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Preface

This book is a continuation of Mathematical Olympiads 1999–2000:
Problems and Solutions From Around the World, published by the
Mathematical Association of America. It contains solutions to the
problems from 27 national and regional contests featured in the
earlier book, together with selected problems (without solutions) from
national and regional contests given during 2001. In many cases
multiple solutions are provided in order to encourage students to
compare different problem-solving strategies.

This collection is intended as practice for the serious student who
wishes to improve his or her performance on the USA Math Olympiad
(USAMO) and Team Selection Test (TST). Some of the problems are
comparable to the USAMO in that they came from national contests.
Others are harder, as some countries first have a national Olympiad,
and later one or more exams to select a team for the IMO. And some
problems come from regional international contests (“mini-IMOs”).

Different nations have different mathematical cultures, so you will
find some of these problems extremely hard and some rather easy.
We have tried to present a wide variety of problems, especially from
those countries that have often done well at the IMO.

Each contest has its own time limit. We have not furnished this
information, because we have not always included complete exams.
As a rule of thumb, most contests allow time ranging between one-half
to one full hour per problem.

The problems themselves should provide much enjoyment for all
those fascinated by solving challenging mathematics questions.

ix
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2 Belarus

1.1 Belarus

Problem 1 Let M be the intersection point of the diagonals AC
and BD of a convex quadrilateral ABCD. The bisector of angle ACD
hits ray BA at K. If MA ·MC +MA ·CD = MB ·MD, prove that
∠BKC = ∠CDB.

Solution: Let N be the intersection of lines CK and BD. By the
Angle Bisector Theorem applied to triangle MCD, CD

DN = MC
MN , or

CD = MC·DN
MN . We then have

MB ·MD = MA ·MC +MA · MC ·ND
MN

= (MA ·MC) · MD

MN
,

orMA·MC = MB ·MN. BecauseM lies inside quadrilateral ABCN,
the Power of a Point Theorem implies that A, B, C, and N are
concyclic. Hence, ∠KBD = ∠ABN = ∠ACN = ∠NCD = ∠KCD,
implying that K,B,C, and D are concyclic. Thus, ∠BKC = ∠CDB,
as desired.

Problem 2 In an equilateral triangle of n(n+1)
2 pennies, with n

pennies along each side of the triangle, all but one penny shows heads.
A move consists of choosing two adjacent pennies with centers A
and B and flipping every penny on line AB. Determine all initial
arrangements — the value of n and the position of the coin initially
showing tails — from which one can make all the coins show tails
after finitely many moves.

Solution: Every move flips 0 or 2 of the coins in the corners, so
the parity of the number of heads in the three corners is preserved. If
the coin showing tails is not in a corner, all three coins in the corners
initially show heads, so there will always be an odd number of heads
in the corners. Hence, the three corners will never simultaneously
show tails. Conversely, if the coin showing tails is in a corner, we
prove that we can make all the coins show tails. Orient the triangle
to make the side opposite that corner horizontal. In each of the n− 1
horizontal rows of two or more coins, choose two adjacent pennies
and flip all the coins in that row; all the coins will then show tails.
Therefore, the desired initial arrangements are those in which the coin
showing tails is in the corner.
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Problem 3 We are given triangle ABC with ∠C = π/2. Let M
be the midpoint of the hypotenuse AB, H be the foot of the altitude
CH, and P be a point inside the triangle such that AP = AC. Prove
that PM bisects angle BPH if and only if ∠A = π/3.

First Solution: Point P lies on the circle ω centered at A with
radius AC. Let ω intersect lines CH, MH, and PH at D, N, and Q,
respectively. Because MA = MC, ∠A = π/3 if and only if triangle
ACM is equilateral, i.e. if and only if M = N. Thus, it suffices to
show that PM bisects angle HPB if and only if M = N .

Because AH is the altitude to the base of isosceles triangle ACD,
H is the midpoint of CD and hence lies in ω. By the Power of a
Point Theorem, PH · HQ = CH · HD = CH2. Because CH is the
altitude to the hypotenuse of right triangle ABC, CH2 = AH ·HB.
Hence, PH · HQ = AH · HB, and because H lies on segments AB
and PQ, quadrilateral APBQ must be cyclic in that order. Note also
that in circle ω, ∠QAB = ∠QAN = 2∠QPN = 2∠HPN . Thus,
∠HPB = ∠QPB = ∠QAB = 2∠HPN , and because N lies on HB

it follows that segment PN bisects angle HPB. Therefore, segment
PM bisects angle HPB if and only if M = N , as desired.

Second Solution: Without loss of generality, assume that AC = 1.
Introduce coordinate axes such that C is the origin, A has coordinates
(0, 1), and B has coordinates (n, 0) where n > 0. If n = 1, then
M = H and then PM cannot bisect angle BPH. In this case,
∠A = π/4 6= π/3, consistent with the desired result. Thus, we can
disregard this case and assume that n 6= 1. Using the distance formula,
we find that AP = AC if and only if P has coordinates of the form
(±
√

(m)(2−m),m) for some m between 0 and 2. It is clear that M
has coordinates (n/2, 1/2), and, because CH has slope n andH lies on
AB, we find that H has coordinates (n/(n2 + 1), n2/(n2 + 1)). Using
the distance formula twice and simplifying with some calculations
yields

BP

HP
=
√
n2 + 1.

Also, comparing ratios in similar right triangles AHC and ACB

shows that AH = b2/c, where b = CA and c = AB. Therefore,

MB

MH
=

c/2
c/2− b2/c

=
c2

c2 − 2b2
=
n2 + 1
n2 − 1

.
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By the Angle Bisector Theorem, PM bisects angle BPH if and only
if BP/HP = MB/MH. Equating the expressions found above, we
find that this is true if and only if n2(n2 − 3) = 0. Because n > 0, it
follows that PM bisects angle BPH if and only if n =

√
3, i.e. if and

only if ∠A = π/3.

Problem 4 Does there exist a function f : N→ N such that

f(f(n− 1)) = f(n+ 1)− f(n)

for all n ≥ 2?

Solution: For sake of contradiction, assume that such a function
exists. From the given equation, f(n + 1) − f(n) > 0 for n ≥ 2,
implying that f is strictly increasing for n ≥ 2. Thus, f(n) ≥ f(2) +
(n− 2) ≥ n− 1 for all n ≥ 2.

We can also bound f(n) from above: the given equation implies
that f(f(n− 1)) < f(n+ 1) for n ≥ 2, or equivalently that

f(f(n)) < f(n+ 2)

for n ≥ 1. Because f is increasing on values greater than 1, this
inequality implies that either f(n) = 1 or f(n) < n+ 2 for all n ≥ 1.
In either case, f(n) < n+ 2.

Hence, n − 1 ≤ f(n) ≤ n + 1 for all n ≥ 2. Let n be an arbitrary
integer greater than 4. On the one hand, f(n− 1) ≥ 2 and n− 1 ≥ 2
so that applying our lower bound twice yields

f(f(n− 1)) ≥ f(n− 1)− 1 ≥ n− 3.

On the other hand, from the given equation we have

f(f(n− 1)) = f(n+ 1)− f(n) ≤ (n+ 2)− (n− 1) = 3.

Thus, n− 3 ≤ 3 for arbitrary n > 4, which is impossible. Therefore,
our original assumption was incorrect, and no such function exists.

Problem 5 In a convex polyhedron with m triangular faces (and
possibly faces of other shapes), exactly four edges meet at each vertex.
Find the minimum possible value of m.

Solution: Take a polyhedron with m triangular faces and four
edges meeting at each vertex. Let F, E, and V be the number of
faces, edges, and vertices, respectively, of the polyhedron. For each
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edges, count the 2 vertices at its endpoints; because each vertex is
the endpoint of exactly 4 edges, we count each vertex 2 times in
this fashion. Hence, 2E = 4V. Also, counting the number of edges
on each face and summing the F tallies yields a total of at least
3m+4(F −m). Every edge is counted twice in this manner, implying
that 2E ≥ 3m+ 4(F −m).

By Euler’s formula for planar graphs, F + V − E = 2. Combined
with 2E = 4V, this equation yields 2E = 4F − 8. Thus,

4F − 8 = 2E ≥ 3m+ 4(F −m),

or m ≥ 8. Equality occurs if and only if every face of the polyhedron
is triangular or quadrilateral. A regular octahedron has such faces,
implying that m = 8 is indeed attainable.

Problem 6

(a) Prove that {n
√

3} > 1
n
√

3
for every positive integer n, where {x}

denotes the fractional part of x.

(b) Does there exist a constant c > 1 such that {n
√

3} > c
n
√

3
for

every positive integer n?

Solution: The condition {n
√

3} > c
n
√

3
can hold for n = 1 only if

1 > c√
3
, i.e. only if

√
3 > c. Let c ∈ [1,

√
3) be such a constant.

For each n, {n
√

3} = n
√

3−bn
√

3c is greater than c
n
√

3
if and only

if n
√

3 − c
n
√

3
> bn

√
3c. Because c <

√
3 < 3n2, both sides of this

inequality are positive, and we may square each side to obtain the
equivalent inequality

3n2 − 2c+
c2

3n2
> bn

√
3c2. (∗)

For each n, 3n2 − 1 is not a perfect square because no perfect
square is congruent to 2 modulo 3, and 3n2 is also not a perfect
square. Therefore, bn

√
3c = b

√
3n2c — the largest integer whose

square is less than or equal to 3n2 — is at most 3n2 − 2, with
equality if and only if 3n2 − 2 is a perfect square. We claim that
equality indeed holds for arbitrarily large n. Define (m0, n0) = (1, 1)
and (mk+1, nk+1) = (2mk + 3nk,mk + 2nk) for k ≥ 1. It is easily
verified that m2

k+1 − 3n2
k+1 = m2

k − 3n2
k. Thus, because the equation

3n2
k−2 = m2

k holds for k = 0, it holds for all k ≥ 1. Because n1, n2, . . .
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is an increasing sequence, it follows that 3n2 − 2 is a perfect square
for arbitrarily large n, as needed.

If c = 1, then 3n2 − 2c + c2

3n2 > 3n2 − 2c = 3n2 − 2 ≥ bn
√

3c2 for
all n. Thus, (∗) and hence the inequality in (a) holds for all n.

However, if c > 1, then 3n2 − 2c+ c2

3n2 ≤ 3n2 − 2 for all sufficiently
large n. Thus, there exists such an n with the additional property that
3n2 − 2 is a perfect square. For this n, (∗) and hence the inequality
in (b) fails. Therefore, the answer to the question in part (b) is “no.”

Problem 7 Let M = {1, 2, . . . , 40}. Find the smallest positive
integer n for which it is possible to partition M into n disjoint subsets
such that whenever a, b, and c (not necessarily distinct) are in the
same subset, a 6= b+ c.

Solution: Assume, for sake of contradiction, that it is possible to
partition M into 3 such sets X, Y, and Z. Without loss of generality,
assume that |X| ≥ |Y | ≥ |Z|. Let x1, x2, . . . , x|X| be the elements of
X in increasing order. These numbers, in addition to the differences
xi−x1 for i = 2, 3, . . . , |X|, must all be distinct elements of M. There
are 2|X| − 1 such numbers, implying that 2|X| − 1 ≤ 40 or |X| ≤ 20.
Also, 3|X| ≥ |X|+ |Y |+ |Z| = 40, implying that |X| ≥ 14.

There are |X| · |Y | ≥ 1
2 |X|(40−|X|) pairs in X×Y. The sum of the

numbers in each pair is at least 2 and at most 80, a total of 79 possible
values. Because 14 ≤ |X| ≤ 21 and the function t 7→ 1

2 t(40 − t) is
concave on the interval 14 ≤ t ≤ 21, we have that 1

2 |X|(40 − |X|) ≥
min{ 1

2 ·14(26), 1
2 ·21(19)} = 182 > 2 ·79. By the Pigeonhole Principle,

there exist three distinct pairs (x1, y1), (x2, y2), (x3, y3) ∈ X×Y with
x1 + y1 = x2 + y2 = x3 + y3.

If any of the xi were equal, then the corresponding yi would be
equal, which is impossible because the pairs (xi, yi) are distinct. We
may thus assume, without loss of generality, that x1 < x2 < x3. For
1 ≤ j < k ≤ 3, the value xk−xj is in M but cannot be in X, because
otherwise (xj) + (xk − xj) = xk. Similarly, yj − yk 6∈ Y for 1 ≤ j <

k ≤ 3. Therefore, the three common differences x2 − x1 = y1 − y2,
x3 − x2 = y2 − y3, and x3 − x1 = y1 − y3 are in M \ (X ∪ Y ) = Z.

However, setting a = x2 − x1, y = x3 − x2, and c = x3 − x1, we have
a+ b = c and a, b, c ∈ Z, a contradiction.

Therefore, our original assumption was incorrect, and it is impos-
sible to partition M into three sets with the desired property.
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We now prove that it is possible to partition M into 4 sets with
the desired property. If ai ∈ {0, 1, 2} for all i ∈ N, and if ai = 0 for
i > N, then let (. . . a2a1a0) and (aNaN−1 . . . a0) denote the integer∑N

i=0 ai3i. Of course, each positive integer m can be written in the
form (. . . a2a1a0) in exactly one way — namely, its (infinite) base 3
representation.

We place each positive integerm = (. . . a2a1a0) into precisely one of
the sets A0, A1, . . . as follows. If a0 = 1, place m into A0. Otherwise,
because a 6= 0, ai1 6= 0 for some i1; and because only finitely of the
ai are nonzero, ai2 = 0 for some i2 > i1. It follows that a` 6= 0 and
a`+1 = 0 for some `. Choose the minimal ` with this property, and
place m into A`+1.

If m1,m2 ∈ A1, then the base 3 representation m1 +m2 has units
digit 2, so m1 +m2 6∈ A1. If m1,m2 ∈ A` for some ` > 1, then

(0 11 . . . 1︸ ︷︷ ︸
`

) < m1,m2 < (1 00 . . . 0︸ ︷︷ ︸
`

).

Hence, (0 22 . . . 2︸ ︷︷ ︸
`

) < m1 + m2 < (2 00 . . . 0︸ ︷︷ ︸
`

). Thus, if m1 + m2 =

(. . . a3a2a1), then a` = 1, implying that m1 +m2 6∈ A`.

Now, let k > 1 be a positive integer and let S = {1, 2, . . . , 1
2 (3k−1)}.

The base 3 representation of 1
2 (3k − 1) consists of all 1’s, so that

1
2 (3k − 1) ∈ A1. The base 3 representation of every other number in
S has a 0 in its 3k−1 place, so that each integer in S is in exactly one
of A0, A1, . . . , Ak−1. Therefore, S can be partitioned into the k sets
A0 ∩S,A1 ∩S, . . . , Ak−1 ∩S, such that a+ b 6= c whenever a, b, and c
are in the same set. Applying this result with k = 4 shows that n = 4
is attainable, as claimed.

Note: For n, k ∈ N and a partition of {1, 2, . . . , k} into n sets,
a triple (a, b, c) such that a + b = c and a, b, c are in the same set
is called a Schur triple. For each n ∈ N, there exists a maximal
integer k such that there are no Schur triples for some partition
{1, 2, . . . , k} into n sets; this integer is denoted by S(n) and is called
the nth Schur number. (Sometimes, S(n) + 1 is called the nth Schur
number.) Although lower and upper bounds exist for all S(n), no
general formula is known. The lower bound found in this solution is
sharp for n = 1, 2, 3, but S(n) = 44.
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Problem 8 A positive integer is called monotonic if its digits in
base 10, read from left to right, are in nondecreasing order. Prove
that for each n ∈ N, there exists an n-digit monotonic number which
is a perfect square.

Solution: Any 1-digit perfect square (namely, 1, 4, or 9) is
monotonic, proving the claim for n = 1. We now assume n > 1.

If n is odd, write n = 2k − 1 for an integer k ≥ 2, and let
xk = (10k + 2)/6 = 166 . . . 6︸ ︷︷ ︸

k−2

7. Then

x2
k = (102k + 4 · 10k + 4)/36 =

102k

36
+

10k

9
+

1
9
. (∗)

Observe that 102k

36 = 102k−2
(

72
36 + 28

36

)
= 2 · 102k−2 + 102k−2 · 7

9 =
277 . . . 7︸ ︷︷ ︸

2k−2

+ 7
9 . Thus, the right hand side of (*) equals

277 . . . 7︸ ︷︷ ︸
2k−2

+
7
9

+

11 . . . 1︸ ︷︷ ︸
k

+
1
9

+
1
9

= 277 · · · 7︸ ︷︷ ︸
k−2

88 · · · 8︸ ︷︷ ︸
k−1

9,

an n-digit monotonic perfect square.
If n is even, write n = 2k for an integer k ≥ 1, and let yk =

(10k + 2)/3 = 33 . . . 3︸ ︷︷ ︸
k−1

4. Then

y2
k = (102k + 4 · 10k + 4)/9

=
102k

9
+ 4 · 10k

9
+

4
9

=

11 . . . 1︸ ︷︷ ︸
2k

+
1
9

+

44 . . . 4︸ ︷︷ ︸
k

+
4
9

+
4
9

= 11 . . . 1︸ ︷︷ ︸
k

55 . . . 5︸ ︷︷ ︸
k−1

6,

an n-digit monotonic perfect square. This completes the proof.

Problem 9 Given a pair (~r,~s) of vectors in the plane, a move
consists of choosing a nonzero integer k and then changing (~r,~s) to
either (i) (~r+2k~s,~s) or (ii) (~r,~s+2k~r). A game consists of applying a
finite sequence of moves, alternating between moves of types (i) and
(ii), to some initial pair of vectors.
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(a) Is it possible to obtain the pair ((1, 0), (2, 1)) during a game with
initial pair ((1, 0), (0, 1)), if the first move is of type (i)?

(b) Find all pairs ((a, b), (c, d)) that can be obtained during a game
with initial pair ((1, 0), (0, 1)), where the first move can be of
either type.

Solution: Let ‖~z‖ denote the length of vector ~z, and let |z| denote
the absolute value of the real number z.

(a) Let (~r,~s) be the pair of vectors, where ~r and ~s change through-
out the game. Observe that if ~x, ~y are vectors such that ‖~x‖ < ‖~y‖,
then

‖~x+ 2k~y‖ ≥ ‖2k~y‖ − ‖~x‖ > 2‖~y‖ − ‖~y‖ = ‖~y‖.

After the first move of type (i), we have ~r = (1, 2k) and ~s = (0, 1) for
some nonzero k so that ‖~r‖ > ‖~s‖. Applying the above result with
~x = ~s and ~y = ~r, we see that after the next move (of type (ii)), the
magnitude of ~r does not change while that of ~s increases to over ‖~r‖.
Applying the above result again with ~x = ~r and ~y = ~s, we see that
after the next move (of type (i)), the magnitude of ~s stays remains
the same while that of ~r increases to over ‖~s‖. Continuing in this
fashion, we find that ‖~r‖ and ‖~s‖ never decrease. Because after the
very first move, the first vector has magnitude greater than 1, we can
never obtain ((1, 0), (2, 1)).

(b) We modify the game slightly by not requiring that moves
alternate between types (i) and (ii) and by allowing the choice k = 0.
Of course, any pair that can be obtained under the original rules can
be obtained under these new rules as well. The converse is true as
well: by repeatedly discarding any moves under the new rules with
k = 0 and combining any adjacent moves of the same type into one
move, we obtain a sequence of moves valid under the original rules
that yields the same pair.

Let ((w, x), (y, z)) represent the pair of vectors, where w, x, y, and
z change throughout the game. It is easy to verify that the value of
wz − xy, and the parity of x and y, are invariant under any move in
the game. In a game that starts with ((w, x), (y, z)) = ((1, 0), (0, 1)),
we must always have wz − xy = 1 and x ≡ y ≡ 0 (mod 2). Because
x and y are always even, w and z remain constant modulo 4 as well;
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specifically, we must have w ≡ z ≡ 1 (mod 4) throughout the game.
Call a pair ((a, b), (c, d)) desirable when ad − bc = 1, a ≡ d ≡

1 (mod 4), and b ≡ c ≡ 0 (mod 2). Above we showed that any
pair obtainable during a game with initial pair ((1, 0), (0, 1) must
be desirable; we now prove the converse. Assume, for the sake of
contradiction, that there are desirable pairs ((a, b), (c, d)) satisfying
the given conditions that are not obtainable; let ((e, f), (g, h)) be such
a pair that minimizes |ac|.

If g = 0, then eh = 1 + fg = 1; because e ≡ h ≡ 1 (mod 4),
e = h = 1. If f = 0, the pair is clearly obtainable. Otherwise,
by performing a move of type (i) with k = f/2, we can transform
((1, 0), (0, 1)) into the pair ((e, f), (g, h)), a contradiction.

Thus, g 6= 0. Now, because g is even and e is odd, either |e| > |g| or
|g| > |e|. In the former case, e − 2k0g is in the interval (−|e|, |e|) for
some value k0 ∈ {1,−1}. Performing a type-(i) move on ((e, f), (g, h))
with k = −k0 thus yields another desirable pair ((e′, f ′), (g, h)).
Because |e′| < |e| and g 6= 0, we have |e′g| < |eg|. Therefore, by
the minimal definition of ((e, f), (g, h)), the new desirable pair can be
obtained from ((1, 0), (0, 1)) for some sequence of moves S. We can
thus obtain ((e, f), (g, h)) from ((1, 0), (0, 1)) as well, by first applying
the moves in S to ((1, 0), (0, 1)), then applying one additional move
of type (i) with k = k0. Thus, our minimal pair is obtainable — a
contradiction.

A similar proof holds if |e| < |g|, where we instead choose k0 such
that g − 2k0e ∈ (−|g|, |g|) and perform type-(ii) moves. Thus, in all
cases, we get a contradiction. Therefore, we can conclude that every
obtainable pair of vectors is indeed desirable. This completes the
proof.

Problem 10 Prove that

a3

x
+
b3

y
+
c3

z
≥ (a+ b+ c)3

3(x+ y + z)

for all positive real numbers a, b, c, x, y, z.

Solution: By Holder’s inequality,(
a3

x
+
b3

y
+
c3

z

)1/3

(1 + 1 + 1)1/3(x+ y + z)1/3 ≥ a+ b+ c.
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Cubing both sides and then dividing both sides by 3(x+ y+ z) gives
the desired result.

Problem 11 Let P be the intersection point of the diagonals AC
and BD of the convex quadrilateral ABCD in which AB = AC =
BD. Let O and I be the circumcenter and incenter of triangle ABP,
respectively. Prove that if O 6= I, then lines OI and CD are
perpendicular.

Solution: We first prove a fact that is very helpful in proving that
two segments are perpendicular. Given two segmentsXY and UV , let
X ′ and Y ′ be the feet of the perpendiculars of X and Y, respectively,
to line UV. Using directed distances, XY ⊥ UV if and only if

UX ′ −X ′V = UY ′ − Y ′V.

Because UX ′ + X ′V = UV = UY ′ + Y ′V, the above equation
holds if and only if UX ′2 − X ′V 2 = UY ′2 − Y ′V 2, or equivalently
UX2 −XV 2 = UY 2 − Y V 2.

Thus, it suffices to show that DO2 − CO2 = DI2 − CI2. Let
AB = AC = BD = p, PC = a, and PD = b. Then AP = p− a and
BP = p − b. Let R be the circumradius of triangle ABP . By the
Power of a Point Theorem, pb = DP · DB = DO2 − R2. Likewise,
pa = CO2 −R2. Hence, DO2 − CO2 = p(b− a).

Because triangle ABD is isosceles with BA = BD, and I lies on the
bisector of angle ABD, ID = IA. Likewise, IB = IC. Let T be the
point of tangency of the incircle of triangle ABC to side AB. Then
AT = (AB + AP − BP )/2 = (p+ b− a)/2 and BT = (p+ a− b)/2.
Because IT ⊥ AB, AI2 − BI2 = AT 2 − BT 2. Putting the above
arguments together, we find that

DI2 − CI2 = AI2 −BI2 = AT 2 −BT 2 = (AT +BT )(AT −BT )

= p(b− a) = DO2 − CO2,

as desired.
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1.2 Bulgaria

Problem 1 A line ` is drawn through the orthocenter of acute
triangle ABC. Prove that the reflections of ` across the sides of the
triangle are concurrent.

Solution: Because triangle ABC is acute, its orthocenter H is
inside the triangle. Without loss of generality, we may assume that
` intersects sides AC and BC at Q and P , respectively. If ` ‖ AB,
let R be any point on the reflection of ` across line AB. Otherwise,
let R be the intersection of ` and line AB, and assume without loss
of generality that R lies on ray BA. Let A1, B1, C1 be the reflections
of H across lines BC,CA,AB, respectively. It is well known that
A1, B1, C1 lie on the circumcircle ω of triangle ABC. (Note that
∠A1CB = ∠BCH = ∠HAB = ∠A1AB.) It suffices to prove that
lines A1P,B1Q,C1R are concurrent.

Because lines AC and BC are not parallel, lines B1Q and A1P are
not parallel. Let S be the intersection of lines A1P and B1Q. Because

∠SA1C + ∠SB1C = ∠PA1C + ∠QB1C = ∠PHC + ∠QHC = π,

quadrilateral SA1CB1 is cyclic. Hence, S is the intersection of line
B1Q and circle ω.

Likewise, lines B1Q and C1R are not parallel, and their inter-
section is also the intersection of line B1Q and circle ω. Hence,
lines A1P,B1Q,C1R are concurrent at a point on the circumcircle
of triangle ABC.

Problem 2 There are 2000 white balls in a box. There are also
unlimited supplies of white, green, and red balls, initially outside the
box. During each turn, we can replace two balls in the box with one
or two balls as follows: two whites with a green, two reds with a
green, two greens with a white and red, a white and green with a red,
or a green and red with a white.

(a) After finitely many of the above operations there are three balls
left in the box. Prove that at least one of them is a green ball.

(b) Is it possible after finitely many operations to have only one ball
left in the box?
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Solution: Assign the value i to each white ball, −i to each red
ball, and −1 to each green ball. A quick check verifies that the given
operations preserve the product of the values of the balls in the box.
This product is initially i2000 = 1. If three balls were left in the box,
none of them green, then the product of their values would be ±i,
a contradiction. Hence, if three balls remain, at least one is green,
proving the claim in part (a). Furthermore, because no ball has value
1, the box must contain at least two balls at any time. Therefore, the
answer to the question in part (b) is “no.”

(To prove the claim in part (a), we could also assign the value 1 to
each green ball and −1 to each red ball and white ball.)

Problem 3 The incircle of the isosceles triangle ABC touches the
legs AC and BC at points M and N, respectively. A line t is drawn
tangent to minor arc MN, intersecting NC and MC at points P and
Q, respectively. Let T be the intersection point of lines AP and BQ.

(a) Prove that T lies on MN ;

(b) Prove that the sum of the areas of triangles ATQ and BTP is
smallest when t is parallel to line AB.

Solution: (a) The degenerate hexagon AMQPNB is circumscribed
about the incircle of triangle ABC. By Brianchon’s Theorem, its
diagonals AP, MN, and QB concur. Therefore, T lies on MN.

One can also use a more elementary approach. Let R and S be the
points of tangency of the incircle with sides AB and PQ, respectively.
Let BQ intersect MN and SR at T1 and T2, respectively. Because
∠QMN = ∠PNM = M̂N

2 , we have sin∠QMN = sin∠PNM =
sin∠BNM . Applying the Law of Sines to triangles MQT1 and NBT1

yields
QT1

QM
=

sin∠QMN

sin∠QT1M
=

sin∠BNM
sin∠BT1N

=
BT1

BN
,

or
QT1

BT1
=
MQ

BN
.

Likewise,
QT2

BT2
=
SQ

BR
.
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By equal tangents, BN = BR and QM = QS. Hence ,

QT1

BT1
=
QT2

BT2
.

Because T1 and T2 both lie on BQ, we must have T1 = T2. Hence,
BQ,MN,SR are concurrent. In exactly the same manner, we can
prove that AP,MN,SR are concurrent. It follows that T lies onMN .

Let α = ∠CAB = ∠CBA and β = ∠ACB. Let f = [AQT ] +
[BPT ] = [ABQ] + [ABP ] − 2[ABT ]. Because triangle ABC is
isosceles, MN ‖ AB, implying that [ABT ] is constant. Hence,
minimizing f is equivalent to minimizing f ′ = [ABQ] + [ABP ]. Note
that

2f ′ = AB(AQ+ PB) sinα = AB(AB + PQ) sinα,

where AQ + PB = AB + QP because quadrilateral ABCD has an
inscribed circle. Thus, it suffices to minimize PQ.

Let I be the incenter of triangle ABC, so that I is the excenter
of triangle CPQ opposite C. Hence, PC + CQ + QP = 2CM is
constant. Let ∠CPQ = p and ∠CQP = q. Then p + q = π − β is
constant as well. Applying the Law of Sines to triangle CPQ yields

CM

PQ
= 1 +

CP

PQ
+
CQ

PQ
= 1 +

sin p+ sin q
sinβ

= 1 +
2 sin p+q

2 cos p−q
2

sinβ
.

Hence, it suffices to maximize cos p−q
2 . It follows that [ATQ]+[BTP ]

is minimized when p = q, that is, when PQ ‖ AB.

Problem 4 We are given n ≥ 4 points in the plane such that the
distance between any two of them is an integer. Prove that at least
1
6 of these distances are divisible by 3.

Solution: In this solution, all congruences are taken modulo 3.
We first show that if n = 4, then at least two points are separated

by a distance divisible by 3. Denote the points by A,B,C,D. We
approach indirectly by assuming that all the distances AB, BC, CD,
DA, AC, BD are not divisible by 3.

Without loss of generality, we assume that ∠BAD = ∠BAC +
∠CAD. Let ∠BAC = x and ∠CAD = y. Also, let α = 2AB · AC ·
cosx, β = 2AD · AC cos y, and γ = 2AB · AD · cos(x+ y). Applying
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the Law of Cosines in triangles ABC,ACD,ABD gives

BC2 = AB2 +AC2 − α,

CD2 = AD2 +AC2 − β,

BD2 = AB2 +AD2 − γ.

Because the square of each distance is an integer congruent to 1,
it follows from the above equations that α, β, and γ are also integers
congruent to 1. Also,

2AC2γ = 4AC2 ·AB ·AD · cos(x+ y)

= 4AC2 ·AB ·AD · (cosx cos y − sinx sin y)

= αβ − 4AC2 ·AB ·AD · sinx sin y,

implying that 4AC2 · AB · AD · sinx sin y is an integer congruent to
2. Thus, sinx sin y =

√
(1− cos2 x)(1− cos2 y) is a rational number

which, when written in lowest terms, has a numerator that is not
divisible by 3.

Let p = 2AB · AC and q = 2AD · AC, so that cosx = α
p and

cos y = β
q . Because

sinx sin y =

√
(p2 − α2)(q2 − β2)

pq

is rational, the numerator on the right hand side must be an integer.
This numerator is divisible by 3 because p2 ≡ α2 ≡ 1, but the
denominator is not divisible by 3. Therefore, when sinx sin y is
written in lowest terms, its numerator is divisible by 3, a contra-
diction. Therefore, our assumption was wrong and there is at least
one distance is divisible by 3 for n = 4.

Now assume that n ≥ 4. From the set of n given points, there
exist

(
n
4

)
four-element subsets {A,B,C,D}. At least two points in

each subset are separated by a distance divisible by 3, and each such
distance is counted in at most

(
n−2

2

)
subsets. Hence, there are at least(

n
4

)
/
(
n−2

2

)
=
(
n
2

)
/6 distances are divisible by 3.

Problem 5 In triangle ABC, CH is an altitude, and cevians CM
and CN bisect angles ACH and BCH, respectively. The circumcen-
ter of triangle CMN coincides with the incenter of triangle ABC.
Prove that [ABC] = AN ·BM

2 .



16 Bulgaria

Solution: Let I be the incenter of triangle ABC, and let the
incircle of triangle ABC intersect sides AC and AB at E and F,

respectively. Because IM = IN and IF ⊥ IM , we have ∠FIN =
1
2∠MIN . Furthermore, because I is the circumcenter of triangle
CMN , 1

2∠MIN = ∠MCN = 1
2∠ABC = ∠ECI. Thus, ∠FIN =

∠ECI.
Also, ∠NFI = π/2 = ∠IEC. Hence, 4NFI ∼ 4IEC. Because

NI = IC, these two triangles are actually congruent, and NF =
IE = IF . Right triangle NFI is thus isosceles, ∠FIN = π/4, and
∠ACB = 2∠FIN = π/2.

Thus, ∠HCB = π/2− ∠CBH = ∠BAC and

∠ACN = ∠ACB − 1
2
∠HCB = π/2− ∠BAC/2.

Therefore,

∠CNA = π − (∠ACN + ∠NAC) = π/2− ∠BAC/2 = ∠ACN,

and AN = AC. Similarly, BM = BC. It follows that 1
2AN · BM =

1
2AC ·BC = [ABC], as desired.

Problem 6 Let a1, a2, . . . be a sequence such that a1 = 43, a2 =
142, and an+1 = 3an + an−1 for all n ≥ 2. Prove that

(a) an and an+1 are relatively prime for all n ≥ 1;

(b) for every natural number m, there exist infinitely many natural
numbers n such that an − 1 and an+1 − 1 are both divisible by
m.

Solution: (a) Suppose there exist n, g > 1 such that g | an and
g | an+1. Then g would divide an−1 = an+1 − 3an as well. If
n − 1 > 1 then g would also divide an−2 = an − 3an−1. Continu-
ing similarly, g must divide an+1, an, . . . , a1, but this is impossible
because gcd(a1, a2) = 1. therefore, an and an+1 are relatively prime
for all n ≥ 1.

(b) Define the sequence a′1, a
′
2, . . . recursively by setting a′1 = 1,

a′2 = 1, and a′n+1 = 3a′n + a′n−1 for all n ≥ 2. Observe that
(a′3, a

′
4, a
′
5, a
′
6) = (4, 13, 43, 142), and hence (a′5, a

′
6) = (a1, a2). Be-

cause the two sequences satisfy the same recursive relation, an = a′n+4

for all n ≥ 1.
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Let bn be the remainder of each a′n when divided bym, and consider
the pairs (bn, bn+1) for n ≥ 1. Because there are infinitely many such
pairs but only m2 ordered pairs of integers (r, s) with 0 ≤ r, s < m,

two of these pairs must be equal: say, (bi, bi+1) = (bi+t, bj+t) where
t > 0. By applying the recursive relation, it follows easily by induction
on |n| that bi+n = bi+n+t for all integers n such that i + n ≥ 1.
Therefore, (b1+kt, b2+kt) = (b1, b2) = (1, 1) for all k ≥ 1. Hence,
akt−3 − 1 and akt−2 − 1 are both divisible by m for all k ≥ 4.

Problem 7 In convex quadrilateral ABCD, ∠BCD = ∠CDA.
The bisector of angle ABC intersects CD at point E. Prove that
∠AEB = π/2 if and only if AB = AD +BC.

Solution: If ∠AEB = π/2, then ∠CEB < π/2. It follows that
there is a point F on side AB such that ∠BEF = ∠BEC. Then
triangles BEC and BEF are congruent, implying that BC = BF

and ∠BFE = ∠BCE = ∠EDA from the given. Thus, quadrilateral
ADEF is cyclic. Because ∠AEB = π/2 and ∠CEB = ∠BEF , we
have ∠FEA = ∠AED. It follows that ∠FDA = ∠FEA = ∠AED =
∠AFD. Hence, AF = AD, and AB = AF +BF = AD +BC.

If AB = BC+AD, then there is a point F on AB such that BF =
BC and AF = AD. Then triangles BCE and BFE are congruent,
and again we see that ADEF is cyclic. Also, ∠FDA = ∠AFD.
Hence, ∠FEA = ∠FDA = ∠AFD = ∠AED, so line AE bisects
angle FED. Because triangles BCE and BFE are congruent, line
BE bisects angle CEF . Hence, AE ⊥ BE, and ∠AEB = π/2.

Problem 8 In the coordinate plane, a set of 2000 points {(x1, y1),
(x2, y2), . . . , (x2000, y2000)} is called good if 0 ≤ xi ≤ 83, 0 ≤ yi ≤ 1
for i = 1, 2, . . . , 2000 and xi 6= xj when i 6= j. Find the largest positive
integer n such that, for any good set, the interior and boundary of
some unit square contains exactly n of the points in the set on its
interior or its boundary.

Solution: We first prove that for any good set, some unit square
contains exactly 25 of the points in the set. We call a unit square
proper if two of its sides lie on the lines y = 0 and y = 1. Each of the
given points lies in the region R = {(x, y) | 0 ≤ x ≤ 83, 0 ≤ y ≤ 1},
which can be divided into proper unit squares whose left sides lie on a
line of the form x = i for i = 0, 1, . . . , 82. Because 83 · 24 < 2000, one
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of these squares contains more than 24 points. Because 83 · 26− 82 >
2000, one of these squares contains less than 26 points.

In addition to these 83 unit squares, consider the proper unit
squares whose left sides lie on lines of the form x = xi or x = xi − 1.
Order all these unit squares S1, . . . , Sk from left to right, where the
left side of Si lies on the line x = zi. For i = 1, 2, . . . , k − 1, at most
one of the given points lies in the region determined by zi ≤ x < zi+1,
and at most one of the given points lies in the region determined by
zi + 1 < x ≤ zi+1 + 1. Hence, for all such i, the number of points
in Si differs from the number of points in Si+1 by either −1, 0, or
1. Because there exists an Si1 containing at least 25 points and an
Si2 containing at most 25 points, it follows that some Si3 (with i3
between i1 and i2, inclusive) contains exactly 25 points.

We now prove that no n > 25 has the required property. Let
d = 2 · 83

1999 , xi = (i − 1) · 1
2d for i = 1, 2, . . . , 2000, and y2k−1 = 0,

y2k = 1 for k = 1, 2, . . . , 1000. Any two distinct points (xi, yi) that lie
on the same horizontal line (either y = 0 or y = 1) are separated by
distance at least d > 2

25 . LetXY ZW be any unit square. For j = 0, 1,
the region R0 bounded by this square intersects each line y = j in
a closed interval (possibly consisting of zero points or one point) of
length rj . If at least one of r0, r1 is zero, then the corresponding
interval contains at most 1 of the points (xi, yi). The other interval
has length at most

√
2, and hence can contain at most b

√
2

d c+1 ≤ 18
of the required points, for a total of no more than 19. Also, if XY ZW
has a pair of horizontal sides, then R0 contains at most b 1

d/2c+1 ≤ 25
of the required points. Otherwise, R0 intersects the lines y = 0 and
y = 1 at some points P,Q and R,S, respectively, where P and R lie
to the left of Q and S. Also, PQ and RS contain at most bPQ/dc+1
and bRS/dc+ 1 of the chosen points, respectively.

Translate R0 in a direction parallel to either of its pairs of sides
until its center is on the line y = 1

2 . Let R1 be the image of R0 under
the translation, and let P ′, Q′, R′, and S′ be its intersections with
y = 0 and y = 1, defined analogously as before. Then P ′Q′ +R′S′ =
PQ + RS. Also, P ′Q′ = R′S′ by symmetry. Let R2 be the region
formed by rotating R1 about its center so that two of its sides are on
y = 0 and y = 1. Then the region R1 ∪R2 −R1 ∩R2 is the union of
eight congruent triangular regions. Let T and U be the left and right
vertices of R2 on y = 1, and let V be the vertex of R1 above the line
y = 1. Finally, let K and L be the uppermost points on the vertical
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sides of R2 that also belong to the boundary of R1. We have

4KTR′ ∼= 4S′V R′ ∼= 4S′UL.

Also,
TR′ +R′S′ + S′U = TU = 1.

On the other hand, by the triangle inequality,

TR′ + S′U = R′V + S′V > R′S′.

It follows that R′S′ < 1
2 . Because P ′Q′ = R′S′, the number of points

(xi, yi) in XY ZW is at most⌊
PQ

d

⌋
+
⌊
RS

d

⌋
+ 2 ≤ P ′Q′ +R′S′

d
+ 2

<
1
d

+ 2 < 15,

which completes the proof.

Problem 9 We are given the acute triangle ABC.

(a) Prove that there exist unique points A1, B1, and C1 on BC, CA,
and AB, respectively, with the following property: If we project
any two of the points onto the corresponding side, the midpoint
of the projected segment is the third point.

(b) Prove that triangle A1B1C1 is similar to the triangle formed by
the medians of triangle ABC.

Solution: (a) We work backward by first assuming such a triangle
exists. Let T be the midpoint of A1B1. By definition, C1T ⊥ AB.
Let P be the centroid of triangle A1B1C1. Because PA1 ⊥ BC,
PB1 ⊥ CA, and PC1 ⊥ AB, P uniquely determines triangle A1B1C1.

It is clear that quadrilaterals AB1PC1, BC1PA1, CA1PB1 are
cyclic. Let α = ∠CAB, β = ∠ABC, x = ∠A1B1P , and y =
∠B1A1P . Because quadrilaterals AB1PC1 and CA1PB1 are cyclic,

∠TPB1 = α, ∠TPA1 = β, ∠A1CP = x, ∠B1CP = y.

Applying the Law of Sines to triangles A1TP and B1TP yields

sin y
sinβ

=
TP

TA1
=

TP

TB1
=

sinx
sinα

,



20 Bulgaria

or
sinx
sin y

=
sinα
sinβ

.

In exactly the same way, we can show that

sin∠ACF
sin∠BCF

=
sinα
sinβ

,

where F is the midpoint of side AB. Because triangle ABC is acute,
we conclude that ∠A1CP = x = ∠ACF and ∠B1CP = y = ∠BCF .
Hence, lines CP and CF are symmetric with respect to the angle
bisector of angle ACB. Analogous results hold for lines AP and AD,
BP and BE, where D and E are the midpoints of sides BC and CA,
respectively. It follows that P is the isogonal conjugate of G, where G
is the centroid of triangle ABC. Thus P is unique, and reversing our
steps shows that the P we found generates a unique triangle A1B1C1

satisfying the conditions of the problem.

(b) Extend AG through G to K such that GD = DK. Then
BGCK is a parallelogram and CK = BG = 2

3BE, CG = 2
3CF ,

GK = AG = 2
3AD. Hence, triangle CGK is similar to the triangle

formed by the medians of triangle ABC. It suffices to prove that
triangles A1B1C1 and CGK are similar. But this is indeed true as

∠B1C1A1 = ∠B1C1P + ∠A1C1P = ∠B1AP + ∠A1BP

= ∠BAG+ ∠GBA = ∠KGB = ∠GKC,

and (analogously) ∠C1A1B1 = ∠KCG.

Problem 10 Let p ≥ 3 be a prime number and a1, a2, . . . , ap−2 be
a sequence of positive integers such that p does not divide either ak

or ak
k − 1 for all k = 1, 2, . . . , p − 2. Prove that the product of some

terms of the sequence is congruent to 2 modulo p.

Solution: We prove by induction on k = 2, . . . , p − 1 that there
exist integers bk,1, . . . , bk,i such that (i) each bk,i either equals 1 or is
the product of some terms of the sequence a1, a2, . . . , ap−2, and (ii)
bk,m 6≡ bk,n (mod p) for m 6= n.

For the base case k = 2, we may choose b1,1 = 1 and b1,2 = a1 6≡
1 (mod p).

Suppose that we have chosen bk,1, . . . , bk,k. Because ak 6≡ 0 (mod p),
no two of the numbers akbk,1, . . . , akbk,k are congruent modulo p.
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Also, because ak
k 6≡ 1 (mod p), we have

(akbk,1)(akbk,2) · · · (akbk,i) 6≡ bk,1bk,2 · · · bk,i (mod p)

Hence, we cannot permute (akbk,1, . . . , akbk,k) so that each term is
congruent modulo p to the corresponding term in (bk,1, . . . , bk,k).
Because the akbk,i are distinct modulo p, there must exist k0 such
that no two of bk,1, . . . , bk,k, akbk,1 are congruent modulo p. Let
bk+1,1, bk+1,2, . . . , bk+1,k+1 equal these numbers. Each of these k + 1
numbers equals 1 or is the product of some terms of the sequence
a1, . . . , ap−2, and the induction is complete.

Consider the resulting list bp−1,1, . . . , bp−1,p−1. Exactly one of
these numbers is congruent to 2 modulo p; because this number is
not equal to 1, it is congruent to the product of some of the ak, as
desired.

Problem 11 Let D be the midpoint of base AB of the isosceles
acute triangle ABC. Choose a point E on AB, and let O be
the circumcenter of triangle ACE. Prove that the line through D

perpendicular to DO, the line through E perpendicular to BC, and
the line through B parallel to AC are concurrent.

Solution: Let ` denote the line passing through B and parallel to
line AC, and let F1 and F2 be points on line ` such that OD ⊥ DF1

and BC ⊥ EF2. Let H1 and H2 be the feet of the perpendiculars
from F1 and F2 to line AB, respectively. Because angle CAB is acute,
O is an interior point. It follows that F1 is between rays AB and AC.
Because angle ABC is acute, F2 is also between rays AB and AC.

It is suffices to prove that F1H1 = F2H2. Let G be the circumcenter
of triangle ABC, and let O1 and G1 be the feet of the perpendiculars
from O to line AB and G to line OO1, respectively. Because OD ⊥
DF1, triangles OO1D and DH1F1 are similar. Hence,

DH1

F1H1
=
OO1

O1D
.

Let ∠BAC = ∠CBA = x. Because AG = GC and AO = OC, line
GO bisects angle AGC. Hence, ∠CGO = x. Because CG ‖ OO1,
∠G1OG = ∠CGO = x. Therefore, right triangles GOG1 and F1BH1

are similar. Hence
BH1

F1H1
=
OG1

GG1
.
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Combining the last two equalities yields

F1H1 =
BH1 ·O1D

OG1
=
DH1 ·O1D

OO1

=
DH1 ·O1D −BH1 ·O1D

OO1 −OG1

=
BD ·O1D

G1O1
=
BD ·O1D

GD
.

Because ∠DGB = ∠ACB = π − 2x, we obtain

F1H1 = − tan 2x ·O1D.

Let I be the intersection of BC and EF2. Because BF2 ‖ AC,
∠F2BI = ∠ACB = π − 2x and ∠H2BF2 = x. Note that BE =
AB −AE = 2(AD −AO1) = 2O1D. It follows that

F2H2 = BF2 · sin∠H2BF2 = BF2 · sinx

=
BI

cos∠F2BI
· sinx =

BI · sinx
− cos 2x

= −BE cosx sinx
cos 2x

= −O1D tan 2x = F1H1,

as desired.

Problem 12 Let n be a positive integer. A binary sequence is a
sequence of integers, all equal to 0 or 1. Let A be the set of all
binary sequences with n terms, and let 0 ∈ A be the sequence of
all zeroes. The sequence c = c1, c2, . . . , cn is called the sum a + b of
a = a1, a2, . . . , an and b = b1, b2, . . . , bn if ci = 0 when ai = bi and
ci = 1 when ai 6= bi. Let f : A → A be a function with f(0) = 0
such that whenever the sequences a and b differ in exactly k terms,
the sequences f(a) and f(b) also differ in exactly k terms. Prove that
if a, b, and c are sequences from A such that a + b + c = 0, then
f(a) + f(b) + f(c) = 0.

Solution: Consider the sequences e1 = 1, 0, 0, . . . , 0, e2 =
0, 1, 0, . . . , 0, . . . , en = 0, 0, . . . , 0, 1. For each i, 0 and ei differ in
1 term, so f(0) = 0 and f(ei) do as well — that is, f(ei) = ej for
some j. Also, because ei and ej differ in two terms for any i 6= j, so
do f(ei) and f(ej), implying that f(ei) 6= f(ej). Therefore,

{f(e1), f(e2), . . . , f(en)} = {e1, e2, . . . , en}.
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Consider an arbitrary sequence x = (x1, x2, . . . , xn) with f(x) =
(y1, y2, . . . , yn). If x has t 1’s, then so does f(x). If f(ei) = ej and
xi = 1, then ei and x differ in t − 1 terms, implying that f(ei) = ej

and f(x) do as well. This is only possible if yj = 1, because otherwise
ej and f(x) would differ in t + 1 terms. Likewise, if xi = 0 then
yj = 0.

If a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn), c = (c1, c2, . . . , cn), and
a + b + c = 0, then ai + bi + ci is even for i = 1, 2, . . . , n. For
each ej , we can choose ei such that f(ei) = ej . The jth terms of
f(a), f(b), f(c) equal ai, bi, ci, respectively, implying that these three
terms have even sum. Therefore, f(a) + f(b) + f(c) has jth term 0
for all j, and f(a) + f(b) + f(c) = 0.
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1.3 Canada

Problem 1 Let a1, a2, . . . , a2000 be a sequence of integers each lying
in the interval [−1000, 1000]. Suppose that

∑2000
i=1 ai = 1. Show that

the terms in some nonempty subsequence of a1, a2, . . . , a2000 sum to
zero.

Solution: First we show that we can rearrange a1, a2, . . . , a2000

into a sequence b1, b2, . . . , b2000 such that
∑n

i=1 bi ∈ [−999, 1000] for
n = 1, 2, . . . , 2000. We construct the bi term by term. Not all the ai

equal −1000, so we may set b1 equal to such an ai ∈ [−999, 1000].
Call that index i assigned.

Suppose that we have constructed b1, b2, . . . , bk (with 1 ≤ k <

2000) and that k corresponding indices are assigned. If
∑k

i=1 bi is in
[−999, 0] (resp. in [1, 1000]), then the sum of the ai at the unassigned
indices is positive (resp. nonnegative); hence, at least one such ai is
positive (resp. nonnegative). Let bk+1 equal that value ai and call
the corresponding index assigned. Then bk+1 is in [1, 1000] (resp. in
[−1000, 0]), implying that

∑k+1
i=1 bi is in [−999, 1000]. Repeating this

construction, we can construct all 2000 terms b1, b2, . . . , b2000.
By construction, each of the 2000 partial sums σn =

∑n
i=1 bi (for

1 ≤ n ≤ 2000) equals one of the 2000 integers in [−999, 1000].
Therefore, either σi = σj for some i < j or else σi = 0 for some
i. In the first case, the terms in the subsequence bi+1, bi+2, . . . , bj
sum to zero; in the second, the terms in the subsequence b1, b2, . . . , bi
sum to zero. It follows that the terms in a corresponding subsequence
of a1, a2, . . . , a2000 sum to zero as well, as desired.

Problem 2 Let ABCD be a quadrilateral with ∠CBD = 2∠ADB,
∠ABD = 2∠CDB, and AB = CB. Prove that AD = CD.

Solution: Let x = ∠ADB and y = ∠CDB so that ∠CBD = 2x
and ∠ABD = 2y. Applying the Law of Sines in triangles ABD and
CBD, we find that

sin(π − (2y + x))
sinx

=
BD

BA
=
BD

BC
=

sin(π − (2x+ y))
sin y

.
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Cross-multiplying and applying a product-to-difference trigonometric
formula, we find that

sin(2y + x) sin y = sin(2x+ y) sinx
1
2
(cos(y + x)− cos(3y + x)) =

1
2
(cos(x+ y)− cos(3x+ y))

cos(3y + x) = cos(3x+ y).

Because 0 < x + y = 1
2∠ABC < π/2, we have 0 < (3y + x) +

(3x + y) < 2π. Hence, 3y + x = 3x + y, implying that x = y and
∠ABD = ∠CBD. It follows that quadrilateral ABCD is symmetric
about BD and that AD = CD.

Problem 3 Suppose that the real numbers a1, a2, . . . , a100 satisfy
(i) a1 ≥ a2 ≥ · · · ≥ a100 ≥ 0, (ii) a1 + a2 ≤ 100, and (iii) a3 +
a4 + · · · + a100 ≤ 100. Determine the maximum possible value of
a2
1 +a2

2 + · · ·+a2
100, and find all possible sequences a1, a2, . . . , a100 for

which this maximum is achieved.

Solution: For i ≥ 3, we have 0 ≤ ai ≤ a2 for i ≥ 3 and hence
ai(ai − a2) ≤ 0, with equality only if ai ∈ {0, a2}. Adding these 98
inequalities together yields

100∑
i=3

a2
i ≤ a2 ·

100∑
i=3

ai.

By (iii), this is at most 100a2, with equality only if
∑100

i=3 ai = 100 or
a2 = 0.

Also, (i) and (ii) imply that 0 ≤ a1 ≤ 100 − a2. Thus, a2
1 ≤

(100− a2)2, with equality only if a1 = 100− a2.

Conditions (i) and (ii) further imply that 0 ≤ a2 ≤ 100 − a1 ≤
100− a2, or 0 ≤ a2 ≤ 50. Hence, 2a2(a2 − 50) ≥ 0 with equality only
if a2 equals 0 or 50.

Therefore,
100∑
i=1

a2
i = a2

1 + a2
2 +

100∑
i=3

a2
i ≤ (100− a2)2 + a2

2 + 100a2

= 10000 + 2a2(a2 − 50) ≤ 10000.

For equality to hold, equality must hold in each inequality found
above — that is, we must have: (a) {a3, a4, . . . , a100} ⊆ {0, a2}; (b)
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∑100
i=3 ai = 100 or a2 = 0; (c) a1 = 100 − a2; and (d) a2 ∈ {0, 50}.

These conditions hold only when the sequence a1, a2, . . . , a100 equals

100, 0, 0, . . . , 0 or 50, 50, 50, 50, 0, 0, . . . , 0.

Indeed, these sequences satisfy conditions (i)-(iii), and
∑100

i=1 a
2
i =

10000 for each sequence. Therefore, 10000 is the maximum sum of
squares, and this maximum is achieved with the two sequences above.

Note: Although the claim
∑100

i=3 a
2
i ≤ a2

∑100
i=3 ai may seem to

appear from nowhere, it actually arises quite naturally. In general,
suppose that x1, x2, . . . , xn ∈ [a, b] have a fixed sum σ and that f
is a convex function on [a, b]. Then

∑n
i=1 f(xi) is maximized when

the xi are “spread out” as much as possible, i.e. at most one value
is not in {a, b}. With [a, b] = [0, a2] and f(x) = x2, the maximum
sum would occur when as many values equal a2 as possible. If σ/a2

were an integer and σ/a2 values did equal a2, the sum of squares
would be a2σ. This suggests that we should attempt to prove that∑100

i=3 a
2
i ≤ a2

∑100
i=3 ai.
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1.4 China

Problem 1 In triangle ABC, BC ≤ CA ≤ AB. Let R and r be
the circumradius and inradius, respectively, of triangle ABC. As a
function of ∠C, determine whether BC + CA − 2R − 2r is positive,
negative, or zero.

Solution: Set AB = c, BC = a, CA = b, ∠A = 2x, ∠B = 2y,
∠C = 2z. Then 0 < x ≤ y ≤ z and x + y + z = π/2. Let s denote
the given quantity BC +CA− 2R− 2r = a+ b− 2R− 2r. Using the
well known formulas

2R =
a

sin∠A
=

b

sin∠B
=

c

sin∠C
=

a

sin 2x
=

b

sin 2y
=

c

sin 2z
,

r = 4R sin
∠A
2

sin
∠B
2

sin
∠C
2

= 4R sinx sin y sin z,

we find that s = 2R(sin 2x + sin 2y − 1 − 4 sinx sin y sin z). Note
that in a right triangle ABC with ∠C = π/2, we have 2R = c and
2r = a+b−c, implying that s = 0. Hence, we try to factor out cos 2z
from our expression for s:
s

2R
= 2 sin (x+ y) cos (x− y)− 1 + 2(cos (x+ y)− cos (x− y)) sin z

= 2 cos z cos (x− y)− 1 + 2(sin z − cos (x− y)) sin z

= 2 cos (x− y)(cos z − sin z)− cos 2z

= 2 cos (y − x) · cos2 z − sin2 z

cos z + sin z
− cos 2z

=
[
2 cos (y − x)
cos z + sin z

− 1
]

cos 2z,

where we may safely introduce the quantity cos z+ sin z because it is
positive when 0 < z < π/2.

Observe that 0 ≤ y − x < min{y, x + y} ≤ min{z, π/2 − z}.
Because z ≤ π/2 and π/2 − z ≤ π/2, we have cos (y − x) >

max{cos z, cos (π/2− z)} = max{cos z, sin z}. Hence,

2 cos (x− y)
cos z + sin z

− 1 > 0.

Thus, s = p cos 2z for some p > 0. It follows that s = BC + CA −
2R− 2r is positive, zero, or negative if and only if ∠C is acute, right,
or obtuse, respectively.
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Problem 2 Define the infinite sequence a1, a2, . . . recursively as
follows: a1 = 0, a2 = 1, and

an =
1
2
nan−1 +

1
2
n(n− 1)an−2 + (−1)n

(
1− n

2

)
for all n ≥ 3. Find an explicit formula for

fn = an + 2
(
n

1

)
an−1 + 3

(
n

2

)
an−2 + · · ·+ n

(
n

n− 1

)
a1.

First Solution: Rewrite the recursive relation as

an = (−1)n +
1
2
nan−1 +

1
2
n
(
(−1)n−1 + (n− 1)an−2

)
.

If (−1)n−1 + (n − 1)an−2 = an−1, then we have that an = (−1)n +
1
2nan−1 + 1

2nan−1 = (−1)n + nan−1. Thus, it is straightforward to
show by induction that an = (−1)n + nan−1, which implies that

an = n!− n!
1!

+
n!
2!
− n!

3!
+ · · ·+ (−1)nn!

n!
.

Therefore, by a famous formula of Euler’s, an is the number of
derangements of (1, 2, . . . , n), i.e. the number of permutations of this
n-tuple with no fixed points.

To each pair (π, j) of a permutation π distinct from the identity
and an integer j in {1, 2, . . . , n}, assign one mark if j is a fixed point
of π. For a fixed k = 1, 2, . . . , n, there are

(
n

n−k

)
ak permutations π

with exactly n−k fixed points: there are
(

n
n−k

)
ways to choose which

points are fixed, and ak derangements of the remaining k points. For
each such permutation π, exactly n − k pairs (π, j) are assigned one
mark. Adding over all permutations, we find that the total number
of marks assigned is

n∑
k=1

(n− k)
(

n

n− k

)
ak = fn −

n∑
k=1

(
n

n− k

)
ak = fn − (n!− 1),

where the sum
∑n

k=1

(
n

n−k

)
ak counts all the n!−1 permutations with

fewer than n fixed points.
On the other hand, for each j ∈ {1, 2, . . . , n}, exactly (n − 1)! − 1

permutations distinct from the identity fix j. Thus, adding over all j,
we find that the total number of marks assigned is

n∑
j=1

((n− 1)!− 1) = n(n− 1)!− n.
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Setting the two totals calculated above equal to each other, we find
that fn = 2 · n!− n− 1.

Note: Alternatively, after discovering that fn = 2 · n! − n − 1
for small values of n, one could use the given recursive relation and
combinatorial identities to prove that the formula is true for all n.

Second Solution: We present another method proving that an is
the number of derangements of (1, 2, . . . , n). For n ≥ 3, we have

an = nan−1 + (−1)n = an−1 + (n− 1)an−1 + (−1)n

= [(n− 1)an−2 + (−1)n−1] + (n− 1)an−1 + (−1)n

= (n− 1)(an−1 + an−2).

Now, let bn be the number of derangements of (1, 2, . . . , n). Each
derangement is of exactly one of the following types:

(a) For some k 6= 1, 1 maps to k and k maps to 1. Then there
are n − 1 such possible values for k, and for each k there are
bn−2 derangements for the rest n− 2 elements. Hence, there are
(n− 1)bn−2 such derangements.

(b) 1 maps to k and k does not map to 1. Fix k. Then there is a
bijection between the set of all such derangements π and the set of
permutations which fix only 1, via the map π 7→ τπ, where τ is the
transposition that swaps 1 and k. Because there are bn−1 maps
which fix only 1, there are bn−1 such permutations π. Letting k
vary from 2 to n, we find that there are (n−1)bn−2 derangements
of type (b).

Therefore, bn = (n − 1)(bn−1 + bn−2). Since a1 = b1 = 0 and
a2 = b2 = 1, an = bn for all n ≥ 1, as claimed.

Problem 3 A table tennis club wishes to organize a doubles tour-
nament, a series of matches where in each match one pair of players
competes against a pair of two different players. Let a player’s
match number for a tournament be the number of matches he or
she participates in. We are given a set A = {a1, a2, . . . , ak} of
distinct positive integers all divisible by 6. Find with proof the
minimal number of players among whom we can schedule a doubles
tournament such that

(i) each participant belongs to at most 2 pairs;
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(ii) any two different pairs have at most 1 match against each other;

(iii) if two participants belong to the same pair, they never compete
against each other; and

(iv) the set of the participants’ match numbers is exactly A.

Solution:

Lemma. Suppose that k ≥ 1 and 1 ≤ b1 < b2 < · · · < bk. Then
there exists a graph of bk +1 vertices such that the set {b1, b2, . . . , bk}
consists of the degrees of the bk + 1 vertices.

Proof: We prove the lemma by strong induction on k. If k = 1,
the complete graph on b1 vertices suffices. If k = 2, then take b2 + 1
vertices, distinguish b1 of these vertices, and connect two vertices by
an edge if and only if one of the vertices is distinguished.

We now prove that the claim is true when k = i ≥ 3 assuming that
it is true when k < i. We construct a graph G of bi + 1 vertices,
forming the edges in two steps and thus “changing” the degrees of
the vertices in each step. Take bi + 1 vertices, and partition them
into three sets S1, S2, S3 with |S1| = b1, |S2| = bi−1 − b1 + 1, and
|S3| = bi − (bi−1 + 1). By the induction hypothesis, we can construct
edges between the vertices in S2 such that the degrees of those vertices
form the set {b2 − b1, . . . , bi−1 − b1}. Further construct every edge
which has some vertex in S1 as an endpoint. Each vertex in S1 now
has degree bi, each vertex in S3 has degree b1, and the degrees of
the vertices in S2 form the set {b2, . . . , bi−1}. Hence, altogether, the
degrees of the bi + 1 vertices in G form the set {b1, b2, . . . , bi}. This
completes the inductive step and the proof.

