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This paper describes an approach for credit risk evaluation based on linear Support Vector Machines clas-
sifiers, combined with external evaluation and sliding window testing, with focus on application on lar-
ger datasets. It presents a technique for optimal linear SVM classifier selection based on particle swarm
optimization technique, providing significant amount of focus on imbalanced learning issue. It is com-
pared to other classifiers in terms of accuracy and identification of each class. Experimental classification
performance results, obtained using real world financial dataset from SEC EDGAR database, lead to con-
clusion that proposed technique is capable to produce results, comparable to other classifiers, such as
logistic regression and RBF network, and thus be can be an appealing option for future development of
real credit risk evaluation models.
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1. Introduction

One of the most important research issues in financial domain is
development of working credit risk evaluation and bankruptcy
prediction models. Credit risk is one of frequently faced financial
risks, which can be defined as the possibility that counterparty will
fail to meet its obligations by agreed terms that will cost invested
money for the lender. Minimization of such debts is critical for
managing risk in financial institutions as Basel II capital accord
defines new standards for capital adequacy in banks thus optimal
capital allocation is essential for financial institutions. Thus proper,
efficient and effective credit risk evaluation tools for and credit
risk, such as highly discriminative credit scoring models, are oblig-
atory for every financial institution. A credit score is primarily
based on various financial, social, demographic and other data pro-
vided of the customers and about the customer, such as credit
reports and information obtained from external evaluators and
auditors such as major credit reporting agencies. Credit scores
are often used to determine the amount of loan or interest rate that
particular customer qualifies for.

Various machine learning techniques, such as artificial neural
networks (abbr. ANN), have also gained a lot of attention from
various researchers which are working in credit risk domain.
ANN is understood as a computing model with a graph, that
defines data structure for neural network, and interconnection pat-
tern, which describes its architecture. This technique is well suited
for developing accurate credit scoring systems and can perform
competitively when compared to other classification techniques,
such as logistic regression, MDA, decision trees. However, Support
Vector Machines (abbr. SVM) technique has recently become one
of the most widely research and applied techniques in this field.
This technique offers several advantages compared to ANN such as
absence of local minimas and relatively simple architecture. Many
works in credit risk evaluation domain showed that they can show
performance comparable to ANN or to outperform them (Danenas
& Garsva, 2010; Kim & Ahn, 2012; Yu, Yao, Wang, & Lai, 2011).

Linear SVM are not widely explored in this domain, mainly
because of its reduced flexibility, related to absence of kernel func-
tion and nonlinear mappings. However, state-of-the art linear SVM
implementations show much faster performance than nonlinear
SVM, leading to their suitability for large-scale SVM classification
and regression problems. Nonlinear SVMs are not efficient on
larger scale learning and also suffer from imbalanced learning
problem (Batuwita & Palade, 2013). To the knowledge of the
authors, this problem is not yet addressed in popular SVM pack-
ages (LibSVM, SVMLight, etc.), except weight assignment to different
classes (a variation of cost-sensitive learning). Large scale learning
is important in our context as our research framework involves
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obtaining and preprocessing significant amounts of Extensible
Business Reporting Language (abbr. XBRL)1 documents from exter-
nal datasources (we used SEC datasource as basis for our framework)
after they are issued, as well as mining obtained data using auto-
matic label identification and classifier training. Several linear SVM
classifiers from LIBLINEAR package (Fan, Chang, Hsieh, Wang, &
Lin, 2008) were chosen for development of classification functional-
ity in our system. Promising results, obtained previously (Danenas &
Garsva, 2010; Danenas, Garsva, & Gudas, 2011), as well as results in
(Chang, Hsieh, Chang, Ringgaard, & Lin, 2010) motivate the research
of linear SVM classifiers in parallel with nonlinear state-of-the-art
SVM modeling techniques. In particular, our research seeks to
explore the potential of this technique against medium or larger
datasets (in this context, ‘‘larger’’ is defined as ‘‘having 2000 or more
instances’’) in credit risk domain, while combining it with ‘‘sliding
window’’ approach for training and testing. The classifier selection
is optimized using swarm intelligence metaheuristic (particularly,
particle swarm optimization); this approach has gained significant
amount of attention from the research community because of its
conceptual simplicity and ability to balance both exploration and
exploitation (Thangaraj, Pant, Abraham, & Bouvry, 2011).

The remainder of the paper is organized as follows. In Section 2,
the key points on relevant credit risk related research is presented.
Section 3 briefly describes Support Vector Machines, the classifica-
tion technique used to develop our approach; additionally, it pre-
sents linear SVM algorithms, used in this research, together with
motivation to use them. Particle swarm optimization is described
in Section 4, together with necessary improvements. Section 5 pre-
sents the whole research methodology, together with metrics used
for evaluation, while Section 6 gives a brief description of the data
used in experiment, describes the experiment configuration and
discusses the obtained results. Finally, Section 7 highlights the con-
clusions and directions for future research.
2. Earlier works

The earliest works in research of credit risk date to 1968, when
Altman applied multiple discriminant analysis (MDA) to develop
his Z-Score model (Altman, 1968), using two different samples
and obtaining accuracy of 96% and 79%, respectively. MDA was also
applied by other researchers to develop their own models (Deakin,
1972; Taffler, 1982) or to improve and analyze existing ones (Grice
& Dugan, 2001; Grice & Ingram, 2001). Another well-known early
development (Springate, 1978) was also based on stepwise MDA
and four ratios, resulting in accuracy rate of 92.5%; 83.3% and
88% accuracy rates later were reported after testing the developed
model with other samples (Sands, Springate, & Var, 1983). (Ohlson,
1980) applied logit analysis reporting accuracy of 96.12%, 95.55%
and 92.84% for prediction within one year, two years and one or
two years respectively. While (Begley, Ming, & Watts, 1996)
showed that Ohlson’s model might perform better than Altman
original and improved Z-Scores, their evaluation has also been crit-
icized (Grice & Dugan, 2001). Zmijewski (1984) used two samples
of 840 companies (40 of them were bankrupt companies) for train-
ing and prediction purpose, using probit and maximum likelihood
techniques, and obtained 72% accuracy. Another known credit risk
model (Shumway, 2001) was developed using hazard analysis and
the same predictors as in original Altman model.

