shown in a stage. A stage is an instance of the Stage class. A stage is a window in a desktop
application and an area in the browser in a web application. A stage contains a scene. A scene contains a group of
nodes (graphics) arranged in a tree-like structure.

A JavaFX application inherits from the Application class. The JavaFX runtime creates the first stage called the
primary stage and calls the start() method of the application class, passing the reference of the primary stage. The
developer needs to add a scene to the stage and make the stage visible.

JavaFX supports property classes whose instances are used to represent properties of classes. Properties support
unidirectional and bidirectional bindings. If a property is bound to an expression, the property value is synchronized
automatically with the value of the expression. Properties support invalidation and change notifications. Interested
parties can register for these notifications. They are notified when the properties become invalid or its value changes.
A property becomes invalid when its dependencies change.

JavaFX provides observable list, set, and map that are instances of the ObservableList, ObservableSet, and
ObservableMap interfaces. They can be observed for invalidation and changes. The FXCollections class contains
factory methods to create instances of such observable collections.

Figure 9-27.  A window letting the user print text in a TextArea and the scene

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to JavaFX

676

JavaFX supports event-handling for UI elements. You can register event handlers for UI elements. When the event
occurs, your registered event handlers are executed.

JavaFX provides layout panes that are containers for nodes. They arrange the nodes in a particular way. For
example, the HBox layout pane arranges nodes by placing them horizontally in one row whereas the VBox layout pane
arranges nodes by placing them vertically in one column. JavaFX provides a rich set of controls such as Button, Label,
ChoiceBox, ComboBox, TextField, DatePicker, etc. The HTMLEditor control provides the editing capability to edit
rich text. The WebView node is used to display the contents of a webpage.

JavaFX provides extensive support for drawing 2D and 3D shapes. It provides the Canvas API to draw 2D
shapes on a canvas using the drawing commands. The Canvas API also lets you access (read and write) pixels on
the canvas surface.

You can apply effects, transformations, and animations to nodes in a scene by writing a few lines of code. JavaFX
supports FXML, an XML-based markup language for building the GUI for a JavaFX application. You can print nodes
and the contents of a web page using the Printing API.

www.it-ebooks.info

http://www.it-ebooks.info/

677

Chapter 10

Scripting in Java

In this chapter, you will learn

What scripting in Java is•	

How to execute scripts from Java and how to pass parameters to scripts•	

How the •	 ScriptContext is used in executing scripts

How to use the Java programming language in scripts•	

How to implement a script engine•	

How to use the •	 jrunscript and jjs command-line tools to execute scripts

What Is Scripting in Java?
Some believe that the Java Virtual Machine (JVM) can execute programs written only in the Java programming
language. However, that is not true. The JVM executes language-neutral bytecode. It can execute programs written in
any programming language, if the program can be compiled into Java bytecode.

A scripting language is a programming language that provides you with the ability to write scripts that are evaluated
(or interpreted) by a runtime environment called a script engine (or an interpreter). A script is a sequence of characters
that is written using the syntax of a scripting language and used as the source for a program executed by an interpreter.
The interpreter parses the scripts, produces intermediate code, which is an internal representation of the program, and
executes the intermediate code. The interpreter stores the variables used in a script in data structures called symbol tables.

Typically, unlike in a compiled programming language, the source code (called a script) in a scripting language
is not compiled, but is interpreted at runtime. However, scripts written in some scripting languages may be compiled
into Java bytecode that can be run by the JVM.

Java 6 added scripting support to the Java platform that lets a Java application execute scripts written in scripting
languages such as Rhino JavaScript, Groovy, Jython, JRuby, Nashorn JavaScript, etc. Two-way communication is
supported. It also lets scripts access Java objects created by the host application. The Java runtime and a scripting
language runtime can communicate and make use of each other’s features.

Support for scripting languages in Java comes through the Java Scripting API. All classes and interfaces in the Java
Scripting API are in the javax.script package.

Using a scripting language in a Java application provides several advantages:

Most scripting languages are dynamically typed, which makes it simpler to write programs.•	

They provide a quicker way to develop and test small applications.•	

Customization by end users is possible.•	

A scripting language may provide domain-specific features that are not available in Java.•	

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

678

Scripting languages have some disadvantages as well. For example, dynamic typing is good to write simpler
code; however, it turns into a disadvantage when a type is interpreted incorrectly and you have to spend a lot of time
debugging it.

Scripting support in Java lets you take advantage of both worlds: it allows you to use the Java programming
language for developing statically typed, scalable, and high-performance parts of the application and use a scripting
language that fits the domain-specific needs for other parts.

I will use the term script engine frequently in this chapter. A script engine is a software component that
executes programs written in a particular scripting language. Typically, but not necessarily, a script engine is an
implementation of an interpreter for a scripting language. Interpreters for several scripting languages have been
implemented in Java. They expose programming interfaces so a Java program may interact with them.

JDK 7 was co-bundled with a script engine called Rhino JavaScript. JDK 8 replaced the Rhino JavaScript engine
with a lightweight, faster script engine called Nashorn JavaScript. This chapter discusses Nashorn JavaScript, not
Rhino JavaScript. Please visit www.mozilla.org/rhino for more details on Rhino JavaScript documentation.
If you want to migrate programs written with Rhino JavaScript to Nashorn, please visit the Rhino Migration Guide at
https://wiki.openjdk.java.net/display/Nashorn/Rhino+Migration+Guide. If you are interested in using Rhino
JavaScript with JDK 8, visit the page at https://wiki.openjdk.java.net/display/Nashorn/Using+Rhino+JSR-
223+engine+with+JDK8.

Java includes a command-line shell called jrunscript that can be used to run scripts in an interactive mode or a
batch mode. The jrunscript shell is scripting-language-neutral; the default language is Rhino JavaScript in JDK 7 and
Nashorn in JDK 8. I will discuss the jrunscript shell in detail later in this chapter. JDK 8 includes another command-
line tool called jjs that invokes the Nashorn engine and offers Nashorn-specific command-line options. If you are
using Nashorn, you should use the jjs command-line tool over jrunscript. I will discuss the jjs command-line tool
later in this chapter.

Java can execute scripts in any scripting language that provides an implementation for a script engine. For
example, Java can execute scripts written in Nashorn JavaScript, Rhino JavaScript, Groovy, Jython, JRuby, etc.
Examples in this chapter use Nashorn JavaScript language.

In this chapter, the terms “Nashorn,” “Nashorn Engine,” “Nashorn JavaScript,” “Nashorn JavaScript Engine,”
“Nashorn Scripting Language,” and “JavaScript” have been used synonymously.

Executing Your First Script
In this section, you will use Nashorn to print a message on the standard output. The same steps can be used to print a
message using any other scripting languages, with one difference: you will need to use the scripting language-specific
code to print the message. You need to perform the following three steps to run a script in Java:

Create a script engine manager.•	

Get an instance of a script engine from the script engine manager.•	

Call the •	 eval() method of the script engine to execute a script.

A script engine manager is an instance of the ScriptEngineManager class.
 
// Create an script engine manager
ScriptEngineManager manager = new ScriptEngineManager();
 

An instance of the ScriptEngine interface represents a script engine in a Java program. The
getEngineByName(String engineShortName) method of a ScriptEngineManager is used to get an instance of a script
engine. To get an instance of the Nashorn engine, use JavaScript as the short name of the engine as shown:
 
// Get the reference of a Nashorn engine
ScriptEngine engine = manager.getEngineByName("JavaScript");
 

www.it-ebooks.info

http://www.mozilla.org/rhino
https://wiki.openjdk.java.net/display/Nashorn/Rhino+Migration+Guide
https://wiki.openjdk.java.net/display/Nashorn/Using+Rhino+JSR-223+engine+with+JDK8
https://wiki.openjdk.java.net/display/Nashorn/Using+Rhino+JSR-223+engine+with+JDK8
http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

679

Tip■■  T he short name of a script engine is case-sensitive. Sometimes a script engine has multiple short names.
Nashorn engine has the following short names: nashorn, Nashorn, js, JS, JavaScript, javascript, ECMAScript,
ecmascript. You can use any of the short names of an engine to get its instance using the getEngineByName() method
of the ScriptEngineManager class.

In Nashorn, the print() function prints a message on the standard output and a string literal is a sequence of
characters enclosed in single or double quotes. The following snippet of code stores a script in a String object that
prints Hello Scripting! on the standard output:
 
// Store a Nashorn script in a string
String script = "print('Hello Scripting!')";
 

If you want to use double quotes to enclose the string literal in Nashorn, the statement will look as shown:
 
// Store a Nashorn script in a string
String script = "print(\"Hello Scripting!\")";
 

To execute the script, you need to pass it to the eval() method of the script engine. A script engine may throw a
ScriptException when it runs a script. For this reason, you need to handle this exception when you call the eval()
method of the ScriptEngine. The following snippet of code executes the script stored in the script variable:
 
try {
 engine.eval(script);
}
catch (ScriptException e) {
 e.printStackTrace();
}
 

Listing 10-1 contains the complete code for the program to print a message on the standard output.

Listing 10-1.  Printing a Message on the Standard Output Using Nashorn

// HelloScripting.java
package com.jdojo.script;
 
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;
 
public class HelloScripting {
 public static void main(String[] args) {
 // Create a script engine manager
 ScriptEngineManager manager = new ScriptEngineManager();
 
 // Obtain a Nashorn script engine from the manager
 ScriptEngine engine = manager.getEngineByName("JavaScript");
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

680

 // Store the script in a String
 String script = "print('Hello Scripting!')";
  
 try {
 // Execute the script
 engine.eval(script);
 }
 catch (ScriptException e) {
 e.printStackTrace();
 }
 }
} 

Hello Scripting!

Using Other Scripting Languages
It is very simple to use a scripting language, other than Nashorn, in a Java program. You need to perform only one task
before you can use a script engine: include the JAR files for a particular script engine in your application CLASSPATH.
Implementers of script engines provide those JAR files.

Java uses a discovery mechanism to list all script engines whose JAR files have been included in the
application CLASSPATH. An instance of the ScriptEngineFactory interface is used to create and describe a script
engine. The provider of a script engine provides an implementation for the ScriptEngineFactory interface. The
getEngineFactories() method of the ScriptEngineManager returns a List<ScriptEngineFactory> of all available
script engines factories. The getScriptEngine() method of the ScriptEngineFactory returns an instance of the
ScriptEngine. Several other methods of the factory return metadata about the engine.

Listing 10-2 shows how to print details of all available script engines. The output shows that the script engine for
Groovy, Jython, and JRuby are available. They are available because I have added the JAR files for their engines to the
CLASSPATH on my machine. This program is helpful when you have included the JAR files for a script engine in
the CLASSPATH and you want to know the short name of the script engine. You may get a different output when you
run the program.

Listing 10-2.  Listing All Available Script Engines

// ListingAllEngines.java
package com.jdojo.script;
 
import java.util.List;
import javax.script.ScriptEngineFactory;
import javax.script.ScriptEngineManager;
 
public class ListingAllEngines {
 public static void main(String[] args) {
 ScriptEngineManager manager = new ScriptEngineManager();
  
 // Get the list of all available engines
 List<ScriptEngineFactory> list = manager.getEngineFactories();
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

681

 // Print the details of each engine
 for (ScriptEngineFactory f : list) {
 System.out.println("Engine Name:" + f.getEngineName());
 System.out.println("Engine Version:" +
 f.getEngineVersion());
 System.out.println("Language Name:" + f.getLanguageName());
 System.out.println("Language Version:" +
 f.getLanguageVersion());
 System.out.println("Engine Short Names:" + f.getNames());
 System.out.println("Mime Types:" + f.getMimeTypes());
 System.out.println("----------------------------");
 }
 }
}

Engine Name:jython
Engine Version:2.5.3
Language Name:python
Language Version:2.5
Engine Short Names:[python, jython]
Mime Types:[text/python, application/python, text/x-python, application/x-python]

Engine Name:JSR 223 JRuby Engine
Engine Version:1.7.0.preview1
Language Name:ruby
Language Version:jruby 1.7.0.preview1
Engine Short Names:[ruby, jruby]
Mime Types:[application/x-ruby]

Engine Name:Groovy Scripting Engine
Engine Version:2.0
Language Name:Groovy
Language Version:2.0.0-rc-2
Engine Short Names:[groovy, Groovy]
Mime Types:[application/x-groovy]

Engine Name:Oracle Nashorn
Engine Version:1.8.0_05
Language Name:ECMAScript
Language Version:ECMA - 262 Edition 5.1
Engine Short Names:[nashorn, Nashorn, js, JS, JavaScript, javascript, ECMAScript, ecmascript]
Mime Types:[application/javascript, application/ecmascript, text/javascript, text/ecmascript]

Table 10-1 lists details on how to install script engines before you can use them in your Java application.
The list of web sites and instructions are valid at the time of this writing; they may become invalid at the time of
reading. However, they show you how a script engine for a scripting language is installed. If you are interested in
using Nashorn, you do not need to install anything on your machine. Nashorn is available in JDK 8.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

682

Listing 10-3 shows how to print a message on the standard output using JavaScript, Groovy, Jython, and JRuby.
If a script engine is not available, the program prints a message to that effect.

Listing 10-3.  Printing a Message on the Standard Output Using Different Scripting Languages

// HelloEngines.java
package com.jdojo.script;
 
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;
 
public class HelloEngines {
 public static void main(String[] args) {
 // Get the script engine manager
 ScriptEngineManager manager = new ScriptEngineManager();
 
 // Try executing scripts in Nashorn, Groovy, Jython, and JRuby
 execute(manager, "JavaScript", "print('Hello JavaScript')");
 execute(manager, "Groovy", "println('Hello Groovy')");
 execute(manager, "jython", "print 'Hello Jython'");
 execute(manager, "jruby", "puts('Hello JRuby')");
 }
 
 public static void execute(ScriptEngineManager manager,
 String engineName,
 String script) {
 // Try getting the engine
 ScriptEngine engine = manager.getEngineByName(engineName);
 if (engine == null) {
 System.out.println(engineName + " is not available.");
 return;
 }
 
 // If we get here, it means we have the engine installed.
 // So, run the script

Table 10-1.  Installation Details for Installing Some Script Engines

Script Engine Version Website Installation Instructions

Groovy 2.3 groovy.codehaus.org Download the installation file for Groovy; it’s a ZIP file. Unzip
it. Look for a JAR file named groovy-all-2.0.0-rc-2.jar in
the embeddable folder. Add this JAR file to the CLASSPATH.

Jython 2.5.3 www.jython.org Download the Jython installer file that is a JAR file. Extract
the jython.jar file and add it to the CLASSPATH.

JRuby 1.7.13 www.jruby.org Download the JRuby installation file. You have an option to
download a ZIP file. Unzip it. In the lib folder, you will find a
jruby.jar file that you need to include in the CLASSPATH.

www.it-ebooks.info

http://groovy.codehaus.org
http://www.jython.org/
http://www.jruby.org/
http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

683

 try {
 engine.eval(script);
 }
 catch (ScriptException e) {
 e.printStackTrace();
 }
 }
}

Hello JavaScript
Hello Groovy
Hello Jython
Hello JRuby 

Sometimes you may want to play with a scripting language just for fun, and you do not know the syntax that
is used to print a message on the standard output. The ScriptEngineFactory class contains a method named
getOutputStatement(String toDisplay) that you can use to find the syntax for printing text on the standard output.
The following snippet of code shows how to get the syntax for Nashorn:
 
// Get the script engine factory for Nashorn
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName("JavaScript");
ScriptEngineFactory factory = engine.getFactory();
  
// Get the script
String script = factory.getOutputStatement("\"Hello JavaScript\"");
System.out.println("Syntax: " + script);
  
// Evaluate the script
engine.eval(script);

Syntax: print("Hello JavaScript")
Hello JavaScript 

For other scripting languages, use their engine factories to get the syntax.

Exploring the javax.script Package
The Java Scripting API in Java consists of a small number of classes and interfaces. They are in the javax.script
package. This chapter contains a brief description of classes and interfaces in this package. I will discuss their usage in
subsequent chapters.

The ScriptEngine and ScriptEngineFactory Interfaces
The ScriptEngine interface is the main interface of the Java Scripting API whose instances facilitate the execution of
scripts written in a particular scripting language.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

684

The implementer of the ScriptEngine interface also provides an implementation of the ScriptEngineFactory
interface. A ScriptEngineFactory performs two tasks:

It creates instances of the script engine.•	

It provides information about the script engine such as engine name, version, language, etc.•	

The AbstractScriptEngine Class
The AbstractScriptEngine class is an abstract class. It provides a partial implementation for the ScriptEngine
interface. You will not use this class directly unless you are implementing a script engine.

The ScriptEngineManager Class
The ScriptEngineManager class provides a discovery and instantiation mechanism for script engines. It also
maintains a mapping of key-value pairs as an instance of the Bindings interface storing state that is shared by all
script engines that it creates.

The Compilable Interface and the CompiledScript Class
The Compilable interface may optionally be implemented by a script engine that allows compiling scripts for their
repeated execution without recompilation.

The CompiledScript class is an abstract class. It is extended by the providers of a script engine. It stores a script
in a compiled form, which may be executed repeatedly without recompilation. Note that using a ScriptEngine to
execute a script repeatedly causes the script to recompile every time, thus slowing down the performance.

A script engine is not required to support script compilation. It must implement the Compilable interface if it
supports script compilation.

The Invocable Interface
The Invocable interface may optionally be implemented by a script engine that may allow invoking procedures,
functions, and methods in scripts that have been compiled previously.

The Bindings Interface and the SimpleBindings Class
An instance of a class that implements the Bindings interface is a mapping of key-value pairs with a restriction that
a key must be non-null, non-empty String. It extends the java.util.Map interface. The SimpleBindings class is an
implementation of the Bindings interface.

The ScriptContext Interface and the SimpleScriptContext Class
An instance of the ScriptContext interface acts as a bridge between the Java host application and the script engine.
It is used to pass the execution context of the Java host application to the script engine. The script engine may use
the context information while executing a script. A script engine may store its state in an instance of a class that
implements the ScriptContext interface, which may be accessible to the Java host application.

The SimpleScriptContext class is an implementation of the ScriptContext interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

685

The ScriptException Class
The ScriptException class is an exception class. A script engine throws a ScriptException if an error occurs during
the execution, compilation, or invocation of a script. The class contains three useful methods called getLineNumber(),
getColumnNumber(), and getFileName(). These methods report the line number, the column number, and the file
name of the script in which the error occurs. The ScriptException class overrides the getMessage() method of the
Throwable class and includes the line number, column number, and the file name in the message that it returns.

Discovering and Instantiating ScriptEngines
You can create a script engine using a ScriptEngineFactory or ScriptEngineManager. Who is actually responsible
for creating a script engine: ScriptEngineFactory, ScriptEngineManager, or both? The short answer is that a
ScriptEngineFactory is always responsible for creating instances of a script engine. The next question is “What is the
role of a ScriptEngineManager?”

A ScriptEngineManager uses the service provider mechanism to locate all available script engine factories.
It searches all JAR files in the CLASSPATH and other standard directories. It looks for a resource file, which is a text
file named javax.script.ScriptEngineFactory under a directory named META-INF/services. The resource file
consists of the fully qualified names of the classes implementing the ScriptEngineFactory interface. Each class name
is specified in a separate line. The file may include comments that start with a # character. A sample resource file may
have the following contents that include class names for two script engine factories:
 
#Java Kishori Script Engine Factory class
com.jdojo.script.JKScriptEngineFactory
 
#Another factory class
com.jdojo.script.FunScriptFactory
 

A ScriptEngineManager locates and instantiates all available ScriptEngineFactory classes. You can get a list of
instances of all factory classes using the getEngineFactories() method of the ScriptEngineManager class. When you call
a method of the manager to get a script engine based on a criterion such as the getEngineByName(String shortName)
method to get an engine by name, the manager searches all factories for that criterion and returns the matching script
engine reference. If no factories are able to provide a matching engine, the manager returns null. Please refer to
Listing 10-2 for more details on listing all available factories and describing script engines that they can create.

Now you know that a ScriptEngineManager does not create instances of a script engine. Rather, it queries all
available factories and passes the reference of a script engine created by the factory back to the caller.

To make the discussion complete, let’s add a twist to the ways a script engine can be created. You can create an
instance of a script engine in three ways:

Instantiate the script engine class directly.•	

Instantiate the script engine factory class directly and call its •	 getScriptEngine() method.

Use one of the •	 getEngineByXxx() methods of the ScriptEngineManager class.

It is advised to use the ScriptEngineManager class to get instances of a script engine. This method allows all
engines created by the same manager to share a state that is a set of key-value pairs stored as an instance of the
Bindings interface. The ScriptEngineManager instance stores this state.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

686

Tip■■  I t is possible to have more than one instance of the ScriptEngineManager class in an application. In that case,
each ScriptEngineManager instance maintains a state common to all engines that it creates. That is, if two engines are
obtained by two different instances of the ScriptEngineManager class, those engines will not share a common state
maintained by their managers unless you make it happen programmatically.

Executing Scripts
A ScriptEngine can execute a script in a String and a Reader. Using a Reader, you can execute a script stored on
the network or in a file. One of the following versions of the eval() method of the ScriptEngine interface is used to
execute a script:

•	 Object eval(String script)

•	 Object eval(Reader reader)

•	 Object eval(String script, Bindings bindings)

•	 Object eval(Reader reader, Bindings bindings)

•	 Object eval(String script, ScriptContext context)

•	 Object eval(Reader reader, ScriptContext context)

The first argument of the eval() method is the source of the script. The second argument lets you pass
information from the host application to the script engine that can be used during the execution of the script.

In Listing 10-1, you saw how to use a String object to execute a script using the first version of the eval()
method. In this section, you will store your script in a file and use a Reader object as the source of the script, which
will use the second version of the eval() method. The next section discusses the other four versions of the eval()
method. Typically, a script file is given a .js extension.

Listing 10-4 shows the contents of a file named helloscript.js. It contains only one statement in Nashorn that
prints a message on the standard output.

Listing 10-4.  The Contents of the helloscript.js File

// Print a message
print('Hello from JavaScript!');
 

Listing 10-5 has the Java program that executes the script stored in the helloscript.js file, which should be stored
in the current directory. If the script file is not found, the program prints the full path of the helloscript.js file where
it is expected. If you have trouble executing the script file, try using the absolute path in the main() method such as
C:\scripts\helloscript.js on Windows, assuming that the helloscript.js file is saved in the C:\scripts directory.

Listing 10-5.  Executing a Script Stored in a File

// ReaderAsSource.java
package com.jdojo.script;
 
import java.io.IOException;
import java.io.Reader;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

687

import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;
 
public class ReaderAsSource {
 public static void main(String[] args) {
 // Construct the script file path
 String scriptFileName = "helloscript.js";
 Path scriptPath = Paths.get(scriptFileName);
  
 // Make sure the script file exists. If not, print the full path of
 // the script file and terminate the program.
 if (! Files.exists(scriptPath)) {
 System.out.println(scriptPath.toAbsolutePath() +
 " does not exist.");
 return;
 }
  
 // Get the Nashorn script engine
 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine engine = manager.getEngineByName("JavaScript");
  
 try {
 // Get a Reader for the script file
 Reader scriptReader = Files.newBufferedReader(scriptPath);
  
 // Execute the script in the file
 engine.eval(scriptReader);
 }
 catch (IOException | ScriptException e) {
 e.printStackTrace();
 }
 }
}

Hello from JavaScript! 

In a real-world application, you should store all scripts in files that allow modifying scripts without modifying and
recompiling your Java code. You will not follow this rule in most of the examples in this chapter; you will store your
scripts in String objects to keep the code short and simple.

Passing Parameters
The Java Scripting API allows you to pass parameters from the host environment (Java application) to the script
engine and vice versa. In this section, you will see the technical details of parameter passing mechanisms between the
host application and the script engine.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

688

Passing Parameters from Java Code to Scripts
A Java program may pass parameters to scripts. A Java program may also access global variables declared in a script
after the script is executed. Let’s discuss a simple example of this kind where a Java program passes a parameter to a
script. Consider the program in Listing 10-6 that passes a parameter to a script.

Listing 10-6.  Passing Parameters From a Java Program to Scripts

// PassingParam.java
package com.jdojo.script;
 
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;
 
public class PassingParam {
 public static void main(String[] args) {
 // Get the Nashorn engine
 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine engine = manager.getEngineByName("JavaScript");
  
 // Store the script in a String. Here, msg is a variable
 // that we have not declared in the script
 String script = "print(msg)";
 
 try {
 // Store a parameter named msg in the engine
 engine.put("msg", "Hello from Java program");
  
 // Execute the script
 engine.eval(script);
 }
 catch (ScriptException e) {
 e.printStackTrace();
 }
 }
}

Hello from Java program 

The program stores a script in a String object as follows:
 
// Store a Nashorn script in a String object
String script = "print(msg)";
 

In the statement, the script is
 
print(msg)
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

689

Note that msg is a variable used in the print() function call. The script does not declare the msg variable or assign
it a value. If you try to execute the above script without telling the engine what the msg variable is, the engine will
throw an exception stating that it does not understand the meaning of the variable msg. This is where the concept of
passing parameters from a Java program to a script engine comes into play.

You can pass a parameter to a script engine in several ways. The simplest way is to use the put(String paramName,
Object paramValue) method of the script engine, which accepts two arguments:

The first argument is the name of the parameter, which needs to match the name of the •	
variable in the script.

The second argument is the value of the parameter.•	

In your case, you want to pass a parameter named msg to the script engine and its value is a String. The call to
the put() method is
 
// Store the value of the msg parameter in the engine
engine.put("msg", "Hello from Java program");
 

Note that you must call the put() method of the engine before calling the eval() method. In your case, when the
engine attempts to execute print(msg), it will use the value of the msg parameter that you passed to the engine.

