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Preface

This book is a major revision of Numerical Methods for Wave Equations in
Geophysical Fluid Dynamics; the new title of the second edition conveys its broader
scope. The second edition is designed to serve graduate students and researchers
studying geophysical fluids, while also providing a non-discipline-specific introduc-
tion to numerical methods for the solution of time-dependent differential equations.

Changes from the first edition include a new Chapter 2 on the numerical solution
of ordinary differential equations (ODEs), which covers classical ODE solvers as
well as more recent advances in the design of Runge–Kutta methods and schemes
for the solution of stiff equations. Chapter 2 also explores several characterizations
of numerical stability to help the reader distinguish between those conditions suffi-
cient to guarantee the convergence of numerical solutions to ODEs and the stronger
stability conditions that must be satisfied to compute reasonable solutions to time-
dependent partial differential equations with finite time steps. Chapter 3 (formerly
Chapter 2) has been reorganized and now covers finite-difference schemes for the
simulation of one-dimensional tracer transport due to advection, diffusion, or both.
Chapter 4, which is devoted to finite-difference approximations to more general par-
tial differential equations, now includes an improved discussion of skew-symmetric
operators. Chapter 5, “Conservation Laws and Finite-Volume Methods,” includes
new sections on essentially nonoscillatory and weighted essentially nonoscillatory
methods, the piecewise-parabolic method, and limiters that preserve smooth ex-
trema. A section on the discontinuous Galerkin method now concludes Chapter 6,
which continues to be rounded out with discussions of the spectral, pseudospectral,
and finite-element methods. Chapter 7, “Semi-Lagrangian Methods,” now includes
discussions of “cascade interpolation” and finite-volume integrations with large time
steps. More minor modifications and updates have been incorporated throughout the
remaining chapters.

The majority of the schemes presented in this text were introduced in either the
applied mathematics or the atmospheric science literature, but the focus is not on
the details of particular atmospheric models but on fundamental numerical methods
that have applications in a wide range of scientific and engineering disciplines.
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viii Preface

The prototype problems considered include tracer transport, chemically reacting
flow, shallow-water waves, and the evolution of internal waves in a continuously
stratified fluid.

A significant fraction of the literature on numerical methods for these problems
falls into one of two categories: those books and papers that emphasize theorems and
proofs, and those that emphasize numerical experimentation. Given the uncertainty
associated with the messy compromises actually required to construct numerical
approximations to real-world fluid-dynamics problems, it is difficult to emphasize
theorems and proofs without limiting the analysis to classical numerical schemes
whose practical application may be rather limited. On the other hand, if one relies
primarily on numerical experimentation, it is much harder to arrive at conclusions
that extend beyond a specific set of test cases. In an attempt to establish a clear
link between theory and practice, I have tried to follow a middle course between
the theorem-and-proof formalism and the reliance on numerical experimentation.
There are no formal proofs in this book, but the mathematical properties of each
method are derived in a style familiar to physical scientists. At the same time, nu-
merical examples are included that illustrate these theoretically derived properties
and facilitate the comparison of various methods.

A general course on numerical methods for time-dependent problems might
draw on portions of the material presented in Chapters 1–6, and I have used sec-
tions from these chapters in a graduate course entitled “Numerical Analysis of
Time-Dependent Problems” that is jointly offered by the Department of Applied
Mathematics and the Department of Atmospheric Sciences at the University of
Washington. The material in Chapters 7 and 9 is not specific to geophysics, and
appropriate portions of these chapters could also be used in courses in a wide
range of disciplines. Both theoretical and applied problems are provided at the end
of each chapter. Those problems requiring numerical computation are marked by
an asterisk.

The portions of the book that are most explicitly related to atmospheric science
are portions of Chapter 1, the treatment of spherical harmonics in Chapter 6, and
Chapter 8. The beginning of Chapter 1 discusses the relation between the equa-
tions governing geophysical flows and other types of partial differential equations.
Switching gears, Chapter 1 then concludes with a short overview of the strategies for
numerical approximation that are considered in detail throughout the remainder of
the book. Chapter 8 examines schemes for the approximation of slow-moving waves
in fluids that support physically insignificant fast waves. The emphasis in Chapter 8
is on atmospheric applications in which the slow wave is an internal gravity wave
and the fast waves are sound waves, or the slow wave is a Rossby wave and the fast
waves are both gravity waves and sound waves.

Many numerical methods for the simulation of internally stratified flow require
the repeated solution of elliptic equations for pressure or some closely related vari-
able. Owing to the limitations of my own expertise and to the availability of other
excellent references, I have not discussed the solution of elliptic partial differential
equations in any detail. A thumbnail sketch of some solution strategies is provided
in Section 8.1.3; the reader is referred to Chapter 5 of Ferziger and Perić (1997)



Preface ix

for an excellent overview of methods for the solution of elliptic equations arising in
computational fluid dynamics and to Chapters 3 and 4 of LeVeque (2007) for a very
accessible and somewhat more detailed discussion.

I have attempted to provide sufficient references to allow the reader to further
explore the theory and applications of many of the methods discussed in the text,
but the reference list is far from encyclopedic and certainly does not include every
worthy paper in the atmospheric science or applied mathematics literature. Refer-
ences to the relevant literature in other disciplines and in foreign language journals
are rather less complete.1

The first edition of this book could not have been written without the gener-
ous assistance of several colleagues. Christopher Bretherton, in particular, provided
many perceptive answers to my endless questions. J. Ray Bates, Byron Boville,
Michael Cullen, Marcus Grote, Robert Higdon, Randall LeVeque, Christoph Schär,
William Skamarock, Piotr Smolarkiewicz, and David Williamson all provided very
useful comments on individual chapters. Many students used earlier versions of
this manuscript in my courses in the Department of Atmospheric Sciences at the
University of Washington, and their feedback helped improve the clarity of the
manuscript. Two students to whom I am particularly indebted are Craig Epifanio
and Donald Slinn. I am also grateful to Jim Holton for encouraging me to write the
first edition.

Peter Blossey made many important contributions to the second edition, includ-
ing performing the computations for Figures 5.24–5.28 and 7.3. Comments by
Catherine Mavriplis and Ram Nair helped improve the new section on discontin-
uous Galerkin methods. Joel Thornton helped me better grasp the fundamentals of
atmospheric ozone chemistry. Additional invaluable input was provided from many
readers of the first edition who were kind enough to send their comments and help
identify typographical errors.

It is my pleasure to acknowledge the many years of support for my numerical
modeling efforts provided by the Physical and Dynamic Meteorology Program of
the National Science Foundation. Additional significant support for my research
on numerical methods for atmospheric models has been provided by the Office of
Naval Research. Part of the first edition was completed while I was on sabbatical at
the Laboratoire d’Aérologie of the Université Paul Sabatier in Toulouse, France, and
I thank Daniel Guedalia and Evelyne Richard for helping make that year productive
and scientifically stimulating.

As errors in the text are identified, they will be posted on the Web at http://
www. atmos.washington.edu/numerical.methods, which can be accessed directly
or via Springer’s home page at http://www.springer-ny.com. I would be most
grateful to be advised of any typographical or other errors by electronic mail at
drdee@uw.edu.

Seattle, Washington, USA Dale R. Durran

1 Those not familiar with the atmospheric science literature may be surprised by the number of
references to Monthly Weather Review, which, despite its title, has become the primary American
journal for the publication of papers on numerical methods in atmospheric science.
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Chapter 1
Introduction

ThepossibilityofdeterministicweatherpredictionwassuggestedbyVilhelmBjerknes
as early as 1904. Around the time of the First World War, Lewis Richardson actu-
ally attempted to produce such a forecast by manually integrating a finite-difference
approximation to the equations governing atmospheric motion. Unfortunately, his
calculations did not yield a reasonable forecast. Moreover, the human labor required
to obtain this disappointing result was so great that subsequent attempts at determin-
istic weather prediction had to await the introduction of a high-speed computational
aid. In 1950, a team of researchers, under the direction of Jule Charney and John
von Neumann at the Institute for Advanced Study, at Princeton, journeyed to the
Aberdeen Proving Ground, where they worked for approximately 24 h to coax a
one-day weather forecast from the first general-purpose electronic computer, the
ENIAC.1 The first computer-generated weather forecast was surprisingly good, and
its success led to the rapid growth of a new meteorological subdiscipline, “numer-
ical weather prediction.” These early efforts in numerical weather prediction also
began a long and fruitful collaboration between numerical analysts and atmospheric
scientists.2 The use of numerical models in atmospheric and oceanic science has
subsequently expanded into almost all areas of active research. Numerical models
are currently employed to study phenomena as diverse as global climate change,
the interaction of ocean currents with bottom topography, the evolution of atmo-
spheric pollutants within an urban airshed, and the development of rotation in tor-
nadic thunderstorms.

Weather forecasting is an initial-value problem, and the focus of this book is the
study of numerical methods for the solution of time-dependent differential equa-
tions. The simplest time-dependent differential equations are ordinary differential
equations. These arise, for example, when simulating chemical reactions in an
isolated “box.” Yet in most geochemical problems it is also necessary to consider
the influence of fluid transport, and the inclusion of transport processes substantially
complicates the governing equations. Such transport can be produced by molecular

1 ENIAC is an acronym for Electronic Numerical Integrator and Calculator.
2 Further details about these early weather prediction efforts may be found in Bjerknes (1904),
Richardson (1922), Charney et al. (1950), Burks and Burks (1981), and Thompson (1983).

D.R. Durran, Numerical Methods for Fluid Dynamics: With Applications to Geophysics, 1
Texts in Applied Mathematics 32, DOI 10.1007/978-1-4419-6412-0 1,
c� Springer Science+Business Media, LLC 1999, 2010
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diffusion or by the flow of macroscopic fluid elements (advection). Except in bound-
ary layers near interfaces between the atmosphere, the oceans, and the earth, advec-
tion plays a much larger role than diffusion in atmospheric and oceanic transport.

The advection of a passive tracer is governed by a simple “wave equation.”
Perhaps surprisingly, the choice of the best method to solve even the one-
dimensional advection equation is not clear-cut. Hundreds of papers have been
published examining various techniques for solving the advection equation and for
generalizing those techniques to more complex problems with wavelike solutions.
Here the adjective “wavelike” is used in the general sense suggested by Whitham
(1974), who defined a wave as “any recognizable signal that is transferred from one
part of a medium to another with a recognizable velocity of propagation.”

This book presents the fundamental mathematical aspects of a wide variety of
numerical methods for the simulation of wavelike flow. The methods considered are
typically those that have seen some use in real-world atmospheric or ocean models,
but the focus is on the essential properties of each method and not on the details
of any specific model. The fundamental character of each scheme will be examined
in standard fluid-dynamical problems such as tracer transport, chemically reacting
flow, shallow-water waves, and waves in an internally stratified fluid. These are the
same prototypical problems familiar to many applied mathematicians, fluid dynam-
icists, and practitioners in the larger discipline of computational fluid dynamics.

Most of the problems under investigation in the atmospheric and oceanic sci-
ences involve fluid systems with low viscosity and weak dissipation. The equations
governing these flows are often nonlinear, but their solutions almost never develop
energetic shocks or discontinuities. Nevertheless, regions of scale collapse do fre-
quently occur as the velocity field stretches and deforms an initially compact fluid
parcel. The numerical methods that will be examined in this book may therefore be
distinguished from the larger family of algorithms in computational fluid mechanics
in that they are particularly appropriate for low-viscosity flows, but are not primarily
concerned with the treatment of shocks.

It is assumed that the reader has already been exposed to the derivation of the
equations describing fluid flow and tracer transport. These derivations are given
in a general fluid-dynamical context in Batchelor (1967), Yih (1977), and Bird
et al. (1960), and in the context of atmospheric and oceanic science in Gill (1982),
Pedlosky (1987), Holton (2004), and Vallis (2006). The mathematical properties of
these equations and commonly used simplifications, such as the Boussinesq approx-
imation, will be briefly reviewed in this chapter. The chapter concludes with a brief
overview of the numerical methods that will be considered in more detail throughout
the remainder of the book.

1.1 Partial Differential Equations: Some Basics

Different types of partial differential equations require different solution strate-
gies. It is therefore helpful to begin by reviewing some of the terminology used
to describe various types of partial differential equations. The order of a partial
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differential equation is the order of the highest-order partial derivative that appears
in the equation. Numerical methods for the solution of time-dependent problems
are often designed to solve systems of partial differential equations in which the
time derivatives are of first order. These numerical methods can be used to solve
partial differential equations containing higher-order time derivatives by defining
new unknown functions equal to the lower-order time derivatives of the original
unknown function and expressing the result as a system of partial differential equa-
tions in which all time derivatives are of order 1. For example, the second-order
partial differential equation

@2 

@t2
C  

@ 

@x
D 0

can be expressed as the first-order system

@�

@t
C  

@ 

@x
D 0;

@ 

@t
� � D 0:

In geophysical applications it is seldom necessary to actually formulate first-order-
in-time equations using this procedure, because suitable first-order-in-time systems
can usually be derived from fundamental physical principles.

The accurate numerical solution of equations describing wavelike flow becomes
more difficult if the solution develops significant perturbations on spatial scales
close to the shortest scale that can be resolved by the numerical model. The possibil-
ity of waves developing small-scale perturbations from smooth initial data increases
as the governing partial differential equation becomes more nonlinear. A partial dif-
ferential equation is linear if it is linear in the unknown functions and their deriva-
tives, in which case the coefficients multiplying each function or derivative depend
only on the independent variables. As an example,

@u

@t
C x3

@u

@x
D 0

is a linear first-order partial differential equation, whereas

�
@u

@t

�2
C sin

�
u
@u

@x

�
D 0

is a nonlinear first-order partial differential equation.
Analysis techniques and solution procedures developed for linear partial differ-

ential equations can be generalized most easily to the subset of nonlinear partial
differential equations that are quasi-linear. A partial differential equation of order p
is quasi-linear if it is linear in the derivatives of order p; the coefficient multiplying
each pth derivative can depend on the independent variables and all derivatives of
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the unknown function through order p � 1. Two examples of quasi-linear partial
differential equations are

@u

@t
C u3

@u

@x
D 0

and the vorticity equation for two-dimensional nondivergent flow

@r2 

@t
C @ 

@x

@r2 

@y
� @ 

@y

@r2 

@x
D 0;

where  .x; y; t/ is the stream function for the nondivergent velocity field and

r2 D @2

@x2
C @2

@y2
:

1.1.1 First-Order Hyperbolic Equations

Many waves can be mathematically described as solutions to hyperbolic partial dif-
ferential equations. One simple example of a hyperbolic partial differential equation
is the general first-order quasi-linear equation

A.x; t; u/
@u

@t
C B.x; t; u/

@u

@x
D C.x; t; u/; (1.1)

where A, B , and C are real-valued functions with continuous first derivatives. This
equation is hyperbolic because there exists a family of real-valued curves in the
x–t plane along which the solution can be locally determined by integrating or-
dinary differential equations. These curves, called characteristics, may be defined
with respect to the parameter s by the relations

dt

ds
D A and

dx

ds
D B: (1.2)

The identity
du

ds
D @u

@t

dt

ds
C @u

@x

dx

ds

can then be used to express (1.1) as the ordinary differential equation

du

ds
D C: (1.3)

Given the value of u at some arbitrary point .x0; t0/, the coordinates of the charac-
teristic curve passing through .x0; t0/ can be determined by integrating the ordinary
differential equations (1.2). The solution along this characteristic can be obtained by
integrating the ordinary differential equation (1.3). A unique solution to (1.1) can be
determined throughout some local region of the x–t plane by specifying data for u
along any noncharacteristic line.

Ham
Pencil
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In physical applications where the independent variable t represents time, the
particular solution of (1.1) is generally determined by specifying initial data for u
along the line t D 0. In such applications A is nonzero, and any perturbation in
the distribution of u at the point .x0; t0/ translates through a neighborhood of x0 at
the speed

dx

dt
D B

A
:

The solutions to (1.1) are wavelike in the general sense that the perturbations in
u travel at well-defined velocities even though they may distort as they propagate.
The evolution of the solution is particularly simple when C D 0 and B=A is some
constant value c, in which case (1.1) reduces to

@u

@t
C c

@u

@x
D 0: (1.4)

If u.x; 0/ D f .x/, the solution to the preceding equation is f .x � ct/, implying
that the initial perturbations in u translate without distortion at a uniform veloc-
ity c. Equation (1.4), which is often referred to as the one-way wave equation or
the constant-wind-speed advection equation, is the simplest mathematical model
for wave propagation. Although it is quite simple, (1.4) is a very useful prototype
problem for testing numerical methods because solutions to more complex linear
hyperbolic systems can often be expressed as the superposition of individual waves
governed by one-way wave equations.

A system of partial differential equations in two independent variables is hyper-
bolic if it has a complete set of characteristic curves that can in principle be used to
locally determine the solution from appropriately prescribed initial data. As a first
example, consider a constant-coefficient linear system of the form

@ur

@t
C

nX
sD1

ars
@us

@x
D 0; r D 1; 2; : : : ; n: (1.5)

This system may be alternatively written as

@u
@t

C A
@u
@x

D 0;

where uppercase boldface letters represent matrices and lowercase boldface letters
denote vectors. The system is hyperbolic if there exist bounded matrices T and T�1
such that T�1AT D D, where D is a diagonal matrix with real eigenvalues djj .
When the system is hyperbolic, it can be transformed to

@v
@t

C D
@v
@x

D 0 (1.6)

by defining v D T�1u. Since D is a diagonal matrix, each element vj of the vector
of unknown functions may be determined by solving a simpler scalar equation of the
form (1.4). Each diagonal element of D is associated with a family of characteristic
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curves along which the perturbations in vi propagate at speed dx=dt D djj . The
wavelike character of the solution can be demonstrated by Fourier transforming
(1.6) with respect to x to obtain

@Ov
@t

C ikDOv D 0; (1.7)

where Ov is the Fourier transform of v and k is the wave number, or dual variable. To
satisfy (1.7), the j th component of v must be a wave of the form exp ik.x � djj t/.
Every solution to the original system (1.5) is a linear superposition of these waves.

Now consider the general first-order linear system

@u
@t

C A
@u
@x

C Bu C c D 0;

where the coefficient matrices are smooth functions of x and t . This system is hy-
perbolic throughout some region R of the x–t plane if for all x and t in R there
exist bounded matrices T�1 and T such that D.x; t/ D T�1.x; t/A.x; t/T.x; t/ is a
diagonal matrix with real eigenvalues. Again, let u D Tv. Then,

@v
@t

C D
@v
@x

C QBv C T
�1

c D 0; (1.8)

where

QB D T
�1
�
@T
@t

C A
@T
@x

C BT
�
:

The solution to (1.8) may be obtained via the iteration

@vnC1

@t
C D

@vnC1

@x
C QBv

n C T�1c D 0 (1.9)

(Courant and Hilbert 1953, p. 476). Since D is diagonal, the preceding equation is a
set of decoupled scalar relations for the components vnC1

i , each of which is a simple
first-order hyperbolic partial differential equation.

To generalize the preceding definition of a hyperbolic system to problems with
three or more independent variables, consider the system of partial differential
equations

@u
@t

C
�

A1
@

@x1
C A2

@

@x2
C � � � C Am

@

@xm

�
u D 0 (1.10)

and suppose that the coefficient matrices are constant. Unlike the two-independent-
variable case, it is not usually possible to find a transformation that simultaneously
diagonalizes all the coefficient matrices in (1.10) and thereby generates a set of
decoupled scalar equations. Instead, take the Fourier transform of (1.10) with re-
spect to each spatial coordinate to obtain
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@ Ou
@t

C iP.k/ Ou D 0; where P.k/ D
mX
qD1

Aqkq

and k D .k1; k2; : : : ; km/ is a real-valued vector of the wave number (or dual vari-
able) with respect to each spatial coordinate.

The system (1.10) will be hyperbolic if all its solutions are the linear superposi-
tion of waves of the form exp i.k � x � !t/, where !.k/ is a real-valued frequency.
This will be the case if P.k/ has a complete set of real eigenvalues for any nonzero
wave number vector k, or equivalently, if for every k such that kkk D 1 there exist
bounded matrices T�1.k/ and T.k/ such that D.k/ D T�1.k/P.k/T.k/ is a diago-
nal matrix with real eigenvalues.

The definition of a hyperbolic system in several space dimensions is extended to
the case where the coefficient matrices in (1.10) are smooth functions of x and t by
requiring that at every point .x; t/ throughout some domain R there exist bounded
matrices T�1.k; x; t/ and T.k; x; t/ such that for all real vectors k of unit length,
T�1.k; x; t/P.k; x; t/T.k; x; t/ is a diagonal matrix with real eigenvalues (Gustafs-
son et al. 1995, p. 221). Since all symmetric matrices may be transformed to real-
valued diagonal matrices, the matrix P will be symmetric and the original system
(1.10) will be hyperbolic if all the coefficient matrices Aq are symmetric. The easi-
est way to show that many multidimensional systems are hyperbolic is to transform
them to equivalent systems in which all the coefficient matrices are symmetric.

1.1.2 Linear Second-Order Equations in Two
Independent Variables

Not all waves are solutions to hyperbolic equations. Hyperbolic equations can
be compared with two other fundamental types of partial differential equations,
parabolic and elliptic equations, by considering the general family of linear second-
order partial differential equations in two independent variables:

a.x; y/uxx C 2b.x; y/uxy C c.x; y/uyy C L.x; y; u; ux ; uy/ D 0: (1.11)

In the preceding equation, the subscripts denote partial derivatives, and L is a linear
function of u, ux , and uy whose coefficients may depend on x and y. New inde-
pendent variables � and � can be defined that transform (1.11) into one of three
canonical forms. The particular form that can be achieved depends on the number
of families of characteristic curves associated with (1.11). In those regions of the
x–y plane where b2 � ac > 0 there are two independent families of characteristic
curves; the equation is hyperbolic, and it can be transformed to the canonical form

u�� C QL.�; �; u; u� ; u�/ D 0: (1.12)
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There is one family of characteristic curves and the equation is parabolic in those
regions where b2 � ac D 0, in which case (1.11) can be transformed to

u�� C QL.�; �; u; u� ; u�/ D 0: (1.13)

In those regions where b2 � ac < 0, there are no real-valued characteristic curves;
the equation is elliptic, and it transforms to

u�� C u�� C QL.�; �; u; u� ; u�/ D 0: (1.14)

In each of the preceding equations, QL.�; �; u; u� ; u�/ is a linear function of u, u� ,
and u� with coefficients that may depend on � and �.

To carry out the transformation, the various partial derivatives of u with respect
to x and y in (1.11) must be replaced by derivatives with respect to � and �. Differ-
entiating uŒ�.x; y/; �.x; y/� yields

ux D u��x C u��x ;

uxx D u���
2
x C 2u���x�x C u���

2
x C u��xx C u��xx ;

uxy D u���x�y C u��
�
�x�y C �y�x

�C u���x�y C u��xy C u��xy ;

along with similar expressions for uy and uyy that may be substituted into (1.11) to
obtain

A.�; �/u�� C 2B.�; �/u�� C C.�; �/u�� C QL.�; �; u; u� ; u�/ D 0; (1.15)

where

A.�; �/ D a�2x C 2b�x�y C c�2y ;

B.�; �/ D a�x�x C b
�
�x�y C �y�x

�C c�y�y ;

C.�; �/ D a�2x C 2b�x�y C c�2y :

The new coordinates must be chosen such that the Jacobian

�x�y � �y�x
is nonzero throughout the domain to guarantee that the transformation between
.x; y/ and .�; �/ is unique and has a unique inverse. This coordinate transformation
does not change the classification of the partial differential equation as hyperbolic,
parabolic, or elliptic because, as can be shown by direct substitution,

B2 �AC D .b2 � ac/.�x�y � �y�x/
2; (1.16)

implying that for nonsingular transforms the sign of b2�ac is inherited byB2�AC .
Now consider the hyperbolic case, for which the canonical form (1.12) is ob-

tained by choosing � and � to make A.�; �/ D C.�; �/ D 0. A.�; �/ will be
zero when

a�2x C 2b�x�y C c�2y D 0;
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or if a ¤ 0,
�2x
�2y

C 2
b

a

�x

�y
C c

a
D 0: (1.17)

Assuming again that a ¤ 0, the condition C.�; �/ D 0 requires that �x=�y be a root
of the same quadratic equation, i.e.,

�2x
�2y

C 2
b

a

�x

�y
C c

a
D 0: (1.18)

Since b2 � ac > 0, these roots are real and distinct. Denoting the roots by �v1 and
�v2, one may choose transformed coordinates such that dy=dx D v1 along lines of
constant � and dy=dx D v2 along lines of constant �. This choice of coordinates
satisfies (1.17) and (1.18) because

dy

dx

ˇ̌
ˇ̌
�

D ��x
�y

D v1 and
dy

dx

ˇ̌
ˇ̌
�

D ��x
�y

D v2:

Those curves along which either � or � is constant are the characteristic curves for
the hyperbolic equation (1.11).

After zeroing A and C , one obtains the canonical form (1.12) by dividing (1.15)
by B.�; �/, which must be nonzero by (1.16) because

�x�y � �y�x D �y�y.v2 � v1/ ¤ 0:

In the case a D 0, a similar expression for the transformed coordinates can be
obtained by dividing the relations A.�; �/ D 0 and C.�; �/ D 0 by c instead of a.
If both a and c are zero, the partial differential equation is placed in canonical form
simply by dividing by b (which is nonzero because b2 � ac > 0).

If QL is zero, the canonical hyperbolic equation (1.12) has solutions of the form
g.�/ and h.�/. One circumstance in which QL is zero occurs when a, b, and c are
constant and L D 0 in (1.11). Then the characteristics are the straight lines

� D y � v1x and � D y � v2x;
and there exist solutions of the form g.y � v1x/ and h.y � v2x/. When (1.11)
serves as a mathematical model for wave-propagation problems, it usually includes
a second-order derivative with respect to time. Suppose, therefore, that a ¤ 0 and
that x represents the time coordinate. Then the speed of signal propagation along
the characteristics is given by their slope in the y–x plane, which is v1 for the
constant-� characteristics and v2 for the constant-� characteristics.

In the parabolic case with a ¤ 0, the quadratic equation (1.17) has the double
root �b=a, and there is a single characteristic defined such that

dy

dx

ˇ̌
ˇ̌
�

D ��x
�y

D b

a
: (1.19)
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Let �.x; y/ be any simple function such that

�x�y � �y�x ¤ 0:

These choices for � and � imply thatA D 0 andB2�AC D 0, which in turn implies
that B D 0. The canonical parabolic form (1.13) is obtained by dividing (1.15) by
C , which must be nonzero, or else neither (1.11) nor (1.15) will be a second-order
differential equation. If, on the other hand, a D 0 in (1.11), a similar transformation
can be performed after dividing through by c, which must be nonzero if a second-
order partial derivative is present in (1.11) because b2 D b2 � ac D 0.

When parabolic partial differential equations describe time-dependent physical
systems, such as the diffusion of heat along a rod, the second-order partial derivative
is usually computed with respect to a spatial coordinate. Letting x represent the
spatial coordinate and y the time coordinate, the one-dimensional heat equation
becomes

@2 

@x2
� @ 

@y
D 0;

which is in the general form (1.11) with b D c D 0. According to (1.19), the charac-
teristic curves for the heat equation have slope dy=dx D 0, i.e., they are lines parallel
to the spatial coordinate (which in contrast to the hyperbolic example is now x).

If the partial differential equation is elliptic, then b2 � ac < 0, and there are no
real-valued functions that satisfy (1.17) and (1.18). Provided that a, b, and c are an-
alytic,3 a transformation can always be found that zeros B and sets ADC D 1,
thereby obtaining the canonical form (1.14). (See Carrier and Pearson 1988 or
Kevorkian 1990 for further details.) If a, b, and c are constant, the transformation
to canonical form may be accomplished by choosing

� D bx � ay

.ac � b2/1=2
; � D x;

and dividing the resulting equation by a.
Since elliptic partial differential equations do not have real-valued character-

istics, their solutions do not generally include wavelike perturbations that propa-
gate through the domain at well-defined velocities. Nevertheless, elliptic equations
describing the spatial distribution of a physical parameter such as pressure can
be coupled with other time-dependent equations to yield a problem with wave-
like solutions. As noted by Whitham (1974), linearized surface gravity waves in

3 Let z D x C iy be a complex variable in which x and y are real-valued. The function f.z/ is
analytic if its derivative

df

dz
D lim

�z!0

f.z C�z/� f.z/
�z

exists and is uniquely defined as�z goes to zero along any arbitrary path in the complex plane. If
f D uC iv, where u and v are real-valued, a necessary condition for f to be analytic is that u
and v satisfy the Cauchy–Riemann conditions

ux D vy ; uy D �vx:
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a flat-bottomed basin of infinite horizontal extent and depth H are governed by the
elliptic partial differential equation

@2p

@x2
C @2p

@y2
C @2p

@z2
D 0; (1.20)

subject to the upper and lower boundary conditions

@2p

@t2
C g

@p

@z
D 0 at z D 0;

@p

@z
D 0 at z D �H:

The wave-like character of the solution is produced by the time-dependent upper
boundary condition.

The elliptic nature of (1.20) does not follow from the preceding classification
scheme, which requires the evaluation of b2 � ac and is directly applicable only
to linear second-order partial differential equations in two independent variables.
In order to generalize this classification scheme to equations with n independent
variables, consider the family of linear second-order partial differential equations of
the form

nX
iD1

nX
jD1

aij
@2u

@xi@xj
C

nX
iD1

bi
@u

@xi
C cuC d D 0: (1.21)

If aij , bi , c, and d are constants, there exists a one-to-one transformation to a new
set of independent variables �i such that the second-order terms in the preceding
equation become

nX
iD1

Ai i
@2u

@�i
2
:

If all the Ai i are nonzero and have the same sign, (1.21) is elliptic. If all the Ai i are
nonzero and all but one have the same sign, (1.21) is hyperbolic. If at least one of
the Ai i is zero, (1.21) is parabolic.

1.2 Wave Equations in Geophysical Fluid Dynamics

The wave-like motions of primary interest in geophysical fluid dynamics are the
physical transport of scalar variables by the motion of fluid parcels, oscillatory
motions associated with buoyancy perturbations (gravity waves), and oscillatory
motions associated with potential vorticity perturbations (Rossby waves). Acoustic
waves (sound waves) also propagate through all geophysical fluids, but in many ap-
plications these are small-amplitude perturbations whose detailed structure is of no
interest. Both inviscid tracer transport and the propagation of sound waves are math-
ematically described by hyperbolic partial differential equations. Gravity waves
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and Rossby waves are also solutions to hyperbolic systems of partial differential
equations, but some of the fluid properties essential for the support of these waves
are represented in the governing equations by terms involving the zero-order deriva-
tives of the unknown variables. These zero-order terms play no role in the classifica-
tion of the governing equations as hyperbolic, and simpler nonhyperbolic systems
of partial differential equations, such as the Boussinesq equations, can be derived
whose solutions closely approximate the gravity-wave and Rossby-wave solutions
to the original hyperbolic system. These simpler systems will be referred to as fil-
tered equations.

1.2.1 Hyperbolic Equations

The concentration of a nonreactive chemical constituent is approximately governed
by the first-order linear hyperbolic equation

@ 

@t
C u

@ 

@x
C v

@ 

@y
C w

@ 

@z
D S; (1.22)

where .x; y; z; t/ is the mixing ratio of the chemical (in nondimensional units such
as grams per kilogram or parts per billion) and S.x; y; z; t/ is the sum of all sources
and sinks. This equation is an approximation because the molecular diffusivity of
air is assumed to be negligible, in which case the transport of  is produced entirely
by the velocity field. The characteristic curves associated with (1.22) are identical
to the fluid parcel trajectories determined by the ordinary differential equations

dx

dt
D u;

dy

dt
D v;

dz

dt
D w: (1.23)

In geophysics, the transport of a quantity by the velocity field is commonly referred
to as advection;4 both (1.22) and the one-way wave equation (1.4) are “advection
equations.”

Equations describing the inviscid transport and chemical reactions among a
family of chemical constituents can be written as the system

@c
@t

C u
@c
@x

C v
@c
@y

C w
@c
@z

D s;

where c is a vector whose components are the concentration of each individual
chemical species and s is a vector whose components are the net sources and sinks of
each species. In general, the sources and sinks depend on c but not on the derivatives

4 In many disciplines the terms “convection” and “advection” are essentially interchangeable. In
geophysics, however, the term “convection” is generally reserved for the description of thermally
forced circulations.
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of c, so the preceding equation is a first-order linear hyperbolic system whose
solution could be obtained by integrating a coupled system of ordinary differential
equations along the family of characteristic curves defined by (1.23).

When diffusion is included, the mathematical model for nonreactive chemical
transport becomes

@ 

@t
C u

@ 

@x
C v

@ 

@y
C w

@ 

@z
� S

D @

@x

�
�
@ 

@x

�
C @

@y

�
�
@ 

@y

�
C @

@z

�
�
@ 

@z

�
; (1.24)

which is a linear second-order parabolic partial differential equation. If this equation
is derived strictly from first principles, � represents a molecular diffusivity. The
molecular diffusivities of air and water are so small that the contribution from the
terms involving the second derivatives are important only when the fluctuations in
 occur on much smaller scales than those of primary interest in most geophysical
problems. Thus, in most geophysical applications the solution to (1.24) is essentially
identical to that for the inviscid problem, and the numerical techniques suitable for
the approximation of (1.24) are almost identical to those for the purely hyperbolic
problem (1.22).

When computing numerical solutions to either (1.22) or (1.24), there will be lim-
its on the spatial and temporal scales at which the velocity field can be represented
in any finite data set. The influence of the unresolved velocity perturbations on the
distribution of the tracer is not directly computable, but is often parameterized by
replacing � by an eddy diffusivity, �e. The eddy diffusivity is supposed to represent
the tendency of random unresolved velocity fluctuations to spread the distribution
of  away from the centerline of the smooth air-parcel trajectories computed from
the resolved-scale velocity field. Eddy diffusivities are much larger than the molec-
ular diffusivity, but even when � is replaced by a typical eddy diffusivity, the terms
on the right side of (1.22) remain relatively small, and the basic character of the
solution is still wavelike. Nevertheless, some eddy-diffusivity parameterizations do
generate large values for �e in limited regions of the flow. High values of �e might,
for example, be found in the planetary boundary layer where strong subgrid-scale
motions are driven by thermal and mechanical turbulence. Large �e might also be
parameterized to develop in regions where vigorous subgrid-scale motions are gen-
erated through Kelvin–Helmholtz instability. In these limited areas of high eddy
diffusivity, the solutions to the parameterized problem may no longer be wavelike.

Now consider the nonlinear shallow-water equations

@u

@t
C u

@u

@x
C v

@u

@y
C g

@h

@x
� f v D 0; (1.25)

@v

@t
C u

@v

@x
C v

@v

@y
C g

@h

@y
C f u D 0; (1.26)

@h

@t
C u

@h

@x
C v

@h

@y
C h

�
@u

@x
C @v

@y

�
D 0; (1.27)
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where u and v are the horizontal velocity components, h is the fluid depth, and
f is the Coriolis parameter. This is a system of quasi-linear first-order differential
equations. If one is concerned only with smooth solutions, the fundamental proper-
ties of the shallow-water system may be determined from the linearized versions of
(1.25)–(1.27). Consider, therefore, a geostrophically balanced basic-state flow such
that

f V D g
@H

@x
and f U D �g@H

@y
;

whereU and V are constant andH is linear in x and y. The first-order perturbations
satisfy

@u
@t

C A1
@u
@x

C A2
@u
@y

C Bu D 0; (1.28)

where

u D
0
@u

0
v0
h0

1
A ; B D

0
@ 0 �f 0

f 0 0

f V=g �f U=g 0

1
A ;

A1 D
0
@ U 0 g

0 U 0

H 0 U

1
A ; A2 D

0
@V 0 0

0 V g

0 H V

1
A :

As discussed in connection with (1.10), the preceding system will be hyper-
bolic if any linear combination of the coefficient matrices, k1A1 C k2A2, can be
transformed to a real diagonal matrix through multiplication by bounded transfor-
mation matrices. Such transformation matrices always exist when the coefficient
matrices are symmetric. Thus, an easy way to demonstrate that the preceding system
is hyperbolic is to perform a change of variables that renders A1 and A2 symmetric.
A suitable transformation is obtained by letting v D S�1u, where

S�1 D
0
@ c 0 00 c 0

0 0 g

1
A ;

and c.x; y/ D p
gH . Then (1.28) becomes

@v
@t

C QA1 @v
@x

C QA2 @v
@y

C QBv D 0;

where

QA1 D S�1A1S D
0
@U 0 c

0 U 0

c 0 U

1
A ; QA2 D S�1A2S D

0
@V 0 0

0 V c

0 c V

1
A ;

QB D S�1
�

A1
@S
@x

C A2
@S
@y

C BS
�

D
0
@ 0 �f 0

f 0 0
1
2
f V=c �1

2
f U=c 0

1
A :
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The symmetries of QA1 and QA2 imply that the linearized shallow-water equations are
a hyperbolic system.

The wave solutions to this hyperbolic system do not, however, propagate exactly
along the characteristic curves unless f is zero. The relationship between the paths
followed by propagating waves and the characteristics is most easily investigated by
considering plane waves propagating parallel to the x-axis in a basic state with no
mean flow. Let the Coriolis parameter have the constant value f0 and define a vector
of new unknown functions

v D
0
@ u � gh=c

v

uC gh=c

1
A ;

which transforms (1.28) to

@v
@t

C
0
@�c 0 0

0 0 0

0 0 c

1
A @v
@x

C
0
@ 0 �f0 0

f0=2 0 f0=2

0 �f0 0

1
A v D 0:

The characteristics for this system are the curves satisfying dx=dt D ˙c and
dx=dt D 0.

Wave solutions to (1.28) have the form

.u0; v0; h0/ D <
n
.u0; v0; h0/e

i.kx�!t/o ; (1.29)

provided that the frequency ! and wave number k satisfy the dispersion relation

!2 D c2k2 C f 20 ; (1.30)

as may be demonstrated by substituting (1.29) into (1.28). Lines of constant phase,
such as the locations of the troughs and crests, propagate at the phase speed !=k,
which from (1.30) is

!

k
D ˙c

�
1C f 20

c2k2

�1=2
:

A compact group of waves travels at the group velocity @!=@k, which can also be
computed from (1.30):

@!

@k
D ˙c

�
1C f 20

c2k2

��1=2
:

In the limit jkj � f0=c, the phase speed and group velocity both approach the slope
of a characteristic along which jdx=dt j D c. Nevertheless, for any finite value of k,

ˇ̌̌
ˇ@!@k

ˇ̌̌
ˇ < c <

ˇ̌̌!
k

ˇ̌̌
;
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and neither the lines of constant phase nor the wave groups follow trajectories that
coincide with the characteristic curves. Note that the magnitude of the group veloc-
ity, which is the rate at which energy propagates in a wave, is bounded by c. The
maximum rate of energy propagation can therefore be determined without consid-
ering the zero-order coefficient matrix B in (1.28).

The loose connection between wave propagation and the characteristics in the
preceding example can disappear altogether if the Coriolis parameter is a func-
tion of the spatial coordinate. Then a second type of wave, the Rossby wave,
may appear as an additional solution. If f increases linearly in proportion to y,
Rossby-wave solutions may exist with phase speeds in the negative-x direction
(Holton 1992; Pedlosky 1987). Neither the phase speeds nor the group velocities
of these waves have any relation to the characteristic curves. It is not surprising that
Rossby waves do not propagate along the characteristics, because the terms involv-
ing the undifferentiated functions of u and v play no role in the determination of the
characteristics of (1.28), yet those same terms are essential for the maintenance of
the Rossby waves.

The Euler equations governing inviscid isentropic motion in a density stratified
fluid provide another example of a hyperbolic system that supports a type of wave
whose propagation is completely unrelated to the characteristics. The Euler equa-
tions for the inviscid isentropic motion of a perfect gas can be expressed in the form

dv
dt

C 1

�
rp D �gk; (1.31)

@�

@t
C r � .�v/ D 0; (1.32)

d�

dt
D 0; (1.33)

where Coriolis forces have been neglected,

d. /

dt
D @. /

@t
C v � r. /;

v is the three-dimensional velocity vector, � is density,p is pressure, g is the gravita-
tional acceleration, k is a unit vector directed opposite to the gravitational restoring
force, and � is the potential temperature, which is related to the entropy, S , such
that

S D cp ln � C constant:

Conservation of momentum is required by (1.31), conservation of mass by (1.32),
and conservation of entropy by (1.33).

As written above, the Euler equations constitute a system of five equations in-
volving six unknowns. In atmospheric applications, the system may be closed using
the equation of state for a perfect gas,

p D �RT; (1.34)
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the definition of the potential temperature,

� D T .p=p0/
�R=cp ;

and the identity R D cp � cv to arrive at the diagnostic equation

p D p0

�
R

p0
��

�cp=cv

: (1.35)

In the preceding equation, T is the temperature, p0 is a constant reference pressure,
R is the gas constant for dry air, cp is the specific heat at constant pressure, and cv
is the specific heat at constant volume.

The Euler equations are a quasi-linear system of first-order partial differential
equations. The fundamental character of the smooth solutions to this system can
be determined by linearizing these equations about a horizontally uniform isother-
mally stratified basic state. Simpler basic states can be obtained by neglecting grav-
itational forces and the density stratification (Gustafsson et al. 1995, p. 136; see also
Problem 3), but the isothermal basic state is of more geophysical relevance. As a
preliminary step, p and � can be eliminated from (1.31)–(1.33) by introducing the
nondimensional Exner function pressure defined as

	 D .p=p0/
R=cp : (1.36)

It follows that
1

�
rp D cp�r	;

so the momentum equation may be written as

dv
dt

C cp�r	 D �gk: (1.37)

It also follows from (1.35) and (1.36) that

	 D
�
R

p0
��

�R=cv

I

thus,
d

dt
ln.	/ D R

cv

�
d

dt
ln.�/C d

dt
ln.�/

�
;

or, using (1.32) and (1.33),

d	

dt
C R	

cv
r � v D 0: (1.38)

Equations (1.33), (1.37), and (1.38) constitute a closed system of five equations in
the five unknown variables, � , 	 , and the three components of v.
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The essential properties of this system can be more simply examined in a two-
dimensional context. Let x and z be the horizontal and vertical coordinates, and
decompose the thermodynamic fields into a vertically varying basic state and a per-
turbation such that

	.x; z; t/ D 	.z/C 	 0.x; z; t/;
�.x; z; t/ D �.z/C � 0.x; z; t/; (1.39)

cp�
d 	

dz
D �g:

The velocity components are decomposed as

u.x; z; t/ D U C u0.x; z; t/; w.x; z; t/ D w0.x; z; t/: (1.40)

The basic-state vertical velocity is zero to ensure that the basic state is a steady solu-
tion to the nonlinear equations. Substituting these expressions for u,w, 	 , and � into
the two-dimensional versions of (1.33), (1.37), and (1.38), and neglecting second-
order terms in the perturbation variables under the assumption that the perturbations
are small-amplitude, one obtains the linear system

�
@

@t
C U

@

@x

�
u0 C cp�

@	 0

@x
D 0; (1.41)

�
@

@t
C U

@

@x

�
w0 C cp�

@	 0

@z
D g

� 0

�
; (1.42)

�
@

@t
C U

@

@x

�
� 0 C �

g
N 2w0 D 0; (1.43)

�
@

@t
C U

@

@x

�
	 0 C w0 @	

@z
C R	

cv

�
@u0

@x
C @w0

@z

�
D 0; (1.44)

where

N 2 D g

�

d�

dz

is the square of the Brunt–Väisälä frequency.
Suppose that the reference state is isothermal. Then N 2 and the speed of sound

cs D .cpRT=cv/
1=2 are constant, and the preceding system can be simplified by

removing the influence of the decrease in the mean density with height via the trans-
formation

Qu D
�
�

�0

�1=2
u0; Q	 D

�
�

�0

�1=2 cp�
cs
	 0; (1.45)

Qw D
�
�

�0

�1=2
w0; Q� D

�
�

�0

�1=2
g

N�
� 0: (1.46)
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Note that Q� represents a scaled buoyancy and Q	 a scaled pressure. Let

v D � Qu Qw Q� Q	 �T I
then the transformed equations have the form

@v
@t

C A1
@v
@x

C A2
@v
@z

C Bv D 0; (1.47)

in which

A1 D

0
BB@
U 0 0 cs

0 U 0 0

0 0 U 0

cs 0 0 U

1
CCA ; A2 D

0
BB@
0 0 0 0

0 0 0 cs

0 0 0 0

0 cs 0 0

1
CCA ;

B D

0
BB@
0 0 0 0

0 0 �N �S
0 N 0 0

0 S 0 0

1
CCA ; S D cs

"
1

2�

d�

dz
C 1

�

d�

dz

#
:

Since the coefficient matrices for the first-order derivatives in (1.47) are symmetric,
the linearized Euler equations are a hyperbolic system. The eigenvalues of A1 areU ,
U , U C cs, and U � cs; those of A2 are 0, 0, cs, and �cs. The eigenvalues involving
cs give the speed at which sound waves in an unstratified fluid propagate parallel
to the x and z coordinate axes. As will be demonstrated below, sound waves in
an isothermally stratified atmosphere actually propagate at slightly different speeds
owing to the influence of the zero-order term in (1.47). The remaining eigenvalues
relate to the speed at which fluid parcels are advected horizontally and vertically by
the mean flow. These eigenvalues have no relation to the propagation of gravity (or
buoyancy) waves, which are the second type of fundamental wave motion supported
by (1.47).

When the basic state is isothermal, S is constant, and wave solutions to (1.47)
exist in the form

. Qu; Qw; Q�; Q	/ D <
n
.u0; w0; �0; 	0/ei.kxC`z�!t/o ; (1.48)

provided that !, k, and ` satisfy the dispersion relation

.! � Uk/2 D c2s
2

�
k2 C `2 C N 2 C S2

c2s

�

˙c2s
2

"�
k2 C `2 C N 2 C S2

c2s

�2
� 4N 2k2

c2s

#1=2
; (1.49)

which is obtained by substituting (1.48) into (1.47). As will be discussed in
Sect. 8.2.4, the second term inside the square root is much smaller than the first
term in most applications, so (1.49) can be separated into a pair of approximate
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dispersion relations for the sound waves and the gravity waves. The dispersion
relation for the sound waves,

.! � Uk/2 D c2s
�
k2 C `2

�C S2 CN 2;

is obtained by taking the positive root in (1.49). In a manner analogous to the
effect of the Coriolis force on gravity waves in the shallow-water system, the terms
involving the product of N or S with the zero-order derivatives of the unknown
variables introduce a slight discrepancy between the phase speeds and group veloc-
ities of the actual sound waves and those that might be suggested by the eigenvalues
of A1 and A2.

The dispersion relation for the gravity waves is obtained by taking the negative
root in (1.49), which to a good approximation yields

.! � Uk/2 D N 2k2

k2 C `2 C .S2 CN 2/=c2s
: (1.50)

Neither the phase speeds nor the group velocities of these waves have any relation
to the eigenvalues of A1 and A2. Unlike sound waves, gravity waves do not even
approximately propagate along the characteristics. There is no relation between the
characteristics and the paths of the gravity waves because some of the physical pro-
cesses essential for gravity-wave propagation are mathematically represented by un-
differentiated functions of the unknown variables, and as such exert no influence on
the shape of the characteristics.

1.2.2 Filtered Equations

The Euler equations support sound waves, but sound waves have no direct influence
on many types of atmospheric and oceanic motion. Analytic simplicity can often be
achieved by approximating the Euler equations with alternative sets of filtered gov-
erning equations that do not support sound waves. As will be discussed in Chap. 8,
eliminating the sound waves may also allow the resulting system of equations to be
numerically integrated using a much larger time step than that which would be re-
quired for a similar numerical integration of the original Euler equations. These sets
of filtered equations are not hyperbolic systems, but they support gravity waves that
closely approximate the gravity-wave solutions to the full Euler equations. If the
latitudinal variation of the Coriolis parameter is included, the filtered equations also
support Rossby waves. The Coriolis parameter will, however, be neglected in the
following discussion in order to present the essential ideas in the simplest context.

According to (1.35), the pressure perturbations in a perfect gas arise from varia-
tions in density and entropy. Variations in entropy play no fundamental role in the
physics of sound wave propagation. Indeed, for the general class of fluids described
by an equation of state of the form

� � �.p; S/;
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the speed of sound is given by the square root of .@p=@�/S (Batchelor 1967, p. 166).
To filter sound waves from the governing equations, it is therefore necessary to sever
the link between density perturbations and pressure perturbations. This can be ac-
complished through any one of a family of related approximations that neglect terms
involving the time variation of the density in the mass continuity equation (1.32).

One approximation that will filter sound waves is obtained by assuming that the
flow is incompressible, in which case

r � v D 0; (1.51)

and mass conservation is replaced by volume conservation. The approximation of
(1.32) by (1.51) is widely referred to as the Boussinesq approximation. Unfortu-
nately, the term “Boussinesq approximation” has been used in two different senses.
In some disciplines, the Boussinesq approximation refers only to the approxima-
tion of mass conservation by volume conservation. In the atmospheric and oceanic
sciences, the Boussinesq approximation is generally understood to include both the
preceding and additional approximations in the momentum equations that will be
discussed in connection with (1.60). The latter definition, encompassing approxi-
mations to both the mass continuity and the momentum equations, appears to be
consistent with the actual approximations employed by Boussinesq (1903, pp. 157,
174), and will be the form of the Boussinesq approximation referred to throughout
this book.

A second approximation to the full compressible continuity equation is anelastic
compressibility (Ogura and Phillips 1962; Lipps and Hemler 1982),

r � .�v/ D 0; (1.52)

in which the density involved in the mass budget is a steady reference-state density
�.z/ that varies only along the coordinate axis parallel to the gravitational restoring
force. A third approximation is pseudo-incompressibility (Durran 1989),

@ O�
@t

C r � . O�v/ D 0; (1.53)

in which O� is determined by the time-varying potential temperature and the pressure
in a steady reference state Qp.x; y; z/ via the equation of state

Qp D p0

�
R

p0
O��
�cp=cv

:

The pseudo-incompressible approximation neglects the influence of perturbation
pressure on perturbation density in the mass budget. According to the preceding def-
inition of O�, the term @ O�=@t in (1.53) is entirely determined by @�=@t . The pseudo-
incompressible continuity equation may be written in the obviously diagnostic form

r � . Q� Q�v/ D 0 (1.54)
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by using the thermodynamic equation (1.33) to eliminate @�=@t from (1.53) and
defining steady reference fields of density Q�.x; y; z/ and potential temperature
Q�.x; y; z/ such that the reference fields satisfy the equation of state,

Qp D p0

�
R

p0
Q� Q�
�cp=cv

:

Note that if F� represents any thermal forcing or viscous terms that might appear on
the right side of the thermodynamic equation in more general applications, (1.53) is
unchanged but (1.54) becomes

r � . Q� Q�v/ D O�F� :
The pseudo-incompressible system can be rigorously derived through scale analysis
by assuming that the Mach number .U=cs/ and the perturbation of the total pressure
about the reference pressure, Qp, are both small (Durran 2008).

For an approximate set of governing equations to provide a physically accept-
able approximation to the dynamics of the unapproximated system, the approximate
equations should conserve energy in the sense that the domain integral of the total
energy should be equal to the divergence of an energy flux through the boundaries
of the domain. The energy equation for the full compressible system is

@E

@t
C r � Œ.E C p/v� D 0; (1.55)

where
E D �

�v � v
2

C gz C cvT
	

is the total energy (kinetic plus potential plus internal) per unit volume in a com-
pressible fluid. Similar energy equations can be obtained using the incompressible
or pseudo-incompressible continuity equations without introducing additional ap-
proximations in the momentum equations.

If the flow is incompressible, the mass continuity equation breaks into the two
separate relations

d�

dt
D 0 (1.56)

and (1.51); the thermodynamic equation is no longer required to close the system,
and the governing equations are simply (1.31), (1.51), and (1.56). The energy equa-
tion for this system has the same form as that for the compressible system (1.55)
except that the energy,

Ei D �
�v � v
2

C gz
	
;

does not include the term representing internal energy. The pseudo-incompressible
system, which consists of (1.33), (1.37), and (1.54), conserves

Epi D O�
�v � v
2

C gz
	

C cv Q� QT ;
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according to the energy equation

@Epi

@t
C r �

� O�
�
.E C p/ v

�
D 0:

Both the mechanical energy O�.v � v=2 C gz/ and the energy flux densities in the
pseudo-incompressible energy equation differ from those in the exact system only
by a factor of O�=�. The internal energy density in the pseudo-incompressible system
Q�cv QT is just the internal energy of the reference state.

In contrast to the situation for the incompressible and pseudo-incompressible
approximations, the pressure gradient terms in the momentum equations must be
linearized and modified to obtain an energy-conservative system of anelastic equa-
tions. As a first step toward developing such a system, the thermodynamic variables
are decomposed into a vertically varying reference state and a perturbation. This
decomposition is also quite useful outside the context of the anelastic equations be-
cause in many geophysical fluids the gravitational acceleration and the vertical pres-
sure gradient are nearly in balance. Both numerical accuracy and physical insight
can therefore be enhanced by splitting the pressure and density fields into steady
hydrostatically balanced vertical profiles and finite-amplitude perturbations about
those reference profiles such that

p.x; y; z; t/ D p.z/C p0.x; y; z; t/;
�.x; y; z; t/ D �.z/C �0.x; y; z; t/;

d p

dz
D ��g:

After the hydrostatically balanced component of the pressure has been removed, the
momentum equation (1.31) may be written without approximation as

dv
dt

C 1

�
rp0 D �g�

0

�
k: (1.57)

If the pressure gradients in the momentum equation are expressed in terms of 	 and
� , the hydrostatic reference state is removed by defining

	.x; y; z; t/ D 	.z/C 	 0.x; y; z; t/;
�.x; y; z; t/ D �.z/C � 0.x; y; z; t/;

cp�
d 	

dz
D �g; (1.58)

in which case (1.37) becomes

dv
dt

C cp�r	 0 D g
� 0

�
k: (1.59)

The term on the right side of either (1.57) or (1.59) represents a buoyancy force.
Note that since no approximations have been introduced in these equations, the pres-
sure gradient terms in (1.57) and (1.59) remain nonlinear.
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In addition to the previously discussed modifications to the mass continuity
equation, the Boussinesq and anelastic approximations include additional simpli-
fications to the momentum equations that linearize the pressure gradient terms in
(1.57) and (1.59). The form of the Boussinesq approximation that is most common
in geophysical fluid dynamics neglects the effects of density variations on the mass
balance in the continuity equation and on inertia in the momentum equations, but
includes the effect of density variations on buoyancy forces (Gill 1982, p. 130). Let-
ting �0 be a constant reference density, one may write the Boussinesq form of the
momentum equations as

dv
dt

C 1

�0
rp0 D �g �

0

�0
k; (1.60)

where the perturbation density continues to be defined as � � �.z/ (rather than
���0). The resulting Boussinesq system, consisting of (1.51), (1.56), and (1.60), can
be concisely expressed in terms of the Boussinesq pressure, buoyancy, and Brunt–
Väisälä frequency,

P D p

�0
; b D �g � � �

�0
; and N 2

b D � g

�0

d �

dz
;

respectively, as

dv
dt

C rP D bk; (1.61)

db

dt
CN 2

b w D 0; (1.62)

r � v D 0; (1.63)

where, as before, w is the vertical velocity component. The Boussinesq system is
governed by an energy equation of the form (1.55), except that the total “Boussi-
nesq” energy is

Eb D �0
v � v
2

C �gz:

Although the Boussinesq approximation provides a qualitatively correct math-
ematical model for the study of buoyancy effects in fluids, it is not quantitatively
accurate in situations where there is a significant change in mean density over
the depth of the fluid, as would be the case in any atmospheric layer that is more
than a couple of kilometers deep. Somewhat better quantitative agreement between
the Boussinesq equations and atmospheric flows can be obtained using the same
Boussinesq system (1.61)–(1.63) with the pressure, buoyancy, and Brunt–Väisälä
frequency defined as

P D cp�0	
0; b D g

� � �

�0
; and N 2

b D g

�0

d �

dz
;

respectively, where �0 is a constant reference temperature. Using these definitions
for P and b, the full momentum equation (1.59) will be well approximated by
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(1.61) whenever the full and basic-state potential temperatures are close to �0. In
atmospheric applications, it is often easier to satisfy this constraint than to demand
that �0 be a good approximation to � in (1.57). Even if the reference state is nearly
isentropic, some quantitative error in the Boussinesq solution will still be introduced
by the incompressible continuity equation. The quantitative errors associated with
Boussinesq approximations to deep atmospheric flows can be greatly diminished
using either the anelastic or the pseudo-incompressible approximations.

An energy-conservative form of the anelastic equations was derived by Lipps and
Hemler (1982) by writing the momentum equations in the form

dv
dt

C cpr.�	 0/ D g
� 0

�
k; (1.64)

where the hydrostatically balanced components of the Exner function pressure and
the potential temperature have been removed using (1.58). The anelastic system
can be derived from the pseudo-incompressible system by choosing a horizontally
uniform hydrostatically balanced reference state, approximating the total pressure
gradient as cp�r	 0, and neglecting the vertical derivative of the reference potential
temperature in both (1.54) and the momentum equations. The same approximation
can be obtained by a rigorous, if somewhat delicate, scaling argument (Lipps 1990).
The anelastic system consisting of (1.33), (1.52), and (1.64) provides a good ap-
proximation to the full compressible equations. The Lipps–Hemler anelastic system
satisfies the energy equation

@Ea

@t
C r � Œ.Ea C Lp/v� D 0;

where

Ea D �
�v � v
2

C gz C cp	�
0	C cv�T

and Lp D p C cp��	
0 � p C p0 D p.

Simple wave solutions to the preceding filtered systems can be obtained by lin-
earizing the two-dimensional form of each system about an appropriate basic-state
flow with a constant horizontal wind speed U . Solutions to the two-dimensional
Boussinesq system exist in the form

.u;w; P; b/ D <
n
.u0; w0; P0; b0/e

i.kxC`z�!t/o ;
provided that N 2

b is constant and

.! � Uk/2 D N 2
b k

2

k2 C `2
:

These solutions are gravity waves, as may be seen by comparing the preceding dis-
persion relation with (1.50) in the limit cs ! 1. There are no sound-wave solutions
to the Boussinesq equations.
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If the basic state is isothermally stratified, the prognostic variables in the
two-dimensional anelastic and pseudo-incompressible systems can be transformed
as per (1.45) and (1.46) to yield constant-coefficient linear systems of partial differ-
ential equations with wave solutions of the form (1.48). In the case of the anelastic
equations, these waves satisfy the dispersion relation (1.50), which is an excellent
approximation to the dispersion relation for gravity waves in the full compressible
system. In the case of the pseudo-incompressible equations, the waves satisfy the
dispersion relation

.! � Uk/2 D N 2k2

k2 C `2 C S2=c2s
:

Since in most applications k2 C `2 is much larger than the remaining terms in the
denominator of (1.50), the preceding equation is also a very good approximation
to the gravity-wave dispersion relation for the full compressible equations. The
relative accuracy of the anelastic and pseudo-incompressible approximations can-
not be judged solely on the basis of their dispersion relations. Nance and Durran
(1994) and Nance (1997) compared the accuracy of several different systems of fil-
tered equations and found that the pseudo-incompressible system and the anelastic
system suggested by Lipps and Hemler are the most accurate, and that the anelas-
tic system performs slightly better in the hydrostatic limit, whereas the pseudo-
incompressible system gives slightly better accuracy when the flow is farther from
hydrostatic balance.

1.3 Strategies for Numerical Approximation

A wide variety of different methods have been employed to obtain numerical so-
lutions to the systems of partial differential equations discussed in the preceding
sections of this chapter. Before delving into the details of these methods, we con-
clude this introductory chapter by comparing some of the most general properties
of the various methods, including the manner in which each method approximates
the value of the unknown function and estimates its derivatives. We will also con-
sider some of the fundamental differences between the numerical algorithms used
to solve elliptic and hyperbolic partial differential equations.

1.3.1 Approximating Calculus with Algebra

Digital computers are not designed to solve differential equations directly. Although
the digital computer can perform algebraic operations such as addition and multipli-
cation, it does not have any intrinsic ability to differentiate and integrate functions.
As a consequence, every numerical method is designed to convert the original dif-
ferential equation into a set of solvable algebraic equations. As part of this task the
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0 2πx

f

Fig. 1.1 Grid-point approximation of a periodic function on the interval Œ0; 2π�. Individual points
show the function values at intervals of 2π=5

continuous functions associated with the original problem must be represented by
a finite set of numbers that can be stored in a computer’s memory or on a disk.
There are therefore two basic problems that must be addressed by every numeri-
cal scheme: how to represent the solution by a finite data set and how to compute
derivatives. There are also two basic solution strategies: grid-point methods and
series-expansion methods.

In grid-point methods, each function is described by its value at a set of discrete
grid points. Figure 1.1 shows how f .x/, a periodic function on the interval Œ0; 2π�,
might be represented by its exact value at five different points along the x-axis. The
spacing of the grid points can be chosen arbitrarily, although any variations in the
grid spacing will affect the accuracy of the approximation. If a priori knowledge
of the function’s periodicity is available, a natural choice for the five pieces of in-
formation would be .f .2π=5/; f .4π=5/; : : : ; f .2π//. No assumption is made about
the value of the approximate solution between the points on the numerical mesh.
These methods are usually called finite-difference methods because derivatives are
approximated using formulae such as

df

dx
.x0/ � f .x0 C
x/ � f .x0 �
x/

2
x
;

which is a centered finite difference computable from data on a uniform mesh with
grid interval 
x. Finite-difference methods will be discussed in Chaps. 2–4.

Finite-volume methods are an important variation of the basic grid-point ap-
proach in which some assumption is made about the structure of the approximate
solution between the grid points. In a finite-volume method the grid-point value
fj represents the average of the function f .x/ over the interval (or grid cell)
Œ.j � 1=2/
x; .j C 1=2/
x�. Finite-volume methods are very useful for approxi-
mating solutions that contain discontinuities. If the solution being approximated is
smooth, finite-difference and finite-volume methods yield essentially the same nu-
merical schemes. It is sometimes mistakenly supposed that all grid-point methods
necessarily generate approximations to the grid-cell average; however, only finite-
volume methods have this property.
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To completely define the numerical algorithm arising from a conventional finite-
difference approximation, it is necessary to specify particular formulae for the fi-
nite differences (e.g., centered differencing, one-sided differencing, or one of the
other options described in Chap. 2). In finite-volume methods, on the other hand,
the derivatives are determined by the assumed structure of the approximate solu-
tion within each cell. In practice, finite-volume methods often require the compu-
tation of the fluxes through the edges of each grid cell rather than the evaluation
of derivatives, but to compute these fluxes it is once again necessary to make an
assumption about the structure of the solution within each grid cell. The approxi-
mate solution cannot simply be the piecewise-linear function that interpolates the
grid-point values, because then the value at an individual grid point will not equal
the average of the piecewise-linear approximation over the surrounding grid cell.
Two possible finite-volume approximations to f .x/ are shown in Fig. 1.2. Account-
ing for periodicity, we again use five pieces of information to construct these ap-
proximations. Piecewise-constant functions are used in the approximation shown in
Fig. 1.2a; Fig. 1.2b shows the approximation obtained using piecewise-linear func-
tions defined such that

f .x/ � fj C �j .x � j
x/ for all x 2 �.j� 1
2
/
x; .jC 1

2
/
x

�
;

where fj is the average of the approximate solution over the grid cell centered at
j
x, and �j D .fjC1 � fj /=
x. The accuracy of the numerical approximations

0 2π

0 2π

a

b

x

x

f

f

Fig. 1.2 Finite-volume approximation of a periodic function on the interval Œ0; 2π� using a
piecewise-constant functions, and b piecewise-linear functions
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shown in Figs. 1.1 and 1.2 is poor because only five data points are used to resolve
f .x/. Between 12 and 20 data points would be required to obtain a minimally ac-
ceptable approximation in most practical applications. Finite-volume methods will
be discussed in Chap. 5.

In series-expansion methods, the unknown function is approximated by a linear
combination of a finite set of continuous expansion functions, and the data set de-
scribing the approximated function is the finite set of expansion coefficients. Deriva-
tives are computed analytically by differentiating the expansion functions. When
the expansion functions form an orthogonal set, the series-expansion approach is a
spectral method. If the preceding periodic function were to be approximated by a
spectral method using five pieces of data, a natural choice would be the truncated
Fourier series

a1 C a2 cos x C a3 sin x C a4 cos 2x C a5 sin 2x: (1.65)

The five Fourier coefficients .a1; a2; : : : ; a5/ need not be chosen such that the value
of the Fourier series exactly matches the value of f .x/ at any specific point in the in-
terval 0 � x � 2π. Nevertheless, one possible way to choose the coefficients would
be to require that (1.65) be identical to f .x/ at each of the five points used by the
grid-point methods discussed previously. Another useful strategy is to choose the
coefficients to minimize the x-integral of the square of the difference between
the approximation expansion (1.65) and f .x/.

If the expansion functions are nonzero in only a small part of the total domain,
the series-expansion technique is a finite-element method. In the finite-element ap-
proach, the function f .x/ is again approximated by a finite series of functions of
the form b0s0.x/ C b1s1.x/ C � � � C b5s5.x/, but the functions sn differ from the
trigonometric functions in the spectral method because each individual function is
zero throughout most of the domain. The simplest finite-element expansion func-
tions are piecewise-linear functions defined with respect to some grid. Each function
is unity at one grid point, or node, and zero at all the other nodes. The values of the
expansion function between the nodes are determined by linear interpolation using
the values at the two nearest nodes. Six linear finite-element expansion functions
suitable for approximating f .x/ might appear as shown in Fig. 1.3. Accounting for
periodicity, the five pieces of information describing f .x/ would be the coefficients
.b1; b2; : : : ; b5/. When finite elements are constructed with piecewise-linear func-
tions, the resulting numerical expressions are often similar to those obtained using
grid-point methods. If finite elements are constructed from piecewise-quadratic or
piecewise-cubic functions, however, the resulting formulae are quite different from
those that arise naturally through finite differencing. Series-expansion methods will
be studied in Chap. 6.

The numerical solution is defined throughout the entire spatial domain at ev-
ery time step, but in time-dependent problems the approximate solution is typically
available at only a few time levels at any given step of the numerical simulation. As
a consequence, the use of series expansions is generally restricted to the representa-
tion of functional variations along spatial coordinates. Time derivatives are almost
always approximated by finite differences.
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Fig. 1.3 Six finite-element expansion functions, s0.x/; s1.x/; : : : ; s5.x/

1.3.2 Marching Schemes

Suppose that numerical solutions are sought to the first-order linear system

@u

@y
C @v

@x
D 0;

@v

@y
C �

@u

@x
D 0 (1.66)

throughout the domain 0 � x � 2π, 0 � y � Y . Let the domain be periodic in
x and suppose that boundary conditions are specified for u.x; 0/ and v.x; 0/. One
possible finite-difference approximation to the preceding system is

unC1
j � unj


y
C vnjC1 � vnj�1

2
x
D 0; (1.67)

vnC1
j � vnj

y

C �
unC1
jC1 � unC1

j�1
2
x

D 0; (1.68)

where unj and vnj denote the numerical approximations to u.j
x; n
y/ and
v.j 
x; n
y/. The boundary conditions on u and v at y D 0 can be used to
specify u0j and v0j . The numerical solution along the line y D 
y can then be
calculated by solving (1.67) for u1j at every j , and using these values of u1j to
compute v1j from (1.68). In principle, this procedure can be repeated to compute
approximations to the solution at y D 2
y; 3
y; : : : and thereby sequentially
evaluate the numerical solution throughout the entire domain.

Under what circumstances will this procedure yield an accurate approximation
to the true solution? This question can be answered without any detailed knowledge



1.3 Strategies for Numerical Approximation 31

of numerical analysis when � < 0. The linear second-order partial differential
equation

@2u

@y2
� � @

2u

@x2
D 0 (1.69)

can be obtained by eliminating v from (1.66). As per the discussion of (1.11), this
equation is hyperbolic if � > 0, and it is elliptic if � < 0. Suppose the boundary
conditions on u and v are

u.x; 0/ D 1

N 2
sin.Nx/; v.x; 0/ D 0; (1.70)

where N is a positive integer. In the limit N ! 1, the preceding boundary condi-
tions become

u.x; 0/ D 0; v.x; 0/ D 0; (1.71)

for which the exact solution to (1.66) is simply u.x; y/ D v.x; y/ D 0.
When (1.66) forms an elliptic system (i.e., when � < 0), the exact solution

subject to the boundary conditions (1.70) is

u.x; y/ D 1

N 2
sin.Nx/ cosh.ˇNy/; v.x; y/ D ˇ

N 2
cos.Nx/ sinh.ˇNy/;

where ˇ D p�� is a real constant. As N ! 1, the difference between the bound-
ary conditions (1.70) and (1.71) disappears, but the difference between the solu-
tions generated by each boundary condition increases without bound along any line
y D y0 > 0. Arbitrarily small changes in the amplitude of the imposed boundary
values can produce arbitrarily large changes in the amplitude of the interior solution.
Under such circumstances there is no hope of accurately approximating the true so-
lution by the finite-difference method (1.67) and (1.68) because the round-off errors
incurred as (1.70) is evaluated to obtain numerical values for the grid points along
y D 0 may generate arbitrarily large perturbations in the interior solution.

The mathematical problem of solving (1.66) subject to boundary conditions spec-
ified for u.x; 0/ and v.x; 0/ is not well posed whenever � < 0. A well-posed prob-
lem is one in which a unique solution to a given partial differential equation exists
and depends continuously on the initial- and boundary-value data. When � < 0,
the preceding problem is not well posed because the solution does not depend con-
tinuously on the boundary data. On the other hand, when � > 0, the problem is
hyperbolic, and the solution subject to (1.70) is

u.x; y/ D 1

N 2
sin.Nx/ cos

�p
�Ny

�
; v.x; y/ D �

p
�

N 2
cos.Nx/ sin

�p
�Ny

�
:

In this case u.x; y/ ! 0 and v.x; y/ ! 0 as N ! 1. The interior solutions
associated with the boundary conditions (1.70) and (1.71) approach each other as
the difference between the two boundary conditions goes to zero, and small changes
in the amplitude of the boundary data produce only small changes in the amplitude
of the interior solution. As demonstrated in Gustafsson et al. (1995), the hyperbolic
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problem is well posed. When � > 0, it is possible to obtain good approximations
to the correct solution using (1.67) and (1.68), although, as will be discussed in
Sect. 4.1.2, the quality of the result depends on the parameter

p
�
y=
x.

Physicists seldom worry about well-posedness, since properly formulated
mathematical models of the physical world are almost always well posed. The
preceding example may be recognized as an initial-value problem in which y rep-
resents time and x is the spatial coordinate. In contrast to their hyperbolic cousins,
elliptic partial differential equations describe steady-state physical systems and do
not naturally arise as initial-value problems. When a real-world system is governed
by an elliptic equation, physical considerations usually provide data for the depen-
dent variables or their normal derivatives along each boundary, and the additional
boundary-value data lead to a well-posed problem. The fact that elliptic partial
differential equations are not well posed as initial-value problems may therefore be
irrelevant to the physicist – but it is not irrelevant to the numerical analyst. Given
a well-posed elliptic problem, such as (1.69) with � < 0 and u specified at y D 0

and y D Y , could one expect to compute an accurate approximate solution on some
numerical grid by starting with the known values along one boundary and stepping
across the grid, one point at a time? The answer is no; an approach of this type
is numerically unstable – indeed it mimics the not-well-posed formulation of an
elliptic partial differential equation as an initial-value problem. Practical methods
for the numerical solution of elliptic partial differential equations are therefore
not “marching” schemes. Instead of computing the solution at one point and then
proceeding to the next, one must simultaneously adjust all the grid-point values
(perhaps through some iterative process) in order to adequately satisfy the gov-
erning differential equation and the boundary conditions. In contrast, hyperbolic
partial differential equations do lend themselves to numerical solution via marching
techniques.5

Another major difference in the numerical treatment of elliptic and hyperbolic
equations arises in the specification of boundary conditions. As suggested by the
preceding example, boundary conditions are usually imposed at every boundary as
part of the natural formulation of an elliptic problem. Moreover, the incorporation
of these boundary data into a numerical algorithm is generally straightforward. On
the other hand, if one attempts to compute the solution to a hyperbolic problem in
a limited spatial domain, the numerical algorithm may require boundary conditions
in regions where none should actually be specified (i.e., at a boundary where all
the characteristic curves are directed out of the domain). Improper boundary con-
ditions may lead to instabilities or to nonuniqueness in the numerical solution of a
hyperbolic system. Further discussion of boundary conditions will be presented in
Chap. 9.

5 L.F. Richardson, who explored the numerical solution of a variety of partial differential equa-
tions prior to his celebrated attempt at numerical weather prediction, coined the terms “jury” and
“marching” methods to describe the basic difference between the numerical techniques suitable for
the solution of elliptic equations and hyperbolic equations. The adjective “jury” alluded to the idea
that one needed to adjust all the values in the numerical solution until the whole was “judged” to
constitute a satisfactory approximation.
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Problems

1. Suppose that
@2u

@t2
C a

@2u

@x@t
C b

@2u

@x2
D 0

is a hyperbolic partial differential equation and that a and b are constants. Show
that this equation can be transformed to a decoupled pair of first-order wave
equations. What are the propagation speeds of the solutions to these first-order
wave equations?

2. Show that when (1.11) is hyperbolic, it can be transformed to the alternative
canonical form

u�� � u�� C QL.�; �; u; u� ; u�/ D 0;

where QL.�; �; u; u� ; u�/ is once again a linear function of u, u� , and u� with
coefficients that may depend on � and �. (Hint: Start with (1.12) and define new
independent variables equal to � C � and � � �.)

3. If gravity and density stratification are neglected, the two-dimensional Euler
equations for inviscid isentropic flow reduce to a system of four equations in
the unknowns .u;w; �; p/. Linearize this system about a basic state with con-
stant .u0; w0; �0; p0/ and show that the linearized system is hyperbolic. (Hint:
Transform the perturbation thermodynamic variables to p0=.c�0/ and �0 �p0=c2,
where c2 D @p=@� is the square of the speed of sound in the basic state.)

4. The pressure and density changes in compressible isentropic flow satisfy the
relation

d�

dt
D 1

c2s

dp

dt
:

(a) Derive the preceding relationship.

(b) Show that the preceding relationship is approximated as

d�

dt
D 0

in the incompressible system, as

d�

dt
D �

�

d�

dt

in the anelastic system, and as

d�

dt
D �

Q�
1

Qc2s
d Qp
dt

in the pseudo-incompressible system (where the tilde denotes the steady refer-
ence field).
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5. Show that the backward heat equation,

@ 

@t
D �@

2 

@x2
;

and the initial condition  .x; 0/ D f .x/ do not constitute a well-posed problem
on the domain �1 < x < 1, t > 0.



Chapter 2
Ordinary Differential Equations

Although the fundamental equations governing the evolution of geophysical fluids
are partial differential equations, ordinary differential equations arise in several con-
texts. The trajectories of individual fluid parcels in an inviscid flow are governed by
simple ordinary differential equations, and systems of ordinary differential equa-
tions may describe chemical reactions or highly idealized dynamical systems. Since
basic methods for the numerical integration of ordinary differential equations are
simpler than those for partial differential equations, and since the time-differencing
formulae used in the numerical solution of partial differential equations are closely
related to those used for ordinary differential equations, this chapter is devoted to the
analysis of methods for the approximate solution of ordinary differential equations
(ODE solvers). Nevertheless some approaches to the solution of partial differential
equations, such as Lax–Wendroff and finite-volume methods, arise from fully dis-
cretized approximations in both space and time that cannot be correctly analyzed
by considering the spatial and temporal differencing in isolation. These fully dis-
cretized approaches will be discussed in subsequent chapters.

Most of this chapter will focus on ODE solvers potentially suitable for the nu-
merical integration of time-dependent partial differential equations. In comparison
with typical ODE solvers, the methods used to integrate partial differential equations
are relatively low order. Low-order schemes are used for two basic reasons. First,
the approximation of the time derivative is not the only source of error in the so-
lution of partial differential equations; other errors arise through the approximation
of the spatial derivatives. In many circumstances the largest errors in the solution
are introduced through the numerical evaluation of the spatial derivatives, so it is
pointless to devote additional computational resources to higher-order time differ-
encing. The second reason for using low-order methods is that practical limitations
on computational resources often leave no other choice.

Consider the initial-value problem

d 

dt
D F. ; t/;  .0/ D  0; (2.1)

D.R. Durran, Numerical Methods for Fluid Dynamics: With Applications to Geophysics, 35
Texts in Applied Mathematics 32, DOI 10.1007/978-1-4419-6412-0 2,
c� Springer Science+Business Media, LLC 1999, 2010
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which will have a unique solution provided the function F is sufficiently smooth
(in particular, F must satisfy a Lipschitz condition1). Let �n denote the numerical
approximation to the true solution at some set of discrete time levels tn D n�t ,
n D 0; 1; 2; : : :. Virtually all numerical methods for the solution of (2.1) replace
the differential equation for  with algebraic equations for the �n that are solved
repeatedly to step the solution forward from the initial condition �0 D  0.

It is often helpful to consider the algebraic equations used to generate the ap-
proximate solution as arising from one of two approaches. In the first approach, the
time derivative in (2.1) is replaced with a finite difference. In the second approach,
(2.1) is integrated over a time interval�t

 .tnC1/ D  .tn/C
Z tnC1

tn

F
�
 .t/; t

�
dt; (2.2)

and the algebraic equations that constitute the numerical method can be most easily
interpreted as providing an approximation to the integral of F . Backward difference
methods for stiff equations are examples of the first approach in which the time
derivative in (2.1) is replaced by finite differences. Runge–Kutta and linear multi-
step methods are more naturally understood as arising from approximations to the
integral in (2.2). Some of the simplest schemes can be easily interpreted using either
approach.

2.1 Stability, Consistency, and Convergence

The basic goal when computing a numerical approximation to the solution of a
differential equation is to obtain a result that indeed approximates the true solution.
In this section we will examine the relationship between three fundamental concepts
characterizing the quality of the numerical solution in the limit where the separation
between adjacent nodes on a numerical mesh approaches zero: consistency, stability,
and convergence.

2.1.1 Truncation Error

The derivative of a function  .t/ at time tn could be defined either as

d 

dt
.tn/ D lim

�t!0

 .tn C�t/ �  .tn/
�t

; (2.3)

1 The Lipschitz condition is that jF .x; t/�F.y; t/j � Ljx � yj for all x and y, and all t � 0,
where L > 0 is a real constant. One way to satisfy this condition is if j@F=@xj is bounded.
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or as
d 

dt
.tn/ D lim

�t!0

 .tn C�t/ �  .tn ��t/

2�t
: (2.4)

If the derivative of  .t/ is continuous at tn, both expressions produce the same
unique answer. In practical applications, however, it is impossible to evaluate these
expressions with infinitesimally small �t . The approximations to the true deriva-
tive obtained by evaluating the algebraic expressions on the right side of (2.3) and
(2.4) using finite �t are known as finite differences. When �t is finite, the preced-
ing finite-difference approximations are not equivalent; they differ in their accuracy,
and when they are substituted for derivatives in differential equations, they gener-
ate different algebraic equations. The differences in the structure of these algebraic
equations can have a great influence on the stability of the numerical solution.

Which of the preceding finite-difference formulae is likely to be more accurate
when �t is small but finite? If  .t/ is a sufficiently smooth function of t , this
question can be answered by expanding the terms  .tn˙�t/ in Taylor series about
tn and substituting these expansions into the finite-difference formula. For example,
substituting

 .tn C�t/ D  .tn/C�t
d 

dt
.tn/C .�t/2

2

d 2 

dt2
.tn/C .�t/3

6

d 3 

dt3
.tn/C : : :

into (2.3), one finds that

 .tn C�t/ �  .tn/

�t
� d 

dt
.tn/ D �t

2

d2 

dt2
.tn/C .�t/2

6

d 3 

dt3
.tn/C : : : : (2.5)

The right side of the preceding equation is the truncation error of the finite dif-
ference. The lowest power of �t in the truncation error determines the order of
accuracy of the finite difference. Inspection of (2.5) shows that the one-sided dif-
ference is first-order accurate. In contrast, the truncation error associated with the
centered difference (2.4) is

.�t/2

6

d3 

dt3
.tn/C .�t/4

120

d 5 

dt5
.tn/C : : : ;

and the centered difference is therefore second-order accurate. If the higher-order
derivatives of  are bounded in some interval about tn, (i.e., if  is “smooth”)
and �t is repeatedly reduced, the error in the second-order difference (2.4) will
approach zero more rapidly than the error in the first-order difference (2.3). The fact
that the truncation error of the centered difference is higher order does not, however,
guarantee that it will always generate a more accurate estimate of the derivative. If
the function is sufficiently rough and �t is sufficiently coarse, neither formula is
likely to produce a good approximation, and the superiority of one over the other
will be largely a matter of chance.

Euler’s method (often called the forward-Euler method) approximates the deriva-
tive in (2.1) with the forward difference (2.3) to give the formula

�nC1 � �n

�t
D F.�n; tn/: (2.6)
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Clearly this formula can be used to obtain �1 from the initial condition �0 D  0,
and then be applied recursively to obtain �nC1 from �n. How well does this simple
method perform?

One way to characterize the accuracy of this method is through its truncation
error, defined as the residual by which smooth solutions to the continuous problem
fail to satisfy the discrete approximation (2.6). Let �n denote the truncation error at
time tn; then from (2.5),

 .tnC1/�  .tn/

�t
� F

�
 .tn/; tn

� D d 

dt
.tn/C �n � F

�
 .tn/; tn

� D �n; (2.7)

where the second equality holds because  is a solution to the continuous prob-
lem and

�n D �t

2

d2 

dt2
.tn/CO

�
.�t/2

�
:

It is not necessary to explicitly consider the higher-order terms in the truncation
error to bound j�nj; if  has continuous second derivatives, the mean-value theorem
may be used to show

j�nj � �t

2
max

tn�s�tnC1

ˇ̌
ˇ̌d 2 
dt2

.s/

ˇ̌
ˇ̌ : (2.8)

Euler’s method is consistent of order 1 because the lowest power of �t appearing
in tn is unity. If the centered difference (2.4) were used to approximate the time
derivative in (2.6), the resulting method would be consistent of order 2.

2.1.2 Convergence

A consistent method is one for which the truncation error approaches zero as�t !
0. The order of the consistency determines the rate at which the solution of a stable
finite-difference method converges to the true solution as �t ! 0. To examine the
relation between consistency and convergence, we define the global error at time tn
as En D �n �  .tn/. From (2.7),

 .tnC1/ D  .tn/C�tF
�
 .tn/; tn

�C�t �n; (2.9)

which implies that if we start with the true solution at tn, the local or one-step
error generated by Euler’s method in approximating the solution at tnC1 is �t �n,
which is one power of�t higher than the truncation error itself. One might suppose
that the global error in the solution at time T is bounded by the maximum local
error times the number of time steps .maxn j�t �nj/.T=�t/; which, like �n itself, is
O.�t/. This would be a welcome result because it would imply the error becomes
arbitrarily small as the time step approaches zero, but such reasoning is incorrect
because it does not account for the difference between �n and  .tn/ arising from
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the accumulation of local errors over the preceding time steps. The increase in the
global error generated over a single step satisfies

EnC1 D En C�t
�
F.�n; tn/� F

�
 .tn/; tn

�� ��t �n; (2.10)

which may be obtained by solving (2.6) for �nC1 and subtracting (2.9). As apparent
from (2.10), the global error will remain O.�t/, and the numerical solution will
converge to the true solution, provided F.�n; tn/ � F

�
 .tn/; tn

�
remains finite in

the limit �t ! 0.
It is easy to show that Euler’s method converges for the special case where

F. ; t/ D � C g.t/; (2.11)

where � is a constant.2 We will examine this special case because it reveals the rel-
atively weak stability condition required to ensure convergence to the true solution
in the limit �t ! 0. Substituting (2.11) into (2.10) gives

EnC1 D .1C ��t/En ��t �n: (2.12)

Note that g.t/, the part of F. ; t/ that is independent of  , drops out and has no
impact on the growth of the global error. Suppose that N D T=�t is the number
of time steps required to integrate from the initial condition at t D 0 to some fixed
time T .

From (2.12)

EN D .1C ��t/EN�1 ��t �N�1
D .1C ��t/ Œ1C ��t/EN�2 ��t �N�2� ��t �N�1

and by induction,

EN D .1C ��t/NE0 ��t

NX
mD1

.1C ��t/N�m�m�1:

Let

�max D �t

2
max

0�s�tN

ˇ̌̌
ˇd

2 

dt2
.s/

ˇ̌̌
ˇ ;

which from (2.8) is an upper bound on j�nj for all n independent of the choice
of time step used to divide up the interval Œ0; T �. Assuming the initial error E0 is
zero (although an O.�t/ error would not prevent convergence), and noting that for
�t > 0, 1C j�j�t � ej�j�t , one obtains

jEN j � N�t .1C j�j�t/N �max D T ej�jT �max: (2.13)

2 More general conditions sufficient to guarantee the convergence of Euler’s method are that F
is an analytic function (Iserles 1996, p. 7) or that the first two derivatives of  are continuous
(Hundsdorfer and Verwer 2003, p. 24).
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Since T ej�jT has some finite value independent of the numerical discretization and
�max is O.�t/, the global error at time T must approach zero in proportion to the
first power of �t .

2.1.3 Stability

The foundation for the theory of numerical methods for differential equations is
built on the theorem that consistency of order p and stability imply convergence
of order p (Dalhquist 1956; Lax and Richtmyer 1956). Evidently Euler’s method
satisfies some type of stability condition since it is consistent and is convergent of
order unity. The relation (2.12), which states that previous global errors amplify by
a factor of .1C ��t/ over each individual time step, provides the key for bounding
the growth of the global error over a finite time interval. Define the amplification
factor A as the ratio of the approximate solution at two adjacent time steps,

A D �nC1=�n: (2.14)

A two-time-level method is stable in the sense that, if it is also consistent, it will
converge in the limit�t ! 0 provided that for some constant � (independent of the
properties of the numerical discretization)

jAj � 1C ��t: (2.15)

In the previous simple example, � D � is just the coefficient of  in the forcing
F. ; t/. When Euler’s method is applied to more general problems, � is a constant
associated with the Lipschitz condition on F. ; t/. Essentially all consistent two-
time-level ODE solvers satisfy this stability condition, but as discussed in Sect. 2.2.4,
bounds similar to (2.15) are not satisfied by many potentially reasonable approxi-
mations to time-dependent partial differential equations.

2.2 Additional Measures of Stability and Accuracy

Although Euler’s method is sufficiently stable to yield solutions that converge in the
limit �t ! 0, it may nevertheless generate a sequence �0; �1; : : : that blows up in
a completely nonphysical manner when the computations are performed with finite
values of �t . Again suppose F. ; t/ D � ; if � < 0, the true solution  0e�t is
bounded by  0 for all time and approaches zero as t ! 1: Yet if ��t < �2,
then A D 1 C ��t < �1, and the numerical solution changes sign and amplifies
geometrically every time step, diverging wildly from the true solution.
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2.2.1 A-Stability

How can we characterize the stability of a consistent numerical method to give an
indication whether a solution computed using finite �t is likely to blow up in such
an “unstable” manner? Clearly there are many physical problems where the true
solution does amplify rapidly with time, and of course any convergent numerical
method must be able to capture such amplification. On the other hand, there are also
many problems in which the norm of the solution is bounded or decays with time.
It is not practical to consider every possible case individually, but it is very useful to
evaluate the behavior of schemes on the simple test problem

d 

dt
D � ;  .0/ D  0; (2.16)

where, in contrast to our previous examples, and � are complex-valued. Breaking
� into its real and imaginary parts, such that � D � C i! with � and ! real, the
solution to (2.16) is

 .t/ D  0e
�tei!t ;

showing that <f�g D � determines rate of change of the magnitude (or modulus)
of  , whereas =f�g D ! governs the rate of change of its phase (or argument).

Despite its simplicity, (2.16) is prototypical of the time variations found in many
important fluid-dynamical problems. For example the concentration 	 of a passive
tracer in a flow moving at speed c and diffusing with a diffusivity M along one
spatial dimension is given by the partial differential equation

@	

@t
C c

@	

@x
D M

@2	

@x2
: (2.17)

Suppose the spatial domain is jxj � 1 and periodic, then the solution may be de-
termined as the superposition of Fourier modes, each of which may be expressed in
the form bk.t/eikx, where bk is a complex number determining the amplitude and
phase of each mode and k D nπ; n D 0;˙1;˙2; : : : is the wave number. The
wave number is inversely proportional to the wavelength, L D 2π=k, which is the
distance over which a wave’s shape repeats. Substituting an arbitrary Fourier mode
into (2.17) yields the following ordinary differential equation of the form (2.16):

dbk

dt
D � �Mk2 C ick

�
bk: (2.18)

Note that in the context of the advection–diffusion problem, <f�g determines the
changes in amplitude produced by diffusion and =f�g governs changes in phase
produced by advection.

Numerical solutions to (2.16) computed with some specific value of �t are ab-
solutely stable if j�nj � j�0j for all n, or equivalently, if jAj � 1. The amplification
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Fig. 2.1 Absolute stability regions (shaded) for a forward-Euler differencing, b trapezoidal dif-
ferencing, and c backward-Euler differencing

factor for Euler’s-method solutions to (2.16) is 1C��t , so the values of .��t; !�t/
for which jAj � 1 satisfy the inequality

.1C ��t/2 C .!�t/2 � 1:

This region of absolute stability, which is the interior of a unit circle centered at
(�1,0) in the ��t–!�t plane, is plotted in Fig. 2.1a.

The true solution to (2.16) is nonamplifying for all � � 0: Regardless of the
time step, this behavior will be captured by numerical methods that are A-stable.
A numerical method is A-stable if it is absolutely stable for all ��t � 0. Forward
differencing is not A-stable but, as will be discussed in Sect. 2.2.3, the other methods
whose absolute stability regions are shown in Fig. 2.1 are A-stable.

2.2.2 Phase-Speed Errors

When M D 0, the prototype equation (2.18) reduces to the oscillation equation

d 

dt
D i! ; (2.19)

which serves as an important model for many nondissipative dynamical systems.
The oscillation equation may also be derived from a two-component real-valued
system of ordinary differential equations, such as those representing Coriolis accel-
erations:

du

dt
� f v D 0

dv

dt
C f u D 0:

The preceding equations may be expressed in the form (2.19) by setting D uCiv
and ! D �f .
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Integrating the oscillation equation over a time �t yields

 .t0 C�t/ D ei!�t .t0/ � Ae  .t0/: (2.20)

Here the last relation defines an “exact amplification factor” Ae, which in the case
of the oscillation equation, is a complex number of modulus 1. Over a time interval
�t ,  moves !�t radians around a circle of radius j .t0/j centered at the origin in
the complex plane.

Hundreds of papers have been written investigating techniques for solving (2.17)
with M D 0 (see, for example, the extensive review in Rood 1987). The vastness
of this body of literature is a testament to the subtle trade-offs involved in the se-
lection of the “best” numerical method for even very simple equations. It might
be supposed that the relative accuracy of different methods for the M D 0 prob-
lem could be easily determined by comparing their respective truncation errors. The
analysis of truncation error is, however, most effective at predicting the behavior of
well-resolved oscillations whose periods are orders of magnitude larger than a sin-
gle time step. Yet the most serious errors are typically found in the poorly resolved
components of the solution, which oscillate over periods between 2�t and 10�t .
These errors typically appear in both the amplitude and the phase of the solution.

It can therefore be helpful to examine the amplitude and phase errors as a function
of numerical resolution, both of which may be evaluated from the amplification
factor. If A is expressed in modulus-argument form jAjei� , where

jAj D .<fAg2 C =fAg2/1=2 and 
 D arctan .=fAg=<fAg/ ;
phase errors may be characterized by the relative phase change,R D 
=!�t , which
is the ratio of the phase advance produced by one time step of the numerical scheme
divided by the change in phase experienced by the true solution over the same time
interval. IfR > 1, the method is accelerating; if R < 1, the scheme is decelerating.
Phase errors accumulate over the period of integration and can become quite large
over long time periods

In a nondissipative system, amplitude errors represent spurious sinks or sources
of energy. Amplitude errors arise from the difference between the magnitude of the
approximate amplification factor jAj and the correct value of unity. When jAj D
1, the scheme is neutral, if jAj < 1, the scheme is damping, and if jAj > 1, it
is amplifying. The range of values of �t for which a given approximation to the
oscillation equation is not amplifying are given by the intersection of the absolute
stability region for the scheme and the imaginary (!�t) axis, which in the case of
Euler’s method (Fig. 2.1a) is the origin.

The relationship between a scheme’s order of accuracy and the orders of the
amplitude and phase error is not entirely intuitive. According to (2.20), the exact
amplification factor for solutions to the oscillation equation is

Ae D ei!�t D 1C i!�t � .!�t/2

2
� i

.!�t/3

6
C .!�t/4

24
C : : :
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The amplification factor, A, of an nth-order time-differencing scheme will match
all terms in the preceding expression through order .!�t/n. The amplitude error
and the phase error characterize the errors in the modulus and the argument of A,
respectively; and as such their order of accuracy may differ from the general order of
accuracy of the scheme. In particular, since amplitude and phase errors are special
aspects of the total error, it is possible for either of these quantities to be smaller
than the total error. The general relationship between the truncation error and the
amplitude and phase errors may be stated as follows (Durran 1991):

If the oscillation equation (2.19) is integrated using a linear finite-difference scheme and if
the truncation error of the resulting finite-difference approximation to the oscillation equa-
tion is order r , then as !�t ! 0 the amplitude change in each step of the numerical
solution is no worse than

1COŒ.!�t/n�; where

�
n D r C 1; if r is odd;
n � r C 2; if r is even;

and the relative phase change is no worse than

1COŒ.!�t/m�; where

�
m � r C 1; if r is odd;
m D r; if r is even.

Switching from an even- to an odd-order scheme increases the order of accuracy of
the relative phase change without improving the order of accuracy of the amplitude
error. Switching from odd to even order reduces the asymptotic amplitude error
without altering the order of the error in the relative phase change.

2.2.3 Single-Stage, Single-Step Schemes

The simplest techniques for the solution of the ordinary differential equation (2.1)
are members of the general family of single-stage, single-step schemes, which may
be written in the form

�nC1 � �n

�t
D .1 � ˛/F.�n; tn/C ˛F.�nC1; tnC1/: (2.21)

Euler’s method is obtained by setting ˛ D 0; the backward-Euler method corre-
sponds to the case ˛ D 1, and the trapezoidal method is obtained when ˛ D 1=2.
Substituting the true solution  into (2.21), expanding all terms in Taylor series
about tn, and using

F. .tnC1/; tnC1/ D d 

dt
.tnC1/ D d 

dt
.tn/C�t d

2 

dt2
.tn/C .�t/2

2

d 3 

dt3
.tn/C : : : ;

one may show the truncation error for all members of this family of schemes is
O.�t/, except for the trapezoidal method, for which it is O

�
.�t/2

�
.
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Application of (2.21) to the test equation for absolute stability (2.16) yields

A D �nC1
�n

D 1C .1 � ˛/��t
1 � ˛��t

: (2.22)

For the backward-Euler method, A D .1� ��t/�1 D .1� ��t � i!�t/�1. Multi-
plying A by its complex conjugate gives

jAj2 D 1

.1 � ��t/2 C .!�t/2
;

implying that backward-Euler differencing will produce absolutely stable solutions
for all .��t; !�t/ outside the circle:

.1 � ��t/2 C .!�t/2 � 1: (2.23)

This region is shown in Fig. 2.1c, and since it includes the half-plane ��t � 0,
backward-Euler differencing is A-stable. Although it generates physically appro-
priate solutions for � < 0, the backward-Euler method can produce large errors
if � > 0. If � > 0 and .��t; !�t/ is not inside the circle (2.23), the numerical
solution will decay but the true solution should grow exponentially with time.

The amplification factor for the trapezoidal method is

A D 1C ��t=2

1� ��t=2
; (2.24)

from which

jAj2 D .1C ��t=2/2 C .!�t/2

.1 � ��t=2/2 C .!�t/2
:

Thus, the absolute stability region for the trapezoidal method (shown in Fig. 2.1b)
is the precisely the half-plane ��t � 0, and the trapezoidal method is A-stable.

Now consider the behavior of these schemes in the purely oscillatory case; then
� D i!, and from (2.22)

jAj2 D 1C .1 � ˛/2.!�t/2

1C ˛2.!�t/2
D 1C .1 � 2˛/

.!�t/2

1C ˛2.!�t/2
: (2.25)

Inspection of the preceding equation shows that the scheme is amplifying when
˛ < 1=2, neutral when ˛ D 1=2, and damping when ˛ > 1=2. These results
are consistent with the locations of the boundaries of the absolute stability regions
in Fig. 2.1.

The amplitude and phase errors in the approximate solution are functions of the
numerical resolution. The solution to the governing differential equation (2.19) os-
cillates with a period T D 2π=!. An appropriate measure of numerical resolution is
the number of time steps per oscillation period, T=�t . The numerical resolution is
improved by decreasing the step size. In the limit of very good numerical resolution,
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T=�t ! 1 and !�t ! 0. Assuming good numerical resolution, the Taylor series
expansion

.1C x/1=2 D 1C x

2
� x2

8
C : : : ; for jxj < 1;

may be used to reduce (2.25) to

jAj � 1C 1
2
.1 � 2˛/.!�t/2:

It follows that

jAjforward � 1C 1
2
.!�t/2 and jAjbackward � 1 � 1

2
.!�t/2; (2.26)

indicating that, as expected for first-order schemes, the spurious amplitude changes
introduced by both the forward-Euler method and the backward-Euler method are
OŒ.!�t/2�.

The relative phase change in the family of single-stage, two-level schemes is

R D 1

!�t
arctan

�
!�t

1 � ˛.1 � ˛/.!�t/2

�
:

Thus,

Rforward D Rbackward D arctan!�t

!�t
; (2.27)

which ranges between 0 and 1, implying that both the forward-Euler scheme and the
backward-Euler scheme are decelerating. Assuming, once again, that the numerical
solution is well resolved, we may approximate the preceding expression for the
phase-speed error using the Taylor series expansion

arctanx D x � x3

3
C x5

5
� : : : for jxj < 1

to obtain

Rforward D Rbackward � 1 � .!�t/2

3
:

The phase-speed error, like the amplitude error, is OŒ.�t/2�. The relative phase
change for the trapezoidal scheme is

Rtrapezoidal D 1

!�t
arctan

 
!�t

1 � !2�t
2
=4

!
;

which for small values of !�t is

Rtrapezoidal � 1

!�t
arctan

 
!�t

 
1C !2�t2

4

!!
� 1 � !2�t2

12
:
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As with the forward- and backward-Euler methods, the trapezoidal scheme
retards the phase change of well-resolved oscillations. However, the deceleration
is only one quarter as great as that produced by the other schemes.

Although the trapezoidal scheme is second-order accurate and A-stable, it has the
disadvantage in that it requires the evaluation of F.�nC1/ during the computation of
�nC1. A scheme such as the trapezoidal method, in which the calculation of �nC1
depends on F.�nC1/, is an implicit method. If the calculation of �nC1 does not
depend on F.�nC1/, the scheme is explicit. In the case of the test problem (2.16),
implicitness is a trivial complication. However, if F is a nonlinear function, any im-
plicit finite-difference scheme will convert the differential equation into a nonlinear
algebraic equation for �nC1. In the general case, the solution to this nonlinear equa-
tion must be obtained by some iterative technique. Thus, implicit finite-difference
schemes generally require much more computation per individual time step than do
similar explicit methods. Nevertheless, in problems where accuracy considerations
do not demand a short time step, the extra computation per implicit time step can
be more than compensated by using a much larger time step than that required to
maintain the stability of comparable explicit schemes.

2.2.4 Looking Ahead to Partial Differential Equations

Consider once again the advection–diffusion equation (2.17) that motivated the se-
lection of (2.16) as a prototype ordinary differential equation. According to (2.18),
each individual Fourier coefficient bk oscillates at the frequency ck. The high-
est frequency resolved by any completely discrete approximation to (2.17) will be
associated with the highest-wave-number or, equivalently, the shortest-horizontal-
wavelength captured by the spatial discretization. As a concrete example, suppose
the spatial derivatives are replaced by finite differences, then the maximum resolved
k scales like .�x/�1. Let us temporarily suppose that the physical viscosity M
is zero, and that the finite-difference approximation to @ =@x does not introduce
“numerical diffusion” (such diffusion can be avoided by using centered spatial dif-
ferences; see Sect. 3.3.1). Then if Euler’s method is used to approximate the time
derivative, the frequency of the most rapidly varying Fourier component !max will
be O.c=�x/, and over each time step its Fourier coefficient bkmax will change by a
factor Akmax D 1C iO.c�t=�x/.

When attempting to obtain converged solutions to partial differential equations,
one typically reduces the spatial and the temporal resolution simultaneously. But if
�t and�x are both repeatedly halved,�t=�x remains a constant finite value, and
if Euler’s method is used to integrate the numerical solution over a fixed physical
time T D N�t , the inequality

jAkmax j � 1C j!max�t j D 1CO.jc�t=�xj/
cannot be used to bound jAkmax jN as�t ! 0. Thus, the approach used to prove the
convergence of Euler’s method for ordinary differential equations in Sect. 2.1.2 fails,
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and, as will be considered more rigorously in Sect. 3.4, forward-in-time, centered-
in-space approximations to the pure advection problem are unstable. Those time
stepping schemes suitable for use with centered-in-space approximations to the ad-
vection equation are ones for which the point .0; !max�t/ lies in the scheme’s region
of absolute stability whenever jc�t=�xj is less than some constant.

Now consider finite-difference approximations to the pure diffusion problem, for
which (2.18) reduces to

dbk

dt
D �Mk2bk : (2.28)

If the time derivative is approximated by Euler’s method, the amplification factor
for the Fourier coefficient of the shortest-wavelength, most rapidly decaying com-
ponent of the solution becomes 1 � OŒM�t=.�x/2�, which approaches negative
infinity if �t and �x are both repeatedly halved in an effort to obtain a convergent
approximation. In most practical applications involving diffusion-dominated prob-
lems, �t=.�x/2 becomes unbounded as the numerical resolution is refined, and it
is therefore advantageous to approximate their temporal evolution using A-stable
schemes, all of which are implicit.

Explicit time differences may, nevertheless, yield good results in the special case
where M represents an “eddy diffusivity” Me rather than a true physical diffusiv-
ity. Eddy diffusivities are designed to parameterize the effects of mixing by fluid
motions whose scale is too small to be captured on the numerical mesh, and Me

is typically proportional to the spatial grid interval. Thus, Me�t=.�x/
2 remains

constant as �t; �x ! 0 with �t=�x fixed, and it becomes practical to satisfy
conditions such as 0 � Me�t=.�x/

2 � 1, which would allow Euler’s method to
be used to stably integrate those terms representing parameterized diffusion.

2.2.5 L-Stability

A-stability is not always sufficient to guarantee good behavior in practical appli-
cations involving systems of equations in which the individual components de-
cay at very different rates. When A-stable trapezoidal time differencing is used in
conjunction with finite-difference approximations to the spatial derivative in the dif-
fusion equation, the amplification factor for the Fourier coefficient of the shortest-
wavelength mode may be obtained by replacing �=2 in (2.24) with ��M=.�x/2,
to give

Akmax D 1 � �M�t=.�x/2

1C �M�t=.�x/2
;

where � is a positive constant determined by the exact finite-difference formulation.
In some applications it may not be necessary to follow the precise behavior of

the most rapidly decaying, shortest-wavelength modes, and a time step appropri-
ate for the accurate and efficient simulation of other aspects of the problem (for
example, the slower diminution of the longer-wavelength components) can make
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M�t=.�x/2 � 1. Yet in the limit M�t=.�x/2 ! 1, Akmax ! �1, in which
case the short-wavelength components of the trapezoidal integration will flip sign
every time step without significant loss of amplitude. Although large time steps will
not produce an unstable amplification of the shortest-wavelength modes, sufficiently
large steps do prevent those modes from decaying properly.

The correct behavior in the limit M�t=.�x/2 ! 1 is recovered if backward-
Euler differencing is used to approximate the time derivative. Then the amplification
factor for the Fourier coefficient of the shortest-wavelength mode becomes

Akmax D 1

1C 2�M�t=.�x/2
;

and the amplification factor approaches zero as�t=.�x/2 becomes arbitrarily large.
Backward-Euler differencing is an example of an L-stable method. L-stable methods
are defined in the context of the prototype problem (2.16) as those schemes that are
A-stable and satisfy the additional property thatA ! 0 as <f�g�t ! �1. As will
be discussed in connection with stiff problems in Sect. 2.5, L-stable methods are
also of great use in simulation of systems in which chemical reactions occur over a
broad range of timescales.

2.3 Runge–Kutta (Multistage) Methods

Definite integrals are often evaluated numerically through quadrature formulae

Z b

a

f .t/ dt �
sX

jD1
bjf .cj /; (2.29)

where the weights bj and the nodes cj are independent of the function f (Iserles
1996, p. 33). A similar strategy may be used to step the solution of an ordinary
differential equation forward over a time interval �t by approximating the integral
in (2.2) such that

 .tnC1/ �  .tn/C�t

sX
jD1

bjF. .tn C cj�t/; tn C cj�t/: (2.30)

In contrast to the situation with the simple quadrature formula (2.29), however, the
values of  .tn C cj�t/ required for the evaluation of (2.30) are not known at time
tn, and must therefore be estimated numerically through a series of preliminary
calculations, or stages. An explicit s-stage Runge–Kutta scheme iteratively builds
an approximation to (2.30) as follows

�1 D �n (2.31)

�2 D �n C�t a2;1F.�1; tn/ (2.32)
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�3 D �n C�t Œa3;1F.�1; tn/C a3;2F.�2; tn C c2�t/� (2.33)
:::

�s D �n C�t

s�1X
jD1

as;jF.�j ; tn C cj�t/ (2.34)

�nC1 D �n C�t

sX
jD1

bjF.�j ; tn C cj�t/ (2.35)

By convention, we ensure that �j is at least a first-order approximation to  .tn C
cj�t/ by setting c1 D 0 and

cj D
j�1X
kD1

aj;k j D 2; 3; : : : ; s: (2.36)

Runge–Kutta schemes are explicit if aj;k is zero for k � j . Implicit s-stage schemes
are obtained by replacing (2.31)–(2.34) with

�j D �n C�t

sX
kD1

aj;kF.�k ; tn C ck�t/; (2.37)

where, in general, all the aj;k may be nonzero. The order conditions given above,
and in the next two sections, apply both to implicit and to explicit Runge–Kutta
methods.

2.3.1 Explicit Two-Stage Schemes

Taylor series expansions may be used to arrive at the additional conditions Runge–
Kutta methods must satisfy to achieve a given level of accuracy. First-order accuracy
requires

sX
jD1

bj D 1: (2.38)

For a single-stage method, the unique solution to (2.38) is b1 D 1 and (2.31)–
(2.35) reduce to the forward-Euler method. Second-order accuracy requires (2.36),
(2.38), and

sX
jD1

bj cj D 1

2
: (2.39)

For an explicit two-stage scheme, these accuracy requirements reduce to

c2 D a2;1; b1 C b2 D 1; b2c2 D 1=2;

which is a system of three equations in four unknowns whose solution is not unique,
but may be expressed in terms of the free parameter a2;1. One well-known second-
order two-stage scheme is the Heun method, for which a2;1 D 1 (and therefore
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b1 D b2 D 1=2, c2 D 1). The Heun method creates a trapezoidal-like
approximation to the integral of F , but differs from the true trapezoidal method
because F.�nC1; tnC1/ is replaced by the estimate F.�2; tnC1/. Another second-
order two-stage scheme is the midpoint method, in which a2;1 D 1=2. Also of note
is the first-order two-stage forward–backward scheme (Matsuno 1966b) in which
a2;1 D b2 D c2 D 1 and b1 D 0.

One important difference among the basic explicit Runge–Kutta schemes is
whether they generate nonamplifying solutions in purely oscillatory problems. If
the oscillation equation (2.19) is approximated using a two-stage scheme of at least
first order, the result may be written as

�nC1 D �n C b2i!�t .�n C a2;1i!�t �n/C .1 � b2/i!�t �n: (2.40)

The amplification factor is

A D 1C i!�t � a2;1b2.!�t/
2;

and

jAj2 D 1C .1 � 2a2;1b2/.!�t/2 C .a2;1b2/
2.!�t/4; (2.41)

which shows that the set of second-order schemes (i.e., those schemes for which
a2;1b2 D 1=2) have OŒ.�t/4� amplitude error, whereas the amplitude error in first-
order two-stage schemes isOŒ.�t/2�. Unfortunately, all the second-order two-stage
explicit Runge–Kutta schemes are amplifying, since in the limit of good numerical
resolution

jAjRKe2 � 1C 1
8
.!�t/4:

Although these schemes are amplifying, the growth is OŒ.�t/4�. At a given step
size, the erroneous amplification produced by a second-order two-stage scheme will
be much weaker than the OŒ.�t/2� growth produced by forward time differencing
(or alternatively, the first-order single-stage Runge–Kutta method, see (2.26)).

Many physical systems contain several different modes, each oscillating at a dif-
ferent frequency. When these systems are simulated, the highest-frequency compo-
nents of the numerical solution are likely to be most seriously in error because of
their poor numerical resolution. It is precisely these poorly resolved features that
are amplified most rapidly by the second-order two-stage methods. In contrast, non-
amplifying solutions in which the high-frequency components are strongly damped
can be obtained using Matsuno’s forward–backward scheme, for which

jAj2Matsuno D 1 � .!�t/2 C .!�t/4: (2.42)

The Matsuno scheme damps the solution whenever 0 < !�t < 1. Differentiation
of (2.42), with respect to !�t , shows that the maximum damping occurs when
!�t D 1=

p
2. Thus, if the time step is chosen such that 0 � !�t � 1=

p
2 for all

frequencies ! in the physical system, Matsuno time differencing will preferentially
damp the highest-frequency waves. The damping properties of the Matsuno scheme
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Fig. 2.2 The modulus of the amplification factor (a) and the relative phase change (b) as a function
of temporal resolution !�t for the true solution and five two-level schemes: exact solution (E )
and trapezoidal method (T ), forward-Euler scheme (F ), backward-Euler scheme (B), two-stage
second-order Runge–Kutta scheme (R), and Matsuno scheme (M )

have been exploited to eliminate high-frequency gravity waves generated during the
initialization of weather prediction models. The standard Matsuno scheme produces
too much damping, however, for most nonspecialized applications. The fourth-order
Runge–Kutta scheme (see Sect. 2.3.2) may also be used to preferentially damp high-
frequency modes, and in most instances it would be a better choice than the Matsuno
scheme because it is more efficient and far more accurate.

The amplitude errors generated by the preceding Runge–Kutta schemes are
compared with those produced by backward-Euler and trapezoidal differencing
in Fig. 2.2. The strong damping associated with the backward-Euler and Matsuno
schemes is evident, along with the rapid amplification produced by forward-Euler
differencing. These relatively large errors may be contrasted with the significantly
weaker amplification produced by the second-order Runge–Kutta methods, and the
neutral amplification of the trapezoidal method.

The relative phase change associated with the general two-stage explicit Runge–
Kutta method (2.40) is

R D 1

!�t
arctan

�
!�t

1 � a2;1b2.!�t/2

�
:

In the limit of good numerical resolution, the relative phase changes produced by
second-order schemes and the Matsuno scheme are

RRKe2 � 1C 1
6
.!�t/2; RMatsuno � 1C 2

3
.!�t/2:

The relative phase change for these schemes is plotted as a function of temporal
resolution in Fig. 2.2, along with that for forward-Euler, backward-Euler, and trape-
zoidal differencing. The Matsuno and second-order Runge–Kutta schemes are ac-
celerating, whereas the forward-Euler, backward-Euler, and trapezoidal schemes are
decelerating.



2.3 Runge–Kutta (Multistage) Methods 53

2.3.2 Explicit Three- and Four-Stage Schemes

Runge–Kutta schemes satisfying

sX
jD1

bj c
2
j D 1

3
and

sX
jD1

sX
kD1

bjaj;kck D 1

6
; (2.43)

as well as (2.36), (2.38), and (2.39) are third-order accurate. For explicit three-stage
Runge–Kutta schemes, (2.43) reduces to

b2c2 C b3c3 D 1

3
and b3a3;2c2 D 1

6
:

As with the second-order methods there is no unique choice for the coefficients of a
three-stage third-order scheme. On example is Heun’s third-order method,

�1 D �n; �2 D �n C �t

3
F.�1; tn/; �3 D �n C 2�t

3
F.�2; tn C �t

3
/;

�nC1 D �n C �t

4

h
F.�1; tn/C 3F.�3; tn C 2�t

3
/
i
:

Another possibility is the low storage variant recommended by Williamson
(1980) which may be written as

q1 D �tF.�n; tn/; �.1/ D �n C q1=3;

q2 D �tF.�.1/; tn C �t
3
/� 5q1=9; �.2/ D �.1/ C 15q2=16;

q3 D �tF.�.2/; tn C 5�t
12
/� 153q2=128; �nC1 D �.2/ C 8q3=15:

In practical applications involving time-dependent partial differential equations, �n
may be an extremely long vector of unknown variables (e.g., the velocity, tempera-
ture, pressure, and mixing ratio of chemical species at every node on a large three-
dimensional mesh). It may, therefore, be difficult to store several copies of � and
F.�/ in the in-core memory of a digital computer. If m is the number of unknowns
in �, the Williamson–Runge–Kutta scheme economizes on storage by allowing the
integration to proceed using only 2m storage locations, divided between arrays q
and �, which are overwritten three times during each integration step.

In addition to (2.36)–(2.39) and (2.43), fourth-order Runge–Kutta methods
must satisfy four additional equations (Hundsdorfer and Verwer 2003, p. 141).
Once again, the solutions for the coefficients of a four-stage explicit method are
not unique. The most well-known four-stage fourth-order method is the classical
Runge–Kutta formulation,

�1 D �n; �2 D �n C �t

2
F.�1; tn/;

�3 D �n C �t

2
F.�2; tn C �t

2
/; �4 D �n C�t F.�3; tn C �t

2
/;

(2.44)

�nC1 D �n C �t

6

h
F.�1; tn/C 2F.�2; tn C �t

2
/C 2F.�3; tn C �t

2
/CF.�4; tnC1/

i
:
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Low-storage variants also exist for fourth-order schemes (Blum 1962), but in
contrast to the third-order methods, they require 3m storage locations to advance
an m-dimensional vector of unknowns forward in time.

Fifth- or higher-order explicit Runge–Kutta schemes are relatively unattractive
because the number of stages required to achieve order s exceeds s for all s > 4.
Nevertheless, the simple s-stage scheme

�0 D �nI �j D �n C �t

s � j C 1
F.�j�1/; 1 � j � sI �nC1 D �s ; (2.45)

is accurate to order s when F. / is linear in  (as would be the case in many
applications involving time-dependent partial differential equations). When F is
nonlinear, (2.45) is no better than second-order accurate.

Figure 2.3 shows the amplification factor for third- and fourth-order Runge–Kutta
solutions to the oscillation equation (2.19) plotted as a function of temporal resolu-
tion. As shown in Fig. 2.3, once the time step exceeds the maximum stable time step
for the third-order scheme, the fourth-order method becomes highly damping. In
some circumstances it may be desirable to selectively damp the highest-frequency
modes, and in such cases the fourth-order Runge–Kutta method would be clearly
preferable to the first-order Matsuno method. On the other hand, if one wishes to
avoid excessive damping of the high-frequency components, it will not be possible
to use the full stable time step of the fourth-order Runge–Kutta scheme.

As was the case for the two-stage first-order Matsuno method, the stability of
explicit Runge–Kutta solutions to the oscillation equation may be enhanced by
adding extra stages if one is willing to settle for first- or second-order accuracy.
In particular, the stability condition max j!�t j D s � 1 may be obtained for an s-
stage scheme that will be second-order accurate if s is odd, and first-order accurate
when s is even (Hundsdorfer and Verwer 2003, p. 150). Note that despite their high-
order accuracy, explicit fourth-order four-stage Runge–Kutta methods are stable for
max j!�t j < 2:82, which is very close to the optimal limit of max j!�t j D 3

obtainable using a first-order four-stage explicit method.
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Fig. 2.3 Modulus of the amplification factor as a function of temporal resolution !�t for third-
order three-stage (dashed line) and fourth-order four-stage (solid line) explicit Runge–Kutta solu-
tions to the oscillation equation
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Fig. 2.4 Absolute stability regions for explicit Runge–Kutta schemes: a of equal orders and stages,
1–4; b two-stage methods – Matsuno (solid line) and second-order (dashed line); c four-stage
methods – Spiteri and Ruuth’s third-order strong-stability-preserving Runge–Kutta scheme (solid
line) and fourth-order (dashed line). In each case, the region of absolute stability lies inside the
curve. When ! D 0, the absolute stability region for the Spiteri–Ruuth scheme extends to roughly
��t D �5:15

Absolute stability regions for explicit Runge–Kutta schemes of orders 1–4 are
plotted in Fig. 2.4a. Consistent with the behaviors of the amplification factors for the
oscillation equation shown in Figs. 2.2 and 2.3, the third- and fourth-order methods
are the only ones for which the absolute stability regions include a finite segment
of the imaginary axis. None of these methods and indeed no explicit Runge–Kutta
scheme is A-stable. Nevertheless, in contrast to the behavior of linear multistep
methods that will be discussed in Sect. 2.4.3, the area of absolute stability increases
as the order of accuracy of the scheme increases.

Figure 2.4b compares the absolute stability region for a pair of explicit two-
stage methods, the first-order Matsuno method and any second-order scheme. The
increase in absolute stability along the real axis in the Matsuno scheme is achieved
not only by sacrificing accuracy, but also by considerably reducing the overall region
of absolute stability relative to the second-order schemes.

2.3.3 Strong-Stability-Preserving Methods

As will be discussed in Chap. 5, many methods for the numerical integration of con-
servation laws avoid the generation of spurious maxima and minima through the
use of some type of flux limiter. The time differencing associated with such meth-
ods is often forward-Euler differencing. Strong-stability-perserving Runge–Kutta
(SSPRK) schemes can be used to obtain higher-order accuracy in time while pre-
serving the beneficial results of the flux limiter. To be more precise, suppose that U
is a vector of unknowns at every point on the spatial mesh, and that kU k represents
a measure such as the maximum of jU j or the total variation of U over all spatial
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grid points. Let B.�/ be an approximation to the flux divergences in a conservation
law such that

UnC1 D .I C�tB/Un; (2.46)

and suppose that the fluxes are limited so that kUnC1k � kUnk provided
jc�t=�xj �1, where c is the phase speed at which signals are propagated by
the conservation law. SSPRK methods allow the forward-in-time approximation in
(2.46) to be replaced by a higher-order scheme while preserving the strong-stability
condition that kUnC1k � kUnk.

SSPRK schemes are constructed by forming linear combinations of forward-
Euler operators in which the coefficient multiplying each operator is positive. The
positivity of the coefficients ensures that a conservation law integrated with the new
scheme retains the strong-stability properties of the original forward-Euler approx-
imation (2.46). The precise value of the positive coefficients is chosen to obtain
some combination of high-order accuracy and a favorable maximum stable time
step. A two-stage second-order SSPRK method is

�.1/ D �n C�tB.�n/;

�.2/ D �.1/ C�tB.�.1//;

�nC1 D 1
2

�
�n C �.2/

�
; (2.47)

and a three-stage third-order scheme is

�.1/ D �n C�tB.�n/;

�.2/ D 3
4
�n C 1

4

�
�.1/ C�tB.�.1//

�
;

�nC1 D 1
3
�n C 2

3

�
�.2/ C�tB.�.2//

�
: (2.48)

Both of these schemes, which were proposed by Shu and Osher (1988), are strong-
stability preserving for jc�t=�xj � 1.

Schemes (2.47) and (2.48) are optimal in the sense that no two-stage second-
order or three-stage third-order SSPRK scheme exists that allows a larger maximum
time step (Gottleib and Shu 1998). Nevertheless, in some applications the four-stage
third-order SSPRK scheme

�.1/ D �n C 1
2
�tB.�n/;

�.2/ D �.1/ C 1
2
�tB.�.1//;

�.3/ D 2
3
�n C 1

3

�
�.2/ C 1

2
�tB.�.2//

�
;

�nC1 D �.3/ C 1
2
�tB.�.3// (2.49)

proposed by Spiteri and Ruuth (2002) may be more efficient, because it is strong-
stability preserving for jc�t=�xj � 2, allowing one to double the time step while
increasing the computational burden associated with the evaluation of B by only
33% relative to that required by (2.48).
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It should be emphasized that these methods are only strong-stability preserving
when flux-limiting ensures that the forward step (2.46) yields a strongly stable re-
sult. Amplifying solutions are produced if (2.47) is applied directly to the oscillation
equation (2.19). Since (2.47) is an explicit two-stage second-order method and since
(2.48) is an explicit three-stage third-order scheme, their absolute stability regions
are exactly those shown for the second- and third-order methods in Fig. 2.4a. On
the other hand, as shown in Fig. 2.4c, the four-stage third-order scheme (2.49) has
a different, and generally larger, region of absolute stability than the family of four-
stage fourth-order Runge–Kutta methods. More information about strong-stability-
preserving time-differencing schemes may be found in the reviews by Gottleib et al.
(2001) and Gottleib (2005).

2.3.4 Diagonally Implicit Runge–Kutta Methods

Diagonally implicit Runge–Kutta schemes are obtained when the implicit coupling
in (2.37) is limited by requiring aj;k D 0 whenever k > j . In comparison with
methods with more extensive implicit coupling, the relative efficiency of diago-
nally implicit schemes makes them more attractive for applications involving partial
differential equations or large systems of ordinary differential equations. Backward-
Euler differencing is a first-order accurate, single-stage diagonally implicit Runge–
Kutta scheme. The implicit midpoint method,

�1 D �n C 1
2
�t F.�1; tn C 1

2
�t/;

�nC1 D �n C�t F.�1; tn C 1
2
�t/; (2.50)

is a second-order accurate, single-stage scheme. The implicit midpoint method is
A-stable; its amplification factor is identical to that for the trapezoidal method
(2.24).

A family of two-stage diagonally implicit Runge–Kutta schemes of at least
second-order accuracy may be written in terms of a single free parameter ˛ as

�1 D �n C ˛�tF.�1; tn C ˛�t/;

�2 D �n C .1 � 2˛/�tF.�1; tn C ˛�t/C ˛�tF.�2; tn C .1 � ˛/�t/;

�nC1 D �n C 1
2
�t ŒF.�1; tn C ˛�t/C F.�2; tn C .1 � ˛/�t/� : (2.51)

Third-order accuracy is obtained if ˛ D 1=2 ˙ p
3=6. According to Hundsdorfer

and Verwer (2003), the preceding method was developed independently by Nørsett
and by Crouzeix.

If one of the schemes defined by (2.51) is applied to the test problem (2.16), the
resulting amplification factor is

A D 1C .1 � 2˛/��t C .1
2

� 2˛ C ˛2/.��t/2

.1 � ˛��t/2
: (2.52)
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These schemes are A-stable if and only if ˛ � 1=4, as may be easily appreciated in
the particular case for which ��t ! .�1; 0/; then the leading-order behavior of
jAj is .1=2�2˛C˛2/=˛2, which is bounded by unity for ˛ � 1=4. The .��t/2 term
in the numerator of (2.51) is zero, and the scheme is L-stable if ˛ D 1˙ 1=2

p
2.

2.4 Multistep Methods

Multistep methods are an alternative to multistage methods in which information
from several earlier time levels is incorporated into the integration formula. For
example, the general form for an explicit two-step method is

�nC1 D ˛1�n C ˛2�n�1 C ˇ1�tF.�n; tn/C ˇ2�tF.�n�1; tn�1/: (2.53)

In contrast to multistage methods, the forcing F. ; t/ is only evaluated at integer
time steps and all the required values except F.�n; tn/ have already been calculated
at previous time steps. Since the evaluation of F. ; t/ is often computationally in-
tensive, storing and reusing these values has the potential to increase efficiency,
although obviously it may also require more storage. Multistep methods also re-
quire special start-up procedures, because an n-step method requires data from the
previous n time levels, but initial conditions for well-posed physical problems give
information about the solution at only one time. Multistage or lower-order multistep
methods must therefore be used for the first n � 1 steps of the integration.

2.4.1 Explicit Two-Step Schemes

In many geophysical applications, the memory required to store data from each time
level is enormous, so let us begin by considering the family of two-step schemes
(2.53), some of which have very modest storage requirements. When formulating a
two-step scheme, one seeks to improve upon the single-step methods, so it is rea-
sonable to require that the global truncation error be at least second order. Scheme
(2.53) will be at least second order if

˛1 D 1 � ˛2; ˇ1 D 1
2
.˛2 C 3/; ˇ2 D 1

2
.˛2 � 1/; (2.54)

where the coefficient ˛2 remains a free parameter.
If ˛2 D 5, the resulting scheme,

�nC1 D �4�n C 5�n�1 C�t .4F.�n; tn/C 2F.�n�1; tn�1/ ; (2.55)

is third-order accurate. One might suppose that (2.55) is superior to all other explicit
two-step schemes because its truncation error is higher order, but in fact this scheme
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is useless. The problem is easily revealed in the trivial case where F D 0; then
(2.38) reduces to the linear homogeneous difference equation

�nC1 D �4�n C 5�n�1: (2.56)

As before, let the amplification factor be defined as A D �nC1=�n; since the
coefficients of � are constant in (2.56), A is independent of the time step and
�nC1 D A2�n�1. Expressing each term in (2.56) in terms of �n�1, it follows that
(except for the special case where �0 D 0)

A2 C 4A� 5 D 0; (2.57)

whose roots are A D 1 or A D �5. Of course the true solution to the differential
equation d =dt D 0 is constant with time and this behavior is correctly captured
by the physical root A D 1. The second root represents a spurious computational
mode. Such computational modes arise in all multistep methods, and in all useful
multistep methods the time step can be chosen to keep the amplitude of these modes
from growing. In this case, however, the amplitude of the computational mode grows
by a factor of 5 every time step. Even if the initial amplitude in the computational
mode is only produced by round-off error, its wildly unstable growth soon generates
numbers too large to represent in standard floating point arithmetic.

Since it is not practical to choose the coefficients in (2.54) to minimize the trun-
cation error, the most important explicit two-step schemes are obtained by choosing
˛2 to minimize the amount of data that must be stored and carried over from the
n�1 time level, i.e., by setting ˛2 D 1, in which case ˇ2 D 0, or by setting ˛2 D 0.
If ˛2 is set to 1, (2.53) becomes the leapfrog scheme. The choice ˛2 D 0 gives the
two-step Adams–Bashforth method. The remainder of this section will be devoted
to an examination of the performance of these two schemes in problems with purely
oscillatory solutions. More general applications will be considered in Sect. 2.4.3.

If the leapfrog scheme,

�nC1 D �n�1 C 2�tF.�n; tn/; (2.58)

is used to integrate the oscillation equation (2.19), its amplification factor satisfies

A2 � 2i!�tA� 1 D 0;

whose two roots are
A˙ D i!�t ˙ �

1 � !2�t2
�1=2

: (2.59)

In the limit of good numerical resolution, !�t ! 0 and AC ! 1, which captures
the correct behavior of the physical mode. The second root, for which A� ! �1,
represents the computational mode. If j!�t j � 1, the second term in (2.59) is real
and jACj D jA�j D 1, i.e., both the physical and the computational modes are
stable and neutral. In the case !�t > 1,

jACj D
ˇ̌̌
i!�t C i

�
!2�t2 � 1

�1=2 ˇ̌̌
> ji!�t j > 1;
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and the scheme is unstable. When !�t < �1, a similar argument shows that
jA�j > 1. Note that when !�t > 1, AC lies on the positive imaginary axis in
the complex plane, and thus each integration step produces a 90ı shift in the phase
of the oscillation. As a consequence, unstable leapfrog solutions grow with a period
of 4�t .

The complete leapfrog solution can typically be written as a linear combination
of the physical and computational modes. An exception occurs if !�t D ˙1, in
which case AC D A� D i!�t , and the physical and computational modes are
not linearly independent. In such circumstances, the general solution to the leapfrog
approximation to the oscillation equation has the form

�n D C1.i!�t/
n C C2n.i!�t/

n:

Since the magnitude of the preceding solution grows as a function of the time step,
the leapfrog scheme is not stable when j!�t j D 1. Nevertheless, theO.n/ growth of
the solution that occurs when !�t D ˙1 is far slower than theO.An/ amplification
that is produced when j!�t j > 1.

The source of the computational mode is particularly easy to analyze in the triv-
ial case of ! D 0; then the analytic solution to the oscillation equation (2.19) is
 .t/ D C , where C is a constant determined by the initial condition at t D t0.
Under these circumstances, the leapfrog scheme reduces to

�nC1 D �n�1; (2.60)

and the amplification factor has the roots AC D 1 and A� D �1. The initial con-
dition requires �0 D C , which, according to the difference scheme (2.60), also
guarantees that �2 D �4 D �6 D : : : D C . The odd time levels are determined
by a second, computational initial condition imposed on �1. In practice �1 is often
obtained from �0 by taking a single time step with a single-step method, and the
resulting approximation to  .t0 C�t/ will contain some error E . It is obvious that
in our present example the correct choice for �1 is C , but to mimic the situation in
a more general problem, suppose that �1 D C C E . Then the numerical solution at
any subsequent time will be the sum of two modes:

�n D .AC/n�C C .A�/n�� D .C C E=2/� .�1/n.E=2/:
Here, the first term represents the physical mode and the second term represents the
computational mode. The computational mode oscillates with a period of 2�t , and
does not decay with time.

