BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE (ACI 318M-99)
AND COMMENTARY (ACI 318RM-99)

REPORTED BY ACI COMMITTEE 318

ACI Committee 318
Standard Building Code

James R. Cagley
Chairman

Basile G. Rabbat
Secretary

Craig E. Barnes
S. K. Ghosh
Gary J. Klein
Jack P. Moehle

Florian G. Barth
S. K. Ghosh
Cary S. Kopczynski
Walter P. Moore, Jr.*

Roger J. Becker
David P. Gustafson
James Lefter

Florian G. Barth
Hershell Gill
H. S. Lew
Glen M. Ross

John E. Breen
James R. Harris
James M. Martin
Charles G. Salmon

Anthony P. Chrest
Neil M. Hawkins
James G. MacGregor
Mete A. Sozen

W. Gene Corley
C. Raymond Hays
John A. Martin, Jr.
Dean E. Stephan

Robert A. Epifano
Richard E. Holguin
Leslie D. Martin
Richard A. Vognild

Catherine W. French
Phillip J. Iverson
Robert F. Mast
Joel S. Weinstein

Luis E. Garcia
James O. Jirsa
Richard C. Meininger
James K. Wight

Loring A. Wyllie, Jr.

*Deceased

Voting Subcommittee Members

Kenneth B. Bondy
D. Kirk Harman
Joe Maffei
Randall W. Poston
Stephen J. Seguirant

Ronald A. Cook
Terence C. Holland
Steven L. McCabe
Julio A. Ramirez
Roberto Stark

Richard W. Furlong
Kenneth C. Hover
Gerard J. McGuire
Gajanan M. Sabnis
Maher K. Tadros

William L. Gamble
Michael E. Kreger
Peter Meza
John R. Salmons
John W. Wallace

Roger Green
LeRoy A. Lutz
Denis Mitchell
Thomas C. Schaeffer
Sharon L. Wood

Consulting Members

Richard D. Gaynor
Edward S. Hoffman
Richard A. Ramsey

Jacob S. Grossman
Francis J. Jacques
Irwin J. Speyer

John M. Hanson
Alan H. Mattock
The code portion of this document covers the proper design and construction of buildings of structural concrete. The code has been written in such form that it may be adopted by reference in a general building code and earlier editions have been widely used in this manner.

Among the subjects covered are: drawings and specifications; inspection; materials; durability requirements; concrete quality, mixing, and placing; formwork; embedded pipes; and construction joints; reinforcement details; analysis and design; strength and serviceability; flexural and axial loads; shear and torsion; development and splices of reinforcement; slab systems; walls; footings; precast concrete; composite flexural members; prestressed concrete; shells and folded plate members; strength evaluation of existing structures; special provisions for seismic design; structural plain concrete; an alternate design method in Appendix A; unified design provisions in Appendix B; and alternative load and strength reduction factors in Appendix C.

The quality and testing of materials used in construction are covered by reference to the appropriate ASTM standard specifications. Welding of reinforcement is covered by reference to the appropriate ANSI/AWS standard.

Because the ACI Building Code is written as a legal document so that it may be adopted by reference in a general building code, it cannot present background details or suggestions for carrying out its requirements or intent. It is the function of this commentary to fill this need.

The commentary discusses some of the considerations of the committee in developing the code with emphasis given to the explanation of new or revised provisions that may be unfamiliar to code users.

References to much of the research data referred to in preparing the code are cited for the user desiring to study individual questions in greater detail. Other documents that provide suggestions for carrying out the requirements of the code are also cited.

Keywords: admixtures; aggregates; anchorage (structural); beam-column frame; beams (supports); building codes; cements; cold weather construction; columns (supports); combined stress; composite construction (concrete and steel); composite construction (concrete to concrete); compressive strength; concrete construction; concretes; concrete slabs; construction joints; continuity (structural); contraction joints; cover; curing; deep beams; deflections; drawings; earthquake resistant structures; embedded service ducts; flexural strength; floors; folded plates; footings; formwork (construction); frames; hot weather construction; inspection; isolation joints; joints (junctions); joists; lightweight concretes; loads (forces); load tests (structural); materials; mixing; mix proportioning; modulus of elasticity; moments; pipe columns; pipes (tubing); placing; plain concrete; precast concrete; prestressed concrete; prestressing steels; quality control; reinforced concrete; reinforcing steels; roofs; serviceability; shear strength; shearwalls; shells (structural forms); spans; specifications; splicing; strength; strength analysis; stresses; structural analysis; structural concrete; structural design; structural integrity; T-beams, torsion; walls; water; welded wire fabric.

ACI 318M-99 was adopted as a standard of the American Concrete Institute March 18, 1999 to supersede ACI 318M-95 in accordance with the Institute’s standardization procedure.

Vertical lines in the margins indicate the 1999 code and commentary changes.

ACI Committee Reports, Guides, Standard Practices, and Commentaries are intended for guidance in planning, designing, executing, and inspecting construction. This Commentary is intended for the use of individuals who are competent to evaluate the significance and limitations of its content and recommendations and who will accept responsibility for the application of the material it contains. The American Concrete Institute disclaims any and all responsibility for the stated principles. The Institute shall not be liable for any loss or damage arising therefrom. Reference to this commentary shall not be made in contract documents. If items found in this Commentary are desired by the Architect/Engineer to be a part of the contract documents, they shall be restated in mandatory language for incorporation by the Architect/Engineer.

Copyright © 1999, American Concrete Institute. All rights reserved including rights of reproduction and use in any form or by any means, including the making of copies by any photo process, or by any electronic or mechanical device, printed or written or oral, or recording for sound or visual reproduction or for use in any knowledge or retrieval system or device, unless permission in writing is obtained from the copyright proprietors.
INTRODUCTION

This commentary discusses some of the considerations of Committee 318 in developing the provisions contained in “Building Code Requirements for Structural Concrete (ACI 318M-99),” hereinafter called the code or the 1999 code. Emphasis is given to the explanation of new or revised provisions that may be unfamiliar to code users. In addition, comments are included for some items contained in previous editions of the code to make the present commentary independent of the commentary for ACI 318M-95. Comments on specific provisions are made under the corresponding chapter and section numbers of the code.

The commentary is not intended to provide a complete historical background concerning the development of the ACI Building Code, nor is it intended to provide a detailed résumé of the studies and research data reviewed by the committee in formulating the provisions of the code. However, references to some of the research data are provided for those who wish to study the background material in depth.

As the name implies, “Building Code Requirements for Structural Concrete (ACI 318M-99)” is meant to be used as part of a legally adopted building code and as such must differ in form and substance from documents that provide detailed specifications, recommended practice, complete design procedures, or design aids.

The code is intended to cover all buildings of the usual types, both large and small. Requirements more stringent than the code provisions may be desirable for unusual construction. The code and commentary cannot replace sound engineering knowledge, experience, and judgement.

A building code states only the minimum requirements necessary to provide for public health and safety. The code is based on this principle. For any structure, the owner or the structural designer may require the quality of materials and construction to be higher than the minimum requirements necessary to protect the public as stated in the code. However, lower standards are not permitted.

The commentary directs attention to other documents that provide suggestions for carrying out the requirements and intent of the code. However, those documents and the commentary are not a part of the code.

The code has no legal status unless it is adopted by the government bodies having the police power to regulate building design and construction. Where the code has not been adopted, it may serve as a reference to good practice even though it has no legal status.

The code provides a means of establishing minimum standards for acceptance of designs and construction by a legally appointed building official or his designated representatives. The code and commentary are not intended for use in settling disputes between the owner, engineer, architect, contractor, or their agents, subcontractors, material suppliers, or testing agencies. Therefore, the code cannot define the contract responsibility of each of the parties in usual construction. General references requiring compliance with the code in the job specifications should be avoided since the contractor is rarely in a position to accept responsibility for design details or construction requirements that depend on a detailed knowledge of the design. Generally, the drawings, specifications and contract documents should contain all of the necessary requirements to ensure compliance with the code. In part, this can be accomplished by reference to specific code sections in the job specifications. Other ACI publications, such as “Specifications for Structural Concrete for Buildings” (ACI 301) are written specifically for use as contract documents for construction.

Committee 318 recognizes the desirability of standards of performance for individual parties involved in the contract documents. Available for this purpose are the plant certification programs of the Precast/Prestressed Concrete Institute, the Post-Tensioning Institute and the National Ready Mixed Concrete Association, and the Concrete Reinforcing Steel Institute’s Voluntary Certification Program for Fusion-Bonded Epoxy Coating Applicator Plants. In addition, “Recommended Practice for Inspection and Testing Agencies for Concrete, Steel, and Bituminous Materials As Used in Construction” (ASTM E 329-77) recommends performance requirements for inspection and testing agencies.

Design reference materials illustrating applications of the code requirements may be found in the following documents. The design aids listed may be obtained from the sponsoring organization.

Design aids:

“ACI Design Handbook,” ACI Committee 340, Publication SP-17(97), American Concrete Institute, Farmington Hills, MI, 1997, 482 pp. (Provides tables and charts for design of eccentricity loaded columns by the Strength Design Method. Provides design aids for use in the engineering design and analysis of reinforced concrete slab systems carrying loads by two-way action. Design aids are also provided for the selection of slab thickness and for reinforcement required to control deformation and assure adequate shear and flexural strengths.)

“ACI Detailing Manual—1994,” ACI Committee 315, Publication SP-66(94), American Concrete Institute, Farmington Hills, MI, 1994, 244 pp. (Includes the standard, ACI 315-92, and report, ACI 315R-94. Provides recommended methods and standards for preparing engineering drawings, typical details, and drawings placing reinforcing steel in reinforced concrete structures. Separate sections define responsibilities of both engineer and reinforcing bar detailer.)

CRSI Handbook, Concrete Reinforcing Steel Institute, Schaumburg, Ill., 8th Edition, 1996, 960 pp. (Provides tabulated designs for structural elements and slab systems. Design examples are provided to show the basis of and use of the load tables. Tabulated designs are given for beams; square, round and rectangular columns; one-way slabs; and one-way joist construction. The design tables for two-way slab systems include flat plates, flat slabs and waffle slabs. The chapters on foundations provide design tables for square footings, pile caps, drilled piers (caissons) and cantilevered retaining walls. Other design aids are presented for crack control; and development of reinforcement and lap splices.)

“Reinforcement Anchorages and Splices,” Concrete Reinforcing Steel Institute, Schaumburg, Ill., 4th Edition, 1997, 100 pp. (Provides accepted practices in splicing reinforcement. The use of lap splices, mechanical splices, and welded splices are described. Design data are presented for development and lap splicing of reinforcement.)

“Strength Design of Reinforced Concrete Columns,” Portland Cement Association, Skokie, Ill., EB009D, 1978, 48 pp. (Provides design tables of column strength in terms of load in kips versus moment in ft-kips for concrete strength of 5000 psi and Grade 60 reinforcement. Design examples are included. Note that the PCA design tables do not include the strength reduction factor ϕ in the tabulated values; Mu/ϕ and Pu/ϕ must be used when designing with this aid.

“PCI Design Handbook—Precast and Prestressed Concrete,” Precast/Prestressed Concrete Institute, Chicago, 5th Edition, 1999, 630 pp. (Provides load tables for common industry products, and procedures for design and analysis of precast and prestressed elements and structures composed of these elements. Provides design aids and examples.)

“Design and Typical Details of Connections for Precast and Prestressed Concrete,” Precast/Prestressed Concrete Institute, Chicago, 2nd Edition, 1988, 270 pp. (Updates available information on design of connections for both structural and architectural products, and presents a full spectrum of typical details. Provides design aids and examples.)

TABLE OF CONTENTS

CONTENTS

PART 1—GENERAL

CHAPTER 1—GENERAL REQUIREMENTS ...318M-9
 1.1—Scope
 1.2—Drawings and specifications
 1.3—Inspection
 1.4—Approval of special systems of design or construction

CHAPTER 2—DEFINITIONS ..318M-17

PART 2—STANDARDS FOR TESTS AND MATERIALS

CHAPTER 3—MATERIALS ..318M-23
 3.0—Notation
 3.1—Tests of materials
 3.2—Cements
 3.3—Aggregates
 3.4—Water
 3.5—Steel reinforcement
 3.6—Admixtures
 3.7—Storage of materials
 3.8—Standards cited in this code

PART 3—CONSTRUCTION REQUIREMENTS

CHAPTER 4—DURABILITY REQUIREMENTS ..318M-35
 4.0—Notation
 4.1—Water-cementitious materials ratio
 4.2—Freezing and thawing exposures
 4.3—Sulfate exposures
 4.4—Corrosion protection of reinforcement

CHAPTER 5—CONCRETE QUALITY, MIXING, AND PLACING318M-41
 5.0—Notation
 5.1—General
 5.2—Selection of concrete proportions
 5.3—Proportioning on the basis of field experience or trial mixtures, or both
 5.4—Proportioning without field experience or trial mixtures
 5.5—Average strength reduction
 5.6—Evaluation and acceptance of concrete
 5.7—Preparation of equipment and place of deposit
 5.8—Mixing
 5.9—Conveying
 5.10—Depositing
 5.11—Curing
 5.12—Cold weather requirements
 5.13—Hot weather requirements

CHAPTER 6—FORMWORK, EMBEDDED PIPES, AND CONSTRUCTION JOINTS318M-57
 6.1—Design of formwork
 6.2—Removal of forms, shores, and reshoring
 6.3—Conduits and pipes embedded in concrete
 6.4—Construction joints

CHAPTER 7—DETAILS OF REINFORCEMENT ..318M-63
 7.0—Notation
 7.1—Standard hooks
 7.2—Minimum bend diameters
 7.3—Bending
 7.4—Surface conditions of reinforcement
 7.5—Placing reinforcement
 7.6—Spacing limits for reinforcement
 7.7—Concrete protection for reinforcement
 7.8—Special reinforcement details for columns
 7.9—Connections
 7.10—Lateral reinforcement for compression members
 7.11—Lateral reinforcement for flexural members
 7.12—Shrinkage and temperature reinforcement
 7.13—Requirements for structural integrity
PART 4—GENERAL REQUIREMENTS

CHAPTER 8—ANALYSIS AND DESIGN—GENERAL CONSIDERATIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>Notation</td>
</tr>
<tr>
<td>8.1</td>
<td>Design methods</td>
</tr>
<tr>
<td>8.2</td>
<td>Loading</td>
</tr>
<tr>
<td>8.3</td>
<td>Methods of analysis</td>
</tr>
<tr>
<td>8.4</td>
<td>Redistribution of negative moments in continuous nonprestressed flexural members</td>
</tr>
<tr>
<td>8.5</td>
<td>Modulus of elasticity</td>
</tr>
<tr>
<td>8.6</td>
<td>Stiffness</td>
</tr>
<tr>
<td>8.7</td>
<td>Span length</td>
</tr>
<tr>
<td>8.8</td>
<td>Columns</td>
</tr>
<tr>
<td>8.9</td>
<td>Arrangement of live load</td>
</tr>
<tr>
<td>8.10</td>
<td>T-beam construction</td>
</tr>
<tr>
<td>8.11</td>
<td>Joist construction</td>
</tr>
<tr>
<td>8.12</td>
<td>Separate floor finish</td>
</tr>
</tbody>
</table>

CHAPTER 9—STRENGTH AND SERVICEABILITY REQUIREMENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.0</td>
<td>Notation</td>
</tr>
<tr>
<td>9.1</td>
<td>General</td>
</tr>
<tr>
<td>9.2</td>
<td>Required strength</td>
</tr>
<tr>
<td>9.3</td>
<td>Design strength</td>
</tr>
<tr>
<td>9.4</td>
<td>Design strength for reinforcement</td>
</tr>
<tr>
<td>9.5</td>
<td>Control of deflections</td>
</tr>
</tbody>
</table>

CHAPTER 10—FLEXURE AND AXIAL LOADS

<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>Notation</td>
</tr>
<tr>
<td>10.1</td>
<td>Scope</td>
</tr>
<tr>
<td>10.2</td>
<td>Design assumptions</td>
</tr>
<tr>
<td>10.3</td>
<td>General principles and requirements</td>
</tr>
<tr>
<td>10.4</td>
<td>Distance between lateral supports of flexural members</td>
</tr>
<tr>
<td>10.5</td>
<td>Minimum reinforcement of flexural members</td>
</tr>
<tr>
<td>10.6</td>
<td>Distribution of flexural reinforcement in beams and one-way slabs</td>
</tr>
<tr>
<td>10.7</td>
<td>Deep flexural members</td>
</tr>
<tr>
<td>10.8</td>
<td>Design dimensions for compression members</td>
</tr>
<tr>
<td>10.9</td>
<td>Limits for reinforcement of compression members</td>
</tr>
<tr>
<td>10.10</td>
<td>Slenderness effects in compression members</td>
</tr>
<tr>
<td>10.11</td>
<td>Magnified moments—General</td>
</tr>
<tr>
<td>10.12</td>
<td>Magnified moments—Nonsway frames</td>
</tr>
<tr>
<td>10.13</td>
<td>Magnified moments—Sway frames</td>
</tr>
<tr>
<td>10.14</td>
<td>Axially loaded members supporting slab system</td>
</tr>
<tr>
<td>10.15</td>
<td>Transmission of column loads through floor system</td>
</tr>
<tr>
<td>10.16</td>
<td>Composite compression members</td>
</tr>
<tr>
<td>10.17</td>
<td>Bearing strength</td>
</tr>
</tbody>
</table>

CHAPTER 11—SHEAR AND TORSION

<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.0</td>
<td>Notation</td>
</tr>
<tr>
<td>11.1</td>
<td>Shear strength</td>
</tr>
<tr>
<td>11.2</td>
<td>Lightweight concrete</td>
</tr>
<tr>
<td>11.3</td>
<td>Shear strength provided by concrete for nonprestressed members</td>
</tr>
<tr>
<td>11.4</td>
<td>Shear strength provided by concrete for prestressed members</td>
</tr>
<tr>
<td>11.5</td>
<td>Shear strength provided by shear reinforcement</td>
</tr>
<tr>
<td>11.6</td>
<td>Design for torsion</td>
</tr>
<tr>
<td>11.7</td>
<td>Shear-friction</td>
</tr>
<tr>
<td>11.8</td>
<td>Special provisions for deep flexural members</td>
</tr>
<tr>
<td>11.9</td>
<td>Special provisions for brackets and corbels</td>
</tr>
<tr>
<td>11.10</td>
<td>Special provisions for walls</td>
</tr>
<tr>
<td>11.11</td>
<td>Transfer of moments to columns</td>
</tr>
<tr>
<td>11.12</td>
<td>Special provisions for slabs and footings</td>
</tr>
</tbody>
</table>

CHAPTER 12—DEVELOPMENT AND SPLICES OF REINFORCEMENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0</td>
<td>Notation</td>
</tr>
<tr>
<td>12.1</td>
<td>Development of reinforcement—General</td>
</tr>
<tr>
<td>12.2</td>
<td>Development of deformed bars and deformed wire in tension</td>
</tr>
<tr>
<td>12.3</td>
<td>Development of deformed bars in compression</td>
</tr>
<tr>
<td>12.4</td>
<td>Development of bundled bars</td>
</tr>
<tr>
<td>12.5</td>
<td>Development of standard hooks in tension</td>
</tr>
<tr>
<td>12.6</td>
<td>Mechanical anchorage</td>
</tr>
<tr>
<td>12.7</td>
<td>Development of welded deformed wire fabric in tension</td>
</tr>
<tr>
<td>12.8</td>
<td>Development of welded plain wire fabric in tension</td>
</tr>
<tr>
<td>12.9</td>
<td>Development of prestressing strand</td>
</tr>
<tr>
<td>12.10</td>
<td>Development of flexural reinforcement—General</td>
</tr>
<tr>
<td>12.11</td>
<td>Development of positive moment reinforcement</td>
</tr>
<tr>
<td>12.12</td>
<td>Development of negative moment reinforcement</td>
</tr>
<tr>
<td>12.13</td>
<td>Development of web reinforcement</td>
</tr>
<tr>
<td>12.14</td>
<td>Splices of reinforcement—General</td>
</tr>
<tr>
<td>12.15</td>
<td>Splices of deformed bars and deformed wire in tension</td>
</tr>
<tr>
<td>12.16</td>
<td>Splices of deformed bars in compression</td>
</tr>
<tr>
<td>12.17</td>
<td>Special splice requirements for columns</td>
</tr>
<tr>
<td>12.18</td>
<td>Splices of welded deformed wire fabric in tension</td>
</tr>
<tr>
<td>12.19</td>
<td>Splices of welded plain wire fabric in tension</td>
</tr>
</tbody>
</table>
PART 5—STRUCTURAL SYSTEMS OR ELEMENTS

CHAPTER 13—TWO-WAY SLAB SYSTEMS ...318M-209

13.0—Notation
13.1—Scope
13.2—Definitions
13.3—Slab reinforcement
13.4—Openings in slab systems
13.5—Design procedures
13.6—Direct design method
13.7—Equivalent frame method

CHAPTER 14—WALLS ... 318M-229

14.0—Notation
14.1—Scope
14.2—General
14.3—Minimum reinforcement
14.4—Walls designed as compression members
14.5—Empirical design method
14.6—Nonbearing walls
14.7—Walls as grade beams
14.8—Alternative design of slender walls

CHAPTER 15—FOOTINGS ..318M-237

15.0—Notation
15.1—Scope
15.2—Loads and reactions
15.3—Footings supporting circular or regular polygon shaped columns or pedestals
15.4—Moment in footings
15.5—Shear in footings
15.6—Development of reinforcement in footings
15.7—Minimum footing depth
15.8—Transfer of force at base of column, wall, or reinforced pedestal
15.9—Sloped or stepped footings
15.10—Combined footings and mats

CHAPTER 16—PRECAST CONCRETE ...318M-245

16.0—Notation
16.1—Scope
16.2—General
16.3—Distribution of forces among members
16.4—Member design
16.5—Structural integrity
16.6—Connection and bearing design
16.7—Items embedded after concrete placement
16.8—Marking and identification
16.9—Handling
16.10—Strength evaluation of precast construction

CHAPTER 17—COMPOSITE CONCRETE FLEXURAL MEMBERS..... 318M-253

17.0—Notation
17.1—Scope
17.2—General
17.3—Shoring
17.4—Vertical shear strength
17.5—Horizontal shear strength
17.6—Ties for horizontal shear

CHAPTER 18—PRESTRESSED CONCRETE 318M-257

18.0 —Notation
18.1 —Scope
18.2 —General
18.3 —Design assumptions
18.4 —Permissible stresses in concrete—Flexural members
18.5 —Permissible stresses in prestressed tendons
18.6 —Loss of prestress
18.7 —Flexural strength
18.8 —Limits for reinforcement of flexural members
18.9 —Minimum bonded reinforcement
18.10 —Statically indeterminate structures
18.11 —Compression members—Combined flexure and axial loads
18.12 —Slab systems
18.13 —Post-tensioned tendon anchorage zones
18.14 —Design of anchorage zones for monostand or single 5/8 in. diameter bar tendons
18.15 —Design of anchorage zones for multistrand tendons
18.16 —Corrosion protection for unbonded prestressing tendons
18.17 —Post-tensioning ducts
18.18 —Grout for bonded prestressing tendons
18.19 —Protection for prestressing tendons
18.20 —Application and measurement of prestressing force
18.21 —Post-tensioning anchorage zones and couplers
18.22 —External post-tensioning
TABLE OF CONTENTS

CHAPTER 19—SHELLS AND FOLDED PLATE MEMBERS318M-285

- 19.0—Notation
- 19.1—Scope and definitions
- 19.2—Analysis and design
- 19.3—Design strength of materials
- 19.4—Shell reinforcement
- 19.5—Construction

PART 6—SPECIAL CONSIDERATIONS

CHAPTER 20—STRENGTH EVALUATION OF EXISTING STRUCTURES318M-293

- 20.0—Notation
- 20.1—Strength evaluation—General
- 20.2—Determination of required dimensions and material properties
- 20.3—Load test procedure
- 20.4—Loading criteria
- 20.5—Acceptance criteria
- 20.6—Provision for lower load rating
- 20.7—Safety

CHAPTER 21—SPECIAL PROVISIONS FOR SEISMIC DESIGN318M-299

- 21.0—Notation
- 21.1—Definitions
- 21.2—General requirements
- 21.3—Flexural members of special moment frames
- 21.4—Special moment frame members subjected to bending and axial load
- 21.5—Joints of special moment frames
- 21.6—Special reinforced concrete structural walls and coupling beams
- 21.7—Structural diaphragms and trusses
- 21.8—Foundations
- 21.9—Frame members not proportioned to resist forces induced by earthquake motions
- 21.10—Requirements for intermediate moment frames

PART 7—STRUCTURAL PLAIN CONCRETE

CHAPTER 22—STRUCTURAL PLAIN CONCRETE318M-335

- 22.0—Notation
- 22.1—Scope
- 22.2—Limitations
- 22.3—Joints
- 22.4—Design method
- 22.5—Strength design
- 22.6—Walls
- 22.7—Footings
- 22.8—Pedestals
- 22.9—Precast members
- 22.10—Plain concrete in earthquake-resisting structures

COMMENTARY REFERENCES ..318M-345

APPENDIXES

APPENDIX A—ALTERNATE DESIGN METHOD318M-357

- A.0—Notation
- A.1—Scope
- A.2—General
- A.3—Permissible service load stresses
- A.4—Development and splices of reinforcement
- A.5—Flexure
- A.6—Compression members with or without flexure
- A.7—Shear and torsion

APPENDIX B—UNIFIED DESIGN PROVISIONS FOR REINFORCED AND PRESTRESSED CONCRETE FLEXURAL AND COMPRESSION MEMBERS ..318M-367

- B.1—Scope
APPENDIX C—ALTERNATIVE LOAD AND STRENGTH REDUCTION FACTORS .. 318M-375

C.1—General

APPENDIX D—NOTATION .. 318M-377

APPENDIX E—STEEL REINFORCEMENT INFORMATION .. 318M-385

INDEX ... 318M-387
CHAPTER 1 — GENERAL REQUIREMENTS

R1.1 — Scope

The American Concrete Institute “Building Code Requirements for Structural Concrete (ACI 318M-99),” referred to as the code, provides minimum requirements for any structural concrete design or construction.

The 1999 edition of the code revised the previous standard “Building Code Requirements for Structural Concrete (ACI 318M-95).” This standard includes in one document the rules for all concrete used for structural purposes including both plain and reinforced concrete. The term “structural concrete” is used to refer to all plain or reinforced concrete used for structural purposes. This covers the spectrum of structural applications of concrete from nonreinforced concrete to concrete containing nonprestressed reinforcement, pretensioned or post-tensioned tendons, or composite steel shapes, pipe, or tubing. Requirements for plain concrete are in Chapter 22.

Prestressed concrete is included under the definition of reinforced concrete. Provisions of the code apply to prestressed concrete except for those that are stated to apply specifically to nonprestressed concrete.

Chapter 21 of the code contains special provisions for design and detailing of earthquake resistant structures. See 1.1.8.

Appendix A of the code contains provisions for an alternate method of design for nonprestressed reinforced concrete members using service loads (without load factors) and permissible service load stresses. The Alternate Design Method is intended to give results that are slightly more conservative than designs by the Strength Design Method of the code.

Appendix B of the code contains provisions for reinforcement limits, determination of the strength reduction factor ϕ, and moment redistribution. The provisions are applicable to reinforced and prestressed concrete flexural and compression members. Designs made using the provisions of Appendix B are equally acceptable, provided the provisions of Appendix B are used in their entirety.

Appendix C of the code allows the use of the factored load combinations in Section 2.3 of ASCE 7, “Minimum Design Loads for Buildings and Other Structures,” if structural framing includes primary members of materials other than concrete.
CODE

1.1.2 — This code supplements the general building code and shall govern in all matters pertaining to design and construction of structural concrete, except wherever this code is in conflict with requirements in the legally adopted general building code.

1.1.3 — This code shall govern in all matters pertaining to design, construction, and material properties wherever this code is in conflict with requirements contained in other standards referenced in this code.

1.1.4 — For special structures, such as arches, tanks, reservoirs, bins and silos, blast-resistant structures, and chimneys, provisions of this code shall govern where applicable.

COMMENTARY

R1.1.2 — The American Concrete Institute recommends that the code be adopted in its entirety; however, it is recognized that when the code is made a part of a legally adopted general building code, the general building code may modify provisions of this code.

R1.1.4 — Some special structures involve unique design and construction problems that are not covered by the code. However, many code provisions, such as the concrete quality and design principles, are applicable for these structures. Detailed recommendations for design and construction of some special structures are given in the following ACI publications:

“Standard Practice for the Design and Construction of Reinforced Concrete Chimneys” reported by ACI Committee 307.1.1 (Gives material, construction, and design requirements for circular cast-in-place reinforced chimneys. It sets forth minimum loadings for the design of reinforced concrete chimneys and contains methods for determining the stresses in the concrete and reinforcement required as a result of these loadings.)

“Standard Practice for Design and Construction of Concrete Silos and Stacking Tubes for Storing Granular Materials” reported by ACI Committee 313.1.2 (Gives material, design, and construction requirements for reinforced concrete bins, silos, and bunkers and stave silos for storing granular materials. It includes recommended design and construction criteria based on experimental and analytical studies plus worldwide experience in silo design and construction.)

“Environmental Engineering Concrete Structures” reported by ACI Committee 350.1.3 (Gives material, design and construction recommendations for concrete tanks, reservoirs, and other structures commonly used in water and waste treatment works where dense, impermeable concrete with high resistance to chemical attack is required. Special emphasis is placed on a structural design that minimizes the possibility of cracking and accommodates vibrating equipment and other special loads. Proportioning of concrete, placement, curing and protection against chemicals are also described. Design and spacing of joints receive special attention.)

“Code Requirements for Nuclear Safety Related Concrete Structures” reported by ACI Committee 349.1.4 (Provides minimum requirements for design and construction of concrete structures that form part of a nuclear power plant and have nuclear safety related functions. The code does not cover concrete reactor vessels and concrete containment structures which are covered by ACI 359.)

“Code for Concrete Reactor Vessels and Containments” reported by ACI-ASME Committee 359.1.5 (Provides...
CODE

1.1.5 — This code does not govern design and installation of portions of concrete piles, drilled piers, and caissons embedded in ground except for structures in regions of high seismic risk or assigned to high seismic performance or design categories. See 21.8.4 for requirements for concrete piles, drilled piers, and caissons in structures in regions of high seismic risk or assigned to high seismic performance or design categories.

1.1.6 — This code does not govern design and construction of soil-supported slabs, unless the slab transmits vertical loads or lateral forces from other portions of the structure to the soil.

1.1.7 — Concrete on steel form deck

1.1.7.1 — Design and construction of structural concrete slabs cast on stay-in-place, noncomposite steel form deck are governed by this code.

1.1.7.2 — This code does not govern the design of structural concrete slabs cast on stay-in-place, composite steel form deck. Concrete used in the construction of such slabs shall be governed by Parts 1, 2, and 3 of this code, where applicable.

COMMENTARY

requirements for the design, construction, and use of concrete reactor vessels and concrete containment structures for nuclear power plants.)

R1.1.5 — The design and installation of piling fully embedded in the ground is regulated by the general building code. For portions of piling in air or water, or in soil not capable of providing adequate lateral restraint throughout the piling length to prevent buckling, the design provisions of this code govern where applicable.

Recommendations for concrete piles are given in detail in “Recommendations for Design, Manufacture, and Installation of Concrete Piles” reported by ACI Committee 543.16 (Provides recommendations for the design and use of most types of concrete piles for many kinds of construction.)

Recommendations for drilled piers are given in detail in “Design and Construction of Drilled Piers” reported by ACI Committee 336.17 (Provides recommendations for design and construction of foundation piers 0.76 m in diameter or larger made by excavating a hole in the soil and then filling it with concrete.)

Detailed recommendations for precast prestressed concrete piles are given in “Recommended Practice for Design, Manufacture, and Installation of Prestressed Concrete Piling” prepared by the PCI Committee on Prestressed Concrete Piling.18

R1.1.7 — Concrete on steel form deck

In steel framed structures, it is common practice to cast concrete floor slabs on stay-in-place steel form deck. In all cases, the deck serves as the form and may, in some cases, serve an additional structural function.

R1.1.7.1 — In its most basic application, the steel form deck serves as a form, and the concrete serves a structural function and, therefore, are to be designed to carry all superimposed loads.

R1.1.7.2 — Another type of steel form deck commonly used develops composite action between the concrete and steel deck. In this type of construction, the steel deck serves as the positive moment reinforcement. The design of composite slabs on steel deck is regulated by “Standard for the Structural Design of Composite Slabs” (ANSI/ASCE 3).19 However, ANSI/ASCE 3 references the appropriate portions of ACI 318 for the design and construction of the concrete portion of the composite assembly. Guidelines for the construction of composite steel deck slabs are given in “Standard Practice for the Construction and Inspection of Composite Slabs” (ANSI/ASCE 9).20
1.1.8 — Special provisions for earthquake resistance

1.1.8.1 — In regions of low seismic risk, or for structures assigned to low seismic performance or design categories, provisions of Chapter 21 shall not apply.

1.1.8.2 — In regions of moderate or high seismic risk, or for structures assigned to intermediate or high seismic performance or design categories, provisions of Chapter 21 shall be satisfied. See 21.2.1.

1.1.8.3 — Seismic risk level of a region, or seismic performance or design category, shall be regulated by the legally adopted general building code of which this code forms a part, or determined by local authority.

R1.1.8 — Special provisions for earthquake resistance

Special provisions for seismic design were first introduced in Appendix A of the 1971 code and were continued without revision in the 1977 code. These provisions were originally intended to apply only to reinforced concrete structures located in regions of highest seismicity.

The special provisions were extensively revised in the 1983 code to include new requirements for certain earthquake-resisting systems located in regions of moderate seismicity. In the 1989 code, the special provisions were moved to Chapter 21.

R1.1.8.1 — For buildings located in regions of low seismic risk, or for structures assigned to low seismic performance or design categories, no special design or detailing is required; the general requirements of the main body of the code apply for proportioning and detailing reinforced concrete buildings. It is the intent of Committee 318 that concrete structures proportioned by the main body of the code will provide a level of toughness adequate for low earthquake intensity.

R1.1.8.2 — For buildings in regions of moderate seismic risk, or for structures assigned to intermediate seismic performance or design categories, reinforced concrete moment frames proportioned to resist seismic effects require some special reinforcement details, as stipulated in 21.10 of Chapter 21. The special details apply only to frames (beams, columns, and slabs) to which the earthquake-induced forces have been assigned in design. The special details are intended principally for unbraced concrete frames, where the frame is required to resist not only normal load effects, but also the lateral load effects of earthquake. The special reinforcement details will serve to provide a suitable level of inelastic behavior if the frame is subjected to an earthquake of such intensity as to require it to perform inelastically. There are no special requirements for structural walls provided to resist lateral effects of wind and earthquake, or nonstructural components of buildings located in regions of moderate seismic risk. Structural walls proportioned by the main body of the code are considered to have sufficient toughness at anticipated drift levels in regions of moderate seismicity.

For buildings located in regions of high seismic risk, or for structures assigned to high seismic performance or design categories, all building components, structural and nonstructural, should satisfy requirements of 21.2 through 21.8 of Chapter 21. The special proportioning and detailing provisions of Chapter 21 are intended to provide a monolithic reinforced concrete structure with adequate “toughness” to respond inelastically under severe earthquake motions. See also R21.2.1

R1.1.8.3 — Seismic risk levels (Seismic Zone Maps) and seismic performance or design categories are under the jurisdiction of a general building code rather than ACI 318. In the absence of a general building code that addresses
1.2 — Drawings and specifications

1.2.1 — Copies of design drawings, typical details, and specifications for all structural concrete construction shall bear the seal of a registered engineer or architect. These drawings, details, and specifications shall show:

(a) Name and date of issue of code and supplement to which design conforms;
(b) Live load and other loads used in design;
(c) Specified compressive strength of concrete at stated ages or stages of construction for which each part of structure is designed;
(d) Specified strength or grade of reinforcement;
(e) Size and location of all structural elements and reinforcement;
(f) Provision for dimensional changes resulting from creep, shrinkage, and temperature;
(g) Magnitude and location of prestressing forces;
(h) Anchorage length of reinforcement and location and length of lap splices;
(i) Type and location of mechanical and welded splices of reinforcement;
(j) Details and location of all contraction or isolation joints specified for plain concrete in Chapter 22;
(k) Minimum concrete compressive strength at time of post-tensioning;
(l) Stressing sequence for post-tensioning tendons;
(m) Statement if slab on grade is designed as a structural diaphragm, see 21.8.3.4.

1.2.2 — Calculations pertinent to design shall be filed with the drawings when required by the building official. Analyses and designs using computer programs shall be permitted provided design assumptions, user input, and computer-generated output are submitted. Model analysis shall be permitted to supplement calculations.

R1.2 — Drawings and specifications

R1.2.1 — The provisions for preparation of design drawings and specifications are, in general, consistent with those of most general building codes and are intended as supplements.

The code lists some of the more important items of information that should be included in the design drawings, details, or specifications. The code does not imply an all-inclusive list, and additional items may be required by the building official.

R1.2.2 — Documented computer output is acceptable in lieu of manual calculations. The extent of input and output information required will vary, according to the specific requirements of individual building officials. However, when a computer program has been used by the designer, only skeleton data should normally be required. This should consist of sufficient input and output data and other information to allow the building official to perform a detailed
1.2.3 — Building official means the officer or other designated authority charged with the administration and enforcement of this code, or his duly authorized representative.

1.3 — Inspection

1.3.1 — Concrete construction shall be inspected as required by the legally adopted general building code. In the absence of such inspection requirements, concrete construction shall be inspected throughout the various work stages by or under the supervision of a licensed design professional or by a qualified inspector.

R1.2.3 — Building official is the term used by many general building codes to identify the person charged with administration and enforcement of the provisions of the building code. However, such terms as building commissioner or building inspector are variations of the title, and the term building official as used in this code is intended to include those variations as well as others that are used in the same sense.

R1.3 — Inspection

The quality of concrete structures depends largely on workmanship in construction. The best of materials and design practices will not be effective unless the construction is performed well. Inspection is necessary to confirm that the construction is in accordance with the design drawings and project specifications. Proper performance of the structure depends on construction that accurately represents the design and meets code requirements, within the tolerances allowed. Qualification of inspectors can be obtained from a certification program such as the certification program for Reinforced Concrete Inspector sponsored by ACI, International Conference of Building Officials (ICBO), Building Officials and Code Administrators International (BOCA), and Southern Building Code Congress International (SBCCI).

R1.3.1 — Inspection of construction by or under the supervision of the licensed design professional responsible for the design should be considered because the person in charge of the design is usually the best qualified to determine if construction is in conformance with construction documents. When such an arrangement is not feasible, inspection of construction through other licensed design professionals or through separate inspection organizations with demonstrated capability for performing the inspection may be used.

Qualified inspectors should establish their qualification by becoming certified to inspect and record the results of concrete construction, including preplacement, placement, and postplacement operations through the Reinforced Concrete Special Inspector program sponsored by ACI, ICBO, BOCA, and SBCCI or equivalent.
When inspection is done independently of the licensed design professional responsible for the design, it is recommended that the licensed design professional responsible for the design be employed at least to oversee inspection and observe the work to see that the design requirements are properly executed.

In some jurisdictions, legislation has established special registration or licensing procedures for persons performing certain inspection functions. A check should be made in the general building code or with the building official to ascertain if any such requirements exist within a specific jurisdiction.

Inspection reports should be promptly distributed to the owner, licensed design professional responsible for the design, contractor, appropriate subcontractors, appropriate suppliers, and the building official to allow timely identification of compliance or the need for corrective action.

Inspection responsibility and the degree of inspection required should be set forth in the contracts between the owner, architect, engineer, contractor, and inspector. Adequate fees should be provided consistent with the work and equipment necessary to properly perform the inspection.

By inspection, the code does not mean that the inspector should supervise the construction. Rather it means that the one employed for inspection should visit the project with the frequency necessary to observe the various stages of work and ascertain that it is being done in compliance with contract documents and code requirements. The frequency should be at least enough to provide general knowledge of each operation, whether this be several times a day or once in several days.

Inspection in no way relieves the contractor from his obligation to follow the plans and specifications and to provide the designated quality and quantity of materials and workmanship for all job stages. The inspector should be present as frequently as he or she deems necessary to judge whether the quality and quantity of the work complies with the contract documents; to counsel on possible ways of obtaining the desired results; to see that the general system proposed for formwork appears proper (though it remains the contractor’s responsibility to design and build adequate forms and to leave them in place until it is safe to remove them); to see that reinforcement is properly installed; to see that concrete is of the correct quality, properly placed, and cured; and to see that tests for quality control are being made as specified.

The code prescribes minimum requirements for inspection of all structures within its scope. It is not a construction specification and any user of the code may require higher standards of inspection than cited in the legal code if additional requirements are necessary.

Recommended procedures for organization and conduct of concrete inspection are given in detail in “Guide for Concrete
1.3.3 — When the ambient temperature falls below 5 C or rises above 35 C, a record shall be kept of concrete temperatures and of protection given to concrete during placement and curing.

1.3.4 — Records of inspection required in 1.3.2 and 1.3.3 shall be preserved by the inspecting engineer or architect for 2 years after completion of the project.

1.3.5 — For special moment frames resisting seismic loads in regions of high seismic risk, continuous inspection of the placement of the reinforcement and concrete shall be made by a qualified inspector under the supervision of the engineer responsible for the structural design or under the supervision of an engineer with demonstrated capability for supervising inspection of special moment frames resisting seismic loads in regions of high seismic risk.

1.4 — Approval of special systems of design or construction

Sponsors of any system of design or construction within the scope of this code, the adequacy of which has been shown by successful use or by analysis or test, but which does not conform to or is not covered by this code, shall have the right to present the data on which their design is based to the building official or to a board of examiners appointed by the building official. This board shall be composed of competent engineers and shall have authority to investigate the data so submitted, to require tests, and to formulate rules governing design and construction of such systems to meet the intent of this code. These rules when approved by the building official and promulgated shall be of the same force and effect as the provisions of this code.

R1.3.3 — The term ambient temperature means the temperature of the environment to which the concrete is directly exposed. Concrete temperature as used in this section may be taken as the air temperature near the surface of the concrete; however, during mixing and placing it is practical to measure the temperature of the mixture.

R1.3.4 — A record of inspection in the form of a job diary is required in case questions subsequently arise concerning the performance or safety of the structure or members. Photographs documenting job progress may also be desirable.

Records of inspection should be preserved for at least 2 years after the completion of the project. The completion of the project is the date at which the owner accepts the project, or when a certificate of occupancy is issued, whichever date is later. The general building code or other legal requirements may require a longer preservation of such records.

R1.3.5 — The purpose of this section is to ensure that the special detailing required in special moment frames is properly executed through inspection by personnel who are qualified to do this work. Qualifications of inspectors should be acceptable to the jurisdiction enforcing the general building code.

R1.4 — Approval of special systems of design or construction

New methods of design, new materials, and new uses of materials should undergo a period of development before being specifically covered in a code. Hence, good systems or components might be excluded from use by implication if means were not available to obtain acceptance.

For special systems considered under this section, specific tests, load factors, deflection limits, and other pertinent requirements should be set by the board of examiners, and should be consistent with the intent of the code.

The provisions of this section do not apply to model tests used to supplement calculations under 1.2.2 or to strength evaluation of existing structures under Chapter 20.
CHAPTER 2 — DEFINITIONS

2.1 — The following terms are defined for general use in this code. Specialized definitions appear in individual chapters.

Admixture — Material other than water, aggregate, or hydraulic cement, used as an ingredient of concrete and added to concrete before or during its mixing to modify its properties.

Aggregate — Granular material, such as sand, gravel, crushed stone, and iron blast-furnace slag, used with a cementing medium to form a hydraulic cement concrete or mortar.

Aggregate, lightweight — Aggregate with a dry, loose weight of 1120 kg/m³ or less.

Anchorage device — In post-tensioning, the hardware used for transferring a post-tensioning force from the tendon to the concrete.

Anchorage zone — In post-tensioned members, the portion of the member through which the concentrated prestressing force is transferred to the concrete and distributed more uniformly across the section. Its extent is equal to the largest dimension of the cross section. For intermediate anchorage devices, the anchorage zone includes the disturbed regions ahead of and behind the anchorage devices.

Basic monostrand anchorage device — Anchorage device used with any single strand or a single 15.9 mm or smaller diameter bar that satisfies 18.21.1 and the anchorage device requirements of the Post-Tensioning Institute’s “Specification for Unbonded Single Strand Tendons.”

Basic multistrand anchorage device — Anchorage device used with multiple strands, bars, or wires, or with single bars larger than 15.9 mm diameter, that satisfies 18.21.1 and the bearing stress and minimum plate stiffness requirements of AASHTO Bridge Specifications, Division I, Articles 9.21.7.2.2 through 9.21.7.2.4.

COMMENTARY

R2.1 — For consistent application of the code, it is necessary that terms be defined where they have particular meanings in the code. The definitions given are for use in application of this code only and do not always correspond to ordinary usage. A glossary of most used terms relating to cement manufacturing, concrete design and construction, and research in concrete is contained in “Cement and Concrete Terminology” reported by ACI Committee 116.²¹

Anchorage device — Most anchorage devices for post-tensioning are standard manufactured devices available from commercial sources. In some cases, designers or constructors develop “special” details or assemblages that combine various wedges and wedge plates for anchoring tendons with specialty end plates or diaphragms. These informal designations as standard anchorage devices or special anchorage devices have no direct relation to the ACI Building Code and AASHTO “Standard Specifications for Highway Bridges” classification of anchorage devices as Basic Anchorage Devices or Special Anchorage Devices.

Anchorage zone — The terminology “ahead of” and “behind” the anchorage device is illustrated in Fig. R18.13.1(b).

Basic anchorage devices are those devices that are so proportioned that they can be checked analytically for compliance with bearing stress and stiffness requirements without having to undergo the acceptance testing program required of special anchorage devices.
CODE

Bonded tendon — Prestressing tendon that is bonded to concrete either directly or through grouting.

Building official — See 1.2.3.

Cementitious materials — Materials as specified in Chapter 3, which have cementing value when used in concrete either by themselves, such as portland cement, blended hydraulic cements, and expansive cement, or such materials in combination with fly ash, other raw or calcined natural pozzolans, silica fume, and/or ground granulated blast-furnace slag.

Column — Member with a ratio of height-to-least lateral dimension exceeding 3 used primarily to support axial compressive load.

Composite concrete flexural members — Concrete flexural members of precast or cast-in-place concrete elements, or both, constructed in separate placements but so interconnected that all elements respond to loads as a unit.

Compression-controlled section — A cross section in which the net tensile strain in the extreme tension steel at nominal strength is less than or equal to the compression-controlled strain limit.

Compression-controlled strain limit — The net tensile strain at balanced strain conditions. See B10.3.2.

Concrete — Mixture of portland cement or any other hydraulic cement, fine aggregate, coarse aggregate, and water, with or without admixtures.

Concrete, specified compressive strength of, \(f'_c \) — Compressive strength of concrete used in design and evaluated in accordance with provisions of Chapter 5, expressed in megapascals (MPa). Whenever the quantity \(f'_c \) is under a radical sign, square root of numerical value only is intended, and result has units of megapascals (MPa).

Concrete, structural lightweight — Concrete containing lightweight aggregate that conforms to 3.3 and has an air-dry unit weight as determined by “Test Method for Unit Weight of Structural Lightweight Concrete” (ASTM C 567), not exceeding 1840 kg/m³. In this code, a lightweight concrete without natural sand is termed “all-lightweight concrete” and lightweight concrete in which all of the fine aggregate consists of normal weight sand is termed “sand-lightweight concrete.”

Concrete, lightweight — By code definition, sand-lightweight concrete is structural lightweight concrete with all of the fine aggregate replaced by sand. This definition may not be in agreement with usage by some material suppliers or contractors where the majority, but not all, of the lightweight fines are replaced by sand. For proper application of the code provisions, the replacement limits should be stated, with interpolation when partial sand replacement is used.

COMMENTARY

Column — The term compression member is used in the code to define any member in which the primary stress is longitudinal compression. Such a member need not be vertical but may have any orientation in space. Bearing walls, columns, and pedestals qualify as compression members under this definition.

The differentiation between columns and walls in the code is based on the principal use rather than on arbitrary relationships of height and cross-sectional dimensions. The code, however, permits walls to be designed using the principles stated for column design (see 14.4), as well as by the empirical method (see 14.5).

While a wall always encloses or separates spaces, it may also be used to resist horizontal or vertical forces or bending. For example, a retaining wall or a basement wall also supports various combinations of loads.

A column is normally used as a main vertical member carrying axial loads combined with bending and shear. It may, however, form a small part of an enclosure or separation.
Contraction joint — Formed, sawed, or tooled groove in a concrete structure to create a weakened plane and regulate the location of cracking resulting from the dimensional change of different parts of the structure.

Curvature friction — Friction resulting from bends or curves in the specified prestressing tendon profile.

Deformed reinforcement — Deformed reinforcing bars, bar mats, deformed wire, welded plain wire fabric, and welded deformed wire fabric conforming to 3.5.3.

Development length — Length of embedded reinforcement required to develop the design strength of reinforcement at a critical section. See 9.3.3.

Effective depth of section (d) — Distance measured from extreme compression fiber to centroid of tension reinforcement.

Effective prestress — Stress remaining in prestressing tendons after all losses have occurred, excluding effects of dead load and superimposed load.

Embedment length — Length of embedded reinforcement provided beyond a critical section.

Extreme tension steel — The reinforcement (prestressed or nonprestressed) that is the farthest from the extreme compression fiber.

Isolation joint — A separation between adjoining parts of a concrete structure, usually a vertical plane, at a designed location such as to interfere least with performance of the structure, yet such as to allow relative movement in three directions and avoid formation of cracks elsewhere in the concrete and through which all or part of the bonded reinforcement is interrupted.

Jacking force — In prestressed concrete, temporary force exerted by device that introduces tension into prestressing tendons.

Load, dead — Dead weight supported by a member, as defined by general building code of which this code forms a part (without load factors).

Load, factored — Load, multiplied by appropriate load factors, used to proportion members by the strength design method of this code. See 8.1.1 and 9.2.

Load, live — Live load specified by general building code of which this code forms a part (without load factors).

Deformed reinforcement — Deformed reinforcement is defined as that meeting the deformed bar specifications of 3.5.3.1, or the specifications of 3.5.3.3, 3.5.3.4, 3.5.3.5, or 3.5.3.6. No other bar or fabric qualifies. This definition permits accurate statement of anchorage lengths. Bars or wire not meeting the deformation requirements or fabric not meeting the spacing requirements are “plain reinforcement,” for code purposes, and may be used only for spirals.

Loads — A number of definitions for loads are given as the code contains requirements that are to be met at various load levels. The terms dead load and live load refer to the unfactored loads (service loads) specified or defined by the general building code. Service loads (loads without load factors) are to be used where specified in the code to proportion or investigate members for adequate serviceability, as in 9.5, Control of Deflections. Loads used to proportion a member for adequate strength are defined as factored loads. Factored loads are service loads multiplied by the appropriate load factors.
Load, service — Load specified by general building code of which this code forms a part (without load factors).

Modulus of elasticity — Ratio of normal stress to corresponding strain for tensile or compressive stresses below proportional limit of material. See 8.5.

Net tensile strain — The tensile strain at nominal strength exclusive of strains due to effective prestress, creep, shrinkage, and temperature.

Pedestal — Upright compression member with a ratio of unsupported height to average least lateral dimension not exceeding 3.

Plain concrete — Structural concrete with no reinforcement or with less reinforcement than the minimum amount specified for reinforced concrete.

Plain reinforcement — Reinforcement that does not conform to definition of deformed reinforcement. See 3.5.4.

Post-tensioning — Method of prestressing in which tendons are tensioned after concrete has hardened.

Precast concrete — Structural concrete element cast elsewhere than its final position in the structure.

Prestressed concrete — Structural concrete in which internal stresses have been introduced to reduce potential tensile stresses in concrete resulting from loads.

Pretensioning — Method of prestressing in which tendons are tensioned before concrete is placed.

Reinforced concrete — Structural concrete reinforced with no less than the minimum amounts of prestressing tendons or nonprestressed reinforcement specified in Chapters 1 through 21 and Appendices A through C.

Reinforcement — Material that conforms to 3.5, excluding prestressing tendons unless specifically included.

Reshores — Shores placed snugly under a concrete slab or other structural member after the original forms and shores have been removed from a larger area, thus requiring the new slab or structural member to deflect and support its own weight and existing construction loads applied prior to the installation of the reshores.

Sheathing — A material encasing a prestressing tendon to prevent bonding the tendon with the surrounding concrete, to provide corrosion protection, and to contain the corrosion inhibiting coating.

Prestressed concrete — Reinforced concrete is defined to include prestressed concrete. Although the behavior of a prestressed member with unbonded tendons may vary from that of members with continuously bonded tendons, bonded and unbonded prestressed concrete are combined with conventionally reinforced concrete under the generic term "reinforced concrete." Provisions common to both prestressed and conventionally reinforced concrete are integrated to avoid overlapping and conflicting provisions.
Shores — Vertical or inclined support members designed to carry the weight of the formwork, concrete, and construction loads above.

Span length — See 8.7.

Special anchorage device — Anchorage device that satisfies 18.15.1 and the standardized acceptance tests of AASHTO “Standard Specifications for Highway Bridges,” Division II, Article 10.3.2.3.

Spiral reinforcement — Continuously wound reinforcement in the form of a cylindrical helix.

Splitting tensile strength (f_{ct}) — Tensile strength of concrete determined in accordance with ASTM C 496 as described in “Specification for Lightweight Aggregates for Structural Concrete” (ASTM C 330). See 5.1.4.

Stirrup — Reinforcement used to resist shear and torsion stresses in a structural member; typically bars, wires, or welded wire fabric (plain or deformed) either single leg or bent into L, U, or rectangular shapes and located perpendicular to or at an angle to longitudinal reinforcement. (The term “stirrups” is usually applied to lateral reinforcement in flexural members and the term ties to those in compression members.) See also **Tie**.

Strength, design — Nominal strength multiplied by a strength reduction factor ϕ. See 9.3.

Strength, nominal — Strength of a member or cross section calculated in accordance with provisions and assumptions of the strength design method of this code before application of any strength reduction factors. See 9.3.1.

Strength, required — Strength of a member or cross section required to resist factored loads or related internal moments and forces in such combinations as are stipulated in this code. See 9.1.1.

Stress — Intensity of force per unit area.

Structural concrete — All concrete used for structural purposes including plain and reinforced concrete.

Tendon — Steel element such as wire, cable, bar, rod, or strand, or a bundle of such elements, used to impart prestress forces to concrete.

Tension-controlled section — A cross section in which the net tensile strain in the extreme tension steel at nominal strength is greater than or equal to 0.005.

Special anchorage devices are any devices (monostrand or multistrand) that do not meet the relevant PTI or AASHTO bearing stress and, where applicable, stiffness requirements. Most commercially marketed multibearing surface anchorage devices are Special Anchorage Devices. As provided in 18.15.1, such devices can be used only when they have been shown experimentally to be in compliance with the AASHTO requirements. This demonstration of compliance will ordinarily be furnished by the device manufacturer.

Strength, nominal — Strength of a member or cross section calculated using standard assumptions and strength equations, and nominal (specified) values of material strengths and dimensions is referred to as “nominal strength.” The subscript n is used to denote the nominal strengths; nominal axial load strength P_n, nominal moment strength M_n, and nominal shear strength V_n. “Design strength” or usable strength of a member or cross section is the nominal strength reduced by the strength reduction factor ϕ.

The required axial load, moment, and shear strengths used to proportion members are referred to either as factored axial loads, factored moments, and factored shears, or required axial loads, moments, and shears. The factored load effects are calculated from the applied factored loads and forces in such load combinations as are stipulated in the code (see 9.2).

The subscript u is used only to denote the required strengths; required axial load strength P_u, required moment strength M_u, and required shear strength V_u, calculated from the applied factored loads and forces.
CODE

Tie — Loop of reinforcing bar or wire enclosing longitudinal reinforcement. A continuously wound bar or wire in the form of a circle, rectangle, or other polygon shape without re-entrant corners is acceptable. See also Stirrup.

Transfer — Act of transferring stress in prestressing tendons from jacks or pretensioning bed to concrete member.

Unbonded Tendon — A tendon that is permanently prevented from bonding to the concrete after stressing.

Wall — Member, usually vertical, used to enclose or separate spaces.

Wobble friction — In prestressed concrete, friction caused by unintended deviation of prestressing sheath or duct from its specified profile.

Yield strength — Specified minimum yield strength or yield point of reinforcement in pounds per square inch. Yield strength or yield point shall be determined in tension according to applicable ASTM standards as modified by 3.5 of this code.

COMMENTARY

The basic requirement for strength design may be expressed as follows:

Design strength ≥ Required strength

\[\phi P_n \geq P_u \]
\[\phi M_n \geq M_u \]
\[\phi V_n \geq V_u \]

For additional discussion on the concepts and nomenclature for strength design see commentary Chapter 9.
PART 2 — STANDARDS FOR TESTS AND MATERIALS

CHAPTER 3 — MATERIALS

CODE

3.0 — Notation

\(f_y \) = specified yield strength of nonprestressed reinforcement, MPa

3.1 — Tests of materials

3.1.1 — The building official shall have the right to order testing of any materials used in concrete construction to determine if materials are of quality specified.

3.1.2 — Tests of materials and of concrete shall be made in accordance with standards listed in 3.8.

3.1.3 — A complete record of tests of materials and of concrete shall be retained by the inspector for 2 years after completion of the project, and made available for inspection during the progress of the work.

3.2 — Cements

3.2.1 — Cement shall conform to one of the following specifications:

(a) “Specification for Portland Cement” (ASTM C 150);

(b) “Specification for Blended Hydraulic Cements” (ASTM C 595M), excluding Types S and SA which are not intended as principal cementing constituents of structural concrete;

(c) “Specification for Expansive Hydraulic Cement” (ASTM C 845).

3.2.2 — Cement used in the work shall correspond to that on which selection of concrete proportions was based. See 5.2.

COMMENTARY

R3.1 — Tests of materials

R3.1.3 — The record of tests of materials and of concrete should be retained for at least 2 years after completion of the project. Completion of the project is the date at which the owner accepts the project or when the certificate of occupancy is issued, whichever date is later. Local legal requirements may require longer retention of such records.

R3.2 — Cements

R3.2.2 — Depending on the circumstances, the provision of 3.2.2 may require only the same type of cement or may require cement from the identical source. The latter would be the case if the standard deviation of strength tests used in establishing the required strength margin was based on a cement from a particular source. If the standard deviation was based on tests involving a given type of cement obtained from several sources, the former interpretation would apply.
3.3 — Aggregates

3.3.1 — Concrete aggregates shall conform to one of the following specifications:

(a) “Specification for Concrete Aggregates” (ASTM C 33);
(b) “Specification for Lightweight Aggregates for Structural Concrete” (ASTM C 330).

Exception: Aggregates that have been shown by special test or actual service to produce concrete of adequate strength and durability and approved by the building official.

3.3.2 — Nominal maximum size of coarse aggregate shall be not larger than:

(a) 1/5 the narrowest dimension between sides of forms, nor
(b) 1/3 the depth of slabs, nor
(c) 3/4 the minimum clear spacing between individual reinforcing bars or wires, bundles of bars, or pre-stressing tendons or ducts.

These limitations shall not apply if, in the judgment of the engineer, workability and methods of consolidation of the concrete are such that the concrete can be placed without honeycombs or voids.

3.4 — Water

3.4.1 — Water used in mixing concrete shall be clean and free from injurious amounts of oils, acids, alkalis, salts, organic materials, or other substances deleterious to concrete or reinforcement.

3.4.2 — Mixing water for prestressed concrete or for concrete that will contain aluminum embedments, including that portion of mixing water contributed in the form of free moisture on aggregates, shall not contain deleterious amounts of chloride ion. See 4.4.1.

3.4.3 — Nonpotable water shall not be used in concrete unless the following are satisfied:

3.4.3.1 — Selection of concrete proportions shall be based on concrete mixes using water from the same source.

R3.3 — Aggregates

R3.3.1 — Aggregates conforming to the ASTM specifications are not always economically available and that, in some instances, noncomplying materials have a long history of satisfactory performance. Such nonconforming materials are permitted with special approval when acceptable evidence of satisfactory performance is provided. Satisfactory performance in the past, however, does not guarantee good performance under other conditions and in other localities. Whenever possible, aggregates conforming to the designated specifications should be used.

R3.3.2 — The size limitations on aggregates are provided to ensure proper encasement of reinforcement and to minimize honeycombing. Note that the limitations on maximum size of the aggregate may be waived if, in the judgment of the engineer, the workability and methods of consolidation of the concrete are such that the concrete can be placed without honeycombs or voids.

R3.4 — Water

R3.4.1 — Almost any natural water that is drinkable (potable) and has no pronounced taste or odor is satisfactory as mixing water for making concrete. Impurities in mixing water, when excessive, may affect not only setting time, concrete strength, and volume stability (length change), but may also cause efflorescence or corrosion of reinforcement. Where possible, water with high concentrations of dissolved solids should be avoided.

Salts or other deleterious substances contributed from the aggregate or admixtures are additive to the amount which might be contained in the mixing water. These additional amounts are to be considered in evaluating the acceptability of the total impurities that may be deleterious to concrete or steel.
3.4.3.2 — Mortar test cubes made with nonpotable mixing water shall have 7-day and 28-day strengths equal to at least 90 percent of strengths of similar specimens made with potable water. Strength test comparison shall be made on mortars, identical except for the mixing water, prepared and tested in accordance with “Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 50 mm Cube Specimens)” (ASTM C 109).

3.5 — Steel reinforcement

3.5.1 — Reinforcement shall be deformed reinforcement, except that plain reinforcement shall be permitted for spirals or tendons; and reinforcement consisting of structural steel, steel pipe, or steel tubing shall be permitted as specified in this code.

3.5.2 — Welding of reinforcing bars shall conform to “Structural Welding Code — Reinforcing Steel,” ANSI/AWS D1.4 of the American Welding Society. Type and location of welded splices and other required welding of reinforcing bars shall be indicated on the design drawings or in the project specifications. ASTM reinforcing bar specifications, except for ASTM A 706M, shall be supplemented to require a report of material properties necessary to conform to the requirements in ANSI/AWS D1.4.
3.5.3 — Deformed reinforcement

3.5.3.1 — Deformed reinforcing bars shall conform to one of the following specifications:

(a) “Specification for Deformed and Plain Billet-Steel Bars for Concrete Reinforcement” (ASTM A 615M);

(b) “Specification for Rail-Steel Deformed and Plain Bars for Concrete Reinforcement” including Supplementary Requirement S1 (ASTM A 616M including S1);

(c) “Specification for Axle-Steel Deformed and Plain Bars for Concrete Reinforcement” (ASTM A 617M);

(d) “Specification for Low-Alloy Steel Deformed and Plain Bars for Concrete Reinforcement” (ASTM A 706M).

R3.5.3 — Deformed reinforcement

R3.5.3.1 — ASTM A 615M covers deformed billet-steel reinforcing bars that are currently the most widely used type of steel bar in reinforced concrete construction in the United States. The specification requires that the bars be marked with the letter S for type of steel.

ASTM A 706M covers low-alloy steel deformed bars intended for applications where controlled tensile properties, restrictions on chemical composition to enhance weldability, or both, are required. The specification requires that the bars be marked with the letter W for type of steel.

Deformed bars produced to meet both ASTM A 615M and A 706M are required to be marked with the letters S and W for type of steel.

Rail-steel reinforcing bars used with this code are to conform
3.5.3.2 — Deformed reinforcing bars with a specified yield strength f_y exceeding 420 MPa shall be permitted, provided f_y shall be the stress corresponding to a strain of 0.35 percent and the bars otherwise conform to one of the ASTM specifications listed in 3.5.3.1. See 9.4.

R3.5.3.2 — ASTM A 615M includes provisions for Grade 520 bars in sizes No. 19 through 57.

The 0.35 percent strain limit is necessary to ensure that the assumption of an elasto-plastic stress-strain curve in 10.2.4 will not lead to unconservative values of the member strength.

The 0.35 strain requirement is not applied to reinforcing bars having yield strengths of 420 MPa or less. For steels having strengths of 300 MPa, as were once used extensively, the assumption of an elasto-plastic stress-strain curve is well justified by extensive test data. For higher strength steels, up to 420 MPa, the stress-strain curve may or may not be elasto-plastic as assumed in 10.2.4, depending on the properties of the steel and the manufacturing process. However, when the stress-strain curve is not elasto-plastic, there is limited experimental evidence to suggest that the actual steel stress at ultimate strength may not be enough less than the specified yield strength to warrant the additional effort of testing to the more restrictive criterion applicable to steels having f_y greater than 420 MPa. In such cases, the ϕ-factor can be expected to account for the strength deficiency.

3.5.3.3 — Bar mats for concrete reinforcement shall conform to “Specification for Fabricated Deformed Steel Bar Mats for Concrete Reinforcement” (ASTM A 184M). Reinforcing bars used in bar mats shall conform to one of the specifications listed in 3.5.3.1.

R3.5.3.3 — ASTM A 616M including Supplementary Requirement S1, and should be marked with the letter R, in addition to the rail symbol. S1 prescribes more restrictive requirements for bond tests.

3.5.3.4 — Deformed wire for concrete reinforcement shall conform to “Specification for Steel Wire, Deformed, for Concrete Reinforcement” (ASTM A 496), except that wire shall not be smaller than size D4 and for wire with a specified yield strength f_y exceeding 420 MPa, f_y shall be the stress corresponding to a strain of 0.35 percent if the yield strength specified in the design exceeds 420 MPa.

R3.5.3.4 — Welded plain wire fabric for concrete reinforcement shall conform to “Specification for Steel Welded Wire Fabric, Plain, for Concrete Reinforcement” (ASTM A 185), except that for wire with a specified yield strength f_y exceeding 420 MPa, f_y shall be the stress corresponding to a strain of 0.35 percent if the yield strength specified in the design exceeds 420 MPa. Welded intersections shall not be spaced farther apart than 310 mm in direction of calculated stress, except for wire fabric used as stirrups in accordance with 12.13.2.

3.5.3.5 — Welded plain wire fabric should be made of wire conforming to “Specification for Steel Wire, Plain, for Concrete Reinforcement” (ASTM A 82). ASTM A 82 has a minimum yield strength of 482 MPa. The code has assigned a yield strength value of 420 MPa, but makes provision for the use of higher yield strengths provided the stress corresponds to a strain of 0.35 percent.

R3.5.3.5 — Welded plain wire fabric should be made of wire conforming to “Specification for Steel Wire, Plain, for Concrete Reinforcement” (ASTM A 82). ASTM A 82 has a minimum yield strength of 482 MPa. The code has assigned a yield strength value of 420 MPa, but makes provision for the use of higher yield strengths provided the stress corresponds to a strain of 0.35 percent.
CODE

3.5.3.6 — Welded deformed wire fabric for concrete reinforcement shall conform to “Specification for Steel Welded Wire Fabric, Deformed, for Concrete Reinforcement” (ASTM A 497), except that for wire with a specified yield strength f_y exceeding 420 MPa, f_y shall be the stress corresponding to a strain of 0.35 percent if the yield strength specified in the design exceeds 420 MPa. Welded intersections shall not be spaced farther apart than 400 mm in direction of calculated stress, except for wire fabric used as stirrups in accordance with 12.13.2.

3.5.3.7 — Galvanized reinforcing bars shall comply with “Specification for Zinc-Coated (Galvanized) Steel Bars for Concrete Reinforcement” (ASTM A 767M). Epoxy-coated reinforcing bars shall comply with “Specification for Epoxy-Coated Reinforcing Steel Bars” (ASTM A 775M) or with “Specification for Epoxy-Coated Prefabricated Steel Reinforcing Bars” (ASTM A 934M). Bars to be galvanized or epoxy-coated shall conform to one of the specifications listed in 3.5.3.1.

3.5.3.8 — Epoxy-coated wires and welded wire fabric shall comply with “Specification for Epoxy-Coated Steel Wire and Welded Wire Fabric for Reinforcement” (ASTM A 884M). Wires to be epoxy-coated shall conform to 3.5.3.4 and welded wire fabric to be epoxy-coated shall conform to 3.5.3.5 or 3.5.3.6.

3.5.4 — Plain reinforcement

3.5.4.1 — Plain bars for spiral reinforcement shall conform to the specification listed in 3.5.3.1(a), (b), or (c).

3.5.4.2 — Plain wire for spiral reinforcement shall conform to “Specification for Steel Wire, Plain, for Concrete Reinforcement” (ASTM A 82), except that for wire with a specified yield strength f_y exceeding 420 MPa, f_y shall be the stress corresponding to a strain of 0.35 percent if the yield strength specified in the design exceeds 420 MPa.

3.5.5 — Prestressing tendons

3.5.5.1 — Tendons for prestressed reinforcement shall conform to one of the following specifications:

(a) Wire conforming to “Specification for Uncoated Stress-Relieved Steel Wire for Prestressed Concrete” (ASTM A 421);

(b) Low-relaxation wire conforming to “Specification for Uncoated Stress-Relieved Steel Wire for Prestressed Concrete” including Supplement “Low-Relaxation Wire” (ASTM A 421);

3.5.5.2 — Tendons for post-tensioning reinforcement shall conform to a specification approved by the authority having jurisdiction.

COMMENTARY

R3.5.3.6 — Welded deformed wire fabric should be made of wire conforming to “Specification for Steel Wire, Welded, Deformed, for Concrete Reinforcement” (ASTM A 496). ASTM A 496 has a minimum yield strength of 482 MPa. The code has assigned a yield strength value of 420 MPa, but makes provision for the use of higher yield strengths provided the stress corresponds to a strain of 0.35 percent.

R3.5.3.7 — Galvanized reinforcing bars (A 767M) and epoxy-coated reinforcing bars (A 775M) were added to the 1983 code, and epoxy-coated prefabricated reinforcing bars (A 934M) were added to the 1995 code recognizing their usage, especially for conditions where corrosion resistance of reinforcement is of particular concern. They have typically been used in parking decks, bridge decks, and other highly corrosive environments.

R3.5.4 — Plain reinforcement

Plain bars and plain wire are permitted only for spiral reinforcement (either as lateral reinforcement for compression members, for torsion members, or for confining reinforcement for splices).

R3.5.5 — Prestressing tendons

R3.5.5.1 — Since low-relaxation tendons are addressed in a supplement to ASTM A 421, which applies only when low-relaxation material is specified. The appropriate ASTM reference is listed as a separate entity.
(c) Strand conforming to “Specification for Steel Strand, Uncoated Seven-Wire for Prestressed Concrete” (ASTM A 416M);

(d) Bar conforming to “Specification for Uncoated High-Strength Steel Bar for Prestressing Concrete” (ASTM A 722).

3.5.5.2 — Wire, strands, and bars not specifically listed in ASTM A 421, A 416M, or A 722 are allowed provided they conform to minimum requirements of these specifications and do not have properties that make them less satisfactory than those listed in ASTM A 421, A 416M, or A 722.

3.5.6 — Structural steel, steel pipe, or tubing

3.5.6.1 — Structural steel used with reinforcing bars in composite compression members meeting requirements of 10.16.7 or 10.16.8 shall conform to one of the following specifications:

(a) “Specification for Carbon Structural Steel” (ASTM A 36M);

(b) “Specification for High-Strength Low-Alloy Structural Steel” (ASTM A 242M);

(c) “Specification for High-Strength Low-Alloy Columbium-Vanadium Structural Steel” (ASTM A 572M);

(d) “Specification for High-Strength Low-Alloy Structural Steel with 50 ksi (345 MPa) Minimum Yield Point to 4 in. (100 mm) Thick” (ASTM A 588M).

3.5.6.2 — Steel pipe or tubing for composite compression members composed of a steel encased concrete core meeting requirements of 10.16.6 shall conform to one of the following specifications:

(a) Grade B of “Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated Welded and Seamless” (ASTM A 53);

(b) “Specification for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes” (ASTM A 500);

(c) “Specification for Hot-Formed Welded and Seamless Carbon Steel Structural Tubing” (ASTM A 501).

3.6 — Admixtures

3.6.1 — Admixtures to be used in concrete shall be subject to prior approval by the engineer.
3.6.2 — An admixture shall be shown capable of maintaining essentially the same composition and performance throughout the work as the product used in establishing concrete proportions in accordance with 5.2.

3.6.3 — Calcium chloride or admixtures containing chloride from other than impurities from admixture ingredients shall not be used in prestressed concrete, in concrete containing embedded aluminum, or in concrete cast against stay-in-place galvanized steel forms. See 4.3.2 and 4.4.1.

R3.6.3 — Admixtures containing any chloride, other than impurities from admixture ingredients, should not be used in prestressed concrete or in concrete with aluminum embeddings. Concentrations of chloride ion may produce corrosion of embedded aluminum (e.g., conduit), especially if the aluminum is in contact with embedded steel and the concrete is in a humid environment. Serious corrosion of galvanized steel sheet and galvanized steel stay-in-place forms occurs, especially in humid environments or where drying is inhibited by the thickness of the concrete or coatings or impermeable coverings. See 4.4.1 for specific limits on chloride ion concentration in concrete.

3.6.4 — Air-entraining admixtures shall conform to “Specification for Air-Entraining Admixtures for Concrete” (ASTM C 260).

3.6.5 — Water-reducing admixtures, retarding admixtures, water-reducing and retarding admixtures, and water-reducing and accelerating admixtures shall conform to “Specification for Chemical Admixtures for Concrete” (ASTM C 494) or “Specification for Chemical Admixtures for Use in Producing Flowing Concrete” (ASTM C 1017).

3.6.6 — Fly ash or other pozzolans used as admixtures shall conform to “Specification for Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Portland Cement Concrete” (ASTM C 618).

3.6.7 — Ground granulated blast-furnace slag used as an admixture shall conform to “Specification for Ground Granulated Blast-Furnace Slag for Use in Concrete and Mortars” (ASTM C 989).

R3.6.7 — Ground granulated blast-furnace slag conforming to ASTM C 989 is used as an admixture in concrete in much the same way as fly ash. Generally, it should be used with portland cements conforming to ASTM C 150, and only rarely would it be appropriate to use ASTM C 989 slag with an ASTM C 595M blended cement that already contains a pozzolan or slag. Such use with ASTM C 595M cements might be considered for massive concrete placements where slow strength gain can be tolerated and where low heat of hydration is of particular importance. ASTM C 989 includes appendices which discuss effects of ground granulated blast-furnace slag on concrete strength, sulfate resistance, and alkali-aggregate reaction.
CODE

3.6.8 — Admixtures used in concrete containing C 845 expansive cements shall be compatible with the cement and produce no deleterious effects.

3.6.9 — Silica fume used as an admixture shall conform to “Specification for Silica Fume for Use in Hydraulic-Cement Concrete and Mortar” (ASTM C 1240).

3.7 — Storage of materials

3.7.1 — Cementitious materials and aggregates shall be stored in such manner as to prevent deterioration or intrusion of foreign matter.

3.7.2 — Any material that has deteriorated or has been contaminated shall not be used for concrete.

3.8 — Standards cited in this code

3.8.1 — Standards of the American Society for Testing and Materials referred to in this code are listed below with their serial designations, including year of adoption or revision, and are declared to be part of this code as if fully set forth herein:

<table>
<thead>
<tr>
<th>Serial Designation</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 36M-96</td>
<td>Standard Specification for Carbon Structural Steel</td>
</tr>
<tr>
<td>A 53-97</td>
<td>Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated Welded and Seamless</td>
</tr>
<tr>
<td>A 82-97</td>
<td>Standard Specification for Steel Wire, Plain, for Concrete Reinforcement</td>
</tr>
<tr>
<td>A 184M-96</td>
<td>Standard Specification for Fabricated Deformed Steel Bar Mats for Concrete Reinforcement</td>
</tr>
<tr>
<td>A 185-97</td>
<td>Standard Specification for Steel Welded Wire Fabric, Plain, for Concrete Reinforcement</td>
</tr>
<tr>
<td>A 242M-93a</td>
<td>Standard Specification for High-Strength Low-Alloy Structural Steel</td>
</tr>
<tr>
<td>A 416M-96</td>
<td>Standard Specification for Steel Strand, Uncoated Seven-Wire for Prestressed Concrete</td>
</tr>
<tr>
<td>A 421-91</td>
<td>Standard Specification for Uncoated Stress-Relieved Steel Wire for Prestressed Concrete</td>
</tr>
</tbody>
</table>

COMMENTARY

R3.6.8 — The use of admixtures in concrete containing C 845 expansive cements has reduced levels of expansion or increased shrinkage values. See ACI 223.3.3

R3.8 — Standards cited in this code

The ASTM standard specifications listed are the latest editions at the time these code provisions were adopted. Since these specifications are revised frequently, generally in minor details only, the user of the code should check directly with the sponsoring organization if it is desired to reference the latest edition. However, such a procedure obligates the user of the specification to evaluate if any changes in the later edition are significant in the use of the specification.

Standard specifications or other material to be legally adopted by reference into a building code should refer to a specific document. This can be done by simply using the complete serial designation since the first part indicates the subject and the second part the year of adoption. All standard documents referenced in this code are listed in 3.8, with the title and complete serial designation. In other sections of the code, the designations do not include the date so that all may be kept up-to-date by simply revising 3.8.

ASTM standards are available from ASTM, 100 Barr Harbor Drive, West Conshohocken, PA, 19428.
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 496-97</td>
<td>Standard Specification for Steel Wire, Deformed, for Concrete Reinforcement</td>
</tr>
<tr>
<td>A 497-97</td>
<td>Standard Specification for Steel Welded Wire Fabric, Deformed, for Concrete Reinforcement</td>
</tr>
<tr>
<td>A 500-96</td>
<td>Standard Specification for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes</td>
</tr>
<tr>
<td>A 501-96</td>
<td>Standard Specification for Hot-Formed Welded and Seamless Carbon Steel Structural Tubing</td>
</tr>
<tr>
<td>A 572M-97</td>
<td>Standard Specification for High-Strength Low-Alloy Columbium-Vanadium Structural Steels</td>
</tr>
<tr>
<td>A 588M-97</td>
<td>Standard Specification for High-Strength Low-Alloy Structural Steel with 50 ksi (345 MPa) Minimum Yield Point to 4 in. (100 mm) Thick</td>
</tr>
<tr>
<td>A 615M-96a</td>
<td>Standard Specification for Deformed and Plain Billet-Steel Bars for Concrete Reinforcement</td>
</tr>
<tr>
<td>A 616M-96a</td>
<td>Standard Specification for Rail-Steel Deformed and Plain Bars for Reinforcement, including Supplementary Requirement S1</td>
</tr>
<tr>
<td>A 617M-96a</td>
<td>Standard Specification for Axle-Steel Deformed and Plain Bars for Concrete Reinforcement</td>
</tr>
<tr>
<td>A 706M-98</td>
<td>Standard Specification for Low-Alloy Steel Deformed Bars for Concrete Reinforcement</td>
</tr>
<tr>
<td>A 722M-97</td>
<td>Standard Specification for Uncoated High-Strength Steel Bar for Prestressing Concrete</td>
</tr>
<tr>
<td>A 767M-97</td>
<td>Standard Specification for Zinc-Coated (Galvanized) Steel Bars for Concrete Reinforcement</td>
</tr>
<tr>
<td>A 775M-97</td>
<td>Standard Specification for Epoxy-Coated Reinforcing Steel Bars</td>
</tr>
<tr>
<td>A 884M-96a</td>
<td>Standard Specification for Epoxy-Coated Steel Wire and Welded Wire Fabric for Reinforcement</td>
</tr>
</tbody>
</table>

Supplementary Requirement (S1) of ASTM A 616M is considered a mandatory requirement whenever ASTM A 616M is referenced in this code.
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 934M-97</td>
<td>Standard Specification for Epoxy-Coated Prefabricated Steel Reinforcing Bars</td>
</tr>
<tr>
<td>C 31/</td>
<td>Standard Practice for Making and Curing Concrete Test Specimens in the Field</td>
</tr>
<tr>
<td>C31-96M</td>
<td></td>
</tr>
<tr>
<td>C 33-93</td>
<td>Standard Specification for Concrete Aggregates</td>
</tr>
<tr>
<td>C 39-96</td>
<td>Standard Method of Compressive Strength of Cylindrical Concrete Specimens</td>
</tr>
<tr>
<td>C 42-94</td>
<td>Standard Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete</td>
</tr>
<tr>
<td>C 94-96</td>
<td>Standard Specification for Ready-Mixed Concrete</td>
</tr>
<tr>
<td>C 109/</td>
<td>Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 50-mm Cube Specimens)</td>
</tr>
<tr>
<td>C109M-95</td>
<td></td>
</tr>
<tr>
<td>C 144-93</td>
<td>Standard Specification for Aggregate for Masonry Mortar</td>
</tr>
<tr>
<td>C 150-97</td>
<td>Standard Specification for Portland Cement</td>
</tr>
<tr>
<td>C 172-90</td>
<td>Standard Method of Sampling Freshly Mixed Concrete</td>
</tr>
<tr>
<td>C 192/</td>
<td>Standard Method of Making and Curing Concrete Test Specimens in the Laboratory</td>
</tr>
<tr>
<td>C192M-95</td>
<td></td>
</tr>
<tr>
<td>C 260-95</td>
<td>Standard Specification for Air-Entraining Admixtures for Concrete</td>
</tr>
<tr>
<td>C 330-89</td>
<td>Standard Specification for Lightweight Aggregates for Structural Concrete</td>
</tr>
<tr>
<td>C 494-92</td>
<td>Standard Specification for Chemical Admixtures for Concrete</td>
</tr>
<tr>
<td>C 496-96</td>
<td>Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens</td>
</tr>
<tr>
<td>C 567-91</td>
<td>Standard Test Method for Unit Weight of Structural Lightweight Concrete</td>
</tr>
<tr>
<td>C 595M-97</td>
<td>Standard Specification for Blended Hydraulic Cements</td>
</tr>
<tr>
<td>C 618-97</td>
<td>Standard Specification for Fly Ash and Raw or Calcined Natural Pozzolan for</td>
</tr>
<tr>
<td>CODE</td>
<td>COMMENTARY</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Use as a Mineral Admixture in Portland Cement Concrete</td>
<td></td>
</tr>
<tr>
<td>C 685-95a Standard Specification for Concrete Made by Volumetric Batching and Continuous Mixing</td>
<td></td>
</tr>
<tr>
<td>C 845-96 Standard Specification for Expansive Hydraulic Cement</td>
<td></td>
</tr>
<tr>
<td>C 989-95 Standard Specification for Ground Granulated Blast-Furnace Slag for Use in Concrete and Mortars</td>
<td></td>
</tr>
<tr>
<td>C 1017-92 Standard Specification for Chemical Admixtures for Use in Producing Flowing Concrete</td>
<td></td>
</tr>
<tr>
<td>C 1218/C1218M-97 Standard Test Method for Water-Soluble Chloride in Mortar and Concrete</td>
<td></td>
</tr>
<tr>
<td>C 1240-97 Standard Specification for Silica Fume for Use in Hydraulic-Cement Concrete and Mortar</td>
<td></td>
</tr>
</tbody>
</table>

3.8.2 — “Structural Welding Code—Reinforcing Steel” (ANSI/AWS D1.4-98) of the American Welding Society is declared to be part of this code as if fully set forth herein.

R3.8.3 — ASCE 7 is available from ASCE Book Orders, Box 79404, Baltimore, MD, 21279-0404.

3.8.3 — Section 2.3 Combining Factored Loads Using Strength Design of “Minimum Design Loads for Buildings and Other Structures” (ASCE 7-95) is declared to be part of this code as if fully set forth herein, for the purpose cited in 9.3.1.1 and Appendix C.

R3.8.4 — The 1993 specification is available from: Post Tensioning Institute, 1717 W. Northern Ave., Suite 114, Phoenix, AZ, 85021.

3.8.4 — “Specification for Unbonded Single Strand Tendons,” July 1993, of the Post-Tensioning Institute is declared to be part of this code as if fully set forth herein.

3.8.5 — Articles 9.21.7.2 and 9.21.7.3 of Division I and Article 10.3.2.3 of Division II of AASHTO “Standard Specification for Highway Bridges” (AASHTO 16th Edition, 1996) are declared to be a part of this code as if fully set forth herein.
CHAPTER 4 — DURABILITY REQUIREMENTS

4.0 — Notation

\(f'_c \) = specified compressive strength of concrete, MPa

Chapters 4 and 5 of earlier editions of the code were reformatted in 1989 to emphasize the importance of considering durability requirements before the designer selects \(f'_c \) and cover over the reinforcing steel.

Maximum water-cementitious materials ratios of 0.40 to 0.50 that may be required for concretes exposed to freezing and thawing, sulfate soils or waters, or for preventing corrosion of reinforcement will typically be equivalent to requiring an \(f'_c \) of 35 to 28 MPa, respectively. Generally, the required average concrete strengths, \(f''_c \), will be 3.5 to 4.8 MPa higher than the specified compressive strength, \(f'_c \). Since it is difficult to accurately determine the water-cementitious materials ratio of concrete during production, the \(f'_c \) specified should be reasonably consistent with the water-cementitious materials ratio required for durability. Selection of an \(f'_c \) that is consistent with the water-cementitious materials ratio selected for durability will help ensure that the required water-cementitious materials ratio is actually obtained in the field. Because the usual emphasis on inspection is for strength, test results substantially higher than the specified strength may lead to a lack of concern for quality and production of concrete that exceeds the maximum water-cementitious materials ratio. Thus an \(f'_c \) of 21 MPa and a maximum water-cementitious materials ratio of 0.45 should not be specified for a parking structure, if the structure will be exposed to deicing salts.

The code does not include provisions for especially severe exposures, such as acids or high temperatures, and is not concerned with aesthetic considerations such as surface finishes. These items are beyond the scope of the code and should be covered specifically in the project specifications. Concrete ingredients and proportions are to be selected to meet the minimum requirements stated in the code and the additional requirements of the contract documents.

4.1 — Water-cementitious materials ratio

4.1.1 — The water-cementitious materials ratios specified in Tables 4.2.2 and 4.3.1 shall be calculated using the weight of cement meeting ASTM C 150, C 595M, or C 845, plus the weight of fly ash and other pozzolans meeting ASTM C 618, slag meeting ASTM C 989, and silica fume meeting ASTM C 1240, if any, except that when concrete is exposed to deicing chemicals, 4.2.3 further limits the amount of fly ash, pozzolans, silica fume, slag, or the combination of these materials.

R4.1 — Water-cementitious materials ratio

R4.1.1 — For concrete exposed to deicing chemicals the quantity of fly ash, other pozzolans, silica fume, slag, or blended cements used in the concrete is subject to the percentage limits in 4.2.3. Further, in 4.3 for sulfate exposures, the pozzolan should be Class F by ASTM C 618, 4.1 orhave been tested by ASTM C 1012 or determined by service record to improve sulfate resistance.
CODE

4.2 — Freezing and thawing exposures

4.2.1 — Normalweight and lightweight concrete exposed to freezing and thawing or deicing chemicals shall be air-entrained with air content indicated in Table 4.2.1. Tolerance on air content as delivered shall be ± 1.5 percent. For specified compressive strength f'_c greater than 35 MPa, reduction of air content indicated in Table 4.2.1 by 1.0 percent shall be permitted.

TABLE 4.2.1—TOTAL AIR CONTENT FOR FROST-RESISTANT CONCRETE

<table>
<thead>
<tr>
<th>Nominal maximum aggregate size, mm*</th>
<th>Severe exposure</th>
<th>Moderate exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5</td>
<td>7.5</td>
<td>6</td>
</tr>
<tr>
<td>12.5</td>
<td>7</td>
<td>5.5</td>
</tr>
<tr>
<td>19.0</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>25.0</td>
<td>6</td>
<td>4.5</td>
</tr>
<tr>
<td>37.5</td>
<td>5.5</td>
<td>4.5</td>
</tr>
<tr>
<td>50†</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>75†</td>
<td>4.5</td>
<td>3.5</td>
</tr>
</tbody>
</table>

* See ASTM C 33 for tolerance on oversize for various nominal maximum size designations.
† These air contents apply to total mix, as for the preceding aggregate sizes. When testing these concretes, however, aggregate larger than 37.5 mm is removed by handpicking or sieving and air content is determined on the minus 37.5 mm fraction of mix (tolerance on air content as delivered applies to this value.). Air content of total mix is computed from value determined on the minus 37.5 mm fraction.

4.2.2 — Concrete that will be subject to the exposures given in Table 4.2.2 shall conform to the corresponding maximum water-cementitious materials ratios and minimum specified concrete compressive strength requirements of that table. In addition, concrete that will be exposed to deicing chemicals shall conform to the limitations of 4.2.3.

TABLE 4.2.2—REQUIREMENTS FOR SPECIAL EXPOSURE CONDITIONS

<table>
<thead>
<tr>
<th>Exposure condition</th>
<th>Maximum water-cementitious materials ratio, by mass, normal density aggregate concrete</th>
<th>Minimum f'_c, normal density and low-density aggregate concrete, MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete intended to have low permeability when exposed to water</td>
<td>0.50</td>
<td>28</td>
</tr>
<tr>
<td>Concrete exposed to freezing and thawing in a moist condition or to deicing chemicals</td>
<td>0.45</td>
<td>31</td>
</tr>
<tr>
<td>For corrosion protection of reinforcement in concrete exposed to chlorides from de-icing chemicals, salt, salt water, brackish water, seawater, or spray from these sources.</td>
<td>0.40</td>
<td>35</td>
</tr>
</tbody>
</table>

COMMENTARY

R4.2 — Freezing and thawing exposures

R4.2.1—A table of required air contents for frost-resistant concrete is included in the code, based on “Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete” (ACI 211.1). Values are provided for both severe and moderate exposures depending on the exposure to moisture or deicing salts. Entrained air will not protect concrete containing coarse aggregates that undergo disruptive volume changes when frozen in a saturated condition. In Table 4.2.1, a severe exposure is where the concrete in a cold climate may be in almost continuous contact with moisture prior to freezing, or where deicing salts are used. Examples are pavements, bridge decks, sidewalks, parking garages, and water tanks. A moderate exposure is where the concrete in a cold climate will be only occasionally exposed to moisture prior to freezing, and where no deicing salts are used. Examples are certain exterior walls, beams, girders, and slabs not in direct contact with soil. Section 4.2.1 permits 1 percent lower air content for concrete with f'_c greater than 35 MPa. Such high-strength concretes will have lower water-cementitious materials ratios and porosity and, therefore, improved frost resistance.

R4.2.2 — Maximum water-cementitious materials ratios are not specified for lightweight aggregate concrete because determination of the absorption of these aggregates is uncertain, making calculation of the water-cementitious materials ratio uncertain. The use of a minimum specified strength will ensure the use of a high-quality cement paste. For normalweight aggregate concrete, use of both minimum strength and maximum water-cementitious materials ratio provide additional assurance that this objective is met.
4.2.3 — For concrete exposed to deicing chemicals, the maximum weight of fly ash, other pozzolans, silica fume, or slag that is included in the concrete shall not exceed the percentages of the total weight of cementitious materials given in Table 4.2.3.

TABLE 4.2.3—REQUIREMENTS FOR CONCRETE EXPOSED TO DEICING CHEMICALS

<table>
<thead>
<tr>
<th>Cementitious materials</th>
<th>Maximum percent of total cementitious materials by mass*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fly ash or other pozzolans conforming to ASTM C 618</td>
<td>25</td>
</tr>
<tr>
<td>Slag conforming to ASTM C 989</td>
<td>50</td>
</tr>
<tr>
<td>Silica fume conforming to ASTM C 1240</td>
<td>10</td>
</tr>
<tr>
<td>Total of fly ash or other pozzolans, slag, and silica fume</td>
<td>50†</td>
</tr>
<tr>
<td>Total of fly ash or other pozzolans and silica fume</td>
<td>35†</td>
</tr>
</tbody>
</table>

* The total cementitious material also includes ASTM C 150, C 595M, and C 845 cement.
† The maximum percentages above shall include:
(a) Fly ash or other pozzolans present in Type IP or I(PM) blended cement, ASTM C 595M;
(b) Slag used in the manufacture of a IS or I(SM) blended cement, ASTM C 595M;
(c) Silica fume, ASTM C 1240, present in a blended cement.

4.3 — Sulfate exposures

4.3.1 — Concrete to be exposed to sulfate-containing solutions or soils shall conform to requirements of Table 4.3.1 or shall be concrete made with a cement that provides sulfate resistance and that has a maximum water-cementitious materials ratio and minimum compressive strength from Table 4.3.1.

TABLE 4.3.1—REQUIREMENTS FOR CONCRETE EXPOSED TO SULFATE-CONTAINING SOLUTIONS

<table>
<thead>
<tr>
<th>Sulfate exposure</th>
<th>Water soluble sulfate (SO₄) in soil, percent by mass</th>
<th>Sulfate (SO₄) in water, ppm</th>
<th>Cement type</th>
<th>Maximum water-cementitious materials ratio, by mass, normal-density aggregate concrete*</th>
<th>Minimum f′c, normal density and low-density aggregate concrete, MPa*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negligible</td>
<td>0.00 ≤ SO₄ < 0.10</td>
<td>0 ≤ SO₄ < 150</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Moderate†</td>
<td>0.10 ≤ SO₄ < 0.20</td>
<td>150 ≤ SO₄ < 1500</td>
<td>II, IP(MS), IS(MS), P(MS), I(PM)(MS), I(SM)(MS)</td>
<td>0.50</td>
<td>28</td>
</tr>
<tr>
<td>Severe</td>
<td>0.20 ≤ SO₄ ≤ 2.00</td>
<td>1500 ≤ SO₄ ≤ 10,000</td>
<td>V</td>
<td>0.45</td>
<td>31</td>
</tr>
<tr>
<td>Very severe</td>
<td>SO₄ > 2.00</td>
<td>SO₄ > 10,000</td>
<td>V plus pozzolan†</td>
<td>0.45</td>
<td>31</td>
</tr>
</tbody>
</table>

* A lower water-cementitious materials ratio or higher strength may be required for low permeability or for protection against corrosion of embedded items or freezing and thawing (Table 4.2.2).
† Seawater.
‡ Pozzolan that has been determined by test or service record to improve sulfate resistance when used in concrete containing Type V cement.

R4.2.3 — Section 4.2.3 and Table 4.2.3 establish limitations on the amount of fly ash, other pozzolans, silica fume, and slag that can be included in concrete exposed to deicing chemicals. Recent research has demonstrated that the use of fly ash, slag, and silica fume produce concrete with a finer pore structure and, therefore, lower permeability.

R4.3 — Sulfate exposures

R4.3.1 — Concrete exposed to injurious concentrations of sulfates from soil and water should be made with a sulfate-resisting cement. Table 4.3.1 lists the appropriate types of cement and the maximum water-cementitious materials ratios and minimum strengths for various exposure conditions. In selecting a cement for sulfate resistance, the principal consideration is its tricalcium aluminate (C₃A) content. For moderate exposures, Type II cement is limited to a maximum C₃A content of 8.0 percent under ASTM C 150. The blended cements under ASTM C 595 made with portland cement clinker with less than 8 percent C₃A qualify for the MS designation, and therefore, are appropriate for use in moderate sulfate exposures. The appropriate types under ASTM C 595 are IP(MS), IS(MS), I(PM)(MS), and I(SM)(MS). For severe exposures, Type V cement with a...
CODE

4.3.2 — Calcium chloride as an admixture shall not be used in concrete to be exposed to severe or very severe sulfate-containing solutions, as defined in Table 4.3.1.

4.4 — Corrosion protection of reinforcement

4.4.1 — For corrosion protection of reinforcement in concrete, maximum water soluble chloride ion concentrations in hardened concrete at ages from 28 to 42 days contributed from the ingredients including water, aggregates, cementitious materials, and admixtures shall not exceed the limits of Table 4.4.1. When testing is performed to determine water soluble chloride ion content, test procedures shall conform to ASTM C 1218.

COMMENTARY

maximum C₃A content of 5 percent is specified. In certain areas, the C₃A content of other available types such as Type III or Type I may be less than 8 or 5 percent and are usable in moderate or severe sulfate exposures. Note that sulfate-resisting cement will not increase resistance to some chemically aggressive solutions, for example ammonium nitrate. The project specifications should cover all special cases.

Using fly ash (ASTM C 618, Class F) also has been shown to improve the sulfate resistance of concrete. Certain Type IP cements made by blending Class F pozzolan with portland cement having a C₃A content greater than 8 percent can provide sulfate resistance for moderate exposures.

A note to Table 4.3.1 lists seawater as moderate exposure, even though it generally contains more than 1500 ppm SO₄. In seawater exposures, other types of cement with C₃A up to 10 percent may be used if the maximum water-cementitious materials ratio is reduced to 0.40.

ASTM test method C 1012 can be used to evaluate the sulfate resistance of mixtures using combinations of cementitious materials.

In addition to the proper selection of cement, other requirements for durable concrete exposed to concentrations of sulfate are essential, such as, low water-cementitious materials ratio, strength, adequate air entrainment, low slump, adequate consolidation, uniformity, adequate cover of reinforcement, and sufficient moist curing to develop the potential properties of the concrete.

R4.4 — Corrosion protection of reinforcement

R4.4.1 — Additional information on the effects of chlorides on the corrosion of reinforcing steel is given in “Guide to Durable Concrete” reported by ACI Committee 201 and “Corrosion of Metals in Concrete” reported by ACI Committee 222. Test procedures should conform to those given in ASTM C 1218. An initial evaluation may be obtained by testing individual concrete ingredients for total chloride ion content. If total chloride ion content, calculated on the basis of concrete proportions, exceeds those permitted in Table 4.4.1, it may be necessary to test samples of the hardened concrete for water soluble chloride ion content described in the ACI 201 guide. Some of the total chloride ions present in the ingredients will either be insoluble or will react with the cement during hydration and become insoluble under the test procedures described in ASTM C 1218.
TABLE 4.4.1—MAXIMUM CHLORIDE ION CONTENT FOR CORROSION PROTECTION OF REINFORCEMENT

<table>
<thead>
<tr>
<th>Type of member</th>
<th>Maximum water soluble chloride ion (Cl-) in concrete, percent by mass of cement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prestressed concrete</td>
<td>0.06</td>
</tr>
<tr>
<td>Reinforced concrete exposed to chloride in service</td>
<td>0.15</td>
</tr>
<tr>
<td>Reinforced concrete that will be dry or protected from moisture in service</td>
<td>1.00</td>
</tr>
<tr>
<td>Other reinforced concrete construction</td>
<td>0.30</td>
</tr>
</tbody>
</table>

4.4.2 — If concrete with reinforcement will be exposed to chlorides from deicing chemicals, salt, salt water, brackish water, seawater, or spray from these sources, requirements of Table 4.2.2 for water-cementitious materials ratio and concrete strength, and the minimum concrete cover requirements of 7.7 shall be satisfied. See 18.14 for unbonded prestressing tendons.

When concretes are tested for soluble chloride ion content the tests should be made at an age of 28 to 42 days. The limits in Table 4.4.1 are to be applied to chlorides contributed from the concrete ingredients, not those from the environment surrounding the concrete.

The chloride ion limits in Table 4.4.1 differ from those recommended in ACI 201.2R and ACI 222R. For reinforced concrete that will be dry in service, a limit of 1 percent has been included to control total soluble chlorides. Table 4.4.1 includes limits of 0.15 and 0.30 percent for reinforced concrete that will be exposed to chlorides or will be damp in service, respectively. These limits compare to 0.10 and 0.15 recommended in ACI 201.2R. ACI 222R recommends limits of 0.08 and 0.20 percent by weight of cement for chlorides in prestressed and reinforced concrete, respectively, based on tests for acid soluble chlorides, not the test for water soluble chlorides required here.

When epoxy or zinc-coated bars are used, the limits in Table 4.4.1 may be more restrictive than necessary.

R4.4.2 — When concretes are exposed to external sources of chlorides, the water-cementitious materials ratio and specified compressive strength f'_c of 4.2.2 are the minimum requirements that are to be considered. The designer should evaluate conditions in structures where chlorides may be applied, in parking structures where chlorides may be tracked in by vehicles, or in structures near seawater. Epoxy- or zinc-coated bars or cover greater than the minimum required in 7.7 may be desirable. Use of slag meeting ASTM C 989 or fly ash meeting ASTM C 618 and increased levels of specified strength provide increased protection. Use of silica fume meeting ASTM C 1240 with an appropriate high-range water reducer, ASTM C 494, Types F and G, or ASTM C 1017 can also provide additional protection.4,12 Performance tests for chloride permeability by AASHTO T 2774,13 of concrete mixtures before use may also provide additional assurance.
Notes
CHAPTER 5 — CONCRETE QUALITY, MIXING, AND PLACING

CODE

5.0 — Notation

\[f'_c = \text{specified compressive strength of concrete, MPa} \]
\[f'_{cr} = \text{required average compressive strength of concrete used as the basis for selection of concrete proportions, MPa} \]
\[f_{ct} = \text{average splitting tensile strength of lightweight aggregate concrete, MPa} \]
\[s = \text{standard deviation, MPa} \]

5.1 — General

5.1.1 — Concrete shall be proportioned to provide an average compressive strength as prescribed in 5.3.2 as well as satisfy the durability criteria of Chapter 4. Concrete shall be produced to minimize frequency of strengths below \(f'_c \) as prescribed in 5.6.3.3.

5.1.2 — Requirements for \(f'_c \) shall be based on tests of cylinders made and tested as prescribed in 5.6.3.

5.1.3 — Unless otherwise specified, \(f'_c \) shall be based on 28-day tests. If other than 28 days, test age for \(f'_c \) shall be as indicated in design drawings or specifications.

5.1.4 — Where design criteria in 9.5.2.3, 11.2, and 12.2.4 provide for use of a splitting tensile strength value of concrete, laboratory tests shall be made in accordance with “Specification for Lightweight Aggregates for Structural Concrete” (ASTM C 330) to establish value of \(f_{ct} \) corresponding to specified value of \(f'_c \).

5.1.5 — Splitting tensile strength tests shall not be used as a basis for field acceptance of concrete.

COMMENTARY

The requirements for proportioning concrete mixtures are based on the philosophy that concrete should provide both adequate durability (Chapter 4) and strength. The criteria for acceptance of concrete are based on the philosophy that the code is intended primarily to protect the safety of the public. Chapter 5 describes procedures by which concrete of adequate strength can be obtained, and provides procedures for checking the quality of the concrete during and after its placement in the work.

Chapter 5 also prescribes minimum criteria for mixing and placing concrete.

The provisions of 5.2, 5.3, and 5.4, together with Chapter 4, establish required mixture proportions. The basis for determining the adequacy of concrete strength is in 5.6.

The basic premises governing the designation and evaluation of concrete strength are presented. It is emphasized that the average strength of concrete produced should always exceed the specified value of \(f'_c \) used in the structural design calculations. This is based on probabilistic concepts, and is intended to ensure that adequate concrete strength will be developed in the structure. The durability requirements prescribed in Chapter 4 are to be satisfied in addition to attaining the average concrete strength in accordance with 5.3.2.

R5.1.4 — Code Sections 9.5.2.3 (modulus of rupture), 11.2 (concrete shear strength) and 12.2.4 (development of reinforcement) require modification in the design criteria for the use of lightweight aggregate concrete. Two alternative modification procedures are provided. One alternative is based on laboratory tests to determine the relationship between splitting tensile strength \(f_{ct} \) and specified compressive strength \(f'_c \) for the lightweight concrete. For a lightweight aggregate from a given source, it is intended that appropriate values of \(f_{ct} \) be obtained in advance of design.

R5.1.5 — Tests for splitting tensile strength of concrete (as required by 5.1.4) are not intended for control of, or acceptance
5.2 — Selection of concrete proportions

5.2.1 — Proportions of materials for concrete shall be established to provide:

(a) Workability and consistency to permit concrete to be worked readily into forms and around reinforcement under conditions of placement to be employed, without segregation or excessive bleeding;

(b) Resistance to special exposures as required by Chapter 4;

(c) Conformance with strength test requirements of 5.6.

5.2.2 — Where different materials are to be used for different portions of proposed work, each combination shall be evaluated.

5.2.3 — Concrete proportions, including water-cementitious materials ratio, shall be established on the basis of field experience or trial mixtures with materials to be employed (see 5.3), or both, except as permitted in 5.4 or required by Chapter 4.

5.3 — Proportioning on the basis of field experience or trial mixtures, or both

R5.2.1 — The selected water-cementitious materials ratio should be low enough, or in the case of lightweight concrete the compressive strength high enough to satisfy both the strength criteria (see 5.3 or 5.4) and the special exposure requirements (Chapter 4). The code does not include provisions for especially severe exposures, such as acids or high temperatures, and is not concerned with aesthetic considerations such as surface finishes. These items are beyond the scope of the code and should be covered specifically in the project specifications. Concrete ingredients and proportions are to be selected to meet the minimum requirements stated in the code and the additional requirements of the contract documents.

R5.2.3 — The code emphasizes the use of field experience or laboratory trial mixtures (see 5.3) as the preferred method for selecting concrete mixture proportions. When no prior experience or trial mixture data is available, estimation of the water-cementitious materials ratio as prescribed in 5.4 is permitted, but only when special permission is given.

R5.3 — Proportioning on the basis of field experience or trial mixtures, or both

In selecting a suitable concrete mixture there are three basic steps. The first is the determination of the standard deviation. The second is the determination of the required average strength. The third is the selection of mixture proportions required to produce that average strength, either
5.3.1 — Standard deviation

5.3.1.1 — Where a concrete production facility has test records, a standard deviation shall be established. Test records from which a standard deviation is calculated:

(a) Shall represent materials, quality control procedures, and conditions similar to those expected and changes in materials and proportions within the test records shall not have been more restricted than those for proposed work;

(b) Shall represent concrete produced to meet a specified strength or strengths f'_{c} within 7 MPa of that specified for proposed work;

(c) Shall consist of at least 30 consecutive tests or two groups of consecutive tests totaling at least 30 tests as defined in 5.6.2.4, except as provided in 5.3.1.2.

5.3.1.2 — Where a concrete production facility does not have test records meeting requirements of 5.3.1.1, but does have a record based on 15 to 29 consecutive tests, a standard deviation shall be established as the product of the calculated standard deviation and modification factor of Table 5.3.1.2. To be acceptable, test record shall meet requirements (a) and (b) of 5.3.1.1, and represent only a single record of consecutive tests that span a period of not less than 45 calendar days.

<table>
<thead>
<tr>
<th>TABLE 5.3.1.2—MODIFICATION FACTOR FOR STANDARD DEVIATION WHEN LESS THAN 30 TESTS ARE AVAILABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of tests*</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>Less than 15</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>30 or more</td>
</tr>
</tbody>
</table>

* Interpolate for intermediate numbers of tests.
† Modified standard deviation to be used to determine required average strength f'_{c} from 5.3.2.1.

R5.3.1 — Standard deviation

When a concrete production facility has a suitable record of 30 consecutive tests of similar materials and conditions expected, the standard deviation is calculated from those results in accordance with the following formula:

$$ s = \left[\frac{\sum (X_i - \bar{X})^2}{(n - 1)} \right]^{1/2} $$

where:

- s = standard deviation, MPa
- X_i = individual strength tests as defined in 5.6.2.4
- \bar{X} = average of n strength test results
- n = number of consecutive strength tests

The standard deviation is used to determine the average strength required in 5.3.2.1.

If two test records are used to obtain at least 30 tests, the standard deviation used shall be the statistical average of the values calculated from each test record in accordance with the following formula:

$$ s = \left[\frac{(n_1 - 1)(s_1)^2 + (n_2 - 1)(s_2)^2}{(n_1 + n_2 - 2)} \right]^{1/2} $$

where:

- \bar{s} = statistical average standard deviation where two test records are used to estimate the standard deviation
- s_1, s_2 = standard deviations calculated from two test records, 1 and 2, respectively
- n_1, n_2 = number of tests in each test record, respectively

If less than 30, but at least 15 tests are available, the calculated standard deviation is increased by the factor given in Table 5.3.1.2. This procedure results in a more conservative (increased) required average strength. The factors in Table 5.3.1.2 are based on the sampling distribution of the standard deviation and provide protection (equivalent to that from a record of 30 tests) against the possibility that the smaller sample underestimates the true or universe population standard deviation.
CONCRETE PRODUCTION FACILITY HAS FIELD STRENGTH TEST RECORDS FOR THE SPECIFIED CLASS OR WITHIN 7 MPa OF THE SPECIFIED CLASS OF CONCRETE

![Flow chart for selection and documentation of concrete proportions](image)

Fig. R5.3—Flow chart for selection and documentation of concrete proportions

5.3.2 Required average strength

5.3.2.1 — Required average compressive strength f_{cr}' used as the basis for selection of concrete proportions shall be the larger of Eq. (5-1) or (5-2) using a standard deviation calculated in accordance with 5.3.1.1 or 5.3.1.2.

\[
f_{cr}' = f_c' + 1.34s
\]

or

\[
f_{cr}' = f_c' + 2.33s - 3.45
\]

The standard deviation used in the calculation of required average strength should be developed under conditions “similar to those expected” [see 5.3.1.1(a)]. This requirement is important to ensure acceptable concrete.

Concrete for background tests to determine standard deviation is considered to be “similar” to that required if made with the same general types of ingredients under no more restrictive conditions of control over material quality and production methods than on the proposed work, and if its specified strength does not deviate more than 7 MPa from the f_c' required [see 5.3.1.1(b)]. A change in the type of concrete or a major increase in the strength level may increase the standard deviation. Such a situation might occur with a change in type of aggregate (i.e., from natural aggregate to lightweight aggregate or vice versa) or a change from non-air-entrained concrete to air-entrained concrete. Also, there may be an increase in standard deviation when the average strength level is raised by a significant amount, although the increment of increase in standard deviation should be somewhat less than directly proportional to the strength increase. When there is reasonable doubt, any estimated standard deviation used to calculate the required average strength should always be on the conservative (high) side.

Note that the code uses the standard deviation in pounds per square inch instead of the coefficient of variation in percent. The latter is equal to the former expressed as a percent of the average strength.

When a suitable record of test results is not available, the average strength should exceed the design strength by an amount that ranges from 7 to 10 MPa, depending on the design strength. See Table 5.3.2.2.

Even when the average strength and standard deviation are of the levels assumed, there will be occasional tests that fail to meet the acceptance criteria prescribed in 5.6.3.3 (perhaps 1 test in 100).
5.3.2.2 — When a concrete production facility does not have field strength test records for calculation of standard deviation meeting requirements of 5.3.1.1 or 5.3.1.2, required average strength f'_{cr} shall be determined from Table 5.3.2.2 and documentation of average strength shall be in accordance with requirements of 5.3.3.

TABLE 5.3.2.2—REQUIRED AVERAGE COMPRESSIVE STRENGTH WHEN DATA ARE NOT AVAILABLE TO ESTABLISH A STANDARD DEVIATION

<table>
<thead>
<tr>
<th>Specified compressive strength, f'_c, MPa</th>
<th>Required average compressive strength, f'_{cr}, MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 21</td>
<td>$f'_c + 7.0$</td>
</tr>
<tr>
<td>21 to 35</td>
<td>$f'_c + 8.5$</td>
</tr>
<tr>
<td>Over 35</td>
<td>$f'_c + 10.0$</td>
</tr>
</tbody>
</table>

5.3.3 — Documentation of average strength

Documentation that proposed concrete proportions will produce an average compressive strength equal to or greater than required average compressive strength (see 5.3.2) shall consist of a field strength test record, several strength test records, or trial mixtures.

R.5.3.3 — Documentation of average strength

Once the required average strength f'_{cr} is known, the next step is to select mixture proportions that will produce an average strength at least as great as the required average strength, and also meet special exposure requirements of Chapter 4. The documentation may consist of a strength test record, several strength test records, or suitable laboratory trial mixtures. Generally, if a test record is used, it will be the same one that was used for computation of the standard deviation. However, if this test record shows either lower or higher average strength than the required average strength, different proportions may be necessary or desirable. In such instances, the average from a record of as few as 10 tests may be used, or the proportions may be established by interpolation between the strengths and proportions of two such records of consecutive tests. All test records for establishing proportions necessary to produce the average strength are to meet the requirements of 5.3.3.1 for “similar materials and conditions.”

The 1971 code required trial mixtures to be mixed at the maximum permitted slump and air content. Since 1977, the code has provided tolerances at the maximum permissible slump and air content. The code text makes it clear that these tolerances on slump and air content apply only to the trial mixtures and not to records of field tests or to later production of the concrete in the field.
work. For the purpose of documenting average strength potential, test records consisting of less than 30 but not less than 10 consecutive tests are acceptable provided test records encompass a period of time not less than 45 days. Required concrete proportions shall be permitted to be established by interpolation between the strengths and proportions of two or more test records, each of which meets other requirements of this section.

5.3.3.2 — When an acceptable record of field test results is not available, concrete proportions established from trial mixtures meeting the following restrictions shall be permitted:

(a) Combination of materials shall be those for proposed work;

(b) Trial mixtures having proportions and consistencies required for proposed work shall be made using at least three different water-cementitious materials ratios or cementitious materials contents that will produce a range of strengths encompassing the required average strength f_{cr}'

(c) Trial mixtures shall be designed to produce a slump within ± 20 mm of maximum permitted, and for air-entrained concrete, within ± 0.5 percent of maximum allowable air content;

(d) For each water-cementitious materials ratio or cementitious materials content, at least three test cylinders for each test age shall be made and cured in accordance with “Method of Making and Curing Concrete Test Specimens in the Laboratory” (ASTM C 192). Cylinders shall be tested at 28 days or at test age designated for determination of f_{cr}';

(e) From results of cylinder tests a curve shall be plotted showing the relationship between water-cementitious materials ratio or cementitious materials content and compressive strength at designated test age;

(f) Maximum water-cementitious materials ratio or minimum cementitious materials content for concrete to be used in proposed work shall be that shown by the curve to produce the average strength required by 5.3.2, unless a lower water-cementitious materials ratio or higher strength is required by Chapter 4.
CODE

5.4 — Proportioning without field experience or trial mixtures

5.4.1 — If data required by 5.3 are not available, concrete proportions shall be based upon other experience or information, if approved by the engineer/architect. The required average compressive strength f'_c of concrete produced with materials similar to those proposed for use shall be at least 8.5 MPa greater than the specified compressive strength f'_c. This alternative shall not be used for specified compressive strength greater than 28 MPa.