Most script engines let you use the parameter names that you pass to it as the variable name in the script. You
saw this kind of example when you passed the value of the parameter named msg and used it as a variable name in the
script in Listing 10-6. A script engine may have a requirement for declaring variables in scripts, for example, a variable
name must start with a $ prefix in PHP and a global variable name contains a $ prefix in JRuby. If you want to pass a
parameter named msg to a script in JRuby, your code would be as shown:
 
// Get the JRuby script engine
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName("jruby");
 
// Must use the $ prefix in JRuby script
String script = "puts($msg)";
 
// No $ prefix used in passing the msg parameter to the JRuby engine
engine.put("msg", "Hello from Java");
 
// Execute the script
engine.eval(script);
 

Properties and methods of Java objects passed to scripts can be accessed in scripts, as they are accessed in Java
code. Different scripting languages use different syntax to access Java objects in scripts. For example, you can use the
expression msg.toString() in the example shown in Listing 10-6 and the output will be the same. In this case, you are
calling the toString() method of the variable msg. Change the statement that assigns the value to the script variable
in Listing 10-6 to the following and run the program, which will produce the same output:
 
String script = "println(msg.toString())";

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

690

Passing Parameters from Scripts to Java Code
A script engine may make variables in its global scope available to Java code. The get(String variableName) method
of a ScriptEngine is used to access those variables in Java code. It returns a Java Object. The declaration of a global
variable is scripting-language-dependent. The following snippet of code declares a global variable and assigns it a
value in JavaScript:
 
// Declare a variable named year in Nashorn
var year = 1969;
 

Listing 10-7 contains a program that shows how to access a global variable in Nashorn from Java code.

Listing 10-7.  Accessing Script Global Variables in Java Code

// AccessingScriptVariable.java
package com.jdojo.script;
 
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;
 
public class AccessingScriptVariable {
 public static void main(String[] args) {
 // Get the Nashorn engine
 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine engine = manager.getEngineByName("JavaScript");
 
 // Write a script that declares a global variable named year and
 // assign it a value of 1969.
 String script = "var year = 1969";
 
 try {
 // Execute the script
 engine.eval(script);
 
 // Get the year global variable from the engine
 Object year = engine.get("year");
 
 // Print the class name and the value of the variable year
 System.out.println("year's class:" +
 year.getClass().getName());
 System.out.println("year's value:" + year);
 }
 catch (ScriptException e) {
 e.printStackTrace();
 }
 }
}

year's class:java.lang.Integer
year's value:1969 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

691

The program declares a global variable year in the script and assigns it a value of 1969 as shown:
 
String script = "var num = 1969";
 

When the script is executed, the engine adds the year variable to its state. In Java code, the get() method of the
engine is used to retrieve the value of the year variable as shown:
 
Object year = engine.get("year");
 

When the year variable was declared in the script, you did not specify it data type. The conversion of a script
variable value to an appropriate Java object is automatically performed. If you run the program in Java 7, your output
will show java.lang.Double as the class name and 1960.0 as the value for the year variable. This is because Java 7
uses Rhino script engine that interprets 1969 as a Double whereas Java 8 uses Nashorn script engine that interprets it
as an Integer.

Advanced Parameter Passing Techniques
To understand the details of the parameter passing mechanism, three terms must be understood clearly: bindings,
scope, and context. These terms are confusing at first. This section explains the parameter passing mechanism using
the following steps:

First, it defines these terms.•	

Second, it defines the relationship between these terms.•	

Third, it explains how to use them in Java code.•	

Bindings
A Bindings is a set of key-value pairs where all keys must be non-empty, non-null Strings. In Java code, a Bindings
is an instance of the Bindings interface. The SimpleBindings class is an implementation of the Bindings interface.
A script engine may provide its own implementation of the Bindings interface.

Tip■■  I f you are familiar with the java.util.Map interface, it is easy to understand Bindings. The Bindings interface
inherits the Map<String,Object> interface. Therefore, a Bindings is just a Map with a restriction that its keys must be
non-empty, non-null Strings.

Listing 10-8 shows how to use a Bindings. It creates an instance of SimpleBindings, adds some key-value pairs to
it, retrieves the values of the keys, removes a key-value pair, etc. The get() method of the Bindings interface returns
null if the key does not exist or the key exists and its value is null. If you want to test if a key exists, you need to call its
contains() method.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

692

Listing 10-8.  Using Bindings Objects

// BindingsTest.java
package com.jdojo.script;
 
import javax.script.Bindings;
import javax.script.SimpleBindings;
 
public class BindingsTest {
 public static void main(String[] args) {
 // Create a Bindings instance
 Bindings params = new SimpleBindings();
 
 // Add some key-value pairs
 params.put("msg", "Hello");
 params.put("year", 1969);
 
 // Get values
 Object msg = params.get("msg");
 Object year = params.get("year");
 System.out.println("msg = " + msg);
 System.out.println("year = " + year);
 
 // Remove year from Bindings
 params.remove("year");
 year = params.get("year");
 
 boolean containsYear = params.containsKey("year");
 System.out.println("year = " + year);
 System.out.println("params contains year = " + containsYear);
 }
}

msg = Hello
year = 1969
year = null
params contains year = false 

You will not use a Bindings by itself. Often, you will use it to pass parameters from Java code to a script engine.
The ScriptEngine interface contains a createBindings() method that returns an instance of the Bindings interface.
This method gives a script engine a chance to return an instance of the specialized implementation of the Bindings
interface. You can use this method as shown:
 
// Get the Nashorn engine
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName("JavaScript");
 
// Instead of instantiating the SimpleBindings class, use the
// createBindings() method of the engine
Bindings params = engine.createBindings();
 
// Work with params as usual

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

693

Scope
Let’s move to the next term, which is scope. A scope is used for a Bindings. The scope of a Bindings determines the
visibility of its key-value pairs. You can have multiple Bindings occurring in multiple scopes. However, one Bindings
may occur only in one scope. How do you specify the scope for a Bindings? I will cover this shortly.

Using the scope for a Bindings lets you define parameter variables for script engines in a hierarchical order.
If a variable name is searched in an engine state, the Bindings with a higher precedence is searched first, followed by
Bindings with lower precedence. The first found value of the variable is returned.

The Java Scripting API defines two scopes. They are defined as two int constants in the ScriptContext interface.
They are

•	 ScriptContext.ENGINE_SCOPE

•	 ScriptContext.GLOBAL_SCOPE

The engine scope has higher precedence than the global scope. If you add two key-value pairs with the same key
to two Bindings (one in engine scope and one in global scope), the key-value pair in the engine scope will be used
whenever a variable with the same name as the key has to be resolved.

Understanding the role of the scope for a Bindings is so important that I will run through another analogy to
explain it. Think about a Java class that has two sets of variables: one set contains all instance variables in the class
and another contains all local variables in a method. These two sets of variables with their values are two Bindings.
The type of variables in a Bindings defines the scope. Just for the sake of this discussion, I will define two scopes:
instance scope and local scope. When a method is executed, a variable name is looked up in the local scope Bindings
first because the local variables take precedence over instance variables. If a variable name is not found in the local
scope Bindings, it is looked up in the instance scope Bindings. When a script is executed, Bindings and their scopes
play a similar role.

Defining the Script Context
A script engine executes a script in a context. You can think of the context as the environment in which a script is
executed. A Java host application provides two things to a script engine: a script and the context in which the script needs
to be executed. An instance of the ScriptContext interface represents the context for a script. The SimpleScriptContext
class is an implementation of the ScriptContext interface. A script context consists of four components:

A set of •	 Bindings, where each Bindings is associated with a different scope

A •	 Reader that is used by the script engine to read inputs

A •	 Writer that is used by the script engine to write outputs

An error •	 Writer that is used by the script engine to write error outputs

The set of Bindings in a context is used to pass parameters to the script. A reader and writers in a context control
input source and output destinations of the script, respectively. For example, by setting a file writer as a writer, you can
send all outputs from a script to a file.

Each script engine maintains a default script context, which it uses to execute scripts. So far, you have executed
several scripts without providing script contexts. In those cases, script engines were using their default script contexts
to execute scripts. In this section, I will cover how to use an instance of the ScriptContext interface by itself. In the
next section, I will cover how an instance of the ScriptContext interface is passed to a ScriptEngine during script
execution.

You can create an instance of the ScriptContext interface using the SimpleScriptContext class, like so:
 
// Create a script context
ScriptContext ctx = new SimpleScriptContext();
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

694

An instance of the SimpleScriptContext class maintains two instances of Bindings: one for engine scope and one
for global scope. The Bindings in the engine scope is created when you create the instance of the SimpleScriptContext.
To work with the global scope Bindings, you will need to create an instance of the Bindings interface.

By default, the SimpleScriptContext class initializes the input reader, the output writer, and the error writer for
the context to the standard input System.in, the standard output System.out, and standard error output System.err,
respectively. You can use the getReader(), getWriter(), and getErrorWriter() methods of the ScriptContext
interface to get the references of the reader, writer, and the error writer from the ScriptContext, respectively. Setter
methods are also provided to set a reader and writers. The following snippet of code shows how to obtain the reader
and writers. It also shows how to set a writer to a FileWriter to write the script output to a file.
 
// Get the reader and writers from the script context
Reader inputReader = ctx.getReader();
Writer outputWriter = ctx.getWriter();
Writer errWriter = ctx.getErrorWriter();
  
// Write all script outputs to an out.txt file
Writer fileWriter = new FileWriter("out.txt");
ctx.setWriter(fileWriter);
 

After you create a SimpleScriptContext, you can start storing key-value pairs in the engine scope Bindings
because an empty Bindings in the engine scope is created when you create the SimpleScriptContext object. The
setAttribute() method is used to add a key-value pair to a Bindings. You must provide the key name, value, and the
scope for the Bindings. The following snippet of code adds three key-value pairs.
 
// Add three key-value pairs to the engine scope bindings
ctx.setAttribute("year", 1969, ScriptContext.ENGINE_SCOPE);
ctx.setAttribute("month", 9, ScriptContext.ENGINE_SCOPE);
ctx.setAttribute("day", 19, ScriptContext.ENGINE_SCOPE);
 

If you want to add key-value pairs to a Bindings in global scope, you will need to create and set the Bindings first,
like so:
 
// Add a global scope Bindings to the context
Bindings globalBindings = new SimpleBindings();
ctx.setBindings(globalBindings, ScriptContext.GLOBAL_SCOPE);
 

Now you can add key-value pairs to the Bindings in global scope using the setAttribute() method, like so:
 
// Add two key-value pairs to the global scope bindings
ctx.setAttribute("year", 1982, ScriptContext.GLOBAL_SCOPE);
ctx.setAttribute("name", "Boni", ScriptContext.GLOBAL_SCOPE);
 

At this point, you can visualize the state of the ScriptContext instance as shown in Figure 10-1.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

695

You can perform several operations on a ScriptContext. You can set a different value for an already stored key
using the setAttribute(String name, Object value, int scope) method. You can remove a key-value pair using
the removeAttribute(String name, int scope) method for a specified key and a scope. You can get the value of a
key in the specified scope using the getAttribute(String name, int scope) method.

The most interesting thing that you can do with a ScriptContext is to retrieve a key value without specifying
its scope using its getAttribute(String name) method. A ScriptContext searches for the key in the engine scope
Bindings first. If it is not found in the engine scope, the Bindings in the global scope is searched. If the key is found in
these scopes, the corresponding value from the scope, in which it is found first, is returned. If neither scope contains
the key, null is returned.

In your example, you have stored the key named year in the engine scope as well as in the global scope. The
following snippet of code returns 1969 for the key year from the engine scope as the engine scope is searched first.
The return type of the getAttribute() method is Object.
 
// Get the value of the key year without specifying the scope.
// It returns 1969 from the Bindings in the engine scope.
int yearValue = (Integer)ctx.getAttribute("year");
 

You have stored the key named name only in the global scope. If you attempt to retrieve its value, the engine scope
is searched first, which does not return a match. Subsequently, the global scope is searched and the value "Boni" is
returned as shown:
 
// Get the value of the key named name without specifying the scope.
// It returns "Boni" from the Bindings in the global scope.
String nameValue = (String)ctx.getAttribute("name");
 

You can also retrieve the value of a key in a specific scope. The following snippet of code retrieves values for the
key “year” from the engine scope and the global scope:
 
// Assigns 1969 to engineScopeYear and 1982 to globalScopeYear
int engineScopeYear = (Integer)ctx.getAttribute("year", ScriptContext.ENGINE_SCOPE);
int globalScopeYear = (Integer)ctx.getAttribute("year", ScriptContext.GLOBAL_SCOPE); 

A SimpleScriptContext instance

ENGINE_SCOPE
year 1969

month 9
day 19

GLOBAL_SCOPE
year 1982

Name Boni

Input reader
Output writer
Error writer

Figure 10-1.  A pictorial view of an instance of the SimpleScriptContext class

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

696

Tip■■  T he Java Scripting API defines only two scopes: engine and global. A subinterface of the ScriptContext
interface may define additional scopes. The getScopes() method of the ScriptContext interface returns a list of
supported scopes as a List<Integer>. Note that a scope is represented as an integer. The two constants, ENGINE_SCOPE
and GLOBAL_SCOPE in the ScriptContext interface, are assigned values 100 and 200, respectively. When a key is
searched in multiple Bindings occurring in multiple scopes, the scope with the lower integer value is searched first.
Because the value 100 for the engine scope is lower than the value 200 for the global scope, the engine scope is
searched for a key first when you do not specify the scope.

Listing 10-9 shows how to work with an instance of a class implementing the ScriptContext interface. Note that
you do not use a ScriptContext in your application by itself. It is used by script engines during script execution. Most
often, you manipulate a ScriptContext indirectly through a ScriptEngine and a ScriptEngineManager, which is
discussed in detail in the next section.

Listing 10-9.  Using an Instance of the ScriptContext Interface

// ScriptContextTest.java
package com.jdojo.script;
 
import java.util.List;
import javax.script.Bindings;
import javax.script.ScriptContext;
import javax.script.SimpleBindings;
import javax.script.SimpleScriptContext;
import static javax.script.ScriptContext.ENGINE_SCOPE;
import static javax.script.ScriptContext.GLOBAL_SCOPE;
 
public class ScriptContextTest {
 public static void main(String[] args) {
 // Create a script context
 ScriptContext ctx = new SimpleScriptContext();
  
 // Get the list of scopes supported by the script context
 List<Integer> scopes = ctx.getScopes();
 System.out.println("Supported Scopes: " + scopes);
  
 // Add three key-value pairs to the engine scope bindings
 ctx.setAttribute("year", 1969, ENGINE_SCOPE);
 ctx.setAttribute("month", 9, ENGINE_SCOPE);
 ctx.setAttribute("day", 19, ENGINE_SCOPE);
  
 // Add a global scope Bindings to the context
 Bindings globalBindings = new SimpleBindings();
 ctx.setBindings(globalBindings, GLOBAL_SCOPE);
  
 // Add two key-value pairs to the global scope bindings
 ctx.setAttribute("year", 1982, GLOBAL_SCOPE);
 ctx.setAttribute("name", "Boni", GLOBAL_SCOPE);
  

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

697

 // Get the value of year without specifying the scope
 int yearValue = (Integer)ctx.getAttribute("year");
 System.out.println("yearValue = " + yearValue);
  
 // Get the value of name
 String nameValue = (String)ctx.getAttribute("name");
 System.out.println("nameValue = " + nameValue);
  
 // Get the value of year from engine and global scopes
 int engineScopeYear = (Integer)ctx.getAttribute("year", ENGINE_SCOPE);
 int globalScopeYear = (Integer)ctx.getAttribute("year", GLOBAL_SCOPE);
 
 System.out.println("engineScopeYear = " + engineScopeYear);
 System.out.println("globalScopeYear = " + globalScopeYear);
 }
}

Supported Scopes: [100, 200]
yearValue = 1969
nameValue = Boni
engineScopeYear = 1969
globalScopeYear = 1982

Putting Them Together
In this section, I will show you how instances of Bindings and their scopes, ScriptContext, ScriptEngine,
ScriptEngineManager, and the host application work together. The focus will be on how to manipulate the key-value
pairs stored in Bindings in different scopes using a ScriptEngine and a ScriptEngineManager.

A ScriptEngineManager maintains a set of key-value pairs in a Bindings. It lets you manipulate those key-value
pairs using the following four methods:

•	 void put(String key, Object value)

•	 Object get(String key)

•	 void setBindings(Bindings bindings)

•	 Bindings getBindings()

The put() method adds a key-value pair to the Bindings. The get() method returns the value for the specified key;
it returns null if the key is not found. The Bindings for an engine manager can be replaced using the setBindings()
method. The getBindings() method returns the reference of the Bindings of the ScriptEngineManager.

Every ScriptEngine, by default, has a ScriptContext known as its default context. Recall that, besides readers
and writers, a ScriptContext has two Bindings: one in the engine scope and one in the global scope. When a
ScriptEngine is created, its engine scope Bindings is empty and its global scope Bindings refers to the Bindings of
the ScriptEngineManager that created it.

By default, all instances of the ScriptEngine created by a ScriptEngineManager share the Bindings of the
ScriptEngineManager. It is possible to have multiple instances of ScriptEngineManager in the same Java application.
In that case, all instances of ScriptEngine created by the same ScriptEngineManager share the Bindings of the
ScriptEngineManager as their global scope Bindings for their default contexts.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

698

The following snippet of code creates a ScriptEngineManager, which is used to create three instances of
ScriptEngine:
 
// Create a ScriptEngineManager
ScriptEngineManager manager = new ScriptEngineManager();
 
// Create three ScriptEngines using the same ScriptEngineManager
ScriptEngine engine1 = manager.getEngineByName("JavaScript");
ScriptEngine engine2 = manager.getEngineByName("JavaScript");
ScriptEngine engine3 = manager.getEngineByName("JavaScript");
 

Now, let’s add three key-value pairs to the Bindings of the ScriptEngineManager and two key-value pairs to the
engine scope Bindings of each ScriptEngine.
 
// Add three key-value pairs to the Bindings of the manager
manager.put("K1", "V1");
manager.put("K2", "V2");
manager.put("K3", "V3");
 
// Add two key-value pairs to each engine
engine1.put("KE11", "VE11");
engine1.put("KE12", "VE12");
engine2.put("KE21", "VE21");
engine2.put("KE22", "VE22");
engine3.put("KE31", "VE31");
engine3.put("KE32", "VE32");
 

Figure 10-2 shows a pictorial view of the state of the ScriptEngineManager and three ScriptEngines after
the snippet of code is executed. It is evident from the figure that the default contexts of all ScriptEngines share the
Bindings of the ScriptEngineManager as their global scope Bindings.

ScriptEngineManager

Bindings
K1 V1
K2 V2
K3 V3

ScriptEngine-1

GLOBAL_SCOPE

ENGINE_SCOPE
KE11 VE11
KE12 VE12

ScriptEngine-2

GLOBAL_SCOPE

ENGINE_SCOPE
KE21 VE21
KE22 VE22

ScriptEngine-3

GLOBAL_SCOPE

ENGINE_SCOPE
KE31 VE31
KE32 VE32

Figure 10-2.  A pictorial view of three ScriptEngines created by a ScriptEngineManager

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

699

The Bindings in a ScriptEngineManager can be modified in the following ways:

By using the •	 put() method of the ScriptEngineManager

By getting the reference of the •	 Bindings using the getBindings() method of the
ScriptEngineManager, and then using the put() and remove() method on the Bindings

By getting the reference of the •	 Bindings in the global scope of the default context
of a ScriptEngine using its getBindings() method, and then using the put() and
remove()method on the Bindings

When the Bindings in a ScriptEngineManager is modified, the global scope Bindings in the default context of all
ScriptEngines created by this ScriptEngineManager are modified because they share the same Bindings.

The default context of each ScriptEngine maintains an engine scope Bindings separately. To add a key-value
pair to the engine scope Bindings of a ScriptEngine, use its put() method as shown:
 
ScriptEngine engine1 = null; // get an engine
 
// Add an "engineName" key with its value as "Engine-1" to the
// engine scope Bindings of the default context of engine1
engine1.put("engineName", "Engine-1");
 

The get(String key) method of the ScriptEngine returns the value of the specified key from its engine scope
Bindings. The following statement returns “Engine-1”, which is the value for the engineName key.
 
String eName = (String)engine1.get("engineName");
 

It is a two-step process to get to the key-value pairs of the global scope Bindings in the default context of a
ScriptEngine. First, you need to get the reference of the global scope Bindings using its getBindings() method
as shown:
 
Bindings e1Global = engine1.getBindings(ScriptContext.GLOBAL_SCOPE);
 

Now you can modify the global scope Bindings of the engine using the e1Global reference. The following
statement adds a key-value pair to the e1Global Bindings:
 
e1Global.put("id", 89999);
 

Because of the sharing of the global scope Bindings of a ScriptEngine by all ScriptEngines, the above snippet
of code will add the key “id” with its value to the global scope Bindings of the default context of all ScriptEngines
created by the same ScriptEngineManager that created engine1. Modifying the Bindings in a ScriptEngineManager
using code as shown above is not recommended. You should modify the Bindings using the ScriptEngineManager
reference instead, which makes the logic clearer to the readers of the code.

Listing 10-10 demonstrates the concepts discussed in this section. A ScriptEngineManager adds two key-value
pairs with keys n1 and n2 to its Bindings. Two ScriptEngines are created; they add a key called engineName to their
engine scope Bindings. When the script is executed, the value of the engineName variable in the script is used from
the engine scope of the ScriptEngine. The values for variables n1 and n2 in the script are retrieved from the global
scope Bindings of the ScriptEngine. After executing the script for the first time, each ScriptEngine adds a key called
n2 with a different value to their engine scope Bindings. When you execute the script for the second time, the value
for the n1 variable is retrieved from the global scope Bindings of the engine, whereas the value for the variable n2 is
retrieved from the engine scope Bindings as shown in the output.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

700

Listing 10-10.  Using Global and Engine Scope Bindings of Engines Created by the Same ScriptEngineManager

// GlobalBindings.java
package com.jdojo.script;
 
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;
 
public class GlobalBindings {
 public static void main(String[] args) {
 ScriptEngineManager manager = new ScriptEngineManager();
 
 // Add two numbers to the Bindings of the manager that will be
 // shared by all its engines
 manager.put("n1", 100);
 manager.put("n2", 200);
 
 // Create two JavaScript engines and add the name of the engine
 // in the engine scope of the default context of the engines
 ScriptEngine engine1 = manager.getEngineByName("JavaScript");
 engine1.put("engineName", "Engine-1");
 
 ScriptEngine engine2 = manager.getEngineByName("JavaScript");
 engine2.put("engineName", "Engine-2");
 
 // Execute a script that adds two numbers and prints the result
 String script = "var sum = n1 + n2; "
 + "print(engineName + ' - Sum = ' + sum)";
 
 try {
 // Execute the script in two engines
 engine1.eval(script);
 engine2.eval(script);
 
 // Now add a different value for n2 for each engine
 engine1.put("n2", 1000);
 engine2.put("n2", 2000);
 
 // Execute the script in two engines again
 engine1.eval(script);
 engine2.eval(script);
 }
 catch (ScriptException e) {
 e.printStackTrace();
 }
 }
}

Engine-1 - Sum = 300
Engine-2 - Sum = 300
Engine-1 - Sum = 1100
Engine-2 - Sum = 2100 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

701

The story of the global scope Bindings shared by all ScriptEngines that are created by a ScriptEngineManager
is not over yet. It is as complex, and confusing, as it can get! Now the focus will be on the effects of using the
setBindings() method of ScriptEngineManager class and the ScriptEngine interface. Consider the following
snippet of code:
 
// Create a ScriptEngineManager and two ScriptEngines
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine1 = manager.getEngineByName("JavaScript");
ScriptEngine engine2 = manager.getEngineByName("JavaScript");
 
// Add two key-value pairs to the manager
manager.put("n1", 100);
manager.put("n2", 200);
 

Figure 10-3 shows the state of the engine manager and its engines after the above script is executed. At this point,
there is only one Bindings stored in the ScriptEngineManager and two ScriptEngines are referring to it as their global
scope Bindings.

ScriptEngineManager

Bindings
n1 100
n2 200

ScriptEngine-1

GLOBAL_SCOPE

ENGINE_SCOPE

ScriptEngine-2

GLOBAL_SCOPE

ENGINE_SCOPE

Figure 10-3.  Initial state of ScriptEngineManager and two ScriptEngines

Let’s create a new Bindings and set it as the Bindings for the ScriptEngineManager using its setBindings()
method, like so:
 
// Create a Bindings, add two key-value pairs to it, and set it as the new Bindings
// for the manager
Bindings newGlobal = new SimpleBindings();
newGlobal.put("n3", 300);
newGlobal.put("n4", 400);
manager.setBindings(newGlobal);
 

Figure 10-4 shows the state of the ScriptEngineManager and two ScriptEngines after the code is executed.
Notice that the ScriptEngineManager has a new Bindings and the two ScriptEngines are still referring to the old
Bindings as their global scope Bindings.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

702

At this point, any changes made to the Bindings of the ScriptEngineManager will not be reflected in the
global scope Bindings of the two ScriptEngines. You can still make changes to the Bindings shared by the two
ScriptEngines and both ScriptEngines will see the changes made by either of them.

Let’s create a new ScriptEngine as shown:
 
// Create a new ScriptEngine
ScriptEngine engine3 = manager.getEngineByName("JavaScript");
 

Recall that a ScriptEngine gets a global scope Bindings at the time it is created and that Bindings is the same as
the Bindings of the ScriptEngineManager. The state of the ScriptEngineManager and three ScriptEngines, after the
above statement is executed, are shown in Figure 10-5.