Suppose that we have a doubles tournament among n players
satisfying the given conditions. At least one player, say X, has match
number max(A). Let m be the number of different pairs she has
played against. Each of these pairs contains two players for a count
of 2m. Any player is counted at most twice in this fashion since
any player belongs to at most two pairs. Hence, player X must have
played against at least m players. If X is in j pairs (where j equals 1
or 2), then there are at most m+ j+1 players in total. Also, X plays
in at most jm matches, implying that jm ≥ max(A). Hence,

n ≥ m+j+1 ≥ max(A)/j+j+1 ≥ min{max(A)+2,max(A)/2+3}.
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Because max(A) ≥ 6, we have max(A)+2 > max(A)/2+3, implying
that n ≥ max(A)/2 + 3.

We now prove that n = max(A)/2 + 3 is attainable. From the
lemma, we can construct a graph G of max(A)

6 + 1 vertices whose
degrees form the set {a1

6 ,
a2
6 , . . . ,

ak

6 }. Partition the n players into
max(A)/6 + 1 triples, and let two players be in a pair if and only if
they are in the same triple. Assign each triple (and, at the same time,
the three pairs formed by the corresponding players) to a vertex in G,
and let two pairs compete if and only if their corresponding vertices
are adjacent. Suppose that we have a pair assigned to a vertex v of
degree ai/6. For each of the ai/6 vertices w adjacent to v, that pair
competes against the three pairs assigned to w, for a total of ai/2
matches. Each player assigned to v is in two pairs and hence has
match number 2(ai/2) = ai. Therefore, the set of the participants’
match numbers is {a1, a2, . . . , ak}, as needed.

Problem 4 We are given an integer n ≥ 2. For any ordered n-tuple
of real numbers A = (a1, a2, . . . , an), let A’s domination score be the
number of values k ∈ {1, 2, . . . , n} such that ak > aj for all 1 ≤ j < k.

Consider all permutations A = (a1, a2, . . . , an) of (1, 2, . . . , n) with
domination score 2. Find with proof the arithmetic mean of the first
elements a1 of these permutations.

Solution: For any ordered n-tuple of real numbers A = (a1, a2,

. . . , an), if ak > aj for all 1 ≤ j < k, then we call ak a dominator.
If a permutation A = (a1, a2, . . . , an) of (1, 2, . . . , n) has domination
score 2, then the two dominators must be a1 and n, where n = ak for
some 2 ≤ k ≤ n.

Fix m in {1, 2, . . . , n− 1}. We call the numbers m+ 1,m+ 2, . . . n
big and the numbers 1, 2, . . . ,m − 1 small. In a permutation with 2
dominators and a1 = m, n must appear in the permutation before
all the other big numbers. Thus, to form all such permutations, we
first choose the n −m positions occupied by big numbers, placing n
at the first chosen position and then arranging the other n −m − 1
big numbers into the rest of chosen places. We then arrange all the
small numbers in the remaining m− 1 places. Hence, there are

xm =
(
n− 1
n−m

)
(n−m− 1)!(m− 1)! =

(n− 1)!
n−m

such permutations.
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Therefore, the desired average is equal to∑n−1
m=1mxm∑n−1
m=1 xm

=
(n− 1)!

∑n−1
m=1

m
n−m

(n− 1)!
∑n−1

m=1
1

n−m

=

∑n−1
m=1

m
n−m∑n−1

m=1
1

n−m

=
∑n−1

m=1
n
m −

∑n−1
m=1

m
m∑n−1

m=1
1
m

= n− n− 1
1 + 1

2 + · · ·+ 1
n

.

Problem 5 Find all positive integers n such that there exist integers
n1, n2, . . . , nk > 3 with

n = n1n2 · · ·nk = 2
1
2k (n1−1)(n2−1)···(nk−1) − 1.

Solution: If a positive integer n satisfies the given conditions, then
n = 2m − 1 for some positive integer m. It is easy to check that 3
is the only integer m less than 10 such that n = 2m − 1 satisfies the
given condition.

Given m ≥ 10, we now prove that 2m−1 does not satisfy the given
condition. Suppose, for the sake of contradiction, that the equation
holds for some k and n1, n2, . . . , nk such that

m =
1
2k

(n1 − 1)(n2 − 1) · · · (nk − 1) ≥ 10.

For ` ≥ 10, we have
(

`+1
`

)3
<
(

5
4

)3
< 2. Using this fact, it is easy to

prove by induction that 2` − 1 > `3 for integers ` ≥ 10. Hence,

2m − 1 > m3 =
(
n1 − 1

2

)3(
n2 − 1

2

)3

· · ·
(
nk − 1

2

)3

. (1)

Because n = 2m − 1 is odd, the ni are all odd; because each ni > 3,
each ni is at least 5. Hence,(

ni − 1
2

)3

≥ 4 · ni − 1
2

> ni (2)

for i = 1, 2, . . . , k. Putting (1) and (2) together, we obtain

n = 2m − 1 > n1n2 · · ·nk = n,

a contradiction. Hence, our assumption was wrong, and n = 23−1 = 7
is the only solution.

Problem 6 An exam paper consists of 5 multiple-choice questions,
each with 4 different choices; 2000 students take the test, and each
student chooses exactly one answer per question. Find the smallest
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value of n for which it is possible for the students’ answer sheets to
have the following property: among any n of the students’ answer
sheets, there exist 4 of them among which any two have at most 3
common answers.

Solution: First we prove that n ≥ 25. Let 1, 2, 3, 4 denote the four
different choices of each problem. Represent each student’s answer
sheet by an ordered 5-tuple (a1, a2, a3, a4, a5), ai ∈ {1, 2, 3, 4}, where
the student’s answer to problem i is ai. We say that two answer
sheets are of the same type if their corresponding 5-tuples belong to
a set of the form

{ (k, a2, a3, a4, a5) | k ∈ {1, 2, 3, 4} },

where a2, a3, a4, a5 ∈ {1, 2, 3, 4}. Since there are 256 such sets, and
2000 = 256 × 7 + 208, at least eight answer sheets are of the same
type by the pigeonhole principle. Among the 1992 remaining answer
sheets, again some eight are of the same type. Finally, among the 1984
remaining answer sheets, another eight are of the same type. Consider
the set A of these 24 answer sheets. Given any two answer sheets in
A, two of them must be of the same type, that is, their solutions for
the last 4 problems are identical. This violates the assumption that
there are 4 answer sheets in A, among which any two have at most 3
common answers. Hence, n ≥ 25.

Now we show that n = 25 is indeed attainable. Define the set

S = {(a1, a2, a3, a4, a5) |
∑5

i=1ai ≡ 0 (mod 4), ai ∈ {1, 2, 3, 4} }.

Then |S| = 44 = 256, and any two answer sheets have at most 3
common answers if their corresponding 5-tuples are distinct elements
of S. Pick any 250 elements of S, and assume that exactly eight
students turn in answer sheets that correspond to each of these 250
5-tuples. Among any 25 > 3 · 8 answer sheets, there are four whose
corresponding 5-tuples are distinct elements in S, and they satisfy the
given conditions of the problem.

Therefore, the answer is n = 25.
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1.5 Czech and Slovak Republics

Problem 1 Show that

3

√
a

b
+ 3

√
b

a
≤ 3

√
2(a+ b)

(
1
a

+
1
b

)
for all positive real numbers a and b, and determine when equality
occurs.

First Solution: Multiplying both sides of the desired inequality by
3
√
ab gives the equivalent inequality

3
√
a2 + 3

√
b2 ≤ 3

√
2(a+ b)2.

Setting 3
√
a = x and 3

√
b = y, we see that it suffices to prove that

x2 + y2 ≤ 3
√

2(x3 + y3)2 (∗)

for x, y > 0.
By the arithmetic mean-geometric mean inequality,

3x4y2 ≤ x6 + x3y3 + x3y3

and

3x2y4 ≤ y6 + x3y3 + x3y3,

with equality if and only if x6 = x3y3 = y6, or equivalently if and
only if x = y. Adding these two inequalities and adding x6 + y6 to
both sides yields

x6 + y6 + 3x2y2(x2 + y2) ≤ 2(x6 + y6 + 2x3y3).

Taking the cube root of both sides yields (∗), as desired. Equality
occurs when x = y, or equivalently when a = b.

Second Solution: By the power mean inequality, we have 3
√

a
b + 3

√
b
a

2

3

≤

√a
b +

√
b
a

2

2

, (†)

with equality if and only if a/b = b/a, or equivalently a = b.
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The desired result follows from (†) and the identity(√
a

b
+

√
b

a

)2

= (a+ b)
(

1
a

+
1
b

)
.

Problem 2 Find all convex quadrilaterals ABCD for which there
exists a point E inside the quadrilateral with the following property:
Any line which passes through E and intersects sides AB and CD

divides the quadrilateral ABCD into two parts of equal area.

Solution: Quadrilateral ABC has the desired property if and only
if AB ‖ CD.

Suppose that convex quadrilateral ABCD has the desired property.
Let X1, X2, and X3 be three points on side AB with AX1 < AX2 <

AX3, such that line XkE intersect side CD at Yk for k = 1, 2, 3.
Because quadrilateral ABCD is convex, CY1 < CY2 < CY3. We
have

0 =
1
2
[ABCD]− 1

2
[ABCD] = [AX1Y1D]− [AX2Y2D]

= [EY1Y2]− [EX1X2] =
1
2

sin∠Y1EY2 (EY1 · EY2 − EX1 · EX2) ,

implying that EX1 · EX2 = EY1 · EY2. Similarly, EX2 · EX3 =
EY2 ·EY3. Hence, EX1/EY1 = EX3/EY3 and 4Y1EY3 ∼ 4X1EX3.

Therefore, X1X3 ‖ Y1Y3, that is, AB ‖ CD.
On the other hand, for any convex quadrilateral ABCD with AB ‖

CD, let E be the midpoint of segment M1M2, where M1 and M2 are
the midpoints of sidesAB and CD, respectively. Suppose a line passes
through E and intersects sides AB at X and CD at Y. Reflecting the
figure across M sends line AB to line CD and hence XM1 to YM2.

It follows that XM1 = YM2 and AX + DY = BX + CY. Thus,
quadrilaterals AXYD and BXYD — where each quadrilateral is a
trapezoid or possibly a parallelogram — have the same heights and
the same sums of base lengths. Therefore they have equal areas, as
desired.

Problem 3 An isosceles triangle ABC is given with base AB and
altitude CD. Point P lies on CD. Let E be the intersection of line
AP with side BC, and let F be the intersection of line BP with side
AC. Suppose that the incircles of triangle ABP and quadrilateral
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PECF are congruent. Show that the incircles of the triangles ADP
and BCP are also congruent.

First Solution: Let ω1 and ω2 be the incircles of quadrilateral
CEPF and triangle ABP , respectively, and let I1 and I2 are the
centers of circles ω1 and ω2, respectively. Because the figure is
symmetric about CD, I1 and I2 lie on segment CD with P between
these two points. Because ω1 and ω2 are congruent and inscribed in
vertical angles, they are reflections of each other across P. Therefore,
PI1 = PI2.

Because triangles ADBP and BDP are congruent, we only need
to prove that the inradius r1 of triangle BCP equals the inradius r2
of triangle BDP. Let X and Y be the incenters of triangles BCP and
BDP, respectively. Observe that I1 is also the incenter of triangle
CBF, so that I1 lies on the bisector of angle CBF , that is, of angle
CBP. Hence, X is on segment BI1, and likewise, Y is on segment
BI2.

Because PI1 = PI2, [BI1P ] = [BI2P ]. Therefore,

r1(PI1 +BP ) = 2([I1PX] + [XPB]) = 2[I1PB]

= 2[PI2B] = 2([PI2Y ] + [PY B]) = r2(PI2 +BP ).

Therefore, r1 = r2, as desired.

Second Solution: As in the first solution, let ω1 and ω2 be the
incircles of quadrilateral CEPF and triangle ABP, respectively. Of
the common external tangents of these circles, let the tangent closer
to A intersect lines BC and BD at C ′ and D′, respectively. Then
C ′D′ ‖ CD. Let segments C ′D′ and BF intersect at P ′. Observe that
ω1 and ω2 are the incircles of triangle BC ′P ′ and BD′P ′, respectively.

Consider the homothety H centered at B with ratio CD/C ′D′.
Then H sends triangles BC ′P ′ and BD′P ′ to triangles BCP and
BDP , respectively. Hence, H sends circles ω1 and ω2 to the incircles
of triangles BCP and BDP , respectively. Because ω1 and ω2 are
congruent, the incircles of triangles BCP and BDP are as well.
Because triangles BDP and ADP have congruent incircles as well,
the desired result follows.

Problem 4 In the plane are given 2000 congruent triangles of area
1, which are images of a single triangle under different translations.
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Each of these triangles contains the centroids of all the others. Show
that the area of the union of these triangles is less than 22

9 .

Solution: Orient the figure in the problem such that each of the
2000 given triangles has one horizontal side, with the opposite vertex
above that side. Let triangle ABC be one of the given triangles, with
AB horizontal and A to the left of B, such that none of the other
1999 triangles’ horizontal sides lie below line AB.

We begin by defining notions of distance different from usual
Euclidean distance, and using these definitions to formally describe
some relations between the 2000 triangles. Define an α-object to be a
point, or a line or segment parallel to BC. Let the α-distance dα from
one α-object to another be the signed distance between the two lines
parallel to BC passing through the objects, where the signs are chosen
such that ã = dα(BC,A) is positive. Similarly define β- and γ-objects
and distances with respect to CA and AB, with b̃ = dβ(CA,B) > 0
and c̃ = dγ(AB,C) > 0. Notice that if a translation maps an α-
object through some α-distance, it maps any α-object through that
α-distance; analogous results hold for the β- and γ-distances.

Suppose that triangles XY Z and X ′Y ′Z ′ are any two triangles
from among the 2000, with XY ‖ X ′Y ′ ‖ AB and Y Z ‖ Y ′Z ′ ‖
BC. Let T be the translation which maps triangle XY Z to triangle
X ′Y ′Z ′. Because the centroid of triangle XY Z lies on or to the left
of Y ′Z ′ = T(Y Z), dα(Y Z,T(Y Z)) ≤ 1

3 ã. Therefore, dα(X,X ′) =
dα(X,T(X)) ≤ 1

3 ã and hence

dα(Y Z,X ′) ≤ 4
3
ã.

Similarly, dβ(ZX, Y ′) ≤ 4
3 b̃ and dγ(XY ,Z ′) ≤ 4

3 c̃.

Now, let T be the image of triangle ABC under a dilation about
C with ratio 1

3 , so that [T ] = 1
9 . Let U2 and V1 be translations of

T whose bottom-right vertices are at C and A, respectively, and let
U1 and V2 be translations of T whose bottom-left vertices are at C
and B, respectively. Let T1 and T2 be the translations such that
T1(U1) = V1 and T2(U2) = V2. Let the convex hull of these four
triangles be F , bounded by line `1 on the right, line `2 on the left,
line `3 above, and line AB below. Observe that F is a trapezoid with
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area 24
9 .

Because dα(AB, `3) = 4
3 c̃, the points of any triangle containing

the centroid of triangle ABC lie on or below `3. Similarly, because
dβ(`2, B) = 4

3 b̃ and dγ(`3, C) = 4
3 c̃, in order for triangle ABC to

contain the centroid of a triangle, the points of that triangle must lie
on or to the right of `2 and on or to the left of `1. Combined with
the extremal definition of triangle ABC, these results imply that the
region R covered by the 2000 triangles lies within the trapezoid F
defined earlier.

Of the lines passing through the 2000 triangle sides parallel to `1,
let k be the line closest to `1. Because dα(U1,V1) = 4

3 ã, T1 moves
α-objects through α-distance 4

3 ã. Thus, each of the 2000 triangles lies
in the region R′ bounded by k and T2(k). Observe that V1 = T1(U1),
so the regions R′ ∩ V1 and R′ ∩ U1 fit together to form a triangle
congruent to T . In other words, the area in V1 ∪ U1 also in R′, and
hence in R, is at most 1

9 . Said differently, the area in V1 ∪ U1 not in
R is at least 1

9 .

Similarly, the area in U2 ∪ V2 not in R is at least 1
9 . Furthermore,

consider the segment m1 ∩ F . Any point on this segment inside R
must be the top vertex of one of the 2000 triangles. Because there
can only be finitely many such points, there must be some segment
along m1 ∩ F not containing any such points. Thus, this segment
borders some uncovered triangular region in F with positive area,
such that this triangle, the region U1 ∪V1, and the region U2 ∪V2 are
pairwise disjoint. Therefore,

[R] ≤ [F ]− 1/9− 1/9− κ = 22/9− κ < 22/9,

as desired.
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1.6 Estonia

Problem 1 Five real numbers are given such that, no matter which
three of them we choose, the difference between the sum of these three
numbers and the sum of the remaining two numbers is positive. Prove
that the product of all these 10 differences (corresponding to all the
possible triples of chosen numbers) is less than or equal to the product
of the squares of these five numbers.

Solution: Let the five numbers be x1, x2, x3, x4, x5, where indices
are taken modulo 5. The 10 given differences are a1, a2, . . . , a5 and
b1, b2, . . . , b5, where

ai = −xi−2 + xi−1 + xi + xi+1 − xi+2;

bi = xi−2 − xi−1 + xi − xi+1 + xi+2

for i = 1, 2, 3, 4, 5. For each such i, we have

x2
i − aibi =

(
ai + bi

2

)2

− aibi =
(
ai − bi

2

)2

≥ 0,

or x2
i ≥ aibi. Because aibi ≥ 0 for each i, we may multiply the five

inequalities aibi ≤ x2
i for 1 ≤ i ≤ 5 to obtain

5∏
i=1

x2
i ≥

5∏
i=1

aibi,

as desired.

Problem 2 Prove that it is not possible to divide any set of 18
consecutive positive integers into two disjoint sets A and B, such that
the product of the elements in A equals the product of the elements
in B.

Solution: Suppose, for sake of contradiction, that we could parti-
tion a set S = {n, n+1, . . . , n+17} of 18 consecutive positive integers
into two disjoint sets A and B such that

∏
a∈A a =

∏
b∈B b. Because

the product of the elements of A equals the product of elements of
B, if one set contains a multiple of 19, then the other must as well.
Thus, S contains either no multiples of 19 or at least 2 multiples of
19. Because only one of any 18 consecutive integers can be a multiple
of 19, S must contain no such multiples. Therefore, n, n + 1, . . . ,
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n+ 17 are congruent to 1, 2, . . . , 18, respectively, modulo 19. Thus,∏
a∈A

a ·
∏
b∈B

b = n(n+ 1) · · · (n+ 17) ≡ 18! ≡ −1 (mod 19)

by Wilson’s Theorem. However, the two products on the left hand
side are equal, which is impossible because −1 is not a square modulo
19 (or of any prime congruent to 3 modulo 4, a well known result in
number theory). Therefore, no such sets A and B exist.

Problem 3 Let M, N, and K be the points of tangency of the
incircle of triangle ABC with the sides of the triangle, and let Q be
the center of the circle drawn through the midpoints of MN, NK,

and KM. Prove that the incenter and circumcenter of triangle ABC
are collinear with Q.

Solution: For definiteness, assume that M , N , and K lie on sides
BC, CA, AB, respectively, and define X, Y , Z as the midpoints of
NK, KM , MN , respectively. According to the given information,
Q is the circumcenter of triangle XY Z. Line AX is the median to
base KN of isosceles triangle AKN, implying that it is also an angle
bisector and an altitude in this triangle. Thus, A, X, and I are
collinear, and ∠AXN = π/2. Hence, right triangles AXK and AKI

are similar, and IA ·IX = IK2. Therefore, X is the image of A under
the inversion through the incircle of triangle ABC. Similarly, Y is
the image of B and Z is the image of C under this same inversion. It
follows that this inversion maps the circumcircle of triangle ABC to
the circumcircle of triangle XY Z, so the centers of these circles are
collinear with I. In other words, Q, I, and the circumcenter of ABC
are collinear.

Problem 4 Find all functions f : N→ N such that

f(f(f(n))) + f(f(n)) + f(n) = 3n

for all n ∈ N.

Solution: Observe that if f(a) = f(b), then setting n = a and
n = b into the given equation yields 3a = 3b, or a = b. Therefore, f
is injective. We now prove by induction on n ∈ Z+ that f(n) = n.

Suppose that for all n < n0, f(n) = n; we prove that f(n0) = n0.

(This proof applies to n0 = 1 as well.) Because f is injective, if
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n ≥ n0 > k, then f(n) 6= f(k) = k. Thus,

f(n) ≥ n0. (∗)

for all n ≥ n0. Specifically, (∗) holds for n = n0, i.e. f(n0) ≥ n0.

Then (∗) holds for n = f(n0) and similarly for f(f(n0)) as well.
Substituting n = n0 in the given equation, we find that

3n0 = f(f(f(n0))) + f(f(n0)) + f(n0) ≥ n0 + n0 + n0.

Equality must occur, so f(n0) = n0, as desired.

Problem 5 In a triangle ABC we have AC 6= BC. Take a point X
in the interior of this triangle and let α = ∠A, β = ∠B, φ = ∠ACX,
and ψ = ∠BCX. Prove that

sinα sinβ
sin(α− β)

=
sinφ sinψ
sin(φ− ψ)

if and only if X lies on the median of triangle ABC drawn from the
vertex C.

Solution: Let M be the midpoint of AB, and let φ′ = ∠ACM
and ψ′ = ∠MCB. Without loss of generality, assume that α > β and
BC > AC (otherwise, swapping the labels of B and C negates each
side of the desired equation without affecting whether the equation
is true). By the Angle Bisector Theorem, the bisector of angle ACB
meets AB at a point closer to A than to B, i.e. at a point on AM.

Thus, ψ′ > φ′.

Reflect B across line CX to produce a new point B′, and construct
D on line CB′, on the opposite side of line AB as C, such that
∠BAD = ψ′. We now use heavy angle-chasing in order to apply
the trigonometric form of Ceva’s Theorem in triangle ABC to the
concurrent lines AD, XD, and B′D.

Triangle BCB′ is isosceles with BC = B′C and ∠B′CB = 2ψ′,
implying that ∠CBB′ = π/2 − ψ′. Hence, ∠ABB′ = ∠CBB′ −
∠CBA = π/2− ψ′ − β.

Because MA = MB = MB′, ∠AB′B = π/2 and triangle MAB′ is
isosceles. Thus, the angles of this triangle are

∠B′AM = ∠B′AB = π/2− ∠ABB′ = ψ′ + β,

∠MB′A = ψ′ + β,

∠AMB′ = π − 2(ψ′ + β) = (α− β) + (φ′ − ψ′),
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where the last equality is true because α+ β + φ′ + ψ′ = π.

Because ∠MAB′ > ψ′ = ∠MAD, D lies between rays AM

and AB′ and hence inside triangle AXB′. Also, ∠MAD = ψ′ =
∠BCM = ∠MCB′ = ∠MCD, implying that quadrilateral MCAD

is cyclic.
We now calculate the angles lines AD, MD, and B′D make with

the sides of triangle AMB′. We first have ∠MAD = ψ′, ∠DMA =
∠DCA = φ′ − ψ′, and ∠DB′M = ∠CB′M = ∠MBC = α.

Combined with the expressions found earlier for the angles of
triangle AM ′B, these equations also yield ∠DAB′ = ∠MAB′ −
∠MAD = β, ∠B′MD = ∠B′MA−∠DMA = α− β, and ∠AB′D =
∠AB′M − ∠DB′M = ψ′.

Applying Ceva’s Theorem and the Law of Sines, we find that

1 =
sin∠MAD

sin∠DAB′
sin∠AB′D
sin∠DB′M

sin∠B′MD

sin∠DMA

=
sinψ′

sinβ
sinψ′

sinβ
sin(α− β)
sin(φ′ − ψ′)

=
MB

MC

sinψ′

sinβ
sin(α− β)
sin(φ′ − ψ′)

=
MA

MC

sinψ′

sinβ
sin(α− β)
sin(φ′ − ψ′)

=
sinφ′

sinα
sinψ′

sinβ
sin(α− β)
sin(φ′ − ψ′)

.

If X lies on line CM, then (φ, ψ) = (φ′, ψ′), and the above equation
implies that the given equation holds. Conversely, suppose that the
given equation holds. Let γ = ∠BCA and let f(θ) = sin θ sin(γ−θ)

sin(θ−(γ−θ)) . We
are given that f(φ) = f(φ′); this common value is nonzero because
0 < φ, φ′ < γ. Thus, 1

f(θ) is defined and takes on equal values at θ = φ

and θ = φ′. However,

1
f(θ)

=
sin θ cos(γ − θ)− cos θ sin(γ − θ)

sin θ sin(γ − θ)
= cot θ − cot(γ − θ),

which is a strictly decreasing function for θ ∈ (0, γ). Therefore, φ = φ′,

and X must lie on line CM. This completes the proof.

Problem 6 We call an infinite sequence of positive integers an
F -sequence if every term of this sequence (starting from the third
term) equals the sum of the two preceding terms. Is it possible to
decompose the set of all positive integers into

(a) a finite;

(b) an infinite

number of F -sequences having no common members?
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Solution: (a) Suppose, for sake of contradiction, that there exist m
F -sequences that partition the positive integers. Let the ith sequence
be F (i)

1 , F
(i)
2 , . . . . Because F (i)

n+2−F
(i)
n+1 = F

(i)
n is increasing for n ≥ 2,

there exists Ni such that F (i)
n+2 − F

(i)
n+1 > m for all n > Ni. Let

N = max{N1, N2, . . . , Ni}, and choose a positive integer k that
exceeds the first N terms of each sequence. By the Pigeonhole
Principle, two of the numbers k, k + 1, . . . , k + m appear in the
same F -sequence. These two integers will differ by at most m, a
contradiction. Therefore, the answer to part (a) is “no.”

(b) Define the Fibonacci sequence {Fn} by F0 = F1 = 1 and the
recursive relation Fn+1 = Fn + Fn−1 for n > 1. It can be shown by
induction on j that each positive integer j has a unique Zeckendorf
representation (or “base Fibonacci” representation) akak−1 . . . a1

with the following properties: ak = 1; each ai equals 0 or 1; no
two consecutive digits equal 1; and j =

∑k
i=1 akFk.

There are infinitely many positive integersm whose Zeckendorf rep-
resentation akak−1 . . . a1 ends with a 1. For each such m, define a se-
quence Fm as follows: let the nth term be the number

∑n
k=1 akFk+n−1

whose Zeckendorf representation is akak−1 . . . a1 followed by n − 1
zeroes. Then the sum of the nth and (n+ 1)th terms is

n∑
k=1

akFk+n−1 +
n∑

k=1

akFk+n

=
n∑

k=1

ak(Fk+n−1 + Fk+n) =
n∑

k=1

akFk+n+1,

the (n+2)th term. Hence, Fm is an F -sequence. Any positive integer
j appears in Fm for exactly one positive integer m — namely, the one
whose Zeckendorf representation is the same as j’s, except without
any trailing zeroes. Hence, these sequences partition the positive
integers, implying that the answer to part (b) is “yes.”
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1.7 Hungary

Problem 1 Find all positive primes p for which there exist positive
integers n, x, y such that pn = x3 + y3.

Solution: p = 2 and p = 3 work: 21 = 13 + 13 and 32 = 13 + 23.

Now suppose that p > 3, and assume for sake of contradiction that
the equation holds for some triple of positive integers. Choose n, x,
and y such that n is minimal.

Because p 6= 2, we have (x, y) 6= (1, 1). Therefore, x2 − xy + y2 =
(x − y)2 + xy is greater than 1, as is x + y. Because both these
quantities divide x3+y3, they must be multiples of p. Hence, p divides
(x+ y)2 − (x2 − xy+ y2) = 3xy. Because p 6 | 3, p divides at least one
of x or y. Furthermore, p cannot divide only one of x and y because
p | (x + y). It follows that n > 3 and that pn′ = x′

3 + y′
3
, where

(n′, x′, y′) = (n− 3, x/3, y/3). But n′ < n, contradicting the minimal
definition of n.

Therefore, p = 2 and p = 3 are the only primes that work.

Problem 2 Is there a polynomial f of degree 1999 with integer
coefficients, such that f(n), f(f(n)), f(f(f(n))), . . . are pairwise rel-
atively prime for any integer n?

Solution: Let g(x) be any polynomial of degree 1997 with integer
coefficients, and let f(x) = x(x−1)g(x)+1. We prove that f) satisfies
the condition in the problem, so that the answer to the question is
“yes.” It suffices to show that if n is any integer and p is a prime
that divides f(n), then p 6 | fk(n) for any positive integer k > 1. More
specifically, we prove that fk(n) ≡ 1 (mod p) for all k > 1.

We induct on k to prove our assertion. It is well known that
for a polynomial h with integer coefficients, a ≡ b (mod c) implies
h(a) ≡ h(b) (mod c). For the base case k = 2, f(n) ≡ 0 (mod p) =⇒
f(f(n)) ≡ f(0) ≡ 1 (mod p). For the inductive step, assume that
fk(n) ≡ 1 (mod p). Then f(fk(n)) ≡ f(1) ≡ 1 (mod p). This com-
pletes the proof.

Problem 3 The feet of the angle bisectors of triangle ABC are X,
Y, and Z. The circumcircle of triangle XY Z cuts off three segments
from lines AB, BC, and CA. Prove that two of these segments’ lengths
add up to the third segment’s length.
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Solution: We use signed distances throughout the problem, where
a = BC, b = CA, and c = AB are positive. Also, let the specified
circle intersect BC at X and P , CA at Y and Q, and AB at Z
and R, and let x = PX, y = QY, z = RZ. The Angle Bisector
Theorem tells us that Y A = bc/(c + a), AZ = bc/(a + b). Hence,
QA = bc/(c+ a) + y,AR = bc/(a+ b)− z. Applying the Power of a
Point Theorem to point A and the specified circle gives

bc

c+ a

(
bc

c+ a
+ y

)
=

bc

a+ b

(
bc

a+ b
− z
)
.

After multiplying through by a/bc and rearranging, we obtain

a

c+ a
y +

a

a+ b
z =

abc

(a+ b)2
− abc

(c+ a)2
.

Similarly, we have

b

a+ b
z +

b

b+ c
x =

abc

(b+ c)2
− abc

(a+ b)2
,

c

b+ c
x+

c

c+ a
y =

abc

(c+ a)2
− abc

(b+ c)2
.

When we add these three equations, we get simply

x+ y + z = 0.

It follows that two of the quantities x, y, z are of the same sign and
that the third is of the other sign. Hence, the sum of the absolute
values of the former two quantities equals the absolute value of the
latter, which is what we wished to prove.

Problem 4 Let k and t be relatively prime integers greater than 1.
Starting from the permutation (1, 2, . . . , n) of the numbers 1, 2, . . . , n,
we may swap two numbers if their difference is either k or t. Prove
that we can get any permutation of 1, 2, . . . , n with such steps if and
only if n ≥ k + t− 1.

Solution: Construct a graph G whose vertices are the integers
1, 2, . . . , n, with an edge between a and b if and only if |a − b| ∈
{k, t}. We show that the following conditions are equivalent: (i) every
permutation is obtainable; (ii) G is connected; (iii) n ≥ k + t− 1.

(i) ⇒ (ii): Because every step swaps two numbers in the same
component of G, it follows that no number can ever be sent to a
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position formerly occupied by a number in a different component.
Consequently, we cannot obtain every permutation unless all numbers
are in the same component.

(ii) ⇒ (i): More generally, we demonstrate by induction on m that
given a connected graph on m integers, any permutation π of these
integers maybe be obtained from any other by successive swaps of
the form (a b), where a and b are adjacent vertices of the graph. The
claim is obvious when m = 1. Otherwise, choose a vertex a such that
the graph remains connected when a is deleted — for instance, we
may let a be a leaf of a spanning tree of the vertices. Some path of
distinct vertices a0a1 . . . ar connects a0 = π−1(a) and ar = a. By
successively performing transpositions (a0 a1), (a1 a2), . . . , (ar−1 ar),
we can bring a to the position initially occupied by π−1(a). By the
induction hypothesis, the numbers other than a can then be permuted
as needed, so that the permutation π is obtained. Applying this claim
with m = n and our graph G proves that (ii) ⇒ (i).

(ii)⇒ (iii): If k were at least n, then every edge would connect two
numbers congruent modulo t. Then there would be no path between
1 and 2, a contradiction. Thus, we must have k < n; likewise, t < n.
Then, there are n − k edges of the form {a, a + k} and n − t of
the form {a, a + t}. Connectedness requires at least n − 1 edges, so
(n− k) + (n− t) ≥ n− 1⇒ n ≥ k + t− 1.

(iii) ⇒ (ii): Certainly k, t < n in this case. Notice that any two
numbers which are congruent modulo k are connected to each other
(via edges of the form {a, a + k}), so it suffices to show that all the
numbers 1, 2, . . . , k are mutually connected. Because t is relatively
prime to k, the numbers t, 2t, 3t, . . . , kt represent all the congruence
classes modulo k. Thus, we may rearrange 1, 2, . . . , k in the order
b1, b2, . . . , bk, where bi ≡ it (mod k). Notice that k ≡ 0 ≡ kt (mod k),
so bk = k. Thus, when 1 ≤ i ≤ k − 1, we have bi ≤ k − 1 and hence
bi +t ≤ k+t−1 ≤ n. Thus, vertex bi +t exists and is connected by an
edge to bi. Furthermore, bi + t ≡ bi+1 (mod k), so bi + t is connected
to bi+1. Thus, bi is connected to bi+1 in G for each i = 1, . . . , k − 1.
Hence, these numbers are all mutually connected, and the proof is
complete.

Problem 5 For any positive integer k, let e(k) denote the number of
positive even divisors of k, and let o(k) denote the number of positive
odd divisors of k. For all n ≥ 1, prove that

∑n
k=1 e(k) and

∑n
k=1 o(k)

differ by at most n.
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Solution: The number of integers divisible by d among 1, 2, . . . , n is
bn/dc. Thus, the sum of o(k) (resp. e(k)) over k = 1, 2, . . . , n equals
the sum of bn/dc over all positive odd (resp. even) integers d.

Because
⌊

n
d

⌋
≥
⌊

n
d+1

⌋
for positive integers a and n, we have

n∑
k=1

o(k)−
n∑

k=1

e(k) =
∞∑

i=1

(⌊
n

2i− 1

⌋
−
⌊ n
2i

⌋)
≥ 0,

where the infinite sum is well-defined because the summands equal
zero for i > dn/2e. Similarly,

n∑
k=1

o(k)−
n∑

k=1

e(k) =
⌊n

1

⌋
−
∞∑

i=1

(⌊ n
2i

⌋
−
⌊

n

2i+ 1

⌋)
≤ n.

Problem 6 Given a triangle in the plane, show how to construct a
point P inside the triangle which satisfies the following condition: if
we drop perpendiculars from P to the sides of the triangle, the feet
of the perpendiculars determine a triangle whose centroid is P.

Solution: Let the triangle be ABC, with side lengths a =
BC, b = CA, c = AB. Let P be a point inside the triangle, to
be determined later. Let X,Y, Z be the feet of the perpendiculars
to lines BC,CA,AB, respectively, and x = PX, y = PY, z = PZ.
Notice that sin∠Y PZ = sin(π − ∠BAC) = sin∠BAC. Similarly,
sin∠ZPX = sin∠CBA and sin∠XPY = sin∠ACB. The following
are then readily seen to be equivalent:

• P is the centroid of triangle XY Z;

• triangles Y PZ,ZPX,XPY have equal areas;

• yz sin∠Y PZ = zx sin∠ZPX = xy sin∠XPY ;

• sin∠BAC/x = sin∠CBA/y = sin∠ACB/z;

• a/x = b/y = c/z. (by the Law of Sines)

Construct a line parallel to line BC, at distance a from it, on the
same side of line BC as A. Likewise, construct a line parallel to line
CA, at a distance of b, and on the same side line CA as B. Let Q
be their intersection; notice that ray CQ passes through the interior
of the triangle. Given any point P ′ on CQ, consider the ratio of
its distance from line BC to its distance from line AB. If P ′ = Q,
this ratio is a/b; because all such points P ′ are homothetic images of
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each other about C, the ratio is independent of P ′ and must always
equal a/b. Likewise, we can construct a ray from A, directed into
the triangle, such that for any point P ′ on the ray, the ratio of its
distance from line AB to its distance from line CA equals c/b. These
two rays intersect at some point P inside the triangle. If we let P
be their intersection, we obtain a/x = b/y and b/y = c/z, and the
problem is solved.

Problem 7 Given a natural number k and more than 2k different
integers, prove that a set S of k+ 2 of these numbers can be selected
such that for any positive integer m ≤ k+2, all the m-element subsets
of S have different sums of elements.

Solution: Given a positive integerm, we call a set weakly m-efficient
if its m-element subsets have different sums of elements, and we call
a set strongly m-efficient if it is weakly i-efficient for 1 ≤ i ≤ m. Also,
given any set T of integers, let σ(T ) equal the sum of the elements of
T.

We prove the desired claim by induction on k. For k = 1, it is easy
to check that we may let S consist of any three of the given integers.
Now assuming that the claim is true for k = n, we prove that it is
true for k = n+ 1.

Given more than 2n+1 different integers a1, a2, . . . , at, let 2α be
the largest power of 2 such that a1 ≡ ai (mod 2α) for each i =
1, 2, . . . , t. Write bi = ai−a1

2α for 1 ≤ i ≤ t, yielding t distinct integers
b1, b2, . . . , bt.

By the Pigeonhole Principle, among the bi there exist more than
2n different integers of the same parity. By the induction hypothesis,
from among these integers we may choose an (n+2)-element, strongly
(n+2)-efficient set S1. Furthermore, there exists a bi0 of the opposite
parity because the bi are not all of the same parity: b1 = 0 is even,
and by the maximal definition of 2α, at least one of the bi is odd.

We claim that the (n + 3)-element set S2 = S1 ∪ {bi0} is strongly
(n+3)-efficient. Suppose, for sake of contradiction, that X and Y are
two distinct m-element subsets of S with the same sums of elements,
where 1 ≤ m ≤ n+ 3. Because X 6= Y, m > 1. X and Y cannot both
be subsets of S1 because S1 is weakly m-efficient. Nor can they both
contain bi0 because then X \{bi0} and Y \{bi0} would be two distinct
(m− 1)-element subsets of S1 with the same sums of elements, which
is impossible because S1 is weakly (m − 1)-efficient. Therefore, one
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of X and Y contains bi0 and the other does not. This in turn implies
that σ(X) and σ(Y ) are of opposite parity, a contradiction.

Let Φ be the map which sends any set A of reals to {a−a1
2α | a ∈ A}.

There exists an (n+ 3)-element subset S ⊆ {a1, a2, . . . , at} such that
Φ(S) = S2. Suppose that there existed X,Y ⊆ S such that X 6= Y,

|X| = |Y | = m, and σ(X) = σ(Y ). Then we would also have
Φ(X),Φ(Y ) ⊆ Φ(S) = S2, Φ(X) 6= Φ(Y ), |Φ(X)| = m = |Φ(Y )|,
and

σ(Φ(X)) =
σ(X)−ma1

2α
=
σ(Y )−ma1

2α
= σ(Φ(Y )).

However, this is impossible because S2 is weakly m-efficient. There-
fore, S is strongly (n + 3)-efficient as well. This completes the
inductive step and the proof.
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1.8 India

Problem 1 Let ABC be a nonequilateral triangle. Suppose there
is an interior point P such that the three cevians through P all have
the same length λ where λ < min{AB,BC,CA}. Show that there is
another interior point P ′ 6= P such that the three cevians through P ′

also are of equal length.

Solution: Let the three given cevians be AD, BE, and CF , and
let the altitudes of the triangle be AHa, BHb, and CHc. Reflect each
cevian across the corresponding altitude to obtain the segments AD′,
BE′, and CF ′. If AD′ were not inside the triangle, then either AB
or AC would be contained in the triangle ADD′. However, this is
impossible because AD = AD′ = λ < min{AB,AC}. Therefore, AD′

is a cevian of triangle ABC, and similarly, so are BE′ and CF ′.
We now use directed lengths. Observe that

BD ·BD′ = (BHa +HaD)(BHa −HaD) = BH2
a −HaD

2

= (AB2 −AH2
a)− (AD2 −AH2

a) = AB2 −AD2 = AB2 − λ2.

Similarly, EA · E′A = AB2 − λ2.

Thus, EA ·E′A = BD ·B′D. Likewise, FB · F ′B = CE ·CE′ and
DC ·D′C = AF · AF ′. Now, applying Ceva’s Theorem to the three
concurrent cevians AD, BE, CF yields BD

DC ·
CE
EA ·

AF
FB = 1. Hence,

BD′

D′C
· CE

′

E′A
· AF

′

F ′B
=
(
BD′ ·BD
D′C ·DC

)(
CE′ · CE
E′A · EA

)(
AF ′ ·AF
F ′B · FB

)
=
(
BD′ ·BD
E′A · EA

)(
CE′ · CE
F ′B · FB

)(
AF ′ ·AF
D′C ·DC

)
= 1.

By Ceva’s Theorem, AD′, BE′, and CF ′ concur at some point P ′

inside triangle ABC. If P were the same point as P ′, then P would
also be the same as the orthocenter, and the altitudes of ABC would
have the same length λ. However, this is impossible because triangle
ABC is not equilateral. Therefore, P ′ 6= P, and the cevians through
P ′ are of equal length (namely, λ), as desired.

Problem 2 Let m,n be positive integers such that m ≤ n2/4 and
every prime divisor of m is less than or equal to n. Show that m
divides n!.
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Solution: It suffices to show that pk | n! for all primes p and
integers k ≥ 1 such that pk | m. If k = 1, we are done because we are
given that p ≤ n and hence p | n!. Otherwise, because m ≤ n2/4, we
have pk ≤ n2/4. Thus, n ≥ 2

√
pk. If n ≥ kp, then at least k of the

numbers 1, 2, . . . , n are multiples of p, implying that pk | n!. Hence,
it suffices to show that 2

√
pk/p ≥ k or equivalently that

p(k−2)/2 ≥ k/2, (∗)

because then n ≥ 2
√
pk ≥ kp.

Indeed, we can do so for most values p and k. If k = 2, then (∗)
reads 1 ≥ 1. If k ≥ 4, then Bernoulli’s inequality implies that

p(k−2)/2 = (1 + (p− 1))(k−2)/2 ≥ 1 +
k − 2

2
(p− 1) ≥ k

2
,

as desired. Finally, if k = 3, then (∗) is clearly true unless p = 2.
If indeed k = 3 and p = 2, then m ≥ 8, n ≥ 5, and n! is

certainly divisible by 8. Thus, we have shown that pk | n! in all
cases, completing the proof.

Problem 3 Let G be a graph with n ≥ 4 vertices and m edges. If
m > n(

√
4n− 3 + 1)/4, show that G has a 4-cycle.

Solution: We count the number of triples of distinct vertices (v, a, b)
such that v is adjacent to both a and b. The number of such triples
with v fixed is deg(v)(deg(v) − 1). Because the sum over vertices v
of deg(v) is 2m, and x(x − 1) is a convex function of x, Jensen’s
Inequality implies that the sum over vertices v of deg(v)(deg(v)− 1)
is at least n · (2m/n)((2m/n)− 1)) = 2m(2m/n− 1).

If there is no 4-cycle, then for any fixed a and b there can be at
most one vertex adjacent to both of them, implying that there are at
most n(n − 1) triples of the above sort. Hence, there is a 4-cycle if
2m(2m/n− 1) > n(n− 1), or equivalently if

4m2 − (2n)m− n2(n− 1) > 0.

This inequality holds if m is greater than the larger of the two roots
of the quadratic 4x2 − (2n)x − n2(n − 1), because this quadratic
has positive leading coefficient. Applying the quadratic formula to
calculate the larger root, we find that there is a 4-cycle if m is greater
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than
2n+

√
4n2 + 16n3 − 16n2

8
= n

√
4n− 3 + 1

4
,

as desired.

Problem 4 Suppose f : Q→ {0, 1} is a function with the property
that for x, y ∈ Q, if f(x) = f(y) then f(x) = f((x+ y)/2) = f(y). If
f(0) = 0 and f(1) = 1 show that f(q) = 1 for all rational numbers q
greater than or equal to 1.

Solution:

Lemma. Suppose that a and b are rational numbers. If f(a) 6= f(b),
then f(n(b− a) + a) = f(b) for all positive integers n.

Proof: We prove the claim by strong induction on n. For n = 1,
the claim is clear. Now assume that the claim is true for n ≤ k. Let
(x1, y1, x2, y2) = (b, k(b−a)+a, a, (k+1)(b−a)+a). By the induction
hypothesis, f(x1) = f(y1). We claim that f(x2) 6= f(y2). Otherwise,
setting (x, y) = (x1, y1) and (x, y) = (x2, y2) in the given condition,
we would have f(b) = f((x1 + y1)/2) and f(a) = f((x2 + y2)/2).
However, this is impossible because x1+y1 = x2+y2. Therefore, f(y2)
must equal the value in {0, 1}− {f(a)}, namely f(b). This completes
the induction.

Applying the lemma with a = 0 and b = 1, we see that f(n) = 1 for
all positive integers n. Thus, f(1+ r/s) 6= 0 for all natural numbers r
and s, because otherwise applying the lemma with a = 1, b = 1+r/s,

and n = s yields f(1 + r) = 0, a contradiction. Therefore, f(q) = 1
for all rational numbers q ≥ 1.
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1.9 Iran

Problem 1 Call two circles in three-dimensional space pairwise
tangent at a point P if they both pass through P and the lines tangent
to each circle at P coincide. Three circles not all lying in a plane are
pairwise tangent at three distinct points. Prove that there exists a
sphere which passes through the three circles.

Solution: Let the given circles be ω1, ω2, and ω3, and let Pk be the
plane containing ωk for k = 1, 2, 3.

The locus of points in three-dimensional space equidistant from
the points on a circle (resp. from three points) is a line perpendicular
to the plane containing those points, passing through the center of
the circle that contains those points. Consider the two such lines
corresponding to ω1 and the set of the three given tangent points.
Because the plane containing ω1 cannot also contain all three tangent
points, these two lines coincide in at most one point.

Suppose that ω1 and ω2 have common tangent ` and common
tangent point P. Let A and B be the points diametrically opposite P
on ω1 and ω2, respectively. We claim that for k = 1, 2, plane (PAB)
is perpendicular to Pk, i.e. to some line in Pk. Indeed, ` lies in Pk,

and (PAB) is perpendicular to ` because it contains two non-parallel
lines perpendicular to `: lines PA and PB.

LetO2 be the circumcenter of triangle PAB. Because (PAB) ⊥ P1,

the perpendicular from O2 to P1 is the perpendicular from O2 to line
PA, intersecting P1 at the midpoint of PA — the center of ω1. It
follows that O2 is equidistant from every point on ω1. Because P lies
on ω1, the common distance between O2 and any point on ω1 is OP .
Similarly, O2 is a distance OP from every point on ω2.

Likewise, there exists O3 which is equidistant from every point on
both ω1 and ω3. Thus, each of O2 and O3 is equidistant from every
point on ω1 and the three given tangent points. From our analysis at
the beginning of this proof, there is at most one such point. Hence,
O2 and O3 equal the same point, equidistant from every point on
ω1, ω2, and ω3. Therefore, some sphere centered at this point passes
through the three circles, as desired.

Problem 2 We are given a sequence c1, c2, . . . of natural numbers.
For any natural numbers m,n with 1 ≤ m ≤

∑n
i=1 ci, we can choose
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natural numbers a1, a2, . . . , an such that

m =
n∑

i=1

ci
ai
.

For each i, find the maximum value of ci.

Solution: Let C1 = 2 and Ci = 4 · 3i−2 for i ≥ 2. We claim that Ci

is the maximum possible value of ci for each i.
We first prove by induction on i ≥ 1 that ci ≤ Ci. For i = 1, if

c1 > 1, then setting (m,n) = (c1 − 1, 1) shows that a1 = c1
c1−1 is an

integer. This happens exactly when c1 = 2. Thus, c1 ≤ C1.

Now suppose that ci ≤ Ci for i = 1, 2, . . . , k − 1, where k ≥ 2. We
find the ai corresponding to (m,n) = (ck, k). Clearly an ≥ 2. Then,

cn =
n∑

i=1

ci
ai
≤ cn

2
+

n−1∑
i=1

Ci,

or cn ≤ 2
∑n−1

i=1 Ci = Cn. This completes the inductive step and the
proof of the claim.

It remains to be proven that for each i, it is possible to have ci = Ci.
Indeed, we prove by induction on n that we can have ci = Ci for all
i simultaneously. For n = 1, if m = 1 we can set a1 = 2; if m = 2 we
can set a1 = 1.

Assuming that the claim is true for n = 1, 2, . . . , k−1, where k ≥ 2,
we prove it for n = k. Ifm = 1, we may set ai = nCi for i = 1, 2, . . . , n.

If 2 ≤ m ≤ Cn/2 + 1, set an = Cn; if Cn/2 + 1 ≤ m ≤ Cn,

set an = 2; if Cn + 1 ≤ m ≤ 3Cn/2 =
∑n

i=1 Ci, set an = 1.
In each case, 1 ≤ m − Cn/an ≤ Cn/2. Thus, by the induction
hypothesis, we may choose positive integers a1, a2, . . . , an−1 such that
m− Cn/an =

∑n−1
i=1 Cn/an, as desired. This completes the proof.

Problem 3 Circles C1 and C2 with centers O1 and O2, respectively,
meet at points A and B. Lines O1B and O2B intersect C2 and C1 at
F and E, respectively. The line parallel to EF through B meets C1

and C2 at M and N. Given that B lies between M and N, prove that
MN = AE +AF.

Solution: All angles are directed modulo π. Let X be the point
on C1 diametrically opposite B, and let Y be the point on C2
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diametrically opposite B. Because ∠XAB+∠BAY = π/2+π/2 = π,
the points A, X, and Y are collinear.
X and F lie on line BO1, and Y and E lie on line BO2. Thus,
∠XFY = ∠BFY = π/2 = ∠XEB = ∠XEY, implying that points
E, F , X, and Y are concyclic. Hence, ∠BEF = ∠Y EF = ∠Y XF =
∠AXB = ∠AMB. Because EF ‖ MB, we have BE ‖ AM, and
the perpendicular bisectors of BE and AM coincide. Thus, the
reflection across this common perpendicular bisector sends AE to
MB, implying that AE = MB. Similarly, AF = BN. Because B lies
between M and N, it follows that MN = AE +AF .

Problem 4 Two trianglesABC andA′B′C ′ lie in three-dimensional
space. The sides of triangle ABC have lengths greater than or equal
to a, and the sides of triangle A′B′C ′ have lengths greater than or
equal to a′. Prove that one can select one vertex from triangle ABC
and one vertex from triangle A′B′C ′ such that the distance between
them is at least

√
a2+a′2

3 .

Solution: Let O be an arbitrary point in space, and for any point X
let x denote the vector from O toX. Let S = {A,B,C}, σ1 = a+b+c,
and σ2 = a · b + b · c + c · a. Define S ′, σ′1, and σ′2 analogously in
terms of A′, B′, and C ′.

Given (P, P ′) ∈ S × S ′, note that PP ′2 = |p|2 − 2p · p′ + |p′|2.
Summing over all 9 possible pairs yields the total

t =
∑
P∈S

3|p|2 +
∑

P ′∈S′
3|p′|2 − 2σ1 · σ′1

=
∑
P∈S

3|p|2 +
∑

P ′∈S′
3|p′|2 +

(
|σ1 − σ′1|2 − |σ1|2 − |σ′1|2

)
≥
∑
P∈S

3|p|2 +
∑

P ′∈S′
3|p′|2 − |σ1|2 − |σ′1|2

=

(∑
P∈S

2|p|2 − 2σ2

)
+

( ∑
P ′∈S′

2|p′|2 − 2σ′2

)
= |a− b|2 + |b− c|2 + |c− a|2 +

+ |a′ − b′|2 + |b′ − c′|2 + |c′ − a′|2

= AB2 +BC2 + CA2 +A′B′
2 +B′C ′

2 + C ′A′
2

≥ 3(a2 + a′
2).
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If PA′ = PB′ = PC ′, then P lies on a line perpendicular to plane
(A′B′C ′) passing through the circumcenter of triangle ABC. Because
A, B, and C do not all lie on a line, the nine values PP ′2 we sum to
find t cannot all be equal to each other. Because the sum t is at least
3(a2 + a′

2), one of the nine values PP ′2 is greater than t/9 ≥ a2+a′2

3 .

In other words, PP ′ ≥
√

a2+a′2

3 , as desired.

Problem 5 The function f : N → N is defined recursively with
f(1) = 1 and

f(n+ 1) =

{
f(n) + 2 if n = f(f(n)− n+ 1)

f(n) + 1 otherwise.

for all n ≥ 1.

(a) Prove that f(f(n)− n+ 1) ∈ {n, n+ 1}.
(b) Find an explicit formula for f.

Solution: It is easy to see that f(n) ≤ 2n− 1, or equivalently that
f(n)−n+1 ≤ n, for all integers n. Thus, if f(1), f(2), . . . , f(n) have
been determined, so has f(f(n)−n+1). Therefore, there will be only
one possible value for f(n + 1). Because f(1) is given, we find that
there is at most one possible value for each of f(2), f(3), . . . in turn,
implying that at most one function f has the required properties.

Define the function g : N → N by g(n) = bϕnc, where ϕ =
(1 +

√
5)/2. We claim that it satisfies the given recursion.

To prove this, let n be a positive integer, and define ε = {ϕn} =
ϕn − bϕnc. Observe that ϕ(ϕ − 1) = 1 and that bϕc = 1. Thus,
writing αn = g(n+ 1)− g(n) and βn = g(g(n)− n+ 1), we have

g(n+ 1)− g(n) = b(bϕnc+ ε) + ϕc − bϕnc = bϕ+ εc

and

g(g(n)− n+ 1) = bϕ((ϕn− ε)− n+ 1)c

= bϕ(ϕ− 1)n+ ϕ(1− ε)c = n+ bϕ(1− ε)c.

We cannot have ε 6= 2−ϕ, for otherwise n would equal bϕnc+2−ϕ
ϕ =

bϕnc+2
ϕ − 1, which is not an integer. If 0 ≤ ε < 2 − ϕ, then

(αn, βn) = (1, n+ 1). Otherwise, 2−ϕ < ε < 1 and (αn, βn) = (2, n).
Thus, g satisfies the given recursion and hence the function f

defined by f(n) = g(n) = bϕnc is the unique solution to the recursion,
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solving part (b). Furthermore, f(f(n)− n+ 1) = βn ∈ {n, n+ 1} for
all n, proving the claim in part (a).

Problem 6 Find all functions f : N→ N such that

(i) f(m) = 1 if and only if m = 1;

(ii) if d = gcd(m,n), then f(mn) = f(m)f(n)
f(d) ; and

(iii) for every m ∈ N, we have f2000(m) = m.

Solution: If such a function existed, then f(4) = f(2)f(2)/f(2) =
f(2). Thus, 2 = f2000(2) = f1999(f(2)) = f1999(f(4)) = f2000(4) =
4, a contradiction. Therefore, no function f satisfies the given
conditions.

Problem 7 The n tennis players A1, A2, . . . , An participate in a
tournament. Before the start of the tournament, k ≤ n(n−1)

2 distinct
pairs of players are chosen. During the tournament, any two players
in a chosen pair compete against each other exactly once; no draws
occur, and in each match the winner adds 1 point to his tournament
score while the loser adds 0. Let d1, d2, . . . , dn be nonnegative
integers. Prove that after the k preassigned matches, it is possible
for A1, A2, . . . , An to obtain the tournament scores d1, d2, . . . , dn,
respectively, if and only if the following conditions are satisfied:

(i)
∑n

i=1 di = k.

(ii) For every subset X ⊆ {A1, . . . , An}, the number of matches
taking place among the players in X is at most

∑
Aj∈X dj .

Solution: Let A = {A1, . . . , An}.
Suppose that such a tournament exists. Consider any set X ⊆ A,

and let G be the set of matches among players in X. A total of |G|
points are scored during the matches in G. We can also calculate this
total by summing over players: during these matches, each player
not in X scores 0 points; and each player Aj in X scores at most dj

points during these matches. Hence, |G| ≥
∑

Aj∈X dj , proving (ii).
Furthermore, each player Aj in X scores exactly dj points if X = A,
because in this case G is the set of all matches. Thus, if X = A then
k = |G| =

∑
Aj∈A dj , proving (i).

We now prove the “if” direction. For any X,Y ⊆ A, we define two
quantities σ(X) and Γ(X,Y ) which vary throughout the tournament.
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Let σ(X) equal
∑

Aj∈X dj (the total number of points we wish the
players in X to score in total), minus the number of points players
in X have already scored. In other words, σ(X) is the total number
of points we wish the players in X to score in the future. Also, let
Γ(X,Y ) denote the number of matches remaining which take place
between some player in X and some player in Y .

At any point in the tournament, say that tournament is feasible if
σ(X) ≥ Γ(X,X) for all X ⊆ A. We are given that the tournament
is initially feasible; we show that as long as games remain unplayed,
one game can occur so that the tournament remains feasible.

Without loss of generality, suppose that A1 and A2 must still play
against each other. We claim that for some j ∈ {1, 2}, the following
statement holds:

σ(Xj) > Γ(Xj , Xj) for all Xj ⊆ A
containing Aj but not A3−j .

(∗)

Suppose, for sake of contradiction, that the claim fails for some sets
X1 and X2. We prove that σ(X1 ∪ X2) < Γ(X1 ∪ X2, X1 ∪ X2), a
contradiction. Indeed, Γ(X1 ∪X2, X1 ∪X2) equals

Γ(X1, X1) + Γ(X2, X2) + Γ(X1 \X2, X2 \X1)− Γ(X1 ∩X2, X1 ∩X2)

≥ σ(X1) + σ(X2) + Γ({As}, {At})− σ(X1 ∩X2)

= [σ(X1) + σ(X2)− σ(X1 ∩X2)] + Γ({As}, {At})

= σ(X1 ∪X2) + 1,

as desired.
Hence, (∗) holds for either j = 1 or j = 2; without loss of generality,

assume that it holds for j = 1. Let A1 beat A2 in the next match M.
We prove that after M, we have σ(X) ≥ Γ(X,X) for each X ⊆ A.

If X does not contain A1, then σ(X) and Γ(X,X) do not change
after M is played. If X contains both A1 and A2, then σ(X) and
Γ(X,X) both decrease by 1 after M is played. In both cases, we still
have σ(X) ≥ Γ(X,X).

Otherwise, X contains A1 but not A2. In this case, because we
assumed that (∗) holds for j = 1, we know that σ(X) > Γ(X,X)
before M is played. After the match is played, σ(X) decreases by 1
while Γ(X,X) remains constant — implying that σ(X) ≥ Γ(X,X).

Therefore, another match may indeed occur in such a way that
σ(X) continues to be at least Γ(X,X) for each subset X ⊆ A. Let



2000 National Contests: Problems 59

all the matches occur in this manner. Observe first that σ(A) = 0 —
because σ(A) initially equalled k, and k points are scored during the
tournament. Next observe that σ(X) ≥ Γ(X,X) = 0 for all X ⊆ A.
Thus,

0 = σ(A) = σ({Aj}) + σ(A− {Aj}) ≥ 0 + 0

for all j, implying that σ({Aj}) = 0 for all j. Hence, Aj has scored
dj points for all j. This completes the proof.

Problem 8 Isosceles trianglesA3A1O2 andA1A2O3 are constructed
externally along the sides of a triangle A1A2A3 with O2A3 = O2A1

andO3A1 = O3A2. LetO1 be a point on the opposite side of line A2A3

as A1 with ∠O1A3A2 = 1
2∠A1O3A2 and ∠O1A2A3 = 1

2∠A1O2A3,

and let T be the foot of the perpendicular from O1 to A2A3. Prove
that A1O1 ⊥ O2O3 and that A1O1

O2O3
= 2 O1T

A2A3
.

Solution: Without loss of generality, assume that triangle A1A2A3

is oriented counterclockwise (i.e., angle A1A2A3 is oriented clock-
wise). Let P be the reflection of O1 across T.

We use complex numbers with origin O1, where each point denoted
by an uppercase letter is represented by the complex number with the
corresponding lowercase letter. Let ζk = ak/p for k = 1, 2, so that
z 7→ z0 + ζk(z − z0) is a spiral similarity through angle ∠PO1Ak and
ratio O1A3/O1P about the point corresponding to z0.

Because O1 and A1 lie on opposite sides of line A2A3, angles
A2A3O1 and A2A3A1 have opposite orientations — i.e. the former
is oriented counterclockwise. Thus, angles PA3O1 and A2O3A1 are
both oriented counterclockwise. Because ∠PA3O1 = 2∠A2A3O1 =
∠A2O3A1, it follows that isosceles triangles PA3O1 and A2O3A1 are
similar and have the same orientation. Hence, o3 = a1 + ζ3(a2 − a1).

Similarly, o2 = a1 + ζ2(a3 − a1). Hence,

o3 − o2 = (ζ2 − ζ3)a1 + ζ3a2 − ζ2a3

= ζ2(a2 − a3) + ζ3(ζ2p)− ζ2(ζ3p) = ζ2(a2 − a3),

or (recalling that o1 = 0 and t = 2p)

o3 − o2
a1 − o1

= ζ2 =
a2 − a3

p− o1
=

1
2
a2 − a3

t− o1
.

Thus, the angle between O1A1 and O2O3 equals the angle be-
tween O1T and A3A2, which is π/2. Furthermore, O2O3/O1A1 =
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1
2A3A2/O1T, or O1A1/O2O3 = 2O1T/A2A3. This completes the
proof.

Problem 9 Given a circle Γ, a line d is drawn not intersecting
Γ. M,N are two points varying on line d such that the circle with
diameter MN is externally tangent to Γ. Prove that there exists a
point P in the plane such that for any such segment MN , ∠MPN is
constant.

Solution: Let Γ have center O1 and radius r, and let A be the foot
of the perpendicular from O1 to d. Let P be the point on AO1 such
that AO2

1 −AP 2 = r2.

FixM andN such that the circle ω with diameterMN is externally
tangent to Γ, and let O2 be its center. For any point X, let p(X) =
O2X

2 − (MN/2)2 denote the power of point X with respect to ω.
Let line PN intersect ω again at Q. Then ∠PQM = ∠NQM =

π/2, and

p(P ) = PQ · PN = (PM cos∠MPN) · PN = 2[MPN ] cot∠MPN.

Also,

p(P ) = (O2A
2 +AP 2)− (MN/2)2

=
(
(O2A

2 +AO2
1)− (MN/2)2

)
+AP 2 −AO2

1

= p(O1) + (AP 2 −AO2
1) = r(r +MN)− r2 = r ·MN.