5.4.2 — Concrete proportioned by this section shall conform to the durability requirements of Chapter 4 and to compressive strength test criteria of 5.6.

5.5 — Average strength reduction

As data become available during construction, it shall be permitted to reduce the amount by which f'_c must exceed the specified value of f'_c, provided:

(a) Thirty or more test results are available and average of test results exceeds that required by 5.3.2.1, using a standard deviation calculated in accordance with 5.3.1.1; or

(b) Fifteen to 29 test results are available and average of test results exceeds that required by 5.3.2.1 using a standard deviation calculated in accordance with 5.3.1.2; and

(c) Special exposure requirements of Chapter 4 are met.

5.6 — Evaluation and acceptance of concrete

5.6.1 — Concrete shall be tested in accordance with the requirements of 5.6.2 through 5.6.5. Qualified field testing technicians shall perform tests on fresh concrete at the job site, prepare specimens required for curing under field conditions, prepare specimens required for testing in the laboratory, and record the temperature of the fresh concrete when preparing specimens for strength tests. Qualified laboratory technicians shall perform all required laboratory tests.

COMMENTARY

R5.4 — Proportioning without field experience or trial mixtures

R5.4.1 — When no prior experience (5.3.3.1) or trial mixture data (5.3.3.2) meeting the requirements of these sections is available, other experience may be used only when special permission is given. Because combinations of different ingredients may vary considerably in strength level, this procedure is not permitted for f'_c greater than 28 MPa and the required average strength should exceed f'_c by 8 MPa. The purpose of this provision is to allow work to continue when there is an unexpected interruption in concrete supply and there is not sufficient time for tests and evaluation or in small structures where the cost of trial mixture data is not justified.

R5.6 — Evaluation and acceptance of concrete

Once the mixture proportions have been selected and the job started, the criteria for evaluation and acceptance of the concrete can be obtained from 5.6.

An effort has been made in the code to provide a clear-cut basis for judging the acceptability of the concrete, as well as to indicate a course of action to be followed when the results of strength tests are not satisfactory.

R5.6.1 — Laboratory and field technicians can establish qualifications by becoming certified through certification programs. Field technicians in charge of sampling concrete; testing for slump, unit weight, yield, air content, and temperature; and making and curing test specimens should be certified in accordance with the requirements of ACI Concrete Field Testing Technician—Grade I Certification Program, or the requirements of ASTM C 1077, or an equivalent program. Concrete testing laboratory personnel
5.6.2 — Frequency of testing

5.6.2.1 — Samples for strength tests of each class of concrete placed each day shall be taken not less than once a day, nor less than once for each 120 m³ of concrete, nor less than once for each 500 m² of surface area for slabs or walls.

5.6.2.2 — On a given project, if total volume of concrete is such that frequency of testing required by 5.6.2.1 would provide less than five strength tests for a given class of concrete, tests shall be made from at least five randomly selected batches or from each batch if fewer than five batches are used.

5.6.2.3 — When total quantity of a given class of concrete is less than 40 m³, strength tests are not required when evidence of satisfactory strength is submitted to and approved by the building official.

5.6.2.4 — A strength test shall be the average of the strengths of two cylinders made from the same sample of concrete and tested at 28 days or at test age designated for determination of $f_{c'}$.

should be certified in accordance with the requirements of ACI Concrete Laboratory Testing Technician, Concrete Strength Testing Technician, or the requirements of ASTM C 1077.

Testing reports should be promptly distributed to the owner, licensed design professional responsible for the design, contractor, appropriate subcontractors, appropriate suppliers, and building official to allow timely identification of either compliance or the need for corrective action.

R5.6.2 — Frequency of testing

R5.6.2.1 — The following three criteria establish the required minimum sampling frequency for each class of concrete:

(a) Once each day a given class is placed, nor less than

(b) Once for each 120 m³ of each class placed each day, nor less than

(c) Once for each 500 m² of slab or wall surface area placed each day.

In calculating surface area, only one side of the slab or wall should be considered. Criteria (c) will require more frequent sampling than once for each 120 m³ placed if the average wall or slab thickness is less than 250 mm.

R5.6.2.2 — Samples for strength tests are to be taken on a strictly random basis if they are to measure properly the acceptability of the concrete. To be representative, the choice of times of sampling, or the batches of concrete to be sampled, are to be made on the basis of chance alone, within the period of placement. Batches should not be sampled on the basis of appearance, convenience, or other possibly biased criteria, the statistical analyses lose their validity. Not more than one test (average of two cylinders made from a sample, 5.6.2.4) should be taken from a single batch, and water may not be added to the concrete after the sample is taken.

ASTM D 3665 describes procedures for random selection of the batches to be tested.
5.6.3 — Laboratory-cured specimens

5.6.3.1 — Samples for strength tests shall be taken in accordance with “Method of Sampling Freshly Mixed Concrete” (ASTM C 172).

5.6.3.2 — Cylinders for strength tests shall be molded and laboratory-cured in accordance with “Practice for Making and Curing Concrete Test Specimens in the Field” (ASTM C 31) and tested in accordance with “Test Method for Compressive Strength of Cylindrical Concrete Specimens” (ASTM C 39).

5.6.3.3 — Strength level of an individual class of concrete shall be considered satisfactory if both of the following requirements are met:

(a) Every arithmetic average of any three consecutive strength tests equals or exceeds \(f'_c \);

(b) No individual strength test (average of two cylinders) falls below \(f'_c \) by more than 3.5 MPa.

5.6.3.4 — If either of the requirements of 5.6.3.3 are not met, steps shall be taken to increase the average of subsequent strength test results. Requirements of 5.6.5 shall be observed if requirement of 5.6.3.3(b) is not met.

R5.6.3.3 — A single set of criteria is given for acceptability of strength and is applicable to all concrete used in structures designed in accordance with the code, regardless of design method used. The concrete strength is considered to be satisfactory as long as averages of any three consecutive strength tests remain above the specified \(f'_c \) and no individual strength test falls below the specified \(f'_c \) by more than 3.5 MPa. Evaluation and acceptance of the concrete can be judged immediately as test results are received during the course of the work. Strength tests failing to meet these criteria will occur occasionally (probably about once in 100 tests) even though concrete strength and uniformity are satisfactory. Allowance should be made for such statistically expected variations in deciding whether the strength level being produced is adequate. In terms of the probability of failure, the criterion of minimum individual strength test result of 3.5 MPa less than \(f'_c \) adapts itself readily to small numbers of tests. For example, if only five strength tests are made on a small job, if any of the strength test results (average of two cylinders) is more than 3.5 MPa below \(f'_c \) the criterion is not met.

R5.6.3.4 — When concrete fails to meet either of the strength requirements of 5.6.3.3, steps should be taken to increase the average of the concrete test results. If sufficient concrete has been produced to accumulate at least 15 tests, these should be used to establish a new target average strength as described in 5.3.

If fewer than 15 tests have been made on the class of concrete in question, the new target strength level should be at least as great as the average level used in the initial selection of proportions. If the average of the available tests made on the project equals or exceeds the level used in the initial selection of proportions, a further increase in average level is required.

The steps taken to increase the average level of test results will depend on the particular circumstances, but could include one or more of the following:

(a) An increase in cementitious materials content;

(b) Changes in mixture proportions;
5.6.4 — Field-cured specimens

5.6.4.1 — If required by the building official, results of strength tests of cylinders cured under field conditions shall be provided.

5.6.4.2 — Field-cured cylinders shall be cured under field conditions in accordance with “Practice for Making and Curing Concrete Test Specimens in the Field” (ASTM C 31).

5.6.4.3 — Field-cured test cylinders shall be molded at the same time and from the same samples as laboratory-cured test cylinders.

5.6.4.4 — Procedures for protecting and curing concrete shall be improved when strength of field-cured cylinders at test age designated for determination of f'_c is less than 85 percent of that of companion laboratory-cured cylinders. The 85 percent limitation shall not apply if field-cured strength exceeds f'_c by more than 3.5 MPa.

R5.6.4.1 — Strength tests of cylinders cured under field conditions may be required to check the adequacy of curing and protection of concrete in the structure.

R5.6.4.4 — Positive guidance is provided in the code concerning the interpretation of tests of field-cured cylinders. Research has shown that cylinders protected and cured to simulate good field practice should test not less than about 85 percent of standard laboratory moist-cured cylinders. This percentage has been set as a rational basis for judging the adequacy of field curing. The comparison is made between the actual measured strengths of companion job-cured and laboratory-cured cylinders, not between job-cured cylinders and the specified value of f'_c. However, results for the job-cured cylinders are considered satisfactory if the job-cured cylinders exceed the specified f'_c by more than 3.5 MPa, even though they fail to reach 85 percent of the strength of companion laboratory-cured cylinders.
CODE

5.6.5 — Investigation of low-strength test results

5.6.5.1 — If any strength test (see 5.6.2.4) of laboratory-cured cylinders falls below specified value of f'_c by more than 3.5 MPa [see 5.6.3.3(b)] or if tests of field-cured cylinders indicate deficiencies in protection and curing (see 5.6.4.4), steps shall be taken to assure that load-carrying capacity of the structure is not jeopardized.

5.6.5.2 — If the likelihood of low-strength concrete is confirmed and calculations indicate that load-carrying capacity is significantly reduced, tests of cores drilled from the area in question in accordance with “Method of Obtaining and Testing Drilled Cores and Sawed Beams of Concrete” (ASTM C 42) shall be permitted. In such cases, three cores shall be taken for each strength test more than 3.5 MPa below the specified value of f'_c.

5.6.5.3 — If concrete in the structure will be dry under service conditions, cores shall be air dried (temperature 15 to 25 C, relative humidity less than 60 percent) for 7 days before test and shall be tested dry. If concrete in the structure will be more than superficially wet under service conditions, cores shall be immersed in water for at least 40 hr and be tested wet.

5.6.5.4 — Concrete in an area represented by core tests shall be considered structurally adequate if the average of three cores is equal to at least 85 percent of f'_c and if no single core is less than 75 percent of f'_c. Additional testing of cores extracted from locations represented by erratic core strength results shall be permitted.

5.6.5.5 — If criteria of 5.6.5.4 are not met and if the structural adequacy remains in doubt, the responsible authority shall be permitted to order a strength evaluation using procedures previously discussed.

5.7 — Preparation of equipment and place of deposit

5.7.1 — Preparation before concrete placement shall include the following:

(a) All equipment for mixing and transporting concrete

COMMENTARY

R5.6.5 — Investigation of low-strength test results

Instructions are provided concerning the procedure to be followed when strength tests have failed to meet the specified acceptance criteria. For obvious reasons, these instructions cannot be dogmatic. The building official should apply judgment as to the significance of low test results and whether they indicate need for concern. If further investigation is deemed necessary, such investigation may include nondestructive tests, or in extreme cases, strength tests of cores taken from the structure.

Nondestructive tests of the concrete in place, such as by probe penetration, impact hammer, ultrasonic pulse velocity or pull out may be useful in determining whether or not a portion of the structure actually contains low-strength concrete. Such tests are of value primarily for comparisons within the same job rather than as quantitative measures of strength. For cores, if required, conservatively safe acceptance criteria are provided that should ensure structural adequacy for virtually any type of construction. Lower strength may, of course, be tolerated under many circumstances, but this again becomes a matter of judgment on the part of the building official and design engineer. When the core tests fail to provide assurance of structural adequacy, it may be practical, particularly in the case of floor or roof systems, for the building official to require a load test (Chapter 20). Short of load tests, if time and conditions permit, an effort may be made to improve the strength of the concrete in place by supplemental wet curing. Effectiveness of such a treatment should be verified by further strength evaluation using procedures previously discussed.

Core tests having an average of 85 percent of the specified strength are entirely realistic. To expect core tests to be equal to f'_c is not realistic, since differences in the size of specimens, conditions of obtaining samples, and procedures for curing, do not permit equal values to be obtained.

The code, as stated, concerns itself with assuring structural safety, and the instructions in 5.6 are aimed at that objective. It is not the function of the code to assign responsibility for strength deficiencies, whether or not they are such as to require corrective measures.

Under the requirements of this section, cores taken to confirm structural adequacy will usually be taken at ages later than those specified for determination of f'_c.

R5.7 — Preparation of equipment and place of deposit

Recommendations for mixing, handling and transporting, and placing concrete are given in detail in “Guide for Measuring, Mixing, Transporting, and Placing Concrete” reported by ACI Committee 304. (Presents methods and
shall be clean;

(b) All debris and ice shall be removed from spaces to be occupied by concrete;

(c) Forms shall be properly coated;

(d) Masonry filler units that will be in contact with concrete shall be well drenched;

(e) Reinforcement shall be thoroughly clean of ice or other deleterious coatings;

(f) Water shall be removed from place of deposit before concrete is placed unless a tremie is to be used or unless otherwise permitted by the building official;

(g) All laitance and other unsound material shall be removed before additional concrete is placed against hardened concrete.

5.8 — Mixing

5.8.1 — All concrete shall be mixed until there is a uniform distribution of materials and shall be discharged completely before mixer is recharged.

5.8.2 — Ready-mixed concrete shall be mixed and delivered in accordance with requirements of “Specification for Ready-Mixed Concrete” (ASTM C 94) or “Specification for Concrete Made by Volumetric Batch- ing and Continuous Mixing” (ASTM C 685).

5.8.3 — Job-mixed concrete shall be mixed in accordance with the following:

(a) Mixing shall be done in a batch mixer of approved type;

(b) Mixer shall be rotated at a speed recommended by the manufacturer;

(c) Mixing shall be continued for at least 1-1/2 min after all materials are in the drum, unless a shorter time is shown to be satisfactory by the mixing uniformity tests of “Specification for Ready-Mixed Concrete” (ASTM C 94);

(d) Materials handling, batching, and mixing shall conform to applicable provisions of “Specification for Ready-Mixed Concrete” (ASTM C 94);

(e) A detailed record shall be kept to identify:

(1) number of batches produced;

Concrete of uniform and satisfactory quality requires the materials to be thoroughly mixed until uniform in appearance and all ingredients are distributed. Samples taken from different portions of a batch should have essentially the same unit weight, air content, slump, and coarse aggregate content. Test methods for uniformity of mixing are given in ASTM C 94. The necessary time of mixing will depend on many factors including batch size, stiffness of the batch, size and grading of the aggregate, and the efficiency of the mixer. Excessively long mixing times should be avoided to guard against grinding of the aggregates.

Attention is directed to the need for using clean equipment and for cleaning forms and reinforcement thoroughly before beginning to deposit concrete. In particular, sawdust, nails, wood pieces, and other debris that may collect inside the forms should be removed. Reinforcement should be thoroughly cleaned of ice, dirt, loose rust, mill scale, or other coatings. Water should be removed from the forms.
(2) proportions of materials used;

(3) approximate location of final deposit in structure;

(4) time and date of mixing and placing.

5.9 — Conveying

5.9.1 — Concrete shall be conveyed from mixer to place of final deposit by methods that will prevent separation or loss of materials.

5.9.2 — Conveying equipment shall be capable of providing a supply of concrete at site of placement without separation of ingredients and without interruptions sufficient to permit loss of plasticity between successive increments.

5.10 — Depositing

5.10.1 — Concrete shall be deposited as nearly as practical in its final position to avoid segregation due to rehandling or flowing.

5.10.2 — Concreting shall be carried on at such a rate that concrete is at all times plastic and flows readily into spaces between reinforcement.

5.10.3 — Concrete that has partially hardened or been contaminated by foreign materials shall not be deposited in the structure.

5.10.4 — Retempered concrete or concrete that has been remixed after initial set shall not be used unless approved by the engineer.

5.10.5 — After concreting is started, it shall be carried on as a continuous operation until placing of a panel or section, as defined by its boundaries or predetermined joints, is completed except as permitted or prohibited by 6.4.

R5.10 — Depositing

Rehandling concrete can cause segregation of the materials. Hence the code cautions against this practice. Retempering of partially set concrete with the addition of water should not be permitted, unless authorized. This does not preclude the practice (recognized in ASTM C 94) of adding water to mixed concrete to bring it up to the specified slump range so long as prescribed limits on the maximum mixing time and water-cementitious materials ratio are not violated.

Section 5.10.4 of the 1971 code contained a requirement that “where conditions make consolidation difficult or where reinforcement is congested, batches of mortar containing the same proportions of cement, sand, and water as used in the concrete, shall first be deposited in the forms to a depth of at least 25 mm.” That requirement was deleted from the 1977 code since the conditions for which it was applicable could not be defined precisely enough to justify its inclusion as a code requirement. The practice, however, has merit and should be incorporated in job specifications where appropriate, with the specific enforcement the responsibility of the job inspector. The use of mortar batches aids in preventing honeycomb and poor bonding of
CHAPTER 5

CODE

5.10.6 — Top surfaces of vertically formed lifts shall be generally level.

5.10.7 — When construction joints are required, joints shall be made in accordance with 6.4.

5.10.8 — All concrete shall be thoroughly consolidated by suitable means during placement and shall be thoroughly worked around reinforcement and embedded fixtures and into corners of forms.

5.11 — Curing

5.11.1 — Concrete (other than high-early-strength) shall be maintained above 10°C and in a moist condition for at least the first 7 days after placement, except when cured in accordance with 5.11.3.

5.11.2 — High-early-strength concrete shall be maintained above 10°C and in a moist condition for at least the first 3 days, except when cured in accordance with 5.11.3.

5.11.3 — Accelerated curing

5.11.3.1 — Curing by high pressure steam, steam at atmospheric pressure, heat and moisture, or other accepted processes, shall be permitted to accelerate strength gain and reduce time of curing.

5.11.3.2 — Accelerated curing shall provide a compressive strength of the concrete at the load stage considered at least equal to required design strength at that load stage.

5.11.3.3 — Curing process shall be such as to produce concrete with a durability at least equivalent to the curing method of 5.11.1 or 5.11.2.

5.11.4 — When required by the engineer or architect, supplementary strength tests in accordance with 5.6.4 shall be performed to assure that curing is satisfactory.

COMMENTARY

the concrete with the reinforcement. The mortar should be placed immediately before depositing the concrete and should be plastic (neither stiff nor fluid) when the concrete is placed.

Recommendations for consolidation of concrete are given in detail in “Guide for Consolidation of Concrete” reported by ACI Committee 309.5.10 (Presents current information on the mechanism of consolidation and gives recommendations on equipment characteristics and procedures for various classes of concrete.)

R5.11 — Curing

Recommendations for curing concrete are given in detail in “Standard Practice for Curing Concrete” reported by ACI Committee 308.5.11 (Presents basic principles of proper curing and describes the various methods, procedures, and materials for curing of concrete.)

R5.11.3 — Accelerated curing

The provisions of this section apply whenever an accelerated curing method is used, whether for precast or cast-in-place elements. The compressive strength of steam-cured concrete is not as high as that of similar concrete continuously cured under moist conditions at moderate temperatures. Also the elastic modulus E_c of steam-cured specimens may vary from that of specimens moist-cured at normal temperatures. When steam curing is used, it is advisable to base the concrete mixture proportions on steam-cured test cylinders.

Accelerated curing procedures require careful attention to obtain uniform and satisfactory results. Preventing moisture loss during the curing is essential.

R5.11.4 — In addition to requiring a minimum curing temperature and time for normal- and high-early-strength concrete, the code provides a specific criterion in 5.6.4 for judging the adequacy of field curing. At the test age for which the strength is specified (usually 28 days), field-cured cylinders should produce strength not less than 85 percent of that of the standard, laboratory-cured cylinders. For a reasonably valid comparison to be made, field-cured cylinders and companion laboratory-cured cylinders should come from the same sample. Field-cured cylinders should be cured under conditions identical to those of the structure. If the structure is protected from the elements, the cylinder should be protected.
5.12 — Cold weather requirements

5.12.1 — Adequate equipment shall be provided for heating concrete materials and protecting concrete during freezing or near-freezing weather.

5.12.2 — All concrete materials and all reinforcement, forms, fillers, and ground with which concrete is to come in contact shall be free from frost.

5.12.3 — Frozen materials or materials containing ice shall not be used.

5.13 — Hot weather requirements

During hot weather, proper attention shall be given to ingredients, production methods, handling, placing, protection, and curing to prevent excessive concrete temperatures or water evaporation that could impair required strength or serviceability of the member or structure.

R5.12 — Cold weather requirements

Recommendations for cold weather concreting are given in detail in “Cold Weather Concreting” reported by ACI Committee 306.5.12 (Presents requirements and methods for producing satisfactory concrete during cold weather.)

R5.13 — Hot weather requirements

Recommendations for hot weather concreting are given in detail in “Hot Weather Concreting” reported by ACI Committee 305.5.13 (Defines the hot weather factors that effect concrete properties and construction practices and recommends measures to eliminate or minimize the undesirable effects.)
CHAPTER 6 — FORMWORK, EMBEDDED PIPES, AND CONSTRUCTION JOINTS

CODE

6.1 — Design of formwork

6.1.1 — Forms shall result in a final structure that conforms to shapes, lines, and dimensions of the members as required by the design drawings and specifications.

6.1.2 — Forms shall be substantial and sufficiently tight to prevent leakage of mortar.

6.1.3 — Forms shall be properly braced or tied together to maintain position and shape.

6.1.4 — Forms and their supports shall be designed so as not to damage previously placed structure.

6.1.5 — Design of formwork shall include consideration of the following factors:

(a) Rate and method of placing concrete;

(b) Construction loads, including vertical, horizontal, and impact loads;

(c) Special form requirements for construction of shells, folded plates, domes, architectural concrete, or similar types of elements.

6.1.6 — Forms for prestressed concrete members shall be designed and constructed to permit movement of the member without damage during application of prestressing force.

6.2 — Removal of forms, shores, and reshoring

6.2.1 — Removal of forms

Forms shall be removed in such a manner as not to impair safety and serviceability of the structure. Concrete exposed by form removal shall have sufficient strength not to be damaged by removal operation.

6.2.2 — Removal of shores and reshoring

The provisions of 6.2.2.1 through 6.2.2.3 shall apply to slabs and beams except where cast on the ground.

6.2.2.1 — Before starting construction, the contractor shall develop a procedure and schedule for removal of shores and installation of reshores and for

COMMENTARY

R6.1 — Design of formwork

Only minimum performance requirements for formwork, necessary to provide for public health and safety, are prescribed in Chapter 6. Formwork for concrete, including proper design, construction, and removal, demands sound judgment and planning to achieve adequate forms that are both economical and safe. Detailed information on formwork for concrete is given in: “Guide to Formwork for Concrete,” reported by Committee 347.6.1 (Provides recommendations for design, construction, and materials for formwork, forms for special structures, and formwork for special methods of construction. Directed primarily to contractors, the suggested criteria will aid engineers and architects in preparing job specifications for the contractors.)

Formwork for Concrete6.2 prepared under the direction of ACI Committee 347. (A how-to-do-it handbook for contractors, engineers, and architects following the guidelines established in ACI 347R. Planning, building, and using formwork are discussed, including tables, diagrams, and formulas for form design loads.)

R6.2 — Removal of forms, shores, and reshoring

In determining the time for removal of forms, consideration should be given to the construction loads and to the possibilities of deflections.6.3 The construction loads are frequently at least as great as the specified live loads. At early ages, a structure may be adequate to support the applied loads but may deflect sufficiently to cause permanent damage.

Evaluation of concrete strength during construction may be demonstrated by field-cured test cylinders or other procedures approved by the building official such as:

(a) Tests of cast-in-place cylinders in accordance with “Standard Test Method for Compressive Strength of Concrete Cylinders Cast-In-Place in Cylindrical Molds”
calculating the loads transferred to the structure during the process.

(a) The structural analysis and concrete strength data used in planning and implementing form removal and shoring shall be furnished by the contractor to the building official when so requested;

(b) No construction loads shall be supported on, nor any shoring removed from, any part of the structure under construction except when that portion of the structure in combination with remaining forming and shoring system has sufficient strength to support safely its weight and loads placed thereon;

(c) Sufficient strength shall be demonstrated by structural analysis considering proposed loads, strength of forming and shoring system, and concrete strength data. Concrete strength data shall be based on tests of field-cured cylinders or, when approved by the building official, on other procedures to evaluate concrete strength.

6.2.2.2 — No construction loads exceeding the combination of superimposed dead load plus specified live load shall be supported on any unshored portion of the structure under construction, unless analysis indicates adequate strength to support such additional loads.

6.2.2.3 — Form supports for prestressed concrete members shall not be removed until sufficient prestressing has been applied to enable prestressed members to carry their dead load and anticipated construction loads.

(b) Penetration resistance in accordance with “Standard Test Method for Penetration Resistance of Hardened Concrete” (ASTM C 803);

(c) Pullout strength in accordance with “Standard Test Method for Pullout Strength of Hardened Concrete” (ASTM C 900);

(d) Maturity factor measurements and correlation in accordance with ASTM C 1074.6.4

Procedures (b), (c), and (d) require sufficient data, using job materials, to demonstrate correlation of measurements on the structure with compressive strength of molded cylinders or drilled cores.

Where the structure is adequately supported on shores, the side forms of beams, girders, columns, walls, and similar vertical forms may generally be removed after 12 hr of cumulative curing time, provided the side forms support no loads other than the lateral pressure of the plastic concrete. Cumulative curing time represents the sum of time intervals, not necessarily consecutive, during which the temperature of the air surrounding the concrete is above 10 C. The 12 hr cumulative curing time is based on regular cements and ordinary conditions; the use of special cements or unusual conditions may require adjustment of the given limits. For example, concrete made with Type II or V (ASTM C 150) or ASTM C 595M cements, concrete containing retarding admixtures, and concrete to which ice was added during mixing (to lower the temperature of fresh concrete) may not have sufficient strength in 12 hr and should be investigated before removal of formwork.

The removal of formwork for multistory construction should be a part of a planned procedure considering the temporary support of the whole structure as well as that of each individual member. Such a procedure should be worked out prior to construction and should be based on a structural analysis taking into account the following items, as a minimum:

(a) The structural system that exists at the various stages of construction and the construction loads corresponding to those stages;

(b) The strength of the concrete at the various ages during construction;

(c) The influence of deformations of the structure and shoring system on the distribution of dead loads and construction loads during the various stages of construction;
6.3 — Conduits and pipes embedded in concrete

6.3.1 — Conduits, pipes, and sleeves of any material not harmful to concrete and within limitations of 6.3 shall be permitted to be embedded in concrete with approval of the engineer, provided they are not considered to replace structurally the displaced concrete.

6.3.2 — Conduits and pipes of aluminum shall not be embedded in structural concrete unless effectively coated or covered to prevent aluminum-concrete reaction or electrolytic action between aluminum and steel.

6.3.3 — Conduits, pipes, and sleeves passing through a slab, wall, or beam shall not impair significantly the strength of the construction.

6.3.4 — Conduits and pipes, with their fittings, embedded within a column shall not displace more than 4 percent of the area of cross section on which strength is calculated or which is required for fire protection.

6.3.5 — Except when drawings for conduits and pipes are approved by the structural engineer, conduits and pipes embedded within a slab, wall, or beam (other than those merely passing through) shall satisfy 6.3.5.1 through 6.3.5.3.

6.3.6 — Conduits and pipes shall not be embedded in structural concrete unless it is effectively coated or covered. Aluminum reacts with concrete and, in the presence of chloride ions, may also react electrolytically with steel, causing cracking and/or spalling of the concrete. Aluminum electrical conduits present a special problem since stray electric current accelerates the adverse reaction.

(d) The strength and spacing of shores or shoring systems used, as well as the method of shoring, bracing, shore removal, and reshoring including the minimum time intervals between the various operations;

(e) Any other loading or condition that affects the safety or serviceability of the structure during construction.

For multistory construction, the strength of the concrete during the various stages of construction should be substantiated by field-cured test specimens or other approved methods.

R6.3 — Conduits and pipes embedded in concrete

R6.3.1 — Conduits, pipes, and sleeves not harmful to concrete can be embedded within the concrete, but the work should be done in such a manner that the structure will not be endangered. Empirical rules are given in 6.3 for safe installations under common conditions; for other than common conditions, special designs should be made. Many general building codes have adopted ANSI/ASME piping codes B 31.1 for power piping \(^6\) and B 31.3 for chemical and petroleum piping \(^6\). The specifier should be sure that the appropriate piping codes are used in the design and testing of the system. The contractor should not be permitted to install conduits, pipes, ducts, or sleeves that are not shown on the plans or not approved by the engineer or architect.

For the integrity of the structure, it is important that all conduit and pipe fittings within the concrete be carefully assembled as shown on the plans or called for in the job specifications.

R6.3.2 — The code prohibits the use of aluminum in structural concrete unless it is effectively coated or covered. Aluminum reacts with concrete and, in the presence of chloride ions, may also react electrolytically with steel, causing cracking and/or spalling of the concrete. Aluminum electrical conduits present a special problem since stray electric current accelerates the adverse reaction.
CODE

6.3.5.1 — They shall not be larger in outside dimension than 1/3 the overall thickness of slab, wall, or beam in which they are embedded.

6.3.5.2 — They shall not be spaced closer than 3 diameters or widths on center.

6.3.5.3 — They shall not impair significantly the strength of the construction.

6.3.6 — Conduits, pipes, and sleeves shall be permitted to be considered as replacing structurally in compression the displaced concrete provided in 6.3.6.1 through 6.3.6.3.

6.3.6.1 — They are not exposed to rusting or other deterioration.

6.3.6.2 — They are of uncoated or galvanized iron or steel not thinner than standard Schedule 40 steel pipe.

6.3.6.3 — They have a nominal inside diameter not over 50 mm and are spaced not less than 3 diameters on centers.

6.3.7 — Pipes and fittings shall be designed to resist effects of the material, pressure, and temperature to which they will be subjected.

6.3.8 — No liquid, gas, or vapor, except water not exceeding 30 C nor 0.3 MPa pressure, shall be placed in the pipes until the concrete has attained its design strength.

6.3.9 — In solid slabs, piping, unless it is for radiant heating or snow melting, shall be placed between top and bottom reinforcement.

6.3.10 — Concrete cover for pipes, conduits, and fittings shall not be less than 40 mm for concrete exposed to earth or weather, nor less than 20 mm for concrete not exposed to weather or in contact with ground.

6.3.11 — Reinforcement with an area not less than 0.002 times area of concrete section shall be provided normal to piping.

6.3.12 — Piping and conduit shall be so fabricated and installed that cutting, bending, or displacement of reinforcement from its proper location will not be required.

COMMENTARY

R6.3.7 — The 1983 code limited the maximum pressure in embedded pipe to 1.5 MPa, which was considered too restrictive. Nevertheless, the effects of such pressures and the expansion of embedded pipe should be considered in the design of the concrete member.
CHAPTER 6

CODE

6.4 — Construction joints

6.4.1 — Surface of concrete construction joints shall be cleaned and laitance removed.

6.4.2 — Immediately before new concrete is placed, all construction joints shall be wetted and standing water removed.

6.4.3 — Construction joints shall be so made and located as not to impair the strength of the structure. Provision shall be made for transfer of shear and other forces through construction joints. See 11.7.9.

6.4.4 — Construction joints in floors shall be located within the middle third of spans of slabs, beams, and girders. Joints in girders shall be offset a minimum distance of two times the width of intersecting beams.

6.4.5 — Beams, girders, or slabs supported by columns or walls shall not be cast or erected until concrete in the vertical support members is no longer plastic.

6.4.6 — Beams, girders, haunches, drop panels, and capitals shall be placed monolithically as part of a slab system, unless otherwise shown in design drawings or specifications.

COMMENTARY

R6.4 — Construction joints

For the integrity of the structure, it is important that all construction joints be defined in construction documents and constructed as required. Any deviations should be approved by the engineer or architect.

R6.4.2 — The requirements of the 1977 code for the use of neat cement on vertical joints have been removed, since it is rarely practical and can be detrimental where deep forms and steel congestion prevent proper access. Often wet blasting and other procedures are more appropriate. Because the code sets only minimum standards, the engineer may have to specify special procedures if conditions warrant. The degree to which mortar batches are needed at the start of concrete placement depend on concrete proportions, congestion of steel, vibrator access, and other factors.

R6.4.3 — Construction joints should be located where they will cause the least weakness in the structure. When shear due to gravity load is not significant, as is usually the case in the middle of the span of flexural members, a simple vertical joint may be adequate. Lateral force design may require special design treatment of construction joints. Shear keys, intermittent shear keys, diagonal dowels, or the shear transfer method of 11.7 may be used whenever a force transfer is required.

R6.4.5 — Delay in placing concrete in members supported by columns and walls is necessary to prevent cracking at the interface of the slab and supporting member caused by bleeding and settlement of plastic concrete in the supporting member.

R6.4.6 — Separate placement of slabs and beams, haunches, and similar elements is permitted when shown on the drawings and where provision has been made to transfer forces as required in 6.4.3.
CHAPTER 7 — DETAILS OF REINFORCEMENT

CODE

7.0 — Notation

\[d = \text{distance from extreme compression fiber to centroid of tension reinforcement, mm} \]
\[d_b = \text{nominal diameter of bar, wire, or prestressing strand, mm} \]
\[f_c' = \text{compressive strength of concrete at time of initial prestress, MPa} \]
\[f_y = \text{specified yield strength of nonprestressed reinforcement, MPa} \]
\[l_d = \text{development length, mm See Chapter 12} \]

7.1 — Standard hooks

The term standard hook as used in this code shall mean one of the following:

7.1.1 — 180-deg bend plus \(4d_b\) extension, but not less than 60 mm at free end of bar.

7.1.2 — 90-deg bend plus \(12d_b\) extension at free end of bar.

7.1.3 — For stirrup and tie hooks

(a) No. 16 bar and smaller, 90-deg bend plus \(6d_b\) extension at free end of bar; or

(b) No. 19, No. 22, and No. 25 bar, 90-deg bend plus \(12d_b\) extension at free end of bar; or

(c) No. 25 bar and smaller, 135-deg bend plus \(6d_b\) extension at free end of bar.

7.1.4 — Seismic hooks as defined in 21.1

7.2 — Minimum bend diameters

7.2.1 — Diameter of bend measured on the inside of the bar, other than for stirrups and ties in sizes No. 10 through No. 16, shall not be less than the values in Table 7.2.

COMMENTARY

Recommended methods and standards for preparing design drawings, typical details, and drawings for the fabrication and placing of reinforcing steel in reinforced concrete structures are given in the *ACI Detailing Manual*, reported by ACI Committee 315.7.1

All provisions in the code relating to bar, wire, or strand diameter (and area) are based on the nominal dimensions of the reinforcement as given in the appropriate ASTM specification. Nominal dimensions are equivalent to those of a circular area having the same weight per foot as the ASTM designated bar, wire, or strand sizes. Cross-sectional area of reinforcement is based on nominal dimensions.

R7.1 — Standard hooks

R7.1.3 — Standard stirrup and tie hooks are limited to No. 25 bars and smaller, and the 90-deg hook with \(6d_b\) extension is further limited to No. 16 bars and smaller, in both cases as the result of research showing that larger bar sizes with 90-deg hooks and \(6d_b\) extensions tend to pop out under high load.

R7.2 — Minimum bend diameters

Standard bends in reinforcing bars are described in terms of the inside diameter of bend since this is easier to measure than the radius of bend. The primary factors affecting the minimum bend diameter are feasibility of bending without breakage and avoidance of crushing the concrete inside the bend.
7.2.2 — Inside diameter of bend for stirrups and ties shall not be less than $4d_b$ for No. 16 bar and smaller. For bars larger than No. 16, diameter of bend shall be in accordance with Table 7.2.

7.2.3 — Inside diameter of bend in welded wire fabric (plain or deformed) for stirrups and ties shall not be less than $4d_b$ for deformed wire larger than D6 and $2d_b$ for all other wires. Bends with inside diameter of less than $8d_b$ shall not be less than $4d_b$ from nearest welded intersection.

<table>
<thead>
<tr>
<th>Bar size</th>
<th>Minimum diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 10 through No. 25</td>
<td>$6d_b$</td>
</tr>
<tr>
<td>No. 29, No. 32, and No. 36</td>
<td>$8d_b$</td>
</tr>
<tr>
<td>No. 43 and No. 57</td>
<td>$10d_b$</td>
</tr>
</tbody>
</table>

7.3 — Bending

7.3.1 — All reinforcement shall be bent cold, unless otherwise permitted by the engineer.

7.3.2 — Reinforcement partially embedded in concrete shall not be field bent, except as shown on the design drawings or permitted by the engineer.

R7.2.2 — The minimum $4d_b$ bend for the bar sizes commonly used for stirrups and ties is based on accepted industry practice in the United States. Use of a stirrup bar size not greater than No. 16 for either the 90-deg or 135-deg standard stirrup hook will permit multiple bending on standard stirrup bending equipment.

R7.2.3 — Welded wire fabric, of plain or deformed wire, can be used for stirrups and ties. The wire at welded intersections does not have the same uniform ductility and bendability as in areas which were not heated. These effects of the welding temperature are usually dissipated in a distance of approximately four wire diameters. Minimum bend diameters permitted are in most cases the same as those required in the ASTM bend tests for wire material (ASTM A 82 and A 496).

R7.3 — Bending

R7.3.1—The engineer may be the design engineer or architect or the engineer or architect employed by the owner to perform inspection. For unusual bends with inside diameters less than ASTM bend test requirements, special fabrication may be required.

R7.3.2 — Construction conditions may make it necessary to bend bars that have been embedded in concrete. Such field bending should not be done without authorization of the engineer. The engineer should determine whether the bars should be bent cold or if heating should be used. Bends should be gradual and should be straightened as required.

Tests have shown that A 615M Grade 300 and Grade 420 reinforcing bars can be cold bent and straightened up to 90 deg at or near the minimum diameter specified in 7.2. If cracking or breakage is encountered, heating to a maximum temperature of 800 C may avoid this condition for the remainder of the bars. Bars that fracture during bending or straightening can be spliced outside the bend region.

Heating should be performed in a manner that will avoid damage to the concrete. If the bend area is within approximately 150 mm of the concrete, some protective insulation may need to be applied. Heating of the bar should be controlled by temperature-indicating crayons or other suitable means. The heated bars should not be artificially cooled (with water or forced air) until after cooling to at least 300 C.
7.4 — Surface conditions of reinforcement

7.4.1 — At the time concrete is placed, reinforcement shall be free from mud, oil, or other nonmetallic coatings that decrease bond. Epoxy coating of steel reinforcement in accordance with standards referenced in 3.5.3.7 and 3.5.3.8 shall be permitted.

7.4.2 — Except for prestressing tendons, steel reinforcement with rust, mill scale, or a combination of both shall be considered satisfactory, provided the minimum dimensions (including height of deformations) and weight of a hand-wire-brushed test specimen comply with applicable ASTM specifications referenced in 3.5.

7.4.3 — Prestressing tendons shall be clean and free of oil, dirt, scale, pitting and excessive rust. A light coating of rust shall be permitted.

7.5 — Placing reinforcement

7.5.1 — Reinforcement, prestressing tendons, and ducts shall be accurately placed and adequately supported before concrete is placed, and shall be secured against displacement within tolerances permitted in 7.5.2.

7.5.2 — Unless otherwise specified by the engineer, reinforcement, prestressing tendons, and prestressing ducts shall be placed within the following tolerances:

R7.4 — Surface conditions of reinforcement

Specific limits on rust are based on tests, plus a review of earlier tests and recommendations. Reference 7.4 provides guidance with regard to the effects of rust and mill scale on bond characteristics of deformed reinforcing bars. Research has shown that a normal amount of rust increases bond. Normal rough handling generally removes rust that is loose enough to injure the bond between the concrete and reinforcement.

R7.4.3 — Guidance for evaluating the degree of rusting on strand is given in Reference 7.5.

R7.5 — Placing reinforcement

R7.5.1 — Reinforcement including prestressing tendons should be adequately supported in the forms to prevent displacement by concrete placement or workers. Beam stirrups should be supported on the bottom form of the beam by positive supports such as continuous longitudinal beam bolsters. If only the longitudinal beam bottom reinforcement is supported, construction traffic can dislodge the stirrups as well as any prestressing tendons tied to the stirrups.

R7.5.2 — Generally accepted practice, as reflected in “Standard Specifications for Tolerances for Concrete Construction and Materials,” reported by ACI Committee 117, has established tolerances on total depth (formwork or finish) and fabrication of truss bent reinforcing bars and closed ties, stirrups, and spirals. The engineer should specify more restrictive tolerances than those permitted by the code when necessary to minimize the accumulation of tolerances resulting in excessive reduction in effective depth or cover.

More restrictive tolerances have been placed on minimum clear distance to formed soffits because of its importance for durability and fire protection, and because bars are usually supported in such a manner that the specified tolerance is practical.

More restrictive tolerances than those required by the code may be desirable for prestressed concrete to achieve camber control within limits acceptable to the designer or owner. In such cases, the engineer should specify the necessary tolerances. Recommendations are given in Reference 7.7.
CODE

7.5.2.1 — Tolerance for depth d, and minimum concrete cover in flexural members, walls and compression members shall be as follows:

<table>
<thead>
<tr>
<th>Tolerance on d</th>
<th>Tolerance on minimum concrete cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d \leq 200$ mm</td>
<td>± 10 mm -10 mm</td>
</tr>
<tr>
<td>$d > 200$ mm</td>
<td>± 15 mm -15 mm</td>
</tr>
</tbody>
</table>

except that tolerance for the clear distance to formed soffits shall be minus 5 mm and tolerance for cover shall not exceed minus 1/3 the minimum concrete cover required in the design drawings or specifications.

7.5.2.2 — Tolerance for longitudinal location of bends and ends of reinforcement shall be ± 50 mm except at discontinuous ends of members where tolerance shall be ± 15 mm.

7.5.3 — Welded wire fabric (with wire size not greater than W5 or D5) used in slabs not exceeding 3 m in span shall be permitted to be curved from a point near the top of slab over the support to a point near the bottom of slab at midspan, provided such reinforcement is either continuous over, or securely anchored at support.

7.5.4 — Welding of crossing bars shall not be permitted for assembly of reinforcement unless authorized by the engineer.

7.6 — Spacing limits for reinforcement

7.6.1 — The minimum clear spacing between parallel bars in a layer shall be d_p, but not less than 25 mm. See also 3.3.2.

7.6.2 — Where parallel reinforcement is placed in two or more layers, bars in the upper layers shall be placed directly above bars in the bottom layer with clear distance between layers not less than 25 mm.

7.6.3 — In spirally reinforced or tied reinforced compression members, clear distance between longitudinal bars shall be not less than $1.5d_p$ nor less than 40 mm. See also 3.3.2.

7.6.4 — Clear distance limitation between bars shall apply also to the clear distance between a contact lap splice and adjacent splices or bars.

COMMENTARY

R7.5.2.1 — The code specifies a tolerance on depth d, an essential component of strength of the member. Because reinforcing steel is placed with respect to edges of members and formwork surfaces, the depth d is not always conveniently measured in the field. Engineers should specify tolerances for bar placement, cover, and member size. See ACI 117.7.6

R7.5.4 — “Tack” welding (welding crossing bars) can seriously weaken a bar at the point welded by creating a metallurgical notch effect. This operation can be performed safely only when the material welded and welding operations are under continuous competent control, as in the manufacture of welded wire fabric.

R7.6 — Spacing limits for reinforcement

Although the minimum bar spacings are unchanged in this code, the development lengths given in Chapter 12 became a function of the bar spacings since the 1989 code. As a result, it may be desirable to use larger than minimum bar spacings in some cases. The minimum limits were originally established to permit concrete to flow readily into spaces between bars and between bars and forms without honeycomb, and to ensure against concentration of bars on a line that may cause shear or shrinkage cracking. Use of nominal bar diameter to define minimum spacing permits a uniform criteria for all bar sizes.
7.6.5 — In walls and slabs other than concrete joist construction, primary flexural reinforcement shall not be spaced farther apart than three times the wall or slab thickness, nor farther apart than 500 mm.

7.6.6 — Bundled bars

7.6.6.1 — Groups of parallel reinforcing bars bundled in contact to act as a unit shall be limited to four in any one bundle.

7.6.6.2 — Bundled bars shall be enclosed within stirrups or ties.

7.6.6.3 — Bars larger than No. 36 shall not be bundled in beams.

7.6.6.4 — Individual bars within a bundle terminated within the span of flexural members shall terminate at different points with at least $40d_b$ stagger.

7.6.6.5 — Where spacing limitations and minimum concrete cover are based on bar diameter d_b, a unit of bundled bars shall be treated as a single bar of a diameter derived from the equivalent total area.

7.6.7 — Prestressing tendons and ducts

7.6.7.1 — Center-to-center spacing of pretensioning tendons at each end of a member shall be not less than $4d_b$ for strands, or $5d_b$ for wire, except that if concrete strength at transfer of prestress, f_{ci}' is 28 MPa or more, minimum center to center spacing of strands shall be 45 mm for strands of 12.7 mm nominal diameter or smaller and 50 mm for strands of 15.2 mm nominal diameter. See also 3.3.2. Closer vertical spacing and bundling of tendons shall be permitted in the middle portion of a span.

7.6.7.2 — Bundling of post-tensioning ducts shall be permitted if shown that concrete can be satisfactorily placed and if provision is made to prevent the tendons, when tensioned, from breaking through the duct.

R7.6.6 — Bundled bars

Bond research\(^7\) showed that bar cutoffs within bundles should be staggered. Bundled bars should be tied, wired, or otherwise fastened together to ensure remaining in position whether vertical or horizontal.

A limitation that bars larger than No. 36 not be bundled in beams or girders is a practical limit for application to building size members. (The “\textit{Standard Specifications for Highway Bridges}”\(^7\) permits two-bar bundles for No. 43 and No. 57 bars in bridge girders.) Conformance to the crack control requirements of 10.6 will effectively preclude bundling of bars larger than No. 36 as tensile reinforcement. The code phrasing “bundled in contact to act as a unit,” is intended to preclude bundling more than two bars in the same plane. Typical bundle shapes are triangular, square, or L-shaped patterns for three- or four-bar bundles. As a practical caution, bundles more than one bar deep in the plane of bending should not be hooked or bent as a unit. Where end hooks are required, it is preferable to stagger the individual bar hooks within a bundle.

R7.6.7 — Prestressing tendons and ducts

R7.6.7.1 — The allowed decreased spacing in this section for transfer strengths of 28 MPa or greater is based on Reference 7.10, 7.11.

R7.6.7.2 — When ducts for post-tensioning tendons in a beam are arranged closely together vertically, provision should be made to prevent the tendons, when tensioned, from breaking through the duct. Horizontal disposition of ducts should allow proper placement of concrete. A clear spacing of one and one-third times the size of the coarse aggregate, but not less than 25 mm, has proven satisfactory. Where concentration of tendons or ducts tends to create a weakened plane in the concrete cover, reinforcement should be provided to control cracking.
CODE

7.7 — Concrete protection for reinforcement

7.7.1 — Cast-in-place concrete (nonprestressed)

The following minimum concrete cover shall be provided for reinforcement:

<table>
<thead>
<tr>
<th>Minimum cover, mm</th>
<th>(a) Concrete cast against and permanently exposed to earth</th>
<th>75</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(b) Concrete exposed to earth or weather:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. 19 through No. 57 bars</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>No. 16 bar, MW200 or MD200 wire, and smaller</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>(c) Concrete not exposed to weather or in contact with ground:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slabs, walls, joists:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. 43 and No. 57 bars</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>No. 36 bar and smaller</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Beams, columns:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Primary reinforcement, ties, stirrups, spirals</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Shells, folded plate members:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. 19 bar and larger</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>No. 16 bar, MW200 or MD200 wire, and smaller</td>
<td>15</td>
</tr>
</tbody>
</table>

7.7.2 — Precast concrete (manufactured under plant control conditions)

The following minimum concrete cover shall be provided for reinforcement:

<table>
<thead>
<tr>
<th>Minimum cover, mm</th>
<th>(a) Concrete exposed to earth or weather:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wall panels:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. 43 and No. 57 bars</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>No. 36 bar and smaller</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Other members:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. 43 and No. 57 bars</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>No. 19 through No. 36 bars</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>No. 16 bar, MW200 or MD200 wire, and smaller</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>(b) Concrete not exposed to weather or in contact with ground:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slabs, walls, joists:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. 43 and No. 57 bars</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>No. 36 bar and smaller</td>
<td>15</td>
</tr>
</tbody>
</table>

COMMENTARY

R7.7 — Concrete protection for reinforcement

Concrete cover as protection of reinforcement against weather and other effects is measured from the concrete surface to the outermost surface of the steel to which the cover requirement applies. Where minimum cover is prescribed for a class of structural member, it is measured to the outer edge of stirrups, ties, or spirals if transverse reinforcement encloses main bars; to the outermost layer of bars if more than one layer is used without stirrups or ties; or to the metal end fitting or duct on post-tensioned prestressing steel.

The condition “concrete surfaces exposed to earth or weather” refers to direct exposure to moisture changes and not just to temperature changes. Slab or thin shell soffits are not usually considered directly exposed unless subject to alternate wetting and drying, including that due to condensation conditions or direct leakage from exposed top surface, run off, or similar effects.

Alternative methods of protecting the reinforcement from weather may be provided if they are equivalent to the additional concrete cover required by the code. When approved by the building official under the provisions of 1.4, reinforcement with alternative protection from the weather may have concrete cover not less than the cover required for reinforcement not exposed to weather.

The development lengths given in Chapter 12 are now a function of the bar cover. As a result, it may be desirable to use larger than minimum cover in some cases.

R7.7.2 — Precast concrete (manufactured under plant control conditions)

The lesser cover thicknesses for precast construction reflect the greater convenience of control for proportioning, placing, and curing inherent in precasting. The term “manufactured under plant control conditions” does not specifically imply that precast members should be manufactured in a plant. Structural elements precast at the job site will also qualify under this section if the control of form dimensions, placing of reinforcement, quality control of concrete, and curing procedure are equal to that normally expected in a plant.
CODE

Beams, columns:
Primary reinforcement \(d_b \) but not less than 15 and need not exceed 40
Ties, stirrups, spirals 10

Shells, folded plate members:
No. 19 bar and larger 15
No. 16 bar, MW200 or MD200 wire, and smaller .. 10

7.7.3 — Prestressed concrete

7.7.3.1 — The following minimum concrete cover shall be provided for prestressed and nonprestressed reinforcement, ducts, and end fittings, except as provided in 7.7.3.2 and 7.7.3.3:

Minimum cover, mm

(a) Concrete cast against and permanently exposed to earth 75
(b) Concrete exposed to earth or weather:
 Wall panels, slabs, joists 25
 Other members .. 40
(c) Concrete not exposed to weather or in contact with ground:
 Slabs, walls, joists .. 20
 Beams, columns:
 Primary reinforcement .. 40
 Ties, stirrups, spirals ... 25
 Shells, folded plate members:
 No. 16 bar, MW200 or MD200 wire, and smaller 10
 Other reinforcement \(d_b \) but not less than 20

7.7.3.2 — For prestressed concrete members exposed to earth, weather, or corrosive environments, and in which permissible tensile stress of 18.4.2(c) is exceeded, minimum cover shall be increased 50 percent.

7.7.3.3 — For prestressed concrete members manufactured under plant control conditions, minimum concrete cover for nonprestressed reinforcement shall be as required in 7.7.2.

7.7.4 — Bundled bars

For bundled bars, minimum concrete cover shall be equal to the equivalent diameter of the bundle, but need not be greater than 50 mm; except for concrete cast against and permanently exposed to earth, where minimum cover shall be 70 mm.
7.7.5 — Corrosive environments

In corrosive environments or other severe exposure conditions, amount of concrete protection shall be suitably increased, and denseness and nonporosity of protecting concrete shall be considered, or other protection shall be provided.

R7.7.5 — Corrosive environments

Where concrete will be exposed to external sources of chlorides in service, such as deicing salts, brackish water, seawater, or spray from these sources, concrete should be proportioned to satisfy the special exposure requirements of Chapter 4. These include minimum air content, maximum water-cementitious materials ratio, minimum strength for normal weight and lightweight concrete, maximum chloride ion in concrete, and cement type. Additionally, for corrosion protection, a minimum concrete cover for reinforcement of 50 mm for walls and slabs and 60 mm for other members is recommended. For precast concrete manufactured under plant control conditions, a minimum cover of 40 and 50 mm, respectively, is recommended.

7.7.6 — Future extensions

Exposed reinforcement, inserts, and plates intended for bonding with future extensions shall be protected from corrosion.

7.7.7 — Fire protection

When the general building code (of which this code forms a part) requires a thickness of cover for fire protection greater than the minimum concrete cover specified in 7.7, such greater thicknesses shall be used.

7.8 — Special reinforcement details for columns

7.8.1 — Offset bars

Offset bent longitudinal bars shall conform to the following:

7.8.1.1 — Slope of inclined portion of an offset bar with axis of column shall not exceed 1 in 6.

7.8.1.2 — Portions of bar above and below an offset shall be parallel to axis of column.

7.8.1.3 — Horizontal support at offset bends shall be provided by lateral ties, spirals, or parts of the floor construction. Horizontal support provided shall be designed to resist 1-1/2 times the horizontal component of the computed force in the inclined portion of an offset bar. Lateral ties or spirals, if used, shall be placed not more than 150 mm from points of bend.

7.8.1.4 — Offset bars shall be bent before placement in the forms. See 7.3.

7.8.1.5 — Where a column face is offset 80 mm or greater, longitudinal bars shall not be offset bent.
CODE

Separate dowels, lap spliced with the longitudinal bars adjacent to the offset column faces, shall be provided. Lap splices shall conform to 12.17.

7.8.2 — Steel cores

Load transfer in structural steel cores of composite compression members shall be provided by the following:

7.8.2.1 — Ends of structural steel cores shall be accurately finished to bear at end bearing splices, with positive provision for alignment of one core above the other in concentric contact.

7.8.2.2 — At end bearing splices, bearing shall be considered effective to transfer not more than 50 percent of the total compressive stress in the steel core.

7.8.2.3 — Transfer of stress between column base and footing shall be designed in accordance with 15.8.

7.8.2.4 — Base of structural steel section shall be designed to transfer the total load from the entire composite member to the footing; or, the base shall be designed to transfer the load from the steel core only, provided ample concrete section is available for transfer of the portion of the total load carried by the reinforced concrete section to the footing by compression in the concrete and by reinforcement.

7.9 — Connections

7.9.1 — At connections of principal framing elements (such as beams and columns), enclosure shall be provided for splices of continuing reinforcement and for anchorage of reinforcement terminating in such connections.

7.9.2 — Enclosure at connections shall consist of external concrete or internal closed ties, spirals, or stirrups.

7.10 — Lateral reinforcement for compression members

7.10.1 — Lateral reinforcement for compression members shall conform to the provisions of 7.10.4 and 7.10.5 and, where shear or torsion reinforcement is required, shall also conform to provisions of Chapter 11.

7.10.2 — Lateral reinforcement requirements for composite compression members shall conform to 10.16. Lateral reinforcement requirements for prestressing tendons shall conform to 18.11.

COMMENTARY

R7.8.2 — Steel cores

The 50 percent limit on transfer of compressive load by end bearing on ends of structural steel cores is intended to provide some tensile capacity at such splices (up to 50 percent), since the remainder of the total compressive stress in the steel core are to be transmitted by dowels, splice plates, welds, etc. This provision should ensure that splices in composite compression members meet essentially the same tensile capacity as required for conventionally reinforced concrete compression members.

R7.9 — Connections

Confinement is essential at connections to ensure that the flexural capacity of the members can be developed without deterioration of the joint under repeated loadings.7.12,7.13

R7.10 — Lateral reinforcement for compression members

Lateral reinforcement requirements for composite compression members shall conform to 10.16. Lateral reinforcement requirements for prestressing tendons shall conform to 18.11.
CODE

R7.10.3 — Precast columns with cover less than 40 mm, prestressed columns without longitudinal bars, columns smaller than minimum dimensions prescribed in earlier ACI Building Codes, columns of concrete with small size coarse aggregate, wall-like columns, and other special cases may require special designs for lateral reinforcement. Plain or deformed wire, W4, D4, or larger, may be used for ties or spirals. If such special columns are considered as spiral columns for load strength in design, the ratio of spiral reinforcement ρ_s is to conform to 10.9.3.

R7.10.4 — Spirals

For practical considerations in cast-in-place construction, the minimum diameter of spiral reinforcement is 10 mm (10 mm ϕ, No. 10 bar, or MW80 or MD80 wire). This is the smallest size that can be used in a column with 40 mm or more cover and having concrete strengths of 20 MPa or more if the minimum clear spacing for placing concrete is to be maintained.

Standard spiral sizes are 10, 13, and 16 mm diameter for hot rolled or cold drawn material, plain or deformed.

The code allows spirals to be terminated at the level of lowest horizontal reinforcement framing into the column. However, if one or more sides of the column are not enclosed by beams or brackets, ties are required from the termination of the spiral to the bottom of the slab or drop panel. If beams or brackets enclose all sides of the column but are of different depths, the ties should extend from the spiral to the level of the horizontal reinforcement of the shallowest beam or bracket framing into the column. These additional ties are to enclose the longitudinal column reinforcement and the portion of bars from beams bent into the column for anchorage. See also 7.9.

Spirals should be held firmly in place, at proper pitch and alignment, to prevent displacement during concrete placement. The code has traditionally required spacers to hold the fabricated spiral cage in place but was changed in 1989 to allow alternate methods of installation. When spacers are used, the following may be used for guidance: For spiral bar or wire smaller than 16 mm diameter, a minimum of two spacers should be used for spirals less than 0.5 m in diameter, three spacers for spirals 0.5 to 0.75 m in diameter, and four spacers for spirals greater than 0.75 m in diameter. For spiral bar or wire 16 mm diameter or larger, a minimum of three spacers should be used for spirals 0.6 m or less in diameter, and four spacers for spirals greater than 0.6 m in diameter. The project specifications or subcontract agreements should be clearly written to cover the supply of spacers or field tying of the spiral reinforcement. In the 1999 code, splice requirements were modified for epoxy-coated and plain spirals and to allow mechanical splices.
CODE

(b) Full mechanical or welded splices in accordance with 12.14.3.

7.10.4.6 — Spirals shall extend from top of footing or slab in any story to level of lowest horizontal reinforcement in members supported above.

7.10.4.7 — Where beams or brackets do not frame into all sides of a column, ties shall extend above termination of spiral to bottom of slab or drop panel.

7.10.4.8 — In columns with capitals, spirals shall extend to a level at which the diameter or width of capital is two times that of the column.

7.10.4.9 — Spirals shall be held firmly in place and true to line.

7.10.5 — Ties

Tie reinforcement for compression members shall conform to the following:

7.10.5.1 — All nonprestressed bars shall be enclosed by lateral ties, at least No. 10 in size for longitudinal bars No. 32 or smaller, and at least No. 13 in size for No. 36, No. 43, No. 57, and bundled longitudinal bars. Deformed wire or welded wire fabric of equivalent area shall be permitted.

7.10.5.2 — Vertical spacing of ties shall not exceed 16 longitudinal bar diameters, 48 tie bar or wire diameters, or least dimension of the compression member.

7.10.5.3 — Ties shall be arranged such that every corner and alternate longitudinal bar shall have lateral support provided by the corner of a tie with an included angle of not more than 135 deg and no bar shall be farther than 150 mm clear on each side along the tie from such a laterally supported bar. Where longitudinal bars are located around the perimeter of a circle, a complete circular tie shall be permitted.

7.10.5.4 — Ties shall be located vertically not more than one-half a tie spacing above the top of footing or slab in any story, and shall be spaced as provided herein to not more than one-half a tie spacing below the lowest horizontal reinforcement in slab or drop panel above.

COMMENTARY

Fig. R7.10.5—Sketch to clarify measurements between laterally supported column bars

R7.10.5 — Ties

All longitudinal bars in compression should be enclosed within lateral ties. Where longitudinal bars are arranged in a circular pattern, only one circular tie per specified spacing is required. This requirement can be satisfied by a continuous circular tie (helix) at larger pitch than required for spirals under 10.9.3, the maximum pitch being equal to the required tie spacing.

The 1956 code required “lateral support equivalent to that provided by a 90-deg corner of a tie,” for every vertical bar. Tie requirements were liberalized in 1963 by increasing the permissible included angle from 90 to 135 deg and exempting bars that are located within 150 mm clear on each side along the tie from adequately tied bars (see Fig. R7.10.5). Limited tests\(^7\) on full-size, axially-loaded, tied columns containing full-length bars (without splices) showed no appreciable difference between ultimate strengths of columns with full tie requirements and no ties at all.

Since spliced bars and bundled bars were not included in the tests of Reference 7.14, it is prudent to provide a set of ties at each end of lap spliced bars, above and below end-bearing splices, and at minimum spacings immediately below sloping regions of offset bent bars.

Standard tie hooks are intended for use with deformed bars only, and should be staggered where possible. See also 7.9.

Continuously wound bars or wires can be used as ties provided their pitch and area are at least equivalent to the area and spacing of separate ties. Anchorage at the end of a continuously wound bar or wire should be by a standard hook as for separate bars or by one additional turn of the tie pattern. A circular continuously wound bar or wire is considered a spiral if it conforms to 7.10.4, otherwise it is considered a tie.
7.10.5.5 — Where beams or brackets frame from four directions into a column, termination of ties not more than 80 mm below lowest reinforcement in shallower of such beams or brackets shall be permitted.

7.11 — Lateral reinforcement for flexural members

7.11.1 — Compression reinforcement in beams shall be enclosed by ties or stirrups satisfying the size and spacing limitations in 7.10.5 or by welded wire fabric of equivalent area. Such ties or stirrups shall be provided throughout the distance where compression reinforcement is required.

7.11.2 — Lateral reinforcement for flexural framing members subject to stress reversals or to torsion at supports shall consist of closed ties, closed stirrups, or spirals extending around the flexural reinforcement.

7.11.3 — Closed ties or stirrups shall be formed in one piece by overlapping standard stirrup or tie end hooks around a longitudinal bar, or formed in one or two pieces lap spliced with a Class B splice (lap of $1.3d$) or anchored in accordance with 12.13.

7.12 — Shrinkage and temperature reinforcement

7.12.1 — Reinforcement for shrinkage and temperature stresses normal to flexural reinforcement shall be provided in structural slabs where the flexural reinforcement extends in one direction only.

7.12.1.1 — Shrinkage and temperature reinforcement shall be provided in accordance with either 7.12.2 or 7.12.3.

7.12.1.2 — Where shrinkage and temperature movements are significantly restrained, the requirements of 8.2.4 and 9.2.7 shall be considered.

7.12.2 — Deformed reinforcement conforming to 3.5.3 used for shrinkage and temperature reinforcement shall be provided in accordance with the following:

R7.10.5.5 — With the 1983 code, the wording of this section was modified to clarify that ties may be terminated only when elements frame into all four sides of square and rectangular columns; for round or polygonal columns, such elements frame into the column from four directions.

R7.11 — Lateral reinforcement for flexural members

R7.11.1 — Compression reinforcement in beams and girders should be enclosed to prevent buckling; similar requirements for such enclosure have remained essentially unchanged through several editions of the code, except for minor clarification.

R7.12 — Shrinkage and temperature reinforcement

R7.12.1 — Shrinkage and temperature reinforcement is required at right angles to the principal reinforcement to minimize cracking and to tie the structure together to ensure its acting as assumed in the design. The provisions of this section are intended for structural slabs only; they are not intended for soil supported slabs on grade.

R7.12.1.2 — The area of shrinkage and temperature reinforcement required by 7.12 has been satisfactory where shrinkage and temperature movements are permitted to occur. For cases where structural walls or large columns provide significant restraint to shrinkage and temperature movements, it may be necessary to increase the amount of reinforcement normal to the flexural reinforcement in 7.12.1.2 (see Reference 7.15). Top and bottom reinforcement are both effective in controlling cracks. Control strips during the construction period, which permit initial shrinkage to occur without causing an increase in stresses, are also effective in reducing cracks caused by restraint.

R7.12.2 — The amounts specified for deformed bars and welded wire fabric are empirical but have been used satisfactorily for many years. Splices and end anchorages of shrinkage and temperature reinforcement are to be designed.
7.12.2.1 — Area of shrinkage and temperature reinforcement shall provide at least the following ratios of reinforcement area to gross concrete area, but not less than 0.0014:

(a) Slabs where Grade 300 or 350 deformed bars are used 0.0020

(b) Slabs where Grade 420 deformed bars or welded wire fabric (plain or deformed) are used 0.0018

(c) Slabs where reinforcement with yield stress exceeding 420 MPa measured at a yield strain of 0.35 percent is used \(rac{0.0018 \times 420}{f_y}\)

7.12.2.2 — Shrinkage and temperature reinforcement shall be spaced not farther apart than five times the slab thickness, nor farther apart than 500 mm.

7.12.2.3 — At all sections where required, reinforcement for shrinkage and temperature stresses shall develop the specified yield strength \(f_y\) in tension in accordance with Chapter 12.

7.12.3 — Prestressing tendons conforming to 3.5.5 used for shrinkage and temperature reinforcement shall be provided in accordance with the following:

7.12.3.1 — Tendons shall be proportioned to provide a minimum average compressive stress of 1.0 MPa on gross concrete area using effective pre-stress, after losses, in accordance with 18.6.

7.12.3.2 — Spacing of tendons shall not exceed 2 m.

7.12.3.3 — When spacing of tendons exceeds 1.4 m, additional bonded shrinkage and temperature rein-

R7.12.3 — Prestressed reinforcement requirements have been selected to provide an effective force on the slab approximately equal to the yield strength force for nonprestressed shrinkage and temperature reinforcement. This amount of prestressing, 1 MPa on the gross concrete area, has been used successfully on a large number of projects. When the spacing of prestressing tendons used for shrinkage and temperature reinforcement exceeds 1.4 m, additional bonded reinforcement is required at slab edges where the prestressing forces are applied in order to adequately reinforce the area between the slab edge and the point where compressive stresses behind individual anchorages have

For shrinkage and temperature stresses, provide a minimum of 1 MPa prestressing in this section parallel to beam webs as an alternate to deformed reinforcement.

* Width of slab effective as a T-beam other than \(b_w + 16h\) (see 8.10) may be applicable for prestressed concrete T-beam construction.

In positive moment areas, reinforcement in accordance with 7.12.2 should be provided unless an average compressive stress of 1 MPa is maintained under prestress plus service dead load.

Fig. R7.12.3—Prestressing used for shrinkage and temperature
7.13 — Requirements for structural integrity

7.13.1 — In the detailing of reinforcement and connections, members of a structure shall be effectively tied together to improve integrity of the overall structure.

7.13.2 — For cast-in-place construction, the following shall constitute minimum requirements:

7.13.2.1 — In joist construction, at least one bottom bar shall be continuous or shall be spliced with a Class A tension splice over the support and at noncontinuous supports be terminated with a standard hook.

7.13.2.2 — Beams at the perimeter of the structure shall have at least one-sixth of the tension reinforcement required for negative moment at the support and one-quarter of the positive moment reinforcement required at midspan made continuous around the perimeter and tied with closed stirrups, or stirrups anchored around the negative moment reinforcement with a hook having a bend of at least 135 deg. Stirrups need not be extended through any joints. When splices are needed, the required continuity shall be provided with top reinforcement spliced at midspan and bottom reinforcement spliced at or near the support with Class A tension splices.

7.13.2.3 — In other than perimeter beams, when closed stirrups are not provided, at least one-quarter of the positive moment reinforcement required at midspan shall be continuous or shall be spliced over the support.

R7.13 — Requirements for structural integrity

Experience has shown that the overall integrity of a structure can be substantially enhanced by minor changes in detailing of reinforcement. It is the intent of this section of the code to improve the redundancy and ductility in structures so that in the event of damage to a major supporting element or an abnormal loading event, the resulting damage may be confined to a relatively small area and the structure will have a better chance to maintain overall stability.

R7.13.2 — With damage to a support, top reinforcement that is continuous over the support, but not confined by stirrups, will tend to tear out of the concrete and will not provide the catenary action needed to bridge the damaged support. By making a portion of the bottom reinforcement continuous, catenary action can be provided.

Requiring continuous top and bottom reinforcement in perimeter or spandrel beams provides a continuous tie around the structure. It is not the intent to require a tensile tie of continuous reinforcement of constant size around the entire perimeter of a structure, but simply to require that one half of the top flexural reinforcement required to extend past the point of inflection by 12.12.3 be further extended to lap splice at midspan. Similarly, the bottom reinforcement required to extend into the support by 12.11.1 should be made continuous or spliced with bottom reinforcement from the adjacent span. If the depth of a continuous beam changes at a support, the bottom reinforcement in the deeper member should be terminated with a standard hook and bottom reinforcement in the shallower member should be extended into and fully developed in the deeper member.
with a Class A tension splice and at noncontinuous supports be terminated with a standard hook.

7.13.2.4 — For two-way slab construction, see 13.3.8.5.

7.13.3 — For precast concrete construction, tension ties shall be provided in the transverse, longitudinal, and vertical directions and around the perimeter of the structure to effectively tie elements together. The provisions of 16.5 shall apply.

7.13.4 — For lift-slab construction, see 13.3.8.6 and 18.12.6.

R7.13.3 — The code requires tension ties for precast concrete buildings of all heights. Details should provide connections to resist applied loads. Connection details that rely solely on friction caused by gravity forces are not permitted.

Connection details should be arranged so as to minimize the potential for cracking due to restrained creep, shrinkage and temperature movements. For information on connections and detailing requirements, see Reference 7.16.

Reference 7.17 recommends minimum tie requirements for precast concrete bearing wall buildings.
<table>
<thead>
<tr>
<th>CODE</th>
<th>COMMENTARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 8 — ANALYSIS AND DESIGN — GENERAL CONSIDERATIONS

8.0 — Notation

- $A_s = \text{area of nonprestressed tension reinforcement, mm}^2$
- $A_s' = \text{area of compression reinforcement, mm}^2$
- $b = \text{width of compression face of member, mm}$
- $d = \text{distance from extreme compression fiber to centroid of tension reinforcement, mm}$
- $E_c = \text{modulus of elasticity of concrete, MPa}$ See 8.5.1
- $E_s = \text{modulus of elasticity of reinforcement, MPa.}$ See 8.5.2 and 8.5.3
- $f_c' = \text{specified compressive strength of concrete, MPa}$
- $f_y = \text{specified yield strength of nonprestressed reinforcement, MPa}$
- $l_n = \text{clear span for positive moment or shear and average of adjacent clear spans for negative moment}$
- $V_c = \text{nominal shear strength provided by concrete}$
- $w_c = \text{unit weight of concrete, kg/m}^3$
- $w_u = \text{factored load per unit length of beam or per unit area of slab}$
- $\beta_1 = \text{factor defined in 10.2.7.3}$
- $\varepsilon_t = \text{net tensile strain in extreme tension steel at nominal strength}$
- $\rho = \frac{A_s}{bd}$
- $\rho' = \frac{A_s'}{bd}$
- $\rho_b = \text{reinforcement ratio producing balanced strain conditions. See 10.3.2}$
- $\phi = \text{strength reduction factor. See 9.3}$

8.1 — Design methods

8.1.1 — In design of structural concrete, members shall be proportioned for adequate strength in accordance with provisions of this code, using load factors and strength reduction factors ϕ specified in Chapter 9.

8.1.2 — Design of nonprestressed reinforced concrete members using Appendix A, Alternate Design Method, shall be permitted.

R8.0 — Notation

Units of measurement are given in the Notation to assist the user and are not intended to preclude the use of other correctly applied units for the same symbol, such as m or kN.

The definition of net tensile strain in 2.1 excludes strains due to effective prestress, creep, shrinkage, and temperature.

R8.1 — Design methods

R8.1.1 — The strength design method requires service loads or related internal moments and forces to be increased by specified load factors (required strength) and computed nominal strengths to be reduced by specified strength reduction factors ϕ (design strength).

R8.1.2 — The alternate method of design, outlined in Appendix A, is similar to the working stress design method of the 1963 ACI Building Code. The general serviceability requirements of the code, such as the requirements for...

8.2 — Loading

8.2.1 — Design provisions of this code are based on the assumption that structures shall be designed to resist all applicable loads.

8.2.2 — Service loads shall be in accordance with the general building code of which this code forms a part, with such live load reductions as are permitted in the general building code.

8.2.3 — In design for wind and earthquake loads, integral structural parts shall be designed to resist the total lateral loads.

COMMENTARY

deflection and crack control should be met whether the strength design method of the code or the alternate design method of Appendix A is used.

Although prestressed members may not be designed under the provisions of the alternate design method, Chapter 18 requires linear stress-strain assumptions for computing service load stresses and prestress transfer stresses for investigation of behavior at service conditions, while using the strength design method for computing flexural strength (see 18.7).

An appendix may be judged not to be an official part of a legal document unless specifically adopted. Therefore, specific reference is made to Appendix A in the main body of the code, to make it a legal part of the code.

R8.1.3 — Designs made in accordance with Appendix B are equally acceptable, provided the provisions of Appendix B are used in their entirety.

An appendix may be judged not to be an official part of a legal document unless specifically adopted. Therefore, specific reference is made to Appendix B in the main body of the code, to make it a legal part of the code.

R8.2 — Loading

The provisions in the code are for live, wind, and earthquake loads such as those recommended in “Minimum Design Loads for Buildings and Other Structures,” (ASCE 7), of the American Society of Civil Engineers (ASCE)(formerly ANSI A58.1). If the service loads specified by the general building code (of which ACI 318 forms a part) differ from those of ASCE 7, the general building code governs. However, if the nature of the loads contained in a general building code differ considerably from ASCE 7 loads, some provisions of this code may need modification to reflect the difference.

Roofs should be designed with sufficient slope or camber to ensure adequate drainage accounting for any long-term deflection of the roof due to the dead loads, or the loads should be increased to account for all likely accumulations of water. If deflection of roof members may result in ponding of water accompanied by increased deflection and additional ponding, the design should ensure that this process is self-limiting.

R8.2.3 — Any reinforced concrete wall that is monolithic with other structural elements is considered to be an “integral part.” Partition walls may or may not be integral structural parts. If partition walls may be removed, the primary lateral load resisting system should provide all of the required resistance without contribution of the removable partition. However, the effects of all partition walls attached
8.2.4 — Consideration shall be given to effects of forces due to prestressing, crane loads, vibration, impact, shrinkage, temperature changes, creep, expansion of shrinkage-compensating concrete, and unequal settlement of supports.

8.3 — Methods of analysis

8.3.1 — All members of frames or continuous construction shall be designed for the maximum effects of factored loads as determined by the theory of elastic analysis, except as modified according to 8.4. It shall be permitted to simplify design by using the assumptions specified in 8.6 through 8.9.

8.3.2 — Except for prestressed concrete, approximate methods of frame analysis shall be permitted for buildings of usual types of construction, spans, and story heights.

8.3.3 — As an alternate to frame analysis, the following approximate moments and shears shall be permitted for design of continuous beams and one-way slabs (slabs reinforced to resist flexural stresses in only one direction), provided:

(a) There are two or more spans;

(b) Spans are approximately equal, with the larger of two adjacent spans not greater than the shorter by more than 20 percent;

(c) Loads are uniformly distributed;

(d) Unit live load does not exceed three times unit dead load; and

(e) Members are prismatic.

Positive moment

End spans
Discontinuous end
unrestrained \(w_u f / 2/11 \)

Discontinuous end integral
with support \(w_u f / 2/14 \)

Interior spans \(w_u f / 2/16 \)

COMMENTARY

to the structure should be considered in the analysis of the structure because they may lead to increased design forces in some or all elements. Special provisions for seismic design are given in Chapter 21.

R8.2.4 — Information is accumulating on the magnitudes of these various effects, especially the effects of column creep and shrinkage in tall structures, and on procedures for including the forces resulting from these effects in design.

R8.3 — Methods of analysis

R8.3.1 — Factored loads are service loads multiplied by appropriate load factors. If the alternate design method of Appendix A is used, the loads used in design are service loads (load factors of unity). For both the strength design method and the alternate design method, elastic analysis is used to obtain moments, shears, and reactions.

R8.3.3 — The approximate moments and shears give reasonably conservative values for the stated conditions if the flexural members are part of a frame or continuous construction. Because the load patterns that produce critical values for moments in columns of frames differ from those for maximum negative moments in beams, column moments should be evaluated separately.
CODE

Negative moments at exterior face of first interior support

Two spans ... \(\frac{w_u}{n^2/9} \)
More than two spans \(\frac{w_u}{n^2/10} \)

Negative moment at other faces of interior supports ... \(\frac{w_u}{n^2/11} \)

Negative moment at face of all supports for

Slabs with spans not exceeding 3 m; and beams where ratio of sum of column stiffnesses to beam stiffness exceeds eight at each end of the span ... \(\frac{w_u}{n^2/12} \)

Negative moment at interior face of exterior support for members built integrally with supports

Where support is spandrel beam \(\frac{w_u}{n^2/24} \)
Where support is a column \(\frac{w_u}{n^2/16} \)

Shear in end members at face of first interior support ... \(1.15 \frac{w_u}{n/2} \)

Shear at face of all other supports ... \(\frac{w_u}{n/2} \)

R8.4 — Redistribution of negative moments in continuous nonprestressed flexural members

Moment redistribution is dependent on adequate ductility in plastic hinge regions. These plastic hinge regions develop at points of maximum moment and cause a shift in the elastic moment diagram. The usual result is a reduction in the values of negative moments in the plastic hinge region and an increase in the values of positive moments from those computed by elastic analysis. Because negative moments are determined from one loading arrangement and positive moments from another, each section has a reserve capacity that is not fully utilized for any one loading condition. The plastic hinges permit the utilization of the full capacity of more cross sections of a flexural member at ultimate loads.

Using conservative values of ultimate concrete strains and lengths of plastic hinges derived from extensive tests, flexural members with small rotation capacity were analyzed for moment redistribution varying from 10 to 20 percent, depending on the reinforcement ratio. The results were found to be conservative (see Fig. R8.4). Studies by Cohn8.2 and Mattock8.3 support this conclusion and indicate that
CODE

8.4.3 — Redistribution of negative moments shall be made only when the section at which moment is reduced is so designed that ρ or $\rho - \rho'$ is not greater than $0.50 \rho_b$, where

$$\rho_b = \frac{0.85 \beta_1 f_c' (600)}{f_y (600 + f_y)}$$ (8-1)

8.5 — Modulus of elasticity

8.5.1 — Modulus of elasticity E_c for concrete shall be permitted to be taken as $w_c^{1.5} 0.043 f_c'^2$ (in MPa) for values of w_c between 1500 and 2500 kg/m3. For normal weight concrete, E_c shall be permitted to be taken as $4700 f_c'$. Cracking and deflection of beams designed for moment redistribution are not significantly greater at service loads than for beams designed by the elastic theory distribution of moments. Also, these studies indicated that adequate rotation capacity for the moment redistribution allowed by the code is available if the members satisfy the code requirements. This code maintains the same limit on redistribution as the previous code editions.

Moment redistribution does not apply to members designed by the alternate design method of Appendix A; nor may it be used for slab systems designed by the Direct Design Method (see 13.6.1.7).

8.5.2 — Modulus of elasticity E_s for nonprestressed reinforcement shall be permitted to be taken as 200,000 MPa.

8.5.3 — Modulus of elasticity E_s for prestressing tendons shall be determined by tests or supplied by the manufacturer.

COMMENTARY

Fig R8.4—Permissible moment redistribution for minimum rotation capacity

Studies leading to the expression for modulus of elasticity of concrete in 8.5.1 are summarized in Reference 8.4 where E_c was defined as the slope of the line drawn from a stress of zero to a compressive stress of $0.45 f_c'$. The modulus for concrete is sensitive to the modulus of the aggregate and may differ from the specified value. Measured values range typically from 120 to 80 percent of the specified value. Methods for determining Young's modulus for concrete are described in Reference 8.5.
8.6 — Stiffness

R8.6 — Stiffness

Ideally, the member stiffnesses EI and GJ should reflect the degree of cracking and inelastic action that has occurred along each member before yielding. However, the complexities involved in selecting different stiffnesses for all members of a frame would make frame analyses inefficient in design offices. Simpler assumptions are required to define flexural and torsional stiffnesses.

For braced frames, relative values of stiffness are important. Two usual assumptions are to use gross EI values for all members or, to use half the gross EI of the beam stem for beams and the gross EI for the columns.

For frames that are free to sway, a realistic estimate of EI is desirable and should be used if second-order analyses are carried out. Guidance for the choice of EI for this case is given in the commentary to 10.11.1.

Two conditions determine whether it is necessary to consider torsional stiffness in the analysis of a given structure: (1) the relative magnitude of the torsional and flexural stiffnesses, and (2) whether torsion is required for equilibrium of the structure (equilibrium torsion) or is due to members twisting to maintain deformation compatibility (compatibility torsion). In the case of compatibility torsion, the torsional stiffness may be neglected. For cases involving equilibrium torsion, torsional stiffness should be considered.

R8.6.2 — Stiffness and fixed-end moment coefficients for haunched members may be obtained from Reference 8.6.

8.7 — Span length

R8.7 — Span length

Beam moments calculated at support centers may be reduced to the moments at support faces for design of beams. Reference 8.7 provides an acceptable method of reducing moments at support centers to those at support faces.
CHAPTER 8

CODE

8.8 — Columns

8.8.1 — Columns shall be designed to resist the axial forces from factored loads on all floors or roof and the maximum moment from factored loads on a single adjacent span of the floor or roof under consideration. Loading condition giving the maximum ratio of moment to axial load shall also be considered.

8.8.2 — In frames or continuous construction, consideration shall be given to the effect of unbalanced floor or roof loads on both exterior and interior columns and of eccentric loading due to other causes.

8.8.3 — In computing gravity load moments in columns, it shall be permitted to assume far ends of columns built integrally with the structure to be fixed.

8.8.4 — Resistance to moments at any floor or roof level shall be provided by distributing the moment between columns immediately above and below the given floor in proportion to the relative column stiffnesses and conditions of restraint.

8.9 — Arrangement of live load

8.9.1 — It shall be permitted to assume that:

(a) The live load is applied only to the floor or roof under consideration;

(b) The far ends of columns built integrally with the structure are considered to be fixed.

8.9.2 — It shall be permitted to assume that the arrangement of live load is limited to combinations of:

(a) Factored dead load on all spans with full factored live load on two adjacent spans;

(b) Factored dead load on all spans with full factored live load on alternate spans.

COMMENTARY

R8.8 — Columns

Section 8.8 has been developed with the intent of making certain that the most demanding combinations of axial load and moments be identified for design.

Section 8.8.4 has been included to make certain that moments in columns are recognized in the design if the girders have been proportioned using 8.3.3. The moment in 8.8.4 refers to the difference between the moments in a given vertical plane, exerted at column centerline by members framing into that column.

R8.9 — Arrangement of live load

For determining column, wall, and beam moments and shears caused by gravity loads, the code permits the use of a model limited to the beams in the level considered and the columns above and below that level. Far ends of columns are to be considered as fixed for the purpose of analysis under gravity loads. This assumption does not apply to lateral load analysis. However in analysis for lateral loads, simplified methods (such as the portal method) may be used to obtain the moments, shears, and reactions for structures that are symmetrical and satisfy the assumptions used for such simplified methods. For unsymmetrical and high-rise structures, rigorous methods recognizing all structural displacements should be used.

The engineer is expected to establish the most demanding sets of design forces by investigating the effects of live load placed in various critical patterns.

Most approximate methods of analysis neglect effects of deflections on geometry and axial flexibility. Therefore, beam and column moments may have to be amplified for column slenderness in accordance with 10.11, 10.12, and 10.13.
CODE

8.10 — T-beam construction

8.10.1 — In T-beam construction, the flange and web shall be built integrally or otherwise effectively bonded together.

8.10.2 — Width of slab effective as a T-beam flange shall not exceed one-quarter of the span length of the beam, and the effective overhanging flange width on each side of the web shall not exceed:

(a) eight times the slab thickness;

(b) one-half the clear distance to the next web.

8.10.3 — For beams with a slab on one side only, the effective overhanging flange width shall not exceed:

(a) one-twelfth the span length of the beam;

(b) six times the slab thickness;

(c) one-half the clear distance to the next web.

8.10.4 — Isolated beams, in which the T-shape is used to provide a flange for additional compression area, shall have a flange thickness not less than one-half the width of web and an effective flange width not more than four times the width of web.

8.10.5 — Where primary flexural reinforcement in a slab that is considered as a T-beam flange (excluding joist construction) is parallel to the beam, reinforcement perpendicular to the beam shall be provided in the top of the slab in accordance with the following:

8.10.5.1 — Transverse reinforcement shall be designed to carry the factored load on the overhanging slab width assumed to act as a cantilever. For isolated beams, the full width of overhanging flange shall be considered. For other T-beams, only the effective overhanging slab width need be considered.

8.10.5.2 — Transverse reinforcement shall be spaced not farther apart than five times the slab thickness, nor farther apart than 500 mm.

8.11 — Joist construction

8.11.1 — Joist construction consists of a monolithic combination of regularly spaced ribs and a top slab arranged to span in one direction or two orthogonal directions.

8.11.2 — Ribs shall be not less than 100 mm in width, and shall have a depth of not more than 3-1/2 times the minimum width of rib.

COMMENTARY

R8.10 — T-beam construction

This section contains provisions identical to those of previous codes for limiting dimensions related to stiffness and flexural calculations. Special provisions related to T-beams and other flanged members are stated in 11.6.1 with regard to torsion.

R8.11 — Joist construction

The size and spacing limitations for concrete joist construction meeting the limitations of 8.11.1 through 8.11.3 are based on successful performance in the past.
8.11.3 — Clear spacing between ribs shall not exceed 800 mm.

8.11.4 — Joist construction not meeting the limitations of 8.11.1 through 8.11.3 shall be designed as slabs and beams.

8.11.5 — When permanent burned clay or concrete tile fillers of material having a unit compressive strength at least equal to that of the specified strength of concrete in the joists are used:

8.11.5.1 — For shear and negative moment strength computations, it shall be permitted to include the vertical shells of fillers in contact with the ribs. Other portions of fillers shall not be included in strength computations.

8.11.5.2 — Slab thickness over permanent fillers shall be not less than one-twelfth the clear distance between ribs, nor less than 40 mm.

8.11.5.3 — In one-way joists, reinforcement normal to the ribs shall be provided in the slab as required by 7.12.

8.11.6 — When removable forms or fillers not complying with 8.11.5 are used:

8.11.6.1 — Slab thickness shall be not less than one-twelfth the clear distance between ribs, nor less than 50 mm.

8.11.6.2 — Reinforcement normal to the ribs shall be provided in the slab as required for flexure, considering load concentrations, if any, but not less than required by 7.12.

8.11.7 — Where conduits or pipes as permitted by 6.3 are embedded within the slab, slab thickness shall be at least 25 mm greater than the total overall depth of the conduits or pipes at any point. Conduits or pipes shall not impair significantly the strength of the construction.

8.11.8 — For joist construction, contribution of concrete to shear strength V_c shall be permitted to be 10 percent more than that specified in Chapter 11. It shall be permitted to increase shear strength using shear reinforcement or by widening the ends of ribs.

8.12 — Separate floor finish

8.12.1 — A floor finish shall not be included as part of a structural member unless placed monolithically with the slab.

R8.11.3 — A limit on the maximum spacing of ribs is required because of the special provisions permitting higher shear strengths and less concrete protection for the reinforcement for these relatively small, repetitive members.

R8.11.8 — The increase in shear strength permitted by 8.11.8 is justified on the basis of: (1) satisfactory performance of joist construction with higher shear strengths, designed under previous codes, which allowed comparable shear stresses, and (2) redistribution of local overloads to adjacent joists.

R8.12 — Separate floor finish

The code does not specify an additional thickness for wearing surfaces subjected to unusual conditions of wear. The
the floor slab or designed in accordance with requirements of Chapter 17.

8.12.2 — It shall be permitted to consider all concrete floor finishes as part of required cover or total thickness for nonstructural considerations.

need for added thickness for unusual wear is left to the discretion of the designer.

As in previous editions of the code, a floor finish may be considered for strength purposes only if it is cast monolithically with the slab. Permission is given to include a separate finish in the structural thickness if composite action is provided for in accordance with Chapter 17.

All floor finishes may be considered for nonstructural purposes such as cover for reinforcement, fire protection, etc. Provisions should be made, however, to ensure that the finish will not spall off, thus causing decreased cover. Furthermore, development of reinforcement considerations require minimum monolithic concrete cover according to 7.7.
CHAPTER 9 — STRENGTH AND SERVICEABILITY REQUIREMENTS

CODE

9.0 — Notation

\begin{align*}
A_g &= \text{gross area of section, mm}^2 \\
A_s &= \text{area of compression reinforcement, mm}^2 \\
b &= \text{width of compression face of member, mm} \\
c &= \text{distance from extreme compression fiber to neutral axis, mm} \\
d &= \text{distance from extreme compression fiber to centroid of tension reinforcement, mm} \\
d' &= \text{distance from extreme compression fiber to centroid of compression reinforcement, mm} \\
d_s &= \text{distance from extreme tension fiber to centroid of tension reinforcement, mm} \\
d_t &= \text{distance from extreme compression fiber to extreme tension steel, mm} \\
D &= \text{dead loads, or related internal moments and forces} \\
E &= \text{load effects of seismic forces, or related internal moments and forces} \\
E_c &= \text{modulus of elasticity of concrete, MPa. See 8.5.1} \\
f_c' &= \text{specified compressive strength of concrete, MPa} \\
f_{c'} &= \text{square root of specified compressive strength of concrete, MPa} \\
f_{ct} &= \text{average splitting tensile strength of lightweight aggregate concrete, MPa} \\
f_r &= \text{modulus of rupture of concrete, MPa} \\
f_y &= \text{specified yield strength of nonprestressed reinforcement, MPa} \\
F &= \text{loads due to weight and pressures of fluids with well-defined densities and controllable maximum heights, or related internal moments and forces} \\
h &= \text{overall thickness of member, mm} \\
H &= \text{loads due to weight and pressure of soil, water in soil, or other materials, or related internal moments and forces} \\
l_{cr} &= \text{moment of inertia of cracked section transformed to concrete, mm}^4 \\
l_e &= \text{effective moment of inertia for computation of deflection, mm}^4 \\
l_g &= \text{moment of inertia of gross concrete section about centroidal axis, neglecting reinforcement, mm}^4 \\
l &= \text{span length of beam or one-way slab, as defined in 8.7; clear projection of cantilever, mm} \\
l_n &= \text{length of clear span in long direction of two-way construction, measured face-to-face of}
\end{align*}

COMMENTARY

R9.0 — Notation

Units of measurement are given in the Notation to assist the user and are not intended to preclude the use of other correctly applied units for the same symbol, such as m or kN.
supports in slabs without beams and face-to-face of beams or other supports in other cases, mm

\begin{align*}
L & = \text{live loads, or related internal moments and forces} \\
M_a & = \text{maximum moment in member at stage deflection is computed, mm-N} \\
M_{cr} & = \text{cracking moment, mm-N. See 9.5.2.3} \\
P_b & = \text{nominal axial load strength at balanced strain conditions, N. See 10.3.2} \\
P_n & = \text{nominal axial load strength at given eccentricity, N} \\
T & = \text{cumulative effect of temperature, creep, shrinkage, differential settlement, and shrinkage-compensating concrete} \\
U & = \text{required strength to resist factored loads or related internal moments and forces} \\
W & = \text{wind load, or related internal moments and forces} \\
w_c & = \text{weight of concrete, kg/m}^3 \\
y_t & = \text{distance from centroidal axis of gross section, neglecting reinforcement, to extreme fiber in tension, mm} \\
\alpha & = \text{ratio of flexural stiffness of beam section to flexural stiffness of a width of slab bounded laterally by centerlines of adjacent panels (if any) on each side of beam. See Chapter 13} \\
\alpha_m & = \text{average value of} \ \alpha \ \text{for all beams on edges of a panel} \\
\beta & = \text{ratio of clear spans in long to short direction of two-way slabs} \\
\varepsilon_t & = \text{net tensile strain in extreme tension steel at nominal strength} \\
\lambda & = \text{multiplier for additional long-term deflection as defined in 9.5.2.5} \\
\xi & = \text{time-dependent factor for sustained load. See 9.5.2.5} \\
\rho & = \text{ratio of nonprestressed tension reinforcement,} \ \frac{A_s}{bd} \\
\rho' & = \text{reinforcement ratio for nonprestressed compression reinforcement,} \ \frac{A_s'}{bd} \\
\rho_b & = \text{reinforcement ratio producing balanced strain conditions. See B.10.3.2} \\
\phi & = \text{strength reduction factor. See 9.3}
\end{align*}

The definition of net tensile strain in 2.1 excludes strains due to effective prestress, creep, shrinkage, and temperature.

\section*{9.1 — General}

\subsection*{9.1.1} Structures and structural members shall be designed to have design strengths at all sections at least equal to the required strengths calculated for the factored loads and forces in such combinations as are stipulated in this code.

\subsection*{9.1.2} Members also shall meet all other requirements of this code to ensure adequate performance at service load levels.

\section*{R9.1 — General}

\subsection*{R9.1.1} Chapter 9 defines the basic strength and serviceability conditions for proportioning reinforced concrete members.

The basic requirement for strength design may be expressed as follows:

\text{Design Strength} \geq \text{Required Strength}
CODE

COMMENTARY

ϕ (Nominal Strength) $\geq U$

In the strength design procedure, the margin of safety is provided by multiplying the service load by a load factor and the nominal strength by a strength reduction factor as described below.

1. The required strength U is computed by multiplying the service loads by load factors. Thus, for example, the factored moment M_u or “required moment strength” for dead and live load is computed as:

$$U = 1.4D + 1.7L$$

or

$$M_u = 1.4M_d + 1.7M_l$$

where M_d and M_l are the moments caused by service dead and live loads. The required strength is discussed in detail in the commentary for 9.2. The definition and notations for required strength are discussed in the commentary for Chapter 2.

2. The design strength of a structural element is computed by multiplying the nominal strength by a strength reduction factor ϕ that is less than one. The strength reduction factor accounts for uncertainties in design computations and the relative importance of various types of members. This factor also reflects the effect of variations in material strengths, workmanship, and dimensions that may combine to result in understrength. The nominal strength is computed by the code procedures assuming the member will have the exact dimensions and material properties used in the computations.\(^9\) For example, the design strength in flexure of a cross section (without compression reinforcement) may be expressed as:

$$\phi M_n = \phi \left[A_s f_y \left(d - \frac{a}{2} \right) \right]$$

The design strength and the strength reduction factor ϕ are discussed in detail in the commentary for 9.3.

Combining these two safety provisions, the basic requirement for the design of a beam cross section can be stated as:

Design Strength \geq Required Strength

$$\phi M_n \geq M_u$$

$$\phi \left[A_s f_y \left(d - \frac{a}{2} \right) \right] \geq 1.4M_d + 1.7 M_l$$

All notations with the subscript u such as M_u, P_u, and V_u, refer only to the required strength values. The design strength values are noted by ϕ times nominal strength, such as ϕM_n, ϕP_n, and ϕV_n.
CODE

9.2 — Required strength

9.2.1 — Required strength \(U \) to resist dead load \(D \) and live load \(L \) shall be at least equal to

\[
U = 1.4D + 1.7L
\]

(9-1)

9.2.2 — If resistance to structural effects of a specified wind load \(W \) are included in design, the following combinations of \(D, L, \) and \(W \) shall be investigated to determine the greatest required strength \(U \)

\[
U = 0.75 (1.4D + 1.7L + 1.7W)
\]

(9-2)

where load combinations shall include both full value and zero value of \(L \) to determine the more severe condition, and

\[
U = 0.9D + 1.3W
\]

(9-3)

but for any combination of \(D, L, \) and \(W \), required strength \(U \) shall not be less than Eq. (9-1).

COMMENTARY

R9.2 — Required strength

The required strength \(U \) is expressed in terms of factored loads, or related internal moments and forces. Factored loads are the loads specified in the general building code multiplied by appropriate load factors.

The factor assigned to each load is influenced by the degree of accuracy to which the load effect usually can be calculated and the variation that might be expected in the load during the lifetime of the structure. Dead loads, because they are more accurately determined and less variable, are assigned a lower load factor than live loads. Load factors also account for variability in the structural analysis used to compute moments and shears.

The code gives load factors for specific combinations of loads. In assigning factors to combinations of loading, some consideration is given to the probability of simultaneous occurrence. While most of the usual combinations of loadings are included, the designer should not assume that all cases are covered. Due regard is to be given to positive or negative sign in determining \(U \) for combinations of loadings, as one type of loading may produce effects of opposite sense to that produced by another type. The load combinations with \(0.9D \) are specifically included for the case where a higher dead load reduces the effects of other loads. This loading case may also be critical for tension-controlled column sections. In such a case, a reduction in axial load and increase in moment may result in a critical load combination.

Consideration should be given to various combinations of loading to determine the most critical design condition. This is particularly true when strength is dependent on more than one load effect, such as strength for combined flexure and axial load or shear strength in members with axial load.

If special circumstances require greater reliance on the strength of particular members than encountered in usual practice, some reduction in the stipulated strength reduction factors \(\phi \) or increase in the stipulated load factors \(U \) may be appropriate for such members.

R9.2.3 — If earthquake effects are considered in design, Eq. (9-2) and (9-3) become:

\[
U = 1.05D + 1.28L + 1.40E
\]

and

\[
U = 0.90D + 1.43E
\]

The load combinations above consider service-level seismic forces.
9.2.4 — If resistance to earth pressure H is included in design, required strength U shall be at least equal to

$$U = 1.4D + 1.7L + 1.7H$$ (9-4)

except that where D or L reduce the effect of H, $0.9D$ shall be substituted for $1.4D$ and zero value of L shall be used to determine the greatest required strength U. For any combination of D, L, and H, required strength U shall not be less than Eq. (9-1).

9.2.5 — If resistance to loadings due to weight and pressure of fluids with well-defined densities and controllable maximum heights F is included in design, such loading shall have a load factor of 1.4, and be added to all loading combinations that include live load.

$U = 1.4D + 1.7L + 1.4F$ (9-5)

but required strength U shall not be less than $1.4(D + T)$ (9-6)

Estimations of differential settlement, creep, shrinkage, expansion of shrinkage-compensating concrete, or temperature change shall be based on a realistic assessment of such effects occurring in service.

R9.2.4 — If effects H caused by earth pressure, ground water pressure, or pressure caused by granular materials are included in design, the required strength equations become:

$$U = 1.4D + 1.7L + 1.7H$$

and where D or L reduce the effect of H

$$U = 0.9D + 1.7H$$

but for any combination of D, L, or H

$$U = 1.4D + 1.7L$$

R9.2.5 — This section addresses the need to consider loading due to weight of liquid or liquid pressure. It specifies a load factor for such loadings with well-defined densities and controllable maximum heights equivalent to that used for dead load. Such reduced factors would not be appropriate where there is considerable uncertainty of pressures, as with ground water pressures, or uncertainty as to the possible maximum liquid depth as in ponding of water. See R8.2.

For well-defined fluid pressures, the required strength equations become:

$$U = 1.4D + 1.7L + 1.4F$$

and where D or L reduce the effect of F

$$U = 0.9D + 1.4F$$

but for any combination of D, L, or F

$$U = 1.4D + 1.7L$$

R9.2.6 — If the live load is applied rapidly, as may be the case for parking structures, loading docks, warehouse floors, elevator shafts, etc., impact effects should be considered. In all equations substitute $(L +$ impact) for L when impact should be considered.

R9.2.7 — The designer should consider the effects of differential settlement, creep, shrinkage, temperature, and shrinkage-compensating concrete. The term realistic assessment is used to indicate that the most probable values rather than the upper bound values of the variables should be used.

Eq. (9-6) is to prevent a design for load

$$U = 0.75 (1.4D + 1.4T + 1.7L)$$

to approach

$$U = 1.05 (D + T)$$

when live load is negligible.
9.3 — Design strength

9.3.1 — Design strength provided by a member, its connections to other members, and its cross sections, in terms of flexure, axial load, shear, and torsion, shall be taken as the nominal strength calculated in accordance with requirements and assumptions of this code, multiplied by the strength reduction factors ϕ in 9.3.2 and 9.3.4.

9.3.1.1 — If the structural framing includes primary members of other materials proportioned to satisfy the load factor combinations in Section 2.3 of ASCE 7, it shall be permitted to proportion the concrete members using the set of strength reduction factors ϕ listed in Appendix C and the load factor combinations in ASCE 7.

9.3.2 — Strength reduction factor ϕ shall be as follows:

9.3.2.1 — Flexure, without axial load..................0.90

9.3.2.2 — Axial load, and axial load with flexure. (For axial load with flexure, both axial load and moment nominal strength shall be multiplied by the appropriate single value of ϕ)

(a) Axial tension, and axial tension with flexure...0.90

(b) Axial compression, and axial compression with flexure:

Members with spiral reinforcement conforming to 10.9.3 ...0.75

Other reinforced members0.70

except that for low values of axial compression ϕ shall

R9.3.1 — The term design strength of a member, refers to the nominal strength calculated in accordance with the requirements stipulated in this code multiplied by a strength reduction factor ϕ, which is always less than one.

The purposes of the strength reduction factor ϕ are (1) to allow for the probability of understrength members due to variations in material strengths and dimensions, (2) to allow for inaccuracies in the design equations, (3) to reflect the degree of ductility and required reliability of the member under the load effects being considered, and (4) to reflect the importance of the member in the structure. For example, a lower ϕ is used for columns than for beams because columns generally have less ductility, are more sensitive to variations in concrete strength, and generally support larger loaded areas than beams. Furthermore, spiral columns are assigned a higher ϕ than tied columns since they have greater ductility or toughness.

R9.3.2.1 — In applying 9.3.2.1 and 9.3.2.2, the axial tensions and compressions to be considered are those caused by external forces. Effects of prestressing forces are not included.

R9.3.2.2 — For members subjected to axial load with flexure, design strengths are determined by multiplying both P_n and M_n by the appropriate single value of ϕ. For members subjected to flexure and relatively small axial compression loads, failure is initiated by yielding of the tension reinforcement and takes place in an increasingly more ductile manner as the ratio of axial load to moment decreases. At the same time the variability of the strength also decreases. For small axial loads, the value of ϕ may be increased from that for compression members to 0.90 permitted for flexure as the design axial load strength ϕP_n decreases from a specified value to zero.

For members meeting the limitations specified for $(h - d - d_s)/h$ and f_y, the transition starts at a design axial
be permitted to be increased in accordance with the following:

For members in which \(f_y \) does not exceed 420 MPa, with symmetric reinforcement, and with \((h - d' - d_s)/h \) not less than 0.70, \(\phi \) shall be permitted to be increased linearly to 0.90 as \(\phi P_n \) decreases from \(0.10 f'_c A_g \) to zero.

For other reinforced members, \(\phi \) shall be permitted to be increased linearly to 0.90 as \(\phi P_n \) decreases from \(0.10 f'_c A_g \) or \(\phi P_b \), whichever is smaller, to zero.

9.3.2.3 — Shear and torsion 0.85

9.3.2.4 — Bearing on concrete (except for post-tensioning anchorage zones) 0.70

9.3.2.5 — Post-tensioned anchorage zones 0.85

9.3.3 — Development lengths specified in Chapter 12 do not require a \(\phi \)-factor.

9.3.4 — In structures that rely on special moment resisting frames or special reinforced concrete structural walls to resist earthquake effects, the strength reduction factors \(\phi \) shall be modified as follows:

(a) The strength reduction factor for shear shall be 0.60 for any structural member that is designed to resist earthquake effects if its nominal shear strength is less than the shear corresponding to the development of the nominal flexural strength of the member. The nominal flexural strength shall be determined considering the most critical factored axial loads and including earthquake effects;

(b) The strength reduction factor for shear in diaphragms shall not exceed the minimum strength reduction factor for shear used for the vertical components of the primary lateral-force-resisting system;

(c) The strength reduction factor for shear in joints and diagonally reinforced coupling beams shall be 0.85.

\(\text{R9.3.2.5} \) — The \(\phi \)-factor of 0.85 reflects the wide scatter of results of experimental anchorage zone studies. Since 18.13.4.2 limits the nominal compressive strength of unconfined concrete in the general zone to \(0.7 \lambda f_{ci} ' \), the effective design strength for unconfined concrete is \(0.85 \times 0.7 \lambda f_{ci} ' = 0.6 \lambda f_{ci} ' \).

9.3.4 — Strength reduction factors in 9.3.4 are intended to compensate for uncertainties in estimation of strength of structural members in buildings. They are based primarily on experience with constant or steadily increasing applied load. For construction in regions of high seismic risk, some of the strength reduction factors have been modified in 9.3.4 to account for the effects of displacement reversals into the nonlinear range of response on strength.

Section 9.3.4(a) refers to brittle members such as low-rise walls, portions of walls between openings, or diaphragms that are impractical to reinforce to raise their nominal shear strength above nominal flexural strength for the pertinent loading conditions.

Short structural walls were the primary vertical elements of the lateral-force-resisting system in many of the parking structures that sustained damage during the 1994 Northridge earthquake. Section 9.3.4(b) requires the shear strength reduction factor for diaphragms to be 0.60 if the shear strength reduction factor for the walls is 0.60.
CODE

9.3.5 — Strength reduction factor ϕ for flexure, compression, shear, and bearing of structural plain concrete in Chapter 22 shall be 0.65.

9.4 — Design strength for reinforcement

Designs shall not be based on a yield strength of reinforcement f_y in excess of 550 MPa except for prestressed tendons.

9.5 — Control of deflections

9.5.1 — Reinforced concrete members subjected to flexure shall be designed to have adequate stiffness to limit deflections or any deformations that adversely affect strength or serviceability of a structure.

COMMENTARY

R9.3.5 — The strength reduction factor ϕ for structural plain concrete design is the same for all strength conditions. Since both flexural tension strength and shear strength for plain concrete depend on the tensile strength characteristics of the concrete, with no reserve strength or ductility possible due to the absence of reinforcement, equal strength reduction factors for both bending and shear are considered appropriate.

R9.4 — Design strength for reinforcement

In addition to the upper limit of 550 MPa for yield strength of nonprestressed reinforcement, there are limitations on yield strength in other sections of the code.

In 11.5.2, 11.6.3.4, and 11.7.6, the maximum f_y that may be used in design for shear and torsion reinforcement is 420 MPa, except that f_y up to 550 MPa may be used for shear reinforcement meeting the requirements of ASTM A 497.

In 19.3.2 and 21.2.5, the maximum specified f_y is 420 MPa in shells, folded plates, and structures governed by the special seismic provisions of Chapter 21.

The deflection provisions of 9.5 and the limitations on distribution of flexural reinforcement of 10.6 become increasingly critical as f_y increases.

R9.5 — Control of deflections

R9.5.1 — The provisions of 9.5 are concerned only with deflections or deformations that may occur at service load levels. When long-term deflections are computed, only the dead load and that portion of the live load that is sustained need be considered.

Two methods are given for controlling deflections. For nonprestressed beams and one-way slabs, and for composite members, provision of a minimum overall thickness as required by Table 9.5(a) will satisfy the requirements of the code for members not supporting or attached to partitions or other construction likely to be damaged by large deflections. For nonprestressed two-way construction, minimum thickness as required by 9.5.3.1, 9.5.3.2, and 9.5.3.3 will satisfy the requirements of the code.

For nonprestressed members that do not meet these minimum thickness requirements or that support or are attached to partitions or other construction likely to be damaged by large deflections, and for all prestressed concrete flexural members, deflections should be calculated by the procedures described or referred to in the appropriate sections of the code, and are limited to the values in Table 9.5(b).
9.5.2 — One-way construction (nonprestressed)

9.5.2.1 — Minimum thickness stipulated in Table 9.5(a) shall apply for one-way construction not supporting or attached to partitions or other construction likely to be damaged by large deflections, unless computation of deflection indicates a lesser thickness can be used without adverse effects.

<table>
<thead>
<tr>
<th>TABLE 9.5(a)—MINIMUM THICKNESS OF NONPRE-STRESSED BEAMS OR ONE-WAY SLABS UNLESS DEFLECTIONS ARE COMPUTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Member</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>Solid one-way slabs</td>
</tr>
<tr>
<td>Beams or ribbed one-way slabs</td>
</tr>
</tbody>
</table>

* Span length / is in millimeters.

Values given shall be used directly for members with normal weight concrete \(w_c = 2300 \text{ kg/m}^3 \) and Grade 420 reinforcement. For other conditions, the values shall be modified as follows:

a) For structural lightweight concrete having unit weight in the range 1500-2000 \text{ kg/m}^3, the values shall be multiplied by \(1.65 - 0.0003 w_c \) but not less than 1.09, where \(w_c \) is the unit weight in kg/m\(^3\).

b) For \(f_y \) other than 420 MPa, the values shall be multiplied by \((0.4 + f_y / 700) \).

9.5.2.2 — Where deflections are to be computed, deflections that occur immediately on application of load shall be computed by usual methods or formulas for elastic deflections, considering effects of cracking and reinforcement on member stiffness.

9.5.2.3 — Unless stiffness values are obtained by a more comprehensive analysis, immediate deflection shall be computed with the modulus of elasticity \(E_c \) for concrete as specified in 8.5.1 (normal weight or lightweight concrete) and with the effective moment of inertia as follows, but not greater than \(I_g \).

\[
I_e = \left(\frac{M_{cr}}{M_a} \right)^3 I_g + \left[1 - \left(\frac{M_{cr}}{M_a} \right)^3 \right] I_{cr} \tag{9-7}
\]

where:

\[
M_{cr} = \frac{f_y I_g}{f_{yt}} \tag{9-8}
\]

9.5.2.4 — The effective moment of inertia procedure described in the code and developed in Reference 9.6 was selected as being sufficiently accurate for use to control deflections. The effective \(I_e \) was developed to provide a transition between the upper and lower bounds of \(I_g \) and \(I_{cr} \) as a function of the ratio \(M_{cr}/M_a \). For most cases \(I_e \) will be less than \(I_g \).
and for normalweight concrete,

\[f_r = 0.7 \sqrt{f_c'} \] (9-9)

When lightweight aggregate concrete is used, one of the following modifications shall apply:

(a) When \(f_{ct} \) is specified and concrete is proportioned in accordance with 5.2, \(f_r \) shall be modified by substituting \(1.8 f_{ct} \) for \(\sqrt{f_c'} \), but the value of \(1.8 f_{ct} \) shall not exceed \(\sqrt{f_c'} \);

(b) When \(f_{ct} \) is not specified, \(f_r \) shall be multiplied by 0.75 for all-lightweight concrete, and 0.85 for sand-lightweight concrete. Linear interpolation shall be permitted if partial sand replacement is used.

9.5.2.4 — For continuous members, effective moment of inertia shall be permitted to be taken as the average of values obtained from Eq. (9-7) for the critical positive and negative moment sections. For prismatic members, effective moment of inertia shall be permitted to be taken as the value obtained from Eq. (9-7) at midspan for simple and continuous spans, and at support for cantilevers.

9.5.2.5 — Unless values are obtained by a more comprehensive analysis, additional long-term deflection resulting from creep and shrinkage of flexural members (normalweight or lightweight concrete) shall be determined by multiplying the immediate deflection caused by the sustained load considered, by the factor

\[\lambda = \frac{\xi}{1 + 50\rho'} \] (9-10)

where \(\rho' \) shall be the value at midspan for simple and continuous spans, and at support for cantilevers. It shall be permitted to assume the time-dependent factor \(\xi \) for sustained loads to be equal to:

- 5 years or more ..2.0
- 12 months ..1.4
- 6 months ...1.2
- 3 months ..1.0

R9.5.2.4 — For continuous members, the code procedure suggests a simple averaging of \(I_e \) values for the positive and negative moment sections. The use of the midspan section properties for continuous prismatic members is considered satisfactory in approximate calculations primarily because the midspan rigidity (including the effect of cracking) has the dominant effect on deflections, as shown by ACI Committee 4359.10,9.11 and SP-43.9.4

R9.5.2.5 — Shrinkage and creep due to sustained loads cause additional long-term deflections over and above those which occur when loads are first placed on the structure. Such deflections are influenced by temperature, humidity, curing conditions, age at time of loading, quantity of compression reinforcement, and magnitude of the sustained load. The expression given in this section is considered satisfactory for use with the code procedures for the calculation of immediate deflections, and with the limits given in Table 9.5(b). The deflection computed in accordance with this section is the additional long-term deflection due to the dead load and that portion of the live load that will be sustained for a sufficient period to cause significant time-dependent deflections.

Eq. (9-10) was developed in Reference 9.13. In Eq. (9-10) the multiplier on \(\xi \) accounts for the effect of compression reinforcement in reducing long-term deflections. \(\xi = 2.0 \) represents a nominal time-dependent factor for 5 years duration of loading. The curve in Fig. R9.5.2.5 may be used to estimate values of \(\xi \) for loading periods less than five years.

If it is desired to consider creep and shrinkage separately, approximate equations provided in References 9.6, 9.7, 9.13, and 9.14 may be used.
9.5.2.6 — Deflection computed in accordance with 9.5.2.2 through 9.5.2.5 shall not exceed limits stipulated in Table 9.5(b).

R9.5.2.6 — It should be noted that the limitations given in this table relate only to supported or attached nonstructural elements. For those structures in which structural members are likely to be affected by deflection or deformation of members to which they are attached in such a manner as to affect adversely the strength of the structure, these deflections and the resulting forces should be considered explicitly in the analysis and design of the structures as required by 9.5.1. (See Reference 9.9.)

Where long-term deflections are computed, the portion of the deflection before attachment of the nonstructural elements may be deducted. In making this correction use may be made of the curve in Fig. R9.5.2.5 for members of usual sizes and shapes.

<table>
<thead>
<tr>
<th>TABLE 9.5(b) — MAXIMUM PERMISSIBLE COMPUTED DEFLECTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of member</td>
</tr>
<tr>
<td>Flat roofs not supporting or attached to nonstructural elements likely to be damaged by large deflections</td>
</tr>
<tr>
<td>Floors not supporting or attached to nonstructural elements likely to be damaged by large deflections</td>
</tr>
<tr>
<td>Roof or floor construction supporting or attached to nonstructural elements likely to be damaged by large deflections</td>
</tr>
<tr>
<td>Roof or floor construction supporting or attached to nonstructural elements not likely to be damaged by large deflections</td>
</tr>
</tbody>
</table>

* Limit not intended to safeguard against ponding. Ponding should be checked by suitable calculations of deflection, including added deflections due to ponded water, and considering long-term effects of all sustained loads, camber, construction tolerances, and reliability of provisions for drainage.