Bindings

n1 100
n2 200

ScriptEngineManager

Bindings
n3 300
n4 400

ScriptEngine-1

GLOBAL_SCOPE

ENGINE_SCOPE

ScriptEngine-2

GLOBAL_SCOPE

ENGINE_SCOPE

Figure 10-4.  State of ScriptEngineManager and two ScriptEngines after a new Bindings is set to the
ScriptEngineManager

Bindings
n1 100
n2 200

ScriptEngineManager

Bindings
n3 300
n4 400

ScriptEngine-1

GLOBAL_SCOPE

ENGINE_SCOPE

ScriptEngine-2

GLOBAL_SCOPE

ENGINE_SCOPE

ScriptEngine-3

GLOBAL_SCOPE

ENGINE_SCOPE

Figure 10-5.  State of ScriptEngineManager and three ScriptEngines after the third ScriptEngine is created

Here is another twist to the so-called “globalness” of the global scope of ScriptEngines. This time, you will use
the setBindings() method of a ScriptEngine to set its global scope Bindings. Figure 10-6 shows the state of the
ScriptEngineManager and three ScriptEngines after the following snippet of code is executed:
 
// Set a new Bindings for the global scope of engine1
Bindings newGlobalEngine1 = new SimpleBindings();
newGlobalEngine1.put("n5", 500);
newGlobalEngine1.put("n6", 600);
engine1.setBindings(newGlobalEngine1, ScriptContext.GLOBAL_SCOPE);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

703

Tip■■   By default, all ScriptEngines that a ScriptEngineManager creates share its Bindings as their global scope
Bindings. If you use the setBindings() method of a ScriptEngine to set its global scope Bindings or if you use the
setBindings() method of a ScriptEngineManager to set its Bindings, you break the “globalness” chain as discussed
in this section. To keep the “globalness” chain intact, you should always use the put() method of the ScriptEngineManager
to add key-value pairs to its Bindings. To remove a key-value pair from the global scope of all ScriptEngines created
by a ScriptEngineManager, you need to get the reference of the Bindings using the getBindings() method of the
ScriptEngineManager and use the remove() method on the Bindings.

Using a Custom ScriptContext
In the previous section, you saw that each ScriptEngine has a default script context. The get(), put(),
getBindings(), and setBindings() methods of the ScriptEngine operate on its default ScriptContext. When no
ScriptContext is specified to the eval() method of the ScriptEngine, the default context of the engine is used. The
following two versions of the eval() method of the ScriptEngine use its default context to execute the script:

•	 Object eval(String script)

•	 Object eval(Reader reader)

You can pass a Bindings to the following two versions of the eval() method:

•	 Object eval(String script, Bindings bindings)

•	 Object eval(Reader reader, Bindings bindings)

These versions of the eval() method do not use the default context of the ScriptEngine. They use a new
ScriptContext whose engine scope Bindings is the one passed to these methods and the global scope Bindings is
the same as for the default context of the engine. Note that these two versions of the eval() method keep the default
context of the ScriptEngine untouched.

You can pass a ScriptContext to the following two versions of the eval() method:

•	 Object eval(String script, ScriptContext context)

•	 Object eval(Reader reader, ScriptContext context)

Bindings
n5 500
n6 600

Bindings
n1 100
n2 200

ScriptEngineManager

Bindings
n3 300
n4 400

ScriptEngine-1

GLOBAL_SCOPE

ENGINE_SCOPE

ScriptEngine-2

GLOBAL_SCOPE

ENGINE_SCOPE

ScriptEngine-3

GLOBAL_SCOPE

ENGINE_SCOPE

Figure 10-6.  State of ScriptEngineManager and Three ScriptEngines After a New Global Scope Bindings Is Set
for engine1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

704

These versions of the eval() method use the specified context to execute the script. They keep the default
context of the ScriptEngine untouched.

The three sets of the eval() method let you execute scripts using different isolation levels:

The first set lets you share the default context by all scripts.•	

The second set lets scripts use different engine scope •	 Bindings and share the global
scope Bindings.

The third set lets scripts execute in an isolated •	 ScriptContext.

Listing 10-11 shows how scripts are executed in different isolation levels using the different version of the eval()
method. The program uses three variables called msg, n1, and n2. It displays the value stored in the msg variable.
The values of n1 and n2 are added and the sum is displayed. The script prints what values of n1 and n2 were used in
computing the sum. The value of n1 is stored in the Bindings of ScriptEngineManager that is shared by the default
context of all ScriptEngines. The value of n2 is stored in the engine scope of the default context and the custom contexts.
The script is executed twice using the default context of the engine, once in the beginning and once in the end, to prove
that using a custom Bindings or a ScriptContext in the eval() method does not affect the Bindings in the default
context of the ScriptEngine. The program declares a throws clause in its main() method to keep the code shorter.

Listing 10-11.  Using Different Isolation Levels for Executing Scripts

// CustomContext.java
package com.jdojo.script;
 
import javax.script.Bindings;
import javax.script.ScriptContext;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;
import javax.script.SimpleScriptContext;
import static javax.script.SimpleScriptContext.ENGINE_SCOPE;
import static javax.script.SimpleScriptContext.GLOBAL_SCOPE;
 
public class CustomContext {
 public static void main(String[] args) throws ScriptException {
 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine engine = manager.getEngineByName("JavaScript");
 
 // Add n1 to Bindings of the manager, which will be shared
 // by all engines as their global scope Bindings
 manager.put("n1", 100);
 
 // Prepare the script
 String script = "var sum = n1 + n2;" +
 "print(msg + " +
 "' n1=' + n1 + ', n2=' + n2 + " +
 "', sum=' + sum);";
 
 // Add n2 to the engine scope of the default context of the engine
 engine.put("n2", 200);
 engine.put("msg", "Using the default context:");
 engine.eval(script);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

705

 // Use a Bindings to execute the script
 Bindings bindings = engine.createBindings();
 bindings.put("n2", 300);
 bindings.put("msg", "Using a Bindings:");
 engine.eval(script, bindings);
 
 // Use a ScriptContext to execute the script
 ScriptContext ctx = new SimpleScriptContext();
 Bindings ctxGlobalBindings = engine.createBindings();
 ctx.setBindings(ctxGlobalBindings, GLOBAL_SCOPE);
 ctx.setAttribute("n1", 400, GLOBAL_SCOPE);
 ctx.setAttribute("n2", 500, ENGINE_SCOPE);
 ctx.setAttribute("msg", "Using a ScriptContext:", ENGINE_SCOPE);
 engine.eval(script, ctx);
 
 // Execute the script again using the default context to
 // prove that the default context is unaffected.
 engine.eval(script);
 }
}

Using the default context: n1=100, n2=200, sum=300
Using a Bindings: n1=100, n2=300, sum=400
Using a ScriptContext: n1=400, n2=500, sum=900
Using the default context: n1=100, n2=200, sum=300

Return Value of the eval( ) Method
The eval() method of the ScriptEngine returns an Object, which is the last value in the script. It returns null if there
is no last value in the script. It is error prone, and confusing at the same time, to depend on the last value in a script.
The following snippet of code shows some examples of using the return value of the eval() method for Nashorn. The
comments in the code indicate the returned value from the eval() method.
 
Object result = null;
 
// Assigns 3 to result
result = engine.eval("1 + 2;");
 
// Assigns 7 to result
result = engine.eval("1 + 2; 3 + 4;");
 
// Assigns 6 to result
result = engine.eval("1 + 2; 3 + 4; var v = 5; v = 6;");
 
// Assigns 7 to result
result = engine.eval("1 + 2; 3 + 4; var v = 5;");
 
// Assigns null to result
result = engine.eval("print(1 + 2)");
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

706

It is better not to depend on the returned value from the eval() method. You should pass a Java object to the
script as a parameter and let the script store the returned value of the script in that object. After the eval() method is
executed, you can query that Java object for the returned value. Listing 10-12 contains the code for a Result class that
wraps an integer. You will pass an object of the Result class to the script that will store the returned value in it. After
the script finishes, you can read the integer value stored in the Result object in your Java code. The Result needs to
be declared public so it is accessible to the script engine. The program in Listing 10-13 shows how to pass a Result
object to a script that populates the Result object with a value. The program contains a throws clause in the main()
method’s declaration to keep the code short.

Listing 10-12.  A Result Class That Wraps an Integer

// Result.java
package com.jdojo.script;
 
public class Result {
 private int val = -1;
 
 public void setValue(int x) {
 val = x;
 }
 
 public int getValue() {
 return val;
 }
}

Listing 10-13.  Collecting the Return Value of a Script in a Result Object

// ResultBearingScript.java
package com.jdojo.script;
 
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;
 
public class ResultBearingScript {
 public static void main(String[] args) throws ScriptException {
 // Get the Nashorn engine
 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine engine = manager.getEngineByName("JavaScript");
 
 // Pass a Result object to the script. The script will store the
 // result of the script in the result object
 Result result = new Result();
 engine.put("result", result);
 
 // Store the script in a String
 String script = "3 + 4; result.setValue(101);";
 
 // Execute the script, which uses the passed in Result object to
 // return a value
 engine.eval(script);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

707

 // Use the result object to get the returned value from the script
 int returnedValue = result.getValue(); // Will be 101
 
 System.out.println("Returned value is " + returnedValue);
 }
}

Returned value is 101

Reserved Keys for Engine Scope Bindings
Typically, a key in the engine scope Bindings represents a script variable. Some keys are reserved and they have
special meanings. Their values may be passed to the engine by the implementation of the engine. An implementation
may define additional reserved keys.

Table 10-2 contains the list of all reserved keys. Those keys are also declared as constants in the ScriptEngine
interface. An implementation of a script engine is not required to pass all these keys to the engine in the engine
scope bindings. As a developer, you are not supposed to use these keys to pass parameters from a Java application to
a script engine.

Changing the Default ScriptContext
You can get and set the default context of a ScriptEngine using its getContext() and setContext() methods,
respectively, as shown:
 
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName("JavaScript");
  
// Get the default context of the ScriptEngine
ScriptContext defaultCtx = engine.getContext();
 

Table 10-2.  The List of Reserved Keys for Engine Scope Bindings

Key Constant in ScriptEngine Interface Meaning of the Value of the key

“javax.script.argv” ScriptEngine.ARGV Used to pass an array of Object to pass a
set of positional argument.

“javax.script.engine” ScriptEngine.ENGINE The name of the script engine.

“javax.script.engine_version” ScriptEngine.ENGINE_VERSION The version of the script engine.

“javax.script.filename” ScriptEngine.FILENAME Used to pass the name of the file or the
resource that the source of the script.

“javax.script.language” ScriptEngine.LANGUAGE The name of the language supported by
the script engine.

“javax.script.language_version” ScriptEngine.LANGUAGE_VERSION The version of the scripting language
supported by the engine.

“javax.script.name” ScriptEngine.NAME The short name of the scripting language.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

708

// Work with defaultCtx here
  
// Create a new context
ScriptContext ctx = new SimpleScriptContext();
 
// Configure ctx here
 
// Set ctx as the new default context for the engine
engine.setContext(ctx);
 

Note that setting a new default context for a ScriptEngine will not use the Bindings of the ScriptEngineManager
as its global scope Bindings. If you want the new default context to use the Bindings of the ScriptEngineManager,
you need set it explicitly as shown:
 
// Create a new context
ScriptContext ctx = new SimpleScriptContext();
  
// Set the global scope Bindings for ctx the same as the Bindings for the manager
ctx.setBindings(manager.getBindings(), ScriptContext.GLOBAL_SCOPE);
 
// Set ctx as the new default context for the engine
engine.setContext(ctx);

Sending Scripts Output to a File
You can customize the input source, output destination, and error output destination of a script execution. You need
to set appropriate reader and writers for the ScriptContext that is used to execute a script. The following snippet of
code will write the script output to a file named jsoutput.txt in the current directory:
 
// Create a FileWriter
FileWriter writer = new FileWriter("jsoutput.txt");
 
// Get the default context of the engine
ScriptContext defaultCtx = engine.getContext();
 
// Set the output writer for the default context of the engine
defaultCtx.setWriter(writer);
 

The code sets a custom output writer for the default context of the ScriptEngine that will be used during the
execution of scripts that use the default context. If you want to use a custom output writer for a specific execution of
a script, you need to use a custom ScriptContext and set its writer.

Tip■■   Setting a custom output writer for a ScriptContext does not affect the destination of the standard output of
the Java application. To redirect the standard output of the Java application, you need to use the System.setOut()
method.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

709

Listing 10-14 shows how to write output of a script execution to a file named jsoutput.txt. The program prints
the full path of the output file on the standard output. You may get a different output when you run the program.
You need to open the output file in a text editor to see the script’s output.

Listing 10-14.  Writing the Output of Scripts to a File

// CustomScriptOutput.java
package com.jdojo.script;
 
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import javax.script.ScriptContext;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;
 
public class CustomScriptOutput { 
 public static void main(String[] args) {
 // Get the Nashorn engine
 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine engine = manager.getEngineByName("JavaScript");
 
 // Print the absolute path of the output file
 File outputFile = new File("jsoutput.txt");
 System.out.println("Script output will be written to " +
 outputFile.getAbsolutePath());
 
 FileWriter writer = null;
 
 try {
 writer = new FileWriter(outputFile);
 
 // Set a custom output writer for the engine
 ScriptContext defaultCtx = engine.getContext();
 defaultCtx.setWriter(writer);
 
 // Execute a script
 String script = "print('Hello custom output writer')";
 engine.eval(script);
 }
 catch (IOException | ScriptException e) {
 e.printStackTrace();
 }
 finally {
 if (writer != null) {
 try {
 writer.close();
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

710

 catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 }
}

Script output will be written to C:\jsoutput.txt

Invoking Procedures in Scripts
A scripting language may allow for creating procedures, functions, and methods. The Java Scripting API lets you
invoke such procedures, functions, and methods from a Java application. I will use the term “procedure” to mean
procedure, function, and method in this section. I will use the specific term when the context of the discussion
requires it.

Not all script engines are required to support procedure invocation. The Nashorn JavaScript engine supports
procedure invocation. If a script engine supports it, the implementation of the script engine class must implement
the Invocable interface. It is the responsibility of the developer to check if a script engine implements the Invocable
interface, before invoking a procedure. Invoking a procedure is a four-step process:

Check if the script engine supports procedure invocation.•	

Cast the engine reference to the •	 Invocable type.

Evaluate the script that contains the source code for the procedure.•	

Use the •	 invokeFunction() method of the Invocable interface to invoke procedures and
functions. Use the invokeMethod() method to invoke methods of the objects created in a
scripting language.

The following snippet of code performs the check that the script engine implementation class implements the
Invocable interface:
 
// Get the Nashorn engine
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName("JavaScript");
 
// Make sure the script engine implements the Invocable interface
if (engine instanceof Invocable) {
 System.out.println("Invoking procedures is supported.");
else
 System.out.println("Invoking procedures is not supported.");
}
 

The second step is to cast the engine reference to the Invocable interface type.
 
Invocable inv = (Invocable)engine;
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

711

The third step is to evaluate the script, so the script engine compiles and stores the compiled form of the
procedure for later invocation. The following snippet of code performs this step:
 
// Declare a function named add that adds two numbers
String script = "function add(n1, n2) { return n1 + n2; }";
 
// Evaluate the function. Call to eval() does not invoke the function.
// It just compiles it.
engine.eval(script);
 

The last step is to invoke the procedure or function.
 
// Invoke the add function with 30 and 40 as the function's arguments.
// It is as if you called add(30, 40) in the script.
Object result = inv.invokeFunction("add", 30, 40);
 

The first argument to the invokeFunction() is the name of the procedure or function. The second argument is
a varargs that is used to specify arguments to the procedure or function. The invokeFunction() method returns the
value returned by the procedure or function.

Listing 10-15 shows how to invoke a function. It invokes a function written in Nashorn JavaScript.

Listing 10-15.  Invoking a Function Written in Nashorn JavaScript

// InvokeFunction.java
package com.jdojo.script;
 
import javax.script.Invocable;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;
 
public class InvokeFunction {
 public static void main(String[] args) {
 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine engine = manager.getEngineByName("JavaScript");
  
 // Make sure the script engine implements the Invocable interface
 if (!(engine instanceof Invocable)) {
 System.out.println("Invoking procedures is not supported.");
 return;
 }
  
 // Cast the engine reference to the Invocable type
 Invocable inv = (Invocable)engine;
  
 try {
 String script = "function add(n1, n2) { return n1 + n2; }";
  
 // Evaluate the script first
 engine.eval(script);
  

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

712

 // Invoke the add function twice
 Object result1 = inv.invokeFunction("add", 30, 40);
 System.out.println("Result1 = " + result1);
  
 Object result2 = inv.invokeFunction("add", 10, 20);
 System.out.println("Result2 = " + result2);
 }
 catch (ScriptException | NoSuchMethodException e) {
 e.printStackTrace();
 }
 }
}

Result1 = 70
Result2 = 30 

An object-oriented or object-based scripting language may let you define objects and their methods. You can invoke
methods of such objects using the invokeMethod() method of the Invocable interface, which is declared as follows:
 
Object invokeMethod(Object objectRef, String name, Object... args)
 

The first argument is the reference of the object, the second argument is the name of the method that you want
to invoke on the object, and the third argument is a varargs argument that is used to pass arguments to the method
being invoked.

Listing 10-16 demonstrates the invocation of a method on an object that is created in Nashorn JavaScript. Note
that the object is created inside the Nashorn script. To invoke the method of the object from Java, you need to obtain
the reference of the object through the script engine. The program evaluates the script that creates an object with an
add() method and stores its reference in a variable named calculator. The engine.get("calculator") method
returns the reference of the calculator object to the Java code.

Listing 10-16.  Invoking a Method on an Object Created in Nashorn JavaScript

// InvokeMethod.java
package com.jdojo.script;
 
import javax.script.Invocable;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;
 
public class InvokeMethod {
 public static void main(String[] args) {
 // Get the Nashorn engine
 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine engine = manager.getEngineByName("JavaScript");
 
 // Make sure the script engine implements the Invocable interface
 if (!(engine instanceof Invocable)) {
 System.out.println("Invoking methods is not supported.");
 return;
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

713

 // Cast the engine reference to the Invocable type
 Invocable inv = (Invocable) engine;
 
 try {
 // Declare a global object with an add() method
 String script = "var calculator = new Object();" +
 "calculator.add = function add(n1, n2){return n1 + n2;}";
 
 // Evaluate the script first
 engine.eval(script);
 
 // Get the calculator object reference created in the script
 Object calculator = engine.get("calculator");
 
 // Invoke the add() method on the calculator object
 Object result = inv.invokeMethod(calculator, "add", 30, 40);
 System.out.println("Result = " + result);
 }
 catch (ScriptException | NoSuchMethodException e) {
 e.printStackTrace();
 }
 }
}

Result = 70 

Tip■■   Use the Invocable interface to execute procedures, functions, and methods repeatedly. Evaluation of the script,
having procedures, functions, and methods, stores the intermediate code in the engine that results in performance gain
on their repeated execution.

Implementing Java Interfaces in Scripts
The Java Scripting API lets you implement Java interfaces in a scripting language. Methods of the Java interface may be
implemented in scripts using top-level procedures or instance methods of an object.

The advantage of implementing a Java interface in a scripting language is that you can use instances of the
interface in Java code as if the interface was implemented in Java. You can pass instances of the interface as arguments
to Java methods.

The getInterface() method of the Invocable interface is used to obtain the instances of a Java interface that is
implemented in scripts. The method has two versions:

•	 <T> T getInterface(Class<T> cls)

•	 <T> T getInterface(Object obj, Class<T> cls)

The first version is used to obtain an instance of a Java interface whose methods are implemented as top-level
procedures in scripts. The interface type is passed to this method as its argument. Suppose you have a Calculator
interface, as declared in Listing 10-17, that has two methods called add() and subtract().

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

714

Listing 10-17.  A Calculator Interface

// Calculator.java
package com.jdojo.script;
 
public interface Calculator {
 int add (int n1, int n2);
 int subtract (int n1, int n2);
}
 

Consider the following two top-level functions written in JavaScript:
 
function add(n1, n2) {
 return n1 + n2;
}
 
function subtract(n1, n2) {
 return n1 - n2;
}
 

The above two functions provide the implementations for the two methods of the Calculator interface.
After the above functions are compiled by a JavaScript engine, you can obtain an instance of the Calculator interface
as shown:
 
// Cast the engine reference to the Invocable type
Invocable inv = (Invocable)engine;
 
// Get the reference of the Calculator interface
Calculator calc = inv.getInterface(Calculator.class);
if (calc == null) {
 System.err.println("Calculator interface implementation not found.");
}
else {
 // Use calc to call add() and subtract() methods
}
 

You can add two numbers as shown:
 
int sum = calc.add(15, 10);
 

Listing 10-18 shows how to implement a Java interface using top-level procedures in Nashorn. Please consult the
documentation of a scripting language to learn how it supports this functionality.

Listing 10-18.  Implementing a Java Interface Using Top-Level Functions in Script

// UsingInterfaces.java
package com.jdojo.script;
 
import javax.script.Invocable;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

715

public class UsingInterfaces {
 public static void main(String[] args) {
 // Get the Nashorn engine
 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine engine = manager.getEngineByName("JavaScript");
 
 // Make sure the script engine implements Invocable interface
 if (!(engine instanceof Invocable)) {
 System.out.println("Interface implementation in script"
 + " is not supported.");
 return;
 }
 
 // Cast the engine reference to the Invocable type
 Invocable inv = (Invocable) engine;
 
 // Create the script for add() and subtract() functions
 String script = "function add(n1, n2) { return n1 + n2; } "
 + "function subtract(n1, n2) { return n1 - n2; }";
 
 try {
 // Compile the script that will be stored in the engine
 engine.eval(script);
 
 // Get the interface implementation
 Calculator calc = inv.getInterface(Calculator.class);
 if (calc == null) {
 System.err.println("Calculator interface " +
 "implementation not found.");
 return;
 }
 
 int result1 = calc.add(15, 10);
 System.out.println("add(15, 10) = " + result1);
 
 int result2 = calc.subtract(15, 10);
 System.out.println("subtract(15, 10) = " + result2);
 }
 catch (ScriptException e) {
 e.printStackTrace();
 }
 }
}

add(15, 10) = 25
subtract(15, 10) = 5 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

716

The second version of the getInterface() method is used to obtain an instance of a Java interface whose
methods are implemented as instance methods of an object. Its first argument is the reference of the object that
is created in the scripting language. The instance methods of the object implement the interface type passed in as
the second argument. The following code in Nashorn creates an object whose instance methods implement the
Calculator interface:
 
// Create an object
var calc = new Object();
 
// Add add() and subtract() methods to the calc object
calc.add = function add(n1, n2) {
 return n1 + n2;
 };
calc.subtract = function subtract(n1, n2) {
 return n1 - n2;
 };
 

When instance methods of a script object implements methods of a Java interface, you need to perform an extra
step. You need to get the reference of the script object before you can get the instance of the interface, as shown:
 
// Get the reference of the global script object obj
Object calc = engine.get("calc");
 
// Get the implementation of the Calculator interface
Calculator calculator = inv.getInterface(calc, Calculator.class);
 

Listing 10-19 shows how to implement methods of a Java interface as instance methods of an object using
Nashorn.

Listing 10-19.  Implementing Methods of a Java Interface as Instance Methods of an Object in a Script

// ScriptObjectImplInterface.java
package com.jdojo.script;
 
import javax.script.Invocable;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;
 
public class ScriptObjectImplInterface {
 public static void main(String[] args) {
 // Get the Nashorn engine
 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine engine = manager.getEngineByName("JavaScript");
  
 // Make sure the engine implements the Invocable interface
 if (!(engine instanceof Invocable)) {
 System.out.println("Interface implementation in " +
 "script is not supported.");
 return;
 }
  

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

717

 // Cast the engine reference to the Invocable type
 Invocable inv = (Invocable)engine;
  
 String script = "var calc = new Object(); " +
 "calc.add = function add(n1, n2) {return n1 + n2; }; " +
 "calc.subtract = function subtract(n1, n2) {return n1 - n2;};";
 
 try {
 // Compile and store the script in the engine
 engine.eval(script);
 
 // Get the reference of the global script object calc
 Object calc = engine.get("calc");
  
 // Get the implementation of the Calculator interface
 Calculator calculator = inv.getInterface(calc, Calculator.class);
 if (calculator == null) {
 System.err.println("Calculator interface " +
 "implementation not found.");
 return;
 }
 
 int result1 = calculator.add(15, 10);
 System.out.println("add(15, 10) = " + result1);
 
 int result2 = calculator.subtract(15, 10);
 System.out.println("subtract(15, 10) = " + result2);
 }
 catch (ScriptException e) {
 e.printStackTrace();
 }
 }
}

add(15, 10) = 25
subtract(15, 10) = 5

Using Compiled Scripts
A script engine may allow compiling a script and executing it repeatedly. Executing compiled scripts may increase
the performance of an application. A script engine may compile and store scripts in the form of Java classes, Java class
files, or in a language-specific form.

Not all script engines are required to support script compilation. Script engines that support script compilation
must implement the Compilable interface. Nashorn engine supports script compilation. The following snippet of
code checks if a script engine implements the Compilable interface:
 
// Get the script engine reference
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName("YOUR_ENGINE_NAME");
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

718

if (engine instanceof Compilable) {
 System.out.println("Script compilation is supported.");
}
else {
 System.out.println("Script compilation is not supported.");
}
 

Once you know that a script engine implements the Compilable interface, you can cast its reference to a
Compilable type as
 
// Cast the engine reference to the Compilable type
Compilable comp = (Compilable)engine;
 

The Compilable interface contains two methods:

•	 CompiledScript compile(String script) throws ScriptException

•	 CompiledScript compile(Reader script) throws ScriptException

The two versions of the method differ only in the type of the source of the script. The first version accepts the
script as a String and the second one as a Reader.

The compile() method returns an object of the CompiledScript class. CompiledScript is an abstract class.
The provider of the script engine provides the concrete implementation of this class. A CompiledScript is associated
with the ScriptEngine that creates it. The getEngine() method of the CompiledScript class returns the reference of
the ScriptEngine to which it is associated.

To execute a compiled script, you need to call one of the following eval() methods of the CompiledScript class:

•	 Object eval() throws ScriptException

•	 Object eval(Bindings bindings) throws ScriptException

•	 Object eval(ScriptContext context) throws ScriptException

The eval() method without any arguments uses the default script context of the script engine to execute the
compiled script. The other two versions work the same as the eval() method of the ScriptEngine interface when you
pass a Bindings or a ScriptContext to them.

Listing 10-20 shows how to compile a script and execute it. It executes the same compiled script twice with
different parameters.