Equating these two expressions for p(P ), we find that

tan∠MPN =
2[MPN ]
r ·MN

=
AP ·MN

r ·MN
=
AP

r
,

implying that ∠MPN = tan−1
(

AP
r

)
is constant as M and N vary.

Problem 10 Suppose that a, b, c are real numbers such that for any
positive real numbers x1, x2, . . . , xn, we have(∑n

i=1 xi

n

)a

·
(∑n

i=1 x
2
i

n

)b

·
(∑n

i=1 x
3
i

n

)c

≥ 1.

Prove that the vector (a, b, c) has the form p(−2, 1, 0)+q(1,−2, 1) for
some nonnegative real numbers p and q.

Solution: First, set n = 1. Then xa+2b+3c
1 = (x1)a(x2

1)
b(x3

1)
c ≥ 1

for all x1 > 0. In particular, because this holds for both x1 < 1 and
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x1 > 1, we must have a+ 2b+ 3c = 0. Setting p = b+ 2c and q = c,
we find that

p(−2, 1, 0) + q(1,−2, 1) = (−2p+ q, p− 2q, q)

= (−2b− 3c, b, c) = (a, b, c).

It remains to show p = b+ 2c ≥ 0 and q = c ≥ 0.
To show that p ≥ 0, set n = 2, x1 = 1, and x2 = ε > 0. By the

given inequality,

f(ε) :=
(

1 + ε

2

)a(1 + ε2

2

)b(1 + ε3

2

)c

≥ 1.

On the other hand, as ε → 0, f(ε) → 1/2a+b+c, implying that
1/2a+b+c ≥ 1. Therefore, a+ b+ c ≤ 0, so

p = b+ 2c = (a+ 2b+ 3c)− (a+ b+ c) ≥ 0.

To show that q ≥ 0, set n = k + 1, x1 = x2 = · · · = xk = 1 − ε,
and xk+1 = 1 + kε, where k is an arbitrary positive integer and ε is
an arbitrary real number in (0, 1). Then

n∑
i=1

xi = k(1− ε) + (1 + kε) = k + 1,

n∑
i=1

x2
i = k(1− ε)2 + (1 + kε)2 = (k + 1)(1 + kε2),

n∑
i=1

x3
i = k(1− ε)3 + (1 + kε)3 = (k + 1)(1 + 3kε2 + (k2 − k)ε3).

Hence, we may apply the given inequality to find that

g(k, ε) := 1a
(
1 + kε2

)b (
1 + 3kε2 + (k2 − k)ε3

)c ≥ 1

for all t, k, ε. Now take ε = k−1/2, so that

g(k, k−1/2) = 2b

(
4 +

k − 1√
k

)c

≥ 1

for all positive integers k. Because 4 + (k − 1)
/√

k can be made
arbitrarily large for sufficiently large values of k, q = c must be
non-negative.

Thus, p and q are non-negative, as desired.
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1.10 Israel

Problem 1 Define f(n) = n!. Let

a = 0.f(1)f(2)f(3) . . . .

In other words, to obtain the decimal representation of a write the
decimal representations of f(1), f(2), f(3), . . . in a row. Is a rational?

Solution: If a were rational, then the digits in the decimal must
eventually appear cyclicly. Because f(n) always contains a nonzero
digit, the cyclic portion of the decimal could not consist solely of
zeroes. However, when n is large, the number of zeros contained in
f(n) tends to infinity, so the cyclic part of the decimal must contain
all zeroes — a contradiction. Therefore, a is irrational.

Problem 2 ABC is a triangle whose vertices are lattice points.
Two of its sides have lengths which belong to the set {

√
17,
√

1999,√
2000}. What is the maximum possible area of triangle ABC?

Solution: Without loss of generality, assume that the lengths AB
and BC are in {

√
17,
√

1999,
√

2000}. Then

[ABC] =
1
2
AB ·BC sin∠BCA ≤ 1

2

√
2000 ·

√
2000 sin(π/2) = 1000.

Equality can hold, for instance in the triangle whose vertices are (0, 0),
(44, 8) and (−8, 44) — exactly two sides have length

√
2000 because

442 + 82 = 2000, and the angle between these sides is π/2. Thus, the
maximum possible area is 1000.

Problem 3 The points A,B,C,D,E, F lie on a circle, and the lines
AD, BE, CF concur. Let P,Q,R be the midpoints of AD, BE, CF ,
respectively. Two chords AG,AH are drawn such that AG ‖ BE and
AH ‖ CF. Prove that triangles PQR and DGH are similar.

Solution: All angles are directed modulo π. Let AD, BE, CF
intersect at X and let O be the center of the given circle. Angles
OPX, OQX, and ORX measure π/2, implying that O,P,Q,R, and
X are concyclic. Therefore,

∠DGH = ∠DAH = ∠DXC

= π − ∠CXP = π − ∠RXP = ∠PQR.
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Similarly, ∠DHG = ∠PRQ, implying that 4PQR ∼ 4DGH.

Problem 4 A square ABCD is given. A triangulation of the square
is a partition of the square into triangles such that any two triangles
are either disjoint, share only a common vertex, or share only a
common side. (In particular, no vertex of a triangle can lie on the
interior of the side of another triangle.) A good triangulation of the
square is a triangulation in which all the triangles are acute.

(a) Give an example of a good triangulation of the square.

(b) What is the minimal number of triangles required for a good
triangulation?

Solution:
(a) We provide an example of a good triangulation with 8 triangles.

Orient the square so that AB is horizontal and A is in the upper-
left corner. Let M and N be the midpoints of sides AB and CD,
respectively, and let P be a point on the interior of MN distinct
from its midpoint. Angles MPA, APD, and DPN — and their
reflections across MN — are all acute. Now choose Q and R on
the horizontal line through P , so that Q, P , and R lie in that order
from left to right and so that QP and PR are of negligible length.
Partition the square into the triangles by drawing the segments
QA,QM,QN,QD,RB,RM,RN,RC, and QR. If we choose Q so
that PQ is sufficiently small, then the measures of angles MQA,
AQD, and DQN will remain sufficiently close to those of MPA,
APD, DPN , so that these angles will be acute. Similarly, if we
choose R so that PR is sufficiently small, then angles MRB, BRC,
and CRN will be acute as well. It is easy to verify that the remaining
angles in the partition are acute, as needed.

(b) We will prove that the minimal number is 8. We have already
shown above that 8 is achievable, so it suffices to show that no good
triangulation exists with fewer than 8 triangles. Observe that in a
good triangulation, each corner of ABCD must be a vertex of at
least two triangles because the right angle there must be divided into
acute angles. Likewise, any vertex on a side of ABCD must be part
of at least 3 triangles, and any vertex in the interior must be part of
at least 5 triangles.
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In fact, we can prove a stronger statement about each corner
of square ABCD: there must be a triangle edge emanating from
that corner whose other endpoint lies strictly inside square ABCD.
Without loss of generality, assume the corner in question is A. Some
edge AX of a triangle splits the right angle at A; assume, for sake of
contradiction, that X lies does not lie strictly inside square ABCD.
Without loss of generality, assume that X lies on BC − {B}. By the
given definition of “triangulation,” no other vertex of a triangle in the
triangulation lies on AX. Hence, there exists a point Y in triangle
ABX such that triangle AXY is a member of the good triangulation.
But then ∠AYX ≥ ∠ABX = π/2, a contradiction.

Now, consider an arbitrary good triangulation of ABCD. Let i
be the number of interior vertices — vertices in the triangulation
which lie in the interior of square ABCD. From above, i ≥ 1.
First suppose that there is one interior vertex, P . The result in
the previous paragraph implies that PA, PB, PC, and PD must
be edges of triangles in the triangulation. One of ∠APB, ∠BPC,
∠CPD, ∠DPA must be at least π/2 — say, ∠APB. This angle
must be divided in this triangulation by some edge PQ, where Q is
on the interior of AB. But then either angle AQP or angle BQP
measures at least π/2, so Q must lie on some triangle edge that does
not lie on QA, QB, or QP . However, it is impossible to construct
such an edge that does not intersect AP or BP and that does not
end in a second interior vertex.

Next suppose that i ≥ 2. On each of the n triangles, we may count
3 sides for a total of 3n; each side which lies on the square’s boundary
is counted once, and the other sides are each counted twice. If i = 2,
then for each of the two interior vertices, at least 5 triangle sides have
that vertex as an endpoint; at most 1 triangle side contains both
interior vertices, so there are at least 9 triangle sides which do not
lie on the square’s boundary. If i ≥ 3, then take any three of the
interior vertices. Each lies on at least 5 triangle sides, and at most
3 triangle sides contain some two of these three vertices. Hence, at
least 3 · 5− 3 = 12 triangle sides do not lie on the square’s boundary.
In both cases, then, at least 9 triangle sides do not lie on the square’s
boundary, and furthermore at least 4 triangle sides do lie on the
square’s boundary. Therefore, 3n ≥ 9 · 2 + 4 = 22, or n ≥ 8.

Thus, in all cases there must be at least 8 triangles, as desired.
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1.11 Italy

Problem 1 Let ABCD be a convex quadrilateral, and write α =
∠DAB; β = ∠ADB; γ = ∠ACB; δ = ∠DBC; and ε = ∠DBA.
Assuming that α < π/2, β + γ = π/2, and δ + 2ε = π, prove that

(DB +BC)2 = AD2 +AC2.

Solution: Let D′ be the reflection of D across line AB. We
have ∠D′BA = ∠DBA = ε, so ∠D′BC = ∠D′BA + ∠ABD +
∠DBC = 2ε + δ = π. Thus, D′, B, and C are collinear. Also,
∠AD′C + ∠ACD′ = ∠ADB + ∠ACB = β + γ = π/2, so ∠D′AC =
π/2 and triangle D′AC is right. By the Pythagorean Theorem,
D′C2 = AD′2 +AC2, implying that

(DB +BC)2 = (D′B +BC)2

= D′C2 = AD′2 +AC2 = AD2 +AC2,

as desired.

Problem 2 Given a fixed integer n > 1, Alberto and Barbara play
the following game, starting with the first step and then alternating
between the second and third:

• Alberto chooses a positive integer.

• Barbara picks an integer greater than 1 which is a multiple or
divisor of Alberto’s number, possibly choosing Alberto’s number
itself.

• Alberto adds or subtracts 1 from Barbara’s number.

Barbara wins if she succeeds in picking n by her fiftieth move. For
which values of n does she have a winning strategy?

Solution: We claim that Barbara has a winning strategy if and
only if at least one of these conditions is met:

• n = 2;

• 4 | n;

• for some integer m > 1, (m2 − 1) | n.

First we show that if one of these three conditions holds, then
Barbara has a winning strategy. If Alberto’s first choice a is even,
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then Barbara can choose 2 on her first turn. If instead a is odd,
then Barbara can choose a as well. If a = n, she wins; otherwise,
Alberto’s second choice must be even, and Barbara can choose 2 on
her second turn. Let a1, b1, a2, b2, . . . , be the numbers chosen after
Barbara chooses 2 for the first time.

Case 1: n = 2. In this case, Barbara has already won.
Case 2: 4 | n. If a1 = 1, then Barbara can choose b1 = n and

win. Otherwise, a1 = 3, Barbara can let b1 = 3, a2 equals 2 or 4, and
Barbara can let b2 = n.

Case 3: for some integer m > 1, (m2−1) | n. As in case 2, Alberto
must choose a1 = 3 in order to prevent Barbara from winning. Now,
exactly one of the integers m − 1, m, and m + 1 is divisible by 3,
implying that either 3 divides m, or else 3 divides m2 − 1 and hence
n. In the first case, Barbara can let b1 = m, forcing a2 = m± 1 and
allowing Barbara to choose b2 = n. In the latter case, Barbara can
let b1 = n.

We now know that Barbara has a winning strategy if at least one
of the conditions holds. Now we assume that none of the conditions
is true for some n > 1 and prove that Alberto can always keep
Barbara from winning. Because the first and second conditions fail,
and because the third condition fails for m = 2, we have n 6= 2, 3, 4.
Hence, n > 4.

Call a positive integer a hopeful if a 6 | n and n 6 | a. We prove below
that for any integer b > 1, there exists a ∈ {b− 1, b+ 1} such that a
is hopeful. It follows that Alberto can initially choose some hopeful
number and also choose a hopeful number on every subsequent turn,
preventing Barbara from winning for at least 50 turns.

Suppose for sake of contradiction that the above claims fails for
some b > 1. If b > n, then b − 1 and b + 1 must be multiples of n.
Then n divides their difference, 2, which is impossible.

Otherwise, b ≤ n. Because n does not divide n + 1 or n + 2 for
n > 2, we must have (b − 1) | n and (b + 1) | n. If b − 1 and b + 1
were even, then one is divisible by 4 — but then 4 | n, a contradiction.
Thus, b−1 and b+1 are odd. It follows that they are relatively prime
and that their product b2−1 divides n, contradicting the assumption
that the third condition fails. This completes the proof.

Problem 3 Let p(x) be a polynomial with integer coefficients such
that p(0) = 0 and 0 ≤ p(1) ≤ 107, and such that there exist integers
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a, b satisfying p(a) = 1999 and p(b) = 2001. Determine the possible
values of p(1).

Solution: If p(x) = 2000x2 − x, then p(0) = 0, p(1) = 1999, and
p(−1) = 2001. If p(x) = 2000x2 + x, then p(0) = 0, p(1) = 2001, and
p(−1) = 1999. Therefore, it is possible for p(1) = 1999 or 2001.

Now assume that p(1) 6= 1999, 2001. Then a, b 6= 1. Because p(0) =
0, we may write p(x) = xq(x) for some polynomial q(x) with integer
coefficients. Because q has integer coefficients, q(a) is an integer, and
we may write q(x) − q(a) = (x − a)r(x) for some polynomial r with
integer coefficients. And because r has integer coefficients, r(b) is
an integer, and we may write r(x) − r(b) = (x − b)s(x) for some
polynomial s with integer coefficients. Therefore,

p(x) = xq(x) = xq(a) + x(x− a)r(x)
= xq(a) + x(x− a)r(b) + x(x− a)(x− b)s(x).

(∗)

Specifically, plugging in x = a and x = b, we find that

1999 = aq(a),

2001 = bq(a) + b(b− a)r(b).

Because p(0), p(a), and p(b) are pairwise distinct, so are 0, a, and b.
Therefore, we can solve the above two equations to find

q(a) = 1999
a ,

r(b) = 2001−bq(a)
b(b−a) .

(†)

Because a 6= b, we have that |a − b| divides p(a) − p(b). Hence,
|a − b| equals 1 or 2. Also, for all x ∈ Z, we have p(x) = xq(x) and
hence x | p(x). In particular, a | 1999, so that

|a| ∈ {1, 1999}.

This restriction, combined with the conditions |a−b| ∈ {1, 2}, b | 2001,
a 6= 1, and b 6= 1, imply that (a, b) equals one of the following pairs:

(−1999,−2001), (−1,−3), (1999, 2001).

Fix (a, b) from among these three pairs. From (†) we know that q(a)
must equal q̃ = 1999

a and that r(b) must equal r̃ = 2001−bq̃
b(b−a) . We then
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set x = 1 into (∗) to find p(1):

(a, b) q(a) r(a) p(1)

(−1999,−2001) −1 0 −1 + (2000 · 2002)s(1)
(−1,−3) −1999 −666 −3331 + 8s(1)

(1999, 2001) 1 0 1 + (1998 · 2000)s(1).

Hence, p(1) is of the form m + ns(1) for some fixed integers m,n.
Indeed, suppose that we have any number of this form m+ns̃ between
0 and 107, where s is an integer. Then writing

p(x) = q̃x+ r̃x(x− a) + s̃x(x− a)(x− b),

we have p(0) = 0, p(a) = 1999, p(b) = 2001, and p(1) = m+ ns̃.
Therefore, the possible values of p(1) are 1999 and 2001, and

the numbers between 0 and 107 congruent to −1 (mod 2000 · 2002),
−3331 ≡ 5 (mod 8), or 1 (mod 1998 · 2000).
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1.12 Japan

Problem 1 We shuffle a line of cards labelled a1, a2, . . . , a3n from
left to right by rearranging the cards into the new order

a3, a6, . . . , a3n, a2, a5, . . . , a3n−1, a1, a4, · · · , a3n−2.

For example, if six cards are labelled 1, 2, . . . , 6 from left to right, then
shuffling them twice changes their order as follows:

1, 2, 3, 4, 5, 6 −→ 3, 6, 2, 5, 1, 4 −→ 2, 4, 6, 1, 3, 5.

Starting with 192 cards labelled 1, 2, . . . , 192 from left to right, is it
possible to obtain the order 192, 191, . . . , 1 after a finite number of
shuffles?

Solution: For each n, let f(n) be the position in the line whose
card goes to the nth position during each shuffle. Observe that
after k shuffles, fk(n) is in the nth position. We are given that
f(1), . . . , f(192) equals 3, 6, . . . , 192, 2, 5, . . . , 191, 1, 4, . . . , 190. In this
sequence, the difference between any term and the preceding term is
congruent to 3 modulo 193. Because f(1) ≡ 3 (mod 193), we have
f(n) ≡ 3n (mod 193) for each n.

In the sequence (33)2
0
, (33)2

1
, (33)2

2
, . . . , (33)2

6
, each term is the

square of the last. At least one term (the first, 27) is not congruent
to 1 modulo 193; suppose that N = 3d (where d is a positive integer)
is the largest term with this property. Because 193 is prime, Fermat’s
Little Theorem implies that (33)2

6 ≡ 3192 ≡ 1 (mod 193), so 3d is not
the last term in the sequence. Hence, N2 — the term following N in
the sequence — is congruent to 1 modulo 193. Because 193 divides
N2−1 but not N−1, it must divide (N2−1)/(N−1) = N+1 = 3d+1,
implying that 3d ≡ −1 (mod 193).

For n = 1, 2, . . . , 193, we have fd(n) ≡ 3dn ≡ −n (mod 193). Thus,
fd(n) = 193−n, implying that the order 192, 191, . . . , 1 appears after
d shuffles.

Note: The value d found above actually equals 24. The smallest
positive integer k such that 3k ≡ −1 (mod 193) is 8, implying that
the order 192, 191, . . . , 1 first appears after 8 shuffles.
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Problem 2 In the plane are given distinct points A,B,C, P,Q, no
three of which are collinear. Prove that

AB +BC + CA+ PQ < AP +AQ+BP +BQ+ CP + CQ.

Solution: In this solution, when call a polygon V1 . . . Vn convex
if V1, . . . , Vn form a convex polygon in that order. (For instance, if
we say that a square ABCD is convex, then we do not say that the
quadrilateral ACBD is convex.)

We say that condition (a) holds if quadrilateral XY PQ is convex
for some X,Y ∈ {A,B,C}. We prove that in this case, the desired
inequality holds. Without loss of generality, we may assume that
quadrilateral ABPQ is convex. If AP and BQ intersect at O, then
the triangle inequality gives AB ≤ AO + OB and PQ ≤ PO + OQ.
Adding these two inequalities yields

AB + PQ ≤ AO +OP +BO +OQ = AP +BQ.

Because no three of the five given points are collinear, the triangle
inequality also implies that BC < BP + PC and CA < CQ + QA.
Summing the last three inequalities yields the desired result.

Next, we say that condition (b) holds if X lies inside triangle
Y ZM for some permutation (X,Y, Z) of (A,B,C) and some M ∈
{P,Q}. We prove that the desired inequality holds in this case as
well. Without loss of generality, assume that A lies inside triangle
BCQ. The maps which sends an arbitrary point P to each of PB
and PC are strictly convex functions, implying that P 7→ PB + PC

is a strictly convex function as well. Hence, over all points P on or
inside triangle BCQ, this function can only attain its maximum when
P equals B, C, or Q. Thus,

AB +AC < max{BB +BC,CB + CC,QB +QC} = QB +QC.

Adding this inequality to the inequalities BC < BP + PC and
PQ < PA + AQ — as given by the triangle inequality — yields
the desired result.

Up to the relabelling of points, the convex hull of the five given
points must either be triangle ABC, triangle ABP , triangle APQ,
convex quadrilateral ABCP , convex quadrilateral ABPQ, convex
quadrilateral APBQ, convex pentagon ABCPQ, or convex pentagon
ABPCQ.
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If triangle ABC is the convex hull, then Q must lie in the interior
of one of the triangles APB, BPC, CPA. Without loss of generality,
suppose that Q lies inside triangle APB. Because C is not inside
triangle APB but lies on the same side of AB as Q, QC must
intersect one of the two segments AP and PB. If QC intersects AP ,
then quadrilateral ACPQ is convex and condition (a) holds; similarly,
condition (a) holds if QC intersects PB.

If triangle ABP is the convex hull, then C must lie inside triangle
ABP , and condition (b) holds.

If triangle APQ is the convex hull, then we may assume without
loss of generality that C is no closer to line PQ than B is. Then C

must lie inside one of the triangles ABP , ABQ, BPQ. If it lies in
either of the first two triangles, condition (b) holds; and C cannot lie
in the third triangle BPQ because C is not closer to line PQ than
B. Hence, condition (b) holds.

If convex quadrilateral ABCP is the convex hull, then Q lies
inside either triangle APB or triangle CPB; in the former case,
quadrilateral BCPQ is convex, and in the latter case, quadrilateral
BAPQ is convex. Hence, condition (a) holds.

If convex quadrilateral ABPQ, convex pentagon ABCPQ, or con-
vex pentagon ABPCQ is the convex hull, then quadrilateral ABPQ
is convex and condition (a) holds.

Finally, if convex quadrilateral APBQ is the convex hull, then
C lies inside either triangle ABP or triangle ABQ; in both cases,
condition (b) holds.

Hence, in all cases, either condition (a) or (b) holds; it follows that
the desired inequality is true.

Problem 3 Given a natural number n ≥ 3, prove that there exists
a set An with the following two properties:

(i) An consists of n distinct natural numbers.

(ii) For any a ∈ An, the product of all the other elements in An has
remainder 1 when divided by a.

Solution: Suppose that a1, a2, . . . , ak (with k ≥ 2) are dis-
tinct integers greater than 1 such that a1a2 · · · ai−1ai+1ai+2 · · · ak ≡
−1 (mod ai) whenever 1 ≤ i ≤ k. Suppose that ε ∈ {−1, 1} and
define ak+1 = a1a2 · · · ak − ε. Because ak+1 ≥ 2ak − 1 > ak for all k,
the integers a1, a2, . . . , ak+1 are still distinct integers greater than 1.



72 Japan

Consider the equation a1a2 · · · ai−1ai+1ai+2 · · · ak+1 ≡ ε (mod ai). It
clearly holds for i = k + 1. For i < k, it holds because

(a1a2 · · · ai−1ai+1ai+2 · · · ak)ak+1 ≡ (−1)(−ε) ≡ ε (mod ai).

Beginning with the numbers a1 = 2, a2 = 3, we apply this
construction n − 3 times setting ε = −1 and then one additional
time setting ε = 1. The set An consisting of the resulting numbers
a1, a2, . . . , an then satisfies the given conditions.

Problem 4 We are given finitely many lines in the plane. Let an
intersection point be a point where at least two of these lines meet,
and let a good intersection point be a point where exactly two of these
lines meet. Given that there are at least two intersection points, find
the minimum number of good intersection points.

First Solution: Assume, for sake of contradiction, that we are given
lines satisfying the stated conditions such that no good intersection
points exist. We prove that this is impossible using a technique similar
to that of the classic solution to Sylvester’s Line Problem. (Sylvester’s
Line Problem asks for a proof that given finitely many points in the
plane which do not lie on a single line, there exists a line which passes
through exactly two of the given points.)

There exist finitely many pairs consisting of a intersection point
and a given line; for each, find the distance between the point and
the line. Given any intersection point P , there is at least one other
intersection point Q by assumption and hence some given line passing
through Q but not P. Thus, at least one of the finitely many distances
found is positive; let d > 0 be the minimum such distance.

Given any intersection point A and any given line ` such that the
distance between them is d, at least two given lines pass through A

that intersect `, say at B and C. Assume, for sake of contradiction,
that B and C are not separated by (i.e. are not on opposite sides of)
the perpendicular from A to `1. Let A′ be the foot of the perpendicular
from A to `1 and assume, without loss of generality, that BA′ > CA′.

Letting C ′ be the foot of the perpendicular from C to line AB, right
triangles AA′B and CC ′B are similar. Hence, CC ′ = AA′·BC

AB < AA′,

a contradiction.
Now fix a specific intersection point A0 and a given line `0 such that

the distance between them is d. Because A0 is not good, at least three
given lines pass through A0. If all these lines passed through A0 and
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intersected `0, two of the resulting intersection points would not be
separated by the perpendicular from A0 to `0, contradicting our above
analysis. Hence, one of the given lines passing through A0 — say, `1
— is parallel to `0. Let A1 be the leftmost intersection point on either
line, and suppose that A1 is on `k. Because A1 is not good, at least
three given lines pass through A1, two of which must intersect `1−k at
two intersection points B1 and C1. However, the perpendicular from
A1 to `1−k does not separate B1 and C1, contradicting our above
analysis. Therefore our original assumption was false, and at least
one good intersection point exists.

To finish the proof, we show that it is possible to have exactly
one good intersection point. Take four vertices of a parallelogram
and draw the six lines which pass through some two of the vertices.
There are four intersection points, the four vertices themselves and
the intersection of the parallelogram’s diagonals. Of these, only the
last point is a good intersection point.

Second Solution: We present a sketch of an alternative proof.
We again assume, for sake of contradiction, that we are given lines
satisfying the stated conditions such that no good intersection points
exist. Choose a point in the plane to be the origin. Because there is at
least one intersection point, there exists a triangle formed by the given
lines. Of all such triangles, consider those with minimal area; and of
all these triangles, consider one whose centroid is farthest from the
origin. Suppose that this triangle has vertices A, B, and C. Because
these points are not good intersection points, they must lie on three
sides A0B0, B0C0, C0A0 of a larger triangle formed by the given lines.
This larger triangle is partitioned into four triangles by AB, BC, and
CA — namely, triangle ABC is surrounded by three outer triangles.
It is possible to show that the area of triangle ABC is greater than
or equal to the minimum of the areas of the other three triangles,
with equality if and only if triangle ABC is the medial triangle of
triangle A0B0C0. Indeed, equality must hold because of the minimal
definition of triangle ABC. Hence, each of the outer triangles is
formed by the given lines and has the same area as triangle ABC;
but one of these triangles has a centroid farther from the origin than
the centroid of triangle ABC, a contradiction.
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1.13 Korea

Problem 1 Show that given any prime p, there exist integers
x, y, z, w satisfying x2 + y2 + z2 − wp = 0 and 0 < w < p.

Solution: For the case p = 2, we may take x = 0 and y = z = w = 1.
Now assume p > 2. We first consider the case where −1 is a quadratic
residue modulo p. Then there exists an integer a between 0 and
p − 1 such that a2 ≡ −1 (mod p). Set (x, y, z) = (0, 1, a). Because
x2 +y2 + z2 = a2 +1 is divisible by p but is at most 1+(p−1)2 < p2,

there exists w ∈ {1, 2, . . . , p− 1} such that x2 + y2 + z2 − wp = 0.
Next suppose that −1 is not a quadratic residue modulo p. We

claim that k and p− 1− k are both quadratic residues for some k. If
p−1
2 is a quadratic residue, then we may set k = p−1

2 . Otherwise, each
of the p−1

2 nonzero quadratic residues modulo p is in one of the pairs
{1, p − 2}, {2, p − 3}, . . . , {p−3

2 , p+1
2 }. By the Pigeonhole Principle,

two of the numbers in some pair {k, p− k} are quadratic residues, as
desired.

Thus, we may choose x, y ∈ {0, 1, . . . , p−1
2 } such that x2 ≡

k (mod p) and y2 ≡ p − k (mod p). Letting z = 1, we have that
x2 + y2 + z2 is divisible by p and in the interval (0, p2). The value of
w then follows as before.

Problem 2 Find all functions f : R→ R satisfying

f(x2 − y2) = (x− y) (f(x) + f(y))

for all x, y ∈ R.

Solution: Plugging in x = y, we find that f(0) = 0. Plugging in
x = −1, y = 0 then yields f(1) = −f(−1). Plugging in x = a, y = 1,
then x = a, y = −1, we find that

f(a2 − 1) = (a− 1)(f(a) + f(1)),

f(a2 − 1) = (a+ 1)(f(a)− f(1)).

Setting the right hand sides of these equations equal and solving for
f(a) yields f(a) = f(1)a for all a.

Therefore, any function satisfying the given relation is of the form
f(x) = kx for some constant k. Conversely, any such function clearly
satisfies the given equation.
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Problem 3 We are given a convex cyclic quadrilateral ABCD. Let
P, Q, R, S be the intersections of the exterior angle bisectors of angles
ABD and ADB, DAB and DBA, ACD and ADC, DAC and DCA,
respectively. Show that the four points P,Q,R, S are concyclic.

Solution: All angles are directed modulo π except where otherwise
stated.

Suppose that we have an arbitrary triangle XY Z with incenter
I and excenter Ix opposite X. Points X, I, Ix are collinear. Also,
∠IY Ix = π/2 = ∠IZIx, so quadrilateral IY IxZ is cyclic and
∠XIxY = ∠IIxY = ∠IZY, or equivalently ∠Y IxX = ∠Y ZI.

Let I1 be the incenter of triangle ABD and I2 be the incenter
of triangle ACD. The given conditions imply that P and Q are
the excenters in triangle ABD opposite A and D, respectively, and
that R and S are the excenters in triangle ACD opposite A and
D, respectively. Applying the result in the previous paragraph with
(X,Y, Z, Ix) equal to (A,D,B, P ), (D,A,B,Q), (A,D,C,R), and
(D,A,C, S), we find that ∠APD = ∠I1BD, ∠AQD = ∠ABI1,
∠ARD = ∠I2CD, and ∠ASD = ∠ACI2.

Using undirected angles, we know that ∠I1BD, ∠ABI1, ∠I2CD,
and ∠ACI2 all equal ∠ABD/2 = ∠ACD/2. Furthermore, they all
have the same orientation, implying that they are equal as directed
angles. Therefore (again using directed angles), ∠APD = ∠AQD =
∠ARD = ∠ASD, and P,Q,R, S lie on a single circle passing through
A and D.

Problem 4 Let p be a prime number such that p ≡ 1 (mod 4).
Evaluate

p−1∑
k=1

(⌊
2k2

p

⌋
− 2

⌊
k2

p

⌋)
.

Solution: For all real x, let {x} = x − bxc ∈ [0, 1). Writing
b2k2/pc = 2k2/p − {2k2/p} and bk2/pc = k2/p − {k2/p}, we find
that ⌊

2k2

p

⌋
− 2

⌊
k2

p

⌋
= 2

{
k2

p

}
−
{

2k2

p

}
.

When {x} < 1
2 , 2{x} − {2x} = 2{x} − 2{x} = 0. When {x} ≥ 1

2 ,

2{x}−{2x} = 2{x}−(2{x}−1) = 1. Therefore, the desired sum equals
the number α of k in [1, p − 1] such that

{
k2

p

}
≥ 1

2 , or equivalently,
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the number of nonzero residues k modulo p such that k2 is congruent
to some number in

[
p+1
2 , p− 1

]
modulo p.

Because p is a prime congruent to 1 modulo 4, it is well known
that −1 ≡ d2 (mod p) for some integer d. Partition the nonzero
residues modulo p into p−1

2 pairs of the form {a, da}, so that a2 ≡
−(da)2 (mod p) in each pair. Thus, exactly one residue in each pair
has a square congruent to some number in

[
p+1
2 , p− 1

]
, for a total

of p−1
2 such residues. It follows that the given sum equals p−1

2 , as
desired.

Problem 5 Consider the following L-shaped figures, each made of
four unit squares:

Let m and n be integers greater than 1. Prove that an m × n

rectangular region can be tiled with such figures if and only if mn
is a multiple of 8.

Solution: First we prove that if 8 | mn, then an m× n rectangular
region can be tiled by the given figures.

Case 1: Both m and n are even. Without loss of generality, assume
that 4 | m and 2 | n. Two of the given figures can be joined into
a 4 × 2 rectangle, and mn/8 such rectangles can be joined into an
m × n rectangular region (with n/2 rows and m/4 columns of such
rectangles).

Case 2: Either m or n is odd. Without loss of generality, assume
that m is odd. Then 8 | n. Because m > 1, we must have m ≥ 3. We
can tile a 3× 8 region as in the following diagram:

Such 3 × 8 regions can further be combined into a 3 × n region. If
m = 3, this suffices; otherwise, the remaining (m− 3)× n region can
be tiled as shown in case 1 because 2 | (m− 3).

Now we prove that if an m×n rectangular region can be tiled, then
8 | mn. Because each of the given L-shaped figures has area 4, 4 | mn.
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Without loss of generality, assume that 2 | n, and color the m rows of
the m×n grid alternatingly black and white. Any L-shaped figure in
a tiling of the rectangle would cover an odd number of black squares;
because there are an even number (n× dm/2e) of black squares, any
tiling must contain an even number of L-shaped figures — say, 2k.
Then mn = 8k, so that 8 | mn.

Problem 6 The real numbers a, b, c, x, y, z satisfy a ≥ b ≥ c > 0
and x ≥ y ≥ z > 0. Prove that

a2x2

(by + cz)(bz + cy)
+

b2y2

(cz + ax)(cx+ az)
+

c2z2

(ax+ by)(ay + bx)

is at least 3
4 .

Solution: Denote the left-hand side of the given inequality by S.
Because a ≥ b ≥ c and x ≥ y ≥ z, by the rearrangement inequality
we have bz + cy ≤ by + cz so (by + cz)(bz + cy) ≤ (by + cz)2 ≤
2
(
(by)2 + (cz)2

)
. Setting α = (ax)2, β = (by)2, γ = (cz)2, we obtain

a2x2

(by + cz)(bz + cy)
≥ a2x2

2 ((by)2 + (cz)2)
=

α

2(β + γ)
.

Adding this to the two analogous inequalities, we find that

S ≥ 1
2

(
α

β + γ
+

β

γ + α
+

γ

α+ β

)
.

By the Cauchy-Schwarz inequality,(
α

β + γ
+

β

γ + α
+

γ

α+ β

)
(α(β + γ) + β(γ + α) + γ(α+ β))

is at least (α+ β + γ)2, which in turn equals

1
2
((α− β)2 + (β − γ)2 + (γ − α)2) + 3(αβ + βγ + γα)

≥ 3
2
(2αβ + 2βγ + 2γα).

Therefore,

S ≥ 1
2

(
α

β + γ
+

β

γ + α
+

γ

α+ β

)
≥ 1

2
(α+ β + γ)2

(2αβ + 2βγ + 2γα)
≥ 3

4
,

as desired.
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1.14 Mongolia

Problem 1 Let rad(1) = 1, and for k > 1 let rad(k) equal the
product of the prime divisors of k. A sequence of natural numbers
a1, a2, . . . with arbitrary first term a1 is defined recursively by the
relation an+1 = an + rad(an). Show that for any positive integer
N, the sequence a1, a2, . . . contains some N consecutive terms in
arithmetic progression.

Solution:

Lemma 1. In the sequence rad(a1), rad(a2), . . . , each term divides
the next.

Proof: Because rad(an) divides both an and rad(an), it also
divides an + rad(an) = an+1, so all prime factors of rad(an) divide
an+1. Because rad(an) and rad(an+1 are square-free, this implies that
rad(an) divides rad(an+1).

For all positive integers n, define bn = an/rad(an) and zn =
rad(an+1)/rad(an). Because rad(an) | rad(an+1), bn is an integer for
all n, and because of the above lemma, the same holds for zn. Note
that zn is relatively prime to rad(an) because rad(an+1) is square-free.
Also observe that

bn+1 = an+1/rad(an+1) =
[an + rad(an)]/rad(an)

rad(an+1)/rad(an)

=
bn + 1

rad(an+1)/rad(an)
=
bn + 1
zn

.

Lemma 2. For any N , there exists an integer M such that

zM = zM+1 = zM+2 = · · · = zM+N−2 = 1.

Proof: There are some primes p less than 2N for which there
exists an n such that p | an. By our first lemma, there exists an m

sufficiently large so that am is divisible by all such primes. Let M be
a number greater than m so that bM is minimal. We claim that this
M satisfies the condition of this lemma.

Suppose for the purpose of contradiction that this is not true. Then
we can pick the smallest positive k for which zM+k−1 6= 1. Note
that k ≤ N − 1 and that zM = zM+1 = · · · = zM+k−2 = 1, so
that bM+k−1 = bM + k − 1. We claim that no primes less than 2N



2000 National Contests: Problems 79

can divide zM+k−1. This is true because zM+k−1 is the product of
the primes dividing aM+k but not aM+k−1, and because aM+k−1 is
divisible by rad(aM ), which is divisible by all the primes less than 2N
that divide any an. Thus, zM+k−1 ≥ 2N .

Therefore,

bM+k =
bM+k−1 + 1
zM+k−1

=
bM + k

zM+k−1

≤ bM + k

2N
≤ bM +N − 1

2N
< bM .

This contradicts our assumption that M is the number greater than
m for which bM is minimal. Thus, the lemma is proved.

By the second lemma, for any N , there exists an integer M such
that

rad(aM ) = rad(aM+1) = rad(aM+2) = · · · = rad(aM+N−1).

Then aM , aM+1, . . . , aM+N−1 is an arithmetic progression (with com-
mon difference rad(aM )), as desired.

Problem 2 The circles ω1, ω2, ω3 in the plane are pairwise exter-
nally tangent to each other. Let P1 be the point of tangency between
circles ω1 and ω3, and let P2 be the point of tangency between circles
ω2 and ω3. A and B, both different from P1 and P2, are points on ω3

such that AB is a diameter of ω3. Line AP1 intersects ω1 again at X,
line BP2 intersects ω2 again at Y, and lines AP2 and BP1 intersect
at Z. Prove that X, Y, and Z are collinear.

Solution: All angles are directed modulo π.
Let P3 be the point of tangency of ω1 and ω2, and let O1, O2, and

O3 be the centers of ω1, ω2, and ω3, respectively.
Let ω4 be the circumcircle of triangle P1P2P3. Let O4 be the radical

center of ω1, ω2 and ω3. Note that O4P1 = O4P2 = O4P3, so O4 is
the center of ω4. Because O4P1 ⊥ O1O3, ω4 is tangent to line O1O3.
Likewise, ω4 is tangent to lines O1O2 and O2O3.

Because O3 lies on AB, we have

∠P2P1Z = ∠P2AO3 = ∠O3P2A.
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If we let Z ′ be the second intersection of line AP2 with ω4, then,
because line O3P2 is tangent to ω4,

∠O3P2A = ∠O3P2Z
′ = ∠P2P1Z

′.

Hence, ∠P2P1Z = ∠P2P1Z
′, and Z ′ lies on the line BZ. Because Z

and Z ′ both lie on line AP2, which is different from line BZ, we must
have Z = Z ′. Thus, Z lies on ω4.

Because angles O4P1O3 and XP1Z are both right,

∠ZP1O3 = ∠ZP1O4 + ∠O4P1O3 = ∠XP1Z + ∠ZP1O4 = ∠XP1O4.

Because line P1O4 is tangent to ω1, we have ∠XP1O4 = ∠XP3P1.
Therefore, ∠ZP1O3 = ∠XP3P1.

Let ` be the line ZP3 if Z does not coincide with P3, or the line
tangent to ω4 at P otherwise. Then ∠(`, P3P1) = ∠ZP1O3 because
O3P1 is tangent to ω4. Combining this with the above result yields
∠(`, P3P1) = ∠XP3P1. Thus, X lies on `. Similarly, Y lies on `.
Because Z also lies on `, the points X, Y , and Z are collinear, as
desired.

Problem 3 A function f : R→ R satisfies the following conditions:

(i) |f(a)− f(b)| ≤ |a− b| for any real numbers a, b ∈ R.
(ii) f(f(f(0))) = 0.

Prove that f(0) = 0.

Solution: We shall use the notation

fk(x) = f(f(· · · f︸ ︷︷ ︸
k f ’s

(x) · · · )).

From

|f(0)| = |f(0)− 0| ≥ |f2(0)− f(0)| ≥ |f3(0)− f2(0)| = |f2(0)|

and
|f2(0)| = |f2(0)− 0| ≥ |f3(0)− f(0)| = |f(0)|,

we have
|f(0)| = |f2(0)|.

There are two cases to consider. If f(0) = f2(0),

f(0) = f2(0) = f3(0) = 0.
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Otherwise, if f(0) = −f2(0),

|f(0)| = |f(0)− 0| ≥ |f2(0)− f(0)| = 2|f(0)|.

In both cases, |f(0)| = 0. Therefore, f(0) = 0.

Problem 4 The bisectors of angles A,B,C of a triangle ABC

intersect its sides at points A1, B1, C1. Prove that if the quadrilateral
BA1B1C1 is cyclic, then

BC

AC +AB
=

AC

AB +BC
− AB

BC +AC
.

Solution: Let the circumcircle ω of quadrilateral BA1B1C1 inter-
sect line AC again at X. We claim that X must lie on the segment
AC. First, as A lies on the line BC1 but not the segment BC1, A
must lie outside ω. Similarly, C lies outside ω. Any point on B1X

lies in ω. Therefore, B1X contains neither A nor C. Because B1 lies
on AC, so must X.

Let a = BC, b = AC, c = AB. By the power of a point theorem
applied to A with respect to ω, we have AC1 · AB = AX · AB1. By
the angle bisector theorem, AC1 = bc/(a+ b) and AB1 = bc/(a+ c).
Therefore,

AX =
AC1 ·AB
AB1

=
bc

a+ b
· c · a+ c

bc
= (a+ c) · c

a+ b
.

Similarly,

CX = (a+ c) · a

b+ c
.

Therefore, as X lies on AC,

b = AC = AX +XC = (a+ c)
(

c

a+ b
+

a

b+ c

)
,

from which the desired result follows immediately.

Problem 5 Which integers can be represented in the form

(x+ y + z)2

xyz
,

where x, y, and z are positive integers?
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Solution: Note that

1 = (9 + 9 + 9)2/(9 · 9 · 9), 2 = (4 + 4 + 8)2/(4 · 4 · 8),

3 = (3 + 3 + 3)2/(3 · 3 · 3), 4 = (2 + 2 + 4)2/(2 · 2 · 4),

5 = (1 + 4 + 5)2/(1 · 4 · 5), 6 = (1 + 2 + 3)2/(1 · 2 · 3),

8 = (1 + 1 + 2)2/(1 · 1 · 2), 9 = (1 + 1 + 1)2/(1 · 1 · 1).

We prove that no other solutions are possible by using the following
lemma.

Lemma. If n can be expressed as (x+ y + z)2/(xyz), then n can be
written as (x′ + y′ + z′)2/(x′y′z′), where x′ ≤ y′ + z′, y′ ≤ x′ + z′,
and z′ ≤ x′ + y′.

Proof: Let x, y, z be the positive integers such that n =
(x+ y + z)2/(xyz) and x+ y + z is minimal. Since n is an integer, x
divides (x+y+z)2. Therefore, x divides (y+z)2. Let x′ = (y+z)2/x.

(x′ + y + z)2

x′yz
=

(y + z)2
(

y+z
x + 1

)2
(y+z)2

x yz

=
x
(

y+z
x + 1

)2
yz

=
(x+ y + z)2

xyz
= n.

Because x + y + z is minimal, x + y + z ≤ x′ + y + z. Therefore,
x ≤ x′ = (y + z)2/x, whence x ≤ y + z. Similarly, y ≤ x + z and
z ≤ x+ y.

Suppose that n = (x+y+z)2/xyz. By the lemma, we may assume
without loss of generality that y + z ≥ x ≥ y ≥ z. We consider the
following cases.

Case 1: x = y ≥ z = 1. Here, n = (2x+1)2/(x2). Thus, x divides
2x+ 1, whence x = 1 and n = 9.

Case 2: x = y+1 > z = 1. Here, n = (2x)2/(x(x−1)) = 4x/(x−1).
Thus, x − 1 divides 4x, implying that x − 1 divides 4. Therefore,
x ∈ {2, 3, 5}, and n ∈ {8, 6, 5}.

Case 3: y + z ≥ x ≥ y ≥ z > 1. Here,

y · z − (y + z) = (y − 1)(z − 1)− 1 ≥ 0,

implying that yz ≥ y + z ≥ x. Because x ≥ y ≥ z, we also have
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xy ≥ z and xz ≥ y. Thus,

n =
(x+ y + z)2

xyz
= 2

(
1
x

+
1
y

+
1
z

)
+

x

yz
+

y

xz
+

z

xy

≤ 2 · 3
2

+ 1 + 1 + 1 = 6.

Therefore, 1, 2, 3, 4, 5, 6, 8, and 9 are the only solutions.

Problem 6 In a country with n towns the cost of travel from the ith

town to the jth town is xij . Suppose that the total cost of any route
passing through each town exactly once and ending at its starting
point does not depend on which route is chosen. Prove that there
exist numbers a1, . . . , an and b1, . . . , bn such that xij = ai + bj for all
integers i, j with 1 ≤ i < j ≤ n.

Solution: Let f(a, b) = xa1 + x1b − xab for a, b and 1 all distinct.

Lemma. f(a, b) is independent of a and b.

Proof: For n ≤ 2 this is trivial because f is defined for no a

and b. For n = 3, we need to show that f(2, 3) = f(3, 2), or that
x21 + x13 + x32 = x31 + x12 + x23. But these are the total costs of
two routes which each pass through every town exactly once, they are
equal.

For n ≥ 4, the route

a, 1, b, c, 2, 3, . . . , a− 1, a+ 1, . . . , b− 1, b+ 1, . . . , c− 1, c+ 1, . . . , n

and the route

a, b, 1, c, 2, 3, . . . , a− 1, a+ 1, . . . , b− 1, b+ 1, . . . , c− 1, c+ 1, . . . , n.

must have equal total costs. The routes are nearly identical, allowing
us to easily find that the difference of their total costs is

(xa1 + x1b + xbc)− (xab + xb1 + x1c).

Therefore, f(a, b) = f(b, c) for any a, b, c distinct from each other
and from 1.

Furthermore, the sum of the total costs of the three routes

1, a, b, 2, . . . , n; b, 1, a, 2, . . . , n; a, 1, b, 2, . . . , n

must equal the sum of the total costs of the three routes

1, b, a, 2, . . . , n; a, 1, b, 2, . . . , n; b, 1, a, 2, . . . , n.
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Hence,
2 · (x1a + xab + xb1) = 2 · (x1b + xba + xa1),

implying that f(a, b) = f(b, a).
For c, d not equal to a and b, we find that f(a, b) = f(b, c) = f(c, d),

f(a, b) = f(b, c) = f(c, b), and f(a, b) = f(b, a) = f(a, c) = f(c, a).
This proves our result.

For all a, b distinct from each other and from 1, we have f(a, b) = F

for some constant F .
Let a1 = 0 and b1 = F , and let bk = x1k and ak = xk1 − F. For i

and j both not equal to 1,

xij = xi1 − xi1 − x1j + xij + x1j

= xi1 − F + x1j = ai + bj ,

as desired.
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1.15 Poland

Problem 1 Let n ≥ 2 be a given integer. How many solutions does
the system of equations

x1 + x2
n = 4xn

x2 + x2
1 = 4x1

...
xn + x2

n−1 = 4xn−1

have in nonnegative real numbers x1, . . . , xn?

Solution: We take the indices of the xi modulo n. Let f(x) =
4x − x2, so that xi = f(xi−1) for each i, We have 4 − f(xi−1) =
(xi−1 − 2)2 ≥ 0, implying that xi ≤ 4 for each i. Also, we are given
that xi ≥ 0. Thus, in particular, we can write x1 = 2 − 2 cos θ for a
unique θ ∈ [0, π]. Then,

x2 = f(x1) = 4(2− 2 cos θ)− (2− 2 cos θ)2

= 4− 4 cos2 θ = 2− 2 cos 2θ.

The same argument proves (inductively) that xi = 2 − 2 cos 2i−1θ

for each i ≥ 1. In particular, x1 = xn+1 = 2 − 2 cos 2nθ. Thus,
cos θ = cos 2nθ; conversely, every such value of θ ∈ [0, π] gives a
different solution to the system of equations.

Note that cos θ = cos 2nθ holds if and only if 2nθ = 2kπ ± θ for
some integer k, or equivalently if θ = 2kπ/(2n±1). Thus, the desired
θ ∈ [0, π] are 2k1π/(2n−1) for k1 = 0, 1, . . . , 2n−1−1 and 2k2π/(2n+1)
for k2 = 1, 2, . . . , 2n−1. We claim that these 2n values for θ are
distinct. Indeed, suppose that 2k1π/(2n − 1) = 2k2π/(2n + 1) for
some k1 and k2, so that k1(2n + 1) = k2(2n − 1). Because 2n + 1
is relatively prime to 2n − 1, we must have (2n + 1) | k2, which is
impossible. Therefore, there are 2n possible values for θ and hence
2n solutions to the given system of equations.

Problem 2 The sides AC and BC of a triangle ABC have equal
length. Let P be a point inside triangle ABC such that ∠PAB =
∠PBC and let M be the midpoint of AB. Prove that ∠APM +
∠BPC = π.
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Solution: Construct the circle Γ tangent to lines AC and BC at
A,B respectively, and let its center be O. If O, M, and P are collinear,
then the figure is symmetric about line OC, and ∠APM +∠BPC =
∠MPB + ∠BPC = π. Suppose now that O, M, and P are not
collinear.

We prove that if P is on the same side of line OM as B, then
∠APM + ∠BPC = π. If instead P is on the same side of line OM
as A, then an analogous proof yields ∠MPB+∠CPA = π, implying
that ∠APM + ∠BPC = 2π − (∠MPB + ∠CPA) = π.

Observe that

∠APB = π − ∠PBA− ∠BAP = π − ∠PBA− ∠CBP

= π − ∠CBA = (π + ∠ACB)/2.

Because angles CBO and OAC are right angles, we have ∠BOA +
∠ACB = π, or ∠ACB = π − ∠BOA. Combining this equation with
the above expression for ∠APB, we find that ∠APB = π−∠BOA/2,
implying that P lies on the circle Γ.

The inversion through Γ sends P to itself and sends M (the
midpoint of AB) to C (the intersection of the tangents to Γ at A
and B). Thus, 4OCP ∼ 4OPM , implying that ∠CPO = ∠PMO.
Also, triangle OBP is isosceles with ∠OPB = ∠PBO. Thus,

2π − ∠BPC = ∠OPB + ∠CPO = ∠PBO + ∠OMP. (∗)

From our assumption that P and B lie on the same side of line OM ,
we know that quadrilateral OMPB is convex. Hence,

∠PBO + ∠OMP = 2π − ∠BOM − ∠MPB

= 2π − ∠BOM − (∠APB − ∠APM)

= 2π − (π − ∠ACB)/2− (π + ∠ACB)/2 + ∠APM

= π + ∠APM.

Combining this last result with (∗), we find that ∠APM+∠BPC = π,
as desired.

Problem 3 A sequence p1, p2, . . . of prime numbers satisfies the
following condition: for n ≥ 3, pn is the greatest prime divisor of
pn−1 + pn−2 + 2000. Prove that the sequence is bounded.
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Solution: Let bn = max{pn, pn+1} for n ≥ 1. We first prove
that bn+1 ≤ bn + 2002 for all such n. Certainly pn+1 ≤ bn, so it
suffices to show that pn+2 ≤ bn + 2002. If either pn or pn+1 equals
2, then we have pn+2 ≤ pn + pn+1 + 2000 = bn + 2002. Otherwise,
pn and pn+1 are both odd, so pn + pn+1 + 2000 is even. Because
pn+2 6= 2 divides this number, we have pn+2 ≤ (pn+pn+1+2000)/2 =
(pn + pn+1)/2 + 1000 ≤ bn + 1000. This proves the claim.

Choose k large enough so that b1 ≤ k · 2003! + 1. We prove by
induction that bn ≤ k · 2003! + 1 for all n. If this statement holds for
some n, then bn+1 ≤ bn+2002 ≤ k·2003!+2003. If bn+1 > k·2003!+1,
then let m = bn+1 − k · 2003!. We have 1 < m ≤ 2003, implying that
m | 2003! Hence, m is a proper divisor of k · 2003! +m = bn+1, which
is impossible because bn+1 is prime.

Thus, pn ≤ bn ≤ k · 2003! + 1 for all n.

Problem 4 For an integer n ≥ 3, consider a pyramid with vertex S
and the regular n-gon A1A2 . . . An as a base, such that all the angles
between lateral edges and the base equal π/3. Points B2, B3, . . . lie
on A2S,A3S, . . . , AnS, respectively, such that A1B2 + B2B3 + · · ·+
Bn−1Bn +BnA1 < 2A1S. For which n is this possible?

Solution: We claim that this is possible for any n ≥ 3. The
shortest path between any two points in a plane is the length of the
straight line segment connecting them. Although we cannot simply
draw a straight line segment around the pyramid connecting A1 with
itself, we can translate this three-dimensional problem into a two-
dimensional problem where we can draw such a segment. We develop
(i.e. flatten) the lateral surface of the pyramid to form triangles
S′A′iA

′
i+1 congruent to (and with the same orientation as) triangle

SAiAi+1 for i = 1, 2, . . . , n, where we write An+1 = A1. Any broken-
line path from A′1 to A′n+1, consisting of segments connecting S′A′i
and S′A′i+1 for i = 1, 2, . . . , n, can be transformed into a broken-line
path of the same length from A1 to An+1 = A1, consisting of segments
connecting SAi and SAi+1 for i = 1, 2, . . . , n. Thus, it suffices to
prove that one such broken-line path from A′1 to A′n+1 has perimeter
less than 2A1S.

Indeed, we claim that the straight line path connecting A′1 to A′n+1,
with length A′1A

′
n+1, is such a path. By the triangle inequality,

A′1A
′
n+1 < A′1S

′ + S′A′n+1 = 2A1S. We need only verify, then,
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that this path consists of segments connecting S′A′i with S′A′i+1 for
i = 1, 2, . . . , n.

Let O be the center of the base of the given pyramid. Suppose
that 1 ≤ i ≤ n. Then ∠AiOS = π/2 and ∠SAiO = π/3,
implying that SAi = 2OAi. Let M be the midpoint of AiAi+1.
Because triangle OAiAi+1 is isosceles, we have OM ⊥ AiAi+1, so
that AiM = OAi sin∠AiOM = OAi sinπ/n. Similarly, we have
AiM = SAi sin∠AiSM = 2OAi sin∠AiSM . Thus,

∠AiSAi+1 = 2∠AiSM = 2 sin−1

(
1
2

sin
π

n

)
= 2 sin−1

(
1
2
· 2 sin

π

2n
cos

π

2n

)
< 2 sin−1

(
sin

π

2n

)
=
π

n
.

Hence,
n∑

i=1

∠A′iS
′A′i+1 =

n∑
i=1

∠AiSAi+1 < π,

implying that A′1A
′
n+1 intersects each of the segments S′A′2, S′A

′
3,

. . . , S′A′n. Therefore, the straight line path from A′1 to A′n+1 indeed
consists of segments connecting S′A′i with S′A′i+1 for i = 1, 2, . . . , n,
as desired. This completes the proof.

Problem 5 Given a natural number n ≥ 2, find the smallest integer
k with the following property: Every set consisting of k cells of an
n × n table contains a nonempty subset S such that in every row
and in every column of the table, there is an even number of cells
belonging to S.

Solution: The answer is 2n. To see that 2n− 1 cells do not suffice,
consider the “staircase” of cells consisting of the main diagonal and
the diagonal immediately below it. Number these cells from upper-
left to lower-right. For any subset S of the staircase, consider its
lowest-numbered cell; this cell is either the only cell of S in its row or
the only cell of S in its column, so S cannot have the desired property.

To see that 2n suffices, we use the following lemma:

Lemma. If a graph is drawn whose vertices are the cells of an m×n
grid, where two vertices are connected by an edge if and only if they
lie in the same row or the same column, then any set T of at least
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m+n vertices includes the vertices of some cycle whose edges alternate
between horizontal and vertical.

Proof: We induct on m+ n. If m = 1 or n = 1, the statement is
vacuously true; this gives us the base case. Otherwise, we construct
a trail as follows. We arbitrarily pick a starting vertex in T and,
if possible, proceed horizontally to another vertex of T . We then
continue vertically to another vertex of T . We continue this process,
alternating between horizontal and vertical travel. Eventually, we
must either (a) be unable to proceed further, or (b) return to a
previously visited vertex. In case (a), we must have arrived at a vertex
which is the only element of T in its row or in its column; then remove
this row or column from the grid, remove the appropriate vertex from
T , and apply the induction hypothesis. In case (b), we have formed
a cycle. If there are two consecutive horizontal edges (resp. vertical
edges), as is the case if our cycle contains an odd number of vertices,
then we replace these two edges by a single horizontal (resp.) vertical
edge. We thus obtain a cycle which alternates between horizontal and
vertical edges. By construction, our cycle does not visit any vertex
twice.

To see that this solves the problem, suppose we have a set of 2n
cells from our n × n grid. It then contains a cycle; let S be the set
of vertices of this cycle. Consider any row of the grid. Every square
of S in this row belongs to exactly one horizontal edge, so if the row
contains m horizontal edges, then it contains 2m cells of S. Thus,
every row (and similarly, every column) contains an even number of
cells of S.

Problem 6 Let P be a polynomial of odd degree satisfying the
identity

P (x2 − 1) = P (x)2 − 1.

Prove that P (x) = x for all real x.

Solution: Setting x = y and x = −y in the given equation, we
find that P (y)2 = P (−y)2 for all y. Thus, one of the polynomials
P (x) − P (−x) or P (x) + P (−x) vanishes for infinitely many, and
hence all, x. Because P has odd degree, the latter must be the
case, and P is an odd polynomial. In particular, P (0) = 0, which
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in turn implies that P (−1) = P (02 − 1) = P (0)2 − 1 = −1 and that
P (1) = −P (−1) = 1.

Set a0 = 1, and let an =
√
an−1 + 1 for n ≥ 1; note that an > 1

when n ≥ 1. We claim that P (an) = an for all n. This is true for
n = 0. If it holds for an, then

P (an+1)2 = P (a2
n+1 − 1) + 1 = P (an) + 1 = an + 1,

implying that P (an+1) = ±an+1. If P (an+1) = −an+1, then
P (an+2)2 = P (an+1) + 1 = 1 − an+1 < 0, a contradiction. Thus,
P (an+1) = an+1, and the claim holds by induction.

Let f(x) =
√
x+ 1 for x ≥ −1. Because a0 6= an = fn(a0) for all

n ≥ 1, we have am = fm(a0) 6= fm+n(a0) = am+n for all m,n ≥ 1
as well. Thus, the an are distinct and we have infinitely many values
of x such that P (x) = x. Because P is a polynomial, we in fact have
P (x) = x for all x.
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1.16 Romania

Problem 1 A function f : R2 → R is called olympic if it has
the following property: given n ≥ 3 distinct points A1, A2, . . . ,

An ∈ R2, if f(A1) = f(A2) = · · · = f(An) then the points A1,

A2, . . . , An are the vertices of a convex polygon. Let P ∈ C[X] be
a non-constant polynomial. Prove that the function f : R2 → R,
defined by f(x, y) = |P (x+ iy)|, is olympic if and only if all the roots
of P are equal.

Solution: First suppose that all the roots of P are equal, and write
P (x) = a(z − z0)n for some a, z0 ∈ C and n ∈ N. If A1, A2, . . . , An

are distinct points in R2 such that f(A1) = f(A2) = · · · = f(An),
then A1, . . . , An are situated on a circle with center (Re(z0), Im(z0))
and radius n

√
α

|f(A1)| , implying that the points are the vertices of a
convex polygon.

Conversely, suppose that not all the roots of P are equal, and
write P (x) = (z − z1)(z − z2)Q(z) where z1 and z2 are distinct
roots of P (x) such that |z1 − z2| is minimal. Let ` be the line
containing Z1 = (Re(z1), Im(z1)) and Z2 = (Re(z2), Im(z2)), and
let z3 = 1

2 (z1 + z2) so that Z3 = (Re(z3), Im(z3)) is the midpoint
of Z1Z2. Also, let s1, s2 denote the rays Z3Z1 and Z3Z2, and let
r = f(Z3) ≥ 0. We must have r > 0, because otherwise z3 would be a
root of P such that |z1− z3| < |z1− z2|, which is impossible. Because

lim
ZZ3→∞,

Z∈s1

f(Z) = lim
ZZ3→∞,

Z∈s2

f(Z) = +∞

and f is continuous, there exist Z4 ∈ s1 and Z5 ∈ s2 such that
f(Z4) = f(Z5) = r. Thus, f(Z3) = f(Z4) = f(Z5) and Z3, Z4, Z5 are
not vertices of a convex polygon. Hence, f is not olympic.

Problem 2 Let n ≥ 2 be a positive integer. Find the number of
functions f : {1, 2, . . . , n} → {1, 2, 3, 4, 5} which have the following
property: |f(k + 1)− f(k)| ≥ 3 for k = 1, 2, . . . , n− 1.

Solution: We let n ≥ 2 vary and find the number of functions in
terms of n. If a function f : {1, 2, . . . , n} → {1, 2, 3, 4, 5} satisfies the
required property, then f(n) 6= 3 because otherwise either f(n−1) ≤ 0
or f(n− 1) ≥ 6, a contradiction. Denote by an, bn, dn, en the number
of functions f : {1, 2, . . . , n} → {1, 2, 3, 4, 5} satisfying the required
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property such that f(n) equals 1, 2, 4, 5, respectively. Then a2 =
e2 = 2 and b1 = d2 = 1, and the following recursive relations hold for
n ≥ 2:

an+1 = en + dn, bn+1 = en,

en+1 = an + bn, dn+1 = an.

We wish to find an +bn +dn +en for all n ≥ 2. We know that a2 = e2
and b2 = d2; it follows by induction that an = en and bn = dn for all
n ≥ 2. Hence, for all such n, we have

an+2 = en+1 + dn+1 = an+1 + bn+1 = an+1 + en = an+1 + an.