Different machine learning techniques became an object of
interest for solutions in financial domain soon after they were dis-
covered to show their potential in solving different problems. Arti-
ficial neural network based techniques (abbr. ANN) were the first
techniques to be successfully applied in this field. An early survey
1 https://www.xbrl.org/
(Vellido, Lisboa, & Vaughan, 1999) indicated that backpropagation
neural networks (abbr. BPNN) were the most popular machine
learning technique among researchers in credit risk domain during
1992–1998; this is also confirmed for both cases of finance and
business domain in general (Wong, Lai, & Lam, 2000; Wong &
Selvi, 1998). Recent research proposed a lot of state-of-the-art
ANN-based hybrid models; fuzzy ANN with particle swarm optimi-
zation (abbr. PSO) for parameter selection (Huang, 2008), wavelet
neural networks with differential evolution applied for their train-
ing (Chauhan, Ravi, & Karthik, 2009), knowledge-based artificial
neural network (abbr. KBANN) with rule extraction from trained
neural networks (Bae & Kim, 2011), neurofuzzy systems (Chen,
Huang, & Lin, 2009), ensembles of ANN (Tsai & Wu, 2008; Yu,
Wang, & Lai, 2008) are only a few examples. Other important tech-
niques in the domain of credit risk evaluation and bankruptcy pre-
diction include decision trees (Duman, Ekinci, & Tanrıverdi, 2012;
Khandani, Kim, & Lo, 2010) and their ensemble variations, particu-
larly random forests (Fantazzini & Figini, 2008; Kruppa, Schwarz,
Arminger, & Ziegler, 2013) or other (Zhang, Zhou, Leung, &
Zheng, 2010).

Support Vector Machines (abbr. SVM) are another type of learn-
ing machines, which are able to perform comparably to ANN, while
overcoming their problems of architectural complexity and entrap-
ment in local minimas. One of the most actively researched and
discussed problems, related to SVM, is parameter selection for ker-
nel function and cost/complexity parameter; it is pointed out in
the relevant literature that it should be set by the expert. Yet, a
lot of work has been done in order to simplify this problem using
various heuristic techniques, such as genetic algorithm (Cao, Lu,
Wang, & Wang, 2012; Wu, Tzeng, Goo, & Fang, 2007) or swarm
intelligence (Yun, Cao, & Zhang, 2011; Zhou, Bai, Tian, & Zhang,
2008). A survey of SVM-based methods in credit risk domain
(Danenas & Garsva, 2009) also indicated that evolutionary or
swarm intelligence techniques for SVM parameter selection or
fuzzy logic/rough sets integration usually helps to improve classi-
fier performance.

Recent SVM technique, Least Squares SVM, abbr. as LS-SVM
(Suykens & Vandewalle, 1999), gained a lot of attention from dif-
ferent researchers, as its applications identified the efficiency in
performance, while at the same time simplifying SVM computing
using to a set of linear equations. LS-SVM has been applied as
standalone or part of hybrid technique in credit risk domain by
several authors (Cao et al., 2012; Lai, Yu, Zhou, & Wang, 2006; Li,
Song, & Li, 2012). Ensemble learning, another trend of soft comput-
ing, has also been widely researched in the context of credit risk, as
different authors prove empirically the capability of classifier
ensembles to obtain better classification performance by stabiliz-
ing the classification results by reflecting variation within a data
set (Hsieh & Hung, 2010). Recent developments of SVM ensemble
models include reliability-based and weight-based strategies
(Zhou, Lai, & Yu, 2010), adaptive linear ANN (Yu, Yue, Wang, &
Lai, 2010), bagging or boosting procedures (Ghodselahi, 2011;
Wang & Ma, 2012).

However; while higher accuracy is mostly obtained using novel
nonlinear SVM methods on small amounts of data, performance of
such techniques often suffers on real-world larger datasets. Our
main focus lies on research which is performed on such datasets.
The amount of it is not large, which may be influenced by the lim-
itations of availability of the necessary financial/bankruptcy data
(although the number of open financial datasources seems to be
rising). (Harris, 2015) used a dataset of over 20,000 entries from
Barbados credit unions for model development to develop SVM lin-
ear and nonlinear classifier together with clustered SVM; the
results indicated that performance of linear SVM did not signifi-
cantly differ from SVM using RBF kernel; similar conclusion can
be drawn from the results in (Niklis, Doumpos, & Zopounidis,

https://www.xbrl.org/
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2014). Other recent research (Zhang, Gao, & Shi, 2014) used a USA
credit dataset of over 6000 instances and also reported results
which indicate that application of nonlinear SVM kernel for generic
SVM, fuzzy SVM and hybrid fuzzy SVM does not show significant
increase in classification accuracy, compared to linear SVM (result-
ing in accuracy of �75%). Other works, which apply their develop-
ments on large datasets, tend to use SVM with RBF kernel function,
as the most popular choice among such research (Harris, 2013;
Horta & Camanho, 2013).
3. Overview of SVM methods

