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ABSTRACT

This paper presents results from experiments, mathematical
analysis, and simulations of a network of static and mobile
sensors for detecting threats on city streets and in open ar-
eas such as parks. The paper focuses on the detection of
nuclear radiation threats and shows how the analysis can
be extended to other classes of threat. The paper evalu-
ates algorithms that integrate methods of parametric and
Bayesian statistics. A pure Bayesian approach is difficult
because obtaining prior distributions on the large number
of parameters is challenging. The results of analyses and
simulations are compared against measurements made on a
reduced scale testbed. A survey of background radiation in
the city of Sacramento is used to quantify the efficacy of
police patrols to detect threats. The paper also presents al-
gorithms that optimize network parameters such as sensor
placement.

Categories and Subject Descriptors

G.3 [Probability and Statistics]: Nonparametric Statis-
tics; C.2 [Computer-Communication Networks]: Net-
work Architecture and Design; 1.6 [Simulation and Mod-

eling]: Model Validation and Analysis; G.1.6 [Optimization]

1. INTRODUCTION

1.1 Overview

Countries around the world are concerned with detecting
radiation, chemical and biological threats. This paper de-
scribes laboratory experiments, mathematical analyses, and
simulations of systems that use static and mobile detectors
coupled with algorithms for detecting and tracking radia-
tion threats. The paper also suggests ways of extending the
results to deal with other types of threats. The problem is
described in the context of the following threat scenarios.

(Scenario 1) Static Threat in an Open Space: Se-
curity officials are given a tip that a threat is stored in an
open space such as a park. Officers place a network of static
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sensors in the park to detect the presence of a threat (if
one is present). In addition, officers may carry sensors with
them as they search the park.

(Scenario 2) Static Threat on a Sidewalk: Security of-
ficers use static sensors and patrol cars to detect a possible
threat on a sidewalk (for instance, in a garbage can).
(Scenario 3) Mobile Threat: A person carrying a threat
in a park or on city streets must be interdicted.

1.2 Organization of the Paper

We address Scenario 1 in Section 2 and 3. In Section 2
we present an integrated algorithm that first uses parametric
statistics to get a priori estimates, which are then used in
a Bayesian algorithm. The integrated algorithm gives bet-
ter results than algorithms based exclusively on paramet-
ric statistics or purely on Bayesian approaches when prior
distributions cannot be estimated accurately. Section 3 de-
scribes testbed experiments in a laboratory setup for the
case of a static threat and static sensors. Laboratory mea-
surements are compared against model-based simulations to
validate our model and analysis.

Scenario 3 is addressed in Section 4 and 5. Section 4
presents algorithms for tracking a moving threat with a col-
lection of stationary sensors in an open space. Section 5
describes testbed experiments in which a moving radiation
source is introduced, and the section presents comparison of
measurements with analytic results for detecting and track-
ing mobile threats.

In section 6, we address Scenario 2 by presenting algo-
rithms that help patrol cars detect threats in city streets.
We use the City of Sacramento as an example, and ana-
lyze results for the given configuration of city streets and
real background radiation measurements. We also presents
strategies to be used by patrol cars to detect threats quickly.

Section 7 goes back to Scenario 1 and presents a general
detection confidence function for sensor network and pro-
vides an algorithms for preferred placement of static sensors.
Section 8 discusses this work in the context of earlier work.

2. BAYESIAN, PARAMETRIC, AND INTE-
GRATED ALGORITHMS

2.1 The Problem

We are given a threat and a network of identical sensors.
The network consists of a base station and M sensors in-
dexed j where j € {1,..,M}. Let S; be the location of
sensor j in a given 3D space and let S be the M-element
vector of locations. The base station knows the location of



each sensor. Let n;(t) be the measurements made by sensor
j in the time interval [0,t]. The sensors and the base sta-
tion have synchronized clocks. At arbitrary points in time
t sensor j sends a message containing (a) its measurement
n;(t) and (b) the current time t to the base station.

The region in which sensors are placed generates noise
signals. For the problem of detecting radiation threats, the
noise consists largely of radiation generated by objects such
as bricks, rocks and concrete; in addition, sensors themselves
generate noise. When the search region is small and homo-
geneous we may assume that background noise is uniform
throughout the region. When the region is heterogeneous,
for example containing rocks with radioactive material, we
may be unable to make reasonable a priori estimates with-
out knowing something about the material in the area.

Based on the information received from the sensors, the
base station (a) determines whether a threat is present in
the region, and (b) if a threat is estimated to be present then
the location and magnitude of the threat. We postpone, for
the time being, the problem of identifying the type of threat.

The quality of the detection system is measured by the
metrics employed for such problems:

1. The ROC (Receiver Operating Characteristic) curve
[12] which shows the relationship between false positive
rates (FPR) and true positive rates (TPR),

2. the DOCA (Distance Of the Closest Approach) curve
that plots the probability of localizing within a certain
error measured by the distance between the true threat
location and the estimated location, and

3. the absolute difference between the estimated magni-
tude and true magnitude of the threat, if one is present.

Consider a single threat with intensity p (we use inten-
sity and magnitude interchangeably) at a location D in the
space. The intensity is the rate at which the threat gen-
erates signals; for the case of radiation the intensity is the
photons/second generated by the threat.

