
Notes on Randomized Algorithms
CS 469/569: Spring 2013

James Aspnes

2013-05-21 16:51

Contents

Table of contents i

List of figures x

List of tables xi

List of algorithms xii

Preface xiii

Syllabus xiv

Lecture schedule xvii

1 Randomized algorithms 1
1.1 A trivial example . 2
1.2 Verifying polynomial identities 3
1.3 Randomized QuickSort . 4

1.3.1 Brute force method: solve the recurrence 5
1.4 Classifying randomized algorithms by their goals 6

1.4.1 Las Vegas vs Monte Carlo 6
1.4.2 Randomized complexity classes 7

1.5 Classifying randomized algorithms by their methods 9

2 Probability theory 11
2.1 Probability spaces and events 11

2.1.1 General probability spaces 12
2.2 Boolean combinations of events 13
2.3 Conditional probability . 16

2.3.1 Application to algorithm analysis 16

i

CONTENTS ii

2.3.1.1 Example: racing coin-flips 18
2.3.1.2 Example: Karger’s min-cut algorithm 19

2.3.2 Conditional probability and independence 21

3 Random variables 22
3.1 Operations on random variables 22
3.2 Random variables and events 23
3.3 Measurability . 25
3.4 Expectation . 25

3.4.1 Linearity of expectation 26
3.4.1.1 Linearity of expectation for infinite sequences 27

3.4.2 Expectation of a product 28
3.5 Conditional expectation . 28
3.6 Applications . 30

3.6.1 Geometric random variables 30
3.6.2 Coupon collector . 31
3.6.3 QuickSort . 32
3.6.4 Hoare’s FIND . 33

4 Basic probabilistic inequalities 35
4.1 Union bound (Boole’s inequality) 35

4.1.1 Applications . 36
4.1.1.1 Balls and bins 36
4.1.1.2 Independent sets 36

4.2 Markov’s inequality . 37
4.2.1 Applications . 37

4.2.1.1 The union bound 37
4.2.1.2 Fair coins . 38
4.2.1.3 Randomized QuickSort 38
4.2.1.4 Balls in bins 38

4.3 Jensen’s inequality . 38
4.3.1 Applications . 39

4.3.1.1 Fair coins: lower bound 39
4.3.1.2 Fair coins: upper bound 39
4.3.1.3 Sifters . 39

5 Concentration bounds 41
5.1 Chebyshev’s inequality . 41

5.1.1 Examples . 43
5.1.1.1 Flipping coins 43

CONTENTS iii

5.1.1.2 Flipping non-independent coins 43
5.1.1.3 Balls in bins 43
5.1.1.4 Lazy select 44

5.2 Chernoff bounds . 45
5.2.1 The classic Chernoff bound 46
5.2.2 Chernoff bound variants 47
5.2.3 Lower bound version of Chernoff bounds 48
5.2.4 Asymptotic two-sided version 49
5.2.5 Other tail bounds for the binomial distribution 50
5.2.6 Applications . 50

5.2.6.1 Flipping coins 50
5.2.6.2 Balls in bins again 50
5.2.6.3 Flipping coins, central behavior 51
5.2.6.4 Valiant’s randomized hypercube routing . . . 51

5.3 The Azuma-Hoeffding inequality 53
5.3.1 Hoeffding’s inequality 54
5.3.2 Azuma’s inequality . 57
5.3.3 The method of bounded differences 60
5.3.4 Applications . 61

5.4 Anti-concentration bounds . 64
5.4.1 The Berry-Esseen theorem 64
5.4.2 The Littleword-Offord problem 65

6 Randomized search trees 66
6.1 Binary search trees . 66
6.2 Binary search tree with random insertions 68
6.3 Treaps . 69

6.3.1 Assumption of an oblivious adversary 71
6.3.2 Analysis . 71

6.3.2.1 Searches . 72
6.3.2.2 Insertions and deletions 73

6.3.3 Other operations . 74
6.4 Skip lists . 74

7 Hashing 77
7.1 Hash tables . 77
7.2 Universal hash families . 78

7.2.1 Example of a 2-universal hash family 80
7.2.2 Tabulation hashing . 81

7.3 FKS hashing . 82

CONTENTS iv

7.4 Cuckoo hashing . 83
7.4.1 Structure . 84
7.4.2 Analysis . 84

7.5 Practical issues . 86
7.6 Bloom filters . 87

7.6.1 False positives . 87
7.6.2 Comparison to optimal space 89
7.6.3 Applications . 90
7.6.4 Counting Bloom filters 90
7.6.5 Count-min sketches 91

7.6.5.1 Initialization and updates 92
7.6.5.2 Queries . 92
7.6.5.3 Finding heavy hitters 95

7.7 Locality-sensitive hashing . 95
7.7.1 Approximate nearest neighbor search 96

7.7.1.1 Locality-sensitive hash functions 96
7.7.1.2 Constructing an (r1, r2)-PLEB 97
7.7.1.3 Hash functions for Hamming distance 98
7.7.1.4 Hash functions for `1 distance 101

8 Martingales and stopping times 102
8.0.2 Submartingales and supermartingales 103

8.1 The optional stopping theorem 104
8.2 Proof of the optional stopping theorem (optional) 105
8.3 Variants . 105
8.4 Applications . 107

8.4.1 Random walks . 107
8.4.2 Wald’s equation . 109
8.4.3 Waiting times for patterns 109

9 Markov chains 111
9.1 Basic definitions and properties 111

9.1.1 Examples . 113
9.1.2 Classification of states 114
9.1.3 Reachability . 115

9.2 Stationary distributions . 116
9.2.1 The ergodic theorem 117

9.2.1.1 Proof for finite chains 117
9.2.2 Reversible chains . 118

9.2.2.1 Basic examples 119

CONTENTS v

9.2.2.2 Time-reversed chains 120
9.2.2.3 Metropolis-Hastings 121

9.3 Bounding convergence rates using the coupling method 122
9.3.1 The basic coupling lemma 123
9.3.2 Random walk on a cycle 124
9.3.3 Random walk on a hypercube 125
9.3.4 Various shuffling algorithms 126

Move-to-top . 126
Random exchange of arbitrary cards 127
Random exchange of adjacent cards 128
Real-world shuffling 129

9.3.5 Path coupling . 129
9.3.5.1 Sampling graph colorings 130
9.3.5.2 Sampling independent sets 131
9.3.5.3 Metropolis-Hastings and simulated annealing 135

Single peak . 135
Single peak with very small amounts of noise . 136

9.4 Spectral methods for reversible chains 137
9.4.1 Spectral properties of a reversible chain 137
9.4.2 Conductance . 140
9.4.3 Edge expansion using canonical paths 142
9.4.4 Congestion . 143
9.4.5 Examples . 145

9.4.5.1 Lazy random walk on a line 145
9.4.5.2 Random walk on a hypercube 145
9.4.5.3 Matchings in a graph 146
9.4.5.4 Perfect matchings in dense bipartite graphs . 147

10 Approximate counting 150
10.1 Exact counting . 150
10.2 Counting by sampling . 151
10.3 Approximating #DNF . 152
10.4 Approximating #KNAPSACK 153
10.5 Approximating exponentially improbable events 155

10.5.1 Matchings . 156
10.5.2 Other applications . 157

CONTENTS vi

11 The probabilistic method 158
11.1 Randomized constructions and existence proofs 158

11.1.1 Unique hats . 159
11.1.2 Ramsey numbers . 160
11.1.3 Directed cycles in tournaments 162

11.2 Approximation algorithms . 162
11.2.1 MAX CUT . 163
11.2.2 MAX SAT . 163

11.3 The Lovász Local Lemma . 167
11.3.1 General version . 168
11.3.2 Symmetric version . 168
11.3.3 Applications . 169

11.3.3.1 Graph coloring 169
11.3.3.2 Satisfiability of k-CNF formulas 169

11.3.4 Non-constructive proof 170
11.3.5 Constructive proof . 173

12 Derandomization 177
12.1 Deterministic vs. randomized algorithms 178
12.2 Adleman’s theorem . 179
12.3 Limited independence . 180

12.3.1 MAX CUT . 180
12.4 The method of conditional probabilities 181

12.4.1 A trivial example . 182
12.4.2 Deterministic construction of Ramsey graphs 182
12.4.3 MAX CUT . 183
12.4.4 Set balancing . 184

13 Quantum computing 185
13.1 Random circuits . 185
13.2 Bra-ket notation . 188

13.2.1 States as kets . 188
13.2.2 Operators as sums of kets times bras 189

13.3 Quantum circuits . 189
13.3.1 Quantum operations 191
13.3.2 Quantum implementations of classical operations . . . 192
13.3.3 Representing Boolean functions 193
13.3.4 Practical issues (which we will ignore) 194
13.3.5 Quantum computations 194

13.4 Deutsch’s algorithm . 194

CONTENTS vii

13.5 Grover’s algorithm . 196
13.5.1 Initial superposition 196
13.5.2 The Grover diffusion operator 196
13.5.3 Effect of the iteration 197

A Assignments 199
A.1 Assignment 1: due Wednesday, 2013-01-30, at 17:00 199

A.1.1 Bureaucratic part . 199
A.1.2 Balls in bins . 199
A.1.3 A labeled graph . 200
A.1.4 Negative progress . 200

A.2 Assignment 2: due Thursday, 2013-02-14, at 17:00 202
A.2.1 A local load-balancing algorithm 202
A.2.2 An assignment problem 204
A.2.3 Detecting excessive collusion 205

A.3 Assignment 3: due Wednesday, 2013-02-27, at 17:00 206
A.3.1 Going bowling . 206
A.3.2 Unbalanced treaps . 208
A.3.3 Random radix trees 209

A.4 Assignment 4: due Wednesday, 2013-03-27, at 17:00 210
A.4.1 Flajolet-Martin sketches with deletion 210
A.4.2 An adaptive hash table 212
A.4.3 An odd locality-sensitive hash function 214

A.5 Assignment 5: due Friday, 2013-04-12, at 17:00 215
A.5.1 Choosing a random direction 215
A.5.2 Random walk on a tree 216
A.5.3 Sampling from a tree 217

A.6 Assignment 6: due Friday, 2013-04-26, at 17:00 219
A.6.1 Increasing subsequences 219
A.6.2 Futile word searches 220
A.6.3 Balance of power . 221

A.7 Final exam . 222
A.7.1 Dominating sets . 222
A.7.2 Tricolor triangles . 223
A.7.3 The n rooks problem 224
A.7.4 Pursuing an invisible target on a ring 224

CONTENTS viii

B Sample assignments from Spring 2009 227
B.1 Final exam, Spring 2009 . 227

B.1.1 Randomized mergesort (20 points) 227
B.1.2 A search problem (20 points) 228
B.1.3 Support your local police (20 points) 229
B.1.4 Overloaded machines (20 points) 230

C Sample assignments from Spring 2011 231
C.1 Assignment 1: due Wednesday, 2011-01-26, at 17:00 231

C.1.1 Bureaucratic part . 231
C.1.2 Rolling a die . 231
C.1.3 Rolling many dice . 233
C.1.4 All must have candy 233

C.2 Assignment 2: due Wednesday, 2011-02-09, at 17:00 234
C.2.1 Randomized dominating set 234
C.2.2 Chernoff bounds with variable probabilities 236
C.2.3 Long runs . 237

C.3 Assignment 3: due Wednesday, 2011-02-23, at 17:00 239
C.3.1 Longest common subsequence 239
C.3.2 A strange error-correcting code 241
C.3.3 A multiway cut . 242

C.4 Assignment 4: due Wednesday, 2011-03-23, at 17:00 243
C.4.1 Sometimes successful betting strategies are possible . 243
C.4.2 Random walk with reset 245
C.4.3 Yet another shuffling algorithm 247

C.5 Assignment 5: due Thursday, 2011-04-07, at 23:59 248
C.5.1 A reversible chain . 248
C.5.2 Toggling bits . 249
C.5.3 Spanning trees . 251

C.6 Assignment 6: due Monday, 2011-04-25, at 17:00 252
C.6.1 Sparse satisfying assignments to DNFs 252
C.6.2 Detecting duplicates 253
C.6.3 Balanced Bloom filters 254

C.7 Final exam . 257
C.7.1 Leader election . 257
C.7.2 Two-coloring an even cycle 258
C.7.3 Finding the maximum 259
C.7.4 Random graph coloring 260

CONTENTS ix

D Probabilistic recurrences (not covered Spring 2013) 261
D.1 Recurrences with constant cost functions 261
D.2 Examples . 261
D.3 The Karp-Upfal-Wigderson bound 262

D.3.1 Waiting for heads . 264
D.3.2 Quickselect . 264
D.3.3 Tossing coins . 265
D.3.4 Coupon collector . 265
D.3.5 Chutes and ladders . 265

D.4 High-probability bounds . 266
D.4.1 High-probability bounds from expectation bounds . . 267
D.4.2 Detailed analysis of the recurrence 267

D.5 More general recurrences . 268

Bibliography 269

Index 282

List of Figures

5.1 Comparison of Chernoff bound variants 49

6.1 Tree rotations . 67
6.2 Balanced and unbalanced binary search trees 67
6.3 Binary search tree after inserting 5 1 7 3 4 6 2 68
6.4 Inserting values into a treap 70
6.5 Tree rotation shortens spines 73
6.6 Skip list . 75

9.1 Transforming one matching on a cycle to another 147

A.1 Radix tree . 210
A.2 Word searches . 220

x

List of Tables

3.1 Sum of two dice . 24

5.1 Concentration bounds . 42

7.1 Hash table parameters . 78

9.1 Markov chain parameters . 114
9.2 Classification of Markov chain states 114

xi

List of Algorithms

7.1 Insertion procedure for cuckoo hashing 85
A.1 Adaptive hash table insertion 213
C.1 Dubious duplicate detector . 253
C.2 Randomized max-finding algorithm 260

xii

Preface

These are notes for the Spring 2013 semester version of the Yale course
CPSC 469/569 Randomized Algorithms. This document also incorporates
the lecture schedule and assignments, as well as some sample assignments
from previous semesters. Because this is a work in progress, it will be
updated frequently over the course of the semester.

Notes from previous versions of the course can be found at http://www.
cs.yale.edu/homes/aspnes/classes/469/notes-2011.pdf and http://
pine.cs.yale.edu/pinewiki/CS469/2009/. Some sample assignments from
these semesters can also be found in the appendix.

Much of the structure of the course follows the textbook, Mitzenmacher
and Upfals’s Probability and Computing: Randomized Algorithms and Prob-
abilistic Analysis [MU05], with some material from Motwani and Raghavan’s
Randomized Algorithms [MR95]. In most cases you’ll find these textbooks
contain much more detail than what is presented here, so it is probably
better to consider this document a supplement to them than to treat it as
your primary source of information.

I would like to thank my students and this semester’s Teaching Fellow,
Rasmus Kyng, for their help in pointing out numerous errors and omissions
in earlier drafts of these notes.

xiii

http://www.cs.yale.edu/homes/aspnes/classes/469/notes-2011.pdf
http://www.cs.yale.edu/homes/aspnes/classes/469/notes-2011.pdf
http://pine.cs.yale.edu/pinewiki/CS469/2009/
http://pine.cs.yale.edu/pinewiki/CS469/2009/

Syllabus

Description
A study of randomized algorithms from several areas: graph algorithms, al-
gorithms in algebra, approximate counting, probabilistically checkable proofs,
and matrix algorithms. Topics include an introduction to tools from prob-
ability theory, including some inequalities such as Chernoff bounds.

Meeting times
Monday and Wednesday 11:35–12:50 in AKW 000.

On-line course information
The lecture schedule, course notes, and all assignments can be found in a sin-
gle gigantic PDF file at http://www.cs.yale.edu/homes/aspnes/classes/
469/notes.pdf. You should probably bookmark this file, as it will be up-
dated frequently. There is also a course web page at http://pine.cs.yale.
edu/pinewiki/CS469 that will be used for announcements and such.

Office hours can be found in the course calendar at Google Calendar.

Textbook
The textbook for the class is: Michael Mitzenmacher and Eli Upfal. Prob-
ability and Computing: Randomized Algorithms and Probabilistic Analysis.
Cambridge University Press, 2005. ISBN 0521835402. QA274 M574X 2005.

Reserved books at Bass library

These are other textbooks on randomized algorithms:

xiv

http://www.cs.yale.edu/homes/aspnes/classes/469/notes.pdf
http://www.cs.yale.edu/homes/aspnes/classes/469/notes.pdf
http://pine.cs.yale.edu/pinewiki/CS469
http://pine.cs.yale.edu/pinewiki/CS469
https://www.google.com/calendar/embed?src=0bp7p2de84g7ff1h5dg11i4llk@group.calendar.google.com&ctz=America/New_York&gsessionid=OK

SYLLABUS xv

• Rajeev Motwani and Prabhakar Raghavan, Randomized Algorithms.
Cambridge University Press, 1995. ISBN 0521474655. QA274 M68X
1995. Also available at http://www.books24x7.com/marc.asp?isbn=
0521474655 from Yale campus IP addresses.
The classic textbook in the field.

• Juraj Hromkovič, Design and Analysis of Randomized Algorithms: In-
troduction to Design Paradigms. Springer, 2005. ISBN 9783540239499.
QA274 .H76X 2005 (LC). Also available at http://dx.doi.org/10.
1007/3-540-27903-2 from Yale campus IP addresses.
Intended to be a gentler introduction to randomized algorithms than
Motwani and Raghavan, but not as comprehensive.

These are general references on probability theory:

• William Feller, An Introduction to Probability Theory and Its Appli-
cations, volumes 1 and 2. Wiley, 1968 (volume 1, 3rd edition); Wiley
1971 (volume 2, 2nd edition). QA273 F43 1968.
The probability theory analog of Knuth’s Art of Computer Program-
ming: comprehensive, multiple volumes, every theoretical computer
scientist of the right generation owns a copy. Volume 1, which covers
discrete probability, is the most useful for computer science.

• Geoffrey R. Grimmett and David R. Stirzaker, Probability and Random
Processes. Oxford University Press, 2001. ISBN 0198572220. QA273
G74X 2001.
Similar in scope to Feller. A good alternative if you are on a budget.

Course requirements
Six homework assignments (60% of the semester grade) plus a final exam
(40%).

Use of outside help
Students are free to discuss homework problems and course material with
each other, and to consult with the instructor or a TA. Solutions handed in,
however, should be the student’s own work. If a student benefits substan-
tially from hints or solutions received from fellow students or from outside

http://www.books24x7.com/marc.asp?isbn=0521474655
http://www.books24x7.com/marc.asp?isbn=0521474655
http://dx.doi.org/10.1007/3-540-27903-2
http://dx.doi.org/10.1007/3-540-27903-2

SYLLABUS xvi

sources, then the student should hand in their solution but acknowledge
the outside sources, and we will apportion credit accordingly. Using outside
resources in solving a problem is acceptable but plagiarism is not.

Clarifications for homework assignments
From time to time, ambiguities and errors may creep into homework assign-
ments. Questions about the interpretation of homework assignments should
be sent to the instructor at aspnes@cs.yale.edu. Clarifications will appear
in an updated version of the assignment.

Late assignments
Late assignments will not be accepted without a Dean’s Excuse.

mailto:aspnes@cs.yale.edu

Lecture schedule

As always, the future is uncertain, so you should take parts of the schedule
that haven’t happened yet with a grain of salt. Readings refer to chapters or
sections in the course notes, except for those specified as in MU or MR, which
refer to the course textbook [MU05] or to the supplemental text [MR95].

See also the course calendar, which lists lecture times, office hours for
the instructor and TA, and assignment due dates.

2013-01-14 Randomized algorithms. What they are and what we will do
with them. Las Vegas and Monte Carlo algorithms. Some examples.
Readings: Chapter 1; MU §1.1.

2013-01-16 Probability theory as used in analyzing randomized algorithms.
Karger’s min-cut algorithm. Readings: Chapter 2, MU §§1.2–1.4.

2013-01-18 Random variables and expectations: definition of random vari-
ables; operations on random variables; expectation; linearity of expec-
tation; independent random variables and E [XY]; Bernoulli, bino-
mial, and geometric distributions and their expectations. Basics of
conditional expectation and the law of total expectation. Readings:
Chapter 3 through §3.4; MU §§2.1-2.2.

2013-01-23 More on conditional expectation and applications. Readings:
Rest of Chapter 3; rest of MU Chapter 2.

2013-01-28 Basic probabilistic inequalities: The union bound, Markov’s
inequality, Jensen’s inequality. Readings: Chapter 4; MU §§3.1–3.2.

2013-01-30 Start of concentration bounds. Variance, Chebyshev’s inequal-
ity, and applications. Readings: §section-chebyshevs-inequality; MU
§§3.3–3.4.

2013-02-04 Chernoff bounds and applications. Readings: §section-chernoff-
bounds; MU §§4.1–4.2, 4.5.1.

xvii

https://www.google.com/calendar/embed?src=0bp7p2de84g7ff1h5dg11i4llk@group.calendar.google.com&ctz=America/New_York&gsessionid=OK

LECTURE SCHEDULE xviii

2013-02-06 Concentration bounds for sums of bounded independent ran-
dom variables and martingales with bounded increments: Azuma-
Hoeffding inequality, McDiarmid’s inequality. Readings: §5.3; §§12.1,
12.4–12.5.

2013-02-11 No lecture due to snow.

2013-02-13 Randomized search trees and treaps. Readings: Chapter 6
through §6.3; MR §§8.1–8.2, [SA96].

2013-02-18 Skip lists; start of hash tables. Readings: §6.4, Chapter 7
through §7.3; MR §8.3, MU §§5.5.1 and 13.3.

2013-02-20 Cuckoo hashing Readings: §7.4; [PR04].

2013-02-25 Bloom filters and variants. Readings: §7.6; MU §§5.5.3 and
13.4.

2013-02-27 Locality-sensitive hashing and approximate nearest neighbors.
Readings: §7.7; [IM98].

2013-03-04 Martingales and stopping times. Readings: Chapter 8 except
§8.2 (which I started to do in lecture but shouldn’t have) and §8.4.3
(which I didn’t do in lecture but should have); MU §§12.2–12.3.

2013-03-06 Martingales and waiting times for patterns. Start of Markov
chains: basic definitions, classification of states, stationary distribu-
tions and the ergodic theorem. Readings: §8.4.3, Chapter 9 up to but
not including §9.2.1.1; MU §§7.1–7.2.

2013-03-25 More Markov chains: proving convergence using a coupling, re-
versible chains, the Metropolis-Hastings algorithm. Readings: §§9.2.1.1–
9.3.3; MU §§7.3–7.4, 11.1–11.2.

2013-03-27 More coupling arguments: shuffling algorithms, path couplings.
Readings: §§9.3.4–9.3.5; MU §§11.2.1, 11.2.3, 11.5, and 11.6.

2013-04-01 Markov chain convergence via spectral methods: conductance
and canonical paths. Readings: §§9.4–9.4.4; first example in §9.4.5;
MR §11.3.

2013-04-03 More canonical paths: random walk on a hypercube, match-
ings. Approximate counting: counting classes, approximating #DNF
using the Karp-Luby covering technique. Readings: rest of §9.4.5,
§§10.1–10.3; rest of MR §11.3; MR §§11.1–11.2 or MU §§10.1–10.2.

LECTURE SCHEDULE xix

2013-04-08 No lecture due to illness.

2013-04-10 Approximating #KNAPSACK. The probabilistic method: ex-
istence proofs and approximation algorithms. Readings: §§10.4, 11.1,
and §11.2.1; [Dye03], MU §6.1–6.2.1.

2013-04-15 Approximate MAX SAT. Lovász local lemma and applications.
Readings: §11.2.2, §§11.3.1–11.3.3; MU §6.2.2, MR §5.2, MU §§6.7
and 6.9.

2013-04-17 Proofs of the Lovász local lemma: non-constructive proof, the
Moser-Tardos algorithm. Derandomization and Adleman’s Theorem.
Readings: §§11.3.4 and 11.3.5, §12.2; [MT10], MR §2.3.

2013-04-22 More derandomization: pairwise independence, method of con-
ditional probabilities. Preview of quantum computing. Readings:
Rest of Chapter 12, §13.1; MU §§6.3 and 13.1.2.

2013-04-24 Quantum computing. Readings: Rest of Chapter 13.

2013-05-02 Final exam, starting at 14:00, in WLH 116. It was a closed-
book test covering all material discussed during the semester.

Chapter 1

Randomized algorithms

A randomized algorithm flips coins during its execution to determine what
to do next. When considering a randomized algorithm, we usually care
about its expected worst-case performance, which is the average amount
of time it takes on the worst input of a given size. This average is computed
over all the possible outcomes of the coin flips during the execution of the
algorithm. We may also ask for a high-probability bound, showing that
the algorithm doesn’t consume too much resources most of the time.

In studying randomized algorithms, we consider pretty much the same is-
sues as for deterministic algorithms: how to design a good randomized algo-
rithm, and how to prove that it works within given time or error bounds. The
main difference is that it is often easier to design a randomized algorithm—
randomness turns out to be a good substitute for cleverness more often than
one might expect—but harder to analyze it. So much of what one does is
develop good techniques for analyzing the often very complex random pro-
cesses that arise in the execution of an algorithm. Fortunately, in doing so we
can often use techniques already developed by probabilists and statisticians
for analyzing less overtly algorithmic processes.

Formally, we think of a randomized algorithm as a machine M that
computes M(x, r), where x is the problem input and r is the sequence of
random bits. Our machine model is the usual random-access machine or
RAM model, where we have a memory space that is typically polynomial in
the size of the input n, and in constant time we can read a memory location,
write a memory location, or perform arithmetic operations on integers of
up to O(logn) bits.1 In this model, we may find it easier to think of the

1This model is unrealistic in several ways: the assumption that we can perform arith-
metic on O(logn)-bit quantities in constant omits at least a factor of Ω(log logn) for

1

CHAPTER 1. RANDOMIZED ALGORITHMS 2

random bits as supplied as needed by some subroutine, where generating a
random integer of size O(logn) takes constant time; the justification for this
assumption is that it takes constant time to read the next O(logn)-sized
value from the random input.

Because the number of these various constant-time operations, and thus
the running time for the algorithm as a whole, may depend on the random
bits, it is now a random variable—a function on points in some probability
space. The probability space Ω consists of all possible sequences r, each
of which is assigned a probability Pr [r] (typically 2−|r|), and the running
time for M on some input x is generally given as an expected value2

Er[time(M(x, r))], where for any X,

Er[X] =
∑
r∈Ω

X(r) Pr [r] . (1.0.1)

We can now quote the performance of M in terms of this expected value:
where we would say that a deterministic algorithms runs in time O(f(n)),
where n = |x| is the size of the input, we instead say that our randomized al-
gorithm runs in expected timeO(f(n)), which means that Er[time(M(x, r))] =
O(f(|x|)) for all inputs x.

This is distinct from traditional worst-case analysis, where there is no
r and no expectation, and average-case analysis, where there is again no
r and the value reported is not a maximum but an expectation over some
distribution on x. The following trivial example shows the distinction.

1.1 A trivial example
Suppose we have two doors. Behind one door is a valuable prize, behind the
other is nothing. Our goal is to obtain the prize after opening the fewest
possible doors.

A deterministic algorithm tries one door, then the next. In the worst
case, two doors are opened. In the average case, if we assume that both
doors are equally likely to hide the prize, we open one door half the time

addition and probably more for multiplication in any realistic implementation; while the
assumption that we can address nc distinct locations in memory in anything less than
nc/3 time in the worst case requires exceeding the speed of light. But for reasonably small
n, this gives a pretty good approximation of the performance of real computers, which do
in fact perform arithmetic and access memory in a fixed amount of time, although with
fixed bounds on the size of both arithmetic operands and memory.

2We’ll see more details of these and other concepts from probability theory in Chap-
ters 2 and 3.

CHAPTER 1. RANDOMIZED ALGORITHMS 3

and the other door half the time, or 3/2 doors on average. We can obtain
the same expected time even in the worst case by flipping a coin ourselves
to decide which door to open first. This gives a randomized algorithm, and
because we flip the coin (instead of nature, in the case of the average-case
algorithm), we can guarantee the good expected performance no matter
what the person hiding the prize does.

We’ve already used one mildly sophisticated techniques to analyze this
algorithm: implicitly, we partitioned the probability space into two subsets,
in one of which we opened the right door first and in one of which we opened
the wrong door first.

1.2 Verifying polynomial identities
A less trivial example is described in [MU05, §1.1]. Here we are given two
products of polynomials and we want to determine if they compute the same
function. For example, we might have

p(x) = (x− 7)(x− 3)(x− 1)(x+ 2)(2x+ 5)
q(x) = 2x5 − 13x4 − 21x3 + 127x2 + 121x− 210

These expressions both represent degree-5 polynomials, and it is not
obvious without multiplying out the factors of p whether they are equal or
not. Multiplying out all the factors of pmay take as much as O(d2) time if we
assume integer multiplication takes unit time and do it the straightforward
way.3 We can do better than this using randomization.

The trick is that evaluating p(x) and q(x) takes only O(d) integer opera-
tions, and we will find p(x) = q(x) only if either (a) p(x) and q(x) are really
the same polynomial, or (b) x is a root of p(x)−q(x). Since p(x)−q(x) has
degree at most d, it can’t have more than d roots. So if we choose x uni-
formly at random from some much larger space, it’s likely that we will not
get a root. Indeed, evaluating p(11) = 112320 and q(11) = 120306 quickly
shows that p and q are not in fact the same.

This is an example of aMonte Carlo algorithm, which is an algorithm
that runs in a fixed amount of time but only gives the right answer some of
the time. (In this case, with probability 1 − d/r, where r is the size of the
range of random integers we choose x from.)

Monte Carlo algorithms have the unnerving property of not indicating
when their results are incorrect, but we can make the probability of error as

3It can be faster if we do something sneaky like use FFT.

CHAPTER 1. RANDOMIZED ALGORITHMS 4

small as we like by running the algorithm repeatedly. After k attempts, the
probability of error is only (d/r)k, which means that for fixed d/r we need
O(log(1/ε)) iterations to get the error bound down to any given ε. If we are
really paranoid, we could get the error down to 0 by testing d + 1 values,
but now the cost is as high as multiplying out p again.4

1.3 Randomized QuickSort
The QuickSort algorithm [Hoa61a] works as follows. For simplicity, we
assume that no two elements of the array being sorted are equal.

• If the array has > 1 elements,

– Pick a pivot p uniformly at random from the elements of the
array.

– Split the array into A1 and A2, where A1 contains all elements
< p elements > p.

– Sort A1 and A2 recursively and return the sequence A1, p, A2.

• Otherwise return the array.

The splitting step takes exactly n − 1 comparisons, since we have to
check each non-pivot against the pivot. We assume all other costs are domi-
nated by the cost of comparisons. How many comparisons does randomized
QuickSort do on average?

4Note: I learned the hard way on 2013-01-14 that trying to describe the Miller-Rabin
test in the very first lecture was not a particularly good idea. Perhaps a more detailed
explanation of Miller-Rabin might be appropriate for some future chapter on randomized
algorithms for number theory.

This is an example of using randomization to find a witness to some fact—in this
case p 6= q. A similar technique is used in the classic Miller-Rabin primality test,
a randomized algorithm for determining whether a large integer is prime or not. Gary
Miller [Mil76] showed that, as in polynomial identity testing, it might be sufficient to pick
a particular set of deterministic candidate witnesses. Unfortunately, this result depends
on the truth of the extended Riemann hypothesis, a notoriously difficult open problem
in number theory. Michael Rabin [Rab80] demonstrated that choosing random witnesses
was enough, if we were willing to accept a small probability of incorrectly identifying a
composite number as prime. For many years it was open whether it was possible to test
primality deterministically in polynomial time without unproven number-theoretic as-
sumptions, and the randomized Miller-Rabin algorithm was one of the most widely-used
randomized algorithms for which no good deterministic alternative was known. Finally,
Agrawal et al. [AKS04] demonstrated how to test primality deterministically using a dif-
ferent technique, although the cost of their algorithm is high enough that Miller-Rabin is
still used in practice.

CHAPTER 1. RANDOMIZED ALGORITHMS 5

There are two ways to solve this problem: the dumb way and the smart
way. We’ll do it the dumb way now and save the smart way for §3.6.3.

1.3.1 Brute force method: solve the recurrence

Let T (n) be the expected number of comparisons done on an array of n
elements. We have T (0) = T (1) = 0 and for larger n,

T (n) = 1
n

n−1∑
k=0

(T (k) + T (n− 1− k)) . (1.3.1)

Why? Because there are n equally-likely choices for our pivot (hence the
1/n), and for each choice the expected cost is T (k) + T (n− 1− k), where k
is the number of elements that land in A1. Formally, we are using here the
law of total probability, which says that for any random variable X and
partition of the probability space into events B1 . . . Bn, then

E [X] =
∑

Bi E [X | Bi] ,

where

E [X | Bi] = 1
Pr [Bi]

∑
ω∈Bi

X(ω)

is the conditional expectation of X conditioned on Bi, which we can
think of as just the average value of X if we know that Bi occurred. (See
§2.3.1 for more details.)

So now we just have to solve this ugly recurrence. We can reasonably
guess that when n ≥ 1, T (n) ≤ an logn for some constant a. Clearly this

CHAPTER 1. RANDOMIZED ALGORITHMS 6

holds for n = 1. Now apply induction on larger n to get

T (n) = (n− 1) + 1
n

n−1∑
k=0

(T (k) + T (n− 1− k))

= (n− 1) + 2
n

n−1∑
k=0

T (k)

= (n− 1) + 2
n

n−1∑
k=1

T (k)

≤ (n− 1) + 2
n

n−1∑
k=1

ak log k

≤ (n− 1) + 2
n

∫ n

k=1
ak log k

= (n− 1) + 2a
n

(
n2 logn

2 − n2

4 + 1
4

)

= (n− 1) + 2a
n

(
n2 logn

2 − n2

4 + 1
4

)
= (n− 1) + an logn− an

2 + a

2n.

If we squint carefully at this recurrence for a while we notice that setting
a = 2 makes this less than or equal to an logn, since the remaining terms
become (n − 1) − n + 1/n = 1/n − 1, which is negative for n ≥ 1. We can
thus confidently conclude that T (n) ≤ 2n logn (for n ≥ 1).

1.4 Classifying randomized algorithms by their goals

1.4.1 Las Vegas vs Monte Carlo

One difference between QuickSort and Karger’s min-cut algorithm is that
QuickSort always succeeds, but may run for longer than you expect; while
Karger’s algorithm always runs in the same amount of time, but may fail
to output a min cut, even if run multiple times. These are examples of two
classes of randomized algorithms, which were originally named by Lśzl’o
Babai [Bab79]:

• A Las Vegas algorithm fails with some probability, but we can tell
when it fails. In particular, we can run it again until it succeeds, which
means that we can eventually succeed with probability 1 (but with a

CHAPTER 1. RANDOMIZED ALGORITHMS 7

potentially unbounded running time). Alternatively, we can think of
a Las Vegas algorithm as an algorithm that runs for an unpredictable
amount of time but always succeeds (we can convert such an algorithm
back into one that runs in bounded time by declaring that it fails if it
runs too long—a condition we can detect). QuickSort is an example
of a Las Vegas algorithm.

• A Monte Carlo algorithm fails with some probability, but we can’t
tell when it fails. If the algorithm produces a yes/no answer and the
failure probability is significantly less than 1/2, we can reduce the
probability of failure by running it many times and taking a majority
of the answers. Karger’s min-cut algorithm in an example of a Monte
Carlo algorithm.

The heuristic for remembering which class is which is that the names
were chosen to appeal to English speakers: in Las Vegas, the dealer can tell
you whether you’ve won or lost, but in Monte Carlo, le croupier ne parle
que Français, so you have no idea what he’s saying.

Generally, we prefer Las Vegas algorithms, because we like knowing when
we have succeeded. But sometimes we have to settle for Monte Carlo algo-
rithms, which can still be useful if we can get the probability of failure small
enough. For example, any time we try to estimate an average by sampling
(say, inputs to a function we are trying to integrate or political views of
voters we are trying to win over) we are running a Monte Carlo algorithm:
there is always some possibility that our sample is badly non-representative,
but we can’t tell if we got a bad sample unless we already know the answer
we are looking for.

1.4.2 Randomized complexity classes

Las Vegas vs Monte Carlo is the typical distinction made by algorithm de-
signers, but complexity theorists have developed more elaborate classifica-
tions. These include algorithms with “one-sided” failure properties. For
these algorithms, we never get a bogus “yes” answer but may get a bogus
“no” answer (or vice versa). This gives us several complexity classes that
act like randomized versions of NP, co-NP, etc.:

• The class R or RP (randomized P) consists of all languages L for
which a polynomial-time Turing machine M exists such that if x ∈ L,
then Pr [M(x, r) = 1] ≥ 1/2 and if x 6∈ L, then Pr [M(x, r) = 1] =
0. In other words, we can find a witness that x ∈ L with constant

CHAPTER 1. RANDOMIZED ALGORITHMS 8

probability. This is the randomized analog of NP (but it’s much more
practical, since with NP the probability of finding a winning witness
may be exponentially small).

• The class co-R consists of all languages L for which a poly-time Turing
machine M exists such that if x 6∈ L, then Pr [M(x, r) = 1] ≥ 1/2 and
if x ∈ L, then Pr [M(x, r) = 1] = 0. This is the randomized analog of
co-NP.

• The class ZPP (zero-error probabilistic P) is defined as RP∩ co-RP.
If we run both our RP and co-RP machines for polynomial time, we
learn the correct classification of x with probability at least 1/2. The
rest of the time we learn only that we’ve failed (because both machines
return 0, telling us nothing). This is the class of (polynomial-time)
Las Vegas algorithms. The reason it is called “zero-error” is that we
can equivalently define it as the problems solvable by machines that
always output the correct answer eventually, but only run in expected
polynomial time.

• The class BPP (bounded-error probabilistic P) consists of all lan-
guages L for which a poly-time Turing machine exists such that if x 6∈
L, then Pr [M(x, r) = 1] ≤ 1/3, and if x ∈ L, then Pr [M(x, r) = 1] ≥
2/3. These are the (polynomial-time) Monte Carlo algorithms: if our
machine answers 0 or 1, we can guess whether x ∈ L or not, but we
can’t be sure.

• The class PP (probabilistic P) consists of all languages L for which a
poly-time Turing machine exists such that if x 6∈ L, then Pr [M(x, r) = 1] ≥
1/2, and if x ∈ L, then Pr [M(x, r) = 1] < 1/2. Since there is only
an exponentially small gap between the two probabilities, such algo-
rithms are not really useful in practice; PP is mostly of interest to
complexity theorists.

Assuming we have a source of random bits, any algorithm in RP, co-
RP, ZPP, or BPP is good enough for practical use. We can usually even
get away with using a pseudorandom number generator, and there are good
reasons to suspect that in fact every one of these classes is equal to P.

CHAPTER 1. RANDOMIZED ALGORITHMS 9

1.5 Classifying randomized algorithms by their meth-
ods

We can also classify randomized algorithms by how they use their random-
ness to solve a problem. Some very broad categories:5

• Avoiding worst-case inputs, by hiding the details of the algorithm
from the adversary. Typically we assume that an adversary supplies
our input. If the adversary can see what our algorithm is going to
do (for example, he knows which door we will open first), he can use
this information against us. By using randomness, we can replace our
predictable deterministic algorithm by what is effectively a random
choice of many different deterministic algorithms. Since the adversary
doesn’t know which algorithm we are using, he can’t (we hope) pick
an input that is bad for all of them.

• Sampling. Here we use randomness to find an example or examples
of objects that are likely to be typical of the population they are drawn
from, either to estimate some average value (pretty much the basis of
all of statistics) or because a typical element is useful in our algorithm
(for example, when picking the pivot in QuickSort). Randomization
means that the adversary can’t direct us to non-representative sam-
ples.

• Hashing. Hashing is the process of assigning a large object x a small
name h(x) by feeding it to a hash function h. Because the names are
small, the Pigeonhole Principle implies that many large objects hash to
the same name (a collision). If we have few objects that we actually
care about, we can avoid collisions by choosing a hash function that
happens to map them to different places. Randomization helps here
by keeping the adversary from choosing the objects after seeing what
our hash function is.
Hashing techniques are used both in load balancing (e.g., insuring
that most cells in a hash table hold only a few objects) and in fin-
gerprinting (e.g, using a cryptographic hash function to record a
fingerprint of a file, so that we can detect when it has been modified).

• Building random structures. The probabilistic method shows
the existence of structures with some desired property (often graphs

5These are largely adapted from the introduction to [MR95].

CHAPTER 1. RANDOMIZED ALGORITHMS 10

with interesting properties, but there are other places where it can be
used) by showing that a randomly-generated structure in some class
has a nonzero probability of having the property we want. If we can
beef the probability up to something substantial, we get a randomized
algorithm for generating these structures.

• Symmetry breaking. In distributed algorithms involving multi-
ple processes, progress may be stymied by all the processes trying to
do the same thing at the same time (this is an obstacle, for example,
in leader election, where we want only one process to declare itself
the leader). Randomization can break these deadlocks.

Chapter 2

Probability theory

In this chapter, we summarize the parts of probability theory that we
need for the course. This is not really a substitute for reading an actual
probability theory book like Feller [Fel68] or Grimmett and Stirzaker [GS01].

2.1 Probability spaces and events
A discrete probability space is a countable set Ω of points or outcomes
ω. Each ω in Ω has a probability Pr [ω], which is a real value with 0 ≤
Pr [ω] ≤ 1. It is required that

∑
ω∈Ω = 1.

An event A is a subset of Ω; its probability is Pr [A] =
∑
ω∈A Pr [ω].

We require that Pr [Ω] = 1, and it is immediate from the definition that
Pr [∅] = 0.

The complement Ā or ¬A of an event A is the event Ω−A. It is always
the case that Pr [¬A] = 1− Pr [A].

This fact is a special case of the general principle that if A1, A2, . . . forms
a partition of Ω—that is, if Ai ∩ Aj = ∅ when i 6= j and

⋃
Ai = Ω—then∑

Pr [Ai] = 1. It happens to be the case that ¬A and A form a partition of
Ω consisting of exactly two elements.

Whenever A1, A2, . . . are disjoint events (i.e., when Ai ∩ Aj = ∅ for all
i 6= j), it is the case that Pr [

⋃
Ai] =

∑
Pr [Ai]. This fact does not hold in

general for events that are not disjoint.
For discrete probability spaces, all of these facts can be proven directly

from the definition of probabilities for events. For more general probability
spaces, it’s no longer possible to express the probability of an event as the
sum of the probabilities of its elements, and we adopt an axiomatic approach
instead.

11

CHAPTER 2. PROBABILITY THEORY 12

2.1.1 General probability spaces

More general probability spaces consist of a triple (Ω,F ,Pr) where Ω is
a set of points, F is a σ-algebra (a family of subsets of Ω that contains
Ω and is closed under complement and countable unions) of measurable
sets, and Pr is a function from F to [0, 1] that gives Pr [Ω] = 1 and satisfies
countable additivity: when A1, . . . are disjoint, Pr [

⋃
Ai] =

∑
Pr [Ai].

This definition is needed for uncountable spaces, because (under certain set-
theoretic assumptions) we may not be able to assign a meaningful probability
to all subsets of Ω.

Formally, this definition is often presented as three axioms of proba-
bility, due to Kolmogorov [Kol33]:

1. Pr [A] ≥ 0 for all A F .

2. Pr [Ω] = 1.

3. For any countable collection of disjoint events A1, A2, . . . ,

Pr
[⋃
i

Ai

]
=
∑
i

Pr [Ai] .

It’s not hard to see that the discrete probability spaces defined in the
preceding section satisfy these axioms.

General probability spaces arise in randomized algorithms when we have
an algorithm that might consume an unbounded number of random bits.
The problem now is that an outcome consists of countable sequence of bits,
and there are uncountably many such outcomes. The solution is to consider
as measurable events only those sets with the property that membership
in them can be determined after a finite amount of time. Formally, the
probability space Ω the set {0, 1}N of all sequences of 0 and 1 values indexed
by the natural numbers, and the measurable sets F are all sets that can be
generated by countable unions and intersections of cylinder sets, where
a cylinder set consists of all extensions xy of some finite prefix x. The
probability measure itself is obtained by assigning the set of all points that
start with x the probability 2−|x|, and computing the probabilities of other
sets from the axioms. 1

1This turns out to give the same probabilities as if we consider each outcome as a
real number in the interval [0, 1] and use Lebesgue measure to compute the probability
of events. For some applications, thinking of our random values as real numbers (or even
sequences of real numbers) can make things easier: consider for example what happens
when we want to choose one of three outcomes with equal probability.

CHAPTER 2. PROBABILITY THEORY 13

An oddity that arises in general probability spaces is it may be that every
particular outcome has probability zero but their union has probability 1.
For example, the probability of any particular infinite string of bits is 0, but
the set containing all such strings is the entire space and has probability
1. This is where the fact that probabilities only add over countable unions
comes in.

Most randomized algorithms books gloss over general probability spaces,
with three good reasons. The first is that if we truncate an algorithm after
a finite number of steps, we are usually get back to a discrete probability
space, which avoids a lot of worrying about measurability and convergence.
The second is that we are often implicitly working in a probability space
that is either discrete or well-understood (like the space of bit-vectors de-
scribed above). The last is that the Kolmogorov extension theorem
says that if we specify Pr [A1 ∩A2 ∩ · · · ∩Ak] consistently for all finite sets
of events {A1 . . . Ak}, then there exists some probability space that makes
these probabilities work, even if we have uncountably many such events. So
it’s usually enough to specify how the events we care about interact, without
worrying about the details of the underlying space.

2.2 Boolean combinations of events
Even though events are defined as sets, we often think of them as represent-
ing propositions that we can combine using the usual Boolean operations
of NOT (¬), AND (∧), and OR (∨). In terms of sets, these correspond to
taking a complement Ā = Ω \A, an intersection A ∩B, or a union A ∪B.

We can use the axioms of probability to calculate the probability of Ā:

Lemma 2.2.1.

Pr
[
Ā
]

= 1− Pr [A] .

Proof. First note that A ∩ Ā = ∅, so A ∪ Ā = Ω is a disjoint union of
countably many2 events. This gives Pr [A] + Pr

[
Ā
]

= Pr [Ω] = 1.

For example, if our probability space consists of the six outcomes of a fair
die roll, andA = [outcome is 3] with Pr [A] = 5/6, then Pr [outcome is not 3] =
Pr
[
Ā
]

= 1 − 1/6 = 5/6. Though this example is trivial, using the formula
does save us from having to add up the five cases where we don’t get 3.

2Countable need not be infinite, so 2 is countable.

CHAPTER 2. PROBABILITY THEORY 14

If we want to know the probability of A ∩ B, we need to know more
about the relationship between A and B. For example, it could be that
A and B are both events representing a fair coin coming up heads, with
Pr [A] = Pr [B] = 1/2. The probability of A∩B could be anywhere between
1/2 and 0:

• For ordinary fair coins, we’d expect that half the time that A happens,
B also happens. This gives Pr [A ∩B] = (1/2) · (1/2) = 1/4. To
make this formal, we might define our probability space Ω as having
four outcomes HH, HT, TH, and TT, each of which occurs with equal
probability.

• But maybe A and B represent the same fair coin: then A ∩ B = A
and Pr [A ∩B] = Pr [A] = 1/2.

• At the other extreme, maybe A and B represent two fair coins welded
together so that if one comes up heads the other comes up tails. Now
Pr [A ∩B] = 0.

• With a little bit of tinkering, we could also find probabilities for
the outcomes in our four-outcome space to make Pr [A] = Pr [HH] +
Pr [HT] = 1/2 and Pr [B] = Pr [HH] + Pr [TH] = 1/2 while setting
Pr [A ∩B] = Pr [HH] to any value between 0 and 1/2.

The difference between the nice case where Pr [A ∩B] = 1/4 and the
other, more annoying cases where it doesn’t is that in the first case we have
assumed that A and B are independent, which is defined to mean that
Pr [A ∩B] = Pr [A] Pr [B].

In the real world, we expect events to be independent if they refer to
parts of the universe that are not causally related: if we flip two coins that
aren’t glued together somehow, then we assume that the outcomes of the
coins are independent. But we can also get independence from events that
are not causally disconnected in this way. An example would be if we rolled
a fair four-sided die labeled HH,HT,TH,TT, where we take the first letter
as representing A and the second as B.

There’s no simple formula for Pr [A ∪B] when A and B are not disjoint,
even for independent events, but we can compute the probability by splitting

CHAPTER 2. PROBABILITY THEORY 15

up into smaller, disjoint events and using countable additivity:

Pr [A ∪B] = Pr
[
(A ∩B) ∪ (A ∩ B̄) ∪ (Ā ∩B)

]
= Pr [A ∩B] + Pr

[
A ∩ B̄

]
+ Pr

[
Ā ∩B

]
=
(
Pr [A ∩B] + Pr

[
A ∩ B̄

])
+
(
Pr
[
Ā ∩B

]
+ Pr [A ∩B]

)
− Pr [A ∩B]

= Pr [A] + Pr [B]− Pr [A ∩B] .

The idea is that we can compute Pr [A ∪B] by adding up the individual
probabilities and then subtracting off the part where the counted the event
twice.

This is a special case of the general inclusion-exclusion formula,
which says:

Lemma 2.2.2. For any finite sequence of events A1 . . . An,

Pr
[
n⋃
i=1

Ai

]
=
∑
i

Pr [Ai]−
∑
i<j

Pr [Ai ∩Aj] +
∑
i<j<k

Pr [Ai ∩Aj ∩Ak]− . . .

=
∑

S⊆{1...n},S 6=∅
(−1)|S|+1 Pr

[⋂
i∈S

Ai

]
. (2.2.1)

Proof. Partition Ω into 2n disjoint events BT , where BT = (
⋂
i∈T Ai) ∩(⋂

i/∈T Āi
)
is the event that all Ai occur for i in T and no Ai occurs for i

not in T . Then Ai is the union of all BT with T 3 i and
⋃
Ai is the union

of all BT with T 6= ∅.
That the right-hand side gives the probability of this event is a sneaky

consequence of the binomial theorem, and in particular the fact that
∑n
i=1(−1)i =∑n

i=0(−1)i − 1 = (1 − 1)n − 1 is zero if n > 0 and −1 if n = 0. Using this

CHAPTER 2. PROBABILITY THEORY 16

fact after rewriting the right-hand side using the BT events gives

∑
S⊆{1...n},S 6=∅

(−1)|S|+1 Pr
[⋂
i∈S

Ai

]
=

∑
S⊆{1...n},S 6=∅

(−1)|S|+1 ∑
T⊇S]

Pr [BT]

=
∑

T⊆{1...n}

Pr [BT]
∑

S⊆T,S 6=∅
(−1)|S|+1

=

∑
T⊆{1...n}

(
−Pr [BT]

n∑
i=1

(−1)i
(
|T |
i

))

=
∑

T⊆{1...n}

(
−Pr [BT] ((1− 1)|T | − 1)

)
=

∑
T⊆{1...n}

Pr [BT]
(
(1− 0|T |)

)
=

∑
T⊆{1...n},T 6=∅

Pr [BT]

= Pr
[
n⋂
i=1

Ai

]
.

2.3 Conditional probability
The probability of A conditioned on B or probability of A given B,
written Pr [A | B], is defined by

Pr [A | B] = Pr [A ∩B]
Pr [B] , (2.3.1)

provided Pr [B 6= 0]. If Pr [B] = 0, we generally can’t condition on B.
Such conditional probabilities represent the effect of restricting our prob-

ability space to just B, which can think of as computing the probability of
each event if we know that B occurs. The intersection in the numerator lim-
its A to circumstances where B occurs, while the denominator normalizes
the probabilities so that, for example, Pr [Ω | B] = Pr [B | B] = 1.

2.3.1 Application to algorithm analysis

The reason we like conditional probability in algorithm analysis is that it
gives us a natural way to model the kind of case analysis that we are used to

CHAPTER 2. PROBABILITY THEORY 17

applying to deterministic algorithms. Suppose we are trying to prove that
a randomized algorithm works (event A) with a certain probability. Most
likely, the first random thing the algorithm does is flip a coin, giving two
possible outcomes B and B̄. Countable additivity tells us that Pr [A] =
Pr [A ∩B] + Pr

[
A ∩ B̄

]
, which we can rewrite using conditional probability

as

Pr [A] = Pr [A | B] Pr [B] + Pr
[
A
∣∣∣ B̄]Pr

[
B̄
]
, (2.3.2)

a special case of the law of total probability.
What’s nice about this expression is that we can often compute Pr [A | B]

and Pr
[
A
∣∣∣ B̄] by looking at what the algorithm does starting from the

point where it has just gotten heads (B) or tails (B̄), and use the formula
to combine these values to get the overall probability of success.

For example, if

Pr [class occurs | snow] = 3/5,
Pr [class occurs | no snow] = 99/100, and

Pr [snow] = 1/10,

then

Pr [class occurs] = (3/5) · (1/10) + (99/100) · (1− 1/10) = 0.951.

More generally, we can do the same computation for any partition of Ω
into countably many disjoint events Bi:

Pr [A] = Pr
[⋃
i

(A ∩Bi)
]

=
∑
i

Pr [A ∩Bi]

=
∑

i,Pr[Bi] 6=0
Pr [A | Bi] Pr [Bi] , (2.3.3)

which is the law of total probability. Note that the last step works for
each term only if Pr [A | Bi] is well-defined, meaning that Pr [Bi] 6= 0. But
any such case contributes nothing to the previous sum, so we get the correct
answer if we simply omit any terms from the sum for which Pr [Bi] = 0.

CHAPTER 2. PROBABILITY THEORY 18

A special case arises when Pr
[
A
∣∣∣ B̄] = 0, which occurs, for example,

if A ⊆ B. Then we just have Pr [A] = Pr [A | B] Pr [B]. If we consider an
event A = A1 ∩A2 ∩ · · · ∩Ak, then we can iterate this expansion to get

Pr [A1 ∩A2 ∩ · · · ∩Ak] = Pr [A1 ∩ · · · ∩Ak−1] Pr [Ak | A1, . . . , Ak−1]
= Pr [A1 ∩ · · · ∩Ak−2] Pr [Ak−1 | A1, . . . , Ak−2] Pr [Ak | A1, . . . , Ak−1]
= . . .

=
k∏
i=1

Pr [Ai | A1, . . . , Ai] . (2.3.4)

Here Pr [A | B,C, . . .] is short-hand for Pr [B ∩ C ∩ . . .], the probability
that A occurs given that all of B, C, etc., occur.

2.3.1.1 Example: racing coin-flips

Suppose that I flip coins and allocate a space for each heads that I get before
the coin comes up tails. Suppose that you then supply me with objects (each
of which takes up one space), one for each heads that you get before you get
tails. What are my chances of allocating enough space?

Let’s start by solving this directly using the law of total probability. Let
Ai be the event that I allocate i spaces. The event Ai is the intersection of
i independent events that I get heads in the first i positions and the event
that I get tails in position i + 1; this multiplies out to (1/2)i+1. Let Bi be
the similar event that you supply i objects. Let W be the event that I win.
To make the Ai partition the space, we must also add an extra event A∞
equal to the singleton set {HHHHHHH . . .} consisting of the all-H sequence;
this has probability 0 (so it won’t have much of an effect), but we need to
include it since HHHHHHH . . . is not contained in any of the other Ai.

We can compute

Pr [W | Ai] = Pr [B0 ∩B1 ∩ · · · ∩Bi | Ai]
= Pr [B0 ∩B1 ∩ · · · ∩Bi]
= Pr [B0] + Pr [B1] + · · ·+ Pr [Bi]

=
i∑

j=0
(1/2)i

= (1/2) · 1− (1/2)i+1

1− 1/2
= 1− (1/2)i+1. (2.3.5)

CHAPTER 2. PROBABILITY THEORY 19

The clean form of this expression suggests strongly that there is a better
way to get it, and that this way involves taking the negation of the intersec-
tion of i+ 1 independent events that occur with probability 1/2 each. With
a little reflection, we can see that the probability that your objects don’t fit
in my buffer is exactly (1/2)i+1

From the law of total probability (2.3.3),

Pr [W] =
∞∑
i=0

(1− (1/2)i+1)(1/2)i+1

= 1−
∞∑
i=0

(1/4)i+1

= 1− 1
4 · 11− 1/4

= 2/3.

This gives us our answer. However, we again see an answer that is
suspiciously simple, which suggests looking for another way to find it. We
can do this using condition probability by defining new events Ci, where Ci
contains all sequences of coin-flips for both players where get i heads in a
row but at least one gets tails on the (i+ 1)-th coin. These events plus the
probability-zero event C∞ = {HHHHHHH . . . ,TTTTTTT . . .} partition the
space, so Pr [W] =

∑∞
i=0 Pr [W | Ci] Pr [Ci].

Now we ask, what is Pr [W | Ci]? Here we only need to consider three
cases, depending on the outcomes of our (i+ 1)-th coin-flips. The cases HT
and TT cause me to win, while the case TH causes me to lose, and each occurs
with equal probability conditioned on Ci (which excludes HH). So I win 2/3
of the time conditioned on Ci, and summing Pr [W] =

∑∞
i=0(2/3) Pr [Ci] =

2/3 since I know that Pr [Ci] sums to 1 from the axioms.

2.3.1.2 Example: Karger’s min-cut algorithm

Here we’ll give a simple algorithm for finding a global min-cut in a multi-
graph,3 due to David Karger [Kar93].

The idea is that we are given a multigraph G, and we want to partition
the vertices into nonempty sets S and T such that the number of edges with
one endpoint in S and one endpoint in T is as small as possible. There are
many efficient ways to do this, most of which are quite sophisticated. There

3Unlike ordinary graphs, multigraphs can have more than one edge between two ver-
tices.

CHAPTER 2. PROBABILITY THEORY 20

is also the algorithm we will now present, which solves the problem with
reasonable efficiency using almost no sophistication at all (at least in the
algorithm itself).

The main idea is that given an edge uv, we can construct a new multi-
graph G1 by contracting the edge: in G1, u and v are replaced by a single
vertex, and any edge that used to have either vertex as an endpoint now goes
to the combined vertex (edges with both endpoints in {u, v} are deleted).
Karger’s algorithm is to contract edges chosen uniformly at random until
only two vertices remain. All the vertices that got packed into one of these
become S, the others become T . It turns out that this finds a minimum cut
with probability at least 1/

(n
2
)
.

Theorem 2.3.1. Given any min cut (S, T) of a graph G on n vertices,
Karger’s algorithm outputs (S, T) with probability at least 1/

(n
2
)
.

Proof. Let (S, T) be a min cut of size k. Then the degree of each vertex v
is at least k (otherwise (v,G − v) would be a smaller cut), and G contains
at least kn/2 edges. The probability that we contract an S–T edge is thus
at most k/(kn/2) = 2/n, and the probability that we don’t contract one is
1 − 2/n = (n − 2)/n. Assuming we missed collapsing (S, T) the first time,
we now have a new graph G1 with n−1 vertices in which the min cut is still
of size k. So now the chance that we miss (S, T) is (n− 3)/(n− 1). We stop
when we have two vertices left, so the last step succeeds with probability
1/3.

Using (2.3.4), we can compute the probability that the S–T cut is never
contracted by multiplying all the probabilities together:

n∏
i=3

i− 2
i

= 2
n(n− 1) .

If the graph has more than one min cut, this only makes our life easier.
Note that since each min cut turns up with probability at least 1/

(n
2
)
, there

can’t be more than
(n

2
)
of them.4 But even if there is only one, we have

a good chance of finding it if we simply re-run the algorithm substantially
more than n2 times.

4The suspiciously combinatorial appearance of the 1/
(
n
2

)
suggests that there should

be some way of associating minimum cuts with particular pairs of vertices, but I’m not
aware of any natural way to do this. It may be that sometimes the appearance of a simple
expression in a surprising context may just stem from the fact that there aren’t very many
distinct simple expressions.

CHAPTER 2. PROBABILITY THEORY 21

2.3.2 Conditional probability and independence

Rearranging (2.3.1) gives Pr [A ∩B] = Pr [B] Pr [A | B] = Pr [A] Pr [B | A].
In many cases, knowing that B occurs tells us nothing about whether A
occurs; if so, we have Pr [A | B] = Pr [B], which implies that Pr [A ∩B] =
Pr [A | B] Pr [B] = Pr [A] Pr [B]—events A and B are independent. So
Pr [A | B] = Pr [A] gives an alternative criterion for independence when
Pr [B] is nonzero.5

A set of events A1, A2, . . . is independent if Ai is independent of B when
B is any Boolean formula of the Aj for j 6= i. The idea is that you can’t
predict Ai by knowing anything about the rest of the events.

A set of events A1, A2, . . . is pairwise independent if each Ai and
Aj , i 6= j are independent. It is possible for a set of events to be pairwise
independent but not independent; a simple example is when A1 and A2
are the events that two independent coins come up heads and A3 is the
event that both coins come up with the same value. The general version
of pairwise independence is k-wise independence, which means that any
subset of k (or fewer) events are independent.

5If Pr [B] is zero, then A and B are always independent.

Chapter 3

Random variables

A random variable on a probability space Ω is just a function with do-
main Ω. Rather than writing a random variable as f(ω) everywhere, the
convention is to write a random variable as a capital letter (X, Y , S, etc.)
and make the argument implicit: X is really X(ω). Variables that aren’t
random (or aren’t variable) are written in lowercase.

For example, consider the probability space corresponding to rolling two
independent fair six-sided dice. There are 36 possible outcomes in this space,
corresponding to the 6×6 pairs of values 〈x, y〉 we might see on the two dice.
We could represent the value of each die as a random variable X or Y given
by X(〈x, y〉) = x or Y (〈x, y〉) = y, but for many applications, we don’t care
so much about the specific values on each die. Instead, we want to know
the sum S = X + Y of the dice. This value S is also random variable; as a
function on Ω, it’s defined by S(〈x, y〉) = x+ y.

Random variables need not be real-valued. There’s no reason why we
can’t think of the pair 〈x, y〉 itself a random variable, whose range is the
set [1 . . . 6]× [1 . . . 6]. Similarly, if we imagine choosing a point uniformly at
random in the unit square [0, 1]2, its coordinates are a random variable. For
a more exotic example, the random graph Gn,p obtained by starting with
n vertices and including each possible edge with independent probability p
is a random variable whose range is the set of all graphs on n vertices.

3.1 Operations on random variables
Random variables may be combined using standard arithmetic operators,
have functions applied to them, etc., to get new random variables. For
example, the random variable X/Y is a function from Ω that takes on the

22

CHAPTER 3. RANDOM VARIABLES 23

value X(ω)/Y (ω) on each point ω.

3.2 Random variables and events
Any random variable X allows us to define events based on its possible
values. Typically these are expressed by writing a predicate involving the
random variable in square brackets. An example would be the probability
that the sum of two dice is exactly 11: [S = 11]; or that the sum of the dice is
less than 5: [S < 5]. These are both sets of outcomes; we could expand [S =
11] = {〈5, 6〉 , 〈6, 5〉} or [S < 5] = {〈1, 1〉 , 〈1, 2〉 , 〈1, 3〉 , 〈2, 1〉 , 〈2, 2〉 , 〈3, 1〉}.
This allows us to calculate the probability that a random variable has par-
ticular properties: Pr [S = 11] = 2

36 = 1
18 and Pr [S < 5] = 6

36 = 1
6 .

Conversely, given any event A, we can define an indicator random
variable 1A that is 1 when A occurs and 0 when it doesn’t.1 Formally,
1A(ω) = 1 for ω in A and 1A(ω) = 0 for ω not in A; or, using bracket
notation, A = [1A = 1] and Ā = [1A = 0].

Indicator variables are mostly useful when combined with other random
variables. For example, if you roll two dice and normally collect the sum of
the values but get nothing if it is 7, we could write your payoff as S · 1[S 6=7].

The probability mass function of a random variable gives Pr [X = x]
for each possible value x. For example, our random variable S has the
probability mass function show in Table 3.1. For a discrete random variable
X, the probability mass function gives enough information to calculate the
probability of any event involving X, since we can just sum up cases using
countable additivity. This gives us another way to compute Pr [S < 5] =
Pr [S = 2] + Pr [S = 3] + Pr [S = 4] = 1+2+3

36 = 1
6 .

For two random variables, the joint probability mass function gives
Pr [X = x ∧ Y = y] for each pair of values x and y (this generalizes in the
obvious way for more than two variables).

We will often refer to the probability mass function as giving the distri-
bution or joint distribution of a random variable or collection of random
variables, even though distribution (for real-valued variables) technically
refers to the cumulative distribution function F (x) = Pr [X ≤ x], which
is generally not directly computable from the probability mass function for
continuous random variables that take on uncountably many values. To
the extent that we can, we will try to avoid continuous random variables,

1Some people like writing χA for these. You may also see [P] where P is some pred-
icate, a convention known as Iverson notation that was popularized by Graham et
al.. [GKP88].

CHAPTER 3. RANDOM VARIABLES 24

S Probability

2 1/36

3 2/36

4 3/36

5 4/36

6 5/36

7 6/36

8 5/36

9 4/36

10 3/36

11 2/36

12 1/36

Table 3.1: Probability mass function for the sum of two independent fair
six-sided dice

CHAPTER 3. RANDOM VARIABLES 25

and the rather messy integration theory needed to handle them.
Two or more random variables are independent if all sets of events

involving different random variables are independent. In terms of prob-
ability mass functions, X and Y are independent if Pr [X = x ∧ Y = y] =
Pr [X = x]·Pr [Y = y]. In terms of cumulative distribution functions, X and
Y are independent if Pr [X = x ∧ Y = y] = Pr [X = x] ·Pr [Y = y]. As with
events, we generally assume that random variables associated with causally
disconnected processes are independent, but this is not the only way we
might have independence.

It’s not hard to see that the individual die values X and Y in our two-
dice example are independent, because every possible combination of values
x and y has the same probability 1/36 = Pr [X = x] Pr [Y = y]. If we chose
a different probability distribution on the space, we might not have inde-
pendence.

3.3 Measurability
For discrete probability spaces, any function on outcomes can be a random
variable. The reason is that any event in a discrete probability space has
a well-defined probability. For more general spaces, in order to be useful,
events involving a random variable should have well-defined probabilities.
For discrete random variables that take on only countably many values
(e.g., integers or rationals), it’s enough for the event [X = x] (that is, the
set {ω | X(ω) = x}) to be in F for all x. For real-valued random variables,
we ask that the event [X ≤ x] be in F . In these cases, we say that X is
measurable with respect to F , or justmeasurable F . More exotic random
variables use a definition of measurability that generalizes the real-valued
version, which we probably won’t need.2 Since we usually just assume that
all of our random variables are measurable unless we are doing something
funny with F to represent ignorance, this issue won’t come up much.

3.4 Expectation
The expectation or expected value of a random variable X is given by
E [X] =

∑
x xPr [X = x]. This is essentially an average value of X weighted

2The general version is that if X takes on values on another measure space (Ω′,F ′),
then the inverse image X−1(A) = {ω ∈ Ω | X(ω) ∈ A} of any set A in F ′ is in F . This
means in particular that PrΩ maps through X to give a probability measure on Ω′ by
PrΩ′ [A] = PrΩ[X−1(A)], and the condition on X−1(A) being in F makes this work.

CHAPTER 3. RANDOM VARIABLES 26

by probability, and it only makes sense if X takes on values that can be
summed in this way (e.g., real or complex values, or vectors in a real- or
complex-valued vector space). Even if the expectation makes sense, it may
be that a particular random variableX doesn’t have an expectation, because
the sum fails to converge.

For example, ifX and Y are independent fair six-sided dice, then E [X] =
E [Y] =

∑6
i=1 i

(
1
6

)
= 21

6 = 7
2 , while E [X + Y] is the rather horrific

12∑
i=2

iPr [X + Y = i] = 2 · 1 + 3 · 2 + 4 · 3 + 5 · 4 + 6 · 5 + 7 · 6 + 8 · 5 + 9 · 4 + 10 · 3 + 11 · 2 + 12 · 1

36

= 252
36 = 7.

The fact that 7 = 7
2 + 7

2 here is not a coincidence.

3.4.1 Linearity of expectation

The main reason we like expressing the run times of algorithms in terms of
expectation is linearity of expectation: E [aX + bY] = E [aX] + E [bY]
for all random variables X and Y for which E [X] and E [Y] are defined, and
all constants a and b. This means that we can compute the running time
for different parts of our algorithm separately and then add them together,
even if the costs of different parts of the algorithm are not independent.

The general version is E [
∑
aiXi] =

∑
ai E [Xi] for any finite collection of

random variablesXi and constants ai, which follows by applying induction to
the two-variable case. A special case is E [cX] = cE [X] when c is constant.

For discrete random variables, linearity of expectation follows immedi-
ately from the definition of expectation and the fact that the event [X = x]
is the disjoint union of the events [X = x, Y = y] for all y:

E [aX + bY] =
∑
x,y

(ax+ by) Pr [X = x ∧ Y = y]

= a
∑
x,y

xPr [X = x, Y = y] + b
∑
x,y

yPr [X = x, Y = y]

= a
∑
x

x
∑
y

Pr[X = x, Y = y] + b
∑
y

y
∑
x

Pr [X = x, Y = y]

= a
∑
x

xPr[X = x] + b
∑
y

yPr [Y = y]

= aE [X] + bE [Y] .

CHAPTER 3. RANDOM VARIABLES 27

Note that this proof does not require that X and Y be independent. The
sum of two fair six-sided dice always has expectation 7

2 + 7
2 = 7, whether

they are independent dice, the same die counted twice, or one die X and its
complement 7−X.

Linearity of expectation makes it easy to compute the expectations of
random variables that are expressed as sums of other random variables.
One example that will come up a lot is a binomial random variable,
which is the sum S =

∑n
i=1Xi, where each Xi is an independent, identically

distributed random variable that is 1 with probability p and 0 otherwise
(such a random variable is called a Bernoulli random variable. In this
case each Xi individually has E [Xi] = p, so E [S] is just np.

3.4.1.1 Linearity of expectation for infinite sequences

For infinite sequences of random variables, linearity of expectation may
break down. This is true even if the sequence is countable. An example
is the St. Petersburg paradox, in which a gambler bets $1 on a double-
or-nothing game, then bets $2 if she loses, then $4, and so on, until she
eventually wins and stops, up $1. If we represent the gambler’s gain or loss
at stage i as a random variable Xi, it’s easy to show that E [Xi] = 0, because
the gambler either wins ±2i with equal probability, or doesn’t play at all.
So
∑∞
i=0 E [Xi] = 0. But E [

∑∞
i=0Xi] = 1, because the probability that the

gambler doesn’t eventually win is zero.3
Fortunately, these pathological cases don’t come up often in algorithm

analysis, and with some additional side constraints we can apply linearity of
expectation even to infinite sums of random variables. The simplest is when
Xi ≥ 0 for all i; then E [

∑∞
i=0Xi] exists and is equal to

∑∞
i=0 E [Xi] whenever

the sum of the expectations converges (this is a consequence of the monotone
convergence theorem). Another condition that works is if |

∑n
i=0Xi| ≤ Y

for all n, where Y is a random variable with finite expectation; the simplest
version of this is when Y is constant. See [GS92, §5.6.12] or [Fel71, §IV.2]for
more details.

3The trick here is that we are trading a probability-1 gain of 1 against a probability-0
loss of ∞. So we could declare that E

[∑∞
i=0 Xi

]
involves 0 · (−∞) and is undefined.

But this would lose the useful property that expectation isn’t affected by probability-0
outcomes. As often happens in mathematics, we are forced to choose between candidate
definitions based on which bad consequences we most want to avoid, with no way to avoid
all of them. So the standard definition of expectation allows the St. Petersburg paradox
because the alternatives are worse.

CHAPTER 3. RANDOM VARIABLES 28

3.4.2 Expectation of a product

When two random variables X and Y are independent, it also holds that
E [XY] = E [X] E [Y]. The proof (at least for discrete random variables) is
straightforward:

E [XY] =
∑
x

∑
y

xyPr [X = x, Y = y]

=
∑
x

∑
y

xyPr [X = x] Pr [Y = y]

=
(∑

x

xPr [X = x]
)(∑

y

Pr [Y = y]
)

= E [X] E [Y] .

For example, the expectation of the product of two independent fair
six-sided dice is

(
7
2

)2
= 49

4 .
This is not true for arbitrary random variables. If we compute the ex-

pectation of the product of a single fair six-sided die with itself, we get
1·1+2·2+3·3+4·4+5·5+6·6

6 = 91
6 which is much larger.

3.5 Conditional expectation
We can also define a notion of conditional expectation, analogous to
conditional probability. There are three versions of this, depending on how
fancy we want to get about specifying what information we are conditioning
on:

• The conditional expectation of X conditioned on an event A is written
E [X | A] and defined by E [X | A] =

∑
x xPr [X = x | A] =

∑
x

Pr[X=x∧A]
Pr[A] .

This is essentially the weighted average value of X if we know that A
occurs.

• The expectation of X conditioned on a random variable Y , writ-
ten E [X | Y], is a random variable. Assuming Y is discrete, we
defined E [X | Y] by the rule that for each ω ∈ Ω, E [X | Y] (ω) =
E [X | Y = Y (ω)].4 The intuition behind this definition is that E [X | Y]
is a weighted-average estimate of X given that we know the value of
Y but nothing else. Similar, we can define E [X | Y1, Y2, . . .] to be the
expected value of X given that we know the values of Y1, Y2,

4If Y is not discrete, the situation is more complicated. See [Fel71, §§III.2 and V.9–
V.11].

