Springer Series in
Computational
Mathematics

14

Editorial Board

R.L.Graham, Murray Hill
J. Stoer, Wirzburg
R.Varga, Kent (Ohio)



E.Hairer G.Wanner

Solving Ordinary
Differential
Equations |

Stiff and Differential-Algebraic
Problems

With 129 Figures

Springer-Verlag Berlin Heidelberg GmbH



Ernst Hairer
Gerhard Wanner

Université de Genéve

Section de Mathématiques, C.P. 240
2-4 rue du Liévre

CH-1211 Genéve 24

Mathematics Subject Classification (1980):
65L05,65L20,34A50

ISBN 978-3-662-09949-0 ISBN 978-3-662-09947-6 (eBook)
DOI 10.1007/978-3-662-09947-6

This work is subject to copyright. All rights are reserved, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in other ways,
and storage in data banks. Duplication of this publication or parts thereof is only per-
mitted under the provisions of the German Copyright Law of September 9, 1965, in its
current version, and a copyright fee must always be paid. Violations fall under the
prosecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1991
Originally published by Springer-Verlag Berlin Heidelberg New York in 1991
Softcover reprint of the hardcover 1st edition 1991

41/3140-543210



This book is dedicated to the memory of

Professor Peter Henrict
(1923 - 1987)

His classical text-book of 1962 on our subject “has served as
a lighthouse; it has established a clear framework of concepts
and many fundamental results” (quoted from Stetter 1973).



Preface

“Whatever regrets may be, we have done our best.”
(Sir Ernest Shackleton,
turning back on 9 January 1909 at 88°23’ South.)

Brahms struggled for 20 years to write his first symphony. Compared to
this, the 10 years we have been working on these two volumes may even
appear short.

This second volume treats stiff differential equations and differential alge-
braic equations. It contains three chapters: Chapter IV on one-step (Runge-
Kutta) methods for stiff problems, Chapter V on multistep methods for stiff
problems, and Chapter VI on singular perturbation and differential-algebraic
equations.

Each chapter is divided into sections. Usually the first sections of a
chapter are of an introductory nature, explain numerical phenomena and
exhibit numerical results. Investigations of a more theoretical nature are
presented in the later sections of each chapter.

As in Volume I, the formulas, theorems, tables and figures are numbered
consecutively in each section and indicate, in addition, the section num-
ber. In cross references to other chapters the (latin) chapter number is put
first. References to the bibliography are again by “author” plus “year” in
parentheses. The bibliography again contains only those papers which are
discussed in the text and is in no way meant to be complete.

It is a pleasure to thank J. Butcher, G. Dahlquist, and S.P. Ngrsett
(coauthor of Volume I) for their interest in the subject and for the numer-
ous discussions we had with them which greatly inspired our work. Special
thanks go to the participants of our seminar in Geneva, in particular Ch. Lu-
bich, A. Ostermann and M. Roche, where all the subjects of this book have
been presented and discussed over the years. Much help in preparing the
manuscript was given by J. Steinig, Ch. Lubich and A. Ostermann who read
and re-read the whole text and made innumerable corrections and sugges-
tions for improvement. We express our sincere gratitude to them. Many
people have seen particular sections and made invaluable suggestions and
remarks: M. Crouzeix, P. Deuflhard, K. Gustafsson, G. Hall, W. Hunds-
dorfer, L. Jay, R. Jeltsch, J.P. Kauthen, H. Kraaijevanger, R. Marz, and
O. Nevanlinna. Finally we thank all those people who helped us to install
and run our Apollo workstations on which most computations, most figures
and the text processing were done. Several pictures were produced by our
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children Klaudia Wanner and Martin Hairer, the one by drawing the other
by hacking.

The marvellous, perfect and never failing TEX program of D. Knuth al-
lowed us to deliver a camera-ready manuscript to Springer-Verlag, so that the
book could be produced rapidly and at a reasonable price. We acknowledge
with pleasure the numerous remarks of the planning and production group
of Springer-Verlag concerning fonts, style and other questions of elegance.

March, 1991 The Authors
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Chapter IV. Stiff Problems — One-Step Methods

This chapter introduces stiff (styv (Swedish first!), steif (German), stifar
(Icelandic), stijf (Dutch), raide (French), kankea (Finnish), rigido (Span-
ish), stiff (Italian), merev (Hungarian), rigid (Rumanian), tog (Slovenian),
¢vrst (Serbo-Croatian), tuhy (Czecho-Slovak), sztywny (Polish), stign (Bre-
ton), KCECTKMiA (Russian), TBMPA (Bulgarian), MR (Hebrew), O\L
(Arabic), ;:gc’)}(Urdu), < ASuw (Persian), W(Sanscrit), &1?[ (Hindi),
At (Chinese), fiF\ (Japanese), cvdng (Vietnam), ngumu (Swahili) ... )
differential equations. While the intuitive meaning of stiff is clear to all
specialists, much controversy is going on about its correct mathematical
definition (see e.g. Aiken 1985, p. 360-363). The most pragmatical opinion
is also historically the first one (Curtiss & Hirschfelder 1952): stiff equations
are equations where certain implicit methods, in particular BDF, perform
better, usually tremendously better, than ezplicit ones. The eigenvalues of
the Jacobian 9f/dy certainly play a role in this decision, but quantities
such as the dimension of the system, the smoothness of the solution or the
integration interval are also important (Sections IV.1 and IV.2).

Stiff equations require new concepts of stability (A-stability, Section
IV.3) and lead to mathematical theories on order restrictions (order stars,
IV.4). Stiff equations require implicit methods; we therefore focus in Sections
IV.5 and IV.6 on implicit Runge-Kutta methods, in IV.7 on (semi-implicit)
Rosenbrock methods and in IV.9 on semi-implicit extrapolation methods.
The actual efficient implementation of implicit Runge-Kutta methods poses
a number of problems which are discussed in Section IV.8. Section IV.10
then reports on some numerical experiments for all these methods.

With Sections IV.11, IV.12 and IV.13 we begin with the discussion of
contractivity (B-stability) for linear and nonlinear differential equations.
The chapter ends with questions of existence and numerical stability of the
implicit Runge-Kutta solutions (Section IV.14) and a convergence theory
which is independent of the stiffness (B-convergence, Section IV.15).



IV.1. Examples of Stiff Equations

“. .. Around 1960, things became completely
different and everyone became aware that the
world was full of stiff problems.”

(G. Dahlquist in Aiken 1985)

Stiff equations are problems for which explicit methods don’t work. Curtiss
& Hirschfelder (1952) explain stiffness on one-dimensional examples such as

y' = —50(y — cosz) . (1.1)
Fig.1.1. Solution curves of Fig. 1.2. Explicit Euler for
(1.1) with implicit Euler solution y(0) =0, h = 1.974/50 and 1.875/50

Solution curves of Equation (1.1) are shown in Fig.1.1. There is appar-
ently a smooth solution in the vicinity of y = cosz and all other solutions
reach this one after a rapid “transient phase”. Such transients are typical
of stiff equations, but are neither sufficient nor necessary. For example, the
solution with initial value y(0)=1 (more precisely 2500/2501) has no tran-
sient. Fig.1.2 shows Euler polygons for the initial value y(0) =0 and step
sizes h =1.974/50 (38 steps) and h =1.875/50 (40 steps). We observe that
whenever the step size is a little too large (larger than 2/50), the numerical
solution goes too far beyond the equilibrium and violent oscillations occur.

Looking for better methods for differential equations such as (1.1), Cur-
tiss and Hirschfelder discovered the BDF method (see Section IIL.1): the



IV.1. Examples of Stiff Equations 3

approximation y = cosz (i.e., f(z,y) = 0) is only a crude approximation
to the smooth solution, since the derivative of cosz is not zero. It is much
better, for a given solution value y,,, to search for a point y, ,; where the
slope of the vector field is directed towards y,,, hence
Mﬁ—% = f(Znt13 Yni1) - (1.2)

This is the implicit Euler method. The dotted line in Fig.1.1 consists of
three implicit Euler steps and demonstrates impressively the good stability
property of this method. Equation (1.1) is thus apparently “stiff” in the
sense of Curtiss and Hirschfelder.

Extending the above idea “by taking higher order polynomials to fit y
at a large number of points” then leads to the BDF methods.

Chemical Reaction Systems

When the equations represent the behaviour of a system
containing a number of fast and slow reactions, a forward
integration of these equations becomes difficult.

(H.H. Robertson 1966)

The following example of Robertson’s (1966) has become very popular in
numerical studies (Willoughby 1974):
0.04

A — B (slow)
7
B+B ¥% c+B (very fast) (1.3)

10*

B+C — A+C (fast)

which leads to the equations

A: yi = —0.04y, + 10%y,y, y,(0)=1
B:  yhb= 0.04y, —10%y,y, —3-10"y2 y,(0)=0
C: yy= 3.107y2  y,(0) = 0. (1.4)

After a bad experience with explicit Euler just before, let’s try a higher order
method and a more elaborate code for this example: DOPRI5 (cf. Volume 1).
The numerical solutions obtained for y, with Rtol=2.10-2 (204 steps) as
well as with Rtol=10—3 (203 steps) and Atol=10-% . Rtol are displayed in
Fig.1.3. Fig.1.4 presents the step sizes used by the code and also the local
error estimates. There, all rejected steps are crossed out.

We observe that the solution y, rapidly reaches a quasi-stationary po-
sition in the vicinity of y, =0, which in the beginning (y; =1, y; =0) is at
0.04 =~ 3-107y2, hence y, ~ 3.65 - 10~5, and then very slowly goes back to
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zero again. The numerical method, however, integrates this smooth solution
by thousands of apparently unnecessary steps. Moreover, the chosen step
sizes are more or less independent of the chosen tolerance. Hence, they seem
to be governed by stability rather than by precision requirements. It can
also be seen that an implicit Runge-Kutta code (such as RADAUS5 described
in Sections IV.5 and IV.8) integrates this equation without any problem.

.000037 | ¥, -
Solution RADAUS: 13 steps, Tol=10

Solution DOPRI5: Rtol=2.*10 2 Rtol=10"

<—— transient

.000032 ! . )
.0 1 .2 .3

Fig. 1.3. Numerical solution for problem (1.4) with DOPRI5 and RADAU5

.003

step sizes h

.002

.001 L )
0 .1 .2 J3

1 “HLn‘Il, | mt“nH: e
il AT SRV

10° : s
.0 .1 2 .3

Fig. 1.4. Step sizes and local error estimates of DOPRI5, Tol = 2.10~2
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Electrical Circuits

“This behavior is known, at least in part, to any experi-
enced worker in the field.” (G. Hall 1985)

One of the simplest nonlinear equations describing a circuit is Van der Pol’s
equation (see Section 1.16)

Y=Y y,(0) =2

o=p1-3)y, —y  ¥,(0)=0.
We have seen in Chapter II that this equation is easily integrated for mod-
erate values of u. But we now choose ;=500 and suspect that the problem
might become difficult. It turns out that the period of the solution in-
creases with . We therefore rescale the solutions and introduce ¢t =z /g,
z,(t) =y, (), 2,(t) = py,y(z). In the resulting equation the factor u? mul-

tiplies the entire second line of f. Substituting again y for z, = for ¢ and
u2=1/e we obtain

(1.5)

y; =Y, or yi =Y
vy =12 ((1-vd)y; — v1) ey = (1-42)yp — v; -

The steady-state approximation (see Vol. I, Formula (1.16.5)) then becomes
independent of u.

(1.5")

Why not try a multistep code this time? For example the predictor-
corrector Adams code DEABM of Shampine & Watts. The results are shown
in Figures 1.5 and 1.6. The code computes (with Atol=10-7, Rtol=10-2)
451 steps and stops at z=8.61 - 10—* with Idid=—4 (“the problem appears
to be stiff”). The implicit Runge-Kutta code RADAUS integrates over the
same interval in 11 steps.

Diffusion

“Stalling numerical processes must be wrong.”
(A “golden rule” of Achi Brandt)

Another source of stiffness is the translation of diffusion terms by divided
differences (method of lines, see Section I.1) into a large system of ODE?’s.
We choose the Brusselator (see (16.11) of Section 1.16) in one spatial vari-
able z

52

a—u:A+u2v—(B+1)u+oz—u
ot Oz? 1.6
v 02v (1.6)
=Bu—u?v+a—

Bt Oz?
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=5 |y

initial value

Sol. of DEABM, 451 steps

transient phase ——=

RADAUS, 11 steps

. . M—
1.9996 1.9998 2.0000

Fig.1.5. Numerical solution for DEABM at equation (1.5),
Rtol = 1072, Atol =10"".

.000006 | step size
order
6 F
.000004 | i
4
.000002 2
Rtol=10"2
.000000 1 1 1 1 0 1 1 1 1
.0000 .0002 .0004 .0006 .0008 .0000 .0002 .0004 .0006 .0008
.000006
order
6
.000004
4 4
.000002 F 2k
Rtol=10"°
.000000 L . L . 0 - . L 4
.0000 .0002 .0004 .0006 .0008 .0000 .0002 .0004 .0006 .0008

Fig.1.6. Step sizes and orders for DEABM, Rtol = 1072, 10~%, Atol =5.10"8
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with0 <z <1,A=1, B=3, a=1/50 and boundary conditions
u(0, t) = u(1,t) =1, v(0,%) =v(1,¢t) =3,
u(z, 0) = 1 + sin(27z), v(z,0)=3.