† Long-term deflection shall be determined in accordance with 9.5.2.5 or 9.5.4.2, but may be reduced by amount of deflection calculated to occur before attachment of nonstructural elements. This amount shall be determined on basis of accepted engineering data relating to time-deflection characteristics of members similar to those being considered.

‡ Limit may be exceeded if adequate measures are taken to prevent damage to supported or attached elements.

§ Limit shall not be greater than tolerance provided for nonstructural elements. Limit may be exceeded if camber is provided so that total deflection minus camber does not exceed limit.
CODE

9.5.3 — Two-way construction (nonprestressed)

9.5.3.1 — Section 9.5.3 shall govern the minimum thickness of slabs or other two-way construction designed in accordance with the provisions of Chapter 13 and conforming with the requirements of 13.6.1.2. The thickness of slabs without interior beams spanning between the supports on all sides shall satisfy the requirements of 9.5.3.2 or 9.5.3.4. The thickness of slabs with beams spanning between the supports on all sides shall satisfy requirements of 9.5.3.3 or 9.5.3.4.

9.5.3.2 — For slabs without interior beams spanning between the supports and having a ratio of long to short span not greater than 2, the minimum thickness shall be in accordance with the provisions of Table 9.5(c) and shall not be less than the following values:

(a) Slabs without drop panels as defined in 13.3.7.1 and 13.3.7.2 120 mm

(b) Slabs with drop panels as defined in 13.3.7.1 and 13.3.7.2 100 mm

TABLE 9.5(c)—MINIMUM THICKNESS OF SLABS WITHOUT INTERIOR BEAMS

<table>
<thead>
<tr>
<th>Yield strength, f_y, MPa*</th>
<th>Without drop panels†</th>
<th>With drop panels†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exterior panels</td>
<td>Interior panels</td>
</tr>
<tr>
<td>Without edge beams</td>
<td>With edge beams‡</td>
<td>With edge beams‡</td>
</tr>
<tr>
<td>300</td>
<td>33</td>
<td>36</td>
</tr>
<tr>
<td>420</td>
<td>30</td>
<td>33</td>
</tr>
<tr>
<td>520</td>
<td>28</td>
<td>31</td>
</tr>
</tbody>
</table>

* For values of reinforcement yield strength between the values given in the table, minimum thickness shall be determined by linear interpolation.
† Drop panel is defined in 13.3.7.1 and 13.3.7.2.
‡ Slabs with beams between columns along exterior edges. The value of α for the edge beam shall not be less than 0.8.

9.5.3.3 — For slabs with beams spanning between the supports on all sides, the minimum thickness shall be as follows:

(a) For α_m equal to or less than 0.2, the provisions of 9.5.3.2 shall apply;

(b) For α_m greater than 0.2 but not greater than 2.0, the thickness shall not be less than

$$h = \frac{\left(0.8 + \frac{f_y}{1500}\right)}{36 + 5\beta(\alpha_m - 0.2)}$$ (9-11)

and not less than 120 mm;

(c) For α_m greater than 2.0, the thickness shall not be less than

COMMENTARY

R9.5.3 — Two-way construction (nonprestressed)

R9.5.3.2 — The minimum thicknesses in Table 9.5(c) are those that have been developed through the years. Slabs conforming to these limits have not resulted in systematic problems related to stiffness for short- and long-term loads. These limits apply to only the domain of previous experience in loads, environment, materials, boundary conditions, and spans.

R9.5.3.3 — For panels having a ratio of long to short span greater than 2, the use of Eq. (9-11) and (9-12), which express the minimum thickness as a fraction of the long span, may give unreasonable results. For such panels, the rules applying to one-way construction in 9.5.2 should be used.

The requirement in 9.5.3.3(a) for α_m equal to 0.2 made it possible to eliminate Eq. (9-13) of the 1989 code. That equation gave values essentially the same as those in Table 9.5(c), as does Eq. (9-11) at a value of α_m equal to 0.2.
and not less than 90 mm;

(d) At discontinuous edges, an edge beam shall be provided with a stiffness ratio \(\alpha \) not less than 0.80 or the minimum thickness required by Eq. (9-11) or (9-12) shall be increased by at least 10 percent in the panel with a discontinuous edge.

9.5.3.4 — Slab thickness less than the minimum thickness required by 9.5.3.1, 9.5.3.2, and 9.5.3.3 shall be permitted to be used if shown by computation that the deflection will not exceed the limits stipulated in Table 9.5(b). Deflections shall be computed taking into account size and shape of the panel, conditions of support, and nature of restraints at the panel edges. The modulus of elasticity of concrete \(E_c \) shall be as specified in 8.5.1. The effective moment of inertia shall be that given by Eq. (9-7); other values shall be permitted to be used if they result in computed deflections in reasonable agreement with results of comprehensive tests. Additional long-term deflection shall be computed in accordance with 9.5.2.5.

9.5.4 — Prestressed concrete construction

9.5.4.1 — For flexural members designed in accordance with provisions of Chapter 18, immediate deflection shall be computed by usual methods or formulas for elastic deflections, and the moment of inertia of the gross (uncracked) concrete section shall be permitted to be used for uncracked sections.

9.5.4.2 — Additional long-term deflection of prestressed concrete members shall be computed taking into account stresses in concrete and steel under sustained load and including effects of creep and shrinkage of concrete and relaxation of steel.

R9.5.3.4 — The calculation of deflections for slabs is complicated even if linear elastic behavior can be assumed. For immediate deflections, the values of \(E_c \) and \(I_e \) specified in 9.5.2.3 may be used.\(^9\) However, other procedures and other values of the stiffness \(EI \) may be used if they result in predictions of deflection in reasonable agreement with the results of comprehensive tests.

Since available data on long-term deflections of slabs are too limited to justify more elaborate procedures, the additional long-term deflection for two-way construction is required to be computed using the multipliers given in 9.5.2.5.

R9.5.4 — Prestressed concrete construction

The code requires deflections for all prestressed concrete flexural members to be computed and compared with the allowable values in Table 9.5(b).

R9.5.4.1 — Immediate deflections of prestressed concrete members may be calculated by the usual methods or formulas for elastic deflections using the moment of inertia of the gross (uncracked) concrete section and the modulus of elasticity for concrete specified in 8.5.1. This method may be unconservative for members having a relatively high concrete tensile stress as permitted in 18.4.2(d), and requires calculation of deflection based on the transformed cracked section.

Reference 9.15 shows the \(I_e \) method can be used to compute deflections of partially prestressed members loaded above the cracking load. For this case, the cracking moment should take into account the effect of prestress. A method for predicting the effect of nonprestressed tension steel in reducing creep camber is given in Reference 9.15 with approximate forms referred to in References 9.9 and 9.16.

R9.5.4.2 — Calculation of long-term deflections of prestressed concrete flexural members is complicated. The calculations should consider not only the increased deflections due to flexural stresses, but also the additional long-term deflections resulting from time-dependent shortening of the flexural member.

Prestressed concrete members shorten more with time than similar nonprestressed members due to the precompression
9.5.4.3 — Deflection computed in accordance with 9.5.4.1 and 9.5.4.2 shall not exceed limits stipulated in Table 9.5(b).

R9.5.5 — Composite construction

9.5.5 — Composite construction

9.5.5.1 — Shored construction

If composite flexural members are supported during construction so that, after removal of temporary supports, dead load is resisted by the full composite section, it shall be permitted to consider the composite member equivalent to a monolithically cast member for computation of deflection. For nonprestressed members, the portion of the member in compression shall determine whether values in Table 9.5(a) for normal weight or lightweight concrete shall apply. If deflection is computed, account shall be taken of curvatures resulting from differential shrinkage of precast and cast-in-place components, and of axial creep effects in a prestressed concrete member.

9.5.5.2 — Unshored construction

If the thickness of a nonprestressed precast flexural member meets the requirements of Table 9.5(a), deflection need not be computed. If the thickness of a nonprestressed composite member meets the requirements of Table 9.5(a), it is not required to compute deflection occurring after the member becomes composite, but the long-term deflection of the precast in the slab or beam which causes axial creep. This creep together with concrete shrinkage results in significant shortening of the flexural members that continues for several years after construction and should be considered in design. The shortening tends to reduce the tension in the prestressing tendons, reducing the precompression in the member and thereby causing increased long-term deflections.

Another factor that can influence long-term deflections of prestressed flexural members is adjacent concrete or masonry that is nonprestressed in the direction of the prestressed member. This can be a slab nonprestressed in the beam direction adjacent to a prestressed beam or a nonprestressed slab system. As the prestressed member tends to shrink and creep more than the adjacent nonprestressed concrete, the structure will tend to reach a compatibility of the shortening effects. This results in a reduction of the precompression in the prestressed member as the adjacent concrete absorbs the compression. This reduction in precompression of the prestressed member can occur over a period of years and will result in additional long-term deflections and in increase tensile stresses in the prestressed member.

Any suitable method for calculating long-term deflections of prestressed members may be used, provided all effects are considered. Guidance may be found in References 9.9, 9.12, 9.15, 9.17, and 9.18.
member shall be investigated for magnitude and duration of load prior to beginning of effective composite action.

9.5.5.3 — Deflection computed in accordance with 9.5.5.1 and 9.5.5.2 shall not exceed limits stipulated in Table 9.5(b).
<table>
<thead>
<tr>
<th>CODE</th>
<th>COMMENTARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 10 — FLEXURE AND AXIAL LOADS

CODE

10.0 — Notation

\(a \) = depth of equivalent rectangular stress block as defined in 10.2.7.1, mm

\(A_c \) = area of core of spirally reinforced compression member measured to outside diameter of spiral, \(\text{mm}^2 \)

\(A_g \) = gross area of section, \(\text{mm}^2 \)

\(A_s \) = area of nonprestressed tension reinforcement, \(\text{mm}^2 \)

\(A_{sk} \) = area of skin reinforcement per unit height in one side face, \(\text{mm}^2/\text{m} \). See 10.6.7

\(A_{s,min} \) = minimum amount of flexural reinforcement, \(\text{mm}^2 \). See 10.5

\(A_{st} \) = total area of longitudinal reinforcement, (bars or steel shapes), \(\text{mm}^2 \)

\(A_t \) = area of structural steel shape, pipe, or tubing in a composite section, \(\text{mm}^2 \)

\(A_1 \) = loaded area, \(\text{mm}^2 \)

\(A_2 \) = the area of the lower base of the largest frustum of a pyramid, cone, or tapered wedge contained wholly within the support and having for its upper base the loaded area, and having side slopes of 1 vertical to 2 horizontal, \(\text{mm}^2 \)

\(b \) = width of compression face of member, mm

\(b_w \) = web width, mm

\(c \) = distance from extreme compression fiber to neutral axis, mm

\(c_c \) = clear cover from the nearest surface in tension to the surface of the flexural tension reinforcement, mm

\(C_m \) = a factor relating actual moment diagram to an equivalent uniform moment diagram

\(d \) = distance from extreme compression fiber to centroid of tension reinforcement, mm

\(d_t \) = distance from extreme compression fiber to extreme tension steel, mm

\(E_c \) = modulus of elasticity of concrete, MPa. See 8.5.1

\(E_s \) = modulus of elasticity of reinforcement, MPa. See 8.5.2 or 8.5.3

\(E_I \) = flexural stiffness of compression member. See Eq. (10-12) and Eq. (10-13), \(\text{mm}^2\cdot\text{N} \)

\(f_c' \) = specified compressive strength of concrete, MPa

\(f_s \) = calculated stress in reinforcement at service loads, MPa

\(f_y \) = specified yield strength of nonprestressed reinforcement, MPa

\(h \) = overall thickness of member, mm

COMMENTARY

R10.0 — Notation

Units of measurement are given in the Notation to assist the user and are not intended to preclude the use of other correctly applied units for the same symbol, such as m or kN.
CODE

\(I_g \) = moment of inertia of gross concrete section about centroidal axis, neglecting reinforcement, \(\text{mm}^4 \)

\(I_{se} \) = moment of inertia of reinforcement about centroidal axis of member cross section, \(\text{mm}^4 \)

\(I_t \) = moment of inertia of structural steel shape, pipe, or tubing about centroidal axis of composite member cross section, \(\text{mm}^4 \)

\(k \) = effective length factor for compression members

\(l' \) = length of compression member in a frame, measured from center to center of the joints in the frame, mm

\(l'_u \) = unsupported length of compression member, mm

\(M_c \) = factored moment to be used for design of compression member, \(\text{mm-N} \)

\(M_s \) = moment due to loads causing appreciable sway, \(\text{mm-N} \)

\(M_u \) = factored moment at section, \(\text{mm-N} \)

\(M_1 \) = smaller factored end moment on a compression member, positive if member is bent in single curvature, negative if bent in double curvature, \(\text{mm-N} \)

\(M_{1ns} \) = factored end moment on a compression member at the end at which \(M_1 \) acts, due to loads that cause no appreciable sidesway, calculated using a first-order elastic frame analysis, \(\text{mm-N} \)

\(M_{1s} \) = factored end moment on compression member at the end at which \(M_1 \) acts, due to loads that cause appreciable sidesway, calculated using a first-order elastic frame analysis, \(\text{mm-N} \)

\(M_2 \) = larger factored end moment on compression member, always positive, \(\text{mm-N} \)

\(M_{2, \text{min}} \) = minimum value of \(M_2 \), \(\text{mm-N} \)

\(M_{2ns} \) = factored end moment on compression member at the end at which \(M_2 \) acts, due to loads that cause no appreciable sidesway, calculated using a first-order elastic frame analysis, \(\text{mm-N} \)

\(M_{2s} \) = factored end moment on compression member at the end at which \(M_2 \) acts, due to loads that cause appreciable sidesway, calculated using a first-order elastic frame analysis, \(\text{mm-N} \)

\(P_b \) = nominal axial load strength at balanced strain conditions. See 10.3.2, N

\(P_c \) = critical load. See Eq. (10-11), N

\(P_n \) = nominal axial load strength at given eccentricity, N

\(P_o \) = nominal axial load strength at zero eccentricity, N

\(P_u \) = factored axial load at given eccentricity, N

\(\leq \phi P_n \)

\(Q \) = stability index for a story. See 10.11.4

COMMENTARY
CODE

\[r = \text{radius of gyration of cross section of a compression member, mm} \]

\[s = \text{center-to-center spacing of flexural tension reinforcement nearest to the extreme tension face, mm (where there is only one bar or wire nearest to the extreme tension face, } s \text{ is the width of the extreme tension face.)} \]

\[V_u = \text{factored horizontal shear in a story, N} \]

\[\beta_1 = \text{factor defined in 10.2.7.3} \]

\[\beta_d = \begin{cases} (a) & \text{for nonsway frames, } \beta_d \text{ is the ratio of the maximum factored axial sustained load to the maximum factored axial load associated with the same load combination;} \\ (b) & \text{for sway frames, except as required in (c) of this definition, } \beta_d \text{ is the ratio of the maximum factored sustained shear within a story to the maximum factored shear in that story;} \\ (c) & \text{for stability checks of sway frames carried out in accordance with 10.13.6, } \beta_d \text{ is the ratio of the maximum factored sustained axial load to the maximum factored axial load} \end{cases} \]

\[\delta_{ns} = \text{moment magnification factor for frames braced against sidesway, to reflect effects of member curvature between ends of compression member} \]

\[\delta_s = \text{moment magnification factor for frames not braced against sidesway, to reflect lateral drift resulting from lateral and gravity loads} \]

\[\Delta_o = \text{relative lateral deflection between the top and bottom of a story due to } V_u, \text{ computed using a first-order elastic frame analysis and stiffness values satisfying 10.11.1, mm} \]

\[\varepsilon_t = \text{net tensile strain in extreme tension steel at nominal strength} \]

\[\rho = \frac{\text{ratio of nonprestressed tension reinforcement}}{A_s / bd} \]

\[\rho_b = \text{reinforcement ratio producing balanced strain conditions. See 10.3.2} \]

\[\rho_s = \text{ratio of volume of spiral reinforcement to total volume of core (out-to-out of spirals) of a spirally reinforced compression member} \]

\[\phi = \text{strength reduction factor. See 9.3} \]

\[\phi_K = \text{stiffness reduction factor. See R10.12.3} \]

COMMENTARY

The definition of net tensile strain in 2.1 excludes strains due to effective prestress, creep, shrinkage, and temperature.

10.1 — Scope

Provisions of Chapter 10 shall apply for design of members subject to flexure or axial loads or to combined flexure and axial loads.

10.2 — Design assumptions

10.2.1 — Strength design of members for flexure and axial loads shall be based on assumptions given in 10.2.2 through 10.2.7, and on satisfaction of applicable 10.2.2 — Strain in reinforcement and concrete shall be

R10.2 — Design assumptions

R10.2.1 — The strength of a member computed by the strength design method of the code requires that two basic conditions be satisfied: (1) static equilibrium, and (2) compatibility of strains. Equilibrium between the compressive
CODE

conditions of equilibrium and compatibility of strains.

assumed directly proportional to the distance from the neutral axis, except, for deep flexural members with overall depth to clear span ratios greater than 2/5 for continuous spans and 4/5 for simple spans, a nonlinear distribution of strain shall be considered. See 10.7.

10.2.3 — Maximum usable strain at extreme concrete compression fiber shall be assumed equal to 0.003.

10.2.4 — Stress in reinforcement below specified yield strength \(f_y \) for grade of reinforcement used shall be taken as \(E_s \) times steel strain. For strains greater than that corresponding to \(f_y \), stress in reinforcement shall be considered independent of strain and equal to \(f_y \).

10.2.5 — Tensile strength of concrete shall be neglected in axial and flexural calculations of reinforced concrete, except when meeting requirements of 18.4.

COMMENTARY

and tensile forces acting on the cross section at nominal strength should be satisfied. Compatibility between the stress and strain for the concrete and the reinforcement at nominal strength conditions should also be established within the design assumptions allowed by 10.2.

R10.2.2 — Many tests have confirmed that the distribution of strain is essentially linear across a reinforced concrete cross section, even near ultimate strength.

Both the strain in reinforcement and in concrete are assumed to be directly proportional to the distance from the neutral axis. This assumption is of primary importance in design for determining the strain and corresponding stress in the reinforcement.

R10.2.3 — The maximum concrete compressive strain at crushing of the concrete has been observed in tests of various kinds to vary from 0.003 to higher than 0.008 under special conditions. However, the strain at which ultimate moments are developed is usually about 0.003 to 0.004 for members of normal proportions and materials.

R10.2.4 — For deformed reinforcement, it is reasonably accurate to assume that the stress in reinforcement is proportional to strain below the yield strength \(f_y \). The increase in strength due to the effect of strain hardening of the reinforcement is neglected for strength computations. In strength computations, the force developed in tensile or compressive reinforcement is computed as,

\[
A_s f_s = A_s f_y
\]

when \(\varepsilon_s < \varepsilon_y \) (yield strain)

\[
A_s f_s = A_s E_s \varepsilon_s
\]

when \(\varepsilon_s \geq \varepsilon_y \)

where \(\varepsilon_s \) is the value from the strain diagram at the location of the reinforcement. For design, the modulus of elasticity of steel reinforcement \(E_s \) may be taken as 200,000 MPa (see 8.5.2).

R10.2.5 — The tensile strength of concrete in flexure (modulus of rupture) is a more variable property than the compressive strength and is about 10 to 15 percent of the compressive strength. Tensile strength of concrete in flexure is neglected in strength design. For members with normal percentages of reinforcement, this assumption is in good agreement with tests. For very small percentages of reinforcement, neglect of the tensile strength at ultimate is usually correct.

The strength of concrete in tension, however, is important in cracking and deflection considerations at service loads.
CODE

10.2.6 — The relationship between concrete compressive stress distribution and concrete strain shall be assumed to be rectangular, trapezoidal, parabolic, or any other shape that results in prediction of strength in substantial agreement with results of comprehensive tests.

10.2.7 — Requirements of 10.2.6 are satisfied by an equivalent rectangular concrete stress distribution defined by the following:

10.2.7.1 — Concrete stress of $0.85f'_c$ shall be assumed uniformly distributed over an equivalent compression zone bounded by edges of the cross section and a straight line located parallel to the neutral axis at a distance $a = \beta_1 c$ from the fiber of maximum compressive strain.

10.2.7.2 — Distance c from the fiber of maximum strain to the neutral axis shall be measured in a direction perpendicular to that axis.

10.2.7.3 — Factor β_1 shall be taken as 0.85 for concrete strengths f'_c up to and including 30 MPa. For strengths above 30 MPa, β_1 shall be reduced continuously at a rate of 0.05 for each 7 MPa of strength in excess of 30 MPa, but β_1 shall not be taken less than 0.65.

10.3 — General principles and requirements

10.3.1 — Design of cross section subject to flexure or axial loads or to combined flexure and axial loads shall be based on stress and strain compatibility using assumptions in 10.2.

COMMENTARY

R10.2.6 — This assumption recognizes the inelastic stress distribution of concrete at high stress. As maximum stress is approached, the stress-strain relationship for concrete is not a straight line but some form of a curve (stress is not proportional to strain). The general shape of a stress-strain curve is primarily a function of concrete strength and consists of a rising curve from zero to a maximum at a compressive strain between 0.0015 and 0.002 followed by a descending curve to an ultimate strain (crushing of the concrete) from 0.003 to higher than 0.008. As discussed under R10.2.3, the code sets the maximum usable strain at 0.003 for design.

The actual distribution of concrete compressive stress is complex and usually not known explicitly. Research has shown that the important properties of the concrete stress distribution can be approximated closely using any one of several different assumptions as to the form of stress distribution. The code permits any particular stress distribution to be assumed in design if shown to result in predictions of ultimate strength in reasonable agreement with the results of comprehensive tests. Many stress distributions have been proposed. The three most common are the parabola, trapezoid, and rectangle.

R10.2.7 — For design, the code allows the use of an equivalent rectangular compressive stress distribution (stress block) to replace the more exact concrete stress distribution. In the equivalent rectangular stress block, an average stress of $0.85f'_c$ is used with a rectangle of depth $a = \beta_1 c$. The β_1 of 0.85 for concrete with $f'_c \leq 30$ MPa and 0.05 less for each 7 MPa of f'_c in excess of 30 was determined experimentally.

In the 1976 supplement to the 1971 code, a lower limit of β_1 equal to 0.65 was adopted for concrete strengths greater than 55 MPa. Research data from tests with high strength concretes supported the equivalent rectangular stress block for concrete strengths exceeding 55 MPa, with a β_1 equal to 0.65. Use of the equivalent rectangular stress distribution specified in the 1971 code, with no lower limit on β_1, resulted in inconsistent designs for high strength concrete for members subject to combined flexure and axial load.

R10.3 — General principles and requirements

R10.3.1 — Design strength equations for members subject to flexure or combined flexure and axial load are derived in the paper, “Rectangular Concrete Stress Distribution in Ultimate Strength Design.” Reference 10.3 and previous editions of this commentary also give the derivations of strength equations for cross sections other than rectangular.
CODE

10.3.2 — Balanced strain conditions exist at a cross section when tension reinforcement reaches the strain corresponding to its specified yield strength f_y just as concrete in compression reaches its assumed ultimate strain of 0.003.

10.3.3 — For flexural members, and for members subject to combined flexure and compressive axial load when the design axial load strength ϕP_n is less than the smaller of $0.10 f'_c A_g$ or ϕP_b, the ratio of reinforcement ρ provided shall not exceed 0.75 of the ratio ρ_b that would produce balanced strain conditions for the section under flexure without axial load. For members with compression reinforcement, the portion of ρ_b equalized by compression reinforcement need not be reduced by the 0.75 factor.

COMMENTS

R10.3.2 — A balanced strain condition exists at a cross section when the maximum strain at the extreme compression fiber just reaches 0.003 simultaneously with the first yield strain f_y/E_s in the tension reinforcement. The reinforcement ratio ρ_b, which produces balanced conditions under flexure, depends on the shape of the cross section and the location of the reinforcement.

R10.3.3 — The maximum amount of tension reinforcement in flexural members is limited to ensure a level of ductile behavior.

The ultimate flexural strength of a member is reached when the strain in the extreme compression fiber reaches the ultimate (crushing) strain of the concrete. At ultimate strain of the concrete, the strain in the tension reinforcement could just reach the strain at first yield, be less than the yield strain (elastic), or exceed the yield strain (inelastic). Which steel strain condition exists at ultimate concrete strain depends on the relative proportion of steel to concrete and material strengths f'_c and f_y. If $\rho(f_y/f'_c)$ is sufficiently low, the strain in the tension steel will greatly exceed the yield strain when the concrete strain reaches its ultimate, with large deflection and ample warning of impending failure (ductile failure condition). With a larger $\rho(f_y/f'_c)$, the strain in the tension steel may not reach the yield strain when the concrete strain reaches its ultimate, with consequent small deflection and little warning of impending failure (brittle failure condition). For design it is considered more conservative to restrict the ultimate strength condition so that a ductile failure mode can be expected.

Unless unusual amounts of ductility are required, the $0.75 \rho_b$ limitation will provide ductile behavior for most designs. One condition where greater ductile behavior is required is in design for redistribution of moments in continuous members and frames. Section 8.4 permits negative moment redistribution. Since moment redistribution is dependent on adequate ductility in hinge regions, the amount of tension reinforcement in hinging regions is limited to $0.5 \rho_b$.

R10.3.4 — Use of compression reinforcement shall be permitted in conjunction with additional tension reinforcement to increase the strength of flexural members.

For ductile behavior of beams with compression reinforcement, only that portion of the total tension steel balanced by compression in the concrete need be limited; that portion of the total tension steel where force is balanced by compression reinforcement need not be limited by the 0.75 factor.
CODE

10.3.5 — Design axial load strength ϕP_n of compression members shall not be taken greater than the following:

10.3.5.1 — For nonprestressed members with spiral reinforcement conforming to 7.10.4 or composite members conforming to 10.16:

$$\phi P_n(\text{max}) = 0.85 \phi[0.85 f'_{c}(A_g - A_{st}) + f_y A_{st}]$$ (10-1)

10.3.5.2 — For nonprestressed members with tie reinforcement conforming to 7.10.5:

$$\phi P_n(\text{max}) = 0.80 \phi[0.85 f'_{c}(A_g - A_{st}) + f_y A_{st}]$$ (10-2)

10.3.5.3 — For prestressed members, design axial load strength ϕP_n shall not be taken greater than 0.85 (for members with spiral reinforcement) or 0.80 (for members with tie reinforcement) of the design axial load strength at zero eccentricity ϕP_o.

10.3.6 — Members subject to compressive axial load shall be designed for the maximum moment that can accompany the axial load. The factored axial load P_u at given eccentricity shall not exceed that given in 10.3.5. The maximum factored moment M_u shall be magnified for slenderness effects in accordance with 10.10.

COMMENTARY

R10.3.5 and R10.3.6 — The minimum design eccentricities included in the 1963 and 1971 codes were deleted from the 1977 code except for consideration of slenderness effects in compression members with small or zero computed end moments (see 10.12.3.2). The specified minimum eccentricities were originally intended to serve as a means of reducing the axial load design strength of a section in pure compression to account for accidental eccentricities not considered in the analysis that may exist in a compression member, and to recognize that concrete strength may be less than f'_{c} under sustained high loads. The primary purpose of the minimum eccentricity requirement was to limit the maximum design axial load strength of a compression member. This is now accomplished directly in 10.3.5 by limiting the design axial load strength of a section in pure compression to 85 or 80 percent of the nominal strength. These percentage values approximate the axial load strengths at e/h ratios of 0.05 and 0.10, specified in the earlier codes for the spirally reinforced and tied members, respectively. The same axial load limitation applies to both cast-in-place and precast compression members. Design aids and computer programs based on the minimum eccentricity requirement of the 1963 and 1971 codes are equally applicable.

For prestressed members, the design axial load strength in pure compression is computed by the strength design methods of Chapter 10, including the effect of the prestressing force.

Compression member end moments should be considered in the design of adjacent flexural members. In nonsway frames, the effects of magnifying the end moments need not be considered in the design of the adjacent beams. In sway frames, the magnified end moments should be considered in designing the flexural members, as required in 10.13.7.

Corner and other columns exposed to known moments about each axis simultaneously should be designed for biaxial bending and axial load. Satisfactory methods are available in the ACI Design Handbook10.4 and the CRSI Handbook.10.5 The reciprocal load method10.6 and the load contour method10.7 are the methods used in those two handbooks. Research10.8,10.9 indicates that using the equivalent rectangular stress block provisions of 10.2.7 produces satisfactory strength estimates for doubly symmetric sections. A simple and somewhat conservative estimate of nominal strength P_{ni} can be obtained from the reciprocal load relationship

$$\frac{1}{P_{ni}} = \frac{1}{P_{nx}} + \frac{1}{P_{ny}} + \frac{1}{P_{o}}$$

where:

P_{ni} = nominal axial load strength at given eccentricity along both axes
CODE

10.4 — Distance between lateral supports of flexural members

10.4.1 — Spacing of lateral supports for a beam shall not exceed 50 times the least width \(b \) of compression flange or face.

10.4.2 — Effects of lateral eccentricity of load shall be taken into account in determining spacing of lateral supports.

10.5 — Minimum reinforcement of flexural members

10.5.1 — At every section of a flexural member where tensile reinforcement is required by analysis, except as provided in 10.5.2, 10.5.3, and 10.5.4, the area \(A_s \) provided shall not be less than that given by

\[
A_{s,\text{min}} = \frac{f' c}{4 f_y} b_w d \tag{10-3}
\]

and not less than \(1.4 b_w d / f_y \).

10.5.2 — For a statically determinate T-section with flange in tension, the area \(A_{s,\text{min}} \) shall be equal to or greater than the smaller value given either by

\[
A_{s,\text{min}} = \frac{f' c}{2 f_y} b_w d \tag{10-4}
\]

or Eq. (10-3) with \(b_w \) set equal to the width of the flange.

COMMENTARY

\(P_o \) = nominal axial load strength at zero eccentricity
\(P_{nx} \) = nominal axial load strength at given eccentricity along \(x \)-axis
\(P_{ny} \) = nominal axial load strength at given eccentricity along \(y \)-axis

This relationship is most suitable when values \(P_{nx} \) and \(P_{ny} \) are greater than the balanced axial force \(P_b \) for the particular axis.

R10.4 — Distance between lateral supports of flexural members

Tests\(^{10,10,11}\) have shown that laterally unbraced reinforced concrete beams of any reasonable dimensions, even when very deep and narrow, will not fail prematurely by lateral buckling provided the beams are loaded without lateral eccentricity that causes torsion.

Laterally unbraced beams are frequently loaded off center (lateral eccentricity) or with slight inclination. Stresses and deformations set up by such loading become detrimental for narrow, deep beams, the more so as the unsupported length increases. Lateral supports spaced closer than \(50 b \) may be required by loading conditions.

R10.5 — Minimum reinforcement of flexural members

The provision for a minimum amount of reinforcement applies to flexural members, which for architectural or other reasons, are larger in cross section than required for strength. With a very small amount of tensile reinforcement, the computed moment strength as a reinforced concrete section using cracked section analysis becomes less than that of the corresponding unreinforced concrete section computed from its modulus of rupture. Failure in such a case can be sudden.

To prevent such a failure, a minimum amount of tensile reinforcement is required by 10.5.1. This is required in both positive and negative moment regions. The \(1.4 f' y \) value formerly used was originally derived to provide the same 0.5 percent minimum (for mild grade steel) as required in earlier editions of the code. When concrete strength higher than about 35 MPa is used, the \(1.4 f' y \) value previously used may not be sufficient. The value given by Eq. (10-3) gives the same amount as \(1.4 f' y \) when \(f' c \) equals 31.36 MPa. When the flange of a T-section is in tension, the amount of tensile reinforcement needed to make the strength of a reinforced concrete section equal that of an unreinforced section is about twice that for a rectangular section or that of a T-section with the flange in compression. It was concluded that this higher amount is necessary, particularly for cantilevers and other statically determinate situations where the flange is in tension.
CODE

10.5.3 — The requirements of 10.5.1 and 10.5.2 need not be applied if at every section the area of tensile reinforcement provided is at least one-third greater than that required by analysis.

10.5.4 — For structural slabs and footings of uniform thickness the minimum area of tensile reinforcement in the direction of the span shall be the same as that required by 7.12. Maximum spacing of this reinforcement shall not exceed the lesser of three times the thickness and shall not exceed 500 mm.

COMMENTARY

R10.5.3 — The minimum reinforcement required by Eq. (10-3) or (10-4) is to be provided wherever reinforcement is needed, except where such reinforcement is at least one-third greater than that required by analysis. This exception provides sufficient additional reinforcement in large members where the amount required by 10.5.1 or 10.5.2 would be excessive.

R10.5.4 — The minimum reinforcement required for slabs should be equal to the same amount as that required by 7.12 for shrinkage and temperature reinforcement.

Soil-supported slabs such as slabs on grade are not considered to be structural slabs in the context of this section, unless they transmit vertical loads from other parts of the structure to the soil. Reinforcement, if any, in soil-supported slabs should be proportioned with due consideration of all design forces. Mat foundations and other slabs that help support the structure vertically should meet the requirements of this section.

In reevaluating the overall treatment of 10.5, the maximum spacing for reinforcement in structural slabs (including footings) was reduced from the $5h$ for temperature and shrinkage reinforcement to the compromise value of $3h$, which is somewhat larger than the $2h$ limit of 13.3.2 for two-way slab systems.

R10.6 — Distribution of flexural reinforcement in beams and one-way slabs

10.6.1 — This section prescribes rules for distribution of flexural reinforcement to control flexural cracking in beams and in one-way slabs (slabs reinforced to resist flexural stresses in only one direction).

R10.6.1 — Many structures designed by working stress methods and with low steel stress served their intended functions with very limited flexural cracking. When high strength reinforcing steels are used at high service load stresses, however, visible cracks should be expected, and steps should be taken in detailing of the reinforcement to control cracking. To ensure protection of reinforcement against corrosion, and for aesthetic reasons, many fine hairline cracks are preferable to a few wide cracks.

Control of cracking is particularly important when reinforcement with a yield strength in excess of 300 MPa is used. Current good detailing practices will usually lead to adequate crack control even when reinforcement of 420 MPa yield is used.

Extensive laboratory work involving deformed bars has confirmed that crack width at service loads is proportional to steel stress. The significant variables reflecting steel detailing were found to be thickness of concrete cover and the area of concrete in the zone of maximum tension surrounding each individual reinforcing bar.
10.6.2 — Distribution of flexural reinforcement in two-way slabs shall be as required by 13.3.

10.6.3 — Flexural tension reinforcement shall be well distributed within maximum flexural tension zones of a member cross section as required by 10.6.4.

10.6.4 — The spacing s of reinforcement closest to a surface in tension shall not exceed that given by

\[
 s = \frac{95,000}{f_s} - 2.5c_c
\]

but not greater than $300(252/f_s)$.

Calculated stress f_s (in MPa) in reinforcement at service load shall be computed as the unfactored moment divided by the product of steel area and internal moment arm. It shall be permitted to take f_s as 60 percent of specified yield strength.

10.6.5 — Provisions of 10.6.4 are not sufficient for structures subject to very aggressive exposure or designed to be watertight. For such structures, special investigations and precautions are required.

10.6.6 — Where flanges of T-beam construction are in tension, part of the flexural tension reinforcement shall be distributed over an effective flange width as defined in 8.10, or a width equal to one-tenth the span, whichever is smaller. If the effective flange width exceeds one-tenth the span, some longitudinal reinforcement shall be provided in the outer portions of the flange.

10.6.7 — If the effective depth d of a beam or joist exceeds 1 m, longitudinal skin reinforcement shall be uniformly distributed along both side faces of the

R10.6.3 — Several bars at moderate spacing are much more effective in controlling cracking than one or two larger bars of equivalent area.

R10.6.4 — This section replaces the z factor requirements of the 1995 and previous code editions. The maximum bar spacing is now specified directly. For the usual case of beams with Grade 420 reinforcement and 50 mm clear cover to the main reinforcement, with $f_s = 252$ MPa, the maximum bar spacing is 250 mm.

Crack widths in structures are highly variable. In previous codes, provisions were given for distribution of reinforcement that were based on empirical equations using a calculated crack width of 0.4 mm. The new provisions for spacing are intended to control surface cracks to a width that is generally acceptable in practice but may vary widely in a given structure.

The role of cracks in the corrosion of reinforcement is controversial. Research shows that corrosion is not clearly correlated with surface crack widths in the range normally found with reinforcement stresses at service load levels. For this reason, the former distinction between interior and exterior exposure has been eliminated.

R10.6.5 — Although a number of studies have been conducted, clear experimental evidence is not available regarding the crack width beyond which a corrosion danger exists. Exposure tests indicate that concrete quality, adequate compaction, and ample concrete cover may be of greater importance for corrosion protection than crack width at the concrete surface.

R10.6.6 — In major T-beams, distribution of the negative reinforcement for control of cracking should take into account two considerations: (1) wide spacing of the reinforcement across the full effective width of flange may cause some wide cracks to form in the slab near the web and, (2) close spacing near the web leaves the outer regions of the flange unprotected. The one-tenth limitation is to guard against too wide a spacing, with some additional reinforcement required to protect the outer portions of the flange.

R10.6.7 — For relatively deep flexural members, some reinforcement should be placed near the vertical faces in the tension zone to control cracking in the web. Without such
member for a distance $d/2$ nearest the flexural tension reinforcement. The area of skin reinforcement A_{sk} per meter of height on each side face shall be $\geq 1.0 \ (d - 750)$. The maximum spacing of the skin reinforcement shall not exceed the lesser of $d/6$ and 300 mm. It shall be permitted to include such reinforcement in strength computations if a strain compatibility analysis is made to determine stress in the individual bars or wires. The total area of longitudinal skin reinforcement in both faces need not exceed one-half of the required flexural tensile reinforcement.

10.7 — Deep flexural members

10.7.1 — Flexural members with overall depth to clear span ratios greater than 2/5 for continuous spans, or 4/5 for simple spans, shall be designed as deep flexural members taking into account nonlinear distribution of strain and lateral buckling. (See also 12.10.6.)

10.7.2 — Shear strength of deep flexural members shall be in accordance with 11.8.

10.7.3 — Minimum flexural tension reinforcement shall conform to 10.5.

10.7.4 — Minimum horizontal and vertical reinforcement in the side faces of deep flexural members shall be the greater of the requirements of 11.8.8, 11.8.9, and 11.8.10 or 14.3.2 and 14.3.3.

10.8 — Design dimensions for compression members

10.8.1 — Isolated compression member with multiple spirals

Outer limits of the effective cross section of a compression member with two or more interlocking spirals shall be taken at a distance outside the extreme limits of the spirals equal to the minimum concrete cover required by 7.7.

10.8.2 — Compression member built monolithically with wall

Outer limits of the effective cross section of a spirally reinforced or tied reinforced compression member built monolithically with a concrete wall or pier shall be taken not greater than 40 mm outside the spiral or tie reinforcement.

10.8.3 — Equivalent circular compression member

As an alternative to using the full gross area for design auxiliary steel, the width of the cracks in the web may greatly exceed the crack widths at the level of the flexural tension reinforcement.

The requirements for skin reinforcement were modified in the 1989 code, as the previous requirements were found to be inadequate in some cases. See Reference 10.20. For lightly reinforced members, these requirements may be reduced to one-half of the main flexural reinforcement. Where the provisions for deep beams, walls, or precast panels require more steel, those provisions (along with their spacing requirements) will govern.

R10.7 — Deep flexural members

The code does not contain detailed requirements for designing deep beams for flexure except that nonlinearity of strain distribution and lateral buckling is to be considered.

Suggestions for the design of deep beams for flexure are given in References 10.21, 10.22, and 10.23.

R10.8 — Design dimensions for compression members

With the 1971 code, minimum sizes for compression members were eliminated to allow wider utilization of reinforced concrete compression members in smaller size and lightly loaded structures, such as low rise residential and light office buildings. The engineer should recognize the need for careful workmanship, as well as the increased significance of shrinkage stresses with small sections.

R10.8.2, R10.8.3, R10.8.4 — For column design the code provisions for quantity of reinforcement, both vertical and spiral, are based on the gross column area and core area, and the design strength of the column is based on the gross area of the column section. In some cases, however, the gross area is larger than necessary to carry the factored load. The basis of 10.8.2, 10.8.3, and 10.8.4 is that it is satisfactory to design a column of sufficient size to carry the factored load and then simply add concrete around the designed section without increasing the reinforcement to meet the minimum percentages required by 10.9.1. The additional concrete should not be considered as carrying
CODE

of a compression member with a square, octagonal, or other shaped cross section, it shall be permitted to use a circular section with a diameter equal to the least lateral dimension of the actual shape. Gross area considered, required percentage of reinforcement, and design strength shall be based on that circular section.

10.9.1 — Area of longitudinal reinforcement for non-composite compression members shall be not less than 0.01 nor more than 0.08 times gross area \(A_g \) of section.

COMMENTARY

load; however, the effects of the additional concrete on member stiffness should be included in the structural analysis. The effects of the additional concrete also should be considered in design of the other parts of the structure that interact with the oversize member.

10.8.4 — Limits of section

For a compression member with a cross section larger than required by considerations of loading, it shall be permitted to base the minimum reinforcement and strength on a reduced effective area \(A_g \) not less than one-half the total area. This provision shall not apply in regions of high seismic risk.

10.9 — Limits for reinforcement of compression members

10.9.1 — This section prescribes the limits on the amount of longitudinal reinforcement for noncomposite compression members. If the use of high reinforcement ratios would involve practical difficulties in the placing of concrete, a lower percentage and hence a larger column, or higher strength concrete or reinforcement (see R9.4) should be considered. The percentage of reinforcement in columns should usually not exceed 4 percent if the column bars are required to be lap spliced.

Minimum reinforcement — Since the design methods for columns incorporate separate terms for the load carried by concrete and by reinforcement, it is necessary to specify some minimum amount of reinforcement to ensure that only reinforced concrete columns are designed by these procedures. Reinforcement is necessary to provide resistance to bending, which may exist whether or not computations show that bending exists, and to reduce the effects of creep and shrinkage of the concrete under sustained compressive stresses. Tests have shown that creep and shrinkage tend to transfer load from the concrete to the reinforcement, with a consequent increase in stress in the reinforcement, and that this increase is greater as the ratio of reinforcement decreases. Unless a lower limit is placed on this ratio, the stress in the reinforcement may increase to the yield level under sustained service loads. This phenomenon was emphasized in the report of ACI Committee 105.25 and minimum reinforcement ratios of 0.01 and 0.005 were recommended for spiral and tied columns, respectively. However, in all editions of the code since 1936, the minimum ratio has been 0.01 for both types of laterally reinforced columns.

Maximum reinforcement — Extensive tests of the ACI column investigation10,25 included reinforcement ratios no greater than 0.06. Although other tests with as much as 17 percent reinforcement in the form of bars produced results
10.9.2 — Minimum number of longitudinal bars in compression members shall be 4 for bars within rectangular or circular ties, 3 for bars within triangular ties, and 6 for bars enclosed by spirals conforming to 10.9.3.

R10.9.2 — For compression members, a minimum of four longitudinal bars are required when bars are enclosed by rectangular or circular ties. For other shapes, one bar should be provided at each apex or corner and proper lateral reinforcement provided. For example, tied triangular columns require three longitudinal bars, one at each apex of the triangular ties. For bars enclosed by spirals, six bars are required.

When the number of bars in a circular arrangement is less than eight, the orientation of the bars will affect the moment strength of eccentrically loaded columns and should be considered in design.

10.9.3 — Ratio of spiral reinforcement ρ_s shall be not less than the value given by

$$\rho_s = 0.45 \left(\frac{A_g}{A_c} - 1 \right) \frac{f'_c}{f_y}$$

(10-6)

where f_y is the specified yield strength of spiral reinforcement but not more than 420 MPa.

R10.9.3 — The effect of spiral reinforcement in increasing the load-carrying strength of the concrete within the core is not realized until the column has been subjected to a load and deformation sufficient to cause the concrete shell outside the core to spall off. The amount of spiral reinforcement required by Eq. (10-6) is intended to provide additional load-carrying strength for concentrically loaded columns equal to or slightly greater than the strength lost when the shell spalls off. This principle was recommended by ACI Committee 10510.25 and has been a part of the code since 1963. The derivation of Eq. (10-6) is given in the ACI Committee 105 report. Tests and experience show that columns containing the amount of spiral reinforcement required by this section exhibit considerable toughness and ductility.

10.10 — Slenderness effects in compression members

Provisions for slenderness effects in compression members and frames were revised in the 1995 code to better recognize the use of second-order analyses and to improve the arrangement of the provisions dealing with sway (unbraced) and nonsway (braced) frames.10.26 The use of a refined non-
10.10.1 Except as allowed in 10.10.2, the design of compression members, restraining beams, and other supporting members shall be based on the factored forces and moments from a second-order analysis considering material nonlinearity and cracking, as well as the effects of member curvature and lateral drift, duration of the loads, shrinkage and creep, and interaction with the supporting foundation. The dimensions of each member cross section used in the analysis shall be within 10 percent of the dimensions of the members shown on the design drawings or the analysis shall be repeated. The analysis procedure shall have been shown to result in prediction of strength in substantial agreement with the results of comprehensive tests of columns in statically indeterminate reinforced concrete structures.

10.10.2 As an alternate to the procedure prescribed in 10.10.1, it shall be permitted to base the design of compression members, restraining beams, and other supporting members on axial forces and moments from the analyses described in 10.11.

10.11 Magnified moments — General

This section describes an approximate design procedure that uses the moment magnifier concept to account for slender-ness effects. Moments computed using an ordinary first-order frame analysis are multiplied by a moment magnifier that is a function of the factored axial load P_u and the critical buckling load P_c for the column. Nonsway and sway frames are treated separately in 10.12 and 10.13. Provisions applicable to both nonsway and sway columns are given in 10.11. A first-order frame analysis is an elastic analysis that does not include the internal force effects resulting from deflections.

10.11.1 The factored axial forces P_u, the factored moments M_1 and M_2 at the ends of the column, and, where required, the relative lateral story deflections Δ_o shall be computed using an elastic first-order frame analysis with the section properties determined taking into account the influence of axial loads, the presence of cracked regions along the length of the member,
CODE
and effects of duration of the loads. Alternatively, it
shall be permitted to use the following properties for
the members in the structure:

(a) Modulus of elasticity................. E_c from 8.5.1

(b) Moments of inertia
 Beams ... $0.35 I_g$
 Columns .. $0.70 I_g$
 Walls—Uncracked ... $0.70 I_g$
 —Cracked ... $0.35 I_g$
 Flat plates and flat slabs $0.25 I_g$

(c) Area... $1.0 A_g$

The moments of inertia shall be divided by $(1 + \beta_d)$

(a) When sustained lateral loads act; or

(b) For stability checks made in accordance with 10.13.6.

COMMENTARY

length of each member. Instead, they should correspond to
the moment-end rotation relationship for a complete member.

The alternative values of E_c, I_g, and A_g given in 10.11.1
have been chosen from the results of frame tests and analy-
ses and include an allowance for the variability of the com-
puted deflections. The modulus of elasticity E_c is based on
the specified concrete strength while the sway deflections
are a function of the average concrete strength, which is
higher. The moments of inertia were taken as 0.875 times
those in Reference 10.29. These two effects result in an
overestimation of the second-order deflections in the order of
20 to 25 percent, corresponding to an implicit stiffness
reduction factor ϕ_K of 0.80 to 0.85 on the stability calcula-
tion. The concept of a stiffness reduction factor ϕ_K is dis-
cussed in R10.12.3

The moment of inertia of T-beams should be based on the
effective flange width defined in 8.10. It is generally suffi-
ciently accurate to take I_g of a T-beam as two times the I_g
for the web, $2(b_w h^3/12)$.

If the factored moments and shears from an analysis based
on the moment of inertia of a wall taken equal to $0.70 I_g$
indicate that the wall will crack in flexure, based on the
modulus of rupture, the analysis should be repeated with
$I = 0.35 I_g$ in those stories where cracking is predicted at
factored loads.

The alternative values of the moments of inertia given in
10.11.1 were derived for nonprestressed members. For pre-
stressed members, the moments of inertia may differ from
the values in 10.11.1 depending on the amount, location,
and type of the reinforcement and the degree of cracking
prior to ultimate. The stiffness values for prestressed con-
crete members should include an allowance for the variabil-
ity of the stiffnesses.

Sections 10.11 through 10.13 provide requirements for
strength and assume frame analyses will be carried out
using factored loads. Analyses of deflections, vibrations,
and building periods are needed at various service (unfac-
tored) load levels$^{10.30,10.31}$ to determine the serviceability of
the structure and to estimate the wind forces in wind tunnel
laboratories. The seismic base shear is also based on the ser-
vice load periods of vibration. The magnified service loads
and deflections by a second-order analysis should also be
computed using service loads. The moments of inertia of the
structural members in the service load analyses should,
therefore, be representative of the degree of cracking at the
various service load levels investigated. Unless a more accu-
rately estimate of the degree of cracking at design service load
level is available, it is satisfactory to use $1/0.70 = 1.43$ times
the moments of inertia given in 10.11.1 for service load
analyses.
10.11.2 — It shall be permitted to take the radius of gyration \(r \) equal to 0.30 times the overall dimension in the direction stability is being considered for rectangular compression members and 0.25 times the diameter for circular compression members. For other shapes, it shall be permitted to compute the radius of gyration for the gross concrete section.

10.11.3 — Unsupported length of compression members

10.11.3.1 — The unsupported length \(l_u \) of a compression member shall be taken as the clear distance between floor slabs, beams, or other members capable of providing lateral support in the direction being considered.

10.11.3.2 — Where column capitals or haunches are present, the unsupported length shall be measured to the lower extremity of the capital or haunch in the plane considered.

10.11.4 — Columns and stories in structures shall be designated as nonsway or sway columns or stories. The design of columns in nonsway frames or stories shall be based on 10.12. The design of columns in sway frames or stories shall be based on 10.13.

10.11.4.1 — It shall be permitted to assume a column in a structure is nonsway if the increase in column end moments due to second-order effects does not exceed 5 percent of the first-order end moments.

10.11.4.2 — It also shall be permitted to assume a story within a structure is nonsway if:

\[
Q = \frac{\Sigma P \Delta \nu}{V_u'} \tag{10-7}
\]

is less than or equal to 0.05, where \(\Sigma P \) and \(V_u \) are the total vertical load and the story shear, respectively, in the story in question and \(\Delta \nu \) is the first-order relative deflection between the top and bottom of that story due to \(V_u \).

R10.11.4 — The moment magnifier design method requires the designer to distinguish between nonsway frames, which are designed according to 10.12, and sway frames, which are designed according to 10.13. Frequently this can be done by inspection by comparing the total lateral stiffness of the columns in a story to that of the bracing elements. A compression member may be assumed nonsway by inspection if it is located in a story in which the bracing elements (shearwalls, shear trusses, or other types of lateral bracing) have such substantial lateral stiffness to resist the lateral deflections of the story that any resulting lateral deflection is not large enough to affect the column strength substantially. If not readily apparent by inspection, 10.11.4.1 and 10.11.4.2 give two possible ways of doing this. In 10.11.4.1, a story in a frame is said to be nonsway if the increase in the lateral load moments resulting from \(PD \) effects does not exceed 5 percent of the first-order moments.10.29 Section 10.11.4.2 gives an alternative method of determining this based on the stiffness index for a story \(Q \). In computing \(Q \), \(\Sigma P \) should correspond to the lateral loading case for which \(\Sigma P \Delta \nu \) is greatest. A frame may contain both nonsway and sway stories. This test would not be suitable if \(V_u \) is zero.

If the lateral load deflections of the frame have been computed using service loads and the service load moments of inertia given in 10.11.1, it is permissible to compute \(Q \) in Eq. (10-7) using 1.2 times the sum of the service gravity loads, the service load story shear, and 1.43 times the first-order service load story deflections.
10.11.5 — Where an individual compression member in the frame has a slenderness $k l / r$ of more than 100, 10.10.1 shall be used to compute the forces and moments in the frame.

10.11.6 — For compression members subject to bending about both principal axes, the moment about each axis should be magnified separately based on the conditions of restraint corresponding to that axis.

10.12 — Magnified moments — Nonsway frames

10.12.1 — For compression members in nonsway frames, the effective length factor k shall be taken as 1.0, unless analysis shows that a lower value is justified. The calculation of k shall be based on the E and I values used in 10.11.1.

R10.11.5 — An upper limit is imposed on the slenderness ratio of columns designed by the moment magnifier method of 10.11 to 10.13. No similar limit is imposed if design is carried out according to 10.10.1. The limit of $k l / r = 100$ represents the upper range of actual tests of slender compression members in frames.

R10.11.6 — When biaxial bending occurs in a compression member, the computed moments about each principal axes should be magnified. The magnification factors δ are computed considering the buckling load P_c about each axis separately based on the appropriate effective length $k l'$ and the stiffness EI. If the buckling capacities are different about the two axes, different magnification factors will result.

R10.12 — Magnified moments — Nonsway frames

R10.12.1 — The moment magnifier equations were derived for hinged end columns and should be modified to account for the effect of end restraints. This is done by using an effective length $k l'$ in the computation of P_c. The primary design aid to estimate the effective length factor k is the Jackson and Moreland Alignment Charts (Fig. R10.12.1), which allow a graphical determination of k for a column of constant cross section in a multibay frame.\[10.32,10.33\]

The effective length is a function of the relative stiffness at each end of the compression member. Studies have indicated that the effects of varying beam and column reinforcement percentages and beam cracking should be considered in determining the relative end stiffnesses. In determining ψ for use in evaluating the effective length factor k, the rigidity of the flexural members may be calculated on the basis of $0.35 I_g$ for flexural members to account for the effect of cracking and reinforcement on relative stiffness, and $0.70 I_g$ for compression members.

The following simplified equations for computing the effective length factors for nonsway and sway members may be used. Eq. (A), (B), and (E) are taken from the 1972 British Standard Code of Practice.\[10.34,10.35\] Eq. (C) and (D) for sway members were developed in Reference 10.33.

For compression members in a nonsway frame, an upper bound to the effective length factor may be taken as the smaller of the following two expressions:

\[k = 0.7 + 0.05 (\psi_A + \psi_B) \leq 1.0 \] \hspace{1cm} (A)

\[k = 0.85 + 0.05 \psi_{\min} \leq 1.0 \] \hspace{1cm} (B)

where ψ_A and ψ_B are the values of ψ at the two ends of the column and ψ_{\min} is the smaller of the two values.
R10.12.2 — In nonsway frames it shall be permitted to ignore slenderness effects for compression members that satisfy:

$$\frac{k_l}{r} \leq 34 - 12 \left[\frac{M_1}{M_2} \right]$$ \hspace{1cm} (10-8)

where the term \([34 - 12M_1/M_2]\) shall not be taken greater than 40. The term \(M_1/M_2\) is positive if the member is bent in single curvature, and negative if the member is bent in double curvature.

R10.12.3 — The \(\phi\)-factors used in the design of slender columns represent two different sources of variability. First, the stiffness reduction \(\phi\)-factors in the magnifier equations in the 1989 and earlier codes were intended to account for the variability in the stiffness \(EI\) and the moment magnification analysis. Second, the variability of the strength of the cross section is accounted for by strength reduction \(\phi\)-factors of 0.70 for tied columns and 0.75 for spiral columns. Studies reported in Reference 10.36 indicate that the stiffness reduction factor \(\phi_{K}\), and the cross-sectional strength reduction \(\phi\)-factors do not have the same values, contrary to the assumption in the 1989 and earlier codes. These studies suggest the stiffness reduction factor \(\phi_{K}\) for an isolated column should be 0.75 for both tied and spiral columns. The 0.75 factors in Eq. (10-10) and (10-19) are stiffness reduction factors \(\phi_{K}\) and replace the \(\phi\)-factors in these equations in the 1989 and earlier codes. This has been done to avoid confusion between a stiffness reduction factor \(\phi_{K}\) in Eq. (10-10) and (10-19), and the cross-sectional strength reduction \(\phi\)-factors.

10.12.3 — Compression members shall be designed for the factored axial load \(P_u\) and the moment amplified for the effects of member curvature \(M_c\) as follows:

$$M_c = \delta_{ns} M_2$$ \hspace{1cm} (10-9)

where

$$\delta_{ns} = \frac{C_m}{P_u} \geq 1.0$$ \hspace{1cm} (10-10)

$$P_c = \frac{\pi^2 EI}{(k_{u}/r)^2}$$ \hspace{1cm} (10-11)

\(EI\) shall be taken as

$$EI = \frac{0.2E_c I_g + E_s I_{se}}{1 + \beta_d}$$ \hspace{1cm} (10-12)

or

For \(\psi_m < 2\)

$$k = \frac{20 - \psi_m}{20 - \sqrt{1 + \psi_m}}$$ \hspace{1cm} (C)

For \(\psi_m \geq 2\)

$$k = 0.9 \sqrt{1 + \psi_m}$$ \hspace{1cm} (D)

where \(\psi_m\) is the average of the \(\psi\)-values at the two ends of the compression member.

For compression members in a sway frame, hinged at one end, the effective length factor may be taken as:

$$k = 2.0 + 0.3 \psi$$ \hspace{1cm} (E)

where \(\psi\) is the value at the restrained end.

The use of the charts in Fig. R10.12.1, or the equations in this section, may be considered as satisfying the requirements of the code to justify \(k\) less than 1.0.
ACI 318 Building Code and Commentary

CHAPTER 10

CODE

COMMENTS

ACI 318 Building Code and Commentary

of a stiffness \(EI \) that reasonably approximates the variations in stiffness due to cracking, creep, and the nonlinearity of the concrete stress-strain curve. Eq. (10-12) was derived for small eccentricity ratios and high levels of axial load where the slenderness effects are most pronounced.

Creep due to sustained load will increase the lateral deflections of a column and hence the moment magnification. This is approximated for design by reducing the stiffness \(EI \) used to compute \(P_c \) and hence \(\delta_{ns} \) by dividing \(EI \) by \((1 + \beta_d) \). Both the concrete and steel terms in Eq. (10-12) are divided by \((1 + \beta_d) \). This reflects the premature yielding of steel in columns subjected to sustained load.

Either Eq. (10-12) or (10-13) may be used to compute \(EI \). Eq. (10-13) is a simplified approximation to Eq. (10-12). It

\[
EI = \frac{0.4 E_c f_y}{1 + \beta_d} \quad (10-13)
\]

\(\psi = \frac{\Sigma (EI/c)}{\Sigma (EI/l)} \) of compression members to \(\Sigma (EI/l) \) of flexural members in a plane at one end of a compression member

\(/ = \) span length of flexural member measured center to center of joints

Fig. R10.12.1—Effective length factors, \(k \)
CODE

10.12.3.1 — For members without transverse loads between supports, C_m shall be taken as

$$C_m = 0.6 + 0.4 \frac{M_1}{M_2} \geq 0.4$$

(10-14)

where M_1/M_2 is positive if the column is bent in single curvature. For members with transverse loads between supports, C_m shall be taken as 1.0.

10.12.3.2 — The factored moment M_2 in Eq. (10-9) shall not be taken less than

$$M_{2,\text{min}} = P_U (15 + 0.03h)$$

(10-15)

about each axis separately, where 15 and h are in millimeters. For members for which $M_{2,\text{min}}$ exceeds M_2, the value of C_m in Eq. (10-14) shall either be taken equal to 1.0, or shall be based on the ratio of the computed end moments M_1 and M_2.

10.13 — Magnified moments — Sway frames

10.13.1 — Magnified moments — Sway frames

The design of sway frames for slenderness were revised in the 1995 code. The revised procedure consists of three steps:

1. The magnified sway moments $\delta_s M_s$ are computed. This should be done in one of three ways. First, a second-order elastic frame analysis may be used (10.13.4.1). Second, an approximation to such analysis (10.13.4.2) may be used. The third option is to use the sway magnifier δ_s from previous editions of the code (10.13.4.3);

COMMENTARY

is less accurate than Eq. (10-12). $^{10.37}$ Eq. (10-13) may be simplified further by assuming $\beta_d = 0.6$. When this is done Eq. (10-13) becomes

$$EI = 0.25 E_c I_g$$

(F)

The term β_d is defined differently for nonsway and sway frames. See 10.0. For nonsway frames, β_d is the ratio of the maximum factored axial sustained load to the maximum factored axial load.

R10.12.3.1 — The factor C_m is an equivalent moment correction factor. The derivation of the moment magnifier assumes that the maximum moment is at or near midheight of the column. If the maximum moment occurs at one end of the column, design should be based on an equivalent uniform moment $C_m M_2$ that would lead to the same maximum moment when magnified. $^{10.27}$

In the case of compression members that are subjected to transverse loading between supports, it is possible that the maximum moment will occur at a section away from the end of the member. If this occurs, the value of the largest calculated moment occurring anywhere along the member should be used for the value of M_2 in Eq. (10-9). In accordance with the last sentence of 10.12.3.1, C_m is to be taken as 1.0 for this case.

R10.12.3.2 — In the code, slenderness is accounted for by magnifying the column end moments. If the factored column moments are very small or zero, the design of slender columns should be based on the minimum eccentricity given in this section. It is not intended that the minimum eccentricity be applied about both axes simultaneously.

The factored column end moments from the structural analysis are used in Eq. (10-14) in determining the ratio M_1/M_2 for the column when the design should be based on minimum eccentricity. This eliminates what would otherwise be a discontinuity between columns with computed eccentricities less than the minimum eccentricity and columns with computed eccentricities equal to or greater than the minimum eccentricity.

R10.13 — Magnified moments — Sway frames

The design of sway frames for slenderness were revised in the 1995 code. The revised procedure consists of three steps:
CODE

CHAPTER 10

318M/318RM-125

COMMENTARY

(2) The magnified sway moments \(\delta_s M_s \) are added to the unmagnified nonsway moment \(M_{ns} \) at each end of each column (10.13.3). The nonsway moments may be computed using a first-order elastic analysis;

(3) If the column is slender and heavily loaded, it is checked to see whether the moments at points between the ends of the column exceed those at the ends of the column. As specified in 10.13.5 this is done using the nonsway frame magnifier \(\delta_{ns} \) with \(P_c \) computed assuming \(k = 1.0 \) or less.

10.13.1 — For compression members not braced against sidesway, the effective length factor \(k \) shall be determined using \(E \) and \(I \) values in accordance with 10.11.1 and shall be greater than 1.0.

10.13.2 — For compression members not braced against sidesway, effects of slenderness may be neglected when \(k \ell / r \) is less than 22.

10.13.3 — The moments \(M_1 \) and \(M_2 \) at the ends of an individual compression member shall be taken as

\[
M_1 = M_{1ns} + \delta_s M_{1s} \quad (10-16)
\]

\[
M_2 = M_{2ns} + \delta_s M_{2s} \quad (10-17)
\]

where \(\delta_s M_{1s} \) and \(\delta_s M_{2s} \) shall be computed according to 10.13.4.

10.13.4 — Calculation of \(\delta_s M_s \)

10.13.4.1 — The magnified sway moments \(\delta_s M_s \) shall be taken as the column end moments calculated using a second-order elastic analysis based on the member stiffnesses given in 10.11.1.

R10.13.3 — The analysis described in this section deals only with plane frames subjected to loads causing deflections in that plane. If torsional displacements are significant, a three-dimensional second-order analysis should be used.

R10.13.4 — Calculation of \(\delta_s M_s \)

R10.13.4.1 — A second-order analysis is a frame analysis that includes the internal force effects resulting from deflections. When a second-order elastic analysis is used to compute \(\delta_s M_s \), the deflections should be representative of the stage immediately prior to the ultimate load. For this reason the reduced \(E \ell I_s \) values given in 10.11.1 should be used in the second-order analysis.

The term \(\beta_d \) is defined differently for nonsway and sway frames. See 10.0. Sway deflections due to short-term loads such as wind or earthquake are a function of the short-term stiffness of the columns following a period of sustained gravity load. For this case the definition of \(\beta_d \) in 10.0 gives \(\beta_d = 0 \). In the unusual case of a sway frame where the lateral loads are sustained, \(\beta_d \) will not be zero. This might occur if a building on a sloping site is subjected to earth pressure on one side but not on the other.

In a second-order analysis the axial loads in all columns that are not part of the lateral load resisting elements and depend on these elements for stability should be included.
In the 1989 and earlier codes, the moment magnifier equations for δ_b and δ_s included a stiffness reduction factor ϕ_K to cover the variability in the stability calculation. The second-order analysis method is based on the values of E and I from 10.11.1. These lead to a 20 to 25 percent overestimation of the lateral deflections that corresponds to a stiffness reduction factor ϕ_K between 0.80 and 0.85 on the $P\Delta$ moments. No additional ϕ-factor is needed in the stability calculation. Once the moments are established, selection of the cross sections of the columns involves the strength reduction factors ϕ from 9.3.2.2.

The $P\Delta$ moment diagrams for deflected columns are curved, with Δ related to the deflected shape of the columns. Eq. (10-18) and most commercially available second-order frame analyses have been derived assuming that the $P\Delta$ moments result from equal and opposite forces of $P\Delta/l_c$ applied at the bottom and top of the story. These forces give a straight line $P\Delta$ moment diagram. The curved $P\Delta$ moment diagrams lead to lateral displacements in the order of 15 percent larger than those from the straight line $P\Delta$ moment diagrams. This effect can be included in Eq. (10-18) by writing the denominator as $(1 + 1.15Q)$ rather than $(1 + Q)$. The 1.15 factor has been left out of Eq. (10-18) to maintain consistency with available computer programs.

If deflections have been calculated using service loads, Q in Eq. (10-18) should be calculated in the manner explained in R10.11.4.

In the 1989 and earlier codes, the moment magnifier equations for δ_b and δ_s included a stiffness reduction factor ϕ_K to cover the variability in the stability calculation. The Q factor analysis is based on deflections calculated using the values of E_c and I_c from 10.11.1, which include the equivalent of a stiffness reduction factor ϕ_K, as explained in R10.13.4.1. As a result, no additional ϕ-factor is needed in the stability calculation. Once the moments are established using Eq. (10-18), selection of the cross sections of the columns involves the strength reduction factors ϕ from 9.3.2.2.

Alternatively, it shall be permitted to calculate $\delta_s M_s$ as:

$$\delta_s M_s = \frac{M_s}{1 - Q} \geq M_s \quad (10-18)$$

If δ_s calculated in this way exceeds 1.5, $\delta_s M_s$ shall be calculated using 10.13.4.1 or 10.13.4.3.

Alternatively, it shall be permitted to calculate the magnified sway moment $\delta_s M_s$ as:

$$\delta_s M_s = \frac{M_s}{1 - \frac{\Sigma P_u}{0.75 \Sigma P_c}} \geq M_s \quad (10-19)$$

where ΣP_u is the summation for all the vertical loads in a story and ΣP_c is the summation for all sway resisting columns in a story. P_c is calculated using Eq. (10-11)
CODE

using \(k \) from 10.13.1 and \(EI \) from Eq. (10-12) or Eq. (10-13).

COMMENTARY

have \(\ell_u/r \) greater than the value given in Eq. (10-20) and should be checked using 10.13.5.

If the lateral load deflections involve a significant torsional displacement, the moment magnification in the columns farthest from the center of twist may be underestimated by the moment magnifier procedure. In such cases, a three-dimensional second-order analysis should be considered.

The 0.75 in the denominator of Eq. (10-19) is a stiffness reduction factor \(\phi_k \) as explained in R10.12.3.

In the calculation of \(EI, \beta_d \) will normally be zero for a sway frame because the lateral loads are generally of short duration. (See R10.13.4.1).

R10.13.5 — The unmagnified nonsway moments at the ends of the columns are added to the magnified sway moments at the same points. Generally, one of the resulting end moments is the maximum moment in the column. However, for slender columns with high axial loads the point of maximum moment may be between the ends of the column so that the end moments are no longer the maximum moments. If \(\ell_u/r \) is less than the value given by Eq. (10-20) the maximum moment at any point along the height of such a column will be less than 1.05 times the maximum end moment. When \(\ell_u/r \) exceeds the value given by Eq. (10-20), the maximum moment will occur at a point between the ends of the column and will exceed the maximum end moment by more than 5 percent. 10.26 In such a case the maximum moment is calculated by magnifying the end moments using Eq. (10-9).

R10.13.6 — The possibility of sidesway instability under gravity loads alone should be investigated. When using second-order analyses to compile \(\delta_s M_s \) (10.13.4.1), the frame should be analyzed twice for the case of factored gravity loads plus a lateral load applied to the frame. This load may be the lateral load used in design or it may be a single lateral load applied to the top of the frame. The first analysis should be a first-order analysis, the second analysis should be a second-order analysis. The deflection from the second-order analysis should not exceed 2.5 times the deflection from the first-order analysis. If one story is much more flexible than the others, the deflection ratio should be computed in that story. The lateral load should be large enough to give deflections of a magnitude that can be compared accurately. In unsymmetrical frames that deflect laterally under gravity loads alone, the lateral load should act in the direction for which it will increase the lateral deflections.

When using 10.13.4.2 to compute \(\delta_s M_s \), the value of \(Q \) evaluated using factored gravity loads should not exceed 0.60. This is equivalent to \(\delta_s = 2.5 \). The values of \(V_u \) and \(\Delta_u \) used to compute \(Q \) can result from assuming any real or arbitrary set of lateral loads provided that \(V_u \) and \(\Delta_u \) are both from the same loading. If \(Q \) as computed in 10.11.4.2 is 0.2 or less,
Axially loaded members supporting a slab system included within the scope of 13.1 shall be designed as provided in Chapter 10 and in accordance with the additional requirements of Chapter 13.

10.15 — Transmission of column loads through floor system

When the specified compressive strength of concrete in a column is greater than 1.4 times that specified for a floor system, transmission of load through the floor system shall be provided by 10.15.1, 10.15.2, or 10.15.3.

10.15.1 — Concrete of strength specified for the column shall be placed in the floor at the column location. Top surface of the column concrete shall extend 600 mm into the slab from face of column. Column concrete shall be well integrated with floor concrete, and shall be placed in accordance with 6.4.5 and 6.4.6.
10.15.2 — Strength of a column through a floor system shall be based on the lower value of concrete strength with vertical dowels and spirals as required.

10.15.3 — For columns laterally supported on four sides by beams of approximately equal depth or by slabs, strength of the column shall be permitted to be based on an assumed concrete strength in the column joint equal to 75 percent of column concrete strength plus 35 percent of floor concrete strength.

10.16 — Composite compression members

R10.16 — Composite compression members

10.16.1 — Composite compression members shall include all such members reinforced longitudinally with structural steel shapes, pipe, or tubing with or without longitudinal bars.

R10.16.1 — Composite columns are defined without reference to classifications of combination, composite, or concrete-filled pipe column. Reference to other metals used for reinforcement has been omitted because they are seldom used in concrete construction.

10.16.2 — Strength of a composite member shall be computed for the same limiting conditions applicable to ordinary reinforced concrete members.

R10.16.2 — The same rules used for computing the load-moment interaction strength for reinforced concrete sections can be applied to composite sections. Interaction charts for concrete-filled tubing would have a form identical to those of ACI SP-$^{10.40}$ and the ACI Design Handbook$^{10.33}$ but with γ slightly greater than 1.0.

10.16.3 — Any axial load strength assigned to concrete of a composite member shall be transferred to the concrete by members or brackets in direct bearing on the composite member concrete.

R10.16.3 and R10.16.4 — Direct bearing or direct connection for transfer of forces between steel and concrete can be developed through lugs, plates, or reinforcing bars welded to the structural shape or tubing before the concrete is cast. Flexural compressive stress need not be considered a part of direct compression load to be developed by bearing. A concrete encasement around a structural steel shape may stiffen the shape, but it would not necessarily increase its strength.

10.16.4 — All axial load strength not assigned to concrete of a composite member shall be developed by direct connection to the structural steel shape, pipe, or tube.

10.16.5 — For evaluation of slenderness effects, radius of gyration of a composite section shall be not greater than the value given by

R10.16.5 — Eq. (10-21) is given because the rules of 10.11.2 for estimating the radius of gyration are overly conservative for concrete filled tubing and are not applicable for members with enclosed structural shapes.
CODE

\[r = \frac{(E_c A_c/5)}{(E_s A_s/5) + E_s A_t} \] \hspace{1cm} (10-21)

and, as an alternative to a more accurate calculation, \(EI \) in Eq. (10-11) shall be taken either as Eq. (10-12) or

\[EI = \frac{(E_c A_c/5)}{1 + \beta_d} + E_s I_t \] \hspace{1cm} (10-22)

10.16.6 — Structural steel encased concrete core

10.16.6.1 — For a composite member with a concrete core encased by structural steel, the thickness of the steel encasement shall be not less than

\[\frac{b}{3E_s} \] for each face of width \(b \)

nor

\[\frac{h}{8E_s} \] for circular sections of diameter \(h \)

10.16.6.2 — Longitudinal bars located within the encased concrete core shall be permitted to be used in computing \(A_t \) and \(I_t \).

10.16.7 — Spiral reinforcement around structural steel core

A composite member with spirally reinforced concrete around a structural steel core shall conform to the 10.16.7.1 through 10.16.7.8.

10.16.7.1 — Specified compressive strength of concrete \(f'_c \) shall be not less than 17 MPa.

10.16.7.2 — Design yield strength of structural steel core shall be the specified minimum yield strength for the grade of structural steel used but not to exceed 350 MPa.

10.16.7.3 — Spiral reinforcement shall conform to 10.9.3.

10.16.7.4 — Longitudinal bars located within the spiral shall be not less than 0.01 nor more than 0.08 times net area of concrete section.

10.16.7.5 — Longitudinal bars located within the spiral shall be permitted to be used in computing \(A_t \) and \(I_t \).

COMMENTARY

In reinforced concrete columns subject to sustained loads, creep transfers some of the load from the concrete to the steel, increasing the steel stresses. In the case of lightly reinforced columns, this load transfer may cause the compression steel to yield prematurely, resulting in a loss in the effective \(EI \). Accordingly, both the concrete and steel terms in Eq. (10-12) are reduced to account for creep. For heavily reinforced columns or for composite columns in which the pipe or structural shape makes up a large percentage of the cross section, the load transfer due to creep is not significant. Accordingly, Eq. (10-22) was revised in the 1980 code supplement so that only the \(EI \) of the concrete is reduced for sustained load effects.

R10.16.6 — Structural steel encased concrete core

Steel encased concrete sections should have a metal wall thickness large enough to attain longitudinal yield stress before buckling outward.

R10.16.7 — Spiral reinforcement around structural steel core

Concrete that is laterally confined by a spiral has increased load-carrying strength, and the size of the spiral required can be regulated on the basis of the strength of the concrete outside the spiral the same reasoning that applies for columns reinforced only with longitudinal bars. The radial pressure provided by the spiral ensures interaction between concrete, reinforcing bars, and steel core such that longitudinal bars will both stiffen and strengthen the cross section.
CODE

10.16.8 — Tie reinforcement around structural steel core

A composite member with laterally tied concrete around a structural steel core shall conform to 10.16.8.1 through 10.16.8.8.

10.16.8.1 — Specified compressive strength of concrete f'_c shall be not less than 17 MPa.

10.16.8.2 — Design yield strength of structural steel core shall be the specified minimum yield strength for the grade of structural steel used but not to exceed 350 MPa.

10.16.8.3 — Lateral ties shall extend completely around the structural steel core.

10.16.8.4 — Lateral ties shall have a diameter not less than 0.02 times the greatest side dimension of composite member, except that ties shall not be smaller than No. 10 and are not required to be larger than No. 15. Welded wire fabric of equivalent area shall be permitted.

10.16.8.5 — Vertical spacing of lateral ties shall not exceed 16 longitudinal bar diameters, 48 tie bar diameters, or 0.5 times the least side dimension of the composite member.

10.16.8.6 — Longitudinal bars located within the ties shall be not less than 0.01 nor more than 0.08 times net area of concrete section.

10.16.8.7 — A longitudinal bar shall be located at every corner of a rectangular cross section, with other longitudinal bars spaced not farther apart than one-half the least side dimension of the composite member.

10.16.8.8 — Longitudinal bars located within the ties shall be permitted to be used in computing A_t for strength but not in computing I_t for evaluation of slenderness effects.

10.17 — Bearing strength

10.17.1 — Design bearing strength on concrete shall not exceed $\phi (0.85f'_c A_t)$, except when the supporting surface is wider on all sides than the loaded area, then the design bearing strength on the loaded area shall be permitted to be multiplied by $\sqrt{A_t}/A_1$ but not more than 2.

COMMENTARY

R10.16.8 — Tie reinforcement around structural steel core

Concrete that is laterally confined by tie bars is likely to be rather thin along at least one face of a steel core section. Therefore, complete interaction between the core, the concrete, and any longitudinal reinforcement should not be assumed. Concrete will probably separate from smooth faces of the steel core. To maintain the concrete around the structural steel core, it is reasonable to require more lateral ties than needed for ordinary reinforced concrete columns. Because of probable separation at high strains between the steel core and the concrete, longitudinal bars will be ineffective in stiffening cross sections even though they would be useful in sustaining compression forces. The yield strength of the steel core should be limited to that which exists at strains below those that can be sustained without spalling of the concrete. It has been assumed that axially compressed concrete will not spall at strains less than 0.0018. The yield strength of 0.0018 x 200,000, or 360 MPa, represents an upper limit of the useful maximum steel stress.

R10.17 — Bearing strength

R10.17.1 — This section deals with bearing strength on concrete supports. The permissible bearing stress of $0.85f'_c$ is based on tests reported in Reference 10.41. (See also 15.8).

When the supporting area is wider than the loaded area on all sides, the surrounding concrete confines the bearing area, resulting in an increase in bearing strength. No minimum depth is given for a supporting member. The minimum
Section 10.17 does not apply to post-tensioning anchorages.

Post-tensioning anchorages are normally laterally reinforced, in accordance with 18.13.

Fig. R10.17—Application of frustum to find A_2 in stepped or sloped supports
CHAPTER 11 — SHEAR AND TORSION

11.0 — Notation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>shear span, distance between concentrated load and face of support, mm</td>
</tr>
<tr>
<td>Ac</td>
<td>area of concrete section resisting shear transfer, mm²</td>
</tr>
<tr>
<td>Acp</td>
<td>area enclosed by outside perimeter of concrete cross section, mm². See 11.6.1</td>
</tr>
<tr>
<td>Ai</td>
<td>area of reinforcement in bracket or corbel resisting factored moment, [V_u a + N uc (h − d)], mm²</td>
</tr>
<tr>
<td>Ag</td>
<td>gross area of section, mm²</td>
</tr>
<tr>
<td>Ah</td>
<td>area of shear reinforcement parallel to flexural tension reinforcement, mm²</td>
</tr>
<tr>
<td>Ar</td>
<td>total area of longitudinal reinforcement to resist torsion, mm²</td>
</tr>
<tr>
<td>An</td>
<td>area of reinforcement in bracket or corbel resisting tensile force N uc, mm²</td>
</tr>
<tr>
<td>Ao</td>
<td>gross area enclosed by shear flow path, mm²</td>
</tr>
<tr>
<td>Aoh</td>
<td>area enclosed by centerline of the outermost closed transverse torsional reinforcement, mm²</td>
</tr>
<tr>
<td>Apsh</td>
<td>area of prestressed reinforcement in tension zone, mm²</td>
</tr>
<tr>
<td>As</td>
<td>area of nonprestressed tension reinforcement, mm²</td>
</tr>
<tr>
<td>At</td>
<td>area of one leg of a closed stirrup resisting torsion within a distance s, mm²</td>
</tr>
<tr>
<td>Av</td>
<td>area of shear reinforcement within a distance s, or area of shear reinforcement perpendicular to flexural tension reinforcement within a distance s for deep flexural members, mm²</td>
</tr>
<tr>
<td>Avf</td>
<td>area of shear-friction reinforcement, mm²</td>
</tr>
<tr>
<td>Avh</td>
<td>area of shear reinforcement parallel to flexural tension reinforcement within a distance s2, mm²</td>
</tr>
<tr>
<td>b</td>
<td>width of compression face of member, mm</td>
</tr>
<tr>
<td>bo</td>
<td>perimeter of critical section for slabs and footings, mm</td>
</tr>
<tr>
<td>bt</td>
<td>width of that part of cross section containing the closed stirrups resisting torsion, mm</td>
</tr>
<tr>
<td>bw</td>
<td>web width, or diameter of circular section, mm</td>
</tr>
</tbody>
</table>

This chapter includes shear and torsion provisions for both nonprestressed and prestressed concrete members. The shear-friction concept (11.7) is particularly applicable to design of reinforcement details in precast structures. Special provisions are included for deep flexural members (11.8), brackets and corbels (11.9), and shearwalls (11.10). Shear provisions for slabs and footings are given in 11.12.

R11.0 — Notation

Units of measurement are given in the Notation to assist the user and are not intended to preclude the use of other correctly applied units for the same symbol, such as m or kN.

Tests have indicated that the average shear stress over the full effective section also may be applicable for circular sections. Note the special definition of d for such sections.
Although the value of d may vary along the span of a prestressed beam, studies11.2 showed that, for prestressed concrete members, d need not be taken less than $0.80h$ for circular sections and prestressed members. The beams considered had some straight tendons or reinforcing bars at the bottom of the section and had stirrups which enclosed those tendons.
CODE

\[I \] = moment of inertia of section resisting externally applied factored loads, mm^4

\[l_n \] = clear span measured face-to-face of supports, mm

\[l_v \] = length of shearhead arm from centroid of concentrated load or reaction, mm

\[l_w \] = horizontal length of wall, mm

\[M_{cr} \] = moment causing flexural cracking at section due to externally applied loads. See 11.4.2.1

\[M_m \] = modified moment, mm-N

\[M_{max} \] = maximum factored moment at section due to externally applied loads, mm-N

\[M_p \] = required plastic moment strength of shearhead cross section, mm-N

\[M_u \] = factored moment at section, mm-N

\[M_v \] = moment resistance contributed by shearhead reinforcement, mm-N

\[N_u \] = factored axial load normal to cross section occurring simultaneously with \(V_u \), to be taken as positive for compression, negative for tension, and to include effects of tension due to creep and shrinkage, N

\[N_{uc} \] = factored tensile force applied at top of bracket or corbel acting simultaneously with \(V_u \), to be taken as positive for tension, N

\[p_{cp} \] = outside perimeter of the concrete cross section, mm. See 11.6.1

\[p_h \] = perimeter of centerline of outermost closed transverse torsional reinforcement, mm

\[s \] = spacing of shear or torsion reinforcement in direction parallel to longitudinal reinforcement, mm

\[s_1 \] = spacing of vertical reinforcement in wall, mm

\[s_2 \] = spacing of shear or torsion reinforcement in direction perpendicular to longitudinal reinforcement—or spacing of horizontal reinforcement in wall, mm

\[t \] = thickness of a wall of a hollow section, mm

\[T_n \] = nominal torsional moment strength, mm-N

\[T_u \] = factored torsional moment at section, mm-N

\[V_c \] = nominal shear strength provided by concrete, N

\[V_{ci} \] = nominal shear strength provided by concrete when diagonal cracking results from combined shear and moment, N

\[V_{cw} \] = nominal shear strength provided by concrete when diagonal cracking results from excessive principal tensile stress in web, N

\[V_d \] = shear force at section due to unfactored dead load, N

\[V_i \] = factored shear force at section due to externally applied loads occurring simultaneously with \(M_{max} \), N

\[V_n \] = nominal shear strength, N

\[V_p \] = vertical component of effective prestress force at section, N

\[V_s \] = nominal shear strength provided by shear reinforcement, N

\[V_u \] = factored shear force at section, N
CODE

\(\nu_n \) = nominal shear stress, MPa. See 11.12.6.2
\(\gamma_t \) = distance from centroidal axis of gross section, neglecting reinforcement, to extreme fiber in tension, mm
\(\alpha \) = angle between inclined stirrups and longitudinal axis of member
\(\alpha_f \) = angle between shear-friction reinforcement and shear plane
\(\alpha_s \) = constant used to compute \(V_c \) in slabs and footings
\(\alpha_v \) = ratio of stiffness of shearhead arm to surrounding composite slab section. See 11.12.4.5
\(\beta_c \) = ratio of long side to short side of concentrated load or reaction area
\(\beta_p \) = constant used to compute \(V_c \) in prestressed slabs
\(\gamma_f \) = fraction of unbalanced moment transferred by flexure at slab-column connections. See 13.5.3.2
\(\gamma_v \) = fraction of unbalanced moment transferred by eccentricity of shear at slab-column connections. See 11.12.6.1
\(\eta \) = number of identical arms of shearhead
\(\theta \) = angle of compression diagonals in truss analogy for torsion
\(\lambda \) = correction factor related to unit weight of concrete
\(\mu \) = coefficient of friction. See 11.7.4.3
\(\rho \) = ratio of nonprestressed tension reinforcement
\(\rho_h \) = ratio of horizontal shear reinforcement area to gross concrete area of vertical section
\(\rho_n \) = ratio of vertical shear reinforcement area to gross concrete area of horizontal section
\(\rho_w \) = strength reduction factor. See 9.3

COMMENTS

11.1 — Shear strength

11.1.1 — Design of cross sections subject to shear shall be based on:

\[\phi V_n \geq V_u \] \quad (11-1)

where \(V_u \) is factored shear force at section considered and \(V_n \) is nominal shear strength computed by:

\[V_n = V_c + V_s \] \quad (11-2)

where \(V_c \) is nominal shear strength provided by concrete in accordance with 11.3 or 11.4, and \(V_s \) is nominal shear strength provided by shear reinforcement in accordance with 11.5.6.

R11.1 — Shear strength

The shear strength is based on an average shear stress on the full effective cross section \(b_w d \). In a member without shear reinforcement, shear is assumed to be carried by the concrete web. In a member with shear reinforcement, a portion of the shear strength is assumed to be provided by the concrete and the remainder by the shear reinforcement.

The shear strength provided by concrete \(V_c \) is assumed to be the same for beams with and without shear reinforcement and is taken as the shear causing significant inclined cracking. These assumptions are discussed in References 11.1, 11.2, and 11.3.
11.1.1.1 — In determining shear strength V_n, effect of any openings in members shall be considered.

11.1.1.2 — In determining shear strength V_c, whenever applicable, effects of axial tension due to creep and shrinkage in restrained members shall be considered and effects of inclined flexural compression in variable depth members shall be permitted to be included.

11.1.2 — The values of f'_c used in this chapter shall not exceed 25/3 MPa except as allowed in 11.1.2.1.

11.1.2.1 — Values of f'_c greater than 25/3 MPa shall be permitted in computing $V_c, V_{ci},$ and V_{cw} for reinforced or prestressed concrete beams and concrete joist construction having minimum web reinforcement equal to $f'_c/35$ times, but not more than three times, the amounts required by 11.5.5.3, 11.5.5.4, or 11.6.5.2.

11.1.3 — Computation of maximum factored shear force V_u at supports in accordance with 11.1.3.1 or 11.1.3.2 shall be permitted when all of the following conditions are satisfied:

(a) Support reaction, in direction of applied shear, introduces compression into the end regions of member;

(b) Loads are applied at or near the top of the member;

(c) No concentrated load occurs between face of support and location of critical section defined in 11.1.3.1 or 11.1.3.2.

11.1.3.1 — For nonprestressed members, sections located less than a distance d from face of support shall be permitted to be designed for the same shear V_u as that computed at a distance d.

R11.1.1 — Openings in the web of a member can reduce its shear strength. The effects of openings are discussed in Section 4.7 of Reference 11.1 and in References 11.4 and 11.5.

R11.1.2 — In a member of variable depth, the internal shear at any section is increased or decreased by the vertical component of the inclined flexural stresses. Computation methods are outlined in various textbooks and in the 1940 Joint Committee Report.

R11.1.2 — A limited number of tests of reinforced concrete beams made with high strength concrete (f'_c greater than about 55 MPa) suggest that the inclined cracking load increases less rapidly than Eq. (11-3) or (11-5) would suggest. This was offset by an increased effectiveness of the stirrups compared to strength predicted by Eq. (11-15), (11-16), and (11-17). Other tests of high-strength concrete girders with minimum web reinforcement indicated that this amount of web reinforcement was inadequate to prevent brittle shear failures when inclined cracking occurs. There are no test data on the two-way shear strength of high-strength concrete slabs or torsional strength. Until more practical experience is obtained with beams and slabs built with concretes with strengths greater than 69 MPa, it is prudent to limit f'_c to 25/3 MPa in calculations of shear strength and development length. For beams with enough stirrups to allow post-cracking capacity this limit is not imposed.

R11.1.3.1 — The closest inclined crack to the support of the beam in Fig. R11.1.3.1(a) will extend upwards from the face of the support reaching the compression zone about d from the face of the support. If loads are applied to the top of this beam, the stirrups across this crack are stressed by loads acting on the lower freebody in Fig. R11.1.3.1(a). The loads applied to the beam between the face of the column and the point d away from the face are transferred directly to the support by compression in the web above the crack. Accordingly,
the code permits design for a maximum factored shear force V_u at a distance d from the support for nonprestressed members, and at a distance $h/2$ for prestressed members. Two things are emphasized: first, stirrups are required across the potential crack designed for the shear at d from the support, and second, a tension force exists in the longitudinal reinforcement at the face of the support.

In Fig. R11.1.3.1(b), loads are shown acting near the bottom of a beam. In this case, the critical section is taken at the face of the support. Loads acting near the support should be transferred across the inclined crack extending upward from the support face. The shear force acting on the critical section should include all loads applied below the potential inclined crack.
Typical support conditions where the shear force at a distance d from the support may be used include: (1) members supported by bearing at the bottom of the member, such as shown in Fig. R11.1.3.1(c); and (2) members framing monolithically into another member as illustrated in Fig. R11.1.3.1(d).

Support conditions where this provision should not be applied include: (1) Members framing into a supporting member in tension, such as shown in Fig. R11.1.3.1(e). For this case, the critical section for shear should be taken at the face of the support. Shear within the connection should also be investigated and special corner reinforcement should be provided. (2) Members for which loads are not applied at or near the top of the member. This is the condition referred to in Fig. 11.1.3.1(b). For such cases the critical section is taken at the face of the support. Loads acting near the support should be transferred across the inclined crack extending upward from the support face. The shear force acting on the critical section should include all loads applied below the potential inclined crack. (3) Members loaded such that the shear at sections between the support and a distance d from the support differs radically from the shear at distance d. This commonly occurs in brackets and in beams where a concentrated load is located close to the support, as shown in Fig. R11.1.3.1(f) or in footings supported on piles. In this case the shear at the face of the support should be used.

11.1.3.2 — For prestressed members, sections located less than a distance $h/2$ from face of support shall be permitted to be designed for the same shear V_u, as that computed at a distance $h/2$.

R11.1.3.2 — Because d frequently varies in prestressed members, the location of the critical section has arbitrarily been taken as $h/2$ from the face of the support.

11.1.4 — For deep flexural members, brackets and corbels, walls, and slabs and footings, the special provisions of 11.8 through 11.12 shall apply.
CODE

11.2 — Lightweight concrete

11.2.1 — Provisions for shear and torsion strength apply to normalweight concrete. When lightweight aggregate concrete is used, one of the following modifications shall apply to \(\sqrt{f_{ct}'} \) throughout Chapter 11, except 11.5.4.3, 11.5.6.9, 11.6.3.1, 11.12.3.2, and 11.12.4.8.

11.2.1.1 — When \(f_{ct} \) is specified and concrete is proportioned in accordance with 5.2, \(1.8f_{ct} \) shall be substituted for \(\sqrt{f_{ct}'} \), but the value of \(1.8f_{ct} \) shall not exceed \(\sqrt{f_{ct}'} \).

11.2.1.2 — When \(f_{ct} \) is not specified, all values of \(\sqrt{f_{ct}'} \) shall be multiplied by 0.75 for all-lightweight concrete and 0.85 for sand-lightweight concrete. Linear interpolation shall be permitted when partial sand replacement is used.

11.3 — Shear strength provided by concrete for nonprestressed members

11.3.1 — Shear strength \(V_c \) shall be computed by provisions of 11.3.1.1 through 11.3.1.3, unless a more detailed calculation is made in accordance with 11.3.2.

11.3.1.1 — For members subject to shear and flexure only,

\[
V_c = \left(\frac{\sqrt{f_{ct}'}}{6} \right) b_w d \tag{11-3}
\]

11.3.1.2 — For members subject to axial compression,

\[
V_c = \left(1 + \frac{N_u}{14A_g} \right) \left(\frac{\sqrt{f_{ct}'}}{6} \right) b_w d
\]

(11-4)

Quantity \(N_u/A_g \) shall be expressed in MPa.

11.3.1.3 — For members subject to significant axial tension, shear reinforcement shall be designed to carry total shear unless a more detailed analysis is made using 11.3.2.3.

11.3.2 — Shear strength \(V_c \) shall be permitted to be computed by the more detailed calculation of 11.3.2.1 through 11.3.2.3.

COMMENTARY

11.2 — Lightweight concrete

Two alternative procedures are provided to modify the provisions for shear and torsion when lightweight aggregate concrete is used. The lightweight concrete modification applies only to the terms containing \(\sqrt{f_{ct}'} \) in the equations of Chapter 11.

R11.2.1.1 — The first alternative bases the modification on laboratory tests to determine the relationship between splitting tensile strength \(f_{ct} \) and the compressive strength \(f_{ct}' \) for the lightweight concrete being used. For normalweight concrete, the splitting tensile strength \(f_{ct} \) is approximately equal to \(\sqrt{f_{ct}'}/1.8 \).

R11.2.1.2 — The second alternative bases the modification on the assumption that the tensile strength of lightweight concrete is a fixed fraction of the tensile strength of normal weight concrete. The multipliers are based on data from tests on many types of structural lightweight aggregate concrete.

R11.3 — Shear strength provided by concrete for nonprestressed members

R11.3.1.1 — See R11.3.2.1.

R11.3.1.2 and R11.3.1.3 — See R11.3.2.2.
CODE

11.3.2.1 — For members subject to shear and flexure only,

\[V_c = \left(\sqrt{f_c^2 + 120\rho_w \frac{V_{ud}}{M_u}} \right) \frac{b_w d}{7} \]

but not greater than \(0.3\sqrt{f_c^2 b_w d}\). Quantity \(V_{ud}/M_u\) shall not be taken greater than 1.0 in computing \(V_c\) by Eq. (11-5), where \(M_u\) is factored moment occurring simultaneously with \(V_u\) at section considered.

11.3.2.2 — For members subject to axial compression, it shall be permitted to compute \(V_c\) using Eq. (11-5) with \(M_m\) substituted for \(M_u\) and \(V_{ud}/M_u\) not then limited to 1.0, where

\[M_m = M_u - N_u \left(\frac{4h - d}{8} \right) \]

However, \(V_c\) shall not be taken greater than

\[V_c = 0.3\sqrt{f_c^2 b_w d} \left(1 + \frac{0.3N_u}{A_g} \right) \]

Quantity \(N_u/A_g\) shall be expressed in MPa. When \(M_m\) as computed by Eq. (11-6) is negative, \(V_c\) shall be computed by Eq. (11-7).

COMMENTARY

R11.3.2.1 — Eq. (11-5) is the basic expression for shear strength of members without shear reinforcement. Designers should recognize that the three variables in Eq. (11-5), \(f_c^2\) (as a measure of concrete tensile strength), \(\rho_w\), and \(V_{ud}/M_u\), are known to affect shear strength, although some research data\(^{11.1,11.12}\) indicate that Eq. (11-5) overestimates the influence of \(f_c^2\) and underestimates the influence of \(\rho_w\) and \(V_{ud}/M_u\). Further information\(^{11.13}\) has indicated that shear strength decreases as the overall depth of the member increases.

The minimum value of \(M_u\) equal to \(V_{ud}\) in Eq. (11-5) is to limit \(V_c\) near points of inflection.

For most designs, it is convenient to assume that the second term of Eq. (11-5) equals \(0.02\sqrt{f_c^2}\) and use \(V_c\) equal to \((1/6)\sqrt{f_c^2 b_w d}\) as permitted in 11.3.1.1.

R11.3.2.2 — Eq. (11-6) and (11-7), for members subject to axial compression in addition to shear and flexure are derived in the ACI-ASCE Committee 326 report.\(^11.3\) As \(N_u\) is increased, the value of \(V_c\) computed from Eq. (11-5) and (11-6) will exceed the upper limit given by Eq. (11-7) before the value of \(M_m\) given by Eq. (11-6) becomes negative. The value of \(V_c\) obtained from Eq. (11-5) has no physical significance if a negative value of \(M_m\) is substituted. For this condition, Eq. (11-7) or Eq. (11-4) should be used to calculate \(V_c\). Values of \(V_c\) for members subject to shear and axial load are illustrated in Fig. R11.3.2.2. The background for these equations is discussed and comparisons are made with test data in Reference 11.2.

Because of the complexity of Eq. (11-5) and (11-6), an alternative design provision, Eq. (11-4), is permitted.

![Fig. R11.3.2.2—Comparison of shear strength equations for members subject to axial load](image-url)
CODE

11.3.2.3 — For members subject to significant axial tension,

\[V_c = \left(1 + \frac{0.3 N_u}{A_g} \right) \sqrt[3]{\frac{f'_c}{6} b_w d} \]

(11-8)

but not less than zero, where \(N_u \) is negative for tension. Quantity \(N_u/A_g \) shall be expressed in MPa.

11.3.3 — For circular members, the area used to compute \(V_c \) shall be taken as the product of the diameter and effective depth of the concrete section. It shall be permitted to take the effective depth as 0.8 times the diameter of the concrete section.

11.4 — Shear strength provided by concrete for prestressed members

11.4.1 — For members with effective prestress force not less than 40 percent of the tensile strength of flexural reinforcement, unless a more detailed calculation is made in accordance with 11.4.2,

\[V_c = \left(\frac{f'_c}{20} + \frac{5 V_{ud}}{M_u} \right) b_w d \]

(11-9)

but \(V_c \) need not be taken less than \(1/6 \sqrt[3]{f'_c b_w d} \) nor shall \(V_c \) be taken greater than \(0.4 \sqrt[3]{f'_c b_w d} \) nor the value given in 11.4.3 or 11.4.4. The quantity \(V_{ud} M_u \) shall not be taken greater than 1.0, where \(M_u \) is factored moment occurring simultaneously with \(V_u \) at the section considered. When applying Eq. (11-9), \(d \) in the term \(V_u d/M_u \) shall be the distance from extreme compression fiber to centroid of prestressed reinforcement.

COMMENTARY

R11.3.2.3 — Eq. (11-8) may be used to compute \(V_c \) for members subject to significant axial tension. Shear reinforcement may then be designed for \(V_n - V_c \). The term significant is used to recognize that a designer must use judgment in deciding whether axial tension needs to be considered. Low levels of axial tension often occur due to volume changes, but are not important in structures with adequate expansion joints and minimum reinforcement. It may be desirable to design shear reinforcement to carry total shear if there is uncertainty about the magnitude of axial tension.

R11.3.3 — Shear tests of members with circular sections indicate that the effective area can be taken as the gross area of the section or as an equivalent rectangular area.\(^{11.1, 11.14, 11.15}\)

R11.4 — Shear strength provided by concrete for prestressed members

R11.4.1 — Eq. (11-9) offers a simple means of computing \(V_c \) for prestressed concrete beams.\(^{11.2}\) It may be applied to beams having prestressed reinforcement only, or to members reinforced with a combination of prestressed reinforcement and nonprestressed deformed bars. Eq. (11-9) is most applicable to members subject to uniform loading and may give conservative results when applied to composite girders for bridges.

In applying Eq. (11-9) to simply supported members subject to uniform loads \(V_{ud} M_u \) can be expressed as

\[\frac{V_{ud}}{M_u} = \frac{d (-2x)}{x (-x)} \]

![Fig. R11.4.1—Application of Eq. (11-9) to uniformly loaded prestressed members](image-url)
CODE

11.4.2 — Shear strength \(V_c\) shall be permitted to be computed in accordance with 11.4.2.1 and 11.4.2.2, where \(V_c\) shall be the lesser of \(V_{ci}\) or \(V_{cw}\).

11.4.2.1—Shear strength \(V_{ci}\) shall be computed by

\[
V_{ci} = \frac{\sqrt{f_c'}}{20} b_w d + V_d + \frac{V_{M_{cr}}}{M_{max}}
\]

(11-10)

but \(V_{ci}\) need not be taken less than \(1/7 \sqrt{f_c'}\), where

\[
M_{cr} = \frac{I}{y_t} \left(\frac{\sqrt{f_c'}}{2} + f_{pe} - f_d \right)
\]

(11-11)

and values of \(M_{max}\) and \(V_i\) shall be computed from the load combination causing maximum moment to occur at the section.

11.4.2.2—Shear strength \(V_{cw}\) shall be computed by

\[
V_{cw} = 0.3 \left(\sqrt{f_c'} + f_{pc} \right) b_w d + V_p
\]

(11-12)

Alternatively, \(V_{cw}\) shall be computed as the shear force corresponding to dead load plus live load that results in a principal tensile stress of \((1/3) \sqrt{f_c'}\) at the centroidal axis of member, or at the intersection of flange and web when the centroidal axis is in the flange. In composite members, the principal tensile stress shall be computed using the cross section that resists live load.

11.4.2.3 — In Eq. (11-10) and (11-12), \(d\) shall be the distance from extreme compression fiber to centroid of prestressed reinforcement or \(0.8h\), whichever is greater.

COMMENTARY

where \(l\) is the span length and \(x\) is the distance from the section being investigated to the support. For concrete with \(f_c'\) equal to 35 MPa, \(V_c\) from 11.4.1 varies as shown in Fig. R11.4.1. Design aids based on this equation are given in Reference 11.16.

R11.4.2 — Two types of inclined cracking occur in concrete beams: web-shear cracking and flexure-shear cracking. These two types of inclined cracking are illustrated in Fig. R11.4.2.

Web-shear cracking begins from an interior point in a member when the principal tensile stresses exceed the tensile strength of the concrete. Flexure-shear cracking is initiated by flexural cracking. When flexural cracking occurs, the shear stresses in the concrete above the crack are increased. The flexure-shear crack develops when the combined shear and tensile stress exceeds the tensile strength of the concrete.

Eq. (11-10) and (11-12) may be used to determine the shear forces causing flexure-shear and web-shear cracking, respectively. The shear strength provided by the concrete \(V_c\) is assumed equal to the lesser of \(V_{ci}\) and \(V_{cw}\). The derivations of Eq. (11-10) and (11-12) are summarized in Reference 11.17.

In deriving Eq. (11-10) it was assumed that \(V_{ci}\) is the sum of the shear required to cause a flexural crack at the point in question given by:

\[
V = \frac{V_{M_{cr}}}{M_{max}}
\]

plus an additional increment of shear required to change the flexural crack to a flexure-shear crack. The externally applied factored loads, from which \(V_i\) and \(M_{max}\) are determined, include superimposed dead load, earth pressure, and live load. In computing \(M_{cr}\), for substitution into Eq. (11-10), \(I\) and \(y_t\) are the properties of the section resisting the externally applied loads.

For a composite member, where part of the dead load is resisted by only a part of the section, appropriate section properties should be used to compute \(f_d\). The shear due to dead loads, \(V_d\) and that due to other loads \(V_i\) are separated.
in this case. V_d is then the total shear force due to unfactored dead load acting on that part of the section carrying the dead loads acting prior to composite action plus the unfactored superimposed dead load acting on the composite member. The terms V_i and M_{max} may be taken as:

$$V_i = V_u - V_d$$

$$M_{\text{max}} = M_u - M_d$$

where V_u and M_u are the factored shear and moment due to the total factored loads, and M_d is the moment due to unfactored dead load (the moment corresponding to f_d).

For noncomposite, uniformly loaded beams, the total cross section resists all the shear and the live and dead load shear force diagrams are similar. In this case Eq. (11-10) reduces to:

$$V_{ci} = \frac{\sqrt{f_{ce}^2}}{20} b_w d + \frac{V_u M_{ct}}{M_u}$$

where:

$$M_{ct} = (1/\gamma_f)(\sqrt{f_{ce}^2} + f_{pe})$$

The symbol M_{ct} in the two preceding equations represents the total moment, including dead load, required to cause cracking at the extreme fiber in tension. This is not the same as M_{cr} in code Eq. (11-10) where the cracking moment is that due to all loads except the dead load. In Eq. (11-10) the dead load shear is added as a separate term.

M_u is the factored moment on the beam at the section under consideration, and V_u is the factored shear force occurring simultaneously with M_u. Since the same section properties apply to both dead and live load stresses, there is no need to compute dead load stresses and shears separately. The cracking moment M_{ct} reflects the total stress change from effective prestress to a tension of $\sqrt{f_{ce}^2}/2$, assumed to cause flexural cracking.

Eq. (11-12) is based on the assumption that web-shear cracking occurs due to the shear causing a principal tensile stress of approximately $(1/3)\sqrt{f_{ce}^2}$ at the centroidal axis of the cross section. V_p is calculated from the effective prestress force without load factors.

11.4.3 — In a pretensioned member in which the section at a distance $h/2$ from face of support is closer to the end of member than the transfer length of the pretensioning tendons, the reduced prestress shall be considered when computing V_{cw}. This value of V_{cw} shall also be taken as the maximum limit for Eq. (11-9). The

R11.4.3 and R11.4.4 — The effect of the reduced prestress near the ends of pretensioned beams on the shear strength should be taken into account. Section 11.4.3 relates to the shear strength at sections within the transfer length of tendons when bonding of tendons extends to the end of the member.
prestress force shall be assumed to vary linearly from zero at end of tendon to a maximum at a distance from end of tendon equal to the transfer length, assumed to be 50 diameters for strand and 100 diameters for single wire.

11.4.4—In a pretensioned member where bonding of some tendons does not extend to the end of member, a reduced prestress shall be considered when computing V_c in accordance with 11.4.1 or 11.4.2. The value of V_{cw} calculated using the reduced prestress shall also be taken as the maximum limit for Eq. (11-9). The prestress force due to tendons for which bonding does not extend to the end of member, shall be assumed to vary linearly from zero at the point at which bonding commences to a maximum at a distance from this point equal to the transfer length, assumed to be 50 diameters for strand and 100 diameters for single wire.

11.5 — Shear strength provided by shear reinforcement

11.5.1 — Types of shear reinforcement

11.5.1.1 — Shear reinforcement consisting of the following shall be permitted:

(a) Stirrups perpendicular to axis of member;

(b) Welded wire fabric with wires located perpendicular to axis of member;

(c) Spirals, circular ties, or hoops.

11.5.1.2 — For nonprestressed members, shear reinforcement shall be permitted to also consist of:

(a) Stirrups making an angle of 45 deg or more with longitudinal tension reinforcement;

(b) Longitudinal reinforcement with bent portion making an angle of 30 deg or more with the longitudinal tension reinforcement;

(c) Combinations of stirrups and bent longitudinal reinforcement.

11.5.2 — Design yield strength of shear reinforcement shall not exceed 420 MPa, except that the design yield strength of welded deformed wire fabric shall not exceed 550 MPa.

Section 11.4.4 relates to the shear strength at sections within the length over which some tendons are not bonded to the concrete, or within the transfer length of those tendons for which bonding does not extend to the end of the beam.

R11.5 — Shear strength provided by shear reinforcement

11.5.2 — Limiting the design yield strength of shear reinforcement to 420 MPa provides a control on diagonal crack width. In the 1995 code, the limitation on design yield strength of 420 MPa for shear reinforcement was raised to 550 MPa for welded deformed wire fabric. Research has indicated that the performance of higher strength steels as shear reinforcement has been sat-
11.5.3 — Stirrups and other bars or wires used as shear reinforcement shall extend to a distance \(d \) from extreme compression fiber and shall be anchored at both ends according to 12.13 to develop the design yield strength of reinforcement.

R11.5.3 — It is essential that shear (and torsion) reinforcement be adequately anchored at both ends to be fully effective on either side of any potential inclined crack. This generally requires a hook or bend at the end of the reinforcement as provided by 12.13.

11.5.4 — Spacing limits for shear reinforcement

11.5.4.1 — Spacing of shear reinforcement placed perpendicular to axis of member shall not exceed \(d/2 \) in nonprestressed members and 0.75\(h \) in prestressed members, nor 600 mm.

11.5.4.2 — Inclined stirrups and bent longitudinal reinforcement shall be so spaced that every 45 deg line, extending toward the reaction from middepth of member \(d/2 \) to longitudinal tension reinforcement, shall be crossed by at least one line of shear reinforcement.

11.5.4.3 — When \(V_s \) exceeds \((1/3)\sqrt{f'_{c}} b_w d\), maximum spacings given in 11.5.4.1 and 11.5.4.2 shall be reduced by one-half.

R11.5.5 — Minimum shear reinforcement

11.5.5.1 — A minimum area of shear reinforcement shall be provided in all reinforced concrete flexural members (prestressed and nonprestressed) where factored shear force \(V_u \) exceeds one-half the shear strength provided by concrete \(\phi V_c \), except:

(a) Slabs and footings;

(b) Concrete joist construction defined by 8.11;

(c) Beams with total depth not greater than 250 mm, 2.5 times thickness of flange, or 0.5 the width of web, whichever is greatest.

Even when the total factored shear strength \(V_u \) is less than one-half of the shear strength provided by the concrete \(\phi V_c \), the use of some web reinforcement is recommended in all thin-web post-tensioned prestressed concrete members (joists, waffle slabs, beams, and T-beams) to reinforce against tensile forces in webs resulting from local deviations from the design tendon profile, and to provide a means of supporting the tendons in the design profile during construction. If sufficient support is not provided, lateral wobble and
CODE

11.5.5.2 — Minimum shear reinforcement requirements of 11.5.5.1 shall be permitted to be waived if shown by test that required nominal flexural and shear strengths can be developed when shear reinforcement is omitted. Such tests shall simulate effects of differential settlement, creep, shrinkage, and temperature change, based on a realistic assessment of such effects occurring in service.

11.5.5.3 — Where shear reinforcement is required by 11.5.5.1 or for strength and where 11.6.1 allows torsion to be neglected, the minimum area of shear reinforcement for prestressed (except as provided in 11.5.5.4) and nonprestressed members shall be computed by

\[A_v = \frac{1}{3} \frac{b_w s}{f_y} \] \hspace{1cm} (11-13)

where \(b_w \) and \(s \) are in mm.

11.5.5.4 — For prestressed members with an effective prestress force not less than 40 percent of the tensile strength of the flexural reinforcement, the area of shear reinforcement shall not be less than the smaller \(A_v \) from Eq. (11-13) and (11-14).

\[A_v = \frac{A_{ps} f_{pu} s}{80 f_y d} \sqrt{\frac{d}{b_w}} \] \hspace{1cm} (11-14)

COMMENTARY

local deviations from the smooth parabolic tendon profile assumed in design may result during placement of the concrete. In such cases, the deviations in the tendons tend to straighten out when the tendons are stressed. This process may impose large tensile stresses in webs, and severe cracking may develop if no web reinforcement is provided. Unintended curvature of the tendons, and the resulting tensile stresses in webs, may be minimized by securely tying tendons to stirrups that are rigidly held in place by other elements of the reinforcing cage and held down in the forms. The maximum spacing of stirrups used for this purpose should not exceed the smaller of 1.5\(h \) or 1.2 m. When applicable, the shear reinforcement provisions of 11.5.4 and 11.5.5 will require closer stirrup spacings.

For repeated loading of flexural members, the possibility of inclined diagonal tension cracks forming at stresses appreciably smaller than under static loading should be taken into account in the design. In these instances, it would be prudent to use at least the minimum shear reinforcement expressed by Eq. (11-13) or (11-14), even though tests or calculations based on static loads show that shear reinforcement is not required.

R11.5.5.2 — When a member is tested to demonstrate that its shear and flexural strengths are adequate, the actual member dimensions and material strengths are known. The strength used as a basis for comparison should therefore be that corresponding to a strength reduction factor of unity (\(\phi = 1.0 \)), i.e. the required nominal strength \(V_n \) and \(M_n \). This ensures that if the actual material strengths in the field were less than specified, or the member dimensions were in error such as to result in a reduced member strength, a satisfactory margin of safety will be retained.

R11.5.5.4 — Tests\(^{11.21} \) of prestressed beams with minimum web reinforcement based on Eq. (11-13) and (11-14) indicated that the smaller \(A_v \) from these two equations was sufficient to develop ductile behavior.

Eq. (11-14) may be used only for prestressed members meeting the minimum prestress force requirements given in 11.5.5.4. This equation is discussed in Reference 11.21.
CODE

11.5.6 — Design of shear reinforcement

11.5.6.1 — Where factored shear force \(V_u \) exceeds shear strength \(\phi V_c \), shear reinforcement shall be provided to satisfy Eq. (11-1) and (11-2), where shear strength \(V_s \) shall be computed in accordance with 11.5.6.2 through 11.5.6.9.

11.5.6.2 — When shear reinforcement perpendicular to axis of member is used,

\[
V_s = \frac{A_v f_v d}{s} \tag{11-15}
\]

where \(A_v \) is the area of shear reinforcement within a distance \(s \).

11.5.6.3 — When circular ties, hoops, or spirals are used as shear reinforcement, \(V_s \) shall be computed using Eq. (11-15) where \(d \) shall be taken as the effective depth defined in 11.3.3. \(A_v \) shall be taken as two times the area of the bar in a circular tie, hoop, or spiral at a spacing \(s \), and \(f_{yh} \) is the specified yield strength of circular tie, hoop, or spiral reinforcement.

11.5.6.4 — When inclined stirrups are used as shear reinforcement,

\[
V_s = \frac{A_v f_v (\sin \alpha + \cos \alpha) d}{s} \tag{11-16}
\]

11.5.6.5 — When shear reinforcement consists of a single bar or a single group of parallel bars, all bent up at the same distance from the support,

\[
V_s = A_v f_v \sin \alpha \tag{11-17}
\]

but not greater than \((1/4) \sqrt{\phi f_y} b_w d\).

11.5.6.6 — When shear reinforcement consists of a series of parallel bent-up bars or groups of parallel bent-up bars at different distances from the support, shear strength \(V_s \) shall be computed by Eq. (11-16).

11.5.6.7 — Only the center three-fourths of the inclined portion of any longitudinal bent bar shall be considered effective for shear reinforcement.