In the previous example, the amplitude of the computational mode is completely
determined by the error in the specification of the computational initial condition�1.
Since there is no coupling between the physical and computational modes in solu-
tions to linear problems, the errors in the initial conditions also govern the amplitude
of the computational mode in leapfrog solutions to most linear equations. If the gov-
erning equations are nonlinear, however, the nonlinear terms introduce a coupling
between �C and �� that often amplifies the computational mode until it eventu-
ally dominates the solution. This spurious growth of the computational mode can
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be avoided by periodically discarding the solution at �n�1 and taking a single time
step with a two-level scheme, or by filtering the high-frequency components of the
numerical solution. Various techniques for controlling the leapfrog scheme’s com-
putational mode will be discussed in Sect. 2.4.2.

The relative phase changes in the two leapfrog modes are

R˙leapfrog D 1

!�t
arctan

� ˙!�t
.1 � !2�t2/1=2

�
:

The computational mode and the physical mode oscillate in opposite directions. In
the limit of good time resolution,

RCleapfrog � 1C .!�t/2

6
;

showing that leapfrog time differencing is accelerating.
Now consider the other fundamental explicit two-step method, the two-step

Adams–Bashforth scheme,

�nC1 D �n C�t
�
3
2
F.�n; tn/ � 1

2
F.�n�1; tn�1/

�
: (2.61)

Applying the preceding formula to the oscillation equation yields

�nC1 D �n C i!�t
�
3
2
�n � 1

2
�n�1

�
:

The amplification factor associated with this scheme is given by the quadratic

A2 �
�
1C 3i!�t

2

�
AC i!�t

2
D 0;

in which case

A˙ D 1

2

 
1C 3i!�t

2
˙
�
1 � 9.!�t/2

4
C i!�t

�1=2!
: (2.62)

As the numerical resolution increases, AC ! 1 and A� ! 0. Thus, the Adams–
Bashforth method damps the computational mode, which of course is highly desir-
able. Unfortunately the physical mode is weakly amplifying, as revealed if (2.62) is
approximated under the assumption that !�t is small; then

AC D
�
1 � .!�t/2

2
� .!�t/4

8
� : : :

�
C i

�
!�t C .!�t/3

4
C : : :

�
;

A� D
�
.!�t/2

2
C .!�t/4

8
C : : :

�
C i

�
!�t

2
� .!�t/3

4
� : : :

�
;

and
jACjA�B2 � 1C 1

4
.!�t/4; jA�jA�B2 � 1

2
!�t:
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Fig. 2.5 Modulus of the amplification factors for the second-order Adams–Bashforth scheme as
a function of temporal resolution !�t . The solid lines and the dashed lines represent the physical
and the computational modes, respectively

The modulus of the amplification factor of the physical mode exceeds unity by
an OŒ.!�t/4� term, as was the case for the two-stage second-order Runge–Kutta
methods. The dependence of jACj and jA�j upon temporal resolution is plotted in
Fig. 2.5. The relative phase change in the physical mode in the Adams–Bashforth
method is

RA�B2 � 1C 5

12
.!�t/2;

where, as before, it is assumed that !�t � 1. Comparisons between the absolute
stability regions for the leapfrog and two-step Adams–Bashforth methods will be
presented in Sect. 2.4.3.

The leapfrog and two-step Adams–Bashforth methods must be initialized using
a single-step scheme to compute �1 from �0. In most instances, a simple forward
step is adequate. Although forward differencing is amplifying, the amplification
produced by a single step will generally not be large. Moreover, even though the
truncation error of a forward difference is O.�t/, the execution of a single forward
time step does not reduce the O

�
.�t/2

�
global accuracy of leapfrog and Adams–

Bashforth integrations. The basic reason that O
�
.�t/2

�
accuracy is preserved is

that forward differencing is only used over a �t-long portion of the total integra-
tion. The contribution to the total error produced by the accumulation of O

�
.�t/2

�
errors in a stable scheme over a finite time interval is of the same order as the error
arising from the accumulation of O.�t/ errors over a time �t .

2.4.2 Controlling the Leapfrog Computational Mode

The best explicit second-order scheme for the integration of oscillatory systems
considered so far might appear to be the leapfrog scheme. The leapfrog scheme is
nonamplifying (unlike the Adams–Bashforth and two-stage Runge–Kutta methods),
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and it requires only one function evaluation per time step (unlike two-or-higher-
stage Runge–Kutta schemes). The weakness of the leapfrog scheme is its undamped
computational mode, which slowly amplifies to produce “time-splitting” instability
in simulations of nonlinear systems. Here we review several methods that have been
used in practice to control such time splitting.

One way to control the growth of the computational mode is to periodically
discard the data from the n � 1 time level (or alternatively to average the n and
n � 1 time-level solutions) and to restart the integration using a two-time-level
method. Forward differencing is often used to reinitialize leapfrog integrations be-
cause it is easy to implement, but being a first-order scheme, its application over
a fixed percentage of the total integration time degrades the second-order accu-
racy of the unadulterated leapfrog method. In addition, forward differencing sig-
nificantly amplifies the high-frequency components of the solution. Moreover, it is
difficult to quantify these adverse effects since they vary according to the number of
leapfrog steps between each forward step. Restarting with a second-order Runge–
Kutta scheme is a far better choice since this preserves second-order accuracy and
produces less unphysical amplification. The midpoint method is one second-order
Runge–Kutta formulation that can be used to restart leapfrog integrations in com-
plex numerical models without greatly complicating the coding. A midpoint method
restart may be implemented by taking a forward step of length �t=2 followed by a
single leapfrog step of length�t=2.

In atmospheric science, it is common, though questionable, practice to control
the computational mode through the use of a second-order time filter. This filter is
closely related to the centered second-derivative time filter,

�n D �n C � .�nC1 � 2�n C �n�1/; (2.63)

where �n denotes the solution at time n�t prior to time filtering, �n is the solution
after filtering, and � is a positive real constant that determines the strength of the
filter. The last term in (2.63) is the usual finite-difference approximation to the sec-
ond derivative and preferentially damps the highest frequencies. Suppose that the
unfiltered values are sampled from the exact solution to the oscillation equation,
then

�n D
	
1C �

	
ei!�t � 2C e�i!�t




�n:

Defining a filter factor X D �n=�n, one obtains

Xcentered D 1 � 2�.1� cos!�t/: (2.64)

Since Xcentered is real, it does not produce any change in the phase of the solution. In
the limit !�t ! 0,

Xcentered � 1 � �.!�t/2;
showing that well-resolved oscillations undergo an OŒ.�t/2� damping. The cen-
tered filter has the greatest impact on the most poorly resolved component of the
solution, the 2�t oscillation. According to (2.64), each filter application reduces
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the amplitude of the 2�t wave by a factor of 1�4� . If � is specified to be 1=4, each
filtering operation will completely eliminate the 2�t oscillation.

Robert (1966) and Asselin (1972) suggested a scheme to control the leapfrog
computational mode by incorporating an approximate second-derivative time filter
into the time integration cycle such that each leapfrog step

�nC1 D �n�1 C 2�tF.�n/

is followed by the filtering operation:

�n D �n C �
�
�n�1 � 2�n C �nC1

�
: (2.65)

A filter parameter of � D 0:06 is typically used in global atmospheric models.
Values of � D 0:2 are common in convective cloud models; indeed Schlesinger
et al. (1983) recommend choosing � in the range 0.25–0.3 for certain advection–
diffusion problems.

If the Asselin-filtered leapfrog scheme is applied to the oscillation equation, the
amplification factor is determined by the simultaneous equations

A2�n�1 D �n�1 C 2i!�tA�n�1; (2.66)

A�n�1 D A�n�1 C �
�
�n�1 � 2A�n�1 C A2�n�1

�
: (2.67)

Under the assumption that .A�n/ D A.�n/, whose validity will be discussed shortly,
(2.67) may be written

.A � �/�n�1 D A ..1 � 2�/C A�/ �n�1: (2.68)

Eliminating �n�1 between (2.66) and (2.68) yields

A˙ D � C i!�t ˙ �
.1 � �/2 � !2�t2

�1=2
; (2.69)

which reduces to the result for the standard leapfrog scheme when � D 0. In the
limit of small !�t , the amplification factor for the Asselin-filtered physical mode
becomes

AAsselin�LF D 1C i!�t � .!�t/2

2.1� �/ COŒ.!�t/4�:

A comparison of this expression with the asymptotic behavior of the exact amplifi-
cation factor,

Ae D ei!�t D 1C i!�t � .!�t/2

2
� i .!�t/

3

6
COŒ.!�t/4�;

shows that the local truncation error of the Asselin-filtered leapfrog scheme is
OŒ.!�t/2�. In contrast, the local truncation error of the unfiltered leapfrog scheme
(� D 0) is OŒ.!�t/3�. Thus, Asselin filtering degrades the global truncation error
of the leapfrog scheme from second order to first order.
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The preceding derivation was based on the assumption that .A�n/ D A.�n/; is
this justified? In practice, the initial condition is not time-filtered; one simply defines
�0 � �0. Thus,

.A�0/� A.�0/ D �1 � �1 D � .�0 � 2�1 C �2/ ¤ 0:

Nevertheless, an application of the Asselin time filter to �nC1 gives

.A�n/ D A�n C �
	
.A�n�1/ � 2A�n C A2�n




D A
�
�n C �

�
�n�1 � 2�n C A�n

��C �
	
.A�n�1/� A�n�1




D A.�n/C �
	
.A�n�1/ �A�n�1



;

from which it follows that

.A�n/� A.�n/ D �nŒ�1 � �1�: (2.70)

In all cases of practical interest, n � 1 and � � 1; therefore, (2.70) implies that A
may be factored out of the filtering operation with negligible error, and that (2.68)
is indeed equivalent to (2.67).

In the limit of !�t � 1, the modulus of the amplification factor for the Asselin-
filtered leapfrog scheme may be approximated as

jACjAsselin�LF � 1 � �

2.1� �/
.!�t/2;

jA�jAsselin�LF � .1 � 2�/C �

2 � 6� C 4�2
.!�t/2:

Like other first-order schemes, such as forward differencing and the Matsuno
method, the physical mode in the Asselin-filtered leapfrog scheme has anOŒ.�t/2�
amplitude error. The behavior of the computational mode is also notable in that jA�j
does not approach zero as j!�t j ! 0. The asymptotic behavior of the relative phase
change in the physical mode is

RCAsselin�LF � 1C 1C 2�

6.1� �/
.!�t/2:

Asselin–Robert filtering increases the phase error, doubling it as � increases from 0
to 1/4.

The main problem with the Asselin-filtered leapfrog scheme is its first-order ac-
curacy. Williams (2009) has recently proposed a modification of the Asselin–Robert
filter for leapfrog integrations that almost conserves the three-time-level mean of the
predicted field and greatly reduces the magnitude of the first-order truncation error.
Two alternative techniques which control the leapfrog computational mode with-
out sacrificing second-order accuracy are the leapfrog–trapezoidal method and the
Magazenkov method. The leapfrog–trapezoidal method (Kurihara 1965; Zalesak
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1979) is an iterative scheme in which a leapfrog predictor is followed by a trape-
zoidal correction step, i.e.,

�� D �n�1 C 2�tF.�n/; (2.71)

�nC1 D �n C �t

2
.F.�n/C F.��// : (2.72)

If this scheme is applied to the oscillation equation, the amplitude and relative phase
changes in the physical mode are

jAjLF�trap � 1 � .!�t/4

4
; RLF�trap � 1 � .!�t/2

12
;

where, as usual, these approximations hold for small !�t . Leapfrog–trapezoidal
integrations of the oscillation equation will be stable provided !�t � p

2. The am-
plitude error associated with the leapfrog–trapezoidal scheme is plotted as a function
of temporal resolution in Fig. 2.6a.

Magazenkov (1980) suggested that the computational mode could be controlled
by alternating each leapfrog step with a second-order Adams–Bashforth step. Since
the Magazenkov method uses different schemes on the odd and even time steps, the
amplification factor differs between the odd and even steps. To analyze the behavior
of the Magazenkov method, it is therefore best to consider the averaged effect of a
combined leapfrog–Adams–Bashforth cycle.

Thus, for analysis purposes, the scheme will be written as a system of equations
that maps .�n�2; �n�1/ into .�n; �nC1/,

�n D �n�2 C 2�tF.�n�1/; (2.73)

�nC1 D .�n�2 C 2�tF.�n�1//

C �t

2
Œ3F .�n�2 C 2�tF.�n�1//� F.�n�1/� : (2.74)

ωΔt
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Fig. 2.6 Modulus of the amplification factor as a function of temporal resolution !�t for a
the leapfrog–trapezoidal method and b the Magazenkov method. The solid lines and dashed lines
represent the physical and the computational modes, respectively
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When actually implementing the Magazenkov method, however, one would replace
(2.74) by the equivalent expression (2.61). Application of (2.73) and (2.74) to the
oscillation equation yields a system of two equations in two unknowns,

�
1 2i!�t

1C 3
2

i!�t 3
2

i!�t � 3.!�t/2
��

�n�2
�n�1

�
D
�
�n
�nC1

�
:

The coefficient matrix in the preceding equation determines the combined amplifi-
cation and phase shift generated by each pair of leapfrog and Adams–Bashforth time
steps. The eigenvalues of the coefficient matrix are determined by the characteristic
equation

�2 �
�
3i!�t

2
� 3.!�t/2 C 1

�
� � i!�t

2
D 0:

The eigenvalues are distinct and have magnitudes less than 1 when j!�t j < 2=3,
implying that the method is conditionally stable. For well-resolved physical-mode
oscillations, the average amplitude and relative phase change per single time step are

jAjMag D .j�j/1=2 � 1 � .!�t/4

4
; RMag D 1C .!�t/2

6
:

The average amplitude error per single time step is plotted as a function of temporal
resolution in Fig. 2.6b.

2.4.3 Classical Multistep Methods

The leapfrog and two-step Adams–Bashforth methods discussed in Sect. 2.4.1 are
just two examples from the large family of linear multistep methods. A general
linear s-step method may be written in the form

sX
kD0

˛k�nCk D �t

sX
kD0

ˇkF.�nCk; tnCk/: (2.75)

Here the notation is simplified by departing from the convention used in (2.53) and
letting the index of the most advanced time level be nC s. The coefficients ˛k and
ˇk are usually scaled so that ˛s D 1. If the method is explicit, ˇs is zero.

As before, the truncation error is the residual by which smooth solutions to the
continuous problem fail to satisfy (2.75). If the method is O Œ.�t/p�, then

sX
kD0

˛k .tnCk/ ��t
sX

kD0
ˇk
d 

dt
.tnCk/ D O

�
.�t/pC1�: (2.76)

The right side of the preceding equation is the local error, which, as discussed
for Euler’s method in connection with (2.9), is one power of �t higher than
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the truncation error. Expanding  and d =dt in Taylor series about time tn and
substituting into (2.76) yields the following conditions for pth-order accuracy:

sX
kD0

˛k D 0;

sX
kD0

˛kk
m D m

sX
kD0

ˇkk
m�1 for m D 1; 2; : : : ; p: (2.77)

When  is a polynomial of degree p, the left side of (2.76) may be expressed as the
sum of powers of�t up to and including .�t/p, and this sum must be zero if (2.76)
is satisfied. Thus, if a linear multistep method is of order p, it must be exact for all
polynomials .t/ of degree p or less; this can be checked relatively easily by trying
each of the set of test functions

 k.t/ D .t � tn/k ; k D 0; 1; : : : ; p; (2.78)

which span the .p C 1/-dimensional space of polynomials of degree p. The equiv-
alence of these two criteria can be verified by substituting the functions (2.78) into
(2.76) to obtain the order conditions (2.77).

Stability conditions for linear multistep methods can be concisely expressed in
terms of the polynomials

.z/ D
sX

kD0
˛kz

k and �.z/ D
sX

kD0
ˇkz

k :

The linear multistep method (2.75) is stable enough to converge to the correct solu-
tion as�t ! 0, provided that it is at least first-order accurate, that the starting values
�1; : : : ; �s converge as�t ! 0, and that the polynomial .z/ satisfies the root con-
dition (Dalhquist 1956). A polynomial satisfies the root condition if the magnitude
of each of its roots is bounded by unity and if all the roots of unit magnitude are
distinct.

An example of the problems that arise when .z/ does not satisfy the root con-
dition was revealed in connection with the discussion of the third-order explicit
two-step method (2.55). Recall that applying this method to the particularly simple
case where F. ; t/ D 0 reduced the differential equation to d =dt D 0. The am-
plification factor for the F D 0 problem satisfies (2.57), or equivalently, .A/ D 0,
whose roots are 1 and �5. The mode for which A D �5 undergoes rapid unstable
amplification.

The method (2.55) is one in which the 2s � 1 coefficients in an explicit s-step
method are chosen to create a scheme of maximum order (namely, 2s � 1), but
the result is unstable. When the choice of coefficients is additionally constrained to
require .z/ to satisfy the root condition, the highest order than can be achieved by
an explicit s-step method is s; for an implicit s-step method it is s C 1 when s is
odd and s C 2 when s is even (Dalhquist 1959). These limitations on the maximum
order of stable linear multistep methods constitute Dahlquist’s first barrier.

As discussed in Sect. 2.2.1, merely ensuring a consistent scheme is sufficiently
stable to converge in the limit �t ! 0 does not guarantee against the spurious
amplification of solutions computed using finite values of �t . An indication of the
behavior of solutions computed with finite �t is provided by analyzing a scheme’s
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region of absolute stability. If an s-step linear multistep method is applied to the
test problem (2.16), the amplification factors for the physical mode and the s � 1

computational modes satisfy the polynomial

.A/� ��t �.A/ D 0: (2.79)

The absolute stability region for the method is the set of ��t for which the preceding
polynomial satisfies the root condition.

Adams methods are one very important family of classical multistep methods.
In an s-step Adams method ˛s D 1, ˛s�1 D �1, and ˛k D 0 for k < s � 1.
Thus, .z/ D zs�1.z � 1/, and at least for sufficiently small �t , all the com-
putational modes (the roots of zs�1) are strongly damped. The ˇk are chosen to
maximize the order of accuracy. Explicit s-step Adams schemes, known as Adams–
Bashorth methods, achieve optimal s-order accuracy. For implicit s-step schemes,
called Adams–Moulton methods, the sC 1 available values of ˇk allow (2.77) to be
satisfied through order s C 1.

The one-step Adams–Bashforth method is identical to the forward-Euler scheme;
the two-step Adams–Bashforth method (2.61) was already introduced in Sect. 2.4.1.
Returning to the convention that nC1 is the most advanced time level, the three-step
Adams–Bashforth method is

�nC1 D �n C �t

12
Œ23F.�n/� 16F.�n�1/C 5F.�n�2/� : (2.80)

The amplitude error in the three-step Adams–Bashforth solution to the oscillation
equation is plotted in Fig. 2.7. As with all Adams schemes, both computational
modes are strongly damped in the limit !�t ! 0. Unlike the two-step Adams–
Bashforth method shown in Fig. 2.5, instability is not associated with unstable
growth of the physical mode; instead, it is one of the computational modes which
becomes unstable for !�t > 0:724.
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Fig. 2.7 Modulus of the amplification factor for the three-step Adams–Bashforth method plotted
as a function of temporal resolution !�t . The solid line represents the physical mode and the
dashed lines represent the two computational modes
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The one-step Adams–Moulton method is the trapezoidal scheme

�nC1 D �n C h

2
ŒF.�nC1/C F.�n/� : (2.81)

The two-step and three-step Adams–Moulton methods are

�nC1 D �n C h

12
Œ5F.�nC1/C 8F.�n/� F.�n�1/� ; (2.82)

�nC1 D �n C h

24
Œ9F.�nC1/C 19F.�n/� 5F.�n�1 C 1F.�n�1/� : (2.83)

In practice, the implicit coupling in an Adams–Moulton method is often avoided
using a predictor-corrector iteration. An s-step Adams–Bashforth scheme is used to
estimate �nC1 in the prediction step; then this estimate is used to evaluate F.�nC1/
as �nC1 is recomputed using an s-step Adams–Moulton scheme in the corrector
step. The resulting predictor-corrector iteration is accurate to order s C 1. Note
that, like the leapfrog–trapezoidal method (2.71) and (2.72), the Adams–Bashforth–
Moulton predictor corrector cannot be expressed as a linear multistep method of the
form (2.75).

The absolute stability regions for the two-step and three-step Adams–Bashforth
methods are shown in Fig. 2.8. Consistent with the analysis in Sect. 2.4.1 for purely
oscillatory problems, the imaginary axis (except for the origin) lies outside the re-
gion of absolute stability of the two-step scheme. On the other hand, the segment
of the imaginary axis for which j!�t j < 0:72 does lie within the absolute stability
region of the three-step Adams–Bashforth method, and this scheme can be an at-
tractive choice for the integration of problems with primarily oscillatory solutions.

The absolute stability regions for the two-step and three-step Adams–Moulton
methods, shown in Fig. 2.9, are much larger than those for the two-step and three-
step Adams–Bashforth methods (note the change in the scale of the coordinate axes),
but are nevertheless too small to justify the extra work required to use an implicit
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Fig. 2.8 Absolute stability regions (shaded) for the two-step and three-step Adams–Bashforth
methods
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Fig. 2.9 Absolute stability regions (shaded) for the two-step and three-step Adams–Moulton
methods

method in many practical applications. Neither method includes a finite segment
of the imaginary axis or the point .�1; 0/ in the region of absolute stability. As
a consequence, the two-step and three-step Adams–Moulton methods are not suit-
able for the solution of oscillatory problems or systems of equations where some
components decay rapidly.

Another classical multistep method, the leapfrog scheme, was considered only
in the context of the oscillation equation in Sect. 2.4.1. The absolute stability region
for the leapfrog scheme can be determined by analyzing the two roots of (2.79),
which are

Alf D ��t ˙ �
.��t/2 C 1

�1=2
:

Define �, such that
i cos � D ��t D i!�t C ��t:

Then

Alf D i cos � ˙ sin � D ie�i� ;

and, thus, the two amplification factors associated with the leapfrog scheme have
magnitudes je�i� j and jei� j. One of these will exceed unity unless � is real, and since

� D cos�1.!�t � i��t/;

the condition for absolute stability reduces to

��t D 0 and j!�t j < 1:
The region of the ��t–!�t plane within which the leapfrog scheme is stable is just
an open line segment along the !�t-axis. The endpoints bounding this segment,
.��t; !�t/ D .0;˙1/, yield a pair of identical Alf of unit magnitude and hence
do not satisfy the root condition. Since its region of absolute stability is confined
to the imaginary axis, the leapfrog scheme is only suitable for the simulation of
nondissipative wavelike flows.
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2.5 Stiff Problems

The time step required to maintain stability in a numerical integration is sometimes
far smaller than that which might seem to be sufficient to accurately resolve the
evolving variables. In such cases the problem is stiff. Measures of “stiffness” based
solely on the properties of the unapproximated continuous problem are often cum-
bersome or lack sufficient generality. Here a problem will be considered stiff if the
time step required to obtain a satisfactory approximation to the solution using the
L-stable backward-Euler method is much larger than that required to obtain a sim-
ilar result using the forward-Euler scheme. Both Euler methods are first order and
are not likely to provide the optimal integration formula for either stiff or nonstiff
problems, but the contrast in the behavior of these two elementary methods provides
a handy way to assess stiffness.

In geophysical applications, stiffness often poses a problem when modeling
chemical reactions. Stiffness can also create difficulties if the compressible equa-
tions of motion are used to simulate atmospheric flows in which acoustic waves
have negligible amplitude. Later in this section we will consider a stiff problem that
arises in very simple model of urban air pollution. Issues related to the efficient
treatment of rapidly moving acoustic waves are discussed in Chap. 8.

As a simple starting point, consider the scalar equation

d 

dt
D � . � g.t//C dg

dt
; (2.84)

subject to the initial condition  .0/ D  0, whose solution is

 .t/ D . 0 � g.0// e�t C g.t/: (2.85)

Our interest is in the case � < 0, for which the first term in (2.85) decays after an
initial transient. If (2.84) is integrated using the forward-Euler method, the leading-
order truncation error (see (2.8)) is proportional to

d2 

dt2
D �2. � g/C d2g

dt2
:

Thus, after the initial transient decays, �2. �g/ ! 0 and for a given�t , the trun-
cation error is determined solely by the forcing g.t/. Yet as discussed in Sect. 2.1.2,
g has no influence on the step-to-step growth of the global error in the numerical
solution. The behavior of the global error depends only on �, and over each time
step, it amplifies by a factor of 1 C ��t . The restriction on �t necessary to keep
the global error bounded (�2 � ��t � 0) has therefore no relation to the choice of
time step required to keep the truncation error below a given threshold, and when
j�j is sufficiently large, the time step required to maintain stability can be arbitrarily
smaller than that required solely by accuracy considerations.

Suppose � D �100,  0 D 2, g.t/ D sin.t/, and that (2.84) is integrated over
the interval Œ0; 2π� using the forward-Euler and backward-Euler methods. In this

Ham
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Fig. 2.10 Solutions to (2.84) with � D �100,  0 D 2, and g.t/ D sin.t/. The solid line
shows the superposition of the exact solution and the solutions given by the forward and the back-
ward methods using a variable step size. The dashed line is the backward solution with a constant
�t D π=15

example the initial and minimum time step is 0.002, and as a simple way to vary
the step size in this particular example, whenever the estimated truncation error3

drops below 0.01, the time step is doubled. The solutions from the two methods are
shown in Fig. 2.10; both are indistinguishable from the correct solution at the reso-
lution plotted. The backward scheme required 120 steps to complete the integration,
whereas the forward scheme required 383 steps. The contrast between the number
of steps required by each scheme becomes larger as j�j increases.

It should be emphasized that the preceding problem is not stiff in the immediate
neighborhood of t D 0, where the solution is changing rapidly and a very small
time step is required to correctly resolve the rapid variation. Rather, the problem
is stiff for t greater than about 0.2, where the actual fluctuations in the true solu-
tion can easily be resolved using time steps far larger than the maximum step for
which the forward-Euler method is stable. For example, the solution shown by the
dashed line in Fig. 2.10 can be obtained with just 30 steps of uniform size using the
L-stable backward-Euler method. In some computationally intensive applications it
is not necessary to capture the behavior of rapid transients precisely, and the solution
shown by the dashed line may be satisfactory.

2.5.1 Backward Differentiation Formulae

The key property allowing stable backward-Euler integrations to be performed with
large time steps in the previous example is that the point .��t; 0/ remains in the
method’s region of absolute stability as ��t ! �1. Any linear multistep method
(2.75) having this property must be implicit, otherwise the order of the polynomial
.A/will exceed that of �.A/, and the magnitude of one root of (2.79) will approach

3 The local contribution to the global truncation error was estimated as 0:5�t j 00.tn/j using the
exact solution (2.84) to compute  00.
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infinity as ��t ! �1. One simple strategy for ensuring that .�1; 0/ is included
in the region of absolute stability of an s-step scheme is to set all the ˇk in (2.75) to
zero except ˇs . Then, the amplification factor satisfies

.A/� ��t ˇsA
s D 0; (2.86)

and since .A/ is a polynomial of order s, as ��t ! �1 the s roots of (2.86)
approach the roots of ˇsAs D 0, which are all zero.

Backward differentiation formulae (BDF) are linear multistep methods (2.75) for
which all ˇk are zero except ˇs and the ˛k are chosen to obtain the highest possible
order of accuracy, which for an s-step method is s. The one-step BDF method is the
backward-Euler method

�nC1 D �n C�t F.�nC1; tnC1/: (2.87)

The two-step, three-step, and four-step BDF methods are

�nC1 � 4

3
�n C 1

3
�n�1 D 2

3
�t F.�nC1; tnC1/; (2.88)

�nC1 � 18

11
�n C 9

11
�n�1 � 2

11
�n�2 D 6

11
�t F.�nC1; tnC1/; (2.89)

�nC1 � 48

25
�n C 36

25
�n�1 � 16

25
�n�2 C 3

25
�n�3 D 12

25
�t F.�nC1; tnC1/: (2.90)

As discussed in Sect. 2.2.5, L-stable methods are A-stable schemes which satisfy
the additional criterion that A ! 0 as ��t ! �1; thus, by construction, BDF
methods will be L-stable provided they are also A-stable. Yet, in contrast to implicit
Runge–Kutta methods, which can be both high order and A-stable, e.g., (2.51) with
˛ D 1=2 C p

3=6, no linear multistep method of order greater than 2 is A-stable
(Dalhquist 1963). This limitation on the order of A-stable linear multistep methods
is Dahlquist’s second barrier. It follows that since the three-step BDF method is
third order, it cannot be A-stable, nor strictly speaking L-stable.

The regions of absolute stability for the two-step, three-step and four-step BDF
methods are shown in Fig. 2.11. The values of ��t that spoil the A-stability of the
three-step BDF method lie in a thin region just to the left of the imaginary axis. In
practical applications that benefit from the use of an L-stable method, the relevant
values of ��t have negative real parts that are large in magnitude in comparison with
j=f��tgj and therefore well within the absolute stability region for the three-step
BDF method. For BDF methods of orders 3–6, there is a wedge expanding outward
from the origin in the left half-plane throughout which the method is absolutely
stable. Let the angle between the top or bottom of this wedge and the negative real
axis be ˛. For the four-step BDF method, ˛ D 73ı, and the wedge throughout
which the scheme is absolutely stable is indicated by the dashed lines in Fig. 2.11.
As the order of the BDF method increases, the wedge narrows; ˛ is 86ıfor the three-
step method, 51ıfor the five-step method, and just 17ıfor the six-step scheme. BDF
methods using more than six steps are unstable.
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Fig. 2.11 Absolute stability regions (shaded) for the two-step, three-step, and four-step backward
differentiation formula methods

Methods that are absolutely stable for all values of !�t and all ��t � 0 lying in
the wedge j arctan.!=�/j � ˛ are A.˛/-stable. When choosing a high-order A.˛/-
stable BDF method for a particular problem with eigenvalues � , one should take
care that all � with a negative real part satisfy j arctan.=f�g=<f�g/j � ˛.

2.5.2 Ozone Photochemistry

Now consider a classic example from atmospheric chemistry involving the follow-
ing reactions between atomic oxygen (O), nitrogen oxides (NO and NO2), and
ozone (O3):

NO2 C hv
k1

GGGGGGA NO C O;

O C O2
k2

GGGGGGA O3;

NO C O3
k3

GGGGGGA O2 C NO2: (2.91)

Here hv denotes a photon of solar radiation. Letting c D .c1; : : : ; c4/
T represent

the concentration in molecules per cubic centimeter of O, NO, NO2, and O3, re-
spectively, and approximating the background concentration of O2 as constant, the
preceding set of reactions is governed by the system

Pc1 D k1c3 � k2c1; (2.92)

Pc2 D k1c3 � k3c2c4; (2.93)

Pc3 D k3c2c4 � k1c3; (2.94)

Pc4 D k2c1 � k3c2c4; (2.95)
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where differentiation with respect to time is denoted by Pc. As a simplification of a
similar problem considered in Hundsdorfer and Verwer (2003), suppose that

k1 D 10�2 maxŒ0; sin.2πt=td/� s�1;

k2 D 105 s�1; k3 D 10�16cm3 molecule�1 s�1;

where td is the length of 1 day in seconds, and sunrise is at t D 0. If the initial
condition specified at sunrise is c D .0; 0; 5 	 1011; 8 	 1011/T molecules cm�3,
the chemical concentrations over the next 2 days evolve as shown by the thin solid
curves in Fig. 2.12. The concentration of atomic oxygen spikes at sunrise, which
triggers a sustained daytime increase in O3 and NO and a decrease in NO2. The
solution shown by the solid lines in Fig. 2.12 was computed in MATLAB using a
high-order BDF scheme with variable step sizes and a tight error tolerance. The so-
lution shown by the dashed lines was computed using the second-order Rosenbrock
Runge–Kutta method (2.113)–(2.115) with a constant time step of 15 min. Although
it does not precisely capture the spike in atomic oxygen occurring just after sunrise,
the Rosenbrock Runge–Kutta method efficiently models all other aspects of the sys-
tem with reasonable fidelity.

3

2

O
 (
 x

 1
03  

cm
-3

 )

O
3 

( 
x 

10
11

 c
m

-3
 )

N
O

2 
( 
x 

10
11

 c
m

-3
 )

N
O

 (
 x

 1
011

 c
m

-3
 )

1

0

5

4

3

2

1

0

5

4

3

2

1

0

13

12

11

10

9

8
0 12 24 36 48

Fig. 2.12 Solutions to (2.92)–(2.95) over a 2-day interval: exact solution (solid line) and second-
order Rosenbrock Runge–Kutta solution with a constant time step of 15 min (dashed line)
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2.5.3 Computing Backward-Euler Solutions

The system (2.92)–(2.95) has the form

Pc D f.c; t/; (2.96)

where c and f are column vectors. Binary reactions, such as the reaction between
nitric oxide and ozone in (2.91), make f a nonlinear function of the unknown variable
c. Suitable solvers for stiff problems are all implicit time-difference approximations,
which when applied to nonlinear differential equations generate nonlinear algebraic
equations. Accurate solutions to these nonlinear algebraic equations can often be
efficiently obtained using Newton’s method.

As an example, consider the autonomous system of differential equations4

Pc D f.c/: (2.97)

Letting �n be the numerical approximation to c.n�t/, the backward-Euler approx-
imation to (2.97) is

�nC1 D �n C�t f .�nC1/: (2.98)

To solve the preceding equation for �nC1 using Newton’s method, we seek a root of

g.�/ D � � �n ��t f .�/: (2.99)

Let G be the matrix whose ij th element is @gi=@�j . Differentiating (2.99) with
respect to cj yields

G.�/ D I ��t J.�/; (2.100)

where J is the Jacobian matrix whose ij th element is @fi=@cj . Newton’s method
works best when a good first guess is available, and a very satisfactory first guess is
generally provided by the solution at the previous time step. Beginning with �1 D
�n, one may compute the kth Newton iterate by solving the linear system

G.�k/�kC1 D G.�k/�k � g
	
�k



(2.101)

for �kC1.
One advantage of using Newton’s method with the exact Jacobian to solve (2.98)

is that, in contrast to many alternative iterative schemes, it preserves chemical con-
servation laws. For example, one such law is the conservation of the total number
of nitrogen atoms by the preceding NOx–O3 reactions, which may be verified by
adding (2.93) and (2.94) to obtain Pc2 C Pc3 D 0, thereby implying c2 C c3 is con-
stant. A second relation involving the molecules that act as repositories for atomic

4 The system is autonomous if f is not an explicit function of t . Any system can be made au-
tonomous by adding to a vector of unknowns one additional variable Qc, satisfying PQc D 1.
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oxygen is the constancy of c1 C c3 C c4, which is revealed by adding together
(2.92), (2.94), and (2.95). General conservation laws for an N -dimensional chemi-
cal system take the form � 
 c D constant, where � D .�1; : : : ; �N / and the �i are
nonnegative constants.

To demonstrate how chemical conservation laws are preserved when using
Newton’s method to evaluate solutions to backward-Euler differencing, first note
that when � 
 c is constant, � 
 Pc D 0 and the governing equations imply � 
 f.c/ D 0.
Differentiating � 
 f.c/ D 0 with respect to an arbitrary cj , yields

0 D @

@cj

 
NX
iD1

�ifi .c/

!
D

NX
iD1

�i
@fi

@cj
.c/ for all j;

or equivalently, � 
 J.c/ D 0.
Now suppose a chemical system in which � 
 c is constant is integrated using the

backward-Euler method, and that (2.98) is evaluated numerically using Newton’s
method. Dotting � with (2.101), using (2.99), (2.100), and the relations � 
 f.c/ D 0

and � 
 J.c/ D 0 gives

� 
 �kC1 D � 
 �k �
	
� 
 �k � � 
 �n



D � 
 �n;

implying that regardless of the number of Newton iterations, � 
 �nC1 D � 
 �n.
For comparison with Rosenbrock Runge–Kutta methods, which are described

in the next section, note that if we implement the backward-Euler scheme with two
iterations of Newton’s method per time step and define q1 D �1��n, q2 D �nC1�
�1, then

�nC1 D �n C q1 C q2 (2.102)

and the two iterations of (2.101) may be expressed as

.I ��t J.�n//q1 D �t f .�n/ ; (2.103)

.I ��t J.�n C q1// q2 D �t f .�n C q1/� q1: (2.104)

2.5.4 Rosenbrock Runge–Kutta Methods

Rosenbrock (1963) suggested incorporating the Jacobian directly into the integra-
tion formula to obtain linearly implicit approximations to nonlinear differential
equations. In applications where the solution needs only be computed with low or
moderate precision, Rosenbrock Runge–Kutta schemes can be more efficient than
BDF methods (Sandu et al. 1997). In addition, Rosenbrock Runge–Kutta schemes
(unlike second- or higher-order BDF methods) are single-step schemes, which fa-
cilitates their use in time-split applications (see Sect. 4.3).
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An s-stage Rosenbrock Runge–Kutta scheme for the solution of the autonomous
system of ordinary differential equations (2.97) may be expressed in the form

�nC1 D �n C
sX

jD1
bjqj ; (2.105)

where

qj D �t f

 
�n C

j�1X
iD1

aij qi

!
C�t Jn

jX
iD1

˛ij qi ; (2.106)

where �n is once again the numerical approximation to c.n�t/, and Jn D J.�n/. If
the term involving the Jacobian were omitted, the preceding method would be equiv-
alent to the explicit s-stage Runge–Kutta method (2.31)–(2.35), in which �tF.�i /
in the earlier notation is now written as qi .

We focus on those two-stage methods for which ˛11 D ˛22 D ˛, in which case
(2.106) may be expressed as

.I � ˛�t Jn/q1 D �t f .�n/ ; (2.107)

.I � ˛�t Jn/q2 D �t f .�n C a21q1/C ˛21�t Jnq1: (2.108)

Using the same value for ˛11 and ˛22 makes the matrix multiplying the unknown
increment q identical in both stages, thereby reducing the work required to solve
the pair (2.107) and (2.108) by LU decomposition or by iterative methods that use
a preconditioner.

Noting that Rc D JPc D Jf.c/ and expanding c in a Taylor series about cn D
c.n�t/, (2.107) and (2.108) imply that throughO

�
.�t/2

�

q1 D �t Pcn C .�t/2˛Rcn; q2 D �t Pcn C .�t/2.a21 C ˛21 C ˛/Rcn:
As usual, the condition for second-order accuracy is that

cnC1 D cn C�t Pcn C .�t/2

2
Rcn CO

�
.�t/3

�
;

from which it follows that the two-stage method defined by (2.105), (2.107), and
(2.108) is second-order accurate provided

b1 C b2 D 1; b2a21 C b2˛21 C ˛ D 1

2
: (2.109)

The basic stability properties of the preceding scheme can be assessed by ap-
plying the method to the simple scalar test problem (2.16). For any second-order
two-stage method, i.e., for those methods with coefficients satisfying (2.109), the
amplification factor is

A D 1C .1 � 2˛/��t C .1
2

� 2˛ C ˛2/.��t/2

.1 � ˛��t/2
; (2.110)
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which is identical to (2.52). Thus, second-order two-stage Rosenbrock Runge–Kutta
schemes have the same absolute stability characteristics as two-stage, second-order
diagonally implicit Runge–Kutta methods, and the method will be L-stable when
˛ D 1 ˙ 1=2

p
2. Verwer et al. (1999) recommend using ˛ D 1 C 1=2

p
2, noting

it gives better stability properties in nonlinear problems and is more effective at
preserving positive chemical concentrations than the choice ˛ D 1 � 1=2

p
2.

If the problem is not autonomous, (2.106) becomes

qj D �t f

 
�n C

j�1X
iD1

aijqi ; tn C b�t

!
C�t Jn

jX
iD1

˛ij qi C ˇ.�t/2
@f
@t
.�n; tn/;

where

b D
j�1X
iD1

aij ; ˇ D
jX
iD1

˛ij ;

and Jn is the Jacobian evaluated at .�n; tn/. Nevertheless, the evaluation of @f=@t
can be avoided in two-stage second-order methods as follows. Suppose that Jn is
replaced by an arbitrary matrix W having the same dimensions as the Jacobian,
such that (2.107) and (2.108) become

.I � ˛�t W/q1 D �t f .�n; tn/ ; (2.111)

.I � ˛�t W/ q2 D �t f .�n C a21q1; tn C a21�t/C ˛21�t Wq1: (2.112)

Again expanding the true solution in a Taylor series about cn, one finds that through
O
�
.�t/2

�
,

q1 D �t Pcn C .�t/2˛WPcn; q2 D �t Pcn C .�t/2 .a21 Rcn C .˛21 C ˛/WPcn/ :
Despite neglecting @f=@t and replacing the Jacobian by the arbitrary matrix W, one
can still obtain a second-order method if

b1 D 1 � b2; a21 D 1

2b2
; ˛21 D � ˛

b2
:

Although (2.111) and (2.112) are second-order accurate, their stability properties
depend on choosing a W that provides a reasonable approximation to the true
Jacobian. Schemes in which the exact Jacobian is replaced by an approximation
are known as W-methods.

As noted by Verwer et al. (1999), the matrix multiplication in the last term in
(2.112) can be avoided by choosing b2 D 1=2 and replacing q2 with Qq2 C 2q1. If
one also sets W D Jn to obtain good stability characteristics, the result is

�nC1 D �n C 3
2

q1 C 1
2

Qq2; (2.113)

.I � ˛�t Jn/ q1 D �t f .�n; tn/ ; (2.114)

.I � ˛�t Jn/ Qq2 D �t f .�n C q1; tn C�t/ � 2q1: (2.115)
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Choosing ˛ D 1 C 1=2
p
2 yields a second-order L-stable method that has been

shown to perform well in several atmospheric chemistry problems (Verwer et al.
1999).

The preceding Rosenbrock method has several clear advantages over the approx-
imate backward-Euler formulae (2.102)–(2.104). In particular, it avoids any worries
about the number of Newton iterations required to achieve acceptable accuracy, and
in contrast to the first-order truncation error of the backward-Euler method, (2.113)–
(2.115) are second order. In addition, this Rosenbrock method is more efficient since
it only requires one evaluation of the Jacobian matrix per time step, whereas two
evaluations of J are required to advance one time step using (2.102)–(2.104).

The method (2.113)–(2.115) was used to integrate (2.92)–(2.95) with a constant
15-min time step to produce the dashed curves shown in Fig. 2.12. As discussed
previously, even with such a large time step this method performs very well except
for errors in its representation of the spike in atomic oxygen that occurs near sun-
rise. The treatment of this spike can be greatly improved by using a shorter time
step. (The BDF solution shown by the solid line in Fig. 2.12 was computed using a
nonconstant time step that was as small as 5	 10�10 s around sunrise.) Jannelli and
Fazio (2006) discussed a simple strategy for controlling the step size in integrations
using (2.113)–(2.115).

2.6 Summary

This chapter has provided an overview of time-differencing schemes, covering
several basic topics concerning the numerical solution of ordinary differential equa-
tions. We have primarily focused on methods useful for the solution of time-
dependent partial differential equations, and have therefore not discussed a few
important issues such as automatic step-size control. We have also focused on rela-
tively low order methods. In many applications involving partial differential equa-
tions, the errors in the numerical representation of the spatial derivatives dominate
the time discretization error, and as a consequence, the accuracy of the solution can-
not easily be improved by using very high order time differences, or by adjusting
the time step without simultaneously refining the resolution of the spatial domain.

Indeed second-order time differences would be sufficiently accurate for the so-
lution of many partial differential equations. The main reason we have also ex-
plored third- and fourth-order methods is that some of them have attractive stability
characteristics in applications involving advection or wave propagation. Recall that
the two-stage second-order Runge–Kutta and two-step Adams–Bashforth schemes
produce amplifying solutions to the oscillation equation. On the other hand, the
three-step Adams–Bashforth method is stable and, unlike the second-order leapfrog
scheme, has a strongly damped computational mode. The classical three-stage third-
order and the four-stage fourth-order explicit Runge–Kutta schemes, as well as the
four-stage explicit third-order SSPRK scheme (2.49), are also potentially attractive
methods.
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The properties of several basic schemes are compared with respect to their
suitability to solve the oscillation equation in Tables 2.1 and 2.2. Table 2.1 gives
the order and finite-difference formulae for each scheme. Although it is not appar-
ent from their most common names, most of the schemes shown in Table 2.1 are
Adams–Bashforth, Adams–Moulton, or Runge–Kutta schemes. As previously men-
tioned, forward differencing is both the first-order Adams–Bashforth method and the
one-stage first-order explicit Runge–Kutta method. Backward differencing is a one-
stage first-order implicit Runge–Kutta scheme. The trapezoidal method is a one-
step Adams–Moulton method. The particular two-stage second-order Runge–Kutta
scheme appearing in Table 2.1 is also the second-order Adams–Bashforth–Moulton
predictor corrector.

Several important properties of the schemes listed in Table 2.1 are given in
Table 2.2. The column labeled “storage factor” indicates the number of full ar-
rays that must be allocated for each unknown variable in order to implement each
scheme. Storage factors are not provided for the implicit methods listed in Table 2.2
because the storage factor for implicit methods can vary from problem to problem,
depending on the numerical algorithm used to solve the implicit system. Inspection
of Table 2.2 clearly reveals the low-storage advantage of the three-stage third-order
Runge–Kutta scheme. This advantage may, however, be slightly exaggerated since
the storage factors listed in Table 2.2 are upper limits that allow each method to
be programmed in a completely straightforward manner. In many instances, it is
possible to utilize less memory than that suggested by the storage factor if newly
computed quantities are initially placed in a small, temporary storage array. As an
example, when integrating a partial differential equation with forward time differ-
encing, one cannot generally write the newly computed �nC1

j directly into the stor-

age occupied by �nj , because �nj may be required for the computation of �nC1
jC1 .

However, at some point in the integration cycle, �nj will no longer be needed and at

that stage it may be overwritten by �nC1
j . During the interim between the calcula-

tion of �nC1
j and the last use of �nj , �nC1

j may be held in a temporary storage array.
In many applications, the temporary storage array can be much smaller than the full
array required to hold a complete set of �n, and use of such a temporary array will
reduce the storage factor by almost one unit.

In applications where storage is not a problem, the third-order Adams–Bashforth
scheme can be an attractive alternative. The primary advantage of the third-order
Adams–Bashforth scheme is its relative efficiency. In most practical applications
involving partial differential equations, the bulk of the computational effort is as-
sociated with the evaluation of F , the function that determines the time derivative.
Thus, a rough measure of the comparative efficiency of each method may be ob-
tained by defining an efficiency factor as the maximum stable time step with which
the oscillation equation can be integrated divided by the number of evaluations of
F.�/ that each scheme requires to perform a single integration step. Inspection of
Table 2.2 shows that, with the exception of the leapfrog scheme and its time-filtered
variant, the third-order Adams–Bashforth scheme has the highest efficiency factor.
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Table 2.1 Summary of methods for the solution of ordinary differential equations. The second-
and third-order Runge–Kutta methods are low-storage variants; h D �t

Method Order Formulae

Forward 1 �nC1 D �n C hF.�n/

Backward 1 �nC1 D �n C hF.�nC1/

Asselin
leapfrog

1
�nC1 D �n�1 C 2hF .�n/;

�n D �n C �.�n�1 � 2�n C �nC1/

Leapfrog 2 �nC1 D �n�1 C 2hF .�n/

Adams–
Bashforth

2 �nC1 D �n C h

2
Œ3F .�n/� F.�n�1/�

Trapezoidal 2 �nC1 D �n C h

2
ŒF .�nC1/C F.�n/�

Runge–Kutta
(2-step explicit)

2
q1 D hF.�n/; �1 D �n C q1;

q2 D hF .�1/� q1; �nC1 D �1 C q2=2

Magazenkov 2
�n D �n�2 C 2hF .�n�1/

�nC1 D �n C h

2
Œ3F .�n/� F.�n�1/�

Leapfrog–
trapezoidal 2

�1 D �n�1 C 2hF.�n/;

�nC1 D �n C h

2
ŒF .�1/C F .�n/�

Adams–
Bashforth

3 �nC1 D�nC h

12
Œ23F .�n/�16F .�n�1/C5F .�n�2/�

Adams–
Moulton

3 �nC1 D �n C h

12
Œ5F .�nC1/C 8F .�n/� F.�n�1/�

Adams–Bashforth–Moulton
predictor corrector 3

�1 D �n C h

2
Œ3F .�n/� F.�n�1/� ;

�nC1 D �n C h

12
Œ5F .�1/C 8F .�n/� F .�n�1/�

Runge–Kutta
(3-step explicit)

3
q1 D hF.�n/; �1 D �n C q1=3;

q2 D hF .�1/� 5q1=9; �2 D �1 C 15q2=16;
q3 D hF.�2/� 153q2=128; �nC1 D �2 C 8q3=15

Runge–Kutta
(4-step explicit)

4
q1 D hF .�n/; q2 D hF .�n C q1=2/;

q3 D hF.�n C q2=2/; q4 D hF.�n C q3/;
�nC1 D �n C .q1 C 2q2 C 2q3 C q4/=6
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Table 2.2 Characteristics of the schemes listed in Table 2.1. The amplification factor and relative
phase change are for well-resolved solutions to the oscillation equation, and s D !�t . Max s is
the maximum value of !�t for which the solution is nonamplifying. The storage and efficiency
factors are defined in the text. No storage factor is given for implicit schemes

Method
Storage
factor

Efficiency
factor

Amplification
factor

Phase
error Max s

Forward 2 0 1C s2

2
1� s2

3
0

Backward – 1 1� s2

2
1� s2

3
1

Asselin
leapfrog 3 <1 1� �s2

2.1� �/1C .1C 2�/s2

6.1� �/ <1

Leapfrog 2 1 1 1C s2

6
1

Adams–
Bashforth-2 3 0 1C s4

4
1C 5

12
s2 0

Trapezoidal – 1 1 1� s2

12
1

Runge–Kutta-2 2 0 1C s4

8
1C s2

6
0

Magazenkov 3 0.67 1� s4

4
1C s2

6
0.67

Leapfrog–
trapezoidal 3 0.71 1� s4

4
1� s2

12
1.41

Adams–
Bashforth-3 4 0.72 1� 3

8
s4 1C 289

720
s4 0.72

Adams–
Moulton – 0 1C s4

24
1� 11

720
s4 0

Adams–Bashforth–Moulton
predictor corrector 4 0.60 1� 19

144
s4 1C 1243

8640
s4 1.20

Runge–Kutta–3 2 0.58 1� s4

24
1C s4

30
1.73

Runge–Kutta–4 4a 0.70 1� s6

144
1� s4

120
2.82

aA storage factor of 3 may be achieved following the algorithm of Blum (1962).

Now consider problems where the amplitude of the solution decays with time,
due to diffusion with a diffusivity M . As suggested in Sect. 2.2.4, the maximum
stable time step with which such problems can be integrated using consistent explicit
schemes must generally satisfy a constraint similar to M�t=.�x/2 < O.1/, where
�x is the spatial grid spacing, which requires�t to decrease more rapidly than �x
as the temporal and spatial meshes are refined. In such cases it is often most efficient
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to compute solutions using A-stable methods, among which the trapezoidal scheme
is frequently the most attractive alternative. In the special case whereM is an “eddy
diffusivity” that is proportional to�x, explicit methods remain efficient alternatives,
and a scheme whose region of absolute stability includes a large segment of the
negative real axis, such as the four-stage explicit third-order SSPRK scheme (2.49),
is particularly appropriate.

Finally, suppose the amplitude of some components of a solution vector decay
very rapidly, but that these components are sufficiently small during most of the pe-
riod of integration such that they have only a minor influence on the solution. In a
stiff problem such as this, L-stable methods are generally most efficient. Backward
differentiation formulae are one classical way to integrate stiff problems; however,
if one is content with low-order accuracy, Rosenbrock Runge–Kutta schemes may
be more efficient. By incorporating the Jacobian directly in the integration formula,
Rosenbrock Runge–Kutta methods also allow one to avoid the additional complica-
tions and possible inaccuracies involved in numerically solving the nonlinear alge-
braic equations generated by most implicit time-differencing schemes.

Problems

1. Suppose the truncation error in a finite difference method is of order s and that
the global error at some particular physical time (n�t) satisfies jEj D ˛.�t/s ,
where ˛ is a constant. A series of numerical simulations are conducted in which
�t is repeatedly halved, and the error E.�t/ is plotted as a function of �t on
a log–log scale. Show that the result will be a straight line of slope s.

2. *Test the theoretical result from the preceding problem by plotting the error
versus �t on a log–log scale for solutions obtained using the one-, two-, and
four-stage versions of the explicit Runge–Kutta scheme (2.45).

(a) First test solutions to

d 

dt
D  ;  .0/ D 1:

Show the error at t D 1 for all three schemes as three separate curves on the
same log–log plot. Compute solutions for �t D 0:05=.2n/ for n D 0; 1; : : : ; 4.
Compare the slopes of each curve with lines with slopes of 1, 2, and 4. Describe
how your results compare with theory.

(b) Next examine solutions to

d 

dt
D  3

3
;  .0/ D 1

at t D 1. Perform the same analysis of the error versus �t as you did in part
(a), again using values of �t in the range 0.05–0.05/(25). Again describe how
your results compare with theory.
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3. Use the mean-value theorem to prove (2.8).

4. Explicit two-stage second-order Runge–Kutta schemes are determined to within
one free parameter. Using the order conditions given in Sect. 2.3.2, determine
the number of free parameters available when specifying the coefficients of a
third-order three-stage explicit Runge–Kutta scheme.

5. Show that the implicit midpoint method (2.50) is algebraically equivalent to

�nC1 D �n C�t F
h
1
2
.�nC1 C �n/; tnC 1

2

i
:

Both the implicit midpoint method and the trapezoidal method are second-order
accurate. Compare the coefficients of the leading order truncation error in these
two methods. Which is smaller?

6. Compare and contrast the instabilities that arise when the oscillation equation is
integrated using either forward (Euler) differencing or the third-order two-step
scheme (2.55). If the integration is to be terminated at a fixed time tf, can either
scheme be used to obtain a numerical solution that converges to  .tf/ as �t is
repeatedly decreased?

7. Show that the three-step SSPRK scheme (2.48) is mathematically equivalent
to the simple three-stage scheme (2.45) when applied to the elementary test
problem (2.16).

8. *Evaluate the performance of several numerical schemes for approximating the
two-component system of ordinary differential equations

du

dt
D f v;

dv

dt
D �f u;

subject to the initial conditions u.0/ D 1, v.0/ D 0. Set f D π.

(a) Compare the exact solution with the solutions obtained using the follow-
ing schemes: (1) forward, (2) backward, (3) trapezoidal, (4) Matsuno, (5)
Huen variant of second-order Runge–Kutta, (6) leapfrog, and (7) second-order
Adams–Bashforth. Initialize the leapfrog and second-order Adams–Bashforth
schemes by taking one forward time step and set f�t D π=6. Submit plots of
u as a function of t comparing the various methods with the exact solution over
the interval 0 � t � 6. Set the vertical scale to �2 � u � 2 and terminate the
curve for wildly unstable schemes when u exceeds these limits.

(b) Compare the average damping or amplification and the average phase-speed
error per time step in your solution with the theoretical value for small f�t .
Choose f�t D 0:2 for this comparison and present your results in a table. The
table should contain the amplification per time step as predicted by theory (in
the limit of good numerical resolution) and as determined from the numerical
simulation. The table should also contain the phase-speed error as predicted by
theory and as determined by the numerical solution. In gathering data for the
table, run the simulations for long enough to get reasonable estimates for each
numerical scheme.
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9. *Suppose that one hopes to compute an extremely accurate approximation to
the derivative simply by making the grid spacing extremely small.

(a) Compare the error in the approximation of the derivative of  .t/ D cos.πt/
at tn D 3=4 using the one-sided difference (2.3), the centered difference (2.4),
and the centered fourth-order difference

4

3

�
 .tn C�t/ �  .tn ��t/

2�t

�
� 1

3

�
 .tn C 2�t/ �  .tn � 2�t/

4�t

�

as �t varies over the range between 1 and 10�16. Choose 50 evenly spaced
values of log.�t/ and graph the errors for these values versus �t on a log–log
plot. (Hint: An easy way to initialize the values of �t in MATLAB is with the
command: dt = logspace(-16,0);.)

(b) Why do the errors increase as �t becomes very small? Which method is
capable of producing the smallest error for an optimally selected value of �t?

10. *Compare solutions to the ozone photochemistry problem (2.92)–(2.95) gen-
erated by the second-order Rosenbrock method (2.113)–(2.115) with those
produced by two Newton’s method iterations of the backward-Euler scheme
(2.102)–(2.104). Use a constant time step of 15 min. Discuss errors in both the
phase and the amplitude of the ozone concentration.





Chapter 3
Finite-Difference Approximations
for One-Dimensional Transport

As discussed in Chap. 1, one basic strategy for representing continuous functions
on digital computers is through the set of values assumed by the function at a finite
number of grid points. Such grid-point methods approximate derivatives of the orig-
inal continuous function using finite differences. Finite differences were introduced
in connection with the solution of ordinary differential equations in Sect. 2.1.1. In
this chapter we examine the behavior of numerical schemes in which finite differ-
ences replace both time and space derivatives in time-dependent partial differential
equations.

3.1 Accuracy and Consistency

Recall that the truncation error of a finite difference indicates how rapidly its value
approaches that of the true derivative of a smooth function1 as the interval over
which the difference is computed approaches zero. For example, the truncation error
in the two-point centered difference is second order, as may be verified by expanding
the smooth function f .x/ in a Taylor series about x0 to yield

f .x0 C�x/� f .x0 ��x/

�x
� df

dx
.x0/ D O

�
.�x/2

�
:

In comparison with the approximation of time derivatives, the formulation of
higher-order finite-difference approximations to spatial derivatives is facilitated by
the stepwise nature of numerical solutions to most time-dependent problems. Af-
ter the nth step of the integration, the numerical solution � will be known at ev-
ery spatial grid point, and several grid-point values may be easily included in any
finite-difference approximation to a spatial derivative. Time derivatives, on the other
hand, are typically approximated using as few time levels as possible to minimize
storage requirements, and the only time levels available are those from previous

1 A smooth function is one that has many continuous derivatives.

D.R. Durran, Numerical Methods for Fluid Dynamics: With Applications to Geophysics, 89
Texts in Applied Mathematics 32, DOI 10.1007/978-1-4419-6412-0 3,
c� Springer Science+Business Media, LLC 1999, 2010



90 3 Finite-Difference Approximations for One-Dimensional Transport

time steps. Thus, higher-order finite-difference approximations to time derivatives
are inherently one-sided, as evident, for example, in the backward differentiation
formula methods (2.88)–(2.90).

A centered fourth-order approximation to df=dx can be obtained by determining
the five coefficients a; b; : : : e satisfying

df

dx
.x0/ D af .x0 C 2�x/C bf .x0 C�x/C cf .x0/

C df .x0 ��x/C ef .x0 � 2�x/CO
�
.�x/4

�
: (3.1)

Expanding f .x0 ˙ �x/ and f .x0 ˙ 2�x/ in Taylor series, substituting those ex-
pansions into (3.1), and equating the coefficients of like powers of �x yields five
equations for the unknown coefficients:

aC b C c C d C e D 0;

2a C b � d � 2e D 1=�x;

4a C b C d C 4e D 0;

8aC b � d � 8e D 0;

16aC b C d C 16e D 0:

The unique solution to this system requires c D 0 and yields an approximation to
the derivative of the form

df

dx
.x0/ D 4

3

�
f .x0 C�x/ � f .x0 ��x/

2�x

�

� 1

3

�
f .x0 C 2�x/� f .x0 � 2�x/

4�x

�
CO

�
.�x/4

�
: (3.2)

Similar procedures can be used to generate even-higher-order formulae, off-centered
formulae, and formulae for irregular grid intervals.

As an alternative to the brute force manipulation of Taylor series, the derivation
of higher-order finite-difference formulae can be facilitated by the systematic use
of operator notation and simple lower-order formulae. A simpler derivation of (3.2)
may be obtained by defining a finite-difference operator ınx such that

ınxf .x/ D f .x C n�x=2/� f .x � n�x=2/

n�x
: (3.3)

Using this notation, the centered second-order difference satisfies

ı2xf D df

dx
C .�x/2

6

d3f

dx3
CO

�
.�x/4

�
: (3.4)

From the definition of ınx,

ı2xf D ıx.ıxf / D f .x C�x/ � 2f .x/C f .x ��x/

.�x/2
;
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and a conventional Taylor series analysis of the truncation error shows that

ı2xf D d 2f

dx2
CO

�
.�x/2

�
:

It follows that ı2xı2xf is a second-order approximation to the third derivative of f ,
since

ı2xı
2
xf D ı2x

�
d2f

dx2
CO

�
.�x/2

�� D d3f

dx3
CO

�
.�x/2

�
:

Substitution of the preceding equation into (3.4) yields

�
1� .�x/2

6
ı2x

�
ı2xf D df

dx
CO

�
.�x/4

�
: (3.5)

Expansion of this formula via the operator definition (3.3) yields the centered fourth-
order difference (3.2). Although it allows finite-difference equations to be expressed
in a very compact form, operator notation will be reserved for complicated formulae
that become unwieldy when written in expanded form. Most of the finite-difference
schemes considered in the remainder of this chapter are sufficiently simple that they
will be expressed without using operator notation.

When f represents the flux of some physical quantity, it is sometimes advanta-
geous to approximate its spatial derivative as the difference between the fluxes at
the right and left boundaries of a single grid cell. Let FjC1=2 be the approximate
flux at the boundary between the cells centered at xj and xjC1, and Fj�1=2 the
flux at the boundary between cells at xj�1 and xj ; then the flux divergence may be
estimated as �

df

dx

�
j

�
FjC 1

2
� Fj� 1

2

�x
: (3.6)

Setting FjC1=2 D .fjC1 C fj /=2 yields a simple centered second-order approxi-
mation. Taylor series expansions can be employed to obtain expressions for fluxes
that give higher-order approximations to the flux divergence. For example, if

FjC 1
2

D 1

3
fjC1 C 5

6
fj � 1

6
fj�1;

(3.6) is accurate to O
�
.�x/3

�
. Expressions for fluxes giving divergences of orders

2–5 can be found in Table 5.2.
We turn now from the consideration of individual finite differences to examine

the accuracy of an entire finite-difference scheme. Suppose that an approximation
to the advection equation

@ 

@t
C c

@ 

@x
D 0 (3.7)

is to be obtained at the grid points .n�t; j�x/, where n and j are integers. It is con-
venient to represent the numerical approximation to  .n�t; j�x/ in the shorthand
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notation �nj . One possible finite-difference formula for the numerical approximation
of (3.7) is

�nC1
j � �nj
�t

C c
�nj � �nj�1

�x
D 0I (3.8)

when c > 0, this is known as the “upstream” or “donor-cell” scheme. The order
of accuracy of a finite-difference scheme is characterized by the residual error with
which the solution of the continuous equation fails to satisfy the finite-difference
formulation. Under the assumption that  is sufficiently smooth, its value at adja-
cent grid points can be obtained from a Taylor series expansion about .n�t; j�x/
and substituted into (3.8). Using (3.7) to simplify the result gives

 nC1
j �  nj

�t
C c

 nj �  nj�1
�x

D �t

2

�
@2 

@t2

�n
j

� c
�x

2

�
@2 

@x2

�n
j

C : : : :; (3.9)

where  nj D  .n�t; j�x/. The right side of (3.9) is the truncation error of the
finite-difference scheme. The order of accuracy of the scheme is determined by the
lowest powers of �t and �x appearing in the truncation error. According to (3.9),
the upstream scheme is first-order accurate in space and time. If the truncation error
of the finite-difference scheme approaches zero as �t ! 0 and �x ! 0, the
scheme is consistent. Inspection of (3.9) clearly shows that the upstream scheme is
consistent. Although it is not difficult to design consistent difference schemes, this
property should not be taken for granted. One sometimes encounters methods that
require additional relations between �t and �x, such as �t=�x ! 0, to achieve
consistency.

3.2 Stability and Convergence

The preceding measures of accuracy do not describe the difference between the
numerical solution �nj and the true solution  nj , which, of course, is the most direct
measure of the quality of the numerical solution. The error  nj � �nj is a grid-point
function, and its size is most conveniently measured by either the maximum norm
or the L2 (or Euclidean) norm.

The maximum norm, defined as

k�k1 D max
1�j�N j�j j; (3.10)

is simply the extremum of the grid-point values. The Euclidean, or L2, norm is
defined as

k�k2 �
0
@ NX
jD1

j�j j2�x
1
A
1=2

: (3.11)

If the constant scaling factor �x is ignored, (3.11) is just the length of an
N -dimensional vector (hence the name Euclidean norm). The inclusion of the



3.2 Stability and Convergence 93

�x factor makes (3.11) a numerical approximation to the square root of the spatial
integral of the function times its complex conjugate, ���, whence the name L2
norm.2 It might appear that the maximum norm is the most natural one to compute
when working with grid-point values; however, the L2 norm is also useful because
it is more closely related to conserved physical quantities, such as the total energy.
When it is not necessary to specify a specific norm, the subscript identifying the
norm is omitted.

A finite-difference scheme is said to be convergent of order .p; q/ if at any fixed
physical time n�t

k n � �nk D O Œ.�t/p�CO Œ.�x/q�

in the limit �x;�t ! 0. Here  n, the exact solution at time n�t , is evaluated
at the same grid points j�x as the approximate solution. The relationship between
convergence and consistency is described by the Lax equivalence theorem, which
states that if a finite-difference scheme is linear, stable, and accurate of order .p; q/,
then it is convergent of order .p; q/ (Lax and Richtmyer 1956). As was the case
with numerical approximations to ordinary differential equations, mere consistency
is not enough to ensure the convergence of a numerical method; the method must
also be stable.

The fundamental definition of stability makes no reference to the properties of the
true solution and only identifies the least-restrictive additional constraint that must
be satisfied to ensure the convergence of solutions generated by a consistent finite-
difference scheme. A consistent linear finite-difference scheme will be convergent,
and the Lax equivalence theorem will be satisfied, provided that for any time T there
exists a constant CT such that

k�nk � CT k�0k for all n�t � T (3.12)

and all sufficiently small values of �t and �x. In the preceding expression, CT
may depend on the time T , but not on �t , �x, or the number of time steps n. This
definition leaves the numerical solution tremendous latitude for growth with time,
but it rules out solutions that grow as a function of the number of time steps. If
a difference scheme is unstable in the sense that it fails to satisfy (3.12), repeated
reductions in�t and�x may generate an unbounded amplification in the numerical
approximation to the true solution at time T . In such a situation, the numerical
solution could hardly be expected to converge to the true solution in the limit �x,
�t ! 0.

The practical shortcoming of the preceding definition of stability is that it says
nothing about the quality of the solution that might be obtained when using finite

2 To better appreciate the notation used to represent the maximum andL2 norms, note that k�k1

is essentially the integral �Z
j�j1 dx

�1=1

and k�k2 is �Z
j�j2 dx

�1=2

:
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values of �t and �x; it only ensures that an accurate solution will be obtained in
the limit �x;�t ! 0. Schemes that are stable according to the criterion (3.12)
may, nevertheless, generate solutions that “blow up” in practical applications (see
Sect. 3.5.2 for an example). To ensure that the numerical solution is qualitatively
similar to the true solution when �x and �t are finite, it is often useful to impose
stability constraints that are more stringent than (3.12). This is reminiscent of the
way that A-stability was introduced in the study of ordinary differential equations
to provide more information about the qualitative character of “nonconverged” so-
lutions computed at relatively coarse resolution.

In many wave propagation or diffusion problems, the norm of the true solution
is nonincreasing with time, and in such instances it is appropriate to require that the
numerical scheme satisfy

k�nk � k�0k for all n: (3.13)

In contrast to (3.12), this condition is not necessary for convergence, and it cannot
be sensibly imposed without specific knowledge about the boundedness of the solu-
tions to the associated partial differential equation. Nevertheless, (3.13) will gener-
ally be taken as the practical stability condition required for problems for which the
norm of the true solution does not grow with time.

It is relatively easy to formulate consistent difference schemes and to determine
their truncation error and order of accuracy. The analysis of stability can, however,
be far more difficult, particularly when the finite-difference scheme and the associ-
ated partial differential equation are nonlinear. Thus, our initial discussion of sta-
bility will be focused on the simplest case – linear finite-difference schemes for
the approximation of linear partial differential equations with constant coefficients.
Nonlinear equations and linear equations with variable coefficients will be consid-
ered in Chap. 4.

3.2.1 The Energy Method

In practice, the energy method is used much less frequently than the von Neumann
method, which will be discussed in the next section. Nevertheless, the energy
method is important because, unlike the von Neumann method, it can be applied
to nonlinear equations and to problems without periodic boundaries. The basic idea
behind the energy method is to find a positive-definite quantity like

P
j .�

n
j /
2 and

show that this quantity is bounded for all n. If
P
j .�

n
j /
2 is bounded, the solution is

stable with respect to the L2 norm.
As an example, let us investigate the stability of the upstream finite-difference

scheme (3.8). Defining � D c�t=�x, we may write the scheme as

�nC1
j D .1 � �/�nj C ��nj�1: (3.14)
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Squaring both sides and summing over all j gives

X
j

.�nC1
j /2 D

X
j

�
.1 � �/2.�nj /2 C 2�.1� �/�nj �

n
j�1 C �2.�nj�1/2

�
: (3.15)

Assuming cyclic boundary conditions,3

X
j

.�nj�1/2 D
X
j

.�nj /
2; (3.16)

and using the Schwarz inequality (which states that for two vectors u and v, ju �vj �
kukkvk),

X
j

�nj �
n
j�1 �

2
4X

j

.�nj /
2

3
5
1=2 2

4X
j

.�nj�1/2
3
5
1=2

D
X
j

.�nj /
2: (3.17)

If �.1 � �/ � 0, all three coefficients in (3.15) are positive, and (3.16) and (3.17)
may be used to construct the inequality

X
j

.�nC1
j /2 � �

.1 � �/2 C 2�.1� �/C �2
�X
j

.�nj /
2 D

X
j

.�nj /
2; (3.18)

which requires k�nC1k2 � k�0k2 and implies that the scheme is stable. The condi-
tion used to obtain (3.18),

�.1 � �/ � 0; (3.19)

is therefore a sufficient condition for stability. Under the assumption that � > 0,
division of (3.19) by � leads to the relation � � 1, and the total constraint on
� is therefore 0 < � � 1. A similar treatment of the case � < 0 leads to the
contradictory requirement that � > 1 and provides no additional solutions. Thus,
recalling the definition of � and noting that � D 0 satisfies (3.19), we may write the
stability condition as

0 � c�t

�x
� 1:

As is typical with most conditionally stable difference schemes, there is a maximum
limit on the time step beyond which the scheme is unstable, and the stability limit
becomes more severe as the spatial resolution is increased.

3 If more general boundary conditions are imposed at the edges of the spatial domain, a rigorous
stability analysis becomes much more difficult. The determination of stability in the presence of
nonperiodic boundaries is discussed in Sect. 9.1.6.
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3.2.2 Von Neumann’s Method

One drawback of the energy method is that each new problem requires fresh insight
to define an appropriate energy and to show that the finite-difference scheme pre-
serves a bound on that energy. Von Neumann’s method has the advantage that it can
be applied by following a prescribed procedure; however, it is applicable only to
linear finite-difference equations with constant coefficients.4 The basic idea of the
von Neumann method is to represent the discretized solution at some particular time
step by a finite Fourier series of the form

�nj D
NX

kD�N
ankeikj�x;

and to examine the stability of the individual Fourier components. The total so-
lution will be stable if and only if every Fourier component is stable. The use of
finite Fourier series is strictly appropriate only if the spatial domain is periodic.
When problems are posed with more general boundary conditions, a rigorous sta-
bility analysis is more difficult, but the von Neumann method still provides a useful
way of weeding out obviously unsuitable schemes.

A key property of Fourier series is that individual Fourier modes are eigenfunc-
tions of the derivative operator, i.e.,

d

dx
eikx D ikeikx:

Finite Fourier series have an analogous property in that individual modes eikj�x are
eigenfunctions of linear finite-difference operators. Thus, if the initial conditions
for some linear, constant-coefficient finite-difference scheme are �nj D eikj�x , after
one iteration the solution will have the form

�nC1
j D Akeikj�x ;

where the amplification factor Ak is a complex constant determined by the form
of the finite-difference formula.5 Since the analysis is restricted to linear constant-
coefficient schemes, the amplification factor will not vary from time step to time
step, and if an

k
denotes the amplitude of the kth finite Fourier component at the nth

time step, then
ank D Aka

n�1
k D .Ak/

na0k :

It follows that the stability of each Fourier component is determined by the modulus
of its amplification factor.

4 To apply von Neumann’s method to more general problems, the governing finite-difference equa-
tions must be linearized and any variable coefficients must be frozen at some constant value. The
von Neumann stability of the family of linearized, frozen-coefficient systems may then be exam-
ined. See Sect. 4.4.
5 Except in this section, the amplification factor will be written without the subscript k for con-
ciseness. When several schemes are discussed together, subscripts in roman font will be used to
distinguish between the amplification factors of the various schemes.
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The von Neumann stability condition, which is necessary and sufficient for the
stability of a two-time-level linear constant-coefficient finite-difference equation,6

requires the amplification factor of every Fourier component resolvable on the grid
to be bounded such that, for all sufficiently small �t and �x,

jAk j � 1C ��t; (3.20)

where � is a constant independent of k, �t , and �x. This condition ensures that a
consistent finite-difference scheme satisfies the minimum stability criteria for con-
vergence in the limit �x, �t ! 0, (3.12). In applications where the true solution
is bounded by the norm of the initial data, it is usually advantageous to enforce the
more stringent requirement that

jAk j � 1; (3.21)

which will guarantee satisfaction of the stability condition (3.13). When the von
Neumann condition is satisfied, every finite Fourier component is stable, and the
full solution, being a linear combination of the individual Fourier components, must
also be stable.

As an illustration of the von Neumann method, consider once again the finite-
difference equation (3.14). The solutions to the associated partial differential
equation (3.7) do not grow with time, so we will require jAk j � 1. Substitution of
an arbitrary Fourier component, of the form eikj�x , into (3.14) yields

Akeikj�x D .1 � �/eikj�x C �eik.j�1/�x :

Dividing out the common factor eikj�x gives

Ak D 1 � �C �e�ik�x : (3.22)

The magnitude of Ak is obtained by multiplying by its complex conjugate and tak-
ing the square root. Thus,

jAkj2 D .1 � �C �e�ik�x/.1 � �C �eik�x/

D 1 � 2�.1 � �/.1 � cosk�x/: (3.23)

The von Neumann condition (3.21) will therefore be satisfied if

1 � 2�.1� �/.1 � cosk�x/ � 1:

Since 1 � cosk�x > 0 for all wave numbers except the trivial case k D 0, the
preceding inequality reduces to

�.1 � �/ � 0;

6 The sufficiency of the von Neumann condition holds only for single equations in one unknown.
The stability of systems of finite-difference equations in several unknown variables is discussed in
Sect. 4.1.



98 3 Finite-Difference Approximations for One-Dimensional Transport

which is identical to the condition (3.19) obtained using the energy method. As
discussed previously in connection with (3.19), this stability condition may be
expressed as

0 � c�t

�x
� 1:

Inspection of (3.23) shows that the 2�x wave grows most rapidly in any in-
tegration performed with an unstable value of �. Thus, as it “blows up,” an un-
stable solution becomes dominated by large-amplitude 2�x waves. Most other
finite-difference approximations to the advection equation exhibit the same ten-
dency: When solutions become unstable, they usually become contaminated by
large-amplitude short waves. The upstream scheme is, nevertheless, unusual in that
all waves become unstable for the same critical value of �. In many other schemes,
such as the leapfrog-time centered-space formulation (3.59), there exist values of �
for which only a few of the shorter wavelengths are unstable. One might suppose
that such nominally unstable values of � could still be used in numerical integra-
tions if the initial data were filtered to remove all amplitude from the unstable finite
Fourier components; however, even if the initial data have zero amplitude in the un-
stable modes, round-off error in the numerical computations will excite the unstable
modes and trigger the instability.

3.2.3 The Courant–Friedrichs–Lewy Condition

The basic idea of the Courant–Friedrichs–Lewy (CFL) condition is that the solution
of a finite-difference equation must not be independent of the data that determine
the solution to the associated partial differential equation. The CFL condition can be
made more precise by defining the domain of influence of a point .x0; t0/ as that re-
gion of the x–t plane where the solution to some particular partial differential equa-
tion is influenced by the solution at .x0; t0/. A related concept, the domain of de-
pendence of a point .x0; t0/, is defined as the set of points containing .x0; t0/ within
their domains of influence. The domain of dependence of .x0; t0/will therefore con-
sist of all points .x; t/ at which the solution has some influence on the solution at
.x0; t0/. A similar concept applicable to the discretized problem is the numerical
domain of dependence of a grid point .n0�t; j0�x/, which consists of the set of all
nodes on the space–time grid .n�t; j�x/ at which the value of the numerical solu-
tion influences the numerical solution at .n0�t; j0�x/. The CFL condition requires
that the numerical domain of dependence of a finite-difference scheme include the
domain of dependence of the associated partial differential equation. Satisfaction
of the CFL condition is a necessary condition for stability, but is not sufficient to
guarantee stability.

The nature of the CFL condition can be illustrated by considering the advection
equation (3.7), which has general solutions of the form  .x � ct/. Thus, the true
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t t

Dt
Dt

DxDx

xx

a b

Fig. 3.1 The influence of the time step on the relationship between the numerical domain of depen-
dence of the upstream scheme (open circles) and the true domain of dependence of the advection
equation (dashed line): a unstable �t , b stable�t

domain of influence of a point .x0; t0/ is the straight line

t D t0 C 1
c
.x � x0/; t � t0:

The same “characteristic line” also defines the true domain of dependence of
.x0; t0/, except that one looks backward in time by requiring t � t0. The true domain
of dependence is plotted as a dashed line in Fig. 3.1, together with those grid points
composing the numerical domain of dependence of the upstream finite-difference
scheme (3.14). The two panels in this figure show the influence of two different time
steps on the shape of the numerical domain of dependence. In Fig. 3.1a, the initial
value of  along the x-axis, which determines the solution to the partial differential
equation at .n�t; j�x/, plays no role in the determination of the finite-difference
solution �nj . The numerical solution can be in error by any arbitrary amount, and
will not converge to the true solution as �t;�x ! 0 unless there is a change in
the ratio �t=�x. Hence, the finite-difference method, which is consistent with the
original partial differential equation, must be unstable (or else the Lax equivalence
theorem would be violated).

The situation shown in Fig. 3.1b is obtained by halving the time step. Then the
numerical domain of dependence contains the domain of dependence of the true
solution, and it is possible for the numerical solution to be stable. In this example
the CFL condition requires the slope of the characteristic curve to be greater than
the slope of the left edge – and less than the slope of the right edge – of the domain
of dependence. As evident from Fig. 3.1, the slope condition at the right edge of the
domain is 1=c � 1, which is always satisfied. The slope condition at the left edge
of the domain may be expressed as �t=�x � 1=c. If c > 0, this requires

c�t=�x � 1; (3.24)

and the nonnegativity of �t and �x implies

c�t=�x � 0: (3.25)
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Simultaneous satisfaction of (3.24) and (3.25) is obtained when

0 � c
�t

�x
� 1: (3.26)

In the case c < 0, similar reasoning leads to contradictory requirements, and the
solution is unstable.

The quantity jc�t=�xj is known as the Courant number. In more general prob-
lems the solution may consist of waves traveling at different speeds, in which case
the Courant number should be defined such that c is the speed of the most rapidly
moving wave. It is sometimes suggested that the CFL condition is simply the re-
quirement jc�t=�xj � 1, but as demonstrated in the next example, the true CFL
condition is typically not jc�t=�xj � 1. In fact, in some cases there is no point
in trying to characterize the true CFL condition in terms of the Courant number
because the Courant number has only minimal influence on the geometry of the
numerical domain of dependence. For example, all stable semi-Lagrangian approx-
imations to the advection equation satisfy the CFL condition, and do so without
respecting any particular maximum value for jc�t=�xj (see Chap. 7).

The condition (3.26) is identical to those stability conditions already obtained
using the energy and von Neumann methods, but such agreement is actually rather
unusual. The CFL condition is only a necessary condition for stability, and in many
cases the sufficient conditions for stability are more restrictive than those required
by the CFL condition. As an example, consider the following approximation to the
advection equation,

ı2t� C c

�
4

3
ı2x� � 1

3
ı4x�

�
D 0;

which uses the fourth-order-accurate approximation to the spatial derivative (3.2).
Since the spatial difference utilizes a five-grid-point-wide stencil, the CFL condition
is satisfied when ˇ̌

ˇ̌c �t
�x

ˇ̌
ˇ̌ � 2:

Yet the actual sufficient condition for stability is the much more restrictive condition
ˇ̌̌
ˇc �t�x

ˇ̌̌
ˇ � 0:728;

which may be derived via a von Neumann stability analysis.

3.3 Space Differencing for Simulating Advection

Having examined the errors associated with time differencing in Chap. 2, let us now
consider the errors introduced when spatial derivatives are replaced with finite dif-
ferences. To isolate the influence of the spatial differencing, the time dependence
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will not be discretized. Our investigation will focus on the constant-wind-speed
advection equation,

@ 

@t
C c

@ 

@x
D 0; (3.27)

which both describes the important physical process of transport by macroscopic
fluid motions and also provides the simplest prototype equation with wavelike so-
lutions (as discussed in connection with (1.4)). If the x-domain is periodic (or un-
bounded), the spatial structure of the solution may be represented by a Fourier series
(or a Fourier integral), and a solution for each individual mode may be sought in the
form of a traveling wave:

 .x; t/ D ei.kx�!t/:

Here k, equal to 2π divided by the wavelength, is the wave number, and !, equal
to 2π divided by the period, is the frequency. Substitution of this assumed solution
into (3.27) shows that the traveling wave will satisfy the governing equation only if
its frequency satisfies the dispersion relation

! D ck:

The wave travels with constant amplitude at a phase speed !=k D c. These waves
are nondispersive, meaning that their phase speed is independent of the wave num-
ber. The energy associated with an isolated “packet” of waves propagates at the
group velocity @!=@k D c, which is also independent of wave number. Readers
unfamiliar with the concept of group velocity may wish to consult Gill (1982) or
Whitham (1974).

3.3.1 Differential–Difference Equations and Wave Dispersion

Suppose that the spatial derivative in the advection equation is replaced with a
second-order centered difference. Then (3.27) becomes the differential–difference
equation:7

d�j

dt
C c

�
�jC1 � �j�1

2�x

�
D 0: (3.28)

Individual wavelike solutions to this equation may be obtained in the form

�j .t/ D ei.kj�x�!2ct/; (3.29)

7 The set of differential–difference equations (3.28) for �j at every grid point constitute a large
system of ordinary differential equations that could, in principle, be evaluated numerically using
standard packages. This procedure, known as the method of lines, is usually not the most efficient
approach.
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where !2c denotes the frequency associated with centered second-order spatial
differencing. Substitution of (3.29) into the differential–difference equation yields

�i!2c�j D �c
 

eik�x � e�ik�x

2�x

!
�j ;

from which one obtains the dispersion relation

!2c D c
sin k�x

�x
: (3.30)

Because !2c is real, there is no change in wave amplitude with time, and therefore
no amplitude error. However, the phase speed,

c2c � !2c

k
D c

sin k�x

k�x
; (3.31)

is a function of k, so unlike the solutions to the original advection equation, these
waves are dispersive. If the numerical resolution is good, k�x � 1, and the Taylor
series expansion sin x � x � x3=6 may be used to obtain

c2c � c
�
1 � 1

6
.k�x/2

�
;

showing that the phase-speed error is second order in k�x. Although the error for
a well-resolved wave is small, the phase-speed error does become significant as the
spatial resolution decreases. The least well resolved wave on a numerical grid has
wavelength 2�x and wave number k D π=�x. According to (3.31), the phase
speed of the 2�x wave is zero. Needless to say, this is a considerable error. The
situation with the group velocity

@!2c

@k
D c cos k�x (3.32)

is, however, even worse. The group velocity of well-resolved waves is approxi-
mately correct, but the group velocity of the poorly resolved waves is severely re-
tarded. The group velocity of the 2�x wave is �c ; its energy propagates backward!

If the spatial derivative in the advection equation is replaced with a fourth-order
centered difference, the resulting differential–difference equation

d�j

dt
C c

�
4

3

�
�jC1 � �j�1

2�x

�
� 1

3

�
�jC2 � �j�2

4�x

��
D 0 (3.33)

has wave solutions of the form (3.29), provided that the frequency !4c satisfies the
dispersion relation

!4c D c

�x

�
4

3
sin k�x � 1

6
sin 2k�x

�
:

As is the case for centered second-order differences, there is no amplitude error,
only phase-speed error. Once again, the waves are dispersive, and the phase speed
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of the 2�x wave is zero. The phase-speed error of a well-resolved wave is, however,
reduced to O

�
.k�x/4

�
, since for k�x small,

c4c D !4c

k
� c

�
1 � .k�x/4

30

�
:

The group velocity

@!4c

@k
D c

�
4

3
cos k�x � 1

3
cos 2k�x

�
(3.34)

is also fourth-order accurate for well-resolved waves, but the group velocity of the
2�x wave is �5c=3, an even greater error than that obtained using centered second-
order differences.

The influence of spatial differencing on the frequency is illustrated in Fig. 3.2. As
suggested by the preceding analysis, !4c approaches the true frequency more rapidly
than !2c as k�x ! 0, but both finite-difference schemes completely fail to capture
the oscillation of 2�x waves. The greatest advantages of the fourth-order differ-
ence over the second-order formulation are evident at “intermediate” wavelengths
on the order of 3�x to 8�x. The improvements in the frequencies of these inter-
mediate waves also generates a considerable improvement in their phase speeds and
group velocities. The variation in the phase speed of a Fourier mode as a function of
wave number is shown in Fig. 3.3. The improvement in the phase speed associated
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Fig. 3.2 Scaled frequency .!=c/ as a function of wave number for the analytic solution of the ad-
vection equation (dotted line) and for corresponding differential–difference approximations using
second-order (solid line) and centered fourth-order (dashed line) differences
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Fig. 3.3 Phase speed as a function of numerical resolution for the analytic solution of the ad-
vection equation (dotted line) and for corresponding differential–difference approximations using
second-order (solid line) and centered fourth-order (dashed line) differences

Fig. 3.4 Misrepresentation of a 2�x wave translating to the right as a decaying standing wave
when the wave is sampled at fixed grid points on a numerical mesh. The grid-point values are
indicated by dots at the earlier time and diamonds at the later time

with an increase from second-order to fourth-order accurate spatial differences is
apparent even in the 3�x wave. The fourth-order difference does not, however, im-
prove the phase speed of the 2�x wave. In fact, almost all finite-difference schemes
fail to propagate the 2�x wave. The basic problem is that there are only two pos-
sible configurations, differing by a phase angle of 180ı, in which 2�x waves can
appear on a finite mesh. Thus, as shown in Fig. 3.4, the grid-point representation of
a translating 2�x wave will be misinterpreted as a decaying standing wave.

The group velocities for the true solution and for the solutions of the second-
and fourth-order differential–difference equations are plotted as a function of wave
number in Fig. 3.5. The fourth-order scheme allows a better approximation of the
group velocity for all but the shortest wavelengths. As discussed previously, the
group velocity of the 2�x wave produced by the fourth-order finite difference is
actually worse than that obtained with the second-order method. The degradation of
the 2�x group velocity in the higher-order scheme – or equivalently, the increase
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Fig. 3.5 Group velocity as a function of numerical resolution for the analytic solution of the
advection equation (dotted line) and corresponding differential–difference approximations using
second-order (solid line) and centered fourth-order (dashed line) differences

in @!=@k at k D π=�x in Fig. 3.2 – is an unfortunate by-product of the inability of
all finite-difference schemes to propagate the 2�x wave and the otherwise desirable
tendency of higher-order schemes to better approximate ! for wavelengths slightly
longer than 2�x. In the absence of dissipation, the large negative group velocities
associated with the 2�x wave rapidly spread short-wavelength noise away from
regions where 2�x waves are forced.

One might attempt to improve the representation of extremely short waves by
avoiding centered differences. If the spatial derivative in the advection equation is
replaced with a first-order one-sided difference, (3.27) becomes

d�j

dt
C c

�
�j � �j�1

�x

�
D 0: (3.35)

Substitution of a wave solution of the form (3.29) into (3.35) yields the dispersion
relation for the frequency associated with one-sided spatial differencing,

!1s D c

i�x

�
1 � e�ik�x

	
D c

�x



sin k�x C i.cosk�x � 1/�: (3.36)

The real part of !1s is identical to the real part of !2c, and hence one-sided spatial
differencing introduces the same dispersive error as centered second-order spatial
differencing. Unlike centered differencing, however, the one-sided difference also
generates amplitude error through the imaginary part of !1s. The amplitude of the
differential–difference solution will grow or decay at the rate

exp
�
� c

�x
.1 � cos k�x/t

	
:
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a b

Fig. 3.6 Exact solution and differential–difference solutions for a advection of a spike over a
distance of five grid points, and b advection of the sum of equal-amplitude 7:5�x and 10�x
sine waves over a distance of 12 grid points. Exact solution (dot-dashed line), one-sided first-
order solution (short-dashed line), centered second-order solution (long-dashed line), and centered
fourth-order solution (solid line). The distribution is translating to the right. Grid-point locations
are indicated by the tick marks at the top and bottom of the plot

Thus, poorly resolved waves change amplitude most rapidly. If c > 0, the solution
damps; the solution amplifies when c < 0. Note that if c < 0, the numerical domain
of dependence does not include the domain of dependence of the original partial
differential equation, so instability could also be predicted from the CFL condition.

A comparison of the performance of first-order, second-order, and fourth-order
spatial differencing is provided in Fig. 3.6, which shows analytic solutions to the
advection equation and numerical solutions to the corresponding differential–
difference problem. The differential–difference equations are solved numerically
on a periodic spatial domain using a fourth-order Runge–Kutta scheme to integrate
(3.28), (3.33), and (3.35) with a very small time step.

Figure 3.6a shows the distribution of � that develops when the initial condition
is a narrow spike, such that �j .t D 0/ is zero everywhere except at the midpoint
of the domain. Although the numerical domain is periodic, large-amplitude per-
turbations have not reached the lateral boundaries at the time shown in Fig. 3.6a.
The narrow initial spike is formed by the superposition of many waves of differ-
ent wavelengths; however, the Fourier components with largest amplitude are all of
very short wavelength. The large diffusive error generated by one-sided differencing
rapidly damps these short wavelengths and reduces the spike to a highly smoothed
low-amplitude disturbance. The centered second- and fourth-order differences also
produce a dramatic distortion in the amplitude of the solution. Although the centered
schemes preserve the amplitude of each individual Fourier component, the various
components propagate at different speeds, and thus the superposition of these com-
ponents ceases to properly represent the true solution. Consistent with the values
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of the group velocity given by (3.32) and (3.34), the energy in the shortest waves
propagates back upstream from the initial location of the spike. As predicted by the-
ory, the upstream propagation of the 2�x wave is most rapid for the fourth-order
method. Switching to a higher-order scheme does not improve the performance of
finite-difference methods when they are used to model poorly resolved features like
the spike in Fig. 3.6a; in fact, in many respects the fourth-order solution is worse
than the second-order result.

The spike test is an extreme example of a common problem for which many nu-
merical schemes are poorly suited, namely, the task of properly representing solu-
tions with near discontinuities. As such, the spike test provides a reference point that
characterizes a scheme’s ability to properly model poorly resolved waves. A second
important reference point is provided by the test in Fig. 3.6b, which examines each
scheme’s ability to approximate features at an intermediate numerical resolution.
The solution in Fig. 3.6b is the sum of equal-amplitude 7.5�x and 10�x waves; in
all other respects the problem is identical to that in Fig. 3.6a. Unlike the situation
with the spike test, the higher-order schemes are clearly superior in their treatment
of the waves in Fig. 3.6b. Whereas the first-order difference generates substantial
amplitude error and is distinctly inferior to the other two schemes, the second-order
difference produces a reasonable approximation to the correct solution. Centered
second-order differencing does, however, generate a noticeable lag in the phase
speed of the disturbance (as in (3.31)). Moreover, since the phase lag of the 7:5�x
wave differs from that of the 10�x wave in the second-order solution, the relative
phase of the two waves changes during the simulation, and a significant error de-
velops in the amplitude of the two rightmost wave crests. This example serves to
emphasize that although centered differences do not produce amplitude errors in
individual Fourier components, they still generate amplitude errors in the total solu-
tion. Finally, in contrast to the first- and second-order schemes, the errors introduced
by fourth-order differencing are barely detectable at this time in the simulation.

The damping associated with the first-order upstream scheme (3.35) can be sig-
nificantly reduced by using a higher-order one-sided difference. The differential–
difference equation

d�j

dt
C c

6

�
2�jC1 C 3�j � 6�j�1 C �j�2

�x

�
D 0 (3.37)

may be obtained by replacing the spatial derivative in the advection equation with
a third-order difference. The dispersion relation associated with this differential–
difference equation is

!3s D c

�x

��
4

3
sin k�x � 1

6
sin 2k�x

�
� i

3
.1 � cos k�x/2

�
: (3.38)

The real part of !3s is identical to that of !4c, and the phase-speed errors associated
with the third- and fourth-order schemes are therefore identical. As was the case
with first-order one-sided differencing, the sign of the imaginary part of !3s is de-
termined by the sign of c such that solutions amplify for c < 0 and damp for c > 0.
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a b

Fig. 3.7 Exact solution and differential-difference solutions for a advection of a spike over a
distance of five grid points, and b advection of the sum of equal-amplitude 7:5�x and 10�x
sine waves over a distance of 12 grid points. Exact solution (dot-dashed line), one-sided first-
order solution (short-dashed line), centered second-order solution (long-dashed line), and one-
sided third-order solution (solid line)

The damping associated with the third-order scheme is considerably less than that
of the first-order scheme. According to (3.36) and (3.38),

=.!3s/

=.!1s/
D 1

3
.1 � cosk�x/:

As might be expected with a higher-order scheme, the well-resolved waves are
damped much more slowly by the third-order approximation. Even the short waves
show substantial improvement.

Some idea of the relative performance of the first-, second-, and third-order dif-
ferences is provided in Fig. 3.7, which is identical to Fig. 3.6 except that the solid
curve now represents the third-order solution. As indicated in Fig. 3.7, the damping
produced by the third-order scheme is much weaker than that generated by first-
order upstream differencing. Moreover, the third-order solution to the spike test is
actually better than the second- and fourth-order results (compare Figs. 3.6a, 3.7a).
In problems with extremely poor resolution, such as the spike test, the tendency
of the third-order scheme to damp short wavelengths can be beneficial, because it
largely eliminates the dispersive train of waves found in the centered difference so-
lutions. On the other hand, the damping of intermediate wavelengths is sufficiently
weak that the third-order solution retains almost the same amplitude in the region of
the spike as the “nondamping” second- and fourth-order schemes. The situation in
Fig. 3.7b is somewhat different, and it is not entirely obvious whether the third-order
scheme should be preferred over the second-order scheme. The third-order scheme
clearly exhibits less phase-speed error, but it also shows more amplitude error than
the centered second-order method.
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3.3.2 Dissipation, Dispersion, and the Modified Equation

One way to estimate phase-speed and amplitude error is to derive the differential–
difference dispersion relation, as described in the preceding section. Another way to
characterize the relative magnitude of the these errors is to examine the lowest-order
terms in the truncation error of the finite-difference formula. The truncation errors
for each of the finite-difference approximations considered in the preceding section
are as follows:
One-sided, first-order:

 j �  j�1
�x

D @ 

@x
� �x

2

@2 

@x2
C .�x/2

6

@3 

@x3
CO

�
.�x/3

�
: (3.39)

Centered, second-order:

 jC1 �  j�1
2�x

D @ 

@x
C .�x/2
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@x3
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�
.�x/4

�
:

One-sided, third-order:
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Centered, fourth-order:
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:

If one of these formulae is used to determine the truncation error in a differen-
tial–difference approximation to the advection equation and the resulting scheme is
O Œ.�x/m� accurate, the same differential–difference scheme will approximate the
modified equation

@ 

@t
C c

@ 

@x
D a.�x/m

@mC1 
@xmC1 C b.�x/mC1 @mC2 

@xmC2 (3.40)

to O
�
.�x/mC2�, where a and b are rational numbers determined by the partic-

ular finite-difference formula. Thus, as �x ! 0, the numerical solution to the
differential–difference equation will approach the solution to the modified equation
more rapidly than it approaches the solution to the advection equation. A qualitative
description of the effects of the leading-order errors in the differential–difference
equation may therefore be obtained by examining the prototypical response gener-
ated by each of the forcing terms on the right side of the modified equation (3.40).

The term with the even-order derivative in (3.40) introduces a forcing identical
to that in the prototypical equation

@�

@t
D .�1/mC1 @2m�

@x2m
;
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whose solutions

�.x; t/ D C eikxe�k2mt

become smoother with time because the shorter-wavelength modes decay more
rapidly than the longer modes. Thus, the term with the lowest-order even deriva-
tive produces amplitude error, or numerical dissipation, in the approximate solution
of the advection equation. The odd-order derivative on the right side of (3.40) intro-
duces a forcing identical to that in the prototypical equation

@�

@t
D � @

2mC1�
@x2mC1 ;

whose solutions are waves of the form

�.x; t/ D C ei.kx�!t/; where ! D .�1/mk2mC1:

For m > 0, these waves are dispersive, because their phase speed !=k depends
on the wave number k. As a consequence, the lowest-order odd derivative on the
right side of (3.40) produces a wave-number-dependent phase-speed error known as
numerical dispersion.

Centered spatial differences do not produce numerical dissipation because there
are no even derivatives in the truncation error of a centered difference scheme.
Numerical dissipation is, however, produced by the leading-order term in the trun-
cation error of the one-sided differences. There is a pronounced qualitative differ-
ence between the solutions generated by schemes with leading-order dissipative and
leading-order dispersive errors. The modified equations associated with the pre-
ceding first- and second-order spatial differences both include identical terms in
@3 =@x3. As a consequence, both schemes produce essentially the same disper-
sive error. The dispersive errors in the third- and fourth-order schemes are also very
similar because the truncation error associated with each of these schemes includes
identical terms in @5 =@x5. Yet, as was illustrated in Figs. 3.6 and 3.7, the impact of
dispersion on even- and odd-order schemes is very different. Numerical dispersion
is the only error in the centered even-order differences, so when short-wavelength
modes are present, the dispersion is quite evident. In contrast, the numerical dis-
persion generated by the one-sided odd-order schemes is largely obscured by the
lower-order dissipative errors that dominate the total error in these schemes.

3.3.3 Artificial Dissipation

As suggested by the test problems shown in Figs. 3.6 and 3.7, the lack of dissipa-
tion in centered spatial differences can sometimes be a disadvantage. In particu-
lar, the error produced by the dispersion of poorly resolved Fourier components is
free to propagate throughout the solution without loss of amplitude. It is therefore
often useful to add scale-selective dissipation to otherwise nondissipative schemes
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to damp the shortest resolvable wavelengths. Moreover, in nonlinear problems it is
often necessary to remove energy from the shortest spatial scales to prevent the de-
velopment of numerical instabilities that can arise through the nonlinear interaction
of short-wavelength modes (see Sect. 4.5).

The centered finite-difference approximations to even spatial derivatives of or-
der 2 or higher provide potential formulae for scale-selective smoothers. Consider
the isolated effect of a second-derivative smoother in an equation of the form

d�j

dt
D �2



�jC1 � 2�j C �j�1

�
; (3.41)

where �2 is a parameter that determines the strength of the smoother. Substitution
of solutions of the form

�j D b.t/eikj�x (3.42)

into (3.41) yields
db

dt
D �2�2.1 � cos k�x/b;

implying that 2�x waves are damped most rapidly, and that well-resolved waves un-
dergo an OŒ.k�x/2� dissipation. Indeed, if the second-derivative smoother is com-
bined with the basic centered second-order difference,8 the total truncation error in
the smoothed difference becomes

 jC1 �  j�1
2�x

� �2


 jC1 � 2 j C  j�1

�

D @ 

@x
� .�x/2

�
�2
@2 

@x2
� 1

6

@3 

@x3

�
CO

�
.�x/4

�
:

Thus, the smoothed difference remains of second order, but the leading-order trun-
cation error becomes both dissipative and dispersive. Note that as �x ! 0, the
preceding scheme will generate less dissipation than one-sided differencing, be-
cause as indicated by (3.39), one-sided differencing produces O.�x/ dissipation.
Furthermore, the addition of a separate smoother allows the dissipation rate to be
explicitly controlled through the specification of � 2.

Greater scale selectivity can be obtained using a fourth-derivative filter of
the form

d�j

dt
D �4


��jC2 C 4�jC1 � 6�j C 4�j�1 � �j�2
�
; (3.43)

or the sixth-derivative filter

d�j

dt
D �6



�jC3 � 6�jC2 C 15�jC1 � 20�j C 15�j�1 � 6�j�2 C �j�3

�
:

(3.44)

8 If a dissipative filter is used in conjunction with leapfrog time differencing, the terms involved
in the filtering calculation must be evaluated at the t � �t time level to preserve stability.
Time-differencing schemes appropriate for the simulation of diffusive processes are examined in
Sect. 3.5.
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Fig. 3.8 Normalized damping rate as a function of horizontal wave number for second-order
(dotted line), fourth-order (solid line), and sixth-order (dashed line) diffusive filters

Substituting a single wave of the form (3.42) into any of the preceding smoothers
(3.41), (3.43), or (3.44) yields

db

dt
D ��n Œ2.1� cosk�x/�n=2 b; (3.45)

where n D 2, 4, or 6 is the order of the derivative in each of the respective smoothers.
In all cases, the 2�x wave is damped most rapidly, and long waves are relatively
unaffected. The actual scale selectivity of these filters is determined by the factor
.1 � cos k�x/n=2, which for well-resolved waves is O Œ.k�x/n�. This scale selec-
tivity is illustrated in Fig. 3.8, in which the exponential decay rate associated with
each smoother is plotted as a function of the wave number. To facilitate the compar-
ison of these filters, the decay rate of the 2�x wave has been normalized to unity
by choosing �n D 2�n.

The test problems shown in Figs. 3.6 and 3.7 were repeated using centered
fourth-order differencing in combination with fourth-order and sixth-order spatial
smoothers, and the results are plotted in Fig. 3.9. The filtering coefficients were set
such that �4 D 0:2 and �6 D �4=4; this choice for �6 ensures that both filters will
damp a 2�x wave at the same rate. As evident in a comparison of Figs. 3.6a and
3.9a, both the fourth-order and the sixth-order filters remove much of the disper-
sive train of short waves that were previously present behind the isolated spike in
the unfiltered solution. Those waves that remain behind the spike in the smoothed
solutions have wavelengths near 4�x. Since �4 and �6 have been chosen to damp
2�x waves at the same rate, the 4�x waves in the dispersive train are not damped
as rapidly by the sixth-order smoother, and as is evident in Fig. 3.9a, the sixth-order
smoother leaves more amplitude in the wave train behind the spike. Although the
scale selectivity of the sixth-order smoother interferes with the damping of the dis-
persive wave train behind the spike, it significantly improves the simulation of the
moderately resolved waves shown in Fig. 3.9b. The solution obtained using the
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a b

Fig. 3.9 Exact solution and differential–difference solutions for a advection of a spike over a
distance of five grid points, and b advection of the sum of equal-amplitude 7:5�x and 10�x sine
waves over a distance of 12 grid points. Exact solution (dot-dashed line), and fourth-order centered
difference solutions in combination with a fourth-derivative filter (solid line) or a sixth-derivative
filter (dashed line)

sixth-order filter is almost perfect, whereas the fourth-order filter generates sig-
nificant damping. In fact, the general character of the solution obtained with the
fourth-order filter is reminiscent of that obtained with the third-order one-sided
finite-difference approximation. This similarity is not coincidental; the phase-speed
errors produced by the third- and fourth-order finite differences are identical, and
the leading-order numerical dissipation in the third-order difference, which is pro-
portional to the fourth derivative, has the same scale selectivity as the fourth-order
smoother.

Indeed, the proper choice of �4 will produce an exact equivalence between the
solution obtained with the third-order scheme and the result produced by the combi-
nation of a centered fourth-order difference and a fourth-order smoother. The third-
order differential–difference equation (3.37) can be expressed in a form that remains
upstream independent of the sign of c as

d�j

dt
C c

12�x


��jC2 C 8.�jC1 � �j�1/C �j�2
�

D � jcj
12�x



�jC2 � 4�jC1 C 6�j � 4�j�1 C �j�2

�
; (3.46)

which is the combination of a centered fourth-order spatial difference and a fourth-
order filter with a filter coefficient �4 D jcj=.12�x/. Note that the value of the
fourth-derivative filter in the preceding equation is an inverse function of �x. The
implicit �x-dependence of the filtering coefficient in (3.46) makes the scheme
O
�
.�x/3

�
, whereas the dissipation introduced by the explicit fourth-order filter

(3.43) is O
�
.�x/4

�
.
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In practical applications, the time derivatives in (3.41) and (3.43) are replaced
by finite differences, and the maximum values for �2 and �4 will be determined by
stability considerations. If the differencing is forward in time, the maximum useful
smoothing coefficients are determined by the relations �2�t � 0:25 and �4�t �
0:0625. When �2�t D 0:25 (or �4�t D 0:0625), any 2�x wave will be completely
removed by a single application of the second-order (or fourth-order) filter.

3.3.4 Compact Differencing

Further improvements in the filtered solutions shown in Fig. 3.9 can be obtained by
using more accurate finite-difference schemes. Simply switching to a higher-order
explicit scheme, such as the centered sixth-order difference

df

dx
D 3

2
ı2xf � 3

5
ı4xf C 1

10
ı6xf CO

�
.�x/6

�
(3.47)

(where the operator ınx is defined by (3.3)), provides only marginal improvement.
More significant improvements can be obtained using compact differencing, in
which the desired derivative is given implicitly by a matrix equation. Our atten-
tion will be restricted to compact schemes in which this implicit coupling leads to
tridiagonal matrices, since tridiagonal systems can be evaluated with modest com-
putational effort (see Appendix).

The simplest compact scheme is obtained by rewriting the expression for the
truncation error in the centered second-order difference (3.4) in the form

ı2xf D
�
1C .�x/2

6
ı2x

�
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CO

�
.�x/4

�
: (3.48)

Expanding the finite-difference operators in the preceding expression yields the fol-
lowing O

�
.�x/4

�
accurate expression for the derivative:
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#
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This scheme allows fourth-order-accurate derivatives to be calculated on a three-
point stencil. At intermediate numerical resolution, the fourth-order compact
scheme is typically more accurate than the sixth-order explicit difference (3.47).

If one is going to the trouble to solve a tridiagonal matrix, it can be advantageous
to do a little extra work and use the sixth-order tridiagonal scheme. The formula for
the sixth-order tridiagonal compact scheme may be derived by first noting that the
truncation error in the fourth-order explicit scheme (3.5) is

�
1 � .�x/2

6
ı2x

�
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;
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and the truncation error in the fourth-order compact scheme (3.48) is
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Eliminating the O
�
.�x/4

�
term between these two expressions, one obtains
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Expanding the operators in the preceding yields the following O
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tridiagonal system for df=dx:
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When compact schemes are used to approximate partial derivatives in complex
equations in which one must compute several different spatial derivatives, such as
the multidimensional advection equation, it is simplest to solve either (3.49) or
(3.50) as a separate tridiagonal system for each derivative. However, in very simple
problems, such as the one-dimensional advection equation (3.27), the spatial deriva-
tives in the compact formulae may be replaced directly by �.1=c/@ =@t . Thus,
to analyze the phase-speed error associated with compact spatial differencing, the
fourth-order compact approximation to the advection equation may be written

�jC1 � �j�1
2�x

D �1
6c

"�
d�

dt

�
jC1

C 4

�
d�

dt

�
j

C
�
d�

dt

�
j�1

#
: (3.51)

Substitution of a wave solution of the form (3.29) into the preceding equation yields
the following expression for the phase speed of the differential–difference solution:

c4c D !4p

k
D 3c

2C cosk�x

�
sin k�x

k�x

�
: (3.52)

The phase speeds for the sixth-order compact scheme,

c6c D c

3.3C 2 cosk�x/

�
14

sin k�x

k�x
C sin 2k�x

2k�x

�
;

may be obtained through a similar derivation. These phase speeds are plotted as
a function of k�x, together with the curves for second-, fourth-, and sixth-order
explicit centered differences, in Fig. 3.10. It is apparent that the compact schemes
are superior to the explicit schemes. In particular, the phase speeds associated with
the sixth-order compact differencing are almost perfect for wavelengths as short as
4�x. Note that although the order of accuracy of a scheme determines the rate at
which the phase-speed curves in Fig. 3.10 asymptotically approach the correct value
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Fig. 3.10 Phase speed as a function of numerical resolution for the analytic solution of the ad-
vection equation (dotted line) and for corresponding differential–difference approximations using
second-, fourth-, and sixth-order explicit differences (dashed lines), fourth- and sixth-order com-
pact differences (solid lines), and the low-phase-speed-error fourth-order compact scheme of Lele
(solid line labeled LC)

as k�x ! 0, the order of accuracy does not reliably predict a scheme’s ability to
represent the poorly resolved waves. Lele (1992) observed that a better treatment of
the shorter waves can be obtained by perturbing the coefficients in the sixth-order
compact scheme to create the fourth-order method:

1

12
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df

dx

�
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C 14

�
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�
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�
df

dx

�
j�1

#
:

(3.53)

The phase speeds associated with this differencing scheme are plotted as the solid
curve labeled “LC” in Fig. 3.10. Observe that Lele’s compact scheme produces
phase-speed errors in a 3�x wave that are comparable to the errors introduced in a
6�x wave by explicit fourth-order differences.

The performance of Lele’s compact scheme on the test problems considered pre-
viously in connection with Figs. 3.6, 3.7, and 3.9 is illustrated in Fig. 3.11. Since
they accurately capture the frequency of very short waves while still failing to detect
any oscillations at 2�x, compact schemes propagate the energy in the 2�x wave
backward at very large group velocities (i.e., �@!=@k is large near k D 2�x).
The preceding compact schemes are also nondamping because they are centered
in space. It is therefore necessary to use a spatial filter in conjunction with these
schemes when modeling problems with significant short-wavelength features. In
these tests, a sixth-order filter (3.44) was used in combination with both the compact
scheme (3.53) and the fourth-order explicit method. In all cases �6 D 0:05, which
is the same value as that used in the computations shown in Fig. 3.9. In fact, the
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a b

Fig. 3.11 Exact solution and differential-difference solutions for a advection of a spike over a
distance of five grid points, and b advection of the sum of equal-amplitude 7:5�x and 10�x sine
waves over a distance of 12 grid points. Exact solution (dot-dashed line), third-order one-sided
solution (solid line), centered fourth-order explicit solution (long dashed line), and the solution
obtained using Lele’s low-phase-speed-error compact scheme (short dashed line). A sixth-order
smoother, with �6 D 0:05, was used in combination with the fourth- and sixth-order differences

fourth-order solutions shown in these tests are identical to those shown previously
in Fig. 3.9. Also plotted in Fig. 3.11 are the exact solution and the third-order one-
sided solution (previously plotted in Fig. 3.7). As evident in Fig. 3.11a, the smoothed
sixth-order compact scheme exhibits less of a 4�x dispersive train than either the
third-order or the fourth-order scheme. Since the dissipation applied to the compact
solution is identical to that used with the fourth-order scheme (and less than that
inherent in the third-order method), the relative absence of dispersive ripples in the
compact solution indicates a relative lack of dispersive error at the 4�x wavelength.
This, of course, is completely consistent with the theoretical phase speed analysis
shown in Fig. 3.10. The compact scheme also performs best on the two-wave test
(Fig. 3.11b). Although the filtered compact scheme is the best-performing method
considered in this section, it is also the most computationally burdensome. Other
approaches to the problem of creating methods that can adequately represent short-
wavelength features without sacrificing accuracy in smoother parts of the flow will
be discussed in Chap. 5.

3.4 Fully Discrete Approximations to the Advection Equation

The error introduced by time differencing in ordinary differential equations was
examined in Chap. 2. In Sect. 3.3, the error generated by spatial differencing was
isolated and investigated through the use of differential–difference equations. We
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now consider finite-difference approximations to the complete partial differential
equation and analyze the total error that arises from the combined effects of both
temporal and spatial differencing.

In some instances, the fundamental behavior of a scheme can be deduced from
the characteristics of its constituent spatial and temporal differences. For example,
suppose that the advection equation

@ 

@t
C c

@ 

@x
D 0 (3.54)

is approximated using forward time differencing in combination with centered spa-
tial differencing. The result should be amplifying because forward time differencing
is amplifying and centered spatial differencing is neutral. Their combined effect will
therefore produce amplification. On the other hand, it might be possible to combine
forward time differencing with one-sided spatial differencing because the one-sided
spatial difference is damping – provided that it is computed using upstream data.
If this damping dominates the amplification generated by the forward time differ-
ence, it will stabilize the scheme. Further analysis would be required to determine
the actual stability condition and the phase-speed error.

As another example, consider the use of leapfrog time differencing and cen-
tered spatial differencing to approximate the advection equation. Since both differ-
ences are neutral, it seems likely that such a scheme would be conditionally stable.
Once again, further analysis is required to determine the exact stability condition
and the phase-speed error. In the absence of such analysis, the sign of the phase-
speed error is in doubt, since the leapfrog scheme is accelerating, whereas cen-
tered spatial differencing is decelerating. Finally, suppose that leapfrog differencing
is combined with one-sided spatial differences. The result should be unstable be-
cause the leapfrog solution consists of two modes (the physical and computational
modes) each propagating in the opposite direction. If the one-sided difference is
upstream with respect to one mode, it will be downstream with respect to the sec-
ond mode, and the second mode will amplify. Alternatively, one may note that the
upstream difference approximation to the spatial derivative yields the differential–
difference equation (3.35) whose solutions decay exponentially. Yet, as discussed in
Sect. 2.4.3, the region of absolute stability for the leapfrog scheme is restricted to
the imaginary axis, and therefore, if (3.35) is integrated using leapfrog differencing,
the numerical solution will experience spurious growth.

Although as just noted, the forward-time and centered-space scheme

�nC1
j � �nj
�t

C c
�njC1 � �nj�1

2�x
D 0 (3.55)

will produce a nonphysical amplification of the approximate solution to the advec-
tion problem, one might wonder whether this amplification is sufficiently weak that
the scheme nevertheless satisfies the more general von Neumann stability condition

jAj � 1C ��t; (3.56)



3.4 Fully Discrete Approximations to the Advection Equation 119

where � is a constant independent of k, �t , and �x. If so, then (3.55) will still
generate convergent approximations to the correct solution in the limit �x ! 0,
�t ! 0, because it is a consistent approximation to the advection equation. Re-
call that as discussed in Sect. 2.2.3, forward differencing produces amplifying solu-
tions that nevertheless converge to the correct solution of the oscillation equation as
�t ! 0. The amplification factor arising from a von Neumann stability analysis of
(3.55) satisfies

jAj2 D 1C
�
c sin.k�x/

�x

�2
.�t/2:

Here, in contrast to the results obtained when ordinary differential equations are
approximated with a forward difference, the coefficient of �t includes a factor of
.�x/�2 that cannot be bounded by a constant independent of k and�x as�x ! 0.
As a consequence, the forward-time centered-space scheme does not satisfy the von
Neumann condition (3.56) and is both unstable in the sense that it generates growing
solutions to a problem where the true solution is bounded, and unstable in the more
general sense that it does not produce convergent solutions as�x ! 0 and�t ! 0.
Note in particular that after N time steps the amplitude of a 4�x wave increases by
a factor of .1 C �2/N=2 (where � D c�t=�x). Thus, if a series of integrations
are performed in which the space–time grid is refined while holding � constant,
the cumulative amplification of the 4�x wave occurring over a fixed interval of
physical time increases as �x ! 0 and �t ! 0. As anticipated in the discussion
in Sect. 2.2.4, the difference in the stability of forward difference approximations to
the oscillation and advection equations arises because the frequency of solution to
the oscillation equation is fixed, whereas that of the most rapidly varying component
in the solution to the advection equation increases without bound as �x ! 0.

3.4.1 The Discrete-Dispersion Relation

Although the preceding discussion suggests that useful deductions can be made by
examining temporal and spatial differences independently, that discussion also re-
veals the need to rigorously analyze the combined effects of all finite differences
in a specific formula to determine the complete behavior of the numerical solution.
A useful tool in the analysis of errors in wave propagation problems is the discrete-
dispersion relation, which is just the finite-difference analogue to the dispersion
relation associated with the original continuous problem. The discrete-dispersion
relation is obtained by substituting a traveling wave solution of the form

�nj D ei.kj�x�!n�t/ (3.57)

into the finite-difference formula and solving for !. If the frequency is separated
into its real and imaginary parts .!r C i!i/, (3.57) becomes

�nj D e!in�tei.kj�x�!rn�t/ D jAjnei.kj�x�!rn�t/: (3.58)
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The determination of the imaginary part of ! is tantamount to a von Neumann sta-
bility analysis, since !i determines the amplification factor and governs the rate
of numerical dissipation. Information about the phase-speed error can be obtained
from !r.

Suppose that the advection equation is approximated with leapfrog-time and
centered-second-order-space differencing such that

�nC1
j � �n�1

j

2�t
C c

�njC1 � �nj�1
2�x

D 0: (3.59)

Substitution of (3.57) into this finite-difference scheme gives

�
e�i!�t � ei!�t

2�t

�
�nj D �c

 
eik�x � e�ik�x

2�x

!
�nj ;

or equivalently,
sin!�t D � sin k�x; (3.60)

where � D c�t=�x. Inspection of (3.60) demonstrates that if j�j < 1, ! will be
real and the scheme will be neutral. The scheme also appears to be neutral when
j�j D 1, but this is a special case. When � D 1, (3.60) reduces to

!

k
D �x

�t
D c;

showing that the numerical solution propagates at the correct phase speed. Although
there are no phase-speed errors when j�j D 1, the two roots of (3.60) become
identical if k�x D 	=2, and as a consequence of this double root, the scheme
admits a weakly unstable 4�x wave. When � D 1, the weakly growing mode has
the form

�nj D n cos Œπ.j � n/=2� : (3.61)

The distinction between the sufficient condition for stability j�j < 1 and the more
easily derived necessary condition j�j � 1 is, however, of little practical signifi-
cance because uncertainties about the magnitudes of the spatially and temporally
varying velocities in real-world applications usually make it impossible to choose a
time step such that j�j D 1.

The frequencies resolvable in the discretized time domain lie in the interval
0 � !r � π=�t . Except for the special case just considered when j�j D 1 and
k�x D π=2, there are two resolvable frequencies that satisfy (3.60). Dividing these
frequencies by k gives the phase speed of the physical and computational modes

c�
phys � !phys

k
D 1

k�t
arcsin.� sin k�x/

and

c�
comp � !comp

k
D 1

k�t
Œπ � arcsin.� sin k�x/� :
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As in the differential–difference problem, the 2�x physical mode does not
propagate. The 2�x computational mode flips sign each time step, or equivalently,
it moves at the speed �x=�t . In the limit of good spatial resolution .k�x ! 0/,
the Taylor series approximations

sin x � x � 1
6
x3 and arcsinx � x C 1

6
x3

can be used to obtain

c�
phys � c

�
1 � k2.�x/2

6
.1 � �2/

�
: (3.62)

If the time step is chosen to ensure stability, then �2 < 1, jc�j < jcj, and the de-
celerating effect of centered spatial differencing dominates the accelerating effects
of leapfrog time differencing. As suggested by (3.62), in practical computations the
most accurate results are obtained using a time step such that the maximum value
of j�j is slightly less than 1.

Now consider the upstream scheme

�nC1
j � �nj
�t

C c
�nj � �nj�1

�x
D 0: (3.63)

Substitution of (3.57) into (3.63) gives

e�i!�t � 1 D �
�

e�ik�x � 1
	
: (3.64)

It follows that the exact dispersion relation and the exact solution are obtained in the
special case when � D 1. Further analysis is facilitated by separating (3.64) into its
real and imaginary parts

jAj cos!r�t � 1 D �.cos k�x � 1/ (3.65)

and

jAj sin!r�t D � sin k�x; (3.66)

where, ! D !r C i!i, and jAj � e!i�t is the modulus of the amplification factor.
Squaring both sides of (3.65) and (3.66) and adding yields

jAj2 D 1 � 2�.1 � �/.1 � cos k�x/;

which implies that the donor-cell scheme is stable and damping for 0 � � � 1, and
that the maximum damping per time step occurs at � D 1=2.9

9 This stability condition is identical to that obtained via the standard von Neumann stability anal-
ysis in Sect. 2.3.3.
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The discrete-dispersion relation

!r D 1

�t
arctan

�
� sin k�x

1C �.cos k�x � 1/

�

may be obtained after dividing (3.66) by (3.65). The function arctan!r�t is single-
valued over the range of resolvable frequencies 0 � !r � π=�t , so as expected
for a two-time-level scheme, there is no computational mode. In the limit of good
numerical resolution,

c� � !r

k
� c

�
1 � .k�x/2

6
.1 � �/.1 � 2�/

�
;

showing that phase-speed error is minimized by choosing either � D 1 or � D 1=2.
The donor-cell scheme is decelerating for 0 < � < 1=2, and accelerating for
1=2 < � < 1. The phase-speed error in the donor-cell scheme may be mini-
mized by choosing a time step such that �avg � 1=2. Under such circumstances, the
donor-cell method will generate less phase-speed error than the leapfrog centered-
space scheme. Unfortunately, the good phase-speed characteristics of the donor-cell
method are overshadowed by its large dissipation.

It is somewhat surprising that there are values of � for which the donor-cell
scheme is accelerating, since forward time differencing is decelerating and one-
sided spatial differencing reduces the phase speed of solutions to the differential–
difference advection equation. This example illustrates the danger of relying too
heavily on results obtained through the independent analysis of space and time trun-
cation error.

3.4.2 The Modified Equation

As an alternative to the discrete-dispersion equation, numerical dissipation and dis-
persion can be analyzed by examining a “modified” partial differential equation
whose solution satisfies the finite-difference equation to a higher order of accuracy
than the solution to the original partial differential equation. This technique is sim-
ilar to that described in Sect. 3.3.2 except that since the truncation error includes
derivatives with respect to both space and time, all the time derivatives must be
expressed as spatial derivatives to isolate those terms responsible for numerical dis-
sipation and dispersion. As an example, consider (3.63), the upstream approxima-
tion to the constant-wind-speed advection equation, which is a third-order-accurate
approximation to the modified equation

@ 

@t
C c

@ 

@x
D c�x

2
.1� �/

@2 

@x2
� c.�x/2

6
.1 � �/.1 � 2�/

@3 

@x3
: (3.67)
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Examination of this equation shows that upstream differencing generates numerical
dissipation of O.�x/ and numerical dispersion of O

�
.�x/2

�
. Both the dissipation

and the dispersion are minimized as � ! 1, and the dispersion is also eliminated
when � D 1=2.

In deriving the modified equation, one cannot use the original partial differen-
tial equation to express all the higher-order time derivatives as spatial derivatives
because the finite-difference scheme must approximate the modified equation more
accurately than the original partial differential equation (Warming and Hyett 1974).
The upstream method (3.63) provides a first-order approximation to the advection
equation (3.54), a second-order approximation to

@ 

@t
D �c @ 

@x
� �t

2

@2 

@t2
C c

�x

2

@2 

@x2
; (3.68)

and a third-order approximation to

@ 
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D �c @ 

@x
� �t

2
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� .�t/2
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C c

�x

2
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@x2
� c

.�x/2

6

@3 

@x3
: (3.69)

The third-order-accurate modified equation (3.67) is obtained by repeatedly substi-
tuting derivatives of (3.68) into (3.69) until all the first-order terms involving time
derivatives are eliminated. The time derivatives in the remaining second-order terms
can then be eliminated using the first-order-accurate relation (3.54).

3.4.3 Stable Schemes of Optimal Accuracy

The universe of possible finite-difference methods for the solution of the advection
equation (3.54) is very large, and most of our analysis is focused on a few important
methods. Here we briefly broaden our discussion to consider the family of two-time-
level explicit schemes of the form

�nC1
j D

rX
kD�l

ak�
n
jCk : (3.70)

What properties must be satisfied by the ak to yield stable solutions to (3.54) with
the highest possible order of accuracy? As the stencil for the preceding scheme is
widened by increasing l and r , one can obtain progressively higher-order accuracy.
Yet in a situation reminiscent of the behavior of linear multistep methods for or-
dinary differential equations (see Sect. 2.4.3), the method with the highest order of
accuracy for a given l and r may not be stable.

Suppose c > 0 and let us demand that the values of �t for which the method is
stable include all those satisfying 0 � c�t=�x � 1. Then the maximum order of
accuracy of the scheme is

p D min.r C l; 2r C 2; 2l/ (3.71)
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(Iserles and Strang 1983). If l < r , which corresponds to a downwind biased stencil,
(3.71) gives p D 2l ; this order of accuracy can be achieved using a centered scheme
with ak D 0 for k > l and cannot be improved upon by adding more downstream
points to the stencil. If l > r C 1, (3.71) gives p D 2r C 2, which may be achieved
with ak D 0 for k < �r � 2. Adding more than two upstream biased points to the
stencil cannot both maintain stability and increase the order of accuracy.

3.4.4 The Lax–Wendroff Method

None of the schemes considered previously achieve O
�
.�t/2

�
accuracy without

multistage computation or implicitness or the use of data from two or more previ-
ous time levels. Lax and Wendroff (1960) proposed a general method for creating
O
�
.�t/2

�
schemes in which the time derivative is approximated by forward dif-

ferencing and the O.�t/ truncation error generated by that forward difference is
canceled by terms involving finite-difference approximations to spatial derivatives.
Needless to say, it is impossible to analyze the behavior of a Lax–Wendroff method
properly without considering the combined effects of space and time differencing.

One important example of a Lax–Wendroff scheme is the following approxima-
tion to the advection equation (3.54):

�nC1
j � �nj
�t

C c

�
�njC1 � �nj�1

2�x

�
D c2�t

2

�
�njC1 � 2�nj C �nj�1

.�x/2

�
: (3.72)

The lowest-order truncation error in the first term of (3.72), the forward time
difference, is

�t

2

@2 

@t2
:

However, since  is the exact solution to the continuous problem (3.54),

�t

2

@2 

@t2
D �t

2

@

@t

�
�c @ 

@x

�
D c2�t

2

@2 

@x2
:

The term on the right side of (3.72) will therefore cancel theO.�t/ truncation error
in the forward time difference to within O

�
�t.�x/2

�
, and as a consequence, the

entire scheme is O
�
.�t/2

�CO
�
.�x/2

�
accurate.

The second-order nature of (3.72) may also be demonstrated by expressing it as
a two-step formula in which each individual step is centered in space and time. In
the first step, intermediate values staggered in space and time are calculated from
the relations

�
nC 1

2

jC 1
2

� 1
2

�
�njC1 C �nj

	
1
2
�t

D �c
�
�njC1 � �nj

�x

�
; (3.73)
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�
nC 1

2

j� 1
2

� 1
2

�
�nj C �nj�1

	
1
2
�t

D �c
�
�nj � �nj�1

�x

�
: (3.74)

In the second step, �nC1
j is computed from

�nC1
j � �nj
�t

D �c

0
B@
�
nC 1

2

jC 1
2

� �nC 1
2

j� 1
2

�x

1
CA : (3.75)

The single-step formula (3.72) may be recovered by using (3.73) and (3.74) to elim-
inate �nC1=2 and �n�1=2 from (3.75). One advantage of the two-step formulation
is that its extension to more complex problems can be immediately apparent. For
example, if the wind speed is a function of the spatial coordinate, c is replaced
by cjC1=2, cj�1=2, and cj in (3.73), (3.74), and (3.75), respectively. In contrast,
the equivalent modification of the single-step formula (see (3.77)) is slightly less
obvious.

The amplitude and phase-speed errors of the Lax–Wendroff approximation to the
constant-wind-speed advection equation may be examined by substituting a solution
of the form (3.58) into (3.72), which yields

jAj.cos!r�t � i sin!r�t/ D 1C �2.cos k�x � 1/� i� sin k�x: (3.76)

Equating the real and imaginary parts of the preceding equation, and then eliminat-
ing jAj, one obtains the discrete-dispersion relation

!r D 1

�t
arctan

�
� sin k�x

1C �2.cosk�x � 1/
�
:

In the limit k�x � 1, !r=k reduces to (3.62), showing that for well-resolved waves
the phase-speed error of the Lax–Wendroff method is identical to that of the leapfrog
centered-space scheme. Eliminating !r from the real and imaginary parts of (3.76),
one obtains

jAj2 D 1 � �2.1 � �2/.1 � cos k�x/2;

from which it follows that the Lax–Wendroff scheme is stable for �2 � 1. Short
wavelengths are damped most rapidly; the 2�x wave is completely eliminated in
a single time step if j�j D 1=

p
2. Since the shortest wavelengths are seriously in

error – once again the phase speed of the 2�x wave is zero – this scale-selective
damping can be advantageous. Indeed, the scale-selectivity of the dissipation in the
Lax–Wendroff scheme is the same as that of a fourth-order spatial filter. Unfor-
tunately, the numerical analyst has little control over the actual magnitude of the
dissipation because it is a function of the Courant number, and in most practical
problems, � will vary throughout the computational domain. The dependence of
the damping on the Courant number is illustrated in Fig. 3.12, which compares solu-
tions generated by the Lax–Wendroff method and the leapfrog scheme (3.59) using
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a b

Fig. 3.12 Leapfrog, second-order space (solid line), Lax–Wendroff (dashed line), and exact (dot-
dashed line) solutions for the advection of the sum of equal-amplitude 7:5�x and 10�x sine
waves over a distance of 12 grid points using a Courant number of a 0.1 and b 0.75

Courant numbers of 0.75 and 0.1. When � D 0:1, the leapfrog and Lax–Wendroff
schemes give essentially the same result, but when � is increased to 0.75, the damp-
ing of the Lax–Wendroff solution relative to the leapfrog scheme is clearly evident.
Figure 3.12 also demonstrates how the phase-speed error in both numerical solu-
tions is reduced as the Courant number increases toward unity.