The measurement n;(t) made by sensor j in an interval
from time 0 to time ¢ is a random variable with a probability
density function h[u, D, Sj,t]. Generally, if the distance be-
tween D and S; is small then sensor j is likely to get stronger
measurements; however, other factors such as obstacles be-
tween the source and sensor, or environmental factors such
as wind may play a role.

A threat may be isotropic, transmitting signals equally
in all directions, or it may be anisotropic. For an isotropic
source with uniform background noise, the probability den-
sity function h depends only on the distance |D — S;|, and
not on their absolute values. By contrast, the density func-
tion h for an anisotropic source varies with the actual values
of D and S;. For the radiation detection problem the h func-
tion may vary with time when objects, such as cars, come
between the source and the sensor, and thus impact the rate
at which sensor readings change. For chemical and biologi-
cal threats, the density function may change with time due
to changes in the wind field.

The region in which sensors are placed generates noise
which is unknown, and the sensors themselves generate noise
which can be calibrated to some extent though noise charac-
teristics may change. Given the locations S of sensors, the
measurements n(t), and the probability density function h,
the problem is to determine whether sources are present and

to estimate the sources’ locations D and intensities u. We
restrict attention here to the presence of at most one threat
in the search region.

2.2 Algorithms

Bayesian algorithms generally give good results when the
prior estimates of unknown parameters are accurate. They
give bad results when the prior estimates are poor and when
the amount of signal data is too small to overcome the poor
prior estimates. Since the goal of the system is to detect
and interdict threats quickly, in most situations the system
cannot wait for sensors to gather sufficient information.

A Bayesian algorithm requires prior distributions on the
likelihood of a source being present, the intensity of the back-
ground, as well as the source’s intensity and location. In
addition, the algorithm requires prior distributions on the
degree of anisotropy of the source and the objects prevent-
ing free flow of radiation from source to sensor. The algo-
rithm must then evaluate the probability of a given set of
measurements for each possible combination of source loca-
tion, source intensity, and background intensity, location of
occlusions, and type of anisotropy. The computation is in-
tractable because the number of degrees of freedom is too
large.

We present a heuristic that combines classical paramet-
ric statistical algorithms with Bayesian algorithms to deal
with this problem. We first use parametric algorithms to
estimate the values of some of the parameters; then we use
distributions based on these estimates as the prior distri-
butions in Bayesian algorithms. This heuristic could suffer
from incorrect estimations from the parametric algorithm
becoming accentuated by the Bayes algorithm; however, ex-
tensive comparisons between a Bayesian approach, a para-
metric approach, and the integrated heuristic show that the
heuristic works well in different scenarios.

We begin by considering a single radiological isotropic
point source placed in a region without occluding objects.

Bayesian Algorithm.

Bayesian algorithms compute an a posteriori probability
distribution based on a given prior distribution and likeli-
hood values calculated from measurements. Let € be the
vector of parameters we want to estimate. Assuming a prior
PDF 7o for 6, the posterior PDF of 7 is:

m(0) = L(6;n)mo(0) (1)

where L is the likelihood of observing n = [n1,n2, ..., Nm|
photons at detector j = 1,2, ...,m in time interval [0, ¢], and
0 is the vector of parameters. (Herafter we assume that
the time interval ¢ during which measurements are made
is the same for all sensors and therefore omit ¢t writing n;
rather than n;(¢).) L is found by the detector measurement
equation as:

L(0:n) = [ f(n5;45(0)) (2)

j=1

In the case of radiation detection, sensors measure the num-
ber of photons striking the sensors. Photon emission is a
Poisson process, therefore f(nj; A;(6)) = A™e ™3 /n! is the
Poisson probability mass function where A(#) is the expected
number of photons measured at sensor j in time ¢. 6 includes
parameters such as source strength p, source location D, and
expected number of photons I' from the background in time



Figure 1: Snapshot of Delaunay triangulation as
part of the kSigma routine. The partitioning is used
to compute the {single, edge, triangle, cell} groups
for data fusion. Four possible source positions rela-
tive to the sensor network are shown.

t. The likelihood function can be modified to incorporate
additional information, such as photon energy [2].

In the scenario where the background noise is profiled be-
forehand, given a priori probability mo(#) and the measured
data n, the algorithm computes the a posterior: probabil-
ity that a source of intensity v is located at position x. The
posteriori probability that a source is present is the summed
probability over all z and v. If the algorithm must make a
binary decision — a threat is present or is not present —
then it decides that a threat is present if the posterior prob-
ability that a source is present exceeds a threshold where the
threshold is determined by the tolerance for false positives.

K-Sigma Algorithm.

Next we present a parametric algorithm called the kSigma
algorithm for estimating background noise level, source lo-
cation and intensity, and the probability that a source is
present; these estimates will be used in the integrated heuris-
tic as the a priori estimates for the Bayesian algorithm.

Dynamic sensor grouping The signal to noise ratio
(SNR) drops as the distance between sensors and source
increases. Therefore simply combining measurements from
all sensors may decrease the overall SNR [15]. Instead, we
group measurements from proximate sensors by using a De-
launay triangulation, an efficient technique from computa-
tional geometry that partitions a space into triangles, while
maximizing the minimum angle of the triangles. Figure 1 is
an example of a triangulations.