3.1. Formulation of Support Vector Machines

Support Vector Machines (abbr. as SVM) is an efficient and
effective pattern recognition technique, which is based on Vap-
nik–Chervonenkis structural risk minimization (abbr. as SRM) the-
ory (Cortes & Vapnik, 1995; Vapnik, 2000). SVM learning is based
on mapping the sample points into a high-dimensional feature
space in order to search and obtain an optimal separating hyper-
plane, which maximizes the sum of the distances between two
classes in this space. Given the set of l training instances
S ¼ fðx1; y1Þ; . . . ; ðxl; ylÞg 2 ðX � YÞl where xi 2 Rl;Y 2 f�1; 1g, we
seek to obtain the optimal real-valued function u(x) in order to
form hyperplane sgnðhuðxÞ �wi þ bÞ, that allows separation of
points in S. Given distance w, there exist two parallel boundaries
huðxÞ �wi þ b ¼ �1, which can exactly separate two classes. The
separating hyperplane is between them. The margin between these
two boundaries is defined as 2=kwk. In order to maximize this mar-
gin, the following problem must be solved

min
w;b

1
2

wT w

s:t: yi uðxiÞwi þ bð Þ � 1; i ¼ 1 . . . l ð3:1Þ

By solving this problem, we obtain optimal hyperplane
sgnððw� � xÞ þ b�Þ, with w⁄ and b⁄ solutions of (3.1). This problem
can be rewritten in dual quadratic programming problem form
using the Lagrangian

min
/

1
2

Xl

i¼1

Xl

j¼1

yiyj/i/jðxi � xjÞ �
Xl

i�1

/i

s:t:
Xl

i�1

yi/i ¼ 0; /i � 0; i ¼ 1 . . . l ð3:2Þ

Here a is a vector of l Lagrange multipliers, where each ai corre-
sponds to a training example ðxi; yiÞ. To adopt this approach to lin-
early non-separable training sets, each instance ðxi; yiÞ is associated
with a slack variable ni P 0; the constraint in (3.1) becomes
yiðuðxiÞ �wi þ bÞ þ ni � 1 Thus the problem in (3.1) becomes

min
w;b

1
2

wT wþ C
Xl

i�1

ni

s:t: yiðuðxiÞ �wi þ bÞ þ ni � 1; i ¼ 1 . . . l ð3:3Þ

where C is a parameter that determines the trade-off between the
maximum margin and the minimum classification error. Kernel
function Kðxi; xjÞ 	 u xið ÞTu xj

� �
can be used to map linearly non-sep-

arable instances into a higher (maybe infinite) dimensional space;
the Lagrangian then becomes

min
/

1
2

Xl

i¼1

Xl

j¼1

yiyj/i/jKðxi � xjÞ �
Xl

i�1

/i
s:t:
Xl

i�1

yi/i ¼ 0; 0 
 /i 
 C; i ¼ 1 . . . l ð3:4Þ

If a� ¼ ða1; . . . ;alÞ, the optimal separating hyperplane becomes

Sgn
Xl

i¼1

yia�i Kðxi; xjÞ þ b�
 !

ð3:5Þ

Note, that in this work only linear kernel functions are considered,
i.e., Kðxi; xjÞ 	 xT

i xj.

3.2. Linear SVM classifiers

Linear SVM classifiers generate weight vector w as the model
using a decision function sgn(wT x) (i.e., an instance is predicted
as ‘‘positive’’ if wT x > 0). They benefit over SVM implementations,
using kernel functions, in terms of training speed and reduced
complexity, as the exclusion of kernel mapping simplifies training
and reduces the amount of computation to train classifier. How-
ever, that lack of nonlinear mapping results in less flexibility and
reduced performance, compared to kernel-based SVM classifiers.
Yet, practical application of the latter may also be significantly
impacted by selection of best kernel function or highly unbalanced
training. SVM is one of the machine learning techniques, which
usually do not perform well in case of unbalanced training without
additional steps (Batuwita & Palade, 2013), although many solu-
tions are developed to overcome this problem such as internally
implemented class-weighting, cost-sensitive learning and evalua-
tion (Elkan, 2001), internal classifier enhancements (Lessmann,
2004; Qi, Tian, Shi, & Yu, 2013), sampling techniques, such as boot-
strap, undersampling, oversampling (Margineantu & Dietterich,
2000). Therefore, it may sometimes be appropriate to use linear
classifiers in practice in order to achieve performance, which is
desirable, or at least as near desirable. State-of-the-art linear
SVM classifiers, which implement novel computational techniques
and are optimized for large-scale learning, can be used as an alter-
native to achieve this objective.

In this research, classifiers implemented in LIBLINEAR package
(Fan et al., 2008) were considered for the research. LIBLINEAR
includes a family of linear SVM and logistic regression classifiers
for large-scale SVM classification. Five of these classifiers were
used in the experiment; their formulations as optimization prob-
lems are given below:

� L2-regularized L1-loss SVC, formulated as

Xl
minw
1
2

wT wþ C
i�1

max 0; 1� yiw
T xi

� �
ð3:6Þ
� L2-regularized L2-loss SVC, defined as

Xl
minw
1
2

wT wþ C
i�1

max 0; 1� yiw
T xi

� �� �2 ð3:7Þ
� L2-regularized logistic regression, expressed as

Xl � �

minw

1
2

wT wþ C
i�1

log 1þ e�yiwT xi ð3:8Þ
� L2-regularized L2-loss SVC, defined as

l

minwkwk1 þ C
X
i�1

max 0; 1� yiw
T xi

� �� �2 ð3:9Þ
� multi-class SVM by Crammer and Singer:

l

min
w;n

1
2

wT
mwm þ C

X
i�1

ni ð3:10Þ
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L1-SVM (3.6) and L2-SVM (3.7) implementations use coordinate
descent optimization method, whereas logistic regression (3.8)
and L2-SVM (3.9) are implemented using trust region Newton
method; for more details of their implementation we refer to
(Fan et al., 2008). Bias term b is obtained as complementary
dimension of the vector w (w 	 [wT, b]), after specifying con-
stant B for each instance s.t. xT

i 	 [xT
i , B] (Fan et al., 2008). The

selection of this parameter, together with cost parameter C, is
performed by experts; thus, it is purposeful to apply certain
heuristic search procedures, such as grid search, or artificial
intelligence techniques, particularly evolutionary techniques
or swarm intelligence, as possible solutions for this task. The
latter is further discussed in Section 4.
4. Particle swarm optimization for linear SVM classifier
selection

Particle swarm optimization (Kennedy, Eberhart, & Shi, 2001) is
one of social optimization approaches motivated by the coordinate
movement of fish pools and bird flocks, and based on patterns of
their synchronous cooperative behavior and regrouping after some
influential change. The conceptual simplicity of this technique led
to many modifications and practical applications. It is often
reported to converge to optimal or near-optimal solutions, while
incorporating efficient mechanisms to control search space explo-
ration. In PSO, each possible solution is represented as a particle,
while fitness value of this particle defines its position relatively
to the searched object. Two optimal solutions – local optimal solu-
tion, found by the particle itself, and global optimal, found by the
whole swarm, – are identified and updated in each iteration. The
number of iterations can be fixed or the algorithm might be termi-
nated if no further improvement is observed.