Thus, {an}n≥2 satisfies the same recursive relation as the Fibonacci
sequence {Fn}n≥0, where indices of the Fibonaccis are chosen such
that F1 = 0 and F1 = 1. Because a2 = 2 = F2 and a3 = e2+d2 = 3 =
F3, it follows that an = Fn for all n. Therefore, an + bn + dn + en =
2(an + bn) = 2en+1 = 2an+1 = 2Fn+1 for all n ≥ 2, and there are
2Fn+1 functions with the required property.

Problem 3 Let n ≥ 1 be a positive integer and x1, x2, . . . , xn be
real numbers such that |xk+1 − xk| ≤ 1 for k = 1, 2, . . . , n− 1. Show
that

n∑
k=1

|xk| −

∣∣∣∣∣
n∑

k=1

xk

∣∣∣∣∣ ≤ n2 − 1
4

.

Solution: If there are more (resp. no more) negative xk than
positive xk, then let (a1, . . . , an) be a permutation of (−x1, . . . ,−xn)
(resp. (x1, . . . , xn)) such that a1, . . . , an is a nondecreasing sequence.
By construction, the multiset P of positive ak has no more elements
than the multiset N of negative ak, and hence |P | ≤ n−1

2 . Also,
because N is nonempty and a1, . . . , an is nondecreasing, the elements
of P are ak0+1 < ak0+2 < · · · < ak0+` for some k0 > 0.

Suppose that 1 ≤ i ≤ n−1. In the sequence x1, . . . , xn, there must
be two adjacent terms xj and xk such that xj ≤ ai and xk ≥ ai+1,
implying that 0 ≤ ai+1−ai ≤ xk−xj ≤ 1. Hence, ak0+1 ≤ ak0+1 ≤ 1,
ak0+2 ≤ ak0+1 + 1 ≤ 2, and so forth.

Let σP and σN denote the sums of the numbers in P and N ,
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respectively. The left hand side of the required inequality then equals

|σP − σN | − | − σP − σN | ≤ |2σP |

≤ 2
(

1 + 2 + · · ·+
⌊
n− 1

2

⌋)
≤ n− 1

2
·
(
n− 1

2
+ 1
)

=
n2 − 1

4
,

as needed.

Problem 4 Let n, k be arbitrary positive integers. Show that there
exist positive integers a1 > a2 > a3 > a4 > a5 > k such that

n = ±
(
a1

3

)
±
(
a2

3

)
±
(
a3

3

)
±
(
a4

3

)
±
(
a5

3

)
,

where
(
a
3

)
= a(a−1)(a−2)

6 .

Solution: Observe that n +
(
m
3

)
> 2m + 1 for all m larger than

some value N , because the left hand side is a cubic in m with positive
leading coefficient while the right hand side is linear in m.

If m ≡ 0 (mod 4), then
(
m
3

)
= m(m−1)(m−2)

6 is even because
the numerator is divisible by 4 while the denominator is not. If
m ≡ 3 (mod 4), then

(
m
3

)
= m(m−1)(m−2)

6 is odd because both the
numerator and denominator are divisible by 2 but not 4. Hence, we
may choose m > max{k,N} such that n+

(
m
3

)
is odd.

Write 2a+ 1 = n+
(
m
3

)
> 2m+ 1. Observe that

((
a+3
3

)
−
(
a+2
3

))
−((

a+1
3

)
−
(
a
3

))
=
(
a+2
2

)
−
(
a
2

)
= 2a+ 1. Hence,

n = (2a+1)−
(
m

3

)
=
(
a+ 3

3

)
−
(
a+ 2

3

)
−
(
a+ 1

3

)
+
(
a

3

)
=
(
m

3

)
,

which is of the desired form because a+3 > a+2 > a+1 > a > m > k.

Problem 5 Let P1P2 · · ·Pn be a convex polygon in the plane.
Assume that for any pair of vertices Pi, Pj , there exists a vertex V of
the polygon such that ∠PiV Pj = π/3. Show that n = 3.

Solution: Throughout this solution, we use the following facts:
Given a triangle XY Z such that ∠XY Z ≤ π/3, either the triangle is
equilateral or else max{Y X, Y Z} > XZ. Similarly, if ∠XY Z ≥ π/3,
then either the triangle is equilateral or else min{Y X, Y Z} < XZ.
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We claim that there exist vertices A,B,C and A1, B1, C1 such that
(i) triangles ABC and A1B1C1 are equilateral, and (ii) AB (resp.
A1B1) is the minimal (resp. maximal) nonzero distance between
two vertices. Indeed, let A,B be distinct vertices such that AB has
minimal length, and let C be a vertex which satisfies the condition
∠ACB = π/3. Then max{AC,CB} ≤ AC, so that triangle ABC
must be equilateral. Similarly, if we choose A1, B1 such that A1B1

has maximal length, and a vertex C1 for which ∠A1C1B1 = π/3, then
triangle A1B1C1 is equilateral.

We claim that 4ABC ∼= A1B1C1. The lines AB,BC,CA divide
the plane into seven open regions. Let DA consist of the region
distinct from triangle ABC and bounded by BC, plus the boundaries
of this region except for the points B and C. Define DB and DC

analogously. Because the given polygon is convex, each of A1, B1, C1

is either in one of these regions or coincides with one of A,B,C.
If any two of A1, B1, C1 — say, A1 and B1 — are in the same

region DX , then ∠A1XB1 < π/3. Hence, max{A1X,XB1} > A1B1,
contradicting the maximal definition of A1B1.

Therefore, no two of A1, B1, C1 are in the same region. Suppose
now that even one ofA1, B1, C1 (say, A1) lies in one of the regions (say,
DA). Because min{A1B,A1C} ≥ BC, we have that ∠BA1C ≤ π/3.
We have that B1 does not lie in DA. Because the given polygon is
convex, B does not lie in the interior of triangle AA1B1, and similarly
C does not lie in the interior of triangle AA1B1. It follows that B1

lies on the closed region bounded by rays A1B and A1C. Similarly, so
does C1. Therefore, π/3 = ∠B1A1C1 ≤ ∠BA1C = π/3, with equality
if B1 and C1 lie on rays A1B and A1C in some order. Because the
given polygon is convex, this is possible only if B1 and C1 equal B
and C in some order — in which case BC = B1C1, implying that
triangles ABC and A1B1C1 are congruent.

Otherwise, none of A1, B1, C1 lies in DA ∪DB ∪DC , implying that
they coincide with A,B,C in some order. In this case, triangles ABC
and A1B1C1 are congruent as well.

Hence, any two distinct vertices of the polygon are separated by
the same distance, namely AB = A1B1. It is impossible for more
than three points in the plane to have this property, implying that
n = 3.

Problem 6 Show that there exist infinitely many 4-tuples of posi-
tive integers (x, y, z, t) such that the four numbers’ greatest common
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divisor is 1 and such that

x3 + y3 + z2 = t4.

Solution: Setting a = k3 for any even k > 0 into the identity

(a+ 1)4 − (a− 1)4 = 8a3 + 8a

yields
(2k3)3 + (2k)3 + [(k3 − 1)2]2 = (k3 + 1)4.

Because k3 + 1 is odd, gcd(2k3, k3 + 1) = gcd(k3, k3 + 1) = 1.
Hence, there are infinitely many quadruples of the form (x, y, z, t) =
(2k3, 2k, (k3 − 1)2, k3 + 1), for k > 0 even, satisfying the required
conditions.

Problem 7 Given the binary representation of an odd positive
integer a, determine a simple algorithm to determine the least positive
integer n such that 22000 is a divisor of an − 1.

Solution: Because a is odd, gcd(a, 2k) = 1 for all k ≥ 0. Hence, by
Euler’s Theorem, a2k−1 ≡ aφ(2k) ≡ 1 (mod 2k) for all such k. Thus,
the order n of a modulo 22000 divides 22000−1 = 21999.

If a ≡ 1 (mod 22000), it follows that n = 1. We now assume that
a 6≡ 1 (mod 22000). For any m ≥ 1, we write

a2m

− 1 = (a− 1)(a+ 1) (a2 + 1)(a22
+ 1) . . . (a2m−1

+ 1)︸ ︷︷ ︸
(†)

. (∗)

The binary representation of a either ends in the two digits 01 or
the two digits 11. In either case, we have a ≡ ±1 (mod 4) and hence
a2k ≡ 1 (mod 4) for all k ≥ 1. Thus, in the above decomposition (∗)
for some fixed m ≥ 1, 21 is the greatest power of 2 dividing each of
the m− 1 expressions in parentheses above the label (†).

If a ≡ 1 (mod 4), then because a 6= 1, the binary representation of
a ends in the digits

1 00 . . . 01︸ ︷︷ ︸
s digits

for some s — namely, the largest integer such that 2s | (a−1). In this
case, the greatest power of 2 dividing a − 1 is 2s while the greatest
power of 2 dividing a+ 1 is 2.
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If instead a ≡ −1 (mod 4), then because a 6= 1, the binary
representation of a ends in the digits

0 11 . . . 1︸ ︷︷ ︸
s digits

for some s — namely, the largest integer such that 2s | (a+1). In this
case, the greatest power of 2 dividing a + 1 is 2s while the greatest
power of 2 dividing a− 1 is 2.

In either case, we find using (∗) and these results that the greatest
power of 2 dividing a2m−1 is 2s+m. It follows that the smallest m ≥ 1
such that a2m − 1 is divisible by 22000 is either 2000− s (if s < 2000)
or 1 (if s ≥ 2000). In these cases, we have n = 21999−s or n = 2,
respectively. Because we can easily use the binary representation of
a to deduce which of the two cases holds and what the value of s is,
we can use the binary representation of a to find n.

Problem 8 Let ABC be an acute triangle and let M be the
midpoint of BC. There exists a unique interior point N such that
∠ABN = ∠BAM and ∠ACN = ∠CAM. Prove that ∠BAN =
∠CAM.

Solution: Let B′ be the point on ray AC such that ∠ABB′ =
∠BAM , and let C ′ be the point on ray AB such that ∠ACC ′ =
∠CAM . Then N is the unique intersection of lines BB′ and CC ′.

Reflect line AM across the angle bisector of angle BAC, and let this
reflection intersect line BB′ at P . Also, let D be the reflection of A
across M , so that quadrilateral ABDC is a parallelogram. Because
∠PAB = ∠CAM = ∠CAD and ∠ABP = ∠MAB = ∠DAB =
∠ADC, triangles ABP and ADC are similar. Hence, AB

AD = AP
AC .

Because ∠BAD = ∠PAC, it follows that triangles BAD and PAC

are similar. Therefore, ∠ACP = ∠ADB = ∠CAM. It follows that P
lies on line CC ′ as well as line BB′, and hence thatN = P . Therefore,
∠BAN = ∠BAP = ∠CAM , as desired.

Problem 9 Find, with proof, whether there exists a sphere with
interior S, a circle with interior C, and a function f : S → C such that
the distance between f(A) and f(B) is greater than or equal to AB
for all points A and B in S.
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Solution: We shall prove that such a function does not exist.
Assume the contrary, that such a function f exists, and let r be
the radius of C. Construct a cube in the interior of the sphere with
side length s. Partition the cube into (n− 1)3 small congruent cubes
for some arbitrary integer n ≥ 2. The set of vertices of these small
cubes consists of (n+ 1)3 points A1, A2, . . . , An3 .

Write A′i = f(Ai) for each i. For any i 6= j we have A′iA
′
j ≥ AiAj ≥

s
n . It follows that the disks Di of centers A′i and radius s

2n are all
disjoint, and they are contained in a disk C′ with the same center as
C but with radius r + s

2n . Therefore,

n3 · πs
2

4n2
=

n3∑
i=1

Area(Di) ≤ Area(C ′) = π
(
r +

s

2n

)2

.

This inequality cannot hold for arbitrary integers n ≥ 2, a contradic-
tion.

Problem 10 Let n ≥ 3 be an odd integer and m ≥ n2 − n + 1 be
an integer. The sequence of polygons P1, P2, . . . , Pm is defined as
follows:

(i) P1 is a regular polygon with n vertices.

(ii) For k > 1, Pk is the regular polygon whose vertices are the
midpoints of the sides of Pk−1.

Find, with proof, the maximum number of colors which can be used
such that for every coloring of the vertices of these polygons, one can
find four vertices A, B, C, D which have the same color, form an
isosceles trapezoid (perhaps a degenerate one), and do not lie on a
single line passing through the center of P1.

Solution: Let V1, V2, . . . , Vn be the vertices of P1 in counterclock-
wise order, with indices of the Vi taken modulo n.

We first show that the desired maximum is less than n. Let O be
the common center of the polygons. Because n is odd, every vertex
lies on one of the lines V Ai. Given n′ ≥ n colors, let c1, c2, . . . , cn
be n of them and color every vertex on line OVi with color ci for
i = 1, 2, . . . , n. Any four vertices of the same color lie on a line
passing through the center of P1, implying that no set of four vertices
has the required property.
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We now claim that in any coloring of the vertices in n − 1 colors,
we can find four vertices with the desired properties. Draw n lines
through V1: the line `1 tangent to the circumcircle of P1 at V1, and
the lines `i passing through V1 and Vi for 2 ≤ i ≤ n. Any line m
passing along an edge or a diagonal ViVj of P1 is parallel to one of
these lines, namely `i+j−1.

Suppose that we have a diagonal or edge of P2, connecting the
midpoint W1 of ViVi+1 with the midpoint W2 of VjVj+1. Then lines
ViVj+1 and Vi+1Vj are parallel. Because W1W2 lies halfway between
these two lines, it is parallel to each of them. Thus, W1W2 is parallel
to one of the n lines `i. Similarly, we find that any diagonal or edge
in one of the polygons Pj is parallel to one of the `i.

In each polygon Pj , because there are n vertices in n − 1 colors,
the Pigeonhole Principle implies that some edge or diagonal has two
endpoints of the same color — we call such a segment monochromatic.
As j varies from 1 to m, we find m ≥ n2 − n + 1 > n(n − 1) such
segments. By the Pigeonhole Principle, one of the n lines `i is parallel
to more than n−1 monochromatic segments, each from a different Pj .
Applying the Pigeonhole Principle one final time, some two of these
n segments — say, AB and CD — correspond to the same color. It
follows that either quadrilateral ABCD or quadrilateral ABDC is an
isosceles trapezoid (perhaps a degenerate one) formed by four vertices
of the same color. Because the m polygons are inscribed in concentric
circles and AB,CD cannot be diameters, we have that A,B,C,D do
not lie on a single line passing through the center of P1.
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1.17 Russia

Problem 1 Sasha tries to determine some positive integerX ≤ 100.
He can choose any two positive integers M and N that are less than
100 and ask the question, “What is the greatest common divisor of
the numbers X + M and N?” Prove that Sasha can determine the
value of X after 7 questions.

Solution: For n = 0, 1, . . . , 6, let an be the unique integer in
[0, 2n) such that 2n | (X − an). Clearly a0 = 0. For n ≤ 5, an+1

equals either an or an + 2n, where the former holds if and only if
gcd(X+2n−an, 2n+1) = 2n. Because 2n−an < 2n+1 < 100, it follows
that if Sasha knows the value of an, he can determine an+1 with one
additional question by setting (M,N) = (2n−an, 2n+1). Hence, after
six questions, Sasha can determine a1, a2, . . . , a6 and conclude that
X equals a6 or a6 + 64. Because a6 6≡ a6 + 64 (mod 3), Sasha can
determine X if he can discover whether or not X ≡ a6 (mod 3) with
his final question. Indeed, he can: if he sets N = 3 and M ∈ {1, 2, 3}
such that 3 | (a6 + M), he will obtain the answer “3” if and only if
X ≡ a6 (mod 3).

Problem 2 Let O be the center of the circumcircle ω of an acute-
angled triangle ABC. The circle ω1 with center K passes through the
points A,O,C and intersects sides AB and BC at points M and N .
Let L be the reflection of K across line MN . Prove that BL ⊥ AC.

Solution: Let α, β, and γ be the angles A, B, and C of triangle
ABC. Because quadrilateral ACNM is cyclic, ∠BNM = α and
∠BMN = γ. Thus, ∠MKC = 2α and ∠NKA = 2γ. Also, because
line AC is the radical axis of circles ω and ω1, it is perpendicular to the
line OK connecting these circles’ centers. It follows that ∠AOK =
∠COK = ∠OAK = ∠OCK = β. Hence, ∠AKC = 2π − 4β.
Combining our information, we have ∠MKN = 2α+2γ−(2π−4β) =
2β.

Letting L be the reflection of K across line MN , we have ∠MLN =
2β and LM = LN . Hence, 4LMN ∼ 4OCA. On the other hand,
we also have 4MBN ∼ 4CBA because quadrilateral ACNM is
cyclic. Therefore, because O is the circumcenter of triangle ABC, L
is the circumcenter of triangle MBN . Thus, ∠MLB = 2α, and so
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∠MBL = π/2 − α. Because ∠BAC = α, it follows that BL ⊥ AC,
as desired.

Problem 3 There are several cities in a state and a set of roads,
where each road connects two cities and no two roads connect the
same pair of cities. It is known that at least 3 roads go out of every
city. Prove that there exists a cyclic path (that is, a path where the
last road ends where the first road begins) such that the number of
roads in the path is not divisible by 3.

Solution: We use the natural translation into graph theory —
in a graph where every vertex has degree at least 3, we wish to
prove that there exists a cycle whose length is not divisible by 3.
Perform the following algorithm: Pick an initial vertex v1. Then,
given v1, v2, . . . , vi, if there exists a vertex distinct from these i vertices
and adjacent to vi, then let vi+1 be that vertex. Because the graph is
finite, and all the vertices obtained by this algorithm are distinct, the
process must eventually terminate at some vertex vn. We know that
every vertex has degree at least 3, and by assumption, every vertex
adjacent to vn occurs somewhere earlier in the sequence; thus, vn is
adjacent to va, vb, vn−1 for some a < b < n − 1. We then have three
cycles:

va → va+1 → va+2 → · · · → vn−1 → vn → va;

vb → vb+1 → vb+2 → · · · → vn−1 → vn → vb;

va → va+1 → · · · → vb−1 → vb → vn → va.

These cycles have lengths n−a+1, n−b+1, and b−a+2, respectively.
Because (n−a+1)− (n− b+1)− (b−a+2) = −2 is not divisible by
3, we conclude that one of these cycles’ lengths is not divisible by 3.

Problem 4 Let x1, x2, . . . , xn be real numbers (n ≥ 2), satisfying
the conditions −1 < x1 < x2 < · · · < xn < 1 and

x13
1 + x13

2 + · · ·+ x13
n = x1 + x2 + · · ·+ xn.

Prove that

x13
1 y1 + x13

2 y2 + · · ·+ x13
n yn < x1y1 + x2y2 + · · ·+ xnyn

for any real numbers y1 < y2 < · · · < yn.
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Solution: For −1 < x < 1, let f(x) = x − x13. We must have
x1 < 0; otherwise, f(x1) ≥ 0 and f(x2), f(x3), . . . , f(xn) > 0, which
is impossible because f(x1) + f(x2) + · · · + f(xn) = 0 by the given
equation. Similarly, xn > 0.

Suppose that 2 ≤ i ≤ n. If xi ≤ 0, then x1 < x2 < · · · < xi−1 <

xi ≤ 0 and
∑n

j=i f(xj) = −
∑i−1

j=1 f(xj) > 0. If instead xi > 0, then
0 < xi < xi+1 < · · · < xn, and we again find that

∑n
j=i f(xi) > 0.

Using the Abel summation formula (although the below manipu-
lations can also be verified by inspection) and the above result, we
have

n∑
i=1

xiyi −
n∑

i=1

x13
i yi =

n∑
i=1

yif(xi)

= y1

n∑
i=1

f(xi) +
n∑

i=2

(yi − yi−1)(f(xi) + f(xi+1) + · · · f(xn))

=
n∑

i=2

(yi − yi−1)(f(xi) + f(xi+1) + · · · f(xn)) > 0,

as desired.

Problem 5 Let AA1 and CC1 be the altitudes of an acute-angled
nonisosceles triangle ABC. The bisector of the acute angles between
lines AA1 and CC1 intersects sides AB and BC at P and Q, respec-
tively. Let H be the orthocenter of triangle ABC and let M be the
midpoint of AC; and let the bisector of angle ABC intersect HM at
R. Prove that quadrilateral PBQR is cyclic.

Solution: Let the perpendiculars to sides AB and BC at points P
and Q, respectively, intersect at R′. Let line R′P intersect line HA
at S, and let line R′Q intersect line HC at T . Let the perpendicular
from M to line AB intersect line HA at U, and let the perpendicular
from M to line BC intersect line HC at V. Because the sides of
triangles PSH andHTQ are parallel to each other, ∠PSH = ∠HTQ.
Also, because line PQ bisects the acute angles between lines AA1 and
CC1, ∠PHS = ∠QHT. Hence, 4PHS ∼ 4QHT . Also, ∠HAP =
π/2−∠ABC = ∠QCH and ∠PHA = ∠QHC, so4PHA ∼ 4QHC.



102 Russia

Therefore,

HT

HS
=
HQ

HP
=
HC

HA
=

2MU

2MV
=
UM

VM
=
HV

HU
.

Thus, the homothety about H taking line PS to line MU also takes
line QT to line MV and hence R′ = PS ∩ QT to M = MU ∩MV.

Therefore, H, R′, and M are collinear.
Again using the fact that 4PHA ∼ 4QHC, we have that angles

HPB and HQB are congruent because they are supplements to the
congruent angles HPA and HQC. Thus, BP = BQ, right triangles
BR′P and BR′Q are congruent, and ∠PBR′ = ∠QBR′. Hence, R′

lies on both line HM and the angle bisector of angle ABC, implying
that R′ = R. It follows immediately that quadrilateral PBQR is
cyclic, because ∠BPR = π/2 = ∠BQR.

Problem 6 Five stones which appear identical all have different
weights; Oleg knows the weight of each stone. Given any stone x, let
m(x) denote its weight. Dmitrii tries to determine the order of the
weights of the stones. He is allowed to choose any three stones A,B,C
and ask Oleg the question, “Is it true that m(A) < m(B) < m(C)?”
Oleg then responds “yes” or “no.” Can Dmitrii determine the order
of the weights with at most nine questions?

Solution: We will show that it is impossible for Dmitrii to
determine the order with at most nine questions. Assume, for sake
of contradiction, that Dmitrii has a method which guarantees that
he can find the order in nine or fewer questions. Suppose that after
Oleg answers Dmitrii’s ith question, there are exactly xi orderings
of the weights of the stones which fit the responses to the first i
questions. We show that it is possible that xi+1 ≥ max{xi− 20, 1

2xi}
for i = 1, 2, . . . , 8.

Observe that there are 5! = 120 ways that the weights of the stones
can be ordered. Then for any three stones A,B,C, exactly 1

6 of the
possible orderings will have m(A) < m(B) < m(C). Thus, if Dmitrii
asks whether m(A) < m(B) < m(C) and Oleg answers “no,” then
Dmitrii can eliminate at most 20 of the 120 possibilities. In this case,
xi+1 ≥ xi − 20 for each i.

Of the xi orderings which fit the responses to the first i questions,
some subset S1 of these possibilities will be eliminated if Oleg answers
“yes” to the (i+ 1)th question, while the complement of that subset
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S2 will be eliminated if Oleg answers “no.” If |S1| ≤ xi/2 and Oleg
answers “yes,” then we have xi+1 = xi − |S1| ≥ xi/2. Otherwise,
|S2| ≤ xi/2; if Oleg answers “no,” we again have xi+1 ≥ xi/2.

Hence, it is possible that x1 = 120, x2 ≥ 80, x3 ≥ 60, x4 ≥ 40,
x5 ≥ 20, x6 ≥ 10, x7 ≥ 5, x8 ≥ 3, and x9 ≥ 2. Therefore, it is
impossible for Dmitrii to ensure that he finds out the ordering in nine
questions.

Problem 7 Find all functions f : R→ R that satisfy the inequality

f(x+ y) + f(y + z) + f(z + x) ≥ 3f(x+ 2y + 3z)

for all x, y, z ∈ R.

Solution: Let t ∈ R. Plugging in x = t, y = 0, z = 0 gives

f(t) + f(0) + f(t) ≥ 3f(t), or f(0) ≥ f(t).

Plugging in x = t/2, y = t/2, z = −t/2 gives

f(t) + f(0) + f(0) ≥ 3f(0), or f(t) ≥ f(0).

Hence, f(t) = f(0) for all t, so f must be constant. Conversely, any
constant function f clearly satisfies the given condition.

Problem 8 Prove that the set of all positive integers can be parti-
tioned into 100 nonempty subsets such that if three positive integers
a, b, c satisfy a + 99b = c, then at least two of them belong to the
same subset.

Solution: Let f(n) denote the highest nonnegative integer k such
that 2k | n. We claim that if a, b, c satisfy a + 99b = c, then at
least two of f(a), f(b), f(c) are equal. If f(a) = f(b), we are done.
If f(a) < f(b), then 2f(a) divides both a and 99b, while 2(f(a)+1)

divides 99b but not a, so f(c) = f(a). Similarly, if f(a) > f(b), then
f(c) = f(b).

Thus, the partition N into the sets Si = {n | f(n) ≡ i (mod 100)}
for i = 1, 2, . . . , 100 (with indices taken modulo 100) suffices: given
three positive integers a, b, c such that a+ 99b = c, two of f(a), f(b),
f(c) equal the same number k, implying that two of a, b, c are in Sk.

Problem 9 Let ABCDE be a convex pentagon on the coordinate
plane. Each of its vertices are lattice points. The five diagonals of
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ABCDE form a convex pentagon A1B1C1D1E1 inside of ABCDE.
Prove that this smaller pentagon contains a lattice point on its
boundary or within its interior.

Solution: Suppose the statement is false. By Pick’s Theorem,
the area of any lattice polygon is either an integer or a half-integer,
implying that there is a counterexample to the statement with min-
imal area. Label the intersections of the diagonals so that A1 is the
intersection of BD with CE and so forth.

We claim that the triangle AC1D1 has no lattice points on its edges
or in its interior, except for A. By assumption, no lattice point lies
on C1D1. Suppose, for sake of contradiction, that there is a lattice
point A′ either on AC1 or AD1, or inside triangle AC1D1. Then
pentagon A′BCDE is a convex pentagon with smaller area than
pentagon ABCDE. Furthermore, the corresponding inner pentagon
is contained within pentagon A1B1C1D1E1, implying that it contains
no lattice points. But then pentagon A′BCDE has smaller area than
pentagon ABCDE and satisfies the same requirements, contradicting
the minimal definition of pentagon ABCDE.

Hence, no lattice points besides A lie on the closed region bounded
by triangle AC1D1. Similarly, none of the lattice points inside
pentagon ABCDE lie on or inside triangles AC1D1, BD1E1, . . . ,
EB1C1, implying that any such lattice points lie on one of the
triangles A1CD,B1DE, . . . , E1BC.

Recall that Pick’s Theorem states that the area of a simple lattice
polygon equals I + 1

2B − 1, where I and B are the numbers of
lattice points in the interior and on the boundary, respectively, of
the polygon. Let e1, e2, and e3 denote the numbers of lattice points
on the interiors of edges BC, CD, and DE, and let i1, i2, and i3
denote the numbers of lattice points inside triangles E1BC,A1CD,

and B1DE. Then

[ACD] = i2 +
1
2
(e2 + 3)− 1,

[BCD] = (i1 + i2) +
1
2
(e1 + e2 + 3)− 1,

[ECD] = (i2 + i3) +
1
2
(e2 + e3 + 3)− 1.

Therefore, [BCD] ≥ [ACD] and [ECD] ≥ [ACD]. Now, consider the
distances from A,B, and E to line CD. Because pentagon ABCDE
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is convex, the distance from A must exceed the distance from at least
one of B and E, say B. But then [ACD] > [BCD], a contradiction.

Problem 10 Let a1, a2, . . . , an be a sequence of nonnegative real
numbers, not all zero. For 1 ≤ k ≤ n, let

mk = max
1≤i≤k

ak−i+1 + ak−i+2 + · · ·+ ak

i
.

Prove that for any α > 0, the number of integers k which satisfy
mk > α is less than a1+a2+···+an

α .

Solution: We prove this statement by induction on n. For n = 1,
we have m1 = a1. If α > a1, then there are no k with mk > α, so the
claim holds trivially. If α < a1, then there is exactly one such k, and
1 < a1/α. Thus, the claim holds for n = 1.

Now suppose n > 1 and assume the claim holds for all smaller n.
Let r be the number of integers k for which mk > α.

If mn ≤ α, then the sequence a1, a2, . . . , an−1 also contains
r values of k for which mk > α. By the inductive hypothesis,
r < (a1 + a2 + · · ·+ an−1)/α ≤ (a1 + a2 + · · ·+ an)/α, as desired.

If instead mn > α, then there is some 1 ≤ i ≤ n such that
(an−i+1 + an−i+2 + · · · + an)/i > α. Fix such an i. The sequence
a1, a2, . . . , an−i contains at least r− i values of k for which mk > α,
so by the inductive hypothesis r− i < (a1 + a2 + · · ·+ an−i)/α. Then

(a1 + a2 + · · ·+ an−i) + (an−i+1 + · · ·+ an) > (r − i)α+ iα = rα.

Dividing by α yields the desired inequality.
Hence, the statement holds for all integers n.

Problem 11 Let a1, a2, a3, . . . be a sequence with a1 = 1 satisfying
the recursion

an+1 =

{
an − 2 if an − 2 6∈ {a1, a2, . . . , an} and an − 2 > 0

an + 3 otherwise.

Prove that for every positive integer k > 1, we have an = k2 =
an−1 + 3 for some n.

Solution: We use induction to prove that for all nonnegative n,
a5n+1 = 5n+ 1, a5n+2 = 5n+ 4, a5n+3 = 5n+ 2, a5n+4 = 5n+ 5, and
a5n+5 = 5n+ 3. The base case n = 0 can be verified easily from the
recursion. Now assume that the claim is true for all n < m for some
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positive m. We will prove that it is also true for n = m. Observe
that by the induction hypothesis, (a1, a2, . . . , a5m) is a permutation of
1, 2, . . . , 5m. Thus, a5m−2 = 5m−4 is included in this set, and hence
a5m+1 = a5m + 3 = 5m+ 1. Similarly, a5m+2 = a5m+1 + 3 = 5m+ 4.
On the other hand, a5m+2− 2 = 5m+2 is not in {a1, a2, . . . , a5m+2},
so a5m+3 = 5m+2. Continuing in this fashion, we find that a5m+4 =
a5m+3+3 = 5m+5 and a5m+5 = a5m+4−2 = 5m+3. This completes
the induction.

Each positive integer greater than 1 is included in the sequence
a2, a3, . . . exactly once. Also, all squares are congruent to either 0, 1,
or 4 (mod 5), which appear in the sequence only at indices congruent
to 4, 1, and 2 (mod 5), respectively. From above, for any n > 1 in one
of these residue classes, we have an = an−1 + 3, and this completes
the proof.

Problem 12 There are black and white checkers on some squares
of a 2n×2n board, with at most one checker on each square. First, we
remove every black checker that is in the same column as any white
checker. Next, we remove every white checker that is in the same row
as any remaining black checker. Prove that for some color, at most
n2 checkers of this color remain.

Solution: After we remove the checkers, no column or row can
contain both black and white checkers. Thus, we may call any row or
column black if it contains only black checkers, and white otherwise.
Let rb be the number of black rows, rw be the number of white rows,
cb be the number of black columns, and cw be the number of white
columns.

First assume that rb + cb ≤ 2n. Because black squares can only
appear in black rows and columns, there can be at most rbcb black
squares. Hence, there are at most rbcb ≤ rb(2n−rb) = n2−(n−rb)2 ≤
n2 black squares.

If instead rb + cb > 2n, then rw + cw = 4n− (rb + cb) ≤ 2n. In this
case, an argument analogous to the one above shows that there are
at most n2 white squares.

Problem 13 Let E be a point on the median CD of triangle ABC.
Let S1 be the circle passing through E and tangent to line AB at A,
intersecting side AC again at M ; let S2 be the circle passing through
E and tangent to line AB at B, intersecting side BC again at N .
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Prove that the circumcircle of triangle CMN is tangent to circles S1

and S2.

Solution: Because tangents DA to S1 and DB to S2 have equal
length, D has equal powers with respect to circles S1 and S2 and
hence lies on their radical axis. Also, E certainly lies on the radical
axis, so this radical axis is line DE. Because C also lies on this line,
C also has equal powers with respect to the two circles. Therefore,
CA · CM = CB · CN , implying that ABNM is cyclic. Now, if MT

and MT1 are tangents to the circumcircle of CMN and circle S1

respectively, then (using directed angles modulo π)

∠AMT = ∠CNM = ∠BAM = ∠AMT1.

Hence, lines MT and MT1 coincide, implying that the circumcircle of
triangle CMN is tangent to S1 at M . Similarly, this circle is tangent
to S2 at N .

Problem 14 One hundred positive integers, with no common divi-
sor greater than one, are arranged in a circle. To any number, we can
add the greatest common divisor of its neighboring numbers. Prove
that using this operation, we can transform these numbers into a new
set of pairwise coprime numbers.

Solution: We begin by proving that if a and b are neighboring
numbers such that a is coprime to α and b is coprime to β, then we
may apply the operation to b finitely many times so that b is coprime
to αβ. Let α0 be the product of the primes which divide α but not β,
so that α0 is coprime to β. Also, letting c be the other neighbor of b,
observe that gcd(a, c) is coprime to α0. Hence, gcd(a, c)β is coprime
to α0, and there exists a nonnegative integer k such that

k · gcd(a, c)β ≡ −b+ 1 (mod α0).

If we apply the operation to b exactly k times, then a and c remain
constant while b changes to a number b′ congruent to

b+ k · gcd(a, c)β ≡ 1 (mod α0).

Thus, b′ is coprime to α0. Also, because b′ ≡ b (mod β) and b is
coprime to β, we know that b′ is coprime to β as well. Therefore, b′

is coprime to α0β and hence b′ is coprime to αβ, as desired.
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For i = 1, 2, . . . , 99, let yi equal the product of primes p such that
before applying any operations, we have p | x100 and p 6 | xi. Using
the above result with (a, b, α, β) = (x1, x2, y1, y2), we find that we can
apply the operation finitely many times to x2 to make x2 coprime to
y1y2. Next, using the above result with (a, b, α, β) = (x2, x3, y1y2, y3),
we can apply the operation finitely many times to x3 to make x3

coprime to y1y2y3. Continuing similarly, we find we can make x99

coprime to y1y2 · · · y99. Finally, using the above result with (a, b) =
(x99, x98), we can make x98 coprime to y1y2 · · · y99. In doing so, we
have applied the operation to x1, x2, . . . , x99 but not x100, implying
that x100 has remained constant.

Because the numbers in the circle have no common divisor greater
than 1, each prime p that divides x100 is coprime to one of x1, x2, . . . ,
x99; hence, one of y1, y2, . . . , y99 is divisible by p. Thus, y1y2 · · · y99
is divisible by each prime p dividing x100. Because x98 is coprime to
y1y2 · · · y99, it must then be coprime to each p dividing x100. Hence,
gcd(x98, x100) = 1.

Applying the operation to x99 multiple times, we can transform
x99 into a prime which is larger than any other number on the circle.
We now have that gcd(x97, x99) = 1. Applying the operation to x98

multiple times, we can transform x98 into a prime which is larger than
any other number on the circle. Continuing similarly, we transform
x1, x2, . . . , x100 into 100 distinct primes — that is, into a new set of
100 pairwise coprime numbers.

Problem 15 M is a finite set of real numbers such that given three
distinct elements from M , we can choose two of them whose sum also
belongs to M . What is the largest number of elements that M can
have?

Solution: M = {−3,−2,−1, 0, 1, 2, 3} contains 7 elements, and
we claim that it has the required properties. Given three distinct
elements, if any two of them are of opposite sign, then their sum
is in M ; if any of them is zero, then its sum with either of the
other elements is in M . The only other triples of elements of M
are {−3,−2,−1} and {1, 2, 3}; in the first case, we may choose −2
and −1, and in the second case, we may choose 1 and 2.

We claim that 7 is the largest number of elements that M can
have. Suppose that there are at least three positive elements, and
let b < c be the largest two. Given any other positive element a,
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one of the sums a + b, a + c, and b + c must lie in M . However,
the latter two cannot because they exceed c, the maximal element.
Hence, (a+ b) ∈M , and because this sum exceeds b, it must equal c.
Therefore, a = c−b, implying that there is at most one other positive
element in M besides b and c.

Thus, M cannot have more than three positive elements. Likewise,
it contains at most three negative elements. M might also contain 0,
but this sets an upper bound of seven elements.

Problem 16 A positive integer n is called perfect if the sum of all
its positive divisors, excluding n itself, equals n. For example, 6 is
perfect because 6 = 1 + 2 + 3. Prove that

(a) if a perfect number larger than 6 is divisible by 3, then it is also
divisible by 9.

(b) if a perfect number larger than 28 is divisible by 7, then it is also
divisible by 49.

Solution: For a positive integer n, let σ(n) denote the sum of all
positive divisors of n. It is well-known that σ is multiplicative, i.e.
that if a, b are relatively prime then σ(ab) = σ(a) = σ(b). Note that
n is perfect if and only if σ(n) = 2n, and σ(n) ≥ n with equality if
and only if n = 1.

Suppose that p ∈ {3, 7}, and that n is a perfect number divisible
by p but not by p2. Write n = 2apm for integers a,m such that a ≥ 0
and gcd(m, 2p) = 1. Then

2a+1pm = 2n = σ(n) = σ(2a)σ(p)σ(m) = (2a+1 − 1)(p+ 1)σ(m).

Because p+ 1 is a power of 2, we have 2a+1 ≥ p+ 1. Hence,

2a+1pm = (2a+1 − 1)(p+ 1)σ(m) ≥
(

2a+1 ·
(

1− 1
2a+1

))
(p+ 1)m

≥ 2a+1

(
1− 1

p+ 1

)
(p+ 1)m = 2a+1pm,

where equality holds only if σ(m) = m (i.e. m = 1) and 2a+1 = p+1.
Equality must indeed hold. If p = 3, then we find that (m,a) = (1, 1)
and n = 21 · 3 · 1 = 6. If p = 7, then we find that (m,a) = (1, 2) and
n = 22 ·7 ·1 = 28. Therefore, if a perfect number greater than 6 (resp.
28) is divisible by 3 (resp. 7), then it is also divisible by 9 (resp. 49).
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Problem 17 Circles ω1 and ω2 are internally tangent at N , with
ω1 larger than ω2. The chords BA and BC of ω1 are tangent to
ω2 at K and M , respectively. Let Q and P be the midpoints of the
arcs AB and BC not containing the point N . Let the circumcircles of
triangles BQK and BPM intersect at B and B1. Prove that BPB1Q

is a parallelogram.

Solution: All angles are directed modulo π. The homothety about
N that sends ω2 to ω1 sends line BC to a line ` tangent to the arc BC
not containing N. Because ` is parallel to line BC, it must be tangent
at the midpoint P of arc BC. Thus, the homothety sends M to P,

implying that N, M, and P are collinear. Hence, ∠MPB = ∠NPB.
Similarly, ∠BQK = ∠BQN.

Because BB1MP and BB1KQ are cyclic, we have

∠BB1M + ∠KB1B = ∠BPM + ∠KQB = ∠BPN + ∠NQB = π.

Thus, B1 is on line MK.
It follows that ∠BQB1 = ∠BKB1 = ∠BKM. Because BK is

tangent to ω1, ∠BKM in turn equals ∠KNM = ∠QNP = ∠QBP.
Hence, ∠BQB1 = ∠QBP , implying that BP and QB1 are parallel.
Similarly, BQ and PB1 are parallel. This completes the proof.

Problem 18 There is a finite set of congruent square cards, placed
on a rectangular table with their sides parallel to the sides of the
table. Each card is colored in one of k colors. For any k cards of
different colors, it is possible to pierce some two of them with a single
pin. Prove that all the cards of some color can be pierced by 2k − 2
pins.

Solution: We prove the claim by induction on k. If k = 1, then we
are told that given any set containing one card (of the single color),
two cards in the set can be pierced with one pin. This is impossible
unless there are no cards, in which case all the cards can be pierced
by 0 = 2k − 2 pins.

Assume that the claim is true for k = n− 1, and consider a set of
cards colored in n colors. Orient the table such that the sides of the
cards are horizontal and vertical. Let X be a card whose top edge
has minimum distance to the top edge of the table. Because all of the
cards are congruent and identically oriented, any card that overlaps
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with X must overlap either X’s lower left corner or X’s lower right
corner. Pierce pins P1 and P2 through these two corners.

Let S be the set of cards which are not pierced by either of these
two pins and which are colored differently than X. None of the cards
in S intersects X, and they are each colored in one of k − 1 colors.
Given a set T ⊆ S of n − 1 cards of different colors, it is possible to
pierce some two of the cards in T ∪{X} with a single pin. Because no
card in T overlaps with X, this single pin actually pierces two cards
in T .

Therefore, we may apply our induction hypothesis to S and pierce
all the cards of some color c in S with 2n − 4 pins. Combined with
the pins P1 and P2, we find that all the cards of color c can be pierced
with 2n− 2 pins. This completes the inductive step and the proof.

Problem 19 Prove the inequality

sinn(2x) + (sinn x− cosn x)2 ≤ 1.

Solution: Write a = sinx and b = cosx; then a2 + b2 = 1. The left
hand side of the desired inequality equals

(2ab)n + (an − bn)2 = a2n + b2n + (2n − 2)anbn,

while the right hand side equals

1 = (a2 + b2)n = a2n + b2n +
n−1∑
j=1

(
n

j

)
a2(n−j)b2j .

It thus suffices to prove that
∑n−1

j=1

(
n
j

)
a2(n−j)b2j ≥ (2n− 2)anbn. We

can do so by viewing
∑n−1

j=1

(
n
j

)
a2(n−j)b2j as a sum of

∑n−1
j=1

(
n
j

)
=

2n−2 terms of the form a2(n−j)b2j , and then applying the arithmetic
mean-geometric mean inequality to these terms.

Problem 20 The circle ω is inscribed in the quadrilateral ABCD,
where lines AB and CD are not parallel and intersect at a point O.
The circle ω1 is tangent to side BC at K and is tangent to lines AB
and CD at points lying outside ABCD; the circle ω2 is tangent to
side AD at L and is also tangent to lines AB and CD at points lying
outside ABCD. If O,K,L are collinear, prove that the midpoint of
side BC, the midpoint of side AD, and the center of ω are collinear.
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Solution: Let I, I1, and I2 be the centers of circles ω, ω1, and
ω2, respectively. Let P and Q be the points of tangency of ω with
sides BC and AD, respectively, and let S and R be the points
diametrically opposite P and Q on ω. Because lines IP and I1K

are both perpendicular to line BC, I1K ‖ IS. Furthermore, the
homothety about O that takes ω1 to ω takes I1 to I. Hence, this
homothety takes line I1K to line IS — and in particular, it takes K
to S. Thus, O is collinear with K and S, implying that S lies on the
line through O, K, and L. Similarly, we find that R lies on the same
line.

Now, let M and N be the midpoints of BC and AD, respectively.
Because K and P are the points of tangency of the incircle and an
excircle of triangle OBC with side BC, a standard computation using
equal tangents shows that CK = BP . It follows that M is also the
midpoint of KP , and similarly, N is the midpoint of LQ. Because
PS and QR are diameters of ω, quadrilateral PQSR is a rectangle.
Hence, line PQ is parallel to line RS, which (from our previous work)
is the same as the line through K and L.

Because lines PQ and KL are parallel, M is the midpoint of PK,
and N is the midpoint of QL, we find that M and N lie on the line
parallel to, and halfway between, lines PQ and RS. On the other
hand, I clearly also lies on this line. Thus, M, I, and N are collinear,
as desired.

Problem 21 Every cell of a 100× 100 board is colored in one of 4
colors so that there are exactly 25 cells of each color in every column
and in every row. Prove that one can choose two columns and two
rows so that the four cells where they intersect are colored in four
different colors.

Solution: Let the colors used be A,B,C,D. We call an unordered
pair of squares sanguine if the two squares lie in the same row and are
of different colors. Every row gives rise to 6 ·252 sanguine pairs (given
by
(
4
2

)
possible pairs of colors and 25 squares of each color). Thus,

summing over all the rows, there is a total of 100·6·252 sanguine pairs.
On the other hand, each such pair is simply the intersection of one row
with a pair of distinct columns. Because there are

(
100
2

)
= 100 · 99/2
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pairs of columns, some pair of columns contains at least

100 · 6 · 252

100 · 99/2
=

2 · 6 · 252

99
>

12 · 252

4 · 25
= 75

sanguine pairs. Thus, some two fixed columns form sanguine pairs in
at least 76 rows. We henceforth ignore all other rows and columns;
we may as well assume that we have only a 76 × 2 board colored in
four colors, in which each row contains two different colors and no
color occurs more than 25 times in each column.

For each row, consider the pair of colors it contains. If the pairs
{A,B} and {C,D} each occur in some row, we are done; likewise
for {A,C}, {B,D} and {A,D}, {B,C}. Thus, suppose that at most
one pair of colors from each of these three sets occurs; we now seek a
contradiction. We easily see that we have only two possibilities, up to
a possible relabelling of colors: either {A,B}, {A,C}, {A,D} are the
only pairs that can occur, or {A,B}, {A,C}, {B,C} are. In the first
case, each of the 76 rows contains a square of color A, implying that
one column has more than 25 squares of color A — a contradiction.
In the second case, each column can contain only the letters A,B,C.
There can only be 25 squares of each color A,B,C in each column,
for a total of at most 150 squares — but there are 152 squares in
total, a contradiction. This completes the proof.

Problem 22 The non-zero real numbers a, b satisfy the equation

a2b2(a2b2 + 4) = 2(a6 + b6).

Prove that a and b are not both rational.

Solution: We rewrite the given equation as

a4b4 − 2a6 − 2b6 + 4a2b2 = 0,

or
(a4 − 2b2)(b4 − 2a2) = 0.

It follows that either a4 = 2b2 or b4 = 2a2, that is, ±
√

2 = a2/b or
±
√

2 = b2/a. Neither of these equations has solutions in non-zero
rational numbers a and b.

Problem 23 Find the smallest odd integer n such that some n-gon
(not necessarily convex) can be partitioned into parallelograms whose
interiors do not overlap.



114 Russia

Solution: Take a regular hexagon ABCDEF with center O. Let G
be the reflection of O across A, and let H be the reflection of C across
B. Then the (concave) hexagon AGHCDEF can be partitioned into
the parallelograms ABHG, ABCO, CDEO, and EFAO.

We now show that n = 7 is minimal. Suppose, for sake of
contradiction, that a partition into parallelograms exists for some
triangle or pentagon. Choose any side AB of the polygon, and
orient the figure so that this side is horizontal and at the bottom
of the polygon. At least one parallelogram has a side parallel to AB,
because one such parallelogram overlaps AB in a segment. Choose
the parallelogram P with this property whose top edge CD (parallel
to AB) is as high up as possible. If this top edge does not overlap
with another side of the polygon, then some other parallelogram must
lie above P and overlap with CD in a segment — contradicting the
extremal definition of P. Hence, some other side of the polygon is
parallel to AB.

In other words, given any side of the polygon, some other side of the
polygon is parallel to it. This is clearly impossible if n = 3. If some
pentagon has this property, then some two of its sides are parallel
while the remaining three are pairwise parallel. But some two sides
in this triple of parallel sides must be adjacent, implying that they
actually cannot be parallel — a contradiction. This completes the
proof.

Problem 24 Two pirates divide their loot, consisting of two sacks
of coins and one diamond. They decide to use the following rules.
On each turn, one pirate chooses a sack and takes 2m coins from it,
keeping m for himself and putting the rest into the other sack. The
pirates alternate taking turns until no more moves are possible; the
first pirate unable to make a move loses the diamond, and the other
pirate takes it. For what initial numbers of coins can the first pirate
guarantee that he will obtain the diamond?

Solution: We claim that if there are x and y coins left in the two
sacks, respectively, then the next player P1 to move has a winning
strategy if and only if |x− y| > 1. Otherwise, the other player P2 has
a winning strategy.

We prove the claim by induction on the total numbers of coins,
x + y. If x + y = 0, then no moves are possible and the next player
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does not have a winning strategy. Now assuming that the claim is
true when x+ y ≤ n for some nonnegative n, we prove that it is true
when x+ y = n+ 1.

First consider the case |x−y| ≤ 1. Assume that a move is possible;
otherwise, the next player P1 automatically loses, in accordance with
our claim. The next player must take 2m coins from one sack, say
the one containing x coins, and put m coins into the sack containing
y coins. Hence the new difference between the numbers of coins in
the sacks is

|(x− 2m)− (y +m)| ≥ | − 3m| − |y − x| ≥ 3− 1 = 2.

At this point, there are now a total of x + y −m coins in the sacks,
and the difference between the numbers of coins in the two sacks is at
least 2. Thus, by the induction hypothesis, P2 has a winning strategy.
This proves the claim when |x− y| ≤ 1.

Now consider the case |x − y| ≥ 2. Without loss of generality, let
x > y. P1 would like to find an m such that 2m ≤ x, m ≥ 1, and

|(x− 2m)− (y +m)| ≤ 1.

The number m = dx−y−1
3 e satisfies the last two inequalities above,

and we claim that 2m ≤ x as well. Indeed, x − 2m is nonnegative
because it differs by at most 1 from the positive number y+m. After
taking 2m coins from the sack with x coins, P1 leaves a total of
x+y−m coins, where the difference between the numbers of coins in
the sacks is at most 1. Hence, by the induction hypothesis, the other
player P2 has no winning strategy. It follows that P1 has a winning
strategy, as desired.

This completes the proof of the induction and of the claim. It
follows that the first pirate can guarantee that he will obtain the
diamond if and only if the number of coins initially in the sacks differ
by at least 2.

Problem 25 Do there exist pairwise coprime integers a, b, c > 1
such that 2a + 1 is divisible by b, 2b + 1 is divisible by c, and 2c + 1
is divisible by a?

Solution: We claim that no such integers exist. Let π(n) denote
the smallest prime factor of a positive integer n.
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Lemma. If p is a prime such that p | (2y + 1) and p < π(y), then
p = 3.

Proof: Let d be the order of 2 modulo p. Because 2p−1 ≡
1 (mod p) by Fermat’s Little Theorem, we must have d ≤ p − 1.
Hence, each prime factor of d is less than p < π(y), implying that d
and y are relatively prime.

We are given that p divides 2y+1, so it must 22y−1 = (2y+1)(2y−1)
as well, implying that d | 2y. Above we showed that d and y are
relatively prime, implying that d | 2. Because d > 1, we must have
d = 2. Hence, p | (22 − 1), and p = 3.

Suppose we did have relatively prime integers a, b, c > 1 such that
b divides 2a +1, c divides 2b +1, and a divides 2c +1. Then a, b, and
c are all odd; furthermore, because they are relatively prime, π(a),
π(b), and π(c) are distinct. Without loss of generality, assume that
π(a) < π(b), π(c). Applying the lemma with (p, y) = (π(a), c), we
find that π(a) = 3. Write a = 3a0.

We claim that 3 6 | a0. Otherwise, 9 would divide 2c + 1 and hence
22c − 1. Because 2n − 1 ≡ (mod 9) only if 6 | n, we must have
6 | 2c. Then 3 | c, contradicting the assumption that a and c are
coprime. Thus, 3 does not divide a0, b, or c. Let q = π(a0bc), so that
π(q) = q ≤ min{π(b), π(c)}.

Suppose, for sake of contradiction, that q divides a. Because a and
c are coprime, q cannot divide c, implying that π(q) = q is not equal to
π(c). Because π(q) ≤ π(c), we must have π(q) < π(c). Furthermore,
q must divide 2c + 1 because it divides a factor of 2c + 1 (namely,
a). Applying our lemma with (p, y) = (q, c), we find that q = 3,
a contradiction. Hence, our assumption was wrong, and q does not
divide a. Similarly, q does not divide c. It follows that q must divide
b.

Now, let e be the order of 2 modulo q. Then e ≤ q − 1, so e has
no prime factors less than q. Also, q divides b and hence 2a + 1 and
22a − 1, implying that e | 2a. The only prime factors of 2a less than
q are 2 and 3, so e | 6. Thus, q | (26 − 1), and q = 7. However,
23 ≡ 1 (mod 7), so

2a + 1 ≡ (23)a0 + 1 ≡ 1a0 + 1 ≡ 2 (mod 7).

Hence, q does not divide 2a + 1, a contradiction.
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Problem 26 2n + 1 segments are marked on a line. Each of the
segments intersects at least n other segments. Prove that one of these
segments intersects all the other segments.

Solution: Mark the segments on a horizontal number line with the
positive direction on the right, so that all endpoints are assigned a
coordinate. Of the finitely many segments, some segment L has a
left endpoint whose coordinate is maximal; similarly, some segment
R has a right endpoint whose coordinate is minimal. L intersects
at least n + 1 of the given segments (including L itself), as does R,
giving a total count of 2n+ 2 > 2n+ 1 segments. Hence, some given
segment S intersects both L and R.

If any given segment S ′ lies entirely to the right of S, then its left
endpoint is to the right of S. But the left endpoint of L cannot lie to
the right of S because L∩S 6= ∅. Thus, S ′ has a left endpoint farther
to the right than that of L, a contradiction.

Similarly, no given segment can lie entirely to the left of S. It follows
that any given segment intersects S, as required.

Problem 27 The circles S1 and S2 intersect at points M and N .
Let A and D be points on S1 and S2, respectively, such that lines
AM and AN intersect S2 at B and C; lines DM and DN intersect
S1 at E and F ; and A,E, F lie on one side of line MN , and D,B,C
lie on the other side. Prove that there is a fixed point O such that
for any points A and D that satisfy the condition AB = DE, O is
equidistant from A, F , C, and D.

Solution: We use directed angles modulo π until further notice.
First we show that if lines AC and DF do not coincide, then
quadrilateral AFCD is cyclic. Observe that ∠MAN = ∠MEN and
∠MBN = ∠MDN . Combined with the given equality AB = DE,
this proves that triangles ANB and END are congruent. Thus,
AN = NE and DN = NB. We also have ∠ANE = ∠AME =
∠BMD = ∠BND, so that isosceles triangles ANE and DNB are
similar. Therefore,

∠FAC = ∠FEN = ∠AEN − ∠AEF = ∠AEN − ∠ANF

= ∠NBD − ∠CND = ∠NBD − ∠CBD = ∠NBC = ∠FDC.

Hence, quadrilateral AFCD is indeed cyclic.
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We are left with proving that the center of the circumcircle of
quadrilateral AFCD is some fixed point O. Let P and Q be the
centers of circles S1 and S2. We claim that we may let O be the
reflection of M across the perpendicular bisector of PQ; note that
this definition is independent of the positions of A,B, . . . , F .

We claim that O lies on the perpendicular bisector of AC. Let
∠PNA = α and ∠QNC = β. Assume without loss of generality that
α < β. Then ∠APN = π − 2α and ∠CQN = π − 2β. Observe
that PO = QM and QO = PM by reflection. Thus, PO = QN and
QO = PN , which shows that POQN is a parallelogram. Because
∠PNQ = π + α − β, this implies that ∠OPN = ∠NQO = β − α.
Therefore, ∠APO = π − α + β and ∠CQO = π + α − β. By
assumption, α < β, so the value we obtained for ∠APO exceeds
π. Thus, in terms of undirected angles (with positive values less than
π), ∠APO = π+α−β = ∠CQO. We also know that PO = QC and
QO = PA. Thus, triangles APO and OQC are congruent. It follows
that OA = OC, and hence O is indeed on the perpendicular bisector
of AC.

Similarly, O lies on the perpendicular bisector of DF . Hence,
OA = OC and OD = OF . If lines AC and DF coincide, then
A = F and C = D, so that OA = OC = OD = OF . Otherwise, the
intersection O of the perpendicular bisectors of AC and DF must be
the circumcenter of cyclic quadrilateral AFCD, so that we still have
OA = OC = OD = OF . This completes the proof.

Problem 28 Let the set M consist of the 2000 numbers 101 +
1, 102 + 1, . . . , 102000 + 1. Prove that at least 99% of the elements of
M are not prime.

Solution: Suppose n is a positive integer and not a power of 2, so
that n has an odd factor s > 1. Then 10n + 1 is composite because
1 < 10n/s + 1 < 10n + 1 and

10n + 1 = (10n/s + 1)(10s−1 − 10s−2 + · · · − 10 + 1).

Among the numbers 1, 2, . . . , 2000, there are only 11 powers of
2, namely 1 = 20, 2 = 21, . . . , 1024 = 210. Thus, if n is any
of the remaining 1989 values, then 10n + 1 is not prime. Because
1989 > 1980 = 99

100 · 2000, at least 99% of the elements of M are not
prime.
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Problem 29 There are 2 counterfeit coins among 5 coins that look
identical. Both counterfeit coins have the same weight and the other
three real coins have the same weight. The five coins do not all weigh
the same, but it is unknown whether the weight of each counterfeit
coin is more or less than the weight of each real coin. Find the minimal
number of weighings needed to find at least one real coin, and describe
how to do so. (The balance scale reports the weight of the objects in
the left pan, minus the weight of the objects in the right pan.)

Solution: Name the coins C1, C2, . . . , C5. We first show that two
weighings suffice. First weigh C1 and C2 against C3 and C4, and
record the positive difference d1; then weigh C1 against C3 and record
the positive difference d2. At most two of the sets {C1, C3}, {C2, C4},
and {C5} contain a counterfeit coin, so at least one contains only
real coins. It is easy to verify that if C5 is real, then (i) d1 = 0 or
d2 = 1

2d1. If C5 is counterfeit but C2 and C4 are real, then (ii) d1 6= 0
and d2 = d1. And if C5 is counterfeit but C1 and C3 are real, then
(iii) d1 6= 0 and d2 = 0. These exhaust all possible distributions of
coins, and the results (i), (ii), (iii) are distinguishable — implying
that if we know that (i), (ii), or (iii) holds, then we can identify C5,

C2, or C3, respectively, as real. Thus, two weighings suffice.
We now show that one weighing does not suffice. Suppose that

we weighed n1 coins on one side (“side A”) and n2 ≤ n1 coins on
the other side (“side B”). For arbitrary d > 0, we show that the
weight on side A might be d greater than that on side B, but that
it is impossible to identify a real coin given such a difference. First,
because it is possible to distinguish one of the five coins, we cannot
have n1 = n2 = 0. Next, pick any coin in our set-up; we claim that
we can mark that coin and another such that if there are m1 and
m2 marked coins on sides A and B, respectively, then m2 6= m1 or
n2 6= n1. Indeed, if n2 = n1, then some but not all of the coins are
on the scale; hence, we can mark our two coins so that one is on the
scale and the other is not. We find r > 0 and ε > −r such that

(n1 − n2)r + (m1 −m2)ε = d

as follows: if n1 = n2 > 0, thenm1 6= m2, so we can we set ε = d
m1−m2

and r > |ε|; if instead n1 > n2, then we choose ε sufficiently small
and solve for r. If the marked coins were counterfeit with weight r+ ε

and the unmarked coins were real with weight r, the balance would
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report difference d.
Repeating this construction but varying the initial marked coin,

we find that the scale might report difference d but that each coin is
counterfeit in some distribution that reports this difference. Hence, it
is not guaranteed that we can determine a real coin after one weighing.

Problem 30 Let ABCD be a parallelogram with ∠A = π/3. Let O
be the circumcenter of triangle ABD. Line AO intersects the external
angle bisector of angle BCD at K. Find the value AO

OK .

Solution: Observe that

∠DCB + ∠BOD = π/3 + 2∠BAD = π/3 + 2π/3 = π,

implying that quadrilateral CBOD is cyclic. Let O′ be its circum-
center.

Let P be the point diametrically opposite A on the circumcircle
of triangle BAD, so that P lies on line AOK. The reflection across
the center of parallelogram ABCD sends O′C to OA, implying that
O′C = OA = OP and that lines O′C and OAP are parallel. Hence,
O′C and OP are parallel and congruent, implying that quadrilateral
POO′C is a parallelogram; in fact, it must be a rhombus because
O′C = O′O. Hence, OP = PC.

Because OB = OD, line CO is the internal angle bisector of
angle BCD. Hence, line CO is perpendicular to the external angle
bisector of angle BCD, namely line CK. It follows that triangle
OCK has a right angle at C. P is a point on the hypotenuse OK
with OP = PC, implying that P is actually the midpoint of OK.
Therefore, OK = 2OP = 2AO, and the required ratio AO

OK is 1
2 .

Problem 31 Find the smallest integer n such that an n×n square
can be partitioned into 40× 40 and 49× 49 squares, with both types
of squares present in the partition.

Solution: We can partition a 2000× 2000 square into 40× 40 and
49× 49 squares: partition one 1960× 1960 corner of the square into
49×49 squares and then partition the remaining portion into 40×40
squares.

We now show that n must be at least 2000. Suppose that an n×n
square has been partitioned into 40 × 40 and 49 × 49 squares, using
at least one of each type. Let ζ = e2πi/40 and ξ = e2πi/49. Orient the
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n × n square so that two sides are horizontal, and number the rows
and columns of unit squares from the top left: 0, 1, 2, . . . , n − 1. For
0 ≤ j, k ≤ n− 1, and write ζjξk in square (j, k). If an m×m square
has its top-left corner at (x, y), then the sum of the numbers written
in it is

x+m−1∑
j=x

y+m−1∑
k=y

ζjξk = ζxξy

(
ζm − 1
ζ − 1

)(
ξm − 1
ξ − 1

)
.

The first fraction in parentheses is 0 ifm = 40, and the second fraction
is 0 if m = 49. Thus, the sum of the numbers written inside each
square in the partition is 0, so the sum of all the numbers must be
0. However, applying the above formula with (m,x, y) = (n, 0, 0), we
find that the sum of all the numbers equals 0 only if either ζn − 1 or
ξn−1 equals 0. Thus, n must be either a multiple of 40 or a multiple
of 49.

Let a and b be the number of 40 × 40 and 49 × 49 squares,
respectively. The area of the square equals 402 · a + 492 · b = n2. If
40 | n, then 402 | b and hence b ≥ 402. Thus, n2 > 492 · 402 = 19602;
because n is a multiple of 40, n ≥ 50 · 40 = 2000. If instead 49 | n,
then 492 | a, a ≥ 492, and again n2 > 19602. Because n is a multiple
of 49, n ≥ 41 · 49 = 2009 > 2000. In either case, n ≥ 2000, and 2000
is the minimum possible value of n.