The term that cancels the O.�t/ truncation error in a Lax–Wendroff scheme
must be specifically reformulated for each new problem. The following three exam-
ples illustrate the general approach. If the flow velocity in (3.72) is a function of x,
then

@2 

@t2
D c

@

@x

�
c
@ 

@x

�
;

and the right side of (3.72) becomes

cj�t

2

 
cjC 1

2
.�njC1 � �nj /� cj� 1

2
.�nj � �nj�1/

.�x/2

!
: (3.77)

If the flow is two-dimensional, the advection problem becomes

@ 

@t
C u

@ 

@x
C v

@ 

@y
D 0;

and if u and v are constant,

@2 

@t2
D u2

@2 

@x2
C v2

@2 

@y2
C 2uv

@2 

@x@y
;
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which must be approximated by spatial differences of at least first-order accuracy.
Finally, consider a general system of “conservation laws” of the form

@v
@t

C @

@x
F.v/ D 0;

where v and F are column vectors. Then

@2v
@t2

D @

@x

�
J
@F
@x

�
; (3.78)

where J is the Jacobian matrix whose ij th element is @Fi=@vj . Once again, this
matrix operator must be approximated by spatial differences of at least first-order
accuracy.

In many applications the Lax–Wendroff method can be implemented more eas-
ily and more efficiently using the two-step method (3.73)–(3.75), or the following
variant of the two-step method suggested by MacCormack (1969):

Qvj D vnj � �t

�x

�
F.vnj / � F.vnj�1/

�
;

QQvj D Qvj � �t

�x

�
F.QvjC1/� F.Qvj /

�
;

vnC1
j D 1

2

�
vnj C QQvj

	
:

These two-step methods generate numerical approximations to the higher-order spa-
tial derivatives required to cancel the O.�t/ truncation error in the forward time
difference without requiring the user to explicitly evaluate complex expressions like
(3.78). The MacCormack method is particularly useful, since it easily generalizes to
problems in two or more spatial dimensions.

In the classical Lax–Wendroff method, the spatial derivatives are approximated
using centered differences, but other approximations are also possible. If the spatial
dependence of  is not discretized, the Lax–Wendroff approximation to the advec-
tion equation (3.72) may be written

�nC1 � �n

�t
C c

d�

dx
D c2�t

2

d2�

dx2
:

Warming and Beam (1976) proposed the following upwind approximation to the
spatial derivatives in the preceding equation:

�nC1
j D �nj � �



�nj � �nj�1

� � �

2
.1 � �/



�nj � 2�nj�1 C �nj�2

�
; (3.79)

which is accurate of order O
�
.�t/2

� C O.�t�x/ C O
�
.�x/2

�
and is stable for

0 � � � 2.
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3.5 Diffusion, Sources, and Sinks

Molecular diffusion in one spatial dimension is governed by the diffusion equation

@ 

@t
D M

@2 

@x2
; (3.80)

whereM > 0 is a molecular diffusivity. Suppose that (3.80) is approximated as

�nC1
j � �nj

�t
D M

�
�njC1 � 2�nj C �nj�1

.�x/2

�
: (3.81)

The standard von Neumann stability analysis yields an amplification factor for this
forward-time scheme of

Af D 1 � 2
.1� cos k�x/; (3.82)

where 
 D M�t=.�x/2. The amplification factor is maximized for k D π=�x
(the 2�x mode), and thus jAfj � 1 and the numerical solution decays with time,
provided that 0 � 
 � 1=2. Note that in contrast to the conditional stability criteria
obtained for finite-difference approximations to the advection equation, this scheme
does not remain stable as �t;�x ! 0 unless �t decreases much more rapidly
than �x, i.e., unless �t=�x � O.�x/. This makes the preceding scheme very
inefficient at high spatial resolution.

Although it guarantees that the solution will not blow up, the criterion 0 � 
 �
1=2 is not adequate to ensure a qualitatively correct simulation of the 2�x mode.
The amplitude bk of the kth Fourier mode of the exact solution to (3.80) satisfies

dbk

dt
D �Mk2bk; (3.83)

implying that the correct amplification factor for the kth mode is

bk.t C�t/

bk.t/
D e�Mk2�t ;

which (for M > 0) is a real number between 0 and 1. However, if 1=4 < 
 � 1=2,
the numerical amplification factor for the 2�x mode lies in the interval Œ�1; 0/,
and as a consequence, the sign of the 2�x mode flips every time step as it gradu-
ally damps toward zero. If one wishes to avoid “overdamping” the poorly resolved
modes,�t must satisfy the more restrictive criterion that 0 � 
 � 1=4.

Another approximation to (3.80) is provided by the Dufort–Frankel method:

�nC1
j � �n�1

j

2�t
D M

 
�njC1 � .�nC1

j C �n�1
j /C �nj�1

�x2

!
: (3.84)
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The Dufort–Frankel method is sufficiently implicit to be stable for all values of �t
(see Problem 6); yet (3.84) can be easily solved for �nC1

j and stepped forward like
an explicit method. The weakness of this approach is revealed by its truncation error,
which is

O
�
.�t/2

�CO
�
.�x/2

�CO
�
.�t=�x/2

�
:

The same criterion required to preserve the stability of (3.81), that�t=�t � O.�x/

as �t;�x ! 0, is necessary to make (3.84) a consistent first-order method.
Although the Dufort–Frankel method is stable for all �t , it may not even

qualitatively model the effects of diffusion if the time step is large enough that

 D M�t=.�x/2 > 1=2. To understand why, note that the amplification factor
for the Dufort–Frankel method is

Adf D 2
 cos.k�x/˙ 

1 � 4
2 sin2.k�x/

�1=2
1C 2


: (3.85)

If 
 > 1=2, the second term in the preceding equation becomes imaginary for some
subset of the resolved waves, and individual modes change phase each time step,
instead of simply damping in amplitude. Consider the 4�x component of the solu-
tion (k�x D π=2), for which this behavior is most pronounced. If 
 > 1=2, the first
term in (3.85) is zero and both roots give pure imaginary values for Adf that produce
decaying 4�t oscillations in the 4�x mode. If 
 is large, the rate of decay be-
comes very small. Although its unconditional instability makes the Dufort–Frankel
scheme notable from the theoretical standpoint, in many practical applications it has
proved unable to correctly damp the short-wavelength components of the solution
(Sun 1982).

As is the case with numerical approximations to the advection equation, the sta-
bility of an explicit finite-difference approximation to the diffusion equation is lim-
ited by the shortest-wavelength modes. The behavior of the shortest modes relative
to the longer modes in the advection problem is, however, quite different from that
in the diffusion problem. In the advection problem the shortest waves translate with-
out loss of amplitude (and may even amplify as the result of deformation in the wind
field or nonlinear processes), so any errors in the simulation of the short waves can
have a serious impact on the accuracy of the overall solution. On the other hand,
as implied by (3.83), diffusion preferentially damps the shortest modes, and after a
brief time the amplitude in these modes becomes negligible relative to that of the
total solution. Since the accuracy with which the short waves are simulated is irrel-
evant once those waves have dissipated, an acceptable approximation to the overall
solution can often be obtained without accurately simulating the transient decay of
the most poorly resolved initial perturbations. It can therefore be very advantageous
to approximate the diffusion equation using A-stable schemes like the trapezoidal
method, for which the time step is limited only by accuracy considerations. In par-
ticular, the time step can be chosen to accurately simulate the transient decay of the
physical scales of primary interest, whereas any inaccuracies generated by this time
step in the poorly resolved modes are hidden by their rapid decay.
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If the time differencing in the finite-difference approximation to the diffusion
equation is trapezoidal, the resulting scheme

�nC1
j � �nj

�t
D M

2

�
ı2x�

nC1
j C ı2x�

n
j

	
(3.86)

is known as the Crank–Nicolson method. The amplification factor for this scheme is

Acn D 1 � 
.1� cosk�x/

1C 
.1� cosk�x/
;

and since M > 0, it follows that jAcnj � 1 and the scheme is stable for all �t .
Assuming that boundary conditions are specified at the edges of the spatial domain,
(3.86) constitutes a tridiagonal linear system for the unknown �nC1

j , which can be
solved with minimal computational effort as discussed in the Appendix.

If M is constant, the Crank–Nicolson method can be extended to higher dimen-
sions using operator splitting while preserving second-order accuracy because the
spatial finite-difference operators will commute (see Sect. 4.3). In many problems
the diffusivity is not uniform throughout the spatial domain, and in such cases the
governing equation becomes

@ 

@t
D @

@x

�
M
@ 

@x

�
:

The spatial derivative operator in the preceding equation may be discretized as

d�j

dt
D 1

�x

�
.MjC1 CMj /

2

.�jC1 � �j /
�x

� .Mj CMj�1/
2

.�j � �j�1/
�x

�
:

In higher-dimensional problems where M is nonconstant, the spatial difference
operators do not generally commute, so simple splitting methods will reduce the ap-
proximation to first-order accuracy. Second-order accuracy can nevertheless be effi-
ciently obtained in two dimensions using the Peaceman–Rachford formulae (4.62)
and (4.63).

3.5.1 Advection and Diffusion

In many applications it is necessary to consider the combined effects of both advec-
tion and diffusion. In one dimension this problem is governed by the equation

@ 

@t
C c

@ 

@x
D M

@2 

@x2
: (3.87)

First we will examine accuracy issues that arise solely from the approximation of
the spatial derivatives, then discuss choices for the time integration of advection–
diffusion equations, and conclude by considering the combined effects of time and
space differencing.
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If the spatial first derivative is approximated by an upstream difference (with
c > 0) and the second derivative is approximated by the standard three-point stencil,
the resulting differential–difference approximation to (3.87) is

d�j

dt
C c

�
�j � �j�1

�x

�
D M

�
�jC1 � 2�j C �j�1

.�x/2

�
: (3.88)

Evaluating the truncation error in the preceding equation shows that it is an
O
�
.�x/2

�
-accurate approximation to the modified equation

@ 

@t
C c

@ 

@x
D M

�
1C Pe

2

�
@2 

@x2
; (3.89)

wherePe D c�x=M is the numerical Péclet number. The Péclet number is a nondi-
mensional parameter classically defined as the ratio of the strength of thermal ad-
vection to the strength of thermal diffusion.10 Since the length scale in the numerical
Péclet number is the grid spacing, Pe is a measure of the relative strengths of ad-
vection and diffusion at the smallest spatial scales resolved on the numerical mesh.
A comparison of the modified equation (3.89) with the original advection–diffusion
equation (3.87) shows that the differential–difference approximation (3.88) gener-
ates an inaccurate approximation to the diffusion term unless Pe � 1, i.e., unless
diffusion dominates advective transport on the shortest resolvable scales. This diffi-
culty arises because the total diffusion is dominated by numerical diffusion unless
the molecular diffusivity is very large or the grid resolution is very fine.

As the horizontal resolution increases, the numerical Péclet number decreases,
and, in principle, there is some grid size at which diffusive transport dominates
advective transport in the shortest resolvable modes. Nevertheless, in many prob-
lems involving low-viscosity flow this grid size may be several orders of magnitude
smaller than the physical scales of primary interest, so there is no possibility of re-
solving the scales at which molecular viscosity dominates numerical diffusion with-
out exceeding the resources of the most advanced computers. Even when molecular
diffusion has no direct influence on the resolved-scale fields, an essentially inviscid
transport by sub-grid-scale eddies may produce turbulent mixing whose influence on
the resolved-scale fields is often parameterized by a diffusion term in which the true
molecular diffusivityM is replaced by an “eddy” diffusivity QM (Yih 1977, p. 572).
The eddy diffusivity is generally parameterized such that QM is proportional to the
mesh size, in which case the numerical Péclet number c�x= QM does not decrease
as the grid is refined, and the relative importance of eddy diffusion and advection
remains constant as the mesh size is refined.

To accurately represent the diffusion term in low-viscosity flow, it is necessary
to use a less diffusive approximation to @ =@x, such as a centered difference or a

10 The Péclet number is completely analogous to the more familiar Reynolds number, which is
the ratio of momentum advection to momentum diffusion. The difference between the Péclet and
Reynolds numbers is due to the difference in the diffusivities of heat and momentum. In particular,
the ratio of the Péclet number to the Reynolds number is equal to the Prandtl number, which is the
ratio of the kinematic viscosity (or momentum diffusivity) to the thermal diffusivity.
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higher-order one-sided difference. The truncation error for such differences is made
up of terms containing high-order derivatives as discussed in Sect. 3.3.2. High even-
order spatial derivatives are more scale-selective in their damping than the second-
derivative operator @2 =@x2 (Fig. 3.8). As a consequence, the influence of physical
diffusion on wavelengths longer than 6�x–10�x is easier to capture using higher-
order difference schemes to approximate @ =@x.

Now consider the effects of time differencing on the stability of differential–
difference approximations to the advection–diffusion equation in which the spatial
derivatives are not discretized. Recall that if (3.87) is Fourier-transformed, the re-
sult is (2.18), which has the same form as the basic test problem for investigating
absolute stability, (2.16). It is common to use different time differencing for the ad-
vection and diffusion terms, so to facilitate the analysis of methods which integrate
the advection and diffusion terms differently it is convenient to express (2.16) in the
equivalent form

d 

dt
D � C i! ; (3.90)

where, as introduced in Sect. 2.2.1, � D <f�g and ! D =f�g. The first term on
the right side of the preceding equation is the prototype for the integration of those
terms representing diffusion; the second term is the prototype for advection.

As discussed in Sect. 2.4.3, the region of absolute stability for the leapfrog
scheme is just a segment along the imaginary axis, and this method is not suit-
able for integrating terms involving diffusion. Perhaps the simplest way to retain
leapfrog time differencing for the oscillatory forcing in (2.16) and obtain a scheme
that is also stable for very weak dissipation is by evaluating the damping term at
time level n � 1 such that

�nC1 � �n�1

2�t
D i!�n C ��n�1: (3.91)

Note that although the standard leapfrog method is accurate to O
�
.�t/2

�
, this ap-

proach introduces an O.�t/ truncation error in the approximation of the damping.
The amplification factor for the leapfrog-forward scheme (3.91) is

Alff D i Q! ˙ .1C 2 Q� � Q!2/1=2;
where Q! D !�t and Q� D ��t . When 1 C 2 Q� > Q!2, the square root is real; both
amplification factors have the same magnitude, and

jAlffj2 D 1C 2 Q�:
Thus, the case 1C 2 Q� > Q!2 will be obtained and the leapfrog-forward scheme will
be stable if

Q!2 � 1
2

< Q� � 0:

The region of the Q�– Q! plane satisfying this inequality lies inside the curve labeled
LFF in Fig. 3.13a. Consideration of the case 1 C 2 Q� � Q!2 shows that the actual
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λΔt
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Fig. 3.13 a Regions of useful stability in the Q�– Q! plane if the oscillatory forcing is integrated
using leapfrog differencing and the damping is integrated using the forward (LFF), trapezoidal
(LFT), or backward (LFB) methods. b Region of absolute stability when the oscillatory forcing
is integrated using the three-step Adams–Bashforth scheme and the damping is integrated using
either the same three-step Adams–Bashforth formula (AB3, solid line) or the trapezoidal method
(AB3T, dashed line). Note the difference in the horizontal and vertical scales

region of the Q�– Q! plane throughout which jAlffj � 1 is a larger triangular region
with vertices at . Q�; Q!/ equal to .0; 1/, .�1; 0/, and .0;�1/. This larger region of ab-
solute stability is of no practical use, however, since Alff is purely imaginary when
1C 2 Q� � Q!2, and as a consequence, the numerical solution undergoes a 4�t oscil-
lation independent of the actual value of !�t . Because the region of useful stability
for the leapfrog-forward scheme is relatively small, this scheme is appropriate only
for problems with very low viscosity. Even when the value of ��t is as small as 0.3,
stability considerations require a significant reduction in !�t relative to that which
would be stable in the inviscid limit.

One might expect to do much better using an A-stable scheme to integrate the
dissipation terms. A second-order method may be obtained if the damping term in
(3.90) is approximated using trapezoidal time differencing such that

�nC1 � �n�1

2�t
D i!�n C �

2



�nC1 C �n�1� : (3.92)

The amplification factor associated with the preceding equation is

Alfb D i Q! ˙ .1 � Q�2 � Q!2/1=2
1 � Q� :

If Q!2 C Q�2 � 1, Alfb is purely imaginary and the numerical solution undergoes
spurious 4�t oscillations. The combinations of Q� and Q! that yield stable physically
reasonable solutions satisfy

Q!2 C Q�2 < 1 and Q� � 0;



134 3 Finite-Difference Approximations for One-Dimensional Transport

and lie within the curve labeled LFT in Fig. 3.13a. Since damping reduces the
amplitude of the true solution to (2.16), and since the damping term in (3.92 ) is
approximated by an A-stable scheme, one might hope that the stability condition for
the leapfrog-differenced purely oscillatory problem would be a sufficient condition
for the stability of the full hybrid scheme, but this is certainly not the case. Indeed,
the increase in the region of stability relative to the leapfrog-backward scheme is
quite modest.

A much larger region of absolute stability is obtained using the leapfrog-
backward scheme

�nC1 � �n�1

2�t
D i!�n C ��nC1: (3.93)

The combinations of Q� and Q! that yield stable physically reasonable solutions satisfy

Q!2 < 1 � 2 Q� and Q� � 0: (3.94)

The curve labeled LFB in Fig. 3.13a shows the region of useful stability for this
scheme. Assuming � < 0, the stability condition for the purely oscillatory prob-
lem (j!�t j < 1) is sufficient to guarantee the stability of the leapfrog-backward
approximation to (3.90).

The leapfrog-backward scheme is not a particularly attractive method because
it is only first-order accurate, yet being implicit, it requires essentially the same
computational overhead as the more accurate trapezoidal method. The stability and
accuracy potentially available through a trapezoidal approximation to the damping
term can be better realized if the leapfrog approximation to the oscillatory term is
replaced by the three-step Adams–Bashforth method (2.80). The resulting Adams–
Bashforth–trapezoidal approximation to (3.90) has the form

�nC1 � �n

�t
D i!

12



23�n � 16�n�1 C 5�n�2�C �

2



�nC1 C �n

�
: (3.95)

The region of absolute stability for this method is plotted as the curve labeled AB3T
in Fig. 3.13b. Also shown in that figure is the region of absolute stability for the
standard three-step Adams–Bashforth scheme. As apparent in Fig. 3.13b, the region
of absolute stability is dramatically improved when the dissipation term is approx-
imated with the trapezoidal method instead of integrating the entire problem using
the three-step Adams–Bashforth scheme. In particular, the region of absolute stabil-
ity for (3.95) expands so that it is determined almost entirely by the value of j!�t j.
If �t is small enough to yield stable solutions to the inviscid problem, then the full
advection–diffusion problem will be stable for almost all values of � < 0.

Since it remains stable when the diffusion is very strong, the Adams–Bashforth–
trapezoidal approximation is well suited for simulating advection and diffusion in
situations where there are both regions of zero viscosity and patches of high diffu-
sivity. Patches of high eddy diffusivity may appear in a nominally inviscid fluid in
localized regions where the flow is dynamically unstable to small-scale perturba-
tions. The high eddy diffusion in these isolated regions can have a severe impact on
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the time step of the overall numerical integration unless an artificial cap is imposed
on the maximum eddy diffusivity or the time differencing is approximated with a
very stable method like the Adams–Bashforth–trapezoidal scheme.

The preceding analyses of the prototype ordinary differential equation (3.90) are
sufficient to characterize the stability of the various time-differencing schemes qual-
itatively, but they do not yield the precise stability limits of the complete finite-
difference equation obtained when the spatial derivatives in the advection–diffusion
equation are approximated by finite differences. We conclude this section by exam-
ining two completely discrete approximations to the advection–diffusion equation.

First consider the forward-time centered-space approximation

�nC1
j � �nj

�t
C cı2x�

n
j D Mı2x�

n
j ;

which we expect will be unstable if M is too small relative to c. The standard von
Neumann analysis shows that the numerical solution will be nonamplifying when

jAkj2 D Œ1 � 2
.1� cos k�x/�2 C �2 sin2 k�x � 1;

for all k in the interval Œ0; π=�x�. Here, as before, � D c�t=�x and 
 D
M�t=.�x/2. Necessary and sufficient conditions for the stability of this scheme
are

0 � 
 � 1

2
and �2 � 2
: (3.96)

To establish the necessity of these conditions, note that the first condition is required
for stability when k�x D π, and the second condition is required for stability in the
limit k�x ! 0, in which case

jAk j2 ! 1 � .2
 � �2/.k�x/2:

To establish that (3.96) is sufficient for stability, suppose that �2 � 2
. Then

jAk j2 � .1 � 2
.1� cos k�x//2 C 2
 sin2 k�x

D 1 � 2
.1� 2
/.1� cosk�x/2;

which is less than unity whenever 0 � 
 � 1=2.
If leapfrog-forward differencing is used in the advection–diffusion equation to

give the approximation

ı2t�
n
j C cı2x�

n
j D Mı2x�

n�1
j ; (3.97)

the amplification factor becomes

A D �i� sin � ˙ ���2 sin2 � C 1� 2
.1� cos �/
�1=2

; (3.98)
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where � and 
 are defined above, and � D k�x. One might imagine that the
solution will be stable if the time step is small enough that both the advection and
the diffusion problems considered in isolation are stable, which requires j�j < 1 and

 � 1=4. In fact, the criteria required to ensure useful stability of all the resolved
modes are more restrictive. For

1 � 2
.1� cos �/ > �2 sin2 �; (3.99)

the square root in (3.98) is real and

jAk j2 D 1 � 2
.1� cos.k�x//:

The right side of the preceding equation is greater than zero by (3.99) and is less
than unity because 
 > 0.

To determine the stability condition that ensures all resolved modes are stable,
note that if (3.99) is not satisfied, A will be purely imaginary and the mode will
oscillate with a nonphysical period of 4�t . This behavior is unacceptable (whether
or not the numerical solution is actually amplifying), so we focus on determining
the necessary and sufficient conditions for the satisfaction of (3.99), which may be
expressed in the alternative form F.�/ > 0, where

F.�/ D 1 � 2
.1� cos �/ � �2.1 � cos2 �/:

Then

dF

d�
D �2 sin �.
 � �2 cos �/;

d 2F

d�2
D �2.
 cos � C 2 cos2 � � 1/:

It follows that the minimum of F with respect to � occurs either (1) at cos � D
�
=�2 for the case 
 < �2, or (2) at the highest resolvable wavenumber, � D π for
the case 
 � �2.

First consider the case 
 < �2. Evaluating F.�/ at its minimum, F.�/ > 0

becomes

1 � 2
 � 2
2=�2 � �2 C 
2=�2 > 0;

or �2 > .�2 C 
/2. In the case 
 � �2, the extremum is obtained by evaluating
F.�/ at � D π, so F.�/ > 0 requires 1 � 4
 > 0 or 
 < 1=4. The scheme is
therefore stable when either of the following conditions is satisfied.

�2 � 
 <
1

4
.weak advection/;


 < �2 and .�2 C 
/2 < �2 .weak diffusion/:

Note that j�j � 1 is a necessary condition for stability and that any nonzero value
of M reduces the maximum stable time step relative to that in the inviscid limit
(M ! 0).
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3.5.2 Advection with Sources and Sinks

Sources and sinks typically appear as functions of the temporal and spatial coordi-
nates and the undifferentiated unknown variables. In problems such as chemically
reacting flow, the source and sink terms couple many unknowns together, but only
at a single point. In such cases the equations governing these reactions are often
integrated as a separate fractional step (see Sect. 4.3) using one of the ordinary
differential equation solvers described in Chap. 2. In this section we explore how
the treatment of simple sources and sinks in unsplit integrations of the advection–
source–sink equation influence the stability and accuracy of the numerical solution.

First, suppose that the source or sink is a function only of the coordinate vari-
ables, in which case the advection–source–sink equation is

@ 

@t
C c

@ 

@x
D s.x; t/:

Almost any finite-difference scheme suitable for the approximation of the pure ad-
vection problem can be trivially modified to approximate the preceding equation.
The only subtlety involves the numerical specification of s.x; t/. It is natural to
specify s.x; t/ at the finest spatial and temporal scales resolvable on the space–time
grid, but this may generate excessive noise in the numerical solution. One should
make a distinction between the shortest scale present on the numerical mesh and the
shortest scale at which the finite-difference scheme can be expected to yield physi-
cally meaningful results. The accuracy of the solution is generally not improved by
applying forcing at wavelengths too short to be adequately simulated by the numer-
ical scheme. Since almost all numerical methods do a very poor job of simulating
2�x waves and 2�t oscillations, it is usually unwise to include spatial and tempo-
ral scales in s.x; t/ corresponding to wavelengths shorter than about 4�x or periods
shorter than about 4�t .11 The optimal cutoff depends on the numerical scheme and
the nature of the problem being approximated. See Lander and Hoskins (1997) for
an example in which a cutoff wave number is determined for external forcing in a
spectral model of the Earth’s atmosphere.

Now suppose that the sink is a linear function of , so that the advection–source–
sink equation is

@ 

@t
C c

@ 

@x
D �r ; (3.100)

where positive values of r represent sinks and negative values represent sources.
Confusion can arise in assessing the stability of numerical approximations to
(3.100). Consider the stability of the upstream approximation

�nC1
j � �nj

�t
C c

�
�nj � �nj�1

�x

�
D �r�nj : (3.101)

11 For similar reasons, it is often unwise to include 2�x features in the initial data.
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The amplification factor for this scheme is

A D .1 � �� �/C �e�ik�x ; (3.102)

where � D r�t and � D c�t=�x. If r < 0, the true solution grows with time,
and it is clearly inappropriate to require jAj � 1. In this case, all that is required is
that the scheme be sufficiently stable to converge in the limit�t ! 0,�x ! 0, for
which the von Neumann condition is

jAj � 1C ��t; (3.103)

where � is a constant independent of �t and �x: To establish criteria guaranteeing
satisfaction of (3.103) let

QA D .1 � �/C �e�ik�x ;

which is just the amplification factor for upstream differencing. SinceA D QA�r�t ,
jAj � j QAj C jr�t j:

If 0 � � � 1, then as demonstrated in Sect. 3.2.2, j QAj � 1 and

jAj � 1C jr j�t;
which satisfies the stability criterion (3.103). The finite-difference approximation
(3.101) to the advection–source equation is therefore stable whenever the associated
approximation to the pure advection problem is stable.

Clearly, the method used in the preceding stability analysis can be generalized to
a wider class of problems. LetL. / be a linear operator involving partial derivatives
of  and consider the family of partial differential equations of the form

@ 

@t
C L. /C r D 0:

As demonstrated by Strang (1964), the range of �t for which any explicit two-
time-level approximation to the preceding partial differential equation satisfies the
stability condition (3.103) is independent of the value of r . Unfortunately, it is rather
easy to misinterpret this result. The Strang perturbation theorem guarantees only
that the value of r has no influence on the ability of consistent finite-difference
approximations to converge to the correct solution in the limit of �t , �x ! 0: The
value of r does affect the boundedness of numerical solutions computed with finite
values of �t and �x.

The solution to the advection–sink problem (3.100) is bounded whenever r > 0,
and in such circumstances the numerical approximation obtained using finite �x
and �t should satisfy the more strict stability condition jAj � 1. The conditions
on r�t required to guarantee a nongrowing solution may be determined as follows.
Using (3.102),

jAj2 D .1 � �/2 � 2�.1� � � �/.1 � cosk�x/:
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Now consider two cases. First, if �.1��� �/ � 0, the largest amplification factor
occurs when k D 0 and

jAkD0j2 D .1 � �/2:
In this case all jAj are less than unity when .1 � �/2 � 1 or 0 � � � 2. This
inequality is always satisfied, because r , c, and therefore � and � are nonnegative,
and by assumption �.1 � � � �/ � 0, implying 1 � 1 � � � �.

All the stability restrictions on�t arise therefore from the second case, for which
�.1 � � � �/ < 0. In this case the largest amplification factor occurs for k�x D
π and

jAkD��x j2 D .1 � �/2 � 4�.1 � � � �/ D .1 � � � 2�/2:
Thus, all jAj are less than unity when .1 � � � 2�/2 � 1 or 0 � � C 2� � 2, or
equivalently,

0 � c�t

�x

�
1C r�x

2c

�
� 1:

The last expression shows that the value of r ceases to restrict the maximum stable
time step as �x ! 0. This is consistent with the implication of the Strang per-
turbation theorem that the stability condition sufficient to guarantee convergence
cannot depend on r . The value of r may, nevertheless, have a dramatic impact on
the maximum stable time step when �x is finite.

3.6 Summary

In this chapter we have investigated the performance of schemes for approximating
advective and diffusive transport in one dimension. Let us now recapitulate the better
methods discussed in this chapter and briefly summarize the conditions under which
they might be expected to yield good results. Further analysis of the performance
of these schemes in more complex situations will be presented in the following
chapters.

First, consider the class of problems in which the solution is sufficiently smooth
that it can always be properly resolved on the numerical mesh. This is typically
the case in diffusion-dominated flow. Under these circumstances any stable method
can be expected to converge to the correct result as the space–time grid is re-
fined. Higher-order schemes will converge to smooth solutions more rapidly than
low-order methods as the mesh size is decreased. Thus, even though higher-order
methods require more computations per grid point per time step, genuinely high
accuracy (i.e., several significant digits) can usually be achieved more efficiently by
using a high-order scheme on a relatively coarse mesh than by using a low-order
scheme on a finer mesh. One of the most efficient ways to achieve high-order
accuracy in the representation of spatial derivatives for smooth flows is through
spectral methods, which will be introduced in Chap. 6. Nevertheless, in practice
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it is common to model simple diffusion problems with the well-behaved Crank–
Nicolson method, although this method is only second order.

Most low-viscosity flows do not remain completely smooth12. Instead, they
develop at least some features with spatial scales shorter than or equal to that of
an individual grid cell. Such small-scale features cannot be accurately captured by
any numerical scheme, and the unavoidable errors in these small scales can feed
back on the larger-scale flow and thereby exert a significant influence on the over-
all solution. In such circumstances there is no hope of computing an approximation
to the correct solution that is accurate to several significant digits. Although the
larger-scale features may be approximated with considerable quantitative accuracy,
generally one must either be content with a qualitatively correct representation of
the shortest-scale features or remove these features with some type of numerical
smoothing. Since it is not realistic to expect convergence to the correct solution
in such problems, it is not particularly important to use high-order methods. In-
stead, one generally employs the finest possible numerical grid, selects a method
that captures the behavior of moderately resolved waves with reasonable fidelity,
and ensures that any spurious poorly resolved waves are eliminated by either ex-
plicit or implicit numerical dissipation. The numerical dissipation associated with
all the schemes considered in this chapter is applied throughout the entire numerical
domain. An alternative approach will be considered in Chap. 5, in which the implicit
dissipation is primarily limited to those regions where the approximate solution is
discontinuous or very poorly resolved.

Given that some degree of dissipation must generally be included to generalize
the methods described in this chapter to practical problems involving low-viscosity
flow, the neutral amplification factors associated with leapfrog time differencing are
less advantageous than they may first appear. As discussed in Chap. 2, the difficulties
associated with time splitting that can arise in nonlinear problems make the leapfrog
scheme relatively unattractive in comparison with the third-order Adams–Bashforth
or third- or fourth-order Runge–Kutta methods. Even forward differencing is a pos-
sibility, provided that it is used in a Lax–Wendroff method and that the implicit
diffusion in the Lax–Wendroff scheme is limited by using a sufficiently small time
step.

The choice between centered and upstream-biased stencils for the approximation
of spatial derivatives is less clear-cut. Approximations to the advection equation
based on centered spatial differences typically require the use of an explicit fourth-
or sixth-derivative dissipative filter and are therefore less efficient than a third-order
upstream approximation. This lack of efficiency is compensated by two practical
advantages. First, it is not necessary to determine the upstream direction at each
grid point when formulating the computer algorithm to evaluate a centered spatial
difference. The determination of the upstream direction is not difficult in advec-
tion problems where all signal propagation is directed along a clearly defined flow,
but it can be far more difficult in problems admitting wave solutions that propa-
gate both to the right and to the left. The second advantage of a centered difference

12 An example of inviscid fluid motion that does remain smooth is provided by the barotropic
vorticity equation, which will be discussed in Sect. 4.5.2.
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used in conjunction with a spatial filter is that one can explicitly control the magni-
tude of the artificial dissipation, whereas the magnitude of the numerical dissipation
associated with an upstream-biased difference is implicitly determined by the local
wind speed. The compact schemes appear to provide particularly good formulae for
the evaluation of centered spatial differences because they remain accurate at rela-
tively short wavelengths (3�x or 4�x) and use information at a minimum number
of spatial grid points, which reduces the amount of special coding required near the
boundaries of the spatial domain.

Problems

1. Suppose that f .x/ is to be represented at discrete points xj on an uneven mesh
and that j�1=2 D xj � xj�1=2. Use Taylor series expansions to derive a
second-order finite-difference approximation to df=dx using a three-point sten-
cil of the form

f̨jC1 C f̌j C �fj�1:

Hint: The result may be written in the form
 

j� 1
2

jC 1
2

Cj� 1
2

! 
fjC1 � fj
jC 1

2

!
C
 

jC 1
2

jC 1
2

Cj� 1
2

! 
fj � fj�1
j� 1

2

!
:

2. Determine an O.�x/2-accurate one-sided finite-difference approximation to
the first derivative @ =@x. Use the minimum number of points. Suppose that
the numerical solution �j is available at points xj , and that the derivative will
be calculated using points to the right of xj (i.e., xj , xjC1, : : :). Assume a
constant grid spacing. How does the magnitude of the leading-order term in
the truncation error of this one-sided approximation compare with that for the
centered difference

�jC1 � �j�1
2�x

‹

3. Determine those regions of the x–t plane in which the solution of

�
@

@t
C U

@

@x

�2
 � c2

@2 

@x2
D 0;

depends on  at some fixed point .x0; t0/. Assuming that U and c are nonneg-
ative constants, schematically plot these regions and label them as either the
“domain of influence” or the “domain of dependence.” Draw a plot for the case
U > c and a plot for U < c.
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4. Explain how the unconditional stability of the trapezoidally time differenced
one-dimensional advection equation

�nC1
j � �nj
�t

C c

2�x

 
�nC1
jC1 C �njC1

2
� �nC1

j�1 C �nj�1
2

!
D 0

is consistent with the CFL stability condition.

5. Consider the Lax–Friedrichs approximation to the scalar advection equation

�nC1
j � 1

2
.�njC1 C �nj�1/
�t

C c
�njC1 � �nj�1

2�x
D 0:

(a) Determine the truncation error for this scheme. Under what conditions does
this scheme provide a consistent approximation to the advection equation?
Would the condition required for consistency be difficult to satisfy in a series of
simulations in which �x is repeatedly halved?

(b) Determine the values of c�t=�x for which this scheme is stable.

6. Show that the Dufort–Frankel method (3.84) does indeed produce stable, non-
growing solutions to the one-dimensional diffusion equation (3.80) for any�t .

7. When applied to the oscillation equation, Matsuno time differencing prefer-
entially damps the higher frequencies (provided that �max�t < 1=

p
2). Yet,

if we turn our attention to the constant-wind-speed advection equation, the
Lax–Wendroff scheme (3.72) damps 2�x waves much more rapidly than does
the following combination of Matsuno time differencing and centered space
differencing:

Q�n D �n � c�t ı2x�
n; �nC1 D �n � c�t ı2x Q�n:

Explain why. Consider only those time steps for which c�t times the effective
horizontal wave number is less than 1=

p
2.

8. Consider the shallow-water equations, linearized about a state at rest,

@u

@t
C g

@�

@x
D 0;

@�

@t
CH

@u

@x
D 0:

Prove, without doing a von Neumann stability analysis, that the following finite-
difference approximation to the preceding system must be unstable:

unC1
j � unj

�t
C g

�
�nj � �nj�1
�x

�
D 0;

�nC1
j � �nj

�t
CH

�
unj � unj�1

�x

�
D 0:
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9. Determine the truncation error in the following approximation to the one-
dimensional advection equation:

�nC1
j � �nj

�t
C c

�
3�nj � 4�nj�1 C �nj�2

2�x

�
D 0:

Also determine the range of � D c�t=�x over which the scheme is stable.

10. The method of Warming and Beam (3.79) uses the same numerical sten-
cil as the formula in Problem 9. Show that it is more accurate and more
stable. In particular show it is second-order accurate with truncation error
O.�t2 C�t�x C .�x/2/, and that it is stable for 0 � � � 2.

11. According to (3.71), what will be the maximum order of accuracy for a two-
time-level explicit scheme that approximates the advection equation using r
points on the downstream side of the numerical stencil and r C 1 points up-
stream? Give an example of one such scheme.

12. Suppose we try to reduce the phase-speed errors in the Lax–Wendroff scheme
(3.72) by using the following approximation to the constant-wind-speed advec-
tion equation:

�nC1
j � �nj
�t

C c

�
4

3
ı2x�

n
j � 1

3
ı4x�

n
j

�
D c2�t

2
ı2x�

n
j :

Evaluate the truncation errors in this scheme to determine the leading-order
dissipative and dispersive errors, and determine the condition (if any) under
which the scheme is stable. Compare your results with those for (3.72) and for
the leapfrog-time fourth-order-space scheme:

ı2t�
n
j C c

�
4

3
ı2x�

n
j � 1

3
ı4x�

n
j

�
D 0:

13. Determine the order of accuracy and the stability properties of the “slant-
derivative” approximation to the constant-wind-speed advection equation:

�nC1
j � �nj

�t
C c

2

 
�nC1
j � �nC1

j�1
�x

C �njC1 � �nj

�x

!
D 0:

14. Suppose that the advection equation is approximated by a second-order Runge–
Kutta time difference and a centered second-order spatial difference. Show that
the auxiliary conditionO.�t/ � O

�
.�x/4=3

�
is a necessary condition for this

scheme to converge to the true solution in the limit �t , �x ! 0.

15. Suppose that the time derivative in the differential–difference equation (3.28)
is approximated using a fourth-order Runge–Kutta scheme. Determine the
maximum value of c�t=�x for which this scheme will be stable using the
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stability criteria for the oscillation equation given in Table 2.2. Explain how
this value can exceed unity without violating the CFL condition.

16. Derive the modified equation that is approximated through order 3 by the
leapfrog-time centered-space scheme (3.59). Compare this with the modified
equation for the Lax–Wendroff scheme

@�

@t
C c

@�

@x
D �.1 � �2/c.�x/

2

6

@3�

@x3
� �.1 � �2/c.�x/

3

8

@4�

@x4
;

where � D c�t=�x. Discuss whether the behavior of these two schemes, as
illustrated in Fig. 3.12, is consistent with the leading-order error terms in each
scheme’s modified equation.

17. Derive an expression for the upstream approximation to the constant-wind-
speed advection equation that remains upstream independent of the sign of the
velocity field. Express the upstream spatial derivative as the combination of a
centered-space derivative and a diffusive smoother in a manner similar to that
in (3.46).

18. Under what condition will solutions to the leapfrog-backward approximation
(3.93) produce spurious oscillations of period 4�t? Let the region of useful
stability be the values of !�t and ��t for which the solution is nonamplifying
and not spuriously oscillating with a period of 4�t . Derive the conditions (3.94)
defining the region of useful stability for the leapfrog-backward approximation
to (3.90).

19. *Compute solutions to the constant-wind-speed advection equation on the
periodic domain 0 � x � 1 subject to the initial condition  .x; 0/ D
sin6.2πx/ C R.x/; where R.x/ is a small random number in the interval
Œ�5 	 10�7; 5 	 10�7�. Use centered-space differencing @ =@x � ı2x� and
set c D 0:1.

(a) Compare the exact solution with numerical solutions obtained using forward
and leapfrog differencing. Use a Courant number c�t=�x D 0:1 and plot your
solutions at t D 50 using a vertical scale that includes �40 � � � 40. Compare
and explain the results obtained using�x D 1=20, 1/40, and 1/80. Use a single
forward time step to initialize the leapfrog integration.

(b) Compare the exact solution with numerical solutions obtained using Heun
(second-order Runge–Kutta) and leapfrog differencing. Use a Courant number
c�t=�x D 0:5 and plot your solutions at t D 60 using a vertical scale that
includes �2 � � � 2. Compare and explain the results obtained using �x D
1=20, 1/40, 1/80, and 1/160.

(c) Repeat the simulation in (b) with�x D 1=160 but use a Courant number of
1.2 and integrate to t D 2:1. Compare and contrast the nature of the instabilities
exhibited by the forward, leapfrog, and Heun methods in the simulations in (a),
(b), and (c).
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20. *Find solutions to the advection equation

@ 

@t
C c

@ 

@x
D 0

in a periodic domain 0 � x � 1. Suppose that c D 0:2 ms�1 and

 .x; 0/ D
(
94
�
.x � 5

6
/2 � .1

9
/2
�2
; if jx � 5

6
j � 1

9
;

0; otherwise .

Obtain solutions using (1) leapfrog time differencing and centered second-
order spatial differencing, (2) upstream (or donor-cell) differencing, and (3) the
Lax–Wendroff method. Choose �x D 1=36. Examine the sensitivity of the
numerical solutions to the Courant number .c�t=�x/. Try Courant numbers
of 0.1, 0.5, and 0.9. For each Courant number, submit a plot of the three numer-
ical solutions and the exact solution at time t D 5. Scale the vertical axis on
the plot to the range �0:6 �  � 1:6. Discuss the relative quality of the so-
lutions and their dependence on the Courant number. Is the dependence of the
solutions on the Courant number consistent with the modified equation (3.67)
and the results obtained in Problem 16?

21. *Consider the leapfrog-time fourth-order-space approximation to the constant-
wind-speed advection equation

ı2t�
n
j C c

�
4

3
ı2x�

n
j � 1

3
ı4x�

n
j

�
D 0:

(a) Determine the maximum Courant number .c�t=�x/ for which this scheme
is stable.

(b) Repeat the comparison in Problem 20 including results from this fourth-
order scheme and the leapfrog-time second-order-space scheme on each plot.
Use Courant numbers 0.1, 0.5, and 0.72. Does the accuracy of both approximate
solutions improve as the Courant number approaches its maximum stable value?
Why or why not?

22. *Compute solutions to the one-dimensional diffusion equation (3.80) over the
time interval 0 � t � 1=4 on the periodic domain 0 � x � 1, subject to the
initial condition

 .x; 0/ D sin.2πx/C cos.6πx/=2C sin.20πx/=5CR;

where R is a randomly distributed number in the interval Œ0; 4 	 10�7� and
M D 0:01.

(a) Derive an expression for the exact solution to this problem for the special
case R D 0.
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(b) Compute three approximate solutions using the Crank–Nicolson scheme
(3.86). Compute a coarse-resolution solution using �x D 1=20 and setting
M�t=.�x/2 D 1=2. Then halve �t and �x and compute another approxi-
mate solution with �x D 40 and M�t=.�x/2 D 1. Finally halve �t and �x
one additional time and submit plots for all three resolutions at t D 0:25.

(c) Obtain a second set of approximate solutions using forward time differenc-
ing (3.81) at the same space and time resolutions considered in (b) and submit
those plots.

(d) Finally, repeat the same series of integrations using the DuFort–Frankel
method (3.84). Initialize the Dufort–Frankel method with a single forward step.
Submit plots at t D 0:25 for the same three resolutions considered in (b).

(e) Discuss the differences between the solutions produced by the three methods
and their probable source. In this instance, which appear to be the more critical
constraints on the values of �t and �x: those associated with ensuring the
stability of the forward scheme or those required for the consistency of the
DuFort–Frankel method?



Chapter 4
Beyond One-Dimensional Transport

The basic properties of finite-difference methods were explored in Chap. 3 by
applying each scheme to simple prototype problems involving advection and diffu-
sion in one spatial dimension. The equations governing wavelike geophysical flows
include additional complexities. In particular, the flow may depend on several un-
known functions that are related by a system of partial differential equations, the
unknowns may be functions of more than two independent variables, and the equa-
tions may be nonlinear. In this chapter we will examine some of the additional con-
siderations that arise in the design and analysis of finite-difference schemes for the
approximation of these more general problems.

4.1 Systems of Equations

Suppose that the problem of interest involves several unknown functions of x and t
and that the governing equations for the system are linear with constant coefficients.
An example of this type is the linearized one-dimensional shallow-water system

@u

@t
C U

@u

@x
C g

@h

@x
D 0; (4.1)

@h

@t
C U

@h

@x
CH

@u

@x
D 0; (4.2)

in which U and u.x; t/ represent the mean and perturbation fluid velocity, H and
h.x; t/ are the mean and perturbation fluid depth, and g is the gravitational accel-
eration. The procedure for determining the truncation error, consistency, and order
of accuracy of finite-difference approximations to a system such as (4.1) and (4.2)
is identical to that discussed in Sect. 3.1. Taylor series expansions for the exact
solution at the various grid points (x0; x0 ˙�x; : : :) are substituted into each finite
difference, and the order of accuracy of the overall scheme is determined by the

D.R. Durran, Numerical Methods for Fluid Dynamics: With Applications to Geophysics, 147
Texts in Applied Mathematics 32, DOI 10.1007/978-1-4419-6412-0 4,
c� Springer Science+Business Media, LLC 1999, 2010
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lowest powers of�x and�t appearing in the truncation error. The stability analysis
for finite-difference approximations to systems of partial differential equations is,
on the other hand, more complex than that for a single equation.

4.1.1 Stability

Recall that a von Neumann stability analysis of the finite-difference approxima-
tion to a linear constant-coefficient scalar equation is performed by determining the
magnitude of the amplification factor Ak . Here, as in Sect. 3.2.2, the amplification
factor for a two-time-level scheme is defined such that a single step of the finite-
difference integration maps the Fourier component eikx to Akeikx . However, when
the governing equations are approximated by a linear constant-coefficient system of
finite-difference equations, the kth Fourier component of the solution is represented
by the vector vk, and the amplification factor becomes an amplification matrix1 Ak .
For example, in the shallow-water system (4.1) and (4.2), the vector representing
the kth Fourier mode is

vk D
�
uk
hk

�
eikx:

If the true solution does not grow with time, an appropriate stability condition is that

kvnkk D kAnkv0kk � kv0kk;
for all n and all wave numbers k resolved on the numerical mesh. For a single scalar
equation, this condition reduces to (3.13). If the true solution grows with time, or if
one is interested only in establishing sufficient conditions for the convergence of a
consistent finite-difference scheme, the preceding condition should be relaxed to

kvnkk D kAnkv0kk � CT kv0kk for all n�t � T

and all sufficiently small values of�t and�x. Here CT may depend on T , the time
period over which the equations are integrated, but not on �t or �x. In the case of
a single scalar equation, the preceding condition reduces to (3.12). Possible vector
norms for use in these inequalities include k k1 and k k2 (defined by (3.10) and
(3.11)).

4.1.1.1 Power Bounds on Matrices

The preceding stability conditions may be expressed in terms of the amplifica-
tion matrix after introducing the concept of matrix norms. The norm of a matrix

1 Except in this section, the amplification matrix will be written without the subscript k for con-
ciseness.
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is defined in terms of the more familiar vector norm such that if B is an M � N

matrix and z a column vector of length N , then

kBk D sup
kzkD1

kBzk D sup
kzk¤0

kBzk
kzk :

In particular, if bij is the element in the i th row and j th column of B, then

kBk1 D max
1�i�M

NX
jD1

jbij j

and

kBk2 D �m.B�B/1=2;

where B� is the conjugate transpose of B, and �m is the spectral radius, defined as
the maximum in absolute value of the eigenvalues of a square matrix.2

Necessary and sufficient conditions for the stability of a constant-coefficient lin-
ear system may be expressed using this norm notation as

kAnkk � 1 (4.3)

for nongrowing solutions, and as

kAnkk � CT (4.4)

in cases where the true solution grows with time or where the interest is only in
ensuring that the numerical solution will be sufficiently stable to converge in the
limit of�x, �t ! 0: (Once again, CT depends on time, but not on �x and �t .)

Up to this point, the stability analysis for the single scalar equation and that for
the system are essentially the same. The difference between the two arises when one
attempts to reduce the preceding conditions on kAn

k
k to a constraint on kAkk. In the

scalar case the necessary and sufficient condition that jAn
k
j � 1 is just jAkj � 1. On

the other hand, when the amplification factor is a matrix, the necessary and sufficient
conditions for Ak to be “power-bounded” are rather complex. Since kAn

k
k � kAkkn

(by the fundamental properties of any norm), the condition kAkk � 1 will ensure
stability. This condition is not, however, necessary for stability, as may be seen by
considering the matrix

E D
�
1 �1
0 �1

�
;

for which kEk1 D 2, .kEk2/2 D .3 C p
5/=2, and yet for all positive integers m,

E2m is the identity matrix, whose norm is unity.

2 The standard mathematical notation for the spectral radius of a matrix A is �.A/. We use �m.A/
to distinguish the spectral radius from the density.
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The precise necessary and sufficient conditions for an arbitrary matrix
to be power-bounded are given by the Kreiss matrix theorem (Kreiss 1962;
Strikwerda 1989, p. 188) and are relatively complicated. Necessary conditions
for the boundedness of kAn

k
k can, however, be expressed quite simply. To have

kAn
k
k � 1, i.e., to have a nongrowing numerical solution, it is necessary that

�m.Ak/ � 1: (4.5)

To satisfy the bound on the amplification matrix for growing solutions (4.4), it is
necessary that

�m.Ak/ � 1C ��t; (4.6)

where � is a constant independent of �x and �t . The fact that the preceding
expressions are not sufficient conditions for stability is illustrated by the matrix

F D
�
1 1

0 1

�
;

for which �m.F/ D 1, but

Fn D
�
1 n

0 1

�
;

so kFnk grows linearly with n. This linear growth is, however, much weaker than
the geometric growth in kFnk that would occur if the spectral radius of F were
bigger than 1. The fact that the condition �m.Ak/ � 1 is capable of eliminating
all highly unstable cases with geometrically growing solutions is an indication that
the spectral radius criteria (4.5) and (4.6) are “almost” strong enough to ensure
stability. Indeed, if Ak can be transformed to a diagonal matrix, which is frequently
the situation when hyperbolic partial differential equations are approximated by
finite differences, (4.5) and (4.6) are both necessary and sufficient conditions for
stability. Even if Ak cannot be transformed to a diagonal matrix, (4.5) will be suffi-
cient to ensure nongrowing solutions, provided that the moduli of all but one of the
eigenvalues of Ak are strictly less than unity.

In most practical applications, the governing equations will contain either
nonlinear terms or linear terms with variable coefficients, and to perform a von
Neumann stability analysis, one must first approximate the full equations with a
frozen-coefficient linearized system. Subsequent analysis of the frozen-coefficient
linearized system yields necessary, but not sufficient, conditions for the stability of
the numerical solution to the original problem. It is therefore often not profitable to
exert great effort to determine sufficient conditions for the stability of the frozen-
coefficient linearized system. Instead, it is common practice to evaluate (4.5) or
(4.6) with the understanding that they provide necessary conditions for the stability
of both the original problem and the associated frozen-coefficient linear system, but
do not guarantee stability in either case.
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4.1.1.2 Reanalysis of Leapfrog Time Differencing

A simple system of finite-difference equations illustrating the preceding concepts
can be obtained by writing the leapfrog time-differenced approximation to the os-
cillation equation (2.19) as

�nC1 D �n C 2i��t�n; (4.7)

�nC1 D �n: (4.8)

Although in this example the original problem is governed by a single ordinary dif-
ferential equation rather than a system of partial differential equations, the stability
analysis of the finite-difference system proceeds as if (4.7) and (4.8) had been ob-
tained directly from a more complicated problem. Let A denote the amplification
matrix obtained by writing the system in the matrix form

�
2i��t 1
1 0

��
�

�

�n
D
�
�

�

�nC1
:

The eigenvalues of the amplification matrix satisfy

�2 � 2i��t�� 1 D 0;

which is the same quadratic equation as obtained for the amplification factor in the
analysis of the leapfrog scheme in Sect. 2.3.4, where it was shown that j�˙j D 1

if and only if j��t j � 1. Thus, the necessary condition for stability �m.A/ � 1 is
satisfied when j��t j � 1.

Sufficient conditions for stability are easy to obtain if the amplification matrix
is diagonalizable, since �m.A/ � 1 will then be both a necessary and a sufficient
condition for stability. Any matrix can be transformed to a diagonal matrix if it has a
complete set of linearly independent eigenvectors. The eigenvectors of the leapfrog
amplification matrix

�
i��t C Œ1 � .��t/2	1=2

1

�
and

�
i��t � Œ1 � .��t/2	1=2

1

�

are linearly independent for ��t ¤ ˙1. The leapfrog scheme must therefore be
stable when j��t j < 1. When ��t D 1, however, the eigenvectors of the leapfrog
amplification matrix are not linearly independent, and the matrix is not diagonaliz-
able. In this case,

A D
�
2i 1
1 0

�
and An D in

�
nC 1 �in
�in 1 � n

�
:

Since kAnk grows linearly with n, the leapfrog scheme is not stable for ��t D 1.
Similar reasoning shows that the choice ��t D �1 is also unstable. The overall
conclusion, that the leapfrog differencing is stable for j��t j < 1, is identical to that
obtained in Sect. 2.3.4.
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4.1.1.3 The Discrete-Dispersion Relation

Another useful way to obtain necessary conditions for the stability of wavelike
solutions of systems of partial differential equations is to evaluate the discrete-
dispersion relation. The discrete-dispersion relation is particularly simple in
instances where the original system is approximated by finite differences that
are centered in space and time. For example, suppose the one-dimensional
shallow-water system (4.1) and (4.2) is approximated using leapfrog-time centered-
second-order space differencing as

ı2tuC Uı2xuC gı2xh D 0; (4.9)

ı2thC Uı2xhCHı2xu D 0: (4.10)

(The finite-difference operator ınx is defined in the Appendix by (A.1).) As in the
case of the scalar advection equation discussed in Sect. 3.4.1, the construction of
the discrete-dispersion relation mimics the procedure used to obtain the dispersion
relation for the continuous system. Wave solutions to the discretized shallow-water
equations are sought in the form

unj D u0ei.kj�x�!n�t/; hnj D h0ei.kj�x�!n�t/; (4.11)

where u0 and h0 are complex constants determining the wave amplitude, and the
physically relevant portion of the solution is the real part of unj and hnj . Substitution
of (4.11) into the finite-differenced governing equations (4.9) and (4.10) yields

�
� sin!�t

�t
C U

sin k�x

�x

�
u0 C g

sin k�x

�x
h0 D 0;

�
� sin!�t

�t
C U

sin k�x

�x

�
h0 CH

sin k�x

�x
u0 D 0:

Nontrivial values of u0 and h0 will satisfy the preceding pair of homogeneous equa-
tions when the determinant of the coefficients of u0 and h0 is zero, which requires

�
sin!�t

�t
� U

sin k�x

�x

�2
D gH

�
sin k�x

�x

�2
;

or defining c D p
gH ,

sin!�t D �t

�x
.U ˙ c/ sin k�x: (4.12)

In the limit of �t , �x ! 0, this discrete-dispersion relation approaches the disper-
sion relation for the continuous problem ! D .U ˙ c/k.

The discrete-dispersion relation for the linearized shallow-water system is
identical to that for the scalar advection equation (3.60) except that it supports
two physical modes moving at velocities U C c and U � c. The amplitude and
phase-speed error in each wave may be analyzed in the same manner as that in



4.1 Systems of Equations 153

the scalar advection problem (see Sect. 3.4.1). The analysis of amplitude error, for
example, proceeds by examining the amplification factor e=.!/�t by which the
waves (4.11) grow or decay during each time step. Since the horizontal wave num-
ber (k) of periodic waves is real, the imaginary part of ! will be zero unless the right
side of (4.12) exceeds unity. When the right side is greater than unity, one of the !
satisfying (4.12) has a positive imaginary part, and the numerical solution grows at
each time step. Thus, a necessary condition for the stability of the finite-difference
scheme is that ˇ̌̌

ˇ�t�x .U ˙ c/ sin k�x

ˇ̌̌
ˇ � 1

for all k resolvable on the numerical mesh, or since k D π=.2�x/ is a resolv-
able wave,

.jU j C c/
�t

�x
� 1: (4.13)

This condition is not quite sufficient to guarantee stability; since the time differenc-
ing is leapfrog, sufficient conditions for stability require strict inequality in (4.13).

4.1.2 Staggered Meshes

When simulating a system of equations with several unknowns, it is not necessary to
define all the unknown variables at the same grid points. Significant improvements
in the accuracy of the short-wavelength components of the solution can sometimes
be obtained by the use of staggered meshes.

4.1.2.1 Spatial Staggering

Consider, once again, the linearized shallow-water system (4.1) and (4.2) and to
reveal the benefits of staggering more clearly, suppose that U D 0. The finite-
difference approximations (4.9) and (4.10) assume that the perturbation velocity
.u/ and depth .h/ are defined at the same grid points, as shown schematically in
Fig. 4.1a. An alternative arrangement is shown in Fig. 4.1b, in which the grid points

a

b

Δx

uj–1, hj–1

uj–1 uj

uj+1, hj+1

uj+1

uj, hj

1
2

hj– 1
2

hj+

Fig. 4.1 Distribution of u and h on a an unstaggered and b a staggered mesh
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where h is defined are shifted�x=2 to the right (or left) of u grid points. A centered-
difference approximation to the linearized shallow-water system with U D 0 may
be written for the staggered mesh as

ı2tuj C gıxhj D 0; (4.14)

ı2thjC 1
2

CHıxujC 1
2

D 0: (4.15)

The discrete-dispersion relation for the solution to these equations is

sin!�t D ˙2c�t

�x
sin

�
k�x

2

�
; (4.16)

from which it follows that (4.14) and (4.15) are stable when jc�t=�xj < 1=2.
The maximum time step available for integrations on the staggered mesh is only
half that which may be used on the unstaggered mesh. The more stringent restric-
tion on the time step is, however, not entirely bad, because shorter time steps are
generally required by spatial differencing schemes that more faithfully capture the
high-frequency components of the solution. Analysis of the truncation error shows
that both the staggered and the unstaggered schemes are O

�
.�x/2

�
and that the

leading-order truncation error is smaller for the staggered scheme.
A more revealing comparison of the accuracy of each scheme is provided by

examining their discrete-dispersion relations in the limit of good temporal resolution
(!�t ! 0). Let cu and cs denote the phase speeds of the numerical solutions on the
unstaggered and staggered meshes, respectively; then

cu D c

k�x
sin k�x and cs D 2c

k�x
sin

�
k�x

2

�
:

Curves showing cu and cs are plotted as a function of spatial resolution in Fig. 4.2.
Also plotted in Fig. 4.2 is the phase speed obtained when the explicit fourth-order
difference (3.2) is used to approximate the spatial derivatives on the unstaggered
mesh. As evident in Fig. 4.2, the error in the phase speed of the poorly resolved
waves is much smaller on the staggered mesh. In particular, the 2�x wave propa-
gates at 64% of the correct speed on the staggered mesh but remains stationary on
the unstaggered mesh.

Substantial improvements in the group velocity of the shortest waves are also
achieved using the staggered mesh. Assuming good temporal resolution, the group
velocities of the right-moving wave for the second-order schemes on the unstag-
gered and staggered meshes are, respectively,

�
@!

@k

�
u

D c cos k�x and

�
@!

@k

�
s

D c cos

�
k�x

2

�
:

The group velocity of a 2�x wave is �c on the unstaggered mesh and zero on the
staggered mesh. Since the correct group velocity is c, both schemes generate serious
error, but the error on the unstaggered mesh is twice as large.
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Fig. 4.2 Phase speed in the limit of good temporal resolution as a function of spatial resolution
for the exact solution (E), for second-order approximations on a staggered mesh cs (2S) and an
unstaggered mesh cu (2U), and for centered fourth-order spatial derivatives on an unstaggered
mesh (4U)

4.1.2.2 Temporal Staggering and Forward–Backward Differencing

Just as every unknown variable need not be defined at every spatial grid point, it
is also not necessary to define all the unknown variables at each time level. For
example, the finite-difference scheme (4.14) and (4.15) could be stepped forward
in time using only the values of u at the odd time levels (Œ2n C 1	�t) and h at
the even time levels (2n�t). Staggering u and h in time could, therefore, halve the
total computation required for a given simulation. Unfortunately, time staggering
can be difficult to program and may be incompatible with the time differencing
used to integrate other terms in the governing equations, such as those representing
advection by the mean wind in (4.1) and (4.2).

Sometimes the advantages of time staggering can be achieved without actually
staggering the unknowns in time by evaluating the various terms in the govern-
ing equations at different time levels. In the case of the shallow-water system, the
benefits of true time staggering can be obtained using forward–backward differenc-
ing. One possible forward–backward formulation of the spatially staggered finite-
difference approximation to the linearized shallow-water system (4.14) and (4.15) is

ıtu
nC 1

2

j C gıxh
n
j D 0; (4.17)

ıth
nC 1

2

jC 1
2

CHıxu
nC1
jC 1

2

D 0: (4.18)

The momentum equation (4.17) is first updated using forward differencing, and then
the continuity equation (4.18) is integrated using backward differencing. The back-
ward difference does not introduce an implicit coupling between the unknowns
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in the forward–backward scheme because unC1 is computed in (4.17) before it
is required in (4.18). The overall stability and accuracy of the forward–backward
scheme is independent of which equation is updated first; the continuity equation
could be integrated first with a forward difference and then the momentum equation
could be advanced using a backward difference.

The discrete-dispersion relation associated with the forward–backward approxi-
mation on the spatially staggered mesh, (4.17) and (4.18), is

sin

�
!�t

2

�
D ˙c�t

�x
sin

�
k�x

2

�
: (4.19)

If jc�t=�xj < 1, there will be one3 real-valued ! satisfying (4.19), and the
scheme will be stable. The time-step restriction introduced by spatial staggering can
therefore be avoided if leapfrog differencing is replaced by the forward–backward
scheme. In addition, forward–backward differencing involves only two time levels
and thereby avoids the introduction of computational modes.

In the case of the linearized shallow-water system with U D 0, forward–
backward differencing on a spatially staggered mesh is clearly superior to the
leapfrog spatially unstaggered scheme. However, in applications where several dif-
ferent terms appear in each governing equation, it is often impossible to choose a
single staggering that improves the accuracy of every term. In such situations the ad-
vantages of staggering can be substantially reduced. As an example, suppose that the
preceding forward–backward spatially staggered approximation is to be extended to
shallow-water problems with nonzero mean flow. The simplest O

�
.�x/2

�
approx-

imation to the spatial derivatives in the advection terms is the same centered differ-
ence used in the unstaggered equations (4.9) and (4.10). The staggering of u with
respect to h does not interfere with the construction of these centered differences,
but it does not improve their accuracy either. The incorporation of the advection
terms in the forward–backward time difference poses more of a problem, since a
forward-difference approximation to the advection equation (see Sect. 2.3.2) is un-
stable. One possible approach is to perform the forward–backward differencing over
an interval of 2�t and to use the intermediate time level to evaluate the advection
terms with leapfrog differencing as follows:

ı2tu
n
j C Uı2xu

n
j C gıxh

n�1
j D 0;

ı2th
n
jC 1

2

C Uı2xh
n
jC 1

2

CHıxu
nC1
jC 1

2

D 0:

The discrete-dispersion relation for this system is

sin!�t D �t

�x

�
U sin k�x ˙ 2c sin

�
k�x

2

��
;

3 Recall that the range of resolvable frequencies is 0 � ! � �=�t , which correspond to wave
periods between 1 and 2�t .
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and is identical to that which would be obtained if leapfrog time differencing were
used to integrate every term. The benefits of forward–backward time differencing
have been lost. Once again, the numerical scheme includes computational modes,
and for c � jU j the maximum stable time step is half that allowed in the spatially
unstaggered scheme. The benefits of spatial staggering are retained, but apply only
to that portion of the total velocity of propagation that is produced by the pressure
gradient and divergence terms (i.e., by the mechanisms that remain active in the
limit U ! 0). In situations where c � jU j, spatial staggering yields substantial
improvement, but in those cases where jU j � c, the errors in the 2�x waves
introduced by the advection terms dominate the total solution and mask the benefits
of spatial staggering. One way to improve accuracy when jU j � c is to use fourth-
order centered differencing for the advection terms. Fourth-order differencing is not
used to obtain highly accurate approximations to the well-resolved waves, but rather
to reduce the phase-speed error in the moderately resolved waves to a value com-
parable to that generated by second-order staggered differencing (compare curves
2S and 4U over wavelengths ranging from 4�x to 10�x in Fig. 4.2). Reinecke
and Durran (2009) give an example where fourth-order approximations for hori-
zontal advection together with second-order approximations to other derivatives on
a staggered mesh give much better results than those obtained using second-order
derivatives for all terms.

4.2 Three or More Independent Variables

In most time-dependent problems of practical interest, the unknowns are functions
of three or four independent variables (i.e., time and two or three spatial coordi-
nates). The accuracy, consistency, and stability of finite-difference approximations
to higher-dimensional equations are determined using essentially the same proce-
dures described in Chap. 3. Two specific examples will be considered in the follow-
ing sections: scalar advection in two dimensions and the Boussinesq equations.

4.2.1 Scalar Advection in Two Dimensions

The advection equation for two-dimensional flow can be approximated using
leapfrog-time centered-space schemes that are obvious generalizations of the
finite-difference approximations employed in the one-dimensional problem. New
considerations involving the incorporation of mixed spatial derivatives do, however,
arise in designing accurate and efficient forward-in-time approximations. These
considerations will be explored after first examining schemes that are centered in
space and time.
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4.2.1.1 Centered-In-Time Schemes

When explicit finite-difference schemes for the integration of one-dimensional
problems are extended to two or more spatial dimensions, the stability criteria for
the multidimensional problems are often more stringent than those for the one-
dimensional formulation. As an example, consider the two-dimensional advection
equation

@ 

@t
C U

@ 

@x
C V

@ 

@y
D 0; (4.20)

which may be approximated by leapfrog-time, centered-second-order-space differ-
encing as

ı2t� C Uı2x� C V ı2y� D 0: (4.21)

Let 
 D U�t=�x and � D V�t=�y be the Courant numbers for flow parallel to
the x- and y-axes. The finite-difference equation (4.21) has discrete solutions of the
form

�jm;n D ei.km�xC`n�y�!j�t/;

provided that !, k, and ` satisfy the discrete dispersion relation

sin.!�t/ D 
 sin.k�x/C � sin.`�y/: (4.22)

A necessary condition for stability is that ! be real, or equivalently that

j
j C j�j � 1: (4.23)

As discussed in connection with (3.60), the sufficient condition for stability actually
requires strict inequality in (4.23) to avoid weakly growing modes such as

�jm;n D j cos Œπ.mC n � j /=2	 ;

which is a solution to (4.21) when 
 D � D 1
2

. The distinction between strict in-
equality and the condition given in (4.23) is, however, of little practical significance.

To better compare this stability condition with that for one-dimensional advec-
tion, suppose that �x D �y D �s and express the wind components in terms of
wind speed c and direction � such that U D c cos � and V D c sin � . Then the
stability condition may be written

c
�
j cos � j C j sin � j

��t
�s

< 1:

The left side of the preceding inequality is maximized when the wind blows
diagonally across the mesh. If C denotes a bound on the magnitude of the two-
dimensional velocity vector, the stability condition becomes C�t=�s < 1=

p
2.

Comparing this with the corresponding result for one-dimensional flow, it is appar-
ent that the maximum stable time step in the two-dimensional case is decreased by
a factor of 1=

p
2.
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2Δy

2Δx

Fig. 4.3 Distribution of wave crest (solid circles) and wave troughs (open circles) in the shortest-
wavelength disturbance resolvable on a square mesh in which�x D �y

The stability condition for two-dimensional flow is more restrictive than that for
the one-dimensional case because shorter-wavelength disturbances are present on
the two-dimensional mesh. The manner in which two-dimensional grids can support
wavelengths shorter than 2�x is illustrated in Fig. 4.3. In the case shown in Fig. 4.3,
�x D �y D �s. Grid points beneath a wave crest are indicated by solid circles;
those beneath a trough are indicated by open circles. The apparent wavelength paral-
lel to both the x-axis and the y-axis is 2�s; however, the true wavelength measured
along the line x D y is

p
2�s. The maximum stable time step is inversely propor-

tional to the highest frequency resolvable by the numerical scheme, and in the case
of the advection equation, the frequency is proportional to the wave number times
the wind speed. Since the wave number of a diagonally propagating wave exceeds
the apparent wave numbers in the x and y directions by a factor of

p
2, the maxi-

mum resolvable frequency is increased by the same factor, and the maximum stable
time step is reduced by 1=

p
2.

One way to avoid this restriction on the maximum stable time step is to average
each spatial derivative as follows (Abarbanel and Gottlieb 1976):

ı2t� C U hı2x�i2y C V
˝
ı2y�

˛2x D 0; (4.24)

where h ix is an averaging operator defined by

hf .x/inx D
�
f .x C n�x=2/C f .x � n�x=2/

2

	
: (4.25)

The discrete dispersion relation for this “averaging” scheme is

sin.!�t/ D 
 sin.k�x/ cos.`�y/C � sin.`�y/ cos.k�x/: (4.26)

Let  D k�x and � D `�y, and note that Schwarz’s inequality4 implies

j sin jj cos �j C j sin �jj cos j � 

sin2  C cos2 

�1=2 

sin2 � C cos2 �

�1=2
:

4
P

j ajbj �
�P

j a
2
j

�1=2 �P
j b

2
j

�1=2

.
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Since

j sin.!�t/j D j
 sin  cos � C � sin � cos j
� max fj
j; j�jg

�
j sin jj cos �j C j sin �jj cos j

�
;

real values of ! are obtained whenever

max fj
j; j�jg � 1: (4.27)

As before, suppose that U D c cos � , V D c sin � , �x D �y D �s, and that
C is a bound on jcj; then requiring strict inequality in (4.27) to guarantee that the
leapfrog time difference does not admit weakly unstable modes, the stability condi-
tion becomes C�t=�s < 1, which is identical to that for the one-dimensional case.

Although the averaging scheme is potentially more efficient because it permits
longer time steps, it is also less accurate. This loss of accuracy is not clearly reflected
in the truncation error, which is O

�
.�x/2

�CO
�
.�y/2

�
for both the nonaveraged

method (4.21) and the averaging scheme (4.24). The problems with the averaging
scheme appear in the representation of the poorly resolved waves. As discussed in
connection with Fig. 4.3, shorter waves are resolvable on a two-dimensional grid,
and if properly represented by the spatial differencing, they should generate higher-
frequency oscillations and reduce the maximum stable time step. The averaging
scheme avoids such time-step reduction by artificially reducing the phase speeds of
the diagonally propagating waves.

The phase-speed errors introduced by the spatial differencing in both methods
may be examined by a generalization of the one-dimensional approach discussed in
Sect. 3.3.1. First consider the propagation of two-dimensional waves in the nondis-
cretized problem. Waves of the form

 .x; y; t/ D ei.kxC`y�!t/

satisfy the two-dimensional advection equation (4.20), provided that

! D v � k; (4.28)

where v is the velocity vector and k is the wave number vector with components
.k; `/. If K denotes the magnitude of k, then the x and y components of the wave
number vector may be expressed as

k D K cos � and ` D K sin �; (4.29)

where � is the angle between the wave number vector and the x-axis. The dispersion
relation (4.28) implies that all apparent wave propagation is parallel to the wave
number vector. Consider, therefore, the case in which the velocity vector is parallel
to the wave number vector. Then if c is the wind speed,

U D c cos � and V D c sin �: (4.30)
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Substituting (4.29) and (4.30) into the dispersion relation demonstrates that c D
!=K , implying that the phase speed is equal to the wind speed.

As in the one-dimensional case, the phase speeds of the waves generated by
the finite-difference approximations (4.21) and (4.24) are defined as c� D !�=K,
where !� is the frequency satisfying the appropriate discrete-dispersion relation:
either (4.22) or (4.26). In the limit of good time resolution, the phase speed for the
nonaveraging scheme is

c�
na D 1

K

�
U

sin.k�x/

�x
C V

sin.`�y/

�y

�
;

and that for the averaging scheme is

c�
a D 1

K

�
U

sin.k�x/

�x
cos.`�y/C V

sin.`�y/

�y
cos.k�x/

�
:

Suppose �x D �y D �s and define ˇ D K�s; then using (4.29) and (4.30) to
evaluate the velocity and wave number components in the preceding expressions,
the relative phase speed for each scheme becomes

c�
na

c
D cos � sin.ˇ cos �/C sin � sin.ˇ sin �/

ˇ

and

c�
a

c
D cos � sin.ˇ cos �/ cos.ˇ sin �/C sin � sin.ˇ sin �/ cos.ˇ cos �/

ˇ
:

These expressions for the relative phase speed were evaluated for wavelengths
2π=K D 2�s, 3�s, 4�s, and 6�s and are plotted as a function of � in Fig. 4.4.
Figure 4.4 shows a polar plot in which the relative phase speed of a 3�s wave prop-
agating along a ray extending outward from the origin at an angle � with respect to
the x-axis is plotted as the radial distance between the origin and the point where
that ray intersects the dashed curve labeled “3.” As indicated in Fig. 4.4a, the non-
averaging scheme does not resolve the propagation of 2�s waves parallel to either
the x-axis or the y-axis, but 2�s waves can move at greatly reduced speed along
the diagonal line x D y (� D �=4). The phase-speed error diminishes as the wave-
length increases, with the maximum error in 6�s waves being no larger than 20%.
These results can be compared with the relative phase speed curves for the averag-
ing scheme plotted in Fig. 4.4b. The averaging scheme generates substantial errors
in the phase speed of waves moving diagonally along the line x D y; the 2�s wave
does not propagate at all, and even the 6�s wave is significantly retarded. These
reduced phase speeds allow the averaging scheme to remain stable for large time
steps, but as is apparent in Fig. 4.4, the enhanced stability is obtained at the cost of
increased phase-speed errors in the poorly and moderately resolved waves.
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Fig. 4.4 Polar plot of the relative phase speeds of 2�s (shortest dashed line), 3�s, 4�s, and
6�s (longest dashed line) waves generated by a the nonaveraged finite-difference formula and b
the averaging scheme. Also plotted is the curve for perfect propagation (E), which is independent
of the wavelength and appears as a circular arc of radius unity

4.2.1.2 Forward-In-Time Schemes

Assuming that U � 0 and V � 0, one generalization of the upstream method to the
two-dimensional advection equation (4.20) is

ıt�
jC 1

2
m;n C Uıx�

j

m� 1
2
;n

C V ıy�
j

m;n� 1
2

D 0: (4.31)

The stability of this scheme may be investigated using the standard von Neumann
method. Let

�jm;n D Aj ei.km�xC`n�y/: (4.32)

Then

A D 1 � 
.1 � e�i�/ � �.1� e�i� /; (4.33)

where as before, 
 D U�t=�x, � D V�t=�y,  D k�x, and � D `�y. Neces-
sary and sufficient conditions for stability are

0 � 
; 0 � �; and 
C � � 1: (4.34)

The necessity of the preceding conditions may be established by considering the
three cases  D 0, � D 0, and  D �, for each of which the dependence of the
amplification factor on the wave number reduces to an expression of the same form
as in the one-dimensional case (3.22). The sufficiency of (4.34) follows from

jAj � j1� 
 � �j C j
e�i� j C j�e�i� j
D j1� 
 � �j C j
j C j�j;

which implies that jAj � 1 whenever 
 and � satisfy (4.34).
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Suppose that �x D �y D �s and that C is a bound on the magnitude of
the two-dimensional velocity vector; then provided that the spatial differences are
evaluated in the upstream direction, the stability condition is C�t=�s � 1=

p
2.

As was the case with the leapfrog approximation (4.21), the maximum stable time
step is approximately 30% less than that in the analogous one-dimensional problem.
In contrast to the situation with centered-in-time schemes, it is, however, possible
to improve the stability of forward-in-time approximations to the two-dimensional
advection equation while simultaneously improving at least some aspects of their
accuracy.

One natural way to derive the upstream approximation to the one-dimensional
advection equation is through the method of characteristics (Courant et al. 1952).
The true solution of the one-dimensional advection equation is constant along char-
acteristic curves whose slopes are dx=dt D U . The characteristic curve passing
through the point Œm�x; .j C 1/�t	 also passes through Œ.m�
/�x; j�t	, and as
discussed in Sect. 7.1.1, the upstream scheme

�jC1
m D .1 � 
/�jm C 
�

j
m�1

is obtained if the value of �j at .m � 
/�x is estimated from �
j
m and �jm�1 by

linear interpolation. The method of characteristics is naturally extended to the two-
dimensional advection problem using bilinear interpolation, in which case

�jC1
m;n D .1 � 
/

h
.1 � �/�jm;n C ��

j
m;n�1

i

C

h
.1 � �/�jm�1;n C ��

j
m�1;n�1

i
(4.35)

(Bates and McDonald 1982). Colella (1990), who derived the same scheme using a
finite-volume argument (see Sect. 5.9.2), has referred to this scheme as the corner
transport upstream (CTU) method.

The CTU method may be expressed in the alternative form

ıt�
jC 1

2
m;n C Uıx�

j

m� 1
2
;n

C V ıy�
j

m;n� 1
2

D UV�tıxıy�
j

m� 1
2
;n� 1

2

; (4.36)

which shows that it differs from (4.31) by a term that is a finite-difference approxi-
mation to

UV�t
@2 

@x@y
:

The addition of this cross-derivative term improves the stability of the CTU scheme
relative to (4.31). Substituting (4.32) into (4.36) yields

A D
�
1 � 
C 
e�i�

� �
1� � C �e�i�

�
:

Each factor in the preceding equation has the same form as (3.22), so the magnitude
of each factor will be less than 1, and the CTU scheme will be stable if 0 � 
 � 1
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Fig. 4.5 Contours of the solution to the constant-wind-speed advection equation on a two-
dimensional periodic mesh obtained using a the two-dimensional upstream method, (b) the corner
transport upstream method, c the upstream-biased Lax-Wendroff method, and d the true solution.
The contour interval is 0.1, and the zero contour is dashed

and 0 � � � 1. If the computational mesh is uniform and the wind speed is bounded
by C , the stability condition becomes C�t=�s � 1, which is identical to that for
the upstream approximation to the one-dimensional problem.

Solutions generated by the CTU method are compared with those obtained using
the two-dimensional upstream scheme (4.31) in Fig. 4.5. The spatial domain is 0 �
x � 1, 0 � y � 1 and is discretized using a square mesh with �x D �y D 0:025.
The lateral boundary conditions are periodic, and the initial condition is

�.x; y; 0/ D 1

2
Œ1C cos.πr/	;
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where
r.x; y/ D min

�
1; 4

p
.x � 1=2/2 C .y � 1=2/2

�
:

The wind is directed diagonally across the mesh with U D V D 1. The time step
is chosen such that 
 D � D 0:5. The results are displayed at t D 1, at which time
the flow has made exactly one circuit around the domain. The solution obtained
using (4.31) is shown in Fig. 4.5a; that obtained using the CTU method appears
in Fig. 4.5b, and the true solution is plotted in Fig. 4.5d. Since they are first-order
methods, both upstream solutions are heavily damped. The solution generated by
the two-dimensional upstream method has also developed a pronounced asymme-
try, whereas that produced by the CTU method appears axisymmetric. The CTU
solution is, however, damped slightly more than the two-dimensional upstream so-
lution.

The tendency of the two-dimensional upstream scheme to distort the solution
as shown in Fig. 4.5a can be understood by noting that (4.31) is a second-order
approximation to the modified equation

@ 

@t
C U

@ 

@x
C V

@ 

@y
D U�x

2
.1 � 
/@

2 

@x2
C V�y

2
.1 � �/@

2 

@y2
� UV�t @

2 

@x@y
:

The CTU method, on the other hand, is a second-order approximation to

@ 

@t
C U

@ 

@x
C V

@ 

@y
D U�x

2
.1 � 
/

@2 

@x2
C V�y

2
.1 � �/

@2 

@y2
I

the mixed spatial derivative does not appear because it is canceled (to second order)
by the finite difference on the right side of (4.36). The influence of the mixed spatial
derivative on the error in the two-dimensional upstream scheme can be isolated by
considering the simplified equation

@'

@t
D � @2'

@x@y
:

Expressing the preceding equation in a coordinate system rotated by 45ı, so that the
new independent variables are r D x C y and s D x � y, yields

@'

@t
D @2'

@s2
� @2'

@r2
:

Thus, perturbations in  diffuse along lines of constant r and “antidiffuse” along
lines of constant s. Whenever UV > 0, this process of diffusion and antidiffusion
tends to distort the solution as shown in Fig. 4.5a. In contrast, the leading-order error
in the CTU method is purely isotropic when U D V and �x D �y.

Second-order forward-in-time approximations can be obtained using the Lax–
Wendroff method. The scheme

ıt�
jC 1

2 C Uı2x�
j C V ı2y�

j D U 2�t

2
ı2x�

j C V 2�t

2
ı2y�

j (4.37)
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has sometimes been proposed as a generalization of the one-dimensional
Lax–Wendroff method for constant-wind-speed advection in two dimensions, but
this scheme is not second-order accurate because the right side is not a second-order
approximation to the leading-order truncation error in the forward time difference,

�t

2

@2 

@t2
D �t

2

�
u2
@2 

@x2
C v2

@2 

@y2
C 2uv

@2 

@x@y

�
:

In addition to its lack of accuracy, (4.37) is unstable for all �t .
A stable second-order Lax–Wendroff approximation to the two-dimensional

constant-wind-speed advection equation may be written in the form

ıt�
jC 1

2 C Uı2x�
j C V ı2y�

j D U 2�t

2
ı2x�

j C V 2�t

2
ı2y�

j C UV�tı2xı2y�
j :

Necessary and sufficient conditions for the stability of this method are that


2=3 C �2=3 � 1

(Turkel 1977). If C is a bound on the magnitude of the two-dimensional wind vector
and �x D �y D �s, the stability condition becomes C�t=�s � 1=2, which is
more restrictive than that for the two-dimensional leapfrog and upstream schemes,
and much more restrictive than the stability condition for the CTU method.

The stability of the two-dimensional Lax–Wendroff approximation can be greatly
improved using an upstream finite-difference approximation to the mixed spatial
derivative (Leonard et al. 1993). If U � 0 and V � 0, the resulting scheme is

ıt�
jC 1

2
m;n C Uı2x�

j
m;n C V ı2y�

j
m;n

D U 2�t

2
ı2x�

j
m;n C V 2�t

2
ı2y�

j
m;n C UV�tıxıy�

j

m� 1
2
;n� 1

2

: (4.38)

The stability condition for this scheme is identical to that for the CTU method,
0 � 
 � 1 and 0 � � � 1 (Hong et al. 1997). If the mixed spatial derivative
is calculated in the upstream direction and the magnitude of the two-dimensional
wind vector is bounded by C , the stability condition for an isotropic mesh may be
expressed as C�t=�s � 1.

Numerical solutions computed using (4.38) appear in Fig. 4.5c. The initial con-
dition and the physical and numerical parameters are identical to those used to ob-
tain the two-dimensional upstream and CTU solutions. As might be expected in
problems where there is adequate numerical resolution, the amplitude error in the
second-order solution is far less than that in either first-order solution. The leading-
order dispersive error in the second-order method does, however, generate regions
where � is slightly negative. Techniques for minimizing or eliminating these spuri-
ous negative values will be discussed in Chap. 5.
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4.2.2 Systems of Equations in Several Dimensions

Although the stability analysis of systems of linear finite-difference equations in
several spatial dimensions is conceptually straightforward, in practice it can be
somewhat tedious. The easiest way to obtain necessary conditions for the stability
of linear centered-difference approximations to problems involving wavelike flow is
to examine the discrete-dispersion relation. As an example, consider the linearized
Boussinesq equations governing the incompressible flow of a continuously stratified
fluid in the x–z plane. If U and 0 are the constant basic-state horizontal and vertical
wind speeds, the linearized versions of (1.61)–(1.63) become

@u

@t
C U

@u

@x
C @P

@x
D 0; (4.39)

@w

@t
C U

@w

@x
C @P

@z
D b; (4.40)

@b

@t
C U

@b

@x
CN 2w D 0; (4.41)

@u

@x
C @w

@z
D 0; (4.42)

where, as before, P is the perturbation pressure divided by �0, b is the buoyancy,
and N 2 is the Boussinesq approximation to the Brunt–Väisälä frequency.

This system is often discretized using the staggered mesh shown in Fig. 4.6,
which is sometimes referred to as the Arakawa “C” grid (Arakawa and Lamb 1977).
One important property of the C grid is that it allows an accurate computation of the
pressure gradient and velocity divergence using a compact stencil on the staggered
mesh, as in the following finite-difference approximation to (4.39)–(4.42)

ı2tum� 1
2
;n C Uı2xum� 1

2
;n C ıxPm� 1

2
;n D 0; (4.43)

ı2twm;n� 1
2

C Uı2xwm;n� 1
2

C ızPm;n� 1
2

D
D
bm;n� 1

2

Ez
; (4.44)

ı2tbm;n C Uı2xbm;n CN 2 hwm;niz D 0; (4.45)

ıxum;n C ızwm;n D 0: (4.46)

This system of finite-difference equations does not provide a complete algorithm
for the time integration of the Boussinesq system because it does not include an
equation for P jC1. There is no equation for P jC1 because the Boussinesq system
does not have a prognostic pressure equation. Techniques for determining the time
tendency of the pressure field will be discussed in Sect. 8.1. For the present, it is
assumed that the pressure is determined in some unspecified way that guarantees
satisfaction of the finite-difference system (4.43)–(4.46).
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Fig. 4.6 Distribution of the dependent variables on a staggered mesh for the finite-difference
approximation of the two-dimensional Boussinesq system

Substituting solutions of the form

0
BB@
u

w

b

P

1
CCA
j

m;n

D

0
BB@
u0
w0
b0
P0

1
CCA ei.km�xC`n�z�!j�t/

into the finite-difference system (4.43)–(4.46) and setting the determinant of the co-
efficients of u0, w0, b0, and P0 to zero, one obtains the discrete-dispersion relation

Q! D U Qk2 ˙
QN Qk1

. Qk21 C Q̀2/1=2 ; (4.47)

in which

Qk1 D sin.k�x=2/

�x=2
; Qk2 D sin.k�x/

�x
;

Q! D sin!�t

�t
; Q̀ D sin.`�z=2/

�z=2
; QN D N cos.`�z=2/:

The preceding relation is identical to the dispersion relation for the continuous
problem except that the true frequencies and wave numbers are replaced by their
numerical approximations. Note that there are two different approximations to the
horizontal wave number: Qk1 arises from a centered finite-difference approximation
to the horizontal derivative on a �x-wide stencil, and Qk2 is associated with finite
differences on a 2�x-wide stencil. The factor Qk1 is associated with the discretized
pressure-gradient and divergence operators, whereas Qk2 is associated with the ad-
vection operator.
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The numerical solution should not grow with time because linear-wave solutions
to Boussinesq equations are nonamplifying. A necessary condition for the absence
of amplifying waves in the discretized solution is that Q! be real or, equivalently, that
the magnitude of �t times the right side of (4.47) be less than 1. Since the factor
multiplyingN in (4.47) is bounded by unity, this stability condition is

� jU j
�x

CN

�
�t � 1:

4.3 Splitting into Fractional Steps

More efficient integration schemes can often be obtained by splitting complex
finite-difference formulae into a series of fractional steps. As an example, the two-
dimensional advection equation (4.20) might be approximated by the scheme

�s D �n � U�t

2
ı2x.�

n C �s/; (4.48)

�nC1 D �s � V�t

2
ı2y.�

s C �nC1/; (4.49)

where �s is a temporary quantity computed during the first fractional step. (Note
that �s is not a consistent approximation to the true solution at any particular time
level, which complicates the specification of boundary conditions for �s and makes
it difficult to use multilevel time differencing in time-split methods.) If the compu-
tational domain contains Nx � Ny grid points, each integration step of (4.48) and
(4.49) requires the solution of Nx C Ny tridiagonal systems. In contrast, a single
integration step of the corresponding unsplit formula,

�nC1 D �n � U�t

2
ı2x.�

n C �nC1/ � V�t

2
ı2y.�

n C �nC1/; (4.50)

requires the solution of a linear system with an NxNy � NxNy coefficient ma-
trix whose bandwidth is the smaller of 2Nx C 1 and 2Ny C 1. The fractional-step
approach is more efficient because fewer computations are required to solve the
Nx C Ny tridiagonal problems than to solve the single linear system associated
with the band matrix. Some loss of accuracy may, however, be introduced when the
problem is split into fractional steps.

To examine the accuracy and stability of fractional-step splittings in a general
context, consider the class of partial differential equations of the form

@ 

@t
D L D L1 C L2 ; (4.51)
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where L is the linear operator formed by the sum of two linear operators L1 and
L2. In the preceding case of two-dimensional advection,

L1 D �U @

@x
and L2 D �V @

@y
; (4.52)

and L is split into operators involving derivatives parallel to each spatial coordinate.
In other applications, the governing equations might be split into subproblems rep-
resenting different physical processes. In a simulation of chemically reacting flow,
for example, the terms representing advection might be grouped together into L1,
whereas terms describing chemistry might appear in L2.

Assuming for simplicity in the following analysis that L is time independent,
one may write the exact solution to (4.51) in the form .t/ D exp.tL / .0/, where
the exponential of the operator L is defined by the infinite series

exp.tL / D I C tL C t2

2
L 2 C t3

6
L 3 C � � � ;

and I is the identity operator. The change in  over one time step is therefore

 .tC�t/ D expŒ.�tCt/L 	 .0/ D exp.�tL / exp.tL / .0/ D exp.�tL / .t/:

Suppose that a numerical approximation to the preceding expression has the form

�nC1 D F .�t/�n: (4.53)

If the global truncation error in this approximation isO Œ.�t/n	, the local truncation
error5 is O

�
.�t/nC1� and

F .�t/ D exp.�tL /CO
�
.�t/nC1�: (4.54)

In practice, F may involve approximations to spatial derivatives, but the funda-
mental properties of the fractional-step method can be explored without explicitly
considering the discretization of the spatial derivatives.

4.3.1 Split Explicit Schemes

The unsplit forward-difference approximation

F .�t/ D .I C�tL1 C�tL2/

satisfies (4.54) with n D 1, as would be expected, since forward differenc-
ing is O.�t/ accurate. It is easy to achieve the same level of accuracy using

5 See Sect. 2.2.3 for the definition of local and global truncation error.
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O.�t/-accurate fractional steps. For example, the split scheme consisting of the
two forward steps

�s D .I C�tL1/�
n; (4.55)

�nC1 D .I C�tL2/�
s (4.56)

generates the approximate finite-difference operator

.I C�tL2/.I C�tL1/ D I C�tL1 C�tL2 C .�t/2L2L1;

and is thereforeO.�t/ accurate.
It is more difficult to design split schemes that are O

�
.�t/2

�
accurate unless

the operators L1 and L2 commute. Suppose the forward differences in (4.55) and
(4.56) are replaced by second-order numerical operators F1 and F2. One possible
choice for F1 and F2 is the second-order Runge–Kutta method, in which (4.53)
would be evaluated in the two stages

�� D �n C �t

2ˇ
L �n;

�nC1 D �n C ˇ�tL �� C .1 � ˇ/�tL �n;

where ˇ is a free parameter (see Sect. 2.3). A second possibility is the Lax–Wendroff
method, in which L and L 2 are both evaluated during a single forward time step
such that

�nC1 D �n C�tL �n C .�t/2

2
L 2�n:

Whatever the exact formulation of F1 and F2, since they are of second order,

F1.�t/ D I C�tL1 C .�t/2

2
L 2
1 CO

�
.�t/3

�
;

F2.�t/ D I C�tL2 C .�t/2

2
L 2
2 CO

�
.�t/3

�
;

and the composite operator for a complete integration step is

ŒF2.�t/	ŒF1.�t/	 D
I C�t.L2 C L1/C .�t/2

2
.L 2

2 C 2L2L1 C L 2
1 /CO

�
.�t/3

�
:

The preceding expression will not be a second-order approximation to the exact
operator

exp.�tL / D IC�t.L1CL2/C .�t/2

2
.L 2

1 CL1L2CL2L1CL 2
2 /CO

�
.�t/3

�
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unless L1L2 D L2L1. Unfortunately, in many practical applications L1 and L2

do not commute. For example, if L1 and L2 are the one-dimensional advection
operators defined by (4.52) and U and V are functions of x and y, then

L1L2 D U
@V

@x

@

@y
C UV

@2

@x@y
;

L2L1 D V
@U

@y

@

@x
C UV

@2

@x@y
;

and L1L2 ¤ L2L1 unless

U
@V

@x
D V

@U

@y
D 0:

Strang (1968) noted that even if L1 and L2 do not commute, F1 and F2 can
still be used to construct the followingO

�
.�t/2

�
operator:

ŒF1.�t=2/	ŒF2.�t/	ŒF1.�t=2/	: (4.57)

It might appear that this splitting requires 50% more computation than the binary
products considered previously. However, since

ŒF2.�t/	 D ŒF2.�t=2/	ŒF2.�t=2/	CO
�
.�t/3

�
;

the scheme

˚
ŒF1.�t=2/	ŒF2.�t=2/	

� ˚
ŒF2.�t=2/	ŒF1.�t=2/	

�
(4.58)

could be evaluated in lieu of (4.57) while preserving second-order accuracy. Replac-
ing �t=2 by �t in (4.58), it becomes apparent that all that is required to maintain
O
�
.�t/2

�
accuracy is to reverse the order of the individual operators on alternate

time steps.
Problems can be split into more than two subproblems in a similar manner. If

the original problem is approximated by a series of numerical operators, F1, F2,
: : :, FN and the least accurate of the Fj is O Œ.�t/n	, the simplest fractional step
splitting

ŒF1.�t/	ŒF2.�t/	 : : : ŒFN .�t/	

isO.�t/ unless all the individual operators commute, in which case the accuracy is
O Œ.�t/n	. When F1, F2, : : :, FN do not commute, but are all at least O

�
.�t/2

�
,

second-order accuracy can be obtained using Strang splitting, which again simply
requires that the order of the individual operators be reversed on alternate steps. Two
adjacent time steps then have the form

˚
ŒF1.�t/	ŒF2.�t/	: : :ŒFN .�t/	

�˚
ŒFN .�t/	ŒFN�1.�t/	: : :ŒF1.�t/	

�
: (4.59)

The second-order accuracy of the preceding expression follows from the two-
operator case. Let ŒFN�1;N .�t/	 be a second-order approximation to the unsplit
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sum of the exact operators expŒ�t.LN�1 C LN /	. Using the second-order accu-
racy of (4.58),

ŒFN�2.�t/	ŒFN�1.�t/	ŒFN .�t/	ŒFN .�t/	ŒFN�1.�t/	ŒFN�2.�t/	 D
ŒFN�2.�t/	ŒFN�1;N .2�t/	ŒFN�2.�t/	CO Œ	.�t/3:

The right side of the preceding expression is the basic Strang-split operator (4.57)
with the time step doubled, and is therefore a second-order approximation to
expŒ2�t.LN�2 C LN�1 C LN /	 that may be premultiplied and postmultiplied
by ŒFN�3.�t/	 to continue the argument by induction.

4.3.2 Split Implicit Schemes

Although Strang splitting can be used to obtain second-order accuracy when ex-
plicit time differencing is used in the individual fractional steps, other techniques
are required when the time differencing is implicit. The trapezoidal scheme is the
most important second-order implicit time difference used in split schemes. The
trapezoidal approximation to the general partial differential equation (4.51) may be
expressed using the preceding operator notation as

�
I � �t

2
L

	
�nC1 D

�
I C �t

2
L

	
�n;

or

�nC1 D
�
I � �t

2
L

	�1 �
I C �t

2
L

	
�n:

If trapezoidal time differencing is employed in two successive fractional steps, as in
(4.48) and (4.49), the composite operator is

F .�t/ D
�
I � �t

2
L2

	�1 �
I C �t

2
L2

	 �
I � �t

2
L1

	�1 �
I C �t

2
L1

	
: (4.60)

This operator may be expanded using the formula for the sum of a geometric series,

.1 � x/�1 D 1C x C x2 C x3 C � � � ;
to yield

F .�t/ D I C�t.L2 C L1/C .�t/2

2
.L 2

2 C 2L2L1 C L 2
1 /CO

�
.�t/3

�
:

This is the same expression as obtained using second-order explicit differences in
each fractional step, and as before it will not agree with exp.�tL1C�tL2/ through
O
�
.�t/2

�
unless L1 and L2 commute.
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Even if L1 and L2 do not commute, an O
�
.�t/2

�
approximation can be

achieved by the following permutation of the operators in (4.60):

F .�t/ D
�
I � �t

2
L2

	�1 �
I � �t

2
L1

	�1 �
I C �t

2
L1

	 �
I C �t

2
L2

	
:

The resulting scheme,
�
I � �t

2
L1

	 �
I � �t

2
L2

	
�nC1 D

�
I C �t

2
L1

	 �
I C �t

2
L2

	
�n; (4.61)

may be efficiently implemented using the Peaceman–Rachford alternating direction
algorithm

�
I � �t

2
L1

	
�s D

�
I C �t

2
L2

	
�n; (4.62)

�
I � �t

2
L2

	
�nC1 D

�
I C �t

2
L1

	
�s : (4.63)

To demonstrate the equivalence of (4.61) and the Peaceman–Rachford formulation,
apply I � �t

2
L1 to each side of (4.63) and observe that

�
I � �t

2
L1

	 �
I � �t

2
L2

	
�nC1 D

�
I � �t

2
L1

	 �
I C �t

2
L1

	
�s

D
�
I C �t

2
L1

	 �
I � �t

2
L1

	
�s

D
�
I C �t

2
L1

	 �
I C �t

2
L2

	
�n;

where the second equality is obtained because L1 commutes with itself, and substi-
tution from (4.62) is used to form the final equality.

4.3.3 Stability of Split Schemes

When the numerical operators F1 and F2 commute, the stability of the split scheme
F1F2 is guaranteed by the stability of the individual operators. To demonstrate this,
suppose A1 and A2 are the amplification matrices associated with F1 and F2, and
note that if F1 and F2 commute, their amplification matrices also commute. The
amplification matrix for the split scheme is A1A2, and

k.A1A2/nk D kA1A2A1A2 � � � A1A2k
D k.A1/n.A2/nk (4.64)
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� k.A1/nk k.A2/nk; (4.65)

and it is apparent that the split scheme inherits the stability properties of the
individual operators.

If F1 and F2 do not commute, equality (4.64) does not hold, and

k.A1A2/nk � kA1knkA2kn

is the best bound that can be obtained without specific knowledge of A1 and A2.
The preceding expression guarantees the stability of the split scheme when kA1k
and kA2k are less than or equal to unity; however, as discussed in Sect. 4.1.1.1,
kA1k � 1 is not necessary for the stability of F1.

As an illustration of the preceding discussion, consider the system of ordinary
differential equations

du

dt
D icv C ibu; (4.66)

dv

dt
D icu; (4.67)

where b and c are real constants. Oscillatory solutions to the preceding problem
exist of the form �

u

v

�
D
�

1

�c=!
�
Ae�i!t ;

whereA is an arbitrary amplitude and ! is one of the two real roots to the dispersion
relation

!2 C b! � c2 D 0:

A split scheme in which each step is stable but the composite scheme is uncon-
ditionally unstable can be obtained by constructing the following finite-difference
approximation to (4.66) and (4.67). In the first step, integrate the terms involving c
using forward–backward differencing,

us � un

�t
D icvn;

vs � vn

�t
D icus ;

and then integrate the term involving b using trapezoidal differencing:

unC1 � us

�t
D ib

�
unC1 C us

2

�
;

vnC1 D vs :

Letting Oc D c�t , one may write the first step in matrix form as
�
1 0

�i Oc 1
��

us

vs

�
D
�
1 i Oc
0 1

��
un

vn

�
;
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or �
us

vs

�
D
�
1 i Oc
i Oc 1 � Oc2

��
un

vn

�
: (4.68)

Denote the matrix in (4.68) by A1. The eigenvalues of A1 are

1 � Oc2
2

˙ i Oc
2
.4 � Oc2/1=2:

For j Ocj � 2, the magnitude of both eigenvalues is unity, and since A1 is symmetric,
the scheme is stable. Observe, however, that the norm of A1,

kA1k2 D
�
1C Oc4

2
C Oc2

2
.4C Oc4/1=2

�1=2
;

exceeds unity for all nonzero�t .
If Ob D b�t , the second fractional step may be written as

0
@u

nC1

vnC1

1
A D

0
B@
2C i Ob
2 � i Ob 0

0 1

1
CA
0
@u

s

vs

1
A : (4.69)

Let A2 represent the amplification matrix in (4.69). One can easily show that
kA2k D 1, so this scheme is also stable.

The amplification matrix for the composite scheme is

A2A1 D

0
B@
2C i Ob
2 � i Ob

2C i Ob
2� i Ob i Oc

i Oc 1 � Oc2

1
CA:

Since A2A1 ¤ A1A2, the stability of the individual steps does not guarantee the
stability of the composite scheme. Moreover, the inequality

kA2A1k � kA2kkA1k
cannot be used to show stability, since kA1k > 1. In fact, numerical calculations
show that the magnitude of the largest eigenvalue of A2A1 is greater than unity for
all j Obj; j Ocj > 0, so the composite scheme is unconditionally unstable.

4.4 Linear Equations with Variable Coefficients

Some of the simplest equations of practical interest are linear equations with vari-
able coefficients. Consider, for example, one-dimensional advection by a spatially
varying wind speed, which is governed by the partial differential equation
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@ 

@t
C c.x/

@ 

@x
D 0: (4.70)

Suppose �j .t/ is the numerical approximation to  .t; j�x/ and that c is available
at the same set of spatial grid points. One obvious differential–difference approxi-
mation to the preceding equation is

d�j

dt
C cj ı2x�j D 0: (4.71)

The stability of this scheme is often assessed by “freezing” c.x/ at some constant
value c0 and studying the stability of the family of frozen-coefficient problems ob-
tained by varying c0 over the range of all possible c.x/. It should be noted, how-
ever, that in some pathological examples there is no relation between the stability of
the variable-coefficient problem and the corresponding family of frozen-coefficient
problems (see Problem 10).

Suppose that the time derivative in (4.71) is replaced by leapfrog time differ-
encing; then a necessary condition for the stability of the resulting scheme is

max
x

jc.x/j �t
�x

< 1:

If this stability condition is violated in some small region of the flow, the instability
will initially be confined to the same region and will appear as a packet of rapidly
amplifying short waves typically having wavelengths between 2�x and 4�x. If the
numerical solution and the variable coefficients remain smooth and well resolved,
the frozen-coefficient analysis can also yield sufficient conditions for stability. To
guarantee stability via a frozen-coefficient analysis, the numerical scheme must in-
clude some dissipative smoothing (Gustafsson et al. 1995, p. 235). The stability of
some completely nondissipative methods can, nevertheless, be established by the
energy method (see Sect. 4.4.2).

A second reasonable differential–difference approximation to (4.70) may be
written in the form

d�j

dt
C ˝˝

cj
˛x
ıx�j

˛x D 0; (4.72)

where the averaging operator h ix is defined by (A.2) in the Appendix. When c is a
constant, the preceding expression is identical to (4.71). If identical time differences
are employed to solve (4.71) and (4.72), a frozen-coefficient stability analysis will
yield the same stability condition for each scheme. An analysis of truncation error,
performed by substituting Taylor series expansions for c and into the differential–
difference equations, shows that both schemes are accurate to O

�
.�x/2

�
. Is there

any practical difference between (4.71) and (4.72)? There is, but the difference is
not obvious unless one considers problems in which c and � are poorly resolved on
the numerical mesh or situations where the true solution has additional conserva-
tion properties (such as advection in a nondivergent flow) that are not automatically
retained by finite-difference approximations.
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First consider the problems that can arise when there are large-amplitude poorly
resolved perturbations in � or c. Under such circumstances, both of the preceding
numerical approximations can exhibit serious instabilities. The structure and growth
rates of the unstable perturbations generated by each scheme can, however, be very
different. Perhaps the most useful way to explore these instabilities is to examine
the aliasing error produced by (4.71) and (4.72).

4.4.1 Aliasing Error

Aliasing error occurs when a short-wavelength fluctuation is sampled at discrete
intervals and misinterpreted as a longer-wavelength oscillation. The shortest wave-
length that can be represented on a numerical grid is twice the grid interval; all
shorter wavelengths will be aliased. Figure 4.7 illustrates the aliasing of a 4�x=3
wave into a 4�x wave. The apparent equivalence of the 4�x=3 and 4�x waves
follows from the fact that for all integers n the relation

eikj�x D �
ei2nπ�j eikj�x D ei.kC2nπ=�x/j�x (4.73)

is satisfied at all spatial locations j�x on the discrete mesh. In the case shown in
Fig. 4.7, the wave number of the aliased wave is k D .2π/=.4�x=3/ D 3π=.2�x/,
and the wave number of the resolved wave is �π=.2�x/, so (4.73) applies with
n D �1. The change in the sign of the wave number during aliasing is visible in
Fig. 4.7 as the 180ı phase shift between the original and the aliased wave.

Aliasing error may occur when the initial data are represented on a discrete grid
or projected onto a truncated series of Fourier expansion functions. Aliasing error
can also occur during the computation of the product c@ =@x on a finite-resolution
numerical grid. To illustrate how the product of two spatially varying functions may
introduce aliasing error, suppose that the product�.x/�.x/ is computed at a discrete
set of grid points. If � D eik1x and � D eik2x , then �� D ei.k1Ck2/x . Since �
and � were representable on the numerical grid, jk1j; jk2j � π=�x. It is possible,
however, that the wave number of their product lies in the range π=�x < jk1Ck2j �
2π=�x, in which case the product cannot be resolved on the numerical mesh and
will be misrepresented as a longer wave. The wave number Qk into which a binary
product is aliased is determined by the

Fig. 4.7 Misrepresentation of a 4�x=3 wave as a 4�x wave when sampled on a discrete mesh
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wave number

2π
Δx

π
Δx

k0

resolved waves

~
(k1 + k2)

Fig. 4.8 Aliasing of k1 C k2 into Qk such that j Qkj D 2π=�x � .k1 C k2/ appears to be the
symmetric reflection of k1 C k2 about the cutoff wave number π=�x

relation

Qk D

k1 C k2 � 2π=�x; if k1 C k2 > π=�x,
k1 C k2 C 2π=�x; if k1 C k2 < �π=�x.

(4.74)

There is no aliasing when jk1 C k2j � π=�x. In particular, if both � and � are
4�x waves or longer, their product will not be aliased. A graphical diagram of the
aliasing process may be created by plotting k1 C k2 and the cutoff wave number
π=�x on a number line extending from zero to 2π=�x. Since .k1 C k2 C j Qkj/=2 D
π=�x, j Qkj appears as the reflection of k1 C k2 about the cutoff wave number, as
illustrated in Fig. 4.8. Note that the product of two extremely short waves is aliased
into a relatively long wave. For example, the product of a 2�x wave and a 2:5�x
wave appears as a 10�x wave.

4.4.1.1 Unstable Growth Through Aliasing Error

Let us now consider the effects of aliasing error on stability.6 Suppose that (4.70)
is approximated as the differential–difference equation (4.71) and that a solution is
sought over the periodic domain Œ�π; π	. Let the spatial domain be discretized into
the 2N C 1 points

xj D πj
N
; j D �N; : : : ; N;

and suppose that the initial data are representable as the sum of the Fourier modes
in the set fe0; eiNx=2; e�iNx=2; eiNxg. This set of four modes is closed under multi-
plication on the discrete mesh owing to aliasing error; for example,

eiNxj =2 � eiNxj D eiπj=2 � eiπj D ei2πj e�iπj=2 D e�iNxj =2:

Let c and � be arbitrary combinations of these four Fourier modes. Under the as-
sumption that c is real, the velocity

c.xj / D c0 C cn=2eiπj=2 C c�n=2e�iπj=2 C cneiπj

may be alternatively expressed as

c.xj / D c0 C .cr C ici /eiπj=2 C .cr � ici /e�iπj=2 C cneiπj ; (4.75)

6 The following example was anticipated by Miyakoda (1962) and Gary (1979).
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where the coefficients c0, cr , ci , and cn are all real. Assuming that � is also real, we
may write the preceding expression in the similar form

�.xj / D a0 C .ar C iai /e
iπj=2 C .ar � iai /e

�iπj=2 C aneiπj : (4.76)

Substituting (4.75) and (4.76) into the nonaveraging scheme (4.71) and requiring
the linearly dependent terms to sum to zero yields

Pa0 D 2.aicr � arci /=�x;
Pan D 2.aicr C arci /=�x;

Par D ai .cn C c0/=�x; (4.77)

Pai D ar .cn � c0/=�x; (4.78)

where the dot denotes differentiation with respect to time. Eliminating ai between
(4.77) and (4.78), one obtains

Rar D c2n � c20
.�x/2

ar : (4.79)

A similar equation holds for ai . According to (4.79), the behavior of the 4�x wave
in � is determined by the relative magnitudes of the mean wind speed and the 2�x
wind-speed perturbation. If the mean wind is stronger than the 2�x perturbation,
ar oscillates sinusoidally. On the other hand, if cn exceeds c0, the 4�x component
in � grows exponentially. The growth criterion cn > c0 is particularly simple in the
special case cr D ci D 0. Then growth will occur whenever the velocity changes
sign. This exponential growth is clearly a nonphysical instability, since the true solu-
tion is constant along the characteristic curves dx=dt D c.x/ and therefore bounded
between the maximum and minimum initial values of �.

The preceding discussion demonstrates that the nonaveraging scheme (4.71) can
be unstable in a rather pathological case. Both (4.71) and (4.72) can produce un-
stable growth in less pathological examples, provided that the wind field forces the
development of unresolvable short-wavelength perturbations in �. An example of
this type is illustrated in Fig. 4.9, in which the initial distributions of c and � are
smooth and well resolved but � develops unresolvable perturbations as a result of
180ı changes in the wind direction. In this example the wind speed and the initial
condition on  are

c.x/ D 0:5 cos.4πx/ and  .x; 0/ D sin.2πx/:

The computational domain is 0 � x � 1 and �x D 1=80. The time derivatives in
(4.71) and (4.72) were integrated using a fourth-order Runge–Kutta method and a
small Courant number. The velocity and the initial condition �0 are plotted together
in Fig. 4.9a. The velocity field is convergent in the portions of the spatial domain
labeled “Con” along the bottom of Fig. 4.9a and is divergent in the regions labeled
“Div.” The character of the true solution is illustrated in Fig. 4.9b, which shows a
very high resolution simulation at t D 0:5 s. Observe that the true solution is tending
toward a square wave of amplitude

p
2=2with a unit-amplitude spike at the left edge
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Con ConDiv Div

a

c

b

d

Fig. 4.9 Comparison of two differential–difference solutions to the one-dimensional advection
equation in a spatially reversing flow. a Initial condition (dot-dashed line) and the time-invariant
velocity (solid line). Also indicated are the regions where the flow is convergent (Con) or divergent
(Div). b Solution to a high-resolution simulation at t D 0:5 s. Averaging (dot-dashed line) and
nonaveraging (thin solid line) differential–difference solutions at c t D 1:0 s and d 2:2 s. The
long dashed line is the zero line

of each plateau. The spikes are located at the nodal points in the velocity field where
the flow is convergent. Away from the spike the solution is tending toward the initial
value of  at the divergent node. A comparison of the two differential–difference
solutions is shown at t D 1:0 s in Fig. 4.9c and at t D 2:2s in Fig. 4.9d. In Fig. 4.9c
and d the solution obtained with the nonaveraging scheme (4.71) is dominated by
a growing 2�x component. In contrast, the solution calculated with the averaging
scheme (4.72) never develops a large-amplitude 2�x component. At the earlier time
(Fig. 4.9c), the averaging scheme generates a solution that is reasonably accurate
and far superior to the nonaveraging result. This superiority is lost, however, by
the later time (Fig. 4.9d), at which the averaging scheme has generated a longer-
wavelength disturbance that rapidly amplifies and dominates the solution.
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4.4.1.2 Comparison of the Aliasing Error in Two Schemes

As suggested by the preceding example, one important difference between the
nonaveraging scheme (4.71) and the averaging method (4.72) lies in the nature of
the aliasing error generated by each approximation. Let us examine the aliasing error
produced by each formula in a more general context. Suppose that numerical solu-
tions are sought to the one-dimensional advection equation (4.70), and that at some
instant in time, c and � are expanded into Fourier modes. Consider the interaction
of the individual pair of modes

c D ck1
eik1x and � D ak2

eik2x : (4.80)

If the unapproximated product of c and @�=@x is evaluated at grid points j�x
on a discrete mesh, one obtains

c
@�

@x
D ick1

ak2
k2ei.k1Ck2/j�x: (4.81)

Evaluating c times the nonaveraging spatial-difference operator ı2x� on the same
mesh gives

cj ı2x�j D ick1
ak2

�x
.sin k2�x/e

i.k1Ck2/j�x : (4.82)

The analogous result for the averaging scheme is most easily obtained by noting that

˝˝
cj
˛x
ıx�j

˛x D 1

2

�
ı2x.cj�j /C cj ı2x�j � �j ı2xcj

�

D ick1
ak2

2�x



sinŒ.k1 C k2/�x	C sin k2�x � sin k1�x

�
ei.k1Ck2/j�x :

(4.83)

In the limit of good numerical resolution, k1�x; k2�x ! 0, and each of the above
expressions is equivalent, which is to be expected, since (4.82) and (4.83) are both
second-order approximations to (4.81). As .k1Ck2/�x approaches π, the numerical
formulae may become inaccurate, but the most serious problems develop when π <
j.k1 C k2/�xj � 2π and the product term is aliased into a longer wavelength.

Suppose that a wave of wave number k2 in the � field is interacting with some
disturbance in the velocity field to force d�=dt at an aliased wave number Qk. Ac-
cording to (4.74), there is only one resolvable wave number in the velocity field
that could alias into Qk through interaction with k2 during the approximation of the
product c@ =@x. The rate at which this aliasing occurs can be computed as follows.
Without loss of generality, assume that the unresolvable wave number is positive
(i.e., k1 C k2 > π=�x), in which case Qk is negative and

Qk D k1 C k2 � 2π=�x: (4.84)

Suppose that at a given instant both interacting waves have unit amplitude, i.e.,
jck1

j D jak2
j D 1. Let C

k2! Qk D d ja Qkj=dt denote the rate at which interactions
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Fig. 4.10 Contours of the spurious growth rate at wave number Qk due to interactions between wave
numbers k1 and k2 as a function of k2�x and Qk�x for a the nonaveraging schemeCN

k2! Qk
, b the

averaging scheme CA
k2! Qk

, and c the averaging scheme for nondivergent flow C ndiv
k2! Qk

. Contours

of the wave number k1 involved in these interactions are plotted as diagonal dashed lines. The
contour plot in c is discussed in Sect. 4.4.2

between the wave numbers k1 and k2 force the growth at the aliased wave number.
Using (4.84) to eliminate k1 from (4.83), one obtains a growth rate for the averaging
scheme of

CA
k2! Qk D j sin Qk�x C sin k2�x � sin. Qk � k2/�xj

2�x
:

The growth rate for the nonaveraging scheme,

CN
k2! Qk D j sin k2�xj

�x
;

can be obtained directly from (4.82).
A contour plot ofCN

k2! Qk as a function of k2 and Qk appears in Fig. 4.10a. Contours

of the wave number k1 involved in these interactions (computed from (4.84)) also
appear plotted as a function of .k2; Qk/ as the dashed diagonal lines in Fig. 4.10.
Since k1 � π=�x (because every wave must be resolved on the numerical mesh),
no aliasing can occur for the (k2; Qk/ combinations above the diagonal in Fig. 4.10a,
and this region of the plot is left blank. Equivalent data, showing contours of C A

k2! Qk
for the averaging scheme, appear in Fig. 4.10b.

As indicated in Fig. 4.10, the rate at which wavelengths in the concentration field
longer than 4�x (k2�x < π=2) undergo aliasing is much weaker in the averaging
scheme than in the nonaveraging approach. In addition, the nonaveraging scheme
allows every wave number on the resolvable mesh (0 � k2 � π=�x) to com-
bine with some disturbance in the velocity field to produce aliasing into 2�x waves
( Qk�x D �π). On the other hand, the averaging scheme does not allow any alias-
ing into the 2�x wave, although aliasing is permitted into the longer wavelengths.
The practical impact of this difference in aliasing is evident in the numerical com-
parisons shown in Fig. 4.9, in which the aliasing error in the nonaveraging scheme
appears primarily at 2�x, whereas the errors that eventually develop in the averag-
ing scheme appear at longer wavelengths.
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4.4.2 Conservation and Stability

In many practical problems, the flow field is nondivergent. The advection of a
passive scalar  by a two-dimensional nondivergent flow v D .u; v/ is governed
by the equation

@ 

@t
C v � r D 0; (4.85)

subject to the constraint
r � v D 0: (4.86)

Assuming the spatial domain is periodic or that there is no flow through its boundary,
the domain averages of both  and  2 are conserved. The conservation of  is
easily shown by first combining the advective form (4.85) with (4.86) to obtain the
flux (or divergence) form

@ 

@t
C r � . v/ D 0: (4.87)

Then, denoting the domain integral by an overbar,

d

dt
 D @ 

@t
D �r � . v/ D 0;

where the last equality follows from the assumed conditions on the boundary. Con-
servation of  2, or equivalently k k22, may be demonstrated using the advective
form (4.85)

d

dt
 2 D 2 

@ 

@t
D �2 .v � r / D �.r 2 � v/ D �r � . 2v/C  2r � v D 0:

The first term in the final integrand is zero because of the assumed boundary condi-
tions; the second term is zero because the flow is nondivergent.

In most applications it is helpful if numerical methods for the simulation of ad-
vection by nondivergent flow satisfy the discrete equivalents of these conservation
laws. This is particularly true if one wants to analyze the mass or energy budgets
of the numerical solution �. In addition, conservation of k�k2 guarantees that even
completely inviscid methods are stable. Nevertheless, it should be noted that meth-
ods can still be accurate and converge to the correct smooth solution without exactly
satisfying either of these conservation relations.

4.4.2.1 Conservation of Mass and Flux Form

The flux form (4.87) is an example of a conservation law. Conservation laws can be
expressed by equations of the general form

@ 

@t
C r � f D 0; (4.88)
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which states that the local rate of change of  is determined by the convergence
of the flux f. It follows from the divergence theorem that the integral of  over the
entire domain is determined by the net flux through the boundaries, and thus  is
conserved if f is periodic over the domain or if the component of f normal to the
boundary vanishes at the boundary.

Numerical approximations to conservation laws will conserve the sum of the
grid-point values if the fluxes are specified such that the flux out of each cell is iden-
tical to the flux into the adjacent cell. Semidiscrete approximations to (4.88) satis-
fying this constraint include those that may be expressed in the particular flux form

d�i;j

dt
C
FiC 1

2
;j � Fi� 1

2
;j

�x
C
Gi;jC 1

2
�Gi;j� 1

2

�y
D 0; (4.89)

where F andG are the numerical approximations to the x and y components of f at
the cell interfaces. Two possible ways to arrive at a finite-difference approximation
to the flux form of the transport equation (4.87) are

d�

dt
C ıx

�
hu�ix

�
C ıy

�
hv�iy

�
D 0

and

d�

dt
C ıx

�
huix h�ix

�
C ıy

�
hviy h�iy

�
D 0: (4.90)

Both of the preceding schemes are in the general form (4.89), and therefore both
conserve the sum of � over the domain.

4.4.2.2 Stability and Skew Symmetry

The sum of �2 over the domain will remain constant with time in the semidiscrete
case if the spatial finite-difference operator is skew symmetric. Let u be a column
vector containing the approximate solution at each spatial grid point and A a matrix
containing the finite-difference operators approximating the terms involving spatial
derivatives in a linear partial differential equation. Then the approximate solution
satisfies a set of linear differential–difference equations of the form

du
dt

D Au: (4.91)

This system will conserve kuk2 if the matrix A is skew symmetric, as may be veri-
fied by noting that if A D �AT; then

dkuk22
dt

D d

dt
.uTu/ D .Au/Tu C uT.Au/ D uTATu C uTAu D 0:
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As a simple example suppose that advection by a constant wind speed c0 in a
periodic domain is approximated as

d�

dt
C c0ı2x� D 0 (4.92)

and let u D .�1; �2; : : : ; �N /
T. Then A D �c0S, where S is the N �N matrix

1

2�x

0
BBBBB@

0 1 �1
�1 0 1

0 �1 0 1
: : :

: : :
: : :

1 �1 0

1
CCCCCA
:

Clearly c0S is skew symmetric. Now suppose the wind speed is a function of x and
(4.92) is replaced by

d�j

dt
C cj ı2x�j D 0: (4.93)

Let C be a diagonal matrix such that cj;j D c.j�x/, in which case (4.91) takes
the form

du
dt

C CSu D 0:

The matrix CS is not skew symmetric, and (4.93) will not conserve
P
�2. Another

alternative, the simple flux form

d�j

dt
C ı2x.cj�j / D 0;

leads to
du
dt

C SCu D 0;

but SC is also not skew symmetric.
The sum SC C CS is, however, skew symmetric, since .SC/T D CTST D �CS

and similarly .CS/T D �SC. One might therefore simulate advection in a spatially
variable wind field using the formula

d�j

dt
C 1

2

�
ı2x.cj�j /C cj ı2x�j

� � 1

2
�j ı2xcj D 0: (4.94)

The expression in square brackets is skew symmetric and the final term is included
to give a consistent approximation to the advective form (4.70).

The conservation properties of the preceding skew-symmetric form are most ap-
parent if we return to the problem of advection in a two-dimensional nondivergent
flow. Suppose that the nondivergence condition (4.86) is enforced numerically as

ı2xuC ı2yv D 0: (4.95)
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If the advective operators in both x and y in (4.85) are expressed in the skew-
symmetric form (4.94), (4.95) may be used to simply the result to

@�

@t
C 1

2
Œı2x.u�/C uı2x�	C 1

2

�
ı2y.v�/C yı2y�

� D 0: (4.96)

Since the operators in (4.96) are skew symmetric,
P
�2 will be conserved and the

numerical solution will be stable. This conservation property mirrors that for  2

satisfied by the continuous problem. Using (4.95), one may show that (4.96) is alge-
braically equivalent to both the flux form (4.90) and the averaging-operator advec-
tive form

d�

dt
C ˝huixıx�

˛x C ˝hviyıy�
˛y D 0; (4.97)

which is the same advective operator introduced in (4.72). The equivalence to (4.90)
immediately implies that all three methods will conserve the sum of �j over the
domain. Although it is less helpful for immediately assessing the conservation ofP
� and

P
�2, (4.97) is useful since it will exactly preserve horizontally uniform

fields of �, whereas if the velocity is spatially varying, both of the other formulae
can introduce small fluctuations in � due to roundoff errors. Both (4.90) and (4.97)
are also more natural choices than (4.96) for staggered meshes in which the velocity
normal to the interface between each pair of grid cells is located at the center of that
interface (as in Fig. 4.6).

If the averaging-operator form (4.97) is used to simulate advection and the veloc-
ities satisfy the numerical nondivergence relation (4.95), the aliasing error is reduced
relative to that for the same operator in the divergent one-dimensional case. In par-
ticular, if only the x-structure of the perturbations is considered for simplicity, the
last term in (4.83) is zero and the normalized rate at which perturbations of wave
number k2 in the wind field interact with fluctuations at wave number k1 in the
concentration field to generate aliasing errors at wave number Qk becomes

C ndiv
k2! Qk D j sin Qk�x C sin k2�xj

2�x
:

As in Sect. 4.4.1, the unresolvable wave number is assumed to be positive (i.e., k1C
k2 > �=�x), in which case Qk is negative and given by (4.84).

Figure 4.10c shows contours of C ndiv
k2! Qk as a function of k2 and Qk. The maximum

forcing for aliasing associated with (4.97) is half that of both the simple advective
operator

d�

dt
C uı2x� C vı2y� D 0 (4.98)

(Fig. 4.10a) and the averaging-operator advective in divergent flow (Fig. 4.10b). The
contrast between (4.97) and (4.98) is particularly pronounced, with (4.98) generat-
ing much stronger aliasing at almost all wave number combinations except those
involving the 2�x wave in the velocity field. Figure 4.10c also characterizes the
aliasing generated by the flux form (4.90) and the skew-symmetric form (4.96),
since all three are algebraically equivalent.
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4.4.2.3 The Effect of Time Differencing on Conservation

Differential–difference equations that conserve k�k2, such as (4.97), generally
cease to be conservative when the time derivative is approximated by finite differ-
ences. Nevertheless, one type of time differencing that does preserve the conserva-
tion properties of linear differential–difference equations is trapezoidal differencing.
The conservation properties of trapezoidal time differencing may be demonstrated
by writing the differential–difference equation in the general form

d�j

dt
C L.�j / D 0; (4.99)

where L is a linear finite-difference operator including all the spatial differences.
As a preliminary step, note that for the differential–difference equation (4.99) to
conserve k�k2, the linear operator L must have the algebraic propertyX

j

'jL.'j / D 0; (4.100)

where 'j is any discrete function defined on the numerical mesh and the summation
is taken over all the grid points.

Approximating (4.99) with trapezoidal time differences yields

�nC1
j � �nj
�t

C L.�nC1
j /C L.�nj /

2
D 0:

Multiplying the preceding equation by .�nC1
j C �nj /, using the linearity of L, sum-

ming over the discrete mesh, and using (4.100), one obtains

X
j

h
.�nC1
j /2 � .�nj /2

i
D ��t

2

X
j

h�
�nC1
j C �nj

�
L
�
�nC1
j C �nj

�i
D 0;

which implies that k�nC1k2 D k�nk2.

4.5 Nonlinear Instability

As discussed in the preceding section, the stability of finite-difference approxima-
tions to linear equations with variable coefficients can be determined by examining
the stability of the associated family of frozen-coefficient problems – provided that
the solution and the variable coefficients are sufficiently smooth and well resolved
on the numerical mesh. One may attempt to analyze the stability of nonlinear equa-
tions through a similar procedure. First, the nonlinear equations are linearized;
then a frozen-coefficient analysis is performed to determine stability conditions
for the linearized problem. This approach gives necessary conditions for stability,
but as was the case with variable-coefficient linear equations, it may give mislead-
ing results in situations where the solution is dominated by poorly resolved short-
wavelength perturbations. Unfortunately, the caveat that the solution must remain
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smooth and well resolved is a much more serious impediment to the analysis of
nonlinear finite-difference equations because such equations can rapidly generate
unresolvable short-wave perturbations from very smooth initial data.

Rigorous demonstrations of nonlinear stability typically rely on the energy
method. The stability of schemes for the simulation of the Euler equations for
incompressible flow is often easier to establish if the nonlinear advective terms
are written in skew-symmetric form (Morinishi et al. 1998). Using tensor notation
in which repeated indices are summed, the nonlinear generalization of the skew-
symmetric operator in (4.96) approximates

1

2

@

@xj
.ujui /C 1

2
uj
@ui

@xj
; (4.101)

As in (4.96), the preceding expression is an equally weighted combination of the
flux form

@

@xj
.ujui /

and the advective form

uj
@ui

@xj
:

In addition to facilitating the construction of stable approximations, methods based
on the skew-symmetric form (4.101) may also generate less aliasing error (Blaisdell
et al. 1996), which would be consistent with the analysis of the simpler scalar ad-
vection equation considered in the previous section.

In the following we will focus on the construction of stable finite-difference
approximations to two simpler nonlinear problems: Burgers’s equation and the
barotropic vorticity equation. Solutions to Burgers’s equation often develop shocks
and discontinuities whose accurate approximation requires the use of methods that
will be presented in Chap. 5. The schemes that will be considered in this section
provide very simple examples illustrating the stabilization of numerical approxi-
mations to a nonlinear problem by a judicious choice of finite-difference formulae.
These schemes are not, however, recommended for practical applications involving
the simulation of problems with shocks or discontinuous solutions. The opportunity
for practical application of the ideas illustrated using Burgers’s equation arises in at-
tempting to avoid nonlinear instabilities in numerical solutions to the barotropic vor-
ticity equation. Solutions to the barotropic vorticity equation never develop shocks
and remain essentially as smooth as the initial data.