CHAPTER 3. RANDOM VARIABLES 29

• The preceding is actually a special case of the expectation of X condi-
tioned on a σ-algebra F . Recall that a σ-algebra is a family of subsets
of Ω that includes Ω and is closed under complement and countable
union; for discrete probability spaces, this turns out to be the set of
all unions of equivalence classes for some equivalence relation on Ω,5
and we think of F as representing knowledge of which equivalence
class we are in, but not which point in the equivalence class we land
on. An example would be if Ω consists of all values (X1, X2) obtained
from two die rolls, and F consists of all sets A such that whenever one
point ω with X1(ω) + X2(ω) = s is in A, so is every other point ω′
with X1(ω′) +X2(ω′) = s. (This is the σ-algebra generated by the
random variable X1 +X2.)
A discrete random variable X ismeasurable F if every event [X = x]
is contained in F ; in other words, knowing only where we are in F , we
can compute exactly the value of X.
If X is not measurable F , the best approximation we can make to it
given that we only know where we are in F is E [X | F], which is de-
fined as a random variable Q that is (a) measurable F ; and (b) satisfies
E [Q | A] = E [X | A] for any non-null A ∈ F . For discrete probability
spaces, this just means that we replace X with its average value across
each equivalence class: property (a) is satisfied because E [X | F] is
constant across each equivalence class, meaning that [E [X | F] = x] is
a union of equivalence classes, and property (b) is satisfied because we
define E [E [X | F] | A] = E [X | A] for each equivalence class A, and
the same holds for unions of equivalence classes by a simple calculation.

Most properties of expectations also hold for conditional expectations.
For example, E [X + Y | Z] = E [X | Z]+E [Y | Z] and E [cX | Y] = cE [X | Y]
when c is constant. But there are some additional properties that are often
useful.

One is that computing the expectation of a condition expectation yields
the expectation: E [E [X | Y]] = E [X]. This is often used in reverse, to intro-
duce a conditional expectation and let us compute E [X] piecewise using the

5Proof: Let F be a σ-algebra over a countable set Ω. Let ω ∼ ω′ if, for all A in F ,
ω ∈ A if and only if ω′ ∈ A; this is an equivalence relation on Ω. To show that the
equivalence classes of ∼ are elements of F , for each ω′′ 6∼ ω, let Aω′′ be some element
of F that contains ω but not ω′′. Then

⋂
ω′′ Aω′′ (a countable intersection of elements

of F) contains ω and all points ω′ ∼ ω but no points ω′′ 6∼ ω; in other words, it’s the
equivalence class of ω. Since there are only countably many such equivalence classes, we
can construct all the elements of F by taking all possible unions of them.

CHAPTER 3. RANDOM VARIABLES 30

law of total expectation E [X] = E [X | Y] =
∑
y E [X | Y = y] Pr [Y = y].

We can also do partial conditioning: E [E [X | Y, Z] | Y] = E [X | Y].
A useful generalization of linearity of expectation is that when Z is a

function of Y , then E [XZ | Y] = Z E [X | Y]. Essentially, Z acts like a
constant over each event [Y = y], so we can pull it out.

3.6 Applications

3.6.1 Geometric random variables

Suppose that we are running a Las Vegas algorithm that takes a fixed
amount of time T , but succeeds only with probability p (which we take
to be independent of the outcome of any other run of the algorithm). If the
algorithm fails, we run it again. How long does it take on average to get the
algorithm to work?

We can reduce the problem to computing E [TX] = T E [X], where X
is the number of times the algorithm runs. The probability that X = n is
exactly (1−p)n−1p, because we need to get n−1 failures with probability 1−p
each followed by a single success with probability p, and by assumption all of
these probabilities are independent. A variable with this kind of distribution
is called a geometric random variable. We saw a special case of this
distribution earlier (§2.3.1.1) when we were looking at how long it took to
get a tails out of a fair coin (in that case, p was 1/2).

Using conditional expectation, it’s straightforward to compute E [X].
Let A be the event that the algorithm succeeds on the first run, i.e., then
event [X = 1]. Then

E [X] = E [X | A] Pr [A] + E
[
X
∣∣∣ Ā]Pr

[
Ā
]

= 1 · p+ E
[
X
∣∣∣ Ā] · (1− p).

The tricky part here is to evaluate E
[
X
∣∣∣ Ā]. Intuitively, if we don’t succeed

the first time, we’ve wasted one step and are back where we started, so it
should be the case that E

[
X
∣∣∣ Ā] = 1 + E [X]. If we want to be really

careful, we can calculate this out formally (no sensible person would ever do

CHAPTER 3. RANDOM VARIABLES 31

this):

E
[
X
∣∣∣ Ā] =

∞∑
n=1

nPr [X = n | X 6= 1]

=
∞∑
n=2

n
Pr [X = n]
Pr [X 6= 1]

=
∞∑
n=2

n
(1− p)n−1p

1− p

=
∞∑
n=2

n(1− p)n−2p

=
∞∑
n=1

(n+ 1)(1− p)n−1p

= 1 +
∞∑
n=1

n(1− p)n−1p

= 1 + E [X] .

Since we know that E [X] = p+ (1 + E [X])(1− p), a bit of algebra gives
E [X] = 1/p, which is about what we’d expect.

There are more direct ways to get the same result. If we don’t have
conditional expectation to work with, we can try computing the sum E [X] =∑∞
n=1 n(1 − p)n−1p directly. The easiest way to do this is probably to use

generating functions (see, for example, [GKP88, Chapter 7] or [Wil06]).
An alternative argument is given in [MU05, §2.4]; this uses the fact that
E [X] =

∑∞
n=1 Pr [X ≥ n], which holds when X takes on only non-negative

integer values.

3.6.2 Coupon collector

In the coupon collector problem, we throw balls uniformly and indepen-
dently into n bins until every bin has at least one ball. When this happens,
how many balls have we used on average?6

Let Xi be the number of balls needed to go from i − 1 nonempty bins
to i nonempty bins. It’s easy to see that X1 = 1 always. For larger i, each
time we throw a ball, it lands in an empty bin with probability n−i+1

n . This
6The name comes from the problem of collecting coupons at random until you have

all of them. A typical algorithmic application is having a cluster of machines choose jobs
to finish at random from some list until all are done, assuming it’s too expensive to only
pick jobs that haven’t previously been selected.

CHAPTER 3. RANDOM VARIABLES 32

means that Xi has a geometric distribution with probability n−i+1
n , giving

E [Xi] = n
n−i+1 from the analysis in §3.6.1.

To get the total expected number of balls, take the sum

E
[
n∑
i=1

Xi

]
=

n∑
i=1

E [Xi]

=
n∑
i=1

n

n− i+ 1

= n
n∑
i=1

1
i

= nHn,

where Hn =
∑n
i=1

1
i is the n-th harmonic number, equal to lnn + γ +

O(n−1), where γ ≈ 0.5772 is the Euler-Mascheroni constant (whose
exact value is unknown!).

For asymptotic purposes, we can treat this as Θ(n logn).

3.6.3 QuickSort

We can use linearity of expectation to compute the expected number of
comparisons used by randomized QuickSort (see §1.3).

Imagine we use the following method for choosing pivots: we generate a
random permutation of all the elements in the array, and when asked to sort
some subarray A′, we use as pivot the first element of A′ that appears in our
list. Since each element is equally likely to be first, this is equivalent to the
actual algorithm. Pretend that we are always sorting the numbers 1 . . . n
and define for each pair of elements i < j the indicator variable Xij to be
1 if i is compared to j at some point during the execution of the algorithm
and 0 otherwise. Amazingly, we can actually compute the probability of
this event (and thus E [Xij]): the only time i and j are compared is if one
of them is chosen as a pivot before they are split up into different arrays.
How do they get split up into different arrays? If some intermediate element
k is chosen as pivot first, i.e., if some k with i < k < j appears in the
permutation before both i and j. Occurrences of other elements don’t affect
the outcome, so we can concentrate on the restriction of the permutations
to just the numbers i through j, and we win if this restricted permutation
starts with either i or j. This event occurs with probability 2/(j− i+ 1), so

CHAPTER 3. RANDOM VARIABLES 33

we have E [Xij] = 2/(j − i+ 1). Summing over all pairs i < j gives:

E

∑
i<j

Xij

 =
∑
i<j

E [Xij]

=
∑
i<j

2
j − i+ 1

=
n−1∑
i=1

n−i∑
k=1

2
k

<
n−1∑
i=1

n−1∑
k=1

2
k

= 2(n− 1)Hn−1.

For the first step we are taking advantage of the fact that linearity of ex-
pectation doesn’t care about the variables not being independent. The rest
is just algebra.

This is pretty close to the bound of 2n logn we computed using the
recurrence in §1.3.1. Note that in principle we can compute an exact solution
by being more careful about the sum.

Which way is better? Solving the recurrence requires less probabilistic
handwaving (a more polite term might be “insight”) but more grinding
out inequalities, which is a pretty common trade-off. Since I am personally
not very clever I would try the brute-force approach first. But it’s worth
knowing about better methods so you can try them in other situations.

3.6.4 Hoare’s FIND

Hoare’s FIND [Hoa61b], often called QuickSelect, is an algorithm for
finding the k-th smallest element of an unsorted array that works like Quick-
Sort, only after partitioning the array around a random pivot we throw away
the part that doesn’t contain our target and recurse only on the surviving
piece. As with QuickSort, we’d like to compute the expected number of
comparisons used by this algorithm, on the assumption that the cost of the
comparisons dominates the rest of the costs of the algorithm.

Here the indicator-variable trick gets painful fast. It turns out to be
easier to get an upper bound by computing the expected number of elements
that are left after each split.

First, let’s analyze the pivot step. If the pivot is chosen uniformly, the
number of elements X smaller than the pivot is uniformly distributed in the

CHAPTER 3. RANDOM VARIABLES 34

range 0 to n− 1. The number of elements larger than the pivot will be n−
X−1. In the worst case, we find ourselves recursing on the large pile always,
giving a bound on the number of survivors Y of Y ≤ max(X,n−X + 1).

What is the expected value of Y ? By considering both ways the max can
go, we get E [Y] = E [X | X > n−X + 1] Pr [X > n−X + 1]+E [n−X + 1 | n−X + 1 ≥ X].
For both conditional expectations we are choosing a value uniformly in ei-
ther the range

⌈
n−1

2

⌉
to n− 1 or

⌈
n−1

2

⌉
+ 1 to n− 1, and in either case the

expectation will be equal to the average of the two endpoints by symmetry.
So we get

E [Y] ≤ n/2 + n− 1
2 Pr [X > n−X + 1] + n/2 + n

2 Pr [n−X + 1 ≥ X]

=
(3

4n−
1
2

)
Pr [X > n−X + 1] + 3

4nPr [n−X + 1 ≥ X]

≤ 3
4n.

Now let Xi be the number of survivors after i pivot steps. Note that
max(0, Xi− 1) gives the number of comparisons at the following pivot step,
so that

∑∞
i=0Xi is an upper bound on the number of comparisons.

We haveX0 = n, and from the preceding argument E [X1] ≤ (3/4)n. But
more generally, we can use the same argument to show that E [Xi+1 | Xi] ≤
(3/4)Xi, and by induction E [Xi] ≤ (3/4)in. We also have that Xj = 0 for
all j ≥ n, because we lose at least one element (the pivot) at each pivoting
step. This saves us from having to deal with an infinite sum.

Using linearity of expectation,

E
[∞∑
i=0

Xi

]
= E

[
n∑
i=0

Xi

]

=
n∑
i=0

E [Xi]

≤
n∑
i=0

(3/4)in

≤ 4n.

Chapter 4

Basic probabilistic
inequalities

Here we’re going to look at some inequalities useful for proving properties
of randomized algorithms. These come in two flavors: inequalities involving
probabilities, which are useful for bounding the probability that something
bad happens, and inequalities involving expectations, which are used to
bound expected running times. Later, in Chapter 5, we’ll be doing both,
by looking at inequalities that show that a random variable is close to its
expectation with high probability.

4.1 Union bound (Boole’s inequality)
For any countable collection of events {Ai},

Pr
[⋃

Ai
]
≤
∑

Pr [Ai] . (4.1.1)

The direct way to prove this is to replace Ai with Bi = Ai \
⋃i−1
j=1Ai.

Then
⋃
Ai =

⋃
Bi, but since the Bi are disjoint and each Bi is a subset of

the corresponding Ai, we get Pr [
⋃
Ai] = Pr [

⋃
Bi] =

∑
Pr [Bi] ≤

∑
Pr [Ai].

The typical use of the union bound is to show that if an algorithm can
fail only if various improbable events occur, then the probability of failure
is no greater than the sum of the probabilities of these events. This reduces
the problem of showing that an algorithm works with probability 1 − ε to
constructing an error budget that divides the ε probability of failure among
all the bad outcomes.

35

CHAPTER 4. BASIC PROBABILISTIC INEQUALITIES 36

4.1.1 Applications

See also the proof of Adleman’s Theorem in Chapter 12.

4.1.1.1 Balls and bins

Suppose we toss n balls into n bins. What is the likely value of the maximum
number of balls in any one bin?

For a single bin, the probability that it has k balls is
(n
k

)
n−k(1−1/n)(n−

k) ≤ nk

k! n
−k = 1/k!. The probability that it has more than k balls is bounded

by
∑∞
i=k

1
i! ≤

∑∞
i=k

1
k!(k+1)i−k = 1

k!(1−1/(k+1)) ≤
2
k! .

Applying the union bound, we get that the probability that there is any
bin with at least k balls is at most 2n/k!. This suggests choosing k so
that k! � 2n. Stirling’s formula says that k! ≥

√
2πk(k/e)k ≥ (k/e)k or

ln(k!) ≥ k(ln k − 1). If we set k = c lnn/ ln lnn, we get

ln(k!) ≥ c lnn
ln lnn (ln c+ ln lnn− ln ln lnn− 1) ≥ c lnn

2

when n is sufficiently large.
It follows that the bound 2n/k! in this case is less than 2n/ exp((c/2) lnn =

2n · n−c/2 = 2n1−c/2. For suitable choice of c we get a high probability that
every bin gets at most O(logn/ log logn) balls.

4.1.1.2 Independent sets

Given a graph G = (V,E) where |V | = n and |E| = m, mark a subset of
n/2
√
m vertices uniformly at random. The probability that any particular

vertex is marked is then (n/2/
√
m)/n = 1/2

√
m, and the probability that

both endpoints of an edge are marked is (1/2
√
m) · ((n/2/

√
m − 1)/n <

1/(2
√
m))2 = 1/4m. So the probability that at least one of the edges has

two marked endpoints is at most m/4m = 1/4. We thus have a randomized
algorithm that outputs a set of size n

2
√
m

on average that is an independent
set with probability 3/4, without looking at any of the edges.

To see how this compares with more sensible algorithms, note that for
a graph with maximum degree d, we can construct and independent set
of size n

d+1 deterministically by marking some vertex, deleting all of its
neighbors, and repeating until we run out of vertices. The randomized
algorithm produces an independent set of size n

2
√
nd

=
√

n
2d in this case,

which is much worse.

CHAPTER 4. BASIC PROBABILISTIC INEQUALITIES 37

4.2 Markov’s inequality
This is the key tool for turning expectations of non-negative random vari-
ables into (upper) bounds on probabilities. Used directly, it generally doesn’t
give very good bounds, but it can work well if we apply it to E [f(X)] for
a fast-growing function f ; see Chebyshev’s inequality (5.1.1) or Chernoff
bounds (§5.2).

If X ≥ 0, then

Pr [X ≥ α] ≤ E [X]
α

. (4.2.1)

The proof is immediate from the law of total probability (2.3.3). We
have

E [X] = E [X | X ≥ α] Pr [X ≥ α] + E [X | x < α] Pr [X < α]
≥ αPr [X ≥ α] ;

now solve for Pr [X ≥ α].
Markov’s inequality doesn’t work in reverse. For example, consider the

following game: for each integer k > 0, with probability 2−k, I give you 2k
dollars. Letting X be your payoff from the game, we have Pr

[
X ≥ 2k

]
=∑∞

j=k 2−k = 2−k+1 = 2
2k . The right-hand side here is exactly what we would

get from Markov’s inequality if E [X] = 2. But in this case, E [X] 6= 2; in
fact, the expectation of X is given by

∑∞
k=1 2k2−k, which diverges.

4.2.1 Applications

4.2.1.1 The union bound

Combining Markov’s inequality with linearity of expectation and indicator
variables gives a succinct proof of the union bound:

Pr
[⋃

Ai
]

= Pr
[∑

1Ai ≥ 1
]

≤ E
[∑

1Ai
]

=
∑

E [1Ai]

=
∑

Pr [Ai] .

Note that for this to work for infinitely many events we need to use the fact
that 1Ai is always non-negative.

CHAPTER 4. BASIC PROBABILISTIC INEQUALITIES 38

4.2.1.2 Fair coins

Flip n independent fair coins, and let S be the number of heads we get.
Since E [S] = n/2, we get Pr [S = n] = 1/2. This is much larger than the
actual value 2−n, but it’s the best we can hope for if we only know E [S]: if
we let S be 0 or n with equal probability, we also get E [S] = n/2.

4.2.1.3 Randomized QuickSort

The expected running time for randomized QuickSort is O(n logn). It fol-
lows that the probability that randomized QuickSort takes more than f(n)
time is O(n logn/f(n)). For example, the probability that it performs the
maximum

(n
2
)

= O(n2) comparisons is O(logn/n). (It’s possible to do much
better than this.)

4.2.1.4 Balls in bins

Suppose we toss m balls in n bins, uniformly and independently. What
is the probability that some particular bin contains at least k balls? The
probability that a particular ball lands in a particular bin is 1/n, so the
expected number of balls in the bin is m/n. This gives a bound of m/nk
that a bin contains k or more balls. We can combine this with the union
bound to show that the probability that any bin contains k or more balls is
at most m/k. Unfortunately this is not a very good bound.

4.3 Jensen’s inequality
This is mostly useful if we can calculate E [X] easily for some X, but what
we really care about is some other random variable Y = f(X).

Jensen’s inequality applies when f is a convex function, which means
that for any x, y, and 0 ≤ µ ≤ 1, f(λx+(1−λ)y) ≤ λf(x)+(1−λ)f(y). Ge-
ometrically, this means that the line segment between any two points on the
graph of f never goes below f ; i.e., that the set of points {(x, y) | y ≥ f(x)}
is convex. If we want to show that f is convex, it’s enough to show that
that f

(
x+y

2

)
≤ f(x)+f(y)

2 for all x and y (in effect, we only need to prove it
for the case λ = 1/2). If f is twice-differentiable, an even easier way is to
show that f ′′(x) ≥ 0 for all x.

The inequality says that if X is a random variable and f is convex then

f(E [X]) ≤ E [f(X)] . (4.3.1)

CHAPTER 4. BASIC PROBABILISTIC INEQUALITIES 39

Alternatively, if f is concave (which means that f(λx + (1 − λ)y) ≥
λf(x)+(1−λ)f(y), or equivalently that −f is convex), the reverse inequality
holds:

f(E [X]) ≥ E [f(X)] . (4.3.2)

The intuition in both cases is that the basic definition of convexity or
concavity is just Jensen’s inequality for the random variable X that equals
x with probability λ and y with probability 1−λ, but that the more general
result holds for any random variable for which the expectations exist.

4.3.1 Applications

4.3.1.1 Fair coins: lower bound

Suppose we flip n fair coins, and we want to get a lower bound on E
[
X2],

where X is the number of heads. The function f : x 7→ x2 is convex (take
its second derivative), so (4.3.1) gives E

[
X2] ≥ (E [X])2 = n2

4 . (The actual
value for E

[
X2] is n2

4 + n
4 , which can be found using generating functions.1)

4.3.1.2 Fair coins: upper bound

For an upper bound, we can choose a concave f . For example, if X is as in
the previous example, E [lgX] ≤ lg E [X] = lg n

2 = lgn−1. This is probably
pretty close to the exact value, as we will see later that X will almost always
be within a factor of 1 + o(1) of n/2. It’s not a terribly useful upper bound,
because if we use it with (say) Markov’s inequality, the most we can prove
is that Pr [X = n] = Pr [lgX = lgn] ≤ lgn−1

lgn = 1 − 1
lgn , which is an even

worse bound than the 1/2 we can get from applying Markov’s inequality to
X directly.

4.3.1.3 Sifters

I was a co-author on a paper [AA11] that included a rather nasty analysis
of a simple leader-election process that was greatly simplified in a follow-up

1Here’s how: The probability generating function for X is F (z) = E
[
zk
]

=∑
zk Pr [X = k] = 2−n(1 + z)n. Then zF ′(z) = 2−nnz(1 + z)n−1 =

∑
k
kzk Pr [X = k].

Taking the derivative of this a second time gives 2−nn(1 + z)n−1 + 2−nn(n − 1)z(1 +
z)n−2 =

∑
k
k2zk−1 Pr [X = k]. Evaluate this monstrosity at z = 1 to get E

[
X2] =∑

k
k2 Pr [X = k] = 2−nn2n−1 + 2−nn(n − 1)2n−2 = n/2 + n(n − 1)/4 = 2n+n2−n

4 =
n2/4 + n/4. This is pretty close to the lower bound we got out of Jensen’s inequality, but
we can’t count on this happening in general.

CHAPTER 4. BASIC PROBABILISTIC INEQUALITIES 40

paper [Asp12] using Jensen’s inequality. The essential idea of the mechanism
was that we had a mechanism called a sifter for quickly discarding excess
participants in a shared-memory protocol. The property of the sifter was
that if n processes entered it, at least one and on average

√
n processes

would go on to the next stage.2
We wanted to show that a series of sifters could reduce the population

down to O(1).
Let Xk be the number of processes left after k sifters. We have that

X0 = n and E [X1] =
√
n, but what is E [X2]? We can calculate E [X2] =

E [E [X2 | X1]] = E
[√
X1
]
, but then we’re stuck without Jensen’s inequality.

But we observe that the function f(x) =
√
x has a negative second deriva-

tive when x ≥ 0, so it’s concave in the region of interest. It follows that
E [X2] ≤ E

[√
X1
]
≤
√

E [X1] and in general that E [Xk] ≤ n2−k . Setting
k = Ω(log logn) reduces this to a constant.

2The actual value was 2
√
n; I am simplifying3here to make the example easier.

3Which is “lying” with a few extra letters.

Chapter 5

Concentration bounds

If we really want to get tight bounds on a random variable X, the trick will
turn out to be picking some non-negative function f(X) where (a) we can
calculate E [f(X)], and (b) f grows fast enough that merely large values of
X produce huge values of f(X), allowing us to get small probability bounds
by applying Markov’s inequality to f(X). This approach is often used to
show that X lies close to E [X] with reasonably high probability, what is
known as a concentration bound.

Typically concentration bounds are applied to sums of random variables,
which may or may not be fully independent. Which bound you may want
to use often depends on the structure of your sum. A quick summary of
the bounds in this chapter is given in Table 5.1. The rule of thumb is to
use Chernoff bounds (§5.2) if you have a sum of independent 0–1 random
variables, the Azuma-Hoeffding inequality (§5.3) if you have bounded vari-
ables with a more complicated distribution that may be less independent,
and Chebyshev’s inequality (§5.1) if nothing else works but you can some-
how compute the variance of your sum (e.g., if the Xi are independent or
have easily computed covariance). In the case of Chernoff bounds, you will
almost always end up using one of the weaker but cleaner versions in §5.2.2
rather than the general version in §5.2.1.

5.1 Chebyshev’s inequality
Chebyshev’s inequality allows us to show that a random variable is close
to its mean, by applying Markov’s inequality to the variance of X, given
by Var [X] = E

[
(X − E [X])2] = E

[
X2 − 2X E [X] + (E [X])2] = E

[
X2] −

(E [X])2. It’s a fairly weak concentration bound, that is most useful when

41

CHAPTER 5. CONCENTRATION BOUNDS 42

Chernoff Xi ∈ {0, 1}, independent Pr [S ≥ (1 + δ) E [S]] ≤
(

eδ

(1 + δ)1+δ

)E[S]

Azuma-Hoeffding |Xi| ≤ ci,martingale Pr [S ≥ t] ≤ exp
(
− t2

2
∑
c2
i

)

Chebyshev Pr [|S − E [S]| ≥ α] ≤ Var [S]
α2

Table 5.1: Concentration bounds for S =
∑
Xi (strongest to weakest)

X is a sum of random variables with limited independence.
Using Markov’s inequality, calculate

Pr [|X − E [X]| ≥ α] = Pr
[
(X − E [X])2 ≥ α2

]
≤ E

[
(X − E [X])2]

α2

= Var [X]
α2 . (5.1.1)

At this point it would be reasonable to ask why we are going through
Var [X] = E

[
(X − E [X])2] rather than just using E [|X − E [X]|]. The rea-

son is that Var [X] is usually easier to compute, especially if X is a sum. If
S =

∑
iXi, then we can calculate

Var [S] =
∑
i,j

Cov(Xi, Xj) (5.1.2)

=
∑
i

Var [Xi] +
∑
i 6=j

Cov(Xi, Xj) (5.1.3)

=
∑
i

Var [Xi] + 2
∑
i<j

Cov(Xi, Xj) (5.1.4)

where Var [X] = E
[
X2] − (E [X])2 and Cov(X,Y) = E [XY] − E [X] E [Y].

This quantity Cov(X,Y) is called the covariance of X and Y .
Note that Cov(X,Y) = 0 when X and Y are independent; this makes

Chebyshev’s inequality particularly useful for pairwise-independent ran-
dom variables, because then we can just sum up the variances of the indi-
vidual variables. It also works well when the Xi are indicator variables,
since if X ∈ {0, 1} and E [Xi] = p, we can easily compute Var [Xi] =

CHAPTER 5. CONCENTRATION BOUNDS 43

E
[
X2] − (E [X])2 = p − p2 = p(1 − p). This is always bounded by p,

and for small p the bound is close to tight.
A typical application is when we have a sum S =

∑
Xi of non-negative

random variables with small covariance; here applying Chebyshev’s inequal-
ity to S can often be used to show that S is not likely to be much smaller
than E [S], which can be handy if we want to show that some lower bound
holds on S with some probability. This complements Markov’s inequality,
which can only be used to get upper bounds.

More generally, the approach of bounding S from below by estimat-
ing E [S] and either E

[
S2] or Var [S] is known as the second-moment

method. In some cases, tighter bounds can be obtained by more careful
analysis.

5.1.1 Examples

5.1.1.1 Flipping coins

Let X be the sum of n independent fair coins. Let Xi be the indicator
variable for the event that the i-th coin comes up heads. Then Var [Xi] = 1/4
and Var [X] =

∑
Var [Xi] = n/4. Chebyshev’s inequality gives Pr [X = n] ≤

Pr [|X − n/2| ≥ n/2] ≤ n/4
(n/2)2 = 1

n . This is still not very good, but it’s
getting better.

5.1.1.2 Flipping non-independent coins

Let n = 2m − 1 for some m, and let Y1 . . . Ym be independent, fair 0–1
random variables. For each non-empty subset S of {1 . . .m}, let XS be the
exclusive OR of all Yi for i ∈ S. Then (a) the Xi are pairwise independent;
(b) each Xi has variance 1/4; and thus (c) the same Chebyshev’s inequality
analysis for independent coin flips above applies to X =

∑
S XS , giving

Pr [|X − n/2| = n/2] ≤ 1
n . In this case it is not actually possible for X

to equal n, but we can have X = 0 if all the Yi are 0, which occurs with
probability 2−m = 1

n+1 . So the Chebyshev’s inequality is about the best we
can hope for if we only have pairwise independence.

5.1.1.3 Balls in bins

Let Xi be the indicator that the i-th of m balls lands in a particular bin.
Then E [Xi] = 1/n, giving E [

∑
Xi] = m/n, and Var [Xi] = 1/n − 1/n2,

giving Var [
∑
Xi] = m/n −m/n2. So the probability that we get k + m/n

or more balls in a particular bin is at most (m/n−m/n2)/k2 < m/nk2, and

CHAPTER 5. CONCENTRATION BOUNDS 44

applying the union bound, the probability that we get k+m/n or more balls
in any of the n bins is less than m/k2. Setting this equal to ε and solving for
k gives a probability of at most ε of getting more than m/n +

√
m/ε balls

in any of the bins. This is not as good a bound as we will be able to prove
later, but it’s at least non-trivial.

5.1.1.4 Lazy select

This is the example from [MR95, §3.3]; essentially the same example, spe-
cialized to finding the median, also appears in [MU05, §3.4]. The history of
this example is that Motwani and Raghavan adapted this algorithm from
a similar algorithm by Floyd and Rivest [FR75]. Mitzenmacher and Upfal
appear to have adapted it from Motwani and Raghavan, using the textbook
writer’s prerogative of not specifically citing previous work.

We want to find the k-th smallest element S(k) of a set S of size n. (The
parentheses around the index indicate that we are considering the sorted
version of the set S(1) < S(2) · · · < S(n).) The idea is to:

1. Sample a multiset R of n3/4 elements of S with replacement and sort
them. This takes O(n3/4 logn3/4) = o(n) comparisons so far.

2. Use our sample to find an interval that is likely to contain S(k). The
idea is to pick indices ` = (k − n3/4)n−1/4 and r = (k + n3/4)n−1/4

and use R(`) and R(r) as endpoints (we are omitting some floors and
maxes here to simplify the notation; for a more rigorous presentation
see [MR95]). The hope is that the interval P = [R(`), R(r)] in S

will both contain S(k), and be small, with |P | ≤ 4n3/4 + 2. We can
compute the elements of P in 2n comparisons exactly by comparing
every element with both R(`) and R(r).

3. If both these conditions hold, sort P (o(n) comparisons) and return
S(k). If not, try again.

We want to get a bound on how likely it is that P either misses S(k) or
is too big.

For any fixed k, the probability that one sample in R is less than or
equal to S(k) is exactly k/n, so the expected number X of samples ≤ S(k)
is exactly kn−1/4. The variance on X can be computed by summing the
variances of the indicator variables that each sample is ≤ S(k), which gives
a bound Var [X] = n3/4((k/n)(1 − k/n)) ≤ n3/4/4. Applying Chebyshev’s
inequality gives Pr

[∣∣∣X − kn−1/4
∣∣∣ ≥ √n] ≤ n3/4/4n = n−1/4/4.

CHAPTER 5. CONCENTRATION BOUNDS 45

Now let’s look at the probability that P misses S(k) because R(`) is too
big, where ` = kn−1/4 −

√
n. This is

Pr
[
R(`) > S(k)

]
= Pr

[
X < kn−1/4 −

√
n
]

≤ n−1/4/4.

(with the caveat that we are being sloppy about round-off errors).
Similarly,

Pr
[
R(h) < S(k)

]
= Pr

[
X > kn−1/4 +

√
n
]

≤ n−1/4/4.

So the total probability that P misses S(k) is at most n−1/4/2.
Now we want to show that |P | is small. We will do so by showing that

it is likely that R(`) ≥ S(k−2n3/4) and R(h) ≤ S(k+2n3/4). Let X` be the
number of samples in R that are ≤ S(k−2n3/4) and Xr be the number of
samples in R that are ≤ S(k+2n3/4). Then we have E [X`] = kn−1/4 − 2

√
n

and E [Xr] = kn−1/4 + 2
√
n, and Var [Xl] and Var [Xr] are both bounded by

n3/4/4.
We can now compute

Pr
[
R(l) < S(k−2n3/4)

]
= Pr[Xl > kn−1/4 −

√
n] < n−1/4/4

by the same Chebyshev’s inequality argument as before, and get the sym-
metric bound on the other side for Pr

[
R(r) > S(k+2n3/4)

]
. This gives a total

bound of n−1/4/2 that P is too big, for a bound of n−1/4 = o(n) that the
algorithm fails on its first attempt.

The total expected number of comparisons is thus given by T (n) =
2n+ o(n) +O(n−1/4T (n)) = 2n+ o(n).

5.2 Chernoff bounds
To get really tight bounds, we apply Markov’s inequality to exp(αS), where
S =

∑
iXi. This works best when the Xi are independent: if this is the case,

so are the variables exp(αXi), and so we get E [exp(αS)] = E [
∏
i exp(αXi)] =∏

i E [exp(αXi)].
The quantity E [exp(αS)], treated as a function of α, is called the mo-

ment generating function of S, because it expands formally into
∑
k E

[
Xk
]
αk/k!,

CHAPTER 5. CONCENTRATION BOUNDS 46

the exponential generating function for the series of k-th moments
E
[
Xk
]
. Note that it may not converge for all S and α;1 we will be careful

to choose α for which it does converge and for which Markov’s inequality
gives us good bounds.

5.2.1 The classic Chernoff bound

The basic Chernoff bound applies to sums of independent 0–1 random vari-
ables, which need not be identically distributed. For identically distributed
random variables, the sum has a binomial distribution, which we can either
compute exactly or bound more tightly using approximations specific to bi-
nomial tails; for sums of bounded random variables that aren’t necessarily
0–1, we can use Hoeffding’s inequality instead (see §5.3.

Let each Xi for i = 1 . . . n be a 0–1 random variable with expectation
pi, so that E [S] = µ =

∑
i pi. Then E [exp(αXi)] = pie

α + (1 − pi), and
E [exp(αS)] =

∏
i(pieα + 1− pi). Let δ ≥ 0 and α > 0. Markov’s inequality

then gives

Pr [S ≥ (1 + δ)µ] = Pr
[
eαS ≥ exp (α(1 + δ)µ)

]
≤

E
[
eαS

]
exp (α(1 + δ)µ)

=
∏n
i=1(pieα + 1− pi)
exp (α(1 + δ)µ)

=
∏n
i=1(1 + pi(eα − 1))
exp (α(1 + δ)µ)

≤
∏n
i=1 exp (pi(eα − 1))
exp (α(1 + δ)µ)

= exp (
∑n
i=1 pi(eα − 1))

exp (α(1 + δ)µ)

= exp (((eα − 1)µ)
exp (α(1 + δ)µ)

=
(exp (((eα − 1))

exp (α(1 + δ))

)µ
.

= (exp (eα − 1− α(1 + δ)))µ .
1For example, the moment generating function for our earlier bad X with

Pr
[
X = 2k

]
= 2−k is equal to

∑
k

2−keαk, which diverges unless eα/2 < 1.

CHAPTER 5. CONCENTRATION BOUNDS 47

The sneaky inequality step in the middle uses the fact that (1 + x) ≤
exp(x) for all x, which itself is one of the most useful inequalities you can
memorize.2

We now choose α to minimize the base in the last expression, by mini-
mizing eα − 1 − α(1 + δ). Setting the derivative with respect to α to zero
gives eα = (1 + δ) or α = ln(1 + δ). If we plug this back into the bound, we
get

Pr [S ≥ (1 + δ)µ] ≤ (exp ((1 + δ)− 1− (1 + δ) ln(1 + δ)))µ

=
(

eδ

(1 + δ)1+δ

)µ
. (5.2.1)

The base of this rather atrocious quantity is e0/11 = 1 at δ = 0, and its
derivative is negative for δ ≥ 0 (the easiest way to show this is to substitute
δ = x− 1 first). So the bound is never greater than 1 and is less than 1 as
soon as δ > 0. We also have that the bound is exponential in µ for any fixed
δ.

If we look at the shape of the base as a function of δ, we can observe that
when δ is very large, we can replace (1+ δ)1+δ with δδ without changing the
bound much (and to the extent that we change it, it’s an increase, so it still
works as a bound). This turns the base into eδ

δδ
= (e/δ)δ = 1/(δ/e)δ. This is

pretty close to Stirling’s formula for 1/δ! (there is a
√

2πδ factor missing).
For very small δ, we have that 1 + δ ≈ eδ, so the base becomes approxi-

mately eδ

eδ(1+δ) = e−δ
2 . This approximation goes in the wrong direction (it’s

smaller than the actual value) but with some fudging we can show bounds
of the form e−µδ

2/c for various constants c, as long as δ is not too big.

5.2.2 Chernoff bound variants

The full Chernoff bound can be difficult to work with, especially since it’s
hard to invert (5.2.1) to find a good δ that gives a particular ε bound.
Fortunately, there are approximate variants that substitute a weaker but
less intimidating bound. Some of the more useful are:

• For 0 ≤ δ ≤ 1.81,

Pr [X ≥ (1 + δ)µ] ≤ e−µδ2/3. (5.2.2)
2For a proof of this inequality, observe that the function f(x) = ex − (1 + x) has the

derivative ex − 1, which is positive for x > 0 and negative for x < 0. It follows that x = 1
is the unique minimum of f , at which f(1) = 0.

CHAPTER 5. CONCENTRATION BOUNDS 48

(The actual upper limit is slightly higher.) Useful for small values of δ,
especially because the bound can be inverted: if we want Pr [X ≥ (1 + δ)µ] ≤
exp(−µδ2/3) ≤ ε, we can use any δ with

√
3 ln(1/ε)/µ ≤ δ ≤ 1.81.

The essential idea to the proof is to show that, in the given range,
eδ/(1 + δ)1+δ ≤ exp(−δ2/3). This is easiest to do numerically; a
somewhat more formal argument that the bound holds in the range
0 ≤ δ ≤ 1 can be found in [MU05, Theorem 4.4].

• For 0 ≤ δ ≤ 4.11,

Pr [X ≥ (1 + δ)µ] ≤ e−µδ2/4. (5.2.3)

This is a slightly weaker bound than the previous that holds over a
larger range. It gives Pr [X ≥ (1 + δ)µ] ≤ ε if

√
4 ln(1/ε)/µ ≤ δ ≤

4.11. Note that the version given on page 72 of [MR95] is not correct;
it claims that the bound holds up to δ = 2e − 1 ≈ 4.44, but it fails
somewhat short of this value.

• For R ≥ 2eµ,

Pr [X ≥ R] ≤ 2−R. (5.2.4)

Sometimes the assumption is replaced with the stronger R ≥ 6µ (this
is the version given in [MU05, Theorem 4.4], for example); one can
also verify numerically that R ≥ 5µ (i.e., δ ≥ 4) is enough. The proof
of the 2eµ bound is that eδ/(1 + δ)(1+δ) < exp(1 + δ)/(1 + δ)(1+δ) =
(e/(1+δ))1+δ ≤ 2−(1+δ) when e/(1+δ) ≤ 1/2 or δ ≥ 2e−1. Raising this
to µ gives Pr [X ≥ (1 + δ)µ] ≤ 2−(1+δ)µ for δ ≥ 2e−1. Now substitute
R for (1 + δ)µ (giving R ≥ 2eµ) to get the full result. Inverting this
one gives Pr [X ≥ R] ≤ ε when R ≥ min(2eµ, lg(1/ε)).

Figure 5.1 shows the relation between the various bounds when µ = 1,
in the region where they cross each other.

5.2.3 Lower bound version of Chernoff bounds

We can also use Chernoff bounds to show that a sum of independent 0–1
random variables isn’t too small. The essential idea is to repeat the up-
per bound argument with a negative value of α, which makes eα(1−δ)µ an
increasing function in δ. The resulting bound is:

Pr [S ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)1−δ

)µ
. (5.2.5)

CHAPTER 5. CONCENTRATION BOUNDS 49

 0.001

 0.01

 0.1

 1

 1.5 2 2.5 3 3.5 4 4.5

exp(x)/(1+x)**(1+x)
exp(-x**2/3)
exp(-x**2/4)

2**-(1+x)

Figure 5.1: Comparison of Chernoff bound variants. The other bounds are
valid only in the regions where they exceed exp(x)/(1 + x)1+x.

A simpler but weaker version of this bound is

Pr [S ≤ (1− δ)µ] ≤ e−µδ2/2. (5.2.6)

Both bounds hold for all δ with 0 ≤ δ ≤ 1.

5.2.4 Asymptotic two-sided version

If we combine (5.2.2) with (5.2.6), we get that

Pr [|S − µ| ≥ δµ] ≤ 2e−µδ2/3, (5.2.7)

for 0 ≤ δ ≤ 1.
Suppose that we want this bound to be less than ε. Then we need

2e−δ2/3 ≤ ε or δ ≥
√

3 ln(2/ε)
µ . If we set δ to exactly this quantity, then (5.2.7)

becomes

Pr
[
|S − µ| ≥

√
3µ ln(2/ε)

]
≤ ε, (5.2.8)

provided ε ≥ 2e−µ/3.
For asymptotic purposes, we can omit the constants, giving

CHAPTER 5. CONCENTRATION BOUNDS 50

Lemma 5.2.1. Let S be a sum of independent 0–1 variables with E [S] = µ.
Then for any 0 < ε ≤ 2e−µ/3, S lies within O

(√
µ log(1/ε)

)
of µ, with

probability at least 1− ε.

5.2.5 Other tail bounds for the binomial distribution

The random graph literature can be a good source for bounds on the bi-
nomial distribution. See for example [Bol01, §1.3], which uses normal ap-
proximation to get bounds that are slightly tighter than Chernoff bounds
in some cases, and [JLR00, Chapter 2], which describes several variants of
Chernoff bounds as well as tools for dealing with sums of random variables
that aren’t fully independent.

5.2.6 Applications

5.2.6.1 Flipping coins

Suppose S is the sum of n independent fair coin-flips. Then E [S] = n/2 and
Pr [S = n] = Pr [S ≥ 2 E [S]] is bounded using (5.2.1) by setting µ = n/2,
δ = 1 to get Pr [S = n] ≤ (e/4)n/2 = (2/

√
e)−n. This is not quite as good as

the real answer 2−n (the quantity 2/
√
e is about 1.213. . .), but it’s at least

exponentially small.

5.2.6.2 Balls in bins again

Let’s try applying the Chernoff bound to the balls-in-bins problem. Here
we let S =

∑m
i=1Xi be the number of balls in a particular bin, with Xi

the indicator that the i-th ball lands in the bin, E [Xi] = pi = 1/n, and
E [S] = µ = m/n. To get a bound on Pr [S ≥ m/n+ k], apply the Chernoff
bound with δ = kn/m to get

Pr [S ≥ m/n+ k] = Pr [S ≥ (m/n)(1 + kn/m)]

≤ ek

(1 + kn/m)1+kn/m .

Form = n, this collapses to the somewhat nicer but still pretty horrifying
ek/(k + 1)k+1.

Staying with m = n, if we are bounding the probability of having large
bins, we can use the 2−R variant to show that the probability that any
particular bin has more than 2 lgn balls (for example), is at most n−2,
giving the probability that there exists such a bin of at most 1/n. This

CHAPTER 5. CONCENTRATION BOUNDS 51

is not as strong as what we can get out of the full Chernoff bound. If we
take the logarithm of ek/(k + 1)k+1, we get k − (k + 1) ln(k + 1); if we then
substitute k = c lnn

ln lnn − 1, we get

c lnn
ln lnn − 1− c lnn

ln lnn ln c lnn
ln lnn

= (lnn)
(

c

ln lnn −
1

lnn −
c

ln lnn (ln c+ ln lnn− ln ln lnn)
)

= (lnn)
(

c

ln lnn −
1

lnn −
c ln c

ln lnn − c+ c ln ln lnn
ln lnn

)
= (lnn)(−c+ o(1)).

So the probability of getting more than c lnn/ ln lnn balls in any one
bin is bounded by exp((lnn)(−c + o(1))) = n−c+o(1). This gives a maxi-
mum bin size of O(logn/ log logn) with any fixed probability bound n−a for
sufficiently large n.

5.2.6.3 Flipping coins, central behavior

Suppose we flip n fair coins, and let S be the number that come up heads.
We expect µ = n/2 heads on average. How many extra heads can we get, if
we want to stay within a probability bound of n−c?

Here we use the small-δ approximation, which gives Pr [S ≥ (1 + δ)(n/2)] ≤
exp(−δ2n/6). Setting exp(−δ2n/6) = n−c gives δ =

√
6 lnnc/n =

√
6c lnn/n.

The actual excess over the mean is δ(n/2) = (n/2)
√

6c lnn/n =
√

3
2cn lnn.

By symmetry, the same bound applies to extra tails. So if we flip 1000 coins
and see more than 676 heads (roughly the bound when c=3), we can rea-
sonably conclude that either (a) our coin is biased, or (b) we just hit a rare
one-in-a-billion jackpot.

In algorithm analysis, the
√

(3/2)c part usually gets absorbed into the
asymptotic notation, and we just say that with probability at least 1−n−c,
the sum of n random bits is within O(

√
n logn) of n/2.

5.2.6.4 Valiant’s randomized hypercube routing

Here we use Chernoff bounds to show bounds on a classic permutation-
routing algorithm for hypercube networks due to Valiant [Val82]. The
presentation is based on §§4.2 of [MR95], which in turn is based on an
improved version of Valiant’s original analysis appearing in a follow-up paper
with Brebner [VB81]. There’s also a write-up of this in [MU05, §4.5.1].

CHAPTER 5. CONCENTRATION BOUNDS 52

The basic idea of a hypercube architecture is that we have a collection
of N = 2n processors, each with an n-bit address. Two nodes are adjacent if
their addresses differ by one bit. (Though now mostly of theoretical interest,
these things were the cat’s pajamas back in the 1980s; see http://en.
wikipedia.org/wiki/Connection_Machine.)

Suppose that at some point in a computation, each processor i wants to
send a packet of data to some processor π(i), where π is a permutation of
the addresses. But we can only send one packet per time unit along each of
the n edges leaving a processor.3 How do we route the packets so that all
of them arrive in the minimum amount of time?

We could try to be smart about this, or we could use randomization.
Valiant’s idea is to first route each packet to some uniform, independent
random intermediate node σ(i), then route each packet from σ(i) to its
ultimate destination π(i). Routing is done by a bit-fixing: if a packet is
currently at node x and heading for node y, find the leftmost bit j where
xj 6= yj and fix it, by sending the packet on to x[xj/yj]. In the absence of
contention, bit-fixing routes a packet to its destination in at most n steps.
The hope is that the randomization will tend to spread the packets evenly
across the network, reducing the contention for edges enough that the actual
time will not be much more than this.

The first step is to argue that, on its way to its random destination,
any particular packet is delayed at most one time unit by any other packet
whose path overlaps with it. Suppose packet i is delayed by contention on
some edge uv. Then there must be some other packet j that crosses uv
in the current round. From this point on, j remains one step ahead of i
(until its path diverges), so it can’t block i again unless both are blocked by
some third packet k (in which case we charge i’s further delay to k). This
means that we can bound the delays for packet i by counting how many
other packets cross its path.4 So now we just need a high-probability bound
on the number of packets that get in my way.

Following the presentation in [MR95], define Hij to be the indicator
variable for the event that packets i and j cross paths. To keep things
symmetric, we’ll throw in Hii = 1 as well (this only slightly increases the
bound). Because each j chooses its destination independently, once we fix
i’s path, the Hij are all independent. So we can bound S =

∑
j Hij using

Chernoff bounds. To do so, we must first calculate an upper bound on
3Formally, we have a synchronous routing model with unbounded buffers at each node,

with a maximum capacity of one packet per edge per round.
4A much more formal version of this argument is given as [MR95, Lemma 4.5].

http://en.wikipedia.org/wiki/Connection_Machine
http://en.wikipedia.org/wiki/Connection_Machine

CHAPTER 5. CONCENTRATION BOUNDS 53

µ = E [S].
The trick here is to observe that any path that crosses i’s path must

cross one of its edges. Let Te be the number of paths that cross edge e, and
Xi be the number of edges that path i crosses. Counting two ways, we have∑
e Te =

∑
iXi, and so E [

∑
e Te] = E [

∑
iXi] = N(n/2). By symmetry,

all the Te have the same expectation, so we get E [Te] = N(n/2)
Nn = 1/2.

But now we can sum E [Te] for the at most n edges e on i’s path, to get
E
[∑

j Hij

]
≤ n/2—on average, i collides with at most n/2 other packets.

Inequality (5.2.4) says that Pr [X ≥ R] ≤ 2−R when R ≥ 2eµ. Setting
R = 3n gives R ≥ 6µ ≥ 2eµ, so Pr

[∑
j Hij ≥ 3n

]
≤ 2−3n = N−3. This says

that any one packet reaches its random destination with at most 3n added
delay (thus, in at most 4n time units) with probability at least 1 − N−3.
If we consider all N packets, the total probability that any of them fail to
reach their random destinations in 4n time units is at most N ·N−3 = N−2.

What about the second phase? Here, routing the packets from the ran-
dom destinations back to the real destinations is just the reverse of routing
them from the real destinations to the random destinations. So the same
bound applies, and with probability at most N−2 some packet takes more
than 4n time units to get back (this assumes that we hold all the packets
before sending them back out, so there are no collisions between packets
from different phases).

Adding up the failure probabilities and costs for both stages gives a
probability of at most 2/N2 that any packet takes more than 8n time units
to reach its destination.

The structure of this argument is pretty typical for applications of Cher-
noff bounds: we get an exponentially small bound on the probability that
something bad happens by applying Chernoff bounds to a part of the prob-
lem where we have independence, then use the union bound to extend this
to the full problem where we don’t.

5.3 The Azuma-Hoeffding inequality
The problem with Chernoff bounds is that they only work for 0–1 random
variables. Hoeffding’s inequality is another concentration bound based
on the moment generating function that applies to any sum of bounded inde-
pendent random variables with mean 0.5 It has the additional useful feature

5Note that the requirement that E [Xi] = 0 can always be satisfied by considering
instead Yi = Xi − E [Xi].

CHAPTER 5. CONCENTRATION BOUNDS 54

that it generalizes nicely to some collections of random variables that are
not mutually independent, as we will see in §5.3. This more general version
is known as Azuma’s inequality or the Azuma-Hoeffding inequality.6

5.3.1 Hoeffding’s inequality

This is the version for sums of bounded independent random variables.

Theorem 5.3.1. Let X1 . . . Xn be independent random variables with E [Xi] =
0 and |Xi| ≤ ci for all i. Then for all t,

Pr
[
n∑
i=1

Xi ≥ t
]
≤ exp

(
− t2

2
∑n
i=1 c

2
i

)
. (5.3.1)

Proof. Let S =
∑n
i=1Xi. As with Chernoff bounds, we’ll first calculate a

bound on the moment generating function E
[
eαS

]
and then apply Markov’s

inequality with a carefully-chosen α.
Before jumping into this, it helps to get a bound on E

[
eαX

]
when

E [X] = 0 and |X| ≤ c. The trick is that, for any α, eαx is a convex
function. Since we want an upper bound, we can’t use Jensen’s inequal-
ity (4.3.1), but we can use the fact that X is bounded and we know its
expectation. Convexity of eαx means that, for any x with −c ≤ x ≤ c,
eαx ≤ λe−αc+(1−λ)eαc, where x = λ(−c)+(1−λ)c. Solving for λ in terms
of x gives λ = 1

2
(
1− x

c

)
and 1− λ = 1

2
(
1 + x

c

)
. So

E
[
eαX

]
≤ E

[1
2

(
1− X

c

)
e−αc + 1

2

(
1 + X

c

)
eαc
]

= e−αc + eαc

2 − e−αc

2c E [X] + eαc

2c E [X]

= e−αc + eαc

2
= cosh(αc).

In other words, the worst possible X is a fair choice between ±c, and
in this case we get the hyperbolic cosine of αc as its moment generating
function.

We don’t like hyperbolic cosines much, because we are going to want
to take products of our bounds, and hyperbolic cosines don’t multiply very

6The history of this is that Hoeffding [Hoe63] proved it for independent random
variables, and observed that the proof was easily extended to martingales, while
Azuma [Azu67] actually went and did the work of proving it for martingales.

CHAPTER 5. CONCENTRATION BOUNDS 55

nicely. As before with 1 + x, we’d be much happier if we could replace the
cosh with a nice exponential. The Taylor’s series expansion of cosh x starts
with 1+x2/2+. . . , suggesting we approximate it with exp(x2/2), and indeed
it is the case that for all x, cosh x ≤ ex2/2. This can be shown by comparing
the rest of the Taylor’s series expansions:

cosh x = ex + e−x

2

= 1
2

(∞∑
n=0

xn

n! +
∞∑
n=0

(−x)n

n!

)

=
∞∑
n=0

x2n

(2n)!

≤
∞∑
n=0

x2n

2nn!

=
∞∑
n=0

(x2/2)n

n!

= ex
2/2.

This gives E
[
eαX

]
≤ e(αc)2/2.

Using this bound and the independence of the Xi, we compute

E
[
eαS

]
= E

[
exp

(
α

n∑
i=1

Xi

)]

= E
[
n∏
i=1

eαXi

]

=
n∏
i=1

E
[
eαXi

]
.

≤
n∏
i=1

e(αci)2/2

= exp
(

n∑
i=1

α2c2
i

2

)

= exp
(
α2

2

n∑
i=1

c2
i

)
.

CHAPTER 5. CONCENTRATION BOUNDS 56

Applying Markov’s inequality then gives (when α > 0):

Pr [S ≥ t] = Pr
[
eαS ≥ eαt

]
≤ exp

(
α2

2

n∑
i=1

c2
i − αt

)
. (5.3.2)

Now we do the same trick as in Chernoff bounds and choose α to min-
imize the bound. If we write C for

∑n
i=1 c

2
i , this is done by minimizing the

exponent α2

2 C − αt, which we do by taking the derivative with respect to α
and setting it to zero: αC − t = 0, or α = t/C. At this point, the exponent
becomes (t/C)2

2 C − (t/C)t = − t2

2C .
Plugging this into (5.3.2) gives the bound (5.3.1) claimed in the theorem.

Let’s see how good a bound this gets us for our usual test problem of
bounding Pr [S = n] where S =

∑n
i=1Xi is the sum of n independent fair

coin-flips. To make the problem fit the theorem, we replace each Xi by
a rescaled version Yi = 2Xi − 1 = ±1 with equal probability; this makes
E [Yi] = 0 as needed, with |Yi| ≤ ci = 1. Hoeffding’s inequality (5.3.1) then
gives

Pr
[
n∑
i=1

Yi ≥ n
]
≤ exp

(
−n

2

2n

)
= e−n/2 = (

√
e)−n.

Since
√
e ≈ 1.649 . . . , this is actually slightly better than the (2/

√
e)−n

bound we get using Chernoff bounds.
On the other hand, Chernoff bounds work better if we have a more

skewed distribution on the Xi; for example, in the balls-in-bins case, each
Xi is a 0–1 random variable with E [Xi] = 1/n. Using Hoeffding’s inequality,
we get a bound ci on |Xi − E [Xi]| of only 1 − 1/n, which puts

∑n
i=1 c

2
i

very close to n, requiring t = Ω(
√
n) before we get any non-trivial bound

out of (5.3.1), pretty much the same as in the fair-coin case (which is not
surprising, since Hoeffding’s inequality doesn’t know anything about the
distribution of the Xi). But we’ve already seen that Chernoff gives us that∑
Xi = O(logn/ log logn) with high probability in this case.
Note: There is an asymmetrical version of Hoeffding’s inequality in which

ai ≤ Xi ≤ bi, but E [Xi] is still zero for all Xi. In this version, the bound is

Pr
[
n∑
i=1

Xi ≥ t
]
≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
. (5.3.3)

CHAPTER 5. CONCENTRATION BOUNDS 57

This reduces to (5.3.1) when ai = −ci and bi = ci. The proof is essen-
tially the same, but a little more analytic sneakery is required to show that
E
[
eαXi

]
≤ eα2(bi−ai)2/8; see [McD89] for details. For most applications, the

only difference between the symmetric version (5.3.1) and the asymmetric
version (5.3.3) is a small constant factor on the resulting bound on t.

5.3.2 Azuma’s inequality

A general rule of thumb is that most things that work for sums of indepen-
dent random variables also work for martingales.

A martingale is a sequence of random variables S0, S1, S2, . . . , where
E [St | S1, . . . , St−1] = St−1. In other words, given everything you know up
until time t − 1, your best guess of the expected value at time t is just
wherever you are now.

Another way to describe a martingale is to take the partial sums St =∑t
i=1Xt of a martingale difference sequence, which is a sequence of

random variables X1, X2, . . . where E [Xt | X1 . . . Xt−1] = 0. So in this
version, your expected change from time t − 1 to t averages out to zero,
even if you try to predict it using all the information you have at time t− 1.

Martingales were invented to analyze fair gambling games, where your
return over some time interval is not independent of previous outcomes (for
example, you may change your bet or what game you are playing depending
on how things have been going for you), but it is always zero on average given
previous information (warning: real casinos give negative expected return, so
the resulting process is a supermartingale with St−1 ≥ E [St | S0 . . . St−1]).
The nice thing about martingales is they allow for a bit of dependence while
still acting very much like sums of independent random variables.

Where this comes up with Hoeffding’s inequality is that we might have
a process that is reasonably well-behaved, but its increments are not tech-
nically independent. For example, suppose that a gambler plays a game
where she bets x units 0 ≤ x ≤ 1 at each round, and receives ±x with
equal probability. Suppose also that her bet at each round may depend on
the outcome of previous rounds (for example, she might stop betting en-
tirely if she loses too much money). If Xi is her take at round i, we have
that E [Xi | X1 . . . Xi−1] = 0 and that |Xi| ≤ 1. This is enough to apply the
martingale version of Hoeffding’s inequality, often called Azuma’s inequality.

Theorem 5.3.2. Let {Sk} be a martingale with Sk =
∑t
i=1Xi and |Xi| ≤ ci

CHAPTER 5. CONCENTRATION BOUNDS 58

for all i. Then for all n and all t ≥ 0:

Pr [Sn ≥ t] ≤ exp
(

−t2

2
∑n
i=1 c

2
i

)
. (5.3.4)

Proof. Basically, we just show that E
[
eαSn

]
≤ exp

(
α2

2
∑n
i=1 c

2
i

)
—just like

in the proof of Theorem 5.3.1—and the rest follows using the same argument.
The only tricky part is we can no longer use independence to transform
E
[∏n

i=1 e
αXi

]
into

∏n
i=1 E

[
eαXi

]
.

Instead, we use the martingale property. For eachXi, we have E [Xi | X1 . . . Xi−1] =
0 and |Xi| ≤ ci always. Recall that E

[
eαXi

∣∣∣ X1 . . . Xi−1
]
is a random vari-

able that takes on the average value of eαXi for each setting of X1 . . . Xi−1;
we can apply the same analysis as in the proof of 5.3.1 to show that this
means that E

[
eαXi

∣∣∣ X1 . . . Xi−1
]
≤ e(αci)2/2 always.

The trick is to use the fact that, for any random variables X and Y ,
E [XY] = E [E [XY | X]] = E [X E [Y | X]].

We argue by induction on n that E
[∏n

i=1 e
αXi

]
≤
∏n
i=1 e

(αc)2/2. The
base case is when n = 0. For the induction step, compute

E
[
n∏
i=1

eαXi

]
= E

[
E
[
n∏
i=1

eαXi

∣∣∣∣∣ X1 . . . Xn−1

]]

= E
[(

n∏
i=1

eαXi

)
E
[
eαXn

∣∣∣ X1 . . . Xn−1
]]

≤ E
[(

n−1∏
i=1

eαXi

)
e(αcn)2/2

]

= E
[
n−1∏
i=1

eαXi

]
e(αcn)2/2

≤
(
n−1∏
i=1

e(αci)2/2
)
e(αcn)2/2

=
n∏
i=1

e(αci)2/2.

= exp
(
α2

2

n∑
i=1

c2
i

)
.

The rest of the proof goes through as before.

CHAPTER 5. CONCENTRATION BOUNDS 59

Some extensions:

• The same bound works for bounded-difference supermartingales. If
E [Xi | X1 . . . Xi−1] ≤ 0 and |Xi| ≤ ci, then we can write Xi = Yi +Zi
where Yi = E [Xi | X1 . . . Xi−1] ≤ 0 is predictable from X1 . . . Xi−1
and E [Zi | X1 . . . Xi−1] = 0. Then we can bound

∑n
i=1Xi by observing

that it is no greater than
∑n
i=1 Zi. A complication is that we no longer

have |Zi| ≤ ci; instead, |Zi| ≤ 2ci (since leaving out Yi may shift Zi
up). But with this revised bound, (5.3.4) gives

Pr
[
n∑
i=1

Xi ≥ t
]
≤ Pr

[
n∑
i=1

Zi ≥ t
]

≤ exp
(
− t2

8
∑n
i=1 c

2
i

)
. (5.3.5)

• Suppose that we stop the process after the first time τ with Sτ =∑τ
i=1Xi ≥ t. This is equivalent to making a new variable Yi that is

zero whenever Si−1 ≥ t and equal to Xi otherwise. This doesn’t affect
the conditions E [Yi | Y1 . . . Yi−1] = 0 or |Yi| ≤ ci, but it makes it so∑n
i=1 Yi ≥ t if and only if maxk≤n

∑k
i=1Xi ≥ t. Applying (5.3.4) to∑

Yi then gives

Pr
[
max
k≤n

k∑
i=1

Xi ≥ t
]
≤ exp

(
− t2

2
∑n
i=1 c

2
i

)
. (5.3.6)

• Since the conditions on Xi in Theorem 5.3.2 apply equally well to −Xi,
we have

Pr
[
n∑
i=1

Xi ≤ −t
]
≤ exp

(
− t2

2
∑n
i=1 c

2
i

)
. (5.3.7)

which we can combine with (5.3.4) to get the two-sided bound

Pr
[∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣ ≥ t
]
≤ 2 exp

(
− t2

2
∑n
i=1 c

2
i

)
. (5.3.8)

• The extension of Hoeffding’s inequality to the case ai ≤ Xi ≤ bi
works equally well for Azuma’s inequality, giving the same bound as
in (5.3.3).

CHAPTER 5. CONCENTRATION BOUNDS 60

• Finally, one can replace the requirement that each ci be a constant
with a requirement that ci be predictable from X1 . . . Xi−1 and that∑n
i=1 c

2
i ≤ C always and get Pr [

∑n
i=1Xi ≥ t] ≤ e−t

2/2C . This gener-
ally doesn’t come up unless you have an algortihm that explicitly cuts
off the process if

∑
c2
i gets too big, but there is at least one example

of this in the literature [AW96].

5.3.3 The method of bounded differences

To use Azuma’s inequality, we need a bounded-difference martingale. The
easiest way to get such martingales is through themethod of bounded dif-
ferences, which was popularized by a survey paper by McDiarmid [McD89].
For this reason the key result is often referred to asMcDiarmid’s inequal-
ity.

The basic idea of the method is to imagine we are computing a function
f(X1, . . . , Xn) of a sequence of independent random variables X1, . . . , Xn.
To get our martingale, we’ll imagine we reveal the Xi one at a time, and
compute at each step the expectation of the final value of f based on just
the inputs we’ve seen so far.

Formally, let Yt = E [f | X1, . . . , Xt], the expected value of f given the
values of the first t variables. Then {Yt} forms a martingale, with Y0 = E [f]
and Yn = E [f | X1, . . . , Xt] = f .7 So if we can find a bound ct on Yt−Yt−1,
we can apply Azuma’s inequality to get bounds on Yn − Y0 = f − E [f].

We do this by assuming that f is Lipschitz with respect to Hamming
distance on its domain.8 This means that there are bounds ct such that

7A sequence of random variables of the form Yt = E [Z | X1, . . . , Xt] is called a
Doob martingale. The proof that it is a martingale is slightly painful using the
tools we’ve got, but the basic idea is that we can expand E [Yt | X1, . . . , Xt−1] =
E [E [Z | X1, . . . , Xt] | X1, . . . , Xt−1] = E [Z | X1, . . . , Xt−1] = Yt−1, where the step in the
middle follows from the usual repeated-averaging trick that shows E [E [X | Y,Z] | Z] =
E [X | Z]. To change the variables we are conditioning Yt on from Xi’s to Yi’s, we
have to observe that the Xi give at least as much information as the corresponding
Yi (since we can calculate Y1, . . . , Yt−1 from X1, . . . , Xt−1), so E [Yt | Y1, . . . , Yt−1] =
E [E [Yt | X1, . . . , Xt−1] | Y1, . . . , Yt−1] = E [Yt−1 | Y1, . . . , Yt−1] = Yt−1. This establishes
the martingale property.

8The Hamming distance between two vectors is the number of places where they differ,
without regard to how much they differ by in these places. A Lipschitz function in general
is a function f such that there exists a constant c for which d(f(x), f(y)) ≤ c · d(x, y) for
all x, y in f ’s domain, where d is the distance between two points in our preferred metrics
for the domain and codomain. This is similar to but stronger than the usual notion of
continuity.

CHAPTER 5. CONCENTRATION BOUNDS 61

for any x1 . . . xn and any x′t, we have∣∣f(x1 . . . xt . . . xn)− f(x1 . . . x
′
t . . . xn)

∣∣ ≤ ct. (5.3.9)

If f has this property, the following result holds:

Theorem 5.3.3 (McDiarmid’s inequality [McD89]). Let X1, . . . , Xn be
independent random variables and let f(X1, . . . , Xn) be Lipschitz with bounds
ci. Then

Pr [f(X1, . . . , Xn)− E [f(X1, . . . , Xn)] ≥ t] ≤ exp
(
− 2t2∑n

i=1 c
2
i

)
. (5.3.10)

Since −f satisfies the same constraints as f , the same bound holds for
Pr [f(X1, . . . , Xn)− E [f(X1, . . . , Xn) ≤ −t]].

We will not prove Theorem 5.3.3, as getting the exact constant in the ex-
ponent is tricky; see [McD89] for a proof. However, if we are willing to accept
a weaker bound, we can easily show that if f satisfies the conditions of the
theorem, then revealing the i-th value ofXi changes the conditional expecta-
tion of f(X1, . . . , Xn) by at most ci. This gives a bound of exp

(
− t2

2
∑n

i=1 c
2
i

)
from Azuma’s inequality. Note that (5.3.10) puts the 2 in the numerator
instead of the denominator of the exponent, giving a stronger bound.

5.3.4 Applications

Here are some applications of the preceding inequalities. Most of these are
examples of the method of bounded differences.

• Suppose you live in a hypercube, and the local government has con-
veniently placed snow shovels on some subset A of the nodes. If you
start at a random location, how likely is it that your distance to the
nearest snow shovel deviates substantially from the average distance?
We can describe your position as a bit vector X1, . . . , Xn, where each
Xi is an independent random bit. Let f(X1, . . . , Xn) be the dis-
tance from X1, . . . , Xn to the nearest element of A. Then chang-
ing one of the bits changes the distance by at most 1. So we have
Pr [|f − E [f]| ≥ t] ≤ 2e−2t2/n by (5.3.10), giving a range of distances
that is O(

√
n logn) with probability at least 1−n−c. Of course, with-

out knowing what A is, we don’t know what E[f] is; but at least we
can be assured that (unless A is very big) the distance we have to walk
through the snow will be pretty much the same pretty much wherever
we start.

CHAPTER 5. CONCENTRATION BOUNDS 62

• Consider a random graph G(n, p) consisting of n vertices, where
each possible edge appears with independent probability p. Let χ be
the chromatic number of this graph, the minimum number of colors
necessary if we want to assign a color to each vertex that is distinct for
the colors of all of its neighbors. The vertex exposure martingale
shows us the vertices of the graph one at a time, along with all the
edges between vertices that have been exposed so far. We define Xt to
be the expected value of χ given this information for vertices 1 . . . t.
If Zi is a random variable describing which edges are present between
i and vertices less than i, then the Zi are all independent, and we can
write χ = f(Z1, . . . , Zn) for some function f (this function may not
be very easy to compute, but it exists). Then Xt as defined above is
just E [f | Z1, . . . , Zt]. Now observe that f is Lipschitz with ct = 1:
if I change the edges for some vertex vt, I can’t increase the num-
ber of colors I need by more than 1, since in the worst case I can
always take whatever coloring I previously had for all the other ver-
tices and add a new color for vt. (This implies I can’t decrease χ by
more than one either.) McDiarmid’s inequality (5.3.10) then says that
Pr [|χ− E [χ]| ≥ t] ≤ 2e−2t2/n; in other words, the chromatic number
of a random graph is tightly concentrated around its mean, even if
we don’t know what that mean is. (This proof is due to Shamir and
Spencer [SS87].)

• Suppose we toss m balls into n bins. How many empty bins do we
get? The probability that each bin individually is empty is exactly
(1 − 1/n)m, which is approximately e−m/n when n is large. So the
expected number of empty bins is exactly n(1−1/n)m. If we let Xi be
the bin that ball i gets tossed into, and let Y = f(X1, . . . , Xm) be the
number of empty bins, then changing a single Xi can change f by at
most 1. So from (5.3.10) we have Pr [Y ≥ n(1− 1/n)m + t] ≤ e−2t2/m.

• Most probabilistic recurrence arguments (as in Chapter D) can be
interpreted as supermartingales (my current estimate of T (n) exceeds
the expected estimate after I do one stage of the recurrence). This
fact can be used to get concentration bounds using (5.3.5).
For example, let’s take the recurrence (1.3.1) for the expected number
of comparisons for QuickSort:

T (n) = 1
n

n−1∑
k=0

(T (k) + T (n− 1− k)) .

CHAPTER 5. CONCENTRATION BOUNDS 63

We showed in §1.3.1 that the solution to this recurrence satisfies T (n) ≤
2n lnn.
To turn this into a supermartingale, imagine that we carry out a pro-
cess where we keep around at each step t a set of unsorted blocks of
size nt1, nt2, . . . , ntkt for some kt (note that the superscripts on nti are
not exponents). One step of the process involves choosing one of the
blocks (we can do this arbitrarily without affecting the argument) and
then splitting that block around a uniformly-chosen pivot. We will
track a random variable Xt equal to Ct +

∑
i=1 kt2nti lnnti, where Ct

is the number of comparisons done so far and the summation gives an
upper bound on the expected number of comparisons remaining.
To show that this is a supermartingale, observe that if we partition a
block of size n we add n to Ct but replace the cost bound 2n lnn by
an expected

2 · 1
n

n−1∑
k=0

2k ln k ≤ 4
n

∫ n

2
n lnn

= 4
n

(
n2 lnn

2 − n2

4 − ln 2 + 1
)

= 2n lnn− n− ln 2 + 1
< 2n lnn− n.

The net change is less than − ln 2. The fact that it’s not zero suggests
that we could improve the 2n lnn bound slightly, but since it’s going
down, we have a supermartingale.
Let’s try to get a bound on how much Xt changes at each step. The
Ct part goes up by at most n− 1. The summation can only go down;
if we split a block of size ni, the biggest drop we get is if we split it
evenly,9 This gives a drop of

2n lnn− 2
(

2n− 1
2 ln n− 1

2

)
= 2n lnn− 2(n− 1) ln

(
n
n− 1

2n

)
= 2n lnn− 2(n− 1)(lnn− ln 2n

n− 1)

= 2n lnn− 2n lnn+ 2n ln 2n
n− 1 + 2 lnn− 2 ln 2n

n− 1
= 2n ·O(1) +O(logn)
= O(n).

9This can be proven most easily using convexity of n lnn.

CHAPTER 5. CONCENTRATION BOUNDS 64

(with a constant tending to 2 in the limit).
So we can apply (5.3.5) with ct = O(n) to the at most n steps of the
algorithm, and get

Pr [Cn − 2n lnn ≥ t] ≤ e−t2/O(n3).

This gives Cn = O(n3/2) with constant probability or O(n3/2√logn)
with all but polynomial probability. This is a rather terrible bound,
but it’s a lot better than O(n2). For a much better bound, see [MH92].

5.4 Anti-concentration bounds
It may be that for some problem you want to show that a sum of random
variables is far from its mean at least some of the time: this would be
an anti-concentration bound. Anti-concentration bounds are much less
well-understood than concentration bounds, but there are known results
that can help in some cases.

For variables where we know the distribution of the sum exactly (e.g,
sums with binomial distributions, or sums we can attack with generating
functions), we don’t need these. But they may be useful if computing the
distribution of the sum directly is hard.

5.4.1 The Berry-Esseen theorem

The Berry-Esseen theorem10 characterizes how quickly a sum of identi-
cal independent random variables converges to a normal distribution, as a
function of the third moment of the random variables. Its simplest version
says that if we have n independent, identically-distributed random variables
X1 . . . Xn, with E [Xi] = 0, Var [Xi] = E

[
X2
i

]
= σ2, and E

[
|Xi|3

]
≤ ρ.

Then

sup
−∞<x<∞

∣∣∣∣∣Pr
[

1√
n

n∑
i=1

Xi ≤ x
]
− Φ(x)

∣∣∣∣∣ ≤ Cρ

σ3√n
, (5.4.1)

were C is an absolute constant and Φ is the normal distribution function.
Note that the σ3 in the denominator is really Var [Xi]3/2. Since the proba-
bility bound doesn’t depend on x, it’s more useful toward the middle of the
distribution than in the tails.

10Sometimes written Berry-Esséen theorem to help with the pronunciation of Esseen’s
last name.

CHAPTER 5. CONCENTRATION BOUNDS 65

A classic proof of this result with C = 3 can be found in [Fel71, §XVI.5].
More recent work has tightened the bound on C: the best currently known
constant is C < 0.4784 < 1/2, due to Shevtsova [She11].

As with most results involving sums of random variables, there are gen-
eralizations to martingales. These are too involved to describe here, but see
[HH80, §3.6].