Listing 10-20.  Using Compiled Scripts

// CompilableTest .java
package com.jdojo.script;
 
import javax.script.Bindings;
import javax.script.Compilable;
import javax.script.CompiledScript;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;
 
public class CompilableTest {
 public static void main(String[] args) {
 // Get the Nashorn engine
 ScriptEngineManager manager = new ScriptEngineManager();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

719

 ScriptEngine engine = manager.getEngineByName("JavaScript");
 if (!(engine instanceof Compilable)) {
 System.out.println("Script compilation not supported.");
 return;
 }
 
 // Cast the engine reference to the Compilable type
 Compilable comp = (Compilable)engine;
 
 try {
 // Compile a script
 String script = "print(n1 + n2)";
 CompiledScript cScript = comp.compile(script);
 
 // Store n1 and n2 script variables in a Bindings
 Bindings scriptParams = engine.createBindings();
 scriptParams.put("n1", 2);
 scriptParams.put("n2", 3);
 cScript.eval(scriptParams);
 
 // Execute the script again with different values for n1 and n2
 scriptParams.put("n1", 9);
 scriptParams.put("n2", 7);
 cScript.eval(scriptParams);
 }
 catch (ScriptException e) {
 e.printStackTrace();
 }
 }
}

5
16

Using Java in Scripting Languages
Scripting languages allow using Java class libraries in scripts. Each scripting language has its own syntax for using Java
classes. It is not possible, and is outside the scope of this book, to discuss the syntax of all scripting languages. In this
section, I will discuss the syntax of using some Java constructs in Nashorn. For the complete coverage of the Nashorn
language, please refer to the web site at https://wiki.openjdk.java.net/display/Nashorn/Main.

Declaring Variables
Declaring variables in a scripting language is not related to Java. Typically, scripting languages let you assign values to
variables without declaring them. The types of variables are determined at runtime based on the types of the values
they store.

www.it-ebooks.info

https://wiki.openjdk.java.net/display/Nashorn/Main
http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

720

In Nashorn, the keyword var is used to declare a variable. If you wish, you can omit the keyword var in a variable
declaration. The following snippet of code declares two variables and assigns them a value:
 
// Declare a variable named msg using the var keyword
var msg = "Hello";
 
// Declare a variable named greeting without using the keyword var
greeting = "Hello";

Importing Java Classes
There are four ways to import Java classes in scripts in Nashorn:

Using the •	 Packages global object

Using the •	 type() function of the Java global object

Using the •	 importPackage() and importClass() functions

Using a JavaImporter in a •	 with clause

The following sections will describe the four ways of importing Java classes in script in detail.

Using the Packages Global Object
Nashorn defines all Java packages as properties of a global variable named Packages. For example, the java.lang
and javax.swing packages may be referred to as Packages.java.lang and Packages.javax.swing, respectively.
The following snippet of code uses the java.util.List and javax.swing.JFrame in Nashorn:
 
// Create a List
var list1 = new Packages.java.util.ArrayList();
 
// Create a JFrame
var frame1 = new Packages.javax.swing.JFrame("Test");
 

Nashorn declares java, javax, org, com, edu, and net as global variables that are aliases for Packages.java,
Packages.javax, Packages.org, Packages.com, Packages.edu, and Packages.net, respectively. Class names in
examples in this book start with the prefix com, for example, com.jdojo.script.Test. To use this class name inside
the JavaScript code, you may use Packages.com.jdojo.script.Test or com.jdojo.script.Test. However, if a class
name does not start with one of these predefined prefixes, you must use the Packages global variable to access it;
for example, if your class name is p1.Test, you need to access it using Packages.p1.Test inside JavaScript code.
The following snippet of code uses the java and javax aliases for Packages.java and Packages.javax:
 
// Create a List
var list2 = new java.util.ArrayList();
 
// Create a JFrame
var frame2 = new javax.swing.JFrame("Test");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

721

Using the Java Global Object
Accessing packages as the properties of the Packages object was also supported in Rhino JavaScript in Java 7. Using
the Packages object is slower and error-prone. Nashorn defines a new global object called Java that contains many
useful functions to work with Java packages and classes. If you are using Java 8 or later, you should use the Java object
over the Packages object. The type() function of the Java object imports a Java type into the script. You need to
pass the fully qualified name of the Java type to import. In Nashorn, the following snippet of code imports the
java.util.ArrayList class and creates its object:
 
// Import java.util.ArrayList type and call it ArrayList
var ArrayList = Java.type("java.util.ArrayList");
 
// Create an object of the ArrayList type
var list = new ArrayList();
 

In the code, you call the imported type returned from the Java.type() function as ArrayList that is also the
name of the class that is imported. You do it to make the next statement read as if it was written Java. Readers of
the second statement will know that you are creating an object of the ArrayList class. However, you can give the
imported type any name you want. The following snippet of code imports java.util.ArrayList and calls it MyList:
 
// Import java.util.ArrayList type and call it MyList
var MyList = Java.type("java.util.ArrayList");
 
// Create an object of the MyList type
var list2 = new MyList();

Using the importPackage( ) and importClass( ) Functions
Rhino JavaScript allowed using the simple names of the Java types in script. Rhino JavaScript had two built-in
functions called importPackage() and importClass() to import all classes from a package and a class from a
package, respectively. For compatibility reasons, Nashorn keeps these functions. To use these functions in Nashorn,
you need to load the compatibility module from mozilla_compat.js file using the load() function. The following
snippet of code rewrites the above logic using these functions:
 
// Load the compatibility module. It is needed in Nashorn, not in Rhino.
load("nashorn:mozilla_compat.js");
 
// Import ArrayList class from the java.util package
importClass(java.util.ArrayList);
 
// Import all classes from the javax.swing package
importPackage(javax.swing);
 
// Use simple names of classes
var list1 = new ArrayList();
var frame1 = new JFrame("Test");
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

722

JavaScript does not import all classes from the java.lang package automatically because JavaScript classes with
the same names, for example, String, Object, Number, etc., will conflict with class names in the java.lang package.
To use a class from the java.lang package, you can import it or use the Packages or Java variable to use its fully
qualified name. You cannot import all classes from the java.lang package. The following snippet of code generates
an error because the String class name is already defined in JavaScript:
 
// Load the compatibility module. It is needed in Nashorn, not in Rhino.
load("nashorn:mozilla_compat.js");
 
importClass(java.lang.String); // An error
 

If you want to use the java.lang.String class, you need to use its fully qualified name. The following snippet of
code uses the built-in JavaScript String class and the java.lang.String class:
 
var javaStr = new java.lang.String("Hello"); // Java String class
var jsStr = new String("Hello"); // JavaScript String class
 

If a class name in the java.lang package does not conflict with a JavaScript top-level class name, you can use
the importClass() function to import the Java class. For example, you can use the following snippet of code to use the
java.lang.System class:
 
// Load the compatibility module. It is needed in Nashorn, not in Rhino.
load("nashorn:mozilla_compat.js");
 
importClass(java.lang.System);
 
var jsStr = new String("Hello");
System.out.println(jsStr);
 

In the above snippet of code, jsStr is a JavaScript String that has been passed to the System.out.println()
Java method that accepts a java.lang.String type. JavaScript takes care of the conversion from a JavaScript type to a
Java type automatically in such cases.

Using the JavaImporter Object
In JavaScript, you can use the simple names of classes using a JavaImporter object reference in a with clause.
The constructor of the JavaImporter class accepts a list of Java packages and classes. You can create a JavaImporter
object as shown:
 
// Import all classes from the java.lang package
var langPkg = new JavaImporter(Packages.java.lang);
 
// Import all classes from the java.lang and java.util packages and the
// JFrame class from the javax.swing package
var pkg2 = JavaImporter(java.lang, java.util, javax.swing.JFrame);
 

Note the use of the new operator in the first statement. The second statement does not use the new operator.
Both statements are valid in JavaScript.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

723

The following snippet of code creates a JavaImporter object and uses it in a with clause:
 
// Create a Java importer for java.lang and java.util packages
var javaLangAndUtilPkg = JavaImporter(java.lang, java.util);
 
// Use the imported types in the with clause
with (javaLangAndUtilPkg) {
 var list = new ArrayList();
 list.add("one");
 list.add("two");
 System.out.println("Hello");
 System.out.println("List is " + list);
}

Hello
List is [one, two]

Creating and Using Java Objects
Use the new operator with a constructor to create a new Java object in scripts. The following snippet of code creates a
String object in Nashorn:
 
// Create a Java String object
var javaString = new java.lang.String("A Java string");
 

Accessing methods and properties of Java objects is similar in most scripting languages. Some scripting
languages let you invoke getter and setter methods on an object using the property name. The following snippet of
code in Nashorn creates a java.util.Date object and accesses the object’s method using both the property names
and the method names:
 
var dt = new java.util.Date();
var year = dt.year + 1900;
var month = dt.month + 1;
var date = dt.getDate();
println("Date:" + dt);
println("Year:" + year + ", Month:" + month + ", Day:" + date);

Date:Wed Jul 09 00:35:31 CDT 2014
Year:2014, Month:7, Day:9 

While using JavaScript, it is important to understand the different types of String objects. A String object may
be a JavaScript String object or a Java java.lang.String object. JavaScript defines a length property for its String
class, whereas Java has a length() method for its java.lang.String class. The following snippet of code shows the
difference in creating and accessing the length of a JavaScript String and a Java java.lang.String objects:
 
// JavaScript String
var jsStr = new String("Hello JavaScript String");
print("JavaScript String: " + jsStr);
print("JavaScript String Length: " + jsStr.length);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

724

// Java String
var javaStr = new java.lang.String("Hello Java String");
print("Java String: " + javaStr);
print("Java String Length: " + javaStr.length());

JavaScript String: Hello JavaScript String
JavaScript String Length: 23
Java String: Hello Java String
Java String Length: 17

Using Overloaded Java Methods
Java resolves an overloaded method call at compile time. That is, the Java compiler determines the signature of the
method that will be called when the code is run. Consider the code for a PrintTest class shown in Listing 10-21.
You may get a different output in the second line.

Listing 10-21.  Using Overloaded Methods in Java

// PrintTest.java
package com.jdojo.script;
 
public class PrintTest {
 public void print(String str) {
 System.out.println("print(String): " + str);
 }
  
 public void print(Object obj) {
 System.out.println("print(Object): " + obj);
 }
  
 public void print(Double num) {
 System.out.println("print(Double): " + num);
 }
  
 public static void main(String[] args) {
 PrintTest pt = new PrintTest();
 Object[] list = new Object[]{"Hello", new Object(), 10.5};
  
 for(Object arg : list) {
 pt.print(arg);
 }
 }
}

print(Object): Hello
print(Object): java.lang.Object@affc70
print(Object): 10.5 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

725

When the PrintTest class is run, all three calls to the print() method call the same version, print(Object) of
the PrintTest class. When the code is compiled, the Java compiler sees the call pt.print(arg) as a call to the print()
method with an Object type argument (which is the type of arg) and therefore binds this call to print(Object) method.

In a scripting language, the type of a variable is known at runtime, not at compile time. The interpreters of
scripting languages resolve an overloaded method call appropriately depending on the runtime type of the arguments
in a method call. The output of the following JavaScript code shows that the call to the print() method of the
PrintTest class is resolved at runtime depending on the type of the argument:
 
// In JavaScript
var pt = new com.jdojo.script.PrintTest();
var list = ["Hello", new Object(), 10.5];
for (var i = 0; i < list.length; ++i) {
 pt.print(list[i]);
}

print(String): Hello
print(Object): [object Object]
print(Double): 10.5 

JavaScript lets you select a specific version of the overloaded method explicitly. You can pass the signature
of the overloaded method to be invoked with the object reference. The following snippet of code selects the
print(Object) version:
 
// In JavaScript
var pt = new com.jdojo.script.PrintTest();
pt["print(java.lang.Object)"](10.5); // Calls print(Object)
pt["print(java.lang.Double)"](10.5); // Calls print(Double)

print(Object): 10.5
print(Double): 10.5

Using Java Arrays
The way Java arrays can be created in JavaScript differs in Rhino and Nashorn. In Rhino, you need to needed to create a
Java array using the newInstance() static method of the java.lang.reflect.Array class. This syntax is also supported
in Nashorn. The following snippet of code shows how to create and access Java arrays using the Rhino syntax:
 
// Create a java.lang.String array of 2 elements, populate it, and print the // elements
// Rhino you were able to use java.lang.String as the first argument, but in // Nashorn, you
// need to use java.lang.String.class instead.
var strArray = java.lang.reflect.Array.newInstance(java.lang.String.class, 2);
strArray[0] = "Hello";
strArray[1] = "Array";
for(var i = 0; i < strArray.length; i++) {
 print(strArray[i]);
}

Hello
Array 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

726

To create primitive type arrays such as int, double, etc., you need to use their TYPE constants for their
corresponding wrapper classes as shown:
 
// Create an int array of 2 elements, populate it, and print the elements
var intArray = java.lang.reflect.Array.newInstance(java.lang.Integer.TYPE, 2);
intArray[0] = 100;
intArray[1] = 200;
for(var i = 0; i < intArray.length; i++) {
 print(intArray[i]);
}

100
200 

Nashorn supports a new syntax to create Java arrays. First, create the appropriate Java array type using the
Java.type() method, and then use the familiar new operator to create the array. The following snippet of code shows
how to create a String[] of two elements in Nashorn:
 
// Get the java.lang.String[] type
var StringArray = Java.type("java.lang.String[]");
 
// Create a String[] array of 2 elements
var strArray = new StringArray (2);
strArray[0] = "Hello";
strArray[1] = "Array";
for(var i = 0; i < strArray.length; i++) {
 print(strArray[i]);
}

Hello
Array 

Nashorn supports creating the arrays of primitive types the same way. The following snippet of code creates an
int[] of two elements in Nashorn:
 
// Get the int[] type
var IntArray = Java.type("int[]");
 
// Create a int[] array of 2 elements
var intArray = new IntArray(2);
intArray[0] = 100;
intArray[1] = 200;
for(var i = 0; i < intArray.length; i++) {
 print(intArray[i]);
}

100
200 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

727

You can use a JavaScript array when a Java array is expected. JavaScript will perform the necessary conversion
from a JavaScript array to a Java array. Suppose you have a PrintArray class, as shown in Listing 10-22, that contains a
print() method that accepts a String array as an argument.

Listing 10-22.  A PrintArray Class

// PrintArray.java
package com.jdojo.script;
 
public class PrintArray {
 public void print(String[] list) {
 System.out.println("Inside print(String[] list):");
 for(String s : list) {
 System.out.println(s);
 }
 }
}
 

The following snippet of JavaScript code passes a JavaScript array to the PrintArray.print(String[]) method.
JavaScript takes care of converting the native array to a String array, as shown in the output.
 
// Create a JavaScript array and populate it with three strings
var names = new Array();
names[0] = "Rhino";
names[1] = "Nashorn";
names[2] = "JRuby";
 
// Create an object of the PrintArray class
var pa = new com.jdojo.script.PrintArray();
 
// Pass a JavaScript array to the PrintArray.print(String[] list) method
pa.print(names);

Inside print(String[] list):
Rhino
Nashorn
JRuby 

Nashorn supports array type conversion between Java and JavaScript arrays using the Java.to() and Java.from()
function. The Java.to() function converts a JavaScript array type to a Java array type. The function takes the array
object as the first argument and the target Java array type as the second argument. The target array type can be
specified as a string or a type object. The following snippet of code converts a JavaScript array to a Java String[]:
 
// Create a JavaScript array and populate it with three integers
var personIds = [100, 200, 300];
 
// Convert the JavaScript integer array to java String[]
var JavaStringArray = Java.to(personIds, "java.lang.String[]")
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

728

If the second argument in the Java.to() function is omitted, the JavaScript array is converted to a Java Object[].
The Java.from() function converts a Java array type to a JavaScript array. The function takes the Java array as an

argument. The following snippet of code shows how to convert a Java int[] to a JavaScript array:
 
// Create a Java int[]
var IntArray = Java.type("int[]");
var personIds = new IntArray(3);
personIds[0] = 100;
personIds[1] = 200;
personIds[2] = 300;
 
// Convert the Java int[] array to a JavaScript array
var jsArray = Java.from(personIds);
 
// Print the elements in the JavaScript array
for(var i = 0; i < jsArray.length; i++) {
 print(jsArray[i]);
}

100
200
300 

It seems that Nashorn is not able to convert a Java String[] to a JavaScript array. An attempt to do so in the
following script results in the error shown:
 
// Create a Java String object
var str = new java.lang.String("Rhino,Nashorn,JRuby");
var strDelimiter = new java.lang.String(",");
var strArray = str.split(strDelimiter);
 
// Convert the Java String[] array to a JavaScript array
var jsArray = Java.from(strArray); // Nashorn throws an ScriptException here
 
// Print the elements in tje JavaScript array
for(var i = 0; i < jsArray.length; i++) {
 print(jsArray[i]);
}

javax.script.ScriptException: TypeError: Can only convert Java arrays and lists to
JavaScript arrays. Cant convert object of type {0}. in <eval> at line number 8... 

Tip■■  I t is possible to return a JavaScript array to Java code from a JavaScript function. You need to extract the
elements of the native array in Java code, and therefore you need to use JavaScript-specific classes in Java. This
approach is not advised. You should convert a JavaScript array to a Java array and return the Java array from a
JavaScript function so the Java code deals only with Java classes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

729

Extending Java Classes Implementing Interfaces
JavaScript lets you extend Java classes and implement Java interfaces in JavaScript. The following sections describe
different ways of achieving this.

Using a Script Object
You need to create a script object that contains implementations of the methods of the interface and pass it to the
constructor of the Java interface using the new operator. In Java, an interface does not have a constructor and it cannot
be used with the new operator. However, JavaScript lets you do that.

Let’s implement the Calculator interface shown in Listing 10-17. The following statement creates a script object
that implements the add() and subtract() methods. Note that the two method’s implementations are separated by a
comma. The method name and its implementation are separated by a colon.
 
var calFuncObj = {
 add: function (n1, n2) {
 return n1 + n2;
 },
 subtract: function (n1, n2) {
 return n1 - n2;
 }
 };
 

The following statement creates an implementation of the Calculator interface:
 
var calc = new com.jdojo.script.Calculator(calFuncObj);
 

Now you can start using the calc object as if it were an implementation of the Calculator interface as shown:
 
var n1 = 15;
var n2 = 10;
var result1 = calc.add(n1, n2);
var result2 = calc.subtract(n1, n2);
print(n1 + " + " + n2 + " = " + result1);
print(n1 + " - " + n2 + " = " + result2);

15 + 10 = 25
15 - 10 = 5

Using the Anonymous Class-like Syntax
This method uses a syntax that is very similar to the syntax of creating an anonymous class in Java. The following
statement implements the Java Calculator interface and creates an instance of that implementation:
 
var calc = new com.jdojo.script.Calculator() {
 add: function (n1, n2) {
 return n1 + n2;
 },

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

730

 subtract: function (n1, n2) {
 return n1 - n2;
 }
 };
 

Now you can use the calc object the same way as you did before.

Using JavaAdapter Object and Java.extend( ) Function
JavaScript lets you implement multiple interfaces and extend a class using the JavaAdapter class. However, the Rhino
JavaScript implementation that is bundled with JDK has overridden the implementation of JavaAdapter, which
allows you to implement only one interface; it does not let you extend a class. The first argument to the JavaAdapter
constructor is the interface to implement and the second argument is the script object that implements the methods.
To use the JavaAdapter object in Nashorn, you need to load the Rhino compatibility module. The following snippet of
code implements the Calculator interface using JavaAdapter:
 
// Need to load the compatibility module in Nashorn.
// You do not need to the following load() call in Rhino.
load("nashorn:mozilla_compat.js");
 
var calFuncObj = {
 add: function (n1, n2) {
 return n1 + n2;
 },
 subtract: function (n1, n2) {
 return n1 - n2;
 }
 };
 
var calc = new JavaAdapter(com.jdojo.script.Calculator, calFuncObj);
 

Now you can use the calc object the same way as you did before.
Nashorn provides a better way that can let you extend a class and implement multiple interfaces using the

Java.extend() function. In the extend() function, you can pass maximum one class type and multiple interface type.
It returns a type that combines all passed in types. You need to use the previously discussed anonymous class-like
syntax to provide the implementation for the abstract methods of the new type or override the existing method of the
types being extended. The following snippet of code uses the Java.extend() method to implement the Calculator
interface:
 
// Get the Calculator interface type
var CalculatorType = Java.type("com.jdojo.script.Calculator");
 
// Get a type that extends the Calculator type
var CalculatorExtender = Java.extend(CalculatorType);
 
// Implement the abstract methods in CalculatorExtender
// using an anonymous class like syntax
var calc = new CalculatorExtender() {
 add: function (n1, n2) {
 return n1 + n2;
 },

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

731

 subtract: function (n1, n2) {
 return n1 - n2;
 }
 };
 
var n1 = 15;
var n2 = 10;
var result1 = calc.add(n1, n2);
var result2 = calc.subtract(n1, n2);
print(n1 + " + " + n2 + " = " + result1);
print(n1 + " - " + n2 + " = " + result2);

15 + 10 = 25
15 - 10 = 5

Using a JavaScript Function
Sometimes a Java interface has only one method. In those cases, you can pass a JavaScript function object in place of
an implementation of the interface. The Runnable interface in Java has only one method run(). When you need to use
an instance of the Runnable interface in JavaScript, you can pass a JavaScript function object.

The following snippet of code shows how to create a Thread object and start it. In the constructor of the Thread
class, a JavaScript function object myRunFunc is passed instead of an instance of the Runnable interface.
 
function myRunFunc() {
 print("A thread is running.");
}
 
// Call Thread(Runnable) constructor and pass the myRunFunc function object // that
// will serve as an implementation for the run() method of the Runnable // interface.
var thread = new java.lang.Thread(myRunFunc);
thread.start();

A thread is running.

Using Lambda Expressions
JavaScript supports anonymous functions that can be used as lambda expressions. The following is an anonymous
function that takes a number as an argument and returns its square:
 
function (n) {
 return n * n;
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

732

The following is an example of creating a Runnable object in JavaScript using an anonymous function as a
lambda expression. The Runnable object is used in the constructor of the Thread class.
 
var Thread = Java.type("java.lang.Thread");
 
// Create a Thread using a Runnable object. The Runnable
// object is created using an anonymous function as a lambda expressions.
var thread = new Thread(function() {
 print("Hello Thread");
 });
 
// Start the thread
thread.start();
 

The Java equivalent of the JavaScript code using a lambda expression is as follows:
 
// Create a Thread using a Runnable object. The Runnable object is created using a
// lambda expressions.
Thread thread = new Thread(() -> {
 System.out.println("Hello Thread");
});
 
// Start the thread
thread.start();

Implementing a Script Engine
Implementing a full-blown script engine is no simple task and it is out of scope of this book. This section is meant
to give you a brief, but complete, overview of the setup needed to implement a script engine. In this section, you
will implement a simple script engine called the JKScript engine. It will evaluate arithmetic expressions with the
following rules:

It will evaluate an arithmetic expression that consists of two operands and one operator.•	

The expression may have two number literals, two variables, or one number literal and one •	
variable as operands. The number literals must be in decimal format. Hexadecimal, octal, and
binary number literals are not supported.

The arithmetic operations in an expression are limited to add, subtract, multiply, and divide.•	

It will recognize •	 +, -, *, and / as arithmetic operators.

The engine will return a •	 Double object as the result of the expression.

Operands in an expression may be passed to the engine using global scope or engine scope •	
bindings of the engine.

It should allow executing scripts from a •	 String object and a java.io.Reader object. However,
a Reader should have only one expression as its contents.

It will not implement the •	 Invocable and Compilable interfaces.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

733

Using these rules, some valid expressions for your script engine are as follows:

•	 10 + 90

•	 10.7 + 89.0

•	 +10 + +90

•	 num1 + num2

•	 num1 * num2

•	 78.0 / 7.5

You need to provide implementation for the following two interfaces when you implement a script engine:

•	 javax.script.ScriptEngineFactory interface.

•	 javax.script.ScriptEngine interface

As part of your implementation for the JKScript script engine, you will develop three classes as listed in
Table 10-3. In the subsequent sections, you will develop these classes.

Table 10-3.  The List of Classes to be Developed for the JKScript Script Engine

Class Description

Expression The Expression class is the heart of your script engine. It performs the work of parsing
and evaluating an arithmetic expression. It is used inside the eval() methods of the
JKScriptEngine class.

JKScriptEngine An implementation of the ScriptEngine interface. It extends the AbstractScriptEngine
class that implements the ScriptEngine interface. The AbstractScriptEngine class
provides a standard implementation for several versions of the eval() methods of the
ScriptEngine interface. You need to implement the following two versions of the eval()
method:

Object eval(String, ScriptContext)
Object eval(Reader, ScriptContext)

JKScriptEngineFactory An implementation of the ScriptEngineFactory interface.

The Expression Class
The Expression class contains the main logic for parsing and evaluating an arithmetic expression. Listing 10-23
contains the complete code for the Expression class.