4.5.1 Burgers’s Equation

The inviscid Burgers’s equation,

@ 

@t
C  

@ 

@x
D 0; (4.102)
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is an example of a nonlinear partial differential equation whose solution rapidly
develops unresolvable short-wavelength components. If  .x; 0/ D f .x/ at some
initial time t D 0, solutions to this problem can be written in the implicit form

 .x; t/ D f .x �  .x; t/t/ ;

which implies that f is constant along the characteristic curves

x �  .x; t/t D x0:

Here x0 is the x-intercept of the curve at t D 0. Since  D f ,  must also be con-
stant along each characteristic curve, and every characteristic is therefore a straight
line. In any region where @ =@x is negative, the characteristics will converge, and
for some sufficiently large value of t , these converging characteristics must cross.
At those points where two (or more) characteristics intersect, the solution is multi-
valued and exhibits a discontinuity, or shock. If the initial condition is smooth, the
time when the solution first develops a shock tc can be determined by examining the
rate at which gradients of  steepen. Define S.x; t/ D @ =@x and note that

dS

dt
D @S

@t
C  

@S

@x
D @

@x

�
@ 

@t
C  

@ 

@x

�
�
�
@ 

@x

�2
D �S2:

Integration of the preceding expression yields

S D 

t C S.x0; 0/

�1��1 : (4.103)

The first discontinuity, or shock, develops when S becomes infinite at a time tc D
�S.x0; 0/�1 determined by the most negative initial value of @ =@x. This behavior
may be compared with that for the linear problem with variable coefficients shown in
Fig. 4.9a and b, in which the characteristic curves never cross (but rather approach
the lines x D 1=8 and x D 5=8 asymptotically) and true discontinuities do not
develop over any finite time interval.

Suppose that solutions to Burgers’s equation are sought on the periodic domain
0 � x � 1 subject to the initial condition  .x; 0/ D sin.2πx/. When (4.102) is
approximated by the advective-form differential–difference equation

d�j

dt
C �j ı2x�j D 0; (4.104)

with �x D 1=50, the numerical solution appears as shown in Fig. 4.11.7 The nu-
merical solution provides a good approximation to the true solution at t D 0:13, at
which time the true solution is still smooth and easy to resolve on the discrete grid.
But by t D 0:22 the true solution has developed a shock, and the numerical solution
misrepresents the shock as a steep gradient bounded by a series of large-amplitude

7 The solution shown in Fig. 4.11 was obtained using a fourth-order Runge–Kutta method and a
very small time step to accurately approximate the time derivative in (4.104).
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a b

Fig. 4.11 Differential–difference solution to Burgers’s equation obtained using (4.104) at
a t D 0:13 and b t D 0:22

short-wavelength perturbations. These short-wavelength perturbations are amplify-
ing rapidly, and as a consequence, k�k2 is growing without bound. The growth in
k�k2 is an instability, since the L2 norm of the true solution does not increase with
time. If the solution is smooth, k k2 is conserved along with all other moments, i.e.,

Z 1

0

Œ .x/	p dx D 0 (4.105)

for any positive integer p. The property (4.105) may be derived by multiplying
(4.102) by p p�1, which yields

0 D p p�1
�
@ 

@t
C  

@ 

@x

�
D @ p

@t
C p

p C 1

@ pC1

@x
;

and then integrating this equation over the periodic domain. If the solution contains
discontinuities, the preceding manipulations are not valid, but one can show that
@k k2=@t is never positive (see Sect. 5.1.2).

The inability of the advective-form differential–difference scheme to conserve
k�k2 can be demonstrated by multiplying (4.104) by �j and summing over the
domain to obtain

d

dt

X
j

�2j D �
X
j

 
�2j�jC1 � �2j�j�1

�x

!

D � 1

�x

0
@X

j

�2j�jC1 �
X
j

�2jC1�j

1
A

D
X
j

�j�jC1
�
�jC1 � �j /

�x

�
; (4.106)
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where the second equality follows from the periodicity of the solution. One might
attempt to obtain a scheme that conserves k�k2 by rewriting Burgers’s equation in
the flux form

@ 

@t
C 1

2

@ 2

@x
D 0

and approximating this with the differential–difference equation

d�j

dt
C 1

2
ı2x�

2
j D 0: (4.107)

Multiplying the preceding equation by �j and summing over the periodic domain
yields

d

dt

X
j

�2j D �1
2

X
j

�j�jC1
�
�jC1 � �j

�x

�
; (4.108)

which demonstrates that the flux form also fails to conserve k�k2. Since the terms
representing the nonconservative forcing in (4.106) and (4.108) differ only by a
factor of �1=2, it is possible to obtain a scheme that does conserve k�k2 using a
weighted average of the advective- and flux-form schemes. The resulting “conser-
vative form” is

d�j

dt
C 1

3
�j ı2x�j C 1

3
ı2x�

2
j D 0: (4.109)

Figure 4.12 shows a comparison of the solutions to (4.104) and (4.109). The
test problem is the same test considered previously in connection with Fig. 4.11,
except that the vertical scale of the plotting domain shown in Fig. 4.12 has been
reduced, and Fig. 4.12b now shows solutions at t D 0:28. The unstable growth of
the short-wavelength oscillations generated by advective-form differencing can be
observed by comparing the solution at t D 0:22 (Fig. 4.11b) and that at t D 0:28

(Fig. 4.12b). As illustrated in Fig. 4.12b, short-wavelength oscillations also develop
in the conservative-form solution, but these oscillations do not continue to amplify.8

The flux form (4.107) yields a solution (not shown) to this test problem that looks
qualitatively similar to the conservative-form solution shown in Fig. 4.12b, although
the spurious oscillations in the flux-form result are actually somewhat weaker. It is
perhaps surprising that the short-wavelength oscillations are smaller in the flux-form
solution than in the conservative-form solution and that the flux-form solution does
not show a tendency toward instability. In fact, practical experience suggests that the
flux-form difference (4.107) is not particularly susceptible to nonlinear instability.

8 Even though they do not lead to instability, the short-wavelength oscillations in the conservative-
form solution to Burgers’s equation are nonphysical and are not present in the correct generalized
solution to Burgers’s equation, which satisfies the Rankine–Hugoniot condition (5.11) at the shock
and is smooth away from the shock. After the formation of the shock, the correct generalized
solution ceases to conserve k�k2, so it can no longer be well approximated by the numerical so-
lution obtained using the conservative-form difference. To obtain good numerical approximations
to discontinuous solutions to Burgers’s equation it is necessary to use the methods discussed in
Chap. 5.
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a b

Fig. 4.12 Differential–difference solution to Burgers’s equation at a t D 0:13 and b t D 0:28
obtained using the advective form ((4.104), thin solid line) and the conservative form ((4.109),
dot-dashed line)

Fornberg (1973), nevertheless, demonstrated that both the advective form and the
flux form are unstable (and that the conservative form is stable) when the discretized
initial condition has the special form : : : ; 0;�1; 1; 0;�1; 1; 0; : : : .

The instabilities that develop in the preceding solutions to Burgers’s equation ap-
pear to be associated with the formation of the shock. The development of a shock is
not, however, a prerequisite for the onset of nonlinear instability, and such instabili-
ties may occur in numerical simulations of very smooth flow. One example in which
nonlinear instability develops in a smooth flow is provided by the viscous Burgers’s
equation

@ 

@t
C  

@ 

@x
D �

@2 

@x2
; (4.110)

where � is a coefficient of viscosity. The true solution to the viscous Burgers’s equa-
tion never develops a shock, but the advective-form differential–difference approx-
imation to (4.110) becomes unstable for sufficiently small values of �.

4.5.2 The Barotropic Vorticity Equation

A second example involving the development of nonlinear instability in very smooth
flow is provided by the equation governing the vorticity in a two-dimensional in-
compressible homogeneous fluid,

@�

@t
C u � r� D 0: (4.111)
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Here u is the two-dimensional velocity vector describing the flow in the x–y plane
and � is the vorticity component along the z-axis. Since the flow is nondivergent, u
and � may be expressed in terms of a stream function  such that

u D
�

�@ 
@y
;
@ 

@x

�
� D r2 ;

and (4.111) may be written as

@r2 
@t

C J. ;r2 / D 0; (4.112)

where J is the Jacobian operator

J.p; q/ D @p

@x

@q

@y
� @p

@y

@q

@x
:

In atmospheric science, (4.112) is known as the barotropic vorticity equation.
Fjørtoft (1953) demonstrated that if the initial conditions are smooth, solutions to

(4.112) must remain smooth in the sense that there can be no net transfer of energy
from the larger spatial scales into the smaller scales. Fjørtoft’s conclusion follows
from the properties of the domain integral of the Jacobian operator. Let p denote
the domain integral of p, and suppose, for simplicity, that the domain is periodic in
x and y. Then by the assumed periodicity of the spatial domain9

J.p; q/ D @

@x

�
p
@q

@y

�
� @

@y

�
p
@q

@x

�
D 0:

As a consequence,

pJ.p; q/ D J.p2=2; q/ D 0; (4.113)

and

qJ.p; q/ D J.p; q2=2/ D 0: (4.114)

The preceding relations may be used to demonstrate that the domain-integrated
kinetic energy and the domain-integrated enstrophy (half the vorticity squared)
are both conserved. First consider the enstrophy, �2=2 D .r2 /2=2. Multiplying
(4.112) by r2 and integrating over the spatial domain yields

@

@t

 
.r2 /2

2

!
C .r2 /J. ;r2 / D 0;

which, using (4.114), reduces to

@

@t

 
.r2 /2

2

!
D 0:

9 Equivalent conservation properties hold in a rectangular domain in which the normal velocity is
zero at all points along the boundary.
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The conservation of the domain-integrated kinetic energy, u � u=2 D r � r =2,
may be demonstrated by multiplying (4.112) by  , applying the vector identity

 
@r2 

@t
D r �

�
 
@r 
@t

�
� @

@t

�r � r 
2

�
;

integrating over the periodic spatial domain, and using (4.113) to obtain

@

@t

 
r � r 

2

!
D 0:

Now suppose that the stream function is expanded in a Fourier series along the x
and y coordinates

 D
X
k

X
`

ak;`e
i.kxC`y/ D

X
k;`

 k;`;

and define the total wave number � such that �2 D k2 C `2. By the periodicity of
the domain and the orthogonality of the Fourier modes,

u � u D r � r D r � . r / �  r2 D � r2 D
X
k;`

�2 2
k;`

and

�2 D .r2 /2 D
X
k;`

�4 2
k;`
:

The two preceding relations may be used to evaluate an average wave number,
�avg, given by the square root of the ratio of the domain-integrated enstrophy to
the domain-integrated kinetic energy,

�avg D
 
�2

u � u

!1=2
:

Since the domain-integrated enstrophy and the domain-integrated kinetic energy are
both conserved, �avg does not change with time. Any energy transfers that take place
from larger to smaller scales must be accompanied by a second energy transfer from
smaller to larger scales to conserve � – there can be no systematic energy cascade
into the short-wavelength components of the solution.

Suppose that the barotropic vorticity equation (4.112) is approximated using cen-
tered second-order differences in space and time such that

ı2t . Qr2�/C QJ .�; Qr2�/ D 0;

where the numerical approximation to the horizontal Laplacian operator is

Qr2� D .ı2x C ı2y/�
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and the numerical approximation to the Jacobian operator is

QJ .p; q/ D .ı2xp/.ı2yq/� .ı2yp/.ı2xq/:

Phillips (1959) showed that solutions obtained using the preceding scheme are
subject to an instability in which short-wavelength perturbations suddenly amplify
without bound. This instability cannot be controlled by reducing the time step, and
it occurs using values of �t that are well below the threshold required to main-
tain the stability of equivalent numerical approximations to the linearized constant-
coefficient problem. Phillips demonstrated that this instability could be controlled
by removing all waves with wavelengths shorter than four grid intervals, thereby
eliminating the possibility of aliasing error.

A more elegant method of stabilizing the solution was proposed by Arakawa
(1966), who suggested reformulating the numerical approximation to the Jacobian
to preserve the discrete analogue of the relations (4.113) and (4.114) and thereby
obtain a numerical scheme that conserves both the domain-integrated enstrophy and
the domain-integrated kinetic energy. In particular, Arakawa proposed the following
approximation to the Jacobian:

QJa.p; q/ D 1

3

�
.ı2xp/.ı2yq/� .ı2yp/.ı2xq/

�

C 1

3

�
ı2x.p ı2yq/� ı2y.p ı2xq/

�C 1

3

�
ı2y.q ı2xp/ � ı2x.q ı2yp/

�
:

The Arakawa Jacobian satisfies the numerical analogue of (4.113) and (4.114),

X
m;n

pm;n QJa.pm;n; qm;n/ D
X
m;n

qm;n QJa.pm;n; qm;n/ D 0; (4.115)

where the summation is taken over all grid points in the computational domain. As
a consequence of (4.115), solutions to

@

@t

� Qr2�
�

C QJa.�; Qr2�/ D 0 (4.116)

conserve their domain-integrated enstrophy and kinetic energy and must therefore
also conserve the discretized equivalent of the average wave number �avg. Since the
average wave number is conserved, there can be no net amplification of the short-
wavelength components in the numerical solution. The numerical solution is not
only stable, it also remains smooth.

Any numerical approximation to the barotropic vorticity equation will be stable if
it conserves the domain-integrated kinetic energy, since that is equivalent to the con-
servation of kuk2. The enstrophy-conservation property of the Arakawa Jacobian
does more, however, than guarantee stability; it prevents a systematic cascade of
energy into the shortest waves resolvable on the discrete mesh. In designing a nu-
merical approximation to the barotropic vorticity equation it is clearly appropri-
ate to chose a finite-difference scheme like the Arakawa Jacobian that inhibits the
downscale cascade of energy. On the other hand, it is not clear that schemes that
limit the cascade of energy to small scales are appropriate in those fluid-dynamical
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applications where there actually is a systematic transfer of kinetic energy from
large to small scale. Indeed, any accurate numerical approximation to the equations
governing such flows must replicate this downscale energy transfer.

One natural approach to the elimination of nonlinear instability in systems that
support a downscale energy cascade is through the parameterization of unresolved
turbulent dissipation. In high-Reynolds-number (nearly inviscid) flow, kinetic en-
ergy is ultimately transferred to very small scales before being converted to internal
energy by viscous dissipation, yet the storage limitations of digital computers do not
allow most numerical simulations to be conducted with sufficient spatial resolution
to resolve all the small-scale eddies involved in this energy cascade. Under such
circumstances the kinetic energy transferred downscale during the numerical sim-
ulation will tend to accumulate in the smallest scales resolvable on the numerical
mesh, and it is generally necessary to remove this energy by some type of scale-
selective dissipation. The scale-selective dissipation constitutes a parameterization
of the influence of the unresolved eddies on the resolved-scale flow and should be
designed to represent the true behavior of the physical system as closely as possible.
Regardless of the exact formulation of the energy-removal scheme, it will tend to
stabilize the solution and prevent nonlinear instability.

Many fluid flows contain limited regions of active small-scale turbulence and
relatively larger patches of dynamically stable laminar flow. Since eddy diffusion
will not be active outside the regions of parameterized turbulence, a scale-selective
background dissipation, similar to Phillips’s (1959) technique of removing all wave-
lengths shorter than four grid intervals, is often required to avoid nonlinear instabil-
ity. This dissipation may be implicitly included in the time differencing or in an
upwind-biased spatial difference, or it may be explicitly added to an otherwise non-
damping method using formulae such as those discussed in Sect. 3.3.3. Although it
is not required for stability, a small amount of background dissipation may also be
incorporated in numerical approximations to linear partial differential equations to
damp those short-wavelength components of the numerical solution whose phase
speed and group velocity are most seriously in error.

Problems

1. Verify that the leapfrog time-differenced shallow-water equations (4.14) and
(4.15) support a computational mode and that the forward–backward-
differenced system (4.17) and (4.18) does not, by solving their respective
discrete-dispersion relations for !.

2. Eliminate h from the finite-difference equations for the leapfrog staggered
scheme (4.14) and (4.15) and compare the resulting higher-order finite-
difference approximation to the second-order partial differential equation

@2u

@t2
� c2

@2u

@x2
D 0
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with the expression that arises when h is eliminated from the forward–backward
approximation on the staggered mesh (4.17) and (4.18). What does this com-
parison suggest about the number of computational modes admitted by each
numerical approximation?

3. Suppose that numerical solutions to the two-dimensional Boussinesq system
(4.39)–(4.42) are obtained using the staggered grid shown in Fig. 4.6 except
that the distribution of the variables is modified so that b is colocated with the
w rather than the P points.

(a) Write down appropriate modifications for the discretized vertical momentum
and buoyancy equations (4.44) and (4.45), and derive the discrete dispersion
relation for this system.

(b) Assume that all resolved modes are quasi-hydrostatic, so that Qk21 can be ne-
glected with respect to Q̀2 in the denominator of (4.47) and in the result derived
in (a). Also suppose the mean wind is zero. Compare the horizontal and verti-
cal group velocities for the numerical solutions on each staggered grid with the
exact expression from the nondiscretized quasi-hydrostatic system.

4. Derive the amplification factor and stability condition given in the text for the
CTU method (4.36). Show that including the cross-derivative term in the CTU
method always decreases the amplification factor relative to that obtained with
the standard two-dimensional upstream scheme (4.31).

5. Show that, at least for some combinations of U and V , the false two-
dimensional Lax–Wendroff scheme (4.37) is unstable for all �t .

6. Determine the range of �t (if any) over which the backward, forward, and
leapfrog schemes give a stable approximation to

d 

dt
D r :

Consider the cases r > 0 and r < 0. The true solution to this equation preserves
the sign of  .t D 0/. What, if any, additional restrictions must be placed on�t
to ensure that the numerical solution for each method is both stable and sign
preserving.

7. Suppose the Lax–Wendroff method is used to obtain anO
�
.�t/2

�
-accurate ap-

proximation to the advection–diffusion equation (3.87). Show that before dis-
cretizing the spatial derivatives, the scheme has the form

�nC1 � �n
�t

C c
@�n

@x
�M @2�n

@x2

D �t

2

�
c2
@2�n

@x2
� 2cM

@3�n

@x3
CM 2 @

4�n

@x4

�
:

Comment on the probable utility of this approach.
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8. Derive expressions for the boundaries for the regions of useful stability for the
leapfrog-backward scheme (3.93) and the leapfrog–trapezoidal method (3.92)
shown in Fig. 3.13a.

9. The following approximation to the advection–diffusion equation (3.87) is un-
stable:

ı2t�
n
j C cı2x�

n
j D Mı2x�

n
j :

Modify the right side of the above equation to stabilize the method, at least
for sufficiently small �t , but do not make the scheme implicit. Prove that your
modified scheme is indeed stable for sufficiently small values of �t . It is not
necessary to work out the exact range of �t over which the scheme is stable.

10. The analysis of the frozen-coefficient problem does not always correctly in-
dicate the behavior of solutions to partial differential equations with variable
coefficients. Consider the initial-value problem

@ 

@t
� i

@

@x

�
sinx

@ 

@x

�
D 0; (4.117)

 .x; 0/ D f .x/ on the interval �1 < x < 1.

(a) Show that the L2 norm of the solution to this problem does not grow with
time.

(b) Freeze the coefficients at x D 0 and show that the resulting problem is
ill posed because its solution does not depend continuously on the initial data.
(Hint: Consider

 1.x; 0/ D eik1x and  2.x; 0/ D eik2x

and show that k 1.x; 0/� 2.x; 0/k is bounded, whereas k 1.x; t/� 2.x; t/k
can be arbitrarily large for any finite t .)
Since stable numerical solutions cannot be obtained for ill-posed problems, the
stability of a numerical approximation to (4.117) cannot be determined by ex-
amining the stability of the family of all frozen-coefficient problems.

11. Suppose that (4.97) and (4.98) are applied to model tracer advection in a closed
rectangular domain with no velocity normal to the boundaries and that the
boundaries are located at the edges (as opposed to the centers) of the outermost
grid cells. Let the differential–difference equations generated by each scheme
be expressed as a linear system of the form (4.91). Write down the coefficient
matrix A for each scheme, and show that the matrix associated with (4.97) is
skew symmetric, whereas that associated with (4.98) is not.

12. *The linearized one-dimensional Rossby adjustment problem for an atmo-
sphere with no mean wind is governed by the equations

@u

@t
� f v C g

@h

@x
D 0;

@v

@t
C f u D 0;

@h

@t
CH

@u

@x
D 0:
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Compare the approximate solution to these equations obtained using leapfrog
differencing on an unstaggered mesh

ı2tu � f v C gı2xh D 0;

ı2tv C f u D 0;

ı2thCHı2xu D 0

with those obtained using forward–backward time differencing on the staggered
mesh shown in Fig. 4.1:

ıtu
nC 1

2

j � f vnj C gıxh
n
j D 0;

ıtv
nC 1

2

j C f unC1
j D 0;

ıth
nC 1

2

jC 1
2

CHıxu
nC1
jC 1

2

D 0:

Assume that v, which is not shown in Fig. 4.1, is defined at the same points as u.
Let the spatial domain be periodic on the interval 0 � x � 2; 000 km, but show
your solutions only in the domain 600 � x � 14; 000 km. Let f D 10�4 s�1
and c D p

gH D 10ms�1. For initial conditions choose u.x; 0/D v.x; 0/D 0,
and let the height field be given by a slightly smoothed unit-amplitude square
wave with nodes at x D 0 and x D 1; 000 km. Obtain this smoothed square
wave by three iterative applications of the filter

�
f
j D 1

4
.�jC1 C 2�j C �j�1/

to a pure square wave. Let �x D 3 1
3

km.

(a) Show solutions for all three fields at the time step closest to t D 21;000 s.
Use Courant numbers (c�t=�x) of 0.9 and 0.1. Discuss the quality of the two
solutions. Explain the source of the difference between the two solutions.

(b) Eliminate the smoothing step from the initialization and discuss the impact
on the solution.
(Note that analytic solutions to this problem are given in Gill 1982, Sects. 7.2,
7.3.)

13. *Compute numerical solutions to the variable-wind-speed advection equation
(4.70) in a periodic domain 0 � x � 2. Choose

c.x/ D
(
0:3 � 1:5.x � 1

3
/ sin.3πx/ sin.12πx/; if 1

3
� x � 2

3
,

0:3; otherwise,

and use the initial condition

 .x; 0/ D
(
1
4
.cos.8π.x � 1

8
//C 1/2 if jx � 1

8
j � 1

8
;

0; otherwise .
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(a) Given that Z 2=3

1=3

dx

c.x/
D 1:391;

find the correct x-location of the peak of the initial distribution at time t D 3.
Describe the shape and location of the true solution at t D 3.

(b) Compare numerical solutions obtained using the second-order approxima-
tions

ı2t� C cı2x� D 0 (4.118)

and

ı2t� C ˝hcixıx�˛x D 0

with the fourth-order space schemes

ı2t� C c

�
4

3
ı2x� � 1

3
ı4x�

	
D 0

and

ı2t� C 4

3

˝hcixıx�˛x � 1

3

˝hci2xı2x�˛2x D 0:

Assume that c and � are located at the same points. Use �x D 1=32 and
a Courant number of 0.6 based on the maximum wind speed. Take a single
forward step to initialize the leapfrog integration. Plot the left half of the domain
and show the solutions at t D 0, t D 1:5, and t D 3. Also plot the wind speed.
Compare the numerical solutions with the exact solution determined in (a) at
time t D 3.

(c) Retry the previous simulations using �x D 1=64 and discuss the degree of
improvement.

(d) Now try adding a fourth-order spatial filter to each scheme in the �x D
1=32 case. Lag the filter in time. For example, (4.118) becomes

ı2t�
n
j C cı2x�

n
j D �� 
�n�1

jC2 � 4�n�1
jC1 C 6�n�1

j � 4�n�1
j�1 C �n�1

j�2
�
:

Discuss the dependence of the solution on the parameter ��t . As a start, set
��t D 0:01.





Chapter 5
Conservation Laws and Finite-Volume Methods

As demonstrated in the preceding chapters, the errors in most numerical solutions
increase dramatically as the physical scale of the simulated disturbance approaches
the minimum scale resolvable on the numerical mesh. When solving equations for
which smooth initial data guarantee a smooth solution at all later times, such as the
barotropic vorticity equation (4.112), one can avoid any difficulties associated with
poor numerical resolution by using a sufficiently fine computational mesh. But if the
governing equations allow an initially smooth field to develop shocks or disconti-
nuities, as is the case with Burgers’s equation (4.102), there is no hope of maintain-
ing adequate numerical resolution throughout the simulation, and special numerical
techniques must be used to control the development of overshoots and undershoots
in the vicinity of the shock. Numerical approximations to equations with discon-
tinuous solutions must also satisfy additional conditions beyond the stability and
consistency requirements discussed in Chap. 3 to guarantee that the numerical solu-
tion converges to the correct solution as the spatial grid interval and the time step
approach zero.

The possibility of erroneous convergence to a function that does not approxi-
mate the true discontinuous solution can be demonstrated by comparing numerical
solutions to the generalized Burgers equation in advective form

@ 

@t
C  2

@ 

@x
D 0 (5.1)

with those generated by analogous solutions to the same equation in flux form

@ 

@t
C @

@x

�
 3

3

�
D 0: (5.2)

As will be explained in Sect. 5.1, if the initial conditions are specified by the step
function

 .x; 0/ D
�
1; if x � 0,
0 otherwise,

(5.3)

D.R. Durran, Numerical Methods for Fluid Dynamics: With Applications to Geophysics, 203
Texts in Applied Mathematics 32, DOI 10.1007/978-1-4419-6412-0 5,
c� Springer Science+Business Media, LLC 1999, 2010
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the correct solution consists of a unit-amplitude step propagating to the right at
speed 1=3. An upstream finite-difference approximation to the advective form (5.1)
was calculated using

�nC1
j � �nj

�t
C
�
�nj C �nj�1

2

�2 ��nj � �nj�1
�x

�
D 0; (5.4)

and an upstream approximation to the flux form (5.2) was obtained using

�nC1
j � �nj
�t

C .�nj /
3 � .�nj�1/3

3�x
D 0: (5.5)

Figure 5.1a shows a comparison of the exact and the numerical solutions at
t D 2:4 on the subdomain 0:5 � x � 1:0. The computations were performed using
�x D 0:02 and a time step such that maxŒ .x; 0/��t=�x D 0:5. Both schemes
yield plausible-looking approximations to the correct solution (shown by the dot-
dashed line), but the numerical solution obtained using advective-form differencing
(shown by the solid line) moves at the wrong speed. As illustrated in Fig. 5.1b, in
which the numerical solutions are recalculated after reducing �x and �t by a fac-
tor of 4, the speed of the solution generated by the advective-form approximation is
not significantly improved by decreasing �x and �t . The advective-form approx-
imation simply does not converge to the correct solution in the limit �x ! 0 and
�t ! 0. The difficulties that can be associated with advective-form finite differ-
encing are even more apparent if (5.1) is approximated using the scheme

�nC1
j � �nj

�t
C �

�nj
�2 �nj � �nj�1

�x
D 0

0.5 1 0.5 1

a b

xx

Fig. 5.1 Exact (dot-dashed line), upstream advective-form (solid line) and upstream flux-form
(dashed line) solutions to the generalized Burgers equation at t D 2:4 on the subdomain 0:5 �
x � 1: a�x D 0:02,�t D 0:01; b�x D 0:005,�t D 0:0025
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and the initial data

�0j D
�
1; if j � j0,
0; otherwise.

In this case, the finite-difference approximation to  2@ =@x is zero at every grid
point, and the numerical solution is stationary. To understand how advective-form
finite-difference approximations can converge to invalid solutions to the generalized
Burgers equation, it is helpful to review the sense in which discontinuous functions
constitute solutions to partial differential equations.

5.1 Conservation Laws and Weak Solutions

Many of the partial differential equations arising in fluid dynamics can be expressed
as a system of conservation laws of the form

@u
@t

C
X
j

@

@xj
fj .u/ D 0; (5.6)

which states that the rate of change of u at each point is determined by the con-
vergence of the fluxes fj at that point. An example of this type is provided by the
one-dimensional shallow-water equations. Let u denote the velocity and h the fluid
depth, and suppose that there is no bottom topography; then conservation of mass
requires

@h

@t
C @

@x
.hu/ D 0;

and conservation of momentum implies

@

@t
.hu/C @

@x

�
hu2 C g

h2

2

�
D 0:

If a function contains a discontinuity, it cannot be the solution to a partial differ-
ential equation in the conventional sense, because derivatives are not defined at the
discontinuity. Instead, the solution is required to satisfy a family of related integral
equations. Consider solutions to the scalar conservation law

@ 

@t
C @

@x
f . / D 0 (5.7)

on the unbounded domain �1 < x < 1. Integrating this conservation law over
the intervals Œx1; x2� and Œt1; t2�, one obtains

Z x2

x1

 .x; t2/ dx D
Z x2

x1

 .x; t1/ dxC
Z t2

t1

f . .x1; t// dt �
Z t2

t1

f . .x2; t// dt; (5.8)
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which states that the total change in over the region x1 � x � x2 is determined by
the time-integrated fluxes through the boundary of that region. This integral form of
the conservation law can usually be derived from first physical principles as easily
as the differential form (5.7), and unlike the differential form, the integral form can
be satisfied by piecewise-continuous functions. If  satisfies the integral equation
(5.8) on every subdomain Œx1; x2�� Œt1; t2�, then  is a weak solution of the conser-
vation law. Differentiable weak solutions are also solutions to the partial differential
equation (5.7) and are uniquely determined by the initial data. Nondifferentiable
weak solutions may, however, be nonunique.

5.1.1 The Riemann Problem

Weak solutions to the conservation law (5.7) are particularly easy to obtain when
the initial data are constant on each side of a single discontinuity. This combina-
tion of a scalar conservation law and piecewise-constant initial data containing a
single discontinuity is known as a Riemann problem. Riemann problems have solu-
tions in which the initial discontinuity propagates at a constant speed s, as indicated
schematically in Fig. 5.2. Assuming for notational convenience that at t D 0 the
discontinuity is at x D 0, this solution has the form

 .x; t/ D
�
 L if x � st < 0,
 R otherwise,

(5.9)

where  L D  .xL/,  R D  .xR/, and it has been assumed that xL and xR are
located sufficiently far upstream and downstream that the jump does not propagate
past these points during the time interval of interest. The speed of the shock may be
determined as follows. From (5.9),

Z xR

xL

 .x; t/ dx D .st � xL/ L C .xR � st/ R;

and thus
d

dt

Z xR

xL

 .x; t/ dx D s. L �  R/: (5.10)

xL xR

sDt

t1 t2

yR

yL

Fig. 5.2 The displacement of a jump propagating to the right at speed s over time�t D t2 � t1
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Integrating (5.7) over the interval ŒxL; xR�, one obtains

d

dt

Z xR

xL

 .x; t/ dx D f . L/� f . R/;

which together with (5.10) implies that

s D f . L/ � f . R/

 L �  R

: (5.11)

This equation for the speed of the jump is known as the Rankine–Hugoniot
condition. Note that the Rankine–Hugoniot condition requires the jump in the
weak solutions plotted in Fig. 5.1 to propagate at a speed of 1=3. The Rankine–
Hugoniot condition is frequently derived from first principles in various physical
applications. For example, Stoker (1957, Sects. 10.6.6, 10.7.7) derives the Rankine–
Hugoniot condition for the one-dimensional shallow-water system by constructing
mass and momentum budgets for a control volume containing the shock.

As previously mentioned, nondifferentiable weak solutions need not be uniquely
determined by the initial data, and if more than one weak solution exists, it is
necessary to select the physically relevant solution. When the solutions to equations
representing real physical systems develop discontinuities, one of the physical as-
sumptions used to derive those equations is often violated. Solutions to the inviscid
Euler equations may suggest that discontinuities develop in supersonic flow around
an airfoil, but the velocity and thermodynamic fields around an airfoil never actually
become discontinuous. The discontinuities predicted by the Euler equations actually
appear as narrow regions of steep gradients that are stabilized against further scale
collapse by viscous dissipation and diffusion. The discontinuous inviscid solution
may be considered to be the limit of a series of viscous solutions in which the
viscosity is progressively reduced to zero. Thus, one strategy for selecting the phys-
ically significant weak solution would be to conduct a series of viscous simulations
with progressively smaller viscosities and choose the weak solution toward which
the viscous solutions converge. This, of course, is a highly inefficient strategy, and
it may be impossible to implement in actual simulations of high-Reynolds-number
flow, where any realistic value for the molecular viscosity may be too low to signif-
icantly influence the solution on the spatial scales resolvable on the numerical grid.
In addition, any attempt to include realistic viscosities in the numerical solution
reintroduces precisely those mathematical complications that were eliminated when
the full physical system was originally approximated by the simpler inviscid model.

5.1.2 Entropy-Consistent Solutions

It is therefore preferable to obtain alternative criteria for selecting the physically rel-
evant weak solution. These criteria may be derived directly from physical principles.
Stoker (1957) eliminated nonphysical shocks in shallow-water flow by requiring that
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“the water particles do not gain energy upon crossing a shock front.” In gas dynam-
ics, thermodynamic principles require that entropy be nondecreasing at the shock.
Generalized entropy conditions can also be derived for any system of one or two
scalar conservation laws of the form (5.7) by considering the limiting behavior of
the corresponding viscous system as the viscosity approaches zero (Lax 1971).

For example, a generalized entropy function for the inviscid Burgers equation

@ 

@t
C @

@x

�
 2

2

�
D 0 (5.12)

is  2. When  is a weak solution to Burgers’s equation,  2 is a weak solution to
the inequality

@ 2

@t
C @

@x

�
2 3

3

�
� 0: (5.13)

If the solutions to Burgers’s equation are differentiable, the left side of (5.13) is
identically zero and the time rate of change of the integral of  2 over any spatial
domain is equal to the divergence of the entropy flux, 2 3=3, through the edges of
the domain. But if the solution of Burgers’s equation is discontinuous, (5.13) can no
longer be satisfied by an equality. The sense of the inequality demanded by (5.13) is
that which matches the limiting behavior of  2 for solutions to the viscous Burgers
equation

@ 

@t
C @

@x

�
 2

2

�
D �

@2 

@x2

as � ! 0 (LeVeque 1992, p. 37).
Consider two possible weak solutions to the inviscid Burgers equation (5.12),

both of which are consistent with the initial condition

 .x; 0/ D
�
0; if x � 0,
1; otherwise.

The first solution, shown in Fig. 5.3a, consists of a unit-amplitude downward1 jump
moving to the right at the speed given by the Rankine–Hugoniot condition, which is
a speed of 1=2. The second solution, shown in Fig. 5.3b, is the rarefaction wave, or
expansion fan, given by

 .x; t/ D
(
0; if x � 0,
x=t; if 0 < x < t ,
1; otherwise.

Note that the central point in the rarefaction wave moves at the same speed as the
shock. The validity of the rarefaction-wave solution in the interval 0 < x < t can
be confirmed by substituting  D x=t into (5.12). The validity of the solution in

1 The jump is “downward” in the sense that the fluid level drops during the passage of the discon-
tinuity.
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a b

00

11

t0 t0 t1 t2t1 t2

x=0 x=0

Fig. 5.3 a An entropy-violating shock, and b the entropy-consistent rarefaction wave

a b

0 0

1 1

x = 0 x = 0

Fig. 5.4 Spatial distribution of  in a rarefaction wave compared with that in a an entropy-
violating shock, and b the combination of a small entropy-violating shock and a rarefaction wave

any larger domain follows from the fact that the shock is a weak solution, since it
moves at the speed determined by the Rankine–Hugoniot condition, and as indicated
in Fig. 5.4a, the rate of change of

R
 dx over any domain including the interval

0 � x � t is the same for the shock and the rarefaction wave. An infinite number
of other weak solutions also exist, such as the small shock following a rarefaction
wave shown in Fig. 5.4b.

Characteristic curves for the shock and rarefaction-wave solutions are plotted in
Fig. 5.5. Those characteristics that intersect the trajectory of the shock are directed
away from the shock, i.e., they originate at some point along the trajectory of the
shock and do not continue back to the line t D 0 along which the initial data are
specified. As a consequence, the initial data do not determine the value of  .x; t/
throughout the entire t > 0 half-plane, which is clearly a nonphysical situation.
In contrast, all the characteristics associated with the rarefaction wave originate from
the line t D 0, and the solution is everywhere determined by the initial data. The
rarefaction wave is therefore the physically relevant weak solution.

If the initial data in the preceding example are reflected about the point x D 0, the
unique and physically relevant solution consists of a unit-amplitude upward jump
propagating to the right at speed 1=2. This solution is shown in Fig. 5.6, together
with a representative set of its characteristic curves. In this case, the characteristic
curves are directed into the jump, so the initial data do determine the solution.
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a b

00

tt

xx

Fig. 5.5 Characteristic curves for a an entropy-violating shock, and b the entropy-consistent rar-
efaction wave. The trajectory of the shock is indicated by the heavy dashed line

a b

0

0

1
t

x

t0 t1 t2

x = 0

Fig. 5.6 a An entropy-consistent shock, and b characteristic curves associated with that shock.
The trajectory of the jump is indicated by the heavy dashed line

Indeed, the intersecting characteristics indicate the need for a discontinuity in the
solution, because otherwise the solution would have to be double-valued at the point
where two different characteristics meet.

These results are consistent with the entropy condition (5.13), which may be
evaluated for jump solutions to Burgers’s equation as follows. As in Fig. 5.2, let
 L D  .xL/,  R D  .xR/, and assume that xL and xR are located sufficiently far
upstream and downstream that the jump does not pass these points during the time
interval Œt1; t2�. Following the same derivation that led to (5.10),

d

dt

Z xR

xL

 2.x; t/ dx D s. 2L �  2R /; (5.14)

where s is the speed of the jump. Integrating the left side of (5.13) over the domain
ŒxL; xR� � Œt1; t2�, one obtains

Z t2

t1

Z xR

xL

�
@ 2

@t
C @

@x

�
2 3

3

��
dx dt D

Z xR

xL

 2.x; t2/ dx �
Z xR

xL

 2.x; t1/ dx C
Z t2

t1

2

3

�
 3R �  3L

�
dt:
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Defining �t D t2 � t1, expanding the first term on the right side in a Taylor series
about time t1 using (5.14), and substituting s D . L C  R/=2,

Z t2

t1

Z xR

xL

�
@ 2

@t
C @

@x

�
2 3

3

��
dx dt

D s�t. 2L �  2R /CO
	
.�t/2


C 2

3
�t. 3R �  3L /

D �t

6
. R �  L/

3 CO
	
.�t/2



: (5.15)

Taking the limit �t ! 0, it follows that the only jumps that can satisfy the entropy
condition (5.13) are those for which  L exceeds  R.

As suggested by the preceding examples, one criterion for determining the
entropy-consistent solution is to demand that all characteristic curves intersecting
the shock be directed in toward the trajectory of the shock. For scalar conservation
laws, this condition is satisfied, provided that for all  between  L and  R

f . L/� f . /

 L �  
� s � f . / � f . R/

 �  R

(5.16)

(Oleinik 1957). Since s is given by the Rankine–Hugoniot condition (5.11), this
inequality reduces to the simple condition that  L >  R when f . / is convex,
i.e., when the chord connecting any two points . 1; f . 1// and . 2; f . 2// lies
entirely above the graph of f . Because the flux appearing in Burgers’s equation is
convex, the entropy-consistent shock shown in Fig. 5.6 can be distinguished from the
entropy-violating shock shown in Fig. 5.3 by the criterion  L >  R, which agrees
with (5.15).

5.2 Finite-Volume Methods and Convergence

There are two special difficulties that can arise in attempting to compute discontin-
uous solutions to partial differential equations. First, as suggested by the spurious
solution generated by the advective-form upstream finite-difference approximation
(5.1), the numerical scheme might converge to a function that is not a weak so-
lution of the conservation law. Second, the numerical method may converge to a
genuine weak solution, but it may fail to converge to the physically relevant entropy-
consistent solution.

The possibility of numerical solutions converging to a function that is not a
weak solution to the governing equation can be avoided by using a method that can
be expressed in conservation form.2 An approximation to the scalar conservation

2 The scheme need only be algebraically equivalent to a method of the form (5.17). For example
the advective-form approximation (4.97) is algebraically equivalent to the conservation form (4.90)
when the velocity field satisfies (4.95).
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law (5.7) is in conservation form if

�nC1
j � �nj

�t
C
 
FjC 1

2
� Fj� 1

2

�x

!
D 0; (5.17)

where Fj˙1=2 are numerical approximations to the fluxes f Œ ..j ˙ 1=2/�x/�

such that

FjC 1
2

D F.�nj�p; �nj�pC1; : : : ; �njCqC1/;
Fj� 1

2
D F.�nj�p�1; �nj�p ; : : : ; �njCq/;

and p and q are integers.
If the true solution and the fluxes are differentiable, �j can approximate

 .xj ; t
n/ and each term in (5.17) may be interpreted as a finite difference. The

construction of high-order finite-difference approximations to the flux divergence
in (5.17) is considered in Sect. 5.7.1. If, on the other hand, the true solution is not
differentiable, numerical approximations to weak solutions of the conservation law
may be obtained using finite-volume methods. In the finite-volume approach, �j
approximates the spatial average of  over grid cell j ,

�nj � 1

�x

Z xj C�x=2

xj ��x=2
 .x; tn/ dx;

and FjC1=2 approximates the time-averaged flux through the interface between grid
cells j and j C 1,

FjC 1
2

� 1

�t

Z tnC1

tn
f . .xj C�x=2; t// dt :

Averaging the exact conservation law (5.7) over the j th grid cell and integrating
over a single time step gives

1

�x

Z xj C�x=2

xj ��x=2
 .x; tnC1/ dx D 1

�x

Z xj C�x=2

xj ��x=2
 .x; tn/ dx

� 1

�x

 Z tnC1

tn
f . .xj C�x=2; t// dt �

Z tnC1

tn
f . .xj ��x=2; t// dt

!
:

Finite-volume methods approximate the preceding expression as

�nC1
j D �nj � �t

�x

�
FjC 1

2
� FjC 1

2

�
:

Solutions to finite-volume methods automatically satisfy

j2X
jDj1

�nC1
j �x D

j2X
jDj1

�nj�x C�tFj1� 1
2

��tFj2C 1
2
; (5.18)
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which is a discrete approximation to an arbitrary member of the family of integral
equations (5.8) satisfied by any weak solution to the exact conservation law.

Thus, if a set of finite-volume solutions converges to some function as �x,
�t ! 0, all that is required to ensure that function is a weak solution to (5.7) is
a consistency condition. Suppose that the numerical fluxes are smooth functions of
the grid-point values (at a minimum, F must be Lipschitz continuous3) and that
these fluxes are consistent with the conservation law (5.7) in the sense that

F. 0;  0; : : : ;  0/ D f . 0/;

i.e., that the numerical fluxes generated by a spatially and temporally uniform  0
are identical to the true flux generated by the same constant value of  0. Then, if
the numerical solutions converge to some function as �x, �t ! 0, that function
must be a weak solution of (5.7) (Lax and Wendroff 1960; LeVeque 2002). Note
that the results presented in Fig. 5.1 are consistent with this theorem because (5.5) is
in conservation form with FjC1=2 D �3j =3 but (5.4) is not algebraically equivalent
to any scheme in conservation form.

Although finite-volume methods are particularly appropriate for those problems
with discontinuous solutions, they can also generate excellent approximations to
conservation laws with smooth solutions. One important advantage of the finite-
volume approach is that it provides a general method for creating two-time-level
approximations algebraically equivalent to (5.17) in which the time stepping does
not rely on Euler time differencing. Two-time-level finite-volume methods are ex-
plicitly constructed using this approach in Sect. 5.6.

5.2.1 Monotone Schemes

There is no guarantee that a consistent method in conservation form will generate
results that actually converge to a weak solution. The theorem of Lax and Wendroff
ensures only that if the numerical solution does converge, it will converge to a weak
solution. Convergence to the entropy-consistent weak solution is, however, guar-
anteed whenever a consistent method in conservation form is monotone (Kuznecov
and Vološin 1976; Harten et al. 1976; Crandall and Majda 1980b). Recall that a real-
valued function is “monotone increasing” if g.x/ � g.y/ whenever x � y. A finite-
volume (or finite-difference) method is monotone if �nC1

j is a monotone-increasing
function of each grid-cell value of � appearing in the finite-volume formula. If the
scheme is expressed in the functional form

�nC1
j D H.�nj�p; : : : ; �njCqC1/;

the condition that the method be monotone is

@ H.�j�p; : : : ; �jCqC1/
@�i

� 0 (5.19)

3 Any differentiable function is Lipschitz continuous.
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for each integer i in the interval Œj � p; j C qC1�. If the method is linear in the
�ni , the method will be monotone if and only if the coefficients of all the �ni are
nonnegative.

The upstream approximation to the flux form of the constant-wind-speed advec-
tion equation

@ 

@t
C @

@x
.c / D 0 (5.20)

is

�nC1
j D .1 � �/�nj C ��nj�1; (5.21)

where � D c�t=�x. Thus, according to (5.19), the preceding method is mono-
tone for 0 � � � 1, which is identical to the standard stability condition for the
upstream scheme. As suggested by this example, the range of �t for which a con-
sistent method in conservation form is monotone is a subset of the range of �t for
which the same scheme is stable when used to approximate problems with smooth
solutions. The class of monotone methods is, however, far more restrictive than the
class of stable finite-volume methods because any monotone method is at most first-
order accurate (Godunov 1959; Harten et al. 1976). The only exceptions occur in
special cases of no practical significance such as when perfect results are obtained
using (5.21) with � D 1. The leading-order truncation error in any monotone first-
order approximation to (5.7) is diffusive (e.g., Sect. 3.4.2), which makes the scheme
a higher-order approximation to a viscous problem and ensures that the numerical
solution converges to the entropy-consistent solution.

5.2.2 Total Variation Diminishing Methods

First-order methods do not provide a particularly efficient way to obtain accurate nu-
merical solutions; better results can often be obtained using higher-order schemes.
Although they are not monotone, many of these schemes satisfy the weaker sta-
bility condition that they are total variation nonincreasing. The total variation of a
one-dimensional grid-point function is defined as

TV.�/ D
N�1X
jD1

j�jC1 � �j j;

where N is the total number of grid points in the numerical domain. The total
variation of a continuous function on the interval Œa; b� may be defined in an
analogous manner as the supremum over all possible subdivisions of the domain
a D x1 < x2 < � � � < xN D b of

N�1X
jD1

j .xjC1/�  .xj /j;
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or equivalently as

TV. / D lim sup
�!0

1

�

Z 1

�1
j .x C �/ �  .x/j dx:

A numerical method is total variation nonincreasing if

TV.�nC1/ � TV.�n/: (5.22)

Although slightly imprecise, it is common practice and easier on the tongue to refer
to a method that is total variation nonincreasing as total variation diminishing, or
TVD. This convention will be followed in the remainder of this book, so (5.22) is
the working definition of a TVD method.

Solutions to a consistent finite-volume method in conservation form are guar-
anteed to converge to weak solutions of the exact conservation law whenever the
scheme is TVD. The nature of this convergence is, however, complicated by the fact
that there may be several nonunique weak solutions to a given conservation law. If
the scheme is TVD, the infimum, over the set of all possible weak solutions, of the
difference between the numerical solution and each weak solution is guaranteed to
go to zero as �x ! 0 and �t ! 0, but a sequence of numerical solutions com-
puted with successively smaller values of �x and �t need not smoothly converge
to any particular weak solution (LeVeque 1992, p. 164). Of course, the goal is to ob-
tain an approximation that converges to the entropy-consistent solution, and this is
generally accomplished by demanding that every approximate solution also satisfy
a discrete form of the entropy condition.

The family of monotone finite-volume schemes is a subset of the family of TVD
schemes, which are in turn a subset of an even more general class of monotonicity-
preserving methods (Harten 1983). A method is monotonicity preserving if it will
preserve monotone-increasing or monotone-decreasing initial data. For example, if
�0j � �0jC1 for all j , then the numerical solution generated by a monotonicity-
preserving method has the property that �nj � �njC1 for all n and j . Monotonicity-
preserving methods generate approximate solutions that are free from spurious rip-
ples. In particular, no new local extrema are generated in the numerical solution.

One might hope to create a second-order TVD or monotonicity-preserving
method by adding enough spatial smoothing to a second-order nondissipative
scheme to prevent the development of spurious ripples near the discontinuity. Sup-
pose that numerical solutions to the constant-wind-speed advection equation (5.20)
are computed for the case c D 1=3 using the second-order scheme

ı2t�
n
j C ı2x

�
c�nj

� D ı4x
�
�4�

n�1
j

�
; (5.23)

which is a leapfrog centered-space approximation plus a fourth-derivative filter. Let
the strength of the fourth-derivative filter be maximized by setting �4�t D 1=32,
which removes all amplitude from the 2�x wave in a single leapfrog time step. So-
lutions computed subject to the initial condition given by the step function (5.3) are
shown in Fig. 5.7a at time t D 2:4 on the subdomain 0:5 � x � 1. This solution was
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0.5 1

a b

x 0.5 1x

Fig. 5.7 Numerical and exact solutions to the constant-wind-speed advection equation at t D
2:4 for the subdomain 0:5 � x � 1: a exact (dash-dotted line) and filtered leapfrog (solid
line) solutions; b exact (dash-dotted line), Lax–Friedrichs (solid line), and upstream (dashed line)
solutions

calculated using a Courant number of 0.5 and �x D 0:02: Although the strength
of the fourth-derivative filter is maximized, spurious ripples still appear behind the
leading edge of the jump, implying that (5.23) is neither TVD nor monotonicity pre-
serving. The failure of this attempt to create a second-order monotonicity-preserving
method could have been predicted on the basis of the theorem of Godunov (1959),
who showed that any linear monotonicity-preserving method is at most first-order
accurate.

Godunov’s theorem implies the only way to construct higher-order TVD schemes
is through the use of nonlinear finite-difference or finite-volume formulae. Sev-
eral such nonlinear schemes will be considered in the following sections. In most
cases these methods combine some information from a higher-order approximation
with the smooth solution from a monotone first-order scheme in an attempt to main-
tain the sharpness of the numerically simulated discontinuity without developing
spurious ripples.

When simulating advection of passive tracers in one dimension, one typically
uses upstream differencing as the monotone scheme because it is less diffusive than
other monotone methods.4 Figure 5.7b illustrates the superiority of upstream solu-
tions to the advection equation (5.20) over those obtained using another monotone
scheme, the Lax–Friedrichs method

�nC1
j � 1

2
.�njC1 C �nj�1/
�t

C
�
c�njC1 � c�nj�1

2�x

�
D 0: (5.24)

4 In two dimensions the corner transport upstream (CTU) method (4.35) would be a good alterna-
tive to coordinate-parallel upstream differences.
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As in the leapfrog simulation shown in Fig. 5.7a, the initial condition was specified
by the step function (5.3), and both solutions were calculated using a Courant num-
ber of 0.5 and�x D 0:02: The numerical diffusion generated by the Lax–Friedrichs
scheme is larger than that produced by the upstream method (see Problem 5). Thus,
despite the obvious stair step in the Lax–Friedrichs solution, its long-wavelength
components are more strongly damped than those in the upstream solution. This
2�x stair step arises from the discontinuity in the initial data and disappears if the
initial width of the jump is increased from a single grid interval to 2�x.

The Lax–Friedrichs method does have one important advantage relative to the
upstream method: it is a central scheme that can be applied independently of the
direction of signal propagation. It is trivial to determine the direction of signal prop-
agation for the advection equation, but more general systems of conservation laws
such as (5.6) support waves moving in different directions, and the unknown vari-
ables must be reexpressed as Riemann invariants5 before applying the upstream
method to the solution of such problems. Those invariants moving toward the right
are stepped forward using an upstream stencil which is the mirror image of that
applied to the leftward-moving invariants. Central schemes avoid this complica-
tion, and in addition they avoid the excessive numerical diffusion associated with
(5.24) when formulated as higher-order TVD methods (Nessyahu and Tadmor 1990;
Kurganov and Tadmor 2000).

5.3 Discontinuities in Geophysical Fluid Dynamics

Although hydraulic jumps can develop from smooth initial conditions in shallow-
water flow and fronts can form in association with mid-latitude low-pressure sys-
tems, true dynamical discontinuities do not develop from smooth initial data in
most other geophysical problems. Geophysically significant motions in a contin-
uously stratified fluid can be well described by filtered sets of equations, such as
the Boussinesq system (see Sect. 1.2). In contrast to the shallow-water system, these
filtered equations do not form a hyperbolic system, their linear wave solutions are
dispersive, and their nonlinear solutions do not form strong shocks.

Nevertheless, scale contraction does frequently occur in geophysical flows as the
result of stretching and shearing deformation by the velocity field. The kinematic
effects of flow deformation on an initially circular distribution of a passive tracer
are illustrated in Fig. 5.8. As the scale of the tracer distribution shrinks in the direc-
tion perpendicular to the axis of dilatation, the concentration field will eventually
become difficult to resolve adequately on a given numerical mesh, but a true dis-
continuity never develops in any finite time. The only discontinuities supported by
the advection equation are a special type of shock known as a contact discontinuity,
in which a preexisting discontinuity is simply carried along by the moving fluid.

5 See Sect. 9.1.1 for an example.
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t1 t2

Fig. 5.8 Deformation of a tracer field in a confluent flow field from a circular pattern at t1 into a
cigar shape at t2

True discontinuities can be generated from initially smooth data at atmospheric
fronts (Hoskins and Bretherton 1972), but even in this case the processes producing
the scale collapse in the frontal zone are primarily advective.

One might suppose that tracer transport in the scale-contracting flow illustrated
in Fig. 5.8 is described by a conservation law of the form

@ 

@t
C @

@x
f . /C @

@y
g. / D 0; (5.25)

which is the generalization of (5.7) to two dimensions. In fact, the local rate of
change in the mass of a tracer transported by a two-dimensional flow is described
by a slightly different conservation law,

@ 

@t
C @

@x
.u /C @

@y
.v / D 0: (5.26)

In contrast to (5.25), the fluxes in (5.26) are not determined solely by  , but depend
on velocity components that are functions of the independent variables x, y, and t .6

The conservation laws (5.25) and (5.26) do, nevertheless, have a number of
common properties. In particular, pairs of entropy-consistent solutions  and
# to either (5.25) or (5.26) share the property that if  .x; y; 0/ � #.x; y; 0/

for all x and y at some initial time 0, then  .x; y; t/ � #.x; y; t/ for all x
and y, and all t � 0. If approximate numerical solutions to either (5.25) or
(5.26) are computed with a monotone scheme, those solutions have same prop-
erty, i.e., if �0i;j � �0i;j for all i and j , then �ni;j � �ni;j for all i , j , and n.
The special case �0i;j D 0 is particularly important, since then �ni;j � �ni;j im-
plies that monotone schemes will not generate spurious negative values from

6 If the velocity and other dynamical fields are being predicted along with  , the full system may
be expressed in the form (5.6), which is autonomous (having no explicit dependence on x and t ).
Nevertheless, in many practical transport problems the velocity is treated as an externally specified
field.
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nonnegative initial data. More generally, monotone schemes yield numerical
solutions to either (5.25) or (5.26) that are free from spurious ripples in the vicinity
of discontinuities and poorly resolved gradients. This is perhaps the most useful
property of monotone approximations to the tracer transport equation, since unlike
(5.25), (5.26) is a linear partial differential equation whose weak solutions are
uniquely determined by the initial and boundary data. There is therefore no need to
employ monotone schemes (or to demand satisfaction of some entropy condition)
to ensure that consistent, conservation-form approximations to (5.26) converge to
the correct solution as �x, �y, and �t approach zero.

As discussed previously, monotone methods are not actually used in most prac-
tical applications because they are only first-order accurate and highly diffusive.
In regions where the solution is smooth, more accurate approximations to the one-
dimensional conservation law (5.7) can be obtained using TVD methods. One
might hope to pursue the same strategy in designing approximations to the two-
dimensional tracer transport equation, but there are difficulties. The first problem is
that except for special cases of no practical importance, all TVD approximations to
the two-dimensional nonlinear conservation law (5.25) are at most first-order accu-
rate (Goodman and LeVeque 1985). Thus, in contrast to the one-dimensional case,
there are no second-order-accurate TVD approximations to (5.25).

The second and more fundamental problem is that although the entropy-consis-
tent solution to the nonlinear conservation law (5.25) is TVD (or, more precisely, to-
tal variation nonincreasing), the total variation in the true solution to the tracer
transport equation can increase with time – even when the velocity field is non-
divergent! The non-TVD nature of the solutions to (5.26) follows from the circum-
stance that the total variation of .x; y/ is not invariant under coordinate rotations.7

The total variation of a two-dimensional function is conventionally defined as

T V. / D lim sup
�!0

1

�

Z 1

�1

Z 1

�1
j .x C �; y/ �  .x; y/j dx dy

C lim sup
�!0

1

�

Z 1

�1

Z 1

�1
j .x; y C �/ �  .x; y/j dx dy:

Suppose that the initial conditions for (5.26) are

 .x; y; 0/ D
�
1 if jxj � 1 and jyj � 1,
0 otherwise,

and that the flow is in solid-body rotation with u D �y and v D x. After the
distribution of  rotates through an angle of 45ı, its total variation will increase by

7 The nonconservation of the total variation under coordinate rotations, which was pointed out to
this author by Joe Tenerelli, appears to be a weakness in the mathematical definition of the total
variation of a two-dimensional function. A second weakness appears in the physical units that are
associated with total variation. If  and ' are variables with arbitrary physical units Q and x and
y are spatial coordinates in meters, then TV. .x// has units of Q, whereas TV.'.x; y// has
units of meters times Q.
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a factor of
p
2. Accurate finite-volume approximations to (5.26) cannot therefore

be TVD. Useful schemes for the simulation of tracer transport can nevertheless be
obtained by borrowing techniques used to generate TVD approximations to the one-
dimensional conservation law (5.7).

Instead of demanding that the scheme be TVD, it is possible to control the devel-
opment of spurious oscillations by regulating the behavior of the local maxima and
minima in the solution. Smooth solutions to the nonlinear conservation law (5.25)
also satisfy the advective-form equation

@ 

@t
C df

d 

@ 

@x
C dg

d 

@ 

@y
D 0: (5.27)

Similarly, if the velocity field is nondivergent,

@u

@x
C @v

@y
D 0; (5.28)

and if  satisfies (5.26), then it must also satisfy the advective form8

@ 

@t
C u

@ 

@x
C v

@ 

@y
D 0: (5.29)

Solutions to both (5.27) and (5.29) conserve the amplitude of all local maxima and
minima in the initial data. Flux-corrected transport (FCT) algorithms, which will be
considered in the next section, exploit this property of the true solution to control
the development of ripples near a discontinuity.

The remainder of this chapter will be primarily devoted to the examination of
methods for the simulation of discontinuities or poorly resolved gradients in nondi-
vergent flow. The first topic considered is one-dimensional nondivergent flow, which
can occur only if the velocity is constant. The one-dimensional constant-wind-speed
advection equation is also a member of the family of autonomous conservation laws
of the form (5.7). As a consequence, the study of the constant-wind-speed advec-
tion equation serves as an introduction to both fluid transport problems of the form
(5.26) and nonlinear hyperbolic conservation laws of the form (5.25). The extension
of these results to nonuniform two-dimensional flow is discussed in Sect. 5.9. The
extension of the one-dimensional constant-wind-speed problem to nonlinear sys-
tems of conservation laws, which is beyond the scope of this text, is discussed in
Godlewski and Raviart (1996) and LeVeque (2002).

8 Equation (5.29) states that the tracer concentration (typically expressed as a dimensionless ratio,
such as grams per kilogram or parts per billion) is conserved following the motion of each fluid
parcel. In contrast, (5.26) states that the local rate of change of the mass of the tracer at a fixed
point in space is determined by the divergence of the tracer mass flux at that point.
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5.4 Flux-Corrected Transport

Flux-corrected transport (FCT) was proposed by Boris and Book (1973) as a way
of approximating a conservation law with a high-order scheme in regions where the
solution is smooth while using a low-order monotone scheme where the solution
is poorly resolved or discontinuous. The concept of FCT and the algorithms for
its implementation were further generalized by Zalesak (1979). Zalesak suggested
approximating the scalar conservation law (5.7) with a finite-difference formula in
the conservation form

�nC1
j � �nj
�t

C
 
FjC 1

2
� Fj� 1

2

�x

!
D 0 (5.30)

and then computing the fluxes Fj˙1=2 in several steps as follows:

1. Compute a set of low-order fluxes F l
jC1=2 using a monotone scheme.

2. Compute a set of high-order fluxes F h
jC1=2 using a high-order scheme.

3. Compute the antidiffusive fluxes

AjC 1
2

D F h
jC 1

2

� F l
jC 1

2

:

4. Compute a monotone estimate of the solution at .n C 1/�t (also known as the
“transported and diffused” solution),

� td
j D �nj � �t

�x

�
F l
jC 1

2

� F l
j� 1

2

�
:

5. Correct the AjC1=2 so that the final “antidiffusion” step does not generate new
maxima or minima. The correction procedure may be expressed mathematically
by defining

Ac
jC 1

2

D CjC 1
2
AjC 1

2
; 0 � CjC 1

2
� 1:

The procedure for computing CjC1=2 will be discussed shortly.
6. Perform the “antidiffusion” step

�nC1
j D � td

j � �t

�x

�
Ac
jC 1

2

� Ac
j� 1

2

�
:

If all the CjC1=2 were unity, the preceding algorithm would give results identical
to the higher-order scheme, and if all the CjC1=2 were zero, the solution would
be identical to that obtained with the monotone scheme. Criteria for determining
CjC1=2 are usually designed to prevent the development of new maxima and minima
and to prohibit the amplification of existing extrema.
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5.4.1 Flux Correction: The Original Proposal

Boris and Book (1973) did not actually give a formula for CjC1=2, but offered the
following expression for the corrected fluxes:

Ac
jC 1

2

D SjC 1
2

max

(
0; min

�
jAjC 1

2
j;

SjC 1
2

�
� td
jC2 � �td

jC1
� �x
�t

; SjC 1
2

�
� td
j � � td

j�1
� �x
�t

�)
;

where

SjC 1
2

D sgn
�
AjC 1

2

�
:

The logic behind this formula can be understood by considering the case where
AjC1=2 � 0, so the preceding may be written as

�t

�x
Ac
jC 1

2

D max

(
0; min

�
AjC 1

2

�t

�x
;
�
�td
jC2 � � td

jC1
�
;
�
� td
j � �td

j�1
� �)

:

(5.31)

Two typical configurations for �j are shown in Fig. 5.9; observe that in both cases
the antidiffusive flux is directed up-gradient, which is the most common situation.
The increase in �njC1, and the decrease in �nj , that would be produced by the uncor-
rected antidiffusive flux AjC1=2 is given by the first argument of the “min” function
in (5.31). The second argument of the min function ensures that the corrected flux is
not large enough to generate a new maximum by rendering �jC1 > �jC2. This type
of limitation on the antidiffusive flux would apply in the case shown in the left panel
in Fig. 5.9. If �jC1 is already greater than �jC2, the antidiffusive flux is zeroed to
prevent the amplification of the preexisting extrema at �jC1; this situation is illus-
trated in the right panel in Fig. 5.9. The third argument of the min function ensures
that no new minima are created and that no preexisting minima are amplified at �j .

xx

φφ

j jj - 1 j - 1j + 1 j + 1 j + 2j + 2

limit set to zero

1
2

Aj+ 1
2

Aj+

Fig. 5.9 Two possible configurations in which an antidiffusive flux, indicated by the heavy arrow,
may be modified by a flux limiter
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5.4.2 The Zalesak Corrector

Zalesak (1979) noted that the preceding algorithm limits each antidiffusive flux
without considering the action of the antidiffusive fluxes at neighboring grid points
and that this can lead to an unnecessarily large reduction in the antidiffusive flux. For
example, although the antidiffusive flux shown in the left panel in Fig. 5.9 will tend
to decrease �j , this decrease is likely to be partly compensated by an up-gradient
antidiffusive flux directed from grid point j � 1 into grid point j . Zalesak proposed
the following algorithm, which considers the net effect of both antidiffusive fluxes
to minimize the correction to those fluxes and thereby keep the algorithm as close
as possible to that which would be obtained using the higher-order scheme:

1. As an optional preliminary step, set certain down-gradient antidiffusive fluxes to
zero, such that

AjC 1
2

D 0; if AjC 1
2
.� td
jC1 � � td

j / < 0

and either AjC 1
2
.� td
jC2 � � td

jC1/ < 0

or AjC 1
2
.� td
j � � td

j�1/ < 0: (5.32)

Zalesak refers to this as a cosmetic correction, and it is usually omitted. This cos-
metic correction has, nevertheless, been used in the FCT computations shown in
this chapter. It has no effect on the solution shown in Fig. 5.10a, makes a minor
improvement in the solution shown in Fig. 5.10b, and makes a major improve-
ment in the solution shown in Fig. 5.13b.

2. Evaluate the range of permissible values for �nC1
j :

�max
j D max

�
�nj�1; �nj ; �njC1; � td

j�1; � td
j ; �

td
jC1

�
;

�min
j D min

�
�nj�1; �nj ; �njC1; � td

j�1; � td
j ; �

td
jC1

�
:

If the flow is nondivergent, the � td are not needed in the preceding formulae be-
cause the extrema predicted by the monotone scheme will be of lower amplitude
than those at the beginning of the time step. If, however, the flow is divergent,
then the local minima and maxima in the true solution may be increasing, and the
increase predicted by the monotone scheme should be considered in determining
�max and �min.

3. Compute the sum of all antidiffusive fluxes into grid cell j ,

PC
j D max

�
0;Aj� 1

2

�
� min

�
0;AjC 1

2

�
:

4. Compute the maximum net antidiffusive flux divergence that will preserve
�nC1
j � �max

j ,

QC
j D �

�max
j � �td

j

� �x
�t

: (5.33)
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5. Compute the required limitation on the net antidiffusive flux into grid cell j ,

RC
j D

(
min

�
1;QC

j =P
C
j

�
if PC

j > 0,

0 if PC
j D 0.

6. Compute the corresponding quantities involving the net antidiffusive flux out of
grid cell j ,

P�
j D max

�
0;AjC 1

2

�
� min

�
0;Aj� 1

2

�
:

Q�
j D �

�td
j � �min

j

� �x
�t

: (5.34)

R�
j D

(
min

�
1;Q�

j =P
�
j

�
if P�

j > 0,

0 if P�
j D 0.

7. Limit the antidiffusive flux so that it neither produces an overshoot in the grid
cell into which it is directed nor generates an undershoot in the grid cell out of
which it flows:

CjC 1
2

D
8<
:

min
�
RC
jC1; R�

j

�
if AjC 1

2
� 0,

min
�
RC
j ; R

�
jC1

�
if AjC 1

2
< 0.

Two examples illustrating the performance of the Zalesak FCT algorithm on the
constant-wind-speed one-dimensional advection equation are shown in Fig. 5.10. In
these examples, the monotone flux is computed using the upstream method with

F l
jC 1

2

D c

2
.�j C �jC1/� jcj

2
.�jC1 � �j /; (5.35)

and the high-order flux is computed using the flux form of the Lax–Wendroff
method such that

F h
jC 1

2

D c

2
.�j C �jC1/ � c2�t

2�x
.�jC1 � �j /: (5.36)

The calculations were performed in a wide periodic domain, only the center portion
of which is shown in the figure. In each case the wind speed is constant, and the
Courant number is 0.5.

The curves shown in Fig. 5.10a are solutions to the same traveling-jump prob-
lem considered in connection with Fig. 5.7, except that the solutions are plotted at
t D 1:8. The solution computed using FCT is shown by the solid line. Also shown
are the exact solution and the approximate solutions obtained using upstream dif-
ferencing and using the Lax–Wendroff method without FCT. The FCT scheme is
almost identical to the uncorrected Lax–Wendroff method except near the top of
the step, where the flux-correction procedure completely eliminates the dispersive
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Fig. 5.10 Results from two constant-wind-speed advection tests: exact solution (thin dash-dotted
line) and numerical solutions obtained with the Zalesak flux-corrected transport (FCT) combina-
tion of upstream and Lax–Wendroff differencing (solid line), upstream differencing (long dashed
line), and the Lax–Wendroff scheme (short-dashed line)

ripples apparent in the uncorrected Lax–Wendroff solution. The FCT scheme is not
only superior to the higher-order scheme, it also captures the steepness of the jump
much better than the upstream method.

The curves in Fig. 5.10b show solutions to the test problem considered in Chap. 3
in which the sum of equal-amplitude 7.5�x and 10�x waves is advected over a
distance of twelve grid points (cf. Fig. 3.6). Once again the FCT solution is clearly
superior to that obtained using upstream differencing. Although this test case does
not involve shocks or discontinuities, the FCT solution remains roughly comparable
in quality to that obtained with the uncorrected Lax–Wendroff method. In partic-
ular, the FCT solution exhibits more damping but less phase-speed error than that
obtained with the Lax–Wendroff method.

As suggested by the preceding tests, the FCT approach allows one to obtain
ripple-free solutions that are far superior to those computed by simple upstream
differencing. One might attempt to obtain further improvements by computing
the high-order flux using an extremely accurate method. Zalesak (1979), for ex-
ample, gives a formula for an eighth-order-accurate method. Such very high order
formulae are seldom used in practical applications. In part, this may be due to the
unattractive compromises that may arise using high-order formulae with forward-
in-time differencing. The more fundamental problem, however, is that the scheme
reduces to a monotone method near any maxima and minima and is therefore only
first-order accurate near extrema. The empirically estimated order of accuracy of the
preceding FCT scheme is less than 2 and is unlikely to be substantially improved
by using a more accurate scheme to compute the high-order flux (see Table 5.1 in
Sect. 5.5.2).
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5.4.3 Iterative Flux Correction

Substantial improvements in the neighborhood of smooth well-resolved extrema
can, nevertheless, be achieved by using a better estimate for the low-order solution.
One strategy for obtaining a better low-order solution is to reuse the standard FCT
solution in an iterative application of the flux-correction procedure (Schär and Smo-
larkiewicz 1996). As a consequence of the flux-correction algorithm, the standard
FCT solution is free from spurious ripples and can serve as an improved estimate
for the “transported and diffused solution” in a second iteration. That portion of the
antidiffusive flux that was not applied in the first iteration is the maximum antidif-
fusive flux available for application in the second iteration. Letting the tilde denote
a quantity defined for use in the second iteration, the final step of the first iteration
becomes

Q�td
j D � td

j � �t

�x

�
Ac
jC 1

2

�Ac
j� 1

2

�
;

and the new antidiffusive flux becomes

QAjC 1
2

D AjC 1
2

�Ac
jC 1

2

:

The antidiffusive flux is limited using precisely the same flux-correction algorithm
as used in the first iteration, and the final estimate for �nC1 is obtained using

�nC1
j D Q� td

j � �t

�x

� QAc
jC 1

2

� QAc
j� 1

2

�
:

This iteration can be very effective in improving the solution near well-resolved
extrema such as the crest of a sine wave, but it does not noticeably improve the
solution near a discontinuous step.

5.5 Flux-Limiter Methods

The strategy behind flux-limiter methods is similar to that underlying FCT in that
the numerical fluxes used in both methods are a weighted sum of the fluxes com-
puted by a monotone first-order scheme and a higher-order method. In flux-limiter
methods, however, the limiter that apportions the flux between the high- and low-
order schemes is determined without actually computing a low-order solution (� td).
This limiter is expressed as a function of the local solution at the previous time level
in a manner guaranteeing that the scheme generates TVD approximations to the
one-dimensional scalar conservation law (5.7) and that the scheme is second-order
accurate except in the vicinity of the extrema of �.

Flux-limiter methods approximate (5.7) with a finite-difference scheme in the
conservation form (5.30) using the flux

FjC 1
2

D F l
jC 1

2

C CjC 1
2

�
F h
jC 1

2

� F l
jC 1

2

�
;
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where F l and F h denote the fluxes obtained using monotone and high-order
schemes, and CjC1=2 is a multiplicative limiter. As in the FCT algorithm discussed
previously, the high-order flux is recovered when CjC1=2 D 1, and the performance
of the scheme is highly dependent on the algorithm for specifyingCjC1=2. We again
demand that CjC1=2 � 0, but as will become evident, it is advantageous to allow
CjC1=2 to exceed unity. In scalar problems in which the phase speed of the distur-
bance is greater than zero,9 CjC1=2 is calculated as a nonlinear function of the local
solution C.rjC1=2/, where

rjC 1
2

D �j � �j�1
�jC1 � �j

is the ratio of the slope of the solution across the cell interface upstream of j C 1=2

to the slope of the solution across the interface at j C 1=2. The parameter rjC1=2 is
approximately unity where the numerical solution is smooth and is negative when
there is a local maximum or minimum immediately upstream of the cell interface at
j C 1=2.

5.5.1 Ensuring That the Scheme Is TVD

Criteria guaranteeing that a flux-limiter method is TVD may be obtained by noting
that a finite-difference scheme of the form

�nC1
j D �nj �Gj� 1

2

�
�nj � �nj�1

�CHjC 1
2

�
�njC1 � �nj

�
(5.37)

will be TVD provided that for all j

0 � GjC 1
2
; 0 � HjC 1

2
; and GjC 1

2
CHjC 1

2
� 1 (5.38)

(Harten 1983). This may be verified by observing that (5.37) and (5.38) imply
ˇ̌
ˇ�nC1
jC1 � �nC1

j

ˇ̌
ˇ �

�
1 �GjC 1

2
�HjC 1

2

� ˇ̌
�njC1 � �nj

ˇ̌
CGj� 1

2

ˇ̌
�nj � �nj�1

ˇ̌CHjC 3
2

ˇ̌
�njC2 � �njC1

ˇ̌
:

Summing over all j and shifting the dummy index in the last two summations yields

X
j

ˇ̌
ˇ�nC1
jC1 � �nC1

j

ˇ̌
ˇ �

X
j

�
1 �GjC 1

2
�HjC 1

2

� ˇ̌
�njC1 � �nj

ˇ̌

C
X
j

GjC 1
2

ˇ̌
�njC1 � �nj

ˇ̌C
X
j

HjC 1
2

ˇ̌
�njC1 � �nj

ˇ̌

D
X
j

ˇ̌
�njC1 � �nj

ˇ̌
:

9 The general case, in which the phase speed is either positive or negative, is discussed in
Sect. 5.5.3.
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Sweby (1984) presented a systematic derivation of the possible functional forms
for C.r/ that yield TVD flux-limited methods when the monotone scheme is
upstream differencing and the high-order scheme is a member of a family of
second-order methods that includes the Lax–Wendroff and Warming–Beam meth-
ods. Suppose that the constant-wind-speed advection equation (5.20) is approxi-
mated using the flux form of the Lax–Wendroff method and that c > 0. The Lax–
Wendroff flux (5.36) can be expressed as

F LW
jC 1

2

D c�j C c

2
.1 � �/.�jC1 � �j /;

where� D c�t=�x. The first term of the preceding expression is the numerical flux
for upstream differencing (in a flow with c > 0). The second term is an increment
to the upstream flux that can be multiplied by CjC1=2 to obtain the “limited” flux

FjC 1
2

D c�j C c

2
.1 � �/.�jC1 � �j /CjC 1

2
: (5.39)

The finite-difference scheme obtained after evaluating the divergence of these lim-
ited fluxes may be written

�nC1
j D �nj �

h
� � �

2
.1 � �/Cj� 1

2

i �
�nj � �nj�1

�

� �

2
.1 � �/CjC 1

2

�
�njC1 � �nj

�
: (5.40)

To arrive at a scheme that is TVD, one natural approach would be to choose

Gj� 1
2

D � � �

2
.1 � �/Cj� 1

2
;

HjC 1
2

D ��
2
.1 � �/CjC 1

2

and attempt to determine a function C.rjC1=2/ � CjC1=2 that will guarantee
satisfaction of (5.38). Unfortunately, this approach fails, since by assumption,
C.rjC1=2/ � 0, and thus HjC1=2 < 0 whenever the Courant number falls in the
range 0 � � � 1.

As an alternative, Sweby suggested setting

Gj� 1
2

D �C �

2
.1 � �/

"
CjC 1

2

 
�njC1 � �nj

�nj � �nj�1

!
� Cj� 1

2

#
;

HjC 1
2

D 0:

Then the TVD criteria (5.38) will be satisfied if

0 � Gj� 1
2

� 1

for all j , or equivalently, if

0 � �

"
1C 1

2
.1 � �/

 
CjC 1

2

rjC 1
2

� Cj� 1
2

!#
� 1:



5.5 Flux-Limiter Methods 229

If the CFL condition (0 � � � 1) holds for the upstream scheme, the criteria for
the method to be TVD reduce to

�2
1 � �

�
CjC 1

2

rjC 1
2

� Cj� 1
2

� 2

�
;

or ˇ̌̌
ˇ̌CjC 1

2

rjC 1
2

� Cj� 1
2

ˇ̌̌
ˇ̌ � 2:

Suppose that rjC1=2 > 0. Then since C.r/ is assumed to be nonnegative, the pre-
ceding inequality is satisfied when

0 � C.r/

r
� 2 and 0 � C.r/ � 2: (5.41)

Now consider the case rjC1=2 � 0. Negative values of r occur at the local maxima
and minima of �j , where the flux must be completely determined by the monotone
upstream method to avoid increasing the total variation; it is therefore necessary10

to choose C.r/ D 0 when r < 0. Note that the condition C.r/ D 0 when r < 0 is
implicitly included in the inequalities (5.41).

The inequalities (5.41) define the shaded region of the .r; C /-plane shown in
Fig. 5.11a, which is the locus of all curves C.r/ that make the flux-limited method
TVD. The range of possible choices forC.r/ can be further restricted if it is required
that the method be second-order accurate whenever r > 0. Noting that Cj�1=2
depends on the value of �j�2, the flux-limited scheme (5.40) has the form

�nC1
j D H.�nj�2; �nj�1; �nj ; �njC1/:

All second-order approximations to the advection problem that have the preced-
ing form are weighted averages of the Lax–Wendroff method and the method of
Warming and Beam. As discussed previously, the flux-limited scheme becomes the
Lax–Wendroff method if C.r/ D 1. In a similar way, specifying C.r/ D r converts
the scheme to the method of Warming and Beam (3.79). Curves corresponding to

C LW.r/ D 1 and CWB.r/ D r

are also plotted in Fig. 5.11a. Of course, C LW.r/ and CWB.r/ do not lie entirely
within the shaded TVD region because neither the Lax–Wendroff method nor that of
Warming and Beam is TVD. Nevertheless, to make the flux-limited scheme second-
order accurate away from local maxima and minima (i.e., for r > 0), C.r/ must be

10 Although it is necessary to choose C.r/ D 0 when r < 0 to keep the scheme TVD, this is
actually a poor choice if the solution is smooth and well resolved in the vicinity of the extremum.
Well-resolved extrema would be captured more accurately using the higher-order scheme. See
Sect. 5.8.
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Fig. 5.11 a Shading indicates the region in whichC.r/ must lie to give a total variation diminish-
ing (TVD) method. Heavy lines indicateC LW.r/ (solid line) andCWB.r/ (dashed line). b Shading
indicates the region in which C.r/ must lie to give a TVD scheme that is an internal average of
the Lax–Wendroff method and the method of Warming and Beam. Three possible limiters are also
indicated: the “superbee” (dashed line), minmod (dot-dashed line), and Van Leer (solid line)

a weighted average of C LW.r/ and CWB.r/. Sweby suggests that the best results are
obtained if this weighted average is an internal average such that

C.r/ D Œ1 � �.r/�C LW.r/C �.r/CWB.r/; (5.42)

where 0 � �.r/ � 1. This portion of the total TVD region is indicated by the
shaded area in Fig. 5.11b, which will be referred to as the “second-order” TVD
region, although the true second-order TVD region includes external averages of
the Lax–Wendroff and Warming–Beam methods and is larger than the shaded area
in Fig. 5.11b.

5.5.2 Possible Flux Limiters

Possible choices for the specific functional form of C.r/ that yield a TVD method
satisfying (5.42) include the “minmod” limiter

C.r/ D maxŒ0;min.1; r/�; (5.43)

which is the dot-dashed curve following the lower boundary of the second-order
TVD region in Fig. 5.11b; the “superbee” limiter (Roe 1985)

C.r/ D maxŒ0;min.1; 2r/;min.2; r/�; (5.44)

which lies along the upper boundary of the second-order TVD region; and the van
Leer limiter (van Leer 1974)

C.r/ D r C jr j
1C jr j ; (5.45)
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Fig. 5.12 Comparison of flux-limited approximations using the superbee (short-dashed line) and
monotonized centered (MS) (solid line) limiters with a the minmod limiter (long-dashed line) in
a case with a propagating step, and b the Lax–Wendroff solution (dashed line) in a case with a
well-resolved sinusoidal distribution. The exact solution is shown by the thin dot-dashed line

which is the smooth curve in Fig. 5.11b. Also of note, but not plotted, is the mono-
tonized centered (MC) limiter (van Leer 1977)

C.r/ D max

�
0;min

�
2r;

1C r

2
; 2

��
: (5.46)

The performance of several different limiters is compared in Fig. 5.12.
Figure 5.12a shows results from the same test problem as considered in Fig. 5.10a
except that the horizontal grid size is increased from 1=50 to 1=20 and the solu-
tion is displayed at time 7.8 to better reveal small differences between the various
solutions. Inspection of Fig. 5.12a shows that the minmod limiter allows the most
numerical diffusion, the superbee limiter allows the least, and the MC limiter per-
forms almost as well as the superbee. Although the superbee limiter works best on
the example shown in Fig. 5.12a, the MC limiter may be the best choice for general
applications. The weakness of the superbee limiter is illustrated in Fig. 5.12b, which
shows flux-limited and Lax–Wendroff approximations to a problem whose correct
solution is a unit-amplitude sine wave propagating to the right at speed 1/10 on the
periodic domain 0 � x � 1. In this example �x D 1=30, the Courant number is
0.5 and the solution is shown at t D 200, at which point the initial distribution has
made 20 circuits around the periodic domain. The superbee and MC limiters clearly
flatten the crests and troughs in the flux-limited approximation to this well-resolved
sine wave. As the superbee limiter flattens the crests and troughs it incorrectly
amplifies the solution near the edges of the flattened extrema, but no such spurious
amplification is generated by the MC limiter; the MC-limited solution remains
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Fig. 5.13 Comparison of MC flux-limited (long-dashed line) and FCT (solid line) approximate
solutions with the exact solution (thin dashed-dotted line) for the two test cases shown in Fig. 5.12

within the envelope of the true solution. Although the flux-limited solutions show
distortion in the peaks and troughs, they are almost completely free from phase-
speed error, and as a consequence, the overall character of the flux-limited solution
is superior to that obtained with the Lax–Wendroff method (i.e., with no limiter),
which exhibits a substantial phase lag and very modest damping.

Figure 5.13 shows a comparison of the MC flux-limited scheme with the Zale-
sak FCT algorithm discussed in Sect. 5.4.3. The two test problems are identical to
those just considered in Fig. 5.12. Both methods were implemented using the same
methods to evaluate the monotone and high-order fluxes (specifically upstream dif-
ferencing and the Lax–Wendroff method). The solutions obtained with the MC flux-
limited method are clearly superior to those obtained using the FCT scheme. The
tendency of the FCT scheme to deform the sine wave into a sawtooth can, however,
be eliminated using a second iterative pass of the FCT algorithm as discussed at the
end of Sect. 5.4.2 (Schär and Smolarkiewicz 1996, Fig. 4).

Since FCT and flux-limiter methods both revert to first-order schemes in the
vicinity of minima and maxima, they do not give fully second order approxima-
tions in problems like the sine-wave-advection test shown in Figs. 5.12b and 5.13b.
The effective order of accuracy of these schemes can be empirically determined for
the sine-wave-advection test by performing a series of simulations in which both
�x and �t are repeatedly halved (so that all simulations are performed with the
same Courant number of 0.5). Fitting a function of the form ˛.�x/p to the error
as �x decreases from 1=40 to 1=320 yields the approximate values for p listed
in Table 5.1. As a check on the quality of this calculation, the empirically deter-
mined orders of accuracy for the upstream and Lax–Wendroff schemes are also
listed in Table 5.1. The result for the upstream scheme is slightly in error, and could
be improved by continuing the computation using double precision on still finer
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Table 5.1 Empirically determined order of accuracy for constant-wind-speed advection of a sine
wave. (FCT denotes flux-corrected transport, MC monotonized centered)

Scheme Estimated order of accuracy
Upstream 0.9

Minmod flux limiter 1.6
Superbee flux limiter 1.6

Zalesak FCT 1.7
MC flux limiter 1.9
Lax–Wendroff 2.0

grids. The effective order of accuracy of the MC flux-limited scheme is higher than
that of the other flux-limited and FCT methods. In fact, at all resolutions between
�x D 1=40 and �x D 1=320 the actual error computed with the MC flux-limited
scheme is lower than that obtained using any of the other methods (including the
Lax–Wendroff scheme).

A final example is provided by the test problem from Chap. 3 in which the initial
condition is the superposition of equal-amplitude 7:5�x and 10�x waves. The nu-
merical parameters for this test are identical to those described in connection with
Fig. 5.10b. Figure 5.14a compares the minmod, MC, and superbee flux-limited so-
lutions to these problems. As was the case with the propagating step considered in
Fig. 5.12a, the superbee limiter gives the best results, the minmod limiter is too dif-
fusive, and the MC limiter is almost as good as the superbee. Figure 5.14b shows
a comparison of the MC flux-limited and FCT solutions to the same problem. The
superiority of the MC flux-limited solution over the FCT solution is not as clear-
cut as in the examples shown in Fig. 5.13. The flux-limited solution is more heavily
damped but exhibits less phase-speed error than that obtained with FCT.

The performance of all the schemes shown in Figs. 5.12–5.14 is improved by in-
creasing the Courant number toward unity, since the upstream and Lax–Wendroff
methods both give perfect results when � D 1. In practical applications with a tem-
porally and spatially varying wind field there is, however, no hope of stepping the
solution forward at each grid point using a local Courant number of unity. The so-
lutions shown in Figs. 5.10–5.14 were obtained using � D 0:5 and are similar to
those obtained at smaller Courant numbers. Note that neither the FCT nor the flux-
limited methods approach the accuracy obtained on the test problems in Figs. 5.13b
and 5.14 using a simple explicit fourth-order spatial difference and an accurate
time difference. Although FCT and flux-limiter methods are highly useful in prob-
lems with discontinuities and unresolved gradients, conventional finite-difference
schemes may perform much better when the solution is at least moderately re-
solved. The resolution required to make a high-order finite-difference method attrac-
tive need not be particularly high; the 7:5�x-wavelength component in the solution
shown in Fig. 5.14 is certainly not well resolved.
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Fig. 5.14 Comparison of numerical approximations to an advection problem whose exact solution
(shown by the thin dot-dashed line) consists of equal-amplitude 7:5�x and 10�x waves: a flux-
limited approximations using the superbee (short-dashed line), MC (solid line), and minmod (long-
dashed line) limiters; b MC flux-limited solution (long-dashed line) and the FCT solution (solid
line)

5.5.3 Flow Velocities of Arbitrary Sign

To accommodate velocities of arbitrary sign, the definitions of FjC1=2 and rjC1=2
must be modified as follows. The Lax–Wendroff flux (5.36) may be expressed in
terms of the upstream flux for advection by a velocity of arbitrary sign (5.35) as

F h
jC 1

2

D F l
jC 1

2

C jcj
2

�
1 � jcj�t

�x

� �
�njC1 � �nj

�
: (5.47)

The total corrected flux may therefore be expressed as

F n
jC 1

2

D c

2

�
�njC1 C �nj

� � 1

2

�
.1 � C n

jC 1
2

/jcj C c2�t

�x
C n
jC 1

2

� �
�njC1 � �nj

�
:

(5.48)

The value of rjC1=2 used in the evaluation of the flux limiter C n
jC1=2 should be

computed as the ratio of the slope of the solution across the cell interface upstream
of j C 1=2 to the slope of the solution across the interface at j C 1=2. Defining
� D �sgn.cj /, this ratio becomes

rn
jC 1

2

D �njC�C1 � �njC�
�njC1 � �nj

:

If the velocity varies as a function of time, an O
	
.�t/2



approximation to the

velocity at .nC 1=2/�t should be used in (5.48) to preserve second-order accuracy
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(at least at locations away from the extrema of �). Suitable approximations can
be obtained by averaging the velocities between time levels n and n C 1, or by
extrapolating forward from time levels n and n � 1 (see Problem 11). A formula
for the approximation of advective fluxes in spatially varying nondivergent velocity
fields is presented in Sect. 5.9.3.

5.6 Subcell Polynomial Reconstruction

Formulae very similar to those obtained with the flux-limiter approach can be de-
rived by approximating the solution within each grid volume as a piecewise-linear
function that has been reconstructed from the cell-averaged values. The evolution
of these relatively simple piecewise-linear functions over a time interval�t is then
computed (or in more difficult problems, approximated). In the final step, the up-
dated piecewise-linear solution is averaged over each grid cell. Van Leer (1974,
1977) developed the piecewise-linear approach in a series of five papers building
on a similar approach introduced by Godunov (1959), who used piecewise-constant
functions. Colella and Woodward (1984) subsequently extended the method to use
piecewise parabolas.

The following sections present piecewise-constant approximations to nonlinear
one-dimensional scalar conservation laws of the form (5.7) and both piecewise-
linear and piecewise-parabolic approximations to the constant-wind-speed advec-
tion equation. The discontinuous Galerkin method, discussed in Sect. 6.6, may be
considered an extension of this approach to even higher order polynomials.

5.6.1 Godunov’s Method

In Godunov’s method, the cell-averaged values at each individual time step are used
to define a piecewise-constant function such that

Q�.x; tn/ D �nj for xj� 1
2

� x � xjC 1
2
;

where tn D n�t and xjC1=2 D xj C�x=2. Using the function Q�.x; tn/ as the initial
condition, one may obtain an approximate solution to the original conservation law
at tnC1 by solving the Riemann problems associated with the discontinuities in Q� at
the interface of each grid cell. The exact solution to these Riemann problems can be
easily obtained for a scalar conservation law or for linear systems of conservation
laws, at least until the signals emanating from each interface begin to interact.11

11 See LeVeque (2002) for a discussion of approximate techniques for the solution of Riemann
problems involving nonlinear systems of conservation laws.
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As the final step in the integration cycle, �nC1
j is obtained by averaging the individ-

ual Riemann solutions over the j th grid cell,

�nC1
j D 1

�x

x
j C

1
2Z

x
j �

1
2

Q�.x; tnC1/ dx:

In fact, it is not necessary to actually compute the solutions to each Riemann
problem, since the integral form of the conservation law (5.8) implies that

�nC1
j D 1

�x

x
j C

1
2Z

x
j �

1
2

Q�.x; tn/ dx � 1

�x

tnC1Z
tn

f
h Q�.xjC 1

2
; t/
i

dt

C 1

�x

tnC1Z
tn

f
h Q�.xj� 1

2
; t/
i

dt: (5.49)

The first integral in the preceding equation is simply �nj . The other two integrals
may be trivially evaluated, provided that the integrand is constant over the time
tn < t < tnC1, which will be the case if the Courant number, jc�t=�xj, is less
than unity (where c is the speed of the fastest-moving wave or shock). Note that
the maximum time step permitted by this condition allows the Riemann solutions
to interact within each grid cell, but these interactions can be ignored, since they do
not change the value of Q� at the cell interfaces and therefore do not complicate the
evaluation of the integrals in (5.49).

The solution of the Riemann problem at each cell interface is determined by the
initial values of Q� on each side of the interface. In most cases, disturbances in the
form of waves or shocks will propagate either rightward or leftward from the cell
interface, and the fluxes in (5.49) will be correctly evaluated if Q� is replaced by the
value of �n that is upstream of the interface with respect to the propagation of the
wave or shock. For smooth  , (5.7) may be expressed in the advective form

@ 

@t
C df

d 

@ 

@x
D 0; (5.50)

which shows that df=d is the speed at which smooth perturbations in  propagate
along the x-axis. Thus, one might approximate the solution with a finite-volume
method

�nC1
j D �nj � �t

�x

	
F.�njC/ � F.�nj�/



(5.51)

in which the upstream direction is estimated using a numerical approximation to
df=d such that

F.�jC/ D F.�.jC1/�/ D
(
f .�j / if Œf .�jC1/� f .�j /�=Œ�jC1 � �j � � 0,

f .�jC1/ otherwise.
(5.52)
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Fig. 5.15 a A transonic rarefaction wave; the position of the left edge of the wave front is indicated
at three consecutive time intervals. b Characteristic curves associated with this wave

According to the Rankine–Hugoniot condition (5.11), the upstream flux is also cor-
rectly selected when the solution contains a discontinuity in the form of a propagat-
ing jump.

An erroneous result can, however, be generated if the entropy-consistent solu-
tion to the Riemann problem at a cell interface is a rarefaction wave in which the
disturbance spreads both to the right and to left of the interface. For example, if
the solution to Burgers’s equation (5.12) is approximated using this scheme with
initial data

�0j D
�
1 if j � 0,
�1 if j < 0,

the numerical solution will be a steady entropy-violating shock, since F.�njC/ D
F.�nj�/ D 1=2 for all j and n. The correct entropy-consistent solution is the rar-
efaction wave, or expansion fan, illustrated in Fig. 5.15a.

Rarefaction waves in which df=d passes through zero at some point within the
wave are known as transonic rarefaction waves. As a result of the transonic rarefac-
tion, Q�.xjC1=2; t/ assumes the value of � for which the phase speed of the wave is
zero (i.e., the value of � for which the characteristics are parallel to the t-axis in the
x–t plane – see Fig. 5.15b). Entropy-consistent solutions to the Riemann problem
at each interface will be obtained if the upstream fluxes are determined according to
the prescription

F.�jC/ D F.�.jC1/�/ D

8̂<
:̂

min
�j ����j C1

f .�/ if �j � �jC1,

max
�j C1����j

f .�/ if �j > �jC1
(5.53)

(LeVeque 1992, p. 145). Let �s be the value of � for which the phase speed of the
wave is zero in the transonic rarefaction. In the case shown in Fig. 5.15, the flux
obtained from (5.53) will be f .�s/ because the minimum value of f .�/ occurs
when the local phase speed, df=d�, is zero.
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5.6.2 Piecewise-Linear Functions

Godunov’s method yields a first-order approximation that is essentially identical to
that obtained using upstream differencing. A second-order method can be obtained
using piecewise-linear functions to approximate the solution over each grid inter-
val, but the resulting method will not be TVD. To obtain a TVD method suitable
for problems with discontinuous solutions, it is necessary to modify the slope of
the piecewise-linear interpolating functions near discontinuities and poorly resolved
gradients. This modification of the slope is accomplished using “slope-limiting”
algorithms that are closely related to the flux-limiting procedures discussed in
Sect. 5.5.2.

Although the actual computations may be organized in a more efficient manner,
the procedure for advancing the numerical solution one time step is equivalent to
the following three-step process. In the first step, the cell-averaged values are used
to “reconstruct” a piecewise-linear function within each grid cell of the form

Q�.x; tn/ D �nj C 	nj .x � xj / for xj� 1
2

� x � xjC 1
2
:

In the second step, the conservation law is integrated over a time �t using Q�.x; tn/
as the initial condition. In the third and final step, �nC1

j is obtained by averag-

ing Q�.x; tnC1/ over each grid cell. The special considerations required to keep this
method TVD are primarily connected with the first step, since if the conservation
law is of the form (5.7), the solution obtained in the second step is TVD and the
averaging in the third step does not increase, and often decreases, the total variation.
The increase in total variation permitted in the first step must be kept small enough
that the averaging in the third step yields a TVD scheme. The maximum increase
in total variation during the first step is controlled by imposing limits on the slopes
	nj ; the most severe limitation would be to set 	nj D 0, in which case the scheme
reduces to Godunov’s method.

In comparison with Godunov’s method, in which exact solutions of the conser-
vation law can be obtained relatively easily at each cell interface by solving a series
of Riemann problems, the problems to be solved at each interface in the second step
of the piecewise-linear method are more difficult, because Q� is not constant on each
side of the initial discontinuity. General techniques for obtaining acceptable approx-
imations to the solution required in the second step are discussed in LeVeque (2002).
In the following we will once again focus on the special case of the constant-wind-
speed advection equation (5.20), for which the solution required in the second step
is simply

Q�.x; tnC1/ D Q�.x � c�t; tn/:
Assuming that c > 0 and averaging Q�.x; tnC1/ over .xj�1=2; xjC1=2/, the second
and third steps yield

�nC1
j D �nj � � ��nj � �nj�1

� � �

2
.1 � �/�x.	nj � 	nj�1/; (5.54)
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where� D c�t=�x. The preceding equation can be recast in the conservation form
(5.17) by setting

FjC 1
2

D c
�
�nj C 1

2
.1 � �/�x 	nj

�
: (5.55)

The same expression for FjC1=2 can be obtained by evaluating the flux swept out
through the cell boundary at xjC1=2 in time �t using the relation

�t FjC 1
2

D
Z x

j C
1
2

x
j C

1
2

�c�t
Q�j .x; tn/ dx:

If the slopes of the piecewise-linear functions are defined such that

	j D �jC1 � �j
�x

; (5.56)

then (5.54) reduces to the Lax–Wendroff method, which is not TVD. To make (5.54)
TVD, the slope can be limited by a multiplicative constant CjC1=2 such that

	j D
�
�jC1 � �j

�x

�
CjC 1

2
; (5.57)

in which case (5.55) becomes (5.39) and the scheme is identical to the flux-limited
Lax–Wendroff method. As with the family of flux-limiter methods, there are a va-
riety of reasonable choices for CjC1=2, and every flux limiter defined in Sect. 5.5.2
can be reinterpreted as a slope limiter via (5.57). Indeed, the behavior of some
flux limiters is easier to understand when they are interpreted as slope limiters. For
example, let

a D �jC1 � �j
�x

; b D

8̂<
:̂
�j � �j�1

�x
if c � 0,

�jC2 � �jC1
�x

if c < 0,

and define the minmod function MM such that

MM.v1; v2; : : :/ D
(

min.v1; v2; : : :/ if vj > 0 for all j ,
max.v1; v2; : : :/ if vj < 0 for all j ,
0 otherwise.

(5.58)

Then the minmod limiter defined by (5.43) implies that 	j D MM.a; b/, which
guarantees that the magnitude of the slope of � between grid points j and j C 1 is
no larger than the slope over the next interval upstream, except that the slope is set
to zero at an extremum of �.

The effect of the minmod limiter is illustrated in Fig. 5.16. Note that the minmod
limiter ensures that the total variation associated with the grid average values them-
selves is not increased when the piecewise-linear approximation Q�.x; tn/ is created.
Nevertheless, flux-limiter methods can be TVD even if T V Œ Q�.x; tn/� > T V.�n/
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x

φ̃

Fig. 5.16 A piecewise-linear finite-volume approximation. Cell-average values are plotted as
heavy points. The solid line segments show the Q�.x/ obtained using the Lax–Wendroff slopes
(5.56). Dashed line segments show the modification to Q�.x/ introduced by the minmod slope
limiter assuming c > 0. Slopes in the rightmost and leftmost grid cells are omitted

because the total variation of the cell averages at time tnC1 is reduced when
Q�.x; tnC1/ is averaged over each cell to determine �nC1. Indeed, the most ef-
fective slope limiters allow the total variation of the piecewise-linear approxima-
tion to exceed T V.�n/. For example, the MC limiter (5.46) implies that 	j D
MM.2a; 2b; .a C b/=2/. Whenever ab > 0, the slope allowed by the MC limiter
is steeper than that allowed by the minmod limiter. Assuming the adjacent slopes
have the same sign, the MC limiter sets 	j to the average of a and b, unless one of
these slopes exceeds the other by more than a factor of 3, in which case 	j is set to
twice the value for the gentler slope.

5.6.3 The Piecewise-Parabolic Method

Third-order accuracy can be obtained using piecewise-quadratic functions, without
limiting, to define the structure within each cell. The piecewise-parabolic method
not only gives higher-order asymptotic accuracy than piecewise-linear approxima-
tions, it also generates less damping at coarsely resolved wavelengths such as 4�x
(Lauritzen 2007). Extremely short wavelengths, such as 2�x, are, however, not im-
proved by switching from piecewise-linear to piecewise-quadratic polynomials.

Consider again the problem of advection of a scalar tracer at a constant speed c.
A formula for the flux through the cell interface at xjC1=2 that is valid for both
positive and negative fluid velocities can be obtained as follows. Let the values of the
scalar at the right and left edges of the j th cell be �jC and �j�, respectively. These
values are interpolated using a four-point stencil of cell-average values centered
around each edge such that

�jC D �.jC1/� D 	
7.�j C �jC1/� .�j�1 C �jC2/



=12: (5.59)
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The parabolic reconstruction within the finite volume is initially set to match the
values at the right and left edges of each cell and to have same cell-average con-
centration, �j . As will be discussed shortly, the coefficients defining each parabola
may then be adjusted to ensure the resulting scheme does not generate unphysical
ripples or new local extrema.

Suppose c � 0, and define a local coordinate within the j th cell as 
 D .xjC1=2�
x/=�x. This choice of 
 facilitates the evaluation of the flux by placing the origin
at the edge of the cell where the flux will be evaluated; note that 
 decreases linearly
from 1 at xj�1=2 to 0 at xjC1=2. The parabolic interpolant within cell j may be
expressed in the form

Q�j .
/ D a0 C a1
 C a2

2;

where

a0 D ��0 ; (5.60)

a1 D �4��0 � 2��1
C 6�; (5.61)

a2 D 3��0
C 3��1

� 6�; (5.62)

and

��0
D Q�j .0/ D �jC; ��1

D Q�j .1/ D �j�; � D �j :

Again let � D c�t=�x. As illustrated in Fig. 5.17a, the flux swept across xjC1=2
in time �t satisfies

�tFjC 1
2

D
Z x

j C
1
2

x
j C

1
2

�c�t
Q�j .x/ dx D

Z 0

�

Q�j .
/dx
d


d
 D �x

Z �

0

a0Ca1
Ca2
2 d
;

which implies

FjC 1
2

D c
�
a0 C a1

2
j�j C a2

3
�2
�
: (5.63)

Since � � 0 when c � 0, it is not necessary to specify the absolute value of � in
the preceding equation; however, the absolute value must be used in the c < 0 case.

The flux across xjC1=2 must be computed in an upwind direction to satisfy the
Courant–Friedrichs–Lewy condition that the numerical domain of dependence in-
clude the domain of dependence of the true solution. Thus, if c < 0, the relevant
parabola is that within the cell centered at xjC1. This parabola is defined with re-
spect to 
 D .x � xjC1=2/=�x such that

Q�jC1.
/ D a0 C a1
 C a2

2;

and

��0
D �.jC1/�; ��1

D �.jC1/C; � D �jC1:
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Fig. 5.17 a A piecewise-parabolic approximation for the two cells spanning the interval
Œxj �3=2; xj C1=2�. Assuming c > 0, the flux swept across xj C1=2 in time �t has the same
numerical value as the area of the dark shaded region of width c�t . The flux swept across xj �1=2

has the same value as the area as the lightly shaded region. b A parabola with a local maximum
inside the cell (dashed line) and the modified monotonic parabola (solid line)

Note that in the c < 0 case, 
 increases from 0 at xjC1=2 to 1 at xjC3=2. The
definitions (5.60)–(5.62) are unchanged, and �tFjC1=2 is now given by

Z x
j C

1
2

x
j C

1
2

�c�t
Q�jC1.x/ dx D

Z 0

��
Q�jC1.
/

dx

d

d
 D �x

Z 0

��
a0 C a1
 C a2


2 d
:

It follows that the flux FjC1=2 may again be expressed in the form (5.63).
The preceding method can be modified to avoid the generation of spurious ripples

near steep gradients by ensuring that no new local maxima or minima appear when
the parabolic distribution of Q� within each cell is reconstructed from the cell-average
values. There are two opportunities for the generation of new maxima and minima.
The first occurs if values of � at the cell interfaces, estimated from (5.59), do not lie
within the range of the �j in the neighboring cells. The second way new extrema can
be generated is if the reconstructed parabola has a maximum or minimum within the
cell itself. A variety of algorithms have been proposed to accomplish this limiting,
beginning with the seminal paper by Colella and Woodward (1984). The strategy
presented below largely follows Zerroukat et al. (2006), except that no attempt is
made to avoid limiting smooth extrema. Methods for identifying and avoiding the
spurious limiting of smooth extrema will be discussed in Sect. 5.8.

To avoid generating new extrema at the cell interfaces, compute

�mon
j˙ D min.�max

j˙ 1
2

;max.�min
j˙ 1

2

; �j˙//;

where �max;min
j˙1=2 D max;min.�j ; �j˙1/. The values of �mon

j˙ will lie in the interval
Œ�j ; �j˙1� and should be used in lieu of �j˙ in the evaluation of ��0 and ��1 .
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To avoid the generation of extrema inside a cell, check if Q�0.
/ D 0 for 0 < 
 <
1, or equivalently, if 0 < �a1=.2a2/ < 1. If this condition is met, the parabola must
be modified to remove a local extremum. There are two possible cases:

1. If .� � ��0
/.� � ��1

/ > 0, the parabola is replaced by the piecewise-constant
function Q�.
/ D �.

2. Otherwise a new monotonic parabola can be constructed with the correct cell-
average value, whose values at the edge of the cell lie within the range of the �j
in the neighboring cells.

(a) If j� � ��1
j > j� � ��0

j, the extremum is moved to 
 D 0 by replacing
(5.60)–(5.62) with

a0 D ��0
; a1 D 0; a2 D �3��0

C 3�:

(b) If j� � ��1 j < j� � ��0 j, the extremum is moved to 
 D 1 by setting

a0 D �2��1 C 3�; a1 D 6��1
� 6�; a2 D �3��1

C 3�:

Both the original and the modified parabolas for case 2a are plotted in Fig. 5.17b.
Note that value of Q�.1/ for the modified parabola lies between � and the value of
��1

for the original parabola, and as such remains bounded by the values of �j
on each side of the interface.

Examples showing the behavior of the piecewise-parabolic method will be presented
in Sect. 5.9.5.

5.7 Essentially Nonoscillatory and Weighted Essentially
Nonoscillatory Methods

As noted in Sect. 5.6.2, when the minmod limiter is used to limit the Lax–Wendroff
flux at the cell interface xjC1=2, it compares the slope of the piecewise-linear func-
tion interpolating the solution at the endpoints of the interval Œxj ; xjC1� with the
slope over the next interval upstream and, provided both slopes have the same sign, it
selects the gentler of the two. This strategy of using an adaptive stencil to choose the
“smoothest” polynomial interpolant can be extended to higher-order schemes using
essentially nonoscillatory (ENO) and weighted essentially nonoscillatory (WENO)
methods. The primary advantage of ENO and WENO methods in comparison with
flux-limiter methods is not in their treatment of discontinuities, but rather in their
ability to maintain genuinely high order accuracy in the vicinity of smooth maxima
and minima.

Both ENO and WENO methods may be applied in either a finite-volume or a
finite-difference context. Here we will consider only the finite-difference approach
because it generalizes very easily to higher-dimensional problems. Indeed, one sig-
nificant advantage of the finite-difference ENO and WENO methods in comparison
with FCT and flux-limiter methods is the ease with which they may be applied in
higher dimensions.
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5.7.1 Accurate Approximation of the Flux Divergence

The finite-difference approximation to the scalar conservation law (5.7) is

�nC1
j � �nj

�t
C
 
FjC 1

2
� Fj� 1

2

�x

!
D 0; (5.64)

where Fj˙1=2 are numerical approximations to f Œ .xj˙1=2/� and the grid spacing
�x is uniform. The preceding expression is in conservation form, but in contrast
to the finite-volume formalism, �j approximates the grid-point value  .xj / rather
than a cell-average value.

As a first step we defer matters related to the time discretization and the distinc-
tion between ENO and WENO methods, and simply seek approximations for the
numerical fluxes such that

FjC 1
2

� Fj� 1
2

�x
D df . /

dx
.xj /CO

h
.�x/k

i
: (5.65)

An error-free expression for the flux divergence could be obtained if we knew a
function h.x/ for which

f Œ .x/� D 1

�x

Z xC�x=2

x��x=2
h.
/ d
; (5.66)

since differentiating the preceding equation yields

df . /

dx
.x/ D h.x C�x=2/� h.x ��x=2/

�x
;

implying that (5.65) could be satisfied exactly by choosing FjC1=2 D h.xjC1=2/.
The next goal, therefore, will be to determine a polynomial p.x/ that approximates
h.x/ with sufficient accuracy that (5.65) may be satisfied by setting FjC1=2 D
p.xjC1=2/.

Provided the leading-order term in the truncation error is smooth, sufficient ac-
curacy may be achieved if

FjC 1
2

� p.xjC 1
2
/ D h.xjC 1

2
/CO

h
.�x/k

i
: (5.67)

One might suppose that O
	
.�x/kC1
 accuracy would be required because of the

division by �x in (5.65), but letting E.x/ be the smooth leading-order error, and
noting that both E and @E=@x will be O

	
.�x/k



; the error at xjC1=2 may be ex-

panded in a Taylor series about xj�1=2 such that

FjC 1
2

D h.xjC 1
2
/C E.xj� 1

2
/C�x

@E

@x
.xj� 1

2
/CO

h
.�x/kC1i:

It follows that FjC1=2�Fj�1=2 is O
	
.�x/kC1
, and that (5.67) provides sufficient

accuracy.
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The connection between the grid-point values �j and the polynomial that
approximates h.x/ is realized through the primitive of h,

H.x/ D
Z x

�1
h.
/ d
: (5.68)

Although the lower limit of the preceding integral is nominally �1, divided dif-
ferences of H are all that is ultimately required, so alternatively, the lower limit of
this integral could be specified at any fixed point well to the “left” of the polynomial
stencil. Using (5.68) and then (5.66),

H.xjC 1
2
/ D

jX
mD�1

Z x
mC

1
2

x
m�

1
2

h.
/ d
 D �x

jX
mD�1

f Œ .xj /�; (5.69)

which provides a formula for determining HjC1=2 � H.xjC1=2/ from the grid-
point data.

Let P.x/ be the unique polynomial of degree k that interpolates H at k C 1

consecutive points on the cell boundaries

xj�`� 1
2
; : : : ; xj�`Ck� 1

2
; (5.70)

with integer ` satisfying 0 � ` < k, so that xj�1=2 and xjC1=2 are included in the
interpolation stencil. The desired polynomial approximation to h.x/ is the derivative
of this function, p.x/ � dP=dx. For one thing, the average of p over the cell at xj
is identical to the average of h over the same cell since

Z xj C 1
2

xj � 1
2

p.
/ d
 D
Z xj C 1

2

xj � 1
2

dP

dx
.
/ d
 D P.xjC 1

2
/ � P.xj� 1

2
/

D H.xjC 1
2
/�H.xj� 1

2
/

D
Z x

j C
1
2

�1
h.
/ d
 �

Z x
j �

1
2

�1
h.
/ d


D
Z xj C 1

2

xj � 1
2

h.
/ d
I

here the third equality follows because P.x/ interpolates H.x/ at the cell bound-
aries. The accuracy requirement (5.67) is also satisfied because, from basic interpo-
lation theory, P.x/ is an O

	
.�x/kC1
 approximation to H.x/, so their derivatives

p.x/ and h.x/ are equal to O
	
.�x/k



.

Given initial data �j D  .xj /, one could therefore obtain approximations to
the fluxes satisfying (5.65) in the following manner: (1) evaluate the HjC1=2 from
the f .�j /; (2) choose the stencil over which the polynomial is defined by choos-
ing `, the left shift of the stencil with respect to xj�1=2; (3) form the polynomial
P that interpolates the HjC1=2 and differentiate it to obtain p.x/; and (4) set
FjC1=2 D p.xjC1=2/. Since �x is uniform it is never necessary to actually follow
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this conceptual procedure; once the stencil of points over which the interpolation is
to be performed has been specified, the weighting coefficients for the data at each
grid point may be obtained from a precomputed table. In general, one arrives at a
relation of the form

FjC 1
2

D
k�1X
sD0

c`;sf .�j�`Cs/; (5.71)

where the constants c`;s are determined from the table by the order of the interpola-
tion k and by the left shift of the stencil ` relative to grid point xj .

5.7.2 ENO Methods

Standard finite-difference approximations can be obtained via the procedure just
described by choosing a fixed interpolation stencil, i.e., by choosing a fixed value
for the left shift `. When designing schemes that are at least second-order accurate,
there is more than one possible choice for `. For example, if a second-order scheme
is desired (k D 2/, there are two sets of consecutive points defined by (5.70) con-
taining the interval Œxj�1=2; xjC1=2�. Using the stencil fxj�3=2; xj�1=2; xjC1=2g,
corresponding to the choice ` D 1, one obtains

FjC 1
2

D �1
2
f .�j�1/C 3

2
f .�j /; (5.72)

whereas the stencil fxj�1=2; xjC1=2; xjC3=2g, which is obtained if ` D 0, yields

FjC 1
2

D 1

2
f .�j /C 1

2
f .�jC1/: (5.73)

The key idea in the ENO method is to adaptively choose the interpolation sten-
cil to obtain the “smoothest” approximation over the interval Œxj�1=2; xjC1=2�. If,
for example, there is an isolated discontinuity in the interval Œxj�3=2; xj�1=2�, one
would avoid the stencil that includes this interval and compute the flux according to
(5.73) in preference to (5.72). The smoothest stencil is determined by successively
examining each potential higher-order contribution to P.x/ as expressed in the form
of a Newton polynomial.

A Newton polynomial interpolant is constructed from divided differences of the
gridded data. Divided differences of a function ˛.x/ are denoted by square brackets
and are defined such that ˛Œx0� D ˛.x0/,

˛Œx0; x� D ˛.x/ � ˛.x0/
x � x0 ;

and through the recursion

˛Œx0; : : : ; xm�1; xm; x� D ˛Œx0; : : : ; xm�1; x� � ˛Œx0; : : : ; xm�1; xm�
x � xm

:
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If P.x/ is a quadratic polynomial interpolating H.x/ at the points fxa; xb; xcg,
then

P.x/ D HŒxa �CHŒxa ; xb�.x � xa/CHŒxa; xb ; xc �.x � xa/.x � xb/; (5.74)

as may be verified by noting that P.xa/ D HŒxa� D H.xa/,

P.xb/ D HŒxa�CHŒxa; xb �.xb � xa/ D H.xa/C H.xb/ �H.xa/
xb � xa .xb � xa/

D H.xb/;

and so on. Since P.x/ is constructed to interpolate H on the interval Œxj�1=2;
xjC1=2�, we choose xa D xj�1=2 and xb D xjC1=2. It remains to choose xc .
Note that xc appears only in the factor HŒxa ; xb ; xc� in (5.74), so the choice for
the final point in the stencil influences the interpolating polynomial solely through
this factor. The ENO strategy is to extend the interval in the direction that gives
the smallest value for HŒxa; xb; xc�, or equivalently, the smallest coefficient for the
function .x � xa/.x � xb/. Thus, using the identityHŒx0; x1; x2� D HŒx2; x0; x1�,

xc D
8<
:
xj� 3

2
if
ˇ̌
HŒxj� 3

2
; xj� 1

2
; xjC 1

2
�
ˇ̌ � ˇ̌

HŒxj� 1
2
; xjC 1

2
; xjC 3

2
�
ˇ̌
,

xjC 3
2

otherwise.

Recall that the numerical fluxes FjC1=2 are actually computed from the deriva-
tive of (5.74), for example, if the interpolation stencil fxj�3=2; xj�1=2; xjC1=2g is
selected,

FjC 1
2

D @P

@x
.xjC 1

2
/

D HŒxj� 1
2
; xjC 1

2
�CHŒxj� 3

2
; xj� 1

2
; xjC 1

2
�
�
xjC 1

2
� xj� 1

2

�
: (5.75)

No zero-order divided differences appear in the expressions for the fluxes. Taking
�j D  .xj / as the initial data, one may reconstruct the ENO fluxes beginning with
the first-order divided differenceHŒxj�1=2; xjC1=2�. Using (5.69), we find that

HŒxj� 1
2
; xjC 1

2
� D f .�j /;

and similarly that (5.75) evaluates to (5.72). Note that on a uniform mesh, it is not
necessary to perform the division by x � x0 when computing the divided differ-
ences, as this factor may be absorbed into the coefficients c`;s in (5.71). The c`;s for
schemes of orders 2–5 are given in Table 5.2.

The numerical fluxes FjC1=2 could conceivably be computed by building
the ENO interpolation stencil outward from either the interval just to the right
or the interval just to the left of the cell boundary at xjC1=2. This starting interval
is the only interval that is guaranteed to be in the final ENO stencil for FjC1=2.
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Table 5.2 Coefficients c`;s for the computation of Fj C1=2 using essentially nonoscillatory ap-
proximations of orders 2–5. The index ` is the left shift of the stencil with respect to grid point xj

Order ` s D 0 s D 1 s D 2 s D 3 s D 4

�1 3/2 �1/2
2 0 1/2 1/2

1 �1/2 3/2
�1 11/6 �7/6 1/3

3 0 1/3 5/6 �1/6
1 �1/6 5/6 1/3
2 1/3 �7/6 11/6

�1 25/12 �23/12 13/12 �1/4
0 1/4 13/12 �5/12 1/12

4 1 �1/12 7/12 7/12 �1/12
2 1/12 �5/12 13/12 1/4
3 �1/4 13/12 �23/12 25/12

�1 137/60 �163/60 137/60 �21/20 1/5
0 1/5 77/60 �43/60 17/60 �1/20

5 1 �1/20 9/20 47/60 �13/60 1/30
2 1/30 �13/60 47/60 9/20 �1/20
3 �1/20 17/60 �43/60 77/60 1/5
4 1/5 �21/20 137/60 �163/60 137/60

Therefore, to satisfy the Courant–Friedrichs–Lewy condition that the numerical
domain of dependence include the domain of dependence of the true solution (see
Sect. 3.2.3), one must choose the starting interval that is upstream with respect to
the direction of signal propagation. If df=d .xjC1=2/ � 0, the ENO stencil should
be built outward from Œxj�1=2; xjC1=2�. On the other hand, if df=d .xjC1=2/ < 0,
the stencil should start with the interval ŒxjC1=2; xjC3=2�; in this second case the
grid point xj may lie outside the final stencil, which corresponds to the ` D �1
case listed in Table 5.2.

The performances of the ENO and flux-limiter methods are compared in Fig. 5.18
for the same two test problems considered in Fig. 5.12, one-dimensional scalar ad-
vection of a step and a well-resolved sine wave. The numerical details for these
simulations are identical to those presented in connection with Fig. 5.12. Both ENO
methods are discretized in time using the third-order strong-stability-preserving
Runge–Kutta (SSPRK) scheme (2.48). The second-order ENO method (dashed
lines) is more diffusive than the flux-limited solution obtained with the minmod
limiter and would not be a good choice in practical applications. Much better results
are obtained with the fourth-order ENO method. In the case of the step in Fig. 5.18a,
the slope of the fourth-order ENO solution is steeper than that of the minmod flux-
limited solution, but is gentler than that produced using the superbee limiter. The
principle advantage of the fourth-order ENO method in comparison with the others
is not in its treatment of the step, but rather is that, in contrast to flux-limiter and
FCT methods (see also Figs. 5.12, 5.13) it does not degrade the solution at smooth
extrema, and thereby produces a very accurate approximation to the sine wave in
Fig. 5.18b.
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a

2 3 0 30Δ
x x

b

Fig. 5.18 Comparison of essentially nonoscillatory (ENO) and flux-limited approximations for a a
propagating step, and b a well-resolved sine wave. Curves are for the second-order ENO approx-
imation (dashed line), fourth-order ENO approximation (solid line), flux-limited solutions using
the minmod and superbee limiters (both dotted lines, with the minmod limiter giving the more
diffusive result). The exact solution is shown by the thin dot-dashed line, which is masked by the
fourth-order ENO solution in b

5.7.3 WENO Methods

ENO methods rely on the identification of a single optimal stencil over which the
flux is computed. Difficulties may arise, even in problems with smooth solutions,
if the choice for the optimal stencil changes erratically from grid cell to grid cell
owing to small variations in the solution. An example of such difficulties is shown in
Fig. 5.19. The numerical domain used in these tests spans the square 0 � x; y � 1,
with spatial resolution �x D �y D 0:01. The initial tracer field, contoured in
Fig. 5.19a, is

 .x; y; 0/ D 1
2
Œ1C cos.πr=R/�C �.x; y/; (5.76)

where

r.x; y/ D min

�
R;

q
.x � xc /

2 C .y � yc /
2

�
; (5.77)

R D 0:15, xc D 0:5, yc D 0:3, and � is a random number in the interval Œ0; 10�4�.
The velocity field, shown by the vectors in Fig. 5.19a, produces solid-body rota-
tion at an angular velocity of π radians per unit time. Time stepping is performed
using the third-order SSPRK scheme (2.48) with a time step of 0.0025. The lateral
boundary conditions are periodic.12

12 Only the normal component of the velocity is actually periodic (in fact u is invariant in x, and v
is invariant in y). Since the tracer concentration remains nearly zero on the boundaries, the solution
is essentially identical to that for rotating flow in an unbounded spatial domain.



250 5 Conservation Laws and Finite-Volume Methods
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b

Fig. 5.19 Errors introduced by the ENO method: a velocity vectors and contours showing the
initial position of the tracer, and b superimposed plots of the tracer at three later times. The contour
interval is 0.1; the times at which the tracer distribution is plotted are indicated at its center. Only
the central portion of the total domain is plotted

The tracer circles the center of the domain every two time units. Only minor
errors are incurred during the first full rotation of the distribution, and the tracer
field shown at t D 1:75 in Fig. 5.19b is almost perfect; however, as the second
cycle begins, irregularities appear on the lower-right side of the tracer distribution
at t D 2:25. The errors triggered around t D 2:25 seem to be a random occurrence;
the error decreases considerably by t D 2:75 and the solution continues to recover
toward circular symmetry until at least t D 8.

Problems such as that shown in Fig. 5.19 can be avoided using WENO methods,
in which the actual flux at each cell interface is set to a weighted average of the
fluxes computed over each individual ENO stencil. Recall that if an ENO method is
kth-order accurate, the numerical flux FjC1=2 is set to p`.xjC1=2/, where ` is the
particular left shift among k possible stencils that gives the smoothest approxima-
tion over the grid cell upstream of xjC1=2. Assuming that df=d .xjC1=2/ � 0, the
WENO approximation built from these same interpolation stencils has the form

FiC 1
2

D
k�1X
`D0

!`p`.xjC 1
2
/;

where the !` are suitably defined weights, and using the same notation as in (5.71),

p`.xjC 1
2
/ D

k�1X
sD0

c`;sf .�j�`Cs/:

The weights are chosen to both minimize the influence of any p` computed over a
stencil where the solution is discontinuous and to yield the highest possible order of
accuracy where the solution is smooth.
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First, consider the weights required to achieve the highest order of accuracy,
and as an example suppose the underlying ENO method is second order. Then
p1.xjC1=2/ is the approximation to FjC1=2 given in (5.72) and the leading-
order term in the truncation error in the numerical flux divergence (5.65) is
�Œ.�x/3=3�d3f=dx3. Similarly, p0.xjC1=2/ is the approximation in (5.73) and is
associated with a leading-order error in the flux divergence of Œ.�x/3=6�d3f=dx3.
The linear combination of these two fluxes obtained by setting !1 D 1=3 and
!0 D 2=3 will therefore be third order. More generally, a flux of order 2k � 1

can be obtained using an optimal linear combination of k, kth-order-accurate ENO
fluxes.

Of course the actual WENO weights are not constants, but rather functions of the
�j that reflect the presence of discontinuities. For each left shift ` in a method of
order 2k � 1, define raw weights such that

˛` D C k
`

.ˇ` C �/n
; (5.78)

where C k
`

is the optimal weight for the stencil with left shift ` in a set of kth-order
ENO approximations,13 ˇ`.�/ becomes large if the solution is discontinuous on the
stencil spanned by p`.x/, and � is a small positive constant that ensures ˛` will
be bounded.14 The exponent n is typically set to 2. The actual weights are then
normalized so that they sum to unity:

w` D ˛`

˛0 C : : :C ˛k�1

In regions where the solution is smooth, a WENO method of order 2k� 1 can be
obtained if w` D C k

`
CO

	
.�x/k�1
, and w` will satisfy this condition if

ˇ` D
k�1X
nD1

Z x
j C

1
2

x
j �

1
2

.�x/2n�1
�

dnp`
dxn

�2
dx: (5.79)

(Jiang and Shu 1996). Note that for each xjC1=2, the ˇ` from every stencil approx-
imates the same mathematical expression. Thus, if the solution is smooth, all the
ˇ` will be approximately equal, and since

P
` C

k
`

D 1, the weights will indeed
approach the optimal C k

`
.

Under the continued assumption that df=d .xjC1=2/ > 0, the ˇ` for the popular
fifth-order WENO method are

ˇ0 D 13
12

	
f .�j /� 2f .�jC1/Cf .�jC2/


2 C 1
4

	
3f .�j /� 4f .�jC1/Cf .�jC2/


2
;

ˇ1 D 13
12

	
f .�j�1/ � 2f .�j /C f .�jC1/


2 C 1
4

	
f .�j�1/� f .�jC1/


2
;

ˇ2 D 13
12

	
f .�j�2/ � 2f .�j�1/C f .�j /


2 C1
4

	
f .�j�2/ � 4f .�j�1/C3f .�j /


2
;

13 In the specific example just considered, C 2
0 D 2=3 and C2

1 D 1=3.
14 � may be set to 10�6 times a characteristic scale for ˇ` in regions where the solution is smooth.
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and the optimal weights are

C 30 D 3

10
; C 31 D 3

5
; C 32 D 1

10
:

The fluxes for each of these stencils, which may be determined from Table 5.2, are

p0.xjC 1
2
/ D 1

3
f .�j /C 5

6
f .�jC1/ � 1

6
f .�jC2/;

p1.xjC 1
2
/ D � 1

6
f .�j�1/C 5

6
f .�j /C 1

3
f .�jC1/; (5.80)

p2.xjC 1
2
/ D 1

3
f .�j�2/� 7

6
f .�j�1/C 11

6
f .�j /:

The WENO formulae for df=d .xjC1=2/ < 0 are symmetric about xjC1=2.
Figure 5.20a shows a comparison of the fifth-order WENO method with the

fourth-order ENO and MC flux-limiter methods for the same propagating-step
problem considered in Fig. 5.12a; the performance of all three methods is clearly
similar. In contrast, larger differences are apparent between the solutions shown in
Fig. 5.20b, in which the initial condition is the sum of 7.5 and 10�x waves (for de-
tails refer to the discussion of Fig. 3.6). Here the MC flux-limiter method is clearly
inferior to the other two, but the fourth-order ENO scheme slightly outperforms
the fifth-order WENO method. One weakness of the WENO method is that the
weightsw` can be slow to approach their optimal values as the numerical resolution
improves. The WENO solution for the two-wave problem can be noticeably
improved by reducing n from 2 to 1 in (5.78), which shifts the w` closer to their

a

2 3 0 30Δ

b

x x

Fig. 5.20 Comparison of ENO, weighted essentially nonoscillatory (WENO), and flux-limited
approximations for a a propagating step, and b the sum of equal -amplitude 7:5�x and 10�x
waves. Curves are for the fourth-order ENO approximation (dashed line), fifth-order WENO ap-
proximation (solid line), and the flux-limited solution obtained using the MC limiter (dotted line).
The exact solution is shown by the thin dot-dashed line
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optimal weighting, although this can have a negative impact near strong disconti-
nuities. Another way to improve the WENO solution to the two-wave problem is to
use the optimal C k

`
unless the variation among the ˇ` is sufficient to push

max` ˇ`
min` ˇ` C �

above a threshold value of O(10) (Hill and Pullin 2004)15.

5.8 Preserving Smooth Extrema

As the peak of a wave translates between two grid cells over an interval greater
than a single time step, there should be time steps for which the maximum cell-
averaged value increases (such as when the peak in the solution translates from a
point on the boundary between two cells to exactly coincide with the center of one
cell). Such increases in the amplitude of extrema are not allowed in FCT, TVD, or
monotonicity-preserving methods, and as a consequence, smooth extrema are erro-
neously damped. Substantial errors may even develop near the crests and troughs of
very well resolved waves (see Figs. 5.12b, 5.13b). One way to avoid this is through
the use of WENO methods, which do not apply extra dissipation at smooth ex-
trema, but WENO methods turn out to be considerably less efficient than FCT or
flux-limiter schemes in many applications.

Several authors have therefore proposed criteria to identify smooth extrema and
thereby avoid correcting or limiting the fluxes (or equivalently, limiting the polyno-
mial reconstructions) necessary for their preservation. As before, let �jC be the
value of the solution at the interface at xjC1=2 as reconstructed from the cell-
averaged values �j , �j˙1; : : :. Building on earlier criteria proposed by Sun et al.
(1996) and by Nair et al. (1999), Zerroukat et al. (2005) suggested that �jC be
judged as a spurious extremum (and therefore subject to limiting) if

.�jC � �j /.�jC1 � �jC/ < 0; (5.81)

and at least one of the following inequalities is satisfied:

.�j � �j�1/.�jC2 � �jC1/ � 0; (5.82)

.�j � �j�1/.�j�1 � �j�2/ � 0;

.�jC2 � �jC1/.�jC3 � �jC2/ � 0;

.�jC � �j /.�j � �j�1/ � 0:

15 Once again � is a small constant chosen to avoid division by zero.
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Condition (5.81) identifies �jC as a local extremum. The following inequalities
test the relation of this extremum to the solution in the surrounding grid cells, for
example, flagging �jC as spurious if the slopes computed from cell average values
to the right and left of xjC1=2 both have the same sign via (5.82).

Colella and Sekora (2008) presented a different strategy for constructing a limiter
for the piecewise-parabolic method that preserves accuracy at smooth extrema. They
compared approximations to the second derivative at three nearby locations: xj ,
xjC1, and the cell interface at xjC1=2. If the second derivative changes sign in the
interval, �jC is set to .�jC�jC1/=2, otherwise the second derivative with minimum
magnitude is used to reconstruct the value at the cell interface in such a way that �jC
matches the prediction from high-order interpolation when the solution is smooth
and well resolved. A similar approach, again based on evaluating second derivatives
at three adjacent points, is then used to adjust the structure of the parabola within
each cell to eliminate any subcell extrema that are not part of the smooth solution.