COMMENTARY

R11.5.6 — Design of shear reinforcement

Design of shear reinforcement is based on a modified truss analogy. The truss analogy assumes that the total shear is carried by shear reinforcement. However, considerable research on both nonprestressed and prestressed members has indicated that shear reinforcement needs to be designed to carry only the shear exceeding that which causes inclined cracking, provided the diagonal members in the truss are assumed to be inclined at 45 deg.

Eq. (11-15), (11-16), and (11-17) are presented in terms of shear strength \(V_s \) attributed to the shear reinforcement. When shear reinforcement perpendicular to axis of member is used, the required area of shear reinforcement \(A_v \) and its spacing \(s \) are computed by

\[
\frac{A_v}{s} = \frac{(V_u - \phi V_c)}{\phi f_y d}
\]

Research\(^{11.22,11.23}\) has shown that shear behavior of wide beams with substantial flexural reinforcement is improved if the transverse spacing of stirrup legs across the section is reduced.

R11.5.6.3 — Although the transverse reinforcement in a circular section may not consist of straight legs, tests indicate that Eq. (11-15) is conservative if \(d \) is taken as defined in 11.3.3,\(^{11.14,11.15}\)
CODE

11.5.6.8 — Where more than one type of shear reinforcement is used to reinforce the same portion of a member, shear strength V_s shall be computed as the sum of the V_s values computed for the various types.

11.5.6.9 — Shear strength V_s shall not be taken greater than $(2/3) \sqrt{f'_c} b_w d$.

11.6 — Design for torsion

R11.6 — Design for torsion

The design for torsion is based on a thin-walled tube, space truss analogy. A beam subjected to torsion is idealized as a thin-walled tube with the core concrete cross section in a solid beam neglected as shown in Fig. R11.6(a). Once a reinforced concrete beam has cracked in torsion, its torsional resistance is provided primarily by closed stirrups and longitudinal bars located near the surface of the member. In the thin-walled tube analogy the resistance is assumed to be provided by the outer skin of the cross section roughly centered on the closed stirrups. Both hollow and solid sections are idealized as thin-walled tubes both before and after cracking.

Fig. R11.6—(a) Thin-walled tube; (b) area enclosed by shear flow path
CODE

11.6.1 — It shall be permitted to neglect torsion effects when the factored torsional moment T_u is less than:

(a) For nonprestressed members:

$$\phi \frac{f_c'}{A_{cp}} \frac{A_{cp}^2}{p_{cp}}$$

(b) For prestressed members:

$$\phi \frac{f_c'}{A_{cp}} \frac{A_{cp}^2}{p_{cp}} \left[1 + \frac{3f_p}{f_c'} \right]$$

For members cast monolithically with a slab, the overhanging flange width used in computing A_{cp} and p_{cp} shall conform to 13.2.4.

COMMENTARY

In a closed thin-walled tube, the product of the shear stress τ and the wall thickness t at any point in the perimeter is known as the shear flow, $q = \tau t$. The shear flow q due to torsion acts as shown in Fig. R11.6(a) and is constant at all points around the perimeter of the tube. The path along which it acts extends around the tube at midthickness of the walls of the tube. At any point along the perimeter of the tube the shear stress due to torsion is $\tau = T/(2A_o t)$ where A_o is the gross area enclosed by the shear flow path, shown shaded in Fig. R11.6(b), and t is the thickness of the wall at the point where τ is being computed. The shear flow follows the midthickness of the walls of the tube and A_o is the area enclosed by the path of the shearflow. For a hollow member with continuous walls, A_o includes the area of the hole.

In the 1995 code, the elliptical interaction between the shear carried by the concrete, V_c, and the torsion carried by the concrete was eliminated. V_c remains constant at the value it has when there is no torsion, and the torsion carried by the concrete is always taken as zero.

The design procedure is derived and compared to tests in Reference 11.24.

R11.6.1 — Torques that do not exceed approximately one-quarter of the cracking torque T_{cr} will not cause a structurally significant reduction in either the flexural or shear strength and can be ignored. The cracking torsion under pure torsion T_{cr} is derived by replacing the actual section with an equivalent thin-walled tube with a wall thickness t prior to cracking of $0.75A_{cp}/p_{cp}$ and an area enclosed by the wall centerline A_o equal to $2A_{cp}/3$. Cracking is assumed to occur when the principal tensile stress reaches $(1/3)f_c'$. In a nonprestressed beam loaded with torsion alone, the principal tensile stress is equal to the torsional shear stress, $\tau = T/(2A_o t)$. Thus, cracking occurs when τ reaches $(1/3)f_c'$, giving the cracking torque T_{cr} as:

$$T_{cr} = \left(1/3\right)f_c' \frac{A_{cp}^2}{p_{cp}}$$

The limit set in 11.6.1 is one-quarter of this value. The stress at cracking $(1/3)f_c'$ has purposely been taken as a lower bound value.

For prestressed members, the torsional cracking load is increased by the prestress. A Mohr’s Circle analysis based on average stresses indicates the torque required to cause a principal tensile stress equal to $(1/3)f_c'$ is $\sqrt{1 + \frac{3f_p}{f_c'}} \cdot (1/3)f_c'$ times the corresponding torque in a nonprestressed beam.

For an isolated member with or without flanges, A_{cp} is the area of the entire cross section including the area of voids in hollow cross sections, and p_{cp} is the perimeter of the entire cross section. For a T-beam cast monolithically with a slab, A_{cp} and p_{cp} can include portions of the adjacent slabs conforming to 13.2.4.
CODE

11.6.2 — Calculation of factored torsional moment T_u

11.6.2.1 — If the factored torsional moment T_u in a member is required to maintain equilibrium and exceeds the minimum value given in 11.6.1, the member shall be designed to carry that torsional moment in accordance with 11.6.3 through 11.6.6.

11.6.2.2 — In a statically indeterminate structure where reduction of the torsional moment in a member can occur due to redistribution of internal forces upon cracking, the maximum factored torsional moment T_u shall be permitted to be reduced to

(a) For nonprestressed members, at the sections described in 11.6.2.4:

$$\phi \frac{f_c}{3} \left(\frac{A_{cp}}{P_{cp}} \right)$$

(b) For prestressed members, at the sections described in 11.6.2.5:

$$\phi \frac{f_c}{3} \left(\frac{A_{cp}}{P_{cp}} \right) \left[1 + \frac{3f_p}{f_c'} \right]$$

In such a case, the correspondingly redistributed bending moments and shears in the adjoining members shall be used in the design of these members.

COMMENTARY

R11.6.2 — Calculation of factored torsional moment T_u

R11.6.2.1 and R11.6.2.2 — In designing for torsion in reinforced concrete structures, two conditions may be identified:

(a) The torsional moment cannot be reduced by redistribution of internal forces (11.6.2.1). This is referred to as equilibrium torsion, since the torsional moment is required for the structure to be in equilibrium.

For this condition, illustrated in Fig. R11.6.2.1, torsion reinforcement designed according to 11.6.3 through 11.6.6 must be provided to resist the total design torsional moments.

(b) The torsional moment can be reduced by redistribution of internal forces after cracking (11.6.2.2) if the torsion arises from the member twisting to maintain compatibility of deformations. This type of torsion is referred to as compatibility torsion.

Fig. R11.6.2.1—Design torque may not be reduced (11.6.2.1)

Design torque for this spandrel beam may be reduced because moment redistribution is possible

Fig. R11.6.2.2—Design torque may be reduced (11.6.2.2)
11.6.2.3 — Unless determined by a more exact analysis, it shall be permitted to take the torsional loading from a slab as uniformly distributed along the member.

11.6.2.4 — In nonprestressed members, sections located less than a distance \(d \) from the face of a support shall be designed for not less than the torsion \(T_u \) computed at a distance \(d \). If a concentrated torque occurs within this distance, the critical section for design shall be at the face of the support.

11.6.2.5 — In prestressed members, sections located less than a distance \(h/2 \) from the face of a support shall be designed for not less than the torsion \(T_u \) computed at a distance \(h/2 \). If a concentrated torque occurs within this distance, the critical section for design shall be at the face of the support.

11.6.3 — Torsional moment strength

11.6.3.1 — The cross-sectional dimensions shall be such that:

\[
\left(\frac{V_u}{B_w d} \right)^2 + \left(\frac{T_u P_h}{1.7A_{oh}} \right)^2 \leq \phi \left(\frac{V_c}{B_w d} + \frac{2\sqrt{f_c'}}{3} \right) \quad (11-18)
\]

R11.6.2.4 and R11.6.2.5 — It is not uncommon for a beam to frame into one side of a girder near the support of the girder. In such a case a concentrated shear and torque are applied to the girder.

R11.6.3 — Torsional moment strength

R11.6.3.1 — The size of a cross section is limited for two reasons, first to reduce unsightly cracking and second to prevent crushing of the surface concrete due to inclined compressive stresses due to shear and torsion. In Eq. (11-18) and (11-19), the two terms on the left hand side are the shear stresses due to shear and torsion. The sum of these stresses may not exceed the stress causing shear cracking plus \((2/3)\sqrt{f_c'} \), similar to the limiting strength given in...
CODE

(b) For hollow sections:

\[
\left(\frac{V_u}{b_w d} \right) + \left(\frac{T_u P_h}{1.7 A_{oh}^2} \right) \leq \phi \left(\frac{V_c}{b_w d} + \frac{2\sqrt{f'_c}}{3} \right) \quad (11-19)
\]

COMMENTARY

11.5.6.9 for shear without torsion. The limit is expressed in terms of \(V_c\) to allow its use for nonprestressed or prestressed concrete. It was originally derived on the basis of crack control. It is not necessary to check against crushing of the web since this happens at higher shear stresses.

In a hollow section, the shear stresses due to shear and torsion both occur in the walls of the box as shown in Fig. 11.6.3.1(a) and hence are directly additive at point A as given in Eq. (11-19). In a solid section the shear stresses due to torsion act in the “tubular” outside section while the shear stresses due to \(V_u\) are spread across the width of the section as shown in Fig. R11.6.3.1(b). For this reason stresses are combined in Eq. (11-18) using the square root of the sum of the squares rather than by direct addition.

\[\text{Shear stresses} + \text{Torsional stresses}\]

(a) Hollow section

\[\text{Shear stresses} + \text{Torsional stresses}\]

(b) Solid section

Fig. R11.6.3.1—Addition of torsional and shear stresses
CODE

11.6.3.2 — If the wall thickness varies around the perimeter of a hollow section, Eq. (11-19) shall be evaluated at the location where the left-hand side of Eq. (11-19) is a maximum.

11.6.3.3 — If the wall thickness is less than A_{oh}/ρ_h, the second term in Eq. (11-19) shall be taken as:

$$\left(\frac{T_u}{1.7A_{oh}t}\right)$$

where t is the thickness of the wall of the hollow section at the location where the stresses are being checked.

11.6.3.4 — Design yield strength of nonprestressed torsion reinforcement shall not exceed 420 MPa.

11.6.3.5 — The reinforcement required for torsion shall be determined from:

$$\phi T_n \geq T_u$$ (11-20)

11.6.3.6 — The transverse reinforcement for torsion shall be designed using:

$$T_n = \frac{2A_oA_t\bar{V}v}{s} \cot \theta$$ (11-21)

where A_o shall be determined by analysis except that it shall be permitted to take A_o equal to $0.85A_{oh}$; θ shall not be taken smaller than 30 deg nor larger than 60 deg. It shall be permitted to take θ equal to:

(a) 45 deg for nonprestressed members or members with less prestress than in (b);

(b) 37.5 deg for prestressed members with an effective prestress force not less than 40 percent of the tensile strength of the longitudinal reinforcement.

COMMENTARY

R11.6.3.2 — Generally, the maximum will be on the wall where the torsional and shearing stresses are additive [Point A in Fig. R11.6.3.1(a)]. If the top or bottom flanges are thinner than the vertical webs, it may be necessary to evaluate Eq. (11-19) at points B and C in Fig. R11.6.3.1(a). At these points the stresses due to the shear force are usually negligible.

R11.6.3.4 — Limiting the design yield strength of torsion reinforcement to 420 MPa provides a control on diagonal crack width.

R11.6.3.5 — The factored torsional resistance ϕT_n must equal or exceed the torsion T_u due to the factored loads. In the calculation of T_u, all the torque is assumed to be resisted by stirrups and longitudinal steel with $T_c = 0$. At the same time, the shear resisted by concrete V_c is assumed to be unchanged by the presence of torsion. For beams with V_u greater than about $0.8\phi V_c$ the resulting amount of combined shear and torsional reinforcement is essentially the same as required by the 1989 code. For smaller values of V_u, more shear and torsion reinforcement will be required.

R11.6.3.6 — Eq. (11-21) is based on the space truss analogy shown in Fig. R11.6.3.6(a) with compression diagonals at an angle θ, assuming the concrete carries no tension and the reinforcement yields. After torsional cracking develops, the torsional resistance is provided mainly by closed stirrups, longitudinal bars, and compression diagonals. The concrete outside these stirrups is relatively ineffective. For this reason A_o, the area enclosed by the shear flow path around the perimeter of the tube, is defined after cracking in terms of A_{oh}, the area enclosed by the centerline of the outermost closed hoops. The area A_{oh} is shown in Fig. R11.6.3.6(b) for various cross sections. In an I-, T-, or L-shaped section, A_{oh} is taken as that area enclosed by the outermost legs of interlocking stirrups as shown in Fig. R11.6.3.6(b). The expression for A_o given by Hsu11.27 may be used if greater accuracy is desired.

The shear flow q in the walls of the tube, discussed in R11.6, can be resolved into the shear forces V_1 to V_4 acting in the individual sides of the tube or space truss, as shown in Fig. R11.6.3.6(a).

The angle θ can be obtained by analysis11.27 or may be taken to be equal to the values given in 11.6.3.6 (a) and (b). The same value of θ must be used in both Eq. (11-21) and
11.6.3.7 — The additional longitudinal reinforcement required for torsion shall not be less than:

\[A_{s} = \frac{A_{t}}{s} \rho_{t} \left(\frac{f_{y}}{f_{y}'} \right) \cot^{2} \theta \] \hspace{1cm} (11-22)

where \(\theta \) shall be the same value used in Eq. (11-21) and \(A_{t}/s \) shall be taken as the amount computed from Eq. (11-21) not modified in accordance with 11.6.5.2 or 11.6.5.3.

Fig. R11.6.3.6(a) — Space truss analogy

Fig. R11.6.3.6(b) — Definition of \(A_{oh} \)

(11-22). As \(\theta \) gets smaller, the amount of stirrups required by Eq. (11-21) decreases. At the same time the amount of longitudinal steel required by Eq. (11-22) increases.

R11.6.3.7 — Fig. R11.6.3.6(a) shows the shear forces \(V_{1} \) to \(V_{4} \) resulting from the shear flow around the walls of the tube. On a given wall of the tube, the shear flow \(V_{i} \) is resisted by a diagonal compression component, \(D_{i} = V_{i}/\sin \theta \), in the concrete. An axial tension force, \(N_{i} = V_{i} (\cot \theta) \), is needed in the longitudinal steel to complete the resolution of \(V_{i} \).

Fig. R11.6.3.7 shows the diagonal compressive stresses and the axial tension force, \(N_{i} \), acting on a short segment along one wall of the tube. Because the shear flow due to torsion is constant at all points around the perimeter of the tube, the resultants of \(D_{i} \) and \(N_{i} \) act through the midheight of side \(i \). As a result, half of \(N_{i} \) can be assumed to be resisted by each of the
11.6.3.8 — Reinforcement required for torsion shall be added to that required for the shear, moment and axial force that act in combination with the torsion. The most restrictive requirements for reinforcement spacing and placement shall be met.

R11.6.3.8 — The stirrup requirements for torsion and shear are added and stirrups are provided to supply at least the total amount required. Since the stirrup area A_v for shear is defined in terms of all the legs of a given stirrup while the stirrup area A_t for torsion is defined in terms of one leg only, the addition of stirrups is carried out as follows:

$$\text{Total} \left(\frac{A_v + A_t}{s} \right) = \frac{A_v}{s} + 2 \frac{A_t}{s}$$

If a stirrup group had four legs for shear, only the legs adjacent to the sides of the beam would be included in this summation since the inner legs would be ineffective for torsion.

The longitudinal reinforcement required for torsion is added at each section to the longitudinal reinforcement required for bending moment that acts at the same time as the torsion. The longitudinal reinforcement is then chosen for this sum, but should not be less than the amount required for the maximum bending moment at that section if this exceeds the moment acting at the same time as the torsion. If the maximum bending moment occurs at one section, such as the midspan, while the maximum torsional moment occurs at another, such as the support, the total longitudinal steel required may be less than that obtained by adding the maximum flexural steel plus the maximum torsional steel. In such a case the required longitudinal steel is evaluated at several locations.

The most restrictive requirements for spacing, cut-off points, and placement for flexural, shear, and torsional steel should be satisfied. The flexural steel should be extended a distance d, but not less than $12d_b$, past where it is no longer needed for flexure as required in 12.10.3.
CODE

11.6.3.9 — It shall be permitted to reduce the area of longitudinal torsion reinforcement in the flexural compression zone by an amount equal to \(M_u / (0.9 \sigma_y) \), where \(M_u \) is the factored moment acting at the section in combination with \(T_u \), except that the reinforcement provided shall not be less than that required by 11.6.5.3 or 11.6.6.2.

11.6.3.10 — In prestressed beams:

(a) The total longitudinal reinforcement including tendons at each section shall resist the factored bending moment at that section plus an additional concentric longitudinal tensile force equal to \(A_f \sigma_y \), based on the factored torsion at that section;

(b) The spacing of the longitudinal reinforcement including tendons shall satisfy the requirements in 11.6.6.2.

11.6.11 — In prestressed beams, it shall be permitted to reduce the area of longitudinal torsional reinforcement on the side of the member in compression due to flexure below that required by 11.6.3.10 in accordance with 11.6.3.9.

11.6.4 — Details of torsional reinforcement

11.6.4.1 — Torsion reinforcement shall consist of longitudinal bars or tendons and one or more of the following:

(a) Closed stirrups or closed ties, perpendicular to the axis of the member;

(b) A closed cage of welded wire fabric with transverse wires perpendicular to the axis of the member;

(c) In nonprestressed beams, spiral reinforcement.

COMMENTARY

R11.6.3.9 — The longitudinal tension due to torsion is offset in part by the compression in the flexural compression zone, allowing a reduction in the longitudinal torsion steel required in the compression zone.

R11.6.3.10 — As explained in R11.6.3.7, torsion causes an axial tension force. In a nonprestressed beam this force is resisted by longitudinal reinforcement having an axial tensile capacity of \(A_f \sigma_y \). This steel is in addition to the flexural reinforcement and is distributed uniformly around the sides of the perimeter so that the resultant of \(A_f \sigma_y \) acts along the axis of the member.

In a prestressed beam the same technique (providing additional reinforcing bars with capacity \(A_f \sigma_y \)) can be followed, or the designer can use any overcapacity of the tendons to resist some of the axial force \(A_f \sigma_y \) as outlined in the next paragraph.

In a prestressed beam the tendon stress at ultimate at the section of the maximum moment is \(f_{ps} \). At other sections the tendon stress at ultimate will be between \(f_{se} \) and \(f_{ps} \). A portion of the \(A_f \sigma_y \) force acting on the sides of the perimeter where the tendons are located can be resisted by a force \(A_{ps} \Delta f_p \) in the tendons, where \(\Delta f_p \) is \(f_{ps} \) minus the tendon stress due to flexure at the ultimate load at the section in question. This can be taken as \(M_u \) at the section, divided by \((0.9 \sigma_y A_{ps}) \), but \(\Delta f_p \) should not be more than 420 MPa. Longitudinal reinforcing bars will be required on the other sides of the member to provide the remainder of the \(A_f \sigma_y \) force, or to satisfy the spacing requirements given in 11.6.6.2, or both.

R11.6.4.1 — Both longitudinal and closed transverse reinforcement are required to resist the diagonal tension stresses due to torsion. The stirrups must be closed, since inclined cracking due to torsion may occur on all faces of a member.

In the case of sections subjected primarily to torsion, the concrete side cover over the stirrups spalls off at high torques. This renders lapped-spliced stirrups ineffective, leading to a premature torsional failure. In such cases, closed stirrups should not be made up of pairs of U-stirrups lapping one another.
CODE

11.6.4.2 — Transverse torsional reinforcement shall be anchored by one of the following:

(a) A 135 deg standard hook around a longitudinal bar;

(b) According to 12.13.2.1, 12.13.2.2, or 12.13.2.3 in regions where the concrete surrounding the anchor- age is restrained against spalling by a flange or slab or similar member.

11.6.4.3 — Longitudinal torsion reinforcement shall be developed at both ends.

11.6.4.4 — For hollow sections in torsion, the distance from the centerline of the transverse torsional reinforcement to the inside face of the wall of the hollow section shall not be less than $0.5A_{oh}/p_h$.

11.6.5 — Minimum torsion reinforcement

11.6.5.1 — A minimum area of torsion reinforcement shall be provided in all regions where the factored torsional moment T_u exceeds the values specified in 11.6.1.

11.6.5.2 — Where torsional reinforcement is required by 11.6.5.1, the minimum area of transverse closed stirrups shall be computed by:

$$\left(A_v + 2A_t\right) = \frac{1}{3} \frac{b_w s}{f_{yw}}$$ \hspace{1cm} (11-23)

COMMENTARY

R11.6.4.2 — When a rectangular beam fails in torsion, the corners of the beam tend to spall off due to the inclined compressive stresses in the concrete diagonals of the space truss changing direction at the corner as shown in Fig. 11.6.4.2(a). In tests, closed stirrups anchored by 90 deg hooks failed when this occurred. For this reason, 135 deg hooks are preferable for torsional stirrups in all cases. In regions where this spalling is prevented by an adjacent slab or flange, 11.6.4.2(b) relaxes this and allows 90 deg hooks.

R11.6.4.3 — If high torsion acts near the end of a beam, the longitudinal torsion reinforcement should be adequately anchored. Sufficient development length should be provided outside the inner face of the support to develop the needed tension force in the bars or tendons. In the case of bars, this may require hooks or horizontal U-shaped bars lapped with the longitudinal torsion reinforcement.

R11.6.4.4 — The closed stirrups provided for torsion in a hollow section should be located in the outer half of the wall thickness effective for torsion where the wall thickness can be taken as A_{oh}/p_h.

R11.6.5 — Minimum torsion reinforcement

R11.6.5.1 and R11.6.5.2 — If a member is subject to a factored torsional moment T_u greater than the values specified in 11.6.1, the minimum amount of transverse web reinforcement for combined shear and torsion is $0.35b_w s/f_{yw}$. The differences in the definition of A_v and the symbol A_t should be noted; A_v is the area of two legs of a closed stirrup while A_t is the area of only one leg of a closed stirrup.

![Diagram of spalling in beams loaded in torsion](image-url)
CODE

11.6.5.3 — Where torsional reinforcement is required by 11.6.5.1, the minimum total area of longitudinal torsional reinforcement shall be computed by:

$$A_{l,min} = \frac{5f'c''A_{cp}}{12f_{y'}} - \frac{A_t}{s}P_{h}\frac{f_{yv}}{f_{y'}}$$ \hspace{1cm} (11-24)

where A_t/s shall not be taken less than $(1/6)b_w/f_{yv}$.

11.6.6 — Spacing of torsion reinforcement

11.6.6.1 — The spacing of transverse torsion reinforcement shall not exceed the smaller of $p_h/8$ or 300 mm.

11.6.6.2 — The longitudinal reinforcement required for torsion shall be distributed around the perimeter 300 mm. The longitudinal bars or tendons shall be inside the stirrups. There shall be at least one longitudinal bar or tendon in each corner of the stirrups. Bars shall have a diameter at least 0.042 times the stirrup spacing, but not less than a No. 10 bar.

11.6.6.3 — Torsion reinforcement shall be provided for a distance of at least $(b_t + d)$ beyond the point theoretically required.

11.7 — Shear-friction

11.7.1 — Provisions of 11.7 are to be applied where it is appropriate to consider shear transfer across a given plane, such as: an existing or potential crack, an interface between dissimilar materials, or an interface between two concretes cast at different times.

11.7.2 — Design of cross sections subject to shear transfer as described in 11.7.1 shall be based on Eq. (11-1), where V_n is calculated in accordance with provisions of 11.7.3 or 11.7.4.

COMMENTARY

R11.6.5.3 — Reinforced concrete beam specimens with less than 1 percent torsional reinforcement by volume have failed in pure torsion at torsional cracking. In the 1989 and prior codes, a relationship was presented that required about 1 percent torsional reinforcement in beams loaded in pure torsion and less in beams with combined shear and torsion, as a function of the ratio of shear stresses due to torsion and shear. Eq. (11-24) was simplified by assuming a single value of this reduction factor and results in a volumetric ratio of about 0.5 percent.

R11.6.6 — Spacing of torsion reinforcement

R11.6.6.1 — The spacing of the stirrups is limited to ensure the development of the ultimate torsional strength of the beam, to prevent excessive loss of torsional stiffness after cracking, and to control crack widths. For a square cross section the $p_h/8$ limitation requires stirrups at $d/2$, which corresponds to 11.5.4.1.

R11.6.6.2 — In R11.6.3.7 it was shown that longitudinal reinforcement is needed to resist the sum of the longitudinal tensile forces due to torsion in the walls of the thin-walled tube. Since the force acts along the centroidal axis of the section, the centroid of the additional longitudinal reinforcement for torsion should approximately coincide with the centroid of the section. The code accomplishes this by requiring the longitudinal torsional reinforcement to be distributed around the perimeter of the closed stirrups. Longitudinal bars or tendons are required in each corner of the stirrups to provide anchorage for the legs of the stirrups. Corner bars have also been found to be very effective in developing torsional strength and in controlling cracks.

R11.6.6.3 — The distance $(b_t + d)$ beyond the point theoretically required for torsional reinforcement is larger than that used for shear and flexural reinforcement because torsional diagonal tension cracks develop in a helical form.

R11.7 — Shear-friction

R11.7.1 — With the exception of 11.7, virtually all provisions regarding shear are intended to prevent diagonal tension failures rather than direct shear transfer failures. The purpose of 11.7 is to provide design methods for conditions where shear transfer should be considered: an interface between concretes cast at different times, an interface between concrete and steel, reinforcement details for precast concrete structures, and other situations where it is considered appropriate to investigate shear transfer across a plane in structural concrete. (See References 11.30 and 11.31).
CODE

11.7.3 — A crack shall be assumed to occur along the shear plane considered. The required area of shear-friction reinforcement \(A_{vf} \) across the shear plane shall be designed using either 11.7.4 or any other shear transfer design methods that result in prediction of strength in substantial agreement with results of comprehensive tests.

11.7.3.1 — Provisions of 11.7.5 through 11.7.10 shall apply for all calculations of shear transfer strength.

COMMENTARY

R11.7.3 — Although uncracked concrete is relatively strong in direct shear there is always the possibility that a crack will form in an unfavorable location. The shear-friction concept assumes that such a crack will form, and that reinforcement must be provided across the crack to resist relative displacement along it. When shear acts along a crack, one crack face slips relative to the other. If the crack faces are rough and irregular, this slip is accompanied by separation of the crack faces. At ultimate, the separation is sufficient to stress the reinforcement crossing the crack to its yield point. The reinforcement provides a clamping force \(A_{vf} f_y \) across the crack faces. The applied shear is then resisted by friction between the crack faces, by resistance to the shearing off of protrusions on the crack faces, and by dowel action of the reinforcement crossing the crack. Successful application of 11.7 depends on proper selection of the location of an assumed crack.\(^{11.16,11.30}\)

The relationship between shear-transfer strength and the reinforcement crossing the shear plane can be expressed in various ways. Eq. (11-25) and (11-26) of 11.7.4 are based on the shear-friction model. This gives a conservative prediction of shear-transfer strength. Other relationships that give a closer estimate of shear-transfer strength\(^ {11.16,11.32,11.33} \) can be used under the provisions of 11.7.3. For example, when the shear-friction reinforcement is perpendicular to the shear plane, the shear strength \(V_n \) is given by\(^ {11.32,11.33} \)

\[
V_n = 0.8 A_{vf} f_y + A_c K_1
\]

where \(A_c \) is the area of concrete section resisting shear transfer (\(\text{mm}^2 \)) and \(K_1 = 2.8 \text{ MPa} \) for normalweight concrete, 1.4 MPa for all-lightweight concrete, and 1.7 MPa for sand-lightweight concrete. These values of \(K_1 \) apply to both monolithically cast concrete and to concrete cast against hardened concrete with a rough surface, as defined in 11.7.9.

In this equation, the first term represents the contribution of friction to shear-transfer resistance (0.8 representing the coefficient of friction). The second term represents the sum of the resistance to shearing of protrusions on the crack faces and the dowel action of the reinforcement.

When the shear-friction reinforcement is inclined to the shear plane, such that the shear force produces tension in that reinforcement, the shear strength \(V_n \) is given by

\[
V_n = A_{vf} f_y (0.8 \sin \alpha_f + \cos \alpha_f) + A_c K_1 \sin^2 \alpha_f
\]

where \(\alpha_f \) is the angle between the shear-friction reinforcement and the shear plane, (i.e. \(0 < \alpha_f < 90 \text{ deg} \)).

When using the modified shear-friction method, the terms \((A_{vf} f_y / A_c) \) or \((A_{vf} f_y \sin \alpha_f / A_c) \) should not be less than 1.4 MPa for the design equations to be valid.
CODE

11.7.4 — Shear-friction design method

11.7.4.1 — When shear-friction reinforcement is perpendicular to the shear plane, shear strength V_n shall be computed by

$$V_n = A_{vf} f_y \mu$$ \hspace{1cm} (11-25)

where μ is coefficient of friction in accordance with 11.7.4.3.

11.7.4.2 — When shear-friction reinforcement is inclined to the shear plane, such that the shear force produces tension in shear-friction reinforcement, shear strength V_n shall be computed by

$$V_n = A_{vf} f_y (\mu \sin \alpha_f + \cos \alpha_f)$$ \hspace{1cm} (11-26)

where α_f is angle between shear-friction reinforcement and shear plane.

11.7.4.3 — The coefficient of friction μ in Eq. (11-25) and Eq. (11-26) shall be

Concrete placed monolithically 1.4λ

Concrete placed against hardened concrete with surface intentionally roughened as specified in 11.7.9 1.0λ

Concrete placed against hardened concrete not intentionally roughened 0.6λ

Concrete anchored to as-rolled structural steel by headed studs or by reinforcing bars (see 11.7.10) .. 0.7λ

where $\lambda = 1.0$ for normalweight concrete, 0.85 for sand-lightweight concrete and 0.75 for all lightweight concrete. Linear interpolation shall be permitted when partial sand replacement is used.

COMMENTARY

R11.7.4 — Shear-friction design method

R11.7.4.1 — The required area of shear-transfer reinforcement A_{vf} is computed using

$$A_{vf} = \frac{V_n}{\phi f_y \mu}$$

The specified upper limit on shear strength must also be observed.

R11.7.4.2 — When the shear-friction reinforcement is inclined to the shear plane, such that the component of the shear force parallel to the reinforcement tends to produce tension in the reinforcement, as shown in Fig. R11.7.4, the shear plane of the tension force in the reinforcement is parallel to the shear plane of the reinforcement.11.33 Eq. (11-26) should be used only when the shear force component parallel to the reinforcement produces tension in the reinforcement, as shown in Fig. R11.7.4. When α_f is greater than 90 deg, the relative movement of the surfaces tends to compress the bar and Eq. (11-26) is not valid.

R11.7.4.3 — In the shear-friction method of calculation, it is assumed that all the shear resistance is due to the friction between the crack faces. It is, therefore, necessary to use artificially high values of the coefficient of friction in the shear-friction equations so that the calculated shear strength will be in reasonable agreement with test results. For concrete cast against hardened concrete not roughened in accordance with 11.7.9, shear resistance is primarily due to dowel action of the reinforcement and tests11.34 indicate that reduced value of $\mu = 0.6\lambda$ specified for this case is appropriate.

The value of μ for concrete placed against as-rolled structural steel relates to the design of connections between pre-
cast concrete members, or between structural steel members and structural concrete members. The shear-transfer reinforcement may be either reinforcing bars or headed stud shear connectors; also, field welding to steel plates after casting of concrete is common. The design of shear connectors for composite action of concrete slabs and steel beams is not covered by these provisions, but should be in accordance with Reference 11.35.

11.7.5 — Shear strength V_n shall not be taken greater than $0.2f'_c A_c$ nor $5.5 A_c$ in newtons, where A_c is area of concrete section resisting shear transfer.

R11.7.5 — This upper limit on shear strength is specified because Eq. (11-25) and (11-26) become unconservative if V_n has a greater value.

11.7.6 — Design yield strength of shear-friction reinforcement shall not exceed 420 MPa.

R11.7.6 — Design yield strength of shear-friction reinforcement shall not exceed 420 MPa.

11.7.7 — Net tension across shear plane shall be resisted by additional reinforcement. Permanent net compression across shear plane shall be permitted to be taken as additive to the force in the shear-friction reinforcement $A_{vf} f_y$ when calculating required A_{vf}.

R11.7.7 — If a resultant tensile force acts across a shear plane, reinforcement to carry that tension should be provided in addition to that provided for shear transfer. Tension may be caused by restraint of deformations due to temperature change, creep, and shrinkage. Such tensile forces have caused failures, particularly in beam bearings.

When moment acts on a shear plane, the flexural tension stresses and flexural compression stresses are in equilibrium. There is no change in the resultant compression $A_{vf} f_y$ acting across the shear plane and the shear-transfer strength is not changed. It is therefore not necessary to provide additional reinforcement to resist the flexural tension stresses, unless the required flexural tension reinforcement exceeds the amount of shear-transfer reinforcement provided in the flexural tension zone. This has been demonstrated experimentally.11.36

It has also been demonstrated experimentally11.31 that if a resultant compressive force acts across a shear plane, the shear-transfer strength is a function of the sum of the resultant compressive force and the force $A_{vf} f_y$ in the shear-friction reinforcement. In design, advantage should be taken of the existence of a compressive force across the shear plane to reduce the amount of shear-friction reinforcement required, only if it is certain that the compressive force is permanent.

R11.7.8 — If no moment acts across the shear plane, reinforcement should be uniformly distributed along the shear plane to minimize crack widths. If a moment acts across the shear plane, it is desirable to distribute the shear-transfer reinforcement primarily in the flexural tension zone.

Since the shear-friction reinforcement acts in tension, it should have full tensile anchorage on both sides of the shear plane. Further, the shear-friction reinforcement anchorage should engage the primary reinforcement, otherwise a potential crack may pass between the shear-friction rein-
11.7.9 — For the purpose of 11.7, when concrete is placed against previously hardened concrete, the interface for shear transfer shall be clean and free of laitance. If μ is assumed equal to 1.0λ, interface shall be roughened to a full amplitude of approximately 5 mm.

11.7.10 — When shear is transferred between as-rolled steel and concrete using headed studs or welded reinforcing bars, steel shall be clean and free of paint.

11.8 — Special provisions for deep flexural members

11.8.1 — The provisions of 11.8 shall apply to members with λ/d less than 5 that are loaded on one face and supported on the opposite face so that compression struts can develop between the loads and the supports. See also 12.10.6.

11.8.2 — The design of simply supported deep flexural members for shear shall be based on Eq. (11-1) and (11-2), where the shear strength V_c shall be in accordance with 11.8.6 or 11.8.7 and the shear strength V_s shall be in accordance with 11.8.8.

11.8.3 — The design of continuous deep flexural members for shear shall be based on 11.1 through 11.5 with 11.8.5 substituted for 11.1.3, or on methods satisfying equilibrium and strength requirements. In either case the design shall also satisfy 11.8.4, 11.8.9, and 11.8.10.

R11.8 — Special provisions for deep flexural members

R11.8.1 — The behavior of a deep beam is discussed in References 11.5 and 11.37. For a deep beam supporting gravity loads, this section applies if the loads are applied on the top of the beam and the beam is supported on its bottom face. If the loads are applied through the sides or bottom of such a member, the design for shear should be the same as for ordinary beams.

The longitudinal tension reinforcement in deep flexural members should be extended to the supports and adequately anchored by embedment, hooks, or welding to special devices. Truss bars are not recommended.

R11.8.3 — In a continuous beam, the critical section for shear defined in 11.8.5 occurs at a point where M_u approaches zero. As a result, the second term in Eq. (11-29) becomes large. For this reason, 11.8.3 requires continuous deep beams to be designed for shear according to the regular beam design procedures except that 11.8.5 is used to define the critical section for shear rather than 11.1.3. For a uniformly loaded beam, 11.1.3 permits design for shear at distance d away from the support. This will frequently approach zero in a deep beam.
11.8.4 — Shear strength V_n for deep flexural members shall not be taken greater than $(2/3)f_c^b b_w d$ when f_n/d is less than 2. When f_n/d is between 2 and 5,

$$V_n = \frac{1}{18} \left(10 + \frac{f_n}{d}\right) f_c^b b_w d$$

(11-27)

11.8.5 — Critical section for shear measured from face of support shall be taken at a distance 0.15l_n for uniformly loaded beams and 0.50a for beams with concentrated loads, but not greater than d.

11.8.6 — Unless a more detailed calculation is made in accordance with 11.8.7,

$$V_c = \frac{1}{6} f_c^b b_w d$$

(11-28)

11.8.7 — Shear strength V_c shall be permitted to be computed by

$$V_c = \left(3.5 - 2.5 \frac{M_u}{V_u d}\right) f_c^b + 120 \rho_w \frac{V_d}{M_u} b_w d$$

except that the term

$$\left(3.5 - 2.5 \frac{M_u}{V_u d}\right)$$

shall not exceed 2.5, and V_c shall not be taken greater than $(1/2) f_c^b b_w d$. M_u is factored moment occurring simultaneously with V_u at the critical section defined in 11.8.5.

11.8.8 — Where factored shear force V_u exceeds shear strength ϕV_c, shear reinforcement shall be provided to satisfy Eq. (11-1) and (11-2), where shear strength V_s shall be computed by

$$V_s = \frac{A_v}{s \left(\frac{1 + \frac{u}{d}}{12}\right)} + A_{vh} \frac{11 - \frac{u}{d}}{s_2 \left(\frac{12}{12}\right)} f_y d$$

(11-30)

where A_v is area of shear reinforcement perpendicular to flexural tension reinforcement within a distance s, and A_{vh} is area of shear reinforcement parallel to flexural reinforcement within a distance s_2.

R11.8.7 — As the span-depth ratio of a member without web reinforcement decreases, its shear strength increases above the shear causing diagonal tension cracking. In Eq. (11-29) it is assumed that diagonal cracking occurs at the same shear strength as for ordinary beams, but that the shear strength carried by the concrete will be greater than the shear strength causing diagonal cracking.

Designers should note that shear in excess of the shear causing diagonal cracking may result in unsightly cracking unless shear reinforcement is provided.

R11.8.8 — The inclination of diagonal cracking may be greater than 45 deg, therefore, both horizontal and vertical shear reinforcement is required in deep flexural members. The relative amounts of horizontal and vertical shear reinforcement that are selected from Eq. (11-30) may vary, as long as limits on the minimum amount and spacing are observed.

Special attention is directed to the importance of adequate anchorage for the shear reinforcement. Horizontal web reinforcement should be extended to the supports and anchored in the same manner as the tension reinforcement.
11.8.9 — Area of shear reinforcement A_v shall not be less than $0.0015b_w s$, and s shall not exceed $d/3$, nor 500 mm.

11.8.10 — The area of horizontal shear reinforcement A_{vh} shall not be less than $0.0025b_w s_2$, and s_2 shall not exceed $d/3$ nor 500 mm.

11.8.11 — Shear reinforcement required at the critical section defined in 11.8.5 shall be used throughout the span.

11.9 — Special provisions for brackets and corbels

11.9.1 — Provisions of 11.9 shall apply to brackets and corbels with a shear span-to-depth ratio a/d not greater than unity, and subject to a horizontal tensile force N_{uc} not larger than V_u. Distance d shall be measured at face of support.

11.9.2 — Depth at outside edge of bearing area shall not be less than $0.5d$.

11.9.3 — Section at face of support shall be designed to resist simultaneously a shear V_u, a moment $[V_u a + N_{uc} (h - d)]$, and a horizontal tensile force N_{uc}.

11.9.11 — Based on the analysis carried out at the critical sections required in 11.8.5, the member either does not need shear reinforcement, or shear reinforcement is required, in which case it must be used throughout the span.

R11.8.11 — Special provisions for brackets and corbels

Brackets and corbels are cantilevers having shear span-to-depth ratios not greater than unity, which tend to act as simple trusses or deep beams rather than flexural members designed for shear according to 11.3.

The corbel shown in Fig. R11.9.1 may fail by shearing along the interface between the column and the corbel, by yielding of the tension tie, by crushing or splitting of the compression strut, or by localized bearing or shearing failure under the loading plate. These failure modes are illustrated and are discussed more fully in Reference 11.1. The notation used in 11.9 is illustrated in Fig. R11.9.2.

11.9.1 — An upper limit of unity for a/d is set forth for two reasons. First, for shear span-to-depth ratios exceeding unity, the diagonal tension cracks are less steeply inclined and the use of horizontal stirrups alone as specified in 11.9.4 is not appropriate. Second, this method of design has only been validated experimentally for a/d of unity or less. An upper limit is provided for N_{uc} because this method of design has only been validated experimentally for N_{uc} less than or equal to V_u, including N_{uc} equal to zero.

11.9.2 — A minimum depth is required at the outside edge of the bearing area so that a premature failure will not occur due to a major diagonal tension crack propagating from below the bearing area to the outer sloping face of the corbel or bracket. Failures of this type have been observed in corbels having depths at the outside edge of the bearing area less than required in this section of the code.
11.9.3.1 — In all design calculations in accordance with 11.9, strength reduction factor ϕ shall be taken equal to 0.85.

11.9.3.2 — Design of shear-friction reinforcement A_{fr} to resist shear V_u shall be in accordance with 11.7.

11.9.3.2.1 — For normalweight concrete, shear strength V_n shall not be taken greater than $0.2f'_c b_w d$ nor $5.5b_w d$ in newtons.

11.9.3.2.2 — For all-lightweight or sand-lightweight concrete, shear strength V_n shall not be taken greater than $(0.2 - 0.07a/d)f'_c b_w d$ nor $(5.5 - 1.9a/d)b_w d$ in newtons.

R11.9.3.1 — Corbel and bracket behavior is predominantly controlled by shear; therefore, a single value of $\phi = 0.85$ is required for all design conditions.

R11.9.3.2.2 — Tests11,41 have shown that the maximum shear strength of lightweight concrete corbels or brackets is a function of both f'_c and a/d. No data are available for corbels or brackets made of sand-lightweight concrete. As a result, the same limitations have been placed on both all-lightweight and sand-lightweight brackets and corbels.
CODE

11.9.3.3 — Reinforcement A_r to resist moment $[V_u a + N_{uc}(h - d)]$ shall be computed in accordance with 10.2 and 10.3.

11.9.3.4 — Reinforcement A_n to resist tensile force N_{uc} shall be determined from $N_{uc} \leq \phi A_n f_y$. Tensile force N_{uc} shall not be taken less than $0.2 V_u$ unless special provisions are made to avoid tensile forces. Tensile force N_{uc} shall be regarded as a live load even when tension results from creep, shrinkage, or temperature change.

11.9.3.5 — Area of primary tension reinforcement A_s shall be made equal to the greater of $(A_f + A_n)$ or $(2A_{vf}/3 + A_n)$.

11.9.4 — Closed stirrups or ties parallel to A_s, with a total area A_h, not less than $0.5 (A_s - A_n)$, shall be uniformly distributed within two-thirds of the effective depth adjacent to A_s.

11.9.5 — Ratio $\rho = A_s /bd$ shall not be less than 0.04 (f'_c/f_y).

11.9.6 — At front face of bracket or corbel, primary tension reinforcement A_s shall be anchored by one of the following:

(a) By a structural weld to a transverse bar of at least equal size; weld to be designed to develop specified yield strength f_y of A_s bars;

R11.9.3.3 — Reinforcement required to resist moment can be calculated using flexural theory. The factored moment is calculated by summing moments about the flexural reinforcement at the face of support.

R11.9.3.4 — Because the magnitude of horizontal forces acting on corbels or brackets cannot usually be determined with great accuracy, it is required that N_{uc} be regarded as a live load.

R11.9.3.5 — Tests11.41 suggest that the total amount of reinforcement $(A_s + A_h)$ required to cross the face of support must be the greater of:

(a) The sum of A_{vf} calculated according to 11.9.3.2 and A_n calculated according to 11.9.3.4;

(b) The sum of 1.5 times A_f calculated according to 11.9.3.3 and A_n calculated according to 11.9.3.4.

If (a) controls, $A_s = (2A_{vf}/3 + A_n)$ is required as primary tensile reinforcement, and the remaining $A_{vf}/3$ should be provided as closed stirrups parallel to A_s and distributed within $(2/3)d$, adjacent to A_s. Section 11.9.4 satisfies this by requiring $A_h = 0.5(2A_{vf}/3)$.

If (b) controls, $A_s = (A_f + A_n)$ is required as primary tension reinforcement, and the remaining $A_f/2$ should be provided as closed stirrups parallel to A_s and distributed within $(2/3)d$, adjacent to A_s. Again 11.9.4 satisfies this requirement.

R11.9.4 — Closed stirrups parallel to the primary tension reinforcement are necessary to prevent a premature diagonal tension failure of the corbel or bracket. The required area of closed stirrups $A_h = 0.5 (A_s - A_n)$ automatically yields the appropriate amounts, as discussed in R11.9.3.5 above.

R11.9.5 — A minimum amount of reinforcement is required to prevent the possibility of sudden failure should the bracket or corbel concrete crack under the action of flexural moment and outward tensile force N_{uc}.

R11.9.6 — Because the horizontal component of the inclined concrete compression strut (see Fig. R11.9.1) is transferred to the primary tension reinforcement at the location of the vertical load, the reinforcement A_s is essentially uniformly stressed from the face of the support to the point where the vertical load is applied. It should, therefore, be anchored at its outer end and in the supporting column, so as to be able to develop its yield strength from the face of sup-
(b) By bending primary tension bars A_s back to form a horizontal loop; or

(c) By some other means of positive anchorage.

Commentary

![Weld details used in tests of Reference 11.38](image)

Fig. R11.9.6—Weld details used in tests of Reference 11.38

port to the vertical load. Satisfactory anchorage at the outer end can be obtained by bending the A_s bars in a horizontal loop as specified in (b), or by welding a bar of equal diameter or a suitably sized angle across the ends of the A_s bars. The welds must be designed to develop the yield strength of the reinforcement A_s. The weld detail used successfully in the corbel tests reported in Reference 11.41 is shown in Fig. R11.9.6. The reinforcement A_s should be anchored within the supporting column in accordance with the requirements of Chapter 12. See additional discussion on end anchorage in R12.10.6.

R11.9.7 — The restriction on the location of the bearing area is necessary to ensure development of the yield strength of the reinforcement A_s near the load. When corbels are designed to resist horizontal forces, the bearing plate should be welded to the tension reinforcement A_s.

11.10 — Special provisions for walls

11.10.1 — Design for shear forces perpendicular to face of wall shall be in accordance with provisions for slabs in 11.12. Design for horizontal shear forces in plane of wall shall be in accordance with 11.10.2 through 11.10.8.

11.10.2 — Design of horizontal section for shear in plane of wall shall be based on Eq. (11-1) and (11-2), where shear strength V_c shall be in accordance with 11.10.5 or 11.10.6 and shear strength V_s shall be in accordance with 11.10.9.

11.10.3 — Shear strength V_n at any horizontal section for shear in plane of wall shall not be taken greater than $(5/6)\sqrt{f'_c}hd$.

R11.10.3 — Although the width-to-depth ratio of shearwalls is less than that for ordinary beams, tests on shearwalls with a thickness equal to $l_w/25$ have indicated that ultimate shear stresses in excess of $(5/6)\sqrt{f'_c}$ can be obtained.
11.10.4 — For design for horizontal shear forces in plane of wall, \(d \) shall be taken equal to 0.8 \(l_{w} \). A larger value of \(d \), equal to the distance from extreme compression fiber to center of force of all reinforcement in tension, shall be permitted to be used when determined by a strain compatibility analysis.

11.10.5 — Unless a more detailed calculation is made in accordance with 11.10.6, shear strength \(V_c \) shall not be taken greater than \((1/6) \frac{f'_{c} h d}{N_u}\) for walls subject to \(N_u \) in compression, or \(V_c \) shall not be taken greater than the value given in 11.3.2.3 for walls subject to \(N_u \) in tension.

11.10.6 — Shear strength \(V_c \) shall be permitted to be computed by Eq. (11-31) and (11-32), where \(V_c \) shall be the lesser of Eq. (11-31) or (11-32).

\[
V_c = \frac{1}{4} \sqrt{f'_{c} h d} + \frac{N_u d}{4 \sqrt{f'_{w}}} \quad (11-31)
\]

or

\[
V_c = \left[\frac{1}{2} \sqrt{f'_{c}} + \frac{N_u}{2} \left(\frac{M_u}{V_u} \frac{f'_{w}}{2} \right) \right] h d \quad (11-32)
\]

where \(N_u \) is negative for tension. When \((M_u/V_u - f'_{w}/2) \) is negative, Eq. (11-32) shall not apply.

11.10.7 — Sections located closer to wall base than a distance \(f'_{w}/2 \) or one-half the wall height, whichever is less, shall be permitted to be designed for the same \(V_c \) as that computed at a distance \(f'_{w}/2 \) or one-half the height.

11.10.8 — When factored shear force \(V_u \) is less than \(\phi V_c / 2 \), reinforcement shall be provided in accordance with 11.10.9 or in accordance with Chapter 14. When \(V_u \) exceeds \(\phi V_c / 2 \), wall reinforcement for resisting shear shall be provided in accordance with 11.10.9.

11.10.9 — Design of shear reinforcement for walls

11.10.9.1 — Where factored shear force \(V_u \) exceeds shear strength \(\phi V_c \), horizontal shear reinforcement shall be provided to satisfy Eq. (11-1) and (11-2), where shear strength \(V_c \) shall be computed by

R11.10.5 and R11.10.6 — Eq. (11-31) and (11-32) may be used to determine the inclined cracking strength at any section through a shearwall. Eq. (11-31) corresponds to the occurrence of a principal tensile stress of approximately \((1/3) \frac{f'_{c}}{h_{w}}\) at the centroid of the shearwall cross section. Eq. (11-32) corresponds approximately to the occurrence of a flexural tensile stress of \((1/2) \frac{f'_{c}}{h_{w}}\) at a section \(f'_{w}/2 \) above the section being investigated. As the term

\[
\left(\frac{M_u}{V_u} - \frac{f'_{w}}{2} \right)
\]

decreases, Eq. (11-31) will control before this term becomes negative. When this term becomes negative Eq. (11-31) should be used.

R11.10.7 — The values of \(V_c \) computed from Eq. (11-31) and (11-32) at a section located a lesser distance of \(f'_{w}/2 \) or \(h_{w}/2 \) above the base apply to that and all sections between this section and the base. However, the maximum factored shear force \(V_u \) at any section, including the base of the wall, is limited to \(\phi V_n \) in accordance with 11.10.3.

R11.10.9 — Design of shear reinforcement for walls

Both horizontal and vertical shear reinforcement are required for all walls. For low walls, test data11.43 indicate that horizontal shear reinforcement becomes less effective with vertical reinforcement becoming more effective. This change in
CODE

\[V_s = \frac{A_v f_y d}{s_2} \] \hspace{1cm} (11-33)

where \(A_v \) is area of horizontal shear reinforcement within a distance \(s_2 \) and distance \(d \) is in accordance with 11.10.4. Vertical shear reinforcement shall be provided in accordance with 11.10.9.4.

11.10.9.2 — Ratio \(\rho_h \) of horizontal shear reinforcement area to gross concrete area of vertical section shall not be less than 0.0025.

11.10.9.3 — Spacing of horizontal shear reinforcement \(s_2 \) shall not exceed \(\frac{l_w}{5}, 3h \), nor 500 mm.

11.10.9.4 — Ratio \(\rho_n \) of vertical shear reinforcement area to gross concrete area of horizontal section shall not be less than

\[\rho_n = 0.0025 + 0.5 \left(2.5 - \frac{h_w}{l_w} \right) (\rho_h - 0.0025) \] \hspace{1cm} (11-34)

nor 0.0025, but need not be greater than the required horizontal shear reinforcement.

11.10.9.5 — Spacing of vertical shear reinforcement \(s_1 \) shall not exceed \(\frac{l_w}{3}, 3h \), nor 500 mm.

11.11 — Transfer of moments to columns

11.11.1 — When gravity load, wind, earthquake, or other lateral forces cause transfer of moment at connections of framing elements to columns, the shear resulting from moment transfer shall be considered in the design of lateral reinforcement in the columns.

11.11.2 — Except for connections not part of a primary seismic load-resisting system that are restrained on four sides by beams or slabs of approximately equal depth, connections shall have lateral reinforcement not less than that required by Eq. (11-13) within the column for a depth not less than that of the deepest connection of framing elements to the columns. See also 7.9.

COMMENTS

Effectiveness of the horizontal versus vertical reinforcement is recognized in Eq. (11-34); when \(h_w / l_w \) is less than 0.5, the amount of vertical reinforcement is equal to the amount of horizontal reinforcement. When \(h_w / l_w \) is greater than 2.5, only a minimum amount of vertical reinforcement is required (0.0025 \(s_1 h \)).

Eq. (11-33) is presented in terms of shear strength \(V_s \) provided by the horizontal shear reinforcement for direct application in Eq. (11-1) and (11-2).

Vertical shear reinforcement also should be provided in accordance with 11.10.9.4 within the spacing limitation of 11.10.9.5.

R11.11 — Transfer of moments to columns

R11.11.1 — Tests\(^{11.44}\) have shown that the joint region of a beam to column connection in the interior of a building does not require shear reinforcement if the joint is confined on four sides by beams of approximately equal depth. However, joints without lateral confinement, such as at the exterior of a building, need shear reinforcement to prevent deterioration due to shear cracking.\(^{11.45}\)

For regions where strong earthquakes may occur, joints may be required to withstand several reversals of loading that develop the flexural capacity of the adjoining beams. See Chapter 21 for special provisions for seismic design.
11.12 — Special provisions for slabs and footings

11.12.1 — The shear strength of slabs and footings in the vicinity of columns, concentrated loads, or reactions is governed by the more severe of two conditions:

11.12.1.1 — Beam action where each critical section to be investigated extends in a plane across the entire width. For beam action the slab or footing shall be designed in accordance with 11.1 through 11.5.

11.12.1.2 — Two-way action where each of the critical sections to be investigated shall be located so that its perimeter b_o is a minimum but need not approach closer than $d/2$ to

(a) Edges or corners of columns, concentrated loads, or reaction areas; or

(b) Changes in slab thickness such as edges of capitals or drop panels.

For two-way action the slab or footing shall be designed in accordance with 11.12.2 through 11.12.6.

11.12.1.3 — For square or rectangular columns, concentrated loads, or reaction areas, the critical sections with four straight sides shall be permitted.

11.12.2 — The design of a slab or footing for two-way action is based on Eq. (11-1) and (11-2). V_c shall be computed in accordance with 11.12.2.1, 11.12.2.2, or 11.12.3.1. V_p shall be computed in accordance with 11.12.3. For slabs with shearheads, V_p shall be in accordance with 11.12.4. When moment is transferred between a slab and a column, 11.12.6 shall apply.
CODE

11.12.2.1 — For nonprestressed slabs and footings, \(V_c \) shall be the smallest of:

\[
V_c = \left(1 + \frac{2}{\beta_c} \right) \left(\frac{f_c' b_o d}{6} \right)
\]

(11-35)

where \(\beta_c \) is the ratio of long side to short side of the column, concentrated load or reaction area;

\[
V_c = \left(\frac{\alpha_s d}{b_o} + 2 \right) \frac{f_c' b_o d}{12}
\]

(11-36)

where \(\alpha_s \) is 40 for interior columns, 30 for edge columns, and 20 for corner columns; and

\[
V_c = \frac{1}{3} \sqrt{f_c'} b_o d
\]

(11-37)

11.12.2.2 — At columns of two-way prestressed slabs and footings that meet the requirements of 18.9.3

\[
V_c = \beta_p \left(\frac{f_c'}{3} + 0.3 f_{pc} \right) b_o d + V_p
\]

(11-38)

where \(\beta_p \) is the smaller of 0.29 or \((\alpha_s d/b_o + 1.5)/12 \), \(\alpha_s \) is 40 for interior columns, 30 for edge columns, and 20 for corner columns, \(b_o \) is perimeter of critical section defined in 11.12.1.2, \(f_{pc} \) is the average value of \(f_{pc} \) for the two directions, and \(V_p \) is the vertical component of all effective prestress forces crossing the critical section. \(V_c \) shall be permitted to be computed by Eq. (11-38) if the following are satisfied; otherwise, 11.12.2.1 shall apply:

(a) No portion of the column cross section shall be closer to a discontinuous edge than 4 times the slab thickness;

(b) \(f_c' \) in Eq. (11-38) shall not be taken greater than 35 MPa; and

(c) \(f_{pc} \) in each direction shall not be less than 0.9 MPa, nor be taken greater than 3.5 MPa.

COMMENTARY

R11.12.2.1 — For square columns, the shear stress due to ultimate loads in slabs subjected to bending in two directions is limited to \((1/3) \sqrt{f_c'} \). However, tests\(^{11,46}\) have indicated that the value of \((1/3) \sqrt{f_c'} \) is unconservative when the ratio \(\beta_c \) of the lengths of the long and short sides of a rectangular column or loaded area is larger than 2.0. In such cases, the actual shear stress on the critical section at punching shear failure varies from a maximum of about \((1/3) \sqrt{f_c'} \) around the corners of the column or loaded area, down to \((1/6) \sqrt{f_c'} \) or less along the long sides between the two end sections. Other tests\(^{11,47}\) indicate that \(v_c \) decreases as the ratio \(b_o/d \) increases. Eq. (11-35) and (11-36) were developed to account for these two effects. The words “interior,” “edge,” and “corner columns” in 11.12.2.1(b) refer to critical sections with 4, 3, and 2 sides, respectively.

For shapes other than rectangular, \(\beta_c \) is taken to be the ratio of the longest overall dimension of the effective loaded area to the largest overall perpendicular dimension of the effective loaded area, as illustrated for an L-shaped reaction area in Fig. R11.12.2. The effective loaded area is that area totally enclosing the actual loaded area, for which the perimeter is a minimum.

R11.12.2.2 — For prestressed slabs and footings, a modified form of code Eq. (11-35) and (11-36) is specified for two-way action shear strength. Research\(^{11,48,11,49}\) indicates that the shear strength of two-way prestressed slabs around interior columns is conservatively predicted by Eq. (11-38). \(V_c \) from Eq. (11-36) corresponds to a diagonal tension failure of the concrete initiating at the critical section defined in 11.12.1.2. The mode of failure differs from a punching shear failure of the concrete compression zone around the perimeter of the loaded area predicted by Eq. (11-35). Consequently, the term \(\beta_p \) does not enter into Eq. (11-38).

Design values for \(f_c' \) and \(f_{pc} \) are restricted due to limited test
11.12.3 — Shear reinforcement consisting of bars or wires shall be permitted in slabs and footings in accordance with 11.12.3.1 and 11.12.3.2.

11.12.3.1 — V_n shall be computed by Eq. (11-2), where V_c shall not be taken greater than $(1/6) f'_c b_o d$, and the required area of shear reinforcement A_v and V_s shall be calculated in accordance with 11.5 and anchored in accordance with 12.13.

11.12.3.2 — V_n shall not be taken greater than $(1/2) f'_c b_o d$.

R11.12.3 — Research has shown that shear reinforcement consisting of bars or wires can be used in slabs provided that it is well anchored. The anchorage detail used in the tests is shown in Fig. R11.12.3(a). Anchorage of stirrups according to the requirements of 12.13 is difficult in slabs thinner than 250 mm. For such thin slabs, stirrups should only be used if they are closed and enclose a longitudinal bar at each corner. Shear reinforcement consisting of vertical bars mechanically anchored at each end by a plate or head capable of developing the yield strength of the bars have been used successfully.

In a slab-column joint in which the moment transfer is negligible, the shear reinforcement should be symmetrical about the centroid of the critical section in location, number, and spacing of stirrups as shown in Fig. R11.12.3(b). At edge columns or in the case of interior columns transferring moment, the shear reinforcement should be as symmetrical as possible. Although the average shear stresses on faces AD and BC of the exterior column in Fig. R11.12.3(c) are lower than on face AB, the stirrups extending from faces AD and BC reinforce against torsional stresses in the strip of slab along the edge.

When bars or wires are provided as shear reinforcement, the
11.12.4—Shear reinforcement consisting of steel I- or channel-shaped sections (shearheads) shall be permitted in slabs. The provisions of 11.12.4.1 through 11.12.4.9 shall apply where shear due to gravity load is transferred at interior column supports. Where moment is transferred to columns, 11.12.6.3 shall apply.

11.12.4.1 — Each shearhead shall consist of steel shapes fabricated by welding with a full penetration weld into identical arms at right angles. Shearhead arms shall not be interrupted within the column section.

11.12.4.2 — A shearhead shall not be deeper than 70 times the web thickness of the steel shape.

11.12.4.3 — The ends of each shearhead arm shall be permitted to be cut at angles not less than 30 deg with the horizontal, provided the plastic moment strength of the remaining tapered section is adequate to resist the shear force attributed to that arm of the shearhead.

Fig. R11.12.3(b)—Arrangement of stirrup shear reinforcement, interior column

shear strength may be increased to a maximum shear stress of \((1/2)\sqrt{f_c'}\). However, shear reinforcement should be designed to carry all shear in excess of a stress of \((1/6)\sqrt{f_c'}\).

R11.12.4—Based on reported test data, design procedures are presented for shearhead reinforcement consisting of structural steel shapes. For a column connection transferring moment, the design of shearheads is given in 11.12.6.3.

Three basic criteria should be considered in the design of shearhead reinforcement for connections transferring shear due to gravity load. First, a minimum flexural strength should be provided to ensure that the required shear strength of the slab is reached before the flexural strength of the shearhead is exceeded. Second, the shear stress in the slab at the end of the shearhead reinforcement should be limited. Third, after these two requirements are satisfied, the designer can reduce the negative slab reinforcement in proportion to the moment contribution of the shearhead at the design section.
11.12.4.4 — All compression flanges of steel shapes shall be located within 0.3d of compression surface of slab.

11.12.4.5 — The ratio α_v between the stiffness of each shearhead arm and that of the surrounding composite cracked slab section of width $(c_2 + d)$ shall not be less than 0.15.

11.12.4.6 — The plastic moment strength M_p required for each arm of the shearhead shall be computed by

$$\phi M_p = \frac{V_u}{2\eta} \left[h_v + \alpha_v \left(\frac{\gamma_v - c_1}{2} \right) \right]$$

(11-39)

where ϕ is the strength reduction factor for flexure, η is the number of arms, and γ_v is the minimum length of

R11.12.4.5 and R11.12.4.6 — The assumed idealized shear distribution along an arm of a shearhead at an interior column is shown in Fig. R11.12.4.5. The shear along each of the arms is taken as $\alpha_v V_c / \eta$, where α_v and η are defined in 11.12.4.5 and 11.12.4.6, and V_c is defined in 11.12.2.1. However, the peak shear at the face of the column is taken as the total shear considered per arm $V_u / \phi \eta$ minus the shear considered carried to the column by the concrete compression zone of the slab. The latter term is expressed as $(V_c / \eta)(1 - \alpha_v)$, so that it approaches zero for a heavy shearhead and approaches $V_u / \phi \eta$ when a light shearhead is used. Eq. (11-39) then follows from the assumption that the inclined cracking shear force V_c is about one-half the shear force V_u. In this equation, M_p is the required plastic moment strength of each shearhead arm necessary to ensure that ulti-
CODE

each shearhead arm required to comply with requirements of 11.12.4.7 and 11.12.4.8.

11.12.4.7 — The critical slab section for shear shall be perpendicular to the plane of the slab and shall cross each shearhead arm at three-quarters the distance \(l' - (c_1/2) \) from the column face to the end of the shearhead arm. The critical section shall be located so that its perimeter \(b_o \) is a minimum, but need not be closer than the perimeter defined in 11.12.1.2(a).

11.12.4.8 — \(V_n \) shall not be taken greater than
\[
\frac{(1/3) \sqrt{f_c'}}{b_o d}
\]
on the critical section defined in 11.12.4.7. When shearhead reinforcement is provided, \(V_n \) shall not be taken greater than \((0.6) \sqrt{f_c'} b_o d \) on the critical section defined in 11.12.1.2(a).

11.12.4.9 — The moment resistance \(M_v \) contributed to each slab column strip by a shearhead shall not be taken greater than
\[
M_v = \frac{\phi \alpha_v V_u}{2\eta} \left(l' - \frac{c_1}{2} \right)
\]
where \(\phi \) is the strength reduction factor for flexure, \(\eta \) is the number of arms, and \(l' \) is the length of each shearhead arm actually provided. However, \(M_v \) shall not be taken larger than the smaller of:

(a) 30 percent of the total factored moment required for each slab column strip;

COMMENTARY

The moment strength of the shearhead is reached. The quantity \(l' \) is the length from the center of the column to the point at which the shearhead is no longer required, and the distance \(c_1/2 \) is one-half the dimension of the column in the direction considered.

R11.12.4.7 — The test results\(^{11,51}\) indicated that slabs containing underreinforcing shearheads failed at a shear stress on a critical section at the end of the shearhead reinforcement less than \((1/3) \sqrt{f_c'}\). Although the use of overreinforcing shearheads brought the shear strength back to about the equivalent of \((1/3) \sqrt{f_c'}\), the limited test data suggest that a conservative design is desirable. Therefore, the shear strength is calculated as \((1/3) \sqrt{f_c'}\) on an assumed critical section located inside the end of the shearhead reinforcement.

The critical section is taken through the shearhead arms three-fourths of the distance \(l' - (c_1/2) \) from the face of the column to the end of the shearhead. However, this assumed critical section need not be taken closer than \(d/2 \) to the column. See Fig. R11.12.4.7.

R11.12.4.9 — If the peak shear at the face of the column is neglected, and the cracking load \(V_c \) is again assumed to be about one-half of \(V_u \), the moment contribution of the shearhead \(M_v \) can be conservatively computed from Eq. (11-40), in which \(\phi \) is the factor for flexure (0.9).
(b) The change in column strip moment over the length l;

(c) The value of M_p computed by Eq. (11-39).

11.12.4.10 — When unbalanced moments are considered, the shearhead must have adequate anchorage to transmit M_p to column.

11.12.5 — Openings in slabs

When openings in slabs are located at a distance less than 10 times the slab thickness from a concentrated load or reaction area, or when openings in flat slabs are located within column strips as defined in Chapter 13, the critical slab sections for shear defined in 11.12.1.2 and 11.12.4.7 shall be modified as follows:

11.12.5.1 — For slabs without shearheads, that part of the perimeter of the critical section that is enclosed by straight lines projecting from the centroid of the column, concentrated load, or reaction area and tangent to the boundaries of the openings shall be considered ineffective.

11.12.5.2 — For slabs with shearheads, the ineffective portion of the perimeter shall be one-half of that defined in 11.12.5.1.

11.12.6 — Transfer of moment in slab-column connections

11.12.6.1 — When gravity load, wind, earthquake, or other lateral forces cause transfer of unbalanced moment M_u between a slab and a column, a fraction $\gamma_f M_u$ of the unbalanced moment shall be transferred by flexure in accordance with 13.5.3. The remainder of the unbalanced moment given by $\gamma_v M_u$ shall be considered to be

R11.12.4.10 — See R11.12.6.3.

R11.12.5 — Openings in slabs

Provisions for design of openings in slabs (and footings) were developed in Reference 11.3. The locations of the effective portions of the critical section near typical openings and free edges are shown by the dashed lines in Fig. R11.12.5. Additional research11.46 has confirmed that these provisions are conservative.

R11.12.6 — Transfer of moment in slab-column connections

R11.12.6.1 — In Reference 11.52 it was found that where moment is transferred between a column and a slab, 60 percent of the moment should be considered transferred by flexure across the perimeter of the critical section defined in 11.12.1.2, and 40 percent by eccentricity of the shear about the centroid of the critical section. For rectangular columns,
transferred by eccentricity of shear about the centroid of the critical section defined in 11.12.1.2 where

$$\gamma_v = (1 - \gamma_f)$$ \hfill (11-41)

11.12.6.2 — The shear stress resulting from moment transfer by eccentricity of shear shall be assumed to vary linearly about the centroid of the critical sections defined in 11.12.1.2. The maximum shear stress due to the factored shear force and moment shall not exceed ϕv_n:

For members without shear reinforcement

$$\phi v_n = \phi V_c/(b_d d)$$ \hfill (11-42)

where V_c is as defined in 11.12.2.1 or 11.12.2.2.

For members with shear reinforcement other than shearheads:

$$\phi v_n = \phi (V_c + V_s)/(b_d d)$$ \hfill (11-43)

where V_c and V_s are defined in 11.12.3. If shear reinforcement is provided, the design shall take into account the variation of shear stress around the column.

Most of the data in Reference 11.52 were obtained from tests of square columns, and little information is available for round columns. These can be approximated as square columns. Fig. R13.6.2.5 shows square supports having the same area as some nonrectangular members.

R11.12.6.2 — The stress distribution is assumed as illustrated in Fig. R11.12.6.2 for an interior or exterior column. The perimeter of the critical section, $ABCD$, is determined in accordance with 11.12.1.2. The factored shear force V_u and unbalanced moment M_u are determined at the centroidal axis $c-c$ of the critical section. The maximum factored shear stress may be calculated from:

$$v_{u(AB)} = \frac{V_u}{A_c} + \frac{\gamma_c M_u}{J_c}$$

or

$$v_{u(CD)} = \frac{V_u}{A_c} - \frac{\gamma_c M_u}{J_c}$$

where γ_c is given by Eq. (11-41). For an interior column, A_c and J_c may be calculated by

$$A_c = \text{area of concrete of assumed critical section}$$
$$= 2d (c_1 + c_2 + 2d)$$
11.12.6.3 — When shear reinforcement consisting of steel I- or channel-shaped sections (shearheads) is provided, the sum of the shear stresses due to vertical load acting on the critical section defined by 11.12.4.7 and the shear stresses resulting from moment transferred by eccentricity of shear about the centroid of the critical section defined in 11.12.1.2(a) and 11.12.1.3 shall not exceed $\phi(1/3)\sqrt{f_c^2}$.

R11.12.6.3 — Tests indicate that the critical sections are defined in 11.12.1.2(a) and 11.12.1.3 and are appropriate for calculations of shear stresses caused by transfer of moments even when shearheads are used. Then, even though the critical sections for direct shear and shear due to moment transfer differ, they coincide or are in close proximity at the column corners where the failures initiate. Because a shearhead attracts most of the shear as it funnels toward the col-

Fig. R11.12.6.2—Assumed distribution of shear stress

$J_c = \frac{d(c_1 + d)^3}{6} + \frac{(c_1 + d)d^3}{6} + \frac{d(c_2 + d)(c_1 + d)^2}{2}$

Similar equations may be developed for A_c and J_c for columns located at the edge or corner of a slab.

The fraction of the unbalanced moment between slab and column not transferred by eccentricity of the shear should be transferred by flexure in accordance with 13.5.3. A conservative method assigns the fraction transferred by flexure over an effective slab width defined in 13.5.3.2. Often designers concentrate column strip reinforcement near the column to accommodate this unbalanced moment. Available test data seem to indicate that this practice does not increase shear strength but may be desirable to increase the stiffness of the slab-column junction.

Test data indicate that the moment transfer capacity of a prestressed slab to column connection can be calculated using the procedures of 11.12.6 and 13.5.3.
umn, it is conservative to take the maximum shear stress as the sum of the two components.

Section 11.12.4.10 requires the moment M_p transferred to the column in shearhead connections transferring unbalanced moments. This may be done by bearing within the column or positive mechanical anchorage.
CHAPTER 12 — DEVELOPMENT AND SPLICES OF REINFORCEMENT

CODE

12.0 — Notation

\(a\) = depth of equivalent rectangular stress block as defined in 10.2.7.1, mm
\(A_b\) = area of an individual bar, mm\(^2\)
\(A_s\) = area of nonprestressed tension reinforcement, mm\(^2\)
\(A_{tr}\) = total cross-sectional area of all transverse reinforcement which is within the spacing \(s\) and which crosses the potential plane of splitting through the reinforcement being developed, mm\(^2\)
\(A_v\) = area of shear reinforcement within a distance \(s\), mm\(^2\)
\(A_w\) = area of an individual wire to be developed or spliced, mm\(^2\)
\(b_w\) = web width, or diameter of circular section, mm
\(c\) = spacing or cover dimension, mm. See 12.2.4
\(d\) = distance from extreme compression fiber to centroid of tension reinforcement, mm
\(d_b\) = nominal diameter of bar, wire, or prestressing strand, mm
\(f_c'\) = specified compressive strength of concrete, MPa
\(f_{ct}\) = average splitting tensile strength of lightweight aggregate concrete, MPa
\(f_{ps}\) = stress in prestressed reinforcement at nominal strength, MPa
\(f_{se}\) = effective stress in prestressed reinforcement (after allowance for all prestress losses), MPa
\(f_y\) = specified yield strength of nonprestressed reinforcement, MPa
\(f_{yt}\) = specified yield strength of transverse reinforcement, MPa
\(h\) = overall thickness of member, mm
\(K_{tr}\) = transverse reinforcement index, mm
\(l\) = development length, mm
\(l_{db}\) = basic development length, mm
\(l_{dh}\) = development length of standard hook in tension, measured from critical section to outside end of hook (straight embedment length between critical section and start of hook)

COMMENTARY

The development length concept for anchorage of reinforcement was first introduced in the 1971 code, to replace the dual requirements for flexural bond and anchorage bond contained in earlier editions. It is no longer necessary to consider the flexural bond concept, which placed emphasis on the computation of nominal peak bond stresses. Consideration of an average bond resistance over a full development length of the reinforcement is more meaningful, partially because all bond tests consider an average bond resistance over a length of embedment of the reinforcement, and partially because uncalculated extreme variations in local bond stresses exist near flexural cracks.\(^{12.1}\)

The development length concept is based on the attainable average bond stress over the length of embedment of the reinforcement. Development lengths are required because of the tendency of highly stressed bars to split relatively thin sections of restraining concrete. A single bar embedded in a mass of concrete should not require as great a development length; although a row of bars, even in mass concrete, can create a weakened plane with longitudinal splitting along the plane of the bars.

In application, the development length concept requires minimum lengths or extensions of reinforcement beyond all points of peak stress in the reinforcement. Such peak stresses generally occur at the points in 12.10.2.

The strength reduction factor \(\phi\) is not used in this chapter. An allowance for strength reduction is already included in the expressions for determining development and splice lengths. The required development and splice lengths are the same for either the strength design method or the alternate design method of Appendix A, since development and splice lengths are based on \(f_y\) in either case.

Units of measurement are given in the Notation to assist the user and are not intended to preclude the use of other correctly applied units for the same symbol, such as m or kN.
CODE

\[\text{point of tangency} \text{ plus radius of bend and one bar diameter), mm} \]

\[l_{hb} = \text{basic development length of standard hook in tension, mm} \]

\[M_n = \text{nominal moment strength at section, N-m} \]

\[n = \text{number of bars or wires being spliced or developed along the plane of splitting} \]

\[s = \text{maximum center-to-center spacing of transverse reinforcement within } l_d \text{, mm} \]

\[s_w = \text{spacing of wire to be developed or spliced, mm} \]

\[V_u = \text{factored shear force at section, N} \]

\[\alpha = \text{reinforcement location factor. See 12.2.4} \]

\[\beta = \text{coating factor. See 12.2.4} \]

\[\beta_b = \text{ratio of area of reinforcement cut off to total area of tension reinforcement at section} \]

\[\gamma = \text{reinforcement size factor. See 12.2.4} \]

\[\lambda = \text{lightweight aggregate concrete factor. See 12.2.4} \]

12.1 — Development of reinforcement — General

12.1.1 — Calculated tension or compression in reinforcement at each section of structural concrete members shall be developed on each side of that section by embedment length, hook or mechanical device, or a combination thereof. Hooks shall not be used to develop bars in compression.

12.1.2 — The values of \(\sqrt{f'_c} \) used in this chapter shall not exceed 25/3 MPa.

COMMENTARY

R12.1 — Development of reinforcement — General

From a point of peak stress in reinforcement, some length of reinforcement or anchorage is necessary to develop the stress. This development length or anchorage is necessary on both sides of such peak stress points. Often the reinforcement continues for a considerable distance on one side of a critical stress point so that calculations need involve only the other side, for example, the negative moment reinforcement continuing through a support to the middle of the next span.
CODE

12.2 — Development of deformed bars and deformed wire in tension

12.2.1 — Development length \(l_d \), in terms of diameter \(d_b \) for deformed bars and deformed wire in tension shall be determined from either 12.2.2 or 12.2.3, but \(l_d \) shall not be less than 300 mm.

12.2.2 — For deformed bars or deformed wire, \(l_d/d_b \) shall be as follows:

<table>
<thead>
<tr>
<th>Clear spacing of bars being developed or spliced not less than (d_b), clear cover not less than (d_b), and stirrups or ties throughout (l_d) not less than the code minimum</th>
<th>No. 19 and smaller bars and deformed wires</th>
<th>No. 22 and larger bars</th>
</tr>
</thead>
<tbody>
<tr>
<td>(l_d/d_b = \frac{12 f_y \alpha \beta \gamma}{25 \sqrt{f_c'}})</td>
<td>(l_d/d_b = \frac{3 f_y \alpha \beta \gamma}{5 \sqrt{f_c'}})</td>
<td></td>
</tr>
</tbody>
</table>

or

<table>
<thead>
<tr>
<th>Clear spacing of bars being developed or spliced not less than (2d_b) and clear cover not less than (d_b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(l_d/d_b = \frac{18 f_y \alpha \beta \gamma}{25 \sqrt{f_c'}})</td>
</tr>
</tbody>
</table>

Other cases

| \(l_d/d_b = \frac{9 f_y \alpha \beta \gamma}{10 \sqrt{f_c'}} \) |

12.2.3 — For deformed bars or deformed wire, \(l_d/d_b \) shall be:

\[
\frac{l_d}{d_b} = \frac{9 f_y}{10 \sqrt{f_c'} \left(\frac{c + K_{tr}}{d_b} \right)}
\]

(12-1)

in which the term \((c + K_{tr})/d_b \) shall not be taken greater than 2.5.

COMMENTARY

R12.2 — Development of deformed bars and deformed wire in tension

In the 1989 code, major changes were made in the procedures for calculating development lengths for deformed bars and deformed wires in tension. While the 1989 revisions were based on extensive research and professional judgment, many of those applying the 1989 provisions in design, detailing, and fabrication found them to be overly complex in application. Also, in some circumstances, the revisions required longer development lengths than prior experience indicated necessary. Committee 318 reexamined the basic tension development length procedures with a view of formulating a more user-friendly format while maintaining general agreement with research results and professional judgment. In the 1995 code, the format for determining the development lengths for deformed bars and deformed wires in tension was extensively revised. The revision, however, was based on the same general equation \(l_d = \frac{f_y}{\sqrt{f_c}} \) for development length previously endorsed by Committee 408.12.2.12.3

After extensive discussion, the committee decided to show as many of the previous multipliers as possible in the basic equation, as well as to rearrange terms and to eliminate compounding \(\phi \)-factors. This results in the development length equation (expressed in terms of bar or wire diameter) given in 12.2.3:

\[
\frac{l_d}{d_b} = \frac{9 f_y}{10 \sqrt{f_c'} \left(\frac{c + K_{tr}}{d_b} \right)}
\]

\(c \) is a factor that represents the smallest of the side cover, cover over the bar or wire (in both cases measured to the center of the bar or wire), or one-half the center-to-center spacing of the bars or wires. \(K_{tr} \) is a factor that represents the contribution of confining reinforcement across potential splitting planes. \(\alpha \) is the traditional reinforcement location factor to reflect the adverse effects of the top reinforcement casting position. \(\beta \) is a coating factor reflecting the effects of epoxy coating. These factors have been revised to reflect research findings and there is a limit on the product \(\alpha \beta \). \(\gamma \) is a reinforcement size factor that reflects the more favorable performance of smaller diameter reinforcement. \(\lambda \) is a lightweight concrete factor that reflects the generally lower tensile strength of lightweight concrete and the resulting reduction of splitting resistance that is important in the development of deformed reinforcement. A limit on the term \((c + K_{tr})/d_b \) of 2.5 is included to safeguard against pull-out type failures. This limit eliminated the need for the check of \(0.375 d_b f_y / \sqrt{f_c} \) previously required under the 1989 code, Section 12.2.3.6.

The general Eq. (12-1) allows the designer to see the effect of all variables controlling the development length. The designer is permitted to disregard terms when such omission
results in longer and hence more conservative development lengths. Evaluation of Eq. (12-1) for certain design conditions, and for given concrete strengths and reinforcing steel grades gives the basic development length in bar diameter multiples. This format was judged by designers and reinforcing bar suppliers to be a much more practical formulation.

However, implementation requires that either the user calculate l_d based on the actual $(c + K_{tr})/d_b$ for each case or that a range of $(c + K_{tr})/d_b$ values be preselected for common cases. Committee 318 chose a final format that allows the user to choose between either of two approaches:

(1) Section 12.2.2 presents a simpler approach that recognizes that many current practical construction cases utilize spacing and cover values along with confining reinforcement such as stirrups or ties that result in a value of $(c + K_{tr})/d_b$ of at least 1.5. Examples would be minimum clear cover of 1.0d_b along with either minimum clear spacing of 2d_b, or a combination of minimum clear spacing of 1.0d_b and minimum ties or stirrups. For these frequently occurring cases, the development length for larger bars can be taken as $l_d/d_b = 3/5(f_y \alpha \beta \lambda / f_c^')$. Comparison with past provisions and a check of a massive data bank of experimental results maintained by Committee 408 indicated that for No. 19 deformed bars and smaller, as well as for deformed wire, these values could be reduced 20 percent using $\gamma = 0.80$. This is the basis for the first row of the table in 12.2.2. With lesser cover and in the absence of minimum ties or stirrups, the minimum clear spacing limits of 7.6.1 and the minimum concrete cover requirements of 7.7 result in minimum values of c of 1.0d_b. Thus, for “other cases,” the values are multiplied by 1.5 to restore them to equivalence with Eq. (12.1).

While the equations in the table in 12.2.2 may initially look complex, they are readily evaluated and for the generally occurring conditions, the user may easily construct very simple, quite useful expressions. For example, in all structures with normalweight concrete ($\lambda = 1.0$), uncoated reinforcement ($\beta = 1.0$), No. 19 or smaller bottom bars ($\alpha = 1.0$) with $f_c' = 30$ MPa and Grade 420 reinforcement, the equations reduce to

$$\frac{l_d}{d_b} = \frac{12(420)(1.0)(1.0)(1.0)}{25 \sqrt{30}} = 37$$

or

$$\frac{l_d}{d_b} = \frac{18(420)(1.0)(1.0)(1.0)}{25 \sqrt{30}} = 55$$

Thus, a designer or detailer knows that for these widely occurring cases, as long as minimum cover of d_b, and either
CODE

12.2.4 — The factors for use in the expressions for development of deformed bars and deformed wires in tension in Chapter 12 are as follows:

\[\alpha = \text{reinforcement location factor} \]
Horizontal reinforcement so placed that more than 300 mm of fresh concrete is cast in the member below the development length or splice \(\alpha = 1.3 \)
Other reinforcement \(\alpha = 1.0 \)

\[\beta = \text{coating factor} \]
Epoxy-coated bars or wires with cover less than 3\(d_b \), or clear spacing less than 6\(d_b \) \(\beta = 1.5 \)
All other epoxy-coated bars or wires \(\beta = 1.2 \)
Uncoated reinforcement \(\beta = 1.0 \)

However, the product \(\alpha \beta \) need not be taken greater than 1.7.

COMMENTARY

minimum clear spacing of 2\(d_b \) or minimum clear spacing of \(d_b \) along with minimum ties or stirrups are provided, \(l_d = 37d_b \).
The penalty for spacing bars closer or providing less cover is the requirement that \(l_d = 55d_b \).

(2) A more general approach, which is basically quite similar in many respects to the original Committee 408 proposal,12.2,12.3 is included in 12.2.3. This allows the user to evaluate \((c + K_{tr})/d_b \) for each particular combination of cover, spacing, and transverse reinforcement. This allows one to more rigorously calculate development lengths where critical or in special investigations. A limit on \((c + K_{tr})/d_b \) of 2.5 is imposed to maintain the 1989 code 12.2.3.6 limit of \(l_{db} \geq 0.375d_b f_y/\sqrt{f'_c} \), which is based on the pullout failure mode as a controlling failure mode.

There are many practical combinations of side cover, clear cover, and confining reinforcement that can be used with 12.2.3 to produce significantly shorter development lengths than allowed by 12.2.2. For example, bars or wires with minimum clear cover not less than 2\(d_b \) and minimum clear spacing not less than 4\(d_b \) and without any confining reinforcement would have a \((c + K_{tr})/d_b \) value of 2.5 and would require only 0.6 times the values of 12.2.2.

The provisions of 12.2.2 and 12.2.3 give a two-tier approach as provided in many other places in the code. They result in simpler computations where approximations are acceptable while retaining the more general ACI Committee 408 approach where special cases or many repetitions make the greater efficiency desirable.

The basis for determining tension development length in the code was the same as that in the 1989 code. Thus, design aids and computer programs based on Section 12.2 of the 1989 code can be used for complying with the code.

R12.2.4 — The reinforcement location factor \(\alpha \) accounts for position of the reinforcement in freshly placed concrete. The factor had been reduced from 1.4 in the 1983 code to 1.3 in the 1989 code to reflect research.12.4,12.5

The factor \(\lambda \) for lightweight aggregate concrete was made the same for all types of aggregates in the 1989 code. Research on hooked bar anchorages did not support the variations in previous codes for all-lightweight and sand-lightweight concrete and a single value, 1.3, was selected. Section 12.2.4 allows a lower factor to be used when the splitting tensile strength of the lightweight concrete is specified. See 5.1.4.

Studies12.6,12.7,12.8 of the anchorage of epoxy-coated bars show that bond strength is reduced because the coating prevents adhesion and friction between the bar and the concrete. The factors reflect the type of anchorage failure likely to occur. When the cover or spacing is small, a splitting failure can occur and the anchorage or bond strength is substantially
12.2.5 — Excess reinforcement

Reduction in development length shall be permitted where reinforcement in a flexural member is in excess of that required by analysis except where anchorage or development for f_y is specifically required or the reinforcement is designed under provisions of 21.2.1.4 (A_s required)/(A_s provided).

R12.2.5 — Excess reinforcement

The reduction factor based on area is not to be used in those cases where anchorage development for full f_y is required. For example, the excess reinforcement factor does not apply for development of positive moment reinforcement at supports according to 12.11.2, for development of shrinkage and temperature reinforcement according to 7.12.2.3, or for development of reinforcement provided according to 7.13 and 13.3.8.5.

12.3 — Development of deformed bars in compression

12.3.1 — Development length l_d, in mm, for deformed bars in compression shall be computed as the product of the basic development length l_{db} of 12.3.2 and applicable modification factors of 12.3.3, but l_d shall not be less than 200 mm.

R12.3 — Development of deformed bars in compression

The weakening effect of flexural tension cracks is not present for bars in compression and usually end bearing of the bars on the concrete is beneficial. Therefore, shorter basic development lengths l_{db} are required for compression than for tension. The basic development length may be reduced 25 percent in 12.3.3.2 when the reinforcement is enclosed within a column type spiral or an individual spiral around each bar or group of bars.
12.3.2 — Basic development length

\[l_{db} = \frac{d_b f_y}{A_{fy}} \]

but not less than \[0.04 d_b f_y \]

where the constant 0.04 carries the unit of \(\text{mm}^2/\text{N} \)

12.3.3 — Basic development length \(l_{db} \) shall be permitted to be multiplied by applicable factors for:

12.3.3.1 — Excess reinforcement

Reinforcement in excess of that required by analysis \((A_s \text{ required})/(A_s \text{ provided})\)

12.3.3.2 — Spirals and ties

Reinforcement enclosed within spiral reinforcement not less than 6 mm diameter and not more than 100 mm pitch or within No. 13 ties in conformance with 7.10.5 and spaced at not more than 100 mm on center \(0.75 \)

12.4 — Development of bundled bars

12.4.1 — Development length of individual bars within a bundle, in tension or compression, shall be that for the individual bar, increased 20 percent for three-bar bundle, and 33 percent for four-bar bundle.

12.4.2 — For determining the appropriate factors in 12.2, a unit of bundled bars shall be treated as a single bar of a diameter derived from the equivalent total area.

12.5 — Development of standard hooks in tension

12.5.1 — Development length \(l_{dh} \), in mm, for deformed bars in tension terminating in a standard hook (see 7.1) shall be computed as the product of the basic development length \(l_{hb} \) of 12.5.2 and the applicable modification factor or factors of 12.5.3, but \(l_{dh} \) shall not be less than \(8 d_b \), nor less than 150 mm.

R12.4 — Development of bundled bars

R12.4.1 — An increased development length for individual bars is required when three or four bars are bundled together. The extra extension is needed because the grouping makes it more difficult to mobilize bond resistance from the core between the bars.

The designer should also note 7.6.6.4 relating to the cutoff points of individual bars within a bundle and 12.14.2.2 relating to splices of bundled bars. The increases in development length of 12.4 do apply when computing splice lengths of bundled bars in accordance with 12.14.2.2. The development of bundled bars by a standard hook of the bundle is not covered by the provisions of 12.5.

R12.4.2 — Although splice and development lengths of bundled bars are based on the diameter of individual bars increased by 20 or 33 percent, as appropriate, it is necessary to use an equivalent diameter of the entire bundle derived from the equivalent total area of bars when determining factors in 12.2, which considers cover and clear spacing and represents the tendency of concrete to split.

R12.5 — Development of standard hooks in tension

The provisions for hooked bar anchorage were extensively revised in the 1983 code. Study of failures of hooked bars indicate that splitting of the concrete cover in the plane of the hook is the primary cause of failure and that splitting originates at the inside of the hook where the local stress concentrations are very high. Thus, hook development is a direct function of bar diameter \(d_b \), which governs the magnitude of
CODE

12.5.2 — Basic development length \(l_{hb} \) for a hooked bar with \(f_y \) equal to 420 MPa shall be \(\frac{100d_b}{\sqrt{f_c'}} \) where the constant carries unit of N/mm\(^2\).

12.5.3 — Basic development length \(l_{hb} \) shall be multiplied by applicable factor or factors for:

12.5.3.1 — Bar yield strength
Bars with \(f_y \) other than 420 MPa \(\frac{f_y}{420} \)

12.5.3.2 — Concrete cover
For No. 36 bar and smaller, side cover (normal to plane of hook) not less than 60 mm, and for 90 deg hook, cover on bar extension beyond hook not less than 50 mm \(0.7 \)

12.5.3.3 — Ties or stirrups
For No. 36 bar and smaller, hook enclosed vertically or horizontally within ties or stirrups spaced along the full development length \(l_{dh} \) not greater than \(3d_b \) where \(d_b \) is diameter of hooked bar \(0.8 \)

12.5.3.4 — Excess reinforcement
Where anchorage or development for \(f_y \) is not specifically required, reinforcement in excess of that required by analysis \(\frac{A_s \text{ required}}{A_s \text{ provided}} \)

12.5.3.5 — Lightweight aggregate concrete

\(1.3 \)

12.5.3.6 — Epoxy-coated reinforcement
Hooked bars with epoxy coating \(1.2 \)

COMMENTARY

The hooked bar anchorage provisions give the total hooked bar embedment length as shown in Fig. R12.5. The development length \(l_{dh} \) is measured from the critical section to the outside end (or edge) of the hook.

The development length \(l_{dh} \) is the product of the basic development length \(l_{hb} \) of 12.5.2 and the applicable modification factors of 12.5.3. If side cover is large so that splitting is effectively eliminated, and ties are provided, both factors of 12.5.3.2 and 12.5.3.3 may be applied: \(l_{dh} = l_{hb} \times 0.7 \times 0.8 \).

If, for the same case, anchorage is in lightweight concrete: \(l_{dh} = l_{hb} \times 0.7 \times 0.8 \times 1.3 \).

Modification factors are provided for bar yield strength, excess reinforcement, lightweight concrete, and factors to reflect the resistance to splitting provided from confinement by concrete and transverse ties or stirrups. The factors are based on recommendations from References 12.2 and 12.3.

The factor for excess reinforcement applies only where anchorage or development for full \(f_y \) is not specifically required. The factor for lightweight concrete is a simplification over the procedure in 12.2.3.3 of the 1983 code. Unlike straight bar development, no distinction is made between top bars and other bars; such a distinction is difficult for hook bars in any case. A minimum value of \(l_{dh} \) is required to prevent failure by direct pullout in cases where a hook may be located very near the critical section. Hooks are not considered effective in compression.
12.5.4 — For bars being developed by a standard hook at discontinuous ends of members with both side cover and top (or bottom) cover over hook less than 60 mm, hooked bar shall be enclosed within ties or stirrups spaced along the full development length l_{dh} not greater than $3d_b$, where d_b is diameter of hooked bar. For this case, factor of 12.5.3.3 shall not apply.

R12.5.4 — Bar hooks are especially susceptible to a concrete splitting failure if both side cover (normal to plane of hook) and top or bottom cover (in plane of hook) are small. See Fig. R12.5.4. With minimum confinement provided by concrete, additional confinement provided by ties or stirrups is essential, especially if full bar strength should be developed by a hooked bar with such small cover. Cases where hooks may require ties or stirrups for confinement are at ends of simply supported beams, at free end of cantilevers, and at ends of members framing into a joint where members do not extend beyond the joint. In contrast, if calculated bar stress is low so that the hook is not needed for bar anchorage, the ties or stirrups are not necessary. Also, for hooked bars at discontinuous ends of slabs with confinement provided by the slab continuous on both sides normal to the plane of the hook, provisions of 12.5.4 do not apply.

12.5.5 — Hooks shall not be considered effective in developing bars in compression.

12.6 — Mechanical anchorage

12.6.1 — Any mechanical device capable of developing the strength of reinforcement without damage to concrete is allowed as anchorage.

R12.6.1 — Mechanical anchorage can be made adequate for strength both for prestressing tendons and for bar reinforcement.

12.6.2 — Test results showing adequacy of such mechanical devices shall be presented to the building official.

R12.6.3 — Total development of a bar simply consists of the sum of all the parts that contribute to anchorage. When a mechanical anchorage is not capable of developing the required design strength of the reinforcement, additional embedment length of reinforcement should be provided between the mechanical anchorage and the critical section.

12.6.3 — Development of reinforcement shall be permitted to consist of a combination of mechanical anchorage plus additional embedment length of reinforcement between the point of maximum bar stress and the mechanical anchorage.
CODE

12.7 — Development of welded deformed wire fabric in tension

12.7.1 — Development length l_d, in mm, of welded deformed wire fabric measured from the point of critical section to the end of wire shall be computed as the product of the development length l_d, from 12.2.2 or 12.2.3 times a wire fabric factor from 12.7.2 or 12.7.3. It shall be permitted to reduce the development length in accordance with 12.2.5 when applicable, but l_d shall not be less than 200 mm except in computation of lap splices by 12.18. When using the wire fabric factor from 12.7.2, it shall be permitted to use an epoxy-coating factor β of 1.0 for epoxy-coated welded wire fabric in 12.2.2 and 12.2.3.

12.7.2 — For welded deformed wire fabric with at least one cross wire within the development length and not less than 50 mm from the point of the critical section, the wire fabric factor shall be the greater of:

$$\left(\frac{f_y - 240}{f_y}\right)$$

or

$$\frac{5d_b}{s_w}$$

but need not be taken greater than 1. The 240 value has units of MPa.

12.7.3 — For welded deformed wire fabric with no cross wires within the development length or with a single cross wire less than 50 mm from the point of the critical section, the wire fabric factor shall be taken as 1, and the development length shall be determined as for deformed wire.

12.7.4 — When any plain wires are present in the deformed wire fabric in the direction of the development length, the fabric shall be developed in accordance with 12.8.

12.8 — Development of welded plain wire fabric in tension

Yield strength of welded plain wire fabric shall be considered developed by embedment of two cross wires with the closer cross wire not less than 50 mm from the point of the critical section. However, the development length l_d, in mm, measured from the point of the critical section to the outermost cross wire shall not be less than

$$3.3 \frac{A_w}{s_w} \left(\frac{f_y}{f'_c}\right) \lambda$$

COMMENTARY

R12.7 — Development of welded deformed wire fabric in tension

Fig. R12.7 shows the development requirements for deformed wire fabric with one cross wire within the development length. ASTM A 497 for deformed wire fabric requires the same strength of the weld as required for plain wire fabric (ASTM A 185). Some of the development is assigned to welds and some assigned to the length of deformed wire. The development computations are simplified from earlier code provisions for wire development by assuming that only one cross wire is contained in the development length. The factors in 12.7.2 are applied to the deformed wire development length computed from 12.2, but with an absolute minimum of 200 mm. The explicit statement that the mesh multiplier not be taken greater than 1 corrects an oversight in earlier codes. The multipliers were derived using the general relationships between deformed wire mesh and deformed wires in the d_{db} values of the 1983 code.

Tests12.11 have indicated that epoxy-coated welded wire fabric has essentially the same development and splice strengths as uncoated fabric since the cross wires provide the primary anchorage for the wire. Therefore, an epoxy-coating factor of 1.0 is used for development and splice lengths of epoxy-coated welded wire fabric with cross wires within the splice or development length.

R12.8 — Development of welded plain wire fabric in tension

Fig. R12.8 shows the development requirements for plain wire fabric with development primarily dependent on the location of cross wires. For fabrics made with the smaller wires, an embedment of at least two cross wires 50 mm or more beyond the point of critical section is adequate to develop the full yield strength of the anchored wires. However, for fabrics made with larger closely spaced wires, a longer embedment is required and a minimum development length is provided for these fabrics.
except that when reinforcement provided is in excess of that required, this length may be reduced in accordance with 12.2.5. \(l_d \) shall not be less than 150 mm except in computation of lap splices by 12.19.

12.9 — Development of prestressing strand

12.9.1 — Three- or seven-wire pretensioning strand shall be bonded beyond the critical section for a development length, in mm, not less than

\[
(l_d - \frac{2}{3} f_{se}) \frac{d_b}{7}
\]

where \(d_b \) is strand diameter in mm, and \(f_{ps} \) and \(f_{se} \) are expressed in MPa. The expression in parenthesis is used as a constant without units.

12.9.2 — Limiting the investigation to cross sections nearest each end of the member that are required to develop full design strength under specified factored loads shall be permitted.

The development requirements for prestressing strand are intended to provide bond integrity for the strength of the member. The provisions are based on tests performed on normalweight concrete members with a minimum cover of 50 mm. These tests may not represent the behavior of strand in low water-cementitious materials ratio, no-slump concrete. Fabrication methods should ensure consolidation of concrete around the strand with complete contact between the steel and concrete. Extra precautions should be exercised when low water-cementitious materials ratio, no-slump concrete is used. In general, this section will control only for the design of cantilever and short-span members.

The expression for development length \(l_d \) may be rewritten as:

\[
l_d = \frac{1}{7} \left(\frac{f_{se}}{3} \right) d_b + \frac{1}{7} (f_{ps} - f_{se}) d_b
\]

where \(l_d \) and \(d_b \) are in mm, and \(f_{ps} \) and \(f_{se} \) are in MPa. The first term represents the transfer length of the strand, which is the distance over which the strand should be bonded to the concrete to develop the prestress \(f_{se} \) in the strand. The second term represents the additional length over which the strand should be bonded so that a stress \(f_{ps} \) may develop in the strand at nominal strength of the member.

The variation of strand stress along the development length of the strand is shown in Fig. R12.9. The expressions for transfer length and for the additional bonded length necessary to develop an increase in stress of \((f_{ps} - f_{se}) \) are based on tests of members prestressed with clean, 7, 10, and 13 mm diameter strands for which the maximum value of \(f_{ps} \) was 1900 MPa. See References 12.12, 12.13, and 12.14.

The transfer length of strand is a function of the perimeter configuration area and surface condition of the steel, the stress in the steel, and the method used to transfer the steel force to the concrete. Strand with a slightly rusted surface can have an appreciably shorter transfer length than clean strand. Gentle release of the strand will permit a shorter transfer length than abruptly cutting the strands.

The provisions of 12.9 do not apply to plain wires nor to end anchored tendons. The length for smooth wire could be
12.9.3 — Where bonding of a strand does not extend to end of member, and design includes tension at service load in precompressed tensile zone as permitted by 18.4.2, development length specified in 12.9.1 shall be doubled.

R12.9.3 — Exploratory tests12,12 that study the effect of debonded strand (bond not permitted to extend to the ends of members) on performance of pretensioned girders, indicated that the performance of these girders with embedment lengths twice those required by 12.9.1 closely matched the flexural performance of similar pretensioned girders with strand fully bonded to ends of girders. Accordingly, doubled development length is required for strand not bonded through to the end of a member. Subsequent tests12,15 indicated that in pretensioned members designed for zero tension in the concrete under service load conditions (see 18.4.2), the development length for debonded strands need not be doubled.

12.10 — Development of flexural reinforcement — General

12.10.1 — Development of tension reinforcement by bending across the web to be anchored or made continuous with reinforcement on the opposite face of member shall be permitted.

R12.10 — Development of flexural reinforcement — General
12.10.2 — Critical sections for development of reinforcement in flexural members are at points of maximum stress and at points within the span where adjacent reinforcement terminates, or is bent. Provisions of 12.11.3 must be satisfied.

12.10.3 — Reinforcement shall extend beyond the point at which it is no longer required to resist flexure for a distance equal to the effective depth of member or 12\(d_b\), whichever is greater, except at supports of simple spans and at free end of cantilevers.

R12.10.2 — Critical sections for a typical continuous beam are indicated with a “c” or an “x” in Fig. R12.10.2. For uniform loading, the positive reinforcement extending into the support is more apt to be governed by the requirements of 12.11.3 rather than by development length measured from a point of maximum moment or bar cutoff.

R12.10.3 — The moment diagrams customarily used in design are approximate; some shifting of the location of maximum moments may occur due to changes in loading, settlement of supports, lateral loads, or other causes. A diagonal tension crack in a flexural member without stirrups may shift the location of the calculated tensile stress approximately a distance \(d\) towards a point of zero moment. When stirrups are provided, this effect is less severe, although still present to some extent.

To provide for shifts in the location of maximum moments, the code requires the extension of reinforcement a distance \(d\) or 12\(d_b\), beyond the point at which it is theoretically no longer required to resist flexure, except as noted.

Cutoff points of bars to meet this requirement are illustrated in Fig. R12.10.2.

When bars of different sizes are used, the extension should be in accordance with the diameter of bar being terminated.
12.10.4 — Continuing reinforcement shall have an embedment length not less than the development length \(l_d \) beyond the point where bent or terminated tension reinforcement is no longer required to resist flexure.

12.10.5 — Flexural reinforcement shall not be terminated in a tension zone unless 12.10.5.1, 12.10.5.2, or 12.10.5.3 is satisfied.

12.10.5.1 — Factored shear at the cutoff point does not exceed two-thirds of the design shear strength, \(\phi V_n \).

12.10.5.2 — Stirrup area in excess of that required for shear and torsion is provided along each terminated bar or wire over a distance from the termination point equal to three-fourths the effective depth of member. Excess stirrup area \(A_v \) shall be not less than \(0.4 b_w s/\phi f_y \). Spacing \(s \) shall not exceed \(d/8 \beta_b \) where \(\beta_b \) is the ratio of area of reinforcement cut off to total area of tension reinforcement at the section.

12.10.5.3 — For No. 36 bars and smaller, continuing reinforcement provides double the area required for flexure at the cutoff point and factored shear does not exceed three-fourths the design shear strength, \(\phi V_n \).

12.10.6 — Adequate anchorage shall be provided for tension reinforcement in flexural members where reinforcement stress is not directly proportional to moment, such as: sloped, stepped, or tapered footings; brackets; deep flexural members; or members in which tension reinforcement is not parallel to compression face. See 12.11.4 and 12.12.4 for deep flexural members.

R12.10.4 — Peak stresses exist in the remaining bars wherever adjacent bars are cut off, or bent, in tension regions. In Fig. R12.10.2 an “x” is used to indicate the peak stress points remaining in continuing bars after part of the bars have been cut off. If bars are cut off as short as the moment diagrams allow, these peak stresses become the full \(f_y \), which requires a full \(\phi \) extension as indicated. This extension may exceed the length required for flexure.

R12.10.5 — Reduced shear strength and loss of ductility when bars are cut off in a tension zone, as in Fig. R12.10.2, have been reported. The code does not permit flexural reinforcement to be terminated in a tension zone unless special conditions are satisfied. Flexure cracks tend to open early wherever any reinforcement is terminated in a tension zone. If the steel stress in the continuing reinforcement and the shear strength are each near their limiting values, diagonal tension cracking tends to develop prematurely from these flexure cracks. Diagonal cracks are less likely to form where shear stress is low (see 12.10.5.1). Diagonal cracks can be restrained by closely spaced stirrups (see 12.10.5.2). A lower steel stress reduces the probability of such diagonal cracking (see 12.10.5.3). These requirements are not intended to apply to tension splices which are covered by 12.15, 12.13.5, and the related 12.2.

12.10.6 — Brackets, members of variable depth, and other members where steel stress \(f_s \) does not decrease linearly in proportion to a decreasing moment require special consideration for proper development of the flexural reinforcement. For the bracket shown in Fig. R12.10.6, the stress at ultimate in the reinforcement is almost constant at approxi-
12.11 — Development of positive moment reinforcement

12.11.1 — At least one-third the positive moment reinforcement in simple members and one-fourth the positive moment reinforcement in continuous members shall extend along the same face of member into the support. In beams, such reinforcement shall extend into the support at least 150 mm.

12.11.2 — When a flexural member is part of a primary lateral load resisting system, positive moment reinforcement required to be extended into the support by 12.11.1 shall be anchored to develop the specified yield strength f_y in tension at the face of support.

12.11.3 — At simple supports and at points of inflection, positive moment tension reinforcement shall be limited to a diameter such that l_d computed for f_y by 12.2 satisfies Eq. (12-2); except, Eq. (12-2) need not be satisfied for reinforcement terminating beyond centerline of simple supports by a standard hook, or a mechanical anchorage at least equivalent to a standard hook.

$$l_d \leq \frac{M_n}{V_u} + l_a$$ \hspace{1cm} (12-2)

where:

- M_n is nominal moment strength assuming all reinforcement at the section to be stressed to the specified yield strength f_y;
- V_u is factored shear force at the section;
- l_a at a support shall be the embedment length beyond center of support;
- l_a at a point of inflection shall be limited to the effective depth of member or $12d_b$, whichever is greater.

R12.11 — Development of positive moment reinforcement

R12.11.1 — Positive moment reinforcement is carried into the support to provide for some shifting of the moments due to changes in loading, settlement of supports, and lateral loads.

R12.11.2 — When a flexural member is part of a primary lateral load resisting system, loads greater than those anticipated in design may cause reversal of moment at supports; some positive reinforcement should be well anchored into the support. This anchorage is required to ensure ductility of response in the event of serious overstress, such as from blast or earthquake. It is not sufficient to use more reinforcement at lower stresses.

R12.11.3 — At simple supports and points of inflection such as “P.I.” in Fig. R12.10.2, the diameter of the positive reinforcement should be small enough so that computed development length of the bar l_d does not exceed $M_n/V_u + l_a$, or under favorable support conditions, $1.3M_n/V_u + l_a$. Fig. R12.11.3(a) illustrates the use of the provision.

At the point of inflection the value of l_a should not exceed the actual bar extension used beyond the point of zero moment. The M_n/V_u portion of the available length is a theoretical quantity not generally associated with an obvious maximum stress point. M_n is the nominal strength of the cross section without the ϕ-factor and is not the applied factored moment.

The length M_n/V_u corresponds to the development length for the maximum size bar obtained from the previously used flexural bond equation $\Sigma_u = V/ud$, where u is bond stress, and jd is the moment arm. In the 1971 code, this anchorage requirement was relaxed from previous codes by crediting the available end anchorage length l_a and by including a 30 percent increase for M_n/V_u when the ends of the reinforcement are confined by a compressive reaction.

For example, a bar size is provided at a simple support such...
An increase of 30 percent in the value of M_n/V_u shall be permitted when the ends of reinforcement are confined by a compressive reaction.

The bar size provided is satisfactory only if $0.02 A_b f_y / f'_c$ does not exceed $1.3 M_n/V_u + \ell_a$.

The ℓ_a to be used at points of inflection is limited to the effective depth of the member d or 12 bar diameters ($12d_b$), whichever is greater. Fig. R12.11.3(b) illustrates this provision at points of inflection. The ℓ_a limitation is added since test data are not available to show that a long end anchorage length will be fully effective in developing a bar that has only a short length between a point of inflection and a point of maximum stress.

12.11.4 — At simple supports of deep flexural members, positive moment tension reinforcement shall be anchored to develop the specified yield strength f_y in tension at the face of support. At interior supports of deep flexural members, positive moment tension reinforcement shall be continuous or be spliced with that of the adjacent spans.

R12.11.4 — The use of the strut and tie model for the design of reinforced concrete deep flexural members clarifies that there is significant tension in the reinforcement at the face of the support. This requires the tension reinforcement to be continuous or be developed through and beyond the support.
CODE

12.12 — Development of negative moment reinforcement

12.12.1 — Negative moment reinforcement in a continuous, restrained, or cantilever member, or in any member of a rigid frame, shall be anchored in or through the supporting member by embedment length, hooks, or mechanical anchorage.

12.12.2 — Negative moment reinforcement shall have an embedment length into the span as required by 12.1 and 12.10.3.

12.12.3 — At least one-third the total tension reinforcement provided for negative moment at a support shall have an embedment length beyond the point of inflection not less than effective depth of member, $12d_b$, or one-sixteenth the clear span, whichever is greater.

12.12.4 — At interior supports of deep flexural members, negative moment tension reinforcement shall be continuous with that of the adjacent spans.

COMMENTARY

R12.12 — Development of negative moment reinforcement

Fig. R12.12 illustrates two methods of satisfying requirements for anchorage of tension reinforcement beyond the face of support. For anchorage of reinforcement with hooks, see R12.5.

Section 12.12.3 provides for possible shifting of the moment diagram at a point of inflection, as discussed under R12.10.3. This requirement may exceed that of 12.10.3, and the more restrictive of the two provisions governs.

![Diagram of anchorages](image-url)
CODE

12.13 — Development of web reinforcement

12.13.1 — Web reinforcement shall be as close to the compression and tension surfaces of the member as cover requirements and proximity of other reinforcement permits.

12.13.2 — Ends of single leg, simple U-, or multiple U-stirrups shall be anchored as required by 12.13.2.1 through 12.3.2.5.

COMMENTARY

R12.13 — Development of web reinforcement

R12.13.1 — Stirrups should be carried as close to the compression face of the member as possible because near ultimate load the flexural tension cracks penetrate deeply.

R12.13.2 — The anchorage or development requirements for stirrups composed of bars or deformed wire were changed in the 1989 code to simplify the requirements. The straight anchorage was deleted as this stirrup is difficult to hold in place during concrete placement and the lack of a hook may make the stirrup ineffective as it crosses shear cracks near the end of the stirrup.

R12.13.2.1 — For a No. 16 bar or smaller, anchorage is provided by a standard stirrup hook, as defined in 7.1.3, hooked around a longitudinal bar. The 1989 code eliminated the need for a calculated straight embedment length in addition to the hook for these small bars, but 12.13.1 requires a full depth stirrup. Likewise, larger stirrups with \(f_y \) equal to or less than 300 MPa are sufficiently anchored with a standard stirrup hook around the longitudinal reinforcement.

R12.13.2.2 — For No. 19, No. 22, and No. 25 stirrups with \(f_y \) greater than 300 MPa, a standard stirrup hook around a longitudinal bar plus an embedment between midheight of the member and the outside end of the hook equal to or greater than \(0.17d_b f_y / \sqrt{f'_c} \).

\[\text{Fig. R12.13.2.3—Anchorage in compression zone of welded plain wire fabric U-stirrups} \]
A longitudinal bar within a stirrup hook limits the width of any flexural cracks, even in a tensile zone. Since such a stirrup hook cannot fail by splitting parallel to the plane of the hooked bar, the hook strength as utilized in 12.5.2 has been adjusted to reflect cover and confinement around the stirrup hook.

For stirrups with f_y of only 300 MPa, a standard stirrup hook provides sufficient anchorage and these bars are covered in 12.13.2.1. For bars with higher strength, the embedment should be checked. A 135 deg or 180 deg hook is preferred, but a 90 deg hook may be used provided the free end of the 90 deg hook is extended the full 12 bar diameters as required in 7.1.3.

R12.13.2.3 — The requirements for anchorage of welded plain wire fabric stirrups are illustrated in Fig. R12.13.2.3.

R12.13.2.4 — Use of welded wire fabric for shear reinforcement has become commonplace in the precast, prestressed concrete industry. The rationale for acceptance of straight sheets of wire fabric as shear reinforcement is presented in a report by a joint PCI/WRI Ad Hoc Committee on Welded Wire Fabric for Shear Reinforcement.12.17

The provisions for anchorage of single leg welded wire fabric in the tension face emphasize the location of the longitu-
CODE

12.13.2.5 — In joist construction as defined in 8.11, for No. 13 bar and MD130 wire and smaller, a standard hook.

12.13.3 — Between anchored ends, each bend in the continuous portion of a simple U-stirrup or multiple U-stirrup shall enclose a longitudinal bar.

12.13.4 — Longitudinal bars bent to act as shear reinforcement, if extended into a region of tension, shall be continuous with longitudinal reinforcement and, if extended into a region of compression, shall be anchored beyond middepth \(\frac{d}{2} \) as specified for development length in 12.2 for that part of \(f_y \) required to satisfy Eq. (11-17).

