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CH AP T E R 7

Applications of

Integration

“
‘It’s like this,’ he said. ‘When you go after honey with a balloon, the

great thing is not to let the bees know you’re coming. Now if you have

a green balloon, they might think you were only part of the tree and

not notice you, and if you have a blue balloon, they might think you

were only part of the sky and not notice you, and the question’ [said

Winnie the Pooh] ‘is: Which is most likely?’

”A. A. Milne 1882–1956

from Winnie the Pooh

“
The entire world believes [in the Normal distribution], Mr. Lippmann

told me one day, because the experimentalists believe that it is a theo-

remofmathematics, andmathematicians believe it is an experimental

fact.

”Henri Poincaré

Calcul des Probabilités, 1896, p.149

Introduction Numerous quantities in mathematics, physics, economics,biology, and indeed any quantitative science can be con-

veniently represented by integrals. In addition to measuring plane areas, the problem

that motivated the definition of the definite integral, we can use these integrals to ex-

press volumes of solids, lengths of curves, areas of surfaces, forces, work, energy,

pressure, probabilities, dollar values of a stream of payments, and a variety of other

quantities that are in one sense or another equivalent to areas under graphs.

In addition, as we saw previously, many of the basic principles that govern the

behaviour of our world are expressed in terms of differential equations and initial-value

problems. Indefinite integration is a key tool in the solution of such problems.

In this chapter we examine some of these applications. For the most part they are

independent of one another, and for that reason some of the later sections in this chapter

can be regarded as optional material. The material of Sections 7.1–7.3, however, should

be regarded as core because these ideas will arise again in the study of multivariable

calculus.

7.1 Volumes by Slicing—Solids of Revolution

In this section we show how volumes of certain three-dimensional regions (or solids)

can be expressed as definite integrals and thereby determined. We will not attempt

to give a definition of volume but will rely on our intuition and experience with solid
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objects to provide enough insight for us to specify the volumes of certain simple solids.

For example, if the base of a rectangular box is a rectangle of length l and widthw (and

therefore areaA D lw), and if the box has height h, then its volume isV D Ah D lwh.
If l , w, and h are measured in units (e.g., centimetres), then the volume is expressed in

cubic units (cubic centimetres, or cm3).

What is a cylinder? The word

“cylinder” has two different but

related meanings in Mathe-

matics. As used in this Section,

it is a solid object lying between

congruent bases in two parallel

planes and inside a surface (the

cylindrical wall) consisting of

parallel line segments joining

corresponding points on the

boundaries of those bases. The

second meaning for “cylinder”

that we will encounter in Chapter

10 and later, extends the concept

of the cylindrical wall of a solid

cylinder. It is a surface

consisting of a family of parallel

straight lines in three dimension-

al space that intersect a plane

perpendicular to those lines in a

curve C. In this case the cylinder

is circular if C is a circle.

A rectangular box is a special case of a solid called a cylinder. (See Figure 7.1.)

Such a solid has a flat base occupying a region R in a plane, and consists of all points

on parallel straight line segments having one end inR and the other end in a (necessar-

ily congruent) region in a second plane parallel to the plane of the base. Either of these

regions can be called the base of the cylinder. The cylindrical wall is the surface con-

sisting of the parallel line segments joining corresponding points on the boundaries of

the two bases. A cylinder having a polygonal base (i.e., one bounded by straight lines)

is usually called a prism. The height of any cylinder or prism is the perpendicular

distance between the parallel planes containing the two bases. If this height is h units

and the area of a base is A square units, then the volume of the cylinder or prism is

V D Ah cubic units.
We use the adjective right to describe a cylinder or prism if the parallel line seg-

ments that constitute it are perpendicular to the base planes; otherwise, the cylinder or

prism is called oblique. For example, a right cylinder whose bases are circular disks

of radius r units and whose height is h units is called a right circular cylinder; its

volume is V D �r2h cubic units. Obliqueness has no effect on the volume V D Ah
of a prism or cylinder since h is always measured in a direction perpendicular to the

base.

Figure 7.1 The volume of any prism or

cylinder is the area A of its base times its

height h (measured perpendicularly to the

base): V D Ah

A
A

A D �r2 A

h

h

h

h

rectangular box triangular prism right-circular
cylinder

oblique general
cylinder

r

Figure 7.2 Slicing a solid perpendicularly

to an axis
x

b
a

Volumes by Slicing
Knowing the volume of a cylinder enables us to determine the volumes of some more

general solids. We can divide solids into thin “slices” by parallel planes. (Think of a

loaf of sliced bread.) Each slice is approximately a cylinder of very small “height”;

the height is the thickness of the slice. See Figure 7.2, where the height is measured
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horizontally in the x direction. If we know the cross-sectional area of each slice, we

can determine its volume and sum these volumes to find the volume of the solid.

To be specific, suppose that the solid S lies between planes perpendicular to the

x-axis at positions x D a and x D b and that the cross-sectional area of S in the plane
perpendicular to the x-axis at x is a known function A.x/, for a � x � b. We assume
that A.x/ is continuous on Œa; bl. If a D x0 < x1 < x2 < � � � < xn�1 < xn D b,
then P D fx0; x1; x2; : : : ; xn�1; xng is a partition of Œa; bl into n subintervals, and
the planes perpendicular to the x-axis at x1, x2, : : : ; xn�1 divide the solid into n slices
of which the i th has thickness bxi D xi � xi�1. The volume bVi of that slice lies

xi
xi�1

ci

x

Figure 7.3 The volume of a slice

between the maximum and minimum values of A.x/bxi for values of x in Œxi�1; xi l
(Figure 7.3), so, by the Intermediate-Value Theorem, for some ci in Œxi�1; xi l,

bVi D A.ci/bxi :
The volume of the solid is therefore given by the Riemann sum

V D
nX

iD1
bVi D

nX

iD1
A.ci/bxi :

Letting n approach infinity in such a way that maxbxi approaches 0, we obtain the

definite integral of A.x/ over Œa; bl as the limit of this Riemann sum. Therefore:

The volume V of a solid between x D a and x D b having cross-sectional
area A.x/ at position x is

V D
Z b

a

A.x/ dx:

There is another way to obtain this formula and others of a similar nature. Consider

a slice of the solid between the planes perpendicular to the x-axis at positions x and

xCbx. Since A.x/ is continuous, it doesn’t change much in a short interval, so ifbx
is small, then the slice has volume bV approximately equal to the volume of a cylinder

of base area A.x/ and height bx:

bV � A.x/bx:
The error in this approximation is small compared to the size of bV: This suggests,

correctly, that the volume element, that is, the volume of an infinitely thin slice of

thickness dx is dV D A.x/dx, and that the volume of the solid is the “sum” (i.e.,
the integral) of these volume elements between the two ends of the solid, x D a and
x D b (see Figure 7.4):

V D
Z xDb

xDa
dV; where dV D A.x/dx:

x

dx

a x
b

Figure 7.4 The volume element

We will use this differential element approach to model other applications that result

in integrals rather than setting up explicit Riemann sums each time. Even though this

argument does not constitute a proof of the formula, you are strongly encouraged to

think of the formula this way; the volume is the integral of the volume elements.

Solids of Revolution
Many common solids have circular cross-sections in planes perpendicular to some

axis. Such solids are called solids of revolution because they can be generated by

rotating a plane region about an axis in that plane so that it sweeps out the solid. For

example, a solid ball is generated by rotating a half-disk about the diameter of that

half-disk (Figure 7.5(a)). Similarly, a solid right-circular cone is generated by rotating

a right-angled triangle about one of its legs (Figure 7.5(b)).

If the region R bounded by y D f .x/, y D 0, x D a, and x D b is rotated about
the x-axis, then the cross-section of the solid generated in the plane perpendicular to

the x-axis at x is a circular disk of radius jf .x/j. The area of this cross-section is
A.x/ D �

�
f .x/

�2
, so the volume of the solid of revolution is
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V D �
Z b

a

.f .x//
2
dx:

EXAMPLE 1
(The volume of a ball) Find the volume of a solid ball having

radius a.

Solution The ball can be generated by rotating the half-disk, 0 � y �
p
a2 � x2,

�a � x � a about the x-axis. See the cutaway view in Figure 7.5(a). Therefore, its
volume is

V D �
Z a

�a
.

p
a2 � x2/2 dx D 2�

Z a

0

.a
2 � x2/ dx

D 2�
�
a
2
x � x

3

3

�ˇ̌
ˇ̌
a

0

D 2�
�
a
3 � 1
3
a
3

�
D 4
3
�a
3 cubic units:

Figure 7.5

(a) The ball is generated by rotating the

red half-disk 0 � y �
p
a2 � x2

about the x-axis

(b) The cone of base radius r and height

h is generated by rotating the red

triangle 0 � x � h, 0 � y � rx=h
about the x-axis

x

y

y D
p
a2 � x2

a

�a

x

y

x

y

.h; 0/

.h; r/

y D
rx

h

(a) (b)

EXAMPLE 2
(The volume of a right-circular cone) Find the volume of the

right-circular cone of base radius r and height h that is generated

by rotating the triangle with vertices .0; 0/, .h; 0/, and .h; r/ about the x-axis.

Solution The line from .0; 0/ to .h; r/ has equation y D rx=h. Thus, the volume of
the cone (see the cutaway view in Figure 7.5(b)) is

V D �
Z h

0

	
rx

h


2
dx D �

	
r

h


2 x3

3

ˇ̌
ˇ̌
h

0

D
1

3
� r
2
h cubic units:

Improper integrals can represent volumes of unbounded solids. If the improper integral

converges, the unbounded solid has a finite volume.

EXAMPLE 3
Find the volume of the infinitely long horn that is generated by

rotating the region bounded by y D 1=x and y D 0 and lying to
the right of x D 1 about the x-axis. The horn is illustrated in Figure 7.6.

Solution The volume of the horn is

V D �
Z 1

1

�
1

x

�2
dx D � lim

R!1

Z R

1

1

x2
dx

D �� lim
R!1

1

x

ˇ̌
ˇ̌
R

1

D �� lim
R!1

�
1

R
� 1
�
D � cubic units:
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It is interesting to note that this finite volume arises from rotating a region that itself

has infinite area:
R1
1
dx=x D 1. We have a paradox: it takes an infinite amount of

paint to paint the region but only a finite amount to fill the horn obtained by rotating

the region. (How can you resolve this paradox?)

Figure 7.6 Cutaway view of an infinitely

long horn

x

y

y D
1

x

1

The following example shows how to deal with a problem where the axis of rotation

is not the x-axis. Just rotate a suitable area element about the axis to form a volume

element.

EXAMPLE 4
A ring-shaped solid is generated by rotating the finite plane region

y

x

1

2 � x2y D 1

y D 2

�1 1

y D x2
R

Figure 7.7 The volume element for

Example 4

R bounded by the curve y D x2 and the line y D 1 about the line
y D 2. Find its volume.

Solution First, we solve the pair of equations y D x2 and y D 1 to obtain the
intersections at x D �1 and x D 1. The solid lies between these two values of x. The
area element of R at position x is a vertical strip of width dx extending upward from

y D x2 to y D 1. When R is rotated about the line y D 2, this area element sweeps
out a thin, washer-shaped volume element of thickness dx and radius 2� x2, having a
hole of radius 1 through the middle. (See Figure 7.7.) The cross-sectional area of this

element is the area of a circle of radius 2 � x2 minus the area of the hole, a circle of
radius 1. Thus,

dV D
�
�.2 � x2/2 � �.1/2

�
dx D �.3 � 4x2 C x4/ dx:

Since the solid extends from x D �1 to x D 1, its volume is

V D �
Z 1

�1
.3 � 4x2 C x4/ dx D 2�

Z 1

0

.3 � 4x2 C x4/ dx

D 2�
�
3x � 4x

3

3
C x

5

5

�ˇ̌
ˇ̌
1

0

D 2�
�
3 � 4
3
C 1
5

�
D 56�
15
cubic units.

Sometimes we want to rotate a region bounded by curves with equations of the form

x D g.y/ about the y-axis. In this case, the roles of x and y are reversed, and we use
horizontal slices instead of vertical ones.

EXAMPLE 5
Find the volume of the solid generated by rotating the region to the

right of the y-axis and to the left of the curve x D 2y � y2 about
the y-axis.

Solution For intersections of x D 2y � y2 and x D 0, we have

2y � y2 D 0 7 y D 0 or y D 2:
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The solid lies between the horizontal planes at y D 0 and y D 2. A horizontal area
element at height y and having thickness dy rotates about the y-axis to generate a thin

disk-shaped volume element of radius 2y � y2 and thickness dy. (See Figure 7.8.) Its
volume is

y

x

2

x D 2y � y2

dy

Figure 7.8 The volume element for

Example 5

dV D �.2y � y2/2 dy D �.4y2 � 4y3 C y4/ dy:

Thus, the volume of the solid is

V D �
Z 2

0

.4y
2 � 4y3 C y4/ dy

D �
�
4y
3

3
� y4 C

y
5

5

�ˇ̌
ˇ̌
2

0

D �
�
32

3
� 16C

32

5

�
D
16�

15
cubic units.

Cylindrical Shells
Suppose that the region R bounded by y D f .x/ � 0, y D 0, x D a � 0, and
x D b > a is rotated about the y-axis to generate a solid of revolution. In order
to find the volume of the solid using (plane) slices, we would need to know the cross-

sectional areaA.y/ in each plane of height y, and this would entail solving the equation

y D f .x/ for one or more solutions of the form x D g.y/. In practice this can be
inconvenient or impossible.

Figure 7.9 When rotated around the

y-axis, the area element of width dx under

y D f .x/ at x generates a cylindrical shell
of height f .x/, circumference 2�x, and

hence volume dV D 2�x f .x/ dx
x

y

f .x/

a

b
x

dx

x

circumference 2�x

y D f .x/

R

The standard area element of R at position x is a vertical strip of width dx, height

f .x/, and area dA D f .x/dx. When R is rotated about the y-axis, this strip sweeps
out a volume element in the shape of a circular cylindrical shell having radius x, height

f .x/, and thickness dx. (See Figure 7.9.) Regard this shell as a rolled-up rectangular

slab with dimensions 2�x, f .x/, and dx; evidently, it has volume

dV D 2�x f .x/dx:

The volume of the solid of revolution is the sum (integral) of the volumes of such

shells with radii ranging from a to b:
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The volume of the solid obtained by rotating the plane region

0 � y � f .x/, 0 � a < x < b about the y-axis is

V D 2�
Z b

a

x f .x/ dx:

EXAMPLE 6
(The volume of a torus) A disk of radius a has centre at the point

.b; 0/, where b > a > 0. The disk is rotated about the y-axis to

generate a torus (a doughnut-shaped solid), illustrated in Figure 7.10. Find its volume.

Solution The circle with centre at .b; 0/ and having radius a has equation
.x � b/2 C y2 D a2, so its upper semicircle is the graph of the function

f .x/ D
p
a2 � .x � b/2:

Wewill double the volume of the upper half of the torus, which is generated by rotating

the half-disk 0 � y �
p
a2 � .x � b/2, b � a � x � b C a about the y-axis. The

volume of the complete torus is

V D 2 � 2�
Z bCa

b�a
x

p
a2 � .x � b/2 dx Let u D x � b,

du D dx

D 4�
Z a

�a
.uC b/

p
a2 � u2 du

D 4�
Z a

�a
u

p
a2 � u2 duC 4�b

Z a

�a

p
a2 � u2 du

D 0C 4�b
�a2

2
D 2�2a2b cubic units:

(The first of the final two integrals is 0 because the integrand is odd and the interval is

symmetric about 0; the second is the area of a semicircle of radius a.) Note that the

volume of the torus is .�a2/.2�b/, that is, the area of the disk being rotated times the

distance travelled by the centre of that disk as it rotates about the y-axis. This result

will be generalized by Pappus’s Theorem in Section 7.5.

Figure 7.10 Cutaway view of a torus

x

y

x

y

y D
p
a2 � .x � b/2

b C a

b

b � a

EXAMPLE 7
Find the volume of a bowl obtained by revolving the parabolic arc

y D x2, 0 � x � 1 about the y-axis.
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Solution The interior of the bowl corresponds to revolving the region given by x2 �
y � 1, 0 � x � 1 about the y-axis. The area element at position x has height 1 � x2
and generates a cylindrical shell of volume dV D 2�x.1� x2/ dx . (See Figure 7.11.)
Thus, the volume of the bowl is

y

x

1� x2

x

dx

y D x2

Figure 7.11 A parabolic bowl

V D 2�
Z 1

0

x.1 � x2/ dx

D 2�
�
x2

2
� x

4

4

�ˇ̌
ˇ̌
1

0

D �
2
cubic units.

We have described two methods for determining the volume of a solid of revolution,

slicing and cylindrical shells. The choice of method for a particular solid is usually

dictated by the form of the equations defining the region being rotated and by the axis

of rotation. The volume element dV can always be determined by rotating a suitable

area element dA about the axis of rotation. If the region is bounded by vertical lines

and one or more graphs of the form y D f .x/, the appropriate area element is a
vertical strip of width dx. If the rotation is about the x-axis or any other horizontal

line, this strip generates a disk- or washer-shaped slice of thickness dx. If the rotation

is about the y-axis or any other vertical line, the strip generates a cylindrical shell of

thickness dx. On the other hand, if the region being rotated is bounded by horizontal

lines and one or more graphs of the form x D g.y/, it is easier to use a horizontal
strip of width dy as the area element, and this generates a slice if the rotation is about

a vertical line and a cylindrical shell if the rotation is about a horizontal line. For very

simple regions either method can be made to work easily. See the following table.

Table 1. Volumes of solids of revolution

If region R6

is rotated about

#

y

x

dx

R

a x b

y D f .x/

y D g.x/
y

x

c

y

d

x D h.y/

x D k.y/

R

dy

the x-axis

use plane slices

V D �
Z b

a

�
.g.x//

2 � .f .x//2
�
dx

use cylindrical shells

V D 2�
Z d

c

y
�
k.y/ � h.y/

�
dy

the y-axis

use cylindrical shells

V D 2�
Z b

a

x
�
g.x/ � f .x/

�
dx

use plane slices

V D �
Z d

c

�
.k.y//

2 � .h.y//2
�
dy

Our final example involves rotation about a vertical line other than the y-axis.

EXAMPLE 8
The triangular region bounded by y D x, y D 0, and x D a > 0
is rotated about the line x D b > a. (See Figure 7.12.) Find the

volume of the solid so generated.

Solution Here the vertical area element at x generates a cylindrical shell of radius
b�x, height x, and thickness dx. Its volume is dV D 2�.b�x/ x dx, and the volume
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of the solid is

V D 2�
Z a

0

.b�x/ x dx D 2�
�
bx2

2
� x

3

3

�ˇ̌
ˇ̌
a

0

D �
�
a
2
b � 2a

3

3

�
cubic units:

Figure 7.12 The volume element for

Example 8

y

xx a b

y D x

EXERCI SE S 7.1

Find the volume of each solid S in Exercises 1–4 in two ways,

using the method of slicing and the method of cylindrical shells.

1. S is generated by rotating about the x-axis the region bounded

by y D x2, y D 0, and x D 1.
2. S is generated by rotating the region of Exercise 1 about the

y-axis.

3. S is generated by rotating about the x-axis the region bounded

by y D x2 and y D
p
x between x D 0 and x D 1.

4. S is generated by rotating the region of Exercise 3 about the

y-axis.

Find the volumes of the solids obtained if the plane regions R

described in Exercises 5–10 are rotated about (a) the x-axis and (b)

the y-axis.

5. R is bounded by y D x.2 � x/ and y D 0 between x D 0 and
x D 2.

6. R is the finite region bounded by y D x and y D x2.
7. R is the finite region bounded by y D x and x D 4y � y2.
8. R is bounded by y D 1C sinx and y D 1 from x D 0 to
x D � .

9. R is bounded by y D 1=.1Cx2/, y D 2, x D 0, and x D 1.
10. R is the finite region bounded by y D 1=x and 3xC 3y D 10.

11. The triangular region with vertices .0;�1/, .1; 0/, and .0; 1/ is
rotated about the line x D 2. Find the volume of the solid so
generated.

12. Find the volume of the solid generated by rotating the region

0 � y � 1 � x2 about the line y D 1.
13. What percentage of the volume of a ball of radius 2 is removed

if a hole of radius 1 is drilled through the centre of the ball?

14. A cylindrical hole is bored through the centre of a ball of

radiusR. If the length of the hole is L, show that the volume

of the remaining part of the ball depends only on L and not

on R.

15. A cylindrical hole of radius a is bored through a solid

right-circular cone of height h and base radius b > a. If the

axis of the hole lies along that of the cone, find the volume of

the remaining part of the cone.

16. Find the volume of the solid obtained by rotating a circular

disk about one of its tangent lines.

17. A plane slices a ball of radius a into two pieces. If the plane

passes b units away from the centre of the ball (where b < a),

find the volume of the smaller piece.

18. Water partially fills a hemispherical bowl of radius 30 cm so

that the maximum depth of the water is 20 cm. What volume

of water is in the bowl?

19. Find the volume of the ellipsoid of revolution obtained by

rotating the ellipse .x2=a2/C .y2=b2/ D 1 about the x-axis.
20. Recalculate the volume of the torus of Example 6 by slicing

perpendicular to the y-axis rather than using cylindrical

shells.

21. The region R bounded by y D e�x and y D 0 and lying to the
right of x D 0 is rotated (a) about the x-axis and (b) about the
y-axis. Find the volume of the solid of revolution generated in

each case.

22. The region R bounded by y D x�k and y D 0 and lying to the
right of x D 1 is rotated about the x-axis. Find all real values
of k for which the solid so generated has finite volume.

23. Repeat Exercise 22 with rotation about the y-axis.

24. Early editions of this text incorrectly defined a prism or

cylinder as being a solid for which cross-sections parallel to

the base were congruent to the base. Does this define a larger

or smaller set of solids than the definition given in this

section? What does the older definition say about the volume

of a cylinder or prism having base area A and height h?

25. Continuing Exercise 24, consider the solid S whose cross-

section in the plane perpendicular to the x-axis at x is an

isosceles right-angled triangle having equal sides of length

a cm with one end of the hypotenuse on the x-axis and with

hypotenuse making angle x with a fixed direction. Is S a
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prism according to the definition given in early editions? Is it

a prism according to the definition in this edition? If the

height of S is b cm, what is the volume of S?