As a third approach, Blossey and Durran (2008) suggested using a WENO-
motivated smoothness metric to determine where limiters are applied. As discussed
in the previous section, the key WENO smoothness indicator is the parameter ˇ`,
defined by (5.79). For a fifth-order WENO method, ˇ` is the integral over the j th
cell of the sum of the squares of the first and second derivatives of the `th interpolant.
Being the sum of the norms of the first and second derivatives, ˇ` is strongly sensi-
tive to discontinuities in the solution. When the solution is smooth, the ˇ` are nearly
identical and the WENO method is high order. When discontinuities are present,
there are large variations among the ˇ`, and the WENO method adjusts the weight
allotted to each stencil to reduce the influence of those spanning the discontinuity.

Motivated by (5.79), let �j be an approximation to

1

2

�
.�x/2

@2 

@x2
.xj /

�2
C 1

2

�
2�x

@ 

@x
.xj /

�2
:

The factors of 1=2 and 2 in the preceding expression are strictly for computational
convenience since they allow �j to be efficiently calculated as

�j D
h�
�jC1 � 2�j C �j�1

�2 C �
�jC1 � �j�1

�2i
=2

D �
�jC1 � �j

�2 C �
�j � �j�1

�2
: (5.83)

Define a smoothness parameter �jC1=2 such that

�jC 1
2

D maxk2K �k

mink2K �k C �
; (5.84)

whereK is the upstream weighted set of indices

K D
�
Œj � 1; j; j C 1�; if ujC 1

2
� 0,

Œj; j C 1; j C 2�; otherwise,
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and � is a small parameter that prevents division by zero. Flux correction
(Sect. 5.4.2) or flux limiting (Sect. 5.5) is enforced only at those cell interfaces
where �jC1=2 exceeds �max; at all other interfaces the correction factor CjC1=2
is set to unity. Similarly, polynomial modification (Sects. 5.6.2, 5.6.3), is enforced
only in connection with flux computations at interfaces where �jC1=2 exceeds �max.
On the basis of empirical testing, Blossey and Durran (2008) suggested setting �max

to 20. Examples of the performance of this approach, which will be referred to as
“selective limiting,” are given in Sect. 5.9.5.

5.9 Two Spatial Dimensions

The preceding discussion focused almost exclusively on problems in one spatial
dimension. One effective way to extend one-dimensional methods to multiple di-
mensions is through fractional steps, and fractional steps have been used suc-
cessfully in problems whose solutions contain discontinuities or poorly resolved
gradients. A theoretical basis for the success of these methods was provided by
Crandall and Majda (1980a), who showed that convergent approximations to the
entropy-consistent solution of two-dimensional scalar conservation laws can be
achieved using the method of fractional steps, provided that consistent conservation-
form monotone schemes are used in each individual step.

Unsplit algorithms may, nevertheless, seem like the most natural way to simulate
advection in a multidimensional flow, and stable, accurate, unsplit WENO approxi-
mations to the advection equation can easily be constructed. One simply includes a
WENO-like approximation to the advective flux divergence along each coordinate
axis and makes a suitable reduction in the time step to preserve stability (e.g., re-
ducing it by

p
2=2 in the two-dimensional case – see Sect. 4.2.1). WENO methods

are typically integrated using third-order Runge–Kutta time differencing, which, be-
ing a nonamplifying scheme, allows high-order methods to be constructed without
modifying the stencils used along each coordinate in the one-dimensional problem.
On the other hand, many forward-in-time methods use the Lax–Wendroff scheme to
achieve second-order accuracy, and as discussed in Sect. 4.2.1, mixed spatial deriva-
tives must then be computed as part of the approximation that cancels the O.�t/
truncation error. Such mixed spatial derivatives are naturally generated in fractional-
step methods and in the flux-limiter approach described in Sect. 5.9.2, but must be
explicitly included in some other unsplit schemes.

We begin this section by considering two representative unsplit methods: FCT
(Zalesak 1979) and a flux-limiter algorithm for two-dimensional nondivergent flow
proposed by LeVeque (1996). Several other schemes with varying degrees of simi-
larity have also appeared in the literature, including those by Smolarkiewicz (1984),
Colella (1990), Saltzman (1994), Leonard et al. (1996), Lin and Rood (1996),
Thuburn (1996), and Stevens and Bretherton (1996).
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5.9.1 FCT in Two Dimensions

The extension of the flux-correction algorithm described in Sect. 5.4.2 to
multidimensional problems is straightforward and was discussed in detail by
Zalesak (1979). Only the two-dimensional case will be considered here, for which
a monotone low-order solution could be computed using the two-dimensional
upstream difference (4.31). As discussed in Sect. 4.2.1, however, the CTU method
(4.36) is a better choice. Zalesak (1979) suggested using high-order fluxes computed
parallel to the coordinate axis together with nonamplifying leapfrog–trapezoidal
time differencing (2.71) and (2.72). A second-order, forward-in-time method can
also be computed using an appropriate form of the upstream biased Lax–Wendroff
method (4.38). The generalization of (4.38) to problems with spatially varying
nondivergent winds will be discussed in Sect. 5.9.3.

Suppose that i and j are the grid-cell indices along the two spatial coordinates.
In contrast to the one-dimensional case, there will now be four antidiffusive fluxes
into each grid cell, and one must compute four coefficients Ci˙1=2;j and Ci;j˙1=2
to limit these fluxes. The formulae for Ci˙1=2;j and Ci;j˙1=2 are identical to those
given for Cj˙1=2 in Sect. 5.4.2, except for the inclusion of the second dimension in
the subscript notation and the computation of the total antidiffusive fluxes in and out
of grid point i; j as

PC
i;j D max

�
0;Ai� 1

2
;j

�
� min

�
0;AiC 1

2
;j

�

C max
�
0;Ai;j� 1

2

�
� min

�
0;Ai;jC 1

2

�
;

P�
i;j D max

�
0;AiC 1

2
;j

�
� min

�
0;Ai� 1

2
;j

�

C max
�
0;Ai;jC 1

2

�
� min

�
0;Ai;j� 1

2

�
:

The formula for the permissible range of values for �nC1
i;j also needs to be general-

ized to two dimensions; the most natural choice is to define

�ai;j D max
�
�ni;j ; �

td
i;j

�
;

�bi;j D min
�
�ni;j ; �

td
i;j

�
;

and then to let

�max
i;j D max

�
�ai;j ; �

a
i;j�1; �ai;jC1; �ai�1;j ; �aiC1;j

�
;

�min
i;j D min

�
�bi;j ; �

b
i;j�1; �bi;jC1; �bi�1;j ; �biC1;j

�
:

The preceding technique for determining�min and �max does not completely prevent
the development of small undershoots and overshoots in situations where � is being
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transported in a direction almost perpendicular to the gradient of �. Nevertheless,
the spurious oscillations are typically very small and can be completely eliminated
using additional correction steps discussed by Zalesak.

5.9.2 Flux-Limiter Methods for Uniform Two-Dimensional Flow

As was the case for the one-dimensional flux-limiter methods discussed previously,
the solution strategy is to use a monotone method to compute low-order fluxes near
poorly resolved gradients and then to correct these low-order fluxes in regions where
the solution is well resolved using fluxes obtained from a higher-order scheme. A
finite-difference approximation to the equation governing the advection of a passive
scalar in a two-dimensional flow (5.26) can be written in the conservation form

�nC1
i;j D �ni;j � �t

�s

h
F n
iC 1

2
;j

� F n
i� 1

2
;j

CGn
i;jC 1

2

�Gn
i;j� 1

2

i
: (5.85)

The terms Fi�1=2;j andGi;j�1=2 are approximations to the advective fluxes through
the left and lower boundaries of the grid cell centered on �i;j . The horizontal mesh
spacing is �s, and it is assumed to be equal along the x- and y-axes for notational
simplicity. To present the method in its simplest form, we temporarily assume that
both velocity components are positive and spatially uniform. The complete algo-
rithm for an arbitrary nondivergent flow is presented in Sect. 5.9.3.

A simple monotone approximation to the advective flux is given by the upstream,
or donor-cell, method, which for positive velocities yields

F
up
iC 1

2
;j

D u�i;j ; G
up
i;jC 1

2

D v�i;j : (5.86)

In the standard upwind method, these fluxes are transmitted parallel to the coordi-
nate axes. Each flux induces a change in �i;j equal to the upstream value of � times

a b c

Fig. 5.21 a Transmission of the upstream fluxes parallel to the coordinate axes in grid cell .i; j /;
heavy arrows denote the vector displacements u�t and v�t ; the square indicates the grid-cell
boundary. b Transmission of the fluxes parallel to the wind field; heavy arrows denote displace-
ments over time �t along the total wind vector. c Area in cell .i � 1; j / from which material is
actually transmitted into cell .i; j C 1/ through the receiving cell’s lower face (light shading) and
through its left face (dark shading)
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the ratio of the area swept out by the incoming fluid divided by the total area of each
grid cell. The situation is schematically illustrated in Fig. 5.21a.

In reality the fluxes are transmitted parallel to the velocity vector, as illustrated
in Fig. 5.21b, and an improved monotone scheme can be obtained by accounting
for the transmission of the fluxes at their correct angle to the coordinate axes. The
transport of these off-axis fluxes through each grid cell can be accounted for by
a modification of the basic upstream fluxes (5.86). As illustrated in Fig. 5.21c, the
area swept out by the axis-parallel fluxes into cell .i; j C 1/ incorrectly includes a
rectangular region (dashed box) that is actually filled by material from a rectangular
region of the same area originating in cell .i�1; j /. Half this material is transmitted
through the lower face of cell .i; j C 1/; the other half is transmitted through its left
face. The ratio of the area of each triangular region to the area of the full grid cell is
0:5uv.�t/2=.�s/2. Recalling that one factor of�t=�s is already present in (5.85),
one can modify the axis-parallel upstream flux through the lower boundary of cell
.i; j C 1/ to correct for this transverse propagation by setting

Gctu
i;jC 1

2

D G
up
i;jC 1

2

� �t

2�s
uv.�i;j � �i�1;j /: (5.87)

The upstream flux parallel to the x-axis into cell .i; jC1/may be similarly modified
to account for the remaining transverse flux from cell .i � 1; j / by setting

F ctu
i� 1

2
;jC1 D F

up
i� 1

2
;jC1 � �t

2�s
uv.�i�1;jC1 � �i�1;j /: (5.88)

When the wind speed is constant, the method obtained by accounting for
flux propagation along the wind vector is identical to the CTU method (4.36).
In Sect. 4.2.1 the CTU method was derived for a governing equation in advec-
tive form using the method of characteristics to compute backward fluid-parcel
trajectories. An alternative derivation can be performed using the finite-volume
formalism by following trajectories backward from the corner of each grid cell and
then computing the average value of � within the rectangular volume occupied by
that cell at the previous time step (Colella 1990). Using back trajectories to define
the subareas A1 through A4 shown in Fig. 5.22, and assuming that the solution is
piecewise constant within each grid cell,

�nC1
i;j D 1

.�s/2

	
A1�

n
i;j C A2�

n
i;j�1 C A3�

n
i�1;j C A4�

n
i�1;j�1



:

This finite-difference equation is not in conservation form, but it is equivalent to the
conservation form (5.85), with the fluxes given by (5.86)–(5.88). The CTU method
will be monotone whenever the subareas A1 through A4 are positive, which in the
general case where u and v can have arbitrary sign requires that

max.juj; jvj/�t
�s

� 1: (5.89)
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A 4

A 1A 3

A 2

Fig. 5.22 Backward trajectories from cell .i; j / defining the departure volume in the corner trans-
port upstream method

The CTU method must be first-order accurate because it is a linear mono-
tone scheme (Godunov 1959). As proposed by LeVeque (1996), an essentially
second-order scheme can be obtained using the same strategy employed for the
one-dimensional flux-limiter methods: Corrective fluxes are added to F ctu and Gctu

that make the scheme equivalent to the Lax–Wendroff method except in regions
where the solution is poorly resolved and the corrective flux is reduced to minimize
spurious oscillations. As discussed in Sect. 3.4.4, the Lax–Wendroff approximation
to the constant-wind-speed two-dimensional advection equation has the form

�nC1
i;j � �ni;j

�t
C ı2xu�

n
i;j C ı2yv�

n
i;j D �t

2
H.�n/;

whereH.�/ is at least a first-order numerical approximation to

 t t D u2 xx C 2uv xy C v2 yy ;

and the subscripts on  denote partial derivatives. The divergence of the off-axis
fluxes in the CTU method generate a first-order approximation to the mixed par-
tial derivative in the preceding expression. Thus, the only modifications that need
to be made to convert the CTU scheme to the Lax–Wendroff method are to replace
the one-sided approximations to @ =@x and @ =@y with centered second-order fi-
nite differences and to include an approximation to

�t

2

�
u2 xx C v2 yy

�
:

This can be accomplished by adding the following terms to the CTU fluxes:

FiC 1
2
;j D F ctu

iC 1
2
;j

C juj
2

�
1 � juj�t

�s

�
.�iC1;j � �i;j /;
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Gi;jC 1
2

D Gctu
i;jC 1

2

C jvj
2

�
1 � jvj�t

�s

�
.�i;jC1 � �i;j /:

(Assuming that the CTU fluxes have been computed in the upstream direction, these
formulae apply regardless of the sign of the velocity.) The preceding corrections to
the CTU flux have exactly the same form as the corrections to the upstream flux in
the one-dimensional problem (5.47), which suggests that spurious oscillations in the
vicinity of discontinuities or poorly resolved gradients can be controlled if the cor-
rections are limited using one of the flux-limiter functions discussed in Sect. 5.5.2.
The resulting flux-limited approximation to the two-dimensional advection problem
is neither TVD nor monotone, but the spurious oscillations generated by this scheme
are extremely weak.

5.9.3 Nonuniform Nondivergent Flow

The generalization of this method to a nonuniform nondivergent velocity field is
most easily presented as the algorithm in Table 5.3, in which the fluxes are initialized
to zero at the beginning of each time step and then incrementally built up in the
course of two passes through the numerical mesh. The velocities are assumed to be
staggered such that uiC1=2;j and vi;jC1=2 are displaced .�s=2; 0/ and .0;�s=2/
away from the grid point where �i;j is defined.16

As discussed in Sect. 4.4.2.2, approximations to the advective form of the trans-
port equation (5.29) have the advantage of exactly preserving initial scalar fields that
are horizontally uniform. If the flow is nondivergent, the algorithm in Table 5.3 can
easily be recast in an algebraically equivalent advective form that retains the conser-
vation properties of the original method. When u and v are positive, the upstream
approximation to the spatial derivative operators in (5.29) is

�i;j D ui� 1
2
;j

�
�i;j � �i�1;j

�x

�
C vi;j� 1

2

�
�i;j � �i;j�1

�y

�
:

If the discretized velocity field approximates (5.28) such that

uiC 1
2
;j � ui� 1

2
;j

�x
C
vi;jC 1

2
� vi;j� 1

2

�y
D 0; (5.90)

�i;j may be expressed in the equivalent form

�i;j D
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i� 1

2
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i;jC 1

2

�G
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2

�y
;

16 See Fig. 4.6 for an illustration of the same staggering scheme in a different context.
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Table 5.3 Algorithm for executing one time step of LeVeque’s two-dimensional flux-limited
advection scheme

� Initialize the fluxes to zero
for each i; j do

F n

i�
1
2

;j
D 0; Gn

i;j �
1
2

D 0 .?/

� Incrementally increase F andG due to fluxes through the left cell interface
for each i; j do

U D u
nC

1
2

i�
1
2

;j

R D �n
i;j

� �n
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if U > 0; then I D i � 1; else I D i
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� Incrementally increase F andG due to fluxes through the bottom cell interface
(as above, switching the roles of i and j , u and v, and F andG)

� Update �
for each i; j do

�
nC1

i;j
D �n

i;j � �t
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h
F n
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� F n
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1
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i
.? ? ?/

where F up and Gup are the upstream fluxes defined in (5.86). The algorithm in
Table 5.3 may therefore be modified to yield a conservative advective-form approx-
imation by replacing the three lines marked by stars with

F n
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2
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i;j� 1

2

D 0; �ni;j D 0; .?/
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2
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i� 1

2
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�Gn
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2

i
: .? ? ?/

No additional modifications of the second-order correction terms in F and
G are required. The equivalence of the second-order corrections in the flux-and
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advective-form algorithms is a consequence of the nondivergence of the velocity
field. Provided that the flow is steady, the advective form of the governing
equation (5.29) implies that

 t t D u.u x/x C u.v y/x C v.u x/y C v.v y/y ;

whereas the flux form (5.26) implies that

 t t D .u.u /x/x C �
u.v /y

�
x

C .v.u /x/y C �
v.v /y

�
y
:

If the flow is nondivergent, both of the preceding equations can be expressed as

 t t D �
u2 x

�
x

C �
uv y

�
x

C .uv x/y C �
v2 y

�
y
:

This is the form of the second-order Lax–Wendroff correction that is actually
approximated by the finite differences in both the advective and the flux-form
algorithms.

5.9.4 Operator Splitting

Consider once again the problem of passive scalar transport in a nondivergent
two-dimensional flow. Let F x

iC1=2;j .�/ and F y
i;jC1=2.�/ be one-dimensional fluxes

through the “east” and “north” faces of the grid cell .i; j / divided by the normal
velocity at the cell interface. For example, if the subgrid tracer distribution is recon-
structed using the piecewise-parabolic method, F y

i;jC1=2.�/ is obtained by dividing
(5.63) by c and prepending i to the indices associated with �. The simplest split
approximation to (5.26) may then be written as
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;jF

x
iC 1

2
;j
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2
F
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2

.�s/
i
=�y: (5.92)

As discussed in Sect. 4.3.1, (5.91) and (5.92) are first-order accurate in time unless
the operatorsF x andF y commute. If the operators do not commute, but the individ-
ual steps are at least second-order accurate in time, the full scheme can nevertheless
be made second order using Strang splitting (i.e., by reversing the sequence of the
x and y integrations every time step.)

A significant shortcoming of this simple splitting is that it will typically not pre-
serve an initially uniform tracer field in a complex nondivergent flow. The problem
is that all convergence induced by the velocity component parallel to the x coordi-
nate must be canceled by divergence in the velocities parallel to the y coordinate, but
the split scheme generally does not exactly reproduce this cancelation. In addition,
any one-dimensional convergence or divergence in an individual split step makes it
difficult to correctly impose one-dimensional flux or slope limiters. In regions where
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a single velocity component is convergent, positive extrema should amplify during
the split step (5.91), but one-dimensional limiters may prevent such amplification.

Several other split schemes have been proposed that do preserve initially uni-
form tracer fields (Leonard et al. 1996; Clappier 1979). Here we will focus on the
approach suggested by Easter (1993), in which the full mass-continuity equation
is diagnostically integrated in the same time-split manner as the equations for the
concentrations of all the individual tracers. To present Easter’s “mass-consistent”
algorithm it is helpful to switch to a slightly more general notation that allows for
density variations within the fluid.

Let  be the density of a fluid mixture and denote the mass fraction17 of a passive
tracer by  . Then the equation for the local rate of a change in the tracer density
may be written18

@ 

@t
C @

@x
.u /C @

@y
.v / D 0: (5.93)

If the fluid is assumed to be incompressible, as discussed in Sect. 8.1, the nondi-
vergence condition (5.28) is used to derive an elliptic equation for the pressure that
closes the set of governing equations. Nevertheless, the continuity equation for two-
dimensional flow,

@

@t
C @

@x
.u/C @

@y
.v/ D 0; (5.94)

still holds and may be used to predict  in an incompressible flow where the initial
density is not uniform throughout the fluid. Even when the density is uniform, (5.94)
can still prove useful in time-split integrations.

A mass-consistent time-split approximation to (5.93) and (5.94) may be
written as

si;j D ni;j � �t
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; (5.95)
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s
i;j ; (5.97)
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; (5.99)

�nC1
i;j D .�/nC1

i;j =nC1
i;j : (5.100)

17 The mass fraction is the ratio of the mass of the tracer to the total mass of the fluid.
18 In contrast to the usage throughout most of this chapter, in this section 	 is the tracer density.
Elsewhere the same quantity is typically denoted by  .
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Assuming the flow is nondivergent, the interface velocities in the preceding ex-
pressions should be identical to those satisfying (5.90) at time tn. If the density is
uniform, the  in the preceding expressions may be interpreted as pseudodensities
and n (but not s) may be set to unity.19 Strang splitting should be used to preserve
second-order accuracy in time by reversing the order of the x and y integrations
every time step.

Changes in tracer density due solely to one-dimensional convergence and diver-
gence are removed in steps (5.97) and (5.100), so horizontally uniform initial fields
of � are preserved. As a consequence of (5.97), limiters can be imposed when recon-
structing piecewise-polynomial subcell distributions of �s without worrying about
any temporary increases in extrema that might be produced by one-dimensional
convergence or divergence in step (5.96). Alternatively, in FCT implementations
of (5.95)–(5.100), fluxes such as .v/n

i;jC1=2F
y

i;jC1=2.�
s/ may be limited without

preventing the physically correct amplification of extrema by one-dimensional con-
vergence or divergence using the method described in Skamarock (2006) or Blossey
and Durran (2008). Examples of the performance of a piecewise-parabolic-method-
based implementation of this method are given in the next section.

The preceding operator-splitting strategy can be easily generalized to more com-
plicated problems. If more than one tracer is being simulated, additional expressions
of the form (5.96), (5.97), (5.99), and (5.100) must be evaluated for each tracer, but
the equations predicting s and nC1 need only be solved once per time step. The
influence of advective fluxes along a third spatial dimension can be included by
adding another three steps analogous to (5.95)–(5.97), and reversing the sequence
of the x–y–z integrations every time step following (4.59). This method can also be
used in a slightly modified form with Courant numbers ju�t=�xj and jv�t=�yj
larger than unity (see Sect. 7.2).

5.9.5 A Numerical Example

In the following, the performance of various time-split implementations of the
piecewise-parabolic method will be compared in a test problem in which a pas-
sive tracer is advected in a nondivergent deformational flow. The spatial domain is
the square 0 � x � 1, 0 � y � 1, and the initial concentration of the tracer is a
spatially uniform value of  0, the unit-amplitude cube

 .x; y; 0/ D
�
1 if max.jx � 0:3j; jy � 0:5j/ � 0:15

0 otherwise,
; (5.101)

or the cosine bell

 .x; y; 0/ D 1

2
Œ1C cos.πr/�;

19 When 	n D 1, (5.98) and (5.100) are unnecessary, but they are retained here to emphasize how
an identical set of operations can be performed in each split step.
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where

r.x; y/ D min

0
@1; 4

s�
x � 1

4

�2
C
�
y � 1

4

�2 1A :
In all cases, the velocity field is a swirling shear flow defined such that

u.x; y/ D sin2.πx/ sin.2πy/ cos.πt=5/;
v.x; y/ D � sin2.πy/ sin.2πx/ cos.πt=5/:

The initial cosine-bell tracer distribution and the structure of the flow field are both
plotted in Fig. 5.23a. The tracer distribution is most highly deformed at t D 2:5,
at which time it appears as the long thin arc shown in Fig. 5.23b, which was ob-
tained from a numerical simulation on a high-resolution mesh. Since the velocity
periodically reverses direction, every fluid parcel returns to its original position af-
ter five time units, and the correct tracer distribution at t D 5 is identical to the initial
field. The accuracy of the numerical solutions obtained at t D 5 can therefore be
evaluated by comparing them with the initial tracer distribution. This same problem
was considered by LeVeque (1996).

Pairs of numerical solutions were obtained using horizontal grid intervals of 0.02
and 0.01. At the time of maximum deformation, the width of the arc is reduced to
approximately 0.05 in Fig. 5.23b, so the tracer distribution is very poorly resolved
on the 0.02 grid. The time step was chosen to that the maximum Courant number
during the split steps, max.ju�t=�xj; jv�t=�yj/, was unity.

The importance of mass consistency in split approximations to (5.26) is revealed
by the simulations initialized with  .x; y; 0/ D  0 D 1, shown in Fig. 5.24. These

0 1 0 1

a b
1

0

xx

y

Fig. 5.23 a Velocity vectors and tracer concentration field at t D 0. b Tracer concentration field
at t D 2:5: The tracer is contoured at intervals of 0.2 beginning with the 0.2 contour line. The
length of each vector is proportional to the speed of the flow
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Fig. 5.24 Contours of � at t D 5 showing the development of spurious deviations from its initial
value of unity using non-mass-corrected Strang splitting and a horizontal grid interval of a 0.02
and b 0.01. The contour interval is 0.08; regions in which � > 1:12 are shaded gray

simulations were conducted using the one-dimensional piecewise-parabolic method
in a Strang-split implementation of the simple formulae (5.91) and (5.92). The fluxes
were computed from (5.63) without using limiters to modify the shape of the recon-
structed parabolas. Despite the flow being well resolved and reversing symmetri-
cally in time, large perturbations in the numerical solution � appear by the end of
the simulation. In particular, a ring of fluid develops in which � exceeds  0 by
roughly 15 and 30% in the 0.01- and 0.02-resolution cases, respectively. When the
same unlimited piecewise-parabolic method is applied in the mass-consistent algo-
rithm (5.95)–(5.100),� remains equal to its constant initial value of  0.

A second look at the influence of mass consistency on the solution is provided in
Fig. 5.25, which compares Strang-spilt implementations of (5.91) and (5.92) and
(5.95)–(5.100) for the cosine-bell test at t D 5. The grid spacing is 0.02 and,
as before, the one-dimensional reconstructions are obtained using the piecewise-
parabolic method without limiting. The simple splitting (Fig. 5.25a) leaves the peak
in the distribution too far “north,” and also produces more damping of the peak value
and larger negative undershoots than the mass-consistent splitting (Fig. 5.25b).

As will be discussed in Sect. 5.9.6, negative chemical tracer concentrations, such
as those visible in Fig. 5.25, can produce unstable, unphysical interactions with other
chemical species in a reacting flow. Two approaches for eliminating negative under-
shoots are compared in Fig. 5.26. The simulation shown in Fig. 5.26a is identical
to that in Fig. 5.25b, except that every parabola reconstructed from cell-averaged
values is limited to prevent the development of new extrema according to the pro-
cedure described at the end of Sect. 5.6.3. This globally applied limiter does indeed
prevent the formation of spurious negative concentrations, but it also reduces the
peak amplitude of the cosine bell, relative to the unlimited case, by 35%.
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simple split,
no limiter

mass consistent split,
no limiter

1

0
0 1x

y

0 1x

−0.01

−0.01
−0.01

−0.01

−0.05
−0.05

Min  = −0.083
Max =  0.706

Min  = −0.077
Max =  0.779

a b

Fig. 5.25 Comparison of the exact solution at t D 5 with numerical solutions obtained us-
ing a Strang-split piecewise-parabolic-method scheme that is not mass-consistent (a) or is mass-
consistent (b). The heavy circles are the 0.05 and 0.75 contour lines of the exact solution. The thin
solid lines are contours of the numerical solution at intervals of 0.05, beginning with the 0.05 con-
tour. The dashed lines are the �0:01 and �0:05 contours. The maximum and minimum values of
� at t D 5 are noted in the upper right of a and b

Global Selective/Positive
1

0

y

Min  = 0.000
Max = 0.502

Min  = 0.000
Max = 0.692

0 1 0 1xx

a b

Fig. 5.26 As in Fig. 5.25b except the piecewise parabolas are a limited throughout the entire
domain, or b selectively limited together with FCT-based positivity preservation

The strong damping generated by the global limiter can be greatly reduced
by restricting the locations at which the reconstructed piecewise parabolas are
limited using the approaches presented in Sect. 5.8. The simulation shown in
Fig. 5.26b is identical to that shown in Fig. 5.26a except limiting was only applied
to the piecewise-parabolic-method fluxes at interfaces where �iC1=2, computed
from (5.84) exceeded 20. In addition, to avoid very small negative undershoots,
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Min  = 0.000
Max = 0.775
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xx

Fig. 5.27 As in Fig. 5.26 except the grid cell intervals are reduced by a factor of 0.5

all differences between this selectively limited piecewise-parabolic-method flux
and a separately evaluated upstream flux were corrected to guarantee positivity
as discussed in Sect. 5.10.1. Selective limiting produces an 11% reduction in the
amplitude of the cosine bell relative to the unlimited solution (Fig. 5.25b), which,
although nontrivial, is much smaller than the 35% reduction generated by global
limiting.

The simulations leading to Fig. 5.26 were repeated with twice the spatial reso-
lution (grid intervals of 0.01); the results are plotted in Fig. 5.27. Although much
improved, the case with global limiting still suffers from excessive damping near
the peak of the cosine bell; its maximum amplitude is just 77% of the correct value
(Fig. 5.27a). The excessive damping of well-resolved smooth extrema in this exam-
ple is reminiscent of that discussed previously in connection with Fig. 5.11. As was
the case at coarser resolution, such damping can be greatly reduced by diagnos-
ing the regions of smooth extrema and avoiding the use limiters in those regions.
This approach is clearly effective in the high-resolution cosine-bell test shown in
Fig. 5.27b, where the maximum in the selectively limited solution is 96% of the
correct value.

The tests with the cosine bell show that selective limiting can successfully iden-
tify regions where limiters should not be applied, but they do not demonstrate the al-
gorithm identifies locations where limiters should be applied, because any negative
concentrations are eliminated by the positivity-preserving FCT scheme (the same
strategy that should be followed in actual simulations of reacting flow). Therefore,
the ability of selective limiting to prevent overshoots was assessed using the unit
cube (5.101) to define the initial tracer concentration in the swirling flow test. Except
for the change in the initial condition, the simulations shown in Fig. 5.28 are iden-
tical to those plotted in Fig. 5.27. There are no overshoots in the globally limited
solution shown in Fig. 5.28a; rather the maximum � is reduced relative to the true
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Selective/Positive

0.6

0
0 0.6 0 0.6x
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Min  = 0.000
Max = 0.989

Min  = 0.000
Max = 1.043

Fig. 5.28 Comparison of the exact solution at t D 5 with numerical solutions for the unit-
amplitude cube obtained using a global limiting, or b selective limiting with positivity preservation.
The thin lines are contours at intervals of 0.1; shading indicates regions where � exceeds 1.0. The
heavy lines show the initial and final locations of the 0.5 contour. Only the subdomain 0 � x; y �
0:6 is plotted. The maximum and minimum values of � at t D 5 are noted in the upper right of a
and b

solution by 0:011. Selective limiting (Fig. 5.28b) allows a small overshoot of mag-
nitude 0:047, but in most respects produces a better solution since it avoids the
excessive damping in the “northeast” corner of the cube produced by the global
limiter.

The preceding examples illustrate how selective limiting can greatly reduce the
damping generated by global limiters in the vicinity of smooth extrema while still
restricting overshoots to very small values. As in situations where even small un-
dershoots are unacceptable (because, for example, they represent negative chemical
concentrations), the small negative undershoots allowed by selective limiting were
completely eliminated using the positivity-preserving FCT approach discussed in
Sect. 5.10.1.

5.9.6 When Is a Limiter Necessary?

The use of flux limiters or limiters in polynomial reconstructions can be essential
to ensure the convergence of numerical approximations to problems with shocks or
discontinuous solutions. On the other hand, in an advection problem such as that
considered in the preceding section, the initially smooth concentration field never
develops a discontinuity in a finite time; there are no spurious weak solutions, and
limiters are not required to guarantee convergence. The use of a limiter in numerical
simulations of advective transport is optional and can be considered as a device for
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converting one type of error, namely, undershoots and overshoots, into a less easily
quantifiable but more acceptable form.

The most obvious disadvantages of limiters are that, as illustrated in the previ-
ous section, they can introduce significant errors in regions of smooth extrema. Even
selective limiting modestly damps smooth extrema. Furthermore, all limiters require
a nontrivial increase in the number of computations per time step. Therefore, lim-
iters might reasonably be avoided in problems where they are not required for the
correct simulation of the underlying physics.

There are nevertheless many fluid transport problems where numerically
generated overshoots or undershoots couple with other processes and lead to unsta-
ble growth or nonphysical behaviors. An example of such coupling can occur when
simulating the evolution of atmospheric clouds. A cloud will be incorrectly gener-
ated if an error in the simulation of water-vapor transport produces an overshoot in
which the water-vapor mixing ratio exceeds the saturation mixing ratio. Latent heat
is released as the water vapor condenses to form the spurious cloud, and this heat
generates buoyancy perturbations that feed back on the flow field, thereby altering
the subsequent evolution of the system.

A more catastrophic coupling between numerically generated undershoots and
other physical processes can occur if negative chemical concentrations are gener-
ated in simulations of chemically reacting flows. The mixing ratio of a chemical
species should never drop below zero, but undershoots in regions of steep poorly
resolved gradients may produce negative chemical concentrations that destabilize
the integration by triggering impossible chemical reactions. As a mathematically
simple example, consider the following pair of equations describing the advection
and interaction of two chemical species:

@ 1

@t
C c

@ 1

@x
D �r 1 2; (5.102)

@ 2

@t
C c

@ 2

@x
D r 1 2: (5.103)

Here  1 and  2 represent the concentration of each chemical species, and r is the
rate at which they react, transforming  1 into  2. Suppose there is a nonzero back-
ground concentration of 1 throughout the domain and that 2 drops very rapidly to
zero outside some localized “plume.” If leapfrog-time centered-space differencing
is used to simulate the downwind transport of the plume, small dispersive ripples
will appear at the edge of the plume, and regions will develop where  2 < 0,
 1 > 0. In the absence of the chemical reactions, these negative regions would re-
main small and relatively insignificant. However, at any point where  2 < 0 and
 1 > 0, the chemical reaction terms in (5.102) and (5.103) drive  2 more neg-
ative while simultaneously increasing  1, thereby amplifying the undershoot and
ultimately destabilizing the numerical integration.

Global limiters may be used to avoid the generation of spurious negative concen-
trations, but as previously noted, they tend to erroneously damp smooth extrema.
As an alternative, several positive-definite advection schemes have been specifically
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formulated that do not significantly modify positive extrema (including at locations
where overshoots may be a problem) but do prevent the generation of false nega-
tives. These methods will be discussed in the next section.

5.10 Schemes for Positive-Definite Advection

A positive-definite advection scheme is a method that never generates a negative
value from nonnegative initial data.20 Any monotone scheme is positive definite,
but there are no other simple relationships between the sets of methods that are
positive definite and those that are monotonicity preserving or TVD. TVD schemes
need not be positive definite, and positive-definite schemes need not be TVD.

Early attempts to construct positive-definite advection schemes involved “filling
algorithms,” in which the solution obtained after each integration step was corrected
by filling in any negative values. To conserve the total mass of the advected species,
negatives cannot simply be set to zero; compensating mass must removed from posi-
tive regions. There are a variety of filling algorithms designed for this purpose. Some
filling algorithms attempt to fill local negative regions from adjacent positive areas
(Mahlman and Sinclair 1977). This may be a physically satisfying way to remove
dispersive undershoots, but it requires a great deal of logical testing that cannot be
performed efficiently on vector computers. In other approaches the compensating
mass is removed from the entire field by multiplying the value at every grid point
by the ratio of the total original mass to the total nonnegative mass. Multiplicative
compensation is computationally efficient, but it preferentially damps the regions of
highest tracer concentration. Other filling algorithms are reviewed by Rood (1987).
Although empirical testing has shown the value of filling algorithms, the theoretical
basis for these schemes is largely undeveloped.

5.10.1 An FCT Approach

The FCT algorithms presented in Sects. 5.4.2 and 5.9.1 do not allow new minima to
be smaller than those predicted by the low-order monotone scheme, so, like a mono-
tone method, these FCT schemes are positive definite. The general FCT algorithm
can, however, be greatly simplified if all that is required is a positive-definite result.
As noted by Smolarkiewicz (1989), any numerical conservation law of the form

�nC1
j � �nj
�t

C
 
FjC 1

2
� Fj� 1

2

�x

!
D 0 (5.104)

20 Negative-definite schemes may be similarly defined as any method that never generates positive
values from nonpositive initial data. Any positive-definite scheme can be trivially converted to a
negative-definite method.
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can be converted to a positive-definite method. To illustrate the approach in its sim-
plest form, temporarily suppose that the fluxes are always positive (as would be the
case if (5.104) were used to approximate an advection problem involving nonnega-
tive flow velocities and tracer concentrations). Then (5.104) will be positive definite
if the actual fluxes are replaced by corrected fluxes CjC1=2FjC1=2, in which the
correction factor is defined by

CjC 1
2

D min

�
1;

�
�nj
�x

�t

�
=FjC 1

2

�
:

This correction ensures that the outgoing flux is not large enough to drive �nC1
j

negative.
Now consider the general case, in which the fluxes may have arbitrary sign. The

flux-correction coefficient can be determined by omitting steps 1–5 of the Zalesak
correction algorithm presented in Sect. 5.4.2 and modifying steps 6 and 7 as follows.
Let Pj be the total flux out of grid volume j ,

Pj D max
�
0; FjC 1

2

�
� min

�
0; Fj� 1

2

�
C �; (5.105)

where � is a small number (such as 10�6) added to ensure that Pj is not zero. Also
let Qj be the maximum outward flux that can be supported without forcing �nC1

j

negative,

Qj D �nj
�x

�t
: (5.106)

Determine the ratio by which the fluxes FjC1=2 and Fj�1=2 would need to be re-
duced to ensure that a negative is not be created at grid volume j ,

Rj D min
�
1;Qj =Pj

�
(5.107)

Finally, choose the actual limiter for the corrected flux CjC1=2FjC1=2 such that
negatives are not created in the volume from which that flux is actually removing
material:

CjC 1
2

D
�
Rj if FjC 1

2
� 0,

RjC1 if FjC 1
2
< 0. (5.108)

In contrast to the general FCT procedure, there is no initial step involving a low-
order monotone scheme because it is not necessary to use a low-order solution to
estimate the permissible range of values for �nC1

j : One simply sets �min
j D 0, im-

poses no constraint on �max
j , and corrects the fluxes to avoid generating values less

than �min
j . Clearly, it is possible to further generalize this procedure by setting both

�min
j and �max

j to any pair of arbitrarily specified constants.
Although it is conceptually simpler not to bother evaluating a low-order mono-

tone solution, very little computational effort is required to do so when simulat-
ing advection, and that effort is often worthwhile. Since the monotone solution is
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positive definite, it can be used to reduce the impact of the preceding algorithm on
the high-order fluxes as follows. Let �td denote the solution predicted using up-
stream differencing to update the current values of �n (as in the notation used with
standard FCT and flux-limiter methods), and define a correction flux as the differ-
ence between the high-order and upstream fluxes,

F cor
jC 1

2

D F h
jC 1

2

� F up
jC 1

2

:

The fluxes used in the conservation law (5.104) become

FjC 1
2

D F
up
jC 1

2

C CjC 1
2
F cor
jC 1

2

;

where CjC1=2 deviates from unity only where necessary to prevent the development
of negative �, and may be evaluated using (5.105)–(5.108) with �nj replaced by � td

j

in (5.106) and all the fluxes F replaced by F cor.
One peculiarity of this method is that the shape of the solution will change if a

spatially uniform background field is added to the initial tracer concentration. This
behavior differs from that of the true solution, in which the time tendency of the
tracer concentration is determined only by the velocity field and the derivatives of
the tracer-concentration field. Most of the other previously discussed methods for
representing discontinuities and steep gradients avoid this dependence on the mean
background concentration by using a different formulation of the nonlinear flux
corrector. For example, the nonlinear correction used in the flux-limited scheme de-
scribed in Sect. 5.5 is computed as a function of the ratio of the slopes of the numer-
ical solution on each side of an individual grid point, and this ratio is independent
of the magnitude of any horizontally uniform background concentration.

The sensitivity of the solution to changes in the background concentration de-
pends on the magnitude of the undershoots that develop when the background con-
centration is zero. WENO methods and the selectively limited piecewise-parabolic
method produce very small undershoots and, therefore, the preceding approach can
be used to eliminate all negative values generated by these methods without making
them very sensitive to the background concentration.

5.10.2 Antidiffusion via Upstream Differencing

One unique way to obtain a positive-definite advection scheme is to use upstream
differencing to apply an antidiffusive correction to a previously computed monotone
solution (Smolarkiewicz 1983). The first step of the Smolarkiewicz algorithm is a
standard upstream difference in conservation form,

��
j D �nj �

h
F.�nj ; �

n
jC1; cjC 1

2
/� F.�nj�1; �nj ; cj� 1

2
/
i
; (5.109)
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where

F.�j ; �jC1; c/ D
��
c C jcj
2

�
�j C

�
c � jcj
2

�
�jC1

�
�t

�x
:

The novel aspect of the Smolarkiewicz scheme is that the antidiffusion step is per-
formed using a second upstream difference. Defining an “antidiffusion velocity”

QcjC 1
2

D
.jcjC 1

2
j�x � c2

jC 1
2

�t/

.��
j C ��

jC1 C �/

 
��
jC1 � ��

j

�x

!

(where � is a small positive number whose presence guarantees that the denominator
will be nonzero), the antidiffusion step is

�nC1
j D ��

j �
h
F.��

j ; �
�
jC1; QcjC 1

2
/ � F.��

j�1; ��
j ; Qcj� 1

2
/
i
: (5.110)

Since the first step (5.109) is the standard upstream method, it is monotone, pos-
itive definite, and highly diffusive. If c is constant, the first step provides a second-
order approximation to the modified equation

@ 

@t
C @c 

@x
D @

@x

�
K
@ 

@x

�
;

in which K is the numerical diffusivity:

K D jcj�x � c2�t
2

:

The second step compensates for this diffusion by subtracting a finite-difference
approximation to the leading-order truncation error associated with the upstream
method. In particular, the second step (5.110) is a numerical approximation to

@ 

@t
D �@ Qc 

@x
;

in which

Qc D

8̂<
:̂
K

 

@ 

@x
; if  > 0;

0; if  D 0.

:

Although the second step utilizes upstream differencing, the �nC1 are highly
nonlinear functions of the ��, and the second step is not monotone. The second step
will, nevertheless, be positive definite provided that
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ˇ̌
ˇ̌̌ QcjC 1

2
�t

�x

ˇ̌
ˇ̌̌ � 1

2
for all j ;

which guarantees that even when both antidiffusive velocities are directed out of
a particular grid cell, the antidiffusive fluxes will be too weak to generate a nega-
tive value. The preceding condition is satisfied whenever the initial � are nonnega-
tive and the maximum Courant number associated with the physical velocity field
satisfies ˇ̌̌

ˇ̌cjC 1
2
�t

�x

ˇ̌̌
ˇ̌ � 1 for all j :

Then ˇ̌̌
ˇ̌ QcjC 1

2
�t

�x

ˇ̌̌
ˇ̌ �

jcjC 1
2
j�t

�x

 
1 �

jcjC 1
2
j�t

�x

! j��
jC1 � ��

j j
j��
jC1 C ��

j C �j

!

� 1

4

 j��
jC1 � ��

j j
j��
jC1 C ��

j C �j

!
:

Since the first step is monotone, all the �� are nonnegative and
ˇ̌̌
ˇ̌ QcjC 1

2
�t

�x

ˇ̌̌
ˇ̌ � 1

4
:

The Smolarkiewicz scheme can easily be extended to multidimensional problems
(Smolarkiewicz 1984) and can be made monotonicity preserving by applying lim-
iters in the antidiffusion step (Smolarkiewicz and Grabowski 1990). Note that like
the FCT approach discussed in the preceding section, the Smolarkiewicz scheme
will change the shape of the solution if a spatially uniform background field is added
to the initial tracer concentration.

5.11 Curvilinear Coordinates

If the physical boundary constraining a fluid is nonrectangular, it can be advanta-
geous to solve the governing equations in a curvilinear coordinate system that fol-
lows the boundary. In other circumstances, it is possible to simplify the problem by
using cylindrical or spherical coordinates to exploit certain symmetries in the fluid
system. When the governing equations are expressed in non-Cartesian coordinates,
additional “metric” terms arise. These terms should be approximated in a way that
preserves the conservation properties of the numerical scheme and the ability of the
scheme to represent discontinuities and poorly resolved gradients. One elegant way
to treat the metric terms is to begin with the equation formulated for an arbitrary
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curvilinear coordinate system and to apply one of the preceding methods directly to
the transformed system (e.g., Smolarkiewicz and Margolin 1993).

For example, suppose that .x1; : : : ; xn/ is a position vector in Cartesian coordi-
nates, that . Qx1; : : : ; Qxn/ is the corresponding vector in curvilinear coordinates, and
that there is a smooth mapping between the two systems for which the Jacobian
of the transformation J D Det.@xi=@ Qxj / is nonsingular. Then the velocities in the
curvilinear coordinates are related to the Cartesian velocities such that

Qvi D @ Qxi
@xk

vk ;

where repeated subscripts are summed. The divergence of the velocity vector
transforms as

@vi

@xi
D 1

J

@

@ Qxk .J Qvk/ : (5.111)

(See Gal-Chen and Somerville 1975.)
The equations governing the transport of a passive tracer in two-dimensional

nondivergent flow may be expressed in curvilinear coordinates in either advective
or flux form. Let .x1; x2/ D .x; y/ and .u1; u2/ D .u; v/. The advective form

d 

dt
� @ 

@t
C Qu@ 

@ Qx C Qv @ 
@ Qy D 0

can be derived from first principles using the definition of the total derivative in the
transformed coordinates. The flux form

@ 

@t
C 1

J

@

@ Qx .J Qu /C 1

J

@

@ Qy .J Qv / D 0;

where

J D @x

@ Qx
@y

@ Qy � @x

@ Qy
@y

@ Qx ;

can also be derived from first principles using the expression for the divergence in
transformed coordinates (5.111). The flux form implies conservation of  (provided
that coordinate transformation is time independent) and is ready for direct approx-
imation by a numerical conservation law. The numerical fluxes can be limited or
corrected as discussed previously to preserve monotonicity.

The proper formulation of a numerical approximation of the advective form is
more subtle. As discussed previously, it is important to create a finite-difference ap-
proximation to the advective form that is algebraically equivalent to the flux form.
On a staggered mesh, one typically requires the velocities to satisfy the incompress-
ible continuity equation,

1

Ji;j

	
.ıx.Ji;j Qui;j /C ıy.Ji;j Qvi;j /


 D 0;
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where it is assumed that QuiC1=2;j is located�x=2 to the “east” and Qvi;jC1=2 is�y=2
to the “north” of the grid point where �i;j is defined. The numerical representation
the advective form should then approximate

@ 

@t
C 1

J

�
QuJ @ 
@ Qx C QvJ @ 

@ Qy
�

D 0;

where the common factor of J is not canceled out of the numerator and denominator
because it is evaluated at different locations on the staggered mesh. The evaluation
of J at these slightly different grid points is required to make the finite-difference
method in advective form algebraically equivalent to a scheme in flux form.

Problems

1. Consider two sets of equations that might be supposed to govern one-
dimensional shallow-water flow:

@u

@t
C @

@x

�
u2

2
C gh

�
D 0;

@h

@t
C @hu

@x
D 0;

and

@hu

@t
C @

@x

�
hu2 C g

h2

2

�
D 0;

@h

@t
C @hu

@x
D 0:

(a) Under what conditions do these systems have identical solutions?

(b) Give an example, including initial conditions and expressions for the time-
dependent solutions, for which these systems have different solutions.

(c) In those situations where these systems have different solutions, which one
serves as the correct mathematical model for shallow-water flow? (Hint: The
correct choice must be determined from fundamental physical principles.)

2. Compute the speed at which the unit-amplitude jump (5.3) must propagate to
be a weak solution to the conservation law

@ 2

@t
C @

@x

�
2 3

3

�
D 0:

How does this speed compare with that at which the same jump is propagated
by the inviscid Burgers equation? Explain whether the difference in the speed of
these jumps is consistent with the sign of the inequality in the entropy condition
for solutions to Burgers’s equation (5.13)?
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3. Show that if  .x; 0/ � 0, the solution to

@ 

@t
C @

@x
Œc.x/ � D 0

remains nonnegative for all t � 0. Assume that c and have continuous deriva-
tives in order to simplify the argument. (Hint: To develop negative , there must
be a first time t0 and some point x0 for which  .x0; t0/ D 0 and t .x0; t0/ < 0.
Show that this is impossible.) Does this result generalize to problems in two and
three spatial dimensions?

4. Use the results of Problem 3 to show that if

@ 

@t
C @

@x
Œc.x/ � D 0;

@'

@t
C @

@x
Œc.x/'� D 0;

and  .x; 0/ � '.x; 0/, then  .x; t/ � '.x; t/ for all x and t > 0.

5. Suppose the constant-wind-speed advection equation (5.20) is approximated
using the Lax–Friedrichs scheme

�nC1
j D 1

2
.�njC1 C �nj�1/ � �

2
.�njC1 � �nj�1/; (5.112)

where � D c�t=�x. Compare the implicit numerical diffusion generated by
this scheme with that produced by upstream differencing. Show that the ratio
of the leading-order numerical diffusion in the upstream scheme to that in the
Lax–Friedrichs method is �=.1C �/.

6. Suppose that the constant-wind-speed advection equation (5.20) is approxi-
mated using the scheme

�nC1
j D �

1 � c�t ı2x C �.�x/2ı2x
�
�nj ;

where � is a user-specified parameter determining the amount of numerical
smoothing.

(a) What is the largest value of � for which the scheme can be monotone?

(b) Suppose that � is specified as some value �0 for which the scheme can
be monotone. For what values of � D c�t=�x will the scheme actually be
monotone?

(c) For what value of � is this scheme equivalent to the Lax–Friedrichs scheme
(5.112)?

7. Explain why a scheme that is monotonicity preserving need not be TVD (or
more precisely, total variation nonincreasing). Explain why being TVD does
not imply that a scheme is monotone.

8. Show that no new maxima or minima can develop in smooth solutions to the
conservation law (5.7).
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9. Show that Harten’s criterion (5.38) ensuring that schemes of the form (5.37) are
TVD is not sufficient to guarantee that they are monotone.

10. Show that the superbee flux limiter (5.44) is equivalent to the following slope
limiter:

	j D
�
0 if ab � 0,
sgn.a/max Œ0;min.jaj; 2jbj/; min.2jaj; jbj/� otherwise,

where

a D �jC1 � �j

�x
; b D

8̂
<
:̂
�j � �j�1

�x
if c � 0,

�jC2 � �jC1
�x

if c < 0.

Compare the geometric limits placed on the slope by the superbee limiter with
those imposed by the minmod and MC limiters.

11. Suppose that Lax–Wendroff solutions are sought to a one-dimensional
advection equation (5.20) and that the velocity c.t/ depends on time but not
on x.

(a) Derive an expression for @2 =@t2 in terms of the spatial derivatives of  
and functions of the velocity field.

(b) Show that a fully second order Lax–Wendroff approximation to this problem
can be obtained using (5.47) with c replaced by .cnC1 C cn/=2.

12. Show that if the solution is infinitely differentiable, weights w` can indeed be
determined to create an order 2k � 1 approximation to the flux FjC1=2 from
the kth-order-accurate ENO approximations p`.xjC1=2/, where `D 0; 1; : : : ;

k� 1.

13. Show that, considered in isolation, the antidiffusion step (5.110) of the
Smolarkiewicz positive-definite advection scheme is not monotone.

14. Suppose that f .s/ is a continuously differentiable function of s and that  .x; t/
is a solution to the scalar conservation law (5.7). Show that the characteristic
curves for this hyperbolic partial differential equation are straight lines.

15. *Compute solutions to the advection equation (5.20) on the periodic domain
0 � x � 1 subject to the initial condition  .x; 0/ D sin6.2πx/. Let c D 0:1.

(a) Compare the exact solution with numerical solutions obtained using for-
ward, Lax–Wendroff, and flux-limited methods. In the flux-limited methods
compute the low-order flux using the upstream scheme and the high-order flux
using the Lax–Wendroff method, but try three different flux limiters: the MC,
the minmod, and the superbee. Perform the simulations using a Courant num-
ber c�t=�x D 0:5 and �x D 1=40: As part of your discussion submit two
plots of the solution at time t D 20, one comparing the exact solution with that
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obtained using the three different flux limiters, and one comparing the exact,
upstream, Lax–Wendroff, and MC flux-limited solutions. Scale the vertical axis
so that �0:4 �  .x/ � 1:4.

(b) Repeat the preceding simulations for the initial condition

 .x; 0/ D
�
1 if jx � 1

2
j � 1

4
;

0 otherwise.

Again submit two plots of the solution at time t D 20, one comparing the
exact solution with that obtained using the three different flux limiters, and one
comparing the exact, upstream, Lax–Wendroff, and MC flux-limited solutions.
Discuss your results.

16. *Determine the effective order of accuracy of the minmod, MC, and superbee
flux-limited approximations to the advection equation considered in Problem 15
except use the very smooth initial data  .x; 0/ D sin.2πx/. In addition, com-
pute results for the Zalesak FCT method using upstream differencing for the
low-order solution and the Lax–Wendroff scheme for the higher-order solution.
Also try the iterative FCT scheme discussed at the end of Sect. 5.4.2 using the
preceding noniterated FCT solution for the low-order scheme during the sec-
ond iteration. Keep the Courant number fixed at 0.5, and use�x D 1=20, 1/40,
1/80, 1/160, and 1/320. Compute the L2 norm of the difference between the
exact and approximate solutions and plot the log of the error versus the log of
�x to estimate the power of �x that is proportional to the error as �x ! 0:

Compare these results with the theoretical order of accuracy for the standard
upstream and Lax–Wendroff methods.

17. *Compare simulations of the geostrophic adjustment problem described in
Problem 12 in Chap. 4 obtained using a flux-limiter scheme with the MC limiter
and FCT. Consider both the initial conditions: the discontinuous step and the
slightly smoothed step. To use the constant-wind-speed advection algorithms
presented in this chapter, transform the governing equations to an equivalent
system for the unknown functions uCg�=c, u�g�=c, and v (where c2 D gH ).
Use upstream differencing and the Lax–Wendroff scheme for the monotone and
second-order methods. Treat the Coriolis terms in the transformed system via
operator splitting.



Chapter 6
Series-Expansion Methods

Series-expansion methods that are potentially useful in geophysical fluid dynamics
include the spectral, pseudospectral, finite-element, and discontinuous Galerkin
methods. The spectral method plays a particularly important role in global atmo-
spheric models, in which the horizontal structure of the numerical solution is often
represented as a truncated series of spherical harmonics. Finite-element methods,
on the other hand, are not commonly used in multidimensional wave propagation
problems because they generally require the solution of implicit algebraic systems
and are therefore not as efficient as competing explicit methods. The discontinuous
Galerkin method is a combination of the spectral and finite-element methods and
also has many similarities with finite-volume methods. All of these series-expansion
methods share a common foundation that will be discussed in the next section.

6.1 Strategies for Minimizing the Residual

Suppose F is an operator involving spatial derivatives of  , and that solutions are
sought to the partial differential equation

@ 

@t
C F. / D 0; (6.1)

subject to the initial condition  .x; t0/ D f .x/ and to boundary conditions at the
edges of some spatial domain S . The basic idea in all series-expansion methods is to
approximate the spatial dependence of  as a linear combination of a finite number
of predetermined expansion functions. Let the general form of the series expansion
be written as

�.x; t/ D
NX
kD1

ak.t/'k.x/; (6.2)

where '1; : : : ; 'N are predetermined expansion functions satisfying the required
boundary conditions. Then the task of solving (6.1) is transformed into a problem
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of calculating the unknown coefficients a1.t/; : : : ; aN .t/ in a way that minimizes
the error in the approximate solution. One might hope to obtain solvable expressions
for the ak.t/ by substituting (6.2) into the governing equation (6.1). For example,
if F is a linear function of @n =@xn with constant coefficients and (6.2) is a trun-
cated Fourier series, direct substitution will yield a system of ordinary differential
equations for the evolution of the ak.t/. Unfortunately, direct substitution yields a
solvable system of equations for the expansion coefficients only when the 'k are
eigenfunctions of the differential operator F , i.e., direct substitution works in pre-
cisely those special cases for which analytic solutions are available. This, of course,
is a highly restrictive limitation.

In the general case where the 'k are not eigenfunctions of F , it is impossi-
ble to specify a1.t/; : : : ; aN .t/ such that an expression of the form (6.2) exactly
satisfies (6.1). As an example, suppose F. / D  @ =@x and the expansion func-
tions are the Fourier components 'k D eikx , �N � k � N . If this Fourier series
is substituted into (6.1), the nonlinear product in F. / introduces spatial varia-
tions at wave numbers that were not present in the initial truncated series, e.g.,
F.eiNx/ D iN ei2Nx . A total of 4N C1 equations are obtained after substituting the
expansion (6.2) into (6.1) and requiring that the coefficients of each Fourier mode
sum to zero. It is not possible to choose the 2N C 1 Fourier coefficients in the orig-
inal expansion to satisfy these 4N C 1 equations simultaneously. The best one can
do is to select the expansion coefficients to minimize the error.

Since the actual error in the approximate solution k ��k cannot be determined,
the most practical way to try to minimize the error is to minimize the residual,

R.�/ D @�

@t
C F.�/; (6.3)

which is the amount by which the approximate solution fails to satisfy the govern-
ing equation. Three different strategies are available for constraining the size of the
residual. Each strategy leads to a system of N coupled ordinary differential equa-
tions for the time-dependent coefficients a1.t/; : : : ; aN .t/. This transformation of
the partial differential equation into a system of ordinary differential equations is
similar to that which occurs in grid-point methods when the spatial derivatives are
replaced with finite differences.

One strategy for constraining the size of the residual is to pick the ak.t/ to mini-
mize the square of the L2 norm of the residual:

.kR.�/k2/2 D
Z
S

ŒR.�.x//�2 dx:

A second approach, referred to as collocation, is to require the residual to be zero at
a discrete set of grid points:

R.�.j�x// D 0 for all j D 1; : : : ; N :
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The third strategy, known as the Galerkin approximation, requires the residual to be
orthogonal to each of the expansion functions, i.e.,

Z
S

R.�.x//'k.x/ dx D 0 for all k D 1; : : : ; N : (6.4)

Different series-expansion methods rely on one or more of the preceding ap-
proaches. The collocation strategy is used in the pseudospectral method and in some
finite-element formulations, but not in the spectral method. The L2-minimization
and Galerkin criteria are equivalent when applied to a problem of the form (6.1),
and are the basis of the spectral method. The Galerkin approximation is also used
extensively in finite-element schemes and, not surprisingly, in the discontinuous
Galerkin method.

The equivalence of the L2-minimization criterion and the Galerkin approxi-
mation can be demonstrated as follows. According to (6.3), the residual depends
on both the instantaneous values of the expansion coefficients and their time ten-
dencies. The expansion coefficients are determined at the outset from the initial
conditions and are known at the beginning of any subsequent integration step. The
criteria for constraining the residual are not used to obtain the instantaneous values
of the expansion coefficients, but rather to determine their time evolution. If the rate
of change of the kth expansion function is calculated to minimize .kR.�/k2/2, a
necessary criterion for a minimum may be obtained by differentiation with respect
to the quantity dak=dt � Pak

0 D d

d. Pak/
�Z

S

.R.�//2 dx

�

D d

d. Pak/

8<
:
Z
S

"
NX
nD1

Pan'n C F

 
NX
nD1

an'n

!#2
dx

9=
;

D 2

Z
S

"
NX
nD1

Pan'n C F

 
NX
nD1

an'n

!#
'k dx (6.5)

D 2

Z
S

R.�/'k dx: (6.6)

The second derivative of .kR.�/k2/2 with respect to Pak is 2.k'kk2/2, which is
positive. Thus, the extremum condition (6.6) is associated with a true minimum of
.kR.�/k2/2, and the Galerkin requirement is identical to the condition obtained by
minimizing the L2 norm of the residual.

As derived in (6.5), the Galerkin approximation and the L2-minimization of the
residual both lead to a system of ordinary differential equations for the expansion
coefficients of the form

NX
nD1

Mn;k

dan

dt
D �

Z
S

"
F

� NX
nD1

an'n

�
'k

#
dx for all k D 1; : : : ; N ; (6.7)
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where, following terminology from continuum mechanics,

Mn;k D
Z
S

'n'k dx

are the components of the mass matrix M. The initial conditions for the preceding
system of differential equations are obtained by choosing a1.t0/; : : : ; aN .t0/ such
that �.x; t0/ provides the “best” approximation to f .x/. The possible strategies for
constraining the initial error are identical to those used to ensure that the residual
is small. As before, the choice that minimizes the L2 norm of the initial error also
satisfies the Galerkin requirement that the initial error be orthogonal to each of the
expansion functions,

Z
S

 
NX
nD1

an.t0/'n.x/ � f .x/
!
'k.x/ dx D 0 for all k D 1; : : : ; N ;

or equivalently,

NX
nD1

Mn;kan D
Z
S

f .x/'k.x/ dx for all k D 1; : : : ; N : (6.8)

6.2 The Spectral Method

The characteristic that distinguishes the spectral method from the finite-element
method is that the expansion functions form an orthogonal set. Since the expansion
functions are orthogonal,Mn;k is zero unless n D k, and the system of differential
equations for the coefficients (6.7) reduces to

dak

dt
D � 1

Mk;k

Z
S

"
F

� NX
nD1

an'n

�
'k

#
dx for all k D 1; : : : ; N : (6.9)

This is a particularly useful simplification, since explicit algebraic equations for
each ak.t C �t/ may be easily obtained when the time derivatives in (6.9) are re-
placed with finite differences. In contrast, the finite-difference approximation of the
time derivatives in the more general form (6.7) introduces a coupling between all the
expansion coefficients at the new time level, and the solution of the resulting implicit
system of algebraic equations may require considerable computation. The orthogo-
nality of the expansion functions also reduces the expression for the initial value of
each expansion coefficient (6.8) to

ak.t0/ D 1

Mk;k

Z
S

f .x/'k.x/ dx: (6.10)
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The choice of some particular family of orthogonal expansion functions is
largely dictated by the geometry of the problem and by the boundary conditions.
Fourier series are well suited to rectangular domains with periodic boundary condi-
tions. Chebyshev polynomials are a possibility for nonperiodic domains. Associated
Legendre functions are useful for representing the latitudinal dependence of a func-
tion on the spherical Earth. Since Fourier series lead to the simplest formulae, they
will be used to illustrate the elementary properties of the spectral method. The spe-
cial problems associated with spherical geometry will be discussed in Sect. 6.4.

6.2.1 Comparison with Finite-Difference Methods

In Chap. 2, a variety of finite-difference methods were tested on the one-dimensional
advection equation

@ 

@t
C c

@ 

@x
D 0: (6.11)

Particular emphasis was placed on the simplest case, in which c was constant. When
c is constant, it is easy to find expansion functions that are eigenfunctions of the
spatial derivative term in (6.11). As a consequence, the problem of advection by
a constant wind is almost too simple for the spectral method. Nevertheless, the
constant-wind case reveals some of the fundamental strengths and weaknesses of
the spectral method and allows a close comparison between the spectral method and
finite-difference schemes.

Suppose, therefore, that c is constant and solutions are sought to (6.11) on the
periodic domain �π � x � π, subject to the initial condition  .x; 0/ D f .x/. A
Fourier series expansion

�.x; t/ D
NX

kD�N
ak.t/e

ikx (6.12)

is the natural choice for this problem. Since individual Fourier modes are eigen-
functions of the differential operator in (6.11), evolution equations for the Fourier
coefficients of the form

dak

dt
C ickak D 0 (6.13)

may be obtained by directly substituting (6.12) into the advection equation. In this
atypically simple case, the residual is zero, and it is not necessary to adopt any
particular procedure to minimize its norm. Nevertheless, (6.13) can also be obtained
through the Galerkin requirement that the residual be orthogonal to each of the
expansion functions. To apply the Galerkin formulation it is necessary to generalize
the definition of orthogonality to include complex-valued functions. Two complex-
valued functions g.x/ and h.x/ are orthogonal over the domain S ifZ

S

g.x/h�.x/ dx D 0;
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where h�.x/ denotes the complex conjugate of h.x/.1 As an example, note that for
integer values of n and m,

Z �

��
einxe�imx dx D

8̂̂
<
ˆ̂:

ei.n�m/x

i.n �m/

ˇ̌
ˇ̌̌�
��

D 0; if m ¤ n;

2π; if m D n,

which is just the well-known orthogonality condition for two Fourier modes. Using
this orthogonality relation and setting f . / D c@ =@x, with c constant, reduces
(6.9) to (6.13).

If the ordinary differential equation (6.13) is solved analytically (in practical
applications it must be computed numerically), solutions have the form ak.t/ D
exp.�ickt/. Thus, in the absence of time-differencing errors, the frequency of
the kth Fourier mode is identical to the correct value for the continuous problem
! D ck. The spectral approximation does not introduce phase-speed or amplitude
errors – even in the shortest wavelengths! The ability of the spectral method to cor-
rectly capture the amplitude and phase speed of the shortest resolvable waves is
a significant advantage over conventional grid-point methods, in which the spatial
derivative is approximated by finite differences, yet surprisingly the spectral method
is not necessarily a good technique for modeling short-wavelength disturbances. The
problem lies in the fact that it is only those waves retained in the truncated series ex-
pansion that are correctly represented in the spectral solution. If the true solution has
a great deal of spatial structure on the scale of the shortest wavelength in the trun-
cated series expansion, the spectral representation will not accurately approximate
the true solution.

The problems with the representation of short-wavelength features in the spectral
method are illustrated in Fig. 6.1, which shows ten grid-point values forming a 2�x-
wide spike against a zero background on a periodic domain with a uniformly spaced
grid. Also shown is the curve defined by the truncated Fourier series passing through
those ten grid-point values. The Fourier series approximation to the 2�x spike ex-
hibits large oscillations about the zero background state on both sides of the spike.
Now suppose that the data in Fig. 6.1 represent the initial condition for a constant-
wind-speed advection problem. The overshoots and undershoots associated with the
Fourier approximation will not be apparent at the initial time if the data are sampled
only at the points on the discrete mesh. If time-differencing errors are neglected,
the grid-point values will also be exact at those subsequent times at which the ini-
tial distribution has translated an integral number of grid intervals. The grid-point
values will, however, reveal the oscillatory error at intermediate times. The worst
errors in the grid-point values will occur at times when the solution has traveled
n C 1=2 grid intervals, where n is any integer. In this particular example, the error
on the discrete grid does not accumulate with time; it oscillates instead, achieving

1 Multiplication by the complex conjugate ensures that if g.x/ D a.x/C ib.x/ with a and b
real, then Z

S

g.x/g�.x/ dx D
Z

S

.a2 C b2/ dx:
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ba

Fig. 6.1 a Ten periodic grid-point values exhibiting a piecewise-linear 2�x spike, and the trun-
cated Fourier series approximation passing through those ten points. b Values of the truncated
Fourier series sampled at the same grid-point location after translating the curve one half grid
point to the right

a minimum when the solution has translated an integral number of grid intervals.
The maximum error is limited by the error generated when the initial condition is
projected onto the truncated Fourier series.

6.2.1.1 The Finite Fourier Transform

There is a simple relationship between the nine2 independent grid-point values in
Fig. 6.1 and the nine coefficients determining the truncated Fourier series passing
through those points. If the Fourier series expansion of a real-valued function is
truncated at wave numberN , the set of Fourier coefficients contains 2N C 1 pieces
of data. Assuming that the Fourier expansion functions are periodic on the domain
0 � x � 2π, an equivalent amount of information is contained by the 2N C 1

function values �.xj ; t/, where

xj D j

�
2π

2N C 1

�
and j D 1; : : : ; 2N C 1:

It is obvious that the set of Fourier coefficients a�N .t/; : : : ; aN .t/ defines the grid-
point values �.xj ; t/ through the relation

�.xj ; t/ D
NX

kD�N
ak.t/e

ikxj : (6.14)

Although it is not as self-evident, the 2N C 1 Fourier coefficients may also be
determined from the 2N C 1 grid-point values. An exact algebraic expression for
an.t/ can be obtained by noting that

2NC1X
jD1

�.xj ; t/e�inxj D
2NC1X
jD1

� NX
mD�N

am.t/eimxj

�
e�inxj

D
NX

mD�N
am.t/

� 2NC1X
jD1

eimxj e�inxj

�
: (6.15)

2 The tenth grid-point value is redundant information because the solution is periodic.
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Further simplification of the preceding equation is possible because the final sum-
mation in (6.15) obeys an orthogonality condition on the discrete mesh. Using the
definition of xj ,

2NC1X
jD1

eimxj e�inxj D
2NC1X
jD1

�
e

i2�.m�n/
2N C1

�j
: (6.16)

Ifm D n, then (6.16) sums to 2N C1; form ¤ n the formula for the sum of a finite
geometric series,

1C r C r2 C � � � C rn D 1 � rnC1

1 � r ; (6.17)

may be used to reduce (6.16) to

2NC1X
jD1

eimxj e�inxj D e
i2�.m�n/

2N C1
�
1 � ei2�.m�n/	

1 � e
i2�.m�n/

2N C1

D 0: (6.18)

Using these orthogonality properties, (6.15) becomes

an.t/ D 1

2N C 1

2NC1X
jD1

�.xj ; t/e
�inxj : (6.19)

The relations (6.19) and (6.14), known as finite Fourier transforms, are discretized
analogues to the standard Fourier transform and its inverse. The integrals in the
continuous transforms are replaced by finite sums in the discrete expressions. These
formulae, or more specifically the mathematically equivalent fast Fourier transform
(FFT) algorithms, are essential for obtaining efficient spectral solutions in many
practical applications where it is advantageous to transform the solution back and
forth between wave-number space and physical space once during the execution of
every time step.

6.2.1.2 The Ordering of the Coefficients in Typical FFTs

Although finite Fourier transforms of vectors with an odd number of elements yield
formulae most directly analogous to those for continuous Fourier series, all efficient
FFTs use an even number of grid points. The ordering of the individual Fourier
modes in typical FFTs is also very different from the ordering in more conventional
complex Fourier series. In the following we obtain relations equivalent to (6.14) and
(6.19) in the form in which they are employed in typical FFTs.

Let �j D �.xj / be the vector of M grid-point values on the periodic mesh

xj D 2π.j � 1/
M

; j D 1; 2; : : : ;M:

Assuming M is even, define N D M=2 and !M D e2πi=M . Note .!M /M D 1,
implying that !M is an Mth root of unity. One may express the discrete Fourier
series as
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�j D
NX

kD�NC1
akeikxj D

NX
kD�NC1

akeik2�.j�1/=M D
NX

kD�NC1
ak!

k.j�1/
M ;

or splitting up the summation, as

�j D
�1X

kD�NC1
ak!

k.j�1/
M C

NX
kD0

ak!
k.j�1/
M : (6.20)

Using
!
.k�M/.j�1/
M D !

k.j�1/
M 11�j D !

k.j�1/
M ;

we can write (6.20) as

�j D
2N�1X
kDNC1

ak�M!k.j�1/
M C

NX
kD0

ak!
k.j�1/
M : (6.21)

Defining a new vector of coefficients bk such that

b1 D a0; b2 D a1; : : : ; bNC1 D aN ; bNC2 D a�NC1; bNC3
D a�NC2; : : : ; b2N D a�1;

(6.21) takes the compact form

�j D
MX
kD1

bk!
.k�1/.j�1/
M : (6.22)

Also, using the discrete orthogonality condition, one can show that

bk D 1

M

MX
jD1

�j!
�.k�1/.j�1/
M : (6.23)

As in (6.23), a typical FFT routine yields an array in which the Fourier coefficients
ak are ordered by increasing positive wave number up through elementM=2C1 (for
M even) and then ordered by increasing negative wave number through elementM .
Note that the equations corresponding to (6.22) and (6.23) may vary among different
FFT routines because neither the placement of the 1=M normalization factor nor the
choice of the equation containing the negative exponent is standardized.

6.2.1.3 The Equivalent Grid-Point Method

If c is constant, the spectral solution to the advection equation (6.11) can be recast
in the form of an equivalent finite-difference method. Observe that

d�.xj ; t/

dt
D

NX
nD�N

dan

dt
einxj

D �
NX

nD�N
incan.t/e

inxj
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D �c
NX

nD�N
in

0
@ 1

2N C 1

2NC1X
kD1

�.xk ; t/e
�inxk

1
A einxj

D �c
2NC1X
kD1

Cj;k �.xk ; t/;

where

Cj;k D 1

2N C 1

NX
nD�N

inein.xj �xk/:

The finite-difference coefficient Cj;k depends only on the difference between j and
k, and is zero if j D k. If j ¤ k, a simpler expression for Cj;jC` can be obtained
by defining

s D xj � xjC` D �`
�

2π
2N C 1

�
;

in which case

Cj;jC` D 1

2N C 1

d

ds

 
NX

nD�N
eins

!
D 1

2N C 1

d

ds

 
e�iNs

2NX
nD0

.eis/
n

!
:

Using (6.17) to sum the finite geometric series, differentiating, and noting that
ei.2NC1/s D 1, the preceding expression becomes

Cj;jC` D ei.NC 1
2
/s

2 sin
�
s
2

	 D .�1/`C1
2 sin

�
`π

2NC1
� ;

which implies that sinceCj;jC` D �Cj;j�`, the equivalent finite-difference formula
is centered in space.

Two grid-point values are used in the centered second-order finite-difference
approximation to @ =@x. A centered fourth-order difference utilizes four points;
the sixth-order difference requires six grid points. Every grid point on the numer-
ical mesh (except the central point) is involved in the spectral approximation of
@ =@x. As will be shown in the next section, the use of all these grid points al-
lows the spectral method to compute derivatives of smooth functions with very high
accuracy. Merilees and Orszag (1979) have compared the weighting coefficients
for the spectral method on a 17-point periodic grid with the weighting coefficients
for centered second-order through 16th-order finite differences. Their calculations
appear in Table 6.1, which shows that the influence of remote grid points on the
spectral calculation is much greater than the remote influence in any of the finite-
difference formulae. The large degree of remote influence in the spectral method
has been a source of concern, since the true domain of dependence for the constant-
wind-speed advection equation is a straight line. Practical evidence suggests that
this remote influence is not a problem provided that enough terms are retained in the
truncated Fourier series to adequately resolve the spatial variations in the solution.
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Table 6.1 Comparison of weight accorded to each grid point as a function of its distance to the
central grid point in centered finite differences and in a spectral method employing 17 expansion
coefficients

�x away from
central point

2nd
order

4th
order

6th
order

16th
order Spectral

1 0.500 0.667 0.750 0.889 1.006
2 �0:083 �0:150 �0:311 �0:512
3 0.017 0.113 0.351
4 �0:035 �0:274
5 0.009 0.232
6 �0:001 �0:207
7 0.000 0.192
8 �0:000 �0:186

6.2.1.4 Order of Accuracy

The accuracy of a finite difference is characterized by the truncation error, which is
computed by estimating a smooth function’s values at a series of grid points through
the use of Taylor series, and by substituting those Taylor series expansions into the
finite-difference formula. The discrepancy between the finite-difference calculation
and the true derivative is the truncation error and is usually proportional to some
power of the grid interval. A conceptually similar characterization of accuracy is
possible for the computation of spatial derivatives via the spectral method.

The basic idea is to examine the difference between the actual derivative of a
smooth function and the approximate derivative computed from the spectral rep-
resentation of the same function. Suppose that a function  .x/ is periodic on the
domain �π � x � π and that the first few derivatives of  are continuous. Then  
and its first derivative can be represented by the convergent Fourier series

 .x/ D
1X

kD�1
akeikx; (6.24)

and
@ 

@x
D

1X
kD�1

ikakeikx:

If  is represented by a spectral approximation, the series will be truncated at some
wave number N , but the Fourier coefficients for all jkj � N will be identical to
those in the infinite series (6.24).3 Thus, the error in the spectral representation
of @ =@x is

3 To ensure that the ak are identical in both the infinite and the truncated Fourier series, it is
necessary to compute the integral in the Fourier transform,

ak D 1

2π

Z �

��

 .x/e�ikx dx;

with sufficient accuracy to avoid aliasing error.



292 6 Series-Expansion Methods

E D
X

jkj>N
ikakeikx :

If the pth derivative of  is piecewise continuous, and all lower-order derivatives
are continuous, the Fourier coefficients satisfy the inequality

jak j � C

jkjp ; (6.25)

where C is a positive constant (see Problem 10). Thus,

jEj � 2

1X
kDNC1

C

jkjp�1 � 2C

Z 1

N

ds

sp�1 D 2C

p � 2

�
1

N p�2

�
:

As demonstrated in the preceding section, a 2N C 1 mode spectral repre-
sentation of the derivative is equivalent to a finite-difference formula involving
2N C 1 grid points equally distributed throughout the domain. The spectral com-
putation is therefore equivalent to a finite-difference computation with grid spacing
�xe D 2π=.2N C 1/. Thus,�xe / N�1 and

jEj � QC.�xe/
p�2; (6.26)

where QC is another constant. It follows that the effective order of accuracy of the
spectral method is determined by the smoothness of  . If  is infinitely differen-
tiable, the truncation error in the spectral approximation goes to zero faster than any
finite power of �xe. In this sense, spatial derivatives are represented with infinite-
order accuracy by the spectral method.

The preceding error analysis suggests that if a Fourier series approximation to
 .x/ (as opposed to d =dx) is truncated at wave number N , the error will be
O.1=N p�1/. This error estimate is actually too pessimistic. As noted by Gottlieb
and Orszag (1977, p. 26), (6.25) can be tightened, because if the pth derivative of
 is piecewise continuous and all lower-order derivatives are continuous,

jak j � 1

jkjp as k ! ˙1: (6.27)

Away from the points where dp =dxp is discontinuous, the maximum-norm er-
ror in the truncated Fourier series decays at a rate similar to the magnitude of the
first few neglected Fourier coefficients, and according to (6.27) this rate is faster
than O.1=Np/. In practice, the error is O.1=NpC1/ away from the points where
dp =dxp is discontinuous and O.1=Np/ near the discontinuities (Fornberg 1996,
p. 13).

6.2.1.5 Time Differencing

The spectral representation of the spatial derivatives reduces the original par-
tial differential equation to the system of ordinary differential equations (6.9).
In most practical applications, this system must be solved numerically. The time-
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differencing schemes discussed in Chap. 2 provide a number of possibilities, among
which the leapfrog and Adams–Bashforth methods are the most common choices.
Integrations performed using the spectral method typically require smaller time
steps than those used when spatial derivatives are computed with low-order finite
differences. This decrease in the maximum allowable time step is a natural conse-
quence of the spectral method’s ability to correctly resolve the spatial gradient in a
2�x wave.

To better examine the source of this time-step restriction, consider the case of
advection by a constant wind speed c. When c is constant, the time dependence
of the kth Fourier component is governed by (6.13), which is just the oscillation
equation (2.19) with � D �ck. The maximum value of jkj is N D π=�xe �
1=2 � π=�xe, where �xe is the equivalent mesh size introduced in connection
with (6.26) and π=�xe � 1=2 if the total domain Œ�π; π� is divided into at least ten
grid intervals. If the oscillation equation is integrated using the leapfrog scheme, the
stability requirement is j��t j � 1. Thus, the time step in a stable leapfrog spectral
solution must satisfy jc�t=�xej � 1=π.

Now suppose the advection equation (6.11) is approximated using a centered
second-order spatial difference. The time evolution of the approximate solution
at the j th grid point is, once again, governed by the oscillation equation. In this
case, however, � D �c sin.k�x/=�x. The misrepresentation of the shorter wave-
lengths by the finite difference reduces the maximum value of j�j to c=�x, and the
leapfrog stability criterion relaxes to jc�t=�xj � 1. If higher-order finite differ-
ences are used, the error in the shorter wavelengths is reduced, and the maximum
allowable value of jc�t=�xj decreases to 0.73 for a fourth-order difference, and
to 0.63 for a sixth-order difference. Machenhauer (1979) noted that as the order of
a centered finite-difference approximation approaches infinity, the maximum value
of jc�t=�xj for which the scheme is stable approaches 1=π. The maximum stable
time step for the leapfrog spectral method is therefore consistent with the interpre-
tation of the spectral method as an infinite-order finite-difference scheme.

6.2.2 Improving Efficiency Using the Transform Method

The computational effort required to obtain spectral solutions to the advection equa-
tion ceases to be trivial if there are spatial variations in the wind speed. In such
circumstances, the Galerkin requirement (6.9) becomes

dak

dt
D � i

2�

NX
nD�N

nan

Z �

��
c.x; t/ei.n�k/x dx: (6.28)

Although it may be possible to evaluate the integrals in (6.28) exactly for cer-
tain special flows, in most instances the computation must be done by numerical
quadrature. In a typical practical application, c.x; t/ would be available at the same
spatial resolution as  .x; t/; indeed, many models might include equations that
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simultaneously predict c and  . Suppose, therefore, that c is given by the Fourier
series

c.x; t/ D
NX

mD�N
cm.t/eimx : (6.29)

Substitution of this series expansion into (6.28) gives

dak

dt
D � i

2π

NX
nD�N

NX
mD�N

ncman

Z π

�π
ei.nCm�k/x dx;

which reduces, by the orthogonality of the Fourier modes, to

dak

dt
D �

X
mCnDk

jmj; jnj�N

incman: (6.30)

The notation below the summation indicates that the sum should be performed for
all indices n and m such that jnj � N , jmj � N , and nCm D k.

Although the expression (6.30) is relatively simple, it is not suitable for imple-
mentation in large, high-resolution numerical models. The number of arithmetic
operations required to evaluate the time derivative of one Fourier coefficient via
(6.30) is proportional to the total number of Fourier coefficients, M � 2N C 1.
The total number of operations required to advance the solution one time step is
thereforeO.M 2/. On the other hand, the number of calculations required to evalu-
ate a finite-difference formula at an individual grid point is independent of the total
number of grid points. Thus, assuming there are M points on the numerical grid, a
finite-difference solution may be advanced one time step with justO.M/ arithmetic
operations. Spectral models are therefore less efficient than finite-difference models
when the approximate solution is represented by a large number of grid points –
or equivalently, a large number of Fourier modes. Moreover, the relative difference
in computational effort increases rapidly with increases in M . As a consequence,
spectral models were limited to just a few Fourier modes until the development of
the transform method by Orszag (1970) and Eliasen et al. (1970).

The key to the transform method is the efficiency with which FFTs can be
used to swap the solution between wave-number space and physical space. Only
O.M logM/ operations are needed to convert a set of M Fourier coefficients, rep-
resenting the Fourier transform of �.x/, into the M grid-point values �.xj /.4 The
basic idea behind the transform method is to compute product terms like c@ =@x by
transforming c and @ =@x from wave-number space to physical space (which takes
O.M logM/ operations), then multiplying c and @ =@x at each grid point (requir-
ing O.M/ operations), and finally transforming the product back to wave-number
space (which again uses O.M logM/ operations). The total number of operations
required to evaluate c@ =@x via the transform technique is thereforeO.M logM/,
and when the number of Fourier components is large, it is far more efficient to

4 To be specific, if M is a power of 2, a transform can be computed in 2M log2M operations
using the FFT algorithm.
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perform these O.M logM/ operations than the O.M 2/ operations necessary for
the direct computation of (6.30) in wave-number space. To appreciate the degree to
which the transform method can improve efficiency, suppose the spectral method is
used in a two-dimensional problem in which the spatial dependence along each co-
ordinate is represented by 128 Fourier modes; then an order-of-magnitude estimate
of the increase in speed allowed by the transform method is

O

�
128 	 128

log2.128 	 128/
�

D O.1000/:

The transform method is implemented as follows. Suppose that one wishes to
determine the Fourier coefficients of the product of �.x/ and �.x/ such that

�.x/�.x/ D
KX

kD�K
pkeikx ;

where � and � are periodic on the interval 0 � x � 2π and

�.x/ D
KX

mD�K
ameimx; �.x/ D

KX
nD�K

bneinx (6.31)

As just discussed, it is more efficient to transform � and � to physical space, com-
pute their product in physical space, and transform the result back to wave-number
space than to compute pk from the “convolution sum”

pk D
X

mCnDk
jmj; jnj�K

ambn:

The values of pk obtained with the transform technique will be identical to those
computed by the preceding summation formula, provided that there is sufficient
spatial resolution to avoid aliasing error5 during the computation of the product
terms on the physical-space mesh. Suppose that the physical-space mesh is defined
such that

xj D 2πj
2N C 1

; where j D 1; : : : ; 2N C 1: (6.32)

It might appear natural to choseN D K , thereby equating the number of grid points
on the physical mesh with the number of Fourier modes. It is, however, necessary
to choose N > K to avoid aliasing error.

The amount by whichN must exceedK may be most easily determined using the
graphical diagram shown in Fig. 6.2, which is similar to Fig. 4.8 in Sect. 4.4.1. The
wave number is plotted along the horizontal axis; without loss of generality, only
positive wave numbers will be considered. The cutoff wave number in the original

5 Aliasing error occurs when a short-wavelength fluctuation is sampled at discrete intervals and
misinterpreted as a longer-wavelength oscillation. As discussed in Sect. 4.4.1, aliasing error can be
generated in attempting to evaluate the product of two poorly resolved waves on a numerical mesh.
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wave number

2Kπ
Δxe

k

0

original expansion

K

~
(k1 + k2)

Fig. 6.2 Aliasing of k1 C k2 into Qk such that j Qkj appears as the symmetric reflection of k1 C k2

about the cutoff wave number on the high-resolution physical mesh

expansion isK , and the cutoff wave number on the high-resolution physical mesh is
π=�xe. Any aliasing error that results from the multiplication of waves with wave
numbers k1 and k2 will appear at wave number Qk D k1Ck2�2π=�xe. The goal is
to choose a sufficiently large value for π=�xe to guarantee that no finite-amplitude
signal is aliased into those wave numbers retained in the original Fourier expansion,
which lie in the interval �K � k � K . The highest wave number that will have
nonzero amplitude after the binary product has been computed on the physical mesh
is 2K . Thus, there will be no aliasing error if

K <

ˇ̌
ˇ̌ 2K � 2π

�xe

ˇ̌
ˇ̌ D 2π

�xe
� 2K:

Using the definition of �xe implied by (6.32), the criteria for the elimination of
aliasing error reduces to N > .3K � 1/=2.

The preceding result may be verified algebraically by considering the formula
for Qpk , the kth component of the finite Fourier transform computed from the grid-
point values of �� on the physical mesh,

Qpk � 1

M

MX
jD1

�.xj /�.xj /e�ikxj : (6.33)

Here M D 2N C 1 is the total number of grid points on the physical mesh. Let the
values of �.xj / and �.xj / appearing in the preceding formula be expressed in the
form

�.xj / D
NX

mD�N
ameimxj ; �.xj / D

NX
nD�N

bneinxj ;

where those values of an and bm that were not included in the original series expan-
sions (6.31) are zero, i.e.,

a` D b` D 0 for K < j`j � N: (6.34)

Substituting these expressions for �.xj / and �.xj / into (6.33), one obtains

Qpk D
NX

mD�N

NX
nD�N

ambn

0
@ 1

M

MX
jD1

ei.mCn�k/xj

1
A : (6.35)
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Since xj D 2πj=M , each term in the inner summation in (6.35) is unity when
mC n � k is 0, M , or �M . The inner summation is zero for all other values of m
and n by the discrete orthogonality condition (6.18). Thus, (6.35) may be written

Qpk D
X

mCnDk
jmj; jnj�N

ambn C
X

mCnDkCM
jmj; jnj�N

ambn C
X

mCnDk�M
jmj; jnj�N

ambn; (6.36)

where the last two terms represent aliasing error, only one of which can be nonzero
for a given value of k. The goal is to determine the minimum resolution required
on the physical mesh (or equivalently, the smallest M ) that will prevent aliasing
errors from influencing the value of p�

k
associated with any wave number retained

in the original Fourier expansion. Any aliasing into a negative wave number will
arise through the summation

X
mCnDkCM

jmj; jnj�N

ambn:

If follows from (6.34) that ambn D 0 ifmCn > 2K , so for a given wave number k
all the terms in the preceding summation will be zero ifmCn D kCM > 2K . Thus,
there will be no aliasing error in p�

k
for those wave numbers retained in the original

expansion if M satisfies �K C M > 2K . An equivalent condition expressed in
terms of the wave numberN is N > .3K � 1/=2, which is the same result obtained
using Fig. 6.2. A similar argument may be used to show that this same condition also
prevents the third term in (6.36) from generating aliasing error in the retained wave
numbers. The choice N D 3K=2 is therefore sufficient to ensure that pk D Qpk
for all jkj � K and guarantee that the transform method yields the same algebraic
result as the convolution sum in wave-number space. To maximize the efficiency of
the FFTs used in practical applications,N is often chosen to be the smallest integer
exceeding .3k � 1/=2 that contains no prime factor larger than 5.

The procedure used to implement the transform method may be summarized as
follows. To be concrete, suppose that a solution to the variable-wind-speed advec-
tion equation is sought on the periodic domain 0 � x � 2π and that c.x; t/ is being
simultaneously predicted by integrating a second unspecified equation. Let both �
and c be approximated by Fourier series expansions of the form (6.14) and (6.29)
with cutoff wave numbersN D K .

1. Pad the coefficients in the Fourier expansions of c and � with zeros by defining
ak D ck D 0, for K < jkj � 3K=2.

2. Multiply each ak by ik to compute the derivative of � in wave-number space.
3. Perform two inverse FFTs to obtain c.xj / and @�.xj /=@x on the physical-space

grid, whose nodal points are located at xj D 2πj=.3K C 1/.
4. Compute the product c.xj /@�.xj /=@x on the physical-space grid.
5. (If terms representing additional forcing are present in the governing equation,

and if those terms are more easily evaluated on the physical mesh than in wave-
number space, evaluate those terms now and add the result to c.xj /@�.xj /=@x.)
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6. FFT c.xj /@�.xj /=@x to obtain the total forcing at each wave number, i.e., to
get the right-hand side of (6.30). Discard the forcing at wave numbers for which
jkj > K .

7. Step the Fourier coefficients forward to the next time level using an appropriate
time-differencing scheme.

Note that the transform method allows processes that are difficult to describe math-
ematically in wave-number space to be conveniently evaluated during the portion of
the integration cycle when the solution is available on the physical mesh. For exam-
ple, if � represents the concentration of water vapor, any change in � produced by
the condensation or evaporation of water depends on the degree to which the vapor
pressure at a given grid point exceeds the saturation vapor pressure. The degree of
supersaturation is easy to determine in physical space but very difficult to assess in
wave-number space.

6.2.3 Conservation and the Galerkin Approximation

The mathematical equations describing nondissipative physical systems often con-
serve domain averages of quantities such as energy and momentum. When spectral
methods are used to approximate such systems, the numerical solution replicates
some of the important conservation properties of the true solution. To examine the
conservation properties of the spectral method for a relatively general class of prob-
lems, consider those partial differential equations of the form (6.1) for which the
forcing has the property that �F.�/ D 0, where the overbar denotes the integral
over the spatial domain and � is any sufficiently smooth function that satisfies the
boundary conditions.

An example of this type of problem is the simulation of passive tracer transport
by nondivergent flow in a periodic spatial domain, which is governed by the equation

@ 

@t
C v � r D 0:

In this case F.�/ D v � r� . One can verify that �F.�/ D 0 if � is any periodic
function with continuous first derivatives by noting that

Z
D

�.v � r�/ dV D 1

2

Z
D

r � .�2v/� �2.r � v/ dV D 0;

where the second equality follows from periodicity and the nondivergence of the
velocity field.

If � is an approximate spectral solution to (6.1) in which the time dependence is
not discretized, then

@�

@t
C F.�/ D R.�/; (6.37)
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whereR.�/ denotes the residual. Suppose that the partial differential equation being
approximated is a conservative system for which �F.�/ D 0, then multiplying
(6.37) by � and integrating over the spatial domain yields

1

2

@�2

@t
D �R.�/:

The right side of the preceding equation is zero because � is a linear combination
of the expansion functions and R.�/ is orthogonal to each individual expansion
function. As a consequence,

d

dt
k�k2 D 0; (6.38)

implying that spectral approximations to conservative systems are not subject to
nonlinear instability because (6.38) holds independent of the linear or nonlinear
structure of F. /. The only potential source of numerical instability is in the dis-
cretization of the time derivative.

Neglecting time-differencing errors, spectral methods will also conserve � pro-
vided that F.�/ D 0, where once again � is any sufficiently smooth function that
satisfies the boundary conditions. The conservation of � can be demonstrated by
integrating (6.37) over the domain to obtain

@�

@t
D R.�/ / R.�/'0 D 0;

where '0 is the lowest-wave-number orthogonal expansion function, which is a
constant.

6.3 The Pseudospectral Method

The spectral method uses orthogonal expansion functions to represent the numerical
solution and constrains the residual error to be orthogonal to each of the expansion
functions. As discussed in Sect. 6.1, there are alternative strategies for constraining
the size of the residual. The pseudospectral method utilizes one of these alternative
strategies: the collocation approximation, which requires the residual to be zero at
every point on some fixed mesh. Spectral and pseudospectral methods might both
represent the solution with the same orthogonal expansion functions; however, as
a consequence of the collocation approximation, the pseudospectral method is ba-
sically a grid-point scheme – series expansion functions are used only to compute
derivatives.

To illustrate the pseudospectral procedure, suppose that solutions are sought to
the advection equation (6.11) on the periodic domain 0 � x � 2π and that the
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approximate solution � and the spatially varying wind speed c.x/ are represented
by Fourier series truncated at wave numberK:

�.x; t/ D
KX

nD�K
aneinx; c.x; t/ D

KX
mD�K

cmeimx :

The collocation requirement at grid point j is

KX
nD�K

dan

dt
einxj C

KX
mD�K

cmeimxj

KX
nD�K

inaneinxj D 0: (6.39)

Enforcing R.�.xj // D 0 at 2K C 1 points on the physical-space grid leads to a
solvable linear system for the time derivatives of the 2KC 1 Fourier coefficients. In
the case of the Fourier spectral method, the most efficient choice for the location of
these points is the equally spaced mesh

xj D j

�
2π

2K C 1

�
; j D 1; 2; : : : ; 2K C 1: (6.40)

There is no need actually to solve the linear system for the dak=dt . It is more
efficient to write (6.39) in the equivalent form

d�

dt
.xj /C c.xj /

@�

@x
.xj / D 0; (6.41)

where
@�

@x
.xj / D

KX
nD�K

inaneinxj : (6.42)

The grid-point nature of the pseudospectral method is apparent in (6.41), which is
similar to the time-tendency equations6 that arise in differential–difference approxi-
mations to the advection equation, except that the derivative is computed in a special
way. Instead of using finite differences, one calculates the spatial derivative at each
time step by first computing the Fourier coefficients through the discrete Fourier
transform

ak.t/ D 1

2K C 1

2KC1X
jD1

�.xj ; t/e�ikxj ;

then differentiating each Fourier mode analytically and inverse transforming accord-
ing to (6.42). This procedure requires two FFTs per time step.

The advantage of the pseudospectral method relative to conventional finite-
difference schemes is that provided the solution is smooth, the pseudospectral
method is more accurate. As discussed in Sect. 3.2.1, the error in the Fourier

6 As in conventional spectral and finite-difference techniques, the time derivative would be dis-
cretized using the leapfrog scheme, the Adams–Bashforth scheme, or some other appropriate
method.
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approximation to the derivative of an infinitely differentiable function will decrease
more rapidly than any finite power of �x as the grid resolution is increased. Thus,
like the spectral method, the pseudospectral method is essentially an infinite-order
finite-difference scheme. The disadvantage of the pseudospectral method is that it
requires more computation than conventional finite-difference schemes when both
methods are used with the same spatial resolution. If M is the total number of
grid points, the FFTs in the pseudospectral computation requireO.M log.M// op-
erations per time step, whereas conventional finite-difference methods need only
O.M/ operations. The extra work per time step may, however, be easily offset if the
increased accuracy of the pseudospectral representation allows the computations to
be performed on a coarser mesh.

The advantage of the pseudospectral method relative to the spectral method is
that the pseudospectral method requires less computation. The increase in efficiency
of the pseudospectral method is achieved by allowing aliasing error in the computa-
tion of the products of spatially varying functions. As a consequence of this aliasing
error, the residual need not be orthogonal to the individual expansion functions,
and the pseudospectral method does not possess the conservation properties dis-
cussed in Sect. 6.2.3. In particular, the pseudospectral method is subject to nonlinear
instability.

The difference in aliasing between the pseudospectral and spectral methods can
be evaluated by multiplying (6.39) by e�ikxj and summing over all j to obtain

KX
nD�K

dan

dt

2KC1X
jD1

ei.n�k/xj C
KX

nD�K

KX
mD�K

incman

2KC1X
jD1

ei.nCm�k/xj D 0:

Using the definition of xj (6.40) and the discrete-mesh orthogonality condition
(6.18), the preceding equation reduces to

dak

dt
C

X
mCnDk

jmj; jnj�K

incman C
X

mCnDkCM
jmj; jnj�K

incman C
X

mCnDk�M
jmj; jnj�K

incman D 0;

whereM D 2KC1. As when spectral computations are performed using the trans-
form technique, the last two terms represent aliasing error, only one of which can
be nonzero for a given value of k. In contrast to the spectral method, however, these
aliasing terms do not disappear, because in the pseudospectral method the number of
grid points on the physical mesh is identical to the number of Fourier wave numbers,
and therefore none of the cm and an need be zero.

One might suppose that aliasing error always decreases the accuracy of the so-
lution, but the impact of aliasing error on accuracy depends on the problem. As an
example, suppose that spectral and pseudospectral approximations are computed to
the solution of the viscous Burgers equation

@ 

@t
C  

@ 

@x
D 	

@2 

@x2
(6.43)
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Fig. 6.3 Spectral (solid line) and pseudospectral (dot-dashed line) solutions to the viscous Burgers
equation at t D 0:4: a truncation at wave number 64π; b truncation at wave number 128π. Only
the left half of the domain is shown in b

on the periodic domain 0 � x � 1 subject to the initial condition  .x; 0/ D
sin.2πx/. Spectral and pseudospectral solutions to this problem are shown in
Fig. 6.3 at t D 0:4 for the case 	 D 0:002. In these computations the time dif-
ferencing for the nonlinear advection term was leapfrog, and the diffusion term was
integrated using a forward difference over an interval of 2�t . The time step was
selected such that

�t

�x
max
x
Œ .x; 0/� D 0:1 :

The true solution to the inviscid problem gradually steepens around the point
xD 1=2 and becomes discontinuous at t D .2π/�1 (see Sect. 4.5.1), but the viscous
dissipation in (6.43) prevents the gradient at xD 1=2 from collapsing to a true
discontinuity and gradually erodes the amplitude of the solution so that  .x; t/! 0

as t ! 1. Figure 6.3a shows the approximate solutions to (6.43) obtained using a
spectral truncation at wave number 64π, which is equivalent to a grid spacing of
�x D 1=64. Both the spectral and the pseudospectral solutions have trouble resolv-
ing the steep gradient at x D 1=2 and develop significant 2�x noise. The amplitude
of the 2�x ripples remains bounded in the spectral solution, but aliasing error
generates a rapidly growing instability in the 2�x component of the pseudospectral
solution.

Rather different results are, however, obtained if the same problem is repeated
with twice the spatial resolution. When the cutoff wave number is 128π, the pseudo-
spectral method remains stable and actually generates a more accurate solution than
that obtained with the spectral method. A close-up comparison of the two solutions
over the subdomain 0 � x � 1=2 appears in Fig. 6.3b. The 2�x ripples in the
spectral solution are of distinctly larger amplitude than those appearing in the pseu-
dospectral solution. The pseudospectral solution remains stable because the rate at
which viscous damping erodes a 2�x wave increases by a factor of 4 as the spatial
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resolution is doubled from�x D 1=64 to 1=128, and when�x D 1=128, the rate of
energy removal from the 2�x wave by viscous damping exceeds the rate at which
2�x waves are amplified by aliasing error. The superiority of the pseudospectral
solution over the spectral solution in Fig. 6.3b highlights the fact that although con-
servation of k�k2 implies stability, it does not imply better accuracy.

The influence of aliasing error on accuracy is largely a matter of chance.
Although it is certainly an error when the pseudospectral method misrepresents
interactions between 2�x and 3�x waves as an aliased contribution to a 6�x
wave, it is also an error when the spectral method simply neglects the interactions
between these same short waves, since the product of 2�x and 3�x disturbances
should properly appear in a 6�x=5 wave. In Burgers’s equation, and in many other
fluid-flow problems, there is a cascade of energy to smaller scales. An accurate
conservative scheme, such as the spectral method, replicates this down-scale energy
transfer except that the cascade is terminated at the shortest scales resolved in the
numerical simulation. In the absence of viscous dissipation, the spectral approxi-
mation to Burgers’s equation conserves energy, and the energy that cascades down
scale simply accumulates in the shortest resolvable modes. To simulate the con-
tinued cascade of energy into the unresolvable scales of motion, it is necessary to
remove energy from the shortest resolvable waves. The energy-removal algorithm
constitutes a parameterization of the influence of unresolved short wavelengths on
the resolved modes and should be designed to represent the true behavior of the
physical system as closely as possible.

Whatever the exact details of the energy-removal scheme, if it prevents the
unphysical accumulation of energy at the short wavelengths in the spectral solu-
tion, the same energy-removal scheme will often stabilize a pseudospectral solution
to the same problem. In the case shown in Fig. 6.3b, for example, the amount of
viscous dissipation required to stabilize the pseudospectral solution is less than that
required to remove the spurious ripples from the spectral solution. Although it is
not generally necessary to filter the solution this heavily, aliasing error can be com-
pletely eliminated by removing all energy at wavelengths shorter than or equal to
3�x after each time step, or equivalently by removing the highest one third of the
resolved wave numbers. If such a filter is used in combination with a pseudospectral
method truncated at wave numberM , the resulting algorithm is identical to that for
a Galerkin spectral method truncated at wave number 2M=3 in which the nonlinear
terms are computed via the transform method.

6.4 Spherical Harmonics

The two-dimensional distribution of a scalar variable on the surface of a sphere
can be efficiently approximated by a truncated series of spherical harmonic func-
tions. Spherical harmonics can also be used to represent three-dimensional fields
defined within a volume bounded by two concentric spheres if grid points or finite
elements are used to approximate the spatial structure along the radial coordinate
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and thereby divide the computational domain into a series of nested spheres. Let 

be the longitude, � the latitude, and define � D sin � . If  is a smooth function
of 
 and �, it can be represented by a convergent expansion of spherical harmonic
functions of the form

 .
;�/ D
1X

mD�1

1X
nDjmj

am;nYm;n.
; �/; (6.44)

where each spherical harmonic function Ym;n.
; �/ D Pm;n.�/eim� is the product
of a Fourier mode in 
 and an associated Legendre function in �.

The associated Legendre functions are generated from the Legendre polynomials
using the relation

Pm;n.�/ D


.2nC 1/

2

.n �m/Š

.nCm/Š

�1=2
.1 � �2/m=2 d

m

d�m
Pn.�/; (6.45)

where

Pn.�/ D 1

2nnŠ

dn

d�n

�
.�2 � 1/n


(6.46)

is the Legendre polynomial of degree n, and the formula that results after substitut-
ing (6.46) into (6.45) is valid for jmj � n. Note that whenm is odd,7 the associated
Legendre functions are not polynomials in �.

The leading factor in (6.45) normalizes Pm;n so that

Z 1

�1
Pm;n.�/Pm;s.�/ d� D ıns ; (6.47)

where ıns D 1 if n D s and is zero otherwise. As a consequence, the orthogonality
relation for the spherical harmonics becomes

1

2π

Z 1

�1

Z �

��
Ym;n.
; �/Y

�
r;s.
; �/ d
 d� D ımrıns; (6.48)

where Y �
r;s is the complex conjugate of Yr;s . The associated Legendre functions

have the property that P�m;n.�/ D .�1/mPm;n.�/, which implies that Y�m;n D
.�1/mY �

m;n, and thus the expansion coefficients for any approximation to a real-
valued function satisfy

a�m;n D .�1/ma�
m;n: (6.49)

Two recurrence relations satisfied by the associated Legendre functions that will
be used in the subsequent analysis are

�Pm;n D "m;nC1Pm;nC1 C "m;nPm;n�1 (6.50)

7 Them index of the associated Legendre functionPm;n indicates the “order,” whereas the n index
indicates the “degree,” which is the same as the degree of the embedded Legendre polynomial.
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and

.1 � �2/
dPm;n

d�
D �n"m;nC1Pm;nC1 C .nC 1/"m;nPm;n�1; (6.51)

where

"m;n D
�
n2 �m2

4n2 � 1

�1=2
:

The spherical harmonics are eigenfunctions of the Laplacian operator on the
sphere such that

r2Ym;n D �n.nC 1/

a2
Ym;n; (6.52)

where a is the radius of the sphere and the horizontal Laplacian operator in spherical
coordinates is

r2 D 1

a2 cos2 �
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��
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:

The eigenvalue associated with each Ym;n can be used to define a total wave number
by analogy to the situation on a flat plane, where

r2ei.mxCny/ D �.m2 C n2/ei.mxCny/

and the total wave number is .m2 C n2/1=2. The total wave number associated with
Ym;n is .n2 C n/1=2=a, which is independent of the zonal wave number m. The
nonintuitive absence of m in the formula for the total wave number arises, in part,
because the effective meridional wave number of a spherical harmonic depends on
bothm and n.

6.4.1 Truncating the Expansion

The gross structure of Ym;n.
; �/ may be appreciated by examining the distribu-
tion of its nodal lines on the surface of the sphere. The nodal lines for the those
modes for which 0 � m � n � 3 are schematically diagrammed in Fig. 6.4. The
zonal structure of Ym;n is that of a simple Fourier mode eim�, so there are 2m nodal
lines intersecting a circle of constant latitude. The distribution of the nodal lines
along a line of constant longitude is more complex. The formula for the meridional
structure of each of the modes shown in Fig. 6.4 is given in Table 6.2. Pm;n.�/ is
proportional to

.1 � �2/m=2 d
nCm

d�nCm .�
2 � 1/n: (6.53)



306 6 Series-Expansion Methods

1,3

0,2 1,2

0,1 1,1

2,2

0,0

0,3 2,3 3,3

Fig. 6.4 The distribution of the nodal lines for the spherical harmonics Ym;n in the set 0 � m �
n � 3. The horizontal axis in each map is linear in � and includes the domain �π � � � π. The
vertical axis is linear in sin � and includes the domain �π=2 � � � π=2. Them;n index of each
mode is indicated in the upper-left corner of each map

Table 6.2 Meridional structure of the spherical harmonics appearing in Fig. 6.4

n P0;n P1;n P2;n P3;n

3

r
7

8

�
5�3 � 3�	

r
21

32

�
5�2 � 1	

q
1��2

p
105

4

�
���3

	 p
70

8

�
1��2

	 3
2

2

r
5

8

�
3�2 � 1	

p
15

2
�

q
1��2

p
15

4

�
1��2

	
–

1

r
3

2
�

p
3

2

q
1��2 – –

0 1=
p
2 – – –

The first factor has no zeros between the north and south poles. The second factor is
a polynomial of degree n�m, and all of its n�m zeros lie between the poles. Thus,
the modes with zero meridional wave number are Ys;s, whereas the modes with zero
zonal wave number are Y0;s . Figure 6.4 also provides a graphical illustration of the
reason why expansions in spherical harmonics are constructed without needing to
define and include modes with m > n.

In all practical applications the infinite series (6.44) must be truncated to create
a numerical approximation of the form

 .
;�/ D
MX

mD�M

N.m/X
nDjmj

am;nYm;n.
; �/: (6.54)
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The triangular truncation, in which N.m/ D M , is unique among the various pos-
sible truncations because it is the only one that provides uniform spatial resolution
over the entire surface of the sphere. The approximation to  .
;�/ obtained using a
triangular truncation is invariant to an arbitrary rotation of the latitude and longitude
coordinates about the center of the sphere. This invariance follows from the fact that
any spherical harmonic of degree less than or equal to M (i.e., for which n � M )
can be exactly expressed as a linear combination of the spherical harmonics in an
M th-order triangular truncation defined with respect to the arbitrarily rotated coor-
dinates. To be specific, if Ym;n is a spherical harmonic with n � M , and 
0, �0, and
Y 0
r;s are coordinates and spherical harmonics defined with respect to an arbitrarily

rotated polar axis, then there exist a set of expansion coefficients br;s such that

Ym;n.
; �/ D
MX

rD�M

MX
sDjrj

br;sY
0
r;s.


0; �0/

(Courant and Hilbert 1953, p. 535).
In spite of its elegance, the triangular truncation may not be optimal in situations

where the characteristic scale of the approximated field exhibits a systematic varia-
tion over the surface of the sphere. In the Earth’s atmosphere, for example, the per-
turbations in the geopotential height field in the tropics are much weaker than those
in the middle latitudes. A variety of alternative truncations have therefore been used
in low-resolution (M < 30) global atmospheric models. The most common alterna-
tive is the rhomboidal truncation, in which N.m/ D jmj CM in (6.54). The set of
indices .m; n/ retained in triangular and rhomboidal truncations with approximately
the same number of degrees of freedom are compared in Fig. 6.5. Only the right half-
plane is shown in Fig. 6.5, since whenever Ym;n is included in the truncation, Y�m;n
is also retained. In comparison with the triangular truncation, the rhomboidal trun-
cation neglects two families of modes with large n, those for which n �m � 0 and
those for which n � m � n. The first of these families is composed of high-zonal-
wave-number modes that are equatorially trapped, since the first factor in (6.53) has
an mth-order zero at each pole. The second family of neglected modes have small

0 0

M

M

M

M
mm

nn

TRIANGULAR RHOMBOIDAL

Fig. 6.5 Shading indicates the portion of the m � 0 half-plane in which them and n indices are
retained inM th-order triangular and rhomboidal truncations
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zonal wave number but fine meridional structure near the poles. As a consequence,
the spatial resolution in a rhomboidal truncation is somewhat concentrated in the
middle latitudes, which may be suitable for low-resolution models of the Earth’s
atmosphere but less appropriate for more general applications. Other truncations in
which N.m/ is a more complex function of m have also been proposed to improve
the efficiency of low-resolution climate models (Kiehl et al. 1996). At present there
does not seem to be a clear consensus about which truncation is most suitable for
use in low-resolution atmospheric models. The triangular truncation is, however, the
universal choice in high-resolution global weather forecasting.

6.4.2 Elimination of the Pole Problem

Explicit finite-difference approximations to the equations governing fluid motion on
a sphere can require very small time steps to maintain stability if the grid points are
distributed over the sphere on a uniform latitude–longitude mesh. This time-step
restriction arises because the convergence of the meridians near the poles greatly
reduces the physical distance between adjacent nodes on the same latitude cir-
cle, and as a consequence, the Courant–Friedrichs–Lewy (CFL) condition is far
more restrictive near the poles than in the tropics. Several approaches have been
used to circumvent this problem (Williamson 1979), but they all have at least one
cumbersome aspect. One of the most elegant solutions to the pole problem is ob-
tained using spherical harmonic expansion functions in a spectral or pseudospectral
approximation.8

A simple context in which to compare the stability criteria obtained using spher-
ical harmonics and finite differences is provided by the shallow-water equations
linearized about a resting basic state of depthH on a nonrotating sphere:

@ı

@t
C gr2h D 0;

@h

@t
CHı D 0;

where

ı D 1

a cos �



@u

@

C @v cos �

@�

�

is the horizontal divergence of the velocity field and h is the free-surface displace-
ment. Let ın D ı.
; �; n�t/, hn D h.
; �; n�t/, and c D p

gH . Then if the time
derivatives in these equations are approximated using forward–backward differenc-
ing, one obtains the semidiscrete system

8 Another attractive approach for minimizing the pole problem in global weather forecasting is
provided by the semi-Lagrangian semi-implicit scheme discussed in Sect. 7.4.2.
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ınC1 � ın

�t
C gr2hn D 0; (6.55)

hnC1 � hn

�t
CHınC1 D 0; (6.56)

or, after eliminating ınC1 and ın,

hnC1 � 2hn C hn�1

.�t/2
� c2r2hn D 0: (6.57)

Suppose that the spatial structure of hn is represented by spherical harmonics in
the triangular truncation

h.
; �; n�t/ D
MX

rD�M

MX
sDjrj

bnr;sYr;s.
; �/;

where as before � D sin � . Since the spherical harmonics are eigenfunctions of the
Laplacian operator on the sphere, a solvable system of equations for the expansion
coefficients bnr;s can be obtained by substituting this expansion into (6.57) and using
(6.52) to arrive at

bnC1
r;s � 2bnr;s C bn�1

r;s

.�t/2
D �c

2s.s C 1/

a2
bnr;s :

Assuming that the expansion coefficients have a time dependence proportional to
e�i!n�t , the dispersion relation for each mode is

sin2
�
!�t

2

�
D s.s C 1/

�
c�t

2a

�2
:

The scheme will be stable when the frequency associated with the highest total
wavenumber is real, or

c�t
p
M.M C 1/

2a
< 1: (6.58)

Now suppose that the Laplacian operator in (6.57) is evaluated using finite dif-
ferences on a latitude–longitude grid in which �� and �
 are uniform over the
globe. Then near the poles, the highest-frequency components in the numerical so-
lution will be forced by short-wavelength spatial variations around a latitude cir-
cle. Approximating the second derivative with respect to longitude in (6.57) as
.a cos �/�2ı2

�
and substituting a Fourier mode in time and longitude of the form

Oh.�/ei.rm���!n�t/
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into the resulting semidiscrete equation yields

4 Oh
.�t/2

sin2
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2

�
D 4c2 Oh
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 cos�/2
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@�

!
:

For those modes with zero meridional wave number, a necessary condition for the
reality of ! and the stability of this semidiscrete approximation is that

c�t

a�
 cos �
� 1:

Let M be the highest zonal wave number (in radians) resolved on the numerical
mesh; then M�
 D π, and the preceding stability condition may be expressed as

cM�t

aπ cos �
� 1:

A comparison of this condition with (6.58) shows that the maximum stable time step
that can be used with the finite-difference method on the portion of the mesh where
� ! ˙π=2 is far smaller than that which can be used in a spectral model employing
spherical harmonic expansion functions with the same cutoff wave number.

The restrictions on the maximum stable time step can be removed altogether
by using trapezoidal time differencing instead of the forward–backward scheme in
(6.55) and (6.56). This is not a particularly efficient approach when the Laplacian
is approximated using finite differences, since the trapezoidal approximation gen-
erates a large system of implicit algebraic equations that must be solved at every
time step. Trapezoidal time differencing can, however, be implemented very effi-
ciently in spectral approximations that use spherical harmonic expansion functions,
because the spherical harmonics are eigenfunctions of the horizontal Laplacian op-
erator on the sphere. As a consequence, the expansion coefficient for each Yr;s can
be computed independently of the other modes, and the implicit coupling intro-
duced by trapezoidal time differencing only generates a trivial two-variable system
involving the amplitudes of the divergence and the free-surface elevation of each
mode. The ease with which trapezoidal approximations to (6.55) and (6.56) can be
integrated using spherical harmonics can be used to great advantage in formulating
semi-implicit time-differencing approximations to the nonlinear equations govern-
ing fluid flow on a sphere (see Sects. 8.2.3, 8.6.5).

6.4.3 Gaussian Quadrature and the Transform Method

In most practical applications some of the forcing terms in the governing equa-
tions contain products of two or more spatially varying functions. Unless the total
number of modes retained in the series expansion is very small, a variant of the
transform method described in Sect. 6.2.2 must be used to efficiently apply spectral
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methods to such problems. The transform between grid-point values and the spectral
coefficients of the spherical harmonic functions is, however, more cumbersome and
computationally less efficient than the FFT. The lack of highly efficient transforms is
one drawback associated with the use of spherical harmonic expansion functions in
global spectral models. Even so, it is far more efficient to use the transform method
than to use the alternative “interaction coefficient” method, in which the forcing is
computed from a summation of products of pairs of the spectral coefficients (Orszag
1970; Eliasen et al. 1970).

If  .
;�/ is approximated by a truncated series of spherical harmonics of the
form (6.54), the transformation from the set of spectral coefficients to points on a
latitude–longitude grid can be computed using the relation

 .
;�/ D
MX

mD�M
Oam.�/eim�; (6.59)

where

Oam.�/ D
N.m/X
nDjmj

am;nPm;n.�/: (6.60)

The first summation (6.59) is a discrete Fourier transform with respect to the longi-
tudinal coordinate 
 that can be efficiently evaluated using FFTs to obtain 2M C 1

grid-point values around each latitude circle in O ŒM logM� operations. The sec-
ond summation (6.60) is essentially an inner product requiring O

�
N 2


operations

to evaluate Oam at N different latitudes. The lack of a fast transform for the latitude
coordinate makes the spherical harmonic spectral model less efficient than spectral
models that use two-dimensional Fourier series.

The inverse transform, from physical space to spectral coordinates, is accom-
plished as follows. The orthogonality properties of the spherical harmonics (6.48)
imply that

am;n D 1

2π

Z 1

�1

Z �

��
 .
;�/Y �

m;n.
; �/ d
 d�;

or equivalently,

am;n D
Z 1

�1
Oam.�/Pm;n.�/ d�; (6.61)

where

Oam.�/ D 1

2π

Z �

��
 .
;�/e�im� d
: (6.62)

The last of these integrals is a Fourier transform that can be evaluated from data on
a discrete mesh using FFTs. After the Fourier transform of  has been computed,
the integral (6.61) can be evaluated using Gaussian quadrature. Provided that one
avoids aliasing error, it is possible to numerically evaluate both (6.61) and (6.62)
without introducing errors beyond those associated with the original truncation of
the spherical harmonic expansion at some finite wave number. Before discussing
how to avoid aliasing error, it may be helpful to review Gaussian quadrature.
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6.4.3.1 Gaussian Quadrature

As will soon be demonstrated, when evaluated in connection with the transform
method, the integrand in (6.61) is a polynomial in �, which is fortuitous, because
efficient formulae exist for exactly computing the definite integral of a polynomial.
For example, suppose that f .x/ is a polynomial in x of degree less than or equal to
m � 1 and that m arbitrarily spaced grid points xj are distributed over the domain
a � x � b. Then f .x/ can be expressed in the form of a Lagrange interpolating
polynomial

f .x/ D
mX
jD1

f .xj /pj .x/; (6.63)

where

pj .x/ D
mY

kD1
k¤j

.x � xk/

.xj � xk/
: (6.64)

If weights wj are defined such that

wj D
Z b

a

pj .x/ dx; (6.65)

it follows from (6.63) that
Z b

a

f .x/ dx D w1f .x1/C w2f .x2/C � � � C wmf .xm/; (6.66)

and that (6.65) and (6.66) give the exact integral of all polynomials f .x/ of degree
less than or equal to m � 1.

The preceding formula achieves exact results for polynomials up to degreem�1
without imposing any constraint on the location of the xj within the interval Œa; b�.
Gaussian quadrature, on the other hand, obtains exact results for polynomials up to
degree 2m � 1 without adding more terms to the quadrature formula by choosing
the xj to be the zeros of the Legendre polynomial of degree m. The role played
by Legendre polynomials in Gaussian quadrature is essentially independent of their
relation to the associated Legendre functions and spherical harmonics. The property
of the Legendre polynomials that is important for Gaussian quadrature is that these
polynomials satisfy the orthogonality condition9

Z 1

�1
Pm.x/Pn.x/ dx D 2ımn

2nC 1
: (6.67)

9 Other commonly used sets of orthogonal polynomials are orthogonal with respect to a noncon-
stant weight function. In the case of Chebyshev polynomials, for example,

Z 1

�1

Tm.x/Tn.x/.1� x2/�1=2 dx D 0;

unless m D n.
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To appreciate how this judicious choice for the xj increases the accuracy of
(6.65) and (6.66), suppose that f .x/ is a polynomial of degree 2m � 1 defined
on the domain Œ�1; 1�. (More general domains Œa; b� can easily be transformed to
the interval Œ�1; 1�.) Let Pm.x/ be the Legendre polynomial on Œ�1; 1� of degree
m. If q.x/ and r.x/ are, respectively, the quotient and the remainder obtained when
dividing f by Pm, then f D qPm C r , where both q and r are polynomials of de-
gree less than or equal tom�1. Since the polynomial q can be expressed as a linear
combination of the Legendre polynomials of degree less than or equal to m � 1, all
of which are orthogonal to Pm,

Z 1

�1
f .x/ dx D

Z 1

�1
q.x/Pm.x/ dx C

Z 1

�1
r.x/ dx D

Z 1

�1
r.x/ dx: (6.68)

Furthermore, if the xj are chosen as the zeros of Pm,

mX
jD1

wjf .xj / D
mX
jD1

wj q.xj /Pm.xj /C
mX
jD1

wj r.xj /

D
mX
jD1

wj r.xj /

D
Z 1

�1
r.x/ dx; (6.69)

where the third equality is obtained because r is a polynomial of degree less than or
equal to m � 1. It follows from (6.68) and (6.69) that

Z 1

�1
f .x/ dx D

mX
jD1

wjf .xj /;

and thatm-point Gaussian quadrature is exact for polynomials up to degree 2m � 1.
The weights for m-point Gaussian quadrature over the domain Œ�1; 1� may be ex-
pressed in terms of the corresponding nodal points as

wj D 2

.1 � x2j /
�
P 0
m.xj /

2 D 2.1� x2j /�
mPm�1.xj /

2 : (6.70)

Formulae for the xj are not known in closed form and must be computed numeri-
cally. This can be done using Newton’s method (Dahlquist and Björck 1974) with
first guesses for the m zeros of Pm.x/ given by the roots of the mth-degree Cheby-
shev polynomial

Qxj D � cos

�
2j � 1

2m
�

�
for 1 � j � m: (6.71)
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6.4.3.2 Avoiding Aliasing Error

The product of two or more truncated spectral harmonic expansions contains high-
order Fourier modes in 
 and high-order functions in � that are not present in
the original truncation. When using the transform method, it is important to retain
enough zonal wave numbers in the Fourier transforms and enough meridional grid
points in the Gaussian quadrature to ensure that the transform procedure does not
generate errors in any of the modes retained in the original truncated expansions.

Suppose that one wishes to compute the spectral coefficients of the binary prod-
uct  �, where  and � are given by the truncated spherical harmonic expansions

 .
;�/ D
MX

pD�M

N.p/X
qDjpj

ap;qYp;q.
; �/; (6.72)

�.
; �/ D
MX

rD�M

N.r/X
sDjrj

br;sYr;s.
; �/: (6.73)

Let cm;n be the coefficient of Ym;n in the spherical harmonic expansion of  �.
Without loss of generality consider the case m 
 0, since the coefficients for which
m < 0 can be obtained using (6.49). Then

cm;n D
Z 1

�1
Ocm.�/Pm;n.�/ d�; (6.74)

where

Ocm.�/ D 1

2π

Z �

��
 .
;�/�.
; �/e�im� d
: (6.75)

The last of the preceding integrals is a Fourier transform, and as discussed in
Sect. 6.2.2, the discrete Fourier transform of binary products of Fourier series trun-
cated at wave number M can be evaluated without aliasing error if the transforms
are computed using a minimum of .3M � 1/=2 wave numbers. To maximize the
efficiency of the FFTs in practical applications, the actual cutoff wave number may
be chosen as the smallest product of prime factors no larger than 5 that exceeds
.3M � 1/=2. This criterion for the cutoff wave number can be alternatively ex-
pressed as a requirement that the physical mesh include a minimum of 3M C 1 grid
points around each latitude circle.

Now consider the evaluation of (6.74). The associated Legendre functions have
the form

Pm;n.�/ D .1 � �2/m=2Qm;n.�/;

where Qm;n is a polynomial in � of degree n � m. Since Pm;n is not a polyno-
mial when m is odd, it is not obvious that Gaussian quadrature can be used to in-
tegrate (6.74) without error. Nevertheless, it turns out that the complete integrand
Ocm.�/Pm;n.�/ is a polynomial in � whose maximum degree can be determined as
follows. Substituting the finite series expansions for  and � into (6.75) and using
the orthogonality of the Fourier modes,
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Ocm.�/ D
X

pCrDm
jpj;jrj�M

0
@N.p/X
qDjpj

ap;qPp;q.�/

1
A
0
@N.r/X
sDjrj

br;sPr;s.�/

1
A ;

where the notation below the first summation indicates that the sum should be
performed for all indices p and r such that jpj � M , jr j � M , and p C r D m.
Each term in Ocm.�/Pm;n.�/ is therefore a function of the form

.1 � �2/.pCrCm/=2Qp;q.�/Qr;s.�/Qm;n.�/:

Since the indices in the preceding expression satisfy p C r C m D 2m, each term
is a polynomial in � of degree

2mC .q � p/C .s � r/C .n �m/ D q C s C n:

The highest degree of the polynomials in the integrand of (6.74) is the maximum
value of q C s C n, which is dependent on the type of truncation used in the ex-
pansions (6.72) and (6.73). In the case of a triangular truncation, this maximum is
simply 3M , and the exact evaluation of (6.74) by Gaussian quadrature requires a
minimum of .3M C 1/=2 meridional grid points. In the case of a rhomboidal trun-
cation, the maximum value of qCsCn is 3MCpCrCm D 5M , and .5MC1/=2
meridional grid points are required for an exact quadrature.

6.4.4 Nonlinear Shallow-Water Equations

Two additional considerations that arise in using spherical harmonic expansion func-
tions in practical applications are the evaluation of derivatives with respect to the
meridional coordinate and the representation of the vector velocity field. The treat-
ment of these matters can be illustrated by considering the algorithm proposed by
Bourke (1972) for integrating the nonlinear shallow-water equations on a rotating
sphere,

@u
@t

C u � ru C f k 	 u C r˚ D 0; (6.76)

@˚

@t
C r � ˚u D 0: (6.77)

Here u D ui C vj, where u and v are the eastward and northward velocity compo-
nents, f D 2˝ sin � is the Coriolis parameter, k is the vertical unit vector,˚ is the
gravitational constant times the free-surface displacement, and r is the horizontal
gradient operator.
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6.4.4.1 Prognostic Equations for Vorticity and Divergence

The velocity components u and v are not conveniently approximated by a series of
spherical harmonic functions because artificial discontinuities in u and v are present
at the poles unless the wind speed at the pole is zero. This problem arises because
the direction defined as “east” switches by 180ı as an observer traveling northward
along a meridian steps across the pole. The same vector velocity that is recorded
as “westerly” at a point on the Greenwich meridian is recorded as “easterly” at a
point on the international dateline. In a similar way, a southerly velocity becomes a
northerly velocity as the observer crosses the pole. This difficulty can be commonly
avoided by replacing the prognostic equations for u and v by equations for the
vorticity and divergence and by rewriting all remaining expressions involving v in
terms of the transformed velocities

U D u cos �; V D v cos �:

Both U and V are zero at the poles and are free of discontinuities. It is also conve-
nient to separate ˚ into a constant mean ˚ and a perturbation ˚ 0.
; �; t/.

Equations for the divergence ı and the vertical component of vorticity  can be
derived by substituting for u � ru in (6.76) using the identity

u � ru D .r 	 u/ 	 u C 1

2
r .u � u/ (6.78)

to yield
@u
@t

C .r 	 u/ 	 u C 1

2
r .u � u/C f k 	 u C r˚ D 0: (6.79)

Taking the divergence of the preceding expression gives

@ı

@t
D k � r 	 . C f /u � r2

�
˚ 0 C u � u

2

�
; (6.80)

and taking the vertical component of the curl of (6.79) yields

@

@t
D �r � . C f /u: (6.81)

The horizontal velocity may be expressed in terms of a stream function  and a
velocity potential � as

u D k 	 r C r�;
in which case the vertical component of the vorticity is

 D k � r 	 u D r2 ; (6.82)

and the divergence is

ı D r � u D r2�: (6.83)
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The governing equations (6.77), (6.80), and (6.81) can be concisely expressed in
spherical coordinates by defining the operator

H .A;B/ D 1

a

�
1

1 � �2
@A

@

C @B

@�

�
:

Using the relations
r � ˛u D H .˛U; ˛V / (6.84)

and

k � r 	 ˛u D H .˛V;�˛U /; (6.85)

(6.77)–(6.81) become

@r2�
@t

D H .V r2 ;�Ur2 / � 2˝

�
U

a
� �r2 

�

� r2

�
˚ 0 C U 2 C V 2

2.1� �2/

�
; (6.86)

@r2 
@t

D �H .Ur2 ; V r2 / � 2˝

�
V

a
C �r2�

�
; (6.87)

@˚ 0

@t
D �H .U˚ 0; V˚ 0/ �˚r2�: (6.88)

The preceding system of equations for  , �, and ˚ 0 can be closed using the diag-
nostic relations

U D .1 � �2/H .�;� / and V D .1 � �2/H . ; �/: (6.89)

6.4.4.2 Implementation of the Transform Method

The basic strategy used to implement the transform method for spherical harmonic
expansion functions is the same as that used with simpler Fourier series, which is
to compute binary products in physical space and then transform the result back to
spectral space. During this procedure, those terms involving derivatives are evalu-
ated to within the truncation error of the spectral approximation using the known
properties of the expansion functions. The zonal derivative of each spherical har-
monic is simply imYm;n. The horizontal Laplacian is easily evaluated using (6.52),
and the meridional derivative can be determined using the recurrence relation (6.51).