12.13.5 — Pairs of U-stirrups or ties so placed as to form a closed unit shall be considered properly spliced when length of laps are \(1.3/d \). In members at least 500 mm deep, such splices with \(A_b f_y \) not more than 40 kN per leg shall be considered adequate if stirrup legs extend the full available depth of member.

CODE

12.14 — Splices of reinforcement — General

12.14.1 — Splices of reinforcement shall be made only as required or permitted on design drawings, or in specifications, or as authorized by the engineer.

12.14.2 — Lap splices

12.14.2.1 — Lap splices shall not be used for bars larger than No. 36 except as provided in 12.16.2 and 15.8.2.3.

COMMENTARY

dinal wire at the same depth as the primary flexural reinforcement to avoid a splitting problem at the tension steel level. Fig. R12.13.2.4 illustrates the anchorage requirements for single leg, welded wire fabric. For anchorage of single leg, welded wire fabric, the code has permitted hooks and embedment length in the compression and tension faces of members (see 12.13.2.1 and 12.13.2.3), and embedment only in the compression face (see 12.13.2.2). Section 12.13.2.4 provides for anchorage of straight, single leg, welded wire fabric using longitudinal wire anchorage with adequate embedment length in compression and tension faces of members.

R12.13.2.5 — In joists, a small bar or wire can be anchored by a standard hook not engaging longitudinal reinforcement, allowing a continuously bent bar to form a series of single-leg stirrups in the joist.

R12.13.5 — These requirements for lapping of double U-stirrups to form closed stirrups control over the provisions of 12.15.

R12.14 — Splices of reinforcement — General

Splices should, if possible, be located away from points of maximum tensile stress. The lap splice requirements of 12.15 encourage this practice.

R12.14.2 — Lap splices

R12.14.2.1 — Because of lack of adequate experimental data on lap splices of No. 43 and No. 57 bars in compression and in tension, lap splicing of these bar sizes is prohibited except as permitted in 12.16.2 and 15.8.2.3 for compression lap splices of No. 43 and No. 57 bars with smaller bars.
12.14.2.2 — Lap splices of bars in a bundle shall be based on the lap splice length required for individual bars within the bundle, increased in accordance with 12.4. Individual bar splices within a bundle shall not overlap. Entire bundles shall not be lap spliced.

R12.14.2.2 — The increased length of lap required for bars in bundles is based on the reduction in the exposed perimeter of the bars. Only individual bars are lap spliced along the bundle.

12.14.2.3 — Bars spliced by noncontact lap splices in flexural members shall not be spaced transversely farther apart than one-fifth the required lap splice length, nor 150 mm.

R12.14.2.3 — If individual bars in noncontact lap splices are too widely spaced, an unreinforced section is created. Forcing a potential crack to follow a zigzag line (5 to 1 slope) is considered a minimum precaution. The 150 mm maximum spacing is added because most research available on the lap splicing of deformed bars was conducted with reinforcement within this spacing.

12.14.3 — Mechanical and welded splices

12.14.3.1 — Mechanical and welded splices shall be permitted.

R12.14.3.2 — The maximum reinforcement stress used in design under the code is the specified yield strength. To ensure sufficient strength in splices so that yielding can be achieved in a member and thus brittle failure avoided, the 25 percent increase above the specified yield strength was selected as both an adequate minimum for safety and a practicable maximum for economy.

12.14.3.3 — Except as provided in this code, all welding shall conform to “Structural Welding Code—Reinforcing Steel” (ANSI/AWS D1.4).

R12.14.3.3 — See R3.5.2 for discussion on welding.

12.14.3.4 — A full welded splice shall develop at least 125 percent of the specified yield strength f_y of the bar.

R12.14.3.4 — A full welded splice is primarily intended for large bars (No. 19 and larger) in main members. The tensile strength requirement of 125 percent of specified yield strength is intended to provide sound welding that is also adequate for compression. See the discussion on strength in R12.14.3.2. The 1995 code eliminated a requirement that the bars be butted since indirect butt welds are permitted by ANSI/AWS D1.4, although ANSI/AWS D1.4 does indicate that wherever practical, direct butt splices are preferable for No. 22 bars and larger.

12.14.3.5 — Mechanical or welded splices not meeting requirements of 12.14.3.2 or 12.14.3.4 shall be permitted only for No. 5 bars and smaller and in accordance with 12.15.4.

R12.14.3.5 — The use of mechanical or welded splices of less strength than 125 percent of specified yield strength is permitted if the minimum design criteria of 12.15.4 are met. Therefore, lap welds of reinforcing bars, either with or without backup material, welds to plate connections, and end-bearing splices are allowed under certain conditions. The 1995 code limited these lower strength welds and connections to No. 16 bars and smaller due to the potentially brittle nature of failure at these welds.
CODE

12.15 — Splices of deformed bars and deformed wire in tension

12.15.1 — Minimum length of lap for tension lap splices shall be as required for Class A or B splice, but not less than 300 mm, where:

Class A splice ... 1.0 \(l_d \)

Class B splice ... 1.3 \(l_d \)

where \(l_d \) is the tensile development length for the specified yield strength \(f_y \) in accordance with 12.2 without the modification factor of 12.2.5.

COMMENTARY

R12.15 — Splices of deformed bars and deformed wire in tension

R12.15.1 — Lap splices in tension are classified as Type A or B, with length of lap a multiple of the tensile development length \(l_d \). The development length \(l_d \) used to obtain lap length should be based on \(f_y \) because the splice classifications already reflect any excess reinforcement at the splice location; therefore, the factor for 12.2.5 for excess \(A_s \) should not be used. When multiple bars located in the same plane are spliced at the same section, the clear spacing is the minimum clear distance between the adjacent splices. For splices in columns with offset bars, Fig. R12.15.1(a) illustrates the clear spacing to be used. For staggered splices, the clear spacing is the minimum distance between adjacent splices [distance \(x \) in Fig. R12.15.1(b)].

The 1989 code contained several changes in development length in tension that eliminated many of the concerns regarding tension splices due to closely spaced bars with minimal cover. Thus, the Class C splice was eliminated although development lengths, on which splice lengths are based, have in some cases increased. Committee 318 considered suggestions from many sources, including ACI Committee 408, but has retained a two-level splice length primarily to encourage designers to splice bars at points of minimum stress and to stagger splices to improve behavior of critical details.
CHAPTER 12

CODE

12.15.2 — Lap splices of deformed bars and deformed wire in tension shall be Class B splices except that Class A splices are allowed when: (a) the area of reinforcement provided is at least twice that required by analysis over the entire length of the splice, and (b) one-half or less of the total reinforcement is spliced within the required lap length.

12.15.3 — Mechanical or welded splices used where area of reinforcement provided is less than twice that required by analysis shall meet requirements of 12.14.3.2 or 12.14.3.4.

12.15.4 — Mechanical or welded splices not meeting the requirements of 12.14.3.2 or 12.14.3.4 shall be permitted for No. 16 bars and smaller when the area of reinforcement provided is at least twice that required by analysis, and 12.15.4.1 and 12.15.4.2 are met:

12.15.4.1 — Splices shall be staggered at least 600 mm and in such manner as to develop at every section at least twice the calculated tensile force at that section but not less than 140 MPa for total area of reinforcement provided.

12.15.4.2 — In computing tensile forces developed at each section, rate the spliced reinforcement at the specified splice strength. Unspliced reinforcement shall be rated at that fraction of \(f_y \) defined by the ratio of the shorter actual development length to \(l_d \) required to develop the specified yield strength \(f_y \).

12.15.5 — Splices in tension tie members shall be made with a full mechanical or full welded splice in accordance with 12.14.3.2 or 12.14.3.4 and splices in adjacent bars shall be staggered at least 750 mm.

COMMENTARY

R12.15.2 — The tension lap splice requirements of 12.15.1 encourage the location of splices away from regions of high tensile stress to locations where the area of steel provided is at least twice that required by analysis. Table R12.15.2 presents the splice requirements in tabular form as presented in earlier code editions.

R12.15.3 — A mechanical or welded splice should develop at least 125 percent of the specified yield strength when located in regions of high tensile stress in the reinforcement. Such splices need not be staggered, although such staggering is encouraged where the area of reinforcement provided is less than twice that required by the analysis.

R12.15.4 — See R12.14.3.5. Section 12.15.4 concerns the situation where mechanical or welded splices of strength less than 125 percent of the specified yield strength of the reinforcement may be used. It provides a relaxation in the splice requirements where the splices are staggered and excess reinforcement area is available. The criterion of twice the computed tensile force is used to cover sections containing partial tensile splices with various percentages of total continuous steel. The usual partial tensile splice is a flare groove weld between bars or bar and structural steel piece.

To detail such welding, the length of weld should be specified. Such welds are rated at the product of total weld length times effective size of groove weld (established by bar size) times allowable stress permitted by “Structural Welding Code—Reinforcing Steel” (ANSI/AWS D1.4).

A full mechanical or welded splice conforming to 12.14.3.2 or 12.14.3.4 can be used without the stagger requirement in lieu of the lower strength mechanical or welded splice.

R12.15.5 — A tension tie member, has the following characteristics: member having an axial tensile force sufficient to create tension over the cross section; a level of stress in the reinforcement such that every bar must be fully effective; and limited concrete cover on all sides. Examples of members that may be classified as tension ties are arch ties, hangers carrying load to an overhead supporting structure, and main tension elements in a truss.

In determining if a member should be classified as a tension

<table>
<thead>
<tr>
<th>TABLE R12.15.2—TENSION LAP SPLICES</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_p) provided *</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>Equal to or greater than 2</td>
</tr>
<tr>
<td>Class A</td>
</tr>
<tr>
<td>Less than 2</td>
</tr>
</tbody>
</table>

* Ratio of area of reinforcement provided to area of reinforcement required by analysis at splice locations.
12.16 — Splices of deformed bars in compression

12.16.1 — Compression lap splice length shall be $0.07f_yd_b$, for f_y of 420 MPa or less, or $(0.13f_y - 24)d_b$ for f_y greater than 420 MPa, but not less than 300 mm. For f'_c less than 20 MPa, length of lap shall be increased by one-third.

12.16.2 — When bars of different size are lap spliced in compression, splice length shall be the larger of either development length of larger bar, or splice length of smaller bar. Lap splices of No. 43 and No. 57 bars to No. 36 and smaller bars shall be permitted.

12.16.3 — Mechanical or welded splices used in compression shall meet requirements of 12.14.3.2 or 12.14.3.4.

12.16.4 — End-bearing splices

12.16.4.1 — In bars required for compression only, transmission of compressive stress by bearing of square cut ends held in concentric contact by a suitable device shall be permitted.

R12.16 — Splices of deformed bars in compression

Bond research has been primarily related to bars in tension. Bond behavior of compression bars is not complicated by the problem of transverse tension cracking and thus compression splices do not require provisions as strict as those specified for tension splices. The minimum lengths for column splices contained originally in the 1956 code have been carried forward in later codes, and extended to compression bars in beams and to higher strength steels. No changes have been made in the provisions for compression splices since the 1971 code.

R12.16.1 — Essentially, lap requirements for compression splices have remained the same since the 1963 code.

The 1963 code values were modified in the 1971 code to recognize various degrees of confinement and to permit design with reinforcement up to 550 MPa yield strength. Tests have shown that splice strengths in compression depend considerably on end bearing and do not increase proportionally in strength when the splice length is doubled. Accordingly, for yield strengths above 420 MPa, compression lap lengths are significantly increased, except where spiral enclosures are used (as in spiral columns) the where the increase is about 10 percent for an increase in yield strength from 420 MPa to 520 MPa.

R12.16.2 — The lap splice length is to be computed based on the larger of the compression splice length of the smaller bar; or the compression development length of the larger bar. Lap splices are generally prohibited for No. 43 or No. 57 bars; however, for compression only, lap splices are permitted for No. 43 or No. 57 bars to No. 36 or smaller bars.

R12.16.4 — End-bearing splices

R12.16.4.1 — Experience with end-bearing splices has been almost exclusively with vertical bars in columns. If bars are significantly inclined from the vertical, special attention is required to ensure that adequate end-bearing contact can be achieved and maintained.
12.16.4.2 — Bar ends shall terminate in flat surfaces within 1.5 deg of a right angle to the axis of the bars and shall be fitted within 3 deg of full bearing after assembly.

12.16.4.3 — End-bearing splices shall be used only in members containing closed ties, closed stirrups, or spirals.

12.17 — Special splice requirements for columns

12.17.1 — Lap splices, mechanical splices, butt-welded splices, and end-bearing splices shall be used with the limitations of 12.17.2 through 12.17.4. A splice shall satisfy requirements for all load combinations for the column.

R12.16.4.2 — These tolerances were added in the 1971 code, representing practice based on tests of full-size members containing No. 57 bars.

R12.16.4.3 — This limitation was added in the 1971 code to ensure a minimum shear resistance in sections containing end-bearing splices.

R12.17 — Special splice requirements for columns

In columns subject to flexure and axial loads, tension stresses may occur on one face of the column for moderate and large eccentricities as shown in Fig. R12.17. When such tensions occur, 12.17 requires tension splices to be used or an adequate tensile resistance to be provided. Furthermore, a minimum tension capacity is required in each face of all columns even where analysis indicates compression only.

The 1989 code clarifies this section on the basis that a compressive lap splice has a tension capacity of at least one-quarter f_y, which simplifies the calculation requirements in previous codes.

Note that the column splice should satisfy requirements for all load combinations for the column. Frequently, the basic gravity load combination will govern the design of the column itself, but a load combination including wind or seismic loads may induce greater tension in some column bars, and the column splice should be designed for this tension.
12.17.2 — Lap splices in columns

12.17.2.1 — Where the bar stress due to factored loads is compressive, lap splices shall conform to 12.16.1, 12.16.2, and, where applicable, to 12.17.2.4 or 12.17.2.5.

12.17.2.2 — Where the bar stress due to factored loads is tensile and does not exceed $0.5 f_y$ in tension, lap splices shall be Class B tension lap splices if more than one-half of the bars are spliced at any section, or Class A tension lap splices if half or fewer of the bars are spliced at any section and alternate lap splices are staggered by L_d.

12.17.2.3 — Where the bar stress due to factored loads is greater than $0.5 f_y$ in tension, lap splices shall be Class B tension lap splices.

12.17.2.4 — In tied reinforced compression members, where ties throughout the lap splice length have an effective area not less than $0.0015 h s$, lap splice length shall be permitted to be multiplied by 0.83, but lap length shall not be less than 300 mm. Tie legs perpendicular to dimension h shall be used in determining effective area.

12.17.2.5 — In spirally reinforced compression members, lap splice length of bars within a spiral shall be permitted to be multiplied by 0.75, but lap length shall not be less than 300 mm.

R12.17.2 — Lap splices in columns

R12.17.2.1 — The 1989 code was simplified for column bars always in compression on the basis that a compressive lap splice is adequate for sufficient tension to preclude special requirements.

R12.17.2.4 — Reduced lap lengths are allowed when the splice is enclosed throughout its length by minimum ties.

The tie legs perpendicular to each direction are computed separately and the requirement must be satisfied in each direction. This is illustrated in Fig. R12.17.2, where four legs are effective in one direction and two legs in the other direction. This calculation is critical in one direction, which normally can be determined by inspection.

R12.17.2.5 — Compression lap lengths may be reduced when the lap splice is enclosed throughout its length by spirals because of increased splitting resistance. Spirals should meet requirements of 7.10.4 and 10.9.3.

Fig. R.12.17.2—Tie legs which cross the axis of bending are used to compute effective area. In the case shown, four legs are effective.
12.17.3 — Mechanical or welded splices in columns

Mechanical or welded splices in columns shall meet the requirements of 12.14.3.2 or 12.14.3.4.

12.17.4 — End-bearing splices in columns

End-bearing splices complying with 12.16.4 shall be permitted to be used for column bars stressed in compression provided the splices are staggered or additional bars are provided at splice locations. The continuing bars in each face of the column shall have a tensile strength, based on the specified yield strength f_y, not less than $0.25f_y$ times the area of the vertical reinforcement in that face.

12.18 — Splices of welded deformed wire fabric in tension

12.18.1 — Minimum length of lap for lap splices of welded deformed wire fabric measured between the ends of each fabric sheet shall be not less than $1.3l_d$ nor 200 mm, and the overlap measured between outermost cross wires of each fabric sheet shall be not less than 50 mm. l_d shall be the development length for the specified yield strength f_y in accordance with 12.7.

12.18.2 — Lap splices of welded deformed wire fabric, with no cross wires within the lap splice length, shall be determined as for deformed wire.

12.19 — Splices of welded plain wire fabric in tension

Minimum length of lap for lap splices of welded plain wire fabric shall be in accordance with 12.19.1 and 12.19.2.

12.19.1 — When area of reinforcement provided is less than twice that required by analysis at splice location, length of overlap measured between outermost cross wires of each fabric sheet shall be not less than one spacing of cross wires plus 50 mm, nor less than...
CODE

1.5/d, nor 150 mm. ld shall be the development length for the specified yield strength fy in accordance with 12.8.

12.19.2 — When area of reinforcement provided is at least twice that required by analysis at splice location, length of overlap measured between outermost cross wires of each fabric sheet shall not be less than 1.5/d, nor 50 mm. ld shall be the development length for the specified yield strength fy in accordance with 12.8.

COMMENTARY

an increased splice length is required when fabric of large, closely spaced wires is lapped and as a consequence additional splice length requirements are provided for these fabrics, in addition to an absolute minimum of 150 mm. The development length ld is that computed in accordance with the provisions of 12.8 without regard to the 150 mm minimum. Splice requirements are illustrated in Fig. R12.19.

Fig. R12.18—Lap splices of deformed fabric

(A) Section 12.18.1

Fig. R12.19—Lap splices of plain fabric

(A) Section 12.19.1

(b) Section 12.19.2
CHAPTER 13 — TWO-WAY SLAB SYSTEMS

13.0 — Notation

\(b_1 \) = width of the critical section defined in 11.12.1.2 measured in the direction of the span for which moments are determined, mm

\(b_2 \) = width of the critical section defined in 11.12.1.2 measured in the direction perpendicular to \(b_1 \), mm

\(c_1 \) = size of rectangular or equivalent rectangular column, capital, or bracket measured in the direction of the span for which moments are being determined, mm

\(c_2 \) = size of rectangular or equivalent rectangular column, capital, or bracket measured transverse to the direction of the span for which moments are being determined, mm

\(C \) = cross-sectional constant to define torsional properties

\[C = \sum \left(1 - 0.63 \frac{x}{y} \right) \frac{y^2}{3} \]

The constant \(C \) for T- or L-sections shall be permitted to be evaluated by dividing the section into separate rectangular parts and summing the values of \(C \) for each part

\(E_{cb} \) = modulus of elasticity of beam concrete, MPa

\(E_{cs} \) = modulus of elasticity of slab concrete, MPa

\(h \) = overall thickness of member, mm

\(I_b \) = moment of inertia about centroidal axis of gross section of beam as defined in 13.2.4, mm\(^4\)

\(I_s \) = moment of inertia about centroidal axis of gross section of slab, mm\(^4\)

\[I_s = \frac{h^2}{12} \text{ times width of slab defined in notations } \alpha \text{ and } \beta_t \]

\(K_t \) = torsional stiffness of torsional member; moment per unit rotation. See R13.7.5.

\(l_n \) = length of clear span in direction that moments are being determined, measured face-to-face of supports, mm

\(\ell_1 \) = length of span in direction that moments are being determined, measured center-to-center of supports, mm

\(\ell_2 \) = length of span transverse to \(\ell_1 \), measured center-to-center of supports. See also 13.6.2.3 and 13.6.2.4, mm

\(M_o \) = total factored static moment, mm-N

\(M_d \) = factored moment at section, mm-N

\(V_c \) = nominal shear strength provided by concrete, N. See 11.12.2.1
CODE

\(V_u \) = factored shear force at section, N
\(w_d \) = factored dead load per unit area
\(w_r \) = factored live load per unit area
\(w_u \) = factored load per unit area
\(x \) = shorter overall dimension of rectangular part of cross section, mm
\(y \) = longer overall dimension of rectangular part of cross section, mm
\(\alpha \) = ratio of flexural stiffness of beam section to flexural stiffness of a width of slab bounded laterally by centerlines of adjacent panels (if any) on each side of the beam
\(\beta_t \) = ratio of torsional stiffness of edge beam section to flexural stiffness of a width of slab equal to span length of beam, center-to-center of supports
\(\rho \) = ratio of nonprestressed tension reinforcement
\(\rho_b \) = reinforcement ratio producing balanced strain conditions
\(\phi \) = strength reduction factor

\(\gamma_f \) = fraction of unbalanced moment transferred by flexure at slab-column connections. See 13.5.3.2
\(\gamma_v \) = fraction of unbalanced moment transferred by eccentricity of shear at slab-column connections

\(\gamma_f = 1 - \gamma_v \)

COMMENTS

13.1 — Scope

13.1.1 — Provisions of Chapter 13 shall apply for design of slab systems reinforced for flexure in more than one direction, with or without beams between supports.

13.1.2 — For a slab system supported by columns or walls, the dimensions \(c_1 \) and \(c_2 \) shall be based on an effective support area defined by the intersection of the bottom surface of the slab, or of the drop panel if there is one, with the largest right circular cone, right pyramid, or tapered wedge whose surfaces are located within the column and the capital or bracket and are oriented no greater than 45 deg to the axis of the column.

13.1.3 — Solid slabs and slabs with recesses or pockets made by permanent or removable fillers between ribs or joists in two directions are included within the scope of Chapter 13.

R13.1 — Scope

The fundamental design principles contained in Chapter 13 are applicable to all planar structural systems subjected to transverse loads. Some of the specific design rules, as well as historical precedents, limit the types of structures to which Chapter 13 applies. General characteristics of slab systems that may be designed according to Chapter 13 are described in this section. These systems include flat slabs, flat plates, two-way slabs, and waffle slabs. Slabs with paneled ceilings are two-way wide-band beam systems.

True one-way slabs, slabs reinforced to resist flexural stresses in only one direction, are excluded. Also excluded are soil supported slabs, such as slabs on grade, that do not transmit vertical loads from other parts of the structure to the soil.

For slabs with beams, the explicit design procedures of Chapter 13 apply only when the beams are located at the edges of the panel and when the beams are supported by...
CODE

13.1.4 — Minimum thickness of slabs designed in accordance with Chapter 13 shall be as required by 9.5.3.

COMMENTARY

13.2 — Definitions

13.2.1 — Column strip is a design strip with a width on each side of a column centerline equal to 0.25/2 or 0.25/4, whichever is less. Column strip includes beams, if any.

13.2.2 — Middle strip is a design strip bounded by two column strips.

13.2.3 — A panel is bounded by column, beam, or wall centerlines on all sides.

13.2.4 — For monolithic or fully composite construction, a beam includes that portion of slab on each side of the beam extending a distance equal to the projection of the beam above or below the slab, whichever is greater, but not greater than four times the slab thickness.

13.3 — Slab reinforcement

13.3.1 — Area of reinforcement in each direction for two-way slab systems shall be determined from moments at critical sections, but shall not be less than required by 7.12.

13.3.2 — Spacing of reinforcement at critical sections shall not exceed two times the slab thickness, except for portions of slab area of cellular or ribbed construc-

R13.2 — Definitions

R13.2.3 — A panel includes all flexural elements between column centerlines. Thus, the column strip includes the beam, if any.

R13.2.4 — For monolithic or fully composite construction, the beams include portions of the slab as flanges. Two examples of the rule are provided in Fig. R13.2.4.

Fig. R13.2.4—Examples of the portion of slab to be included with the beam under 13.2.4

R13.3 — Slab reinforcement

R13.3.2 — The requirement that the center-to-center spacing of the reinforcement be not more than two times the slab thickness applies only to the reinforcement in solid slabs,
CODE

tion. In the slab over cellular spaces, reinforcement shall be provided as required by 7.12.

13.3.3 — Positive moment reinforcement perpendicular to a discontinuous edge shall extend to the edge of slab and have embedment, straight or hooked, at least 150 mm in spandrel beams, columns, or walls.

13.3.4 — Negative moment reinforcement perpendicular to a discontinuous edge shall be bent, hooked, or otherwise anchored in spandrel beams, columns, or walls, and shall be developed at face of support according to provisions of Chapter 12.

13.3.5 — Where a slab is not supported by a spandrel beam or wall at a discontinuous edge, or where a slab cantilevers beyond the support, anchorage of reinforcement shall be permitted within the slab.

13.3.6 — In slabs with beams between supports with a value of α greater than 1.0, special top and bottom slab reinforcement shall be provided at exterior corners in accordance with 13.3.6.1 through 13.3.6.4.

13.3.6.1 — The special reinforcement in both top and bottom of slab shall be sufficient to resist a moment per foot of width equal to the maximum positive moment in the slab.

13.3.6.2 — The moment shall be assumed to be about an axis perpendicular to the diagonal from the corner in the top of the slab and about an axis parallel to the diagonal from the corner in the bottom of the slab.

13.3.6.3 — The special reinforcement shall be provided for a distance in each direction from the corner equal to one-fifth the longer span.

13.3.6.4 — The special reinforcement shall be placed in a band parallel to the diagonal in the top of the slab and a band perpendicular to the diagonal in the bottom of the slab. Alternatively, the special reinforcement shall be placed in two layers parallel to the sides of the slab in both the top and bottom of the slab.

13.3.7 — Where a drop panel is used to reduce amount of negative moment reinforcement over the column of a flat slab, size of drop panel shall be in accordance with the 13.3.7.1, 13.3.7.2, and 13.3.7.3.

13.3.7.1 — Drop panel shall extend in each direction from centerline of support a distance not less than one-sixth the span length measured from center-to-center of supports in that direction.

COMMENTARY

and not to reinforcement joists or waffle slabs. This limitation is to ensure slab action, cracking, and provide for the possibility of loads concentrated on small areas of the slab. See also R10.6.

R13.3.3-R13.3.5 — Bending moments in slabs at spandrel beams can be subject to great variation. If spandrel beams are built solidly into walls, the slab approaches complete fixity. Without an integral wall, the slab could approach simply supported, depending on the torsional rigidity of the spandrel beam or slab edge. These requirements provide for unknown conditions that might normally occur in a structure.
13.3.7.2 — Projection of drop panel below the slab shall be at least one-quarter the slab thickness beyond the drop.

13.3.7.3 — In computing required slab reinforcement, the thickness of the drop panel below the slab shall not be assumed greater than one-quarter the distance from edge of drop panel to edge of column or column capital.

13.3.8 — Details of reinforcement in slabs without beams

13.3.8.1 — In addition to the other requirements of 13.3, reinforcement in slabs without beams shall have minimum extensions as prescribed in Fig. 13.3.8.

13.3.8.2 — Where adjacent spans are unequal, extensions of negative moment reinforcement beyond the face of support as prescribed in Fig. 13.3.8 shall be based on requirements of the longer span.

13.3.8.3 — Bent bars shall be permitted only when depth-span ratio permits use of bends of 45 deg or less.

13.3.8.4 — In frames where two-way slabs act as primary members resisting lateral loads, lengths of reinforcement shall be determined by analysis but shall not be less than those prescribed in Fig. 13.3.8.

13.3.8.5 — All bottom bars or wires within the column strip, in each direction, shall be continuous or spliced with Class A splices located as shown in Fig. 13.3.8. At least two of the column strip bottom bars or wires in each direction shall pass within the column core and shall be anchored at exterior supports.

13.3.8.6 — In slabs with shearheads and in lift-slab construction where it is not practical to pass the bottom bars required by 13.3.8.5 through the column, at least two bonded bottom bars or wires in each direction shall pass through the shearhead or lifting collar as close to the column as practicable and be continuous or spliced with a Class A splice. At exterior columns, the reinforcement shall be anchored at the shearhead or lifting collar.

R13.3.8 — Details of reinforcement in slabs without beams

In the 1989 code, bent bars were removed from Fig. 13.3.8 of this code. This was done because bent bars are seldom used and are difficult to place properly. Bent bars are permitted, however, if they comply with 13.3.8.3. Refer to 13.4.8 of the 1983 code.

R13.3.8.4 — For moments resulting from combined lateral and gravity loadings, the minimum lengths and extensions of bars in Fig. 13.3.8 may not be sufficient.

R13.3.8.5 — The continuous column strip bottom reinforcement provides the slab some residual ability to span to the adjacent supports should a single support be damaged. The two continuous column strip bottom bars or wires through the column may be termed integrity steel, and are provided to give the slab some residual capacity following a single punching shear failure at a single support. 13.9

R13.3.8.6 — In the 1992 code, this provision was added to require the same integrity steel as for other two-way slabs without beams in case of a single punching shear failure at a support.

In some instances, there is sufficient clearance so that the bonded bottom bars can pass under shearheads and through the column. Where clearance under the shearhead is inadequate, the bottom bars should pass through holes in the shearhead arms or within the perimeter of the lifting collar. Shearheads should be kept as low as possible in the slab to increase their effectiveness.
Fig. 13.3.8—Minimum extensions for reinforcement in slabs without beams. (See 12.11.1 for reinforcement extension into supports)
CODE

13.4 — Openings in slab systems

13.4.1 — Openings of any size shall be permitted in slab systems if shown by analysis that the design strength is at least equal to the required strength set forth in 9.2 and 9.3, and that all serviceability conditions, including the limits on deflections, are met.

13.4.2 — As an alternate to special analysis as required by 13.4.1, openings shall be permitted in slab systems without beams only in accordance with 13.4.2.1 through 13.4.2.4.

13.4.2.1 — Openings of any size shall be permitted in the area common to intersecting middle strips, provided total amount of reinforcement required for the panel without the opening is maintained.

13.4.2.2 — In the area common to intersecting column strips, not more than one-eighth the width of column strip in either span shall be interrupted by openings. An amount of reinforcement equivalent to that interrupted by an opening shall be added on the sides of the opening.

13.4.2.3 — In the area common to one column strip and one middle strip, not more than one-quarter of the reinforcement in either strip shall be interrupted by openings. An amount of reinforcement equivalent to that interrupted by an opening shall be added on the sides of the opening.

13.4.2.4 — Shear requirements of 11.12.5 shall be satisfied.

13.5 — Design procedures

13.5.1 — A slab system shall be designed by any procedure satisfying conditions of equilibrium and geometric compatibility, if shown that the design strength at every section is at least equal to the required strength set forth in 9.2 and 9.3, and that all serviceability conditions, including limits on deflections, are met.

COMMENTARY

R13.4 — Openings in slab systems

See R11.12.5.

R13.5 — Design procedures

R13.5.1 — This section permits a designer to base a design directly on fundamental principles of structural mechanics, provided it can be demonstrated explicitly that all safety and serviceability criteria are satisfied. The design of the slab may be achieved through the combined use of classic solutions based on a linearly elastic continuum, numerical solutions based on discrete elements, or yield-line analyses, including, in all cases, evaluation of the stress conditions around the supports in relation to shear and torsion as well as flexure. The designer should consider that the design of a slab system involves more than its analysis, and justify any deviations in physical dimensions of the slab from common practice on the basis of knowledge of the expected loads and the reliability of the calculated stresses and deformations of the structure.
CODE

13.5.1.1 — Design of a slab system for gravity loads, including the slab and beams (if any) between supports and supporting columns or walls forming orthogonal frames, by either the Direct Design Method of 13.6 or the Equivalent Frame Method of 13.7 shall be permitted.

13.5.1.2 — For lateral loads, analysis of frames shall take into account effects of cracking and reinforcement on stiffness of frame members.

13.5.1.3 — Combining the results of the gravity load analysis with the results of the lateral load analysis shall be permitted.

13.5.2 — The slab and beams (if any) between supports shall be proportioned for factored moments prevailing at every section.

COMMENTARY

R13.5.1.1 — For gravity load analysis of two-way slab systems, two analysis methods are given in 13.6 and 13.7. The specific provisions of both design methods are limited in application to orthogonal frames subject to gravity loads only. Both methods apply to two-way slabs with beams as well as to flat slabs and flat plates. In both methods, the distribution of moments to the critical sections of the slab reflects the effects of reduced stiffness of elements due to cracking and support geometry.

R13.5.1.2 — During the life of a structure, construction loads, ordinary occupancy loads, anticipated overloads, and volume changes will cause cracking of slabs. Cracking reduces stiffness of slab members, and increases lateral flexibility when lateral loads act on the structure. Cracking of slabs should be considered in stiffness assumptions so that drift caused by wind or earthquake is not grossly underestimated.

The designer may model the structure for lateral load analysis using any approach that is shown to satisfy equilibrium and geometric compatibility and to be in reasonable agreement with test data. The selected approach should recognize effects of cracking as well as parameters such as l_2/l_1, c_1/l_1, and c_2/c_1. Some of the available approaches are summarized in Reference 13.12, which includes a discussion on the effects of cracking. Acceptable approaches include plate-bending finite-element models, the effective beam width model, and the equivalent frame model. In all cases, framing member stiffnesses should be reduced to account for cracking.

For nonprestressed slabs, it is normally appropriate to reduce slab bending stiffness to between one-half and one-quarter of the uncracked stiffness. For prestressed construction, stiffnesses greater than those of cracked, nonprestressed slabs may be appropriate. When the analysis is used to determine design drifts or moment magnification, lower-bound slab stiffnesses should be assumed. When the analysis is used to study interactions of the slab with other framing elements, such as structural walls, it may be appropriate to consider a range of slab stiffnesses so that the relative importance of the slab on those interactions can be assessed.
13.5.3 — When gravity load, wind, earthquake, or other lateral forces cause transfer of moment between slab and column, a fraction of the unbalanced moment shall be transferred by flexure in accordance with 13.5.3.2 and 13.5.3.3.

13.5.3.1 — The fraction of unbalanced moment not transferred by flexure shall be transferred by eccentricity of shear in accordance with 11.12.6.

13.5.3.2 — A fraction of the unbalanced moment given by \(\gamma_f M_u \) shall be considered to be transferred by flexure within an effective slab width between lines that are one and one-half slab or drop panel thicknesses \(1.5h \) outside opposite faces of the column or capital, where \(M_u \) is the moment to be transferred and

\[
\gamma_f = \frac{1}{1 + (2/3) \sqrt{b_1/b_2}}
\]

(13-1)

13.5.3.3 — For unbalanced moments about an axis parallel to the edge at exterior supports, the value of \(\gamma_f \) by Eq. (13-1) shall be permitted to be increased up to 1.0 provided that \(V_u \) at an edge support does not exceed \(0.75 \phi V_c \) or at a corner support does not exceed \(0.5 \phi V_c \). For unbalanced moments at interior supports, and for unbalanced moments about an axis transverse to the edge at exterior supports, the value of \(\gamma_f \) in Eq. (13-1) shall be permitted to be increased by up to 25 percent provided that \(V_u \) at the support does not exceed \(0.4 \phi V_c \). The reinforcement ratio \(\rho \), within the effective slab width defined in 13.5.3.2, shall not exceed \(0.375 \rho_b \). No adjustments to \(\gamma_f \) shall be permitted for prestressed slab systems.

R13.5.3 — This section is concerned primarily with slab systems without beams. Tests and experience have shown that, unless special measures are taken to resist the torsional and shear stresses, all reinforcement resisting that part of the moment to be transferred to the column by flexure should be placed between lines that are one and one-half the slab or drop panel thickness, \(1.5h \), on each side of the column. The calculated shear stresses in the slab around the column are required to conform to the requirements of 11.12.2. See R11.12.2.1 and R11.12.2 for more details on application of this section.

R13.5.3.3 — The 1989 code procedures remain unchanged, except that under certain conditions the designer is permitted to adjust the level of moment transferred by shear without revising member sizes. An evaluation of tests indicated that some flexibility in distribution of unbalanced moments transferred by shear and flexure at both exterior and interior supports is possible. Interior, exterior, and corner supports refer to slab-column connections for which the critical perimeter for rectangular columns has 4, 3, or 2 sides, respectively. Changes in the 1995 code recognized, to some extent, design practices prior to the 1971 code.13.13

At exterior supports, for unbalanced moments about an axis parallel to the edge, the portion of moment transferred by eccentricity of shear \(\gamma_f M_u \) may be reduced provided that the factored shear at the support (excluding the shear produced by moment transfer) does not exceed 75 percent of the shear capacity \(\phi V_c \) as defined in 11.12.2.1 for edge columns or 50 percent for corner columns. Tests13.14,13.15 indicate that there is no significant interaction between shear and unbalanced moment at the exterior support in such cases. Note that as \(\gamma_f M_u \) is decreased, \(\gamma_f M_u \) is increased.

Evaluation of tests of interior supports indicates that some flexibility in distributing unbalanced moments by shear and flexure is also possible, but with more severe limitations than for exterior supports. For interior supports, the unbalanced moment transferred by flexure is permitted to be increased up to 25 percent provided that the factored shear (excluding the shear caused by the moment transfer) at the interior supports does not exceed 40 percent of the shear capacity \(\phi V_c \) as defined in 11.12.2.1.

Tests of slab-column connections indicate that a large degree of ductility is required because the interaction between shear and unbalanced moment is critical. When the factored shear is large, the column-slab joint cannot always develop all of the reinforcement provided in the effective slab width.
CODE

13.5.3.4 — Concentration of reinforcement over the column by closer spacing or additional reinforcement shall be used to resist moment on the effective slab width defined in 13.5.3.2.

13.5.4 — Design for transfer of load from slabs to supporting columns or walls through shear and torsion shall be in accordance with Chapter 11.

13.6 — Direct design method

R13.6 — Direct design method

The direct design method consists of a set of rules for distributing moments to slab and beam sections to satisfy safety requirements and most serviceability requirements simultaneously. Three fundamental steps are involved as follows:

(1) Determination of the total factored static moment (see 13.6.2);

(2) Distribution of the total factored static moment to negative and positive sections (see 13.6.3);

(3) Distribution of the negative and positive factored moments to the column and middle strips and to the beams, if any (see 13.6.4 through 13.6.6). The distribution of moments to column and middle strips is also used in the equivalent frame method (see 13.7).

R13.6.1 — Limitations

The direct design method was developed from considerations of theoretical procedures for the determination of moments in slabs with and without beams, requirements for simple design and construction procedures, and precedents supplied by performance of slab systems. Consequently, the slab systems to be designed using the direct design method should conform to the limitations in this section.

R13.6.1.1 — The primary reason for the limitation in this section is the magnitude of the negative moments at the interior support in a structure with only two continuous spans. The rules given for the direct design method assume that the slab system at the first interior negative moment section is neither fixed against rotation nor discontinuous.
13.6.1.2 — Panels shall be rectangular, with a ratio of longer to shorter span center-to-center of supports within a panel not greater than 2.

13.6.1.3 — Successive span lengths center-to-center of supports in each direction shall not differ by more than one-third the longer span.

13.6.1.4 — Offset of columns by a maximum of 10 percent of the span (in direction of offset) from either axis between centerlines of successive columns shall be permitted.

13.6.1.5 — All loads shall be due to gravity only and uniformly distributed over an entire panel. Live load shall not exceed two times dead load.

13.6.1.6 — For a panel with beams between supports on all sides, the relative stiffness of beams in two perpendicular directions

\[
\frac{\alpha_1}{\alpha_2} = \frac{l_1^2}{l_2^2} \tag{13-2}
\]

shall not be less than 0.2 nor greater than 5.0.

13.6.1.7 — Moment redistribution as permitted by 8.4 shall not be applied for slab systems designed by the Direct Design Method. See 13.6.7.

13.6.1.8 — Variations from the limitations of 13.6.1 shall be permitted if demonstrated by analysis that requirements of 13.5.1 are satisfied.

R13.6.1.2 — If the ratio of the two spans (long span/short span) of a panel exceeds two, the slab resists the moment in the shorter span essentially as a one-way slab.

R13.6.1.3 — The limitation in this section is related to the possibility of developing negative moments beyond the point where negative moment reinforcement is terminated, as prescribed in Fig. 13.3.8.

R13.6.1.4 — Columns can be offset within specified limits from a regular rectangular array. A cumulative total offset of 20 percent of the span is established as the upper limit.

R13.6.1.5 — The direct design method is based on tests13.16 for uniform gravity loads and resulting column reactions determined by statics. Lateral loads such as wind or seismic require a frame analysis. Inverted foundation mats designed as two-way slabs (see 15.10) involve application of known column loads. Therefore, even where the soil reaction is assumed to be uniform, a frame analysis should be performed.

In the 1995 code, the limit of applicability of the direct design method for ratios of live load to dead load was reduced from 3 to 2. In most slab systems, the live to dead load ratio will be less than 2 and it will not be necessary to check the effects of pattern loading.

R13.6.1.6 — The elastic distribution of moments will deviate significantly from those assumed in the direct design method unless the requirements for stiffness are satisfied.

R13.6.1.7 — Moment redistribution as permitted by 8.4 is not intended for use where approximate values for bending moments are used. For the direct design method, 10 percent modification is allowed by 13.6.7.

R13.6.1.8 — The designer is permitted to use the direct design method even if the structure does not fit the limitations in this section, provided it can be shown by analysis that the particular limitation does not apply to that structure. For a slab system carrying a nonmovable load (such as a water reservoir in which the load on all panels is expected to be the same), the designer need not satisfy the live load limitation of 13.6.1.5.
CODE

13.6.2 — Total factored static moment for a span

13.6.2.1 — Total factored static moment for a span shall be determined in a strip bounded laterally by centerline of panel on each side of centerline of supports.

13.6.2.2 — Absolute sum of positive and average negative factored moments in each direction shall not be less than

\[M_o = \frac{w u^2 n}{8} \]

(13-3)

13.6.2.3 — Where the transverse span of panels on either side of the centerline of supports varies, \(l_2 \) in Eq. (13-3) shall be taken as the average of adjacent transverse spans.

13.6.2.4 — When the span adjacent and parallel to an edge is being considered, the distance from edge to panel centerline shall be substituted for \(l_2 \) in Eq. (13-3).

13.6.2.5 — Clear span \(l_n \) shall extend from face to face of columns, capitals, brackets, or walls. Value of \(l_n \) used in Eq. (13-3) shall not be less than 0.65 \(l_1 \). Circular or regular polygon shaped supports shall be treated as square supports with the same area.

COMMENTARY

R13.6.2 — Total factored static moment for a span

R13.6.2.2 — Eq. (13-3) follows directly from Nichol’s derivation\(^{13.17} \) with the simplifying assumption that the reactions are concentrated along the faces of the support perpendicular to the span considered. In general, the designer will find it expedient to calculate static moments for two adjacent half panels that include a column strip with a half middle strip along each side.

R13.6.2.5 — If a supporting member does not have a rectangular cross section or if the sides of the rectangle are not parallel to the spans, it is to be treated as a square support having the same area, as illustrated in Fig. R13.6.2.5.

![Fig. R13.6.2.5—Examples of equivalent square section for supporting members](image)

R13.6.3 — Negative and positive factored moments

R13.6.3.1 — Negative factored moments shall be located at face of rectangular supports. Circular or regular polygon shaped supports shall be treated as square supports with the same area.

R13.6.3.2 — In an interior span, total static moment \(M_o \) shall be distributed as follows:

- Negative factored moment 0.65
- Positive factored moment 0.35
13.6.3.3 — In an end span, total factored static moment M_o shall be distributed as follows:

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior edge unrestrained</td>
<td>0.75</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.65</td>
</tr>
<tr>
<td>Slab with beams between all supports</td>
<td>0.63</td>
<td>0.57</td>
<td>0.52</td>
<td>0.50</td>
<td>0.35</td>
</tr>
<tr>
<td>Slab without beams between interior supports</td>
<td>0</td>
<td>0.16</td>
<td>0.26</td>
<td>0.30</td>
<td>0.65</td>
</tr>
<tr>
<td>With edge beam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior edge fully restrained</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

13.6.3.4 — Negative moment sections shall be designed to resist the larger of the two interior negative factored moments determined for spans framing into a common support unless an analysis is made to distribute the unbalanced moment in accordance with stiffnesses of adjoining elements.

13.6.3.5 — Edge beams or edges of slab shall be proportioned to resist in torsion their share of exterior negative factored moments.

13.6.3.6 — The gravity load moment to be transferred between slab and edge column in accordance with 13.5.3.1 shall be $0.3M_o$.

13.6.4 — Factored moments in column strips

13.6.4.1 — Column strips shall be proportioned to resist the following portions in percent of interior negative factored moments:

<table>
<thead>
<tr>
<th>h_2/h_1</th>
<th>0.5</th>
<th>1.0</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\alpha_1 h_2/h_1) = 0$</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>$(\alpha_1 h_2/h_1) \geq 1.0$</td>
<td>90</td>
<td>75</td>
<td>45</td>
</tr>
</tbody>
</table>

13.6.4, R13.6.5, and R13.6.6 — Factored moments in column strips, beams, and middle strips

The rules given for assigning moments to the column strips, beams, and middle strips are based on studies of moments in linearly elastic slabs with different beam stiffness tempered by the moment coefficients that have been used successfully.
CODE

Linear interpolations shall be made between values shown.

13.6.4.2 — Column strips shall be proportioned to resist the following portions in percent of exterior negative factored moments:

<table>
<thead>
<tr>
<th>(\frac{\ell_2}{l_1})</th>
<th>(\beta_t = 0)</th>
<th>(\beta_t \geq 2.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_1 \frac{\ell_2}{l_1} = 0)</td>
<td>100</td>
<td>75</td>
</tr>
<tr>
<td>(\alpha_1 \frac{\ell_2}{l_1} \geq 1.0)</td>
<td>100</td>
<td>90</td>
</tr>
</tbody>
</table>

Linear interpolations shall be made between values shown.

13.6.4.3 — Where supports consist of columns or walls extending for a distance equal to or greater than three-quarters the span length \(\ell_2 \) used to compute \(M_{op} \) negative moments shall be considered to be uniformly distributed across \(\ell_2 \).

13.6.4.4 — Column strips shall be proportioned to resist the following portions in percent of positive factored moments:

<table>
<thead>
<tr>
<th>(\frac{\ell_2}{l_1})</th>
<th>(\beta_t = 0)</th>
<th>(\beta_t \geq 2.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_1 \frac{\ell_2}{l_1} = 0)</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>(\alpha_1 \frac{\ell_2}{l_1} \geq 1.0)</td>
<td>60</td>
<td>75</td>
</tr>
</tbody>
</table>

Linear interpolations shall be made between values shown.

13.6.4.5 — For slabs with beams between supports, the slab portion of column strips shall be proportioned to resist that portion of column strip moments not resisted by beams.

13.6.5 — Factored moments in beams

13.6.5.1 — Beams between supports shall be proportioned to resist 85 percent of column strip moments if \(\alpha_1 \frac{\ell_2}{l_1} \) is equal to or greater than 1.0.

13.6.5.2 — For values of \(\alpha_1 \frac{\ell_2}{l_1} \) between 1.0 and zero, proportion of column strip moments resisted by beams shall be obtained by linear interpolation between 85 and zero percent.

COMMENTARY

For the purpose of establishing moments in the half column strip adjacent to an edge supported by a wall, \(\ell_2 \) in Eq. (13-3) may be assumed equal to \(\ell_2 \) of the parallel adjacent column to column span, and the wall may be considered as a beam having a moment of inertia \(I_b \) equal to infinity.

R13.6.4.2 — The effect of the torsional stiffness parameter \(\beta_t \) is to assign all of the exterior negative factored moment to the column strip, and none to the middle strip, unless the beam torsional stiffness is high relative to the flexural stiffness of the supported slab. In the definition of \(\beta_t \), the shear modulus has been taken as \(E_{cb} \).

Where walls are used as supports along column lines, they can be regarded as very stiff beams with an \(\alpha_1 \frac{\ell_2}{l_1} \) value greater than one. Where the exterior support consists of a wall perpendicular to the direction in which moments are being determined, \(\beta_t \) may be taken as zero if the wall is of masonry without torsional resistance, and \(\beta_t \) may be taken as 2.5 for a concrete wall with great torsional resistance that is monolithic with the slab.

R13.6.5 — Factored moments in beams

Loads assigned directly to beams are in addition to the uniform dead load of the slab; uniform superimposed dead loads, such as the ceiling, floor finish, or assumed equivalent partition loads; and uniform live loads. All of these loads are normally included with \(w_u \) in Eq. (13-3). Linear loads applied directly to beams include partition walls over or along beam center lines and additional dead load of the projecting beam stem. Concentrated loads include posts above or hangers below the beams. For the purpose of
CHAPTER 13

CODE

13.6.5.3 — In addition to moments calculated for uniform loads according to 13.6.2.2, 13.6.5.1, and 13.6.5.2, beams shall be proportioned to resist all moments caused by concentrated or linear loads applied directly to beams, including weight of projecting beam stem above or below the slab.

13.6.6 — Factored moments in middle strips

13.6.6.1 — That portion of negative and positive factored moments not resisted by column strips shall be proportionately assigned to corresponding half middle strips.

13.6.6.2 — Each middle strip shall be proportioned to resist the sum of the moments assigned to its two half middle strips.

13.6.6.3 — A middle strip adjacent to and parallel with a wall-supported edge shall be proportioned to resist twice the moment assigned to the half middle strip corresponding to the first row of interior supports.

13.6.7 — Modification of factored moments

Modification of negative and positive factored moments by 10 percent shall be permitted provided the total static moment for a panel in the direction considered is not less than that required by Eq. (13-3).

13.6.8 — Factored shear in slab systems with beams

13.6.8.1 — Beams with α_{l_2/l_1} equal to or greater than 1.0 shall be proportioned to resist shear caused by factored loads on tributary areas which are bounded by 45 deg lines drawn from the corners of the panels and the centerlines of the adjacent panels parallel to the long sides.

13.6.8.2 — In proportioning of beams with α_{l_2/l_1} less than 1.0 to resist shear, linear interpolation, assuming beams carry no load at $\alpha_1 = 0$, shall be permitted.

13.6.8.3 — In addition to shears calculated according to 13.6.8.1 and 13.6.8.2, beams shall be proportioned to resist shears caused by factored loads applied directly on beams.

13.6.8.4 — Computation of slab shear strength on the assumption that load is distributed to supporting beams in accordance with 13.6.8.1 or 13.6.8.2 shall be permitted. Resistance to total shear occurring on a panel shall be provided.

13.6.8.5 — Shear strength shall satisfy the requirements of Chapter 11.

COMMENTARY

assigning directly applied loads, only loads located within the width of the beam stem should be considered as directly applied to the beams. (The effective width of a beam as defined in 13.2.4 is solely for strength and relative stiffness calculations.) Line loads and concentrated loads located on the slab away from the beam stem require special consideration to determine their apportionment to slab and beams.

R13.6.8 — Factored shear in slab systems with beams

The tributary area for computing shear on an interior beam is shown shaded in Fig. R13.6.8. If the stiffness for the beam α_{l_2/l_1} is less than 1.0, the shear on the beam may be obtained by linear interpolation. In such cases, the beams framing into the column will not account for all of the shear force applied on the column. The remaining shear force will produce shear stresses in the slab around the column that should be checked in the same manner as for flat slabs, as required by 13.6.8.4. Sections 13.6.8.1 through 13.6.8.3 do not apply to the calculation of torsional moments on the

Fig. R13.6.8—Tributary area for shear on an interior beam
13.6.9 — Factored moments in columns and walls

13.6.9.1 — Columns and walls built integrally with a slab system shall resist moments caused by factored loads on the slab system.

13.6.9.2 — At an interior support, supporting elements above and below the slab shall resist the moment specified by Eq. (13-4) in direct proportion to their stiffnesses unless a general analysis is made.

\[
M = 0.07[(w_d + 0.5w_l)\frac{l}{n} - w'_d\frac{l'}{n'}^2]\]
(13-4)

where \(w_d\), \(l\), and \(n\) refer to shorter span.

13.7 — Equivalent frame method

13.7.1 — Design of slab systems by the equivalent frame method shall be based on assumptions given in 13.7.2 through 13.7.6, and all sections of slabs and supporting members shall be proportioned for moments and shears thus obtained.

13.7.1.1 — Where metal column capitals are used, it shall be permitted to take account of their contributions to stiffness and resistance to moment and to shear.

13.7.1.2 — Neglecting the change in length of columns and slabs due to direct stress, and deflections due to shear, shall be permitted.

13.7.2 — Equivalent frame

13.7.2.1 — The structure shall be considered to be made up of equivalent frames on column lines taken longitudinally and transversely through the building.

13.7.2.2 — Each frame shall consist of a row of columns or supports and slab-beam strips, bounded laterally by the centerline of panel on each side of the centerline of columns or supports.

13.7.2.3 — Columns or supports shall be assumed to be attached to slab-beam strips by torsional members (see 13.7.5) transverse to the direction of the span for which moments are being determined and extending to bounding lateral panel centerlines on each side of a column.

R13.6.9 — Factored moments in columns and walls

Eq. (13-4) refers to two adjoining spans, with one span longer than the other, and with full dead load plus one-half live load applied on the longer span and only dead load applied on the shorter span.

Design and detailing of the reinforcement transferring the moment from the slab to the edge column is critical to both the performance and the safety of flat slabs or flat plates without edge beams or cantilever slabs. It is important that complete design details be shown on design drawings, such as concentration of reinforcement over the column by closer spacing or additional reinforcement.

R13.7 — Equivalent frame method

The equivalent frame method involves the representation of the three-dimensional slab system by a series of two-dimensional frames that are then analyzed for loads acting in the plane of the frames. The negative and positive moments so determined at the critical design sections of the frame are distributed to the slab sections in accordance with 13.6.4 (column strips), 13.6.5 (beams), and 13.6.6 (middle strips). The equivalent frame method is based on studies reported in References 13.18, 13.19, and 13.20. Many of the details of the equivalent frame method given in the Commentary in the 1989 code were removed in the 1995 code.

R13.7.2 — Equivalent frame

Application of the equivalent frame to a regular structure is illustrated in Fig. R13.7.2. The three-dimensional building is divided into a series of two-dimensional frame bents (equivalent frames) centered on column or support centerlines with each frame extending the full height of the building. The width of each equivalent frame is bounded by the centerlines of the adjacent panels. The complete analysis of a slab system for a building consists of analyzing a series of equivalent (interior and exterior) frames spanning longitudinally and transversely through the building.

The equivalent frame comprises three parts: (1) the horizontal slab strip, including any beams spanning in the direction of the frame, (2) the columns or other vertical supporting members, extending above and below the slab, and (3) the elements of the structure that provide moment transfer between the horizontal and vertical members.
CODE

13.7.2.4 — Frames adjacent and parallel to an edge shall be bounded by that edge and the centerline of adjacent panel.

13.7.2.5 — Analysis of each equivalent frame in its entirety shall be permitted. Alternatively, for gravity loading, a separate analysis of each floor or roof with far ends of columns considered fixed shall be permitted.

13.7.2.6 — Where slab-beams are analyzed separately, determination of moment at a given support assuming that the slab-beam is fixed at any support two panels distant therefrom, shall be permitted, provided the slab continues beyond that point.

13.7.3 — Slab-beams

13.7.3.1 — Determination of the moment of inertia of slab-beams at any cross section outside of joints or column capitals using the gross area of concrete shall be permitted.

13.7.3.2 — Variation in moment of inertia along axis of slab-beams shall be taken into account.

13.7.3.3 — Moment of inertia of slab-beams from center of column to face of column, bracket, or capital shall be assumed equal to the moment of inertia of the slab-beam at face of column, bracket, or capital divided by the quantity \(1 - \frac{c_2}{l_2}^2\), where \(c_2\) and \(l_2\) are measured transverse to the direction of the span for which moments are being determined.

13.7.4 — Columns

13.7.4.1 — Determination of the moment of inertia of columns at any cross section outside of joints or column capitals using the gross area of concrete shall be permitted.

13.7.4.2 — Variation in moment of inertia along axis of columns shall be taken into account.

13.7.4.3 — Moment of inertia of columns from top to bottom of the slab-beam at a joint shall be assumed to be infinite.

COMMENTARY

R13.7.3 — Slab-beams

R13.7.3.3 — A support is defined as a column, capital, bracket, or wall. A beam is not considered to be a support member for the equivalent frame.

R13.7.4 — Columns

Column stiffness is based on the length of the column from middepth of slab above to middepth of slab below. Column moment of inertia is computed on the basis of its cross section, taking into account the increase in stiffness provided by the capital, if any.

When slab-beams are analyzed separately for gravity loads, the concept of an equivalent column, combining the stiffness of the slab-beam and torsional member into a composite element, is used. The column flexibility is modified to account for the torsional flexibility of the slab-to-column connection that reduces its efficiency for transmission of
moments. The equivalent column consists of the actual columns above and below the slab-beam, plus attached torsional members on each side of the columns extending to the centerline of the adjacent panels as shown in Fig. R13.7.4.

R13.7.5 — Torsional members

Computation of the stiffness of the torsional member requires several simplifying assumptions. If no transverse-beam frames into the column, a portion of the slab equal to the width of the column or capital is assumed to be the torsional member. If a beam frames into the column, T-beam or L-beam action is assumed, with the flanges extending on each side of the beam a distance equal to the projection of the beam above or below the slab but not greater than four times the thickness of the slab. Furthermore, it is assumed that no torsional rotation occurs in the beam over the width of the support.

The member sections to be used for calculating the torsional stiffness are defined in 13.7.5.1. In the 1989 code, Eq. (13-6) specified the stiffness coefficient K_t of the torsional members. The approximate expression for K_t has been moved to the commentary and the expression for the torsional constant (Eq. 13-7 in the 1989 code) is now defined in 13.0.

Studies of three-dimensional analyses of various slab configurations suggest that a reasonable value of the torsional stiffness can be obtained by assuming a moment distribution along the torsional member that varies linearly from a maximum at the center of the column to zero at the middle of the panel. The assumed distribution of unit twisting moment along the column centerline is shown in Fig. R13.7.5.

An approximate expression for the stiffness of the torsional members.
CHAPTER 13

CODE

COMMENTARY

Fig. R13.7.5—Distribution of unit twisting moment along column centerline AA shown in Fig. R13.7.4

member, based on the results of three-dimensional analyses of various slab configurations (References 13.18, 13.19, and 13.20) is given below as

\[K_i = \sum \frac{9E_{cs}C}{2\left(1 - \frac{c}{2}\right)^3} \]

where an expression for \(C \) is given in 13.0.

R13.7.6 — Arrangement of live load

The use of only three-quarters of the full factored live load for maximum moment loading patterns is based on the fact that maximum negative and maximum positive live load moments cannot occur simultaneously and that redistribution of maximum moments is thus possible before failure occurs. This procedure, in effect, permits some local overstress under the full factored live load if it is distributed in the prescribed manner, but still ensures that the ultimate capacity of the slab system after redistribution of moment is not less than that required to carry the full factored dead and live loads on all panels.

13.7.6 — Arrangement of live load

13.7.6.1 — When the loading pattern is known, the equivalent frame shall be analyzed for that load.

13.7.6.2 — When live load is variable but does not exceed three-quarters of the dead load, or the nature of live load is such that all panels will be loaded simultaneously, it shall be permitted to assume that maximum factored moments occur at all sections with full factored live load on entire slab system.

13.7.6.3 — For loading conditions other than those defined in 13.7.6.2, it shall be permitted to assume that maximum positive factored moment near midspan of a panel occurs with three-quarters of the full factored live load on the panel and on alternate panels; and it shall be permitted to assume that maximum negative factored moment in the slab at a support occurs with three-quarters of the full live load on adjacent panels only.

13.7.6.4 — Factored moments shall be taken not less than those occurring with full factored live load on all panels.

13.7.7 — Factored moments

13.7.7.1 — At interior supports, the critical section for negative factored moment (in both column and middle strips) shall be taken at face of rectilinear supports, but not farther away than 0.175\(l \) from the center of a column.

13.7.7.2 — At exterior supports with brackets or capitals, the critical section for negative factored moment in the span perpendicular to an edge shall be taken at a distance from face of supporting element not greater than one-half the projection of bracket or capital beyond face of supporting element.

R13.7.7 — Factored moments

R13.7.7.1-R13.7.7.3 — These code sections adjust the negative factored moments to the face of the supports. The adjustment is modified at an exterior support to limit reductions in the exterior negative moment. Fig. R13.6.2.5 illustrates several equivalent rectangular supports for use in establishing faces of supports for design with nonrectangular supports.
CODE

13.7.7.3 — Circular or regular polygon shaped supports shall be treated as square supports with the same area for location of critical section for negative design moment.

13.7.7.4 — When slab systems within limitations of 13.6.1 are analyzed by the equivalent frame method, it shall be permitted to reduce the resulting computed moments in such proportion that the absolute sum of the positive and average negative moments used in design need not exceed the value obtained from Eq. (13-3).

13.7.7.5 — Distribution of moments at critical sections across the slab-beam strip of each frame to column strips, beams, and middle strips as provided in 13.6.4, 13.6.5, and 13.6.6 shall be permitted if the requirement of 13.6.1.6 is satisfied.

COMMENTARY

R13.7.7.4 — Previous codes have contained this section. It is based on the principle that if two different methods are prescribed to obtain a particular answer, the code should not require a value greater than the least acceptable value. Due to the long satisfactory experience with designs having total factored static moments not exceeding those given by Eq. (13-3), it is considered that these values are satisfactory for design when applicable limitations are met.
CHAPTER 14 — WALLS

CODE

14.0 — Notation

- $A_g =$ gross area of section, mm2
- $A_s =$ area of longitudinal tension reinforcement in wall segment, mm2
- $A_{se} =$ area of effective longitudinal tension reinforcement in wall segment, mm2, as calculated by Eq. (14-8)
- $c =$ distance from extreme compression fiber to neutral axis, mm
- $d =$ distance from extreme compression fiber to centroid of longitudinal tension reinforcement, mm
- $E_c =$ modulus of elasticity of concrete, MPa
- $f_{c'} =$ specified compressive strength of concrete, MPa
- $f_y =$ specified yield strength of nonprestressed reinforcement, MPa
- $h =$ overall thickness of member, mm
- $I_{cr} =$ moment of inertia of cracked section transformed to concrete, mm4
- $I_e =$ effective moment of inertia for computation of deflection, mm4
- $k =$ effective length factor
- $l_c =$ vertical distance between supports, mm
- $l_w =$ horizontal length of wall, mm
- $M =$ maximum unfactored moment due to service loads, including $P\Delta$ effects, mm-N
- $M_a =$ maximum moment in member at stage deflection is computed, mm-N
- $M_{cr} =$ moment causing flexural cracking due to applied lateral and vertical loads, mm-N
- $M_n =$ nominal moment strength at section, mm-N
- $M_{sa} =$ maximum unfactored applied moment due to service loads, not including $P\Delta$ effects, mm-N
- $M_u =$ factored moment at section including $P\Delta$ effects, mm-N
- $M_{ua} =$ moment at the midheight section of the wall due to factored lateral and eccentric vertical loads, mm-N
- $n =$ modular ratio of elasticity, but not less than 6
- $P_{nw} =$ nominal axial load strength of wall designed by 14.4, N
- $P_s =$ unfactored axial load at the design (midheight) section including effects of self-weight, N
- $P_u =$ factored axial load, N
- $\Delta_s =$ maximum deflection at or near midheight due to service loads, mm
- $\Delta_u =$ deflection at midheight of wall due to factored loads, mm

COMMENTARY

14.0— Notation

Units of measurement are given in the Notation to assist the user and are not intended to preclude the use of other correctly applied units for the same symbol, such as m or kN.
CODE

\(\phi \) = strength reduction factor. See 9.3
\(\rho \) = ratio of tension reinforcement
\[\rho = \frac{A_s}{l_w d} \]
\(\rho_b \) = reinforcement ratio producing balanced strain conditions

14.1 — Scope

14.1.1 — Provisions of Chapter 14 shall apply for design of walls subjected to axial load, with or without flexure.

14.1.2 — Cantilever retaining walls are designed according to flexural design provisions of Chapter 10 with minimum horizontal reinforcement according to 14.3.3.

14.2 — General

14.2.1 — Walls shall be designed for eccentric loads and any lateral or other loads to which they are subjected.

14.2.2 — Walls subject to axial loads shall be designed in accordance with 14.2, 14.3, and either 14.4, 14.5, or 14.8.

14.2.3 — Design for shear shall be in accordance with 11.10.

14.2.4 — Unless demonstrated by a detailed analysis, horizontal length of wall to be considered as effective for each concentrated load shall not exceed center-to-center distance between loads, nor width of bearing plus four times the wall thickness.

14.2.5 — Compression members built integrally with walls shall conform to 10.8.2.

14.2.6 — Walls shall be anchored to intersecting elements, such as floors and roofs; or to columns, pilasters, buttresses, and intersecting walls; and to footings.

14.2.7 — Quantity of reinforcement and limits of thickness required by 14.3 and 14.5 shall be permitted to be waived where structural analysis shows adequate strength and stability.

14.2.8 — Transfer of force to footing at base of wall shall be in accordance with 15.8.

COMMENTARY

R14.1 — Scope

Chapter 14 applies generally to walls as vertical load carrying members. Cantilever retaining walls are designed according to the flexural design provisions of Chapter 10. Walls designed to resist shear forces, such as shearwalls, should be designed in accordance with Chapter 14 and 11.10 as applicable.

In the 1977 code, walls could be designed according to Chapter 14 or 10.15. In the 1983 code these two were combined in Chapter 14.

R14.2 — General

Walls should be designed to resist all loads to which they are subjected, including eccentric axial loads and lateral forces. Design is to be carried out in accordance with 14.4 unless the wall meets the requirements of 14.5.1. In either case, walls may be designed using either the strength design method of the code or the alternate design method of Appendix A in accordance with A.6.3.
14.3 — Minimum reinforcement

14.3.1 — Minimum vertical and horizontal reinforcement shall be in accordance with 14.3.2 and 14.3.3 unless a greater amount is required for shear by 11.10.8 and 11.10.9.

14.3.2 — Minimum ratio of vertical reinforcement area to gross concrete area shall be:

(a) 0.0012 for deformed bars not larger than No. 16 with a specified yield strength not less than 420 MPa; or
(b) 0.0015 for other deformed bars; or
(c) 0.0012 for welded wire fabric (plain or deformed) not larger than W31 or D31.

14.3.3 — Minimum ratio of horizontal reinforcement area to gross concrete area shall be:

(a) 0.0020 for deformed bars not larger than No. 16 with a specified yield strength not less than 420 MPa; or
(b) 0.0025 for other deformed bars; or
(c) 0.0020 for welded wire fabric (plain or deformed) not larger than W31 or D31.

14.3.4 — Walls more than 250 mm thick, except basement walls, shall have reinforcement for each direction placed in two layers parallel with faces of wall in accordance with the following:

(a) One layer consisting of not less than one-half and not more than two-thirds of total reinforcement required for each direction shall be placed not less than 50 mm nor more than one-third the thickness of wall from the exterior surface;
(b) The other layer, consisting of the balance of required reinforcement in that direction, shall be placed not less than 20 mm nor more than one-third the thickness of wall from the interior surface.

14.3.5 — Vertical and horizontal reinforcement shall not be spaced farther apart than three times the wall thickness, nor farther apart than 500 mm.

14.3.6 — Vertical reinforcement need not be enclosed by lateral ties if vertical reinforcement area is not greater than 0.01 times gross concrete area, or where vertical reinforcement is not required as compression reinforcement.

14.3.7 — In addition to the minimum reinforcement required by 14.3.1, not less than two No. 16 bars shall...
be provided around all window and door openings. Such bars shall be extended to develop the bar beyond the corners of the openings but not less than 600 mm.

14.4 — Walls designed as compression members

Except as provided in 14.5, walls subject to axial load or combined flexure and axial load shall be designed as compression members in accordance with provisions of 10.2, 10.3, 10.10, 10.11, 10.12, 10.13, 10.14, 10.17, 14.2, and 14.3.

14.5 — Empirical design method

14.5.1 — Walls of solid rectangular cross section shall be permitted to be designed by the empirical provisions of 14.5 if the resultant of all factored loads is located within the middle third of the overall thickness of the wall and all limits of 14.2, 14.3, and 14.5 are satisfied.

14.5.2 — Design axial load strength ϕP_{nw} of a wall satisfying limitations of 14.5.1 shall be computed by Eq. (14-1) unless designed in accordance with 14.4.

$$\phi P_{nw} = 0.55 \phi f'_c A_g \left[1 - \left(\frac{k_c}{32h}\right)^2\right]$$

(14-1)

where $\phi = 0.70$ and effective length factor k shall be:

For walls braced top and bottom against lateral translation and

(a) Restrained against rotation at one or both ends (top, bottom, or both) ... 0.8

(b) Unrestrained against rotation at both ends 1.0

For walls not braced against lateral translation 2.0

The empirical design method applies only to solid rectangular cross sections. All other shapes should be designed according to 14.4.

Eccentric loads and lateral forces are used to determine the total eccentricity of the factored axial load P_u. When the resultant load for all applicable load combinations falls within the middle third of the wall thickness (eccentricity not greater than $h/6$) at all sections along the length of the undeformed wall, the empirical design method may be used. The design is then carried out considering P_u as the concentric load. The factored axial load P_u should be less than or equal to the design axial load strength ϕP_{nw} computed by Eq. (14-1), $P_u \leq \phi P_{nw}$.

With the 1980 code supplement, (Eq. 14-1) was revised to reflect the general range of end conditions encountered in wall designs. The wall strength equation in the 1977 code

Fig. R14.5—Empirical design of walls, Eq. (14-1) versus 14.4
14.5.3 — Minimum thickness of walls designed by empirical design method

14.5.3.1 — Thickness of bearing walls shall not be less than 1/25 the supported height or length, whichever is shorter, nor less than 100 mm.

14.5.3.2 — Thickness of exterior basement walls and foundation walls shall not be less than 190 mm.

14.6 — Nonbearing walls

14.6.1 — Thickness of nonbearing walls shall not be less than 100 mm, nor less than 1/30 the least distance between members that provide lateral support.

14.7 — Walls as grade beams

14.7.1 — Walls designed as grade beams shall have top and bottom reinforcement as required for moment in accordance with provisions of 10.2 through 10.7. Design for shear shall be in accordance with provisions of Chapter 11.

14.7.2 — Portions of grade beam walls exposed above grade shall also meet requirements of 14.3.

14.8 — Alternative design of slender walls

14.8.1 — When flexural tension controls the design of a wall, the requirements of 14.8 are considered to satisfy 10.10.

R14.8 — Alternative design of slender walls

Section 14.8 is based on the corresponding requirements in the Uniform Building Code (UBC) and experimental research.14.3
CODE

14.8.2 — Walls designed by the provisions of 14.8 shall satisfy 14.8.2.1 through 14.8.2.6.

14.8.2.1 — The wall panel shall be designed as a simply supported, axially loaded member subjected to an out-of-plane uniform lateral load, with maximum moments and deflections occurring at midspan.

14.8.2.2 — The cross section is constant over the height of the panel.

14.8.2.3 — The reinforcement ratio ρ shall not exceed $0.6\rho_b$.

14.8.2.4 — Reinforcement shall provide a design strength

$$\phi M_n \geq M_{cr}$$ \hspace{1cm} (14-2)

where M_{cr} shall be obtained using the modulus of rupture given by Eq. (9-9).

14.8.2.5 — Concentrated gravity loads applied to the wall above the design flexural section shall be assumed to be distributed over a width:

(a) Equal to the bearing width, plus a width on each side that increases at a slope of 2 vertical to 1 horizontal down to the design section; but

(b) Not greater than the spacing of the concentrated loads; and

(c) Does not extend beyond the edges of the wall panel.

14.8.2.6 — Vertical stress P_u/A_g at the midheight section shall not exceed $0.06f_c'$.

14.8.3 — The design moment strength ϕM_n for combined flexure and axial loads at the midheight cross section shall be

$$\phi M_n \geq M_u$$ \hspace{1cm} (14-3)

where:

$$M_u = M_{ua} + P_u \Delta_u$$ \hspace{1cm} (14-4)

M_{ua} is the moment at the midheight section of the wall due to factored loads, and Δ_u is:

$$\Delta_u = \frac{5M_u f_c'^2}{\phi 48 E'_{c} I_{cr}}$$ \hspace{1cm} (14-5)

M_u shall be obtained by iteration of deflections, or by direct calculation using Eq. (14-6).

COMMENTARY

The procedure is presented as an alternative to the requirements of 10.10 for the out-of-plane design of precast wall panels, where the panels are restrained against overturning at the top.

The procedure, as prescribed in the UBC, has been converted from working stress to factored load design.

Panels that have windows or other large openings are not considered to have constant cross section over the height of the panel. Such walls are to be designed taking into account the effects of openings.

Many aspects of the design of tilt-up walls and buildings are discussed in References 14-4 and 14-5.
CODE

\[M_u = \frac{M_{ua}}{1 - \frac{5P_{\Delta}l^2}{\phi 48 E_c I_{cr}}} \]

(14-6)

where:

\[I_{cr} = nA_{se} (d - c)^2 + \frac{\ell_w c^3}{3} \]

(14-7)

and

\[A_{se} = \frac{P_u + A_s f_y}{f_y} \]

(14-8)

14.8.4 — The maximum deflection \(\Delta_s \) due to service loads, including \(P\Delta \) effects, shall not exceed \(\ell_c/150 \). The midheight deflection \(\Delta_s \) shall be determined by:

\[\Delta_s = \frac{(5M)\ell_c^2}{48 E_c I_e} \]

(14-9)

\[M = \frac{M_{sa}}{1 - \frac{5P_{s\Delta}l^2}{48 E_c I_e}} \]

(14-10)

\(I_e \) shall be calculated using the procedure of 9.5.2.3, substituting \(M \) for \(M_s \). \(I_{cr} \) shall be evaluated using Eq. (14-7).
Notes
CHAPTER 15 — FOOTINGS

CODE

15.0 — Notation

\[A_g = \text{gross area of section, mm}^2 \]
\[d_p = \text{diameter of pile at footing base, mm} \]
\[\beta = \text{ratio of long side to short side of footing} \]

15.1 — Scope

15.1.1 — Provisions of Chapter 15 shall apply for design of isolated footings and, where applicable, to combined footings and mats.

15.1.2 — Additional requirements for design of combined footings and mats are given in 15.10.

15.2 — Loads and reactions

15.2.1 — Footings shall be proportioned to resist the factored loads and induced reactions, in accordance with the appropriate design requirements of this code and as provided in Chapter 15.

15.2.2 — Base area of footing or number and arrangement of piles shall be determined from unfactored forces and moments transmitted by footing to soil or piles and permissible soil pressure or permissible pile capacity selected through principles of soil mechanics.

15.2.3 — For footings on piles, computations for moments and shears shall be permitted to be based on the assumption that the reaction from any pile is concentrated at pile center.

COMMENTARY

R15.1 — Scope

While the provisions of Chapter 15 apply to isolated footings supporting a single column or wall, most of the provisions are generally applicable to combined footings and mats supporting several columns or walls or a combination thereof.

R15.2 — Loads and reactions

Footings are required to be proportioned to sustain the applied factored loads and induced reactions which include axial loads, moments, and shears that have to be resisted at the base of the footing or pile cap.

After the permissible soil pressure or the permissible pile capacity has been determined by principles of soil mechanics and in accord with the general building code, the size of the base area of a footing on soil or the number and arrangement of the piles should be established on the basis of unfactored (service) loads such as \(D, L, W, \) and \(E \) in whatever combination that governs the design.

Only the computed end moments that exist at the base of a column (or pedestal) need to be transferred to the footing; the minimum moment requirement for slenderness considerations given in 10.12.3.2 need not be considered for transfer of forces and moments to footings.

In cases in which eccentric loads or moments are to be considered, the extreme soil pressure or pile reaction obtained from this loading should be within the permissible values. Similarly, the resultant reactions due to service loads combined with moments, shears, or both, caused by wind or earthquake loads should not exceed the increased values that may be permitted by the general building code.

To proportion a footing or pile cap for strength, the contact soil pressure or pile reaction due to the applied factored loading (see 8.1.1) should be determined. For a single concentrically loaded spread footing, the soil reaction \(q_s \) due to the factored loading is \(q_s = U/A_f \), where \(U \) is the factored
CODE

15.3 — Footings supporting circular or regular polygon shaped columns or pedestals

For location of critical sections for moment, shear, and development of reinforcement in footings, it shall be permitted to treat circular or regular polygon shaped concrete columns or pedestals as square members with the same area.

15.4 — Moment in footings

15.4.1 — External moment on any section of a footing shall be determined by passing a vertical plane through the footing, and computing the moment of the forces acting over entire area of footing on one side of that vertical plane.

15.4.2 — Maximum factored moment for an isolated footing shall be computed as prescribed in 15.4.1 at critical sections located as follows:

(a) At face of column, pedestal, or wall, for footings supporting a concrete column, pedestal, or wall;

(b) Halfway between middle and edge of wall, for footings supporting a masonry wall;

COMMENTARY

concentric load to be resisted by the footing, and \(A_f \) is the base area of the footing as determined by the principles stated in 15.2.2 using the unfactored loads and the permissible soil pressure.

\(q_s \) is a calculated reaction to the factored loading used to produce the same required strength conditions regarding flexure, shear, and development of reinforcement in the footing or pile cap, as in any other member.

In the case of eccentric loading, load factors may cause eccentricities and reactions that are different from those obtained by unfactored loads.

When the design method of Appendix A is used for design of footings, the soil bearing pressures or pile reactions are those caused by the service loads (without load factors). The permissible soil pressures or permissible pile reactions are equated directly with the applied service load pressures or reactions to determine base area of footing or number and arrangement of piles. When lateral loads due to wind or earthquake are included in the governing load combination for footings, advantage may be taken of the 25 percent reduction in required strength in accordance with Section A.2.2.
CODE

Chapter 15

15.4.3 — In one-way footings and two-way square footings, reinforcement shall be distributed uniformly across entire width of footing.

15.4.4 — In two-way rectangular footings, reinforcement shall be distributed in accordance with 15.4.4.1 and 15.4.4.2.

15.4.4.1 — Reinforcement in long direction shall be distributed uniformly across entire width of footing.

15.4.4.2 — For reinforcement in short direction, a portion of the total reinforcement given by Eq. (15-1) shall be distributed uniformly over a band width (centered on centerline of column or pedestal) equal to the length of short side of footing. Remainder of reinforcement required in short direction shall be distributed uniformly outside center band width of footing.

\[
\frac{\text{Reinforcement in band width}}{\text{Total reinforcement in short direction}} = \frac{2}{(\beta + 1)} \quad (15-1)
\]

15.5 — Shear in footings

15.5.1 — Shear strength of footings shall be in accordance with 11.12.

15.5.2 — Location of critical section for shear in accordance with Chapter 11 shall be measured from face of column, pedestal, or wall, for footings supporting a column, pedestal, or wall. For footings supporting a column or pedestal with steel base plates, the critical section shall be measured from location defined in 15.4.2(c).

COMMENTARY

R15.4.4 — In previous codes, the reinforcement in the short direction of rectangular footings should be distributed so that an area of steel given by Eq. (15-1) is provided in a band width equal to the length of the short side of the footing. The band width is centered about the column centerline.

The remaining reinforcement required in the short direction is to be distributed equally over the two segments outside the band width, one-half to each segment.

R15.5 — Shear in footings

R15.5.1 and R15.5.2 — The shear strength of footings are determined for the more severe condition of 11.12.1.1 or 11.12.1.2. The critical section for shear is measured from the face of supported member (column, pedestal, or wall), except for supported members on steel base plates.

Computation of shear requires that the soil reaction \(q_s \) be obtained from the factored loads and the design be in accordance with the appropriate equations of Chapter 11.

Where necessary, shear around individual piles may be investigated in accordance with 11.12.1.2. If shear perimeters overlap, the modified critical perimeter \(b_o \) should be

![Fig. R15.5—Modified critical perimeter for shear with overlapping critical perimeters](image-url)
15.5.3 — Computation of shear on any section through a footing supported on piles shall be in accordance with 15.5.3.1, 15.5.3.2, and 15.5.3.3.

15.5.3.1 — Entire reaction from any pile whose center is located $d_p/2$ or more outside the section shall be considered as producing shear on that section.

15.5.3.2 — Reaction from any pile whose center is located $d_p/2$ or more inside the section shall be considered as producing no shear on that section.

15.5.3.3 — For intermediate positions of pile center, the portion of the pile reaction to be considered as producing shear on the section shall be based on straight-line interpolation between full value at $d_p/2$ outside the section and zero value at $d_p/2$ inside the section.

15.6 — Development of reinforcement in footings

15.6.1 — Development of reinforcement in footings shall be in accordance with Chapter 12.

15.6.2 — Calculated tension or compression in reinforcement at each section shall be developed on each side of that section by embedment length, hook (tension only) or mechanical device, or a combination thereof.

15.6.3 — Critical sections for development of reinforcement shall be assumed at the same locations as defined in 15.4.2 for maximum factored moment, and at all other vertical planes where changes of section or reinforcement occur. See also 12.10.6.

15.7 — Minimum footing depth

Depth of footing above bottom reinforcement shall not be less than 150 mm for footings on soil, nor less than 300 mm for footings on piles.

15.8 — Transfer of force at base of column, wall, or reinforced pedestal

15.8.1 — Forces and moments at base of column, wall, or pedestal shall be transferred to supporting pedestal or footing by bearing on concrete and by reinforcement, dowels, and mechanical connectors.

R15.8 — Transfer of force at base of column, wall, or reinforced pedestal

Section 15.8 provides the specific requirements for force transfer from a column, wall, or pedestal (supported member) to a pedestal or footing (supporting member). Force transfer should be by bearing on concrete (compressive force only) and by reinforcement (tensile or compressive...
15.8.1.1 — Bearing on concrete at contact surface between supported and supporting member shall not exceed concrete bearing strength for either surface as given by 10.17.

15.8.1.2 — Reinforcement, dowels, or mechanical connectors between supported and supporting members shall be adequate to transfer:

(a) All compressive force that exceeds concrete bearing strength of either member;

(b) Any computed tensile force across interface.

In addition, reinforcement, dowels, or mechanical connectors shall satisfy 15.8.2 or 15.8.3.

15.8.1.3 — If calculated moments are transferred to supporting pedestal or footing, then reinforcement, dowels, or mechanical connectors shall be adequate to satisfy 12.17.

R15.8.1.1 — Compressive force may be transmitted to a supporting pedestal or footing by bearing on concrete. For strength design, allowable bearing stress on the loaded area is equal to $0.85\phi f_c'$ (where $\phi = 0.7$), if the loaded area is equal to the area on which it is supported.

In the common case of a column bearing on a footing larger than the column, bearing strength should be checked at the base of the column and the top of the footing. Strength in the lower part of the column should be checked since the column reinforcement cannot be considered effective near the column base because the force in the reinforcement is not developed for some distance above the base, unless dowels are provided, or the column reinforcement is extended into the footing. The unit bearing stress on the column will normally be $0.85\phi f_c'$ (with $\phi = 0.7$, this becomes $0.6f_c'$). The permissible bearing strength on the footing may be increased in accordance with 10.17 and will usually be two times $0.85\phi f_c'$. The compressive force that exceeds that developed by the permissible bearing strength at the base of the column or at the top of the footing should be carried by dowels or extended longitudinal bars.

For the design method of Appendix A, permissible bearing stresses are limited to 50 percent of the values in 10.17.

R15.8.1.2 — All tensile forces, whether created by uplift, moment, or other means, should be transferred to supporting pedestal or footing entirely by reinforcement or suitable mechanical connectors. Generally, mechanical connectors would be used only in precast construction.

R15.8.1.3 — If computed moments are transferred from the column to the footing, the concrete in the compression zone of the column will be stressed to $0.85f_c'$ under factored load conditions and, as a result, all the reinforcement will generally have to be doweled into the footing.
CODE

15.8.1.4 — Lateral forces shall be transferred to supporting pedestal or footing in accordance with shear-friction provisions of 11.7, or by other appropriate means.

15.8.2 — In cast-in-place construction, reinforcement required to satisfy 15.8.1 shall be provided either by extending longitudinal bars into supporting pedestal or footing, or by dowels.

15.8.2.1 — For cast-in-place columns and pedestals, area of reinforcement across interface shall be not less than 0.005 times gross area of supported member.

15.8.2.2 — For cast-in-place walls, area of reinforcement across interface shall be not less than minimum vertical reinforcement given in 14.3.2.

15.8.2.3 — At footings, No. 43 and No. 57 longitudinal bars, in compression only, may be lap spliced with dowels to provide reinforcement required to satisfy 15.8.1. Dowels shall not be larger than No. 36 bar and shall extend into supported member a distance not less than the development length of No. 43 or No. 57 bars or the splice length of the dowels, whichever is greater, and into the footing a distance not less than the development length of the dowels.

15.8.2.4 — If a pinned or rocker connection is provided in cast-in-place construction, connection shall conform to 15.8.1 and 15.8.3.

15.8.3 — In precast construction, anchor bolts or suitable mechanical connectors shall be permitted for satisfying 15.8.1.

15.8.3.1 — Connection between precast columns or pedestals and supporting members shall meet the requirements of 16.5.1.3(a).

COMMENTARY

R15.8.1.4 — The shear-friction method given in 11.7 may be used to check for transfer of lateral forces to supporting pedestal or footing. Shear keys may be used, provided that the reinforcement crossing the joint satisfies 15.8.2.1, 15.8.3.1, and the shear-friction requirements of 11.7. In precast construction, resistance to lateral forces may be provided by shear-friction, shear keys, or mechanical devices.

R15.8.2.1 and R15.8.2.2 — A minimum amount of reinforcement is required between all supported and supporting members to ensure ductile behavior. The code does not require that all bars in a column be extended through and be anchored into a footing. However, reinforcement with an area of 0.005 times the column area or an equal area of properly spliced dowels is required to extend into the footing with proper anchorage. This reinforcement is required to provide a degree of structural integrity during the construction stage and during the life of the structure.

R15.8.2.3 — Lap splices of No. 43 and No. 57 longitudinal bars in compression only to dowels from a footing are specifically permitted in 15.8.2.3. The dowel bars should be No. 36 or smaller in size. The dowel lap splice length should meet the larger of the two criteria: (a) be able to transfer the stress in the No. 43 and No. 57 bars, and (b) fully develop the stress in the dowels as a splice.

This provision is an exception to 12.14.2.1, which prohibits lap splicing of No. 43 and No. 57 bars. This exception results from many years of successful experience with the lap splicing of these large column bars with footing dowels of the smaller size. The reason for the restriction on dowel bar size is recognition of the anchorage length problem of the large bars, and to allow use of the smaller size dowels. A similar exception is allowed for compression splices between different size bars in 12.16.2.
CODE

15.8.3.2 — Connection between precast walls and supporting members shall meet the requirements of 16.5.1.3(b) and (c).

15.8.3.3 — Anchor bolts and mechanical connectors shall be designed to reach their design strength prior to anchorage failure or failure of surrounding concrete.

15.9 — Sloped or stepped footings

15.9.1 — In sloped or stepped footings, angle of slope or depth and location of steps shall be such that design requirements are satisfied at every section. (See also 12.10.6.)

15.9.2 — Sloped or stepped footings designed as a unit shall be constructed to ensure action as a unit.

15.10 — Combined footings and mats

15.10.1 — Footings supporting more than one column, pedestal, or wall (combined footings or mats) shall be proportioned to resist the factored loads and induced reactions, in accordance with appropriate design requirements of the code.

15.10.2 — The Direct Design Method of Chapter 13 shall not be used for design of combined footings and mats.

15.10.3 — Distribution of soil pressure under combined footings and mats shall be consistent with properties of the soil and the structure and with established principles of soil mechanics.

COMMENTARY

some degree of structural integrity. For precast columns this requirement is expressed in terms of an equivalent tensile force that should be transferred. Thus, across the joint, \(A_y f_y = 1.5 A_g \) in kN [see 16.5.1.3(a)]. The minimum tensile strength required for precast wall-to-footing connection [see 16.5.1.3(b)] is somewhat less than that required for columns, since an overload would be distributed laterally and a sudden failure would be less likely. Since the tensile strength values of 16.5.1.3 have been arbitrarily chosen, it is not necessary to include a strength reduction factor \(\phi \) for these calculations.

R15.10 — Combined footings and mats

R15.10.1 — Any reasonable assumption with respect to the distribution of soil pressure or pile reactions can be used as long as it is consistent with the type of structure and the properties of the soil, and conforms with established principles of soil mechanics (see 15.1). Similarly, as prescribed in 15.2.2 for isolated footings, the base area or pile arrangement of combined footings and mats should be determined using the unfactored forces, moments, or both, transmitted by the footing to the soil, considering permissible soil pressures and pile reactions.

Design methods using factored loads and strength reduction factors \(\phi \) can be applied to combined footings or mats, regardless of the soil pressure distribution.

Detailed recommendations for design of combined footings and mats are reported by ACI Committee 336. See also Reference 15.2.
CHAPTER 16 — PRECAST CONCRETE

CODE

16.0 — Notation

\[Ag = \text{gross area of column, } \text{mm}^2 \]
\[l = \text{clear span, } \text{mm} \]

16.1 — Scope

16.1.1 — All provisions of this code, not specifically excluded and not in conflict with the provisions of Chapter 16, shall apply to structures incorporating precast concrete structural members.

COMMENTARY

R16.1 — Scope

R16.1.1 — See 2.1 for definition of precast concrete.

Design and construction requirements for precast concrete structural members differ in some respects from those for cast-in-place concrete structural members and these differences are addressed in this chapter. Where provisions for cast-in-place concrete applied to precast concrete, they have not been repeated. Similarly, items related to composite concrete in Chapter 17 and to prestressed concrete in Chapter 18 that apply to precast concrete are not restated.

More detailed recommendations concerning precast concrete are given in References 16.1 through 16.7. Tilt-up concrete construction is a form of precast concrete. It is recommended that Reference 16.8 be reviewed for tilt-up structures.

R16.2 — General

R16.2.1 — Stresses developed in precast members during the period from casting to final connection may be greater than the service load stresses. Handling procedures may cause undesirable deformations. Care should be given to the methods of storing, transporting, and erecting precast members so that performance at service loads and strength under factored loads meet code requirements.

R16.2.2 — The structural behavior of precast members may differ substantially from that of similar members that are cast-in-place. Design of connections to minimize or transmit forces due to shrinkage, creep, temperature change, elastic deformation, differential settlement, wind, and earthquake require special consideration in precast construction.

R16.2.3 — Design of precast members and connections is particularly sensitive to tolerances on the dimensions of individual members and on their location in the structure. To prevent misunderstanding, the tolerances used in design should be specified in the contract documents. The designer may specify the tolerance standard assumed in design. It is important to specify any deviations from accepted standards.
16.2.4 — In addition to the requirements for drawings and specifications in 1.2, the following shall be included in either the contract documents or shop drawings:

(a) Details of reinforcement, inserts and lifting devices required to resist temporary loads from handling, storage, transportation, and erection;

(b) Required concrete strength at stated ages or stages of construction.

16.3 — Distribution of forces among members

16.3.1 — Distribution of forces that are perpendicular to the plane of members shall be established by analysis or by test.

16.3.2 — Where the system behavior requires in-plane forces to be transferred between the members of a precast floor or wall system, 16.3.2.1 and 16.3.2.2 shall apply.

16.3.2.1 — In-plane force paths shall be continuous through both connections and members.

16.3.2.2 — Where tension forces occur, a continuous path of steel or steel reinforcement shall be provided.

R16.2.4 — The additional requirements may be included in either contract documents or shop drawings, depending on the assignment of responsibility for design.

R16.3 — Distribution of forces among members

R16.3.1 — Concentrated point and line loads can be distributed among members provided they have sufficient torsional stiffness and that shear can be transferred across joints. Torsionally stiff members such as hollow-core or solid slabs have more favorable load distribution properties than do torsionally flexible members such as double tees with thin flanges. The actual distribution of the load depends on many factors discussed in detail in References 16.13 through 16.19. Large openings can cause significant changes in distribution of forces.

R16.3.2 — In-plane forces result primarily from diaphragm action in floors and roofs, causing tension or compression in the chords and shear in the body of the diaphragm. A continuous path of steel, steel reinforcement, or both, using lap splices, mechanical or welded splices, or mechanical connectors, should be provided to carry the tension, whereas the shear and compression may be carried by the net concrete section. A continuous path of steel through a connection includes bolts, weld plates, headed studs, or other steel devices. Tension forces in the connections are to be transferred to the primary reinforcement in the members.

In-plane forces in precast wall systems result primarily from diaphragm reactions and external lateral loads.

Connection details should provide for the forces and deformations due to shrinkage, creep, and thermal effects. Connection details may be selected to accommodate volume changes and rotations caused by temperature gradients and long-term deflections. When these effects are restrained, connections and members should be designed to provide adequate strength and ductility.
CODE

16.4 — Member design

16.4.1 — In one-way precast floor and roof slabs and in one-way precast, prestressed wall panels, all not wider than 4 m, and where members are not mechanically connected to cause restraint in the transverse direction, the shrinkage and temperature reinforcement requirements of 7.12 in the direction normal to the flexural reinforcement shall be permitted to be waived. This waiver shall not apply to members that require reinforcement to resist transverse flexural stresses.

16.4.2 — For precast, nonprestressed walls the reinforcement shall be designed in accordance with the provisions of Chapters 10 or 14, except that the area of horizontal and vertical reinforcement each shall be not less than 0.001 times the gross cross-sectional area of the wall panel. Spacing of reinforcement shall not exceed 5 times the wall thickness or 800 mm for interior walls or 500 mm for exterior walls.

16.5 — Structural integrity

16.5.1 — Except where the provisions of 16.5.2 govern, the minimum provisions of 16.5.1.1 through 16.5.1.4 for structural integrity shall apply to all precast concrete structures.

16.5.1.1 — Longitudinal and transverse ties required by 7.13.3 shall connect members to a lateral load resisting system.

COMMENTARY

R16.4 — Member design

R16.4.1 — For prestressed concrete members not wider than 4 m, such as hollow-core slabs, solid slabs, or slabs with closely spaced ribs, there is usually no need to provide transverse reinforcement to withstand shrinkage and temperature stresses in the short direction. This is generally true also for nonprestressed floor and roof slabs. The 4 m width is less than that in which shrinkage and temperature stresses can build up to a magnitude requiring transverse reinforcement. In addition, much of the shrinkage occurs before the members are tied into the structure. Once in the final structure, the members are usually not as rigidly connected transversely as monolithic concrete, thus the transverse restraint stresses due to both shrinkage and temperature change are significantly reduced.

The waiver does not apply to members such as single and double tees with thin, wide flanges.

R16.4.2 — This minimum area of wall reinforcement, in lieu of the minimum values in 14.3, has been used for many years and is recommended by the PCI. The provisions for reduced minimum reinforcement and greater spacing recognize that precast wall panels have very little restraint at their edges during early stages of curing and develop less shrinkage stress than comparable cast-in-place walls.

R16.5 — Structural integrity

R16.5.1 — The provisions of 7.13.3 apply to all precast concrete structures. Sections 16.5.1 and 16.5.2 give minimum requirements to satisfy 7.13.3. It is not intended that these minimum requirements override other applicable provisions of the code for design of precast concrete structures.

The overall integrity of a structure can be substantially enhanced by minor changes in the amount, location, and detailing of member reinforcement and in the detailing of connection hardware.

R16.5.1.1 — Individual members may be connected into a lateral load resisting system by alternative methods. For example, a load-bearing spandrel could be connected to a diaphragm (part of the lateral load resisting system). Structural integrity could be achieved by connecting the spandrel into all or a portion of the deck members forming the diaphragm. Alternatively, the spandrel could be connected only to its supporting columns, which in turn is connected to the diaphragm.
16.5.1.2 — Where precast elements form floor or roof diaphragms, the connections between diaphragm and those members being laterally supported shall have a nominal tensile strength capable of resisting not less than 4.5 kN/m.

16.5.1.3 — Vertical tension tie requirements of 7.13.3 shall apply to all vertical structural members, except cladding, and shall be achieved by providing connections at horizontal joints in accordance with the following:

(a) Precast columns shall have a nominal strength in tension not less than \(1.5 A_g\) in kN. For columns with a larger cross section than required by consideration of loading, a reduced effective area \(A_g\), based on cross section required but not less than one-half the total area, shall be permitted;

(b) Precast wall panels shall have a minimum of two ties per panel, with a nominal tensile strength not less than 45 kN per tie;

(c) When design forces result in no tension at the base, the ties required by 16.5.1.3(b) shall be permitted to be anchored into an appropriately reinforced concrete floor slab on grade.

16.5.1.4 — Connection details that rely solely on friction caused by gravity loads shall not be used.

16.5.2 — For precast concrete bearing wall structures three or more stories in height, the minimum provisions of 16.5.2.1 through 16.5.2.5 shall apply.

R16.5.1.2 — Diaphragms are typically provided as part of the lateral load resisting system. The ties prescribed in 16.5.1.2 are the minimum required to attach members to the floor or roof diaphragms. The tie force is equivalent to the service load value of 3.0 kN/m given in the Uniform Building Code.

R16.5.1.3 — Base connections and connections at horizontal joints in precast columns and wall panels, including shear walls, are designed to transfer all design forces and moments. The minimum tie requirements of 16.5.1.3 are not additive to these design requirements. Common practice is to place the wall ties symmetrically about the vertical centerline of the wall panel and within the outer quarters of the panel width, wherever possible.

R16.5.1.4 — In the event of damage to a beam, it is important that displacement of its supporting members be minimized, so that other members will not lose their load-carrying capacity. This situation shows why connection details that rely solely on friction caused by gravity loads are not used. An exception could be heavy modular unit structures (one or more cells in cell-type structures) where resistance to overturning or sliding in any direction has a large factor of safety. Acceptance of such systems should be based on the provisions of 1.4.

R16.5.2 — The structural integrity minimum tie provisions for bearing wall structures, often called large panel structures, are intended to provide catenary hanger supports in case of loss of a bearing wall support, as shown by test. Forces induced by loading, temperature change, creep, and wind or seismic action may require a larger amount of tie force. It is intended that the general precast concrete provisions of 16.5.1 apply to bearing wall structures less than three stories in height.

Minimum ties in structures three or more stories in height, in accordance with 16.5.2.1, 16.5.2.2, 16.5.2.3, 16.5.2.4, and 16.5.2.5, are required for structural integrity (Fig. R16.5.2). These provisions are based on PCI’s recommendations for design of precast concrete bearing wall buildings. Tie capacity is based on yield strength.
16.5.2.1 — Longitudinal and transverse ties shall be provided in floor and roof systems to provide a nominal strength of 20 kN/m of width or length. Ties shall be provided over interior wall supports and between members and exterior walls. Ties shall be positioned in or within 0.6 m of the plane of the floor or roof system.

16.5.2.2 — Longitudinal ties parallel to floor or roof slab spans shall be spaced not more than 3.0 m on centers. Provisions shall be made to transfer forces around openings.

16.5.2.3 — Transverse ties perpendicular to floor or roof slab spans shall be spaced not greater than the bearing wall spacing.

16.5.2.4 — Ties around the perimeter of each floor and roof, within 1.2 m of the edge, shall provide a nominal strength in tension not less than 70 kN.

16.5.2.5 — Vertical tension ties shall be provided in all walls and shall be continuous over the height of the building. They shall provide a nominal tensile strength not less than 40 kN per horizontal foot of wall. Not less than two ties shall be provided for each precast panel.

16.6 — Connection and bearing design

16.6.1 — Forces shall be permitted to be transferred between members by grouted joints, shear keys, mechanical connectors, reinforcing steel connections, reinforced topping, or a combination of these means.

R16.5.2.1 — Longitudinal ties may project from slabs and be lap spliced, welded, or mechanically connected, or they may be embedded in grout joints, with sufficient length and cover to develop the required force. Bond length for unstressed prestressing steel should be sufficient to develop the yield strength. It is uncommon to have ties positioned in the walls reasonably close to the plane of the floor or roof system.

R16.5.2.3 — Transverse ties may be uniformly spaced either encased in the panels or in a topping, or they may be concentrated at the transverse bearing walls.

R16.5.2.4 — The perimeter tie requirements need not be additive with the longitudinal and transverse tie requirements.

R16.6 — Connection and bearing design

R16.6.1 — The code permits a variety of methods for connecting members. These are intended for transfer of forces both in-plane and perpendicular to the plane of the members.
16.6.1.1 — The adequacy of connections to transfer forces between members shall be determined by analysis or by test. Where shear is the primary result of imposed loading, it shall be permitted to use the provisions of 11.7 as applicable.

16.6.1.2 — When designing a connection using materials with different structural properties, their relative stiffnesses, strengths, and ductilities shall be considered.

16.6.2 — Bearing for precast floor and roof members on simple supports shall satisfy 16.6.2.1 and 16.6.2.2.

16.6.2.1 — The allowable bearing stress at the contact surface between supported and supporting members and between any intermediate bearing elements shall not exceed the bearing strength for either surface and the bearing element. Concrete bearing strength shall be as given in 10.17.

16.6.2.2 — Unless shown by test or analysis that performance will not be impaired, the following minimum requirements shall be met:

(a) Each member and its supporting system shall have design dimensions selected so that, after consideration of tolerances, the distance from the edge of the support to the end of the precast member in the direction of the span is at least $l/180$ of the clear span l, but not less than:

For solid or hollow-core slabs 50 mm
For beams or stemmed members 75 mm

(b) Bearing pads at unarmored edges shall be set back a minimum of 15 mm from the face of the support, or at least the chamfer dimension at chamfered edges.

R16.6.2.2 — This section differentiates between bearing length and length of the end of a precast member over the support (Fig. R16.6.2). Bearing pads distribute concentrated loads and reactions over the bearing area, and allow limited horizontal and rotational movements for stress relief. To prevent spalling under heavily loaded bearing areas, bearing pads should not extend to the edge of the support unless the edge is armored. Edges can be armored with anchored steel plates or angles. Section 11.9.7 gives requirements for bearing on brackets or corbels.
CHAPTER 16

CODE

16.6.2.3 — The requirements of 12.11.1 shall not apply to the positive bending moment reinforcement for statically determinate precast members, but at least one-third of such reinforcement shall extend to the center of the bearing length.

16.7 — Items embedded after concrete placement

16.7.1 — When approved by the engineer, embedded items (such as dowels or inserts) that either protrude from the concrete or remain exposed for inspection shall be permitted to be embedded while the concrete is in a plastic state provided that 16.7.1.1, 16.7.1.2, and 16.7.1.3 are met.

16.7.1.1 — Embedded items are not required to be hooked or tied to reinforcement within the concrete.

16.7.1.2 — Embedded items are maintained in the correct position while the concrete remains plastic.

16.7.1.3 — The concrete is properly consolidated around the embedded item.

16.8 — Marking and identification

16.8.1 — Each precast member shall be marked to indicate its location and orientation in the structure and date of manufacture.

16.8.2 — Identification marks shall correspond to placing drawings.

16.9 — Handling

16.9.1 — Member design shall consider forces and distortions during curing, stripping, storage, transportation, and erection so that precast members are not overstressed or otherwise damaged.

16.9.2 — During erection, precast members and structures shall be adequately supported and braced to ensure proper alignment and structural integrity until permanent connections are completed.

COMMENTARY

R16.6.2.3 — It is unnecessary to develop positive bending moment reinforcement beyond the ends of the precast element if the system is statically determinate.

R16.7 — Items embedded after concrete placement

R16.7.1 — Section 16.7.1 is an exception to the provisions of 7.5.1. Many precast products are manufactured in such a way that it is difficult, if not impossible, to position reinforcement that protrudes from the concrete before the concrete is placed. Such items as ties for horizontal shear and inserts can be placed while the concrete is plastic, if proper precautions are taken. This exception is not applicable to reinforcement that is completely embedded, or to embedded items that will be hooked or tied to embedded reinforcement.

R16.9 — Handling

R16.9.1 — The code requires acceptable performance at service loads and adequate strength under factored loads. However, handling loads should not produce permanent stresses, strains, cracking, or deflections inconsistent with the provisions of the code. A precast member should not be rejected for minor cracking or spalling where strength and durability are not affected. Guidance on assessing cracks is given in PCI reports on fabrication and shipment cracks.16.24, 16.25

R16.9.2 — All temporary erection connections, bracing, shoring as well as the sequencing of removal of these items are shown on contract or erection drawings.
16.10 — Strength evaluation of precast construction

16.10.1 — A precast element to be made composite with cast-in-place concrete shall be permitted to be tested in flexure as a precast element alone in accordance with 16.10.1.1 and 16.10.1.2.

16.10.1.1 — Test loads shall be applied only when calculations indicate the isolated precast element will not be critical in compression or buckling.

16.10.1.2 — The test load shall be that load which, when applied to the precast member alone, induces the same total force in the tension reinforcement as would be induced by loading the composite member with the test load required by 20.3.2.

16.10.2 — The provisions of 20.5 shall be the basis for acceptance or rejection of the precast element.

R16.10 — Strength evaluation of precast construction

The strength evaluation procedures of Chapter 20 are applicable to precast members.
CHAPTER 17 — COMPOSITE CONCRETE FLEXURAL MEMBERS

CODE

17.0 — Notation

\(A_c \) = area of contact surface being investigated for horizontal shear, mm²
\(A_v \) = area of ties within a distance \(s \), mm²
\(b_v \) = width of cross section at contact surface being investigated for horizontal shear, mm
\(d \) = distance from extreme compression fiber to centroid of tension reinforcement for entire composite section, mm
\(h \) = overall thickness of composite member, mm
\(s \) = spacing of ties measured along the longitudinal axis of the member, mm
\(V_{nh} \) = nominal horizontal shear strength, N
\(V_u \) = factored shear force at section, N
\(\lambda \) = correction factor related to unit weight of concrete
\(\rho_v \) = ratio of tie reinforcement area to area of contact surface
\(= A_v / b_v s \)
\(\phi \) = strength reduction factor. See 9.3

COMMENTARY

17.0 — Notation

Units of measurement are given in the Notation to assist the user and are not intended to preclude the use of other correctly applied units for the same symbol, such as m or kN.

17.1 — Scope

17.1.1 — Provisions of Chapter 17 shall apply for design of composite concrete flexural members defined as precast, or cast-in-place concrete elements, or both, constructed in separate placements but so interconnected that all elements respond to loads as a unit.

17.1.2 — All provisions of the code shall apply to composite concrete flexural members, except as specifically modified in Chapter 17.

17.2 — General

17.2.1 — The use of an entire composite member or portions thereof for resisting shear and moment shall be permitted.

17.2.2 — Individual elements shall be investigated for all critical stages of loading.

17.2.3 — If the specified strength, unit weight, or other properties of the various elements are different, properties of the individual elements or the most critical values shall be used in design.

R17.1 — Scope

R17.1.1 — The scope of Chapter 17 is intended to include all types of composite concrete flexural members. In some cases with fully cast-in-place concrete, it may be necessary to design the interface of consecutive placements of concrete as required for composite members. Composite structural steel-concrete members are not covered in this chapter. Design provisions for such composite members are covered in Reference 17.1.

R17.2 — General
CODE

17.2.4 — In strength computations of composite members, no distinction shall be made between shored and unshored members.

17.2.5 — All elements shall be designed to support all loads introduced prior to full development of design strength of composite members.

17.2.6 — Reinforcement shall be provided as required to minimize cracking and to prevent separation of individual elements of composite members.

17.2.7 — Composite members shall meet requirements for control of deflections in accordance with 9.5.5.

17.3 — Shoring

When used, shoring shall not be removed until supported elements have developed design properties required to support all loads and limit deflections and cracking at time of shoring removal.

17.4 — Vertical shear strength

17.4.1 — When an entire composite member is assumed to resist vertical shear, design shall be in accordance with requirements of Chapter 11 as for a monolithically cast member of the same cross-sectional shape.

17.4.2 — Shear reinforcement shall be fully anchored into interconnected elements in accordance with 12.13.

17.4.3 — Extended and anchored shear reinforcement shall be permitted to be included as ties for horizontal shear.

17.5 — Horizontal shear strength

17.5.1 — In a composite member, full transfer of horizontal shear forces shall be ensured at contact surfaces of interconnected elements.

COMMENTARY

R17.2.4 — Tests have indicated that the strength of a composite member is the same whether or not the first element cast is shored during casting and curing of the second element.

R17.2.6 — The extent of cracking is dependent on such factors as environment, aesthetics, and occupancy. In addition, composite action should not be impaired.

R17.2.7 — The premature loading of precast elements can cause excessive creep and shrinkage deflections. This is especially so at early ages when the moisture content is high and the strength low.

The transfer of shear by direct bond is important if excessive deflection from slippage is to be prevented. A shear key is an added mechanical factor of safety but it does not operate until slippage occurs.

R17.3 — Shoring

The provisions of 9.5.5 cover the requirements pertaining to deflections of shored and unshored members.

R17.5.1 — Full transfer of horizontal shear between segments of composite members should be ensured by horizontal shear strength at contact surfaces or properly anchored ties, or both.
17.5.2 — Unless calculated in accordance with 17.5.3, design of cross sections subject to horizontal shear shall be based on

\[V_u \leq \phi V_{nh} \]

(17-1)

where \(V_u \) is factored shear force at the section considered and \(V_{nh} \) is nominal horizontal shear strength in accordance with 17.5.2.1 through 17.5.2.5.

17.5.2.1 — When contact surfaces are clean, free of laitance, and intentionally roughened, shear strength \(V_{nh} \) shall not be taken greater than \(0.6b_v d \) in newtons.

17.5.2.2 — When minimum ties are provided in accordance with 17.6, and contact surfaces are clean and free of laitance, but not intentionally roughened, shear strength \(V_{nh} \) shall not be taken greater than \(0.6b_v d \) in newtons.

17.5.2.3 — When ties are provided in accordance with 17.6, and contact surfaces are clean, free of laitance, and intentionally roughened to a full amplitude of approximately 5 mm, shear strength \(V_{nh} \) shall be taken equal to \((1.8 + 0.6\rho_{fy})\lambda b_v d \) in newtons, but not greater than \(3.5b_v d \) in newtons. Values for \(\lambda \) in 11.7.4.3 shall apply.

17.5.2.4 — When factored shear force \(V_u \) at section considered exceeds \(\phi (3.5b_v d) \), design for horizontal shear shall be in accordance with 11.7.4.

17.5.2.5 — When determining nominal horizontal shear strength over prestressed concrete elements, \(d \) shall be as defined or \(0.8h \), whichever is greater.

17.5.3 — As an alternative to 17.5.2, horizontal shear shall be permitted to be determined by computing the actual change in compressive or tensile force in any segment, and provisions shall be made to transfer that force as horizontal shear to the supporting element. The factored horizontal shear force shall not exceed horizontal shear strength \(\phi V_{nh} \) as given in 17.5.2.1 through 17.5.2.4, where area of contact surface \(A_c \) shall be substituted for \(b_v d \).

R17.5.2 — The nominal horizontal shear strengths \(V_{nh} \) apply when the design is based on the load factors and \(\phi \)-factors of Chapter 9.

When the design method of Appendix A is used for design of composite members, \(V_u \) is the shear due to service loads, and 55 percent of the values given in 17.5.2 are applicable. See A.7.3. Also, when gravity loads are combined with lateral loads due to wind or earthquake in the governing load combination for horizontal shear, advantage may be taken of the 25 percent reduction in required strength in accordance with A.2.2.

In reviewing composite concrete flexural members for handling and construction loads, \(V_u \) may be replaced by the handling service load shear in Eq. (17-1). The handling load horizontal shear should be compared with a nominal horizontal shear strength value of \(0.55V_{nh} \) (as provided in Appendix A) to ensure that an adequate factor of safety results for handling and construction loads.

Prestressed members used in composite construction may have variations in depth of tension reinforcement along member length due to draped or depressed tendons. Because of this variation, the definition of \(d \) used in Chapter 11 for determination of vertical shear strength is also appropriate when determining horizontal shear strength.

R17.5.2.3 — The permitted horizontal shear strengths and the requirement of 5 mm amplitude for intentional roughness are based on tests discussed in References 17.2 through 17.4.
CODE

17.5.3.1 — When ties provided to resist horizontal shear are designed to satisfy 17.5.3, the tie area to tie spacing ratio along the member shall approximately reflect the distribution of shear forces in the member.

17.5.4 — When tension exists across any contact surface between interconnected elements, shear transfer by contact shall be permitted only when minimum ties are provided in accordance with 17.6.

17.6 — Ties for horizontal shear

17.6.1 — When ties are provided to transfer horizontal shear, tie area shall not be less than that required by 11.5.5.3, and tie spacing shall not exceed four times the least dimension of supported element, nor exceed 24 in.

17.6.2 — Ties for horizontal shear shall consist of single bars or wire, multiple leg stirrups, or vertical legs of welded wire fabric (plain or deformed).

17.6.3 — All ties shall be fully anchored into interconnected elements in accordance with 12.13.

COMMENTARY

R17.5.3.1 — The distribution of horizontal shear stresses along the contact surface in a composite member will reflect the distribution of shear along the member. Horizontal shear failure will initiate where the horizontal shear stress is a maximum and will spread to regions of lower stress. Because the slip at peak horizontal shear resistance is small for a concrete-to-concrete contact surface, longitudinal redistribution of horizontal shear resistance is very limited. The spacing of the ties along the contact surface should, therefore, be such as to provide horizontal shear resistance distributed approximately as the shear acting on the member is distributed.

R17.5.4 — Proper anchorage of ties extending across interfaces is required to maintain contact of the interfaces.