Problem 32 Prove that there exist 10 distinct real numbers a1, a2,

. . . , a10 such that the equation

(x− a1)(x− a2) · · · (x− a10) = (x+ a1)(x+ a2) · · · (x+ a10)

has exactly 5 different real roots.

Solution: Choose distinct real numbers a1, a2, . . . , a10 such that
a6 = a7 + a8 = a9 + a10 = 0 and a1, a2, a3, a4, a5 > 0. For 6 ≤
k ≤ 10, x − ak is a factor of both sides of the given equation,
so ak is a real root. Dividing both sides of the given equation by
(x−a6)(x−a7) · · · (x−a10) and collecting terms onto one side yields

(x+ a1)(x+ a2) · · · (x+ a5)− (x− a1)(x− a2) · · · (x− a5) = 0.

For 1 ≤ k ≤ 5 and x > 0, we have |x + a1| = x + a1 > max{x −
a1, a1−x} = |x−a1|. Hence, the left hand side of the above equation
is positive for x > 0. Because the left hand side is an even function
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of x, it is also positive for x < 0. Therefore, the given equation has
no other real roots besides the 5 different roots a6 = 0, a7, a8, a9, a10.

This completes the proof.

Problem 33 We are given a cylindrical region in space, whose
altitude is 1 and whose base has radius 1. Find the minimal number
of balls of radius 1 needed to cover this region.

Solution: First we show that three balls suffice. Let D be the
disc cut off from the cylinder by the plane halfway between the
cylinder’s two bases, and let O be the center of this disc. Choose three
points A,B,C on the boundary of C such that ∠AOB = ∠BOC =
∠COA = 2π/3, and let D,E, F be the midpoints of CA, AB, BC,
respectively. We claim that the unit spheres centered at D,E, F
contain the cylinder.

For now, we work in the plane containing D. We show that the
disc centered at D with radius

√
3/2 contains all of sector BOC;

similarly, the discs centered at E and F with radius
√

3/2 contain all
of sectors COA and AOB, respectively. Introduce coordinates such
that O = (0, 0) and D = (1/2, 0). Given a point P = (x, y) on minor
arc BC, we have x ≥ 1/2 and y2 = 1− x2. Hence,

DP 2 = (x− 1/2)2 + y2 = (x2 − x+ 1/4) + (1− x2) = 5/4− x ≤ 3/4,

implying that P lies inside the disc centered at D. Hence, this disc
contains minor arc BC, and it clearly contains O. Because the disc
is convex, it must contain all of sector BOC, as claimed.

Therefore, any point in D is within
√

3/2 of one of D,E, F . Now,
suppose that we have any point P in the given cylinder; let Q be the
foot of the perpendicular from P to D. Without loss of generality,
assume that QD ≤

√
3/2. Then

DP =
√
PQ2 +QD2 ≤

√
(1/2)2 + (

√
3/2)2 = 1,

so that the unit sphere centered at D Contains P . Therefore, the
three described balls cover the cylinder, as desired.

Now we show that two balls are insufficient. Suppose, for sake of
contradiction, that some two unit spheres cover the cylinder. Consider
the circular boundary C1 of one base of the cylinder. The plane
containing it cuts each ball in a disc, if at all, so each ball can contain
at most one continuous arc of the circle. Thus, one ball must contain
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an arc with measure at least π, and this ball must then contain two
points X1, X2 on C1 which are diametrically opposite. Hence, the
center of the ball must be contained on or within the unit spheres
centered at X1 and X2 — but the only point with this property is
the center of C1.

Hence, one ball B1 is centered at the center O1 of one base of the
cylinder, and similarly another ball B2 is centered at the center O2 of
the other base of the cylinder. But any point on the boundary of D
(the disc halfway between the two bases) is

√
2 from O1 and O2 and

cannot be in either B1 or B2, a contradiction.

Problem 34 The sequence a1, a2, . . . , a2000 of real numbers satisfies
the condition

a3
1 + a3

2 + · · ·+ a3
n = (a1 + a2 + · · ·+ an)2

for all n, 1 ≤ n ≤ 2000. Prove that every element of the sequence is
an integer.

Solution: We use induction on n to prove that for each n, an is an
integer and a1 + a2 + · · ·+ an = Nn(Nn+1)

2 for a nonnegative integer
Nn. We extend this sum to the case n = 0, for which we use N0 = 0,
and we will use this to start our induction.

Assume that our claim holds for n = k; we will verify it for n = k+1.

We are given that
(∑k+1

i=1 ai

)2

=
∑k+1

i=1 a
3
i , or equivalently

(
Nk(Nk + 1)

2
+ ak+1

)2

=
(
Nk(Nk + 1)

2

)2

+ a3
k+1.

Expanding and factoring, this becomes

ak+1(ak+1 − (Nk + 1))(ak+1 +Nk) = 0.

Thus ak+1 ∈ {0, Nk + 1,−Nk}, so that ak+1 is an integer.
Now we determine Nk+1 to finish the induction. If ak+1 = 0, then

we may set Nk+1 = Nk. If ak+1 = Nk + 1, then

k∑
i=1

ai + ak+1 =
Nk(Nk + 1)

2
+ (Nk + 1) =

(Nk + 2)(Nk + 1)
2

,
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so we may set Nk+1 = Nk + 1. Finally, if ak+1 = −Nk, then
k∑

i=1

ai + ak+1 =
Nk(Nk + 1)

2
−Nk =

Nk(Nk − 1)
2

,

so we set Nk+1 = Nk − 1. This completes the inductive step, and the
proof.

Problem 35 The angle bisectors AD and CE of triangle ABC

intersect at I. Let `1 be the reflection of line AB across line CE, and
let `2 be the reflection of line BC across line AD. If lines `1 and `2
intersect at some point K, prove that KI ⊥ AC.

Solution: If ∠ABC = π/2, then `1 and `2 are both perpendicular
to AC, so that the intersection point K could not exist, Hence,
∠ABC 6= π/2.

Let P,Q, and R be the points of tangency of the incircle of triangle
ABC with sides BC, CA, and AB, and notice that I is the incenter
of the triangle. Let line IP intersect line AB at S, and let line
IR intersect line BC at T ; because angle ABC is not right, these
intersection points exist. By equal tangents, BP = BR, so triangles
BPS and BRT are congruent. Observe that P and R are reflections
of each other across line CE. Reflect triangle BPS across line CE
to form triangle URK1, where U is on line AC and K1, R, and I

are collinear and form a line perpendicular to line AC. Similarly,
reflect triangle BRT across line AD to triangle V RK2, with V on
line AC and K2, R, I forming a line perpendicular to line AC. We
have RK1 = PS = RT = RK2; thus, K1 = K2. On the other hand,
line UK1 is the reflection of line AB across line CE, and line V K2 is
the reflection of line BC across line AD. Therefore, K = K1 = K2

and KI ⊥ AC as desired.

Problem 36 There are 2000 cities in a country, some pairs of which
are connected by a direct airplane flight. For every city A the number
of cities connected with A by direct flights equals 1, 2, 4, . . . , or 1024.
Let S(A) be the number of routes from A to other cities (different
from A) with at most one intermediate landing. Prove that the sum
of S(A) over all 2000 cities A cannot be equal to 10000.

Solution: Let T be the set of cities. For each city A, let d(A) be
the number of cities adjacent to A (i.e. connected to A by a direct
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flight). We claim that ∑
A∈T

d(A)2 =
∑
A∈T

S(A),

by showing that each side equals the total number of short routes,
routes with at most two (distinct) legs.

For each city A, exactly S(A) short routes start from A. Hence,
the right hand side above — the sum of S(A) over all cities A — gives
the total number of short routes.

Now we analyze the sum on the left hand side. Each short flight
has either one or two legs. Given any city A, exactly d(A) one-leg
routes begin at A; and exactly d(A)(d(A) − 1) two-leg routes make
an intermediate stop at A. This gives a total of d(A)2 short routes.
Hence, the left hand side above — the sum of d(A)2 over all cities A
— gives the total number of short routes.

Thus, we see that the two sums are indeed equal. To finish the
problem, observe that for any city A, we have d(A) ∈ {1, 2, . . . , 1024}
and hence d(A)2 ≡ 1 (mod 3). Hence,∑

A∈T
S(A) =

∑
A∈T

d(A)2 ≡ 2000 · 1 ≡ 2 (mod 3).

Because 10000 6≡ 2 (mod 3), it follows that
∑

A∈T S(A) 6= 10000.

Problem 37 A heap of balls consists of one thousand 10-gram balls
and one thousand 9.9-gram balls. We wish to pick out two heaps of
balls with equal numbers of balls in them but different total weights.
What is the minimal number of weighings needed to do this? (The
balance scale reports the weight of the objects in the left pan, minus
the weight of the objects in the right pan.)

Solution: Two heaps of balls with equal numbers of balls in them
have the same total weights if and only if they contain the same
number of 10-gram balls. Zero weighings cannot suffice — if we pick
out two heaps of n ≤ 1000 balls each, it is possible that each heap
contains bn/2c 10-gram balls and dn/2e 9.9-gram balls, so that both
heaps have the same total weight.

However, one weighing does suffice. Split the two thousand balls
into three heaps H1, H2, H3 of 667, 667, and 666 balls, respectively.
Weigh heaps H1 and H2 against each other. If the total weights are
not equal, we are done. Otherwise, discard one ball from H1 to form
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a new heap H ′1 of 666 balls. We claim that H ′1 and H3 have different
weights. If not, then they have the same number of 10-gram balls —
say, n. Then H1 and H2 either each had n 10-gram balls or each had
n+1 10-gram balls. This would imply that 1000 equals 3n or 3n+2,
which is impossible.

Problem 38 Let D be a point on side AB of triangle ABC. The
circumcircle of triangle BCD intersects line AC at C and M , and
the circumcircle of triangle ACD intersects line BC at C and N . Let
O be the center of the circumcircle of triangle CMN . Prove that
OD ⊥ AB.

Solution: All angles are directed modulo π. We have ∠NDB =
π − ∠ADN = ∠NCA = ∠BCA and similarly ∠ADM = ∠BCA.
Thus, ∠MDN = π − 2∠BCA. Because O is the circumcenter of
triangle CMN , ∠NOM = 2∠NCM = 2∠BCA. Thus, quadrilateral
DMON is cyclic. Because angles MDO and ODN cut off equal
chords OM and ON in this circle, they are congruent. Hence,

∠ADO = ∠ADM + ∠MDO = ∠NDB + ∠ODN = ∠ODB,

implying that ∠ADO = ∠ODB = π/2, as desired.

Problem 39 Every cell of a 200 × 200 table is colored black or
white. The difference between the numbers of black and white cells is
404. Prove that some 2× 2 square contains an odd number of white
cells.

Solution: Label the cells in the table with ordered pairs (r, c),
where 1 ≤ r ≤ 200 is the row number (numbered top to bottom) and
1 ≤ c ≤ 200 is the column number (numbered left to right). We begin
by stating an obvious subsidiary result. Assume that the 2×2 square
with upper-left corner (i, j) has an even number of white squares.
Then (i, j) and (i + 1, j) are the same color if and only if (i, j + 1)
and (i+ 1, j + 1) are the same color.

Now suppose, for sake of contradiction, that every 2 × 2 square
contains an even number of white cells, so that each 2× 2 square also
contains an even number of black cells. Let b and w be the numbers of
black and white cells in the first row of the table. Because b+w = 200,
|b− w| is an even number — say, equal to 2m ≤ 200.



2000 National Contests: Problems 127

Now consider the next row of the table. If the leftmost cell in the
row is the same (resp. different) color than the cell immediately above
it, then by applying the subsidiary result we find that every cell in the
second row is the same (resp. different) color than the cell immediately
above it. We can repeat this reasoning for each subsequent row of the
table to see that the coloring of each row is either identical to the
first row, or directly opposite it. Let the number of rows colored
identically to the first row be x, and the number of rows that are
colored opposite it be y. Because x+ y = 200, |x− y| is even — say,
equal to 2n ≤ 200. Then the difference between the numbers of black
and white cells is |b − w| · |x − y| = 4mn. We are given that this
difference is 404. Hence, mn = 101. But this implies that either m
or n is 101, which is impossible because 2m and 2n are at most 200.
Thus, we have a contradiction. This completes the proof.

Problem 40 Is there a function f : R→ R such that

|f(x+ y) + sinx+ sin y| < 2

for all x, y ∈ R?

Solution: Suppose, for sake of contradiction, that such a function
existed. Setting x = π/2, y = π/2 gives |f(π) + 2| < 2, while setting
x = −π/2, y = 3π/2 gives |f(π)− 2| < 2. Hence,

4 ≤ |f(π) + 2|+ |−f(π) + 2| < 2 + 2,

a contradiction. Thus, no such function exists.

Problem 41 For any odd integer a0 > 5, consider the sequence
a0, a1, a2, . . . , where

an+1 =
{
a2

n − 5 if an is odd
an

2 if an is even

for all n ≥ 0. Prove that this sequence is not bounded.

Solution: We use induction on n to show that a3n is odd and
that a3n > a3n−3 > · · · > a0 > 5 for all n ≥ 1. The base case
n = 0 is true by assumption. Now assuming that the claim is true
for all n ≤ k, we prove that it is true for k + 1. Because a3k is odd,
a2
3k ≡ 1 (mod 8) and hence a3k+1 = a2

3k− 5 ≡ 4 (mod 8). Thus, a3k+1

is divisible by 4 but not 8, implying that a3(k+1) = a3k+1/4 is indeed
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odd. Furthermore, a3k > 5 by the induction hypothesis, implying
that a2

3k > 5a3k > 4a3k + 5. Thus, a3(k+1) = 1
4

(
a2
3k − 5

)
> a3k. This

completes the induction and shows that the sequence is unbounded.

Problem 42 Let ABCD be a convex quadrilateral. Let `a, `b, `c,
and `d be the external angle bisectors of angles DAB, ABC, BCD,
and CDA, respectively. The pairs of lines `a and `b, `b and `c, `c and
`d, `d and `a intersect at points K,L,M,N , respectively. Suppose
that the perpendiculars to line AB passing through K, to line BC
passing through L, and to line CD passing through M are concurrent.
Prove that ABCD can be inscribed in a circle.

Solution: We begin by proving the following lemma:

Lemma. Let W , X, Y , and Z be points in the plane. Suppose
WX2 + Y Z2 = WZ2 + XY 2. Then lines WY and XZ are per-
pendicular.

Proof: Choose an arbitrary origin in the plane, and let w,x,y, z
denote the vectors from the origin to the points W,X, Y, Z, respec-
tively. Using the property that the dot product of a vector with itself
is equal to the square of its norm, we can translate the given condition
into

(w−x) ·(w−x)+(y−z) ·(y−z) = (w−z) ·(w−z)+(x−y) ·(x−y).

Expanding and simplifying, we obtain the relation

(w − y) · (x− z) = 0,

which proves that WY ⊥ XZ.

Now we consider the problem at hand. Let the angles of quadri-
lateral ABCD be α, β, γ, and δ, and let the three concurrent perpen-
diculars to lines AB,BC, and CD meet at O. Then ∠AKO = α

2 ,
∠BKO = β

2 , ∠CMO = γ
2 , and ∠DMO = δ

2 . Because α+β+γ+δ =
2π, it follows that ∠NKL + ∠LMN = π. Therefore, quadrilateral
KLMN is cyclic. Next, observe that ∠LKO = β

2 = ∠KLO, so
OK = OL. Similarly, OL = OM . Thus, O is the circumcenter of
KLMN . Then ∠KNL = 1

2∠KOL = π/2 − β
2 = ∠KBA, so that

quadrilateral ABLN is cyclic. By the Power of a Point Theorem, it
follows that

KL ·KB = KN ·KA.
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Repeating this argument for the other three vertices of KLMN , we
obtain the equalities

KL ·BL = LM · LC,

MN ·MD = LM · CM,

MN ·DN = KN ·AN.

Summing these four equations yields

KL2 +MN2 = KN2 + LM2.

Applying our lemma, we find that KM ⊥ LN . It follows that
angles KOL and MON are supplementary. Because OL ⊥ AB

and OK ⊥ BC, we also know that angles KOL and ABC are
supplementary.

Because ∠KNO = ∠NKO = α/2, we know that ON ⊥ AD,
and we similarly find that angles MON and CDA are supplemen-
tary. Therefore, angles ABC and CDA are also supplementary, and
quadrilateral ABCD is cyclic.

Problem 43 There are 2000 cities in a country, and each pair of
cities is connected by either no roads or exactly one road. A cyclic
path is a nonempty, connected path of roads such that each city is at
the end of either 0 or 2 roads in the path. For every city, there are at
most N cyclic paths which both pass through this city and contain
an odd number of roads. Prove that the country can be separated
into 2N +2 republics such that any two cities from the same republic
are not connected by a road.

Solution: Equivalently, we show that given a graph in which each
vertex belongs to at most N non-self-intersecting odd-length cycles,
the vertices can be assigned labels in {1, 2, . . . , 2N + 2} so that no
two adjacent vertices have the same label. (We say a cycle or path
has odd or even length if the number of edges it contains is odd
or even, respectively.) It suffices to prove the statement when the
graph is connected; otherwise, we can assign labels to each component
separately.

Suppose the graph has n vertices. Fix an initial vertex v1, and
arrange all the vertices as v1, v2, . . . , vn in nondecreasing order of
distance from v1. Now we successively label vertices v1, v2, . . . , vn

with positive integers as follows: for each vi, assign the smallest
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positive integer that has not already been assigned to a neighbor
of vi. This will ensure that no two adjacent vertices have the same
label, and now we simply need to show that no vertex ever receives a
label greater than 2N + 2.

Write vi ≺ vj or vj � vi if vi, vj are adjacent and i < j. Notice
that if any w 6= v1 receives the label 1, then there exists v ≺ w with
a label greater than 1. (Proof: let v be the vertex preceding w on
a minimal path from v1 to w; because our vertices are arranged in
order of distance from v1, v ≺ w. Also, because w has the label 1,
its neighbor v must have a different label.) And, if w receives a label
greater than 1, then there exists v ≺ w which is labelled 1 (because
otherwise our labelling scheme would have assigned the label 1 to
w). It follows that, for any w, there exists a sequence of vertices
w = w0 � w1 � w2 � · · · � wr = v1 whose labels alternate between 1
and numbers greater than 1. We call such a path an alternating path.

Now suppose that some w receives a label greater than 2N +2. By
construction, there exist u1, u2, . . . , u2N+2 ≺ w such that each um is
labelled m. Let m be any even element of {1, 2, . . . , 2N+2}. Because
um received a label greater than m− 1, there exists u′m ≺ um which
is labelled m− 1. We construct an alternating path P1 from um−1 to
v1 and another alternating path P2 from u′m to v1. These paths have
even length if m = 2, and they have odd length otherwise.

We would like to connect these paths — travelling along P1 and
then backward along P2 — to form an even-length path from um−1 to
u′m, but P1 and P2 may contain some of the same vertices. To correct
this problem, let vmax be the largest vertex occurring in both P1 and
P2 — where by “largest,” we mean according to our total ordering ≺
of the vertices. (We may have vmax = u′m, if um−1 = u′m.) Then we
abridge our alternating paths so that they run from um−1 to vmax and
u′m to vmax. If vmax has label 1, this entails trimming an even number
of vertices off of both alternating paths; otherwise, we have trimmed
an odd number of vertices off of both paths. Either way, we can now
append the two to obtain a path um−1 � · · · � vmax ≺ · · · ≺ u′m,
with even length. Finally, adding three edges to this path gives a
cycle w � um−1 � · · · � vmax ≺ · · · ≺ u′m ≺ um ≺ w of odd
length. The maximal definition of vmax ensures that this cycle is not
self-intersecting.

For each even value of m = 2, 4, . . . , 2N +2, we obtain such a cycle
of odd length passing through w. In the cycle corresponding to some
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m, the neighbors of w are um−1 and um, implying that the N + 1
cycles we find are distinct. This is a contradiction, implying that we
were mistaken in assuming that some vertex receives a label greater
than 2N + 2. This completes the proof.

Problem 44 Prove the inequality

1√
1 + x2

+
1√

1 + y2
≤ 2√

1 + xy

for 0 ≤ x, y ≤ 1.

Solution: If x = 0, the problem reduces to the inequality 1 +
1/
√

1 + y2 ≤ 2, which is obviously true. Similarly, the inequality is
clearly true if y = 0.

Now assume x and y are positive, and choose real numbers u and v
such that x = e−u and y = e−v. Because x and y are both at most 1,
u and v must both be nonnegative. Substituting for x and y in terms
of u and v, we see that it suffices to prove that

1√
1 + e−2u

+
1√

1 + e−2v
≤ 2√

1 + e−(u+v)

for nonnegative u, v. Consider the function

f(t) =
1√

1 + e−2t
.

Then we are to prove that f(u) + f(v) ≤ 2f((u+ v)/2), for u, v ≥ 0.
To do this, all we need to show is that f is concave on the interval
[0,+∞). A simple calculation of the derivatives of f does the trick:

f ′(t) = (1 + e−2t)−3/2e−2t,

and

f ′′(t) = 3(1 + e−2t)−5/2e−4t − 2(1 + e−2t)−3/2e−2t

=
3− 2e2t(1 + e−2t)
(1 + e−2t)5/2e4t

=
1− 2e2t

(1 + e−2t)5/2e4t
.

The denominator of the last expression is certainly positive, while the
numerator is negative because e2t ≥ 1 for t ≥ 0. Thus, f is indeed
concave for t ≥ 0. This completes the proof.

Problem 45 The incircle of triangle ABC touches side AC at K.
A second circle S with the same center intersects each side of the
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triangle twice. Let E and F be the intersection points on AB and
BC closer to B; let B1 and B2 be the intersection points on AC with
B1 closer to A. Finally, let P be the intersection point of B2E and
B1F . Prove that points B,K,P are collinear.

Solution: Let I be the incenter of triangle ABC, and let J and L be
the points of tangency of the incircle with sides BC and AB. Observe
that triangles ILE, IJF , IKB1, and IKB2 are mutually congruent.
Hence LE = JF = KB1 = KB2. By equal tangents, AK = AL and
CK = CJ . Adding these to the previous equalities gives AB2 = AE

and CB1 = CF ; hence, triangles AB2E and CB1F are isosceles.
Let D1 and D2 be points on line AC such that BD1 ‖ B1F and
BD2 ‖ B2E. Then triangles AD2B and CD1B are also isosceles.
Also, triangles B1PB2 andD1BD2 are homothetic because their sides
are parallel.

We now show that the center of the homothety is K. We already
saw above that KB1 = KB2. Hence, it suffices to show that KD1 =
KD2. Let a = BC, b = CA, c = AB, and let s denote the
semiperimeter 1

2 (a+b+c) of triangle ABC. By a standard calculation
using equal tangents, CK = s − a and AK = s − c. We also know
that CD1 = CB = a and AD2 = AB = c because triangles CD1B

and AD2B are isosceles. Therefore,

KD1 = CD1−CK = a− (s− c) = c− (s− a) = AD2−AK = KD2,

as desired. It follows that a homothety aboutK takes triangle B1PB2

to triangle D1BD2, and hence K,P , and B are collinear.

Problem 46 Each of the numbers 1, 2, . . . , N is colored black or
white. We are allowed to simultaneously change the colors of any
three numbers in arithmetic progression. For which numbers N can
we always make all the numbers white?

Solution: Clearly we cannot always make all the numbers white
if N = 1. Suppose that 2 ≤ N ≤ 7, and suppose that only the
number 2 is colored black. Call a number from {1, . . . , N} heavy if
it is not congruent to 1 modulo 3. Let X be the number of heavy
numbers which are black, where X changes as we change the colors.
Suppose we change the colors of the numbers in {a − d, a, a + d},
where 1 ≤ a − d < a < a + d ≤ N . If d is not divisible by 3, then
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a − d, a, a + d are all distinct modulo 3, so exactly two of them are
heavy. If instead d is divisible by 3, then a − d, a, a + d must equal
1, 4, 7, none of which are heavy. In either case, changing the colors
of these three numbers changes the color of an even number of heavy
numbers. Hence, X is always an odd number, and we cannot make
all the numbers white.

Now we show that for N ≥ 8, we can always make all the numbers
white. To do this, it suffices to show that we can invert the color of
any single number n; we prove this by strong induction. If n ∈ {1, 2},
then we can invert the color of n by changing the colors of the numbers
in {n, n + 3, n + 6}, {n + 3, n + 4, n + 5}, and {n + 4, n + 5, n + 6}.
Now assuming that we can invert the color of n− 2 and n− 1 (where
3 ≤ n ≤ N), we can invert the color of n by first inverting the colors
of n − 2 and n − 1, and then changing the colors of the numbers in
{n− 2, n− 1, n}.

Hence, we can always make all the numbers white if and only if
N ≥ 8.
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1.18 Taiwan

Problem 1 In an acute triangle ABC, AC > BC and M is the
midpoint of AB. Let altitudes AP and BQ meet at H, and let lines
AB and PQ meet at R. Prove that the two lines RH and CM are
perpendicular.

Solution: Let S be the foot of the altitude from C to line AB,
and let X be the foot of the perpendicular from H to line CM .
Because ∠HPC = ∠HQC = ∠HXC = π/2, the points H,P,Q,X
and C concyclic. Similarly, because ∠HXM = ∠HSM = π/2, the
points H,X, S, and M are concyclic. Furthermore, P,Q, S, and M

are concyclic because they all lie on the nine-point circle of triangle
ABC. By the Radical Axis Theorem, the pairwise radical axes of
these three circles — namely, lines AB, PQ and HX — must concur.
Because R is the intersection of lines AB and PQ, it must be collinear
with H and X. Therefore, line RH (which coincides with line RX) is
perpendicular to line CM.

Problem 2 Let φ(k) denote the number of positive integers n

satisfying gcd(n, k) = 1 and n ≤ k. Suppose that φ(5m − 1) = 5n − 1
for some positive integers m,n. Prove that gcd(m,n) > 1.

Solution: In this solution, we use the following well known facts
about φ: it is a multiplicative function (i.e. φ(ab) = φ(a)φ(b) for
relatively prime positive integers a and b), and φ(pα) = pα − pα−1 if
p is prime and α is a positive integer.

Suppose, for sake of contradiction, that gcd(m,n) = 1.
We first show that m is odd. Suppose otherwise for sake of

contradiction. Note that 5x is congruent to 1 (resp. 5) modulo 8 if x
is even (resp. odd). If m were even, then 5m − 1 is divisible by but
not equal to 8. Because 5m−1 does not equal 8, 5n−1 = φ(5m−1) is
either divisible by φ(16) = 8 or φ(8)φ(pα) = 8φ(pα) ≡ 0 (mod 8) for
some odd prime power pα > 1. Therefore, n must be even, contrary
to the assumption that gcd(m,n) = 1.

Next suppose, for sake of contradiction, that p2 | (5m− 1) for some
odd prime p. Clearly, p 6 | 5, so 5 has some order modulo p; let d be
this order. Because p | (5m − 1), we have d | m. Also, p divides
φ(p2) and hence φ(5m − 1) = 5n − 1, implying that d | n as well.
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But d > 1 because 5 6≡ 1 (mod p), implying that gcd(m,n) 6= 1 — a
contradiction.

Therefore, 5m − 1 = 4
∏

p∈S p for some set S of odd primes. Let

p be any element of S. Because 1 =
(

1
p

)
=
(

5m

p

)
=
(

5
p

)m

and m is

odd,
(

5
p

)
= 1. Also, by the law of quadratic reciprocity,(

5
p

)(p
5

)
= (−1)

(5−1)(p−1)
4 = 1,

implying that
(

p
5

)
= 1. Hence, p is congruent to 1 or 4 modulo 5.

However, we cannot have p ≡ 1 (mod 5), because then 5 would divide
p − 1 = φ(p) and hence φ(5m − 1) = 5n − 1, which is impossible.
Therefore, p ≡ 4 (mod 5).

It follows that

−1 ≡ 5m − 1 = 4
∏
p∈S

p ≡ 4 · 4|S| (mod 5)

and

−1 ≡ 5n − 1 = φ(4)
∏
p∈S

φ(p) = 2
∏
p∈S

(p− 1) = 2 · 3|S| (mod 5).

From the first of these equations we have that |S| must be even,
but from the second we have that |S| ≡ 3 (mod 4), a contradiction.
Therefore, our original assumption was false, and gcd(m,n) > 1.

Problem 3 Let A = {1, 2, . . . , n}, where n is a positive integer. A
subset of A is connected if it is a nonempty set which consists of one
element or of consecutive integers. Determine the greatest integer k
for which A contains k distinct subsets A1, A2, . . . , Ak such that the
intersection of any two distinct sets Ai and Aj is connected.

Solution: Let A1, . . . , Ak be distinct subsets of A satisfying the
required property. Let m = max1≤i≤n (minAi) , and suppose that
minAi0 = m.

Every Ai has minimum element less than or equal to m, by the
definition of m. Every Ai also has maximum element greater than or
equal to m, or else Ai ∩ Ai0 = ∅ would not be connected. Therefore,
each of the k pairs (minAi,maxAi) equals one of the m(n+ 1−m)
pairs (r, s) such that 1 ≤ r ≤ m ≤ s ≤ n.

For each such pair (r, s), we show that at most one Ai has
(minAi,maxAi) = (r, s). If there were two such distinct sets, then
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their intersection is a connected set containing r and s, and hence all
of r, r+ 1, . . . , s. It would then follow that the two sets both equalled
{r, r + 1, . . . , s}, a contradiction.

Therefore, k is at most m(n+ 1−m) ≤ (n+ 1)bn/2c2 − bn/2c2 =
bn2+2n

4 c. This maximum is attained when the Ai are the connected
subsets of A containing m0, where m0 equals either bn/2c or dn/2e.

Problem 4 Let f : N→ N∪{0} be defined recursively by f(1) = 0
and

f(n) = max
1≤j≤bn

2 c
{f(j) + f(n− j) + j}

for all n ≥ 2. Determine f(2000).

Solution: For each positive integer n, we consider the binary
representation of n. Consider the substrings of the representation
formed by removing at least one digit from the left side of the
representation, such that the substring so formed begins with a 1.
We call the decimal values of these substrings the tail-values of n.
Also, for each 1 that appears in the binary representation of n, if it
represents the number 2k, let 2k · k

2 be a place-value of n.
Let g(n) be the sum of the tail- and place-values of n. We prove

by induction on n that f(n) = g(n). For convenience, let g(0) = 0.
It is clear that g(1) = 0. It will therefore suffice to show that g(n)
satisfies the same recurrence as f(n). First we prove that

g(n) ≥ g(j) + g(n− j) + j (1)

for all n, j such that 0 ≤ j ≤ bn
2 c. The relation is trivially true

for j = 0 because we have defined g(0) = 0. Now we induct on the
number of (binary) digits of n−j. For the base case (when n−j has 1
binary digit), we can only have n− j = 1. In this case, (n, j) = (2, 1)
or (n, j) = (1, 0), in which cases (1) is easily seen to be true. Now we
prove the induction step by considering two cases.

• Case 1: n− j and j have the same number of digits, say k + 1.
Let a and b be the numbers formed by taking off the leftmost
1’s (which represent 2k) from n − j and j. We want to show
that g(n) = g(a + b + 2k+1) ≥ g(2k + a) + g(2k + b) + (2k + b).
Subtracting the inequality g(a + b) ≥ g(a) + g(b) + b (which is
true by the induction hypothesis), we see that it suffices to show
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that

g(a+ b+ 2k+1)− g(a+ b)

≥ g(2k + a)− g(a) + g(2k + b)− g(b) + 2k.
(2)

On the right hand side, g(2k +a) equals g(a) plus the place-value
2k · k

2 and the tail-value a. Similarly, g(2k + b) = g(b)+2k · k
2 + b.

Hence, the right hand side equals

2k · k
2

+ a+ 2k · k
2

+ b+ 2k = 2k+1 · k + 1
2

+ a+ b.

As for the left hand side of (2), because a < 2k and b < 2k,
the binary representation of a + b + 2k+1 is simply the binary
representation of a+ b, with an additional 1 in the 2k+1 position.
Hence, g(a + b + 2k+1) equals g(a + b) plus the additional tail-
value a + b and the additional place-value 2k+1 · k+1

2 . Thus,
g(a + b + 2k+1) − g(a + b) equals the right hand side, proving
the inequality in (2).

• Case 2: n−j has more digits than j. Let n−j have k+1 digits,
and — as before — let a = n − j − 2k. We need to prove that
g(a+ j + 2k) ≥ g(a+ 2k) + g(j) + j. We know by the induction
hypothesis that g(a+ j) ≥ g(a) + g(j) + min {a, j}. Subtracting,
we see that it suffices to prove that

g(a+ j + 2k)− g(a+ j) ≥ g(a+ 2k)− g(a) + j −min {a, j}. (3)

We find as in Case 1 that on the right hand side, g(a+2k)−g(a) =
2k · k

2 + a. Hence, the right hand side equals

2k · k
2

+ a+ j −min {a, j} = 2k · k
2

+ max {a, j}.

On the left hand side of (3), if a + j < 2k (i.e. so that the 2k

digits do not carry in the sum (a + j) + 2k), then g(a + j + 2k)
equals g(a + j) plus the additional place-value 2k · k

2 and the
additional tail-value a + j. Hence, the left hand side of (3) is
indeed greater than or equal to the right hand side. Otherwise, if
the 2k digits do carry in the sum (a+ j) + 2k, then g(a+ j + 2k)
equals g(a+ j) plus the additional place-value 2k+1 · k+1

2 , minus
the original place-value 2k · k

2 . Thus, the left hand side equals

2k+1 · k + 1
2
− 2k · k

2
= 2k · k

2
+ 2k > 2k · k

2
+ max {a, j},
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so again (3) is true. This completes the induction.

Hence, g(n) ≥ max1≤j≤bn
2 c{g(j) + g(n− j) + j} for all n. We now

prove that in fact equality holds, by showing that g(n) = g(j)+g(n−
j)+j for some j. Let 2k be the largest power of 2 less than n, and set
j = n−2k. Then g(n) equals g(n−2k) plus the additional place-value
g(2k) = g(n− j) and the additional tail-value n− 2k = j.

It follows that f(n) = g(n) for all n. Hence, by finding the place-
and tail-values of 2000 (with binary representation 11111010000), we
may compute that f(2000) = 10864.
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1.19 Turkey

Problem 1 Find the number of ordered quadruples (x, y, z, w) of
integers with 0 ≤ x, y, z, w ≤ 36 such that

x2 + y2 ≡ z3 + w3 (mod 37).

Solution: All congruences will be modulo 37. For each k between
0 and 36 inclusive, we find the number of pairs (x, y) of integers with
0 ≤ x, y ≤ 36 satisfying x2 + y2 ≡ k. Notice that this is equivalent to
(x+ 6y)(x− 6y) ≡ k.

First we consider the case k = 0. For each y ∈ {0, 1, . . . , 36}, we
have (x+ 6y)(x− 6y) ≡ 0 if and only if x ≡ ±6y. Thus, there is one
pair (x, y) with y = 0 such that x2 + y2 ≡ 0 (namely, (x, y) = (0, 0)),
and for any other y there are two such pairs (x, y). Hence, there are
a total of 2 · 36 + 1 = 73 pairs (x, y) such that x2 + y2 ≡ 0.

Now we consider the case when k 6= 0. Let a ≡ x + 6y, b ≡
x − 6y. For any value a ∈ {1, 2, . . . , 36}, there is exactly one value
of b ∈ {1, 2, . . . , 36} such that ab ≡ k. Each of these 36 pairs (a, b)
corresponds to a unique solution (x, y), because we must have x ≡
(a+ b)2−1, y ≡ (a− b)12−1. Thus, the equation (x+ 6y)(x− 6y) ≡ k
has exactly 36 solutions (x, y) whenever k 6≡ 0.

We proceed to count the number of quadruples (x, y, z, w) such that
x2+y2 ≡ z3+w3 ≡ 0. There are three cube roots r1, r2, r3 of 1 modulo
37 — namely, if we let g be a primitive element modulo 37, then the
cube roots are 1, g12, and g24. Given any z, we have z3 + w3 ≡ 0 if
and only if w equals −r1z, −r2z, or −r3z. Hence, there are 109 pairs
(z, w) such that z3 +w3 ≡ 0 — one pair such that z = 0, and 3 pairs
such that z = z0 for each z0 ∈ {1, 2, . . . , 36}. Above, we found that
there are exactly 73 pairs (x, y) such that x2+y2 ≡ 0. Therefore, there
are 109 · 73 quadruples (x, y, z, w) such that x2 + y2 ≡ z3 + w3 ≡ 0.

For each of the 372−109 pairs (z, w) such that z3+w3 6≡ 0, there are
exactly 36 pairs (x, y) such that x2 + y2 ≡ z3 +w3. Hence, there are
(372−109) ·36 quadruples (x, y, z, w) such that x2+y2 ≡ z3+w3 6≡ 0.

Therefore, there are 109 · 73 + (372 − 109) · 36 = 53317 quadruples
(x, y, z, w) such that x2 + y2 ≡ z3 + w3.

Problem 2 Given a circle with center O, the two tangent lines from
a point S outside the circle touch the circle at points P and Q. Line
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SO intersects the circle at A and B, with B closer to S. Let X be an
interior point of minor arc PB, and let line OS intersect lines QX
and PX at C and D, respectively. Prove that

1
AC

+
1
AD

=
2
AB

.

Solution: Extend ray PC to intersect arc QB at Y . By symmetry,
arcs BX and BY are congruent, implying that ∠CPB = ∠Y PB =
∠BPX = ∠BPD. Hence, PB is the internal angle bisector of angle
CPD. Because ∠APB = π/2, we also have that PA is the external
angle bisector of angle CPD. Applying the internal and external
Angle Bisector Theorems, we find that

BC/BD = PC/PD = AC/AD.

Substituting BC = AB −AC and BD = AD−AB and dividing the
left and right hand sides by AB, we have AB−AC

AB·AC = AD−AB
AD·AB . This

implies that 1
AC −

1
AB = 1

AB −
1

AD , which is equivalent to the desired
equality.

Problem 3 For any two positive integers n and p, prove that there
are exactly (p+ 1)n+1 − pn+1 functions

f : {1, 2, . . . , n} → {−p,−p+ 1, . . . , p}

such that |f(i)− f(j)| ≤ p for all i, j ∈ {1, 2, . . . , n}.

Solution: Given m ∈ {−p,−p+1, . . . , p}, there are (min{p+1, p−
m+1})n functions satisfying the given conditions which attain values
only in {m, . . . ,m+ p}. Of these, (min{p, p−m})n functions attain
values only in {m+ 1, . . . ,m+ p}. Hence, exactly

(min{p+ 1, p+ 1−m})n − (min{p, p−m})n

functions satisfying the given conditions have minimum value m.
This expression equals (p + 1)n − pn for each of the p + 1 values

m ≤ 0, and it equals (p + 1 −m)n − (p −m)n when m > 0. Thus,
the sum of the expression over all m ≤ 0 is (p + 1)((p + 1)n − pn),
while the sum of the expression over all m > 0 is the telescoping sum∑p

m=1 ((p+ 1−m)n − (p−m)n) = pn. Adding these two sums, we
find that the total number of functions satisfying the given conditions
is (p+ 1)n+1 − pn+1, as desired.
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Problem 4 In an acute triangle ABC with circumradius R, alti-
tudes AD, BE, CF have lengths h1, h2, h3, respectively. If t1, t2,
t3 are the lengths of the tangents from A, B, C, respectively, to the
circumcircle of triangle DEF, prove that

3∑
i=1

(
ti√
hi

)2

≤ 3
2
R.

Solution: Let H be the orthocenter of triangle ABC, and let X,Y ,
and Z be the respective midpoints of AH,BH, and CH. Because the
circumcircle of triangle DEF is the nine-point circle of triangle ABC,
it passes through X,Y , and Z. Hence, t21 = AX · AD = AX · h1, or
(t1/
√
h1)2 = AX. We can find similar expressions for BX and CX.

The desired inequality is thus equivalent to AX + BY + CZ ≤ 3
2R,

or (multiplying each side by 2)

AH +BH + CH ≤ 3R.

Let ∠A = α,∠B = β, and ∠C = γ. Then,

AH =
AF

sinβ
=
AC cosα

sinβ
= 2R cosα.

Similarly, BH = 2R cosβ and CH = 2R cos γ, so the required
inequality is equivalent to

cosα+ cosβ + cos γ ≤ 3
2
.

Recall that ABC is acute and the function t 7→ cos t is concave on
the interval (0, π/2). Thus, Jensen’s Inequality implies that the left
hand side of this last inequality attains its maximum when all three
angles are equal to π/3, in which case the left hand side equals 3/2.
Thus, this last inequality is true, and the desired inequality is as well.

Problem 5

(a) Prove that for each positive integer n, the number of ordered
pairs (x, y) of integers satisfying

x2 − xy + y2 = n

is finite and divisible by 6.

(b) Find all ordered pairs (x, y) of integers satisfying

x2 − xy + y2 = 727.
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Solution: (a) Any solution (x, y) must satisfy the inequality

n = x2 − xy + y2 =
1
2
(x− y)2 +

1
2
(x2 + y2) ≥ 1

2
(x2 + y2),

and only finitely many ordered pairs (x, y) do so. Hence, there are
finitely many solutions.

Next we prove that the number of solutions is divisible by 6. If
(x, y) is a solution, so is (y, y − x). This linear transformation is
invertible, so it permutes the set of all solutions, and we can partition
the solution set into orbits. Each such orbit is of the form

{(x, y), (y, y − x), (y − x,−x), (−x,−y), (−y, x− y), (x− y, x)}

for some initial solution (x, y). It is straightforward to check that no
two of the six solutions in each orbit can be equal unless x = y = 0,
which is impossible. Thus, each orbit has 6 distinct elements, and the
desired result follows.

(b) Given any solution to x2 − xy + y2 = 727, we can apply the
transformations (x, y) 7→ (y, y − x) (as in part (a)), then possibly
(x, y) 7→ (y, x), to obtain another solution (x, y) with y ≤ 0 ≤ x ≤ |y|.

We now find all such solutions with y ≤ 0 ≤ x ≤ |y|. Rearranging
the required equation gives y2 − xy + x2 − 727 = 0. Viewing this as
a quadratic in y, we can apply the quadratic formula to find that

y =
x±
√

2908− 3x2

2
.

Hence, 2908 − 3x2 must be a perfect square, and it is not divisible
by 3. Because 3x2 ≤ y2 − xy + x2 = 727, we further know that
2181 ≤ 2908 − 3x2 ≤ 2908, giving 46 <

√
2908− 3x2 < 54. Testing

these possibilities, we find that only
√

2908− 3x2 = 49 has an integer
solution x, yielding the unique solution (13,−18) of the desired form.

Thus, every solution can be transformed into (13,−18) by applying
the two maps described earlier. Hence, any solution is in the orbit of
(13,−18) or (−18, 13) under (x, y) 7→ (y, y−x), implying that all the
solutions to x2 − xy + y2 = 727 are:

(13,−18), (−18,−31), (−31,−13), (−13, 18), (18, 31), (31, 13),

(−18, 13), (13, 31), (31, 18), (18,−13), (−13,−31), (−31,−18).



2000 National Contests: Problems 143

Problem 6 Given a triangle ABC, the internal and external bisec-
tors of angle A intersect line BC at points D and E, respectively.
Let F be the point (different from A) where line AC intersects the
circle ω with diameter DE. Finally, draw the tangent at A to the
circumcircle of triangle ABF , and let it hit ω at A and G. Prove that
AF = AG.

Solution: We give a proof for the case in which C, B, and E are
collinear in that order; the proof for the other case is similar.

Let O be the center of ω. By the Angle Bisector Theorem (for both
the internal and exterior angle bisectors),

CD

DB
=
CA

AB
=
CE

BE
.

Thus, CD(CE − CB) = CD ·BE = CE ·DB = CE(CB − CD), or
(adding CD(CB+CE) to both sides) 2CD ·CE = CB · (CD+CE).
Because CD + CE = 2CO, we have

CD · CE = CB · CO.

On the other hand, CD · CE = CA · CF by the Power of a Point
Theorem applied to C and ω. It follows that CB · CO = CA · CF .
Hence, by Power of a Point, the points A,B,O, F lie on some circle
ω1.

We perform an inversion about A with radius AO. ω is a circle
passing through A which is perpendicular to line AO and contains a
point P on ray AO with AP = 2AO. Hence, its image `1 under the
inversion is a line which is perpendicular to line AO and contains a
point P ′ on ray AO with AP ′ = AO/2. In other words, ω’s image `1
is the perpendicular bisector of AO. Next, the inversion takes ω1 (a
circle passing through A, passing through O, and tangent to line AG)
to the line `2 not passing through A, passing through O, and parallel
to line AG.

It follows that the inversion sends F , the intersection of ω and ω1,
to the intersection F ′ of `1 and `2; furthermore, the inversion sends
G, the intersection of ω1 and line AG, to the intersection of `1 and
line AG. The reflection across the midpoint of AO sends `1 to itself
and `2 to line AG; hence, this reflection sends OF ′ to AG′, implying
that OF ′ = AG′. Because F ′ lies on the perpendicular bisector of
AO, we also have OF ′ = AO. Therefore, AF ′ = AG′, implying that
AF = AG. This completes the proof.
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Problem 7 Show that it is possible to cut any triangular prism of
infinite length with a plane such that the resulting intersection is an
equilateral triangle.

Solution: Suppose that a plane perpendicular to the three edges of
the prism intersects these edges at A,B,C; write a = BC, b = CA,
c = AB, and assume without loss of generality that a ≤ b ≤ c. For
t ≥ 0, define

f(t) =
√
a2 + (t+

√
c2 − b2 + t2)2 −

√
c2 + t2.

Then f(0) =
√
a2 + c2 − b2 −

√
c2 ≤ 0. On the other hand, we have

f(b) =
√
a2 + (b+ c)2−

√
c2 + b2 > 0. Because f is continuous, there

exists t0 with f(t0) = 0. Now let B′ lie on the same edge as B, at a
distance of t from B. Let C ′ lie on the same edge of the prism as C,
at distance

√
c2 − b2 + t20 from C, and on the opposite side of plane

(ABC) from B′. Then, by the Pythagorean Theorem,

AB′ =
√
c2 + t20; AC ′ =

√
b2 + (c2 − b2 + t20) =

√
c2 + t20;

B′C ′ =

√
a2 + (t0 +

√
c2 − b2 + t20)2 =

√
c2 + t20.

Thus, the plane (AB′C ′) meets our requirements.

Problem 8 Given a square ABCD, the points M,N,K,L are
chosen on the interiors of sides AB,BC,CD,DA, respectively, such
that lines MN and LK are parallel and such that the distance
between lines MN and LK equals AB. Show that the circumcircles of
trianglesALM andNCK intersect each other, while those of triangles
LDK and MBN do not.

Solution: Orient the square so that AB is horizontal and above
CD, where A is due west of B. We first claim that AL > BN , or
in other words, N is north (although not necessarily due north) of
L. Assume the contrary. Then there is a horizontal segment with
left endpoint L and right endpoint on MN , with length less than
or equal to AB. On the other hand, the length of this segment is
greater than the distance between LK and MN , which is assumed
to be AB. Thus, we have a contradiction, and AL > BN . We may
likewise conclude that AM > DK.
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Construct P and Q so that quadrilaterals BMPN and DKQL

are rectangles. We know from above that P is northeast of Q.
Construct R and S such that R is to the southeast of Q and such
that quadrilateral PRQS is a rectangle with sides parallel to those of
square ABCD.

To show that the circumcircles of triangles ALM and NCK inter-
sect each other, observe that the discs bounded by the circumcircles
of triangles ALM and NCK contain rectangles ALRM and CKSN ,
respectively. Hence, these discs both contain rectangle PRQS. Be-
cause regions inside the circumcircles of triangles ALM and NCK

intersect, the circumcircles themselves must also intersect.
We now show that the circumcircle ω1 of triangle MBN and the

circumcircle ω2 of triangle LDK do not intersect. Notice that they are
also the circumcircles of rectangles BMPN and DKQL, respectively.
Let l1 be the tangent to circle ω1 at P , and let l2 be the tangent to
circle ω2 at Q. Because MN and LK are parallel, so are BP and QD.
Because l1 ⊥ BP and l2 ⊥ QD, we have that l1 and l2 are parallel.
Hence, each point of ω1 lies on or to the right of l1, which in turn lies
to the right of l2; on the other hand, each point on ω2 lies on or to
the left of l2. Hence, ω1 and ω2 cannot intersect.

Problem 9 Let f : R→ R be a function such that

|f(x+ y)− f(x)− f(y)| ≤ 1

for all x, y ∈ R. Show that there exists a function g : R → R with
|f(x) − g(x)| ≤ 1 for all x ∈ R, and with g(x + y) = g(x) + g(y) for
all x, y ∈ R.

Solution: We claim that the function

g(x) = lim
n→∞

f(2nx)
2n

satisfies the requirements.
Our first task is to show that the limit exists for all x. In fact, we

can prove this and prove that |f(x)− g(x)| ≤ 1 for all x at the same
time. First, observe that setting x = y = 2mx0 in the given inequality
for f gives |f(2m+1x0)− 2f(2mx0)| ≤ 1. Dividing by 2m+1, we have∣∣∣∣f(2m+1x0)

2m+1
− f(2mx0)

2m

∣∣∣∣ ≤ 1
2m+1

.
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For any fixed x, consider the infinite telescoping sum
∞∑

m=0

(
f(2m+1x)

2m+1
− f(2mx)

2m

)
.

Because the absolute values of the terms are bounded by the geometric
series 1

2 ,
1
4 , . . . which sums to 1, this sum converges absolutely and is

bounded by 1 as well. On the other hand, by definition the infinite
sum equals

lim
n→∞

n∑
m=0

(
f(2m+1x)

2m+1
− f(2mx)

2m

)
.

The telescoping sum inside the limit equals
(

f(2n+1x)
2n+1

)
−f(x), imply-

ing that the above limit equals

lim
n→∞

(
f(2n+1x)

2n+1
− f(x)

)
.

We may now take out the constant f(x) term to obtain(
lim

n→∞

f(2n+1x)
2n+1

)
− f(x).

It follows that the limit in this last expression converges, and this
happens to be exactly the limit we wanted to use to define g(x).
Furthermore, we saw above that the last quantity is at most 1, so we
also have

|g(x)− f(x)| ≤ 1.

It remains to be shown that g(x+ y) = g(x) + g(y) for all x and y.
Observe that

g(x+ y)− g(x)− g(y)

= lim
n→∞

f(2n(x+ y))
2n

− lim
n→∞

f(2nx)
2n

− lim
n→∞

f(2ny)
2n

= lim
n→∞

f(2n(x+ y))− f(2nx)− f(2ny)
2n

.

From the given, |f(2n(x + y)) − f(2nx) − f(2ny)| ≤ 1 for any n,
implying that the term inside the limit of the last expression above
is between − 1

2n and 1
2n . Because limn→∞

1
2n = 0, it follows that the

limit in the last expression above is 0. Hence, g(x+ y) = g(x) + g(y),
as wanted.
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1.20 United Kingdom

Problem 1 Two intersecting circles C1 and C2 have a common
tangent which touches C1 at P and C2 at Q. The two circles intersect
at M and N. Prove that the triangles MNP and MNQ have equal
areas.

Solution:
Let X be the intersection of lines MN and PQ. Because line MN

is the radical axis of C1 and C2, X has equal power with respect to
these two circles. Thus, XP 2 = XQ2, or XP = XQ. Also, because
∠PXM + ∠MXQ = π, we have sin∠PXM = sin∠MXQ. There-
fore, [MNP ] = 1

2MN(XP sin∠PXM) = 1
2MN(XQ sin∠MXQ) =

[MNQ], as desired.

Problem 2 Given that x, y, z are positive real numbers satisfying
xyz = 32, find the minimum value of

x2 + 4xy + 4y2 + 2z2.

Solution: Applying the arithmetic mean-geometric mean inequality
twice, we find that

x2 + 4xy + 4y2 + 2z2 = (x2 + 4y2) + 4xy + 2z2

≥ 2
√
x2 · 4y2 + 4xy + 2z2 = 4xy + 4xy + 2z2

≥ 3 3
√

4xy · 4xy · 2z2 = 3 3
√

32(xyz)2 = 96.

Equality holds when x2 = 4y2 and 4xy = 2z2, i.e. when (x, y, z) =
(4, 2, 4).

Problem 3

(a) Find a set A of ten positive integers such that no six distinct
elements of A have a sum which is divisible by 6.

(b) Is it possible to find such a set if “ten” is replaced by “eleven”?

Solution: (a) An example of such a set is A = {6j + k | 1 ≤ j ≤
5, 1 ≤ k ≤ 2}. In any six-element subset of A, if there are t numbers
congruent to 1 modulo 6, then t ∈ {1, 2, . . . , 5}. The others in the
subset are congruent to 0 modulo 6. Thus, the sum of the elements
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in the subset is congruent to t 6≡ 0 (mod 6).

(b) It is not possible. Given any set of eleven positive integers,
we find six distinct elements of this set whose sum is divisible by 6.
Because there are more than two integers in this set, we may choose
two whose sum is even. Similarly, among the other ten integers, we
may choose two more whose sum is even. Continuing in a similar
manner, we can find five disjoint two-element subsets whose sums
are congruent to either 0, 2, or 4 modulo 6. If all three types of
sums occur, the six elements in the corresponding subsets have sum
congruent to 0 + 2 + 4 ≡ 0 (mod 6). Otherwise, only two types of
sums occur. By the Pigeonhole Principle, three subsets have sums of
the same type. Then the elements in these three pairs will have sum
divisible by 6.
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1.21 United States of America

Problem 1 Call a real-valued function f very convex if

f(x) + f(y)
2

≥ f
(
x+ y

2

)
+ |x− y|

holds for all real numbers x and y. Prove that no very convex function
exists.

First Solution: Fix n ≥ 1. For each integer i, define

∆i = f

(
i+ 1
n

)
− f

(
i

n

)
.

The given inequality with x = (i+ 2)/n and y = i/n implies

f
(

i+2
n

)
+ f

(
i
n

)
2

≥ f
(
i+ 1
n

)
+

2
n
,

or

f

(
i+ 2
n

)
− f

(
i+ 1
n

)
≥ f

(
i+ 1
n

)
− f

(
i

n

)
+

4
n
.

In other words, ∆i+1 ≥ ∆i + 4/n. Combining this for n consecutive
values of i gives

∆i+n ≥ ∆i + 4.

Summing this inequality for i = 0 to i = n − 1 and cancelling terms
yields

f(2)− f(1) ≥ f(1)− f(0) + 4n.

This cannot hold for all n ≥ 1. Hence, there are no very convex
functions.

Second Solution: We show by induction that the given inequality
implies

f(x) + f(y)
2

− f
(
x+ y

2

)
≥ 2n|x− y|

for all nonnegative integers n. This will yield a contradiction, because
for fixed x and y the right side gets arbitrarily large, while the left
side remains fixed.
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We are given the base case n = 0. Now, if the inequality holds for
a given n, then for a, b real,

f(a) + f(a+ 2b)
2

≥ f(a+ b) + 2n+1|b|,

f(a+ b) + f(a+ 3b) ≥ 2(f(a+ 2b) + 2n+1|b|),

and
f(a+ 2b) + f(a+ 4b)

2
≥ f(a+ 3b) + 2n+1|b|.

Adding these three inequalities and cancelling terms yields

f(a) + f(a+ 4b)
2

≥ f(a+ 2b) + 2n+3|b|.

Setting x = a, y = a+ 4b, we obtain

f(x) + f(y)
2

≥ f
(
x+ y

2

)
+ 2n+1|x− y|,

and the induction is complete.

Problem 2 Let S be the set of all triangles ABC for which

5
(

1
AP

+
1
BQ

+
1
CR

)
− 3

min{AP,BQ,CR}
=

6
r
,

where r is the inradius and P,Q,R are the points of tangency of the
incircle with sides AB,BC,CA, respectively. Prove that all triangles
in S are isosceles and similar to one another.

Solution: We start with the following lemma.

Lemma. Let A,B,C be the angles of triangle ABC. Then

tan
A

2
tan

B

2
+ tan

B

2
tan

C

2
+ tan

C

2
tan

A

2
= 1.

Proof: Note that A/2 + B/2 + C/2 = π/2. With this fact, and
using the trigonometric identities

tanα+ tanβ = tan(α+ β)[1− tanα tanβ],

tan(π/2− α) = cotα = 1/ tanα,
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we find that

tan
A

2
tan

B

2
+ tan

B

2
tan

C

2
= tan

B

2

(
tan

A

2
+ tan

C

2

)
= tan

B

2
tan

(
A

2
+
C

2

)[
1− tan

A

2
tan

C

2

]
= tan

B

2
tan

(
π/2− B

2

)[
1− tan

A

2
tan

C

2

]
= 1− tan

A

2
tan

C

2
.

Without loss of generality, assume that AP = min{AP,BQ, CR}.
Let x = tan(∠A/2), y = tan(∠B/2), and z = tan(∠C/2). Then
AP = r/x,BQ = r/y, and CR = r/z. Then the equation given in
the problem statement becomes

2x+ 5y + 5z = 6, (1)

and the lemma implies that

xy + yz + zx = 1. (2)

Eliminating x from (1) and (2) yields

5y2 + 5z2 + 8yz − 6y − 6z + 2 = 0,

or
(3y − 1)2 + (3z − 1)2 = 4(y − z)2.

Setting 3y − 1 = u and 3z − 1 = v (so that y = (u + 1)/3 and
z = (v + 1)/3) gives

5u2 + 8uv + 5v2 = 0.

Because the discriminant of this quadratic equation is 82− 4 · 25 < 0,
the only real solution to the equation is u = v = 0. Thus there is only
one possible value for (x, y, z), namely (4/3, 1/3, 1/3). Thus, all the
triangles in S are isosceles and similar to one another.

Problem 3 A game of solitaire is played with R red cards, W white
cards, and B blue cards. A player plays all the cards one at a time.
With each play he accumulates a penalty. If he plays a blue card, then
he is charged a penalty which is the number of white cards still in his
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hand. If he plays a white card, then he is charged a penalty which
is twice the number of red cards still in his hand. If he plays a red
card, then he is charged a penalty which is three times the number of
blue cards still in his hand. Find, as a function of R,W, and B, the
minimal total penalty a player can amass and all the ways in which
this minimum can be achieved.

Solution: The minimum achievable penalty is

min{BW, 2WR, 3RB}.

This penalty is achievable because the three penalties BW, 2WR, and
3RB can be obtained by playing cards in one of the three orders

• bb · · ·brr · · · rww · · ·w,
• rr · · · rww · · ·wbb · · ·b,
• ww · · ·wbb · · ·brr · · · r.

Given an order of play, let a “run” of some color denote a set of cards
of that color played consecutively in a row. Then the optimality of
one of the three above orders follows immediately from the following
lemma, along with the analogous observations for blue and white
cards.

Lemma 1. For any given order of play, we may combine any two
runs of red cards without increasing the penalty.

Proof: Suppose that there are w white cards and b blue cards
between the two red runs. If we move a red card from the first run to
the second, we increase the penalty of our order of play by 2w because
we now have one more red card in our hand when we play the w white
cards. However, the penalty decreases by 3b because this red card is
now after the b blue cards. If the net gain 3b − 2w is non-negative,
then we can move all the red cards in the first run to the second run
without increasing the penalty. If the net gain 3b − 2w is negative,
then we can move all the red cards in the second run to the first run
without increasing the penalty. In either case, we may combine any
two runs of red cards without increasing the penalty.

Thus, there must be an optimal game where cards are played in
one of the three given orders. To determine whether there are other
optimal orders, first observe that wr can never appear during an
optimal game; otherwise, if we instead play these two cards in the
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order rw, then we accrue a smaller penalty. Similarly, bw and rb
can never appear. Now we prove the following lemma.

Lemma 2. Any optimal order of play must have less than 5 runs.

Proof: Suppose that some optimal order of play had at least
five runs. Assume the first card played is red; the proof is similar in
the other cases. Say we first play r1, w1, b1, r2, w2 cards of each color,
where each ri, wi, bi is positive and where we cycle through red, white,
and blue runs. From the proof of our first lemma, we must have both
3b1 − 2w1 = 0 and b1 − 2r2 = 0. Hence, the game starting with
playing r1, w1 + w2, b1, r2, 0 cards is optimal as well, so we must also
have 3b1 − 2(w1 + w2) = 0, a contradiction.

Thus, any optimal game has at most 4 runs. Now from our initial
observations and the proof of lemma 1, we see that any order of play
of the form

rr · · · rww · · ·wbb · · ·brr · · · r,

is optimal if and only if 2W = 3B and 2WR = 3RB ≤WB. Similar
conditions hold for 4-run games that start with w or b.

Problem 4 Find the smallest positive integer n such that if n unit
squares of a 1000×1000 unit-square board are colored, then there will
exist three colored unit squares whose centers form a right triangle
with legs parallel to the edges of the board.

Solution: We show that the minimum such n is 1999. Indeed,
n ≥ 1999 because we can color 1998 squares without producing a
right triangle: color every square in the first row and the first column,
except for the one square at their intersection.

Now assume that some squares have been colored so that there is
no right triangle of the described type. Call a row or column heavy
if it contains more than one colored square, and light otherwise. Our
assumption then states that no heavy row and heavy column intersect
in a colored square.

If there are no heavy rows, then each row contains at most one
colored square, so there are at most 1000 colored squares. We reach
the same conclusion if there are no heavy columns. If there is a heavy
row and a heavy column, then by the initial observation, each colored
square in the heavy row or column must lie in a light column or row,
and no two can lie in the same light column or row. Thus, the number
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of colored squares is at most the number of light rows and columns,
which is at most 2 · (1000− 1) = 1998.

We conclude that in fact 1999 colored squares is the minimum
needed to force the existence of a right triangle of the type described.

Problem 5 Let A1A2A3 be a triangle and let ω1 be a circle in its
plane passing through A1 and A2. Suppose there exist circles ω2, ω3,

. . . , ω7 such that for k = 2, 3, . . . , 7, ωk is externally tangent to ωk−1

and passes through Ak and Ak+1, where An+3 = An for all n ≥ 1.
Prove that ω7 = ω1.

Solution: Without loss of generality, we may assume that in
counterclockwise order, the vertices of the triangle are A1, A2, A3.
Let θ1 be the measure of the arc from A1 to A2 along ω1, taken in
the counterclockwise direction. Define θ2, . . . , θ7 analogously.

