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Motivation: Terrains

- Set of data points A C R?

* Height f(p) defined at each sample point p in A
A terrain can be visualized with a perspective

drawing like the one in below figure, or with
contour lines

Lecture 9: Delaunay triangulations



How can we most naturally approximate
height of points not in p?
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Option: Discretize

* Let f(p) = height of nearest sample point for points
notinp
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Better Option: Triangulation

« Polyhedral terrain: Determine a triangulation of p in R?, then raise
points to desired height

e triangulation: planar subdivision whose bounded faces are
triangles with vertices from p
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e Some triangulations are “better” than others
* Avoid skinny triangles, 1.e. maximize

minimum angle of triangulation
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Triangulation: Formal Definition

o maximal planar subdivision: a subdivision S
such that no edge connecting two vertices
can be added to S without destroying Its
planarity

e triangulation of set of points P: a maximal
planar subdivision whose vertices are
elements of P
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Triangulation I1s made of triangles

 Outer polygon must be convex hull
e Internal faces must be triangles, otherwise

they could be triangulated further

convex hull boundary
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Theorem 9.1

For P consisting of n points,not all collinear.
all triangulations contain 2n-2-k triangles,
3n-3-k edges

*n= number of points in P
k= number of points on convex hull of P

B
/

— convex hull boundary
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Angle Optimal Triangulations

Create angle vector of the sorted angles of
triangulation T, (o, 0, 0, ...,03m) =A(T)
with « , being the smallest angle

*A(T) Is larger than A(T") Iff there exists an |

suchthat o= o' forallj<iand a,> «'
 Best trlangulatlon is triangulation that is

angle optimal, 1.e. has the largest angle
vector.
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Angle Optimal Triangulations

Consider two adjacent triangles of T:

o |If the two triangles form a convex
quadrilateral, we could have an alternative
triangulation by performing an edge flip on
their shared edge.

D
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Illegal Edges
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*Edge e is illegal If:

min o; < min 0.
1<i<6 1<i<6

 Only difference between T containing e and T’
with e flipped are the six angles of the

quadrilateral.
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Illegal Triangulations

o |If triangulation T contains an illegal edge e,
we can make A(T) larger by flipping e.

e In this case, T Is an illegal triangulation.
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Thales’s TheOrem(Theorem 9.2)

* \We can use Thales’ Theorem to test If an
edge Is legal without calculating angles

Let C be acircle, | a line
Intersecting C in points aand b
and p, g, r, and s points lying ol
the same side of |. Suppose tha
pand g lieon C, that r lies
Inside C, and that s lies outside
C. Then:

Larb > Lapb = 4Lagb > Aasb.
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Testing for lllegal Edges

e If pi, Pj, Px, P form a
convex guadrilateral and
do not lie on a common
circle, exactly one of pip;

and pyp; Is an illeg
edge.

* The edge pip; Is illeg

— Proved using Thales’s .. __. ... __., .. ..

Pi-Pi-Px 1S smaller than the angle pi-pi-px
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Algorithm LEGALTRIANGULATION(T)

Input. Some triangulation T of a point set P.

Output. A legal triangulation of P.

1. while T contains an illegal edge pipj

2. do (Flip pip;)

3. Let pip;px and pip;p: be the two triangles adjacent to pip;.
4. Remove pijp; from T, and add pyp, instead.

5. Return T
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Computing Legal Triangulations

1. Compute a triangulation of input points P.
2. Flip 1llegal edges of this triangulation until

all edges are legal.

 Algorithm terminates because there iIs a
finite number of triangulations.

* Too slow to be interesting...
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Sidetrack: Delaunay Graphs

» Before we can understand an interesting
solution to the terrain problem, we need to
understand Delaunay Graphs.

e Delaunay Graph of a set of points P Is the
dual graph of the VVoronoi diagram of P
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Delaunay Graphs

To obtain DG(P):
o Calculate Vor(P)

* Place one vertex In each site of the Vor(P)
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Constructing Delaunay Graphs

If two sites s; and s; share an edge (i.e., are

adjacent), create an arc between vi and vj,
the vertices located in sites si and sj
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Constructing Delaunay Graphs

Finally, straighten the arcs into line segments.
The resultant graph i1s DG(P).