Listing 10-23.  The Expression Class That Parses and Evaluates an Arithmetic Expression

// Expression.java
package com.jdojo.script;
 
import java.util.regex.Matcher;
import java.util.regex.Pattern;
import javax.script.ScriptContext;
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

734

public class Expression {
 private String exp;
 private ScriptContext context;
 
 private String op1;
 private char op1Sign = '+';
 
 private String op2;
 private char op2Sign = '+';
 
 private char operation;
 
 private boolean parsed;
 
 public Expression(String exp, ScriptContext context) {
 if (exp == null || exp.trim().equals("")) {
 throw new IllegalArgumentException(this.getErrorString());
 }
 this.exp = exp.trim();
 
 if (context == null) {
 throw new IllegalArgumentException("ScriptContext cannot be null.");
 }
 this.context = context;
 }
 
 public String getExpression() {
 return exp;
 }
 
 public ScriptContext getScriptContext() {
 return context;
 }
 
 public Double eval() {
 // Parse the expression
 if (!parsed) {
 this.parse();
 this.parsed = true;
 }
 
 // Extract the values for the operand
 double op1Value = getOperandValue(op1Sign, op1);
 double op2Value = getOperandValue(op2Sign, op2);
 
 // Evaluate the expression
 Double result = null;
 switch (operation) {
 case '+':
 result = op1Value + op2Value;
 break;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

735

 case '-':
 result = op1Value - op2Value;
 break;
 case '*':
 result = op1Value * op2Value;
 break;
 case '/':
 result = op1Value / op2Value;
 break;
 default:
 throw new RuntimeException("Invalid operation:" + operation);
 }
 return result;
 }
 
 private double getOperandValue(char sign, String operand) {
 // Check if operand is a double
 double value;
 try {
 value = Double.parseDouble(operand);
 return sign == '-' ? -value : value;
 }
 catch (NumberFormatException e) {
 // Ignore it. Operand is not in a format that can be
 // converted to a double value.
 }
 
 // Check if operand is a bind variable
 Object bindValue = context.getAttribute(operand);
 if (bindValue == null) {
 throw new RuntimeException(operand + " is not found in the script context.");
 }
 
 if (bindValue instanceof Number) {
 value = ((Number) bindValue).doubleValue();
 return sign == '-' ? -value : value;
 }
 else {
 throw new RuntimeException(operand + " must be bound to a number.");
 }
 }
 
 public void parse() {
 // Supported expressiona are of the form v1 op v2, where v1 and v2
 // are variable names or numbers, and op could be +, -, *, or /
 
 // Prepare the pattern for the expected expression
 String operandSignPattern = "([+-]?)";
 String operandPattern = "([\\p{Alnum}\\p{Sc}_.]+)";
 String whileSpacePattern = "([\\s]*)";
 String operationPattern = "([+*/-])";

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

736

 String pattern = "^" + operandSignPattern + operandPattern +
 whileSpacePattern + operationPattern + whileSpacePattern +
 operandSignPattern + operandPattern + "$";
 
 Pattern p = Pattern.compile(pattern);
 Matcher m = p.matcher(exp);
 if (!m.matches()) {
 // The expression is not in the expected format
 throw new IllegalArgumentException(this.getErrorString());
 }
 
 // Get operand-1
 String temp = m.group(1);
 if (temp != null && !temp.equals("")) {
 this.op1Sign = temp.charAt(0);
 }
 this.op1 = m.group(2);
 
 // Get operation
 temp = m.group(4);
 if (temp != null && !temp.equals("")) {
 this.operation = temp.charAt(0);
 }
 
 // Get operand-2
 temp = m.group(6);
 if (temp != null && !temp.equals("")) {
 this.op2Sign = temp.charAt(0);
 }
 this.op2 = m.group(7);
 }
 
 private String getErrorString() {
 return "Invalid expression[" + exp + "]" +
 "\nSupported expression syntax is: op1 operation op2" +
 "\n where op1 and op2 can be a number or a bind variable" +
 " , and operation can be +, -, *, and /.";
 }
 
 @Override
 public String toString() {
 return "Expression: " + this.exp + ", op1 Sign = " +
 op1Sign + ", op1 = " + op1 + ", op2 Sign = " +
 op2Sign + ", op2 = " + op2 + ", operation = " + operation;
 }
}
 

The Expression class is designed to parse and evaluate an arithmetic expression of the form
 
op1 operation op2
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

737

Here, op1 and op2 are two operands that can be numbers in decimal format or variables, and operation can
be +, -, *, or /.

The suggested use of the Expression class is
 
Expression exp = new Expression(expression, scriptContext);
Double value = exp.eval();
 

Let’s discuss important components of the Expression class in detail.

The Instance Variables
Instance variables exp and context are the expression and the ScriptContext to evaluate the expression, respectively.
They are passed in to the constructer of this class.

The instance variables op1 and op2 represent the first and the second operands in the expression, respectively.
The instance variables op1Sign and op2Sign represent signs, which could be ‘+’ or ‘-‘, for the first and the second
operands in the expression, respectively. The operands and their signs are populated when the expression is parsed
using the parse() method.

The instance variable operation represents an arithmetic operation (+, -, *, or /)) to be performed on the operands.
The instance variable parsed is used to keep track of the fact whether the expression has been parsed or not.

The parse() method sets it to true,

The Constructor
The constructor accepts an expression and a ScriptContext and makes sure that they are not null and stores them
in the instance variables. It trims the leading and trailing whitespaces from the expression before storing it in the
instance variable exp.

The parse( ) Method
The parse() method parses the expression into operands and operations. It uses a regular expression to parse the
expression text. The regular expression expects the expression text in the following form:

An optional sign + or - for the first operand•	

The first operand that may consist of a combination of alphanumeric letters, currency signs, •	
underscores, and decimal points

Any number of whitespaces•	

An operation sign that may be +, -, *, or /•	

An optional sign •	 + or - for the second operand

The second operand that may consist of a combination of alphanumeric letters, currency •	
signs, underscores, and decimal points

The regular expression ([+-]?) will match the optional sign for the operand. The regular expression
([\\p{Alnum}\\p{Sc}_.]+) will match an operand, which may be a decimal number or a name. The regular
expression ([\\s]*) will match any number of whitespaces. The regular expression ([+*/-]) will match an operation
sign. All regular expressions are enclosed in parentheses to form groups, so you can capture the matched parts of the
expression.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

738

If an expression matches the regular expression, the parse() method stores the matches parts into respective
instance variables.

Note that the regular expression to match the operand is not perfect. It will allow several invalid cases, such as an
operand having multiple decimal points, etc. However, for this demonstration purpose, it will do.

The getOperandValue( ) Method
This method is used during an expression evaluation after the expression has been parsed. If the operand is a double
number, it returns the value by applying the sign of the operand. Otherwise, it looks up the name of the operand in
the ScriptContext. If the name of the operand is not found in the ScriptContext, it throws a RuntimeException.
If the name of the operand is found in the ScriptContext, it checks if the value is a number. It the value is a number,
it returns the value after applying the sign to the value; otherwise, it throws a RuntimeException.

The getOperandValue() method does not support operands in hexadecimal, octal, and binary formats. For example,
an expression like “0x2A + 0b1011” will not be treated as an expression having two operands with int literals. It is left to
readers to enhance this method to support numeric literals in hexadecimal, octal, and binary formats.

The eval( ) Method
The eval() method evaluates the expression and returns a double value. First, it parses the expression if it has not
already been parsed. Note that multiple calls to the eval() parses the expression only once.

It obtains values for both operands, performs the operation, and returns the value of the expression.

The JKScriptEngine Class
Listing 10-24 contains the implementation for the JKScript script engine. Its eval(String, ScriptContext) method
contains the main logic.
 
Expression exp = new Expression(script, context);
Object result = exp.eval();
 

It creates an object of the Expression class. It calls the eval() method of the Expression object that evaluates the
expression and returns the result.

The eval(Reader, ScriptContext) method reads all lines from the Reader, concatenates them, and passes the
resulting String to the eval(String, ScriptContext) method to evaluate the expression. Note that a Reader must
have only one expression. An expression may be split into multiple lines. Whitespaces in the Reader are ignored.

Listing 10-24.  An Implementation of JKScript Script Engine

// JKScriptEngine.java
package com.jdojo.script;
 
import java.io.BufferedReader;
import java.io.IOException;
import java.io.Reader;
import javax.script.AbstractScriptEngine;
import javax.script.Bindings;
import javax.script.ScriptContext;
import javax.script.ScriptEngineFactory;
import javax.script.ScriptException;
import javax.script.SimpleBindings;
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

739

public class JKScriptEngine extends AbstractScriptEngine {
 private ScriptEngineFactory factory;
 
 public JKScriptEngine(ScriptEngineFactory factory) {
 this.factory = factory;
 }
 
 @Override
 public Object eval(String script, ScriptContext context)
 throws ScriptException {
 try {
 Expression exp = new Expression(script, context);
 Object result = exp.eval();
 return result;
 }
 catch (Exception e) {
 throw new ScriptException(e.getMessage());
 }
 }
 
 @Override
 public Object eval(Reader reader, ScriptContext context)
 throws ScriptException {
 // Read all lines from the Reader
 BufferedReader br = new BufferedReader(reader);
 
 String script = "";
 String str = null;
 try {
 while ((str = br.readLine()) != null) {
 script = script + str;
 }
 }
 catch (IOException e) {
 throw new ScriptException(e);
 }
 
 // Use the String version of eval()
 return eval(script, context);
 }
 
 @Override
 public Bindings createBindings() {
 return new SimpleBindings();
 }
 
 @Override
 public ScriptEngineFactory getFactory() {
 return factory;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

740

The JKScriptEngineFactory Class
Listing 10-25 contains the implementation for the ScriptEngineFactory interface for the JKScript engine. Some of
its methods return a “Not Implemented” string because you do not support features exposed by those methods.
The code in the JKScriptEngineFactory class is self-explanatory. An instance of the JKScript engine may be obtained
using ScriptEngineManager with a name of jks, JKScript, or jkscript as coded in the getNames() method.

Listing 10-25.  A ScriptEngineFactory Implementation for JKScript Script Engine

// JKScriptEngineFactory.java
package com.jdojo.script;
 
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineFactory;
 
public class JKScriptEngineFactory implements ScriptEngineFactory {
 @Override
 public String getEngineName() {
 return "JKScript Engine";
 }
 
 @Override
 public String getEngineVersion() {
 return "1.0";
 }
 
 @Override
 public List<String> getExtensions() {
 return Collections.unmodifiableList(Arrays.asList("jks"));
 }
 
 @Override
 public List<String> getMimeTypes() {
 return Collections.unmodifiableList(
 Arrays.asList("text/jkscript"));
 }
 
 @Override
 public List<String> getNames() {
 List<String> names = new ArrayList<>();
 names.add("jks");
 names.add("JKScript");
 names.add("jkscript");
 return Collections.unmodifiableList(names);
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

741

 @Override
 public String getLanguageName() {
 return "JKScript";
 }
 
 @Override
 public String getLanguageVersion() {
 return "1.0";
 }
 
 @Override
 public Object getParameter(String key) {
 switch (key) {
 case ScriptEngine.ENGINE:
 return getEngineName();
 case ScriptEngine.ENGINE_VERSION:
 return getEngineVersion();
 case ScriptEngine.NAME:
 return getEngineName();
 case ScriptEngine.LANGUAGE:
 return getLanguageName();
 case ScriptEngine.LANGUAGE_VERSION:
 return getLanguageVersion();
 case "THREADING":
 return "MULTITHREADED";
 default:
 return null;
 }
 }
 
 @Override
 public String getMethodCallSyntax(String obj, String m, String[] p) {
 return "Not implemented";
 }
 
 @Override
 public String getOutputStatement(String toDisplay) {
 return "Not implemented";
 }
 
 @Override
 public String getProgram(String[] statements) {
 return "Not implemented";
 }
 
 @Override
 public ScriptEngine getScriptEngine() {
 return new JKScriptEngine(this);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

742

Preparing for Deployment
Before you package the classes for the JKScript script engine, you need to perform one more step. Create a directory
named META-INF. Under the META-INF directory, create a subdirectory named services. In the services directory,
create a text file named javax.script.ScriptEngineFactory. Note the file name must be the way it is mentioned and
it should not have any extension such as .txt.

Edit the javax.script.ScriptEngineFactory file and enter the contents as shown in Listing 10-26. The first
line in the file is a comment that starts with a # sign. The second line is the fully qualified name of the JKScript script
engine factory class.

Listing 10-26.  Contents of the File Named javax.script.ScriptEngineFactory

#The factory class for the JKScript engine
com.jdojo.script.JKScriptEngineFactory
 

Why do you have to perform this step? You will package the javax.script.ScriptEngineFactory file along with
the class files for the JKScript engine in a JAR file. The discovery mechanism for script engines searches for this file
in the META-INF/services directory in all JAR files in the CLASSPATH. If this file is found, its contents are read and all
script factory classes are instantiated and included in the list of script engine factory. Therefore, this step is necessary
to make your JKScript engine auto-discoverable by the ScriptEngineManager.

Packaging the JKScript Files
You need to package all files for the JKScript script engine in a JAR file named jkscript.jar. You can name the file
anything else as well. The following is the list of files with their directories. Note that an empty manifest.mf file will
work in this case.

•	 com\jdojo\script\Expression.class

•	 com\jdojo\script\JKScriptEngine.class

•	 com\jdojo\script\JKScriptEngineFactory.class

•	 META-INF\manifest.mf

•	 META-INF\services\javax.script.ScriptEngineFactory

You can create the jkscript.jar file manually by copying all of the above listed files, except the manifest.mf file,
in a directory, say C:\build on Windows, and then executing the following command from the C:\build directory:

C:\build> jar cf jkscript.jar com\jdojo\script*.class META-INF\services*.*

Using the JKScript Script Engine
It is time to test your JKScript script engine. The first and most important step is to include the jkscript.jar, which
you created the previous section, to the application CLASSPATH. Once you have included the jkscript.jar file in
your application CLASSPATH, using JKScript is no different from using any other script engines.

The following snippet of code creates an instance of the JKScript script engine using JKScript as its name.
You can also use its other names, jks and jkscript.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

743

// Create the JKScript engine
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName("JKScript");
if (engine == null) {
 System.out.println("JKScript engine is not available. ");
 System.out.println("Add jkscript.jar to CLASSPATH.");
}
else {
 // Evaluate your JKScript
}
 

Listing 10-27 contains a program that uses the JKScript script engine to evaluate different types of expressions.
Expressions stored in String objects and files are executed. Some expressions use numeric literals and some bind
variables whose values are passed in bindings in engine scope and global scope of the default ScriptContext of the
engine. Note that this program expects a file named jkscript.txt in the current directory that contains an arithmetic
expression that can be understood by the JKScript script engine. If the script file does not exist, the program prints a
message on the standard output with the path of the expected script file. You may get a different output in the last line.

Listing 10-27.  Using the JKScript Script Engine

// JKScriptTest.java
package com.jdojo.script;
 
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.Reader;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;
 
public class JKScriptTest {
 public static void main(String[] args) throws FileNotFoundException, IOException {
 // Create JKScript engine
 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine engine = manager.getEngineByName("JKScript");
 if (engine == null) {
 System.out.println("JKScript engine is not available. ");
 System.out.println("Add jkscript.jar to CLASSPATH.");
 return;
 }
  
 // Test scripts as String
 testString(manager, engine);
  
 // Test scripts as a Reader
 testReader(manager, engine);
 }
  

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

744

 public static void testString(ScriptEngineManager manager,
 ScriptEngine engine) {
 try {
 // Use simple expressions with numeric literals
 String script = "12.8 + 15.2";
 Object result = engine.eval(script);
 System.out.println(script + " = " + result);
 
 script = "-90.0 - -10.5";
 result = engine.eval(script);
 System.out.println(script + " = " + result);
 
 script = "5 * 12";
 result = engine.eval(script);
 System.out.println(script + " = " + result);
 
 script = "56.0 / -7.0";
 result = engine.eval(script);
 System.out.println(script + " = " + result);
  
 // Use global scope bindings variables
 manager.put("num1", 10.0);
 manager.put("num2", 20.0);
 script = "num1 + num2";
 result = engine.eval(script);
 System.out.println(script + " = " + result);
  
 // Use global and engine scopes bindings. num1 from
 // engine scope and num2 from global scope will be used.
 engine.put("num1", 70.0);
 script = "num1 + num2";
 result = engine.eval(script);
 System.out.println(script + " = " + result);
  
 // Try mixture of number literal and bindings. num1 from
 // the engine scope bindings will be used
 script = "10 + num1";
 result = engine.eval(script);
 System.out.println(script + " = " + result);
 }
 catch (ScriptException e) {
 e.printStackTrace();
 }
 }
  
 public static void testReader(ScriptEngineManager manager,
 ScriptEngine engine) {
 try {
 Path scriptPath = Paths.get("jkscript.txt").toAbsolutePath();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

745

 if (!Files.exists(scriptPath)) {
 System.out.println(scriptPath +
 " script file does not exist.");
 return;
 }
  
 try(Reader reader = Files.newBufferedReader(scriptPath);) {
 Object result = engine.eval(reader);
 System.out.println("Result of " +
 scriptPath + " = " + result);
 }
 }
 catch(ScriptException | IOException e) {
 e.printStackTrace();
 }
 }
}

12.8 + 15.2 = 28.0
-90.0 - -10.5 = -79.5
5 * 12 = 60.0
56.0 / -7.0 = -8.0
num1 + num2 = 30.0
num1 + num2 = 90.0
10 + num1 = 80.0
Result of C:\jkscript.txt = 190.0

The jrunscript Command-line Shell
The JDK includes a command-line script shell called jrunscript. It is script-engine-independent and it can be
used to evaluate any script including your JKScript. You can find this shell in the JAVA_HOME\bin directory, where
JAVA_HOME is the directory in which you have installed the JDK. IN this section, I will discuss how to use the
jrunscript shell to evaluate script using different script engines.

The Syntax
The syntax to use the jrunscript shell is
 
jrunscript [options] [arguments]
 

Both [options] and [arguments] are optional. However, if both are specified, [options] must precede
[arguments]. Table 10-4 lists all available options for the jrunscript shell.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

746

The [arguments] part of the command is a list of arguments, which are interpreted depending on whether the
-e or -f option is used or not. Arguments that are passed to the script are available inside the script as an array named
arguments. Table 10-5 lists interpretations of the arguments when they are used with the -e or -f option.

Table 10-4.  The List of Options for the jrunscript shell

Option Description

-classpath <path> Used to specify the CLASSPATH.

-cp <path> The same as the option -classpath.

-D<name>=<value> Sets a system property for Java runtime.

-J<flag> Passes the specified <flag> to the JVM on which jrunscript is run.

-l <language> Allows you to specify a scripting language that you want to use. By default, Rhino
JavaScript is used in JDK 6 and JDK 7. In JDK 8, Nahsorn is the default. If you want to use
a language other than JavaScript, say JKScript, you will need to use -cp or -classpath
option to include the JAR file that contains the script engine.

-e <script> Executes the specified script. Typically, it is used to execute a one-liner script.

-encoding <encoding> Specifies the character encoding used while reading script files.

-f <script-file> Evaluates the specified script-file in batch mode.

-f - Allows you to evaluate scripts in interactive mode. It reads scripts from the standard
input and executes.

-help Outputs the help message and exits.

-? Outputs the help message and exits.

-q Lists all available script engines and exits. Note that script engines other than JavaScript
are available only when you include their JAR files using the -cp or -classpath option.

Table 10-5.  Interpretation of [arguments] in Combination of the -e or -f Option

-e or -f option Arguments Interpretation

Yes Yes If -e or -f option is specified, all arguments are passed to the script as script
arguments.

No Yes If arguments are specified with no -e or -f option, the first argument is
considered a script file to run. The rest of the arguments, if any, are passed to the
script as script arguments.

No No If arguments and -e or -f option are missing, the shell works in interactive mode,
where the shell executes the script entered in the standard input interactively.

Execution Modes of the Shell
You can use the jrunscript shell in the following three modes:

One-liner mode•	

Batch mode•	

Interactive mode•	

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

747

One-liner Mode
The -e option lets you use the shell in one-liner mode. It executes one line of script. The following command prints a
message on the standard output using Rhino JavaScript engine:
 
C:\>jrunscript -e "print('Hello Rhino Nashorn!')"
Hello Rhino Nashorn!
 

In one-liner mode, the entire script must be entered on one line. However, a one-liner script may contain
multiple statements.

Batch Mode
The -f option lets you use the shell in batch mode. It executes a script file. Consider a script file named nashorntest.js
as shown in Listing 10-28.

Listing 10-28.  A nashorntest.js Script File Written in Nashorn JavaScript

// Print a message
print("Hello Nashorn!");
 
// Add two integers and print the value
var x = 10;
var y = 20;
var z = x + y;
print(x + " + " + y + " = " + z);
 

The following command runs the script in the nashorntest.js file in a batch mode. You may need to specify the
full path of the nashorntest.js file if it is not in the current directory.
 
C:\>jrunscript -f nashorntest.js
Hello Nashorn!
10 + 20 = 30

Interactive Mode
In interactive mode, the shell reads and evaluates script as it is entered on the standard input. There are two ways to
use the shell in interactive mode:

Using no •	 -e or -f option and no arguments

Using “•	 -f -” option

The following command uses no options and arguments to enter into interactive mode. Pressing the Enter key
makes the shell evaluate the entered script.
 
c:\>jrunscript
nashorn> print("Hello Interactive mode!");
Hello Interactive mode!
nashorn> var num = 190;
nashorn> print("num is " + num);
num is 190
nashorn> exit();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

748

Listing Available Script Engines
The jrunscript shell is a scripting-language-neutral shell. You can use it to run scripts in any scripting language
for which the script engine JAR files are available. By default, the Nashorn JavaScript engine is available. To list all
available script engines, you use the -q option as shown:
 
c:\>jrunscript -q
Language ECMAScript ECMA - 262 Edition 5.1 implementation "Oracle Nashorn" 1.8.0_05
 

Please refer to the next section on how to add a script engine to the shell.

Adding a Script Engine to the Shell
How do you make script engines other than the Nashorn JavaScript engine available to the shell? To make a script
engine available to the shell, you need to provide the list of JAR files for the script engine using the -classpath or -cp
option. The following command makes JKScript and jython script engines available to the shell by providing the
list of JAR files for Jython and JKScript engines. Note that the Nashorn engine is always available by default.
The command uses the -q option to list all available script engines.
 
c:\> jrunscript -cp C:\jython-standalone-2.5.3.jar;C:\jkscript.jar -q
Language python 2.5 implementation "jython" 2.5.3
Language ECMAScript ECMA - 262 Edition 5.1 implementation "Oracle Nashorn" 1.8.0_05
Language JKScript 1.0 implementation "JKScript Engine" 1.0 

Tip■■  T he CLASSPATH set using the -cp or -classpath option is effective only for the command in which the option is
used. If you run the shell in interactive mode, the CLASSPATH is effective for the entire interactive session.

Using Other Script Engines
You can use other script engines by specifying the script engine name with the -l option. You must use the -cp or
-classpath option to specify the JAR files for the script engine, so the shell has the access to the engine. The following
command uses the JKScript engine in interactive mode:
 
C:\>jrunscript -cp C:\jkscript.jar -l JKScript
jks> 10 + 30
40.0
jks> +89.7 + -9.7
80.0
jks>

Passing Arguments to Scripts
The jrunscript shell allows passing arguments to scripts. The arguments are made available to the script in an array
named arguments. You can access the arguments array inside the script in the language-specific way. The following
command passes three arguments of 10, 20, and 30, and prints the value of the first argument.
 
C:\>jrunscript -e "print('First argument is ' + arguments[0])" 10 20 30
First argument is 10
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

749

Consider the Nashorn JavaScript file nashornargstest.js shown in Listing 10-29, which prints the number of
arguments and their values that are passed to the script.

Listing 10-29.  A nashornargstest.js File Written in Nashorn JavaScript to Print Command-Line Arguments

// nashornargstest.js
print("Number of arguments:" + arguments.length);
print("Arguments are ") ;
for(var i = 0; i < arguments.length; i++) {
 print(arguments[i]);
}
 

The following commands run the nashornargstest.js file using the jrunscript shell.
 
C:\>jrunscript nashornargstest.js
Number of arguments:0
Arguments are
 
C:\>jrunscript nashornargstest.js 10 20 30
Number of arguments:3
Arguments are
10
20
30
 

If you want to run the nashornargstest.js file from a Java application, you need to pass an argument named
arguments to the engine. The argument named arguments is passed to the script by the shell automatically, not
by a Java application.

The jjs Command-Line Tool
To work with the Nashorn script engine, JDK 8 includes a new command-line tool called jjs. The command is located
in the JDK_HOME\bin directory. The command can be used to run scripts in files or scripts entered on the command-line
in interactive mode. It can also be used to execute shell scripts. The syntax to invoke the command is
 
jjs <options> <script-files> <-- arguments>
 

Here,

•	 <options> are options for the jjs command. Two options are separated by spaces.

•	 <script-files> is the list of script files to be interpreted by the Nashorn engine.

•	 <-- arguments> is the list of arguments to be passed to the scripts or the interactive shell as
arguments. Arguments are specified after double hyphens and they can be accessed using the
arguments property.

Table 10-6 lists some of the commonly used options for the jjs tool. To print the list of all options, run the tool
with the –xhelp option, like so:
 
jjs –xhelp
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

750

If you run jjs without specifying any options or script files, it is run in interactive mode. The script is interpreted
as you enter it. Strings in Nashorn can be enclosed in single quotes or double quotes. The following are some
examples of using the jjs tool in interactive mode. It is assumed that you have included the path to the jjs tool in the
PATH environment variable on your machine. If you have not done so, you can replace jjs with JDK_HOME\bin\jjs in
the following command. You can execute the quit() or exit() function to exit the jjs tool.
 
c:\>jjs
jjs> "Hello Nashorn"
Hello Nashorn
jjs> "Hello".toLowerCase();
hello
jjs> var list = [1, 2, 3, 4, 5]
jjs> var sum = 0;
jjs> for each (x in list) { sum = sum + x};
15
jjs> quit()
 
c:\>
 

The following is an example of passing arguments to the jjs tool. The first five natural numbers are passed to
the jjs tool as arguments and they are accessed using the arguments property later. Note that you must add a space
between the two hyphens and the first argument.
 

Table 10-6.  Options for the jjs Comand-line Tool

Option Description

-classpath <path> or -cp <path> Used to specify the CLASSPATH.

-D<name>=<value> Sets a system property for Java runtime. This option can be repeated
to set multiple runtime properties values.

-J<flag> Passes the specified <flag> to the JVM.

-scripting Enabled shell scripting features.

-strict Enables strict mode where the scripts are executed using the
ECMAScript Edition 5.1 standards.

-fx Launches the script as a JavaFX application.

-doe or –dump-on-error When this is specified, a full stack trace of the error is printed. By
default, a brief error message is printed.

-v or –version Prints the version of the Nashorn engine.

-fv or –fullversion Prints the full version of the Nashorn engine.

-t=<timezone> or –timezone=<timezone> Sets the time zone for the script execution. The default time zone is
Chicago/America.

-help or -h Outputs the help message and exits.