Prognostic equations for the spectral coefficients associated with the vorticity,
the divergence, and the free-surface displacement can be derived as follows. Let

 .
;�/ D a2
MX

mD�M

N.m/X
nDjmj

 m;nYm;n.
; �/; (6.90)
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�.
; �/ D a2
MX

mD�M

N.m/X
nDjmj

�m;nYm;n.
; �/; (6.91)

˚ 0.
; �/ D
MX

mD�M

N.m/X
nDjmj

˚m;nYm;n.
; �/:

Since the nonlinear products in the governing equations (6.86)–(6.88) are Ur2 ,
V r2 , U˚ 0, V˚ 0, and U 2 C V 2, it is also convenient to define expansion coef-
ficients for U and V . These coefficients can be diagnostically computed from the
expansion coefficients for  and � as follows. Let Um;n and Vm;n be the spectral
expansion coefficients for U=a and V=a; then

Um;n D 1

2π

Z 1

�1

Z �

��
1

a2

�
@�

@

� .1 � �2/

@ 

@�

�
Y �
m;n d
 d�

D im�m;n C .n � 1/"m;n m;n�1 � .nC 2/"m;nC1 m;nC1;

where the second equality follows from (6.51) and the orthogonality of the spherical
harmonics. Similarly,

Vm;n D im m;n � .n � 1/"m;n�m;n�1 C .nC 2/"m;nC1�m;nC1:

Note that nonzero values of  m;n and �m;n imply nonzero values of Um;nC1 and
Vm;nC1, so the expansions for U and V must be truncated at one higher degree than
those for  and �, i.e.,

U.
;�/ D a

MX
mD�M

N.m/C1X
nDjmj

Um;nYm;n.
; �/;

V .
; �/ D a

MX
mD�M

N.m/C1X
nDjmj

Vm;nYm;n.
; �/:

After products such as Ur2 have been computed on the physical mesh, the
right sides of (6.86)–(6.88) are transformed back to wave-number space. The first
step of this transformation is performed using FFTs. Suppose, for notational con-
venience, that OAm; OBm; : : : ; OEm are the Fourier transforms of the preceding binary
products such that

Ur2 D
MX

mD�M
OAmeim�; Vr2 D

MX
mD�M

OBmeim�

U˚ 0 D
MX

mD�M
OCmeim�; V ˚ 0 D

MX
mD�M

ODmeim�

1

2
.U 2 C V 2/ D

MX
mD�M

OEmeim�:
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The remaining step in the transformation back to wave-number space is computed
by Gaussian quadrature. The only nontrivial quadratures are those related to the
transform of .U 2 C V 2/=.1 � �2/ and of functions of the form �R and H .R; S/,
where R and S are functions of � and 
. Functions of the form �R can be trans-
formed analytically using the recurrence relation (6.50). As an example, consider
the term in (6.87) proportional to �r2�, whose .m; n/th spectral coefficient is

1

2π

Z 1

�1

Z π

�π
�r2�Y �

m;n d
 d� D
Z 1

�1

2
4N.m/X
sDjmj

s.s C 1/�m;s�Pm;s

3
5Pm;n d�

D .n � 1/n"m;n�m;n�1 C .nC 1/.nC 2/"m;nC1�m;nC1:

Now consider the transform of H .R; S/, where R and S are binary products
of r2 or �0 and U or V . Let the Fourier transforms of R.
;�/ and S.
; �/ be
denoted by ORm.�/ and OSm.�/, and define the coefficient of the .m; n/th component
of the spherical harmonic expansion for H .R; S/ to be Gm;n. ORm; OSm/. Then

Gm;n. ORm; OSm/ D 1

a

Z 1

�1

 
im

1 � �2
ORm C @ OSm

@�

!
Pm;n d�: (6.92)

S contains a factor of either U or V , and since U and V are zero at � D ˙1, (6.92)
may be integrated by parts to obtain

Gm;n. ORm; OSm/ D 1

a

Z 1

�1

�
im

1 � �2
ORmPm;n � OSm @Pm;n

@�

�
d�:

The derivative in the preceding equation can be evaluated exactly using (6.51),
and the result can be integrated exactly wherever it appears in (6.86)–(6.88) using
Gaussian quadrature over the same number of nodes as required for the transforma-
tion of simple binary products. The exactness of this integral follows from the same
type of argument used in connection with the ordinary binary product (6.74); the
integrand will consist of a sum of terms of the form

.1 � �2/m�1Qp;q.�/Qm�p;s.�/Qm;n.�/; (6.93)

where Qm;n is a polynomial in � of degree n � m. Except for the case m D 0,
(6.93) is a polynomial of sufficiently low degree that it can be computed exactly.
Whenm D 0, it is easier to consider the equivalent integral (6.92). Becausem D 0,
the first term in the integrand is zero, and the second is the sum of terms of the form

Qp;q.�/Q�p;s.�/
d

d�
P0;n.�/:

The last factor is the derivative of the nth-degree Legendre polynomial, and the en-
tire expression is once again a polynomial of sufficiently low degree to be integrated
exactly by Gaussian quadrature.
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Finally, consider the transform of 1=2.U 2CV 2/=.1��2/, whose .m; n/th com-
ponent will be denoted by Em;n. From the definition of OEm,

Em;n D
Z 1

�1

OEm
1 � �2

Pm;n d�: (6.94)

The numerator in the preceding integrand is an ordinary binary product, and as
argued in connection with (6.74), it must be a polynomial of sufficiently low degree
that it can be integrated exactly by Gaussian quadrature over the same nodes used
for the other transforms. Since both U and V have zeros at � D ˙1, the polynomial
in the numerator has roots at � D ˙1 and must be exactly divisible by .1��2/. As
a consequence, the entire integrand in (6.94) is a polynomial that can be integrated
without error using Gaussian quadrature.

Using the preceding relations, the time tendencies of the spectral coefficients of
the divergence, vorticity, and free-surface displacement become

�n.nC 1/
d�m;n

dt
D Gm;n

� OBm;� OAm
�

C n.nC 1/

a2
.˚m;n C Em;n/

� 2˝
�
Um;n C .n � 1/n"m;n m;n�1 C .nC 1/.nC 2/"m;nC1 m;nC1


;

�n.nC 1/
d m;n

dt
D �Gm;n

� OAm; OBm
�

� 2˝Vm;n

C 2˝
�
.n � 1/n"m;n�m;n�1 C .nC 1/.nC 2/"m;nC1�m;nC1


; (6.95)

and
d˚m;n

dt
D �Gm;n

� OCm; ODm
�

C n.nC 1/˚�m;n:

The extension of this algorithm to three-dimensional models for the simulation of
global atmospheric flow is discussed in Sect. 8.6.2 and in Machenhauer (1979).

6.5 The Finite-Element Method

The finite-element method has not been widely used to obtain numerical solutions
to hyperbolic partial differential equations because it generates implicit equations
for the unknown variables at each new time level. The most efficient methods for
the solution of wave-propagation problems are generally schemes that update the
unknowns at each subsequent time level through the solution of explicit algebraic
equations. Nevertheless, in some atmospheric applications computational efficiency
can be improved by using semi-implicit differencing to integrate a subset of the com-
plete equations via the implicit trapezoidal method while the remaining terms in the
governing equations are integrated explicitly (see Sect. 8.2), and the finite-element
method can be used to efficiently approximate the vertical structure of the flow in
such models (Staniforth and Daley 1977). In addition, the finite-element method is
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easily adapted to problems in irregularly shaped domains, and as a consequence, it
has been used in several oceanic applications to model tides and currents in bays
and coastal regions (Foreman and Thomson 1997).

In contrast to the situation with hyperbolic partial differential equations, the
finite-element method is very widely used to solve time-independent problems.
The tendency of finite-element approximations to produce implicit algebraic equa-
tions is not a disadvantage in steady-state problems since the finite-difference
approximations to such problems also generate implicit algebraic equations.
Moreover, in most steady-state systems the fundamental physical problem can
be stated in a variational form naturally suited for solution via the finite-element
technique (Strang and Fix 1973). Our interest lies in the application of the finite-
element method to time-dependent wavelike flows for which variational forms do
not naturally arise. The most useful variational criteria for the equations governing
most wavelike flows are simply obtained by minimizing the residual as defined
by (6.3). The possible strategies for minimizing the residual are those discussed
in Sect. 6.1. The collocation strategy will not be examined here since, at least for
piecewise-linear expansion functions, it leads to methods that are identical to simple
finite differences. More interesting algorithms with better conservation properties
can be achieved using the Galerkin requirement that the residual be orthogonal to
each expansion function or equivalently, by minimizing .kR.�/k2/2.

As discussed in Sect. 6.1, enforcement of the Galerkin requirement leads to the
system of ordinary differential equations

NX
nD1

Mn;k

dan

dt
D �

Z
S

"
F

� NX
nD1

an'n

�
'k

#
dx for k D 1; : : : ; N ; (6.96)

where

Mn;k D
Z
S

'n'k dx:

The difference between the spectral method and the Galerkin form of the finite-
element method lies in the choice of expansion functions. In the spectral method,
the expansion functions form an orthogonal set, and each 'k is nonzero over most
of the spatial domain. The orthogonality of the spectral expansion functions ensures
thatMn;k is zero unless n D k, greatly simplifying the left side of (6.96). However,
since the spectral expansion functions are nonzero over most of the domain, the
evaluation of the right side of (6.96) involves considerable computation.

In the finite-element method, the expansion functions are not usually orthogonal,
but each 'n is nonzero only over a small, localized portion of the total domain. An
example of a finite-element expansion function is given by the chapeau (or “hat”)
function shown in Fig. 6.6. In the case of the chapeau function, the total domain is
partitioned into N nodes, and 'k is defined as a piecewise-linear function equal to
unity at the kth node and zero at every other node. If the series expansion (6.2) uti-
lizes chapeau functions, the resulting sum will be a piecewise-linear approximation
to the true function  .x/. Because the finite-element expansion functions are not
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1.0

0.5

0.0

j - 1 j + 1 j + 2jj - 2

ϕj(x)

Fig. 6.6 The chapeau expansion function �j . The x-axis is labeled in units of�x

orthogonal, the left side of (6.96) constitutes an implicit relationship between the
dak=dt at a small number of adjacent nodes, and a sparse linear system must be
solved every time step.

Because it is necessary to solve a system of linear algebraic equations on every
time step, the computational effort required by the Galerkin finite-element method
typically exceeds that associated with finite-difference and spectral methods. Nev-
ertheless, in comparison with the spectral method, the finite-element approach does
reduce the computation required to evaluate the right side of (6.96). Since the finite-
element expansion functions are nonzero only over a small portion of the total do-
main, the number of arithmetic operations required to evaluate the right side of
(6.96) is O.N/, which is comparable to that involved in the calculation of conven-
tional finite differences and can be considerably less than the O.N logN/ opera-
tions required to evaluate the same expression using the spectral transform method.

6.5.1 Galerkin Approximation with Chapeau Functions

If the wind speed is constant, the Galerkin approximation to the one-dimensional
advection equation (6.11) requires that

NX
nD1

Mn;k

dan

dt
C c

NX
nD1

an

Z
S

d'n

dx
'k dx D 0 for k D 1; : : : ; N: (6.97)

Assuming that the 'n are chapeau functions and shifting the x-origin to coincide
with the left edge of each interval of integration, the integrals involving products of
the expansion functions become

Mj�1;j D MjC1;j D
Z
S

'jC1'j dx D
Z �x

0

� x

�x

���x � x

�x

�
dx D �x

6
;

Mj;j D 2

Z �x

0

�
�x � x
�x

�2
dx D 2�x

3
;

�
Z
S

d'j�1
dx

'j dx D
Z
S

d'jC1
dx

'j dx D
Z �x

0

�
1

�x

��
�x � x
�x

�
dx D 1

2
:
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Since all other integrals involving products of the expansion functions or their
derivatives are zero, (6.97) reduces to

d

dt

�
ajC1 C 4aj C aj�1

6

�
C c

�ajC1 � aj�1
2�x

�
D 0: (6.98)

This scheme may be analyzed as if it were a standard differential–difference equa-
tion because aj , the coefficient of the j th chapeau function, is also the nodal
value of the approximate solution �.xj /. In fact, (6.98) is identical to the fourth-
order compact differential–difference approximation to the advection equation
(3.51), whose properties were previously discussed in Sect. 3.3.4. In particular, the
scheme’s spatial truncation error is O

�
.�x/4


and its phase speed in the limit of

good resolution is
c� � c

�
1 � .k�x/4=180

	
: (6.99)

This scheme also performs very well at moderately poor spatial resolution. As
was shown in Fig. 3.10, (6.98) generates less phase-speed error in moderately short
waves than does explicit fourth- or sixth-order spatial differencing.

Now suppose that the time derivatives in (6.98) are approximated using leapfrog
time differencing. The discrete-dispersion relation becomes

sin.!�t/ D 3� sin.k�x/

cos.k�x/C 2
:

When j�j < 1=p3, the right side of the preceding equation is bounded by unity and
the scheme is stable. As was the case with the spectral method, the finite-element
method better approximates the spatial derivative of coarsely resolved waves (such
as the 3�x wave) and, thus, the finite-element approximation to the advection equa-
tion captures higher-frequency oscillations and the maximum stable time step is re-
duced relative to that allowed by a centered second-order finite-difference approxi-
mation to the spatial derivative.

One way to circumvent this time-step restriction is to use trapezoidal time dif-
ferencing. The trapezoidal method is unconditionally stable, is more accurate than
leapfrog differencing, and does not support a computational mode. Despite these
advantages, the trapezoidal scheme is not used in most finite-difference approxi-
mations to wave-propagation problems because it leads to implicit equations. The
implicit nature of trapezoidal differencing is not, however, a problem in this ap-
plication, because (6.98) is already a linear system of implicit equations for the
daj =dt and trapezoidal differencing does not increase the bandwidth of the coef-
ficient matrix. The trapezoidal method is, however, less attractive in more general
applications where systems of equations must be solved. For example, the implicit
coupling among the various nodal values remains tridiagonal when the linearized
shallow-water system (4.1) and (4.2) is approximated using explicit time differenc-
ing and the chapeau-function finite-element method, but if the leapfrog differencing
is replaced by the trapezoidal method, the unC1 and hnC1 become implicit functions
of each other, and the resulting linear system has a larger bandwidth.
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6.5.2 Petrov–Galerkin and Taylor–Galerkin Methods

Another way to increase the maximum stable time step of finite-element approxi-
mations to wave-propagation problems is to generalize the orthogonality condition
satisfied by the residual. As an alternative to the standard Galerkin requirement that
the residual be orthogonal to each of the expansion functions, one may define a
different set of “test” functions and require the residual to be orthogonal to each of
these test functions. This approach, known as the Petrov–Galerkin method, can yield
schemes that are stable for Courant numbers as large as unity, and can greatly in-
crease the accuracy of computations performed at Courant numbers near the stabil-
ity limit. The Petrov–Galerkin method does not, however, share all of the desirable
conservation properties of the standard Galerkin method.

Let #k be an arbitrary member of the set of test functions. If the time deriva-
tive is approximated by a forward difference, the Petrov–Galerkin formula for the
differential–difference approximation to the general partial differential equation
(6.1) is

Z
S

2
4 NX
jD1

 
anC1
j � anj

�t

!
'j C F

0
@ NX
jD1

anj 'j

1
A
3
5#k dx D 0 for all k:

As a specific example, suppose that a Petrov–Galerkin approximation is sought to
the advection equation (6.11) with c constant and nonnegative. Let the expansion
functions 'j .x/ be the chapeau functions defined previously and, as suggested by
Morton and Parrott (1980), define a family of test functions of the form #k D .1�	/
'k C 	�k , where 	 is a tunable parameter and �j is the localized sawtooth function

�j .x/ D
�
6.x � xj�1/=�x � 2; if x 2 Œxj�1; xj �;
0; otherwise.

(�j is normalized so that its integral over the domain is unity.) Using these test func-
tions, one may express the Petrov–Galerkin approximation to the constant-wind-
speed advection equation in terms of the nodal values as

h
1C 1

6
.1 � 	/ Qı2x

i �
anC1 � an	C � Qı2xan D 1

2
�	 Qı2xan; (6.100)

where Qıx D �x ıx is a nondimensional finite-difference operator and � D c�t=

�x is the Courant number. Morton and Parrott (1980) used the energy method to
show this scheme is stable for 0 � � � 	 � 1. The amplification factor for this
scheme is

A D 1 � i� sin.k�x/ � �	Œcos.k�x/ � 1�
1C .1� 	/Œcos.k�x/ � 1�=3 :

In the limit k�x ! 0

A D 1 � i�k�x � 1

2
�	.k�x/2 C 1

6
�	.k�x/3 CO

�
.k�x/4


;
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which matches the correct amplification factor, e�i!�t D e�i�k�x , through first
order except that the scheme is second-order accurate when 	 D �. Clearly one
should choose 	 D � since this allows the largest stable time step and gives the best
accuracy. When 	 D �, (6.100) is closely related to the standard Lax–Wendroff
approximation (3.72); the only difference appears in the linear operator (i.e., the
mass matrix) acting on the forward-time difference. As noted by Morton and Parrott
(1980), if 	 is set equal to �, the truncation error in (6.100) is always less than that
for the standard Lax–Wendroff scheme; the improvement is particularly pronounced
for small values of �. On the other hand, the standard Lax–Wendroff method is sta-
ble for j�j � 1, whereas the Galerkin–Petrov method (6.100) is a upstream method
that requires � 
 0 for stability. A formula analogous to (6.100) can be derived for
negative flow velocities using test functions in which the sawtooth component has a
negative slope.

A better scheme than that just derived via the Petrov–Galerkin approach can be
obtained using the Taylor–Galerkin method. The Taylor–Galerkin method does not
require the specification of a second set of test functions and yields centered-in-
space methods. In the Taylor–Galerkin approach, the time derivative is discretized
before invoking the finite-element formalism to approximate the spatial derivatives.
Donea et al. (1987) presented Taylor–Galerkin approximations to several hyper-
bolic problems in which the time discretization is Lax–Wendroff, leapfrog, or trape-
zoidal. In the following we will focus on Lax–Wendroff-type approximations to the
constant-wind-speed advection equation.

If the spatial dependence of the solution is not discretized, anO
�
.�t/2


-accurate

Lax–Wendroff approximation to the constant-wind-speed advection equation has
the form

�nC1 � �n

�t
C c

@�n

@x
D c2�t

2

@2�n

@x2

(see Sect. 3.4.4). Suppose that the spatial structure in the preceding differential–
difference equation is approximated using the Galerkin finite-element method with
chapeau expansion functions, then the function value at each node satisfies



1C 1

6
Qı2x
� �
anC1 � an	C � Qı2xan D 1

2
�2 Qı2xan; (6.101)

where once again Qıx D �x ıx and � D c�t=�x. The stability condition for
this scheme is j�j � 1=

p
3, which is identical to that for the leapfrog approx-

imation to (6.98). The leading-order errors in the modified equations10 for this
method and the standard finite-difference Lax–Wendroff method (3.72) are shown
in Table 6.3. The leading-order errors in both schemes are second order and gen-
erate numerical dispersion. The dispersion, or phase-speed error, in each method
is the net result of accelerative time-differencing error and decelerative space-
differencing error. These errors partially cancel in the standard finite-difference
Lax–Wendroff method, and are eliminated entirely when j�j D 1. On the other

10 The “modified equation” is discussed in Sect. 3.4.2.
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Table 6.3 Modified equations for Lax–Wendrof-type finite-difference and finite-element approx-
imations and the Taylor–Galerkin method

Finite difference (3.72)

 t C c x D �.c=6/.�x/2.1��2/ xxx � .c=8/.�x/3�.1��2/ xxxx C : : :

Finite element (6.101)

 t C c x D .c=6/.�x/2�2 xxx � .c=24/.�x/3�.1� 3�2/ xxxx C : : :

Taylor–Galerkin finite-element (6.102)

 t C c x D �.c=24/.�x/3�.1��2/ xxxx C : : :

After Donea et al. (1987)
Subscripts denote partial derivatives.

hand, the leading-order error in the Lax–Wendroff finite-element method is due
entirely to accelerative time-differencing error. The decelerative phase error gen-
erated by the finite-element approximation to the spatial derivatives is O

�
.�x/4


(cf. (6.99)), and as a consequence, there is no beneficial cancelation between time-
differencing error and space-differencing error in the leading-order error for the
Lax–Wendroff finite-element method.

Donea (1984) observed that much better results can be obtained using a third-
order Lax–Wendroff approximation. Expanding the true solution to the constant-
wind-speed advection equation at time .nC 1/�t in a Taylor series about its value
at time n�t , and using the governing equation to replace the first- and second-order
time derivatives by expressions involving derivatives with respect to x, gives

 nC1 �  n D �c�t @ 
n

@x
C .c�t/2

2

@2 n

@x2
C c2.�t/3

6

�
@3 

@t@x2

�n
CO

�
.�t/4


;

where  n is the value of the true solution at t D n�t . The mixed third-order
derivative in the preceding equation is not replaced by an expression proportional
to @3 =@x3 because the finite-element approximation to such a term would require
smoother expansion functions than the piecewise-linear chapeau functions. Instead,
the derivative with respect to time in @3 =.@t @x2/ can be conveniently approxi-
mated by a forward difference to obtain the followingO

�
.�t/3


-accurate approxi-

mation to the advection equation:

�
1 � .c�t/2

6

@2

@x2

� �
�nC1 � �n	C c�t

@�n

@x
D .c�t/2

2

@2�n

@x2
;

in which �n.x/ is a semidiscrete approximation to  .n�t; x/ Using chapeau func-
tions to approximate the spatial dependence of �n and demanding that the residual
be orthogonal to each expansion function, one obtains the Taylor–Galerkin formula
for the function value at each node


1C 1

6
.1 � �2/ Qı2x

� �
anC1 � an	C � Qı2xan D 1

2
�2 Qı2xan: (6.102)
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This scheme is stable for j�j � 1. Examination of the modified equation for
(6.102), which appears in Table 6.3, shows that, in contrast to the Lax–Wendroff
finite-difference and finite-element methods, the Taylor–Galerkin method is free
from second-order dispersive errors. The leading-order error in the Taylor–Galerkin
method is third-order and weakly dissipative. The difference between the Taylor–
Galerkin scheme (6.102), the Petrov–Galerkin method (6.100), and the Lax–
Wendroff finite-element method (6.101) involves only minor perturbations to the
coefficients in the tridiagonal mass matrix. All three schemes require essentially
the same computation per time step, but the Taylor–Galerkin method is the most
accurate and is stable over the widest range of Courant numbers.

6.5.3 Quadratic Expansion Functions

Higher-degree expansion functions are widely used in finite-element approxima-
tions to elliptic partial differential equations. Higher-degree expansion functions are
not, however, commonly used in finite-element simulations of wavelike flow. One
serious disadvantage of higher-degree expansion functions is that they ordinarily in-
crease the implicit coupling in the equations for the time evolution of the expansion
coefficients. Another disadvantage is that the accuracy obtained using higher-degree
expansion functions in hyperbolic problems is generally lower than that which can
be achieved using the same expansion functions in finite-element approximations to
elliptic and parabolic partial differential equations (Strang and Fix 1973). In fact,
the order of accuracy of the function values at the nodes given by quadratic and
Hermite-cubic finite-element approximations to hyperbolic equations is lower than
that obtained with piecewise-linear chapeau functions. High orders of accuracy can
be obtained using cubic splines (Thomée and Wendroff 1974), but splines introduce
a nonlocal coupling between the coefficients of the finite-element expansion func-
tions that makes them too inefficient for most applications involving wavelike flows.
One final difficulty associated with the use of higher-degree expansion functions in
hyperbolic problems is that their behavior can be complicated and difficult to rigor-
ously analyze. With these concerns in mind, let us examine the behavior of quadratic
finite-element approximations to the constant-wind-speed advection equation.

Suppose the piecewise-linear approximation generated by the superposition of
chapeau expansion functions is replaced by piecewise-quadratic functions of the
form

q.x/ D C1 C C2x C C3x
2: (6.103)

In contrast to linear interpolation, the three coefficients C1, C2, and C3 cannot be
uniquely determined by the two nodal values at the ends of each element. The most
straightforward way to proceed is to extend the piecewise-quadratic function across
an interval of 2�x and to chooseC1,C2, andC3 so that (6.103) matches the function
values at the “midpoint” node and at both “endpoint” nodes. Suppose that a function
assumes the values a1 and a3 at the endpoint nodes x1 and x3, and assumes the value
b2 at the midpoint node x2. The quadratic Lagrange interpolating polynomial that
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assumes these values at the nodes is

.x � x2/.x � x3/
.x1 � x2/.x1 � x3/ a1 C .x � x1/.x � x3/

.x2 � x1/.x2 � x3/ b2 C .x � x1/.x � x2/

.x3 � x1/.x3 � x2/
a3:

On the interval x1 � x � x3, the preceding expression is algebraically identical to

a1'
e
1.x/C b2'

m
2 .x/C a3'

e
3.x/;

where 'e
j is the endpoint quadratic expansion function

'e
j .x/ D

8<
:
1 � 3 jx � xj j

2�x
C 1

2

�x � xj

�x

�2
; if jx � xj j � 2�x,

0; otherwise,

(6.104)

and 'm
j is the midpoint quadratic expansion function

'm
j .x/ D

8<
:
�x � xj�1

�x

� �
2 � x � xj�1

�x

�
; if jx � xj j � �x,

0; otherwise.
(6.105)

These expansion functions are plotted in Fig. 6.7. The j th endpoint expansion func-
tion is zero outside an interval of length 4�x centered at the node xj ; it is unity at
xj and is zero at every other node. The j th midpoint expansion function is zero out-
side an interval of length 2�x centered at xj ; it is equal to unity at xj and is zero at
the other nodes. As was the case with chapeau expansion functions, the coefficient
of the j th quadratic expansion function is also the value of the approximate solution
at the j th node.

Let a finite-element approximation to the solution to the constant-wind-speed
advection equation (6.11) be constructed from the preceding quadratic expansion
functions such that

ϕ m
j+1 (x)

1.0

0.5

0.0

1.0

0.5

0.0

j - 3 j - 2 j - 1 j + 1 j + 2 j + 3j

ϕ e
j (x)

Fig. 6.7 Quadratic expansion functions for 'e
j

, an endpoint node centered at grid point j , and
'm

j C1
, a midpoint node centered at j C 1. The x-axis is labeled in units of�x



6.5 The Finite-Element Method 329

�.x; t/ D
X
j odd

aj .t/'
e
j .x/ C

X
` even

b`.t/'
m
` .x/: (6.106)

Enforcing the Galerkin requirement that the residual be orthogonal to each expan-
sion function yields two families of equations for the evolution of the expansion
coefficients in the constant-wind-speed advection problem. The equations centered
at the endpoint nodes are

d

dt

��aj�2 C 2bj�1 C 8aj C 2bjC1 � ajC2
10

�

C c

�
bjC1 � bj�1

�x
� ajC2 � aj�2

4�x

�
D 0; (6.107)

whereas those centered on the midpoints are

d

dt

�
a`�1 C 8b` C a`C1

10

�
C c

�a`C1 � a`�1
2�x

�
D 0: (6.108)

As formulated above, the quadratic finite-element method (QFEM) requires more
work per time step per element than the linear finite-element scheme because a
pentadiagonal matrix must be inverted to evaluate the time derivatives in (6.107) and
(6.108), whereas the mass matrix associated with (6.98) is only tridiagonal. Steppler
(1987) suggested a more efficient alternative in which the expansion functions are
the set of piecewise-linear chapeau functions centered at every node together with
an additional set of functions representing the quadratic corrections at every second
node.

Although (6.107) and (6.108) are expressions for the coefficients of the QFEM
expansion functions, they can be alternatively interpreted as finite-difference ap-
proximations for the function values at each node. The truncation error in the func-
tion values at the nodes can therefore be assessed by a conventional Taylor series
analysis which shows that both (6.107) and (6.108) are O

�
.�x/2


-accurate finite-

difference approximations to the one-dimensional advection equation. The trunca-
tion error at the nodes is considerably worse than the O

�
.�x/4


error obtained

using chapeau expansion functions!
In fact, the error in QFEM solutions to some constant-wind-speed advection

problems can be significantly smaller than that obtained using chapeau functions
over the same number of nodes. There are two reasons why the preceding compar-
ison of truncation errors can be misleading. The first reason is that, unlike finite-
difference approximations, finite-element methods involve an explicit assumption
about the functional dependence of the solution between the nodal points, and
the error at all nonnodal points is O

�
.�x/2


for both the linear finite-element

method and the QFEM. In the case of chapeau expansion functions, the function
values between the nodal points are obtained by linear interpolation and are there-
fore only O

�
.�x/2


accurate. In general, a smooth function can be interpolated

to O
�
.�x/nC1 by piecewise polynomials of degree n. Thus, if the nodal values
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could be specified with negligible error, quadratic expansion functions could pro-
vide O

�
.�x/3


accuracy between the nodes. But since the QFEM method only

predicts the nodal values to O
�
.�x/2


, the accuracy between the nodes is also lim-

ited to O
�
.�x/2


. As discussed in detail by Cullen and Morton (1980), it is neces-

sary to specify how the error will be measured (e.g., pointwise errors at the nodes
or the square integral of the error over the entire spatial domain) before attempting
to determine the truncation error in finite-element approximations.

The second, and perhaps more important, reason why the preceding comparison
of truncation error can be misleading is that it does not provide reliable information
about the errors in the poorly resolved waves, and in many fluid-dynamical applica-
tions, the total error can be dominated by the errors in the shortest waves. The error
in QFEM solutions to the constant-wind-speed advection equation can be evaluated
as a function of the spatial resolution by examining the phase-speed and amplitude
errors in semidiscrete wave solutions to (6.107) and (6.108). There is, however, no
single wave of the form �j .t/ D ei.kj�x�!t/ that will simultaneously satisfy (6.107)
and (6.108). If the initial disturbance consists of a single wave, at subsequent times
the approximate numerical solution will split into two traveling disturbances such
that the wave amplitude at the endpoint nodes is systematically different from that
at the midpoint nodes. The nodal values in each traveling disturbance may be ex-
pressed in the form

aj .t/ D eik.j�x�c�t/; b`.t/ D raeik.`�x�c�t/; (6.109)

where ra is the ratio of the amplitude at a midpoint node to the amplitude at an
endpoint node, and c� is the phase speed. Substitution of (6.109) into (6.107) and
(6.108) yields

1

5
.8 � 2 cos2� C 4ra cos �/ c� � c

�
.4ra sin � � sin 2�/ D 0

and
1

5
.cos � C 4ra/ c

� � c

�
sin � D 0;

where � D k�x. Solutions to this system of two equations in the two unknowns c�
and ra have the form

c�

c
D sin �

�
�
1C sin2 �

	 ��2 cos � ˙ �
9C sin2 �

	1=2�
(6.110)

and

ra D 1

4

�
5
c

c�
sin �

�
� cos �

�
: (6.111)

Two difficulties arise in connection with the interpretation of these results. The
first is the apparent presence of two distinct sets of solutions: “physical” and “non-
physical” modes associated, respectively, with the positive and negative roots in
(6.110). Yet, as recognized by Cullen (1982), none of the solutions are extraneous
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because the set of solutions given by the positive root in (6.110) is identical to the
set of solutions given by the negative root. The relation between these two sets of
solutions may be derived as follows.

Let those quantities related to the positive root in (6.110) be denoted with a
subscript “p” and those related to the negative root be denoted by a subscript “n.”
Also let !� D kc� be the frequency of the QFEM solution. Elementary trigono-
metric identities imply that for k 2 Œ0; π=�x�, i.e., for the positive wave numbers
resolvable on the numerical grid,

!�
p .k/ D !�

n .k � π=�x/ and rap.k/ D �ran.k � π=�x/; (6.112)

and for k 2 Œ�π=�x; 0�

!�
p .k/ D !�

n .k C π=�x/ and rap.k/ D �ran.k C π=�x/:

Now consider a negative-root mode with endpoint values aj and midpoint values
b`. Consistent with (6.106), the indices j are even and ` are odd. Using (6.112)

aj D eiŒ.k��=�x/j�x�!�

n .k��=�x/t� D .�1/j eikj�xe�i!�

p .k/t D eiŒkj�x�!�

p .k/t�;

and

b` D ran.k � π=�x/eiŒ.k�π=�x/`�x�!�

n .k�π=�x/t�

D �rap.k/.�1/`eik`�xe�i!�

p.k/t

D rap.k/e
iŒk`�x�!�

p.k/t�;

which demonstrates that for k 2 Œ0; π=�x� the negative-root mode with wave num-
ber k� π=�x is identical to the positive-root mode with wave number k. Similarly,
for k 2 Œ�π=�x; 0�, the negative-root mode with wave number k C π=�x is iden-
tical to the positive-root mode with wave number k.

We now arrive at the second difficulty in interpreting our results: How can both of
the phase speeds given by the two roots of (6.110) simultaneously describe the be-
havior of individual solutions to (6.107) and (6.108)? The answer lies in the fact that
solutions of the form (6.109) are not conventional semidiscrete Fourier modes that
propagate without changing shape between each pair of adjacent nodes. Instead,
(6.109) is a semidiscrete approximation to a function of the form g.x/ei.kx�!t/,
where the factor g.x/ is introduced to account for the extra spatial dependence as-
sociated with the midpoint-node coefficient ra.

The nature of the QFEM eigenmodes can be more easily understood by express-
ing them as the sum of two conventional semidiscrete Fourier modes traveling at
different speeds and moving in opposite directions. As a first step, (6.109) is written
in the alternative form

Oqn.t/ D 1

2
Œ.1C ra/C .�1/n.1 � ra/� eiŒkn�x�!�.k/t�; n D 0; 1; : : : 2N:
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Even values of n give the nodal values aj ; odd values yield the b`. Then for a
positive-root eigenmode,

Oqn.t/ D
�
1C rap

2

�
eiŒkn�x�!�

p .k/t� C
�
1 � rap

2

�
eiŒ.k�π=�x/n�x�!�

p .k/t�

D
�
1C rap

2

�"
eiŒkn�x�!�

p .k/t� C
 
1 � rap

1C rap

!
eiŒ.k�π=�x/n�x�!�

n .k�π=�x/t�

#
;

where (6.112) is used to obtain the last equality and without loss of generality it is
assumed that k 2 Œ0; �=�x�. Defining q D 2 Oq=.1Crap/ and ˇ D .1�rap/=.1Crap/,
one may write the preceding expression in the form

qn.t/ D eikŒn�x�c�

p .k/t� C ˇei.k�π=�x/Œn�x�c�

n .k�π=�x/t�: (6.113)

Here c�
p .k/ and c�

n .k � π=�x/ are given, respectively, by the positive and negative
roots in (6.110), and the value of rap used to evaluate ˇ is obtained by substitut-
ing c�

p .k/=c into (6.111). If �π=�x � k � 0, the preceding expression for qn is
modified by replacing k � π=�x with k C π=�x.

According to (6.113), the eigenmodes of the QFEM approximation to the one-
dimensional advection equation (6.11) are the superposition of a wave moving
downstream at speed c�

p and a second nonphysical wave moving upstream at speed
c�

n . Neither the upstream-moving wave nor the downstream-moving wave can sat-
isfy (6.107) and (6.108) without the simultaneous presence of the second wave
whose amplitude, relative to the first wave, is determined by ˇ. Values of c�

p .k/=c,
c�

n .k � π=�x/=c, and ˇ.k/ are plotted as a function of k in Fig. 6.8.
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Fig. 6.8 Normalized phase speeds c�

p .k/=c for the positive-root (physical) component (P) and
c�

n .k�π=�x/=c for the negative-root (nonphysical) component (N) of a quadratic finite-element
method (QFEM) eigenmode for the constant-wind-speed advection equation as a function of wave
number k. Also shown is ˇ , the ratio of the amplitude of the negative-root component to the
amplitude of the positive-root component
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Each of the two waves that compose the QFEM eigenmode is a conventional
semidiscrete Fourier mode with a well-defined phase speed and group velocity. The
phase speeds given by the two roots of (6.110) are the phase speeds of these in-
dividual Fourier modes. No single phase speed precisely describes the motion of
a QFEM eigenmode, although since ˇ is small for eigenmodes longer than about
4�x, well-resolved eigenmodes appear to translate with almost no change in form
at speed c�

p .
The group velocity, c�

g D @!=@k, for each individual Fourier mode in (6.113)
satisfies

c�
g

c
D ˙ cos �

�
2C 7 cos2 �

	C 2
�
2 � 3 cos2 �

	p
10� cos2 �

.2 � cos2 �/2
p
10 � cos2 �

:;

where the positive root is associated with @!p=@k and the negative root is associated
with @!n=@k. Note that cgp.k/ D cgn.k ˙ π=�x/, since cos � D � cos.� ˙ π/,
implying that both of the individual modes in (6.113) propagate at the same group
velocity. Thus, although there is some ambiguity in the precise determination of
the phase speed of a single QFEM eigenmode, each eigenmode does have a well-
defined group velocity. This group velocity is plotted as a function of wavenumber
in Fig. 6.9.

The data in Figs. 6.8 and 6.9 suggest that, in many respects, a QFEM approxima-
tion to (6.11) yields qualitatively similar results to those obtained with linear finite
elements or finite differences: long, well-resolved waves will be treated accurately,
whereas disturbances with wavelengths near 2�x will be subject to substantial error.
As the numerical resolution improves, the QFEM can, nevertheless, yield much bet-
ter solutions to (6.11) than those obtained using linear elements (Gresho and Sani
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Fig. 6.9 Normalized group velocity c�

g=c for the QFEM eigenmodes as a function of k
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1998). The advantage of the QFEM method seems to be attributable to its low phase-
speed error and relative freedom from numerical dispersion. The phase-speed er-
ror in the downstream-moving (physical) component of the QFEM solution is very
small, both for relatively short waves, such as a 3�x wave, and in the limit of good
spatial resolution, for which

c�
p

c
� 1C .k�x/4

270
:

The most serious inaccuracies in QFEM approximations to (6.11) are associated
with the nonphysical upstream-propagating mode, whose amplitude is at least 10%
that of the physical mode for all wavelengths shorter than 4�x. Moreover, the am-
plitude of the nonphysical mode decays rather slowly with increasing numerical
resolution. In the limit k�x ! 0,

ˇ � .k�x/2

24
:

How is the difference in the eigenmode structure to linear and quadratic finite-
element approximations to (6.11) made manifest in practical applications? One ex-
ample is provided by the comparison of finite-difference, linear finite-element, and
quadratic finite-element solutions to (6.11) shown in Fig. 6.10. These solutions were
obtained using trapezoidal time differencing with a very small Courant number
(c�t=�x D 1=16), so essentially all the error is produced by the spatial discretiza-
tion. Solutions were computed on the periodic domain 0 � x � 3 subject to the
initial condition

1.75 2.25 2.251.75

a b

xx

Fig. 6.10 Comparison of solutions to the constant-wind-speed advection equation at a t D 10 and
b t D 10 5

16
: quadratic finite-element solution (short-dashed line), linear finite-element solution

(solid line), fourth-order explicit finite-difference solution (long-dashed line), and exact solution
(thin dot-dashed line)
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 .x; 0/ D
8<
:
1

4
.cos.8π.x � 1//C 1/2; if jx � 1j � 1

8
,

0; otherwise .

To facilitate the comparison with the finite-difference method, the nodal values were
initialized by collocation, i.e., aj .0/ D  .j�x; 0/. The horizontal mesh spacing is
�x D 1=32, implying that the total width of the initial spike is 8�x, which is suffi-
ciently narrow to reveal short-wavelength errors without allowing the solution to be
completely dominated by 2�x disturbances. The wind speed is c D 0:1. The solu-
tion at t D 10 is shown in Fig. 6.10a, at which time the peak in the true solution is
centered at x D 2. Only the central portion of the total domain is shown in Fig. 6.10.
For simplicity, the QFEM solution is plotted as a piecewise-linear function between
the nodes. The superiority of the QFEM solution over the linear finite-element so-
lution is clearly evident. The linear finite-element solution is, nevertheless, substan-
tially better than the solution obtained with explicit fourth-order finite differences.

The nature of the amplitude error in the QFEM solution can be seen by compar-
ing the plots in Fig. 6.10. The exact solution propagates exactly one grid interval
between the times shown in the plots in Fig. 6.10. There are essentially no changes
in the shapes of the linear finite-element and the finite-difference solutions over this
short period of time, but the QFEM solution is damped noticeably. This damping is
followed by reamplification as the solution translates another�x, and the amplitude
of the peak in the QFEM solution continues to oscillate as it moves alternatively over
the midpoint and endpoint nodes. Nevertheless, even when the QFEM solution looks
its worst, it is still much better than the solutions generated by the other schemes.
Although the amplitude of the nonphysical component of each QFEM eigenmode
remains small in this linear constant-coefficient test problem, there is no guarantee
that it will not be amplified by wave–wave interactions and contribute to aliasing
error in nonlinear problems. For example, Cullen (1982) reported that, in those re-
gions where the solution is smooth, quadratic elements give worse results than linear
elements in finite-element-method approximations to the inviscid Burgers equation.

The results shown in Fig. 6.10 are consistent with the comparison of the phase
speeds for each scheme plotted in Fig. 6.11. The phase speeds of the 3�x or 4�x
waves are captured much better by the QFEM than by the linear finite-element
method or fourth-order finite differencing. Yet the QFEM is probably not an op-
timal choice for this problem. Also plotted in Fig. 6.11 are the phase speeds pro-
duced when the spatial derivative in the constant-wind-speed advection equation is
approximated using Lele’s tridiagonal compact finite-difference formula (3.53). The
compact scheme exhibits essentially the same accuracy as the QFEM for the poorly
resolved waves, but in many respects the compact scheme is superior because it has
no nonphysical mode, its truncation error is O

�
.�x/4


, and it more easily imple-

mented as an efficient tridiagonal implicit system. On the other hand, the QFEM
does benefit from the excellent conservation and stability properties of all Galerkin
methods (see Sect. 6.2.3).
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Fig. 6.11 Phase-speed error as a function of spatial resolution for linear finite-elements (F1) and
quadratic finite-elements: physical mode (F2), explicit centered fourth-order differences (4E), and
Lele’s fourth-order tridiagonal compact scheme (LC)

6.5.4 Two-Dimensional Expansion Functions

The construction of finite-element approximations to problems in two or more spa-
tial dimensions is straightforward. In the following we will briefly consider the two-
dimensional case. The simplest two-dimensional expansion functions are nonzero
only within some rectangular region. One of the simplest types of interpolation that
can be performed on a rectangular mesh is bilinear interpolation in which the func-
tion is estimated as

C1 C C2x C C3y C C4xy:

The four coefficients C1; : : : ; C4 can be uniquely determined within each rectangle
by the function values at the four vertices. Bilinear interpolation reduces to linear
interpolation along lines parallel to the x or y coordinate axes. Individual expansion
functions for bilinear interpolation, sometimes known as “pagoda” functions, may
be expressed as the product of a chapeau function with respect to x times a second
chapeau function with respect to y. Each pagoda function is unity at a central node
and drops to zero at the eight surrounding nodes.

If the two-dimensional constant-wind-speed advection equation

@ 

@t
C U

@ 

@x
C V

@ 

@y
D 0

is approximated using the pagoda-function finite-element method, evaluation of
(6.96) yields the following system of ordinary differential equations:

A xA y dai;j

dt
C UA yı2xai;j C VA xı2yai;j D 0; (6.114)

where ai;j is the expansion coefficient of the .i; j /th pagoda function or equiva-
lently, the approximate solution at the .i; j /th node, and A x and A y are the aver-
aging operators
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A xai;j D 1

6
.aiC1;j C 4ai;j C ai�1;j /;

A yai;j D 1

6
.ai;jC1 C 4ai;j C ai;j�1/:

The mass matrix generated by the product of the averaging operators A xA y cou-
ples the time tendencies at nine different nodes and is a band matrix with a very
wide bandwidth. One technique, known as “mass lumping,” that has been occa-
sionally advocated to eliminate this implicit coupling diagonalizes the mass matrix
via some essentially arbitrary procedure (such as summing the coefficients in each
row of the mass matrix and assigning the result to the diagonal). As discussed by
Gresho et al. (1978) and Donea et al. (1987), mass lumping degrades the accuracy
of finite-element approximations to hyperbolic problems.

An efficient solution to (6.114) can, nevertheless, be obtained by organizing the
computations as follows. First, evaluate the spatial derivatives at every nodal point
by solving the family of tridiagonal systems

A x

�
@�

@x

�
i;j

D ı2xai;j and A y

�
@�

@y

�
i;j

D ı2yai;j (6.115)

for .@�=@x/i;j and .@�=@y/i;j . Then the time tendency at each nodal point is given
by the uncoupled equations

dai;j

dt
C U

�
@�

@x

�
i;j

C V

�
@�

@y

�
i;j

D 0: (6.116)

Note that the time derivative in (6.116) must be approximated using explicit time
differencing to avoid implicit algebraic equations in the fully discretized approxi-
mation. The solution algorithm given by equations (6.115) and (6.116) is exactly
that which would be most naturally used to solve the two-dimensional advection
equation using the compact finite-difference operator (3.49).

A variety of other two-dimensional expansion functions can also be de-
fined, including higher-degree piecewise polynomials on a rectangular grid and
piecewise-linear functions on a triangular grid. If the computational domain itself
is rectangular, it appears that the most efficient schemes are obtained using rectan-
gular elements (Staniforth 1987). On the other hand, if the computational domain is
highly irregular, it can be advantageous to approximate the solution using a network
of triangular elements. This approach has been used when modeling tidal currents
in bays (Lynch and Gray 1979).

When finite-element expansion functions are defined on triangular grids, several
polynomial expressions in x and y must be integrated over triangular domains to
evaluate the coefficients in the Galerkin approximation (6.96). The calculation of
these coefficients is facilitated if each expansion function is defined with respect
to the local coordinate system .�; �/ illustrated in Fig. 6.12. Within each triangular
element, the linearly interpolated expansion functions have the general form

˛�C ˇ� C � D 0;
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Fig. 6.12 Local-coordinate system for integrating polynomial expressions over a triangle
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Fig. 6.13 a Hexagonal element formed from equilateral triangles. b Subdivision of a spherical
icosahedron into an almost uniform triangular grid

where ˛, ˇ, and � are determined by the values at the vertices of the triangle. Poly-
nomial expressions in � and � can be integrated over the triangular domain T using
the helpful formula

Z Z
T

�r�s d� d� D csC1
�
d rC1 � .�b/rC1	 rŠsŠ

.r C s C 2/Š
;

where b, c, and d are the positive dimensions indicated in Fig. 6.12.
Suppose that solutions to the one-dimensional advection equation (6.11) are

sought in a domain that has been divided into a uniform grid of equilateral trian-
gles. Then every node not lying along the boundary is surrounded by six triangular
elements whose union is a hexagon. These hexagons may be used to define finite-
element expansion functions that are unity at the center of the hexagon and zero at
each of the surrounding nodes. Let the nodes be numbered as shown in Fig. 6.13.
Assume that the x-axis is parallel to the line segment connecting nodes 3, 4, and 5,
and let � denote the distance between any pair of nodes.
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After considerable algebra, one can show that (6.96) reduces to

1

2

�
da1

dt
C da2

dt
C da3

dt
C 6

da4

dt
C da5

dt
C da6

dt
C da7

dt

�

C c

6�
Œ.a2 � a1/C 2.a5 � a3/C .a7 � a6/� D 0:

One simple nonrectangular domain that can be covered by a quasi-homogeneous
lattice of equilateral triangles is the surface of a sphere. A perfectly uniform cover-
ing can be obtained using the 12 nodes that are the vertices of a regular icosahedron
inscribed within the sphere. If there are more than 12 nodes, the coverage will not
be perfectly uniform, but an approximately homogeneous distribution of triangles
can be achieved as follows. Beginning with a regular icosahedron inscribed within
the sphere, the edges of the icosahedron are projected along great-circle arcs to
the surface of the sphere. The resulting spherical triangles are further subdivided
into a large number of smaller, almost uniform, triangular elements as illustrated in
Fig. 6.13b. All nodes on this mesh, except for the original 12 vertices of the icosa-
hedron, are surrounded by six triangular elements whose union is a hexagon. The
original 12 vertices of the icosahedron are surrounded by only five triangular ele-
ments, and at these special nodes the elements are pentagonal. The distance between
adjacent nodes may vary by as much as 25% over the surface of the sphere, and is
smallest in the vicinity of the vertices of the inscribed icosahedron. Williamson
(1968) and Sadourny et al. (1968) provided additional details about the properties
of geodesic spherical grids. Further discussion of triangular grids in global finite-
element models is presented in Cullen (1974), Cullen and Hall (1979), and Priestley
(1992).

6.6 The Discontinuous Galerkin Method

QFEM or higher-degree finite-element methods lead to relatively complex mass
matrices which make the solution of (6.7) too inefficient in problems that are well
suited for integration by explicit time differences. In such cases, a better way to
obtain high-order accuracy is to partition the domain into a set of h relatively coarse-
grained elements and to represent the structure within each element using a polyno-
mial basis of degree p. Two closely related h–p methods are the spectral element
method and the discontinuous Galerkin method.

The primary difference between these two approaches is that the Galerkin cri-
terion is enforced globally in the spectral element method, which requires the in-
tegral in (6.7) to be computed over the entire domain, whereas the computations
in the discontinuous Galerkin method are localized such that information only
needs to be shared between neighboring elements. The discontinuous Galerkin
method is, therefore, well adapted to massively parallel computer architectures.
Another advantage of the discontinuous Galerkin approach is that it yields ap-
proximations to conservation laws that are both locally (over each element) and
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globally conservative, whereas spectral element methods, which typically provide
approximations to advective form operators, are only globally conservative. On the
other hand, an advantage of the spectral element method is that one can easily re-
quire continuity of the solution across element boundaries, which allows it to be
more naturally generalized to treat diffusion and other higher-than-first-order dif-
ferential operators. In the following we will focus on the discontinuous Galerkin
method, because of its suitability for the simulation of low-viscosity flow on highly
parallel computer architectures. Karniadakis and Sherwin (2005) provided an excel-
lent and thorough discussion of the spectral element method.

Consider the scalar conservation law

@ 

@t
C @

@x
F. / D 0 (6.117)

subject to the initial condition  .x; t0/ D g.x/. Suppose the global domain is di-
vided into nonoverlapping elements such that the j th element has width �xj and
covers the subdomain Sj D Œxj ��xj =2; xj C�xj =2�. Let the approximate solu-
tion over the j th element be denoted as Q�j .x/ and expressed as the sum of a finite
set of expansion functions 'k.x/, such that

Q�j .x; t/ D
NX
nD0

an.t/'n.x/; x 2 Sj : (6.118)

Enforcing the Galerkin criteria (6.4) separately in each element requires that, for
all k, Z

Sj

@ Q�j
@t
'k dx D �

Z
Sj

@F. Q�j /
@x

'k dx: (6.119)

Integrating the right side by parts, the preceding expression becomes

Z
Sj

@ Q�j
@t
'k dx D �

Z
Sj

@

@x

�
F. Q�j /'k


dx C

Z
Sj

F. Q�j /d'k
dx

dx: (6.120)

It is convenient to map the subdomain Sj to the interval Œ�1; 1� using the trans-
formation

� D 2.x � xj /

�xj
;

in which case

dx D �xj

2
d�; and

@

@x
D 2

�xj

@

@�
:

Using (6.118) and this transformation, (6.120) becomes

NX
nD0

Mn;k

dan

dt
D
Z 1

�1
F. Q�j /d'k

d�
d� � F. Q�j .1//'k.1/C F. Q�j .�1//'k.�1/;

(6.121)
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where the components of the mass matrix are

Mn;k D �xj

2

Z 1

�1
'n'k d�; 0 � n; k � N: (6.122)

One advantage of (6.121) over (6.119) is that it only requires derivatives of the
expansion functions, which can generally be evaluated analytically, whereas the
derivative of F. Q�j / is needed for (6.119). In addition, (6.121) provides a conve-
nient way to couple adjacent elements through the specification of fluxes across the
element boundaries.

The exact fluxes in (6.121) are replaced by approximate fluxes OF that depend
only on the numerical solution just to the right and left of each element boundary,
so the approximation to F Œ Q�j .1/� takes the form OF Œ Q�j .1/; Q�jC1.�1/�. As in finite-
volume methods, the numerical flux must be consistent in the sense that for any
constant  0, F. 0/ D OF . 0;  0/. One possible choice for OF is the Godunov flux
(5.53), which in the current context may be expressed as

OF .r; s/ D
8<
:

min
r�	�s F.�/ if r � s,

max
s�	�r F.�/ otherwise .

(6.123)

Several alternative formulations for OF are given in Cockburn and Shu (2001). For
problems with continuous solutions, the sensitivity to the specification of the fluxes
at the element boundaries decreases significantly as the degree of the polynomial
approximation within each element increases, because as p increases any jumps at
the element boundaries become very small.

6.6.1 Modal Implementation

Discontinuous Galerkin methods may be implemented using either a modal or a
nodal representation of the polynomial expansion functions within each element.
The modal approach, reviewed in more detail by Cockburn and Shu (2001), is con-
sidered in this section, followed by a discussion of the nodal approach in Sect. 6.6.2.
The most common family of polynomials to choose for the 'k in the modal dis-
continuous Galerkin method is the set of Legendre polynomials of degree zero
throughN , which, as noted in connection with (6.67), are orthogonal over the inter-
val Œ�1; 1�. Substituting (6.67) into (6.122) yields

Mn;k D �xj

2nC 1
ınk:

The first five Legendre polynomials,

1; �; .3�2 � 1/=2; .5�3 � 3�/=2; .35�4 � 30�2 C 3/=8;
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Fig. 6.14 a Modal basis consisting of the Legendre polynomials P0 through P4. b Lagrange
interpolating polynomials of degree 4 and the Gauss–Legendre–Lobatto nodes for a five-point
nodal expansion

are plotted in Fig. 6.14a. Higher-degree Legendre polynomials can be obtained from
the recursion relation

.k C 1/PkC1.�/ D .2k C 1/�Pk.�/ � kPk�1.�/:

Even-degree Pk are symmetric; odd degrees are asymmetric, i.e.,

Pk.��/ D .�1/kPk.�/: (6.124)

At the right endpoint, Pk.1/ D 1 and P 0
k
.1/ D k.k C 1/=2; these may be used

in conjunction with (6.124) to obtain the corresponding values at the left endpoint.
The derivative in the interior of the interval may be computed using

�2 � 1

k
P 0
k.�/ D �Pk.�/ � Pk�1.�/:

When the 'k are Legendre polynomials, the evolution equation for the kth ex-
pansion coefficient (6.121) reduces to

dak

dt
D 2k C 1

�xj


Z 1

�1
F. Q�j /dPk

d�
d� � OF . Q�j ; Q�jC1/C .�1/k OF . Q�j�1; Q�j /

�
:

(6.125)

In practical applications, the integral in (6.125) is evaluated by quadrature. As dis-
cussed in Sect. 6.4.3.1, if the integrand is a polynomial and L nodal points are used
to approximate the integral, one can obtain a result that is exact for polynomials
through degree 2L � 1 by choosing the nodes to be the L zeros of PL. (When the
nodes are zeros of a Legendre polynomial, the numerical integration is referred to
as Gaussian quadrature or, more specifically, Gauss–Legendre quadrature.) If F is a
linear function of Q�j and the polynomial expansion is truncated at degreeN , the in-
tegrand in (6.125) will consist of polynomials of degree less than or equal to 2N �1,
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so the integral can be evaluated exactly using Gauss–Legendre quadrature with N
nodes. The weight at each node is given by (6.70), where the location of the j th zero
may be determined numerically using (6.71) as a first guess. On the other hand, if
F is a function of Q�2j (or in more general systems, contains binary products of the
unknown variables), the integrand contains polynomials up to degree 3N � 1, and
3N=2 nodes are required to ensure the integral is exact.

The initial conditions are projected onto the expansion functions in each interval
using the standard Galerkin requirement that any initial error must be orthogonal to
each of the expansion functions. If gj .�/ is the initial condition on Sj mapped to
the interval Œ�1; 1�, the Galerkin requirement is

Z 1

�1

"
NX
nD0

an.0/Pn � gj

#
Pk
�xj

2
d� D 0; 0 � k � N;

or

ak.0/ D 2k C 1

2

Z 1

�1
gjPk d�; 0 � k � N: (6.126)

The preceding integral may be approximated using Gauss–Legendre quadrature,
although the number of nodes in the quadrature should exceed N .11

6.6.2 Nodal Implementation

SupposeN C 1 nodes �0; �1; : : : �N are spread over the interval Œ�1; 1�. The ends of
the interval are included in the set of nodes to facilitate the evaluation of the fluxes;
therefore, �0 D �1 and �N D 1. The remaining nodes are chosen to maximize
the accuracy with which the integrals in (6.121) and (6.122) can be approximated
by quadrature. The set of nodes yielding exact results for polynomial integrands of
the highest possible degree consists of the zeros of the Jacobi polynomialP 1;1N�1.�/.
Jacobi polynomials of degreem and n satisfy the orthogonality relation

Z 1

�1
.1 � �/˛.1C �/ˇP ˛;ˇm .�/P ˛;ˇn .�/ d� D 0; if m ¤ n: (6.127)

After setting ˛ D ˇ D 1 in (6.127), one can use a derivation directly analogous
to that presented for Gauss–Legendre quadrature in Sect. 6.4.3 to demonstrate that
quadratures based on the zeros of P 1;1N�1.�/ yield exact results for polynomials
through degree 2N � 1 (see Problem 18). A numerical integration in which the
function is evaluated at the endpoints ˙1 and at the zeros of a Jacobi polynomial is
known as Gauss–Legendre–Lobatto (GLL) quadrature.

11 If L nodes are used in a Gauss–Legendre-quadrature approximation to (6.126) and L � N ,
aL.0/ will evaluate to zero regardless of the actual functional form of gj .
/.
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In the nodal discontinuous Galerkin method, the expansion functions within each
element are the N th-degree Lagrange polynomials interpolating the N C 1 GLL
nodes,

'k.�/ D
NY

nD0
n¤k

.� � �n/

.�k � �n/
: (6.128)

Note that 'k has a value of zero at every node except at �k , where its value is
unity. If the integral in (6.122) is evaluated by GLL quadrature at the nodal points
�0; �1; : : : �N , the approximate mass matrix eM will be diagonal, since

eMn;k D
NX
iD0

wi'n.�i /'k.�i / D
NX
iD0

wiıinıik D wnınk ; (6.129)

where the wn are weights satisfying

wn D
Z 1

�1
'n.�/ d�:

For expansion functions of the form (6.128), the integrand in (6.122) is a poly-
nomial of degree 2N . Thus, although the quadrature (6.129) is indeed approximate,
an exact result could be obtained using GLL quadrature with just one more nodal
point. One might therefore suppose that the exact mass matrix is well approximated
by eM, but this is not so. As an example, consider the case N D 4, for which

M D

0
BBBB@

0:0889 0:0259 �0:0296 0:0259 �0:0111
0:0259 0:4840 0:0691 �0:0605 0:0259

�0:0296 0:0691 0:6321 0:0691 �0:0296
0:0259 �0:0605 0:0691 0:4840 0:0259

�0:0111 0:0259 �0:0296 0:0259 0:0889

1
CCCCA

and

eM D

0
BBBB@

0:1000 0 0 0 0

0 0:5444 0 0 0

0 0 0:7111 0 0

0 0 0 0:5444 0

0 0 0 0 0:1000

1
CCCCA :

Computational efficiency is sometimes increased in finite-element methods
through mass lumping, in which the actual mass matrix is replaced with a diago-
nal matrix by summing entries across each row of the original matrix and placing
that sum on the diagonal of the lumped matrix. Using the preceding example, one
may verify that eM is obtained if the exact mass matrix M is “lumped.” The same
result holds for arbitrary N (Karniadakis and Sherwin 2005, p. 57). In contrast to
the modal discontinuous Galerkin method, in which the mass matrix is diagonal
because the expansion functions within each element are truly orthogonal, in the
nodal discontinuous Galerkin approach the mass matrix is effectively diagonalized
by mass lumping.
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The derivatives of the Legendre polynomials are related to the Jacobi polynomials
such that

P 0
N .�/ D 1

2
.N C 1/P

1;1
N�1.�/; (6.130)

so the GLL nodes are also the zeros of .1 � �/.1 C �/P 0
N .�/. The zeros of P 0

N .�/

are not known analytically, but may be found numerically using the zeros of the
Chebyshev polynomial of degree N � 1 as a first guess, i.e., by using (6.71) with
m D N � 1. The individual expansion functions may be expressed in the form

'k.�/ D
8<
:
1; if � D �k ,
.� � 1/.� C 1/P 0

N .�/

N.N C 1/PN .�k/.�k � �/
; otherwise

(6.131)

(see Problem 19). The five GLL nodes and expansion functions for the case N D 4

are plotted in Fig. 6.14b.
Evaluating the integral in (6.121) using GLL quadrature requires the values of

d'k=d� at the nodal points, which are

Dk;n � d'k

d�
.�n/ D

8̂̂
ˆ̂<
ˆ̂̂̂:

�N.N C 1/=4; if k D n D 0,

0; if k D n ¤ 0;N ,

N.N C 1/=4; if k D n D N ,
PN .�n/

PN .�k/.�n � �k/ ; if k ¤ n .

Recalling that 'm.�n/ D ımn, the nodal implementation of (6.121) reduces to

wk
�xj

2

dak

dt
D

NX
nD0

F Œ Q�j .�n/�Dk;nwn� OF . Q�j ; Q�jC1/aN ıkNC OF . Q�j�1; Q�j /a0ı0k;

where the exact fluxes F have been replaced by the previously discussed numerical
fluxes OF , and the GLL quadrature weights are

wk D 2

N.N C 1/ŒPN .�k/�2
; k D 0; 1; : : : ; N:

Both Dk;n and wk are independent of the solution and may be evaluated once and
stored for subsequent use during the integration.

As in the modal approach, the initial values ak.0/ are determined by requiring
the initial error to be orthogonal to every expansion function. Again letting gj .�/ be
the initial condition on Sj mapped to the interval Œ�1; 1�, this requires

Z 1

�1

"
NX
nD0

an.0/'n � gj
#
'k
�xj

2
d� D 0; 0 � k � N:

Approximating this integral by quadrature on the N C 1 GLL nodes and again
recalling that 'm.�n/ D ımn, one finds ak.0/ D gj .�k/.



346 6 Series-Expansion Methods

6.6.3 An Example: Advection

Suppose F. / D c , so (6.117) reduces to the one-dimensional scalar advection
equation, and that the wind speed c is constant and nonnegative. Then the Godunov
flux (6.123) reduces to the upstream flux OF Œ Q�j .1/; Q�jC1.�1/� D c Q�j .1/. As a test
case, consider the two-wave problem first introduced in connection with Fig. 3.7.
The domain 0 � x � 1 is periodic, c D 1, and

 .x; 0/ D sin.6πx/C sin.8πx/:

In contrast to the earlier example, where the solution was only integrated until it
translated across 40% of the domain, we will examine solutions at time 10, when
the waves have propagated around the domain ten times. The third-order strong-
stability-preserving Runge–Kutta (SSPRK) method (2.48) is used to integrate the
solution forward in time. In all cases the time step was chosen so that c�t=� Qx D
0:1, where for the modal discontinuous Galerkin simulations � Qx D �x=N is the
element width divided by the highest degree retained in the polynomial expansion,
and for the nodal discontinuous Galerkin simulations � Qx D �xmin is the smallest
internode spacing. This relatively small Courant number was chosen in an attempt
to reduce the size of the time-differencing error in comparison with those errors
introduced by the spatial discretization.

Solutions obtained using the nodal discontinuous Galerkin method are shown in
Fig. 6.15.

As apparent in Fig. 6.15a, the solution generated using eight elements with four
nodes per element is a reasonable, but not highly accurate approximation to the cor-
rect solution. If the number of elements is doubled, while reducing the number of
nodes per element to three (which increases the total number of nodes from 32 to
48), the solution, shown in Fig. 6.15b, becomes slightly less accurate and also takes
longer to compute (L2 errors and execution times for these simulations are given
in Fig. 6.16). In contrast, if the number of elements remains fixed at eight and the
number of nodes is increased to five (giving a total of 40 nodes), one obtains the
much more accurate result shown in Fig. 6.15c. This is a basic property of discon-
tinuous Galerkin methods: as the number of nodes per element is increased, the
rate of convergence to a smooth solution is faster than any fixed power of the ef-
fective grid spacing. These discontinuous Galerkin results may be compared with
a basic centered fourth-order solution integrated using the three-stage third-order
SSPRK method. The accuracy of the finite-difference solution is less than that of the
eight-element, five-node discontinuous Galerkin solution, but is better than those in
Fig. 6.15a and b.

Further illustration of the efficiency of discontinuous Galerkin methods with a
relatively low number of elements and many nodes is shown in Fig. 6.16, in which
the L2 error in the two-wave problem is plotted as a function of the execution time
required to obtain solutions at t D 10. Clearly the most efficient way to reduce
the error is to use relatively few elements and more nodes. In all cases plotted in
Fig. 6.16, the time stepping is computed using the three-stage SSPRK scheme with
c�t=�xmin D 0:1, a strategy similar to the actual practice in many geophysical
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40 cells; 4th-order FD

Fig. 6.15 Discontinuous Galerkin nodal solutions to the two-wave advection problem using
a eight elements and four nodes, b 16 elements and three nodes, and c eight elements and five
nodes. A 40-grid-cell solution obtained using centered fourth-order finite differences is shown in d
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Fig. 6.16 L2 error as a function of execution time for nodal discontinuous Galerkin methods
using eight (dashed-dotted line), 12 (solid line), and 16 (dashed line) elements. The number of
nodes is indicated by points along each line. The three solid points indicate the cases shown in
Fig. 6.15a–c
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Fig. 6.17 Discontinuous Galerkin modal solutions to the two-wave advection problem using
a eight elements and four expansion functions, and b 16 elements and three expansion functions

applications where the order of the time differencing is not as refined as that of the
spatial discretization. Nevertheless, since the order of the time differencing is fixed,
it does introduce an error that becomes nontrivial in those cases with the highest
number of nodes.

Modal discontinuous Galerkin solutions to the two-wave problem are shown in
Fig. 6.17. The number of elements and the degrees of freedom within each element
are identical to those for the nodal solutions in Fig. 6.15a and b, but as apparent, the
modal solution produces a substantially more accurate result. The higher accuracy
of the modal approach likely arises because its mass matrix (6.122) is evaluated ex-
actly, whereas the mass matrix for the nodal approach is approximated as diagonal
through mass lumping (or equivalently, by a nonexact GLL quadrature). Neverthe-
less, as h and p are increased, both the modal and the nodal discontinuous Galerkin
methods converge rapidly to smooth solutions with essentially exponential accuracy.

The maximum stable time step with which nodal discontinuous Galerkin approx-
imations to the advection problem can be integrated using (2.48) can be estimated
as that for which the Courant number associated with the smallest internode spac-
ing becomes unity, i.e., �t must approximately satisfy c�t=�xmin � 1. Since the
distribution of the nodes clusters toward the edges of each element as the order of
the approximation increases within each element, the limitation imposed by this
condition can be quite stringent when N is large. Hesthaven and Warburton (2008)
provided an extensive discussion of ways to maintain accuracy while relaxing this
stability requirement. Nevertheless, at least in this particular test problem, accuracy,
not stability considerations may be a more important constraint on the time step. The
L2 error in the eight-cell, five-node solution shown in Fig. 6.15c increases by a mod-
est factor of 2.9 when�t is increased by a factor of 4, but jumps by a factor of 135 if
c�t=�xmin is pushed close to the stability limit as �t is increased by a factor of 9.

Returning to the influence of node clustering on the maximum stable time step,
note that in Fig. 6.14b, the distribution of the nodes is only modestly skewed toward
the edges of the element. If �xavg is the average internode spacing, the stability
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condition forN D 5 becomes c�t=�xavg < 0:67, which may be compared with the
condition c�t=�x < 0:73 for a leapfrog-time, centered-fourth-order-space finite
difference approximation to the advection equation.

A simple estimate of the maximum stable time step for the modal discontinuous
Galerkin method is available when both the order and the number of stages of the
SSPRK scheme are N C 1 and the degree of the highest polynomial expansion
function is N . In this case �t should be chosen so that

Cmax � max
j

�
c�t

�xj

�
� 1

2N C 1

(Cockburn and Shu 2001). Since the region of stability expands as more stages
are included in the SSPRK method, the preceding expression will overestimate the
region of stability if the maximum degree of the polynomials in the expansion is in-
creased while the time differencing is left unchanged. Yet in practice, one might inte-
grate using the third-order SSPRK method regardless of the degree of the Legendre
polynomial expansion. Table 6.4 gives the maximum Courant number for which
stable integrations of modal discontinuous Galerkin approximations to the advec-
tion equation may be obtained using polynomials of degree N and the third-order
SSPRK method (2.48). These empirically determined values of Cmax agree with
those given by Cockburn and Shu (2001).

If one were to construct a finite-difference scheme with the same number of
degrees of freedom as in a modal discontinuous Galerkin method with polynomials
up to degree N , the average grid spacing used for the finite differences would be
�xavg D �x=N . Courant numbers computed with respect to �xavg (instead of
the entire width of the element) may be used to more easily compare the time-step
limitations of modal discontinuous Galerkin methods with those for finite-difference
schemes. Maximum values of c�t=�xavg are therefore listed in the last row of
Table 6.4.

The maximum stable time step with which nodal discontinuous Galerkin approx-
imations to the advection equation can be integrated is larger than that for the modal
approach. For example, using the third-order SSPRK method (2.48) to integrate
discontinuous Galerkin approximations to the advection equation with five degrees
of freedom per element, empirically determined stability criteria require NCmax to
be bounded by 0.35 and 0.67 for the modal and nodal methods, respectively. For
comparison, the maximum stable Courant number with which the centered-fourth-
order finite difference can be integrated with the same third-order SSPRK scheme
is 1.26.

Table 6.4 Maximum Courant numbers for which third-order three-stage strong-stability-
preserving Runge–Kutta integrations of the advection equation are stable for modal discontinuous
Galerkin polynomial expansions of degree N

2 3 4 5 6 7 8

Cmax 0.209 0.130 0.089 0.066 0.051 0.040 0.033
NCmax 0.418 0.390 0.356 0.330 0.306 0.280 0.264
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The discontinuous Galerkin method has the flexibility to be applied in several
contexts beyond the simple example considered here. The fluxes at the cell bound-
aries and the polynomial degree within each element in modal discontinuous
Galerkin methods may be limited in a manner similar to that in finite-volume meth-
ods to obtain schemes that are total variation diminishing or otherwise well behaved
in the presence of steep gradients (Cockburn and Shu 2001). Indeed, the discontin-
uous Galerkin method can be considered a generalization of finite-volume methods
to include piecewise-polynomial representations of arbitrarily high degree within
each cell. If the element widths are adaptively narrowed in the vicinity of steep gra-
dients, the discontinuous Galerkin method can provide high-order approximations
in smooth portions of the flow, together with sharp nonovershooting approximations
in regions of steep gradients. Another powerful property of discontinuous Galerkin
methods is that, like the finite-element method, they are well suited for problems in
complex geometries. As a geophysical example, the shallow-water equations on the
sphere were solved using a nodal discontinuous Galerkin method by Giraldo et al.
(2002) and using a modal discontinuous Galerkin approach by Nair et al. (2005).

Problems

1. Show that for n > 1, a wavelength of .n C 1/�x=n aliases into a wavelength
of �.n C 1/�x if it is sampled on a uniform mesh with a grid spacing of �x.
Sketch an example for n D 2 and explain how the change in sign of the wave
number influences the relative phases of the correct and aliased waves near any
mesh point where the wave amplitude is zero.

2. Suppose that the spectral method is used to integrate a system including the
equation

@�

@t
C � � � C �� D 0;

and that the term �.x; t/�.x; t/ .x; t/ is to be evaluated using the transform
technique. If 2KC 1 modes are retained in the Fourier expansions for �, �, and
 , derive an expression determining the minimum number of grid points that
must be present on the physical-space grid to avoid aliasing error in the product
�� .

3. In all practical applications, finite Fourier transforms are computed using the
FFT algorithm Cooley and Tukey (1965). Suppose that the periodic spatial do-
main 0 � x � 2π is discretized so that

xj D 2π
M
j; where j D 1; : : : ;M:

To be efficient, the FFT algorithm requires thatM be the product of small prime
numbers. Maximum efficiency is obtained when M is a power of 2; thus, most
FFT codes assume that M is an even number. When the total number of grid
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points on the physical mesh is even, the finite Fourier transform and inverse
transform are given by the relations

an.t/ D 1

2N

2NX
jD1

�.xj ; t/e�inxj

and

�.xj ; t/ D
NX

kD�NC1
ak.t/e

ikxj :

The 2N data points in physical space uniquely define 2N Fourier coefficients.
However, in contrast to (6.14), the wave number k D �N does not appear in
the expansion. Explain why the �N wave number is retained in finite Fourier
transforms when there is an odd number of points on the physical mesh and is
dropped when the total number of points is even.

4. Solutions to the two-dimensional advection equation

@ 

@t
C u

@ 

@x
C v

@ 

@y
D 0

are sought in a domain that is periodic in both x and y. The velocity field is
nondivergent.

(a) Show that the domain integral of  3 is conserved by the exact solution to
the unapproximated governing equations.

(b) If the effects of time-differencing errors are neglected, is the Galerkin spec-
tral method guaranteed to yield an approximate solution to this problem that
conserves the domain integral of  3? Explain your answer.

5. Solutions are sought to the equation

@ 

@t
D @

@x

�
	.x/

@ 

@x

�

on the periodic domain 0 � x � 2π using a series-expansion method in which

 .x; t/ D
X

jmj�N
rm.t/eimx ; 	.x/ D

X
jnj�N

sneinx :

(a) If the solution is to be obtained using a Galerkin spectral method, derive the
ordinary differential equation for drm=dt .

(b) Write down a trapezoidal approximation to the system of ordinary differen-
tial equations derived in (a). How would the efficiency with which this trape-
zoidal approximation can be computed change if 	 did not depend on x?
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6. Present an algorithm for the solution of the equation described in Problem 5
using a pseudospectral method and second-order Adams–Bashforth time differ-
encing. Do not assume that 	 is independent of x.

7. Pseudospectral solutions to the constant-wind-speed advection equation are to
be obtained using leapfrog time differencing such that

�nC1
j � �n�1

j

2�t
C c0

�
@�n

@x

�
j

D 0:

Suppose that the usual formula for calculating the derivative,
�
@�n

@x

�
j

D
X

jkj�N
ikakeikxj ;

is replaced by the modified expression
�
@�n

@x

�
j

D
X

jkj�N
i



sin.kc0�t/

c0�t

�
akeikxj :

(a) Determine the phase-speed error and the maximum stable time step for the
modified scheme.

(b) What limits the practical utility of this otherwise attractive scheme?

8. Using (6.47), verify the orthogonality relation for the spherical harmonics
(6.48). Also use the relation P�m;n.�/ D .�1/mPm;n.�/ to show that Y ��m;n D
.�1/mYm;n and that the expansion coefficients for any approximation to a real-
valued function satisfy a�m;n D .�1/ma�

m;n.

9. Express the associated Legendre function P4;4.�/ as an algebraic function of �
(thereby producing an expression similar to the expressions in Table 6.2).

10. Derive (6.25) by repeatedly integrating

ak D 1

2π

Z π

�π
 .x/e�ikx dx

by parts.

11. *Consider the family of functions periodic on the interval Œ0; 1�

 .x/ D
�

cosn
�
2π
�
x � 1

2

	
if
ˇ̌
x � 1

2

ˇ̌
< 1

4
,

0 otherwise.

Evaluate the rates of convergence of the Fourier series expansions to this family
of functions for the cases n D 0, 1, and 2. Compute Fourier series expansions
truncated at progressively higher wavenumbers K , such that K D 2mπ, for
m D 3; 4; : : : ; 8. Compute the error in the expansion using both the maximum
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norm over the entire interval and the maximum norm in the region jx � 1=2j �
1=8. Evaluate these maximum norms using grid-point values on a mesh with
�x D 1=1024, and plot the logarithm of the error versus the logarithm of �x.
How do the rates of convergence of the Fourier approximation to these functions
compare with the rates suggested in Sect. 6.2.1.4?

12. Show that the L2 norm of the solution to the viscous Burgers equation (6.43)
on the periodic domain 0 � x � 1,

k k2 D

Z 1

0

 2 dx

�1=2
;

is bounded by its value at the initial time.

13. *Use the spectral and pseudospectral methods to compute numerical solutions
to the viscous Burgers equation (6.43) subject to the initial condition .x; 0/ D
sin.2πx/. Set 	 D 0:002. Approximate the time derivative using leapfrog time
differencing for the advection term and forward differencing for the diffusion.
Initialize the leapfrog scheme with a single forward time step. Use a time step
such that

�t

�x
max
x
. .x; 0// D 0:16:

(a) Use �x D 1=64 and 64 Fourier modes (which yields a cutoff wave number
of 64π on this spatial domain). Show the solutions at t D 0:40 on a scale
�4 �  � 4. Which scheme performs better? How seriously does aliasing
error affect the stability and accuracy of the pseudospectral solution?

(b) Repeat the preceding simulations using �x D 1=128 and 128 Fourier
modes. Show the solutions at t D 0:40 in the subdomain 0 � x � 1=2,
0 �  � 1. How seriously does aliasing error degrading the stability and
accuracy of the pseudospectral solution?

(c) Why is there an improvement in the pseudospectral solution between the
simulations in (a) and (b)?

(d) If the spatial resolution is increased to 256 Fourier modes, both the spectral
and the pseudospectral solutions become unstable. Why? Devise a way around
this instability and obtain an approximation to the solution at t D 0:40. Again
plot this solution on the subdomain 0 � x � 1=2, 0 �  � 1.

14. Solutions to the coupled advection/chemical reaction equations

@�

@t
C c

@�

@x
D � ;

@ 

@t
C c

@ 

@x
D �� 

are to be obtained using the Galerkin finite-element approach. Assume that the
expansion functions are chapeau functions and that the approximate expressions
for  and � are

� �
X
m

am'm;  �
X
n

bn'n:
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Using (6.98), we know that the first equation will have the form

�x

6

�
dajC1
dt

C 4
daj

dt
C daj�1

dt

�
C c

�ajC1 � aj�1
2

�
D X;

where X represents the Galerkin approximation to � Evaluate X in terms of
the expansion coefficients ak and bk .

15. Determine the Galerkin finite-element approximation to  @ =@x using cha-
peau expansion functions. Show that the result is identical to the conservative
finite-difference operator appearing in (4.109).

16. *Compute solutions to Problem 13 in Chap. 4 using the spectral and pseu-
dospectral methods. Use the same numerical parameters specified in that prob-
lem except choose�t so that the Courant number based on the maximum wind
speed for the shortest wavelength retained in the spectral truncation is 0:3. Do
not use any type of smoother. Use leapfrog time differencing, taking a single
forward step to obtain the solution at the first time level.

(a) Obtain solutions using 64 Fourier modes to approximate  and c.x/. Show
your results at t D 1:5 and 3.0 as directed in Problem 13 in Chap. 4. Also
show the two solutions at some time when the pseudospectral method is clearly
showing some aliasing error. (Hint: This only happens for a limited period of
time during the integration.)

(b) Now retry the solution with 128 Fourier modes and compare your results
with those obtained in (a) and, if available, with the finite-difference solutions
computed for Problem 13 in Chap. 4.

17. *Compute chapeau-function finite-element-method solutions to Problem 16 us-
ing the previously specified numerical parameters. Try spatial resolutions of
�x D 1=32 and 1=64. If aj is the amplitude at the j th node, the Galerkin
chapeau-function approximation to the variable-wind-speed advection equa-
tion is

d

dt

�
aj�1 C 4aj C ajC1

	C .cj�1 C 2cj /
�aj � aj�1

�x

�

C .cjC1 C 2cj /
�ajC1 � aj

�x

�
D 0:

(a) Initialize the problem by setting aj and cj equal to the exact function values
at the nodes.

(b) Initialize the problem by projecting the exact data onto the nodes using the
Galerkin (or least-squares) formula (6.8).

18. Suppose g.x/ is a polynomial that is to be integrated over the interval Œ�1; 1�
using Gaussian quadrature at N C 1 nodes, x0; x1; : : : ; xN . That is,
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Z 1

�1
g.x/ dx �

NX
jD0

wjg.xj /;

where

wj D
Z 1

�1
pj .x/ dx:

Here pj .x/ is given by (6.64) and is the Lagrangian interpolating polynomial
with unit amplitude at node xj and zero amplitude at all other nodes. Suppose
that the set of nodes includes the endpoints ˙1. Show that choosing the N � 1

interior nodes to be the zeros of the Jacobi polynomial P 1;1N�1.x/ will ensure
that the quadrature is exact for all polynomials of degree less than or equal to
2N � 1.

19. Derive the expression for 'k in (6.131).

(a) As a first step show that Lagrange interpolating polynomials may be alter-
natively expressed as

NY
nD0
n¤k

.� � �n/

.�k � �n/
D g.�/

g0.�k/.� � �k/ ;

where g.�/ D QN
nD0.� � �n/.

(b) Now complete the derivation of (6.131) using the fact that Legendre poly-
nomials are solutions to the differential equation

d

dx



.1 � x2/

d

dx
Pn.x/

�
C n.nC 1/Pn.x/ D 0:





Chapter 7
Semi-Lagrangian Methods

Most of the fundamental equations in fluid dynamics can be derived from first
principles in either a Lagrangian form or an Eulerian form. Lagrangian equations
describe the evolution of the flow that would be observed following the motion of
an individual parcel of fluid. Eulerian equations describe the evolution that would
be observed at a fixed point in space (or at least at a fixed point in a coordinate sys-
tem such as the rotating Earth whose motion is independent of the fluid). If S.x; t/
represents the sources and sinks of a chemical tracer  .x; t/, the evolution of the
tracer in a one-dimensional flow field may be alternatively expressed in Lagrangian
form as

d 

dt
D S; (7.1)

or in Eulerian form as
@ 

@t
C u

@ 

@x
D S:

The mathematical equivalence of these two equations follows from the definition of
the total derivative,

d

dt
D @

@t
C dx

dt

@

@x
;

and the definition of the velocity,

dx

dt
D u: (7.2)

One strategy for the solution of (7.1) as an initial-value problem would be to
choose a regularly spaced distribution of fluid parcels at the initial time, assign a
value for  to each of these fluid parcels from the initial condition, and then in-
tegrate the ordinary differential equations (7.1) and (7.2) to determine the location
and the tracer concentration of each parcel as a function of time. The difficulty
with this strategy is that in most practical applications the distribution of the fluid
parcels eventually becomes highly nonuniform, and the numerical approximation of
 .x; t/ becomes inaccurate in regions where the fluid parcels are widely separated.
In theory, this situation can be improved by adding new parcels to those regions

D.R. Durran, Numerical Methods for Fluid Dynamics: With Applications to Geophysics, 357
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where the initial parcels have become widely separated and removing parcels from
regions where the parcels have become too concentrated. It is, however, difficult to
create a simple algorithm for adding and removing fluid parcels in response to their
evolving distribution within the fluid.

A much better scheme for regulating the number and distribution of the fluid
parcels can be obtained by choosing a completely new set of parcels at every time
step. The parcels making up this set are those arriving at each node on a regularly
spaced grid at the end of each step. As noted by Wiin-Nielsen (1959), this approach,
known as the semi-Lagrangian method, keeps the fluid parcels evenly distributed
throughout the fluid and facilitates the computation of spatial derivatives via finite
differences. As an illustration of this approach, let tn D n�t and xj D j�x; then a
semi-Lagrangian approximation to (7.1) can be written using the trapezoidal scheme

�
�
xj ; t

nC1� � �
�

Qxnj ; tn
�

�t
D 1

2

�
S
�
xj ; t

nC1�C S
� Qxnj ; tn

��
; (7.3)

where � is the numerical approximation to  , and Qxnj is the estimated x coordi-
nate of the departure point of the trajectory originating at time tn and arriving at
.xj ; t

nC1/. The value of Qxnj is computed by numerically integrating (7.2) backward
over a time interval of �t starting from the initial condition x.tnC1/ D xj . Then,
since the endpoint of the backward trajectory is unlikely to coincide with a grid
point, �. Qxnj ; tn/ and S. Qxnj ; tn/ must be obtained by interpolation.

Semi-Lagrangian methods are of considerable practical interest because in some
applications they are more efficient than competing Eulerian schemes. Another ad-
vantage of the semi-Lagrangian approach is that it is easy to use in problems with
nonuniform grids. In addition, semi-Lagrangian schemes avoid the primary source
of nonlinear instability in most geophysical wave-propagation problems because the
nonlinear advection terms appearing in the Eulerian form of the momentum equa-
tions are eliminated when those equations are expressed in a Lagrangian frame of
reference.

As a result of the pioneering work by Robert (1981, 1982), semi-Lagrangian
semi-implicit methods have become one of the most popular architectures used in
global weather forecast models. An extensive review of the application of semi-
Lagrangian methods to atmospheric problems was provided by Staniforth and Côté
(1991). Semi-Lagrangian methods are also used in a variety of other fluid-dynamical
applications, where they are sometimes referred to as Lagrangian–Eulerian or
Eulerian–Lagrangian methods (e.g., Hirt et al. 1974; Oliveira and Baptista 1995).

7.1 The Scalar Advection Equation

The stability and accuracy of Eulerian finite-difference methods were first examined
in Chap. 2 by studying the constant-wind-speed advection equation. We will begin
the analysis of semi-Lagrangian schemes by considering the same problem, and then
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investigate the additional considerations that arise when variations in the velocity
field make the backward trajectory calculation nontrivial.

7.1.1 Constant Velocity

A semi-Lagrangian approximation to the advection equation for a passive tracer can
be written in the form

�.xj ; t
nC1/ � �. Qxnj ; tn/
�t

D 0; (7.4)

where Qxnj again denotes the departure point of a trajectory originating at time tn and
arriving at .xj ; tnC1/. If the velocity is constant, the backward trajectory computa-
tion is trivial, and letting U denote the wind speed,

Qxnj D xj � U�t:

Let p be the integer part of U�t=�x and without loss of generality suppose that
U � 0; then Qxnj lies in the interval xj�p�1 � x < xj�p , as shown in Fig. 7.1.
Defining

˛ D xj�p � Qxnj
�x

and approximating �. Qxnj ; tn/ by linear interpolation, (7.4) becomes

�nC1
j D .1� ˛/�nj�p C ˛�nj�p�1; (7.5)

where �nj D �.xj ; t
n/. Note that if �t is small enough that

0 � U
�t

�x
� 1;

(7.5) reduces to the formula for Eulerian upstream differencing.

x

t

UDt

αDx
tn+1

tn

xj−p−1 xj−p xj

Fig. 7.1 Backward trajectory from .xj ; t
nC1/ to . Qxn

j
; tn/
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7.1.1.1 Stability

Following Bates and McDonald (1982), the stability of the preceding semi-
Lagrangian approximation can be analyzed using von Neumann’s method. Sub-
stituting a solution of the form �nj D An

k
ei.kj�x/ into (7.5), one obtains

Ak D
h
1 � ˛.1 � e�ik�x/

i
e�ikp�x ;

from which it follows that

jAk j2 D 1 � 2˛.1 � ˛/.1 � cosk�x/:

This expression is the same as that obtained for the amplification factor associated
with upstream differencing, except that ˛ has replaced the Courant number in (3.23).
On the basis of the analysis given in Sect. 3.2.2, the amplification factor for all waves
resolved on the numerical mesh will be less than or equal to unity, provided that

0 � ˛ � 1;

which is always satisfied because the estimated departure point always lies between
grid points xj�p and xj�p�1. It is possible to take arbitrarily large time steps with-
out violating the Courant–Friedrichs–Lewy (CFL) condition because the backward
trajectory calculation ensures that the numerical domain of dependence includes the
domain of dependence of the true solution.

Errors will be made in the backward trajectory calculation in practical applica-
tions where the wind speed is not constant. These errors will affect the accuracy
of the solution, and if they do not go to zero as �x ! 0 and �t ! 0, they may
prevent the numerical solution from converging to the correct solution. Neverthe-
less, as long as the interpolation is performed using data from the two grid points
surrounding the estimated departure point, the maximum norm of the solution will
not grow with time.

7.1.1.2 Accuracy

The truncation error of the preceding semi-Lagrangian scheme can be determined
by substituting appropriate Taylor series expansions of the continuous solution into
the finite-difference scheme1

�nC1
j �

h
.1 � ˛/�nj�p C ˛�nj�p�1

i
�t

D 0: (7.6)

1 According to the discussion in Sect. 2.2.3, the global truncation error is of same the order as
the leading-order errors in the numerical approximation to the differential form of the governing
equation (7.6) and is one power of �t lower than the truncation error in the integrated form (7.5).
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In the case of the unforced scalar advection equation, it is helpful to perform the
Taylor series expansions about the point . Qxnj ; tn/ because this isolates the errors in
the trajectory calculations from those generated by the interpolation of the tracer
field. Let  d D  . Qxnj ; tn/; then the error produced by linear interpolation is

.1 � ˛/ nj�p C ˛ nj�p�1 D  d C ˛.1 � ˛/
.�x/2

2

@2 

@x2

ˇ̌
ˇ̌
d

CO
�
.�x/3

�
: (7.7)

Since the wind speed is constant, the backward trajectory is exact and  nC1
j D  d .

This can be verified by expanding  nC1
j in a Taylor series. Defining s D xj � Qxnj ,

 nC1
j D  d C�t

@ 

@t

ˇ̌
ˇ̌
d

C s
@ 

@x

ˇ̌
ˇ̌
d

C .�t/2

2

@2 

@t2

ˇ̌̌
ˇ
d

C s�t
@2 

@t@x

ˇ̌̌
ˇ
d

C s2

2

@2 

@x2

ˇ̌̌
ˇ
d

C � � � ; (7.8)

and since s D U�t , the preceding equation reduces to

 nC1
j D  d C�t

�
@

@t
C U

@

@x

	
 

ˇ̌
ˇ̌
d

C .�t/2

2

�
@

@t
C U

@

@x

	2
 

ˇ̌
ˇ̌
d

C � � �
D  d : (7.9)

Substituting (7.7) and (7.9) into (7.6) yields

 nC1
j �

h
.1 � ˛/ nj�p C ˛ nj�p�1

i
�t

� �˛.1 � ˛/

2

.�x/2

�t

@2 

@x2

ˇ̌
ˇ̌
d

: (7.10)

If the Courant number is held constant as �t ! 0 and �x ! 0, the truncation
error is clearly O.�x/. If �x=�t ! 0 as �x ! 0 and �t ! 0, the error is
no larger than O.�x/. It may appear that the semi-Lagrangian scheme could be
inconsistent in the limit �t=�x ! 0, but once the Courant number drops below
unity, ˛ D U�t=�x, and using

@2 

@t2
D U 2

@2 

@x2
;

the leading-order truncation error reduces to

�t

2

@2 

@t2
� U �x

2

@2 

@x2
:

This is identical to the leading-order truncation error in Eulerian upstream differ-
encing (3.9). The global truncation error of the semi-Lagrangian scheme (7.5) is
therefore of first order in space and time.

Consistent with (7.10), the preceding semi-Lagrangian scheme is exact whenever
the Courant number is an integer, i.e., whenever the departure point exactly coin-
cides with a grid point. This may be compared with Eulerian upstream differencing,
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which is exact for a Courant number of unity (see Sects. 3.4.1, 3.4.2). In practical
applications the wind speed and therefore the Courant number are functions of space
and time. Stability constraints require the Eulerian upstream method to be integrated
using a time step that ensures that the maximum Courant number will be less than 1
at every point within the computational domain. As a consequence of this restriction
on�t , the domain-averaged Courant number is often substantially less than the op-
timal value of unity. In contrast, the unconditional stability of the semi-Lagrangian
scheme allows the time step to be chosen such that the average value of the Courant
number is unity – or any integer – thereby reducing the average truncation error
throughout the computational domain.

7.1.1.3 Higher-Order Interpolation

Upstream differencing generates too much numerical diffusion to be useful in prac-
tical computations involving Eulerian problems with smooth solutions. A similar
situation holds in the Lagrangian framework, where linearly interpolating the tracer
field also generates too much diffusion. Higher-order interpolation is therefore used
in most semi-Lagrangian approximations to equations with smooth solutions. If
xj�p is the nearest grid point to the estimated departure point and a quadratic poly-
nomial is fit to the three closest grid-point values of the tracer field,

�. Qxnj ; tn/ D ˛

2
.1C ˛/�nj�p�1 C .1 � ˛2/�nj�p � ˛

2
.1 � ˛/�nj�pC1; (7.11)

where, as before, .p C ˛/�x D U�t , except that p is now chosen such that j˛j �
1=2. Substituting the preceding equation into (7.4) yields a semi-Lagrangian scheme
that approximates the constant wind-speed advection equation to O

�
.�x/3=�t

�
,

which gives second-order accuracy. In the limit�t=�x ! 0 this scheme is identical
to the Lax–Wendroff method (3.72).

Cubic interpolation is widely used in practical applications. If p is the integer
part of U�t=�x with U > 0 and the cubic is defined to match � at the four closest
grid-point values to the departure point, then

�. Qxnj ; tn/ D �˛.1 � ˛2/

6
�nj�p�2 C ˛.1C ˛/.2 � ˛/

2
�nj�p�1

C .1 � ˛2/.2 � ˛/

2
�nj�p � ˛.1 � ˛/.2 � ˛/

6
�nj�pC1: (7.12)

The preceding equation is expressed in the form of a Lagrange interpolating polyno-
mial and is an efficient choice if several fields are to be interpolated to the same de-
parture point, since the coefficients of the �i need not be recalculated for each field.
If only one field is being interpolated, (7.12) can be evaluated more efficiently by
writing it as a Newton polynomial (see Dahlquist and Björck 1974 and Problem 2).

The leading-order truncation error in a cubic semi-Lagrangian approximation
to the constant-wind-speed advection equation is third order in the perturbations
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(specifically, O
�
.�x/4=�t

�
). More generally, the local error produced by pth-

order polynomial interpolation is O
�
.�x/pC1�, and the global truncation error

in the corresponding semi-Lagrangian approximation to the constant-wind-speed
problem is O

�
.�x/pC1=�t

�
(McDonald 1984). In most applications, the motiva-

tion for using high-order polynomials to interpolate the tracer field is not to acceler-
ate the convergence of the numerical solution to the correct solution as�x ! 0 and
�t ! 0, but rather to improve the accuracy of the marginally resolved waves. This
is the same reason that high-order finite differences are often used to approximate
the spatial derivative in Eulerian schemes for the solution of the advection equation.

7.1.1.4 Two Spatial Dimensions

A semi-Lagrangian approximation to the advection equation in a two-dimensional
flow may be expressed as

�.xm;n; ym;n; t
sC1/� �. Qxsm;n; Qysm;n; ts/
�t

D 0; (7.13)

where . Qxsm;n; Qysm;n/ denotes the departure point of a trajectory originating at time
ts and arriving at .xm;n; ym;n; tsC1/. Let U and V denote the x and y velocity
components and, as before, suppose they are constant and nonnegative. Denote
the integer parts of U�t=�x and V�t=�y by p and q, respectively, and define
˛ D U�t=�x � p and ˇ D V�t=�y � q. Then a first-order approximation
to �. Qxsm;n; Qysm;n; ts/ can be obtained using bilinear interpolation, which yields the
semi-Lagrangian scheme

�sC1m;n D .1 � ˛/ �.1� ˇ/�sm�p;n�q C ˇ�sm�p;n�q�1
�

C ˛
�
.1 � ˇ/�sm�p�1;n�q C ˇ�sm�p�1;n�q�1

�
:

When the Courant numbers along the x- and y-axes are less than unity, p D
q D 0, and the preceding expression reduces to the corner transport upstream
method (4.35).

A second-order approximation can be obtained using biquadratic interpolation.
To abbreviate the notation, let �C D �m�p;n�q and denote the surrounding points us-
ing the compass directions (north, northeast, east, etc.) such that �N D �m�p;n�qC1,
�NE D �m�pC1;n�qC1, etc. If p and q are now chosen such that j˛j � 1=2 and
jˇj � 1=2, the resulting semi-Lagrangian scheme has the form

�sC1
n;m

D ˛

2
.1C ˛/



ˇ

2
.1C ˇ/�sSW C .1 � ˇ2/�sW � ˇ

2
.1 � ˇ/�sNW

�

C .1 � ˛2/


ˇ

2
.1C ˇ/�sS C .1 � ˇ2/�sC � ˇ

2
.1 � ˇ/�sN

�

� ˛

2
.1 � ˛/



ˇ

2
.1C ˇ/�sSE C .1 � ˇ2/�sE � ˇ

2
.1 � ˇ/�sNE

�
:
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If the Courant numbers along the x- and y-axes are less than unity, this scheme
reduces to the upstream biased Lax–Wendroff method (4.38). Von Neumann stabil-
ity analysis can be used to show that the preceding bilinear and biquadratic semi-
Lagrangian schemes are unconditionally stable (Bates and McDonald 1982).

The preceding interpolation formula generalizes to higher-order polynomials
and three dimensions in a straightforward way. Since the evaluation of a three-
dimensional high-order interpolating polynomial requires considerable computa-
tion, the exact formulae are sometimes approximated. Ritchie et al. (1995), for ex-
ample, simplified the full expression for three-dimensional cubic interpolation by
neglecting the “corner” points.

A more efficient way to use high-order polynomials in multidimensional prob-
lems is to use “cascade interpolation” (Leslie and Purser 1995; Nair et al. 1999).
In the two-dimensional case, the values at the departure points are obtained by per-
forming two one-dimensional interpolations: once using values parallel to one of
the coordinate axes, and once along curves representing the upstream Lagrangian
displacement of the grid lines parallel to the other coordinate axis. An important
advantage of cascade interpolation is that it facilitates the use of standard limiters
in connection with each one-dimensional interpolation to preserve positivity or pre-
vent the development of overshoots and undershoots (Nair et al. 1999; Zerroukat
et al. 2005).

The basic interpolation sequence is illustrated in Fig. 7.2, which shows a portion
of the rectilinear computational grid and the upstream position of that same grid
one time step earlier (the deformed mesh). The situation in Fig. 7.2 is one where

a b

~ ~

~ ~

xi−1 xi xi+1
xi−2 xi−2 xi−1 xi+1xi

yj−2

yj−1

yj

yj+1

yj−2

yj−1

yj

yj+1

(xa, ya)

(xb, yb)

(x9, yj−1)

Fig. 7.2 Semi-Lagrangian cascade interpolation. The lattice of departure points defines the de-
formed mesh; the data are available each time step on the rectilinear grid. a First set of interpo-
lations using data at the points indicated by the solid circles along the heavy horizontal lines to
estimate � at the locations of the open circles. (and open square). b Second set of interpolations
using data at the points denoted by solid circles along the heavy quasi-vertical curves to estimate
� at the locations of the open circles
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a nonuniform flow is generally toward the “northeast” and the Courant numbers
parallel to each coordinate are less than unity, but identical formulae apply if the
lattice of departure points actually translates across several grid cells in a single
time step. The values of � at the vertices forming the lattice of departure points
(the open circles in Fig. 7.2b) are estimated from the values of � at the vertices on
the rectilinear grid (the solid circles in Fig. 7.2a) as follows.

The first set of interpolations runs along lines parallel to the x-axis and provides
estimates of � at the open circles (and the open square) in Fig. 7.2a. These open
circles are at the intersections of the fixed grid lines parallel to the x-axis and curves
whose downstream translation over time�t will bring them precisely over the fixed
grid lines paralleling the y-axis. As a preliminary step, the x coordinate of each of
these intersections must be determined. Let . Qxa; Qya/ and . Qxb; Qyb/ be the coordinates
for the pair of departure points indicated by the solid squares in Fig. 7.2a, as deter-
mined by back trajectory calculations, and let .x0; yj�1/ be the intersection of the
curve connecting these two departure points with the line y D yj�1 (indicated by
the open square). In most applications, sufficient accuracy can be obtained using
linear interpolation to evaluate x0, in which case

x0 D Qxb C yj � Qyb
Qya � Qyb . Qxa � Qxb/ : (7.14)

Once the x coordinates of the points indicated by the open circles have been com-
puted, the values of � at each of these points can be estimated by one-dimensional
interpolation using data from the original rectilinear grid along each heavy black
line in Fig. 7.2a. After this first set of interpolations, estimates of � are available at
the black circles along each of the heavy curves in Fig. 7.2b, and the � values at
the departure points (open circles) are be obtained by a second set of interpolations
along those curves. This second set of interpolations can be conducted using the
distance along each black curve as the independent variable. The distances along
each curve are evaluated using linear interpolation via formulae similar to (7.14);
see Nair et al. (1999) for details.

7.1.2 Variable Velocity

Now consider the case where the velocity is a function of space and time, as would
be necessary to produce the deformation of the mesh shown in Fig. 7.2. The back-
ward trajectory of each fluid parcel must then be estimated by a nontrivial numerical
integration. The truncation error in the variable-velocity case can again be deter-
mined by expanding  .x; t/ in a Taylor series about the estimated departure point
and evaluating an expression of the form

1

�t

�
 nC1
j �  d

�
C 1

�t

 
 d �

sX
kD�r

ˇk 
n
j�pCk

!
; (7.15)
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where  d D  . Qxnj ; tn/ and the summation represents an .r C s/-order polynomial
interpolation of  n to the departure point. The first term in the preceding expres-
sion is determined by the error in the trajectory calculation, and the second term is
determined by the error in the interpolation of  n to the estimated departure point.
The error generated in interpolating  to the estimated departure point is the same
as that for the constant-velocity case, but the estimated departure point will not gen-
erally coincide with the true departure point, and as a consequence, the  nC1

j will

no longer be identical to  d . To determine the difference between  nC1
j and  d ,

let xn denote the position of a fluid parcel at time tn and suppose that backward
trajectories are computed subject to the initial condition xnC1 D xj .

First suppose the trajectory is computed using Euler’s method

Qxnj D xnC1 � u.xnC1; tn/�t:

As before, define s D xj � Qxnj D xnC1 � Qxnj . Then

s D u.xnC1; tn/�t (7.16)

D �t



u. Qxnj ; tn/C s

@u

@x
. Qxnj ; tn/CO

�
s2
��

(7.17)

D ud�t CO
�
.�t/2

�
; (7.18)

where ud D u. Qxnj ; tn/ and the last equality is obtained by substituting (7.16) into

(7.17). The difference between  nC1
j and  d is then determined by substituting

(7.18) into (7.8) to obtain

 nC1
j D  d C�t

�
@

@t
C u

@

@x

	
 

ˇ̌̌
ˇ
d

CO
�
.�t/2

�

D  d CO
�
.�t/2

�
: (7.19)

According to (7.15), the contribution from the trajectory calculation to the global

truncation error in the semi-Lagrangian scheme is
�
 nC1
j �  d

�
=�t , so the error

generated by the Euler method is O.�t/.
A second-order-accurate result can be obtained using the two-stage trajectory

calculation

x� D xnC1 � u.xnC1; tn/�t=2; (7.20)

Qxnj D xnC1 � u.x�; tnC 1
2 /�t: (7.21)

As before, the initial condition is xnC1 D xj . This differs slightly from the classi-
cal Runge–Kutta midpoint method discussed in Sect. 2.3 in that the first stage uses
the velocity u.xnC1; tn/ rather than u.xnC1; tnC1/; the latter is more convenient if
unC1 is being predicted at the same time as �nC1. The second-order accuracy of
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this calculation can be verified as follows. Substitute (7.20) into (7.21) and let the
superscript nC 1 denote evaluation at .x.tnC1/; tnC1/. Then

Qxnj D xnC1 ��t u
�
xnC1 � u.xnC1; tn/�t=2; tnC 1

2

�
(7.22)

D xnC1 ��t

"
unC1 � �t

2

�
u
@u

@x

	nC1
� �t

2

�
@u

@t

	nC1
CO

�
.�t/2

�#

D xnC1 ��t unC1 C .�t/2

2

�
du

dt

	nC1
CO

�
.�t/3

�

D xnC1 ��t

�
dx

dt

	nC1
C .�t/2

2

�
d 2x

dt2

	nC1
CO

�
.�t/3

�
: (7.23)

Since the right side of (7.23) matches the Taylor series expansion of Qxnj about

x.tnC1/ to within an error of O
�
.�t/3

�
, the global truncation error in the back-

trajectory calculation is O
�
.�t/2

�
(Iserles 1996, p. 7).

Now consider the error generated when the Runge–Kutta scheme is used to
compute the back trajectory in a semi-Lagrangian scheme. In many practical
applications the velocity data are available only at discrete points on a space–time
grid, and to evaluate (7.21), u.x�; tnC1=2/ must be estimated by interpolation or
extrapolation. Before examining the errors introduced by such interpolation and
extrapolation, consider those cases where the velocity can be evaluated exactly,
so the only errors arising in the trajectory calculations are those generated by the
Runge–Kutta scheme itself. Using the definition s D xj � Qxnj , (7.22) becomes

s D �t u
�

Qxj C s � u. Qxj C s; tn/�t=2; tn C�t=2
�
:

Thus, s D ud�t C O
�
.�t/2

�
, which may be substituted into the right side of the

preceding equation to yield

s D ud�t C .�t/2

2

�
@

@t
C u

@

@x

	
u

ˇ̌
ˇ̌
d

CO
�
.�t/3

�
: (7.24)

Substituting (7.24) into (7.8) gives

 nC1
j D  d C�t

�
@

@t
C u

@

@x

	
 

ˇ̌
ˇ̌
d

C .�t/2

2

�
@

@t
C u

@

@x

	2
 

ˇ̌
ˇ̌
d

CO
�
.�t/3

�
;

which implies that the Runge–Kutta scheme (7.20) and (7.21) generates an
O
�
.�t/2

�
contribution to the total error in the semi-Lagrangian approximation.

Now suppose that the velocity data are available only at discrete locations on
the space–time mesh. Ideally, the velocity at time tnC1=2 would be computed by
interpolation between times tn and tnC1. Such interpolation cannot, however, be
performed when semi-Lagrangian methods are used to solve prognostic equations
for the velocity itself, because the velocity at tnC1 will be needed for the trajectory
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calculations before it has been computed. This problem is generally avoided by
extrapolating the velocity field forward in time using data from the two previous
time levels such that

u.tnC 1
2 / D 3

2
u.tn/� 1

2
u.tn�1/: (7.25)

Suppose that the extrapolated velocity field at u.tnC1=2/ is then linearly interpolated
to x� using data at the nearest spatial nodes, and let u� denote this interpolated and
extrapolated velocity. Since linear interpolation and extrapolation are second-order
accurate,

u.x�; tnC 1
2 / D u� CO

�
.�x/2

�CO
�
.�t/2

�
:

Substituting the preceding expression into (7.22) shows that the use of u� in-
stead of the exact velocity adds an O

�
�t.�x/2/

� C O
�
.�t/3

�
error to the back-

trajectory calculation, and thereby contributes a term of O
�
.�x/2

� C O
�
.�t/2

�
to the global truncation error in the semi-Lagrangian solution. A fully second order
semi-Lagrangian scheme can therefore be obtained by (a) using (7.20) to estimate
the midpoint of the back trajectory, (b) computing u� by linearly interpolating and
extrapolating the velocity field, (c) determining the departure point from

Qxnj D xnC1 � u��t;

(d) evaluating �. Qxnj ; tn/ using quadratic interpolation, and (e) setting �nC1
j to this

value.
A variety of other schemes have been proposed to compute back trajectories. One

popular scheme, the second-order implicit midpoint method,

Qxnj D xj � u
�
.xj C Qxnj /=2; tnC 1

2

�
�t; (7.26)

is typically solved by iteration. The Runge–Kutta scheme (7.20) and (7.21) can be
considered a two-step iterative approximation to (7.26), but even if the implicit mid-
point method is iterated to convergence, its formal order of accuracy is no greater
than that obtained using (7.20) and (7.21). A second alternative scheme can be used
if the velocities are being calculated as prognostic variables during the integration.
Then the value of du=dt can be saved after the evaluation of the forcing terms in the
momentum equation and employed in subsequent trajectory calculations using the
second-order scheme

x� D xnC1 � u.xnC1; tn/�t;

Qxnj D xnC1 � u.x�; tn/�t C .�t/2

2

du

dt
.x�; tn/

(Krishnamurti et al. 1990; Smolarkiewicz and Pudykiewicz 1992).
Higher-order schemes for the computation of back trajectories have also been

devised (Temperton and Staniforth 1987). Although a third-order trajectory scheme
must be employed as part of any fully third order semi-Lagrangian method, higher-
order trajectory computations are not widely used. In many of the applications where
semi-Lagrangian methods are most advantageous, it is easier to accurately compute
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the back trajectory than it is to accurately interpolate all the resolved scales in the
tracer field. As a consequence, second-order schemes are often used for the back tra-
jectory calculation even when the tracer field is interpolated using cubic or higher-
order polynomials. Moreover, in those problems where there is nonzero forcing in
the Lagrangian reference frame, the time integral of the forcing is seldom approx-
imated to more than second-order accuracy, and in such circumstances the use of
a higher-order scheme to compute the back trajectory will not reduce the overall
time-truncation error of the semi-Lagrangian scheme belowO

�
.�t/2

�
.

7.2 Finite-Volume Integrations with Large Time Steps

As is the case for many Eulerian advective-form approximations, numerical solu-
tions to the semi-Lagrangian approximation to the advection equation (7.13) do not
typically conserve the domain integral of a passive tracer. Finite-volume methods
provide a natural way to develop mass-conservative approximations, and they have
been generalized to allow simulations of advective transport using large time steps
via two different approaches. The first approach is genuinely semi-Lagrangian: the
departure points for the vertices surrounding an “arrival” volume of fluid are com-
puted by backward trajectories and the total mass within the arrival volume at time
tnC1 is set equal to the total mass in the volume defined by the departure points
at tn. The second approach is Eulerian and simply involves computing the time-
averaged fluxes through the sides of the volume over intervals �t for which the
Courant number exceeds unity.

In both approaches it is necessary to reconstruct the subcell distribution of
Q�.x; tn/ from the cell-averaged values �n. (In this section �n will refer to
cell-averaged quantities, in contrast to its use throughout the rest of this chapter.)
That reconstruction is often performed using piecewise-parabolic or piecewise-
cubic polynomials, and the resulting reconstructions may be limited to avoid
undershoots and overshoots (see Sect. 5.6.3). Both the true semi-Lagrangian and
large-time-step Eulerian approaches are easily implemented in one dimension,
but challenges arise when either method is extended to two- or three-dimensional
problems.

Beginning with Rančić (1992), several mass-conservative semi-Lagrangian
schemes have appeared in the atmospheric science literature. Accurate and efficient
mass-conservative semi-Lagrangian implementations have been recently created
using generalizations of cascade interpolation (Sect. 7.1.1.4) to sequentially build
up approximations to the integral of Q�.x; tn/ over the departure volume (e.g., Nair
et al. 2002; Zerroukat et al. 2002; Norman and Nair 2008). In contrast to true semi-
Lagrangian methods, Lin and Rood (1996) and Leonard et al. (1996) proposed
mass-conservative hybrid schemes in which intermediate estimates from semi-
Lagrangian advective-form integrations parallel to each coordinate axis are used in
a final Eulerian flux-form integration. As noted by Lauritzen (2007), care should be
taken to ensure consistency between the advective and flux differencing operators
in these schemes to avoid excessive damping when using Courant numbers much
larger than unity and low-order operators.
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One relatively simple way to implement a mass-conservative scheme capable of
stable integrations using large time steps is through the time-split Eulerian finite-
volume method proposed by Skamarock (2006). After making provision for the
larger time steps, this is essentially the method defined by (5.95)–(5.100). The mod-
ifications required to use large time steps are as follows. Suppose the velocities are
positive and consider the y-direction fluxes. As a first step, the integer shift s and
fractional Courant number Q� for each cell interface are chosen to satisfy

Q��ni;j�s C
sX

kD1
�ni;j�kC1 D �t

�y
.�v/n

i;jC 1
2

if .�v/n
i;jC 1

2

� 0; (7.27)

subject to the constraint 0 � Q� � 1. If � is a uniform pseudodensity, it can be
divided out of (7.27), in which case the right side becomes the Courant number �,
whose integer and fractional parts are s and Q�, respectively. If � is variable, s may
be determined through trial and error by systematically increasing the number of
terms in the summation, beginning at zero.

Let Qv D Q��y=�t . The scalar mass flux at .xi ; yjC1=2/ is computed as

F
y

i;jC 1
2

.�n/ D 1

�t

sX
kD1

.�n�n�y/i;j�kC1 C QF y
i;j�sC 1

2

.�n/; (7.28)

where QF y is the tracer flux arising from the noninteger part of the Courant number.
QF y is computed using the standard piecewise-parabolic-method flux (5.63) with �

replaced by Q� and c by �ni;j�s Qv to yield

QF y
i;j�sC 1

2

.�n/ D �ni;j�s Qv
�
a0 C a1

2
j Q�j C a2

3
Q�2
�
: (7.29)

Here a0, a1, and a2 are defined as in Sect. 5.6.3 except that wherever “j ” appears
as an index of �, it is replaced by “i; j � s”. Note that F y

i;jC1=2.1/ D .�v/n
i;jC1=2.

If viC1=2 < 0, the preceding expressions are modified by choosing Q� and s such
that �1 � Q� � 0 and

Q��ni;j�sC1 �
�1X
kDs

�ni;j�k D �t

�y
.�v/n

i;jC 1
2

: (7.30)

Note that s � 0 in this case. Analogous to (7.28) and (7.29), the scalar mass flux at
.xi ; yjC1=2/ is computed as

F
y

i;jC 1
2

.�n/ D 1

�t

�1X
kDs

.�n�n�y/i;j�k C QF y
i;j�sC 1

2

.�n/; (7.31)

where
QF y
i;j�sC 1

2

.�n/ D �ni;j�sC1 Qv
�
a0 C a1

2
j Q�j C a2

3
Q�2
�
; (7.32)
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with a0, a1, and a2 again defined as in Sect. 5.6.3 except that wherever “j C 1”
appears as an index of �, it is replaced by “i; j � s C 1”.

A mass-consistent splitting can then be evaluated as

�si;j D �ni;j � �t

�x

h
.�u/n

iC 1
2
;j

� .�u/n
i� 1

2
;j

i
; (7.33)

.��/si;j D .��/ni;j � �t

�x

h
F x
iC 1

2
;j
.�n/ � F x

i� 1
2
;j
.�n/

i
; (7.34)

�si;j D .��/si;j=�
s
i;j ; (7.35)

�nC1
i;j D �si;j � �t

�y

h
.�v/n

i;jC 1
2

� .�v/n
i;j� 1

2

i
; (7.36)

.��/nC1
i;j D .��/si;j � �t

�y

h
F
y

i;jC 1
2

.�s/ � F y
i;j� 1

2

.�s/
i
; (7.37)

�nC1
i;j D .��/nC1

i;j =�nC1
i;j : (7.38)

This scheme is not positive definite, but the fluxes QF x and QF y can be limited to
prevent the development of overshoots and undershoots as discussed in Sect. 5.6.3.
Nevertheless, it is often better to selectively limit QF x and QF y as described in
Sect. 5.8, since selective limiting will preserve the amplitude of smooth extrema
much better than a global limiter.

As in the Eulerian case, the selectively limited result is not, however, strictly
positive definite, although the undershoots it produces are small. The positivity-
preserving flux-corrected-transport algorithm described in Sect. 5.10.1 can be used
to prevent the development of negative concentrations. The monotone solution re-
quired for the flux-corrected-transport approach is computed using the upstream flux

F
yup

i;jC 1
2

.�n/ D

8̂
ˆ̂̂<
ˆ̂̂̂
:

1

�t

sX
kD1

.�n�n�y/i;j�kC1 C �ni;j�s Qv�ni;j�s if Qv � 0 ,

1

�t

�1X
kDs

.�n�n�y/i;j�k C �ni;j�sC1 Qv�ni;j�sC1 if Qv < 0 .

(7.39)
In addition, during the second split step (which may be either along x or along y
depending on the alternation in the Strang splitting), �n should be replaced by �s in
(7.27)–(7.32) and (7.39).2 The use of �s is necessary to keep the upstream solution
monotone in cases with Courant numbers greater than unity.

Figure 7.3 shows the performance of this scheme on the cosine-bell test problem
of Sect. 5.9.5 in which the initial distribution of a passive tracer is deformed in a
sheared swirling flow that reverses symmetrically in time. The solution whose max-
imum Courant number is unity, shown in Fig. 7.3b, is identical to that in Fig. 5.26b.
When the time step is increased by a factor of 4, the solution (plotted in Fig. 5.26a)
is slightly improved. This improvement is largely due to the reduction in numerical

2 Do not replace the � in .�v/n
i;j C1=2

by a �s .



372 7 Semi-Lagrangian Methods
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Min  = 0.000
Max = 0.697

Min  = 0.000
Max = 0.692

0 1x 0 1x

μmax = 4 μmax = 1

Fig. 7.3 Comparison of the exact solution at t D 5 with numerical solutions obtained using a
mass-consistent Strang-split piecewise-parabolic-method scheme with selective limiting and pos-
itivity preservation when �t is chosen such that the maximum one-dimensional Courant number
� is a 1 or b 4. The heavy circles are the 0.05 and 0.75 contour lines of the exact solution. The
thin solid lines are contours of the numerical solution at intervals of 0.05, beginning with the 0.05
contour. The maximum and minimum values of � at t D 5 are noted in the upper right of a and b

diffusion associated with the factor-of-4 reduction in the number of times the subcell
distribution of the tracer is reconstructed from the cell-averaged �n. If the grid cell
spacing is halved to 0.01, there is less numerical diffusion and the �max D 1 and
�max D 4 solutions are almost identical. The main goal in using longer time steps
is not better accuracy but rather improved efficiency, and that is certainly achieved
when the time step is increased by a factor of 4. Some extra time is required to eval-
uate the multiply upstream Courant numbers and fluxes, so in this problem the net
speed up gained by switching from a purely Eulerian code with �max D 1 to the
multiply upstream variant with �max D 4 is roughly a factor of 3.

7.3 Forcing in the Lagrangian Frame

The forced scalar advection equation (7.1) provides a simple example in which to
study the treatment of forcing terms in semi-Lagrangian schemes. Defining Lxn�1

j

to be an estimate of the departure point of the fluid parcel at time tn�1 that arrives
at .xj ; tnC1/, one may obtain second-order approximations to the forcing using the
trapezoidal method (7.3), the leapfrog scheme

�
�
xj ; t

nC1�� �
�

Lxn�1
j ; tn�1

�
2�t

D S
� Qxnj ; tn

�
; (7.40)
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or the second-order Adams–Bashforth method

�
�
xj ; t

nC1� � �
�

Qxnj ; tn
�

�t
D 1

2

�
3S
� Qxnj ; tn

� � S
� Lxn�1
j ; tn�1�� : (7.41)

The most stable and accurate of these schemes is the trapezoidal method, but it may
also require more work per time step because it is implicit.

The fundamental stability properties of each scheme can be analyzed by applying
them to the prototype problem

d 

dt
D i! C � ; (7.42)

where ! and � are real,  is complex, and the advecting velocity is constant, so

d

dt
D @

@t
C U

@

@x
:

If  .x; 0/ D f .x/, the solution to (7.42) is

 .x; t/ D f .x � Ut/e.i!C�/t ;

which is nonamplifying for � � 0. This prototype problem is similar to that used
to assess regions of absolute stability in Sect. 2.2.1 except that (2.16) is an ordinary
differential equation, whereas (7.42) is a partial differential equation. To simplify the
stability analysis, the errors generated during the interpolation of � to Qxnj and Lxn�1

j

will be neglected, in which case our results describe the limiting behavior of a family
of semi-Lagrangian schemes that use increasingly accurate spatial interpolation.

First consider the case where the forcing is approximated with the trapezoidal
scheme. Following the standard von Neumann stability analysis, the Fourier mode
An
k

eikj�x is substituted for �.xj ; tn/ in the trapezoidal approximation to (7.42),
which gives

Akeikj�x � eik.j�x�s/ D . Q�C i Q!/
2

�
Akeikj�x C eik.j�x�s/� ;

where Q� D ��t , Q! D !�t , and, as before, s D xj � Qxnj . Solving for the magnitude

of the amplification factor and noting that jeiksj D 1,

jAk j2 D
ˇ̌̌
Akeiks

ˇ̌̌2 D
�
1C Q�=2

�2 C Q!2=4
�
1 � Q�=2

�2 C Q!2=4
:

The scheme generates bounded solutions whenever the true solution is bounded,
i.e., whenever Q� � 0. This stability condition is independent of the Courant number
U�t=�x, and the magnitude of the amplification factor is identical to that obtained
if the ordinary differential equation (2.16) is approximated with a trapezoidal time
difference.
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Fig. 7.4 Region of the Q�– Q! plane in which 2�x-wavelength solutions to (7.44) are nongrowing
when a U�t=�x is 0, 1, or 2, and bU�t=�x is 1=4, 1=2, or 3=4. The stable region lies inside
each curve. The stable region for (7.41) is independent of U�t=�x and is defined by the curve
labeled 0 in a

A similar von Neumann analysis of the second-order Adams–Bashforth method
yields

A2k �Ake�iks D . Q�C i Q!/
2

�
3Ake�iks � e�2iks

�
:

Defining OA D Akeiks and � D Q�C i Q!,

OA2 � OA
�
3�

2
C 1

	
C �

2
D 0: (7.43)

This quadratic equation is identical to that obtained when the ordinary differential
equation (2.16) is approximated using the second-order Adams–Bashforth method.
Those values of Q� and Q! for which the second-order Adams–Bashforth method gen-
erates nongrowing solutions lie within the solid curve in Fig. 7.4a. Since jAkj D j OAj,
the amplification factor is independent of the Courant number.

If the leapfrog scheme (7.40) is used to approximate (7.42), the stability condi-
tion becomes Q� D 0 and j Q!j < 1, which is once again independent of the Courant
number and is identical to that for a leapfrog approximation to the ordinary differ-
ential equation (2.16). All three of the preceding methods, (7.40), (7.3), and (7.41),
yield amplification factors for this prototype problem that are independent of the
Courant number because the advecting velocity is a constant, errors in the poly-
nomial interpolation are ignored, and the integration is performed using data lying
along the backward trajectory. If the integration does not use data lying along a back-
ward trajectory, the maximum stable time step will depend on the Courant number,
and the stability criteria can become far more restrictive. In the case of Adams–
Bashforth-type approximations, this consideration has not always been recognized.
Alternatives to (7.41) of the form

�
�
xj ; t

nC1� � �
�

Qxnj ; tn
�

�t
D
3S
�
Œxj C Qxnj �=2; tn

�
� S

�
Œxj C Qxnj �=2; tn�1

�
2

(7.44)
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and
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nC1�� �
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Qxnj ; tn
�
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D 1
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h
3S
�
xj ; t

n
�C 3S

� Qxnj ; tn
� � S �xj ; tn�1� � S � Qxnj ; tn�1� i (7.45)

have been used in atmospheric models. These are both second-order accurate, and
(7.45) is potentially more efficient because it requires one spatial interpolation fewer
than either (7.41) or (7.44). Both schemes can, however, be substantially less sta-
ble than (7.41) when integrations are performed using Courant numbers larger than
order unity.

Applying (7.44) to the prototype problem (7.42) and performing a von Neumann
stability analysis yields the following quadratic equation for the amplification factor:

A2k � Ak

�
3�

2
e�iks=2 C e�iks

	
C �

2
e�iks=2 D 0: (7.46)

In contrast to the results obtained previously for schemes that use data lying along a
back trajectory, the amplification factor for this scheme does depend on the Courant
number. The region of the Q!– Q� plane in which jAkj � 1 is plotted in Fig. 7.4 for
several values of ks between 0 and 2π. The most severe stability constraints are typi-
cally imposed by the 2�x wave, for which these values of ks correspond to Courant
numbers U�t=�x between 0 and 2. As the Courant number increases, the region
of absolute stability rotates clockwise around the origin in the Q�– Q! plane. When
U�t=�x D 2, all 2�x waves that should properly damp are amplified, and the
only 2�x waves that damp are those that should amplify. The instability that devel-
ops in the solutions to (7.44) as the Courant number increases may be qualitatively
understood to result from a failure to match the numerical domain of dependence
for the data used to compute S. / with the numerical domain of dependence for
the true solution (see Sect. 3.2.3).

Polynomial interpolation damps the interpolated field. It is easy to show that this
damping further stabilizes the trapezoidal approximation (see Problem 5), but the
influence of this damping on the stability of the Adams–Bashforth-type schemes
is harder to determine. Numerical simulations are shown in Fig. 7.5 for a series of
tests in which (7.41), (7.44), and (7.45) were used to obtain approximate solutions
to (7.42) on a periodic spatial domain 0 � x � 1. In each test the numerical ap-
proximation to  at the departure point is obtained by cubic Lagrange interpolation;
�x D 0:01, �t D 0:01, � D 0, and the initial condition is

 .x; 0/ D
( ˚�

.x � c/2 � w2
�
=w2

�2 C 0i; if jx � cj � w,

0C 0i; otherwise,

where w D 0:1 and c D 0:5. Thus, at t D 0 the real part of  is a smooth unit-
amplitude pulse 20 grid points wide and the imaginary part of  is zero.
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a b c

ℜ(y) ℜ(y) ℜ(y)

ℑ(y) ℑ(y) ℑ(y)

Fig. 7.5 Real and imaginary parts of the numerical solution to (7.42) at t D 20 for aU�t=�x D
0:5, !�t � �0:06, b U�t=�x D 1:0, !�t � �0:003, and c U�t=�x D 2:5,
!�t � �0:006. The solid curves, dashed curves, and dot-dashed curves show the solutions
computed using (7.41), (7.44), and (7.45), respectively. Data are plotted for the interval [0,1] along
the horizontal axis; the vertical axis spans the interval Œ�1:2; 1:2�

In the first case, shown in Fig. 7.5a, U�t=�x D 0:5, !�t D �π=50, and the
solution is plotted at t D 20, at which time the energy in the initial pulse has cir-
cled the periodic domain ten times and oscillated back and forth between the real
and imaginary parts of  20 times. The correct solution is identical to the initial
condition: <. / is a unit-amplitude pulse centered in the domain and =. / is zero
everywhere. Although second-order Adams–Bashforth time differencing generates
growing solutions to ordinary differential equations describing purely oscillatory
motion, all three numerical solutions shown in Fig. 7.5a have been damped by the
diffusion in the cubic interpolation. The effect of the accelerative phase-speed er-
ror in the second-order Adams–Bashforth time difference is apparent in the plot of
=. /, which shows that all three solutions develop a negative pulse when the correct
solution should be exactly zero. The phase error generated by (7.41) is, however, sig-
nificantly smaller than that produced by (7.44) and (7.45) and is confined to the time
coordinate, whereas the phase errors in the solutions to (7.44) and (7.45) appear in
both time and space.

The Courant number is increased to unity and !�t is decreased to �π=1;000 in
the second test case, shown in Fig. 7.5b. At t D 20 the correct solution is again
identical to the initial condition. Since the wind speed is constant and the Courant
number is unity, the semi-Lagrangian advection is exact, and the only source of error
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is in the integration of the forcing. The solution obtained using (7.41) is stable and
almost perfect, whereas the solutions produced by (7.44) and (7.45) are corrupted
by growing 2�x disturbances. These unstable 2�x waves completely dominate the
solution computed using (7.44) by t D 27 and that obtained using (7.45) by t D 34.

In the third case, shown in Fig. 7.5c, the Courant number is 2.5, !�t D �π=500,
and the exact solution at t D 20 is once again identical to the initial condition.
Although it has been somewhat diffused by the cubic interpolation in the semi-
Lagrangian advection, the solution produced by (7.41) is free of instability and no-
ticeable phase-speed error. In contrast, the solutions obtained using (7.44) and (7.45)
are both contaminated by unstable long-wavelength disturbances.

Instabilities develop in the second and third cases even though the magnitude of
the forcing is very small (j!�t j < 0:01). These results, together with the stability
analysis presented in Fig. 7.4, demonstrate the need to compute forcing terms that
depend on the solution, i.e., forcing of the form S. /, using data along the backward
trajectory.

7.4 Systems of Equations

One of the most important applications of semi-Lagrangian methods in atmospheric
science is in global weather prediction. This application was pioneered by Robert
(1981, 1982), who showed that the equations describing large-scale atmospheric
motion could be efficiently integrated using semi-Lagrangian methods in conjunc-
tion with a semi-implicit approximation of those terms in the governing equations
representing the pressure gradient and velocity divergence. The essential elements
of the semi-Lagrangian semi-implicit method will be explored in this section by ex-
amining numerical approximations to simple shallow-water equations. The shallow-
water system also provides a convenient example in which to illustrate the difference
between the semi-Lagrangian approach and the classical method of characteristics.

7.4.1 Comparison with the Method of Characteristics

Semi-Lagrangian approximations to the equations describing the advection and re-
action of chemical tracers, such as (7.40), may be regarded as an algorithm for nu-
merically implementing the classical method of characteristics (Courant et al. 1952;
see also Gustafsson et al. 1995). The advection equation is, however, a special case
because the characteristic curves are identical to the fluid parcel trajectories. The
semi-Lagrangian method retains its simplicity and practical utility in more compli-
cated applications precisely because the evolution of the flow continues to be com-
puted following fluid parcel trajectories. The classical method of characteristics, on
the other hand, becomes unwieldy or impossible in more general problems where
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the evolution of the flow along the characteristic curves may be more complicated
or characteristic curves may not even be defined. As a simple example, consider the
nonlinear one-dimensional shallow-water system

@

@t

�
u

h

	
C
�
u g

h u

	
@

@x

�
u

h

	
D 0:

A three-time-level semi-Lagrangian approximation to the preceding equation can be
written in the form

uC � u�

2�t
D �g

�
@h

@x

	0
; (7.47)

hC � h�

2�t
D �h0

�
@u

@x

	0
; (7.48)

where the superscripts “+,” “0,” and “�” denote evaluation of the function at the
points .xj ; tnC1/, . Qxnj ; tn/, and . Lxn�1

j ; tn�1/, respectively. As before, Qxnj is deter-
mined by numerically integrating (7.2) backward over a time interval �t subject
to the initial condition x.tnC1/ D xj , and Lxn�1

j is determined by a similar back-
ward integration over the period 2�t . The spatial derivatives @u=@x and @h=@x are
evaluated by centered differences on the regular mesh and then interpolated to Qxnj .
As long as the solution remains smooth, the numerical evaluation of this system is
no more difficult than the integration of a pair of forced advection equations of the
form (7.40).