26.I Find the volume of the solid generated by rotating the finite

region in the first quadrant bounded by the coordinate axes

and the curve x2=3 C y2=3 D 4 about either of the coordinate
axes. (Both volumes are the same. Why?)

27.I Given that the surface area of a sphere of radius r is kr2,

where k is a constant independent of r; express the volume of

a ball of radius R as an integral of volume elements that are

the volumes of spherical shells of thickness dr and varying

radii r: Hence find k:
y

x

y

1

2

3

4

5

6

7

8

x1 2 3 4 5 6 7 8 9

y D f .x/

Figure 7.13

C 28. The region shaded in Figure 7.13 is rotated about the x-axis.
Use Simpson’s Rule to find the volume of the resulting solid.

C 29. The region shaded in Figure 7.13 is rotated about the y-axis.

Use Simpson’s Rule to find the volume of the resulting solid.

C 30. The region shaded in Figure 7.13 is rotated about the line
x D �1. Use Simpson’s Rule to find the volume of the
resulting solid.

The following problems are very difficult. You will need some

ingenuity and a lot of hard work to solve them by the techniques

available to you now.

31.I A martini glass in the shape of a right-circular cone of height

h and semi-vertical angle ˛ (see Figure 7.14) is filled with

liquid. Slowly a ball is lowered into the glass, displacing

liquid and causing it to overflow. Find the radius R of the ball

that causes the greatest volume of liquid to overflow out of the

glass.

R

h

˛

Figure 7.14

32.I The finite plane region bounded by the curve xy D 1 and the
straight line 2x C 2y D 5 is rotated about that line to generate
a solid of revolution. Find the volume of that solid.

7.2 More Volumes by Slicing

The method of slicing introduced in Section 7.1 can be used to determine volumes of

solids that are not solids of revolution. All we need to know is the area of cross-section

of the solid in every plane perpendicular to some fixed axis. If that axis is the x-axis,

if the solid lies between the planes at x D a and x D b > a, and if the cross-sectional
area in the plane at x is the continuous (or even piecewise continuous) function A.x/,

then the volume of the solid is

V D
Z b

a

A.x/dx:

In this section we consider some examples that are not solids of revolution.

Pyramids and cones are solids consisting of all points on line segments that join

a fixed point, the vertex, to all the points in a region lying in a plane not containing the

vertex. The region is called the base of the pyramid or cone. Some pyramids and cones

are shown in Figure 7.15. If the base is bounded by straight lines, the solid is called

a pyramid; if the base has a curved boundary the solid is called a cone. All pyramids

and cones have volume

V D
1

3
Ah;
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where A is the area of the base region, and h is the height from the vertex to the plane

of the base, measured in the direction perpendicular to that plane. We will give a very

simple proof of this fact in Section 16.4. For the time being, we verify it for the case

of a rectangular base.

Figure 7.15 Some pyramids and

cones. Each has volume V D 1
3
Ah,

where A is the area of the base,

and h is the height measured

perpendicular to the base

A

A

A A

h

EXAMPLE 1
Verify the formula for the volume of a pyramid with rectangular

base of area A and height h.

Figure 7.16

(a) A rectangular pyramid

(b) A general cone

0

x

h
A

A.x/

P

L

M

Q

dx

x

x

h

x

0

A

A.x/

(a) (b)

Solution Cross-sections of the pyramid in planes parallel to the base are similar rect-
angles. If the origin is at the vertex of the pyramid and the x-axis is perpendicular

to the base, then the cross-section at position x is a rectangle whose dimensions are

x=h times the corresponding dimensions of the base. For example, in Figure 7.16(a),

the length LM is x=h times the length PQ, as can be seen from the similar triangles

OLM and OPQ. Thus, the area of the rectangular cross-section at x is

A.x/ D
	
x

h


2
A:

The volume of the pyramid is therefore

V D
Z h

0

	
x

h


2
Adx D

A

h2

x3

3

ˇ̌
ˇ̌
h

0

D
1

3
Ah cubic units:

A similar argument, resulting in the same formula for the volume, holds for a cone,

that is, a pyramid with a more general (curved) shape to its base, such as that in

Figure 7.16(b). Although it is not as obvious as in the case of the pyramid, the cross-

section at x still has area .x=h/2 times that of the base. A proof of this volume formula

for an arbitrary cone or pyramid can be found in Example 3 of Section 16.4.



404 CHAPTER 7 Applications of Integration

EXAMPLE 2
A tent has a circular base of radius a metres and is supported by

a horizontal ridge bar held at height b metres above a diameter of

the base by vertical supports at each end of the diameter. The material of the tent is

stretched tight so that each cross-section perpendicular to the ridge bar is an isosceles

triangle. (See Figure 7.17.) Find the volume of the tent.

Solution Let the x-axis be the diameter of the base under the ridge bar. The cross-
section at position x has base length 2

p
a2 � x2, so its area is

A.x/ D 1
2

�
2

p
a2 � x2

�
b D b

p
a2 � x2:

Thus, the volume of the solid is

V D
Z a

�a
b

p
a2 � x2 dx D b

Z a

�a

p
a2 � x2 dx D b�a

2

2
D �
2
a
2
b m3:

Note that we evaluated the last integral by inspection. It is the area of a half-disk of

radius a.

Figure 7.17 The tent of Example 2 with

the front covering removed to show the

shape more clearly

x

p
a2 � x2

x

b

a

�a

EXAMPLE 3
Two circular cylinders, each having radius a, intersect so that their

axes meet at right angles. Find the volume of the region lying

inside both cylinders.

Solution We represent the cylinders in a three-dimensional Cartesian coordinate sys-
tem where the plane containing the x- and y-axes is horizontal and the z-axis is verti-

cal. One-eighth of the solid is represented in Figure 7.18, that part corresponding to all

three coordinates being positive. The two cylinders have axes along the x- and y-axes,

respectively. The cylinder with axis along the x-axis intersects the plane of the y- and

z-axes in a circle of radius a.

Similarly, the other cylinder meets the plane of the x- and z-axes in a circle of

radius a. It follows that if the region lying inside both cylinders (and having x � 0,
y � 0, and z � 0) is sliced horizontally, then the slice at height z above the xy-plane
is a square of side

p
a2 � z2 and has areaA.z/ D a2�z2. The volume V of the whole

region, being eight times that of the part shown, is

V D 8
Z a

0

.a
2 � z2/ dz D 8

�
a
2
z � z

3

3

�ˇ̌
ˇ̌
a

0

D 16
3
a
3 cubic units:
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Figure 7.18 One-eighth of the solid lying

inside two perpendicular cylindrical pipes.

The horizontal slice shown is square

x

y

z

p
a2 � z2p

a2 � z2

z

a

dz

EXERCI SE S 7.2

1. A solid is 2 m high. The cross-section of the solid at height x

above its base has area 3x square metres. Find the volume of

the solid.

2. The cross-section at height z of a solid of height h is a

rectangle with dimensions z and h� z. Find the volume of the
solid.

3. Find the volume of a solid of height 1 whose cross-section at

height z is an ellipse with semi-axes z and
p
1 � z2.

4. A solid extends from x D 1 to x D 3. The cross-section of the
solid in the plane perpendicular to the x-axis at x is a square

of side x. Find the volume of the solid.

5. A solid is 6 ft high. Its horizontal cross-section at height z ft

above its base is a rectangle with length 2C z ft and width
8 � z ft. Find the volume of the solid.

6. A solid extends along the x-axis from x D 1 to x D 4. Its
cross-section at position x is an equilateral triangle with edge

length
p
x. Find the volume of the solid.

7. Find the volume of a solid that is h cm high if its horizontal

cross-section at any height y above its base is a circular sector

having radius a cm and angle 2�
	
1 � .y=h/



radians.

8. The opposite ends of a solid are at x D 0 and x D 2. The area
of cross-section of the solid in a plane perpendicular to the

x-axis at x is kx3 square units. The volume of the solid is

4 cubic units. Find k.

9. Find the cross-sectional area of a solid in any horizontal plane

at height z above its base if the volume of that part of the solid

lying below any such plane is z3 cubic units.

10. All the cross-sections of a solid in horizontal planes are

squares. The volume of the part of the solid lying below any

plane of height z is 4z cubic units, where 0 < z < h, the

height of the solid. Find the edge length of the square

cross-section at height z for 0 < z < h.

11. A solid has a circular base of radius r . All sections of the solid

perpendicular to a particular diameter of the base are squares.

Find the volume of the solid.

12. Repeat Exercise 11 but with sections that are equilateral

triangles instead of squares.

13. The base of a solid is an isosceles right-angled triangle with

equal legs measuring 12 cm. Each cross-section perpendicular

to one of these legs is half of a circular disk. Find the volume

of the solid.

14. (Cavalieri’s Principle) Two solids have equal cross-sectional

areas at equal heights above their bases. If both solids have the

same height, show that they both have the same volume.

r

b

a

Figure 7.19

15. The top of a circular cylinder of radius r is a plane inclined at

an angle to the horizontal. (See Figure 7.19.) If the lowest and

highest points on the top are at heights a and b, respectively,

above the base, find the volume of the cylinder. (Note that

there is an easy geometric way to get the answer, but you

should also try to do it by slicing. You can use either

rectangular or trapezoidal slices.)
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16.I (Volume of an ellipsoid) Find the volume enclosed by the

ellipsoid

x2

a2
C
y2

b2
C
z2

c2
D 1:

Hint: This is not a solid of revolution. As in Example 3, the

z-axis is perpendicular to the plane of the x- and y-axes. Each

horizontal plane z D k .�c � k � c/ intersects the ellipsoid
in an ellipse .x=a/2 C .y=b/2 D 1� .k=c/2. Thus,
dV D dz � the area of this ellipse. The area of the ellipse
.x=a/

2 C .y=b/2 D 1 is �ab.

20 cm

Figure 7.20

17.I (Notching a log) A 45ı notch is cut to the centre of a
cylindrical log having radius 20 cm, as shown in Figure 7.20.

One plane face of the notch is perpendicular to the axis of the

log. What volume of wood was removed from the log by

cutting the notch?

18. (A smaller notch) Repeat Exercise 17, but assume that the

notch penetrates only one quarter way (10 cm) into the log.

19. What volume of wood is removed from a 3-in-thick board if a

circular hole of radius 2 in is drilled through it with the axis of

the hole tilted at an angle of 45ı to board?

20.I (More intersecting cylinders) The axes of two circular

cylinders intersect at right angles. If the radii of the cylinders

are a and b .a > b > 0/, show that the region lying inside

both cylinders has volume

V D 8
Z b

0

p
b2 � z2

p
a2 � z2 dz:

Hint: Review Example 3. Try to make a similar diagram,

showing only one-eighth of the region. The integral is not

easily evaluated.

C 21. A circular hole of radius 2 cm is drilled through the middle of
a circular log of radius 4 cm, with the axis of the hole

perpendicular to the axis of the log. Find the volume of wood

removed from the log. Hint: This is very similar to Exercise

20. You will need to use numerical methods or a calculator

with a numerical integration function to get the answer.

7.3 Arc Length and Surface Area

In this section we consider how integrals can be used to find the lengths of curves and

the areas of the surfaces of solids of revolution.

Arc Length
If A and B are two points in the plane, let jABj denote the distance between A and B,
that is, the length of the straight line segment AB .

Figure 7.21 A polygonal approximation

to a curve C

P0 D A

Pn D B

C

P2

P1

Pi�1

Pi

Pn�1

Given a curve C joining the two points A and B, we would like to define what is

meant by the length of the curve C from A to B. Suppose we choose points A D P0,
P1, P2, : : : ; Pn�1, and Pn D B in order along the curve, as shown in Figure 7.21.
The polygonal line P0P1P2 : : : Pn�1Pn constructed by joining adjacent pairs of these
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points with straight line segments forms a polygonal approximation toC, having length

Ln D jP0P1j C jP1P2j C � � � C jPn�1Pnj D
nX

iD1
jPi�1Pi j:

Intuition tells us that the shortest curve joining two points is a straight line segment,

so the length Ln of any such polygonal approximation to C cannot exceed the length

of C. If we increase n by adding more vertices to the polygonal line between existing

vertices,Ln cannot get smaller and may increase. If there exists a finite numberK such

thatLn � K for every polygonal approximation toC, then there will be a smallest such
number K (by the completeness of the real numbers), and we call this smallest K the

arc length of C.

DEF IN I T I ON

1

The arc length of the curve C from A to B is the smallest real number s such

that the length Ln of every polygonal approximation to C satisfies Ln � s.

A curve with a finite arc length is said to be rectifiable. Its arc length s is the limit

of the lengths Ln of polygonal approximations as n ! 1 in such a way that the
maximum segment length jPi�1Pi j ! 0.
It is possible to construct continuous curves that are bounded (they do not go off

to infinity anywhere) but are not rectifiable; they have infinite length. To avoid such

pathological examples, wewill assume that our curves are smooth; they will be defined

by functions having continuous derivatives.

The Arc Length of the Graph of a Function
Let f be a function defined on a closed, finite interval Œa; bl and having a continuous

derivative f 0 there. If C is the graph of f; that is, the graph of the equation y D f .x/,
then any partition of Œa; bl provides a polygonal approximation to C. For the partition

fa D x0 < x1 < x2 < � � � < xn D bg;

let Pi be the point
�
xi ; f .xi /

�
, .0 � i � n/. The length of the polygonal line

P0P1P2 : : : Pn�1Pn is

Ln D
nX

iD1
jPi�1Pi j D

nX

iD1

q
.xi � xi�1/2 C

�
f .xi/ � f .xi�1/

�2

D
nX

iD1

s

1C
�
f .xi/ � f .xi�1/
xi � xi�1

�2
bxi ;

where bxi D xi � xi�1. By the Mean-Value Theorem there exists a number ci in the
interval Œxi�1; xi l such that

f .xi / � f .xi�1/
xi � xi�1

D f 0.ci /;

so we have Ln D
nX

iD1

q
1C
�
f 0.ci /

�2
bxi .

Thus, Ln is a Riemann sum for
R b
a

p
1C .f 0.x//2 dx. Being the limit of such Rie-

mann sums as n!1 in such a way that max.bxi /! 0, that integral is the length of
the curve C.

The arc length s of the curve y D f .x/ from x D a to x D b is given by

s D
Z b

a

q
1C
�
f 0.x/

�2
dx D

Z b

a

s

1C
�
dy

dx

�2
dx:
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You can regard the integral formula above as giving the arc length s of C as a “sum”

of arc length elements:

s D
Z xDb

xDa
ds; where ds D

q
1C
�
f 0.x/

�2
dx:

Figure 7.22 provides a convenient way to remember this; it also suggests how we can

arrive at similar formulas for arc length elements of other kinds of curves. The differ-

ential triangle in the figure suggests that

dx

dy
ds

Figure 7.22 A differential triangle

.ds/
2 D .dx/2 C .dy/2:

Dividing this equation by .dx/2 and taking the square root, we get

�
ds

dx

�2
D 1C

�
dy

dx

�2

ds

dx
D

s

1C
�
dy

dx

�2

ds D

s

1C
�
dy

dx

�2
dx D

q
1C
�
f 0.x/

�2
dx:

A similar argument shows that for a curve specified by an equation of the form x D
g.y/, .c � y � d/, the arc length element is

ds D

s

1C
�
dx

dy

�2
dy D

q
1C
�
g0.y/

�2
dy:

EXAMPLE 1
Find the length of the curve y D x2=3 from x D 1 to x D 8.

Solution Since dy=dx D 2
3
x
�1=3

is continuous between x D 1 and x D 8 and
x
1=3
> 0 there, the length of the curve is given by

s D
Z 8

1

r
1C
4

9
x
�2=3
dx D

Z 8

1

s
9x2=3 C 4
9x2=3

dx

D
Z 8

1

p
9x2=3 C 4
3x1=3

dx Let u D 9x2=3 C 4,
du D 6x�1=3 dx

D
1

18

Z 40

13

u
1=2
du D

1

27
u
3=2

ˇ̌
ˇ̌
40

13

D
40
p
40 � 13

p
13

27
units.

EXAMPLE 2 Find the length of the curve y D x4C
1

32x2
from x D 1 to x D 2.

Solution Here dy
dx
D 4x3 �

1

16x3
and

1C
�
dy

dx

�2
D 1C

�
4x
3 � 1

16x3

�2

D 1C .4x3/2 � 1
2
C
�
1

16x3

�2

D .4x3/2 C
1

2
C
�
1

16x3

�2
D
�
4x
3 C

1

16x3

�2
:
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The expression in the last set of parentheses is positive for 1 � x � 2, so the length of
the curve is

s D
Z 2

1

�
4x
3 C

1

16x3

�
dx D

�
x
4 �

1

32x2

�ˇ̌
ˇ̌
2

1

D 16 �
1

128
�
�
1�

1

32

�
D 15C

3

128
units.

The examples above are deceptively simple; the curves were chosen so that the arc

length integrals could be easily evaluated. For instance, the number 32 in the curve in

Example 2 was chosen so the expression 1C .dy=dx/2 would turn out to be a perfect
square and its square root would cause no problems. Because of the square root in

the formula, arc length problems for most curves lead to integrals that are difficult or

impossible to evaluate without using numerical techniques.

EXAMPLE 3
(Manufacturing corrugated panels) Flat rectangular sheets of

metal 2 m wide are to be formed into corrugated roofing panels

2 m wide by bending them into the sinusoidal shape shown in Figure 7.23. The period

of the cross-sectional sine curve is 20 cm. Its amplitude is 5 cm, so the panel is 10 cm

thick. How long should the flat sheets be cut if the resulting panels must be 5 m long?

Figure 7.23 A corrugated roofing panel 20 cm
10 cm

5 m

2 m

Solution One period of the sinusoidal cross-section is shown in Figure 7.24. The
distances are all in metres; the 5 cm amplitude is shown as 1/20 m, and the 20 cm

period is shown as 2/10 m. The curve has equation

y D
1

20
sin.10�x/:

Note that 25 periods are required to produce a 5 m long panel. The length of the flat

sheet required is 25 times the length of one period of the sine curve:

y

x

yD� 120

yD 1
20

y D
1

20
sin.10�x/

2=10

Figure 7.24 One period of the panel’s

cross-section

s D 25
Z 2=10

0

r
1C
	
�

2
cos.10�x/


2
dx Let t D 10�x,

dt D 10� dx

D
5

2�

Z 2	

0

s

1C
�2

4
cos2 t dt D

10

�

Z 	=2

0

s

1C
�2

4
cos2 t dt:

The integral can be evaluated numerically using the techniques of the previous chap-

ter or by using the definite integral function on an advanced scientific calculator or a

computer. The value is s � 7:32. The flat metal sheet should be about 7.32 m long to
yield a 5 m long finished panel.

If integrals needed for standard problems such as arc lengths of simple curves cannot

be evaluated exactly, they are sometimes used to define new functions whose values are

tabulated or built into computer programs. An example of this is the complete elliptic

integral function that arises in the next example.
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EXAMPLE 4
(The circumference of an ellipse) Find the circumference of the

ellipse

x2

a2
C
y2

b2
D 1;

where a � b > 0. See Figure 7.25.

Solution The upper half of the ellipse has equation y D b
r
1 �
x2

a2
D
b

a

p
a2 � x2.

Hence,

dy

dx
D �
b

a

x
p
a2 � x2

;

so

1C
�
dy

dx

�2
D 1C b

2

a2

x
2

a2 � x2

D
a4 � .a2 � b2/x2

a2.a2 � x2/
:

y

x

b

a

�b

�a

x2

a2
Cy

2

b2
D1

Figure 7.25 The ellipse of Example 4

The circumference of the ellipse is four times the arc length of the part lying in the first

quadrant, so

s D 4
Z a

0

p
a4 � .a2 � b2/x2

a
p
a2 � x2

dx Let x D a sin t ,
dx D a cos t dt

D 4
Z 	=2

0

p
a4 � .a2 � b2/a2 sin2 t

a.a cos t/
a cos t dt

D 4
Z 	=2

0

q
a2 � .a2 � b2/ sin2 t dt

D 4a
Z 	=2

0

s

1�
a2 � b2

a2
sin2 t dt

D 4a
Z 	=2

0

p
1 � "2 sin2 t dt units,

where " D .
p
a2 � b2/=a is the eccentricity of the ellipse. (See Section 8.1 for a

discussion of ellipses.) Note that 0 � " < 1. The function E."/, defined by

E."/ D
Z 	=2

0

p
1� "2 sin2 t dt;

is called the complete elliptic integral of the second kind. The integral cannot be

evaluated by elementary techniques for general ", although numerical methods can be

applied to find approximate values for any given value of ". Tables of values of E."/

for various values of " can be found in collections of mathematical tables. As shown

above, the circumference of the ellipse is given by 4aE."/. Note that for a D b we have
" D 0, and the formula returns the circumference of a circle; s D 4a.�=2/ D 2�a
units.

Areas of Surfaces of Revolution
When a plane curve is rotated (in three dimensions) about a line in the plane of the

curve, it sweeps out a surface of revolution. For instance, a sphere of radius a is

generated by rotating a semicircle of radius a about the diameter of that semicircle.
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The area of a surface of revolution can be found by integrating an area element dS

constructed by rotating the arc length element ds of the curve about the given line. If

the radius of rotation of the element ds is r; then it generates, on rotation, a circular

band of width ds and length (circumference) 2�r: The area of this band is, therefore,

dS D 2�r ds;

as shown in Figure 7.26. The areas of surfaces of revolution around various lines can

be obtained by integrating dS with appropriate choices of r: Here are some important

special cases:

Curve

ds

Axis

r

dS D 2�r ds

Figure 7.26 The circular band generated

by rotating arc length element ds about the

axis

Area of a surface of revolution

If f 0.x/ is continuous on Œa; bl and the curve y D f .x/ is rotated about the
x-axis, the area of the surface of revolution so generated is

S D 2�
Z xDb

xDa
jyj ds D 2�

Z b

a

jf .x/j
p
1C .f 0.x//2 dx:

If the rotation is about the y-axis, the surface area is

S D 2�
Z xDb

xDa
jxjds D 2�

Z b

a

jxj
p
1C .f 0.x//2 dx:

If g0.y/ is continuous on Œc; d l and the curve x D g.y/ is rotated about the
x-axis, the area of the surface of revolution so generated is

S D 2�
Z yDd

yDc
jyj ds D 2�

Z d

c

jyj
p
1C .g0.y//2 dy:

If the rotation is about the y-axis, the surface area is

S D 2�
Z yDd

yDc
jxjds D 2�

Z d

c

jg.y/j
p
1C .g0.y//2 dy:

Remark Students sometimes wonder whether such complicated formulas are actu-
ally necessary. Why not just use dS D 2�jyj dx for the area element when y D
f .x/ is rotated about the x-axis instead of the more complicated area element dS D
2� jyj ds? After all, we are regarding dx and ds as both being infinitely small, and we
certainly used dx for the width of the disk-shaped volume element when we rotated

the region under y D f .x/ about the x-axis to generate a solid of revolution. The
reason is somewhat subtle. For small thickness bx, the volume of a slice of the solid

of revolution is only approximately �y2bx, but the error is small compared to the

volume of this slice. On the other hand, if we use 2� jyjbx as an approximation to
the area of a thin band of the surface of revolution corresponding to an x interval of

widthbx, the error is not small compared to the area of that band. If, for instance, the

curve y D f .x/ has slope 1 at x, then the width of the band is really bs D
p
2bx ,

so that the area of the band isbS D 2�
p
2jyjbx, not just 2� jyjbx. Always use the

appropriate arc length element along the curve when you rotate a curve to find the area

of a surface of revolution.