""""""""
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Properties of Delaunay Graphs

Theorm 9.5: DG(P) Is a plane graph.

* Proved using the empty contained in. 1(p;)

circle property of VVoronoi
diagrams

contained in ¥ (p;)
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Delaunay Triangulations

* The edges around a face correspond to the Voronoi edges
Incident to the corresponding Voronoi vertex.

« Some sets of more than 3 points of Delaunay graph may
lie on the same circle.

 These points form empty convex polygons, which can be
triangulated.

» Delaunay Triangulation is a triangulation obtained by

_ oa _ al_

adding O or ~ nay Graph.
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From the properties of VVoronoi Diagrams...
Theorem 9.6:let p be a set of points in the plane:
 Three points p, p,p. =P are vertices of the same
face of the DG(P) iff the circle through pi, pj, pk
contains no point of P on its interior.

two points p, p,< P from an edge of the DG(P) Iff
there is a closet disc C that contains p, and p,on its

boundary and does not contain any other poin of P.
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Theorem 9.7

et P be a set of points in the plane, and let T be a
triangulation of p then T is a Delaunay triangulation of p
Iff the circumcircle of any triangle of T dos not contain a

point of p In its Interior.

Lecture 9: Delaunay triangulations



Theorem9.8

A triangulation T of P is legal iff T isa DT(P).

DT—Legal: Empty circle property

* Legal—DT: assume legal and not empty circle
property

Lecture 9: Delaunay triangulations



Theorem9.9

let p a set of points in the plane. Any angle-optimal
triangulation of P isa DT of P. furthermore, any DT of P

maximize the minimum angle over all triangulations of P.
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What iIf multiple DT exist for P?
* Not all DT are angle optimal.

e By Thales Theorem, the minimum angle of each of
the DT Is the same.

e Thus, all the DT are equally “good” for the

terrain problem. All DT maximize the
minimum angle.
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Terraln Problem, revisited

Therefore, the problem of finding a triangulation
that maximizes the minimum angle Is reduced
to the problem of finding a Delaunay
Triangulation.

So how do we find the Delaunay Triangulation?
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How do we compute DT(P)?

e Compute Vor(P) then dualize into DT(P).

* \We could also compute DT(P) using a
randomized incremental method.

Lecture 9: Delaunay triangulations



randomized incremental method.:

e start with a large triangle that contains the set P
(Pop-1p-2)-

Do IS highest point of P.

schoose p_; and p_, far enough away(two extra point).

pP-2
':——_____
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randomized incremental method:

ecomputing a DT of P U {pop.1p2} by randomized
Incremental method.

*adds the points In random order and it maintains a
DT of the current point set (added point is p,).

First find the triangle of the current triangulation
that contains p;.
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Triangle Subdivision: Case 1 of 2

Assuming we have already found the triangle that p, lives in,
subdivide into smaller triangles that have p, as a vertex.

Two possible cases: =

1) pr lies in the interior o
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Triangle Subdivision: Case 2 of 2

2) py falls on an edge between two adjacent
triangles

Pi

Pi Pk
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Algorithm DELAUNAYTRIANGULATION(P)

Input. A set P of n+ 1 points in the plane.

Qutput. A Delaunay triangulation of P.

1. Let pg be the lexicographically highest point of P, that is, the rightmost among the points
with largest v-coordinate.

2. Letp_qand p_» be two points in R” sufficiently far away and such that P is contained in

the triangle ppp_1p_».

3. Initialize T as the triangulation consisting of the single triangle pyp_1p_».

4.  Compute a random permutation py, pa,....p, of P\ {pn}.

5. forr— Iton

6. do (* Insert p, into T: =)

7. Find a triangle p;p;p; < T containing p,.

8. if p, lies in the interior of the triangle p;p;py

9. then Add edges from p, to the three vertices of p;p;py. thereby splitting p;p ; py
into three triangles.