We replace the second spatial derivatives by finite differences on a grid of N
points z,=1/(N+1) (1 <i¢ < N), Az=1/(N+ 1) and obtain from (1.6)

a
u: =1+ ufvi —du; + ——(u;_, — 2u; + ui+1) )

(Az)?

v'.=3u.—u2~v-+-a—(v' —2v, +v,,,)
1 7 1t (Am)z 1—1 7 i+1/ (16’)

uy(t) = "N+1(t) =1, vy(t) = ”N+1(t) =3,
u;(0) =1 + sin(27z;), v;(0)=3, ¢=1,...,N.

Table 1.1. Results for (1.6’) with ODEX for 0 < t < 10

N Tol accepted steps | rejected steps | function calls
10 |[107* 20 3 358
20 |10~* 84 27 1210
30 |10 180 58 2462
40 |107* 317 108 4415
40 | 1072 268 44 3736

This time we try the extrapolation code ODEX (see Volume I, p. 440) and
integrate for 0 < ¢t < 10. The number of necessary steps increases curiously
with N, as is shown in Table 1.1. Again, for N large, the computing time is
nearly independent of the desired tolerance, the computed solutions, how-
ever, differ considerably (see Fig.1.7). Even the smooth 10—%-solution shows
curious stripes which are evidently unconnected with the behaviour of the
solution. Fig.1.8 shows the extremely ragged step size and order changes
which take place in this example.

We again have all the characteristics of a “stiff” problem, and the use of
an implicit method promises better results. However, when applying such a
method, one must carefully take advantage of the banded or sparse structure
of the Jacobian matrix. Otherwise the numerical work involved in the linear
algebra would increase with N3, precisely as the work for the explicit method
(N2 for the number of steps and N for the work per step).
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Tol =0.9-1072 Tol=1.0-10"*
Fig. 1.7. Solution u(z, t) of (1.6’) with N =40 using ODEX

Fig.1.8. Step size and order of ODEX at (1.6’) with N =40
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A “Stiff”” Beam

“Although it is common to talk about “stiff differential
equations,” an equation per se is not stiff, a particular ini-
tial value problem for that equation may be stiff, in some
regions, but the sizes of these regions depend on the initial
values and the error tolerance.” (C.W. Gear 1982)

Let us conclude our series of exam- N
ples by a problem from mechanics:
the motion of an elastic beam. We
suppose the beam inextensible of
length 1 and thin. So we neglect
shearing forces and rotatory iner-
tia. We further want to allow it
arbitrarily large movements. Thus,
the most natural coordinate system
to use is the angle # as a function
of arc length s and time t. We fur-
ther suppose the beam clamped at
s=0 and a force F=(F,, F,) act-

ing at the free end s=1. The beam
is then described by the equations

z(s, t) = /03 cosb(o, t)do, y(s,t)= /0’ sin (o, t)do . (1.7)

In order to obtain the equations of motion for this problem, we apply La-
grange theory (Lagrange 1788). This requires that we form L=T-U where
T is the kinetic and U the potential energy. For the first of these we have
simply

- %/01 ((2(s, 1)) + (s, 1))?)ds . (1.8)

The potential energy is made up of energy from bending (depending on the
curvature) and from exterior forces as follows:

= %/ﬂ (0'(s, t))zd.s — F (t)z(1,t) — Fy(t)y(l, t) . (1.9)

Here dots and primes denote derivatives with respect to ¢ and s respectively.
The equations of motion are now obtained by a “trivial” calculation (we are
grateful to our colleague J. Descloux for having shown us how this must be
done!) using the Hamilton principle which leads to (see Exercise 2)

/0 G(s, o) cos (8(s, t)—0(a, t))b(c, t)do
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= 0"(s, t) + cosO(s, t)F,(t) — sin (s, t)F,(t) (1.10)
1
_/ G(s, o) sin (6(s, t)—6(c, 1)) (8(, t))*de, 0<s<1
0

6(0, t) = 0, 6'(1,t)=0 (1.11)

where
G(s, o) =1 — max(s, o) (1.12)

is Green’s function for the problem —w'"(s) = g(s), w'(0) =w(1) =0. If we
discretize the integrals with the help of the midpoint rule

| 16 =23 160, 6=0((- 1), k=1
0 k=1

(1.13)
Equations (1.10) become
Z ay b, =n* <0,_1 —26,+ 0,+1) + n? (cos 6, F, —sin9, Fz)
k=1 (1.10)
—Zg,ksm -0, 0,,, l=1,...,n
0, = -6, 0,11 =0, (1.11)
where
1
ay = g cos(6, = 0;), gy =7+ 5 —max(l, k) . (1.14)

“Integration without preparation is frustration.”
(Reverend Leon Sullivan)

Numerical integration of (1.10’) seems quite tedious, since the accelera-
tion 0 is only given 1mphc1t1y The computation of Gk requires the solution
of a linear system A6 =v. Due to the special structure of A, this can be
done efficiently, since with B=(b,;), b, = g sin(6,—8,,), we have

A+1iB = dia.g(ew‘,...,e"o“)G diag(e‘iol, . .,e“io") . (1.15)
The matrix G=(g;;,) has the beautiful inverse
1 -1
-1 2 -1
Gl = -1 . . , (1.16)
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a positive definite tridiagonal matrix (a natural coincidence: G~1 represents
the second order difference operator, and G comes from the Green function
for a second order integration problem). Now

(A+iB)™ =C +iD = diag(ew‘,...,ew")G"l diag(e—""l,...,e-""")
(1.17)
and

AC-BD=1I, AD+BC =0 (1.18)

lead to
A'=C+DC'D.

We can also simplify the term — 3 g, sin(8,—9, )62, which in vector notation
ik Tk} E

is —B#6?2, with the formula A-! B=—DC-! (from (1.18)). The accelerations
0, are now obtained from (1.10’) as follows.

a) Let v,=n*(8,_, —26,+6,,,)+n?(cos §,F, —sin b, F,),

b) Compute w=Dv+62 (D is bidiagonal);

c) Solve the tridiagonal system Cu=w,

d) Compute § =Cv+Du.
Thus the evaluation of (1.10’) reduces to O(n) operations (instead of O(n?)).
We choose the initial conditions

0(s,0)=0, 6(s,0)=0 (1.19)

and apply the exterior forces

.5 - sin? <t<
Fo=-elt), F=el),  ol)={37 5 0SS )

Table 1.2. Results for the beam (1.10’) with DOPRI8

Tol | accepted steps | rejected steps | function calls

10~ 180 9 2472

10 | 1077 522 75 7722
20 |[1077 2215 390 33523
40 | 1077 8852 547 121700
20 | 1072 2227 671 37063
20 | 1073 2188 341 32572
20 |107% 2208 433 33936
20 |10°° 2205 374 33189
20 |10 2200 369 33064
20 | 1077 2215 390 33523
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The resulting system of ODE’s is then integrated for 0 < ¢ < 5 by the code
DOPRIS of Volume I, although strictly speaking, the code is of too high an
order for such a problem. The results are summarized in Table 1.2.

We observe the same phenomenon as before, the number of necessary
steps increases like O(n?) (the numerical work like O(n3)), and is more
or less independent of the chosen tolerance. The numerical solution for
n =40 is displayed in Fig.1.9. Only each 20th of the nearly 9000 steps is
drawn (otherwise the picture would just be completely black). The computed
solution looks perfectly smooth and there is no apparent reason for the need
of so many steps. In fact due to lack of stability, the numerical method
produces small vibrations which are invisible for Tol = 10-7, and which
force the integrator to such small step sizes. If we relax the high precision
requirement, these oscillations become visible (Fig.1.10).

High Oscillations

Let us now choose slightly perturbed initial values in the beam equation
(1.10%). Instead of (1.19) we put

0, =...=0, ,=0,0,=04, 6, =...=6,=0. (1.19)

This time, the correct solution for n =10 of (1.10’) computed with Tol=10-6
and more than 2000 steps is displayed in Fig.1.11.

The solution is highly oscillatory, no damping wipes out the fast vi-
brations since the system is conservative. Hence also an implicit method,
if required to follow all these oscillations, would need the same number of
steps and there would of course be no advantage in using it. So we see that
the decision whether a problem should be regarded as stiff or nonstiff (“...
that is the question”), may also depend on the chosen initial conditions.
On the other hand, we shall see in Section IV.2 that whenever these high
oscillations are not desired, implicit methods are a marvellous instrument
for wiping them out.

Exercises

1. (Curtiss & Hirschfelder 1952). “It is interesting to notice that this
method of integration (the implicit Euler) may be used in either direc-
tion”. Integrate equation (1.1) backward with step size —0.5 and initial
value y(1.5) = 0 in three steps. Observe that the numerical solution
remains stable and follows the smooth solution.

2. Derive the equations of motion (1.10) for the elastic beam from (1.8)
and (1.9).
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Hint. If you want to avoid differentiation in function spaces, then dis-
cretize the beam as, say,

J

j
z:j=AsZcos0k, yjzAsZsinOk, i=1,...,n, As=;1;
k=1 k=1
(1.21)
A 2 -2 As ’ 0y,
=72(w1+y1)=722121’ zj=AsZe :
j=1 =1 k=1
As n 0'_0._1 n n .
U= —2—;(%—)2 —FzAs’;cosak —FyAskz_:lmnOk,

form the Lagrange function L =T-U and apply n-dimensional Lagrange
theory (Lagrange (1788), Vol. II, Sect. VII and VIII, a very clear deriva-
tion can be found in Sommerfeld (1942), Vol. I, §36)

d (6L) 3 oL _

dt\gg,/ 96,

or n n
Z Ly o0 =Ly — Ly, - ZLékelé,. (1.22)

=1 =1

3. Apply an explicit code to the Oregonator (Chapter I, Equation (16.15))
Y = 7727 (y2 +1,(1— 8.375 x 100y, — yz))

1
Y2 =z (¥s — (1 +91),) (1.23)

ys = 0.161(y; — ys)
and study its performance.
4. a) Compute the equations of motion of the hanging rope (Fig.1.13) of

length 1 by using the results of Exercise 2. The potential energy has to
be replaced by

1
U= —/ z(s, t)ds.
0
Result.

/‘; G(s, o) cos(8(s, t)—8(a, t))é(a', t)do (1.24)

1
= —/0 G(s, o)sin(6(s, t)—0(o, t)) (6(c, t))*do — (1—s)sin 6(s, t)



IV.1. Examples of Stiff Equations 15

for 0 < s <1, or, when discretized
n n ) 1
> anby =Y bubl —n(n+ > ~1)sing,. (1.24")
k=1 k=1 2

b) Do numerical computations with DOPRI5 or DOPRI8. Choose as
initial position a hanging rope in equilibrium which is then released at
one end.

Hint. The hanging rope in equilibrium satisfies, in the usual coordinates,

/ yv/1+ (y')?dz = min with / V1+(y')dz =1,

o

which becomes, using a Lagrange multiplier

/ (y = A)V/1+ (y')%de = stat,
20
and using (2.6) of Section 1.2,

y_A:K\/l-l'(y')z,

to obtain

y= )\+Kcosh(w+a).

Suitable choices of the parameters and change of coordinates (K =1/2,
A=—Kcosh(a/K), z — y,y — —z) then lead to

6(s, 0) = g — arctan(sinh(2a) — 2s). (1.25)
Result. DOPRI8 has computed the solution for 0 <t <5, n = 60 and
Tol = 10-5, a = 0.6, in 207 steps (Fig.1.12). The number of steps

increases here like O(n), so the rope is — evidently — less stiff than the
beam.

Fig.1.12. Movement of hanging rope, every step drawn



[V.2. Stability Analysis for Explicit RK Methods

“ .. werden wir bei dem Anfangswertproblem hyperboli-

scher Gleichungen erkennen, dass die Konvergenz allgemein
nur dann vorhanden ist, wenn die Verhaltnisse der Gitter-
maschen in verschiedenen Richtungen gewissen Ungleichun-
gen gentigen.” (Courant, Friedrichs & Lewy 1928)

The first analysis of instability phenomena and step size restrictions for
hyperbolic equations was made in the famous paper of Courant, Friedrichs
& Lewy (1928). Later, many authors undertook a stability analysis, very
often independently, in order to explain the phenomena encountered in the
foregoing section. An early and beautiful paper on this subject is Guillou &
Lago (1961).

Stability Analysis for Euler’s Method

Let ¢(z) be a smooth solution of y' = f(z, y). We linearize f in its neigh-
bourhood as follows

V(@) = £z, o(@) + oo @@ = p() +o (20)
and introduce y(z)—¢(z)=7(z) to obtain
P(2) = gl #(e) @) + .. = @) .. (2:2)

As a first approximation we consider the Jacobian J(z) as constant and
neglect the error terms. Omitting the bars we arrive at

y' =Jy. (2.2’)
If we now apply, say, Euler’s method to (2.2’), we obtain
Ymt+1 = R(kJ)y,, (2:3)
with
R(z)=1+=z. (2.4)

The behaviour of (2.3) is studied by transforming J to Jordan canonical form
(see Section I1.12). We suppose that J is diagonalizable with eigenvectors
Vyy...,v, and write y, in this basis as

n
Yo = Z o, . (2.5)
=1
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Inserting this into (2.3) we obtain

n

Ym = D _(R(AX))"e; - v; (2.6)

=1

where the ); are the corresponding eigenvalues (see also Exercises 1 and 2).
Clearly y,, remains bounded for m — oo if for all eigenvalues the complex
number z=~hA; lies in the set

S = {ze C;|R(2)| < 1} = {zE Cilz—(-1)| < 1}

which is the circle of radius 1 and centre —1. This leads to the explanation
of the results encountered in Example (1.1). There we have A = —50, and
hX € S means that 0 < h < 2/50, in perfect accordance with the numerical
observations.

