

Method 3 (Purely Geometric Approach)

Let P be a point on DB such that EP is the angle bisector of $\angle AEB$.

Construct AP.

In $\triangle AEP \& \triangle BEP$,

$$EP = EP$$

(common)

$$\angle AEP = \angle BEP = 10^{\circ}$$

(by construction)

$$\angle EAB = \angle EBA = 80^{\circ}$$

$$\therefore AE = BE$$

(sides opp. eq. \angle s)

$$\therefore \Delta AEP \cong \Delta BEP$$

(SAS)

$$\therefore \angle EAP = \angle EBP = 20^{\circ}$$

(corr. $\angle s$, $\cong \Delta s$)

$$\angle CAP = 20^{\circ} - 10^{\circ} = 10^{\circ}$$

$$\angle PAB = 70^{\circ} - 10^{\circ} = 60^{\circ}$$

$$\angle APB = 180^{\circ} - 60^{\circ} - 60^{\circ} = 60^{\circ}$$

 $(\angle \text{ sum of } \Delta)$

 $\therefore \triangle APB$ is an equil. \triangle

$$\therefore AP = PB = AB$$

(def. of equil. Δ)

Let them be *y*.

In $\triangle AEC \& \triangle EBP$,

$$\angle EAC = \angle BEP = 10^{\circ}$$

(proved)

$$\angle AEC = \angle EBP = 20^{\circ}$$

(proved)

$$AE = EB$$

(proved)

$$\therefore \Delta AEC \cong \Delta EBP$$

(ASA)

$$\therefore EC = BP = y$$

(corr. sides, $\cong \Delta$ s)

Extend AP to meet BE at Q. Construct DQ.

$$\angle DPQ = \angle APB = 60^{\circ}$$

(vert. opp. \angle s)

In $\triangle DAB \& \triangle QBA$,

$$\angle DAB = \angle QBA = 80^{\circ}$$

(given)

$$AB = BA$$

(common)

$$\angle DBA = \angle QAB = 60^{\circ}$$

(proved)

$$\therefore \Delta DAB \cong \Delta QBA$$

(ASA)

$$\therefore DB = QA$$

(corr. sides, $\cong \Delta$ s)

Let them be *x*.

$$DP = DB - PB = x - y = QA - PA = QP$$

$$\therefore \angle PDQ = \angle PQD$$

(base \angle s, isos. Δ)

$$=\frac{180^{\circ}-60^{\circ}}{2}=60^{\circ}$$

 $(\angle \text{ sum of } \Delta)$

 $\therefore \Delta DPQ$ is an equil. Δ

$$\therefore DQ = QP = DP = x - y$$

(def. of equil. Δ)

10° \ 10°

40°

C

609

30°

20°

$$\angle PQD = \angle QAB = 60^{\circ}$$

$$\therefore DQ//AB$$

(alt. \angle s eq.)

$$\therefore \angle EQD = \angle EBA = 80^{\circ}$$

(corr. \angle s, DQ//AB)

$$\angle EDQ = 180^{\circ} - 20^{\circ} - 80^{\circ} = 80^{\circ}$$

 $(\angle \text{ sum of } \Delta)$

$$\angle DEB = \angle DBE = 20^{\circ}$$

$$\therefore ED = DB = x$$

(sides opp. eq. \angle s)

$$\angle EDQ = \angle EQD = 80^{\circ}$$

$$\therefore EQ = ED = x$$

(sides opp. eq. \angle s)

$$\therefore CQ = EQ - EC = x - y = DQ$$

$$\therefore \angle QCD = \angle QDC$$

(base \angle s, isos. Δ)

$$=\frac{180^{\circ}-80^{\circ}}{2}=50^{\circ}$$

 $(\angle \text{ sum of } \Delta)$

$$\therefore \angle ACD = 50^{\circ} - 30^{\circ} = 20^{\circ}$$

Remarks:

- 1. This is the most famous proof. All the other proofs that can be found on the web employ the same construction of straight lines.
- 2. It is a natural way to divide the isosceles triangle along the axis of symmetry. By doing so, we are lucky to obtain equilateral triangles and parallel lines.
- 3. As it is purely deductive geometric approach, the proof is long and complicated, but an elegant one.