EXAMPLE 5
(Surface area of a sphere) Find the area of the surface of a sphere

of radius a.
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Solution Such a sphere can be generated by rotating the semicircle with equation
y D

p
a2 � x2, .�a � x � a/, about the x-axis. (See Figure 7.27.) Since

ds

y D
p
a2 � x2

x

y

Figure 7.27 An area element on a sphere

dy

dx
D � xp

a2 � x2
D �x
y
;

the area of the sphere is given by

S D 2�
Z a

�a
y

s

1C
�
x

y

�2
dx

D 4�
Z a

0

p
y2 C x2 dx

D 4�
Z a

0

p
a2 dx D 4�ax

ˇ̌
ˇ̌
a

0

D 4�a2 square units.

EXAMPLE 6
(Surface area of a parabolic dish) Find the surface area of a

parabolic reflector whose shape is obtained by rotating the parabolic
y

x

ds

y D x2
.1; 1/

Figure 7.28 The area element is a

horizontal band here

arc y D x2, .0 � x � 1/, about the y-axis, as illustrated in Figure 7.28.

Solution The arc length element for the parabola y D x2 is ds D p1C 4x2 dx, so
the required surface area is

S D 2�
Z 1

0

x

p
1C 4x2 dx Let u D 1C 4x2,

du D 8x dx

D
�

4

Z 5

1

u
1=2
du

D �
6
u
3=2

ˇ̌
ˇ̌
5

1

D �
6
.5
p
5 � 1/ square units.

EXERCI SE S 7.3

In Exercises 1–16, find the lengths of the given curves.

1. y D 2x � 1 from x D 1 to x D 3
2. y D ax C b from x D A to x D B

3. y D
2

3
x
3=2 from x D 0 to x D 8

4. y2 D .x � 1/3 from .1; 0/ to .2; 1/
5. y3 D x2 from .�1; 1/ to .1; 1/
6. 2.x C 1/3 D 3.y � 1/2 from .�1;1/ to .0; 1C

p
2=3/

7. y D
x
3

12
C
1

x
from x D 1 to x D 4

8. y D
x3

3
C
1

4x
from x D 1 to x D 2

9. 4y D 2 ln x � x2 from x D 1 to x D e

10. y D x2 � ln x
8
from x D 1 to x D 2

11. y D e
x C e�x

2
.D coshx/ from x D 0 to x D a

12. y D ln.1 � x2/ from x D �.1=2/ to x D 1=2

13. y D ln cos x from x D �=6 to x D �=4
14.I y D x2 from x D 0 to x D 2

15.I y D ln
ex � 1
ex C 1

from x D 2 to x D 4

16.I y D lnx from x D 1 to x D e
17. Find the circumference of the closed curve

x2=3 C y2=3 D a2=3. Hint: The curve is symmetric about
both coordinate axes (why?), so one-quarter of it lies in the

first quadrant.

Use numerical methods (or a calculator with an integration

function, or computer software like Maple) to find the lengths of

the curves in Exercises 18–21 to 4 decimal places.

C 18. y D x4 from x D 0 to x D 1
C 19. y D x1=3 from x D 1 to x D 2
C 20. The circumference of the ellipse 3x2 C y2 D 3
C 21. The shorter arc of the ellipse x2 C 2y2 D 2 between .0; 1/

and .1; 1=
p
2/
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In Exercises 22–29, find the areas of the surfaces obtained by

rotating the given curve about the indicated lines.

22. y D x2, (0 � x � 2), about the y-axis
23. y D x3, (0 � x � 1), about the x-axis
24. y D x3=2 , (0 � x � 1), about the x-axis
25. y D x3=2 , (0 � x � 1), about the y-axis
26. y D ex , (0 � x � 1), about the x-axis
27. y D sinx, (0 � x � �), about the x-axis

28. y D x
3

12
C 1
x
, (1 � x � 4), about the x-axis

29. y D
x3

12
C 1
x
, (1 � x � 4), about the y-axis

30. (Surface area of a cone) Find the area of the curved surface

of a right-circular cone of base radius r and height h by

rotating the straight line segment from .0; 0/ to .r; h/ about

the y-axis.

31. (How much icing on a doughnut?) Find the surface area of

the torus (doughnut) obtained by rotating the circle

.x � b/2 C y2 D a2 about the y-axis.
32. (Area of a prolate spheroid) Find the area of the surface

obtained by rotating the ellipse x2 C 4y2 D 4 about the
x-axis.

33. (Area of an oblate spheroid) Find the area of the surface

obtained by rotating the ellipse x2 C 4y2 D 4 about the
y-axis.

34.I The ellipse of Example 4 is rotated about the line y D c > b
to generate a doughnut with elliptical cross-sections. Express

the surface area of this doughnut in terms of the complete

elliptic integral functionE."/ introduced in that example.

35.I Express the integral formula obtained for the length of the

metal sheet in Example 3 in terms of the complete elliptic

integral function E.�/ introduced in Example 4.

36. (An interesting property of spheres) If two parallel planes

intersect a sphere, show that the surface area of that part of the

sphere lying between the two planes depends only on the

radius of the sphere and the distance between the planes, and

not on the position of the planes.

37. For what real values of k does the surface generated by

rotating the curve y D xk , .0 < x � 1/, about the y-axis have
a finite surface area?

38.I The curve y D lnx, .0 < x � 1/, is rotated about the y-axis.
Find the area of the horn-shaped surface so generated.

39.A A hollow container in the shape of an infinitely long horn is

generated by rotating the curve y D 1=x, .1 � x <1/, about
the x-axis.

(a) Find the volume of the container.

(b) Show that the container has infinite surface area.

(c) How do you explain the “paradox” that the container can

be filled with a finite volume of paint but requires an

infinite amount of paint to cover its surface?

7.4 Mass, Moments, and Centre of Mass

Many quantities of interest in physics, mechanics, ecology, finance, and other disci-

plines are described in terms of densities over regions of space, the plane, or even the

real line. To determine the total value of such a quantity we must add up (integrate)

the contributions from the various places where the quantity is distributed.

Mass and Density
If a solid object is made of a homogeneous material, we would expect different parts

of the solid that have the same volume to have the same mass as well. We express

this homogeneity by saying that the object has constant density, that density being

the mass divided by the volume for the whole object or for any part of it. Thus, for

By “density at a point P ” of a

solid object, we mean the limit

�.P / of mass/volume for the

part of the solid lying in small

regions containing P (e.g., balls

centred at P ) as the dimensions

of the regions approach zero.

Such a density � is continuous at

P if we can ensure that

j�.Q/� �.P /j is as small as we
want by takingQ close enough

to P:

example, a rectangular brick with dimensions 20 cm, 10 cm, and 8 cm would have

volume V D 20� 10� 8 D 1;600 cm3, and if it was made of material having constant
density � D 3 g/cm3, it would have mass m D �V D 3 � 1;600 D 4;800 g. (We will
use the lowercase Greek letter rho (�) to represent density.)

If the density of the material constituting a solid object is not constant but varies

from point to point in the object, no such simple relationship exists between mass and

volume. If the density � D �.P / is a continuous function of position P; we can
subdivide the solid into many small volume elements and, by regarding � as approxi-

mately constant over each such element, determine the masses of all the elements and

add them up to get the mass of the solid. The mass bm of a volume element bV

containing the point P would satisfy

bm � �.P /bV;
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so the massm of the solid can be approximated:

m D
X
bm �

X
�.P /bV:

Such approximations become exact as we pass to the limit of differential mass and

volume elements, dm D �.P / dV; so we expect to be able to calculate masses as
integrals, that is, as the limits of such sums:

m D
Z
dm D

Z
�.P / dV:

EXAMPLE 1
The density of a solid vertical cylinder of height H cm and base

area A cm2 is � D �0.1 C h/ g/cm3, where h is the height in
centimetres above the base and �0 is a constant. Find the mass of the cylinder.

Solution See Figure 7.29(a). A slice of the solid at height h above the base and
having thickness dh is a circular disk of volume dV D Adh. Since the density is
constant over this disk, the mass of the volume element is

dm D � dV D �0.1C h/ Adh:

Therefore, the mass of the whole cylinder is

m D
Z H

0

�0A.1C h/ dh D �0A
�
H C

H
2

2

�
g:

Figure 7.29

(a) A solid cylinder whose density varies

with height

(b) Cutaway view of a planet whose

density depends on distance from the

centre

dh

h

A

dr

r

(a) (b)

EXAMPLE 2
(Using spherical shells) The density of a certain spherical planet

of radius R m varies with distance r from the centre according to

the formula

� D
�0

1C r2
kg=m

3
:

Find the mass of the planet.

Solution Recall that the surface area of a sphere of radius r is 4�r2. The planet can
be regarded as being composed of concentric spherical shells having radii between 0

andR. The volume of a shell of radius r and thickness dr (see Figure 7.29(b)) is equal

to its surface area times its thickness, and its mass is its volume times its density:

dV D 4�r2 dr I dm D � dV D 4��0
r2

1C r2
dr:
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We add the masses of these shells to find the mass of the whole planet:

m D 4��0
Z R

0

r2

1C r2
dr D 4��0

Z R

0

�
1�

1

1C r2

�
dr

D 4��0.r � tan�1 r/
ˇ̌
ˇ̌
R

0

D 4��0.R � tan�1R/ kg:

Similar techniques can be applied to find masses of one- and two-dimensional objects,

such as wires and thin plates, that have variable densities of the forms mass/unit length

(line density, which we will usually denote by ı) and � D mass/unit area (areal den-
sity, which we will denote by � ).

EXAMPLE 3
A wire of variable composition is stretched along the x-axis from

x D 0 to x D L cm. Find the mass of the wire if the line density
at position x is ı.x/ D kx g/cm, where k is a positive constant.

Solution The mass of a length element dx of the wire located at position x is given
by dm D ı.x/ dx D kx dx. Thus, the mass of the wire is

m D
Z L

0

kx dx D
�
kx
2

2

�ˇ̌
ˇ̌
L

0

D kL
2

2
g:

EXAMPLE 4
Find the mass of a disk of radius a cm whose centre is at the

origin in the xy-plane if the areal density at position .x; y/ is

� D k.2a C x/ g/cm2. Here k is a constant.

Solution The areal density depends only on the horizontal coordinate x, so it is con-
stant along vertical lines on the disk. This suggests that thin vertical strips should

be used as area elements. A vertical strip of thickness dx at x has area dA D
2
p
a2 � x2 dx (see Figure 7.30); its mass is therefore

y

x

x a

y D
p
a2 � x2

dx

�a

Figure 7.30 The area element of

Example 4

dm D � dA D 2k.2aC x/
p
a2 � x2 dx:

Hence, the mass of the disk is

m D
Z xDa

xD�a
dm D 2k

Z a

�a
.2a C x/

p
a2 � x2 dx

D 4ak
Z a

�a

p
a2 � x2 dx C 2k

Z a

�a
x

p
a2 � x2 dx

D 4ak
�a2

2
C 0 D 2�ka3 g:

We used the area of a semicircle to evaluate the first integral. The second integral is

zero because the integrand is odd and the interval is symmetric about x D 0.

Distributions of mass along one-dimensional structures (lines or curves) necessarily

lead to integrals of functions of one variable, but distributions of mass on a surface

or in space can lead to integrals involving functions of more than one variable. Such

integrals are studied in multivariable calculus. (See, for example, Section 14.7.) In

the examples above, the given densities were functions of only one variable, so these

problems, although higher dimensional in nature, led to integrals of functions of only

one variable and could be solved by the methods at hand.
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Moments and Centres of Mass
The moment about the point x D x0 of a mass m located at position x on the x-axis
is the product m.x � x0/ of the mass and its (signed) distance from x0. If the x-axis
is a horizontal arm hinged at x0, the moment about x0 measures the tendency of the

weight of the mass m to cause the arm to rotate. If several masses m1, m2, m3, : : : ;

mn are located at the points x1, x2, x3, : : : ; xn, respectively, then the total moment

of the system of masses about the point x D x0 is the sum of the individual moments
(see Figure 7.31):

MxDx0 D .x1 � x0/m1C .x2 � x0/m2C � � � C .xn � x0/mn D
nX

jD1
.xj � x0/mj :

Figure 7.31 A system of discrete masses

on a line

m2 m1 m3 m5 m4

x2 0 x1 x3 x5 x4

The centre of mass of the system of masses is the point Nx about which the total
moment of the system is zero. Thus,

0 D
nX

jD1
.xj � Nx/mj D

nX

jD1
xjmj � Nx

nX

jD1
mj :

The centre of mass of the system is therefore given by

Nx D

nX

jD1
xjmj

nX

jD1
mj

D MxD0
m
;

where m is the total mass of the system and MxD0 is the total moment about x D 0.
If you think of the x-axis as being a weightless wire supporting the masses, then Nx is
the point at which the wire could be supported and remain in perfect balance (equi-

librium), not tipping either way. Even if the axis represents a nonweightless support,

say a seesaw, supported at x D Nx, it will remain balanced after the masses are added,
provided it was balanced beforehand. For many purposes a system of masses behaves

as though its total mass were concentrated at its centre of mass.

Now suppose that a one-dimensional distribution of mass with continuously vari-

able line density ı.x/ lies along the interval Œa; bl of the x-axis. An element of length

dx at position x contains mass dm D ı.x/ dx, so its moment is dMxD0 D x dm D
xı.x/ dx about x D 0. The total moment about x D 0 is the sum (integral) of these
moment elements:

MxD0 D
Z b

a

xı.x/dx:

Since the total mass is

m D
Z b

a

ı.x/ dx;

we obtain the following formula for the centre of mass:
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The centre of mass of a distribution of mass with line density ı.x/ on the

interval Œa; bl is given by

Nx D
MxD0

m
D

Z b

a

xı.x/dx

Z b

a

ı.x/ dx

:

EXAMPLE 5
At what point can the wire of Example 3 be suspended so that it

will balance?

Solution In Example 3 we evaluated the mass of the wire to be kL2=2 g. Its moment
about x D 0 is

MxD0 D
Z L

0

xı.x/dx

D
Z L

0

kx
2
dx D

�
kx
3

3

�ˇ̌
ˇ̌
L

0

D
kL
3

3
g�cm:

(Note that the appropriate units for the moment are units of mass times units of dis-

tance: in this case gram-centimetres.) The centre of mass of the wire is

Nx D
kL3=3

kL2=2
D
2L

3
:

The wire will be balanced if suspended at position x D 2L=3 cm.

Two- and Three-Dimensional Examples
The system of mass considered in Example 5 is one-dimensional and lies along a

straight line. If mass is distributed in a plane or in space, similar considerations pre-

vail. For a system of masses m1 at .x1; y1/, m2 at .x2; y2/, : : : ; mn at .xn; yn/, the

moment about x D 0 is

MxD0 D x1m1 C x2m2 C � � � C xnmn D
nX

jD1
xjmj ;

and themoment about y D 0 is

MyD0 D y1m1 C y2m2 C � � � C ynmn D
nX

jD1
yjmj :

The centre of mass is the point . Nx; Ny/ where

Nx D
MxD0

m
D

nX

jD1
xjmj

nX

jD1
mj

and Ny D
MyD0

m
D

nX

jD1
yjmj

nX

jD1
mj

:

For continuous distributions of mass, the sums become appropriate integrals.

EXAMPLE 6
Find the centre of mass of a rectangular plate that occupies the

region 0 � x � a, 0 � y � b, if the areal density of the material
in the plate at position .x; y/ is � D ky.
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Solution Since the areal density is independent of x and the rectangle is symmetric
y

xa=2 a

dy

y

b

Figure 7.32 The area element for

Example 6

about the line x D a=2, the x-coordinate of the centre of mass must be Nx D a=2. A
thin horizontal strip of width dy at height y (see Figure 7.32) has mass dm D aky dy.
The moment of this strip about y D 0 is dMyD0 D y dm D kay2 dy. Hence, the
mass and moment about y D 0 of the whole plate are

m D ka
Z b

0

y dy D kab
2

2
;

MyD0 D ka
Z b

0

y
2
dy D

kab3

3
:

Therefore, Ny D MyD0=m D 2b=3, and the centre of mass of the plate is .a=2; 2b=3/.
The plate would be balanced if supported at this point.

For distributions of mass in three-dimensional space one defines, analogously, the mo-

mentsMxD0,MyD0, andMzD0 of the system of mass about the planes x D 0, y D 0,
and z D 0, respectively. The centre of mass is . Nx; Ny; Nz/ where

Nx D MxD0
m
; Ny D MyD0

m
; and Nz D MzD0

m
;

m being the total mass: m D m1Cm2C � � � Cmn. Again, the sums are replaced with
integrals for continuous distributions of mass.

EXAMPLE 7
Find the centre of mass of a solid hemisphere of radius R ft if its

density at height z ft above the base plane of the hemisphere is

�0z lb/ft
3.

z

zdz

R

Figure 7.33 Mass element of a solid

hemisphere with density depending on

height

Solution The solid is symmetric about the vertical axis (let us call it the z-axis), and
the density is constant in planes perpendicular to this axis. Therefore, the centre of

mass must lie somewhere on this axis. A slice of the solid at height z above the base,

and having thickness dz, is a disk of radius
p
R2 � z2. (See Figure 7.33.) Its volume

is dV D �.R2 � z2/ dz, and its mass is dm D �0z dV D �0�.R2z � z3/ dz. Its
moment about the base plane z D 0 is dMzD0 D z dm D �0�.R2z2 � z4/ dz. The
mass of the solid is

m D �0�
Z R

0

.R
2
z � z3/ dz D �0�

�
R
2
z
2

2
�
z
4

4

�ˇ̌
ˇ̌
R

0

D
�

4
�0R

4 lb:

The moment of the hemisphere about the plane z D 0 is

MzD0 D �0�
Z R

0

.R
2
z
2 � z4/ dz D �0�

�
R2z3

3
�
z5

5

�ˇ̌
ˇ̌
R

0

D
2�

15
�0R

5 lb�ft:

The centre of mass therefore lies along the axis of symmetry of the hemisphere at

height Nz DMzD0=m D 8R=15 ft above the base of the hemisphere.

EXAMPLE 8
Find the centre of mass of a plate that occupies the region

a � x � b, 0 � y � f .x/, if the density at any point .x; y/
is �.x/.

Solution The appropriate area element is shown in Figure 7.34. It has area f .x/ dx,
mass

dm D �.x/f .x/ dx;
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and moment about x D 0

dMxD0 D x�.x/f .x/ dx:

Since the density depends only on x, the mass element dm has constant density, so the

y-coordinate of its centre of mass is at its midpoint: Nydm D 1
2
f .x/. Therefore, the

moment of the mass element dm about y D 0 is
y

x

dx

y D f .x/

a x b

Figure 7.34 Mass element of a plate

dMyD0 D Nydm dm D
1

2
�.x/
�
f .x/

�2
dx:

The coordinates of the centre of mass of the plate are Nx D
MxD0

m
and Ny D

MyD0

m
,

where

m D
Z b

a

�.x/f .x/ dx;

MxD0 D
Z b

a

x�.x/f .x/ dx;

MyD0 D
1

2

Z b

a

�.x/
�
f .x/

�2
dx:

Remark Similar formulas can be obtained if the density depends on y instead of
x, provided that the region admits a suitable horizontal area element (e.g., the region

might be specified by c � y � d , 0 � x � g.y/). Finding centres of mass for plates
that occupy regions specified by functions of x, but where the density depends on y,

generally requires the use of “double integrals.” Such problems are therefore studied

in multivariable calculus. (See Section 14.7.)

EXERCI SE S 7.4

Find the mass and centre of mass for the systems in Exercises

1–16. Be alert for symmetries.

1. A straight wire of length L cm, where the density at distance

s cm from one end is ı.s/ D sin�s=L g/cm
2. A straight wire along the x-axis from x D 0 to x D L if the
density is constant ı0, but the cross-sectional radius of the

wire varies so that its value at x is aC bx
3. A quarter-circular plate having radius a, constant areal density

�0, and occupying the region x
2 C y2 � a2, x � 0, y � 0

4. A quarter-circular plate of radius a occupying the region

x
2 C y2 � a2, x � 0, y � 0, having areal density
�.x/ D �0x

5. A plate occupying the region 0 � y � 4 � x2 if the areal
density at .x; y/ is ky

6. A right-triangular plate with legs 2 m and 3 m if the areal

density at any point P is 5h kg/m2, h being the distance of P

from the shorter leg

7. A square plate of edge a cm if the areal density at P is kx

g/cm2, where x is the distance from P to one edge of the

square

8. The plate in Exercise 7, but with areal density kr g/cm2,

where r is the distance (in centimetres) from P to one of the

diagonals of the square

9. A plate of areal density �.x/ occupying the region a � x � b,
f .x/ � y � g.x/

10. A rectangular brick with dimensions 20 cm, 10 cm, and

5 cm if the density at P is kx g/cm3, where x is the distance

from P to one of the 10 � 5 faces
11. A solid ball of radius R m if the density at P is z kg/m3,

where z is the distance from P to a plane at distance 2R m

from the centre of the ball

12. A right-circular cone of base radius a cm and height b cm if

the density at point P is kz g/cm3, where z is the distance of

P from the base of the cone

13.I The solid occupying the quarter of a ball of radius a centred at

the origin having as base the region x2 C y2 � a2, x � 0 in
the xy-plane, if the density at height z above the base is �0z

14.I The cone of Exercise 12, but with density at P equal to

kx g/cm3, where x is the distance of P from the axis of

symmetry of the cone. Hint: Use a cylindrical shell centred on

the axis of symmetry as a volume element. This element has

constant density, so its centre of mass is known, and its

moment can be determined from its mass.
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15.I A semicircular plate occupying the region x2 C y2 � a2,
y � 0, if the density at distance s from the origin is
ks g/cm2

16.I The wire in Exercise 1 if it is bent in a semicircle

C 17. It is estimated that the density of matter in the neighbourhood
of a gas giant star is given by �.r/ D Ce�kr2 , where C and k
are positive constants, and r is the distance from the centre of

the star. The radius of the star is indeterminate but can be

taken to be infinite since �.r/ decreases very rapidly for large

r . Find the approximate mass of the star in terms of C and k.