PSO is applied for various tasks. One of them is optimization of
classifier performance by selecting optimal parameters for the
classifiers, such as SVM (Kong, Cheng, Ding, & Chai, 2010; Li-xia,
Yi-qi, & Liu, 2011; Lin, Ying, Chen, & Lee, 2008). In this paper, we
explore heuristic search principle based on PSO for selection of lin-
ear SVM classifier from the set of classifiers described in Section 3.2
(further referred as PSO-LinSVM). Initial experiments on Australian
and German credit datasets indicated promising results, as
described in (Garsva & Danenas, 2014). Initially this approach
was presented in previous work (Danenas & Garsva, 2012), how-
ever, the version of PSO-LinSVM algorithm in this paper is slightly
improved for better exploration of hybrid search space. This is
done by modifying velocity and position equations according to
the influence of variables that are integer by their nature, rather
than rounding them, as in our initial version of PSO-LinSVM.

In, PSO-LinSVM, each particle p = hp1; p2; p3i defines the algo-
rithm used for classification, cost parameter C and parameter for
bias term B. Main steps of PSO-LinSVM are described in Algorithm
1. Here cl 2 fijclmin 6 i 6 clmax; clmin 2 Z; i 2 Z; clmax 2 Zg is a set of
inner integer encodings, corresponding to particular classifiers,
rangeC = [Cmin; Cmax] is a range of cost parameters which is consid-
ered (C � 0, according to predefined constraint in SVM formula-
tion); rangeBias = [bmin; bmax] is an interval to search for B
parameter. no_iterations represent defines the number of iterations
run in this algorithm; while it is not expected to converge to an
ideal solution (i.e., to a classifier which is able to separate given
data points perfectly), the main goal is a satisfactory solution,
obtained after a certain number of iterations. Other options, such
as certain threshold to stop search, can be established as well.
Finally, c1 and c2 represent coefficients for cognitive and social
components, as in original PSO algorithm.
Algorithm 1. PSO-LinSVM algorithm

PSO-LinSVM(c1, c2, rangeC, rangeBias, no_iterations)
Initialize a 3-dimensional swarm P
For each particle p in P

Initialize p ¼ hp1 2 clmin;clmax
� �

; p2 2 Cmin;Cmax
� �

;

p3 2 bmin;bmax
� �

i; p1 2; p2 2; p3 2 R
While i < no_iterations

if i = no_iterations return SVM(yp);
For each particle p in P

Compute fitness value of xp

if f ðxpÞ < then set xp as the global best position
if f ðypÞ < f ðŷÞ then ŷ ¼ yp

For each particle p in P
Calculate maximum allowed velocity Vmax for each

dimension in p
Calculate next step velocity vp(i+1) for each dimension in p
If vp(i + 1) > Vmax then vp(i + 1) = Vmax

Calculate particle position and fitness value
If particle position p1 > clmax then it is set to clmin

If particle position p2 > Cmax then it is set to Cmin

Calculate global best position value f ðŷtÞ obtained at iteration t
Next i
Output: Optimal linear SVM classifier SVM(yp)
The main objective is to maximize fitness function defined as
sum of True Positive rate (defined in Section 5.2) values for each
class:

f fitness ¼
XNC

i¼1

TPRi ð4:1Þ

where NC is the number of classes, TPRi � TPR value for ith class
(defined further in Section 5.2). Note that many similar works in
this field choose to maximize accuracy in order to obtain a classifier
with best accuracy performance. Although accuracy is considered as
one of the important metrics in classification, it is possible to obtain
high accuracy rate with highly imbalanced datasets, when most
‘‘majority’’ instances are classified correctly, although the discrimi-
nating function completely fails to identify ‘‘minority’’ instances.
This is especially important in credit risk domain, as the inability
to identify bankrupt companies would result in higher loss, when
the misclassification, resulting in ‘‘good’’ company identified as
bad, would result in unobtained profit. Therefore, function in (4.1)
is designed to account respectively for both of these classes.

To summarize, the main differences, compared to the original
PSO algorithm, are:

� Modifications in initialization procedure and velocity equation
to match mixed search space requirements in this algorithm.
� The search space is constrained by hard constraints which can-

not be violated. To deal with this problem, each particle is ‘‘tele-
ported’’ to lower boundary after it gets to the upper boundary of
the constrained space.

5. Research and evaluation methodology

5.1. Development and testing principles

This research relies on our previously used principles (Danenas
& Garsva, 2010; Danenas et al., 2011); however, it is extended with
sliding window approach which is useful for testing classifier per-
formance for several following periods. The full methodology of the
experiment is as follows:



Fig. 1. Illustration of sliding window testing approach.

Table 1
Main characteristics of data used in experiment.

Year # Entries labeled as Total entries # Of selected
attributes

Not risky (NR) Risky (R)

1999 1312 537 1849 12
2000 1869 589 2458 15
2001 1753 672 2425 15
2002 1709 777 2486 13
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1. Evaluate each financial entry by using expert evaluation meth-
ods (discriminant analysis, other) and compute bankruptcy
classes.