Explicit RK Methods

An explicit RK method (Section II.2, Formula (2.3)) applied to (2.2’) gives

i-1
9;i = Ym + hJ Z a;;9;
7 (2.7)
Ymt+1 = Ym T hJZ bjgj .
i=1

Inserting g; repeatedly from the first line, this becomes

Ym+1 = R(h.])ym

where

R(z)=1+2 ij + 2? ijajk + 2 Z bjajrap + ... (2.8)
J Jrk vkl

is a polynomial of degree < s.

Definition 2.1. The function R(z) is called the stability function of the
method. It can be interpreted as the numerical solution after one step for

¥y =My, Yo =1, z=nh\, (2.9)
the famous Dahlquist test equation. The set
S = {z € C;|R(z)| < 1} (2.10)

is called the stability domain of the method.
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Theorem 2.2. If the RK method is of order p, then
a zP p+1
R(Z)=1+Z+§+..-+;!-+O(Z ).

Proof. The exact solution of (2.9) is e# and therefore the numerical solution
y; = R(z) must satisfy

e* — R(z) = O(hP*1) = O(zP11) . (2.11)
Another argument is that the expressions in (2.8) appear in the order condi-
tions for the “tall” trees 7, t5;, t35, t4qy t59,- .- (see Table 2.1 of Section II.2,

p- 147). They are therefore equal to 1/¢! for ¢ < p. a
Fig. 2.1. Stability domains Fig. 2.2. Stability domains
for ERK methods of order p = s for DOPRI methods

As a consequence, all explicit RK methods with p=s possess the stability
function

R(z):1+z+...+z:'-. (2.12)

The corresponding stability domains are represented in Fig.2.1.
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The method of Dormand & Prince DOPRI5 (Section I1.4, Table 4.6) is
of order 5 with s=6 (the 7th stage is for error estimation only). Here R(z)
is obtained by direct computation. The result is

R 28 2t 25 26
=1 A .
(2)=1+ z+ + + + 130 + 600 ° (2.13)

For DOPRIB (Section II.6, Table 6.4), R(z) becomes
8 2
R(z) =) = +0.27521279901 - 10~°2° + 0.24231996586959 - 10~°'°
—~ jl
J=0
+ 0.24389718205443 - 10~ 72! — 0.2034615289686 - 10~°2'2 .

(2.14)
The stability domains for these two methods are given in Fig.2.2.

Extrapolation Methods

The GBS-algorithm (see Section II.9, Formulas (9.12), (9.13)) applied to
=My, y(0)=1 leads with z=H\ to

z
%=1, y=1+—
nj

z .
yi+1=yi_1+2;yi i=1,2,...,n,
1 ! (2.15)
T, = Z(ynj—1 + 2y, + Yn;41)

T., —-T,
Typpg =Ty + =L —d-Lk_
Jrk+1 ok (nj/nj_k)z -1
The stability domains for the diagonal terms T,,, Ty;, T}4, and Ty, for the
harmonic sequence

{n;} = {2,4,6,8,10,...}

(the one which is used in ODEX) are displayed in Fig.2.3. We have also
added those for the methods without the smoothing step (1I.9.13c), which
shows some difference for negative real eigenvalues.
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with smoothing step without smoothing step

Fig. 2.3. Stability domains for GBS extrapolation methods
Analysis of the Examples of IV.1

The Jacobian for the Robertson reaction (1.3) is given by

—0.04 104y, 104y,
0.04 —10%y, —6-107y, —10%y,
0 6107y, 0

which in the neighbourhood of the equilibrium y, =1, y, =0.0000365, y, =0

1s
—0.04 0 0.365

0.04 -2190 -0.365
0 2190 0
with eigenvalues

A =0, )\, = —0.405, \, = —2189.6.

The third one produces stiffness. For stability we need (see the stability
domain of DOPRI5 in Fig.2.2) —2190h > —3.3, hence h < 0.0015. This
again confirms the numerical observations.
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The Jacobian of example (1.6’) (Brusselator reaction with diffusion) is a
large 2N x 2N matrix. It is composed of reaction terms and diffusion terms:

Je ( d%a.g(2ul-vi —4) (.1ia.g(uf) ) 4" (K 0 (2.16)
diag(3 — 2u;v;) diag(—u?) (Az)2\ 0 K
where
-2 1
1 -2 1
K = 1 T . . . . (2.17)
=21
1 -2
The eigenvalues of K are known (see Section 1.6, Formula (6.7b)), namely
. wk \2
P = ——4(sm 5N +2) , (2.18)

and therefore the double eigenvalues of the right hand matrix in (2.16) are

2
- (A‘l:)z (sin 2;’:_ 2) = —4a(N +1)? (sin
and are located between —4a(N+1)2? and 0. Since this matrix is symmetric,
its eigenvalues are well conditioned and the first matrix on the right side of
(2.16) with much smaller coefficients can be regarded as a small perturbation.
Therefore the eigenvalues of J in (2.16) will remain close to those of the
unperturbed matrix and lie in a strip neighbouring the interval [—4a(N +
1)2, 0]. Numerical computations for N = 40 show for example that the
largest negative eigenvalue of J varies between —133.3 and —134.9, while
the unperturbed value is —4 - 412 . sin?(407/82)/50 = —134.28. Since most
stability domains for ODEX end close to —5.5 on the real axis (Fig. 2.3), this
leads for N =40 to h < 0.04 and the number of steps must be > 250.

k 2
e

In order to explain the behaviour of the beam equation, we linearize it
in the neighbourhood of the solution 6, =6, =0, F,=F, =0. There (1.10’)

becomes
-3 1

Go = n* 1T 6 (2.20)

since for § =0 we have A=G and B=0. We now insert G~! from (1.16) and
observe that the matrices involved are, with the exception of two elements,
equal to £ K of (2.17). We therefore approximate (2.20) by

§=-n'K?9 . (2.21)
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This second order equation was integrated in IV.1 as a first order system

(5) = (ot 3) (5)=2(2) - (2.22)
(i o) (1) =2(2) (2.23)

we find that ) is an eigenvalue of E iff A2 is an eigenvalue of —n*K?2. Thus
Formula (2.18) shows that the eigenvalues of E are situated on the imaginary
axis between —4n2: and +4n?i. We see from Fig.2.2 that the stability
domain of DOPRI8 covers the imaginary axis between approximately —4:
and +4:. Hence for stability we need h <1/n? and the number of steps for
the interval 0 <t <5 must be larger than ~ 5n2. This, again, was observed
in the numerical calculations (Table 1.2).

By solving

Automatic Stiffness Detection

“Neither is perfect, but even an imperfect test can be
quite useful, as we can show from experience ...”

(L.F. Shampine 1977)

Explicit codes applied to stiff problems are apparently not very efficient and
the remaining part of the book will be devoted to the construction of more
stable algorithms. In order to avoid that an explicit code waste too much
effort when encountering stiffness (and to enable a switch to a more suitable
method), it is important that the code be equipped with a cheap means of
detecting stiffness. The analysis of the preceding subsection demonstrates
that, whenever a nonstiff code encounters stiffness, the product of the step
size with the dominant eigenvalue of the Jacobian lies near the border of the
stability domain. We shall show two manners of exploiting this observation
to detect stiffness.

Firstly, we adapt the ideas of Shampine & Hiebert (1977) to the Dormand
& Prince method of order 5(4), given in Table I1.4.6. The method possesses
an error estimator err; =y, —%, which, in the nonstiff situation, is O(h3).
However in the stiff case, when the method is working near the border of the
stability domain S, the distance d, =y, —y(z, + k) to the smooth solution is
approximately d, ~ R(hJ)d,, where J denotes the Jacobian of the system,
R(z) is the stability function of the method, and d, =y,~y(z,). Here we have
neglected the local error for an initial value on the smooth solution y(z). A
similar formula, with R replaced by ﬁ, holds for the embedded method. The
error estimator satisfies err; ~ E(hJ)d, with E(z)=R(z)—R(z). The idea is
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now to search for a second error estimator err; (with err; ~E(hJ )d,) such
that

i) |E(2)| < 8|E(z)| on 8S N C~ with a small 8 < 1;

ii) err; =O(h?) for h — 0.
Condition (i) implies that ||err, || <||err,|| when k) is near S (the problem
is possibly stiff), and condition (ii) will lead to ||eFr, || > ||err, || for step sizes
which are determined by accuracy requirements (when the problem is not
stiff). If ||eFr, || < ||err;|| occurs several times in succession (say 15 times)
then a stiff code might be more efficient.

For the construction of err, we put

&y = h(dyky + dyky + ...+ d,k,)

where the k; = f(z,+c;h, g;) are the available function values of the method.
The coefficients d; are determined in such a way that

i: d;=0, Z d;c; = 0.02 (2.24)
=1 i=1

(so that (ii) holds) and that 6 in (i) is minimized. A computer search gave
values which have been rounded to

dy = —2.134, d, = 2.2, dy = —0.24, d, = 0.13, dy = 0.144, dg = —0.1 .
(2.25)
The factor 0.02 in (2.24) has been chosen such that 6 in (i) is close to 0.3 on
large parts of the border of S, but |E(2)/E(z)| soon becomes larger than 1
if z approaches the origin. B
In Fig.2.4 we present the contour lines |E(z)/E(z)| = Const (Const =
4,2,1,0.5,0.25,0.166,0.125) together with the stability domain of the meth-
od. A numerical experiment is illustrated in Fig.2.5. We applied the code
DOPRI5 (see the Appendix to Volume I) to the Van der Pol equation (1.5%)
with £ =0.003. The upper picture shows the first component of the solution,
the second picture displays the quotient ||eFr, ||/||err,|| for the three toler-
ances Tol=10-3,10-5,10-7. The last picture is a plot of h|\|/3.3 where h
is the current step size and A the dominant eigenvalue of the Jacobian and
3.3 is the approximate distance of 85 to the origin.

A second possibility for detecting stiffness is to estimate directly the
dominant eigenvalue of the Jacobian of the problem. If v denotes an approx-
imation to the corresponding eigenvector with ||v|| sufficiently small then,
by the mean value theorem,

~ (=@ y+v) - f(=z,9)
Al ~
[[v]l

will be a good approximation to the leading eigenvalue. For the Dormand
& Prince method (Table I1.4.6) we have cg = ¢; =1. Therefore, a natural
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Fig.2.4. Contour lines of E(z)/E(z)

choice is

L |

= Nor = sl (2.26)

where k; = f(zq + c;h, g;) are the function values of the current step. Both
values, g; =y, and g4, approximate the exact solution y(z,+h) and it can
be shown by Taylor expansion that g, —gs = O(h*). This difference is thus
sufficiently small, in general. The same argument also shows that g, —g, =

~

E(hJ)d,y, where J is the Jacobian of the linearized differential equation and
E(z) is a polynomial with subdegree 4. Hence, g7 — 9g is essentially the
vector obtained by 4 iterations of the power method applied to the matrix
hJ. It will be a good approximation to the eigenvector corresponding to
the leading eigenvalue. As in the above numerical experiment we applied
the code DOPRI5 to the Van der Pol equation (1.5’) with ¢=0.003. Fig.2.6
presents a plot of hp/3.3 where h is the current step size and o the estimate
(2.26). This is in perfect agreement with the exact values h|)|/3.3 (see third
picture of Fig.2.5).

Further numerical examples have shown that the estimate (2.26) also
gives satisfactory approximations of |A\| when the dominant eigenvalue ) is
complex. However, if the argument of A is needed too, one can extend the
power method as proposed by Wilkinson (1965, page 579). This has been
elaborated by Sottas (1984) and Robertson (1987).

The two techniques above allow us to detect the regions where the step
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Fig. 2.5. Stiffness detection with DOPRI5
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Fig. 2.6. Estimation of Lipschitz constant with DOPRI5

size is restricted by stability. In order to decide whether a stiff integrator will
be more efficient, one has to compare the expense of both methods. Studies
on this question have been undertaken in Petzold (1983), Sottas (1984) and
Butcher (1990).
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Step-Control Stability

We now come to the explanation of another phenomenon encountered in
Section IV.1, that of the ragged behaviour of the step size (e.g. Fig.1.4 or
1.8), a research initiated by G. Hall (1985/86) and continued by G. Hall &
D.J. Higham (1988). Do there exist methods or stiff equations for which the
step sizes h,, behave smoothly and no frequent step rejections appear?

We make a numerical study on the equation
y; —_ _2000( COST oyl + sinx - yz + 1) yl(O) =1 (2 27)
yh = —2000(—sinz -y, +cosz -y, +1)  y,(0) =0 .

for 0 < z < 1.57, whose eigenvalues move slowly on a large circle from —2000
to £2000:. If we apply Fehlberg’s method RKF2(3) (Table 4.4 of Volume
I, Section II1.4) and DOPRI5 to this equation (with Euclidean error norm
without scaling), we obtain the step size behaviour presented in Fig.2.7.
There all rejected steps are crossed out.