Considerably more computational effort is required to solve this problem using
the classical method of characteristics. To implement the method of characteristics,
the nonlinear shallow-water equations are transformed as described in connection
with (1.8) to yield the system
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I (7.49)

here d D u �p
gh, e D uCp

gh, and

B D �T�1
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;

T D 1

2

�
1 1

�ph=g ph=g
	
:

The numerical integration of this system requires more computation than that for the
semi-Lagrangian scheme because the right side of (7.49) is much more complicated
than the right sides of (7.47) and (7.48). Additional effort must also be expended in
the trajectory calculations because the evaluation of (7.49) requires the computation



7.4 Systems of Equations 379

of two backward trajectories per grid point (one along each characteristic curve),
whereas the semi-Lagrangian method requires only one backward trajectory per
grid point.

7.4.2 Semi-implicit Semi-Lagrangian Schemes

If latitudinally varying Coriolis forces are included in the shallow-water equations,
the resulting system can support both Rossby and gravity waves. Most physically
significant large-scale atmospheric circulations have timescales similar to those of
the Rossby waves and much longer than those of the gravity waves. As a conse-
quence, the maximum stable time step dictated by the CFL condition for gravity
waves is often much smaller than that required to accurately simulate the physically
significant phenomena. A considerable increase in efficiency can be realized by us-
ing semi-implicit time differencing to remove the stability constraint imposed by
rapid gravity-wave propagation. Semi-implicit time differencing is discussed in de-
tail in Sect. 8.2. In the following we will focus on just one aspect of the semi-implicit
method, namely, how it improves the stability of semi-Lagrangian solutions to the
one-dimensional shallow-water equations.

First, consider the stability properties of the linearized equivalent to (7.47) and
(7.48). If the mean wind and fluid depth are constants denoted by U andH , respec-
tively, a finite-difference approximation to the linearized system may be written as

uC � u�

2�t
D �g

�
@h

@x

	0
; (7.50)

hC � h�

2�t
D �H

�
@u

@x

	0
; (7.51)

where u and h now denote the amplitudes of the perturbation velocity and free
surface displacement. Defining auxiliary variables a and b such that aC D u0 and
bC D h0 and substituting wave solutions of the form

0
BB@
u

h

a

b

1
CCA
n

eikx

into the preceding system yields the linear system

0
BB@
u
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b

1
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nC1

D e�iks

0
BB@

0 �2i Qg 1 0
�2i QH 0 0 1

1 0 0 0

0 1 0 0

1
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0
BB@
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b

1
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n

;
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where s D U�t , Qg D gk�t , and QH D Hk�t . Let � be an eigenvalue of the
amplification matrix for this scheme, and define Q� D �eiks and Qc D p

gHk�t .
Then

Q�4 C .4 Qc2 � 2/ Q�2 C 1 D 0

and
Q�2 D 1 � 2 Qc2 ˙ 2i Qc �1 � Qc2�1=2 :

Two of the Q� are associated with gravity waves and two are associated with computa-
tional modes. The magnitude of Q�2 is unity whenever j Qcj � 1, and since j�j D jQ�j, it
follows that the eigenvalues of the amplification matrix are bounded by unity when-
ever j Qcj � 1. If the spatial derivatives are evaluated using the centered-difference op-
erator ı2x , this stability condition becomes

p
gH�t=�x < 1, where strict inequal-

ity is required to ensure that the norm of the amplification matrix is power-bounded
(see Sect. 4.1.1.1). In contrast to the result obtained for an Eulerian scheme (4.13),
the stability of the leapfrog semi-Lagrangian approximation (7.50) and (7.51) de-
pends only on a Courant number defined with respect to the intrinsic gravity-wave
phase speed and does not depend on the speed of the mean flow.

An unconditionally stable method can be obtained if the forcing terms in the
linearized system are approximated by trapezoidal time differencing to yield the
approximation

uC � u0
�t

D �g
2

"�
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@x

	C
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	0#
; (7.52)

hC � h0
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	C
C
�
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@x

	0#
: (7.53)

The eigenvalues for the amplification matrix associated with this scheme are ob-
tained by substituting solutions of the form

�
u

h

	n
eikx

into the (7.52) and (7.53) to yield

� D e�iks

�
4 � Qc2 ˙ 4i Qc
4C Qc2

	
: (7.54)

This scheme is unconditionally stable, since j�j D 1 for all �t , and the norm of
the amplification matrix is power-bounded because its eigenvectors are linearly in-
dependent (and it can therefore be transformed into a diagonal matrix).

The right side of (7.53) becomes nonlinear if the preceding trapezoidal scheme
is generalized to approximate the nonlinear shallow-water equations. To avoid solv-
ing a coupled system of nonlinear algebraic equations at every time step, the total
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fluid depth is often split into a constant reference value and a perturbation, and the
velocity divergence multiplying the perturbation is evaluated using leapfrog time
differencing. Letting h.x; t/ D H C 	.x; t/, this approach leads to the following
three-time-level scheme:

uC � u�

2�t
D �g
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	�#
; (7.55)
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�
@u
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	0
: (7.56)

A complete stability analysis of the full nonlinear system is very difficult, but the
stability of a linearized system in which

u.x; t/ D U C u0.x; t/; 	.x; t/ D 	C 	0.x; t/

can be performed following essentially the same steps as those detailed in
Sect. 8.2.3. This analysis shows that the linearized system is stable for all �t ,
provided that j	j � H .

One disadvantage of the preceding scheme is that it is potentially half as
efficient as a two-time-level method. Both the trajectory calculation and the trape-
zoidal difference in the preceding scheme are computed over a time interval of 2�t .
To evaluate these terms with the same accuracy obtained in a two-level scheme
such as (7.52) and (7.53), the time step used in (7.55) and (7.56) must be half that
used in the two-level scheme. One way to obtain an O

�
.�t/2

�
approximation to

the nonlinear shallow-water equations that preserves the efficiency of the linearized
system (7.52) and (7.53) is to use the second-order Adams–Bashforth method to
evaluate the portion of the velocity divergence multiplying 	, in which case the
finite-difference equations become
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; (7.57)
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(7.58)

A stability analysis similar to that for the linearized version of (7.55) and (7.56) can
be performed by linearizing the preceding equations about the same basic state:

u.x; t/ D U C u0.x; t/; 	.x; t/ D 	C 	0.x; t/:
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Dropping the primes on the perturbation variables, letting 	 D ˛H , s D U�t , and
defining aC D u0, one can write the linearized system in the form

0
@ 1 i Qg=2 0

i QH=2 1 3i˛ QH=2
0 0 1

1
A
0
@u	
a

1
A
nC1

D e�iks

0
@ 1 �i Qg=2 0

�i QH=2 1 i˛ QH=2
1 0 0

1
A
0
@u	
a

1
A
n

;

where Qg D gk�t and QH D Hk�t . Let � be an eigenvalue of the amplification
matrix for this scheme and define Q� D �eiks , ˇ2 D Qg QH=4, and � D ˛ˇ2=.1Cˇ2/;
then Q� satisfies the cubic equation

Q�3 C
�
3�� 2.1 � ˇ2/

1C ˇ2

	
Q�2 C .2�C 1/ Q� � � D 0: (7.59)

Simmons and Temperton (1997) obtained this cubic equation as part of a more ex-
tensive analysis of the stability of similar semi-Lagrangian approximations to the
equations governing three-dimensional stratified flow. As noted by Simmons and
Temperton, one root of (7.59) is a real number associated with a computational
mode, and the other two roots are complex conjugates associated with rightward-
and leftward-propagating gravity waves.

If ˛ D 0, then � D 0, so the linearized equations reduce to (7.52) and (7.53); the
computational mode vanishes, and the remaining eigenvalues are given by (7.54).
Let Q�0 denote the value of Q� when � D 0:

Q�0 D 1 � ˇ2 ˙ 2iˇ

1C ˇ2
D 1˙ iˇ

1� iˇ
:

For small values of � the stability of this scheme can be determined by expanding
the Q� in powers of�. The eigenvalue for the computational mode is Q� D �CO.�2/.
Since j�j is small by assumption, this mode is rapidly damped. Expanding the Q� for
the gravity-wave modes in powers of �,

Q� D Q�0 C Q�1�CO.�2/; (7.60)

and substituting the preceding into (7.59) yields

Q�1 D 1 � 3 Q�0
Q�0 � 1 : (7.61)

Since j�j D jQ�j, the square of the magnitude of the eigenvalues of the amplification
matrix is

Q� Q�� D Q�0 Q��
0 C 2�<. Q�0 Q��

1/CO.�2/:
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Substituting (7.60) and (7.61) into the preceding equation yields

j�j2 D jQ�j2 D 1C 4ˇ2

1C ˇ2
�CO.�2/;

which implies that at least for small values of j�j, the scheme will be stable if � < 0
and unstable if � > 0. Note that � has the same sign as ˛ and for all �t , j�j < j˛j.
Thus, for sufficiently small values of ˛, the scheme is unconditionally stable when
˛ < 0 and unconditionally unstable when ˛ > 0. Numerical evaluation of the roots
of (7.59) verifies that the scheme is damping independent of�t for �1 < ˛ < 0. In
the context of the original nonlinear problem, this analysis shows that a necessary
condition for the scheme to be stable independent of �t is that the reference fluid
depthH exceed the maximum height of the actual free-surface displacement.

An alternative to the decomposition of the total fluid depth into H C 	 is to
remove the nonlinearity in the velocity divergence by linearizing h about its value
at the preceding time step, in which case (7.58) is replaced by

hC � h0

�t
D �h

0

2

"�
@u

@x

	C
C
�
@u

@x

	0#
: (7.62)

This approach requires the solution of a linear algebraic system with a more compli-
cated coefficient structure than that generated by (7.58), and particularly in two- or
three-dimensional problems, the increase in the complexity of the coefficient matrix
can be an impediment to numerical efficiency. Promising results have, nevertheless,
been obtained using preconditioned conjugate residual solvers (Skamarock et al.
1997), suggesting that this approach can be a viable alternative in those applications
where a suitable preconditioning operator can be determined. Yet another possibility
was pursued by Bates et al. (1995), who used a nonlinear multigrid method to solve
the nonlinear finite-difference equations generated by a true trapezoidal approxima-
tion to the full shallow-water continuity equation.

7.5 Alternative Trajectories

As noted by Smolarkiewicz and Pudykiewicz (1992), the numerical solution can
be integrated forward in time along trajectories other than those associated with
the standard Eulerian and Lagrangian coordinate frames. Any function  .x; t/ with
continuous derivatives satisfies the relation

 .xj ; tnC1/�  .Qx; tn/ D
Z
C

�
r ; @ 

@t

	
� .dx; dt/; (7.63)

where r is the gradient of  with respect to the spatial coordinates, and C is an
arbitrary contour connecting the points .Qx; tn/ and .xj ; tnC1/. If the time evolution
of  is governed by the partial differential equation
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@ 

@t
C v � r D S;

(7.63) may be expressed in the form

 .xj ; tnC1/ D  .Qx; tn/C
Z
C

r � .dx � vdt/C
Z
C

S dt: (7.64)

Lagrangian and semi-Lagrangian schemes approximate this equation by choosing
the integration path to be a fluid parcel trajectory, in which case the first integral in
(7.64) is zero, and Qx is the departure point of the trajectory arriving at .xj ; tnC1/.
Eulerian schemes approximate this equation by choosing C to be independent of x,
in which case (7.64) becomes

 .xj ; tnC1/ D  .xj ; tn/C
Z
C

.S � v � r / dt:

As an alternative to the pure Lagrangian and Eulerian approaches, one may
choose Qx to coincide with the grid point that is closest to the departure point of the
fluid parcel trajectory arriving at .xj ; tnC1/. Two such methods will be considered
in the following section. In the first method, C is a straight line in x–t space; in the
second approach C is deformed into the union of the true fluid parcel trajectory and
a series of straight lines in the hyperplane t D tn. In both of these alternatives the
interpolation of  to the departure point is accomplished by solving an advection
equation rather than by conventional interpolation.

7.5.1 A Noninterpolating Leapfrog Scheme

Some damping is produced in all the previously described semi-Lagrangian
schemes when the prognostic fields are interpolated to the departure point. Nu-
merical solutions to the forced one-dimensional advection equation (7.1) can be
obtained without interpolation using a modified semi-Lagrangian algorithm due to
Ritchie (1986). Let Lxn�1

j be the estimated x coordinate of the departure point of a
trajectory originating at time tn�1 and arriving at .xj ; tnC1/; Lxn�1

j is calculated by
integrating (7.2) backward over a time interval of 2�t using the initial condition
x.tnC1/ D xj . Define p as the integer for which xj�p is the grid point closest to
Lxn�1
j , and let u0 be a residual velocity such that

u D p�x

2�t
C u0:

Then (7.1) can be expressed as

@ 

@t
C p�x

2�t

@ 

@x
D �u0 @ 

@x
C S. /: (7.65)
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The velocities on the left side of the preceding equation carry a fluid parcel an
integral number of grid points over a time interval 2�t , so the left side of (7.65) can
be evaluated as a Lagrangian derivative without numerical error. The right side of
(7.65) can be integrated using a leapfrog time difference with the forcing evaluated
at Lxn�1

j =2, which is the midpoint of a back trajectory computed with respect to the
velocity p�x=.2�t/. Depending on whether p is even or odd, Lxn�1

j =2 will either
coincide with a grid point or lie halfway between two grid points. A second-order
finite-difference approximation to (7.65) can therefore be written in the form

�nC1
j � �n�1

j�p
2�t

D
( �u0ı2x�nj�p=2 C S.�n

j�p=2/ if p is even;

�u0ıx�nj�p=2 C
D
S.�n

j�p=2/
Ex

if p is odd.
(7.66)

The stability of the constant-coefficient equivalent of the preceding scheme can
be easily investigated. Suppose that the source term is zero and the wind speed is
U ; substituting the discrete Fourier mode

�nj D ei.kj�x�!n�t/

into (7.66) and invoking the assumption that S D 0 yields the discrete-dispersion
relation

sin
�
!�t � k.U � u0/�t

� D

8̂
<̂
ˆ̂:
u0�t

sin.k�x/

�x
if p is even;

2u0�t
sin.k�x=2/

�x
if p is odd.

(7.67)

By the choice of p,

�x

2
> jxj � Lxn�1

j � p�xj D j2U�t � p�xj;
so ˇ̌̌

ˇu
0�t
�x

ˇ̌̌
ˇ D

ˇ̌̌
ˇU � p�x

2�t

ˇ̌̌
ˇ �t�x <

1

4
;

which implies that the right side of (7.67) is bounded by one half, ! is real, and the
scheme is stable independent of the value of �t .

If the velocity is a function of space and time, the residual Courant number
ju0�t=�xj will vary as a function of x and t . Let the subscript “�” indicate that
the function is evaluated at the midpoint of the trajectory between xj and xj�p , in
which case

u� D
8<
:
un
j�p=2 if p is even;D
un
j�p=2

Ex
if p is odd.

(7.68)

According to (7.67), a necessary condition for the stability of the variable-velocity
algorithm is ju0��t=�xj < 1=2. This condition is not automatically satisfied unless
the deviation of u� from the average velocity along the back trajectory is sufficiently
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small. Let u D .xj � Lxn�1
j /=.2�t/ be the average velocity required to arrive at

the true departure point and define the deviation of the velocity at the midpoint as

 D u� � u. Then

u0� D u� � p�x

2�t
D u � p�x

2�t
C 
;

and by the choice for p, ˇ̌
ˇ̌u0��t
�x

ˇ̌
ˇ̌ < 1

4
C
ˇ̌
ˇ̌
�t
�x

ˇ̌
ˇ̌ :

Thus, for the variable-velocity algorithm to be stable, the deviation of the ve-
locity about the mean along the backward trajectory must be small enough that
j
�t=�xj � 1=4.

This stability constraint can be removed if the departure point is computed as
suggested by Ritchie (1986) by choosing

p D nearest integer to
2�t

�x
u�: (7.69)

The preceding expression is an implicit equation for p because u� is the function
of p defined by (7.68). Although this approach stabilizes the scheme in the sense
that it keeps the solution bounded, it is still subject to problems if the deviation of
u� from the average velocity along the back trajectory is too large. In particular, the
solution to (7.69) need not be unique if

ˇ̌̌
ˇ@u@x

ˇ̌̌
ˇ�t > 1

2
:

The nonuniqueness of the solution to (7.69) is particularly apparent if the velocity
field is defined by the relation uŒ.j C n/�x� D �n�x=�t at all grid points in a
neighborhood surrounding xj , since (7.69) is then satisfied by any integer p.

7.5.2 Interpolation via Parameterized Advection

Semi-Lagrangian methods will not preserve the nonnegativity of an initially nonneg-
ative tracer concentration field if conventional quadratic or higher-order polynomial
interpolation is used to determine the value of  at the departure point. Positive-
definite semi-Lagrangian schemes can be obtained if the interpolating functions are
required to satisfy appropriate monotonicity and convex–concave shape-preserving
constraints (Williamson and Rasch 1989). As noted by Smolarkiewicz and Rasch
(1991), positive-definite results can also be obtained if the interpolation step in the
standard semi-Lagrangian algorithm is recast as a parameterized advection prob-
lem that is approximated using one of the positive-definite advection schemes dis-
cussed in Sect. 5.10. If a strictly positive-definite result is not required, overshoots
and undershoots in the vicinity of poorly resolved gradients can still be minimized



7.5 Alternative Trajectories 387

by approximating the solution to the parameterized advection equation using any of
the various flux-limited or flux-corrected advection schemes discussed in Chap. 5.

If f .x/ is a continuously differentiable function, the value of f at some arbitrary
point Qx can be estimated from its value on a regularly spaced mesh by computing a
numerical solution to the constant-coefficient advection problem

@‡

@�
C @‡

@x
D 0 (7.70)

subject to the initial condition‡.x; 0/ D f .x/. The solution to this advection prob-
lem is ‡.x; �/ D f .x � �/. Let xp be the x coordinate of the grid point nearest to
Qx and define ˛ D xp � Qx; then

‡.xp ; ˛/ D f .xp � ˛/ D f . Qx/:
Figure 7.6 illustrates how the initial distribution of ‡ is shifted along the x coordi-
nate so that desired value of f . Qx/ becomes the value of ‡ at grid point xp when
� D ˛.

If a single time step is used to integrate forward or backward over the interval
�� D ˛, the magnitude of the Courant number associated with this integration will
be j˛=�xj. Since j˛=�xj < 1=2 by the definition of ˛, stable estimates of f . Qx/
can be obtained in a single time step using most of the wide variety of schemes
available for the numerical approximation of (7.70). Of course, there is no advan-
tage in using this approach if (7.70) is solved using an elementary scheme such as
the Lax–Wendroff method, which will yield exactly the same result as would be ob-
tained if f . Qx/ were interpolated from the quadratic polynomial passing through the
points f .xpC1/, f .xp/, and f .xp�1/. As discussed previously, the advantage of
this approach lies in the possibility of using positive-definite or flux-limited advec-
tion schemes to eliminate spurious negative concentrations or minimize undershoots
and overshoots in the semi-Lagrangian solution.

The use of parameterized advection equations to replace the interpolation step
in conventional semi-Lagrangian methods can be interpreted as a method for ad-
vancing the solution to the new time level by integrating (7.64) along a specially

α

x̃

ϒ(x)

xp−2 xp−1 xp+1 xp+2xpx

Fig. 7.6 Interpolation via the solution of a constant-wind-speed advection problem. The initial
condition is indicated by the solid line; the solution after translation a distance ˛ is indicated by
the dashed line
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˜ ˜
C2C1

C3

t=tn+1

t=t n

(xj ,yj)

(xp ,yp) (x,y)

Fig. 7.7 Contour paths for the integration of (7.64); .xj ; yj ; t
nC1/ is the arrival point, . Qx; Qy; tn/

is the departure point, and .xp; yp; t
n/ is the nearest grid point to the departure point

deformed contour between the arrival point and the nearest grid point to the depar-
ture point (Smolarkiewicz and Pudykiewicz 1992). To easily visualize the geometric
structure of this contour, suppose that the spatial domain is two-dimensional and the
spatial coordinates are x and y. Let . Qx; Qy/ be the departure point of the trajectory
originating at time tn and arriving at .xj ; yj ; tnC1/, and let .xp ; yp/ be the coor-
dinates of the node on the spatial grid that is nearest to . Qx; Qy/. Since the contour
integrals in (7.64) are path independent,  .xj ; yj ; tnC1/ can be evaluated by inte-
grating along the path defined by the union of the three contours

C1 D .xp C . Qx � xp/�; yp ; t
n/; � 2 Œ0; 1�;

C2 D . Qx; yp C . Qy � yp/�; t
n/; � 2 Œ0; 1�;

C3 D
�

Qx C
Z t

tn
uŒx.s/; y.s/; s� ds; Qy C

Z t

tn
vŒx.s/; y.s/; s� ds; t

	
;

t 2 �tn; tnC1� :
A schematic diagram of this integration path is shown in Fig. 7.7. The integral of
(7.64) over the contours C1 and C2 is independent of the true time variable t and
yields the value of  at the departure point of the backward trajectory. The final
integral along contour C3 is the standard semi-Lagrangian evaluation of the integral
of the forcing along a fluid parcel trajectory.

7.6 Eulerian or Semi-Lagrangian?

The relative efficiency of Eulerian and semi-Lagrangian methods can vary consid-
erably between different physical applications. Semi-Lagrangian methods require
more work per time step than their Eulerian counterparts because additional ef-
fort is required to compute the backward trajectories. Thus, to be more efficient,
semi-Lagrangian methods must produce stable and accurate solutions using larger
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time steps than comparable Eulerian schemes. The feasibility of taking a large
semi-Lagrangian time step is primarily determined by two factors: the ease with
which an accurate trajectory can be computed that extends several grid intervals
upstream and the extent to which the frequency of the forcing in the Lagrangian
reference frame is reduced relative to that in the Eulerian frame.

One application where the semi-Lagrangian approach can have a distinct
advantage is in the simulation of tracer transport in a smooth, slowly varying
flow field. If the tracer is conservative and the flow is inviscid, there is no forcing
in the Lagrangian reference frame, and the only factor determining the time step is
the need to compute accurate backward trajectories. On the other hand, the highest-
frequency forcing in the Eulerian reference frame, !E, is determined by the product
of the velocity and the largest wave number resolved on the spatial mesh. Stability
constraints (for explicit methods) and accuracy considerations require the time step
of the Eulerian scheme to be small enough that j!E�t j < O.1/. It follows that if
the spatial mesh required to adequately resolve the tracer field is much finer than
that required to define the flow field, the maximum time step suitable for use with
a semi-Lagrangian scheme can be much greater than that suitable for an Eulerian
method.

Semi-Lagrangian methods also have an advantage in solving problems in
spherical geometry. The most natural coordinate system for such problems is a
latitude–longitude grid, but the convergence of the meridians near the poles greatly
decreases the east–west distance between grid points in the polar regions. In appli-
cations such as global atmospheric modeling, the spatial scale of the disturbances
near the poles is similar to that in middle latitudes, and the extra resolution in the
polar regions is not required to accurately capture the meteorologically significant
phenomena. The maximum stable time step of an Eulerian method must, neverthe-
less, be small enough to ensure that the CFL condition defined with respect to the
wind speed is less than order unity in the polar regions. Semi-Lagrangian methods
are free from this time-step restriction, although some care is required to accurately
compute backward trajectories near the poles (Ritchie 1987; Williamson and Rasch
1989; McDonald and Bates 1989).

In those problems where the frequency of the forcing in the Lagrangian reference
frame is similar to that in the Eulerian frame, semi-Lagrangian schemes tend to be at
a disadvantage because accuracy considerations often require that both methods use
similar time steps. In some cases, such as flow over a topographic barrier, forcing
that is stationary in the Eulerian coordinate system is Doppler shifted to a higher
frequency in the Lagrangian coordinate frame (Pinty et al. 1995; Héreil and Laprise
1996). One situation in which the frequency of the forcing is similar in both the
Lagrangian and the Eulerian reference frames occurs in those shallow-water sys-
tems where the fluid velocities are much slower than the phase speeds of the gravity
waves. In such systems both semi-Lagrangian and Eulerian methods must use es-
sentially the same time step to accurately simulate the most rapidly moving waves.

In some applications the fastest-moving waves are not physically significant,
and in these applications the semi-implicit approximation can be used to increase
the time step in the numerical integration. When used in conjunction with the
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semi-implicit method, semi-Lagrangian schemes can be considerably more efficient
than Eulerian methods. Semi-implicit semi-Lagrangian schemes have proved par-
ticularly useful in global atmospheric modeling. Ritchie et al. (1995) compared
Eulerian and semi-Lagrangian versions of the semi-implicit global forecast model
developed at the European Center for Medium Range Weather Forecasting and re-
ported that “the semi-Lagrangian version with a 15-min time step gave an accuracy
equivalent to that of an Eulerian version with a 3-min time step, giving an efficiency
improvement of about a factor of four after allowing for the 20% : : : [overhead for]
the semi-Lagrangian computations.”

It should be emphasized that the fastest-moving waves in the shallow-water sys-
tem are artificially decelerated whenever semi-implicit integrations are performed
using time steps significantly greater than those permitted by the CFL condition for
gravity waves. This loss of accuracy occurs in both Eulerian semi-implicit and semi-
Lagrangian semi-implicit models. In contrast, the increase in the time step permit-
ted in semi-Lagrangian approximations to the pure advection equation is achieved
without any inherent loss of accuracy because advective forcing generates a zero
frequency response in the Lagrangian reference frame.

Problems

1. Show that the phase-speed error associated with the first-order semi-Lagrangian
approximation (7.5) is

Q!
!

D 1

.p C ˛/k�x

�
pk�x C arctan



˛ sin k�x

1 � ˛.1 � cos k�x/

�	
;

where Q! and ! are the frequencies of the true and numerically approximated
waves of wave number k. How does this error depend on the spatial resolution
(k�x) and the Courant number (U�t=�x)?

2. Show that the Lagrange interpolating polynomial in (7.12) is equivalent to the
following Newton polynomial:

c0 C .2 � ˛/
h
c1 C .1 � ˛/

�c2
2

� ˛
c3

6

�i
;

where

c0 D �nj�p�2;
c1 D �nj�p�1 � c0;

c2 D �nj�p � �nj�p�1 � c1;

c3 D �nj�pC1 � 2�nj�p C �nj�p�1 � c2:

Compare the number of multiplications and additions required to evaluate the
preceding equations with those required to evaluate (7.12).
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3. Suppose that a semi-Lagrangian approximation to the constant-wind-speed
advection equation uses quadratic polynomial interpolation as specified in
(7.11).

(a) Derive the leading-order truncation error for this scheme.

(b) Determine the range ofU�t=�x for which the resulting scheme is identical
to the Lax–Wendroff method (3.72). Also determine the values of U�t=�x for
which the scheme is identical to the method of Warming and Beam (3.79).

4. Determine the values of ˛ for which the semi-Lagrangian approximation to the
constant-wind-speed advection equation is stable when quadratic interpolation
is used to evaluate �. Qxnj ; tn/ as in (7.11). Why is this scheme implemented by
choosing p such that j˛j � 1=2?

5. Show that in comparison with a hypothetical scheme that exactly determines the
value of � at the departure point, the damping associated with the polynomial
interpolation of �. Qxnj ; tn/ increases the stability of numerical approximations
to (7.42) computed using the trapezoidal scheme (7.3).

6. Suppose that a noninterpolating three-time-level semi-Lagrangian scheme is
used to compute approximate solutions to the variable-wind-speed advection
equation

@ 

@t
C u.x/

@ 

@x
D 0:

If the approximate solution is defined at the mesh points xj and the velocity
is available at both xj and xjC1=2, determine the strategy for choosing p that
minimizes the truncation error in the resulting scheme. Should p be even, odd,
or simply the integer such that p�x is closest to the departure point? Does this
strategy yield stable solutions? How well does it generalize to two-dimensional
problems?

7. Suppose that (7.44) is used to obtain approximate solutions to the prototype
equation for forced scalar advection (7.42). How do the stability properties of
the 2�x waves compare with those of the 4�x waves as a function of the
Courant number U�t=�x?

8. Suppose that the two-level forward extrapolation (7.25) is replaced by the three-
level scheme

u.tnC 1
2 / D 1

8

�
15u.tn/ � 10u.tn�1/C 3u.tn�2/

�
:

Determine the order of accuracy to which this method estimates u.tnC1=2/.

9. Show that backward trajectories computed with the Euler method in a spatially
varying wind field can cross if j@v=@xj�t exceeds unity.





Chapter 8
Physically Insignificant Fast Waves

One reason why explicit time differencing is widely used in the simulation of wave-
like flows is that accuracy considerations and stability constraints often yield similar
criteria for the maximum time step in numerical integrations of systems that support
a single type of wave motion. Many fluid systems, however, support more than one
type of wave motion, and in such circumstances accuracy considerations and stabil-
ity constraints can yield very different criteria for the maximum time step. If explicit
time differencing is used to construct a straightforward numerical approximation to
the equations governing a system that supports several types of waves, the maxi-
mum stable time step will be limited by the Courant number associated with the
most rapidly propagating wave, yet that rapidly propagating wave may be of little
physical significance.

As an example, consider the Earth’s atmosphere, which supports sound waves,
gravity waves, and Rossby waves. Rossby waves propagate more slowly than grav-
ity waves, which in turn move more slowly than sound waves. The maximum stable
time step with which an explicit numerical method can integrate the full equations
governing atmospheric motions will be limited by the Courant number associated
with sound-wave propagation. If finite differences are used in the vertical, and the
vertical grid spacing is 300 m, the maximum stable time step will be on the order of
1 s. Since sound waves have no direct meteorological significance, they need not be
accurately simulated to obtain a good weather forecast. The quality of the weather
forecast depends solely on the ability of the model to accurately simulate atmo-
spheric disturbances that evolve on much slower timescales. Gravity waves can be
accurately simulated with time steps on the order of 10–100 s; Rossby waves require
a time step on the order of 500–5,000 s. To obtain a reasonably efficient numerical
model for the simulation of atmospheric circulations, it is necessary to circumvent
the stability constraint associated with sound-wave propagation and bring the max-
imum stable time step into closer agreement with the time-step limitations arising
from accuracy considerations.

There are two basic approaches for circumventing the time-step constraint im-
posed by a rapidly moving, physically insignificant wave. The first approach is to
approximate the full governing equations with a set of “filtered” equations that does
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not support the rapidly moving wave. As an example, the full equations for stratified
compressible flow might be approximated by the Boussinesq equations for incom-
pressible flow. In this approach fundamental approximations to the original con-
tinuous equations are introduced prior to any numerical approximations that may
be subsequently employed to discretize the filtered equations. The use of a filtered
equation set may be motivated entirely by numerical considerations, or it may arise
naturally from the standard approximations used in the study of a given physical
phenomenon. Gravity waves, for example, are often studied in the context of Boussi-
nesq incompressible flow to simplify and streamline the mathematical description
of the problem.

The second approach for circumventing the time-step constraint imposed by a
rapidly moving, physically insignificant wave leaves the continuous governing equa-
tions unmodified and relies on numerical techniques to stabilize the fast-moving
wave. These numerical techniques achieve efficiency by sacrificing the accuracy
with which the fast-moving wave is represented. Note that this approach is not ap-
propriate in situations where the fast-moving wave needs to be accurately simulated,
since small time steps are required to adequately resolve a fast-moving wave.

This chapter begins by examining techniques for the numerical solution of the
Boussinesq equations, which constitute one of the most fundamental systems of
filtered equations. Methods for the solution of a second system of filtered equa-
tions, the primitive equations, are presented in Sects. 8.5 and 8.6. Numerical meth-
ods for stabilizing the solution to problems that simultaneously support fast- and
slow-moving waves are considered in Sects. 8.2–8.4. One of these techniques, the
semi-implicit method, is frequently used to integrate the primitive equations in ap-
plications where the phenomena of primary interest are slow-moving Rossby waves.
In such applications the numerical integration is stabilized with respect to two dif-
ferent types of physically insignificant, rapidly moving waves. Sound waves are fil-
tered by the primitive-equation approximation, and the most rapidly moving gravity
waves (and the Lamb wave) are stabilized by the semi-implicit time integration.

8.1 The Projection Method

The unapproximated mass-conservation equation (1.32) is a prognostic equation
for the density that can be combined with the equation of state to form a prog-
nostic equation for pressure. The equation of state can also be used to eliminate
density from the momentum equations and thereby express the Euler equations as a
closed system of five prognostic equations in five unknowns. When sound waves are
filtered from the governing equations using the Boussinesq, anelastic, or pseudo-
incompressible approximations, the approximate mass-conservation equations for
these filtered systems do not depend on the local time derivative of the true density,
and as a consequence, they cannot be used to obtain a prognostic equation for pres-
sure. Since a prognostic equation is not available for the calculation of pressure, the
filtered systems are not strictly hyperbolic, and their numerical solution cannot be
obtained entirely through the use of explicit finite-difference schemes.
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As an example, consider the Boussinesq equations (1.51), (1.56), and (1.60),
which may be written in the form

r � v D 0; (8.1)
d�0

dt
Cw

d�

dz
D 0; (8.2)

@v
@t

C 1

�0
rp0 D F.v; �0/; (8.3)

where

F.v; �0/ D �v � rv � g �
0

�0
k

and p0 and �0 are the deviations of the pressure and density from their values in a
hydrostatically balanced reference state, p.z/ and �.z/. The unknown variables are
the three velocity components, the perturbation density, and the perturbation pres-
sure. There is no prognostic equation available to determine the time tendency of p0.
The perturbation pressure field at a given instant can, however, be diagnosed from
the instantaneous velocity and perturbation density fields by solving the Poisson
equation

r2p0 D �0r � F; (8.4)

which can be derived by taking the divergence of (8.3) and then using (8.1). The
perturbation pressure satisfying (8.4) is the instantaneous pressure distribution that
will keep the evolving velocity field nondivergent.

8.1.1 Forward-in-Time Implementation

The projection method (Chorin 1968; Témam 1969) is a classical technique that
may be used to obtain numerical solutions to the Boussinesq system. Suppose the
momentum equation is integrated over a time interval�t to yield

Z tnC1

tn

@v
@t

dt D �
Z tnC1

tn

1

�0
rp0 dt C

Z tnC1

tn
F.v; �0/ dt; (8.5)

where tn D n�t . Define the quantity QpnC1 such that

�t r QpnC1 D
Z tnC1

tn

1

�0
rp0 dt:

Note that QpnC1 is not necessarily equal to the actual perturbation pressure at any
particular time. Using the definition of QpnC1, one may write (8.5) as

vnC1 � vn D ��t r QpnC1 C
Z tnC1

tn
F.v; �0/ dt: (8.6)
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Define Qv such that

Qv D vn C
Z tnC1

tn
F.v; �0/ dt: (8.7)

As noted by Orszag et al. (1986), the preceding integral can be conveniently eval-
uated using an explicit finite-difference scheme such as the third-order Adams–
Bashforth method (2.80). Equations (8.6) and (8.7) imply that

vnC1 D Qv ��t r QpnC1; (8.8)

which provides a formula for updating Qv to obtain the new velocity field vnC1 once
QpnC1 has been determined.

A Poisson equation for QpnC1 that is analogous to (8.4) is obtained by taking the
divergence of (8.8) and noting that r � vnC1 D 0, in which case

r2 QpnC1 D r � Qv
�t

: (8.9)

Boundary conditions for this equation are obtained by computing the dot product of
the unit vector normal to the boundary (n) with each term of (8.8) to yield

@ QpnC1

@n
D � 1

�t
n � .vnC1 � Qv/: (8.10)

If there is no flow normal to the boundary, the preceding equation reduces to

@ QpnC1

@n
D n � Qv

�t
; (8.11)

which eliminates the implicit coupling between QpnC1 and vnC1 that is present in the
general boundary condition (8.10). In this particularly simple case in which an in-
viscid fluid is bounded by rigid walls, the projection method is implemented by first
updating (8.7), which accounts for the time tendencies produced by advection and
buoyancy forces, and then solving (8.9) subject to the boundary conditions (8.11).
As the final step of the algorithm, vnC1 is obtained by projecting Qv onto the subspace
of nondivergent vectors using (8.8).

The preceding algorithm loses some of its simplicity when the computation of
vnC1 is coupled with that of QpnC1, as would be the case if a wave-permeable bound-
ary condition replaced the rigid-wall condition that n � vnC1 D 0. In practice, the
coupling between vnC1 and QpnC1 is eliminated by imposing some approximation to
the full, implicitly coupled boundary condition. Coupling between vnC1 and QpnC1
may also occur when the projection method is applied to viscous flows with a no-
slip condition at the boundary. The no-slip condition that v D 0 at the boundary
reduces (8.10) to

@ QpnC1

@n
D 1

�t
n �
Z tnC1

tn
�g �

0

�0
k C �r2v dt; (8.12)
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where viscous forcing is now included in the momentum equations and � is the
kinematic viscosity. High spatial resolution is often required to resolve the boundary
layer in no-slip viscous flow. To maintain numerical stability in the high-resolution
boundary layer without imposing an excessively strict limitation on the time step,
the viscous terms are often integrated using implicit differencing1 (Karniadakis et al.
1991). When the time integral of F.v; �0/ includes viscous terms that are approxi-
mated using implicit finite differences, (8.12) is an implicit relation between QpnC1
and vnC1 whose solution is often computed via a fractional-step method. As noted
by Orszag et al. (1986), the accuracy with which this boundary condition is approx-
imated can significantly influence the accuracy of the overall solution. The design
of optimal approximations to (8.12) has been the subject of considerable research.
However, the emphasis in this book is not on viscous flow, and especially not on
highly viscous flow in which the diffusion terms need to be treated implicitly for
computational efficiency. The reader is referred to Boyd (1989) for further discus-
sion of the use of the projection method in viscous no-slip flow.

8.1.2 Leapfrog Implementation

In atmospheric science the projection method is often implemented using leapfrog
time differences, in which case (8.5) becomes

vnC1 D vn�1 � 2�t

�0
rp0n C 2�tF

�
vn; �0 n� :

The solution procedure is very similar to the algorithm described in the preceding
section. The velocity field generated by advection and buoyancy forces acting over
the time period 2�t is defined as

Qv D vn�1 C 2�tF
�
vn; �0n�I

then the Poisson equation for p0n is

r2p0n D �0

2�t
r � Qv;

and the velocity field is updated using the relation

vnC1 D Qv � 2�trp0n:

Some technique, such as Asselin time filtering (2.65), must also be used to prevent
time-splitting instability in the leapfrog solution to nonlinear problems.

One difference between this approach and the standard projection method is
that by virtue of the leapfrog time difference, the pressure field that ensures the

1 Explicit time differencing can still be used for the advection terms because the wind speed normal
to the boundary decreases as the fluid approaches the boundary.
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nondivergence of vnC1 is the actual pressure at time n�t . The pressure must,
nevertheless, be updated at the same point in the integration cycle at which QpnC1
is obtained in the standard projection method, i.e., partway through the calculation
of vnC1. Thus, the same problems with implicit coupling between the pressure and
vnC1 arise in both the standard and the leapfrog projection methods. If viscosity is
included in the momentum equations, stability considerations require that the con-
tribution of viscosity to F.v; �0/ be evaluated at time level n� 1, so that the viscous
terms are treated using forward differencing over a time interval of 2�t . This is
not a particularly accurate way to represent the viscous terms and is not suitable for
highly viscous flow, in which the viscous terms are more efficiently integrated using
implicit time differences.

8.1.3 Solving the Poisson Equation for Pressure

Suppose that the Boussinesq equations are to be solved in a two-dimensional x–z
domain and that the velocity and pressure variables are staggered as indicated in
Fig. 4.6. Approximating the diagnostic pressure equation (8.9) using the standard
five-point finite-difference stencil for the two-dimensional Laplacian, one obtains

ı2x QpnC1 C ı2z QpnC1 D 1

�t
.ıx QuC ız Qw/ : (8.13)

This is an implicit algebraic relation for the QpnC1
i;j . If pressure is defined at M grid

points in x andN points in z, anM�N system of linear algebraic equations must be
solved to determine the pressure. Let the unknown grid-point values of the pressure
be ordered such that

p D . QpnC1
1;1 ; QpnC1

1;2 ; : : : ; QpnC1
1;N ; QpnC1

2;1 ; : : : ; QpnC1
M;N /:

Then the system may be written as the matrix equation

Ap D f; (8.14)

in which f is an identically ordered vector containing the numerically evaluated di-
vergence of Qv. The matrix A is very sparse, with only five nonzero diagonals. In
practical applications the number of unknown pressures can easily exceed one mil-
lion, and to solve (8.14) efficiently, it is important to take advantage of the sparseness
of A. Direct methods based on some variant of Gaussian elimination are therefore
not appropriate. Direct methods for band matrices are also not suitable because the
bandwidth of A is not 5, but 2N C 1, and direct methods for band matrices do not
preserve sparseness within the band.

Direct solutions to (8.14) can, nevertheless, be efficiently obtained by exploiting
the block structure of A. For simplicity, suppose that (8.13) is to be solved subject
to Dirichlet boundary conditions. Then the diagonal of A contains M copies of the
N �N tridiagonal submatrix



8.1 The Projection Method 399

0
BBBBBBB@

�4 1

1 �4 1
: : :

: : :
: : :

: : :
: : :

: : :

1 �4 1

1 �4

1
CCCCCCCA
;

and the superdiagonal and subdiagonal are made up of M � 1 copies of the
N � N identity matrix. This system can be efficiently solved using block-cyclic
reduction (Golub and van Loan 1996, p. 177). Numerical codes for the solution of
two- and three-dimensional Poisson equations subject to the most common types
of boundary conditions may be accessed through the Internet at several cites,
including the National Institute of Standards and Technology’s Guide to Avail-
able Mathematical Software (NIST/GAMS, http://gams.nist.gov), the National Cen-
ter for Atmospheric Research’s Mathematical and Statistical Libraries (NCAR,
http://www.cisl.ucar.edu/softlib/mathlib.html), and the Netlib Repository at the Oak
Ridge National Laboratory (ORNL, http://www.netlib.org).

Numerical solutions to the anelastic equations (1.33), (1.52), and (1.64) can be
obtained using the projection method in essentially the same manner as that for the
Boussinesq system, except that the elliptic equation for the pressure in the anelastic
system is slightly more complicated than a Poisson equation. After multiplication
by �.z/, the anelastic momentum equation (1.64) may be written

@�v
@t

C cp�r.�� 0/ D �F; (8.15)

where

F.v; � 0/ D �v � rv C g
� 0

�
k: (8.16)

An elliptic equation for pressure is obtained by taking the divergence of (8.15) and
using the anelastic continuity equation

r � .�v/ D 0;

to yield

r �
h
�r.�� 0/

i
D r �

�
�

cp
F
�
:

A linear system of algebraic equations for � 0
i;j is obtained after approximating the

derivatives in the preceding expression by finite differences, but since � and � are
functions of z, the structure of the coefficient matrix for this system is less uniform
than that for the Boussinesq system. Nevertheless, the resulting linear system can
still be efficiently solved by generalizations of the block-cyclic-reduction algorithm,
and numerical codes for the solution of this problem appear in the previously noted
software libraries.
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When the projection method is used to solve the pseudo-incompressible
equations (1.33), (1.37), and (1.54), the elliptic pressure equation becomes

r �
h
���r� 0i D r �

 
��

cp
F

!
; (8.17)

where F is once again defined by (8.16). The finite-difference approximation to this
equation still produces a very sparse linear algebraic system, with only five nonzero
diagonals, but since the coefficient of each second derivative includes the factor � ,
which is an arbitrary function of x, y, and z, it is not possible to solve the system
by block-cyclic reduction – iterative methods must be used. Iterative methods may
also need to be employed to determine the pressure in the Boussinesq and anelastic
systems when those equations are solved on a curvilinear grid (such as a terrain-
following coordinate system) because the coefficient structure in the elliptic pressure
equation is usually complicated by the coordinate transformation.

The two most commonly used techniques for the iterative solution of the sparse
linear-algebraic systems that arise in computational fluid dynamics are the precon-
ditioned conjugate gradient method and the multigrid method. The mathematical
basis for both of these methods is very nicely reviewed in Ferziger and Perić (1997)
and LeVeque (2007) and will not be covered in this text. Additional information
about multigrid methods may be found in Briggs (1987), Hackbusch (1985), and, in
the context of geophysical fluid dynamics, Adams et al. (1992). Conjugate-residual
solvers are discussed in more detail in Golub and van Loan (1996) and in the context
of atmospheric science in Smolarkiewicz and Margolin (1994) and Skamarock et al.
(1997). Both multigrid and preconditioned conjugate residual solvers are available
in the previously mentioned software libraries.

8.2 The Semi-implicit Method

As an alternative to filtering the governing equations to eliminate insignificant fast
waves, one can retain the unapproximated governing equations and use numerical
techniques to stabilize the simulation of the fast-moving waves. One common way
to improve numerical stability is through the use of implicit time differences such as
the backward and the trapezoidal methods.2 Implicit methods can, however, produce
rather inaccurate solutions when the time step is too large. It is therefore useful to
analyze the effect of the time step on the accuracy of fully implicit solutions to
wave-propagation problems before discussing the true semi-implicit method.

2 Higher-order implicit schemes are, however, not necessarily more stable than related explicit
methods. Backward and trapezoidal differencing are the first- and second-order members of the
Adams–Moulton family of implicit time-integration schemes. The third- and fourth-order Adams–
Moulton schemes generate amplifying solutions to the oscillation equation (2.19) for any choice
of time step, whereas their explicit cousins, the third- and fourth-order Adams–Bashforth schemes,
produce stable nonamplifying solutions whenever the time step is sufficiently small.
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8.2.1 Large Time Steps and Poor Accuracy

Suppose that a differential–difference approximation to the one-dimensional advec-
tion equation

@ 

@t
C c

@ 

@x
D 0 (8.18)

is constructed in which finite differences are used to represent the time derivative,
and the spatial derivative is not discretized. If the time derivative is approximated
using leapfrog differencing such that

�nC1 � �n�1

2�t
C c

�
d�

dx

�n
D 0;

then wave solutions of the form

�n.x/ D ei.kx�!n�t/ (8.19)

must satisfy the semidiscrete dispersion relation

! D 1

�t
arcsin.ck�t/: (8.20)

The phase speed of the leapfrog-differenced solution is

clf D !

k
D arcsin.ck�t/

k�t
: (8.21)

The stability constraint jck�t j < 1 associated with the preceding leapfrog
scheme can be avoided by switching to trapezoidal differencing. Many semi-implicit
formulations use a combination of leapfrog and trapezoidal differencing, and in
those formulations the trapezoidal time difference is computed over an interval of
2�t . To facilitate the application of this analysis to these semi-implicit formula-
tions, and to compare the trapezoidal and leapfrog schemes more directly, (8.18)
will be approximated using trapezoidal differencing over a 2�t-wide stencil such
that

�nC1 � �n�1

2�t
C c

2

"�
d�

dx

�nC1
C
�
d�

dx

�n�1#
D 0:

Wave solutions to this scheme must satisfy the dispersion relation

! D 1

�t
arctan.ck�t/: (8.22)

The phase speed of the trapezoidally differenced solution is

ct D arctan.ck�t/

k�t
:
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Fig. 8.1 Phase speed of leapfrog (dotted line) and 2�t -trapezoidal (dashed line) approximations
to the advection equation when c�t=�x D 1=π (LF1 and T1), and for the trapezoidal solution
when c�t=�x D 5=π (T5)

The phase-speed errors generated by the leapfrog and 2�t-trapezoidal methods
are compared in Fig. 8.1. The phase speed at a fixed Courant number is plotted as
a function of spatial wave number, with the wave number axis scaled by 1=�x.
These curves may therefore be interpreted as giving the phase speed that would be
obtained if the spatial dependence of the numerical solution were represented by a
Fourier spectral method with a cutoff wavelength of 2�x. When c�t=�x D 1=π,
the errors generated by the leapfrog and the 2�t-trapezoidal methods are similar
in magnitude and opposite in sign. The leapfrog scheme is unstable for Courant
numbers greater than 1=π, but solutions can still be obtained using the trapezoidal
scheme. The phase-speed errors in the 2�t-trapezoidal solution computed with
c�t=�x D 5=π are, however, rather large. Even modes with relatively good spatial
resolution, such as a 10�x wave, are in significant error.

The deceleration generated by 2�t-trapezoidal differencing may be alternatively
expressed in terms of the reduced phase speed

Oc D c cos.!�t/:

Then the 2�t-trapezoidal dispersion relation (8.22) assumes the form

! D 1

�t
arcsin. Ock�t/;

and the phase speed of the 2�t-trapezoidal solution becomes

ct D !

k
D arcsin. Ock�t/

k�t
:

The preceding expressions differ from the corresponding expressions for the
leapfrog scheme (8.20) and (8.21) in that the true propagation speed, c, has been
replaced by the reduced speed Oc. As the time step increases, Oc decreases, so j Ock�t j
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remains less than 1 and the numerical solution remains stable, but the relative error
in Oc can become arbitrarily large. As a consequence, it is not possible to take ad-
vantage of the unconditional stability of the trapezoidal method by using very large
time steps to solve wave-propagation problems unless one is willing to tolerate a
considerable decrease in the accuracy of the solution.

8.2.2 A Prototype Problem

The loss of accuracy associated with poor temporal resolution that can occur using
implicit numerical methods is not a problem if the poorly resolved waves are not
physically significant. If the fastest-moving waves are insignificant, the accuracy
constraints imposed on the time step by these waves can be ignored, and provided
the scheme is unconditionally stable, a good solution can be obtained using any
time step that adequately resolves the slower-moving features of primary physical
interest. A simple but computationally inefficient way to ensure the unconditional
stability of a numerical scheme is to use trapezoidal time differencing throughout
the approximate equations. It is, however, more efficient to implicitly evaluate only
those terms in the governing equations that are crucial to the propagation of the fast
wave and to approximate the remaining terms with some explicit time-integration
scheme. This is the fundamental strategy in the “semi-implicit” approach, which
gains efficiency relative to a “fully implicit” method by reducing the complexity of
the implicit algebraic equations that must be solved during each integration step.
Semi-implicit differencing is particularly attractive when all the terms that are eval-
uated implicitly are linear functions of the unknown variables.

To investigate the stability of semi-implicit time-differencing schemes, consider
a prototype ordinary differential equation of the form

d 

dt
C i!H C i!L D 0: (8.23)

This is simply a version of the oscillation equation (2.19) in which the oscillatory
forcing is divided into high-frequency (!H) and low-frequency (!L) components.
The division of the forcing into two terms may appear to be rather artificial, but the
dispersion relation associated with wavelike solutions to more complex systems of
governing equations (such as the shallow-water system discussed in the next section)
often has individual roots of the form

! D !H C !L;

and (8.23) serves as the simplest differential equation describing the time depen-
dence of such waves.

The simplest semi-implicit approximation to (8.23) is

�nC1 � �n
�t

C i!H�
nC1 C i!L�

n D 0:
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The stability and the accuracy of this scheme have already been analyzed in
connection with (2.21); it is first-order accurate and is stable whenever j!Lj < j!Hj:
Since j!Lj < j!Hj by assumption, the method is stable for all �t: The weakness
of this scheme is its low accuracy. A more accurate second-order method can be
obtained using the centered-in-time formula

�nC1 � �n�1

2�t
C i!H

�
�nC1 C �n�1

2

�
C i!L�

n D 0: (8.24)

The stability of this method may be investigated by considering the behavior of
oscillatory solutions of the form exp.�i!n�t/, which satisfy (8.24) when

sin Q! D Q!H cos Q! C Q!L; (8.25)

where
Q! D !�t; Q!H D !H�t; and Q!L D !L�t:

To solve for Q!, let tanˇ D Q!H ; then (8.25) becomes

sin Q! D tanˇ cos Q! C Q!L;

or equivalently,
sin Q! cosˇ � sinˇ cos Q! D Q!L cosˇ:

By the Pythagorean theorem, cosˇ D .1 C Q!2H /�1=2; and the preceding equation
reduces to

sin. Q! � ˇ/ D Q!L.1C Q!2H /�1=2;
or equivalently,

Q! D arctan. Q!H/C arcsin
�

Q!L.1C Q!2H /�1=2
�
:

The semi-implicit scheme (8.24) will be stable when the Q! satisfying this equation
are real and distinct, which is guaranteed when

Q!2L � 1C Q!2H : (8.26)

Since by assumption j!Lj � j!Hj, (8.24) is stable for all �t . Note that (8.26) will
also be satisfied whenever j!L�t j � 1, implying that semi-implicit differencing
permits an increase in the maximum stable time step relative to that for a fully
explicit approximation even in those cases where j!Lj > j!Hj, because the terms
approximated with the trapezoidal difference do not restrict the maximum stable
time step.

As discussed in Sect. 3.5.1, semi-implicit time differencing may also be used
to stabilize the diffusion operator in some advection–diffusion problems. The gain
in the maximum stable time step achieved using a trapezoidal time difference for
the diffusion term in conjunction with a leapfrog approximation to the advection is
not, however, particularly impressive. A much more stable approximation to the
advection–diffusion problem is obtained using the third-order Adams–Bashforth
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method to integrate the advection terms and trapezoidal differencing to approximate
the diffusion term, but the advantages of the semi-implicit Adams–Bashforth–
trapezoidal formulation do not carry over to the fast-wave–slow-wave problem in
a completely straightforward manner. If, for example, � is replaced by i!H in (3.95)
so that the trapezoidally differenced term represents a fast-moving wave, the stabil-
ity of the resulting scheme is still quite limited (the scheme is unstable for all !H�t

greater than approximately 1.8).

8.2.3 Semi-implicit Solution of the Shallow-Water Equations

The shallow-water equations (1.25)–(1.27) support rapidly moving gravity waves.
If there are spatial variations in the potential vorticity of the undisturbed system
f=H , the shallow-water equations can also support slowly propagating potential-
vorticity (or Rossby) waves. In many large-scale atmospheric and oceanic models,
the Rossby waves are of greater physical significance than the faster-moving gravity
waves, and the Rossby waves can be efficiently simulated using semi-implicit time
differencing to accommodate the Courant–Friedrichs–Lewy (CFL) stability condi-
tion associated with gravity-wave propagation. The simplest example in which to
illustrate the influence of semi-implicit differencing on the CFL condition for grav-
ity waves is provided by (4.1) and (4.2), which are the one-dimensional shallow-
water equations linearized about a reference state with a constant fluid velocity
U and fluid depth H . If the mean-flow velocity is less than the phase speed of a
shallow-water gravity wave, the numerical integration can be stabilized by evaluat-
ing those terms responsible for gravity-wave propagation with trapezoidal differenc-
ing; leapfrog differencing can be used for the remaining terms (Kwizak and Robert
1971). The terms essential to gravity-wave propagation are the hydrostatic pressure
gradient (g@h=@x) in (4.1) and the velocity divergence in (4.2), so the semi-implicit
approximation to the linearized shallow-water system is

ı2tu
n C U

dun

dx
C g

�
dhn

dx

	2t
D 0; (8.27)

ı2th
n C U

dhn

dx
CH

�
dun

dx

	2t
D 0; (8.28)

where the finite-difference operator ıt and the averaging operator h it are defined
by (A.1) and (A.2) in the Appendix. Solutions to (8.27) and (8.28) exist of the form
ei.kx�!j�t/, provided that k and ! satisfy the semidiscrete dispersion relation

sin!�t D Uk�t ˙ ck�t cos!�t;

in which c D p
gH . This dispersion relation has the same form as (8.25), and

as demonstrated in the preceding section, the method will be stable, provided that
jU j � c, or equivalently, whenever the phase speed of shallow-water gravity waves
exceeds the speed of the mean flow.
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The Coriolis force has been neglected in the preceding shallow-water system, and
as a consequence, there are no Rossby-wave solutions to (8.27) and (8.28). In a more
general system that does include the Coriolis force,3 semi-implicit time differencing
leads to a system that is stable whenever the CFL condition for the Rossby waves is
satisfied. This general case is examined in more detail in Problems 1–3 at the end of
this chapter.

Instead of considering the complications introduced by the presence of Rossby
waves, consider the nonlinear equivalent of the preceding linearized system:

@u

@t
C u

@u

@x
C g

@h

@x
D 0; (8.29)

@h

@t
C u

@h

@x
C h

@u

@x
D 0: (8.30)

As before, a semi-implicit algorithm can be obtained using trapezoidal time dif-
ferences to evaluate the pressure gradient in (8.29) and the velocity divergence in
(8.30). The term involving the velocity divergence is, however, nonlinear, and an
implicit system of nonlinear algebraic equations will be generated if the time inte-
gral of h @u=@x is approximated using the trapezoidal method. To avoid solving a
nonlinear algebraic equation at every time step, one splits the velocity divergence in
(8.30) into two terms such that

@	

@t
C u

@	

@x
CH

@u

@x
C 	

@u

@x
D 0;

where the total fluid depth has been divided into a constant-mean componentH and
a perturbation 	.x; t/. The standard semi-implicit approximation to the preceding
expression takes the form

ı2t	
n C un

d	n

dx
CH

�
dun

dx

	2t
C 	n

dun

dx
D 0I (8.31)

only the linear term involving the constant depth H is treated implicitly. The time
differencing of the nonlinear momentum equation is identical to that for the lin-
earized system

ı2tu
n C un

dun

dx
C g

�
d	n

dx

	2t
D 0: (8.32)

Leaving aside possible problems with nonlinear instability, one would intuitively
expect that solutions to (8.31) and (8.32) would be unconditionally stable, provided
that max juj < p

gH and 	 � H , which is to say that stability would require the
gravity-wave phase speed determined by the mean fluid depth to greatly exceed any
local augmentation of the phase speed induced by a local increase in depth.

3 The inclusion of the Coriolis force also requires the inclusion of an additional prognostic equation
for the other component of the horizontal velocity.
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The impact of a perturbation in the fluid depth on the stability of the semi-implicit
scheme is most easily evaluated if (8.31) and (8.32) are linearized about a reference
state with no mean flow and a horizontally uniform perturbation in the depth 	. The
semi-implicit approximation to this linearized system is

ı2tu
n C g

�
d	n

dx

	2t
D 0;

ı2t	
n CH

�
dun

dx

	2t
C 	

dun

dx
D 0:

Letting � D p
gH k�t and r D 	=H , solutions to this system satisfy the dispersion

relation
sin2 !�t D �2.cos2 !�t C r cos!�t/;

which is a quadratic equation in cos!�t ,

.�2 C 1/ cos2 !�t C r�2 cos!�t � 1 D 0; (8.33)

whose roots are

cos!�t D �r�2 ˙ .r2�4 C 4�2 C 4/1=2

2.�2 C 1/
:

The scheme will be stable when ! is real. Since the radicand is always positive, the
right side of the preceding expression is always real, and real solutions for ! are
obtained when the magnitudes of both roots of (8.33) are less than or equal to unity.

Let s D cos!�t be one of the roots of (8.33). The identity

.x � s1/.x � s2/ D x2 � .s1 C s2/x C s1s2

implies that the sum and product of the roots of the quadratic equation (8.33) satisfy

s1 C s2 D �r�2
�2 C 1

and s1s2 D �1
�2 C 1

: (8.34)

When r D 0,

js1j D js2j D 1

.�2 C 1/1=2
� 1;

and the scheme is stable. As jr j increases, the magnitude of one of the roots eventu-
ally exceeds unity, and the scheme becomes unstable. The critical values of r beyond
which the scheme becomes unstable may be determined by substituting s1 D 1 and
then s1 D �1 into (8.34) to obtain the stability criterion jr j � 1 or j	j � H . In-
stability will not occur unless the perturbation fluid depth exceeds the mean depth
(in the U D 0 case). This may appear to be a very generous criterion; however, the
local phase speed of a shallow-water gravity wave is

c D
p
g.H C 	/;
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so numerical stability requires that the local wave speed be no faster than a factor ofp
2 times the mean wave speed. As will be discussed in the next section, the hori-

zontal phase speed of quasi-hydrostatic internal gravity waves is proportional to the
Brunt–Väisälä frequency, and the ratio of the local mean Brunt–Väisälä frequency
in the polar regions of the Earth’s atmosphere to that in the middle latitudes can eas-
ily exceed

p
2. Thus, it is generally necessary to specify the horizontally uniform

reference state using numerical values from that region in the domain where gravity
waves propagate at maximum speed. As a consequence, the reference-state stratifi-
cation in most global atmospheric models is chosen to be isothermal (Simmons et al.
1978). The application of the semi-implicit method to global atmospheric models is
discussed further in Sect. 8.6.5.

8.2.4 Semi-implicit Solution of the Euler Equations

Now consider how semi-implicit differencing can be used to eliminate the stability
constraint imposed by sound waves in the numerical solution of the Euler equations
for stratified flow. To present the numerical approach with a minimum of extraneous
detail, it is useful to consider a simplified set of compressible equations that can be
obtained from the linearized system (1.41)–(1.44) by the transformation of variables

u D
�
�

�0

�1=2
u0; P D

�
�

�0

�1=2
cp��

0 (8.35)

wD
�
�

�0

�1=2
w0; bD

�
�

�0

�1=2
g

�
� 0; (8.36)

which removes the influence of the decrease in the mean density with height on the
magnitudes of the dependent variables. This transformation does not symmetrize the
system as nicely as (1.45) and (1.46), butP and b have more direct interpretations as
normalized pressure and buoyancy than do the thermodynamic variables introduced
in (1.45) and (1.46).

The transformed vertical momentum and pressure equations take the form
�
@

@t
C U

@

@x

�
w C

�
@

@z
C 


�
P D b;

and �
@

@t
C U

@

@x

�
P C c2s



@u

@x
C
�
@

@z
� 


�
w

�
D 0;

where


 D 1

2�

d�

dz
C g

c2s
and c2s D cp

cv
RT : (8.37)
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In an isothermal atmosphere at temperature T0,


 D 3

14

g

RT0
:

If T0 D 0ıC, 
 D 2:7 � 10�5 m�1; implying that the vertical derivative in the
operators �

@

@z
˙ 


�

will exceed the term involving
 by an order of magnitude in all waves with vertical
wavelengths shorter than 100 km. The terms involving 
 can therefore be neglected
in most applications,4 in which case the transformed Euler equations become

�
@

@t
C U

@

@x

�
uC @P

@x
D 0; (8.38)

�
@

@t
C U

@

@x

�
w C @P

@z
D b; (8.39)

�
@

@t
C U

@

@x

�
b CN 2w D 0; (8.40)

�
@

@t
C U

@

@x

�
P C c2s

�
@u

@x
C @w

@z

�
D 0: (8.41)

The preceding simplified compressible system (8.38)–(8.41) can also be regarded
as the linearization of a “compressible Boussinesq” system in which

b D �g� � �.z/

�0
; P D p � p.z/

�0
; N 2 D � g

�0

d�

dz
: (8.42)

As in the standard Boussinesq approximation, the compressible Boussinesq system
neglects the influence of density variations on inertia while retaining the influence
of density variations on buoyancy and assumes that buoyancy is conserved follow-
ing a fluid parcel. In contrast to the standard Boussinesq system, the compressible
Boussinesq system does retain the influence of density fluctuations on pressure and
thereby allows the formation of the prognostic pressure equation (8.41).

Suppose that the simplified compressible system (8.38)–(8.41) is approximated
using leapfrog time differencing and that the spatial derivatives are computed using
a Fourier pseudospectral method. Waves of the form

.u;w; b; P / D .u0; w0; b0; P0/e
i.kxC`z�!n�t/

4 The isothermal atmosphere does support a free wave (known as the Lamb wave, see Sect. 8.5)
that disappears in the limit � ! 0; but it is not necessary to account for the Lamb wave in this
discussion of semi-implicit differencing.
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are solutions to this system, provided that !, k, and ` satisfy the dispersion relation

O!4 � c2s
�
k2 C `2 CN 2=c2s

� O!2 CN 2k2c2s D 0;

where

O! D sin!�t

�t
� Uk:

This dispersion relation is quadratic in O!2 and has solutions

O!2 D c2s
2

0
@k2 C `2 C N 2

c2s
˙
"�
k2 C `2 C N 2

c2s

�2
� 4N 2k2

c2s

#1=21
A : (8.43)

The positive root yields the dispersion relation for sound waves; the negative root
yields the dispersion relation for gravity waves. The individual dispersion relations
for sound and gravity waves may be greatly simplified whenever the last term inside
the square root in (8.43) is much smaller than the first term. One condition sufficient
for this simplification, which is easily satisfied in most atmospheric applications, is
that N 2=c2s � `2: If N 2=c2s � `2, then

4N 2k2

c2s
� 2N 2k2

c2s
C 2k2`2 �

�
k2 C `2 C N 2

c2s

�2
; (8.44)

and therefore the sound-wave dispersion relation is well approximated by

O!2 D c2s
�
k2 C `2 CN 2=c2s

�
: (8.45)

Dividing the terms inside the square root in (8.43) by
�
k2 C `2 CN 2=c2s

�2
and

again using (8.44), one may well approximate the gravity wave-dispersion rela-
tion as

O!2 D N 2k2

k2 C `2 CN 2=c2s
: (8.46)

Consider the time-step limitation imposed by sound-wave propagation. Using the
definition of O!, one may express (8.45) as

sin!�t D �t
�
Uk ˙ cs

�
k2 C `2 CN 2=c2s

�1=2�
:

Stable leapfrog solutions are obtained when the right side of this expression is a real
number whose absolute value is less than unity. A necessary condition for stability
is that �

jU jkmax C cs.k
2
max C `2max/

1=2
�
�t < 1; (8.47)

where kmax and `max are the magnitudes of the largest horizontal and vertical wave
numbers retained in the truncation. Since the term involving N 2=c2s is typically
insignificant for the highest-frequency waves, (8.47) is also a good approximation to
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the sufficient condition for stability. In many applications the vertical resolution is
much higher than the horizontal resolution, and the most severe restriction on the
time step is associated with vertically propagating sound waves.

The dispersion relation for gravity waves (8.46) may be written as

sin!�t D �t

 
Uk ˙ Nk�

k2 C `2 CN 2=c2s
�1=2

!
: (8.48)

Because
N jkj�

k2 C `2 CN 2=c2s
�1=2 � csjkj;

the necessary condition for sound-wave stability (8.47) is sufficient to ensure the
stability of the gravity waves. Although (8.47) guarantees the stability of the gravity-
wave modes, it is far too restrictive. Since

N jkj�
k2 C `2 CN 2=c2s

�1=2 � N;

(8.48) implies the gravity waves will be stable, provided that

.jU jkmax CN/�t < 1:

This is also a good approximation to the necessary condition for stability, because
the term involvingN 2=c2s is usually dominated by k2max.

In most geophysical applications

cs.k
2
max C `2max/

1=2 � jU jkmax CN;

and the maximum stable time step with which the gravity waves can be integrated is
therefore far larger than the time step required to maintain stability in the sound-
wave modes. In such circumstances, the sound waves can be stabilized using a
semi-implicit approximation in which the pressure-gradient and velocity-divergence
terms are evaluated using trapezoidal differencing (Tapp and White 1976). The re-
sulting semi-implicit system is

ı2tu
n C U

@un

@x
C
�
@P n

@x

	2t
D 0; (8.49)

ı2tw
n C U

@wn

@x
C
�
@P n

@z

	2t
D bn; (8.50)

ı2tb
n C U

@bn

@x
CN 2wn D 0; (8.51)

ı2tP
n C U

@P n

@x
C c2s

 �
@un

@x

	2t
C
�
@wn

@z

	2t!
D 0: (8.52)
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Let Ocs D cs cos.!�t/. Then the dispersion relation for the semi-implicit system is
identical to that obtained for leapfrog differencing, except that cs is replaced by Ocs

throughout (8.43). The dispersion relation for the sound-wave modes is

O!2 D Oc2s
�
k2 C `2 CN 2= Oc2s

�
;

or
sin!�t D �t

�
Uk ˙ Ocs

�
k2 C `2 CN 2= Oc2s

�1=2�
: (8.53)

The most severe stability constraints are imposed by the shortest waves for which
the term N 2= Oc2s can be neglected in comparison with k2 C `2. Neglecting N 2= Oc2s ,
(8.53) becomes

sin!�t D Uk�t ˙ cs�t
�
k2 C `2

�1=2
cos!�t;

which has the same form as (8.25), implying that the sound-wave modes are stable
whenever

jUkj � cs
�
k2 C `2

�1=2
:

A sufficient condition for the stability of the sound waves is simply that the flow be
subsonic (jU j � cs), or equivalently, that the Mach number be less than unity.

Provided that the flow is subsonic, the only constraint on the time step required
to keep the semi-implicit scheme stable is that associated with gravity-wave propa-
gation. The dispersion relation for the gravity waves in the semi-implicit system is

O!2 D N 2k2

k2 C `2 CN 2= Oc2s
; (8.54)

which differs from the result for leapfrog differencing only in the small termN 2= Oc2s .
Stable gravity-wave solutions to the semi-implicit system are obtained whenever

.jU jkmax CN/�t < 1;

which is the same condition obtained for the stability of the gravity waves using
leapfrog differencing. Thus, as suggested previously, the semi-implicit scheme al-
lows the compressible equations governing low-Mach-number flow to be integrated
with a much larger time step than that allowed by fully explicit schemes. This in-
crease in efficiency comes at a price; whenever the time step is much larger than
that allowed by the CFL condition for sound waves, the sound waves are artificially
decelerated by a factor of cos.!�t/. This error is directly analogous to that consid-
ered in Sect. 8.2.1, in which spurious decelerations were produced by fully implicit
schemes using very large time steps. Nevertheless, in many practical applications
the errors in the sound waves are of no consequence, and the quality of the solu-
tion is entirely determined by the accuracy with which the slower-moving waves are
approximated.

How does semi-implicit differencing influence the accuracy of the gravity-wave
modes? The only influence is exerted through the reduction in the speed of sound
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in the third term in the denominator of (8.54). This term is generally small and has
little effect on the gravity waves unless !�t is far from zero and the waves are
sufficiently long that jkj C j`j � N=cs. It is actually rather hard to satisfy both
of these requirements simultaneously. First, since !�t � 1 for the stability of the
mode in question, Ocs can never drop below 0:54cs. Second, the maximum value of
�t is limited by the frequency of the most rapidly oscillating wave !max. In most
applications the frequencies of the long waves are much lower than !max, so for all
the long waves, !�t � !max�t � 1, and thus Ocs � cs. As an example where the
deviation of Ocs from cs is maximized, consider a basic state with N D 0:02 s�1,
cs D 318 ms�1, and U D 0, together with the mode .k; `/ D .N=cs; 0:1N=cs/

and time steps in the range 0 � �t � 1=N . The approximate solution obtained
using leapfrog time differencing exhibits an accelerative phase error that reaches
11% when �t D 1=N . This accelerative phase-speed error is reduced by the semi-
implicit method to a �5:7% decelerative error when N D �t . The wave in this ex-
ample is a rather pathological mode with horizontal and vertical wavelengths of 100
and 1,000 km, respectively. The difference between the leapfrog and semi-implicit
gravity-wave solutions is much smaller in most realistic examples.

The semi-implicit differencing scheme (8.49)–(8.52) provides a way to circum-
vent the CFL stability criterion for sound-wave propagation without losing accuracy
in simulation of the gravity-wave modes. In global-scale atmospheric models the
gravity waves may actually be of minor physical significance, and the features of
primary interest may evolve on an even slower timescale.5 If the fastest-moving
gravity-wave modes do not need to be accurately represented, it is possible to
generalize the preceding semi-implicit scheme to allow even larger time steps by
replacing (8.50) and (8.51) with

ı2tw
n C U

@wn

@x
C
�
@P n

@z

	2t
D hbni2t ;

ı2tb
n C U

@bn

@x
CN 2 hwni2t D 0

(Cullen 1990; Tanguay et al. 1990). Note that the buoyancy forcing in the vertical-
momentum equation and the vertical advection of the mean-state buoyancy in the
buoyancy equation are now treated by trapezoidal differences. The gravity-wave
dispersion relation for this generalized semi-implicit system is

O!2 D N 2k2 cos2.!�t/

k2 C `2 CN 2=c2s
;

or

sin!�t D �t

 
Uk ˙ Nk cos.!�t/�

k2 C `2 CN 2=c2s
�1=2

!
:

5 In particular, the most important features may consist of slow-moving Rossby waves, which
appear as additional solutions to the Euler equations when latitudinal variations in the Coriolis
force are included in the horizontal momentum equations.
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This dispersion relation has the same form as that for the prototype semi-implicit
scheme (8.25), and as discussed in connection with (8.26), stable solutions will be
obtained, provided that jUkj�t � 1.

8.2.5 Numerical Implementation

The semi-implicit approximation to the compressible Boussinesq system discussed
in the preceding section generates a system of implicit algebraic equations that must
be solved at every time step. The solution procedure will be illustrated in a relatively
simple example using the nonlinear compressible Boussinesq equations

db

dt
CN 2w D 0; (8.55)

dv
dt

C rP D bk; (8.56)

dP

dt
C c2s r � v D 0: (8.57)

The definitions of b, P , and N given in (8.42) may be used to show that (8.55)
and (8.56) are identical to the buoyancy and momentum equations in the standard
Boussinesq system (8.2) and (8.3). The standard incompressible continuity equation
has been replaced by (8.57) and is recovered in the limit cs ! 1:

First, consider the situation where only the sound waves are stabilized by semi-
implicit differencing and suppose that the spatial derivatives are not discretized.
Then the resulting semi-implicit system has the form

bnC1 D bn�1 � 2�t
�
vn � rbn CN 2wn

�
; (8.58)

vnC1 C�trP nC1 D G; (8.59)

P nC1 C c2s �tr � vnC1 D h: (8.60)

Here
G D vn�1 ��t �rP n�1 � 2bnk C 2vn � rvn


and

h D P n�1 ��t �c2s r � vn�1 C 2vn � rP n :
A single Helmholtz equation for P nC1 can be obtained by substituting the diver-
gence of (8.59) into (8.60) to yield

r2P nC1 � P nC1

.cs�t/2
D r � G

�t
� h

.cs�t/2
: (8.61)

The numerical solution of this Helmholtz equation is trivial if the Fourier spec-
tral method is employed in a rectangular domain or if spherical harmonic expan-
sion functions are used in a global spectral model. If the spatial derivatives are
approximated by finite differences, (8.61) yields a sparse linear-algebraic system
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that can be solved using the techniques described in Sect. 8.1.3. After (8.61) has
been solved for P nC1, the momentum equations can be stepped forward, and the
buoyancy equation (8.58), which is completely explicit, can be updated to complete
the integration cycle.

This implementation of the semi-implicit method is closely related to the projec-
tion method for incompressible Boussinesq flow. Indeed, in the limit cs ! 1 the
preceding approach will be identical to the leapfrog projection method (described
in Sect. 8.1.2) if .P nC1 C P n�1/=2 is replaced by P n in (8.61). Although the
leapfrog projection method and the semi-implicit method yield algorithms involv-
ing very similar algebraic equations, these methods are derived via very different
approximation strategies. The projection method is an efficient way to solve a set
of continuous equations that is obtained by filtering the exact Euler equations to
eliminate sound waves. In contrast, the semi-implicit scheme is obtained by directly
approximating the full compressible equations and using implicit time differenc-
ing to stabilize the sound waves. Neither approach allows one to correctly simulate
sound waves, but both approaches allow the accurate and efficient simulation of the
slower-moving gravity waves.

Now consider the version of the semi-implicit approximation in which those
terms responsible for gravity-wave propagation are also approximated by trape-
zoidal differences; in this case (8.58) and (8.59) become

bnC1 C�tN 2wnC1 D fb; (8.62)

vnC1 C�t
�rP nC1 � kbnC1� D QG;

where

fb D bn�1 ��t �N 2wn�1 C 2vn � rbn ;
QG D vn�1 ��t �rP n�1 � kbn�1 C 2vn � rvn


:

The implicit coupling in the resulting semi-implicit system can be reduced to a
single Helmholtz equation for P nC1 as follows. Let QG D .gu; gv; gw /; then using
(8.62) to substitute for bnC1 in the vertical-momentum equation, one obtains

�
1C .N�t/2

�
wnC1 C�t

@P nC1

@z
D gw C fb�t: (8.63)

Using the horizontal momentum equations to eliminate u and v from (8.60) yields

�
@2

@x2
C @2

@y2
� 1

.cs�t/2

�
P nC1 � 1

�t

@wnC1

@z
D 1

�t

�
@gu

@x
C @gv

@y

�
� h

.cs�t/2
:

As the final step, wnC1 is eliminated between the two preceding equations to obtain


�
1C .N�t/2

� � @2

@x2
C @2

@y2
� 1

.cs�t/2

�
C @2
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�
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 1
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�
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�
C @
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�gw
�t
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�
:
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After this elliptic equation has been solved for P nC1, u and v are updated using the
horizontal momentum equations, w is updated using (8.63), and b is updated using
(8.62).

Notice that the vertical advection of density in (8.62) is split between a term
involving the mean vertical density gradient (N 2), which is treated implicitly, and
a term involving the gradient of the perturbation density field (@b=@z), which is
treated explicitly. As discussed in Sect. 8.2.3, when terms are split between a ref-
erence state that is treated implicitly and a perturbation that is treated explicitly,
stability considerations demand that the term treated implicitly dominate the term
treated explicitly. Thus, in most atmospheric applications the reference stability is
chosen to be isothermal, thereby ensuring that N 2 	 @b=@z. When semi-implicit
differencing is used to integrate the complete Euler equations, the terms involving
the pressure gradient and velocity divergence must also be partitioned into implic-
itly differenced terms involving a reference state and the remaining explicitly differ-
enced perturbations. Since the speed of sound is relatively uniform throughout the
atmosphere, it is easy to ensure that the terms evaluated implicitly dominate those
computed explicitly and thereby guarantee that the scheme is stable.

8.3 Fractional-Step Methods

The semi-implicit method requires the solution of an elliptic equation for the pres-
sure during each step of the integration. This can be avoided by splitting the com-
plete problem into fractional steps and using a smaller time step to integrate the
subproblem containing the terms responsible for the propagation of the fast-moving
wave. Consider a general partial differential equation of the form

@ 

@t
D L . /; (8.64)

where L . / contains the spatial derivatives and other forcing terms. Suppose that
L . / can be split into two parts

L . / D L1. /C L2. /;

such that L1 and L2 contain those terms responsible for the propagation of slow-
and fast-moving waves, respectively. As discussed in Sect. 4.3, if L does not depend
on time, each of the individual operators can be formally integrated over an interval
�t to obtain

 .t C�t/ D exp.�tL1/ .t/;  .t C�t/ D exp.�tL2/ .t/:

Following the notation in Sect. 4.3, let F1.�t/ and F2.�t/ be numerical
approximations to the exact operators exp.�tL1/ and exp.�tL2/.
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8.3.1 Completely Split Operators

In the standard fractional-step approach, the approximate solution is stepped for-
ward over a time interval�t using

�s D F1.�t/�
n; (8.65)

�nC1 D F2.�t/�
s ; (8.66)

but it is not necessary to use the same time step in each subproblem. If the maximum
stable time step with which the approximate slow-wave operator (8.65) can be inte-
grated is M times that with which the fast-wave operator (8.66) can be integrated,
the numerical solution could be evaluated using the formula

�nC1 D ŒF2.�t=M/�M F1.�t/�
n: (8.67)

This approach can be applied to the linearized one-dimensional shallow-water
system by writing (4.1) and (4.2) in the form

@r
@t

C L1.r/C L2.r/ D 0; (8.68)

where

r D
�
u

h

�
; L1 D

�
U@x 0

0 U@x

�
; L2 D

�
0 g@x

H@x 0

�
;

and @x denotes the partial derivative with respect to x. The first fractional step,
which is an approximation to

@r
@t

C L1.r/ D 0;

involves the solution of two decoupled advection equations. Since this is a
fractional-step method, it is generally preferable to approximate the preceding
equation with a two-time-level method. To avoid using implicit, unstable, or Lax–
Wendroff methods, the first step can be integrated using the linearly third order
version of the Runge–Kutta scheme (2.45):

r� D rn � �t

3
L1.rn/; (8.69)

r�� D rn � �t

2
L1.r�/; (8.70)

rnC1 D rn ��t L1.r��/: (8.71)

This Runge–Kutta method is stable and damping for jU jkmax�t < 1:73, where
kmax is the maximum retained wave number.

The second fractional step, which approximates

@r
@t

C L2.r/ D 0;
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can be efficiently integrated using forward–backward differencing. Defining �� D
�t=M as the length of a small time step, the forward–backward scheme is

umC1 � um

��
C g

dhm

dx
D 0; (8.72)

hmC1 � hm
��

CH
dumC1

dx
D 0: (8.73)

This scheme is stable for ckmax�� < 2 and is second-order accurate in time. Since
the operators used in each fractional step commute, the complete method will be
O
�
.�t/2


accurate and stable whenever each of the individual steps is stable.6

Although the preceding fractional-step scheme works fine for the linearized one-
dimensional shallow-water system, it does not generalize as nicely to problems in
which the operators do not commute. As an example, consider the compressible
two-dimensional Boussinesq equations, which could be split into the form (8.68) by
defining

r D �
u w b P

�T
;

L1 D

0
BB@

v � r 0 0 0

0 v � r 0 0

0 0 v � r 0

0 0 0 v � r

1
CCA ; L2 D

0
BB@

0 0 0 @x
0 0 �1 @z
0 N 2 0 0

c2s @x c
2
s @z 0 0

1
CCA ;

where v is the two-dimensional velocity vector and r D .@=@x; @=@z/. Suppose
that N and cs are constant and that the full nonlinear system is linearized about a
reference state with a mean horizontal wind U.z/. The operators associated with
this linearized system will not commute unless dU=dz is zero.

As in the one-dimensional shallow-water system, the advection operator L1 can
be approximated using the third-order Runge–Kutta method (8.69)–(8.71). The sec-
ond fractional step may be integrated using trapezoidal differencing for the terms
governing the vertical propagation of sound waves and forward–backward differ-
encing for the terms governing horizontal sound-wave propagation and buoyancy
oscillations. The resulting scheme is

umC1 � um

��
C @Pm

@x
D 0; (8.74)

wmC1 � wm

��
C @

@z

�
PmC1 C Pm

2

�
� bm D 0; (8.75)

bmC1 � bm

��
CN 2wmC1 D 0; (8.76)

PmC1 � Pm

��
C c2s

@umC1

@x
C c2s

@

@z

�
wmC1 C wm

2

�
D 0: (8.77)

6 See Sect. 4.3 for a discussion of the impact of operator commutativity on the performance of
fractional-step schemes.
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Again let kmax be the magnitude of the maximum horizontal wave number retained
in the truncation; then the preceding approximation to exp.��L2/ is stable and
nondamping provided max.cskmax; N /�� < 2. The trapezoidal approximation of
the terms involving vertical derivatives does not significantly increase the compu-
tations required on each small time step because it generates a simple tridiagonal
system of algebraic equations for the wmC1 throughout each vertical column within
the domain. If the horizontal resolution is very coarse, so that kmax � N=cs, further
efficiency can also be obtained by treating the terms involving buoyancy oscilla-
tions with trapezoidal differencing. Since these terms do not involve derivatives, the
resulting implicit algebraic system remains tridiagonal.

As an alternative to the trapezoidal method, the terms involving the vertical pres-
sure gradient and the divergence of the vertical velocity could be integrated using
forward–backward differencing, in which case the stability criterion for the small
time step would include an additional term proportional to cs`max�� , where `max

is the maximum resolvable vertical wave number. It may be appropriate to use
forward–backward differencing instead of the trapezoidal scheme in applications
with identical vertical and horizontal grid spacing, but if the vertical resolution is
much finer than the horizontal resolution, the additional stability constraint imposed
by vertical sound-wave propagation will reduce the efficiency by requiring an ex-
cessive number of small time steps.

The performance of the preceding scheme is evaluated in a problem involving
flow past a compact gravity-wave generator. The wave generator is modeled by
including forcing terms in the momentum equations such that the nondiscretized
versions of (8.74) and (8.75) take the form

du

dt
C @P

@x
D �@

@z
; (8.78)

dw

dt
C @P

@z
� b D @

@x
; (8.79)

where
.x; z; t/ D E.x; z/ sin!t sin k1x cos `1z

and

E.x; z/ D
n
˛ .1C cos k2x/ .1C cos `2z/ if jxj � π=k2 and jzj � π=`2,
0 otherwise.

This forcing has no influence on the time tendency of the divergence, and as a
consequence, it does not excite sound waves. The spatial domain is periodic at
x D ˙50 km and bounded by rigid horizontal walls at z D ˙5 km. In the following
tests �x D 250m, �z D 50m, N D 0:01 s�1, cs D 350ms�1, and the parame-
ters defining the wave generator are ˛ D 0:2, 2π=k1 D 10 km, 2π=`1 D 2:5 km,
2π=k2 D 11 km, 2π=`2 D 1:5 km, and ! D 0:002 s�1. The forcing is evaluated ev-
ery�� and applied to the solution on the small time step,�x D 250m,�z D 50m,
N D 0:01 s�1, and cs D 350ms�1.
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The spatial derivatives are approximated using centered differencing on a
staggered grid identical to that shown in Fig. 4.6, except that b is colocated with
the w points rather than the P points. As a consequence of the mesh staggering,
the horizontal wave number obtained from the finite-difference approximations
to the pressure gradient and velocity divergence is .2=�x/.sin k�x=2/, and the
small-step stability criterion is max .2cs=�x C N/�� < 2. The horizontal wave
number generated by the finite-difference approximation to the advection operator
is .sin k�x/=�x, so the large time step is stable when jU j�t=�x < 1:73. Strang
splitting,

�nC1 D ŒF2.2�t=M/�.M=2/F1.�t/ ŒF2.2�t=M/�.M=2/ �n;

is used in preference to (8.67) to preserveO
�
.�t/2


accuracy in those cases where

F1 and F2 do not commute.
In the first simulation �t D 12:5 s, there are 20 small time steps per large time

step, and U D 10 ms�1 throughout the domain. In this case .2cs�x C N/�� D
1:76, so the small time step is being integrated using time steps near the stability
limit. The horizontal velocity field and the pressure field obtained from this simula-
tion are plotted in Fig. 8.2. The velocity field is essentially identical to that obtained
using the full compressible equations. Very small errors are detectable in the pres-
sure field, but the overall accuracy of the solution is excellent.

Now consider a second simulation that is identical to the first in every respect ex-
cept that the mean windU increases linearly from 5 to 15 ms�1 between the bottom
and the top of the domain. The pressure perturbations that develop in this simulation
are shown in Fig. 8.3a, along with streamlines for the forcing function  . Spurious
pressure perturbations appear throughout the domain. The correct pressure field is
shown in Fig. 8.3d, which was computed using a scheme that will be described in the
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Fig. 8.2 a Contours of U C u at intervals of 0.1 ms�1 and � at intervals of 0.1 s�1 at t D
8; 000 s. b As in a except that P is contoured at intervals of 0.25 m2 s�2. No zero contour is
shown for the P and � fields. Minor tick marks indicate the location of the P points on the
numerical grid. Only the central portion of the total computational domain is shown
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Fig. 8.3 Contours of P at intervals of 0.25 m2 s�2 (the zero contour is dot-dashed) and � at
intervals of 0.15 s�1 at t D 3;000 s for the case with vertical shear in the mean wind and
a �t D 12:5 s, M D 20, b �t D 6:25 s, M D 20, and c �t D 6:25 s, M D 10.
d The solution computed using the partially split method described in Sect. 8.3.2 with
�t D12:5 s,M D 20. Tick marks appear every 20 grid intervals

next subsection. Although the pressure field in Fig. 8.3a is clearly in error, most of
the spurious signal in the pressure field relates to sound waves whose velocity pertur-
bations are very weak. The velocity fields associated with all the solutions shown in
Fig. 8.3 are essentially identical. The extrema in the pressure perturbations shown in
Fig. 8.3a are approximately twice those in Fig. 8.3b–d and are growing very slowly,
suggesting that the solution is subject to a weak instability. Since the operators for
each fractional step do not commute, the stability of each individual operator no
longer guarantees the stability of the overall scheme.

As will be discussed in Sect. 8.3.2, this scheme can be stabilized by damping
the velocity divergence on the small time step. Divergence damping yields only a
modest improvement in the solution, however, because the completely split method
also has accuracy problems owing to inadequate temporal resolution. Cutting�t by
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a factor of 2, while leavingM D 20 so that�� is also reduced by a factor of 2, gives
the pressure distribution shown in Fig. 8.3b, which is clearly a significant improve-
ment over that obtained using the original time step. Similar results are obtained if
both �t and M are cut in half, as shown in Fig. 8.3c, which demonstrates that it is
the decrease in �t , rather than�� , that is responsible for the improvement. Further
discussion of the source of the error in the completely split method is provided in
Sect. 8.4.

8.3.2 Partially Split Operators

The first task involved in implementing the fractional-step methods discussed in the
previous section is to identify those terms in the governing equations that need to be
updated on a shorter time step. Having made this identification, one can leave all the
terms in the governing equations coupled together and update those terms respon-
sible for the slowly evolving processes less frequently than those terms responsible
for the propagation of high-frequency physically insignificant waves. This technique
will be referred to as a partial splitting, since the individual fractional steps are never
completely decoupled in the conventional manner given by (8.65) and (8.66).

Once again the linearized one-dimensional shallow-water system provides a sim-
ple context in which to illustrate partial splitting. As before, it is assumed that the
gravity-wave phase speed is much greater than the velocity of the mean flow U .
Klemp and Wilhelmson (1978) and Tatsumi (1983) suggested a partial splitting in
which the terms on the right sides of

@u

@t
C g

@h

@x
D �U @u

@x
; (8.80)

@h

@t
CH

@u

@x
D �U @h

@x
(8.81)

are updated as if the time derivative were being approximated using a leapfrog dif-
ference, but rather than the solution being advanced from time level t��t to tC�t
in a single step of length 2�t , the solution is advanced through a series of 2M “small
time steps.” During each small time step the terms on the right sides of (8.80) and
(8.81) are held constant at their values at time level t and the remaining terms are
updated using forward–backward differencing. Let m and n be time indices for the
small and large time steps, respectively, and define �� D �t=M as the length of
a small time step. The solution is advanced from time level n � 1 to n C 1 in 2M
small time steps of the form

umC1 � um

��
C g

dhm

dx
D �U du

n

dx
;

hmC1 � hm

��
CH

dumC1

dx
D �U dh

n

dx
:
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Note that the left sides of the preceding equations are identical to those appearing in
the completely split scheme (8.72) and (8.73).

The complete small-step–large-step integration cycle for this problem can be
written as a four-dimensional linear system as follows. Define Oum D un, Ohm D hn,
and let

r D .u; h; Ou; Oh/T:
Then an individual small time step can be expressed in the form

rmC1 D Arm;

where

A D

0
BB@

1 � Qg@x � QU@x 0

� QH@x 1C Qc2@2xx QU QH@2xx � QU@x
0 0 1 0

0 0 0 1

1
CCA ;

and the tilde denotes multiplication of the parameter by �� (e.g., Qc D c��). At the
beginning of the first small time step in a complete small-step–large-step integration
cycle

rmD1 D .un�1; hn�1; un; hn/T:

At the end of the (2M )th small step

rmD2M D .unC1; hnC1; un; hn/T:

Thus, if S is a matrix interchanging the first pair and second pair of elements in r,

S D

0
BB@
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

1
CCA ;

the complete small-step–large-step integration cycle is given by

rnC1 D SA2M rn:

Since the individual operators commute, the completely split approximation to
this problem is stable whenever both of the individual fractional steps are stable. One
might hope that the stability of the partially spilt method could also be guaranteed
whenever the large- and small-step subproblems are stable. Unfortunately, there are
many combinations of �t and �� for which the partially split method is unstable
even though the subproblems obtained by setting either U or c to zero are both
stable (Tatsumi 1983; Skamarock and Klemp 1992). Suppose that the partially split
scheme is applied to an individual Fourier mode with horizontal wave number k.
Then the amplification matrix for an individual small time step is given by a matrix
in which the partial-derivative operators in A are replaced by ik; let this matrix be

denoted by OA.



424 8 Physically Insignificant Fast Waves

0 2 0 2

a
1

0

B

B

AA

ĉĉ
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Fig. 8.4 Spectral radius of the amplification matrix for the partially split method contoured as a
function of Oc and Ou for a M D 1 and b M D 3. Unstable regions are enclosed in the wedged-
shaped areas. Contour intervals are 1.0 (heavy line), 1.2, 1.4; : : : : Line AB indicates the possible
combinations of Oc and Ou that can be realized when U=c D 1=10 and M is specified as 1 or 3

Consider the caseM D 1, for which the amplification matrix is S OA2. The magni-
tude of the maximum eigenvalue, or spectral radius �m, of S OA2 is plotted in Fig. 8.4a
as a function of Oc D ck�� and Ou D Uk�t . The domain over which �m is contoured,
0 � Oc � 2 and 0 � Ou � 1, is that for which the individual small- and large-step
problems are stable. When M D 1, �m exceeds unity and the partially split scheme
is unstable throughout two regions of the Oc– Ou plane whose boundaries intersect at
. Oc; Ou/ D .

p
2; 0/. If U � c, only a limited subset of the Oc– Ou plane shown in

Fig. 8.4a is actually relevant to the solution of the shallow-water problem. Once the
number of small time steps per large time step have been fixed, the possible combi-
nations of Ou and Oc will lie along a straight line of slope

Ou
Oc D U�t

c��
D M

U

c
:

Suppose that U=c D 1=10. Then if the partially split method is used with M D 1,
the only possible combinations of Ou and Oc are those lying along line AB in Fig. 8.4a.
The maximum stable value of �� is determined by the intersection of line AB and
the left boundary of the leftmost region of instability. Thus, for U=c D 1=10 and
M D 1, the stability requirement is that Oc be less than approximately 1.25.

As demonstrated in Fig. 8.4b, which shows contours of the spectral radius of
SÂ6, the restriction on the maximum stable time step becomes more severe as M
increases to 3. The regions of instability are narrower and the strength of the insta-
bility in each unstable region is reduced, but additional regions of instability appear,
and the distance from the origin to the nearest region of instability decreases. When
M D 3 and U=c D 1=10, the maximum stable value of Oc is roughly 0.48. Further
reductions in the maximum stable value for Oc occur as M is increased, and as a
consequence, the gain in computational efficiency that one might expect to achieve
by increasing the number of small time steps per large time step is eliminated by a
compensating decrease in the maximum stable value for�� .
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The partially split method has, nevertheless, been used extensively in many prac-
tical applications. The method has proved useful because in most applications it is
very easy to remove these instabilities by using a filter. As noted by Tatsumi (1983)
and Skamarock and Klemp (1992), the instability is efficiently removed by the As-
selin time filter (2.65), which is often used in conjunction with leapfrog time dif-
ferencing to prevent the divergence of the solution on the odd and even time steps.
Other filtering techniques have also been suggested and will be discussed after con-
sidering a partially split approximation to the compressible Boussinesq system.

The equations evaluated at each small time step in a partially split approximation
to the two-dimensional compressible Boussinesq equations linearized about a basic-
state flow with Brunt–Väisälä frequencyN and horizontal velocity U are

umC1 � um
��

C @Pm

@x
D �U @u

n

@x
� wn

@U

@z
; (8.82)

wmC1 � wm

��
C @

@z

�
PmC1 C Pm

2

�
� bm D �U @w

n

@x
; (8.83)

bmC1 � bm

��
CN 2wmC1 D �U @b

n

@x
; (8.84)

PmC1 � Pm
��

C c2s
@umC1

@x
C c2s

@

@z

�
wmC1 C wm

2

�
D �U @P

n

@x
; (8.85)

where, as before, m and n are the time indices associated with the small and large
time steps. The left sides of these equations are identical to the small-time-step
equations in the completely split method (8.74)–(8.77). The right sides are updated
at every large time step.

This method is applied to the problem previously considered in connection with
Fig. 8.2, in which fluid flows past a compact gravity-wave generator. The forcing
from the wave generator appears in the horizontal and vertical momentum equations
as in (8.78) and (8.79) and is updated on the small time step. In this test U is a
constant 10 ms�1, �t D 12:5 s, and �� D 0:625 s. The horizontal velocity field
and the pressure field from this simulation are plotted in Fig. 8.5. The horizontal
velocity field is very similar to, though slightly noisier than, that shown in Fig. 8.2a.
The pressure field is, however, complete garbage. Indeed, it is surprising that errors
of the magnitude shown in Fig. 8.5b can exist in the pressure field without seriously
degrading the velocity field. These pressure perturbations are growing with time (the
contour interval in Fig. 8.5b is twice that in Fig. 8.2b); the velocity field eventually
becomes very noisy, and the solution eventually blows up.

This instability can be prevented by applying an Asselin time filter (2.65) at the
end of each small-step–large-step integration cycle. Skamarock and Klemp (1992)
have shown that filtering coefficients on the order of � D 0:1 may be required to
stabilize the partially split solution to the one-dimensional shallow-water system.
A value of � D 0:1 is sufficient to completely remove the noise in the pressure field
and to eliminate the instability in the preceding test. Nevertheless, as discussed in
Sect. 2.4.2, Asselin filtering reduces the accuracy of the leapfrog scheme to O.�t/,
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Fig. 8.5 a Contours of U C u at intervals of 0.1 ms�1 and � at intervals of 0.1 s�1 at t D
8; 000 s. b As in a except that P is contoured at intervals of 0.5 m2 s�2

so it is best not to rely exclusively on the Asselin filter to stabilize the partially split
approximation. Other techniques for stabilizing the preceding partially split approx-
imation include divergence damping and forward biasing the trapezoidal integral of
the vertical derivative terms (8.83) and (8.85). Forward biasing the trapezoidal inte-
gration is accomplished without additional computational effort by replacing those
terms of the form .�mC1 C �m/=2 with

�
1C �

2

�
�mC1 C

�
1 � �

2

�
�m;

where 0 � � � 1. A value of � D 0:2 provides an effective filter that does not
noticeably modify the gravity waves (Durran and Klemp 1983).

Since trapezoidal time differencing is used only to approximate the vertical
derivatives, forward biasing those derivatives will not damp horizontally propagat-
ing sound waves. Skamarock and Klemp (1992) recommended including a “diver-
gence damper” in the momentum equations such that the system of equations that
is integrated on the small time step becomes

@u

@t
C @P

@x
� ˛x

@ı

@x
D Fu;

@w

@t
C @P

@z
� b � ˛z

@ı

@z
D Fw ;

@b

@t
CN 2w D Fb;

@P

@t
C c2s ı D Fp; (8.86)
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where

ı D @u

@x
C @w

@z
;

and Fu, Fw , Fb , and Fp represent the forcing terms that are updated every �t .
Damping coefficients of ˛x D 0:001.�x/2=�� and ˛z D 0:001.�z/2=�� re-
moved all trace of noise and instability in the test problem shown in Fig. 8.5 without
a supplemental Asselin filter.

The role played by divergence damping in stabilizing the small-time-step inte-
gration in the partially split method can be appreciated by noting that if a single
damping coefficient ˛ is used in all components of the momentum equation, the
divergence satisfies

@ı

@t
C r2P � ˛r2ı D G; (8.87)

where G D �r � .v � rv/ C @b=@z: Eliminating the pressure between (8.86) and
(8.87), one obtains

@2ı

@t2
� ˛r2 @ı

@t
� c2s r2ı D @G

@t
� r2Fp:

The forcing on the right side of this equation will tend to produce divergence in
an initially nondivergent flow. Substituting a single Fourier mode into the homoge-
neous part of this equation, one obtains the classic equation for a damped harmonic
oscillator:

d 2 Qı
dt2

C ˛�2
d Qı
dt

C c2s �
2 Qı D 0; (8.88)

where Qı.t/ is the amplitude and � D p
k2 C `2. The damping increases with wave

number and is particularly effective in eliminating the high-wave-number modes at
which the instability in the partially split method occurs. Gravity waves, on the other
hand, are not significantly impacted by the divergence damper because the velocity
field in internal gravity waves is almost nondivergent. Skamarock and Klemp (1992)
showed that divergence damping only slightly reduces the amplitude of the gravity
waves.

At this point it might appear that the partially split methods is inferior to the
completely split method considered previously, since filters are required to stabilize
the partially split approximation in situations where the completely split scheme
performs quite nicely. Recall, however, that the completely split method does not
generate usable solutions to the compressible Boussinesq equations when there is a
vertical shear in the basic-state horizontal velocity impinging on the gravity-wave
generator. The same filtering strategies that stabilize the partially split method in
the no-shear problem remain effective in the presence of vertical wind shear. This
is demonstrated in Fig. 8.3d, which shows the pressure perturbations in the test case
with vertical shear as computed by the partially split method using a divergence
damper with the values of ˛x and ˛z given previously. Even the best completely
split solutions (Fig. 8.3b, c) contain widespread regions of spurious low-amplitude
perturbations with horizontal wavelengths slightly less than 5 km (20�x), whereas
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the partially split solution shows no evidence of such waves. Results similar to those
in Fig. 8.3d may also be obtained using Asselin time filtering with ˛ D 0:1 in
lieu of the divergence damper. The advantages of the partially split method are not
connected with its performance in the simplest test cases, for which it can indeed be
inferior to a completely split approximation, but in its adaptability to more complex
problems.

One might inquire whether divergence damping can also be used to stabilize the
completely split approximation to the test case with vertical shear in the horizon-
tal wind. The norm of the amplification matrix for the large-time-step third-order
Runge–Kutta integration (8.69)–(8.71) is strictly less than unity for all sufficiently
small �t . Divergence damping makes the norm of the amplification matrix for the
small time step strictly less than unity for all sufficiently small�� and thereby stabi-
lizes the completely split scheme by guaranteeing that the norm of the amplification
matrix for the overall scheme will be less than unity. Nevertheless, divergence damp-
ing only modestly improves the solution obtained with the completely split scheme;
the pressure field remains very noisy and completely unacceptable.7 The fundamen-
tal problem with the completely split method appears to be one of inaccuracy, not
instability. This will be discussed further in the next section.

The linearly third order Runge–Kutta scheme (8.69)–(8.71) can provide a sim-
ple, accurate alternative to leapfrog time differencing for use on the large time step
in partially split integrations (Wicker and Skamarock 2002), and it has replaced
the leapfrog scheme in several operational codes. To clarify how (8.69)–(8.71) are
modified for use as the large-time-step integrator in a partially split problem, let the
small time step again be defined such that �� D �t=M , where M must now be a
multiple of 6. Let 1rm be the vector of unknowns at the start of the mth small time
step during the first Runge–Kutta iteration, which is initialized by setting 1r1 D rn.
The mth small time step of the this iteration has the form

1rmC1 D 1rm ���
�
L1.rn/C L2.1rm; 1rmC1/

�
: (8.89)

As before, L1 and L2 contain the terms responsible for the low- and high-frequency
forcing, respectively. After M /3 small time steps, the solution to (8.89) is projected
forward to time tn C�t=3. The low-frequency forcing is then evaluated using this
new estimated solution, and the second Runge–Kutta iteration is stepped forward
from time tn to tn C�t=2 in M=2 steps, beginning with 2r1 D rn. The mth small
time step of this iteration is

2rmC1 D 2rm ���
�
L1.1rM=3C1/C L2.2rm; 2rmC1/

�
:

7 One way to appreciate the difference in the effectiveness of divergence damping in the completely
and partially split schemes is to note the difference in wavelength at which spurious pressure per-
turbations appear in each solution. The partially split scheme generates errors at much shorter
wavelengths than those produced by the completely split method (compare Figs. 8.3a, 8.5b), and
the short-wavelength features are removed more rapidly by the divergence damper.
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Following a similar update of the large-time-step forcing with the estimated solution
at tn C �t=2, the mth small time step of the final Runge–Kutta iteration, which
integrates from tn to tnC1 in M steps, becomes

3rmC1 D 3rm ���
�
L1.2rM=2C1/C L2.3rm; 3rmC1/

�
;

where 3r1 D rn and rnC1 D 3rMC1: Several other alternatives to leapfrog-based
partial splitting have also been proposed (Gassmann 2005; Park and Lee 2009;
Wicker 2009).

8.4 Summary of Schemes for Nonhydrostatic Models

One way to compare the preceding methods for increasing the efficiency of numer-
ical models for the simulation of fluids that support physically insignificant sound
waves is to compare the way each approximation treats the velocity divergence.
As before, the mathematics of this discussion will be streamlined by using the
compressible Boussinesq equations (8.55)–(8.57) as a simple model for the Euler
equations. The pressure and the divergence in the compressible Boussinesq system
satisfy

@P

@t
C c2s ı D Fp ; (8.90)

@ı

@t
C r2P D G; (8.91)

where ı D r � v, Fp D �v � rP , and G D �r � .v � rv/ C @b=@z: The semi-
implicit method approximates the left sides of the preceding equations with a stable
trapezoidal time difference. Sound waves are artificially slowed when large time
steps are used in this trapezoidal difference, but the gravity-wave modes are accu-
rately approximated. The implicit coupling in the trapezoidal difference leads to a
Helmholtz equation for the pressure that must be solved at every time step.

The prognostic pressure equation (8.90) is discarded in the incompressible
Boussinesq approximation, and the local time derivative of the divergence is set to
zero in (8.91). This leads to a Poisson equation for pressure that must be solved at
every time step. The computational effort required to evaluate the pressure is similar
to that required by the semi-implicit method. The Boussinesq system does, however,
have the advantage of allowing a wider choice of methods for the integration of
the remaining oscillatory forcing terms, which are approximated using leapfrog
differencing in the conventional semi-implicit method.

The pressure fields generated by the Boussinesq projection method and the semi-
implicit method for the test problem (8.78) and (8.79) are compared in Fig. 8.6. As
in Fig. 8.3 the basic-state horizontal flow is vertically sheared from U D 5 m s�1
at the bottom to U D 15m s�1 at the top of the domain. In the projection method,
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Fig. 8.6 As in Fig. 8.3. Contours at t D 3;000 s of a Qp and bP at intervals of 0.25 m2 s�2. Also
plotted are � at intervals of 0.15 s�1. Solutions are obtained using a the Boussinesq projection
method and b the semi-implicit method

the integral (8.7) is evaluated using the third-order Adams-Bashforth method with a
time step of 10 s. The semi-implicit method is integrated using a 12.5-s time step.
The pressure fields generated by both of these methods look very similar to that
produced by the partially split method (Fig. 8.3d) and show no evidence of the noise
produced using the completely split method (Figs. 8.3a–c).

The elliptic pressure equations that appear when the semi-implicit or projection
methods are used are most efficiently solved by sophisticated algorithms such as
block-cyclic reduction, conjugate gradient, or multigrid methods. One may think of
the small-time-step procedure used in the fractional-step methods as a sort of spe-
cialized iterative solver for the Helmholtz equation obtained using the conventional
semi-implicit method. The difference in the character of the solution obtained by the
completely split and the partially split methods can be appreciated by considering
the behavior of the divergence during the small-time-step integration.

During the small-time-step portion of the completely split method the divergence
satisfies

@2ı

@t2
� c2s r2ı D @2b

@t@z
:

The initial conditions for ı are those at the beginning of each small-time-step cycle,
and since divergence is typically generated by the operators evaluated on the large
time step, the initial ı is nonzero. This divergence is propagated without loss during
the small-time-step integration (except for minor modification by the buoyancy forc-
ing) and tends to accumulate over a series of large-step–small-step cycles. The test
in which the completely split scheme performs well is the case in which the basic-
state horizontal velocity is uniform throughout the fluid. When U is constant, the
linearized advection operator merely produces a Galilean translation of the fluid that
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does not generate any divergence. (Recall that the forcing from the wave generator
was computed on the small time step.) Nonlinear advection can, of course, generate
divergence, as can the linearized advection operator when there is vertical shear in
the basic-state wind, and these are the circumstances in which the completely split
method produces spurious sound waves.

In contrast, the divergence is almost zero at the start of the first small time step
of the partially split method, and only small changes in the divergence are forced
during each individual small step. Moreover, the divergence forcing on each small
time step closely approximates that which would appear in an explicit small-time-
step integration of the full compressible equations, provided that the amplitude of
all the sound waves is negligible in comparison to slower modes. The divergence
damper ensures that the amplitude of the sound waves remains small and thereby
preserves the stability and accuracy of the solution.

8.5 The Quasi-Hydrostatic Approximation

Large-scale atmospheric and oceanic motions are very nearly in hydrostatic balance,
and as a consequence, they are well described by an approximate set of governing
equations in which the full vertical-momentum equation is replaced by the hydro-
static relation

@p

@z
D ��g: (8.92)

The resulting quasi-hydrostatic system8 is not a hyperbolic system of partial differ-
ential equations9 because there is no prognostic equation for the vertical velocity.
The vertical velocity and the pressure are obtained from diagnostic relations.

The quasi-hydrostatic approximation eliminates sound waves, although as
will be discussed below, the quasi-hydrostatic approximation does not remove
all horizontally propagating acoustic modes. In those large-scale geophysical
applications where the numerical resolution along the vertical coordinate is much
finer than the horizontal resolution, explicit finite-difference approximations to
the quasi-hydrostatic system can be integrated much more efficiently than com-
parable approximations to either the nonhydrostatic Boussinesq equations or the

8 The quasi-hydrostatic approximation is often simply referred to as the “hydrostatic approxima-
tion.” Vertical accelerations would be exactly zero if the fluid were truly in hydrostatic balance,
but the quasi-hydrostatic system permits vertical accelerations that are small in comparison with
the individual terms retained in (8.92). The use of “quasi-hydrostatic” to describe this approximate
equation set is completely analogous to the use of “quasi-geostrophic” to describe a flow in which
the horizontal pressure gradients are roughly in geostrophic balance, but horizontal accelerations
are not exactly zero.
9 There has been some concern about the well-posedness of initial-boundary-value problems
involving the quasi-hydrostatic equations (Oliger and Sundström 1978). It is not clear how to
reconcile these concerns with the successful forecasts obtained twice daily at several operational
centers for at least two decades using limited-area weather prediction models based on the quasi-
hydrostatic governing equations.
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nonhydrostatic compressible equations. The considerable improvement in model
efficiency associated with the use of the quasi-hydrostatic governing equations does
not, however, apply to semi-implicit models because these models can easily be
modified to compute semi-implicit approximations to the full nonhydrostatic com-
pressible equations without significantly increasing the computational overhead
(Cullen 1990; Tanguay et al. 1990).

The influence of the quasi-hydrostatic approximation on wave propagation and
the stability criteria for explicit finite-difference approximations may be determined
by examining solutions to the two-dimensional quasi-hydrostatic equations lin-
earized about a resting isothermally stratified basic state. For this problem, small-
amplitude perturbations in the x–z plane satisfy

@u

@t
C @P

@x
D 0; (8.93)�

@

@z
C 


�
P D b; (8.94)

@b

@t
CN 2w D 0; (8.95)

@P

@t
C c2s



@u

@x
C
�
@

@z
� 


�
w

�
D 0; (8.96)

where u, w, b, P , 
 , and cs are defined by (8.35)–(8.37). Waves of the form

.u;w; b; P / D .u0; w0; b0; P0/ei.kxCmz�!t/

are solutions to this system, provided that

!2 D N 2k2

m2 C 
 2 CN 2=c2s
:

This is the standard dispersion relation for two-dimensional gravity waves, except
that a term k2 is missing from the denominator. This term is insignificant when
k � m and the wave is almost hydrostatic, but the absence of this term can lead to
a serious overestimate of the gravity-wave phase speed of modes for which k � m.

Although there are no conventional sound-wave solutions to the quasi-
hydrostatic system, a horizontally propagating acoustic mode known as the Lamb
wave is supported by both the quasi-hydrostatic and the nonhydrostatic equations.
The vertical velocity and buoyancy perturbations in a Lamb wave in an isothermal
atmosphere are zero, and the pressure and horizontal velocity perturbations have
the form

.u; P / D .u0; P0/eik.x˙cst/�� z :

This may be verified by noting that when w D 0, (8.93)–(8.96) reduce to

@2P

@t2
� c2s

@2P

@x2
D 0 and

@

@t

�
@

@z
C 


�
P D 0:
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If leapfrog time differencing is used to create a differential–difference
approximation to (8.93)–(8.96), a necessary and sufficient condition for the sta-
bility of the Lamb-wave mode is

cs�tkmax < 1; (8.97)

where kmax is the magnitude of the maximum horizontal wave number resolved by
the numerical model. This condition is also sufficient to guarantee the stability of
the gravity-wave modes, since for these modes

sin2.!�t/ D .N�tk/2

m2 C 
 2 CN 2=c2s
� .cs�tkmax/

2:

In many geophysical applications the vertical resolution is much higher than the
horizontal resolution, in which case (8.97) allows a much larger time step than that
permitted by the stability condition for the leapfrog approximation to the full non-
hydrostatic compressible equations (given by (8.47) with U D 0).

8.6 Primitive Equation Models

The exact equations governing global and large-scale atmospheric flows are often
approximated by the so-called primitive equations. The primitive equations differ
from the exact governing equations in that the quasi-hydrostatic assumption is in-
voked, small “curvature” and Coriolis terms involving the vertical velocity are ne-
glected in the horizontal momentum equations, and the radial distance between any
point within the atmosphere and the center of the Earth is approximated by the mean
radius of the Earth. Taken together, these approximations yield a system that con-
serves both energy and angular momentum (Lorenz 1967, p. 16).

The primitive equations governing inviscid adiabatic atmospheric motion may
be expressed using height as the vertical coordinate as follows. Let x, y, and z be
spatial coordinates that increase eastward, northward, and upward, respectively. Let
u D .dx=dt; dy=dt/ be the horizontal velocity vector, f the Coriolis parameter,
k an upward-directed unit vector parallel to the z-axis, and rz the gradient with
respect to x and y along surfaces of constant z. Then the rate of change of horizontal
momentum in the primitive equation system is governed by

du
dt

C f k � u C 1

�
rzp D 0;

where
d. /

dt
D @. /

@t
C u � rz. /C w

@. /

@z
:
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The continuity equation is

@�

@t
C rz � .�u/C @�w

@z
D 0; (8.98)

and the thermodynamic equation may be written

dT

dt
� !

cp �
D 0; (8.99)

where ! D dp=dt is the change in pressure following a fluid parcel. The preceding
system of equations for the unknown variables u, w, p, !, �, and T may be closed
using the hydrostatic relation (8.92) and the equation of state p D �RT .

8.6.1 Pressure and � Coordinates

The primitive equations are often solved in a coordinate system in which geometric
height is replaced by a new vertical coordinate �.x; y; z; t/. Simple functions that
have been used to define � include the hydrostatic pressure and the potential temper-
ature. The most commonly used vertical coordinates in current operational models
are generalized functions of the hydrostatic pressure.

The primitive equations may be expressed with respect to a different vertical
coordinate as follows. Suppose that �.x; y; z; t/ is the new vertical coordinate and
that � is a monotone function of z for all fixed x, y, and t with a unique inverse
z.x; y; �; t/. Defining r� as the gradient operator with respect to x and y along
surfaces of constant � and applying the chain rule to the identity

pŒx; y; z.x; y; �; t/; t � D p.x; y; �; t/

yields

rzp C @p

@z
r�z D r�p:

Using the hydrostatic relation (8.92) and defining the geopotential � D gz,

rzp D r�p C �r��;
and the horizontal momentum equations in the transformed coordinates become

du
dt

C f k � u C r�� C RT

p
r�p D 0; (8.100)

where
d. /

dt
D @. /

@t
C u � r� . /C P� @. /

@�
(8.101)
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and P� D d�=dt . The thermodynamic equation in the transformed coordinates is
identical to (8.99), except that the total time derivative is computed using (8.101).
The hydrostatic equation may be written as

@�

@�
D �RT

p

@p

@�
:

The continuity equation in the transformed coordinate system can be determined
by transforming the partial derivatives in (8.98) (Kasahara 1974). It is perhaps sim-
pler to derive the continuity equation directly from first principles. Let V be a fixed
volume defined with respect to the time-independent spatial coordinates x, y, and z,
and let n be the outward-directed unit vector normal to the surface S enclosing V .
Since the rate of change of mass in the volume V is equal to the net mass flux
through S ,

@

@t

Z
V
� dV D �

Z
S
�v � n dA

D �
Z

V
r � .�v/ dV; (8.102)

where v is the three-dimensional velocity vector. Equation (5.111), which states the
general relationship between the divergence in Cartesian coordinates and curvilinear
coordinates, implies that

r � .�v/ D 1

J
r� � .J�u/C 1

J

@

@�

�
J� P�

�
;

where J is the Jacobian of the transformation between .x; y; z/ and .x; y; �/, which
in this instance is simply @z=@�. In the transformed coordinates

dV D @z

@�
dx dy d�;

and since the boundaries of V do not depend on time, (8.102) may be expressed as

Z Z Z
V
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�
�
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@�

�
C r� �

�
�u
@z

@�

�
C @

@�

�
� P� @z
@�

��
dx dy d� D 0:

Using the hydrostatic equation (8.92) to eliminate � from the preceding equation,
and noting that the integrand must be identically zero because the volume V is
arbitrary, the continuity equation becomes

@

@t

�
@p

@�

�
C r� �

�
u
@p

@�

�
C @

@�

�
P� @p
@�

�
D 0:

Now consider possible choices for �. In most respects, the simplest system is
obtained by choosing � D p; this eliminates one of the two terms that make up
the pressure gradient in (8.100) and reduces the continuity equation to the simple
diagnostic relation

rp � u C @!

@p
D 0:
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The difficulty with pressure coordinates arises at the lower boundary because the
pressure at the surface of the Earth is a function of horizontal position and time.
As a consequence, constant-pressure surfaces intersect the lower boundary of the
domain in an irregular manner that changes as a function of time. To simplify the
lower-boundary condition, Phillips (1957) suggested choosing � D � D p=ps,
where ps is the surface pressure. The upper and lower boundaries in a �-coordinate
model coincide with the coordinate surfaces � D 0 and � D 1, and P� D 0 at both
the upper and lower boundaries.

The �-coordinate equations include prognostic equations for u, T , and ps and
diagnostic equations for P� , �, and !. The prognostic equations for the horizontal
velocity and the temperature are

du
dt

C f k � u C r�� C RT

ps
r�ps D 0 (8.103)

and
dT

dt
D �T

�ps
!; (8.104)

where
d. /

dt
D @. /

@t
C u � r� . /C P� @. /

@�
:

The continuity equation in � coordinates takes the form of a prognostic equation for
the surface pressure:

@ps

@t
C r� � .psu/C @

@�
.ps P�/ D 0: (8.105)

Recalling that P� is zero at � D 0 and � D 1, one can integrate (8.105) over the
depth of the domain to obtain

@ps

@t
D �

Z 1

0

r� � .psu/ d�: (8.106)

A diagnostic equation for the vertical velocity P� is obtained by integrating
(8.105) from the top of the domain to level � , which yields

P�.�/ D � 1

ps



�
@ps

@t
C
Z �

0

r� � .psu/ d Q�
�
: (8.107)

A diagnostic equation for ! can be derived by noting that

! D d

dt
.�ps/ D P�ps C �

@ps

@t
C �u � r�ps;
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and thus

!.�/ D �u � r�ps �
Z �

0

r� � .psu/ d Q�: (8.108)

The geopotential is determined by integrating the hydrostatic equation

@�

@.ln �/
D �RT (8.109)

from the surface to level � , which gives

�.�/ D gzs �R
Z �

1

T d.ln Q�/; (8.110)

where zs.x; y/ is the elevation of the topography.
The primary disadvantage of the �-coordinate system is that it makes the accu-

rate computation of horizontal pressure gradients difficult over steep topography.
This problem arises because surfaces of constant � tilt in regions where there are
horizontal variations in surface pressure, and such variations are most pronounced
over steep topography. When r�ps ¤ 0, some portion of the vertical pressure gra-
dient is projected onto each of the two terms r�� and .RT=ps/r�ps. The vertical
pressure gradient will not exactly cancel between these terms because of numerical
errors, and over steep topography the noncanceling residual can be comparable to
the true horizontal pressure gradient because the vertical gradient of atmospheric
pressure is several orders of magnitude larger than the horizontal gradient. The
pressure-gradient error in a �-coordinate model is not confined to the lower lev-
els near the topography, but it may be reduced at upper levels using a hybrid vertical
coordinate that transitions from � coordinates to p coordinates at some level (or
throughout some layer) in the interior of the domain (Sangster 1960; Simmons and
Burridge 1981). Although they are widely used in operational weather and climate
models (Williamson and Olson 1994; Ritchie et al. 1995; Kiehl et al. 1996), these
hybrid coordinates complicate the solution of the governing equations and will not
be considered here.

Several other approaches have also been suggested to minimize the errors
generated over topography in �-coordinate models. Phillips (1973) and Gary (1973)
suggested performing the computations using a perturbation pressure defined with
respect to a hydrostatically balanced reference state. Finite-difference schemes have
been proposed that guarantee exact cancelation of the vertical pressure gradient be-
tween the last two terms in (8.103) whenever the vertical profiles of temperature and
pressure have a specified functional relation, such as T D a ln.p/C b (Corby et al.
1972; Nakamura 1978; Simmons and Burridge 1981). Mesinger (1984) suggested
using “	 coordinates,” in which the mountain slopes are discretized as vertical steps
at the grid interfaces with flat terrain between each step. More details and additional
techniques for the treatment of pressure-gradient errors over mountains in quasi-
hydrostatic atmospheric models are presented in the review by Mesinger and Janić
(1985).
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8.6.2 Spectral Representation of the Horizontal Structure

Global primitive-equation models often use spherical harmonics to represent the lat-
itudinal and longitudinal variation of the forecast variables. In the following sections
we present the basic numerical procedures for creating a spectral approximation to
the �-coordinate equations in a global atmospheric model. The approach is similar
to that in Hoskins and Simmons (1975) and Bourke (1974), which may be con-
sulted for additional details. The latitudinal and longitudinal variations in each field
will be approximated using spherical harmonics, and the vertical variations will be
represented using grid-point methods.

As was the case for the global shallow-water model described in Sect. 6.4.4, the
spectral representation of the horizontal velocity field is facilitated by expressing
the horizontal momentum equations in terms of the vertical vorticity � and the di-
vergence ı. To integrate this system easily using semi-implicit time differencing, it
is also helpful to divide the temperature into a horizontally uniform reference state
and a perturbation such that T D T .�/ C T 0. Using the identity (6.78) and taking
the divergence of (8.103) yields

@ı

@t
� k � r � .� C f /u C r �

�
P� @u
@�

CRT 0r.lnps/

�

C r2
�
� C u � u

2
CRT lnps

�
D 0: (8.111)

Again using (6.78) and taking the vertical component of the curl of (8.103), one
obtains

@�

@t
C r � .� C f /u C k � r �

�
P� @u
@�

CRT 0r.lnps/

�
D 0: (8.112)

Following the notation used in Sect. 6.4.4, let � be the velocity potential and  
the stream function for the horizontal velocity. Let � be the longitude, � the latitude,
and � D sin � . Define the operator

H .M;N / D 1

a

�
1

1 � �2
@M

@�
C @N

@�

�
;

where a is the mean radius of the Earth. Then using the formula for the horizontal
divergence in spherical coordinates,

rM D 1

a cos �

@M

@�
i C 1

a

@M

@�
j

D 1

a.1 � �2/1=2
�
@M

@�
i C .1� �2/

@M

@�
j
�
;

and the relations (6.82)–(6.85), one may express the prognostic equations for the
�-coordinate system in the form
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@r2�
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D H .B;�A/ � 2˝
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a
� �r2 
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�r2
�
� C U 2 C V 2

2.1 � �2/ CRT lnps

�
; (8.113)
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a
C �r2�

�
; (8.114)

@T 0

@t
D �H .UT 0; V T 0/C T 0r2� � P� @T

@�
C �T!

�ps
; (8.115)
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.lnps/� r2� � @ P�

@�
; (8.116)

where

U D u cos � D .1 � �2/H .�;� /;
V D v cos � D .1 � �2/H . ; �/;

A D Ur2 C P� @V
@�

C RT 0

a
.1 � �2/ @

@�
.lnps/:

B D V r2 � P� @U
@�

� RT 0

a

@

@�
.lnps/:

The preceding system of equations is formulated using lnps instead of ps as the
prognostic variable to make the term .RT=ps/r�ps into a binary product of the
prognostic variables and thereby facilitate the alias-free evaluation of the pressure-
gradient force via the spectral transform method.

At each � level, the unknown functions  , �, T 0, and � are approximated us-
ing a truncated series of spherical harmonics. The unknown function lnps is also
approximated by a spherical harmonic expansion. Expressions for the time tenden-
cies of the expansion coefficients for each spherical harmonic are obtained using the
transform method in a manner analogous to that for the global shallow-water model
described in Sect. 6.4.4. As an example, suppose that the stream function and veloc-
ity potential at a given � level are expanded in spherical harmonics as in (6.90) and
(6.91). Then, using the notation defined in Sect. 6.4.4, the equation for @ m;n=@t is
once again given by (6.95) except that OAm and OBm now satisfy

Ur2 C P� @V
@�

C RT 0

a
.1 � �2/

@

@�
.lnps/ D

MX
mD�M

OAmeim� (8.117)

and

V r2 � P� @U
@�

� RT 0

a

@

@�
.lnps/ D

MX
mD�M

OBmeim�: (8.118)

The spectral form of the tendency equations for the velocity potential, the pertur-
bation temperature, and the surface pressure may be found in Bourke (1974) and
will not be given here. Note that the vertical advection terms in (8.117) and (8.118)
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involve the product of three spatially varying functions (since P� itself depends on
the product of two spatially varying functions). The standard transform method can-
not be used to transform these triple products between wave-number and physical
space without incurring some numerical error. This “aliasing” error is nevertheless
very small (Hoskins and Simmons 1975).

8.6.3 Vertical Differencing

The most significant modifications required to extend the shallow-water algorithm
to a �-coordinate model are those associated with the computation of the vertical
derivatives. The vertical derivatives are computed using finite differences at that
stage of the integration cycle when all the unknown variables are available on the
physical mesh. As in (8.117) and (8.118), the results from these finite-difference
computations are then combined with the other binary products computed on the
physical mesh, and the net forcing is transformed back to wave-number space.

A convenient and widely used vertical discretization for the �-coordinate equa-
tions is illustrated in Fig. 8.7 for a model withN vertical levels. The upper and lower
boundaries are located at � D 0 and

� D 1 D
NX
kD1

��k;

σ̇ 1
2

σ̇ 3
2

σ̇k− 1
2

σ̇k+ 1
2

σ̇N− 1
2

σ̇N+ 1
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σ1Dσ1

Dσk σk

DσN σN

σ =0

σ =1

y1, χ1, T �1, f1

yk, χk, T �k, fk

yN, χN, T �N, fN

Fig. 8.7 Vertical distribution of the unknown variables on a � -coordinate grid. The thickness of
the � layers need not be uniform. The center of each layer is at level � D �k and is indicated
by the dashed lines. Note that the vertical index k increases with � and decreases with geometric
height



8.6 Primitive Equation Models 441

where ��k is the width of the kth � layer. The stream function, velocity potential,
temperature, and geopotential are defined at the center of each � layer, and the
velocity P� is defined at the interface between each layer. The vertical derivatives
appearing in (8.113)–(8.115) involve variables, such as the temperature, that are
defined at the center of each � layer. These derivatives are approximated such that

�
P� @T
@�

�
k

� hP�kı�Tki�

D P�kC 1
2

�
TkC1 � Tk

��kC1 C��k

�
C P�k� 1

2

�
Tk � Tk�1

��k C��k�1

�
: (8.119)

The preceding differencing is the generalization of the “averaging scheme” dis-
cussed in Sect. 4.4 to the nonuniform staggered mesh shown in Fig. 8.7.

The vertical derivative of P� in (8.116) is approximated as

�
@ P�
@�

�
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� ı� P�k D
P�kCC 1

2
� P�k�� 1

2

��k
: (8.120)

Defining Gk D r� � uk C uk � r� .lnps/, the preceding expression implies that
the vertically discretized approximation to the surface-pressure-tendency equation
(8.106) is

@

@t
.lnps/ D �

NX
kD1

Gk��k ; (8.121)

and that (8.107) is approximated as
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The hydrostatic equation (8.109) is approximated as

�kC1 � �k

ln �kC1 � ln �k
D �R

2
.TkC1 C Tk/;

except in the half-layer between the lowest � level and the surface, where

�N � �s

ln �N
D �RTN :

Defining ˛N D � ln �N and ˛k D 1=2 ln.�kC1=�k/ for 1 � k < N , the discrete
analogue of (8.110) becomes

�k D �s CR

0
@ NX
jDk

˛jTj C
NX

jDkC1
˛j�1Tj

1
A : (8.123)
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Finally, as suggested by Corby et al. (1972), the vertical discretization for the !
equation (8.108) is chosen to preserve the energy-conservation properties of the
vertically integrated continuous equations. Such conservation is achieved if

!k

�kps
D uk � r� .lnps/ � ˛k

��k

kX
jD1

Gj��j � ˛k�1
��k

k�1X
jD1

Gj��j : (8.124)

8.6.4 Energy Conservation

Why does (8.124) give better energy-conservation properties than the simpler for-
mula that would result if both ˛k and ˛k�1 were replaced by��k=.2�k/? To answer
this question it is necessary to review the energy-conservation properties of the con-
tinuous �-coordinate primitive equations. Our focus is on the vertical discretization,
so it is helpful to obtain a conservation law for the vertically integrated total energy
per unit horizontal area. Using the hydrostatic equation (8.92) and the definition
�ps D p, one may express the vertical integral of the sum of the kinetic10 and
internal energy per unit volume as

Z 1

zs

�
�u � u
2

C cvT
�

dz D � 1
g

Z 0

ps

�u � u
2

C cvT
�

dp

D ps

g

Z 1

0

�u � u
2

C cvT
�

d�:

Using the hydrostatic equation twice and integrating by parts, the vertical integral
of the potential energy becomes

Z 1

zs

�gz dz D
Z ps

0

�

g
dp D 1

g

Z �sps

0

d.�p/�
Z �s

1
p

g
d� D �sps

g
C
Z ps

0

p

g�
dp:

Recalling that p D �RT ,

Z 1

zs

�gz dz D �sps

g
C ps

g

Z 1

0

RT d�;

and the total vertically integrated energy per unit area is

E D �sps

g
C ps

g

Z 1

0

�u � u
2

C cpT
�

d�:

The total time derivatives in the momentum and thermodynamic equations must
be written in flux form to obtain a conservation law governing E . For any scalar � ,

10 Note that as a consequence of the primitive-equation approximation, the vertical velocity does
not appear as part of the kinetic energy.
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ps
d�

dt
D ps

@�

@t
C psu � r�� C ps P� @�

@�
C �



@ps

@t
C r� � .psu/C @

@�
.ps P�/

�

D @

@t
.ps�/C r� � .ps�u/C @

@�
.ps� P�/; (8.125)

where the quantity in square brackets is zero by the pressure-tendency equation
(8.105). Adding pscp times the thermodynamic equation (8.104) to the dot product
of psu and the momentum equation (8.103) and using (8.125), one obtains

@E

@t
C r� � .Eu/C @

@�
.E P�/C u � psr�� C u �RTr�ps � RT!