10. LEGALIZEEDGE(p,, p;p;,7)

11. LEGALIZEEDGE(p,. p;p;.7T)

12. LEGALIZEEDGE(p,. p;p:. T)

13. else (+ p, lies on an edge of p;p;py. say the edge pip; #)

14, Add edges from p, to p; and to the third vertex p; of the other triangle that
is incident to p;p;. thereby splitting the two triangles incident to p;p; into
four triangles.

15. LEGALIZEEDGE(p,, pip;, T)

16. LEGALIZEEDGE(p,. pip;.T)

17. LEGALIZEEDGE(p,. p;px.7)

18. LEGALIZEEDGE(p,, pip;. T)

19. Discard p_{ and p_; with all their incident edges from 7.
20. return T

mUVLUII LU U e UiMU iy W g UL vy



LEGALIZEEDGE(p,.p;p;.T)
(* The point being inserted is p,. and p;p; is the edge of T that may need to be flipped. =)
if p;p; 1s illegal
then Let p;p;p, be the triangle adjacent to p, p;p; along p;p;.
(= Flip p;p;: =) Replace pip; with p,py.
LEGALIZEEDGE(p,, pipr,T)
LEGALIZEEDGE(p,, prp;, T)

R A s
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Which edges are illegal?

» Before it subdivided, all of edges were
legal.

 After add new edges, some of the
edges of T may now be illegal, but which
ones?
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Outer Edges May Be Illegal

« An edge can only become illegal if one of its
Incident triangles changed.

 Outer edges of the incident triangles {pipip«}
or {pip;Px,PiPjP1} Mmay have become
11—

pi
Pk

Pi Pk

Lecture 9: Delaunay triangulations






Correctness of the algorithm:

e Prove that no illegal edges remaine after all calls to
LEGALIZEEDGE have been processed.

e« An edge can only become illegal if one of Its
Incident triangles changed,this proves that the

algorithm tests any edge that may become illegal.

o Note that the algorithm cannot get into an infinite loop.
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Lemma 9.10

Every new edge created in DelaunayTriangulation or
In LegalizeEdge during the insertion of p; Is an edge
of DG of {p-2,...,p:}
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1)New edges incident to p, are legal

e If shrink C,can find a circle C” that passes through prpl
e C’ contains no points in its interior.
e Therefore, p,p, Is legal.

Any new edge incident p, is legal
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2)Flip lllegal Edges

* Now that we know which edges have
become illegal, we flip them.

* However, after the edges have been flipped,
the edges incident to the new triangles may
now be Illegal.

e S0 we need to recursively flip edges...
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LegalizeEdge

Pr = point being inserted Pi :

pip; = edge that may need to be flippe

LEGALIZEEDGE(p:, pip;, T)
1. if pip; is illegal Pr
2. then Let pipjp; be the triangle

PrPip; along pip,

3. Replace pipj with prpl

4. LEGALIZEEDGE(py, pipi, T)

5. LEGALIZEEDGE(p;, pipi, T)
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Structure of D

e Leaves of D correspond to the triangles of
the current triangulation.

» Maintain cross pointers between leaves of D
and the triangulation.

e Begin with a single leaf, the bounding
triangle p.1p-2po
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Subdivision and D

e spilt a triangle pip;pk of the current triangulation into
three(or tow) new triangles
oinND:
o add three(or tow) new leaves to D
omake the leaf for PiP;P« Into an internal node
without going pointers to those three(or tow )
leaves.
¢S50 an Internal node at most gets three outgoing
pointers.
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example:

I\\ _/
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flip pipy
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Searching D

P, = point we are searching with
1. Let the current node be the root node of D.
2. Look at child nodes of current node. Check

which triangle p; lies In.
3. Let current node = child node that contains p,

4. Repeat steps 2 and 3 until we reach a leaf
node.
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Searching D

e Each node has at most 3 children.
e Each node In path, represents a triangle in D
that contains p,

e Therefore, takes O(number of triangles in [
that contain p,)
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ep_;:lies outside every circle defined by three
non-collinear points of P and such that the
clockwise of the points of P around p.; IS
Identical to their ordering.

ep_,:lies outside every circle defined by three
non-collinear points of P U {P_;} and such
that the counterclockwise of the points of
P U {P_;} around p., Is Identical to their
ordering.
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Bounding Triangle

Remember, we skipped step 1 of our algorithm.