5.4.2 The Littleword-Offord problem

The Littlewood-Offord problem asks, given a set of n complex numbers
x1 . . . xn with |xi| ≥ 1, for how many assignments of ±1 to coefficients
ε1 . . . εn it holds that |

∑n
i=1 εixi| ≤ r. Paul Erdős showed [Erd45] that this

quantity was at most cr2n/
√
n, where c is a constant. The quantity c2n/

√
n

here is really 1
2
(n
bn/2c

)
: Erdős’s proof shows that for each interval of length

2r, the number of assignments that give a sum in the interior of the interval
is bounded by at most the sum of the r largest binomial coefficients.

In random-variable terms, this means that if we are looking at
∑n
i=1 εxi,

where the xi are constants with |xi| ≥ 1 and the εi are independent ±1 fair
coin-flips, then Pr [|

∑n
i=1 εixi| ≤ r] is maximized by making all the xi equal

to 1. This shows that any distribution where the xi are all reasonably large
will not be any more concentrated than a binomial distribution.

There has been a lot of recent work on variants of the Littlewood-Offord
problem, much of it by Terry Tao and Van Vu. See http://terrytao.
wordpress.com/2009/02/16/a-sharp-inverse-littlewood-offord-theorem/
for a summary of much of this work.

http://terrytao.wordpress.com/2009/02/16/a-sharp-inverse-littlewood-offord-theorem/
http://terrytao.wordpress.com/2009/02/16/a-sharp-inverse-littlewood-offord-theorem/

Chapter 6

Randomized search trees

These are data structures that are either trees or equivalent to trees, and use
randomization to maintain balance. We’ll start by reviewing deterministic
binary search trees and then add in the randomization.

6.1 Binary search trees
A binary search tree is a standard data structure for holding sorted data.
A binary tree is either empty, or it consists of a root node containing a
key and pointers to left and right subtrees. What makes a binary tree a
binary search tree is the invariant that, both for the tree as a whole and
any subtree, all keys in the left subtree are less than the key in the root,
while all keys in the right subtree are greater than the key in the root. This
ordering property means that we can search for a particular key by doing
binary search: if the key is not at the root, we can recurse into the left or
right subtree depending on whether it is smaller or bigger than the key at
the root.

The efficiency of this operation depends on the tree being balanced.
If each subtree always holds a constant fraction of the nodes in the tree,
then each recursive step throws away a constant fraction of the remaining
nodes. So after O(logn) steps, we find the key we are looking for (or find
that the key is not in the tree). But the definition of a binary search tree
does not by itself guarantee balance, and in the worst case a binary search
tree degenerates into a linked list with O(n) cost for all operations (see
Figure 6.2.

Deterministic binary search tree implementations include sophisticated
rebalancing mechanisms to adjust the structure of the tree to preserve bal-

66

CHAPTER 6. RANDOMIZED SEARCH TREES 67

x y
/ \ / \

y C <==> A x
/ \ / \

A B B C

Figure 6.1: Tree rotations

4 1
/ \ \

2 6 2
/ \ / \ \
1 3 5 7 3

\
4
\
5
\
6
\
7

Figure 6.2: Balanced and unbalanced binary search trees

ance as nodes are inserted or delete. Typically this is done using rotations,
which are operations that change the position of a parent and a child while
preserving the left-to-right ordering of keys (see Figure 6.1).

Examples include AVL trees [AVL62], where the left and right subtrees
of any node have heights that differ by at most 1; red-black trees [GS78],
where a coloring scheme is used to maintain balance; and scapegoat trees [GR93],
where no information is stored at a node but part of the tree is rebuilt from
scratch whenever an operation takes too long. These all give O(logn) cost
per operation (amortized in the case of scapegoat trees), and vary in how
much work is needed in rebalancing. Both AVL trees and red-black trees
perform more rotations than randomized rebalancing does on average.

CHAPTER 6. RANDOMIZED SEARCH TREES 68

5
/ \

1 7
\ /
3 6

/ \
2 4

Figure 6.3: Binary search tree after inserting 5 1 7 3 4 6 2

6.2 Binary search tree with random insertions
Suppose we insert n keys into an initially-empty binary search tree in random
order with no rebalancing. This means that for each insertion, we follow the
same path that we would when searching for the key, and when we reach an
empty tree, we replace it with a tree consisting solely of the key at the root.

Since we chose a random order, each element is equally likely to be the
root, and all the elements less than the root end up in the left subtree, while
all the elements greater than the root end up in the right subtree, where
they are further partitioned recursively. This is exactly what happens in
randomized QuickSort (see §1.3.1), so the structure of the tree will exactly
mirror the structure of an execution of QuickSort. So, for example, we
can immediately observe from our previous analysis of QuickSort that the
total path length—the sum of the depths of the nodes—is Θ(n logn),
since the depth of each node is equal to 1 plus the number of comparisons it
participates in as a non-pivot, and (using the same argument as for Hoare’s
FIND in §3.6.4) that the height of the tree is O(logn) with high probability.1

When n is small, randomized binary search trees can look pretty scraggly.
Figure 6.3 shows a typical example.

The problem with this approach in general is that we don’t have any
guarantees that the input will be supplied in random order, and in the
worst case we end up with a linked list, giving O(n) worst-case cost for all
operations.

1The argument for Hoare’s FIND is that any node has at most 3/4 of the descendents
of its parent on average; this gives for any node x that Pr [depth(x) > d] ≤ (3/4)d−1n, or
a probability of at most n−c that depth(x) > 1 + (c+ 1) log(n)/ log(4/3) ≈ 1 + 6.952 lnn
for c = 1, which we need to apply the union bound. The right answer for the actual height
of a randomly-generated search tree in the limit is 4.31107 lnn [Dev88] so this bound is
actually pretty close. It’s still nearly a factor of three worse that a completely balanced
tree, which has max depth bounded by 1 + lgn ≈ 1 + 1.44269 lnn.

CHAPTER 6. RANDOMIZED SEARCH TREES 69

6.3 Treaps
The solution is the same as for QuickSort: instead of assuming that the
input is permuted randomly, we assign random priorities to each element
and organize the tree so that elements with higher priorities rise to the top.
The resulting structure is known as a treap [SA96], because it satisfies the
binary search tree property with respect to keys and the heap property with
respect to priorities.2

There’s an extensive page of information on treaps at http://faculty.
washington.edu/aragon/treaps.html, maintained by Cecilia Aragon, the
co-inventor of treaps; they are also discussed at length in [MR95, §8.2]. We’ll
give a brief description here.

To insert a new node in a treap, first walk down the tree according to
the key and insert the node as a new leaf. Then go back up fixing the heap
property by rotating the new element up until it reaches an ancestor with
higher priority. (See Figure 6.4 for an example.) Deletion is the reverse of
insertion: rotate a node down to a leaf (by swapping with its higher-priority
child at each step), and then prune it off.

Because of the heap property, the root of each subtree is always the
element in that subtree with the highest priority. This means that the
structure of a treap is completely determined by the priorities and the keys,
no matter what order the elements arrive in. We can imagine in retrospect
that the treap is constructed recursively by choosing the highest-priority
element as the root, then organizing all smaller-index and all larger-index
nodes into the left and right subtrees by the same rule.

If we assign the priorities independently and uniformly at random from a
sufficiently large set (ω(n2) is enough in the limit), then we get no duplicates,
and by symmetry all n! orderings are equally likely. So the analysis of the
depth of a treap with random priorities is identical to the analysis of a binary
search tree with random insertion order. It’s not hard to see that the costs
of search insertion, and deletion operations are all linear in the depth of the
tree, so the expected cost of each of these operations is O(logn).

2The name “treap” for this data structure is now standard but the history is a little
tricky. According to Seidel and Aragon, essentially the same data structure (though with
non-random priorities) was previously called a cartesian tree by Vuillemin [Vui80], and the
word “treap” was initially applied by McCreight to a different data structure—designed
for storing two-dimensional data—that was called a “priority search tree” in its published
form. [McC85].

http://faculty.washington.edu/aragon/treaps.html
http://faculty.washington.edu/aragon/treaps.html

CHAPTER 6. RANDOMIZED SEARCH TREES 70

1,60 1,60
\ \
2,3 --> 3,26

\ /
(3,26) 2,3

1,60 1,60 1,60 5,78
\ \ \ /
3,26 --> 3,26 --> (5,78) --> 1,60
/ \ / \ / \

2,3 4,24 2,3 (5,78) 3,26 3,26
\ / / \ / \
(5,78) 4,24 2,3 4,24 2,3 4,24

5,78 5,78
/ \ / \

1,60 6,18 --> 1,60 7,41
\ \ \ /

3,26 (7,41) 3,26 6,18
/ \ / \

2,3 4,24 2,3 4,24

Figure 6.4: Inserting values into a treap. Each node is labeled with k, p
where k is the key and p the priority. Insertion of values not requiring
rotations are not shown.

CHAPTER 6. RANDOMIZED SEARCH TREES 71

6.3.1 Assumption of an oblivious adversary

One caveat is that this only works if the priorities of the elements of the tree
are in fact independent. If operations on the tree are chosen by an adaptive
adversary, this assumption may not work. An adaptive adversary is one
that can observe the choice made by the algorithm and react to them: in this
case, a simple strategy would be to insert elements 1, 2, 3, 4, etc., in order,
deleting each one and reinserting it until it has a lower priority value than all
the smaller elements. This might take a while for the later elements, but the
end result is the linked list again. For this reason it is standard to assume in
randomized data structures that the adversary is oblivious, meaning that
it has to specify a sequence of operations without knowing what choices are
made by the algorithm. Under this assumption, whatever insert or delete
operations the adversary chooses, at the end of any particular sequence of
operations we still have independent priorities on all the remaining elements,
and the O(logn) analysis goes through.

6.3.2 Analysis

The analysis of treaps as carried out by Seidel and Aragon [SA96] is a nice
example of how to decompose a messy process into simple variables, much
like the linear-of-expectation argument for QuickSort (§3.6.3). The key ob-
servation is that it’s possible to bound both the expected depth of any node
and the number of rotations needed for an insert or delete operation di-
rectly from information about the ancestor-descendant relationship between
nodes.

Define two classes of indicator variables. For simplicity, we assume that
the elements have keys 1 through n, which we also use as indices.

1. Ai,j indicates the event that i is an ancestor of j, where i is an
ancestor of j if it appears on the path from the root to j. Note that
every node is an ancestor of itself.

2. Ci;`,m indicates the event that i is a common ancestor of both ` and
m; formally, Ci;`,m = Ai,`Ai,m.

The nice thing about these indicator variables is that it’s easy to compute
their expectations.

For Ai,j , i will be the ancestor of j if and only if i has a higher priority
than j and there is no k between i and j that has an even higher prior-
ity: in other words, if i has the highest priority of all keys in the interval
[min(i, j),max(i, j)]. To see this, imagine that we are constructing the treap

CHAPTER 6. RANDOMIZED SEARCH TREES 72

recursively, by starting with all elements in a single interval and partitioning
each interval by its highest-priority element. Consider the last interval in
this process that contains both i and j, and suppose i < j (the j > i case is
symmetric). If the highest-priority element is some k with i < k < j, then i
and j are separated into distinct intervals and neither is the ancestor of the
other. If the highest-priority element is j, then j becomes the ancestor of i.
The highest-priority element can’t be less than i or greater than j, because
then we get a smaller interval that contains both i and j. So the only case
where i becomes an ancestor of j is when i has the highest priority.

It follows that E [Ai,j] = 1
|i−j|+1 , where the denominator is just the num-

ber of elements in the range [min(i, j),max(i, j)].
For Ci;`,m, i is the common ancestor of both ` andm if and only if it is has

the highest priority in both [min(i, `),max(i, `)] and [min(i,m),max(i,m)].
It turns out that no matter what order i, `, and m come in, these intervals
overlap so that imust have the highest priority in [min(i, `,m),max(i, `,m)].
This gives E

[
C[i; `,m]

]
= 1

max(i,`,m)−min(i,`,m)+1 .

6.3.2.1 Searches

From the Ai,j we can compute depth(j) =
∑
iAi,j − 1.3 So

E [depth(j)] =
(

n∑
i=1

1
|i− j|+ 1

)
− 1

=

 j∑
i=1

1
j − i+ 1

+

 n∑
i=j+1

1
i− j + 1

− 1

=

 j∑
k=1

1
k

+

n−j+1∑
k=2

1
k

− 1

= Hj +Hn−j+1 − 2.

This is maximized at j = (n+1)/2, giving 2H(n+1)/2−2 = 2 lnn+O(1).
So we get the same 2 lnn + O(1) bound on the expected depth of any one
node that we got for QuickSort. We can also sum over all j to get the exact
value of the expected total path length (but we won’t). These quantities
bound on the expected cost of searches.

3We need the −1 because of the convention that the root has depth 0, making the
depth of a node one less than the number of its ancestors. Equivalently, we could exclude
j from the sum and count only proper ancestors.

CHAPTER 6. RANDOMIZED SEARCH TREES 73

4 2 6
/ \ / \ / \

2 6 => 1 4 or 4 7
/ \ / \ / \ / \

1 *3 5* 7 *3 6* *2 5*
/ \ \

5* 7 *3

Figure 6.5: Rotating 4 right shortens the right spine of its left subtree by
removing 2; rotating left shortens the left spine of the right subtree by
removing 6.

6.3.2.2 Insertions and deletions

For insertions and the deletions, the question is how many rotations we have
to perform to float a new leaf up to its proper location (after an insertion)
or to float a deleted node down to a leaf (before a deletion). Since insertion
is just the reverse of deletion, we can get a bound on both by concentrating
on deletion. The trick is to find some metric for each node that (a) bounds
the number of rotations needed to move a node to the bottom of the tree
and (b) is easy to compute based on the A and C variables

The left spine of a subtree is the set of all nodes obtained by starting
at the root and following left pointers; similarly the right spine is what
we get if we follow the right pointers instead. It turns out that these are
exactly the elements that need to be Seidel and Aragon [SA96] observe that
whenever we rotate an element down, we shorten either the left spine of its
right subtree or the right spine of its left subtree by one by removing the
root of that subtree (see Figure 6.5). Since a leaf has no subtrees, we need
a number of rotations equal to the sum of the lengths of these two spines.
Intuitively, the members of the two spines are exactly the elements that need
to be rotated above our target for deletion; other elements in the subtree
will be carried above the target without ever being rotated above it directly.

To calculate the length of the right spine of the left subtree of some
element `, start with the predecessor `− 1 of `. Because there is no element
between them, either ` − 1 is a descendant of ` or an ancestor of `. In the
former case (for example, when ` is 4 in Figure 6.5), we want to include all
ancestors of `−1 up to ` itself. Starting with

∑
iAi,`−1 gets all the ancestors

of ` − 1, and subtracting off
∑
iCi;`−1,` removes any common ancestors of

CHAPTER 6. RANDOMIZED SEARCH TREES 74

` − 1 and `. Alternatively, if ` − 1 is an ancestor of `, every ancestor of
`− 1 is also an ancestor of `, so the same expression

∑
iAi,`−1 −

∑
iCi;`−1,`

evaluates to zero.
It follows that the expected length of the right spine of the left subtree

is exactly

E
[
n∑
i=1

Ai,`−1 −
n∑
i=1

Ci;`−1,`

]
=

n∑
i=1

1
|i− `|+ 1 −

n∑
i=1

1
max(i, `)−min(i, `− 1) + 1

=
∑̀
i=1

1
`− i+ 1 +

n∑
i=`+1

1
i− `+ 1 −

`−1∑
i=1

1
`− i+ 1 −

n∑
i=`

1
i− (`− 1) + 1

=
∑̀
j=1

1
j

+
n−`+1∑
j=2

1
j
−
∑̀
j=2

1
j
−
n−`+2∑
j=2

1
j

= 1− 1
n− `+ 1 .

By symmetry, the expected length of the left spine of the right subtree
is 1− 1

` . So the total expected number of rotations needed to delete the `-th
element is

2− 1
`

+ 1
n− `+ 1 ≤ 2.

6.3.3 Other operations

Treaps support some other useful operations: for example, we can split a
treap into two treaps consisting of all elements less than and all elements
greater than a chosen pivot by rotating the pivot to the root (O(logn)
rotations on average, equal to the pivot’s expected depth as calculated in
§6.3.2.1) and splitting off the left and right subtrees. The reverse merging
operation has the same expected complexity.

6.4 Skip lists
A skip list [Pug90] is a randomized tree-like data structure based on linked
lists. It consists of a level 0 list that is an ordinary sorted linked list, together
with higher-level lists that contain a random sampling of the elements at
lower levels. When inserted into the level i list, an element flips a coin that
tells it with probability p to insert itself in the level i + 1 list as well. The
result is that the element is represented by a tower of nodes, one in each

CHAPTER 6. RANDOMIZED SEARCH TREES 75

3321 75 994813

13 33 48

33 LEVEL 2

LEVEL 0

LEVEL 1

HEAD TAIL

Figure 6.6: A skip list. The blue search path for 99 is superimposed on an
original image from [AS07].

of the bottom 1 + X many layers, where X is a geometrically-distributed
random variable. An example of a small skip list is shown in Figure 6.6.

Searches in a skip list are done by starting in the highest-level list and
searching forward for the last node whose key is smaller than the target;
the search then continues in the same way on the next level down. To
bound the expected running time of a search, it helps to look at this process
backwards; the reversed search path starts at level 0 and continues going
backwards until it reaches the first element that is also in a higher level; it
then jumps to the next level up and repeats the process. The nice thing
about this reversed process is that it has a simple recursive structure: if we
restrict a skip list to only those nodes to the left of and at the same level
or higher of a particular node, we again get a skip list. Furthermore, the
structure of this restricted skip list depends only on coin-flips taken at nodes
within it, so it’s independent of anything that happens elsewhere in the full
skip list.

We can analyze this process by tracking the number of nodes in the
restricted skip list described above, which is just the number of nodes in
the current level that are earlier than the current node. If we move left,
this drops by 1; if up, this drops to p times its previous value on average.
So the number of such nodes Xk after k steps satisfies E [Xk+1 | Xk] =
(1− p)(Xk − 1) + p(pE [Xk]) = (1− p+ p2)Xk − (1− p)2 ≤ (1− p+ p2)Xk,
and in general we get E [Xk] ≤ (1 − p + p2)kX0 = (1 − p + p2)n. (We can
substitute the rank of the starting node for n if we want a slightly tighter
bound.) This is minimized at p = 1/2, giving E [Xk] ≤ (3/4)kn, suspiciously
similar to the bound we computed before for random binary search trees.

When Xk = 0, our search is done, so if T is the time to search, we have
Pr [T ≥ k] = Pr [Xk ≥ 1] ≤ (3/4)kn, by Markov’s inequality. In particular,
if we want to guarantee that we finish with probability 1− ε, we need to run
for log4/3(n/ε) steps. This translates into an O(logn) bound on the search

CHAPTER 6. RANDOMIZED SEARCH TREES 76

time, and the constant is even the same as our (somewhat loose) bound for
treaps.

The space per element of a skip list also depends on p. Every element
needs one pointer for each level it appears in. This gives one pointer for
level 0, plus 1/(1 − p) pointers on average for the higher levels. space on
average for the higher levels. For constant p this is O(1). However, the space
cost can reduced (at the cost of increasing search time) by adjusting p. For
example, if space is at a premium, setting p = 1/10 produces 10/9 pointers
per node on average—not much more than in a linked list—but still gives
O(logn) search time. In general the trade-off is between n

(
1 + 1

1−p

)
total

expected space and log1/(1−p+p2)(n/ε) search time. The constant factor in
the search time is 1

− log(1−p+p2) , which for small p is approximately 1/p.
Like treaps, skip lists can be split an merged in a straightforward way.

The difference is that in a skip list, it’s enough to cut (or recreate) all the
pointers crossing the boundary, without changing the structure of the rest
of the list.

Chapter 7

Hashing

These are theoretical notes on hashing based largely on [MR95, §§8.4-8.5]
(which is in turn based on work of Carter and Wegman [CW77] on universal
hashing and Fredman, Komlós, and Szemerédi [FKS84] on O(1) worst-case
hashing); on [PR04] and [Pag06] for cuckoo hashing; and [MU05, §5.5.3] for
Bloom filters.

7.1 Hash tables
Here we review the basic idea of hash tables, which are implementations
of the dictionary data type mapping keys to values. The basic idea of hash
tables is usually attributed to Dumey [Dum56].1

Suppose we want to store n elements from a universe U of in a table
with keys or indices drawn from an index space M of size m. Typically
we assume U = [|U |] = {0 . . . |U | − 1} and M = [m] = {0 . . .m− 1}.

If |U | ≤ m, we can just use an array. Otherwise, we can map keys to
positions in the array using a hash function h : U →M . This necessarily
produces collisions: pairs (x, y) with h(x) = h(y), and any design of a
hash table must include some mechanism for handling keys that hash to the
same place. Typically this is a secondary data structure in each bin, but
we may also place excess values in some other place. Typical choices for
data structures are linked lists (separate chaining or just chaining) or
secondary hash tables (see §7.3 below). Alternatively, we can push excess

1Caveat: This article is pretty hard to find, so I am basing this citation on its fre-
quent appearance in later sources. This is generally a bad idea that would not really be
acceptable in an actual scholarly publication.

77

CHAPTER 7. HASHING 78

U Universe of all keys
S ⊆ U Set of keys stored in the table
n = |S| Number of keys stored in the table
M Set of table positions

m = |M | Number of table positions
α = n/m Load factor

Table 7.1: Hash table parameters

values into other positions in the same hash table (open addressing or
probing) or another hash table (see §7.4).

For all of these techniques, the cost will depend on how likely it is that
we get collisions. An adversary that knows our hash function can always
choose keys with the same hash value, but we can avoid that by choosing
our hash function randomly. Our ultimate goal is to do each search in
O(1 + n/m) expected time, which for n ≤ m will be much better than the
Θ(logn) time for pointer-based data structures like balanced trees or skip
lists. The quantity n/m is called the load factor of the hash table and is
often abbreviated as α.

All of this only works if we are working in a RAM (random-access ma-
chine model), where we can access arbitrary memory locations in time O(1)
and similarly compute arithmetic operations on O(log |U |)-bit values in time
O(1). There is an argument that in reality any actual RAMmachine requires
either Ω(logm) time to read one of m memory locations (routing costs) or,
if one is particularly pedantic, Ω(m1/3) time (speed of light + finite volume
for each location). We will ignore this argument.

We will try to be consistent in our use of variables to refer to the different
parameters of a hash table. Table 7.1 summarizes the meaning of these
variable names.

7.2 Universal hash families
A family of hash functionsH is 2-universal if for any x 6= y, Pr [h(x) = h(y)] ≤
1/m for a uniform random h ∈ H. It’s strongly 2-universal if for any
x1 6= x2 ∈ U , y1, y2 ∈M , Pr [h(x1) = y1 ∧ h(x2) = y2] = 1/m2 for a uniform
random h ∈ H. Another way to describe strong 2-universality is that the val-
ues of the hash function are uniformly distributed and pairwise-independent.

For k > 2, k-universal usually means strongly k-universal: Given
distinct x1 . . . xk, and any y1 . . . yk, Pr [h(xi) = yi)∀i] = m−k. This is equiv-

CHAPTER 7. HASHING 79

alent to uniform distribution and k-wise independence. It is possible to
generalize the weak version of 2-universality to get a weak version of k-
universality (Pr [h(xi)are all equal] ≤ m−(k−1)), but this generalization is
not as useful as strong k-universality.

To analyze universal hash families, it is helpful to have some notation
for counting collisions. Let δ(x, y, h) = 1 if x 6= y and h(x) = h(y), 0 other-
wise. Abusing notation, we also define, for sets X, Y , and H, δ(X,Y,H) =∑
x∈X,y∈Y,h∈H δ(x, y, h), with e.g. δ(x, Y, h) = δ({x} , Y, {h}). Now the

statement that H is 2-universal becomes ∀x, y : δ(x, y,H) ≤ |H| /m; this
says that only a fraction of 1/m of the functions in H cause any particular
distinct x and y to collide.

If H includes all functions U →M , we get equality: a random function
gives h(x) = h(y) with probability exactly 1/m. But we might do better if
each h tends to map distinct values to distinct places. The following lemma
shows we can’t do too much better:

Lemma 7.2.1. For any family H, there exist x, y such that δ(x, y,H) ≥
|H|
m

(
1− m−1

|U |−1

)
.

Proof. We’ll count collisions in the inverse image of each element z. Since
all distinct pairs of elements of h−1(z) collide with each other, we have

δ(h−1(z), h−1(z), h) =
∣∣∣h−1(z)

∣∣∣ · (∣∣∣h−1(z)
∣∣∣− 1

)
.

Summing over all z ∈M gets all collisions, giving

δ(U,U, h) =
∑
z∈M

(∣∣∣h−1(z)
∣∣∣ · (∣∣∣h−1(z)

∣∣∣− 1
))
.

Use convexity or Lagrange multipliers to argue that the right-hand side is
minimized subject to

∑
z

∣∣h−1(z)
∣∣ = |U | when all pre-images are the same

size |U | /m. It follows that

δ(U,U, h) ≥
∑
z∈M

|U |
m

(|U |
m
− 1

)

= m
|U |
m

(|U |
m
− 1

)
= |U |

m
(|U | −m).

If we now sum over all h, we get

δ(U,U,H) ≥ |H|
m
|U | (|U | −m).

CHAPTER 7. HASHING 80

There are exactly |U | (|U | − 1) ordered pairs x, y for which δ(x, y,H) might
not be zero; so the Pigeonhole principle says some pair x, y has

δ(x, y,H) ≥ |H|
m

(|U | (|U | −m)
|U | (|U | − 1)

)
= |H|

m

(
1− m− 1
|U | − 1

)
.

Since 1− m−1
|U |−1 is likely to be very close to 1, we are happy if we get the

2-universal upper bound of |H| /m.
Why we care about this: With a 2-universal hash family, chaining using

linked lists costs O(1+s/n) expected time per operation. The reason is that
the expected cost of an operation on some key x is proportional to the size
of the linked list at h(x) (plus O(1) for the cost of hashing itself). But the
expected size of this linked list is just the expected number of keys y in the
dictionary that collide with x, which is exactly sδ(x, y,H) ≤ s/n.

7.2.1 Example of a 2-universal hash family

Universal hash families often look suspiciously like classic pseudorandom
number generators. Here is a 2-universal hash family based on taking re-
mainders.

Lemma 7.2.2. Let hab(x) = (ax+b mod p) mod m, where a ∈ Zp−{0} , b ∈
Zp, and p is a prime ≥ m. Then {hab} is 2-universal.

Proof. Again, we count collisions. Split hab(x) as g(fab(x)) where fab(x) =
ax+ b mod p and g(x) = x mod m.

Claim: If x 6= y, then δ(x, y,H) = δ(Zp,Zp, g). Proof: Let r 6= s ∈ Zp.
Then ax+b = r and ay+b = s has a unique solution mod p (because Zp is a
finite field). This implies that for fixed x and y, (fab(x), fab(y)) is a bijection
between pairs a, b and pairs r, s and thus δ(x, y,H) =

∑
r 6=s δ(r, s, g) =

δ(Zp,Zp, g).
For fixed r, dp/me is an upper bound on the number of elements in

g−1(g(r)); subtract one to get the number of s that collide with r. So the
total number of collisions δ(Zp,Zp, g) ≤ p(dp/me − 1) ≤ p(p − 1)/m =
|H| /m.

A difficulty with this hash family is that it requires doing modular arith-
metic. A faster hash is given by Dietzfelbinger et al. [DHKP97], although it

CHAPTER 7. HASHING 81

requires a slight weakening of the notion of 2-universality. For each k and `
they define a class Hk,` of functions from [2k] to [2`] by defining

ha(x) = (ax mod 2k) div 2k−`,

where x div y = bx/yc. They prove [DHKP97, Lemma 2.4] that if a is a
random odd integer with 0 < a < 2`, and x 6= y, Pr [ha(x) = ha(y)] ≤ 2−`+1.
This increases by a factor of 2 the likelihood of a collision, but any extra
costs from this can often be justified in practice by the reduction in costs
from working with powers of 2.

If we are willing to use more randomness (and more space), a method
called tabulation hashing (§7.2.2) gives a simpler alternative that is 3-
universal.

7.2.2 Tabulation hashing

Tabulation hashing [CW77] is a method for hashing fixed-length strings
(or things that can be represented as fixed-length strings) into bit-vectors.
The description here follows Patrascu and Thorup [PT12].

Let c be the length of each string in characters, and let s be the size
of the alphabet. Initialize the hash function by constructing tables T1 . . . Tc
mapping characters to independent random bit-vectors of size lgm. Define

h(x) = T1[x1]⊕ T2[x2]⊕ . . . Tc[xc],

where ⊕ represents bitwise exclusive OR (what ^ does in C-like languages).
This gives a family of hash functions that is 3-wise independent but not

4-wise independent.
To show independence, the intuition is that if we can order the strings

x1, x2, . . . , xn that we are hashing so that each has a position ij such that
xji+j doesn’t appear in any of the previous values, then we have, for each
value v, Pr

[
h(xj) = v

∣∣∣ h(xj′ ,∀j′ < j
]

= 1/m. It follows that the hash val-
ues are independent:

Pr
[
h(x1

]
= v1, h(x2) = v2, . . . , h(xn) = vn) =

n∏
j=1

Pr
[
h(xj) = vj

∣∣∣ h(x1) = v1 . . . h(xj−1) = vj−1
]

= 1
mn

=
n∏
j=1

Pr
[
h(xj) = vj

]
.

CHAPTER 7. HASHING 82

Now we want to show that when n = 3, this actually works for all possible
distinct strings x, y, and z. Let S be the set of indices i such that yi 6= xi,
and similarly let T be the set of indices i such that zi 6= xi; note that both
sets must be non-empty, since y 6= x and z 6= x. If S \ T is nonempty, then
(a) there is some index i in T where zi 6= xi, and (b) there is some index j
in S \T where yi 6= xi = zi; in this case, ordering the strings as x, z, y gives
the independence property above. If T \ S is nonempty, order them as x, z,
y instead. Alternatively, if S = T , then yi 6= zi for some i in S (otherwise
y = z, since they both equal x on all positions outside S). In this case, xi,
yi, and zi are all distinct.

For n = 4, we can have strings aa, ab, ba, and bb. If we take the bitwise
exclusive OR of all four hash values, we get zero, because each character is
included exactly twice in each position. So the hash values are not indepen-
dent, and we do not get 4-independence in general.

However, even though tabulation hashing is not 4-independent, most
reasonably small sets of inputs do give independence. This can be used to
show various miraculous properties like it working well for cuckoo hashing.

7.3 FKS hashing
Goal is to hash a static set S so that we never pay more than constant time
for search (not just in expectation), while at the same time not consuming
too much space.

If we are lucky in our choice of S, we may be able to do this just by
hashing. A perfect hash function for a set S ⊆ U is a hash function
h : U → M that is injective on S (that is, x 6= y ⇒ h(x) 6= h(y) when
x, y ∈ S). Unfortunately, we can only count on finding a perfect hash
function if m is large:

Lemma 7.3.1. If H is 2-universal and |S| = n with n2 ≤ m, then there is
a perfect h ∈ H for S.

Proof. We’ll do the usual collision-counting argument. For all x 6= y, we
have δ(x, y,H) ≤ |H| /m. So δ(S, S,H) ≤ n(n− 1) |H| /m. The Pigeonhole
Principle says that there exists a particular h ∈ H with δ(S, S, h) ≤ n(n −
1)/m < n2/m ≤ 1. But δ(S, S, h) is an integer, so it can only be less than
1 by being equal to 0: no collisions.

Essentially the same argument shows that if n2 ≤ αm, then
Pr [h is perfect for S] ≥ 1 − α. This can be handy if we want to find a
perfect hash function and not just demonstrate that it exists.

CHAPTER 7. HASHING 83

Using a perfect hash function, we get O(1) search time using O(n2) space.
But we can do better by using perfect hash functions only at the second
level of our data structure, which at top level will just be an ordinary hash
table. This is the idea behind the Fredman-Komlós-Szemerédi (FKS) hash
table [FKS84].

The short version is that we hash to n = |S| bins, then rehash perfectly
within each bin. The top-level hash table stores a pointer to a header for
each bin, which gives the size of the bin and the hash function used within
it. The i-th bin, containing ni elements, uses O(n2

i) space to allow perfect
hashing. The total size is O(n) as long as we can show that

∑n
i=1 n

2
i = O(n).

The time to do a search is O(1) in the worst case: O(1) for the outer hash
plus O(1) for the inner hash.
Theorem 7.3.2. The FKS hash table uses O(n) space.
Proof. Suppose we choose h ∈ H as the outer hash function, where H is
some 2-universal family of hash functions. Compute:

n∑
i=1

n2
i =

n∑
i=1

(ni + ni(ni − 1))

= n+ δ(S, S, h).

Since H is 2-universal, we have δ(S, S,H) ≤ |H| s(s − 1)/n. But then
the Pigeonhole principle says there exists some h ∈ H with δ(S, S, h) ≤

1
|H|δ(S, S,H) ≤ n(n − 1)/n = n − 1. This gives

∑n
i=1 n

2
i ≤ n + (n − 1) =

2n− 1 = O(n).

If we want to find a good h quickly, increasing the size of the outer table
to n/α gives us a probability of at least 1 − α of getting a good one, using
essentially the same argument as for perfect hash functions.

7.4 Cuckoo hashing
Goal: Get O(1) search time in a dynamic hash table at the cost of a messy
insertion procedure. In fact, each search takes only two reads, which can be
done in parallel; this is optimal by a lower bound of Pagh [Pag01], which
shows a matching upper bound for static dictionaries. Cuckoo hashing is
an improved version of this result that allows for dynamic insertions.

Cuckoo hashing was invented by Pagh and Rodler [PR04]; the version
described here is based on a simplified version from notes of Pagh [Pag06]
(the main difference is that it uses just one table instead of the two tables—
one for each hash function—in [PR04]).

CHAPTER 7. HASHING 84

7.4.1 Structure

We have a table T of size n, with two separate, independent hash functions h1
and h2. These functions are assumed to be k-universal for some sufficiently
large value k; as long as we never look at more than k values at once, this
means we can treat them effectively as random functions. In practice, using
crummy hash functions seems to work just fine, a common property of hash
tables. There are also specific hash functions that have been shown to work
with particular variants of cuckoo hashing [PR04, PT12]. We will avoid
these issues by assuming that our hash functions are actually random.

Every key x is stored either in T [h1(x)] or T [h2(x)]. So the search
procedure just looks at both of these locations and returns whichever one
contains x (or fails if neither contains x).

To insert a value x1 = x, we must put it in T [h1(x1)] or T [h2(x1)]. If one
or both of these locations is empty, we put it there. Otherwise we have to
kick out some value that is in the way (this is the “cuckoo” part of cuckoo
hashing, named after the bird that leaves its eggs in other birds’ nests). We
do this by letting x2 = T [h1(x1)] and writing x1 to T [h1(x1)]. We now have
a new “nestless” value x2, which we swap with whatever is in T [h2(x2)]. If
that location was empty, we are done; otherwise, we get a new value x3 that
we have to put in T [h1(x3)] and so on. The procedure terminates when we
find an empty spot or if enough iterations have passed that we don’t expect
to find an empty spot, in which case we rehash the entire table. This process
can be implemented succinctly as shown in Algorithm 7.1.

A detail not included in the above code is that we always rehash (in
theory) after m2 insertions; this avoids potential problems with the hash
functions used in the paper not being universal enough. We will avoid this
issue by assuming that our hash functions are actually random (instead of
being approximately n-universal with reasonably high probability). For a
more principled analysis of where the hash functions come from, see [PR04].
An alternative hash family that is known to work for a slightly different
variant of cuckoo hashing is tabulation hashing [PT12]; see §7.2.2.

7.4.2 Analysis

The main question is how long it takes the insertion procedure to terminate,
assuming the table is not too full.

First let’s look at what happens during an insert if we have a lot of
nestless values. We have a sequence of values x1, x2, . . . , where each pair of
values xi, xi+1 collides in h1 or h2. Assuming we don’t reach the loop limit,

CHAPTER 7. HASHING 85

procedure insert(x)1
if T (h1(x) = x or T (h2(x)) = x then2

return3

pos← h1(x)4
for i← 1 . . . n do5

if T [pos] = ⊥ then6
T [pos]← x7
return8

x� T [pos]9
if pos = h1(x) then10

pos← h2(x)11
else12

pos← h1(x)13

If we got here, rehash the table and reinsert x.14

Algorithm 7.1: Insertion procedure for cuckoo hashing. Adapted
from [Pag06]

there are three main possibilities (the leaves of the tree below):

1. Eventually we reach an empty position without seeing the same key
twice.

2. Eventually we see the same key twice; there is some i and j > i such
that xj = xi. Since xi was already moved once, when we reach it
the second time we will try to move it back, displacing xi−1. This
process continues until we have restored x2 to T [h1(x1)], displacing x1
to T [h2(x1)] and possibly creating a new sequence of nestless values.
Two outcomes are now possible:

(a) Some x` is moved to an empty location. We win!
(b) Some x` is moved to a location we’ve already looked at. We lose!

In this case we are playing musical chairs with more players than
chairs, and have to rehash.

Let’s look at the probability that we get the last, closed loop case. Fol-
lowing Pagh-Rodler, we let v be the number of distinct nestless keys in the
loop. We can now count how many different ways such a loop can form.

CHAPTER 7. HASHING 86

There are at most v3 choices for i, j, and `, mv−1 choices of cells for the
loop, and nv−1 choices for the non-x1 elements of the loop. For each non-xi
element, its initial placement may determined by either h1 or h2; this gives
another 2v−1 choices.2 This gives a total of v3(2nm)v−1 possible closed loops
with v distinct nodes.

For each particular loop, we have 2v collisions each of which occurs with
probability m−1, giving a probability that that loop occurs of m−2v. So the
total probability of hitting a closed loop is less than v3(2nm)v−1m−2v =
v3(2n/m)v−1m−2. Summing this over all v gives 1

m2
∑n
v=1 v

3(2n/m)v =
O(m−2) when 2n/m is a constant less than 1. Since the cost of hitting a
closed loop is O(n+m), this adds O(1) to the insertion complexity.

Now we look at what happens if we don’t get a closed loop. It’s a little
messy to analyze the behavior of keys that appear more than once in the
sequence, so the trick used in the paper is to observe that for any sequence of
nestless keys x1 . . . xp, there is a subsequence of size p/3 with no repetitions
that starts with x1. Since there are only two subsequences that start with
x1 (we can’t have the same key show up more than twice), this will either
be x1 . . . xj−1 or x1 = xi+j−1 . . . xp, and a case analysis shows that at least
one of these will be big. We can then argue that the probability that we
get a sequence of v distinct keys starting with x1 in T is at most 2(n/m)v−1

(since we have to hit a nonempty spot, with probability at most n/m, at
each step, but there are two possible starting locations), which gives an
expected insertion time bounded by

∑
3v(n/m)v−1 = O(1).

An annoyance with cuckoo hashing is that it has high space overhead
compared to more traditional hash tables: in order for the analysis above to
work, the table must be at least half empty. This can be avoided at the cost
of increasing the time complexity by choosing between d locations instead of
2. This technique, due to Fotakis et al. [FPSS03], is known as d-ary cuckoo
hashing; for suitable choice of d it uses (1 + ε)n space and guarantees that
a lookup takes O(1/ε) probes while insertion takes (1/ε)O(log log(1/ε)) steps in
theory and appears to take O(1/ε) steps in experiments done by the authors.

7.5 Practical issues
For large hash tables, local probing schemes are faster, because it is likely
that all of the locations probed to find a particular value will be on the
same virtual memory page. This means that a search for a new value usu-

2The original analysis in [PR04] avoids this by alternating between two tables, so that
we can determine which of h1 or h2 is used at each step by parity.

CHAPTER 7. HASHING 87

ally requires one cache miss instead of two. Hopscotch hashing [HST08]
combines ideas from linear probing and cuckoo hashing to get better perfor-
mance than both in practice.

Hash tables that depend on strong properties of the hash function may
behave badly if the user supplies a crummy hash function. For this reason,
many library implementations of hash tables are written defensively, using
algorithms that respond better in bad cases. See http://svn.python.org/
view/python/trunk/Objects/dictobject.c for an example of a widely-
used hash table implementation chosen specifically because of its poor the-
oretical characteristics.

7.6 Bloom filters
See [MU05, §5.5.3] for basics and a formal analysis or http://en.wikipedia.
org/wiki/Bloom_filter for many variations and the collective wisdom of
the unwashed masses. The presentation here mostly follows [MU05].

Bloom filters are a highly space-efficient randomized data structure
invented by Burton H. Bloom [Blo70] that store sets of data, with a small
probability that elements not in the set will be erroneously reported as being
in the set.

Suppose we have k independent hash functions h1, h2, . . . , hk. Our mem-
ory store A is a vector of m bits, all initially zero. To store a key x, set
A[hi(x)] = 1 for all i. To test membership for x, see if A[hi(x)] = 1 for all
i. The membership test always gives the right answer if x is in fact in the
Bloom filter. If not, we might decide that x is in the Bloom filter anyway.

7.6.1 False positives

The probability of such false positives can be computed in two steps: first,
we estimate how many of the bits in the Bloom filter are set after inserting
n values, and then we use this estimate to compute a probability that any
fixed x shows up when it shouldn’t.

If the hi are close to being independent random functions,3 then with n
entries in the filter we have Pr [A[i] = 1] = 1 − (1 − 1/m)kn, since each of
the kn bits that we set while inserting the n values has one chance in m of
hitting position i.

3We are going sidestep the rather deep swamp of how plausible this assumption is
and what assumption we should be making instead; however, it is known [KM08] that
starting with two sufficiently random-looking hash functions h and h′ and setting hi(x) =
h(x) + ih′(x) works.

http://svn.python.org/view/python/trunk/Objects/dictobject.c
http://svn.python.org/view/python/trunk/Objects/dictobject.c
http://en.wikipedia.org/wiki/Bloom_filter
http://en.wikipedia.org/wiki/Bloom_filter

CHAPTER 7. HASHING 88

We’d like to simplify this using the inequality 1 + x ≤ ex, but it goes
in the wrong direction; instead, we’ll use 1 − x ≥ e−x−x

2 , which holds for
0 ≤ x ≤ 0.683803 and in our application holds for m ≥ 2. This gives

Pr [A[i] = 1] ≤ 1− (1− 1/m)kn

≤ 1− e−k(n/m)(1+1/m)

= 1− e−kα(1+1/m)

= 1− e−kα′

where α = n/m is the load factor and α′ = α(1 + 1/m) is the load factor
fudged upward by a factor of 1 + 1/m to make the inequality work.

Suppose now that we check to see if some value x that we never inserted
in the Bloom filter appears to be present anyway. This occurs if A[hi(x)] = 1
for all i. Since each hi(x) is assumed to be an independent uniform probe
of A, the probability that they all come up 1 conditioned on A is(∑

A[i]
m

)k
. (7.6.1)

We have an upper bound E [
∑
A[i]] ≤ m

(
1− e−kα′

)
, and if we were born

luckier might be able to get an upper bound on the expectation of (7.6.1)
by applying Jensen’s inequality to the function f(x) = xk. But sadly this
inequality also goes in the wrong direction, because f is convex for k > 1.
So instead we will prove a concentration bound on S =

∑
A[i].

Because the A[i] are not independent, we can’t use off-the-shelf Chernoff
bounds. Instead, we rely on McDiarmid’s inequality. Our assumption is
that the locations of the kn ones that get written to A are independent.
Furthermore, changing the location of one of these writes changes S by
at most 1. So McDiarmid’s inequality (5.3.10) gives Pr [S ≥ E [S] + t] ≤
e−2t2/kn, which is bounded by n−c for t ≥

√
1
2ckn logn. So as long as a

reasonably large fraction of the array is likely to be full, the relative error
from assuming S = E [S] is likely to be small. Alternatively, if the array is
mostly empty, then we don’t care about the relative error so much because
the probability of getting a false positive will already be exponentially small
as a function of k.

So let’s assume for simplicity that our false positive probability is exactly
(1 − e−kα

′)k. We can choose k to minimize this quantity for fixed α′ by
doing the usual trick of taking a derivative and setting it to zero; to avoid
weirdness with the k in the exponent, it helps to take the logarithm first

CHAPTER 7. HASHING 89

(which doesn’t affect the location of the minimum), and it further helps to
take the derivative with respect to x = e−α

′k instead of k itself.
This gives

d

dx
ln
(
(1− x)k

)
= d

dx
k ln(1− x)

= d

dx
− 1
α′

ln x ln(1− x)

= − 1
α′

(ln(1− x)
x

− ln x
1− x

)
.

Setting this to zero gives (1− x) ln(1− x) = x ln x, which by symmetry
has the unique solution x = 1/2, giving k = 1

α′ ln 2.
In other words, to minimize the false positive rate for a known load factor

α, we want to choose k = 1
α′ ln 2 = 1

α(1+1/m) ln 2, which makes each bit one
with probability approximately 1 − e− ln 2 = 1

2 . This makes intuitive sense,
since having each bit be one or zero with equal probability maximizes the
entropy of the data.

The probability of a false positive is then 2−k = 2− ln 2/α′ . For a given
maximum false positive rate ε, and assuming optimal choice of k, we need
to keep α′ ≤ ln2 2

ln(1/ε) or α ≤ ln2 2
(1+1/m) ln(1/ε) .

Alternatively, if we fix ε and n, we need m/(1 + 1/m) ≥ n · ln(1/ε)
ln2 2 ≈

1.442n lg(1/ε), which works out to m ≥ 1.442n lg(1/ε) +O(1). This is very
good for constant ε.

Note that for this choice of m, we have α = O(1/ ln(1/ε)), giving k =
O(log log(1/ε)). So for polynomial ε, we get k = O(log logn). This means
that not only do we use little space, but we also have very fast lookups
(although not as fast as the O(1) cost of a real hash table).

7.6.2 Comparison to optimal space

If we wanted to design a Bloom-filter-like data structure from scratch and
had no constraints on processing power, we’d be looking for something that
stored an index of size lgM into a family of subsets S1, S2, . . . SM of our
universe of keys U , where |Si| ≤ ε |U | for each i (giving the upper bound on
the false positive rate) and for any set A ⊆ U of size n, A ⊆ Si for at least
one Si (allowing us to store A).

Let N = |U |. Then each set Si covers
(εN
n

)
of the

(N
n

)
subsets of size n. If

we could get them to overlap optimally (we can’t), we’d still need a minimum
of
(N
n

)/(εN
n

)
= (N)n/(εN)n ≈ (1/ε)n sets to cover everybody, where the

CHAPTER 7. HASHING 90

approximation assumes N � n. Taking the log gives lgM ≈ n lg(1/ε),
meaning we need about lg(1/ε) bits per key for the data structure. Bloom
filters use 1/ ln 2 times this.

There are known data structures that approach this bound asymptoti-
cally; see Pagh et al. [PPR05]. These also have other desirable properties,
like supporting deletions and faster lookups if we can’t look up bits in par-
allel. As far as I know, they are not used much in practice.

7.6.3 Applications

Bloom filters are popular in networking and database systems because they
can be used as a cheap test to see if some key is actually present in a
data structure that it’s otherwise expensive to search in. Bloom filters are
particular nice in hardware implementations, since the k hash functions can
be computed in parallel.

An example is the Bloomjoin in distributed databases [ML86]. Here
we want to do a join on two tables stored on different machines (a join is an
operation where we find all pairs of rows, one in each table, that match on
some common key). A straightforward but expensive way to do this is to
send the list of keys from the smaller table across the network, then match
them against the corresponding keys from the larger table. If there are ns
rows in the smaller table, nb rows in the larger table, and j matching rows
in the larger table, this requires sending n keys plus j rows. If instead we
send a Bloom filter representing the set of keys in the smaller table, we only
need to send lg(1/ε)/ ln 2 bits for the Bloom filter plus and extra εnb rows
on average for the false positives. This can be cheaper than sending full keys
across if the number of false positives is reasonably small.

7.6.4 Counting Bloom filters

It’s not hard to modify a Bloom filter to support deletion. The basic trick is
to replace each bit with a counter, so that whenever a value x is inserted, we
increment A[hi(x)] for all i and when it is deleted, we decrement the same
locations. The search procedure now returns miniA[hi(x)] (which means
that it principle it can even report back multiplicities, though with some
probability of reporting a value that is too high). To avoid too much space
overhead, each array location is capped at some small maximum value c;
once it reaches this value, further increments have no effect. The resulting
structure is called a counting Bloom filter, due to Fan et al. [FCAB00].

We’d only expect this to work if our chances of hitting the cap is small.

CHAPTER 7. HASHING 91

Fan et al. observe that the probability that the m table entries include one
that is at least c after n insertions is bounded by

m

(
nk

c

)
1
mc
≤ m

(
enk

c

)c 1
mc

= m

(
enk

cm

)c
= m(ekα/c)c.

(This uses the bound
(n
k

)
≤
(
en
k

)k, which follows from Stirling’s formula.)
For k = 1

α ln 2, this is m(e ln 2/c)c. For the specific value of c = 16
(corresponding to 4 bits per entry), they compute a bound of 1.37×10−15m,
which they argue is minuscule for all reasonable values of m (it’s a systems
paper).

The possibility that a long chain of alternating insertions and deletions
might produce a false negative due to overflow is considered in the paper,
but “the probability of such a chain of events is so low that it is much
more likely that the proxy server would be rebooted in the meantime and
the entire structure reconstructed.” An alternative way of dealing with this
problem is to never decrement a maxed-out register; this never produces
a false negative, but may cause the filter to slowly fill up with maxed-out
registers, producing a higher false-positive rate.

A fancier variant of this idea is the spectral Bloom filter [CM03],
which uses larger counters to track multiplicities of items. The essential
idea here is that we can guess that the number of times a particular value
x was inserted is equal to minmi=1A[hi(x)]), with some extra tinkering to
detect errors based on deviations from the typical joint distribution of the
A[hi(x)] values.

7.6.5 Count-min sketches

An idea similar to counting Bloom filters is used in data stream com-
putation. In this model, we are given a huge flood of data—far too big
to store—in a single pass, and want to incrementally build a small data
structure, called a sketch, that will allow us to answer statistical questions
about the data after we’ve processed it all. The motivation is the existence
of data sets that are too large to store at all (network traffic statistics), or
too large to store in fast memory (very large database tables). By building
a sketch we can make one pass through the data set but answer queries after
the fact, with some loss of accuracy.

CHAPTER 7. HASHING 92

An example of a problem in this model is that we are presented with a
sequence of pairs (it, ct) where 1 ≤ it ≤ n is an index and ct is a count, and
we want to concstruct a sketch that will allows us to approximately answer
statistical queries about the vector a given by ai =

∑
t,i[t]=i ct. The size of

the sketch should be polylogarithmic in the size of a and the length of the
stream, and polynomial in the error bounds. Updating the sketch given a
new data point should be cheap.

A solution to this problem is given by the count-min sketch of Cor-
mode and Muthukrishnan [CM05] (see also [MU05, §13.4]). This gives ap-
proximations of ai,

∑r
i=` ai, and a · b (for any fixed b), and can be used for

more complex tasks like finding heavy hitters—indices with high weight.
The easiest case is approximating ai when all the ct are non-negative, so
we’ll start with that.

7.6.5.1 Initialization and updates

To construct a count-min sketch, build a two-dimensional array c with depth
d = dln(1/δ)e and width w = de/εe, where ε is the error bound and δ is
the probability of exceeding the error bound. Choose d independent hash
functions from some 2-universal hash family; we’ll use one of these hash
function for each row of the array. Initialize c to all zeros.

The update rule: Given an update (it, ct), increment c[j, hj(it)] by ct for
j = 1 . . . d. (This is the count part of count-min.)

7.6.5.2 Queries

Let’s start with point queries. Here we want to estimate ai for some fixed
i. There are two cases, depending on whether the increments are all non-
negative, or arbitrary. In both cases we will get an estimate whose error is
linear in both the error parameter ε and the `1-norm ‖a‖1 =

∑
i |ai| of a.

It follows that the relative error will be low for heavy points, but we may
get a large relative error for light points (and especially large for points that
don’t appear in the data set at all).

For the non-negative case, to estimate ai, compute âi = minj c[j, hj(i)].
(This is the min part of coin-min.) Then:

Lemma 7.6.1. When all ct are non-negative, for âi as defined above:

âi ≥ ai, (7.6.2)

CHAPTER 7. HASHING 93

and

Pr [âi ≤ ai + ε ‖a‖1] ≥ 1− δ. (7.6.3)

Proof. The lower bound is easy. Since for each pair (i, ct) we increment each
c[j, hj(i)] by ct, we have an invariant that ai ≤ c[j, hj(i)] for all j throughout
the computation, which gives ai ≤ âi = minj c[j, hj(i)].

For the upper bound, let Iijk be the indicator for the event that (i 6=
k) ∧ (hj(i) = hj(k)), i.e., that we get a collision between i and k using hj .
The 2-universality property of the hj gives E [Iijk] ≤ 1/w ≤ ε/e.

Now let Xij =
∑n
k=1 Iijkak. Then c[j, hj(i)] = ai + Xij . (The fact that

Xij ≥ 0 gives an alternate proof of the lower bound.) Now use linearity of
expectation to get

E [Xij] = E
[
n∑
k=1

Iijkak

]

=
n∑
k=1

ak E [Iijk]

≤
n∑
k=1

ak(ε/e)

= (ε/e) ‖a‖1 .

So Pr [c[j, hj(i)] > ai + ε ‖a‖1] = Pr [Xij > eE [Xij]] < 1/e, by Markov’s in-
equality. With d choices for j, and each hj chosen independently, the proba-
bility that every count is too big is at most (1/e)−d = e−d ≤ exp(− ln(1/δ)) =
δ.

Now let’s consider the general case, where the increments ct might be
negative. We still initialize and update the data structure as described in
§7.6.5.1, but now when computing âi, we use the median count instead of
the minimum count: âi = median {c[j, hj(i)] | j = 1 . . . n}. Now we get:

Lemma 7.6.2. For âi as defined above,

Pr [ai − 3ε ‖a‖1 ≤ âi ≤ ai + 3ε ‖a‖1] > 1− δ1/4. (7.6.4)

CHAPTER 7. HASHING 94

Proof. We again define the error term Xij as above, and observe that

E [|Xij |] = E
[∣∣∣∣∣∑

k

Iijkak

∣∣∣∣∣
]

≤
n∑
k=1
|ak E [Iijk]|

≤
n∑
k=1
|ak| (ε/e)

= (ε/e) ‖a‖1 .

Using Markov’s inequality, we get Pr [|Xij |] > 3ε ‖a‖1] = Pr [|Xij | > 3eE [Xij]] <
1/3e < 1/8. In order for the median to be off by more than 3ε ‖a‖1, we need
d/2 of these low-probability events to occur. The expected number that oc-
cur is µ = d/8, so applying the standard Chernoff bound (5.2.1) with δ = 3
we are looking at

Pr [S ≥ d/2] = Pr [S ≥ (1 + 3)µ]
≤ (e3/44)d/8

≤ (e3/8/2)ln(1/δ)

= δln 2−3/8

< δ1/4

(the actual exponent is about 0.31, but 1/4 is easier to deal with). This
immediately gives (7.6.4).

One way to think about this is that getting an estimate within ε ‖a‖1 of
the right value with probability at least 1−δ requires 3 times the width and
4 times the depth—or 12 times the space and 4 times the time—when we
aren’t assuming increments are non-negative.

Next, we consider inner products. Here we want to estimate a·b, where a
and b are both stored as count-min sketches using the same hash functions.
The paper concentrates on the case where a and b are both non-negative,
which has applications in estimating the size of a join in a database. The
method is to estimate a · b as minj

∑w
k=1 ca[j, k] · cb[j, k].

For a single j, the sum consists of both good values and bad collisions; we
have

∑w
k=1 ca[j, k] · cb[j, k] =

∑n
k=1 aibi +

∑
p 6=q,hj(p)=hj(q) apbq. The second

CHAPTER 7. HASHING 95

term has expectation∑
p 6=q

Pr [hj(p) = hj(q)] apbq ≤
∑
p 6=q

(ε/e)apbq

≤
∑
p,q

(ε/e)apbq

≤ (ε/e) ‖a‖1 ‖b‖1 .

As in the point-query case, we get probability at most 1/e that a single j
gives a value that is too high by more than ε ‖a‖1 ‖b‖1, so the probability
that the minimum value is too high is at most e−d ≤ δ.

7.6.5.3 Finding heavy hitters

Here we want to find the heaviest elements in the set: those indices i for
which ai exceeds φ ‖a‖1 for some constant threshold φ. The easy case is
when increments are non-negative (for the general case, see the paper), and
uses a method from a previous paper by Charikar et al. [CCFC04]. Instead
of trying to find the elements after the fact, we extend the data structure
and update procedure to track all the heavy elements found so far (stored
in a heap), as well as ‖a‖1 =

∑
ct. When a new increment (i, c) comes in,

we first update the count-min structure and then do a point query on ai; if
âi ≥ φ ‖a‖1, we insert i into the heap, and if not, we delete i along with any
other value whose stored point-query estimate has dropped below threshold.

The trick here is that the threshold φ ‖a‖1 only increases over time (re-
member that we are assuming non-negative increments). So if some element
i is below threshold at time t, it can only go above threshold if it shows up
again, and we have a probability of at least 1− δ of including it then.

The total space cost for this data structure is the cost of the count-min
structure plus the cost of the heap; this last part will be O((1 + ε)/φ) with
high probability, since this is the maximum number of elements that have
weight at least φ ‖a‖1 /(1 + ε), the minimum needed to get an apparent
weight of φ ‖a‖1 even after taking into account the error in the count-min
structure.

7.7 Locality-sensitive hashing
Locality-sensitive hashing was invented by Indyk and Motwani [IM98] to
solve the problem of designing a data structure that finds approximate near-
est neighbors to query points in high dimension. We’ll mostly be following
this paper in this section, concentrating on the hashing parts.

CHAPTER 7. HASHING 96

7.7.1 Approximate nearest neighbor search

In the nearest neighbor search problem (NNS for short), we are given
a set of n points P in a metric space with distance function d, and we want
to construct a data structure that allows us to quickly find the closet point
in P to any given query point. Indyk and Motwani were particularly in-
terested in what happens in Rd for high dimension d under various natural
metrics. Because the volume of a ball in a high-dimensional space grows
exponentially with the dimension, this problem suffers from the curse of
dimensionality[Bel57]: simple techniques based on, for example, assigning
points in P to nearby locations in a grid may require searching exponen-
tially many grid locations. Indyk and Motwani deal with this through a
combination of randomization and solving the weaker problem of ε-nearest
neighbor search (ε-NNS), where it’s OK to return a different point p′ as
long as d(q, p′) ≤ (1 + ε) minp∈P d(q, p).

This problem can be solved by reduction to a simpler problem called ε-
point location in equal balls or ε-PLEB. In this problem, we are given
n radius-r balls centered on points in a set C, and we want a data structure
that returns a point c′ ∈ C with d(q, c′) ≤ (1 + ε)r if there is at least one
point c with d(q, c) ≤ r. If there is no such point, the data structure may or
may not return a point (it’s allowed to say no).

The easy reduction is to use binary search. Let R = maxx,y∈P d(x,y)
minx,y∈P,x 6=y d(x,y) .

Given a point q, look for the minimum ` ∈
{
(1 + ε)0, (1 + ε)1, . . . , R

}
for

which an ε-PLEB data structure with radius ` and centers P returns a
point p with d(q, p) ≤ (1 + ε)`; then return this point as the approximate
nearest neighbor.

This requires O(log1+εR) instances of the ε-PLEB data structure and
O(log log1+εR) queries. The blowup as a function of R can be avoided
using a more sophisticated data structure called a ring-cover tree, defined
in the paper. We won’t talk about ring-cover trees because they are (a)
complicated and (b) not randomized. Instead, we’ll move directly to the
question of how we solve ε-PLEB.

7.7.1.1 Locality-sensitive hash functions

Definition 7.7.1 ([IM98]). A family of hash functions H is (r1, r2, p1, p2)-
sensitive for d if, for any points p and q, if h is chosen uniformly from
H,

1. If d(p, q) ≤ r1, then Pr [h(p) = h(q)] ≥ p1, and

CHAPTER 7. HASHING 97

2. If d(p, q) > r2, then Pr [h(p) = h(q)] ≤ p2.

These are useful if p1 > p2 and r1 < r2; that is, we are more likely to hash
inputs together if they are closer. Ideally, we can choose r1 and r2 to build
ε-PLEB data structures for a range of radii sufficient to do binary search as
described above (or build a ring-cover tree if we are doing it right). For the
moment, we will aim for an (r1, r2)-PLEB data structure, which returns a
point within r1 with high probability if one exists, and never returns a point
farther away than r2.

There is some similarity between locality-sensitive hashing and a more
general dimension-reduction technique known as the Johnson-Lindenstrauss
theorem [JL84]; this says that projecting n points in a high-dimensional
space to O(ε−2 logn) dimensions using an appropriate random matrix pre-
serves `2 distances between the points to within relative error ε (in fact,
even a random matrix with ±1 entries is enough [Ach03]). Unfortunately,
dimension reduction by itself is not enough to solve approximate nearest
neighbors in sublinear time, because we may still need to search a number
of boxes exponential in O(ε−2 logn), which will be polynomial in n.

7.7.1.2 Constructing an (r1, r2)-PLEB

The first trick is to amplify the difference between p1 and p2 so that we can
find a point within r1 of our query point q if one exists. This is done in three
stages: First, we concatenate multiple hash functions to drive the probability
that distant points hash together down until we get few collisions: the idea
here is that we are taking the AND of the events that we get collisions in the
original hash function. Second, we hash our query point and target points
multiple times to bring the probability that nearby points hash together up:
this is an OR. Finally, we iterate the procedure to drive down any remaining
probability of failure below a target probability δ: another AND.

For the first stage, let k = log1/p2 n and define a composite hash function
g(p) = (h1(p) . . . hk(p)). If d(p, q) > r2, Pr [g(p) = g(q)] ≤ pk2 = p

log1/p2 n

2 =
1/n. Adding this up over all n points in our data structure gives us an
expected 1 false match for q.

However, we may also not be able to find the correct match for q, since
p1 may not be all that much larger than p2. For this, we do a second round
of amplification, where now we are taking the OR of events we want instead
of the AND of events we don’t want.

Let ` = nρ, where ρ = log(1/p1)
log(1/p2) = log p1

log p2
, and choose hash functions

g1 . . . g` independently as above. To store a point p, put it in a bucket for

CHAPTER 7. HASHING 98

gj(p) for each j; these buckets are themselves stored in a hash table (by
hashing the value of gj(p) down further) so that they fit in O(n) space.
Suppose now that d(p, q) ≤ r1 for some p. Then

Pr [gj(p) = gj(q)] ≥ pk1
= p

log1/p2 n

1

= n
− log 1/p1

log 1/p2

= n−ρ

= 1/`.

So by searching through ` independent buckets we find p with probability
at least 1 − (1 − 1/`)` = 1 − 1/e + o(1). We’d like to guarantee that we
only have to look at O(nρ) points (most of which we may reject) during this
process; but we can do this by stopping if we see more than 2` points. Since
we only expect to see ` bad points in all ` buckets, this event only happens
with probability 1/2. So even adding it to the probability of failure from the
hash functions not working right we still have only a constant probability of
failure 1/e+ 1/2 + o(1).

Iterating the entire process O(log(1/δ)) times then gives the desired
bound δ on the probability that this process fails to find a good point if
one exists.

Multiplying out all the costs gives a cost of a query of O(k` log(1/δ)) =
O
(
nρ log1/p2 n log(1/δ)

)
hash function evaluations and O(nρ log(1/δ)) dis-

tance computations. The cost to insert a point is just O(k` log(1/δ)) =
O
(
nρ log1/p2 n log(1/δ)

)
hash function evaluations, the same number as for

a query.

7.7.1.3 Hash functions for Hamming distance

Suppose that our points are d-bit vectors and that we use Hamming dis-
tance for our metric. In this case, using the family of one-bit projections
{hi | hi(x) = xi} gives a locality-sensitive hash family [ABMRT96].

Specifically, we can show this family is (r, r(1 + ε), 1 − r
d , 1 −

r(1+ε)
d)-

sensitive. The argument is trivial: if two points p and q are at distance r
or less, they differ in at most r places, so the probability that they hash
together is just the probability that we don’t pick one of these places, which
is at least 1− r

d . Essentially the same argument works when p and q are far
away.

CHAPTER 7. HASHING 99

These are not particularly clever hash functions, so the heavy lifting will
be done by the (r1, r2)-PLEB construction. Our goal is to build an ε-PLEB
for any fixed r, which will correspond to an (r, r(1 + ε))-PLEB. The main
thing we need to do, following [IM98] as always, is compute a reasonable
bound on ρ = log p1

log p2
= ln(1−r/d)

ln(1−(1+ε)r/d) . This is essentially just a matter of
hitting it with enough inequalities, although there are a couple of tricks in
the middle.

Compute

ρ = ln(1− r/d)
ln(1− (1 + ε)r/d)

= (d/r) ln(1− r/d)
(d/r) ln(1− (1 + ε)r/d)

= ln((1− r/d)d/r)
ln((1− (1 + ε)r/d)d/r)

≤ ln(e−1(1− r/d))
ln e−(1+ε)

= −1 + ln(1− r/d)
−(1 + ε)

= 1
1 + ε

− ln(1− r/d)
1 + ε

. (7.7.1)

Note that we used the fact that 1 + x ≤ ex for all x in the denominator
and (1− x)1/x ≥ e−1(1− x) for x ∈ [0, 1] in the numerator. The first fact is
our usual favorite inequality.

The second can be proved in a number of ways. The most visually
intuitive is that (1 − x)1/x and e−1(1 − x) are equal at x = 1 and equal
in the limit as x goes to 0, while (1 − x)1/x is concave in between 0 and
1 and e−1(1 − x) is linear. Unfortunately it is rather painful to show that
(1 − x)1/x is in fact concave. An alternative is to rewrite the inequality
(1− x)1−x ≥ e−1(1− x) as (1− x)1/x−1 ≥ e−1, apply a change of variables
y = 1/x to get (1 − 1/y)y−1 ≥ e−1 for y ∈ [1,∞), and then argue that (a)
equality holds in the limit as y goes to infinity, and (b) the left-hand-side is

CHAPTER 7. HASHING 100

a nonincreasing function, since

d

dy
ln
(
(1− 1/y)y−1

)
= d

dy
[(y − 1) (ln(y − 1)− ln y)]

= ln(1− 1/y) + (y − 1)
(1
y − 1 −

1
y

)
= ln(1− 1/y) + 1− (1− 1/y)
= ln(1− 1/y) + 1/y
≤ −1/y + 1/y
= 0.

We now return to (7.7.1). We’d really like the second term to be small
enough that we can just write nρ as n1/(1+ε). (Note that even though it looks
negative, it isn’t, because ln(1 − r/d) is negative.) So we pull a rabbit out
of a hat by assuming that r/d < 1/ lnn.4 This assumption can be justified
by modifying the algorithm so that d is padded out with up to d lnn unused
junk bits if necessary. Using this assumption, we get

nρ < n1/(1+ε)n− ln(1−1/ lnn)/(1+ε)

= n1/(1+ε)(1− 1/ lnn)− lnn

≤ en1/(1+ε).

Plugging into the formula for (r1, r2)-PLEB givesO(n1/(1+ε) logn log(1/δ))
hash function evaluations per query, each of which costs O(1) time, plus
O(n1/(1+ε) log(1/δ)) distance computations, which will take O(d) time each.
If we add in the cost of the binary search, we have to multiply this by
O(log log1+εR log log log1+εR), where the log-log-log comes from having to
adjust δ so that the error doesn’t accumulate too much over all O(log logR)
steps. The end result is that we can do approximate nearest-neighbor queries
in

O
(
n1/(1+ε) log(1/δ)(logn+ d) log log1+εR log log log1+εR)

)
time. For ε reasonably large, this is much better than naively testing against
all points in our database, which takes O(nd) time (but produces an exact
result).

4Indyk and Motwani pull this rabbit out of a hat a few steps earlier, but it’s pretty
much the same rabbit either way.

CHAPTER 7. HASHING 101

7.7.1.4 Hash functions for `1 distance

Essentially the same approach works for (bounded) `1 distance, using dis-
cretization, where we replace a continuous variable over some range with
a discrete variable. Suppose we are working in [0, 1]d with the `1 metric.
Represent each coordinate xi as a sequence of d/ε values xij in unary, for
j = 1 . . . εd, with xij = 1 if εj/d < xi. Then the Hamming distance between
the bit-vectors representing x and y is proportional to the `1 distance be-
tween the original vectors, plus an error term that is bounded by ε. We can
then use the hash functions for Hamming distance to get a locality-sensitive
hash family.

A nice bit about this construction is that we don’t actually have to build
the bit-vectors; instead, we can specify a coordinate xi and a threshold c
and get the same effect by recording whether xi > c or not.

Note that this does increase the cost slightly: we are converting d-
dimensional vectors into (d/ε)-long bit vectors, so the log(n + d) term be-
comes log(n + d/ε). When n is small, this effectively multiples the cost of
a query by an extra log(1/ε). More significant is that we have to cut ε in
half to obtain the same error bounds, because we now pay ε error for the
data structure itself and an additional ε error for the discretization. So our
revised cost for the `1 case is

O
(
n1/(1+ε/2) log(1/δ)(logn+ d/ε) log log1+ε/2R log log log1+ε/2R)

)
.

Chapter 8

Martingales and stopping
times

In §5.3.2, we used martingales to show processes were not too wide, now
we’ll use them to show processes are not too long. This will require a few
new definitions.

The general form of a martingale {Xt,Ft} consists of:

• A sequence of random variables X0, X1, X2, . . . ; and

• A filtration F0 ⊆ F1 ⊆ F2 . . . , where each σ-algebra Ft represents
our knowledge at time t;

subject to the requirements that:

1. The sequence of random variables is adapted to the filtration, which
just means that each Xt is measurable Ft or equivalently that Ft (and
thus all subsequent Ft′ for t′ ≥ t) includes all knowledge of Xt; and

2. The martingale property

E [Xt+1 | Ft] = Xt (8.0.1)

holds for all t.

Together with this more general definition of a martingale, we will also
use the following definition of a stopping time. Given a filtration {Ft}, a
random variable τ is a stopping time for {Ft} if τ ∈ N∪ {∞} and the event

102

CHAPTER 8. MARTINGALES AND STOPPING TIMES 103

[τ ≤ t] is measurable Ft for all t.1 In simple terms, τ is a stopping time if
you know at time t whether to stop there or not.

What we like about martingales is that iterating the martingale property
shows that E [Xt] = E [X0] for all fixed t. We will show that, under reason-
able conditions, the same holds for Xτ when τ is a stopping time. (The
random variable Xτ is defined in the obvious way, as a random variable that
takes on the value of Xt when τ = t.)

8.0.2 Submartingales and supermartingales

In some cases we have a process where instead of getting equality in (8.0.1),
we get an inequality instead. A submartingale replaces (8.0.1) with

Xt ≤ E [Xt+1 | Ft] (8.0.2)

while a supermartingale satisfies

E [Xt+1 | Ft]Xt ≥ E [Xt+1 | Ft] . (8.0.3)

In each case, what is “sub” or “super” is the value at the current time
compared to the expected value at the next time. Intuitively, a submartin-
gale corresponds to a process where you win on average, while a super-
martingale is a process where you lose on average. Casino games (in prof-
itable casinos) are submartingales for the house and supermartingales for
the player.

Sub- and supermartingales can be reduced to martingales by subtracting
off the expected change at each step. For example, if {Xt} is a submartingale
with respect to {Ft}, then the process {Yt} defined recursively by

Y0 = X0

Yt+1 = Yt +Xt+1 − E [Xt+1 | Ft]

is a martingale, since

E [Yt+1 | Ft] = E [Yt +Xt+1 − E [Xt+1 | Ft] | Ft]
= Yt + E [Xt+1 | Ft]− E [Xt+1 | Ft]
= 0.

1Different authors impose different conditions on the range of τ ; for example, Mitzen-
macher and Upfal [MU05] exclude the case τ = ∞. We allow τ = ∞ to represent the
outcome where we never stop. This can be handy for modeling processes where this out-
come is possible, although in practice we will typically insist that it occurs only with
probability zero.

CHAPTER 8. MARTINGALES AND STOPPING TIMES 104

One way to think of this is that Yt = Xt+ ∆t, where ∆t is a predictable,
non-decreasing drift process that starts at 0. For supermartingales, the
same result holds, but now ∆t is non-increasing. This ability to decompose
a sub- or supermartingale into the sum of a martingale and a predictable
drift process is known as the Doob decomposition theorem.

8.1 The optional stopping theorem
The conditions for E [Xτ] to equal E [X0] are given by the optional stop-
ping theorem:

Theorem 8.1.1. If (Xt,Ft) is a martingale and τ is a stopping time for
{Ft}, then E [Xτ] = E[X0] if

1. Pr [τ <∞] = 1,

2. E [|Xτ |] <∞, and

3. limt→∞ E
[
Xt · 1[τ>t]

]
= 0.

The first condition says that τ is finite with probability 1 (i.e., eventually
we do stop). The second condition puts a bound on how big |Xτ | can get,
which excludes some bad outcomes where we accept a small probability of
a huge loss in order to get a large probability of a small gain. The third
says that the contribution of large values of t to E [Xτ] goes to zero as we
consider larger and larger t; the term [τ > t] is the indicator variable for the
event that τ is larger than t.