2. Eliminate instances, which resulted in null (empty) evaluations
in Step 1. Lack of data or division by zero may be of the main
reasons for such problems.

3. Remove attributes from the dataset which have more missing
values than specified threshold. 30% was considered in the
experimental research, although lower or higher threshold
may be set, depending on the availability of the data.

4. Impute data by filling missing values with specified value of
particular attribute. Mean value of the attribute was used in this
experiment, although other options may be chosen as well. One
of such options is the mean value for the particular attribute,
according to the dimensionality of the dataset (company, group,
sector, etc.); such imputation was also applied in our previous
research.

5. Perform the following steps for each m 2 [1; n-k] (n is the total
number of periods, k is the number of periods which are used
for forecasting):
(a) Apply feature selection procedure in order to select the

most relevant attributes and reduce number of dataset
dimensions.

(b) Perform classifier parameter selection manually or using
heuristic procedures.

(c) Train classifier using data from first m periods.
(d) Apply hold-out testing using data from period p 2 [m + 1;

m + k], p 2 Z.

Training and testing steps are illustrated in Fig. 1. The process
starts with training dataset of single year data (in this case,
1999–2000); training dataset iteratively increases as it is comple-
mented with data from next year for the next training step.

Feature selection step is important for 3 reasons:

1. To reduce data dimensionality of attribute space, thus forming a
new subset of attributes and reducing the complexity of the
model (the aspects of quality and complexity).

2. To obtain a set of statistically significant attributes to develop a
new classifier based on other evaluator (the aspect of
importance).

3. To remove ratios which correlate between themselves, in order
to ensure that all attributes used in the model are statistically
significant (the aspect of significance). This is especially impor-
tant in this methodology, as different financial ratios are often
composed of the same variables and can be related to each
other.

The output of each iteration in experimental stage is the trained
classifier and the list of selected attributes.
2003 1770 723 2493 14
2004 1920 637 2557 13
2005 1964 660 2624 14
2006 1636 429 2065 14
2007 1545 393 1938 14
2008 483 109 592 14

Total 15961 5527 21487
5.2. Evaluation of results

Metrics, commonly used in machine learning for evaluation in
similar problems, such as accuracy, TP (True Positive) and F-Mea-
sure rates, were selected to evaluate classification performance.
Accuracy is defined as a proportion of correct predictions to
total predictions as

accuracy ¼ #TruePositivesþ#TrueNegatives
#Total number of instances

ð5:1Þ

where #TruePositives and #TrueNegatives correspondingly are the
numbers of ‘‘positive’’ and ‘‘negative’’ cases correctly identified. True
Positive rate (TPR) or Sensitivity is a ratio of #TruePositives and total
number of total positive instances:

TPRi ¼
#TruePositivesi

#TruePositivesi þ#FalseNegativesi
ð5:2Þ

Here #FalseNegativesi is the number of ‘‘positive’’ cases in ith class
incorrectly classified as ‘‘negative’’. #TruePositivesi and #TrueNega-
tivesi, naturally, represent the numbers of correctly identified ‘‘posi-
tive’’ and ‘‘negative’’ cases of this class.

Finally, F-Measure is defined as harmonic mean of precision and
recall (True Positive) measures; similarly to TPR measure, it can be
defined for each class in the training dataset. It is preferred to accu-
racy for analysis of the classification performance case of unbal-
anced learning:

Fi ¼
2� precisioni � recalli

precisioni þ recalli
ð5:3Þ

where precision is defined as#TruePositivesi=ð#TruePositivesiþ
#FalsePositivesiÞ. #FalsePositivesi is the number of ‘‘negative’’ cases
in ith class, incorrectly classified as ‘‘positive’’.

6. Experimental results

6.1. Data used in the experiment

The experiments were made by using data of period 1999–2007
from EDGAR database, manufacturing sector. Table 1 presents
main characteristics of dataset, including number of instances in
each of formed classes.

The initial dataset used in the experiment consists of yearly
financial records with 51 financial ratios used in financial analysis,
computed using original primary financial data from balance and
income statement data. These ratios are listed in Table 2.



Table 2
Financial ratios used in research.

General efficiency ratios Accounts receivables effectiveness ratio
Sales to inventory ratio Asset turnover ratio
Accounts payable to sales ratio Capital turnover
Collection period ratio Fixed asset turnover ratios
Profitability ratios Fixed assets turnover
Profitability of own capital Current assets turnover
Constant capital turnover Cost of goods for each sale unit ratio
Return on assets Receivables turnover
Constant capital profitability Liabilities turnover
Gross margin profit ratio Total operational costs for each sale unit

ratio
Sales income ratio Current ratio
Return on capital employed Quick ratio
Return on equity capital Short-term solvency
Return on investment Liquidity ratio for constant capital
General profitability ratio Short-time payment ratio
Net profitability Quick liquidity ratio
Operating profitability Short term liabilities ratio
Ownership and debt ratios Long-term solvency
Capital share Current liabilities to inventory ratio
Financial debt to equity minus

goodwill ratio
Total liabilities to net worth ratio

Financial debt to equity ratio Liabilities and equity ratio
Interest coverage ratio Liabilities to equity without goodwill and

intangibles ratio
Debt ratio Debt coverage in cash ratio
Net capital to total assets ratio Long term liabilities coverage in fixed

assets
Adjusted capital ratio Total liabilities ratio
Turnover ratios Long-term liabilities to equity ratio
Depreciation ratio Long-term liabilities to total assets ratio
Fixed assets return ratio Short-term and long-term liabilities ratio
Fixed assets turnover ratio
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Entries were evaluated and labeled using Zmijewski’s score
(Zmijewski, 1984), as one of the most widely applied techniques
in the domain of credit risk evaluation. It was selected according
to the origin of the data (the data comes from USA companies). This
score is defined as follows:

Z ¼ �4:336� 4:513 � ðNet Revenue=Total AssetsÞ þ 5:679

� ðTotal Debt=Total AssetsÞ þ 0:004

� ðCurrent Assets=Current LiabilitiesÞ ð6:1Þ

The company is considered as tend to bankrupt if Z > 0. Thus two
groups of companies – companies which are ‘‘healthy’’ or ‘‘non-
risky’’ (possibly are not going to bankrupt) and ‘‘risky’’ (which
might become bankrupt) – were formed.

