
Micropayment systems

Chapter 7

Contents

7.1 Millicent

7.2 SubScrip

7.3 PayWord

7.4 iKP micropayment protocol

7.5 Hash chain trees

7.6 MicroMint

7.7 Probability-based micropayments

7.8 Jalda

7.9 NewGenPay/IBM Micropayments

7.10 Banner advertising as a form of micropayment

7.11 Micropayments summary and analysis

Smallest Coin(e.g., a Rial)

• Obtaining a quotation of the current price of a
share on the stock market

• Making a single query of a database service

• To consult an on-line encyclopedia

• Purchasing a single song from an album

• Ordering just the business pages from a
selection of daily newspapers

Conventional Solution

• Subscription

– the buyer pays in advance and can avail of the
product or service for a fixed period.

• Drawbacks

– People who may only wish to use a service very
occasionally

– It also restricts the ability of people to try out a
service

Micropayment Design Goal

• Minimizing Per-transaction overhead

– Communications traffic

– High rate transactions process.
– must not involve computationally expensive cryptographic

techniques

A system in which the costs of
conveying the payment

are greater than the payment
itself is unlikely to succeed.

Millicent

Chapter 7.1

Characteristics

• Developed at DEC (now Compaq)

• Payments as low as one-tenth of a cent ($0.001)

• Distributed approach

– Validation at a vendor’s site without the need to contact a
third party

• Scaleable

– Without any additional communication, expensive public
key encryption, or off-line processing

Scrip

• A form of electronic currency

• vendor-specific

• Security

– The cost of committing a fraud more than the
value of a purchase

– Using symmetric encryption

The Millicent model

• Main entities in the Millicent system

– Brokers

– Vendors

– Customers

The Millicent model

Customer Vendor

Broker

Customers Buy
Information with

“vendor scrip”

Customers Buy
“vendor scrip”

Brokers
buy/produce

large chunks of
vendor scrip

Millicent broker

• Aggregating Micropayments

• Replacing a subscription service

• Selling Vendor Scrip

– Scrip warehouse

– Licensed scrip production

Better Solution

Purchasing with Millicent

1. customer buys some broker scrip using one
of the macropayment systems,

Buying broker scrip

Customer Vendor

Broker
Macropayment
protocol (CC#)

Millicent protocol
($5.00 broker scrip)

Purchasing from a vendor

• The customer buying from the same vendor
again

• There is no need to contact the broker

Purchasing from a vendor

Customer Vendor

Broker

1-vendor script + request

2-vendor script
chamge+purchased

info/service

Scrip

• Scrip is a piece of data used to represent
micro-currency within the Millicent system

Scrip Properties

• Represents a prepaid value

– like prepaid phone cards

• Can represent any denomination of currency

– one-tenth of a cent

• Security for small amounts of money

• Vendor-specific

• Double spending will be detected locally by
the vendor

Scrip Properties

• Spent only by its owner

• Cannot be tampered with or its value changed

• Computationally expensive to counterfeit

• No use of public-key

• Cannot provide full anonymity

– Suggestion: buying broker scrip using an
anonymous macro-payment system

Scrip structure (Data fields)

Scrip structure (Data fields)

• Value
– Specifies how much the scrip is worth

• Cust_ID#
– Used to calculate customer_secret

– Unique to every customer

• Info
– Optional details

• Certificate
– as a digital signature

Generation of Certificate field

• Hashing the other fields of the scrip with a
secret

– prevents the scrip’s fields from being altered

• Master scrip secret

– Only the vendor (or trusted broker) who mints the
scrip will know this secret

– Which master scrip secret is used with a particular
piece of scrip depends on some part of the scrip’s
ID#.

Scrip certificate generation

Scrip validation

• At the time of purchase, vendor validate
customer’s scrip

– Recalculates the certificate and compares it with
the scrip certificate from the customer

• Authentic scrip

• Not already spent (double spending)

Validating scrip at the time of purchase

Preventing double spending

• The vendor checks that the ID# has not

• already been spent

• bit vectors

– Covering ranges that have been fully spent or
expired

Computation costs

Action Cost

Recalculate certificate One hash function

Prevent double

spending

One local ID# database lookup

(in memory)

Making purchase

across network
One network connection

Sending scrip over a network: the Millicent
protocols

Millicent Protocol
Efficiency

Ranking
Secure Private

Scrip in the clear 1 No No

Encrypted connection 3 Yes Yes

Request signatures 2 Yes No

Encrypted Network Connection

• Symmetric encryption using a shared symmetric
key, called the customer_secret,

‘customer_secret’ Generation

Secrets Used in Producing, Validating, and
Spending Scrip

Secret Shared by Purpose

Master_scrip_secret

Vendor, minting broker

Prevents tampering and

counterfeiting of scrip.

Used to authenticate scrip.