It would be nice if we could show E [Xτ] = E[X0] without the side con-
ditions, but in general this isn’t true. For example, the double-after-losing
martingale strategy in the St. Petersburg paradox (see §3.4.1.1) eventually
yields +1 with probability 1, so if τ is the time we stop playing, we have
Pr [τ <∞] = 1, E [|Xτ |] < ∞, but E [Xτ] = 1 6= E [X0] = 0. Here we have
E
[
Xt · 1[τ>t]

]
= −2t−1(1/2)t−1 = −1 for t > 0, so it’s the third condition

that’s violated. (The same thing happens for a simple ±1 random walk that
stops at +1, but it’s a bit harder to calculate E

[
Xt · 1[τ>t]

]
in this case.)

The next section gives a proof of the optional stopping theorem. If
you just want to use it, you may want to skip to §8.3, which gives various
weaker but easier-to-check conditions under which the theorem holds; these
are what people typically use.

CHAPTER 8. MARTINGALES AND STOPPING TIMES 105

8.2 Proof of the optional stopping theorem (op-
tional)

To prove the optional stopping theorem, it helps to start with a simpler
version:

Lemma 8.2.1. If (Xt,Ft) is a martingale and τ is a stopping time for {Ft},
then for any n ∈ N, E

[
Xmin(τ ,n)

]
= E[X0].

Proof. Define Yt = X0 +
∑t
i=1(Xt−Xt−1)[τ > t−1]. Then (Yt,Ft) is a mar-

tingale since we can treat E [Yt+1 | Ft] = E
[
Yt + (Xt+1 −Xt)1[τ>t]

∣∣∣ Ft] =
Yt + 1[τ>t] · E [Xt+1 −Xt | Ft] = Yt; effectively, we are treating 1[τ≤t−1] as a
sequence of bets. But then E

[
Xmin(τ ,n)

]
= E [Yn] = E [Y0] = E [X0].

So now we’ll prove the full version by considering E
[
Xmin(τ ,n)

]
and

showing that, under the conditions of the theorem, it approaches E [Xτ]
as n goes to infinity. First observe that, for any n, Xτ = Xmin(τ ,n) +
1[τ>n](Xτ − Xn), because either τ ≤ n, and we just get Xτ , or τ > n,
and we get Xn + (Xτ − Xn) = Xτ . Now take expectations: E [Xτ] =
E
[
Xmin(τ ,n)

]
+ E

[
1[τ>n]Xτ

]
− E

[
1[τ>n]Xn

]
. Condition (3) on the theorem

gives limn→∞ E
[
1[τ>n]Xn

]
→ 0. If we can show that the middle term also

vanishes in the limit, we are done.
Here we use condition (2). Observe that E

[
1[τ>n]Xτ

]
=
∑∞
t=n+1 E

[
1[τ=t]Xt

]
.

Compare this with E [Xτ] =
∑∞
t=0 E

[
1[τ=t]Xt

]
; this is an absolutely conver-

gent series (this is why we need condition 2), so in the limit the sum of the
terms for i = 0 . . . n converges to E [Xτ]. But this means that the sum of
the remaining terms for i = n + 1 . . .∞ converges to zero. So the middle
term goes to zero as n goes to infinity.

We thus have E [Xτ] = limn→∞ E
[
Xmin(τ ,n)

]
+E

[
1[τ>n]Xτ

]
−E

[
1[τ>n]Xn

]
=

limn→∞ E
[
Xmin(τ ,n)

]
= E [X0]. This completes the proof.

8.3 Variants
Using the full-blown optional stopping theorem is a pain in the neck, because
conditions (2) and (3) are often hard to test directly. So in practice one
generally chooses one of several weaker but easier variants:

CHAPTER 8. MARTINGALES AND STOPPING TIMES 106

Corollary 8.3.1. If (Xt,Ft) is a martingale and τ is a stopping time for
{Ft} with τ ≤ n always for some fixed n, then E [Xτ] = E[X0].

Proof. Here Xτ = Xmin(τ ,n); use Lemma 8.2.1.

Corollary 8.3.2. If (Xt,Ft) is a martingale and τ is a stopping time for
{Ft} with Pr [τ <∞] = 1 and |Xt| ≤M always for some fixed M and all t,
then E [Xτ] = E[X0].

Proof. Use Theorem 8.1.1, with (1) given, (2) implied by |Xt| ≤ M , and
(3) following from

∣∣∣E [Xt1[τ>t]
]∣∣∣ ≤ E

[
|Xt| 1[τ>t]

]
≤ M Pr [τ > t] → 0 since

Pr [τ <∞] = 1.

Corollary 8.3.3. If (Xt,Ft) is a martingale and τ is a stopping time for
{Ft} where E [τ] ≤ ∞ and |Xt −Xt−1| ≤ c always for some fixed c and all
t, then E [Xτ] = E [X0].

Proof. Here we go back into the original proof of Theorem 8.1.1, but there
is a simpler argument that E

[
(Xτ −Xn)1[τ>n]

]
converges to 0. The idea is

that

∣∣∣E [(Xτ −Xn)1[τ>n]
]∣∣∣ =

∣∣∣∣∣∣E
∑
t≥n

(Xt+1 −Xt)1[τ>t]

∣∣∣∣∣∣
≤ E

∑
t≥n
|(Xt+1 −Xt)| 1[τ>t]

≤ E

∑
t≥n

c1[τ>t]

 .
Now use the fact that E [τ] =

∑
t[τ > t] to show that this is again the tail

of a convergent sequence, and thus converges to zero.

The short version: E [Xτ] = E [X0] if at least one of the following condi-
tions holds:

1. τ ≤ n always. (Bounded time; Corollary 8.3.1.)

2. |Xt| ≤ M always and Pr [τ <∞] = 1. (Bounded range with finite
time; Corollary 8.3.2.)

3. |Xt −Xt−1| ≤ c and E [τ] < ∞. (Bounded increments with finite
expected time; Corollary 8.3.3.)

CHAPTER 8. MARTINGALES AND STOPPING TIMES 107

8.4 Applications

8.4.1 Random walks

Let Xt be an unbiased ±1 random walk that starts at 0, adds ±1 to its
current position with equal probability at each step, and stops if it reaches
+a or −b.2 We’d like to calculate the probability of reaching +a before
−b. Let τ be the time at which the process stops. We can easily show
that Pr [τ <∞] = 1 and E [τ] < ∞ by observing that from any state of
the random walk, there is a probability of at least 2−(a+b) that it stops
within a + b steps (by flipping heads a + b times in a row), so that if we
consider a sequence of intervals of length a+ b, the expected number of such
intervals we can have before we stop is at most 2a+b. We have bounded
increments by the definition of the process (bounded range also works). So
E [Xτ] = E[X0] = 0 and the probability p of landing on +a instead of −b
must satisfy pa− (1− p)b = 0, giving p = b

a+b .
Now suppose we want to find E [τ]. Let Yt = X2

t − t. Then Yt+1 =
(Xt±1)2−(t+1) = X2

t ±2Xt+1−(t+1) = (X2
t −t)±2Xt = Yt±2Xt. Since

the plus and minus cases are equally likely, they cancel out in expectation
and E [Yt+1 | Ft] = Yt: we just showed Yt is a martingale.3 We also show
it has bounded increments (at least up until time τ), because |Yt+1 − Yt| =
2 |Xt| ≤ max(a, b).

Using Corollary 8.3.3, E [Yτ] = 0, which gives E [τ] = E
[
X2
τ

]
. But we

can calculate E
[
X2
τ

]
: it is a2 Pr [Xτ = a] + b2 Pr [Xt = −b] = a2(b/(a+ b)) +

b2(a/(a+ b)) = (a2b+ b2a)/(a+ b) = ab.
2This is called a random walk with two absorbing barriers.
3This construction generalizes in a nice way to arbitrary martingales. Suppose {Xt}

is a martingale with respect to {Ft}. Let ∆t = Xt −Xt−1, and let Vt = Var [∆t | Ft−1]
be the conditional variance of the t-th increment (note that this is a random variable that
may depend on previous outcomes). We can easily show that Yt = X2

t −
∑t

i=1 Vi is a

CHAPTER 8. MARTINGALES AND STOPPING TIMES 108

If we have a random walk that only stops at +a,4 then if τ is the first
time at which Xτ = a, τ is a stopping time. However, in this case E [Xτ] =
a 6= E [X0] = 0. So the optional stopping theorem doesn’t apply in this
case. But we have bounded increments, so Corollary 8.3.3 would apply if
E [τ] <∞. It follows that the expected time until we reach a is unbounded,
either because sometimes we never reach a, or because we always reach a
but sometimes it takes a very long time. 5

We can also consider a biased random walk where +1 occurs with
probability p > 1/2 and −1 with probability q = 1− p. If Xt is the position
of the random walk at time t, it isn’t a martingale. But Yt = Xt − (p− q)t

martingale. The proof is that

E [Yt | Ft−1] = E

[
X2
t −

t∑
i=1

Vt

∣∣∣∣∣ Ft−1

]

= E
[
(Xt−1 + ∆t)2 ∣∣ Ft−1

]
−

t∑
i=1

Vi

= E
[
X2
t−1 + 2Xt−1∆t + ∆2

t

∣∣ Ft−1
]
−

t∑
i=1

Vi

= X2
t−1 + 2Xt−1 E [∆t | Ft−1] + E

[
∆2
t

∣∣ Ft−1
]
−

t∑
i=1

Vi

= X2
t−1 + 0 + Vt −

t∑
i=1

Vi

= X2
t−1 −

t−1∑
i=1

Vi

= Yt−1.

For the ±1 random walk case, we have Vt = 1 always, giving
∑t

i=1 Vi = t and E
[
X2
τ

]
=

E
[
X2

0
]
+E [τ] when τ is a stopping time satisfying the conditions of the Optional Stopping

Theorem. For the general case, the same argument gives E
[
X2
τ

]
= E

[
X2

0
]

+ E
[∑τ

t=1 Vt
]

instead: the expected square position of Xt is incremented by the conditional variance at
each step.

4This would be a random walk with one absorbing barrier.
5In fact, we always reach a. An easy way to see this is to imagine a sequence of intervals

of length n1, n2, . . . , where ni+1 =
(
a+

∑i

j=1 nj

)2
. At the end of the i-th interval, we

are no lower than −
∑i

j=0 nj , so we only need to go up √ni+1 positions to reach a by
the end of the (i+ 1)-th interval. Since this is just one standard deviation, it occurs with
constant probability, so after a finite expected number of intervals, we will reach +a. Since
there are infinitely many intervals, we reach +a with probability 1.

CHAPTER 8. MARTINGALES AND STOPPING TIMES 109

is, and it even has bounded increments. So if τ is the time at which Xt = a
and E [τ] is finite,6 the optional stopping theorem gives E [Yτ] = E[Y0] = 0,
which gives E [a− (p− q)t] = 0 or E [t] = a

p−q , pretty much what we’d
expect.

8.4.2 Wald’s equation

Suppose we run a Las Vegas algorithm until it succeeds, and the i-th attempt
costs Xi, where all the Xi are independent and identically distributed, and
satisfy 0 ≤ Xi ≤ c for some c; note this implies E [Xi] = µ for some µ and
all i. Let τ be the number of times we run the algorithm; since we can
tell when we are done, τ is a stopping time with respect to some filtration
{Fi} to which the Xi are adapted.7 Suppose also that E [τ] exists. What is
E [
∑τ
i=1Xi]?

If τ were not a stopping time, this might be a very messy problem
indeed. But when τ is a stopping time, we can apply it to the martingale
Yt =

∑t
i=1(Xi − µ). This has bounded increments (0 ≤ Xi ≤ c, so −c ≤

Xi − E [Xi] ≤ c), and we’ve already said E [τ] is finite, so Corollary 8.3.3
applies. We thus have

0 = E [Yτ]

= E
[
τ∑
i=1

(Xi − µ)
]

= E
[
τ∑
i=1

Xi

]
− E

[
τ∑
i=1

µ

]

= E
[
τ∑
i=1

Xi

]
− E [τ]µ.

Rearranging this gives Wald’s equation:

E
[
τ∑
i=1

Xi

]
= E [τ]µ. (8.4.1)

8.4.3 Waiting times for patterns

Let’s suppose we flip coins until we see some pattern appear; for example, we
might flip coins until we see HTHH. What is the expected number of coin-flips

6Exercise: Show E [τ] is finite.
7A stochastic process {Xt} is adapted to a filtration {Ft} if each Xt is measurable

Ft.

CHAPTER 8. MARTINGALES AND STOPPING TIMES 110

until this happens?
A very clever trick due to Li [Li80] solves this problem exactly using

the Optional Stopping Theorem. Suppose our pattern is x1x2 . . . xk. We
imagine an army of gamblers, one of which shows up before each coin-flip.
Each gambler starts by borrowing $1 and betting it that the next coin-flip
will be x1. If she wins, she takes her $2 and bets that the next coin-flip
will be x2, continuing to play double-or-nothing until either she loses (and
is out her initial $1) or wins her last bet on xk (and is up 2k − 1). Because
each gambler’s winnings form a martingale, so does their sum, and so the
expected total return of all gamblers up to the stopping time τ at which our
pattern first occurs is 0.

We can now use this fact to compute E [τ]. When we stop at time τ , we
have one gambler who has won 2k − 1. We may also have other gamblers
who are still in play. For each i with x1 . . . xi = xk−i+1 . . . xk, there will be
a gambler with net winnings 2i − 1. The remaining gamblers will all be at
−1.

Let χi = 1 if x1 . . . xi = xk−i+1 . . . xk, and 0 otherwise. Then

E [Xτ] = E
[
−τ +

k∑
i=1

χi2i
]

= −E [τ] +
k∑
i=1

χi2i

= 0.

It follows that E [τ] =
∑k
i=1 χi2i.

For example, the pattern HTHH only overlaps with its prefix H so in this
case we have E [τ] =

∑
χi2i = 2 + 16 = 18. But HHHH overlaps with all of

its prefixes, giving E [τ] = 31 in this case. At the other extreme, THHH has
no overlap and gives E [τ] = 16.

This analysis generalizes in the obvious way to biased coins and larger
alphabets; see the paper [Li80] for details.

Chapter 9

Markov chains

A stochastic process is a sequence of random variables {Xt}, where we
think of Xt as the value of the process at time t.

There are two stochastic processes that come up over and over again in
the analysis of randomized algorithms. One is a martingale, where the next
increment may depend in a complicated way on the past history but has
expectation 0; the other is a Markov chain, where the next step depends
only on the current location and not the previous history. We’ve already
seen martingales before in §5.3.2 and Chapter 8. In this chapter, we’ll give
basic definitions for Markov chains, and then talk about the most useful
algorithmic property, which is convergence to a fixed distribution on states
after sufficiently many steps in many Markov chains.

If you want to learn more about Markov chains than presented here
or in the textbook, they are usually covered in general probability text-
books (for example, in [Fel68] or [GS01]), mentioned in many linear alge-
bra textbooks [Str03], covered in some detail in stochastic processes text-
books [KT75], and covered in exquisite detail in many books dedicated
specifically to the subject [KS76, KSK76]. For reversible Markov chains
and Markov chains arising from random walks on graphs, the legendary
Aldous-fill manuscript is worth looking at [AF01].

9.1 Basic definitions and properties
A Markov chain or Markov process is a stochastic process where the
distribution of Xt+1 depends only on the value of Xt and not any previ-
ous history. (Formally, for all sets of states A, E

[
1[Xt+1∈A]

∣∣∣ X0 . . . Xt

]
=

E
[
1[Xt+1∈A]

∣∣∣ Xt

]
; contrast with the martingale property.) The state space

111

CHAPTER 9. MARKOV CHAINS 112

of the chain is just the set of all values that each Xt can have. A Markov
chain is finite or countable if it has a finite or countable state space, re-
spectively. We’ll mostly be interested in countable Markov chains. We’ll
also assume that our Markov chains are homogeneous, which means that
Pr [Xt+1 = j | Xt = i] doesn’t depend on t.

For a countable Markov chain, we can describe its behavior completely
by giving the state space and the one-step transition probabilities pij =
Pr [Xt+1 = j | Xt = i]. Given pij , we can calculate two-step transition prob-
abilities

p
(2)
ij = Pr [Xt+2 = j | Xt = i]

=
∑
k

Pr [Xt+2 = j | Xt+1 = k] Pr [Xt+1 = k | Xt = i]

=
∑
k

pikpkj .

This is identical to the formula for matrix multiplication, and so if the
transition probabilities are given by a transition matrix P , then p(2)

ij = (P 2)ij
and in general the n-step transition probability p(n)

ij = (Pn)ij .
Conversely, given any matrix with non-negative entries where the rows

sum to 1 (
∑
j Pij = 1, or P1 = 1, where 1 in the second equation stands

for the all-ones vector), there is a corresponding Markov chain given by
pij = Pij . Such a matrix is called a stochastic matrix.

The general formula for (n + m)-step transition probabilities is that
p

(n+m)
ij =

∑
k p

(n)
ik p

(m)
kj . This is known as the Chapman-Kolmogorov

equation and is equivalent to the matrix identity Pn+m = PnPm.
A distribution over states of the Markov chain at some time t can be

given by a row vector x, where xi = Pr[Xt = i]. To compute the distri-
bution at time t + 1, we use the law of total probability: Pr [Xt+1 = j] =∑
i Pr [Xt = i] Pr [Xt+1 = j | Xt = i] =

∑
i xipij . Again we have the formula

for matrix multiplication (where we treat x as a 1× i matrix); so the distri-
bution vector at time t+ 1 is just xP , and at time t+ n is xPn.

We like Markov chains for two reasons:

1. They describe what happens in a randomized algorithm; the state
space is just the set of all states of the algorithm, and the Markov
property holds because the algorithm can’t remember anything that
isn’t part of its state. So if we want to analyze randomized algorithms,
we will need to get good at analyzing Markov chains.

CHAPTER 9. MARKOV CHAINS 113

2. They can be used to do sampling over interesting distributions. Under
appropriate conditions (see below), the state of a Markov chain con-
verges to a stationary distribution. If we build the right Markov
chain, we can control what this stationary distribution looks like, run
the chain for a while, and get a sample close to the stationary distri-
bution.

In both cases we want to have a bound on how long it takes the Markov
chain to converge, either because it tells us when our algorithm terminates,
or because it tells us how long to mix it up before looking at the current
state.

9.1.1 Examples

• A fair ±1 random walk. The state space is Z, the transition probabil-
ities are pij = 1/2 if |i− j| = 1, 0 otherwise. This is an example of a
Markov chain that is also a martingale.

• A fair ±1 random walk on a cycle. As above, but now the state space
is Z/m, the integers mod m. An example of a finite Markov chain.

• Random walks with absorbing/reflecting barriers.

• Random walk on a graph G = (V,E). The state space is V , the
transition probalities are puv = 1/d(u) if uv ∈ E. (One can also have
more general transition probabilities.)

• The Markov chain given by Xt+1 = Xt + 1 with probability 1/2, and
0 with probability 1/2. The state space is N.

• 2-SAT algorithm. State is a truth-assignment. The transitional prob-
abilities are messy but arise from the following process: pick an un-
satisfied clause, pick one of its two variables uniformly at random, and
invert it. Then there is an absorbing state at any satisfying assign-
ment.

• A similar process works for 2-colorability, 3-SAT, 3-colorability, etc.,
although for NP-hard problems, it may take a while to reach an
absorbing state. The constructive Lovász Local Lemma proof from
§11.3.5 also follows this pattern.

CHAPTER 9. MARKOV CHAINS 114

Parameter Name Definition
pij(n) n-step transition probability Pr [Xt+n = j | Xt = i]
pij Transition probability Pr [Xt+1 = j | Xt = i] = pij(1)
fij(n) First passage time Pr [j 6∈ {X1 . . . Xn − 1} ∧Xn = j | X0 = i]
fij Probability of reaching j from i

∑∞
n=1 fij(n)

µi Mean recurrence time µi =
∑∞
n=1 nfii(n)

πi Stationary distribution πj =
∑
i πipij = 1/µj

Table 9.1: Markov chain parameters

fii µi classification
< 1 =∞ transient
= 1 =∞ null persistent
= 1 <∞ non-null persistent

Table 9.2: Classification of Markov chain states

9.1.2 Classification of states

Given a Markov chain, define

fij(n) = Pr [j 6∈ {X1 . . . Xn−1} ∧ j = Xn | X0 = i] . (9.1.1)

Then fij(n) is the probability that the first passage time from i to j
equals n. Define fij =

∑∞
n=1 fij(n); this is the probability that the chain

ever reaches j starting from i. A state is persistent if fii = 1 and transient
if fii < 1.

Finally, define the mean recurrence time µi =
∑∞
n=1 nfii(n) if i is

persistent and µi =∞ if i is transient. We use the mean recurrence time to
further classify persistent states. if the sum diverges, we say that the state
is null persistent; otherwise it is non-null persistent.

These definitions are summarized in Tables 9.1 and 9.2.
The distinctions between different classes of states are mostly important

in infinite Markov chains. In an irreducible finite Markov chain, all states
are non-null persistent. To show this, pick some state i, and for each j let
nji be the least n for which pji(n) is nonzero. (This notation is not standard
and will not be used after this paragraph.) Then from any starting state,
if we run for at least nmax = maxj nji steps, we have a probability of at
least pmin = minj pji(nji) of reaching i. This means that the expected time
to reach i starting from any state (including i) is at most nmax/pmin < ∞,
giving µi <∞. More generally, any state in a finite Markov chain is either

CHAPTER 9. MARKOV CHAINS 115

transient or non-null persistent, and there is always at least one non-null
persistent state.

In contrast, even in an irreducible infinite chain we may have null per-
sistent or even transient states. For example, in a random ±1 walk on Z,
all states are null persistent, because once I am at +1 the expected time to
get back to 0 is unbounded; see the analysis in §8.1 for a proof. In a not-so-
random walk on Z where Xt+1 = Xt+1 always, all states are transient: once
I leave x for x+ 1, I’m never coming back. For a more exotic example, in a
random walk on Z3 (where at each step we have a 1/6 chance of moving ±1
in one of the three coordinates), all states are transient. Intuitively, this is
because after n steps, the particle is at distance Θ(

√
n) on average from its

origin, and since there are Θ(n3/2) points in this range but only n that are
visited by the random walk, the chance that any particular point is visited
goes to zero in the limit (the actual proof requires a better argument than
this).

The period d(i) of a state i is gcd({n | pii(n) > 0}). A state i is ape-
riodic if d(i) = 1, and periodic otherwise. A Markov chain is aperiodic if
all its states are aperiodic.

The most well-behaved states are the aperiodic non-null persistent states;
these are called ergodic. A Markov chain is ergodic if all its states are.

9.1.3 Reachability

State i communicates with state j if pij(n) > 0 for some n; i.e., it is
possible to reach j from i. This is often abbreviated as i→ j. Two states i
and j intercommunicate if i→ j and j → i; this is similarly abbreviated
as i↔ j. If i↔ j, it’s not hard to show that i and j have the same period
and classification. A set of states S is closed if pij = 0 for all i ∈ S, j 6∈ S,
and irreducible if i↔ j for all i, j in S.

Using graph-theoretic terminology, i → j if j is reachable from i
(through edges corresponding to transitions with nonzero probabilities), and
a set of states is closed if it is strongly connected. We can thus de-
compose a Markov chain into strongly-connected components, and observe
that all states in a particular strongly-connected component are persistent
if and only if the strongly-connected component has no outgoing edges (i.e.,
is closed). For finite chains there must be at least one closed strongly-
connected component (corresponding to a sink in the quotient DAG); this
gives an instant proof that finite chains have persistent states.

If the entire chain forms a single strongly-connected component, we say
it is irreducible.

CHAPTER 9. MARKOV CHAINS 116

9.2 Stationary distributions
The key useful fact about irreducible Markov chains is that (at least in
the finite case) they have stationary distributions, where a stationary
distribution is a distribution π (non-negative row vector summing to 1)
such that πP = π. The full theorem is:

Theorem 9.2.1. An irreducible Markov chain has a stationary distribution
π if and only if all states are non-null persistent, and if π exists, then πi =
1/µi for all i.

The proof of this theorem takes a while, so we won’t do it (see [GS01,
§6.4] if you want to see the details). For finite chains, the first part follows
from the fact that the all-ones vectors is a right eigenvector for P with
eigenvalue 1 (this is a fancy way of saying P1 = 1), which means that there
is some left eigenvector for P that also has eigenvalue 1 (πP = π); we can
also appeal to the Perron-Frobenius theorem,1 which says this and more
about the eigenvalues of stochastic matrices. The second part (πi = 1/µi)
is just a special case of the renewal theorem.2 The intuition is that if
I get back to i once every µi steps on average, then I should expect to be
spending 1/µi of my time there in the limit.

For reducible Markov chains, there is a stationary distribution on each
closed irreducible subset, and the stationary distributions for the chain as a
whole are all convex combinations of these stationary distributions.

Examples: In the random walk on Zm the stationary distribution satisfies
πi = 1/m for all i (immediate from symmetry). By contrast, the random
walk on Z has no stationary distribution (the states are all null persistent).
The process on N where pij = 1/2 for j = i + 1 or j = 0 has a stationary
distribution π given by πi = 2−i−1; this is an example of an infinite chain
that nonetheless has only non-null persistent states. For a random walk
with absorbing barriers at ±n, there is no unique stationary distribution;
instead, any vector π where πi = 0 unless i = ±n and π1 = 1 is stationary.

It’s generally not a good strategy to compute π by computing µ first.
Instead, solve the matrix equation πP = π by rewriting it as π(P − I) = 0
and adding the constraint π1 = 1. You can then compute µi = 1/pi if you
still need µi for some reason.

1http://en.wikipedia.org/wiki/Perron-Frobenius_theorem.
2http://en.wikipedia.org/wiki/Renewal_theory.

http://en.wikipedia.org/wiki/Perron-Frobenius_theorem
http://en.wikipedia.org/wiki/Renewal_theory

CHAPTER 9. MARKOV CHAINS 117

9.2.1 The ergodic theorem

The basic version of the ergodic theorem says that if an aperiodic irre-
ducible Markov chain has a stationary distribution π, then it converges to
π if we run it long enough. (This also implies that π is unique.)

This is not terribly hard to prove for finite chains, using a very clever
technique called coupling, where we take two copies of the chain, once
of which starts in an arbitrary distribution, and one of which starts in the
stationary distribution, and show that we can force them to converge to each
other by carefully correlating their transitions. Since coupling is a generally
useful technique for bounding rate of convergence, we’ll use it to give the
proof of the ergodic theorem below.

A more general version of the ergodic theorem says that for any Markov
chain and any aperiodic state j, then pjj(n) → 1/µj and pij(n) → fij/µj .
This allows us in principle to compute the limit distribution for any aperiodic
Markov chain with a given starting distribution x by summing

∑
i xifij/µj .

It also implies that transient and null persistent states vanish in the limit.

9.2.1.1 Proof for finite chains

We’ll do this by constructing a coupling between two copies of the Markov
chain, which as stated before is a joint distribution on two processes that
tends to bring them together while looking like the original process when
restricted to one sub-process or the other. In the first process {Xt}, we start
with an arbitrary initial distribution for X0. In the second {Yt}, we start
with Pr [Yt = i] = πi for all i. We now evolve the joint process {(Xt, Yt)} by
the rule (i, i′) → (j, j′) with probability pijpi′j′ if i 6= i′ and (i, i′) → (j, j′)
with probability pij if i = i′ and j = j′ and 0 if i = i′ and j 6= j′. In
other words, we let Xt and Yt both wander around independently until they
collide, after which they stick together and wander around together.

The reason this shows convergence is that we can write

Pr [Xt = j] = Pr [Xt = Yt] Pr [Yt = j | Xt = Yt]
+ Pr [Xt 6= Yt] Pr [Xt = j | Xt 6= Yt] (9.2.1)

and similarly

Pr [Yt = j] = Pr [Xt = Yt] Pr [Yt = j | Xt = Yt]
+ Pr [Xt 6= Yt] Pr [Yt = j | Xt 6= Yt] . (9.2.2)

The sneaky bit here is substituting Pr [Yt = j | Xt = Yt] for Pr [Xt = j | Xt = Yt]
in (9.2.1), giving us a connection between Pr [Xt = j] and Pr [Yt = j] that

CHAPTER 9. MARKOV CHAINS 118

we will exploit by showing Pr [Xt 6= Yt] goes to 0 in the limit as t goes to
infinity.

Subtract (9.2.2) from (9.2.1) to get

Pr [Xt = j]− Pr [Yt = j] =
Pr [Xt 6= Yt] (Pr [Xt = j | Xt 6= Yt]− Pr [Yt = j | Xt 6= Yt]) . (9.2.3)

If we can show Pr[Xt 6= Yt] goes to zero, then the right-hand side of
(9.2.3) also goes to zero, implying that the difference between Pr [Xt = j]
and Pr [Yt = j] goes to zero as well. But Pr [Yt = j] is just πj , so this shows
that Pr [Xt = j] converges to πj as claimed.

So now we just need to show Pr [Xt 6= Yt] → 0. This is equivalent to
showing that Pr [Xt = Yt] → 1, which is easier to reason about, since we
just need to show that Xt and Yt eventually collide with probability 1.

Without loss of generality, suppose that X0 = j, where j is a non-null
persistent aperiodic state. With probability πj , X0 = Y0 and we are done.
If not, let i = Y0 and pick some future time n for which p(n)

ij > 0. If we are
very lucky, p(n)

jj is also greater than 0, and so we get a nonzero probability of
collision. If we are not so lucky, let m be some value such that p(n+m)

jj > 0
and p(m)

jj > 0 (if no such value exists, then j is periodic). Then we have

Pr [Xn+m = Yn+m = j] ≥ Pr [Xt = j] Pr [Yt = j]

≥ p(n+m)
jj

(
p

(n)
ij p

(m)
jj

)
> 0.

So there is a finite time n+m after which we get some nonzero probability
that Xt and Yt collide. If we do not collide, repeat the argument starting
with i = Yn+m. If we let k be the maximum value of n + m taken over all
initial states i,3 and p > 0 be the minimum probability of collision over all
initial states i after k steps, then we have that Pr [Xαk 6= Yαk] ≤ (1−p)α → 0.

9.2.2 Reversible chains

Some chains have the property of being reversible. Formally, a chain with
transition probabilities pij is reversible if there is a distribution π such that

πipij = πjpji (9.2.4)
3This is where we need the assumption that the state space is finite.

CHAPTER 9. MARKOV CHAINS 119

for all i, j. These are called the detailed balance equations—they say
that in the stationary distribution, the probability of seeing a transition
from i to j is equal to the probability of seeing a transition from j to i).
If this is the case, then

∑
i πipij =

∑
i πjpji = πj , which means that π is

stationary.
This often gives a very quick way to compute the stationary distribution,

since if we know πi, and pij 6= 0, then πj = πipij/pji. If the transition
probabilities are reasonably well-behaved (for example, if pij = pij for all
i, j), we may even be able to characterize the stationary distribution up to
a constant multiple even if we have no way to efficiently enumerate all the
states of the process.

The reason that such a chain is called reversible is that if we start in
the stationary distribution at time 0, then the sequence of random vari-
ables (X0, . . . , Xt) has exactly the same distribution as the reversed sequence
(Xt, . . . , X0). 4

Note that a reversible chain can’t have a period higher than 2, since we
can always step back to where we came from.

9.2.2.1 Basic examples

Random walk on a graph Given two adjacent vertices u and v, we have
πv = πud(v)/d(u). This suggests πv = cd(v) for some constant c
and all v (the stationary distribution is proportional to the degree),
and the constant c is determined by

∑
v πv = c

∑
d(v) = 1, giving

πv = d(v)/
∑
u d(u).

Random walk on a weighted graph Here each edge has a weight wuv
where 0 < wuv = wvu < ∞, with self-loops permitted. A step of
the random walk goes from u to v with probability wuv/

∑
v′ wuv′ .

It is easy to show that this random walk has stationary distribution
πu =

∑
uwuv/

∑
u

∑
v wuv, generalizing the previous case, and that the

resulting Markov chain satisfies the detailed balance equations.

Random walk with uniform stationary distribution Now let d be the
maximum degree of the graph, and traverse each each with probability
1/d, staying put on each vertex u with probability 1 − d(u)/d. The

4 Proof: Start with Pr [∀iXi = xi] = πx0

∏t

i=0 pxixi+1 . Now observe that we
can move the πx0 across the first factor to get px1x0πx1

∏t

i=1 pxixi+1 and in general(∏j−1
i=0 pxi+1xi

)
πxj

(∏t

i=j pxixi+1

)
. At j = t we get πxt

∏t−1
i=0 pxi+1xi = Pr [∀iXi = xt−i].

CHAPTER 9. MARKOV CHAINS 120

stationary distribution is uniform, since for each pair of vertices u and
v we have puv = pvu = 1/d if u and v are adjacent and 0 otherwise.

9.2.2.2 Time-reversed chains

Another way to get a reversible chain is to take an arbitrary chain with a
stationary distribution and rearrange it so that it can run both forwards
and backwards in time.

Given a finite Markov chain with transition matrix P and stationary
distribution π, define the corresponding time-reversed chain with matrix
P ∗ where πipij = πjp

∗
ji.

To make sure that this actually works, we need to verify that:

1. The matrix P ∗ is stochastic:∑
j

p∗ij =
∑
j

pjiπj/πi

= πi/πi

= 1.

2. The reversed chain has the same stationary distribution as the original
chain: ∑

j

πjp
∗
ji =

∑
j

πipij

= πi.

3. And that in general P ∗’s paths starting from the stationary distribu-
tion are a reverse of P ’s paths starting from the same distribution.
For length-1 paths, this is just πjp∗ji = πipij . For longer paths, this
follows from an argument similar to that for reversible chains.

This gives an alternate definition of a reversible chain as a chain for
which P = P ∗.

We can also use time-reversal to generate reversible chains from arbitrary
chains. The chain with transition matrix (P + P ∗)/2 (corresponding to
moving 1 step forward or back with equal probability at each step) is always
a reversible chain.

Examples:

CHAPTER 9. MARKOV CHAINS 121

• Given a biased random walk on a cycle that moves right with proba-
bility p and left with probability q, its time-reversal is the walk that
moves left with probability p and right with probability q. (Here the
fact that the stationary distribution is uniform makes things simple.)
The average of this chain with its time-reversal is an unbiased random
walk.

• Given the random walk defined by Xt+1 = Xt+1 with probability 1/2
and 0 with probability 1/2, we have πi = 2−i−1. This is not reversible
(there is a transition from 1 to 2 but none from 2 to 1), but we can
reverse it by setting p∗ij = 1 for i = j + 1 and p∗0i = 2−i−1. (Check:
πipii+1 = 2−i−1(1/2) = πi+1p

∗
i+1i = 2−i−2(1);πipi0 = 2−i−1(1/2) =

π0p
∗
0i = (1/2)2−i−1.)

Reversed versions of chains with messier stationary distributions are
messier.

9.2.2.3 Metropolis-Hastings

The basic idea of the Metropolis-Hastings algorithm[MRR+53, Has70]
(sometimes just calledMetropolis) is that we start with a reversible Markov
chain P with a known stationary distribution π, but we’d rather get a
chain Q on the same states with a different stationary distribution µ, where
µi = f(i)/

∑
j f(j) is proportional to some function f ≥ 0 on states that we

can compute easily.
A typical application is that we want to sample according to Pr [i | A],

but A is highly improbable (so we can’t just use rejection sampling, where
we sample random points from the original distribution until we find one for
which A holds), and Pr [i | A] is easy to compute for any fixed i but tricky
to compute for arbitrary events (so we can’t use divide-and-conquer). If we
let f(i) ∝ Pr [i | A], then Metropolis-Hastings will do exactly what we want,
assuming it converges in a reasonable amount of time.

Let q be the transition probability for Q. Define, for i 6= j,

qij = pij min
(

1, πif(j)
πjf(i)

)

= pij min
(

1, πiµj
πjµi

)

and let qii be whatever probability is left over. Now consider two states i

CHAPTER 9. MARKOV CHAINS 122

and j, and suppose that πif(j) ≥ πjf(i). Then

qij = pij

which gives

µiqij = µipij ,

while

µjqji = µjpji(πjµi/πiµj)
= pji(πjµi/πi)
= µi(pjiπj)/πi
= µi(pijπi)/πi
= µipij

(note the use of reversibility of P in the second-to-last step). So we have
µjqji = µipij = µiqij and Q is a reversible Markov chain with stationary
distribution µ.

We can simplify this when our underlying chain P has a uniform sta-
tionary distribution (for example, when it’s the random walk on a graph
with maximum degree d, where we traverse each edge with probability 1/d).
Then we have πi = πj for all i, j, so the new transition probabilities qij are
just 1

d min(1, f(j)/f(i)). Most of our examples of reversible chains will be
instances of this case (see also [MU05, §10.4.1]).

9.3 Bounding convergence rates using the coupling
method

In order to use the stationary distribution of a Markov chain to do sampling,
we need to have a bound on the rate of convergence to tell us when it is safe
to take a sample. There are two standard techniques for doing this: coupling,
where we show that a copy of the process starting in an arbitrary state can
be made to converge to a copy starting in the stationary distribution; and
spectral methods, where we bound the rate of convergence by looking at the
second-largest eigenvalue of the transition matrix. We’ll start with coupling
because it requires less development.

(See also [Gur00] for a survey of the relationship between the various
methods.)

CHAPTER 9. MARKOV CHAINS 123

Note: these notes will be somewhat sketchy. If you want to read more
about coupling, a good place to start might be Chapter 11 of [MU05]; Chap-
ter 4-3 (http://www.stat.berkeley.edu/~aldous/RWG/Chap4-3.pdf) of
the unpublished but nonetheless famous Aldous-Fill manuscript (http:
//www.stat.berkeley.edu/~aldous/RWG/book.html, [AF01]), which is a
good place to learn about Markov chains and Markov chain Monte Carlo
methods in general; or even an entire book [Lin92]. We’ll mostly be using
examples from the Aldous-Fill text.

9.3.1 The basic coupling lemma

The same sort of coupling trick that proves eventual convergence to π can
in some cases be used to prove fast convergence. The idea is that we can
bound the total variation distance dTV (p, π) = maxA |Prp[A]− Prπ[A]| =∑
i max(pi − πi, 0) = 1

2
∑
i |pi − πi| by bounding Pr [Xt 6= Yt], where Xt is

a copy of the process that starts in some arbitrary distribution and Yt is a
copy that starts in π. As before, we start with the fact that, for all j,

Pr [Xt = j] = Pr [Xt = Yt] Pr [Yt = j | Xt = Yt] + Pr [Xt 6= Yt] Pr [Xt = j | Xt 6= Yt]

and

Pr [Yt = j] = Pr [Xt = Yt] Pr [Yt = j | Xt = Yt] + Pr [Xt 6= Yt] Pr [Yt = j | Xt 6= Yt] .

Again we use the sneaky fact that when Xt = Yt, we can write both
events in terms of Pr [Yt = j | Xt = Yt].

Subtract to get

Pr [Xt = j]− Pr [Yt = j] = Pr [Xt 6= Yt] (Pr [Xt = j | Xt 6= Yt]− Pr [Yt = j | Xt 6= Yt]).
(9.3.1)

Now observe that the parenthesized term is somewhere in the range −1
to 1, giving, for each j,

|Pr[Xt = j]− Pr[Yt = j]| ≤ Pr [Xt 6= Yt] .

But in fact we can do much better than this. If we sum (9.3.1) over all
j, we get∑
j

|Pr [Xt = j]− Pr [Yt = j]| = Pr [Xt 6= Yt]
∑
j

|Pr [Xt = j | Xt 6= Yt]− Pr [Yt = j | Xt 6= Yt]|

≤ Pr [Xt 6= Yt]
∑
j

(Pr [Xt = j | Xt 6= Yt] + Pr [Yt = j | Xt 6= Yt])

≤ 2 Pr [Xt 6= Yt] .

http://www.stat.berkeley.edu/~aldous/RWG/Chap4-3.pdf
http://www.stat.berkeley.edu/~aldous/RWG/book.html
http://www.stat.berkeley.edu/~aldous/RWG/book.html

CHAPTER 9. MARKOV CHAINS 124

So the total variation distance between the distributions of Xt and Yt is
bounded by half of this, or Pr [Xt 6= Yt].

In general, we have the coupling lemma:

Lemma 9.3.1. For any discrete random variables X and Y ,

dTV (X,Y) ≤ Pr [X 6= Y] .

The argument above can be a bit confusing, so it may help to think about
it in reverse. We can write the event [Xt 6= Yt] as the union of disjoint events
[Xt = i ∧ Yt 6= i]. If Pr [Xt = i] > Pr [Yt = i], then Pr [Xt = i] − Pr [Yt = i]
gives a lower bound on Pr [Xt = i ∧ Yt 6= i], no matter how thoroughly Xt

and Yt are correlated. So
∑
i max(0,Pr [Xt = i] − Pr [Yt = i]) (one of the

versions of total variation distance) is a lower bound on Pr [Xt 6= Yt]. But
this means Pr [Xt 6= Yt] is an upper bound on total variation distance, no
matter what we did to try to correlate Xt and Yt.

However we argue this bound, we can now go hunting for couplings that
make Xt = Yt with high probability for large enough t. 5

9.3.2 Random walk on a cycle

Let’s suppose we do a random walk on Zm, where to avoid periodicity at
each step we stay put with probability 1/2, move counterclockwise with
probability 1/4, and move clockwise with probability 1/4. What’s a good
choice for a coupling to show this process converges quickly?

Here we have two lazy random walks X and Y on Zm, where as usual
X0 is arbitrary and Y0 has the stationary distribution.

Let Zt = Xt − Yt (mod m). If Zt = 0, then Xt and Yt have collided and
we will move both together. If Zt 6= 0, then flip a coin to decided whether
to move Xt or Yt; whichever one moves then moves up or down with equal
probability. It’s not hard to see that this gives a probability of exactly 1/2
that Xt+1 = Xt, 1/4 that Xt+1 = Xt + 1, and 1/4 that Xt+1 = Xt − 1, and
similarly for Yt.

5A curious fact: in principle there always exists a coupling between X and Y such that
dTV (Xt, Yt) = Pr [Xt 6= Yt]. The intuition is that we can take trajectories in the X and Y
processes that end in the same state and match them up as much as we can; done right,
this makes the event Xt = Yt occur as often as possible given the mismatches between
Pr [Xt = x] and Pr [Yt = x]. The only problem with this is that (a) we may have to know a
lot about how the convergence comes about to know which trajectories to follow, because
we are essentially picking the entire path for both processes at time 0; and (b) we may
have to correlate the initial states X0 and Y0, which is easy if X0 puts all its weight on
one point, but gets complicated if the distribution on X0 is not trivial. So this fact is not
particularly useful in practice.

CHAPTER 9. MARKOV CHAINS 125

Whichever way the first flip goes, we get Zt+1 = Zt ± 1 with equal
probability. So Z acts as an unbiased random walk on Zm with an absorbing
barriers at 0; this is equivalent to a random walk on 0 . . .m with absorbing
barriers at both endpoints. The expected time for this random walk to reach
a barrier starting from an arbitrary initial state is at most m2/4, so if τ is
the first time at which Xτ = Yτ , we have E [τ] ≤ m2/4.6

Using Markov’s inequality, after 2(m2/4) = m2/2 steps we have Pr [Xt 6= Yt] ≤
1/2, and by iterating this argument, after αm2/2 steps we will have Pr [Xt 6= Yt] ≤
2−α. This gives a mixing time to reach dTV ≤ ε less than 1

2m
2 lg(2/ε).

The choice of 2 for the constant in Markov’s inequality could be im-
proved. The following lemma gives an optimized version of this argument:

Lemma 9.3.2. Let the expected coupling time, at which two coupled pro-
cesses {Xt} and {Yt} starting from an arbitrary state are first equal, be T .
Then dTV (XTε , YTε) ≤ ε for Tε = Te ln(2/ε).

Proof. Essentially the same argument as above, but replacing 2 with a con-
stant c to be determined. Suppose we restart the process every cT steps.
Then at time t we have a total variation bounded by 2c−bt/cT c. The ex-
pression c−t/cT is minimized by minimizing c−1/c or equivalently − ln c/c,
which occurs at c = e. This gives a time to reach an ε/2 probability of of
Te ln(2/ε).

It’s worth noting that the random walk example was very carefully rigged
to make the coupling argument clean. A similar argument still works (per-
haps with a change in the bound) for other ergodic walks on the ring, but
the details are messier.

9.3.3 Random walk on a hypercube

Start with a bit-vector of length n. At each step, choose an index uniformly
at random, and set the value of the bit-vector at that index to 0 or 1 with
equal probability. How long until we get a nearly-uniform distribution over
all 2n possible bit-vectors?

Here we apply the same transformation to both the X and Y vectors.
It’s easy to see that the two vectors will be equal once every index has been
selected once. The waiting time for this to occur is just the waiting time
nHn for the coupon collector problem. We can either use this expected time

6If we know that Y0 is uniform, then Z0 is also uniform, and we can use this fact to get
a slightly smaller bound on E [τ], around m2/6. But this will cause problems if we want
to re-run the coupling starting from a state where Xt and Yt have not yet converged.

CHAPTER 9. MARKOV CHAINS 126

directly to show that the process mixes in time O(n logn log(1/ε)) as above,
or we can use known sharp concentration bounds on coupon collector (see
[MU05, §5.4.1] or [MR95, §3.6.3]), which shows limn→∞ Pr [T ≥ n(lnn+ c)] =
1 − exp(− exp(−c))) to show that in the limit n lnn + n ln ln(1/(1 − ε)) =
n lnn+O(n log(1/ε)) is enough.7

We can improve the bound slightly by observing that, on average, half
the bits in X0 and Y0 are already equal; doing this right involves summing
over a lot of cases, so we won’t do it.

This is an example of a Markov chain with the rapid mixing property:
the mixing time is polylogarithmic in the number of states (2n in this case)
and 1/ε. For comparison, the random walk on the ring is not rapid mixing,
because the coupling time is polynomial in n = m rather than logn.

9.3.4 Various shuffling algorithms

Here we have a deck of n cards, and we repeatedly apply some random
transformation to the deck to converge to a stationary distribution that
is uniform over all permutations of the cards (usually this is obvious by
symmetry, so we won’t bother proving it). Our goal is to show that the
expected coupling time at which our deck ends up in the same permutation
as an initially-stationary deck is small. We do this by counting how many
cards St are in the same position in both decks, and showing that, for a
suitable coupling, (a) this quantity never decreases, and (b) it increases
with some nonzero probability at each step. The expected coupling time is
then

∑
k 1/Pr [St+1 = k + 1 | St = k].

Move-to-top This is a variant of card shuffling that is interesting mostly
because it gives about the easiest possible coupling argument. At each step,
we choose one of the cards uniformly at random (including the top card)
and move it to the top of the deck. How long until the deck is fully shuffled,
i.e. until the total variation distance between the actual distribution and
the stationary distribution is bounded by ε?

Here the trick is that when we choose a card to move to the top in the
X process, we choose the same card in the Y process. It’s not hard to see
that this links the two cards together so that they are always in the same
position in the deck in all future states. So to keep track of how well the

7This is a little tricky; we don’t know from this bound alone how fast the probability
converges as a function of n, so to do this right we need to look into the bound in more
detail.

CHAPTER 9. MARKOV CHAINS 127

coupling is working, we just keep track of how many cards are linked in this
way, and observe that as soon as n− 1 are, the two decks are identical.

Note: Unlike some of the examples below, we don’t consider two cards to
be linked just because they are in the same position. We are only considering
cards that have gone through the top position in the deck (which corresponds
to some initial segment of the deck, viewed from above). The reason is that
these cards never become unlinked: if we pick two cards from the initial
segment, the cards above them move down together. But deeper cards that
happen to match might become separated if we pull a card from one deck
that is above the matched pair while its counterpart in the other deck is
below the matched pair.

Having carefully processed the above note, given k linked cards the prob-
ability that the next step links another pair of cards is exactly (n − k)/n.
So the expected time until we get k + 1 cards is n/(n − k), and if we sum
these waiting times for k = 0 . . . n− 1, we get nHn, the waiting time for the
coupon collector problem. So the bound on the mixing time is the same as
for the random walk on a hypercube.

Random exchange of arbitrary cards Here we pick two cards uni-
formly and independently at random and swap them. (Note there is a 1/n
chance they are the same card; if we exclude this case, the Markov chain
has period 2.) To get a coupling, we reformulate this process as picking a
random card and a random location, and swapping the chosen card with
whatever is in the chosen location in both the X and Y processes.

First let’s observe that the number of linked cards never decreases. Let
xi, yi be the position of card i in each process, and suppose xi = yi. If neither
card i nor position xi is picked, i doesn’t move, and so it stays linked. If
card i is picked, then both copies are moved to the same location; it stays
linked. If position xi is picked, then it may be that i becomes unlinked; but
this only happens if the card j that is picked has xj 6= yj . In this case j
becomes linked, and the number of linked cards doesn’t drop.

Now we need to know how likely it is that we go from k to k + 1 linked
cards. We’ve already seen a case where the number of linked cards increases;
we pick two cards that aren’t linked and a location that contains cards that
aren’t linked. The probability of doing this is ((n − k)/n)2, so our total
expected waiting time is n2∑(n − k)−2 = n2∑ k−2 ≤ nπ2/6 (see http:
//en.wikipedia.org/wiki/Basel_problem for an extensive discussion of
the useful but non-obvious fact that

∑
k∈N+ k

−2 = ζ(2) = π2/6.) The final
bound is O(n2 log(1/ε)).

http://en.wikipedia.org/wiki/Basel_problem
http://en.wikipedia.org/wiki/Basel_problem

CHAPTER 9. MARKOV CHAINS 128

This bound is much worse that the bound for move-to-top, which is
surprising. In fact, the real bound is O(n logn) with high probability,
although the proof uses very different methods (see http://www.stat.
berkeley.edu/~aldous/RWG/Chap7.pdf). This shows that the coupling
method doesn’t always give tight bounds (perhaps we need a better cou-
pling?).

Random exchange of adjacent cards Suppose now that we only swap
adjacent cards. Specifically, we choose one of the n positions i in the deck
uniformly at random, and then swap the cards a positions i and i+1 (mod n)
with probability 1/2. (The 1/2 is there for the usual reason of avoiding
periodicity.)

So now we want a coupling between the X and Y processes where each
possible swap occurs with probability 1

2n on both sides, but somehow we
correlate things so that like cards are pushed together but never pulled
apart. The trick is that we will use the same position i on both sides, but
be sneaky about when we swap. In particular, we will aim to arrange things
so that once some card is in the same position in both decks, both copies
move together, but otherwise one copy changes its position by ±1 relative
to the other with a fixed probability 1

2n .
The coupled process works like this. Let D be the set of indices i where

the same card appears in both decks at position i or at position i+ 1. Then
we do:

1. For i ∈ D, swap (i, i+ 1) in both decks with probability 1
2n .

2. For i 6∈ D, swap (i, i+ 1) in the X deck only with probability 1
2n .

3. For i 6∈ D, swap (i, i+ 1) in the Y deck only with probability 1
2n .

4. Do nothing with probability |D|2n .

It’s worth checking that the total probability of all these events is |D| /2n+
2(n−|D|)/2n+ |D| /2n = 1. More important is that if we consider only one
of the decks, the probability of doing a swap at (i, i+ 1) is exactly 1

2n (since
we catch either case 1 or 2 for the X deck or 1 or 3 for the Y deck).

Now suppose that some card c is at position x in X and y in Y . If
x = y, then both x and x − 1 are in D, so the only way the card can
move is if it moves in both decks: linked cards stay linked. If x 6= y, then
c moves in deck X or deck Y , but not both. (The only way it can move
in both is in case 1, where i = x and i + 1 = y or vice verse; but in

http://www.stat.berkeley.edu/~aldous/RWG/Chap7.pdf
http://www.stat.berkeley.edu/~aldous/RWG/Chap7.pdf

CHAPTER 9. MARKOV CHAINS 129

this case i can’t be in D since the copy of c at position x doesn’t match
whatever is in deck Y , and the copy at position y doesn’t match what’s
in deck X.) In this case the distance x − y goes up or down by 1 with
equal probability 1/2n. Considering x − y (mod n), we have a “lazy” ran-
dom walk that moves with probability 1/n, with absorbing barriers at 0
and n. The worst-case expected time to converge is n(n/2)2 = n3/4, giving
Pr
[
time for c to become linked ≥ αn3/8

]
≤ 2−α using the usual argument.

Now apply the union bound to get Pr
[
time for every c to become linked ≥ αn3/8

]
≤

n2−α to get an expected coupling time of O(n3 logn). In this case (say Al-
dous and Fill, quoting a result of David Bruce Wilson [Wil04]) the bound is
optimal up to a constant factor.

Real-world shuffling In real life, the handful of people who still use phys-
ical playing cards tend to use a dovetail shuffle, which is closely approxi-
mated by the reverse of a process where each card in a deck is independently
assigned to a left or right pile and the left pile is place on top of the right pile.
Coupling doesn’t really help much here; instead, the process can be analyzed
using more sophisticated techniques due to Bayer and Diaconis [BD92]; the
short version of the result is that Θ(logn) shuffles are needed to randomize
a deck of size n.

9.3.5 Path coupling

Instead of just looking at Xt and Yt, consider a path of intermediate states
Xt = Z0,tZ1,tZ2,t . . . Zm,t = Yt, where each pair Zi,tZi+1,t is adjacent, i.e.,
satisfies d(Zi,t, Zi+1,t) = 1 for some reasonable metric for the state space. In
choosing our metric, we will want to make sure that this is alway possible:
that whenever two states are at distance d or less, there exists a path of d−1
intermediate states each separated by distance 1. The easiest way to do this
is to define the metric based on path length after deciding which states we
consider to be adjacent.

We now construct a coupling only for adjacent nodes that reduces their
distance on average. The idea is that d(Xt, Yt) ≤

∑
d(Zi,t, Zi+1,t), so if the

distance between each adjacent pair shrinks on average, so does the total
length of the path. (If the path gets shorter, we can merge or drop some
of the intermediate states, while still maintaining a path. If the path gets
longer through some misfortune, we’ll throw in a few new adjacent states to
fill in the gaps.) When the length of the path reaches 0, we have Xt = Yt.
This technique is known as path coupling.

CHAPTER 9. MARKOV CHAINS 130

9.3.5.1 Sampling graph colorings

For example, let’s look at sampling k-colorings of a graph with maximum
degree d.8 Consider the following chain on proper k-colorings of a graph with
degree d, where k is substantially larger than d (we need at least k ≥ d+ 1
to guarantee that a coloring exists, but we will assume k somewhat bigger
to show fast convergence). At each step, we choose one of the n nodes and
one of the k colors, and recolor the node to the new color if and only if
no neighbor already has that color. In statistical physics, this process of
changing one randomly-chosen state variable at each step to a new random
value with a probability that depends on the desirability of the new global
state goes by the name of Glauber dynamics.

Because pij = pji for all pairs of states i, j, the detailed balance equa-
tions (9.2.4) hold when πi is constant for all i, and we have a reversible
Markov chain with a uniform stationary distribution. We’d like to show
that we converge to this uniform distribution reasonably quickly, using a
path coupling argument.

We’ll think of colorings as vectors. Given two colorings x and y, let
d(x, y) be the Hamming distance between them, which is the number of
nodes assigned different colorings by x and y. To show convergence, we
will construct a coupling that shows that d(Xt, Yt) converges to 0 over time
starting from arbitrary initial points X0 and Y0.

A complication for graph coloring is that it’s not immediately evident
that the length of the shortest path from Xt to Yt is d(Xt, Yt). The problem
is that it may not be possible to transform Xt into Yt one node at a time
without producing improper colorings. With enough colors, we can explicitly
construct a short path between Xt and Yt that uses only proper colorings;
but for this particular process it is easier to simply extend the Markov chain
to allow improper colorings, and show that our coupling works anyway. This
also allows us to start with an improper coloring for X0 if we are particularly
lazy. The stationary distribution is not affected, because if j is an improper
coloring, we have pij = 0 for all i, giving πj = 0 (and also making the
detailed balance equations continue to hold for improper colorings).

The natural coupling to consider given adjacent Xt and Yt is to pick the
same node and the same new color for both. If we pick the one node u on
which they differ, and choose a color that is not used by any neighbor (which
will be the same for both copies of the process, since all the neighbors have

8The analysis here is weaker than it could be. See [MU05, §11.5] for a better analysis
that only requires 2d colors, or [DGM02] for even more sophisticated results and a history
of the problem.

CHAPTER 9. MARKOV CHAINS 131

the same colors), then we getXt+1 = Yt+1; this event occurs with probability
at least (k − d)/kn. If we pick a node that is neither u nor adjacent to it,
then the distance between X and Y doesn’t change; either both get a new
identical color or both don’t. If we pick a node adjacent to u, then there is a
possibility that the distance increases; if Xt assigns color c to u and Yt color
c′, then choosing either c or c′ for the neighbor will cause one copy to stay
the same (because the new color isn’t feasible) and the other to change. This
event occurs with probability at most 2d/kn if we sum over all neighbors.
So

E [d(Xt+1, Yt+1) | d(Xt, Yt) = 1] ≤ 1− k − d
kn

+ 2d
kn

= 1− k − 3d
kn

.

This is less than 1 if k > 3d, or k ≥ 3d+ 1.
Applying this bound to the entire path, we get for general Xt, Yt that

E [d(Xt+1, Yt+1) | d(Xt, Yt)] ≤
(

1− k − 3d
kn

)
d(Xt, Yt)

≤ exp
(
−k − 3d

kn

)
d(Xt, Yt).

A simple induction then gives

Pr [Xt 6= Yt] ≤ E [d(Xt, Yt)]

≤ exp
(
−k − 3d

kn
t

)
E [d (X0, Y0)]

≤ exp
(
−k − 3d

kn
t

)
n.

Setting this bound equal to ε and solving for t gives

τ(ε) ≤ kn

k − 3d ln(n/ε).

9.3.5.2 Sampling independent sets

For a more complicated example of path coupling, let’s try sampling inde-
pendent sets of vertices on a graph G = (V,E) with n vertices and m edges.
If we can bias in favor of larger sets, we might even get a good independent
set approximation! The fact that this is hard will console us when we find
that it doesn’t work.

CHAPTER 9. MARKOV CHAINS 132

By analogy with the graph coloring problem, a natural way to set up
the random walk is to represent each potentially independent set as a bit
vector, where 1 indicates membership in the set, and at each step we pick
one of the n bits uniformly at random and set it to 0 or 1 with probability
1/2 each, provided that the resulting set is independent. (I.e., we’ll use
Glauber dynamics again.)

We can easily show that the stationary distribution of this process is
uniform. The essential idea is that this is just a special case of random walk
on a degree-d graph where we traverse each each with probability 1

2d ; in this
case, we have d = n, since each independent set is adjacent to at most n
other independent sets (obtained by flipping one of the bits).

It’s also easy to see that d(x, y) = ‖x− y‖1 is a bound on the length
of the minimum number of transitions to get from x to y, since we can
alway remove all the extra ones from x and put back the extra ones in y
while preserving independence throughout the process. This is a case where
it may be hard to find the exact minimum path length, so we’ll use this
distance instead for our path coupling.

Here is an obvious coupling, that doesn’t actually work: Pick the same
position and value for both copies of the chain. If x and y are adjacent,
then they coalesce with probability 1/n (both probability 1/2n transitions
are feasible for both copies, since the neighboring nodes always have the
same state). What is the probability that they diverge? We can only be
prevented from picking a value if the value is 1 and some neighbor is 1. So
the bad case is when xi = 1, yi = 0, and we attempt to set some neighbor
of i to 1; in the worst case, this happens d/2n of the time, which is at least
1/n when d ≥ 2. No coalescence here!

We now have two choices. We can try to come up with a more clever
random walk (see [MU05, §11.6], or skip ahead a few paragraphs), or we can
try to persevere with our dumb random walk, a more clever analysis, and
possibly a more restricted version of the problem where it will miraculously
work even though it shouldn’t really. Let’s start with d = 2. Here the path
coupling argument gives no expected change in d(Xt, Yt), so we have some
hope that with enough wandering around they do in fact collide.

How do we prove this? Given arbitrary Xt, Yt, we know from the path
coupling argument above that on average they don’t move any farther away.
We also know that that there is a probability of at least 1/n that they move
closer if they are not already identical (this is slightly tricky to see in the
general case; basically we always have a 1/2n chance of removing an extra
1 from one or the other, and if we also have an extra 1 in the other process,
we get another 1/2n, and if we don’t, we can put in a missing 1 and get

CHAPTER 9. MARKOV CHAINS 133

1/2n that way instead). And we know that any change resulting from our
not-very-smart coupling will change the distance by either 0 or ±1. So if
we sample only at times when a move has just occurred, we see a random
walk (with a possible downward bias) with a reflecting barrier at n and an
absorbing barrier at 0: this converges in n2 steps. But since our random
walk steps may take an expected n real steps each, we get a bound of n3 on
the total number of steps to converge.

But if d = 3, we seem to be doomed. We are also in trouble if we try
to bias the walk in favor of adding vertices: since our good case is a 1→ 0
transition, decreasing its probability breaks the very weak balance we have
even with d = 2 (for d = 1, it’s not a problem, but this is an even less
interesting case) So maybe we should see what we can do with the sneakier
random walk described in [MU05, §11.6] (which is originally due to Luby
and Vigoda [LV99]).

Here the idea is that we pick a random edge uv, and then try to do one
of the following operations, all with equal probability:

1. Set u = v = 0.

2. Set u = 0 and v = 1.

3. Set u = 1 and v = 0.

In each case, if the result would be a non-independent set, we instead do
nothing.

Verifying that this has a uniform stationary distribution is mildly painful
if we are not careful, since there may be several different transitions that
move from some state x to the same state y. But for each transition (oc-
curring with probability 1

3m), we can see that there is a reverse transition
that occurs with equal probability; so the detailed balance equations (9.2.4)
hold with uniform probabilities. Note that we can argue this even though
we don’t know what the actual stationary probabilities are, since we don’t
know how many independent sets our graph has.

So now what happens if we run two coupled copies of this process, where
the copies differ on exactly one vertex i?

First, every neighbor of i is 0 in both processes. A transition that doesn’t
involve any neighbors of i will have the same effect on both processes. So
we need to consider all choices of edges where one of the endpoints is either
i or a neighbor j of i. In the case where the other endpoint isn’t i, we’ll call
it k; there may be several such k.

If we choose ij and don’t try to set j to one, we always coalesce the
states. This occurs with probability 2

3m . If we try to set i to zero and j to

CHAPTER 9. MARKOV CHAINS 134

one, we may fail in both processes, because j may have a neighbor k that
is already one; this will preserve the distance between the two processes.
Similarly, if we try to set j to one as part of a change to some jk, we will
also get a divergence between the two processes: in this case, the distance
will actually increase. This can only happen if j has at most one neighbor
k (other than i) that is already in the independent set; if there are two such
k, then we can’t set j to one no matter what the state of i is.

This argument suggests that we need to consider three cases for each j,
depending on the number s of nodes k 6= i that are adjacent to j and have
xk = yk = 1. In each case, we assume xi = 0 and yi = 1, and that all other
nodes have the same value in both x and y. (Note that these assumptions
mean that any such k can’t be adjacent to i, because we have yk = yi = 1.)

• s = 0. Then if we choose ij, we can always set i and j however we
like, giving a net − 1

m expected change to the distance. However, this
is compensated for by up to d− 1 attempts to set j = 1 and k = 0 for
some k, all of which fail in one copy of the process but succeed in the
other. Since k doesn’t change, each of these failures adds only 1 to
the distance, which becomes at most d−1

3m total. So our total expected
change in this case is at most d−4

3m .

• s = 1. Here attempts to set i = 0 and j = 1 fail in both processes,
giving only a − 2

3m expected change after picking ij. Any change to jk
fails only if we set j = 1, which we can only do in the x process and
only if we also set k = 0 for the unique k that is currently one. This
produces an increase in the distance of 2 with probability 1

3m , exactly
canceling out the decrease from picking ij. Total expected change is
0.

• s = 2. Now we can never set j = 1. So we drop − 2
3m from changes to

ij and have no change in distance from updates to jk for any k 6= i.

Considering all three cases, if d ≤ 4, then in the worst case we have
E [d(Xt+1, Yt+1 | Xt, Yt] = d(Xt, Yt). We also have that the distance changes
with probability at least 2

3m . So the same analysis as for the dumb process
shows that we converge in at most 3

8n
2m steps on average.

Here, we’ve considered the case where all independent sets have the same
probability. One can also bias the random walk in favor of larger indepen-
dent sets by accepting increases with higher probability than decreases (as
in Metropolis-Hastings); this samples independent sets of size s with prob-
ability proportional to λs. Some early examples of this approach are given

CHAPTER 9. MARKOV CHAINS 135

in [LV97, LV99, DG00]. The question of exactly which values of λ give
polynomial convergence times is still open; see [MWW07] for some recent
bounds.

9.3.5.3 Metropolis-Hastings and simulated annealing

Recall that the Metropolis-Hastings algorithm constructs a reversible Markov
chain with a desired stationary distribution from any reversible Markov
chain on the same states (see §9.2.2.3 for details.)

A variant, which generally involves tinkering with the chain while it’s
running, is the global optimization heuristic known as simulated anneal-
ing. Here we have some function g that we are trying to minimize. So
we set f(i) = exp(−αg(i)) for some α > 0. Running Metropolis-Hastings
gives a stationary distribution that is exponentially weighted to small values
of g; if i is the global minimum and j is some state with high g(j), then
π(i) = π(j) exp(α(g(j) − g(i)), which for large enough α goes a long way
towards compensating for the fact that in most problems there are likely to
be exponentially more bad j’s than good i’s. The problem is that the same
analysis applies if i is a local minimum and j is on the boundary of some
depression around i; large α means that it is exponentially unlikely that we
escape this depression and find the global minimum.

The simulated annealing hack is to vary α over time; initially, we set
α small, so that we get conductance close to that of the original Markov
chain. This gives us a sample that is roughly uniform, with a small bias
towards states with smaller g(i). After some time we increase α to force the
process into better states. The hope is that by increasing α slowly, by the
time we are stuck in some depression, it’s a deep one—optimal or close to
it. If it doesn’t work, we can randomly restart and/or decrease α repeatedly
to jog the chain out of whatever depression it is stuck in. How to do this
effectively is deep voodoo that depends on the structure of the underlying
chain and the shape of g(i), so most of the time people who use simulated
annealing just try it out with some generic annealing schedule and hope
it gives some useful result. (This is what makes it a heuristic rather than
an algorithm. Its continued survival is a sign that it does work at least
sometimes.)

Here are toy examples of simulated annealing with provable convergence
times.

Single peak Let’s suppose x is a random walk on an n-dimensional hy-
percube (i.e., n-bit vectors where we set 1 bit at a time), g(x) = |x|, and we

CHAPTER 9. MARKOV CHAINS 136

want to maximize g. Now a transition that increase |x| is accepted always
and a transition that decreases |x| is accepted only with probability e−α.
For large enough α, this puts a constant fraction of π on the single peak at
x = 1; the observation is that that there are only

(n
k

)
≤ nk points with k

zeros, so the total weight of all points is at most π(1)
∑
k≥0 n

k exp(−αk) =
π(1)

∑
exp(lnn−α)k = π(1)/(1−exp(lnn−α)) = π(1)·O(1) when α > lnn,

giving π(1) = Ω(1) in this case.
So what happens with convergence? Let p = exp(−α). Let’s try doing

a path coupling between two adjacent copies x and y of the Metropolis-
Hastings process, where we first pick a bit to change, then pick a value to
assign to it, accepting the change in both processes if we can. The expected
change in |x− y| is then (1/2n)(−1 − p), since if we pick the bit where x
and y differ, we have probability 1/2n of setting both to 1 and probability
p/2n of setting both to 0, and if we pick any other bit, we get the same
distribution of outcomes in both processes. This gives a general bound of
E [|Xt+1 − Yt+1| | |Xt − Yt|] ≤ (1−(1+p)/2n) |Xt − Yt|, from which we have
E [|Xt − Yt|] ≤ exp(−t(1 + p)/2n) E [|X0 − Y0|] ≤ n exp(−t(1 + p)/2n). So
after t = 2n/(1 + p) ln(n/ε) steps, we expect to converge to within ε of the
stationary distribution in total variation distance. This gives an O(n logn)
algorithm for finding the peak.

This is kind of a silly example, but if we suppose that g is better disguised
(for example, g(x) could be |x⊕ r| where r is a random bit vector), then we
wouldn’t really expect to do much better than O(n). So O(n logn) is not
bad for an algorithm with no brains at all.

Single peak with very small amounts of noise Now we’ll let g : 2n →
N be some arbitrary Lipschitz function (in this case we are using the real
definition: |g(x)− g(y)| ≤ |x− y|) and ask for what values of p = e−α

the Metropolis-Hastings walk with f(i) = e−αg(i) can be shown to converge
quickly. Given adjacent states x and y, with xi 6= yi but xj = yj for all
j 6= i, we still have a probability of at least (1 + p)/2n of coalescing the
states by setting xi = yi. But now there is a possibility that if we try
to move to (x[j/b], y[j/b]) for some j and b, that x rejects while y does
not or vice versa (note if xj = yj = b, we don’t move in either copy of
the process). Conditioning on j and b, this occurs with probability 1 − p
precisely when x[j/b] < x and y[j/b] ≥ y or vice versa, giving an expected
increase in |x− y| of (1 − p)/2n. We still get an expected net change of
−2p/2n = −p/n provided there is only one choice of j and b for which this

CHAPTER 9. MARKOV CHAINS 137

occurs. So we converge in time τ(ε) ≤ (n/p) log(n/ε) in this case.9
One way to think of this is that the shape of the neighborhoods of nearby

points is similar. If I go up in a particular direction from point x, it’s very
likely that I go up in the same direction from some neighbor y of x.

If there are more bad choices for j and b, then we need a much larger
value of p: the expected net change is now (k(1 − p) − 1 − p)/2n = (k −
1 − (k + 1)p)/2n, which is only negative if p > (k − 1)/(k + 1). This gives
much weaker pressure towards large values of g, which still tends to put us
in high neighborhoods but creates the temptation to fiddle with α to try to
push us even higher once we think we are close to a peak.

9.4 Spectral methods for reversible chains
(See also http://www.stat.berkeley.edu/~aldous/RWG/Chap3.pdf, from
which many of the details in the notes below are taken.)

The problem with coupling is that (a) it requires cleverness to come up
with a good coupling; and (b) in many cases, even that doesn’t work—there
are problems for which no coupling that only depends on current and past
transitions coalesces in a reasonable amount of time.10 When we run into
these problems, we may be able to show convergence instead using a linear-
algebraic approach, where we look at the eigenvalues of the transition matrix
of our Markov chain. This approach works best for reversible Markov chains,
where πipij = πjpij for all states i and j and some distribution π.

9.4.1 Spectral properties of a reversible chain

(See http://www.stat.berkeley.edu/~aldous/RWG/Chap3.pdf, Section 4,
or the lecture notes from Ravi Montenegro at http://www.ravimontenegro.
com/8843/notes/lecture5.pdf.)

Suppose P is irreducible and reversible, i.e. that πi 6= 0 for all i and
πipij = πjpji for all i, j. Divide both sides by√πiπj to get (πi)1/2pij(πj)−1/2 =
(πj)1/2pji(πi)−1/2. This shows that the matrix S with entries Sij = (πi)1/2pij(πj)−1/2

is symmetric.
Why we care about this: Any symmetric real-valued matrix can, by the

9You might reasonably ask if such functions g exist. One example is g(x) = (x1⊕x2)+∑
i>2 xi.

10Such a coupling is called a causal coupling; an example of a Markov chain for which
causal couplings are known not to work is one used for sampling perfect matchings in
bipartite graphs described in §9.4.5.4 [KR99].

http://www.stat.berkeley.edu/~aldous/RWG/Chap3.pdf
http://www.stat.berkeley.edu/~aldous/RWG/Chap3.pdf
http://www.ravimontenegro.com/8843/notes/lecture5.pdf
http://www.ravimontenegro.com/8843/notes/lecture5.pdf

CHAPTER 9. MARKOV CHAINS 138

spectral theorem11 be decomposed as S = U>ΛU where Λ is a diagonal
matrix whose entries are eigenvalues of S and the rows of U are orthonormal
eigenvectors.12 The fact that the columns of U are orthonormal (orthogonal
to each other, and having length 1), means that they act like a set of coordi-
nate axes and that vU> gives the coordinates of v in this coordinate system,
while (vU>)U undoes the transformation by multiplying each coordinate by
the corresponding row vector, since U>U equals the identity matrix I.

In more detail, we can write an arbitrary row vector v = c1u1 + c2u2 +
. . . cnun, where the vectors ui correspond to the rows of U and the coefficients
ci are unique. If we multiply v by S on the right, we get vU>ΛU =

∑
λiciui,

and if we multiply it by St, we get v(U>ΛU)t = vU>ΛtU =
∑
λticiui. So re-

peatedly multiplying by S corresponds to shrinking v along the eigenvectors
with eigenvalues whose absolute value is less than 1, while leaving behind the
component(s) corresponding to eigenvalues 1 or greater in absolute value.