Estimating background radiation We estimate the
background noise based on the assumption that the back-
ground radiation is uniform within the region. The sensor
flux drops off faster than 1/72 due to absorption of photons
in the air, where r is the distance from the radiation source.
Therefore, sensors far from a source receive negligible flux
from a threat. We estimate the background flux throughout
the region by computing the average rate of photons received
by these distant sensors. We do this by breaking the region
up into quadrilateral cells (pairs of triangular cells that share
a common edge), where each cell is identified by the sensors
at its four vertices. The total photon count received in each
cell is called its cell count. We use the average of the four
sensors within the cell having the lowest cell count, after cor-
rected by order statistics, as the background rate estimate
I" for all sensors.

Estimating whether a source is present We can coarsely

characterize the relative source position in the sensor net-

work by one of the following configurations: the source is
close to (a) the center of a quadrilateral cell of sensors, (b)
one of the sensors, (¢) an edge between two sensors, and (d)
the center of a triangle, as illustrated in Figure 1. If a source
is near the center of a cell then the average counts measured
by the sensors at the four corners of the cell is likely to be
higher than the counts from the background. Likewise, if a
source is very near a sensor then the photon count measured
by that sensor is likely to be higher than the count from the
background. So, we estimate the average counts from each
single sensor, the pair of sensors along each edge, and the
sensors at the corners of each triangle and each cell. We
compute the number of standard deviations, called kSigma
values, of the measured counts from the estimated counts if
only the background were present; and we compute kSigma
for each and every group (singleton, edge, triangle, quad) in
the field.

kSigma = (N —T)/vVT (3)

where N is the group’s aggregate radiation count in time ¢,
and T" is the estimated aggregate count in the group from
only the background in time ¢. The aggregate radiation
count in a group is a Poisson process: VT is the standard
deviation of the process. kSigma is thus the number of stan-
dard deviatiosns that the measured group count has from
that expected if only background radiation is present.

The kSigma values are then corrected using order statis-
tics to account for the bias inherent in ordering the groups
by aggregate counts. The corrected K for kSigma are cal-
culated from the uncorrected values using the following fac-
tors for singletons, edges, triangles, and quads Ki,... K4
(for N = 9 sensors) as follows:

K = 101K, K> = 1.1K, K3 = 1.3K, K4 = 1.5K

Estimating source intensity and location Let x be a
d-dimensional vector representing a point in space. Consider
an experiment conducted over an interval of duration 7. Let
I" be the expected number of photons measured at a sensor
generated by the background in this interval, and n; the
number of photons measured at sensor j in this interval.
The flux at a point decreases roughly as the square of the
distance ignoring absorption in the air. If there is a source
with intensity p present at location x, then the number of
photons from the source measured at sensor j in the interval
T is approximately C-p-T/|S; —z|* where C is a constant of
proportionality that depends on the sensitivity of the sensor.
For convenience we introduce the sensor intensity variable
vj(z) where: v;(x) =C - p;(z) - T.

If n; > T then the difference n; — I' is attributed to a
source at any location z and v;(x) specified by

n; — T =wv;(x)/]S; — x|

To estimate the source position, we make use of the sensor
quad that exhibits the largest value of kSigma. We compute
vj(x) for all sensors j in this quad, for all locations x. The
location that is most consistent with the observed sensor
readings is most likely to be the source location. To quantify
this, we compute a variance estimate

m
L(z) = (vj(z) — v(@))?
j=1

where v(z) is the average v;(x) for j ranging over the ver-
tices of the quad. We postulate that the likelihood of a
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Figure 2: Simulation experiment setup. The circles
mark the positions of the sensors. The trajectories
are used in experiments with moving sources.

source at a point x is inversely proportional to this variance
function. sThe source location is thus the x that maximizes

1/(1+ L(z))

Once the source location has been determined, the estima-
tion of its intensity is straightforward: it is derived knowing
the distance of each sensor from the source and the elapsed
time T'.

Integrated Algorithm.

Computation of the integrated algorithm is carried out in
two steps — parametric estimation and Bayesian update.
We first use the kSigma algorithm to estimate: the back-
ground rate I', the probability that a source is present at a
location z, for each z, and the source intensity pu. Next, we
use these estimates as a priori estimates in a Bayes algo-
rithm.

Results of parametric estimation reduce the range of val-
ues that need to be considered by the Bayesian algorithm,
and thus makes the Bayesian calculations tractable. We give
results from several experiments evaluating the integrated
heuristic in Section 2.3 and 3.2.

2.3 Simulation Results

All simulation parameters used in this paper are based on
measurements taken by IPRL (Intelligent Portable Radia-
tion Locater) sensors developed by Smiths Detection. IPRL
is a high efficiency CdZnTe radiation sensor that is about the
size of a camera (see Figure 5). The IPRL can be equipped
with one (IPRL-1) to six crystals (IPRL-6).

Setup.

In the simulation, we simulated a background of 48 counts
per second (cps) and a source of 1200 cps at one meter away.
These values are based on measurements made with IPRL-6
sensors detecting a 1mCi Cesium-137 source. We simulated
detection and localization in a 100 x 100 m field with nine of
the sensors placed in a grid formation as in Figure 2. 20,000
simulation runs were carried out for each ROC curve, of
which 10,000 were with a source randomly placed in the field
and the other 10,000 without. We recorded the detection
and localization results at T=9 and T=60 seconds. The data
were fused and processed using four algorithms — (1) Bayes
with correct priors (“bayes”), (2) the integrated heuristic, (3)

parametric (“kSigma”), and (4) Bayes with incorrect priors
that assumed a source five times stronger than was actually
simulated (“bayes 5x”). For the Bayesian algorithms, we
assumend an a prior probability that a source is present of
0.1.