1. Begin with a ““big enough” helper bounding triangle
that contains all points.

Let {po, p-1, P~} be the vertices of our bounding triangle.

“Big enough’ means that the triangle:
o contains all points of P in its interior.
 will not destroy edges between points in P.
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Considerations for Bounding
Triangle

* We could choose large values for pg,p.1,p-2 ,but
that would require potentially huge coordinates.

e Instead, we’ll modify our test for illegal
edges, to act as If we chose large values for
bounding triangle.
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Modified lllegal Edge Test

pi

pip; IS the edge being testec ~ :
px and p, are the other two
vertices of the triangles
Incident to pip;
o b
Pk

Our 1llegal edge test falls into one of 3 cases.
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Illegal Edge Test, Case 1

Case 1) Indices 1 and j are both negative or zero
*pip; Is an edge of the bounding triangle.
*pip; is legal, want to preserve edges of bounding

Triangle.
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Illegal Edge Test, Case 2:

Case 2) Indices I, |, k, and | are all non negative.

e This is the normal case.
pipj is illegal iff p, lies inside the circumcircle of pi,pj,pk.
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Illegal Edge Test, Case 3.

In this case pip; Is legal Iff min(k,l)<min(i,j):
1)Exactly one of I, J, k, | Is negative:this points
outside the circle defined by the other three poins and
method Is correct.

2)min(1,J) and min(k,l) are negative:p., lies outside
any circle defined by tree points in P U {P_,} implies that
the method Is correct.
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Analysis Goals

« Expected running time of algorithm is: O(n log n)

» Expected storage required is: O(n)
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First, some notation...

Pr={pl, p2, ..., pr}
— Points added by iteration r

° {p01 p-11 p-2}
— Vertices of bounding triangle

'DGI’ — DG(PT U {P—Z'P—l'PO})
— Delaunay graph as of iteration r
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Lemma9.11:

Expected number of triangles created by
DELAUNAYTRIANGULATION 1s 9n+1.
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Expected Number of Triangles

e In initialization,we create 1 triangle(bounding triangle).

In iteration r where we add p;.

* In the subdivision step,we create at most 4 new triangles.
Each new triangle creates one new edge incident to p;.

* each edge flipped in LEGALIZEEDGE creates two new
triangles and one new edge incident to p;.
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Expected Number of Triangles

Let kK = number of edges incident to p, after insertion of
pr, the degree of p..

 \We have created at most 2(k-3)+3 triangles.
e -3 and +3 are to account for the triangles
created In the subdivision step

The problem 1s now to find the expected
degree of pr
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Expected Degree of pr

Use backward analysis:
Fix Pr, let pr be a random element of Pr

*DGr has 3(r+3)-6 edges
 Total degree of Pr 2[3(r+3)-9] = 6r

E[degree of random element of Pr]= 6
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Triangles created at step r

Using the expected degree of pr, we can find the
expected number of triangles created in stepr.

deg(pr, DGr) = degree of pr in DGr

E [number of triangles created in step ] < E[2deg(p,, DG,) — 3]

— ZE[ng(pr,Q)g,)]—3
€ 2:6-3 =9
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Expected Number of Triangles

Now we can bound the number of triangles:
1 initial Triangle + 9n created Triangle

Expected number of triangles created Is 9n+1.
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Theorem 9.12:

The DT of a set p of n points in the plane can be computed In

o(n logn) expected time,using o(n) expectd storage.
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Storage Requirement:

D has one node per triangle created
* On+1 triangles created
* O(n) expected storage
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Expected Running Time

Let’s examine each step...