For example, the symmetric transition matrix

S =
[
p q
q p

]

corresponding to a Markov chain on two states that stays in the same state
with probability p and switches to the other state with probability q = 1−p
has eigenvectors (not normalized)

[
1 1

]
and

[
1 −1

]
with corresponding

eigenvalues 1 and p− q, as shown by computing

[
1 1

] [p q
q p

]
=
[
p+ q q + p

]
= 1 ·

[
1 1

]
and

[
1 −1

] [p q
q p

]
=
[
p− q q − p

]
= (p− q) ·

[
1 −1

]
.

This gives a spectral decomposition

S =
[
1/
√

2 1/
√

2
1/
√

2 −1/
√

2

] [
1 0
0 p− q

] [
1/
√

2 1/
√

2
1/
√

2 −1/
√

2

]
,

11See http://en.wikipedia.org/wiki/Spectral_theorem.
12If you neglected to take a linear algebra course earlier in your life, an eigenvector of a

matrix is a vector v such that vS = λv, where λ is the corresponding eigenvalue—in other
words, it’s a vector that changes in length but not direction when we run it through S.

http://en.wikipedia.org/wiki/Spectral_theorem

CHAPTER 9. MARKOV CHAINS 139

where the 1/
√

2 factors are included to make all the eigenvectors have length
1, which implies that repeatedly multiplying some initial vector x by S
preserves the sum of x1 and x2 while multiplying the difference x0 − x1 by
p− q at each step.

What if we multiply v by P t, where P is the (not necessarily symmetric)
transition matrix of a reversible Markov chain? Let Π be the diagonal
matrix given by Πii = πi; then we can let S = Π1/2PΠ−1/2 and thus P =
Π−1/2SΠ1/2, where S is a symmetric matrix (as shown at the beginning of
this section). So P t = (Π−1/2SΠ1/2)t = Π−1/2StΠ1/2 = Π−1/2U>ΛtUΠ1/2,
where S = U>ΛU is the spectral decomposition of S. So we can compute
vP t by dividing each component of v by the square root of the stationary
distribution, shrinking along all the eigenvectors, and scaling back. If we
expand out all the matrix products to get a specific (vP t)ij , we obtain the
spectral representation formula:

Pr [Xt = j | X0 = i] =
√
πj
πi

n∑
m=1

λtmumiumj .

Assuming that P is irreducible and aperiodic, we have a unique limit to
this process. This means that S has exactly one eigenvalue 1 (corresponding
to the eigenvector whose entries are (πi)1/2), and all the remaining eigen-
values λ satisfy λt → 0 as t → ∞. We can write the eigenvalues of S
(which turn out to also be the eigenvalues of P , although the eigenvectors
are different) as 1 = λ1 ≥ λ2 ≥ · · · ≥ λn ≥ −1.13

Assuming that |λ2| ≥ |λn|, as t grows large λt2 will dominate the other
smaller eigenvalues, and so the size of λ2 will control the rate of convergence
of the underlying Markov process. This assumption is always true for lazy
walks that stay put with probability 1/2.

In detail, we have that the first eigenvector u1 satisfies u1i = √πi; so the
first term in the spectral representation formula for Pr [Xt = j | X0 = i] is(√

πj/πi
)

1t
(√

πiπj
)

= πj . Each subsequent term is
√
πj/πi(λm)tumiumj ≤√

πj/πi(λm)t, giving a bound of (n−1)
√
πj/πi(λmax)t where λmax = max(λ2, |λn|)

on the total (in the unlikely event that all the eigenvalues except λ1 are close
13For aperiodic chains and chains with period 2, all the eigenvalues are real; the period-2

case includes an eigenvalue of −1. Chains with periods greater than 2 (which are never
reversible) have pairs of complex-valued eigenvalues that are roots of unity, which happen
to cancel out to only produce real probabilities in vP t. Chains that aren’t irreducible will
have one eigenvector with eigenvalue 1 for each final component; the stationary distri-
butions of these chains are linear combinations of these eigenvectors (which are just the
stationary distributions on each component).

CHAPTER 9. MARKOV CHAINS 140

to λmax) and O(
√
πi/πj(λmax)t) in the typical case. In either case, since

λmax < 1, we get an exponentially-decreasing bound.
It is often convenient to express this bound as exp(−t/c) for an appropri-

ate constant. Here we observe that λmax = 1−(1−λmax) ≤ exp(−(1−λmax))
gives (λmax)t ≤ exp(−(1− λmax)t). It is customary to describe this fact by
giving the mixing rate or relaxation time τ2 = 1/(1− λmax), this being
the time for which this bound drops by a factor of 1/e.

So far we have just considered the probability that we land in a particu-
lar state. To bound total variation distance, we (following the Montenegro
notes mentioned above) go through the Lp norm. Given a vector v, define
‖v‖p,π = (

∑
i |vi|

p πi)1/p. (This is a weighted version of the usual Lp norm.)
Then dTV (p, π) = (1/2) ‖π − p‖1 = (1/2) ‖1− p/π‖1,π. A general property
of Lp norms is that if we increase p, we also increase ‖v‖p,π, so we can bound
dTV (p, π) by (1/2) ‖1− p/π‖2,π, which is a little easier to compute. Omit-
ting the details of the proof (see http://www.ravimontenegro.com/8843/
notes/lecture5.pdf), the result is that, starting from an initial vector x
that puts all of its weight on state i,

dTV (xP t, π) ≤ 1
2λ

t
max

√
1− πi
πi

.

So now we just need a tool for bounding λmax.

9.4.2 Conductance

The conductance or Cheeger constant Φ(S) of a set S of states in a
Markov chain is

Φ(S) =
∑
i∈S,j 6∈S πipij

π(S) . (9.4.1)

This is the probability of leaving S on the next step starting from the station-
ary distribution conditioned on being in S. The conductance is a measure
of how easy it is to escape from a set; it can also be thought of as a weighted
version of edge expansion.

The conductance of a Markov chain as a whole is obtained by taking the
minimum of Φ(S) over all S that occur with probability at most 1/2:

Φ = min
0<π(S)≤1/2

Φ(S). (9.4.2)

The usefulness of conductance is that it bounds λ2:

http://www.ravimontenegro.com/8843/notes/lecture5.pdf
http://www.ravimontenegro.com/8843/notes/lecture5.pdf

CHAPTER 9. MARKOV CHAINS 141

Theorem 9.4.1. In a reversible Markov chain,

1− 2Φ ≤ λ2 ≤ 1− Φ2/2. (9.4.3)

This result is a generalization of the Cheeger inequality from graph
theory, and was proved for Markov chains by Jerrum and Sinclair [JS89].
We won’t attempt to prove it here.

For lazy walks we always have λ2 = λmax, and so we can convert this to
a bound on the relaxation time:

Corollary 9.4.2.

1
2Φ ≤ τ2 ≤

2
Φ2 . (9.4.4)

In other words, high conductance implies low relaxation time and vice
versa, up to squaring.

For very simple Markov chains we can compute the conductance di-
rectly. Consider a lazy random walk on a cycle. Any proper subset S has
at least two outgoing edges, each of which carries a flow of 1/4n, giving
ΦS ≥ (1/2n)/π(S). If we now take the minimum of ΦS over all S with
π(S) ≤ 1/2, we get Φ ≥ 1/n, which gives τ2 ≤ 2n2. This is essentially the
same bound as we got from coupling.

Here’s a slightly more complicated chain. Take two copies of Kn, and
join them by a path with n edges. Now consider ΦS for a lazy random walk
on this graph where S consists of half the graph, split in the middle of the
path (we can’t actually do this exactly, but we’ll get as close as we can).
There is a single outgoing edge uv, with π(u) = d(u)/2 |E| = 2/(2n(n −
1)n/2 + n) = 2n−2 and puv = 1/4, for π(u)puv = n−2/2. By symmetry, we
have π(S) → 1/2 as n → ∞, giving ΦS → n−2(1/2)/(1/2) = n−2. So we
have n2/2 ≤ τ2 ≤ 2n4.

How does this compare to the actual mixing time? In the stationary
distribution, we have a constant probability of being in each of the copies of
Kn. Suppose we start in the left copy. At each step there is a 1/n chance
that we are sitting on the path endpoint. We then step onto the path with
probability 1/n, and reach the other end before coming back with probability
1/n. So (assuming we can make this extremely sloppy handwaving argument
rigorous) it takes at least n3 steps on average before we reach the other copy
of Kn, which gives us a rough estimate of the mixing time of Θ(n3). In
this case the exponent is exactly in the middle of the bounds derived from
conductance.

CHAPTER 9. MARKOV CHAINS 142

9.4.3 Edge expansion using canonical paths

Here and below we are mostly following the presentation in [Gur00], but
with slightly different examples (and probably m ore errors).

For more complicated Markov chains, it is helpful to have a tool for
bounding conductance that doesn’t depend on intuiting what sets have the
smallest boundary. The canonical paths [JS89] method does this by as-
signing a unique path γxy from each state x to each state y in a way that
doesn’t send too many paths across any one edge. So if we have a partition
of the state space into sets S and T , then there are |S| · |T | paths from states
in S to states in T , and since (a) every one of these paths crosses an S–T
edge, and (b) each S–T edge carries at most ρ paths, there must be at least
|S| · |T | /ρ edges from S to T . Note that because there is no guarantee we
chose good canonical paths, this is only useful for getting lower bounds on
conductance—and thus upper bounds on mixing time—but this is usually
what we want.

Let’s start with a small example. Let G = Cn � Cm, the n ×m torus.
A lazy random walk on this graph moves north, east, south, or west with
probability 1/8 each, wrapping around when the coordinates reach n or m.
Since this is a random walk on a regular graph, the stationary distribution
is uniform. What is the relaxation time?

Intuitively, we expect it to be O(max(n,m)2), because we can think of
this two-dimensional random walk as consisting of two one-dimensional ran-
dom walks, one in the horizontal direction and one in the vertical direction,
and we know that a random walk on a cycle mixes in O(n2) time. Un-
fortunately, the two random walks are not independent: every time I take
a horizontal step is a time I am not taking a vertical step. We can show
that the expected coupling time is O(n2 + m2) by running two sequential
instances of the coupling argument for the cycle, where we first link the two
copies in the horizontal direction and then in the vertical direction. So this
gives us one bound on the mixing time. But what happens if we try to use
conductance?

Here it is probably easiest to start with just a cycle. Given points x
and y on Cn, let the canonical path γxy be a shortest path between them,
breaking ties so that half the paths go one way and half the other. Then each
each is crossed by exactly k paths of length k for each k = 1 . . . (n/2 − 1),
and at most n/4 paths of length n/2 (0 if n is odd), giving a total of ρ ≤
(n/2− 1)(n/2)/2 + n/4 = n2/8 paths across the edge.

If we now take an S–T partition where |S| = m, we get at least m(n −
m)/ρ = 8m(n −m)/n2 S–T edges. This peaks at m = n/2, where we get

CHAPTER 9. MARKOV CHAINS 143

2 edges—exactly the right number—and in general when m ≤ n/2 we get
at least 8m(n/2)/n2 = 4m/n outgoing edges, giving a conductance ΦS ≥
(1/4n)(4m/n)/(m/n) = 1/n. (This is essentially what we got before, except
we have to divide by 2 because we are doing a lazy walk. Note that for small
m, the bound is a gross underestimate, since we know that every nonempty
proper subset has at least 2 outgoing edges.)

Now let’s go back to the torus Cn�Cm. Given x and y, define γxy to be
the L-shaped path that first changes x1 to y1 by moving the shortest distance
vertically, then changes x2 to y2 by moving the shortest distance horizontally.
For a vertical edge, the number of such paths that cross it is bounded by
n2m/8, since we get at most n2/8 possible vertical path segments and for
each such vertical path segment there are m possible horizontal destinations
to attach to it. For a horizontal edge, n and m are reversed, giving m2n/8
paths. To make our life easier, let’s assume n ≥ m, giving a maximum of
ρ = n2m/8 paths.

For |S| ≤ nm/2, this gives at least |S|· |G \ S| /ρ ≥ |S| (nm/2)/(n2m/8) =
4 |S| /n outgoing edges. We thus have φS ≥ (1/8nm)(4 |S| /n)/(|S| /nm) =
1/2n. This gives τ2 ≤ 2/Φ2 ≤ 8n2. Under our assumption that n ≥ m, this
is essentially the same O(n2 +m2) bound that we would get from coupling.

9.4.4 Congestion

For less symmetrical chains, we weight paths by the probabilities of their
endpoints when counting how many cross each edge, and treat the flow
across the edge as a capacity. This gives the congestion of a collection of
canonical paths Γ = {γxy}, which is computed as

ρ(Γ) = max
uv∈E

1
πupuv

∑
γxy3uv

πxπy,

and we define ρ = minΓ ρ(Γ).
The intuition here is that the congestion bounds the ratio between the

canonical path flow across an edge and the Markov chain flow across the
edge. If the congestion is not too big, this means that any cut that has a lot
of canonical path flow across it also has a lot of Markov chain flow. When
π(T) ≥ 1/2, the total canonical path flow π(S)π(T) is at least (1/2)π(S);
so this means that when π(S) is large but less than 1/2, the Markov chain
flow leaving S is also large. This gives a lower bound on conductance.

Formally, we have the following lemma:

CHAPTER 9. MARKOV CHAINS 144

Lemma 9.4.3.

Φ ≥ 1
2ρ (9.4.5)

from which it follows that

τ2 ≤ 8ρ2. (9.4.6)

Proof. Pick some set of canonical paths Γ with ρ(Γ) = ρ. Now pick some
S–T partition with Φ(S) = Φ. Consider a flow where we route π(x)π(y)
units of flow along each path γxy with x ∈ S and y ∈ T . This gives a total
flow of π(S)π(T) ≥ π(S)/2. We are going to show that we need a lot of
capacity across the S–T cut to carry this flow, which will give the lower
bound on conductance.

For any S–T edge uv, we have
1

πupuv

∑
γxy3uv

πxπy ≤ ρ

or ∑
γxy3uv

πxπy ≤ ρπupuv.

Since each S–T path crosses at least one S–T edge, we have

π(S)π(T) =
∑

x∈S,y∈T
πxπy

≤
∑

u∈S,t∈V,uv∈E

∑
γxy3uv

πxπy

≤
∑

u∈S,t∈V,uv∈E
ρπupuv.

= ρ
∑

u∈S,t∈V,uv∈E
πupuv.

But then

Φ(S) =
∑
u∈S,t∈V,uv∈E πupuv

πS

≥ π(S)π(T)/ρ
π(S)

≥ 1
2ρ.

To get the bound on τ2, use (9.4.4) to compute τ2 ≤ 2/φ2 ≤ 8ρ2.

CHAPTER 9. MARKOV CHAINS 145

9.4.5 Examples

9.4.5.1 Lazy random walk on a line

Consider a lazy random walk on a line with reflecting barriers at 0 and n−1.
Here πx = 1

n for all x. There aren’t a whole lot of choices for canonical paths;
the obvious choice for γxy with x < y is x, x+1, x+2, . . . , y. This puts (n/2)2

paths across the middle edge (which is the most heavily loaded), each of
which has weight πxπy = n−2. So the congestion is 1

(1/n)(1/4)(n/2)2n−2 = n,
giving a mixing time of at most 8n2. This is a pretty good estimate.

9.4.5.2 Random walk on a hypercube

Let’s try a more complicated example: the random walk on a hypercube from
§9.3.3. Here at each step we pick some coordinate uniformly at random and
set it to 0 or 1 with equal probability; this gives a transition probability
puv = 1

2n whenever i and j differ by exactly one bit. A plausible choice for
canonical paths is to let γxy use bit-fixing routing, where we change bits
in x to the corresponding bits in y from left to right. To compute congestion,
pick some edge uv, and let k be the bit position in which u and v differ.
A path γxy will cross uv if uk . . . un = xk . . . xn (because when we are at u
we haven’t fixed those bits yet) and v1 . . . vk = y1 . . . yk (because at v we
have fixed all of those bits). There are 2k−1 choices of x1 . . . xk−1 consistent
with the first condition and 2n−k choices of yk+1 . . . yn consistent with the
second, giving exactly 2n−1 total paths γxy crossing uv. Since each path
occurs with weight πxπy = 2−2n, and the flow across uv is πupuv = 2−n 1

2n ,
we can calculate the congestion

ρ(Γ) = max
uv∈E

1
πupuv

∑
γxy3uv

πxπy

= 1
2−n/2n · 2

n−1 · 2−2n

= n.

This gives a relaxation time τ2 ≤ 8ρ2 = 8n2. In this case the bound is
substantially worse than what we previously proved using coupling.

The fact that the number of canonical paths that cross a particular edge
is exactly one half the number of nodes in the hypercube is not an accident:
if we look at what information we need to fill in to compute x and y from
u and v, we need (a) the part of x we’ve already gotten rid of, plus (b) the
part of y we haven’t filled in yet. If we stitch these two pieces together, we

CHAPTER 9. MARKOV CHAINS 146

get all but one of the n bits we need to specify a node in the hypercube, the
missing bit being the bit we flip to get from u to v. This sort of thing shows
up a lot in conductance arguments where we build our canonical paths by
fixing a structure one piece at a time.

9.4.5.3 Matchings in a graph

A matching in a graph G = (V,E) is a subset of the edges with no two
elements adjacent to each other; equivalently, it’s a subgraph that includes
all the vertices in which each vertex has degree at most 1. We can use a
random walk to sample matchings from an arbitrary graph uniformly.

Here is the random walk. Let St be the matching at time t. At each
step, we choose an edge e ∈ E uniformly at random, and flip a coin to decide
whether to include it or not. If the coin comes up tails, set St+1 = St \ {e}
(this may leave St+1 = St if St already omitted e); otherwise, set St+1 =
St ∪ {e} unless one of the endpoints of e is already incident to an edge in
St, in which case set St+1 = St.

Because this chain contains many self-loops, it’s aperiodic. It’s also
straightforward to show that any transition between two adjacent matchings
occurs with probability exactly 1

2|E| , and thus that the chain is reversible
with a uniform stationary distribution. We’d like to bound the congestion
of the chain to show that it converges in a reasonable amount of time.

Let N be the number of matchings in G, and let n = |V | and m = |E| as
usual. Then πS = 1/N for all S and πSpST = 1

2Nm . Our congestion for any
transition ST will then be 2NmN−2 = 2m/N times the number of paths
that cross ST ; ideally this number of paths will be at most N times some
small polynomial in n and/or m.

Suppose we are trying to get from some matching X to another matching
Y . The graph X ∪ Y has maximum degree 2, so each of its connected
components is either a path or a cycle; in addition, we know that the edges
in each of these paths or cycles alternate whether they come from X or Y ,
which among other things implies that the cycles are all even cycles.

We can transform X to Y by processing these components in a method-
ical way: first order the components (say, by the increasing identity of the
smallest vertex in each), then for each component replace the X edges with
Y edges. To do the replacement, we walk across the path or cycle adding
Y edges in some fixed order after first deleting the adjacent X edges. If
we are clever about choosing which Y edge to start with (basically always
pick an edge with only one adjacent X edge if possible, and then use edge
ordering to break ties) we can ensure that for each transition ST it holds

CHAPTER 9. MARKOV CHAINS 147

-- * * * * * * * * *--* * *--* * *--* * *--*
| => | => => => => => |

-- * *--* * *--* * *--* * * * * * *--* * *--*

* *--* *--*--* *--* * *--* * *--* * *--* *
| | | | | | | |
* *--* * *--* * *--* * *--* *--* * *--* *

Figure 9.1: Transforming one matching on a cycle to another

that (X ∪ Y) \ (S ∪ T) consists of a matching plus an extra edge.
Figure 9.1 shows an ASCII art version of this process applied to a cycle of

length 6, together with a picture of (X∪Y)\(S∪T) at each S–T transition.
At each transition, we can turn (X ∪ Y) \ (S ∪ T) into a matching by

deleting one edge. So we can compute X ∪ Y knowing S ∪ T by supplying
a matching (≤ N choices) plus an extra edge (≤ m choices). Once we know
what X ∪Y is, we can reconstruct X and Y by looking at which component
we are on, assigning the edges in the earlier components to Y (because we
must have done them already), assigning the edges in the later components
to X (because we haven’t done them yet), splitting the edges in our current
component appropriately (because we know how far we’ve gotten), and then
taking complements as needed with respect to X ∪ Y to get the remaining
edges for each of X and Y . Since there are at most Nm ways to do this, we
get that the ST transition is covered by at most Nm canonical paths γXY .

Plugging this back into our previous formula, we get ρ ≤ (2m/N)(Nm) =
m2, which gives τ2 ≤ 8m4.

9.4.5.4 Perfect matchings in dense bipartite graphs

(Basically doing [MR95, §11.3].)
A similar chain can be used to sample perfect matchings in dense bipar-

tite graphs, as shown by Jerrum and Sinclair [JS89] based on an algorithm
by Broder [Bro86] that turned out to have a bug in the analysis [Bro88].

A perfect matching of a graph G is a subgraph that includes all the
vertices and gives each of them exactly one incident edge. We’ll be look-
ing for perfect matchings in a bipartite graph consisting of n left vertices
u1, . . . , un and n right vertices v1, . . . , vn, where every edge goes between a
left vertex and a right vertex. We’ll also assume that the graph is dense,

CHAPTER 9. MARKOV CHAINS 148

which in this case means that every vertex has at least n/2 neighbors. This
density assumption was used in the original Broder and Jerrum-Sinclair pa-
pers but removed in a later paper by Jerrum, Sinclair, and Vigoda [JSV04].

The random walk is similar to the random walk from the previous section
restricted to the set of matchings with either n − 1 or n edges. At each
step, we first flip a coin (the usual lazy walk trick); if it comes up heads,
we choose an edge uv uniformly at random and apply one of the following
transformations depending on how uv fits in the current matching mt:

1. If uv ∈ mt, and |mt| = n, set mt+1 = mt \ {uv}.

2. If u and v are both unmatched in mt, and |mt| = n − 1, set mt+1 =
mt ∪ {uv}.

3. If exactly one of u and v is matched to some other node w, and |mt| =
n− 1, perform a rotation that deletes the w edge and adds uv.

4. If none of these conditions hold, set mt+1 = mt.

The walk can be started from any perfect matching, which can be found
in O(n5/2) time using a classic algorithm of Hopcroft and Karp [HK73]
that repeatedly searches for an augmenting path, which is a path in G
between two unmatched vertices that alternates between edges not in the
matching and edges in the matching. (We’ll see augmenting paths again
below when we show that any near-perfect matching can be turned into a
perfect matching using at most two transitions.)

We can show that this walk converges in polynomial time using a canon-
ical path argument. This is done in two stages: first, we define canonical
paths between all perfect matchings. Next, we define a short path from any
matching of size n − 1 to some nearby perfect matching, and build paths
between arbitrary matchings by pasting one of these short paths on one or
both ends of a long path between perfect matchings. This gives a collection
of canonical paths that we can show to have low congestion.

To go between perfect matchings X and Y , consider X∪Y as a collection
of paths and even cycles as in §9.4.5.3. In some standard order, fix each path
cycle by first deleting one edge to make room, then using rotate operations
to move the rest of the edges, then putting the last edge back in. For any
transition S–T along the way, we can use the same argument that we can
compute X∩Y from S∩T by supplying the missing edges, which will consist
of a matching of size n plus at most one extra edge. So if N is the number
of matchings of size n or n − 1, the same argument used previously shows
that at most Nm of these long paths cross any S–T transition.

CHAPTER 9. MARKOV CHAINS 149

For the short paths, we must use the density property. The idea is that
for any matching that is not perfect, we can find an augmenting path of
length at most 3 between two unmatched nodes on either side. Pick some
unmatched nodes u and v. Each of these nodes is adjacent to at least
n/2 neighbors; if any of these neighbors are unmatched, we just found an
augmenting path of length 1. Otherwise the n/2 neighbors of u and the n/2
nodes matched to neighbors of v overlap (because v is unmatched, leaving at
most n−1 matched nodes and thus at most n/2−1 nodes that are matched
to something that’s not a neighbor of v). So for each matching of size n−1, in
at most two steps (rotate and then add an edge) we can reach some specific
perfect matching. There are at most m2 ways that we can undo this, so each
perfect matching is associated with at most m2 smaller matchings. This
blows up the number of canonical paths crossing any transition by roughly
m4; by counting carefully we can thus show congestion that is O(m6) (O(m4)
from the blow-up, m from the m in Nm, and m from 1/pST).

It follows that for this process, τ2 = O(m12). (I think a better analysis
is possible.)

As noted earlier, this is an example of a process for which causal coupling
doesn’t work in less than exponential time [KR99], a common problem with
Markov chains that don’t have much symmetry. So it’s not surprising that
stronger techniques were developed specifically to attack this problem.

Chapter 10

Approximate counting

(See [MR95, Chapter 11] for details.)
Basic idea: we have some class of objects, we want to know how many

of them there are. Ideally we can build an algorithm that just prints out
the exact number, but for many problems this is hard.

A fully polynomial-time randomized approximation scheme or
FPRAS for a numerical problem outputs a number that is between (1− ε)
and (1 + ε) times the correct answer, with probability at least 3/4 (or some
constant bounded away from 1/2—we can amplify to improve it), in time
polynomial in the input size n and (1/ε). In this chapter, we’ll be hunting for
FPRASs. But first we will discuss briefly why we can’t just count directly
in many cases.

10.1 Exact counting
A typical application is to a problem in the complexity class #P, prob-
lems that involve counting the number of accepting computation paths in a
nondeterministic polynomial-time Turing machine. Equivalently, these are
problems that involve counting for some input x the number of values r such
thatM(x, r) = 1, whereM is some machine in P. An example would be the
problem #SAT of counting the number of satisfying assignments of some
CNF formula.

The class #P (which is usually pronounced sharp P or number P)
was defined by Leslie Valiant in a classic paper [Val79]. The central result
in this paper is Valiant’s theorem. This shows that any problem in #P
can be reduced (by Cook reductions, meaning that we are allowed to
use the target problem as a subroutine instead of just calling it once) to the

150

CHAPTER 10. APPROXIMATE COUNTING 151

problem of computing the permanent of a square 0–1 matrix A, where the
permanent is given by the formula

∑
π

∏
iAi,π(i), where the sum ranges over

all n! permutations π of the indices of the matrix. An equivalent problem
is counting the number of perfect matchings (subgraphs including all
vertices in which every vertex has degree exactly 1) of a bipartite graph.
Other examples of #P-complete problems are #SAT (defined above) and
#DNF (like #SAT, but the input is in DNF form; #SAT reduces to #DNF
by negating the formula and then subtracting the result from 2n).

Exact counting of #P-hard problems is likely to be very difficult: Toda’s
theorem [Tod91] says that being able to make even a single query to a #P-
oracle is enough to solve any problem in the polynomial-time hierarchy,
which contains most of the complexity classes you have probably heard of.
Nonetheless, it is often possible to obtain good approximations to such prob-
lems.

10.2 Counting by sampling
If many of the things we are looking for are in the target set, we can count by
sampling; this is what poll-takers do for a living. Let U be the universe we
are sampling from and G be the “good” set of points we want to count. Let
ρ = |G| / |U |. If we can sample uniformly from U , then we can estimate ρ by
taking N independent samples and dividing the number of samples in G by
N . This will give us an answer ρ̂ whose expectation is ρ, but the accuracy
may be off. Since the variance of each sample is ρ(1 − ρ) ≈ ρ (when ρ is
small), we get Var [

∑
Xi] ≈ mρ, giving a standard deviation of √mρ. For

this to be less than our allowable error εmρ, we need 1 ≤ ε√mρ or N ≥ 1
ε2ρ .

This gets bad if ρ is exponentially small. So if we are to use sampling, we
need to make sure that we only use it when ρ is large.

On the positive side, if ρ is large enough we can easily compute how
many samples we need using Chernoff bounds. The following lemma gives
a convenient estimate; it is based on [[MR95, Theorem 11.1]] with a slight
improvement on the constant:

Lemma 10.2.1. Sampling N times gives relative error ε with probability at
least 1− δ provided ε ≤ 1.81 and

N ≥ 3
ε2ρ

ln 2
δ
. (10.2.1)

Proof. Suppose we take N samples, and let X be the total count for these
samples. Then E [X] = ρN , and combining (5.2.2) and (5.2.6) we have, for

CHAPTER 10. APPROXIMATE COUNTING 152

ε ≤ 4.11,

Pr [|X − ρN | ≥ ερN] ≤ 2e−ρNε2/3.

Now set 2eρNε2/3 ≤ δ and solve for N to get (10.2.1).

10.3 Approximating #DNF
(Basically just repeating presentation in [MR95, §11.2] of covering technique
from Karp and Luby [KL85].)

A DNF formula is a formula that is in disjunctive normal form:
it is an OR of zero or more clauses, each of which is an AND of variables
or their negations. An example would be (x1 ∧ x2 ∧ x3) ∨ (¬x1 ∧ x4) ∨ x2).
The #DNF problem is to count the number of satisfying assignments of a
formula presented in disjunctive normal form.

Solving #DNF exactly is #P-complete, so we don’t expect to be able to
do it. Instead, we’ll get a FPRAS by cleverly sampling solutions. The need
for cleverness arises because just sampling solutions directly by generating
one of the 2n possible assignments to the n variables may find no satisfying
assignments at all.

The trick is to sample pairs (x, i), where x is an assignment that satis-
fies clause Ci. Let S be the set of such pairs. For each pair (x, i), define
f(x, i) = 1 if and only if Cj(x) = 0 for all j < i. Then

∑
(x,i)∈S f(x, i)

counts every satisfying assignment x, because (a) there exists some i such
that x satisfies Ci, and (b) only the smallest such i will have f(x, i) = 1. In
effect, f is picking out a single canonical satisfied clause from each satisfying
assignment; note also that we can compute f quickly by testing x against
all clauses Cj with j < i.

Our goal is to estimate the proportion ρ of “good” pairs with f(x, i) = 1
out of all pairs in S, and then use this to estimate

∑
(x,i)∈S f(x, i) = ρ |S|.

If we can sample from S uniformly, the proportion ρ of “good” pairs with
f(x, i) = 1 is at least 1/m, because every satisfying assignment x contributes
at most m pairs total, and one of them is good.

The only tricky part is figuring out how to sample pairs (x, i) with
Ci(x) = 1 so that all pairs occur with the same probability. Let Ui =
{(x, i) | Ci(x) = 1}. Then we can compute |Ui| = 2n−ki where ki is the
number of literals in Ci. Using this information, we can sample i first with
probability |Ui| /

∑
j |Uj |, then sample x from Ui just by picking values for

the n− k variables not fixed by Ci.

CHAPTER 10. APPROXIMATE COUNTING 153

With N ≥ 4
ε2(1/m) ln 2

δ = 4m
ε2 ln 2

δ , we obtain an estimate ρ̂ for the pro-
portion of pairs (x, i) with f(x, i) = 1 that is within ε relative error of ρ with
probability at least 1− δ. Multiplying this by

∑
|Ui| then gives the desired

count of satisfying assignments.
It’s worth noting that there’s nothing special about DNF formulas in

this method. Essentially the same trick will work for estimating the size of
the union of any collection of sets Ui where we can (a) compute the size of
each Ui; (b) sample from each Ui individually; and (c) test membership of
our sample x in Uj for j < i.

10.4 Approximating #KNAPSACK
Here is an algorithm for approximating the number of solutions to aKNAP-
SACK problem, due to Dyer [Dye03]. We’ll concentrate on the simplest
version, 0–1 KNAPSACK, following the analysis in Section 2.1 of [Dye03].

For the 0–1 KNAPSACK problem, we are given a set of n objects of
weight 0 ≤ a1 ≤ a2 ≤ . . . an ≤ b, and we want to find a 0–1 assignment
x1, x2, . . . , xn such that

∑n
i=1 aixi ≤ b (usually while optimizing some prop-

erty that prevents us from setting all the xi to zero). We’ll assume that the
ai and b are all integers.

For #KNAPSACK, we want to compute |S|, where S is the set of all
assignments to the xi that make

∑n
i=1 aixi ≤ b.

There is a well-known fully polynomial-time approximation scheme
for optimizing KNAPSACK, based on dynamic programming. The idea is
that a maximum-weight solution can be found exactly in time polyomial in
b, and if b is too large, we can reduce it by rescaling all the ai and b at the
cost of a small amount of error. A similar idea is used in Dyer’s algorithm:
the KNAPSACK problem is rescaled so that size of the solution set S′ of the
rescaled version can be computed in polynomial time. Sampling is then used
to determine what proportion of the solutions in S′ correspond to solutions
of the original problem.

Scaling step: Let a′i =
⌊
n2ai/b

⌋
. Then 0 ≤ a′i ≤ n2 for all i. Taking

the floor creates some error: if we try to reconstruct ai from a′i, the best
we can do is argue that a′i ≤ n2ai/b < a′i + 1 implies (b/n2)a′i ≤ ai <
(b/n2)a′i + (b/n2). The reason for using n2 as our rescaled bound is that
the total error in the upper bound on ai, summed over all i, is bounded by
n(b/n2) = b/n, a fact that will become important soon.

Let S′ =
{
~x
∣∣ ∑n

i=1 a
′
ixi ≤ n2} be the set of solutions to the rescaled

knapsack problem, where we substitute a′i for ai and n2 = (n2/b)b for b.

CHAPTER 10. APPROXIMATE COUNTING 154

Claim: S ⊆ S′. Proof: ~x ∈ S if and only if
∑n
i=1 aixi ≤ b. But then

n∑
i=1

a′ixi =
n∑
i=1

⌊
n2ai/b

⌋
xi

≤
n∑
i=1

(n2/b)aixi

= (n2/b)
n∑
i=1

aixi

≤ n2,

which shows ~x ∈ S′.
The converse does not hold. However, we can argue that any ~x ∈ S′ can

be shoehorned into S by setting at most one of the xi to 0. Consider the
set of all positions i such that xi = 1 and ai > b/n. If this set is empty,
then

∑n
i=1 aixi ≤

∑n
i=1 b/n = b, and ~x is already in S. Otherwise, pick any

position i with xi = 1 and ai > b/n, and let yj = 0 when j = i and yj = xj
otherwise. Then

n∑
j=1

ajyj =
n∑
j=1

ajxj − ai

<
n∑
j=1

((b/n2)a′j + b/n2)xj − b/n

≤ (b/n2)
n∑
j=1

a′jxj + b/n− b/n

≤ (b/n2)n2

= b.

Applying this mapping to all elements ~x of S maps at most n + 1 of them
to each ~y in S′; it follows that |S′| ≤ (n+ 1) |S|, which means that if we can
sample elements of S′ uniformly, each sample will hit S with probability at
least 1/(n+ 1).

To compute |S′|, let C(k,m) =
∣∣∣{~x ∣∣∣ ∑k

i=1 a
′
ixi ≤ m

}∣∣∣ be the number of
subsets of {a′1, . . . , a′k} that sum to m or less. Then C(k,m) satisfies the
recurrence

C(k,m) = C(k − 1,m− a′k) + C(k − 1,m)
C(0,m) = 1

CHAPTER 10. APPROXIMATE COUNTING 155

where k ranges from 0 to n and m ranges from 0 to n2, and we treat C(k−
1,m − a′k) = 0 if m − a′k < 0. The idea is that C(k − 1,m − a′k) counts all
the ways to make m if we include a′k, and C(k−1,m) counts all the ways to
make m if we exclude it. The base case corresponds to the empty set (which
sums to ≤ m no matter what m is).

We can compute a table of all values of C(k,m) by iterating through m
in increasing order; this takes O(n3) time. At the end of this process, we
can read off |S′| = C(n, n2).

But we can do more than this: we can also use the table of counts to
sample uniformly from S′. The probability that x′n = 1 for a uniform random
element of S′ is exactly C(n − 1, n2 − a′n)/C(n, n2); having chosen x′n = 1
(say), the probability that x′n−1 = 1 is then C(n− 2, n2− a′n− a′n−1)/C(n−
2, n2 − a′n), and so on. So after making O(n) random choices (with O(1)
arithmetic operations for each choice to compute the probabilities) we get
a uniform element of S′, which we can test for membership in S in an
additional O(n) operations.

We’ve already established that |S| / |S′| ≥ 1/(n + 1), so we can apply
Lemma 10.2.1 to get ε relative error with probability at least 1 − δ using
3(n+1)
ε2 ln 2

δ samples. This gives a cost of O(n2 log(1/δ)/ε2) for the sampling
step, or a total cost of O(n3 + n2 log(1/δ)/ε2) after including the cost of
building the table (in practice, the second term will dominate unless we are
willing to accept ε = ω(1/

√
n)).

It is possible to improve this bound. Dyer [Dye03] shows that using
randomized rounding on the a′i instead of just truncating them gives a
FPRAS that runs in O(n5/2√log(1/ε) + n2/ε2) time.

10.5 Approximating exponentially improbable events
For #DNF and #KNAPSACK, we saw how restricting our sampling to
a cleverly chosen sample space could boost the hit ratio ρ to something
that gave a reasonable number of samples using Lemma 10.2.1. For other
problems, it is often not clear how to do this directly, and the best sample
spaces we can come up with make our target points an exponentially small
fraction of the whole.

In these cases, it is sometimes possible to approximate this exponentially
small fraction as a product of many more reasonable ratios. The idea is to
express our target set as the last of a sequence of sets S0, S1, . . . , Sk, where
we can compute the size of S0 and can estimate |Si+1| / |Si| accurately for
each i. This gives |Sk| = |S0| ·

∏k
i=1

|Si+1|
|Si| , with a relative error that grows

CHAPTER 10. APPROXIMATE COUNTING 156

roughly linearly with k. Specifically, if we can approximate each |Si+1| / |Si|
ratio to between 1 − ε and 1 + ε of the correct value, then the product of
these ratios will be between (1− ε)k and (1 + ε)k of the correct value; these
bounds approach 1 − εk and 1 + εk in the limit as εk goes to zero, using
the binomial theorem, although to get a real bound we will need to do more
careful error analysis.

10.5.1 Matchings

We saw in §9.4.5.3 that a random walk on matchings on a graph with m
edges has mixing time τ2 ≤ 8m4, where the walk is defined by selecting
an edge uniformly at random and flipping whether it is in the matching or
not, while rejecting any steps that produce a non-matching. This allows
us to sample matchings of a graph with δ total variation distance from the
uniform distribution in O

(
m4 logm log 1

δ

)
time.

Suppose now that we want to count matchings instead of sampling them.
It’s easy to show that for any particular edge uv ∈ G, at least half of all
matchings in G don’t include uv: the reason is that if M is a matching in
G, then M ′ = M \ {uv} is also a matching, and at most two matchings M ′
and M ′ ∪ {uv} are mapped to any one M ′ by this mapping.

Order the edges of G arbitrarily as e1, e2, . . . , em. Let Si be the set of
matchings in G \ {e1 . . . ei}. Then S0 is the set of all matchings, and we’ve
just argued that ρi+1 = |Si+1| / |Si| ≥ 1/2. We also know that |Sm| counts
the number of matchings in a graph with no edges, so it’s exactly one. So
we can use the product-of-ratios trick to compute S0 =

∏m
i=1

|Si|
|Si+1| .

Using a random walk of length O
(
8m4 logm log 1

η

)
, we can sample

matchings from Si (which is just the set of matchings on a particular graph
that happens to be our original graph minus some of its edges) so that
our probability ρ′ of getting a matching in Si+1 is between (1 − η)ρi+1
and (1 + η)ρi+1. From Lemma 10.2.1, we can estimate ρ′ within relative
error γ with probability at least 1 − ζ using O

(
1

γ2ρ′ log 1
ζ

)
= O

(
1
γ log 1

ζ

)
samples. Combined with the error on ρ′, this gives relative error at most
γ + η + γη in O

(
m4 logm log 1

η log 1
γ log 1

ζ

)
operations.1 If we then mul-

tiply out all the estimates for |Si| / |Si+1|, we get an estimate of S0 that
is at most (1 + γ + η + γη)m times the correct value with probability

1This is the point where sensible people start hauling out the Õ notation, where a
function is Õ(f(n)) if it O(f(n)g) where g is polylogarithmic in n and any other parameters
that may be running around (1

ε
, 1
η
, etc.).

CHAPTER 10. APPROXIMATE COUNTING 157

at least 1 − mζ (with a similar bound on the other side), in total time
O
(
m5 logm log 1

η log 1
γ log 1

ζ

)
.

To turn this into a fully polynomial-time approximation scheme, given
ε, δ, and m, we need to select η, γ, and ζ to get relative error ε with
probability at least 1− δ. Letting ζ = δ/m gets the δ part. For ε, we need
(1 + γ + η+ γη)m ≤ 1 + ε. Suppose that ε < 1 and let γ = η = ε/6m. Then

(1 + γ + η + γη)m ≤
(

1 + ε

2m

)m
≤ eε/2

≤ 1 + ε.

Plugging these values into our cost formula givesO
(
m5 logm log2 6m

ε log m
δ

)
=

O
(
m5 logm

(
logm+ log 1

ε + log 1
δ

))
= Õ(m5) time.

10.5.2 Other applications

Similar methods work for other problems that self-reduce by restricting par-
ticular features of the solution. Examples include colorings (fix the color of
some vertex), independent sets (remove a vertex), and approximating the
volume of a convex body (take the intersection with a sphere of appropriate
radius; see [MR95, §11.4] for a slightly less sketchy description). We will
not go into details on any of these applications here.

Chapter 11

The probabilistic method

In this chapter, we’ll discuss the probabilistic method, a tool for prov-
ing the existence of objects with particular combinatorial properties. The
relevance of this to randomized algorithms is that in some cases we can
turn such a proof into an algorithm for producing objects with the desired
properties.

We’ll mostly be following Chapter 5 of [MR95] with some updates for
more recent results. If you’d like to read more about these technique, the
standard reference on the probabilistic method in combinatorics is the text
of Alon and Spencer [AS92].

11.1 Randomized constructions and existence proofs
Suppose we want to show that some object exists, but we don’t know how to
construct it explicitly. One way to do this is to devise some random process
for generating objects, and show that the probability that it generates the
object we want is greater than zero. This implies that something we want
exists, because otherwise it would be impossible to generate; and it works
even if the nonzero probability is very, very small. The systematic devel-
opment of the method is generally attributed to the notoriously productive
mathematician Paul Erdős and his frequent collaborator Alfréd Rényi.

From an algorithmic perspective, the probabilistic method is useful mainly
when we can make the nonzero probability substantially larger than zero—
and especially if we can recognize when we’ve won. But sometimes just
demonstrating the existence of an object is a start.

We give a couple of example of the probabilistic method in action below.
In each case, the probability that we get a good outcome is actually pretty

158

CHAPTER 11. THE PROBABILISTIC METHOD 159

high, so we could in principle generate a good outcome by retrying our ran-
dom process until it works. There are some more complicated examples of
the method for which this doesn’t work, either because the probability of
success is vanishingly small, or because we can’t efficiently test whether what
we did succeeded (the last example below may fall into this category). This
means that we often end up with objects whose existence we can demon-
strate even though we can’t actually point to any examples of them. For
example, it is known that there exist sorting networks (a special class of
circuits for sorting numbers in parallel) that sort in time O(logn), where n
is the number of values being sorted [AKS83]; these can be generated ran-
domly with nonzero probability. But the best explicit constructions of such
networks take time Θ(log2 n), and the question of how to find an explicit
network that achieves O(logn) time has been open for over 25 years now
despite many efforts to solve it.

11.1.1 Unique hats

A collection of n robots each wishes to own a unique hat. Unfortunately, the
State Ministry for Hat Production only supplies one kind of hat. A robot
will only be happy if (a) it has a hat, and (b) no robot it sees has a hat.
Fortunately each robot can only see k other robots. How many robots can
be happy?

We could try to be clever about answering this question, or we could
apply the probabilistic method. Suppose we give each robot a hat with
independent probability p. Then the probability that any particular robot
r is happy is pqk, where q = 1 − p is the probability that a robot doesn’t
have a hat and qk gives the probability that none of the robots that r sees
has a hat. If we let Xr be the indicator for the event that r is happy, we
have E [Xr] = pqk and the expected number of happy robots is E [

∑
Xr] =∑

E [Xr] = npqk. Since we can achieve this value on average, there must be
some specific assignment that achieves it as well.

To choose a good p, we apply the usual calculus trick of looking for a
maximum by looking for the place where the derivative is zero. We have
d
dpnpq

k = nqk − nkpqk−1 (since dq
dp = −1), so we get nqk − nkpqk−1 = 0.

Factoring out n and qk−1 gives q − pk = 0 or 1 − p − pk = 0 or p =
1/(k + 1). For this value of p, the expected number of happy robots is
exactly n

(
1

k+1

) (
1− 1

k+1

)k
. For large k the last factor approaches 1/e,

giving us approximately (1/e) n
k+1 happy robots.

Up to constant factors this is about as good an outcome as we can hope

CHAPTER 11. THE PROBABILISTIC METHOD 160

for: we can set things up so that our robots are arranged in groups of k+ 1,
where each robot sees all the other robots in its group, and here we can
clearly only have 1 happy robot per group, for a maximum of n/(k + 1)
happy robots.

Note that we can improve the constant 1/e slightly by being smarter
than just handing out hats at random. Starting with our original n robots,
look for a robot that is observed by the smallest number of other robots.
Since there are only nk pairs of robots (r1, r2) where r1 sees r2, one of the n
robots is only seen by at most k other robots. Now give this robot a hat, and
give no hat to any robot that sees it or that it sees. This produces 1 happy
robot while knocking out at most 2k + 1 robots total. Now remove these
robots from consideration and repeat the analysis on the remaining robots,
to get another happy robot while again knocking out at most 2k+ 1 robots.
Iterating this procedure until no robots are left gives at least n/(2k + 1)
happy robots; this is close to (1/2) n

k+1 for large k, which is a bit better
than (1/e) n

k+1 . (It may be possible to improve the constant further with
more analysis.) This shows that the probabilistic method doesn’t necessarily
produce better results than we can get by being smart. But the hope is that
with the probabilistic method we don’t have to be smart, and for some
problems it seems that solving them without using the probabilistic method
requires being exceptionally smart.

11.1.2 Ramsey numbers

Consider a collection of n schoolchildren, and imagine that each pair of
schoolchildren either like each other or hate each other. We assume that
these preferences are symmetric: if x likes y, then y likes x, and similarly if
x hates y, y hates x. Let R(k, h) be the smallest value for n that ensures that
among any group of n schoolchildren, there is either a subset of k children
that all like each other or a subset of h children that all hate each other.1

It is not hard to show that R(k, h) is finite for all k and h.2 The exact
1In terms of graphs, any graph G with at least R(k, h) nodes contains either a clique

of size k or an independent set of size h.
2A simple proof, due to Erdős and Szekeres [ES35], proceeds by showing that R(k, h) ≤

R(k − 1, h) + R(k, h − 1). Given a graph G of size at least R(k − 1, h) + R(k, h − 1),
choose a vertex v and partition the graph into two induced subgraphs G1 and G2, where
G1 contains all the vertices adjacent to v and G2 contains all the vertices not adjacent
to v. Either |G1| ≥ R(k − 1, h) or |G2| ≥ R(k, h − 1). If |G1| ≥ R(k − 1, h), then
G1 contains either a clique of size k − 1 (which makes a clique of size k in G when
we add v to it) or an independent set of size h (which is also in G). Alternatively, if
|G2| ≥ R(k, h−1), then G2 either gives us a clique of size k by itself or an independent set

CHAPTER 11. THE PROBABILISTIC METHOD 161

value of R(k, h) is known only for small values of k and h.3 But we can use
the probabilistic method to show that for k = h, it is reasonably large. The
following theorem is due to Erdős, and was the first known lower bound on
R(k, k).

Theorem 11.1.1 ([Erd47]). If k ≥ 3, then R(k, k) > 2k/2.

Proof. Suppose each pair of schoolchildren flip a fair coin to decide whether
they like each other or not. Then the probability that any particular set of
k schoolchildren all like each other is 2−(k2) and the probability that they all
hate each other is the same. Summing over both possibilities and all subsets
gives a bound of

(n
k

)
21−(k2) on the probability that there is at least one subset

in which everybody likes or everybody hates everybody. For n = 2k/2, we
have (

n

k

)
21−(k2) ≤ nk

k! 21−(k2)

= 2k2/2+1−k(k−1)/2

k!

= 2k2/2+1−k2/2+k/2

k!

= 21+k/2

k!
< 1.

Because the probability that there is an all-liking or all-hating subset
is less than 1, there must be some chance that we get a collection that
doesn’t have one. So such a collection exists. It follows that R(k, k) > 2k/2,
because we have shown that not all collections at n = 2k/2 have the Ramsey
property.

The last step in the proof uses the fact that 21+k/2 < k! for k ≥ 3, which
can be tested explicitly for k = 3 and proved by induction for larger k. The

of size h after adding v. Together with the fact that R(1, h) = R(k, 1) = 1, this recurrence
gives R(k, h) ≤

((k−1)+(h−1)
k−1

)
.

3There is a fairly current table at http://en.wikipedia.org/wiki/Ramsey’s_Theorem.
Some noteworthy values are R(3, 3) = 6, R(4, 4) = 18, and 43 ≤ R(5, 5) ≤ 49. One
problem with computing exact values is that as R(k, h) grows, the number of graphs one
needs to consider gets very big. There are 2(n

2) graphs with n vertices, and even detecting
the presence or absence of a moderately-large clique or independent set in such a graph
can be expensive. This pretty much rules out any sort of brute-force approach based on
simply enumerating candidate graphs.

http://en.wikipedia.org/wiki/Ramsey's_Theorem

CHAPTER 11. THE PROBABILISTIC METHOD 162

resulting bound is a little bit weaker than just saying that n must be large
enough that

(n
k

)
21−(k2) ≥ 1, but it’s easier to use.

The proof can be generalized to the case where k 6= h by tweaking the
bounds and probabilities appropriately. Note that even though this process
generates a graph with no large cliques or independent sets with reasonably
high probability, we don’t have any good way of testing the result, since
testing for the existence of a clique is NP-hard.

11.1.3 Directed cycles in tournaments

In the previous example we used the probabilistic method to show that
there existed a structure that didn’t contain some particular substructure.
For this example we will do the reverse: show that there exists a structure
that contains many instances of a particular substructure.

Imagine that n wrestlers wrestler a round-robin tournament, so that
ever wrestler wrestles every other wrestler exactly once, and so that for each
pair of wrestlers one wrestler beats the other. Consider a cycle of wrestlers
x1, x2, . . . , xn such that each wrestler xi beats xi+1 and xn beats x1. (Note
that we consider two cycles equivalent if one is a cyclic shift of the other.)

Theorem 11.1.2. For n ≥ 3, there exists a tournament with at least (n−
1)!2−n directed cycles.

Proof. Technical detail: We need n ≥ 3 because the edges in a 2-cycle always
go in opposite directions.

Flip a coin to decide the outcome of each pairing. For any particular
sequence x1, . . . , xn, the probability that it is a directed cycle is then 2−n
(since there are n edges in the sequence and each has independent probability
2−1 of going the right way). Now let σ range over all (n − 1)! cycles and
define Xσ as the indicator variable for the event that each edge is directed
the right way. We’ve just shown that E [Xσ] = 2−n; so the expected total
number of cycles is E [

∑
σXσ] =

∑
σ E [Xσ] = (n−1)!2−n. But if the average

value is at least (n− 1)!2−n, there must be some specific outcome that gives
a value at least this high.

11.2 Approximation algorithms
One use of a randomized construction is to approximate the solution to
an otherwise difficult problem. In this section, we start with a trivial
approximation algorithm for the largest cut in a graph, and then show a

CHAPTER 11. THE PROBABILISTIC METHOD 163

more powerful randomized approximation algorithm, due to Goemans and
Williamson [GW94], that gets a better approximation ratio for a much larger
class of problems.

11.2.1 MAX CUT

We’ve previously seen (§2.3.1.2) a randomized algorithm for finding small
cuts in a graph. What if we want to find a large cut?

Here is a particularly brainless algorithm that does it. For each vertex,
flip a coin: if the coin comes up heads, put the vertex in S, otherwise, put in
it T . For each edge, there is a probability of exactly 1/2 that it is included
in the S–T cut. It follows that the expected size of the cut is exactly m/2.

One consequence of this is that every graph has a global cut that in-
cludes at least half the edges. Another is that this algorithm finds such a
cut, with probability at least 1

m+1 . To prove this, let X be the random
variable representing the number of edges include in the cut, and let p be
the probability that X ≥ m/2. Then

m/2 = E [X]
= (1− p) E [X | X < m/2] + pE [X | X ≥ m/2]

≤ (1− p)m− 1
2 + pm.

Solving this for p gives the claimed bound.4
By running this enough times to get a good cut, we get a polynomial-

time randomized algorithm for approximating the maximum cut within a
factor of 2, which is pretty good considering that MAX CUT is NP-hard.

There exist better approximation algorithms. Goemans andWilliamson [GW95]
give a 0.87856-approximation algorithm for MAX CUT based on random-
ized rounding of a semidefinite program. We won’t attempt to present this
here, but we will describe (in §11.2.2) an earlier result, also due to Goemans
and Williamson [GW94], that gives a 3

4 -approximation to MAX SAT using
a similar technique.

11.2.2 MAX SAT

Like MAX CUT, MAX SAT is an NP-hard optimization problem that
sounds like a very short story about Max. We are given a satisfiability

4This is tight for m = 1, but I suspect it’s an underestimate for larger m. The
main source of slop in the analysis seems to be the step E [X | X ≥ m/2] ≤ m; using a
concentration bound, we should be able to show a much stronger inequality here and thus
a much larger lower bound on p.

CHAPTER 11. THE PROBABILISTIC METHOD 164

problem in conjunctive normal form: as a set of m clauses, each of
which is the OR of a bunch of variables or their negations. We want to
choose values for the n variables that satisfy as many of the clauses as pos-
sible, where a clause is satisfied if it contains a true variable or the negation
of a false variable.5

We can instantly satisfy at least m/2 clauses on average by assigning
values to the variables independently and uniformly at random; the analysis
is the same as in §11.2.1 for large cuts, since a random assignment makes
the first variable in a clause true with probability 1/2. Since this approach
doesn’t require thinking and doesn’t use the fact that many of our clauses
may have more than one variable, we can probably do better. Except we
can’t do better in the worst case, because it might be that our clauses consist
entirely of x and ¬x for some variable x; clearly, we can only satisfy half of
these. We could do better if we knew all of our clauses consisted of at least
k distinct literals (satisfied with probability 1− 2−k), but we can’t count on
this. We also can’t count on clauses not being duplicated, so it may turn
out that skipping a few hard-to-satisfy small clauses hurts us if they occur
many times.

Our goal will be to get a good approximation ratio, defined as the
ratio between the number of clauses we manage to satisfy and the actual
maximum that can be satisfied. The tricky part in designing a approxima-
tion algorithms is showing that the denominator here won’t be too big.
We can do this using a standard trick, of expressing our original problem as
an integer program and then relaxing it to a linear program6 whose

5The presentation here follows [MR95, §5.2], which in turn is mostly based on a classic
paper of Goemans and Williamson [GW94].

6A linear program is an optimization problem where we want to maximize (or min-
imize) some linear objective function of the variables subject to linear-inequality con-
straints. A simple example would be to maximize x + y subject to 2x + y ≤ 1 and
x + 3y ≤ 1; here the optimal solution is the assignment x = 2

5 , y = 1
5 , which sets the

objective function to its maximum possible value 3
5 . An integer program is a linear pro-

gram where some of the variables are restricted to be integers. Determining if an integer
program even has a solution is NP-complete; in contrast, linear programs can be solved
in polynomial time. We can relax an integer program to a linear program by dropping
the requirements that variables be integers; this will let us find a fractional solution
that is at least as good as the best integer solution, but might be undesirable because it
tells us to do something that is ludicrous in the context of our original problem, like only
putting half a passenger on the next plane.

Linear programming has an interesting history. The basic ideas were developed inde-
pendently by Leonid Kantorovich in the Soviet Union and George Dantzig in the United
States around the start of the Second World War. Kantorovich’s work had direct relevance
to Soviet planning problems, but wasn’t pursued seriously because it threatened the polit-

CHAPTER 11. THE PROBABILISTIC METHOD 165

solution doesn’t have to consist of integers. We then convert the fractional
solution back to an integer solution by rounding some of the variables to in-
teger values randomly in a way that preserves their expectations, a technique
known as randomized rounding.7

Here is the integer program (taken from [MR95, §5.2]). We let zj ∈ {0, 1}
represent whether clause Cj is satisfied, and let yi ∈ {0, 1} be the value of
variable xi. We also let C+

j and C−j be the set of variables that appear in
Cj with and without negation. The problem is to maximize

m∑
j=1

zj

subject to ∑
i∈C+

j

yi +
∑
i∈C−j

(1− yi) ≥ zj ,

for all j.
The main trick here is to encode OR in the constraints; there is no

requirement that zj is the OR of the yi and (1−yi) values, but we maximize
the objective function by setting it that way.

Sadly, solving integer programs like the above is NP-hard (which is not
surprising, since if we could solve this particular one, we could solve SAT).
But if we drop the requirements that yi, zj ∈ {0, 1} and replace them with
0 ≤ yi ≤ 1 and 0 ≤ zj ≤ 1, we get a linear program—solvable in polynomial
time—with an optimal value at least as good as the value for the integer
program, for the simple reason that any solution to the integer program is
also a solution to the linear program.

The problem now is that the solution to the linear program is likely to
be fractional: instead of getting useful 0–1 values, we might find out we
are supposed to make xi only 2/3 true. So we need one more trick to turn
the fractional values back into integers. This is the randomized rounding
step: given a fractional assignment ŷi, we set xi to true with probability ŷi.

So what does randomized rounding do to clauses? In our fractional
solution, a clause might have value ẑj , obtained by summing up bits and

ical status of the planners, required computational resources that weren’t available at the
time, and looked suspiciously like trying to sneak a capitalist-style price system into the
planning process; for a fictionalized account of this tragedy, see [Spu12]. Dantzig’s work,
which included the development of the simplex method for solving linear programs, had
a higher impact, although its publication was delayed until 1947 by wartime secrecy.

7 Randomized rounding was invented by Raghavan and Thompson [RT87]; the partic-
ular application here is due to Goemans and Williamson [GW94].

CHAPTER 11. THE PROBABILISTIC METHOD 166

pieces of partially-true variables. We’d like to argue that the rounded version
gives a similar probability that Cj is satisfied.

Suppose Cj has k variables; to make things simpler, we’ll pretend that
Cj is exactly x1 ∨ x2 ∨ . . . xk. Then the probability that Cj is satisfied is
exactly 1−

∏k
i=1(1− ŷi). This quantity is minimized subject to

∑k
i=1 ŷi ≥ ẑj

by setting all ŷi equal to ẑj/k (easy application of Lagrange multipliers, or
can be shown using a convexity argument). Writing z for ẑj , this gives

Pr [Cj is satisfied] = 1−
k∏
i=1

(1− ŷi)

≥ 1−
k∏
i=1

(1− z/k)

= 1− (1− z/k)k

≥ z(1− (1− 1/k)k).
≥ z(1− 1/e).

The second-to-last step looks like a typo, but it actually works. The idea
is to observe that the function f(z) = 1 − (1 − z/k)k is concave (Proof:
d2

dz2 f(z) = −k−1
k (1− z/k)k−2 < 0), while g(z) = z(1− (1− 1/k)k) is linear,

so since f(0) = 0 = g(0) and f(1) = 1 − (1 − 1/k)k = g(1), any point in
between must have f(z) ≥ g(z).

Since each clause is satisfied with probability at least ẑj(1 − 1/e), the
expected number of satisfied clauses is at least (1 − 1/e)

∑
j ẑj , which is at

least (1 − 1/e) times the optimum. This gives an approximation ratio of
slightly more than 0.632, which is better than 1/2, but still kind of weak.

So now we apply the second trick from [GW94]: we’ll observe that, on a
per-clause basis, we have a randomized rounding algorithm that is good at
satisfying small clauses (the coefficient (1− (1− 1/k)k) goes all the way up
to 1 when k = 1), and our earlier dumb algorithm that is good at satisfying
big clauses. We can’t combine these directly (the two algorithms demand
different assignments), but we can run both in parallel and take whichever
gives a better result.

To show that this works, let Xj be indicator for the event that clause j is
satisfied by the randomized-rounding algorithm and Yj the indicator for the

CHAPTER 11. THE PROBABILISTIC METHOD 167

even that it is satisfied by the simple algorithm. Then if Cj has k literals,

E [Xj] + E [Yj] ≥ (1− 2−k) + (1− (1− 1/k)k)ẑj
≥ ((1− 2−k) + (1− (1− 1/k)k))ẑj
= (2− 2−k − (1− 1/k)k)ẑj .

The coefficient here is exactly 3/2 when k = 1 or k = 2, and rises thereafter,
so for integer k we have E [Xj] + E [Yj] ≥ (3/2)ẑj . Summing over all j then
gives E

[∑
j Xj

]
+E

[∑
j Yj

]
≥ (3/2)

∑
j ẑj . But then one of the two expected

sums must beat (3/4)
∑
j ẑj , giving us a (3/4)-approximation algorithm.

11.3 The Lovász Local Lemma
Suppose we have a finite set of bad events A, and we want to show that
with nonzero probability, none of these events occur. Formally, we want to
show Pr

[⋂
A∈A Ā

]
> 0.

Our usual trick so far has been to use the union bound (4.1.1) to show
that

∑
A∈A Pr [A] < 1. But this only works if the events are actually improb-

able. If the union bound doesn’t work, we might be lucky enough to have
the events be independent; in this case, Pr

[⋂
A∈A Ā

]
=
∏
A∈A Pr

[
Ā
]
> 0,

as long as each event Ā occurs with positive probability. But most of the
time, we’ll find that the events we care about aren’t independent, so this
won’t work either.

The Lovász Local Lemma [EL75] handles a situation intermediate
between these two extremes, where events are generally not independent of
each other, but each collection of events that are not independent of some
particular event A has low total probability. In the original version; it’s
non-constructive: the lemma shows a nonzero probability that none of the
events occur, but this probability may be very small if we try to sample
the events at random and there is no guidance for how to find a particular
outcome that makes all the events false.

Subsequent work [Bec91, Alo91, MR98, CS00, Sri08, Mos09, MT10]
showed how, when the events A are determined by some underlying set
of independent variables and independence between two events is detected
by having non-overlapping sets of underlying variables, an actual solution
could be found in polynomial expected time. The final result in this series,
due to Moser and Tardos [MT10], gives the same bounds as in the original
non-constructive lemma, using the simplest algorithm imaginable: whenever

CHAPTER 11. THE PROBABILISTIC METHOD 168

some bad event A occurs, squish it by resampling all of its variables, and
continue until no bad events are left.

11.3.1 General version

A formal statement of the general lemma is:8

Lemma 11.3.1. Let A = A1, . . . , Am be a finite collection of events on
some probability space, and for each A ∈ A, let Γ(A) be a set of events such
that A is independent of all events not in Γ+A = {A} ∪ Γ(A). If there exist
real numbers xA ∈ (0, 1) such that, for all events A ∈ A

Pr [A] ≤ xA
∏

B∈Γ(A)
(1− xB), (11.3.1)

then

Pr
[⋂
A∈A

Ā

]
≥
∏
A∈A

(1− xA). (11.3.2)

In particular, this means that the probability that none of the Ai occur
is not zero, since we have assumed xAi < 1 holds for all i.

The role of xA in the original proof is to act as an upper bound on the
probability that A occurs given that some collection of other events doesn’t
occur. For the constructive proof, the xA are used to show a bound on the
number of resampling steps needed until none of the A occur.

11.3.2 Symmetric version

For many applications, having to come up with the xA values can be awk-
ward. The following symmetric version is often used instead:

Corollary 11.3.2. Let A and Γ be as in Lemma 11.3.1. Suppose that there
are constants p and d, such that for all A ∈ A, we have Pr [A] ≤ p and
|Γ(A)| ≤ d. Then if ep(d+ 1) < 1, Pr

[⋂
A∈A Ā

]
6= 0.

Proof. Basically, we are going to pick a single value x such that xA = x for
all A in A, and (11.3.1) is satisfied. This works as long as p ≤ x(1 − x)d,
as in this case we have, for all A, Pr [A] ≤ p ≤ x(1− x)d ≤ x(1− x)|Γ(A)| =
xA
(∏

B∈Γ(A)(1− xB)
)
.

8This version is adapted from [MT10].

CHAPTER 11. THE PROBABILISTIC METHOD 169

For fixed d, x(1− x)d is maximized using the usual trick: d
dxx(1− x)d =

(1− x)d − xd(1− x)d−1 = 0 gives (1− x)− xd = 0 or x = 1
d+1 . So now we

need p ≤ 1
d+1

(
1− 1

d+1

)d
. It is possible to show that 1/e <

(
1− 1

d+1

)d
for

all d ≥ 0 (see the solution to Problem C.1.4). So ep(d+ 1) ≤ 1 implies p ≤
1

e(d+1) ≤
(
1− 1

d+1

)d
) 1
d+1 ≤ x(1− x)|Γ(A)| as required by Lemma 11.3.1.

11.3.3 Applications

11.3.3.1 Graph coloring

Let’s start with a simple application of the local lemma where we know what
the right answer should be. Suppose we want to color the vertices of a cycle
with c colors, so that no edge has two endpoints with the same color. How
many colors do we need?

Using brains, we can quickly figure out that c = 3 is enough. Without
brains, we could try coloring the vertices randomly: but in a cycle with n
vertices and n edges, on average n/c of the edges will be monochromatic,
since each edge is monochromatic with probability 1/c. If these bad events
were independent, we could argue that there was a (1−1/c)n > 0 probability
that none of them occurred, but they aren’t, so we can’t. Instead, we’ll use
the local lemma.

The set of bad eventsA is just the set of eventsAi = [edge i is monochromatic].
We’ve already computed p = 1/c. To get d, notice that each edge only shares
a vertex with two other edges, so |Γ(Ai)| ≤ 2. Corollary 11.3.2 then says
that there is a good coloring as long as ep(d + 1) = 3e/c ≤ 1, which holds
as long as c ≥ 9. We’ve just shown we can 9-color a cycle. If we look more
closely at the proof of Corollary 11.3.2, we can see that p ≤ 1

3

(
1− 1

3

)2
= 4

27
would also work; this says we can 7-color a cycle. Still not as good as what
we can do if we are paying attention, but not bad for a procedure that
doesn’t use the structure of the problem much.

11.3.3.2 Satisfiability of k-CNF formulas

A more sophisticated application is demonstrating satisfiability for k-CNF
formulas where each variable appears in a bounded number of clauses. Re-
call that a k-CNF formula consists of m clauses, each of which consists
of exactly k variables or their negations (collectively called literals. It is
satisfied if at least one literal in every clause is assigned the value true.

Suppose that each variable appears in at most ` clauses. Let A consist of

CHAPTER 11. THE PROBABILISTIC METHOD 170

all the events Ai = [clause i is not satisfied]. Then, for all i, Pr [Ai] = 2−k
exactly, and |Γ(Ai)| ≤ d = k(`− 1) since each variable in Ai is shared with
at most `−1 other clauses, and Ai will be independent of all events Aj with
which it doesn’t share a variable. So if ep(d+ 1) = e2−k(k(`− 1) + 1) ≤ 1,
which holds if ` ≤ 2k

ek+1, Corollary 11.3.2 tells us that a satisfying assignment
exists.9

Corollary 11.3.2 doesn’t let us actually find a satisfying assignment, but
it turns out we can do that too. We’ll return to this when we talk about
the constructive version of the local lemma in §11.3.5

11.3.4 Non-constructive proof

This is essentially the same argument presented in [MR95, §5.5], but we
adapt the notation to match the statement in terms of neighborhoods Γ(A)
instead of edges in a dependency graph.10

We show by induction on |S| that for any A and any S ⊆ A with A 6∈ S,

Pr
[
A

∣∣∣∣∣ ⋂
B∈S

B̄

]
≤ xA. (11.3.3)

When |S| = 0, this just says Pr [A] ≤ xA, which follows immediately
from (11.3.1).

For larger S, split S into S1 = S ∩ Γ(A), the events in S that might
not be independent of A; and S2 = S \ Γ(A), the events in S that we know
to be independent of A. If S2 = S, then A is independent of all events
in S, and (11.3.3) follows immediately from Pr

[
A
∣∣∣ ⋂B∈S B̄] = Pr [A] ≤

xA
∏
B∈Γ(A)(1− xB) ≤ xA. Otherwise |S2| < |S|, which means that we can

assume the induction hypothesis holds for S2.
9To avoid over-selling this claim, it’s worth noting that the bound on ` only reaches 2

at k = 4, although it starts growing pretty fast after that.
10The two formulations are identical, since we can always represent the neighborhoods

Γ(A) by creating an edge from A to B when B is in Γ(A); and conversely we can convert
a dependency graph into a neighborhood structure by making Γ(A) the set of successors
of A in the dependency graph.

CHAPTER 11. THE PROBABILISTIC METHOD 171

Write C1 for the event
⋂
B∈S1 B̄ and C2 for the event

⋂
B∈S2 B̄. Then

Pr
[
A

∣∣∣∣∣ ⋂
B∈S

B̄

]
= Pr [A ∩ C1 ∩ C2]

Pr [C1 ∩ C2]

= Pr [A ∩ C1 | C2] Pr [C2]
Pr [C1 | C2] Pr [C2]

= Pr [A ∩ C1 | C2]
Pr [C1 | C2] . (11.3.4)

We don’t need to do anything particularly clever with the numerator:

Pr [A ∩ C1 | C2] ≤ Pr [A | C2]
= Pr [A]

≤ xA

 ∏
B∈Γ(A)

(1− xB)

 , (11.3.5)

from (11.3.1) and the fact that A is independent of all B in S2 and thus of
C2.

For the denominator, we expand C1 back out to
⋂
B∈S1 B̄ and break

out the induction hypothesis. To bound Pr
[⋂

B∈S1 B̄
∣∣∣ C2

]
, we order S1

arbitrarily as {B1, . . . , Br}, for some r, and show by induction on ` as ` goes
from 1 to r that

Pr
[⋂̀
i=1

B̄i

∣∣∣∣∣ C2

]
≥
∏̀
i=1

(1− xBi). (11.3.6)

The proof is that, for ` = 1,

Pr
[
B̄1

∣∣∣ C2
]

= 1− Pr [B1 | C2]

≥ 1− xB1

using the outer induction hypothesis (11.3.3), and for larger `, we can com-
pute

Pr
[⋂̀
i=1

B̄i

∣∣∣∣∣ C2

]
= Pr

[
B̄`

∣∣∣∣∣
(
`−1⋂
i=1

B̄i

)
∩ C2

]
· Pr

[
`−1⋂
i=1

B̄i

∣∣∣∣∣ C2

]

≥ (1− xB`)
`−1∏
i=1

(1− xBi)

=
∏̀
i=1

(1− xBi),

CHAPTER 11. THE PROBABILISTIC METHOD 172

where the second-to-last step uses the outer induction hypothesis (11.3.3)
for the first term and the inner induction hypothesis (11.3.6) for the rest.
This completes the proof of the inner induction.

When ` = r, we get

Pr [C1 | C2] = Pr
[
r⋂
i=1

B̄i

∣∣∣∣∣ C2

]
≥

∏
B∈S1

(1− xB). (11.3.7)

Substituting (11.3.5) and (11.3.7) into (11.3.4) gives

Pr
[
A

∣∣∣∣∣ ⋂
B∈S

B̄

]
≤
xA
(∏

B∈Γ(A)(1− xB)
)
,∏

B∈S1(1− xB)

= xA

 ∏
B∈Γ(A)\S1

(1− xB)

≤ xA.

This completes the proof of the outer induction.
To get the bound (11.3.2), we reach back inside the proof and repeat

the argument for (11.3.7) with
⋂
A∈A Ā in place of C1 and without the con-

ditioning on C2. We order A arbitrarily as {A1, A2, . . . , Am} and show by
induction on k that

Pr
[
k⋂
i=1

Āi

]
≥

k∏
i=1

(1− xAk). (11.3.8)

For the base case we have k = 0 and Pr [Ω] ≥ 1, using the usual conventions
on empty products. For larger k, we have

Pr
[
k⋂
i=1

Āi

]
= Pr

[
Āk
] k−1⋂
i=1

Āi

≥ (1− xAk)
k−1∏
i=1

(1− xAi)

≥
k∏
i=1

(1− xAk),

where in the second-to-last step we use (11.3.3) for the first term and (11.3.8)
for the big product.

Setting k = n finishes the proof.

CHAPTER 11. THE PROBABILISTIC METHOD 173

11.3.5 Constructive proof

We now describe he constructive proof of the Lovász local lemma due to
Moser and Tardos [MT10], which is based on a slightly more specialized
construction of Moser alone [Mos09]. This version applies when our set of
bad events A is defined in terms of a set of independent variables P, where
each A ∈ A is determined by some set of variables vbl(A) ⊆ P, and Γ(A)
is defined to be the set of all events B 6= A that share at least one variable
with A; i.e., Γ(A) = {B ∈ A− {A} | vbl(B) ∩ vbl(A) 6= ∅}.

In this case, we can attempt to find an assignment to the variables that
makes none of the A occur using the obvious algorithm of sampling an initial
state randomly, then resampling all variables in vbl(A) whenever we see some
bad A occur. Astonishingly, this actually works in a reasonable amount of
time, without even any cleverness in deciding which A to resample at each
step, if the conditions for Lemma 11.3.1 hold for x that are not too large.
In particular, we will show that a good assignment is found after each A is
resampled at most xA

1−xA times on average.