Fig.2.7. Step sizes of RKF2(3) and DOPRIS5 for (2.27)

In order to explain this behaviour, we consider for y' = Ay (of course!)
the numerical process
yn+1 = R(hn)‘)yn

err, = E(h,A)y,

o (2.28)
(1] [e3
Posr =P (Ierrnl)
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(where err, is the estimated error, E(z) = R(z) — R(z), a =1/(p+1) and
P is the order of ﬁ) as a dynamical system whose fixed points and stability
we have to study. A possible safety factor (“fac” of formula (4.7°) of Section
I1.4) can easily be incorporated into Tol and does not affect the theory. The
analysis simplifies if we introduce logarithms

N, = log|y,|, X, = logh, (2.29)
so that (2.28) becomes
Mnt1 = log |[R(eX"A)| + 7, ,
nﬂ=a@—b6ﬂﬂﬂﬂ—m)+m, (230)

where 7 is a constant. This is now a map R? — R2. Its fixed point (7, x)
satisfies

IR(eX))| =1, (2.31)

which determines the step size eX so that the point z = eXA must be on the
border of the stability domain. Further

n =17 — log|E(2)|
determines 77. Now the Jacobian of the map (2.30) at this fixed point becomes

u = Re (R'((z)) .
¢ = 2niss Xnta) _ ( 1 v ) i (2.32)
a( ny n) —a l-oav E'(Z
K X v = Re (Fz)) . Z) o

Proposition 2.8. The step-control mechanism is stable for hA = z on the
boundary of the stability domain if and only if the spectral radius of C in
(2.32) satisfies

o(C)< 1.

We then call the method SC -stable at z. (]

The matrix C is independent of the given differential equation and of
the given tolerance. It is therefore a characteristic of the numerical method
and the boundary of its stability domain.

We study the following methods of Section II.4:

a) RKF2(3) (Table 4.4), a = 1/3:

23

2
R(z)=1+z+%-, E(z):F.
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b) RKF2(3)B (also Table 4.4), a = 1/3:

22 117z3 23 324
R(z) =1+ +_+ 704 (2) = 5115 ~ Ta08 -

c) RKF4(5) (Table 4.5), a= 1/5.

22 23 24 25 25 28
d) DOPRI5 (Table 4.6), a = 1/5:
97 13 1
— 13 — 5 6 7 .
R(z) = see (213), B(2) = 155606* ~ Z0000° T za000° (239

e) RKF5(4) (Fehlberg 5(4) with local extrapolation), o = 1/5:
23 gt 5 26
R(z)_.1+z+—+—+——+120 2080 °

f) HIHA5 (Method of ngham & Hall, see Table 2.1 below), o = 1/5:
23 2% 5 28
(z)—1+z+—+—+2—4+ 20 T Tao
1 1
B(z) = - 12100 *+ 5200 T Taa00°
g) DOPRI8 (Section I1.6, Table 6.4), a = 1/8:
R(z) as in (2.14) ,
E(z) = 2.4266659177 - 10~7 2% — 1.710684228 - 10~ " 2°

E(z) same as (2.33).

+3.74237264635 - 108 21% _ 1.343923571 . 108!
+1.0131679346 - 10710212

The corresponding stability domains are represented in Fig.2.8. There,
the regions of the boundary, for which ¢(C) <1 is satisfied, are represented
as thick lines. It can be observed that the phenomena of Fig. 2.7, as well as
those of Section IV.1, are nicely verified.

SC-Stable Dormand and Prince Pairs

Among the methods studied in the foregoing subsection, only the cases
RKF2(3) and RKF5(4) (Fehlberg in local extrapolation mode) are SC-stable
in the vicinity of the negative real axis. We are therefore interested in find-
ing 5(4)-th order ERK pairs from the family of Dormand & Prince (1980)
with larger regions of SC-stability, a research undertaken by D.J. Higham
& G. Hall (1990).

The Dormand & Prince methods are constructed very similarly to the
procedure described in Theorem 6.2 of Section II.6. The only difference is
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Fig. 2.8. Regions of step-control stability

that Formula (I1.6.13) (or equivalently (I1.6.11)) is replaced by the additional
simplifying assumptions

6
Zaijcgz% i=3,...,6. (2.35)

This condition, for ¢ =3, divided by (II.6.7) with ¢ =3, simply means that
¢, =2¢4/3. We then suppose that Equation (I1.6.6) is satisfied for j=2,5,6,
i.e. that

s
di:= Y ba;-b(l-c;)=0 j=2,56. (2.36)
i=j+1
Then 6
1 1 1\ /4, Yi=14; 0
¢, C3 €4 d3 = Zg=lcjdj =10
¢ ¢ ¢/ \4/ \gidq) \o

because of (I1.6.7), (2.35) and the quadrature conditions (II.6.9). Therefore,
if ¢; # ¢, and both are # 0, the conditions (II.6.6) are satisfied for j=1,3,
and 4. The Dormand & Prince pairs are then obtained as follows:
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1. choose c;3, ¢4, ¢5 as free parameters;
c, =2¢3/3, cg=1 ((2.36),j=6), ¢;=0;

2. put b, =0, b; =0, and compute b,,b,,b,,bs,b; from the linear system
(I1.6.9); put a;;=b, for i=1,...6.

3. put a3, =c3/(2-¢c,) ((I.6.7), i=3); solve the linear system

(3 3) ()= (3)  @onmeemi-g

4. put ags =b5(1 — c5)/bg ((2.36) for j=5); solve the linear system

b b —bsaz, — ba
( 5 s ) (asz) - ( 3 e ) ((11.6.12,12"));
bses  bgcs %62 —byegag; — bycyay,
5. solve the linear systems ((II.6.7) and (2.35), ¢=>5 and 6)
C3 C4) <a53 — 02/2 — @55Cy )
¢ @54 c5/3 — a5y}
(‘:3 04) (a63 > - <c§/2 — @gaCy — Qg5C5
g 3/ \%s c§/3 — agac} — agsc}
6. finally compute a,,,ay,,a,,,0a5,,a4, from (I.1.9).
The continuous extension is obtained as in (IL.5.1) for the trees 7, t,,,

t3,, 4y of Table I1.2.1, from b,(8) =0 and from Y, b,(0)a;, =0 (see (2.36)
for j=2). This gives the linear system

11 1 1 1 b,(6) 0

0 ¢ ¢ ¢ ¢ by(0) 62/2

0 2 & & ¢ b,(0) | = | 6%/3 (2.37)
0 & & & ¢ bs(9) 64/4

0 a3 ay a5 o 56(9) 0

and implies order 4 because of the simplifying assumptions (I1.6.7) and
(2.35). Last not least, using a similar argument, the embedded 4th-order

A~ A A A A~

solving for (b,,b3,b,,b5,b5)T a linear system with the same matrix as for
(2.37), with right-hand side

(1%, 1/2-8,, 1/3-8;, 1/4-5,,0)7 . (2.38)

Higham and Hall have made an extensive computer search for good
choices of the parameters c3,c, and c; in order to have a reasonable size of
the stability domain, large parts of SC-stability and a small 6th order error
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Table 2.1. Method HIHAS5 of Higham and Hall

0
2 2
9 9
1 1 1
3 12 4
1 1 3
i - 0 et
2 8 8
3 s 27 I8 8
5 500 100 125 25
T I T
20 20 5 5
) 1 o 27 4 125 5
12 32 3 96 48
1 27 4 125 5
N T 0 32 3 9 1 °
D 2 0 21 2 25 1 1
* 15 80 15 48 24 10
. 1 0 81 6 25 1 1
¢ 20 160 5 32 6 10
2,163 54 ba(8 2262 1520 300*
bi(6) =0~ 207 + 0" — 26 4(6) = -226" + -
b2(6) =0 bs(8) = 357 625 03 + ﬁo"
459 2 243 s 135 4

constant. It turned out that the larger one wants the region of SC-stability,
the larger the error constant becomes. A compromise choice between Scylla
and Charybdis, which in addition yields nice rational coefficients, is given
by ¢; =1/3, ¢, =1/2 and c¢; =3/5. This then leads to the method of Table
2.1 which has satisfactory stability properties as can be seen from Fig. 2.8.

A PI Step Size Control

“We saw that it was an I-controler ... and a control-

man knows that PI is always better than I ...”
(K. Gustafsson, June 1990)

In 1986/87 two students of control theory attended a course of numerical
analysis at the University of Lund. The outcome of this contact was the idea
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to resolve the above instability phenomena in stiff computations by using
the concept of “PID control” (Gustafsson, Lundh & Séderlind 1988). The
motivation for PID control, a classic in control theory (Callender, Hartree
& Porter 1936) is as follows:

Suppose we have a continuous-time control problem where 4(t) is the
departure, at time ¢, of a quantity to be controlled from its normal value.
Then one might suppose that

() = C(t) — m(t) (2.39)

where C(t) denotes the effect of the control and the term —m6(t) represents
a self-regulating effect such as “a vessel in a constant temperature bath”.
The most simple assumption for the control would be

—C(t) = n,6(1) (2.40)
which represents, say, a valve opened or closed in dependence of . The
equations (2.39) and (2.40) together lead to

+mb+n8=0 (2.41)
which, for n; >0, m > 0, is always stable. If, however, we assume (more
realistically) that our system has some time-lag, we must replace (2.40) by

—C(t) = n,0(t-T) (2.40”)

and the stability of the process may be destroyed. This is precisely the same
effect as the instability of Equation (15.6) of Section II.15 and is discussed
similarly. In order to preserve stability, one might replace (2.40’) by

—C(t) = n,0(t—T) + n,0(t-T) (2.407)
or even by
—C(t) = n,0(t—T) + ny0(t—T) + ny6(t—T) . (2.40™)

Here, the first term on the right hand side represents the “Integral feedback”
(I), the second term “Proportional feedback” (P) and the last term is the
“Derivative feedback” (D). The P-term especially increases the constant m
in (2.41), thus adds eztra friction to the equation. It is thus natural to expect
that the system becomes more stable. The precise tuning of the parameters
14, Ny, Ny is, however, a long task of analytic study and practical experience.

In order to adapt the continuous-time model (2.40”) to our situation, we

replace
C(t) «— logh, (the “control variable”)

6(t) — log|err,| —log Tol (the “deviation”)
and replace derivatives in ¢ by differences. Then the formula (see (2.28))
Tol \™
hn+l = hn ) (—) ’

lerr,|
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which is
—(logh,,—logh,) = n,(log|err,|—log Tol) ,

corresponds to (2.40°). The PI-control (2.40”) would read
—(logh, ,—logh,) = n,(log |err, |—log Tol)
+ n, ((log |err, | —log Tol) — (log |err, _,|—log Tol)) ,

or when resolved,

Tol \™ [lerr,_1]\™
""+1—"“‘(|errn|) <|m,,|> ' (2.42)

In order to perform a theoretical analysis of this new algorithm we again
choose the problem y'= Ay and have as in (2.28)

yn+l = R(hn)‘)yn (243&)
err, = E(h,\)y, (2.43b)

o (Do) ()
o) e
Tol \® [lerr,_,| A
=h | —— L .
) () s

where a=n, +n,, f=n,. With the notation (2.29) this process becomes

Mnt1 = log [R(eX" A)| + 7,
Xn+1 = Xn — alog |E(6X"A)| —an, + ﬂlog IE(CX"_I)‘)l + ,3777;—1 + Y
(2.44)
with some constant 4. This can be considered as a map (1,,, Xn»Tn_15Xn_1)
— (W41 Xng1s s Xn)- At a fixed point (7, x), which again satisfies (2.31),
the Jacobian is given by

1 u 0 0

5 _ a("ln+1axn+1)77n,xn) _ |« l—av B Po (2 45)
a(nn’ X’n, 77n_1,Xn_1) 1 0 0 0
0 1 0 o0

with v and v as in (2.32). A numerical study of the spectral radius o(C)
with a=1/p (where p is the exponent of h of the leading term in the error
estimator), 3 =0.08 along the boundary of the stability domains of the above
RK-methods shows an impressive improvement (see Fig. 2.9) as compared to
the standard algorithm of Fig. 2.8. Exercise 8 below shows that an increasing
B, for B small, increases the stability of the system (2.43).

The step size behaviour of DOPRI5 with the new strategy (8 = 0.13)
applied to the problem (1.6’) is compared in Fig.2.10 to the undamped step
size control (8 =0). The improvement needs no comment. In order to make
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Fig. 2.9. Regions of step-control stability with stabilization factor 8 = 0.08

the difference clearly visible, we have chosen an extra-large tolerance Tol=
8-10—2. With #=0.13 the numerical solution becomes smooth in the time-
direction. The zig-zag error in the z-direction represents the eigenvector
corresponding to the largest eigenvalue of the Jacobian and its magnitude is
below Tol.