Results.

We evaluated the integrated algorithm’s performance us-
ing ROC and DOCA curves. Figure 3 and 4 shows the detec-
tion and localization results. We use the bayesian algorithm
with correct priors as the upper bound and compare outputs
from the other algorithms to it. At T=9, the integrated ap-
proach has similar detection performance as the parametric
approach. There is a considerable improvement in localiza-
tion performance: where the integrated algorithm localizes
to within 10m ~40% of the time as opposed to 20% with
kSigma only. At T=60, the improvement is even clearer.
The integrated algorithm performs nearly as well as the up-
per bound both in detection and localization. This jump in
improvement over time is the characteristic of Bayesian type
of algorithms — they can tolerate small errors in priors but
when the errors get larger (as the ones generated by kSigma
at T=9), the improvement by combining is small. In fact,
all three algorithms perform considerably better than the
Bayesian algorithm with large errors in priors.

3. TESTBED MODEL VALIDATION FOR STA-

TIONARY SOURCE

3.1 Setup

A testbed, setup in the laboratory at IOS Pasadena, con-
sists of six IPRL-6 sensors arranged in a 3x2 grid, as shown
in Figure 5. An exempt 9.5 uC'i Cesium-137 source can be
placed anywhere within, or nearby, the grid. The spacings
between sensors are chosen so that the setup will emulate
the detection of a 1 mC% source in a 30x20 m field. The
schematic is shown in Figure 6.

This particular setup was chosen based on on the number
of sensors available, the type and strengths of sources, and
the amount of time we were able to access the equipment
and space. With these constraints in mind, only a small
number of representative experiments were performed.

Experimental data were obtained for the three source po-
sitions in Figure 6. Position 1 has the source placed at 1
meter away from a sensor, at (x,y) coordinates (0,19). Po-
sition 2 is midway between two sensors at (15,10). Posi-
tion 3 is in the middle of four sensors at (7.5,10). For each
position, we ran 100 experiments of 120 seconds each. Be-
tween T=0 and T=60, the source was completely shielded
(and therefore not detectable by the sensors). At T=60, the
shielding was removed and the system observed till T=120.
The data were analyzed with the Bayesian algorithm with
correct priors on the source and background strength. The
prior probability that a source is present was set at 0.1, and
a detection threshold is at 0.5. Localization was computed
after a detection was made.

3.2 Testbed Results

Limited by the number of experiments that can be re-
peated within a reasonable amount of time, the results are
evaluated in terms of averaged detection confidence and lo-
calization error over the time span, shown in Figure 7, in-
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Figure 3: Detection performance compared using
ROC snapshots for 20,000 simulation runs at two
time intervals, T=9 and T=60 sec. The Bayesian al-
gorithm was repeated with an incorrect source prior
distribution (bayes 5x), as a comparison.

stead of ROC and DOCA as used in Section 2.3. The av-
eraged time to detect varied for the three source positions,
therefore the localization sequences start at different times.
In the first 60 seconds for all 100 runs, no false positives
were generated. After the source was unshielded at T=60,
the source was detected the fastest at Position 1 (= 5 sec),
followed by Position 2 (10 sec), and 3 (15 sec). This or-
der is inverted in localization: the source was best localized
when it was at the center of sensors. This result is not
surprising as measurements from multiple sensors improve
target localization. In these experiments, the localization
errors converge at about 1 meter. Also observe the dip in
localization error for Position 1 at 7' = 65. This is the re-
sult from high variance in error among the 100 runs when
localization is attempted with too few data from a single
sensor. These results not only validate the practicality of
detection of a static weak source with networked sensors as
many past work has shown, but also highlight the differ-
ence in algorithm performance for the three representative
source-sensors layouts that have not been studied before.

4. TRACKING MOBILE SOURCES IN OPEN

FIELDS
4.1 Modified Algorithm

The three algorithms described in Section 2 can be mod-
ified to accommodate mobility. In this study, we kept the

1.0 v B A e ey
08 | |
bayes
06
=2 integrated
04 [ _
kSigma
02 r
——> bayes(5x)
00 ¢ + . .
0 30 60 90 120 150
Estimation error (m)
(a)T=9
1.0 T L e o S |
0.8
0.6
e integrated
04
kSigma
0.2 .
A—> bayes(5x)
00 = : 1 1 1 1
0 30 60 90 120 150
Estimation error (m)
(b) T = 60

Figure 4: Localization performance compared using
DOCA snapshots for 10,000 simulation runs at two
time intervals, T=9 and T=60 secs. The Bayesian
algorithm was repeated with an incorrect source
prior distribution (bayes 5x), as a comparison.

sensors stationary for ease of comparison, but the results
can be applied to both mobile source and mobile sensors.

Bayesian Algorithm.

The integration of the Bayesian algorithm with motion
estimation models such as a Kalman filter is widely studied
in object tracking. Here we implement a much simplified
version of the Kalman filter. Instead of a sophisticated mo-
tion model, the filter assumes that the source can move in
all directions with equal probability in the next second in a
reasonable speed (e.g. 2 m/s if on foot) and allow for smooth
weight transfer by redistributing the weight of the current
source position estimate T to its neighbor y within a radius
R using the following rules:

(D =%) — (1-Z) xn(D = &)

where Z is the redistribution factor. R and Z can be dy-
namically adjusted according to the estimated speed and
intensity of the source.