Lemma 11.3.3. Under the conditions of Lemma 11.3.1, the Moser-Tardos
procedure does at most ∑

A

xA
1− xA

resampling steps on average.

We defer the proof of Lemma 11.3.3 for the momemt. For most applica-
tions, the following symmetric version is easier to work with:

Corollary 11.3.4. Under the conditions of Corollary 11.3.2, the Moser-
Tardos procedure does at most m/d resampling steps on average.

Proof. Follows from Lemma 11.3.3 and the choice of xA = 1
d+1 in the proof

of Corollary 11.3.2.

How this expected m/d bound translates into actual time depends on
the cost of each resampling step. The expensive part at each step is likely
to be the cost of finding an A that occurs and thus needs to be resampled.

Intuitively, we might expect the resampling to work because if each A ∈
A has a small enough neighborhood Γ(A) and a low enough probability, then
whenever we resample A’s variables, it’s likely that we fix A and unlikely
that we break too many B events in A’s neighborhood. It turns out to be
tricky to quantify how this process propagates outward, so the actual proof

CHAPTER 11. THE PROBABILISTIC METHOD 174

uses a different idea that essentially looks at this process in reverse, looking
for each resampled event A at a set of previous events whose resampling we
can blame for making A occur, and then showing that this tree (which will
include every resampling operation as one of its vertices) can’t be too big.

The first step is to fix some strategy for choosing which event A to
resample at each step. We don’t care what this strategy is; we just want
it to be the case that the sequence of events depends only on the random
choices made by the algorithm in its initial sampling and each resampling.
We can then define an execution log C that lists the sequence of events
C1, C2, C3, . . . that are resampled at each step of the execution.

From C we now construct a witness tree Tt for each resampling step
t whose nodes are labeled with events, with the property that the children
of a node v labeled with event Av are labeled with events in Γ+(Av) =
{Av} ∩ Γ(Av). The root of Tt is labeled with Ct; to construct the rest of
the tree, we work backwards through Ct−1, Ct−2, . . . , C1, and for each event
Ci we encounter we attach Ci as a child of the deepest v we can find with
Ci ∈ Γ+(Av), choosing arbitrarily if there is more than one such v, and
discarding Ci if there is no such v.

Now we can ask what the probability is that we see some particular wit-
ness tree τ in the execution log. Each vertex of τ corresponds to some event
Av that we resample because it occurs; in order for it to occur, the previ-
ous assignments of each variable in vbl(Av) must have made Av true, which
occurs with probability Pr [Av]. But since we resample all the variables in
Av, any subsequent assignments to these variables are independent of the
ones that contributed to v; with sufficient handwaving (or a rather detailed
coupling argument as found in [MT10]) this gives that each event Av occurs
with independent probability Pr [Av], giving Pr [τ] =

∏
v∈τ Pr [Av].

Why do we care about this? Because every event we resample is the
root of some witness tree, and we can argue that every event we resample is
the root of a distinct witness tree. The proof is that since we only discard
events B that have vbl(B) disjoint from all nodes already in the tree, once
we put A at the root, any other instance of A gets included. So the witness
tree rooted at the i-th occurrence of A in C will include exactly i copies of
A, unlike the witness tree rooted at the j-th copy for j 6= i.

Now comes the sneaky trick: we’ll count how many distinct witness trees
τ we can possibly have rooted at A, given that each occurs with probability∏
v∈τ Pr [Av]. This is done by constructing a branching process using the

xB values from Lemma 11.3.1 as probabilities of a node with label A having
a kid labeled B for each B in Γ+(A), and doing algebraic manipulations on
the resulting probabilities until

∏
v∈τ Pr [Av] shows up.

CHAPTER 11. THE PROBABILISTIC METHOD 175

Formally, consider the process where we construct a tree by starting
with a root labeled A, and for each vertex v with label Av, giving it a child
labeled B for each B ∈ Γ+(Av) with independent probability xB. We’ll now
calculate the probability pτ that this process generates a particular tree τ .

Let x′B = xB
∏
C∈Γ(B)(1 − xC). Note that (11.3.1) says precisely that

Pr [B] ≤ x′B.
For each vertex v in τ , letWv ⊆ Γ+(Av) be the set of events B ∈ Γ+(Av)

that don’t occur as labels of children of v. The probability of getting τ is
equal to the product of the probabilities at each v of getting all of its children
and none of its non-children. The non-children of v collectively contribute∏
B∈Wv

(1−xB) to the product, and v itself contributes xAv (via the product
for its parent), unless v is the root node. So we can express the giant product
as

pτ = 1
xA

∏
v∈τ

xAv ∏
B∈Wv

(1− xB)

 .
We don’t like theWv very much, so we get rid of them by pushing a (1−xAv)
up from each vertex v, which we compensate for by dividing by 1− xAv at
v itself, with an extra 1− xA showing up at the root. This gives

pτ = 1− xA
xA

∏
v∈τ

 xAv
1− xAv

∏
B∈Γ+(Av)

(1− xB)

 .
= 1− xA

xA

∏
v∈τ

xAv ∏
B∈Γ(Av)

(1− xB)

 .
= 1− xA

xA

∏
v∈τ

x′Av .

Now we can bound the expected number of trees rooted at A that appear
in C, assuming (11.3.1) holds. Letting TA be the set of all such trees and

CHAPTER 11. THE PROBABILISTIC METHOD 176

NA the number that appear in C, we have

E [NA] =
∑
τ∈TA

Pr [τ appears in C]

≤
∑
τ∈TA

∏
v∈τ

Pr [A(v)]

≤
∑
τ∈TA

∏
v∈τ

x′Av

=
∑
τ∈TA

xA
1− xA

pτ

= xA
1− xA

∑
τ∈TA

pτ

≤ xA
1− xA

.

And we’re done.

Chapter 12

Derandomization

Derandomization is the process of taking a randomized algorithm and
turning it into a deterministic algorithm. This is useful both for practical
reasons (deterministic algorithms are more predictable, which makes them
easier to debug and gives hard guarantees on running time) and theoretical
reasons (if we can derandomize any randomized algorithm we could show
results like P = RP, which would reduce the number of complexity classes
that complexity theorists otherwise have to deal with). It may also be the
case that derandomizing a randomized algorithm can be used for proba-
bility amplification, where we replace a low probability of success with a
higher probability, in this case 1.

There are basically two approaches to derandomization:

1. Reducing the number of random bits used down to O(logn), and then
searching through all choices of random bits exhaustively. For exam-
ple, if we only need pairwise independence, we could use the XOR
technique from §5.1.1.2 to replace a large collection of variables with
a small collection of random bits.
Except for the exhaustive search part, this is how randomized algo-
rithms are implemented in practice: rather than burning random bits
continuously, a pseudorandom generator is initialized from a seed
consisting of a small number of random bits. For pretty much all of
the randomized algorithms we know about, we don’t even need to use
a particularly strong pseudorandom generator. This is largely because
current popular generators are the products of a process of evolution:
pseudorandom generators that cause wonky behavior or fail to pass
tests that approximate the assumptions made about them by typical

177

CHAPTER 12. DERANDOMIZATION 178

randomized algorithms are abandoned in favor of better generators.1

From a theoretical perspective, pseudorandom generators offer the
possibility of eliminating randomization from all randomized algo-
rithms, except there is a complication. While (under reasonable cryp-
tographic assumptions) there exist cryptographically secure pseu-
dorandom generators whose output is indistinguishable from a gen-
uinely random source by polynomial-time algorithms (including algo-
rithms originally intended for other purposes), such generators are
inherently incapable of reducing the number of random bits down to
the O(logn) needed for exhaustive search. The reason is that any
pseudorandom generator with only polynomially-many seeds can’t be
cryptographically secure, because we can distinguish it from a random
source by just checking its output against the output for all possible
seeds. Whether there is some other method for transforming an arbi-
trary algorithm in RP or BPP into a deterministic algorithm remains
an open problem in complexity theory (and beyond the scope of this
course).

2. The other approach to getting rid of randomness is to start with a
specific randomized protocol and analyze its behavior enough that
we can replace the random bits it uses with specific, deterministically-
chosen bits we can compute. This is the main approach we will describe
below. A non-constructive variant of this shows that we can always
replace the random bits used by all inputs of a given size with a few
carefully-selected fixed sequences (Adleman’s Theorem, described in
§12.2). More practical is the method of conditional probabilities,
which chooses random bits sequentially based on which value is more
likely to give a good outcome (see §12.4).

12.1 Deterministic vs. randomized algorithms
In thinking about derandomization, it can be helpful to have more than
one way to look at a randomized algorithm. So far, we’ve describe random-
ized algorithms as random choices of deterministic algorithms (Mr(x)) or,
equivalently, as deterministic algorithms that happen to have random inputs

1Having cheaper computers helps here as well. Nobody would have been willing to
spend 2496 bytes on the state vector for Mersenne Twister [MN98] back in 1975, but in
2011 this amount of memory is trivial for pretty much any computing device except the
tiniest microcontrollers.

CHAPTER 12. DERANDOMIZATION 179

(M(r, x)). This gives a very static view of how randomness is used in the
algorithm. A more dynamic view is obtained by thinking of the computa-
tion of a randomized algorithm as a computation tree, where each path
through the tree corresponds to a computation with a fixed set of random
bits and a branch in the tree corresponds to a random decision. In either
case we want an execution to give us the right answer with reasonably high
probability, whether that probability measures our chance of getting a good
deterministic machine for our particular input or landing on a good compu-
tation path.

12.2 Adleman’s theorem
The idea of picking a good deterministic machine is the basis forAdleman’s
theorem[Adl78], a classic result in complexity theory. Adleman’s theorem
says that we can always replace randomness by an oracle that presents us
with a fixed string of advice pn that depends only on the size of the input
n. The formal statement of the theorem relates the class RP, which is the
class of problems for which there exists a polynomial-time Turing machine
M(x, r) that outputs 1 at least half the time when x ∈ L and never when
x 6∈ L; and the class P/poly, which is the class of problems for which there
is a polynomial-sized string pn for each input size n and a polynomial-time
Turing machine M ′ such that M ′(x, p|x|) outputs 1 if and only if x ∈ L.

Theorem 12.2.1. RP ⊆ P/poly.

Proof. The intuition is that if any one random string has a constant proba-
bility of making M happy, then by choosing enough random strings we can
make the probability thatM fails using on every random string for any given
input so small that even after we sum over all inputs of a particular size,
the probability of failure is still small using the union bound (4.1.1). This is
an example of probability amplification, where we repeat a randomized
algorithm many times to reduce its failure probability.

Formally, consider any fixed input x of size n, and imagine running M
repeatedly on this input with n + 1 independent sequences of random bits
r1, r2, . . . , rn+1. If x 6∈ L, then M(x, ri) never outputs 1. If x ∈ L, then for
each ri, there is an independent probability of at least 1/2 thatM(x, ri) = 1.
So Pr [M(x, ri) = 0] ≤ 1/2, and Pr [∀iM(x, ri) = 0] ≤ 2−(n+1). If we sum
this probability of failure for each individual x ∈ L of length n over the at
most 2n such elements, we get a probability that any of them fail of at most
2n2−(n+1) = 1/2. Turning this upside down, any sequence of n+ 1 random

CHAPTER 12. DERANDOMIZATION 180

inputs includes a witness that x ∈ L for all inputs x with probability at
least 1/2. It follows that a good sequence r1, . . . , rn+1, exists.

Our advice pn is now some good sequence pn = 〈r1 . . . rn+1〉, and the
deterministic advice-taking algorithm that uses it runs M(x, ri) for each
ri and returns true if and only if at least one of these executions returns
true.

The classic version of this theorem shows that anything you can do with
a polynomial-size randomized circuit (a circuit made up of AND, OR, and
NOT gates where some of the inputs are random bits, corresponding to the r
input toM) can be done with a polynomial-size deterministic circuit (where
now the pn input is baked into the circuit, since we need a different circuit
for each size n anyway). This shows that ordinary algorithms are better
described by uniform families of circuits, where there exists a polynomial-
time algorithm that, given input n, outputs the circuit Cn for processing
size-n inputs. The class of circuits generated by Adleman’s theorem is most
likely non-uniform: the process of finding the good witnesses ri is not
something we can clearly do in polynomial time (with the usual caveat that
we can’t prove much about what we can’t do in polynomial time).

12.3 Limited independence
For some algorithms, it may be that full independence is not needed for all of
the random bits. If the amount of independence needed is small enough, this
may allow us to reduce the actual number of random bits consumed down
to O(logn), at which point we can try all possible sequences of random bits
in polynomial time.

Variants of this technique have been used heavily in the cryptography
and complexity; see [LW05] for a survey of some early work in this area.
We’ll do a quick example of the method before before moving onto more
direct approaches.

12.3.1 MAX CUT

Let’s look at the randomized MAX CUT algorithm from §11.2.1. In the
original algorithm, we use n independent random bits to assign the n vertices
to S or T . The idea is that by assigning each vertex independently at
random to one side of the cut or the other, each edge appears in the cut
with probability 1/2, giving a total of m/2 edges in the cut in expectation.

CHAPTER 12. DERANDOMIZATION 181

Suppose that we replace these n independent random bits with n pairwise-
independent bits generated by taking XORs of subsets of dlg(n+ 1)e inde-
pendent random bits as described in §5.1.1.2. Because the bits are pairwise-
independent, the probability that the two endpoints of an edge are assigned
to different sides of the cut is still exactly 1/2. So on average we get m/2
edges in the cut as before, and there is at least one sequence of random bits
that guarantees a cut at least this big.

But with only dlg(n+ 1)e random bits, there are only 2dlog(n+1)e < 2(n+
1) possible sequences of random bits. If we try all of them, then we find a cut
of size m/2 always. The total cost is O(n(n+m)) if we include the O(n+m)
cost of testing each cut. Note that this algorithm does not generate all 2n
possible cuts, but among those it does generate, there must be a large one.

In this particular case, we’ll see below how to get the same result at a
much lower cost, using more knowledge of the problem. So we have the typ-
ical trade-off between algorithm performance and algorithm designer effort.

12.4 The method of conditional probabilities
The method of conditional probabilities [Rag88] follows an execution
of the randomized algorithm, but at each point where we would otherwise
make a random decision, it makes a decision that minimizes the conditional
probability of losing.

Structurally, this is similar to the method of bounded differences (see
§5.3.3). Suppose our randomized algorithm generates m random values
X1, X2, . . . , Xm. Let f(X1, . . . , Xm) be the indicator variable for our ran-
domized algorithm failing (more generally, we can make it an expected cost
or some other performance measure). Extend f to shorter sequences of val-
ues by defining f(x1, . . . , xk) = E [f(x1, . . . , xk, Xk+1, . . . , Xm)]. Then Yk =
f(X1, . . . , Xk) is a Doob martingale, just as in the method of bounded differ-
ences. This implies that, for any partial sequence of values x1, . . . , xk, there
exists some next value xk+1 such that f(x1, . . . , xk) ≥ f(x1, . . . , xk, xk+1).
If we can find this value, we can follow a path on which f always decreases,
and obtain an outcome of the algorithm f(x1, . . . , xm) less than or equal
to the initial value f(〈〉). If our outcomes are 0–1 (as in failure probabili-
ties), and our initial value for f is less than 1, this means that we reach an
outcome with f = 0.

The tricky part here is that it may be hard to compute f(x1, . . . , xk).
(It’s always possible to do so in principle by enumerating all assignments of
the remaining variables, but if we have time to do this, we can just search

CHAPTER 12. DERANDOMIZATION 182

for a winning assignment directly.) What makes the method of conditional
probabilities practical in many cases is that we don’t need f to compute the
actual probability of failure, as long as (a) f gives an upper bound on the real
probability of failure, at least in terminal configurations, and (b) f has the
property used in the argument that for any partial sequence x1, . . . , xk there
exists an extension x1, . . . , xk, xk+1 with f(x1, . . . , xk) ≥ f(x1, . . . , xk, xk+1).
Such an f is called a pessimistic estimator. If we can find a pessimistic
estimator that is easy to compute and starts less than 1, then we can just
follow it down the tree to a leaf that doesn’t fail.

12.4.1 A trivial example

Here is a very bad randomized algorithm for generating a string of n zeros:
flip n coins, and output the results. This has a 1−2−n probability of failure,
which is not very good.

We can derandomize this algorithm and get rid of all probability of failure
at the same time. Let f(x1, . . . , xk) be the probability of failure after the
first k bits. Then we can easily compute f (it’s 1 if any of the bits are 1
and 1− 2−(n−k) otherwise). We can use this to find a bit xk+1 at each stage
that reduces f . After noticing that all of these bits are zero, we improve the
deterministic algorithm even further by leaving out the computation of f .

12.4.2 Deterministic construction of Ramsey graphs

Here is an example that is slightly less trivial. For this example we let f be
a count of bad events rather than a failure probability, but the same method
applies.

Recall from §11.1.2 that if k ≥ 3, for n ≤ 2k/2 there exists a graph with
n nodes and no cliques or independent sets of size k. The proof of this fact
is to observe that each subset of k vertices is bad with probability 2−k+1,
and when

(n
k

)
2−k+1 < 1, the expected number of bad subsets in Gn,1/2 is

less than 1, showing that some good graph exists.
We can turn this into a deterministic nO(logn) algorithm for finding a

Ramsey graph in the worst case when n = 2k/2. The trick is to set the
edges to be present or absent one at a time, and for each edge, take the
value that minimizes the expected number of bad subsets conditioned on
the choices so far. We can easily calculate the conditional probability that
a subset is bad in O(k) time: if it already has both a present and missing
edge, it’s not bad. Otherwise, if we’ve already set ` of its edges to the
same value, it’s bad with probability exactly 2−k+`. Summing this over all

CHAPTER 12. DERANDOMIZATION 183

O(nk) subsets takes O(nkk) time per edge, and we have O(n2) edges, giving
O(nk+2k) = O

(
n(2 lgn+2+lg lgn)

)
= nO(logn) time total.

It’s worth mentioning that there are better deterministic constructions
in the literature. The best current construction that I am aware of (as of
2013) is given by an algorithm of Barak et al. [BRSW06], which constructs
a graph with klogc k vertices with no clique or independent set of size k for
any fixed c.

12.4.3 MAX CUT

Again we consider the algorithm from §11.2.1 that assigns vertices to S
and T at random. To derandomize this algorithm, at each step we pick a
vertex and assign it to the side of the cut that maximizes the conditional
expectation of the number of edges that cross the cut. We can compute this
conditional expectation as follows:

1. For any edge that already has both endpoints assigned to S or T , it’s
either in the cut or it isn’t: add 0 or 1 as appropriate to the conditional
expectation.

2. For any edge with only one endpoint assigned, there’s a 1/2 probability
that the other endpoint gets assigned to the other side (in the original
randomized algorithm). Add 1/2 to the conditional expectation for
these edges.

3. For any edge with neither endpoint assigned, we again have a 1/2
probability that it crosses the cut. Add 1/2 for these as well.

So now let us ask how assigning a particular previously unassigned vertex
v to S or T affects the conditional probability. For any neighbor w of v that is
not already assigned, adding v to S or T doesn’t affect the 1/2 contribution
of vw. So we can ignore these. The only effects we see are that if some
neighbor w is in S, assigning v to S decreases the conditional expectation
by 1/2 and assigning v to T increases the expectation by 1/2. So to maximize
the conditional expectation, we should assign v to whichever side currently
holds fewer of v’s neighbors—the obvious greedy algorithm, which runs in
O(n+m) time if we are reasonably clever about keeping track of how many
neighbors each unassigned node has in S and T . The advantage of the
method of conditional probabilities here is that we immediately get that
the greedy algorithm achieves a cut of size m/2, which might require actual
intelligence to prove otherwise.

CHAPTER 12. DERANDOMIZATION 184

12.4.4 Set balancing

Here we have a collection of vectors v1, v2, . . . , vn in {0, 1}m. We’d like to find
±1 coefficients ε1, ε2, . . . εn that minimize maxj |Xj | where Xj =

∑n
i=1 εivij .

If we choose the εi randomly, Hoeffding’s inequality (5.3.1) says for each
fixed j that Pr [|Xj | > t] < 2 exp(−t2/2n) (since there are at most n non-
zero values vij). Setting 2 exp(−t2/2n) ≤ 1/m gives t ≥

√
2n ln 2m. So

by the union bound, we have Pr
[
maxj |Xj | >

√
2n ln 2m

]
< 1: a solution

exists.
Because there may be very complicated dependence between the Xj , it

is difficult to calculate the probability of the event
⋃
j [|Xj | ≥ t], whether

conditioned on some of the εi or not. However, we can calculate the proba-
bility of the individual events [|Xj | ≥ t] exactly. Conditioning on ε1, . . . , εk,
the expected value of Xj is just ` =

∑k
i=1 εivij , and the distribution of

Y = Xj −E [Xj] is the sum r ≤ n−k independent ±1 random variables. So

Pr [|Xj | > t | ε1, . . . , εk] = 1− Pr [−t− ` ≤ Y ≤ t− `]

=
t−∑̀

i=−t−`

(
r

i

)
2−r.

This last expression involves a linear number of terms, each of which we can
calculate using a linear number of operations on integers that fit in a linear
number of bits, so we can calculate the probability exactly in polynomial
time by just adding them up.

For our pessimistic estimator, we take U(ε1, . . . , εk) =
∑n
i=j Pr

[
|Xj | >

√
2n ln 2m

∣∣∣ ε1, . . . , εk].
Since each term in the sum is a Doob martingale, we have E [U(ε1, . . . , εk+1) | ε1, . . . , εk] =
U(ε1, . . . , εk), from which we immediately get that for any choice of ε1, . . . , εk
there exists some εk+1 such that U(ε1, . . . , εk) ≥ U(ε1, . . . , εk+1). Since we
can compute U , we can determine this winning εk+1 explicitly. Our pre-
vious argument shows that U(〈〉) < 1, which implies that our final value
U(ε1, . . . , εn) will also be less than 1. Since U is integral, this means it must
be 0, and we find an assignment in which |Xj | <

√
2n ln 2m for all j.

Chapter 13

Quantum computing

Quantum computing is a currently almost-entirely-theoretical branch of
randomized algorithms that attempts to exploit the fact that probabilities at
a microscopic scale arise in a mysterious way from more fundamental prob-
ability amplitudes, which are complex-valued and can in particular cancel
each other out where probabilities can only add. In a quantum computa-
tion, we replace random bits with quantum bits—qubits for short—and
replace random updates to the bits with quantum operations.

To explain how this works, we’ll start by re-casting our usual model of
a randomized computation to make it look more like the standard quan-
tum circuit of Deutsch [Deu89]. We’ll then get quantum computation by
replacing all the real-valued probabilities with complex-valued amplitudes.

13.1 Random circuits
Let’s consider a very simple randomized computer whose memory consists of
two bits. We can describe our knowledge of the state of this machine using a
vector of length 4, with the coordinates in the vector giving the probability
of states 00, 01, 10, and 11. For example, if we know that the initial state
is always 00, we would have the (column) vector

1
0
0
0

 .
Any such state vector x for the system must consist of non-negative

real values that sum to 1; this is just the usual requirement for a discrete

185

CHAPTER 13. QUANTUM COMPUTING 186

probability space. Operations on the state consist of taking the old values of
one or both bits and replacing them with new values, possibly involving both
randomness and dependence on the old values. The law of total probability
applies here, so we can calculate the new state vector x′ from the old state
vector x by the rule

x′b′1b′2
=
∑
b1b2

xb1b2 Pr
[
Xt+1 = b′1b

′
2
∣∣ Xt = b1b2

]
.

These are linear functions of the previous state vector, so we can summarize
the effect of our operation using a transition matrix A, where x′ = Ax.1

For example, if we negate the second bit 2/3 of the time while leaving
the first bit alone, we get the matrix

A =

1/3 2/3 0 0
2/3 1/3 0 0
0 0 1/3 2/3
0 0 2/3 1/3

 .
One way to derive this matrix other than computing each entry directly is

that it is the tensor product of the matrices that represent the operations
on each individual bit. The idea here is that the tensor product of A and B,
written A⊗B, is the matrix C with Cij,k` = AikBj`. We’re cheating a little
bit by allowing the C matrix to have indices consisting of pairs of indices,
one for each of A and B; there are more formal definitions that justify this
at the cost of being harder to understand.

In this particular case, we have
1/3 2/3 0 0
2/3 1/3 0 0
0 0 1/3 2/3
0 0 2/3 1/3

 =
[
1 0
0 1

]
⊗
[
1/3 2/3
2/3 1/3

]
.

The first matrix in the tensor product gives the update rule for the first bit
(the identity matrix—do nothing), while the second gives the update rule
for the second.

1Note that this is the reverse of the convention we adopted for Markov chains in
Chapter 9. There it was convenient to have Pij = pij = Pr [Xt+1 = j | Xt = i]. Here we
defer to the physicists and make the update operator come in front of its argument, like
any other function.

CHAPTER 13. QUANTUM COMPUTING 187

Some operations are not decomposable in this way. If we swap the values
of the two bits, we get the matrix

S =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,
which maps 00 and 11 to themselves but maps 01 to 10 and vice versa.

The requirement for all of these matrices is that they be stochastic.
This means that each column has to sum to 1, or equivalently that 1A = 1,
where 1 is the all-ones vector. This just says that our operations map proba-
bility distributions to probability distributions; we don’t apply an operation
and find that the sum of our probabilities is now 3/2 or something. (Proof:
If 1A = 1, then ‖Ax‖1 = 1(Ax) = (1A)x = 1x = ‖x‖1.)

A randomized computation in this model now consists of a sequence
of these stochastic updates to our random bits, and at the end performing
a measurement by looking at what the values of the bits actually are.
If we want to be mystical about it, we could claim that this measurement
collapses the probability distribution over states representing our previous
ignorance into a single unique state, but really we are opening the box to
see what we got.

For example, we could generate two bias-2/3 coin-flips by starting with
00 and using the algorithm flip second, swap bits, flip second, or in matrix
terms:

xout = ASAxin

=

1/3 2/3 0 0
2/3 1/3 0 0
0 0 1/3 2/3
0 0 2/3 1/3

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

1/3 2/3 0 0
2/3 1/3 0 0
0 0 1/3 2/3
0 0 2/3 1/3

1
0
0
0

=

1/9
2/9
2/9
4/9

 .
When we look at the output, we find 11 with probability 4/9, as we’d

expect, and similarly for the other values.

CHAPTER 13. QUANTUM COMPUTING 188

13.2 Bra-ket notation
A notational oddity that scares many people away from quantum mechanics
in general and quantum computing in particular is the habit of practitioners
in these fields of writing basis vectors and their duals using bra-ket nota-
tion, a kind of typographic pun invented by the physicist Paul Dirac [Dir39].
This is based on a traditional way of writing an inner product of two
vectors x and y in “bracket form” as 〈x|y〉. The interpretation of this is
〈x|y〉 = x ∗ y, where x∗ is the conjugate transpose of x2 For example, for
our vector xin above that puts all of its probability on 00, we have

〈xin|xin〉 =
[
1 0 0 0

]
1
0
0
0

 = 1. (13.2.1)

The typographic trick is to split in half both 〈x|y〉 and its expansion.
For example, we could split (13.2.1) as

〈xin| =
[
1 0 0 0

]
|xin〉 =

1
0
0
0

 .
In general, wherever we used to have a bracket 〈x|y〉, we now have a bra

〈x| and a ket |y〉. These are just row vectors and column vectors, with the
relation that 〈x| is always the conjugate transpose of |x〉.

The second trick in bra-ket notation is to make the contents of the bra or
ket an arbitrary name. For kets, this will usually describe some state. As an
example, we might write xin as |00〉 to indicate that it’s the basis vector that
puts all of its weight on the state 00. For bras, this is the linear operator
that returns 1 when applied to the given state and 0 when applied to any
orthogonal state. So 〈00| |00〉 = 〈00|00〉 = 1 but 〈00| |01〉 = 〈00|01〉 = 0.

13.2.1 States as kets

This notation is useful for the same reason that variable names are useful.
It’s a lot easier to remember that |01〉 refers to the distribution assigning
probability 1 to state 01 than that

[
0 1 0 0

]>
is.

2For real-valued x this is the same as the transpose. For complex-valued x, each
coordinate xi = a + bi is replaced by its complex conjugate x̄i = a − bi. Using the
conjugate transpose makes 〈x|x〉 equal ‖x‖22 when x is complex-valued.

CHAPTER 13. QUANTUM COMPUTING 189

Non-basis vectors we can express using a linear combination of kets. For
example, we can write

xout = 1
9 |00〉+ 2

9 |01〉+ 2
9 |10〉+ 4

9 |11〉 .

This is not as compact as the vector, but has the advantage of clearly labeling
what states the probabilities apply to.

13.2.2 Operators as sums of kets times bras

A similar trick can be used to express operators, like the swap operator S.
We can represent S as a combination of maps from specific states to specific
other states. For example, the operator

|01〉 〈10| =

0
1
0
0

 [0 0 1 0
]

=

0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

maps |10〉 to |01〉 (Proof: |01〉 〈10| |10〉 = |01〉 〈10|10〉 = |01〉) and sends all
other states to 0. Add up four of these mappings to get

S = |00〉 〈00|+ |10〉 〈01|+ |01〉 〈10|+ |11〉 〈11| =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .
Here the bra-ket notation both labels what we are doing and saves writing
a lot of zeros.

13.3 Quantum circuits
So how do we turn our random circuits into quantum circuits?

The first step is to replace our random bits with quantum bits (qubits).
For a single random bit, the state vector represents a probability distri-

bution

p0 |0〉+ p1 |1〉 ,

where p0 and p1 are non-negative real numbers with p0 + p1 = 1.

CHAPTER 13. QUANTUM COMPUTING 190

For a single qubit, the state vector represents amplitudes

a0 |0〉+ a1 |1〉 ,

where a0 and a1 are complex numbers with ‖a0‖2 + ‖a1‖2 = 1.3 The reason
for this restriction on amplitudes is that if we measure a qubit, we will see
state 0 with probability ‖a0‖2 and state 1 with probability ‖a1‖2. Unlike
with random bits, these probabilities are not mere expressions of our igno-
rance but arise through a still somewhat mysterious process from the more
fundamental amplitudes.4

With multiple bits, we get amplitudes for all combinations of the bits,
e.g.

1
2 (|00〉+ |01〉+ |10〉+ |11〉)

gives a state vector in which each possible measurement will be observed
with equal probability

(
1
2

)2
= 1

4 . We could also write this state vector as

1/2
1/2
1/2
1/2

 .
3The norm ‖a+ bi‖ of a complex number is given by

√
a2 + b2; without the imag-

inary term bi, it’s equivalent to absolute value. For any complex number x, the norm
can also be written as

√
x̄x, where x̄ is the complex conjugate of x. This is because√

(a+ bi)(a− bi) =
√
a2 − (bi)2 =

√
a2 + b2. The appearance of the complex conjugate

here explains why we define 〈x|y〉 = x∗y; the conjugate transpose means that for 〈x|x〉,
when we multiply x∗i by xi we are computing a squared norm.

4In the old days of “shut up and calculate,” this process involved the unexplained
power of an observer to collapse a superposition into a classical state. Nowadays the most
favored explanation involves decoherence, the difficulty of maintaining superpositions in
systems that are interacting with large, warm objects with lots of thermodynamic degrees
of freedom (measuring instruments, brains). The decoherence explanation is particularly
useful for explaining why real-world quantum computers have a hard time keeping their
qubits mixed even when nobody is looking at them. Decoherence by itself does not explain
which basis states a system collapses to. Since bases in linear algebra are pretty much
arbitrary, it would seem that we could end up running into a physics version of Goodman’s
grue-bleen paradox [Goo83], but there are ways of dealing with this too (einselection).
Since all of this is (a) beyond my own limited comprehension of quantum mechanics and
(b) irrelevant to the theoretical model we are using, these issues will not be discussed
further.

CHAPTER 13. QUANTUM COMPUTING 191

13.3.1 Quantum operations

In the random circuit model, at each step we pick a small number of random
bits, apply a stochastic transformation to them, and replace their values with
the results. In the quantum circuit model, we do the same thing, but now
our transformations must have the property of being unitary. Just as a
stochastic matrix preserves the property that the probabilities in a state
vector sum to 1, a unitary matrix preserves the property that the squared
norms of the amplitudes in a state vector sum to 1.

Formally, a square, complex matrix A is unitary if it preserves inner
products: 〈Ax|Ay〉 = 〈x|y〉 for all x and y. Alternatively, A is unitary if
A∗A = AA∗ = I5, because 〈Ax|Ay〉 = (Ax)∗(Ay) = x∗A∗Ay = x∗Iy =
x∗y = 〈x|y〉. Yet another way to state this is that the columns of A from an
orthonormal basis: this means that 〈Ai|Aj〉 = 0 if i 6= j and 1 if i = j, which
is exactly what A∗A = I means. And the same thing works if we consider
rows instead of columns.

The rule then is: at each step, we can operate on some constant number
of qubits by applying a unitary transformation to them. In principle, this
could be any unitary transformation, but some particular transformations
show up often in actual quantum algorithms.6

The simplest unitary transformations are permutations on states (like
the operator that swaps two qubits), and rotations of a single state. One
particularly important rotation is the Hadamard operator

H =
√

1
2

[
1 1
1 −1

]
.

This maps |0〉 to the superposition
√

1
2 |0〉 +

√
1
2 |1〉; since this superposi-

tion collapses to either |0〉 or |1〉 with probability 1/2, the state resulting
from H |0〉 is the quantum-computing equivalent of a fair coin-flip. Note
that H |1〉 =

√
1
2 |0〉 −

√
1
2 |1〉 6= H |0〉, even though both yield the same

probabilities; these two superpositions have different phases and may be-
have differently when operated on further. This is necessary: all quantum
operations are reversible, because any unitary matrix U has an inverse U∗.

If we apply H in parallel to all the qubits in our system, we get the n-
fold tensor product H⊗n, which (if we take our bit-vector indices as integers

5Recall that A∗ is the conjugate transpose of A.
6Deutsch’s original paper [Deu89] shows that repeated applications of single-qubit ro-

tations and the CNOT operation (described in §13.3.2) are enough to approximate any
unitary transformation.

CHAPTER 13. QUANTUM COMPUTING 192

0 . . . N − 1 = 2n − 1 represented in binary) maps |0〉 to
√

1
N

∑N−1
i=0 |i〉. So

n applications of H effectively scramble a deterministic initial state into a
uniform distribution across all states. We’ll see this scrambling operation
again when we look at Grover’s algorithm in §13.5.

13.3.2 Quantum implementations of classical operations

One issue that comes up with trying to implement classical algorithms in
the quantum-circuit model is that classical operation are generally not re-
versible: if I execution x← x ∧ y, it may not be possible to reconstruct the
old state of x. So I can’t implement AND directly as a quantum operation.

The solution is to use more sophisticated reversible operations from
which standard classical operations can be extracted as a special case. A
simple example is the controlled NOT or CNOT operator, which com-
putes the mapping (x, y) 7→ (x, x⊕y). This corresponds to the matrix (over
the basis |00〉 , |01〉 , |10〉 , |11〉)

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,
which is clearly unitary (the rows are just the standard basis vectors). We
could also write this more compactly as |00〉 〈00| + |01〉 〈01| + |11〉 〈10| +
|10〉 〈11|.

The CNOT operator gives us XOR, but for more destructive operations
we need to use more qubits, possibly including junk qubits that we won’t look
at again but that are necessary to preserve reversibility. The Toffoli gate
or controlled controlled NOT gate (CCNOT) is a 3-qubit gate that was
originally designed to show that classical computation could be performed
reversibly [Tof80]. It implements the mapping (x, y, z) 7→ (x, y, (x∧ y)⊕ z),
which corresponds to the 8× 8 matrix

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

.

CHAPTER 13. QUANTUM COMPUTING 193

By throwing in some extra qubits we don’t care about, Toffoli gates can
implement basic operations like NAND ((x, y, 1) 7→ (x, y,¬(x ∧ y))), NOT
((x, 1, 1) 7→ (x, 1,¬x)), and fan-out ((x, 1, 0) 7→ (x, 1, x)).7 This gives a
sufficient basis for implementing all classical circuits.

13.3.3 Representing Boolean functions

Suppose we have a quantum circuit that computes a Boolean function f .
There are two conventions for representing the output of f :

1. We can represent f(x) by XORing it with an extra qubit y: |x, y〉 7→
|x, y ⊕ f(x)〉. This is the approach taken by the CNOT (f(x) = x)
and CCNOT (f(x1x2) = x1 ∧ x2) gates.

2. We can represent f(x) by changing the phase of |x〉: |x〉 7→ (−1)f(x) |x〉.
The actual unitary operator corresponding to this is

∑
x(−1)f(x) |x〉 〈x|,

which in matrix form looks like a truth table for f expressed as ±1
values along the diagonal, e.g.:

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

for the XOR function.
This has the advantage of requiring one fewer qubit, but we can’t
observe the value of f(x) directly, because the amplitude of |x〉 is un-
changed. Where this comes in handy is when we can use the change in
phase in the context of a larger quantum algorithm to get cancellations
for some values of x.

The first representation makes more sense for modeling classical circuits.
The second turns out to be more useful when f is a subroutine in a larger

7In the case of fan-out, this only works with perfect accuracy for classical bits and not
superpositions, which run into something called the no-cloning theorem. For example,
applying CCNOT to 1√

2 |010〉 + 1√
2 |110〉 yields 1√

2 |010〉 + 1√
2 |111〉. This works, sort

of, but the problem is that the first and last bits are still entangled, meaning we can’t
operate on them independently. This is actually not all that different from what happens
in the probabilistic case (if I make a copy of a random variable X, it’s correlated with
the original X), but it has good or bad consequences depending on whether you want to
prevent people from stealing your information undetected or run two copies of a quantum
circuit on independent replicas of a single superposition.

CHAPTER 13. QUANTUM COMPUTING 194

quantum algorithm. Fortunately, the operator with matrix[
1 0
0 −1

]

converts the |0〉–|1〉 representation into the ±1 representation, so we can
build any desired classical f using 0–1 logic and convert it to ±1 as needed.

13.3.4 Practical issues (which we will ignore)

The big practical question is whether any of these operations—or even non-
trivial numbers of independently manipulable qubits—can be implemented
in a real, physical system. As theorists, we can ignore these issues, but in
real life they are what would make quantum computing science instead of
science fiction.8

13.3.5 Quantum computations

Putting everything together, a quantum computation consists of three stages:

1. We start with a collection of qubits in some known state x0 (e.g.,
|000 . . . 0〉).

2. We apply a sequence of unitary operators A1, A2, . . . Am to our qubits.

3. We take a measurement of the final superposition AmAm−1 . . . A1x0
that collapses it into a single state, with probability equal to the square
of the amplitude of that state.

Our goal is for this final state to tell us what we want to know, with
reasonably high probability.

13.4 Deutsch’s algorithm
We now have enough machinery to describe a real quantum algorithm.
Known as Deutsch’s algorithm, this computes f(0)⊕ f(1) while evaluating
f once [Deu89]. The trick, of course, is that f is applied to a superposition.

8Currently known results, sadly, still put quantum computing mostly in the science
fiction category.

CHAPTER 13. QUANTUM COMPUTING 195

Assumption: f is implemented reversibly, as a quantum computation
that maps |x〉 to (−1)f(x) |x〉. To compute f(0)⊕ f(1), evaluate

HfH |0〉 =
√

1
2Hf (|0〉+ |1〉)

=
√

1
2H

(
(−1)f(0) |0〉+ (−1)f(1) |1〉

)
= 1

2
((

(−1)f(0) + (−1)f(1)
)
|0〉+

(
(−1)f(0) − (−1)f(1)

)
|1〉
)
.

Suppose now that f(0) = f(1) = b. Then the |1〉 terms cancel out and
we are left with

1
2
(
2 · (−1)b |0〉

)
= (−1)b |0〉 .

This puts all the weight on |0〉, so when we take our measurement at the
end, we’ll see 0.

Alternatively, if f(0) = b 6= f(1), it’s the |0〉 terms that cancel out,
leaving (−1)b |1〉. Again the phase depends on b, but we don’t care about
the phase: the important thing is that if we measure the qubit, we always
see 1.

The result in either case is that with probability 1, we determine the
value of f(0) ⊕ f(1), after evaluating f once (albeit on a superposition of
quantum states).

This is kind of a silly example, because the huge costs involved in building
our quantum computer probably swamp the factor-of-2 improvement we got
in the number of calls to f . But a generalization of this trick, known as the
Deutsch-Josza algorithm [DJ92], solves the much harder (although still a bit
contrived-looking) problem of distinguishing a constant Boolean function on
n bits from a function that outputs one for exactly half of its inputs. No
deterministic algorithm can solve this problem without computing at least
2n/2 + 1 values of f , giving an exponential speed-up.9

9The speed-up compared to a randomized algorithm that works with probability 1− ε
is less impressive. With randomization, we only need to look at O(log 1/ε) values of f to
see both a 0 and a 1 in the non-constant case. But even here, the Deutsch-Josza algorithm
does have the advantage of giving the correct answer always.

CHAPTER 13. QUANTUM COMPUTING 196

13.5 Grover’s algorithm
Grover’s algorithm [Gro96] is one of two main exemplars for the astonishing
power of quantum computers.10 The idea of Grover’s algorithm is that if
we have a function f on N = 2n possible inputs whose value is 1 for exactly
one possible input w, we can find this w with high probability using O(

√
N)

quantum evaluations of f . As with Deutsch’s algorithm, we assume that f
is encoded as an operator (conventionally written Uw) that maps each |x〉
to (−1)f(x) |x〉.

The basic outline of the algorithm:

1. Start in the superposition |s〉 =
√

1
N

∑
x |x〉 = H⊗n |0〉.

2. Alternate between applying the Grover diffusion operator D =
2 |s〉 〈s| − I and the f operator Uw. Do this O(

√
n) times (the exact

number of iterations is important and will be calculated below).

3. Take a measurement of the state. It will be w with high probability.

The details involving showing (a) that we can generate the original su-
perposition |s〉, (b) that we can implement Us efficiently using unitary op-
erations on a constant number of qubits each, and (c) that we actually get
w at the end of this process.

13.5.1 Initial superposition

To get the initial superposition, start with |0n〉 and apply the Hadamard
transform to each bit individually; this gives

√
1
N

∑
x |x〉 as claimed.

13.5.2 The Grover diffusion operator

We have the definition D = 2 |s〉 〈s| − I.
Before we try to implement this, let’s start by checking that it is in fact

unitary. Compute

DD∗ = (2 |s〉 〈s| − I)2

= 4 |s〉 〈s| |s〉 〈s| − 4 |s〉 〈s|+ I2

= 4 |s〉 〈s| − 4 |s〉 〈s|+ I

= I.

10The other is Shor’s algorithm [Sho97], which allows a quantum computer to factor
n-bit integers in time polynomial in n.

CHAPTER 13. QUANTUM COMPUTING 197

Here we use the fact that |s〉 〈s| |s〉 〈s| = |s〉 〈s|s〉 〈s| = |s〉 (1) 〈s| = |s〉 〈s|.
Recall that |s〉 = H⊗n |0n〉, where H⊗n is the result of applying H to

each of the n bits individually. We also have that H∗ = H and HH∗ = I,
from which H⊗nH⊗n = I as well.

So we can expand

D = 2 |s〉 〈s| − I
= 2H⊗n |0n〉 (H⊗n |0n〉)∗ − I
= 2H⊗n |0n〉 〈0n|H⊗n − I
= H⊗n (2 |0n〉 〈0n| − I)H⊗n.

The two copies of H⊗n involve applying H to each of the n bits, which
we can do. The operator in the middle, 2 |0n〉 〈0n|−I, maps |0n〉 to |0n〉 and
maps all other basis vectors |x〉 to − |x〉. This can be implemented as a OR
of all the qubits, which we can do using our tools for classical computations.
So the entire operator D can be implemented using O(n) qubit operations,
most of which can be done in parallel.

13.5.3 Effect of the iteration

To see what happens when we apply UwD, it helps to represent the state
in terms of a particular two-dimensional basis. The idea here is that the
initial state |s〉 and the operation UwD are symmetric with respect to any
basis vectors |x〉 6= |w〉, so instead of tracking all of these non-w vectors
separately, we will represent all of them by a single composite vector

|u〉 =
√

1
N − 1

∑
x 6=w
|x〉 .

The coefficient
√

1
N−1 is chosen to make 〈u|u〉 = 1. As always, we like

our vectors to have length 1.
Using |u〉, we can represent

|s〉 =
√

1
N
|w〉+

√
N − 1
N

|u〉 . (13.5.1)

A straightforward calculation shows that this indeed puts
√

1
N amplitude

on each |x〉.

CHAPTER 13. QUANTUM COMPUTING 198

Now we’re going to bring in some trigonometry. Let θ = sin−1
√

1
N , so

that sin θ =
√

1
N and cos θ =

√
1− sin2 θ =

√
N−1
N . We can then rewrite

(13.5.1) as

|s〉 = (sin θ) |w〉+ (cos θ) |u〉 . (13.5.2)

Let’s look at what happens if we expand D using (13.5.2):

D = 2 |s〉 〈s| − I
= 2 ((sin θ) |w〉+ (cos θ) |u〉) ((sin θ) 〈w|+ (cos θ) 〈u|)− I
= (2 sin2 θ − 1) |w〉 〈w|+ (2 sin θ cos θ) |w〉 〈u|+ (2 sin θ cos θ) |u〉 〈w|+ (2 cos2 θ − 1) |u〉 〈u|
= (− cos 2θ) |w〉 〈w|+ (sin 2θ) |w〉 〈u|+ (sin 2θ) |u〉 〈w|+ (cos 2θ) |u〉 〈u|

=
[
− cos 2θ sin 2θ
sin 2θ cos 2θ

]
,

where the matrix is over the basis (|w〉 , |u〉).
Multiplying by Uw negates all the |w〉 coefficients. So we get

UwD =
[
−1 0
0 1

] [
− cos 2θ sin 2θ
sin 2θ cos 2θ

]

=
[
cos 2θ − sin 2θ
sin 2θ cos 2θ

]
. (13.5.3)

Aficianados of computer graphics, robotics, or just matrix algebra in
general may recognize (13.5.3) as the matrix that rotates two-dimensional
vectors by 2θ. Since we started with |s〉 at an angle of θ, after t applications
of this matrix we will be at an angle of (2t+ 1)θ, or in state

(sin(2t+ 1)θ) |w〉+ (cos(2t+ 1)θ) |u〉 .

Ideally, we pick t so that (2t + 1)θ = π/2, which would put all of the
amplitude on |w〉. Because t is an integer, we can’t do this exactly, but
setting t =

⌊
π/2θ−1

2

⌋
will get us somewhere between π/2−2θ and π/2. Since

θ ≈
√

1
N , this gives us a probability of seeing |w〉 in our final measurement

of 1−O(
√

1/N) after O(
√
N) iterations of UwD.

Sadly, this is as good as it gets. A lower bound of Bennet et al. [BBBV97]
shows that any quantum algorithm using Uw as the representation for f must
apply Uw Ω(

√
N) times to find w. So we get a quadratic speedup but not

the exponential speedup we’d need to solve NP-complete problems directly.

Appendix A

Assignments

Assignments are typically due Wednesdays at 17:00. Assignments may be
turned in by placing them in Rasmus Kyng’s mailbox in Arthur K. Watson
Hall.

A.1 Assignment 1: due Wednesday, 2013-01-30,
at 17:00

A.1.1 Bureaucratic part

Send me email! My address is aspnes@cs.yale.edu.
In your message, include:

1. Your name.

2. Your status: whether you are an undergraduate, grad student, auditor,
etc.

3. Anything else you’d like to say.

(You will not be graded on the bureaucratic part, but you should do it
anyway.)

A.1.2 Balls in bins

Throw m balls independently and uniformly at random into n bins labeled
1 . . . n. What is the expected number of positions i < n such that bin i and
bin i+ 1 are both empty?

199

mailto:aspnes@cs.yale.edu

APPENDIX A. ASSIGNMENTS 200

Solution

If we can figure out the probability that bins i and i + 1 are both empty
for some particular i, then by symmetry and linearity of expectation we can
just multiply by n− 1 to get the full answer.

For bins i and i+1 to be empty, every ball must choose another bin. This
occurs with probability (1− 2/n)m. The full answer is thus n(1− 2/n)m, or
approximately ne−2m/n when n is large.

A.1.3 A labeled graph

Suppose you are given a graph G = (V,E), where |V | = n, and you want to
assign labels to each vertex such that the sum of the labels of each vertex
and its neighbors modulo n+ 1 is nonzero. Consider the naïve randomized
algorithm that assigns a label in the range 0 . . . n to each vertex indepen-
dently and uniformly at random and then tries again if the resulting labeling
doesn’t work. Show that this algorithm will find a correct labeling in time
polynomial in n on average.

Solution

We’ll use the law of total probability. First observe that the probability that
a random labeling yields a zero sum for any single vertex and its neighbors
is exactly 1/(n + 1); the easiest way to see this is that after conditioning
on the values of the neighbors, there is only one value in n+ 1 that can be
assigned to the vertex itself to cause a failure. Now sum this probability
over all n vertices to get a probability of failure of at most n/(n + 1). It
follows that after n+1 attempts on average (each of which takes O(n3) time
to check all the neighborhood sums), the algorithm will find a good labeling,
giving a total expected time of O(n4).

A.1.4 Negative progress

An algorithm has the property that if it has already run for n steps, it runs
for an additional n+ 1 steps on average. Formally, let T ≥ 0 be the random
variable representing the running time of the algorithm, then

E [T | T ≥ n] = 2n+ 1. (A.1.1)

For each n ≥ 0, what is the conditional probability Pr [T = n | T ≥ n]
that the algorithm stops just after its n-th step?

APPENDIX A. ASSIGNMENTS 201

Solution

Expand (A.1.1) using the definition of conditional expectation to get

2n+ 1 =
∞∑
x=0

xPr [T = x | T ≥ n]

=
∞∑
x=0

x
Pr [T = x ∧ T ≥ n]

Pr [T ≥ n]

= 1
Pr [T ≥ n]

∞∑
x=n

xPr [T = x] ,

which we can rearrange to get
∞∑
x=n

xPr [T = x] = (2n+ 1) Pr [T ≥ n] , (A.1.2)

provided Pr [T ≥ n] is nonzero. We can justify this assumption by observing
that (a) it holds for n = 0, because T ≥ 0 always; and (b) if there is some
n > 0 such that Pr [T ≥ n] = 0, then E [T | T ≥ n− 1] = n−1, contradicting
(A.1.1).

Substituting n + 1 into (A.1.2) and subtracting from the original gives
the equation

nPr [T = n] =
∞∑
x=n

xPr [T = x]−
∞∑

x=n+1
xPr [T = x]

= (2n+ 1) Pr [T ≥ n]− (2n+ 3) Pr [T ≥ n+ 1]
= (2n+ 1) Pr [T = n] + (2n+ 1) Pr [T ≥ n+ 1]− (2n+ 3) Pr [T ≥ n+ 1]
= (2n+ 1) Pr [T = n]− 2 Pr [T ≥ n+ 1] .

Since we are looking for Pr [T = n | T ≥ n] = Pr [T = n] /Pr [T ≥ n],
having an equation involving Pr [T ≥ n+ 1] is a bit annoying. But we can
borrow a bit of Pr [T = n] from the other terms to make it work:

nPr [T = n] = (2n+ 1) Pr [T = n]− 2 Pr [T ≥ n+ 1]
= (2n+ 3) Pr [T = n]− 2 Pr [T = n]− 2 Pr [T ≥ n+ 1]
= (2n+ 3) Pr [T = n]− 2 Pr [T ≥ n] .

A little bit of algebra turns this into

Pr [T = n | T ≥ n] = Pr [T = n]
Pr [T ≥ n] = 2

n+ 3 .

APPENDIX A. ASSIGNMENTS 202

A.2 Assignment 2: due Thursday, 2013-02-14, at
17:00

A.2.1 A local load-balancing algorithm

Suppose that we are trying to balance n jobs evenly between two machines.
Job 1 chooses the left or right machine with equal probability. For i > 1,
job i chooses the same machine as job i− 1 with probability p, and chooses
the other machine with probability 1−p. This process continues until every
job chooses a machine. We want to estimate how imbalanced the jobs are
at the end of this process.

Let Xi be +1 if the i-th job chooses the left machine and −1 if it chooses
the right. Then S =

∑n
i=1Xi is the difference between the number of jobs

that choose the left machine and the number that choose the right. By
symmetry, the expectation of S is zero. What is the variance of S as a
function of p and n?

Solution

To compute the variance, we’ll use (5.1.4), which says that Var [
∑
iXi] =∑

i Var [Xi] + 2
∑
i<j Cov(Xi, Xj).

Recall that Cov(Xi, Xj) = E [XiXj]− E [Xi] E [Xj]. Since the last term
is 0 (symmetry again), we just need to figure out E [XiXj] for all i ≤ j (the
i = j case gets us Var [Xi]).

First, let’s compute E [Xj = 1 | Xi = 1]. It’s easiest to do this starting
with the j = i case: E [Xi | Xi = 1] = 1. For larger j, compute

E [Xj | Xj−1] = pXj−1 + (1− p)(−Xj−1)
= (2p− 1)Xj−1.

It follows that

E [Xj | Xi = 1] = E [(2p− 1)Xj−1 | Xi = 1]
= (2p− 1) E [Xj−1 | Xi = 1] . (A.2.1)

The solution to this recurrence is E [Xj | Xi = 1] = (2p− 1)j−i.

APPENDIX A. ASSIGNMENTS 203

We next have

Cov(Xi, Xj) = E [XiXj]
= E [XiXj | Xi = 1] Pr [Xi = 1] + E [XiXj | Xi = −1] Pr [Xi = −1]

= 1
2 E [Xj | Xi = 1] + 1

2 E [−Xj | Xi = −1]

= 1
2 E [Xj | Xi = 1] + 1

2 E [Xj | Xi = 1]

= E [Xj | Xi = 1]
= (2p− 1)j−i

as calculated in (A.2.1).
So now we just need to evaluate the horrible sum.

∑
i

Var [Xi] + 2
∑
i<j

Cov(Xi, Xj) = n+ 2
n∑
i=1

n∑
j=i+1

(2p− 1)j−i

= n+ 2
n∑
i=1

n−i∑
k=1

(2p− 1)k

= n+ 2
n∑
i=1

(2p− 1)− (2p− 1)n−i+1

1− (2p− 1)

= n+ n(2p− 1)
1− p − 1

1− p

n∑
m=1

(2p− 1)m

= n+ n(2p− 1)
1− p − (2p− 1)− (2p− 1)n+1

2(1− p)2 .

(A.2.2)

This covers all but the p = 1 case, for which the geometric series formula
fails. Here we can compute directly that Var [S] = n2, since S will be ±n
with equal probability.

For smaller values of p, plotting (A.2.2) shows the variance increasing
smoothly starting at 0 (for even n) or 1 (for odd n) at p = 0 to n2 in the limit
as p goes to 1, with an interesting intermediate case of n at p = 1/2, where
all terms but the first vanish. This makes a certain intuitive sense: when
p = 0, the processes alternative which machine they take, which gives an
even split for even n and a discrepancy of ±1 for odd n; when p = 1/2, the
processes choose machines independently, giving variance n; and for p = 1,
the processes all choose the same machine, giving n2.

APPENDIX A. ASSIGNMENTS 204

A.2.2 An assignment problem

Here is an algorithm for placing n balls into n bins. For each ball, we first
select two bins uniformly at random without replacement. If at least one
of the chosen bins is unoccupied, the ball is placed in the empty bin at no
cost. If both chosen bins are occupied, we execute an expensive parallel scan
operation to find an empty bin and place the ball there.

1. Compute the exact value of the expected number of scan operations.

2. Let c > 0. Show that the absolute value of the difference between the
actual number of scan operations and the expected number is at most
O(
√
cn logn) with probability at least 1− n−c.

Solution

1. Number the balls 1 to n. For ball i, there are i− 1 bins already occu-
pied, giving a probability of

(
i−1
n

) (
i−2
n−1

)
that we choose an occupied

bin on both attempts and incur a scan. Summing over all i gives us
that the expected number of scans is:

n∑
i=1

(
i− 1
n

)(
i− 2
n− 1

)
= 1
n(n− 1)

n−1∑
i=1

(i2 − i)

= 1
n(n− 1)

((n− 1)n(2n− 1)
6 − (n− 1)n)

2

)
= (2n− 1)

6 − 1
2

n− 2
3 ,

provided n ≥ 2. For n < 2, we incur no scans.

2. Here we want a concentration bound on a sum of independent 0–1
variables, so the natural choice is to use Chernoff bounds.
Let S be the number of scans. We’ve already calculated µ = n−2

3 =
Θ(n). Let ε = n−c, and observe that for sufficiently large n, ε =
n−c � 2e−µ/3. So we can apply Lemma 5.2.1 to get that S is within
O(
√
µ log(1/n−c) = O(

√
cn logn) of its mean with probability at least

1− n−c.

APPENDIX A. ASSIGNMENTS 205

A.2.3 Detecting excessive collusion

Suppose you have n students in some unnamed Ivy League university’s In-
troduction to Congress class, and each generates a random ±1 vote, with
both outcomes having equal probability. It is expected that members of the
same final club will vote together, so it may be that many groups of up to k
students each will all vote the same way (flipping a single coin to determine
the vote of all students in the group, with the coins for different groups
being independent). However, there may also be a much larger conspiracy
of exactly m students who all vote the same way (again based on a single
independent fair coin), in violation of academic honesty regulations.

Let c > 0. How large must m be in asymptotic terms as a function of
n, k, and c so that the existence of a conspiracy can be detected solely by
looking at the total vote, where the probability of error (either incorrectly
claiming a conspiracy when none exists or incorrectly claiming no conspiracy
when one exists) is at most n−c?

Solution

Let S be the total vote. The intuition here is that if there is no conspiracy,
S is concentrated around 0, and if there is a conspiracy, S is concentrated
around ±m. So if m is sufficiently large and |S| ≥ m/2, we can reasonably
guess that there is a conspiracy.

We need to prove two bounds: first, that the probability that we see |S| ≥
m/2 when there is no conspiracy is small, and second, that the probability
that we see |S| < m/2 when there is a conspiracy is large.

For the first case, let Xi be the total vote cast by the i-th group. This
will be ±ni with equal probability, where ni ≤ k is the size of the group.
This gives E [Xi] = 0. We also have that

∑
ni = n.

Because theXi are all bounded, we can use Hoeffding’s inequality (5.3.1),
so long as we can compute an upper bound on

∑
n2
i . Here we use the fact

that
∑
n2
i is maximized subject to 0 ≤ ni ≤ k and

∑
ni = 0 by setting as

many ni as possible to k; this follows from convexity of x 7→ x2.1 We thus
1The easy way to see this is that if f is strictly convex, then f ′ is increasing. So if

0 < ni ≤ nj < k, increasing nj by ε while decreasing ni by ε leaves
∑

ni unchanged while
increasing

∑
f(ni) by ε(f ′(nj) − f ′(ni)) + O(ε2), which will be positive when ε is small

enough. So at any global maximum, we must have that at least one of ni or nj equals 0
or k for any i 6= j.

APPENDIX A. ASSIGNMENTS 206

have ∑
n2
i ≤ bn/kc k2 + (n mod k)2

≤ bn/kc k2 + (n mod k)k
≤ (n/k)k2

= nk.

Now apply Hoeffding’s inequality to get

Pr [|S| ≥ m/2] ≤ 2e−(m/2)2/2nk.

We want to set m so that the right-hand side is less than n−c. Taking
logs as usual gives

ln 2−m2/8nk ≤ −c lnn,

so the desired bound holds when

m ≥
√

8nk(c lnn+ ln 2)

= Ω(
√
ckn logn).

For the second case, repeat the above analysis on the n−m votes except
the ±m from the conspiracy. Again we get that if m = Ω(

√
ckn logn), the

probability that these votes exceed m/2 is bounded by n−c. So in both cases
m = Ω(

√
ckn logn) is enough.

A.3 Assignment 3: due Wednesday, 2013-02-27,
at 17:00

A.3.1 Going bowling

For your crimes, you are sentenced to play n frames of bowling, a game
that involves knocking down pins with a heavy ball, which we are mostly
interested in because of its complicated scoring system.

In each frame, your result may be any of the integers 0 through 9, a
spare (marked as /), or a strike (marked as X). We can think of your
result on the i-th frame as a random variable Xi. Each result gives a base
score Bi, which is equal to Xi when Xi ∈ {0 . . . 9} and 10 when Xi ∈ {/, X}.

APPENDIX A. ASSIGNMENTS 207

The actual score Yi for frame i is the sum of the base scores for the frame
and up to two subsequent frames, according to the rule:

Yi =

Bi when Xi ∈ {0 . . . 9},
Bi +Bi+1 when Xi = /, and
Bi +Bi+1 +Bi+2 when Xi = X.

To ensure that Bi+2 makes sense even for i = n, assume that there exist
random variables Xn+1 and Xn+2 and the corresponding Bn+1 and Bn+2.

Suppose that the Xi are independent (but not necessarily identically
distributed). Show that your final score S =

∑n
i=1 Yi is exponentially con-

centrated2 around its expected value.

Solution

This is a job for McDiarmid’s inequality (5.3.10). Observe that S is a func-
tion of X1 . . . Xn+2. We need to show that changing any one of the Xi won’t
change this function by too much.

From the description of the Yi, we have that Xi can affect any of Yi−2
(if Xi−2 = X), Yi−1 (if Xi−1 = /) and Yi. We can get a crude bound by
observing that each Yi ranges from 0 to 30, so changing Xi can change∑
Yi by at most ±90, giving ci ≤ 90. A better bound can be obtained by

observing that Xi contributes only Bi to each of Yi−2 and Yi−1, so changing
Xi can only change these values by up to 10; this gives ci ≤ 50. An even
more pedantic bound can be obtained by observing that X1, X2, Xn+1, and
Xn+2 are all special cases, with c1 = 30, c2 = 40, cn+1 = 20, and cn+2 = 10,
respectively; these values can be obtained by detailed meditation on the
rules above.

We thus have
∑n+2
i=1 c

2
i = (n− 2)502 + 302 + 402 + 202 + 102 = 2500(n−

2) + 3000 = 2500n− 2000, assuming n ≥ 2. This gives Pr [|S − E [S]| ≥ t] ≤
exp(−2t2/(2500n− 2000)), with the symmetric bound holding on the other
side as well.

For the standard game of bowling, with n = 10, this bound starts to bite
at t =

√
11500 ≈ 107, which is more than a third of the range between the

minimum and maximum possible scores. There’s a lot of variance in bowling,
but this looks like a pretty loose bound for players who don’t throw a lot
of strikes. For large n, we get the usual bound of O

(√
n logn

)
with high

probability: the averaging power of endless repetition eventually overcomes
any slop in the constants.

2This means “more concentrated than you can show using Chebyshev’s inequality.”

APPENDIX A. ASSIGNMENTS 208

A.3.2 Unbalanced treaps

Recall that a treap (§6.3) is only likely to be balanced if the sequence of
insert and delete operations applied to it is independent of the priorities
chosen by the algorithm.

Suppose that we insert the keys 1 through n into a treap with ran-
dom priorities as usual, but then allow the adversary to selectively delete
whichever keys it wants to after observing the priorities assigned to each
key.

Show that there is an adversary strategy that produces a path in the
treap after deletions that has expected length Ω (

√
n).

Solution

An easy way to do this is to produce a tree that consists of a single path,
which we can do by arranging that the remaining keys have priorities that
are ordered the same as their key values.

Here’s a simple strategy that works. Divide the keys into
√
n ranges of√

n keys each (1 . . .
√
n,
√
n+ 1 . . . 2

√
n, etc.).3 Rank the priorities from 1

to n. From each range (i−1)
√
n . . . i

√
n, choose a key to keep whose priority

is also ranked in the range (i − 1)
√
n . . . i

√
n (if there is one), or choose no

key (if there isn’t). Delete all the other keys.
For a particular range, we are drawing

√
n samples without replacement

from the n priorities, and there are
√
n possible choices that cause us to keep

a key in that range. The probability that every draw misses is
∏√n
i=1(1 −√

n/(n− i+ 1)) ≤ (1− 1/
√
n)
√
n ≤ e−1. So each range contributes at least

1 − e−1 keys on average. Summing over all
√
n ranges gives a sequence of

keys with increasing priorities with expected length at least (1− e−1)
√
n =

Ω (
√
n).

An alternative solution is to apply theErdős-Szekeres theorem [ES35],
which says that every sequence of length k2 +1 has either an increasing sub-
sequence of length k + 1 or a decreasing sequence of k + 1. Consider the
sequence of priorities corresponding to the keys 1 . . . n; letting k =

⌊√
n− 1

⌋
gives a subsequence of length at least

√
n− 1 that is either increasing or

decreasing. If we delete all other elements of the treap, the elements cor-
responding to this subsequence will form a path, giving the desired bound.
Note that this does not require any probabilistic reasoning at all.

3To make our life easer, we’ll assume that n is a square. This doesn’t affect the
asymptotic result.

APPENDIX A. ASSIGNMENTS 209

Though not required for the problem, it’s possible to show that Θ(
√
n)

is the best possible bound here. The idea is that the number of possible
sequences of keys that correspond to a path of length k in a binary search
tree is exactly

(n
k

)
2k−1; the

(n
k

)
corresponds to choosing the keys in the path,

and the 2k−1 is because for each node except the last, it must contain either
the smallest or the largest of the remaining keys because of the binary search
tree property.

Since each such sequence will be a treap path only if the priorities are
decreasing (with probability 1/k!), the union bound says that the probability
of having any length-k paths is at most

(n
k

)
2k−1/k!. But(

n

k

)
2k−1/k! ≤ (2n)k

2(k!)2

≥ (2n)k

2(k/e)2k

= 1
2(2e2n/k2)k.

This is exponentially small for k �
√

2e2n, showing that with high proba-
bility all possible paths have length O(

√
n).

A.3.3 Random radix trees

A radix tree over an alphabet of size m is a tree data structure where each
node has up to m children, each corresponding to one of the letters in the
alphabet. A string is represented by a node at the end of a path whose
edges are labeled with the letters in the string in order. For example, in
Figure A.1, the string ab is stored at the node reached by following the a
edge out of the root, then the b edge out of this child.

The only nodes created in the radix tree are those corresponding to
stored keys or ancestors of stored keys.

Suppose you have a radix tree into which you have already inserted
n strings of length k from an alphabet of size m, generated uniformly at
random with replacement. What is the expected number of new nodes you
need to create to insert a new string of length k?

Solution

We need to create a new node for each prefix of the new string that is not
already represented in the tree.

APPENDIX A. ASSIGNMENTS 210

*
/ \

a / \ b
/ \

* *
/ \ \

a / \ b \ b
/ \ \

aa ab bb

Figure A.1: A radix tree, storing the strings aa, ab, and ba.

For a prefix of length `, the chance that none of the n strings have this
prefix is exactly

(
1−m−`

)n
. Summing over all ` gives that the expected

number of new nodes is
∑k
`=0

(
1−m−`

)n
.

There is no particularly clean expression for this, but we can observe
that (1−m−`)n ≤ exp(−nm−`) is close to zero for ` < logm n and close to 1
for ` > logm n. This suggests that the expected value is k − logm n+O(1).

A.4 Assignment 4: due Wednesday, 2013-03-27,
at 17:00

A.4.1 Flajolet-Martin sketches with deletion

A Flajolet-Martin sketch [FNM85] is a streaming data structure for ap-
proximately counting the number of distinct items n in a large data stream
using only m = O(logn) bits of storage.4 The idea is to use a hash
function h that generates each value i ∈ {1, . . .m} with probability 2−i,
and for each element x that arrives in the data stream, we write a 1 to
A[h(x)]. (With probability 2−m we get a value outside this range and write
nowhere.) After inserting n distinct elements, we estimate n as n̂ = 2k̂,
where k̂ = max {k | A[k] = 1}, and argue that this is likely to be reasonably
close to n.

Suppose that we modify the Flajolet-Martin sketch to allow an element
x to be deleted by writing 0 to A[h(x)]. After n insertions and d deletions

4If you actually need to do this, there exist better data structures for this problem.
See [KNW10].

APPENDIX A. ASSIGNMENTS 211

(of distinct elements in both cases), we estimate the number of remaining
elements n− d as before by n̂− d = 2k̂, where k̂ = max {k | A[k] = 1}.

Assume that we never delete an element that has not previously been
inserted, and that the values of h are for different inputs are independent of
each other and of the sequence of insertions and deletions.

Show that there exist constants c > 1 and ε > 0, such that for n suf-
ficiently large, after inserting n distinct elements then deleting d ≤ εn of
them, Pr

[
(n− d)/c ≤ n̂− d ≤ (n− d)c

]
≥ 2/3.

Solution

We’ll apply the usual error budget approach and show that the probability
that n̂− d is too big and the probability that n̂− d is too small are both
small. For the moment, we will leave c and ε as variables, and find values
that work at the end.

Let’s start with the too-big side. To get A[k] = 1, we need h(xi) = k
for some xi that is inserted but not subsequently deleted. There are n − d
such xi, and each gives h(xi) = k with probability 2−k. So Pr [A[k] = 1] ≤
(n− d)2−k. This gives

Pr
[
n̂− d ≥ (n− d)c

]
= Pr

[
k̂ ≥ dlg ((n− d)c)e

]
≤

∞∑
k=dlg((n−d)c)e

(n− d)2−k

= 2(n− d)2−dlg((n−d)c)e

≤ 2
c
.

On the too-small side, fix k = dlg ((n− d)/c))e. Since A[k] = 1 gives k̂ ≥
k ≥ dlg ((n− d)/c))e, we have Pr

[
n̂− d < (n− d)/c

]
= Pr

[
k̂ < lg(n− d)/c

]
≤

Pr [A[k] = 0]. (We might be able to get a better bound by looking at larger
indices, but to solve the problem this one k will turn out to be enough.)

Let x1 . . . xn−d be the values that are inserted and not later deleted, and
xn−d+1 . . . xn the values that are inserted and then deleted. For A[k] to be
zero, either (a) no xi for i in 1 . . . xn−d has h(xi) = k; or (b) some xi for
i in n − d + 1 . . . xn has h(xi) = k. The probability of the first event is

APPENDIX A. ASSIGNMENTS 212

(
1− 2−k

)n−d
; the probability of the second is 1−

(
1− 2−k

)d
. So we have

Pr [A[k] = 0] ≤
(
1− 2−k

)n−d
+
(

1−
(
1− 2−k

)d)
≤ exp

(
−2−k(n− d)

)
+
(
1− exp

(
−
(
2−k + 2−2k

)
d
))

≤ exp
(
−2−dlg((n−d)/c))e(n− d)

)
+
(
1− exp

(
−2 · 2−dlg((n−d)/c))ed

))
≤ exp

(
−2− lg((n−d)/c))(n− d)

)
+
(
1− exp

(
−2 · 2− lg((n−d)/c))+1d

))
= e−c +

(
1− exp

(
− 4cd
n− d

))
≤ e−c + 4cd

n− d

≤ e−c + 4cε
1− ε .

So our total probability of error is bounded by 2
c + e−c + 4cε

1−ε . Let c = 8
and ε = 1/128 to make this less than 1

4 + e−8 + 128
127 ·

1
16 ≈ 0.313328 < 1/3,

giving the desired bound.

A.4.2 An adaptive hash table

Suppose we want to build a hash table, but we don’t know how many el-
ements we are going to put in it, and because we allow undisciplined C
programmers to obtain pointers directly to our hash table entries, we can’t
move an element once we assign it a position to it. Here we will consider a
data structure that attempts to solve this problem.

Construct a sequence of tables T0, T1, . . . , where each Ti has mi = 22i

slots. For each table Ti, choose k independent strongly 2-universal hash
functions hi1, hi2, . . . hik.

The insertion procedure is given in Algorithm A.1. The essentially idea
is that we make k attempts (each with a different hash function) to fit x
into T0, then k attempts to fit it in T1, and so on.

If the tables Ti are allocated only when needed, the space complexity of
this data structure is given by the sum of mi for all tables that have at least
one element.

Show that for any fixed ε > 0, there is a constant k such that after
inserting n elements:

1. The expected cost of an additional insertion is O(log logn), and

2. The expected space complexity is O
(
n2+ε).

APPENDIX A. ASSIGNMENTS 213

procedure insert(x)1
for i← 0 to ∞ do2

for j ← 1 to k do3
if Ti[hij(x)] = ⊥ then4

Ti[hij(x)]← x5
return6

Algorithm A.1: Adaptive hash table insertion

Solution

The idea is that we use Ti+1 only if we get a collision in Ti. Let Xi be the
indicator for the event that there is a collision in Ti. Then

E [steps] ≤ 1 +
∞∑
i=0

E [Xi] (A.4.1)

and

E [space] ≤ m0 +
∞∑
i=0

E [Xi]mi+1. (A.4.2)

To bound E [Xi], let’s calculate an upper bound on the probability that
a newly-inserted element xn+1 collides with any of the previous n elements
x1 . . . xn in table Ti. This occurs if, for every location hij(xn+1), there is
some xr and some j′ such that hij′(xr) = hij(xn+1). The chance that this
occurs for any particular j, j′, and r is at most 1/mi (if j = j′, use 2-
universality of hij , and if j 6= j′, use independence and uniformity), giving
a chance that it occurs for fixed j that is at most n/mi. The chance that
it occurs for all j is at most (n/mi)k, and the expected number of such
collisions summed over any n + 1 elements that we insert is bounded by
n(n/mi)k (the first element can’t collide with any previous elements). So
we have E [Xi] ≤ min

(
1, n(n/mi)k

)
.