Let ` be the line through A2 tangent to ω1 and ω2. Then the
angle from the line A1A2 to `, again measured counterclockwise, is
θ1/2. Similarly, the angle from ` to A2A3 is θ2/2. Therefore, writing
∠A1A2A3 for the counterclockwise angle from the line A1A2 to the
line A2A3, we have

θ1 + θ2 = 2∠A1A2A3.

By similar reasoning we obtain the system of six equations:

θ1 + θ2 = 2∠A1A2A3, θ2 + θ3 = 2∠A2A3A1,

θ3 + θ4 = 2∠A3A1A2, θ4 + θ5 = 2∠A1A2A3,

θ5 + θ6 = 2∠A2A3A1, θ6 + θ7 = 2∠A3A1A2.

Adding the equations on the left column, and subtracting the equa-
tions on the right yields θ1 = θ7.

To see that this last equality implies ω1 = ω7, simply note that as
the center O of a circle passing through A1 and A2 moves along the
perpendicular bisector of A1A2, the angle θ1 goes monotonically from
0 to 2π. Thus the angle determines the circle.

Problem 6 Let a1, b1, a2, b2, . . . , an, bn be nonnegative real num-
bers. Prove that

n∑
i,j=1

min{aiaj , bibj} ≤
n∑

i,j=1

min{aibj , ajbi}.
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Solution: Define

L(a1, b1, . . . , an, bn) =
∑
i,j

(min{aibj , ajbi} −min{aiaj , bibj}).

Our goal is to show that

L(a1, b1, . . . , an, bn) ≥ 0

for a1, b1, . . . , an, bn ≥ 0. Our proof is by induction on n, the case
n = 1 being evident. Using the obvious identities

• L(a1, 0, a2, b2, . . . ) = L(0, b1, a2, b2, . . . ) = L(a2, b2, . . . ),

• L(x, x, a2, b2, . . . ) = L(a2, b2, . . . ),

and the less obvious but easily verified identities

• L(a1, b1, a2, b2, a3, b3, . . . ) = L(a1 +a2, b1 + b2, a3, b3, . . . ) if a1/b1
= a2/b2,

• L(a1, b1, a2, b2, a3, b3, . . . ) = L(a2− b1, b2−a1, a3, b3, . . . ) if a1/b1
= b2/a2 and a1 ≤ b2,

we may deduce the result from the induction hypothesis unless we are
in the following situation:

1. all of the ai and bi are nonzero;

2. for i = 1, . . . , n, ai 6= bi;

3. for i 6= j, ai/bi 6= aj/bj and ai/bi 6= bj/aj .

For i = 1, . . . , n, let ri = max{ai/bi, bi/ai}. Without loss of
generality, we may assume 1 < r1 < · · · < rn, and that a1 < b1.
Now notice that f(x) = L(a1, x, a2, b2, . . . , an, bn) is a linear function
of x in the interval [a1, r2a1]. Explicitly,

f(x) = min{a1x, xa1} −min{a2
1, x

2}+ L(a2, b2, . . . , an, bn)

+2
n∑

j=2

(min{a1bj , xaj} −min{a1aj , xbj})

= (x− a1)(a1 + 2
n∑

j=2

cj) + L(a2, b2, . . . , an, bn),

where cj = −bj if aj > bj and cj = aj if aj < bj .
In particular, because f is linear, we have

f(x) ≥ min{f(a1), f(r2a1)}.
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Note that f(a1) = L(a1, a1, a2, b2, . . . ) = L(a2, b2, . . . ) and

f(r2a1) = L(a1, r2a1, a2, b2, . . . )

=
{
L(a1 + a2, r2a1 + b2, a3, b3, . . . ) if r2 = b2/a2,
L(a2 − r2a1, b2 − a1, a3, b3, . . . ) if r2 = a2/b2.

Thus, we deduce the desired inequality from the induction hypothesis
in all cases.

Note: More precisely, it can be shown that for ai, bi > 0, equality
holds if and only if, for each r > 1, the set Sr of indices i in {1, . . . , n}
such that ai/bi ∈ {r, 1/r} has the property that∑

i∈Sr

ai =
∑
i∈Sr

bi.
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1.22 Vietnam

Problem 1 Two circles ω1 and ω2 are given in the plane, with
centers O1 and O2, respectively. Let M ′1 and M ′2 be two points on ω1

and ω2, respectively, such that the lines O1M
′
1 and O2M

′
2 intersect.

Let M1 and M2 be points on ω1 and ω2, respectively, such that when
measured clockwise the angles ∠M ′1OM1 and ∠M ′2OM2 are equal.

(a) Determine the locus of the midpoint of M1M2.

(b) Let P be the point of intersection of lines O1M1 and O2M2.
The circumcircle of triangle M1PM2 intersects the circumcircle
of triangle O1PO2 at P and another point Q. Prove that Q is
fixed, independent of the locations of M1 and M2.

Solution: (a) We use complex numbers. Let a lowercase letter
denote the complex number associated with the point with the
corresponding uppercase label. Let M ′, M , and O denote the
midpoints of segments M ′1M

′
2, M1M2, and O1O2, respectively. Also

let z = m1−o1
m′

1−o1
= m2−o2

m′
2−o2

, so that multiplication by z is a rotation
about the origin through some angle. Then m = m1+m2

2 equals

1
2
(o1 + z(m′1 − o1)) +

1
2
(o2 + z(m′1 − o2)) = o+ z(m′ − o),

that is, the locus of M is the circle centered at O with radius OM ′.

(b) We shall use directed angles modulo π. Observe that

∠QM1M2 = ∠QPM2 = ∠QPO2 = ∠QO1O2.

Similarly, ∠QM2M1 = ∠QO2O1, implying that triangles QM1M2

and QO1O2 are similar with the same orientations. Hence,

q − o1
q − o2

=
q −m1

q −m2
,

or equivalently

q − o1
q − o2

=
(q −m1)− (q − o1)
(q −m2)− (q − o2)

=
o1 −m1

o2 −m2
=
o1 −m′1
o2 −m′2

.

Because lines O1M
′
1 and O2M

′
2 meet, o1 −m′1 6= o2 −m′2 and we can

solve this equation to find a unique value for q.
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Problem 2 Suppose that all circumcircles of the four faces of a
tetrahedron have congruent radii. Show that any two opposite edges
of the tetrahedron are congruent.

Solution: We first prove that

∠XY Z + ∠Y ZW + ∠ZWX + ∠WXY < 2π

for any 4 non-planar points X, Y , Z, W . Indeed, by the triangle
inequality for solid angles, we find that

∠XY Z + ∠Y ZW + ∠ZWX + ∠WXY

< (∠ZYW + ∠WYX) + ∠Y ZW + (∠XWY + ∠YWZ) + ∠WXY

= (∠ZYW + ∠YWZ + ∠Y ZW ) + (∠XWY + ∠WYX + ∠WXY )

= π + π = 2π.

Let R be the common circumradius of tetrahedron ABCD’s four
faces. Note that given any two angles of tetrahedron ABCD opposite
the same side, say angles ABC and ADC, we have

sin∠ABC =
AC

2R
= sin∠ADC

by the Extended Law of Sines. Therefore, any two angles of the tetra-
hedron opposite the same side are either congruent or supplementary.

Further observe that if XZ and YW are opposite edges of tetra-
hedron ABCD, then the lemma implies that (∠XY Z + ∠ZWX) +
(∠Y ZW + ∠WXY ) < 2π, so it cannot be the case that the angles
opposite XZ are supplementary and that the angles opposite YW
are supplementary. In other words, if the angles opposite XZ are
supplementary, the angles opposite YW are congruent.

Let us now assume for the sake of contradiction that some pair
of angles opposite the same side, say angles ABC and CDA, are
supplementary. If all of the other pairs of opposite angles were
congruent, then we would have

∠BCD + ∠DAB = (π − ∠CDB − ∠DBC) + (π − ∠ADB − ∠DBA)

= (π − ∠CAB − ∠DAC) + (π − ∠ACB − ∠DCA)

= (π − ∠CAB − ∠ACB) + (π − ∠DAC − ∠DCA)

= ∠ABC + ∠CDA = π,
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a contradiction. Therefore, besides the angles opposite AC, some
other two angles opposite the same edge are supplementary. As a
previous argument shows, the angles opposite BD cannot be supple-
mentary, so they must be equal. Hence, the angles opposite one of the
remaining edges AB, AD, CB, CD are supplementary. Without loss
of generality, assume that the angles opposite AB are supplementary,
so that the angles opposite CD are equal.

Furthermore,

∠CDB = π − ∠DCB − ∠DBC

= π − ∠DAB − ∠DAC

= π − (π − ∠ABD − ∠ADB)− (π − ∠ACD − ∠ADC)

= ∠ABD + ∠ACD + ∠ADB + ∠ADC − π

= ∠ABD + ∠ACD + (π − ∠ACB) + (π − ∠ABC)− π

= ∠ABD + ∠ACD + (π − ∠ACB − ∠ABC)

= ∠ABD + ∠ACD + ∠CAB,

implying that ∠CDB > ∠CAB. Because angles CDB and CAB

are not congruent, they must be supplementary. Now because angles
ADB, BDC and CDA form a convex solid angle, (∠ADB+∠BDC)+
∠CDA < ∠ADC + ∠CDA < 2π. But

∠ADB + ∠BDC + ∠CDA

= (π − ∠ACB) + (π − ∠BAC) + (π − ∠CBA)

= 3π − π = 2π,

a contradiction.
Therefore, the angles opposite the same side of the tetrahedron are

congruent. As we argued before, in this case we have

∠BCD + ∠DAB = ∠ABC + ∠CDA,

implying that 2∠DAB = 2∠ABC or ∠DAB = ∠ABC. Therefore,
DB = 2R sin∠DAB = 2R sin∠ABC = AC. Similarly, DA = BC

and DC = BA. This completes the proof.

Problem 3 Two circles C1 and C2 intersect at two points P and Q.
The common tangent of C1 and C2 closer to P than to Q touches C1
and C2 at A and B, respectively. The tangent to C1 at P intersects
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C2 at E (distinct from P ) and the tangent to C2 at P intersects C1
at F (distinct from P ). Let H and K be two points on the rays AF
and BE, respectively, such that AH = AP,BK = BP . Prove that
the five points A,H,Q,K,B lie on the same circle.

Solution: Because the given conditions are symmetric, we need
only prove that ABKQ is cyclic.

We use directed angles modulo π. Line AP intersects ray BE, say
at the point R. Let lines AB and PE intersect at T . Using tangents
and cyclic quadrilaterals, we have ∠QAR = ∠QAP = ∠QPC =
∠QBC = ∠QBR, so ABRQ is cyclic. We claim that K = R, from
which our desired result follows.

Using the properties of the exterior angles of triangles ABP and
CPR, tangents AB and PT , and cyclic quadrilaterals, we obtain

∠BPR = ∠BAP + ∠PBA = ∠AQP + ∠PQB

= ∠APT + ∠PEB = ∠RPE + ∠PER = ∠PRB.

Hence, triangle BPR is isosceles with BP = BR, implying that
R = K. Our proof is complete.

Problem 4 Let a, b, c be pairwise coprime positive integers. An
integer n ≥ 1 is said to be stubborn if it cannot be written in the form

n = bcx+ cay + abz

for any positive integers x, y, z. Determine, as a function of a, b, and
c, the number of stubborn integers.

Solution: We claim that any integer n can be written in the form
bcx+cay+abz where x, y, z are integers with 0 < y ≤ b and 0 < z ≤ c,
where x is possibly negative. Because a and bc are coprime, we can
write n = an′+bcx0 for some integers n′, x0. Because b, c are coprime,
n′ = cy0 +bz0 for some integers y0, z0. Hence, n = bcx0 +cay0 +abz0.
Choosing integers β, γ such that 0 < y0 +βb ≤ b and 0 < z0 +γc ≤ c,
we find that

n = bc(x0 − βa− γa) + ca(y0 + βb) + ab(z0 + γc),

of the desired form.
Observe that any positive integer less than bc + ca + ab is clearly

stubborn. On the other hand, we claim that every integer n > 2abc
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is not stubborn. Given such an integer, write n = bcx + cay + abz

with 0 < y ≤ b and 0 < z ≤ c. Then

2abc < bcx+ cay + abz ≤ bcx+ cab+ abc = bcx+ 2abc,

implying that x > 0, as needed.
Next, we prove that exactly half the positive integers in S = [bc+

ca+ab, 2abc] are stubborn. To do so, it suffices to prove that n ∈ S is
stubborn if and only if f(n) = (2abc+bc+ca+ab)−n is not stubborn.
For the “only if” direction, suppose that n is stubborn and write
f(n) = bcx+ cay + abz with 0 < y ≤ b and 0 < z ≤ c. If x were not
positive, then we could write n = bc(1−x)+ca(b+1−y)+ab(c+1−z),
with 1−x0, b+1−y0, and c+1−z0 positive — but this is impossible
because n is stubborn. Therefore, x > 0 and f(n) is not stubborn.

To prove the “if” direction, suppose for sake of contradiction that
f(n) is not stubborn and that n is not stubborn as well. Write
f(n) = bcx0 + cay0 + abz0 and n = bcx1 + cay1 + abz1 for positive
integers xi, yi, zi. Then

2abc = bc(x0 + x1 − 1) + ca(y0 + y1 − 1) + ab(z0 + z1 − 1).

Write x = x0 + x1 − 1 and define y and z similarly. Taking the
above equation modulo a shows that 0 ≡ bcx (mod a). Because bc is
relatively prime to a, x must be divisible by a, implying that x ≥ a.
Similarly, y ≥ b and z ≥ c. Thus, 2abc = bcx + cay + abz ≥ 3abc, a
contradiction.

To summarize: the bc + ca + ab − 1 positive integers less than
bc + ca + ab are stubborn, every integer greater than 2abc is not
stubborn, and half of the 2abc− (bc+ ca+ ab) + 1 remaining positive
integers are stubborn. This yields a total of

bc+ca+ab−1+
2abc− (bc+ ca+ ab) + 1

2
=

2abc+ bc+ ca+ ab− 1
2

stubborn positive integers.

Problem 5 Let R+ denote the set of positive real numbers, and let
a, r > 1 be real numbers. Suppose that f : R+ → R is a function
such that (f(x))2 ≤ axrf

(
x
a

)
for all x > 0.

(a) If f(x) < 22000 for all x <
1

22000
, prove that f(x) ≤ xra1−r for

all x > 0.
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(b) Construct such a function f : R+ → R (not satisfying the
condition given in (a)) such that f(x) > xra1−r for all x > 0.

Solution:
Observe that we can rewrite the given inequality in the form(

f(x)
xra1−r

)2

≤ f(x/a)
(x/a)ra1−r

. (∗)

(a) Assume, for sake of contradiction, that there exists x0 such that
f(x0) > xr

0a
1−r. Define xn = x0/a

n and λn = f(xn)
xr

na1−r for n ≥ 0, so
that λ0 > 1. From (∗), we have that λn+1 ≥ λ2

n for n ≥ 0, and a
straightforward proof by induction shows that λn ≥ λ2n

0 for n ≥ 0.
We use this fact again soon; for now, observe that it implies that each
λn ≥ λ2n

0 is positive and hence that each f(xn) is positive as well.
We may then set x = xn into the given inequality and rearrange the
inequality to yield

f(xn+1)
f(xn)

≥ f(xn)
axr

n

=
λnx

r
na

1−r

axr
n

=
λn

ar

for all n ≥ 0.
There exists N such that 2ar < λ2n

0 ≤ λn for all n > N . For all
such n, we have f(xn+1)

f(xn) ≥ 2 or equivalently (because f(xn) is positive)
f(xn+1) ≥ 2f(xn). Therefore, f(xn) ≥ 22000 for all sufficiently large
n, but at the same time xn = x0/a

n < 1
22000 for all sufficiently large

n. This contradicts the condition in (i), implying that our original
assumption was false. Therefore, f(x) ≤ xra1−r for all x.

(b) For each real x, there exists a unique value x0 ∈ (1, a] such
that x0/x = an for some integer n; let λ(x) = x2n

0 , and set f(x) =
λ(x)xra1−r. By construction, we have λ(x)2 = λ(x/a) for all x; in
other words, (∗) holds for all x. We also have that λ(x) > 1 for all x;
in other words, f(x) > xra1−r for all x. This completes the proof.
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Problem 1 Compute the sum

S =
101∑
i=0

x3
i

1− 3xi + 3x2
i

,

where xi = i
101 for i = 0, 1, . . . , 101.

Solution: Because 1− 3x+ 3x2 = x3 + (1− x)3 = x3 − (x− 1)3 is
nonzero for all x, we can let

f(x) =
x3

1− 3x+ 3x2
=

x3

x3 + (1− x)3

for all x. Setting x = xi and x = 1−xi = x101−i above, and adding the
two resulting equations, we find that f(xi)+f(x101−i) = 1. Therefore,

S =
101∑
i=0

f(xi) =
50∑

i=0

(f(xi) + f(1− xi)) = 51.

Problem 2 We are given an arrangement of nine circular slots along
three sides of a triangle: one slot at each corner, and two more along
each side. Each of the numbers 1, 2, . . . , 9 is to be written into exactly
one of these circles, so that

(i) the sums of the four numbers on each side of the triangle are
equal;

(ii) the sums of the squares of the four numbers on each side of the
triangle are equal.

Find all ways in which this can be done.

Solution: Take any such arrangement of the numbers. Let x, y, z
be the numbers in the corner slots, and let S1 (resp. S2) denote the
sum of the four numbers (resp. of their squares) on any side. By the
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given conditions, we have

3S1 = x+ y + z +
9∑

k=1

k = x+ y + z + 45,

3S2 = x2 + y2 + z2 +
9∑

k=1

k2 = x2 + y2 + z2 + 285.

From the second equation, we find that x, y, z are either all divisible
by three or all not divisible by three. By the Pigeonhole Principle,
some two are congruent modulo 3. Taking the first equation modulo
3, we also find that 3 | (x+ y + z). Hence, x ≡ y ≡ z (mod 3).

If (x, y, z) = (3, 6, 9) or (1, 4, 7), then S2 either equals 137 or 117.
In either case, S2 is congruent to 1 modulo 4, implying that exactly
one number on each of the 3 sides of the triangle is odd. This is
impossible because there are 5 > 3 odd numbers to be written in the
slots.

Hence, (x, y, z) = (2, 5, 8), and S2 = 126. Because 92 + 82 > 126,
the number 9 cannot lie on the same side as 8 — i.e. it lies on the side
containing the numbers 2 and 5. Because min{72 +92, 72 +52 +82} >
126, the number 7 must lie on the side containing 2 and 8. Given this
information, the quadruples of numbers on the three sides must be
(2, 4, 9, 5), (5, 1, 6, 8), and (8, 7, 3, 2) in order for the sum of squares of
the numbers on each side to equal 126. Indeed, all such arrangements
satisfy the given conditions.

Problem 3 Let ABC be a triangle with median AM and angle
bisector AN . Draw the perpendicular to line NA through N , hitting
lines MA and BA at Q and P , respectively. Also let O be the point
where the perpendicular to line BA through P meets line AN . Prove
that QO ⊥ BC.

First Solution: If AB = AC, then line QO is the perpendicular
bisector of BC, and the claim is true. Now assume that AB 6= AC.

Introduce Cartesian coordinates such that A = (0, 0) and N =
(1, 0). Let the slope of line AB be m, so that the slope of line AC is
−1. Write B = (b,mb) and C = (c,−mc), where b 6= c and both b

and c are positive. The slope of line BC is

m(b+ c)
b− c

.
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Because PN ⊥ AN , the x-coordinate of P is 1. Because P lies on
line AB (the line y = mx), we have P = (1,m). Then the equation
of line OP is y = −(x− 1)/m+m, implying that its x-intercept O is
(m2 + 1, 0).
M equals ((b + c)/2,m(b − c)/2) because it is the midpoint of

segment BC. Hence, line AM satisfies the equation

y =
m(b− c)
b+ c

x.

Because Q is the intersection of line AM and line PN (given by the
equation x = 1), we have

Q =
(

1,
m(b− c)
b+ c

)
.

Hence, the slope of line QO is

m(b−c)
b+c

m2 + 1− 1
=

b− c
m(b+ c)

,

which is −1 divided by the slope of line BC. Therefore, OQ ⊥ BC,
as desired.

Second Solution: Let α, β, γ equal ∠CAB,∠ABC,∠BCA. Also
let y = ∠BAM , z = ∠MAC, and x = ∠MAN = |y − z|/2. If β = γ,
then line OQ is the perpendicular bisector of BC. Otherwise, assume
that β 6= γ and hence that y 6= z. Throughout this solution, we
manipulate equations by multiplying and dividing by trigonometric
expressions which are nonzero because β 6= γ, y 6= z, and β, γ, y, z ∈
(0, π).

Using trigonometric relations in right triangles ANB, BNO, ONQ,
and QNO, we have

tan∠OQN tan∠QAN = (ON/QN)(QN/AN)

= (ON/BN)(BN/AN) = tan∠OBN tan∠ABN.

Some angle-chasing yields that ∠BAN = α/2, ∠OBN = α/2, and
∠QAN = x. Hence,

tan∠OQN tanx = tan(α/2) tan(α/2). (∗)
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Applying the Law of Sines to triangles ABM and ACM , we find
that

sin y
sin z

=
sinβ · BM

AM

sin γ · CM
AM

=
sinβ
sin γ

,

implying that
sin y + sin z
sin y − sin z

=
sinβ − sin γ
sinβ + sin γ

. (†)

Given distinct u, v in (0, π/2), observe that

tan(u+ v)
tan(u− v)

=
sin(u+ v) cos(u− v)
sin(u− v) cos(u+ v)

=
sin(2u) + sin(2v)
sin(2u)− (2v)

.

Setting (u, v) = (y/2, z/2) and (u, v) = (β/2, γ/2) in this equation
and using (†), we find that

tan(α/2)
tan(y/2− z/2)

=
tan(y/2 + z/2)
tan(y/2− z/2)

=
tan(β/2 + γ/2)
tan(β/2− γ/2)

=
cot(α/2)

tan(β/2− γ/2)
.

If β > γ, then x = y/2 − z/2. Comparing this last equation with
(∗), we find that

tan∠OQN = tan(π/2− (β/2− γ/2)).

Both ∠OQN and π/2− (β/2− γ/2) are in the interval (0, π/2), and
t 7→ tan t is injective on this interval. Hence, ∠OQN = π/2− (β/2−
γ/2). Some angle-chasing then shows that OQ ⊥ AB, as desired.

Similarly, if β < γ, then we find that ∠OQN = π/2 + (β/2− γ/2)
and again that OQ ⊥ AB.

Problem 4 Let n, k be positive integers with n > k. Prove that

1
n+ 1

· nn

kk(n− k)n−k
<

n!
k!(n− k)!

<
nn

kk(n− k)n−k
.

Solution: We use the Binomial Theorem to write nn = (k+(n−k))n

in the form
∑n

m=0 am, where

am =
(
n

m

)
km(n− k)n−m > 0

for each m. The desired chain of inequalities is then equivalent to

nn

n+ 1
< ak < nn.

The right inequality holds because nn =
∑n

m=0 am > ak. To
prove the left inequality, it suffices to prove that ak is larger than
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each of a0, . . . , am−1, am+1, . . . , an, because then nn =
∑n

m=0 am <∑n
m=0 ak = (n+ 1)ak.
Indeed, we prove that am is increasing for m ≤ k and decreasing

for m ≥ k. Observe that
(

n
m

)
= m+1

n−m

(
n

m+1

)
. Hence,

am

am+1
=

(
n
m

)
km(n− k)n−m(

n
m+1

)
km+1(n− k)n−m−1

=
n− k
n−m

· m+ 1
k

.

This expression is less than 1 when m < k, and it is greater than 1
when m ≥ k. In other words, a0 < · · · < ak and ak > · · · > an, as
desired.

Problem 5 Given a permutation (a0, a1, . . . , an) of the sequence
0, 1, . . . , n, a transposition of ai with aj is called legal if ai = 0, i > 0,
and ai−1+1 = aj . The permutation (a0, a1, . . . , an) is called regular if
after finitely many legal transpositions it becomes (1, 2, . . . , n, 0). For
which numbers n is the permutation (1, n, n− 1, . . . , 3, 2, 0) regular?

Solution: Fix n, and let π0 and π1 denote the permutations
(1, n, n−1, . . . , 3, 2, 0) and (1, 2, . . . , n, 0), respectively. We say that π0

terminates in a permutation π′1 if applying some legal transpositions
to π0 eventually yields π′1, and if no legal transpositions may be
applied to π′1. Because no legal transpositions may be applied to
π1, if π0 is regular then it terminates in π1. As we apply legal
transformations to π0, at most one legal transposition may be applied
to each resulting permutation. Hence, π0 terminates in at most one
permutation.

If n equals 1 or 2, it is easy to check that (1, n, n− 1, . . . , 3, 2, 0) is
regular. If n is instead greater than 2 and even, we claim that π0 does
not terminate in π1 and hence is not regular. For k ∈ [0, (n − 2)/2],
applying k legal transpositions to π0 yields a permutation that begins
with the entries 1, n, n − 1, . . . , 2k + 2, 0. Hence, π0 terminates in a
permutation beginning with 1, n, 0, obtained after (n − 2)/2 legal
transpositions.

Now suppose that n > 2 and n is odd. In order to consider this
case, we introduce some notation: For all integers s > 0, t ≥ 0
such that s + t divides n + 1, we construct a permutation called the
(s, t)-staircase one entry at a time as follows, applying (1) once and
then repeatedly applying (2) and (3) in alternating fashion:

(1) Let the first s entries be 1, 2, . . . , s− 1, 0.
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(2) Let the next t entries be the largest t numbers in {1, 2, . . . , n} not
yet assigned to an entry, arranged in increasing order.

(3) Let the next s entries be the largest s numbers in {1, 2, . . . , n}
not yet assigned to an entry, arranged in increasing order.

If (s + t) | (n + 1) and t > 0, then applying n/(s + t) legal
transpositions to the (s, t)-staircase yields the (s+ 1, t− 1)-staircase.
Repeatedly performing legal transpositions thus eventually yields the
(s+ t, 0)-staircase, a process we refer to as collecting a staircase.

Next, suppose that s | (n + 1). If 2s 6 | (n + 1), then applying
n/s−2 legal transpositions to the (s, 0)-staircase yields a permutation
different from π1 to which no further legal transpositions may be
applied. If instead 2s | (n + 1), then the (s, 0)-staircase is actually
the (s, s)-staircase, which can be collected into the (2s, 0)-staircase.

We now prove that if n > 2 and n is odd, then π0 is regular if
and only if n + 1 is a power of 2. Because n + 1 is even, we may
write n+1 = 2qr where q is a positive integer and r is an odd integer.
Applying (n−1)/2 legal transpositions to π0 yields the (2, 0)-staircase.
If 2q > 2, then because 2s divides n+ 1 for s = 21, . . . , 2q−1, we can
repeatedly collect staircases to eventually yield the (2q, 0)-staircase.
If 2q = 2, then we already have the (2q, 0)-staircase.

If r = 1, then we have obtained π1, and π0 is regular. Otherwise,
applying r − 2 additional legal transposition yields a permutation in
which 0’s left neighbor is n. Hence, no more legal transpositions are
possible. However, this final permutation begins 1, 2, . . . , 2q rather
than 1, n — implying that π0 does not terminate in π1 and hence
that π0 is not regular.

Therefore, π0 is regular if and only if n equals 2 or n+1 is a power
of 2.
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2.2 Austrian-Polish

Mathematics Competition

Problem 1 Find all positive integers N whose only prime divisors
are 2 and 5, such that the number N + 25 is a perfect square.

Solution: We are given thatN is of the form 2a·5b, where a and b are
nonnegative integers. For some integer x > 5, we have x2 = N+25 or
equivalently (x+5)(x−5) = N. Thus, N is expressible as the product
of two natural numbers differing by 10. We consider two cases:

Case 1. b = 0. Then 2a = (x + 5)(x − 5), so x + 5 and x − 5 are
powers of 2. But no two powers of 2 differ by 10, so this case yields
no solutions.

Case 2. b ≥ 1. In this case, x2 is divisible by 5, so it must be
divisible by 25. It follows that b ≥ 2. Let x = 5y, giving y > 1 and
(y − 1)(y + 1) = 2a · 5b−2. If y − 1 and y + 1 are odd, then 2a · 5b−2

is odd and must be a power of 5 — implying that y − 1 and y + 1
are powers of 5 that differ by 2, which is impossible. Thus, y− 1 and
y + 1 are even, and p = 1

2 (y − 1) and q = 1
2 (y + 1) are consecutive

positive integers whose product is 2a−25b−2. Hence, p and q equal 2m

and 5n in some order, for some nonnegative integers m and n. We
consider two possible subcases:

Subcase 1. 5n − 2m = 1. Because 5n, 2m 6≡ 0 (mod 3), we must
have 2m ≡ 1 (mod 3) and 5n ≡ 2 (mod 3). Thus, n is odd and
5n ≡ 5 (mod 8). It follows that 2m ≡ 5m − 1 ≡ 4 (mod 8), implying
that m = 2. This yields the solution N = 2000.

Subcase 2. 2m − 5n = 1. Because any power of 5 is congruent to 1
modulo 4, we have 2m ≡ 5n + 1 ≡ 2 (mod 4), implying that m = 1
and n = 0. This yields the solution N = 200.

Thus, the only solutions are N = 200, 2000.

Problem 2 For which integers n ≥ 5 is it possible to color the
vertices of a regular n-gon using at most 6 colors such that any 5
consecutive vertices have different colors?

Solution: Let the colors be a, b, c, d, e, f. Denote by S1 the
sequence a, b, c, d, e, and by S2 the sequence a, b, c, d, e, f. If n > 0
is representable in the form 5x+ 6y, for x, y ≥ 0, then n satisfies the
conditions of the problem: we may place x consecutive S1 sequences,
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followed by y consecutive S2 sequences, around the polygon. Setting
y equal to 0, 1, 2, 3, or 4, we find that n may equal any number of
the form 5x, 5x+ 6, 5x+ 12, 5x+ 18, or 5x+ 24. The only numbers
greater than 4 not of this form are 7, 8, 9, 13, 14, and 19. We show
that none of these numbers has the required property.

Assume for a contradiction that a coloring exists for n equal to
one of 7, 8, 9, 13, 14, and 19. There exists a number k such that
6k < n < 6(k+1). By the Pigeonhole Principle, at least k+1 vertices
of the n-gon have the same color. Between any two of these vertices
are at least 4 others, because any 5 consecutive vertices have different
colors. Hence, there are at least 5k + 5 vertices, and n ≥ 5k + 5.
However, this inequality fails for n = 7, 8, 9, 13, 14, 19, a contradiction.

Hence, a coloring is possible for all n ≥ 5 except 7, 8, 9, 13, 14, and
19.

Problem 3 Let the 3-cross be the solid made up of one central unit
cube with six other unit cubes attached to its faces, such as the solid
made of the seven unit cubes centered at (0, 0, 0), (±1, 0, 0), (0,±1, 0),
and (0, 0,±1). Prove or disprove that (three-dimensional) space can
be tiled with 3-crosses in such a way that no two of them share any
interior points.

Solution: We give a tiling of space with 3-crosses, letting the centers
of the unit cubes comprising the solids coincide with the lattice points.
To each lattice point (x, y, z), assign the index number x + 2y + 3z,
modulo 7. We call two lattice points adjacent if and only if they
differ by 1 in exactly one coordinate. It is clear by inspection that
any 3-cross contains 7 cubes whose centers have precisely the indices
0 through 6. From this, it is also clear that any lattice point with
index not equal to 0 is adjacent to a unique lattice point with index
0. Therefore, space may be tiled with the 3-crosses whose centers are
those lattice points with index 0.

Problem 4 In the plane the triangle A0B0C0 is given. Consider
all triangles ABC satisfying the following conditions: (i) C0, A0, and
B0 lie on AB, BC, and CA, respectively; (ii) ∠ABC = ∠A0B0C0,

∠BCA = ∠B0C0A0, and ∠CAB = ∠C0A0B0. Find the locus of the
circumcenter of all such triangles ABC.
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First Solution: Note that at least one such triangle ABC exists:
for instance, we could let triangle A0B0C0 be the medial triangle of
ABC. Hence, the desired locus is nonempty.

Let triangle A0B0C0 have circumcircle ω with center O. We
use a vector coordinate system with origin at O, where the vector
labelled by a lowercase letter corresponding to the point with the
corresponding uppercase letter.

Suppose that triangle ABC satisfies the given conditions. Because
A and A0 are on opposite sides of line BC, and ∠C0A0B0 = ∠CAB,
A must lie on the reflection of ω across line B0C0. Hence, the
circumcenter O1 of triangle B0C0A must be the reflection of O across
line B0C0. We can similarly locate the circumcenters O2 and O3

of triangles A0C0B and A0B0C. Then quadrilateral OB0O1C0 is a
rhombus so that o1 = b0 + c0. Similarly, o2 = a0 + c0.

Let M be the midpoint of O1O2. Introduce a temporary Cartesian
coordinate system so that line AB is the x-axis, where A = (a, 0),
C0 = (c0, 0), and B = (b, 0). Because O1 and O2 lie on the perpen-
dicular bisectors of AC0 and C0B, respectively, their x-coordinates
are 1

2 (a + c0) and 1
2 (b + c0), respectively. Hence, their midpoint M

has x-coordinate 1
2 (a+b)+c0. Thus, the reflection H ′ of C0 across M

has x-coordinate 1
2 (a+ b), implying that it lies on the perpendicular

bisector of AB. Note that h′ = m+(m−c0) = a0 +b0 +c0. In other
words, H ′ lies on the ray from O through the centroid G of triangle
A0B0C0, where OH ′ = 3OG; it follows that H ′ is the orthocenter H
of triangle A0B0C0.

Likewise, the perpendicular bisectors of BC and CA also pass
through the orthocenterH of triangle A0B0C0. Therefore, the desired
locus (which we already showed is nonempty) must consist of one
single point, the orthocenter of triangle A0B0C0.

Second Solution: We observe as in the first solution that A,B,C
are on the reflections of the circumcircle ω of triangle A0B0C0 over
the lines B0C0, C0A0, A0B0, respectively. Let those reflections of ω
be ω1, ω2, ω3, respectively. We claim that ω1, ω2, ω3 all pass through
the orthocenter H of triangle A0B0C0. We prove this claim for
the case in which A0B0C0 is acute; the proof for the obtuse case
is similar. Consider triangle HB0C0. We have ∠HB0C0 = π/2−∠C0

and ∠HC0B0 = π/2 − ∠B0, implying that ∠B0HC0 = ∠B0 + ∠C0.
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Because we are given that ∠B0AC0 = ∠A0, we see that ∠B0HC0

and ∠B0AC0 are supplementary. Therefore, quadrilateral B0HC0A

is cyclic. It follows that H lies on ω1, and similarly it lies on ω2 and
ω3 as well.

Now observe that angles A0BH and A0CH both intercept segment
A0H. Because ω2 and ω3 are congruent, it follows that ∠A0BH =
∠A0CH. Therefore, triangle HBC is isosceles with HB = HC.

Similarly, we have HA = HB. Thus, H is the circumcenter of triangle
ABC. It follows that the desired locus cannot contain any points
except H. As shown in the first solution, this locus is nonempty,
implying that it consists of the single point H.

Problem 5 We are given a set of 27 distinct points in the plane, no
three collinear. Four points from this set are vertices of a unit square;
the other 23 points lie inside this square. Prove that there exist three
distinct points X,Y, Z in this set such that [XY Z] ≤ 1

48 .

Solution: We prove by induction on n that, given n ≥ 1 points
inside the square (with no three collinear), the square may be parti-
tioned into 2n + 2 triangles, where each vertex of these triangles is
either one of the n points or one of the vertices of the square. For
the base case n = 1, because the square is convex, we may partition
the square into 4 triangles by drawing line segments from the interior
point to the vertices of the square. For the inductive step, assume
the claim holds when n equals some value k ≥ 1. Then for the case
n = k + 1, take k of the points, and partition the square into 2k + 2
triangles whose vertices are either vertices of the square or are among
the k chosen points. Call the remaining point P. Because no three
of the points in the set are collinear, P lies inside one of the 2n + 2
partitioned triangles ABC. We may further divide this triangle into
the triangles APB, BPC, and CPA. This yields a partition of the
square into 2(n+1)+2 = 2n+4 triangles, completing the induction.

For the special case n = 23, we may divide the square into 48
triangles with total area 1. One of the triangles has area at most 1

48 ,
as desired.

Problem 6 For all real numbers a, b, c ≥ 0 such that a+ b+ c = 1,
prove that

2 ≤ (1− a2)2 + (1− b2)2 + (1− c2)2 ≤ (1 + a)(1 + b)(1 + c)
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and determine when equality occurs for each of the two inequalities.

Solution: Let the left, middle, and right portions of the inequality
be denoted by L, M, and R, respectively. Also, given a function f

in three variables, let the symmetric sum
∑

sym f(a, b, c) denote the
sum f(x, y, z) over all permutations (x, y, z) of (a, b, c).

Because a+ b+ c = 1,

L = 2(a+ b+ c)4 =
∑
sym

(a4 + 8a3b+ 6a2b2 + 12a2bc),

M =
1
2

∑
sym

((a+ b+ c)2 − a2)2

=
∑
sym

(a4 + 8a3b+ 7a2b2 + 16a2bc),

R = (2a+ b+ c)(a+ 2b+ c)(a+ b+ 2c)(a+ b+ c)

=
∑
sym

(a4 + 9a3b+ 7a2b2 + 15a2bc).

From these computations, we have

M − L =
∑
sym

(a2b2 + 4a2bc),

which is nonnegative because a, b, c ≥ 0. Equality holds if and only if
at least two of a, b, c are 0; that is, if and only if (a, b, c) = (0, 0, 1),
(0, 1, 0), or (1, 0, 0). Also,

R−M =
∑
sym

(a3b− a2bc) =
∑
sym

(
1
3
(a3b+ a3b+ bc3)− a2bc

)
,

which is nonnegative by the arithmetic mean-geometric mean Inequal-
ity. Equality holds if and only if a3b = bc3, b3c = ca3, and c3a = ab3

hold simultaneously. This implies that either two of a, b, c equal zero,
or a = b = c. So equality holds if and only if (a, b, c) =

(
1
3 ,

1
3 ,

1
3

)
,

(1, 0, 0), (0, 1, 0), or (0, 0, 1).
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2.3 Balkan Mathematical Olympiad

Problem 1 Let E be a point inside nonisosceles acute triangle ABC
lying on median AD, and drop perpendicular EF to line BC. Let
M be an arbitrary point on EF , and let N and P be the orthogonal
projections of M onto lines AC and AB, respectively. Prove that the
angle bisectors of angles PMN and PEN are parallel.

Solution:

Lemma. In a (possibly concave) quadrilateral TUVW in which an-
gles UVW and WTU are less than π, the bisectors of angles TUV
and VWT are parallel if ∠UVW = ∠WTU .

Proof: We use directed angles modulo π in the proof of this
lemma. Let U ′, V ′, W ′, and T ′ be points on the angle bisectors of
angles TUV , UVW , VWT , and VWT , respectively. Let line WW ′

intersect line TU at Q. Note that

π = ∠TQW + ∠QWT + ∠WTQ = ∠TQW + ∠W ′WT + ∠WTU

and
π = ∠T ′TU + ∠U ′UV + ∠V ′VW + ∠W ′WT.

Setting these two expressions for π equal to each other, we find that

∠TQW + ∠T ′TU = ∠U ′UV + ∠V ′VW.

Because angles WTU and UVW of the quadrilateral measure less
than π and are congruent, we have ∠T ′TU = ∠V ′VW . Hence,
∠TWQ = U ′UV , implying that the angle bisectors of TUV and
V TW are parallel.

Let the line through E parallel to BC intersect AB at X and AC at
Y . Let the line through M parallel to BC intersect AB at G and AC
at H. If X coincides with P , then ∠EPM = ∠EXM . Otherwise,
because ∠XPM = π/2 = ∠XEM , quadrilateral XEPM is cyclic
with X and P on the same side of line EM ; hence, we again find that
∠EPM = ∠EXM . Similarly, ∠ENM = ∠EYM .

The homothety about A that sends D to X sends BC to XY ,
implying thatXE = EY . Hence, right trianglesXEM and Y EM are
congruent, implying that ∠EXM = ∠EYM . Therefore, ∠EPM =
∠ENM . Because P and N lie on opposite sides of line EF , the
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interior angles EPM and ENM of quadrilateral NEPM measure
less than π. Applying the lemma to quadrilateral NEPM , we find
that the angle bisectors of angles PMN and PEN are parallel.

Problem 2 Find the maximum number of 1× 10
√

2 rectangles one
can remove from a 50 × 90 rectangle by using cuts parallel to the
edges of the original rectangle.

Solution: We begin by proving that it is possible to remove 315
rectangles. Place the 50 × 90 rectangle in the first quadrant of the
coordinate plane so that its vertices are (0, 0), (90, 0), (90, 50), and
(0, 50). We first remove the rectangular region with opposite vertices
(0, 0) and (6 · 10

√
2, 50 · 1) by dividing it into 50 rows and 6 columns

of 1 × 10
√

2 rectangles (oriented with their longer sides parallel to
the x-axis). We may then also remove the rectangular region with
opposite vertices (60

√
2, 0) and (60

√
2 + 5, 30

√
2) by dividing it into

3 rows and 5 columns of 10
√

2 × 1 rectangles (oriented with their
shorter sides parallel to the x-axis). In total, we remove a total of
315 rectangles.

Now we prove that 315 is the maximum number of rectangles that
can be removed. Partition the rectangle into square and rectangular
regions by drawing the lines of the form x = 5

√
2n and y = 5

√
2n for

each nonnegative integer n. Color the resulting regions chessboard-
style so that the colors of the regions alternate between black and
white. Without loss of generality, assume that the total black area is
at least as large as the total white area.

Let R1 and R2 be the uppermost regions in the right column of our
partition, so thatR1 is a (50−35

√
2)×(90−60

√
2) rectangle andR2 is

a 5
√

2× (90− 60
√

2) rectangle. There are six rectangles immediately
below them in the partition; these can be divided into three pairs
of adjacent, congruent rectangles. The remaining rectangles in the
partition — forming twelve columns of width 5

√
2 — can also be

divided into pairs of (horizontally) adjacent, congruent rectangles.
Because any two adjacent rectangles in the partition are of different
colors, it follows that outside R1 and R2, the total black area equals
the total white area of the partition. Therefore, the total black area
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in the partition must exceed the total white area by

|Area(R2)−Area(R1)|

= |5
√

2 · (90− 60
√

2)− (50− 35
√

2) · (90− 60
√

2)|

= (40
√

2− 50)(90− 60
√

2).

Hence, the total white area in the partition is

1
2
(90 · 50)− 1

2
(40
√

2− 50)(90− 60
√

2) = 6900− 3300
√

2.

Any 1× 10
√

2 rectangle we remove contains 5
√

2 units of white area,
implying that we remove at most

6900− 3300
√

2
5
√

2
< 316

rectangles. This proves that the maximum number of rectangles
removed is indeed 315.

Problem 3 Call a positive integer r a perfect power if it is of the
form r = ts for some integers s, t greater than 1. Show that for any
positive integer n, there exists a set S of n distinct positive integers
with the following property: given any nonempty subset T of S, the
arithmetic mean of the elements in T is a perfect power.

Solution: Given a set Z of positive integers and a positive integer
m, let mZ = {mz | z ∈ Z} and let µ(Z) denote the arithmetic mean
of the elements in Z. Because µ(Z) is a linear function of the elements
in Z, µ(mZ) = mµ(Z).

Lemma. Let A be a nonempty set of positive integers. There exists
m ∈ N such that mA contains only perfect powers.

Proof: Let k = |A| and write A = {a1, a2, . . . , ak}. Let
p1, p2, . . . , pN be all the prime factors of

∏k
i=1 ai. For i = 1, 2, . . . , k,

there exist nonnegative integers αi,j such that ai =
∏N

j=1 p
αi,j

j .

Let q1, q2, . . . , qk be distinct primes. For j = 1, 2, . . . , N, by
the Chinese Remainder Theorem, there exists βj such that βj ≡
−αi,j (mod qi) for i = 1, 2, . . . , k. Let m =

∏N
j=1 p

βj

j . Then for
i = 1, 2, . . . , k,

mai =
N∏

j=1

p
αi,j+βj

j =

 N∏
j=1

p
αi,j+βj

qi
j

qi
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is a perfect power, as desired.

Fix a positive integer n. Let S̃ be a set of n distinct positive
multiples of lcm(1, 2, . . . , n), so that µ(T̃ ) is a positive integer for
all nonempty subsets T̃ of S̃. Let A equal the set of all such values
µ(T̃ ). By the lemma, there exists m ∈ N such that mA contains only
perfect powers; we claim that S = mS̃ has the required property.

Indeed, suppose that T is an arbitrary nonempty subset of S.
Then T equals mT̃ for some nonempty subset T̃ of S̃, implying that
µ(T ) = mµ(T̃ ) ∈ mA is a perfect power, as needed.
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2.4 Mediterranean Mathematical

Competition

Problem 1 We are given n different positive numbers a1, a2, . . . , an

and the set {σ1, σ2, . . . , σn}, where each σi ∈ {−1, 1}. Prove that
there exist a permutation (b1, b2, . . . , bn) of a1, a2, . . . , an and a set
{β1, β2, . . . , βn} where each βi ∈ {−1, 1}, such that the sign of∑i

j=1 βjbj equals the sign of σi for all 1 ≤ i ≤ n.

Solution: We construct a sequence of nonzero numbers x1, x2, . . . ,
xn with the following properties: (i) for 1 ≤ i ≤ n, x1, x2, . . . , xi

have distinct absolute values; (ii) when sorted in order of increasing
absolute value, their signs alternate; and (iii) for 1 ≤ i ≤ n, the
sign of the number in x1, x2, . . . , xi with largest absolute value equals
σi. To do so, we simply construct x1, x2, . . . , xn in that order, at
each step choosing xi0 with the proper sign so that property (ii)
holds for i = i0, and either setting |xi0 | > max{|x1|, |x2|, . . . , |xi0−1|}
or |xi0 | < min{|x1|, |x2|, . . . , |xi0−1|} so that property (iii) holds for
i = i0.

Choose the bi and βi such that bj1 < bj2 ⇐⇒ |xj1 | < |xj2 | and
βjxj > 0 for all j, j1, j2. Suppose that 1 ≤ i ≤ n. Arrange b1, b2, . . . , bi
in increasing order to obtain bk1 , bk2 , . . . , bki . By construction, the
sequence of signs βk1 , βk2 , . . . , βki

alternates, and βki
= σi. Therefore,

i∑
j=1

βjbj = σi

(
bki
− bki−1 + bki−2 − bki−3 + · · · ± bk1

)
.

The expression in parentheses is the sum of bk/2c positive expressions
of the form bkj+1 − bkj

and perhaps an additional positive term bk1 .

Therefore,
∑i

j=1 βjbj has the same sign as σi for each i, as desired.

Problem 2 Outwards along the sides of convex quadrilateralABCD
are constructed equilateral triangles WAB, XBC, Y CD, ZDA with
centroids S1, S2, S3, S4, respectively. Prove that S1S3 ⊥ S2S4 if and
only if AC = BD.

Solution: Choose an arbitrary point O as the origin. Let a, b, c,
and d denote the vectors from O to A, B, C, and D, respectively.
Let M1,M2,M3,M4 denote the midpoints of AB, BC, CD, DA,
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respectively, and let s′i denote the vector from the Mi to Si for
i = 1, 2, 3, 4.

Given two vectors x and y, let ∠(x,y) denote the clockwise angle
between them. (All angles are directed modulo 2π.) Without loss
of generality, assume that ABCD is oriented clockwise, and let ϕ be
the transformation that rotates any vector π/2 counterclockwise and
multiplies its magnitude by 1

2
√

3
. Then

ϕ(x) · ϕ(y) = |ϕ(x)||ϕ(y)|∠(ϕ(x), ϕ(y))

=
(
|x|

2
√

3

)(
|y|
2
√

3

)
∠(x,y) =

1
12

x · y.

The dot product of the vector from S3 to S1 with the vector from
S4 to S2 equals(

(b− d) + (a− c)
2

+ s′1 − s′3

)
·
(

(b− d)− (a− c)
2

+ s′2 − s′4

)
,

which equals the sum of the following four expressions:(
|b− d|2 − |a− c|2

4

)
, (s′1 − s′3) · (s′2 − s′4),

1
2
[s′1 · (b− a)− s′3 · (c− d) + (b− c) · s′2 − (a− d) · s′4]

1
2
[s′1 · (c− d)− s′3 · (b− a) + (a− d) · s′2 − (b− c) · s′4].

The first expression equals 1
4 (BD2 − AC2). The four terms in the

third expression all equal zero: MS1 ⊥ AB implies that s′1·(b−a) = 0,
and so on.

In the second expression, observe that s′1 − s′3 = ϕ((b− a)− (d−
c)) = ϕ((c − a) + (b − d)) and s′2 − s′4 = ϕ((c − b) − (a − d)) =
ϕ((c− a)− (b− d)). Thus, their dot product is one-twelfth of

((c− a) + (b− d)) · ((c− a)− (b− d)) = |c− a|2 + |b− d|2,

or 1
12 (CA2 −BD2).

As for the fourth expression,

s′1 · (c− d) = (AB/2
√

3)(CD) cos(π/2 + ∠(a− b, c− d))

while

−s′3 ·(b−a) = s′3 ·(a−b) = (CD/2
√

3)(AB) cos(π/2+∠(c−d,a−b)).
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The sum of the arguments of the two cosines is

π + (∠(a− b, c− d) + ∠(c− d,a− b)) = 3π,

implying that the value of each cosine is the negative of the other.
Thus, the s′1 and s′3 terms in the fourth expression cancel each other
out. Similarly, so do the s′2 and s′4 terms.

Hence, the entire dot product equals
(

1
4 −

1
12

)
(BD2 − AC2). Be-

cause S1S3 ⊥ S2S4 if and only if this dot product equals 0, S1S3 ⊥
S2S4 ⇐⇒ BD = AC, as desired.

Problem 3 P, Q, R, S are the midpoints of sides BC, CD, DA,
AB, respectively, of convex quadrilateral ABCD. Prove that

4(AP 2 +BQ2 + CR2 +DS2) ≤ 5(AB2 +BC2 + CD2 +DA2).

Solution: It is a well known formula that if XM is a median in
triangle XY Z, then XM2 = 1

2XY
2 + 1

2XZ
2 − 1

4Y Z
2. This can be

proven, for example, by applying Stewart’s Theorem to the cevian
XM in triangle XY Z. We set (X,Y, Z,M) equal to (A,B,C, P ),
(B,C,D,Q), (C,D,A,R), and (D,A,B, S) into this formula and add
the four resulting equations to obtain a fifth equation. Multiplying
both sides of the fifth equation by 4, we find that the left hand side
of the desired inequality equals

AB2 +BC2 + CD2 +DA2 + 4(AC2 +BD2).

Thus, it suffices to prove that AC2+BD2 ≤ AB2+BC2+CD2+DA2.

This is the well-known “parallelogram inequality.” To prove it, let
O be an arbitrary point in the plane, and for each point X, let x
denote the vector from O to X. We may expand each of the terms
in AB2 +BC2 + CD2 +DA2 −AC2 −BD2 — for instance, writing
AB2 = |a − b|2 = |a|2 − 2a · b + |b|2 — to find that this expression
equals

|a|2 + |b|2 + |c|2 + |d|2 + 2(a · b + b · c + c · d + d · a− a · c− b · d)

= |a + c− b− d|2 ≥ 0,

with equality if and only if a+c = b+d (i.e. if and only if quadrilateral
ABCD is a parallelogram). This completes the proof.



182 St. Petersburg City Mathematical Olympiad (Russia)

2.5 St. Petersburg City

Mathematical Olympiad (Russia)

Problem 1 Let AA1, BB1, CC1 be the altitudes of an acute triangle
ABC. The points A2 and C2 on line A1C1 are such that line CC1

bisects A2B1 and line AA1 bisects C2B1. Lines A2B1 and AA1 meet
at K, and lines C2B1 and CC1 meet at L. Prove that lines KL and
AC are parallel.

Solution: Let K1 and L1 be the midpoints of C2B1 and A2B1, so
that K1 lies on line CC1 and L1 lies on line AA1. It is well known
(and not difficult to prove) that the altitude AA1 of triangle ABC is
an angle bisector of triangle A1B1C1. From this it follows that A1K1

is both an angle bisector and a median in triangle A1C2B1. Thus,
A1C2 = A1B1, and A1K1 is also an altitude in triangle A1C2B1.
That is, A1K1 ⊥ B1C2. Similarly, C1L1 ⊥ A2B1.

Hence, lines KK1 and LL1 are altitudes of the triangle KLB1,
implying that they concur with the altitude ` from B1 in this tri-
angle. Because lines KK1 and LL1 meet at the orthocenter H of
triangle ABC, ` must pass through B1 and H as well. Hence, ` is
perpendicular to AC. Because ` is the altitude in triangle KLB1

passing through B1, it is also perpendicular to KL. We conclude
that KL ‖ AC, as desired.

Problem 2 One hundred points are chosen in the coordinate plane.
Show that at most 2025 = 452 rectangles with vertices among these
points have sides parallel to the axes.

First Solution: Let O be one of the 100 points, and call a rectangle
good if its vertices are O and three other chosen points. We claim
that there are at most 81 good rectangles. Draw through O the lines
`1 and `2 parallel to the coordinate axes, where m chosen points lie on
`1−{O} and n chosen points lie on `2−{O}. Given any fixed chosen
point P not on `1 or `2, at most one good rectangle has P as a vertex;
furthermore, every good rectangle is of this form for some P . Because
there are 99−m−n such points P , there are at most this many good
rectangles. If m+n > 17, we are done. Otherwise, given a pair (P,Q)
of chosen points, where P ∈ `1 − {O} and Q ∈ `2 − {O}, at most
one good rectangle has P and Q as vertices; furthermore, every good
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rectangle is of this form for some such pair (P,Q). Because there are
mn ≤ m(17 −m) ≤ 8 · 9 = 72 such pairs, there are at most 72 < 81
good rectangles.

We conclude that in any case, there are at most 81 rectangles
whose vertices are O and three other chosen points. Vary O over
all 100 points, counting the number of such rectangles for each O.
The sum of the tallies is at most 8100, and we count any rectangle
whose vertices are chosen points 4 times. Therefore, there are at most
8100/4 = 2025 rectangles, as desired.

Second Solution: Call a rectangle proper if its four vertices are
chosen points. Draw all of the vertical lines `1, . . . , `n passing through
at least one of the chosen points. Suppose that `i contains xi chosen
points, so that s :=

∑n
i=1 xi = 100. The number of proper rectangles

with sides on the ith and jth lines is at most min{
(
xi

2

)
,
(
xj

2

)
}. Observe

that

min
{(

x

2

)
,

(
y

2

)}
≤ 2xy − x− y

4

for positive integers x and y, because if x ≤ y then the left hand side
is at most x(x− 1)/2 ≤ 1

4 [x(y− 1) + y(x− 1)]. Hence, the number of
proper rectangles is at most∑

1≤i<j≤n

2xixj

4
−

∑
1≤i<j≤n

xi + xj

4

=
1
4

(
s2 −

n∑
i=1

x2
i

)
− 1

4
(n− 1)s

= 2525− 1
4

(
n∑

i=1

x2
i + 100n

)
.

Applying the root mean square inequality and the arithmetic mean-
geometric mean inequality, we find that this final expression is at
most

2525− 1
4
(s2/n+ 100n) = 2525− 25(100/n+ n)

≥ 2525− 25 · 2
√

(100/n)(n) = 2025,

as desired.

Problem 3
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(a) Find all pairs of distinct positive integers a, b such that (b2 + a) |
(a2 + b) and b2 + a is a power of a prime.

(b) Let a and b be distinct positive integers greater than 1 such that
(b2 + a− 1) | (a2 + b− 1). Prove that b2 + a− 1 has at least two
distinct prime factors.

Solution: (a) We prove that the only such pair is (a, b) = (5, 2). If
b = 1, then (a+1) | (a2+1) implies (a+1) | [a(a+1)−(a2+1)] = a−1.
Hence, a = 1, which does not give a solution as a and b were required
to be distinct. So assume b > 1, and write b2 + a = pm where p is
prime and m ≥ 1.

Observe that b(b3 +1) ≡ (b2)2 +b ≡ a2 +b ≡ 0 (mod b2 +a), so that
b2+a divides b(b3+1). But gcd(b, b3+1) = 1 and b2+a is a power of a
prime, so one of b or b3+1 is divisible by b2+a. The first case is clearly
impossible; in the second case, we have (b2 + a) | (b+ 1)(b2 − b+ 1).

Each of b + 1 and b2 − b + 1 is less than b2 + a, so neither can be
divisible by b2 + a. Because b2 + a = pm is a power of p, we conclude
that p divides both b + 1 and b2 − b + 1. It must then also divide
(b2 − b+ 1)− (b+ 1)(b− 2) = 3, implying that p = 3.

There is no solution for m = 1. If m = 2, then we have b2 + a = 9,
yielding the solution (a, b) = (5, 2). Otherwise, suppose that m ≥ 3.

One of b + 1 and b2 − b + 1 is divisible by 3 and the other is
divisible by 3m−1. But b2 < b2 + a = 3m, implying that b + 1
is at most 3m/2 + 1 < 3m−1 and so cannot be divisible by 3m−1.
We conclude that 3m−1 divides b2 − b + 1 and hence that 9 divides
4(b2 − b + 1) = (2b − 1)2 + 3. This is impossible because no square
is congruent to 6 modulo 9. Thus, there are no solutions besides (5, 2).

(b) Assume, for sake of contradiction, that b2 − 1 + a is a prime
power. Because (b2−1)2−a2 is divisible by b2−1+a, as is a2+b−1 by
hypothesis, so then is their sum (b2−1)2 +b+1 = b(b−1)(b2 +b−1).
Observe that b, b−1, and b2 + b−1 = b(b+1)−1 = (b+2)(b−1)+1
are pairwise relatively prime. Hence, one of b, b − 1, b2 + b − 1 must
be divisible by the prime power b2 + a− 1.

Because b and b− 1 are smaller than b2 + a− 1, we must have that
b2 + a− 1 divides b2 + b− 1 and hence that a ≤ b; because a 6= b by
hypothesis, a < b. On the other hand, because (b2+a−1) | (a2+b−1),
we must have 0 ≤ (a2 + b − 1) − (b2 + a − 1) = (a − b)(a + b − 1).
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Therefore, a ≥ b as well, a contradiction.

Problem 4 In a country of 2000 airports, there are initially no
airline flights. Two airlines take turns introducing new roundtrip
nonstop flights. (Between any two cities, only one nonstop flight can
be introduced.) The transport authority would like to achieve the
goal that if any airport is shut down, one can still travel between any
two other airports, possibly with transfers. The airline that causes
the goal to be achieved loses. Which airline wins with perfect play?

Solution: The second airline wins. Consider a situation where the
goal is not achieved, but adding any single flight causes the goal to be
achieved. Because the goal is not achieved, there is some airport A
which when shut down splits the cities into two disconnected groups
G1 and G2. Then any two cities within G1 or within G2 must already
be joined, because otherwise adding the flight between those two cities
would not cause the goal to be achieved. Similarly, every city must be
joined to A, but no city in G1 can be joined to any city of G2. Hence,
if there are k cities in G1, then there are k(k − 1)/2 flights between
cities in G1, (1999− k)(1998− k)/2 flights between cities in G2, and
1999 flights between A and another city. The total number of flights
is thus k(k−1999)+1999000, which is even. In particular, it is never
the second airline’s turn to add a new flight when such a situation
occurs. Therefore, the second airline can always avoid losing.

Problem 5 We are given several monic quadratic polynomials, all
with the same discriminant. The sum of any two of the polynomials
has distinct real roots. Show that the sum of all of the polynomials
also has distinct real roots.

Solution: The common discriminant must be positive, because
otherwise each of the polynomials would take only positive values,
so the sum of any two of them would not have real roots. Let this
common discriminant be 4D, so that each polynomial is of the form
(x − c)2 − D for some c. For each of the polynomials, consider the
interval on which that polynomial takes negative values; that interval
has length 2

√
D. If two of these intervals (c1 −

√
D, c1 +

√
D) and

(c2−
√
D, c2+

√
D) did not intersect, then |c2−c1| >

√
D and 1

2 (c1+c2)
does not lie in either interval. Both polynomials are thus nonnegative
at 1

2 (c1 + c2), but this point is where the polynomials’ sum p attains
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its minimum — contradicting the assumption that p has two distinct
real roots.

Hence, any two of the intervals intersect. Choose an interval
(c−
√
D, c+

√
D) such that c is minimal. Because every other interval

intersects this one, we find that every interval contains c +
√
D − ε

for some ε. At this point, the sum of all of the polynomials takes a
negative value, implying that this sum must have distinct real roots.

Problem 6 On an infinite checkerboard are placed 111 nonover-
lapping corners, L-shaped figures made of 3 unit squares. The
collection has the following property: for any corner, the 2×2 square
containing it is entirely covered by the corners. Prove that one can
remove between 1 and 110 of the corners so that the property will be
preserved.

Solution: If some 2 × 3 rectangle is covered by two corners, then
we may remove all of the corners except those two. Thus, we may
assume that no such rectangle exists.

We construct a directed graph whose vertices are the corners, as
follows: for each corner, draw the 2×2 square containing that corner,
and add an edge from this corner to the other corner covering the
remainder of the 2 × 2 square. If one corner has no edge pointing
toward it, we may remove that corner, so we may assume that no
such corner exists. Hence, each edge of the graph is in some cycle.
If there is more than one cycle, then we may remove all the corners
except those in a cycle of minimal length, and the required property
is preserved. Thus, it suffices to show that there cannot exist a single
cycle consisting of all 111 vertices.

By the center of a corner we refer to the point at the center of the
2× 2 square containing that corner. Recalling that we assumed that
no two corners cover a 2× 3 rectangle, one easily checks that if there
is an edge pointing from one corner to another, then these corners’
centers differ by 1 in both their x- and y- coordinates. Hence, in
any cycle, the x-coordinates of the vertices in that cycle alternate,
implying that the number of vertices in the cycle is even. Therefore,
there cannot be a cycle containing all 111 vertices, as desired.