6.2. Experiment configuration

The code and algorithms for the experiments were imple-
mented using WEKA2 machine learning framework with LIBLINEAR
1.7. The test was run using 5 classifiers described in Section 3.2. Cost
parameter C and bias b for these algorithms were chosen experimen-
tally, by using direct search in range of C 2 ½0; 100� and b 2 ½0; 1�. For
each formed dataset, feature selection procedure was applied using
WEKA’s correlation-based feature subset evaluator (Hall, 1998). This
evaluator aims to select the subset that has maximal correlation to
the class, while the features have minimal intercorrelation. The opti-
mality of feature subset is defined by a merit measure

MeritS ¼
krcfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kþ kðk� 1Þrff

p ð6:2Þ
2 www.cs.waikato.ac.nz/ml/weka/
where rcf is the average correlation between features and class, and
rff is the average correlation between features (using Pearson’s coef-
ficient). According to Hall (1998), this technique is preferable for its
low computational demand – CFS requires m � ((n2 � n)/2) opera-
tions for computing the pairwise feature correlation matrix, where
m is the number of instances and n is the initial number of features,
and the feature selection search requires (n2 � n)/2 operations
(worst case).

The number of periods for testing (k, as indicated in Section 5.1)
was set to 3. The main objective was to identify best classifier in
terms of accuracy during all three testing periods, i.e., the condition
for evaluation is formally defined as

max
C;B

Xk

i¼1

accuracyi ð6:3Þ

where acci is the value of classification accuracy obtained at ith test-
ing period. It is important to note that classifiers, which performed
best during all testing periods, were preferred to better perfor-
mance in any certain single period. In the case of imbalanced learn-
ing, maximum sum of TPR values would be preferred, considering
that the classifier, which can identify all classes at some level of
accuracy, is more preferable than classifier which can identify, for
example, instances of one dominating class:

max
cl

Xk

i¼1

XNC

j¼1

TPRij ð6:4Þ

s:t:0 

XNC

i¼1

TPRi 
 NC

Here TPRij is TPR value for jth class obtained while testing classifier
testing at ith testing period, NC – the number of classes.

PSO-LinSVM was configured to run with rangeC = [1; 100] and
rangeBias = [�5; 10], using 15 iterations and a swarm of 20 parti-
cles. In order to compare performance to other classifiers, multino-
mial logistic regression model with a ridge estimator (le Cessie &
van Houwelingen, 1992) and RBFNetwork (normalized Gaussian
radial basis function network which uses k-means clustering algo-
rithm to provide the basis functions) classifiers from WEKA pack-
age were used in the experiment, considering their performance
with larger amounts of data. Logistic regression classifier was run
using default parameters, while the number of clusters for RBF net-
work classifier was set to 32 in order to increase its classification
performance.

6.3. Experimental results

Feature selection results are given in Table 3. It can be seen that
several ratios were selected to include in all of these models:
accounts payable to sales, short-time payment ratio, quick liquid-
ity and current liquidity ratios, long-term liabilities to equity, quick
ratio and returns on assets. Therefore, short-time ratios related to
debt payment and liquidity, as well as return on assets and sales
tend to be seen as the most important in developed models. Profit
ratio was indicated by feature selection procedure as important for
the first three periods; depreciation ratio was selected for succes-
sive periods, starting with year 2004. Several ownership, financial
performance and solvency ratios were also identified as important
in developed models, although their influence changed during
modeling, as the number of instances in the dataset increased.

Table 4 depicts classification performance of linear SVM with
direct search. Classification accuracy together with True Positive
rate and F-Measure rates for each class are given, where classifiers
were selected according to the principles described in Section 6.1.
Tables 5–7 give these results for PSO-LinSVM, logistic regression

http://www.cs.waikato.ac.nz/ml/weka/


Table 3
Financial ratios selected after feature selection procedure.

Table 4
Linear SVM experimental results.

Training period 2000 2001 2002 2003 2004 2005 2006 2007 Avg

Best performing
classifier

CS-
SVM

L1-LSVM
(dual)

L1-LSVM
(dual)

CS-
SVM

L1-LSVM
(dual)

L1-LSVM
(dual)

L2-LSVM
(primal)

L2-LSVM
(dual)

C 20 20 20 15 20 15 15 5
Bias 0.7 1.0 0.7 1.0 0.4 0.7 0.7 1.0

Accuracy 96.702 96.344 95.471 95.504 91.604 93.085 92.008 92.295 94.127

Year 1 TP NR 0.973 0.974 0.970 0.965 0.974 0.977 0.971 0.981 0.973
R 0.951 0.940 0.917 0.925 0.745 0.756 0.724 0.675 0.829

FMeas NR 0.977 0.973 0.968 0.970 0.945 0.957 0.951 0.954 0.962
R 0.941 0.942 0.922 0.911 0.818 0.820 0.789 0.770 0.864

Accuracy 96.183 94.233 95.348 96.785 92.940 91.445 91.960 – 94.128
Year 2 TP NR 0.966 0.966 0.972 0.983 0.977 0.966 0.977 – 0.972

R 0.953 0.938 0.898 0.923 0.749 0.716 0.675 – 0.836
FMeas NR 0.972 0.970 0.969 0.979 0.956 0.947 0.952 – 0.964

R 0.940 0.928 0.906 0.936 0.816 0.775 0.762 – 0.866

Accuracy 96.032 96.286 96.710 97.389 91.291 92.127 – – 94.973
Year 3 TP NR 0.962 0.970 0.987 0.987 0.964 0.981 – – 0.975

R 0.956 0.940 0.908 0.923 0.716 0.667 – – 0.852
FMeas NR 0.972 0.975 0.978 0.984 0.946 0.953 – – 0.968

R 0.933 0.927 0.933 0.936 0.772 0.764 – – 0.878
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and RBF network. Average values for each performance variable at
kth testing step were also calculated in order to compare average
classification performance of each classifiers; they are presented
at the right of each table. Average values for each dataset used in
training (1999–2000, 1999–2001, etc.) were also calculated as
average of k values for overall accuracy, TPR for ‘‘healthy’’ and
TPR for ‘‘risky’’ class measures. They are depicted graphically in
Figs. 1 and 2.