Parametric Algorithm.

When the threat source and sensors are stationary, mea-
surements in the distant past and more recent past are equally
useful; however, when the source or sensors move then mea-
surements in the distant past are less relevant. The modified



Figure 5: Testbed setup at I0S Pasadena. Six
IPRL-6 are placed in two arrays of three, each cir-
cled out in red.
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Figure 6: Laboratory testbed schematic, showing
the six IPRL-6 sensors, the three source positions,
and the two motion trajectories.

kSigma algorithm gives higher weight to more recent mea-
surements by aging the relative weights of measurements
exponentially with time. At a given elapsed time T, we
compute an adjusted weighted sum W of all measurements,
as follows:

W= ; n(t)e' T 4)

where Ty is a decay constant. The value of Ty is adjusted
based on the estimated source and sensor speeds: the smaller
the value, the more sensitive the algorithm is to quicker
motion.

Integrated Algorithm.

The integrated algorithm remains the same as in the sta-
tionary scenario. However, the source and background es-
timates and the likelihood map are generated by kSigma
algorithm with count aging.

4.2 Simulation Results

Using the same sensor grid setup as in Section 2.3, we
simulated a 10 mCi Cesium-137 source traveling in a straight
line along two trajectories, at a speed of 0.5 m/s (a slow
human walking speed), as illustrated in Figure 2. Results
compiled from 100 runs for each trajectory are shown in
Figure 8. Results using the unmodified Bayesian algorithm
for the no-motion assumption are plotted for reference. For
both types of trajectory, all three algorithms are able to
closely track a moderately strong source traveling at this
slow speed. Moderate improvement is also observed from
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Figure 7: Laboratory testbed results computed us-
ing a Bayesian filter with correct priors. The results
are averaged over 100 test runs.

the integrated algorithm compared to the pure parametric
algorithm.

S. TESTBED MODEL VALIDATION FOR MO-

BILE SOURCES
5.1 Setup

Using the same setup as in Figure 6, we ran a set of exper-
iments in which the source was moved at a constant velocity
equivalent to 0.5 m/s along Trajectory A or B. At T' = 0,
the source starts moving from 3.5 meters left to the grid. At
approximately T" = 70 second, the source reaches the end of
the grid and we stop the experiment. For each trajectory, 5
runs of 70 seconds each were recorded.

5.2 Testbed Results

Motion tracking results for the two trajectories are shown
in Figure 9. The horizontal axis marks the actual location of
the source when it is moving in the runs. The vertical axis
shows the localization errors for the sequence of locations.
For Trajectory A, three local minima at 0, 15, 30, occur
when the source passes through those corresponding sensor
locations at 1 m away. For Trajectory B, the fluctuations are
smaller because the source is further away from all sensors.
In both setups, all three algorithms demonstrated good ca-
pability of tracking a considerably weak 1mCi source. These
results correspond closely to those generated in simulation
and validates the feasibility of the algorithms in target track-
ing. Limited by low statistics (5 runs for each trajectory) no
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Figure 8: Simulated source tracking of a 10mCi
Cesium-137 source traveling at 0.5 m/s along two
horizontal trajectories. Parameters 7y = 10, R = 10,
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included in the parentheses next to each algorithm
label.

clear comparison can be made among the three algorithms.

6. THREATS DETECTION IN CITY STREETS

Threat detection in cities is a very challenging problem.
In the past it has been studied in simulation as the problem
of passively detecting a radiation source inside a city with a
set of taxis equipped with sensors [4, 9]. In this study, we
present an active detection approach using sensors mounted
in police patrol cars, based on an extensive data set.

6.1 Sacramento City Radiation Map

Background radiation data in the downtown Sacramento
city were collected by scientists from Lawrence Livermore
National Laboratory. This data set consists of measure-
ments made over a 5-day period of ~ 6 hours on each day,
measured by two large Nal scintillators placed in the rear
of a van. Each sensor had dimensions 2x4x16 cm and an
energy resolution of 6%. The van’s GPS position, together
with spectrum data, was recorded at one second intervals.
The data covers about a 12x12 blocks area with multiple
revisits for each point (at least 5 times) at different times.
The data from the two sensors were combined, cleaned and
corrected for calibration errors. For our study, an area of
5x5 block within the data set is selected. Inside this region,
there are obvious fluctuations of background noise, ranging
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Figure 9: Testbed source tracking of a 1mCi Cesium-
137 source traveling at 0.5 m/s along two horizontal
trajectories. Parameters 7y = 2, R = 10, and S =
0.3 are used. The averaged position error over the
total 70 seconds run for all 5 runs is included in the
parentheses next to each algorithm label.

from a minimum of 500 cps to a maximum of 1200 cps. The
data are visualized in Figure 10.

6.2 Simulated Roadside Detection

We simulated a set of detectors that travel the city streets
at an arbitrary constant speed, respecting the one-way sys-
tem where present. For each simulation, a source of strength
1mCi was placed at random somewhere along one of the
streets, and at 4 meters from the center of the street. The
intent was to simulate a dirty bomb or similar source placed,
for example, in a backpack at the side of the street. For
ease of analysis, we assumed an unshielded, isotropic radi-
ation emission pattern. At T' = 0, the sensors (i.e. patrol
cars) initially placed at random positions in the grid started
moving at a constant speed d.