Let ` be the largest value such that m` ≤ n2+ε. We will show that, for
an appropriate choice of k, we are sufficiently unlikely to get a collision in
round ` that the right-hand sides of (A.4.2) and (A.4.2) end up being not
much more than the corresponding sums up to `− 1.

From our choice of `, it follows that (a) ` ≤ lg lgn2+ε = lg lgn+lg(2+ε) =
O(log logn); and (b) m`+1 > n2+ε, giving m` = √m`+1 > n1+ε/2. From this
we get E [X`] ≤ n(n/m`)k < n1−kε/2.

APPENDIX A. ASSIGNMENTS 214

By choosing k large enough, we can make this an arbitrarily small poly-
nomial in n. Our goal is to wipe out the E [X`]m`+1 and subsequent terms
in (A.4.2).

Observe that E [Xi]mi+1 ≤ n(n/mi)km2
i = nk+1m2−k

i . Let’s choose k so
that this is at most 1/mi, when i ≥ `, so we get a nice convergent series.5
This requires nk+1m3−k

i ≤ 1 or k + 1 + (3 − k) lognmi ≤ 0. If i ≥ `, we
have lognmi > 1 + ε/2, so we win if k + 1 + (3 − k)(1 + ε/2) ≤ 0. Setting
k ≥ 8/ε + 3 works. (Since we want k to be an integer, we probably want
k = d8/εe+ 3 instead.)

So now we have

E [space] ≤ m0 +
∞∑
i=0

E [Xi]mi+1

≤
∑̀
i=0

mi +
∞∑
i=`

1
mi

≤ 2m` + 2
m`

= O(n2+ε).

For E [steps], compute the same sum without all the mi+1 factors. This
makes the tail terms even smaller, so they is still bounded by a constant,
and the head becomes just

∑`
i=0 1 = O(log logn).

A.4.3 An odd locality-sensitive hash function

A deranged computer scientist decides that if taking one bit from a random
index in a bit vector is a good way to do locality-sensitive hashing (see
§7.7.1.3), then taking the exclusive OR of k independently chosen indices
must be even better.

Formally, given a bit-vector x1x2 . . . xn, and a sequence of indices i1i2 . . . ik,
define hi(x) =

⊕k
j=1 xij . For example, if x = 00101 and i = 3, 5, 2,

hi(x) = 1⊕ 1⊕ 0 = 0.
Suppose x and y are bit-vectors of length n that differ in m places.

1. Give a closed-form expression for the probability that hi(x) 6= hi(y),
assuming i consists of k indices chosen uniformly and independently
at random from 1 . . . n

5We could pick a smaller k, but why not make things easier for ourselves?

APPENDIX A. ASSIGNMENTS 215

2. Use this to compute the exact probability that hi(x) 6= hi(y) when
m = 0, m = n/2, and m = n.

Hint: You may find it helpful to use the identity (a mod 2) = 1
2(1 −

(−1)a).

Solution

1. Observe that hi(x) 6= hi(y) if an only if i chooses an odd number of
indices where x and y differ. Let p = m/n be the probability that
each index in i hits a position where x and y differ, and let q = 1− p.
Then the event that we get an odd number of differences is
k∑
j=0

(j mod 2)
(
k

j

)
pjqk−j =

k∑
j=0

1
2
(
1− (−1)j

)(k
j

)
pjqk−j

= 1
2

k∑
j=0

(
k

j

)
pjqm−j − 1

2

k∑
j=0

(
k

j

)
(−p)jqm−j

= 1
2(p+ q)k − 1

2(−p+ q)k

= 1− (1− 2(m/n))k

2 .

2. • For m = 0, this is 1−1k
2 = 0.

• For m = n/2, it’s 1−0k
2 = 1

2 (assuming k > 0).

• For m = n, it’s 1−(−1)k
2 = (k mod 2).

In fact, the chances of not colliding as a function of m are symmetric
around m = n/2 if k is even and increasing if k is odd. So we can only hope
to use this as locality-sensitive hash function in the odd case.

A.5 Assignment 5: due Friday, 2013-04-12, at 17:00

A.5.1 Choosing a random direction

Consider the following algorithm for choosing a random direction in three
dimensions. Start at the point (X0, Y0, Z0) = (0, 0, 0). At each step, pick
one of the three coordinates uniformly at random and add ±1 to it with
equal probability. Continue until the resulting vector has length at least k,
i.e., until X2

t + Y 2
t + Z2

t ≥ k2. Return this vector.

APPENDIX A. ASSIGNMENTS 216

What is the expected running time of this algorithm, as an asymptotic
function of k?

Solution

The trick is to observe that X2
t + Y 2

t + Z2
t − t is a martingale, essentially

following the same analysis as for X2
t −t for a one-dimensional random walk.

Suppose we pick Xt to change. Then

E
[
X2
t+1

∣∣∣ Xt

]
= 1

2
(
(Xt + 1)2 + (Xt − 1)2

)
= X2

t + 1.

So

E
[
X2
t+1 + Y 2

t+1 + Z2
t+1 − (t+ 1)

∣∣∣ Xt, Yt, Zt, X changes
]

= X2
t + Y 2

t + Z2
t − t.

But by symmetry, the same equation holds if we condition on Y or Z chang-
ing. It follows that E

[
X2
t+1 + Y 2

t+1 + Z2
t+1 − (t+ 1)

∣∣ Xt, Yt, Zt
]

= X2
t +Y 2

t +
Z2
t − t, and that we have a martingale as claimed.
Let τ be the first time at which X2

t + Y 2
t + Z2

t ≤ k2. From the optional
stopping theorem (specifically, Corollary 8.3.3, the optional stopping theo-
rem for processes with bounded increments), E

[
X2
τ + Y 2

τ + Z2
τ − τ

]
= 0, or

equivelently E [τ] = E
[
X2
τ + Y 2

τ + Z2
τ

]
. This immediately gives E [τ] ≥ k2.

To get an upper bound, observe that X2
τ−1 +Y 2

τ−1 +Z2
τ−1 < k2, and that

exactly one of these three term increases between τ − 1 and τ . Suppose it’s
X (the other cases are symmetric). Increasing X by 1 sets X2

τ = X2
τ−1 +

2Xτ−1 + 1. So we get

X2
τ + Y 2

τ + Z2
τ =

(
X2
τ−1 + Y 2

τ−1 + Z2
τ−1

)
+ 2Xτ−1 + 1

< k2 + 2k + 1.

So we have k2 ≤ E [τ] < k2 +2k+1, giving E [τ] = Θ(k2). (Or k2 +O(k)
if we are feeling really precise.)

A.5.2 Random walk on a tree

Consider the following random walk on a (possibly unbalanced) binary
search tree: At each step, with probability 1/3 each, move to the current
node’s parent, left child, or right child. If the target node does not exist,
stay put.

APPENDIX A. ASSIGNMENTS 217

Suppose we adapt this random walk using Metropolis-Hastings (see §9.2.2.3)
so that the probability of each node at depth d in the stationary distribution
is proportional to α−d.

Use a coupling argument to show that, for any constant α > 2, this
adapted random walk converges in O(D) steps, where D is the depth of the
tree.

Solution

As usual, let Xt be a copy of the chain starting in an arbitrary initial state
and Yt be a copy starting in the stationary distribution.

From the Metropolis-Hastings algorithm, the probability that the walk
moves to a particular child is 1/3α, so the probability that the depth in-
creases after one step is at most 2/3α. The probability that the walk moves
to the parent (if we are not already at the root) is 1/3.

We’ll use the same choice (left, right, or parent) in both the X and
Y processes, but it may be that only one of the particles moves (because
the target node doesn’t exist). To show convergence, we’ll track Zt =
max(depth(Xt),depth(Yt)). When Zt = 0, both Xt and Yt are the root
node.

There are two ways that Zt can change:

1. Both processes choose “parent”; if Zt is not already 0, Zt+1 = Zt − 1.
This case occurs with probability 1/3.

2. Both processes choose one of the child directions. If the appropriate
child exists for the deeper process (or for either process if they are
at the same depth), we get Zt+1 = Zt + 1. This even occurs with
probability at most 2/3α < 1/3.

So the expected change in Zt+1 conditioned on Zt > 0 is at most −1/3+
2/3α = −(1/3)(2/α − 1). Let τ be the first time at which Zt = 0. Then
the process Z ′t = Zt − (1/3)(2/α − 1)t for t ≤ τ and 0 for t > τ is a
supermartingale, so E [Zτ] = E [Z0] = E [max(depth(X0),depth(Y0))] ≤ D.
This gives E [τ] ≤ 3D

2/α−1 .

A.5.3 Sampling from a tree

Suppose we want to sample from the stationary distribution of the Metropolis-
Hastings walk in the previous problem, but we don’t want to do an actual
random walk. Assuming α > 2 is a constant, give an algorithm for sampling
exactly from the stationary distribution that runs in constant expected time.

APPENDIX A. ASSIGNMENTS 218

Your algorithm should not require knowledge of the structure of the tree.
Its only input should be a pointer to the root node.

Clarification added 2013-04-09: Your algorithm can determine the chil-
dren of any node that it has already found. The idea of not knowing the
structure of the tree is that it can’t, for example, assume a known bound on
the depth, counts of the number of nodes in subtrees, etc., without searching
through the tree to find this information directly.

Solution

We’ll use rejection sampling. The idea is to choose a node in the infinite
binary tree with probability proportional to α−d, and then repeat the process
if we picked a node that doesn’t actually exist. Conditioned on finding a
node i that exists, its probability will be αdepth(x)∑

j
α− depth(j) .

If we think of a node in the infinite tree as indexed by a binary strength
of length equal to its depth, we can generate it by first choosing the length
X and then choosing the bits in the string. We want Pr [X = n] to be
proportional to 2nα−n = (2/α)n. Summing the geometric series gives

Pr [X = n] = (2/α)n

1− (2/α) .

This is a geometric distribution, so we can sample it by repeatedly flipping
a biased coin. The number of such coin-flips is O(X), as is the number of
random bits we need to generate and the number of tree nodes we need to
check. The expected value of X is given by the infinite series

∞∑
n=0

(2/α)nn
1− (2/α) ;

this series converges to some constant by the ratio test.
So each probe costs O(1) time on average, and has at least a constant

probability of success, since we choose the root with Pr [X = 0] = 1
1−2/α .

Using Wald’s equation (8.4.1), the total expected time to run the algorithm
is O(1).

This is a little surprising, since the output of the algorithm may have
more than constant length. But we are interested in expectation, and when
α > 2 most of the weight lands near the top of the tree.

APPENDIX A. ASSIGNMENTS 219

A.6 Assignment 6: due Friday, 2013-04-26, at 17:00

A.6.1 Increasing subsequences

Let S1, . . . , Sm be sets of indices in the range 1 . . . n. Say that a permutation
π of 1 . . . n is increasing on Sj if π(i1) < π(i2) < · · · < π(ikj) where i1 <
i2 < · · · < ikj are the elements of Sj .

Given a fully polynomial-time randomized approximation scheme that
takes as input n and a sequence of sets S1, . . . , Sm, and approximates the
number of permutations π that are increasing on at least one of the Sj .

Solution

This can be solved using a fairly straightforward application of Karp-Luby [KL85]
(see §10.3). Recall that for Karp-Luby we need to be able to express our
target set U as the union of a polynomial number of covering sets Uj , where
we can both compute the size of each Uj and sample uniformly from it.
We can then estimate |U | =

∑
j,x∈Uj f(j, x) =

(∑
j |Uj |

)
Pr [f(j, x) = 1]

where f(j, x) is the indicator for the event that x 6∈ Uj′ for any j′ < j
and in the probability, the pair (j, x) is chosen uniformly at random from
{(j, x) | x ∈ Uj}.

In this case, let Uj be the set of all permutations that are increasing on
Sj . We can specify each such permutation by specifying the choice of which
kj = |Sj | elements are in positions i1 . . . ikj (the order of these elements
is determined by the requirement that the permutation be increasing on
Sj) and specifying the order of the remaining n − kj elements. This gives(n
kj

)
(n−kj)! = (n)n−kj such permutations. Begin by computing these counts

for all Sj , as well as their sum.
We now wish to sample uniformly from pairs (j, π) where each π is an

element of Sj . First sample each j with probability |Sj | /
∑
` |S`|, using the

counts we’ve already computed. Sampling a permutation uniformly from Sj
mirrors the counting argument: choose a kj-subset for the positions in Sj ,
then order the remaining elements randomly. The entire sampling step can
easily be done in O(n+m) time.

Computing f(j, π) requires testing π to see if it is increasing for any
Sj′ for j < j′; without doing anything particularly intelligent, this takes
O(nm) time. So we can construct and test one sample in O(nm) time.
Since each sample has at least a ρ = 1/m chance of having f(j, π) = 1, from
Lemma 10.2.1 we need O

(
1
ε2ρ log 1

δ

)
= O

(
mε−2 log 1

δ

)
samples to get rela-

tive error with probability at least 1−δ, for a total cost of O
(
m2nε−2 log 1

δ

)
.

APPENDIX A. ASSIGNMENTS 220

bacab bacab
ccaac ccaac
bbbac babac
bbaaa bbaaa
acbab acbab

Figure A.2: Non-futile (left) and futile (right) word search grids for the
lexicon {aabc, ccca}

A.6.2 Futile word searches

A word search puzzle consists of an n × n grid of letters from some
alphabet Σ, where the goal is to find contiguous sequences of letters in one
of the eight orthogonal or diagonal directions that form words from some
lexicon. For example, in Figure A.2, the left grid contains an instance of
aabc (running up and left from the rightmost a character on the last line),
while the right grid contains no instances of this word.

For this problem, you are asked to build an algorithm for constructing
word search puzzles with no solution for a given lexicon. That is, given a set
of words S over some alphabet and a grid size n, the output should be an
n×n grid of letters such that no word in S appears as a contiguous sequence
of letters in one of the eight directions anywhere in the grid. We will refer
to such puzzles as futile word search puzzles.

1. Suppose the maximum length of any word in S is k. Let pS be the
probability that some word in S is a prefix of an infinite string gen-
erated by picking letters uniformly and independently from Σ. Show
that there is a constant c > 0 such that for any k, Σ, and S, pS < ck−2

implies that there exists, for all n, an n× n futile word search puzzle
for S using only letters from Σ.

2. Give an algorithm that constructs a futile word search puzzle given S
and n in expected time polynomial in |S|, k, and n, provided pS < ck−2

as above.

Solution

1. We’ll apply the symmetric version of the Lovász local lemma. Sup-
pose the grid is filled in independently and uniformly at random with
characters from Σ. Given a position ij in the grid, let Aij be the

APPENDIX A. ASSIGNMENTS 221

event that there exists a word in S whose first character is at posi-
tion ij; observe that Pr [Aij] ≤ 8pS by the union bound (this may
be an overestimate, both because we might run off the grid in some
directions and because the choice of initial character is not indepen-
dent). Observe also that Aij is independent of any event Ai′j′ where
|i− i′| ≥ 2k− 1 or |j − j′| ≥ 2k− 1, because no two words starting at
these positions can overlap. So we can build a dependency graph with
p ≤ 8pS and d ≤ (4k − 3)2. The Lovász local lemma shows that there
exists an assignment where no Aij occurs provided ep(d + 1) < 1 or
8epS((4k − 3)2 + 1) < 1. This easily holds if pS < 1

8e(4k2) = 1
128ek

−2.

2. For this part, we can just use Moser-Tardos [MT10], particularly the
symmetric version described in Corollary 11.3.4. We have a collection
of m = O(n2) bad events, with d = Θ(k2), so the expected number of
resamplings is bounded bym/d = O(n2/k2). Each resampling requires
checking every position in the new grid for an occurrence of some string
in S; this takes O(n2k · |S|) time per resampling even if we are not
very clever about it. So the total expected cost is O(n4 · |S| /k).
With some more intelligence, this can be improved. We don’t need to
recheck any position at distance greater than k from any of the at most
k letters we resample, and if we are sensible, we can store S using a
radix tree or some similar data structure that allows us to look up all
words that appear as a prefix of a given length-k string in time O(k).
This reduces the cost of each resampling to O(k3), with an additive
cost of O(k · |S|) to initialize the data structure. So the total expected
cost is now O(n2k + |S|).

A.6.3 Balance of power

Suppose you are given a set of n MMORPG players, and a sequence of
subsets S1, S2, . . . , Sm of this set, where each subset Si gives the players
who will participate in some raid. Before any of the raids take place, you
are to assign each player permanently to one of three factions. If for any i,
|Si| /2 or more of the players are in the same faction, then instead of carrying
out the raid they will overwhelm and rob the other participants.

Give a randomized algorithm for computing a faction assignment that
prevents this tragedy from occurring (for all i) and thus allows all m raids to
be completed without incident, assuming that m > 1 and mini |Si| ≥ c lnm
for some constant c > 0 that does not depend on n or m. Your algorithm
should run in expected time polynomial in n and m.

APPENDIX A. ASSIGNMENTS 222

Solution

Assign each player randomly to a faction. Let Xij be the number of players
in Si that are assigned to faction j. Then E [Xij] = |Si| /3. Applying the
Chernoff bound (5.2.2), we have

Pr [Xij ≥ |Si| /2] = Pr
[
Xij ≥

(
1 + 1

2

)
E [Xij]

]
≤ exp

(
− (|Si| /3)

(1
2

)2
/3
)

= e−|Si|/36.

Let c = 3 · 36 = 108. Then if mini |Si| ≥ c lnm, for each i, j, it holds
that Pr [Xij ≥ |Si| /2] ≤ e−3 lnm = m−3. So the probability that this bound
is exceeded for any i and j is at most (3m)m−2 = 3/m2. So a random
assignment works with at least 1/4 probability for m > 1.

We can generate and test each assignment in O(nm) time. So our ex-
pected time is O(nm).

A.7 Final exam
Write your answers in the blue book(s). Justify your answers. Work alone.
Do not use any notes or books.

There are four problems on this exam, each worth 20 points, for a total
of 80 points. You have approximately three hours to complete this exam.

A.7.1 Dominating sets

A dominating set in a graph is a subset S of the vertices for which every
vertex v is either in S or adjacent to a vertex in S.

Show that for any graph G, there is an aperiodic, irreducible Markov
chain on the dominating sets of G, such that (a) the transition rule for
the chain can be implemented in polynomial time; and (b) the stationary
distribution of the chain is uniform. (You do not need to say anything about
the convergence rate of this chain.)

Solution

Suppose we are have state St at time t. We will use a random walk where
we choose a vertex uniformly at random to add to or remove from St, and
carry out the action only if the resulting set is still a dominating set.

APPENDIX A. ASSIGNMENTS 223

In more detail: For each vertex v, with probability 1/n, St+1 = St ∪ {v}
if v 6∈ St, St+1 = St \ {v} if v ∈ St and St \ {v} is a dominating set, and
St+1 = St otherwise. To implement this transition rule, we need to be able
to choose a vertex v uniformly at random (easy) and test in the case where
v ∈ St if St \{v} is a dominating set (also polynomial: for each vertex, check
if it or one of its neighbors is in St \ {v}, which takes time O(|V | + |E|)).
Note that we do not need to check if St ∪ {v} is a dominating set.

For any pair of adjacent states S and S′ = S \ {v} the probability of
moving from S to S′ and the probability of moving from S′ to S are both 1/n.
So the Markov chain is reversible with a uniform stationary distribution.

This is an aperiodic chain, because there exist minimal dominating sets
for which there is a nonzero chance that St+1 = St.

It is irreducible, because for any dominating set S, there is a path to
the complete set of vertices V by adding each vertex in V \S one at a time.
Conversely, removing these vertices from V gives a path to S. This gives a
path S V T between any two dominating sets S and T .

A.7.2 Tricolor triangles

Suppose you wish to count the number of assignments of colors {r, g, b} to
nodes of a graph G that have the property that some triangle in G contains
all three colors. For example, the four-vertex graph shown below is labeled
with one of 18 such colorings (6 permutations of the colors of the triangle
nodes times 3 unconstrained choices for the degree-1 node).

r

b

g r

Give a fully polynomial-time randomized approximation scheme for this
problem.

Solution

Though it is possible, and tempting, to go after this using Karp-Luby (see
§10.3), naive sampling is enough.

If a graph has at least one triangle (which can be checked in O(n3)
time just by enumerating all possible triangles), then the probability that
that particular triangle is tricolored when colors are chosen uniformly and

APPENDIX A. ASSIGNMENTS 224

independently at random is 6/27 = 2/9. This gives a constant hit rate
ρ, so by Lemma 10.2.1, we can get ε relative error with 1 − δ probabil-
ity using O

(
1
ε2 log 1

δ

)
samples. Each sample costs O(n3) time to evaluate

(again, brute-force checking of all possible triangles), for a total cost of
O
(
n3ε−2 log 1

δ

)
.

A.7.3 The n rooks problem

The n rooks problem requires marking as large a subset as possible of the
squares in an n× n grid, so that no two squares in the same row or column
are marked.6

Consider the following randomized algorithm that attempts to solve this
problem:

1. Give each of the n2 squares a distinct label using a uniformly chosen
random permutation of the integers 1 . . . n2.

2. Mark any square whose label is larger than any other label in its row
and column.

What is the expected number of marked squares?

Solution

Each square is marked if it is the largest of the 2n − 1 total squares in its
row and column. By symmetry, each of these 2n−1 squares is equally likely
to be the largest, so the probability that a particular square is marked is
exactly 1

2n−1 . By linearity of expectation, the total expected number of
marked squares is then n2

2n−1 .

A.7.4 Pursuing an invisible target on a ring

Suppose that you start at position 0 on a ring of size 2n, while a target
particle starts at position n. At each step, starting at position i, you can
choose whether to move to any of positions i − 1, i, or i + 1. At the same
time, the target moves from its position j to either j− 1 or j+ 1 with equal
probability, independent of its previous moves or your moves. Aside from
knowing that the target starts at n at time 0, you cannot tell where the
target moves.

6This is not actually a hard problem.

APPENDIX A. ASSIGNMENTS 225

Your goal is to end up on the same node as the target after some step.7
Give an algorithm for choosing your moves such that, for any c > 0, you
encounter the target in at most 2n steps with probability at least 1 − n−c
for sufficiently large n.

Solution

The basic idea is to just go through positions 0, 1, 2, . . . until we encounter
the target, but we have to be a little careful about parity to make sure we
don’t pass it by accident.8

Let Xi = ±1 be the increment of the target’s i-th move, and let Si =∑i
j=1Xj , so that its position after i steps is n+ Si mod 2n.
Let Yi be the position of the pursuer after i steps.
First move: stay at 0 if n is odd, move to 1 if n is even. The purpose of

this is to establish the invariant that n + Si − Yi is even starting at i = 1.
For subsequent moves, let Yi+1 = Yi + 1. Observe that this maintains the
invariant.

We assume that n is at least 2. This is necessary to ensure that at time
1, Y1 ≤ n+ S1.

Claim: if at time 2n, Y2n ≥ n+S2n, then at some time i ≤ 2n, Yi = n+Si.
Proof: Let i be the first time at which Yi ≥ n + Si; under the assumption
that n ≥ 2, i ≥ 1. So from the invariant, we can’t have Yi = n + Si + 1,
and if Yi ≥ n + Si + 2, we have Yi−1 ≥ Yi − 1 ≥ n + Si + 1 ≥ n + Si−1,
contradicting our assumption that i is minimal. The remaining alternative
is that Yi = n+ Si, giving a collision at time i.

We now argue that Y2n ≥ n−1 is very likely to be at least n+S2n. Since
S2n is a sum of 2n independent ±1 variables, from Hoeffding’s inequality we

7Note that you must be in the same place at the end of the step: if you move from 1
to 2 while the target moves from 2 to 1, that doesn’t count.

8This is not the only possible algorithm, but there are a lot of plausible-looking algo-
rithms that turn out not to work. One particularly tempting approach is to run to position
n using the first n steps and then spend the next n steps trying to hit the target in the
immediate neighborhood of n, either by staying put (a sensible strategy when lost in the
woods in real life, assuming somebody is looking for you), or moving in a random walk of
some sort starting at n. This doesn’t work if we want a high-probability bound. To see
this, observe that the target has a small but nonzero constant probability in the limit of be-
gin at some position greater than or equal to n+4

√
n after exactly n/2 steps. Conditioned

on starting at n+ 4
√
n or above, its chances of moving below n+ 4

√
n− 2

√
n = n+ 2

√
n

at any time in the next 3n/2 steps is bounded by e−4n/2(3n/2) = e−4/3 (Azuma), and a
similar bound holds independently for our chances of getting up to n + 2

√
n or above.

Multiplying out all these constants gives a constant probability of failure. A similar but
bigger disaster occurs if we don’t rush to n first.

APPENDIX A. ASSIGNMENTS 226

have Pr [Yn < n+ S2n] ≤ Pr [S2n ≥ n] ≤ e−n
2/4n = e−n/4. For sufficiently

large n, this is much smaller than n−c for any fixed c.

Appendix B

Sample assignments from
Spring 2009

B.1 Final exam, Spring 2009
Write your answers in the blue book(s). Justify your answers. Work alone.
Do not use any notes or books.

There are four problems on this exam, each worth 20 points, for a total
of 80 points. You have approximately three hours to complete this exam.

B.1.1 Randomized mergesort (20 points)

Consider the following randomized version of the mergesort algorithm. We
take an unsorted list of n elements and split it into two lists by flipping an
independent fair coin for each element to decide which list to put it in. We
then recursively sort the two lists, and merge the resulting sorted lists. The
merge procedure involves repeatedly comparing the smallest element in each
of the two lists and removing the smaller element found, until one of the
lists is empty.

Compute the expected number of comparisons needed to perform this
final merge. (You do not need to consider the cost of performing the recursive
sorts.)

Solution

Color the elements in the final merged list red or blue based on which sublist
they came from. The only elements that do not require a comparison to
insert into the main list are those that are followed only by elements of the

227

APPENDIX B. SAMPLE ASSIGNMENTS FROM SPRING 2009 228

same color; the expected number of such elements is equal to the expected
length of the longest monochromatic suffix. By symmetry, this is the same as
the expected longest monochromatic prefix, which is equal to the expected
length of the longest sequence of identical coin-flips.

The probability of getting k identical coin-flips in a row followed by a
different coin-flip is exactly 2−k; the first coin-flip sets the color, the next k−1
must follow it (giving a factor of 2−k+1, and the last must be the opposite
color (giving an additional factor of 2−1). For n identical coin-flips, there is
a probability of 2−n+1, since we don’t need an extra coin-flip of the opposite
color. So the expected length is

∑n−1
k=1 k2−k + n2−n+1 =

∑n
k=0 k2−k + n2−n.

We can simplify the sum using generating functions. The sum
∑n
k=0 2−kzk

is given by 1−(z/2)n+1

1−z/2 . Taking the derivative with respect to z gives
∑n
k=0 2−kkzk−1 =

(1/2)1−(z/2)n+1

1−z/2
2

+ (1/2) (n+1)(z/2)n
1−z/2 . At z = 1 this is 2(1 − 2−n−1) − 2(n +

1)2−n = 2− (n+ 2)2−n. Adding the second term gives E [X] = 2− 2 · 2−n =
2− 2−n+1.

Note that this counts the expected number of elements for which we do
not have to do a comparison; with n elements total, this leaves n−2+2−n+1

comparisons on average.

B.1.2 A search problem (20 points)

Suppose you are searching a space by generating new instances of some
problem from old ones. Each instance is either good or bad; if you generate
a new instance from a good instance, the new instance is also good, and if
you generate a new instance from a bad instance, the new instance is also
bad.

Suppose that your start with X0 good instances and Y0 bad instances,
and that at each step you choose one of the instances you already have
uniformly at random to generate a new instance. What is the expected
number of good instances you have after n steps?

Hint: Consider the sequence of values {Xt/(Xt + Yt)}.

APPENDIX B. SAMPLE ASSIGNMENTS FROM SPRING 2009 229

Solution

We can show that the suggested sequence is a martingale, by computing

E
[

Xt+1
Xt+1Yt+1

∣∣∣∣ Xt, Yt

]
= Xt

Xt + Yt

Xt + 1
Xt + Yt + 1 + Yt

Xt + Yt

Xt

Xt + Yt + 1

= Xt(Xt + 1)YtXt

(Xt + Yt) + (Xt + Yt + 1)

= Xt(Xt + Yt + 1)
(Xt + Yt) + (Xt + Yt + 1)

= Xt

Xt + Y + t
.

From the martingale property we have E
[

Xn
Xn+Yn

]
= X0

X0+Y+0 . But Xn +
Yn = X0 + Y0 + n, a constant, so we can multiply both sides by this value
to get E [Xn] = X0

(
X0+Y0+n
X0+Y0

)
.

B.1.3 Support your local police (20 points)

At one point I lived in a city whose local police department supported them-
selves in part by collecting fines for speeding tickets. A speeding ticket would
cost 1 unit (approximately $100), and it was unpredictable how often one
would get a speeding ticket. For a price of 2 units, it was possible to purchase
a metal placard to go on your vehicle identifying yourself as a supporter of
the police union, which (at least according to local legend) would eliminate
any fines for subsequent speeding tickets, but which would not eliminate the
cost of any previous speeding tickets.

Let us consider the question of when to purchase a placard as a problem
in on-line algorithms. It is possible to achieve a strict1 competitive ratio of
2 by purchasing a placard after the second ticket. If one receives fewer than
2 tickets, both the on-line and off-line algorithms pay the same amount, and
at 2 or more tickets the on-line algorithm pays 4 while the off-line pays 2
(the off-line algorithm purchased the placard before receiving any tickets at
all).

1. Show that no deterministic algorithm can achieve a lower (strict) com-
petitive ratio.

2. Show that a randomized algorithm can do so, against an oblivious
adversary.

1I.e., with no additive constant.

APPENDIX B. SAMPLE ASSIGNMENTS FROM SPRING 2009 230

Solution

1. Any deterministic algorithm essentially just chooses some fixed num-
ber m of tickets to collect before buying the placard. Let n be the
actual number of tickets issued. For m = 0, the competitive ratio is
infinite when n = 0. For m = 1, the competitive ratio is 3 when n = 1.
For m > 2, the competitive ratio is (m + 2)/2 > 2 when n = m. So
m = 2 is the optimal choice.

2. Consider the following algorithm: with probability p, we purchase a
placard after 1 ticket, and with probability q = 1 − p, we purchase a
placard after 2 tickets. This gives a competitive ratio of 1 for n = 0,
1 + 2p for n = 1, and (3p + 4q)/2 = (4 − p)/2 = 2 − p/2 for n ≥ 2.
There is a clearly a trade-off between the two ratios 1+2p and 2−p/2.
The break-even point is when they are equal, at p = 2/5. This gives a
competitive ratio of 1 + 2p = 9/5, which is less than 2.

B.1.4 Overloaded machines (20 points)

Suppose n2 jobs are assigned to nmachines with each job choosing a machine
independently and uniformly at random. Let the load on a machine be the
number of jobs assigned to it. Show that for any fixed δ > 0 and sufficiently
large n, there is a constant c < 1 such that the maximum load exceeds
(1 + δ)n with probability at most ncn.

Solution

This is a job for Chernoff bounds. For any particular machine, the load S
is a sum of independent indicator variables and the mean load is µ = n. So
we have

Pr [S ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)n
.

Observe that eδ/(1+δ)1+δ < 1 for δ > 0. One proof of this fact is to take
the log to get δ−(1+δ) log(1+δ), which equals 0 at δ = 0, and then show that
the logarithm is decreasing by showing that d

dδ · · · = 1− 1+δ
1+δ − log(1 + δ) =

− log(1 + δ) < 0 for all δ > 0.
So we can let c = eδ/(1 + δ)1+δ to get a bound of cn on the probability

that any particular machine is overloaded and a bound of ncn (from the
union bound) on the probability that any of the machines is overloaded.

Appendix C

Sample assignments from
Spring 2011

C.1 Assignment 1: due Wednesday, 2011-01-26, at
17:00

C.1.1 Bureaucratic part

Send me email! My address is aspnes@cs.yale.edu.
In your message, include:

1. Your name.

2. Your status: whether you are an undergraduate, grad student, auditor,
etc.

3. Anything else you’d like to say.

(You will not be graded on the bureaucratic part, but you should do it
anyway.)

C.1.2 Rolling a die

The usual model of a randomized algorithm assumes a source of fair, in-
dependent random bits. This makes it easy to generate uniform numbers
in the range 0 . . . 2n − 1, but not so easy for other ranges. Here are two
algorithms for generating a uniform random integer 0 ≤ s < n:

231

mailto:aspnes@cs.yale.edu

APPENDIX C. SAMPLE ASSIGNMENTS FROM SPRING 2011 232

• Rejection sampling generates a uniform random integer 0 ≤ s <
2dlgne. If s < n, return s; otherwise keep trying until you get some
s < n.

• Arithmetic coding or range coding generates a sequence of bits
r1, r2, . . . rk until the half-open interval [

∑k
i=1 2−iri,

∑k
i=1 2−iri+2−k−1)

is a subset of [s/n, (s+ 1)/n) for some s; it then returns s.

1. Show that both rejection sampling and range coding produce a uniform
value 0 ≤ s < n using an expected O(logn) random bits.

2. Which algorithm has a better constant?

3. Does there exist a function f and an algorithm that produces a uniform
value 0 ≤ s < n for any n using f(n) random bits with probability 1?

Solution

1. For rejection sampling, each sample requires dlgne bits and is accepted
with probability n/2dlgne ≥ 1/2. So rejection sampling returns a value
after at most 2 samples on average, using no more than an expected
2 dlgne < 2(lgn+ 1) expected bits for the worst n.
For range coding, we keep going as long as one of the n−1 nonzero end-
points s/n lies inside the current interval. After k bits, the probability
that one of the 2k intervals contains an endpoint is at most (n−1)2−k;
in particular, it drops below 1 as soon as k = 2dlgne and continues to
drop by 1/2 for each additional bit, requiring 2 more bits on average.
So the expected cost of range coding is at most dlgne + 2 < lgn + 3
bits.

2. We’ve just shown that range coding beats rejection sampling by a
factor of 2 in the limit, for worst-case n. It’s worth noting that other
factors might be more important if random bits are cheap: rejection
sampling is much easier to code and avoids the need for division.

3. There is no algorithm that produces a uniform value 0 ≤ s < n for all
n using any fixed number of bits. Suppose such an algorithm existed.
Fix some n. For all n values s to be equally likely, the sets of random
bits M−1(s) = {r |M(r) = s} must have the same size. But this can
only happen if n divides 2f(n), which works only for n a power of 2.

APPENDIX C. SAMPLE ASSIGNMENTS FROM SPRING 2011 233

C.1.3 Rolling many dice

Suppose you repeatedly roll an n-sided die. Give an asymptotic (big-Θ)
bound on the expected number of rolls until you roll some number you have
already rolled before.

Solution

In principle, it is possible to compute this value exactly, but we are lazy.
For a lower bound, observe that after m rolls, each of the

(m
2
)
pairs

of rolls has probability 1/n of being equal, for an expected total of
(m

2
)
/n

duplicates. For m =
√
n/2, this is less than 1/8, which shows that the

expected number of rolls is Ω(
√
n).

For the upper bound, suppose we have already rolled the die
√
n times.

If we haven’t gotten a duplicate already, each new roll has probability at
least

√
n/n = 1/

√
n of matching a previous roll. So after an additional

√
n

rolls on average, we get a repeat. This shows that the expected number of
rolls is O(

√
n).

Combining these bounds shows that we need Θ(
√
n) rolls on average.

C.1.4 All must have candy

A set of n0 children each reach for one of n0 candies, with each child choosing
a candy independently and uniformly at random. If a candy is chosen by
exactly one child, the candy and child drop out. The remaining n1 children
and candies then repeat the process for another round, leaving n2 remaining
children and candies, etc. The process continues until ever child has a candy.

Give the best bound you can on the expected number of rounds until
every child has a candy.

Solution

Let T (n) be the expected number of rounds remaining given we are starting
with n candies. We can set up a probabilistic recurrence relation T (n) =
1 + T (n − Xn) where Xn is the number of candies chosen by eactly one
child. It is easy to compute E [Xn], since the probability that any candy
gets chosen exactly once is n(1/n)(1 − 1/n)n−1 = (1 − 1/n)n−1. Summing
over all candies gives E [Xn] = n(1− 1/n)n−1.

The term (1−1/n)n−1 approaches e−1 in the limit, so for any fixed ε > 0,
we have n(1 − 1/n)n−1 ≥ n(e−1 − ε) for sufficiently large n. We can get a
quick bound by choosing ε so that e−1 − ε ≥ 1/4 (for example) and then

APPENDIX C. SAMPLE ASSIGNMENTS FROM SPRING 2011 234

applying the Karp-Upfal-Wigderson inequality (D.3.1) with µ(n) = n/4 to
get

E [T (n)] ≤
∫ n

1

1
t/4 dt

= 4 lnn.

There is a sneaky trick here, which is that we stop if we get down to 1
candy instead of 0. This avoids the usual problem with KUW and ln 0, by
observing that we can’t ever get down to exactly one candy: if there were
exactly one candy that gets grabbed twice or not at all, then there must be
some other candy that also gets grabbed twice or not at all.

This analysis is sufficient for an asymptotic estimate: the last candy
gets grabbed in O(logn) rounds on average. For most computer-sciency
purposes, we’d be done here.

We can improve the constant slightly by observing that (1 − 1/n)n−1

is in fact always greater than or equal to e−1. The easiest way to see this
is to plot the function, but if we want to prove it formally we can show
that (1 − 1/n)n−1 is a decreasing function by taking the derivative of its
logarithm:

d

dn
ln(1− 1/n)n−1 = d

dn
(n− 1) ln(1− 1/n)

= ln(1− 1/n) + n− 1
1− 1/n ·

−1
n2 .

and observing that it is negative for n > 1 (we could also take the derivative
of the original function, but it’s less obvious that it’s negative). So if it ap-
proaches e−1 in the limit, it must do so from above, implying (1−1/n)n−1 ≥
e−1.

This lets us apply (D.3.1) with µ(n) = n/e, giving E [T (n)] ≤ e lnn.
If we skip the KUW bound and use the analysis in §D.4.2 instead, we get

that Pr [T (n) ≥ lnn+ ln(1/ε)] ≤ ε. This suggests that the actual expected
value should be (1 + o(1)) lnn.

C.2 Assignment 2: due Wednesday, 2011-02-09, at
17:00

C.2.1 Randomized dominating set

A dominating set in a graph G = (V,E) is a set of vertices D such that
each of the n vertices in V is either in D or adjacent to a vertex in D.

APPENDIX C. SAMPLE ASSIGNMENTS FROM SPRING 2011 235

Suppose we have a d-regular graph, in which every vertex has exactly d
neighbors. Let D1 be a random subset of V in which each vertex appears
with independent probability p. Let D be the union of D1 and the set of
all vertices that are not adjacent to any vertex in D1. (This construction is
related to a classic maximal independent set algorithm of Luby [Lub85], and
has the desirable property in a distributed system of finding a dominating
set in only one round of communication.)

1. What would be a good value of p if our goal is to minimize E [|D|],
and what bound on E [|D|] does this value give?

2. For your choice of p above, what bound can you get on Pr [|D| − E [|D|] ≥ t]?

Solution

1. First let’s compute E [|D|]. Let Xv be the indicator for the event
that v ∈ D. Then Xv = 1 if either (a) v is in D1, which occurs
with probability p; or (b) v and all d of its neighbors are not in D1,
which occurs with probability (1−p)d+1. Adding these two cases gives
E [Xv] = p+ (1− p)d+1 and thus

E [|D|] =
∑
v

E [Xv] = n
(
p+ (1− p)d+1

)
. (C.2.1)

We optimize E [|D|] in the usual way, by seeking a minimum for E [Xv].
Differentiating with respect to p and setting to 0 gives 1− (d+ 1)(1−
p)d = 0, which we can solve to get p = 1− (d+ 1)−1/d. (We can easily
observe that this must be a minimum because setting p to either 0 or
1 gives E [Xv] = 1.)
The value of E [|D|] for this value of p is the rather nasty expression
n(1− (d+ 1)−1/d + (d+ 1)−1−1/d).
Plotting the d factor up suggests that it goes to ln d/d in the limit, and
both Maxima and www.wolframalpha.com agree with this. Knowing

www.wolframalpha.com

APPENDIX C. SAMPLE ASSIGNMENTS FROM SPRING 2011 236

the answer, we can prove it by showing

lim
d→∞

1− (d+ 1)−1/d + (d+ 1)−1−1/d

ln d/d = lim
d→∞

1− d−1/d + d−1−1/d

ln d/d

= lim
d→∞

1− d−1/d

ln d/d

= lim
d→∞

1− e− ln d/d

ln d/d

= lim
d→∞

1−
(
1− ln d/d+O(ln2 d/d2)

)
ln d/d

= lim
d→∞

ln d/d+O(ln2 d/d2)
ln d/d

= lim
d→∞

(1 +O(ln d/d))

= 1.

This lets us write E [|D|] = (1 + o(1))n ln d/d, where we bear in mind
that the o(1) term depends on d but not n.

2. Suppose we fix Xv for all but one vertex u. Changing Xu from 0 to
1 can increase |D| by at most one (if u wasn’t already in D) and can
decrease it by at most d− 1 (if u wasn’t already in D and adding u to
D1 lets all d of u’s neighbors drop out). So we can apply the method
of bounded differences with ci = d− 1 to get

Pr [|D| − E [|D|] ≥ t] ≤ exp
(
− t2

2n(d− 1)2

)
.

A curious feature of this bound is that it doesn’t depend on p at all. It
may be possible to get a tighter bound using a better analysis, which
might pay off for very large d (say, d�

√
n).

C.2.2 Chernoff bounds with variable probabilities

LetX1 . . . Xn be a sequence of 0–1 random variables, where for all i, E [Xi | X1 . . . Xi−1] ≤
pi. Let S =

∑n
i=1Xi and µ =

∑n
i=1 pi. Show that, for all δ ≥ 0,

Pr [S ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
.

APPENDIX C. SAMPLE ASSIGNMENTS FROM SPRING 2011 237

Solution

Let St =
∑t
i=1Xi, so that S = Sn, and let µt =

∑t
i=1 pi. We’ll show by

induction on t that E
[
eαSt

]
≤ exp(eα−1µt), when α > 0.

Compute

E
[
eαS

]
= E

[
eαSn−1eαXn

]
= E

[
eαSn−1 E

[
eαXn

∣∣∣ X1, . . . , Xn−1
]]

= E
[
eαSn−1 (Pr [Xn = 0 | X1, . . . , Xn−1] + eα Pr [Xn = 1 | X1, . . . , Xn−1])

]
= E

[
eαSn−1 (1 + (eα − 1) Pr [Xn = 1 | X1, . . . , Xn−1])

]
≤ E

[
eαSn−1 (1 + (eα − 1)pn)

]
≤ E

[
eαSn−1 exp ((eα − 1)pn)

]
≤ E

[
eαSn−1

]
exp ((eα − 1)pn)

≤ exp (eα − 1)µn−1) exp ((eα − 1)pn)
= exp (eα − 1)µn) .

Now apply the rest of the proof of (5.2.1) to get the full result.

C.2.3 Long runs

LetW be a binary string of length n, generated uniformly at random. Define
a run of ones as a maximal sequence of contiguous ones; for example, the
string 11100110011111101011 contains 5 runs of ones, of length 3, 2, 6, 1,
and 2.

Let Xk be the number of runs in W of length k or more.

1. Compute the exact value of E [Xk] as a function of n and k.

2. Give the best concentration bound you can for |Xk − E [Xk]|.

Solution

1. We’ll compute the probability that any particular position i = 1 . . . n
is the start of a run of length k or more, then sum over all i. For a run
of length k to start at position i, either (a) i = 1 andWi . . .Wi+k−1 are
all 1, or (b) i > 1, Wi−1 = 0, and Wi . . .Wi+k−1 are all 1. Assuming
n ≥ k, case (a) adds 2−k to E [Xk] and case (b) adds (n−k)2−k−1, for
a total of 2−k + (n− k)2−k−1 = (n− k + 2)2−k−1.

APPENDIX C. SAMPLE ASSIGNMENTS FROM SPRING 2011 238

2. We can get an easy bound without too much cleverness using McDi-
armid’s inequality (5.3.10). Observe that Xk is a function of the inde-
pendent random variables W1 . . .Wn and that changing one of these
bits changes Xk by at most 1 (this can happen in several ways: a pre-
vious run of length k−1 can become a run of length k or vice versa, or
two runs of length k or more separated by a single zero may become
a single run, or vice versa). So (5.3.10) gives Pr [|X − E [X]| ≥ t] ≤
2 exp

(
− t2

2n

)
.

We can improve on this a bit by grouping the Wi together into blocks
of length `. If we are given control over a block of ` consecutive bits
and want to minimize the number of runs, we can either (a) make
all the bits zero, causing no runs to appear within the block and pre-
venting adjacent runs from extending to length k using bits from the
block, or (b) make all the bits one, possibly creating a new run but
possibly also causing two existing runs on either side of the block to
merge into one. In the first case, changing all the bits to one except
for a zero after every k consecutive ones creates at most

⌊
`+2k−1
k+1

⌋
new runs. Treating each of the dne ` blocks as a single variable then
gives Pr [|X − E [X]| ≥ t] ≤ 2 exp

(
− t2

2dn/`e(b(`+2k−1)/(k+1)c)2

)
. Staring

at plots of the denominator for a while suggests that it is minimized
at ` = k + 3, the largest value with b(`+ 2k − 1)/(k + 1)c ≤ 2. This
gives Pr [|X − E [X]| ≥ t] ≤ 2 exp

(
− t2

8dn/(k+3)e

)
, improving the bound

on t from Θ(
√
n log(1/ε)) to Θ(

√
(n/k) log(1/ε)).

For large k, the expectation of any individual Xk becomes small,
so we’d expect that Chernoff bounds would work better on the up-
per bound side than the method of bounded differences. Unfortu-
nately, we don’t have independence. But from Problem C.2.2, we
know that the usual Chernoff bound works as long as we can show
E [Xi | X1, . . . , Xi−1] ≤ pi for some sequence of fixed bounds pi.
For X1, there are no previous Xi, and we have E [X1] = 2−k exactly.
For Xi with i > 1, fix X1, . . . , Xi−1; that is, condition on the event
Xj = xj for all j < i with some fixed sequence x1, . . . , xi−1. Let’s call
this event A. Depending on the particular values of the xj , it’s not
clear how conditioning on A will affect Xi; but we can split on the

APPENDIX C. SAMPLE ASSIGNMENTS FROM SPRING 2011 239

value of Wi−1 to show that either it has no effect or Xi = 0:

E [Xi | A] = E [Xi | A,Wi−1 = 0] Pr [Wi−1 = 0 | A] + E [Xi | A,Wi−1 = 1] Pr [Wi−1 = 1 | A]
≤ 2−k Pr [Wi−1 = 0 | A] + 0
≤ 2−k.

So we have pi ≤ 2−k for all 1 ≤ i ≤ n − k + 1. This gives µ =
2−k(n− k + 1), and Pr [X ≥ (1 + δ)µ] ≤

(
eδ

(1+δ)(1+δ)

)µ
.

If we want a two-sided bound, we can set δ = 1 (since X can’t
drop below 0 anyway, and get Pr

[
|X − E [X]| > 2−k(n− k + 1)

]
≤(

e
4
)2−k(n−k+1). This is exponentially small for k = o(lgn). If k is

much bigger than lgn, then we have E [X]� 1, so Markov’s inequal-
ity alone gives us a strong concentration bound.
However, in both cases, the bounds are competitive with the previous
bounds from McDiarmid’s inequality only if E [X] = O(

√
n log(1/ε)).

So McDiarmid’s inequality wins for k = o(logn), Markov’s inequality
wins for k = ω(logn), and Chernoff bounds may be useful for a small
interval in the middle.

C.3 Assignment 3: due Wednesday, 2011-02-23, at
17:00

C.3.1 Longest common subsequence

A common subsequence of two sequences v and w is a sequence u of length
k such that there exist indices i1 < i2 < · · · < ik and j1 < j2 < · · · < jk
with u` = vi` = wj` for all `. For example, ardab is a common subsequence
of abracadabra and cardtable.

Let v and w be words of length n over an alphabet of size n drawn
independently and uniformly at random. Give the best upper bound you
can on the expected length of the longest common subsequence of v and w.

Solution

Let’s count the expectation of the number Xk of common subsequences of
length k. We have

(n
k

)
choices of positions in v, and

(n
k

)
choices of positions

in w; for each such choices, there is a probability of exactly n−k that the

APPENDIX C. SAMPLE ASSIGNMENTS FROM SPRING 2011 240

corresponding positions match. This gives

E [Xk] =
(
n

k

)2

n−k

<
nk

(k!)2 .

<
nk

(k/e)2k

=
(
ne2

k2

)k
.

We’d like this bound to be substantially less than 1. We can’t reasonably
expect this to happen unless the base of the exponent is less than 1, so we
need k > e

√
n.

If k = (1 + ε)e
√
n for any ε > 0, then E [Xk] < (1 + ε)−2e

√
n < 1

n
for sufficiently large n. It follows that the expected length of the longest
common subsequent is at most (1 + ε)e

√
n for sufficiently large n (because

if there are no length-k subsequences, the longest subsequence has length
at most k − 1, and if there is at least one, the longest has length at most
n; this gives a bound of at most (1 − 1/n)(k − 1) + (1/n)n < k). So in
general we have the length of the longest common subsequence is at most
(1 + o(1))e

√
n.

Though it is not required by the problem, here is a quick argument that
the expected length of the longest common subsequence is Ω(

√
n), based

on the Erdős-Szekeres theorem [ES35].1 The Erdős-Szekeres theorem
says that any permutation of n2 + 1 elements contains either an increasing
sequence of n+1 elements or a decreasing sequence of n+1 elements. Given
two random sequences of length n, let S be the set of all elements that appear
in both, and consider two permutations ρ and σ of S corresponding to the
order in which the elements appear in v and w, respectively (if an element
appears multiple times, pick one of the occurrences at random). Then the
Erdős-Szekeres theorem says that ρ contains a sequence of length at least⌊√
|ρ| − 1

⌋
that is either increasing or decreasing with respect to the order

given by σ; by symmetry, the probability that it is increasing is at least 1/2.
This gives an expected value for the longest common subsequence that is at
least E

[√
|ρ| − 1

]
/2.

1As suggested by Benjamin Kunsberg.

APPENDIX C. SAMPLE ASSIGNMENTS FROM SPRING 2011 241

Let X = |ρ|. We can compute a lower bound E [X] easily; each possible
element fails to occur in v with probability (1−1/n)n ≤ e−1, and similarly for
w. So the chance that an element appears in both sequences is at least (1−
e−1)2, and thus E [X] ≥ n(1− e−1)2. What we want is E

[√
X − 1

]
/2; but

here the fact that
√
x is concave means that E

[√
X − 1

]
≥
√

E [X − 1] by

Jensen’s inequality (4.3.1). So we have E
[√
|ρ| − 1

]
/2 ≥

√
n(1− e−1)2 − 1/2 ≈

1−e−1

2
√
n.

This is not a very good bound (empirically, the real bound seems to be
in the neighborhood of 1.9

√
n when n = 10000), but it shows that the upper

bound of (1 + o(1))e
√
n is tight up to constant factors.

C.3.2 A strange error-correcting code

Let Σ be an alphabet of size m+ 1 that includes m non-blank symbols and
a special blank symbol. Let S be a set of

(n
k

)
strings of length n with non-

blank symbols in exactly k positions each, such that no two strings in S
have non-blank symbols in the same k positions.

For what value of m can you show S exists such that no two strings in
S have the same non-blank symbols in k − 1 positions?

Solution

This is a job for the Lovász Local Lemma. And it’s even symmetric, so we
can use the symmetric version (Corollary 11.3.2).

Suppose we assign the non-blank symbols to each string uniformly and
independently at random. For each A ⊆ S with |A| = k, let XA be the string
that has non-blank symbols in all positions in A. For each pair of subsets
A,B with |A| = |B| = k and |A ∩B| = k−1, let CA,B be the event that XA

and XB are identical on all positions in A ∩B. Then Pr [CA,B] = m−k+1.
We now now need to figure out how many events are in each neighbor-

hood Γ(CA,B). Since CA,B depends only on the choices of values for A and
B, it is independent of any events CA′,B′ where neither of A′ or B′ is equal
to A or B. So we can make Γ(CA,B) consist of all events CA,B′ and CA′,B
where B′ 6= B and A′ 6= A.

For each fixed A, there are exactly (n− k)k events B that overlap it in
k − 1 places, because we can specify B by choosing the elements in B \ A
and A \ B. This gives (n − k)k − 1 events CA,B′ where B′ 6= B. Applying
the same argument for A′ gives a total of d = 2(n − k)k − 2 events in
Γ(CA,B). Corollary 11.3.2 applies if ep(d+ 1) ≤ 1, which in this case means

APPENDIX C. SAMPLE ASSIGNMENTS FROM SPRING 2011 242

em−(k−1)(2(n− k)k − 1) ≤ 1. Solving for m gives

m ≥ (2e(n− k)k − 1)1/(k−1) . (C.3.1)

For k � n, the (n − k)1/(k−1) ≈ n1/(k−1) term dominates the shape of
the right-hand side asymptotically as k gets large, since everything else goes
to 1. This suggests we need k = Ω(logn) to get m down to a constant.

Note that (C.3.1) doesn’t work very well when k = 1.2 For the k = 1
case, there is no overlap in non-blank positions between different strings, so
m = 1 is enough.

C.3.3 A multiway cut

Given a graph G = (V,E), a 3-way cut is a set of edges whose endpoints
lie in different parts of a partition of the vertices V into three disjoint parts
S ∪ T ∪ U = V .

1. Show that any graph with m edges has a 3-way cut with at least 2m/3
edges.

2. Give an efficient deterministic algorithm for finding such a cut.

Solution

1. Assign each vertex independently to S, T , or U with probability 1/3
each. Then the probability that any edge uv is contained in the cut is
exactly 2/3. Summing over all edges gives an expected 2m/3 edges.

2. We’ll derandomize the random vertex assignment using the method
of conditional probabilities. Given a partial assignment of the ver-
tices, we can compute the conditional expectation of the size of the
cut assuming all other vertices are assigned randomly: each edge with
matching assigned endpoints contributes 0 to the total, each edge with
non-matching assigned endpoints contributes 1, and each edge with
zero or one assigned endpoints contributes 2/3. We’ll pick values for
the vertices in some arbitrary order to maximize this conditional ex-
pectation (since our goal is to get a large cut). At each step, we need
only consider the effect on edges incident to the vertex we are assigning
whose other endpoints are already assigned, because the contribution

2Thanks to Brad Hayes for pointing this out.

APPENDIX C. SAMPLE ASSIGNMENTS FROM SPRING 2011 243

of any other edge is not changed by the assignment. Then maximiz-
ing the conditional probability is done by choosing an assignment that
matches the assignment of the fewest previously-assigned neighbors:
in other words, the natural greedy algorithm works. The cost of this
algorithm is O(n+m), since we loop over all vertices and have to check
each edge at most once for each of its endpoints.

C.4 Assignment 4: due Wednesday, 2011-03-23, at
17:00

C.4.1 Sometimes successful betting strategies are possible

You enter a casino with X0 = a dollars, and leave if you reach 0 dollars or
b or more dollars, where a, b ∈ N. The casino is unusual in that it offers
arbitrary fair games subject to the requirements that:

• Any payoff resulting from a bet must be a nonzero integer in the range
−Xt to Xt, inclusive, where Xt is your current wealth.

• The expected payoff must be exactly 0. (In other words, your assets
Xt should form a martingale sequence.)

For example, if you have 2 dollars, you may make a bet that pays off −2
with probability 2/5, +1 with probability 2/5 and +2 with probability 1/5;
but you may not make a bet that pays off −3, +3/2, or +4 under any
circumstances, or a bet that pays off −1 with probability 2/3 and +1 with
probability 1/3.

1. What strategy should you use to maximize your chances of leaving
with at least b dollars?

2. What strategy should you use to maximize your changes of leaving
with nothing?

3. What strategy should you use to maximize the number of bets you
make before leaving?

Solution

1. Let Xt be your wealth at time t, and let τ be the stopping time when
you leave. Because {Xt} is a martingale, E [X0] = a = E [Xτ] =
Pr [Xτ ≥ b] E [Xτ | Xτ ≥ b]. So Pr [Xτ ≥ b] is maximized by making

APPENDIX C. SAMPLE ASSIGNMENTS FROM SPRING 2011 244

E [Xτ | Xτ ≥ b] as small as possible. It can’t be any smaller than b,
which can be obtained exactly by making only ±1 bets. The gives a
probability of leaving with b of exactly a/b.

2. Here our goal is to minimize Pr [Xτ ≥ b], so we want to make E [Xτ | Xτ ≥ b]
as large as possible. The largest value of Xτ we can possibly reach is
2(b−1); we can obtain this value by betting±1 until we reach b−1, then
making any fair bet with positive payoff b− 1 (for example, ±(b− 1)
with equal probability works, as does a bet that pays off b − 1 with
probability 1/b and −1 with probability (b−1)/b). In this case we get
a probability of leaving with 0 of 1− a

2(b−1) .

3. For each t, let ∆t = Xt − Xt−1 and Vt = Var [∆t | Ft]. We have
previously shown (see the footnote to §8.4.1) that E

[
X2
τ

]
= E

[
X2

0
]

+
E [
∑τ
t=1 Vt] where τ is an appropriate stopping time. When we stop, we

know thatX2
τ ≤ (2(b−1))2, which puts an upper bound on E [

∑τ
i=1 Vi].

We can spend this bound most parsimoniously by minimizing Vi as
much as possible. If we make each ∆t = ±1, we get the smallest
possible value for Vt (since any change contributes at least 1 to the
variance). However, in this case we don’t get all the way out to 2(b−1)
at the high end; instead, we stop at b, giving an expected number of
steps equal to a(b− a).
We can do a bit better than this by changing our strategy at b − 1.
Instead of betting ±1, let’s pick some x and place a bet that pays off
b − 1 with probability 1

b and −1 with probability b−1
b = 1 − 1

b . (The
idea here is to minimize the conditional variance while still allowing
ourselves to reach 2(b − 1).) Each ordinary random walk step has
Vt = 1; a “big” bet starting at b − 1 has Vt = 1 − 1

b + (b−1)2

b =
b−1+b2−2b+1

b = b− 1
b .

To analyze this process, observe that starting from a, we first spending
a(b − a − 1) steps on average to reach either 0 (with probability 1 −
a
b−1 or b − 1 (with probability a

b−1 . In the first case, we are done.
Otherwise, we take one more step, then with probability 1

b we lose and
with probability b−1

b we continue starting from b− 2. We can write a
recurrence for our expected number of steps T (a) starting from a, as:

T (a) = a(b− a− 1) + a

b− 1

(
1 + b− 1

b
T (b− 2)

)
. (C.4.1)

APPENDIX C. SAMPLE ASSIGNMENTS FROM SPRING 2011 245

When a = b− 2, we get

T (b− 2) = (b− 2) + b− 2
b− 1

(
1 + b− 1

b
T (b− 2)

)
= (b− 2)

(
1 + 1

b− 1

)
+ b− 2

b
T (b− 2),

which gives

T (b− 2) =
(b− 2)2b−1

b−1
2/b

= b(b− 2)(2b− 1)
2(b− 1) .

Plugging this back into (C.4.1) gives

T (a) = a(b− a− 1) + a

b− 1

(
1 + b− 1

b

b(b− 2)(2b− 1)
2(b− 1)

)
= ab− a2 + a+ a

b− 1 + a(b− 2)(2b− 1)
2(b− 1)

= 3
2ab+O(b). (C.4.2)

This is much better than the a(b−a) value for the straight ±1 strategy,
especially when a is also large.
I don’t know if this particular strategy is in fact optimal, but that’s
what I’d be tempted to bet.

C.4.2 Random walk with reset

Consider a random walk on N that goes up with probability 1/2, down with
probability 3/8, and resets to 0 with probability 1/8. When Xt > 0, this
gives:

Xt+1 =

Xt + 1 with probability 1/2,
Xt − 1 with probability 3/8, and
0 with probability 1/8.

When Xt = 0, we let Xt+1 = 1 with probability 1/2 and 0 with probability
1/2.

APPENDIX C. SAMPLE ASSIGNMENTS FROM SPRING 2011 246

1. What is the stationary distribution of this process?

2. What is the mean recurrence time µn for some state n?

3. Use µn to get a tight asymptotic (i.e., big-Θ) bound on µ0,n, the
expected time to reach n starting from 0.

Solution

1. For n > 0, we have πn = 1
2πn−1 + 3

8πn+1, with a base case π0 =
1
8 + 3

8π0 + 3
8π1.

The πn expression is a linear homogeneous recurrence, so its solution
consists of linear combinations of terms bn, where b satisfies 1 = 1

2b
−1+

3
8b. The solutions to this equation are b = 2/3 and b = 2; we can
exclude the b = 2 case because it would make our probabilities blow
up for large n. So we can reasonably guess πn = a(2/3)n when n > 0.
For n = 0, substitute π0 = 1

8 + 3
8π0 + 3

8a(2/3) to get π0 = 1
5 + 2

5a. Now
substitute

π1 = (2/3)a

= 1
2π0 + 3

8a(2/3)2

= 1
2

(1
5 + 2

5a
)

+ 3
8a(2/3)2

= 1
10 + 11

30a,

which we can solve to get a = 1/3.
So our candidate π is π0 = 1/3, πn = (1/3)(2/3)n, and in fact we can
drop the special case for π0.
As a check,

∑n
i=0 πn = (1/3)

∑n
i=0(2/3)n = 1/3

1−2/3 = 1.

2. Since µn = 1/πn, we have µn = 3(3/2)n.

3. In general, let µk,n be the expected time to reach n starting at k. Then
µn = µn,n = 1 + 1

8µ0,n + 1
2µn+1,n + 3

8µn−1,n ≥ 1 + µ0,n/8. It follows
that µ0,n ≤ 8µn + 1 = 24(3/2)n + 1 = O((3/2)n).
For the lower bound, observe that µn ≤ µn,0 + µ0,n. Since there is a
1/8 chance of reaching 0 from any state, we have µn,0 ≤ 8. It follows
that µn ≤ 8 + µ0,n or µ0,n ≥ µn − 8 = Ω((3/2)n).

APPENDIX C. SAMPLE ASSIGNMENTS FROM SPRING 2011 247

C.4.3 Yet another shuffling algorithm

Suppose we attempt to shuffle a deck of n cards by picking a card uniformly
at random, and swapping it with the top card. Give the best bound you
can on the mixing time for this process to reach a total variation distance
of ε from the uniform distribution.

Solution

It’s tempting to use the same coupling as for move-to-top (see §9.3.4). This
would be that at each step we choose the same card to swap to the top
position, which increases by at least one the number of cards that are in the
same position in both decks. The problem is that at the next step, these two
cards are most likely separated again, by being swapped with other cards in
two different positions.

Instead, we will do something slightly more clever. Let Zt be the number
of cards in the same position at time t. If the top cards of both decks are
equal, we swap both to the same position chosen uniformly at random. This
has no effect on Zt. If the top cards of both decks are not equal, we pick
a card uniformly at random and swap it to the top in both decks. This
increases Zt by at least 1, unless we happen to pick cards that are already
in the same position; so Zt increases by at least 1 with probability 1−Zt/n.

Let’s summarize a state by an ordered pair (k, b) where k = Zt and b is
0 if the top cards are equal and 1 if they are not equal. Then we have a
Markov chain where (k, 0) goes to (k, 1) with probability n−k

n (and otherwise
stays put); and (k, 1) goes to (k+ 1, 0) (or higher) with probability n−k

n and
to (k, 0) with probability k

n .
Starting from (k, 0), we expect to wait n

n−k steps on average to reach
(k, 1), at which point we move to (k + 1, 0) or back to (k, 0) in one more
step; we iterate through this process n

n−k times on average before we are
successful. This gives an expected number of steps to get from (k, 0) to
(k + 1, 0) (or possibly a higher value) of n

n−k

(
n

n−k + 1)
)
. Summing over k

up to n− 2 (since once k > n− 2, we will in fact have k = n, since k can’t

APPENDIX C. SAMPLE ASSIGNMENTS FROM SPRING 2011 248

be n− 1), we get

E [τ] ≤
n−2∑
k=0

n

n− k

(
n

n− k
+ 1

)

=
n∑

m=2

(
n2

m2 + n

m

)

≤ n2
(
π2

6 − 1
)

+ n lnn.

= O(n2).

So we expect the deck to mix in O(n2 log(1/ε)) steps. (I don’t know if
this is the real bound; my guess is that it should be closer to O(n logn) as
in all the other shuffling procedures.)

C.5 Assignment 5: due Thursday, 2011-04-07, at
23:59

C.5.1 A reversible chain

Consider a random walk on Zm, where pi,i+1 = 2/3 for all i and pi,i−1 = 1/3
for all i except i = 0. Is it possible to assign values to p0,m−1 and p0,0 to
make this chain reversible, and if so, what stationary distribution do you
get?

Solution

Suppose we can make this chain reversible, and let π be the resulting station-
ary distribution. From the detailed balance equations, we have (2/3)πi =
(1/3)πi+1 or πi+1 = 2πi for i = 0 . . .m− 2. The solution to this recurrence
is πi = 2iπ0, which gives πi = 2i

2m−1 when we set π0 to get
∑
i πi = 1.

Now solve π0p0,m−1 = πm−1pm−1,0 to get

p0,m−1 = πm−1pm−1,0
π0

= 2m−1(2/3)
= 2m/3.

This is greater than 1 for m > 1, so except for the degenerate cases of
m = 1 and m = 2, it’s not possible to make the chain reversible.

APPENDIX C. SAMPLE ASSIGNMENTS FROM SPRING 2011 249

C.5.2 Toggling bits

Consider the following Markov chain on an array of n bits a[1], a[2], . . . a[n].
At each step, we choose a position i uniformly at random. We then change
A[i] to ¬A[i] with probability 1/2, provided i = 1 or A[i− 1] = 1 (if neither
condition holds hold, do nothing).3

1. What is the stationary distribution?

2. How quickly does it converge?

Solution

1. First let’s show irreducibility. Starting from an arbitrary configura-
tion, repeatedly switch the leftmost 0 to a 1 (this is always permitted
by the transition rules); after at most n steps, we reach the all-1 con-
figuration. Since we can repeat this process in reverse to get to any
other configuration, we get that every configuration is reachable from
every other configuration in at most 2n steps (2n− 1 if we are careful
about handling the all-0 configuration separately).
We also have that for any two adjacent configurations x and y, pxy =
pyx = 1

2n . So we have a reversible, irreducible, aperiodic (because
there exists at least one self-loop) chain with a uniform stationary
distribution πx = 2−n.

2. Here is a bound using the obvious coupling, where we choose the same
position in X and Y and attempt to set it to the same value. To
show this coalesces, given Xt and Yt define Zt to be the position of the
rightmost 1 in the common prefix of Xt and Yt, or 0 if there is no 1
in the common prefix of Xt and Yt. Then Zt increases by at least 1 if
we attempt to set position Zt + 1 to 1, which occurs with probability
1

2n , and decreases by at most 1 if we attempt to set Zt to 0, again
with probability 1

2n . It follows that Zt reaches n no later than a ±1
random walk on 0 . . . n with reflecting barriers that takes a step every
1/n time units on average. The expected number of steps to reach n
from the worst-case starting position of 0 is exactly n2. (Proof: model

3Motivation: Imagine each bit represents whether a node in some distributed system
is inactive (0) or active (1), and you can only change your state if you have an active
left neighbor to notify. Also imagine that there is an always-active base station at −1
(alternatively, imagine that this assumption makes the problem easier than the other
natural arrangement where we put all the nodes in a ring).

APPENDIX C. SAMPLE ASSIGNMENTS FROM SPRING 2011 250

the random walk with a reflecting barrier at 0 by folding a random
walk with absorbing barriers at ±n in half, then use the bound from
§8.4.1.) We must then multiply this by n to get an expected n3 steps in
the original process. So the two copies coalesce in at most n3 expected
steps. My suspicion is one could improve this bound with a better
analysis by using the bias toward increasing Zt to get the expected
time to coalesce down to O(n2), but I don’t know any clean way to do
this.
The path coupling version of this is that we look at two adjacent
configurations Xt and Yt, use the obvious coupling again, and see
what happens to E [d(Xt+1, Yt+1) | Xt, Yt], where the distance is the
number of transitions needed to convert Xt to Yt or vice versa. If
we pick the position i where Xt and Yt differ, then we coalesce; this
occurs with probability 1/n. If we change the 1 to the left of i to a
0, then d(Xt+1, Yt+1) rises to 3 (because to get from Xt+1 to Yt+1,
we have to change position i − 1 to 1, change position i, and then
change position i − 1 back to 0); this occurs with probability 1/2n if
i > 1. But we can also get into trouble if we try to change position
i + 1; we can only make the change in one of Xt and Yt, so we get
d(Xt+1, Yt+1) = 2 in this case, which occurs with probability 1/2n
when i < n. Adding up all three cases gives a worst-case expected
change of −1/n + 2/2n + 1/2n = 1/2n > 0. So unless we can do
something more clever, path coupling won’t help us here.
However, it is possible to get a bound using canonical paths, but the
best bound I could get was not as good as the coupling bound. The
basic idea is that we will change x into y one bit at a time (from left
to right, say), so that we will go through a sequence of intermediate
states of the form y[1]y[2] . . . y[i]x[i+ 1]x[i+ 2] . . . x[n]. But to change
x[i+ 1] to y[i+ 1], we may also need to reach out with a tentacle of 1
bits from from the last 1 in the current prefix of y (and then retract
it afterwards). Given a particular transition where we change a 0 to a
1, we can reconstruct the original x and y by specifying (a) which bit
i at or after our current position we are trying to change; (b) which 1
bit before our current position is the last “real” 1 bit in y as opposed
to something we are creating to reach out to position i; and (c) the
values of x[1] . . . x[i−1] and y[i+1] . . . y[i]. A similar argument applies
to 1–0 transitions. So we are routing at most n22n−1 paths across each

APPENDIX C. SAMPLE ASSIGNMENTS FROM SPRING 2011 251

transition, giving a bound on the congestion

ρ ≤
(1

2−n/2n

)
n22n−12−2n

= n3.

The bound on τ2 that follows from this is 8n6, which is pretty bad
(although the constant could be improved by counting the (a) and
(b) bits more carefully). As with the coupling argument, it may be
that there is a less congested set of canonical paths that gives a better
bound.

C.5.3 Spanning trees

Suppose you have a connected graph G = (V,E) with n nodes and m edges.
Consider the following Markov process. Each state Ht is a subgraph of G
that is either a spanning tree or a spanning tree plus an additional edge. At
each step, flip a fair coin. If it comes up heads, choose an edge e uniformly
at random from E and let Ht+1 = Ht ∪ {e} if Ht is a spanning tree and let
Ht+1 = Ht \ {e} if Ht is not a spanning tree and Ht \ {e} is connected. If it
comes up tails and Ht is a spanning tree, let Ht+1 be some other spanning
tree, sampled uniformly at random. In all other cases, let Ht+1 = Ht.

Let N be the number of states in this Markov chain.

1. What is the stationary distribution?

2. How quickly does it converge?

Solution

1. Since every transition has a matching reverse transition with the same
transition probability, the chain is reversible with a uniform stationary
distribution πH = 1/N .

2. Here’s a coupling that coalesces in at most 4m/3 + 2 expected steps:

(a) If Xt and Yt are both trees, then send them to the same tree
with probability 1/2; else let them both add edges independently
(or we could have them add the same edge—it doesn’t make any
difference to the final result).

(b) If only one of Xt and Yt is a tree, with probability 1/2 scramble
the tree while attempting to remove an edge from the non-tree,

APPENDIX C. SAMPLE ASSIGNMENTS FROM SPRING 2011 252

and the rest of the time scramble the non-tree (which has no
effect) while attempting to add an edge to the tree. Since the
non-tree has at least three edges that can be removed, this puts
(Xt+1, Yt+1 in the two-tree case with probability at least 3/2m.

(c) If neither Xt nor Yt is a tree, attempt to remove an edge from
both. Let S and T be the sets of edges that we can remove from
Xt and Yt, respectively, and let k = min(|S| , |T |) ≥ 3. Choose k
edges from each of S and T and match them, so that if we remove
one edge from each pair, we also remove the other edge. As in
the previous case, this puts (Xt+1, Yt+1 in the two-tree case with
probability at least 3/2m.

To show this coalesces, starting from an arbitrary state, we reach a
two-tree state in at most 2m/3 expected steps. After one more step, we
either coalesce (with probability 1/2) or restart from a new arbitrary
state. This gives an expected coupling time of at most 2(2m/3 + 1) =
4m/3 + 2 as claimed.