Customer_secret
Customer, vendor, minting

broker

Proves ownership of the

scrip. May be required to

spend the scrip.

Master_customer_secret Vendor, minting broker

Derives the

customer_secret from

customer information in

the scrip.

Purchase using a request signature

Request signatures

• The customer_secret is used to generate a
request signature instead of being used for
encryption

• Hashing the scrip, customer_secret, and
request together

Generating a request signature

Vendor verifies the request signature

Performance

• Tests of a Millicent implementation on a
Digital AlphaStation 4004/233

– 14,000 pieces of scrip can be produced per second

– 8,000 payments can be validated per second, with
change scrip being produced

– 1,000 Millicent requests per second can be
received from the network and validated

bottleneck

Millicent with the Web

• The Millicent protocol as an extension to HTTP

• Software implementation

– Wallet

– Vendor server

– Broker server

Extensions

• Authentication to distributed services

– Kerberos-like authentication

– To buy scrip for access to particular network
services

• Accounting and metering applications inside
private networks

• Per-connection charges for such services as e-
mail, file transfer, Internet telephony

Extensions

• Discount coupons

– Further fields could be added to scrip to provide
discounts for certain content

• Preventing subscription sharing

– Trying to gain access with an already used piece of
scrip (such as shared scrip would be) will fail

scrip change giving

access the next time

Micropayment Systems

Chapter 7

Contents

7.1 Millicent

7.2 SubScrip

7.3 PayWord

7.4 iKP micropayment protocol

7.5 Hash chain trees

7.6 MicroMint

7.7 Probability-based micropayments

7.8 Jalda

7.9 NewGenPay/IBM Micropayments

7.10 Banner advertising as a form of micropayment

7.11 Micropayments summary and analysis

SubScrip

Chapter 7.2

Introduction

• pay-per-view payments on the Internet

• Creating temporary prepaid accounts for users
at a specific vendor

Level of Security

• No encryption

• The designers aimed to make the expense
necessary for a successful attack much higher
than the financial gain possible.

Transaction Cost

• Initial overhead for making a payment to a
new vendor

• A micropayment can be verified locally by a
vendor without the need for any on-line
clearance with a third party

Temporary Account

• Millicent broker

• SubScrip a macropayment system

• Temporary Account

– A payment large enough to cover the
macropayment transaction costs to that vendor

Establishing a SubScrip Account with a
Vendor

SubScrip Ticket

• Some type of account identifier for user

• The merchant returns a SubScrip ticket to the
user to access the new account.

Anonymity

• Depend on the anonymity of the
macropayment system used to initially pay a
vendor.

• The merchant will only know the customer’s
network address

SubScrip Ticket Fields

• Acc_ID

– A random number as account identifier

• Val

– Remaining money in the account at the vendor

• Exp (expire date)

– To limits the number of accounts that must be maintained
by a vendor

Notes

• The SubScrip ticket is not an electronic coin

– Only for accessing prepaid value

• SubScrip value is transferable to another user.

– By giving that user the valid ticket

Merchant ‘s Database Of Valid Accounts

• An account

– IDs

– amount

– expiry date

SubScrip purchase

• vendor verifies a SubScrip ticket by checking
SubScrip ticket against his database.

Security And Privacy

• Eavesdropper

– Obtains a valid account ID and spent by an
attacker

• Active attacker

– Prevent the ticket to reaching its destination to
retransmit it (stolen ticket) later

Protected SubScrip

• Using public-key cryptography

Customer’s public
key

Refunding SubScrip

• To allow customers to convert unspent tickets
back to real money.

• Vendor pay the remaining account balance to
the user by existing macropayment system.

Lost Tickets

• Unsuccessful transmission

• Software failure

• Lost account ids recovery

– Sending the delivery address approximate time of
last access to regain the account

Micropayment Systems

Chapter 7

Contents

7.1 Millicent

7.2 SubScrip

7.3 PayWord

7.4 iKP micropayment protocol

7.5 Hash chain trees

7.6 MicroMint

7.7 Probability-based micropayments

7.8 Jalda

7.9 NewGenPay/IBM Micropayments

7.10 Banner advertising as a form of micropayment

7.11 Micropayments summary and analysis

PayWord

Chapter 7.3

PayWord

• Designed by R.Rivest and A.Shamir

• Performance

– Using hash functions

– Reducing the number of public-key operations

• Each hash value, called a PayWord

PayWord

• A PayWord chain is vendor-specific and the
user digitally signs a commitment to honor
payments for that chain.

• PayWord certificate by a broker

PayWord User Certificates

• Authorizes a user to generate PayWord chains

• Guarantees that a specific broker will redeem
them

Obtaining a PayWord User Certificate

account

certificate

Certificate

• Optional information
– Credit limits per vendor
– User-specific details
– Broker details

The user.s public key

No
anonymity

Verifying a Broker’s Signature

• vendor must securely obtain that broker’s
public key, PKB, in some way.