“Man sieht dass selbst der frommste Mann

nicht allen Leuten gefallen kann”.
(W. Busch, Kritik des Herzens 1874)

Study for small h. For the non-stiff case the new step size strategy may be
slightly less efficient. In order to understand this, we assume that |err,| ~
Ch%, so that (2.43c) becomes

Tol \* [ Ch?_,\?
hn+1 = hn (Ch-ﬁ) ( Tol 1) (2.46)

or, by taking logarithms,

Tol
log hnyy + (pa—1)logh, — pBlogh,_, = (a—B)log(—-) -
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without stabilisation (8=0) with stabilisation (3=0.13)
291 steps, 212 accepted, 79 rejected 165 steps, 165 accepted, 0 rejected

Fig. 2.10. Numerical solution of (1.6’) with Tol=8 1072

This is a linear difference equation with characteristic equation
M4 (pa-1)A-pB=0, (2.47)

the roots of which govern the response of the system to variations in C.
Obviously, the choice a =1/p and 8 =0 would be most perfect by making
both roots equal to zero; but this is just the classical step size control. We
therefore have to compromise by choosing o and 3 such that (2.45) remains
stable for large parts of the stability boundary and at the same time keeping
the roots of (2.47) significantly smaller than one. A fairly good choice, found
by Gustafsson (1990) after some numerical computations, is

0.7 0.4
-, B — . (2.48)
p p
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Exercises

1. Prove that Runge-Kutta methods are invariant under linear transfor-
mations y = T'z (i.e., if one applies the method to y' = f(z, y) and to
z! = T-! f(=, Tz) with initial values satisfying y, = T'z,, then we have
Yy, =T4z).

2. Consider the differential equation y' = Ay and a numerical solution given
by y,,,=R(hA)y,. Suppose that R(z) satisfies

|R(z)| <1 for Re z <0.

(i.e., it is A-stable) and show that
a) if y' = Ay is stable, then {y,} is bounded;
b) if y' = Ay is asymptotically stable, then y,, — 0 for n — oo.
Hint. Transform A to Jordan canonical form.

3. (Optimal stability functions for parabolic problems, Guillou & Lago

1961).

a) For given m, find a polynomial R,,(z) =1+ z +... of degree m such
that the stability domain on the negative axis is as large as possible.

Result. The answer is R, (z) =T,,(1 + z/m?), the shifted and scaled
Tchébychef (Chebyshev) polynomial (Tchébychef 1859). In particular

Rl(z) =1+2z2

Ry(z) =142+ -;-zz

4 (2.49)
R,(z) =142+ ——z —{—% 8
1
=1 e S L
R(z)=1+4+2+ z+128 +8192
R,.(z) is stable for —2m2? < z < 0 (see Fig.2.11).
b) Plot the stability domains of the “damped” functions
1 € T, (wg)
R,(2)= me(w0+wlz) y We=ld—, w = T (w,)
(2.50)

for small € > 0, say € = 0.05. Prove that these functions again satisfy
R, (z)=1+2+40(22).

Remark. Runge-Kutta methods with (2.50) as stability function have
been developed by Van der Houwen & Sommeijer (1980). For fur-
ther properties of these methods see Verwer, Hundsdorfer & Sommeijer
(1990).
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Fig. 2.11. Stability domains for Tchébychef-approximations (m=2,3,4)

. (Optimal stability for hyperbolic problems, Van der Houwen (1968),
(1977), p.99): Given m, find a polynomial R,,(z) =14z +... of degree
m + 1 such that |R(iy)| <1 for —8 < y < B with 3 as large as possible.

Result. The solution (Sonneveld & van Leer 1985) is given by

Rn(2) = 5Vna(QO VnlQ) + 5Va(Q)y C= = (251)

where V, ({)=i™T,,(¢/7) are the Tchébychef polynomials with positive
coefficients. R, (iy) is stable for —m <y < m. The first R, are (see
Abramowitz & Stegun, p. 795)

Ri(2)=1+(+¢ (==
Ry(z)=1+2¢+2¢%+2¢
Ry(z) =1+ 3¢ +5¢% +4¢% + 4¢* (2.52)

R,(z) =1+4¢+8¢% +12¢° + 8¢* + 8¢°

Ry(z) = 1+5¢+13¢* +20¢® + 28¢* + 16¢° + 16¢°.
As Tchébychef polynomials, they satisfy the recurrence relation R, ; =
2(R, +R,,_,;(m>2). Their stability domains are given in Fig.2.12.

. Linearize the rope equation (1.24) in the neighbourhood of 6=6=0 and
make a stability analysis. Apply to the linearized equation the coordinate
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Fig. 2.12. Stability domains for hyperbolic approximations

transformation

1 9, 0= -1 1 y

1
11 -1 1
¥y=11 1

which should lead to Lagrange’s equation (6.2) of Chapter I.

. Fig.2.13 shows the numerical results of the classical 4th order Runge-

Kutta method with equidistant steps over 0 < ¢ < 5 for the beam pro-
blem (1.7)-(1.20) with n=8. Explain the result with the help of Fig.2.1.

. For the example of Exercise 6, the explicit Euler method, although con-

verging for h — 0, is never stable (see Fig.2.14). Why?

. Let A be an eigenvalue of the two-dimensional left upper submatrix of

C in (2.45) (matrix C of (2.32)) and denote its analytic continuation as
eigenvalue of C' by A(8). Prove that

a) If ReA#0, then for some y € R

AB) = A (1_§ (1-ReX) + iy + O(8?)) .

This shows that [A(8)| <|A| for small 3>0 if Re A<1.

b) If A and p are two distinct real eigenvalues of the above mentioned
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421 steps 425 steps 430 steps
Fig. 2.13. Equidistant RK4 on the beam problem

h=5/20000 h=5/28000 h=5/36000
Fig. 2.14. Explicit Euler on the beam problem (every 50th step drawn)

submatrix, then

3@ =2 (1-2 (1-3) = +06) -

Hint. Write the characteristic polynomial of C in the form
det(AI—-C) = X(Ap(}) + Ba(})) ,

where p()\) = det(AI —C) is the characteristic polynomial of C, and
differentiate with respect to 3.

39



IV.3. A-Stable Runge-Kutta Methods

I didn’t like all these “strong”, “perfect”, “absolute”, “gen-

eralized”, “super”, “hyper”, “complete” and so on in ma-

thematical definitions, I wanted something neutral; and
having been impressed by David Young’s “property A”, I
chose the term “A-stable”. (G. Dahlquist in 1979)

“There are at least two ways to combat stiffness. One is
to design a better computer, the other, to design a better
algorithm.” (H. Lomax in Aiken 1985)

Methods are called A-stable if there are no stability restrictions for y' = Ay,
ReA <0 and h>0. This concept was introduced by Dahlquist (1963) for
linear multistep methods, but also applied to Runge-Kutta processes. The
first observation was that explicit methods were apparently not A-stable.
Ehle (1968) and Axelsson (1969) then independently investigated the A-
stability of IRK methods and proposed new classes of A-stable methods. A
nice paper of Wright (1970) studied collocation methods.

The Stability Function

We start with the implicit Euler method. This method, y, =y,+hf(z,, y,),
applied to Dahlquist’s equation y' = Ay becomes y, =y, +hAy, which, after
solving for y,, gives

1
y; = R(hA)y, with R(z)= T .

-z
This time, the stability domain is the ezterior of the circle with radius 1 and
centre +1. The stability domain thus covers the entire negative half-plane
and a large part of the positive half-plane as well. The implicit Euler method
is thus very stable.

Proposition 3.1. The s-stage IRK method

gi=yo+h2aijf(m0+cjh, 9;) i=1,...,8 (3.1a)
i=1

Y=y th Z bjf(“’o + tha gj) (3.1b)
j=1

applied to y'= Ay yields y, = R(hA)y, with
R(z) =14 2T(I — z4)7'1. (3.2)
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Here
b7 = (by,...,b,), A=(a;): 1=(1,...,1)T.

1,j=19

Remark. In accordance with Definition 2.1, R(z) is called the stability func-
tion of Method (3.1).

Proof. Equation (3.1a) with f(z, y)= Ay, z=h\ becomes a linear system for
the computation of g,,...,g,. Solving this and inserting into (3.1b) leads to
(3.2). O

Another useful formula for R(z) is the following (Stetter 1973, Scherer
1979):
Proposition 3.2. The stability function of (3.1) satisfies

_det(I —zA 4 z1bT)
B = — 5 T—2a)

Proof. Applying (3.1) to (2.9) yields the linear system

(% 1) (0)-w ()

Cramer’s rule (Cramer 1750) implies that the denominator of R(z) is det (I—
zA), and its numerator

I—24 1 I—2A+4+ 2107 0
det ( 2T 1) = det ( T 1) = det (I — zA + 2167) .
|

The stability functions for the methods of Section II.7 are presented in
Table 3.1. The corresponding stability domains are given in Fig.3.1.

We see that for implicit methods R(z) becomes a rational function with
numerator and denominator of degree < s. We write

P(z) ,
R(z)=——=, degP =k, degQ=37. 34
(2) 20) g gQ =1 (34)
If the method is of order p, then
e’ — R(z) = 22T + O(2P*?) for 2 — 0 (3.5)

(see Theorem 2.2). The constant C is usually # 0. If not, we increase p in
(3.5) until C becomes # 0. We then called R(z) a rational approzimation to
e* of order p and C its error constant.
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Table 3.1. Stability functions for IRK of Section II.7

Method R(z)

. . . 1
a) | implicit Euler (7.3) I

-z
b) | implicit midpoint (7.4) i t z;;
c) | trapezoidal rule (7.5) i f zg
2
d) | Hammer-Hollingsworth (7.6) 1+42/6+27/6
1-2/3
1+ 2(1-2v)+2%(1/2 - 27 +7%)

e) | SDIRK order 3 (Table 7.2)

(1-72)*
2
f) | Hammer-Hollingsw. 4 (Table 7.3) }_—ti%i%ﬂg
1-2z/242°/12
1+2/2+422/10 + 2% /120
1-2/242°/10 — 2° /120
1+3z/4+ 224+ 2%)24
1-2z/4
1+22/3+22/5+ 2% /30 + 2* /360
1—-2/3+2°/30
1+2z/5+ 22/20
1—32/5+32°/20 — 2° /60

2
k) | Lobatto IIIA, order 4 (Table 7.7) | 1F2/2+2 /12

1-2z/2+42°/12

g) | Kuntzm.-Butcher 6 (Table 7.4)

h) | Butcher’s Lobatto 4 (Table 7.6)

i) Butcher’s Lobatto 6 (Table 7.6)

j) | Radau IIA, order 5 (Table 7.7)

A-Stability

We observe that some methods are stable on the entire left half-plane C—.
This is precisely the set of eigenvalues, where the ezact solution of (2.9) is
stable too (Section I.13, Theorem 13.1). A desirable property for a numerical
method is that it preserves this stability property:
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Fig 3.1. Stability domains for IRK

Definition 3.3 (Dahlquist 1963). A method whose stability domain satisfies
SOC  ={z; Rez<0}
is called A-stable.

A Runge-Kutta method with (3.4) as stability function is A-stable if and
only if
|R(iy)| <1 for all real y (3.6)

and
R(z) is analytic for Rez < 0 (3.7)

This follows from the maximum principle applied to C—. By a slight abuse
of language, we also call R(z) A-stable in this case (many authors use the
notation “A-acceptable” in order to distinguish the method from its stability
function, Ehle (1968)).

The condition (3.6) alone means stability on the imaginary axis and may
be called I-stability. It is equivalent to the fact that the polynomial

E(y) = |Q(iy)I* — |P(iy) = Q(iy)Q(—iy) — P(iy)P(~iy) (3.8)

satisfies
E(y)>0 forallyeR. (3.9)
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Proposition 3.4. E(y), defined by (3.8), is an even polynomial of degree
< 2max(deg P, deg Q). If R(z) is an approzimation of order p, then

E(y)=O(y**')  fory—0.

Proof. Taking absolute values in (3.5) gives
_ PG
1Q(2)]

Putting z =iy and using |e?¥|=1 leads to
Q)| - |P(iy)| = O(y**) .

The result now follows from

E(y) = (1Q(y)| + [P(y))(1QGyY) — [P(iy)l) -

|| = O(P*1) .

Examples 3.5. For the implicit midpoint rule, the trapezoidal rule, the
Hammer & Hollingsworth, the Kuntzmann & Butcher and Lobatto IIIA
methods (b, ¢, f, g, k of Table 3.1) we have E(y) =0 since Q(z) = P(—z).
This also follows from Proposition 3.4 because p = 2j. A straightforward
computation shows that (3.7) is satisfied, hence these methods are A-stable.

For methods d, h, i of Table 3.1 we have deg P > deg Q and the leading
coefficient of E is negative. Therefore (3.9) cannot be true for y — oo and
these methods are not A-stable.

For the Radau ITA method of order 5 (case j) we obtain E(y)=y®/3600
and by inspection of the zeros of Q(z) the method is seen to be A-stable.

For the two-stage SDIRK method (case e) E(y) becomes

E(y) = ( 1)2 4y — 1)yt 3.10
W={(r-3) @ -1)y". (3.10)
Thus the method is A-stable for v > %. The 3rd order method is A-stable
for v=(3+1/3)/6, but not for v=(3—+/3)/6.

The following general result explains the I-stability properties of the
foregoing examples.

Proposition 3.6. A rational function (3.4) of order p>25—2 is I-stable if
and only if |R(co0)| < 1.