The simulated counts were based on real noise profile in
the Sacramento streets at a one-meter resolution. A simple
threshold on the kSigma value was used to determine if the
source was detected by the detector in question and if so,
the simulation run was terminated, and a record made of the
elapsed time to detection t. We assume that if a patrol car
detects the probable presence of a source then the officers in
the car search the nearby area and detect the source, with
probability 1, if a source is present.

When a detector reached a junction, a decision was made
as to which street the detector would start moving along.



(a) Full set of 30 hour data. Lighter blue

indicates higher noise. The sub-region
used in this study is circled in red.

(b) Zoomed-in street layout. All E-W
streets are one-way as marked by the ar-
rows. All N-S streets are two-way.

Figure 10: Sacramento background radiation data
visualized using GoogleEarth.

The decision took into account the one-way system, and
we prevented detectors from doubling back, unless that was
the only option. Otherwise, the detector’s new street was
assigned at random from the available (up to three) possi-
bilities.

6.2.1 Optimizing Sensor Number and Speed

Figure 11 shows the average elapsed time to detection for
sets of between one and 32 detectors in search of a 1mCi
source. Two curves are displayed: one where the detectors
move at 10 m/s (&~ 22mph) and the other where they move
at 25 m/s (= 56mph). The improvement in detection time
is marginal above half a dozen or so detectors, and detection
times are shortest when the detectors travel at the higher
speed.

There is, however, a tradeoff between speed and detection
rate: the faster the detector moves, the smaller the effective
sensor integration window is [19], and the less likely that
the source will be detected. This is illustrated in Figure 12,
which shows, for a set of eight detectors, the average detec-
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Figure 11: Time to detect as a function of the num-
ber of sensors at two speeds.
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Figure 12: Time to detect as a function of sensor
speed using two levels of source strength, for N=8
sensors.

tion time as a function of speed for sources of two strengths:
1 mCi and 0.1 mCi. We observe that if the detector speed
is increased from 40 to 50 m/s the time to detect a source
increases. Likewise, if the detector speed is decreased from
20 to 10 m/s the time to detect a source increases again. In
fact, the speed that minimizes detection time in both cases
is around 25 m/s (about 56mph). This interesting observa-
tion suggests that, in a situation where eight police patrol
cars carrying detectors are dispatched in response to a tip-off
that a dirty bomb is located somewhere in the city region,
they should drive as fast as possible consistent with safety,
up to a limit of 56mph, in order to detect the bomb in the
shortest time possible time. They should not, however, go
faster than 56 mph.

In a further study, we examined the detection sensitivity
as a function of the source position. In other words, where-
abouts in this 5x5 block city region are dirty bombs most
likely to be detected quickly. This study involved 1,000,000
separate simulation runs, each using 32 detectors traveling
at 25 m/s (an optimally realistic scenario). Detection times
at each of the one-meter spaced grid positions in the region
were averaged to obtain a sensitivity map, shown in Fig-
ure 13. In this map, the green band alongside each street
(colored blue through red showing background intensity) in-
dicates the sensitivity: the more intense the green, the more
sensitive the detection capability if a source were placed at
that location.

The result in Figure 13 shows that the sensitivity of a
particular point depends predominantly on how often it is
passed by, and not so much on the background level (given



Figure 13: Detection sensitivity. The level of green
indicates how long it will take for the network to
detect a 1mCi source placed at that point. This
is shown alongside the background radiation level
(blue lowest, red highest) along each street.

that the sensors are as large as the ones in this data set).
However, this may change when the source to detect is heav-
ily shielded: we intend to explore this possibility in future
work.

6.2.2 Foiling a Terrorist

The detection problem essentially becomes a search prob-
lem when the source is bright enough. Then what is the
best strategy for patrol cars to use in order to foil a ter-
rorist? A random traveling strategy in which all exits from
a junction are taken with equal probability is sub-optimal
since it leaves some streets such as those in the South East
corner of the city relatively poorly covered; detectors pass
there infrequently simply because there are limited routes
to get to those streets. We outline below how to calculate
an optimal strategy. We make the standard game theoretic
assumption of rational adversaries and compute a strategy
that obtains the best outcome in the worst case.

Consider a graph in which each stretch of street, without
turns, is modeled as an edge. Edges are directed. A junction
of streets is represented by a vertex. We want each meter
of street to be traveled with the same frequency, i.e., the
time interval between repeated visits for each meter segment
of street should be the same. This is because if a street
segment were not traveled for a long time then a terrorist
would game the system by placing a threat on that segment.
Likewise, if streets were patrolled in a deterministic manner,
such as first patrol East-West streets from North to South,
then the terrorist could estimate the instant in the patrolling
schedule with the greatest duration for the arrival of the
next patrol car. Therefore we use a probabilistic strategy in
which patrol cars make turns at junctions randomly, where
the probability of a given turn is specified. A practical result
of this strategy analysis will be instructions to patrol cars,
for example “When you come to the junction of Avenue X
and Street Y traveling East, go North 60% of the time, South
10% of the time, make a U-turn 5% of the time, and keep
going East the rest of the time”.