• It is not discussed in the PayWord scheme.

– Implementation specific.

Revoked Certificates

• Secret key of user was lost or stolen

• Broker maintains blacklists of (revoked)
certificates

• Vendor must obtain revoked certificate lists
from a broker

PayWord Chains

• Represents user credit at a specific vendor

• Each PayWord (hash value) in the chain has
the same value, normally 1 cent.

User Generating A PayWord Chain

Root: a random
number

Hash
function

(e.g. SHA)

Commitment To A PayWord Chain

• The user signs commitment

• The commitment will authorize the broker to
redeem any PayWords from the committed
chain

use’s secret key vendor

User’s PayWord
certificate

The final hash

Expire date

Spending PayWords

Verifying The First PayWord

Verifying Further Payments

To make a further 1-cent payment, the user will send W2. The vendor then compares the
value obtained by taking the hash of W2, H(W2) to the previous valid PayWord (W1) received.
If W2 is valid, then the values will match

Variable-size Payments

index

To make a 3-cent payment after having spent
W2, the fifth PayWord, W5, can be sent.

Redeeming Spent PayWords

• To receive payment a vendor redeems
PayWord chains with the appropriate broker,
perhaps at the end of each day.

Reclaiming PayWords with a broker

The highest
indexed PayWord

spent

The signed user
commitment for

that chain

Computational Costs

• Broker
– One signature/user/month (CU);
– One signature verification/user/vendor/day

(Commitment);
– One hash per PayWord spent.

• Vendor
– Two signature verifications/user/day (Commitment and

CU);
– One hash per PayWord spent.

• User
– One signature/vendor/day (Commitment);
– One hash per PayWord constructed.

Extensions

• PayWords of different values at the same
merchant.

• A commitment could be used as a simple
electronic check to make a macropayment.

Micropayment Systems

Chapter 7

Contents

7.1 Millicent

7.2 SubScrip

7.3 PayWord

7.4 iKP micropayment protocol

7.5 Hash chain trees

7.6 MicroMint

7.7 Probability-based micropayments

7.8 Jalda

7.9 NewGenPay/IBM Micropayments

7.10 Banner advertising as a form of micropayment

7.11 Micropayments summary and analysis

MicroMint

Chapter 7.6

Introduction

• It is very computationally difficult for anyone
except the broker to mint valid coins.

• It is quick and efficient for anyone to verify a
coin.

The MicroMint model
using a

macropayment

MicroMint

• k-way hash function collision

• Four-way hash function collision

A coin with worth 1 cent has
four input values

Verifying a Coin

• Performing four hashes on each xi to obtain
the same y value

• Ensuring that each x is different

• To detect double spending

– The broker maintains a copy of each coin already
spent to check against

Minting Coins

• Throwing a ball (x) into one of 2n bins (y
values)

 y is n bits long

x is m bits long

Computational Costs

• Balls are thrown at random and cannot be
aimed at a specific bin

• The first coin (k-way collision)

Computational Costs

• Minting more coins becomes progressively
cheaper

– c.T hash operations produces c k coins

• If we produce the large number of coins (ck)
then the required number of effort to create a
valid coins decreases to c.T.

Linear Exponential

Multiple Coins Per Bin

• If more than k balls fall into the same bin,
several coins could be made from subsets of
the values in the bin.

Controlling the Number of Thrown Balls

• Substantial storage space

– For remembering the value of each ball and the
bin it landed in

The coin’s
hash value

specific pattern

Broker only consider
and saves x with

prefix of a in its hash

value.

Preventing Forgery

• Special hardware

• Short coin validity period

• Early minting

• Coin validity criterion

– The same hash prefix

• Different bins (y values)

• k > 2 e.g. k=4

A MicroMint purchase

A Coin

Double Spending

• No check is performed at the vendor against
double spending

• Vendors might try to redeem coins already
spent at other vendors

• No anonymity offers detecting doubly spent
coins

– Repeat offenders are blacklisted and denied
further access to the system.

Hidden Predicates

• The x value must have certain properties
initially known only to the broker

• A vendor can verify that a coin is valid by
checking that it obeys the predicate published
by the broker.

User-specific Coins

• This ensures that stolen coins cannot be spent
by most users

• Example

– All coins have this property:

A Short
Length hash
e.g. 16 bit

Group Identity

Vendor-specific Coins

• They may only be redeemed by a small group
of vendors.

Coins for multiple months

• To mint some of the coins for several different
months at the same time

• Since the broker can effectively mint coins
faster, the process can be slowed down by
making them harder to mint

Different-valued Coins

• Coins could be worth different values,
according to predicates on the x values.

• These predicates might be announced at the
start of the month and could be verified by
anyone.