-xhelp Prints extended help.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

751

c:\>jjs -- 1 2 3 4 5
jjs> for each (x in arguments) print(x)
1
2
3
4
5
jjs> quit()
 
c:\>
 

Consider the script in Listing 10-30. The script has been saved in a file named stream.js. The script works
on a list of integers. The list can be passed to the script as the command-line arguments. If the list is not passed as
arguments, it uses the first five natural numbers as the list. It computes the sum of the squares of odd integers in the
list. It prints the list and the sum.

Listing 10-30.  A Script to Compute the Sum of the Squares of Odd Integers in a List

// stream.js
var list;
if (arguments.length == 0) {
 list = [1, 2, 3, 4, 5];
}
else {
 list = arguments;
}
 
print("List of numbers: " + list);
 
var sumOfSquaredOdds = list.filter(function(n) {return n % 2 == 1;})
 .map(function(n) {return n * n;})
 .reduce(function(sum, n) {return sum + n;}, 0);
 
print("Sum of the squares of odd numbers: " + sumOfSquaredOdds);
 

Using the jjs tool, you can run the script in the stream.js file as follows. It is assumed that the stream.js file is
in the current directory. Otherwise, you need to specify the full path of the file.
 
c:\>jjs stream.js
List of numbers: 1,2,3,4,5
Sum of the squares of odd numbers: 35
 
c:\>jjs stream.js -- 10 11 12 13 14 15
List of numbers: 10,11,12,13,14,15
Sum of the squares of odd numbers: 515
 
c:\>
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

752

The jjs tool can be invoked in scripting mode that allows you to run shell commands. You can start the jjs tool
in scripting mode using the –scripting option. The shell commands are enclosed in back quotes. The following are
examples of using the date and ls shell commands using the jjs tool in scripting mode:
 
c:\>jjs -scripting
jjs> `date`
Mon Jul 14 22:42:26 CDT 2014
 
stream.js
test.js
 
jjs> quit()
 
c:\>
 

You can capture the output of the shell command in a variable. Scripting mode allows for expression substitution
in strings enclosed in double quotes. Note that the expression substitution feature is not available in strings enclosed
in single quotes. The expression is enclosed in ${expression}. The following commands capture the value of the date
shell command in a variable and embed the date value in a string using the expression substitution. Note that in the
example, the expression substitution does not work when the string is enclosed in single quotes:
 
c:\>jjs -scripting
jjs> var today = `date`
jjs> "Today is ${today}"
Today is Mon Jul 14 22:48:26 CDT 2014
 
jjs> 'Today is ${today}'
Today is ${today}
jjs> quit()
 
c:\>
 

You can also execute the shell script stored in a file using the scripting mode, like so:
 
C:\> jjs –scripting myscript.js
 

The jjs tool supports heredocs in script files that can be run in scripting mode. A heredoc is also known as a
here document, here-string, or here-script. It is a multiline string where whitespaces are preserved. A heredoc starts
with a double angle brackets (<<) and a delimiting identifier. Typically, EOF or END is used as the delimiting identifier.
However, you can use any other identifier that is not used as an identifier elsewhere in the script. The multiline string
starts at the end line. The string is ended with the same delimiting identifier. The following is an example of using a
heredoc in Nashorn:
 
var str = <<EOF
This is a multi-line string using the heredoc syntax.
Bye Heredoc!
EOF
 

Listing 10-31 contains the script that uses a heredoc in Nashorn. The $ARG property is defined only in scripting
mode and its value is the arguments passed to the script using the jjs tool.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

753

Listing 10-31.  The Contents of the heredoc.js File That Using Heredoc Style a Multiline String

// heredoc.js
var str = <<EOF
This is a multiline string.
Number of arguments passed to this
script is ${$ARG.length}
Arguments are ${$ARG}
 
Bye Heredoc!
EOF
 
print(str);
 

You can execute the heredoc.js script file as shown:
 
c:\> jjs -scripting heredoc.js
This is a multi-line string.
Number of arguments passed to this
script is 0
Arguments are
 
Bye Heredoc!
 
c:\> jjs -scripting heredoc.js -- Kishori Sharan
This is a multi-line string.
Number of arguments passed to this
script is 2
Arguments are Kishori,Sharan
 
Bye Heredoc!
 

For more information on shell scripting in Nashorn, please refer to http://docs.oracle.com/javase/8/docs/
technotes/guides/scripting/nashorn/shell.html.

JavaFX in Nashorn
The jjs command-line tool for Nashorn lets you use JavaFX from scripts. You need to create a start() function in
JavaScript as you do to launch a JavaFX application in Java. Nashorn will take care of the rest. Optionally, you can also
declare init() and stop() functions for your JavaFX application. You can use the fully qualified name of the JavaFX
classes or import them using the Java.type() function. The following snippet of code shows the two approaches to
create a Label in JavaFX:
 
// Using the fully qualified name of the Label class
var msg = new javafx.scene.control.Label("Hello JavaFX!");
 
// Using Java.type() function
var Label = Java.type("javafx.scene.control.Label");
var msg = new Label("Hello JavaFX!");
 

www.it-ebooks.info

http://docs.oracle.com/javase/8/docs/technotes/guides/scripting/nashorn/shell.html
http://docs.oracle.com/javase/8/docs/technotes/guides/scripting/nashorn/shell.html
http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

754

It may be cumbersome to type the fully qualified names of all JavaFX classes. Aren’t scripts supposed to be
shorter than Java code? Nashorn has a way to make your JavaFX script shorter. It includes several script files that
import the JavaFX types as their simple names. You will need to load those script files using the load() method, and
then you can use the simple names of JavaFX classes in your script. Nashorn includes a fx:controls.js script file
that imports all JavaFX control classes as their simple class names. Table 10-7 contains the list of script files and the
classes/packages they import.

Table 10-7.  The List of Nashorn Script Files and the Classes/Packages They Import

Nashorn Script File Imported Classes/Packages

fx:base.js javafx.stage.Stage
javafx.scene.Scene
javafx.scene.Group
javafx/beans
javafx/collections
javafx/events
javafx/util

fx:graphics.js javafx/animation
javafx/application
javafx/concurrent
javafx/css
javafx/geometry
javafx/print
javafx/scene
javafx/stage

fx:controls.js javafx/scene/chart
javafx/scene/control

fx:fxml.js javafx/fxml

fx:web.js javafx/scene/web

fx:media.js javafx/scene/media

fx:swing.js javafx/embed/swing

fx:swt.js javafx/embed/swt

The following snippet of code shows how to load this script file and use the simple name of the
javafx.scene.control.Label class:
 
// Import all JavaFX control class names
load("fx:controls.js")
 
// Use the simple name of the Label control
var msg = new Label("Hello JavaFX!");
 

Listing 10-32 contains the code for a JavaFX application. Save the code in a file named hellojavafx.js.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

755

Listing 10-32.  A JavaFX Application Using Nashorn Script

// hellojavafx.js
 
// Load Nashorn predefined scripts to import JavaFX specific classes and packages
load("fx:base.js")
load("fx:controls.js")
load("fx:graphics.js")
 
// Define the start() method of the JavaFX application class
function start(stage) {
 var nameLbl = new Label("Enter your name:");
 var nameFld = new TextField();
 var msg = new Label();
 msg.setStyle("-fx-text-fill: blue;");
 
 // Create buttons
 var sayHelloBtn = new Button("Say Hello");
 var exitBtn = new Button("Exit");
 
 // Add the event handler for the Say Hello button
 sayHelloBtn.onAction = function() {
 var name = nameFld.getText();
 if (name.trim().length() > 0) {
 msg.text = "Hello " + name;
 }
 else {
 msg.text = "Hello there";
 }
 };
 
 // Add the event handler for the Exit button
 exitBtn.onAction = function() {
 Platform.exit();
 };
 
 // Create the root node
 var root = new VBox();
 
 // Set the vertical spacing between children to 5px
 root.spacing = 5;
 
 // Add children to the root node
 root.children.addAll(nameLbl, nameFld, msg, sayHelloBtn, exitBtn);
 
 // Set the scene and title for the stage
 stage.scene = new Scene(root, 350, 150);
 stage.title = "Hello JavaFX from Nashorn";
 
 // Show the stage
 stage.show();
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

756

This is the Nashorn script equivalent of the JavaFX application defined as the ImprovedHelloFXApp Java class in
Chapter 9. The Nashorn version of the code is little simpler to write. In the script, you are able to call the methods of
the Java classes using their properties. For example, instead of writing
 
root.setSpacing(5);
 
in Java, you can write
 
root.spacing = 5;
 
in Nashorn JavaScript.

Adding the event handler for buttons is easier. You can set an anonymous function as the event handler for the
buttons. Note that you are able to use onAction property to set the event handler rather than calling the setOnAction()
method of the Button class. The following snippet of code shows how to set the ActionEvent handler for a button:
 
// Add the event handler for the Say Hello button
sayHelloBtn.onAction = function() {
 // Script code to handle the ActionEvent goes here
};
 

To run a JavaFX application, you need to start the jjs tool with a –fx option. The following command starts the
JavaFX application that displays a window as shown in Figure 10-7. Enter a name and click the Say Hello button to
see a message. Click the Exit button to exit the application.
 
C:\> jjs -fx hellojavafx.js
 

Figure 10-7.  A JavaFX window created using Nashorn script

The jjs command-line tool makes it really easy to work with JavaFX applications. You can display a message in
a JavaFX window in just one line of code. Nashorn creates a global variable named $STAGE that is the reference of the
primary stage of the JavaFX application. Note that the $STAGE global variable is available in the script only when you
use the jjs tool with the –fx option. Listing 10-33 shows the code for the simplest JavaFX application that displays
a Label with a message in a JavaFX window. Save it in a file named simplestfxapp.js. Note that you do not have to
create any function for the start() method any more. You do not need to even call the show() method on the $STAGE
variable. Nashorn will show the stage automatically.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Scripting in Java

757

Listing 10-33.  Using the $STAGE Global Variable in Nashorn Script

// simplestfxapp.js
 
$STAGE.scene = new javafx.scene.Scene(new javafx.scene.control.Label("Hello JavaFX Scripting"));
 

The following command will run the simplest JavaFX application that displays a window as shown in Figure 10-8.

Summary
A scripting language is a programming language that provides you the ability to write scripts that are evaluated
(or interpreted) by a runtime environment called a script engine (or an interpreter). A script is a sequence of characters
that is written using the syntax of a scripting language and used as the source for a program executed by an interpreter.
The Java Scripting API allows you to execute scripts written in any scripting language that can be compiled to Java
bytecode from the Java application. JDK 6 and 7 shipped with a script engine called Rhino JavaScript engine. In JDK 8,
the Rhino JavaScript engine has been replaced with a script engine called Nashorn.

Scripts are executed using a script engine that is an instance of the ScriptEngine interface. The implementer
of the ScriptEngine interface also provides an implementation of the ScriptEngineFactory interface whose job is
to create instances of the script engine and provide details about the script engine. The ScriptEngineManager class
provides a discovery and instantiation mechanism for script engines. A ScriptManager maintains a mapping of
key-value pairs as an instance of the Bindings interface that is shared by all script engines that it creates.

You can execute scripts contained in a String or a Reader. The eval() method of the ScriptEngine is used
execute the script. You can pass parameters to the script using the ScriptContext. Parameters passed can be local to
a script engine, local to a script execution, or global to all script engines created by a ScriptManager. Using the Java
Scripting API, you can also execute procedures and functions written in scripting languages. You can also pre-compile
the scripts, if the script engine supports it, and execute the scripts repeated from Java to get a better performance.

You can implement your script engine using the Java Scripting API. You will need to provide the implementation
for the ScriptEngine and the ScriptEngineFactory interfaces. You need to package your script engine code in a
certain way so the engine can be discovered by the ScriptManager at runtime.

The Java 8 ships two command-line tools called jrunscript and jjs. They are located in the JDK_HOME\bin
directory. They are used to run scripts on a command line. The jrunscript tool is script-language-neutral; it can be
used to execute scripts in any script language such as Nashorn, JRuby, groovy, etc. The jjs tool is used to run Nashorn
scripts and its extensions; you can run shell commands, scripts, and Java application using the jjs tool.html

Figure 10-8.  The simplest JavaFX application using Nashorn script

www.it-ebooks.info

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/doc-files/cssref.html
http://www.it-ebooks.info/

A�       �
Abstract Window Toolkit (AWT), 85
AccessControlException, 389
Action Interface, 148
Adaptive Server Anywhere

database, 394, 399, 431, 466
addRow() method, 458
Applets, 249

appletviewer command
debug option, 262
encoding option, 262
Google Chrome browser, 261
Jjavaoptions option, 262
syntax, 260

codebase attribute, 262–263
definition, 249
deployment

<applet> tag, 252
HTML document creation, 252
JAR files, 254
testing, 254

development process, 250
event-dispatching thread, 278
getAppletContext() method, 274
getAppletInfo() method, 270
getAudioClip() method, 273
getImage() method

getDocumentBase() method, 272
HTML content, 272–273
URL, 272

getParameterInfo() method, 269
getParameter() method, 269
HelloApplet class, 250–251
HTML and JavaScript, 275
JApplet class, 250
Java code trusted

codebase option, 283
configuration file, 282
file/directory path format, 284

JVM option, 281
partial error, 281
policy files, 282
SecurityTest class, 281

Java Plug-in
configuration, 257
installation, 255
Java Control Panel program, 256

life cycle
destroy() method, 265–266
init() method, 264
start() method, 264
stop() method, 265

list of attributes, <applet> tag, 270–271
MAYSCRIPT attribute, 277
package, 278
paint() method, 280
<param> tag, 266
security restrictions for, 285
signed document

CA, 287
HTML file creation, 289
JAR file, 288
jarsigner command, 287
Java Plug-in setup, 289
keytool command, 288
manifest.mf file creation, 288
ReadUserHomeApplet class, 287

view, 260
Asynchronous socket channel

client applications, 370
Attachment class, 366
ReadWriteHandler class, 366

CompletionHandler class, 357
server application, 359, 369

AsyncEchoServerSocket class, 362
Attachment class, 360
CompletionHandler class, 360
ReadWriteHandler class, 361

Auto-commit mode, 406

Index

759

www.it-ebooks.info

http://www.it-ebooks.info/

B�       �
BatchUpdateException command, 512
Binary Large Object (Blob), 500
Bootstrap class loader, 543
Borders

Bevel Border, 178, 194
Compound Border, 178, 194
Empty Border, 178, 194
Etched Border, 178, 194
Line Border, 178, 194
Matte Border, 178, 194
Soft Bevel Border, 178, 194
Titled Border, 178, 194

ButtonGroup, 124

C�       �
CachedRowSet

acceptChanges() method, 487
execute() method, 484
paging, 484–487
populate() method, 484
size() method, 484
updation and deletion, 488–490

CallableStatement interface, 425
Adaptive Server Anywhere, 431
DB2, 433–434
INOUT parameters, 427–428
IN parameters, 426
Java DB, 434
MySQL, 431
Oracle, 432
OUT parameters, 427
return parameter, 428
SQL server, 432–433
stored procedure, 428

Certification Authority (CA), 287
Character Large Object (Clob), 500
Clean message, 545
close() method, 403, 424
Color Chooser, 172
commit() method, 406
Compilable interface, 717
compile() method, 718
ComponentEvent, 84
ComponentListener, 84
Connected rowset, 481
ConnectionPoolDataSource

interface, 521
createBindings() method, 692
createJdbcRowSet() method, 476
Custom ScriptContext, 703

D�       �
Data control language (DCL) statement, 414
Data definition language (DDL) statement, 414
Datagram channel

binding, 372
client application, 375
close() method, 373
echo server, 373
multicast

binding, 376
close() method, 379
creation, 376
DGCMulticastClient class, 380
DGCMulticastServer class, 381
join() method, 378
network interface, 377
receive() method, 379
send() method, 379
setOption() method, 376

open() method, 371
receive() method, 373
send() method, 372
setOption() method, 371

Data manipulation language (DML) statement, 414
DataSource, 520
DB2 database, 394, 400, 433, 467
Derby.properties, 389
destroy() method, 265
Dirty message, 545
Disconnected rowset, 484
Document base attribute, 262
Drag and drop (DnD) mechanism, 219

E�       �
EditorKit, 108
Engine scope bindings, 707
eval() method, 703, 705
evaluate() method, 495
Event handling

classes and interfaces, 627
dispatch chain, 628
filters and handlers, 631
route traversal

bubbling phase, 630
capture phase, 629

source, 627
target, 627, 628
types, 627

execute() method, 416
executeQuery() method, 417
executeUpdate() method, 416

■ index

760

www.it-ebooks.info

http://www.it-ebooks.info/

F�       �
File Chooser, 172
FilteredRowSet, 494
FocusEvent, 84
FocusListener, 84
Font class, 181

G, H�       �
getAppletContext() method, 274
getAppletInfo() method, 270
getApplet() method, 275
getAudioClip() method, 274
getBindings() method, 699
getCodeBase() method, 264
getConnection() method, 402
getDocumentBase() method, 264
getMetaData() method, 412
getParameterInfo() method, 269
getParameter() method, 266, 269
getScopes() method, 696
get(String key) method, 699
getTransactionIsolation() method, 409
getXxx() method, 411
give_raise stored procedure, 435

I�       �
Implementing Remote Interface, 529
initApplet() method, 278
init() method, 251, 264
INOUT parameters, 427–428
IN parameters, 426
Interpreter, 677
Invocable interface, 710
Invocation API

C++ console application, 586
EmbeddedJVMJNI class, 586
JavaVMInitArgs structure, 584–585
JavaVMoption structure, 584
printMsg() method, 586
setout() and setErr() methods, 585
version field, 584

invokeAndWait() method, 278
invokeLater() method, 278
IP address

anycast, 304
broadcast, 304
definition, 297
InetAddress class, 309
Internet Assigned Numbers Authority (IANA), 297
IPv4, 298

IPv6, 300
loopback, 302
machine address, 309
multicast, 303
Regional Internet Registry (RIR) organizations, 297
unicast, 303
unspecified, 304

J�       �
Java data types, 409
Java DB database, 395, 401, 434

configuration, 388
embedded mode, 388
installation files, 387
NetBeans IDE, 391
server mode, 388

Java.from() function, 728
JavaFX

2D shapes
class diagram, 648
code implementation, 649
path and SVGpath classes, 651

animation, 659
class diagram, 661
interpolator, 660, 662
key frame, 662
keyvalue, 661
timeline, 661–662

binding, 604, 617
bidirectional, 605
eager binding, 605
isValid() method, 618
NumberBinding methods, 618
unbind() method, 620
unidirectional, 605

canvas, drawing, 652
components

glass windowing toolkit, 592
media engine, 592
prism, 592
Quantum toolkit, 593
scene graph, 592
web engine, 593

container class (see Layout panes)
controls, 642
definition, 591
effects, 654
event handling

classes and interfaces, 627
dispatch chain, 628
filters and handlers, 631
route traversal, 629

■ Index

761

www.it-ebooks.info

http://www.it-ebooks.info/

source, 627
target, 627, 628
types, 627

features, 591
FXML, user interface, 665
GuI components, 642
HelloJavaFX class, 594

getChildren() method, 598
launch() method, 596
main() method, 596, 598
scene class, 598
setOnAction() method, 600
setScene() method, 599
setStyle() method, 600
setTitle() method, 596
start() method, 595
text node, 599

history, 593
layout panes

BorderPane, 639
class diagram, 637
dynamic layout, 636
parent class, 637
setStyle() method, 641
static layout, 636
using CSS, 641

lifecycle
code implementation, 603
init() method, 602
launch() method, 602
start() method, 602
stop() method, 602

new versions, 593
observable collections

addListener() method, 624–625
changed() method, 625
class diagram, 623
FXCollections class, 624
next() method, 624
ObservableList, 623, 625
ObservableMap, 623
ObservableSet, 623–624

printing nodes, 670
properties, 604–605

change events, 615
counter property, 606
get() and set() methods, 606
getReadOnlyProperty() method, 606
idWrapper property, 607
IntegerProperty, 606
invalidation event, 612
ISBN property, book class, 609
printDetails() method, 611
removeListener() method, 614

SimpleIntegerProperty, 607
title property, book class, 608
toString() methods, 611

runtime library, 594
source code, 594
termination, 604
timeline animation, 662
transformations, 656

Affine, 657
class diagram, 657
rotate class, 657
scale class, 658
shear class, 658
translate class, 657

Java Interface implementation
Calculator interface, 714
getInterface() method, 713, 716
instance methods, 716–717

java.lang.AutoCloseable interface, 403
java.lang.ClassNotFoundException, 541
Java Naming and Directory

Interface (JNDI) service, 520
Java Native Interface (JNI), 549

architecture, 550
arrays, 568
C/C++

header file creation, 554
program implementation, 556

class libraries, 550
compiling, 554
definition, 549
dynamic link library (DLL), 550
exception handling

Exceptioncheck() function, 582
ExceptionClear() function, 582
ExceptionOccurred() function, 582
FatalError() function, 583
FindClass() function, 581
return statement, 583
ThrowNew() function, 583

functions, C/C++, 565
JVM creation (see Invocation API)
mapping

primitive data types, 563
reference type, 564

naming rules
header file, 562
javah command, 561
mangled method’s signature, 561
method’s parameter signature, 561
test class, 562

objects (see Java objects)
program implementation

abstract method, 552
loadLibrary() method, 551

■ index

762

JavaFX (cont.)

www.it-ebooks.info

http://www.it-ebooks.info/

load() method, 551
native method, 552–553

run command, 560
shared library creation

on Linux, 559
on Windows, 557

strings, 566
synchronization

MonitorEnter(), 589
MonitorExit(), 589

system requirements, 550
Java objects

class reference
FindClass() function, 573
GetObjectClass() function, 573

creation
AllocObject() function, 579
getValue() method, 580
methodID parameter, 579
wrapperObject, 580

field access
cls parameter, 574
GetField() function, 574
GetStaticField() function, 574

JNIJavaObjectAccessTest class, 577
methods

callIntMethod(), 576
CallMethod() function, 576
GetMethodID(), 574
GetStaticMethodID(), 574
instance method, 575
javap command, 575
static methods, 575

Java Plug-in
configuration, 257
installation, 255
Java Control Panel program, 256

Java Remote Method
Invocation (Java RMI)

architecture, 526
client and server, 526
client program, 536
debugging, 542
dynamic class downloading, 543
garbage collector, 545
remote interface

client program, 534
implementation, 529
requirements, 528
server program, 531

remote object, 525
RMI client program, 539
RMI registry application, 537
RMI server, 538
server program, 536

troubleshooting
java.lang.ClassNotFoundException, 541
java.rmi.server.ExportException, 540
java.rmi.StubNotFoundException, 540
java.security.AccessControlException, 541

UnicastRemoteObject class, 536
java.rmi.server.ExportException, 540
java.rmi.StubNotFoundException, 540
Java Runtime Environment (JRE), 255
java.security.AccessControlException, 541
Java.security.manager JVM option, 281
java.sql.Connection interface, 396
java.sql.SQLException, 402
Java.to() function, 728
Java.type() method, 726
Javax.script Package

AbstractScriptEngine class, 684
Bindings interface, 684
Compilable interface, 684
CompiledScript class, 684
getEngineFactories() method, 685
Invocable interface, 684
ScriptContext interface, 684
ScriptEngineFactory interface, 684
ScriptEngine interface, 683
ScriptEngineManager class, 684
ScriptException class, 685

JButton, 86
JCheckBox, 123
JColorChooser, 172, 176, 194
JComboBox, 125
JDBC

auto-commit mode, 406
batch updates

BatchUpdateException, 513
BatchUpdateException command, 512
CallableStatement interface, 511
coding implementation, 512–513
executeBatch() method, 512
multi-step process, 511

commit() method, 406
DatabaseMetaData, 412–413
data types, 409
driver

Adaptive Server Anywhere, 399
CLASSPATH setting up, 396
DB2, 400
getConnection() method, 402
Java DB, 401
java.sql.DriverManager class, 396–397
jdbc.drivers system property, 397
MySQL, 400
Oracle, 398
registerDriver() method, 397
SQL Server, 399

■ Index

763

www.it-ebooks.info

http://www.it-ebooks.info/

types of, 386–387
URL format, 398

execute() method, 463
getMoreResults() method, 463–464
LOB (see Large object (LOB))
result sets (see Result sets)
rollback() method, 406
RowSets (see RowSets)
SQL statements (see SQL statements)
SQL warning, 522
table creation, 393

Adaptive Server Anywhere, 394
DB2, 394
Java DB, 395
MySQL, 395
Oracle, 394
SQL Server, 394

transaction
INSERT statement, 518
person table creation, 517
rollback() method, 518
setSavepoint() method, 517
SQLException, 518
using savepoints, 519

transaction isolation level
dirty read, 407
non-repeatable read, 407
phantom read, 408–409

JDBC API, 385–386
JDBC-Native API driver, 387
JDBC-Net driver, 387
JDBC trace, 522
JEditorPane, 108
JFileChooser, 194

accept() method, 175
addChoosableFileFilter() method, 175
dialog box, 174
isAcceptAllFileFilterUsed() method, 176
in JDialog, 172
setCurrentDirectory() method, 173
showDialog() method, 174
showSaveDialog() method, 174

JFormattedTextField, 102
JFrame

components
add() method, 8–9
BorderLayout, 11
closeButton, 8, 11
containment hierarchy, 8
content pane, 7
glass pane, 7
Help button, 11
JButton, 9–10
layered pane, 7

Layout Managers, 11
pack() method, 10
root pane, 7
setBounds() method, 10

creation
program implementation, 4, 6
resizing, 4–5
setDefaultCloseOperation() method, 6
setSize()method, 6
setVisible () method, 3
WindowsConstants interface, 5

reusable creation
initFrame() method, 68
main() method, 67

jjs command-line tool
$ARG property, 752–753
EOF/END identifier, 752
exit() function, 750
${expression}, 752
JavaFX