C.6 Assignment 6: due Monday, 2011-04-25, at
17:00

C.6.1 Sparse satisfying assignments to DNFs

Given a formula in disjunctive normal form, we’d like to estimate the number
of satisfying assignments in which exactly w of the variables are true. Give
a fully polynomial-time randomized approximation scheme for this problem.

Solution

Essentially, we’re going to do the Karp-Luby covering trick [KL85] described
in §10.3, but will tweak the probability distribution when we generate our
samples so that we only get samples with weight w.

Let U be the set of assignment with weight w (there are exactly
(n
w

)
such

assignments, where n is the number of variables). For each clause Ci, let
Ui = {x ∈ U | Ci(x) = 1}. Now observe that:

1. We can compute |Ui|. Let ki = |Ci| be the number of variables in Ci
and k+

i =
∣∣∣C+

i

∣∣∣ the number of variables that appear in positive form
in Ci. Then |Ui| =

(n−ki
w−k+

i

)
is the number of ways to make a total of w

variables true using the remaining n− ki variables.

APPENDIX C. SAMPLE ASSIGNMENTS FROM SPRING 2011 253

2. We can sample uniformly from Ui, by sampling a set of w − k+
i true

variables not in Ci uniformly from all variables not in Ci.

3. We can use the values computed for |Ui| to sample i proportionally to
the size of |Ui|.

So now we sample pairs (i, x) with x ∈ Ui uniformly at random by
sampling i first, then sampling x ∈ Ui. As in the original algorithm, we
then count (i, x) if and only if Ci is the leftmost clause for which Ci(x) = 1.
The same argument that at least 1/m of the (i, x) pairs count applies, and
so we get the same bounds as in the original algorithm.

C.6.2 Detecting duplicates

Algorithm C.1 attempts to detect duplicate values in an input array S of
length n.

Initialize A[1 . . . n] to ⊥1
Choose a hash function h2
for i← 1 . . . n do3

x← S[i]4
if A[h(x)] = x then5

return true6
else7

A[h(x)]← x8

return false9

Algorithm C.1: Dubious duplicate detector

It’s easy to see that Algorithm C.1 never returns true unless some value
appears twice in S. But maybe it misses some duplicates it should find.

1. Suppose h is a random function. What is the worst-case probability
that Algorithm C.1 returns false if S contains two copies of some
value?

2. Is this worst-case probability affected if h is drawn instead from a
2-universal family of hash functions?

APPENDIX C. SAMPLE ASSIGNMENTS FROM SPRING 2011 254

Solution

1. Suppose that S[i] = S[j] = x for i < j. Then the algorithm will see
x in A[h(x)] on iteration j and return true, unless it is overwritten
by some value S[k] with i < k < j. This occurs if h(S[k]) = h(x),
which occurs with probability exactly 1− (1−1/n)j−i−1 if we consider
all possible k. This quantity is maximized at 1 − (1 − 1/n)n−2 ≈
1− (1− 1/n)2/e ≈ 1− (1− 1/2n)/e when i = 1 and j = n.

2. As it happens, the algorithm can fail pretty badly if all we know is that
h is 2-universal. What we can show is that the probability that some
S[k] with i < j < k gets hashed to the same place as x = S[i] = S[j] in
the analysis above is at most (j−i−1)/n ≤ (n−2)/n = (1−2/n), since
each S[k] has at most a 1/n chance of colliding with x and the union
bound applies. But it is possible to construct a 2-universal family for
which we get exactly this probability in the worst case.
Let U = {0 . . . n}, and define for each a in {0 . . . n− 1} ha : U → n by
ha(n) = 0 and ha(x) = (x+ a) mod n for x 6= n. Then H = {ha} is 2-
universal, since if x 6= y and neither x nor y is n, Pr [ha(x) = ha(y)] =
0, and if one of x or y is n, Pr [ha(x) = ha(y)] = 1/n. But if we use
this family in Algorithm C.1 with S[1] = S[n] = n and S[k] = k for
1 < k < n, then there are n−2 choices of a that put one of the middle
values in A[0].

C.6.3 Balanced Bloom filters

A clever algorithmist decides to solve the problem of Bloom filters filling up
with ones by capping the number of ones atm/2. As in a standard Bloom fil-
ter, an element is inserted by writing ones toA[h1(x)], A[h2(x)], . . . , A[hk(x)];
but after writing each one, if the number of one bits in the bit-vector is more
than m/2, one of the ones in the vector (chosen uniformly at random) is
changed back to a zero.

Because some of the ones associated with a particular element might
be deleted, the membership test answers yes if at least 3/4 of the bits
A[h1(x)] . . . A[hk(x)] are ones.

To simplify the analysis, you may assume that the hi are independent
random functions. You may also assume that (3/4)k is an integer.

1. Give an upper bound on the probability of a false positive when testing
for a value x that has never been inserted.

APPENDIX C. SAMPLE ASSIGNMENTS FROM SPRING 2011 255

2. Suppose that we insert x at some point, and then follow this insertion
with a sequence of insertions of new, distinct values y1, y2, As-
suming a worst-case state before inserting x, give asymptotic upper
and lower bounds on the expected number of insertions until a test for
x fails.

Solution

1. The probability of a false positive is maximized when exactly half the
bits in A are one. If x has never been inserted, each A[hi(x)] is equally
likely to be zero or one. So Pr [false positive for x] = Pr [Sk ≥ (3/4)k]
when Sk is a binomial random variable with parameters 1/2 and k.
Chernoff bounds give

Pr [Sk ≥ (3/4)k] = Pr [Sk ≥ (3/2) E [Sk]]

≤
(

e1/2

(3/2)3/2

)k/2
≤ (0.94734)k.

We can make this less than any fixed ε by setting k ≥ 20 ln(1/ε) or
thereabouts.

2. For false negatives, we need to look at how quickly the bits for x are
eroded away. A minor complication is that the erosion may start even
as we are setting A[h1(x)] . . . A[hk(x)].
Let’s consider a single bit A[i] and look at how it changes after (a)
setting A[i] = 1, and (b) setting some random A[r] = 1.
In the first case, A[i] will be 1 after the assignment unless it is set back
to zero, which occurs with probability 1

m/2+1 . This distribution does
not depend on the prior value of A[i].
In the second case, if A[i] was previously 0, it becomes 1 with proba-
bility

1
m

(
1− 1

m/2 + 1

)
= 1
m
· m/2
m/2 + 1

= 1
m+ 2 .

APPENDIX C. SAMPLE ASSIGNMENTS FROM SPRING 2011 256

If it was previously 1, it becomes 0 with probability

1
2 ·

1
m/2 + 1 = 1

m+ 2 .

So after the initial assignment, A[i] just flips its value with probability
1

m+2 .
It is convenient to represent A[i] as ±1; let Xt

i = −1 if A[i] = 0 at
time t, and 1 otherwise. Then Xt

i satisfies the recurrence

E
[
Xt+1
i

∣∣∣ Xt
i

]
= m+ 1
m+ 2X

t
i −

1
m+ 2X

t
i

= m

m+ 2X
t
i .

=
(

1− 2
m+ 2

)
Xt
i .

We can extend this to E
[
Xt
i

∣∣ X0
i

]
=
(
1− 2

m+2

)t
X0
i ≈ e−2t/(m+2)X0

i .

Similarly, after setting A[i] = 1, we get E [Xi] = 1 − 2 1
m/2+1 = 1 −

4
2m+1 = 1− o(1).

Let St =
∑k
i=1X

t
hi(x). Let 0 be the time at which we finish inserting

x. Then each for each i we have

1− o(1)e−2k/(m+2) ≤ E
[
X0
hi(x)

]
≤ 1− o(1),

from which it follows that

k(1− o(1))e−2k/(m+2) ≤ E
[
S0
]
≤ 1− o(1)

and in general that

k(1− o(1))e−2(k+t)/(m+2) ≤ E
[
St
]
≤ 1− o(1)e−2t/(m+2).

So for any fixed 0 < ε < 1 and sufficiently large m, we will have
E
[
St
]

= εk for some t′ where t ≤ t′ ≤ k + t and t = Θ(m ln(1/ε)).
We are now looking for the time at which St drops below k/2 (the k/2
is because we are working with ±1 variables). We will bound when
this time occurs using Markov’s inequality.

APPENDIX C. SAMPLE ASSIGNMENTS FROM SPRING 2011 257

Let’s look for the largest time t with E
[
St
]
≥ (3/4)k. Then E

[
k − St

]
≤

k/4 and Pr
[
k − St ≥ k/2

]
≤ 1/2. It follows that after Θ(m) − k op-

erations, x is still visible with probability 1/2, which implies that the
expected time at which it stops being visible is at least (Ω(m)− k)/2.
To get the expected number of insert operations, we divide by k, to
get Ω(m/k).
For the upper bound, apply the same reasoning to the first time at
which E

[
St
]
≤ k/4. This occurs at time O(m) at the latest (with a

different constant), so after O(m) steps there is at most a 1/2 proba-
bility that St ≥ k/2. If St is still greater than k/2 at this point, try
again using the same analysis; this gives us the usual geometric series
argument that E [t] = O(m). Again, we have to divide by k to get the
number of insert operations, so we get O(m/k) in this case.
Combining these bounds, we have that x disappears after Θ(m/k)
insertions on average. This seems like about what we would expect.

C.7 Final exam
Write your answers in the blue book(s). Justify your answers. Work alone.
Do not use any notes or books.

There are four problems on this exam, each worth 20 points, for a total
of 80 points. You have approximately three hours to complete this exam.

C.7.1 Leader election

Suppose we have n processes and we want to elect a leader. At each round,
each process flips a coin, and drops out if the coin comes up tails. We win
if in some round there is exactly one process left.

Let T (n) be the probability that this event eventually occurs starting
with n processes. For small n, we have T (0) = 0 and T (1) = 1. Show that
there is a constant c > 0 such that T (n) ≥ c for all n > 1.

Solution

Let’s suppose that there is some such c. We will necessarily have c ≤ 1 =
T (1), so the induction hypothesis will hold in the base case n = 1.

APPENDIX C. SAMPLE ASSIGNMENTS FROM SPRING 2011 258

For n ≥ 2, compute

T (n) =
n∑
k=0

2−n
(
n

k

)
T (k)

= 2−nT (n) + 2−nnT (1) +
n−1∑
k=2

2−n
(
n

k

)
T (k)

≥ 2−nT (n) + 2−nn+ 2−n(2n − n− 2)c.

Solve for T (n) to get

T (n) ≥ n+ (2n − n− 2)c
2n − 1

= c

(2n − n− 2 + n/c

2n − 1

)
.

This will be greater than or equal to c if 2n − n − 2 + n/c ≥ 2n − 1 or
n/c ≥ n+1, which holds if c ≤ n

n+1 . The worst case is n = 2 giving c = 2/3.
Valiant and Vazirani [VV86] used this approach to reduce solving general

instances of SAT to solving instances of SAT with unique solutions; they
prove essentially the result given above (which shows that fixing variables
in a SAT formula is likely to produce a SAT formula with a unique solution
at some point) with a slightly worse constant.

C.7.2 Two-coloring an even cycle

Here is a not-very-efficient algorithm for 2-coloring an even cycle. Every
node starts out red or blue. At each step, we pick one of the n nodes
uniformly at random, and change its color if it same color as at least one of
its neighbors. We continue until no node has the same color as either of its
neighbors.

Suppose that in the initial state there are exactly two monochromatic
edges. What is the worst-case expected number of steps until there are no
monochromatic edges?

Solution

Suppose we have a monochromatic edge surrounded by non-monochrome
edges, e.g. RBRRBR. If we pick one of the endpoints of the edge (say
the left endpoint in this case), then the monochromatic edge shifts in the
direction of that endpoint: RBBRBRB. Picking any node not incident to a

APPENDIX C. SAMPLE ASSIGNMENTS FROM SPRING 2011 259

monochromatic edge has no effect, so in this case there is no way to increase
the number of monochromatic edges.

It may also be that we have two adjacent monochromatic edges: BRRRB.
Now if we happen to pick the node in the middle, we end up with no
monochromatic edges (BRBRB) and the process terminates. If on the other
hand we pick one of the nodes on the outside, then the monochromatic edges
move away from each other.

We can thus model the process with 2 monochromatic edges as a random
walk, where the difference between the leftmost nodes of the edges (mod n)
increases or decreases with equal probability 2/n except if the distance is
1 or −1; in this last case, the distance increases (going to 2 or −2) with
probability 2/n, but decreases only with probability 1/n. We want to know
when this process hits 0 (or n).

Imagine a random walk starting from position k with absorbing barriers
at 1 and n − 1. This reaches 1 or n − 1 after (k − 1)(n − 1 − k) steps on
average, which translates into (n/4)(k − 1)(n − 1 − k) steps of our original
process if we take into account that we only move with probability 4/n
per time unit. This time is maximized by setting k = n/2, which gives
(n/4)(n/2 − 1)2 = n3/16 − n2/4 + n/4 expected time units to reach 1 or
n− 1 for the first time.

At 1 or n − 1, we wait an addition n/3 steps on average; then with
probability 1/3 the process finishes and with probability 2/3 we start over
from position 2 or n − 2; in the latter case, we run (n/4)(n − 3) + n/3
time units on average before we may finish again. On average, it takes 3
attempts to finish, so this latter phase of the process adds (3/4)n(n−3)+n =
(3/4)n2 − (5/4)n steps.

Adding up all of the costs gives n3/16 − n2/4 + n/4 + n/3 + (3/4)n2 −
(5/4)n = 1

16n
3 + 1

2n
2 − 2

3n steps.

C.7.3 Finding the maximum

Suppose that we run Algorithm C.2 on an array with n elements, all of which
are distinct. What is the expected number of times Line 5 is executed as a
function of n?

Solution

Let Xi be the indicator variable for the event that Line 5 is executed on
the i-th pass through the loop. This will occur if A[i] is greater than A[j]
for all j < i, which occurs with probability exactly 1/i (given that A has

APPENDIX C. SAMPLE ASSIGNMENTS FROM SPRING 2011 260

Randomly permute A1
m← −∞2
for i← 1 . . . n do3

if A[i] > m then4
m← A[i]5

return m6

Algorithm C.2: Randomized max-finding algorithm

been permuted randomly). So the expected number of calls to Line 5 is∑
i = 1n E [Xi] =

∑n
i=1

1
i = Hn.

C.7.4 Random graph coloring

Let G be a random d-regular graph on n vertices, that is, a graph drawn
uniformly from the family of all n-vertex graph in which each vertex has
exactly d neighbors. Color the vertices of G red or blue independently at
random.

1. What is the expected number of monochromatic edges in G?

2. Show that the actual number of monochromatic edges is tightly con-
centrated around its expectation.

Solution

The fact that G is itself a random graph is a red herring; all we really need
to know is that it’s d-regular.

1. BecauseG has exactly dn/2 edges, and each edge has probability 1/2 of
being monochromatic, the expected number of monochromatic edges
is dn/4.

2. This is a job for Azuma’s inequality. Consider the vertex exposure
martingale. Changing the color of any one vertex changes the number
of monochromatic edges by at most d. So we have Pr [|X − E [X]| ≥ t] ≤
2 exp

(
−t2/2

∑n
i=1 d

2) = 2e−t2/2nd2 , which tells us that the deviation
is likely to be not much more than O(d

√
n).

Appendix D

Probabilistic recurrences
(not covered Spring 2013)

Randomized algorithms often produce recurrences with ugly sums embedded
inside them (see, for example, (1.3.1)). We’d like to have tools for pulling
at least asymptotic bounds out of these recurrences without having to deal
with the sums. This isn’t always possible, but for certain simple recurrences
we can make it work.

D.1 Recurrences with constant cost functions
Let us consider probabilistic recurrences of the form T (n) = 1 +T (n−Xn),
where Xn is a random variable with 0 < Xn ≤ n and T (0) = 0. We assume
we can compute a lower bound on E [Xn] for each n, and we want to translate
this lower bound into an upper bound on E [T (n)].

D.2 Examples
• How long does it take to get our first heads if we repeatedly flip a
coin that comes up heads with probability p? Even though we prob-
ably already know the answer to this, We can solve it by solving the
recurrence T (1) = 1 + T (1−X1), T (0) = 0, where E [X1] = p.

• Hoare’s FIND [Hoa61b], often called QuickSelect, is an algorithm
for finding the k-th smallest element of an unsorted array that works
like QuickSort, only after partitioning the array around a random pivot
we throw away the part that doesn’t contain our target and recurse

261

APPENDIX D. PROBABILISTIC RECURRENCES (NOT COVERED SPRING 2013)262

only on the surviving piece. How many rounds of this must we do?
Here E [Xn] is more complicated, since after splitting our array of size
n into piles of size n′ and n− n′ − 1, we have to pick one or the other
(or possibly just the pivot alone) based on the value of k.

• Suppose we start with n biased coins that each come up heads with
probability p. In each round, we flip all the coins and throw away the
ones that come up tails. How many rounds does it take to get rid of
all of the coins? (This essentially tells us how tall a skip list [Pug90]
can get.) Here we have E [Xn] = (1− p)n.

• In the coupon collector problem, we sample from 1 . . . n with re-
placement until we see ever value at least once. We can model this
by a recurrence in which T (k) is the time to get all the coupons given
there are k left that we haven’t seen. Here Xn is 1 with probability
k/n and 0 with probability (n− k)/n, giving E [Xn] = k/n.

• Let’s play Chutes and Ladders without the chutes and ladders. We
start at location n, and whenever it’s our turn, we roll a fair six-sided
die X and move to n−X unless this value is negative, in which case
we stay put until the next turn. How many turns does it take to get
to 0?

D.3 The Karp-Upfal-Wigderson bound
This is a bound on the expected number of rounds to finish a process where
we start with a problem instance of size n, and after one round of work we get
a new problem instance of size n−Xn, where Xn is a random variable whose
distribution depends on n. It was original described in a paper by Karp, Up-
fal, and Wigderson on analyzing parallel search algorithms [KUW88]. The
bound applies when E [Xn] is bounded below by a non-decreasing function
µ(n).

Lemma D.3.1. Let a be a constant, let T (n) = 1 + T (n −Xn), where for
each n, Xn is an integer-valued random variable satisfying 0 ≤ Xn ≤ n− a
and let T (a) = 0. Let E [Xn] ≥ µ(n) for all n > a, where µ is a positive
non-decreasing function of n. Then

E [T (n)] ≤
∫ n

a

1
µ(t) dt. (D.3.1)

APPENDIX D. PROBABILISTIC RECURRENCES (NOT COVERED SPRING 2013)263

To get an intuition for why this works, imagine that Xn is the speed
at which we drop from n, expressed in units per round. Traveling at this
speed, it takes 1/Xn rounds to cross from k + 1 to k for any such interval
we pass. From the point of view of the interval [k, k + 1], we don’t know
which n we are going to start from before we cross it, but we do know that
for any n ≥ k + 1 we start from, our speed will be at least µ(n) ≥ µ(k + 1)
on average. So the time it takes will be at most

∫ k+1
k

1
µ(t) dt on average, and

the total time is obtained by summing all of these intervals.
Of course, this intuition is not even close to a real proof (among other

things, there may be a very dangerous confusion in there between 1/E [Xn]
and E [1/Xn]), so we will give a real proof as well.

Proof of Lemma D.3.1. This is essentially the same proof as in Motwani and
Raghavan [MR95], but we add some extra detail to allow for the possibility
that Xn = 0.

Let p = Pr [Xn = 0], q = 1 − p = Pr [Xn 6= 0]. Note we have q > 0
because otherwise E [Xn] = 0 < µ(n). Then we have

E [T (n)] = 1 + E [T (n−Xn)]
= 1 + pE [T (n−Xn) | Xn = 0] + qE [T (n−Xn) | Xn 6= 0]
= 1 + pE [T (n)] + qE [T (n−Xn) | Xn 6= 0] .

Now we have E [T (n)] on both sides, which we don’t like very much. So
we collect it on the left-hand side:

(1− p) E [T (n)] = 1 + qE [T (n−Xn) | Xn 6= 0] ,

divide both sides by q = 1− p, and apply the induction hypothesis:

E [T (n)] = 1/q + E [T (n−Xn) | Xn 6= 0]
= 1/q + E [E [T (n−Xn) | Xn] | Xn 6= 0]

≤ 1/q + E
[∫ n−Xn

a

1
µ(t) dt

∣∣∣∣∣ Xn 6= 0
]

= 1/q + E
[∫ n

a

1
µ(t) dt−

∫ n

n−Xn

1
µ(t) dt

∣∣∣∣ Xn 6= 0
]

≤ 1/q +
∫ n

a

1
µ(t) dt− E

[
Xn

µ(n)

∣∣∣∣ Xn 6= 0
]

≤ 1/q +
∫ n

a

1
µ(t) dt−

E [Xn | Xn 6= 0]
µ(n) .

APPENDIX D. PROBABILISTIC RECURRENCES (NOT COVERED SPRING 2013)264

The second-to-last step uses the fact that µ(t) ≤ µ(n)fort ≤ n.
It may seem like we don’t know what E [Xn | Xn 6= 0] is. But we know

that Xn ≥ 0, so we have E [Xn] = pE [Xn | Xn = 0] + qE [Xn | Xn 6= 0] =
qE [Xn | Xn 6= 0]. So we can solve for E [Xn | Xn 6= 0] = E[Xn]/q. So let’s
plug this in:

E [T (n)] ≤ 1/q +
∫ n

a

1
µ(t) dt−

E [Xn] /q
µ(n)

≤ 1/q +
∫ n

a

1
µ(t) dt− 1/q

=
∫ n

a

1
µ(t) dt.

This concludes the proof.

Now we just need to find some applications.

D.3.1 Waiting for heads

For the recurrence T (1) = 1+T (1−X1) with E [X1] = p, we set µ(n) = p and
get E [T (1)] ≤

∫ 1
0

1
p dt = 1

p , which happens to be exactly the right answer.

D.3.2 Quickselect

In Quickselect, we pick a random pivot and split the original array of size
n into three piles of size m (less than the pivot), 1 (the pivot itself), and
n−m−1 (greater than the pivot). We then figure out which of the three piles
contains the k-th smallest element (depend on how k compares tom−1) and
recurse, stopping when we hit a pile with 1 element. It’s easiest to analyze
this by assuming that we recurse in the largest of the three piles, i.e., that
our recurrence is T (n) = 1 + max(T (m), T (n−m− 1)), where m is uniform
in 0 . . . n− 1. The exact value of E [max(m,n−m− 1)] is a little messy to
compute (among other things, it depends on whether n is odd or even), but
it’s not hard to see that it’s always less than (3/4)n. So letting µ(n) = n/4,
we get

E [T (n)] ≤
∫ n

1

1
t/4 dt = 4 lnn.

APPENDIX D. PROBABILISTIC RECURRENCES (NOT COVERED SPRING 2013)265

D.3.3 Tossing coins

Here we have E [Xn] = (1− p)n. If we let µ(n) = (1− p)n and plug into the
formula without thinking about it too much, we get

E [T (n)] ≤
∫ n

0

1
(1− p)t dt = 1

1− p(lnn− ln 0).

That ln 0 is trouble. We can fix it by making µ(n) = (1− p) dne, to get

E [T (n)] ≤
∫ n

0+

1
(1− p)dte dt

= 1
1− p

n∑
k=1

1
k

= Hn

1− p.

D.3.4 Coupon collector

Now that we know how to avoid dividing by zero, this is easy and fun. Let
µ(x) = dxe /n, then we have

E [T (n)] ≤
∫ n

0+

n

dte
dt

=
n∑
k=1

n

k

= nHn.

As it happens, this is the exact answer for this case. This will happen
whenever X is always a 0–1 variable1 and we define µ(x) = E [X | n = dxe],
which can be seen by spending far too much time thinking about the precise
sources of error in the inequalities in the proof.

D.3.5 Chutes and ladders

Let µ(n) be the expected drop from position n. We have to be a little
bit careful about small n, but we can compute that in general µ(n) =

1A 0–1 random variable is also called a Bernoulli random variable, but 0–1 is
shorter to type and more informative. Even more confusing, the underlying experiment
that gives rise to a Bernoulli random variable goes by the entirely different name of a
Poisson trial. Jacob Bernoulli and Siméon-Denis Poisson were great mathematicians,
but there are probably better ways to remember them.

APPENDIX D. PROBABILISTIC RECURRENCES (NOT COVERED SPRING 2013)266

1
6
∑min(n,6)
i=0 i. For fractional values x we will set µ(x) = µ(dxe) as before.

Then we have

E [T (n)] ≤
∫ n

0+

1
µ(t) dt

=
n∑
k=1

1
µ(k)

We can summarize the values in the following table:

n µ(n) 1/µ(n)
∑

1/µ(k)
1 1/6 6 6
2 1/2 2 8
3 1 1 9
4 5/3 3/5 48/5
5 5/2 2/5 10
≥ 6 7/2 2/7 10 + (2/7)(n− 5) = (2/7)n+ 65/7

This is a slight overestimate; for example, we can calculate by hand
that the expected waiting time for n = 2 is 6 and for n = 3 that it is
20/3 = 6 + 2/3.

We can also consider the generalized version of the game where we start
at n and drop by 1 . . . n each turn as long as the drop wouldn’t take us below
0. Now the expected drop from position k is k(k + 1)/2n, and so we can
apply the formula to get

E [T (n)] ≤
n∑
k=1

2n
k(k + 1) .

The sum of 1
k(k+1) when k goes from 1 to n happens to have a very nice

value; it’s exactly n
n+1 = 1 + 1

n+1 .
2 So in this case we can rewrite the bound

as 2n · n
n+1 = 2n2

n+1 .

D.4 High-probability bounds
So far we have only considered bounds on the expected value of T (n). Sup-
pose we want to show that T (n) is in fact small with high probability, i.e.,

2Proof: Trivially true for n = 0; for larger n, compute
∑n

k=1
1

k(k+1)
∑n−1

k=1
1

k(k+1) +
1

n(n+1) = n−1
n

+ 1
n(n+1) = (n−1)(n+1)−1

n(n+1) = n2

n(n+1) = n/(n+ 1).

APPENDIX D. PROBABILISTIC RECURRENCES (NOT COVERED SPRING 2013)267

a statement of the form Pr [T (n) ≥ t] ≤ ε. There are two natural ways to
do this: we can repeatedly apply Markov’s inequality to the expectation
bound, or we can attempt to analyze the recurrence in more detail. The
first method tends to give weaker bounds but it’s easier.

D.4.1 High-probability bounds from expectation bounds

Given E [T (n)] ≤ m, we have Pr [T (n) ≥ αm] ≤ α−1. This does not give
a very good bound on probability; if we want to show Pr [T (n) ≥ t] ≤ n−c

for some constant c (a typical high-probability bound), we need t ≥ ncm.
But we can get a better bound if m bounds the expected time starting from
any reachable state, as is the case for the class of problems we have been
considering.

The idea is that if T (n) exceeds αm, we restart the analysis and ar-
gue that Pr [T (n) ≥ 2αm | T (n) ≥ αm] ≤ α−1, from which it follows that
Pr [T (n) ≥ 2αm] ≤ α−2. In general, for any non-negative integer k, we have
Pr [T (n) ≥ kαm] ≤ α−k. Now we just need to figure out how to pick α to
minimize this quantity for fixed t.

Let t = kαm. Then k = t/αm and we seek to minimize α−t/αm. Taking
the logarithm gives −(t/m)(lnα)/α. The t/m factor is irrelevant to the
minimization problem, so we are left with minimizing −(lnα)/α. Taking
the derivative gives −α−2 + α−2 lnα; this is zero when lnα = 1 or α = e.
(This popular constant shows up often in problems like this.) So we get
Pr [T (n) ≥ kem] ≤ e−k, or, letting k = ln(1/ε), Pr [T (n) ≥ em ln(1/ε)] ≤ ε.

So, for example, we can get an n−c bound on the probability of running
too long by setting our time bound to em ln(nc) = cem lnn = O(m logn).
We can’t hope to do better than O(m), so this bound is tight up to a log
factor.

D.4.2 Detailed analysis of the recurrence

As Lance Fortnow has explained,3 getting rid of log factors is what the-
oretical computer science is all about. So we’d like to do better than an
O(m logn) bound if we can. In some cases this is not too hard.

Suppose for each n, T (n) = 1 + T (X), where E [X] ≤ αn for a fixed
constant α. Let X0 = n, and let X1, X2, etc., be the sequence of sizes of
the remaining problem at time 1, 2, etc. Then we have E [X1] ≤ αn from
our assumption. But we also have E [X2] = E [E [X2 | X1]] ≤ E [αX1] =
αE [X1] ≤ α2n, and by induction we can show that E [Xk] ≤ αkn for all

3http://weblog.fortnow.com/2009/01/soda-and-me.html

http://weblog.fortnow.com/2009/01/soda-and-me.html

APPENDIX D. PROBABILISTIC RECURRENCES (NOT COVERED SPRING 2013)268

k. Since Xk is integer-valued, E [Xk] is an upper bound on Pr [Xk > 0]; we
thus get Pr [T (n) ≥ k] = Pr [Xk > 0] ≤ αkn. We can solve for the value of k
that makes this less than ε: k = − log(n/ε)/ logα = log1/α n+ log1/α(1/ε).

For comparison, the bound on the expectation of T (n) from Lemma D.3.1
is H(n)/(1 − α). This is actually pretty close to log1/α n when α is close
to 1, and is not too bad even for smaller α. But the difference is that the
dependence on log(1/ε) is additive with the tighter analysis, so for fixed c
we get Pr [T (n) ≥ t] ≤ n−c at t = O(logn + lognc) = O(logn) instead of
O(logn lognc) = O(log2 n).

D.5 More general recurrences
We didn’t do these, but if we had to, it might be worth looking at Roura’s
Improved Master Theorems [Rou01].

Bibliography

[AA11] Dan Alistarh and James Aspnes. Sub-logarithmic test-and-set
against a weak adversary. In Distributed Computing: 25th In-
ternational Symposium, DISC 2011, volume 6950 of Lecture
Notes in Computer Science, pages 97–109. Springer-Verlag,
September 2011.

[ABMRT96] Arne Andersson, Peter Bro Miltersen, Søren Riis, and Mikkel
Thorup. Static dictionaries on AC0 RAMs: Query time
θ(
√

logn/ log logn) is necessary and sufficient. In FOCS, pages
441–450, 1996.

[Ach03] Dimitris Achlioptas. Database-friendly random projections:
Johnson-Lindenstrauss with binary coins. J. Comput. Syst.
Sci., 66(4):671–687, June 2003.

[Adl78] Leonard Adleman. Two theorems on random polynomial time.
In Proceedings of the 19th Annual Symposium on Foundations
of Computer Science, pages 75–83, Washington, DC, USA,
1978. IEEE Computer Society.

[AF01] David Aldous and James Allen Fill. Reversible Markov
chains and random walks on graphs. Unpublished manuscript,
available at http://www.stat.berkeley.edu/~aldous/RWG/
book.html, 2001.

[AKS83] M. Ajtai, J. Komlós, and E. Szemerédi. An O(n log n) sort-
ing network. In STOC ’83: Proceedings of the fifteenth an-
nual ACM symposium on Theory of computing, pages 1–9, New
York, NY, USA, 1983. ACM.

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES
is in P. Annals of Mathematics, 160:781–793, 2004.

269

http://www.stat.berkeley.edu/~aldous/RWG/book.html
http://www.stat.berkeley.edu/~aldous/RWG/book.html

BIBLIOGRAPHY 270

[Alo91] Noga Alon. A parallel algorithmic version of the local lemma.
Random Structures & Algorithms, 2(4):367–378, 1991.

[AS92] Noga Alon and Joel H. Spencer. The Probabilistic Method.
John Wiley & Sons, 1992.

[AS07] James Aspnes and Gauri Shah. Skip graphs. ACM Transac-
tions on Algorithms, 3(4):37, November 2007.

[Asp12] James Aspnes. Faster randomized consensus with an oblivious
adversary. In 2012 ACM Symposium on Principles of Dis-
tributed Computing, pages 1–8, July 2012.

[AVL62] G. M. Adelson-Velskii and E. M. Landis. An information orga-
nization algorithm. Doklady Akademia Nauk SSSR, 146:263–
266, 1962.

[AW96] James Aspnes and Orli Waarts. Randomized consensus in
o(n log2 n) operations per processor. SIAM Journal on Com-
puting, 25(5):1024–1044, October 1996.

[Azu67] Kazuoki Azuma. Weighted sums of certain dependent random
variables. Tôhoku Mathematical Journal, 19(3):357–367, 1967.

[Bab79] László Babai. Monte-carlo algorithms in graph isomorphism
testing. Technical Report D.M.S. 79-10, Université de Mon-
tréal, 1979.

[BBBV97] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and
Umesh Vazirani. Strengths and weaknesses of quantum com-
puting. SIAM J. Comput., 26(5):1510–1523, October 1997.

[BD92] Dave Bayer and Persi Diaconis. Trailing the dovetail shuffle to
its lair. Annals of Applied Probability, 2(2):294–313, 1992.

[Bec91] József Beck. An algorithmic approach to the lovász local
lemma. i. Random Structures & Algorithms, 2(4):343–365,
1991.

[Bel57] Richard Earnest Bellman. Dynamic Programming. Princeton
University Press, 1957.

[Blo70] Burton H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Commun. ACM, 13(7):422–426, 1970.

BIBLIOGRAPHY 271

[Bol01] Béla Bollobás. Random Graphs. Cambridge University Press,
second edition, 2001.

[Bro86] Andrei Z. Broder. How hard is to marry at random? (on
the approximation of the permanent). In Proceedings of the
Eighteenth Annual ACM Symposium on Theory of Comput-
ing, 28-30 May 1986, Berkeley, California, USA, pages 50–58,
1986.

[Bro88] Andrei Z. Broder. Errata to “how hard is to marry at random?
(on the approximation of the permanent)”. In Proceedings of
the Twentieth Annual ACM Symposium on Theory of Comput-
ing, 2-4 May 1988, Chicago, Illinois, USA, page 551, 1988.

[BRSW06] Boaz Barak, Anup Rao, Ronen Shaltiel, and Avi Wigderson.
2-source dispersers for sub-polynomial entropy and Ramsey
graphs beating the Frankl-Wilson construction. In Proceed-
ings of the thirty-eighth annual ACM symposium on Theory of
computing, STOC ’06, pages 671–680, New York, NY, USA,
2006. ACM.

[CCFC04] Moses Charikar, Kevin Chen, and Martin Farach-Colton.
Finding frequent items in data streams. Theor. Comput. Sci.,
312(1):3–15, 2004.

[CM03] Saar Cohen and Yossi Matias. Spectral bloom filters. In
Alon Y. Halevy, Zachary G. Ives, and AnHai Doan, editors,
Proceedings of the 2003 ACM SIGMOD International Confer-
ence on Management of Data, San Diego, California, USA,
June 9-12, 2003, pages 241–252, 2003.

[CM05] Graham Cormode and S. Muthukrishnan. An improved data
stream summary: the count-min sketch and its applications.
J. Algorithms, 55(1):58–75, 2005.

[CS00] Artur Czumaj and Christian Scheideler. Coloring non-uniform
hypergraphs: a new algorithmic approach to the general Lovász
local lemma. In Proceedings of the eleventh annual ACM-SIAM
symposium on Discrete algorithms, SODA ’00, pages 30–39,
Philadelphia, PA, USA, 2000. Society for Industrial and Ap-
plied Mathematics.

BIBLIOGRAPHY 272

[CW77] J. Lawrence Carter and Mark N. Wegman. Universal classes of
hash functions (extended abstract). In Proceedings of the ninth
annual ACM symposium on Theory of computing, STOC ’77,
pages 106–112, New York, NY, USA, 1977. ACM.

[Deu89] David Deutsch. Quantum computational networks. Proceed-
ings of the Royal Society of London. A. Mathematical and
Physical Sciences, 425(1868):73–90, 1989.

[Dev88] Luc Devroye. Applications of the theory of records in the study
of random trees. Acta Informatica, 26(1-2):123–130, October
1988.

[DG00] Martin Dyer and Catherine Greenhill. On Markov chains for
independent sets. J. Algorithms, 35:17–49, April 2000.

[DGM02] Martin Dyer, Catherine Greenhill, and Mike Molloy. Very
rapid mixing of the Glauber dynamics for proper colorings on
bounded-degree graphs. Random Struct. Algorithms, 20:98–
114, January 2002.

[DHKP97] Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and
Martti Penttonen. A reliable randomized algorithm for the
closest-pair problem. J. Algorithms, 25(1):19–51, 1997.

[Dir39] P. A. M. Dirac. A new notation for quantum mechanics. Math-
ematical Proceedings of the Cambridge Philosophical Society,
35:416–418, 6 1939.

[DJ92] David Deutsch and Richard Jozsa. Rapid solution of prob-
lems by quantum computation. Proceedings of the Royal Soci-
ety of London. Series A: Mathematical and Physical Sciences,
439(1907):553–558, 1992.

[Dum56] A. I. Dumey. Indexing for rapid random-access memory. Com-
puters and Automation, 5(12):6–9, 1956.

[Dye03] Martin Dyer. Approximate counting by dynamic program-
ming. In Proceedings of the thirty-fifth annual ACM sympo-
sium on Theory of computing, STOC ’03, pages 693–699, New
York, NY, USA, 2003. ACM.

BIBLIOGRAPHY 273

[EL75] Paul Erdős and Laszlo Lovász. Problems and results on 3-
chromatic hypergraphs and some related questions. In A. Ha-
jnal, R. Rado, and V. T. Sós, editors, Infinite and Finite Sets
(to Paul Erdős on his 60th birthday), pages 609–627. North-
Holland, 1975.

[Erd45] P. Erdős. On a lemma of Littlewood and Offord. Bulletin of
the American Mathematical Society, 51(12):898–902, 1945.

[Erd47] P. Erdős. Some remarks on the theory of graphs. Bulletin of
the American Mathematical Society, 53:292–294, 1947.

[ES35] P. Erdős and G. Szekeres. A combinatorial problem in geome-
try. Compositio Mathematica, 2:463–470, 1935.

[FCAB00] Li Fan, Pei Cao, Jussara M. Almeida, and Andrei Z. Broder.
Summary cache: a scalable wide-area web cache sharing pro-
tocol. IEEE/ACM Trans. Netw., 8(3):281–293, 2000.

[Fel68] William Feller. An Introduction to Probability Theory and Its
Applications, volume 1. Wiley, third edition, 1968.

[Fel71] William Feller. An Introduction to Probability Theory and Its
Applications, volume 2. Wiley, second edition, 1971.

[FKS84] M.L. Fredman, J. Komlós, and E. Szemerédi. Storing a Sparse
Table with O(1) Worst Case Access Time. Journal of the ACM
(JACM), 31(3):538–544, 1984.

[FNM85] Philippe Flajolet and G Nigel Martin. Probabilistic counting
algorithms for data base applications. Journal of computer and
system sciences, 31(2):182–209, 1985.

[FPSS03] Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul Spi-
rakis. Space efficient hash tables with worst case constant ac-
cess time. In Helmut Alt and Michel Habib, editors, STACS
2003, volume 2607 of Lecture Notes in Computer Science,
pages 271–282. Springer Berlin Heidelberg, 2003.

[FR75] Robert W. Floyd and Ronald L. Rivest. Expected time bounds
for selection. Commun. ACM, 18(3):165–172, 1975.

[GKP88] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik.
Concrete Mathematics: A Foundation for Computer Science.
Addison-Wesley, 1988.

BIBLIOGRAPHY 274

[Goo83] Nelson Goodman. Fact, Fiction, and Forecast. Harvard Uni-
versity Press, 1983.

[GR93] Igal Galperin and Ronald L. Rivest. Scapegoat trees. In Pro-
ceedings of the Fourth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 165–174. Society for Industrial and Ap-
plied Mathematics, 1993.

[Gro96] Lov K Grover. A fast quantum mechanical algorithm for
database search. In Proceedings of the twenty-eighth annual
ACM symposium on Theory of computing, pages 212–219.
ACM, 1996. Available as http://arxiv.org/abs/quant-ph/
9605043.

[GS78] Leo J. Guibas and Robert Sedgewick. A dichromatic frame-
work for balanced trees. In Foundations of Computer Science,
1978., 19th Annual Symposium on, pages 8–21. IEEE, 1978.

[GS92] G. R. Grimmet and D. R. Stirzaker. Probability and Random
Processes. Oxford Science Publications, 2nd edition, 1992.

[GS01] Geoffrey R. Grimmett and David R. Stirzaker. Probability and
Random Processes. Oxford University Press, 2001.

[Gur00] Venkatesen Guruswami. Rapidly mixing Markov chains: A
comparison of techniques. Available at ftp://theory.lcs.
mit.edu/pub/people/venkat/markov-survey.ps, 2000.

[GW94] Michel X. Goemans and David P. Williamson. New 3/4-
approximation algorithms for the maximum satisfiability prob-
lem. SIAM J. Discret. Math., 7:656–666, November 1994.

[GW95] Michel X. Goemans and David P. Williamson. Improved
approximation algorithms for maximum cut and satisfiabil-
ity problems using semidefinite programming. Journal of the
ACM, 42(6):1115–1145, 1995.

[Has70] W. K. Hastings. Monte carlo sampling methods using Markov
chains and their applications. Biometrika, 57(1):97–109, 1970.

[HH80] P. Hall and C.C. Heyde. Martingale Limit Theory and Its
Application. Academic Press, 1980.

http://arxiv.org/abs/quant-ph/9605043
http://arxiv.org/abs/quant-ph/9605043
ftp://theory.lcs.mit.edu/pub/people/venkat/markov-survey.ps
ftp://theory.lcs.mit.edu/pub/people/venkat/markov-survey.ps

BIBLIOGRAPHY 275

[HK73] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for
maximum matchings in bipartite graphs. SIAM J. Comput.,
2(4):225–231, 1973.

[Hoa61a] C. A. R. Hoare. Algorithm 64: Quicksort. Commun. ACM,
4:321, July 1961.

[Hoa61b] C. A. R. Hoare. Algorithm 65: find. Commun. ACM, 4:321–
322, July 1961.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of
bounded random variables. Journal of the American Statis-
tical Association, 58(301):13–30, March 1963.

[HST08] Maurice Herlihy, Nir Shavit, and Moran Tzafrir. Hopscotch
hashing. In Proceedings of the 22nd international symposium
on Distributed Computing, DISC ’08, pages 350–364, Berlin,
Heidelberg, 2008. Springer-Verlag.

[IM98] Piotr Indyk and Rajeev Motwani. Approximate nearest neigh-
bors: Towards removing the curse of dimensionality. In STOC,
pages 604–613, 1998.

[JL84] William B. Johnson and Joram Lindenstrauss. Extensions of
Lipschitz mappings into a Hilbert space. In Conference in
Modern Analysis and Probability (New Haven, Connecticut,
1982), number 26 in Contemporary Mathematics, pages 189–
206. American Mathematical Society, 1984.

[JLR00] Svante Janson, Tomasz Łuczak, and Andrezej Ruciński. Ran-
dom Graphs. John Wiley & Sons, 2000.

[JS89] Mark Jerrum and Alistair Sinclair. Approximating the perma-
nent. SIAM J. Comput., 18(6):1149–1178, 1989.

[JSV04] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A
polynomial-time approximation algorithm for the permanent
of a matrix with nonnegative entries. J. ACM, 51(4):671–697,
2004.

[Kar93] David R. Karger. Global min-cuts in rnc, and other ramifi-
cations of a simple min-out algorithm. In Proceedings of the
fourth annual ACM-SIAM Symposium on Discrete algorithms,

BIBLIOGRAPHY 276

SODA ’93, pages 21–30, Philadelphia, PA, USA, 1993. Society
for Industrial and Applied Mathematics.

[KL85] Richard M. Karp and Michael Luby. Monte-carlo algorithms
for the planar multiterminal network reliability problem. J.
Complexity, 1(1):45–64, 1985.

[KM08] Adam Kirsch and Michael Mitzenmacher. Less hashing, same
performance: Building a better bloom filter. Random Struct.
Algorithms, 33(2):187–218, 2008.

[KNW10] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An op-
timal algorithm for the distinct elements problem. In Proceed-
ings of the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS ’10,
pages 41–52, New York, NY, USA, 2010. ACM.

[Kol33] A.N. Kolmogorov. Grundbegriffe der Wahrscheinlichkeitsrech-
nung. Springer, 1933.

[KR99] V. S. Anil Kumar and H. Ramesh. Markovian coupling vs.
conductance for the jerrum-sinclair chain. In FOCS, pages
241–252, 1999.

[KS76] J.G. Kemeny and J.L. Snell. Finite Markov Chains: With
a New Appendix “Generalization of a Fundamental Matrix”.
Undergraduate Texts in Mathematics. Springer, 1976.

[KSK76] John G. Kemeny, J. Laurie. Snell, and Anthony W. Knapp.
Denumerable Markov Chains, volume 40 of Graduate Texts in
Mathematics. Springer, 1976.

[KT75] Samuel Karlin and Howard M. Taylor. A First Course in
Stochastic Processes. Academic Press, second edition, 1975.

[KUW88] Richard M. Karp, Eli Upfal, and Avi Wigderson. The com-
plexity of parallel search. Journal of Computer and System
Sciences, 36(2):225–253, 1988.

[Li80] Shuo-Yen Robert Li. A martingale approach to the study of oc-
currence of sequence patterns in repeated experiments. Annals
of Probability, 8(6):1171–1176, 1980.

BIBLIOGRAPHY 277

[Lin92] Torgny Lindvall. Lectures on the Coupling Method. Wiley,
1992.

[Lub85] Michael Luby. A simple parallel algorithm for the maximal
independent set problem. In Proceedings of the seventeenth
annual ACM symposium on Theory of computing, pages 1–10,
New York, NY, USA, 1985. ACM.

[LV97] Michael Luby and Eric Vigoda. Approximately counting up to
four (extended abstract). In Proceedings of the twenty-ninth
annual ACM symposium on Theory of computing, STOC ’97,
pages 682–687, New York, NY, USA, 1997. ACM.

[LV99] Michael Luby and Eric Vigoda. Fast convergence of the
Glauber dynamics for sampling independent sets. Random
Structures & Algorithms, 15(3–4):229–241, 1999.

[LW05] Michael Luby and Avi Wigderson. Pairwise independence and
derandomization. Foundations and Trends in Theoretical Com-
puter Science, 1(4):237–301, 2005.

[McC85] Edward M. McCreight. Priority search trees. SIAM J. Com-
put., 14(2):257–276, 1985.

[McD89] Colin McDiarmid. On the method of bounded differences. In
Surveys in Combinatorics, 1989: Invited Papers at the Twelfth
British Combinatorial Conference, pages 148–188, 1989.

[MH92] Colin McDiarmid and Ryan Hayward. Strong concentration
for Quicksort. In Proceedings of the Third Annual ACM-SIAM
Symposium on Discrete algorithms, SODA ’92, pages 414–421,
Philadelphia, PA, USA, 1992. Society for Industrial and Ap-
plied Mathematics.

[Mil76] Gary L. Miller. Riemann’s hypothesis and tests for primal-
ity. Journal of Computer and System Sciences, 13(3):300–317,
1976.

[ML86] Lothar F. Mackert and Guy M. Lohman. R* optimizer vali-
dation and performance evaluation for distributed queries. In
Wesley W. Chu, Georges Gardarin, Setsuo Ohsuga, and Yahiko
Kambayashi, editors, VLDB’86 Twelfth International Confer-
ence on Very Large Data Bases, August 25-28, 1986, Kyoto,
Japan, Proceedings, pages 149–159. Morgan Kaufmann, 1986.

BIBLIOGRAPHY 278

[MN98] Makoto Matsumoto and Takuji Nishimura. Mersenne twister:
a 623-dimensionally equidistributed uniform pseudo-random
number generator. ACM Trans. Model. Comput. Simul., 8:3–
30, January 1998.

[Mos09] Robin A. Moser. A constructive proof of the Lovász local
lemma. In Proceedings of the 41st annual ACM Symposium on
Theory of Computing, STOC ’09, pages 343–350, New York,
NY, USA, 2009. ACM.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algo-
rithms. Cambridge University Press, 1995.

[MR98] Michael Molloy and Bruce Reed. Further algorithmic aspects
of the local lemma. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing, STOC ’98, pages 524–529,
New York, NY, USA, 1998. ACM.

[MRR+53] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N.
Rosenbluth, Augusta H. Teller, and Edward Teller. Equation
of state calculations by fast computing machines. J. Chem.
Phys., 21(6):1087–1092, 1953.

[MT10] Robin A. Moser and Gábor Tardos. A constructive proof of the
general Lovász local lemma. J. ACM, 57:11:1–11:15, February
2010.

[MU05] Michael Mitzenmacher and Eli Upfal. Probability and Comput-
ing: Randomized Algorithms and Probabilistic Analysis. Cam-
bridge University Press, 2005.

[MWW07] Elchanan Mossel, Dror Weitz, and Nicholas Wormald. On the
hardness of sampling independent sets beyond the tree thresh-
old. Available as http://arxiv.org/abs/math/0701471,
2007.

[Pag01] Rasmus Pagh. On the cell probe complexity of membership
and perfect hashing. In STOC, pages 425–432, 2001.

[Pag06] Rasmus Pagh. Cuckoo hashing for undergraduates.
Available at http://www.it-c.dk/people/pagh/papers/
cuckoo-undergrad.pdf, 2006.

http://arxiv.org/abs/math/0701471
http://www.it-c.dk/people/pagh/papers/cuckoo-undergrad.pdf
http://www.it-c.dk/people/pagh/papers/cuckoo-undergrad.pdf

BIBLIOGRAPHY 279

[PPR05] Anna Pagh, Rasmus Pagh, and S. Srinivasa Rao. An optimal
bloom filter replacement. In Proceedings of the Sixteenth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA
2005, Vancouver, British Columbia, Canada, January 23-25,
2005, pages 823–829. SIAM, 2005.

[PR04] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing.
J. Algorithms, 51(2):122–144, 2004.

[PT12] Mihai Patrascu and Mikkel Thorup. The power of simple tab-
ulation hashing. J. ACM, 59(3):14, 2012.

[Pug90] William Pugh. Skip Lists: A Probabilistic Alternative to Bal-
anced Trees. Communications of the ACM, 33(6):668–676,
June 1990.

[Rab80] Michael O Rabin. Probabilistic algorithm for testing primality.
Journal of Number Theory, 12(1):128–138, 1980.

[Rag88] Prabhakar Raghavan. Probabilistic construction of determin-
istic algorithms: approximating packing integer programs. J.
Comput. Syst. Sci., 37:130–143, October 1988.

[Rou01] Salvador Roura. Improved master theorems for divide-and-
conquer recurrences. J. ACM, 48:170–205, March 2001.

[RT87] Prabhakar Raghavan and Clark D. Tompson. Randomized
rounding: a technique for provably good algorithms and al-
gorithmic proofs. Combinatorica, 7:365–374, December 1987.

[SA96] Raimund Seidel and Cecilia R. Aragon. Randomized
search trees. Algorithmica, 16(4/5):464–497, 1996. Avail-
able at http://people.ischool.berkeley.edu/~aragon/
pubs/rst96.pdf.

[She11] Irina Shevtsova. On the asymptotically exact constants in
the Berry-Esseen-Katz inequality. Theory of Probability & Its
Applications, 55(2):225–252, 2011. A preprint is available at
http://arxiv.org/pdf/1111.6554.pdf.

[Sho97] Peter W Shor. Polynomial-time algorithms for prime factor-
ization and discrete logarithms on a quantum computer. SIAM
journal on computing, 26(5):1484–1509, 1997.

http://people.ischool.berkeley.edu/~aragon/pubs/rst96.pdf
http://people.ischool.berkeley.edu/~aragon/pubs/rst96.pdf
http://arxiv.org/pdf/1111.6554.pdf

BIBLIOGRAPHY 280

[Spu12] Francis Spufford. Red Plenty. Graywolf Press, 2012.

[Sri08] Aravind Srinivasan. Improved algorithmic versions of the
Lovász local lemma. In Proceedings of the nineteenth annual
ACM-SIAM symposium on Discrete algorithms, SODA ’08,
pages 611–620, Philadelphia, PA, USA, 2008. Society for In-
dustrial and Applied Mathematics.

[SS87] E. Shamir and J. Spencer. Sharp concentration of the chro-
matic number on random graphs Gn,p. Combinatorica, 7:121–
129, January 1987.

[Str03] Gilbert Strang. Introduction to linear algebra. Wellesley-
Cambridge Press, 2003.

[Tod91] Seinosuke Toda. Pp is as hard as the polynomial-time hierar-
chy. SIAM J. Comput., 20(5):865–877, 1991.

[Tof80] Tommaso Toffoli. Reversible computing. Technical Report
MIT/LCS/TM-151, MIT Laboratory for Computer Science,
1980.

[Val79] Leslie G. Valiant. The complexity of computing the permanent.
Theor. Comput. Sci., 8:189–201, 1979.

[Val82] Leslie G. Valiant. A scheme for fast parallel communication.
SIAM J. Comput., 11(2):350–361, 1982.

[VB81] Leslie G. Valiant and Gordon J. Brebner. Universal schemes
for parallel communication. In STOC, pages 263–277. ACM,
1981.

[Vui80] Jean Vuillemin. A unifying look at data structures. Commu-
nications of the ACM, 23(4):229–239, 1980.

[VV86] Leslie G. Valiant and Vijay V. Vazirani. Np is as easy as
detecting unique solutions. Theor. Comput. Sci., 47(3):85–93,
1986.

[Wil04] David Bruce Wilson. Mixing times of lozenge tiling and
card shuffling Markov chains. Annals of Applied Probability,
14(1):274–325, 2004.

BIBLIOGRAPHY 281

[Wil06] Herbert S. Wilf. generatingfunctionology. A. K. Peters, third
edition, 2006. Second edition is available on-line at http://
www.math.penn.edu/~wilf/DownldGF.html.

http://www.math.penn.edu/~wilf/DownldGF.html
http://www.math.penn.edu/~wilf/DownldGF.html

Index

(r1, r2, p1, p2)-sensitive, 96
3-way cut, 242
G(n, p), 62
ε-NNS, 96
ε-PLEB, 96
ε-nearest neighbor search, 96
ε-point location in equal balls, 96
ε-PLEB, 96
σ-algebra, 12, 29
σ-algebra

generated by a random variable,
29

d-ary cuckoo hashing, 86
k-CNF formula, 169
k-universal, 78
k-wise independence, 21
#DNF, 151, 152
#P, 150
#SAT, 150
0–1 random variable, 265
2-universal, 78

adapted, 109
adapted sequence of random variables,

102
adaptive adversary, 71
Adleman’s theorem, 179
adversary

adaptive, 71
oblivious, 71

advice, 179
Aldous-Fill manuscript, 123

algorithm
Deutsch’s, 194

amplitude
probability, 185

ancestor, 71
common, 71

annealing schedule, 135
anti-concentration bound, 64
aperiodic, 115
approximation algorithm, 164
approximation ratio, 164
approximation scheme

fully polynomial-time, 153
fully polynomial-time randomized,

150
arithmetic coding, 232
augmenting path, 148
average-case analysis, 2
AVL tree, 67
avoiding worst-case inputs, 9
axioms of probability, 12
Azuma’s inequality, 54, 57
Azuma-Hoeffding inequality, 54

balanced, 66
Bernoulli random variable, 27, 265
Berry-Esseen theorem, 64
biased random walk, 108
binary search tree, 66

balanced, 66
binary tree, 66
binomial random variable, 27

282

INDEX 283

bipartite graph, 147
bit-fixing routing, 52, 145
Bloom filter, 87, 254

counting, 90
spectral, 91

Bloomjoin, 90
bowling, 206
bra, 188
bra-ket notation, 188
branching process, 174

canonical paths, 142
causal coupling, 137
CCNOT, 192
chaining, 77
Chapman-Kolmogorov equation, 112
Chebyshev’s inequality, 41
Cheeger constant, 140
Cheeger inequality, 141
chromatic number, 62
Chutes and Ladders, 262
circuit

quantum, 185
clause, 152, 164, 169
clique, 160
closed set of states, 115
CNOT, 192
collision, 9, 77
common ancestor, 71
common subsequence, 239
communicating states, 115
complement, 11
complex conjugate, 188
computation

randomized, 187
computation path, 179
computation tree, 179
concave, 39
concentration bound, 41
conditional expectation, 5, 28

conditional probability, 16
conductance, 140
congestion, 143
conjugate

complex, 188
conjugate transpose, 188
conjunctive normal form, 164
continuous random variable, 23
contraction, 20
controlled controlled NOT, 192
controlled NOT, 192
convex, 38
convex function, 38
Cook reduction, 150
count-min sketch, 92
countable additivity, 12
countable Markov chain, 112
counting Bloom filter, 90
coupling, 117

causal, 137
path, 130

coupling lemma, 124
coupling time, 125, 126
coupon collector problem, 31, 262
covariance, 42
cryptographic hash function, 9
cryptographically secure pseudoran-

dom generator, 178
cuckoo hashing, 83

d-ary, 86
cumulative distribution function, 23
curse of dimensionality, 96
cut

minimum, 19
cylinder set, 12

data stream computation, 91
decoherence, 190
dense, 147
dependency graph, 170

INDEX 284

derandomization, 177
detailed balance equations, 119
dictionary, 77
discrete probability space, 11
discrete random variable, 25
discretization, 101
disjunctive normal form, 152
distributed algorithms, 10
distribution, 23

geometric, 30
DNF formula, 152
dominating set, 222, 234
Doob decomposition theorem, 104
Doob martingale, 60, 181
dovetail shuffle, 129
drift process, 104

einselection, 190
Erdős-Szekeres theorem, 208, 240
ergodic, 115
ergodic theorem, 117
error budget, 35
Euler-Mascheroni constant, 32
event, 11
events

independent, 14
execution log, 174
expectation, 25

conditional, 28
conditioned on a σ-algebra, 29
conditioned on a random variable,

28
conditioned on an event, 28

expected time, 2
expected value, 2, 25
expected worst-case, 1
exponential generating function, 46

false positive, 87
filtration, 102

final exam, xi
fingerprint, 9
fingerprinting, 9
finite Markov chain, 112
first passage time, 114
Flajolet-Martin sketch, 210
FPRAS, 150
fractional solution, 164, 165
fully polynomial-time approximation

scheme, 153
fully polynomial-time randomized ap-

proximation scheme, 150
futile word search puzzle, 220

gate
Toffoli, 192

generated by, 29
generating function

exponential, 46
probability, 39

geometric distribution, 30
geometric random variable, 30
Glauber dynamics, 130, 132
graph

bipartite, 147
random, 22, 62

Grover diffusion operator, 196

Hadamard operator, 191
Hamming distance, 60
handwaving, 33, 174
harmonic number, 32
hash function, 9, 77

perfect, 82
tabulation, 81

hash functon
universal, 78

hash table, 9, 77
hashing, 9

cuckoo, 83

INDEX 285

hopscotch, 87
locality-sensitive, 95

heap, 69
heavy hitter, 92
high-probability bound, 1
Hoare’s FIND, 33, 261
Hoeffding’s inequality, 53
homogeneous, 112
hopscotch hashing, 87
hypercube network, 51, 61

inclusion-exclusion formula, 15
independence, 14

of events, 14
of sets of events, 21
pairwise, 21

independent, 14, 21
independent events, 14
independent random variables, 25
independent set, 160
index, 77
indicator random variable, 23
indicator variable, 32
inequality

Azuma’s, 54, 57
Azuma-Hoeffding, 54
Chebyshev’s, 41
Cheeger, 141
Hoeffding’s, 53
Markov’s, 37
McDiarmid’s, 60, 61

inner product, 188
integer program, 164
intercommunicate, 115
irreducible, 115
Iverson notation, 23

Johnson-Lindenstrauss theorem, 97
joint distribution, 23
joint probability mass function, 23

Karger’s min-cut algorithm, 19
Karp-Upfal-Wigderson bound, 262
ket, 188
key, 66, 77
KNAPSACK, 153
Kolmogorov extension theorem, 13

Las Vegas algorithm, 6
law of total expectation, 30
law of total probability, 5, 17
leader election, 10
left spine, 73
lemma

coupling, 124
Lovász local, 167

linear program, 164
linearity of expectation, 26
Lipschitz function, 60, 136
literal, 169
Littlewood-Offord problem, 65
load balancing, 9
load factor, 78
locality-sensitive hashing, 95
Lovász Local Lemma, 167

Markov chain, 111
reversible, 118

Markov process, 111
Markov’s inequality, 37
martingale, 57, 102

Doob, 181
vertex exposure, 62

martingale difference sequence, 57
martingale property, 102
matching, 146
matrix

stochastic, 187
unitary, 191

maximum cut, 163
McDiarmid’s inequality, 60, 61

INDEX 286

mean recurrence time, 114
measurable, 25, 29
measurable sets, 12
measurement, 187
method of bounded differences, 60
method of conditional probabilities,

181
Metropolis, 121
Metropolis-Hastings

convergence, 135
Metropolis-Hastings algorithm, 121
Miller-Rabin primality test, 4
min-cut, 19
minimum cut, 19
mixing

rapid, 126
mixing rate, 140
mixing time, 125
moment, 46
moment generating function, 45
Monte Carlo algorithm, 3, 7
multigraph, 19

nearest neighbor search, 96
NNS, 96
no-cloning theorem, 193
non-null persistent, 114
non-uniform, 180
norm, 190
normal form

conjunctive, 164
disjuctive, 152

notation
bra-ket, 188

null persistent, 114
number P, 150

objective function, 164
oblivious adversary, 71
open addressing, 77

operator
Grover diffusion, 196
Hadamard, 191

optimal solution, 164
optional stopping theorem, 104
outcomes, 11

pairwise independence, 42
pairwise independent, 21
paradox

St. Petersburg, 27
partition, 11
path coupling, 129, 130
perfect hash function, 82
perfect matching, 147
perfect matchings, 151
period, 115
periodic, 115
permanent, 151
permutation routing, 51
Perron-Frobenius theorem, 116
persistent state, 114
pessimistic estimator, 182
phase, 191
pivot, 4
point location in equal balls, 96
point query, 92
points, 11
Poisson trial, 265
polynomial-time hierarchy, 151
primality test

Miller-Rabin, 4
probabilistic method, 9, 158
probabilistic recurrence, 62
probability, 11

conditional, 16
probability amplification, 177, 179
probability amplitude, 185
probability generating function, 39
probability mass function, 23

INDEX 287

probability of A conditioned on B, 16
probability of A given B, 16
probability theory, 11
probing, 77
product

inner, 188
tensor, 186

pseudorandom generator, 177
cryptographically secure, 178

puzzle
word search, 220
futile, 220

quantum bit, 185
quantum circuit, 185
quantum computing, 185
qubit, 185
query

point, 92
QuickSelect, 33, 261
QuickSort, 4, 62

radix tree, 209
RAM, 1
random graph, 22, 62
random structure, 9
random variable, 2, 22

Bernoulli, 27
binomial, 27
discrete, 25
geometric, 30
indicator, 23

random walk, 107
biased, 108
unbiased, 107
with one absorbing barrier, 108
with two absorbing barriers, 107

random-access machine, 1
randomized computation, 187
randomized rounding, 155, 165

range coding, 232
rapid mixing, 126
reachable, 115
recurrence time, 114
red-black tree, 67
reduction, 150
rejection sampling, 121, 232
relax, 164
relaxation, 164
relaxation time, 140
renewal theorem, 116
reversible, 191
reversible Markov chain, 118
right spine, 73
ring-cover tree, 96
root, 3, 66
rotation, 66

tree, 66
routing

bit-fixing, 145
permutation, 51

run, 237

sampling, 7, 9
rejection, 121, 232

SAT, 258
satisfiability, 169
satisfiability problem, 163
satisfy, 164
scapegoat tree, 67
search tree

balanced, 66
binary, 66

second-moment method, 43
seed, 177
separate chaining, 77
sharp P, 150
sifter, 40
simplex method, 165
simulated annealing, 135

INDEX 288

sketch, 91
count-min, 92
Flajolet-Martin, 210

sorting network, 159
spanning tree, 251
spare, 206
spectral Bloom filter, 91
spectral representation formula, 139
spectral theorem, 138
spine

left, 73
right, 73

state space, 111
state vector, 185
stationary distribution, 113, 116
stochastic matrix, 112, 187
stochastic process, 111
stopping time, 102
strike, 206
strongly k-universal, 78
strongly 2-universal, 78
strongly connected, 115
submartingale, 103
subtree, 66
supermartingale, 57, 62, 103
symmetry breaking, 10

tabulation hashing, 81
tensor product, 186
theorem

Adleman’s, 179
Berry-Esseen, 64
Doob decomposition, 104
Erdős-Szekeres, 208
ergodic, 117
Johnson-Lindenstrauss, 97
Kolmogorov extension, 13
no-cloning, 193
optional stopping, 104
spectral, 138

Toda’s, 151
Valiant’s, 150

third moment, 64
time

coupling, 125, 126
expected, 2
first passage, 114
mean recurrence, 114
mixing, 125
recurrence, 114
relaxation, 140
stopping, 102

time-reversed chain, 120
Toda’s theorem, 151
Toffoli gate, 192
total path length, 68
total variation distance, 123
transformation

unitary, 191
transient state, 114
transition probabilities, 112
transpose

conjugate, 188
treap, 69, 208
tree

AVL, 67
binary, 66
binary search, 66
cartesian, 69
radix, 209
red-black, 67
ring-cover, 96
rotation, 66
scapegoat, 67
witness, 174

tree rotation, 66

unary, 101
unbiased random walk, 107
uniform, 180

INDEX 289

unitary matrix, 191
unitary transformation, 191
universal hash family, 78

Valiant’s theorem, 150
variance, 41
vector

state, 185
vertex exposure martingale, 62

Wald’s equation, 109
witness, 4, 180
witness tree, 174
word search puzzle, 220

futile, 220
worst-case analysis, 2

	Table of contents
	List of figures
	List of tables
	List of algorithms
	Preface
	Syllabus
	Lecture schedule
	Randomized algorithms
	A trivial example
	Verifying polynomial identities
	Randomized QuickSort
	Brute force method: solve the recurrence

	Classifying randomized algorithms by their goals
	Las Vegas vs Monte Carlo
	Randomized complexity classes

	Classifying randomized algorithms by their methods

	Probability theory
	Probability spaces and events
	General probability spaces

	Boolean combinations of events
	Conditional probability
	Application to algorithm analysis
	Example: racing coin-flips
	Example: Karger's min-cut algorithm

	Conditional probability and independence

	Random variables
	Operations on random variables
	Random variables and events
	Measurability
	Expectation
	Linearity of expectation
	Linearity of expectation for infinite sequences

	Expectation of a product

	Conditional expectation
	Applications
	Geometric random variables
	Coupon collector
	QuickSort
	Hoare's FIND

	Basic probabilistic inequalities
	Union bound (Boole's inequality)
	Applications
	Balls and bins
	Independent sets

	Markov's inequality
	Applications
	The union bound
	Fair coins
	Randomized QuickSort
	Balls in bins

	Jensen's inequality
	Applications
	Fair coins: lower bound
	Fair coins: upper bound
	Sifters

	Concentration bounds
	Chebyshev's inequality
	Examples
	Flipping coins
	Flipping non-independent coins
	Balls in bins
	Lazy select

	Chernoff bounds
	The classic Chernoff bound
	Chernoff bound variants
	Lower bound version of Chernoff bounds
	Asymptotic two-sided version
	Other tail bounds for the binomial distribution
	Applications
	Flipping coins
	Balls in bins again
	Flipping coins, central behavior
	Valiant's randomized hypercube routing

	The Azuma-Hoeffding inequality
	Hoeffding's inequality
	Azuma's inequality
	The method of bounded differences
	Applications

	Anti-concentration bounds
	The Berry-Esseen theorem
	The Littleword-Offord problem

	Randomized search trees
	Binary search trees
	Binary search tree with random insertions
	Treaps
	Assumption of an oblivious adversary
	Analysis
	Searches
	Insertions and deletions

	Other operations

	Skip lists

	Hashing
	Hash tables
	Universal hash families
	Example of a 2-universal hash family
	Tabulation hashing

	FKS hashing
	Cuckoo hashing
	Structure
	Analysis

	Practical issues
	Bloom filters
	False positives
	Comparison to optimal space
	Applications
	Counting Bloom filters
	Count-min sketches
	Initialization and updates
	Queries
	Finding heavy hitters

	Locality-sensitive hashing
	Approximate nearest neighbor search
	Locality-sensitive hash functions
	Constructing an (r1,r2)-PLEB
	Hash functions for Hamming distance
	Hash functions for l1 distance

	Martingales and stopping times
	Submartingales and supermartingales
	The optional stopping theorem
	Proof of the optional stopping theorem (optional)
	Variants
	Applications
	Random walks
	Wald's equation
	Waiting times for patterns

	Markov chains
	Basic definitions and properties
	Examples
	Classification of states
	Reachability

	Stationary distributions
	The ergodic theorem
	Proof for finite chains

	Reversible chains
	Basic examples
	Time-reversed chains
	Metropolis-Hastings

	Bounding convergence rates using the coupling method
	The basic coupling lemma
	Random walk on a cycle
	Random walk on a hypercube
	Various shuffling algorithms
	Move-to-top
	Random exchange of arbitrary cards
	Random exchange of adjacent cards
	Real-world shuffling

	Path coupling
	Sampling graph colorings
	Sampling independent sets
	Metropolis-Hastings and simulated annealing
	Single peak
	Single peak with very small amounts of noise

	Spectral methods for reversible chains
	Spectral properties of a reversible chain
	Conductance
	Edge expansion using canonical paths
	Congestion
	Examples
	Lazy random walk on a line
	Random walk on a hypercube
	Matchings in a graph
	Perfect matchings in dense bipartite graphs

	Approximate counting
	Exact counting
	Counting by sampling
	Approximating #DNF
	Approximating #KNAPSACK
	Approximating exponentially improbable events
	Matchings
	Other applications

	The probabilistic method
	Randomized constructions and existence proofs
	Unique hats
	Ramsey numbers
	Directed cycles in tournaments

	Approximation algorithms
	MAX CUT
	MAX SAT

	The Lovász Local Lemma
	General version
	Symmetric version
	Applications
	Graph coloring
	Satisfiability of k-CNF formulas

	Non-constructive proof
	Constructive proof

	Derandomization
	Deterministic vs. randomized algorithms
	Adleman's theorem
	Limited independence
	MAX CUT

	The method of conditional probabilities
	A trivial example
	Deterministic construction of Ramsey graphs
	MAX CUT
	Set balancing

	Quantum computing
	Random circuits
	Bra-ket notation
	States as kets
	Operators as sums of kets times bras

	Quantum circuits
	Quantum operations
	Quantum implementations of classical operations
	Representing Boolean functions
	Practical issues (which we will ignore)
	Quantum computations

	Deutsch's algorithm
	Grover's algorithm
	Initial superposition
	The Grover diffusion operator
	Effect of the iteration

	Assignments
	Assignment 1: due Wednesday, 2013-01-30, at 17:00
	Bureaucratic part
	Balls in bins
	A labeled graph
	Negative progress

	Assignment 2: due Thursday, 2013-02-14, at 17:00
	A local load-balancing algorithm
	An assignment problem
	Detecting excessive collusion

	Assignment 3: due Wednesday, 2013-02-27, at 17:00
	Going bowling
	Unbalanced treaps
	Random radix trees

	Assignment 4: due Wednesday, 2013-03-27, at 17:00
	Flajolet-Martin sketches with deletion
	An adaptive hash table
	An odd locality-sensitive hash function

	Assignment 5: due Friday, 2013-04-12, at 17:00
	Choosing a random direction
	Random walk on a tree
	Sampling from a tree

	Assignment 6: due Friday, 2013-04-26, at 17:00
	Increasing subsequences
	Futile word searches
	Balance of power

	Final exam
	Dominating sets
	Tricolor triangles
	The n rooks problem
	Pursuing an invisible target on a ring

	Sample assignments from Spring 2009
	Final exam, Spring 2009
	Randomized mergesort (20 points)
	A search problem (20 points)
	Support your local police (20 points)
	Overloaded machines (20 points)

	Sample assignments from Spring 2011
	Assignment 1: due Wednesday, 2011-01-26, at 17:00
	Bureaucratic part
	Rolling a die
	Rolling many dice
	All must have candy

	Assignment 2: due Wednesday, 2011-02-09, at 17:00
	Randomized dominating set
	Chernoff bounds with variable probabilities
	Long runs

	Assignment 3: due Wednesday, 2011-02-23, at 17:00
	Longest common subsequence
	A strange error-correcting code
	A multiway cut

	Assignment 4: due Wednesday, 2011-03-23, at 17:00
	Sometimes successful betting strategies are possible
	Random walk with reset
	Yet another shuffling algorithm

	Assignment 5: due Thursday, 2011-04-07, at 23:59
	A reversible chain
	Toggling bits
	Spanning trees

	Assignment 6: due Monday, 2011-04-25, at 17:00
	Sparse satisfying assignments to DNFs
	Detecting duplicates
	Balanced Bloom filters

	Final exam
	Leader election
	Two-coloring an even cycle
	Finding the maximum
	Random graph coloring

	Probabilistic recurrences (not covered Spring 2013)
	Recurrences with constant cost functions
	Examples
	The Karp-Upfal-Wigderson bound
	Waiting for heads
	Quickselect
	Tossing coins
	Coupon collector
	Chutes and ladders

	High-probability bounds
	High-probability bounds from expectation bounds
	Detailed analysis of the recurrence

	More general recurrences

	Bibliography
	Index