1. Begin with a ““big enough’” helper bounding
triangle that contains all points.

O(1) time, executed once = O(1)

2. Randomly choose a point pr from P.
O(1) time, executed n times = O(n)

3. Find the triangle that pr lies in.
Skip step 3 for now...
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Expected Running Time

4. Subdivide A into smaller triangles that have p, as a
vertex.

O(1) time executed n times = O(n)

5. Flip edges until all edges are legal.

In total, expected to execute a total number of times
proportional to number of triangles created = O(n)

Thus, total running time without point location step is O(n).
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Point Location Step

e Time to locate point p, IS
O(number of nodes of D we visit)
+ O(1) for current triangle
 Number of nodes of D we visit

= number of destroyed triangles that contain p,
e A triangle is destroyed by p; If its circumcircle contains
pr.

We can charge each triangle visit to a Delaunay triangle
whose circumcircle contains p;.
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Point Location Step

K(A) = subset of points in P that lie in the
circumcircle of A.

 When p,e K(A), chargeto A.
e Since we are Iterating through P, each point

In K(A) can be charged at most once.
Total time for point location:

O(n+ » card(K(A))),
A
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Point Location Step

If p Is a point set In general position,
then:

» card(K(A)) = O(nlogn),
A
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Point Location Step

Introduce some notation...
T, = set of triangles of DG( P,)
T\ T, triangles created in stage r

Rewrite our sum as:

Z( Y card(K(A)))_

r=1 MAeT\T,_
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Point Location Step

More notation...

k(Pr, ) = number of triangles 4 ¢ T, such that q IS
contained in A

K(P:, 9, pr) = number of triangles 4 ¢ T, such that

q Is contained in 4 and p; Is incident to 4
Rewrite our sum as:

z card(K(A)) = Y k(P,q,pr)-
AETA\T, qEP\Pr
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Point Location Step

Find the E[k(P,, g, p;)] then sum later...
e Fix Py, so k(P;, g, p;) depends only on p..
* Probability that p, Is incident to a triangle Is 3/r

Thus:

E[k(Pr,q,pr)] < P9

r
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Point Location Step

Using:

3k(Py,q)
m—

E[k(Pr,q,pr)] <

We can rewrite our sum as:

E[ ) card(K(A))] <

AeT\T,_, EP\P

‘-:IM
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Point Location Step

Now find E[K(P;, pr+1)]...
 Any of the remaining n-r points is equally
likely to appear as pr+1

So:

E[k(Pr?PrJrl)]:_"l_ 2 k(Pr,q).

geP\P;

Lecture 9: Delaunay triangulations



Point Location Step

Using:
1

n—r

Y, k(P,q).

qEP\Fr

E[k(P.,pr+1)] =

We can rewrite our sum as:

E[ ¥ card(K(a)] <3(=) E[k(Pr, prn)]
A€T\T,_, £
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Point Location Step

Find k(Pn pr+1)
e number of triangles of T, that contain p;.;
* these are the triangles that will be destroyed
when py. 1S Inserted; T, \ Ty

e Rewrite our sum as:

E[&E%ﬂ[ card(K ()] < 3(" ~ ) Elcard(T; \ T.1).
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Point Location Step

Remember, number of triangles In triangulation of n
points with k points on convex hull is 2n-2-k
e Ty has 2(m+3)-2-3=2m+1
* T+ has two more triangles than Ty,

Thus, card(T, \ T,.1)

= card(triangles destroyed by p;)
= card(triangles created by pr) — 2
=card(T. \Ty) -2

We can rewrite our sum as:

B[ % cad(K(4)] < 3(—) (E[card(T,1\ T)] -2).

AETA\T,
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Point Location Step

Remember we fixed P, earlier...

 Consider all Pr by averaging over both sides of
the inequality, but the inequality comes out identical.

E[number of triangles created by p,]
= E[number of edges Incident t0 pPy+1 IN Tr44]

=6
Therefore:

E[ ) card(K(ﬁ))]giil(n_r).

AET\T,_, 4
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Analysis Complete

B[ ) card(K(A))]giiz(n_r).

AET\T,_; 4

If we sum this over all r, we have shown that:

» card(K(A)) = O(nlogn),
A

And thus, the algorithm runs in O(n log n) time.
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