Problem 7 We are given distinct positive integers a1, a2, . . . , a20.

The set of pairwise sums {ai + aj | 1 ≤ i ≤ j ≤ 20} contains 201
elements. What is the smallest possible number of elements in the
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set {|ai−aj | | 1 ≤ i < j ≤ 20}, the set of positive differences between
the integers?

Solution: The smallest possible number of differences is 100. This
number can be attained: set ai = 1011 + 10i and a10+i = 1011 − 10i

for i = 1, . . . , 10. Then {|ai − aj | | 1 ≤ i < j ≤ 20} equals

{2 · 10i | 1 ≤ i ≤ 10} ∪ {|10i ± 10j | | 1 ≤ i < j ≤ 10},

with the desired total of 10 + 2 · 45 = 100 differences.
Now suppose, for sake of contradiction, that there are fewer than

100 distinct differences. Let S = {a1, . . . , a20}. We obtain two con-
tradictory bounds on the number of multisets of the form {x, y, z, w}
with x, y, z, w ∈ S, x < y ≤ z < w, and x+ w = y + z.

For each of the 190 pairs (b, c) of elements in S with b > c, consider
the difference b−c. Because there are at most 100 distinct differences,
there are more than 90 pairs (b, c) for which b− c = b′ − c′ for some
values b′ < b, c′ < c in S. For each of these 90 pairs (b, c) with
corresponding values b′, c′, we form the multiset {b, c, b′, c′}. Each
such multiset {x, y, z, w} with x < y ≤ z < w corresponds to at most
two pairs (b, c), namely (b, c) = (w, z) and (b, c) = (w, y). Hence,
there are more than 45 such multisets.

On the other hand, the number of such multisets equals
∑
si(si −

1)/2, where for each integer i we define si to be the number of pairs
(b, c) such that b, c ∈ S, b ≤ c, and b+ c = i. For each i, any element
s of S can appear in at most one such pair (b, c) — namely, (s, i−s) if
s ≤ i− s, or (i− s, s) otherwise. Thus, si ≤ 20

2 = 10 for all i. Hence,
if si 6= 0, then 1 ≤ si ≤ 10 and si(si − 1)/2 ≤ 5si − 5.

The given information implies that there are 201 integers i such
that si ≥ 1; let T be the set of these integers. There are

(
20
2

)
pairs

(b, c) of elements in S such that b < c, and 20 such pairs with b = c,
implying that

∑
i∈T si =

(
20
2

)
+ 20 = 210. Therefore, the number of

multisets of the described form is∑
i∈T

si(si − 1)/2 ≤
∑
i∈T

(5si − 5) = 5
∑
i∈T

si − 5 · 201 = 45,

a contradiction. This completes the proof.

Problem 8 Let ABCD be an isosceles trapezoid with AD ‖ BC.
An arbitrary circle tangent to AB and AC intersects BC at M and
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N . Let X and Y be the intersections closer to D of the incircle of
triangle BCD with DM and DN , respectively. Show that XY ‖ AD.

Solution: Denote the first circle by S1, and suppose it is tangent
to line AB at P and to line AC at Q. Choose points P1 and Q1 on
the extensions of rays DB and DC beyond B and C, respectively, so
that BP1 = BP and CQ1 = CQ. Then

DP1 −DQ1 = (DB +BP1)− (DC + CQ1)

= (AC +BP )− (AB + CQ)

= (AC − CQ)− (AB −BP ) = AQ−AP = 0.

Thus, there exists a circle S2 tangent to lines DB and DC at P1

and Q1, respectively. Because BP 2 = BP 2
1 (resp. CQ2 = CQ2

1), the
powers of the point B (resp. C) with respect to the circles S1 and S2

are equal. Thus, the line BC is the radical axis of the two circles;
because M and N lie on this axis and lie on S1, they also lie on
S2. Furthermore, because MN lies within triangle DP1Q1, M and
N are the intersections closer to D of S2 with lines DM and DN ,
respectively. Consider the homothety with positive ratio centered at
D taking S2 to the incircle of triangle DBC. This homothety must
carry M and N to X and Y , implying that XY is parallel to the base
of the trapezoid, as desired.

Problem 9 In each square of a chessboard is written a positive real
number such that the sum of the numbers in each row is 1. It is
known that for any eight squares, no two in the same row or column,
the product of the numbers in these squares is no greater than the
product of the numbers on the main diagonal. Prove that the sum of
the numbers on the main diagonal is at least 1.

Solution: Suppose, for sake of contradiction that the sum of the
numbers on the main diagonal is less than 1. Call a square good if its
number is greater than the number in the square in the same column
that lies on the main diagonal. Each row must contain a good square,
because otherwise the numbers in that row would have sum less than
1.

For each square on the main diagonal, draw a horizontal arrow
from that square to a good square in its row, and then draw a vertical
arrow from that good square back to the main diagonal. Among these
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arrows, some must form a loop. We consider the following squares:
the squares on the main diagonal which are not in the loop, and the
good squares which are in the loop. Each row and column contains
exactly one of these squares. However, the product of the numbers in
these squares is greater than the product of the numbers on the main
diagonal, a contradiction.

Problem 10 Is it possible to draw finitely many segments in
three-dimensional space such that any two segments either share
an endpoint or do not intersect, any endpoint of a segment is the
endpoint of exactly two other segments, and any closed polygon made
from these segments has at least 30 sides?

Solution: Yes, this is possible. We prove by induction that for
n ≥ 3, there exists a graph Gn in which each vertex has degree 3
and no cycle contains fewer than n vertices. We may then embed
G30 in three-dimensional space by letting its vertices be any points in
general position (that is, such that no four points are coplanar) and
letting each edge between two vertices be a segment. No two segments
intersect unless they share an endpoint, and any closed polygon made
from these segments has at least 30 sides.

Proving the base case n = 3 is easy — we may simply take
a complete graph on three vertices. Now suppose we are given
such a graph Gn, consisting of m edges labelled 1, . . . ,m in some
fashion. Choose an integer M > n2m. We construct a new graph
Gn+1 whose vertices are pairs (v, k), where v is a vertex of Gn and
k ∈ {0, . . . ,M−1} (or rather, the integers modulo M) as follows. For
i = 1, . . . ,m, suppose that edge i has endpoints a and b. In Gn+1,
join (a, j) to (b, j + 2i) with an edge for j = 0, . . . ,M − 1.

We claim that every vertex in Gn has degree d. Indeed, if a ∈ Gn

is adjacent to b1, b2, b3 ∈ Gn, then any (a, j) ∈ Gn+1 is adjacent to
exactly three vertices, of the form (b1, j1), (b2, j2), (b3, j3). Further-
more, note that b1, b2, b3 are distinct; in other words, given a fixed a
and b, at most one edge connects two vertices of the form (a, j) and
(b, j′).

We now show that Gn+1 contains no cycles of length less than n+1.
Suppose on the contrary that (a1, j1), . . . , (at, jt) is such a cycle with
t ≤ n distinct vertices. If the edges in the path a1, a2, . . . , at form
a tree, then there exists some leaf ak in this tree besides a1 = at.
Hence, ak−1 and ak+1 are equal, say to some value b. Then (ak, jk) is
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adjacent to (ak−1, jk−1) and (ak+1, jk+1), two distinct vertices of the
form (b, j′) — a contradiction.

Therefore, the edges in the path a1, a2, . . . , at contain a cycle. By
the induction hypothesis, this cycle must contain at least n edges,
implying that t ≥ n and that the edges in our path are distinct. Let
i1, . . . , in be the labels of the edges of this cycle in Gn. Then the
second coordinates of (a1, j1), . . . , (at, jt) change by ±2i1 , . . . ,±2in

modulo M as we travel along the cycle. Because j1 = jt, we must
have

±2i1 ± · · · ± 2in ≡ 0 (mod M).

However, ±2i1 ± · · · ± 2in is a nonzero integer whose absolute value
is less than n2m < M , a contradiction. Thus, Gn+1 has no cycles
of length less than n+ 1. This completes the inductive step and the
proof.

Problem 11 What is the smallest number of weighings on a balance
scale needed to identify the individual weights of a set of objects
known to weigh 1, 3, 32, . . . , 326 in some order? (The balance scale
reports the weight of the objects in the left pan, minus the weight of
the objects in the right pan.)

Solution: At least three weighings are necessary: each of the first
two weighings divides the weights into three categories (the weights in
the left pan, the weights in the right pan, and the weights remaining
off the scale). Because 27 > 3 · 3, some two weights must fall into the
same category on both weighings, implying that these weights cannot
be distinguished. We now show that three weighings indeed suffice.

Label the 27 weights using the three-letter words made up of the
letters L,R,O. In the ith weighing, put the weights whose ith letter
is L on the left pan and the weights whose ith letter is R on the right
pan. The difference between the total weight of the objects in the left
pan and the total weight of the objects in the right pan equals

ε030 + ε131 + · · ·+ ε26326,

where εj equals 1, -1, or 0 if 3j is in the left pan, in the right pan,
or off the scale, respectively. The value of the above sum uniquely
determines all of the εj : the value of the sum modulo 3 determines ε0,
then the value of the sum modulo 9 determines ε1, and so on. (This
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is a case of a more general result, that each integer has a unique
representation in base 3 using the digits −1, 0, 1.)

Thus, for j = 0, . . . , 26, the ith weighing determines the ith letter
of the weight that measures 3j . After three weighings, we thus know
exactly which weight measures 3j , as desired.

Problem 12 The line ` is tangent to the circumcircle of acute
triangle ABC at B. Let K be the projection of the orthocenter
of triangle ABC onto line `, and let L be the midpoint of side AC.
Show that triangle BKL is isosceles.

First Solution: All angles are directed modulo π. If B = K,
then clearly LB = LK; we now assume that B 6= K. Let H be
the orthocenter of triangle ABC, and let A1 and C1 be the feet of
the altitudes in triangle ABC from A and C, respectively. Because
∠BKH = ∠BC1H = ∠BA1H = π/2, the points A1, B, C1,H,K lie
on a circle with diameter BH. Note that

∠KBC1 = ∠KBA = ∠BCA = π/2−∠HBC = ∠A1HB = ∠A1C1B,

where the last equality holds because quadrilateral BA1HC1 is cyclic.
Hence, BK and A1C1 are parallel, implying that these segments’
perpendicular bisectors (which both pass through the center of the
circle in which quadrilateral C1KBA1 is inscribed) coincide.

Next, because ∠AC1C = ∠AA1C = π/2, quadrilateral AC1A1C

is cyclic with center L. Thus, L lies on the perpendicular bisector
of A1C1, which is also the perpendicular bisector of BK. Hence,
LB = LK, and triangle BKL is isosceles.

Second Solution: Again, let H be the orthocenter of triangle
ABC. Reflect H across the point L to obtain H ′; then quadrilateral
AHCH ′ is a parallelogram, implying that

∠BAH ′ = ∠BAC + ∠LAH ′ = ∠BAC + ∠LCH = π/2.

Likewise, ∠BCH ′ = π/2. Hence, H ′ is the point on the circumcircle
of ABC diametrically opposite B. Thus, the projection of H ′ onto
the tangent line ` is B, while we are given that the projection of
H onto ` is K. It follows that the projection of L (the midpoint of
H ′H) onto ` is the midpoint of BK, implying that LB = LK. Hence,
triangle BKL is isosceles.
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Problem 13 Two balls of negligible size move within a vertical 1×1
square at the same constant speed. Each travels in a straight path
except when it hits a wall, in which case it reflects off the wall so that
its angle of incidence equals its angle of reflection. Show that a spider
(also of negligible size), moving at the same speed as the balls, can
descend straight down on a string from the top edge of the square to
the bottom so that while the spider is within the square, neither the
spider nor its string is touching one of the balls.

Solution: Suppose the square has side length one meter, and that
the spider and the balls move at one meter per minute. Then the
horizontal projection of each ball moves at a speed no greater than
one meter per minute, and thus completes a full circuit in no less than
two minutes.

If both balls are moving vertically, then the spider can descend
along some vertical line at any time. Otherwise, at some time t0
(measured in minutes) one ball touches the left wall. If the second
ball touches the wall between time t0 and t0 + 1, then it does not
touch the wall between time t0 + 1 and t0 + 2; hence, the spider may
descend safely if it begins at time t0 +1. Otherwise, if the second ball
does not touch the wall between time t0 and t0 + 1, then the spider
may descend safely if it begins at time t0.

Problem 14 Let n ≥ 3 be an integer. Prove that for positive
numbers x1 ≤ x2 ≤ · · · ≤ xn,

xnx1

x2
+
x1x2

x3
+ · · ·+ xn−1xn

x1
≥ x1 + x2 + · · ·+ xn.

Solution: Suppose that 0 ≤ x ≤ y and 0 < a ≤ 1. We have 1 ≥ a

and y ≥ x ≥ ax, implying that (1−a)(y−ax) ≥ 0 or ax+ay ≤ a2x+y.
Dividing both sides of this final inequality by a, we find that

x+ y ≤ ax+
y

a
. (∗)

We may set (x, y, a) =
(
xn, xn · xn−1

x2
, x1

x2

)
in (∗) to find that

xn +
xn−1xn

x2
≤ xnx1

x2
+
xn1xn

x1
. (†)
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Furthermore, for i = 1, 2, . . . , n − 2, we may set (x, y, a) =(
x1, xn−1 · xi+1

x2
, xi+1

xi+2

)
in (∗) to find that

xi + xn−1 ·
xi+1

x2
≤ xi ·

xi+1

xi+2
+ xn−1

xi+1

x2
· xi+2

xi+1

= xi ·
xi+1

xi+2
+ xn−1 ·

xi+2

x2
.

Summing this inequality for i = 1, 2, . . . , n− 2 yields

(x1 + · · ·+ xn−2) + xn−1 ≤
(
x1x2

x3
+ · · ·+ xn−2xn−1

xn

)
+
xn−1xn

x2
.

Summing this last inequality with (†) yields the desired inequality.

Problem 15 In the plane is given a convex n-side polygon P with
area less than 1. For each point X in the plane, let F (X) denote
the area of the union of all segments joining X to points of P. Show
that the set of points X such that F (X) = 1 is a convex polygon
with at most 2n sides. (Of course, by “polygon” here we refer to a
1-dimensional border, not a closed 2-dimensional region.)

Solution: For each point X in the plane, we let FX denote the
union of all segments joining X to points of P. Also, we let P denote
the closed region bounded by P. Let Q be the set of points X such
that F (X) = 1. In addition, let the vertices of P be A1, A2, . . . , An

in clockwise order, with indices taken modulo n. Finally, let O be the
centroid of P.

Lemma. Any ray whose endpoint is O intersects Q in at most one
point.

Proof: Suppose, for sake of contradiction, that some ray with
endpoint O intersected Q at two distinct points R1 and R2. Observe
that R1 and R2 must lie outside P, because otherwise F (R1) =
F (R2) = Area(P) < 1.

Without loss of generality, assume that R2 is closer to O than R1,
so that R2 ∈ FR1 . Then {R2} ∪ P lies in the convex set FR1 . It
follows that the convex hull of {R2} ∪ P lies in FR1 as well. But this
convex hull is precisely FR2 , implying that FR2 ⊆ FR1 .

Suppose, for sake of contradiction, that R1 ∈ FR2 . We already
know that R2 ∈ FR1 . Hence, by the definitions of these regions, we
have that R2 ∈ R1S1 and R1 ∈ R2S2 for some S1, S2 ∈ P. In this
case, R1 and R2 lie on S1S2. Because S1S2 is contained in the convex
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set P, it follows that R1 and R2 are as well — a contradiction. Thus,
our assumption at the beginning of this paragraph was false, and in
fact R1 6∈ FR2 .

Hence, FR2 ⊆ FR1 , but equality does not hold because R1 is
contained in the right hand side but not the left hand side. Be-
cause FR2 and FR1 are closed polygonal regions, we must have
1 = Area(FR2) < Area(FR1) = 1, a contradiction. Therefore, our
assumption at the beginning of the proof of this lemma was false,
and in fact any ray with endpoint O intersects Q in at most one
point.

The rays A1A2, A2A3, . . . , AnA1 partition the exterior of P into n
regions. Let Mj be the region bounded by rays Aj−1Aj and AjAj+1.
Observe that it consists of all the points X such that P lies to the
left of ray XAj . (By this, we mean that P lies entirely in one of the
two half-planes formed by line XAj , and that if we walk from X to
Aj then P lies in the half-plane to our left.)

Similarly, the rays A2A1, A3A2, . . . , A1An partition the exterior
of P into n regions. Let Nj be the region bounded by rays AjAj−1

and Aj+1Aj . Observe that it consists of all the points X such that P
lies to the right of ray XAj .

Now, choose an arbitrary point Y0 on Q, and suppose that it lies
in Mj ∩Nk. Observe that for each point Y ∈ Mj ∩Nk, the region
FY can be partitioned into two polygons: triangle AjY Ak and the
polygon AkAk+1 · · ·Aj . Hence, F (Y ) equals

Area(AkAk+1 · · ·Aj) + Area(AjY Ak)

= Area(AkAk+1 · · ·Aj) +
1
2
AjAk ·Distance(Y, line AjAk).

So, if Y ∈ Mj ∩ Nk has the property that Y Y0 ‖ AjAk, then
F (Y ) = F (Y0) = 1. Starting from Y0, we travel along this line
clockwise around O until we reach a border of Mj ∩Nk. Each point
Y on our path so far satisfies F (Y ) = 1.

At this point, we are in the region Mj′ ∩Nk′ , where (j′, k′) equals
either (j + 1, k) or (j, k + 1). An argument similar to the one above
shows that we may now travel clockwise around O and parallel to
Aj′Ak′ until we reach a border of Mj′ ∩Nk′ . Each point Y on our
path so far continues to satisfy F (Y ) = 1.

We can continue similarly until we have travelled completely around
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P. Rigorously, letting O be the centroid of P, if Y is our (changing)
position as we travel then we can continue travelling until ∠Y0OY =
2π. Suppose we stop at Y = Y1.

We claim that the path we travel must be all of Q. If not, then
there exists some Z1 not on Q such that F (Z1) = 1. Then ray OZ1

intersects Q at some point Z2 6= Z1, but this contradicts lemma 1.
It similarly follows that Y0 = Y1, because otherwise ray OY0

contains two points (namely, Y0 and Y1) in Q — again contradicting
lemma 1.

Therefore, Q consists of a closed, simple polygonal path. Also,
we change direction at most 2n times, because we can only change
directions when we cross any of the 2n rays AjAj+1 and AjAj−1.
Hence, Q is a polygon with at most 2n sides.

Note that as we travel, at times we switch from travelling parallel
to AjAk to travelling parallel to Aj+1Ak; in these cases, our direction
of travel rotates clockwise by π − ∠AjAkAj+1. At other times,
we switch from travelling parallel to AjAk to travelling parallel to
AjAk+1; in these cases, our direction of travel rotates clockwise by
π − ∠Ak+1AjAk. Hence, whenever our direction of travel changes,
it rotates by some clockwise angle measuring less than π. It follows
that Q is actually a convex polygon.

In summary: Q is a convex polygon with at most 2n sides. This
completes the proof.

Problem 16 What is the smallest number of unit segments that
can be erased from the interior of a 2000 × 3000 rectangular grid so
that no smaller rectangle remains intact?

Solution: Suppose some segments have been removed so that no
smaller rectangle remains intact. We construct a graph whose vertices
are the 1 × 1 squares contained in the 2000 × 3000 grid, where two
vertices are adjacent if the corresponding 1 × 1 squares are adjacent
and the segment between then has been erased. Suppose that there
are t connected components in this graph.

Because no 1× 1 or 1 × 2 rectangle remains intact, each vertex of
the graph is in a connected component with at least three vertices.
Because there are six million vertices in total, t must be at most two
million. For any of these t components C, let v(C) and e(C) denote
the number of vertices and edges, respectively, in that component.
(Of course, the term “edge” here refers to edges of the graph, not to
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segments on the original grid.) We have e(C) ≥ v(C) − 1 for each
component; summing over all components, we find that∑

C

e(C) ≥
∑
C

(v(C)− 1) = 6 · 106 − t ≥ 4 · 106. (∗)

To see that it in fact suffices to erase only four million segments,
we first build up a tiling of the 3000× 2000 rectangle by translations
of the following 4× 6 rectangular figure:

Note that the only rectangles formed by the segments in this tiling
are the 4×6 rectangles themselves. Each of these 4×6 rectangles has
at least one vertex within the interior of the 3000 × 2000 rectangle,
and this vertex is at the center of a figure arranged as follows:

We can thus ensure that the 4× 6 rectangles do not remain intact by
rearranging the above pattern in the following form instead:

Although this construction removes the 4 × 6 rectangles, we must
ensure that we do not reintroduce any new rectangles. When we
modify the above figures, we do not alter any of the segments outside
their interior; so any new rectangles we reintroduce must intersect
the interior of at least one of these figures. Such a rectangle would
intersect the figure either in a straight line segment cutting all the way
through the above figure, or in a broken line segment consisting of
two segments at right angles to each other. However, no such segment
or broken line segment intersects the interior of the above figure, so
in fact no new rectangles are introduced.
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Therefore, if we erase segments to obtain the tiling found with
our procedure above, no rectangles are formed by the remaining
segments. Also, if we construct the graph described at the beginning
of the solution, then because each connected component has exactly
3 vertices we know that equality holds in (∗). Hence, the number of
erased edges is exactly four million, as needed. This completes the
proof.

Problem 17 Let AA1 and CC1 be altitudes of acute triangle ABC.
The line through the incenters of triangles AA1C and AC1C meets
lines AB and BC at X and Y , respectively. Prove that BX = BY .

Solution: Let P and Q be the incenters of triangles AC1C and
AA1C, respectively. Then

∠APC = π − 1
2
(∠C1CA+ ∠CAC1) = 3π/4,

Similarly, ∠AQC = 3π/4. Hence, quadrilateral APQC is cyclic.
We now use directed angles modulo π. Observe that

∠BXY = ∠BAP + ∠APX

= ∠BAP + (π − ∠APQ) = ∠BAP + ∠ACQ.

Similarly, ∠BYX = ∠BCQ+ ∠CAP . Therefore,

∠BXY + ∠BYX = (∠BAP + ∠CAP ) + (∠ACQ+ ∠BCQ) = 0,

implying that BX = BY .

Problem 18 Does there exist a 30-digit number such that the
number obtained by taking any five of its consecutive digits is divisible
by 13?

Solution: We claim that no such number exists. Suppose on the
contrary that such a number exists, and let a1 · · · a30 be its decimal
expansion. Then for 1 ≤ i ≤ 25, we have

4ai − ai+5 ≡ 105ai − ai+5

= 10 · ai · · · ai+4 − ai+1 · · · ai+5

≡ 0 (mod 13).



198 St. Petersburg City Mathematical Olympiad (Russia)

Hence, each term in the sequence a1, a6, a11, a16, a21, a25 is congruent
modulo 13 to four times the previous term. In other words, these six
terms are consecutive terms of one of the following sequences:

1, 4, 3, 12, 9, 10, 1, 4, 3, . . . ;

2, 8, 6, 11, 5, 7, 2, 8, 6, . . . ;

0, 0, . . . .

Any six adjacent terms of the first two sequence contains one of
10, 11, or 12, but each ai is a single digit. Hence, a1, a6, . . . , a25

must be adjacent terms of the third sequence above. However, this
is impossible because a1 6= 0. Therefore, our original assumption was
false, and no 30-digit number has the required property.

Problem 19 Let ABCD be a convex quadrilateral, and let M and
N be the midpoints of AD and BC, respectively. Suppose A,B,M,N

lie on a circle such that AB is tangent to the circumcircle of triangle
BMC. Prove that AB is also tangent to the circumcircle of triangle
AND.

Solution: Because quadrilateral ABNM is a cyclic, ∠MAB =
π − ∠BNM = ∠MNC. Because AB is tangent to the circumcircle
of triangle BMC, we have ∠ABM = ∠BCM = ∠NCM . Thus,
triangles ABM and NCM are similar, implying that AM/AB =
NM/NC; equivalently, MD/AB = MN/BN .

Moreover, ∠DMN = ∠ABN because quadrilateral ABNM is
cyclic. Thus, triangles DMN and ABN are similar, so ∠MDN =
∠BAN . We conclude that AB is also tangent to the circumcircle of
triangle AND, as desired.

Problem 20 Let n ≥ 3 be a positive integer. For all positive
numbers a1, a2, . . . , an, show that

a1 + a2

2
a2 + a3

2
· · · an + a1

2
≤ a1 + a2 + a3

2
√

2
· · · an + a1 + a2

2
√

2
.

Solution: We take the indices of the ai modulo n. Observe that

4(ai−1 + ai + ai+1)2 = [(2ai−1 + ai) + (ai + 2ai+1)]2

≥ 4(2ai−1 + ai)(ai + 2ai+1).
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by the arithmetic mean-geometric mean inequality. Equivalently,

(ai−1 + ai + ai+1)2 ≥ (2ai−1 + ai)(ai + 2ai+1).

In addition to this inequality, note that

(2ai−1 + ai)(2ai + ai−1) ≥ 2(ai−1 + ai)2

by the arithmetic mean-geometric mean inequality. Multiplying these
two inequalities together for i = 1, 2, . . . , n, and then taking the
square root of each side of the resulting inequality, gives the desired
result.

Problem 21 A connected graph is said to be 2-connected if after
removing any single vertex, the graph remains connected. Prove that
given any 2-connected graph in which the degree of every vertex is
greater than 2, it is possible to remove a vertex (and all edges adjacent
to that vertex) so that the remaining graph is still 2-connected.

Solution: Let G be the given graph. Given two vertices v, w, we
write “there exists v  w (possibly specifying some condition)” if
there exists a path from v to w (satisfying the condition, if one is
specified). Given any vertex v, we are told that the graph obtained
by removing v from G remains connected. In other words, we are
told:

(∗) For any distinct vertices v1, v2, v, there exists v1  v2 not passing
through v.

Later we will prove that unless the desired result holds trivially, we
can partition the vertices in G into three nonempty sets S, {a, b}, T
such that the following conditions hold:

(i) S is not adjacent to T (that is, no vertex in S is adjacent to a
vertex in T ); and

(ii) given any two vertices w1, w2 ∈ S ∪ {a, b}, there exists a pseu-
dopath between any other vertices in S ∪ {a, b} which does not
pass through v1 or v2. (Here, a pseudopath is a path which
contains only vertices in S∪{a, b}, and contains no edges besides
ab and the edges in G. In other words, a pseudopath is like path
in S ∪ {a, b}, except it is allowed to contain one additional type
of edge.)
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Given such a partition, let x be any vertex in S. We claim that
the graph obtained by removing x from G is 2-connected. In other
words, we claim that given any distinct vertices y, v1, v2 distinct from
x, there exists v1  v2 not passing through the forbidden points x
and y. We say that we can legally travel between two points, or that
a path between two points is legal, if it does not pass through either
x or y.

Lemma 1. If y ∈ T , then (1) one can legally travel from any
nonforbidden point of S to any nonforbidden point of {a, b}, and
(2) one can legally travel from any nonforbidden point of T to some
nonforbidden point of {a, b}.

Proof: We are given that x ∈ S and y ∈ T . Because one forbidden
point lies in S ∪ {a, b} and this forbidden point is x, a and b are
not forbidden points. We prove that we may legally travel from any
nonforbidden point s ∈ S to a; a similar proof shows that we may
travel from s to b. By (ii), there exists a pseudopath from s to a

not passing through x or b. Because it does not pass through b,
this pseudopath does not contain ab, so it is actually a path. By
construction, it does not contain x; nor can it contain y ∈ T , because
no pseudopath contains vertices in T . This proves (1).

Suppose that we have t ∈ T distinct from y. By (∗), there exists
t  a that does not pass through y. We truncate this path as soon
as it passes through {a, b}. Because the path starts in T , and T is
not adjacent to {x} ⊆ S, the path cannot pass through x without
first passing through {a, b}. But because our path stops as soon as
it passes through {a, b}, it does not pass through x. Hence, our path
from t to {a, b} contains neither x nor y, as desired.

Lemma 2. If y lies in S∪{a, b} instead of T , then (1) one can legally
travel from any nonforbidden point of S to some nonforbidden point
of {a, b}, and (2) one can legally travel from any nonforbidden point
of T to any nonforbidden point of {a, b}.

Proof: To prove (1), assume without loss of generality, assume
that a is not forbidden. Let s be any nonforbidden point in S. By
(ii), there exists a pseudopath from s to a that does not pass through
x or y. Truncate this path as soon is it passes through {a, b}; because
the truncated path cannot contain ab, it must be a path. This proves
(1).
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To prove (2), let t be a point in T . It suffices to prove that if a is
nonforbidden, then we may legally travel from t to a. (A similar proof
holds if b is nonforbidden and we wish to travel from t to b.) By (∗),
there exists t a that does not pass through b. Truncate this path as
soon as it passes through a. It does not pass through S because to do
so it would first have to pass through a (since T is not adjacent to S).
Nor does the path pass through b. Because the forbidden points lie in
S∪{b}, it follows that our path from t to a is legal. This proves (2).

Lemma 3. One can legally travel between any two nonforbidden
points of {a, b}.

Proof: Of course, if there is only one nonforbidden point in the pair
{a, b}, the claim is obvious. Otherwise, if a and b are not forbidden, we
wish to travel between them without passing through any forbidden
points. Either the conditions of lemma 1 hold, or else the conditions
of lemma 2 hold. In the first case, because S is nonempty, it must
contain at least one vertex; because this vertex has degree at least
3, S must contain an additional vertex. Hence, S contains at least 2
vertices, and one of these vertices s is not forbidden. By lemma 1, we
can legally travel from a to s and then from s to b. Combining these
two paths allows us to legally travel between a and b, as desired.

If instead the conditions of lemma 2 hold, then a similar proof
shows that we may legally travel from a to some t ∈ T and then to b.

With these three lemmas, we show that one can legally travel
between any two nonforbidden points v and w. From lemmas 1 and
2, we can legally travel from v to some point v′ ∈ {a, b}; similarly, we
can legally travel from w to some point w′ ∈ {a, b}. From lemma 3,
we can legally travel from v′ to w′. Combining these paths yields a
legal path from v to w, as desired.

It remains, then, to construct S, {a, b}, and T satisfying conditions
(i) and (ii). Consider all possible ways to partition the vertices in
G into three nonempty sets S, {a, b}, T such that S and T are not
adjacent. If there is no such partition, then consider any distinct
vertices x, y. There is no valid partition for (a, b) = (x, y), so for any
other two vertices v1, v2 there must exist v1  v2 not passing through
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x or y. It follows that the desired result holds trivially, because if we
remove any vertex x then the graph remains 2-connected.

Hence, we may assume that a partition S∪{a, b}∪T exists where S
and T are not adjacent. Find such a partition with |S| minimal. Let
G1 be the graph obtained from G by removing the vertices in T and
then adding the edge ab (if a and b are not already adjacent in G). We
wish to prove that G1 is 3-connected (that is, it remains connected
even if we remove any two vertices). If not, then we may partition
the vertices of G1 into three nonempty sets S1, {a1, b1}, T1 such that
S1 and T1 are not adjacent in G1. Notice that neither (a, b) nor (b, a)
can lie in S1 × T1, because a and b are adjacent in G1. Hence, we
may assume without loss of generality that S1 contains neither a nor
b. In this case, S1 ⊆ S, so that S1 and T are not adjacent in G.
Also, by the construction of S1 and T1, S1 and T1 are not adjacent in
G1; hence, S1 and T1 are not adjacent in G either. We now partition
the vertices in G into the three sets S1, {a1, b1}, T1 ∪ T . We showed
above that no vertex in S1 is adjacent in G to any vertex in T1 ∪ T .
However, |S1| = |S|− |T1| < |S|, contradicting the minimal definition
of S.

Thus, there indeed exist S, {a, b}, T satisfying conditions (i) and
(ii). This completes the proof.

Problem 22 The perpendicular bisectors of sides AB and BC of
nonequilateral triangle ABC meet lines BC and AB at A1 and C1,
respectively. Let the bisectors of angles A1AC and C1CA meet at B′,
and define C ′ and A′ analogously. Prove that the points A′, B′, C ′ lie
on a line passing through the circumcenter of triangle ABC.

Solution: Let I be the incenter and O the circumcenter of triangle
ABC. We will show that A′, B′, C ′ lie on the line OI.

We prove that B′ lies on the line OI; similar proofs show that A′

and C ′ do as well. Let P,Q,R, S be the second intersections of the
lines CB′, AB′, CI,AI, respectively, with the circumcircle of triangle
ABC. Note that

∠RCA+ ∠ABC + ∠CAQ

=
1
2
∠ACB + ∠ABC +

1
2
(∠CAB − ∠A1AB)

=
1
2
∠ACB + ∠ABC +

1
2
(∠CAB − ∠ABC) =

π

2
.
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Thus, the points R and Q are diametrically opposed on the cir-
cumcircle of triangle ABC. Similarly, the points P and S are
diametrically opposed. By Pascal’s Theorem applied to the cyclic
hexagon AQRCPS, the points O, I,B′ lie on a line.

Problem 23 Is it possible to select 102 17-element subsets of a
102-element set, such that the intersection of any two of the subsets
has at most 3 elements?

Solution: The answer is “yes.” More generally, suppose that p is a
prime congruent to 2 modulo 3. We show that it is possible to select
p(p+1)/3 p-element subsets of a p(p+1)/3-element set, such that the
intersection of any two of the subsets has at most 3 elements. Setting
p = 17 yields the claim.

Let P be the projective plane of order p (which this solution refers
to as “the projective plane,” for short), defined as follows. Let A
be the ordered triples (a, b, c) of integers modulo p, and define the
equivalence relation ∼ by (a, b, c) ∼ (d, e, f) if and only if (a, b, c) =
(dκ, eκ, fκ) for some κ. Then let P = (A− {(0, 0, 0)}) /∼. We let
[a, b, c] ∈ P denote the equivalence class containing (a, b, c), and we
call it a point of P. Because A− {(0, 0, 0)} contains p3 − 1 elements,
and each equivalence class under ∼ contains p − 1 elements, we find
that |P| = (p3 − 1)/(p− 1) = p2 + p+ 1.

Given q ∈ P, we may write q = [α, β, γ] and consider the solutions
[x, y, z] to

αx+ βy + γz ≡ 0 (mod p).

The set of these solutions is called a line in the projective plane; it is
easy to check that this line is well-defined regardless of how we write
q = [α, β, γ], and that (x, y, z) satisfies the above equation if and only
if every triple in [x, y, z] does. We let [[α, β, γ]] denote the above line.

It is easy to check that P is in one-to-one correspondence with
P∗, the set of lines in the projective plane, via the correspondence
[α, β, γ] ←→ [[α, β, γ]]. It is also easy to check that any two distinct
points lie on exactly one line, and that any two distinct lines intersect
at exactly one point. Furthermore, any line contains exactly p + 1
points. (The projective plane is not an invention of this solution, but
a standard object in algebraic geometry; the properties described up
to this point are also well known.)
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Define ϕ : P → P by ϕ([a, b, c]) = [b, c, a]. Given a point q ∈ P,
we say we rotate it to obtain q′ if q′ = ϕ(q). Similarly, given a subset
T ⊆ P, we say we rotate it to obtain T ′ if T ′ = ϕ(T ).

Given a point q 6= [1, 1, 1] in the projective plane, we rotate it once
and then a second time to obtain two additional points. Together,
these three points form a triplet. We will show below that (i) the
corresponding triplet actually contains three points. Observe that any
two triplets obtained in this manner are either identical or disjoint.
Because there are p2 + p points in P −{[1, 1, 1]}, it follows that there
are p(p+ 1)/3 distinct triplets. Let S be the set of these triplets.

Given a line ` = [[α, β, γ]] 6= [[1, 1, 1]] in the projective plane,
it is easy to show that rotating it once and then a second time
yields the lines [[β, γ, α]] and [[γ, α, β]]. The points q 6= [1, 1, 1] on
[[α, β, γ]], [[β, γ, α]], and [[γ, α, β]] can be partitioned into triplets.
More specifically, we will show below that (ii) there are exactly 3p
such points q 6= [1, 1, 1]. Hence, these points can be partitioned into
exactly p distinct triplets; let T` be the set of such triplets.

Take any two lines `1, `′1 6= [[1, 1, 1]], and suppose that |T`1 ∩T`′1
| >

3. We claim that `1 and `′1 are rotations of each other. Suppose
otherwise for sake of contradiction. Let `2, `3 be the rotations of `1,
and let `′2, `

′
3 be the rotations of `′1. We are given that T`1 and T`′1

share more than three triplets; that is, `1∪`2∪`3 intersects `′1∪`′2∪`′3
in more than 9 points. Because `1 and `′1 are not rotations of each
other, each `i is distinct from all the `′j . Hence, `i ∩ `′j contains
exactly one point for each i and j. It follows that `1 ∪ `2 ∪ `3 and
`′1∪`′2∪`′3 consists of at most 3 ·3 = 9 points, a contradiction. Hence,
our assumption as wrong, and |T`1 ∩ T`′1

| > 3 only if `1 and `′1 are
rotations of each other.

Just as there are p(p+1) points in P−{[1, 1, 1]}, there are p(p+1)
lines in P∗−{[[1, 1, 1]]}. We can partition these into p(p+1)/3 triples
(`1, `2, `3), where the lines in each triple are rotations of each other.
Now, pick one line ` from each triple and take the corresponding set T`

of triplets. From the previous paragraph, any two of these p(p+ 1)/3
sets intersect in at most 3 triplets.

Hence, we have found a set S of p(p + 1)/3 elements (namely,
the triplets of P), along with p(p + 1)/3 subsets of S (namely, the
appropriate T`) such that no two of these subsets have four elements
in common. This completes the proof.
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Well, not quite. We have yet to prove that (i) if q 6= [1, 1, 1], then
the triplet {q, ϕ(q), ϕ2(q)} contains three distinct points, and (ii) if
`1 = [[α, β, γ]] 6= [[1, 1, 1]], then there are 3p points q 6= [1, 1, 1] on
[[α, β, γ]] ∪ [[β, γ, α]] ∪ [[γ, α, β]].

To prove (i), we first show that x3 ≡ 1 (mod p) only if x ≡
1 (mod p). Because 3 is coprime to p−1, we can write 1 = 3r+(p−1)s.
We are given that x3 ≡ 1 (mod p), and by Fermat’s Little Theorem
we also have xp−1 ≡ 1 (mod p). Hence,

x = x3r+(p−1)s =
(
x3
)r (

xp−1
)s ≡ 1r · 1s ≡ 1 (mod p).

(Alternatively, let g be a primitive element modulo p, and write
x = gm for some nonnegative integer m. Then

1 ≡ (gm)3 = g3m (mod p),

implying that p − 1 divides 3m. Because p − 1 is relatively prime
to 3, we must have (p − 1) | m. Writing m = (p − 1)n, we have
x ≡ gm ≡ (gp−1)n ≡ 1 (mod p).)

Now, if q = [a, b, c] 6= [1, 1, 1], then suppose (for sake of contra-
diction) that [a, b, c] = [b, c, a]. There exists κ such that (a, b, c) =
(bκ, cκ, aκ). Thus,

ab−1 ≡ bc−1 ≡ ca−1 (mod p),

because all three quantities are congruent to κ modulo p. Hence,
(ab−1)3 ≡ (ab−1)(bc−1)(ca−1) ≡ 1 (mod p). From this and the result
in the last paragraph, we conclude that ab−1 ≡ 1 (mod p). Therefore,
a ≡ b (mod p), and similarly b ≡ c (mod p) — implying that [a, b, c] =
[1, 1, 1], a contradiction.

Next, we prove (ii). Let `1 = [[α, β, γ]] 6= [[1, 1, 1]], `2 = [[β, γ, α]],
and `3 = [[γ, α, β]]. Because [[α, β, γ]] 6= [[1, 1, 1]], we know (from
a proof similar to that in the previous paragraph) that `1, `2, `3 are
pairwise distinct. Hence, any two of these lines intersect at exactly
one point. We consider two cases: `1 and `2 intersect at [1, 1, 1], or
they intersect elsewhere.

If [1, 1, 1] lies on `1 and `2, then it lies on `3 as well. Each line
contains p+1 points in total and hence p points distinct from [1, 1, 1].
Counting over all three lines, we find 3p points distinct from [1, 1, 1];
these points must be distinct from each other, because any two of the
lines `i, `j intersect at only [1, 1, 1].
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If instead q0 = `1 ∩ `2 is not equal to [1, 1, 1], then [1, 1, 1] cannot
lie on any of the lines `1, `2, `3. We have ϕ(q0) = `2 ∩ `3 and
ϕ2(q0) = `3 ∩ `1; because q0 6= [1, 1, 1], the three intersection points
q0, ϕ(q0), ϕ2(q0) are pairwise distinct. Now, each of the three lines
`1, `2, `3 contains p + 1 points (all distinct from [1, 1, 1]), for a total
of 3p + 3 points. However, we count each of q0, ϕ(q0), ϕ2(q0) twice
in this manner, so in fact we have (3p + 3) − 3 = 3p points on
`1 ∪ `2 ∪ `3 − {[1, 1, 1]}, as desired. This completes the proof.
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3.1 Belarus

Problem 1 The problem committee of a mathematical olympiad
prepares some variants of the contest. Each variant contains 4
problems, chosen from a shortlist of n problems, and any two variants
have at most one problem in common.

(a) If n = 14, determine the largest possible number of variants the
problem committee can prepare.

(b) Find the smallest value of n such that it is possible to prepare
ten variants of the contest.

Problem 2 Let x1, x2, and x3 be real numbers in [−1, 1], and let
y1, y2, and y3 be real numbers in [0, 1). Find the maximum possible
value of the expression

1− x1

1− x2y3
· 1− x2

1− x3y1
· 1− x3

1− x1y2
.

Problem 3 Let ABCD be a convex quadrilateral circumscribed
about a circle. Lines AB and DC intersect at E, and B and C lie
on AE and DE, respectively; lines DA and CB intersect at F, and
A and B lie on DF and CF, respectively. Let I1, I2, and I3 be the
incenters of triangles AFB, BEC, and ABC, respectively. Line I1I3
intersects lines EA and ED at K and L, respectively, and line I2I3
intersects lines FC and FD at M and N, respectively. Prove that
EK = EL if and only if FM = FN.

Problem 4 On the Cartesian coordinate plane, the graph of the
parabola y = x2 is drawn. Three distinct points A, B, and C are
marked on the graph with A lying between B and C. Point N is
marked on BC so that AN is parallel to the y-axis. Let K1 and K2

be the areas of triangles ABN and ACN, respectively. Express AN
in terms of K1 and K2.

Problem 5 Prove that

an +
1
an
− 2 ≥ n2

(
a+

1
a
− 2
)

for any positive integer n and any positive real a.

Problem 6 Three distinct points A, B, and N are marked on
the line `, with B lying between A and N. For an arbitrary angle
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α ∈ (0, π
2 ), points C and D are marked in the plane on the same side

of ` such that N, C, and D are collinear; ∠NAD = ∠NBC = α;
and A, B, C, and D are concyclic. Find the locus of the intersection
points of the diagonals of ABCD as α varies between 0 and π

2 .

Problem 7 In the increasing sequence of positive integers a1, a2,
. . . , the number ak is said to be funny if it can be represented as the
sum of some other terms (not necessarily distinct) of the sequence.

(a) Prove that all but finitely terms of the sequence are funny.

(b) Does the result in (a) always hold if the terms of the sequence
can be any positive rational numbers?

Problem 8 Let n be a positive integer. Each square of a (2n−1)×
(2n − 1) square board contains an arrow, either pointing up, down,
to the left, or to the right. A beetle sits in one of the cells. Each year
it creeps from one square in the direction of the arrow in that square,
either reaching another square or leaving the board. Each time the
beetle moves, the arrow in the square it leaves turns π/2 clockwise.
Prove that the beetle leaves the board in at most 23n−1(n − 1)! − 4
years after it first moves.

Problem 9 The convex quadrilateral ABCD is inscribed in the
circle S1. Let O be the intersection of AC and BD. Circle S2 passes
through D and O, intersecting AD and CD at M and N, respectively.
Lines OM and AB intersect at R, lines ON and BC intersect at T,
and R and T lie on the same side of line BD as A. Prove that O, R,
T, and B are concyclic.

Problem 10 There are n aborigines on an island. Any two of them
are either friends or enemies. One day, the chieftain orders that all
citizens (including himself) make and wear a necklace with zero or
more stones so that (i) given a pair of friends, there exists a color
such that each has a stone of that color; (ii) given a pair of enemies,
there does not exist a color such that each a stone of that color.

(a) Prove that the aborigines can carry out the chieftain’s order.

(b) What is the minimum number of colors of stones required for the
aborigines to carry out the chieftain’s order?
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3.2 Bulgaria

Problem 1 Diagonals AC and BD of a cyclic quadrilateral ABCD
intersect at point E. Prove that if ∠BAD = π/3 and AE = 3CE,
then the sum of some two sides of the quadrilateral equals the sum
of the other two.

Problem 2 Find the least positive integer n such that it is possible
for a set of n people to have the following properties: (i) among any
four of the n people, some two are not friends with each other; given
any k ≥ 1 of the n people among whom there is no pair of friends,
there exists three people among the remaining n−k people such that
every two of the three are friends. (If a person A is a friend of a
person B, then B is a friend of A as well.)

Problem 3 Let ABC be a right triangle with hypotenuse AB. A
point D distinct from A and C is chosen on

⇀

AC such that the line
through the incenter of triangle ABC parallel to the internal bisector
of angle ADB is tangent to the incircle of triangle BCD. Prove that
AD = BD.

Problem 4 Find all triples of positive integers (a, b, c) such that
a3 + b3 + c3 is divisible by a2b, b2c, and c2a.

Problem 5 In a deck of 52 cards, the following operations are
allowed: (i) swap the first two cards; (ii) put the first card at the
bottom of the deck. Prove that using these operations, one can put
the cards into any order.

Problem 6 Consider the sequence {an} such that a0 = 4, a1 = 22,
and an−6an−1+an−2 = 0 for n ≥ 2. Prove that there exist sequences
{xn} and {yn} of positive integers such that

an =
y2

n + 7
xn − yn

for any n ≥ 0.

Problem 7 Let I be the incenter and k be the incircle of nonisosce-
les triangle ABC. Let k intersect BC, CA, and AB at A1, B1, and C1,

respectively. Let AA1 intersect k again at A2, and define B2 and C2

similarly. Finally, choose A3 and B3 on B1C1 and A1C1, respectively,
such that A1A3 and B1B3 are angle bisectors in triangle A1B1C1.
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Prove that (a) A2A3 bisects angle B1A2C1; (b) if the circumcircles of
triangles A1A2A3 and B1B2B3 intersect at P and Q, then I lies on
←→
PQ .

Problem 8 Given a permutation (a1, a2, . . . , an) of the numbers
1, 2, . . . , n, one may interchange any two consecutive “blocks” — that
is, one may transform

(a1, . . . , ai, ai+1, . . . , ai+p︸ ︷︷ ︸
A

, ai+p+1, . . . , ai+q︸ ︷︷ ︸
B

, ai+q+1, . . . , an)

into

(a1, . . . , ai, ai+p+1, . . . , ai+q︸ ︷︷ ︸
B

, ai+1, . . . , ai+p︸ ︷︷ ︸
A

, ai+q+1, . . . , an)

by interchanging the “blocks” A and B. Find the least number of
such changes which are needed to transform (n, n − 1, . . . , 1) into
(1, 2, . . . , n).

Problem 9 Let n ≥ 2 be a fixed integer. At any lattice point
(i, j) we write the unique integer k ∈ {0, 1, . . . , n − 1} such that
i+ j ≡ k (mod n). Find all pairs a, b of positive integers such that the
rectangle with vertices (0, 0), (a, 0), (a, b), and (0, b) has the following
properties: (i) the numbers 0, 1, . . . , n − 1 appear in its interior an
equal number of times; (ii) the numbers 0, 1, . . . , n− 1 appear on its
boundary an equal number of times.

Problem 10 Find all real numbers t for which there exist real
numbers x, y, z such that

3x2 + 3xz + z2 = 1,

3y2 + 3yz + z2 = 4,

x2 − xy + y2 = t.

Problem 11 Let p be a prime number congruent to 3 modulo 4,
and consider the equation

(p+ 2)x2 − (p+ 1)y2 + px+ (p+ 2)y = 1.

Prove that this equation has infinitely many solutions in positive
integers, and show that if (x, y) = (x0, y0) is a solution of the equation
in positive integers, then p | x0.



212 Canada

3.3 Canada

Problem 1 Let ABC be a triangle with AC > AB. Let P be
the intersection point of the perpendicular bisector of BC and the
internal angle bisector of angle CAB. Let X and Y be the feet of the
perpendiculars from P to lines AB and AC, respectively. Let Z be
the intersection point of lines XY and BC. Determine the value of
BZ
ZC .

Problem 2 Let n be a positive integer. Nancy is given a matrix
in which each entry is a positive integer. She is permitted to make
either of the following two moves:

(i) select a row and multiply each entry in this row by n;

(ii) select a column and subtract n from each entry in this column.

Find all possible values of n for which given any matrix, it is possible
for Nancy to perform a finite sequence of moves to obtain a matrix
in which each entry is 0.

Problem 3 Let P0, P1, and P2 be three points on a circle with
radius 1, where P1P2 = t < 2. Define the sequence of points P3, P4, . . .

recursively by letting Pi be the circumcenter of triangle Pi−1Pi−2Pi−3

for each integer i ≥ 3.

(a) Prove that the points P1, P5, P9, P13, . . . are collinear.

(b) Let x = P1P1001 and y = P1001P2001. Prove that 500
√
x/y depends

only on t, not on the position of P0, and determine all values of
t for which 500

√
x/y is an integer.
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3.4 China

Problem 1 Let a be real number with
√

2 < a < 2, and let
ABCD be a convex cyclic quadrilateral whose circumcenter O lies
in its interior. The quadrilateral’s circumcircle ω has radius 1, and
the longest and shortest sides of the quadrilateral have length a

and
√

4− a2, respectively. Lines `A, `B , `C , `D are tangent to ω at
A,B,C,D, respectively. Let lines `A and `B , `B and `C , `C and
`D, `D and `A intersect at A′, B′, C ′, D′, respectively. Determine the
minimum value of

[A′B′C ′D′]
[ABCD]

.

Problem 2 Determine the smallest positive integer m such that
for any m-element subsets W of X = {1, 2, . . . , 2001}, there are two
elements u and v (not necessarily distinct) in W with u+ v = 2n for
some positive integer n.

Problem 3 Two triangle are said to be of the same type if they are
both acute triangles, both right triangles, or both obtuse triangles.
Let n be a positive integer and let P be a n-sided regular polygon.
Exactly one magpie sits at each vertex of P. A hunter passes by, and
the magpies fly away. When they return, exactly one magpie lands
on each vertex of P, not necessarily in its original position. Find all n
for which there must exist three magpies with the following property:
the triangle formed by the vertices the magpies originally sit at, and
the triangle formed by the vertices they return to after the hunter
passes by, are of the same type.

Problem 4 We are given three integers a, b, c such that a, b, c,
a + b − c, a + c − b, b + c − a, and a + b + c are seven distinct
primes. Let d be the difference between the largest and smallest of
these seven primes. Suppose that 800 ∈ {a+b, b+c, c+a}. Determine
the maximum possible value of d.

Problem 5 Let P1P2 . . . P24 be a regular 24-sided polygon inscribed
in a circle ω with circumference 24. Determine the number of ways
to choose sets of eight distinct vertices {Pi1 , Pi2 , . . . , Pi8 } such that
none of the arcs Pij

Pik
has length 3 or 8.

Problem 6 Let a = 2001. Consider the set A of all pairs of integers
(m,n) with n 6= 0 such that
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(i) m < 2a;

(ii) 2am−m2 + n2 is divisible by 2n;

(iii) n2 −m2 + 2mn ≤ 2a(n−m).

For (m,n) ∈ A, let

f(m,n) =
2am−m2 −mn

n
.

Determine the maximum and minimum values of f , respectively.

Problem 7 For each integer k > 1, find the smallest integer m
greater than 1 with the following property: there exists a polynomial
f(x) with real coefficients such that f(x) − 1 has at least 1 integer
root and f(x)−m has exactly k distinct integer roots.

Problem 8 Given positive integers k, m, n such that k ≤ m ≤ n,
express

n∑
i=0

(−1)i 1
n+ k + i

· (m+ n+ i)!
i!(n− i)!(m+ i)!

in closed form.

Problem 9 Let a be a positive integer with a ≥ 2, and let Na be
the number of positive integers k such that

k2
1 + k2

2 + · · ·+ k2
n = k,

where k1k2 . . . kn is the base a representation of k. Prove that:

(a) Na is odd;

(b) for any positive integer M , there is some a for which Na ≥M .

Problem 10 Let n be a positive integer, and define

M = {(x, y) | x, y ∈ N, 1 ≤ x, y ≤ n}.

Determine the number of functions f defined on M such that

(i) f(x, y) is a nonnegative integer for any (x, y) ∈M ;

(ii) for 1 ≤ x ≤ n,
∑n

y=1 f(x, y) = n− 1;

(iii) if f(x1, y1)f(x2, y2) > 0, then (x1 − x2)(y1 − y2) ≥ 0.
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3.5 Czech and Slovak Republics

Problem 1 Find all triples a, b, c of real numbers for which a real
number x satisfies √

2x2 + ax+ b > x− c

if and only if x ≤ 0 or x > 1.

Problem 2 In a certain language there are n letters. A sequence
of letters is called a word if and only if between any pair of identical
letters, there is no other pair of equal letters. Prove that there exists
a word of maximum possible length, and find the number of words
which have that length.

Problem 3 Let n ≥ 1 be an integer, and let a1, a2, . . . , an be
positive integers. Let f : Z→ R be a function such that f(x) = 1 for
each integer x < 0 and

f(x) = 1− f(x− a1)f(x− a2) · · · f(x− an)

for each integer x ≥ 0. Show that there exist positive integers s and
t such that f(x+ t) = f(x) for any integer x > s.
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3.6 Hungary

Problem 1 Let x, y, and z be positive real numbers smaller than
4. Prove that among the numbers

1
x

+
1

4− y
,

1
y

+
1

4− z
,

1
z

+
1

4− x
,

there is at least one which is greater than or equal to 1.

Problem 2 Find all integers x, y, and z such that 5x2−14y2 = 11z2.

Problem 3 Find all triangles ABC for which it is true that the
median from A and the altitude from A are reflections of each other
across the internal angle bisector from A.

Problem 4 Let m and n be integers such that 1 ≤ m ≤ n. Prove
that m is a divisor of

n
m−1∑
k=0

(−1)k

(
n

k

)
.

Problem 5 Find all real numbers c with the following property:
Given any triangle, one can find two points A and B on its perimeter
so that they divide the perimeter in two parts of equal length and so
that AB is at most c times the perimeter.

Problem 6 The circles k1 and k2 and the point P lie in a plane.
There exists a line ` and points A1, A2, B1, B2, C1, C2 with the follow-
ing properties: ` passes through P and intersects ki at Ai and Bi for
i = 1, 2; Ci lies on ki for i = 1, 2; and A1C1 = B1C1 = A2C2 = B2C2.
Describe how to construct such a line and such points given only k1,
k2, and P .

Problem 7 Let k and m be positive integers, and let a1, a2, . . . , ak

and b1, b2, . . . , bm be integers greater than 1. Each ai is the product of
an even number of primes, not necessarily distinct, while each bi is the
product of an odd number of primes, again not necessarily distinct.
How many ways can we choose several of the k + m given numbers
such that each bi has an even number of divisors among the chosen
numbers?
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3.7 India

Problem 1 Every vertex of the unit squares on an m×n chessboard
is colored either blue, green, or red, such that all the vertices on the
boundary of the board are colored red. We say that a unit square of
the board is properly colored if exactly one pair of adjacent vertices
of the square are the same color. Show that the number of properly
colored squares is even.

Problem 2 Let ABCD be a rectangle, and let Γ be an arc of a
circle passing through A and C. Let Γ1 be a circle which is tangent
to lines CD and DA as well as tangent to Γ. Similarly, let Γ2 be a
circle lying completely inside rectangle ABCD which is tangent to
lines AB and BC as well as tangent to Γ. Suppose that Γ1 and Γ2

both lie completely in the closed region bounded by rectangle ABCD.
Let r1 and r2 be the radii of Γ1 and Γ2, respectively, and let r be the
inradius of triangle ABC.

(a) Prove that r1 + r2 = 2r.

(b) Show that one of the common internal tangents to Γ1 and Γ2 is
parallel to AC and has length |AB −BC|.

Problem 3 Let a1, a2, . . . be a strictly increasing sequence of
positive integers such that gcd(am, an) = agcd(m,n) for all positive
integers m and n. Let k be the least positive integer for which there
exist positive integers r < k and s > k such that a2

k = aras. Prove
that r divides k and that k divides s.

Problem 4 Let a ≥ 3 be a real number and p(x) be a polynomial
of degree n with real coefficients. Prove that

max
0≤j≤n+1

{|aj − p(j)|} ≥ 1.
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3.8 Iran

Problem 1 Let α be a real number between 1 and 2, exclusive.
Prove that α has a unique representation as an infinite product

α =
∞∏

k=1

(
1 +

1
nk

)
,

where each nk is a natural number and n2
k ≤ nk+1 for all k ≥ 1.

Problem 2 We flip a fair coin repeatedly until encountering three
consecutive flips of the form (i) two tails followed by heads, or (ii)
heads, followed by tails, followed by heads. Which sequence, (i) or
(ii), is more likely to occur first?

Problem 3 Suppose that x, y, and z are natural numbers such that
xy = z2 + 1. Prove that there exist integers a, b, c, and d such that
x = a2 + b2, y = c2 + d2, and z = ac+ bd.

Problem 4 Let ACE be a triangle, B be a point on AC, and D

be a point on AE. Let F be the intersection of CD and BE. If
AB +BF = AD +DF , prove that AC + CF = AE + EF .

Problem 5 Suppose that a1, a2, . . . is a sequence of natural num-
bers such that for all natural numbers m and n, gcd(am, an) =
agcd(m,n). Prove that there exists a sequence b1, b2, . . . of natural
numbers such that an =

∏
d|n bd for all integers n ≥ 1.

Problem 6 Let a generalized diagonal in an n× n matrix be a set
of entries which contains exactly one element from each row and one
element from each column. Let A be an n × n matrix filled with 0s
and 1s which contains exactly one generalized diagonal whose entries
are all 1. Prove that it is possible to permute the rows and columns
of A to obtain an upper-triangular matrix, a matrix (bij)1≤i,j≤n such
that bij = 0 whenever 1 ≤ j < i ≤ n.

Problem 7 Let O and H be the circumcenter and orthocenter,
respectively, of triangle ABC. The nine-point circle of triangle ABC
is the circle passing through the midpoints of the sides, the feet of
the altitudes, and the midpoints of AH, BH, and CH. Let N be the
center of this circle, and let N ′ be the point such that

∠N ′BA = ∠NBC and ∠N ′AB = ∠NAC.
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Let the perpendicular bisector of OA intersect line BC at A′, and
define B′ and C ′ similarly. Prove that A′, B′, and C ′ lie on a line `
which is perpendicular to line ON ′.

Problem 8 Let n = 2m + 1 for some positive integer m. Let
f1, f2, . . . , fn : [0, 1] → [0, 1] be increasing functions. Suppose that
for i = 1, 2, . . . , n, fi(0) = 0 and

|fi(x)− fi(y)| ≤ |x− y|

for all x, y ∈ [0, 1]. Prove that there exist distinct integers i and j

between 1 and n, inclusive, such that

|fi(x)− fj(x)| ≤
1
m

for all x ∈ [0, 1].

Problem 9 In triangle ABC, let I be the incenter and let Ia be the
excenter opposite A. Suppose that IIa meets BC and the circumcircle
of triangle ABC at A′ and M , respectively. Let N be the midpoint
of arc MBA of the circumcircle of triangle ABC. Let lines NI and
NIa intersect the circumcircle of triangle ABC again at S and T,

respectively. Prove that S, T, and A′ are collinear.

Problem 10 The set of n-variable formulas is a subset of the
functions of n variables x1, . . . , xn, and it is defined recursively as
follows: the formulas x1, . . . , xn are n-variable formulas, as is any
formula of the form

(x1, . . . , xn) 7→ max{f1(x1, . . . , xn), . . . , fk(x1, . . . , xn)}

or
(x1, . . . , xn) 7→ min{f1(x1, . . . , xn), . . . , fk(x1, . . . , xn)},

where each fi is an n-variable formula. For example,

max(x2, x3,min(x1,max(x4, x5)))

is a 5-variable formula. Suppose that P and Q are two n-variable
formulas such that

P (x1, . . . , xn) = Q(x1, . . . , xn) (∗)

for all x1, . . . , xn ∈ {0, 1}. Prove that (∗) also holds for all x1, . . . ,
xn ∈ R.
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3.9 Japan

Problem 1 Each square of an m×n chessboard is painted black or
white. Each black square is adjacent to an odd number of black
squares. Prove that the number of black squares is even. (Two
squares are adjacent if they are different and share a common edge.)

Problem 2 Find all positive integers n such that

n =
m∏

k=0

(ak + 1),

where amam−1 . . . a0 is the decimal representation of n — that is,
where a0, a1, . . . , am is the unique sequence of integers in {0, 1, . . . , 9}
such that n =

∑m
k=0 ak10k and am 6= 0.

Problem 3 Three real numbers a, b, c ≥ 0 satisfy the inequalities
a2 ≤ b2 + c2, b2 ≤ c2 + a2, and c2 ≤ a2 + b2. Prove that

(a+ b+ c)(a2 + b2 + c2)(a3 + b3 + c3) ≥ 4(a6 + b6 + c6),

and determine when equality holds.

Problem 4 Let p be a prime number and m be a positive integer.
Show that there exists a positive integer n such that there exist m
consecutive zeroes in the decimal representation of pn.

Problem 5 Two triangles ABC and PQR satisfy the following
properties: A and P are the midpoints of QR and BC, respectively,
and lines QR and BC are the internal angle bisectors of angles BAC
and QPR, respectively. Prove that AB +AC = PQ+ PR.
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3.10 Korea

Problem 1 Given an odd prime p, find all functions f : Z → Z
satisfying the following two conditions:

(i) f(m) = f(n) for all m,n ∈ Z such that m ≡ n (mod p);

(ii) f(mn) = f(m)f(n) for all m,n ∈ Z.