R17.6 — Ties for horizontal shear

The minimum areas and maximum spacings are based on test data given in References 17.2 through 17.6.
CHAPTER 18 — PRESTRESSED CONCRETE

CODE

18.0 — Notation

\[A = \text{area of that part of cross section between flexural tension face and center of gravity of gross section, mm}^2 \]

\[A_{cf} = \text{larger gross cross-sectional area of the slab-beam strips of the two orthogonal equivalent frames intersecting at a column of a two-way slab, mm}^2 \]

\[A_{ps} = \text{area of prestressed reinforcement in tension zone, mm}^2 \]

\[A_s = \text{area of nonprestressed tension reinforcement, mm}^2 \]

\[A_{s}^{'} = \text{area of compression reinforcement, mm}^2 \]

\[b = \text{width of compression face of member, mm} \]

\[d = \text{distance from extreme compression fiber to centroid of nonprestressed tension reinforcement, mm} \]

\[d^{'} = \text{distance from extreme compression fiber to centroid of compression reinforcement, mm} \]

\[d_p = \text{distance from extreme compression fiber to centroid of prestressed reinforcement, mm} \]

\[D = \text{dead loads, or related internal moments and forces} \]

\[e = \text{base of Napierian logarithms} \]

\[f_c = \text{specified compressive strength of concrete, MPa} \]

\[f_c^{'} = \text{square root of specified compressive strength of concrete, MPa} \]

\[f_{ci} = \text{compressive strength of concrete at time of initial prestress, MPa} \]

\[f_{ci}^{'} = \text{square root of compressive strength of concrete at time of initial prestress, MPa} \]

\[f_{pc} = \text{average compressive stress in concrete due to effective prestress force only (after allowance for all prestress losses), MPa} \]

\[f_{ps} = \text{stress in prestressed reinforcement at nominal strength, MPa} \]

\[f_{pu} = \text{specified tensile strength of prestressing tendons, MPa} \]

\[f_{py} = \text{specified yield strength of prestressing tendons, MPa} \]

\[f_r = \text{modulus of rupture of concrete, MPa} \]

\[f_{se} = \text{effective stress in prestressed reinforcement (after allowance for all prestress losses), MPa} \]

\[f_y = \text{specified yield strength of nonprestressed reinforcement, MPa} \]

\[h = \text{overall thickness of member, mm} \]

\[K = \text{wobble friction coefficient per foot of prestressing tendon} \]

\[l_x = \text{length of prestressing tendon element from jacking end to any point x, m. See Eq. (18-1) and (18-2)} \]

COMMENTARY

R18.0 — Notation

Units of measurement are given in the Notation to assist the user and are not intended to preclude the use of other correctly applied units for the same symbol, such as m or kN.
CODE

\(L \) = live loads, or related internal moments and forces

\(n \) = number of monostrand anchorage devices in a group

\(N_c \) = tensile force in concrete due to unfactored dead load plus live load \((D + L)\), N

\(P_s \) = prestressing tendon force at jacking end, N

\(P_{su} \) = factored post-tensioned tendon force at the anchorage device, N

\(P_x \) = prestressing tendon force at any point \(x \), N

\(\alpha \) = total angular change of prestressing tendon profile in radians from tendon jacking end to any point \(x \)

\(\beta_1 \) = factor defined in 10.2.7.3

\(\gamma_p \) = factor for type of prestressing tendon

\(\lambda \) = correction factor related to unit weight of concrete (See 11.7.4.3)

\(\mu \) = curvature friction coefficient

\(\rho \) = ratio of nonprestressed tension reinforcement

\(\rho' \) = ratio of compression reinforcement

\(\rho_p \) = ratio of prestressed reinforcement

\(\phi \) = strength reduction factor. See 9.3

\(\omega \) = \(\rho f_y / f'_c \)

\(\omega' \) = \(\rho f_y / f'_c \)

\(\omega_p \) = \(\rho f_{ps} / f'_c \)

\(\omega_w, \omega_{pw}, \omega'_w \) = reinforcement indices for flanged sections computed as for \(\omega, \omega_p \) and \(\omega' \) except that \(b \) shall be the web width, and reinforcement area shall be that required to develop compressive strength of web only

18.1 — Scope

18.1.1 — Provisions of Chapter 18 shall apply to members prestressed with wire, strands, or bars conforming to provisions for prestressing tendons in 3.5.5.

COMMENTARY

The factored tendon force \(P_{su} \) is the product of the load factor (1.2 from Section 9.2.8) and the maximum tendon force allowed. Under 18.5.1 this is usually overstressing to 0.94 \(f_{py} \) but not greater than 0.80 \(f_{pu} \), which is permitted for short periods of time.

\[
P_{su} = (1.2)(0.80)f_{pu}A_{ps} = 0.96f_{pu}A_{ps}
\]

R18.1 — Scope

R18.1.1 — The provisions of Chapter 18 were developed primarily for structural members such as slabs, beams, and columns that are commonly used in buildings. Many of the provisions may be applied to other types of construction, such as, pressure vessels, pavements, pipes, and crossties. Application of the provisions is left to the judgment of the engineer in cases not specifically cited in the code.
CHAPTER 18

18.1.2 — All provisions of this code not specifically excluded, and not in conflict with provisions of Chapter 18, shall apply to prestressed concrete.

18.1.3 — The following provisions of this code shall not apply to prestressed concrete, except as specifically noted: Sections 7.6.5, 8.4, 8.10.2, 8.10.3, 8.10.4, 8.11, 10.3.2, 10.3.3, 10.5, 10.6, 10.9.1, and 10.9.2; Chapter 13; and Sections 14.3, 14.5, and 14.6.

R18.1.3 — Some sections of the code are excluded from use in the design of prestressed concrete for specific reasons. The following discussion provides explanation for such exclusions:

Section 7.6.5 — The requirements for bonded reinforcement and unbonded tendons for cast-in-place members are provided in 18.9 and 18.12, respectively.

Section 8.4 — Moment redistribution for prestressed concrete is provided in 18.10.4.

Sections 8.10.2, 8.10.3, and 8.10.4 — The empirical provisions of 8.10.2, 8.10.3, and 8.10.4 for T-beams were developed for nonprestressed concrete and if applied to prestressed concrete would exclude many standard prestressed products in satisfactory use today. Proof by experience permits variations.

By excluding 8.10.2, 8.10.3, and 8.10.4, no special requirements for prestressed concrete T-beams appear in the code. Instead, the determination of an effective width of flange is left to the experience and judgment of the engineer. Where possible, the flange widths in 8.10.2, 8.10.3, and 8.10.4 should be used unless experience has proven that variations are safe and satisfactory. It is not necessarily conservative in elastic analysis and design considerations to use the maximum flange width as permitted in 8.10.2.

Sections 8.10.1 and 8.10.5 provide general requirements for T-beams that are also applicable to prestressed concrete units. The spacing limitations for slab reinforcement are based on flange thickness, which for tapered flanges can be taken as the average thickness.

Section 8.11 — The empirical limits established for conventionally reinforced concrete joist floors are based on successful past performance of joist construction using standard joist forming systems. For prestressed joist construction, experience and judgment should be used. The provisions of 8.11 may be used as a guide.

Sections 10.3.2, 10.3.3, 10.5, 10.9.1, and 10.9.2 — For prestressed concrete, the limitations on reinforcement are given in 18.8, 18.9, and 18.11.2.

Section 10.6 — The behavior of a prestressed member is considerably different from that of a nonprestressed member. Experience and judgment should be used for proper distribution of reinforcement in a prestressed member.

Chapter 13 — The design of prestressed concrete slabs requires recognition of secondary moments induced by the undulating profile of the prestressing tendons. Volume changes due to the prestressing force can result in additional
CODE

18.2 — General

18.2.1 — Prestressed members shall meet the strength requirements specified in this code.

18.2.2 — Design of prestressed members shall be based on strength and on behavior at service conditions at all stages that will be critical during the life of the structure from the time prestress is first applied.

18.2.3 — Stress concentrations due to prestressing shall be considered in design.

18.2.4 — Provisions shall be made for effects on adjoining construction of elastic and plastic deformations, deflections, changes in length, and rotations due to prestressing. Effects of temperature and shrinkage shall also be included.

18.2.5 — The possibility of buckling in a member between points where concrete and prestressing tendons are in contact and of buckling in thin webs and flanges shall be considered.

COMMENTARY

stress on the structure that is not adequately covered in Chapter 13. Because of these, many of the design procedures of Chapter 13 are not appropriate for prestressed concrete structures and are replaced by the provisions of 18.12.

Sections 14.3, 14.5 and 14.6 — The requirements for minimum reinforcement and wall design in 14.3, 14.5 and 14.6 are largely empirical, using considerations not intended to apply to prestressed concrete.

R18.2 — General

R18.2.1 and R18.2.2 — The design investigation should include all stages that may be significant. The three major stages are: (1) jacking stage, or prestress transfer stage—when the tensile force in the prestressing tendons is transferred to the concrete and stress levels may be high relative to concrete strength; (2) service load stage—after long-term volume changes have occurred; and (3) the factored load stage—when the strength of the member is checked. There may be other load stages that require investigation. For example, if the cracking load is significant, this load stage may require study, or the handling and transporting stage may be critical.

From the standpoint of satisfactory behavior, the two stages of most importance are those for service load and factored load.

Service load stage refers to the loads defined in the general building code (without load factors), such as live load and dead load, while the factored load stage refers to loads multiplied by the appropriate load factors.

Section 18.3.2 provides assumptions that may be used for investigation at service loads and after transfer of the prestressing force.

R18.2.5 — Section 18.2.5 refers to the type of post-tensioning where the tendon makes contact with the prestressed concrete member intermittently. Precautions should be taken to prevent buckling of such members.

If the tendon is in complete contact with the member being prestressed, or is an unbonded tendon in a duct not excessively larger than the tendon, it is not possible to buckle the member under the prestressing force being introduced.
CODE

18.6 — In computing section properties prior to bonding of prestressing tendons, effect of loss of area due to open ducts shall be considered.

18.3 — Design assumptions

18.3.1 — Strength design of prestressed members for flexure and axial loads shall be based on assumptions given in 10.2, except that 10.2.4 shall apply only to reinforcement conforming to 3.5.3.

18.3.2 — For investigation of stresses at transfer of prestress, at service loads, and at cracking loads, straight-line theory shall be used with the assumptions of 18.3.2.1 and 18.3.2.2.

18.3.2.1 — Strains vary linearly with depth through the entire load range.

18.3.2.2 — At cracked sections, concrete resists no tension.

18.4 — Permissible stresses in concrete — Flexural members

18.4.1 — Stresses in concrete immediately after prestress transfer (before time-dependent prestress losses) shall not exceed the following:

(a) Extreme fiber stress in compression $0.60f_{ci}'$

(b) Extreme fiber stress in tension except as permitted in (c) ... $(1/4)f_{ci}'$

(c) Extreme fiber stress in tension at ends of simply supported members .. $(1/2)f_{ci}'$

Where computed tensile stresses exceed these values, bonded additional reinforcement (nonprestressed or prestressed) shall be provided in the tensile zone to resist the total tensile force in concrete computed with the assumption of an uncracked section.

COMMENTARY

R18.6 — In considering the area of the open ducts, the critical sections should include those that have coupler sheaths that may be of a larger size than the duct containing the tendon. Also, in some instances, the trumpet or transition piece from the conduit to the anchorage may be of such a size as to create a critical section. If the effect of the open duct area on design is deemed negligible, section properties may be based on total area.

In post-tensioned members after grouting and in pretensioned members, section properties may be based on effective sections using transformed areas of bonded tendons and nonprestressed reinforcement gross sections, or net sections.

R18.3 — Permissible stresses in concrete — Flexural members

Permissible stresses in concrete address serviceability. Permissible stresses do not ensure adequate structural strength, which should be checked in conformance with other code requirements.

R18.4.1 — The concrete stresses at this stage are caused by the force in the prestressing tendons at transfer reduced by the losses due to elastic shortening of the concrete, relaxation of the tendon, tendon seating at transfer, and the stresses due to the weight of the member. Generally, shrinkage and creep effects are not included at this stage. These stresses apply to both pretensioned and post-tensioned concrete with proper modifications of the losses at transfer.

R18.4.1(b) and (c) — The tension stress limits of $(1/4)f_{ci}'$ and $(1/2)f_{ci}'$ refer to tensile stress at locations other than the precompressed tensile zone. Where tensile stresses exceed the permissible values, the total force in the tensile stress zone may be calculated and reinforcement proportioned on the basis of this force at a stress of $0.6f_y$, but not more than 200 MPa. The effects of creep and shrinkage begin to reduce the tensile stress almost immediately; however, some tension remains in these areas after allowance is made for all prestress losses.
CODE

18.4.2 — Stresses in concrete at service loads (after allowance for all prestress losses) shall not exceed the following:

(a) Extreme fiber stress in compression due to pre-stress plus sustained loads..........................0.45\(f'_c\)

(b) Extreme fiber stress in compression due to pre-stress plus total load...................................0.60\(f'_c\)

(c) Extreme fiber stress in tension in precompressed tensile zone......................................\((1/2)\sqrt{f'_c}\)

(d) Extreme fiber stress in tension in precompressed tensile zone of members (except two-way slab systems), where analysis based on transformed cracked sections and on bilinear moment-deflection relationships shows that immediate and long-term deflections comply with requirements of 9.5.4, and where cover requirements comply with 7.7.3.2..............\(\sqrt{f'_c}\)

COMMENTARY

R18.4.2(a) and (b) — The compression stress limit of 0.45\(f'_c\) was conservatively established to decrease the probability of failure of prestressed concrete members due to repeated loads. In addition, the previous code writers thought that this limit was reasonable to preclude excessive creep deformation. At higher values of stress, creep strains tend to increase more rapidly as applied stress increases. This is not consistent with the design assumption that creep strain is proportional to stress in calculating time-dependent camber and deflection and prestress losses.

The change in allowable stress in the 1995 code recognized that fatigue tests of prestressed concrete have shown that concrete failures are not the controlling criterion, and that designs with large transient live loads compared to sustained dead and live loads have been penalized by the previous single compression stress limit. Therefore, the stress limit of 0.60\(f'_c\) permits a one-third increase in allowable compression stress for members subject to transient loads.

Sustained live load is any portion of the service live load that will be sustained for a sufficient period to cause significant time-dependent deflections. When sustained dead load and live loads are a large percentage of total service load, the 0.45\(f'_c\) limit of 18.4.2(a) may control. On the other hand, when a large portion of the total service load consists of a transient or temporary service live load, the increased stress limit of 18.4.2(b) may control.

The compression stress limit of 0.45\(f'_c\) for prestress plus sustained loads will continue to control the long-term behavior of prestressed members.

R18.4.2(c) — The precompressed tensile zone is that portion of the member cross section in which flexural tension occurs under dead and live loads. Prestressed concrete is usually designed so that the prestress force introduces compression into this zone, effectively reducing the magnitude of the tensile stress.

The permissible tensile stress of \((1/2)\sqrt{f'_c}\) is compatible with the concrete cover requirements of 7.7.3.1. For conditions of corrosive environments, defined as an environment in which chemical attack such as seawater, corrosive industrial atmosphere, sewer gas, or other highly corrosive environments are encountered, greater cover than that required by 7.7.3.1 should be used, in accordance with 7.7.3.2, and tension stresses reduced to lessen possible cracking at service loads. The engineer should use judgment to determine the amount of increased cover and whether reduced tension stresses are required.

R18.4.2(c) and (d) — The permissible concrete tensile stress depends on whether or not enough bonded reinforcement is provided to reduce the width and spacing of the cracks. Such bonded reinforcement may consist of prestressed or nonprestressed tendons or of reinforcing bars. The width and spacing of cracks depends not only
18.5.1 — Tensile stress in prestressing tendons shall not exceed the following:

(a) Due to tendon jacking force $0.94f_{\text{py}}$

but not greater than the lesser of $0.80f_{\text{pu}}$ and the

R18.5.1 — With the 1983 code, permissible stresses in tendons were revised to recognize the higher yield strength of low-relaxation wire and strand meeting the requirements of ASTM A 421 and A 416. For such tendons, it is more appropriate to specify permissible stresses in terms of specified minimum ASTM yield strength rather than specified

18.5 — Permissible stresses in prestressing tendons

The code does not distinguish between temporary and effective prestress tendon stresses. Only one limit on prestress tendon stress is provided because the initial tendon stress (immediately after transfer) can prevail for a considerable time, even after the structure has been put into service. This stress, therefore, should have an adequate safety factor under service conditions and cannot be considered as a temporary stress. Any subsequent decrease in tendon stress due to losses can only improve conditions and no limit on such stress decrease is provided in the code.

R18.5 — Permissible stresses in prestressing tendons

18.4.3 — Permissible stresses in 18.4.1 and 18.4.2 shall be permitted to be exceeded if shown by test or analysis that performance will not be impaired.

18.4.2(d) — The permissible tensile stress of $\sqrt{f_{c'}}$ provides improved service load performance, especially when live loads are of a transient nature. To take advantage of the increased permissible stress, the code requires an increase in the concrete protection on the reinforcement, as stipulated in 7.7.3.2, and to investigate the deflection characteristics of the member, particularly at the load where the member changes from uncracked behavior to cracked behavior.

The exclusion of two-way slab systems is based on Reference 18.1, which recommends that the permissible tension stress be not greater than $(1/2)\sqrt{f_{c'}}$ for design of prestressed concrete flat plates analyzed by the equivalent frame method or other approximate methods. For flat plate designs based on more exact analyses, or for other two-way slab systems rigorously analyzed and designed for strength and serviceability, the limiting stress may be exceeded in accordance with 18.4.3.

Reference 18.2 provides information on the use of bilinear moment-deflection relationships.

R18.4.3 — This section provides a mechanism whereby development of new products, materials, and techniques in prestressed concrete construction need not be inhibited by code limits on stress. Approvals for the design should be in accordance with 1.4 of the code.

R18.5 — Permissible stresses in prestressing tendons

Commentary

on the amount of reinforcement provided but also on its distribution over the tensile zone.

Because of the bonded reinforcement requirements of 18.9, the behavior of segmental members generally will be comparable to that of similarly constructed monolithic concrete members. Therefore, the permissible tensile stress limits of 18.4.2(c) and 18.4.2(d) apply to both segmental and monolithic members. If deflections are important, the built-in cracks of segmental members should be considered in the computations.

R18.4.2(d) — The permissible tensile stress of $\sqrt{f_{c'}}$ provides improved service load performance, especially when live loads are of a transient nature. To take advantage of the increased permissible stress, the code requires an increase in the concrete protection on the reinforcement, as stipulated in 7.7.3.2, and to investigate the deflection characteristics of the member, particularly at the load where the member changes from uncracked behavior to cracked behavior.

The exclusion of two-way slab systems is based on Reference 18.1, which recommends that the permissible tension stress be not greater than $(1/2)\sqrt{f_{c'}}$ for design of prestressed concrete flat plates analyzed by the equivalent frame method or other approximate methods. For flat plate designs based on more exact analyses, or for other two-way slab systems rigorously analyzed and designed for strength and serviceability, the limiting stress may be exceeded in accordance with 18.4.3.

Reference 18.2 provides information on the use of bilinear moment-deflection relationships.

R18.4.3 — This section provides a mechanism whereby development of new products, materials, and techniques in prestressed concrete construction need not be inhibited by code limits on stress. Approvals for the design should be in accordance with 1.4 of the code.

R18.5 — Permissible stresses in prestressing tendons

The code does not distinguish between temporary and effective prestress tendon stresses. Only one limit on prestress tendon stress is provided because the initial tendon stress (immediately after transfer) can prevail for a considerable time, even after the structure has been put into service. This stress, therefore, should have an adequate safety factor under service conditions and cannot be considered as a temporary stress. Any subsequent decrease in tendon stress due to losses can only improve conditions and no limit on such stress decrease is provided in the code.
CODE

maximum value recommended by the manufacturer of prestressing tendons or anchorage devices.

(b) Immediately after prestress transfer 0.82f_{py}
but not greater than 0.74f_{pu}.

(c) Post-tensioning tendons, at anchorage devices and couplers, immediately after force transfer 0.70f_{pu}

18.6 — Loss of prestress

18.6.1 — To determine effective prestress f_{se}, allowance for the following sources of loss of prestress shall be considered:

(a) Tendon seating at transfer;
(b) Elastic shortening of concrete;
(c) Creep of concrete;
(d) Shrinkage of concrete;
(e) Relaxation of tendon stress;
(f) Friction loss due to intended or unintended curvature in post-tensioning tendons.

18.6.2 — Friction loss in post-tensioning tendons

18.6.2.1 — Effect of friction loss in post-tensioning tendons shall be computed by

$$P_{s} = P_{x} e^{(K'x + \mu \alpha)}$$ \hspace{1cm} (18-1)

When $(K'x + \mu \alpha)$ is not greater than 0.3, effect of friction loss shall be permitted to be computed by

$$P_{s} = P_{x}(1 + K'x + \mu \alpha)$$ \hspace{1cm} (18-2)

COMMENTARY

minimum ASTM tensile strength. For the low-relaxation wire and strands, with f_{py} equal to 0.90f_{pu}, the 0.94f_{py} and 0.82f_{py} limits are equivalent to 0.85f_{pu} and 0.74f_{pu}, respectively. In the 1986 supplement and in the 1989 code, the maximum jacking stress for low-relaxation tendons was reduced to 0.80f_{pu} to ensure closer compatibility with the maximum tendon stress value of 0.74f_{pu} immediately after prestress transfer. The higher yield strength of the low-relaxation tendons does not change the effectiveness of tendon anchorage devices; thus, the permissible stress at post-tensioning anchorage devices and couplers is not increased above the previously permitted value of 0.70f_{pu}. For ordinary tendons (wire, strands, and bars) with f_{py} equal to 0.85f_{pu}, the 0.94f_{py} and 0.82f_{py} limits are equivalent to 0.80f_{pu} and 0.70f_{pu}, respectively, the same as permitted in the 1977 code. For bar tendons with f_{py} equal to 0.80f_{pu}, the same limits are equivalent to 0.75f_{pu} and 0.66f_{pu}, respectively.

Because of the higher allowable initial tendon stresses permitted since the 1983 code, final stresses can be greater. Designers should be concerned with setting a limit on final stress when the structure is subject to corrosive conditions or repeated loadings.

R18.6 — Loss of prestress

R18.6.1 — For an explanation of how to compute prestress losses, see References 18.3 through 18.6. Lump sum values of prestress losses for both pretensioned and post-tensioned members that were indicated before the 1983 commentary are considered obsolete. Reasonably accurate estimates of prestress losses can be calculated in accordance with the recommendations in Reference 18.6, which include consideration of initial stress level (0.7f_{pu} or higher), type of steel (stress-relieved or low-relaxation wire, strand, or bar), exposure conditions, and type of construction (pretensioned, bonded post-tensioned, or unbonded post-tensioned).

Actual losses, greater or smaller than the computed values, have little effect on the design strength of the member, but affect service load behavior (deflections, camber, cracking load) and connections. At service loads, overestimation of prestress losses can be almost as detrimental as underestimation, since the former can result in excessive camber and horizontal movement.

R18.6.2 — Friction loss in post-tensioning tendons

The coefficients tabulated in Table R18.6.2 give a range that generally can be expected. Due to the many types of ducts, tendons, and wrapping materials available, these values can only serve as a guide. Where rigid conduit is used, the wobble coefficient K can be considered as zero. For large tendons in semirigid type conduit, the wobble factor can also be considered zero. Values of the coefficients to be used for the particular types of tendons and particular types of ducts should be obtained from the manufacturers of the tendons.
CODE

TABLE R18.6.2—FRICTION COEFFICIENTS FOR POST-TENSIONED TENDONS FOR USE IN EQ. (18-1) OR (18-2)

<table>
<thead>
<tr>
<th></th>
<th>Wobble coefficient, K</th>
<th>Curvature coefficient, μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire tendons</td>
<td>0.0033-0.0049</td>
<td>0.15-0.25</td>
</tr>
<tr>
<td>High-strength bars</td>
<td>0.0003-0.0020</td>
<td>0.08-0.30</td>
</tr>
<tr>
<td>7-wire strand</td>
<td>0.0016-0.0066</td>
<td>0.15-0.25</td>
</tr>
<tr>
<td>Wire tendons</td>
<td>0.0033-0.0066</td>
<td>0.05-0.15</td>
</tr>
<tr>
<td>7-wire strand</td>
<td>0.0033-0.0066</td>
<td>0.05-0.15</td>
</tr>
<tr>
<td>Wire tendons</td>
<td>0.0010-0.0066</td>
<td>0.05-0.15</td>
</tr>
<tr>
<td>7-wire strand</td>
<td>0.0010-0.0066</td>
<td>0.05-0.15</td>
</tr>
</tbody>
</table>

An unrealistically low evaluation of the friction loss can lead to improper camber of the member and inadequate prestress. Overestimation of the friction may result in extra prestressing force. This could lead to excessive camber and excessive shortening of a member. If the friction factors are determined to be less than those assumed in the design, the tendon stressing should be adjusted to give only that prestressing force in the critical portions of the structure required by the design.

18.6.2.3 — When the safety or serviceability of the structure may be involved, the acceptable range of tendon jacking forces or other limiting requirements should either be given or approved by the structural engineer in conformance with the permissible stresses of 18.4 and 18.5.

R18.6.2.3 — Where loss of prestress in a member occurs due to connection of the member to adjoining construction, such loss of prestress shall be allowed for in design.

18.7 — Flexural strength

18.7.1 — Design moment strength of flexural members shall be computed by the strength design methods of the code. For prestressing tendons, f_{ps} shall be substituted for f_y in strength computations.

R18.7 — Flexural strength

R18.7.1 — Design moment strength of prestressed flexural members may be computed using strength equations similar to those for nonprestressed concrete members. The 1983 code provides strength equations for rectangular and flanged sections, with tension reinforcement only and with tension and compression reinforcement. When part of the prestressed reinforcement is in the compression zone, a method based on applicable conditions of equilibrium and compatibility of strains at a factored load condition should be used.

For other cross sections, the design moment strength ϕM_n is computed by an analysis based on stress and strain compatibility, using the stress-strain properties of the prestressing tendons and the assumptions given in 10.2.
CODE

18.7.2 — As an alternative to a more accurate determination of \(f_{ps} \) based on strain compatibility, the following approximate values of \(f_{ps} \) shall be permitted to be used if \(f_{se} \) is not less than 0.5\(f_{pu} \).

(a) For members with bonded prestressing tendons:

\[
f_{ps} = f_{pu} \left[1 - \frac{\gamma_p f_{pu} + \frac{d_p}{\beta_1} (\omega - \omega')}{\rho_p f_{t} + \frac{d_p}{\beta_1} (\omega - \omega')} \right]
\]

(18-3)

If any compression reinforcement is taken into account when calculating \(f_{ps} \) by Eq. (18-3), the term

\[
\left[\frac{f_{pu}}{\rho_p f_{t} + \frac{d_p}{\beta_1} (\omega - \omega')} \right]
\]

shall be taken not less than 0.17 and \(d' \) shall be no greater than 0.15\(d_p \).

(b) For members with unbonded prestressing tendons and with a span-to-depth ratio of 35 or less:

\[
f_{ps} = f_{se} + 70 \cdot \frac{f_{c}'}{300 \rho_p}
\]

(18-4)

but \(f_{ps} \) in Eq. (18-4) shall not be taken greater than \(f_{py} \), nor greater than \((f_{se} + 420) \).

(c) For members with unbonded prestressing tendons and with a span-to-depth ratio greater than 35:

\[
f_{ps} = f_{se} + 70 \cdot \frac{f_{c}'}{300 \rho_p}
\]

(18-5)

but \(f_{ps} \) in Eq. (18-5) shall not be taken greater than \(f_{py} \), nor greater than \((f_{se} + 200) \).

18.7.3 — Nonprestressed reinforcement conforming to 3.5.3, if used with prestressing tendons, shall be permitted to be considered to contribute to the tensile force and to be included in moment strength computations at a stress equal to the specified yield strength \(f_y \). Other nonprestressed reinforcement shall be permitted to be included in strength computations only if a strain compatibility analysis is performed to determine stresses in such reinforcement.

COMMENTARY

R18.7.2 — Eq. (18-3) may underestimate the strength of beams with high percentages of reinforcement and, for more accurate evaluations of their strength, the strain compatibility and equilibrium method should be used. Use of Eq. (18-3) is appropriate when all of the prestressed reinforcement is in the tension zone. When part of the prestressed reinforcement is in the compression zone, a strain compatibility and equilibrium method should be used.

By inclusion of the \(\omega' \) term, Eq. (18-3) reflects the increased value of \(f_{ps} \) obtained when compression reinforcement is provided in a beam with a large reinforcement index. When the term \(\left[\frac{\rho_p f_{pu} f_{c}'}{\beta_1} (\omega - \omega') \right] \) in Eq. (18-3) is small, the neutral axis depth is small, the compressive reinforcement does not develop its yield strength, and Eq. (18-3) becomes unconservative. This is the reason why the term \(\left[\frac{\rho_p f_{pu} f_{c}'}{\beta_1} (\omega - \omega') \right] \) in Eq. (18-3) may not be taken less than 0.17 if compression reinforcement is taken into account when computing \(f_{ps} \). If the compression reinforcement is neglected when using Eq. (18-3), \(\omega' \) is taken as zero, then the term \(\left[\frac{\rho_p f_{pu} f_{c}'}{\beta_1} (\omega - \omega') \right] \) in Eq. (18-3) may be less than 0.17 and an increased and correct value of \(f_{ps} \) is obtained.

When \(d' \) is large, the strain in compression reinforcement can be considerably less than its yield strain. In such a case, the compression reinforcement does not influence \(f_{ps} \) as favorably as implied by Eq. (18-3). For this reason, the applicability of Eq. (18-3) is limited to beams in which \(d' \) is less than or equal to 0.15\(d_p \).

The term \(\left[\frac{\rho_p f_{pu} f_{c}'}{\beta_1} (\omega - \omega') \right] \) in Eq. (18-3) may also be written \(\left[\frac{\rho_p f_{pu} f_{c}'}{\beta_1} (bd_p f_c' - A_0 f_y) \right] \). This form may be more convenient, such as when there is no unprestressed tension reinforcement.

Eq. (18-5) reflects results of tests on members with unbonded tendons and span-to-depth ratios greater than 35 (one-way slabs, flat plates, and flat slabs). These tests also indicate that Eq. (18-4), formerly used for all span-depth ratios, overestimates the amount of stress increase in such members. Although these same tests indicate that the moment strength of those shallow members designed using Eq. (18-4) meets the factored load strength requirements, this reflects the effect of the code requirements for minimum bonded reinforcement, as well as the limitation on concrete tensile stress that often controls the amount of prestressing force provided.
18.8 — Limits for reinforcement of flexural members

18.8.1 — Ratio of prestressed and nonprestressed reinforcement used for computation of moment strength of a member, except as provided in 18.8.2, shall be such that \(\omega_p, [\omega_p + (d/d_p)(\omega - \omega')] \), or \([\omega_{pw} + (d/d_p)(\omega_w - \omega'_w)] \) is not greater than 0.36 \(\beta_1 \).

18.8.2 — When a reinforcement ratio in excess of that specified in 18.8.1 is provided, design moment strength shall not exceed the moment strength based on the compression portion of the moment couple.

18.8.3 — Total amount of prestressed and nonprestressed reinforcement shall be adequate to develop a factored load at least 1.2 times the cracking load computed on the basis of the modulus of rupture \(f_r \) in 9.5.2.3. This provision shall be permitted to be waived for:

(a) Two-way, unbonded post-tensioned slabs;

(b) Flexural members with shear and flexural strength at least twice that required by 9.2.

18.9 — Minimum bonded reinforcement

18.9.1 — A minimum area of bonded reinforcement shall be provided in all flexural members with unbonded prestressing tendons as required by 18.9.2 and 18.9.3.

R18.8 — Limits for reinforcement of flexural members

R18.8.1 — The terms \(\omega_p, [\omega_p + (d/d_p)(\omega - \omega')] \), and \([\omega_{pw} + (d/d_p)(\omega_w - \omega'_w)] \) are each equal to 0.85 \(a/d_p \), where \(a \) is the depth of the equivalent rectangular stress distribution for the section under consideration, as defined in 10.2.7.1. Use of this relationship can simplify the calculations necessary to check compliance with 18.8.1.

R18.8.2 — Design moment strength of overreinforced members may be computed using strength equations similar to those for nonprestressed concrete members. The 1983 code provides strength equations for rectangular and flanged sections.

R18.8.3 — This provision is a precaution against abrupt flexural failure developing immediately after cracking. A flexural member designed according to code provisions requires considerable additional load beyond cracking to reach its flexural strength. This additional load should result in considerable deflection that would warn when the member nominal strength is being approached. If the flexural strength is reached shortly after cracking, the warning deflection would not occur.

Due to the very limited extent of initial cracking in the negative moment region near columns of two-way flat plates, load-deflection patterns do not reflect any abrupt change in stiffness as the modulus of rupture of concrete is reached.

Only at load levels beyond the design (factored) loads is the additional cracking extensive enough to cause an abrupt change in the load-deflection pattern. Tests have shown that it is not possible to rupture (or even yield) unbonded post-tensioning tendons in two-way slabs prior to a punching shear failure. The use of unbonded tendons in combination with the minimum bonded reinforcement requirements of 18.9.3 and 18.9.4 has been shown to ensure post-cracking ductility and that a brittle failure mode will not develop at first cracking.

R18.9 — Minimum bonded reinforcement

R18.9.1 — Some bonded reinforcement is required by the code in members prestressed with unbonded tendons to ensure flexural performance at ultimate member strength, rather than as a tied arch, and to limit crack width and spacing at service load when concrete tensile stresses exceed the modulus of rupture. Providing the minimum bonded reinforcement as stipulated in 18.9 helps to ensure adequate performance.

Research has shown that unbonded post-tensioned members do not inherently provide large capacity for energy dissipation under severe earthquake loadings because the member response is primarily elastic. For this reason, unbonded post-tensioned structural elements reinforced in accordance with the provisions of this section should be assumed to carry only vertical loads and to act as horizontal diaphragms.
18.9.2 — Except as provided in 18.9.3, minimum area of bonded reinforcement shall be computed by

$$A_s = 0.004A$$ \hspace{1cm} (18-6)

18.9.2.1 — Bonded reinforcement required by Eq. (18-6) shall be uniformly distributed over precompressed tensile zone as close as practicable to extreme tension fiber.

18.9.2.2 — Bonded reinforcement shall be required regardless of service load stress conditions.

18.9.3 — For two-way flat plates, defined as solid slabs of uniform thickness, minimum area and distribution of bonded reinforcement shall be as required in 18.9.3.1, 18.9.3.2, and 18.9.3.3.

18.9.3.1 — Bonded reinforcement shall not be required in positive moment areas where computed concrete tensile stress at service load (after allowance for all prestress losses) does not exceed $(1/6) f'_{c}$.

18.9.3.2 — In positive moment areas where computed tensile stress in concrete at service load exceeds $(1/6) f'_{c}$, minimum area of bonded reinforcement shall be computed by

$$A_s = \frac{N_c}{0.5f_y}$$ \hspace{1cm} (18-7)

where design yield strength f_y shall not exceed 420 MPa. Bonded reinforcement shall be uniformly distributed over precompressed tensile zone as close as practicable to the extreme tension fiber.

18.9.3.3 — In negative moment areas at column supports, the minimum area of bonded reinforcement A_s in the top of the slab in each direction shall be computed by

$$A_s = 0.00075A_{cf}$$ \hspace{1cm} (18-8)

Bonded reinforcement required by Eq. (18-8) shall be distributed between lines that are $1.5h$ outside opposite faces of the column support. At least four bars or between energy dissipating elements under earthquake loadings of the magnitude defined in 21.2.1.1. The minimum bonded reinforcement areas required by Eq. (18-6) and (18-8) are absolute minimum areas independent of grade of steel or design yield strength.

R18.9.2 — The minimum amount of bonded reinforcement for members other than two-way flat plates is based on research comparing the behavior of bonded and unbonded post-tensioned beams. Although research is limited for members other than beams and flat plates, it is advisable to apply the provisions of 18.9.2 to beams and slab systems not specifically reported in Reference 18.14. The need for applying Eq. (18-6) to two-way flat plates has not been substantiated by test data and, therefore, the requirements originally contained in the 1971 code were modified in the 1977 code.

R18.9.3 — The minimum amount of bonded reinforcement in two-way flat plates is based on reports by ACI-ASCE Committee 423. Limited research available for two-way flat slabs with drop panels or waffle slabs indicates that behavior of these particular systems is similar to the behavior of flat plates. However, until more complete information is available, 18.9.3 should be applied only to two-way flat plates (solid slabs of uniform thickness) and 18.9.2 should be applied to all other two-way slab systems.

R18.9.3.1 — For usual loads and span lengths, flat plate tests summarized in the Committee 423 report and experience since the 1963 code was adopted indicate satisfactory performance without bonded reinforcement in the areas described in 18.9.3.1.

R18.9.3.2 — In positive moment areas, where the concrete tensile stresses are between $(1/6) f'_{c}$ and $(1/2) f'_{c}$, a minimum bonded reinforcement area proportioned according to Eq. (18-7) is required. The tensile force N_c is computed at service load on the basis of an uncracked, homogeneous section.

R18.9.3.3 — Research on unbonded post-tensioned flat plates evaluated by ACI-ASCE Committee 423 shows that bonded reinforcement in negative moment regions, proportioned on the basis of 0.075 percent of the cross-sectional area of the slab-beam strip, provides sufficient ductility and reduces crack width and spacing. To account for different adjacent tributary spans, Eq. (18-8) is given on the basis of the equivalent frame as defined in 13.7.2 and pictured in Fig. R13.7.2. For rectangular slab panels, Eq. (18-8) is conservatively based upon the larger of
wires shall be provided in each direction. Spacing of bonded reinforcement shall not exceed 300 mm.

18.9.4 — Minimum length of bonded reinforcement required by 18.9.2 and 18.9.3 shall be as required in 18.9.4.1, 18.9.4.2, and 18.9.4.3.

18.9.4.1 — In positive moment areas, minimum length of bonded reinforcement shall be one-third the clear span length and centered in positive moment area.

18.9.4.2 — In negative moment areas, bonded reinforcement shall extend one-sixth the clear span on each side of support.

18.9.4.3 — Where bonded reinforcement is provided for design moment strength in accordance with 18.7.3, or for tensile stress conditions in accordance with 18.9.3.2, minimum length also shall conform to provisions of Chapter 12.

18.10 — Statically indeterminate structures

18.10.1 — Frames and continuous construction of prestressed concrete shall be designed for satisfactory performance at service load conditions and for adequate strength.

18.10.2 — Performance at service load conditions shall be determined by elastic analysis, considering reactions, moments, shears, and axial forces induced by prestressing, creep, shrinkage, temperature change, axial deformation, restraint of attached structural elements, and foundation settlement.

18.10.3 — Moments used to compute required strength shall be the sum of the moments due to reactions induced by prestressing (with a load factor of 1.0) and the moments due to factored loads. Adjustment of the sum of these moments shall be permitted as allowed in 18.10.4.

18.10.4 — Bonded reinforcement should be adequately anchored to develop factored load forces. The requirements of Chapter 12 will ensure that bonded reinforcement required for flexural strength under factored loads in accordance with 18.7.3, or for tensile stress conditions at service load in accordance with 18.9.3.2, will be adequately anchored to develop tension or compression forces. The minimum lengths apply for bonded reinforcement required by 18.9.2 or 18.9.3.3, but not required for flexural strength in accordance with 18.7.3. Research on continuous spans shows that these minimum lengths provide adequate behavior under service load and factored load conditions.
18.10.4 — Redistribution of negative moments in continuous prestressed flexural members

18.10.4.1 — Where bonded reinforcement is provided at supports in accordance with 18.9, negative moments calculated by elastic theory for any assumed loading arrangement shall be permitted to be increased or decreased by not more than

\[
20 \left[\frac{\omega_p + \frac{d}{dp}(\omega - \omega')} {0.36 \beta_1} \right] \text{ percent}
\]

18.10.4.2 — The modified negative moments shall be used for calculating moments at sections within spans for the same loading arrangement.

18.10.4.3 — Redistribution of negative moments shall be made only when the section at which moment is reduced is so designed that

\[
\omega_p, \left[\omega_p + \left(\frac{d}{dp} \right)(\omega - \omega') \right], \text{ or } \left[\omega_{pw} + \left(\frac{d}{dp} \right)(\omega_{w} - \omega'_{w}) \right],
\]

for which redistribution of moments is allowed, is not greater than \(0.24 \beta_1\).
18.11 — Compression members — Combined flexure and axial loads

18.11.1 — Prestressed concrete members subject to combined flexure and axial load, with or without non-prestressed reinforcement, shall be proportioned by the strength design methods of this code. Effects of prestress, creep, shrinkage, and temperature change shall be included.

18.11.2 — Limits for reinforcement of prestressed compression members

18.11.2.1 — Members with average prestress f_{pc} less than 1.5 MPa shall have minimum reinforcement in accordance with 7.10, 10.9.1 and 10.9.2 for columns, or 14.3 for walls.

18.11.2.2 — Except for walls, members with average prestress f_{pc} equal to or greater than 1.5 MPa shall have all prestressing tendons enclosed by spirals or lateral ties in accordance with the following:

(a) Spirals shall conform to 7.10.4;

(b) Lateral ties shall be at least No. 10 in size or welded wire fabric of equivalent area, and shall be spaced vertically not to exceed 48 tie bar or wire diameters, or the least dimension of the compression member;

(c) Ties shall be located vertically not more than half a tie spacing above top of footing or slab in any story, and not more than half a tie spacing below the lowest horizontal reinforcement in members supported above;

(d) Where beams or brackets frame into all sides of a column, ties shall be terminated not more than 75 mm below lowest reinforcement in such beams or brackets.

18.11.2.3 — For walls with average prestress f_{pc} equal to or greater than 1.5 MPa, minimum reinforcement required by 14.3 shall not apply where structural analysis shows adequate strength and stability.

18.12 — Slab systems

18.12.1 — Factored moments and shears in prestressed slab systems reinforced for flexure in more than one direction shall be determined in accordance with provisions of 13.7 (excluding 13.7.7.4 and 13.7.7.5), or by more detailed design procedures.

18.12.3 — At service load conditions, all serviceability limitations, including limits on deflections, shall be met, with appropriate consideration of the factors listed in 18.10.2.

18.12.4 — For normal live loads and loads uniformly distributed, spacing of prestressing tendons or groups of tendons in one direction shall not exceed eight times the slab thickness, nor 1.5 m. Spacing of tendons also shall provide a minimum average prestress (after allowance for all prestress losses) of 0.9 MPa on the slab section tributary to the tendon or tendon group. A minimum of two tendons shall be provided in each direction through the critical shear section over columns. Special consideration of tendon spacing shall be provided for slabs with concentrated loads.

18.12.5 — In slabs with unbonded prestressing tendons, bonded reinforcement shall be provided in accordance with 18.9.3 and 18.9.4.

18.12.6 — In lift slabs, bonded bottom reinforcement shall be detailed in accordance with 13.3.8.6.

18.9, 18.10, 18.11, 18.18, and 18.21.) The referenced research also shows that analysis using prismatic sections or other approximations of stiffness may provide erroneous results on the unsafe side. Section 13.7.7.4 is excluded from application to prestressed slab systems because it relates to reinforced slabs designed by the direct design method, and because moment redistribution for prestressed slabs is covered in 18.10.4. Section 13.7.7.5 does not apply to prestressed slab systems because the distribution of moments between column strips and middle strips required by 13.7.7.5 is based on tests for nonprestressed concrete slabs. Simplified methods of analysis using average coefficients do not apply to prestressed concrete slab systems.

R18.12.2 — Tests indicate that the moment and shear strength of prestressed slabs is controlled by total tendon strength and by the amount and location of nonprestressed reinforcement, rather than by tendon distribution. (See References 18.8, 18.9, 18.10, 18.11, 18.18, and 18.21.)

R18.12.3 — For prestressed flat slabs continuous over two or more spans in each direction, the span-thickness ratio generally should not exceed 42 for floors and 48 for roofs; these limits may be increased to 48 and 52, respectively, if calculations verify that both short- and long-term deflection, camber, and vibration frequency and amplitude are not objectionable.

Short- and long-term deflection and camber should be computed and checked against the requirements of serviceability of the structure.

The maximum length of a slab between construction joints is generally limited to 30 to 45 m to minimize the effects of slab shortening, and to avoid excessive loss of prestress due to friction.

R18.12.4 — This section provides specific guidance concerning tendon distribution that will permit the use of banded tendon distributions in one direction. This method of tendon distribution has been shown to provide satisfactory performance by structural research.
18.13 — Post-tensioned tendon anchorage zones

18.13.1 — Anchorage zone

The anchorage zone shall be considered as composed of two zones:

(a) The local zone is the rectangular prism (or equivalent rectangular prism for circular or oval anchorages) of concrete immediately surrounding the anchorage device and any confining reinforcement;

(b) The general zone is the anchorage zone as defined in 2.1 and includes the local zone.

18.13.2 — Local zone

18.13.2.1 — Design of local zones shall be based upon the factored tendon force, \(P_{su} \), and the requirements of 9.2.8 and 9.3.2.5.

18.13.2.2 — Local-zone reinforcement shall be provided where required for proper functioning of the anchorage device.

18.13.2.3 — Local-zone requirements of 18.13.2.2 are satisfied by 18.14.1 or 18.15.1 and 18.15.2.

18.13.3 — General zone

18.13.3.1 — Design of general zones shall be based upon the factored tendon force, \(P_{su} \), and the requirements of 9.2.8 and 9.3.2.5.

R18.13 — Post-tensioned tendon anchorage zones

Section 18.13 has been extensively revised in the 1999 code and is compatible with the 1996 AASHTO “Standard Specifications for Highway Bridges”18,22 and the recommendations of NCHRP Report 356.18,23

Following the adoption by AASHTO 1994 of comprehensive provisions for post-tensioned anchorage zones, ACI Committee 318 revised the code to be generally consistent with the AASHTO requirements. Thus, the highly detailed AASHTO provisions for analysis and reinforcement detailing are deemed to satisfy the more general ACI 318 requirements. In the specific areas of anchorage device evaluation and acceptance testing, ACI 318 incorporates the detailed AASHTO provisions by reference.

R18.13.1 — Anchorage zone

Based on the Principle of Saint-Venant, the extent of the anchorage zone may be estimated as approximately equal to the largest dimension of the cross section. Local zone and general zone are shown in Fig. R18.13.1(a). For intermediate anchorage devices, large tensile stresses also exist locally behind the device. These tensile stresses are induced by incompatibility of deformations ahead of [as shown in Fig. R.18.13.1(b)] and behind the anchorage device. The entire shaded region should be considered, as shown in Fig. R18.13.1(b).

R18.13.2 — Local zone

The local zone resists the very high local stresses introduced by the anchorage device and transfers them to the remainder of the anchorage zone. The behavior of the local zone is strongly influenced by the specific characteristics of the anchorage device and its confining reinforcement, and less influenced by the geometry and loading of the overall structure. Local-zone design sometimes cannot be completed until specific anchorage devices are determined at the shop drawing stage. When special anchorage devices are used, the anchorage device supplier should furnish the test information to show the device is satisfactory under AASHTO “Standard Specifications for Highway Bridges,” Division II, Article 10.3.2.3 and provide information regarding necessary conditions for use of the device. The main considerations in local-zone design are the effects of the high bearing pressure and the adequacy of any confining reinforcement provided to increase the capacity of the concrete resisting bearing stresses.

R18.13.3 — General zone

Within the general zone the usual assumption of beam theory that plane sections remain plane is not valid.

Design should consider all regions of tensile stresses that can
18.13.3.2 — General-zone reinforcement shall be provided where required to resist bursting, spalling, and longitudinal edge tension forces induced by anchorage devices. Effects of abrupt change in section shall be considered.

18.13.3.3 — The general-zone requirements of 18.13.3.2 are satisfied by 18.13.4, 18.13.5, 18.13.6 and whichever one of 18.14.2 or 18.14.3 or 18.15.3 is applicable.

Abrupt changes in section can cause substantial deviation in force paths. These deviations can greatly increase tension forces as shown in Fig. R18.3.3.
CODE

18.13.4 — Nominal material strengths

18.13.4.1 — Nominal tensile strength of bonded reinforcement is limited to f_y for nonprestressed reinforcement and to f_{py} for prestressed reinforcement. Nominal tensile stress of unbonded prestressed reinforcement for resisting tensile forces in the anchorage zone shall be limited to $f_{ps} = f_{se} + 70$ MPa.

18.13.4.2 — Except for concrete confined within spirals or hoops providing confinement equivalent to that corresponding to Eq. (10-6), nominal compressive strength of concrete in the general zone shall be limited to $0.7\lambda f_{ci}^\prime$.

18.13.4.3 — Compressive strength of concrete at time of post-tensioning shall be specified on the design drawings. Unless oversize anchorage devices sized to compensate for the lower compressive strength are used or the tendons are stressed to no more than 50 percent of the final tendon force, tendons shall not be stressed until f_{ci}^\prime, as indicated by tests consistent with the curing of the member, is at least 28 MPa for multistrand tendons or at least 17.5 MPa for single-strand or bar tendons.

18.13.5 — Design methods

18.13.5.1 — The following methods shall be permitted for the design of general zones provided that the specific procedures used result in prediction of strength in substantial agreement with results of comprehensive tests:

(a) Equilibrium based plasticity models (strut-and-tie models);
(b) Linear stress analysis (including finite element analysis or equivalent); or
(c) Simplified equations where applicable.

18.13.5.2 — Simplified equations shall not be used where member cross sections are nonrectangular, where discontinuities in or near the general zone cause deviations in the force flow path, where minimum edge distance is less than 1-1/2 times the anchorage device lateral dimension in that direction, or where multiple anchorage devices are used in other than one closely spaced group.

COMMENTARY

R18.13.4 — Nominal material strengths

Some inelastic deformation of concrete is expected because anchorage zone design is based on a strength approach. The low value for the nominal compressive strength for unconfined concrete reflects this possibility. For well-confined concrete, the effective compressive strength could be increased (See Reference 18-23). The value for nominal tensile strength of bonded prestressed reinforcement is limited to the yield strength of the prestressing steel because Eq. (18-3) may not apply to these nonflexural applications. The value for unbonded prestressed reinforcement is based on the values of 18.7.2 (b) and (c), but is somewhat limited for these short-length, nonflexural applications. Test results given in Reference 18.23 indicate that the compressive stress introduced by auxiliary prestressing applied perpendicular to the axis of the main tendons is effective in increasing the anchorage zone capacity. The inclusion of the λ factor for lightweight concrete reflects its lower tensile strength, which is an indirect factor in limiting compressive stresses, as well as the wide scatter and brittleness exhibited in some lightweight concrete anchorage zone tests.

The designer is required to specify concrete strength at the time of stressing in the project drawings and specifications. To limit early shrinkage cracking, monostrand tendons are sometimes stressed at concrete strengths less than 17.5 MPa (a) due to use of over-sized monostrand anchorages, or (b) when stressed in stages, often to levels 1/3 to 1/2 the final tendon force.

R18.13.5 — Design methods

The list of design methods in 18.13.5.1 include those procedures for which fairly specific guidelines have been given in References 18.22 and 18.23. These procedures have been shown to be conservative predictors of strength when compared to test results (18.23). The use of strut-and-tie models is especially helpful for general zone design (18.23). In many anchorage applications, where substantial or massive concrete regions surround the anchorages, simplified equations can be used except in the cases noted in 18.13.5.2.

For many cases, simplified equations based on References 18.22 and 18.23 can be used. Values for the magnitude of the bursting force, T_{burst}, and for its centroidal distance from the major bearing surface of the anchorage, d_{burst}, may be estimated from Eq. (R18-1) and (R18-2), respectively. The terms of Eq. (R18-1) and (R18-2) are shown in Fig. R18.13.5 for a tendon load with small eccentricity. In the applications of Eq. (R18-1) and (R18-2), the specified stressing sequence should be considered if more than one tendon is present.

$$T_{burst} = 0.25\Sigma psu \left(1 - \frac{a}{h}\right) \quad (R18-1)$$
318M/318RM-276

CHAPTER 18

CODE

18.13.5.3 — The stressing sequence shall be specified on the design drawings and considered in the design.

COMMENTARY

The stressing sequence shall be specified on the design drawings and considered in the design.

\[\Sigma P_{su} = \text{the sum of the total factored tendon loads for the stressing arrangement considered, N;} \]
\[a = \text{the depth of anchorage device or single group of closely spaced devices in the direction considered, mm;} \]
\[e = \text{the eccentricity (always taken as positive) of the anchorage device or group of closely spaced devices with respect to the centroid of the cross section, mm;} \]
\[h = \text{the depth of the cross section in the direction considered, mm.} \]

Anchorage devices should be treated as closely spaced if their center-to-center spacing does not exceed 1.5 times the width of the anchorage device in the direction considered.

The spalling force for tendons whose centroid lies within the kern of the section may be estimated as 2 percent of the total factored tendon force, except for multiple anchorage devices with center-to-center spacing greater than 0.4 times the depth of the section. For large spacings and for cases where the centroid of the tendons is located outside the kern, a detailed analysis is required. In addition, in the post-tensioning of thin sections, or flanged sections, or irregular sections, or when the tendons have appreciable curvature within the general zone, more general procedures such as those of AASHTO Articles 9.21.4 and 9.21.5 will be required. Detailed recommendations for design principles that apply to all design methods are given in Article 9.21.3.4 of Reference 18.22.

18.13.5.3 — The sequence of anchorage device stressing can have a significant effect on the general zone stresses. Therefore, it is important to consider not only the final stage of a stressing sequence with all tendons stressed, but also intermediate stages during construction. The most critical bursting forces caused by each of the sequentially post-tensioned tendon combinations, as well as that of the entire group of tendons, should be taken into account.

\[d_{burst} = 0.5(h - 2e) \] (R18-2)
18.13.5.4 — Three-dimensional effects shall be considered in design and analyzed using three-dimensional procedures or approximated by considering the summation of effects for two orthogonal planes.

R18.13.5.4 — The provision for three-dimensional effects was included to alert the designer to effects perpendicular to the main plane of the member, such as bursting forces in the thin direction of webs or slabs. In many cases these effects can be determined independently for each direction, but some applications require a fully three-dimensional analysis (for example diaphragms for the anchorage of external tendons).

18.13.5.5 — For intermediate anchorage devices, bonded reinforcement shall be provided to transfer at least $0.35 P_{su}$ into the concrete section behind the anchor. Such reinforcement shall be placed symmetrically around the anchorage devices and shall be fully developed both behind and ahead of the anchorage devices.

R18.13.5.5 — Intermediate anchorages are used for anchorage of tendons that do not extend over the full length of a member. Local tensile stresses are generated behind intermediate anchorages [see Fig. R18.13.1(b)] due to compatibility requirements for deformations ahead of and behind the anchor. Bonded tie-back reinforcement is required in the immediate vicinity of the anchorage to limit the extent of cracking behind the anchorage. The requirement $0.35 P_{su}$ was developed using 25 percent of the unfactored tendon force being resisted by reinforcement at $0.6 f_y$.

18.13.5.6 — Where curved tendons are used in the general zone, except for monostrand tendons in slabs or where analysis shows reinforcement is not required, bonded reinforcement shall be provided to resist radial and splitting forces.

18.13.5.7 — Except for monostrand tendons in slabs or where analysis shows reinforcement is not required, minimum reinforcement with a nominal tensile strength equal to 2 percent of each factored tendon force shall be provided in orthogonal directions parallel to the back face of all anchorage zones to limit spalling.

18.13.6 — Detailing requirements

Selection of reinforcement sizes, spacings, cover, and other details for anchorage zones shall make allowances for tolerances on the bending, fabrication, and placement of reinforcement, for the size of aggregate, and for adequate placement and consolidation of the concrete.

18.14 — Design of anchorage zones for monostrand or single 16 mm diameter bar tendons

18.14.1 — Local zone design

Monostrand or single 16 mm or smaller diameter bar anchorage devices and local zone reinforcement shall meet the requirements of the Post-Tensioning Institute’s “Specification for Unbonded Single Strand Tendons” or the special anchorage device requirements of 18.15.1.
CODE

18.14.2 — General-zone design for slab tendons

18.14.2.1 — For anchorage devices for 12.5 mm or smaller diameter strands in normalweight concrete slabs, minimum reinforcement meeting the requirements of 18.14.2.2 and 18.14.2.3 shall be provided unless a detailed analysis satisfying 18.13.5 shows such reinforcement is not required.

18.14.2.2 — Two horizontal bars at least No. 13 in size shall be provided parallel to the slab edge. They shall be permitted to be in contact with the front face of the anchorage device and shall be within a distance of $1/2h$ ahead of each device. Those bars shall extend at least 150 mm either side of the outer edges of each device.

18.14.2.3 — If the center-to-center spacing of anchorage devices is 305 mm or less, the anchorage devices shall be considered as a group. For each group of six or more anchorage devices, $n + 1$ hairpin bars or closed stirrups at least No. 10 in size shall be provided, where n is the number of anchorage devices. One hairpin bar or stirrup shall be placed between each anchorage device and one on each side of the group. The hairpin bars or stirrups shall be placed with the legs extending into the slab perpendicular to the edge. The center portion of the hairpin bars or stirrups shall be placed perpendicular to the plane of the slab from $3h/8$ to $h/2$ ahead of the anchorage devices.

18.14.2.4 — For anchorage devices not conforming to 18.14.2.1, minimum reinforcement shall be based upon a detailed analysis satisfying 18.13.5.

18.14.3 — General-zone design for groups of monostrand tendons in beams and girders

Design of general zones for groups of monostrand tendons in beams and girders shall meet the requirements of 18.13.3 through 18.13.5.

COMMENTARY

R18.14.2 — General-zone design for slab tendons

For monostrand slab tendons, the general-zone minimum reinforcement requirements are based on the recommendations of ACI-ASCE Committee 423,\(^{18,24}\) which shows typical details. The horizontal bars parallel to the edge required by 18.14.2.2 should be continuous where possible.

The tests on which the recommendations of Reference 18.24 were based were limited to anchorage devices for 12.7 mm diameter, 1863 MPa strand, unbonded tendons in normalweight concrete. Thus, for larger strand anchorage devices and for all use in lightweight concrete slabs, ACI-ASCE Committee 423 recommended that the amount and spacing of reinforcement should be conservatively adjusted to provide for the larger anchorage force and smaller splitting tensile strength of lightweight concrete.\(^{18,24}\)

Both References 18.23 and 18.24 recommend that hairpin bars also be furnished for anchorages located within 305 mm of slab corners to resist edge tension forces. The words “ahead of” in 18.14.2.3 have the meaning shown in Fig. R18.13.1.

In those cases where multistrand anchorage devices are used for slab tendons, 18.15 is applicable.

The bursting reinforcement perpendicular to the plane of the slab required by 18.14.2.3 for groups of relatively closely spaced tendons should also be provided in the case of widely spaced tendons if an anchorage device failure could cause more than local damage.

R18.14.3 — General-zone design for groups of monostrand tendons in beams and girders

Groups of monostrand tendons with individual monostrand anchorage devices are often used in beams and girders. Anchorage devices can be treated as closely spaced if their center-to-center spacing does not exceed 1.5 times the width of the anchorage device in the direction considered. If a beam or girder has a single anchorage device or a single group of closely spaced anchorage devices, the use of simplified equations such as those given in R18.13.5.1 is allowed, unless 18.13.5.2 governs. More complex conditions can be designed using strut-and-tie models. Detailed recommendations for use of such models are given in References 18.22 and 18.23 as well as in R18.13.5.1.
CODE

18.15 — Design of anchorage zones for multistrand tendons

18.15.1 — Local zone design

Basic multistrand anchorage devices and local zone reinforcement shall meet the requirements of AASHTO “Standard Specifications for Highway Bridges,” Division I, Articles 9.21.7.2.2 through 9.21.7.2.4.

Special anchorage devices shall satisfy the tests required in AASHTO “Standard Specifications for Highway Bridges,” Division I, Article 9.21.7.3 and described in AASHTO “Standard Specifications for Highway Bridges,” Division II, Article 10.3.2.3.

18.15.2 — Use of special anchorage devices

Where special anchorage devices are to be used, supplemental skin reinforcement shall be furnished in the corresponding regions of the anchorage zone, in addition to the confining reinforcement specified for the anchorage device. This supplemental reinforcement shall be similar in configuration and at least equivalent in volumetric ratio to any supplementary skin reinforcement used in the qualifying acceptance tests of the anchorage device.

18.15.3 — General-zone design

Design for general zones for multistrand tendons shall meet the requirements of 18.13.3 through 18.13.5.

18.16 — Corrosion protection for unbonded prestressing tendons

18.16.1 — Unbonded tendons shall be encased with sheathing. The tendons shall be completely coated and the sheathing around the tendon filled with suitable material to inhibit corrosion.

18.16.2 — Sheathing shall be watertight and continuous over entire length to be unbonded.

18.16.3 — For applications in corrosive environments, the sheathing shall be connected to all stressing, intermediate and fixed anchorages in a watertight fashion.

18.16.4 — Unbonded single strand tendons shall be protected against corrosion in accordance with the Post-Tensioning Institute’s “Specification for Unbonded Single Strand Tendons.”

COMMENTARY

R18.15 — Design of anchorage zones for multistrand tendons

R18.15.1 — Local zone design

See R18.13.2.

R18.15.2 — Use of special anchorage devices

Skin reinforcement is reinforcement placed near the outer faces in the anchorage zone to limit local crack width and spacing. Reinforcement in the general zone for other actions (flexure, shear, shrinkage, temperature and similar) may be used in satisfying the supplementary skin reinforcement requirement. Determination of the supplementary skin reinforcement depends on the anchorage device hardware used and frequently cannot be determined until the shop-drawing stage.

R18.16 — Corrosion protection for unbonded prestressing tendons

R18.16.1 — Suitable material for corrosion protection of unbonded tendons should have the properties identified in Section 5.1 of Reference 18.25.

R18.16.2 — Typically, sheathing is a continuous, seamless, high-density polyethylene material that is extruded directly onto the coated tendon.

R18.16.4 — Corrosion protection requirements for unbonded single strand tendons in accordance with the Post-Tensioning Institute’s “Specification for Unbonded Single Strand Tendons” were added in the 1989 code to the provisions that appeared in previous codes. A report, 18.25 published by the Post-Tensioning Institute is to be used as the guide for corrosion protection of unbonded single strand tendons.
18.17 — Post-tensioning ducts

18.17.1 — Ducts for grouted tendons shall be mortar-tight and nonreactive with concrete, tendons, grout, and corrosion inhibitor.

18.17.2 — Ducts for grouted single wire, single strand, or single bar tendons shall have an inside diameter at least 6 mm larger than tendon diameter.

18.17.3 — Ducts for grouted multiple wire, multiple strand, or multiple bar tendons shall have an inside cross-sectional area at least two times the cross-sectional area of tendons.

18.17.4 — Ducts shall be maintained free of ponded water if members to be grouted are exposed to temperatures below freezing prior to grouting.

18.18 — Grout for bonded prestressing tendons

18.18.1 — Grout shall consist of portland cement and water; or portland cement, sand, and water.

18.18.2 — Materials for grout shall conform to 18.18.2.1 through 18.18.2.4.

18.18.2.1 — Portland cement shall conform to 3.2.

18.18.2.2 — Water shall conform to 3.4.

18.18.2.3 — Sand, if used, shall conform to “Standard Specification for Aggregate for Masonry Mortar” (ASTM C 144) except that gradation shall be permitted to be modified as necessary to obtain satisfactory workability.

18.18.2.4 — Admixtures conforming to 3.6 and known to have no injurious effects on grout, steel, or concrete shall be permitted. Calcium chloride shall not be used.

18.18.3 — Selection of grout proportions

18.18.3.1 — Proportions of materials for grout shall be based on either of the following:

18.18.3.2 — Selection of grout proportions

Grout proportioned in accordance with these provisions will generally lead to 7 day compressive strength on standard
(a) Results of tests on fresh and hardened grout prior to beginning grouting operations; or
(b) Prior documented experience with similar materials and equipment and under comparable field conditions.

18.18.3.2 — Cement used in the work shall correspond to that on which selection of grout proportions was based.

18.18.3.3 — Water content shall be minimum necessary for proper pumping of grout; however, water-cement ratio shall not exceed 0.45 by mass.

18.18.3.4 — Water shall not be added to increase grout flowability that has been decreased by delayed use of the grout.

18.18.4 — Mixing and pumping grout

18.18.4.1 — Grout shall be mixed in equipment capable of continuous mechanical mixing and agitation that will produce uniform distribution of materials, passed through screens, and pumped in a manner that will completely fill tendon ducts.

18.18.4.2 — Temperature of members at time of grouting shall be above 2 C and shall be maintained above 2 C until field-cured 50 mm cubes of grout reach a minimum compressive strength of 6 MPa.

18.18.4.3 — Grout temperatures shall not be above 30 C during mixing and pumping.

18.19 — Protection for prestressing tendons

Burning or welding operations in the vicinity of prestressing tendons shall be performed so that tendons are not subject to excessive temperatures, welding sparks, or ground currents.

18.20 — Application and measurement of prestressing force

18.20.1 — Prestressing force shall be determined by both of the following methods:

(a) Measurement of tendon elongation. Required elongation shall be determined from average load-elongation curves for the prestressing tendons used;

(b) Observation of jacking force on a calibrated gage or load cell or by use of a calibrated dynamometer.

Cause of any difference in force determination between (a) and (b) that exceeds 5 percent for pretensioned elements or 7 percent for post-tensioned construction shall be ascertained and corrected.

R18.18.4 — Mixing and pumping grout

In an ambient temperature of 2 C, grout with an initial minimum temperature of 15 C may require as much as 5 days to reach 6 MPa. A minimum grout temperature of 15 C is suggested because it is consistent with the recommended minimum temperature for concrete placed at an ambient temperature of 2 C. Quickset grouts, when approved, may require shorter periods of protection and the recommendations of the suppliers should be followed. Test cubes should be cured under temperature and moisture conditions as close as possible to those of the grout in the member. Grout temperatures in excess of 30 C will lead to difficulties in pumping.

R18.20 — Application and measurement of prestressing force

R18.20.1 — Elongation measurements for prestressed elements should be in accordance with the procedures outlined in the “Manual for Quality Control for Plants and Production of Precast and Prestressed Concrete Products,” published by the Precast/Prestressed Concrete Institute.18.29

Section 18.18.1 of the 1989 code was revised to permit 7 percent tolerance in tendon force determined by gage pressure and elongation measurements for post-tensioned construction. Elongation measurements for post-tensioned construction are affected by several factors that are less significant, or that do not exist, for pretensioned elements. The friction along post-tensioning tendons may be affected to varying degrees by placing tolerances and small irregularities in profile due to
The friction coefficients between the tendons and the duct are also subject to variation. The 5 percent tolerance that has appeared since the 1963 code was proposed by ACI-ASCE Committee 423 in 1958\,[18,3] and primarily reflected experience with production of pre-tensioned concrete elements. Since the tendons for pre-tensioned elements are usually stressed in the air with minimal friction effects, the 5 percent tolerance for such elements was retained.

CODE

18.20.2 — Where the transfer of force from the bulkheads of pretensioning bed to the concrete is accomplished by flame cutting prestressing tendons, cutting points and cutting sequence shall be predetermined to avoid undesired temporary stresses.

18.20.3 — Long lengths of exposed pretensioned strand shall be cut near the member to minimize shock to concrete.

18.20.4 — Total loss of prestress due to unreplaced broken tendons shall not exceed 2 percent of total prestress.

COMMENTARY

18.21 — Post-tensioning anchorages and couplers

18.21.1 — Anchorages and couplers for bonded and unbonded prestressing tendons shall develop at least 95 percent of the specified breaking strength of the tendons, when tested in an unbonded condition, without exceeding anticipated set. For bonded tendons, anchorages and couplers shall be located so that 100 percent of the specified breaking strength of the tendons shall be developed at critical sections after tendons are bonded in the member.

R18.20.4 — This provision applies to all prestressed concrete members. For cast-in-place post-tensioned slab systems, a member should be that portion considered as an element in the design, such as the joist and effective slab width in one-way joist systems, or the column strip or middle strip in two-way flat plate systems.

R18.21 — Post-tensioning anchorages and couplers

R18.21.1 — In the 1986 interim code, the separate provisions for strength of unbonded and bonded tendon anchorages and couplers presented in 18.19.1 and 18.19.2 of the 1983 code were combined into a single revised 18.19.1 covering anchorages and couplers for both unbonded and bonded tendons. Since the 1989 code, the required strength of the tendon-anchorage or tendon-coupler assemblies for both unbonded and bonded tendons, when tested in an unbonded state, is based on 95 percent of the specified breaking strength of the tendon material in the test. The tendon material should comply with the minimum provisions of the applicable ASTM specifications as outlined in 3.5.5. The specified strength of anchorages and couplers exceeds the maximum design strength of the tendons by a substantial margin, and, at the same time, recognizes the stress-riser effects associated with most available post-tensioning anchorages and couplers. Anchorage and coupler strength should be attained with a minimum amount of permanent deformation and successive set, recognizing that some deformation and set will occur when testing to failure. Tendon assemblies should conform to the 2 percent elongation requirements in ACI 301\,[18,30] and industry recommendations\,[18,19] Anchorages and couplers for bonded tendons that develop less than 100 percent of the specified breaking strength of the tendon should be used only where the bond transfer length between the anchorage or coupler and critical sections equals or exceeds that required to develop the tendon strength. This bond length may be calculated by the results of
18.21.2 — Couplers shall be placed in areas approved by the engineer and enclosed in housing long enough to permit necessary movements.

18.21.3 — In unbonded construction subject to repetitive loads, special attention shall be given to the possibility of fatigue in anchorages and couplers.

18.21.4 — Anchorages, couplers, and end fittings shall be permanently protected against corrosion.

18.22 — External post-tensioning

18.22.1 — Post-tensioning tendons shall be permitted to be external to any concrete section of a member. The strength and serviceability design methods of this code shall be used in evaluating the effects of external tendon forces on the concrete structure.

18.22.2 — External tendons shall be considered as unbonded tendons when computing flexural strength unless provisions are made to effectively bond the external tendons to the concrete section along its entire length.

18.22.3 — External tendons shall be attached to the concrete member in a manner that maintains the desired eccentricity between the tendons and the concrete centroid throughout the full range of anticipated member deflection.

18.22.4 — External tendons and tendon anchorage regions shall be protected against corrosion, and the details of the protection method shall be indicated on the drawings or in the project specifications.

R18.21.3 — For discussion on fatigue loading, see Reference 18.32.

For detailed recommendations on tests for static and cyclic loading conditions for tendons and anchorage fittings of unbonded tendons, see Section 4.1.3 of Reference 18.15, and Section 15.2.2 of Reference 18.30.

R18.21.4 — For recommendations regarding protection see Sections 4.2 and 4.3 of Reference 18.15, and Sections 3.4, 3.6, 5, 6, and 8.3 of Reference 18.25.

R18.22 — External post-tensioning

External attachment of tendons is a versatile method of providing additional strength, or improving serviceability, or both, in existing structures. It is well suited to repair or upgrade existing structures and permits a wide variety of tendon arrangements.

Additional information on external post-tensioning is given in Reference 18.33.

R18.22.3 — External tendons are often attached to the concrete member at various locations between anchorages (such as midspan, quarter points, or third points) for desired load balancing effects, for tendon alignment, or to address tendon vibration concerns. Consideration should be given to the effects caused by the tendon profile shifting in relationship to the concrete centroid as the member deforms under effects of post-tensioning and applied load.

R18.22.4 — Permanent corrosion protection can be achieved by a variety of methods. The corrosion protection provided should be suitable to the environment in which the tendons are located. Some conditions will require that the tendons be protected by concrete cover or by cement grout in polyethylene or metal tubing; other conditions will permit the protection provided by coatings such as paint or grease. Corrosion protection methods should meet the fire protection requirements of the general building code, unless the installation of external post-tensioning is to only improve serviceability.
CHAPTER 19 — SHELLS AND FOLDED PLATE MEMBERS

CODE

19.0 — Notation

\[E_c = \text{modulus of elasticity of concrete, MPa. See 8.5.1} \]
\[f_c' = \text{specified compressive strength of concrete, MPa} \]
\[\sqrt{f_c'} = \text{square root of specified compressive strength of concrete, MPa} \]
\[f_y = \text{specified yield strength of nonprestressed reinforcement, MPa} \]
\[h = \text{thickness of shell or folded plate, mm} \]
\[l_d = \text{development length, mm} \]
\[\phi = \text{strength reduction factor. See 9.3} \]

COMMENTARY

R19.0 — Notation

Units of measurement are given in the Notation to assist the user and are not intended to preclude the use of other correctly applied units for the same symbol, such as m or kN.

R19.1 — Scope and definitions

The code and commentary provide information on the design, analysis, and construction of concrete thin shells and folded plates. The process began in 1964 with the publication of a practice and commentary by ACI Committee 334, and continued with the inclusion of Chapter 19 in the 1971 code. The 1982 revision of ACI 334R reflected additional experience in design, analysis, and construction and was influenced by the publication of the “Recommendations for Reinforced Concrete Shells and Folded Plates” of the International Association for Shell and Spatial Structures (IASS) in 1979.

Since Chapter 19 applies to concrete thin shells and folded plates of all shapes, extensive discussion of their design, analysis, and construction in the commentary is not possible. Additional information can be obtained from the references. Performance of shells and folded plates requires special attention to detail.

R19.1.1 — Discussion of the application of thin shells in special structures such as cooling towers and circular prestressed concrete tanks may be found in the reports of ACI-ASCE Committee 373 and ACI Committee 373.

R19.1.3 — Common types of thin shells are domes (surfaces of revolution), cylindrical shells, barrel vaults, conoids, elliptical paraboloids, hyperbolic paraboloids, and groined vaults.

19.1.1 — Provisions of Chapter 19 shall apply to thin shell and folded plate concrete structures, including ribs and edge members.

19.1.2 — All provisions of this code not specifically excluded, and not in conflict with provisions of Chapter 19, shall apply to thin-shell structures.

19.1.3 — Thin shells — Three-dimensional spatial structures made up of one or more curved slabs or folded plates whose thicknesses are small compared to their other dimensions. Thin shells are characterized by their three-dimensional load-carrying behavior, which is determined by the geometry of their forms, by the manner in which they are supported, and by the nature of the applied load.

R19.1.3 — Common types of thin shells are domes (surfaces of revolution), cylindrical shells, barrel vaults, conoids, elliptical paraboloids, hyperbolic paraboloids, and groined vaults.
CODE

19.1.4 — Folded Plates — A special class of shell structure formed by joining flat, thin slabs along their edges to create a three-dimensional spatial structure.

19.1.5 — Ribbed shells — Spatial structures with material placed primarily along certain preferred rib lines, with the area between the ribs filled with thin slabs or left open.

19.1.6 — Auxiliary members — Ribs or edge beams that serve to strengthen, stiffen, or support the shell; usually, auxiliary members act jointly with the shell.

19.1.7 — Elastic analysis — An analysis of deformations and internal forces based on equilibrium, compatibility of strains, and assumed elastic behavior, and representing to a suitable approximation the three-dimensional action of the shell together with its auxiliary members.

19.1.8 — Inelastic analysis — An analysis of deformations and internal forces based on equilibrium, nonlinear stress-strain relations for concrete and reinforcement, consideration of cracking and time-dependent effects, and compatibility of strains. The analysis shall represent to a suitable approximation three-dimensional action of the shell together with its auxiliary members.

COMMENTARY

R19.1.4 — Folded plates may be prismatic, nonprismatic or faceted. The first two types consist generally of planar thin slabs joined along their longitudinal edges to form a beam-like structure spanning between supports. Faceted folded plates are made up of triangular or polygonal planar thin slabs joined along their edges to form three-dimensional spatial structures.

R19.1.5 — Ribbed shells generally have been used for larger spans where the increased thickness of the curved slab alone becomes excessive or uneconomical. Ribbed shells are also used because of the construction techniques employed and to enhance the aesthetic impact of the completed structure.

R19.1.6 — Most thin shell structures require ribs or edge beams at their boundaries to carry the shell boundary forces, to assist in transmitting them to the supporting structure, and to accommodate the increased amount of reinforcement in these areas.

R19.1.7 — Elastic analysis of thin shells and folded plates can be performed using any method of structural analysis based on assumptions that provide suitable approximations to the three-dimensional behavior of the structure. The method should determine the internal forces and displacements needed in the design of the shell proper, the rib or edge members, and the supporting structure. Equilibrium of internal forces and external loads and compatibility of deformations should be satisfied.

Methods of elastic analysis based on classical shell theory, simplified mathematical or analytical models, or numerical solutions using finite element, finite differences or numerical integration techniques are described in the cited references.

The choice of the method of analysis and the degree of accuracy required depends on certain critical factors. These include: the size of the structure, the geometry of the thin shell or folded plate, the manner in which the structure is supported, the nature of the applied load, and the extent of personal or documented experience regarding the reliability of the given method of analysis in predicting the behavior of the specific type of shell or folded plate.

R19.1.8 — Inelastic analysis of thin shells and folded plates can be performed using a refined method of analysis based on the specific nonlinear material properties, nonlinear behavior due to the cracking of concrete, and time-dependent effects such as creep, shrinkage, temperature, and load history. These effects are incorporated in order to trace the response and crack propagation of a reinforced concrete shell through the elastic, inelastic, and ultimate ranges. Such analyses usually require incremental loading and iterative procedures to converge on solutions that satisfy both equilibrium and strain compatibility.
CODE

19.1.9 — Experimental analysis — An analysis procedure based on the measurement of deformations or strains, or both, of the structure or its model; experimental analysis is based on either elastic or inelastic behavior.

19.2 — Analysis and design

19.2.1 — Elastic behavior shall be an accepted basis for determining internal forces and displacements of thin shells. This behavior shall be permitted to be established by computations based on an analysis of the uncracked concrete structure in which the material is assumed linearly elastic, homogeneous, and isotropic. Poisson's ratio of concrete shall be permitted to be taken equal to zero.

19.2.2 — Inelastic analyses shall be permitted to be used where it can be shown that such methods provide a safe basis for design.

19.2.3 — Equilibrium checks of internal resistances and external loads shall be made to ensure consistency of results.

19.2.4 — Experimental or numerical analysis procedures shall be permitted where it can be shown that such procedures provide a safe basis for design.

19.2.5 — Approximate methods of analysis shall be permitted where it can be shown that such methods provide a safe basis for design.

COMMENTARY

R19.2 — Analysis and design

R19.2.1 — For types of shell structures where experience, tests, and analyses have shown that the structure can sustain reasonable overloads without undergoing brittle failure, elastic analysis is an acceptable procedure. The designer may assume that reinforced concrete is ideally elastic, homogeneous, and isotropic, having identical properties in all directions. An analysis should be performed for the shell considering service load conditions. The analysis of shells of unusual size, shape, or complexity should consider behavior through the elastic, cracking, and inelastic stages.

R19.2.2 — Several inelastic analysis procedures contain possible solution methods. 19.12,19.13

R19.2.4 — Experimental analysis of elastic models19.14 has been used as a substitute for an analytical solution of a complex shell structure. Experimental analysis of reinforced microconcrete models through the elastic, cracking, inelastic, and ultimate stages should be considered for important shells of unusual size, shape, or complexity.

For model analysis, only those portions of the structure that significantly affect the items under study need be simulated. Every attempt should be made to ensure that the experiments reveal the quantitative behavior of the prototype structure.

Wind tunnel tests of a scaled-down model do not necessarily provide usable results and should be conducted by a recognized expert in wind tunnel testing of structural models.

R19.2.5 — Solutions that include both membrane and bending effects and satisfy conditions of compatibility and equilibrium are encouraged. Approximate solutions that satisfy statics but not the compatibility of strains may be used only when extensive experience has proved that safe designs have resulted from their use. Such methods include beam-type analysis for barrel shells and folded plates having large ratios of span to either width or radius of curvature, simple membrane analysis for shells of revolution, and others in which the equations of equilibrium are satisfied, while the strain compatibility equations are not.
CODE

19.2.6 — In prestressed shells, the analysis shall also consider behavior under loads induced during prestressing, at cracking load, and at factored load. Where prestressing tendons are draped within a shell, design shall take into account force components on the shell resulting from the tendon profile not lying in one plane.

19.2.7 — The thickness of a shell and its reinforcement shall be proportioned for the required strength and serviceability, using either the strength design method of 8.1.1 or the design method of 8.1.2.

19.2.8 — Shell instability shall be investigated and shown by design to be precluded.

19.2.9 — Auxiliary members shall be designed according to the applicable provisions of the code. It shall be permitted to assume that a portion of the shell equal to the flange width, as specified in 8.10, acts with the auxiliary member. In such portions of the shell, the reinforcement perpendicular to the auxiliary

COMMENTARY

R19.2.6 — If the shell is prestressed, the analysis should include its strength at factored loads as well as its adequacy under service loads, under the load that causes cracking, and under loads induced during prestressing. Axial forces due to draped prestressed tendons may not lie in one plane and due consideration should be given to the resulting force components. The effects of post-tensioning of shell supporting members should be taken into account.

R19.2.7 — The thin shell’s thickness and reinforcement are required to be proportioned to satisfy the strength provisions of this code, and to resist internal forces obtained from an analysis, an experimental model study, or a combination thereof. Reinforcement sufficient to minimize cracking under service load conditions should be provided. The thickness of the shell is often dictated by the required reinforcement and the construction constraints, by 19.2.8, or by the code minimum thickness requirements.

R19.2.8 — Thin shells, like other structures that experience in-plane membrane compressive forces, are subject to buckling when the applied load reaches a critical value. Because of the surface-like geometry of shells, the problem of calculating buckling load is complex. If one of the principal membrane forces is tensile, the shell is less likely to buckle than if both principal membrane forces are compressive. The kinds of membrane forces that develop in a shell depend on its initial shape and the manner in which the shell is supported and loaded. In some types of shells, post-buckling behavior should be considered in determining safety against instability.

Investigation of thin shells for stability should consider the effect of (1) anticipated deviation of the geometry of the shell surface as-built from the idealized, geometry, (2) large deflections, (3) creep and shrinkage of concrete, (4) inelastic properties of materials, (5) cracking of concrete, (6) location, amount, and orientation of reinforcement, and (7) possible deformation of supporting elements.

Measures successfully used to improve resistance to buckling include the provision of two mats of reinforcement—one near each outer surface of the shell, a local increase of shell curvatures, the use of ribbed shells, and the use of concrete with high tensile strength and low creep.

A procedure for determining critical buckling loads of shells is given in the IASS recommendations. Some recommendations for buckling design of domes used in industrial applications are given in References 19.5 and 19.15.

R19.2.9 — Strength design can be used for the auxiliary members even though the Appendix A design method was used for the shell surface as long as serviceability requirements are also satisfied. Portions of the shell may be utilized as flanges for transverse or longitudinal frames or arch-frames and beams.
member shall be at least equal to that required for the flange of a T-beam by 8.10.5.

19.2.10 — Strength design of shell slabs for membrane and bending forces shall be based on the distribution of stresses and strains as determined from either an elastic or an inelastic analysis.

19.2.11 — In a region where membrane cracking is predicted, the nominal compressive strength parallel to the cracks shall be taken as $0.4f_c'$.

19.3 — Design strength of materials

19.3.1 — Specified compressive strength of concrete f_c' at 28 days shall not be less than 20 MPa.

19.3.2 — Specified yield strength of nonprestressed reinforcement f_y shall not exceed 420 MPa.

19.4 — Shell reinforcement

19.4.1 — Shell reinforcement shall be provided to resist tensile stresses from internal membrane forces, to resist tension from bending and twisting moments, to limit shrinkage and temperature crack width and spacing, and as special reinforcement at shell boundaries, load attachments, and shell openings.

19.4.2 — Tensile reinforcement shall be provided in two or more directions and shall be proportioned such that its resistance in any direction equals or exceeds the component of internal forces in that direction.

Alternatively, reinforcement for the membrane forces in the slab shall be calculated as the reinforcement required to resist axial tensile forces plus the tensile force due to shear-friction required to transfer shear across any cross section of the membrane. The assumed coefficient of friction shall not exceed 1.0λ, where $\lambda = 1.0$ for normalweight concrete, 0.85 for sand-lightweight concrete, and 0.75 for all-lightweight concrete. Linear interpolation shall be permitted when partial sand replacement is used.

R19.2.10 — The stresses and strains in the shell slab used for design are those determined by analysis (elastic or inelastic) multiplied by appropriate load factors. Because of detrimental effects of membrane cracking, the computed tensile strain in the reinforcement under factored loads should be limited.

R19.2.11 — When principal tensile stress produces membrane cracking in the shell, experiments indicate the attainable compressive strength in the direction parallel to the cracks is reduced. 19.16,19.17 For the Appendix A design method, the compressive strength f_c' parallel to the cracks should be replaced by $0.4f_c'$ in calculations involving A.3.1(a) or A.6.1.

R19.4 — Shell reinforcement

R19.4.1 — At any point in a shell, two different kinds of internal forces may occur simultaneously: those associated with membrane action, and those associated with bending of the shell. The membrane forces are assumed to act in the tangential plane midway between the surfaces of the shell, and are the two axial forces and the membrane shears. Flexural effects include bending moments, twisting moments, and the associated transverse shears. Limiting membrane crack width and spacing due to shrinkage, temperature, and service load conditions is a major design consideration.

R19.4.2 — The requirement of ensuring strength in all directions is based on safety considerations. Any method that ensures sufficient strength consistent with equilibrium is acceptable. The direction of the principal membrane tensile force at any point may vary depending on the direction, magnitudes, and combinations of the various applied loads.

The magnitude of the internal membrane forces, acting at any point due to a specific load, is generally calculated on the basis of an elastic theory in which the shell is assumed as uncracked. The computation of the required amount of reinforcement to resist the internal membrane forces has been traditionally based on the assumption that concrete does not resist tension. The associated deflections, and the possibility of cracking, should be investigated in the serviceability phase of the design. Achieving this may require a working stress design for steel selection.
CODE

19.4.3 — The area of shell reinforcement at any section as measured in two orthogonal directions shall not be less than the slab shrinkage or temperature reinforcement required by 7.12.

19.4.4 — Reinforcement for shear and bending moments about axes in the plane of the shell slab shall be calculated in accordance with Chapters 10, 11, and 13.

19.4.5 — The area of shell tension reinforcement shall be limited so that the reinforcement will yield before either crushing of concrete in compression or shell buckling can take place.

19.4.6 — In regions of high tension, membrane reinforcement shall, if practical, be placed in the general directions of the principal tensile membrane forces. Where this is not practical, it shall be permitted to place membrane reinforcement in two or more component directions.

19.4.7 — If the direction of reinforcement varies more than 10 deg from the direction of principal tensile membrane force, the amount of reinforcement shall be reviewed in relation to cracking at service loads.

COMMENTARY

Where reinforcement is not placed in the direction of the principal tensile forces and where cracks at the service load level are objectionable, the computation of reinforcement may have to be based on a more refined approach that considers the existence of cracks. In the cracked state, the concrete is assumed to be unable to resist either tension or shear. Thus, equilibrium is attained by equating tensile resisting forces in reinforcement and compressive resisting forces in concrete.

The alternative method to calculate orthogonal reinforcement is the shear-friction method. It is based on the assumption that shear integrity of a shell should be maintained at factored loads. It is not necessary to calculate principal stresses if the alternative approach is used.

R19.4.3 — Minimum membrane reinforcement corresponding to slab shrinkage and temperature reinforcement are to be provided in at least two approximately orthogonal directions even if the calculated membrane forces are compressive in one or more directions.

R19.4.5 — The requirement that the tensile reinforcement yields before the concrete crushes anywhere is consistent with 10.3.3. Such crushing can also occur in regions near supports and for some shells where the principal membrane forces are approximately equal and opposite in sign.

R19.4.6 — Generally, for all shells, and particularly in regions of substantial tension, the orientation of reinforcement should approximate the directions of the principal tensile membrane forces. However, in some structures it is not possible to detail the reinforcement to follow the stress trajectories. For such cases, orthogonal component reinforcement is allowed.

R19.4.7 — When the directions of reinforcement deviate significantly (more than 10 deg) from the directions of the principal membrane forces, higher strains in the shell occur to develop the capacity of reinforcement. This might lead to the development of unacceptable wide cracks. The crack width should be estimated and limited if necessary.

Permissible crack widths for service loads under different environmental conditions are given in the report of ACI Committee 224. Crack width can be limited by an increase in the amount of reinforcement used, by reducing the stress at the service load level, by providing reinforcement in three or more directions in the plane of the shell, or by using closer spacing of smaller diameter bars.
CHAPTER 19 318M/318RM-291

CODE

19.4.8 — Where the magnitude of the principal tensile membrane stress within the shell varies greatly over the area of the shell surface, reinforcement resisting the total tension shall be permitted to be concentrated in the regions of largest tensile stress where it can be shown that this provides a safe basis for design. However, the ratio of shell reinforcement in any portion of the tensile zone shall be not less than 0.0035 based on the overall thickness of the shell.

19.4.9 — Reinforcement required to resist shell bending moments shall be proportioned with due regard to the simultaneous action of membrane axial forces at the same location. Where shell reinforcement is required in only one face to resist bending moments, equal amounts shall be placed near both surfaces of the shell even though a reversal of bending moments is not indicated by the analysis.

19.4.10 — Shell reinforcement in any direction shall not be spaced farther apart than 500 mm nor farther apart than five times the shell thickness. Where the principal membrane tensile stress on the gross concrete area due to factored loads exceeds \(\frac{1}{3} \phi \frac{f'_c}{f_c} \), reinforcement shall not be spaced farther apart than three times the shell thickness.

19.4.11 — Shell reinforcement at the junction of the shell and supporting members or edge members shall be anchored in or extended through such members in accordance with the requirements of Chapter 12, except that the minimum development length shall be \(1.2 \rho_d \) but not less than 500 mm.

19.4.12 — Splice lengths of shell reinforcement shall be governed by the provisions of Chapter 12, except that the minimum splice length of tension bars shall be 1.2 times the value required by Chapter 12 but not less than 500 mm. The number of splices in principal tensile reinforcement shall be kept to a practical minimum. Where splices are necessary they shall be staggered at least \(\rho_d \) with not more than one-third of the reinforcement spliced at any section.

19.5 — Construction

19.5.1 — When removal of formwork is based on a specific modulus of elasticity of concrete because of stability or deflection considerations, the value of the modulus of elasticity \(E_c \) shall be determined from flexural tests of field-cured beam specimens. The number of test specimens, the dimensions of test beam specimens, and test procedures shall be specified by the engineer.

COMMENTARY

R19.4.8 — The practice of concentrating tensile reinforcement in the regions of maximum tensile stress has led to a number of successful and economical designs, primarily for long folded plates, long barrel vault shells, and for domes. The requirement of providing the minimum reinforcement in the remaining tensile zone is intended to limit crack width and spacing.

R19.4.9 — The design method should ensure that the concrete sections, including consideration of the reinforcement, are capable of developing the internal forces required by the equations of equilibrium. The sign of bending moments may change rapidly from point to point of a shell. For this reason, reinforcement to resist bending, where required, is to be placed near both outer surfaces of the shell. In many cases, the thickness required to provide proper cover and spacing for the multiple layers of reinforcement may govern the design of the shell thickness.

R19.4.10 — The value of \(\phi \) to be used is that prescribed in 9.3.2.2(a) for axial tension.

R19.4.11 and R19.4.12 — On curved shell surfaces it is difficult to control the alignment of precut reinforcement. This should be considered to avoid insufficient splice and development lengths. Sections 19.4.11 and 19.4.12 require extra reinforcement length to maintain the minimum lengths on curved surfaces.

R19.5 — Construction

R19.5.1 — When early removal of forms is necessary, the magnitude of the modulus of elasticity at the time of proposed form removal should be investigated to ensure safety of the shell with respect to buckling, and to restrict deflections. The value of the modulus of elasticity \(E_c \) should be obtained from a flexural test of field-cured specimens. It is not sufficient to determine the modulus from the formula in 8.5.1, even if \(f'_c \) is determined for the field-cured specimen.
CODE

19.5.2 — The engineer shall specify the tolerances for the shape of the shell. If construction results in deviations from the shape greater than the specified tolerances, an analysis of the effect of the deviations shall be made and any required remedial actions shall be taken to ensure safe behavior.

COMMENTARY

R19.5.2 — In some types of shells, small local deviations from the theoretical geometry of the shell can cause relatively large changes in local stresses and in overall safety against instability. These changes can result in local cracking and yielding that may make the structure unsafe or can greatly affect the critical load producing instability. The effect of such deviations should be evaluated and any necessary remedial actions should be taken. Special attention is needed when using air supported form systems.
PART 6 — SPECIAL CONSIDERATIONS

CHAPTER 20 — STRENGTH EVALUATION OF EXISTING STRUCTURES

CODE

20.0 — Notation

\[D = \text{dead loads or related internal moments and forces} \]
\[f'_c = \text{specified compressive strength of concrete, MPa} \]
\[h = \text{overall thickness of member, mm} \]
\[L = \text{live loads or related internal moments and forces} \]
\[l_t = \text{span of member under load test, mm. (The} \]
\[\text{shorter span for two-way slab systems.) Span is the} \]
\[\text{smaller of (a) distance between centers} \]
\[\text{of supports, and (b) clear distance between} \]
\[\text{supports plus thickness} \]
\[h \text{ of member. In Eq.} \]
\[(20-1), \text{span for a cantilever shall be taken as} \]
\[\text{twice the distance from support to} \]
\[\text{cantilever end} \]
\[\Delta_{\text{max}} = \text{measured maximum deflection, mm. See Eq.} \]
\[(20-1) \]
\[\Delta_{\text{rmax}} = \text{measured residual deflection, mm. See Eq.} \]
\[(20-2) \text{ and (20-3)} \]
\[\Delta_{\text{fmax}} = \text{maximum deflection measured during the} \]
\[\text{second test relative to the position of the} \]
\[\text{structure at the beginning of the second test,} \]
\[\text{mm. See Eq. (20-3)} \]

COMMENTARY

20.0 — Notation

Units of measurement are given in the Notation to assist the user and are not intended to preclude the use of other correctly applied units for the same symbol, such as m or kN.

20.1 — Strength evaluation — General

20.1.1 — If there is doubt that a part or all of a structure meets the safety requirements of this code, a strength evaluation shall be carried out as required by the engineer or building official.

R20.1 — Strength evaluation — General

Chapter 20 does not cover load testing for the approval of new design or construction methods. (See 16.10 for recommendations on strength evaluation of precast concrete members.) Provisions of Chapter 20 may be used to evaluate whether a structure or a portion of a structure satisfies the safety requirements of this code. A strength evaluation may be required if the materials are considered to be deficient in quality, if there is evidence indicating faulty construction, if a structure has deteriorated, if a building will be used for a new function, or if, for any reason, a structure or a portion of it does not appear to satisfy the requirements of the code. In such cases, Chapter 20 provides guidance for investigating the safety of the structure.

If the safety concerns are related to an assembly of elements or an entire structure, it is not feasible to load test every element and section to the maximum. In such cases, it is appropriate that an investigation plan be developed to address the specific safety concerns. If a load test is described as part of
20.1.2 — If the effect of the strength deficiency is well understood and if it is feasible to measure the dimensions and material properties required for analysis, analytical evaluations of strength based on those measurements shall suffice. Required data shall be determined in accordance with 20.2.

R20.1.2 — Strength considerations related to axial load, flexure, and combined axial load and flexure are well understood. There are reliable theories relating strength and short-term displacement to load in terms of dimensional and material data for the structure.

To determine the strength of the structure by analysis, calculations should be based on data gathered on the actual dimensions of the structure, properties of the materials in place, and all pertinent details. Requirements for data collection are in 20.2.

20.1.3 — If the effect of the strength deficiency is not well understood or if it is not feasible to establish the required dimensions and material properties by measurement, a load test shall be required if the structure is to remain in service.

R20.1.3 — If the shear or bond strength of an element is critical in relation to the doubt expressed about safety, a test may be the most efficient solution to eliminate or confirm the doubt. A test may also be appropriate if it is not feasible to determine the material and dimensional properties required for analysis, even if the cause of the concern relates to flexure or axial load.

Wherever possible and appropriate, support the results of the load test by analysis.

20.1.4 — If the doubt about safety of a part or all of a structure involves deterioration, and if the observed response during the load test satisfies the acceptance criteria, the structure or part of the structure shall be permitted to remain in service for a specified time period. If deemed necessary by the engineer, periodic reevaluations shall be conducted.

R20.1.4 — For a deteriorating structure, the acceptance provided by the load test may not be assumed to be without limits in terms of time. In such cases, a periodic inspection program is useful. A program that involves physical tests and periodic inspection can justify a longer period in service. Another option for maintaining the structure in service, while the periodic inspection program continues, is to limit the live load to a level determined to be appropriate.

The length of the specified time period should be based on consideration of (a) the nature of the problem, (b) environmental and load effects, (c) service history of the structure, and (d) scope of the periodic inspection program. At the end of a specified time period, further strength evaluation is required if the structure is to remain in service.

With the agreement of all concerned parties, special procedures may be devised for periodic testing that do not necessarily conform to the loading and acceptance criteria specified in Chapter 20.
20.2 — Determination of required dimensions and material properties

20.2.1 — Dimensions of the structural elements shall be established at critical sections.

20.2.2 — Locations and sizes of the reinforcing bars, welded wire fabric, or tendons shall be determined by measurement. It shall be permitted to base reinforcement locations on available drawings if spot checks are made confirming the information on the drawings.

20.2.3 — If required, concrete strength shall be based on results of cylinder tests or tests of cores removed from the part of the structure where the strength is in doubt. Concrete strengths shall be determined as specified in 5.6.4.

20.2.4 — If required, reinforcement or tendon strength shall be based on tensile tests of representative samples of the material in the structure in question.

20.2.5 — If the required dimensions and material properties are determined through measurements and testing, and if calculations can be made in accordance with 20.1.2, it shall be permitted to increase the strength reduction factor in 9.3, but the strength reduction factor shall not be more than:

- Flexure, without axial load: 1.0
- Axial tension, and axial tension with flexure: 1.0
- Axial compression and axial compression with flexure:
 - Members with spiral reinforcement conforming to 10.9.3: 0.9
 - Other members: 0.85
- Shear and/or torsion: 0.9
- Bearing on concrete: 0.85

R20.2 — Determination of required dimensions and material properties

This section applies if it is decided to make an analytical evaluation (20.1.2).

R20.2.1 — Critical sections are where each type of stress calculated for the load in question reaches its maximum value.

R20.2.2 — For individual elements, amount, size, arrangement, and location should be determined at the critical sections for reinforcement or tendons, or both, designed to resist applied load. Nondestructive investigation methods are acceptable. In large structures, determination of these data for approximately 5 percent of the reinforcement or tendons in critical regions may suffice if these measurements confirm the data provided in the construction drawings.

R20.2.3 — The number of tests may depend on the size of the structure and the sensitivity of structural safety to concrete strength. In cases where the potential problem involves flexure only, investigation of concrete strength can be minimal for a lightly reinforced section \(\rho f_y / f'_c \leq 0.15 \) for rectangular section.

R20.2.4 — The number of tests required depends on the uniformity of the material and is best determined by the engineer for the specific application.

R20.2.5 — Strength reduction factors given in 20.2.5 are larger than those specified in Chapter 9. These increased values are justified by the use of accurate field-obtained material properties, actual in-place dimensions, and well understood methods of analysis.
20.3 — Load test procedure

20.3.1 — Load arrangement

The number and arrangement of spans or panels loaded shall be selected to maximize the deflection and stresses in the critical regions of the structural elements of which strength is in doubt. More than one test load arrangement shall be used if a single arrangement will not simultaneously result in maximum values of the effects (such as deflection, rotation, or stress) necessary to demonstrate the adequacy of the structure.

20.3.2 — Load intensity

The total test load (including dead load already in place) shall not be less than \(0.85 \times (1.4D + 1.7L)\). It shall be permitted to reduce \(L\) in accordance with the requirements of the applicable general building code.

20.3.3 — A load test shall not be made until that portion of the structure to be subjected to load is at least 56 days old. If the owner of the structure, the contractor, and all involved parties agree, it shall be permitted to make the test at an earlier age.

20.4 — Loading criteria

20.4.1 — The initial value for all applicable response measurements (such as deflection, rotation, strain, slip, crack widths) shall be obtained not more than 1 hr before application of the first load increment. Measurements shall be made at locations where maximum response is expected. Additional measurements shall be made if required.

20.4.2 — Test load shall be applied in not less than four approximately equal increments.

20.4.3 — Uniform test load shall be applied in a manner to ensure uniform distribution of the load transmitted to the structure or portion of the structure being tested. Arching of the applied load shall be avoided.

R20.3 — Load test procedure

R20.3.1 — Load arrangement

It is important to apply the load at locations so that its effects on the suspected defect are a maximum and the probability of unloaded members sharing the applied load is a minimum. In cases where it is shown by analysis that adjoining unloaded elements will help carry some of the load, the load should be placed to develop effects consistent with the intent of the load factor.

R20.3.2 — Load intensity

The required load intensity follows previous load test practice. The live load \(L\) may be reduced as permitted by the general building code governing safety considerations for the structure. The live load should be increased to compensate for resistance provided by unloaded portions of the structure in question. The increase in live load is determined from analysis of the loading conditions in relation to the selected pass/fail criterion for the test.

R20.4 — Loading criteria

R20.4.2 — Inspecting the structure after each load increment is advisable.

R20.4.3 — Arching refers to the tendency for the load to be transmitted nonuniformly to the flexural element being tested. For example, if a slab is loaded by a uniform arrangement of bricks with the bricks in contact, arching would result in reduction of the load on the slab near the midspan of the slab.
CODE

20.4.4 — A set of response measurements shall be made after each load increment is applied and after the total load has been applied on the structure for at least 24 hr.

20.4.5 — Total test load shall be removed immediately after all response measurements defined in 20.4.4 are made.

20.4.6 — A set of final response measurements shall be made 24 hr after the test load is removed.

20.5 — Acceptance criteria

20.5.1 — The portion of the structure tested shall show no evidence of failure. Spalling and crushing of compressed concrete shall be considered an indication of failure.

20.5.2 — Measured maximum deflections shall satisfy one of the following conditions:

\[\Delta_{max} \leq \frac{l^2}{20,000h} \] \hspace{1cm} (20-1)

\[\Delta_{rmax} \leq \frac{\Delta_{max}}{4} \] \hspace{1cm} (20-2)

If the measured maximum and residual deflections do not satisfy Eq. (20-1) or (20-2), it shall be permitted to repeat the load test.

The repeat test shall be conducted not earlier than 72 hr after removal of the first test load. The portion of the structure tested in the repeat test shall be considered acceptable if deflection recovery satisfies the condition:

R20.5 — Acceptance criteria

R20.5.1 — A general acceptance criterion for the behavior of a structure under the test load is that it does not show evidence of failure. Evidence of failure includes cracking, spalling, or deflection of such magnitude and extent that the observed result is obviously excessive and incompatible with the safety requirements of the structure. No simple rules have been developed for application to all types of structures and conditions. If sufficient damage has occurred so that the structure is considered to have failed that test, retesting is not permitted since it is considered that damaged members should not be put into service even at a lower load rating.

Local spalling or flaking of the compressed concrete in flexural elements related to casting imperfections need not indicate overall structural distress. Crack widths are good indicators of the state of the structure and should be observed to help determine whether the structure is satisfactory. However, exact prediction or measurement of crack widths in reinforced concrete elements is not likely to be achieved under field conditions. Establish criteria before the test, relative to the types of cracks anticipated; where the cracks will be measured; how they will be measured; and approximate limits or criteria to evaluate new cracks or limits for the changes in crack width.

R20.5.2 — The deflection limits and the retest option follow past practice. If the structure shows no evidence of failure, recovery of deflection after removal of the test load is used to determine whether the strength of the structure is satisfactory. In the case of a very stiff structure, however, the errors in measurements under field conditions may be of the same order as the actual deflections and recovery. To avoid penalizing a satisfactory structure in such a case, recovery measurements are waived if the maximum deflection is less than \(\frac{\ell^2}{(20,000h)} \). The residual deflection \(\Delta_{rmax} \) is the difference between the initial and final (after load removal) deflections for the load test or the repeat load test.
\[\Delta_{r_{\text{max}}} \leq \frac{\Delta_{f_{\text{max}}}}{5} \]

(20-3)

where \(\Delta_{r_{\text{max}}} \) is the maximum deflection measured during the second test relative to the position of the structure at the beginning of the second test.

20.5.3 — Structural members tested shall not have cracks indicating the imminence of shear failure.

R20.5.3 — Forces are transmitted across a shear crack plane by a combination of aggregate interlock at the interface of the crack that is enhanced by clamping action of transverse stirrup reinforcing and by dowel action of stirrups crossing the crack. As crack lengths increase to approach a horizontal projected length equal to the depth of the member and concurrently widen to the extent that aggregate interlock cannot occur, and as transverse stirrups if present begin to yield or display loss of anchorage so as to threaten their integrity, the member is assumed to be approaching imminent shear failure.

20.5.4 — In regions of structural members without transverse reinforcement, appearance of structural cracks inclined to the longitudinal axis and having a horizontal projection longer than the depth of the member at midpoint of the crack shall be evaluated.

R20.5.4 — The intent of 20.5.4 is to make the professionals in charge of the test pay attention to the structural implication of observed inclined cracks that may lead to brittle collapse in members without transverse reinforcement.

20.5.5 — In regions of anchorage and lap splices, the appearance along the line of reinforcement of a series of short inclined cracks or horizontal cracks shall be evaluated.

R20.5.5 — Cracking along the axis of the reinforcement in anchorage zones may be related to high stresses associated with the transfer of forces between the reinforcement and the concrete. These cracks may be indicators of pending brittle failure of the element if they are associated with the main reinforcement. It is important that their causes and consequences be evaluated.

20.6 — **Provision for lower load rating**

If the structure under investigation does not satisfy conditions or criteria of 20.1.2, 20.5.2, or 20.5.3, the structure shall be permitted for use at a lower load rating based on the results of the load test or analysis, if approved by the building official.

R20.6 — Provision for lower load rating

Except for load tested members that have failed under a test (see 20.5), the building official may permit the use of a structure or member at a lower load rating that is judged to be safe and appropriate on the basis of the test results.

20.7 — **Safety**

20.7.1 — Load tests shall be conducted in such a manner as to provide for safety of life and structure during the test.

20.7.2 — No safety measures shall interfere with load test procedures or affect results.
CHAPTER 21 — SPECIAL PROVISIONS FOR SEISMIC DESIGN

CODE

21.0 — Notation

A_{ch} = \text{cross-sectional area of a structural member measured out-to-out of transverse reinforcement, mm}^2
A_{cp} = \text{area of concrete section, resisting shear, of an individual pier or horizontal wall segment, mm}^2
A_{cv} = \text{gross area of concrete section bounded by web thickness and length of section in the direction of shear force considered, mm}^2
A_g = \text{gross area of section, mm}^2
A_j = \text{effective cross-sectional area within a joint, see 21.5.3.1, in a plane parallel to plane of reinforcement generating shear in the joint, mm}^2. \text{ The joint depth shall be the overall depth of the column. Where a beam frames into a support of larger width, the effective width of the joint shall not exceed the smaller of: (a) beam width plus the joint depth (b) twice the smaller perpendicular distance from the longitudinal axis of the beam to the column side. See 21.5.3.1}
A_{sh} = \text{total cross-sectional area of transverse reinforcement (including crossties) within spacing s and perpendicular to dimension h_c, mm}^2
A_{vd} = \text{total area of reinforcement in each group of diagonal bars in a diagonally reinforced coupling beam, mm}^2
b = \text{effective compressive flange width of a structural member, mm}
b_w = \text{web width, or diameter of circular section, mm}
c = \text{distance from the extreme compression fiber to neutral axis, see 10.2.7, calculated for the factored axial force and nominal moment strength, consistent with the design displacement } \delta_u, \text{ resulting in the largest neutral axis depth, mm}
d = \text{effective depth of section, mm}
d_b = \text{bar diameter, mm}
E = \text{load effects of earthquake, or related internal moments and forces}
f_c' = \text{specified compressive strength of concrete, MPa}
\sqrt{f_c'} = \text{square root of specified compressive strength of concrete, MPa}
f_y = \text{specified yield strength of reinforcement, MPa}
f_{yh} = \text{specified yield strength of transverse reinforcement, MPa}
h_c = \text{cross-sectional dimension of column core measured center-to-center of confining reinforcement, mm}

COMMENTARY

21.0 — Notation

Units of measurement are given in the Notation to assist the user and are not intended to preclude the use of other correctly applied units for the same symbol, such as m or kN.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h_w)</td>
<td>height of entire wall or of the segment of wall considered, mm</td>
</tr>
<tr>
<td>(h_x)</td>
<td>maximum horizontal spacing of hoop or crosstie legs on all faces of the column, mm</td>
</tr>
<tr>
<td>(\ell_d)</td>
<td>development length for a straight bar, mm</td>
</tr>
<tr>
<td>(\ell_{dh})</td>
<td>development length for a bar with a standard hook as defined in Eq. (21-6), mm</td>
</tr>
<tr>
<td>(\ell_n)</td>
<td>clear span measured face-to-face of supports, mm</td>
</tr>
<tr>
<td>(\ell_o)</td>
<td>minimum length, measured from joint face along axis of structural member, over which transverse reinforcement must be provided, mm</td>
</tr>
<tr>
<td>(\ell_w)</td>
<td>length of entire wall or of segment of wall considered in direction of shear force, mm</td>
</tr>
<tr>
<td>(M_c)</td>
<td>moment at the face of the joint, corresponding to the nominal flexural strength of the column framing into that joint, calculated for the factored axial force, consistent with the direction of the lateral forces considered, resulting in the lowest flexural strength, mm-N. See 21.4.2.2</td>
</tr>
<tr>
<td>(M_g)</td>
<td>moment at the face of the joint, corresponding to the nominal flexural strength of the girder including slab where in tension, framing into that joint, mm-N. See 21.4.2.2</td>
</tr>
<tr>
<td>(M_{pr})</td>
<td>probable flexural moment strength of members, with or without axial load, determined using the properties of the member at the joint faces assuming a tensile strength in the longitudinal bars of at least (1.25f_y) and a strength reduction factor (\phi) of 1.0, mm-N</td>
</tr>
<tr>
<td>(M_s)</td>
<td>portion of slab moment balanced by support moment, mm-N</td>
</tr>
<tr>
<td>(M_u)</td>
<td>factored moment at section, mm-N</td>
</tr>
<tr>
<td>(s)</td>
<td>spacing of transverse reinforcement measured along the longitudinal axis of the structural member, mm</td>
</tr>
<tr>
<td>(s_o)</td>
<td>maximum spacing of transverse reinforcement, mm</td>
</tr>
<tr>
<td>(s_x)</td>
<td>longitudinal spacing of transverse reinforcement within the length (\ell_o), mm</td>
</tr>
<tr>
<td>(V_c)</td>
<td>nominal shear strength provided by concrete, N</td>
</tr>
<tr>
<td>(V_e)</td>
<td>design shear force determined from 21.3.4.1 or 21.4.5.1, N</td>
</tr>
<tr>
<td>(V_n)</td>
<td>nominal shear strength, N</td>
</tr>
<tr>
<td>(V_u)</td>
<td>factored shear force at section, N</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>angle between the diagonal reinforcement and the longitudinal axis of a diagonally reinforced coupling beam</td>
</tr>
<tr>
<td>(\alpha_c)</td>
<td>coefficient defining the relative contribution of concrete strength to wall strength. See Eq. (21-7)</td>
</tr>
<tr>
<td>(\delta_u)</td>
<td>design displacement, mm</td>
</tr>
<tr>
<td>(\rho)</td>
<td>ratio of nonprestressed tension reinforcement (= A_s/\ell d)</td>
</tr>
<tr>
<td>(\rho_g)</td>
<td>ratio of total reinforcement area to cross-sectional area of column</td>
</tr>
<tr>
<td>(\rho_n)</td>
<td>ratio of area of distributed reinforcement parallel to the plane of (A_{cv}) to gross concrete area perpendicular to that reinforcement</td>
</tr>
</tbody>
</table>
CODE

\[\rho_s = \text{ratio of volume of spiral reinforcement to the core volume confined by the spiral reinforcement (measured out-to-out)} \]

\[\rho_v = \text{ratio of area of distributed reinforcement perpendicular to the plane of } A_{cv} \text{ to gross concrete area } A_{cv} \]

\[\phi = \text{strength reduction factor} \]

COMMENTARY

21.1 — Definitions

Base of structure — Level at which earthquake motions are assumed to be imparted to a building. This level does not necessarily coincide with the ground level.

Boundary elements — Portions along structural wall and structural diaphragm edges strengthened by longitudinal and transverse reinforcement. Boundary elements do not necessarily require an increase in the thickness of the wall or diaphragm. Edges of openings within walls and diaphragms shall be provided with boundary elements as required by 21.6.6 or 21.7.5.3.

Collector elements — Elements that serve to transmit the inertial forces within structural diaphragms to members of the lateral-force-resisting systems.

Crosstie — A continuous reinforcing bar having a seismic hook at one end and a hook not less than 90 deg with at least a six-diameter extension at the other end. The hooks shall engage peripheral longitudinal bars. The 90 deg hooks of two successive crossties engaging the same longitudinal bars shall be alternated end for end.

Design displacement — Total lateral displacement expected for the design-basis earthquake, as required by the governing code for earthquake-resistant design.

Design load combinations — Combinations of factored loads and forces in 9.2.

Development length for a bar with a standard hook — The shortest distance between the critical section (where the strength of the bar is to be developed) and a tangent to the outer edge of the 90 deg hook.

Factored loads and forces — Loads and forces modified by the factors in 9.2.

Hoop — A closed tie or continuously wound tie. A closed tie can be made up of several reinforcement elements each having seismic hooks at both ends. A continuously wound tie shall have a seismic hook at both ends.

R21.1 — Definitions

The design displacement is an index of the maximum lateral displacement expected in design for the design-basis earthquake. In documents such as the National Earthquake Hazards Reduction Provisions (NEHRP), ASCE 7-95, the Uniform Building Code (UBC), the BOCA/National Building Code (BOCA) published by Building Officials and Code Administrators International, or the Standard Building Code (SBC) published by Southern Building Code Congress International, the design-basis earthquake has approximately a 90% probability of nonexceedance in 50 years. In those documents, the design displacement is calculated using static or dynamic linear elastic analysis under code-specified actions considering effects of cracked sections, effects of torsion, effects of vertical forces acting through lateral displacements, and modification factors to account for expected inelastic response. The design displacement generally is larger than the displacement calculated from design-level forces applied to a linear-elastic model of the building.
CODE

Lateral-force resisting system — That portion of the structure composed of members proportioned to resist forces related to earthquake effects.

Lightweight aggregate concrete — All-lightweight or sand-lightweight aggregate concrete made with lightweight aggregates conforming to 3.3.

Moment frame — Space frame in which members and joints resist forces through flexure, shear, and axial force. Moment frames shall be categorized as follows:

Intermediate moment frame — A frame complying with the requirements of 21.2.2.3 and 21.10 in addition to the requirements for ordinary moment frames.

Ordinary moment frame — A frame complying with the requirements of Chapters 1 through 18.

Special moment frame — A frame complying with the requirements of 21.2 through 21.5 in addition to the requirements for ordinary moment frames.

Seismic hook — A hook on a stirrup, hoop, or crosstie having a bend not less than 135 deg, except that circular hoops shall have a bend not less than 90 deg. Hooks shall have a six-diameter (but not less than 75 mm) extension that engages the longitudinal reinforcement and projects into the interior of the stirrup or hoop.