The analysis explores the flow of patrol cars on the city
streets. Let flow[j, k] be the number of patrol cars per hour
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Figure 14: Street selection probabilities that mini-
mize the range of traffic flows, as derived by a Ge-
netic Algorithm. The numbers adjacent to each
street at each junction show the probability that
should be used when choosing that street when leav-
ing the junction.

that travel along street (edge) [J, k], i.e., the street from junc-
tion j to junction k. For a two-way street between junctions
j and k the total flow of patrol cars along the street is the
sum flow(j, k] + flow[k, j]. For each junction j, conservation
of cars gives the equation: >, flow[i,j] = >, flow[], k]
Our goal is to maximize the minimum flow amongst all
the streets; this can be formulated as a linear programming
problem. We used a fast heuristic to solve this problem and
we plan to compare run times of the heuristic against run
times of a linear program solver. Figure 14 shows that the
heuristic increased the minimum flow rate from 0.45 cars per
unit time to 0.71 cars per unit time.

7. OPTIMIZING SENSOR PLACEMENT

In this section, we go back to Scenario 1 and study the
problem of placing sensors in a fixed size field to optimize
system performance. This analysis can be extended to the
detection of a wide range of anomalies.

7.1 Detection Function Definition

In many anomaly detection scenarios, the ability of an in-
dividual sensor to make a correct detection decision drops as
the sensor moves away from the anomaly. This behavior can
be described with a sensor detection characteristic function
® that is unique to the sensor type. ® denotes how the sen-
sor detection probability T'PRsensor changes with varying
distance r to the anomaly, and desired sensor false positive
rate F'PRsensor- In the example of radiation detection, & is
derived below:

TPRuensor = P\, T) = % — %erf[zf/gﬂ
_1 (1 erf [ﬂ,\ — 2T x erf—l[FPRmsor]D

2 2vT + A
A and I' are the expected signal and noise strength, with

respectively, at the sensor. erf is the error function. A is
a function of the absolute signal strength p, the position
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Figure 15: Sensor placement for detection of a 1 mCi
source with 9 sensors in 60 seconds. The result was
computed using a greedy approach. Each sensor is
labeled by the order of which it was added into the
field.

of the source x, and the position of the sensor s. I' is a
function of the sensor position s. The system false positive
rate FPRyy,qp can be defined in two ways, 1) per sensor,
and 2) per map. Using definition 1), ® does not change
with the number of sensors. However, using definition 2),
FPRgensor needs to decrease as the number of sensors in
the map increases, because F'PR,qp has to stay constant.
FPRsensor can be adjusted as a function of N, the total
number of sensors.

FPReonsor = 1 — Exp[w}
N
Therefore, the sensor’s true positive function ® drops as
N increases. We denote ®V as the per sensor true positive
function when there are a total of N sensors. We define our
detection function F' as the sum of true positives over the
whole map while keeping the false positive rate constant.

F =TPRumap = / <1 -JJa- @N(A(a:),F(s)))) dz (5)

7.2 Greedy Approximate Algorithm

The optimal sensor placements for detection will maximize
Equation 5. We approximate the optimal solution using a
greedy approach: placing the sensors one at a time with the
goal of maximizing Equation 5 at each step. The greedy ap-
proach is guaranteed to perform at least a fraction (1—1/e)
of the optimal solution if the target function is monotone
and submodular, i.e. the function has diminishing returns
[18]. These conditions are formally stated below:

1. Submodularity (diminishing returns): A C A’ C V
andy e V\ A, F(AUy)—F(A) > F(A' Uy) — F(A)
2. Monotonicity: A C A" CV, F(A") > F(A)

Here, we prove that the detection function F' is mono-
tone and argue why it is also submodular. Observe that if
Log[F(N 41)] = Log[F(N)] > 0, then F(N+1)—F(N) >0
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Figure 16: ROC comparison of three configurations
of 9 IPRL-1 sensors for detection of a 1mCi source
in T=60 seconds.

implies that F' is monotone. We simplify Log[F(N + 1)] —
Log[F(N)] by combining terms that involve the same sensor

} ~ Log [1 - <I>N+1(dN+1)] da

. (Z e (6)

The first Log is the sum of a series of small negative values
because the fraction is always less than, but close to, unity.
The second Log term evaluates to a negative value because
1-®N*1(X,) < 0. Depending on where the (N+1)th sensor
dn+1 is placed, the two terms inside the integral do not
always evaluate to a nonnegative value for all possible source
positions x. However, observe that if the discretization of
the distance is fine enough, that is, there exists an = such
that |2 — dy41| < ¢, then Log[l — @V ™! (dn41)] — —o0. By
adjusting e, Equation 6 is never negative, thus F' is monotone
under the constraint that the per map false positive rate
stays constant.

We argue that F' is submodular from the following obser-
vations. If the field is fully covered with N sensors in even
square meter, the difference between F(N + 1) and F(N)
is greater than the difference between F'(1) and F(0) be-
cause in the former case the accumulated TPR is saturated
for each position in the map. This argument is further sup-
ported by Figure 15(b). With the proof of monotonicity and
the argument for submodularity, we claim that the greedy
approach is guaranteed to produce a solution at least 63%
as good as the optimal solution.

7.3 Results

Using the detection function F' as the objective function,
we computed the placement of nine sensors in a field of
100x100 meter with a desired F'PRyqap = 0.01. The source
used in the calculation was a 1mCi Cesium-137 with an
equivalent source strength g = 200 counts per second mea-
sured by an IPRL-1 at 1 meter distance. The expected
background was uniform at 8 cps. The time allowed be-
fore a decision is made was 60 seconds. We restricted the
minimgm distance between two sensors to 10 meters. There
are (11 ;121) possible ways to place N sensors. The place-
ment results for placing 9 sensors are shown in Figure 15(a).
The marginal return for each additional sensor for up to 50
sensors is also plotted in Figure 15(b).