The accuracy is above 90%, which can be considered as a com-
paratively good result. Best results were obtained while training
classifier sequentially with data from first five years (starting with
year 1999) as classification accuracy remained over 95%. Later it
decreased, although the number of instances increased. No single
classifier dominated among those which showed best results –
Crammer–Singer multiclass SVM showed best performance twice,
L1 dual linear SVM – four times and L2 linear SVM, both primal
and dual – once per each classifier for the last two cases. The
obtained TPR values for both ‘‘risky’’ (R) and ‘‘non-risky’’ (NR) clas-
ses can be considered as a good result (both were over 0.9 in first
four periods, and over 0.7 in next periods). This indicates that
instances for both of these classes were classified successfully;
high F-Measure values also prove this. Unbalanced learning tech-
niques may seem not necessary here, although their integration
may considered for performance improvement. Parameters C and
bias varied; the experiment showed that bias parameter had signif-
icant influence and the performance might depend on proper
selection of this parameter.

Table 5 indicates that PSO-LinSVM application for classification
resulted in less stable performance, than using direct search. How-
ever, it is important to note that the latter classifier development is
more conformant to ‘‘training–testing-validation’’ paradigm, that
is, the results presented here are results obtained with validation



Table 5
PSO–LinSVM experimental results.

Training period 2000 2001 2002 2003 2004 2005 2006 2007 Avg

Classifier L2-RLR
(primal)

L2-SVM
(dual)

L2-SVM
(dual)

L2-RLR L2-SVM
(primal)

L2-SVM
(dual)

L2-SVM
(dual)

L2-SVM
(dual)

C parameter 46.5068 9.4532 20.0452 76.0741 1.0000 32.1152 40.2581 20.4178
Bias parameter �3.5519 9.5337 3.5257 �0.6641 5.2068 6.7547 2.2369 1.3727

Accuracy 95.218 95.46 87.655 94.253 91.679 93.52 86.12 90.372 91.785

Year 1 TP NR 0.984 0.977 0.979 0.976 0.967 0.968 0.857 0.990 0.962
R 0.869 0.905 0.626 0.841 0.769 0.812 0.878 0.523 0.778

F-Measure NR 0.967 0.967 0.918 0.962 0.945 0.959 0.908 0.944 0.946
R 0.91 0.926 0.747 0.879 0.824 0.839 0.719 0.667 0.814

Accuracy 93.853 95.311 89.367 94.743 92.94 91.744 86.486 – 92.063
Year 2 TP NR 0.98 0.972 0.984 0.985 0.969 0.955 0.865 – 0.959

R 0.847 0.906 0.62 0.836 0.777 0.771 0.862 – 0.803
F-Measure NR 0.956 0.967 0.933 0.965 0.956 0.949 0.913 – 0.948

R 0.896 0.918 0.744 0.89 0.821 0.791 0.701 – 0.823

Accuracy 93.908 95.387 90.053 96.373 91.073 92.736 – – 93.255
Year 3 TP NR 0.967 0.976 0.993 0.99 0.954 0.969 – – 0.975

R 0.87 0.889 0.629 0.863 0.74 0.743 – – 0.789
F-Measure NR 0.957 0.969 0.937 0.977 0.945 0.956 – – 0.957

R 0.893 0.906 0.762 0.908 0.771 0.790 – – 0.838

Table 6
Logistic regression classifier experimental results.

Training period 2000 2001 2002 2003 2004 2005 2006 2007 Avg

Accuracy 92.636 92.165 92.920 90.614 90.106 91.159 89.637 90.196 91.179

Year 1 TP NR 0.986 0.983 0.984 0.983 0.985 0.974 0.969 0.979 0.980
R 0.737 0.762 0.808 0.718 0.647 0.726 0.618 0.601 0.702

F-Measure NR 0.953 0.948 0.95 0.937 0.937 0.943 0.937 0.937 0.943
R 0.827 0.843 0.877 0.816 0.765 0.805 0.712 0.624 0.784

Accuracy 91.588 91.392 93.141 92.217 91.654 92.785 89.525 – 91.757
Year 2 TP NR 0.985 0.981 0.978 0.983 0.995 0.977 0.962 – 0.980

R 0.737 0.766 0.817 0.739 0.682 0.741 0.631 – 0.730
F-Measure NR 0.944 0.94 0.953 0.95 0.947 0.955 0.936 – 0.946

R 0.829 0.848 0.874 0.826 0.804 0.81 0.71 – 0.814

Accuracy 90.225 90.734 94.173 93.217 91.719 91.796 – – 91.977
Year 3 TP NR 0.975 0.973 0.981 0.994 0.996 0.968 – – 0.981

R 0.743 0.747 0.823 0.747 0.615 0.72 – – 0.733
F-Measure NR 0.932 0.937 0.962 0.956 0.95 0.95 – – 0.948

R 0.826 0.824 0.876 0.847 0.755 0.781 – – 0.818

Table 7
RBF network classifier experimental results.