ActionEvent handler, 756
classes/packages, 754
fx option, 756
hellojavafx.js, 755
Label creation, 753

scripting option, 752
$STAGE global variable, 757

stream.js, 751
syntax, 749
xhelp option, 749

JKScriptEngine class, 738
JKScriptEngineFactory class, 740
JLabel, 91
JList, 127
JMenuBar, 138
JMenuItem, 138
JoinRowSet, 498
JOptionPane, 166
JPanel, 90
JPasswordField, 101
JProgressBar, 135
JRadioButton, 123
jrunscript command-line shell, 678

arguments array, 749
arguments list, 746
batch mode, 747
cp/-classpath option, 748
interactive mode, 747
JKScript and jython script engines, 748
one-liner mode, 747
syntax, 745
types of, 746

JScrollBar, 131
JScrollPane, 133
JSeparator, 137

■ index

764

JDBC (cont.)

www.it-ebooks.info

http://www.it-ebooks.info/

JSlider, 136
JSpinner, 129
JSplitPane, 160
JTabbedPane, 160
JTable, 149
JTextArea, 105
JTextComponent, 95
JTextField, 97
JTextPane, 113
JToggleButton, 123
JToolBar, 146
JTree, 155
JWindow, 177

K�       �
Keyboard indicator, 87
Keyboard shortcut, 87
KeyEvent, 85

L�       �
Large object (LOB)

Blob and Clob columns, 506–509
Clob interface, 505
Connection interface, 504
data retrieval, 502–503
OutputStream, 504
PreparedStatement interface, 505
table creation, Java DB, 501–502
types, 500

Layout managers
BorderLayout

close button, 23
code implementation, 21
containers orientation, 22
help button, 23

BoxLayout
code implementation, 26
container alignment, 27
filler, 28
glue, 28–30
rigid area, 28
static methods, 27
struct, 28

CardLayout, 23
actionPerformed() method, 25
addActionListener() method, 25
class methods, 24
code implementation, 24

FlowLayout
code implementation, 16
component orientation, 16
JFrame buttons, 17
nesting, 20

setAlignment() method, 17
setHgap() methods, 18
setVgap() methods, 18

GridBagConstraints, 32
anchor constraint, 44
gridx and gridy constraints, 34, 37, 41
instance variables, 36
ipadx constraints, 43
ipady constraints, 43

GridBagLayout, 32
code implementation, 33
contentPane.add() method, 33
fill constraint, 42
insets constraint, 44
weightx and weighty constraints, 47

GridLayout
code implementation, 31
constructors, 30
containers, 31

GroupLayout, 56
addComponent() method, 62
addGap() method, 61
grouping alignment, 58
JFrame, 60
leading alignment, 57
linkSize() method, 65
nested groups, 64
ParallelGroup, 57, 58, 63
sequential groups, 57, 63
setVerticalGroup() method, 60

null, 66
snippet code, 33
SpringLayout

code implementation, 50
constants, 52
constant() static method, 49
pack() method, 51, 54
putConstraint() method, 54–55
scale() method, 50
setting x and y constraints, 52
strut, 49
subtract() method, 49
sum() method, 49

Layout panes
BorderPane, 639
class diagram, 637
dynamic layout, 636
parent class

getChildren() method, 637
getChildrenUnmodifiable()

method, 638
getManagedChildren() method, 638

setStyle() method, 641
static layout, 636
using CSS, 641

■ Index

765

www.it-ebooks.info

http://www.it-ebooks.info/

length() method, 503, 723
Life cycle

destroy() method, 265–266
init() method, 264
start() method, 264
stop() method, 265

Live remote reference, 545
Locator, 501

M�       �
main() method, 252
MAYSCRIPT attribute, 277
Menu, 137
META-INF/services directory, 685
MouseEvent, 85
MouseListener, 85
MouseMotionListener, 85
MouseWheelEvent, 85
MouseWheelListener, 85
MySQL database, 395, 400, 431, 465

N�       �
National Character Large Object (NClob), 500
NetBeans IDE, 391
Network programming

asynchronous socket channel, 357
client applications, 365, 370
server application, 359, 369

blocking vs. non-blocking classes, 345
campus area network (LAN), 294
client-server paradigm, 305–306
communication, 294
datagram channel (see Datagram channel)
data transmission, 294
definition, 293
host, 293
internet, 294
IP address, 297

anycast, 303
broadcast, 304
InetAddress class, 309
IPv4, 298
IPv6, 300
loopback, 302
machine address, 309
multicast, 303
Regional Internet Registry (RIR)

organizations, 297
unicast, 303
unspecified, 304

local area network (LAN), 294
metropolitan area network (MAN), 294
network, 293

non-blocking socket, 345
architecture, 346
ByteBuffer object, 350
echo server, 351
operations, 347
SelectionKey object, 349
ServerSockeChannel, 347

packet switching networks, 295
port number

application layer, 305
IANA, 304

protocol suite
application layer, 295
internet layer, 296
network interface layer, 296
physical layer, 296
transmission packets, 297
transport layer, 296

socket
accept primitive, 308
bind primitive, 307
close primitive, 309
connectionless socket, 305–306
connection-oriented socket, 305–306
connect primitive, 308
datagram socket, 307
lifecycle, 306
listen primitive, 307
receive/receiveFrom primitive, 309
security permissions, 356
send/sendto primitive, 309

socket address, 311
topology, 294
transmission control protocol (TCP), 305

client socket, 317, 319
server socket, 312, 319

uniform resource identifier (URI)
ASCII value, 331
hierarchial syntax, 331
http scheme, 330
Java objects, 334
rules, 332
specifications, 332

uniform resource locator (URL), 330
content reader, 338
getContent() method, 339
HTTP request method, 337
Java objects, 335
openConnection() method, 340
Reader/Writer Class, 342

uniform resource name (URN), 330
user datagram protocol (UDP), 306

connect() method, 327
DatagramPacket, 320
DatagramSocket, 320, 322

■ index

766

www.it-ebooks.info

http://www.it-ebooks.info/

echo server, 322
multicast sockets, 327
sockets, 327

virtual connection, 305
wide area network (WAN), 294

newFactory() method, 476–477

O�       �
Oracle database, 394, 398, 432, 466
OUT parameters, 427

P, Q�       �
Paging, 484–487
paint() method, 280
parse() method, 737
Peer, 85
Plugin.jar file, 276
PreparedStatement interface, 414–415, 422
prepareStatement() method, 423
put() method, 689, 699

R�       �
registerDriver() method, 397
Relational database management

system (RDBMs), 385
Remote Interface, 528
Remote method Invocation, 525
Reserved keys, 707
ResultSetMetaData, 444, 472
Result sets

absolute cursor movement, 455
bidirectional scrollable

getHoldability() method, 452
getType() method, 449–451
SQLException, 451

close() method, 456–457
Concurrency, 438
deleteRow() method, 462
displayPersonUsingPreparedStatement(), 448
displayPersonUsingStatement(), 447
executeQuery() method, 442
getRow() method, 448
getXxx() methods, 443
Holdability, 438
insertRow() method, 457
next() method, 442, 448, 453
PreparedStatement, 445–447
query execution, 449
relative cursor movement, 454–455
rows and column, structures of, 453
Scrollability, 438
SELECT statement, 437

stored procedure (see Stored procedure)
toString() method, 445
try-catch block, 439–442
updateRow() method, 460
using while-loop, 444
wasNull() method, 444

Retrieving LOB Data, 502
Rhino JavaScript, 677
RMI architecture, 526
RMI client program, 534
RMI server program

exportObject() method, 531
rebind() method, 532
security manager installation, 531

rollback() method, 406
RowSets

advantages of, 474
bidirectional scrollable and updateable, 479
CachedRowSet

acceptChanges() method, 487
execute() method, 484
paging, 484–487
populate() method, 484
size() method, 484
updation and deletion, 488–490

class diagram, 475
command setting, 478
creation, 476
database connection properties, 477
disadvantages of, 474
FilteredRowSet, 494
JdbcRowSet, 481
JoinRowSet, 498
RowSetUtil class, 480–481
types of, 475
updateRow() method, 479
WebRowSet, 490

S�       �
Scope, 693
Script context

Bindings, 693
FileWriter, 694
getAttribute() method, 695
global scope, 695
interface, 696–697
setAttribute() method, 694
SimpleScriptContext class, 693, 695

Script engine, 677–678
arithmetic expressions rules, 732
Custom ScriptContext, 703
Default ScriptContext, 707
discovering and instantiating, 685
eval() method, 686, 705

■ Index

767

www.it-ebooks.info

http://www.it-ebooks.info/

Expression class, 733
eval() method, 738
getOperandValue() method, 738
instance variables, 737
parse() method, 737

Groovy installation, 682
helloscript.js, 686–687
JKScriptEngine class, 738–739
JKScriptEngineFactory class, 740–742
JKScript script engine, 743–745
JRuby installation, 682
Jython installation, 682
manifest.mf file, 742

Scripting language
advantages, 677
compiled scripts, 717
definition, 677
disadvantage, 678
eval() method, 679
getEngineFactories() method, 680–681
Invocable interface, 710, 712
invokeFunction() method, 711
java in

anonymous class creation, 729
arrays, 725
Calculator interface, 729
global variable, 720
importClass() function, 721–722
importPackage() function, 721–722
JavaAdapter object, 730
Java.extend() method, 730
lambda expressions, 731
method overloading, 724–725
Runnable interface, 731
String object creation, 723
type() function, 721
variable declaration, 719
with clause, 722–723

java Interface (see Java Interface
implementation)

javax.script Package (see Javax.script Package)
jrunscript shell, 678
jsoutput.txt, 708–709
Nashorn JavaScript, 712–713
passing parameters

bindings, 691–692
java code to scripts, 688–689
put() method, 697
scope, 693
script context (see Script context)
ScriptEngineManager, 698, 700–703
scripts to java code, 690–691

print() function, 679
ScriptEngineFactory class, 683
ScriptEngineManager class, 678

Servlet, 249
setAsciiStream() method, 505
setBinaryStream() method, 504
setBindings() method, 701
setBytes() method, 504
setCharacterStream() method, 505
setFilter() method, 495
setJoinType() method, 499
setNull() method, 411
setString() method, 505
showDocument() method, 275
showStatus() method, 275
SQL Server database, 394, 399, 432–433, 466
SQL statements

CallableStatement interface
(see CallableStatement interface)

DELETE, 421
execute() method, 416
executeQuery() method, 417
executeUpdate() method, 416
INSERT, 419–420
person table creation, 418–419
PreparedStatement interface, 414–415, 422
statement object, 416
time and timestamp escape sequences, 417
UPDATE, 420–421

start() method, 264
stop() method, 265
Stored procedure, 464

Adaptive Server Anywhere, 466
DB2, 467
Java DB

coding implementation, 467
JDBCUtil.getConnection() method, 470–471
in Oracle database, 469
printResultSet() static method, 468–469

MySQL, 465
Oracle, 466
SQL server, 466

supportsStoredProcedures() method, 426
Swing, 1, 195

character-based user interface, 2
container, 2
containment hierarchy, 2–3
Dimension class, 13
DnD

canImport() and importData()
methods, 224

data transfer mechanism, 219
drop modes, 221
exportDone() method, 224
JFrame, 226
JList, 221
myComponent, 220
Transferable interface, 219–220
TransferHandler class, 220

■ index

768

Script engine (cont.)

www.it-ebooks.info

http://www.it-ebooks.info/

event handling, 4
ActionEvent class, 69, 75
Action listener, 72
ActionListener interface, 70, 72
event handler, 69
event listener/eventhandler, 69
EventListener interface, 72
event source, 69
getActionCommand() method, 75
JButton, 70
listener interface, 71
triggering an event, 69

graphical user interface(GUI), 2
HTML, 195
Insets class, 13
JLayer, component decoration

BlueBorderUI class, 232
eventDispatched() method, 236
event processing task, 235
getView() and getUI()

methods, 233
JTextField components, 238
paint() method, 233
processFocusEvent() method, 236
uninstallUI() method, 235

layout managers, 14
BorderLayout, 21
BoxLayout, 26
CardLayout, 23
FlowLayout, 16
GridBagConstraints, 32
GridBagLayout, 32
GridLayout, 30
GroupLayout, 56
null, 66
setLayout() method, 15
SpringLayout, 49

MDI applications
DesktopManager interface, 228
JDesktopPane class, 227
JFrame class, 228
JInternalFrame class, 227
on Windows, 228

mouse event handler
ActionListener interface, 79
adapter class, 78
code implementation, 77
JButton, 76
methods, 76
MouseListener interface, 76–77

pluggable look and feel, 205
Point class, 12
Rectangle class, 13
SDI applications, 227
shaped window, 245
simplest program (see JFrame)

Synth XML file
buttonStyle style, 215
CLASSPATH, 211
<color> element, 216
definition, 210
<imageIcon> element, 216
<imagePainter> element, 217
JFrame, 212–213, 218
key attribute, 214
loading process, 210
load() method, 211
<property> element, 216
painterCenter attribute, 217
paintTextFieldBorder() and

paintButtonBorder() methods, 217
<state> element, 215
<style> element, 214
type attribute, 214
using URL, 211

TDI applications, 227
threading mechanisms, 4
threading model

JVM, 196
SwingUtilities class, 197
SwingWorker class, 199

Toolkit class, 230
translucent windows

initFrame() method, 241
JFrame, 242
JPanel, 242
per-pixel translucency, 244
setOpacity(float opacity) method, 240
translucent and opaque, 239
transparent, 239
WindowTranslucency enum, 239

user interface (UI), 1
Swing components, 122

Border class
bevel border, 181
Bevel Border, 178
compound border, 178, 181
empty border, 178, 181
etched border, 178, 181
line border, 178, 181
matte border, 178, 181
Soft Bevel Border, 178
Titled Border, 178

color class, 177
custom dialogs

confirmation dialog, 162
Input dialog, 162
message dialog, 162
modalities, 164
Modal JDialog, 164
Modeless JDialog, 164
setModalityType() method, 164

■ Index

769

www.it-ebooks.info

http://www.it-ebooks.info/

Double Buffering, 189
drawing shapes, 184

DrawingCanvas, 187
getGraphics() method, 189
Graphics class, methods of, 186
paintComponent() method, 188

font class
Dialog, 182
DialogInput, 182
glyph, 181
Monospace, 182
object-oriented font, 182
outline font, 182
pitch, 182
SansSerif, 182
scalable font, 182
Serif, 182
setFont() method, 183
typeface, 181

Immediate Painting, 189
JButton

AbstractAction class, 88
ActionListener interface, 87
Action object, 88
actionPerformed() method, 89
constructors, 86
ImageIcon class, 86
keyboard mnemonic, 87
methods, 88
modifier key, 87

JCheckBox, 123
JColorChooser, 172, 176, 194
JComboBox, 125
JComponent class, 81

accessibility, 82
border, 82
class hierarchy, 82
events, 84
heavyweight components, 85
key binding, 82
layout manager, 82
lightweight components, 85
look and feel, 82
methods, 82
on-screen painting, 82
putClientProperty() and

getClientProperty() methods, 82
tool tip, 82

JEditorPane
EditorKit object, 108
getEditPaneBox() method, 112
getURLBox() method, 112
go() method, 112
HTML Browser, 109
hyperlinkUpdate() method, 109

main() method, 112
read(InputStream in, Object description)

method, 108
setContentType(String contentType) method, 108
setPage() method, 108

JFileChooser, 172, 194
JFormattedTextField

advantages of, 105
constructors, 102
Default Formatter, 105
Display Formatter, 105
Edit Formatter, 105
formatter factory, 103
getValue() method, 105
mask formatter, 104
Null formatter, 105
salaryField, 103
setFormatterFactory() method, 105

JFrame, 190
JLabel

constructors, 91
setDisplayedMnemonic() method, 92
setLabelFor() method, 92
setText() method, 92

JList, 127
getSize() method, 128
horizontal wrapping, 128
methods, 129
multiple interval selection, 128
setSelectionMode() method, 128
setVisibleRowCount() method, 128
single interval selection mode, 128
single selection mode, 128
vertical argument, 128
vertical wrapping, 128

JMenu, 138
JOptionPane

arguments, 166
CANCEL_OPTION, 167
CLOSED_OPTION, 167
Confirmation Dialog, 166
createDialog() methods, 171
Input dialog, 166
Message dialog, 166
NO_OPTION, 167
OK_OPTION, 167
Option dialog, 166
showConfirmDialog() method, 168
showInputDialog() method, 169–170
showMessageDialog() methods, 168
showOptionDialog() method, 170
YES_OPTION, 167

JPanel
constructors, 90
FlowLayout, 90
with BorderLayout, 91

■ index

770

Swing components (cont.)

www.it-ebooks.info

http://www.it-ebooks.info/

JPasswordField
echo character, 101
getText() and getPassword() method, 101
setEchoChar() method, 102

JProgressBar, 135
JRadioButton, 123
JScrollBar, 131
JScrollPane

four corners, 134
JScrollBars, 133
Row/Column headers, 133
show always, 134
show as needed, 134
show never, 134
viewport, 133, 135

JSeparator, 137
JSlider, 136
JSpinner

components, 129
JSpinner.DateEditor, 131
JSpinner.ListEditor, 131
JSpinner.NumberEditor, 131
SpinnerDateModel, 130
SpinnerListModel, 130–131
SpinnerModel interface, 130
SpinnerNumberModel, 130

JSplitPane, 160
JTabbedPane, 160
JTable

AbstractTableModel class, 152
addColumn() and addRow() methods, 150
constructors, 151
DefaultTableModel class, 152
getColumnClass() method, 154
getModel() method, 150
getSelectedRowCount() method, 151
getSelectedRow() method, 151
getTableHeader() method, 151
no-args constructor, 149
setColumnIdentifiers() method, 150
setValueAt() method, 151
TableModel interface, 152

JTextArea, 105
code implementation, 106
constructors, 106
JScrollPane, 108
methods, 107
setWrapStyleWord() method, 107

JTextComponent, 95
JTextField

constructors, 97
createDefaultModel() method, 100
insertString() method, 100
JFormattedTextField, 101
LimitedCharDocument, 100

named name and mirroredName, 98
PlainDocument class, 99

JTextPane
addStyle() method, 116
attributes, 113
buttons, 116
dump() method, 120
insertString() method, 119
methods, 118
plain document, 113
root element, 113
StyleContext object, 118
styled document, 113
StyledDocument interface, 113
word processor, 119
write() method, 119

JToggleButton, 123
JToolBar

action interface, 148
in JFrame, 146

JTree, 155
branch node, 156
DefaultMutableTreeNode, 158
getPath() method, 158
getRowCount() method, 157
leaf node, 156
MutableTreeNode, 156
node, 156
parent node, 156
siblings, 156
toString() method, 157
tree-expansion event, 159
TreeNode, 156
TreePath, 158
TreeSelectionListener, 159
TreeSelectionModel interface, 158
tree-will-expand event, 159

JWindow, 177
Menus, 137

JMenuBar, 138
JMenuItem, 138
Nesting menus, 139
pop-up menu, 138
program, 142
setAccelerator() method, 140
setMnemonic() method, 140
show() method, 141

Painting mechanism
Graphics object, 185
paintComponent() method, 185–186
RepaintManager class, 184
repaint() method, 184

text components
class diagram, 93
document interface, 94

■ Index

771

www.it-ebooks.info

http://www.it-ebooks.info/

getDocument() method, 95
JEditorPane and JTextPane, 94
JTextArea, 94
mutiline text component, 93
MVC pattern, 94
plain text component, 94
single-line text component, 93
styled text component, 94

Validation
invalidate() method, 184
isValid() method, 183
pack() method, 183
revalidate() method, 184
setVisible() method, 183

Symbol tables, 677
Synth, 210
System.setProperty() method, 397

T�       �
Text Components, 93
Thread class, 731
toCachedRowSet() method, 500

Transaction Control Language (TCL) Statement, 414
Transaction isolation level

dirty read, 407
non-repeatable read, 407
phantom read, 408–409

Transport Network Substrate(TNS), 398

U�       �
updateXxx() method, 411

V�       �
Validating text input

setInputVerifier() method, 121
verify() method, 121

W�       �
WebRowSet, 490

X, Y, Z�       �
XADataSource interface, 521

■ index

772

Swing components (cont.)

www.it-ebooks.info

http://www.it-ebooks.info/

Beginning Java 8 APIs,
Extensions, and Libraries

Swing, JavaFX, JavaScript, JDBC,
and Network Programming APIs

Kishori Sharan

www.it-ebooks.info

http://www.it-ebooks.info/

Beginning Java 8 APIs, Extensions and Libraries: Swing, JavaFX, JavaScript, JDBC and Network
Programming APIs

Copyright © 2014 by Kishori Sharan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6661-7

ISBN-13 (electronic): 978-1-4302-6662-4

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Publisher: Heinz Weinheimer
Lead Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewers: Jeff Friesen
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, James T. DeWolf,

Jonathan Gennick, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson,
Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade,
Steve Weiss

Coordinating Editor: Anamika Panchoo
Copy Editor: Mary Behr
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