Special boundary elements — Boundary elements required by 21.6.6.2 or 21.6.6.3.

Specified lateral forces — Lateral forces corresponding to the appropriate distribution of the design base shear force prescribed by the governing code for earthquake-resistant design.

Structural diaphragms — Structural members, such as floor and roof slabs, that transmit inertial forces to lateral-force resisting members.

Structural trusses — Assemblages of reinforced concrete members subjected primarily to axial forces.

Structural walls — Walls proportioned to resist combinations of shears, moments, and axial forces induced by earthquake motions. A shearwall is a structural wall. Structural walls shall be categorized as follows:

Ordinary reinforced concrete structural wall — A wall complying with the requirements of Chapters 1 through 18.

COMMENTARY
CHAPTER 21

CODE

Ordinary structural plain concrete wall — A wall complying with the requirements of Chapter 22.

Special reinforced concrete structural wall — A wall complying with the requirements of 21.2 and 21.6 in addition to the requirements for ordinary reinforced concrete structural walls.

Strut — An element of a structural diaphragm used to provide continuity around an opening in the diaphragm.

Tie elements — Elements that serve to transmit inertia forces and prevent separation of building components such as footings and walls.

21.2 — General requirements

21.2.1 — Scope

21.2.1.1 — Chapter 21 contains special requirements for design and construction of reinforced concrete members of a structure for which the design forces, related to earthquake motions, have been determined on the basis of energy dissipation in the nonlinear range of response.

21.2.1.2 — In regions of low seismic risk or for structures assigned to low seismic performance or design categories, the provisions of Chapters 1 through 18 and 22 shall apply except as modified by the provisions of this chapter. Where the design seismic loads are computed using provisions for intermediate or special concrete systems, the requirements of Chapter 21 for intermediate or special systems, as applicable, shall be satisfied.

21.2.1.3 — In regions of moderate seismic risk or for structures assigned to intermediate seismic performance or design categories, intermediate or special moment frames, or ordinary or special reinforced concrete structural walls shall be used to resist forces induced by earthquake motions. Where the design seismic loads are computed using provisions for special concrete systems, the requirements of Chapter 21 for special systems, as applicable, shall be satisfied.

21.2.1.4 — In regions of high seismic risk or for structures assigned to high seismic performance or design categories, special moment frames, special reinforced concrete structural walls, and diaphragms and trusses complying with 21.2 through 21.8 shall be used to resist forces induced by earthquake motions. Frame members not proportioned to resist earthquake forces shall comply with 21.9.

R21.2 — General requirements

R21.2.1 — Scope

Chapter 21 contains provisions considered to be the minimum requirements for a reinforced concrete structure capable of sustaining a series of oscillations into the inelastic range of response without critical deterioration in strength. The integrity of the structure in the inelastic range of response should be maintained because the design forces defined in documents such as the UBC and the NEHRP are considered less than those corresponding to linear response at the anticipated earthquake intensity.

As a properly detailed reinforced concrete structure responds to strong ground motion, its effective stiffness decreases and its energy dissipation increases. These changes tend to reduce the response accelerations and lateral inertia forces relative to values that would occur were the structure to remain linearly elastic and lightly damped. Thus, the use of design forces representing earthquake effects such as those in Reference 21.1 requires that the lateral-force resisting system retain a substantial portion of its strength into the inelastic range under displacement reversals.

The provisions of Chapter 21 relate detailing requirements to type of structural framing, earthquake risk level at the site, level of energy dissipation planned in structural design, and occupancy. Earthquake risk levels are classified as low, moderate, and high. These risk levels are defined in the UBC. Regions of low, moderate, and high seismic risk correspond approximately to Zones 0 and 1; Zone 2; and Zones 3 and 4, respectively, of the Uniform Building Code. The 1994 NEHRP, ASCE 7-95 (formerly ANSI A58.1), the BOCA, and the SBC combine the seismic risk at the site of a structure and the occupancy of a structure into Seismic Performance Categories (SPC). Low, Intermediate, and High Seismic Performance Categories of 21.2.1.2; 21.2.1.3; and...
CODE

21.2.1.5 — A reinforced concrete structural system not satisfying the requirements of this chapter shall be permitted if it is demonstrated by experimental evidence and analysis that the proposed system will have strength and toughness equal to or exceeding those provided by a comparable monolithic reinforced concrete structure satisfying this chapter.

COMMENTARY

21.2.1.4 refer to SPC A and B; SPC C; and SPC D and E, respectively. In the 1997 NEHRP Provisions, Seismic Performance Categories have been renamed Seismic Design Categories (SDC). Low, Intermediate, and High Seismic Design Categories of 21.2.1.2; 21.2.1.3; and 21.2.1.4 refer to SDC A and B; SDC C; and SDC D, E, and F, respectively.

The design and detailing requirements should be compatible with the level of energy dissipation (or toughness) assumed in the computation of the design seismic loads. The terms ordinary, intermediate, and special are specifically used to facilitate this compatibility. The degree of required toughness, and therefore the level of required detailing, increases for structures progressing from ordinary through intermediate to special categories. It is essential that structures in higher seismic zones or assigned to higher seismic performance or design categories possess a higher degree of toughness. It is permitted, however, to design for higher toughness in the lower seismic zones or design categories and take advantage of the lower design force levels.

The provisions of Chapters 1 through 18 and 22 are intended to provide adequate toughness for structures assigned to ordinary categories. Therefore, it is not required to apply the provisions of Chapter 21 for ordinary moment frame or ordinary structural wall structures.

Chapter 21 requires some details for reinforced concrete structures assigned to intermediate seismic performance or design categories. These requirements are contained in 21.2.2.3 and 21.10.

In high seismic performance or design categories, structures may be subjected to strong ground shaking. Should the design earthquake ground shaking occur, structures designed using loads based upon factors for special moment frames or special walls are likely to experience multiple cycles of lateral displacements well beyond the point where reinforcement yields. The provisions of Sections 21.2 through 21.9 have been developed to provide the structure with adequate toughness for this special response.

The special proportioning and detailing requirements in Chapter 21 are based predominantly on field and laboratory experience with monolithic reinforced concrete building structures. Extrapolation of these requirements to other types of reinforced concrete structures should be based on evidence provided by field experience, tests, or analysis. Precast or prestressed members may be used for earthquake resistance if it is demonstrated that the resulting structure will provide the safety and serviceability levels (during and after the earthquake) at least as good as expected from monolithic construction.

The toughness requirements in 21.2.1.5 refer to the concern for the structural integrity of the entire lateral-force resisting system at lateral displacements anticipated for ground
21.2.2.1 — The interaction of all structural and nonstructural members that materially affect the linear and nonlinear response of the structure to earthquake motions shall be considered in the analysis.

21.2.2.2 — Rigid members assumed not to be a part of the lateral-force resisting system shall be permitted provided their effect on the response of the system is considered and accommodated in the structural design. Consequences of failure of structural and nonstructural members, which are not a part of the lateral-force resisting system, shall also be considered.

21.2.2.3 — Structural members below base of structure that are required to transmit to the foundation forces resulting from earthquake effects shall also comply with the requirements of Chapter 21.

21.2.2.4 — All structural members assumed not to be part of the lateral-force resisting system shall conform to 21.9.

R21.2.2 — Analysis and proportioning of structural members

It is assumed that the distribution of required strength to the various components of a lateral-force resisting system will be guided by the analysis of a linearly elastic model of the system acted upon by the factored forces required by the governing code. If nonlinear response history analyses are to be used, base motions should be selected after a detailed study of the site conditions and local seismic history.

Because the design basis admits nonlinear response, it is necessary to investigate the stability of the lateral-force resisting system as well as its interaction with other structural and nonstructural members at displacements larger than those indicated by linear analysis. To handle this without having to resort to nonlinear response analysis, one option is to multiply by a factor of at least two the displacements from linear analysis by using the factored lateral forces, unless the governing code specifies the factors to be used as in References 21.2 and 21.1. For lateral displacement calculations, assuming all the horizontal structural members to be fully cracked is likely to lead to better estimates of the possible drift than using uncracked stiffness for all members.

The main concern of Chapter 21 is the safety of the structure. The intent of 21.2.2.1 and 21.2.2.2 is to draw attention to the influence of nonstructural members on structural response and to hazards from falling objects.

Section 21.2.2.3 alerts the designer that the base of the structure as defined in analysis may not necessarily correspond to the foundation or ground level.

In selecting member sizes for earthquake-resistant structures, it is important to consider problems related to congestion of reinforcement. The designer should ensure that all reinforcement can be assembled and placed and that concrete can be cast and consolidated properly. Use of upper limits of reinforcement ratios permitted is likely to lead to insurmountable construction problems especially at frame joints.

21.2.3 — Strength reduction factors

Strength reduction factors shall be as given in 9.3.4.

21.2.4 — Concrete in members resisting earthquake-induced forces

21.2.4.1 — Compressive strength f'_c of the concrete shall be not less than 20 MPa.

21.2.4.2 — Compressive strength of lightweight concrete motions corresponding to the design earthquake. Depending on the energy-dissipation characteristics of the structural system used, such displacements may be larger than for a monolithic reinforced concrete structure.

R21.2.4 — Concrete in members resisting earthquake-induced forces

Requirements of this section refer to concrete quality in frames, trusses, or walls proportioned to resist earthquake-induced forces. The maximum design compressive strength of lightweight aggregate concrete to be used in structural
aggregate concrete used in design shall not exceed 30 MPa. Lightweight aggregate concrete with higher design compressive strength shall be permitted if demonstrated by experimental evidence that structural members made with that lightweight aggregate concrete provide strength and toughness equal to or exceeding those of comparable members made with normalweight aggregate concrete of the same strength.

21.2.5 — Reinforcement in members resisting earthquake-induced forces

Reinforcement resisting earthquake-induced flexural and axial forces in frame members and in structural wall boundary elements shall comply with ASTM A 706M. ASTM A 615M Grades 300 and 420 reinforcement shall be permitted in these members if:

(a) The actual yield strength based on mill tests does not exceed the specified yield strength by more than 120 MPa (retests shall not exceed this value by more than an additional 20 MPa); and

(b) The ratio of the actual ultimate tensile strength to the actual tensile yield strength is not less than 1.25.

21.2.6 — Mechanical splices

Use of longitudinal reinforcement with strength substantially higher than that assumed in design will lead to higher shear and bond stresses at the time of development of yield moments. These conditions may lead to brittle failures in shear or bond and should be avoided even if such failures may occur at higher loads than those anticipated in design. Therefore, a ceiling is placed on the actual yield strength of the steel [see 21.2.5(a)].

The requirement for an ultimate tensile strength larger than the yield strength of the reinforcement [21.2.5(b)] is based on the assumption that the capability of a structural member to develop inelastic rotation capacity is a function of the length of the yield region along the axis of the member. In interpreting experimental results, the length of the yield region has been related to the relative magnitudes of ultimate and yield moments. According to this interpretation, the larger the ratio of ultimate to yield moment, the longer the yield region. Chapter 21 requires that the ratio of actual tensile strength to actual yield strength is not less than 1.25. Members with reinforcement not satisfying this condition can also develop inelastic rotation, but their behavior is sufficiently different to exclude them from direct consideration on the basis of rules derived from experience with members reinforced with strain-hardening steel.

Recommended detailing practice would preclude the use of splices in regions of potential yield in members resisting earthquake effects. If use of mechanical splices in regions...
21.2.6.1 — Mechanical splices shall be classified as either Type 1 or Type 2 mechanical splices, as follows:

(a) Type 1 mechanical splices shall conform to 12.14.3.2;

(b) Type 2 mechanical splices shall conform to 12.14.3.2 and shall develop the specified tensile strength of the spliced bar.

21.2.6.2 — Type 1 mechanical splices shall not be used within a distance equal to twice the member depth from the column or beam face or from sections where yielding of the reinforcement is likely to occur as a result of inelastic lateral displacements. Type 2 mechanical splices shall be permitted to be used at any location.

21.2.7 — Welded splices

21.2.7.1 — Welded splices in reinforcement resisting earthquake-induced forces shall conform to 12.14.3.3 and shall not be used within a distance equal to twice the member depth from the column or beam face or from sections where yielding of the reinforcement is likely to occur as a result of inelastic lateral displacements.

21.2.7.2 — Welding of stirrups, ties, inserts, or other similar elements to longitudinal reinforcement that is required by design shall not be permitted.

R21.2.7 — Welded splices

R21.2.7.1 — Welding of reinforcement should be according to ANSI/AWS D1.4 as required in Chapter 3. The locations of welded splices are restricted because reinforcement tension stresses in yielding regions can exceed the strength requirements of 12.14.3.3.

R21.2.7.2 — Welding of crossing reinforcing bars can lead to local embrittlement of the steel. If welding of crossing bars is used to facilitate fabrication or placement of reinforcement, it should be done only on bars added for such purposes. The prohibition of welding crossing reinforcing bars does not apply to bars that are welded with welding operations under continuous, competent control as in the manufacture of welded wire fabric.

21.3 — Flexural members of special moment frames

21.3.1 — Scope

Requirements of 21.3 apply to special moment frame members (a) resisting earthquake-induced forces and (b) proportioned primarily to resist flexure. These frame members shall also satisfy the conditions of 21.3.1.1 through 21.3.1.4.

R21.3 — Flexural members of special moment frames

R21.3.1 — Scope

This section refers to beams of special moment frames resisting lateral loads induced by earthquake motions. Any frame member subjected to a factored axial compressive force exceeding \((A_{gc}f_c'/10)\) is to be proportioned and detailed as described in 21.4.
CODE

21.3.1.1 — Factored axial compressive force on the member shall not exceed \((A_g f_c/10)\).

21.3.1.2 — Clear span for the member shall not be less than four times its effective depth.

21.3.1.3 — The width-to-depth ratio shall not be less than 0.3.

21.3.1.4 — The width shall not be (a) less than 250 mm, and (b) more than the width of the supporting member (measured on a plane perpendicular to the longitudinal axis of the flexural member) plus distances on each side of the supporting member not exceeding three-fourths of the depth of the flexural member.

21.3.2 — Longitudinal reinforcement

21.3.2.1 — At any section of a flexural member, except as provided in 10.5.3, for top as well as for bottom reinforcement, the amount of reinforcement shall not be less than that given by Eq. \((10-3)\) but not less than \(1.4bwd/f_y\), and the reinforcement ratio \(\rho\) shall not exceed 0.025. At least two bars shall be provided continuously both top and bottom.

21.3.2.2 — Positive moment strength at joint face shall be not less than one-half of the negative moment strength provided at that face of the joint. Neither the negative nor the positive moment strength at any section along member length shall be less than one-fourth the maximum moment strength provided at face of either joint.

21.3.2.3 — Lap splices of flexural reinforcement shall be permitted only if hoop or spiral reinforcement is provided over the lap length. Maximum spacing of the transverse reinforcement enclosing the lapped bars shall not exceed \(d/4\) or 100 mm. Lap splices shall not be used (a) within the joints, (b) within a distance of twice the member depth from the face of the joint, and (c) at locations where analysis indicates flexural yielding caused by inelastic lateral displacements of the frame.

21.3.2.4 — Mechanical splices shall conform to 21.2.6 and welded splices shall conform to 21.2.7.1.

21.3.3 — Transverse reinforcement

21.3.3.1 — Hoops shall be provided in the following regions of frame members:

(a) Over a length equal to twice the member depth measured from the face of the supporting

COMMENTSARY

Experimental evidence\(^2\) indicates that, under reversals of displacement into the nonlinear range, behavior of continuous members having length-to-depth ratios of less than four is significantly different from the behavior of relatively slender members. Design rules derived from experience with relatively slender members do not apply directly to members with length-to-depth ratios less than four, especially with respect to shear strength.

Geometric constraints indicated in 21.3.1.3 and 21.3.1.4 were derived from practice with reinforced concrete frames resisting earthquake-induced forces.\(^2\)

R21.3.2 — Longitudinal reinforcement

Section 10.3.3 limits the tensile reinforcement ratio in a flexural member to a fraction of the amount that would produce balanced conditions. For a section subjected to bending only and loaded monotonically to yielding, this approach is feasible because the likelihood of compressive failure can be estimated reliably with the behavioral model assumed for determining the reinforcement ratio corresponding to balanced failure. The same behavioral model (because of incorrect assumptions such as linear strain distribution, well-defined yield point for the steel, limiting compressive strain in the concrete of 0.003, and compressive stresses in the shell concrete) fails to describe the conditions in a flexural member subjected to reversals of displacements well into the inelastic range. Thus, there is little rationale for continuing to refer to balanced conditions in earthquake-resistant design of reinforced concrete structures.

The limiting reinforcement ratio of 0.025 is based primarily on considerations of steel congestion and, indirectly, on limiting shear stresses in girders of typical proportions. The requirement of at least two bars, top and bottom, refers again to construction rather than behavioral requirements.

Lap splices of reinforcement (see 21.3.2.3) are prohibited at regions where flexural yielding is anticipated because such splices are not reliable under conditions of cyclic loading into the inelastic range. Transverse reinforcement for lap splices at any location is mandatory because of the likelihood of loss of shell concrete.

R21.3.3 — Transverse reinforcement

Transverse reinforcement is required primarily to confine the concrete and maintain lateral support for the reinforcing bars in regions where yielding is expected. Examples of hoops suitable for flexural members of frames are shown in Fig. R21.3.3.
CODE

member toward midspan, at both ends of the flexural member;

(b) Over lengths equal to twice the member depth on both sides of a section where flexural yielding is likely to occur in connection with inelastic lateral displacements of the frame.

21.3.3.2 — The first hoop shall be located not more than 50 mm from the face of a supporting member. Maximum spacing of the hoops shall not exceed (a) $d/4$, (b) eight times the diameter of the smallest longitudinal bars, (c) 24 times the diameter of the hoop bars, and (d) 300 mm.

21.3.3.3 — Where hoops are required, longitudinal bars on the perimeter shall have lateral support conforming to 7.10.5.3.

21.3.3.4 — Where hoops are not required, stirrups with seismic hooks at both ends shall be spaced at a distance not more than $d/2$ throughout the length of the member.

21.3.3.5 — Stirrups or ties required to resist shear shall be hoops over lengths of members in 21.3.3, 21.4.4, and 21.5.2.

21.3.3.6 — Hoops in flexural members shall be permitted to be made up of two pieces of reinforcement: a stirrup having seismic hooks at both ends and closed by a crosstie. Consecutive crossties engaging the same longitudinal bar shall have their 90 deg hooks at opposite sides of the flexural member. If the longitudinal reinforcing bars secured by the crossties are confined by a slab on only one side of the flexural frame member, the 90 deg hooks of the crossties shall be placed on that side.

COMMENTARY

In the case of members with varying strength along the span or members for which the permanent load represents a large proportion of the total design load, concentrations of inelastic rotation may occur within the span. If such a condition is anticipated, transverse reinforcement also should be provided in regions where yielding is expected.

Because spalling of the concrete shell is anticipated during strong motion, especially at and near regions of flexural yielding, all web reinforcement should be provided in the form of closed hoops as defined in 21.3.3.5.

Fig. R21.3.3—Examples of overlapping hoops
CODE

21.3.4 — Shear strength requirements

21.3.4.1 — Design forces

The design shear force V_e shall be determined from consideration of the statical forces on the portion of the member between faces of the joints. It shall be assumed that moments of opposite sign corresponding to probable flexural moment strength M_{pr} act at the joint faces and that the member is loaded with the factored tributary gravity load along its span.

COMMENTARY

R21.3.4 — Shear strength requirements

R21.3.4.1 — Design forces

In determining the equivalent lateral forces representing earthquake effects for the type of frames considered, it is assumed that frame members will dissipate energy in the nonlinear range of response. Unless a frame member possesses a strength that is a multiple on the order of 3 or 4 of the design forces, it should be assumed that it will yield in the event of a major earthquake. The design shear force should be a good approximation of the maximum shear that may develop in a member. Therefore, required shear strength for frame members is related to flexural strengths of the designed member rather than to factored shear forces indicated by lateral load analysis. The conditions described by 21.3.4.1 are illustrated in Fig. R21.3.4.

Because the actual yield strength of the longitudinal reinforcement may exceed the specified yield strength and

Fig. R21.3.4—Design shears for girders and columns

Notes:

1. Direction of shear force V_e depends on relative magnitudes of gravity loads and shear generated by end moments.

2. End moments M_{pr} based on steel tensile stress $= 1.25 f_y$, where f_y is the specified yield strength. (Both end moments should be considered in both directions, clockwise and counter-clockwise)

3. End moment M_{pr} for columns need not be greater than moments generated by the M_{pr} of the beams framing into the beam-column joints. V_e shall never be less than that required by analysis of the structure.
CODE

21.3.4.2 — Transverse reinforcement

Transverse reinforcement over the lengths identified in 21.3.3.1 shall be proportioned to resist shear assuming $V_c = 0$ when both of the following conditions occur:

(a) The earthquake-induced shear force calculated in accordance with 21.3.4.1 represents one-half or more of the maximum required shear strength within those lengths;

(b) The factored axial compressive force including earthquake effects is less than $A_g f_c / 20$.

COMMENTARY

because strain hardening of the reinforcement is likely to take place at a joint subjected to large rotations, required shear strengths are determined using a stress of at least $1.25 f_y$ in the longitudinal reinforcement.

R21.3.4.2 — Transverse reinforcement

Experimental studies21,10,21,11 of reinforced concrete members subjected to cyclic loading have demonstrated that more shear reinforcement is required to ensure a flexural failure if the member is subjected to alternating nonlinear displacements than if the member is loaded in only one direction: the necessary increase of shear reinforcement being higher in the case of no axial load. This observation is reflected in the code (21.3.4.2) by eliminating the term representing the contribution of concrete to shear strength. The added conservatism on shear is deemed necessary in locations where potential flexural hinging may occur. However, this stratagem, chosen for its relative simplicity, should not be interpreted to mean that no concrete is required to resist shear. On the contrary, it may be argued that the concrete core resists all of the shear with the shear (transverse) reinforcement confining and strengthening the concrete. The confined concrete core plays an important role in the behavior of the beam and should not be reduced to a minimum just because the design expression does not explicitly recognize it.

R21.4 — Special moment frame members subjected to bending and axial load

21.4.1 — Scope

The requirements of this section apply to special moment frame members (a) resisting earthquake-induced forces and (b) having a factored axial force exceeding $(A_g f_c / 10)$. These frame members shall also satisfy the conditions of 21.4.1.1 and 21.4.1.2.

21.4.1.1 — The shortest cross-sectional dimension, measured on a straight line passing through the geometric centroid, shall not be less than 300 mm.

21.4.1.2 — The ratio of the shortest cross-sectional dimension to the perpendicular dimension shall not be less than 0.4.

21.4.2 — Minimum flexural strength of columns

21.4.2.1 — Flexural strength of any column proportioned to resist a factored axial compressive force exceeding $(A_g f_c / 10)$ shall satisfy 21.4.2.2 or 21.4.2.3.

Lateral strength and stiffness of columns not satisfying 21.4.2.2 shall be ignored in determining the calculated strength and stiffness of the structure, but such columns shall conform to 21.9.

R21.4.2 — Minimum flexural strength of columns

The intent of 21.4.2.2 is to reduce the likelihood of yielding in columns that are considered as part of the lateral force resisting system. If columns are not stronger than beams framing into a joint, there is likelihood of inelastic action. In the worst case of weak columns, flexural yielding can occur at both ends of all columns in a given story, resulting in a column failure mechanism that can lead to collapse.
CODE

21.4.2.2 — The flexural strengths of the columns shall satisfy Eq. (21-1)

\[\Sigma M_e \geq (6/5) \Sigma M_g \]

(21-1)

\[\Sigma M_e = \text{sum of moments at the faces of the joint corresponding to the nominal flexural strength of the columns framing into that joint. Column flexural strength shall be calculated for the factored axial force, consistent with the direction of the lateral forces considered, resulting in the lowest flexural strength.} \]

\[\Sigma M_g = \text{sum of moments at the faces of the joint corresponding to the nominal flexural strengths of the girders framing into that joint. In T-beam construction, where the slab is in tension under moments at the face of the joint, slab reinforcement within an effective slab width defined in 8.10 shall be assumed to contribute to flexural strength if the slab reinforcement is developed at the critical section for flexure.} \]

Flexural strengths shall be summed such that the column moments oppose the beam moments. Eq. (21-1) shall be satisfied for beam moments acting in both directions in the vertical plane of the frame considered.

21.4.2.3 — If 21.4.2.2 is not satisfied at a joint, columns supporting reactions from that joint shall be provided with transverse reinforcement as specified in 21.4.4.1 through 21.4.4.3 over their full height.

21.4.3 — Longitudinal reinforcement

21.4.3.1 — The reinforcement ratio \(\rho_g \) shall not be less than 0.01 and shall not exceed 0.06.

21.4.3.2 — Mechanical splices shall conform to 21.2.6 and welded splices shall conform to 21.2.7.1. Lap splices shall be permitted only within the center half of the member length, shall be designed as tension lap splices, and shall be enclosed within transverse reinforcement conforming to 21.4.4.2 and 21.4.4.3.

COMMENTARY

In 21.4.2.2, the nominal strengths of the girders and columns are calculated at the joint faces, and those strengths are compared directly using Eq. (21-1). The 1995 code required design strengths to be compared at the center of the joint, which typically produced similar results but with added computational effort.

When determining the nominal flexural strength of a girder section in negative bending (top in tension), longitudinal reinforcement contained within an effective flange width of a top slab that acts monolithically with the girder increases the girder strength. Research on beam-column subassemblies under lateral loading indicates that using the effective flange widths defined in 8.10 gives reasonable estimates of girder negative bending strengths of interior connections at interstory displacement levels approaching 2% of story height. This effective width is conservative where the slab terminates in a weak spandrel.

If 21.4.2.2 cannot be satisfied at a joint, any positive contribution of the column or columns involved to the lateral strength and stiffness of the structure is to be ignored. Negative contributions of the column or columns should not be ignored. For example, ignoring the stiffness of the columns ought not be used as a justification for reducing the design base shear. If inclusion of those columns in the analytical model of the building results in an increase in torsional effects, the increase should be considered as required by the governing code.

R21.4.3 — Longitudinal reinforcement

The lower limit of the reinforcement ratio is to control time-dependent deformations and to have the yield moment exceed the cracking moment. The upper limit of the section reflects concern for steel congestion, load transfer from floor elements to column especially in low-rise construction, and the development of high shear stresses.

Spalling of the shell concrete, which is likely to occur near the ends of the column in frames of typical configuration, makes lap splices in these locations vulnerable. If lap splices are to be used at all, they should be located near the midheight where stress reversal is likely to be limited to a smaller stress range than at locations near the joints. Special transverse reinforcement is required along the lap-splice length because of the uncertainty in moment distributions along the height and the need for confinement of lap splices subjected to stress reversals. 21.13
CODE

21.4.4 — Transverse reinforcement

21.4.4.1 — Transverse reinforcement as required below shall be provided unless a larger amount is required by 21.4.3.1 or 21.4.5.

(a) The volumetric ratio of spiral or circular hoop reinforcement ρ_s shall not be less than that required by Eq. (21-2).

\[
\rho_s = 0.12 \frac{f'_c}{f_{yh}}
\]
(21-2)
and shall not be less than that required by Eq. (10-6).

(b) The total cross-sectional area of rectangular hoop reinforcement shall not be less than that required by Eq. (21-3) and (21-4).

\[
A_{sh} = 0.3 (sh_c f'_c / f_{yh}) \left(\frac{A_g}{A_{ch}} - 1\right)
\]
(21-3)
\[
A_{sh} = 0.09 sh_c f'_c / f_{yh}
\]
(21-4)

(c) Transverse reinforcement shall be provided by either single or overlapping hoops. Crossties of the same bar size and spacing as the hoops shall be permitted. Each end of the crosstie shall engage a peripheral longitudinal reinforcing bar. Consecutive crossties shall be alternated end for end along the longitudinal reinforcement.

(d) If the design strength of member core satisfies the requirement of the design loading combinations including earthquake effect, Eq. (21-3) and (10-6) need not be satisfied.

(e) If the thickness of the concrete outside the confining transverse reinforcement exceeds 100 mm, additional transverse reinforcement shall be provided at a spacing not exceeding 300 mm. Concrete cover on the additional reinforcement shall not exceed 100 mm.

COMMENTARY

21.4.4 — Transverse reinforcement

Requirements of this section are concerned with confining the concrete and providing lateral support to the longitudinal reinforcement.

The effect of helical (spiral) reinforcement and adequately configured rectangular hoop reinforcement on strength and ductility of columns is well established. While analytical procedures exist for calculation of strength and ductility capacity of columns under axial and moment reversals, the axial load and deformation demands required during earthquake loading are not known with sufficient accuracy to justify calculation of required transverse reinforcement as a function of design earthquake demands. Instead, Eq. (10-6) and (21-3) are required, with the intent that spalling of shell concrete will not result in a loss of axial load strength of the column. Eq. (21-2) and (21-4) govern for large-diameter columns, and are intended to ensure adequate flexural curvature capacity in yielding regions.

Fig. R21.4.4 shows an example of transverse reinforcement provided by one hoop and three crossties. Crossties with a 90 deg hook are not as effective as either crossties with 135 deg hooks or hoops in providing confinement. Tests show that if crosstie ends with 90 deg hooks are alternated, confinement will be sufficient.

Sections 21.4.4.2 and 21.4.4.3 are interrelated requirements for configuration of rectangular hoop reinforcement. The requirement that spacing not exceed one-quarter of the minimum member dimension is to obtain adequate concrete confinement. The requirement that spacing not exceed six bar diameters is intended to restrain longitudinal reinforcement buckling after spalling. The 100 mm spacing is for concrete confinement; 21.4.4.2 permits this limit to be relaxed to a maximum of 152 mm if the spacing of crossties or legs of overlapping hoops is limited to 203 mm.

The unreinforced shell may spall as the column deforms to resist earthquake effects. Separation of portions of the shell from the core caused by local spalling creates a falling hazard. The additional reinforcement is required to reduce the risk of portions of the shell falling away from the column.

Section 21.4.4.4 stipulates a minimum length over which to provide closely-spaced transverse reinforcement at the member ends, where flexural yielding normally occurs. Research results indicate that the length should be increased by 50 percent or more in locations, such as the base of the building, where axial loads and flexural demands may be especially high.

Columns supporting discontinued stiff members, such as walls or trusses, may develop considerable inelastic response. Therefore, it is required that these columns have special transverse reinforcement throughout their length. This covers all columns beneath the level at which the stiff member has been discontinued, unless the factored forces corresponding to earthquake effect are low.
21.4.4.2 — Transverse reinforcement shall be spaced at a distance not exceeding (a) one-quarter of the minimum member dimension, (b) six times the diameter of the longitudinal reinforcement, and (c) \(s_x \), as defined by Eq. (21-5).

\[
s_x = 100 + \left(\frac{350 - h_x}{3} \right)
\]

(21-5)

The value of \(s_x \) shall not exceed 150 mm and need not be taken less than 100 mm.

21.4.4.3 — Crossties or legs of overlapping hoops shall not be spaced more than 350 mm on center in the direction perpendicular to the longitudinal axis of the structural member.

21.4.4.4 — Transverse reinforcement in amount specified in 21.4.4.1 through 21.4.4.3 shall be provided over a length \(l_o \) from each joint face and on both sides of any section where flexural yielding is likely to occur as a result of inelastic lateral displacements of the frame. The length \(l_o \) shall not be less than (a) the depth of the member at the joint face or at the section where flexural yielding is likely to occur, (b) one-sixth of the clear span of the member, and (c) 500 mm.

21.4.4.5 — Columns supporting reactions from discontinued stiff members, such as walls, shall be provided with transverse reinforcement as required in 21.4.4.1 through 21.4.4.3 over their full height beneath the level at which the discontinuity occurs if the factored axial compressive force in these members, related to earthquake effect, exceeds \((A_f f'_c/10) \). Transverse reinforcement as required in 21.4.4.1 through 21.4.4.3 shall extend into the discontinued member for at least the development length of the largest longitudinal reinforcement in the column in accordance with 21.5.4. If the lower end of the column terminates on a wall, transverse reinforcement as required in 21.4.4.1 through 21.4.4.3 shall extend into the wall for at least the development length of the largest longitudinal bar in the column at the point of termination. If the column terminates on a footing or mat, transverse reinforcement as required in 21.4.4.1 through 21.4.4.3 shall extend at least 300 mm into the footing or mat.

Field observations have shown significant damage to columns in the unconfined region near the midheight. The requirements of 21.4.4.6 are to ensure a relatively uniform toughness of the column along its length.
CHAPTER 21

CODE

21.4.4.6 — Where transverse reinforcement, as specified in 21.4.4.1 through 21.4.4.3, is not provided throughout the full length of the column, the remainder of the column length shall contain spiral or hoop reinforcement with center-to-center spacing not exceeding the smaller of six times the diameter of the longitudinal column bars or 150 mm.

21.4.5 — Shear strength requirements

21.4.5.1 — Design forces

The design shear force V_e shall be determined from consideration of the maximum forces that can be generated at the faces of the joints at each end of the member. These joint forces shall be determined using the maximum probable moment strengths M_{pr} of the member associated with the range of factored axial loads on the member. The member shears need not exceed those determined from joint strengths based on the probable moment strength M_{pr} of the transverse members framing into the joint. In no case shall V_e be less than the factored shear determined by analysis of the structure.

21.4.5.2 — Transverse reinforcement over the lengths l_o, identified in 21.4.4.4, shall be proportioned to resist shear assuming $V_c = 0$ when both the following conditions occur:

(a) The earthquake-induced shear force, calculated in accordance with 21.4.5.1, represents one-half or more of the maximum required shear strength within those lengths;

(b) The factored axial compressive force including earthquake effects is less than $A_g f_c'/20$.

21.5 — Joints of special moment frames

21.5.1 — General requirements

21.5.1.1 — Forces in longitudinal beam reinforcement at the joint face shall be determined by assuming that the stress in the flexural tensile reinforcement is $1.25f_y$.

21.5.1.2 — Strength of joint shall be governed by the appropriate strength reduction factors in 9.3.

21.5.1.3 — Beam longitudinal reinforcement terminated in a column shall be extended to the far face of the confined column core and anchored in tension according to 21.5.4 and in compression according to Chapter 12.

COMMENTARY

R21.4.4.6 — The provisions of 21.4.4.6 were added to the 1989 code to provide reasonable protection and ductility to the midheight of columns between transverse reinforcement. Observations after earthquakes have shown significant damage to columns in the nonconfined region, and the minimum ties or spirals required should provide a more uniform toughness of the column along its length.

R21.4.5 — Shear strength requirements

R21.4.5.1 — Design forces

The provisions of 21.3.4.1 also apply to members subjected to axial loads (for example, columns). Above the ground floor the moment at a joint may be limited by the flexural strength of the beams framing into the joint. Where beams frame into opposite sides of a joint, the combined strength may be the sum of the negative moment strength of the beam on one side of the joint and the positive moment strength of the beam on the other side of the joint. Moment strengths are to be determined using a strength reduction factor of 1.0 and reinforcing steel stress equal to at least $1.25f_y$. Distribution of the combined moment strength of the beams to the columns above and below the joint should be based on analysis. The value of M_{pr} in Fig. R21.3.4 may be computed from the flexural member strengths at the beam-column joints.

R21.5 — Joints of special moment frames

R21.5.1 — General requirements

Development of inelastic rotations at the faces of joints of reinforced concrete frames is associated with strains in the flexural reinforcement well in excess of the yield strain. Consequently, joint shear force generated by the flexural reinforcement is calculated for a stress of $1.25f_y$ in the reinforcement (see 21.5.1.1). A detailed explanation of the reasons for the possible development of stresses in excess of the yield strength in girder tensile reinforcement is provided in Reference 21.7.
CODE

21.5.1.4 — Where longitudinal beam reinforcement extends through a beam-column joint, the column dimension parallel to the beam reinforcement shall not be less than 20 times the diameter of the largest longitudinal bar for normalweight concrete. For lightweight concrete, the dimension shall be not less than 26 times the bar diameter.

21.5.2 — Transverse reinforcement

21.5.2.1 — Transverse hoop reinforcement in 21.4.4 shall be provided within the joint, unless the joint is confined by structural members in 21.5.2.2.

21.5.2.2 — Within the depth of the shallowest framing member, transverse reinforcement equal to at least one-half the amount required by 21.4.4.1 shall be provided where members frame into all four sides of the joint and where each member width is at least three-fourths the column width. At these locations, the spacing required in 21.4.4.2(b) shall be permitted to be increased to 150 mm.

21.5.2.3 — Transverse reinforcement as required by 21.4.4 shall be provided through the joint to provide confinement for longitudinal beam reinforcement outside the column core if such confinement is not provided by a beam framing into the joint.

21.5.3 — Shear strength

21.5.3.1 — The nominal shear strength of the joint shall not be taken greater than the forces specified below for normalweight aggregate concrete.

For joints confined on all four faces \(1.7 \sqrt{f_{c}'} A_j \)

For joints confined on three faces or on two opposite faces ... \(1.25 \sqrt{f_{c}'} A_j \)

For others .. \(1.0 \sqrt{f_{c}'} A_j \)

A member that frames into a face is considered to provide confinement to the joint if at least three-quarters

COMMENTARY

R21.5.1.4 — Research\(^{21.17-21.21}\) has shown that straight beam bars may slip within the beam-column joint during a series of large moment reversals. The bond stresses on these straight bars may be very large. To substantially reduce slip during the formation of adjacent beam hinging, it would be necessary to have a ratio of column dimension to bar diameter of approximately 1/32, which would result in very large joints. On reviewing the available tests, the limit of 1/20 of the column depth in the direction of loading for the maximum size of beam bars for normalweight concrete and a limit of 1/26 for lightweight concrete were chosen. Due to the lack of specific data, the modification for lightweight concrete used a factor of 1.3 from Chapter 12. These limits provide reasonable control on the amount of potential slip of the beam bars in a beam-column joint, considering the number of anticipated inelastic excursions of the building frames during a major earthquake. A thorough treatment of this topic is given in Reference 21.22.

R21.5.2 — Transverse reinforcement

However low the calculated shear force in a joint of a frame resisting earthquake-induced forces, confining reinforcement (21.4.4) should be provided through the joint around the column reinforcement (21.5.2.1). In 21.5.2.2, confining reinforcement may be reduced if horizontal members frame into all four sides of the joint. The 1989 code provided a maximum limit on spacing to these areas based on available data.\(^{21.23-21.26}\)

Section 21.5.2.3 refers to a joint where the width of the girder exceeds the corresponding column dimension. In that case, girder reinforcement not confined by the column reinforcement should be provided lateral support either by a girder framing into the same joint or by transverse reinforcement.

R21.5.3 — Shear strength

The requirements in Chapter 21 for proportioning joints are based on Reference 21.7 in that behavioral phenomena within the joint are interpreted in terms of a nominal shear strength of the joint. Because tests of joints\(^{21.17}\) and deep beams\(^{21.8}\) indicated that shear strength was not as sensitive to joint (shear) reinforcement as implied by the expression developed by ACI Committee 326\(^{21.27}\) for beams and adopted to apply to joints by ACI Committee 352\(^{21.7}\). Committee 318 set the strength of the joint as a function of only the compressive strength of the concrete (21.5.3) and to require a minimum amount of transverse reinforcement in the joint (21.5.2). The effective area of joint \(A_j\) is illustrated in Fig. R21.5.3. In no case is \(A_j\) greater than the column cross-sectional area.
of the face of the joint is covered by the framing member. A joint is considered to be confined if such confining members frame into all faces of the joint.

21.5.3.2 — For lightweight aggregate concrete, the nominal shear strength of the joint shall not exceed three-quarters of the limits given in 21.5.3.1.

21.5.4 — Development length of bars in tension

21.5.4.1 — The development length l_{dh} for a bar with a standard 90 deg hook in normalweight aggregate concrete shall not be less than the largest of $8d_b$, 150 mm, and the length required by Eq. (21-6).

$$l_{dh} = f_y d_b / (5.4 f'_c)$$ \hspace{1cm} (21-6)

for bar sizes No. 10 through No. 36.

For lightweight aggregate concrete, the development length for a bar with a standard 90 deg hook shall not be less than the largest of $10d_b$, 190 mm, and 1.25 times that required by Eq. (21-6).

The 90 deg hook shall be located within the confined core of a column or of a boundary element.

21.5.4.2 — For bar sizes No. 10 through No. 36, the development length l_{d} for a straight bar shall not be less than (a) 2.5 times the length required by 21.5.4.1 if the depth of the concrete cast in one lift beneath the bar does not exceed 300 mm, and (b) 3.5 times the length required by 21.5.4.1 if the depth of the concrete cast in one lift beneath the bar exceeds 300 mm.

The three levels of shear strength required by 21.5.3.1 are based on the recommendation of ACI Committee 352.21.7

Test data reviewed by the committee21.25 indicate that the lower value given in 21.5.3.1 of the 1983 code was conservative when applied to corner joints.

R21.5.4 — Development length of bars in tension

Minimum development length for deformed bars with standard hooks embedded in normalweight concrete is determined using Eq. (21-6). Eq. (21-6) is based on the requirements of 12.5. Because Chapter 21 stipulates that the hook is to be embedded in confined concrete, the coefficients 0.7 (for concrete cover) and 0.8 (for ties) have been incorporated in the constant used in Eq. (21-6). The development length that would be derived directly from 12.5 is increased to reflect the effect of load reversals.

The development length in tension for a reinforcing bar with a standard hook is defined as the distance, parallel to the bar, from the critical section (where the bar is to be developed) to a tangent drawn to the outside edge of the hook. The tangent is to be drawn perpendicular to the axis of the bar. (Fig. R12.5)

Factors such as the actual stress in the reinforcement being more than the yield force and the effective development length not necessarily starting at the face of the joint were implicitly considered in the development of the expression for basic development length that has been used as the basis for Eq. (21-6).

For lightweight aggregate concrete, the length required by Eq. (21-6) is to be increased by 25 percent to compensate

CODE

21.5.4.3 — Straight bars terminated at a joint shall pass through the confined core of a column or of a boundary element. Any portion of the straight embedment length not within the confined core shall be increased by a factor of 1.6.

21.5.4.4 — If epoxy-coated reinforcement is used, the development lengths in 21.5.4.1 through 21.5.4.3 shall be multiplied by the applicable factor in 12.2.4 or 12.5.3.6.

COMMENTARY

for variability of bond characteristics of reinforcing bars in various types of lightweight aggregate concrete.

Section 21.5.4.2 specifies the minimum development length for straight bars as a multiple of the length indicated by 21.5.4.1. Section 21.5.4.2(b) refers to top bars.

If the required straight embedment length of a reinforcing bar extends beyond the confined volume of concrete (as defined in 21.3.3, 21.4.4, or 21.5.2), the required development length is increased on the premise that the limiting bond stress outside the confined region is less than that inside.

\[
\ell_{dm} = 1.6(\ell_d - \ell_{dc}) + \ell_{dc}
\]

or

\[
\ell_{dm} = 1.6\ell_d - 0.6\ell_{dc}
\]

where:

- \(\ell_{dm}\) = required development length if bar is not entirely embedded in confined concrete;
- \(\ell_d\) = required development length for straight bar embedded in confined concrete (21.5.4.3);
- \(\ell_{dc}\) = length of bar embedded in confined concrete

Lack of reference to No. 43 and No. 57 bars in 21.5.4 is due to the paucity of information on anchorage of such bars subjected to load reversals simulating earthquake effects.

R21.6 — Special reinforced concrete structural walls and coupling beams

21.6.1 — Scope

The requirements of this section apply to special reinforced concrete structural walls and coupling beams serving as part of the earthquake force-resisting system.

21.6.2 — Reinforcement

21.6.2.1 — The distributed web reinforcement ratios, \(\rho_v\) and \(\rho_n\), for structural walls shall not be less than 0.0025, except if the design shear force does not exceed \((1/12)A_{cv}\sqrt{f_{c'}^2}\), the minimum reinforcement for structural walls shall be permitted to be reduced to that required in 14.3. Reinforcement spacing each way in structural walls shall not exceed 450 mm. Reinforcement provided for shear strength shall be continuous and shall be distributed across the shear plane.

21.6.2.2 — At least two curtains of reinforcement shall be used in a wall if the in-plane factored shear force assigned to the wall exceeds \((1/6)A_{cv}\sqrt{f_{c'}^2}\).

21.6.2.3 — All continuous reinforcement in structural walls shall be anchored or spliced in accor-
21.6.3 — Design forces

The design shear force \(V_u \) shall be obtained from the lateral load analysis in accordance with the factored load combinations.

21.6.4 — Shear strength

21.6.4.1 — Nominal shear strength \(V_n \) of structural walls shall not exceed

\[
V_n = A_{cv} \left(\frac{1}{12} \alpha_c \frac{f'_c}{f_c} + p_n f'_v \right) \tag{21-7}
\]

where the coefficient \(\alpha_c \) is 1/4 for \(h_w/\ell_w \leq 1.5 \), is 1/6 for \(h_w/\ell_w \geq 2.0 \), and varies linearly between 1/4 and 1/6 for \(h_w/\ell_w \) between 1.5 and 2.0.

21.6.4.2 — In 21.6.4.1, the value of ratio \(h_w/\ell_w \) used for determining \(V_n \) for segments of a wall shall be the larger of the ratios for the entire wall and the segment of wall considered.

21.6.4.3 — Walls shall have distributed shear reinforcement providing resistance in two orthogonal directions in the plane of the wall. If the ratio \(h_w/\ell_w \) does not exceed 2.0, reinforcement ratio \(\rho_v \) shall not be less than reinforcement ratio \(\rho_n \).

21.6.4.4 — Nominal shear strength of all wall piers sharing a common lateral force shall not be assumed to exceed \((2/3)A_{cv}/f'_c\), where \(A_{cv} \) is the total cross-sectional area, and the nominal shear strength of any one of the individual wall piers shall not be assumed to exceed \((5/6)A_{cp}/f'_c\), where \(A_{cp} \) is the cross-sectional area of the pier considered.

21.6.4.5 — Nominal shear strength of horizontal wall segments and coupling beams shall be assumed not to exceed \((5/6)A_{cp}/f'_c\), where \(A_{cp} \) is the cross-sectional area of a horizontal wall segment or coupling beam.

R21.6.3 — Design forces

Design shears for structural walls are obtained from lateral load analysis with the appropriate load factors. However, the designer should consider the possibility of yielding in components of such structures, as in the portion of a wall between two window openings, in which case the actual shear may be well in excess of the shear indicated by lateral load analysis based on factored design forces.

R21.6.4 — Shear strength

Eq. (21-7) recognizes the higher shear strength of walls with high shear-to-moment ratios. The nominal shear strength is given in terms of the net area of the section resisting shear. For a rectangular section without openings, the term \(A_{cv} \) refers to the gross area of the cross section rather than to the product of the width and the effective depth. The definition of \(A_{cv} \) in Eq. (21-7) facilitates design calculations for walls with uniformly distributed reinforcement and walls with openings.

A wall segment refers to a part of a wall bounded by openings or by an opening and an edge. Traditionally, a vertical wall segment bounded by two window openings has been referred to as a pier.

The ratio \(h_w/\ell_w \) may refer to overall dimensions of a wall, or of a segment of the wall bounded by two openings, or an opening and an edge. The intent of 21.6.4.2 is to make certain that any segment of a wall is not assigned a unit strength larger than that for the whole wall. However, a wall segment with a ratio of \(h_w/\ell_w \) higher than that of the entire wall should be proportioned for the unit strength associated with the ratio \(h_w/\ell_w \) based on the dimensions for that segment.

To restrain the inclined cracks effectively, reinforcement included in \(\rho_n \) and \(\rho_v \) should be appropriately distributed along the length and height of the wall (21.6.4.3). Chord reinforcement provided near wall edges in concentrated amounts for resisting bending moment is not to be included in determining \(\rho_n \) and \(\rho_v \). Within practical limits, shear reinforcement distribution should be uniform and at a small spacing.

If the factored shear force at a given level in a structure is resisted by several walls or several piers of a perforated wall, the average unit shear strength assumed for the total available cross-sectional area is limited to \((2/3)f'_c\) with the additional requirement that the unit shear strength assigned to any single pier does not exceed \((5/6)f'_c\). The upper limit of strength to be assigned to any one member is imposed to limit the degree of redistribution of shear force.

“Horizontal wall segments” in 21.6.4.5 refers to wall sections between two vertically aligned openings (Fig. R21.6.4.5). It is, in effect, a pier rotated through 90 deg. A horizontal wall
21.5 — Design for flexural and axial loads

21.5.1 — Structural walls and portions of such walls subject to combined flexural and axial loads shall be designed in accordance with 10.2 and 10.3 except that 10.3.6 and the nonlinear strain requirements of 10.2.2 shall not apply. Concrete and developed longitudinal reinforcement within effective flange widths, boundary elements, and the wall web shall be considered effective. The effects of openings shall be considered.

21.5.2 — Unless a more detailed analysis is performed, effective flange widths of flanged sections shall extend from the face of the web a distance equal to the smaller of one-half the distance to an adjacent wall web and 25 percent of the total wall height.

21.6 — Boundary elements of special reinforced concrete structural walls

21.6.1 — The need for special boundary elements at the edges of structural walls shall be evaluated in accordance with 21.6.2 or 21.6.3. The requirements of 21.6.4 and 21.6.5 also shall be satisfied.

21.6.4.5 — Wall with openings

21.6.6 — Boundary elements of special reinforced concrete structural walls

21.6.6.1 — Two design approaches for evaluating detailing requirements at wall boundaries are included in 21.6.6.1. Section 21.6.6.2 allows the use of displacement-based design of walls, in which the structural details are determined directly on the basis of the expected lateral displacements of the wall. The provisions of 21.6.6.3 are similar to those of the 1995 code, and have been retained because they are conservative for assessing required transverse reinforcement at wall boundaries.

R21.5.1 — Flexural strength of a wall or wall segment is determined according to procedures commonly used for columns. Strength should be determined considering the applied axial and lateral forces. Reinforcement concentrated in boundary elements and distributed in flanges and webs should be included in the strength computations based on a strain compatibility analysis. The foundation supporting the wall should be designed to develop the wall boundary and web forces. For walls with openings, the influence of the opening or openings on flexural and shear strengths is to be considered and a load path around the opening or openings should be verified. Capacity design concepts and strut-and-tie models may be useful for this purpose. \[21.29\]

R21.6.5 — Design for flexural and axial loads

R21.6.5.2 — Where wall sections intersect to form L-, T-, C-, or other cross-sectional shapes, the influence of the flange on the behavior of the wall should be considered by selecting appropriate flange widths. Tests\[21.30\] show that effective flange width increases with increasing drift level and the effectiveness of a flange in compression differs from that for a flange in tension. The value used for the effective compression flange width has little impact on the strength and deformation capacity of the wall; therefore, to simplify design, a single value of effective flange width based on an estimate of the effective tension flange width is used in both tension and compression. \[21.30\]
21.6.6.2 — This section applies to walls or wall piers that are effectively continuous from the base of structure to top of wall and designed to have a single critical section for flexure and axial loads. Walls not satisfying these requirements shall be designed by 21.6.6.3.

(a) Compression zones shall be reinforced with special boundary elements where:

\[
c \geq \frac{t_w}{600(\delta_u/h_w)}
\]

(21-8)

The quantity \(\delta_u/h_w \) in Eq. (21.8) shall not be taken less than 0.007.

(b) Where special boundary elements are required by 21.6.6.2(a), the special boundary element reinforcement shall extend vertically from the critical section a distance not less than the larger of \(t_w \) or \(M_u/4V_u \).

21.6.6.3 — Structural walls not designed to the provisions of 21.6.6.2 shall have special boundary elements at boundaries and edges around openings of structural walls where the maximum extreme fiber compressive stress, corresponding to factored forces including earthquake effect, exceeds \(0.2f'_c \). The special boundary element shall be permitted to be discontinued where the calculated compressive stress is less than \(0.15f'_c \). Stresses shall be calculated for the factored forces using a linearly elastic model and gross section properties. For walls with flanges, an effective flange width as defined in 21.6.5.2 shall be used.

21.6.6.4 — Where special boundary elements are required by 21.6.6.2 or 21.6.6.3, the following shall be satisfied:

(a) The boundary element shall extend horizontally from the extreme compression fiber a distance not less than the larger of \(c - 0.1t_w \) and \(c/2 \);

(b) In flanged sections, the boundary element shall

Commentary

for many walls. Requirements of 21.6.6.4 and 21.6.6.5 apply to structural walls designed by either 21.6.6.2 or 21.6.6.3.

R21.6.6.2 — Section 21.6.6.2 is based on the assumption that inelastic response of the wall is dominated by flexural action at a critical, yielding section. The wall should be proportioned so that the critical section occurs where intended.

Eq. (21-8) follows from a displacement-based approach.\(^{21.31,21.32} \) The approach assumes that special boundary elements are required to confine the concrete where the strain at the extreme compression fiber of the wall exceeds a critical value when the wall is displaced to the design displacement. The horizontal dimension of the special boundary element is intended to extend at least over the length where the compression strain exceeds the critical value. The height of the special boundary element is based on upper bound estimates of plastic hinge length and extends beyond the zone over which concrete spalling is likely to occur. The lower limit of 0.007 on the quantity \(\delta_u/h_w \) requires moderate wall deformation capacity for stiff buildings.

The neutral axis depth \(c \) in Eq. (21-8) is the depth calculated according to 10.2, except the nonlinear strain requirements of 10.2.2 need not apply, corresponding to development of nominal flexural strength of the wall when displaced in the same direction as \(\delta_u \). The axial load is the factored axial load that is consistent with the design load combination that produces the displacement \(\delta_u \).

R21.6.6.3 — By this procedure, the wall is considered to be acted on by gravity loads \(W \) and the maximum shear and moment induced by earthquake in a given direction. Under this loading, the compressed boundary at the critical section resists the tributary gravity load plus the compressive resultant associated with the bending moment.

Recognizing that this loading condition may be repeated many times during the strong motion, the concrete is to be confined where the calculated compressive stresses exceed a nominal critical value equal to \(0.2f'_c \). The stress is to be calculated for the factored forces on the section assuming linear response of the gross concrete section. The compressive stress of \(0.2f'_c \) is used as an index value and does not necessarily describe the actual state of stress that may develop at the critical section under the influence of the actual inertia forces for the anticipated earthquake intensity.

R21.6.6.4 — The value of \(c/2 \) in 21.6.6.4(a) is to provide a minimum length of the special boundary element. Where flanges are heavily stressed in compression, the web-to-flange interface is likely to be heavily stressed and may sustain local crushing failure unless special boundary element reinforcement extends into the web. Eq. (21-3) does not apply to walls.

Because horizontal reinforcement is likely to act as web reinforcement in walls requiring boundary elements, it
include the effective flange width in compression and shall extend at least 305 mm into the web;

(c) Special boundary element transverse reinforcement shall satisfy the requirements of 21.4.4.1 through 21.4.4.3, except Eq. (21-3) need not be satisfied;

(d) Special boundary element transverse reinforcement at the wall base shall extend into the support at least the development length of the largest longitudinal reinforcement in the special boundary element unless the special boundary element terminates on a footing or mat, where special boundary element transverse reinforcement shall extend at least 305 mm into the footing or mat;

(e) Horizontal reinforcement in the wall web shall be anchored to develop the specified yield strength f_y within the confined core of the boundary element;

(f) Mechanical splices of longitudinal reinforcement of boundary elements shall conform to 21.2.6. Welded splices of longitudinal reinforcement of boundary elements shall conform to 21.2.7.

21.6.6.5 — Where special boundary elements are not required by 21.6.6.2 or 21.6.6.3, the following shall be satisfied:

(a) If the longitudinal reinforcement ratio at the wall boundary is greater than $\frac{400}{f_y}$, boundary transverse reinforcement shall satisfy 21.4.4.1(c), 21.4.4.3, and 21.6.6.4(a). The maximum longitudinal spacing of transverse reinforcement in the boundary shall not exceed 203 mm;

(b) Except when V_u in the plane of the wall is less than $A_{cv}\sqrt{f_c'}$, horizontal reinforcement terminating at the edges of structural walls without boundary elements shall have a standard hook engaging the edge reinforcement or the edge reinforcement shall be enclosed in U-stirrups having the same size and spacing as, and spliced to, the horizontal reinforcement.

R21.6.6.5 — Cyclic load reversals may lead to buckling of boundary longitudinal reinforcement even in cases where the demands on the boundary of the wall do not require special boundary elements. For walls with moderate amounts of boundary longitudinal reinforcement, ties are required to inhibit buckling. The longitudinal reinforcement ratio is intended to include only the reinforcement at the wall boundary as indicated in Fig. R21.6.6.5. A larger spacing of ties relative to 21.6.6.4(c) is allowed due to the lower deformation demands on the walls.

The addition of hooks or U-stirrups at the ends of horizontal wall reinforcement provides anchorage so that the reinforcement will be effective in resisting shear forces. It will also tend to inhibit the buckling of the vertical edge reinforcement. In walls with low in-plane shear, the development of horizontal reinforcement is not necessary.
CHAPTER 21

CODE

21.6.6.6 — Mechanical and welded splices of longitudinal reinforcement of boundary elements shall conform to 21.2.6 and 21.2.7.

21.6.7 — Coupling beams

21.6.7.1 — Coupling beams with aspect ratio \(\frac{L}{d} \geq 4 \), shall satisfy the requirements of 21.3. The provisions of 21.3.1.3 and 21.3.1.4(a) shall not be required if it can be shown by analysis that the beam has adequate lateral stability.

21.6.7.2 — Coupling beams with aspect ratio \(\frac{L}{d} < 4 \), shall be permitted to be reinforced with two intersecting groups of diagonally placed bars symmetrical about the midspan.

21.6.7.3 — Coupling beams with aspect ratio, \(\frac{L}{d} < 2 \), \(\frac{2}{3} \sqrt{\frac{f_t}{f_c'}} b_w d \) shall be reinforced with two intersecting groups of diagonally placed bars symmetrical about the midspan, unless it can be shown that loss of stiffness and strength of the coupling beams will not impair the vertical load carrying capacity of the structure, or the egress from the structure, or the integrity of nonstructural components and their connections to the structure.

21.6.7.4 — Coupling beams reinforced with two intersecting groups of diagonally placed bars symmetrical about the midspan shall satisfy the following:

(a) Each group of diagonally placed bars shall consist of a minimum of four bars assembled in a core having sides measured to the outside of transverse reinforcement no smaller than \(b_w / 2 \) perpendicular to the plane of the beam and \(b_w / 5 \) in the plane of the beam and perpendicular to the diagonal bars;

(b) The nominal shear strength, \(V_n \), shall be determined by

\[
V_n = 2 A_v f_y \sin \alpha \leq \frac{5}{6} \sqrt{\frac{f_t}{f_c'}} b_w d
\]

(21-9)

(c) Each group of diagonally placed bars shall be enclosed in transverse reinforcement satisfying 21.4.4.1 through 21.4.4.3. For the purpose of computing \(A_g \) for use in Eq. (10-6) and (21-3), the minimum concrete cover as required in 7.7 shall be assumed on all four sides of each group of diagonally placed reinforcing bars;

(d) The diagonally placed bars shall be developed for tension in the wall;

(e) The diagonally placed bars shall be considered

COMMENTARY

R21.6.7 — Coupling beams

Coupling beams connecting structural walls can provide stiffness and energy dissipation. In many cases, geometric limits result in coupling beams that are deep in relation to their clear span. Deep coupling beams may be controlled by shear and may be susceptible to strength and stiffness deterioration under earthquake loading. Test results\(^{21.33, 21.34}\) have shown that confined diagonal reinforcement provides adequate resistance in deep coupling beams.

Experiments show that diagonally oriented reinforcement is effective only if the bars are placed with a large inclination. Therefore, diagonally reinforced coupling beams are restricted to beams having aspect ratio \(\frac{L}{d} < 4 \).

Each diagonal element consists of a cage of longitudinal and transverse reinforcement as shown in Fig. R21.6.7. The cage contains at least four longitudinal bars and confines a concrete core. The requirement on side dimensions of the cage and its core is to provide adequate toughness and stability to the cross section when the bars are loaded beyond yielding. The minimum dimensions and required reinforcement clearances may control the wall width.

When coupling beams are not used as part of the lateral force resisting system, the requirements for diagonal reinforcement may be waived. Nonprestressed coupling beams are permitted at locations where damage to these beams does not impair vertical load carrying capacity or egress of the structure, or integrity of the nonstructural components and their connections to the structure.

When the diagonally oriented reinforcement is used, additional reinforcement in 21.6.7.4(F) is to contain the concrete outside the diagonal cores if the concrete is damaged by earthquake loading (Fig. R21.6.7).
CODE

21.6.8 — Construction joints

All construction joints in structural walls shall conform to 6.4 and contact surfaces shall be roughened as in 11.7.9.

21.6.9 — Discontinuous walls

Columns supporting discontinuous structural walls shall be reinforced in accordance with 21.4.4.5.

21.7 — Structural diaphragms and trusses

21.7.1 — Scope

Floor and roof slabs acting as structural diaphragms to transmit design actions induced by earthquake ground motions shall be designed in accordance with this section. This section also applies to struts, ties, chords, and collector elements that transmit forces induced by earthquakes, as well as trusses serving as parts of the earthquake force-resisting systems.

21.7.2 — Cast-in-place composite-topping slab diaphragms

A composite-topping slab cast in place on a precast floor or roof shall be permitted to be used as a structural diaphragm provided the topping slab is reinforced and its connections are proportioned and detailed to provide for a complete transfer of forces to chords, collector elements, and the lateral-force-resisting system. The surface of the previously hardened concrete on which the topping slab is placed shall be clean, free of laitance, and intentionally roughened.

21.7.3 — Cast-in-place topping slab diaphragms

A cast-in-place noncomposite topping on a precast floor or roof shall be permitted to serve as a structural diaphragm, provided the cast-in-place topping acting alone is proportioned and detailed to resist the design forces.

COMMENTARY

21.6.8 — Construction joints

Diaphragms as used in building construction are structural elements (such as a floor or roof) that provide some or all of the following functions:

(a) Support for building elements (such as walls, partitions, and cladding) resisting horizontal forces but not acting as part of the building vertical lateral-force-resisting system;

(b) Transfer of lateral forces from the point of application to the building vertical lateral-force-resisting system;

(c) Connection of various components of the building vertical lateral-force-resisting system with appropriate strength, stiffness, and toughness so the building responds as intended in the design.

21.7.2 — Cast-in-place composite-topping slab diaphragms

A bonded topping slab is required so that the floor or roof system can provide restraint against slab buckling. Reinforcement is required to ensure the continuity of the shear transfer across precast joints. The connection requirements are introduced to promote a complete system with necessary shear transfers.

21.7.3 — Cast-in-place topping slab diaphragms

Composite action between the topping slab and the precast floor elements is not required, provided that the topping slab is designed to resist the design seismic forces.
CODE

21.7.4 — Minimum thickness of diaphragms

Concrete diaphragms and composite topping slabs serving as diaphragms used to transmit earthquake forces shall not be less than 50 mm thick. Topping slabs placed over precast floor or roof elements and not relying on composite action with the precast elements to resist the design seismic forces shall have thickness not less than 65 mm.

21.7.5 — Reinforcement

21.7.5.1 — The minimum reinforcement ratio for structural diaphragms shall be in conformance with 7.12. Reinforcement spacing each way in nonpost-tensioned floor or roof systems shall not exceed 500 mm. Where welded wire fabric is used as the distributed reinforcement to resist shear in topping slabs placed over precast floor and roof elements, the wires parallel to the span of the precast elements shall be spaced not less than 250 mm on center. Reinforcement provided for shear strength shall be continuous and shall be distributed uniformly across the shear plane.

21.7.5.2 — Bonded prestressing tendons used as primary reinforcement in diaphragm chords or collectors shall be proportioned such that the stress due to design seismic forces does not exceed 420 MPa. Precompression from unbonded tendons shall be permitted to resist diaphragm design forces if a complete load path is provided.

21.7.5.3 — Structural truss elements, struts, ties, diaphragm chords, and collector elements with compressive stresses exceeding $0.2 f'_c$ at any section shall have transverse reinforcement, as in 21.4.4.1 through 21.4.4.3, over the length of the element. The special transverse reinforcement is allowed to be discontinued at a section where the calculated compressive strength is less than $0.15f'_c$. Stresses shall be calculated for the factored forces using a linearly elastic model and gross-section properties of the elements considered.

21.7.5.4 — All continuous reinforcement in diaphragms, trusses, struts, ties, chords, and collector elements shall be anchored or spliced in accordance with the provisions for reinforcement tension as specified in 21.5.4.

21.7.5.5 — Type 2 splices are required where mechanical splices are used to transfer forces between the diaphragm and the vertical components of the lateral-force-resisting system.

COMMENTARY

R21.7.4 — Minimum thickness of diaphragms

The minimum thickness of concrete diaphragms reflects current practice in joist and waffle systems and composite topping slabs on precast floor and roof systems. Thicker slabs are required when the topping slab does not act compositely with the precast system to resist the design seismic forces.

R21.7.5 — Reinforcement

Minimum reinforcement ratios for diaphragms correspond to the required amount of temperature and shrinkage reinforcement (7.12). The maximum spacing for web reinforcement is intended to control the width of inclined cracks. Minimum average prestress requirements (7.12.3) are considered to be adequate to limit the crack widths in post-tensioned floor systems; therefore, the maximum spacing requirements do not apply to these systems.

The minimum spacing requirement for welded wire fabric in topping slabs on precast floor systems (21.7.5.1) is intended to avoid fracture of the distributed reinforcement during an earthquake. Cracks in the topping slab open immediately above the boundary between the flanges of adjacent precast members, and the wires crossing those cracks are restrained by the transverse wires. Therefore, all the strain should be accommodated in a distance defined by the spacing of the transverse wires. A minimum spacing of 250 mm for the transverse wires was selected to reduce the likelihood of fracture of the wires crossing the critical cracks during a design earthquake. The minimum spacing requirements do not apply to diaphragms reinforced with individual bars, because strains are distributed over a longer length.

Compressive stress calculated for the factored forces on a linearly elastic model based on gross section of the structural diaphragm is used as an index value to determine whether confining reinforcement is required. A calculated compressive stress of $0.2f'_c$ in a member is assumed to indicate that the integrity of the entire structure is dependent on the ability of that member to resist substantial compressive force under severe cyclic loading. Therefore, transverse reinforcement in 21.4.4 is required in such members to provide confinement for the concrete and the reinforcement (21.7.5.3).

The dimensions of typical structural diaphragms often preclude the use of transverse reinforcement along the chords. Reducing the calculated compressive stress by reducing the span of the diaphragm is considered to be a solution.
CODE

21.7.6 — Design forces

The seismic design forces for structural diaphragms shall be obtained from the lateral load analysis in accordance with the design load combinations.

21.7.7 — Shear strength

21.7.7.1 — Nominal shear strength V_n of structural diaphragms shall not exceed

$$V_n = A_{cv} \left(\sqrt{\frac{f_c'}{6}} + \rho_n f_y \right)$$ \hspace{1cm} (21-10)

21.7.7.2 — Nominal shear strength V_n of cast-in-place composite-topping slab diaphragms and cast-in-place noncomposite topping slab diaphragms on a precast floor or roof shall not exceed the shear force

$$V_n = A_{cv} \rho_n f_y$$ \hspace{1cm} (21-11)

where A_{cv} is based on the thickness of the topping slab. The required web reinforcement shall be distributed uniformly in both directions.

21.7.7.3 — Nominal shear strength shall not exceed $2/3A_{cv}\sqrt{f_c'}$, where A_{cv} is the gross cross-sectional area of the diaphragm.

21.7.8 — Boundary elements of structural diaphragms

21.7.8.1 — Boundary elements of structural diaphragms shall be proportioned to resist the sum of the factored axial forces acting in the plane of the diaphragm and the force obtained from dividing the factored moment at the section by the distance between the boundary elements of the diaphragm at that section.

21.7.8.2 — Splices of tensile reinforcement in the chords and collector elements of diaphragms shall develop the yield strength of the reinforcement. Mechanical and welded splices shall conform to 21.2.6 and 21.2.7, respectively.

21.7.8.3 — Reinforcement for chords and collectors at splices and anchorage zones shall have either;

(a) A minimum spacing of three bar diameters, but not less than 40 mm, and a minimum concrete cover of two and one-half longitudinal bar diameters, but not less than 50 mm; or

(b) Transverse reinforcement as required by 11.5.5.3, except as required in 21.7.5.3.

COMMENTARY

R21.7.7 — Shear strength

The shear strength requirements for monolithic diaphragms, Eq. (21-10) in 21.7.7.1, are the same as those for slender structural walls. The term A_{cv} refers to the thickness times the width of the diaphragm. This corresponds to the gross area of the effective deep beam that forms the diaphragm. The shear reinforcement should be placed perpendicular to the span of the diaphragm.

The shear strength requirements for topping slab diaphragms are based on a shear friction model, and the contribution of the concrete to the nominal shear strength is not included in Eq. (21-9) for topping slabs placed over precast floor elements. Following typical construction practice, the topping slabs are roughened immediately above the boundary between the flanges of adjacent precast floor members to direct the paths of shrinkage cracks. As a result, critical sections of the diaphragm are cracked under service loads, and the contribution of the concrete to the shear capacity of the diaphragm may have already been reduced before the design earthquake occurs.

R21.7.8 — Boundary elements of structural diaphragms

For structural diaphragms, the design moments are assumed to be resisted entirely by chord forces acting at opposite edges of the diaphragm. Reinforcement located at the edges of collectors should be fully developed for its yield strength. Adequate confinement of lap splices is also required. If chord reinforcement is located within a wall, the joint between the diaphragm and the wall should be provided with adequate shear strength to transfer the shear forces.

Section 21.7.8.3 is intended to reduce the possibility of chord buckling in the vicinity of splices and anchorage zones.
CODE

<table>
<thead>
<tr>
<th>21.7.9 — Construction joints</th>
</tr>
</thead>
<tbody>
<tr>
<td>All construction joints in diaphragms shall conform to 6.4 and contact surfaces shall be roughened as in 11.7.9.</td>
</tr>
</tbody>
</table>

21.8 — Foundations

21.8.1 — Scope

- **21.8.1.1** Foundations resisting earthquake-induced forces or transferring earthquake-induced forces between structure and ground shall comply with 21.8 and other applicable code provisions.

- **21.8.1.2** The provisions in this section for piles, drilled piers, caissons, and slabs on grade shall supplement other applicable code design and construction criteria. See 1.1.5 and 1.1.6.

21.8.2 — Footings, foundation mats, and pile caps

- **21.8.2.1** Longitudinal reinforcement of columns and structural walls resisting forces induced by earthquake effects shall extend into the footing, mat, or pile cap, and shall be fully developed for tension at the interface.

- **21.8.2.2** Columns designed assuming fixed-end conditions at the foundation shall comply with 21.8.2.1 and, if hooks are required, longitudinal reinforcement resisting flexure shall have 90 deg hooks near the bottom of the foundation with the free end of the bars oriented towards the center of the column.

- **21.8.2.3** Columns or boundary elements of special reinforced concrete structural walls that have an edge within one-half the footing depth from an edge of the footing shall have transverse reinforcement in accordance with 21.4.4 provided below the top of the footing. This reinforcement shall extend into the footing a distance no less than the smaller of the depth of the footing, mat, or pile cap, or the development length in tension of the longitudinal reinforcement.

- **21.8.2.4** Where earthquake effects create uplift forces in boundary elements of special reinforced concrete structural walls or columns, flexural reinforcement shall be provided in the top of the footing, mat or pile cap to resist the design load combinations, and shall not be less than required by 10.5.

COMMENTARY

R21.8 — Foundations

R21.8.1 — Scope

Requirements for foundations supporting buildings assigned to high seismic performance or design categories were added to the 1999 code. They represent a consensus of a minimum level of good practice in designing and detailing concrete foundations including piles, drilled piers, and caissons. It is desirable that inelastic response in strong ground shaking occurs above the foundations, as repairs to foundations can be extremely difficult and expensive.

R21.8.2.2 Tests\(^{21,37}\) have demonstrated that flexural members terminating in a footing, slab or beam (a T-joint) should have their hooks turned inwards toward the axis of the member for the joint to be able to resist the flexure in the member forming the stem of the T.

R21.8.2.3 Columns or boundary members supported close to the edge of the foundation, as often occurs near property lines, should be detailed to prevent an edge failure of the footing, pile cap, or mat.

R21.8.2.4 The purpose of 21.8.2.4 is to alert the designer to provide top reinforcement as well as other required reinforcement.
CODE

21.8.2.5 — See 22.10 for use of plain concrete in footings and basement walls.

21.8.3 — Grade beams and slabs on grade

21.8.3.1 — Grade beams designed to act as horizontal ties between pile caps or footings shall have continuous longitudinal reinforcement that shall be developed within or beyond the supported column or anchored within the pile cap or footing at all discontinuities.

21.8.3.2 — Grade beams designed to act as horizontal ties between pile caps or footings shall be proportioned such that the smallest cross-sectional dimension shall be equal to or greater than the clear spacing between connected columns divided by 20, but need not be greater than 450 mm. Closed ties shall be provided at a spacing not to exceed the lesser of one-half the smallest orthogonal cross-sectional dimension or 300 mm.

21.8.3.3 — Grade beams and beams that are part of a mat foundation subjected to flexure from columns that are part of the lateral-force-resisting system shall conform to 21.3.

21.8.4 — Piles, piers, and caissons

21.8.4.1 — Provisions of 21.8.4 shall apply to concrete piles, piers, and caissons supporting structures designed for earthquake resistance.

21.8.4.2 — Piles, piers, or caissons resisting tension loads shall have continuous longitudinal reinforcement over the length resisting design tension forces. The longitudinal reinforcement shall be detailed to transfer tension forces within the pile cap to supported structural members.

21.8.4.3 — Where tension forces induced by earthquake effects are transferred between pile cap or mat foundation and precast pile by reinforcing bars grouted or post-installed in the top of the pile, the grouting system shall have been demonstrated by test to develop at least 125 percent of the specified yield strength of the bar.

COMMENTARY

R21.8.2.5 — In regions of high seismicity, it is desirable to reinforce foundations. Committee 318 recommends that foundation or basement walls be reinforced in regions of high seismicity.

R21.8.3 — Grade beams and slabs on grade

Slabs on grade are generally considered nonstructural and are excluded from 1.1.6. However, for seismic conditions, slabs on grade are often part of the lateral-force-resisting system and should be designed in accordance with this code as well as other appropriate standards or guidelines.

R21.8.3.2 — Grade beams between pile caps or footings can be separate beams beneath the slab on grade or can be a thickened portion of the slab on grade. The cross-sectional limitation and minimum tie requirements provide reasonable proportions.

R21.8.3.3 — Grade beams resisting seismic flexural stresses from column moments should have reinforcing details similar to the beams of the frame above the foundation.

R21.8.3.4 — Slabs on grade often act as a diaphragm to hold the building together at the ground level and minimize the effects of out-of-phase ground motion that may occur over the footprint of the building. In these cases, the slab on grade should be adequately reinforced and detailed. The design drawings should clearly state that these slabs on grade are structural members so as to prohibit sawcutting of the slab.

R21.8.4 — Piles, piers, and caissons

Adequate performance of piles and caissons for seismic loadings requires that these provisions be met in addition to other applicable standards or guidelines. See R1.1.5.

R21.8.4.2 — A load path is necessary at pile caps to transfer tension forces from the reinforcing bars in the column or boundary member through the pile cap to the reinforcement of the pile or caisson.

R21.8.4.3 — Grouted dowels in a blockout in the top of a precast concrete pile need to be developed, and testing is a practical means of demonstrating capacity. Alternatively, reinforcing bars can be cast in the upper portion of the pile, exposed by chipping of concrete and mechanically connected or welded to an extension.
21.8.4.4 — Piles, piers, or caissons shall have transverse reinforcement in accordance with 21.4.4 at the following locations:

(a) At the top of the member for at least 5 times the member cross-sectional dimension, but not less than 2 m below the bottom of the pile cap;

(b) For the portion of piles in soil that is not capable of providing lateral support, or in air and water, along the entire unsupported length plus the length required in 21.8.4.4(a).

R21.8.4.4 — During earthquakes, piles can be subjected to extremely high flexural demands at points of discontinuity, especially just below the pile cap and near the base of a soft or loose soil deposit. The 1999 code requirement for confinement reinforcement at the top of the pile is based on numerous failures observed at this location in recent earthquakes. Transverse reinforcement is required in this region to provide ductile performance. The designer should also consider possible inelastic action in the pile at abrupt changes in soil deposits, such as changes from soft to firm or loose to dense soil layers. Where precast piles are to be used, the potential for the pile tip to be driven to an elevation different than that specified in the drawings needs to be considered when detailing the pile. If the pile reaches refusal at a shallower depth, a longer length of pile will need to be cut off. If this possibility is not foreseen, the length of transverse reinforcement required by 21.8.4.4 may not be available after the excess pile length is cut off.

21.8.4.5 — For precast concrete driven piles, the length of transverse reinforcement provided shall be sufficient to account for potential variations in the elevation in pile tips.

21.8.4.6 — Concrete piles, piers, or caissons in foundations supporting one- and two-story stud bearing wall construction are exempt from the transverse reinforcement requirements of 21.8.4.4 and 21.8.4.5.

21.8.4.7 — Pile caps incorporating batter piles shall be designed to resist the full compressive strength of the batter piles acting as short columns. The slenderness effects of batter piles shall be considered for the portion of the piles in soil that is not capable of providing lateral support, or in air or water.

R21.8.4.7 — Extensive structural damage has often been observed at the junction of batter piles and the buildings. The pile cap and surrounding structure should be designed for the potentially large forces that can be developed in batter piles.

21.9 — Frame members not proportioned to resist forces induced by earthquake motions

21.9.1 — Frame members assumed not to contribute to lateral resistance shall be detailed according to 21.9.2 or 21.9.3 depending on the magnitude of moments induced in those members if subjected to the design displacement. If effects of design displacements are not explicitly checked, it shall be permitted to apply the requirements of 21.9.3.

21.9.2 — When the induced moments and shears under design displacements of 21.9.1 combined with the factored gravity moments and shears do not exceed the design moment and shear strength of the frame member, the conditions of 21.9.2.1, 21.9.2.2, and 21.9.2.3 shall be satisfied. The gravity load combinations of $1.05D + 1.28L$ or $0.9D$, whichever is critical, shall be used.

21.9.2.1 — Members with factored gravity axial forces not exceeding $A_g f_c / 10$ shall satisfy 21.3.2.1. Stirrups shall be spaced not more than $d/2$ throughout the length of the member.

R21.9 — Frame members not proportioned to resist forces induced by earthquake motions

The detailing requirements for members that are part of the lateral-force resisting system assume that the members may undergo deformations that exceed the yield limit of the member without significant loss of strength. Members that are not part of the designated lateral-force-resisting system are not required to meet all the detailing requirements of members that are relied on to resist lateral forces. They should, however, be able to resist the gravity loads at lateral displacements corresponding to the design level prescribed by the governing code for earthquake-resistant design. The design displacement is defined in 21.1.

Section 21.9 recognizes that actual displacements resulting from earthquake forces may be larger than the displacements calculated using the design forces and commonly used analysis models. Section 21.9.1 defines a nominal displacement for the purpose of prescribing detailing requirements. This section has been revised from the 1995 code to reflect changes from a working stress design approach to a strength design approach in governing codes for earth-
CODE

21.9.2.2 — Members with factored gravity axial forces exceeding $A_g f'_c/10$ shall satisfy 21.4.3, 21.4.4.1(c), 21.4.4.3, and 21.4.5. The maximum longitudinal spacing of ties shall be s_o for the full column height. The spacing s_o shall not be more than six diameters of the smallest longitudinal bar enclosed or 150 mm, whichever is smaller.

21.9.2.3 — Members with factored gravity axial forces exceeding $0.35P_o$ shall satisfy 21.9.2.2 and the amount of transverse reinforcement provided shall be one-half of that required by 21.4.4.1 but shall not exceed a spacing s_o for the full height of the column.

21.9.3 — If the induced moment or shear under design displacements of 21.9.1 exceeds the design moment or shear strength of the frame member, or if induced moments are not calculated, the conditions of 21.9.3.1, 21.9.3.2, and 21.9.3.3 shall be satisfied.

21.9.3.1 — Materials shall satisfy 21.2.4 and 21.2.5. Mechanical splices shall satisfy 21.2.6 and welded splices shall satisfy 21.2.7.1.

21.9.3.2 — Members with factored gravity axial forces not exceeding $A_g f'_c/10$ shall satisfy 21.3.2.1 and 21.3.4. Stirrups shall be spaced at not more than $d/2$ throughout the length of the member.

21.9.3.3 — Members with factored gravity axial forces exceeding $A_g f'_c/10$ shall satisfy 21.4.4, 21.4.5, and 21.5.2.1.

21.10 — Requirements for intermediate moment frames

21.10.1 — The requirements of this section apply to intermediate moment frames.

21.10.2 — Reinforcement details in a frame member shall satisfy 21.10.4 if the factored compressive axial load for the member does not exceed $A_g f'_c/10$. If the factored compressive axial load is larger, frame reinforcement details shall satisfy 21.10.5 unless the member has spiral reinforcement according to Eq. (10-6). If a two-way slab system without beams is treated as part of a frame resisting earthquake effect, reinforcement details in any span resisting moments caused by lateral force shall satisfy 21.10.6.

21.10.3 — Design shear strength of beams, columns, and two-way slabs resisting earthquake effect shall not be less than either:

COMMENTARY

quake-resistant design. Actual displacements may exceed the value of 21.9.1. Section 21.9.2 prescribes detailing requirements intended to provide a system capable of sustaining gravity loads under moderate excursions into the inelastic range. Section 21.9.3 prescribes detailing requirements intended to provide a system capable of sustaining gravity loads under larger displacements.

Models used to determine design deflections of buildings should be chosen to produce results that conservatively bound the values expected during the design earthquake considering vertical, horizontal, and diaphragm systems as appropriate.

For gravity load factors, see R9.2.3.

R21.10 — Requirements for intermediate moment frames

The objective of the requirements in 21.10.3 is to reduce the risk of failure in shear during an earthquake. The designer is given two options by which to determine the factored shear force.

According to option (a) of 21.10.3, the factored shear force is determined from the nominal moment strength of the member and the gravity load on it. Examples for a beam and a column are illustrated in Fig. R21.10.3.

To determine the maximum beam shear, it is assumed that its nominal moment strengths ($\phi = 1.0$) are developed simultaneously at both ends of its clear span. As indicated in Fig. R21.10.3, the shear associated with this condition $[M_{ul} + M_{ur}]/\phi$ added algebraically to the effect of the factored gravity loads indicates the design shear for of the beam. For this example, both the dead load w_D and the live load w_L have been assumed to be uniformly distributed.
CODE

(a) The sum of the shear associated with development of nominal moment strengths of the member at each restrained end of the clear span and the shear calculated for factored gravity loads;

(b) The maximum shear obtained from design load combinations that include earthquake effect E, with E assumed to be twice that prescribed by the governing code for earthquake-resistant design.

21.10.4 — Beams

21.10.4.1 — The positive moment strength at the face of the joint shall be not less than one-third the negative moment strength provided at that face of the joint. Neither the negative nor the positive moment strength at any section along the length of the member shall be less than one-fifth the maximum moment strength provided at the face of either joint.

21.10.4.2 — At both ends of the member, stirrups shall be provided over lengths equal to twice the member depth measured from the face of the supporting member toward midspan. The first stirrup shall be located at not more than 50 mm from the face of the supporting member. Maximum stirrup spacing shall not exceed:

(a) \(d/4\);

(b) Eight times the diameter of the smallest longitudinal bar enclosed;

(c) 24 times the diameter of the stirrup bar; and

(d) 300 mm.

21.10.4.3 — Stirrups shall be placed at not more than \(d/2\) throughout the length of the member.

21.10.5 — Columns

21.10.5.1 — Maximum tie spacing shall not exceed \(s_o\) over a length \(l_o\) measured from the joint face. Spacing \(s_o\) shall not exceed the smallest of:

(a) Eight times the diameter of the smallest longitudinal bar enclosed;

(b) 24 times the diameter of the tie bar;

(c) One-half of the smallest cross-sectional dimension of the frame member; and

(d) 300 mm. Length \(l_o\) shall not be less than the

\[
V_u = \frac{M_{nl} + M_{nr}}{l_n} + \frac{3}{8} (1.4 w_D + 1.7 w_L) \times l_n
\]

\[
P_u
\]

\[
M_{nt} + M_{nb}
\]

\[
V_u = \frac{M_{nt} + M_{nb}}{h_n}
\]

\[
\text{Beam shear}
\]

\[
\text{Column shear}
\]

Fig. R21.10.3—Design shears for frames in regions of moderate seismic risk (21.10)

Determination of the design shear for a column is also illustrated for a particular example in Fig. R21.10.3. The factored design axial load, \(P_u\), should be chosen to develop the largest moment strength of the column.

In all applications of option (a) of 21.10.3, shears are required to be calculated for moment, acting clockwise and counterclockwise. Fig. R21.10.3 demonstrates only one of the two conditions that are to be considered for every member. Option (b) bases \(V_u\) on the load combination including
CODE

largest of:

1. One-sixth of the clear span of the member;
2. Maximum cross-sectional dimension of the member; and
3. 500 mm.

21.10.5.2 — The first tie shall be located at not more than \(\frac{s_o}{2} \) from the joint face.

21.10.5.3 — Joint reinforcement shall conform to 11.11.2.

21.10.5.4 — Tie spacing shall not exceed twice the spacing \(s_o \).

21.10.6 — Two-way slabs without beams

21.10.6.1 — Factored slab moment at support related to earthquake effect shall be determined for load combinations defined by Eq. (9-2) and (9-3). All reinforcement provided to resist \(M_p \), the portion of slab moment balanced by support moment, shall be placed within the column strip defined in 13.2.1.

21.10.6.2 — The fraction, defined by Eq. (13-1), of moment \(M_p \) shall be resisted by reinforcement placed within the effective width in 13.5.3.2.

21.10.6.3 — Not less than one-half of the reinforcement in the column strip at support shall be placed within the effective slab width specified in 13.5.3.2.

21.10.6.4 — Not less than one-quarter of the top reinforcement at the support in the column strip shall be continuous throughout the span.

21.10.6.5 — Continuous bottom reinforcement in the column strip shall be not less than one-third of the top reinforcement at the support in the column strip.

21.10.6.6 — Not less than one-half of all bottom reinforcement at midspan shall be continuous and shall develop its yield strength at face of support as defined in 13.6.2.5.

21.10.6.7 — At discontinuous edges of the slab all top and bottom reinforcement at support shall be developed at the face of support as defined in 13.6.2.5.

COMMENTARY

the earthquake effect, \(E \), which should be doubled. For example, the load combination defined by Eq. (9-2) would be:

\[
U = 0.75 (1.4D + 1.7L + 3.74E)
\]

where \(E \) is the value specified by the governing code.

Section 21.10.4 contains requirements for providing beams with a threshold level of toughness. In most cases, stirrups required by 21.10.3 for design shear force will be more than those required by 21.10.4. Requirements of 21.10.5 serve the same purpose for columns.

Section 21.10.6 applies to two-way slabs without beams (such as flat plates).
CODE

COMMENTARY

Using load combinations defined in 9.2.3 may result in moments requiring both top and bottom reinforcement at the supports.

The moment M_s refers, for a given design load combination with E acting in one horizontal direction, to that portion of the factored slab moment that is balanced by the supporting members at a joint. It is not necessarily equal to the total design moment at support for a load combination including earthquake effect. In accordance with 13.5.3.2, only a fraction $(\gamma_f M_s)$ of the moment M_s is assigned to the slab effective width.

Application of the various articles of 21.10.6 are illustrated in Fig. R21.10.6.1 and R21.10.6.2.
PART 7 — STRUCTURAL PLAIN CONCRETE

CHAPTER 22 — STRUCTURAL PLAIN CONCRETE

CODE

22.0 — Notation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_g</td>
<td>gross area of section, mm2</td>
</tr>
<tr>
<td>A_1</td>
<td>loaded area, mm2</td>
</tr>
<tr>
<td>A_2</td>
<td>the area of the lower base of the largest frustum of a pyramid, cone, or tapered wedge contained wholly within the support and having for its upper base the loaded area, and having side slopes of 1 vertical to 2 horizontal, mm2</td>
</tr>
<tr>
<td>b</td>
<td>width of member, mm</td>
</tr>
<tr>
<td>b_o</td>
<td>perimeter of critical section for shear in footings, mm</td>
</tr>
<tr>
<td>B_n</td>
<td>nominal bearing load, N</td>
</tr>
<tr>
<td>f'_c</td>
<td>specified compressive strength of concrete, MPa. See Chapter 5</td>
</tr>
<tr>
<td>$\sqrt{f'_c}$</td>
<td>square root of specified compressive strength of concrete, MPa</td>
</tr>
<tr>
<td>f_{ct}</td>
<td>average splitting tensile strength of lightweight aggregate concrete, MPa. See 5.1.4 and 5.1.5</td>
</tr>
<tr>
<td>h</td>
<td>overall thickness of member, mm</td>
</tr>
<tr>
<td>l_c</td>
<td>vertical distance between supports, mm</td>
</tr>
<tr>
<td>M_n</td>
<td>nominal moment strength at section, mm-N</td>
</tr>
<tr>
<td>M_u</td>
<td>factored moment at section, mm-N</td>
</tr>
<tr>
<td>P_n</td>
<td>nominal strength of cross section subject to compression, N</td>
</tr>
<tr>
<td>P_{nw}</td>
<td>nominal axial load strength of wall designed by 22.6.5, N</td>
</tr>
<tr>
<td>P_u</td>
<td>factored axial load at given eccentricity, N</td>
</tr>
<tr>
<td>S</td>
<td>elastic section modulus of section, mm3</td>
</tr>
<tr>
<td>V_n</td>
<td>nominal shear strength at section, N</td>
</tr>
<tr>
<td>V_u</td>
<td>factored shear force at section, N</td>
</tr>
<tr>
<td>β_c</td>
<td>ratio of long side to short side of concentrated load or reaction area</td>
</tr>
<tr>
<td>ϕ</td>
<td>strength reduction factor. See 9.3.5</td>
</tr>
</tbody>
</table>

COMMENTARY

22.0 — Notation

Units of measurement are given in the Notation to assist the user and are not intended to preclude the use of other correctly applied units for the same symbol, such as m or kN.

22.1 — Scope

22.1.1 — This chapter provides minimum requirements for design and construction of structural plain concrete members (cast-in-place or precast) except in 22.1.1.1 and 22.1.1.2.

R22.1 — Scope

Prior to the 1995 code, requirements for plain concrete were set forth in “Building Code Requirements for Structural Plain Concrete (ACI 318.1-89) (Revised 1992).” Requirements for plain concrete are now in the code.
22.1.1.1 — Structural plain concrete basement walls shall be exempt from the requirements for special exposure conditions of 4.2.2.

22.1.1.2 — Design and construction of soil-supported slabs, such as sidewalks and slabs on grade, shall not be governed by the code unless they transmit vertical loads from other parts of the structure to the soil.

22.1.2 — For special structures, such as arches, underground utility structures, gravity walls, and shielding walls, provisions of this chapter shall govern where applicable.

22.2 — Limitations

22.2.1 — Provisions of this chapter shall apply for design of structural plain concrete members. See 2.1.

22.2.2 — Use of structural plain concrete shall be limited to:

(a) Members that are continuously supported by soil or supported by other structural members capable of providing continuous vertical support;

(b) Members for which arch action provides compression under all conditions of loading; or

(c) Walls and pedestals. See 22.6 and 22.8. The use of structural plain concrete columns shall not be permitted.

22.2.3 — This chapter shall not govern design and installation of cast-in-place concrete piles and piers embedded in ground.

R22.1.1.1 — Section 22.1.1.1 exempts structural plain concrete basement walls from the requirements for special exposure conditions because of the numerous successful uses of concrete with 28 day compressive strengths of 17 and 20 MPa in the basement walls of residences and other minor structures that did not meet the strength requirements of Table 4.2.2.

R22.1.1.2 — It is not within the scope of this code to provide design and construction requirements for nonstructural members of plain concrete such as soil-supported slabs (slabs on grade).

R22.2 — Limitations

R22.2.2 and R22.2.3 — Since the structural integrity of plain concrete members depends solely on the properties of the concrete, use of structural plain concrete members should be limited to members that are primarily in a state of compression, members that can tolerate random cracks without detriment to their structural integrity, and members where ductility is not an essential feature of design. The tensile strength of concrete can be recognized in design of members. Tensile stresses due to restraint from creep, shrinkage, or temperature effects are to be considered and sufficiently reduced by construction techniques to avoid uncontrolled cracks, or when uncontrolled cracks due to such restraint effects are anticipated to occur, they will not induce structural failure.

Plain concrete walls are permitted (see 22.6) without a height limitation. However, for multistory construction and other major structures, ACI Committee 318 encourages the use of walls designed in accordance with Chapter 14 (see R22.6).

Since plain concrete lacks the necessary ductility that columns should possess and because a random crack in an unreinforced column will most likely endanger its structural integrity, the code does not permit use of plain concrete for columns. It does allow its use for pedestals limited to a ratio of unsupported height to least lateral dimension of 3 or less (see 22.8.2).

Structural elements such as cast-in-place concrete piles and piers in ground or other material sufficiently stiff to provide
22.2.4 — Minimum strength

Specified compressive strength of plain concrete to be used for structural purposes shall be not less than 17 MPa.

R22.2.4 — Minimum strength

A minimum strength requirement for plain concrete construction is considered necessary because safety is based solely on strength and quality of concrete treated as a homogeneous material. Lean concrete mixtures may not produce adequately homogeneous material or well-formed surfaces.

22.3 — Joints

22.3.1 — Contraction or isolation joints shall be provided to divide structural plain concrete members into flexurally discontinuous elements. The size of each element shall limit control excessive buildup of internal stresses caused by restraint to movements from creep, shrinkage, and temperature effects.

22.3.2 — In determining the number and location of contraction or isolation joints, consideration shall be given to: influence of climatic conditions; selection and proportioning of materials; mixing, placing, and curing of concrete; degree of restraint to movement; stresses due to loads to which an element is subject; and construction techniques.

R22.3 — Joints

Joints in plain concrete construction are an important design consideration. In reinforced concrete, reinforcement is provided to resist the stresses due to restraint of creep, shrinkage, and temperature effects. In plain concrete, joints are the only means of controlling and thereby relieving the buildup of such tensile stresses. A plain concrete member, therefore, should be small enough, or divided into smaller elements by joints, to control the buildup of internal stresses. The joint may be a contraction joint or an isolation joint. A minimum 25 percent reduction of member thickness is considered sufficient for contraction joints to be effective. The jointing should be such that no axial tension or flexural tension can be developed across a joint after cracking, if applicable, a condition referred to as flexural discontinuity. Where random cracking due to creep, shrinkage, and temperature effects will not affect the structural integrity, and is otherwise acceptable, such as transverse cracks in a continuous wall footing, transverse contraction or isolation joints are not necessary.

22.4 — Design method

22.4.1 — Structural plain concrete members shall be designed for adequate strength in accordance with the code, using load factors and design strength.

22.4.2 — Factored loads and forces shall be in combinations as in 9.2.

22.4.3 — Where required strength exceeds design strength, reinforcement shall be provided and the member designed as a reinforced concrete member in accordance with appropriate design requirements of the code.

22.4.4 — Strength design of structural plain concrete members for flexure and axial loads shall be based on a linear stress-strain relationship in both tension and compression.

R22.4 — Design method

Plain concrete members are proportioned for adequate strength using factored loads and forces. When the design strength is exceeded, the section should be increased or the specified strength of concrete increased, or both, or the member designed as a reinforced concrete member in accordance with the code. The designer should note, however, that an increase in concrete section may have a detrimental effect; stress due to load will decrease but stresses due to creep, shrinkage, and temperature effects may increase.

R22.4.4 — Flexural tension may be considered in design of plain concrete members to sustain loads, provided the computed stress does not exceed the permissible stress, and construction, contraction, or isolation joints are provided to relieve the resulting tensile stresses due to restraint of creep, temperature, and shrinkage effects.
CODE

22.4.5 — Tensile strength of concrete shall be permitted to be considered in design of plain concrete members when provisions of 22.3 have been followed.

22.4.6 — No strength shall be assigned to steel reinforcement that may be present.

22.4.7 — Tension shall not be transmitted through outside edges, construction joints, contraction joints, or isolation joints of an individual plain concrete element. No flexural continuity due to tension shall be assumed between adjacent structural plain concrete elements.

22.4.8 — When computing strength in flexure, combined flexure and axial load, and shear, the entire cross section of a member shall be considered in design, except for concrete cast against soil where overall thickness h shall be taken as 50 mm less than actual thickness.

22.5 — Strength design

22.5.1 — Design of cross sections subject to flexure shall be based on

$$\phi M_n \geq M_u \quad (22-1)$$

where M_u is factored moment and M_n is nominal moment strength computed by

$$M_n = \frac{5}{12} f_c' S \quad (22-2)$$

where S is the elastic section modulus of the cross section.

22.5.2 — Design of cross sections subject to compression shall be based on

$$\phi P_n \geq P_u \quad (22-3)$$

where P_u is factored load and P_n is nominal compression strength computed by

$$P_n = 0.60 f_c' \left[1 - \left(\frac{f_c'}{32h} \right)^2 \right] A_1 \quad (22-4)$$

where A_1 is the loaded area.

COMMENTARY

R22.4.8 — The reduced overall thickness h for concrete cast against earth is to allow for unevenness of excavation and for some contamination of the concrete adjacent to the soil.

R22.5 — Strength design

R22.5.2 — Eq. (22-4) is presented to reflect the general range of braced and restrained end conditions encountered in structural plain concrete elements. The effective length factor was omitted as a modifier of l_c, the vertical distance between supports, since this is conservative for walls with assumed pin supports that are required to be braced against lateral translation as in 22.6.6.4.
CODE

22.5.3 — Members subject to combined flexure and axial load in compression shall be proportioned such that on the compression face:

\[\frac{P_u}{\phi P_n} + \frac{M_u}{\phi M_n} \leq 1 \]

(22-5)

and on the tension face:

\[\frac{M_u}{S} - \frac{P_u}{A_g} \leq \frac{5}{12} \phi \sqrt{\frac{f_c'}{b}} \]

(22-6)

R22.5.3 — Plain concrete members subject to combined flexure and axial compressive load are proportioned such that on the compression face:

\[\frac{P_u}{0.60 \phi f_c' \left[1 - \left(\frac{c}{32h} \right)^2 \right] A_1} + \frac{M_u}{0.85 \phi f_c' S} \leq 1 \]

and that on the tension face:

\[\left(\frac{\text{Calculated bending stress}}{\phi} \right) - \left(\frac{\text{Calculated axial stress}}{\phi} \right) \leq \left(\frac{5}{12} \right) \phi \sqrt{f_c'} \]

R22.5.4 — Proportions of plain concrete members usually are controlled by tensile strength rather than shear strength. Shear stress (as a substitute for principal tensile stress) rarely will control. However, since it is difficult to foresee all possible conditions where shear may have to be investigated (such as shear keys), Committee 318 maintains the investigation of this basic stress condition. An experienced designer will soon recognize where shear is not critical for plain concrete members and will adjust design procedures accordingly.

The shear requirements for plain concrete assume an uncracked section. Shear failure in plain concrete will be a diagonal tension failure, occurring when the principal tensile stress near the centroidal axis becomes equal to the tensile strength of the concrete. Since the major portion of the principal tensile stress comes from the shear, the code safeguards against tensile failure by limiting the permissible shear at the centroidal axis as calculated from the equation for a section of homogeneous material:

\[v = \frac{VQ}{Ib} \]

where \(v \) and \(V \) are the shear stress and shear force, respectively, at the section considered, \(Q \) is the statical moment of the area outside the section being considered about centroidal axis of the gross section, \(I \) is the moment of inertia of the gross section, and \(b \) is the width where shear stress is being computed.

COMMENTARY

22.5.4 — Design of rectangular cross sections subject to shear shall be based on

\[\phi V_n \geq V_u \]

(22-7)

where \(V_u \) is factored shear and \(V_n \) is nominal shear strength computed by

\[V_n = \frac{1}{9} \sqrt{f_c'} bh \]

(22-8)

for beam action and by

\[V_n = \frac{1}{9} \left[1 + \frac{2}{\beta} \right] \sqrt{f_c'} b_o h \leq \frac{2}{9} \sqrt{f_c'} b_o h \]

(22-9)

for two-way action, but not greater than \(\left(\frac{2}{9} \right) \sqrt{f_c'} b_o h \).

22.5.5 — Design of bearing areas subject to compression shall be based on

\[\phi B_n \geq P_u \]

(22-10)

where \(P_u \) is factored bearing load and \(B_n \) is nominal bearing strength of loaded area \(A_1 \) computed by

\[B_n = 0.85 f_c' A_1 \]

(22-11)

except when the supporting surface is wider on all sides than the loaded area, design bearing strength on the loaded area shall be multiplied by \(\sqrt{A_2/A_1} \) but not more than 2.
CODE

22.5.6 — Lightweight concrete

22.5.6.1 — Provisions of 22.5 apply to normalweight concrete. When lightweight aggregate concrete is used, one of the following modifications shall apply:

(a) When f_{ct} is specified and concrete is proportioned in accordance with 5.2, equations that include $\sqrt[4]{f'_c}$ shall be modified by substituting $1.8f_{ct}$ for $\sqrt[4]{f'_c}$ wherever it appears in 22.5, but the value of $1.8f_{ct}$ shall not exceed $\sqrt[4]{f'_c}$;

(b) When f_{ct} is not specified, all values of $\sqrt[4]{f'_c}$ in 22.5 shall be multiplied by 0.75 for all-lightweight concrete, and 0.85 for sand-lightweight concrete. Linear interpolation shall be permitted when partial sand replacement is used.

22.6 — Walls

22.6.1 — Structural plain concrete walls shall be continuously supported by soil, footings, foundation walls, grade beams, or other structural members capable of providing continuous vertical support.

22.6.2 — Structural plain concrete walls shall be designed for vertical, lateral, and other loads to which they are subjected.

22.6.3 — Structural plain concrete walls shall be designed for an eccentricity corresponding to the maximum moment that can accompany the axial load but not less than $0.10h$. If the resultant of all factored loads is located within the middle-third of the overall wall thickness, the design shall be in accordance with 22.5.3 or 22.6.5. Otherwise, walls shall be designed in accordance with 22.5.3.

22.6.4 — Design for shear shall be in accordance with 22.5.4.

COMMENTARY

R22.5.6 — Lightweight concrete

See R11.2

R22.6 — Walls

Plain concrete walls are commonly used for basement wall construction for residential and light commercial buildings in low or nonseismic areas. Although the code imposes no absolute maximum height limitation on the use of plain concrete walls, designers are cautioned against extrapolating the experience with relatively minor structures and using plain concrete walls in multistory construction and other major structures where differential settlement, wind, earthquake, or other unforeseen loading conditions require the walls to possess some ductility and ability to maintain their integrity when cracked. For such conditions, ACI Committee 318 strongly encourages the use of walls designed in accordance with Chapter 14.

The provisions for plain concrete walls are applicable only for walls laterally supported in such a manner as to prohibit relative lateral displacement at top and bottom of individual wall elements (see 22.6.6.4). The code does not cover walls without horizontal support to prohibit relative displacement at top and bottom of wall elements. Such laterally unsupported walls are to be designed as reinforced concrete members in accordance with the code.
CODE

22.6.5 — Empirical design method

22.6.5.1 — Structural plain concrete walls of solid rectangular cross section shall be permitted to be designed by Eq. (22-12) if the resultant of all factored loads is located within the middle-third of the overall thickness of wall.

22.6.5.2 — Design of walls subject to axial loads in compression shall be based on

\[\phi P_{nw} \geq P_u \quad (22-12) \]

where \(P_u \) is factored axial load and \(P_{nw} \) is nominal axial load strength computed by

\[P_{nw} = 0.45 f'_c A_g \left[1 - \left(\frac{I}{32 h} \right)^2 \right] \quad (22-13) \]

COMMENTARY

R22.6.5 — Empirical design method

When the resultant load falls within the middle-third of the wall thickness (kern of wall section), plain concrete walls may be designed using the simplified Eq. (22-13). Eccentric loads and lateral forces are used to determine the total eccentricity of the factored load \(P_u \). If the eccentricity does not exceed \(h/6 \), Eq. (22-13) may be applied, and design performed considering \(P_u \) as a concentric load. The factored axial load \(P_u \) should not exceed the design axial load strength \(\phi P_{nw} \). Eq. (22-13) reflects the range of braced and restrained end conditions encountered in wall design. The limitations of 22.6.6 apply whether the wall is proportioned by 22.5.3 or by the empirical method of 22.6.5.

22.6.6 — Limitations

22.6.6.1 — Unless demonstrated by a detailed analysis, horizontal length of wall to be considered effective for each vertical concentrated load shall not exceed center-to-center distance between loads, nor width of bearing plus four times the wall thickness.

22.6.6.2 — Except as provided in 22.6.6.3, thickness of bearing walls shall be not less than 1/24 the unsupported height or length, whichever is shorter, nor less than 140 mm.

22.6.6.3 — Thickness of exterior basement walls and foundation walls shall be not less than 190 mm.

22.6.6.4 — Walls shall be braced against lateral translation. See 22.3 and 22.4.7.

22.6.6.5 — Not less than two No. 16 bars shall be provided around all window and door openings. Such bars shall extend at least 600 mm beyond the corners of openings.

22.7 — Footings

22.7.1 — Structural plain concrete footings shall be designed for factored loads and induced reactions in accordance with appropriate design requirements of this code and as provided in 22.7.2 through 22.7.8.

22.7.2 — Base area of footing shall be determined from unfactored forces and moments transmitted by footing to soil and permissible soil pressure selected through principles of soil mechanics.
22.7.3 — Plain concrete shall not be used for footings on piles.

22.7.4 — Thickness of structural plain concrete footings shall be not less than 200 mm. See 22.4.8.

22.7.5 — Maximum factored moment shall be computed at critical sections located as follows:

(a) At the face of the column, pedestal, or wall, for footing supporting a concrete column, pedestal, or wall;

(b) Halfway between center and face of the wall, for footing supporting a masonry wall;

(c) Halfway between face of column and edge of steel base plate, for footing supporting a column with steel base plate.

22.7.6 — Shear in plain concrete footings

22.7.6.1 — Maximum factored shear shall be computed in accordance with 22.7.6.2, with location of critical section measured at face of column, pedestal, or wall for footing supporting a column, pedestal, or wall. For footing supporting a column with steel base plates, the critical section shall be measured at location defined in 22.7.5(c).

22.7.6.2 — Shear strength of structural plain concrete footings in the vicinity of concentrated loads or reactions shall be governed by the more severe of two conditions:

(a) Beam action for footing, with a critical section extending in a plane across the entire footing width and located at a distance \(h \) from face of concentrated load or reaction area. For this condition, the footing shall be designed in accordance with Eq. (22-8);

(b) Two-way action for footing, with a critical section perpendicular to plane of footing and located so that its perimeter \(b_0 \) is a minimum, but need not approach closer than \(h/2 \) to perimeter of concentrated load or reaction area. For this condition, the footing shall be designed in accordance with Eq. (22-9).

22.7.7 — Circular or regular polygon shaped concrete columns or pedestals shall be permitted to be treated as square members with the same area for location of critical sections for moment and shear.

22.7.8 — Factored bearing load on concrete at contact surface between supporting and supported member

R22.7.4 — Thickness of plain concrete footings will be controlled by flexural strength (extreme fiber stress in tension not greater than \((5/12)\phi f_{c}^{'2} \)) rather than shear strength for the usual proportions of plain concrete footings. Shear rarely will control (see R22.5.4). For footings cast against soil, overall thickness \(h \) used for strength computations should be taken as 50 mm less than actual thickness to allow for unevenness of excavation and contamination of the concrete adjacent to soil as required by 22.4.8. Thus, for a minimum footing thickness of 200 mm, calculations for flexural and shear stresses must be based on an overall thickness \(h \) of 150 mm.
shall not exceed design bearing strength for either surface as given in 22.5.5.

22.8 — Pedestals

22.8.1 — Plain concrete pedestals shall be designed for vertical, lateral, and other loads to which they are subjected.

22.8.2 — Ratio of unsupported height to average least lateral dimension of plain concrete pedestals shall not exceed 3.

22.8.3 — Maximum factored axial load applied to plain concrete pedestals shall not exceed design bearing strength given in 22.5.5.

22.9 — Precast members

22.9.1 — Design of precast plain concrete members shall consider all loading conditions from initial fabrication to completion of the structure, including form removal, storage, transportation, and erection.

22.9.2 — Limitations of 22.2 apply to precast members of plain concrete not only to the final condition but also during fabrication, transportation, and erection.

22.9.3 — Precast members shall be connected securely to transfer all lateral forces into a structural system capable of resisting such forces.

22.9.4 — Precast members shall be adequately braced and supported during erection to ensure proper alignment and structural integrity until permanent connections are completed.

22.10 — Plain concrete in earthquake-resisting structures

22.10.1 — Structures designed for earthquake-induced forces in regions of high seismic risk or assigned to high seismic performance or design categories shall not have foundation elements of structural plain concrete, except as follows:

(a) For detached one- and two-family dwellings three stories or less in height and constructed with stud bearing walls, plain concrete footings without longitudinal reinforcement supporting walls and isolated plain concrete footings supporting columns or pedestals are permitted;

(b) For all other structures, plain concrete footings

The height-thickness limitation for plain concrete pedestals does not apply for portions of pedestals embedded in soil capable of providing lateral restraint.

Precast structural plain concrete members are subject to all limitations and provisions for cast-in-place concrete contained in this chapter.

The approach to contraction or isolation joints is expected to be somewhat different than for cast-in-place concrete since the major portion of shrinkage stresses takes place prior to erection. To ensure stability, precast members should be connected to other members. The connection should transfer no tension.
supporting walls are permitted provided the footings are reinforced longitudinally with not less than two continuous reinforcing bars. Bars shall not be smaller than No. 13 and shall have a total area of not less than 0.002 times the gross cross-sectional area of the footing. Continuity of reinforcement shall be provided at corners and intersections;

(c) For detached one- and two-family dwellings three stories or less in height and constructed with stud bearing walls, plain concrete foundations or basement walls are permitted provided the wall is not less than 190 mm thick and retains no more than 1.2 m of unbalanced fill.
REFERENCES

References, Chapter 1

References, Chapter 2

References, Chapter 3

References, Chapter 4

REFERENCES

References, Chapter 6

References, Chapter 7

References, Chapter 8

References, Chapter 9

REFERENCES

References, Chapter 10

References, Chapter 11

11.17. ACI Committee 318, “Commentary on Building Code Requirements for Reinforced Concrete (ACI 318-63),” SP-10, American Concrete Institute, Farmington Hills, Mich., 1965, pp. 78-84.

REFERENCES

11.48. ACI-ASCE Committee 423, “Recommendations for Concrete Members Prestressed with Unbonded Tendons (ACI 423.3R-89),” American Concrete Institute, Farmington Hills, Mich., 18 pp. Also *ACI Manual of Concrete Practice*, Part 3.

References, Chapter 12

References, Chapter 13

ACI 318 Building Code and Commentary

References, Chapter 14

14.4. ACI Committee 551, “Tilt-Up Concrete Structures (ACI 551R-92),” Manual of Concrete Practice, American Concrete Institute, Farmington Hills, Mich., pp. 551R-1 to 551R-46.

References, Chapter 15

References, Chapter 16

References, Chapter 17

References, Chapter 18

18.2. PCI Design Handbook—Precast and Prestressed Concrete, 4th Edition, Precast/Prestressed Concrete Institute, Chicago, 1992, pp. 4-42 through 4-44.

18.5. PCI Committee on Prestress Losses, “Recommendations for Estimating Prestress Losses,” Journal of the Prestressed Concrete Institute, V. 20, No. 4, July-Aug. 1975, pp. 43-75.
REFERENCES 318M/318RM-355

References, Chapter 21

REFERENCES

References, Appendix B

References, Appendix C

APPENDIX A — ALTERNATE DESIGN METHOD

CODE

A.0 — Notation

Some notation definitions are modified from those in the main body of the code for specific use in the application of Appendix A.

\[A_g = \text{gross area of section, mm}^2 \]
\[A_v = \text{area of shear reinforcement within a distance } s, \text{ mm}^2 \]
\[A_1 = \text{loaded area} \]
\[A_2 = \text{maximum area of the portion of the supporting surface that is geometrically similar to and concentric with the loaded area} \]
\[b_o = \text{perimeter of critical section for slabs and footings, mm} \]
\[b_w = \text{web width, or diameter of circular section, mm} \]
\[d = \text{distance from extreme compression fiber to centroid of tension reinforcement, mm} \]
\[E_c = \text{modulus of elasticity of concrete, MPa. See 8.5.1} \]
\[E_s = \text{modulus of elasticity of reinforcement, MPa. See 8.5.2} \]
\[f_c' = \text{specified compressive strength of concrete, MPa. See Chapter 5} \]
\[f_c' = \text{square root of specified compressive strength of concrete, MPa} \]
\[f_{ct} = \text{average splitting tensile strength of lightweight aggregate concrete, MPa. See 5.1.4} \]
\[f_s = \text{permissible tensile stress in reinforcement, MPa} \]
\[f_y = \text{specified yield strength of reinforcement, MPa. See 3.5.3} \]
\[M = \text{design moment} \]
\[n = \text{modular ratio of elasticity} \]
\[N = \text{design axial load normal to cross section occurring simultaneously with } V; \text{ to be taken as positive for compression, negative for tension, and to include effects of tension due to creep and shrinkage} \]
\[s = \text{spacing of shear reinforcement in direction parallel to longitudinal reinforcement, mm} \]
\[v = \text{design shear stress} \]
\[v_c = \text{permissible shear stress carried by concrete, MPa} \]
\[v_h = \text{permissible horizontal shear stress, MPa} \]
\[V = \text{design shear force at section} \]
\[\alpha = \text{angle between inclined stirrups and longitudinal axis of member} \]
\[\beta_c = \text{ratio of long side to short side of concentrated load or reaction area} \]

COMMENTARY

A.0 — Notation

Units of measurement are given in the Notation to assist the user and are not intended to preclude the use of other correctly applied units for the same symbol, such as m or kN.
CODE

\[\rho_w = \text{ratio of tension reinforcement} \]
\[= \frac{A_s}{b_w d} \]
\[\phi = \text{strength reduction factor. See A.2.1} \]

A.1 — Scope

A.1.1 — Nonprestressed reinforced concrete members shall be permitted to be designed using service loads (without load factors) and permissible service load stresses in accordance with provisions of Appendix A.