C 18. Find the average distance Nr of matter in the star of Exercise 17
from the centre of the star. Nr is given by

R1
0 r dm/

R1
0 dm,

where dm is the mass element at distance r from the centre of

the star.

7.5 Centroids
If matter is distributed uniformly in a system so that the density ı is constant, then that

density cancels out of the numerator and denominator in sum or integral expressions

for coordinates of the centre of mass. In such cases the centre of mass depends only on

the shape of the object, that is, on geometric properties of the region occupied by the

object, and we call it the centroid of the region.

Centroids are calculated using the same formulas as those used for centres of mass,

except that the density (being constant) is taken to be unity, so the mass is just the

length, area, or volume of the region, and the moments are referred to asmoments of

the region, rather than of any mass occupying the region. If we set �.x/ D 1 in the
formulas obtained in Example 8 of Section 7.4, we obtain the following result:

The centroid of a standard plane region

The centroid of the plane region a � x � b, 0 � y � f .x/, is . Nx; Ny/, where

Nx D MxD0
A
; Ny D MyD0

A
; and)

A D
Z b

a

f .x/dx; MxD0 D
Z b

a

xf .x/ dx; MyD0 D
1

2

Z b

a

�
f .x/

�2
dx:

Thus, for example, Nx is the average value of the function x over the region.
The centroids of some regions are obvious by symmetry. The centroid of a circular

disk or an elliptical disk is at the centre of the disk. The centroid of a rectangle is at

the centre also; the centre is the point of intersection of the diagonals. The centroid of

any region lies on any axes of symmetry of the region.

EXAMPLE 1
What is the average value of y over the half-disk �a � x � a,
0 � y �

p
a2 � x2? Find the centroid of the half-disk.

Solution By symmetry, the centroid lies on the y-axis, so its x-coordinate is Nx D 0.
(See Figure 7.35.) Since the area of the half-disk is A D 1

2
�a2, the average value of

y over the half-disk is

y

x

dx

y D
p
a2 � x2

�a x a

Figure 7.35 The half-disk of Example 1

Ny D MyD0
A
D 2

�a2

1

2

Z a

�a
.a
2 � x2/ dx D 2

�a2

2a
3

3
D 4a
3�
:

The centroid of the half-disk is

�
0;
4a

3�

�
.

EXAMPLE 2
Find the centroid of the semicircle y D

p
a2 � x2.
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Solution Here, the “region” is a one-dimensional curve, having length rather than
y

x

y D
p
a2 � x2

y

x

ds

�a a

Figure 7.36 The semicircle of Example 2

area. Again Nx D 0 by symmetry. A short arc of length ds at height y on the semicircle
has moment dMyD0 D y ds about y D 0. (See Figure 7.36.) Since

ds D

s

1C
�
dy

dx

�2
dx D

s

1C
x2

a2 � x2
dx D

a dx
p
a2 � x2

;

and since y D
p
a2 � x2 on the semicircle, we have

MyD0 D
Z a

�a

p
a2 � x2

a dx
p
a2 � x2

D a
Z a

�a
dx D 2a2:

Since the length of the semicircle is �a, we have Ny D MyD0
�a

D 2a
�
, and the centroid

of the semicircle is

�
0;
2a

�

�
. Note that the centroid of a semicircle of radius a is not

the same as that of half-disk of radius a. Note also that the centroid of the semicircle

does not lie on the semicircle itself.

T H E O R E M

1

The centroid of a triangle

The centroid of a triangle is the point at which all three medians of the triangle

intersect.

PROOF Recall that a median of a triangle is a straight line joining one vertex of the
triangle to the midpoint of the opposite side. Given any median of a triangle, we will

show that the centroid lies on that median. Thus, the centroid must lie on all three

medians.

Figure 7.37 The axes of Theorem 1

y

x

.a;mC c/

.0;m/

x�x

.�a; m� c/

h.�x/

h.x/

Adopt a coordinate system where the median in question lies along the y-axis and

such that a vertex of the triangle is at the origin. (See Figure 7.37.) Let the midpoint

of the opposite side be .0;m/. Then the other two vertices of the triangle must have

coordinates of the form .�a;m� c/ and .a;mC c/ so that .0;m/ will be the midpoint
between them. The two vertical area elements shown in the figure are at the same

distance on opposite sides of the y-axis, so they have the same heights h.�x/ D h.x/
(by similar triangles) and the same area. The sum of the moments about x D 0 of
these area elements is

dMxD0 D �xh.�x/ dx C xh.x/ dx D 0;
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so the moment of the whole triangle about x D 0 is

MxD0 D
Z xDa

xD�a
dMxD0 D 0:

Therefore, the centroid of the triangle lies on the y-axis.

Remark By simultaneously solving the equations of any two medians of a triangle,
we can verify the following formula:

Coordinates of the centroid of a triangle

The coordinates of the centroid of a triangle are the averages of the corre-

sponding coordinates of the three vertices of the triangle. The triangle with

vertices .x1; y1/, .x2; y2/, and .x3; y3/ has centroid

. Nx; Ny/ D
�
x1 C x2 C x3

3
;
y1 C y2 C y3

3

�
:

If a region is a union of nonoverlapping subregions, then any moment of the region

is the sum of the corresponding moments of the subregions. This fact enables us

to calculate the centroid of the region if we know the centroids and areas of all the

subregions.

EXAMPLE 3
Find the centroid of the trapezoid with vertices .0; 0/, .1; 0/, .1; 2/,

and .0; 1/.

Solution The trapezoid is the union of a square and a (nonoverlapping) triangle, as
shown in Figure 7.38. By symmetry, the square has centroid . NxS ; NyS / D

�
1
2
;
1
2

�
, and

its area is AS D 1. The triangle has area AT D 1
2
, and its centroid is . NxT ; NyT /, where

y

x

.1; 2/

.1; 1/
.0; 1/

.0; 0/ .1; 0/

S

T

Figure 7.38 The trapezoid of Example 3

NxT D
0C 1C 1
3

D
2

3
and NyT D

1C 1C 2
3

D
4

3
:

Continuing to use subscripts S and T to denote the square and triangle, respectively,

we calculate

MxD0 DMS IxD0 CMT IxD0 D AS NxS C AT NxT D 1 �
1

2
C
1

2
�
2

3
D
5

6
;

MyD0 DMS IyD0 CMT IyD0 D AS NyS C AT NyT D 1 �
1

2
C
1

2
�
4

3
D
7

6
:

Since the area of the trapezoid is A D AS CAT D 3
2
, its centroid is

. Nx; Ny/ D
�
5

6

�
3

2
;
7

6

�
3

2

�
D
�
5

9
;
7

9

�
:

EXAMPLE 4
Find the centroid of the solid region obtained by rotating about the

y-axis the first quadrant region lying between the x-axis and the

parabola y D 4 � x2.

Solution By symmetry, the centroid of the parabolic solid will lie on its axis of sym-
metry, they-axis. A thin, disk-shaped slice of the solid at height y and having thickness

dy (see Figure 7.39) has volume

dy

2 x

4

y

y

p
4� y

Figure 7.39 A parabolic solid

dV D �x2 dy D �.4 � y/ dy
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and moment about the base plane

dMyD0 D y dV D �.4y � y2/ dy:

Hence, the volume of the solid is

V D �
Z 4

0

.4 � y/ dy D �
�
4y � y

2

2

�ˇ̌
ˇ̌
4

0

D �.16 � 8/ D 8�;

and its moment about y D 0 is

MyD0 D �
Z 4

0

.4y � y2/ dy D �
�
2y
2 � y

3

3

�ˇ̌
ˇ̌
4

0

D �
�
32 � 64

3

�
D 32
3
�:

Hence, the centroid is located at Ny D
32�

3
�
1

8�
D
4

3
.

Pappus’s Theorem
The following theorem relates volumes or surface areas of revolution to the centroid of

the region or curve being rotated.

T H E O R E M

2

Pappus’s Theorem

(a) If a plane region R lies on one side of a line L in that plane and is rotated about

L to generate a solid of revolution, then the volume V of that solid is the product

of the area of R and the distance travelled by the centroid of R under the rotation;

that is,

V D 2� NrA;

where A is the area of R, and Nr is the perpendicular distance from the centroid of
R to L.

(b) If a plane curve C lies on one side of a line L in that plane and is rotated about

that line to generate a surface of revolution, then the area S of that surface is the

length of C times the distance travelled by the centroid of C:

S D 2� Nrs;

where s is the length of the curve C, and Nr is the perpendicular distance from the
centroid of C to the line L.

PROOF We prove part (a). The proof of (b) is similar and is left as an exercise.
Let us take L to be the y-axis and suppose that R lies between x D a and x D b
where 0 � a < b. Thus Nr D Nx, the x-coordinate of the centroid of R. Let dA denote
the area of a thin strip of R at position x and having width dx. (See Figure 7.40.) This

strip generates, on rotation about L, a cylindrical shell of volume dV D 2�x dA, so
the volume of the solid of revolution is

V D 2�
Z xDb

xDa
x dA D 2�MxD0 D 2� NxA D 2� NrA:

y

x

Nr
dA

R

a x b

Figure 7.40 Proving Theorem 2(a)

As the following examples illustrate, Pappus’s Theorem can be used in two ways: either

the centroid can be determined when the appropriate volume or surface area is known,

or the volume or surface area can be determined if the centroid of the rotating region

or curve is known.
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EXAMPLE 5
Use Pappus’s Theorem to find the centroid of the semicircle

y D
q
a2 � x2.

Solution The centroid of the semicircle lies on its axis of symmetry, the y-axis, so it
is located at a point with coordinates .0; Ny/. Since the semicircle has length �a units
and generates, on rotation about the x-axis, a sphere having area 4�a2 square units,

we obtain, using part (b) of Pappus’s Theorem,

4�a
2 D 2�.�a/ Ny:

Thus Ny D 2a=� , as shown previously in Example 2.

EXAMPLE 6
Use Pappus’s Theorem to find the volume and surface area of the

torus (doughnut) obtained by rotating the disk .x�b/2Cy2 � a2
about the y-axis. Here 0 < a < b. (See Figure 7.10 in Section 7.1.)

Solution The centroid of the disk is at .b; 0/, which is at distance Nr D b units from
the axis of rotation. Since the disk has area �a2 square units, the volume of the torus

is

V D 2�b.�a2/ D 2�2a2b cubic units:

To find the surface area S of the torus (in case you want to have icing on the doughnut),

rotate the circular boundary of the disk, which has length 2�a, about the y-axis and

obtain

S D 2�b.2�a/ D 4�2ab square units:

EXERCI SE S 7.5

Find the centroids of the geometric structures in Exercises 1–21.

Be alert for symmetries and opportunities to use Pappus’s

Theorem.

1. The quarter-disk x2 C y2 � r2; x � 0; y � 0
2. The region 0 � y � 9 � x2

3. The region 0 � x � 1, 0 � y � 1p
1C x2

4. The circular disk sector x2 C y2 � r2; 0 � y � x
5. The circular disk segment 0 � y �

p
4� x2 � 1

6. The semi-elliptic disk 0 � y � b
p
1 � .x=a/2

7. The quadrilateral with vertices (in clockwise order) .0; 0/,

.3; 1/, .4; 0/, and .2;�2/
8. The region bounded by the semicircle

y D
p
1 � .x � 1/2, the y-axis, and the line y D x � 2

9. A hemispherical surface of radius r

10. A solid half ball of radius r

11. A solid cone of base radius r and height h

12. A conical surface of base radius r and height h

13. The plane region 0 � y � sinx; 0 � x � �
14. The plane region 0 � y � cosx; 0 � x � �=2

15. The quarter-circle arc x2 C y2 D r2; x � 0; y � 0
16. The solid obtained by rotating the region in Figure 7.41(a)

about the y-axis
y

x

y

x

y

x

y

x

.0;2/ .2;2/ .0;1/
.1;1/

.1;0/

.0;1/

.1;0/

semicircle

.1;0/

.2;1/

.0;0/ .0;�1/

.0;�1/

.�1;0/

.�1;0/

.�1;0/

semicircles

(a)

(c) (d)

(b)

semicircle

Figure 7.41
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17. The region in Figure 7.41(a)

18. The region in Figure 7.41(b)

19. The region in Figure 7.41(c)

20. The region in Figure 7.41(d)

21. The solid obtained by rotating the plane region

0 � y � 2x � x2 about the line y D �2
22. The line segment from .1; 0/ to .0; 1/ is rotated about the line

x D 2 to generate part of a conical surface. Find the area of
that surface.

23. The triangle with vertices .0; 0/, .1; 0/, and .0; 1/ is rotated

about the line x D 2 to generate a certain solid. Find the
volume of that solid.

24. An equilateral triangle of edge s cm is rotated about one of its

edges to generate a solid. Find the volume and surface area of

that solid.

C 25. Find to 5 decimal places the coordinates of the centroid of the
region 0 � x � �=2, 0 � y �

p
x cos x.

C 26. Find to 5 decimal places the coordinates of the centroid of the
region 0 < x � �=2, ln.sin x/ � y � 0.

27. Find the centroid of the infinitely long spike-shaped region

lying between the x-axis and the curve y D .x C 1/�3 and to
the right of the y-axis.

28.A Show that the curve y D e�x2 .�1 < x <1/ generates a
surface of finite area when rotated about the x-axis. What

does this imply about the location of the centroid of this

infinitely long curve?

29. Obtain formulas for the coordinates of the centroid of the

plane region c � y � d , 0 < f.y/ � x � g.y/.
30.A Prove part (b) of Pappus’s Theorem (Theorem 2).

M 31. (Stability of a floating object) Determining the orientation
that a floating object will assume is a problem of critical

importance to ship designers. Boats must be designed to float

stably in an upright position; if the boat tilts somewhat from

upright, the forces on it must be such as to right it again. The

two forces on a floating object that need to be taken into

account are its weightW and the balancing buoyant force

B D �W. The weightW must be treated for mechanical
purposes as being applied at the centre of mass (CM) of the

object. The buoyant force, however, acts at the centre of

buoyancy (CB), which is the centre of mass of the water

displaced by the object, and is therefore the centroid of the

“hole in the water” made by the object.

For example, consider a channel marker buoy consisting

of a hemispherical hull surmounted by a conical tower

supporting a navigation light. The buoy has a vertical axis of

symmetry. If it is upright, both the CM and the CB lie on this

line, as shown in the left half of Figure 7.42.

CB

CM

O

CM
W

B
CB

O

W

B

Figure 7.42

Is this upright flotation of the buoy stable? It is if the CM

lies below the centre O of the hemispherical hull, as shown in

the right half of the figure. To see why, imagine the buoy tilted

slightly from the vertical as shown in the right half of the

figure. Observe that the CM still lies on the axis of symmetry

of the buoy, but the CB lies on the vertical line through O. The

forcesW and B no longer act along the same line, but their

torques are such as to rotate the buoy back to a vertical upright

position. If CM had been above O in the left figure, the

torques would have been such as to tip the buoy over once it

was displaced even slightly from the vertical.

A wooden beam has a square cross-section and specific

gravity 0.5, so that it will float with half of its volume

submerged. (See Figure 7.43.) Assuming it will float

horizontally in the water, what is the stable orientation of the

square cross-section with respect to the surface of the water?

In particular, will the beam float with a flat face upward or an

edge upward? Prove your assertions. You may find Maple or

another symbolic algebra program useful.
y

x
t

.�=4/ � t
P

N

M

L

.�=4/ � t

1

t

1

p
2p

2

Figure 7.43

7.6 Other Physical Applications

In this section we present some examples of the use of integration to calculate quanti-

ties arising in physics and mechanics.
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Hydrostatic Pressure
The pressure p at depth h beneath the surface of a liquid is the force per unit area

exerted on a horizontal plane surface at that depth due to the weight of the liquid above

it. Hence, p is given by

p D �gh;

where � is the density of the liquid, and g is the acceleration produced by gravity where

the fluid is located. (See Figure 7.44.) For water at the surface of the earth we have,

approximately, � D 1;000 kg/m3 and g D 9:8 m/s2, so the pressure at depth h m is
p D 9;800h N/m2:

The unit of force used here is the newton (N); 1 N = 1 kg�m/s2, the force that imparts
an acceleration of 1 m/s2 to a mass of 1 kg.

A

h

Figure 7.44 The volume of liquid above

the area A is V D Ah. The weight of this
liquid is �Vg D �ghA, so the pressure
(force per unit area) at depth h is p D �gh

The molecules in a liquid interact in such a way that the pressure at any depth

acts equally in all directions; the pressure against a vertical surface is the same as that

against a horizontal surface at the same depth. This is Pascal’s principle.

The total force exerted by a liquid on a horizontal surface (say, the bottom of a

tank holding the liquid) is found by multiplying the area of that surface by the pressure

at the depth of the surface below the top of the liquid. For nonhorizontal surfaces,

however, the pressure is not constant over the whole surface, and the total force cannot

be determined so easily. In this case we divide the surface into area elements dA, each

at some particular depth h, and we then sum (i.e., integrate) the corresponding force

elements dF D �gh dA to find the total force.

EXAMPLE 1
One vertical wall of a water trough is a semicircular plate of radius

R m with curved edge downward. If the trough is full, so that the

water comes up to the top of the plate, find the total force of the water on the plate.

Solution A horizontal strip of the surface of the plate at depth h m and having
width dh m (see Figure 7.45) has length 2

p
R2 � h2 m; hence, its area is dA D

2
p
R2 � h2 dh m2. The force of the water on this strip is

R
h

dh

Figure 7.45 An end plate of the water

trough

dF D �ghdA D 2�gh
p
R2 � h2 dh:

Thus, the total force on the plate is

F D
Z hDR

hD0
dF D 2�g

Z R

0

h

p
R2 � h2 dh Let u D R2 � h2,

du D �2h dh

D �g
Z R2

0

u
1=2
du D �g

2

3
u
3=2

ˇ̌
ˇ̌
R2

0

�
2

3
� 9;800R3 � 6;533R3 N:

EXAMPLE 2
(Force on a dam) Find the total force on a section of a dam 100 m

long and having a vertical height of 10 m, if the surface holding

back the water is inclined at an angle of 30ı to the vertical and the water comes up to
the top of the dam.

Solution The water in a horizontal layer of thickness dh m at depth h m makes
contact with the dam along a slanted strip of width dh sec 30ı D .2=

p
3/ dh m. (See

Figure 7.46.) The area of this strip is dA D .200=
p
3/ dh m2, and the force of water

against the strip is

dF D �ghdA D 200p
3
� 1;000� 9:8h dh � 1;131;600h dh N:
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The total force on the dam section is therefore

F � 1;131;600
Z 10

0

hdh D 1;131;600 � 10
2

2
� 5:658 � 107 N:

Figure 7.46 The dam of Example 2

h

30ı

dh sec 30ı

100 m

10 m
dh

Work
When a force acts on an object to move that object, it is said to have done work on the

object. The amount of work done by a constant force is measured by the product of the

force and the distance through which it moves the object. This assumes that the force

is in the direction of the motion.

work D force � distance

Work is always related to a particular force. If other forces acting on an object cause

it to move in a direction opposite to the force F; then work is said to have been done

against the force F:

Suppose that a force in the direction of the x-axis moves an object from x D a
to x D b on that axis and that the force varies continuously with the position x of
the object; that is, F D F.x/ is a continuous function. The element of work done
by the force in moving the object through a very short distance from x to x C dx is
dW D F.x/ dx, so the total work done by the force is

W D
Z xDb

xDa
dW D

Z b

a

F.x/ dx:

EXAMPLE 3
(Stretching or compressing a spring) By Hooke’s Law, the

force F.x/ required to extend (or compress) an elastic spring to

x units longer (or shorter) than its natural length is proportional to x:

F.x/D kx;

where k is the spring constant for the particular spring. If a force of 2,000 N is

required to extend a certain spring to 4 cm longer than its natural length, how much

work must be done to extend it that far?

Solution Since F.x/D kx D 2;000 N when x D 4 cm, we must have
k D 2;000=4 D 500 N/cm. The work done in extending the spring 4 cm is

W D
Z 4

0

kx dx D k
x2

2

ˇ̌
ˇ̌
4

0

D 500
N

cm
�
42 cm2

2
D 4;000 N�cm D 40 N�m:

Forty newton-metres (joules) of work must be done to stretch the spring 4 cm.
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Figure 7.47 Pumping water out of a

conical tank

3 m

r

h

4 m

dh

PUMP

EXAMPLE 4
(Work done to pump out a tank) Water fills a tank in the shape

of a right-circular cone with top radius 3 m and depth 4 m. How

much work must be done (against gravity) to pump all the water out of the tank over

the top edge of the tank?

Solution A thin, disk-shaped slice of water at height h above the vertex of the tank
has radius r (see Figure 7.47), where r D 3

4
h by similar triangles. The volume of this

slice is

dV D �r2 dh D
9

16
�h
2
dh;

and its weight (the force of gravity on the mass of water in the slice) is

dF D �g dV D
9

16
�g �h

2
dh:

The water in this disk must be raised (against gravity) a distance .4 � h/ m by the
pump. The work required to do this is

dW D
9

16
�g �.4 � h/h2 dh:

The total work that must be done to empty the tank is the sum (integral) of all these

elements of work for disks at depths between 0 and 4 m:

W D
Z 4

0

9

16
�g �.4h

2 � h3/ dh

D
9

16
�g �

�
4h3

3
�
h4

4

�ˇ̌
ˇ̌
4

0

D 9�
16
� 1;000 � 9:8� 64

3
� 3:69 � 105 N�m:

EXAMPLE 5
(Work to raise material into orbit) The gravitational force of

the earth on a mass m located at height h above the surface of the

earth is given by

F.h/ D Km

.R C h/2
;
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where R is the radius of the earth and K is a constant that is independent of m and h.