www.it-ebooks.info

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.it-ebooks.info/

To
My parents, Ram Vinod Singh and Pratibha Devi

www.it-ebooks.info

http://www.it-ebooks.info/

vii

Contents

About the Author�� xxi

About the Technical Reviewer�� xxiii

Acknowledgments��� xxv

Foreword��� xxvii

Introduction�� xxix

Chapter 1: Introduction to Swing■■ ���1

What Is Swing?��1

The Simplest Swing Program���3

Components of a JFrame���7

Adding Components to a JFrame���8

Some Utility Classes���12

The Point Class��� 12

The Dimension Class�� 13

The Insets Class�� 13

The Rectangle Class��� 13

Layout Managers��14

FlowLayout��� 15

BorderLayout�� 21

CardLayout��� 23

BoxLayout��� 26

GridLayout�� 30

GridBagLayout�� 32

SpringLayout�� 49

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

viii

GroupLayout��� 56

The null Layout Manager�� 66

Creating a Reusable JFrame��67

Event Handling���69

Handling Mouse Events��76

Summary��79

Chapter 2: Swing Components■■ ���81

What Is a Swing Component?��81

JButton���86

JPanel��90

JLabel���91

Text Components��93

JTextComponent��� 95

JTextField��� 97

JPasswordField�� 101

JFormattedTextField��� 102

JTextArea�� 105

JEditorPane�� 108

JTextPane��� 113

Validating Text Input���121

Making Choices��122

JSpinner���129

JScrollBar���131

JScrollPane��133

JProgressBar��135

JSlider��136

JSeparator��137

Menus��137

JToolBar���146

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

ix

JToolBar Meets the Action Interface���148

JTable���149

JTree���155

JTabbedPane and JSplitPane ��160

Custom Dialogs��162

Standard Dialogs ���166

File and Color Choosers���172

JFileChooser��� 172

JColorChooser�� 176

JWindow���177

Working with Colors���177

Working with Borders���178

Working with Fonts��181

Validating Components��183

Painting Components and Drawing Shapes���184

Immediate Painting��189

Double Buffering��189

JFrame Revisited��190

Summary��192

Chapter 3: Advanced Swing■■ ���195

Using HTML in Swing Components��195

Threading Model in Swing��196

Pluggable Look and Feel��205

Skinnable Look-and-Feel���210

Drag and Drop��219

Multiple Document Interface Application���227

The Toolkit Class���230

Decorating Components Using JLayer���232

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

x

Translucent Windows���239

Shaped Window��245

Summary��248

Chapter 4: Applets■■ ��249

What Is an Applet?���249

Developing an Applet���250

Writing an Applet��250

Deploying an Applet���252

Creating the HTML Document��� 252

Deploying Applets in Production��� 254

Deploying Applets for Testing��� 254

Installing and Configuring Java Plug-in���255

Installing the Java Plug-in�� 255

Opening the Java Control Panel�� 255

Configuring Java Plug-in�� 257

Viewing an Applet���260

Using the appletviewer to Test Applets��260

Using the codebase Attribute ��262

Example 1��� 262

Example 2��� 263

Example 3��� 263

The Life Cycle of an Applet���264

The init() Method�� 264

The start() Method�� 264

The stop() Method��� 265

The destroy() Method�� 265

Passing Parameters to Applets ���266

Publishing the Applet’s Parameter Information��269

Publishing the Applet’s Information���270

Other Attributes of the <applet> Tag��270

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xi

Using Images in an Applet��272

Playing Audio Clips in an Applet���273

Interacting with the Applet’s Environment���274

Communion of Applet, HTML, and JavaScript��275

Packaging Applets in Archives���278

The Event Dispatching Thread and Applets��278

Painting in Applets���280

Is the Java Code Trusted?��280

Security Restrictions for Applets��284

Signing Applets��287

Step 1: Developing an Applet�� 287

Step 2: Packaging Class Files into a JAR File��� 288

Step 3: Generating Private/Public Key Pair��� 288

Step 4: Signing the JAR File��� 288

Step 5: Creating the HTML File��� 289

Step 6: Viewing the Signed Applet�� 289

Summary��291

Chapter 5: Network Programming■■ ��293

What Is Network Programming?��293

Network Protocol Suite��295

IP Addressing Scheme��297

IPv4 Addressing Scheme�� 298

IPv6 Addressing Scheme�� 300

Special IP Addresses��302

Loopback IP Address�� 302

Unicast IP Address�� 303

Multicast IP Address��� 303

Anycast IP Address��� 303

Broadcast IP Address�� 304

Unspecified IP Address��� 304

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xii

Port Numbers���304

Socket API and Client-Server Paradigm���305

The Socket Primitive��� 307

The Bind Primitive�� 307

The Listen Primitive�� 307

The Accept Primitive��� 308

The Connect Primitive�� 308

The Send/Sendto Primitive��� 309

The Receive/ReceiveFrom Primitive��� 309

The Close Primitive��� 309

Representing a Machine Address���309

Representing a Socket Address���311

Creating a TCP Server Socket��312

Creating a TCP Client Socket��317

Putting a TCP Server and Clients Together���319

Working with UDP Sockets���319

Creating a UDP Echo Server���322

A Connected UDP Socket��327

UDP Multicast Sockets���327

URI, URL, and URN��330

URI and URL as Java Objects���333

Accessing the Contents of a URL���337

Non-Blocking Socket Programming���345

Socket Security Permissions��356

Asynchronous Socket Channels���357

Setting Up an Asynchronous Server Socket Channel��� 359

Setting up an Asynchronous Client Socket Channel �� 365

Putting the Server and the Client Together��� 369

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xiii

Datagram-Oriented Socket Channels���370

Creating the Datagram Channel��� 371

Setting the Channel Options��� 371

Sending Datagrams�� 372

Multicasting Using Datagram Channels���376

Creating the Datagram Channel��� 376

Setting the Channel Options��� 376

Binding the Channel��� 376

Setting the Multicast Network Interface��� 377

Joining the Multicast Group�� 378

Receiving a Message�� 379

Closing the Channel�� 379

Further Reading��382

Summary��382

Chapter 6: JDBC API■■ ���385

What Is the JDBC API?��385

System Requirements��386

Types of JDBC Drivers��386

JDBC Native API Driver��� 387

JDBC-Net Driver��� 387

JDBC Driver�� 387

A Brief Overview of Java DB���387

Java DB Installation Files��� 387

Configuring Java DB��� 388

Running the Java DB Server��� 388

Creating a Database Table��393

Oracle Database��� 394

Adaptive Server Anywhere Database��� 394

SQL Server Database�� 394

DB2 Database��� 394

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xiv

MySQL Database�� 395

Java DB Database��� 395

Connecting to a Database��395

Obtaining the JDBC Driver�� 396

Setting up the CLASSPATH��� 396

Registering a JDBC Driver�� 396

Setting the jdbc.drivers System Property��� 397

Loading the Driver Class��� 397

Using the registerDriver() Method�� 397

Constructing a Connection URL�� 398

Establishing the Database Connection��� 402

Setting the Auto-Commit Mode��406

Committing and Rolling Back Transactions��406

Transaction Isolation Level���407

Dirty Read��� 407

Non-Repeatable Read��� 407

Phantom Read�� 408

JDBC-Types-to-Java-Types Mapping���409

Knowing About the Database���412

Executing SQL Statements���414

Results of Executing a SQL Statement��� 415

Using the Statement Interface�� 416

Using the PreparedStatement Interface��� 422

CallableStatement Interface��� 425

Processing Result Sets���437

What Is a ResultSet?�� 437

Getting a ResultSet��� 442

Getting the Number of Rows in a ResultSet��� 448

Bidirectional Scrollable ResultSets��� 451

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xv

Scrolling Through Rows of a ResultSet�� 453

Knowing the Cursor Position in a ResultSet��� 456

Closing a ResultSet��� 456

Making Changes to a ResultSet���457

Inserting a Row Using a ResultSet��� 457

Updating a Row Using a ResultSet��� 460

Deleting a Row Using a ResultSet�� 462

Handling Multiple Results from a Statement���463

Getting a ResultSet from a Stored Procedure��464

MySQL Database�� 465

Adaptive Server Anywhere Database��� 466

Oracle Database��� 466

SQL Server Database�� 466

DB2 Database��� 467

Java DB Database��� 467

ResultSetMetaData���472

Using RowSets���474

Working with a Large Object (LOB)��500

Retrieving LOB Data�� 502

Creating a LOB Data��� 504

Batch Updates��511

Savepoints in a Transaction��517

Using a DataSource��520

Retrieving SQL Warnings��522

Enabling JDBC Trace��522

Summary��523

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xvi

Chapter 7: Java Remote Method Invocation■■ ���525

What Is Java Remote Method Invocation?���525

The RMI Architecture��526

Developing an RMI Application���528

Writing the Remote Interface�� 528

Implementing the Remote Interface��� 529

Writing the RMI Server Program��� 531

Writing the RMI Client Program�� 534

Separating the Server and Client Code��536

Generating Stub and Skeleton��536

Running the RMI Application��537

Running the RMI Registry��� 537

Running the RMI Server�� 538

Running an RMI Client Program��� 539

Troubleshooting an RMI Application���540

java.rmi.StubNotFoundException��� 540

java.rmi.server.ExportException��� 540

java.security.AccessControlException�� 541

java.lang.ClassNotFoundException��� 541

Debugging an RMI Application���542

Dynamic Class Downloading��543

Garbage Collection of Remote Objects���545

Summary��548

Chapter 8: Java Native Interface■■ ��549

What Is the Java Native Interface?���549

System Requirements��550

Getting Started with the JNI���551

Writing the Java Program��� 551

Compiling the Java Program�� 554

Creating the C/C++ Header File��� 554

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xvii

Writing the C/C++ Program�� 556

Creating a Shared Library��� 557

Running the Java Program��� 560

Native Function Naming Rules���561

Data Type Mapping���563

Using JNI Functions in C/C++��565

Working with Strings��565

Working with Arrays���568

Accessing Java Objects in Native Code���573

Getting a Class Reference�� 573

Accessing Fields and Methods of a Java Object/Class��� 574

Creating Java Objects��� 579

Exception Handling ��581

Handle the Exception in Native Code�� 582

Handling the Exception in Java Code��� 583

Throwing a New Exception from Native Code�� 583

Creating an Instance of the JVM ���584

Synchronization in Native Code��589

Summary��590

Chapter 9: Introduction to JavaFX■■ ��591

What Is JavaFX?���591

The History of JavaFX���593

System Requirements��593

The JavaFX Runtime Library��594

JavaFX Source Code���594

Your First JavaFX Application���594

Creating the HelloJavaFX Class�� 594

Overriding the start() Method��� 595

Showing the Stage��� 595

Launching the Application�� 596

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xviii

Adding the main() Method�� 598

Adding a Scene to the Stage�� 598

Improving the HelloFX Application���600

The Life Cycle of a JavaFX Application���602

Terminating a JavaFX Application��604

What Are Properties and Bindings?��604

Properties and Bindings in JavaFX���605

Using Properties in JavaFX Beans�� 608

Handling Property Invalidation Events�� 612

Handling Property Change Events�� 615

Property Bindings in JavaFX��� 617

Observable Collections���623

Event Handling���627

Event Processing Mechanism��� 628

Creating Event Filters and Handlers��� 631

Registering Event Filters and Handlers�� 631

Layout Panes��636

Controls��642

Using 2D Shapes��648

Drawing on a Canvas���652

Applying Effects���654

Applying Transformations���656

Animation���659

Using the Timeline Animation��� 662

FXML��665

Printing���670

Summary��675

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xix

Chapter 10: Scripting in Java■■ ���677

What Is Scripting in Java?��677

Executing Your First Script���678

Using Other Scripting Languages���680

Exploring the javax.script Package��683

The ScriptEngine and ScriptEngineFactory Interfaces��� 683

The AbstractScriptEngine Class�� 684

The ScriptEngineManager Class��� 684

The Compilable Interface and the CompiledScript Class�� 684

The Invocable Interface�� 684

The Bindings Interface and the SimpleBindings Class��� 684

The ScriptContext Interface and the SimpleScriptContext Class�� 684

The ScriptException Class�� 685

Discovering and Instantiating ScriptEngines�� 685

Executing Scripts���686

Passing Parameters���687

Passing Parameters from Java Code to Scripts��� 688

Passing Parameters from Scripts to Java Code��� 690

Advanced Parameter Passing Techniques��691

Bindings�� 691

Scope�� 693

Defining the Script Context��� 693

Putting Them Together�� 697

Using a Custom ScriptContext��703

Return Value of the eval( ) Method��705

Reserved Keys for Engine Scope Bindings���707

Changing the Default ScriptContext���707

Sending Scripts Output to a File���708

Invoking Procedures in Scripts��710

Implementing Java Interfaces in Scripts��713

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xx

Using Compiled Scripts��717

Using Java in Scripting Languages��719

Declaring Variables��� 719

Importing Java Classes�� 720

Creating and Using Java Objects�� 723

Using Overloaded Java Methods�� 724

Using Java Arrays��� 725

Extending Java Classes Implementing Interfaces�� 729

Using Lambda Expressions��� 731

Implementing a Script Engine��732

The Expression Class�� 733

The JKScriptEngine Class��� 738

The JKScriptEngineFactory Class��� 740

Preparing for Deployment��� 742

Packaging the JKScript Files�� 742

Using the JKScript Script Engine�� 742

The jrunscript Command-line Shell��745

The Syntax�� 745

Execution Modes of the Shell��� 746

Listing Available Script Engines�� 748

Adding a Script Engine to the Shell�� 748

Using Other Script Engines��� 748

Passing Arguments to Scripts�� 748

The jjs Command-Line Tool��749

JavaFX in Nashorn���753

Summary��757

Index��759

www.it-ebooks.info

http://www.it-ebooks.info/

xxi

About the Author

Kishori Sharan is a Senior Software Consultant at Doozer, Inc. He holds a Master
of Science in Computer Information Systems from Troy State University in
Montgomery, Alabama. He is a Sun Certified Java Programmer and Sybase Certified
PowerBuilder Developer Professional. He specializes in developing enterprise
applications using Java SE, Java EE, PowerBuilder, and Oracle database. He has been
working in the software industry for over 16 years. He has helped several clients
migrate legacy applications to the Web. He loves writing technical books in his free
time. He maintains his web site at www.jdojo.com where he posts blogs on Java
and JavaFX.

www.it-ebooks.info

www.jdojo.com
http://www.it-ebooks.info/

xxiii

About the Technical Reviewer

Jeff Friesen is a freelance tutor, author, and software developer with an emphasis
on Java, Android, and HTML5. In addition to writing several books for Apress and
serving as a technical reviewer for other Apress books, Jeff has written numerous
articles on Java and other technologies for JavaWorld (www.javaworld.com),
informIT (www.informit.com), java.net, SitePoint (www.sitepoint.com),
and others. Jeff can be contacted via his web site at tutortutor.ca.

www.it-ebooks.info

www.javaworld.com
www.informit.com
www.sitepoint.com
http://tutortutor.ca
http://www.it-ebooks.info/

xxv

Acknowledgments

My heartfelt thanks are due to my father-in-law, Mr. Jim Baker, for displaying extraordinary patience in reading the
initial draft of the book. I am very grateful to him for spending so much of his valuable time teaching me quite a bit of
English grammar that helped me produce better material.

I would like to thank my friend Richard Castillo for his hard work in reading my initial draft of the book and
weeding out several mistakes. Richard was instrumental in running all examples and pointing out errors.

My wife, Ellen, was always patient when I spent long hours at my computer desk working on this book. She would
happily bring me snacks, fruit, and a glass of water every 30 minutes or so to sustain me during that period. I want
to thank her for all of her support in writing this book. She also deserves my sincere thanks for letting me sometimes
seclude myself on weekends so I could focus on this book.

I would like to thank my family members and friends for their encouragement and support for writing
this book: my elder brothers, Janki Sharan and Dr. Sita Sharan; my sister and brother-in-law, Ratna and Abhay; my
nephews Babalu, Dabalu, Gaurav, Saurav, and Chitranjan; my friends Shivashankar Ravindranath, Kannan Somasekar,
Mahbub Choudhury, Biju Nair, Srinivas Kakkera, Anil Kumar Singh, Chris Coley, Willie Baptiste, Rahul Jain, Larry Brewster,
Greg Langham, Ram Atmakuri, LaTondra Okeke, Rahul Nagpal, Ravi Datla, Prakash Chandra, and many more friends
not mentioned here.

My sincere thanks are due to the wonderful team at Apress for their support during the publication of this
book. Thanks to Anamika Panchoo, the Senior Coordinating Editor, for providing excellent support and for being
exceptionally patient with me when I asked her so many questions in the beginning, Thanks to Matthew Moodie and
Jeff Friesen for their technical insights and feedback during the editing process. My heartfelt thanks go to Jeff for his
diligence in reviewing the book and pointing out technical errors. He did not stop at just pointing out the errors;
he also included the solution in his comments that helped me save time. Last but not least, my sincere thanks to
Steve Anglin, the Lead Editor at Apress, for taking the initiative for the publication of this book.

www.it-ebooks.info

http://www.it-ebooks.info/

xxvii

Foreword

I recently had the privilege of tech reviewing Kishori Sharan’s Beginning Java 8 APIs, Extensions, and Libraries book,
which continues on from his Beginning Java 8 Language Features book by covering more advanced Java APIs. Within
this volume, you learn about Swing, applets, network programming, JDBC, remote method invocation, the Java Native
Interface, JavaFX, and Java’s scripting framework.

This book offers a wealth of detail. For example, in his chapter on JDBC, Kishori covers result sets along with
row sets, which derive from result sets, and which you might expect to see covered in a book focused on enterprise
Java. Kishori also provides decent coverage of Java’s Swing user interface API while not shying away from the modern
JavaFX alternative.

As I recommended in my forward to this book’s predecessor, I believe that Beginning Java 8 APIs, Extensions,
and Libraries definitely deserves a place on your bookshelf.

—Jeff Friesen
August/2014

www.it-ebooks.info

http://www.it-ebooks.info/

	Contents at a Glance
	Copyright
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Foreword
	Introduction
	Chapter 1: Introduction to Swing
	What Is Swing?
	The Simplest Swing Program
	Components of a JFrame
	Adding Components to a JFrame
	Some Utility Classes
	The Point Class
	The Dimension Class
	The Insets Class
	The Rectangle Class

	Layout Managers
	FlowLayout
	BorderLayout
	CardLayout
	BoxLayout
	GridLayout
	GridBagLayout
	The gridx and gridy Constraints
	Case #1
	Case #2
	Case #3
	Case #4

	The gridwidth and gridheight Constraints
	The fill Constraint
	The ipadx and ipady Constraints
	The insets Constraints
	The anchor Constraint
	The weightx and weighty Constraints

	SpringLayout
	GroupLayout
	The null Layout Manager

	Creating a Reusable JFrame
	Event Handling
	Handling Mouse Events
	Summary

	Chapter 2: Swing Components
	What Is a Swing Component?
	JButton
	JPanel
	JLabel
	Text Components
	JTextComponent
	JTextField
	JPasswordField
	JFormattedTextField
	JTextArea
	JEditorPane
	JTextPane

	Validating Text Input
	Making Choices
	JSpinner
	JScrollBar
	JScrollPane
	JProgressBar
	JSlider
	JSeparator
	Menu s
	JToolBar
	JToolBar Meets the Action Interface
	JTable
	JTree
	JTabbedPane and JSplitPane
	Custom Dialogs
	Standard Dialogs
	File and Color Choosers
	JFileChooser
	JColorChooser

	JWindow
	Working with Colors
	Working with Borders
	Working with Fonts
	Validating Components
	Painting Components and Drawing Shapes
	Immediate Painting
	Double Buffering
	JFrame Revisited
	Summary

	Chapter 3: Advanced Swing
	Using HTML in Swing Components
	Threading Model in Swing
	Pluggable Look and Feel
	Skinnable Look-and-Feel
	Drag and Drop
	Multiple Document Interface Application
	The Toolkit Class
	Decorating Components Using JLayer
	Translucent Windows
	Shaped Window
	Summary

	Chapter 4: Applets
	What Is an Applet?
	Developing an Applet
	Writing an Applet
	Deploying an Applet
	Creating the HTML Document
	Deploying Applets in Production
	Deploying Applets for Testing

	Installing and Configuring Java Plug-in
	Installing the Java Plug-in
	Opening the Java Control Panel
	Configuring Java Plug-in

	Viewing an Applet
	Using the appletviewer to Test Applets
	Using the codebase Attribute
	Example 1
	Example 2
	Example 3

	The Life Cycle of an Applet
	The init() Method
	The start() Method
	The stop() Method
	The destroy() Method

	Passing Parameters to Applets
	Publishing the Applet’s Parameter Information
	Publishing the Applet’s Information
	Other Attributes of the <applet> Tag
	Using Images in an Applet
	Playing Audio Clips in an Applet
	Interacting with the Applet’s Environment
	Communion of Applet, HTML, and JavaScript
	Packaging Applets in Archives
	The Event Dispatching Thread and Applets
	Painting in Applets
	Is the Java Code Trusted?
	Security Restrictions for Applets
	Signing Applets
	Step 1: Developing an Applet
	Step 2: Packaging Class Files into a JAR File
	Step 3: Generating Private/Public Key Pair
	Step 4: Signing the JAR File
	Step 5: Creating the HTML File
	Step 6: Viewing the Signed Applet

	Summary

	Chapter 5: Network Programming
	What Is Network Programming?
	Network Protocol Suite
	IP Addressing Scheme
	IPv4 Addressing Scheme
	IPv6 Addressing Scheme

	Special IP Addresses
	Loopback IP Address
	Unicast IP Address
	Multicast IP Address
	Anycast IP Address
	Broadcast IP Address
	Unspecified IP Address

	Port Numbers
	Socket API and Client-Server Paradigm
	The Socket Primitive
	The Bind Primitive
	The Listen Primitive
	The Accept Primitive
	The Connect Primitive
	The Send/Sendto Primitive
	The Receive/ReceiveFrom Primitive
	The Close Primitive

	Representing a Machine Address
	Representing a Socket Address
	Creating a TCP Server Socket
	Creating a TCP Client Socket
	Putting a TCP Server and Clients Together
	Working with UDP Sockets
	Creating a UDP Echo Server
	A Connected UDP Socket
	UDP Multicast Sockets
	URI, URL, and URN
	URI and URL as Java Objects
	Accessing the Contents of a URL
	Non-Blocking Socket Programming
	Socket Security Permissions
	Asynchronous Socket Channels
	Setting Up an Asynchronous Server Socket Channel
	Setting up an Asynchronous Client Socket Channel
	Putting the Server and the Client Together
	Running the Server Application
	Running the Client Applications

	Datagram-Oriented Socket Channels
	Creating the Datagram Channel
	Setting the Channel Options
	Binding the Datagram Channel

	Sending Datagrams
	Close the Channel

	Multicasting Using Datagram Channels
	Creating the Datagram Channel
	Setting the Channel Options
	Binding the Channel
	Setting the Multicast Network Interface
	Joining the Multicast Group
	Receiving a Message
	Closing the Channel

	Further Reading
	Summary

	Chapter 6: JDBC API
	What Is the JDBC API ?
	System Requirements
	Types of JDBC Drivers
	JDBC Native API Driver
	JDBC-Net Driver
	JDBC Driver

	A Brief Overview of Java DB
	Java DB Installation Files
	Configuring Java DB
	Running the Java DB Server
	Using Command Prompts
	Using the NetBeans IDE

	Creating a Database Table
	Oracle Database
	Adaptive Server Anywhere Database
	SQL Server Database
	DB2 Database
	MySQL Database
	Java DB Database

	Connecting to a Database
	Obtaining the JDBC Driver
	Setting up the CLASSPATH
	Registering a JDBC Driver
	Setting the jdbc.drivers System Property
	Loading the Driver Class
	Using the registerDriver() Method
	Constructing a Connection URL
	Oracle Database
	Adaptive Server Anywhere Database
	SQL Server Database
	MySQL Database
	DB2 Database
	Java DB Database

	Establishing the Database Connection

	Setting the Auto-Commit Mode
	Committing and Rolling Back Transactions
	Transaction Isolation Level
	Dirty Read
	Non-Repeatable Read
	Phantom Read

	JDBC-Types-to-Java-Types Mapping
	Knowing About the Database
	Executing SQL Statements
	Results of Executing a SQL Statement
	Using the Statement Interface
	Using the PreparedStatement Interface
	CallableStatement Interface
	Using IN Parameters
	Using OUT Parameters
	Using INOUT Parameters
	Return Parameter is OUT Parameter Type
	Executing a CallableStatement
	Example #1
	Example #2
	Example #3
	Example #4

	Adaptive Server Anywhere Database
	MySQL Database
	Oracle Database
	SQL Server Database
	DB2 Database
	Java DB Database

	Processing Result Sets
	What Is a ResultSet?
	Getting a ResultSet
	Getting the Number of Rows in a ResultSet
	Scrolling Through All Rows
	Executing a Separate Query
	Using a Bidirectional Scrollable ResultSet

	Bidirectional Scrollable ResultSets
	Scrolling Through Rows of a ResultSet
	Knowing the Cursor Position in a ResultSet
	Closing a ResultSet

	Making Changes to a ResultSet
	Inserting a Row Using a ResultSet
	Updating a Row Using a ResultSet
	Deleting a Row Using a ResultSet

	Handling Multiple Results from a Statement
	Getting a ResultSet from a Stored Procedure
	MySQL Database
	Adaptive Server Anywhere Database
	Oracle Database
	SQL Server Database
	DB2 Database
	Java DB Database

	ResultSetMetaData
	Using RowSets
	Creating a RowSet
	Setting RowSet Connection Properties
	Setting a Command for a RowSet
	Populating a RowSet with Data
	Scrolling Through Rows of a RowSet
	Updating Data in a RowSet
	The RowSetUtil Class
	JdbcRowSet
	CachedRowSet
	WebRowSet
	FilteredRowSet
	JoinRowSet

	Working with a Large Object (LOB)
	Retrieving LOB Data
	Creating a LOB Data

	Batch Updates
	Savepoints in a Transaction
	Using a DataSource
	Retrieving SQL Warnings
	Enabling JDBC Trace
	Summary

	Chapter 7: Java Remote Method Invocation
	What Is Java Remote Method Invocation ?
	The RMI Architecture
	Developing an RMI Application
	Writing the Remote Interface
	Implementing the Remote Interface
	Writing the RMI Server Program
	Installing the Security Manager
	Creating and Exporting the Remote Object
	Registering the Remote Object

	Writing the RMI Client Program

	Separating the Server and Client Code
	Generating Stub and Skeleton
	Running the RMI Application
	Running the RMI Registry
	Running the RMI Server
	Running an RMI Client Program

	Troubleshooting an RMI Application
	java.rmi.StubNotFoundException
	java.rmi.server.ExportException
	java.security.AccessControlException
	java.lang.ClassNotFoundException

	Debugging an RMI Application
	Dynamic Class Downloading
	Garbage Collection of Remote Objects
	Summary

	Chapter 8: Java Native Interface
	What Is the Java Native Interface?
	System Requirements
	Getting Started with the JNI
	Writing the Java Program
	Compiling the Java Program
	Creating the C/C++ Header File
	Writing the C/C++ Program
	Creating a Shared Library
	Creating a Shared Library on Windows
	Installing MinGW C/C++ Compiler
	Using the g++ Command

	Creating a Shared Library on Linux
	Installing MinGW C/C++ Compiler
	Using the g++ Command

	Running the Java Program

	Native Function Naming Rules
	Data Type Mapping
	Using JNI Functions in C/C++
	Working with Strings
	Working with Arrays
	Accessing Java Objects in Native Code
	Getting a Class Reference
	Accessing Fields and Methods of a Java Object/Class
	Creating Java Objects

	Exception Handling
	Handle the Exception in Native Code
	Handling the Exception in Java Code
	Throwing a New Exception from Native Code

	Creating an Instance of the JVM
	Synchronization in Native Code
	Summary

	Chapter 9: Introduction to JavaFX
	What Is JavaFX?
	The History of JavaFX
	System Requirements
	The JavaFX Runtime Library
	JavaFX Source Code
	Your First JavaFX Application
	Creating the HelloJavaFX Class
	Overriding the start() Method
	Showing the Stage
	Launching the Application
	Adding the main() Method
	Adding a Scene to the Stage

	Improving the HelloFX Application
	The Life Cycle of a JavaFX Application
	Terminating a JavaFX Application
	What Are Properties and Bindings?
	Properties and Bindings in JavaFX
	Using Properties in JavaFX Beans
	Handling Property Invalidation Events
	Handling Property Change Events
	Property Bindings in JavaFX

	Observable Collections
	Event Handling
	Event Processing Mechanism
	Event Target Selection
	Event Route Construction
	Event Route Traversal
	Event Capture Phase
	Event Bubbling Phase

	Creating Event Filters and Handlers
	Registering Event Filters and Handlers

	Layout Panes
	Controls
	Using 2D Shapes
	Drawing on a Canvas
	Applying Effects
	Applying Transformations
	Animation
	Using the Timeline Animation

	FXML
	Printing
	Summary

	Chapter 10: Scripting in Java
	What Is Scripting in Java?
	Executing Your First Script
	Using Other Scripting Languages
	Exploring the javax.script Package
	The ScriptEngine and ScriptEngineFactory Interfaces
	The AbstractScriptEngine Class
	The ScriptEngineManager Class
	The Compilable Interface and the CompiledScript Class
	The Invocable Interface
	The Bindings Interface and the SimpleBindings Class
	The ScriptContext Interface and the SimpleScriptContext Class
	The ScriptException Class
	Discovering and Instantiating ScriptEngines

	Executing Scripts
	Passing Parameters
	Passing Parameters from Java Code to Scripts
	Passing Parameters from Scripts to Java Code

	Advanced Parameter Passing Techniques
	Bindings
	Scope
	Defining the Script Context
	Putting Them Together

	Using a Custom ScriptContext
	Return Value of the eval( ) Method
	Reserved Keys for Engine Scope Bindings
	Changing the Default ScriptContext
	Sending Scripts Output to a File
	Invoking Procedures in Scripts
	Implementing Java Interfaces in Scripts
	Using Compiled Scripts
	Using Java in Scripting Languages
	Declaring Variables
	Importing Java Classes
	Using the Packages Global Object
	Using the Java Global Object
	Using the importPackage( ) and importClass( ) Functions
	Using the JavaImporter Object

	Creating and Using Java Objects
	Using Overloaded Java Methods
	Using Java Arrays
	Extending Java Classes Implementing Interfaces
	Using a Script Object
	Using the Anonymous Class-like Syntax
	Using JavaAdapter Object and Java.extend( ) Function
	Using a JavaScript Function

	Using Lambda Expressions

	Implementing a Script Engine
	The Expression Class
	The Instance Variables
	The Constructor
	The parse( ) Method
	The getOperandValue( ) Method
	The eval( ) Method

	The JKScriptEngine Class
	The JKScriptEngineFactory Class
	Preparing for Deployment
	Packaging the JKScript Files
	Using the JKScript Script Engine

	The jrunscript Command-line Shell
	The Syntax
	Execution Modes of the Shell
	One-liner Mode
	Batch Mode
	Interactive Mode

	Listing Available Script Engines
	Adding a Script Engine to the Shell
	Using Other Script Engines
	Passing Arguments to Scripts

	The jjs Command-Line Tool
	JavaFX in Nashorn
	Summary

	Index