�
D 0; (8.126)

where E D ps.u � u=2C cpT /. Defining

F D ��r� � .psu/C u �RTr�ps � RT!

�
; (8.127)

one may express (8.126) as

@E

@t
C r� � Œ.E C ps�/u�C @

@�
.E P�/C F D 0: (8.128)

The forcing F may be written as the vertical divergence of a flux as follows.
Substituting for ! using (8.108),

F D ��r� � .psu/C RT

�

Z �

0

r� � .psu/ d Q�;

and then substituting for RT=� from the hydrostatic equation,

F D ��r� � .psu/� @�

@�

Z �

0

r� � .psu/ d Q�

D � @

@�



�

Z �

0

r� � .psu/ d Q�
�
:

Thus,

Z 1

0

F d� D ��s

Z 1

0

r� � .psu/ d�

D �s

Z 1

0

�
@ps

@t
C @

@�
. P�ps/

�
d�

D @

@t
.�sps/:

The preceding expression may be used to derive a conservation law for E by inte-
grating (8.128) over the depth of the domain and applying the boundary condition
P� D 0 at the upper and lower boundaries to obtain

@E

@t
C 1

g
r� �

Z 1

0

.E C ps�/u d� D 0: (8.129)
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Of course, (8.129) also implies that if the horizontal domain is periodic, or if there
is no flow normal to the lateral boundaries, the �-coordinate primitive equations
conserve the domain-integrated total energy

Z Z 

�sps

g
C ps

g

Z 1

0

�u � u
2

C cpT
�

d�

�
dx dy: (8.130)

The domain-integrated total energy is not, however, exactly conserved by global
spectral models. As discussed in Sect. 6.2.3, a Galerkin spectral approximation to
a prognostic equation for an unknown function � will generally conserve the do-
main integral of �2, provided that the domain integral of �2 is also conserved by the
continuous equations and time-differencing errors are neglected. Unfortunately, the
conservation of the squares of the prognostic variables in (8.113)–(8.116) does not
imply exact conservation of the total energy. Practical experience has, nevertheless,
shown that the deviations from exact energy conservation generated by the spec-
tral approximation of the horizontal derivatives is very small. The nonconservation
introduced by the semi-implicit time differencing used in most global primitive-
equation models has also been shown to be very small (Hoskins and Simmons 1975).
Nonconservative formulations of the vertical finite differencing can, however, have
a significantly greater impact on the global energy conservation. This appears to be
a particularly important issue if long-time integrations are conducted using global
climate models with poor vertical resolution.

The energy-conservation properties of the vertical discretization given by
(8.119)–(8.124) will therefore be isolated from the nonconservative effects of the
spectral approximation and the time differencing by considering a system of
differential–difference equations in which only those terms containing vertical
derivatives are discretized. Except for the terms involving vertical derivatives, the
total-energy equation for the semidiscrete system must be identical to (8.128)
because the time and horizontal derivatives are exact.

The semidiscrete system will therefore conserve total energy, provided that it
satisfies the discrete analogues of

Z 1

0

@

@�
.E P�/ d� D 0 (8.131)

and Z 1

0

F d� D @

@t
.�sps/: (8.132)

The integrand in (8.131) appears in the total-energy equation (8.128) as a mathe-
matical simplification of a linear combination of the vertical derivative terms in the
momentum, thermodynamic, and surface-pressure-tendency equations such that

@

@�
.E P�/ d� D u � P� @u

@�
C u � u

2

@ P�
@�

C cp P� @T
@�

C cpT
@ P�
@�
:
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When the vertical derivatives on the right side of the preceding equation are
approximated using (8.119) and (8.120), their summation over the depth of the do-
main is exactly zero. This may be demonstrated for the pair of terms involving T by
noting that since P�1=2 D P�NC1=2 D 0,

NX
kD1

�h P�kı�Tki� C Tkı� P�k

��k D

NX
kD1



P�kC 1

2

�
��kTkC1 C��kC1Tk

��kC1 C��k

�

�P�k� 1
2

�
��k�1Tk C��kTk�1

��k C��k�1

��
D 0:

A similar relation holds for the two terms involving the horizontal velocity (see
Problem 7).

Now consider the discrete analogue of (8.132), or equivalently,

Z 1

0

F

ps
d� D �s

@

@t
.lnps/:

Defining G D r� � u C u � r� .lnps/ and substituting for F using (8.127) yields

Z 1

0

�
��G C u �RTr� .lnps/� RT!

�ps

�
d� D �s

@

@t
.lnps/:

The discrete form of this integral equation may be obtained using (8.121) and
(8.124) and is algebraically equivalent to

NX
kD1

.�k � �s/Gk��k D
NX
kD1

RTk

0
@˛k

kX
jD1

Gj��j C ˛k�1
k�1X
jD1

Gj��j

1
A :

It may be verified that the preceding expression is indeed an algebraic identity by
substituting for �k � �s from the discrete form of the hydrostatic equation (8.123)
and using the relation

NX
kD1

kX
jD1

akbj D
NX
kD1

NX
jDk

aj bk :

In addition to conserving total energy, the preceding vertical discretization also
conserves total mass (see Problem 8). This scheme does not conserve the integrated
angular momentum or the integrated potential temperature. Arakawa and Lamb
(1977), Simmons and Burridge (1981), and Arakawa and Konor (1996) described
alternative vertical discretizations that conserve angular momentum, potential tem-
perature, or various other vertically integrated functions.
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8.6.5 Semi-implicit Time Differencing

Computational efficiency can be enhanced by using semi-implicit time differencing
to integrate the preceding primitive-equation model. The semi-implicit method can
be implemented in �-coordinate primitive-equation models as follows. Let d be a
column vector whose kth element is the function r2�� at level �k . Similarly, define
t, t, and h to be column vectors containing the �-level values of the functions RT ,
T , and �. Let hs be a column vector in which every element is �s. Then the ver-
tically discretized equations for the divergence, temperature, surface-pressure ten-
dency, and geopotential may be written in the form

@d
@t

D fd � r2
�

�
h C t lnps

�
; (8.133)

@t
@t

D ft � Hd; (8.134)

@

@t
.lnps/ D fp � pT d; (8.135)

h D hs C Gt: (8.136)

Here G and H are matrices and p is a column vector, none of which depend on
�, �, or t . The thermodynamic equation (8.134) is partitioned such that all terms
containing the product of T .�/ and the divergence are collected in Hd.

Equation (8.121) implies that

pT D .��1; ��2; : : : ; ��N /;

and (8.123) requires

G
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0
BBBB@

˛1 ˛1 C ˛2 ˛2 C ˛3 : : :

0 ˛2 ˛2 C ˛3 : : :

0 0 ˛3 : : :

0 0 0 : : :
:::

:::
:::

1
CCCCA :

Let hr;s denote the sth element in the r th row of H. Then according to (8.115),hr;s is
determined by the contribution of the divergence at level s to P�@T =@���T !=.�ps/

at level r . Define a step function such that S .x/ D 1 if x 	 0 and S .x/ D 0

otherwise. Then from (8.119), (8.122), and (8.124),
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��s
D �T rS .r � s/

��r
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��rC1 C��r

!0
@S .r � s/ �

rX
jD1

��j

1
A



8.6 Primitive Equation Models 447

�
 

T r � T r�1
��r C��r�1

!0
@S .r � s � 1/�

r�1X
jD1

��j

1
A :

The remaining terms in (8.121) and the vertically discretized versions of (8.113) and
(8.115) are gathered into fp , fd, and ft, respectively.

A single equation for the divergence may be obtained by eliminating t, h, and
lnps from (8.133)–(8.136) to give

�
@2

@t2
� Br2�

�
d D @fd

@t
� r2�

�
Gft C fpt

�
; (8.137)

where B D GHC tpT. The solutions to the homogeneous part of this equation com-
prise the set of gravity waves supported by the vertically discretized model. Hoskins
and Simmons (1975) presented plots showing the vertical structure of each of the
gravity-wave modes in a five-layer model. For typical atmospheric profiles of T .�/
the fastest mode propagates at a speed on the order of 300 ms�1 and thereby imposes
a severe constraint on the maximum stable time step with which these equations can
be integrated using explicit time differencing.

Since the fastest-moving gravity waves do not need to be accurately simulated to
obtain an accurate global weather forecast, (8.133)–(8.135) can be efficiently inte-
grated using a semi-implicit scheme in which those terms that combine to form the
left side of (8.137) are integrated using the trapezoidal method over a time interval
of 2�t . The formulae that result from this semi-implicit approximation are

ı2tdn D fd
n � r2�

h
hhni2t C t h.lnps/

ni2t
i
; (8.138)

ı2t tn D ft
n � H hdni2t ; (8.139)

ı2t .lnps/
n D f np � pT hdni2t : (8.140)

Using the relation ı2t�n D .h�ni2t � �n�1/=�t together with (8.136), (8.139), and
(8.140) to eliminate hhni2t and h.lnps/

ni2t from (8.138) gives

�
I � .�t/2Br2

�

 hdni2t
D dn�1 C�tfd

n � r2�
˚
�t
�
hn�1 C t.lnps/

n�1C .�t/2
�
Gft

n C tf np
�
:

(8.141)

Let �r;s be a column vector whose kth element is the coefficient of Yr;s in the
series expansion for the velocity potential at level k. Since the spherical harmonics
are eigenfunctions of the horizontal Laplacian operator on the sphere, (8.141) is
equivalent to a linear-algebraic system for �nC1

r;s of the form



I C .�t/2

s.s C 1/

a2
B
�

�nC1
r;s D f;



448 8 Physically Insignificant Fast Waves

where f does not involve the values of any unknown functions at time .n C 1/�t .
The N unknown variables in this relatively small linear system can be determined
by Gaussian elimination. Additional efficiency can be achieved by exploiting the
fact that the coefficient matrix is constant in time, so its “LU” decomposition into
upper and lower triangular matrices need only be computed once.

Some of the forcing terms that are responsible for gravity-wave propagation in
the �-coordinate equations are nonlinear. To obtain the preceding linear-algebraic
equation for �nC1

r;s these terms have been decomposed into a linear part and a non-
linear perturbation by splitting the total temperature into a constant horizontally
uniform reference temperature T .�/ and a perturbation. As discussed in Sect. 8.2.3,
this decomposition imposes a constraint on the stability of the semi-implicit solu-
tion that, roughly speaking, requires the speed of the fastest-moving gravity wave
supported by the actual atmospheric structure to be only modestly faster than the
speed of the fasting-moving gravity wave in the reference state. This stability con-
straint is usually satisfied by choosing an isothermal profile for the reference state,
i.e., T .�/ D T0 (Simmons et al. 1978). A typical value for T0 is 300 K.

Problems

1. Consider small-amplitude shallow-water motions on a “mid-latitude ˇ-plane.”
In the following, x and y are horizontal coordinates oriented east–west and
north–south, respectively; the Coriolis parameter is approximated as f0 C ˇy

where f0 and ˇ are constant; g is the gravitational acceleration; U > 0 is a
constant mean flow from west to east; u0 and v0 are the perturbation west-to-
east and south-to-north velocities; h is the perturbation displacement of the free
surface. Define the vorticity � and the divergence ı as

� D @v0

@x
� @u0

@y
; ı D @u0

@x
C @v0

@y
:

Assume that the mean flow is in geostrophic balance,

U D � g

f0

@h

@y
;

and that there is a mean north–south gradient in the bottom topography equal
to the mean gradient in the height of the free surface, @h=@y, so that the mean
fluid depth is a constant H . The linearized shallow-water equations for this
system are
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�
@

@t
C U

@

@x

�
� C f ı C ˇv D 0;

�
@

@t
C U

@

@x

�
ı � f � C ˇ.U C u/C g

�
@2h

@x2
C @2h

@y2

�
D 0;

�
@

@t
C U

@

@x

�
hCHı D 0: (8.142)

The terms involving ˇ in the preceding vorticity and divergence equations can
be approximated11 as

�
@

@t
C U

@

@x

�
� C f0ı C ˇg
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@h

@x
D 0; (8.143)
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�
ı � f0� C g

�
@2h

@x2
C @2h

@y2

�
D 0: (8.144)

(a) Show that waves of the form

.�; ı; h/ D .�0; ı0; h0/ei.kxC`y�!t/

are solutions to the preceding system if they satisfy the dispersion relation

.! � Uk/2 D c2.k2 C `2/C f 20 C kˇc2

! � Uk ;

where c2 D gH .

(b) Show that if jˇ=cj � k2, the individual solutions to this dispersion rela-
tion are well approximated by the solutions to either the inertial-gravity-wave
dispersion relation

.! � Uk/2 D c2.k2 C `2/C f 20

or the Rossby-wave dispersion relation

! D Uk � ˇk

k2 C `2 C f 20 =c
2
:

2. Suppose that the time derivatives in (8.142)–(8.144) are approximated by
leapfrog differencing and the spatial dependence is represented by a Fourier
spectral or pseudospectral method. Recall that we have assumed U > 0, as
would be the case in the middle latitudes of the Earth’s atmosphere.

(a) Determine the constraints on �t required to keep the gravity waves stable
and show that .U C c/k�t � 1 is a necessary condition for stability.

11 The approximations used to obtain (8.143) and (8.144) are motivated by the desire to obtain a
clean dispersion relation rather than a straightforward scale analysis.
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(b) Determine the constraints on �t required to keep the Rossby waves stable.
Let K be the magnitude of the maximum vector wave number retained in the
truncation, i.e.,

K D max
k;`

p
k2 C `2:

Show that UK�t � 1 is a sufficient condition for the stability of the Rossby
waves unless

K2 � ˇ

2U
� f 20
c2
:

3. Suppose that (8.142)–(8.144) are integrated using the semi-implicit scheme

ı2t�
n C U

@�n

@x
C f0ı

n C ˇg

f0

@hn

@x
D 0;

ı2tı
n C U

@ın

@x
� f0�

n C g

�
@2hn

@x2
C @2hn

@y2

	2t
D 0;

ı2th
n C U

@hn

@x
CH hıni2t D 0:

(a) Determine the conditions under which the gravity waves are stable.

(b) Determine the conditions under which the Rossby waves are stable.

(c) Discuss the impact of semi-implicit differencing on the accuracy of the
Rossby-wave and gravity-wave modes.

4. Two-dimensional sound waves in a neutrally stratified atmosphere satisfy the
linearized equations

@u

@t
C cs

@P

@x
D 0:

@w

@t
C cs

@P

@z
D 0:

@P

@t
C cs

�
@u

@x
C @w

@z

�
D 0;

where P D p0=.�0cs/. Let this system be approximated using forward–
backward differencing for the horizontal gradients and trapezoidal differencing
for the vertical gradients such that

umC1 D um � cs��
@Pm

@x
;

wmC1 D wm � cs
��

2

@

@z

�
PmC1 C Pm

�
;
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�
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�
wmC1 C wm

��
:
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Consider an individual Fourier mode with spatial structure exp i.kx C `z/

and show that the eigenvalues of the amplification matrix for this scheme are
unity and

4 � Q̀2 � 2 Qk2 ˙ 2

q
. Qk � 2/. Qk C 2/. Qk2 C Q̀2/
Q̀2 C 4

;

where Qk D csk�� and Q̀ D cs`�� . What is the stability condition that ensures
that this method will not have any eigenvalues with absolute values exceeding
unity?

5. Compare the errors generated in gravity waves using semi-implicit differencing
with those produced in a compressible Boussinesq system in which the true
speed of sound cs is artificially reduced to Qcs in an effort to increase efficiency
by increasing the maximum stable value for �� . Hint: Consider waves with
wave numbers on the order of N= Qcs but larger than N=cs.

6. The oscillations of the damped-harmonic oscillator (8.88) are “overdamped”
when ˛2�2 > c2s . Suppose that the mesh is isotropic with grid interval �, the
Courant number for sound-wave propagation on the small time step is 1=2, and
˛ D ��2=�� . Estimate the minimum value of ˛ required make the divergence
damper overdamp a mode resolved on the numerical mesh. Do the values of ˛x
and ˛z used in the test problem shown in Fig. 8.3d overdamp any of the resolved
modes in that test problem?

7. Show that discrete integral of the finite-difference approximation to the vertical
divergence of the vertical advective flux of kinetic energy,

NX
kD1

h˝ huki� � P�k ı�uk
˛� C uk � uk

2
ı� P�k

i
��k ;

is zero.

8. Examine the mass-conservation properties of �-coordinate primitive-equation
models.

(a) Show that the vertically integrated mass per unit area in a hydrostatically
balanced atmosphere is ps=g.

(b) Show that the vertical finite-difference scheme for the �-coordinate primitive-
equation model described in Sect. 8.6.3 will conserve total mass if nonconser-
vative effects due to time differencing and the horizontal spectral representation
are neglected.

(c) Suppose that instead of predicting lnps as in (8.116), the actual surface pres-
sure were predicted using (8.105). Show that except for nonconservative effects
due to time differencing, total mass will be exactly conserved in a numerical
model in which the Galerkin spectral method is used to evaluate the horizon-
tal derivatives, and the vertical derivative is approximated by (8.120). This ap-
proach is not used in practice because it generates a noisier solution than that
obtained using lnps as the prognostic variable (Kiehl et al. 1996, p. 15).





Chapter 9
Nonreflecting Boundary Conditions

If the boundary of a computational domain coincides with a true physical boundary,
an appropriate boundary condition can generally be derived from physical princi-
ples and can be implemented in a numerical model with relative ease. It is, for
example, easy to derive the condition that the fluid velocity normal to a rigid bound-
ary must vanish at that boundary, and if the shape of the boundary is simple, it is
easy to impose this condition on the numerical solution. More serious difficulties
may be encountered if the computational domain terminates at some arbitrary loca-
tion within the fluid. When possible, it is a good idea to avoid artificial boundaries
by extending the computational domain throughout the entire fluid. Nevertheless, in
many problems the phenomena of interest occur in a localized region, and it is im-
practical to include all of the surrounding fluid in the numerical domain. As a case
in point, one would not simulate an isolated thunderstorm with a global atmospheric
model just to avoid possible problems at the lateral boundaries of a limited domain.
Moreover, in a fluid such as the atmosphere there is no distinct upper boundary, and
any numerical representation of the atmosphere’s vertical structure will necessarily
terminate at some arbitrary level.

When the computational domain is terminated at an arbitrary location within
a larger body of fluid, the conditions imposed at the edge of the domain are in-
tended to mimic the presence of the surrounding fluid. The boundary conditions
should therefore allow outward-traveling disturbances to pass through the bound-
ary without generating spurious reflections that propagate back toward the interior.
Boundary conditions designed to minimize spurious backward reflection are known
as nonreflecting, open, wave-permeable, or radiation boundary conditions. The ter-
minology “radiation boundary condition” is due to Sommerfeld (1949, p. 189), who
defined it as the condition that “the sources must be sources, not sinks, of energy.
The energy which is radiated from the sources must scatter to infinity; no energy may
be radiated from infinity into : : : the field.” As formulated by Sommerfeld, the radia-
tion condition applies at infinity; however, in all practical computations a boundary
condition must be imposed at some finite distance from the energy source, and this
creates two problems. The first problem is that the radiation condition itself may
not properly describe the physical behavior occurring at an arbitrarily designated

D.R. Durran, Numerical Methods for Fluid Dynamics: With Applications to Geophysics, 453
Texts in Applied Mathematics 32, DOI 10.1007/978-1-4419-6412-0 9,
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location within the fluid when that location is only a finite distance from the energy
source. The second problem is that it is typically more difficult to express the radi-
ation condition mathematically at a boundary that is only a finite distance from the
energy source.

The radiation condition is obviously not appropriate in situations where energy
must be transmitted inward through the boundary; yet inward radiation may even
be required in problems where the surrounding fluid is initially quiescent and all the
initial disturbances are contained within the computational domain. Two nonlinear
waves that propagate past an artificial boundary within a fluid may interact outside
the artificial boundary and generate an inward-propagating disturbance that should
reenter the domain. This point was emphasized by Hedstrom (1979), who provided
a simple example from compressible gas dynamics demonstrating that a shock over-
taking a contact discontinuity must generate an echo that propagates back toward the
wave generator. Numerical simulations of thunderstorms provide another example
where the documented sensitivity of numerical simulations to the lateral boundary
conditions (Clark 1979; Hedley and Yau 1988) may be not only a consequence of
poorly approximating the radiation condition, but also the result of inadequately rep-
resenting important feedbacks on the convection arising through interactions with
the storm’s environment that occur outside the numerical domain.

Errors resulting from a failure to incorporate inward-propagating signals
generated by real physical processes occurring outside the boundaries of the com-
putational domain cannot be avoided without enlarging the domain. Nevertheless,
nonreflecting boundary conditions often become reasonable approximations to the
true physical boundary condition as the size of the computational domain increases,
provided that the local energy density of a disturbance arriving at the boundary is
reduced as the result of wave dispersion or absorption in the large domain. When the
disturbances arriving at the boundary are sufficiently weak, the governing equations
in the region near the boundary can be approximated by their linearized equivalents,
and it can be relatively easy to ensure that the radiation condition correctly describes
the boundary conditions for the linearized system. The situation is particularly sim-
ple in the case of constant-coefficient linear hyperbolic systems, for which radiation
boundary conditions are clearly appropriate because the characteristic curves for
such systems are straight lines that cannot exit and subsequently reenter the domain.

Even when it is clear that the radiation condition is appropriate, it is not always
easy to translate Sommerfeld’s physical description into a mathematical formula.
As noted in the monograph by Givoli (1992), it is generally easier to express the
radiation condition at infinity mathematically than to formulate the same condition
for a boundary that is only a finite distance from the wave source. In fact, in most
practical problems it is impossible to express the radiation condition exactly as an
algebraic or differential equation involving the prognostic variables in the neigh-
borhood of the boundary. Instead of the exact radiation condition, one must use
an approximation, and this approximation introduces an error in the mathematical
model of the physical system that is distinct from the errors subsequently incurred
when constructing a discrete approximation to the mathematical model. As a con-
sequence, the numerical solution will not converge to the correct solution to the
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underlying physical problem as the spatial and temporal mesh is refined, but rather
to the correct solution to the approximate mathematical problem determined by the
approximate radiation condition.

The first topic that will be considered in this chapter is therefore the mathematical
formulation of well-posed radiation boundary conditions. We begin with examples
where this can be done exactly and then consider problems where approximations
are required. After formulating exact or approximate radiation boundary conditions
for the continuous problem, we will consider their numerical implementation.

9.1 One-Dimensional Flow

Exact open boundary conditions can be obtained for certain simple one-dimensional
systems. Two such problems will be considered in this section, the linear advec-
tion equation and the linearized shallow-water system. The shallow-water sys-
tem provides an instructive example illustrating the construction of exact radiation
boundary conditions for the continuous equations. In contrast, there is no need to
explicitly determine a radiation boundary condition for the nondiscretized linear
advection equation because a well-posed mathematical formulation of the advec-
tion problem does not require any outflow boundary condition. The linear advection
equation is, however, useful for investigating the influence of various numerical ap-
proximations to the exact outflow boundary condition on the accuracy and stability
of the discretized solution.

9.1.1 Well-Posed Initial-Boundary-Value Problems

Consider the linearized one-dimensional advection equation

@ 

@t
C U

@ 

@x
D 0; (9.1)

and suppose is to be determined throughout some limited domain 0 � x � L. For
the sake of illustration, assume that U > 0. If initial data are given for the domain
0 � x � L, how should boundary conditions at x D 0 and x D L be specified to
yield a well-posed problem?1

Since  is the solution to a homogeneous hyperbolic equation with constant co-
efficients, will be constant along the characteristic curves x�Ut D x0. The initial
data will therefore uniquely determine  in the shaded triangular region in Fig. 9.1.
The solution in the remainder of the strip t > 0, 0�x�L is determined by the val-
ues of  .0; t/ at the inflow boundary. Thus, to uniquely determine the solution (one

1 As discussed in Sect. 1.3.2, a well-posed problem is one in which a unique solution to a given
partial differential equation exists and depends continuously on the initial- and boundary-value
data.
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t

x
0

0 L

Fig. 9.1 Portion of the x–t plane (shaded region) in which the solution to (9.1) is determined by
the initial data  .x; 0/, 0 � x � L

prerequisite for well-posedness), a boundary condition must be imposed at x D 0.
On the other hand, no differentiable function will be able to satisfy an arbitrary
boundary condition imposed at x D L, because  .L; t/ is already determined by
the governing equation (9.1), the initial condition, and the boundary condition at
x D 0. Since no solution to the overspecified problem exists, it is not well posed.
A consistent solution might be obtained if the correct value of  .x; t/ is imposed
at x D L, but even in this case the solution will not depend continuously on the
boundary conditions, since it will cease to exist if the downstream boundary values
are perturbed, and the problem remains ill posed.

The preceding example may seem obvious: A boundary condition is required at
inflow; no condition should be imposed at outflow. Physical intuition is less likely to
yield an obvious answer in the case of the one-dimensional shallow-water equations.
If � is gravity times the displacement of the free surface about its equilibrium height
H , and u and U are, respectively, the perturbation and constant basic-state fluid
velocities, the linearized shallow-water equations are

@

@t

�
u

�

�
C
�
U 1

c2 U

�
@

@x

�
u

�

�
D 0; (9.2)

where c D p
gH . The preceding equation is a homogeneous hyperbolic system of

partial differential equations of the form

@q
@t

C A
@q
@x

D 0:

The matrices

T�1 D
�
1 �1=c
1 1=c

�
; T D

�
1=2 1=2

�c=2 c=2
�

may be used to transform (9.2) to

@T�1q
@t

C T�1AT
@T�1q
@x

D 0;
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which is the system of two decoupled scalar equations

@

@t

�
d

e

�
C
�
U � c 0

0 U C c

�
@

@x

�
d

e

�
D 0 (9.3)

for the Riemann invariants d D u � �=c and e D u C �=c. Each of these scalar
equations is a partial differential equation of the form (9.1) and will be well posed if
a boundary value is specified at inflow and no value is specified at outflow. A well-
posed shallow-water problem is therefore obtained by specifying d at the boundary
through whichU�c is directed inward and e at the boundary whereUCc is directed
inward. Suppose that U > 0 and solutions are sought on the interval 0 � x � L.
In the “supercritical” case c < U , both d and e should be specified at x D 0 in a
manner directly analogous to the scalar advection problem.

In many geophysical applications c > jU j; the flow is “subcritical,” and well-
posed boundary conditions have the general form

e.0; t/ D ˛1d.0; t/C f1.t/; d.L; t/ D ˛2e.L; t/C f2.t/: (9.4)

The terms fi .t/ represent external forcing, whereas the terms involving ˛i allow
information carried along the outward-directed characteristic to be incorporated in
the boundary condition. The boundary condition at x D 0 can be rewritten as

.1 � ˛1/u.0; t/C .1C ˛1/�.0; t/=c D f1.t/;

thereby demonstrating that the value of ˛i determines how the forcing is appor-
tioned between u and �. If ˛i D �1, the boundary conditions on d and e reduce to
conditions on u. If ˛i D 1, the forcing determines �. When ˛i D 0, f .t/ specifies
values for the Riemann invariants d and e.

Well-posed boundary conditions for one-dimensional hyperbolic systems with
more unknowns may be determined by the same transformation procedure. Since
the system is hyperbolic, the coefficient matrix of the spatial derivative term can be
diagonalized by a suitable change of variables. Each component of the diagonalized
system will have the form (9.1) and will require a boundary value at inflow and no
value at outflow. Each positive eigenvalue of the coefficient matrix will therefore be
associated with a Riemann invariant requiring a boundary value at x D 0, and each
negative eigenvalue will necessitate the specification of a boundary value at x D L.

9.1.2 The Radiation Condition

Radiation boundary conditions can be easily imposed in the one-dimensional
shallow-water system by transforming the equations to the diagonal form (9.3) and
setting the incoming Riemann invariant to zero at each boundary. Unfortunately, this
approach does not easily generalize to two-dimensional shallow-water flow. In many
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practical problems it is simpler to retain the velocities and the height (or pressure)
field as the unknown prognostic variables and to develop open boundary conditions
involving these variables.

Consider, therefore, the problem of expressing the radiation boundary condition
at x D L in terms of u and � instead of the Riemann invariants in a case where
c > jU j. Since the incoming characteristic is zero at x D L for all t > 0, d.x; t/
must be zero throughout the wedge-shaped region of the x–t plane defined by the
inequalities .U � c/t C L < x < L. Thus, for all t > 0,

u.x; t/ D �.x; t/

c
(9.5)

in a small neighborhood of the x D L boundary. In the same neighborhood of
x D L, the equation for the outward-directed characteristic is

@

@t

�
uC �

c

�
C .U C c/

@

@x

�
uC �

c

�
D 0: (9.6)

Using (9.5) to eliminate �=c from the preceding equation yields the radiation
boundary condition for u at x D L,

@u

@t
C .U C c/

@u

@x
D 0: (9.7)

An identical radiation boundary condition for �,

@�

@t
C .U C c/

@�

@x
D 0; (9.8)

can be derived using (9.5) to eliminate u from (9.6). Similar conditions may also be
obtained x D 0; they are

@u

@t
C .U � c/

@u

@x
D 0 (9.9)

and
@�

@t
C .U � c/ @�

@x
D 0: (9.10)

The radiation boundary conditions (9.7) and (9.8) have the following alternative
derivation and interpretation as one-way wave equations. The general solution for
the perturbation velocity in the linearized shallow-water system may be expressed as

u D FrŒx � .U C c/t�C FlŒx � .U � c/t�:
The first component of the general solution, Fr, represents a wave traveling to the
right, and the second component represents a wave traveling to the left. The partial
differential equation (9.7) imposed at the boundary is satisfied by solutions of the
formFr but does not admit solutions of the formFl. All reflection at the right bound-
ary may be eliminated by ensuring that no leftward-propagating waves are present
at the boundary, and this may be achieved by imposing (9.7) and (9.8) at the right
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boundary. Because all the solutions to (9.7) propagate in the same direction, that
equation is sometimes known as a one-way wave equation. One-way wave equations
are particularly useful in problems involving several spatial dimensions.

9.1.3 Time-Dependent Boundary Data

In some applications it is important to allow changes in the surrounding fluid to
influence the interior solution while simultaneously radiating outward-propagating
waves through the boundary without reflection. Suppose that ue.x; t/ and �e.x; t/

are the velocity and the scaled free-surface displacement in a large domain contain-
ing the subdomain 0 � x � L, that c > jU j, and that information about the solution
in the large domain is to be used to generate boundary conditions for a simulation
of the linearized shallow-water equations inside the subdomain. It is not generally
possible simply to set u.L; t/ D ue.L; t/ and �.L; t/ D �e.L; t/ without generating
spurious reflections in those waves attempting to pass outward through the bound-
ary at x D L. Well-posed boundary conditions are obtained by specifying the value
of the incoming Riemann invariant. At the right boundary d.L; t/ is set to de.L; t/,
where

de.x; t/ D ue.x; t/ � �e.x; t/=c;

and at the left boundary e.0; t/ is set to ee.0; t/, where

ee.x; t/ D ue.x; t/C �e.x; t/=c:

As an alternative to the direct specification of the incoming Riemann invariants,
the data from the large domain can be incorporated in the one-way wave equations
for u and � as follows. For all t > 0, the value of the incoming Riemann invariant
in a small neighborhood of x D L will equal de.x; t/. Thus, in this neighborhood

u � �

c
D ue � �e

c
: (9.11)

Solving the preceding equation for � and substituting the result in the equation for
the outward-directed Riemann invariant (9.6) yields

�
@

@t
C .U C c/

@

@x

�
.u � ue/ D �1

2

�
@

@t
C .U C c/

@

@x

��
ue C �e

c

�
:

The right side of the preceding equation is zero by (9.6), since ue C �e=c is the
positive-phase-speed Riemann invariant for the large-scale flow. Thus, the boundary
condition at x D L reduces to�

@

@t
C .U C c/

@

@x

�
.u � ue/ D 0: (9.12)
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A similar derivation, in which (9.11) is used to eliminate u from (9.6) gives the
boundary condition on � as

�
@

@t
C .U C c/

@

@x

�
.� � �e/ D 0: (9.13)

In summary, the correct way to impose large-scale information at the boundaries of
the limited domain is not to simply set u.L; t/ D ue.L; t/ and �.L; t/ D �e.L; t/,
but rather to apply the radiation conditions (9.12) and (9.13) to the perturbation of
u and � about the values in the larger-scale flow (Carpenter 1982).

9.1.4 Reflections at an Artificial Boundary: The Continuous Case

Although exact nonreflecting boundary conditions were derived in Sect. 9.1.2 for the
one-dimensional shallow-water problem, exact formulae for nonreflecting boundary
conditions are not generally available in more complicated problems. Even in the
relatively simple case of two-dimensional shallow-water flow some approximation
to the exact radiation boundary condition is required to obtain a useful relationship
involving the prognostic variables and their derivatives at the lateral boundary (see
Sect. 9.2). As a consequence of these approximations, errors are introduced in the
mathematical model of the physical system before the governing equations are dis-
cretized. The errors generated by such approximations are considered in this section.

Consider the one-dimensional shallow-water equations on the domain 0�x�L
and suppose that a zero-gradient condition is used to approximate the correct radi-
ation boundary condition at the lateral boundaries. The strength of the reflections
generated at the x D 0 boundary may be analyzed by examining the behavior of a
unit-amplitude incident wave as it reflects off the boundary. Suppose that the pertur-
bation velocity has the form

u.x; t/ D sin
�
ki.x � .U � c/t/

�C r sin
�
kr.x � .U C c/t/C �

�
:

The first term in the preceding equation represents the unit-amplitude wave propa-
gating toward the boundary at x D 0, and the second term represents an arbitrary
reflected wave propagating away from that boundary. The amplitude, wave number,
and phase of this reflected wave are determined by the boundary condition at x D 0:

If the zero-gradient condition @u=@x D 0 is enforced at x D 0, then

ki cos
�
ki.U � c/t�C rkr cos

�
kr.U C c/t C �

� D 0: (9.14)

Since this equation must hold for all t , the two terms must be linearly dependent
functions of time, which implies that the frequencies of the incident and reflected
waves must be identical and that � D 0 (or � D π, which will only flip the sign of r).
Equating the frequencies yields a formula for the wave number of the reflected wave
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kr D ki

�
U � c

U C c

�
:

This, together with (9.14), implies that the amplitude of the reflected wave is

r D �ki

kr
D �U C c

U � c
:

If U > 0, the wavelength and the amplitude of the reflected wave exceed those of
the incident wave. After the initial reflection at x D 0, the reflected wave will travel
across the domain and experience a second reflection at x D L. If a zero gradient
condition is also specified at the right boundary, a similar analysis will show that the
reflection coefficient at x D L is

Or D �U � c
U C c

:

After reflecting off both the left and the right boundaries, the amplitude of the spu-
rious wave will be r Or D 1. No energy has escaped through the lateral boundaries!
Indeed, the net reflection generated by specifying @u=@x D 0 at both boundaries
is just as strong as that obtained from a pair of rigid lateral boundaries at which
u D 0. The same type of reflection is also obtained by specifying @�=@x D 0. Ev-
idently, @u=@x D 0 and @�=@x D 0 are not acceptable substitutes for the correct
nonreflecting boundary conditions (9.9) and (9.10).

9.1.5 Reflections at an Artificial Boundary: The Discretized Case

Once physically appropriate well-posed boundary conditions have been formulated,
the problem is ready for numerical solution. Unfortunately, additional difficulties
develop when the spatial derivatives in the continuous problem are replaced with fi-
nite differences. The first difficulty is that finite-difference formulae often require
boundary data where none are specified in the well-posed continuous problem.
The second difficulty is that most finite-difference formulae support nonphysical
modes that propagate in a direction opposite to the correct physical solution and
may thereby blur the distinction between inflow and outflow boundaries.

To examine the effects of spatial discretization, suppose that the advection
equation (9.1) is approximated by the differential–difference equation

d�j

dt
C U

�
�jC1 � �j�1

2�x

�
D 0 (9.15)

at j D 0; : : : ; N discrete grid points in the finite domain 0 � x � L. The preceding
differential–difference equation cannot be used to calculate �0 and �N because the
centered difference cannot be evaluated at a boundary. Suppose that U <0, so xDL
is an inflow boundary. Then a boundary condition .L; t/ D f .t/ must be imposed
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to render the continuous problem complete and well posed. This same inflow bound-
ary condition may be used to specify �N , but the numerical calculation of the so-
lution at the other boundary will be a problem. There is no boundary condition in
the formulation of the nondiscretized initial-boundary-value problem (IBVP) that
can be used to specify �0. Since  .0; t/ is determined by the interior solution, one
might try to estimate  .0; t/ by extrapolating the interior solution outward to the
boundary. The simplest extrapolation is

�0 D �1: (9.16)

This, of course, is a zero-gradient condition, and on the basis of the earlier dis-
cussion of zero-gradient conditions in the continuous shallow-water problem, one
might expect it to produce reflection.

The numerical boundary condition (9.16) does indeed produce some reflection,
but the situation is fundamentally different from that in the shallow-water system.
When c > jU j, the shallow-water equations support physical modes that propagate
both to the right and to the left. Specifying @u=@x D 0 or @�=@x D 0 generates
reflection from the outgoing physical mode into the incoming physical mode be-
cause these conditions are inadequate approximations to the correct open boundary
conditions in the shallow-water system. In contrast to the shallow-water system, all
physical solutions to the scalar advection equation (9.1) travel in the same direc-
tion. Any reflections that occur when (9.16) is used as a boundary condition for the
differential–difference equation (9.15) involve nonphysical numerical modes.

In the remainder of this section we will examine the interactions that may oc-
cur between physical and nonphysical modes as a result of the numerical approx-
imations that are made at an open boundary. This investigation will focus on the
simplest dynamical system in which such interactions occur – the problem of scalar
advection. A similar, though more tedious, analysis may be performed for shallow-
water flow after allowing for the fact that centered second-order finite-difference
approximations to the spatial derivatives in the one-dimensional shallow-water sys-
tem support two physical and two nonphysical modes. Under such circumstances,
a shallow-water wave arriving at a boundary may simultaneously reflect into two
inward-moving waves. If c > juj, one reflected wave will be a physical mode and
the other will be a nonphysical mode.

As discussed in Sect. 3.3.1, solutions of the form

�.x; t/ D ei.kj�x�!t/

satisfy the differential–difference equation (9.15), provided that

! D U
sin k�x

�x
: (9.17)

The group velocities of these waves are given by

@!

@k
D U cos k�x:



9.1 One-Dimensional Flow 463

For each ! there are two different wave numbers that satisfy the dispersion relation
(9.17): k1 and k2 D π=�x � k1. Since the group velocities of these two waves are
equal in magnitude but opposite in sign, it is useful to divide the waves resolvable on
the discrete grid into two categories: physical modes, for which 0 � k�x < π=2,
and nonphysical modes, for which π=2 � k�x � � . According to this division
of the modes, a group (or wave packet) of physical modes propagates in the same
direction as the true physical solution, whereas a group of nonphysical modes prop-
agates backward (4�x waves have zero group velocity). For each ! except U=�x
one of the roots of (9.17) is a physical mode and one is a nonphysical mode.

To determine the strength of the reflection introduced by the extrapolation bound-
ary condition (9.16), suppose that a disturbance oscillating at the frequency !
is present at the left boundary. This disturbance, being a solution of the interior
differential–difference equation, must have the form

�
˛eikj�x C ˇei.π�k�x/j � e�i!t :

Let the first term in the preceding equation represent the incident wave (with ˛ D 1)
and the second term the reflected wave (with ˇ D r). Then the disturbance has the
form �

eikj�x C r.�1/j e�ikj�x
�

e�i!t : (9.18)

Although the interior differential–difference equation will support a single-mode
solution with r D 0, the boundary condition (9.16) requires nonzero amplitude in
both modes. The amplitude of the reflected wave may be evaluated by substituting
(9.18) into (9.16), which yields

1C r D eik�x � re�ik�x :

Solving for r , one obtains

r D ieik�x tan
k�x

2
;

in which case

jr j D
ˇ̌̌
ˇtan

k�x

2

ˇ̌̌
ˇ :

If the incident wave is well resolved, then k�x � 1, and there is very little reflec-
tion. The magnitude of the reflection coefficient rises to unity for the 4�x wave, and
it approaches infinity for a 2�x wave. It may appear that the large reflection coeffi-
cients associated with very short waves make the zero-gradient condition unusable,
but if (9.16) is applied at the outflow boundary, no waves shorter than 4�x will
ever reach that boundary because the group velocities of these short waves are di-
rected upstream. The zero-gradient condition is therefore a possibly useful outflow
boundary condition for the advection equation. On the other hand, the large reflec-
tion coefficients associated with the shortest waves do render (9.16) unsuitable as an
inflow boundary condition because waves with wavelengths between 2�x and 4�x
propagate upstream and rapidly amplify when they encounter the inflow boundary.
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Nitta (1962) and Matsuno (1966a) used a similar procedure to analyze the
reflections generated by a wide variety of boundary conditions. The magnitude of
the reflection coefficient generated by a fixed boundary value, such as �0 D 0, is
unity. Although fixed boundary values are not appropriate at outflow, they are useful
at the inflow boundary, where the only waves that encounter the boundary will be
low-amplitude nonphysical modes. Second-order extrapolation,

�0 D 2�1 � �2; (9.19)

has reflection jr j D jtan.k�x=2/j2. The general nth-order extrapolation

nX
mD0

.�1/m
�

nŠ

mŠ.n �m/Š
�
�m D 0

reflects with amplitude jr j D j tan .k�x=2/ jn. Higher-order extrapolation reduces
the reflection of well-resolved physical waves, but it increases the reflection of non-
physical modes.

As an alternative to extrapolation, one might employ a one-sided finite difference
at an outflow boundary, replacing (9.15) by

d�0

dt
C U

�
�1 � �0

�x

�
D 0: (9.20)

The reflections generated by this scheme may once again be analyzed by substituting
the general solution (9.18) into (9.20). The result is

�i!.1C r/C U

�x
.eik�x � re�ik�x/� U

�x
.1C r/ D 0:

After substituting for ! from the dispersion relation (9.17), the preceding equation
simplifies to

jr j D
ˇ̌̌
ˇ 1 � cos k�x

1C cosk�x

ˇ̌̌
ˇ D tan2

�
k�x

2

�
:

Thus, the magnitude of the reflection coefficient generated by one-sided differencing
is identical to that produced by second-order extrapolation.

The interaction of physical and nonphysical modes with the lateral boundaries is
illustrated in Fig. 9.2, which is patterned after an example in Trefethen (1985). The
differential–difference advection equation was solved on the domain 0 � x � 1,
with U D 1,�x D 0:01, and the initial distribution of �j was given by the rectified
Gaussian

�j D 0:5
�
1C .�1/j � e�400.x�0:5/2 :

The inflow condition was �0 D 0, and the outflow condition was �N D �N�1.
The time derivative was approximated using trapezoidal time differencing with
a small Courant number. The initial condition is shown in Fig. 9.2a. Figure 9.2b
shows the solution shortly before the disturbances encounter the lateral boundaries;
the direction in which each disturbance is propagating is indicated by an arrow.
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a

b

c

Fig. 9.2 Approximate solution to the differential–difference equation (9.15) at time a 0, b 0.25,
and c 0.75

The long-wave component of the solution travels toward the outflow boundary in
a physically correct manner, but the 2�x wave packet propagates upwind at speed
�U . After the disturbances have reflected off the lateral boundaries, the solution ap-
pears as shown in Fig. 9.2c. Physical modes are reflected into nonphysical modes by
the outflow boundary condition, but since the initial disturbance is well resolved, the
reflection is relatively weak. The left-moving nonphysical mode is reflected, without
loss of amplitude, into a right-moving physical mode at the inflow boundary. The
strong reflection at the left boundary is not necessarily indicative of a deficiency
in the inflow boundary condition. Only nonphysical modes lead to difficulties at
the inflow boundary, and even those modes are not amplified. One can eliminate
the problem at the upstream boundary by filtering the nonphysical modes out of the
interior solution.

In addition to the evaluation of the reflection coefficient, one can also exam-
ine the formal accuracy of the numerical boundary condition by substituting Taylor
series expansions into the discretized formula in the usual manner (see Sect. 2.1).
Gustafsson (1975) showed that there is generally no degradation in the overall order
of convergence if the boundary conditions are formulated with one order less ac-
curacy than that used for the interior finite differences. In many practical problems
the order of accuracy of the discretized approximation to the radiation condition is
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actually a relatively minor concern. The numerical errors generated at the boundary
often involve reflections into poorly resolved short waves, and the accuracy achieved
in the representation of such poorly resolved features is not reliably determined by
the leading-order term in the truncation error. Moreover, in complex multidimen-
sional problems the most serious errors are often introduced in the mathematical
formulation of approximate radiation boundary conditions, and it is not necessary to
implement these approximate conditions with highly accurate numerical formulae.

In fact, the optimal nonreflecting boundary condition for a discretized problem
is not generally a high-order approximation to the exact one-way wave equation
for the continuous problem, but rather the one-way wave equation whose discrete
dispersion relation best replicates the propagation characteristics of the interior
finite-difference scheme (Engquist and Majda 1979). As an example, suppose that
solutions are sought to the one-dimensional advection equation using the semidis-
crete approximation (9.15). The optimal boundary condition would be one that
masks the apparent change in the propagation medium generated by the differ-
ence between the finite-difference formulae at the boundary and the interior of the
domain. The dispersion relation for the one-way wave equation that will pass solu-
tions to this semidiscrete system through the boundary with zero reflection would
be ! D U sin.k�x/=�x rather than the exact condition ! D Uk. Unfortunately,
techniques are not currently available to create a practical boundary condition with
either of these dispersion relations.

9.1.6 Stability in the Presence of Boundaries

Pure initial-value, or Cauchy, problems are posed on infinite or periodic domains.
Methods for analyzing the stability of finite-difference approximations to Cauchy
problems were presented in Sect. 3.2. Unfortunately, the imposition of a boundary
condition at the edge of a limited domain can destabilize numerical methods that
are stable approximations to the Cauchy problem. In this section we will examine
the additional properties that must be satisfied to ensure the stability of numerical
approximations to IBVPs.

As in Sect. 3.2, the present analysis will be restricted to linear problems with con-
stant coefficients, for which the theory is simplest and most complete. The easiest
way to determine the stability of a linear constant-coefficient initial-value problem
on the unbounded domain �1 < x < 1 is to use von Neumann’s method, which
examines the behavior of individual waves of the form

ei.kj�x�!n�t/: (9.21)

According to the von Neumann criterion, a numerical method is stable if it does not
amplify any of the modes resolved on the numerical mesh. Defining � D eik�x and
z D e�i!�t , one may write the grid-point values associated with each wave as �j zn.
The von Neumann stability of the Cauchy problem requires jzj � 1 for all j�j D 1.
Spatial distributions other than pure sinusoidal waves may also be represented in the
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form �j zn. If j�j < 1, the expression (9.21) represents an oscillation whose ampli-
tude grows exponentially as x ! �1. There is no need to worry about the stability
of this type of mode in the Cauchy problem, because it is not an admissible solution
on a periodic or unbounded domain. If, however, the same equations are to be solved
as an IBVP on the half-infinite domain x � 0, then the mode is admissible (since
j�jj ! 0 as j ! 1). The stability requirement for IBVPs on the half-bounded
domain x � 0 must therefore be extended to the Godunov–Ryabenki condition that
jzj � 1 for all j�j � 1. (If the domain is �1 < x � 0, the modes to be examined
are those for which j�j � 1.)

Although the Godunov–Ryabenki condition is necessary for stability, it is not
sufficient to guarantee that numerical solutions to IBVPs are stable. General condi-
tions for stability were given by Gustafsson et al. (1972), who noted that in prac-
tice, the most important stability question involves the behavior of modes for which
jzj D 1 and j�j D 1. These modes are undamped waves; they can lead to instability
if the interior finite-difference scheme together with the numerical boundary condi-
tion permits unforced waves to propagate inward through the boundary. Trefethen
(1983) showed that the Gustafsson–Kreiss–Sundström (GKS) stability condition is
essentially equivalent to the requirement that (1) the interior difference formula is
stable for the Cauchy problem, (2) the model (including the boundary conditions)
admits no eigensolutions that amplify with each time step by a constant factor z
with jzj > 1 (i.e., the Godunov–Ryabenki stability condition is satisfied), and (3)
the model (including the boundary conditions) admits no unforced waves with group
velocities directed inward through the boundaries of the domain.

To see how a numerical method might allow waves to spontaneously propagate
inward through a lateral boundary, suppose that the advection equation (9.1) is to be
solved on the semi-infinite domain 0 � x � 1, and that U < 0, so x D 0 is an
outflow boundary. The interior solution will be approximated using leapfrog-time
centered-space differencing

�nC1
j � �n�1

j C �.�njC1 � �nj�1/ D 0; (9.22)

where � D U�t=�x. The outflow boundary condition will be determined by
extrapolation, �n0 D �n1 . The numerical dispersion relation for the interior finite-
difference scheme (9.22) is

sin!�t D � sin k�x: (9.23)

Substituting a wave of the form (9.21) into the extrapolation boundary condition
yields

1 D eik�x: (9.24)

The free modes of this finite-difference IBVP consist of those waves for which
! and k simultaneously satisfy (9.23) and (9.24), and they include the mode
.!; k/ D .�=�t; 0/, whose group velocity,

@!

@k
D U

cosk�x

cos!�t
;
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a

b

c

initial condition

500 steps

501 steps

Fig. 9.3 Solution to (9.1) at a the initial time, and after b 500 and c 501 time steps

is �U . The mode .π=�t; 0/ is therefore a free mode of the discretized problem
that can propagate inward through the downstream boundary, and according to
Trefethen’s interpretation of the GKS stability criteria, the scheme should be un-
stable. This instability is demonstrated in Fig. 9.3, which shows a numerical inte-
gration of (9.22) on the interval 0 � x � 1. The initial data, plotted in Fig. 9.3a, are
random numbers with amplitudes between 0 and 0:2. The wind speed is U D �1,
so x D 1 is an inflow boundary at which �n100 is fixed at zero. The extrapolation
condition �n0 D �n1 is applied at outflow; �x D 0:01, and the time step is fixed
such that the Courant number is 0.9. Figure 9.3b and c shows the solution at two
adjacent time steps after the instability has developed at the downstream boundary.
As suggested by the preceding analysis, the growing mode has a period of 2�t and
a long horizontal wavelength.

To stabilize the numerical solution, it is necessary to change either the interior
finite-difference equation or the boundary condition. Suppose the boundary condi-
tion is replaced by �n0 D �n�1

1 , which is a backward extrapolation in both space and
time. Substitution of the wave solution (9.21) into this boundary condition yields

1 D eik�xei!�t ;
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or
k�x C !�t D 2n�; n D 0;˙1;˙2; : : : : (9.25)

This condition is not satisfied by the previously troublesome mode .!; k/ D
.π=�t; 0/. The only resolvable modes that simultaneously satisfy (9.25) and the
dispersion relation (9.23) are .!; k/ D .0; 0/ and .π=�t; π=�x/, both of which
have outward-directed group velocities. The numerical IBVP is therefore stable.

The numerical solution may be alternatively stabilized without modifying the
original boundary condition �n0 D �n1 if the leapfrog time difference is replaced by
the trapezoidal scheme:

�nC1
j � �nj C �

4

�
�nC1
jC1 � �nC1

j�1 C �njC1 � �nj�1
�

D 0:

The dispersion relation and group velocity for the preceding trapezoidal scheme are

tan

�
!�t

2

�
D �

2
sin k�x and

@!

@k
D U cos.k�x/ cos2

�
!�t

2

�
:

The only resolvable modes satisfying the boundary condition (9.24) are those for
which k�x D 0. The group velocities of all such modes have the same sign as U
and are directed outward through the downstream boundary. Since the numerical
schemedoesnotsupportfreemodeswithinward-directedgroupvelocities, it isstable.

Observe that the extrapolation condition �n0 D �n1 would never be stable for
an inflow boundary, because the group velocity of the zero-wave-number physical
mode .!; k/ D .0; 0/ is directed inward through the boundary, and this mode
satisfies both the boundary condition and the interior finite-difference scheme. Such
instability might have been anticipated from the reflection-coefficient analysis in
the preceding section, which indicated that the reflection coefficient associated with
zero-order extrapolation at an inflow boundary becomes infinite as k�x ! π.
The connection between the reflection coefficient and stability is, however, some-
what complex. Boundary conditions associated with infinite coefficients are always
unstable, but GKS stability does not require jr j � 1. Further discussion of the
relation between reflection coefficients and instability appears in Trefethen (1985).
The stability, or lack thereof, of several basic methods for the numerical solution of
the advection equation is presented in a series of examples by Goldberg and Tadmor
(1985).

In most situations, two boundaries are present, and one needs stable methods for
closed spatial domains such as 0 � x � L. Gustafsson et al. (1972) showed that the
stability of the two-boundary problem can be determined by analyzing each bound-
ary separately. If the boundary condition at x D 0 and the interior finite-difference
formulae are GKS-stable approximations to an IBVP on the domain 0 � x < 1,
and if the boundary condition at x D L is also GKS stable for problems on the do-
main �1 < x � 0, then the two-boundary problem is GKS stable. The basic reason
why each boundary can be considered separately is that the simultaneous presence
of two boundaries does not admit new types of eigensolutions beyond those whose
stability was already tested in the pair of single-boundary problems. Nevertheless,
GKS stability does not guarantee that the solution to the two-boundary problem
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will be completely satisfactory. In particular, it is possible for a method to be GKS
stable but to generate reflections with jr j > 1. If the reflection coefficient at both
boundaries exceeds unity, the solution may grow with time. Such growth is not a
true instability, in the sense that it need not prevent the convergence of integrations
performed over some fixed time interval, since, in theory, the error can be made
arbitrarily small in the limit �x ! 0, �t ! 0. Nevertheless, in most practical
situations it is advisable to choose a method with jr j � 1 at both boundaries.

9.2 Two-Dimensional Shallow-Water Flow

Exact and practically useful mathematical formulae for the specification of nonre-
flecting boundary conditions are seldom available in multidimensional problems.
The difficulties are readily apparent in two relatively simple examples: two-
dimensional shallow-water flow and two-dimensional vertically stratified flow.
Boundary conditions for the two-dimensional shallow-water system will be dis-
cussed in this section. Stratified flow will be considered in Sect. 9.3.

The two-dimensional shallow-water equations, linearized about a basic state with
constant mean flow .U; V / and depthH , may be written

0
@uv
�

1
A
t

C
0
@U 0 1

0 U 0

c2 0 U

1
A
0
@uv
�

1
A
x

C
0
@V 0 0

0 V 1

0 c2 V

1
A
0
@uv
�

1
A
y

D 0; (9.26)

where the notation follows that used in Sect. 9.1.1. Suppose that a solution is sought
in the limited domain 0 � x � L, 0 � y � L. In contrast to the one-dimensional
case, the two-dimensional system cannot be reduced to a set of three scalar equations
because no transformation of variables will simultaneously diagonalize both coeffi-
cient matrices. Nevertheless, the coefficient matrix multiplying the x-derivative can
be diagonalized through the same change of variables used in the one-dimensional
problem. Defining d � u � �=c and e � u C �=c as before, the two-dimensional
system becomes

0
@dv
e

1
A
t

C
0
@U � c 0 0

0 U 0

0 0 U C c

1
A
0
@dv
e

1
A
x

C
0
@ V �c 0

�c=2 V c=2

0 c V

1
A
0
@dv
e

1
A
y

D 0:

This equation is useful for determining the number of boundary conditions that
should be specified at the x-boundaries. In the case c > U > 0, the signal in
v and e is propagating inward through the boundary at x D 0, and the signal in
d is propagating inward through the boundary at x D L. To obtain a well-posed
problem, one might therefore attempt to specify two conditions at x D 0 of the form

e.0; t/ D ˛1d.0; t/C f1.t/; v.0; t/ D ˛2d.0; t/C f2.t/;
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and one condition at x D L of the form

d.L; t/ D ˛3e.L; t/C ˛4v.L; t/C f3.t/: (9.27)

This approach follows the guideline that the number of conditions specified at each
boundary should be equal to the number of eigenvalues associated with outward
propagation through each boundary. Even so, not all choices of ˛1; : : : ; ˛4 yield
a well-posed problem. Oliger and Sundström (1978) and Sundström and Elvius
(1979) provided details about various allowable values for ˛1; : : : ; ˛4. One way to
obtain a well-posed problem is by choosing ˛1 D ˛2 D ˛3 D ˛4 D 0, which
specifies e and v at inflow and d at outflow.

Unlike the one-dimensional case, it is not clear what values of e, v, and d should
be prescribed to prevent waves impinging on the boundary from partially reflecting
into an inward-propagating mode. Suppose that the incoming variable d is set to
zero at x D L, and suppose that a wave of the form .u; v; �/ D . Ou; Ov; O�/ expŒi.kxC
`y � !t/� is approaching this boundary as shown in Fig. 9.4. The amplitudes Ou and
O� are related by the linearized x-momentum equation (first row of (9.26)), which
for the simplest case with no mean flow yields Ou D .k=!/ O�. Using this expression
for Ou,

d.L; y; t/ D
�
k

!
� 1

c

�
O�ei.kLC`y�!t/ D 1

c

�
k

.k2 C `2/1=2
� 1

�
O�ei.kLC`y�!t/;

where the dispersion relation for shallow-water waves (9.29) has been used to re-
place ! to obtain the second equality. Thus, the condition d.L; y; t/ D 0 cannot be
satisfied without the simultaneous presence of a second reflected wave unless ` D 0,
or equivalently, unless the outward-propagating wave is traveling at right angles to
the boundary.

9.2.1 One-Way Wave Equations

Engquist and Majda (1977) suggested that an effective approximation to the true
radiation boundary condition in the two-dimensional shallow-water system could
be obtained using a one-way wave equation whose solutions are waves with group
velocities directed outward through the boundary. To minimize spurious reflection at
the boundary, this one-way wave equation should be designed such that its solutions
approximate the outward-directed waves in the shallow-water system as closely as
possible.

Consider the linearized shallow-water equations for a basic state with no mean
flow, which reduce to

@2�

@t2
� c2

�
@2�

@x2
C @2�

@y2

�
D 0: (9.28)
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Substituting solutions of the form

�.x; y; t/ D �0ei.kxC`y�!t/

(where k and ` may be positive or negative, but ! � 0 to avoid redundancy) into
(9.28) gives the shallow-water dispersion relation

!2 D c2
�
k2 C `2

	
; (9.29)

or equivalently,

k D ˙!

c

�
1 � c2`2

!2

�1=2
: (9.30)

The group velocity parallel to the x-axis is

cgx
D @!

@k
D kc

�
k2 C `2

	�1=2
:

No plus or minus sign appears in the preceding equation because ! is nonnegative
– the sign of the group velocity is determined by the sign of k. Spurious reflection
can be eliminated at the right boundary by requiring that all waves present at x D L

propagate energy in the positive x direction or, equivalently, that their dispersion
relation be given by the positive root of (9.30), so that

k D !

c

�
1 � c2`2

!2

�1=2
: (9.31)

If ` were zero, (9.31) would reduce to ! D kc, which is the dispersion relation
associated with a one-way wave equation of the form

@�

@t
C c

@�

@x
D 0: (9.32)

This is the radiation boundary condition obtained in Sect. 9.1.2 for the one-
dimensional shallow-water system, and it is also an exact radiation condition
for two-dimensional waves propagating directly parallel to the x-axis, but it is only
an approximation to the correct boundary condition for those waves that strike the
boundary at nonnormal angles of incidence.

When ` is not zero, (9.31) ceases to be the dispersion relation for any differential
equation because it contains a square root.2 Engquist and Majda proposed approx-
imating (9.31) with an algebraic expression that is the dispersion relation for some
differential equation and using that differential equation as an approximate nonre-
flecting boundary condition. Let

2 The relation (9.31) is sometimes described as a dispersion relation for a pseudodifferential
operator.
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	2 D c2`2

!2
D `2

k2 C `2
:

Under the assumption that 	 is small, the lowest-order approximation to the square
root in (9.31) is simply

.1 � 	2/1=2 � 1;

which reduces (9.31) to the dispersion relation for one-dimensional shallow-water
flow and yields the boundary condition (9.32).

Engquist and Majda’s second-order approximation is

.1 � 	2/1=2 � 1 � 	2

2
;

which yields the dispersion relation

!2 � ck! � c2`2

2
D 0:

The partial differential equation associated with this dispersion relation,

@2�

@t2
C c

@2�

@t@x
� c2

2

@2�

@y2
D 0; (9.33)

can be imposed as an approximate radiation boundary condition at x D L. The well-
posedness of this boundary condition was demonstrated by Engquist and Majda
(1977); see also Trefethen and Halpern (1986).

The benefits associated with the use of (9.33), instead of the first-order scheme
(9.32), can be assessed by computing the magnitude of the spurious reflection gener-
ated by each scheme as a function of the angle at which outward-propagating waves
strike the lateral boundary. Consider again the situation shown in Fig. 9.4, in which a
wave is approaching the boundary at x D L. The lines of constant phase are parallel
to the wave troughs and crests and satisfy F.x; y/ D 0, where

F.x; y/ D kx C `y � C;

C is a constant, and, in the case shown in Fig. 9.4, k and ` are positive. The group
velocity of the wave is both perpendicular to the lines of constant phase and parallel
to the wave-number vector .k; `/, since

�
@!

@k
;
@!

@`

�
D c2

!
.k; `/ D c2

!
rF:

Let 
 be the angle by which the propagation of the wave deviates from the direction
normal to the boundary. Then tan 
 D `=k, and from the dispersion relation (9.29),

k D !

c
cos 
; ` D !

c
sin 
: (9.34)
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Fig. 9.4 Wave crest appro-
aching the “east” boundary at
x D L

θ

wave crest

cg

Suppose that a wave of unit amplitude in � strikes the boundary and is reflected
as a wave of amplitude r . Since both the first-order and the second-order one-way
wave equations are linear functions of �, they cannot be satisfied at x D L unless
the incident and reflected waves are linearly dependent functions of y and t . The
frequency and the wave number parallel to the y-axis must therefore be the same in
the incident and reflected waves. Then it follows from the dispersion relation (9.29)
that the wave numbers parallel to the x-axis have the same magnitude and opposite
sign and that the sum of the incident and reflected waves may be expressed in the
form

�.x; y; t/ D ei.kxC`y�!t/ C rei.�kxC`y�!t/: (9.35)

Here the first term represents the wave approaching the boundary, and the second
term represents the reflected wave.

To evaluate the magnitude of the reflected wave, (9.35) may be substituted into
the first-order boundary condition (9.32) to obtain

r D �
�
! � kc
! C kc

�
e2ikL:

Using (9.34),

jr j D
ˇ̌̌
ˇ! � kc

! C kc

ˇ̌̌
ˇ D

ˇ̌̌
ˇ 1 � cos 


1C cos 


ˇ̌̌
ˇ ;

showing that the first-order condition is perfectly nonreflecting when the waves
approach the boundary along a line normal to the boundary.

The second-order Engquist and Majda boundary condition can be rewritten in
the form �

@

@t
C c

@

@x

�2
� D 0 (9.36)

by eliminating �yy from (9.33) using the shallow-water wave equation (9.28). Sub-
stituting (9.35) into the preceding equation, one obtains the reflection coefficient for
the second-order scheme,
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jr j D
ˇ̌̌
ˇ 1 � cos 


1C cos 


ˇ̌̌
ˇ
2

;

which is once again perfectly nonreflecting when the waves are propagating per-
pendicular to the boundary. Higdon (1986) observed that if the first-order Engquist–
Majda boundary condition (9.32) is modified to require

cos˛
@�

@t
C c

@�

@x
D 0;

the reflection coefficient becomes

jr j D
ˇ̌
ˇ̌ cos˛ � cos 


cos˛ C cos 


ˇ̌
ˇ̌ ;

which is perfectly nonreflecting for waves striking the boundary at an angle ˛.
Higdon also noted that higher-order nonreflecting boundary conditions may be writ-
ten in the form 2

4 pY
jD1

�
cos˛j

@

@t
C c

@

@x

�35 � D 0: (9.37)

The preceding family of schemes includes the second-order Engquist and Majda
formulation (for which p D 2 and ˛1 D ˛2 D 0). The advantage of (9.37) arises
from the fact that

jr j D
pY
jD1

ˇ̌
ˇ̌ cos˛j � cos 


cos˛j C cos 


ˇ̌
ˇ̌ ;

and thus the generalized scheme is perfectly nonreflecting for waves arriving at
each of the angles ˛j , whereas the original Engquist and Majda formulations are
only perfectly nonreflecting for waves propagating perpendicular to the boundary.

The reflectivity of several schemes is illustrated in Fig. 9.5, in which the mag-
nitude of the reflection coefficient is plotted as a function of the angle at which
the waves propagate into the boundary. The advantages of the various second-order
methods over the first-order method (9.32) are clearly evident; however, the differ-
ence between the various second-order schemes is more subtle. The second-order
method with perfect transmission at 
 D 0ı and 45ı appears to offer the best overall
performance for waves striking the boundary at angles between 0ı and 50ı.

9.2.2 Numerical Implementation

The second-order approximation of Engquist and Majda (9.33) requires the evalua-
tion of derivatives parallel to the boundary, which can be a problem near the corners
of a rectangular domain. Engquist and Majda (1979) suggested using a first-order
approximation at the corner and at the two mesh points closest to the corner. They
assumed that the waves propagated into the corner along a diagonal, in which case
the boundary condition at the “northeast” corner of a rectangular domain would be
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Fig. 9.5 Dependence of the reflection coefficient on the angle of incidence .�/ for shallow-water
waves in which the lateral boundary condition is given by the first-order condition (1), the second-
order Engquist and Majda condition (EM2), or Higdon’s second-order formulation with perfect
transmission at � D 0ı and � D 45ı (H45) or � D 0ı and � D 60ı (H60)
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� D 0:

This equation can be approximated using upstream differencing.
Higdon’s higher-order boundary condition (9.37) does not involve derivatives

parallel to the boundary and thereby avoids problems in the corners. Care must
nevertheless be taken to ensure the stability of the numerical approximation to the
higher-order derivatives that appear in (9.37) when p � 2. Define �nr;s as the numer-
ical approximation to �.r�x; s�y; n�t/ and S�

j as a shift operator with respect to
the j th coordinate such that S�

x .�
n
r;s/ D �nr�1;s and S�

t .�
n
r;s/ D �n�1

r;s . The pth-
order radiation boundary condition at the “east” boundary may be approximated as
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I � S�

x

�x

��35�nN;s D 0; (9.38)

where N is the x index of the eastern boundary point and cj D c= cos˛j . The pre-
ceding equation may be solved to yield a formula for �nN;s . For p � 2 there is an im-
plicit coupling between the interior and boundary values at time n�t . This coupling
does not, however, lead to a loss of efficiency, provided that the solution on the inte-
rior points can be updated before the points on the boundary, as would be the case if
an explicit finite-difference scheme were used to approximate the governing equa-
tion in the interior. Higdon (1987) showed that (9.38) is stable when used in con-
junction with a centered second-order approximation to the interior finite-difference
equation of the form

ı2t � � c2
�
ı2x� C ı2y�

	 D 0:
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9.3 Two-Dimensional Stratified Flow

The incompressible Boussinesq equations linearized about a reference state with a
uniform horizontal wind U can be written in the form�

@

@t
C U

@

@x

�
uC @P
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D 0; (9.39)
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C @w

@z
D 0; (9.42)

where b, P , andN 2 are defined according to (8.42). Suppose that solutions to these
equations are sought in the limited domain �L � x � L and �H � z � H and that
open boundary conditions are to be imposed at the edges of the domain. As in the
two-dimensional shallow-water system, difficulties are immediately encountered in
trying to formulate exact open boundary conditions for the continuous equations.
Our first goal will be, therefore, to derive approximate open boundary conditions
for the nondiscretized problem, after which we will consider numerical methods for
using these boundary conditions in conjunction with the fully discretized equations.

9.3.1 Lateral Boundary Conditions

The chief difficulty in formulating open lateral boundary conditions for two-
dimensional stratified flow is usually attributed to the dispersive nature of inter-
nal gravity waves. The incompressible Boussinesq system (9.39)–(9.42) supports
solutions of the form
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CCA ei.kxCmz�!t/; (9.43)

provided that the wave numbers and frequencies satisfy the dispersion relation

! D Uk ˙ Nk

.k2 Cm2/1=2
: (9.44)

These waves are dispersive, since their phase speed !.k2Cm2/�1=2 is a function
of the spatial wave numbers k and m. (See Whitham 1974 for further details on
dispersive waves.) The difficulties that arise in formulating open lateral bound-
ary conditions for these waves are, however, very similar to those encountered
in formulating boundary conditions for nondispersive shallow-water waves in two
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dimensions. Those difficulties do not arise from wave dispersion per se, but rather
from the fact that the x trace speed3 for the outward-propagating wave is a function
of k and m that cannot be manipulated to form the exact dispersion relation for a
partial differential equation.

To determine the dispersion relation governing the outward-propagating wave,
note that the horizontal group velocity for internal gravity waves is

@!

@k
D U ˙ Nm2

.m2 C k2/3=2
: (9.45)

Temporarily assume that U D 0; then the mode associated with the positive root
in (9.44) will have positive group velocity, and a perfect open boundary condition
at x D L will require that all waves present at the boundary satisfy the dispersion
relation

! D Nk

.k2 Cm2/1=2
: (9.46)

Since the preceding expression is not the dispersion relation for a partial differential
equation, it cannot be used to express the open boundary condition at x D L in terms
of the physical variables on the computational mesh. To obtain an approximate open
boundary condition, define Qc as the x trace speed, !=k. If the dependence of Qc on
m and k could be neglected, the dispersion relation for the correct open boundary
condition would become ! D Qck, which is the dispersion relation for the familiar
one-way wave equation �

@

@t
C Qc @

@x

�
 D 0: (9.47)

Of course, the dependence of Qc on m and k cannot be properly ignored, and as
a consequence, (9.47) is only an approximate open boundary condition that will
induce spurious reflection in all waves for which

Qc ¤ N

.k2 Cm2/1=2
:

In most practical applications several different waves are simultaneously present at
the boundary, and no single value of Qc will correctly radiate all of the waves.

Considerable effort has, nevertheless, been devoted to devising estimates for Qc
that minimize the reflections generated by (9.47). In the hydrostatic limit, which
often applies in geophysical problems, k2 � m2 and Qc ! N=m, so the task of
estimating Qc reduces to that of estimating the vertical wave number of those modes
striking the boundary. Pearson (1974) suggested using a fixed value of Qc equal to
the x trace speed of the dominant vertical mode. As an alternative, Orlanski (1976)
suggested calculating Qc at a point just inside the boundary using the relation

3 The x trace speed, !=k, is the apparent phase speed of the wave parallel to the x-axis. Unless
the wave is propagating parallel to the x-axis, the x trace speed exceeds the true phase speed
!.k2 Cm2/�1=2 .
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Qc D � @ =@t
@ =@x

: (9.48)

The results of this calculation must be limited to values in the interval 0 � Qc �
�x=�t to preserve the stability of the commonly used upstream approximation to
(9.47). Orlanski’s approach has the virtue of avoiding the specification of arbitrary
parameters, but it amounts to little more than an extrapolation procedure, since the
same equation is applied at slightly different locations on the space–time grid to
determine both Qc and @ =@t . Moreover, (9.47) has no a priori validity in the contin-
uously stratified problem, since there is generally no correct value of Qc to diagnose
via (9.48).

Durran et al. (1993) investigated the effectiveness with which (9.48) diagnosed
the phase velocity of numerically simulated shallow-water waves, for which Qc has
the well-defined value of

p
gH . Except during the passage of a trough or crest,

a simple finite-difference approximation to (9.48) proved capable of diagnosing a
reasonable approximation to

p
gH in a control simulation on a very large periodic

domain in which all waves propagating past the point of the calculation were really
traveling in the positive x direction. Attempts to perform the same diagnostic cal-
culation for Qc in conjunction with the imposition of a radiation boundary condition
in a second simulation were, however, a complete failure. Small errors in the ini-
tial diagnosis of Qc generated weak reflected waves. These reflected waves generated
increasing errors in the calculation of Qc because (9.47) does not apply at locations
where both rightward- and leftward-propagating waves are present. The additional
error in Qc increased the amplitude of the spurious reflected waves and induced a
positive feedback that rapidly destroyed the reliability of the Qc calculation. The ma-
jority of the values computed from (9.48) were outside the stability limits for the
upstream method and had to be reset to either zero or �t=�x. Durran et al. (1993)
also considered tests in which the physical system supported several different modes
moving at different trace speeds and concluded that it is best to use a fixed Qc.

When the mean horizontal wind is not zero, Qc is replaced by the Doppler-shifted
trace speeds U C Qc and U � Qc at the upstream and downstream boundaries, respec-
tively. One should also ensure that these Doppler-shifted trace speeds are actually
directed out of the domain by choosing j Qcj > jU j at the inflow boundary. In some
applications the dominant upstream-propagating mode may have a different intrinsic
trace speed from the dominant downstream-propagating mode, and in such circum-
stances it can be useful to specify the Doppler-shifted trace speeds as U C Qc1 and
U � Qc2 without requiring Qc1 D Qc2.

Higdon (1994) suggested that an improved approximation to the radiation bound-
ary condition for dispersive waves can be obtained by replacing the basic one-way
wave equation (9.47) with the product of a series of one-way operators of the form

2
4 pY
jD1

�
@

@t
C Qcj @

@x

�35 D 0; (9.49)

where the set of Qcj is chosen to span the range of x trace speeds associated with the
waves appearing at x D L. The preceding expression is a generalization of Higdon’s
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radiation boundary condition for shallow-water waves (9.37). Although this scheme
does not seem to have been used as a boundary condition for limited-area models
of stably stratified flow, Higdon successfully used to it simulate dispersive shallow-
water waves on an f -plane.

The spurious reflection generated by the Higdon boundary condition can be de-
termined by considering a unit-amplitude wave striking the boundary at x D L. To
satisfy (9.49) exactly, a reflected wave of amplitude r must also be present, in which
case the total solution may be expressed as

 .x; z; t/ D ei.kxCmz�!t/ C rei. QkxC Qmz� Q!t/:

The frequencies and vertical wave numbers of the incident and reflected waves must
be identical, or the preceding expression will not satisfy (9.49) for arbitrary values
of z and t . Since Qm D m and Q! D !, the dispersion relation implies that Qk D �k.
Using these results to substitute

 .x; z; t/ D ei.kxCmz�!t/ C rei.�kxCmz�!t/

into (9.49) and recalling the definition Qc D !=k, one obtains

jr j D
pY
jD1

ˇ̌
ˇ̌ Qc � Qcj

Qc C Qcj

ˇ̌
ˇ̌ :

If the waves are quasi-hydrostatic, Qc D N=m, and the reflection coefficient may be
alternatively expressed as

jr j D
pY
jD1

ˇ̌
ˇ̌m �mj
mCmj

ˇ̌
ˇ̌ ; (9.50)

where mj is the vertical wave number of a quasi-hydrostatic wave moving parallel
to the x-axis at speed Qcj . The reflections generated by the Higdon boundary con-
dition are plotted as a function of the vertical wave number of the incident wave in
Fig. 9.6. The waves are assumed to be quasi-hydrostatic, so the reflection coefficient
is determined by (9.50). Perfect transmission is achieved whenever the vertical wave
number of the incident wave matches one of themj . When the perfectly transmitted
waves in the two-operator scheme are chosen such thatm2 D 3m1, the range of ver-
tical wave numbers that are transmitted with minimal reflection is much larger than
that obtained using the standard one-way wave equation. The range of wave num-
bers that undergo minimal spurious reflection can be further increased by using the
three-operator scheme, which was configured such that m2 D 3m1 and m3 D 9m1
in the example plotted in Fig. 9.6.

The Higdon boundary condition can be implemented in the numerical approx-
imations to the momentum and buoyancy equations (9.39)–(9.41) using the finite-
difference formula (9.38). The numerical formulation of the boundary condition for
pressure is less obvious, because (9.38) is implicit whenever p � 2. This implicit-
ness need not reduce the efficiency of the numerical integration when the solution in
the interior can be updated prior to the evaluation of the boundary condition, as will
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Fig. 9.6 Reflection coefficients generated by the Higdon lateral boundary condition (9.49) as a
function of the incident vertical wave number for p equal to 1 (dotted curve), 2 (dashed curve),
and 3 (solid curve). The waves are assumed to be quasi-hydrostatic

be the case if (9.39)–(9.41) are approximated using explicit time differencing. The
pressure, however, is evaluated by solving a Poisson equation, and the derivation of
a stable pressure boundary condition for the Poisson equation from (9.38) may be
nontrivial. An alternative approach for formulating the pressure boundary condition
is investigated in Problems 8 and 9.

9.3.2 Upper Boundary Conditions

Open upper or lower boundary conditions for the incompressible Boussinesq equa-
tions cannot be formulated in the same manner as the lateral boundary conditions
because the vertical trace speed of an internal gravity wave is frequently directed
opposite to its vertical group velocity. The difference in the direction of the vertical
trace speed and group velocity is particularly evident when the waves are quasi-
hydrostatic and U D 0. In such circumstances the dispersion relation simplifies to
! D ˙Nk=mI the vertical trace speed is

!

m
D ˙Nk

m2
; (9.51)

and the vertical group velocity is

@!

@m
D �Nk

m2
; (9.52)

which is equal in magnitude to the trace speed but opposite in sign.
Let us attempt to follow the procedure used in the preceding section to obtain

an approximate open boundary condition at the upper boundary. As a first step, the
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correct dispersion relation is approximated as ! D Qcm, where Qc is a constant equal
to the estimated vertical trace speed of the dominant mode in the physical system.
The relation ! D Qcm is the exact dispersion relation for a one-way wave equation
of the form �

@

@t
C Qc @

@z

�
 D 0: (9.53)

To avoid reflections from the upper boundary, the value of Qc used in this one-way
wave equation must be the trace speed for a mode whose group velocity is directed
upward. According to (9.51) and (9.52), any mode with a positive group velocity
will have a negative trace speed, so all the acceptable values for Qc are negative.
Yet only one-sided numerical approximations to the spatial derivative can be eval-
uated at the upper boundary, and these one-sided differences yield unstable finite-
difference approximations to (9.53) whenever Qc < 0, because the numerical domain
of dependence does not include the domain of dependence of the true solution.

9.3.2.1 Boundary Conditions That Are Nonlocal in Space, but Local in Time

The problems with the one-way wave equation (9.53) can be avoided by following
the strategy of Klemp and Durran (1983) and Bougeault (1983), in which a radiation
upper boundary condition is imposed through a diagnostic relationship between the
pressure and the vertical velocity at the top boundary of the domain. This relation-
ship is derived by substituting a wave of the form (9.43) into the horizontal momen-
tum equation (9.39) to yield

� i.! � Uk/ OuC ik OP D 0: (9.54)

Substituting the same wave into the continuity equation (9.42), one obtains

ik OuC im Ow D 0:

Eliminating Ou between the two preceding equations gives

OP D �
�
! � Uk

k

��m
k

�
Ow: (9.55)

After making the quasi-hydrostatic approximation, one can write the dispersion re-
lation (9.44) as

! � Uk
k

D ˙N

m
:

The vertical group velocity for quasi-hydrostatic waves, which is given by (9.52),
will depend on both the sign of k and the choice of the positive or negative root. The
choice of sign required to limit the dispersion relation to those waves with upward
group velocity is

! � Uk
k

D �sgn.k/
N

m
: (9.56)
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Substituting the preceding equation into (9.55) yields

OP D N

jkj Ow: (9.57)

This relationship between OP and Ow is nonlocal, in the sense that it cannot be im-
posed as an algebraic or differential relation involving P and w on the physical
mesh.

The one-way dispersion relations (9.46) and (9.56) are also nonlocal formulae
that might be useful as radiation boundary conditions if it were possible to trans-
form the values of w.x; z; t/ on the computational mesh to and from the space of
dual variables Ow.k;m; !/. There is, however, no way to determine the frequency
dependence of the dual variables, because the grid-point data are never simultane-
ously available at more than one or two time levels, and as a consequence, (9.46) and
(9.56) have no direct practical utility. In contrast, the nonlocal condition (9.57) can
be easily used in practical computations, because neither ! nor m appears in that
formula. All that is required to use this boundary condition in a numerical model
with periodic lateral boundaries is to compute the Fourier transform of the w val-
ues along the top row of the computational mesh, evaluate OP using (9.57), and then
obtain the values of P along the top row of the computational mesh from an in-
verse Fourier transform. Further details about the numerical implementation of this
boundary condition are provided in Sect. 9.3.3.

The boundary condition (9.57) perfectly transmits linear quasi-hydrostatic waves
through the upper boundary, but nonhydrostatic waves will be partially reflected
back into the domain. The strength of the partial reflection can be determined
as follows. Since the vertical group velocity obtained without making the quasi-
hydrostatic approximation is

@!

@m
D � Nkm

.k2 Cm2/3=2
;

the gravity-wave dispersion relation can be limited to those waves with upward
group velocities by taking the negative root in (9.44) when sgn.k/ D sgn.m/ and
the positive root when sgn.k/ D �sgn.m/. In both cases, using the dispersion rela-
tion for the wave with upward group velocity to substitute for .!�Uk/=k in (9.55)
yields the correct radiation condition for nonhydrostatic waves,

OP D N

jkj s Ow; (9.58)

where

s D jmj
.k2 Cm2/1=2

:

A similar derivation shows that the pressure and vertical velocity in downward-
propagating waves are correlated such that

OP D � N

jkj s Ow: (9.59)
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Now suppose that a nonhydrostatic wave of the form (9.43) encounters the
top boundary. To satisfy the quasi-hydrostatic open boundary condition, a second
downward-propagating wave with the same horizontal wave number must also be
present at the upper boundary. Letting the subscripts 1 and 2 denote the incident and
reflected waves, respectively, (9.57) becomes

. OP1 C OP2/ D N

jkj . Ow1 C Ow2/: (9.60)

The horizontal momentum equation (9.54), which is also satisfied at the upper
boundary, implies that both of these waves have the same frequency because they
have the same horizontal wave number. Since both waves have the same! and k, the
dispersion relation requires their vertical wave numbers to differ by a factor of �1,
and as a consequence, s is identical for both waves. Substituting for OP1 and OP2 from
(9.58) and (9.59), respectively, (9.60) becomes

s. Ow1 � Ow2/ D Ow1 C Ow2:
Let r be the ratio of the vertical-velocity amplitude in the reflected wave to that in
the incident wave; then the preceding equation implies that

jr j D
ˇ̌
ˇ̌ s � 1

s C 1

ˇ̌
ˇ̌ :

In the hydrostatic limit, s ! 1 and there is no reflection. The reflection increases as
the waves become less hydrostatic, but even when k D m, the reflection coefficient
remains a relatively modest 0.17.

In fully three-dimensional problems (9.57) generalizes to

OP D Np
k2 C `2

Ow; (9.61)

where ` is the wave number parallel to the y-axis. This boundary condition is eval-
uated in the same manner as that for the two-dimensional problem (9.57), except
that two-dimensional Fourier transforms are computed with respect to the x and y
coordinates along the top boundary of the domain. Extensions of the preceding ap-
proach to include the effects of a constant Coriolis force were suggested by Garner
(1986). Rasch (1986) provided a further generalization suitable for both gravity and
Rossby waves.

9.3.2.2 Boundary Conditions That Are Local in Both Space and Time

The relations (9.57) and (9.61) are best suited to problems in laterally periodic do-
mains, for which the horizontal wave numbers present on the numerical mesh can
be computed exactly using fast Fourier transforms. These boundary conditions can
also be used in conjunction with open lateral boundaries, but some type of periodic
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completion must be assumed to allow the computation of the Fourier transforms.
A simple assumption of false periodicity in the w and p fields at the topmost level
usually gives adequate results when the main disturbance is located in the central
portion of the domain. Nevertheless, this assumption introduces a modest erroneous
coupling between the upstream and downstream boundaries.

The use of Fourier transforms and the assumption of false periodicity can be
eliminated by approximating the factor of jkj in (9.57) with an algebraic expression
that converts (9.57) into a dispersion relation for a partial differential equation that
can be solved on the physical mesh. Let jkj be replaced by the rational function

a1 C a2k
2

1C a3k2
; (9.62)

where a1, a2, and a3 are constants chosen to ensure that (9.62) is a good approxima-
tion to jkj over the entire range of wave numbers that need to be transmitted through
the upper boundary. It is convenient to express the arbitrary constants a1, a2, and
a3 in terms of the three wave numbers, k1, k2, and k3, for which (9.62) would be
exactly equal to jkj. Then

a1 D k1k2k3

D
; a2 D k1 C k2 C k3

D
; a3 D 1

D
;

where
D D k1k2 C k1k3 C k2k3:

Numerical tests have suggested that an effective strategy for choosing appropriate
values for k1, k2, and k3 (and thereby specifying a1, a2, and a3) is to let k3 be the
largest horizontal wave number likely to appear with significant amplitude in the
perturbations at the upper boundary and then choose k2 D k3=3 and k1 D k3=9.
Replacing jkj by (9.62) in (9.57) and taking an inverse Fourier transform yields the
local differential equation

�
a1 � a2

@2

@x2

�
P D N

�
1 � a3

@2

@x2

�
w: (9.63)

The reflection generated by (9.63) in a vertically propagating quasi-hydrostatic
gravity wave of horizontal wave number k is

jr j D
ˇ̌̌
ˇ k � k1
k C k1

ˇ̌̌
ˇ
ˇ̌̌
ˇ k � k2
k C k2

ˇ̌̌
ˇ
ˇ̌̌
ˇ k � k3

k C k3

ˇ̌̌
ˇ :

This reflection coefficient has the same form as that for the three-operator Higdon
scheme, except that the wave number parallel to the boundary is k in the preced-
ing expression and is m in (9.50). The dependence of r on the horizontal wave
number of an incident quasi-hydrostatic wave is given by the solid curve in Fig. 9.6,
except that them’s appearing in the labels for the horizontal axis should be replaced
with k’s. Recall, however, that Higdon’s one-way wave equation is not suitable
for use at the upper boundary because the phase speed and group velocity of
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internal gravity waves are generally opposite in sign. Equation (9.63) provides an
alternative that avoids instability while achieving the same degree of wave transmis-
sion through the upper boundary.

The preceding local boundary condition is generalized to three-dimensional
problems by approximating the factor

p
k2 C `2 in (9.61) with

a1 C a2.k
2 C `2/

1C a3.k2 C `2/
:

The approximate radiation upper boundary condition that results is

�
a1 � a2

�
@2

@x2
C @2

@y2

�
P D N

�
1 � a3

�
@2

@x2
C @2

@y2

�
w:

9.3.3 Numerical Implementation of the Radiation Upper Boundary
Condition

First, consider the nonlocal formulation (9.57) and suppose that the numerical so-
lution of the Boussinesq system is to be obtained using the projection method on
the staggered mesh shown in Fig. 4.6. An upper boundary condition can be obtained
for the Poisson equation (8.9) as follows. Fourier transform wn along the top com-
putational level of the domain, compute the Fourier coefficients for pressure from
the relation Opn D N�0 Own=jkj, and inverse-transform to obtain pn at a level �z=2
above the uppermost row of p points.4 These values of pn are used as approxima-
tions to QpnC1 along the boundary and provide a Dirichlet boundary condition for
(8.9). Ideally, one would formulate the Dirichlet boundary condition using an exact
expression for the boundary values of QpnC1, but recall that QpnC1 does not repre-
sent the actual pressure at any given time. Approximating QpnC1 with pn has yielded
satisfactory results in tests conducted by this author. After the Poisson equation has
been solved, the interior velocities are updated from (8.8). As a final step, the wnC1
along the upper boundary can be obtained from the nondivergence condition, or by
linear extrapolation from below. In most applications, the mean vertical velocity
is zero, and no other upper boundary conditions are required to obtain numerical
solutions to the linearized equations.

As noted by Bougeault (1983), stability considerations require that (9.57) be im-
plemented in a compressible model using implicit time differencing. As an example,
suppose that solutions are to be obtained using the partially time-split approxima-
tion to the “compressible” Boussinesq equations (8.82)–(8.85) on the staggered grid
shown in Fig. 4.6 and thatN is the vertical index of the topmost row of pressure and
buoyancy points. The boundary condition can be cast into an implicit expression
for PN�1=2, which represents the pressure at the same vertical level as wN�1=2.
A vertically discretized approximation to (8.83) at levelN � 1=2may be written as

4 Here P is replaced by p=�0 to match the terminology in Sect. 8.3.2.
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wmC1
N� 1

2

�wm
N� 1

2

�
C 1

2

0
@P

mC1
N� 1

2

� PmC1
N�1

�z=2
C PmN � PmN�1

�z

1
A D bm

N� 1
2

� U
@wn

N� 1
2

@x
;

(9.64)

where m and n are the indices for the small and large time steps, respectively. The
vertically discretized pressure equation for grid level N � 1 is

PmC1
N�1 �PmN�1

�
C c2s
2

0
@w

mC1
N� 1

2

� wmC1
N� 3

2

�z
C
wm
N� 1

2

�wm
N� 3

2

�z

1
AD �c2s

@umC1
N�1
@x

�U@P
n
N�1
@x

;

which can be used to substitute for PmC1
N�1 in (9.64) to obtain

�
1C Qc2

2

�
wm
N� 1

2

� Qc2
2
wmC1
N� 3

2

D FN� 1
2

� �

�z
PmC1
N� 1

2

; (9.65)

where Qc D cs�=�z and FN�1=2 is the sum of all those terms that can be explicitly
evaluated at this stage of the integration cycle. Equation (9.65) closes the tridiago-
nal system for wmC1 generated by the implicit coupling between the discretized
pressure and vertical momentum equations throughout each vertical column in the
interior of the domain. After the forward elimination sweep of the tridiagonal solver
described in Sect. A.2.1,

wmC1
N� 1

2

D 	 � ˇPmC1
N� 1

2

; (9.66)

where
ˇ D p�=�z; 	 D p

�
FN� 1

2
C Qc2f=2

�
;

p is as defined at the last iteration in the loop .j D jmx/, and f is the array element
f .jmx � 1/. Taking the Fourier transform of (9.66) and using (9.57), the radiation
condition becomes

OPmC1
k;N� 1

2

D
� jkj
N

C ˇ

��1
O	k ;

which allows the computation of OPmC1
N�1=2 from the Fourier transform of 	 . After

PmC1
N�1=2 has been obtained by inverse transforming, the computation of wmC1

N�1=2 is

completed using (9.66), and the remaining wmC1 are updated during the backward
pass of the tridiagonal solver. The PmC1 in the interior of the domain are updated
using thesewmC1, and finally,PmC1

N is computed fromPmC1
N�1=2 andPmC1

N�1 by linear
extrapolation.

The approximate local radiation condition (9.63) is implemented in essentially
the same manner as the nonlocal condition (9.57), except that instead of Fourier
transformingw, applying (9.57), and then inverse transforming to obtain the bound-
ary values for the pressure, (9.63) is solved to compute the grid-point values of
P directly from the grid-point values of w. A tridiagonal system for the grid-point
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values ofP along the top boundary is obtained when the second derivatives in (9.63)
are approximated by a standard three-point finite difference. Special conditions are
required at those points adjacent to the lateral boundaries, where it can be advanta-
geous to use the less accurate approximation

�
b1 � b2

@2

@x2

�
P D Nw:

This relation, which is derived from (9.57) using the approximation jkj � b1Cb2k2;
does not require any assumption about the horizontal variation of w at the lateral
boundaries. Some assumption is nevertheless required about the variation of P near
the boundary, and satisfactory results have been obtained by setting @P=@x to zero
in the upper corners of the domain.

9.4 Wave-Absorbing Layers

One way to prevent outward-propagating disturbances from reflecting back into the
domain when they encounter the boundary is to place a wave-absorbing layer at the
edge of the domain. Wave-absorbing layers are conceptually simple and are partic-
ularly attractive in applications for which appropriate radiation boundary conditions
have not been determined. Wave-absorbing layers also allow “large-scale” time ten-
dencies to be easily imposed at the lateral boundaries of the domain. These large-
scale tendencies might be generated by a previous or concurrent coarse-resolution
simulation on a larger spatial domain. The chief disadvantage of the absorbing-layer
approach is that the absorber often needs to be rather thick to be effective, and sig-
nificant computational effort may be required to compute the solution on the mesh
points within a thick absorbing layer. Considerable engineering may also be required
to ensure that a wave-absorbing layer performs adequately in a given application.

Suppose that a radiation upper boundary condition for the two-dimensional
linearized Boussinesq equations (9.39)–(9.42) is to be approximated using a
wave-absorbing layer of thickness D. This absorbing layer can be created by
defining a vertically varying viscosity ˛.z/ and adding viscous terms of the form
˛.z/@2u=@x2, ˛.z/@2w=@x2, and ˛.z/@2b=@x2 to the right sides of (9.39), (9.40),
and (9.41), respectively. The viscosity is zero in the region z � H within which
the solution is to be accurately approximated and increases gradually with height
throughout the layerH < z � H CD. A simple rigid-lid condition,w D 0, can be
imposed at the top of the absorbing layer. The performance of this absorbing layer is
largely determined by the vertical profile of the artificial viscosity ˛.z/ and the total
absorbing-layer depthD. The total viscosity in the absorbing layer must be sufficient
to dissipate a wave before it has time to propagate upward through the absorbing
layer, reflect off the rigid upper boundary, and travel back down through the depth
of the layer. It might, therefore, appear advantageous simply to set ˛ to the max-
imum value permitted by the stability constraints of the finite-difference scheme.
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Reflections will also occur, however, when a wave encounters a rapid change in the
propagation characteristics of its medium, and as a consequence, reflection will be
produced if the artificial viscosity increases too rapidly with height. The only way to
make the total damping within the wave absorber large while keeping the gradient
of ˛.z/ small is to use a relatively thick wave-absorbing layer.

The reflectivity of a wave-absorbing layer also depends on the characteristics of
the incident wave. Klemp and Lilly (1978) examined the reflections produced by a
wave-absorbing layer at the upper boundary in a problem where quasi-hydrostatic
vertically propagating gravity waves were generated by continuously stratified flow
over topography. They found that although a very thin absorbing layer could be
tuned to efficiently remove a single horizontal wave number, considerably deeper
layers were required to uniformly minimize the reflection over a broad range of wave
numbers. To ensure that the absorbing layer was sufficiently deep, and to guaran-
tee that the numerical solution was adequately resolved within the wave-absorbing
layer, Klemp and Lilly devoted the entire upper half of their computational domain
to the absorber. The efficiency of their numerical model could have been increased
by a factor of 2 if the wave-absorbing layer had been replaced with the radiation
upper boundary condition described in the preceding section.

The finding that effective wave-absorbing layers must often be rather thick was
also supported by Israeli and Orszag (1981), who examined both viscous and
Rayleigh-damping absorbing layers for the linearized shallow-water system of the
form

@u

@t
C @�

@x
D �.x/

@2u

@x2
� R.x/u; (9.67)

@�

@t
C c2

@u

@x
D 0 (9.68)

on the domain �L � x � L. Boundary conditions were specified for u.�L; t/
and u.L; t/; no boundary conditions were specified for �. Since there is one inward-
directed characteristic at each boundary, the specification of u at each boundary
yields a well-posed problem for all nonnegative �. Numerical solutions to the pre-
ceding system can be conveniently obtained without requiring numerical boundary
conditions for � by using a staggered mesh where the outermost u points are located
on the boundaries and the outermost � points are�x=2 inside those boundaries (see
Sect. 4.1.2). Israeli and Orszag demonstrated that better results could be obtained us-
ing Rayleigh damping (R > 0, � D 0) than by using viscous damping (� > 0,
R D 0) because the erroneous backward reflection induced by the Rayleigh damping
is less scale dependent than that generated by viscous damping. Israeli and Orszag
also suggested that superior results could be obtained by using a wave-absorbing
layer in combination with a one-way wave equation at the actual boundary. When
using both techniques in combination, one must modify the one-way wave equation
to account for the dissipation near the boundary. For example, an approximate one-
way wave equation for the right-moving wave supported by (9.67) and (9.68) with
� D 0 and R constant is

@u

@t
C c

@u

@x
D �R

2
u: (9.69)
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The problem considered by Israeli and Orszag is somewhat special in that it can
be numerically integrated without specifying any boundary conditions for �. If a
mean current were present, so that the unapproximated linear system is described
by (9.2), then numerical boundary conditions would also be required for � to evalu-
ateU@�=@x. The specification of � at the boundary where the mean wind is directed
inward, together with specification of u at each boundary, will lead to an overdeter-
mined problem. Nevertheless, Davies (1976, 1983) suggested that wave-absorbing
layers can have considerable practical utility even when they require overspecifica-
tion of the boundary conditions.

As a simple example of overspecification, consider the one-dimensional scalar
advection equation with U > 0. Davies’s absorbing boundary condition for the
outflow boundary corresponds to the mathematical problem of solving

@ 

@t
C U

@ 

@x
D �R.x/. �  b/ (9.70)

on the domain �L � x � L subject to the boundary conditions

 .�L; t/ D s.t/;  .L; t/ D  b.t/:

The Rayleigh damper is constructed such thatR.x/ is zero except in a narrow region
in the vicinity of x D L. The boundary condition at x D �L is required to uniquely
determine the solution, since the characteristic curves intersecting that boundary are
directed into the domain. The boundary condition at x D L is, however, redundant,
since no characteristics are directed inward through that boundary, and as noted by
Oliger and Sundström (1978), the imposition of a boundary condition at x D L

renders the problem ill posed.
The practical ramifications of this ill-posedness are, however, somewhat subtle.

One certainly cannot expect to obtain a numerical solution that converges to the
unique solution to an ill-posed problem. This behavior is illustrated by the test prob-
lem shown in Fig. 9.7, in which (9.70) was approximated as

�nC1
j � �n�1

j

2�t
C U

�njC1 � �nj�1
2�x

D Rj .�
nC1
j � �N /

on the interval �1 � x � 1:125. Here N is the spatial index of the grid point on the
right boundary, and the Rayleigh damping coefficient is defined as

R.x/ D


0; if x � 1,
˛
�
1 � cosŒ8π.x � 1/�

	
; otherwise,

so that the region 1 � x � 1:125 contains the wave absorber. The Courant number
was 0.5, U was 1, and � was fixed at a constant value of zero at the right and left
boundaries. The initial condition was

 .x; 0/ D


0; if jx � 1

2
j � 1,

cos2Œπ.x � 1
2
/�; otherwise.



9.4 Wave-Absorbing Layers 491

a

c d

b

0.7 1.0 0.7 1.0xx

Fig. 9.7 Comparison of numerical solutions to the advection equation obtained using a Rayleigh
damping wave absorber (dot-dashed curve) or linear extrapolation (thin solid curve) and�x equal
to a 1/32, b 1/64, or c 1/256. In d the magnitude of the Rayleigh damping coefficient is doubled
and�x D 1=64

A second solution, indicated by the thin solid line in Fig. 9.7, was obtained using the
linear extrapolation boundary condition (9.19) at x D L instead of using a wave-
absorbing layer.

Figure 9.7 focuses on the trailing edge of the disturbance in the subdomain 0:7 �
x � 1. The time shown is t D 3=4, at which time three quarters of the initial pulse
has passed into the wave-absorbing layer. The interface between the absorbing layer
and the interior domain coincides with the right edge of each plot. The horizontal
grid spacing for the simulation shown in Fig. 9.7a is 1=32 and ˛ is chosen such that
RN�t is unity. Considerable reflection is produced by the absorbing layer, which
is only four grid points wide. Weaker reflection is also produced by the extrapola-
tion boundary condition. Figure 9.7b shows the solutions to the same physical prob-
lem obtained after halving �x, which increases the width of the absorbing layer
to eight grid points. Since the Courant number is fixed, �t is also halved, and the
maximum value of Rn�t is reduced to 0.5. Both solutions are improved by this in-
crease in resolution, but the sponge layer continues to produce significantly more
reflection than that generated by the extrapolation boundary condition. The grid
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spacing is reduced by an additional factor of 4 in Fig. 9.7c, so that �x D 1=256.
This increase in numerical resolution continues to improve the solution obtained
with the extrapolation boundary condition, but does not improve the solution ob-
tained with the wave-absorbing layer. Further increases in the resolution do not make
the solution computed with the wave-absorbing layer converge toward the correct so-
lution. Such convergence is, however, exhibited by the solution obtained using the
extrapolation boundary condition.

If the grid-spacing is sufficiently fine and ˛ is doubled, the wave-absorbing layer
can give much better results. For example, if �x D 1=64 and RN�t D 1 the per-
formance of the wave-absorbing layer is very similar to that obtained using the ex-
trapolation boundary condition (Fig. 9.7d). Additional high-resolution simulations
suggest that although the ill-posedness of the underlying mathematical problem
prevents the numerical solution from uniformly converging to the correct solution
within the absorbing layer as �x ! 0 and�t ! 0, the error outside the absorbing
layer remains small and may be acceptable in some applications. Of course, the use
of a Rayleigh-damping absorber is not actually recommended in situations such as
this, where an exact open boundary condition can be formulated for the original par-
tial differential equation. It is harder to make a clear-cut recommendation in the vast
majority of cases, for which exact open boundary conditions are not available. It is
certainly possible that over some range of numerical parameters, the errors gener-
ated by the ill-posed Rayleigh damping absorber can be less than those obtained us-
ing well-posed numerical approximations to overly reflective boundary conditions.
Indeed, the Rayleigh-damping absorber appears to have been used successfully in a
variety of studies. Caution is, nevertheless, advised.

9.5 Summary

When simulating the evolution of localized disturbances within a large body of fluid,
one often has to limit the computational domain to an arbitrary subset of the total
fluid. The conditions that are imposed at artificial boundaries within the fluid are
often only approximate descriptions of the true physical behavior of the system and
can be a significant source of error. Unless special information is available describ-
ing the solution outside the limited domain, the only practical boundary condition
that can be specified is one that attempts to radiate disturbances through the bound-
ary without spurious reflection. Nevertheless, the radiation condition is not always
the correct physical boundary condition, because nonlinear interactions among the
waves that have passed through an artificial boundary can generate a new wave that
propagates backward and should reenter the domain.

Even when the radiation boundary condition correctly describes the physical pro-
cesses occurring at an open boundary, it is frequently impossible to exactly express
that boundary condition in a useful mathematical form. In many practical problems,
the radiation boundary condition can be expressed only in a form that involves the
frequencies and wave numbers of the incident disturbance, or equivalently, temporal
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and spatial integrals of the solution along the boundary. Such boundary conditions
are nonlocal because the condition that must be imposed on the fields at a point
.x0; t0/ cannot be exactly evaluated from the data available in a limited neighbor-
hood of .x0; t0/. Boundary conditions that are nonlocal in time are particularly un-
suitable because only data from a few time levels are routinely stored during the
numerical solution of time-dependent problems.

Exact local radiation boundary conditions can be obtained for some one-
dimensional problems, such as the linearized one-dimensional shallow-water sys-
tem. In more complicated situations, approximate radiation boundary conditions
can be obtained using approximate one-way wave equations. Exact radiation bound-
ary conditions that are local in time but nonlocal in space are also available for a
limited class of multidimensional problems. Examples include the upper boundary
condition for the linearized quasi-hydrostatic waves discussed in connection with
(9.57) and (9.61), and the radiation condition proposed by Grote and Keller (1996)
for the solution of the three-dimensional wave equation

@2 

@t2
� r 	 .r / D 0

outside a spherical domain. Spherical boundaries are attractive in applications where
the wave propagation is isotropic in the region external to the boundary. Spherical
boundaries are less well suited to many geophysical problems in which gravity in-
troduces a fundamental anisotropy in the waves that makes it advantageous to use
different mathematical formulae at the lateral and the upper or lower boundaries.
A comprehensive review of the wave-permeable boundary conditions employed in
many different disciplines was given by Givoli (1991, 1992).

Once exact or approximate boundary conditions have been formulated for the
continuous problem, they must be approximated for use in the numerical integration.
Extra boundary conditions beyond those required to yield a well-posed problem
may also be needed to evaluate finite differences near the boundary. Although these
numerical boundary conditions can have a significant impact on the stability and
accuracy of the solution, it can be easier to reduce these finite-differencing errors
than the errors that originate from inadequate approximations to the correct open
boundary condition.

Problems

1. Explain how to choose ˛1 and f1 in (9.4) to enforce a rigid-side-wall condition
at the lateral boundary of the shallow-water system. (This is appropriate only
when U D 0.)

2. Downstream differencing is obviously an unstable way to approximate an ad-
vection term at an inflow boundary. Suppose that one attempts to use backward
time differencing to stabilize the approximation. As an indicator of the probable



494 9 Nonreflecting Boundary Conditions

stability of the result, use a von Neumann analysis to determine the stability of
the backward approximation to the advection equation

�nC1
j � �nj

�t
C U

�nC1
j � �nC1

j�1
�x

D 0

on the unbounded domain �1 < x < 1. Consider the case U < 0.

3. Suppose that the one-dimensional constant-wind-speed advection equation is ap-
proximated as

.ı2t C Uı2x/ �
n
j D 0

in the interior of the domain and as

�hıt ix C QU hıxit 	�nC1
2

N�1
2

D 0;

where N is the x index of the point on the downstream boundary. Show that
setting

QU D U
cos2.k�x=2/

cos2.!�t=2/

will allow the discretized mode with wave number k and frequency ! to pass
through the boundary without reflection. Explain why this technique cannot be
used in practice to create a perfectly nonreflecting boundary.

4. Show that the second-order Higdon boundary condition (9.37) can be expressed
in a form similar to the second-order Engquist and Majda condition (9.33) as

.1C cos˛1 cos˛2/
@2�

@t2
C c.cos˛1 C cos˛2/

@2�

@t@x
� c2 @

2�

@y2
D 0:

5. Show that if c is the shallow-water gravity-wave phase speed and jU j < c, then

@2 

@t2
C .U C c/

�
@2 

@t@x
� c

2

@2 

@y2

�
D 0

is a one-way wave equation that admits only waves with x-component group ve-
locities greater than zero. How do wave solutions to this equation compare with
the solutions to the two-dimensional shallow-water equations linearized about a
constant basic-state flow U parallel to the x-axis,

�
@

@t
C U

@

@x

�2
 � c2

�
@2

@x2
C @2

@y2

�
 D 0‹

Consider the dispersion relations for each system. Also discuss the dependence
of the sign of the x-component group velocity on U and the horizontal wave
numbers.
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6. Derive the approximate one-way wave equation (9.69) for the right-moving wave
satisfying the Rayleigh-damped shallow-water equations (9.67) and (9.68) with
� D 0 and R constant. Describe the conditions under which this is an accurate
approximation.

7. Derive the conditions under which the vertical trace speed (!=m) of internal
gravity waves satisfying the dispersion relation (9.44) is in the same direction as
the vertical group velocity.

8. Consider linear Boussinesq flow in the x–z plane. Show that a quasi-hydrostatic
internal gravity wave propagating relative to the mean flow in the positive
x-direction satisfies the relation OP D N Ou=jmj, where the hat denotes a Fourier
transform along the z coordinate and m is the vertical wave number. Use these
results to derive an approximate partial differential equation relating P to u
that could, in principle, be evaluated using the grid-point values of pressure and
velocity.

9. Suppose that the linearized Boussinesq equations are to be solved in the domain
�L � x � L. The relation derived in Problem 8 might serve as a radiation
boundary condition along the boundary at x D L when the basic-state hori-
zontal wind speed is zero. Explain how this boundary condition might prove
unsatisfactory if U < 0.





Appendix A
Numerical Miscellany

A.1 Finite-Difference Operator Notation

Complex finite-difference formulae are written in compact form using the following
operator notation, which is similar to that used in Shuman and Hovermale (1968):

ınxf .x/ D f .x C n�x=2/� f .x � n�x=2/

n�x
(A.1)

and

hf .x/inx D f .x C n�x=2/C f .x � n�x=2/

2
: (A.2)

The grid-point approximation to the value of a continuous function  .x; t/ at the
point .j�x; n�t/ is denoted by �nj . Thus,

ı2x�
n
j D �njC1 � �nj�1

2�x
; ı2x�

n
j D �njC1 � 2�nj C �nj�1

.�x/2
;

and

˝˝
cj
˛x
ıx�

n
j

˛x D 1

4

�
.cjC1 C cj /

�
�njC1 � �nj

�x

�
C .cj C cj�1/

�
�nj � �nj�1

�x

��
:

When it does not lead to ambiguity, the grid-point indices are omitted from finite-
difference formulae expressed in operator notation. As an example,

ı2t� C ı2x� D 0

expands to
�nC1
j � �n�1

j

2�t
C �njC1 � �nj�1

2�x
D 0:

Simple finite-difference formulae are generally written out in expanded form.
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A.2 Tridiagonal Solvers

Implicit finite-difference schemes for one-dimensional problems often lead to
tridiagonal systems of linear algebraic equations. Tridiagonal systems can be solved
very efficiently using the Thomas tridiagonal algorithm (Isaacson and Keller 1966).
The algorithm can be extended to the periodic case as discussed in Strikwerda
(1989). FORTRAN programs for both the standard and the periodic cases are given
in the following subsections. A well-behaved solution will be obtained using the
following algorithms whenever the tridiagonal systems are diagonally dominant,
which will be the case if for all j , jbj j > jaj j C jcj j, where aj , bj , and cj are,
respectively, the subdiagonal, diagonal, and superdiagonal entries in row j .

A.2.1 Code for a Tridiagonal Solver

subroutine tridiag(jmx,a,b,c,f,q)

c Solves a standard tridiagonal system
c
c Definition of the variables:
c jmx = dimension of all the following arrays
c a = sub (lower) diagonal
c b = center diagonal
c c = super (upper) diagonal
c f = right hand side
c q = work array provided by calling program
c
c a(1) and c(jmx) need not be initialized
c The output is in f; a, b, and c are unchanged

real a(*),b(*),c(*),f(*),q(*),p
integer j,jmx

c(jmx)=0.

c Forward elimination sweep

q(1)=-c(1)/b(1)
f(1)= f(1)/b(1)
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do j=2,jmx
p= 1.0/( b(j)+a(j)*q(j-1) )
q(j)= -c(j)*p
f(j)=( f(j)-a(j)*f(j-1) )*p

end do

c Backward pass

do j=jmx-1,1,-1
f(j)=f(j)+q(j)*f(j+1)

end do

return
end

A.2.2 Code for a Periodic Tridiagonal Solver

subroutine tridiag_per(jmx,a,b,c,f,q,s)
c
c Solves a periodic tridiagonal system
c
c Definition of the variables:
c jmx = dimension of all arrays
c a = sub (lower) diagonal
c b = center diagonal
c c = super (upper) diagonal
c f = right hand side
c q = work array provided by calling program
c s = work array provided by calling program
c
c Output is in f; a, b, and c are unchanged

real a(*),b(*),c(*),f(*),q(*),s(*),p,fmx
integer j,jmx

fmx=f(jmx)

c Forward elimination sweep

q(1)=-c(1)/b(1)
f(1)= f(1)/b(1)
s(1)=-a(1)/b(1)
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do j=2,jmx
p=1.0/(b(j)+a(j)*q(j-1))
q(j)=-c(j)*p
f(j)=(f(j)-a(j)*f(j-1))*p
s(j)=-a(j)*s(j-1)*p

end do

c Backward pass

q(jmx)=0.0
s(jmx)=1.0

do j=jmx-1,1,-1
s(j)=s(j)+q(j)*s(j+1)
q(j)=f(j)+q(j)*q(j+1)

end do

c Final pass

f(jmx)=( fmx-c(jmx)*q(1)-a(jmx)*q(jmx-1) )/
& ( c(jmx)*s(1)+a(jmx)*s(jmx-1)+b(jmx) )

do j=1,jmx-1
f(j)=f(jmx)*s(j)+q(j)

end do

return
end
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Index

h inx (averaging operator), 159, 497
ınx (finite-difference operator), 90, 497

A-stability, 41–42, 58, 74
absolute stability, 41–42, 132–134
Adams–Bashforth time differencing, 69, 396

combined with the trapezoidal scheme, 134
for semi-Lagrangian schemes, 373–377
two-step, 61–62

Adams–Moulton time differencing, 69–71
advection equation

defined, 12
for nondivergent flow, 184–187
for nonuniform flow, 176–183
semidiscrete finite-difference approximation

to, 101–108
two-dimensional

phase-speed error in finite-difference
approximations to, 160–161

stability of finite-difference approxima-
tions to, 157–160, 162–166

advection–diffusion equation, 130–136
advection–source–sink equation, 137–139
advective form, 203–205, 276
aliasing error

and numerical instability, 179–181, 196
and the spectral transform method, 295–297,

314–315
defined, 178–179
in the pseudospectral method, 301–303
in the variable-wind-speed advection

equation, 179–183
alternating direction method, 174
amplification factor, 40, 96
amplitude error

in approximations to the advection equation,
110

in solutions to the oscillation equation,
43–44

analytic function, 10
anelastic approximation, 21, 25–26
antidiffusion via upstream differencing,

273–275
antidiffusive flux, 221
Arakawa Jacobian, 196
artificial dissipation, 110–114
Asselin filter, 62–65, 425
autonomous differential equation, 77

backward differentiation formulae, 73–75
backward-Euler method, 44–47

iterative solution of, 77–78
barotropic vorticity equation, 193–197
block cyclic reduction, 399
boundary conditions

accuracy of, 465–466
influence on stability, 466–470
nonlocal, 483, 493
nonreflecting, see radiation boundary

condition, see wave-absorbing layers
reflections generated by, 460–466, 473–475,

480, 484–485
well posed, 455–457

Boussinesq approximation, 21, 24
Boussinesq equations, 24–25, 395

compressible, 409, 414, 429
solution via the projection method, 395–400

Brunt–Väisälä frequency, 18, 24
Burgers’s equation

and transonic rarefaction waves, 237
conservative differential–difference

approximations to, 190–193
development of shocks in solutions to,

189–190
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discontinuous solutions to, 208–211
generalized, 203
spectral and pseudospectral approximations

to, 301–303

C grid, 167
cascade interpolation, 364–365
Cauchy problem, 466
chapeau function, 321
characteristic curve, 4, 5, 9

and boundary conditions for one-
dimensional hyperbolic equations,
455–460

and tracer transport, 12
for Burgers’s equation, 190, 209–211, 237

chemically reacting flow, 270
collocation, 282, 299
compact differencing, 114–117

phase-speed error of, 115–116
conjugate gradient method, 400
conservation form, 212
conservation law, 184, 205–206
consistency

of a finite-difference approximation to an
ordinary differential equation, 38

of finite-difference approximation to a
partial differential equation, 92

of numerically approximated fluxes to a
conservation law, 213

convergence
of a finite-difference approximation to a

partial differential equation, 93–94
of Euler’s method, 38–40
to a false solution, 203–205
to a weak solution, 213
to the entropy-consistent weak solution, 213

convolution sum, 295
corner transport upstream method, 163–165,

258–260
and semi-Lagrangian schemes, 363

Courant–Friedrichs–Lewy condition, 98–100,
142, 360

Crank–Nicolson method, 130
curvilinear coordinates, 275–277

Dahlquist’s first barrier, 68
Dahlquist’s second barrier, 74
diffusion equation, 128–130
discontinuous Galerkin method, 339–350

modal implementation, 341–343
nodal implementation, 343–345

dispersion relation
exact for

the one-dimensional advection equation,
101

the two-dimensional advection equation,
160

for differential–difference approximations to
the one-dimensional advection equation,

102–105, 107
for finite-difference approximations to

the Boussinesq equations, 167–169
the one-dimensional advection equation,

119–122
the one-dimensional shallow-water

equations, 152–157
the two-dimensional advection equation,

158–160
for leapfrog approximations to

the compressible Boussinesq equations,
410–411

for linear finite-element approximations to
the one-dimensional advection equation,
323

for numerical approximations to the two-
dimensional shallow-water equations of
the sphere, 309

for quasi-hydrostatic gravity waves, 432
for semi-implicit approximations to

the compressible Boussinesq equations,
412–414

the one-dimensional shallow-water
equations, 405, 407

for the middle-latitude ˇ -plane equations,
449

divergence damper, 426–427
domain of dependence, 98
domain of influence, 98
donor-cell method, see upstream differencing
Dufort–Frankel method, 142

eddy diffusivity, 13, 131, 197
energy method, 94–95, 184–188
entropy condition, 207–211
essentially nonoscillatory methods, 246–248
Euler equations, 394

approximation via leapfrog time differenc-
ing, 409–411

approximation via the semi-implicit method,
411–416

hyperbolic nature of, 16–19
simplified, 408–409

Euler’s method, 44–47
Eulerian form, 357
Eulerian–Lagrangian methods, see semi-

Lagrangian methods
Exner function, 17
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fast Fourier transform, 288, 289, 350
efficiency of, 294–295

filtered equations, 12, 20–26
finite difference

defined, 37
on an irregular mesh, 141

finite Fourier transform, 287–288
finite-difference method, 27
finite-difference operator notation, 497
finite-element method, 29

comparison with compact differencing, 323,
337

in two dimensions, 336–339
using the Galerkin approximation

with linear expansion functions, 322–323
with quadratic expansion functions,

327–335
using the Petrov–Galerkin approximation,

324–325
using the Taylor–Galerkin approximation,

325–327
using triangular elements, 337–339

finite-volume method, 27–29
defined, 212–213
using piecewise-constant functions,

235–237
using piecewise-linear functions, 238–240
using piecewise-parabolic functions,

240–243
with large time steps, 369–372

Fjørtoft’s theorem, 194–195
flux form, 203–205, 276
flux-corrected transport, 221, 226, 232, 233

and positive-definite advection, 271–273
in two dimensions, 256–257
iterative flux correction, 226
the Zalesak corrector, 223–225

flux-limiter methods, 226, 235
for two-dimensional flow, 257, 262
in curvilinear coordinates, 275–277

forward time differencing
instability with centered-space approxima-

tion for advection, 118
forward–backward time differencing, 175

for the shallow-water equations, 155–157,
308, 418

in partially split scheme, 423, 425
in the time-split compressible system, 418

Fourier series, 285
and poor resolution, 286–287

fractional-step methods, 169–176
and finite-volume schemes, 262–264, 369,

372
for scalar conservation laws, 255

stability of, 174–176
truncation error of, 170–174
with small and large time steps, 416–431

frequency, 101
frozen-coefficient stability analysis, 177, 199

Galerkin approximation
and the finite-element method, 321
conservation properties of, 298–299
defined, 283
equivalence to minimizing the L2 norm of

the residual, 283–284
Gauss–Legendre–Lobatto quadrature, 343

weights, 345
Gaussian quadrature, 312–315
Godunov’s method, 235–237
Godunov–Ryabenki condition, 467
gravity waves, 11, 393–394, 405, 410–414,

449–450
dispersion relation, 20

group velocity, 101
and the stability of finite-difference

approximations to initial-boundary-value
problems, 467–469, 481–482

for the semidiscrete one-dimensional
advection equation, 102–105

in quadratic finite-element approximations
to the one-dimensional advection
equation, 333

Gustafsson–Kreiss–Sundström condition, 467

hydrostatic approximation, see quasi-
hydrostatic approximation

hydrostatic reference state, 23

Jacobi polynomials, 343, 345
Jacobian operator, 194

Kreiss matrix theorem, 150

L-stability, 48–49, 58, 74, 80
Lagrange interpolating polynomial, 312, 327,

362
Lagrangian form, 357
Lamb wave, 432
Laplacian operator on the sphere, 305
Lax equivalence theorem, 93
Lax–Friedrichs method, 142, 216, 278
Lax–Wendroff method, 124–127

and semi-Lagrangian schemes, 362
and the Tayler–Galerkin approximation,

325–327
for a general conservation law, 127
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for the one-dimensional advection equation,
124–126, 239

flux form, 224, 228–235
modified equation associated with, 144

for the two-dimensional advection equation,
165–166

for two-dimensional conservation laws,
259–260, 262

two-step form of, 124, 127
leapfrog time differencing, 59–61, 151, 401

and the projection method, 397–398
control of the computational mode, 62–65
for semi-Lagrangian schemes, 372, 374,

379–380
for the Euler equations, 409–411
in partially split scheme, 422–423
region of absolute stability, 71

leapfrog–trapezoidal method, 66
leapfrog-time centered-space schemes,

120–121
Legendre functions, 304, 306
Legendre polynomials, 304, 341

plot of, 342
relation to Jacobi polynomials, 345
role in Gaussian quadrature, 312–313

Mach number, 22
Magazenkov method, 66–67
mass lumping, 337, 344
mass matrix, 284, 329, 337, 344
matrix norm, 149
minmod limiter, 230–233, 239
modified equation

for the discrete advection equation, 122–123
for the semidiscrete advection equation, 109
for the semidiscrete advection–diffusion

equation, 131
for the Taylor–Galerkin approximation to

the advection equation, 325–327
monotone method, 213–214, 218–219, 271
monotonicity-preserving method, 215, 271
monotonized centered limiter, 231–233, 240,

279
multigrid method, 400
multistep methods, 58–71, 73–75

Newton polynomial, 362, 390
nondispersive wave, 101
nonlinear instability, 188–197
norm

of a grid-point function, 92–93
of a matrix, 149
of a real-valued continuous function, 282

numerical dispersion, 102, 110

numerical dissipation, 110, 131
numerical smoothing, 110–114
numerical weather prediction, 1

one-way wave equation, 5, 459, 471–475, 489
open boundary condition, see radiation

boundary condition
order of accuracy

of a finite-difference approximation to a
derivative, 37

of a monotone finite-difference scheme, 216
of spectral methods, 291–292

orthogonality, 283, 285–286
ozone photochemistry, 75–76

Péclet number, 131
pagoda function, 336
partial differential equation

elliptic
approximation by marching schemes,

31–32
defined, 7–11

hyperbolic
and tracer transport, 12
approximation by marching schemes,

31–32
defined, 4–9, 11

linear, 3
order of, 3
parabolic

and tracer transport, 13
defined, 7–11

quasi-linear, 3
Peaceman–Rachford method, 174
Petrov–Galerkin method, 324–325
phase speed, 15, 101

for the fully discrete one-dimensional
advection equation, 120–122

for the semidiscrete one-dimensional
advection equation, 102–105

phase-speed error
in finite-difference approximations to the

two-dimensional advection equation,
160–161

in quadratic finite-element approximations
to the one-dimensional advection
equation, 330–335

in solutions to the oscillation equation,
43–44

on a staggered mesh, 154
produced by compact finite differencing,

115–116
produced by second- and fourth-order

spatial differencing, 102–103
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piecewise-parabolic method, 240–243
pole problem, 308–310
positive-definite advection schemes, 271–275

and flux-corrected transport, 271–273
antidiffusion via upstream differencing,

273–275
potential temperature, 17
Prandtl number, 131
pressure equation

for the anelastic system, 399
for the Boussinesq system, 395–397

boundary conditions for, 396–397
for the pseudo-incompressible system, 400
for the semi-implicit Euler equations, 414,

415
solution of, 398–400

pressure gradient computation over
topography, 437

primitive equations
in � coordinates, 436–437

energy conservation, 442–445
semi-implicit time differencing, 446–448
vertical differencing, 440–442

in generalized vertical coordinates, 434–435
in height coordinates, 433–434

projection method, 395–398, 429–431
pseudo-incompressible approximation, 21,

25–26
pseudo-incompressible system, 22
pseudospectral methods, 299–303

quasi-hydrostatic approximation, 431–433

radiation boundary conditions
and time-dependent boundary data, 459–460
definition and applicability of, 453–455
for the one-dimensional shallow-water

equations, 457–459
for the two-dimensional shallow-water

equations, 471–476
for two-dimensional stratified flow

lateral boundaries, 477–481
upper boundary, 481–488

Rankine–Hugoniot condition, 207
rarefaction wave, 208–209, 237
residual, 282
Reynolds number, 131, 197
Riemann invariant, 457, 459
Riemann problem, 206, 235–237
Robert–Asselin filter, see Asselin filter
root condition, 68
Rosenbrock Runge–Kutta method, 78–81
Rossby waves, 11, 16, 20, 393–394, 405,

449–450

Runge–Kutta methods, 49–58
diagonally implicit, 57–58
explicit, 50–55
for trajectory calculations in semi-

Lagrangian schemes, 366–368
in partially split scheme, 428–429
strong-stability-preserving, 55–57

Schwarz inequality, 95
selective limiting, 255
semi-implicit method, 429–431

comparison with the projection method, 415
for the Euler equations, 411–416
for the oscillation equation, 403–404
for the primitive equations in � coordinates,

446–448
for the shallow-water equations, 405–408

semi-implicit semi-Lagrangian methods,
379–383

semi-Lagrangian methods
and positive-definite advection, 386–388
comparison with Eulerian schemes, 388–390
comparison with the method of characteris-

tics, 377–379
computation of the backward trajectory,

364–369
defined, 358
for the advection equation, 358–369

accuracy of, 360–369
stability of, 360

for the forced advection equation, 372–377
for the shallow-water equations, 379–383
noninterpolating, 384–386
using generalized trajectories, 383–388

shallow-water equations
for the middle-latitude ˇ -plane, 448–449
hyperbolic nature of, 13–16
on the sphere

linear, 308–310
nonlinear, 315–320

one-dimensional linearized, 147
radiation boundary conditions for the

two-dimensional system, 470–476
semi-implicit approximations to, 405–408
semi-implicit semi-Lagrangian approxima-

tions to, 380–383
shock

speed of, 206
� coordinate, 436
skew symmetry and stability, 185–187
slant-derivative method, 143
slope limiters, 238–239
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sound waves, 11, 393–394, 410–414
dispersion relation, 20
filtering of, 20–26
speed of, 18

spatial smoothing, 110–114
spectral methods, 29

accuracy of, 291–292
and the Galerkin approximation, 284–285
comparison with finite-difference methods,

285–293
conservation properties of, 298–299
for spherical domains, 303–320, 438–440
improving efficiency of, 293–298
remote influence in, 290

spectral radius, 149
spherical harmonic functions

comparison of triangular and rhomboidal
truncations, 305–308

defined, 303–304
in global primitive equation models,

438–440
in global shallow-water models, 315–317
recurrence relations for, 304
transforming between physical and

wave-number space, 311
sponge layers, 488–492
stability

and convergence for ordinary differential
equations, 40

and convergence for partial differential
equations, 93–94

energy-method analysis of, 94–95, 184–189,
192

of systems of finite-difference equations,
148–153

problems at the poles, 308–310
von Neumann analysis of, 96–98, 120,

148–151
staggered meshes, 153–157

C grid, 167–169
stiff differential equation, 72–73
Strang perturbation theorem, 138–139
Strang splitting, 172–173
stream function, 194, 316
superbee limiter, 230–233, 279

Taylor–Galerkin method, 325–327
total variation, 215

in two dimensions, 219–220

total variation diminishing method, 214–217,
219–220, 238–239, 271

sufficient conditions for, 227–231
transform method

for the Fourier spectral method, 293–298
for the spherical harmonic spectral method,

310–315, 317–320
transonic rarefaction wave, 237
trapezoidal time differencing, 44–47

for semi-Lagrangian schemes, 358, 373,
380, 383

inaccuracy at large �t , 401–403
shallow-water equations, 310

tridiagonal solvers
periodic, 499–500
standard, 498–499

truncation error
and the modified equation, 109–110
of a finite-difference approximation to a

derivative, 37
of a finite-difference approximation to a

partial differential equation, 92
two-time-step method

with completely split operators, 417–422
with partially split operators, 422–428

upstream differencing, 257, 273–275
and the semi-Lagrangian method, 359,

361–362
discrete-dispersion relation for, 121–122
flux form, 224
in two dimensions, 162–165
modified equation for, 122
order of accuracy, 92
stability of, 94–95, 97–98

velocity potential, 316
von Neumann’s method, 96–98

for systems of equations, 148–150

Warming and Beam method, 127, 143, 229
wave number, 101
wave-absorbing layers, 488–492
wave-permeable boundary condition, see

radiation boundary condition
weak solution, 206–207

entropy-consistent, 207–211
weighted essentially nonoscillatory methods,

249–253
well-posed problem, 31, 199, 455–457,

489–492
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