Training period 2000 2001 2002 2003 2004 2005 2006 2007 Avg

Accuracy 90.684 91.423 91.311 90.293 90.106 89.825 91.671 90.661 90.747

Year 1 TP NR 0.96 0.957 0.966 0.962 0.954 0.957 0.968 0.957 0.960
R 0.737 0.804 0.797 0.759 0.743 0.724 0.723 0.71 0.750

F-Measure NR 0.94 0.942 0.939 0.934 0.935 0.934 0.948 0.942 0.939
R 0.791 0.839 0.851 0.819 0.789 0.782 0.783 0.755 0.801

Accuracy 90.062 89.743 91.135 91.514 90.435 91.622 91.744 – 90.894
Year 2 TP NR 0.956 0.943 0.959 0.961 0.957 0.969 0.964 – 0.958

R 0.756 0.797 0.795 0.776 0.747 0.716 0.733 – 0.760
F-Measure NR 0.933 0.927 0.939 0.944 0.937 0.948 0.949 – 0.940

R 0.808 0.829 0.839 0.82 0.797 0.78 0.783 – 0.808

Accuracy 89.099 90.132 92.648 92.073 91.671 90.403 – – 91.004
Year 3 TP NR 0.952 0.946 0.968 0.976 0.972 0.957 – – 0.962

R 0.757 0.793 0.801 0.756 0.706 0.697 – – 0.752
F-Measure NR 0.923 0.932 0.952 0.949 0.949 0.941 – – 0.941

R 0.813 0.823 0.844 0.828 0.779 0.747 – – 0.806
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set, as testing is performed using cross-validation procedure inside
of PSO-LinSVM), whereas previous results are selected according
mainly to testing results. In this case, results given in Table 4,
should be viewed more as ‘‘ideal’’ results, while the results of the
next three classifiers more adequately conform to ‘‘real-world
learning’’ performance results.

Although there were several cases, when PSO-LinSVM resulted
in significantly worse performance (with testing accuracy >5%



Fig. 2. Three-period average prediction accuracy of tested classifiers.
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worse than direct search); these differences were not as significant
in other cases. Although, there were cases when PSO-LinSVM
resulted in higher accuracy.

Logistic classifier resulted in more stable classification results
than PSO-LinSVM, yet, it did not outperform it. While PSO-LinSVM
resulted in low performance results for 1999–2002 and 1999–2006
datasets, it outperformed logistic regression in other periods. RBF
network classifier performed similarly to logistic regression,
although its performance increased using larger datasets. Results
in tables also indicate that PSO-LinSVM also achieved better aver-
age accuracy and TPR results or each testing period than logistic
and RBF network classifiers.

Average prediction accuracy (Fig. 2) indicates that PSO-LinSVM
mostly outperformed logistic and neural classifiers in terms of
average accuracy, although they did not outperform linear SVM
with direct search. All three classifiers also showed stable perfor-
mance while recognizing instances, labeled as ‘‘healthy’’.

While PSO-LinSVM resulted in low performance results 1999–
2002 and 1999–2006 datasets, it performed better in other periods
(1999–2004 and 1999–2005) particularly. It also outperformed
other classifiers in terms of average TPR ratio, showing that it
was also capable to identify ‘‘risky’’ companies better than other
of the tested classifiers. As indicated in Fig. 3, performance of iden-
tification of ‘‘risky’’ companies for logistic and neural classifiers
started to decrease in at 2003 while PSO-LinSVM classifier showed
comparatively stable results. Its performance decrease can be
explained, as the classifier was trained also to focus on identify
‘‘minority’’ classes instead of classifying most of all instances which
often resulted in large rate of correct classification of instances
labelled with ‘‘majority’’ label (‘‘healthy’’ companies, in this case).
This can be easily recognized in case of 1999–2006 data, which
resulted in comparatively low average accuracy, and TPR for
Fig. 3. Three-period average results of identificat
‘‘healthy’’ companies, but also in significantly better identification
of ‘‘risky’ companies. Therefore, it can be concluded that PSO-LinS-
VM was a better option for identification of ‘‘risky’’ companies in
larger datasets where the number of instances representing such
companies is significantly smaller than the number of instances
representing ‘‘healthy’’ companies. This is often the case in real
world bankruptcy related data.
7. Conclusions and future work

In this study we explore an approach for machine learning dri-
ven credit risk evaluation using linear Support Vector Machines,
combined with sliding window approach for testing. It is consid-
ered that usage of higher dimensional data might improve perfor-
mance as well as integrate additional knowledge. This technique is
oriented at larger-scale learning, when nonlinear mappings are not
necessary, not efficient to use or may result in highly increased
computation. Such approach is also supported by the rising
amount of available financial data, which is also standardized
using specialized formats and frameworks, such as XBRL. Inspired
by the idea of particle swarm optimization, we designed selection
of the optimal classifier based on its core idea; performance of
identifying individual classes is preferred to performance defined
by overall accuracy in order to minimize the negative influence
of imbalanced learning in favor of identification of companies
labeled as ‘‘risky’’. Therefore, this approach seeks to maximize
the identification of possible bankruptcies as much as possible.

Experimental research indicated high average classification
accuracy (over 90%) although linear classifier was deployed.
Obtained results are comparable to other classifiers, such as
logistic regression and RBF network. Although performance of
ion of different classes for tested classifiers.
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PSO-LinSVM was less stable than of its competitors, it still indi-
cates its potential in future research.

Therefore, future research would involve further PSO-LinSVM
improvements, such as research on its stability, improved adoption
for imbalanced learning and combination with other classifiers.
Novel, state-of-the-art feature selection and instance selection
techniques may be other fields which can be beneficial to our
approach. Another important direction for further research is
adoption for multiclass learning – the approach is designed to cope
with multiple classes, although, additional testing and, possibly,
necessary refinements must be made in order to ensure its proper
functioning. In the future, we seek to explore it further using other
types of expert evaluations; we also consider exploiting this
approach to improve existing discriminant models by developing
new ones on their basis, with additional bankruptcy data available.
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