Problem 2 Let P be a point inside convex quadrilateralO1O2O3O4,
where we write O0 = O4 and O5 = O1. For each i = 1, 2, 3, 4, consider
the lines ` that pass through P and meet the rays OiOi−1 and OiOi+1

at distinct points Ai(`) and Bi(`). Let fi(`) = PAi(`)·PBi(`). Among
all such lines `, let mi be a line for which fi is the minimum. Show
that if m1 = m3 and m2 = m4, then the quadrilateral O1O2O3O4 is
a parallelogram.

Problem 3 Let x1, x2, . . . , xn and y1, y2, . . . , yn be real numbers
satisfying

∑n
i=1 x

2
i =

∑n
i=1 y

2
i = 1. Show that

(x1y2 − x2y1)2 ≤ 2

∣∣∣∣∣1−
n∑

i=1

xiyi

∣∣∣∣∣ ,
and determine when equality holds.

Problem 4 Given positive integers n and N, let Pn be the set of
all polynomials f(x) = a0 + a1x+ · · ·+ anx

n with integer coefficients
satisfying the following two conditions:

(i) |aj | ≤ N for j = 0, 1, . . . , n;

(ii) at most two of a0, a1, . . . , an equal N.

Find the number of elements in the set {f(2N) | f(x) ∈ Pn}.

Problem 5 In triangle ABC, ∠ABC < π/4. Point D lies on BC

so that the incenter of triangle ABD coincides with the circumcenter
O of triangle ABC. Let ω be the circumcenter of triangle AOC. Let
P be the point of intersection of the two tangent lines to ω at A and
C. Let Q be the point of intersection of lines AD and CO, and let X
be the point of intersection of line PQ and the tangent line to ω at
O. Show that XO = XD.

Problem 6 Let n ≥ 5 be a positive integer, and let a1, b1, a2, b2,
. . . , an, bn be integers satisfying the following two conditions:

(i) the pairs (ai, bi) are all distinct for i = 1, 2, . . . , n;
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(ii) |aibi+1 − ai+1bi| = 1 for i = 1, 2, . . . , n, where (an+1, bn+1) =
(a1, b1).

Show that there exist i, j with 1 ≤ i, j ≤ n such that 1 < |i−j| < n−1
and |aibj − ajbi| = 1.
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3.11 Poland

Problem 1 Let n ≥ 2 be an integer. Show that
n∑

k=1

kxk ≤
(
n

2

)
+

n∑
k=1

xk
k

for all nonnegative reals x1, x2, . . . , xn.

Problem 2 Let P be a point inside a regular tetrahedron whose
edges have length 1. Show that the sum of the distances from P to
the vertices of the tetrahedron is at most 3.

Problem 3 The sequence x1, x2, x3, . . . is defined recursively by
x1 = a, x2 = b, and xn+2 = xn+1 +xn for n = 1, 2, . . . , where a and b
are real numbers. Call a number c a repeated value if xk = x` = c for
some two distinct positive integers k and `. Prove that one can choose
the initial terms a and b so that there are more than 2000 repeated
values in the sequence x1, x2, . . . , but that it is impossible to choose
a and b so that there are infinitely many repeated values.

Problem 4 The integers a and b have the property that for every
nonnegative integer n, the number 2na+ b is a perfect square. Show
that a = 0.

Problem 5 Let ABCD be a parallelogram, and let K and L be
points lying on BC and CD, respectively, such that BK · AD =
DL·AB. Let DK and BL intersect at P. Show that ∠DAP = ∠BAC.

Problem 6 Let n1 < n2 < · · · < n2000 < 10100 be positive integers.
Prove that one can find two nonempty disjoint subsets A and B

of {n1, n2, . . . , n2000} such that |A| = |B|,
∑

x∈A x =
∑

x∈B x, and∑
x∈A x

2 =
∑

x∈B x
2.
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3.12 Romania

Problem 1 Determine the ordered systems (x, y, z) of positive
rational numbers for which x+ 1

y , y + 1
z , and z + 1

x are integers.

Problem 2 Let m and k be positive integers such that k < m, and
let M be a set with m elements. Let p be an integer such that there
exist subsets A1, A2, . . . , Ap of M for which Ai ∩ Aj has at most k
elements for all i, j ∈ {1, 2, . . . , p}. Prove that the maximum possible
value of p is

pmax =
(
m

0

)
+
(
m

1

)
+
(
m

2

)
+ · · ·+

(
m

k + 1

)
.

Problem 3 Let n ≥ 2 be an even integer, and let a and b be
real numbers such that bn = 3a + 1. Show that the polynomial
p(x) = (x2 + x+ 1)n − xn − a is divisible by q(x) = x3 + x2 + x+ b if
and only if b = 1.

Problem 4 Show that if a, b, and c are complex numbers such that

(a+ b)(a+ c) = b,

(b+ c)(b+ a) = c,

(c+ a)(c+ b) = a,

then a, b, and c are real numbers.

Problem 5

(a) Let f , g: Z → Z be injective maps. Show that the function
h : Z → Z, defined by h(x) = f(x)g(x) for all x ∈ Z, cannot be
surjective.

(b) Let f : Z → Z be a surjective map. Show that there exist
surjective functions g, h: Z → Z such that f(x) = g(x)h(x) for
all x ∈ Z.

Problem 6 Three schools each have 200 students. Every student
has at least one friend in each school. (If student a is a friend of
student b, then b is a friend of a; also, for the purposes of this problem,
no student is a friend of himself.) There exists a set E of 300 students
(chosen from among the 600 students at the three schools) with the
following property: for any school S and any two students x, y ∈ E
who are not in the school S, x and y do not have the same number
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of friends in S. Show that one can find three students, one in each
school, such that any two are friends with each other.

Problem 7 The vertices A,B,C, and D of a square lie outside a
circle centered in M . Let lines AA′, BB′, CC ′, DD′ be tangents to
the circle. We assume that AA′, BB′, CC ′, DD′ are the consecutive
sides of a quadrilateral p in which a circle is inscribed. Prove that p
has an axis of symmetry.

Problem 8 Find the least number n with the following property:
given any n rays in three-dimensional space sharing a common end-
point, the angle between some two of these rays is acute.

Problem 9 Let f(x) = a0 + a1x + · · · + amx
m, with m ≥ 2 and

am 6= 0, be a polynomial with integer coefficients. Let n be a positive
integer, and suppose that:

(i) a2, a3, . . . am are divisible by all the prime factors of n;

(ii) a1 and n are relatively prime.

Prove that for any positive integer k, there exists a positive integer c
such that f(c) is divisible by nk.

Problem 10 Find all pairs (m,n) of positive integers, with m,n ≥
2, such that an − 1 is divisible by m for each a ∈ {1, 2, . . . , n}.

Problem 11 Prove that there is no function f : (0,∞) → (0,∞)
such that

f(x+ y) ≥ f(x) + yf(f(x))

for all x, y ∈ (0,∞).

Problem 12 Let P be a convex polyhedron with vertices V1, V2,
. . . , Vp. Two vertices Vi and Vj are called neighbors if they are distinct
and belong to the same face of the polyhedron. The p sequences
(vi(n))n≥0, for i = 1, 2, . . . , p, are defined recursively as follows: the
vi(0) are chosen arbitrarily; and for n ≥ 0, vi(n+1) is the arithmetic
mean of the numbers vj(n) for all j such that Vi and Vj are neighbors.
Suppose that vi(n) is an integer for all 1 ≤ i ≤ p and n ∈ N. Prove
that there exist N ∈ N and k ∈ Z such that vi(n) = k for all n ≥ N

and i = 1, 2, . . . , p.
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3.13 Russia

Problem 1 Peter and Alex play a game starting with an ordered
pair of integers (a, b). On each turn, the current player increases or
decreases either a or b: Peter by 1, and Alex by 1 or 3. Alex wins if
at some point in the game the roots of x2 + ax+ b are integers. Is it
true that given any initial values a and b, Alex can guarantee that he
wins?

Problem 2 Let M and N be points on sides AB and BC, respec-
tively, of parallelogram ABCD such that AM = NC. Let Q be the
intersection of AN and CM . Prove that DQ is an angle bisector of
angle CDA.

Problem 3 A target consists of an equilateral triangle broken into
100 equilateral triangles of unit side length by three sets of parallel
lines. A sniper shoots at the target repeatedly as follows: he aims
at one of the small triangles and then hits either that triangle or one
of the small triangles which shares a side with it. He may choose to
stop shooting at any time. What is the greatest number of triangles
that he can be sure to hit exactly five times?

Problem 4 Two points are selected inside a convex pentagon.
Prove that it is possible to select four of the pentagon’s vertices so
that the quadrilateral they form contains both points.

Problem 5 Does there exist a positive integer such that the product
of its proper divisors ends with exactly 2001 zeroes?

Problem 6 A circle is tangent to rays OA and OB at A and B,

respectively. Let K be a point on minor arc AB of this circle. Let L
be a point on line OB such that OA ‖ KL. Let M be the intersection
(distinct from K) of line AK and the circumcircle ω of triangle KLB.
Prove that line OM is tangent to ω.

Problem 7 Let a1, a2, . . . , a106 be nonzero integers between 1 and
9, inclusive. Prove that at most 100 of the numbers a1a2 . . . ak

(1 ≤ k ≤ 106) are perfect squares.
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Problem 8 The lengths of the sides of an n-gon equal a1, a2, . . . , an.

If f is a quadratic such that

f(ak) = f

((
n∑

i=1

ai

)
− ak

)
for k = 1, prove that this equality holds for k = 2, 3, . . . , n as well.

Problem 9 Given any point K in the interior of diagonal AC of
parallelogram ABCD, construct the line `K as follows. Let s1 be the
circle tangent to lines AB and AD such that of s1’s two intersection
points with AC, K is the point farther from A. Similarly, let s2 be the
circle tangent to lines CB and CD such that of s2’s two intersection
points with CA, K is the point farther from C. Then let `K be the
line connecting the centers of s1 and s2. Prove that as K varies along
AC, all the lines `K are parallel to each other.

Problem 10 Describe all possible ways to color each positive inte-
ger in one of three colors such that any positive integers a, b, c (not
necessarily distinct) which satisfy 2000(a + b) = c are colored either
in one color or in three different colors.

Problem 11 Three sets of ten parallel lines are drawn. Find the
greatest possible number of triangles whose sides lie along the lines
but whose interiors do not intersect any of the lines.

Problem 12 Let a, b, and c be integers such that b 6= c. If ax2+bx+c
and (c − b)x2 + (c − a)x + (a + b) have a common root, prove that
a+ b+ 2c is divisible by 3.

Problem 13 Let ABC be a triangle with AC 6= AB, and select
point B1 on ray AC such that AB = AB1. Let ω be the circle
passing through C, B1, and the foot of the internal bisector of angle
CAB. Let ω intersect the circumcircle of triangle ABC again at Q.
Prove that AC is parallel to the tangent to ω at Q.

Problem 14 We call a set of squares in a checkerboard plane rook-
connected if it is possible to travel between any two squares in the
set by moving finitely many times like a rook — where one moves
“like a rook” by moving between two distinct (but not necessarily
adjacent) squares which lie in the same row or column. Prove that
any rook-connected set of 100 squares can be partitioned into fifty
pairs of squares, such that the two squares in each pair lie in the
same row or column.
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Problem 15 At each of one thousand distinct points on a circle are
written two positive integers. The sum of the numbers at each point
P is divisible by the product of the numbers on the point which is
the clockwise neighbor of P . What is the maximum possible value of
the greatest of the 2000 numbers?

Problem 16 Find all primes p and q such that p+ q = (p− q)3.

Problem 17 The monic polynomial f(x) with real coefficients has
exactly two distinct real roots. Suppose that f(f(x)) has exactly
three distinct real roots. Is it possible that f(f(f(x))) has exactly
seven distinct real roots?

Problem 18 Let AD be the internal angle bisector of A in triangle
BAC, with D on BC. Let M and N be points on the circumcircles
of triangles ADB and ADC, respectively, so that MN is tangent to
these two circles. Prove that line MN is tangent to the circle passing
through the midpoints of BD, CD, and MN .

Problem 19 Let x1 = 1 and define x2, x3, . . . recursively by the
relation xn+1 = n sinxn + 1 for n ≥ 1. Prove that x1, x2, . . . is
eventually periodic (i.e. prove that there exist N and t such that
xn+t = xn for all n ≥ N).

Problem 20 In tetrahedron A1A2A3A4, let `k be the line connect-
ing Ak with the incenter of the opposite face. If `1 and `2 intersect,
prove that `3 and `4 intersect.

Problem 21 An infinite set S of points on the plane has the
property that no 1 × 1 square of the plane contains infinitely many
points from S. Prove that there exist two points A and B from S such
that min{XA,XB} ≥ .999AB for any other point X in S.

Problem 22 Prove that from any set of 117 pairwise distinct three-
digit numbers, it is possible to select 4 pairwise disjoint subsets such
that the sums of the numbers in each subset are equal.

Problem 23 The numbers from 1 to 999999 are divided into two
groups. For each such number n, if the square closest to n is odd,
then n is placed in the first group; otherwise, n is placed in the second
group. The sum of the numbers in each group is computed. Which
group yields the larger sum?
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Problem 24 Two polynomials P (x) = x4 + ax3 + bx2 + cx+ d and
Q(x) = x2+px+q take negative values on some common real interval
I of length greater than 2, and outside of I they take on nonnegative
values. Prove that P (x0) < Q(x0) for some real number x0.

Problem 25 The point K is selected inside parallelogram ABCD

such that the midpoint of AD is equidistant from K and C and such
that the midpoint of CD is equidistant from K and A. Let N be the
midpoint of BK. Prove that ∠NAK = ∠NCK.

Problem 26 We are given a 2000-sided polygon in which no three
diagonals are concurrent. Each diagonal is colored in one of 999
colors. Prove that there exists a triangle whose sides lie entirely on
diagonals of one color. (The triangle’s vertices need not be vertices
of the 2000-sided polygon.)

Problem 27 Jury lays 2001 coins, each worth 1, 2, or 3 kopecks,
in a row. Between any two k-kopeck coins lie at least k coins for
k = 1, 2, 3. For which n is it possible that Jury lays down exactly n

3-kopeck coins?

Problem 28 A company of 2n + 1 people has the property that
for each group of n people, there is a person among the other n + 1
who knows everybody in that group. Prove that some person in the
company knows everybody else. (If a person A knows a person B,

then B knows A as well.)

Problem 29 Side AC is the longest of the three sides in triangle
ABC. Let N be a point on AC. Let the perpendicular bisector of AN
intersect AB at K, and let the perpendicular bisector of CN intersect
BC at M. Prove that the circumcenter of triangle ABC lies on the
circumcircle of triangle KBM.

Problem 30 Find all odd positive integers n greater than 1 such
that for any prime divisors a and b of n (not necessarily distinct), the
number a+ b− 1 is also a divisor of n.

Problem 31 Each of the subsets A1, A2, . . . , A100 of a line is
the union of 100 pairwise disjoint closed intervals. Prove that the
intersection of these 100 sets is the union of no more than 9901 closed
intervals. (A closed interval is a single point or a segment.)
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Problem 32 Two circles are internally tangent at a point N, and
a point K different from N is chosen on the smaller circle. A line
tangent to the smaller circle at K intersects the larger circle at A
and B. Let M be the midpoint of the arc AB of the larger circle
not containing N. Prove that the circumradius of triangle BMK is
constant as K varies along the smaller circle.

Problem 33 In a country, one-way roads connect some cities in
pairs such that given two cities A and B, there exists a unique path
from A to B which does not pass through the same city twice. It is
known that exactly 100 cities in the country have exactly one outgoing
road. Prove that it is possible to construct 50 new one-way roads so
that if any single road were closed, it would still be possible to travel
from any city to any other.

Problem 34 The polynomial P (x) = x3 + ax2 + bx + c has three
distinct real roots. The polynomial P (Q(x)), where Q(x) = x2 + x+
2001, has no real roots. Prove that P (2001) > 1

64 .

Problem 35 Each number 1, 2, . . . , n2 is written once in an n × n
grid such that each square contains one number. Given any two
squares in the grid, a vector is drawn from the center of the square
containing the larger number to the center of the other square. If
the sums of the numbers in each row or column of the grid are equal,
prove that the sum of the drawn vectors is zero.

Problem 36 Points A1, B1, C1 are selected inside triangle ABC on
the altitudes from A, B, and C, respectively. If [ABC1] + [BCA1] +
[CAB1] = [ABC], prove that the circumcircle of triangle A1B1C1

passes through H.

Problem 37 We are given a set of 100 stones with total weight 2S.
Call an integer k average if it is possible to select k of the 100 stones
whose total weight equals S. What is the maximum possible number
of integers which are average?

Problem 38 Two finite sets S1 and S2 of convex polygons in the
plane are given with the following properties: (i) given any polygon
from S1 and any polygon from S2, the two polygons have a common
point; (ii) each of the two sets contains a pair of disjoint polygons.
Prove that there exists a line which intersects all the polygons in both
sets.
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Problem 39 In a contest consisting of N problems, the jury defines
the difficulty of each problem by assigning it a positive integral
number of points. (The same number of points may be assigned
to different problems.) Any participant who answers the problem
correctly receives that number of points for that problem; any other
participants receive 0 points. After the participants submitted their
answers, the jury realizes that given any ordering of the participants
(where ties are not permitted), it could have defined the problems’
difficulty levels to make that ordering coincide with the participants’
ranking according to their total scores. Determine, in terms of N, the
maximum number of participants for which such a scenario to occur.

Problem 40 The monic quadratics f and g take negative values
on disjoint nonempty intervals of the real numbers, and the four
endpoints of these intervals are also distinct. Prove that there exist
positive numbers α and β such that

αf(x) + βg(x) > 0

for all real numbers x.

Problem 41 Let a and b be distinct positive integers such that
ab(a+ b) is divisible by a2 + ab+ b2. Prove that |a− b| > 3

√
ab.

Problem 42 In a country of 2001 cities, some cities are connected
in pairs by two-way roads. We call two cities which are connected
by a road adjacent. Each city is adjacent to at least one other city,
and no city is adjacent to every other city. A set D of cities is called
dominating if any city not included in D is adjacent to some city
in D. It is known that any dominating set contains at least k cities.
Prove that the country can be divided into 2001 − k republics such
that no two cities in any single republic are adjacent.

Problem 43 Let SABC be a tetrahedron. The circumcircle of
ABC is a great circle of a sphere ω, and ω intersects SA, SB, and
SC again at A1, B1, and C1, respectively. The planes tangent to
ω at A1, B1, and C1 intersect at a point O. Prove that O is the
circumcenter of tetrahedron SA1B1C1.
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3.14 Taiwan

Problem 1 Let O be the excenter of triangle ABC opposite A. Let
M be the midpoint of AC, and let P be the intersection point of MO

and BC. Prove that AB = BP if ∠BAC = 2∠ACB.

Problem 2 Let n ≥ 3 be an integer, and let A be a set of n distinct
integers. Let the minimal and maximal elements of A be m and M,

respectively. Suppose that there exists a polynomial p with integer
coefficients such that (i) m < p(a) < M for all a ∈ A, and (ii)
p(m) < p(a) for all a ∈ A − {m,M}. Show that n ≤ 5, and prove
that there exist integers b and c such that each element of A is a
solution to the equation p(x) + x2 + bx+ c = 0.

Problem 3 Let n ≥ 3 be an integer and let A1, A2, . . . , An be n
distinct subsets of S = {1, 2, . . . , n}. Show that there exists an element
x ∈ S such that the n subsets A1 \ {x}, A2 \ {x}, . . . , An \ {x} are
also distinct.

Problem 4 Let Γ be the circumcircle of a fixed triangle ABC.

Suppose that M and N are the midpoints of arcs BC and CA,
respectively, and let X be any point on arc AB. (Here, arc AB

refers to the arc not containing C; analogous statements hold for arcs
BC and CA.) Let O1 and O2 be the incenters of triangles XAC and
XBC, respectively. Let Γ and the circumcircle of triangle XO1O2

intersect at Q. Prove that 4QNO1 ∼ 4QMO2, and determine the
locus of Q.

Problem 5 Let x, y be distinct real numbers, and let f : N → R
be defined by f(n) =

∑n−1
k=0 y

kxn−1−k for all n ∈ N. Suppose that
f(m), f(m+1), f(m+2), and f(m+3) are integers for some positive
integer m. Prove that f(n) is an integer for all n ∈ N.

Problem 6 We are given n stones A1, A2 . . . , An labelled with
distinct real numbers. We may compare two stones by asking what
the order of their corresponding numbers are. We are given that the
numbers on A1, A2, . . . , An−1 are increasing in that order; the n order-
ings of the numbers on A1, A2, . . . , An which satisfy this condition are
assumed to be equally likely. Based on this information, an algorithm
is created that minimizes the expected number of comparisons needed
to determine the order of the numbers on A1, A2, . . . , An. What is
this expected number?
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3.15 United States of America

Problem 1 Each of eight boxes contains six balls. Each ball has
been colored with one of n colors, such that no two balls in the same
box are the same color, and no two colors occur together in more
than one box. Determine, with justification, the smallest integer n
for which this is possible.

Problem 2 Let ABC be a triangle and let ω be its incircle. Denote
by D1 and E1 the points where ω is tangent to sides BC and AC,
respectively. Denote by D2 and E2 the points on sides BC and AC,
respectively, such that CD2 = BD1 and CE2 = AE1, and denote by
P the point of intersection of AD2 and BE2. Circle ω intersects AD2

at two points, the closer of which to the vertex A is denoted by Q.
Prove that AQ = D2P .

Problem 3 Let a, b, and c be nonnegative real numbers such that

a2 + b2 + c2 + abc = 4.

Prove that
0 ≤ ab+ bc+ ca− abc ≤ 2.

Problem 4 Let P be a point in the plane of triangle ABC such
that there exists an obtuse triangle whose sides are congruent to PA,
PB, and PC. Assume that in this triangle the obtuse angle opposes
the side congruent to PA. Prove that angle BAC is acute.

Problem 5 Let S be a set of integers (not necessarily positive) such
that

(a) there exist a, b ∈ S with gcd(a, b) = gcd(a− 2, b− 2) = 1;

(b) if x and y are elements of S (possibly equal), then x2 − y also
belongs to S.

Prove that S is the set of all integers.

Problem 6 Each point in the plane is assigned a real number such
that, for any triangle, the number at the center of its inscribed circle
is equal to the arithmetic mean of the three numbers at its vertices.
Prove that all points in the plane are assigned the same number.
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3.16 Vietnam

Problem 1 The sequence of integers a0, a1, . . . is defined recursively
by the initial condition a0 = 1 and the recursive relation an =
an−1 + abn/3c for all integers n ≥ 1. (Here, bxc denotes the greatest
integer less than or equal to x.) Prove that for every prime number
p ≤ 13, there exists an infinite number of natural numbers k such
that ak is divisible by p.

Problem 2 In the plane, two circles intersect at A and B, and a
common tangent intersects the circles at P and Q. Let the tangents
at P and Q to the circumcircle of triangle APQ intersect at S, and
let H be the reflection of B across line PQ. Prove that the points A,
S, and H are collinear.

Problem 3 A club has 42 members. Among each group of 31
members, there is at one pair of participants — one male, one female
— who know each other. (Person A knows person B if and only if
person B knows person A.) Prove that there exist 12 distinct males
a1, . . . , a12 and 12 distinct females b1, . . . , b12 such that ai knows bi
for all i.

Problem 4 The positive real numbers a, b, and c satisfy the
condition 21ab + 2bc + 8ca ≤ 12. Find the least possible value of
the expression 1

a + 2
b + 3

c .

Problem 5 Let n > 1 be an integer, and let T be the set of points
(x, y, z) in three-dimensional space such that x, y, and z are integers
between 1 and n, inclusive. We color the points in T so that if x0 ≤ x1,

y0 ≤ y1, and z0 ≤ z1, then (x0, y0, z0) and (x1, y1, z1) are either equal
or not both colored. At most how many points in T can be colored?

Problem 6 Let a1, a2, . . . be a sequence of positive integers satis-
fying the condition 0 < an+1−an ≤ 2001 for all integers n ≥ 1. Prove
that there exist an infinite number of ordered pairs (p, q) of positive
integers such that ap is a divisor of aq.
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4.1 Asian Pacific

Mathematical Olympiad

Problem 1 For each positive integer n, let S(n) be the sum of digits
in the decimal representation of n. Any positive integer obtained by
removing several (at least one) digits from the right-hand end of the
decimal representation of n is called a stump of n. Let T (n) be the
sum of all stumps of n. Prove that n = S(n) + 9T (n).

Problem 2 Find the largest integer positive integer N so that the
number of integers in the set {1, 2, . . . , N} which are divisible by 3 is
equal to the number of integers which are divisible by either 5 or 7
(or both).

Problem 3 Let two congruent regular n-sided (n ≥ 3) polygons S
and T be located in the plane such that their intersection is a 2n-sided
polygon P . The sides of polygon S are colored red and the sides of T
are colored blue. Prove that the sum of the lengths of the blue sides
of polygon P is equal to the sum of the lengths of its red sides.

Problem 4 A point in the Cartesian coordinate plane is called a
mixed point if one of its coordinates is rational and the other one is
irrational. Find all polynomials with real coefficients such that their
graphs do not contain any mixed point.

Problem 5 Find the greatest integer n, such that there are n + 4
points A,B,C,D,X1, . . . , Xn in the plane with the following proper-
ties: the lengths AB and CD are distinct; and for each i = 1, 2, . . . , n,
triangles ABXi and CDXi are congruent (although not necessarily
in that order).
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4.2 Austrian-Polish

Mathematics Competition

Problem 1 Let k be a fixed positive integer. Consider the sequence
defined recursively by a0 = 1 and

an+1 = an + b k
√
anc

for n = 0, 1, . . . . (Here, bxc denotes the greatest integer less than or
equal to x.) For each k, find the set Ak consisting of all integers in
the sequence k

√
a0, k
√
a1, . . . .

Problem 2 Consider the set A of all positive integers n with the
following properties: the decimal expansion contains no 0, and the
sum of the (decimal) digits of n divides n.

(a) Prove that there exist infinitely many elements in A with the fol-
lowing properties: the digits that appear in the decimal expansion
of A appear the same number of times.

(b) Show that for each positive integer k, there exists an element in
A with exactly k digits.

Problem 3 We are given a right prism with a regular octagon for
its base, whose edges all have length 1. The points M1,M2, . . . ,M10

are the centers of the faces of the prism. Let P be a point inside the
prism, and let Pi denote the second intersection of line MiP with the
surface of the prism. Suppose that the interior of each face contains
exactly one of P1, P2, . . . , P10. Prove that

∑10
i=1

MiP
MiPi

= 5.

Problem 4 Let n > 10 be a positive integer and let A be a set
containing 2n elements. The family {Ai | i = 1, 2, . . . ,m} of subsets
of the set A is called suitable if:

• for each i = 1, 2, . . . ,m, the set Ai contains n elements;

• for all 1 ≤ i < j < k ≤ m, the set Ai ∩Aj ∩Ak contains at most
one element.

For each n, determine the largest m for which there exists a suitable
family of m sets.

Problem 5 The sequence a1, a2, . . . , a2010 has the following prop-
erties: any 20 consecutive terms of the sequence have nonnegative
sum; and |aiai+1| ≤ 1 for i = 1, 2, . . . , 2009. Determine the minimum
possible value of

∑2010
i=1 ai.
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4.3 Balkan Mathematical Olympiad

Problem 1 Let n be a positive integer. Show that if a and b are
integers greater than 1 such that 2n− 1 = ab, then ab− (a− b)− 1 =
k · 22m for some odd integer k and some positive integer m.

Problem 2 Prove that if a convex pentagon satisfies the following
conditions, then it is a regular pentagon:

(i) all the interior angles of the pentagon are congruent;

(ii) the lengths of the sides of the pentagon are rational numbers.

Problem 3 A 3× 3× 3 cube is divided into 27 congruent 1× 1× 1
cells. One of these cells is empty, and the others are filled with unit
cubes labelled 1, 2, . . . , 26 in some order. An admissible move consists
of moving a unit cube which shares a face with the empty cell into the
empty cell. Does there always exist — for any initial empty cell and
any labelling of the 26 cubes — a finite sequence of admissible moves
after which each unit cube labelled with k is in the cell originally
containing the unit cube labelled with 27−k, for each k = 1, 2, . . . , 26?
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4.4 Baltic Mathematics Competition

Problem 1 Let 2001 given points on a circle be colored either red
or green. In one step all points are recolored simultaneously in the
following way: If before the coloring, both neighbors of a point P
have the same color as P , then the color of P remains unchanged;
otherwise, the color of P is changed. Starting with an initial coloring
F1, we obtain the colorings F2, F3, . . . after several steps. Prove that
there is a number n0 ≤ 1000 such that Fn0 = Fn0+2. Is this assertion
also true if 1000 is replaced by 999?

Problem 2 In a triangle ABC, the bisector of angle BAC meets
BC at D. Suppose that BD · CD = AD2 and ∠ADB = π/4.
Determine the angles of triangle ABC.

Problem 3 Let a0, a1, . . . be a sequence of positive real numbers
satisfying

i · a2
i ≥ (i+ 1) · ai−1ai+1

for i = 1, 2, . . . . Furthermore, let x and y be positive reals, and let
bi = xai + yai−1 for i = 1, 2, . . . . Prove that

i · b2i > (i+ 1) · bi−1bi+1

for all integers i ≥ 2.

Problem 4 Let a be an odd integer. Prove that a2n

+ 22n

and
a2m

+ 22m

are relatively prime for all positive integers n and m with
n 6= m.
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4.5 Czech-Slovak-Polish Match

Problem 1 Let n ≥ 2 be an integer. Show that

(a3
1 + 1)(a3

2 + 1) · · · (a3
n + 1) ≥ (a2

1a2 + 1)(a3
2a3 + 1) · · · (a2

na1 + 1)

for all positive numbers a1, a2, . . . , an.

Problem 2 In triangle ABC, angles CAB and ABC are acute.
Isosceles triangles ACD and BCE with bases AC and BC, re-
spectively, are constructed externally to triangle ABC such that
∠ADC = ∠ABC and ∠BEC = ∠BAC. Let O be the circumcenter
of triangle ABC. Prove that DO+OE = AB+BC+CA if and only
if ∠ACB = π/2.

Problem 3 Let n and k be positive integers satisfying 1
2n < k ≤ 2

3n.

Find the smallest number of pieces that can be placed on an n × n
chessboard so that no column or row of the chessboard contains k
adjacent unoccupied squares.

Problem 4 Two distinct points A and B are given in the plane.
Consider all triangles ABC with the following property: There exist
points D and E in the interior of BC and CA, respectively, such that

(i) BD
BC = CE

CA = 1
3 ;

(ii) the points A, B, D, and E are concyclic.

Find the locus of the intersection of lines AD and BE for all such
triangles ABC.

Problem 5 Find all functions f : R→ R satisfying the equation

f(x2 + y) + f(f(x)− y) = 2f(f(x)) + 2y2

for all x, y ∈ R.

Problem 6 We color 2000 lattice points of three-dimensional space
red and another 2000 lattice points red. Among the segments with
one red endpoint and one blue endpoint, suppose that no two have
a common interior point. Consider the smallest right parallelepiped
with edges parallel to the coordinate axes which contains all the lattice
points we have colored. Show that this parallelepiped contains at least
5 · 105 lattice points, and give an example of a coloring in which this
parallelepiped contains at most 8 · 106 lattice points.
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Abel summation For an integer n > 0 and reals a1, a2, . . . , an and
b1, b2, . . . , bn,

n∑
i=1

aibi = bn

n∑
i=1

ai +
n−1∑
i=1

(bi − bi+1)
i∑

j=1

aj

 .

Angle bisector theorem If D is the intersection of either angle
bisector of angle ABC with line AC, then BA/BC = DA/DC.

Arithmetic mean-geometric mean (AM-GM) inequality If
a1, a2, . . . , an are n nonnegative numbers, then their arithmetic
mean is defined as 1

n

∑n
i=1 ai and their geometric mean is defined

as (a1a2 · · · an)
1
n . The arithmetic mean-geometric mean inequality

states that
1
n

n∑
i=1

ai ≥ (a1a2 · · · an)
1
n

with equality if and only if a1 = a2 = · · · = an. The inequality is a
special case of the power mean inequality.

Arithmetic mean-harmonic mean (AM-HM) inequality If
a1, a2, . . . , an are n positive numbers, then their arithmetic mean
is defined as 1

n

∑n
i=1 ai and their harmonic mean is defined as

1
1
n

∑n
i=1

1
ai

. The arithmetic mean-geometric mean inequality states
that

1
n

n∑
i=1

ai ≥
1

1
n

∑n
i=1

1
ai

241
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with equality if and only if a1 = a2 = · · · = an. Like the arithmetic
mean-geometric mean inequality, this inequality is a special case of
the power mean inequality.

Bernoulli’s inequality For x > −1 and a > 1,

(1 + x)a ≥ 1 + ax,

with equality when x = 0.

Binomial coefficient (
n

k

)
=

n!
k!(n− k)!

,

the coefficient of xk in the expansion of (x+ 1)n.

Binomial theorem

(x+ y)n =
n∑

k=0

(
n

k

)
xn−kyk.

Brianchon’s theorem If hexagon ABCDEF is circumscribed
about a conic in the projective plane such that A 6= D, B 6= E,
and C 6= F , then lines AD, BE, and CF concur. (If they lie on a
conic in the affine plane, then these lines either concur or are parallel.)
This theorem the dual to Pascal’s theorem.

Brocard angle See Brocard points.

Brocard points Given a triangle ABC, there exists a unique point
P such that ∠ABP = ∠BCP = ∠CAP and a unique point Q such
that ∠BAQ = ∠CBQ = ∠ACQ. The points P and Q are the Brocard
points of triangle ABC. Moreover, ∠ABP and ∠BAQ are equal; their
value φ is the Brocard angle of triangle ABC.

Cauchy–Schwarz inequality For any real numbers a1, a2, . . . , an,
and b1, b2, . . . , bn

n∑
i=1

a2
i ·

n∑
i=1

b2i ≥

(
n∑

i=1

aibi

)2

,

with equality if and only if ai and bi are proportional, i = 1, 2, . . . , n.

Centrally symmetric A geometric figure is centrally symmetric
(centrosymmetric) about a point O if, whenever P is in the figure
and O is the midpoint of a segment PQ, then Q is also in the figure.
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Centroid of a triangle Point of intersection of the medians.

Centroid of a tetrahedron Point of the intersection of the seg-
ments connecting the midpoints of the opposite edges, which is the
same as the point of intersection of the segments connecting each
vertex with the centroid of the opposite face.

Ceva’s theorem and its trigonometric form Let AD, BE, CF
be three cevians of triangle ABC. The following are equivalent:

(i) AD,BE,CF are concurrent;

(ii)
AF

FB
· BD
DC
· CE
EA

= 1;

(iii)
sin∠ABE
sin∠EBC

· sin∠BCF
sin∠FCA

· sin∠CAD
sin∠DAB

= 1.

Cevian A cevian of a triangle is any segment joining a vertex to a
point on the opposite side.

Chinese remainder theorem Let k be a positive integer. Given
integers a1, a2, . . . , ak and pairwise relatively prime positive integers
n1, n2, . . . , nk, there exists a unique integer a such that 0 ≤ a <∏k

i=1 ni and a ≡ ai (mod ni) for i = 1, 2, . . . , k.

Circumcenter Center of the circumscribed circle or sphere.

Circumcircle Circumscribed circle.

Complex numbers in planar geometry If we introduce a Carte-
sian coordinate system in the Euclidean plane, we can assign a
complex number to each point in the plane by assigning α + βi to
the point (α, β) for all reals α and β. Suppose that A,B, . . . , F are
points and a, b, . . . , f are the corresponding complex numbers. Then:

• a + (c − b) corresponds to the translation of A under the vector−−→
BC;

• given an angle θ, b + eiθ(a − b) corresponds to the image of A
under a rotation through θ about B;

• given a real scalar λ, b+ λ(a− b) corresponds to thee image of A
under a homothety of ratio λ centered at B;

• the absolute value of a− b equals AB;

• the argument of (c−b)/(a−c) equals ∠ABC (directed and modulo
2π).
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Using these facts, one can translate much of the language of geometry
in the Euclidean plane into language about complex numbers.

Congruence For integers a, b, and n with n ≥ 1, a ≡ b (mod n)
(or “a is congruent to b modulo n”) means that a − b is divisible by
n.

Concave up (down) function A function f(x) is concave up
(down) on [a, b] ⊆ R if f(x) lies under the line connecting (a1, f(a1))
and (b1, f(b1)) for all

a ≤ a1 < x < b1 ≤ b.

A function g(x) is concave up (down) on the Euclidean plane if it
is concave up (down) on each line in the plane, where we identify the
line naturally with R.

Concave up and down functions are also called convex and con-
cave, respectively.

Convex hull Given a nonempty set of points S in Euclidean space,
there exists a convex set T such that every convex set containing S
also contains T . We call T the convex hull of S.

Cyclic polygon Polygon that can be inscribed in a circle.

de Moivre’s formula For any angle α and for any integer n,

(cosα+ i sinα)n = cosnα+ i sinnα.

Derangement A derangement of n items a1, . . . , an is a permuta-
tion (b1, b2, . . . , bn) of these items such that bi 6= ai for all i. According
to a formula of Euler’s, there are exactly

n!− n!
1!

+
n!
2!
− n!

3!
+ · · ·+ (−1)nn!

n!
derangements of n items.

Desargues’ theorem Two triangles have corresponding vertices
joined by lines which are concurrent or parallel if and only if the
intersections of corresponding sides are collinear.

Directed angles A directed angle contains information about both
the angle’s measure and the angle’s orientation (clockwise or coun-
terclockwise). If two directed angles sum to zero, then they have
the same angle measure but opposite orientations. One often takes
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directed angles modulo π or 2π. Some important features of directed
angles modulo π follow:

• If A,B,C,D are points such that ∠ABC and ∠ABD are well-
defined, then ∠ABC = ∠ABD if and only if B,C,D are collinear.

• If A,B,C,D are points such that ∠ABC and ∠ADC are well-
defined, then ∠ABC = ∠ADC if and only if A,B,C,D are
concyclic.

• Because 2(θ) = 2(π/2 + θ), but θ 6= π/2 + θ, one cannot divide
directed angles by 2. For example, if ∠ABC = 2∠ADC, D
lies either on the internal angle bisector of angle ABC, or on
the external angle bisector of angle ABC — we cannot write
∠ADC = 1

2∠ABC to determine which line D lies on.

These features show that using directed angles modulo π allows one
to deal with multiple possible configurations of a geometry problem
at once, but at the expense of possibly losing important information
about a configuration.

Euler’s formula (for planar graphs) If F , V , and E are the
number of faces, vertices, and edges of a planar graph, then F + V −
E = 2. This is a special case of an invariant of topological surfaces
called the Euler characteristic.

Euler’s formula (in planar geometry) Let O and I be the cir-
cumcenter and incenter, respectively, of a triangle with circumradius
R and inradius r. Then

OI2 = R2 − 2rR.

Euler line The orthocenter, centroid and circumcenter of any
triangle are collinear. The centroid divides the distance from the
orthocenter to the circumcenter in the ratio of 2 : 1. The line on
which these three points lie is called the Euler line of the triangle.

Euler’s theorem Given relatively prime integers a and m with
m ≥ 1, aφ(m) ≡ a (mod m), where φ(m) is the number of positive
integers less than or equal to m and relatively prime to m. Euler’s
theorem is a generalization of Fermat’s little theorem.

Excircles or escribed circles Given a triangle ABC, there are
four circles tangent to the lines AB,BC,CA. One is the inscribed
circle, which lies in the interior of the triangle. One lies on the
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opposite side of line BC from A, and is called the excircle (escribed
circle) opposite A, and similarly for the other two sides. The excenter
opposite A is the center of the excircle opposite A; it lies on the
internal angle bisector of A and the external angle bisectors of B and
C.

Excenters See excircles.

Exradii The radii of the three excircles of a triangle.

Fermat number A number of the form 22n

for some positive
integer n.

Fermat’s little theorem If p is prime, then ap ≡ a (mod p) for all
integers a.

Feuerbach circle The feet of the three altitudes of any triangle,
the midpoints of the three sides, and the midpoints of segments from
the three vertices to the orthocenter, all lie on the same circle, the
Feuerbach circle or the nine-point circle of the triangle. Let R be
the circumradius of the triangle. The nine-point circle of the triangle
has radius R/2 and is centered at the midpoint of the segment joining
the orthocenter and the circumcenter of the triangle.

Feuerbach’s theorem The nine-point circle of a triangle is tangent
to the incircle and to the three excircles of the triangle.

Fibonacci sequence The sequence F0, F1, . . . defined recursively
by F0 = 0, F1 = 1, and Fn+2 = Fn+1 + Fn for all n ≥ 0.

Generating function If a0, a1, a2, . . . is a sequence of numbers,
then the generating function for the sequence is the infinite series

a0 + a1x+ a2x
2 + · · · .

If f is a function such that

f(x) = a0 + a1x+ a2x
2 + · · · ,

then we also refer to f as the generating function for the sequence.

Graph A graph is a collection of vertices and edges, where the edges
are distinct unordered pairs of distinct vertices. We say that the two
vertices in one of these unordered pairs are adjacent and connected
by that edge. The degree of a vertex is the number of edges which



Glossary 247

contain it. A path is a sequence of vertices v1, v2, . . . , vn such that vi

is adjacent to vi+1 for each i. A graph is called connected if for any
two vertices v and w, there exists a path from v to w. A cycle of
the graph is an ordered collection of vertices v1, v2, . . . , vn such that
v1 = vn and such that the (vi, vi+1) are distinct edges. A connected
graph which contains no cycles is called a tree, and every tree contains
at least two leaves, vertices with degree 1.

Harmonic conjugates Let A, C, B, D be four points on a line in
that order. If the points C and D divide AB internally and externally
in the same ratio, (i.e., AC : CB = AD : DB), then the points C
and D are said to be harmonic conjugates of each other with respect
to the points A and B, and AB is said to be harmonically divided
by the points C and D. If C and D are harmonic with respect to A
and B, then A and B are harmonic with respect to C and D.

Harmonic range The four points A, B, C, D are referred to as
a harmonic range, denoted by (ABCD), if C and D are harmonic
conjugates with respect to A and B.

Helly’s theorem If n > d and C1, . . . , Cn are convex subsets of
Rd, each d + 1 of which have nonempty intersection, then there is a
point in common to all the sets.

Heron’s formula The area of a triangle with sides a, b, c is equal
to √

s(s− a)(s− b)(s− c),

where s = (a+ b+ c)/2.

Hölder’s inequality Let w1, . . . , wn be positive real numbers
whose sum is 1. For any positive real numbers aij ,

n∏
i=1

 m∑
j=1

aij

wi

≥
m∑

j=1

n∏
i=1

awi
ij .

Homothety A homothety (central similarity) is a transformation
that fixes one point O (its center) and maps each point P to a point
P ′ for which O,P, P ′ are collinear and the ratio OP : OP ′ = k is
constant (k can be either positive or negative), where k is called the
magnitude of the homothety.
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Homothetic triangles Two triangles ABC and DEF are homo-
thetic if they have parallel sides. Suppose that AB ‖ DE, BC ‖ EF,
and CA ‖ FD. Then lines AD, BE, and CF concur at a point X,
as given by a special case of Desargues’ theorem. Furthermore, some
homothety centered at X maps triangle ABC onto triangle DEF.

Incenter Center of inscribed circle.

Incircle Inscribed circle.

Inversion of center O and ratio r Given a point O in the plane
and a real number r > 0, the inversion through O with radius r
maps every point P 6= O to the point P ′ on the ray

−−→
OP such that

OP ·OP ′ = r2. We also refer to this map as inversion through ω, the
circle with center O and radius r. Key properties of inversion are:

1. Lines through O invert to themselves (though the individual
points on the line are not all fixed).

2. Lines not through O invert to circles through O and vice versa.

3. Circles not through O invert to other circles not through O.

4. A circle other than ω inverts to itself (as a whole, not point-by-
point) if and only if it is orthogonal to ω, that is, it intersects
ω and the tangents to the circle and to ω at either intersection
point are perpendicular.

Isogonal conjugate Let ABC be a triangle and let P be a point
in the plane which does not lie on any of the lines AB, BC, and
CA. There exists a unique point Q in the plane such that ∠ABP =
∠QBC, ∠BCP = ∠QCA, and ∠CAP = ∠QAB, where the angles
in these equations are directed modulo π. We call Q the isogonal
conjugate of P . With this definition, we see that P is also the isogonal
conjugate of Q.

Jensen’s inequality If f is concave up on an interval [a, b] and λ1,

λ2, . . ., λn are nonnegative numbers with sum equal to 1, then

λ1f(x1) + λ2f(x2) + · · ·+ λnf(xn) ≥ f(λ1x1 + λ2x2 + · · ·+ λnxn)

for any x1, x2, . . . , xn in the interval [a, b]. If the function is concave
down, the inequality is reversed.

Kummer’s Theorem Given nonnegative integers a and b and a
prime p, pt |

(
a+b

a

)
if and only if t is less than or equal to the number

of carries in the addition a+ b in base p.
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Lattice point In the Cartesian plane, the lattice points are the
points (x, y) for which x and y are both integers.

Law of cosines In a triangle ABC,

CA2 = AB2 +BC2 − 2AB ·BC cos∠ABC,

and analogous equations hold for AB2 and BC2.

Law of quadratic reciprocity If p, q are distinct odd primes, then(
p

q

)(
q

p

)
= (−1)

(p−1)(q−1)
4 ,

where
(

p
q

)
and

(
q
p

)
are Legendre symbols.

Law of sines In a triangle ABC with circumradius equal to R one
has

sinA
BC

=
sinB
AC

=
sinC
AB

= 2R.

Legendre symbol If m is an integer and n is a positive prime, then
the Legendre symbol

(
m
n

)
is defined to equal 0 if n | m, 1 if m is a

quadratic residue modulo n, and −1 if m is a quadratic nonresidue
modulo n.

Lucas’s theorem Let p be a prime; let a and b be two positive
integers such that

a = akp
k + ak−1p

k−1 + · · ·+ a1p+ a0,

b = bkp
k + bk−1p

k−1 + · · ·+ b1p+ b0,

where 0 ≤ ai, bi < p are integers for i = 0, 1, . . . , k. Then(
a

b

)
≡
(
ak

bk

)(
ak−1

bk−1

)
· · ·
(
a1

b1

)(
a0

b0

)
(mod p).

Matrix A matrix is a rectangular array of objects. A matrix A

with m rows and n columns is an m × n matrix. The object in the
ith row and jth column of matrix A is denoted ai,j . If a matrix has
the same number of rows as it has columns, then the matrix is called
a square matrix. In a square n × n matrix A, the main diagonal
consists of the elements a1,1, a2,2, . . . , an,n.
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Menelaus’ theorem Given a triangle ABC, let F, G, H be points
on lines BC, CA, AB, respectively. Then F, G, H are collinear if and
only if, using directed lengths,

AH

HB
· BF
FC
· CG
GA

= −1.

Minkowski’s inequality Given a positive integer n, a real number
r ≥ 1, and positive reals a1, a2, . . . , an and b1, b2, . . . , bn, we have(

n∑
i=1

(an + bn)r

)1/r

≤

(
n∑

i=1

ar
i

)1/r

+

(
n∑

i=1

bri

)1/r

.

Multiset Informally, a multiset is a set in which an element may
appear more than once. For instance, {1, 2, 3, 2} and {2, 2, 2, 3, 1} are
distinct multisets.

Nine point circle See Feuerbach circle.

Orbit Suppose that S is a collection of functions on a set T , such
that S is closed under composition and each f ∈ S has an inverse. T
can be partitioned into its orbits under S, sets of elements such that
a and b are in the same set if and only if f(a) = b for some f ∈ S.

Order Given a nonzero element g of a finite field, there exists a
smallest positive integer d, named the order of g, such that gd = 1.

Orthocenter of a triangle Point of intersection of the altitudes.

Pascal’s theorem If ABCDEF is a hexagon inscribed in a conic
in the projective plane, such that each pair of opposite sides intersects
at most one point, then the three intersection points formed in this
manner are collinear. (If the hexagon is inscribed in a conic in the
affine plane, then either the above result holds, or else each pair of
opposite sides is parallel.) This theorem the dual to Brianchon’s
theorem.

Pell’s equations If D is a prime congruent to 3 modulo 4, then
the Diophantine equation

x2 −Dy2 = 1

in x and y is known as a Pell’s equation. This equation has infinitely
many integer solutions in x and y.
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Phi function For all positive integers n, φ(n) is defined to be the
number of integers in {1, 2, . . . , n} which are relatively prime to n.
This function is multiplicative — that is, φ(ab) = φ(a)φ(b) for all a, b
relatively prime.

Periodic function f(x) is periodic with period T > 0 if

f(x+ T ) = f(x)

for all x.

Permutation Let S be a set. A permutation of S is a one-to-one
function π : S → S that maps S onto S. If S = {x1, x2, . . . , xn} is a fi-
nite set, then we may denote a permutation π of S by {y1, y2, . . . , yn},
where yk = π(xk).

Pick’s theorem Given a non self-intersecting polygon P in the
coordinate plane whose vertices are at lattice points, let B denote the
number of lattice points on its boundary and let I denote the number
of lattice points in its interior. The area of P is given by the formula
I + 1

2B − 1.

Pigeonhole principle If n objects are distributed among k < n

boxes, some box contains at least two objects.

Pole-polar transformation Let C be a circle with center O and
radius R. The pole-polar transformation with respect to C maps
points different from O to lines, and lines that do not pass through
O to points. If P 6= O is a point then the polar of P is the line p′

that is perpendicular to ray
−−→
OP and satisfies

d(O,P )d(O, p′) = R2,

where d(A,B) denote the distance between the objects A and B. If q
is a line that does not pass through O, then the pole of q is the point
Q′ that has polar q. The pole-polar transformation with respect to
the circle C is also called reciprocation in the circle C.

Polynomial in x of degree n Function of the form f(x) =∑n
k=0 akx

k.

Power of a point theorem Suppose that we are given a fixed
point P which lies either outside, on, or inside a fixed circle ω with
center O and radius r. Draw a line through P which intersects the
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circle at X and Y . The power of the point P with respect to ω

is defined to be the product of the signed distances PX and PY .
The power of a point theorem states that this quantity is a constant;
i.e., it does not depend on which line was drawn. More precisely,
PX · PY = PO2 − r2 no matter which line is drawn.

Power mean inequality Let a1, a2, . . . , an be any positive num-
bers for which a1 + a2 + · · · + an = 1. For positive numbers
x1, x2, . . . , xn we define

M−∞ = min{x1, x2, . . . , xk},

M∞ = max{x1, x2, . . . , xk},

M0 = xa1
1 x

a2
2 · · ·xan

n ,

Mt = (a1x
t
1 + a2x

t
2 + · · ·+ akx

t
k)1/t,

where t is a non-zero real number. Then

M−∞ ≤Ms ≤Mt ≤M∞

for s ≤ t.

Primitive element For each prime p, a field F with p elements
contains an element g, called a primitive element of F , with the
following property: for any nonzero element h of F , there exists an
integer k such that gk = h.

Projective plane Let K be a field. The projective plane over K
is the set of equivalence classes of K3 − {(0, 0)}, under equivalence
by scalar multiplication (that is, where (a, b, c) and (d, e, f) are
equivalent if and only if (a, b, c) = (dκ, eκ, fκ) for some κ ∈ K).
The elements of K are called points, and the equivalence class con-
taining (a, b, c) is often denoted [a, b, c] or [a : b : c]. Also, given
(α, β, γ) ∈ K3 − {(0, 0)}, the set of solutions [x, y, z] to

αx+ βy + γz = 0

is called a line in the projective plane over K. Any two distinct points
(resp. lines) are said to “intersect in” or “lie on” a unique line (resp.
point).

Ptolemy’s theorem In a convex cyclic quadrilateral ABCD,

AC ·BD = AB · CD +AD ·BC.
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Radical axis Let ω1 and ω2 be two non-concentric circles. The
locus of all points of equal power with respect to these circles is called
the radical axis of ω1 and ω2.

Radical axis theorem Let ω1, ω2, ω3 be three circles whose centers
are not collinear. There is exactly one point whose powers with
respect to the three circles are all equal. This point is called the
radical center of ω1, ω2, ω3.

Root of an equation Solution to the equation.

Root of unity Solution to the equation zn − 1 = 0.

Root Mean Square-Arithmetic Mean Inequality For positive
numbers x1, x2, . . . , xn,√

x2
1 + x2

2 + · · ·+ x2
k

n
≥ x1 + x2 + · · ·+ xk

n
.

Sigma function For all positive integers n, σ(n) is defined to be the
sum of all positive integer divisors of n. This function is multiplicative
— that is, σ(ab) = σ(a)σ(b) for all a, b relatively prime.

Simson line For any point P on the circumcircle of 4ABC, the
feet of the perpendiculars from P to the sides of 4ABC all lie on a
line called the Simson line of P with respect to 4ABC.

Solid triangle inequality Given four points A,B,C, P in three-
dimensional space which are not coplanar, we have

∠APB + ∠BPC > ∠APC.

Stewart’s theorem In a triangle ABC with cevian AD, write
a = BC, b = CA, c = AB, m = BD, n = DC, and d = AD.

Then
d2a+man = c2n+ b2m.

This formula can be used to express the lengths of the altitudes and
angle bisectors of a triangle in terms of its side lengths.

Thue-Morse sequence The sequence t0, t1, . . . , defined by t0 = 0
and the recursive relations t2k = tk, t2k+1 = 1 − t2k for k ≥ 1. The
binary representation of n contains an odd number of 1’s if and only
if tn is odd.
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Triangular number A number of the form n(n+ 1)/2, where n is
some positive integer.

Trigonometric identities

sin2 x+ cos2 x = 1,

1 + cot2 x = csc2 x,

tan2 x+ 1 = sec2 x;

addition and subtraction formulas:

sin(a± b) = sin a cos b± cos a sin b,

cos(a± b) = cos a cos b∓ sin a sin b,

tan(a± b) =
tan a± tan b

1∓ tan a tan b
;

double-angle formulas:

sin 2a = 2 sin a cos a

=
2 tan a

1 + tan2 a
,

cos 2a = 2 cos2 a− 1 = 1− 2 sin2 a

=
1− tan2 a

1 + tan2 a
,

tan 2a =
2 tan a

1− tan2 a
;

triple-angle formulas:

sin 3a = 3 sin a− 4 sin3 a,

cos 3a = 4 cos3 a− 3 cos a,

tan 3a =
3 tan a− tan3 a

1− 3 tan2 a
;

half-angle formulas:

sin2 a

2
=

1− cos a
2

,

cos2
a

2
=

1 + cos a
2

;
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sum-to-product formulas:

sin a+ sin b = 2 sin
a+ b

2
cos

a− b
2

,

cos a+ cos b = 2 cos
a+ b

2
cos

a− b
2

,

tan a+ tan b =
sin(a+ b)
cos a cos b

;

difference-to-product formulas:

sin a− sin b = 2 sin
a− b

2
cos

a+ b

2
,

cos a− cos b = −2 sin
a− b

2
sin

a+ b

2
,

tan a− tan b =
sin(a− b)
cos a cos b

;

product-to-sum formulas:

2 sin a cos b = sin(a+ b) + sin(a− b),

2 cos a cos b = cos(a+ b) + cos(a− b),

2 sin a sin b = − cos(a+ b) + cos(a− b).

Wilson’s theorem If n > 1 be a positive integer, then

(n− 1)! ≡ −1 (mod n)

if and only if n is prime.

Zeckendorf representation Let F0, F1, . . . be the Fibonacci num-
bers 1, 2, . . . . Each nonnegative integer n can be written uniquely as
a sum of nonconsecutive positive Fibonacci numbers; that is, each
nonnegative integer n can be written uniquely in the form

n =
∞∑

k=0

αkFk,

where αk ∈ {0, 1} and (αk, αk+1) 6= (1, 1) for each k. This expression
for n is called its Zeckendorf representation.
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Algebra

Belarus 00-8
Bulgaria 01-10
Belarus 00-8
Bulgaria 01-10
China 01-7, 8
India 01-3
Iran 00-2; 01-1, 10
Italy 00-3
Japan 01-2
Korea 01-1, 4
Mongolia 00-1
Poland 00-1, 3, 6; 01-3
Romania 00-1; 01-3, 4
Russia 00-32; 01-12, 17, 19, 23, 34
Taiwan 01-2
Asian Pacific 00-1, 2; 01-4

Algebra and Combinatorics

China 00-2, 4
Poland 01-6
Romania 01-12
Russia 01-1, 37
Mediterranean 00-1
St. Petersburg 00-9
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Functional Equations

Belarus 00-4
Czech and Slovak 01-3
Estonia 00-4
India 00-4
Iran 00-5, 6
Korea 00-2
Mongolia 00-3
Romania 01-5, 11
Russia 00-7, 40
Taiwan 00-4
Turkey 00-9
Vietnam 00-5
Czech-Slovak-Polish 01-5

Combinatorics

Also see “Algebra and Combinatorics” under Algebra and “Combinatorics

and Number Theory” under Number Theory.

Belarus 00-2, 5, 7, 9; 01-1, 8, 10
Bulgaria 00-2, 12; 01-2, 5, 8
Canada 00-1
China 00-3, 6; 01-3, 5, 10
Czech and Slovak 01-2
Iran 00-7; 01-2, 6
Japan 01-1
Korea 00-5
Mongolia 00-6
Poland 00-5
Romania 00-2, 10; 01-2, 6
Russia 00-6, 12, 15, 24, 29, 31, 37, 39, 46;

01-3, 14, 27, 35, 39
Taiwan 00-3; 01-3, 6
Turkey 00-3
United States 00-3, 4; 01-1
Vietnam 01-3
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(Combinatorics, continued)

Asian Pacific 00-5
Austrian-Polish 00-2; 01-4
Balkan 00-2
Baltic 01-1
Czech-Slovak-Polish 01-3
St. Petersburg 00-2, 6, 11, 13, 16, 23

Combinatorial Geometry

Bulgaria 00-8; 01-9
Czech and Slovak 00-4
Iran 00-4
Israel 00-4
Japan 00-4
Romania 00-9; 01-8
Russia 00-9, 18, 23, 26, 33;

01-4, 11, 21, 26, 31, 38
United States 01-6
Vietnam 01-5
Czech-Slovak-Polish 01-6
Austrian-Polish 00-3, 5
St. Petersburg 00-15
Vietnam 01-5

Graph Theory

Hungary 00-4
India 00-3
Russia 00-3, 36, 43; 01-28, 42
St. Petersburg 00-4, 10, 21



Classification of Problems 259

Geometry

Also see “Combinatorial Geometry” under Combinatorics and “Geometric

Inequalities” under Inequalities.

Belarus 00-1, 3, 11; 01-3, 4, 6, 9
Bulgaria 00-1, 3, 5, 7, 9, 11; 01-1, 3, 7
Canada 00-2; 01-1, 3
China 00-1; 01-1
Czech and Slovak 00-2, 3
Estonia 00-3, 5
Hungary 00-3, 6; 01-3, 5, 6
India 00-1; 01-1, 2
Iran 00-1; 01-4, 7, 9
Iran 00-3, 8, 9
Israel 00-3
Italy 00-1
Japan 01-5
Korea 00-3; 01-2, 5
Mongolia 00-2, 4
Poland 00-2; 01-5
Romania 00-5, 8; 01-7
Russia 00-2, 5, 13, 17, 20, 21, 27, 30,

35, 38, 42, 45; 01-2, 6, 8, 9,
13, 18, 20, 25, 29, 32, 36, 43

Taiwan 00-1; 01-1, 4
Turkey 00-2, 6, 7, 8
United Kingdom 00-1
United States 00-2, 5; 01-2, 4
Vietnam 00-1, 2, 3; 01-2
Asian Pacific 00-3; 01-3, 5
Austrian-Polish 00-4
Balkan 00-1; 01-2, 3
Baltic 01-2
Czech-Slovak-Polish 01-2
Mediterranean 00-2
St. Petersburg 00-1, 8, 12, 17, 19, 22
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Inequalities

Belarus 00-10; 01-2, 5
Canada 00-3
China 01-6
Czech and Slovak 00-1; 01-1
Estonia 00-1
Hungary 00-5; 01-1
India 01-4
Iran 00-10; 01-8
Japan 01-3
Korea 00-6; 01-3
Poland 01-1
Romania 00-3
Russia 00-4, 10, 19, 41, 44; 01-24, 40
United Kingdom 00-2
United States 00-1, 6; 01-3
Vietnam 01-4
Asian Pacific 00-4
Austrian-Polish 00-6; 01-5
Baltic 01-3
Czech-Slovak-Polish 01-1, 4
St. Petersburg 00-5, 14, 20

Geometric Inequalities

Israel 00-2
Japan 00-2
Poland 00-4; 01-2
Turkey 00-4
Austrian-Polish 01-3
Mediterranean 00-3

Number Theory

Belarus 00-6
Bulgaria 00-4, 6; 01-4, 11
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(Number Theory, continued)

China 00-5; 01-4, 9
Estonia 00-2
Hungary 00-1, 2; 01-2, 4
India 00-2
Iran 01-3, 5
Israel 00-1
Japan 01-4
Korea 00-1, 4
Mongolia 00-5
Poland 01-4
Romania 00-4, 6, 7; 01-1, 9, 10
Russia 00-11, 16, 22, 25, 28, 34;

01-5, 7, 16, 30, 41
Taiwan 00-2; 01-5
Asian Pacific 01-1, 2
Austrian-Polish 00-1; 01-1, 2
Balkan 00-3, 01-1
Baltic 01-4
St. Petersburg 00-3, 18

Combinatorics and Number Theory

Belarus 01-7
Bulgaria 00-10; 01-6
Canada 01-2
China 01-2
Estonia 00-6
Hungary 00-7; 01-7
Italy 00-2
Japan 00-1, 3
Korea 01-6
Russia 00-1, 8, 14; 01-10, 15, 22, 33
Turkey 00-1, 5
United Kingdom 00-3
United States 01-5
Vietnam 00-4; 01-1, 6
St. Petersburg 00-7