Determine, in terms of K and R, the work that must be done against gravity to raise

an object from the surface of the earth to:

(a) a height H above the surface of the earth, and

(b) an infinite height above the surface of the earth.

Solution The work done to raise the mass m from height h to height hC dh is

dW D
Km

.RC h/2
dh:

(a) The total work to raise it from height h D 0 to height h D H is

W D
Z H

0

Km

.R C h/2
dh D

�Km
RC h

ˇ̌
ˇ̌
H

0

D Km
�
1

R
�

1

RCH

�
:

If R and H are measured in metres and F is measured in newtons, then W is

measured in newton-metres (N�m), or joules.
(b) The total work necessary to raise the mass m to an infinite height is

W D
Z 1

0

Km

.R C h/2
dh D lim

H!1
Km

�
1

R
�

1

RCH

�
D
Km

R
:

EXAMPLE 6
One end of a horizontal tank with cross-section a square of edge

length L metres is fixed while the other end is a square piston free

to travel without friction along the length of the tank. Between the piston and the fixed

end there is some water in the tank; its depth depends on the position of the piston.

(See Figure 7.48.)

(a) When the depth of the water is y metres (0 � y � L), what force does it exert on
the piston?

(b) If the piston is X metres from the fixed end of the tank when the water depth is

L=2 metres, how much work must be done to force the piston in further to halve

that distance and hence cause the water level to increase to fill the available space?

Assume no water leaks out but that trapped air can escape from the top of the tank.

y
L

L

Lx

Figure 7.48 The piston in Example 6

Solution
(a) When the depth of water in the tank is y m, a horizontal strip on the face of the

piston at depth z below the surface of the water (0 � z � y) and having height
dz has area dA D Ldz. Since the pressure at depth z is �gz D 9;800z N/m2,
the force of the water on the strip is dF D 9;800Lz dz N. Thus, the force on the
piston is

F D
Z y

0

9;800L z dz D 4;900Ly2 N, where 0 � y � L:

(b) If the distance from the fixed end of the tank to the piston is x m when the water

depth is y m, then the volume of water in the tank is V D Lxy m3. But we are
given that V D L2X=2, so we have u D LX=2. Now the work done in moving
the piston from x to x � dx is

dW D 4;900Ly2.�dx/ D �4;900L
L2X2

4x2
dx:

Thus, the work done to move the piston from position X to position X=2 is

W D �
Z X=2

X

4;900
L3X2

4

dx

x2

D 4;900
L3X2

4

�
2

X
�
1

X

�
D 1;225N �m:
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Potential Energy and Kinetic Energy
The units of energy are the same as those of work (force � distance). Work done
against a force may be regarded as storing up energy for future use or for conversion

to other forms. Such stored energy is called potential energy (P.E.). For instance,

in extending or compressing an elastic spring, we are doing work against the tension

in the spring and hence storing energy in the spring. When work is done against a

(variable) force F.x/ to move an object from x D a to x D b, the energy stored is

P.E. D �
Z b

a

F.x/ dx:

Since the work is being done against F; the signs of F.x/ and b � a are opposite,
so the integral is negative; the explicit negative sign is included so that the calculated

potential energy will be positive.

One of the forms of energy into which potential energy can be converted is kinetic

energy (K.E.), the energy of motion. If an object of mass m is moving with velocity

v, it has kinetic energy

K.E. D
1

2
m v

2
:

For example, if an object is raised and then dropped, it accelerates downward under

gravity as more and more of the potential energy stored in it when it was raised is

converted to kinetic energy.

Consider the change in potential energy stored in a mass m as it moves along the

x-axis from a to b under the influence of a force F.x/ depending only on x:

P.E..b/ � P.E..a/ D �
Z b

a

F.x/ dx:

(The change in P.E. is negative if m is moving in the direction of F:) According to

Newton’s Second Law of Motion, the force F.x/ causes the mass m to accelerate,

with acceleration dv=dt given by

F.x/D m
dv

dt
.force D mass � acceleration/:

By the Chain Rule we can rewrite dv=dt in the form

dv

dt
D
dv

dx

dx

dt
D v
dv

dx
;

so F.x/D mv
dv

dx
. Hence,

P.E..b/ � P.E..a/ D �
Z b

a

mv
dv

dx
dx

D �m
Z xDb

xDa
v dv

D �1
2
mv
2

ˇ̌
ˇ̌
xDb

xDa

D K.E..a/ � K.E..b/:
It follows that

P.E..b/CK.E..b/ D P.E..a/C K.E..a/:
This shows that the total energy (potential + kinetic) remains constant as the mass m

moves under the influence of a force F; depending only on position. Such a force is

said to be conservative, and the above result is called the Law of Conservation of

Energy. Conservative forces will be further discussed in Section 15.2.
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EXAMPLE 7
(Escape velocity) Use the result of Example 5 together with the

following known values,

(a) the radius R of the earth is about 6;400 km, or 6:4 � 106 m,
(b) the acceleration of gravity g at the surface of the earth is about 9:8 m/s2,

to determine the constant K in the gravitational force formula of Example 5, and use

this information to determine the escape velocity for a projectile fired vertically from

the surface of the earth. The escape velocity is the (minimum) speed that such a

projectile must have at firing to ensure that it will continue to move farther and farther

away from the earth and not fall back.

Solution According to the formula of Example 5, the force of gravity on a mass
m kg at the surface of the earth .h D 0/ is

F D
Km

.R C 0/2
D
Km

R2
:

According to Newton’s Second Law of Motion, this force is related to the acceleration

of gravity .g/ there by the equation F D mg. Thus,

Km

R2
D mg and K D gR2:

According to the Law of Conservation of Energy, the projectile must have sufficient

kinetic energy at firing to do the work necessary to raise the mass m to infinite height.

By the result of Example 5, this required energy isKm=R. If the initial velocity of the

projectile is v, we want

1

2
mv
2 �
Km

R
:

Thus, v must satisfy

v �
r
2K

R
D
p
2gR �

p
2 � 9:8 � 6:4 � 106 � 1:12 � 104 m/s:

Thus, the escape velocity is approximately 11.2 km/s and is independent of the mass

m. In this calculation we have neglected any air resistance near the surface of the earth.

Such resistance depends on velocity rather than on position, so it is not a conservative

force. The effect of such resistance would be to use up (convert to heat) some of the

initial kinetic energy and so raise the escape velocity.

EXERCI SE S 7.6

1. A tank has a square base 2 m on each side and vertical sides

6 m high. If the tank is filled with water, find the total force

exerted by the water (a) on the bottom of the tank and (b) on

one of the four vertical walls of the tank.

2. A swimming pool 20 m long and 8 m wide has a sloping plane

bottom so that the depth of the pool is 1 m at one end and 3 m

at the other end. Find the total force exerted on the bottom if

the pool is full of water.

3. A dam 200 m long and 24 m high presents a sloping face of

26 m slant height to the water in a reservoir behind the dam

(Figure 7.49). If the surface of the water is level with the top

of the dam, what is the total force of the water on the dam?

26 m
24 m

200 m

Figure 7.49
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4. A pyramid with a square base, 4 m on each side and four

equilateral triangular faces, sits on the level bottom of a lake at

a place where the lake is 10 m deep. Find the total force of the

water on each of the triangular faces.

5. A lock on a canal has a gate in the shape of a vertical rectangle

5 m wide and 20 m high. If the water on one side of the gate

comes up to the top of the gate, and the water on the other side

comes only 6 m up the gate, find the total force that must be

exerted to hold the gate in place.

6. If 100 N�cm of work must be done to compress an elastic
spring to 3 cm shorter than its natural length, how much work

must be done to compress it 1 cm further?

7. Find the total work that must be done to pump all the water in

the tank of Exercise 1 out over the top of the tank.

8. Find the total work that must be done to pump all the water in

the swimming pool of Exercise 2 out over the top edge of the

pool.

9. Find the work that must be done to pump all the water in a full

hemispherical bowl of radius a m to a height h m above the

top of the bowl.

10.I A horizontal cylindrical tank has radius R m. One end of the

tank is a fixed disk, but the other end is a circular piston of

radiusR m free to travel along the length of the tank. There is

some water in the tank between the piston and the fixed end;

its depth depends on the position of the piston. What force

does the water exert on the piston when the surface of the

water is y m (�R � y � R) above the centre of the piston
face? (See Figure 7.50.)

R

y

x

Figure 7.50

11.I Continuing the previous problem, suppose that when the

piston is X m from the fixed end of the tank the water level is

at the centre of the piston face. How much work must be done

to reduce the distance from the piston to the fixed end to

X=2m, and thus cause the water to fill the volume between the

piston and the fixed end of the tank? As in Example 6, you can

assume the piston can move without friction and that trapped

air can escape. Hint: The technique used to solve part (b) of

Example 6 is very difficult to apply here. Instead, calculate the

work done to raise the water in half of the bottom half-

cylinder of length X so that it fills the top half-cylinder of

length X=2.

12.I A bucket is raised vertically from ground level at a constant

speed of 2 m/min by a winch. If the bucket weighs 1 kg and

contains 15 kg of water when it starts up but loses water by

leakage at a rate of 1 kg/min thereafter, how much work must

be done by the winch to raise the bucket to a height of 10 m?

7.7 Applications in Business, Finance, and Ecology

If the rate of change f 0.x/ of a function f .x/ is known, the change in value of the
function over an interval from x D a to x D b is just the integral of f 0 over Œa; bl:

f .b/ � f .a/ D
Z b

a

f
0
.x/ dx:

For example, if the speed of a moving car at time t is v.t/ km/h, then the distance

travelled by the car during the time interval Œ0; T l (hours) is
R T
0
v.t/ dt km.

Similar situations arise naturally in business and economics, where the rates of

change are often called marginals.

EXAMPLE 1
(Finding total revenue from marginal revenue) A supplier of

calculators realizes a marginal revenue of $15 � 5e�x=50 per cal-
culator when she has sold x calculators. What will be her total revenue from the sale

of 100 calculators?

Solution The marginal revenue is the rate of change of revenue with respect to the
number of calculators sold. Thus, the revenue from the sale of dx calculators after x

have already been sold is

dR D .15 � 5e�x=50/ dx dollars.
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The total revenue from the sale of the first 100 calculators is $R, where

R D
Z xD100

xD0
dR D

Z 100

0

.15 � 5e�x=50/ dx

D
�
15x C 250e�x=50

�ˇ̌
ˇ
100

0

D 1; 500C 250e�2 � 250 � 1; 283:83;

that is, about $1,284.

The Present Value of a Stream of Payments
Suppose that you have a business that generates income continuously at a variable rate

P.t/ dollars per year at time t and that you expect this income to continue for the next

T years. How much is the business worth today?

The answer surely depends on interest rates. One dollar to be received t years from

now is worth less than one dollar received today, which could be invested at interest to

yield more than one dollar t years from now. The higher the interest rate, the lower the

value today of a payment that is not due until sometime in the future.

To analyze this situation, suppose that the nominal interest rate is r% per annum,

but is compounded continuously. Let ı D r=100. As shown in Section 3.4, an invest-
ment of $1 today will grow to

lim
n!1

�
1C ı
n

�nt
D eıt dollars

after t years. Therefore, a payment of $1 after t years must be worth only $e�ıt today.
This is called the present value of the future payment. When viewed this way, the

interest rate ı is frequently called a discount rate; it represents the amount by which

future payments are discounted.

Returning to the business income problem, in the short time interval from t to t C
dt , the business produces income $P.t/ dt , of which the present value is $e�ıtP.t/ dt .
Therefore, the present value $V of the income stream over the time interval Œ0; T l is

the “sum” of these contributions:

V D
Z T

0

e
�ıt
P.t/ dt:

EXAMPLE 2
What is the present value of a constant, continual stream of pay-

ments at a rate of $10;000 per year, to continue forever, starting

now? Assume an interest rate of 6% per annum, compounded continuously.

Solution The required present value is

V D
Z 1

0

e
�0:06t

10;000 dt D 10;000 lim
R!1

e�0:06t

�0:06

ˇ̌
ˇ̌
R

0

� $166;667:

The Economics of Exploiting Renewable Resources
As noted in Section 3.4, the rate of increase of a biological population sometimes

conforms to a logistic model1

dx

dt
D kx

	
1 � x
L



:

1 This examplewas suggested by Professor C.W. Clark, of the University of British Columbia.



434 CHAPTER 7 Applications of Integration

Here, x D x.t/ is the size (or biomass) of the population at time t , k is the natural
rate at which the population would grow if its food supply were unlimited, and L is the

natural limiting size of the population—the carrying capacity of its environment. Such

models are thought to apply, for example, to the Antarctic blue whale and to several

species of fish and trees. If the resource is harvested (say, the fish are caught) at a rate

h.t/ units per year at time t , then the population grows at a slower rate:

dx

dt
D kx

	
1 � x
L



� h.t/: .�/

In particular, if we harvest the population at its current rate of growth,

h.t/ D kx
	
1� x
L



;

then dx=dt D 0, and the population will maintain a constant size. Assume that each
unit of harvest produces an income of $p for the fishing industry. The total annual

income from harvesting the resource at its current rate of growth will be

T D ph.t/ D pkx
	
1�
x

L



:

Considered as a function of x, this total annual income is quadratic and has a maximum

value when x D L=2, the value that ensures dT=dx D 0. The industry can maintain
a stable maximum annual income by ensuring that the population level remains at half

the maximal size of the population with no harvesting.

The analysis above, however, does not take into account the discounted value of fu-

ture harvests. If the discount rate is ı, compounded continuously, then the present value

of the income $ph.t/ dt due between t and t C dt years from now is e�ıtph.t/ dt .
The total present value of all income from the fishery in future years is

T D
Z 1

0

e
�ıt
ph.t/ dt:

What fishing strategy will maximize T ? If we substitute for h.t/ from equation .�/
governing the growth rate of the population, we get

T D
Z 1

0

pe
�ıt

kx

	
1� x
L



�
dx

dt

�
dt

D
Z 1

0

kpe
�ıt
x

	
1�
x

L



dt �

Z 1

0

pe
�ıt dx

dt
dt:

Integrate by parts in the last integral above, taking U D pe�ıt and dV D dx
dt
dt :

T D
Z 1

0

kpe
�ıt
x

	
1�
x

L



dt �


pe
�ıt
x

ˇ̌
ˇ̌
1

0

C
Z 1

0

pıe
�ıt
x dt

�

D px.0/C
Z 1

0

pe
�ıt
h
kx

	
1 �
x

L



� ıx
i
dt:

To make this expression as large as possible, we should choose the population size x

to maximize the quadratic expression

Q.x/ D kx
	
1 �
x

L



� ıx

at as early a time t as possible, and keep the population size constant at that level

thereafter. The maximum occurs whereQ0.x/ D k� .2kx=L/� ı D 0, that is, where

x D L
2
� ıL
2k
D .k � ı/ L

2k
:

The maximum present value of the fishery is realized if the population level x is held

at this value. Note that this population level is smaller than the optimal level L=2 we

obtained by ignoring the discount rate. The higher the discount rate ı, the smaller

will be the income-maximizing population level. More unfortunately, if ı � k, the
model predicts greatest income from fishing the species to extinction immediately!

(See Figure 7.51.)
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Figure 7.51 The greater the discount rate

ı, the smaller the population size x that

will maximize the present value of future

income from harvesting. If ı � k; the
model predicts fishing the species to

extinction

y

x

L=2

x D .k � ı/L=.2k/ L

y D kx
	
1�
x

L


slope ı

extinction

Of course, this model fails to take into consideration other factors that may affect

the fishing strategy, such as the increased cost of harvesting when the population level

is small and the effect of competition among various parts of the fishing industry.

Nevertheless, it does explain the regrettable fact that, under some circumstances, an

industry based on a renewable resource can find it in its best interest to destroy the

resource. This is especially likely to happen when the natural growth rate k of the

resource is low, as it is for the case of whales and most trees. There is good reason not

to allow economics alone to dictate the management of the resource.

EXERCI SE S 7.7

1. (Cost of production) The marginal cost of production in a

coal mine is $6 � 2� 10�3x C 6 � 10�6x2 per ton after the
first x tons are produced each day. In addition, there is a fixed

cost of $4,000 per day to open the mine. Find the total cost of

production on a day when 1,000 tons are produced.

2. (Total sales) The sales of a new computer chip are modelled

by s.t / D te�t=10, where s.t/ is the number of thousands of
chips sold per week, t weeks after the chip was introduced to

the market. How many chips were sold in the first year?

3. (Internet connection rates) An internet service provider

charges clients at a continuously decreasing marginal rate of

$4=.1C
p
t/ per hour when the client has already used

t hours during a month. How much will be billed to a client

who uses x hours in a month? (x need not be an integer.)

4. (Total revenue from declining sales) The price per kilogram

of maple syrup in a store rises at a constant rate from $10 at

the beginning of the year to $15 at the end of the year. As the

price rises, the quantity sold decreases; the sales rate is

400=.1C 0:1t/ kg/year at time t years, .0 � t � 1/. What
total revenue does the store obtain from sales of the syrup

during the year?

(Stream of payment problems) Find the present value of a

continuous stream of payments of $1,000 per year for the periods

and discount rates given in Exercises 5–10. In each case the

discount rate is compounded continuously.

5. 10 years at a discount rate of 2%

6. 10 years at a discount rate of 5%

7. 10 years beginning 2 years from now at a discount rate of 8%

8. 25 years beginning 10 years from now at a discount rate

of 5%

9. For all future time at a discount rate of 2%

10. Beginning in 10 years and continuing forever after at a

discount rate of 5%

11. Find the present value of a continuous stream of payments

over a 10-year period beginning at a rate of $1,000 per year

now and increasing steadily at $100 per year. The discount

rate is 5%.

12. Find the present value of a continuous stream of payments

over a 10-year period beginning at a rate of $1,000 per year

now and increasing steadily at 10% per year. The discount rate

is 5%.

13. Money flows continuously into an account at a rate of $5,000

per year. If the account earns interest at a rate of 5%

compounded continuously, how much will be in the account

after 10 years?

C 14. Money flows continuously into an account beginning at a rate
of $5,000 per year and increasing at 10% per year. Interest

causes the account to grow at a real rate of 6% (so that $1

grows to $1:06t in t years). How long will it take for the

balance in the account to reach $1,000,000?

15. If the discount rate ı varies with time, say ı D ı.t/, show that
the present value of a payment of $P due t years from now is

$Pe��.t/, where


.t/ D
Z t

0

ı.�/ d�:

What is the value of a stream of payments due at a rate $P.t/

at time t , from t D 0 to t D T ?
16.A (Discount rates and population models) Suppose that the

growth rate of a population is a function of the population

size: dx=dt D F.x/. (For the logistic model,
F.x/ D kx.1� .x=L//.) If the population is harvested at rate
h.t/ at time t , then x.t/ satisfies

dx

dt
D F.x/ � h.t/:
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Show that the value of x that maximizes the present value of

all future harvests satisfies F 0.x/ D ı, where ı is the
(continuously compounded) discount rate. Hint:Mimic the

argument used above for the logistic case.

17. (Managing a fishery) The carrying capacity of a certain lake

is L D 80;000 of a certain species of fish. The natural growth
rate of this species is 12% per year (k D 0:12). Each fish is
worth $6. The discount rate is 5%. What population of fish

should be maintained in the lake to maximize the present

value of all future revenue from harvesting the fish? What is

the annual revenue resulting from maintaining this population

level?

18. (Blue whales) It is speculated that the natural growth rate of

the Antarctic blue whale population is about 2% per year

(k D 0:02) and that the carrying capacity of its habitat is
aboutL D 150;000. One blue whale is worth, on average,

$10,000. Assuming that the blue whale population satisfies a

logistic model, and using the data above, find the following:

(a) The maximum sustainable annual harvest of blue whales.

(b) The annual revenue resulting from the maximum annual

sustainable harvest.

(c) The annual interest generated if the whale population

(assumed to be at the level L=2 supporting the maximum

sustainable harvest) is exterminated and the proceeds

invested at 2%. (d) at 5%.

(e) The total present value of all future revenue if the

population is maintained at the level L=2 and the discount

rate is 5%.

19.I The model developed above does not allow for the costs of

harvesting. Try to devise a way to alter the model to take this

into account. Typically, the cost of catching a fish goes up as

the number of fish goes down.

7.8 Probability

Probability theory is a very important field of application of calculus. This subject

cannot, of course, be developed thoroughly here—an adequate presentation requires

one or more whole courses—but we can give a brief introduction that suggests some

of the ways sums and integrals are used in probability theory.

In the context of probability theory the term experiment is used to denote a pro-

cess that can result in different outcomes. A particular outcome is also called a real-

ization. The set of all possible outcomes is called the sample space for the experiment.

For example, the process might be the tossing of a coin for which we could have three

possible outcomes: H (the coin lands horizontal with “heads” showing on top), T (the

coin lands horizontal with “tails” showing on top), or E (the coin lands and remains

standing on its edge). Of course, outcome E is not very likely unless the coin is quite

thick, but it can happen. So our sample space is S D fH; T;Eg. Suppose we were
to toss the coin a great many times, and observe that the outcomes H and T each oc-

cur on 49% of the tosses while E occurs only 2% of the time. We would say that on

any one toss of the coin the outcomes H and T each have probability 0.49 and E has

probability 0.02.