1—3N(d,)
— ®N+1(d,)
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Figure 17: Different layouts are computed as being
optimal when the prior information changes.

The performance of this layout (Figure 15(a)) was eval-
uated in simulations using Bayesian statistics with correct
priors. The resulting ROC curve is compared to those ac-
quired from a simple grid layout (Figure 2), and a layout
computed using entropy as the objective function [15]. As
shown in Figure 16, the new layout in Figure 15(a) performs
considerably better than the grid layout. There is also a
slight improvement compared to previous results that used
entropy as objective function. Note that the sensor model
used here is IPRL-1. At T=60, the results would’ve been
much better with IPRL-6 as shown in previous experiments
in this paper.

7.4 Long Observation Time and Varying Back-
ground

The sensor’s capability to make a correct decision (®) im-
proves as T', the amount of time allowed before the decision
is made. The objective function 5 therefore depends on T
as well. Figure 17 shows two results when we compute the
placement using different sets of prior information. In Fig-
ure 17(a), the amount of time allowed for detection has been
increased from 60 to 600 seconds. The placement computed
approaches a uniform grid layout. In Figure 17(b), we in-
troduced a non-uniform background, modeled as a bivariate
Gaussian distribution centered at coordinates (30,40), where
the highest expected count was three times (25 cps) of the
lowest count (8 cps). The placement of sensors, taking into
account this prior information, first covers the area with
lower noise variation before placing sensors in the noisier
area. This result is not surprising since the marginal benefit
of placing a sensor in an area of low SNR area is smaller
than placing it in an area with high SNR.

7.5 Discussion

Given that the prior information can be computed in real
time using a parametric method such as kSigma, it is pos-
sible to calculate a near-optimal sensor placement dynami-
cally in order to optimize the detection capability of a sensor
network. The sensor characteristics function ® is general
enough to be modified and applied to detection of anoma-
lies other than radiation sources. By examining the output

of the detection function F', one can compute the number
of sensors required in an area to achieve a certain detec-
tion confidence within a certain amount of time, without
the need for extensive simulation. We intend to investigate
whether this placement method also optimizes localization
performance.

8. RELATED WORK

Different detection scenarios require different sensor de-
ployment strategies. Large portal style of sensors are ideal
at places with specific entry and exit points such as airports
and hospitals [28]; distributed sensor network (DSN) on the
other hand, is a lot more flexible in configurations and easier
to deploy in urban setting [1, 19]. The challenge in DSN is
then to fuse data from multiple sensors either at a central-
ized server or distributed nodes [26].

Many detection algorithms were presented in the past.
This includes deterministic solutions such as inverse-law in-
ference [5], Maximum Likelihood Estimator [7], or prob-
abilistic solutions such as 2-dimensional least squares fit-
ting (LS) [10, 8], sequential probability testing (SPRT) [11,
22, 21], Bayesian posterior estimation [3, 27, 17], Extended
Kalman Filter and its variants [8]. Of those algorithms, de-
tection and localization are often coupled. In fact, robust
localization leads to improvement in detection accuracy [16,
23, 20]. On comparison of the two groups of algorithms, de-
terministic solutions can be computed rapidly but they do
not have the same level of flexibility or accuracy as proba-
bilistic methods. Probabilistic solutions allow for complex
sensor and environment models and often produce better es-
timations. However, because the algorithm needs to sweep
a large probability space constructed from prior information
that is at time missing, the actual feasibility in deployment
is questionable. Our work showed that by combining the two
methods carefully, one can achieve noticeable improvement
in performance while significantly reducing the computation.

The principle behind all algorithms for anomaly detection
is to distinguish signal from noise [13]. By combining data
from sensors at multiple locations, we hope to increase the
overall SNR. However, this is not always the case as shown
in [15, 20]. The only reliable way to increase SNR is to
decrease the distance between sensors and the source(s), ei-
ther by deploying a large number of sensors, or by physically
moving the sensors towards the source. Ristic et. al. looked
at applying information theory to dynamically redeploy mo-
bile sensors to detect strong sources in a low background
environment [24, 25]. Similar techniques were used in [6, 14]
to efficiently monitor spatial phenomena such as background
radiation and temperature. The sensor placement problem
under limited resources was first introduced in [15] in the
context of radiation detection. In this paper, we extend
from that and present a system level generalized detection
probability function for other threat scenarios and provided
a proof for theoretical bound for the greedy solution.

Detection in a city is extremely challenging. Cheng et.
al. looked at clustering local sensor data for detection with
a network of taxi cabs equipped with radiation sensors [4].
Hochbaum el. al. used a weighted concentrated alert ap-
proach in the same scenario in order to optimize the detec-
tion rate while minimizing the false positive rate [9]. Apart
from stationary sources, Nemzek et. al. studied the prob-
lem of detecting a mobile source traveling on a street with
an array of stationary sensors along the street [19]. How-



ever, these work were purely derived from computer simula-
tions and lack real world implications. The study presented
in this paper based all computations on real measurements
collected over an extensive period of time and location. It
further looked into how speed and the number of sensors
affect the time to detect and devised strategies for fast de-
tection.
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