A.1.2 — For design of members not covered by Appendix A, appropriate provisions of this code shall apply.

A.1.3 — All applicable provisions of this code for non-prestressed concrete, except 8.4, shall apply to members designed by the Alternate Design Method.

COMMENTARY

RA.1 — Scope

As an alternate to the Strength Design Method of this code, the design provisions of Appendix A may be used to proportion reinforced concrete members. In the alternate method, a structural member (in flexure) is so designed that the stresses resulting from the action of service loads (without load factors) and computed by the straight-line theory for flexure do not exceed permissible service load stresses. Service load is the load, such as dead, live, and wind, which is assumed actually to occur when the structure is in service. The required service loads to be used in design are as prescribed in the general building code. The stresses computed under the action of service loads are limited to values well within the elastic range of the materials so that the straight-line relationship between stress and strain is used (see A.5).

The alternate method is similar to the “working stress design method” of previous ACI Building Codes (e.g., ACI 318-63). For members subject to flexure without axial load, the method is identical. Major differences in procedure occur in design of compression members with or without flexure (see A.6) and bond stress and development of reinforcement (see A.4). For shear, the shear strengths provided by concrete for the Strength Design Method are divided by a factor of safety and the resulting permissible service load stresses restated in Appendix A (see A.7).

In view of the simplifications permitted, the Alternate Design Method of Appendix A generally will result in more conservative designs than those designs obtained using the Strength Design Method of the code. Load factors and strength reduction factors of 1.0 are used for both design and analysis. Also, design rules for proportioning by the straight-line theory for flexure have not been updated as thoroughly as the Strength Design Method for proportioning reinforced concrete members.

RA.1.1 — Design by Appendix A does not apply to prestressed members. (Chapter 18 permits linear stress-strain assumptions for computing service load stresses and pre-stress transfer stresses for investigation of behavior at service conditions.)

RA.1.3 — All other provisions of this code, except those permitting moment redistribution, apply to the Alternate Design Method. These include control of deflections and
A.1.4 — Flexural members shall meet requirements for deflection control in 9.5, and requirements of 10.4 through 10.7 of this code.

A.2 — General

A.2.1 — Load factors and strength reduction factors ϕ shall be taken as unity for members designed by the Alternate Design Method.

A.2.2 — It shall be permitted to proportion members for 75 percent of capacities required by other parts of Appendix A when considering wind or earthquake forces combined with other loads, provided the resulting section is not less than that required for the combination of dead and live load.

A.2.3 — When dead load reduces effects of other loads, members shall be designed for 85 percent of dead load in combination with the other loads.

A.3 — Permissible service load stresses

A.3.1 — Stresses in concrete shall not exceed the following:

(a) Flexure
 Extreme fiber stress in compression \(0.45 f'_c\)

(b) Shear*
 Beams and one-way slabs and footings:
 Shear carried by concrete, \(v_c\) \((1/11)\sqrt{f'_c}\)
 Maximum shear carried by concrete plus shear reinforcement \(v_c + (3/8)\sqrt{f'_c}\)

 * For more detailed calculation of shear stress carried by concrete \(v_c\) and shear values for lightweight aggregate concrete, see A.7.4.

RA.1.4 — The general serviceability requirements of this code, such as the requirements for deflection control (see 9.5) and crack control (see 10.6), should be met regardless of whether the strength method or the alternate method is used for design.

RA.2 — General

RA.2.1 — Load factors and strength reduction factors for determining safety in the Strength Design Method are not used in the Alternate Design Method. Accordingly, load factors and strength reduction factors ϕ are set equal to 1.0 to eliminate their effect when designing by the alternate method.

When using the moment and shear equations of 8.3.3 and Chapter 13, the factored load w_u should be replaced by the service load w.

RA.2.2 — When lateral loads such as wind or earthquake combined with live and dead load govern the design, members may be proportioned for 75 percent of capacities required in Appendix A. This is similar to the working stress design provisions of previous ACI Building Codes which allowed a one-third increase in stresses for these combinations of loads.

RA.2.3 — The 15 percent reduction for dead load is required for design conditions where dead load reduces the design effects of other loads to allow for the actual dead load being less than the dead load used in design. This provision is analogous to the required strength equation [Eq. (9-3)].

RA.3 — Permissible service load stresses

For convenience, permissible service load stresses are tabulated. Compressive stress in concrete for flexure without axial load is limited to \(0.45 f'_c\). Tensile stresses in reinforcement are limited to 140 MPa for Grade 300 and 350 steel and 170 MPa for Grade 420 and higher strength steel. One exception of long standing exists for one-way slabs with clear span lengths 4 m or less and reinforced with No. 10 bars or welded wire fabric having a diameter not exceeding 10 mm. For this design condition only, the permissible tensile stress is increased to the lesser of \(0.5 f_y\) or 200 MPa.

Permissible stresses for shear and bearing are percentages of the shear and bearing strengths provided for strength design. The 10 percent increase permitted for joists by 8.11 of the code is already included in the \(0.1 f_y^2\) value for joists.
CODE

Joists: ∗
Shear carried by concrete, \(v_c \) \((1/10)\sqrt{f_c'}\)

Two-way slabs and footings:
Shear carried by concrete, \(v_c \) † \(\frac{1}{12}(1 + \frac{2}{\beta_c})\sqrt{f_c'} \)
but not greater than \((1/6)\sqrt{f_c'}\)

(c) Bearing on loaded area‡............................ \(0.3f_c' \)

A.3.2 — Tensile stress in reinforcement \(f_s \) shall not exceed the following:

(a) Grade 300 or Grade 350 reinforcement .. 140 MPa

(b) Grade 420 reinforcement or greater and welded wire fabric (plain or deformed) .. 170 MPa

(c) For flexural reinforcement, 10 mm or less in diameter, in one-way slabs of not more than 4 m span \(0.50f_y \)
but not greater than 200 MPa

A.4 — Development and splices of reinforcement

A.4.1 — Development and splices of reinforcement shall be as required in Chapter 12 of this code.

A.4.2 — In satisfying requirements of 12.11.3, \(M_n \) shall be taken as computed moment capacity assuming all positive moment tension reinforcement at the section to be stressed to the permissible tensile stress \(f_s \), and \(V_u \) shall be taken as unfactored shear force at the section.

A.5 — Flexure

For investigation of stresses at service loads, straight-line theory (for flexure) shall be used with the following assumptions.

A.5.1 — Strains vary linearly as the distance from the neutral axis, except for deep flexural members with overall depth-span ratios greater than 2/5 for continuous

COMMENTARY

Clarification of the use of areas \(A_1 \) and \(A_2 \) for increased bearing stress is discussed in R10.17.1.

RA.4 — Development and splices of reinforcement

In computing development lengths and splice lengths, the provisions of Chapter 12 govern both methods of design equally since, in either case, the development lengths (and splice lengths as multiples of development lengths) are based on the yield strength of the reinforcement. Where \(M_n \) and \(V_u \) are referenced in Chapter 12, \(M_n \) is the service load resisting moment capacity and \(V_u \) is the applied service load shear force (without load factors) at the section.

RA.5 — Flexure

The straight-line theory applies only to design of members in flexure without axial load. Since stresses computed under the action of service loads are well within the elastic range, the straight-line relationship between stress and strain is used with the maximum fiber stress in concrete limited to \(0.45f_c' \) and the tensile stress in reinforcement limited to 170 MPa for Grade 420 steel (see A.3.2).

Straight-line theory may be used for all sectional shapes with or without compression reinforcement when axial load is not present. Since small axial compression loads tend to increase the moment capacity of a section, small axial loads may be disregarded in most cases. When doubt exists as to whether or not the axial compression may be disregarded, the member should be investigated using A.6.

*Designed in accordance with 8.11 of this code.
† If shear reinforcement is provided, see A.7.7.4 and A.7.7.5.
‡ When the supporting surface is wider on all sides than the loaded area, permissible bearing stress on the loaded area shall be permitted to be multiplied by \(\frac{A_2}{A_1} \) but not more than 2. When the supporting surface is sloped or stepped, \(A_2 \) shall be permitted to be taken as the area of the lower base of the largest frustum of a right pyramid or cone contained wholly in the support and having for its upper base the loaded area, and having side slopes of 1 vertical to 2 horizontal.
spans and 4/5 for simple spans, a nonlinear distribution of strain shall be considered. See 10.7 of this code.

A.5.2 — Stress-strain relationship of concrete is a straight line under service loads within permissible service load stresses.

A.5.3 — In reinforced concrete members, concrete resists no tension.

A.5.4 — It shall be permitted to take the modular ratio, \(n = E_s / E_c \), as the nearest whole number (but not less than 6). Except in calculations for deflections, value of \(n \) for lightweight concrete shall be assumed to be the same as for normal weight concrete of the same strength.

A.5.5 — In doubly reinforced flexural members, an effective modular ratio of \(2 E_s / E_c \) shall be used to transform compression reinforcement for stress computations. Compressive stress in such reinforcement shall not exceed permissible tensile stress.

A.6 — Compression members with or without flexure

A.6.1 — Combined flexure and axial load capacity of compression members shall be taken as 40 percent of that computed in accordance with provisions in Chapter 10 of this code.

A.6.2 — Slenderness effects shall be included according to requirements of 10.10 through 10.13. In Eq. (10-10) and (10-19) the term \(P_u \) shall be replaced by 2.5 times the design axial load, and the factor 0.75 shall be taken equal to 1.0.

A.6.3 — Walls shall be designed in accordance with Chapter 14 of this code with flexure and axial load capacities taken as 40 percent of that computed using Chapter 14. In Eq. (14-1), \(f \) shall be taken equal to 1.0.

A.7 — Shear and torsion

A.7.1 — Design shear stress \(v \) shall be computed by

\[
v = \frac{V}{b_w d}
\]

(A-1)

where \(V \) is design shear force at section considered.

RA.6 — Compression members with or without flexure

All compression members, with or without flexure, should be proportioned using the Strength Design Method. This departure from the 1963 and previous ACI Building Codes is to provide a more consistent factor of safety for the full range of load-moment interaction. Existing working stress design aids for columns do not satisfy requirements of Appendix A.

The permissible service load capacity is taken as 40 percent of the nominal axial load strength \(P_n \) at given eccentricity \(f = 1.0 \) as computed by the provisions of Chapter 10, subject to appropriate reduction due to effects of slenderness. Use of 40 percent of the nominal strength is equivalent to an overall safety factor \(U/\phi \) of 2.5.

With the Alternate Design Method, \(P_u/\phi \) in Eq. (10-10) and (10-19) is taken as \(2.5P \) when gravity loads govern and as \(1.875P \) when lateral loads combined with gravity loads govern the design, where \(P \) is the design axial load in the compression member.

RA.7 — Shear and torsion

For convenience, a complete set of design provisions for shear is provided in Appendix A.

The permissible concrete stresses and limiting maximum
CODE

A.7.2 — When the reaction, in direction of applied shear, introduces compression into the end regions of a member, sections located less than a distance \(d \) from face of support shall be permitted to be designed for the same shear \(v \) as that computed at a distance \(d \).

A.7.3 — Whenever applicable, effects of torsion, in accordance with provisions of Chapter 11 of this code, shall be added. Shear and torsional moment strengths provided by concrete and limiting maximum strengths for torsion shall be taken as 55 percent of the values given in Chapter 11.

A.7.4 — Shear stress carried by concrete

A.7.4.1 — For members subject to shear and flexure only, shear stress carried by concrete \(v_c \) shall not exceed \(\frac{1}{11} \sqrt{f_c^t} \) unless a more detailed calculation is made in accordance with A.7.4.4.

A.7.4.2 — For members subject to axial compression, shear stress carried by concrete \(v_c \) shall not exceed \(\frac{1}{11} \sqrt{f_c^t} \) unless a more detailed calculation is made in accordance with A.7.4.5.

A.7.4.3 — For members subject to significant axial tension, shear reinforcement shall be designed to carry total shear, unless a more detailed calculation is made using

\[
v_c = \frac{1}{11} \left(1 + \frac{0.6 N}{A_g} \right) \sqrt{f_c^t}
\]

(A-2)

where \(N \) is negative for tension. Quantity \(N/A_g \) shall be expressed in MPa.

A.7.4.4 — For members subject to shear and flexure only, it shall be permitted to compute \(v_c \) by

\[
v_c = \frac{1}{12} \sqrt{f_c^t} + 9 \rho_w \frac{Vd}{M}
\]

(A-3)

but \(v_c \) shall not exceed \((1/7) \sqrt{f_c^t} \). Quantity \(Vd/M \) shall not be taken greater than 1.0, where \(M \) is design moment occurring simultaneously with \(V \) at section considered.

A.7.4.5 — For members subject to axial compression, it shall be permitted to compute \(v_c \) by

\[
v_c = \frac{1}{11} \left(1 + \frac{N}{11 A_g} \right) \sqrt{f_c^t}
\]

(A-4)

Quantity \(N/A_g \) shall be expressed in MPa.

A.7.4.6 — Shear stresses carried by concrete \(v_c \) apply to normal weight concrete. When lightweight aggregate concrete is used, one of the following modifications shall apply:

COMMENTARY

stresses for shear are 55 percent for beams, joists, walls and one-way slabs and 50 percent for two-way slabs and footings, respectively, of the shear and torsional moment strengths given in the code for the Strength Design Method.

When gravity load, wind, earthquake, or other lateral forces cause transfer of moment between slab and column, provisions of 11.12.2 must be applied with the permissible stresses on the critical section limited to those given in A.7.7.3.
(a) When f_{ct} is specified and concrete is proportioned in accordance with 5.2, $1.8f_{ct}'$ shall be substituted for f_{ct}' but the value of $1.8f_{ct}'$ shall not exceed f_{ct}'.

(b) When f_{ct} is not specified, the value of f_{ct}' shall be multiplied by 0.75 for “all-lightweight” concrete and by 0.85 for “sand-lightweight” concrete. Linear interpolation shall be permitted when partial sand replacement is used.

A.7.4.7 — In determining shear stress carried by concrete v_c, whenever applicable, effects of axial tension due to creep and shrinkage in restrained members shall be included and it shall be permitted to include effects of inclined flexural compression in variable-depth members.

A.7.5 — Shear stress carried by shear reinforcement

A.7.5.1 — Types of shear reinforcement

Shear reinforcement shall consist of one of the following:

(a) Stirrups perpendicular to axis of member;

(b) Welded wire fabric with wires located perpendicular to axis of member making an angle of 45 deg or more with longitudinal tension reinforcement;

(c) Longitudinal reinforcement with bent portion making an angle of 30 deg or more with longitudinal tension reinforcement;

(d) Combinations of stirrups and bent longitudinal reinforcement;

(e) Spirals.

A.7.5.2 — Design yield strength of shear reinforcement shall not exceed 420 MPa.

A.7.5.3 — Stirrups and other bars or wires used as shear reinforcement shall extend to a distance d from extreme compression fiber and shall be anchored at both ends according to 12.13 of this code to develop design yield strength of reinforcement.

A.7.5.4 — Spacing limits for shear reinforcement

A.7.5.4.1 — Spacing of shear reinforcement placed perpendicular to axis of member shall not exceed $d/2$, nor 600 mm.
CODE

A.7.5.4.2 — Inclined stirrups and bent longitudinal reinforcement shall be so spaced that every 45-deg line, extending toward the reaction from middepth of member \((d/2)\) to longitudinal tension reinforcement, shall be crossed by at least one line of shear reinforcement.

A.7.5.4.3 — When \((v - v_c)\) exceeds \((1/6) f_c^2\), maximum spacing given in A.7.5.4.1 and A.7.5.4.2 shall be reduced by one-half.

A.7.5.5 — Minimum shear reinforcement

A.7.5.5.1 — A minimum area of shear reinforcement shall be provided in all reinforced concrete flexural members where design shear stress \(v\) is greater than one-half the permissible shear stress \(v_c\) carried by concrete, except:

(a) Slabs and footings;

(b) Concrete joist construction defined by 8.11 of this code;

(c) Beams with total depth not greater than 250 mm, 2.5 times thickness of flange, or one-half the width of web, whichever is greatest.

A.7.5.5.2 — Minimum shear reinforcement requirements of A.7.5.5.1 shall be permitted to be waived if shown by test that required ultimate flexural and shear strength can be developed when shear reinforcement is omitted.

A.7.5.5.3 — Where shear reinforcement is required by A.7.5.5.1 or by analysis, minimum area of shear reinforcement shall be computed by

\[
A_v = \frac{1}{3} \frac{b_w s}{f_y}
\]

(A-5)

where \(b_w\) and \(s\) are in mm.

A.7.5.6 — Design of shear reinforcement

A.7.5.6.1 — Where design shear stress \(v\) exceeds shear stress carried by concrete \(v_c\) shear reinforcement shall be provided in accordance with A.7.5.6.2 through A.7.5.6.8.

A.7.5.6.2 — When shear reinforcement perpendicular to axis of member is used,

\[
A_v = \frac{(v - v_c)b_w s}{f_s}
\]

(A-6)

A.7.5.6.3 — When inclined stirrups are used as shear reinforcement,

\[
A_v = \frac{(v - v_c)b_w s}{f_s (\sin \alpha + \cos \alpha)}
\]

(A-7)
CODE

A.7.5.6.4 — When shear reinforcement consists of a single bar or a single group of parallel bars, all bent up at the same distance from the support,

\[A_v = \frac{(v - v_c)b_wd}{f_s \sin \alpha} \]

(A-8)

where \((v - v_c)\) shall not exceed \((1/8)/f_c'\).

A.7.5.6.5 — When shear reinforcement consists of a series of parallel bent-up bars or groups of parallel bent-up bars at different distances from the support, required area shall be computed by Eq. (A-7).

A.7.5.6.6 — Only the center three-quarters of the inclined portion of any longitudinal bent bar shall be considered effective for shear reinforcement.

A.7.5.6.7 — When more than one type of shear reinforcement is used to reinforce the same portion of a member, required area shall be computed as the sum of the various types separately. In such computations, \(v_c\) shall be included only once.

A.7.5.6.8 — Value of \((v - v_c)\) shall not exceed \((3/8)/f_c'\).

A.7.6 — Shear-friction

Where it is appropriate to consider shear transfer across a given plane, such as an existing or potential crack, an interface between dissimilar materials, or an interface between two concretes cast at different times, shear-friction provisions of 11.7 of this code shall be permitted to be applied, with limiting maximum stress for shear taken as 55 percent of that given in 11.7.5. Permissible stress in shear-friction reinforcement shall be that given in A.3.2.

A.7.7 — Special provisions for slabs and footings

A.7.7.1 — Shear capacity of slabs and footings in the vicinity of concentrated loads or reactions is governed by the more severe of two conditions:

A.7.7.1.1 — Beam action for slab or footing, with a critical section extending in a plane across the entire width and located at a distance \(d\) from face of concentrated load or reaction area. For this condition, the slab or footing shall be designed in accordance with A.7.1 through A.7.5.

A.7.7.1.2 — Two-way action for slab or footing, with a critical section perpendicular to plane of slab and located so that its perimeter is a minimum, but need not approach closer than \(d/2\) to perimeter of concentrated
CODE

A.7.7.2 — Design shear stress \(\nu \) shall be computed by

\[
\nu = \frac{V}{b_o d} \quad (A-9)
\]

where \(V \) and \(b_o \) shall be taken at the critical section defined in A.7.7.1.2.

A.7.7.3 — Design shear stress \(\nu \) shall not exceed \(\nu_c \) given by Eq. (A-10) unless shear reinforcement is provided

\[
\nu_c = \frac{1}{12} \left(1 + \frac{2}{\beta_c} \right) \sqrt{\frac{f_c'}{\beta_c}} \quad (A-10)
\]

but \(\nu_c \) shall not exceed \((1/6) \sqrt{f_c'} \). \(\beta_c \) is the ratio of long side to short side of concentrated load or reaction area. When lightweight aggregate concrete is used, the modifications of A.7.4.6 shall apply.

A.7.7.4 — If shear reinforcement consisting of bars or wires is provided in accordance with 11.12.3 of this code, \(\nu_c \) shall not exceed \((1/12) \sqrt{f_c'} \), and \(\nu \) shall not exceed \((1/4) \sqrt{f_c'} \).

A.7.7.5 — If shear reinforcement consisting of steel I- or channel-shaped sections (shearheads) is provided in accordance with 11.12.4 of this code, \(\nu \) on the critical section defined in A.7.7.1.2 shall not exceed \(0.3 \sqrt{f_c'} \), and \(\nu \) on the critical section defined in 11.12.4.7 shall not exceed \((1/6) \sqrt{f_c'} \). In Eq. (11-39) and (11-40), design shear force \(V \) shall be multiplied by 2 and substituted for \(V_u \).

A.7.8 — Special provisions for other members

For design of deep flexural members, brackets and corbels, and walls, the special provisions of Chapter 11 of this code shall be used, with shear strengths provided by concrete and limiting maximum strengths for shear taken as 55 percent of the values given in Chapter 11. In 11.10.6, the design axial load shall be multiplied by 1.2 if compression and 2.0 if tension, and substituted for \(N_u \).

A.7.9 — Composite concrete flexural members

For design of composite concrete flexural members, permissible horizontal shear stress \(\nu_h \) shall not exceed 55 percent of the horizontal shear strengths given in 17.5.2 of this code.
APPENDIX B — UNIFIED DESIGN PROVISIONS FOR REINFORCED AND PRESTRESSED CONCRETE FLEXURAL AND COMPRESSION MEMBERS

CODE

B.1 — Scope

Design for flexure and axial load by provisions of Appendix B shall be permitted. When Appendix B is used in design, all numbered sections in this appendix shall be used in place of the corresponding numbered sections in Chapters 8, 9, 10, and 18. If any section in this appendix is used, all sections in this appendix shall be substituted for the corresponding sections in the body of the code, and all other sections in the body of the code shall be applicable.

RB.1 — Scope

This appendix to the code introduces substantial changes in design for flexure and axial loads. Reinforcement limits, strength reduction factor φ, and moment redistribution are affected. Designs using the provisions of this Appendix B satisfy the code, and are equally acceptable.

When this appendix is used, each section of the appendix should be substituted for the corresponding section in the body of the code. For instance, B.8.4 is substituted for 8.4, etc. through B.18.10.4 being substituted for 18.10.4. The corresponding commentary sections should also be substituted.

RB.8.4 — Redistribution of negative moments in continuous flexural members

Moment redistribution is dependent on adequate ductility in plastic hinge regions. These plastic hinge regions develop at points of maximum moment and cause a shift in the elastic moment diagram. The usual result is a reduction in the values of negative moments in the plastic hinge region and an increase in the values of positive moments from those computed by elastic analysis. Since negative moments are determined for one loading arrangement and positive moments for another, each section has a reserve capacity that is not fully utilized for any one loading condition. The plastic hinges permit the utilization of the full capacity of more cross sections of a flexural member at ultimate loads.

Using conservative values of ultimate concrete strains and lengths of plastic hinges derived from extensive tests, flexural members with small rotation capacity were analyzed for moment redistribution up to 20 percent depending on the reinforcement ratio. The results were found to be conservative (see Fig. RB.8.4). Studies by Cohn8.2 and Mattock8.3 support this conclusion and indicate that cracking and deflection of beams designed for moment redistribution are not significantly greater at service loads than for beams designed by the elastic theory distribution of moments. Also, these studies indicated that adequate rotation capacity for the moment redistribution allowed by the code is available if the members satisfy the code requirements.

Moment redistribution does not apply to members designed by the Alternate Design Method of Appendix A; nor may it be used for slab systems designed by the Direct Design Method (see 13.6.1.7).

Section 8.4 of the code specifies the permissible redistribution percentage in terms of reinforcement indices. This

ACI 318 Building Code and Commentary
B.9.3 — Design strength

B.9.3.1 — Design strength provided by a member, its connections to other members, and its cross sections, in terms of flexure, axial load, shear, and torsion, shall be taken as the nominal strength calculated in accordance with requirements and assumptions of this code, multiplied by a strength reduction factor ϕ.

B.9.3.2 — Strength reduction factor ϕ shall be as follows:

B.9.3.2.1 — Tension-controlled sections........... 0.90

B.9.3.2.2 — Compression-controlled sections:

(a) Members with spiral reinforcement conforming to 10.9.3................................. 0.75

(b) Other reinforced members...................... 0.70

For sections in which the net tensile strain in the appendix specifies the permissible redistribution percentage in terms of the net tensile strain ε_t. See Reference B.1 for a comparison of these moment redistribution provisions.

RB.9.3 — Design strength

RB.9.3.1 — The term “design strength” of a member refers to the nominal strength calculated in accordance with the requirements stipulated in this code multiplied by a strength reduction factor ϕ, which is always less than 1.

The purposes of the strength reduction factor ϕ are: (1) to allow for the probability of understrength sections due to variations in material strengths and dimensions, (2) to allow for inaccuracies in the design equations, (3) to reflect the degree of ductility and required reliability of the section under the load effects being considered, and (4) to reflect the importance of the member in the structure.9.2, 9.3

RB.9.3.2 — Prior to the development of these provisions, the code specified the magnitude of the ϕ factor for cases of axial load or flexure or both in terms of the type of loading. For these cases, the ϕ factor is now determined by the strain conditions at a cross section, at nominal strength.

A lower ϕ-factor is used for compression-controlled sections than is used for tension-controlled sections because compression-controlled sections have less ductility, are more sensitive to variations in concrete strength, and generally occur in members that support larger loaded areas than members with tension-controlled sections. Members with spiral reinforcement are assigned a higher ϕ than tied columns since they have greater ductility or toughness.
extreme tension steel at nominal strength is between the limits for compression-controlled and tension-controlled sections, ϕ shall be linearly increased from that for compression-controlled sections to 0.90 as the net tensile strain in the extreme tension steel at nominal strength increases from the compression-controlled strain limit to 0.005. Alternatively, it shall be permitted to take ϕ as that for compression-controlled sections.

B.9.3.2.3 — Shear and torsion 0.85

B.9.3.2.4 — Bearing on concrete
(see also 18.13)................................. 0.70

The compression-controlled strain limit is the net tensile strain in the reinforcement at balanced strain conditions. For prestressed sections, it shall be permitted to use the same compression-controlled strain limit as that for reinforcement with a design yield strength f_y of 420 MPa.

B.10.3.2 — Balanced strain conditions exist at a cross section when tension reinforcement reaches the strain corresponding to its specified yield strength f_y just as concrete in compression reaches its assumed strain limit of 0.003.

The nominal flexural strength of a member is reached when the strain in the extreme compression fiber reaches the assumed strain limit 0.003. The net tensile strain in the extreme tension steel is determined from a linear strain distribution at nominal strength, shown in Fig. RB.10.3.3, using similar triangles.

For sections subjected to axial load with flexure, design strengths are determined by multiplying both P_n and M by the appropriate single value of ϕ. Compression-controlled and tension-controlled sections are defined in Chapter 2 as those which have net tensile strain in the extreme tension steel at nominal strength less than or equal to the compression-controlled strain limit and equal to or greater than 0.005, respectively. For sections with net tensile strain in the extreme tension steel at nominal strength between the above limits, the value of ϕ may be determined by linear interpolation, as shown in Fig. RB.9.3.2. The concept of net tensile strain is discussed in RB.10.3.3.

Since the compressive strain in the concrete at nominal strength is assumed in 10.2.3 to be 0.003, the net tensile strain limits for compression-controlled members may also be stated in terms of the ratio c/d_t, where c is the depth of the neutral axis at nominal strength, and d_t is the distance from the extreme compression fiber to the extreme tension steel. The c/d_t limits for compression-controlled and tension-controlled sections are 0.6 and 0.375, respectively. The 0.6 limit applies to sections reinforced with Grade 420 steel and to prestressed sections. Fig. RB.9.3.2 also gives equations for ϕ as a function of c/d_t.

The net tensile strain limit for tension-controlled sections may also be stated in terms of the $\rho/
ho_b$ ratio as defined in previous editions of the code. The net tensile strain limit of 0.005 corresponds to a $\rho/
ho_b$ ratio of 0.63 for rectangular sections with Grade 420 reinforcement. For a comparison of these provisions with those of the body of the code, see Reference B.1.

The factor ϕ for bearing on concrete in this section does not apply to post-tensioning anchorage bearing plates (see R18.13).

RB.10.3.2 — A balanced strain condition exists at a cross section when tension reinforcement just reaches its specified yield strength f_y in the compression fiber reaches 0.003 simultaneously with the first yield strain f_y/E_s in the tension reinforcement. The reinforcement ratio ρ_b which produces balanced conditions under flexure, depends on the shape of the cross section and the location of the reinforcement.

For Grade 420 reinforcement, the compression-controlled strain limit may be taken as a net tensile strain ϵ_t of 0.002. This net tensile strain may be used as the compression-controlled strain limit for prestressed sections.

RB.10.3.3 — The nominal flexural strength of a member is reached when the strain in the extreme compression fiber reaches the assumed strain limit 0.003. The net tensile strain in the extreme tension steel is determined from a linear strain distribution at nominal strength, shown in Fig. RB.10.3.3, using similar triangles.
extreme tension steel is equal to or greater than 0.005 just as the concrete in compression reaches its assumed strain limit of 0.003. Sections with net tensile strain in the extreme tension steel between the compression-controlled strain limit and 0.005 constitute a transition region between compression-controlled and tension-controlled sections.

When the net tensile strain in the extreme tension steel is sufficiently large (equal to or greater than 0.005), the section is defined as tension-controlled where ample warning of failure with extensive deflection and cracking may be expected. When the net tensile strain in the extreme tension steel is small (less than or equal to the compression-controlled strain limit), a brittle failure condition may be expected, with little warning of impending failure. Flexural members are usually tension-controlled, whereas compression members are usually compression-controlled. Some sections, such as those with small axial load and large bending moment, will have net tensile strain in the extreme tension steel between the above limits. These sections are in a transition region between compression- and tension-controlled sections. Section B.9.3.2 specifies the appropriate strength reduction factors for tension-controlled and compression-controlled sections, and for intermediate cases in the transition regions. See Reference B.1 for a comparison of these provisions to those in the body of the code.

Prior to the development of these provisions, the code defined balanced strain conditions as those existing at a cross section when tension reinforcement reaches the strain corresponding to its specified yield strength \(f_y \) just as the concrete in compression reaches its assumed strain limit of 0.003. The reinforcement ratio \(\rho_b \) was defined as the reinforcement ratio producing balanced strain conditions. The limiting tensile strain for flexural members was not stated, but was implicit in the maximum tension reinforcement...
B.18.1.3 — The following provisions of this code shall not apply to prestressed concrete, except as specifically noted: Sections 7.6.5, 8.10.2, 8.10.3, 8.10.4, 8.11, 10.5, 10.6, 10.9.1, and 10.9.2; Chapter 13; and Sections 14.3, 14.5, and 14.6.

RB.18.1.3 — Some sections of the code are excluded from use in the design of prestressed concrete for specific reasons. The following discussion provides explanation for such exclusions:

Section 7.6.5 — Section 7.6.5 of the code is excluded from application to prestressed concrete since the requirements for bonded reinforcement and unbonded tendons for cast-in-place members are provided in 18.9 and 18.12, respectively.
Sections 8.10.2, 8.10.3, and 8.10.4 — The empirical provisions of 8.10.2, 8.10.3, and 8.10.4 for T-beams were developed for conventionally reinforced concrete and if applied to prestressed concrete would exclude many standard prestressed products in satisfactory use today. Hence, proof by experience permits variations.

By excluding 8.10.2, 8.10.3, and 8.10.4, no special requirements for prestressed concrete T-beams appear in the code. Instead, the determination of an effective width of flange is left to the experience and judgment of the engineer. Where possible, the flange widths in 8.10.2, 8.10.3, and 8.10.4 should be used unless experience has proven that variations are safe and satisfactory. It is not necessarily conservative in elastic analysis and design considerations to use the maximum flange width as permitted in 8.10.2.

Sections 8.10.1 and 8.10.5 provide general requirements for T-beams that are also applicable to prestressed concrete units. The spacing limitations for slab reinforcement are based on flange thickness, which for tapered flanges can be taken as the average thickness.

Section 8.11 — The empirical limits established for conventionally reinforced concrete joist floors are based on successful past performance of joist construction using “standard” joist forming systems. See R8.11. For prestressed joist construction, experience and judgment should be used. The provisions of 8.11 may be used as a guide.

Sections 10.5, 10.9.1, and 10.9.2 — For prestressed concrete, the limitations on reinforcement given in 10.5, 10.9.1, and 10.9.2 are replaced by those in 18.8.3, 18.9, and 18.11.2.

Section 10.6 — When originally prepared, the provisions of 10.6 for distribution of flexural reinforcement were not intended for prestressed concrete members. The behavior of a prestressed member is considerably different from that of a nonprestressed member. Experience and judgment should be used for proper distribution of reinforcement in a prestressed member.

Chapter 13 — The design of prestressed concrete slabs requires recognition of secondary moments induced by the undulating profile of the prestressing tendons. Also, volume changes due to the prestressing force can create additional loads on the structure that are not adequately covered in Chapter 13. Because of these unique properties associated with prestressing, many of the design procedures of Chapter 13 are not appropriate for prestressed concrete structures and are replaced by the provisions of 18.12.

Sections 14.5 and 14.6 — The requirements for wall design in 14.5 and 14.6 are largely empirical, utilizing considerations not intended to apply to prestressed concrete.
CODE

B.18.8 — Limits for reinforcement of flexural members

B.18.8.1 — Prestressed concrete sections shall be classified as tension-controlled and compression-controlled sections in accordance with B.10.3.3. The appropriate ϕ-factors from B.9.3.2 shall apply.

B.18.8.2 — Total amount of prestressed and non-prestressed reinforcement shall be adequate to develop a factored load at least 1.2 times the cracking load computed on the basis of the modulus of rupture f_r specified in 9.5.2.3, except for flexural members with shear and flexural strength at least twice that required by 9.2.

B.18.8.3 — Part or all of the bonded reinforcement consisting of bars or tendons shall be provided as close as practicable to the extreme tension fiber in all prestressed flexural members, except that in members prestressed with unbonded tendons, the minimum bonded reinforcement consisting of bars or tendons shall be as required by 18.9.

B.18.10.4 — Redistribution of negative moments in continuous prestressed flexural members

B.18.10.4.1 — Where bonded reinforcement is provided at supports in accordance with 18.9.2, it shall be permitted to increase or decrease negative moments calculated by elastic theory for any assumed loading, in accordance with B.8.4.

B.18.10.4.2 — The modified negative moments shall be used for calculating moments at sections within spans for the same loading arrangement.

COMMENTARY

RB.18.8 — Limits for reinforcement of flexural members

RB.18.8.1 — The net tensile strain limits for compression- and tension-controlled sections given in B.10.3.3 apply to prestressed sections. These provisions take the place of the maximum reinforcement limits in the code.

The net tensile strain limit for tension-controlled sections given in B.10.3.3 may also be stated in terms of ω_p as defined in previous editions of the code. The net tensile strain limit of 0.005 corresponds to $\omega_p = 0.32\beta_f$ for prestressed rectangular sections.

RB.18.8.2 — This provision is a precaution against abrupt flexural failure developing immediately after cracking. A flexural member designed according to code provisions requires considerable additional load beyond cracking to reach its flexural strength. Thus, considerable deflection would warn that the member strength is approaching. If the flexural strength should be reached shortly after cracking, the warning deflection would not occur.

RB.18.8.3 — Some bonded steel is required to be placed near the tension face of prestressed flexural members. The purpose of this bonded steel is to control cracking under full service loads or overloads.

RB.18.10.4 — Redistribution of negative moments in continuous prestressed flexural members

The provisions for redistribution of negative moments given in B.8.4 of this code apply equally to prestressed members. See Reference B.1 for a comparison to research results and code provisions.

For the moment redistribution principles of B.18.10.4 to be applicable to beams with unbonded tendons, it is necessary that such beams contain sufficient bonded reinforcement to ensure they will act as beams after cracking and not as a series of tied arches. The minimum bonded reinforcement requirements of 18.9 will serve this purpose.
<table>
<thead>
<tr>
<th>CODE</th>
<th>COMMENTARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX C — ALTERNATIVE LOAD AND STRENGTH REDUCTION FACTORS

CODE

C.1 — General

C.1.1 — It shall be permitted to proportion the concrete members of a building structure using the load-factor combinations in ASCE 7-95 in conjunction with the following strength reduction factors, if the structural framing includes primary members of other materials proportioned to satisfy the load factor combinations in Section 2.3 of ASCE 7-95.

C.1.1.1 — Flexure, without axial load 0.80

C.1.1.2 — Axial tension and axial tension with flexure .. 0.80

C.1.1.3 — Axial compression and axial compression with flexure:

(a) Members with spiral reinforcement conforming to 10.9.3 .. 0.70

(b) Other reinforced members 0.65

except that for low values of axial compression, it shall be permitted to increase ϕ towards the value for flexure, 0.80, using the linear interpolation provided in either 9.3.2.2 or B.9.3.2.2.

C.1.1.4 — Shear and torsion 0.75

Except in structures that rely on special moment resisting frames or special reinforced concrete structural walls to resist earthquake effects:

(a) Shear in any member that is designed to resist earthquake effects if its nominal shear strength is less than the shear corresponding to the development of the nominal flexural strength of the member 0.55

(b) Shear in diaphragms shall not exceed the minimum strength reduction factor for shear used for the vertical components of the primary lateral-force-resisting system

(c) Shear in joints and diagonally reinforced coupling beams .. 0.80

C.1.1.5 — Bearing .. 0.65

C.1.1.6 — Plain concrete 0.55

C.1.2 — The design of post-tensioned anchorage zones shall use the load factor of 9.2.8 and ϕ-factor of 9.3.2.5.

COMMENTARY

RC.1 — General

Appendix C has been included to facilitate the proportioning of building structures that include members made of materials other than concrete. If those members are to be proportioned using the minimum design loads specified in ASCE 7, it is convenient to execute the entire design using the same load requirements.

The strength reduction factors in Appendix C were calibrated so that if they are used in conjunction with the minimum design load combinations from Section 2.3.2 of Reference C.1, the designs, in most cases, will be comparable to those that would be obtained using the load factors and strength reduction factors specified in Chapter 9. It is unsafe to use the load factors from Reference C.1 with the strength reduction factors from Chapter 9.

Relevant sections of Chapter 2 of Reference C.1* are reproduced here:

2.2 — Symbols and Notation

D = dead load consisting of: (a) weight of the member itself; (b) weight of all materials of construction incorporated into the building to be permanently supported by the member, including built-in partitions; and (c) weight of permanent equipment;

E = earthquake load;

F = loads due to fluids with well-defined pressures and maximum heights;

L = live loads due to intended use and occupancy, including loads due to movable objects and movable partitions and loads temporarily supported by the structure during maintenance. L includes any permissible reduction. If resistance to impact loads is taken into account in design, such effects shall be included with the live load L;

L_r = roof live loads;

S = snow loads;

R = rain loads, except ponding;

H = loads due to the weight and lateral pressure of soil and water in soil;

P = loads, forces, and effects due to ponding;

T = self-straining forces and effects arising from contraction or expansion resulting from temperature changes, shrinkage, moisture changes, creep in component materials, movement due to

2.4 — Combining Loads Using Strength Design

2.4.1 — Applicability. The load combinations and load factors given in 2.4.2 and 2.4.3 shall be used only in those cases in which they are specifically authorized by the applicable material design standard.

2.4.2 — Basic Combinations. Except where applicable codes and standards provide otherwise, structures, components, and foundations shall be designed so that their design strength exceeds the effects of the factored loads in the following combinations:

1. \(1.4D \)
2. \(1.2D + 1.6L + 0.5(L_r \text{ or } S \text{ or } R) \)
3. \(1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (0.5L \text{ or } 0.8W) \)
4. \(1.2D + 1.3W + 0.5L + 0.5(L_r \text{ or } S \text{ or } R) \)
5. \(1.2D + 1.5E + (0.5L \text{ or } 0.2S) \)
6. \(0.9D - (1.3W \text{ or } 1.5E) \)

Exception: the load factor on \(L \) in combinations (3), (4), and (5) shall equal 1.0 for garages, areas occupied as places of public assembly, and all areas where the live load is greater than 4.8kN/m².

Each relevant strength limit state shall be considered. The most unfavorable effect may occur when one or more of the contributing loads are not acting.

2.4.3 — Other Combinations. The structural effects of \(F, H, P, \text{ or } T \) shall be considered in design as the following factored loads: \(1.3F, 1.6H, 1.2P, \text{ and } 1.2T \).

The load and strength reduction factors in Chapter 9 of this code have evolved since the early 1960s.C.2 There have been advances in recent years in understanding the probabilities of structural failure. Probability considerations provide a basis for assessing relative measures of structural safety if the variables affecting safety are distributed randomly and if the natures of the distributions are known. The load factors in Section 2.4.3 of ASCE 7 are said to be based on a survey of “reliabilities inherent in existing design practice.”C.1 For reinforced concrete buildings in countries where the ACI Building Code and similar codes have been used, the best and most compact survey of “reliabilities inherent in existing design practice” are the load and strength reduction factors used in the ACI Building Code. Currently, the strongest support for the strength reduction factors in Appendix C is the fact that, used with the load-factor combinations from ASCE 7, the results are generally compatible with those obtained using Chapter 9.
APPENDIX D — NOTATION

Items set in Times Roman type appear only in the commentary.

\(a \) = depth of rectangular stress block. Chapter 9
\(a \) = depth of equivalent rectangular stress block as defined in 10.2.7.1. Chapter 10 and 12
\(a \) = shear span, distance between concentrated load and face of support. Chapter 11
\(A \) = effective tension area of concrete surrounding the flexural tension reinforcement and having the same centroid as that reinforcement, divided by the number of bars or wires, \(\text{mm}^2 \). When the flexural reinforcement consists of different bar or wire sizes the numbers of bars or wires shall be computed as the total area of reinforcement divided by the area of the largest bar or wire used. Chapter 10
\(A \) = area of that part of cross section between flexural tension face and center of gravity of gross section, \(\text{mm}^2 \). Chapter 18
\(A_b \) = area of an individual bar, \(\text{mm}^2 \). Chapter 12
\(A_c \) = area of core of spirally reinforced compression member measured to outside diameter of spiral, \(\text{mm}^2 \). Chapter 10
\(A_c \) = area of concrete section resisting shear transfer, \(\text{mm}^2 \). Chapter 11
\(A_c \) = area of concrete of assumed critical section for transfer of moment at slab-column connection, \(\text{mm}^2 \). See Fig. R11.12.6.2. Chapter 11
\(A_c \) = area of contact surface being investigated for horizontal shear, \(\text{mm}^2 \). Chapter 17
\(A_{cf} \) = larger gross cross-sectional area of the slab-beam strips of the two orthogonal equivalent frames intersecting at a column of a two-way slab. Chapter 18
\(A_{ch} \) = cross-sectional area of a structural member measured out- and perpendicular to transverse reinforcement, \(\text{mm}^2 \). Chapter 21
\(A_{cp} \) = area enclosed by outside perimeter of concrete cross section, \(\text{mm}^2 \). See 11.6.1. Chapter 11
\(A_{cp} \) = area of concrete section, resisting shear, of an individual pier or horizontal wall segment, \(\text{mm}^2 \). Chapter 21
\(A_{cv} \) = net area of concrete section bounded by web thickness and length of section in the direction of shear force considered, \(\text{mm}^2 \). Chapter 21
\(A_f \) = area of reinforcement in bracket or corbel resisting factored moment, \([V_s a + N_{bc}(h - d)] \), \(\text{mm}^2 \). Chapter 11
\(A_f \) = base area of footing, \(\text{mm}^2 \). Chapter 15
\(A_g \) = gross area of section, \(\text{mm}^2 \). Chapter 9, 10, 11, 14, 15, 21, 22, and Appendix A
\(A_g \) = gross area of column, \(\text{mm}^2 \). Chapter 16
\(A_h \) = area of shear reinforcement parallel to flexural tension reinforcement, \(\text{mm}^2 \). Chapter 11
\(A_j \) = effective cross-sectional area within a joint, \(\text{mm}^2 \), see 21.5.3.1, in a plane parallel to plane of reinforcement generating shear in the joint. The joint depth shall be the overall depth of the column. Where a beam frames into a support of larger width, the effective width of the joint shall not exceed the smaller of:
 (a) beam width plus the joint depth
 (b) twice the smaller perpendicular distance from the longitudinal axis of the beam to the column side. See 21.5.3.1. Chapter 21
\(A_r \) = total area of longitudinal reinforcement to resist torsion, \(\text{mm}^2 \). Chapter 11
\(A_n \) = area of reinforcement in bracket or corbel resisting tensile force \(N_{bc} \), \(\text{mm}^2 \). Chapter 11
\(A_o \) = gross area enclosed by shear flow path, \(\text{mm}^2 \). Chapter 11
\(A_{oh} \) = area enclosed by centerline of the outermost closed transverse torsional reinforcement, \(\text{mm}^2 \). Chapter 11
\(A_{ps} \) = area of prestressed reinforcement in tension zone, \(\text{mm}^2 \). Chapter 11 and 18
\(A_s \) = area of longitudinal tension reinforcement in wall segment, \(\text{mm}^2 \). Chapter 14
\(A_s \) = area of nonprestressed tension reinforcement, \(\text{mm}^2 \). Chapter 8, 10, 11, 12, and 18
\(A_t \) = area of tension reinforcement. Chapter 9
\(A_{t,eff} \) = area of compression reinforcement, \(\text{mm}^2 \). Chapter 8, 9, and 18
\(A_{te} \) = area of effective longitudinal tension reinforcement in wall segment, \(\text{mm}^2 \), as calculated by Eq. (14-8). Chapter 14
\(A_{sh} \) = total cross-sectional area of transverse reinforcement (including crossties) within spacing \(s \) and perpendicular to dimension \(h_c \). Chapter 21
\(A_{sk} \) = area of skin reinforcement per unit height in one side face, \(\text{mm}^2/\text{m} \). See 10.6.7. Chapter 10
\(A_{s,min} \) = minimum amount of flexural reinforcement, \(\text{mm}^2 \). See 10.5. Chapter 10
\(A_r \) = total area of longitudinal reinforcement, (bars or steel shapes), \(\text{mm}^2 \). Chapter 10
\(A_r \) = area of structural steel shape, pipe, or tubing in a composite section, \(\text{mm}^2 \). Chapter 10
\(A_r \) = area of one leg of a closed stirrup resisting torsion within a distance \(s \), \(\text{mm}^2 \). Chapter 11
\(A_p \) = total cross-sectional area of all transverse reinforcement which is within the spacing \(s \) and which crosses the potential plane of splitting through the reinforcement being developed, \(\text{mm}^2 \). Chapter 12
\(A_r \) = area of shear reinforcement within a distance \(s \), or area of shear reinforcement perpendicular to flexural tension reinforcement within a distance \(s \) for deep flexural members, \(\text{mm}^2 \). Chapter 11
\(A_r \) = area of shear reinforcement within a distance \(s \), \(\text{mm}^2 \). Chapter 12 and Appendix A
\(A_s \) = area of ties within a distance \(s \), \(\text{mm}^2 \). Chapter 17
\(A_r \) = total area of reinforcement in each group of diagonal bars in a diagonally reinforced coupling beam, \(\text{mm}^2 \). Chapter 21
\(A_r \) = area of shear-friction reinforcement, \(\text{mm}^2 \). Chapter 11
\(A_{r,b} \) = area of shear reinforcement parallel to flexural tension reinforcement within a distance \(s_r \), \(\text{mm}^2 \). Chapter 11
\(A_s \) = area of an individual wire to be developed or spliced, \(\text{mm}^2 \). Chapter 12
\(A_t \) = loaded area. Chapter 10 and Appendix A
\(A_s \) = loaded area, \(\text{mm}^2 \). Chapter 22
\(A_s \) = the area of the lower base of the largest frustum of a pyramid, cone, or tapered wedge contained wholly within the support and having for its upper base the loaded area, and having side slopes of 1 vertical to 2 horizontal, \(\text{mm}^2 \). Chapter 10
\(A_s \) = the area of the lower base of the largest frustum of a pyramid, cone, or tapered wedge contained wholly within the support and having for its upper base the loaded area, and having side slopes of 1 vertical to 2 horizontal, \(\text{mm}^2 \). Chapter 22
\(A_s \) = maximum area of the portion of the supporting surface that is geometrically similar to and concentric with the loaded area. Appendix A
\(b \) = width of compression face of member, mm. Chapter 8, 9, 10, 11, 18
\(b \) = effective compressive flange width of a structural member, mm. Chapter 21
\(b \) = width of member, \(\text{mm} \). Chapter 22
\(b_o \) = perimeter of critical section for slabs and footings, \(\text{mm} \). Chapter 11 and Appendix A
\(b_o \) = critical perimeter for shear for pile groups. Chapter 15
\(b_o \) = perimeter of critical section for shear in footings, \(\text{mm} \). Chapter 22
\(b_i \) = width of that part of cross section containing the closed stirrups resisting torsion. Chapter 11
\[b_w = \text{width of cross section at contact surface being investigated for horizontal shear. Chapter 17} \]

\[b_v = \text{web width, mm. Chapter 10} \]

\[b_r = \text{width, or diameter of circular section, mm. Chapter 11, 12, 21, and Appendix A} \]

\[b_s = \text{width of the critical section defined in 11.12.1.2 measured in the direction of the span for which moments are determined, mm. Chapter 11 and 13} \]

\[b_2 = \text{width of the critical section defined in 11.12.1.2 measured in the direction perpendicular to } b_1, \text{ mm. Chapter 11 and 13} \]

\[B_p = \text{nominal bearing strength of loaded area. Chapter 22} \]

\[c = \text{distance from extreme compression fiber to neutral axis, mm. Chapter 9 and 10} \]

\[c = \text{spacing or cover dimension, mm. See 12.2.4. Chapter 12} \]

\[c = \text{distance from the extreme compression fiber to neutral axis, see 10.2.7, calculated for the factored axial force and nominal moment strength, consistent with the design displacement } \delta_c \text{ resulting in the largest neutral axis depth, mm. Chapter 21} \]

\[c_{AB} = \text{distance from centroidal axis of critical section to perimeter of critical section. See Fig. R11.12.6.2. Chapter 11} \]

\[c_{CD} = \text{size of rectangular or equivalent rectangular column, capital, or bracket measured in the direction of the span for which moments are being determined, mm. Chapter 11 and 13} \]

\[c_2 = \text{size of rectangular or equivalent rectangular column, capital, or bracket measured transverse to the direction of the span for which moments are being determined, mm. Chapter 11 and 13} \]

\[C = \text{cross-sectional constant to define torsional properties. The constant } C \text{ for T- or L-sections shall be permitted to be evaluated by dividing the section into separate rectangular parts and summing the values of } C \text{ for each part. Chapter 13} \]

\[C = \sum \left(1 - 0.63\frac{x}{y} \right) \]

\[C_e = \text{clear cover from the nearest surface in tension to the surface of the flexural tension reinforcement, mm. Chapter 10} \]

\[C_m = \text{a factor relating actual moment diagram to an equivalent uniform moment diagram. Chapter 10} \]

\[d = \text{distance from extreme compression fiber to centroid of tension reinforcement, mm. Chapter 7, 8, 9, 10, 12, and Appendix A} \]

\[d = \text{distance from extreme compression fiber to centroid of longitudinal tension reinforcement, but need not be less than 0.80h for circular sections and prestressed members, mm. Chapter 11} \]

\[d = \text{effective depth of footing. Chapter 15} \]

\[d = \text{distance from extreme compression fiber to centroid of tension reinforcement for entire composite section, mm. Chapter 17} \]

\[d = \text{distance from extreme compression fiber to centroid of nonprestressed tension reinforcement, mm. Chapter 18} \]

\[d = \text{effective depth of section. Chapter 21} \]

\[d' = \text{distance from extreme compression fiber to centroid of compression reinforcement, mm. Chapter 9 and 18} \]

\[d_b = \text{nominal diameter of bar, wire, or prestressing strand, mm. Chapter 7 and 12} \]

\[d_0 = \text{diameter of flexural reinforcement. Chapter 11} \]

\[d_s = \text{bar diameter. Chapter 21} \]

\[d_c = \text{thickness of concrete cover measured from extreme tension fiber to center of bar or wire located closest thereto, mm. Chapter 10} \]

\[d_p = \text{diameter of pile at footing base. Chapter 15} \]

\[d_p = \text{distance from extreme compression fiber to centroid of prestressed reinforcement. Chapter 18} \]

\[d_s = \text{distance from extreme tension fiber to centroid of tension reinforcement, mm. Chapter 9} \]

\[d_t = \text{distance from extreme compression fiber to extreme tension steel, mm. Chapter 9 and 10} \]

\[D = \text{dead loads, or related internal moments and forces. Chapter 9, 18, and 20} \]

\[D = \text{dead load consisting of: (a) weight of the member itself; (b) weight of all materials of construction incorporated into the building to be permanently supported by the member, including built-in partitions; and (c) weight of permanent equipment. Appendix C} \]

\[D_i = \text{resolution of } V_i \text{ into diagonal compression force. Chapter 11} \]

\[e = \text{eccentricity of load parallel to axis of member measured from centroid of gross section. Chapter 10} \]

\[e = \text{base of Napierian logarithms. Chapter 18} \]

\[E = \text{load effects of earthquake, or related internal moments and forces. Chapter 9 and 21} \]

\[E = \text{earthquake load. Appendix C} \]

\[E_o = \text{modulus of elasticity of concrete, MPa. See 8.5.1. Chapter 8, 9, 10, 19, and Appendix A} \]

\[E_{cb} = \text{modulus of elasticity of beam concrete. Chapter 13} \]

\[E_{cs} = \text{modulus of elasticity of slab concrete. Chapter 13} \]

\[E_I = \text{relative flexural stiffness of member. Chapter 8} \]

\[E_I = \text{flexural stiffness of compression member. See Eq. (10-12) and (10-13). Chapter 10} \]

\[E_s = \text{modulus of elasticity of reinforcement, MPa. See 8.5.2 or 8.5.3. Chapter 8, 10, and Appendix A} \]

\[f_{c'} = \text{specified compressive strength of concrete, MPa. Chapter 4, 5, 8, 9, 10, 11, 12, 14, 18, 19, 20, 21, 22, and Appendix A} \]

\[f_{p'} = \text{required average concrete strength, MPa. Chapter 4} \]

\[f_{c'} = \text{required average compressive strength of concrete used as the basis for selection of concrete proportions, MPa. Chapter 5} \]

\[f_{c} = \text{average splitting tensile strength of lightweight aggregate concrete, MPa. Chapter 9, 11, 12, 18, and Appendix A} \]

\[f_{c} = \text{stress due to unfactored dead load, at extreme fiber of section where tensile stress is caused by externally applied loads, MPa. Chapter 11} \]

\[f_{pc} = \text{compressive stress in concrete (after allowance for all prestress losses) at centroid of cross section resisting externally applied loads or at junction of web and flange when the centroid lies within the flange, MPa. (In a composite member, } f_{pc} \text{ is resultant compressive stress at centroid of composite section, or at junction of web and flange when the centroid lies within the flange, due to both prestress and moments resisted by precast member acting alone). Chapter 11} \]

\[f_{pc} = \text{average compressive stress in concrete due to effective prestress force only (after allowance for all prestress losses), MPa. Chapter 18} \]

\[f_{po} = \text{compressive stress in concrete due to effective prestress forces only (after allowance for all prestress losses) at extreme fiber of section where tensile stress is caused by externally applied loads, MPa. Chapter 11} \]

\[f_{ps} = \text{stress in prestressed reinforcement at nominal strength. See text for units. Chapter 12 and 18} \]

\[f_{pu} = \text{specified tensile strength of prestressing tendons, MPa. Chapter 11 and 18} \]

\[f_{py} = \text{specified yield strength of prestressing tendons, MPa. Chapter 18} \]

\[f_{p} = \text{modulus of rupture of concrete, MPa. Chapter 9 and 18} \]

\[f_{s} = \text{calculated stress in reinforcement at service loads, MPa. Chapter 10} \]
t_s = permissible tensile stress in reinforcement, MPa. Appendix A
f_p = effective prestressing tendon stress after all prestress losses. Chapter 11
f_{so} = effective stress in prestressed reinforcement (after allowance for all prestress losses). See text for units. Chapter 12 and 18
f_y = specified yield strength of nonprestressed reinforcement, MPa. Chapter 3, 7, 8, 9, 10, 11, 12, 18, 19, 21 and Appendix A
f_{yh} = yield strength of tension reinforcement. Chapter 20
f_{rh} = specified yield strength of circular tie, hoop, or spiral reinforcement, MPa. Chapter 21
f_{rv} = yield strength of transverse reinforcement, MPa. Chapter 21
f_{yt} = yield strength of longitudinal torsional reinforcement, MPa. Chapter 11
f_{rt} = specified yield strength of transverse reinforcement, MPa. Chapter 12
f_{rv} = yield strength of closed transverse torsional reinforcement, MPa. Chapter 11
F = loads due to weight and pressures of fluids with well-defined densities and controllable maximum heights, or related internal moments and forces. Chapter 9
F = loads due to fluids with well-defined pressures and maximum heights. Appendix C
GJ = relative torsional stiffness of member. Chapter 8
h = overall thickness of member, mm. Chapter 9, 10, 11, 12, 13, 14, 18, 20, and 22
h = overall thickness of composite member, mm. Chapter 17
h_c = cross-sectional dimension of column core measured center-to-center of confining reinforcement. Chapter 21
h_v = total depth of shearhead cross section, mm. Chapter 11
h_w = height of entire wall or of segment of wall considered, mm. Chapter 21
h_x = maximum horizontal spacing of hoop or crosstie legs on all faces of the column, mm. Chapter 21
H = loads due to weight and pressure of soil, water in soil, or other materials, or related internal moments and forces. Chapter 9
H = loads due to the weight and lateral pressure of soil and water in soil. Appendix C
I = moment of inertia of section resisting externally applied factored loads. Chapter 11
I_p = moment of inertia about centroidal axis of gross section of beam as defined in 13.2.4. Chapter 13
I_{cr} = moment of inertia about cracked section transformed to concrete. Chapter 9, 14
I_p = effective moment of inertia for computation of deflection. Chapter 9, 14
I_p = moment of inertia of gross concrete section about centroidal axis, neglecting reinforcement. Chapter 9 and 10
I_a = moment of inertia about centroidal axis of gross section of slab. Chapter 13
I_{so} = moments of inertia of reinforcement about centroidal axis of member cross section. Chapter 10
I_t = moment of inertia of structural steel shape, pipe, or tubing about centroidal axis of composite member cross section. Chapter 10
j = moment arm at a section, mm. Chapter 12
J_{cr} = property of assumed critical section analogous to polar moment of inertia. See Fig. 11.12.6.2. Chapter 11
k = effective length factor for compression members. Chapter 10
k = effective length factor. Chapter 14
K = wobble friction coefficient per meter of prestressing tendon. Chapter 18
K_t = torsional stiffness of torsional member; moment per unit rotation. See R13.7.5. Chapter 13
K_p = transverse reinforcement index. Chapter 12
K_{pl} = (constant 10 carries the unit MPa)
K_1 = factor to determine portion of shear strength provided by concrete at a section. Chapter 11
l = span length of beam or one-way slab, as defined in 8.7; clear projection of cantilever, mm. Chapter 9
l = span length of flexural member measured center-to-center of joints. Chapter 10
l = span length of member. Chapter 11
l = clear span, mm. Chapter 16
l_{a} = additional embedment length at support or at point of inflection, mm. Chapter 12
l = length of a compression member in a frame, measured from center to center of the joints in the frame. Chapter 10
l = vertical distance between supports, mm. Chapter 14 and 22
l = development length, mm. Chapter 7 and 19
l = development length, mm. Chapter 12
l = \(\frac{\mu_0 \times \text{applicable modification factors}}{10} \)
\(\mu _d \) = development length for a straight bar. Chapter 21
\(\mu _d \) = required development length for straight bar embedded in confined concrete (Section 21.5.4.3). Chapter 21
\(\mu _b \) = basic development length of standard hook in tension, measured from critical section to outside end of hook (straight embedment length between critical section and start of hook [point of tangency] plus radius of bend and one bar diameter), mm. Chapter 12
\(\mu _b \) = \(\mu_{so} \times \text{applicable modification factors} \)
\(\mu _b \) = development length for a bar with a standard hook as defined in Eq. (21-5). Chapter 21
\(\mu _m \) = required development length if bar is not entirely embedded in confined concrete. Chapter 21
\(\mu _b \) = basic development length of standard hook in tension, mm. Chapter 12
\(\mu _a \) = clear span for positive moment or shear and average of adjacent clear spans for negative moment. Chapter 8
\(\mu _a \) = clear span measured face-to-face of supports. Chapter 11
\(\mu _a \) = length of clear span in long direction of two-way construction, measured face-to-face of supports in slabs without beams and face-to-face of beams or other supports in other cases. Chapter 9
\(\mu _a \) = length of clear span in direction that moments are being determined, measured face-to-face of supports. Chapter 13
\(\mu _a \) = clear span measured face-to-face of supports, mm. Chapter 21
\(\mu _a \) = beam clear span. Chapter 21
\(\mu _a \) = minimum length, measured from joint face along axis of structural member, over which transverse reinforcement must be provided, mm. Chapter 21
\(\mu _a \) = span of member under load test, mm. (The shorter span for two-way slab systems.) Span is the smaller of (a) distance between centers of supports, and (b) clear distance between supports plus thickness, h, of member. In Eq. (20-1), span for a cantilever shall be taken as twice the distance from support to cantilever end, mm. Chapter 20
\(\mu _a \) = unsupported length of compression member. Chapter 10
\(\mu _a \) = length of shearhead arm from centroid of concentrated load or reaction, mm. Chapter 11
\(\mu _w \) = horizontal length of wall, mm. Chapter 11, 14
\(\mu _w \) = length of entire wall or of segment of wall considered in direction of shear force, mm. Chapter 21
\(\mu _w \) = length of prestressing tendon element from jacking end to any point \(x \) m. See Eq. (18-1) and (18-2). Chapter 18
\(\mu _w \) = length of span in direction that moments are being determined, measured center-to-center of supports. Chapter 13

ACI 318 Building Code and Commentary
\[l_2 = \text{length of span transverse to } l_1, \text{measured center-to-center of supports. See also 13.6.2.3 and 13.6.2.4. Chapter 13} \]

\[L = \text{live loads or related internal moments and forces. Chapter 9, 18, and 20} \]

\[l = \text{live loads, or related internal moments and forces. Chapter 21} \]

\[L = \text{live loads due to intended use and occupancy, including loads due to movable objects and movable partitions and loads temporarily supported by the structure during maintenance. } L \text{ includes any permissible reduction. If resistance to impact loads is taken into account in design, such effects shall be included with the live load } L. \text{ Appendix C} \]

\[l_r = \text{roof live load. Appendix C} \]

\[M = \text{design moment. Appendix A} \]

\[M = \text{maximum unfactored moment due to service loads, including } P_A \text{ effects, mm-N. Chapter 14} \]

\[M_a = \text{maximum moment in member at stage deflection is computed. Chapter 9, 14} \]

\[M_c = \text{factored moment to be used for design of compression member. Chapter 10} \]

\[M_c = \text{moment at the face of the joint, corresponding to the nominal flexural strength of the column framing into that joint, calculated for the factored axial force, consistent with the direction of the lateral forces considered, resulting in the lowest flexural strength. See 21.4.2.2.} \]

\[M_{cr} = \text{cracking moment. See 9.5.2.3. Chapter 9} \]

\[M_{cr} = \text{moment causing flexural cracking at section due to externally applied loads. See 11.4.2.1. Chapter 11, 14} \]

\[M_{ct} = \text{total moment including dead load to cause cracking at extreme fiber in tension. Chapter 11} \]

\[M_d = \text{service dead load moment. Chapter 9} \]

\[M_g = \text{moment at the face of the joint, corresponding to the nominal flexural strength of the girder including slab where in tension, framing into that joint. See 21.4.2.2.} \]

\[M_f = \text{service live load moment. Chapter 9} \]

\[M_m = \text{modified moment. Chapter 11} \]

\[M_{max} = \text{maximum factored moment at section due to externally applied loads. Chapter 11} \]

\[M_n = \text{nominal moment strength at section. Chapter 14, 22} \]

\[M_a = \text{nominal moment strength. Chapter 9, 11, and 18} \]

\[M_n = \text{nominal moment strength at section, mm-N. Chapter 12} \]

\[M_{ns} = \text{nominal beam moment, left. Chapter 21} \]

\[M_{nr} = \text{nominal beam moment, right. Chapter 21} \]

\[M_{ns} = \text{unmagnified nonsway moment at each end of column. Chapter 10} \]

\[M_o = \text{total factored static moment. Chapter 13} \]

\[M_p = \text{required plastic moment strength of shearhead cross section. Chapter 11} \]

\[M_{pr} = \text{probable flexural moment strength of members, with or without axial load, determined using the properties of the member at the joint faces assuming a tensile strength in the longitudinal bars of at least 1.25 f_y and a strength reduction factor } \phi \text{ of 1.0. Chapter 21} \]

\[M_s = \text{moment due to loads causing appreciable sway. Chapter 10} \]

\[M_s = \text{portion of slab moment balanced by support moment. Chapter 21} \]

\[M_{sa} = \text{maximum unfactored applied moment due to service loads, not including } P_A \text{ effects, mm-N. Chapter 14} \]

\[M_m = \text{required moment strength. Chapter 9} \]

\[M_d = \text{factored moment at section. Chapter 10, 11, 13, 21 and 22} \]

\[M_u = \text{factored moment at section including } P_A \text{ effects, mm-N. Chapter 14} \]

\[M_{u} = \text{moment at the midheight section of the wall due to factored lateral and eccentric vertical loads, mm-N. Chapter 14} \]

\[M_r = \text{moment resistance contributed by shearhead reinforcement. Chapter 11} \]

\[M_l = \text{smaller factored end moment on a compression member, positive if member is bent in single curvature, negative if } \]

\[M_{ins} = \text{factored end moment on a compression member at the end at which } M_1 \text{ acts, due to loads that cause no appreciable sideways, calculated using a first-order elastic frame analysis. Chapter 10} \]

\[M_{is} = \text{factored end moment on compression member at the end at which } M_1 \text{ acts, due to loads that cause appreciable sideways, calculated using a first-order elastic frame analysis. Chapter 10} \]

\[M_{oz,min} = \text{minimum value of } M_z. \text{ Chapter 10} \]

\[M_{oz} = \text{factored end moment on compression member at the end at which } M_z \text{ acts, due to loads that cause appreciable sideways, calculated using a first-order elastic frame analysis. Chapter 10} \]

\[n = \text{number of consecutive strength tests. Chapter 5} \]

\[n = \text{number of bars or wires being spliced or developed along the plane of splitting. Chapter 12} \]

\[n = \text{modular ratio of elasticity. Appendix A} \]

\[E_s/E_c = \text{nominal strength of cross section subject to compression. Chapter 22} \]

\[P_c = \text{critical load. See Eq. (10-11). Chapter 10} \]

\[P_n = \text{nominal axial load strength of wall designed by 22.6.5. Chapter 22} \]

\[P_n = \text{nominal axial load strength at given eccentricity along x-axis. Chapter 10} \]

\[P_n = \text{nominal axial load strength at given eccentricity along y-axis. Chapter 10} \]

\[P_o = \text{nominal axial load strength at zero eccentricity. Chapter 10} \]
\(P_s \) = prestressing tendon force at jacking end. Chapter 18
\(P_u \) = unfactored axial load at the design (midheight) section including effects of self-weight. N. Chapter 14
\(P_{su} \) = factored post-tensioned tendon force at the anchorage device, N. Chapter 18
\(P_{ru} \) = required axial load strength. Chapter 9 and 14
\(P_u \) = factored axial load at given eccentricity \(\leq \frac{1}{4} P_{sr} \). Chapter 10
\(P_{uu} \) = factored axial load. N. Chapter 14
\(P_{ru} \) = factored design axial load. Chapter 21
\(P_{ru} \) = factored axial load at given eccentricity. Chapter 22
\(P_{x} \) = prestressing tendon force at any point \(x \). Chapter 18
\(q \) = shear flow. Chapter 11
\(q_s \) = soil reaction due to factored loading. Chapter 15
\(Q \) = stability index for a story. See 10.11.4. Chapter 10
\(r \) = radius of gyration of cross section of a compression member. Chapter 12
\(R \) = rain loads, except ponding. Appendix C
\(s \) = standard deviation, MPa. Chapter 5
\(s_n \) = net-strain center spacing of flexural tension reinforcement nearest to the extreme tension face, mm. (where there is only one bar or wire nearest to the extreme tension face, \(s \) is the width of the extreme tension face.) Chapter 10
\(s \) = spacing of shear or torsion reinforcement in direction parallel to longitudinal reinforcement, mm. Chapter 11
\(s \) = maximum spacing of transverse reinforcement within \(d \) center-to-center, mm. Chapter 12
\(s \) = spacing of ties measured along the longitudinal axis of the member, mm. Chapter 17
\(s \) = spacing of transverse reinforcement measured along the longitudinal axis of the structural member, mm. Chapter 21
\(p \) = spacing of shear reinforcement in direction parallel to longitudinal reinforcement, mm. Appendix A
\(s_{d} \) = maximum spacing of transverse reinforcement, mm. Chapter 21
\(s_{w} \) = spacing of wire to be developed or spliced, mm. Chapter 12
\(s_{x} \) = longitudinal spacing of transverse reinforcement within the length \(l \), mm. Chapter 21
\(s_{1}, s_{2} \) = standard deviations calculated from two test records, 1 and 2, respectively. Chapter 5
\(s_{1} \) = spacing of vertical reinforcement in wall, mm. Chapter 11
\(s_{2} \) = spacing of shear or torsion reinforcement in direction perpendicular to longitudinal reinforcement — or spacing of horizontal reinforcement in wall, mm. Chapter 11
\(s \) = statistical average standard deviation where two test records are used to estimate the standard deviation. Chapter 5
\(S \) = elastic section modulus of section. Chapter 22
\(S \) = snow loads. Appendix C
\(S \) = thickness of a wall of a hollow section, mm. Chapter 11
\(T \) = cumulative effect of temperature, creep, shrinkage, differential settlement, and shrinkage-compensating concrete. Chapter 9
\(T \) = torsional moment on a member. Chapter 11
\(T \) = self-straining forces and effects arising from contraction or expansion resulting from temperature changes, shrinkage, moisture changes, creep in component materials, movement due to differential settlement, or combinations thereof. Appendix C
\(T_{cr} \) = torque or torsion on a member causing first crack. Chapter 11
\(T_{n} \) = nominal torsional moment strength. Chapter 11
\(T_{t} \) = factored torsional moment at section. Chapter 11
\(u \) = service load bond stress, MPa. Chapter 12
\(U \) = required strength to resist factored loads or related internal moments and forces. Chapter 9
\(U \) = factored concentric load on footing. Chapter 15
\(v \) = design shear stress. Appendix A
\(v_{c} \) = shear stress provided by the concrete at a section, MPa. Chapter 11
\(v_{c} \) = permissible shear stress carried by concrete, MPa. Appendix A
\(v_{h} \) = permissible horizontal shear stress, MPa. Appendix A
\(v_{n} \) = nominal shear stress, MPa. See 11.12.6.2, Chapter 11
\(v_{w} \) = factored shear stress. Chapter 11
\(V \) = shear required to cause a flexural crack at the section in question. Chapter 11
\(V \) = service load shear. Chapter 12
\(V \) = design shear force at section. Appendix A
\(V_{c} \) = nominal shear strength provided by concrete. Chapter 8, 11, and 21
\(V_{c} \) = nominal shear strength provided by concrete. See 11.12.2.1. Chapter 13
\(V_{cl} \) = nominal shear strength provided by concrete when diagonal cracking results from combined shear and moment. Chapter 11
\(V_{cw} \) = nominal shear strength provided by concrete when diagonal cracking results from excessive principal tensile stress in web. Chapter 11
\(V_{d} \) = shear force at section due to unfactored dead load. Chapter 11
\(V_{e} \) = design shear force determined from 21.3.4.1 or 21.4.5.1. Chapter 21
\(V_{i} \) = one of the shear forces \(V_{i} \) to \(V_{4} \). Chapter 11
\(V_{f} \) = factored shear force at section due to externally applied loads occurring simultaneously with \(M_{max} \). Chapter 11
\(V_{n} \) = nominal shear stress. Chapter 11 and 21
\(V_{n} \) = nominal shear strength at section. Chapter 22
\(V_{nh} \) = nominal horizontal shear strength. Chapter 17
\(V_{p} \) = vertical component of effective prestress force at section. Chapter 11
\(V_{p} \) = nominal shear strength provided by shear reinforcement. Chapter 11
\(V_{r} \) = required shear strength. Chapter 9
\(V_{u} \) = factored horizontal shear in a story. Chapter 10
\(V_{u} \) = factored shear force at section. Chapter 11, 12, 13, 17, 21, and 22
\(V_{1}, V_{2}, V_{3}, V_{4} \) = resolution of shear flow into shear forces on sides of tube or space truss. Chapter 11
\(w \) = crack width, mm. Chapter 10
\(w \) = service load per unit length or per unit area. Appendix A
\(w_{c} \) = weight of concrete, kg/m^3. Chapter 8 and 9
\(w_{d} \) = factored dead load per unit area. Chapter 13
\(w_{D} \) = dead load per unit length or per unit area. Chapter 21 and Appendix A
\(w_{f} \) = factored live load per unit area. Chapter 13
\(w_{L} \) = live load per unit length or per unit area. Chapter 21 and Appendix A
\(w_{u} \) = factored load per unit length of beam or per unit area of slab. Chapter 8
\(w_{u} \) = factored load per unit area. Chapter 13
\(w_{u} \) = factored load per unit length or per unit area. Appendix A
\(W \) = wind load, or related internal moments and forces. Chapter 9
\(W \) = wind load. Appendix C
\(x \) = distance from section being investigated to the support. Chapter 11
\(x \) = distance between adjacent spliced bars. Chapter 12
\(x \) = shorter overall dimension of rectangular part of cross section. Chapter 13
\(X \) = individual strength tests as defined in 5.6.1.4. Chapter 5
\(X \) = average of \(a \) strength test results. Chapter 5
\(y \) = longer overall dimension of rectangular part of cross section. Chapter 13
\(y_{1} \) = distance from centroidal axis of gross section, neglecting reinforcement, to extreme fiber in tension. Chapter 9 and 11
\(z \) = quantity limiting distribution of flexural reinforcement. See 10.6. Chapter 10
\(\alpha \) = ratio of flexural stiffness of beam section to flexural stiffness (alpha) of a long slender beam of the same cross section. Chapter 9 and 13
\[\gamma = \text{reinforcement size factor. See 12.2.4. Chapter 12} \]

\[\alpha \text{ = angle between inclined stirrups and longitudinal axis of member. Chapter 11 and Appendix A} \]

\[\alpha \text{ = reinforcement location factor. See 12.2.4. Chapter 12} \]

\[\alpha = \text{total angular change of prestressing tendon profile in radius from tendon jacking end to any point } x. \text{ Chapter 18} \]

\[\alpha = \text{angle between diagonal reinforcement and the longitudinal axis of a diagonally reinforced coupling beam. Chapter 21} \]

\[\alpha_c = \text{coefficient defining the relative contribution of concrete strength to wall strength. See Eq. (21-7) Chapter 21} \]

\[\alpha = \text{average value of } \alpha \text{ for all beams on edges of a panel. Chapter 9} \]

\[\alpha_s = \text{constant used to compute } V_c \text{ in slabs and footings. Chapter 11} \]

\[\alpha = \text{ratio of stiffness of shearhead arm to surrounding composite slab section. See 11.12.4.5. Chapter 11} \]

\[\alpha_1 = \text{in direction of } \lambda \text{, Chapter 13} \]

\[\alpha_2 = \text{in direction of } \theta \text{, Chapter 13} \]

\[\beta = \text{ratio of clear spans in long to short direction of two-way slabs. Chapter 9} \]

\[\beta = \text{ratio of distances to neutral axis from extreme tension fiber and from centroid of flexural tension reinforcement. Chapter 10} \]

\[\beta = \text{coating factor. See 12.2.4. Chapter 12} \]

\[\beta = \text{ratio of long side to short side of footing. Chapter 15} \]

\[\beta_b = \text{ratio of area of reinforcement cut off to total area of tension reinforcement at section. Chapter 12} \]

\[\beta_c = \text{ratio of long side to short side of concentrated load or reaction area. Chapter 11, 22, and Appendix A} \]

\[\beta_d = (a) \text{ for nonsway frames, } \beta_d \text{ is the ratio of the maximum factored axial sustained load to the maximum factored axial load associated with the same load combination;} \]

\[\beta_d = (b) \text{ for sway frames, except as required in (c) of this definition, } \beta_d \text{ is the ratio of the maximum factored axial load in sway frames to the maximum factored shear in that story;} \]

\[\beta_d = (d) \text{ for stability checks of sway frames carried out in accordance with 10.13.6, } \beta_d \text{ is the ratio of the maximum factored axial load to the maximum factored axial load. Chapter 10} \]

\[\beta_p = \text{constant used to compute } V_c \text{ in prestressed slabs. Chapter 11} \]

\[\beta_s = \text{ratio of torsional stiffness of edge beam section to flexural stiffness of a width of slab equal to span length of beam, center-to-center of supports. Chapter 13} \]

\[\beta = \text{angle of compression diagonals in truss analogy for torsion. Chapter 11} \]

\[\lambda = \text{multiplier for additional long-term deflection as defined in 9.5.2.5. Chapter 9} \]

\[\gamma = \text{fraction of unbalanced moment transferred by flexure at slab-column connections. See 13.5.3.2. Chapter 11 and 13} \]

\[\gamma = \text{fraction of } M_x \text{ assigned to slab effective width. Chapter 21} \]

\[\gamma = \text{factor for type of prestressing tendon. Chapter 18} \]

\[\gamma = \text{fraction of } f_{ps} \text{ not less than 0.80} \]

\[\gamma = \text{fraction of } f_{ps} \text{ not less than 0.85} \]

\[\gamma = \text{fraction of } f_{ps} \text{ not less than 0.90} \]

\[\gamma = \text{fraction of unbalanced moment transferred by eccentricity of shear at slab-column connections. See 11.12.6.1. Chapter 11 and 13} \]

\[\delta_b = \text{moment magnification factor for frames braced against sidesway. Chapter 10} \]

\[\delta_{ns} = \text{moment magnification factor for frames braced against sidesway, to reflect effects of member curvature between ends of compression member. Chapter 10} \]

\[\delta_b = \text{moment magnification factor for frames not braced against sidesway, to reflect lateral drift resulting from lateral and gravity loads. Chapter 10} \]

\[\delta_p = \text{design displacement, mm. Chapter 21} \]

\[\Delta_p = \text{difference between } f_p \text{ and prestressing tendon stress at ultimate section being considered. Chapter 11} \]

\[\Delta_p = \text{measured maximum deflection, mm. See Eq. (20-1). Chapter 20} \]

\[\Delta_{max} = \text{measured residual deflection, mm. See Eq. (20-2) and (20-3). Chapter 20} \]

\[\Delta_{max} = \text{maximum deflection measured during the second test relative to the position of the structure at the beginning of the second test, mm. See Eq. (20-3). Chapter 20} \]

\[\Delta_o = \text{relative lateral deflection between the top and bottom of a story due to } V_c \text{ computed using a first-order elastic frame analysis and stiffness values satisfying 10.11.1. Chapter 10} \]

\[\Delta_a = \text{maximum deflection at or near midheight due to service loads, mm. Chapter 14} \]

\[\Delta_d = \text{deflection at midheight of wall due to factored loads, mm. Chapter 14} \]

\[\epsilon_i = \text{strain in reinforcement corresponding to calculated stress. Chapter 10} \]

\[\epsilon_p = \text{yield strain of reinforcement. Chapter 10} \]

\[\eta(\text{eta}) = \text{number of identical arms of shearhead. Chapter 11} \]

\[\theta = \text{angle of compression diagonals in truss analogy for torsion. Chapter 11} \]

\[\lambda = \text{multiplier for additional long-term deflection as defined in 9.5.2.5. Chapter 9} \]

\[\gamma = \text{correction factor related to unit weight of concrete. Chapter 11, 17, and 18} \]

\[\lambda = \text{lightweight aggregate concrete factor. See 12.2.4. Chapter 12} \]

\[\mu = \text{coefficient of friction. See 11.7.4.3. Chapter 11} \]

\[\mu = \text{curvature friction coefficient. Chapter 18} \]

\[\xi = \text{time-dependent factor for sustained load. See 9.5.2.5. Chapter 9} \]

\[\rho = \text{ratio of nonprestressed tension reinforcement. Chapter 8, 9, 10, 11, 13, 18, and 21} \]

\[\rho = \text{ratio of tension reinforcement. Chapter 14} \]

\[\rho = \text{ratio of tension reinforcement. Chapter 20} \]

\[\rho = \text{ratio of nonprestressed compression reinforcement. Chapter 8} \]

\[\rho = \text{reinforcement ratio for nonprestressed compression reinforcement, } A_{ps}/bd. \text{ Chapter 9} \]

\[\rho = \text{reinforcement ratio for nonprestressed compression reinforcement, } A_{ps}/bd. \text{ Chapter 18} \]

\[\rho = \text{reinforcement ratio producing balanced strain conditions. See 10.3.2. Chapter 8, 10, 13, and 14} \]

\[\rho = \text{reinforcement ratio producing balanced strain conditions. See B10.3.2. Chapter 9} \]

\[\rho = \text{ratio of total reinforcement area to cross-sectional area of column. Chapter 21} \]

\[\rho = \text{ratio of horizontal shear reinforcement area to gross concrete area of vertical section. Chapter 11} \]

\[\rho = \text{ratio of vertical shear reinforcement area to gross concrete area of horizontal section. Chapter 11} \]

\[\rho = \text{ratio of area of distributed reinforcement parallel to the plane of } A_{ps} \text{ to gross concrete area perpendicular to that reinforcement. Chapter 21} \]

\[\rho = \text{ratio of prestressed reinforcement. Chapter 18} \]

\[\rho = \text{ratio of volume of spiral reinforcement to total volume of core (out-to-out of spirals) of a spirally reinforced compression member. Chapter 10} \]
\(\rho_s = \) ratio of volume of spiral reinforcement to the core volume confined by the spiral reinforcement (measured out-to-out). Chapter 21

\(\rho_v = \) ratio of the tie reinforcement area to area of contact surface. Chapter 17

\(\rho_v = \frac{A_v}{b_v s} \)

\(\rho_v = \) ratio of area of distributed reinforcement perpendicular to the plane of \(A_{cv} \) to gross concrete area \(A_{cv} \). Chapter 21

\(\rho_w = \frac{A_s}{b_w d} \). Chapter 11

\(\rho_w = \) ratio of tension reinforcement. Appendix A

\(\Sigma_o = \) perimeter of bar, mm. Chapter 12

\(\tau = \) shear stress. Chapter 11

\(\phi = \) strength reduction factor. See 9.3. Chapter 8, 9, 10, 11, 13, 14, 17, 18, 19, and 21

\(\phi = \) strength reduction factor. See 9.3.5. Chapter 22

\(\phi = \) strength reduction factor. See A.2.1. Appendix A

\(\phi_k = \) stiffness reduction factor. See R10.12.3. Chapter 10

\(\psi = \) ratio of sum of stiffnesses of compression members to sum of (MPa) stiffnesses of flexural members at one end of a compression member. Chapter 10

\(\psi_{\text{min}} = \) smaller of \(\psi \)-values at two ends of a compression member. Chapter 10

\(\psi_{\text{av}} = \) average of \(\psi \)-values at two ends of a compression member. Chapter 10

\(\omega = \frac{\rho f_y}{f_c'} \). Chapter 18

\(\omega' = \frac{\rho' f_y}{f_c'} \). Chapter 18

\(\omega_p = \frac{\rho f_{ps}}{f_c'} \). Chapter 18

\(\omega_w, \omega_{wp}, \omega_{wp}' \) = reinforcement indices for flanged sections computed as for \(\omega, \omega_p \), and \(\omega' \) except that \(b \) shall be the web width, and reinforcement area shall be that required to develop compressive strength of web only. Chapter 18
Notes
APPENDIX E — STEEL REINFORCEMENT INFORMATION

As an aid to users of the ACI Building Code, information on sizes, areas, and weights of various steel reinforcement is presented.

ASTM STANDARD REINFORCING BARS

<table>
<thead>
<tr>
<th>Bar size, no.*</th>
<th>Nominal diameter, mm</th>
<th>Nominal area, mm²</th>
<th>Nominal mass, kg/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>9.5</td>
<td>71</td>
<td>0.560</td>
</tr>
<tr>
<td>13</td>
<td>12.7</td>
<td>129</td>
<td>0.994</td>
</tr>
<tr>
<td>16</td>
<td>15.9</td>
<td>199</td>
<td>1.552</td>
</tr>
<tr>
<td>19</td>
<td>19.1</td>
<td>284</td>
<td>2.235</td>
</tr>
<tr>
<td>22</td>
<td>22.2</td>
<td>387</td>
<td>3.042</td>
</tr>
<tr>
<td>25</td>
<td>25.4</td>
<td>510</td>
<td>3.973</td>
</tr>
<tr>
<td>29</td>
<td>28.7</td>
<td>645</td>
<td>5.060</td>
</tr>
<tr>
<td>32</td>
<td>32.3</td>
<td>819</td>
<td>6.404</td>
</tr>
<tr>
<td>36</td>
<td>35.8</td>
<td>1006</td>
<td>7.907</td>
</tr>
<tr>
<td>43</td>
<td>43.0</td>
<td>1452</td>
<td>11.38</td>
</tr>
<tr>
<td>57</td>
<td>57.3</td>
<td>2581</td>
<td>20.24</td>
</tr>
</tbody>
</table>

*Bar designation numbers approximate the number or millimeters of the nominal diameter of the bar.

ASTM STANDARD PRESTRESSING TENDONS

<table>
<thead>
<tr>
<th>Type*</th>
<th>Nominal diameter, mm</th>
<th>Nominal area, mm²</th>
<th>Nominal mass, kg/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seven-wire strand (Grade 1750)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.35</td>
<td>23.22</td>
<td>0.182</td>
</tr>
<tr>
<td></td>
<td>7.94</td>
<td>37.42</td>
<td>0.294</td>
</tr>
<tr>
<td></td>
<td>9.53</td>
<td>51.61</td>
<td>0.405</td>
</tr>
<tr>
<td></td>
<td>11.11</td>
<td>69.68</td>
<td>0.548</td>
</tr>
<tr>
<td></td>
<td>12.70</td>
<td>92.90</td>
<td>0.730</td>
</tr>
<tr>
<td></td>
<td>15.24</td>
<td>139.35</td>
<td>1.094</td>
</tr>
<tr>
<td>Seven-wire strand (Grade 3290)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.53</td>
<td>54.84</td>
<td>0.432</td>
</tr>
<tr>
<td></td>
<td>11.11</td>
<td>74.19</td>
<td>0.582</td>
</tr>
<tr>
<td></td>
<td>12.70</td>
<td>98.71</td>
<td>0.775</td>
</tr>
<tr>
<td></td>
<td>15.24</td>
<td>140.00</td>
<td>1.102</td>
</tr>
<tr>
<td>Prestressing wire</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.88</td>
<td>18.7</td>
<td>0.146</td>
</tr>
<tr>
<td></td>
<td>4.98</td>
<td>19.4</td>
<td>0.149</td>
</tr>
<tr>
<td></td>
<td>6.35</td>
<td>32</td>
<td>0.253</td>
</tr>
<tr>
<td></td>
<td>7.01</td>
<td>39</td>
<td>0.298</td>
</tr>
<tr>
<td>Prestressing bars (plain)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>284</td>
<td>2.23</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>387</td>
<td>3.04</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>503</td>
<td>3.97</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>639</td>
<td>5.03</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>794</td>
<td>6.21</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>955</td>
<td>7.52</td>
</tr>
<tr>
<td>Prestressing bars (deformed)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>181</td>
<td>1.46</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>271</td>
<td>2.22</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>548</td>
<td>4.48</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>806</td>
<td>6.54</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>1019</td>
<td>8.28</td>
</tr>
</tbody>
</table>

* Availability of some tendon sizes should be investigated in advance.
ASTM Dimensional Requirements for Deformed Steel Wire for Concrete Reinforcements (SI Units)

<table>
<thead>
<tr>
<th>Deformed wire size number</th>
<th>Unit weight, kg/m</th>
<th>Diameter, mm</th>
<th>Cross-sectional area, mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-1</td>
<td>0.0510</td>
<td>2.87</td>
<td>6.45</td>
</tr>
<tr>
<td>D-2</td>
<td>0.1013</td>
<td>4.04</td>
<td>12.90</td>
</tr>
<tr>
<td>D-3</td>
<td>0.1523</td>
<td>4.95</td>
<td>19.35</td>
</tr>
<tr>
<td>D-4</td>
<td>0.2025</td>
<td>5.72</td>
<td>25.81</td>
</tr>
<tr>
<td>D-5</td>
<td>0.2532</td>
<td>6.40</td>
<td>32.26</td>
</tr>
<tr>
<td>D-6</td>
<td>0.3038</td>
<td>7.01</td>
<td>38.71</td>
</tr>
<tr>
<td>D-7</td>
<td>0.3548</td>
<td>7.57</td>
<td>45.16</td>
</tr>
<tr>
<td>D-8</td>
<td>0.4051</td>
<td>8.10</td>
<td>51.61</td>
</tr>
<tr>
<td>D-9</td>
<td>0.4561</td>
<td>8.59</td>
<td>58.96</td>
</tr>
<tr>
<td>D-10</td>
<td>0.5063</td>
<td>9.04</td>
<td>64.52</td>
</tr>
<tr>
<td>D-11</td>
<td>0.5574</td>
<td>9.50</td>
<td>70.97</td>
</tr>
<tr>
<td>D-12</td>
<td>0.6076</td>
<td>9.91</td>
<td>77.42</td>
</tr>
<tr>
<td>D-13</td>
<td>0.6586</td>
<td>10.31</td>
<td>83.87</td>
</tr>
<tr>
<td>D-14</td>
<td>0.7089</td>
<td>10.72</td>
<td>90.32</td>
</tr>
<tr>
<td>D-15</td>
<td>0.7599</td>
<td>11.10</td>
<td>96.77</td>
</tr>
<tr>
<td>D-16</td>
<td>0.8101</td>
<td>11.46</td>
<td>103.23</td>
</tr>
<tr>
<td>D-17</td>
<td>0.8611</td>
<td>11.81</td>
<td>109.68</td>
</tr>
<tr>
<td>D-18</td>
<td>0.9114</td>
<td>12.14</td>
<td>116.13</td>
</tr>
<tr>
<td>D-19</td>
<td>0.9624</td>
<td>12.47</td>
<td>122.58</td>
</tr>
<tr>
<td>D-20</td>
<td>1.0127</td>
<td>12.80</td>
<td>129.03</td>
</tr>
<tr>
<td>D-21</td>
<td>1.0637</td>
<td>13.13</td>
<td>135.48</td>
</tr>
<tr>
<td>D-22</td>
<td>1.1139</td>
<td>13.44</td>
<td>141.94</td>
</tr>
<tr>
<td>D-23</td>
<td>1.1649</td>
<td>13.74</td>
<td>148.39</td>
</tr>
<tr>
<td>D-24</td>
<td>1.2152</td>
<td>14.05</td>
<td>154.84</td>
</tr>
<tr>
<td>D-25</td>
<td>1.2662</td>
<td>14.33</td>
<td>161.29</td>
</tr>
<tr>
<td>D-26</td>
<td>1.3164</td>
<td>14.61</td>
<td>167.74</td>
</tr>
<tr>
<td>D-27</td>
<td>1.3675</td>
<td>14.88</td>
<td>174.19</td>
</tr>
<tr>
<td>D-28</td>
<td>1.4177</td>
<td>15.16</td>
<td>180.64</td>
</tr>
<tr>
<td>D-29</td>
<td>1.4687</td>
<td>15.44</td>
<td>187.10</td>
</tr>
<tr>
<td>D-30</td>
<td>1.5190</td>
<td>15.70</td>
<td>193.55</td>
</tr>
<tr>
<td>D-31</td>
<td>1.5700</td>
<td>15.95</td>
<td>200.00</td>
</tr>
</tbody>
</table>
INDEX

Acceptance of concrete, 5.6
Admixtures, 3.6
- Accelerating, 3.6.5
- Air-entraining, 3.6
- Definition, 2.1
- Retarding, 3.6.5
- Water-reducing, 3.6.5
Aggregates, 3.3
- Definition, 2.1
- Lightweight—Definition, 2.1
- Nominal maximum size, 3.3
Air-entraining admixtures, 3.6
Alternate design method, A.1, A.2
- Compression members, A.6
- Development and splices of reinforcement, A.4
- Flexure, A.5
- Permissible service load stresses, A.3
- Shear and torsion, A.7
Alternative load and strength reduction factors, C.1
Aluminum conduits or pipes, 6.3
American Society for Testing and Materials—See ASTM
American Welding Society—See AWS
Analysis methods, 8.3
Anchor device—Definition, 2.1
- Basic monostrand—Definition, 2.1
- Basic multi-strand—Definition, 2.1
- Special—Definition, 2.1
Anchorages—Mechanical—Development, 12.6
Anchor zones—Definition, 2.1
- Post-tensioned tendons, 18.13, 18.14, 18.15
- Prestressed tendons, 18.13
- Design for monostrand or single 5/8-in. diameter bar tendons, 18.14
- Design for multi-strand tendons, 18.15
Anchorages—Post-tensioning, 18.21
ASCE (American Society of Civil Engineers) standard cited in this code, 3.8
ASTM (American Society for Testing and Materials) standards cited in this code, 3.8
AWS (American Welding Society) standards cited in this code, 3.8
Axial load
- Design assumptions, 10.2
- Principles and requirements, 10.3
Axially loaded members—Slab system support, 10.14
Base of structure—Definition, 21.1
Beam
- Deflections—Minimum thickness, 9.5
- Distribution of flexural reinforcement, 10.6
- Grade—Walls—Design, 14.7
Bearing strength, 10.17
Bearing walls
- Design, 14.2
- Precast, 16.4
Bending, 7.3
Bends—Reinforcement, 7.2
Bonded reinforcement—Minimum—Prestressed concrete, 18.9
Bonded tendon—Definition, 2.1
Boundary elements—Definition, 21.1
Brackets—Shear provision, 11.9
Building official—Definition, 1.2
Bundled bars
- Development, 12.4
- Spacing limits, 7.6
Calculations, 1.2
Cement, 3.2
Cementitious materials—Definition, 2.1
Chloride—Admixtures, 3.6
Cold weather concreting, 5.12
Collector elements—Definition, 21.1
Column loads—Transmission through floor system, 10.15
Columns
- Definition, 2.1
- Design, 8.8
- Equivalent—Slab design, 13.7
- Moment transfer, 11.11
- Reinforcement splices, 12.17
- Special reinforcement details, 7.8
- Steel cores, 7.8
Composite compression members—Axial load, 10.16
Composite construction—Deflections, 9.5
Composite flexural members, 17.1, 17.2
- Definition, 2.1
- Horizontal shear strength, 17.5
- Shoring, 17.3
- Ties for horizontal shear, 17.6
- Vertical shear strength, 17.4
Compression-controlled section—Definition, 2.1, B9.3
Compression-controlled strain limit—Definition, 2.1
Compression members
- Alternate design method, A.6
- Design dimensions, 10.8
- Effective length, 10.11
- Limits for reinforcement, 10.9
- Prestressed concrete, 18.11
- Slenderness effects, 10.10, 10.11
Computer programs, 1.2
Concrete
- Conveying, 5.9
- Curing, 5.11
- Definition, 2.1
- Depositing, 5.10
- Evaluation and acceptance, 5.6
- Proportioning, 5.2, 5.3, 5.4
- Mixing, 5.8
Conduits, embedded, 6.3
Connections
- Reinforcement, 7.9
Construction joints, 6.4
Continuous construction—Prestressed concrete, 18.10
Contraction joint—Definition, 2.1
Conveying concrete, 5.9
Corbels—Shear provisions, 11.9
Corrosion
- Protection of reinforcement, 4.4
- Protection of unbonded prestressing tendons, 18.18
Couplers—Post-tensioning, 18.21
Cover, 7.7
Creep—Required strength, 9.2
Crosstie—Definition, 21.1
Curing, 5.11
- Accelerated, 5.11
Curvature friction—Definition, 2.1, 18.6
Cylinders—Testing, 5.6
Dead load—See Load, dead
Deep flexural members, 10.7
- Special provisions for shear, 11.8
Definitions, 2.1, 13.2, 19.1, 21.1

ACI 318 Building Code and Commentary
Deflection
- Composite construction, 9.5
- Control, 9.5
- Maximum, 9.5
- Nonprestressed concrete construction, 9.5
- Prestressed concrete construction, 9.5

Deformed bars, 12.2, 12.3
- Compression—Splices, 12.16
- Tension—Splices, 12.15

Deformed reinforcement—Definition, 2.1

Depositing concrete, 5.10

Design displacement—Definition, 21.1

Design load combinations—Definition, 21.1

Design methods, 8.1
- Structural plain concrete, 22.4

Design strength, 9.3
- Reinforced and prestressed flexural and compression members, B9.3
- Reinforcement, 9.4
- See also Strength, design

Development
- Bundled bars, 12.4
- Deformed bars in compression, 12.3
- Deformed reinforcement in tension, 12.2
- Flexural reinforcement, 12.10
- Footing reinforcement, 15.6
- Hooks, 12.5
- Mechanical anchorages, 12.6
- Mechanical splices for reinforcement, 12.15
- Negative moment reinforcement, 12.12
- Positive moment reinforcement, 12.11
- Prestressing strand, 12.9
- Reinforcement, 12.1
- Reinforcement—Alternate design method, A.4
- Splices, 12.14
- Splices in column reinforcement, 12.17
- Web reinforcement, 12.13
- Welded deformed wire fabric in tension, 12.7
- Welded plain wire fabric in tension, 12.8

Development length—Definition, 2.1

Development length for a bar with a standard hook—Definition, 21.1

Direct design method—Slabs, 13.6

Drawings, 1.2

Drop panel—Two-way slab reinforcement, 13.3

Ducts
- Post-tensioning, 18.17
- Spacing limits, 7.6

Earth pressure, 9.2

Earthquake loads, 8.2, 9.2

Effective depth of section (d)—Definition, 2.1

Effective prestress—Definition, 2.1

Embedded conduits and pipes, 6.3

Embedment—Development of reinforcement, 12.13

Embedment length—Definition, 2.1

Equivalent frame method—Slabs, 13.7

Evaluation and acceptance of concrete, 5.6

Expansive cement, 3.2

Exposure
- Cover requirements, 7.7
- Special requirements, 4.1, 4.2, 4.3

Extreme tension steel—Definition, 2.1

Factored load—See Load, factored

Factored loads and forces—Definition, 21.1

Field-cured specimens—Tests, 5.6

Flexural members—Limits for reinforcement, 10.5, 18.8, B18.8

Flexural reinforcement
- Development, 12.10
- Principles and requirements, 10.3

Floor finish, separate, 8.12

Floors—Transmission of column loads, 10.15

Fly ash, 3.6

Folded plates—Definition, 19.1

Footings, 15.1
- Combined, 15.10
- Loads and reactions, 15.2
- Minimum depth, 15.7
- Moments, 15.4
- Reinforcement development, 15.6
- Shear, 11.12, 15.5
- Sloped or stepped, 15.9
- Structural plain concrete, 22.7
- Supporting circular or polygon columns, 15.3
- Transfer of force at base of column or pedestal, 15.8

Formwork
- Design of, 6.1
- Prestressed concrete, 6.1
- Removal, 6.2

Foundations, 21.8

Frames—Prestressed concrete, 18.10

Grade beam—Walls—Design, 14.7

Grout—Bonded prestressing, 18.18

Haunches—Effect on stiffness, 8.6

Hooks
- Development, 12.13
- Standard, 7.1

Hoop—Definition, 21.1

Hot weather concreting, 5.13

Impact, 9.2

Inspection, 1.3

Isolated beams, 8.10

Isolation joint—Definition, 2.1

Jacking force—Definition, 2.1

Joints—Structural plain concrete, 22.3

Joist construction, 8.11

Laboratory-cured specimens—Tests, 5.6

Lap splices—Development of reinforcement, 12.14, 12.15, 12.16

Lateral-force resisting system—Definition, 21.1

Lateral reinforcement
- Compressed members, 7.10
- Flexural members, 7.11

Lateral supports—Distance between for flexural members, 10.4

Lightweight aggregate, 3.3

Lightweight concrete
- Shear strength, 11.2
- Splitting tensile strength, 5.1
- Structural—Definition, 2.1

Liquid pressure, lateral, 9.2

Live load—See Load, live

Load
- Dead—Definition, 2.1
- Factored—Definition, 2.1
- Live—Arrangement, 8.9
- Live—Definition, 2.1
- Service, 8.2
- Service—Definition, 2.1

Load tests, 20.3
- Loading criteria, 20.4

ACI 318 Building Code and Commentary
Loading, 8.2
Loss of prestress, 18.6
Low-strength concrete, 5.6

Magnified moments, 10.11
- Nonsway frames, 10.12
- Sway frames, 10.13

Materials storage, 3.7

Materials, tests, 3.1

Mats—Combined, 15.10

Mechanical splices—Reinforcement development, 12.14

Minimum reinforcement—Flexural members, 10.5

Mixing and placing equipment, 5.7

Mixing concrete, 5.8

Mixture proportioning, 5.2, 5.3, 5.4

Modal analysis—Shells, 19.2

Modulus of elasticity, 8.5
- Definition, 2.1

Moment frame—Definition, 21.1
- Intermediate—Definition, 21.1
- Ordinary—Definition, 21.1
- Special—Definition, 21.1

Moment magnification—Slenderness effects—Compression members, 10.11

Moment magnifier
- Biaxial bending, 10.11
- Sway frames, 10.11

Moment transfer—Columns, 11.11

Moments
- Designs, 8.3
- Footings, 15.4
- Negative—Redistribution, 8.4, 18.10
- Negative—Reinforcement—Development, 12.12
- Positive—Reinforcement—Development, 12.11
- Slab design, 13.6

Net tensile strain—Definition, 2.1

Nominal strength—See Strength, nominal

Nonsway frames—Magnified moments, 10.12

Notation, Appendix D

Offset bars—Reinforcement details for columns, 7.8

Openings
- Slabs, 11.12
- Two-way slabs, 13.4

Pedestal
- Definition, 2.1
- Structural plain concrete, 22.8

Piles and piers, 1.1

Pipes
- Embedded, 6.3
- Steel—Reinforcement, 3.5

Placing
- Preparation of equipment and place of deposit, 5.7
- Rate—Formwork, 6.1

Placing equipment, 5.7

Plain concrete
- Definition, 2.1
- Earthquake-resisting structures, 22.10
- Structural, 21.1, 21.2

Plain reinforcement—Definition, 2.1

Post-tensioning—Definition, 2.1
- External, 18.22

Pozzolans, 3.6

Precast concrete
- Bearing design, 16.6
- Definition, 2.1
- Design, 16.4
- Distribution of forces, 16.3

- Handling, 16.9
- Strength evaluation, 16.10
- Structural integrity, 16.5

Precast members—Structural plain concrete, 22.9

Prestressed concrete, 18.1, 18.2
- Application of prestressing force, 18.20
- Compression members, 18.11
- Corrosion protection for unbonded tendons, 18.16
- Definition, 2.1
- Deflection, 9.5
- Design assumptions, 18.3
- Flexural members—Limits of reinforcement, 18.8
- Flexural strength, 18.7
- Frames and continuous construction, 18.10
- Grout for bonded tendons, 18.18
- Loss of prestress, 18.6
- Measurement of prestressing force, 18.20
- Minimum bonded reinforcement, 18.9
- Permissible stresses—Flexural members, 18.4
- Permissible stresses in tendons, 18.5
- Post-tensioning anchorages and couplers, 18.21
- Post-tensioning ducts, 18.17
- Protection for prestressing tendons, 18.19
- Protection for unbonded prestressing tendons, 18.16
- Shear, 11.4
- Slab systems, 18.12
- Statically indeterminate structures, 18.10
- Tendon anchorage zones, 18.13
- Torsion, 11.6

Prestressing strand—Development, 12.9

Prestressing tendons, 3.5
- Spacing limits, 7.6
- Surface conditions, 7.4

Pretensioning—Definition, 2.1

PTI (Post-Tensioning Institute)
- standard cited in this code, 3.8

Quality of concrete, 5.1

Radius of gyration—Compression members—Slenderness effects, 10.11

Reinforced concrete—Definition, 2.1

Reinforcement
- Bending of, 7.3
- Bend tests, 3.5
- Bundled bars—Development, 12.4
- Bundled bars—Spacing limits, 7.6
- Columns—Splices, 12.17
- Connections, 7.9
- Corrosion protection for unbonded prestressing tendons, 18.16
- Definition, 2.1
- Deformed, 3.5
- Deformed—Compression—Splices, 12.16
- Deformed—Definition, 2.1
- Deformed—Development in compression, 12.3
- Deformed—Development in tension, 12.2
- Deformed—Tension—Splices, 12.15
- Design strength, 9.4
- Development, 12.1
- Development and splices—Alternate design method, A.4
- Flexural—Development, 12.10
- Flexural—Distribution in beams and one-way slabs, 10.6
- Footings—Development, 15.6
- Hooks—Development, 12.5
- Lateral for compression members, 7.10
- Lateral for flexural members, 7.11
- Limits in compression members, 10.9
- Limits—Prestressed flexural members, 18.8
- Mats, 3.5
<table>
<thead>
<tr>
<th>ACI 318 Building Code and Commentary</th>
<th>INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical anchorage—Development, 12.6</td>
<td>Horizontal—Composite flexural members, 17.5</td>
</tr>
<tr>
<td>Minimum—Flexural members, 10.5</td>
<td>Lightweight concrete, 11.2</td>
</tr>
<tr>
<td>Minimum bonded—Prestressed concrete, 18.9</td>
<td>Vertical—Composite flexural members, 17.4</td>
</tr>
<tr>
<td>Negative moment—Development, 12.12</td>
<td>Sheathing—Definition, 2.1</td>
</tr>
<tr>
<td>Placing, 7.5</td>
<td>Shells</td>
</tr>
<tr>
<td>Placing—Welding, 7.5</td>
<td>-Construction, 19.5</td>
</tr>
<tr>
<td>Plain, 3.5</td>
<td>-Definitions, 19.1</td>
</tr>
<tr>
<td>Plain—Definition, 2.1</td>
<td>-Reinforcement, 19.4</td>
</tr>
<tr>
<td>Plain welded wire fabric—Splices, 12.19</td>
<td>-Strength of materials, 19.3</td>
</tr>
<tr>
<td>Plain wire fabric, 12.8</td>
<td>Shored construction, 9.5</td>
</tr>
<tr>
<td>Positive moment—Development, 12.11</td>
<td>Shores—Definition, 2.1</td>
</tr>
<tr>
<td>Prestressing strand—Development, 12.9</td>
<td>Shoring—Formwork—Removal, 6.2</td>
</tr>
<tr>
<td>Prestressing tendons—Protection, 18.19</td>
<td>Shrinkage—Required strength, 9.2</td>
</tr>
<tr>
<td>Shear—Alternate design method, A.7</td>
<td>Shrinkage reinforcement, 7.12</td>
</tr>
<tr>
<td>Shear—Minimum, 11.5</td>
<td>Slab support—Axially loaded members, 10.14</td>
</tr>
<tr>
<td>Shear—Requirements, 11.5</td>
<td>Slab systems—Prestressed concrete, 18.12</td>
</tr>
<tr>
<td>Shells, 19.4</td>
<td>Slabs</td>
</tr>
<tr>
<td>Shrinkage, 7.12</td>
<td>-Moment transfer to columns, 11.11</td>
</tr>
<tr>
<td>Slab, 13.3</td>
<td>-One-way—Deflections—Minimum thickness, 9.5</td>
</tr>
<tr>
<td>Spacing limits, 7.6</td>
<td>-One-way—Distribution of flexural reinforcement, 10.6</td>
</tr>
<tr>
<td>Special details for columns, 7.8</td>
<td>-Shear provisions, 11.12</td>
</tr>
<tr>
<td>Splices, 12.14</td>
<td>-Two-way—Definitions, 13.2</td>
</tr>
<tr>
<td>Steel pipe, 3.5</td>
<td>-Two-way—Design, 13.3</td>
</tr>
<tr>
<td>Structural integrity, 7.13, 16.5</td>
<td>-Two-way—Design procedures, 13.5</td>
</tr>
<tr>
<td>Structural steel, 3.5</td>
<td>-Two-way—Direct design method, 13.6</td>
</tr>
<tr>
<td>Surface conditions, 7.4</td>
<td>-Two-way—Equivalent frame method, 13.7</td>
</tr>
<tr>
<td>Temperature, 7.12</td>
<td>-Two-way—Openings, 13.4</td>
</tr>
<tr>
<td>Transverse, 8.10</td>
<td>-Two-way—Reinforcement, 13.3</td>
</tr>
<tr>
<td>Tubing, 3.5</td>
<td>Slender walls, 14.8</td>
</tr>
<tr>
<td>Two-way slabs, 13.3</td>
<td>-alternate design, 14.8</td>
</tr>
<tr>
<td>Web—Development, 12.13</td>
<td>Slenderness effects</td>
</tr>
<tr>
<td>Welded deformed wire fabric—Development, 12.7</td>
<td>-Compression members, 10.10</td>
</tr>
<tr>
<td>Required strength—See Strength, required</td>
<td>-Evaluation, 10.11, 10.12, 10.13</td>
</tr>
<tr>
<td>Reshores—Definition, 2.1</td>
<td>Spacing—Reinforcement—Limits, 7.6</td>
</tr>
<tr>
<td>Formwork—Removal, 6.2</td>
<td>Span length, 8.7</td>
</tr>
<tr>
<td>Retarding admixtures, 3.6</td>
<td>Special boundary elements, 21.1</td>
</tr>
<tr>
<td>Retempered concrete, 5.10</td>
<td>Special structures, 1.1</td>
</tr>
<tr>
<td>Safety—Strength evaluation, 20.7</td>
<td>Special systems of design or construction, 1.4</td>
</tr>
<tr>
<td>Sampling, 5.6</td>
<td>Specified compressive strength of concrete (f_{c})—Definition, 2.1</td>
</tr>
<tr>
<td>Scope of code, 1.1</td>
<td>Specified lateral forces—Definition, 21.1</td>
</tr>
<tr>
<td>Seismic design</td>
<td>Spiral reinforcement</td>
</tr>
<tr>
<td>-Definition, 21.1</td>
<td>-Definition, 2.1</td>
</tr>
<tr>
<td>-Flexural members of special moment frames, 21.3</td>
<td>-Structural steel core, 10.16</td>
</tr>
<tr>
<td>-Frame members, 21.4, 21.9, 21.10</td>
<td>Spirals, 7.10</td>
</tr>
<tr>
<td>-General requirements, 21.2</td>
<td>Splices, 12.14</td>
</tr>
<tr>
<td>-Joints of special moment frames, 21.5</td>
<td>-Alternate design method, A.4</td>
</tr>
<tr>
<td>-Shear strength requirements, 21.4, 21.5, 21.6</td>
<td>-Columns, 12.17</td>
</tr>
<tr>
<td>-Special moment frame members, 21.4</td>
<td>-End bearing, 12.16</td>
</tr>
<tr>
<td>-Structural walls, and coupling beams, 21.6</td>
<td>-Lap, 12.14, 12.15, 12.16</td>
</tr>
<tr>
<td>Seismic hook—Definition, 21.1</td>
<td>-Plain wire fabric, 12.19</td>
</tr>
<tr>
<td>Service load stresses—Permissible—Alternate design method, A.3</td>
<td>-Welded deformed wire fabric, 12.18</td>
</tr>
<tr>
<td>Service loads—See Load, service</td>
<td>Splitting tensile strength (f_{t})—Definition, 2.1</td>
</tr>
<tr>
<td>Settlement—Required strength, 9.2</td>
<td>Standards cited in this code, 3.8</td>
</tr>
<tr>
<td>Shear</td>
<td>Steel curing, 5.11</td>
</tr>
<tr>
<td>-Alternate design method, A.7</td>
<td>Steel reinforcement, 3.5</td>
</tr>
<tr>
<td>-Brackets, 11.9</td>
<td>Stiffness, 8.6</td>
</tr>
<tr>
<td>-Corbels, 11.9</td>
<td>Stirrup</td>
</tr>
<tr>
<td>-Deep flexural members, 11.8</td>
<td>-Definition, 2.1</td>
</tr>
<tr>
<td>-Footings, 11.12, 15.5</td>
<td>-Development, 12.13</td>
</tr>
<tr>
<td>-Horizontal—Ties—Composite flexural members, 17.6</td>
<td>-Shear reinforcement requirements, 11.5</td>
</tr>
<tr>
<td>-Slabs, 11.12, 13.6</td>
<td>Storage—Materials, 3.7</td>
</tr>
<tr>
<td>-Walls, 11.10</td>
<td>Strength, design, 9.1, 9.3</td>
</tr>
<tr>
<td>Shear-friction, 11.7</td>
<td>-Definition, 2.1</td>
</tr>
<tr>
<td>-Alternate design method, A-7</td>
<td>-Reinforcement, 9.4</td>
</tr>
<tr>
<td>Shear strength, 11.1</td>
<td>-Structural plain concrete, 22.5</td>
</tr>
<tr>
<td>-Concrete—Nonprestressed members, 11.3</td>
<td>Strength evaluation, 16.10, 20.1</td>
</tr>
<tr>
<td>-Concrete—Prestressed members, 11.4</td>
<td>-Acceptance criteria, 20.5</td>
</tr>
<tr>
<td></td>
<td>-Analytical evaluation, 20.1</td>
</tr>
</tbody>
</table>