An event is any subset of the sample space. The probability of an event is a

real number between 0 and 1 that measures the proportion of times the outcome of

the experiment can be expected to belong to that event if the experiment is repeated

many times. If the event is the whole sample space, its occurrence is certain, and its

probability is 1; if the event is the empty set ; D f g, it cannot possibly occur, and its
probability is 0. For the coin-tossing experiment, there are eight possible events; we

record their probabilities as follows:

Pr.;/ D 0;
Pr.fHg/ D 0:49;

Pr.fT g/ D 0:49;
Pr.fEg/ D 0:02;

Pr.fH;T g/ D 0:98;
Pr.fH;Eg/ D 0:51;

Pr.fT;Eg/ D 0:51;
Pr.S/ D 1:

Given any two events A and B (subsets of sample space S), their intersection

A \ B consists of those outcomes belonging to both A and B; it is sometimes called
the event “A and B.” Two events are disjoint if A \ B D ;; no outcome can belong
to two disjoint events. For instance, an event A and its complement, Ac , consisting of

all outcomes in S that don’t belong to A, are disjoint. The union of two events A and

B (also called the event “A or B”) consists of all outcomes that belong to at least one

of A and B . Note that A [ Ac D S .
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We summarize the basic rules governing probability as follows: if S is a sample

space, ; is the empty subset of S , and A and B are any events, then

(a) 0 � Pr.A/ � 1;
(b) Pr.;/ D 0 and Pr.S/ D 1;
(c) Pr.Ac/ D 1� Pr.A/;
(d) Pr.A [ B/ D Pr.A/C Pr.B/ � Pr.A \ B/:

Note that just adding Pr.A/ C Pr.B/ would count outcomes in A \ B twice. As
an example, in our coin-tossing experiment if A D fH;T g and B D fH;Eg, then
Ac D fEg, A [ B D fH;T;Eg D S , and A\ B D fHg. We have

Pr.Ac/ D Pr.fEg/ D 0:02 D 1� 0:98 D 1 � Pr.fH;T g/ D 1 � Pr.A/
Pr.A [ B/ D Pr.S/ D 1 D 0:51C 0:51� 0:02 D Pr.A/C Pr.B/ � Pr.A \ B/:

Remark The generality of these rules of probability can be misleading. Probability
only has meaning in terms of a given sample space or measure. In popular culture

probability is sometimes cited in the absence of a sample space at all. Probability

theory also has infamous paradoxes and jokes that arise from attempting to compute

probabilities across more than one sample space or computing them inadvertently from

a different sample space than a user had in mind. Misunderstandings do arise in an

overlooked shift in a question about a probability, implying an unnoticed change in the

sample space, or lack of precision about what the sample space actually is. Infamous

disputes about the “correct” probability have arisen as a result. These are beyond the

scope of this section.

Discrete Random Variables
A random variable is a function defined on a sample space. We will denote random

variables by using uppercase letters such asX and Y: If the sample space contains only

discrete outcomes (like the sample space for the coin-tossing experiment), a random

variable on it will have only discrete values and will be called a discrete random

variable. If, on the other hand, the sample space contains all possible measurements

of, say, heights of trees, then a random variable equal to that measurement can itself

take on a continuum of real values and will be called a continuous random variable.

We will study both types in this section.

Most discrete random variables have only finitely many values, but some can

have infinitely many values if, say, the sample space consisted of the positive integers

f1; 2; 3; : : :g. A discrete random variable X has an associated probability function
f defined on the range of X by f .x/ D Pr.X D x/ for each possible value x of X .
Typically, f is represented by a bar graph; the sum of the heights of all the bars must

be 1,

X

x

f .x/ D
X

x

Pr.X D x/ D 1;

since it is certain that the experiment must produce an outcome, and therefore a value

of X .

EXAMPLE 1
A single fair die is rolled so that it will show one of the numbers

1 to 6 on top when it stops. If X denotes the number showing on

any roll, then X is a discrete random variable with 6 possible values. Since the die is

fair, no one value of X is any more likely than any other, so the probability that the

number showing is n must be 1/6 for each possible value of n. If f is the probability

function of X , then

f .n/ D Pr.X D n/ D 1
6

for each n in f1; 2; 3; 4; 5; 6g:
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The discrete random variable X is therefore said to be distributed uniformly. All the

bars in the graph of its probability function f have the same height. (See Figure 7.52.)

Note that

n1 2 3 4 5 6

1
6

f .n/ D Pr.X D n/

Figure 7.52 The probability function for

a single rolled die

6X

nD1
Pr.X D n/ D 1;

reflecting the fact that the rolled die must certainly give one of the six possible out-

comes. The probability that a roll will produce a value from 1 to 4 is

Pr.1 � X � 4/ D
4X

nD1
Pr.X D n/ D 1

6
C 1
6
C 1
6
C 1
6
D 2
3
:

EXAMPLE 2
What is the sample space for the numbers showing on top when

two fair dice are rolled? What is the probability that a 4 and a 2

will be showing? Find the probability function for the random variable X that gives

the sum of the two numbers showing on the dice. What is the probability that that sum

is less than 10?

Solution The sample space consists of all pairs of integers .m; n/ satisfying 1 �
m � 6 and 1 � n � 6. There are 36 such pairs, so the probability of any one of them
is 1/36. Two of the pairs, .4; 2/ and .2; 4/, correspond to a 4 and a 2 showing, so the

probability of that event is .1=36/ C .1=36/ D 1=18. The random variable X defined
by X.m; n/ D mC n has 11 possible values, the integers from 2 to 12 inclusive. The
following table lists the pairs that produce each value k of X and the probability f .k/

of that value, that is, the value of the probability function at k:

Table 2. Probability function for the sum of two dice

k D mC n outcomes for which X D k f .k/ D Pr.X D k/
2 .1; 1/ 1=36

3 .1; 2/; .2; 1/ 2=36 D 1=18
4 .1; 3/; .2; 2/; .3; 1/ 3=36 D 1=12
5 .1; 4/; .2; 3/; .3; 2/; .4; 1/ 4=36 D 1=9
6 .1; 5/; .2; 4/; .3; 3/; .4; 2/; .5; 1/ 5=36

7 .1; 6/; .2; 5/; .3; 4/; .4; 3/; .5; 2/; .6; 1/ 6=36 D 1=6
8 .2; 6/; .3; 5/; .4; 4/; .5; 3/; .6; 2/ 5=36

9 .3; 6/; .4; 5/; .5; 4/; .6; 3/ 4=36 D 1=9
10 .4; 6/; .5; 5/; .6; 4/ 3=36 D 1=12
11 .5; 6/; .6; 5/ 2=36 D 1=18
12 .6; 6/ 1=36

The bar graph of the probability function f is shown in Figure 7.53. We have

k1 2 3 4 5 6 7 8 9 10 11 12

1
36

2
36

3
36

4
36

5
36

6
36

f .k/ D Pr.X D k/

Figure 7.53 The probability function for

the sum of two dice

Pr.X < 10/ D 1� Pr.X � 10/ D 1 �
�
1

12
C
1

18
C
1

36

�
D
5

6
:

Expectation, Mean, Variance, and Standard Deviation
Consider a simple gambling game in which the player pays the house C dollars for the

privilege of rolling a single die and in which he winsX dollars, whereX is the number

showing on top of the rolled die. In each game the possible winnings are 1, 2, 3, 4, 5,
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or 6 dollars, each with probability 1/6. In n games the player can expect to win about

n=6 C 2n=6 C 3n=6 C 4n=6 C 5n=6 C 6n=6 D 21n=6 D 7n=2 dollars, so that his
expected average winnings per game are 7/2 dollars, that is, $3.50. If C > 3:5, the

player can expect, on average, to lose money. The amount 3.5 is called the expectation,

or mean, of the discrete random variable X . The mean is usually denoted by �, the

Greek letter “mu” (pronounced “mew”).

DEF IN I T I ON

2

Mean or expectation

If X is a discrete random variable with range of values R and probability

function f; then the mean (denoted �), or expectation ofX (denoted E.X/),

is

� D E.X/ D
X

x2R

x f .x/:

Also, the expectation of any function g.X/ of the random variable X is

E.g.X// D
X

x2R
g.x/f .x/:

Note that in this usage E.X/ does not define a function ofX but a constant (parameter)

associated with the random variableX . Note also that if f .x/were a mass density such

as that studied in Section 7.4, then � would be the moment of the mass about 0 and,

since the total mass would be
P
x2R f .x/ D 1, � would in fact be the centre of mass.

Another parameter used to describe the way probability is distributed for a random

variable is the variable’s standard deviation.

DEF IN I T I ON

3

Variance and standard deviation

The variance of a random variable X with range R and probability function

f is the expectation of the square of the distance of X from its mean �. The

variance is denoted �2 or Var(X).

�
2 D Var.X/ D E

�
.X � �/2

�
D
X

x2R

.x � �/2 f .x/:

The standard deviation of X is the square root of the variance and therefore

is denoted �:

The symbol � is the lowercase Greek letter “sigma.” (The symbol † used for sum-

n1 2 3 4 5 6 7 8 9

:1

:2

:3

:4

:5

� � � � �C �

Figure 7.54 A probability function with

mean � D 5 and standard deviation
� D 1:86

mation is an uppercase sigma.) The standard deviation gives a measure of how spread

out the probability distribution of X is. The smaller the standard deviation, the more

the probability is concentrated at values of X close to the mean. Figure 7.54 and

Figure 7.55 illustrate the probability functions of two random variables with sample

space f1; 2; : : : ; 9g, one having small � and one with large �: Note how a significant
fraction of the total probability lies between � � � and �C � in each case. Note also
that the distribution of probability in Figure 7.54 is symmetric, resulting in � D 5, the

n1 2 3 4 5 6 7 8 9

:1

:2

:3

:4

:5

� � � � �C �
Figure 7.55 A probability function with

mean � D 5:38 and standard deviation
� D 3:05

midpoint of the sample space, while the distribution in Figure 7.55 is skewed a bit to

the right, resulting in � > 5.

Since
P
x2R f .x/ D 1, the expression given in the definition of variance can be

rewritten as follows:

�
2 D Var.X/ D

X

x2R

.x
2 � 2�x C �2/ f .x/

D
X

x2R
x
2
f .x/� 2�

X

x2R
xf .x/C �2

X

x2R
f .x/

D
X

x2R

x
2
f .x/� 2�2 C �2 D E.X2/ � �2;
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that is,

�
2 D Var.X/ D E.X2/� �2 D E.X2/ � .E.X//2:

Therefore, the standard deviation of X is given by

� D
p
E.X2/� �2:

EXAMPLE 3
Find the mean of the random variable X of Example 2. Also find

the expectation of X2 and the standard deviation of X .

Solution We have
� D E.X/ D 2 � 1

36
C 3 � 2

36
C 4 � 3

36
C 5 � 4

36
C 6 � 5

36
C 7 � 6

36

C 8 �
5

36
C 9 �

4

36
C 10 �

3

36
C 11 �

2

36
C 12 �

1

36
D 7;

a fact that is fairly obvious from the symmetry of the graph of the probability function

in Figure 7.53. Also,

E.X
2
/ D 22 �

1

36
C 32 �

2

36
C 42 �

3

36
C 52 �

4

36
C 62 �

5

36

C 72 �
6

36
C 82 �

5

36
C 92 �

4

36
C 102 �

3

36

C 112 �
2

36
C 122 �

1

36
D
1;974

36
� 54:8333:

The variance of X is �2 D E.X2/ � �2 � 54:8333 � 49 D 5:8333, so the standard
deviation of X is � � 2:4152.

Continuous Random Variables
Now we consider an example with a continuous range of possible outcomes.

EXAMPLE 4
Suppose that a needle is dropped at random on a flat table with

a straight line drawn on it. For each drop, let X be the acute an-

gle, measured in degrees, that the needle makes with the line. (See Figure 7.56(a).)

Evidently, X can take any real value in the interval Œ0; 90l; therefore, X is called a

continuous random variable. The probability that X takes on any particular real

value is 0. (There are infinitely many real numbers in Œ0; 90l, and none is more likely

than any other.) However, the probability that X lies in some interval, say Œ10; 20l, is

the same as the probability that it lies in any other interval of the same length. Since

the interval has length 10 and the interval of all possible values of X has length 90,

this probability is

Pr.10 � X � 20/ D 10
90
D 1
9
:

More generally, if 0 � x1 � x2 � 90, then

Pr.x1 � X � x2/ D
1

90
.x2 � x1/:

This situation can be conveniently represented as follows: Let f .x/ be defined on the

interval Œ0; 90l, taking at each point the constant value 1/90:

f .x/ D
1

90
; 0 � x � 90:

The area under the graph of f is 1, and Pr.x1 � X � x2/ is equal to the area under that
part of the graph lying over the interval Œx1; x2l. (See Figure 7.56(b).) The function

f .x/ is called the probability density function for the random variable X . Since

f .x/ is constant on its domain, X is said to be uniformly distributed.
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Figure 7.56

(a) X is the acute angle, measured in

degrees, that the needle makes with

the line

(b) The probability density function f of

the random variable X

X

needle

needle

X

line

y

x

Pr.x1 � X � x2/

x1 x2 90

y D f .x/
1
90

(a) (b)

DEF IN I T I ON

4

Probability density functions

A function defined on an interval Œa; bl is a probability density function for

a continuous random variable X distributed on Œa; bl if, whenever x1 and x2
satisfy a � x1 � x2 � b, we have

Pr.x1 � X � x2/ D
Z x2

x1

f .x/dx;

which is the area above the interval Œx1; x2l and under the graph of f , pro-

vided f .x/ � 0. In order to be such a probability density function, f must
satisfy two conditions:

Note that this definition of

probability density function

generalizes the probability

function used in the discrete case

if we regard the bar graphs there

as the graphs of step functions

with unit base lengths.

(a) f .x/ � 0 on Œa; bl (probability cannot be negative) and

(b)
R b
a
f .x/dx D 1 (Pr.a � X � b/ D 1).

These ideas extend to random variables distributed on semi-infinite or infinite intervals,

but the integrals appearing will be improper in those cases. In any event, the role

played by sums in the analysis of discrete random variables is taken over by integrals

for continuous random variables.

In the example of the dropping needle, the probability density function has a hor-

izontal straight line graph, and we termed such a probability distribution uniform. The

uniform probability density function on the interval Œa; bl is

f .x/ D
(
1

b � a
if a � x � b

0 otherwise.

Many other functions are commonly encountered as density functions for continuous

random variables.

EXAMPLE 5
(The exponential distribution) The length of time T that any

particular atom in a radioactive sample survives before decaying

is a random variable taking values in Œ0;1/. It has been observed that the proportion
of atoms that survive to time t becomes small exponentially as t increases; thus,

Pr.T � t/ D Ce�kt :
Let f be the probability density function for the random variable T: Then
Z 1

t

f .x/dx D Pr.T � t/ D Ce�kt :

Differentiating this equation with respect to t (using the Fundamental Theorem of

Calculus), we obtain �f .t/ D �Cke�kt , so f .t/ D Cke�kt . C is determined by the
requirement that

R1
0
f .t/ dt D 1. We have

1 D Ck
Z 1

0

e
�kt
dt D lim

R!1
Ck

Z R

0

e
�kt
dt D �C lim

R!1
.e
�kR � 1/ D C:

Thus, C D 1 and f .t/ D ke�kt . Note that Pr.T � .ln 2/=k/ D e�k.ln 2/=k D 1=2,
reflecting the fact that the half-life of such a radioactive sample is .ln 2/=k.
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EXAMPLE 6
For what value of C is f .x/ D C.1 � x2/ a probability density
function on Œ�1; 1l? If X is a random variable with this density,

what is the probability that X � 1=2?

Solution Observe that f .x/ � 0 on Œ�1; 1l if C � 0. Since
Z 1

�1
f .x/ dx D C

Z 1

�1
.1 � x2/ dx D 2C

�
x �
x3

3

�ˇ̌
ˇ̌
1

0

D
4C

3
;

f .x/ will be a probability density function if C D 3=4. In this case

Pr

�
X � 1

2

�
D
3

4

Z 1=2

�1
.1 � x2/ dx D

3

4

�
x �
x3

3

�ˇ̌
ˇ̌
1=2

�1

D 3
4

�
1

2
� 1
24
� .�1/C �1

3

�
D 27
32
:

By analogy with the discrete case, we formulate definitions for the mean (or expec-

tation), variance, and standard deviation of a continuous random variable as follows:

DEF IN I T I ONS

5

If X is a continuous random variable on Œa; bl with probability density func-

tion f .x/, themean �, (or expectation E.X/) of X is

� D E.X/ D
Z b

a

xf .x/dx:

The expectation of a function g of X is

E
�
g.X/

�
D
Z b

a

g.x/f .x/ dx:

Similarly, the variance �2 of X is the mean of the squared deviation of X

from its mean:

�
2 D Var.X/ D E..X � �/2/ D

Z b

a

.x � �/2f .x/dx;

and the standard deviation is the square root of the variance.

As was the case for a discrete random variable, it is easily shown that

�
2 D E.X2/� �2; � D

p
E.X2/ � �2:

Again the standard deviation gives a measure of how spread out the probability distri-

bution of X is. The smaller the standard deviation, the more concentrated is the area

under the density curve around the mean, and so the smaller is the probability that a

value of X will be far away from the mean. (See Figure 7.57.)

EXAMPLE 7
Find the mean� and the standard deviation � of a random variable

X distributed uniformly on the interval Œa; bl. Find Pr.� � � �
X � �C �/.

Solution The probability density function is f .x/ D 1=.b�a/ on Œa; bl, so the mean
is given by

� D E.X/ D
Z b

a

x

b � a
dx D

1

b � a
x
2

2

ˇ̌
ˇ̌
b

a

D
1

2

b
2 � a2

b � a
D
b C a
2
:
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Figure 7.57 Densities with large and

small standard deviations

y

x

y

x

large �

small �

Hence, the mean is, as might have been anticipated, the midpoint of Œa; bl. The expec-

tation of X2 is given by

E.X
2
/ D

Z b

a

x2

b � a
dx D

1

b � a
x3

3

ˇ̌
ˇ̌
b

a

D
1

3

b3 � a3

b � a
D
b2 C ab C a2

3
:

Hence, the variance is

�
2 D E.X2/� �2 D

b2 C ab C a2

3
�
b2 C 2ab C a2

4
D
.b � a/2

12
;

and the standard deviation is

� D b � a
2
p
3
� 0:29.b � a/:

Finally,

Pr.� � � � X � �C �/ D
Z �C�

���

dx

b � a
D 1

b � a
2.b � a/
2
p
3
D 1p

3
� 0:577:

EXAMPLE 8
Find the mean� and the standard deviation � of a random variable

X distributed exponentially with density function f .x/ D ke�kx
on the interval Œ0;1/. Find Pr.� � � � X � �C �/.

Solution We use integration by parts to find the mean:

� D E.X/ D k
Z 1

0

xe
�kx
dx

D lim
R!1

k

Z R

0

xe
�kx
dx Let U D x, dV D e�kx dx.

Then dU D dx, V D �e�kx=k.

D lim
R!1

 
�xe�kx

ˇ̌
ˇ̌
R

0

C
Z R

0

e
�kx
dx

!

D lim
R!1

�
�Re�kR � 1

k

�
e
�kR � 1

��
D 1
k
; since k > 0:

Thus, the mean of the exponential distribution is 1=k. This fact can be quite useful in

determining the value of k for an exponentially distributed random variable. A similar

integration by parts enables us to evaluate

E.X
2
/ D k

Z 1

0

x
2
e
�kx
dx D 2

Z 1

0

xe
�kx
dx D

2

k2
;
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so the variance of the exponential distribution is

�
2 D E.X2/� �2 D

1

k2
;

and the standard deviation is equal to the mean

� D � D
1

k
:

Now we have

Pr.� � � � X � �C �/ D Pr.0 � X � 2=k/

D k
Z 2=k

0

e
�kx
dx

D �e�kx
ˇ̌
ˇ̌
2=k

0

D 1� e�2 � 0:86;

which is independent of the value of k. Exponential densities for small and large values

of k are graphed in Figure 7.58.

Figure 7.58 Exponential density

functions

y

x

y

x

y D ke�kx

large k

small k

y D ke�kx
k

k

1
k

1
k

The Normal Distribution
The most important probability distributions are the so-called normal or Gaussian

distributions. Such distributions govern the behaviour of many interesting random

variables, in particular, those associated with random errors in measurements. There

is a family of normal distributions, all related to the particular normal distribution

called the standard normal distribution, which has the following probability density

function:

DEF IN I T I ON

6

The standard normal probability density

f .z/ D 1p
2�
e
�z2=2

; �1 < z <1:

It is common to use z to denote the random variable in the standard normal distribution;

the other normal distributions are obtained from this one by a change of variable. The

graph of the standard normal density has a pleasant bell shape, as shown in Figure 7.59.

As we have noted previously, the function e�z
2
has no elementary antiderivative,

so the improper integral

I D
Z 1

�1
e
�z2=2

dz
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cannot be evaluated using the Fundamental Theorem of Calculus, although it is a con-
y

z

Figure 7.59 The standard normal density

function f .z/ D
1
p
2�
e
�z2=2

vergent improper integral. The integral can be evaluated using techniques of multi-

variable calculus involving double integrals of functions of two variables. (We do so

in Example 4 of Section 14.4.) The value is I D
p
2� , which ensures that the above-

defined standard normal density f .z/ is indeed a probability density function:

Z 1

�1
f .z/ dz D 1p

2�

Z 1

�1
e
�z2=2

dz D 1:

Since ze�z
2=2 is an odd function of z and its integral on .�1;1/ converges, the mean

of the standard normal distribution is 0:

� D E.Z/ D 1
p
2�

Z 1

�1
ze
�z2=2

dz D 0:

We calculate the variance of the standard normal distribution using integration by parts

as follows:

�
2 D E.Z2/

D 1
p
2�

Z 1

�1
z
2
e
�z2=2

dz

D 1p
2�

lim
R!1

Z R

�R
z
2
e
�z2=2

dz Let U D z, dV D ze�z2=2 dz.
Then dU D dz, V D �e�z2=2.

D
1
p
2�

lim
R!1

 
�ze�z2=2

ˇ̌
ˇ̌
R

�R
C
Z R

�R
e
�z2=2

dz

!

D
1
p
2�

lim
R!1

.�2Re�R2=2/C
1
p
2�

Z 1

�1
e
�z2=2

dz

D 0C 1 D 1:

Hence, the standard deviation of the standard normal distribution is 1.

Other normal distributions are obtained from the standard normal distribution by

a change of variable.