Proof. |R(o0)| < 1 implies k < j. By Proposition 3.4, E(y) must be of the
form K - y%/. By letting y — oo in (3.6) and (3.9), we see that |R(c0)| < 1
is equivalent to K > 0. |
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L-Stability

The trapezoidal rule for the numerical integration of first-

order ordinary differential equations is shown to possess,

for a certain type of problem, an undesirable property.
(A.R. Gourlay 1970)

“A-stability is not the whole answer to the problem of stiff
equations.” (R. Alexander 1977)

Some of the above methods seem to be optimal in the sense that the stability
region coincides ezactly with the negative half-plane. This property is not
as desirable as it may appear, since for a rational function

lim R(z)= lim R(z)= lim R(z).

z——00 z—00 z=1y, y— 00

The latter must then be 1 in modulus, since |R(iy)| =1 for all real y. This
means that for z close to the real axis with a very large negative real part,
|R(z)] is, although < 1, very close to one. As a consequence, stiff components
in (2.6) are damped out only very slowly. We demonstrate this with the
example

y' = —2000(y — cosz) , y(0)=0, 0<z<1.5 (3.11)

which is the same as (1.1), but with increased stiffness. The numerical
results for the trapezoidal rule are compared to those of implicit Euler in
Fig.3.2. The implicit Euler damps out the transient phase much faster than
the trapezoidal rule. It thus appears to be a desirable property of a method
that |R(z)| be much smaller than 1 for z — —oo.

Definition 3.7 (Ehle 1969). A method is called L-stable if it is A-stable
and if in addition
lim R(z)=0. (3.12)

Z—00

Among the methods of Table 3.1, the implicit Euler, the SDIRK method
(e) with y=(2 + v/2)/2, as well as the Radau ITA formula (j) are L-stable.

Proposition 3.8. If an IRK method with nonsingular A satisfies one of the

following conditions: ‘
a,j=bj j=1,...,s, (3.13)

ay;=b i=1,...,s, (3.14)

then R(c0)=0. This makes A-stable methods L-stable.

Proof. By (3.2)
R(0) =1-bT471 (3.15)
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Fig. 3.2. Trapezoidal rule vs. implicit Euler on (3.11)

and (3.13) means that ATe, =b where ¢,=(0,...,0,1)T. Therefore R(c0)=
1—eT1=1-1=0.
In the case of (3.14) use Ae, =1b,. a

Methods satisfying (3.13) are called stiffly accurate (Prothero & Robin-
son 1974).

A(a)-Stability

The definition of A-stability is on the one hand too weak, as we have just
seen, and on the other hand too strong in the sense that many methods
which are not so bad at all are not A-stable. The following definition is a
little weaker and will be specially useful in the chapter on multistep methods.

Definition 3.9 (Widlund 1967). A method
is said to be A(a)-stable if the sector o
So ={z |arg(-2)|<a, z#0} @
is contained in the stability region.
22 3\7}
For example, the Padé approximation Ry;(z) = (1 —z4 = )

21 31
(see (3.29) below) is A(a)-stable for o < 88.23°.
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Fig.3.3. RADAUS5 on the beam  Fig.3.4. RADAUS on oscillatory beam
(1.10’), every step drawn with large Tol (489 steps, all drawn)

Numerical Results

To demonstrate the effects of good stability properties on the stiff examples
of Section IV.1, we choose the 3-stage Radau IIA formula (Table 5.6 of Sec-
tion IV.5) which, as we have seen, is A-stable, L-stable and of reasonably
high order. It has been coded (Subroutine RADAUS5 of the Appendix) and
the details of this program will be discussed later (Section IV.8). This pro-
gram integrates all the examples of Section IV.1 in a couple of steps and the
plots of Fig.1.3 and Fig. 1.5 show a clear difference.

The beam equation (1.10’) with n =40 is integrated, with Tol =10-3
(absolute) and smooth initial values, in 35 steps (Fig.3.3).

Since the Radaub formula is L-stable, the stability domain also covers
the imaginary axis and large parts of the right half-plane C*. This means
that high oscillations of the true solution may be damped by the numerical
method. This effect, sometimes judged undesirable (B. Lindberg (1974):
“dangerous property ...”), may also be welcome to suppress uninteresting
oscillations. This is demonstrated by applying RADAUS5 with very large tol-
erance (Tol=1) to the beam equation (1.10’) with n=10 and the perturbed
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initial value 6,(0) = 0.4. Here, the high oscillations soon disappear and
the numerical solution becomes perfectly smooth (Fig. 3.4). If, however, the
tolerance requirement is increased, the program is forced to follow all the
oscillations and the picture remains the same as in Fig.1.11.

Collocation Methods

The following result gives the stability function of collocation methods as
introduced in Definition 7.5 of Chapter II:

Theorem 3.9 (K. Wright 1970, S.P. Ngrsett 1975). The stability function
of the collocation method based on the points c,, c,,...,c, is given by

_ M)+ ME-D(1)2 4 ...+ M(1)z* _ P(z)
T MOG0) + MGE-D(0)z + ...+ M(0)z* ~ Q(z)

(3.16)

M(z) = % [lz-c- (3.17)

Remark. The normalization factor 1/s! just makes the constant M()(z)
equal to one.

Proof. (Ngrsett & Wanner 1979, Lie 1990). We assume z,=0, h=1, A=z,
Yo =1 and let u(z) be the collocation polynomial. Since u'(z)—zu(z) is a
polynomial of degree s which vanishes at the collocation points, there is a
constant K such that

u'(z) — zu(z) = KM(z) . (3.18)

Differentiating this identity s times and replacing u'(z) by zu(z)+KM(z)
after each differentiation we obtain

0 =ul*(z) = 2*Hu(z) + K(Z M(j)(:c)z’_j) : (3.19)

i=0

Putting =0 allows us to express K in terms of «(0), and for z=1, Formula
(3.19) yields u(1)=R(z)u(0) with R(z) given by (3.16). a

Proposition 3.10. For any polynomial M(z) of ezact degree s, R(z) given
by (3.16) is an approzimation to e* of order > s. Its error is

o~ R = (= [ ee-omerie) ot (3:20)
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or

¢ — R(z) = (z’+1M1(1) + 22 M (1) + .. .)/Q(z) (3.21)
where

Mj(z)z/: %M(g)dlg, i=1,2,... . (3.22)

Proof. In the above proof we never used the special form of M(x). Therefore,
any polynomial solution u(z) of (3.18) satisfies u(1) = R(z)u(0) with R(z)
given by (3.16). In order to show that its order is > s, we apply the variation-
of-constants formula to (3.18) and obtain

u(z) = e**u(0) + K/oz = M(¢)de . (3.23)

For z=1 and u(0)=1 this formula becomes identical to (3.20) if we insert
K from (3.19) with z=0. O

The converse of this proposition is true.

Proposition 3.11. If R(2)=P(z)/Q(z) (deg P<s, deg Q<s, Q(0)=1) is

an approzimation to e* of order > s, i.e.,
e* — R(z) = O(z**')  forz—0, (3.24)

then there is a unique polynomial M(z) satisfying M(®)(z) =1, such that
R(z) s given by (3.16).

Proof. We write

Q(z2)=14+¢qz+¢2"+...+¢,2°. (3.25)

By (3.24) we have P(z) = e2Q(2) + O(2*t1), and multiplying the Taylor
series of e# with Q(z) we obtain

_ % 4 2({% , 1, 2
P(z)_1+z(ﬁ+a)+z(a+-l—!+b—!)

3.26)
s q_O 9 q_, _ (
+...+z(s!+(8_1)!+...+0!), gQ=1.
P(z) and Q(z) are now seen to verify (3.16) if we take
T x? zs
M(2) =g, + ¢y F Gmagy T+ 7 - (3.27)
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Padé Approximations to the Exponential Function

“Comme cela est souvent le cas en ce qui concerne les
découvertes scientifiques, leur inventeur n’est pas H. Padé.”
(C. Brezinski 1984, (Buvres de H. Padé, p. 5)

Padé approximations (Padé 1892) are rational functions which, for a given
degree of the numerator and the denominator, have highest order of approxi-
mation. Their origin lies in the theory of continued fractions and they played
a fundamental role in Hermite’s (1873) and Lindemann’s (1882) proofs of
the transcendency of e, respectively .

These optimal approximations can be obtained for the exponential func-
tion e* from (3.16) by the following idea (Padé 1899): choose M(z) such
that in (3.16) as many terms as possible involving high powers of 2 become
zero, i.e.,

zk(z —1)7
M@ ="

then M(9(0)=0 for ¢=0,...,k—1 and M()(1)=0 for :=0,...,j—1.

(3.28)

Theorem 3.12. The (k, j)-Padé approzimation to e* is given by

P, .
Ry(2) = Q’Z((i)) (3.29)
h
w:‘f()_u ko k(k-1) z2+ L k(k=1).. 1 2k
AU S S (S Ty TR ¢ 3w sy ) )
) = j iG-1) 2 o G-1)...1 2
W =1- g5t e oz T Y Er L G T
= Pjr(-2),
with error
e* — Ry;(z) = (-1 7kt AT Otk (3.30)

(+F)N7+k+1)!

It is the unique rational approzimation to e* of order j+k, such that the
degrees of numerator and denominator are k and j, respectively.

Proof. Inserting (3.28) into (3.16) and (3.22) gives the formulas for P,;(z),
Qy;(2) and (3.30). The uniqueness is a consequence of Proposition 3.11
and the fact that the (j+ k)-degree polynomial M(z) must have a zero of
multiplicity k at £ =0, and one of multiplicity 7 at z=1. O
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Table 3.2. Padé approximations for e®

2
1 142 1+z2+4 3%
1 1 1

2
1 1432 1+32+3%

1-2 1-3z 1- 3%z
1 1+ 32 1+32+ 55
T -5+ 3% bt b
2
1 1432 1+52+ 5%

l-z+5r-5 | 1-}z+i5-i% | 1-d:+ 55— &%

Table 3.2 shows the first Padé approximations to e?. We observe that the
stability function of many methods of Table 3.1 are Padé approximations.
The diagonal Padé approzimations are those with k=7.

Exercises

1. Let R(z) be the stability function of (3.1) and R*(2) the stability function
of its adjoint method (see Section II.8). Prove that

R*(z) = (R(-2))™" .

2. Consider an IRK with nonsingular A, distinct ¢; and non-zero b;. Show
a) If C(s) and ¢, =1 then (3.13);
b) If D(s) and ¢; =0 then (3.14).
In both cases the stability function satisfies R(c0)=0.
(For the definition of the assumptions C(s) and D(s) see Section IV.5).

3. Show that collocation methods can only be L-stable if M(1)=0, i.e., if
one of the ¢’s, usually c,, equals 1.
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4. (Padé (1899), see also Lagrange (1776)). Show that the continued frac-

tion
e =1+ g
1 z?
L :c+1-34
T2 1 2
1+3.5T
1 z?
1_|_5-74
1 2
7.9 4
1+
14...

leads to the diagonal Padé approximations for e=.

Hint. Compute the first partial fractions. If you don’t succeed in finding
a general proof, read Section IV.5.

5. The trapezoidal rule

o

[y
S [T o )
== O

satisfies a,; =b;, but not R(co)=0. Why doesn’t this contradict Propo-
sition 3.87



IV.4. Order Stars

“Mein hochgeehrter Lehrer, der vor wenigen Jahren ver-
storbene Geheime Hofrath Gauss in Gottingen, pflegte in
vertraulichem Gesprache haufig zu aussern, die Mathe-
matik sei weit mehr eine Wissenschaft fir das Auge als
eine fir das Ohr. Was das Auge mit einem Blicke sogleich
ubersieht ...” (J.F. Encke
1861, published in Kronecker’s Werke, Vol. 5, page 391.)

Order stars, discovered by searching for a better understanding of the stabil-
ity properties of the Padé approximations to e (Wanner, Hairer & Ngrsett
1978), offered nice and unexpected access to many other results: the “second
barrier” of Dahlquist, the Daniel & Moore conjecture, highest possible or-
der with real poles, comparison of stability domains (Jeltsch & Nevanlinna
1981, 1982), order bounds for hyperbolic or parabolic difference schemes
(e.g., Iserles & Strang 1983, Iserles & Williamson 1983, Jeltsch 1988).

Introduction

“When I wrote my book in 1971 I wanted to draw “relative
stability domains”, but curious stars came out from the
plotter. I thought of an error in the program and I threw
them away ...” (C.W. Gear 1979)

We present in Fig. 4.1 the stability domains for the Padé approximations R,,,
R,,, R,;, Rys of Theorem 3.12, which are all 6th order approximations to
exp(z). It can be observed that Ry, and R,, are nicely A-stable. The other
two are not, R, violates (3.6) and R, violates (3.7). After some meditation
on these and similar figures, trying to obtain a better understanding of these
phenomena, one is finally led to

Definition 4.1. The set
A= {zEC;|R(z)|> |ez|} ={z€C; |q(z)|>1} (4.1)
where ¢(z) =R(z)/e?, is called the order star of R.