DEF IN I T I ON

7

The general normal distribution

A random variable X on .�1;1/ is said to be normally distributed with
mean � and standard deviation � (where � is any real number and � > 0) if

its probability density function f�;� is given in terms of the standard normal

density f by

f�;� .x/ D
1

�
f

	
x � �
�



D

1

�
p
2�
e
�.x��/2=.2�2/

:

(See Figure 7.60.) Using the change of variable z D .x � �/=� , dz D dx=� , we can
verify that

Z 1

�1
f�;� .x/ dx D

Z 1

�1
f .z/ dz D 1;

so f�;� .x/ is indeed a probability density function. Using the same change of variable,

we can show that

y

x

y D f�;� .x/

�

Figure 7.60 A general normal density

with mean �

E.X/ D � and E..X � �/2/ D �2:

Hence, the density f�;� does indeed have mean � and standard deviation �:
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To find the probability Pr.Z � z/ we compute what is called the cumulative
distribution function of a random variable with standard normal distribution,

F.z/ D
1
p
2�

Z z

�1
e
�x2=2

dx D Pr.Z � z/;

which represents the area under the standard normal density function from �1 up to
z, as shown in Figure 7.61. According to the definition of the error function in Section

6.4, an antiderivative of e�z
2=2 is

p
2=� erf.z=

p
2/. Thus,

F.z/ D
1

2

�
erf

�
z
p
2

�
C 1
�
:

Figure 7.61 The cumulative distribution

function F.z/ for the standard normal

distribution is the area under the standard

normal density function from �1 to z

y

x

1

y D F.z/

y

z

y D
1
p
2�
e
�x2=2

F.z/

z

For convenience in the following examples and exercises, we include an abbreviated

lookup table for this expression. Alternatively, F.z/ is easily defined in Maple to cal-

culate to any desired number of decimal places, say 10, using the known error function:

> F := x -> (1/2)*(erf(z/sqrt(2)) + 1);

which can then be used to calculate values of F: See the following examples.

Table 3. Values of the standard normal distribution function F.z/ (rounded to 3 decimal places)

z 0:0 0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9

�3:0 0:001 0:001 0:001 0:000 0:000 0:000 0:000 0:000 0:000 0:000

�2:0 0:023 0:018 0:014 0:011 0:008 0:006 0:005 0:003 0:003 0:002

�1:0 0:159 0:136 0:115 0:097 0:081 0:067 0:055 0:045 0:036 0:029

�0:0 0:500 0:460 0:421 0:382 0:345 0:309 0:274 0:242 0:212 0:184

0:0 0:500 0:540 0:579 0:618 0:655 0:691 0:726 0:758 0:788 0:816

1:0 0:841 0:864 0:885 0:903 0:919 0:933 0:945 0:955 0:964 0:971

2:0 0:977 0:982 0:986 0:989 0:992 0:994 0:995 0:997 0:997 0:998

3:0 0:999 0:999 0:999 1:000 1:000 1:000 1:000 1:000 1:000 1:000

EXAMPLE 9
If Z is a standard normal random variable, find

(a) Pr.�1:2 � Z � 2:0/, and (b) Pr.Z � 1:5/, using the table to
three decimal places or using Maple to 10 decimal places.

Solution Using values from the table, we obtain
Pr.�1:2 � Z � 2:0/ D Pr.Z � 2:0/ � Pr.Z < �1:2/

D F.2:0/� F.�1:2/ � 0:977 � 0:115
D 0:862

Pr.Z � 1:5/ D 1� Pr.Z < 1:5/
D 1� F.1:5/ � 1 � 0:933 D 0:067:
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After making the Maple definition shown above, we calculate Pr.�1:2 � Z � 2:0/ to
10 decimal places using

> evalf(F(2) - F(-1.2), 10)

0:8621801977

and for Pr.Z � 1:5/
> evalf(1 -(F(1.5), 10)

0:0668072012

EXAMPLE 10
A certain random variable X is distributed normally with mean

2 and standard deviation 0.4. Find (a) Pr.1:8 � X � 2:4/, and
(b) Pr.X > 2:4/, using the table to three decimal places or using Maple to 10 decimal

places.

Solution Since X is distributed normally with mean 2 and standard deviation 0.4,
Z D .X � 2/=0:4 is distributed according to the standard normal distribution (with
mean 0 and standard deviation 1). Accordingly,

Pr.1:8 � X � 2:4/ D Pr.�0:5 � Z � 1/
D F.1/� F.�0:5/ � 0:841 � 0:309 D 0:532;

Pr.X > 2:4/ D Pr.Z > 1/ D 1� Pr.Z � 1/
D 1� F.1/ � 1� 0:841 D 0:159:

Alternatively, using Maple with F defined as above, Pr.1:8 � X � 2:4/ is
> evalf(F(1) - F(-0.5), 10)

0:5328072072

For Pr.X > 2:4/

> evalf(1 - F(1), 10)

0:1586552540

E Heavy Tails
With continuous random variables over an infinite domain, complications of improper

integrals arise for certain established probability density functions that do not satisfy

the conditions needed for the normal distribution to hold. For an important class of

these functions the integrals for the mean or variance do not exist. For example,

a common nonnormal probability density function arising in physics is the Cauchy

distribution:

DEF IN I T I ON

8

The Cauchy probability density

C.x/D 1
�

�

.x � �/2 C �2
�1 < x <1:

Here the constants � and � play roles similar to those of the mean and standard devia-

tion in the normal distribution. The graph of C.x/ is symmetric about the line x D �,
and � is a measure of the width of the single peak. However, � is not really a mean and

� is certainly not a standard deviation, as neither
R1
�1 xC.x/ dx nor

R1
�1 x

2
C.x/dx

is a convergent improper integral. The Cauchy density function is known in spectro-

scopy as the Lorentz profile for spectral lines, while in nuclear physics it is known as

the probability density function of the Breit-Wigner distribution.
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Figure 7.62 The standard normal density

(blue) and the Cauchy density with � D 0
and � D

p
2=� (red)

y
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Figure 7.62 shows the graphs of the standard Normal density and the Cauchy density

with � D 0 and � D
p
2=� , the latter value being chosen so that both curves would

peak at the same height. Observe the tails of these curves (i.e., the parts where jxj > 2,
say). While the normal curve is higher than the Cauchy one for small jxj, the expo-
nential factor in the normal density decreases very rapidly for large jxj; it isO.jxj�n/
for every positive integer n as jxj ! 1 while the Cauchy density is only O.jxj�2/.
Because of this polynomial asymptotic behaviour as jxj ! 1, the Cauchy density is
said to have fat tails or heavy tails. To understand the significance of this, we use

direct integration to find the tail probability from some x to infinity for the Cauchy

distribution,

Pr.X > x/ D
1

2
�
1

�
tan�1 x;

and divide it by the corresponding tail probability, Pr.X > x/ D 1 � F.x/, for the
standard normal distribution. This ratio is plotted in Figure 7.63 for 1 � x � 8. From
about x D 7 on, the ratio grows extremely rapidly! This ratio shows that the amount
of probability in the tail of C.x/ is very “heavy” relative to the normal.y

1 � 1013

2 � 1013

3 � 1013

4 � 1013

5 � 1013

6 � 1013

x

1 2 3 4 5 6 7 8

Figure 7.63 Plot of the ratio

y D
Cauchy Pr.x < X <1/
Normal Pr.x < X <1/

C.x/ is far from the only heavy-tailed probability density function. One important

class of heavy-tailed probability distributions are the Lévy stable distributions with

densities S˛.x/ for 0 < ˛ � 2. Except for ˛ D 1 (the Cauchy case) and ˛ D 2 (the
normal case), the densities S˛.x/ are not elementary functions, and providing exact

descriptions of them is beyond the scope of this section. They can be represented

explicitly as integral transforms (see Section 18.7), but must be computed numerically

to get specific values, as is the case for any other nonalgebraic function. The graphs

of the symmetric versions of S˛.x/ are similar to those of the normal and Cauchy

densities. The definitive differences are found in the specifics of the tail behaviours,

which are discussed in Exercises 23–24.

Remark Poincaré’s telling remark, in the quotations at the beginning of this chapter,
humorously warns us that a presumption of normality is common. However, in the

standard physics examples given, normality does not hold. C.x/ arises theoretically in

them. Without a theoretical basis, any presumption of normality can only be confirmed

with data alone. But the tail represents the least probable events, so tail data are least

likely to be observed over any finite time. Thus, the greatest deviations from normal

distributions are the least likely to be observed, making empirical demonstrations of

heavy tails difficult.

Remark Suppose that, because of a naïve expectation of the universality of normal
distributions, we mistakenly assume that the outcomes of a heavy tail process are dis-

tributed normally. Since the largest disagreement between the supposed and actual

distributions only occur for the rarest of events, finite samples of outcomes will not

likely expose our error; the samples won’t have any outcomes from far out in the tail.

But, being the most extreme, the rarest of events can also be the most consequen-

tial. The sharp growth of the ratio in Figure 7.63 shows that the probability of such
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events can be seriously underestimated in this circumstance. People adhering to the

assumption of normality can thus experience costly surprises. A surprise of this type

is named a Black Swan by Nassim Taleb, who authored a well-known book on this

topic, entitled The Black Swan: The Impact of the Highly Improbable.

Remark Measured data from a continuous process are always finite in number and
discretely sampled. While the mean and variance may not exist for a continuous heavy

tail process, they will, nonetheless, always exist for finite data. Thus statistical uncer-

tainty based on normality may be moot. Caution should be taken for questions that

depend heavily on normality.

EXERCI SE S 7.8

1. How much should you be willing to pay to play a game where

you toss the coin discussed at the beginning of this section and

win $1 if it comes up heads, $2 if it comes up tails, and $50 if

it remains standing on its edge? Assume you will play the

game many times and would like to at least break even.

2. A die is weighted so that if X represents the number showing

on top when the die is rolled, then Pr.X D n/ D Kn for
n 2 f1;2; 3; 4; 5; 6g.
(a) Find the value of the constantK:

(b) Find the probability thatX � 3 on any roll of the die.
3. Find the standard deviation of your winings on a roll of the die

in Exercise 1.

4. Find the mean and standard deviation of the random variable

X in Exercise 2.

5. A die is weighted so that the probability of rolling each of the

numbers 2, 3, 4, and 5 is still 1/6, but the probability of rolling

1 is 9/60 and the probability of rolling 6 is 11/60. What are the

mean and standard deviation of the number X rolled using

this die? What is the probability that X � 3?
C 6. Two dice, each weighted like the one in Exercise 5, are

thrown. Let X be the random variable giving the sum of the

numbers showing on top of the two dice.

(a) Find the probability function forX:

(b) Determine the mean and standard deviation ofX:

Compare them with those found for unweighted dice in

Example 3.

C 7. A thin but biased coin has probability 0.55 of landing heads

and 0.45 of landing tails. (Standing on its edge is not possible

for this coin.) The coin is tossed three times. (Determine all

numerical answers to the following questions to six decimal

places.)

(a) What is the sample space of possible outcomes of the

three tosses?

(b) What is the probability of each of these possible

outcomes?

(c) Find the probability function for the number X of times

heads comes up during the three tosses.

(d) What is the probability that the number of heads is at least

1?

(e) What is the expectation of X‹

8. A sack contains 20 balls all the same size; some are red and

the rest are blue. If you reach in and pull out a ball at random,

the probability that it is red is 0:6.

(a) If you reach in and pull out two balls, what is the

probability they are both blue?

(b) Suppose you reach in the bag of 20 balls and pull out three

balls. Describe the sample space of possible outcomes of

this experiment. What is the expectation of the number of

red balls among the three balls you pulled out?

For each function f .x/ in Exercises 9–15, find the following:

(a) the value of C for which f is a probability density on the

given interval,

(b) the mean �, variance �2, and standard deviation � of the

probability density f; and

(c) Pr.� � � � X � �C �/, that is, the probability that the
random variableX is no further than one standard deviation

away from its mean.

9. f .x/ D Cx on Œ0; 3l 10. f .x/ D Cx on Œ1; 2l

11. f .x/ D Cx2 on Œ0; 1l 12. f .x/ D C sin x on Œ0; �l
13. f .x/ D C.x � x2/ on Œ0; 1l
14. f .x/ D C xe�kx on Œ0;1/; .k > 0/
15. f .x/ D C e�x2 on Œ0;1/. Hint: Use properties of the
standard normal density to show that

R1
0 e

�x2 dx D
p
�=2.

16. Is it possible for a random variable to be uniformly distributed

on the whole real line? Explain why.

17. Carry out the calculations to show that the normal density

f�;� .x/ defined in the text is a probability density function

and has mean � and standard deviation �:

18.I Show that f .x/ D
2

�.1C x2/
is a probability density on

Œ0;1/. Find the expectation of a random variableX having
this density. If a machine generates values this random

variable X , how much would you be willing to pay, per game,

to play a game in which you operate the machine to produce a

value of X and winX dollars? Explain.

19. Calculate Pr.jX � �j � 2�/ for
(a) the uniform distribution on Œa; bl,

(b) the exponential distribution with density f .x/ D ke�kx
on Œ0;1/, and

(c) the normal distribution with density f�;�.x/.

20. The length of time T (in hours) between malfunctions of a

computer system is an exponentially distributed random

variable. If the average length of time between successive
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malfunctions is 20 hours, find the probability that the system,

having just had a malfunction corrected, will operate without

malfunction for at least 12 hours.

21. The number X of metres of cable produced any day by a

cable-making company is a normally distributed random

variable with mean 5,000 and standard deviation 200. On

what fraction of the days the company operates will the

number of metres of cable produced exceed 5,500?

22. A spinner is made with a scale from 0 to 1. Over time it

suffers from wear and tends to stick at the number 1/4.

Suppose it sticks at 1/4 half of the time and the rest of the time

it gives values uniformly distributed in the interval Œ0; 1l.

What is the mean and standard deviation of the spinner’s

values? (Note: the random variable giving the spinner’s value

has a distribution that is partially discrete and partially

continuous.)

23. Lévy stable probability densities are known to have the

following asymptotic behaviour as x !1

S˛.x/ D c˛x�.1C˛/ CO
	
x
�.1C2˛/




for 0 < ˛ < 2, and for simplicity S˛.x/ is assumed symmetric

about x D 0. Note that the normal case, ˛ D 2, is excluded.
(a) Under what conditions can moments (i.e.,R1

�1 x
p
S˛.x/dx for some p � 0) exist?

(b) For what values of ˛ do the mean (p D 1) and the
variance (p D 2) not exist?

24. Use the asymptotic behaviour from the previous exercise to

find the probability in the tail of symmetric Lévy stable

distributions valid for large x.

7.9 First-Order Differential Equations

This final section on applications of integration concentrates on application of the in-

definite integral rather than of the definite integral. We can use the techniques of

integration developed in Chapters 5 and 6 to solve certain kinds of first-order differ-

ential equations that arise in a variety of modelling situations. We have already seen

some examples of applications of differential equations to modelling growth and decay

phenomena in Section 3.4.

Separable Equations
Consider the logistic equation introduced in Section 3.4 to model the growth of an

animal population with a limited food supply:

dy

dt
D ky

	
1 �
y

L



;

where y.t/ is the size of the population at time t , k is a positive constant related to

the fertility of the population, and L is the steady-state population size that can be

sustained by the available food supply. This equation has two particular solutions,

y D 0 and y D L, that are constant functions of time.
The logistic equation is an example of a class of first-order differential equations

called separable equations because when they are written in terms of differentials,

they can be separated with only the dependent variable on one side of the equation and

only the independent variable on the other. The logistic equation can be written in the

form

Ldy

y.L � y/
D k dt

and solved by integrating both sides. Expanding the left side in partial fractions and

integrating, we get
Z �

1

y
C

1

L � y

�
dy D kt C C:

Assuming that 0 < y < L, we therefore obtain

lny � ln.L � y/ D kt C C;

ln

�
y

L� y

�
D kt C C:
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We can solve this equation for y by taking exponentials of both sides:

y

L� y
D ektCC D C1ekt

y D .L � y/C1ekt

y D C1Le
kt

1C C1ekt
;

where C1 D eC :
Generally, separable equations are of the form

dy

dx
D f .x/g.y/:

We solve them by rewriting them in the form

dy

g.y/
D f .x/dx

and integrating both sides. Note that the separable equation above will have a constant

solution y.x/ D C for any constant C satisfying g.C / D 0.

EXAMPLE 1 Solve the equation
dy

dx
D
x

y
.

Solution We rewrite the equation in the form y dy D x dx and integrate both sides
to get

1

2
y
2 D 1
2
x
2 C C1;

or y2 � x2 D C; where C D 2C1 is an arbitrary constant. The solution curves are
rectangular hyperbolas. (See Figure 7.64.) Their asymptotes y D x and y D �x are
also solutions corresponding to C D 0.

y

x

y

x

CD0

CD�1

CD�4

CD�9

CD1 CD4
CD9

Figure 7.64 Some curves of the family

y
2 � x2 D C

EXAMPLE 2
Solve the initial-value problem

8
<

:

dy

dx
D x2y3

y.1/ D 3:

Solution Separating the differential equation gives dy
y3
D x2 dx. Thus,

Z
dy

y3
D
Z
x
2
dx; so

�1
2y2
D
x3

3
C C:

Since y D 3 when x D 1, we have � 1
18
D 1
3
C C and C D � 7

18
. Substituting this

value into the above solution and solving for y, we obtain

y.x/ D
3

p
7� 6x3

: (Only the positive square root of y2 satisfies y.1/ D 3.)

This solution is valid for x <
�
7
6

�1=3
. (See Figure 7.65.)

y

x

y D
3

p
7 � 6x3

.7=6/
1=3

Figure 7.65 The solution of
dy

dx
D x2y3

satisfying y.1/ D 3
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EXAMPLE 3 Solve the integral equation y.x/ D 3C 2
Z x

1

ty.t/ dt .

Solution Differentiating the integral equation with respect to x gives

dy

dx
D 2x y.x/ or

dy

y
D 2x dx:

Thus, ln jy.x/j D x2 C C; and solving for y, y.x/ D C1ex
2
. Putting x D 1 in the

integral equation provides an initial value: y.1/ D 3C 0 D 3, so C1 D 3=e and

y.x/ D 3ex2�1:

EXAMPLE 4
(A solution concentration problem) Initially a tank contains

1,000 L of brine with 50 kg of dissolved salt. Brine containing

10 g of salt per litre is flowing into the tank at a constant rate of 10 L/min. If the con-

tents of the tank are kept thoroughly mixed at all times, and if the solution also flows

out at 10 L/min, how much salt remains in the tank at the end of 40 min?

Solution Let x.t/ be the number of kilograms of salt in solution in the tank after
t min. Thus, x.0/ D 50. Salt is coming into the tank at a rate of 10 g/L � 10 L/min
= 100 g/min = 1/10 kg/min. At all times the tank contains 1,000 L of liquid, so the

concentration of salt in the tank at time t is x=1;000 kg/L. Since the contents flow out

at 10 L/min, salt is being removed at a rate of 10x=1;000 D x=100 kg/min. Therefore,

dx

dt
D rate in � rate out D 1

10
� x

100
D 10 � x
100

:

Although x.t/ D 10 is a constant solution of the differential equation, it does not
satisfy the initial condition x.0/ D 50, so we will find other solutions by separating
variables:

dx

10 � x
D dt
100
:

Integrating both sides of this equation, we obtain

� ln j10 � xj D
t

100
C C:

Observe that x.t/ ¤ 10 for any finite time t (since ln 0 is not defined). Since x.0/ D
50 > 10, it follows that x.t/ > 10 for all t > 0. (x.t/ is necessarily continuous,

so it cannot take any value less than 10 without somewhere taking the value 10 by

the Intermediate-Value Theorem.) Hence, we can drop the absolute value from the

solution above and obtain

ln.x � 10/ D �
t

100
� C:

Since x.0/ D 50, we have �C D ln 40 and

x D x.t/ D 10C 40e�t=100:

After 40 min there will be 10C 40e�0:4 � 36:8 kg of salt in the tank.
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EXAMPLE 5
(A rate of reaction problem) In a chemical reaction that goes to

completion in solution, one molecule of each of two reactants, A

andB, combine to form each molecule of the product C: According to the law of mass

action, the reaction proceeds at a rate proportional to the product of the concentrations

of A and B in the solution. Thus, if there were initially present a > 0 molecules/cm3

of A and b > 0 molecules/cm3 of B; then the number x.t/ of molecules/cm3 of C

present at time t thereafter is determined by the differential equation

dx

dt
D k.a � x/.b � x/:

This equation has constant solutions x.t/ D a and x.t/ D b, neither of which satisfies
the initial condition x.0/ D 0. We find other solutions for this equation by separation
of variables and the technique of partial fraction decomposition under the assumption

that b ¤ a:
Z

dx

.a � x/.b � x/
D k
Z
dt D kt C C:

Since

1

.a � x/.b � x/
D

1

b � a

�
1

a � x
�
1

b � x

�
;

and since necessarily x � a and x � b, we have

1

b � a
�
� ln.a � x/C ln.b � x/

�
D kt C C;

or

ln

�
b � x
a � x

�
D .b � a/ kt C C1; where C1 D .b � a/C:

By assumption, x.0/ D 0, so C1 D ln.b=a/ and

ln
a.b � x/
b.a � x/

D .b � a/ kt:

This equation can be solved for x to yield x D x.t/ D
ab.e.b�a/kt � 1/
be.b�a/kt � a

.

EXAMPLE 6
Find a family of curves, each of which intersects every parabola

with equation of the form y D Cx2 at right angles.

Solution The family of parabolas y D Cx2 satisfies the differential equation
d

dx

	
y

x2



D
d

dx
C D 0I

that is,

x
2 dy

dx
� 2xy D 0 or

dy

dx
D
2y

x
:

Any curve that meets the parabolas y D Cx2 at right angles must, at any point .x; y/
on it, have slope equal to the negative reciprocal of the slope of the particular parabola

passing through that point. Thus, such a curve must satisfy

dy

dx
D � x
2y
:
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Figure 7.66 The parabolas y D C1x2
(blue) and the ellipses x2 C 2y2 D C2
(red) intersect at right angles

y

x

Separation of the variables leads to 2y dy D �x dx, and integration of both sides
then yields y2 D �1

2
x2 C C1 or x2 C 2y2 D C , where C D 2C1. This equation

represents a family of ellipses centred at the origin. Each ellipse meets each parabola

at right angles, as shown in Figure 7.66. When the curves of one family intersect the

curves of a second family at right angles, each family is called the family of orthogonal

trajectories of the other family.

First-Order Linear Equations
A first-order linear differential equation is one of the type

dy

dx
C p.x/y D q.x/; .�/

where p.x/ and q.x/ are given functions, which we assume to be continuous. The

equation is called nonhomogeneous unless q.x/ is identically zero. The correspond-

ing homogeneous equation,

dy

dx
C p.x/y D 0;

is separable and so is easily solved to give y D K e��.x/, whereK is any constant and
�.x/ is any antiderivative of p.x/:

�.x/ D
Z
p.x/ dx and

d�

dx
D p.x/:

There are two methods for solving the nonhomogeneous equation (�). Both in-
volve the function �.x/ defined above.

METHOD I. Using an Integrating Factor. Multiply equation (�) by e�.x/ (which
is called an integrating factor for the equation) and observe that the left side is just

the derivative of e�.x/y; by the Product Rule

d

dx

�
e
�.x/
y.x/
�
D e�.x/ dy

dx
C e�.x/ d�

dx
y.x/

D e�.x/
�
dy

dx
C p.x/y

�
D e�.x/ q.x/:

Therefore, e�.x/ y.x/ D
Z
e
�.x/
q.x/ dx, or
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y.x/ D e��.x/
Z
e
�.x/
q.x/ dx:

METHOD II. Variation of the Parameter. Start with the solution of the corre-

sponding homogeneous equation, namely y D K e��.x/, and replace the constant (i.e.,
parameter) K by an as yet unknown function k.x/ of the independent variable. Then

substitute this expression for y into the differential equation (�) and simplify:

d

dx

	
k.x/e

��.x/


C p.x/k.x/e��.x/ D q.x/

k
0
.x/e

��.x/ � �0.x/k.x/e��.x/ C p.x/k.x/e��.x/ D q.x/;

which, since �0.x/ D p.x/, reduces to

k
0
.x/ D e�.x/q.x/:

Integrating the right side leads to the solution for k.x/ and thereby to the solution y

for (�).

EXAMPLE 7 Solve
dy

dx
C
y

x
D 1 for x > 0. Use both methods for comparison.

Solution Here, p.x/ D 1=x, so �.x/ D R p.x/ dx D lnx (for x > 0).
METHOD I. The integrating factor is e�.x/ D x. We calculate

d

dx
.xy/ D x

dy

dx
C y D x

�
dy

dx
C
y

x

�
D x;

and so

xy D
Z
x dx D

1

2
x
2 C C:

Finally,

y D
1

x

�
1

2
x
2 C C

�
D
x

2
C
C

x
:

This is a solution of the given equation for any value of the constant C:

METHOD II. The corresponding homogeneous equation,
dy

dx
C
y

x
D 0, has solution

y D Ke��.x/ D
K

x
. Replacing the constantK with the function k.x/ and substituting

into the given differential equation we obtain

1

x
k
0
.x/�

1

x2
k.x/C

1

x2
k.x/ D 1;

so that k 0.x/ D x and k.x/ D x
2

2
C C , where C is any constant. Therefore,

y D k.x/
x
D x
2
C C
x
;

the same solution obtained by METHOD I.
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Remark Both methods really amount to the same calculations expressed in different
ways. Use whichever one you think is easiest to understand. The remaining examples

in this section will be done by using integrating factors, but variation of parameters will

prove useful later on (Section 18.6) to deal with nonhomogeneous linear differential

equations of second or higher order.

EXAMPLE 8 Solve
dy

dx
C xy D x3.

Solution Here, p.x/ D x, so �.x/ D x2=2 and e�.x/ D ex2=2. We calculate
d

dx

�
e
x2=2
y
�
D ex2=2 dy

dx
C ex2=2xy D ex2=2

�
dy

dx
C xy

�
D x3ex2=2:

Thus,

e
x2=2
y D

Z
x
3
e
x2=2
dx Let U D x2, dV D x ex2=2 dx.

Then dU D 2x dx, V D ex2=2.

D x2 ex2=2 � 2
Z
x e
x2=2
dx

D x2 ex2=2 � 2 ex2=2 C C;

and, finally, y D x2 � 2C Ce�x2=2.

EXAMPLE 9
(An inductance-resistance circuit) An electric circuit (see

Figure 7.67) contains a constant DC voltage source of V volts, a

switch, a resistor of size R ohms, and an inductor of size L henrys. The circuit has no

capacitance. The switch, initially open so that no current is flowing, is closed at time

t D 0 so that current begins to flow at that time. If the inductance L were zero, the
current would suddenly jump from 0 amperes when t < 0 to I D V=R amperes when
t > 0. However, if L > 0 the current cannot change instantaneously; it will depend

on time t . Let the current t seconds after the switch is closed be I.t/ amperes. It is

known that I.t/ satisfies the initial-value problem

VS

R L

Figure 7.67 An inductance-resistance

circuit

8
<

:
L
dI

dt
CRI D V

I.0/ D 0:

Find I.t/. What is limt!1 I.t/? How long does it take after the switch is closed for
the current to rise to 90% of its limiting value?

Solution The DE can be written in the form dI
dt
C
R

L
I D

V

L
. It is linear and has

integrating factor e�.t/, where

�.t/ D
Z
R

L
dt D

Rt

L
:

Therefore,

d

dt

	
e
Rt=L
I



D eRt=L

�
dI

dt
C
R

L
I

�
D eRt=L

V

L

e
Rt=L
I D

V

L

Z
e
Rt=L

dt D
V

R
e
Rt=L C C

I.t/ D V
R
C Ce�Rt=L:
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Since I.0/ D 0, we have 0 D .V=R/C C , so C D �V=R. Thus, the current flowing
at any time t > 0 is

I.t/ D V
R

	
1 � e�Rt=L



:

It is clear from this solution that limt!1 I.t/ D V=R; the steady-state current is the
current that would flow if the inductance were zero.

I.t/ will be 90% of this limiting value when

V

R

	
1 � e�Rt=L



D
90

100

V

R
:

This equation implies that e�Rt=L D 1=10, or t D .L ln 10/=R. The current will grow
to 90% of its limiting value in .L ln 10/=R seconds.

Our final example reviews a typical stream of payments problem of the sort consid-

ered in Section 7.7. This time we treat the problem as an initial-value problem for a

differential equation.

EXAMPLE 10
A savings account is opened with a deposit of A dollars. At any

time t years thereafter, money is being continually deposited into

the account at a rate of .C CDt/ dollars per year. If interest is also being paid into
the account at a nominal rate of 100R percent per year, compounded continuously, find

the balance B.t/ dollars in the account after t years. Illustrate the solution for the data

A D 5;000, C D 1;000, D D 200, R D 0:13, and t D 5.

Solution As noted in Section 3.4, continuous compounding of interest at a nominal
rate of 100R percent causes $1.00 to grow to eRt dollars in t years. Without subsequent

deposits, the balance in the account would grow according to the differential equation

of exponential growth:

dB

dt
D RB:

Allowing for additional growth due to the continual deposits, we observe that B must

satisfy the differential equation

dB

dt
D RB C .C CDt/

or, equivalently, dB=dt � RB D C C Dt . This is a linear equation for B having
p.t/ D �R. Hence, we may take �.t/ D �Rt and e�.t/ D e�Rt . We now calculate

d

dt

�
e
�Rt
B.t/
�
D e�Rt

dB

dt
�Re�Rt B.t/ D .C CDt/ e�Rt

and

e
�Rt
B.t/ D

Z
.C CDt/e�Rt dt Let U D C CDt , dV D e�Rt dt .

Then dU D Ddt , V D �e�Rt=R.

D �C CDt
R

e
�Rt C D

R

Z
e
�Rt
dt

D �
C CDt
R

e
�Rt � D

R2
e
�Rt CK; .K = constant/:

Hence,

B.t/ D �C CDt
R

� D
R2
CKeRt :
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Since A D B.0/ D �C
R
� D
R2
CK, we haveK D AC C

R
C D
R2
and

B.t/ D
�
AC

C

R
C
D

R2

�
e
Rt �

C CDt
R

�
D

R2
:

For the illustration A D 5;000, C D 1;000, D D 200, R D 0:13, and t D 5, we
obtain, using a calculator, B.5/ D 19;762:82. The account will contain $19,762.82,
after five years, under these circumstances.

EXERCI SE S 7.9

Solve the separable equations in Exercises 1–10.

1.
dy

dx
D
y

2x
2.
dy

dx
D
3y � 1
x

3.
dy

dx
D
x2

y2
4.
dy

dx
D x2y2

5.
dY

dt
D tY 6.

dx

dt
D ex sin t

7.
dy

dx
D 1� y2 8.

dy

dx
D 1C y2

9.
dy

dt
D 2C ey 10.

dy

dx
D y2.1 � y/

Solve the linear equations in Exercises 11–16.

11.
dy

dx
�
2y

x
D x2 12.

dy

dx
C
2y

x
D
1

x2

13.
dy

dx
C 2y D 3 14.

dy

dx
C y D ex

15.
dy

dx
C y D x 16.

dy

dx
C 2exy D ex

Solve the initial-value problems in Exercises 17–20.

17.

8
<

:

dy

dt
C 10y D 1

y.1=10/ D 2=10
18.

8
<

:

dy

dx
C 3x2y D x2

y.0/ D 1

19.

(
x
2
y
0 C y D x2e1=x

y.1/ D 3e
20.

(
y
0 C .cos x/y D 2xe� sinx

y.�/ D 0
Solve the integral equations in Exercises 21–24.

21. y.x/ D 2C
Z x

0

t

y.t /
dt 22. y.x/ D 1C

Z x

0

	
y.t/


2

1C t2
dt

23. y.x/ D 1C
Z x

1

y.t/ dt

t.t C 1/
24. y.x/ D 3C

Z x

0

e
�y.t/

dt

25. If a > b > 0 in Example 5, find limt!1 x.t/.

26. If b > a > 0 in Example 5, find limt!1 x.t/.

27. Why is the solution given in Example 5 not valid for a D b?
Find the solution for the case a D b.

28. An object of mass m falling near the surface of the earth is

retarded by air resistance proportional to its velocity so that,

according to Newton’s Second Law of Motion,

m
dv

dt
D mg � kv;

where v D v.t/ is the velocity of the object at time t , and g is
the acceleration of gravity near the surface of the earth.

Assuming that the object falls from rest at time t D 0, that is,
v.0/ D 0, find the velocity v.t/ for any t > 0 (up until the
object strikes the ground). Show v.t/ approaches a limit as

t !1. Do you need the explicit formula for v.t/ to
determine this limiting velocity?

29. Repeat Exercise 28 except assume that the air resistance is

proportional to the square of the velocity so that the equation

of motion is

m
dv

dt
D mg � kv2:

30. Find the amount in a savings account after one year if the

initial balance in the account was $1,000, if the interest is paid

continuously into the account at a nominal rate of 10% per

annum, compounded continuously, and if the account is being

continuously depleted (by taxes, say) at a rate of y2=1;000;000

dollars per year, where y D y.t/ is the balance in the account
after t years. How large can the account grow? How long will

it take the account to grow to half this balance?

31. Find the family of curves each of which intersects all of the

hyperbolas xy D C at right angles.
32. Repeat the solution concentration problem in Example 4,

changing the rate of inflow of brine into the tank to 12 L/min

but leaving all the other data as they were in that example.

Note that the volume of liquid in the tank is no longer constant

as time increases.

CHA PTER R EV I EW

Key Ideas


 What do the following phrases mean?
˘ a solid of revolution

˘ a volume element
˘ the arc length of a curve
˘ the moment of a point mass m about x D 0
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˘ the centre of mass of a distribution of mass
˘ the centroid of a plane region
˘ a first-order separable differential equation
˘ a first-order linear differential equation

 Let D be the plane region 0 � y � f .x/, a � x � b. Use
integrals to represent the following:

˘ the volume generated by revolvingD about the x-axis
˘ the volume generated by revolvingD about the y-axis
˘ the moment of D about the y-axis
˘ the moment of D about the x-axis
˘ the centroid ofD

 Let C be the curve y D f .x/, a � x � b. Use integrals to
represent the following:

˘ the length of C
˘ the area of the surface generated by revolving C about the
x-axis

˘ the area of the surface generated by revolving C about the
y-axis

Review Exercises

1. Figure 7.68 shows cross-sections along the axes of two circular

spools. The left spool will hold 1,000 metres of thread if wound

full with no bulging. How many metres of thread of the same

size will the right spool hold?

3 cm5 cm

1 cm

3 cm 3 cm

5 cm1 cm

1 cm

Figure 7.68

2. Water sitting in a bowl evaporates at a rate proportional to its

surface area. Show that the depth of water in the bowl decreases

at a constant rate, regardless of the shape of the bowl.

C 3. A barrel is 4 ft high and its volume is 16 cubic feet. Its

top and bottom are circular disks of radius 1 ft, and its

side wall is obtained by rotating the part of the parabola

x D a � by2 between y D �2 and y D 2 about the

y-axis. Find, approximately, the values of the positive con-

stants a and b.

4. The solid in Figure 7.69 is cut from a vertical cylinder of radius

10 cm by two planes making angles of 60ı with the horizontal.
Find its volume.

60
ı

10 cm

Figure 7.69

C 5. Find to 4 decimal places the value of the positive constant a

for which the curve y D .1=a/ coshax has arc length 2 units
between x D 0 and x D 1.

6. Find the area of the surface obtained by rotating the curve y Dp
x, .0 � x � 6/, about the x-axis.

7. Find the centroid of the plane region x � 0, y � 0,
x2 C 4y2 � 4.

8. A thin plate in the shape of a circular disk has radius 3 ft and

constant areal density. A circular hole of radius 1 ft is cut out

of the disk, centred 1 ft from the centre of the disk. Find the

centre of mass of the remaining part of the disk.

gas

piston

Figure 7.70

9. According to Boyle’s Law, the product of the pressure and vol-

ume of a gas remains constant if the gas expands or is com-

pressed isothermally. The cylinder in Figure 7.70 is filled with

a gas that exerts a force of 1,000 N on the piston when the pis-

ton is 20 cm above the base of the cylinder. How much work

is done by the piston if it compresses the gas isothermally by

descending to a height of 5 cm above the base?

10. Suppose two functions f and g have the following property:

for any a > 0, the solid produced by revolving the region of the

xy-plane bounded by y D f .x/, y D g.x/, x D 0, and x D a
about the x-axis has the same volume as the solid produced by

revolving the same region about the y-axis. What can you say

about f and g?

11. Find the equation of a curve that passes through the point .2; 4/

and has slope 3y=.x � 1/ at any point .x; y/ on it.
12. Find a family of curves that intersect every ellipse of the form

3x2 C 4y2 D C at right angles.
13. The income and expenses of a seasonal business result in de-

posits and withdrawals from its bank account that correspond

to a flow rate into the account of $P.t//year at time t years,

where P.t/ D 10; 000 sin.2�t/. If the account earns interest
at an instantaneous rate of 4% per year and has $8,000 in it at

time t D 0, how much is in the account two years later?

Challenging Problems

1. The curve y D e�kx sin x, .x � 0/, is revolved about the
x-axis to generate a string of “beads” whose volumes decrease

to the right if k > 0.

(a) Show that the ratio of the volume of the .nC 1/st bead to
that of the nth bead depends on k, but not on n.

(b) For what value of k is the ratio in part (a) equal to 1/2?

(c) Find the total volume of all the beads as a function of the

positive number k:



460 CHAPTER 7 Applications of Integration

2. (Conservation of earth) A landscaper wants to create on level

ground a ring-shaped pool having an outside radius of 10 m and

a maximumdepth of 1 m surrounding a hill that will be built up

using all the earth excavated from the pool. (See Figure 7.71.)

She decides to use a fourth-degree polynomial to determine the

cross-sectional shape of the hill and pool bottom: at distance r

metres from the centre of the development the height above or

below normal ground level will be

h.r/ D a.r2 � 100/.r2 � k2/ metres;

for some a > 0, where k is the inner radius of the pool. Find

k and a so that the requirements given above are all satisfied.

How much earth must be moved from the pool to build the

hill?

10 m

1 m

Figure 7.71

M 3. (Rocket design) The nose of a rocket is a solid of revolution
of base radius r and height h that must join smoothly to the

cylindrical body of the rocket. (See Figure 7.72.) Taking the

origin at the tip of the nose and the x-axis along the central axis

of the rocket, various nose shapes can be obtained by revolving

the cubic curve

y D f .x/ D ax C bx2 C cx3

about the x-axis. The cubic curve must have slope 0 at x D
h, and its slope must be positive for 0 < x < h. Find the

particular cubic curve that maximizes the volume of the nose.

Also show that this choice of the cubic makes the slope dy=dx

at the origin as large as possible and, hence, corresponds to the

bluntest nose.

y

x

.h; r/

y D ax C bx2 C cx3

Figure 7.72

M 4. (Quadratic splines) Let A D .x1; y1/, B D .x2; y2/, and
C D .x3; y3/ be three points with x1 < x2 < x3. A func-
tion f .x/ whose graph passes through the three points is a

quadratic spline if f .x/ is a quadratic function on Œx1; x2l and

a possibly different quadratic function on Œx2; x3l, and the two

quadratics have the same slope at x2. For this problem, take

A D .0; 1/, B D .1; 2/, and C D .3; 0/.
(a) Find a one-parameter family f .x;m/ of quadratic splines

through A; B; and C; having slope m at B .

(b) Find the value ofm for which the length of the graph y D
f .x;m/ between x D 0 and x D 3 is minimum. What is
this minimum length? Compare it with the length of the

polygonal line ABC:

M 5. A concrete wall in the shape of a circular ring must be built to
have maximum height 2 m, inner radius 15 m, and width 1 m at

ground level, so that its outer radius is 16 m. (See Figure 7.73.)

Built on level ground, the wall will have a curved top with

height at distance 15 C x metres from the centre of the ring
given by the cubic function

f .x/ D x.1 � x/.ax C b/ m;

which must not vanish anywhere in the open interval .0; 1/.

Find the values of a and b that minimize the total volume of

concrete needed to build the wall.

15

x

y

Figure 7.73

M 6. (The volume of an n-dimensional ball)Euclidean n-dimensional
space consists of points .x1; x2; : : : ; xn/ with n real coordi-

nates. By analogy with the 3-dimensional case, we call the set

of such points that satisfy the inequality x21Cx22C� � �Cx2n � r2
the n-dimensional ball centred at the origin. For example, the

1-dimensional ball is the interval �r � x1 � r , which has vol-
ume (i.e., length) V1.r/ D 2r. The 2-dimensional ball is the
disk x21 C x22 � r2, which has volume (i.e., area)

V2.r/ D �r2 D
Z r

�r
2

p
r2 � x2 dx

D
Z r

�r
V1

	p
r2 � x2



dx:

The 3-dimensional ball x21 C x22 C x23 � r2 has volume

V3.r/ D
4

3
�r
3 D
Z r

�r
�

	p
r2 � x2


2
dx

D
Z r

�r
V2

	p
r2 � x2



dx:

By analogy with these formulas, the volume Vn.r/ of the

n-dimensional ball of radius r is the integral of the volume of

the .n� 1/-dimensional ball of radius
p
r2 � x2 from x D �r

to x D r :

Vn.r/ D
Z r

�r
Vn�1

	p
r2 � x2



dx:

Using a computer algebra program, calculate V4.r/, V5.r/, : : : ;

V10.r/, and guess formulas for V2n.r/ (the even-dimensional

balls) and V2nC1.r/ (the odd-dimensional balls). If your com-
puter algebra software is sufficiently powerful, you may be able

to verify your guesses by induction. Otherwise, use them to

predict V11.r/ and V12.r/, then check your predictions by start-

ing from V10.r/.
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7.I (Buffon’s needle problem) A horizontal flat surface is ruled

with parallel lines 10 cm apart, as shown in Figure 7.74. A nee-

dle 5 cm long is dropped at random onto the surface. Find the

probability that the needle intersects one of the lines. Hint: Let

the “lower” end of the needle (the end further down the page

in the figure) be considered the reference point. (If both ends

are the same height, use the left end.) Let y be the distance

from the reference point to the nearest line above it, and let �

be the angle between the needle and the line extending to the

right of the reference point in the figure. What are the possible

values of y and �? In a plane with Cartesian coordinates � and

y; sketch the region consisting of all points .�; y/ correspond-

ing to possible positions of the needle. Also sketch the region

corresponding to those positions for which the needle crosses

one of the parallel lines. The required probability is the area of

the second region divided by the area of the first.

y

�

�

y

5

5

10 cm

10 cm

10 cm

Figure 7.74

y

x

P.x; y/

.L; 0/

L

Q

y D f .x/

Figure 7.75

8.I (The path of a trailer) Find the equation y D f .x/ of a curve
in the first quadrant of the xy-plane, starting from the point

.L; 0/, and having the property that if the tangent line to the

curve at P meets the y-axis atQ, then the length of PQ is the

constant L. (See Figure 7.75. This curve is called a tractrix

after the Latin participle tractus, meaning dragged. It is the

path of the rear end P of a trailer of length L, originally lying

along the x-axis, as the trailer is pulled (dragged) by a tractor

Q moving along the y-axis away from the origin.)

9.I (Approximating the surface area of an ellipsoid) A physical

geographer studying the flow of streams around oval stones

needed to calculate the surface areas of many such stones that

he modelled as ellipsoids:

x2

a2
C
y2

b2
C
z2

c2
D 1:

He wanted a simple formula for the surface area so that he

could implement it in a spreadsheet containing the measure-

ments a, b, and c of the stones. Unfortunately, there is no

exact formula for the area of a general ellipsoid in terms of ele-

mentary functions. However, there are such formulas for ellip-

soids of revolution, where two of the three semi-axes are equal.

These ellipsoids are called spheroids; an oblate spheroid (like

the earth) has its two longer semi-axes equal; a prolate spheroid

(like an American football) has its two shorter semi-axes equal.

A reasonable approximation to the area of a general ellipsoid

can be obtained by linear interpolation between these two.

To be specific, assume the semi-axes are arranged in de-

creasing order a � b � c, and let the surface area beS.a; b; c/.
(a) Calculate S.a; a; c/, the area of an oblate spheroid.

(b) Calculate S.a; c; c/, the area of a prolate spheroid.

(c) Construct an approximation for S.a; b; c/ that divides the

interval from S.a; a; c/ to S.a; c; c/ in the same ratio that

b divides the interval from a to c.

(d) Approximate the area of the ellipsoid

x2

9
C
y2

4
C z2 D 1

using the above method.