The order star does not compare |R(2)| to 1, as does the stability domain,
but to the exact solution |e*|=e® and it is hoped that this might give more
information. As we always assume that the coefficients of R(z) are real,
the order star is symmetric with respect to the real axis. Furthermore,
since |e?¥|=1, A is the complementary set of the stability domain S on the
imaginary axis. Therefore we have from (3.6) and (3.7):
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Fig. 4.1. Stability domains for Padé approximations

Lemma 4.2. R(z) is I-stable if and only if
(i) ANiR=0.
Further, R(z) is A-stable if and only if (i) and
(ii) all poles of R(z) (= poles of q(z)) lie in the positive half plane C+.
a

Fig. 4.2 shows the order stars corresponding to the functions of Fig. 4.1.
These order stars show a nice and regular behaviour: there are j black
“fingers” to the right, each containing a pole of R, ;, and k white “fingers”
to the left, each containing a zero. Exactly two boundary curves of A tend
to infinity near to the imaginary axis. These properties are a consequence
of the following three Lemmas.
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Fig.4.2. Order stars for Padé approximations

Lemma 4.3. If R(z) is an approzimation to e* of order p, i.e., if
e* — R(z) = C2P™! 4+ O(2P1?) (4.2)

with C # 0, then, for z — 0, A behaves like a “star” with p+1 sectors
of equal width w/(p + 1), separated by p+1 similar “white” sectors of the
complementary set. The positive real azis is inside a black sector iff C <0
and inside a white sector iff C >0.

Proof. Dividing the error formula (4.2) by e* gives
R(z)

ez

=1-C2PT 4+ O(2P1%) .

Thus the value R(z)/e* surrounds the point 1 as often as zP*! surrounds
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the origin, namely p+1 times. So, R(z)/e* is p+1 times alternatively inside
or outside the unit circle. It lies inside for small positive real z whenever
C>0. a

Lemma 4.4. If z=re® and r — oo, then z € A for 7/2< 60 <3w/2 and
z ¢ A for —m/2<0<m/2. The border OA possesses only two branches which
go to infinity. If

R(z) = Kz + O(z*71) for z— o0, (4.3)
these branches asymptotically approach

z = log|K| + £ log |y| (4.4)

Proof. The first assertion is the well-known fact that the exponential func-
tion, for Rez — oo is much stronger than any polynomial or rational
function. In order to show the uniqueness of the border lines, we consider
for » — oo the two functions

901(0) — Iez|2 — lecosG
¢5(0) = |R(2)|* = R(re”)R(re™") .

Differentiation gives

Ay e (10 22
— = —2rsiné —= =2rRe (1"« ———= )] . 4.5
o S R(re®) (*5)

Since |R'/R| — 0 for r — oo, we have
d d
Elog ,(0) < d_OIOg ©,(0) for €e,m—¢].

Hence in this interval there can only be one value of 8 with ¢, (6) = ¢,(8).
Formula (4.4) is obtained from (4.3) by

K +9) et log|K| 4+ 2 log(a? + %) v o

and by neglecting z2, which is justified because z/y — 0 whenever z+1y
tends to infinity on the border of A. a

It is clear from the maximum principle that each bounded “finger” of 4
in Fig. 4.2 must contain a pole of ¢(z). A still stronger result is the following:

Lemma 4.5. Each bounded subset F C A with common boundary OF C 8A
collecting m sectors at the origin must contain at least m poles of q(z) (each
counted according to its multiplicity). Analogously, each bounded “white”
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subset F C C\ A with m sectors at the origin must contain at least m zeros

of g(z)-

Proof. Suppose first that OF is represented by a parametrized positively
oriented loop ¢(t), ¢y, <t < t,. Let @=(c|(t),ch(t)) be the tangent vector
and ©=(ch(t), —c}(t)) an exterior normal vector. We write

g(z) =r(z,y) - ¥V, z=z+iy

so that log ¢(z) =logr(z, y)+ip(z, y). Since the modulus increases inside
F, we have

a(lggr) <0. (4.6)
Now the Cauchy-Riemann differential equations for log ¢ are
d(logr) 0Oy I(logr) dp
5 ' ey " o) 7
so that (4.6) becomes
% <0. (4.8)

This means that the argument of ¢ decreases along c. If the contour curve
¢(t) returns m times to the origin, where the argument is a multiple of 2,
the vector ¢(z) must perform at least m complete revolutions in the negative
sense (Fig. 4.3). Thus the argument principle (an idea which we have already
encountered in Section I.13; see Volume I, pages 82 and 330), ensures the
presence of at least m poles inside F' (there are no zeros, because these are
not in A).

If the boundary curve is represented by several curves, all rotation num-
bers are added up. For “white” subsets the proof is similar, just that
9(logr)/87 > 0 and the argument rotates in the other sense. |

Fig. 4.3 gives an illustration of two order stars for the SDIRK methods
of order 3 (Table 3.1, case €). Here, g(z) possesses a double pole at z=1/7.
However, for v =(3—+/3)/6, the bounded component F of A collects only
one sector at the origin. Since the vector ¢(z) performs two rotations, there
is in addition to the origin a second point on OF for which arg(q) =0, i.e.,
arg(R(z)) = arg(e?). Thus, because |R(z)| = |e?| on A, we have R(z)=e=.
These points are called ezponential fitting points. Another version of Lemma
4.5 is thus (Iserles 1981):

Lemma 4.5°. Fach bounded subset F C A with 8F C 0A contains ezactly
as many poles as there are exponential fitting points on its boundary. m|
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a)y=(3-v3)/6 b)y=(3+3)/6
Fig.4.3. SDIRK methods, order 3; arrows indicate direction of q(2)

Order and Stability for Rational Approximations

In the sequel we suppose R(z) to be an arbitrary rational approximation of
order p with k zeros and j poles.

Theorem 4.6. If R is A-stable, then p < 2k, +2, where k, is the number
of different zeros of R(z) in C—.

Proof. At least [(p+1)/2] sectors of A start in C~ (Lemma 4.3). By A-
stability these have to be infinite and enclose at least [(p+1)/2]—1 bounded
white fingers, each containing at least one zero by Lemma 4.5. Therefore

[(p+1)/2]-1 <k,. o
Theorem 4.7. If R is I-stable, then p < 2j,, where Jy 18 the number of
poles of R(z) in C+.

Proof. At least [(p+1)/2] sectors of A start in C+. They cannot cross iR
and must therefore be bounded (Lemma 4.4). Again by Lemma 4.5 we have

[(p+1)/2] < 4. o

Theorem 4.8. Suppose that p > 2j—1 and |R(c0)| < 1. Then R is A-stable.

Proof. By Proposition 3.6 the function R(z) is I-stable. Applying Theorem
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4.7 we get j; > j so that I-stability implies A-stability. O

Theorem 4.9 (Crouzeix & Ruamps 1977). Suppose p > 252, |R(c0)| <1,
and the coefficients of the denominator Q(z) have alternating signs. Then
R is A-stable.

Proof. A similar argument as in the foregoing proof allows at most one
pole in C—. It would then be real and its existence would contradict the
hypothesis on signs of Q(z). O

Theorem 4.10. Suppose p > 25—3, R is I-stable, and the coefficients of
Q(z) have alternating signs. Then R is A-stable.

Proof. For p > 2j—3 the argument of the foregoing proof is still valid.
However Proposition 3.6 is no longer applicable and we need the hypothesis
on I-stability. O

We see from Fig. 4.2 that all poles and all zeros for Padé approximations
must be simple. Whenever two poles coalesce, the corresponding sectors
create a bounded white finger between them with the need for an additional
zero. Thus the presence of multiple zeros or poles will require an order
reduction.

Theorem 4.11. Let R possess k, distinct zeros and j, distinct poles. Then
P < kytjo-

Proof. We identify the complex plane with the Gaussian sphere and the
order star with a CW-complex decomposition of this sphere (Fig.4.4). Let
s, be the number of 2-cells f;, s, the number of 1-cells [; (paths), and s,
the number of vertices. Then Euler’s polyhedral formula (”Si enim numerus
angulorum solidorum fuerit = S, numerus acierum= A et numerus hedrarum
= H, semper habetur S+H = A+2, hincque vel S= A+2—H vel H = A+2—S vel
A=S+H—2, quae relationis simplicitas ob demonstrationis difficultatem...

”, Euler (1752)), implies
Sg— 8 +8,=2. (4.9)

Modern versions are in any book on algebraic topology, for particularly easy
reading see e.g. Massey (1980, p. 87, Corollary 4.4). Formula (4.9) is only
true if all f; are homeomorphic to disks. Otherwise, they have to be cut into
disks by additional paths (dotted in Fig.4.4). So, in general, we have

Sg—8;+8,>2. (4.97)
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Since each vertex is reached by at least 2 paths, the origin by hypothesis by
2p+2, and since every path has two extremities, we have

8, —8,2>p. (4.10)

By Lemma 4.5 each 2-cell, with the exception of two (the two “infinite”
ones) must contain at least a pole or a zero, so we have

8y <ky+jo+2 (4.11)

These three inequalities give p < ky+ j,. |

Fig.4.4. Order star on Gaussian sphere

Stability of Padé Approximations

“... evidence is given to suggest that these are the only

L-acceptable Padé approximations to the exponential.”
(B.L. Ehle 1973)

Theorem 4.12. A Padé approzimation R ; given in (3.30) is A-stable if
and only if k < j < k+2. All zeros and all poles are simple.

Proof. The “if’-part is a consequence of Theorem 4.9. The “only if’-part
follows from Theorem 4.6 since p=k+j. For the same reason Theorem 4.11
shows that all poles and zeros are simple. O
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Comparing Stability Domains

“Da ist der allerarmste Mann
dem ander’n viel zu reich,
das Schicksal setzt den Hobel an
und hobelt beide gleich.”
(F. Raimund, das Hobellied)

Jeltsch & Nevanlinna (1978) proved the following “disk theorem”: If S is
the stability domain of an s-stage ezplicit RK-method and D the disk with
centre —s and radius s (i.e the stability domain of s explicit Euler steps with
step size h/s), then

S2D (4.12)

unless S = D and the method in question is Euler’s method. This curious
result expresses the fact that Euler’s method is “the most stable” of all
methods with equal numerical work. After the discovery of order stars it
became clear that the result is much more general and that any method has
the same property (Jeltsch & Nevanlinna 1981). We shall also see in Chapter
V that this result generalizes to many multistep methods. The main tool of
this theory is

Definition 4.13. Let R,(z) and R,(z) be rational approximations to e,
then their relative order star is defined as

B= {z e c; | Fal2)

Ry(z)

> 1} . (4.13)

Here, the stability function for method 1 is compared to the stability
function for method 2 instead of to the exact solution e*. The following

order relations
e’ — Ry(2) = C; 2"t 4.

e* — Ry(z) = Cp 2P 4 ...

lead, by subtraction, to

Rl(z) _ p+1
Rz(z)_1_0z+ o (4.14)

where p=min(p,, p,) and

C,—-C, ifp =p,
C=<C if p, > p, (4.15)
-C, if p, < p,.

Remark 4.14. The statement of Lemma 4.3 remains unchanged for B,
whenever C #0. Since the fraction R,(z)/R,(z) has no essential singularity
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at infinity, there is no analogue of Lemma 4.4. Further, the boundedness
assumption on F' can be omitted in Lemmas 4.5 and 4.5’ (if oo is a pole of
R,(z)/R,(2), it has to be counted also). With the correspondences displayed
in Table 4.1, the statements of Theorems 4.6 and 4.7 remain true for B.

Table 4.1. Correspondences between A and B

order star A (4.1) «— relative order star B (4.13)
imaginary axis +— 95,
C~™ «— interior of 5
Ct «—— exterior of S,
method A-stable «— S; D S,

p +— min(ps, p2)

Theorem 4.15. If R (z) and R,(z) are polynomial stability functions of
degree s and orders > 1, then the corresponding stability domains satisfy

$,2S, and S, ¢85,. (4.16)

Proof. Suppose that S; D S, (i.e., by Table 4.1, suppose “A-stability”).
Then the analogue of Theorem 4.7 requires that R,(z)/R,(z) have a pole
outside S,. Since R,(z) and R,(z) have the same degree, R,(z)/R,(z) has
no pole at infinity. Therefore the only poles of R,(2)/R,(z) are the zeros of
R, and these are inside S,. This is a contradiction and proves the first part
of (4.16). The second part is obtained by exchanging R, and R,. a

In order to compare numerical methods with different numerical work,
we define:

Definition 4.16. Let R(z) be the stability function of degree s of an explicit
RK method (usually with s stages), then
1
geeal — {z; |R(s2)| < 1} = {z;s 1z € .S'} = ;S (4.17)
will be called the scaled stability domain of the method.

Theorem 4.17 (Jeltsch & Nevanlinna 1981). If R,(z) and R,(z) are the

stability functions of degrees s, resp. s, of two ezplicit RK-methods of orders
> 1, then
Si’cal 25 S;cal and Sisca.l ¢ S;cal , (418)

t.e., a scaled stability domain can never completely contain another.
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The interesting interpretation of this result is that for any two methods,
there exists a differential equation y' = Ay such that one of them performs
better than the other. No “miracle” method is possible.

Proof. We compare s, steps of method 1 with step size h/s, to s, steps
of method 2 with step size h/s;. Both procedures then have comparable
numerical work for the same advance in step size. Applied to y' = Ay, this

compares
z S2 z 81
B e (mG)
( 1 ( 5 ) o 2 5 )
of the same degree. Theorem 4.15 now gives

scal scal
8,5, 08,5, or S§1°4 D S5 .

Fig.4.5. Scaled stability domains for Taylor methods (2.12)

As an illustration to this theorem, we present in Fig.4.5 the scaled sta-
bility domains for the Taylor methods of orders 1, 2, 3, 4 (compare with
Fig.2.1). It can clearly be observed that none of them contains another.
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Rational Approximations with Real Poles

“The surprising result is that the maximum reachable order
is m+1.” (Ngrsett & Wolfbrandt 1977)

The stability functions of diagonally implicit RK methods (DIRK methods),
i.e., methods with a;; =0 for <, are
P(z)

(1 =m2)(1=%2)...(1-17,2)
where 7, =a;; (i=1,...,3) and degree P < s. This follows at once from
Formula (3.3) of Proposition 3.2, since the determinant of a triangular ma-
trix is the product of its diagonal elements. Thus R(z) possesses real poles
1/7y» 1/935--+51/7,. Such approximations to e* will also appear in the next
sections as stability functions of Rosenbrock methods and so-called singly-
implicit RK methods. They thus merit a more thorough study. Research
on these real-pole approximations was started by Ngrsett (1974) and Wolf-
brandt (1977). Many results are collected in their joint paper Ngrsett &
Wolfbrandt (1977).

If the method is of order at least s, P(z) is given by (3.26). We shall
here, and in the sequel, very often write the formulas for s =3 without always
mentioning how trivial their extension to arbitrary s is. Hence for s=3

SO Sl 2 SO Sl 52 3 SO Sl 52 53
o G G ) G w T )
N 1— 285, + 225, — 235,

R(z) = (4.19)

(4.20)
where

So=1 Si=mtrtr S =mNtnvtrYn S =117
The error constant is for p=s

So 51 5 S
C=-Z-!-—-§+E——ﬂ. (4.21)

Theorem 4.18. Let R(z) be an approzimation to e* of order p with real
poles only and let k be the degree of its numerator. Then

p<k+1.

Proof. If a sector of the order star A ends up with a pole on the real axis,
then by symmetry the complex conjugate sector must join the first one. All
white sectors enclosed by these two must therefore be finite (Fig.4.6.). The
same is true for sectors joining the infinite part of A. There is thus on each
side of the real axis at most one white sector which can be infinite. Thus the
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remaining p—1 white sectors require together at least p—1 zeros by Lemma
4.5,1i.e., we have p—1 < k. |

Fig.4.6. An approximation with real poles, 3 zeros, order 4

Remark 4.19. If p >k, then at least one white sector
must be unbounded. This is then either the first sector ! &
on the positive real axis, or, by symmetry, there is a pair |
of two sectors. By the proof of Theorem 4.18 the pair is
unique and we shall call it Cary Grant’s part.

Remark 4.20. If p=k+1, the optimal case, there are k+2 white sectors,
two of them are infinite. Hence each of the remaining k sectors must then
contain exactly one root of P(z). As a consequence, C' <0 iff P(z) has no
positive real root between the origin and the first pole.

The Real-Pole Sandwich

We now analyze the approximations (4.19) with order p > s in more detail
(Ngrsett & Wanner 1979). We are interested in two sets:

Definition 4.21. Let L be the set of (y,,...,7,) for which degP(z) in
(4.20) is < s—1, i.e., R(00)=0 for v; #0 (i=1,...,s).

Definition 4.22. Denote by H the set of (v,,...,7,) for which the error
constant (4.21) is zero, i.e., for which the approximation has highest possible
order p=s+1.



66 IV. Stiff Problems — One Step Methods

A consequence of Theorem 4.18 is:
LNH=0. (4.22)

Written for the case s =3 (generalizations to arbitrary s are straightforward)
and using (4.20) and (4.21) the sets L and H become

I m+tr+1  mrtnys+r2y 772718
{(71a727 73) 3| 21 + 1 - o! —0}
1 m47v2+7  n72+7n13+7213 117278
{(‘717 72, 73)5 4| 31 + 21 - 11 =0} .
(4.23)

Theorem 4.23 (Ngrsett & Wanner 1979). The surfaces H and L are each
composed of s disjoint connected sheets

L=L,UL,u...UL,, H=H, UH,U...UH, . (4.24)

If a direction 6 = (6;,...,8,) s chosen with all §;#0 and if k of them are
positive, then the ray

X= {(71,.--,7,); =16, 0<t< oo} (4.25)

intersects the sheets H,, L,, Hy, L,,...,H, L, in this order and no others.

Proof. When the §; have been chosen, inserting -y, =t§; into (4.23) gives
L 8 +86+8 | 266, 48,8 +8,8 36,84

§T_t 2! +3 1! —t=r =0 (4.26)
l_tél +96, + 45 +t25152+51‘53 + 6,64 __t3616253 =0
4! 3! 2! 1

for L and H, respectively. These are third (in general sth) degree polyno-
mials whose positive roots we have to study. We vary the §’s, and hence
the ray X, starting with all §’s negative. The polynomials (4.26) then have
all coeflicients positive and obviously no positive real roots. When now one
delta, say §,, changes sign, the leading coefficients of (4.26) become zero and
one root becomes infinite for each equation and satisfies asymptotically

TR ~ 3 2
8,6, _t666 P '
T2l T 28,

for L and H, respectively. Thus H comes below and L comes above. Because
of LN H =0 (4.22) these two roots can never cross and must therefore remain
in this configuration (see Fig.4.7).

When then successively 6, and §; change sign, the same scene repeats
itself again and again, always two sheets of H and L descend from above in
that order and are layed on the lower sheets like slices of bread and ham of
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\

all6,<0 63=0 62=0 61=0 3.116,'>0

Fig.4.7. Formation of the sandwich

a giant sandwich. Because LN H =0, these sheets can never cross, two roots
for L or H can never come together and become complex. So all roots must
remain real and the theorem must be true.

A three-dimensional view of these surfaces is given in Fig. 4.8. O

The following theorem describes the form of the corresponding order star
in all these sheets:

Theorem 4.24. Let G,...,G, be the open connected components of R*\ H
such that L; lies in G;, and let G, be the component containing the origin.
Then the order star of R(z) given by (4.20) possesses ezactly k bounded
fingers if and only if

(Y15+++97,) €EGLUH, .

Proof. We prove this by a continuity argument letting the point (v,,...,7,)
travel through the sandwich. Since Cary Grant’s part is always present
(Remark 4.19), the number of bounded sectors can change only where the
error constant C' (4.21) changes sign, i.e., on the surfaces H,, H,,..., H,.
Fig. 4.9 gives some snap-shots from this voyage for s=3 and v, =7, =7, =".

In this case the equations (4.23) become

1oy, m

— = _L -
31 2! 1! 0!
(4.28)
1 3 342 $
1 % 32 2 _,
4! 3! 2! 1!
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Fig.4.8. The sandwich for s=3... and for s=5

whose roots

A, = 0.158084, ), = 0.435867, \; = 2.40515

(4.29)
x; = 0.128886, x, = 0.302535, x; = 1.06858

do interlace nicely as required by Theorem 4.23. The affirmation of Theorem
4.24 for s=3 can be clearly observed in Fig.4.9.

For the proof of the general statement we also put v, =...=+, =% and
investigate the two extreme cases:

1. y=0: Here R(z) is the Taylor polynomial 1+2+...4+2°/s! whose order
star has no bounded sector at all.

2. 7 — oo: The numerator of R(z) in (4.20) becomes for s =3

_ 1 3y (1 3y 342 s/l 3y 342 43
P<Z)—1+z(ﬁ‘a)+z (5?‘?*‘6!‘)“ (a*a*m“o—!)-
(4.30)
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Fig.4.9. Order stars for v travelling through the sandwich
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If we let ¥ — o0, this becomes with zy=w
1 . 1 . 1
1 —w(3+0(;)) +w (3+0(;)) —w (1+o(;)) :

Therefore all roots w; — 1, hence z; — 1/ (see the last picture of Fig. 4.9).
Therefore no zero of R(z) can remain left of Cary Grant’s part and we have
s bounded fingers.

Since between these extreme cases, there are at most s crossings of the
surface H, Theorem 4.24 must be true. O

Theorem 4.25. The function R(z) defined by (4.20) can be I-stable only if
(Y1s++27s) € HQUG U H if s=2¢-1

and
(Y1s+-1Ys) EGEUH UG, if s=2q.

Proof. The reason for this result is similar to Theorem 4.12. For I-stability
the imaginary axis cannot intersect the order star and must therefore reach
the origin through Cary Grant’s part. Thus I-stability (and hence A-
stability) is only possible (roughly) in the middle of the sandwich: Since
at most [(p+2)/2] and at least [(p+1)/2] of the p+1 sectors of A start in
C+, the number k of bounded fingers satisfies

e e e

Inserting p=s+1 on H and p=s on G we get the above results. a

Multiple Real-Pole Approximations

“... the next main result is obtained, saying that the least
value of C is obtained when all the zeros of the denominator
are equal ...” (Ngrsett & Wolfbrandt 1977)

Approximations for which all poles are equal, i.e., for which v, =v,=...=
v, = are called “multiple” real-pole approximations (Ngrsett 1974). We
again consider only approximations for which the order is > s. These satisfy,
for s=3,

R(z) = (lﬁ—(:z)i (4.31)

where P(z) is given by (4.30), and their error constant is

1 3y 3% 9
C=Z—!—i+—2—!—ﬁ. (4.32)
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Approximations with multiple poles have many computational advantages
(the linear systems to be solved in Rosenbrock or DIRK methods have all the
same matrix (see Sections IV.6 and IV.7)). We are now pleased to see that
they also have the smallest error constants (Ngrsett & Wolfbrandt 1977):

Theorem 4.26. On each of the surfaces L, and H; (i=1,...,s) the error
constant C of (4.20) is minimized (in absolute value) when v, =v,=...=%

.
s

Proof. Our proof uses relative order stars (similar to (4.13))

R,cu(2)

B={z€ Gl >1} z) = —new®) 4.33

€ C;la(2)| (€2 R.a(2) (4.33)

where R_;;(2) is a real-pole approximation of order p=s+1 corresponding to

Y13+++»7, and R, (z) is obtained by an infinitely small change of the 7’s.

We assume that not all ; are identical and shall show that then the error

constant can be decreased. After a permutation of the indices, we assume

7, = max(y;) (by Theorem 4.23 7, >0, so that 1/v, represents the pole on

the positive real axis which is closest to the origin) and v, <+v,;. We don’t

allow arbitrary changes of the 4’s but we decrease v, , keep v,,...,7v,_; fixed

and determine v, by the defining equations for H (see (4.23)). For example,
for s=3 we have

1 mtm 4+ N2
4! 3! 2!
= . 4.34
3 _1_ _ " +72 + 172 ( )
3! 2! 1!

Since the poles and zeros of R ;;(z) depend continuously on the v;, poles and
zeros of ¢(z) appear always in pairs (we call them dipoles). By the maximum
principle or by Remark 4.14, each boundary curve of B leaving the origin
must lead to at least one dipole before it rejoins the origin. Since there are
s+2=p+1 dipoles of ¢(z) (identical poles for R ,(2) and R,,,(z) don’t
give rise to a dipole of ¢(z)) and p+1 pairs of boundary curves of B leaving
the origin (Remark 4.14), each such boundary curve passes through exactly
one dipole before rejoining the origin. As a consequence no boundary curve
of B can cross the real axis except at dipoles.

If the error constant of R, ;;(2) satisfies C,;; <0, then by Remark 4.20
R,4(2) has no zero between 1/v, and the origin. Therefore also g(z) pos-
sesses no dipole in this region. Since the pole of R, (z) is slightly larger
than 1/, (that of R ;4(2)), the real axis between 1/, and the origin must
belong to the complement of B. Thus we have C,,,—C,,; > 0 by (4.14)
and (4.15).

If C,;; > 0 there is one additional dipole of ¢(z) between 1/v; and the
origin (see Remark 4.20). As above we conclude this time that C,,,,—C,;; <
0.
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In both cases |C,,.,| < |C,4l, since by continuity C,,.,, is near to C,,,.
As a consequence no (7,,...,7,) € H with at least two different 7, can
minimize the error constant. As it becomes large in modulus when at least
one v; tends to oo (this follows from Theorem 4.18 and from the fact that
in this case R(z) tends to an approximation with s replaced by s—1) the
minimal value of C must be attained when all poles are identical.

The proof for L is the same, there are only s—1 zeros of R(z) and the
order is p=s. [}

An illustration of the order star B compared to A is given in Fig. 4.10.
Another advantage of multiple real-pole approximations is exhibited by the
following theorem:

Theorem 4.27 (Keeling 1989). On each surface H; N {(vy,---,7,); ;> 0}
the value | R(c0) | of (4.20) is minimized when v, ="7,=...=7,.
Proof. The beginning of the proof is identical to that of Theorem 4.26.
Besides 1/, and 1/, there is at best an even number of dipoles on the
positive real axis to the right of 1/v,. As in the proof above we conclude
that a right-neighbourhood of 1/, belongs to B so that co must lie in its
complement (cf. Fig.4.10). This implies

I Rnew(oo) |<| Rold(oo) I

As a consequence no element of H N {(7;,...,7,); 7; >0} with at least two
7; different can minimize | R(oo) |. Also | R(oo) | increases if v, — oo. The
statement now follows from the fact that | R(co) | tends to infinity when at
least one 7; approaches zero. |

Exercises

1. (Ehle 1968). Compute the polynomial E(y) for the third and fourth
Padé subdiagonal R, ;,; and R, ,., (which, by Proposition 3.4 consists
of two terms only). Show that these approximations violate (3.6) and
cannot be A-stable.

2. Prove the general formula

_ (kN2 J (-1)i~" (' ,
E(y) = (m) 2[(5“)/2] W(g(]_q+l)(k+q)(r_k_q)>y2

for the Padé approximations Ry; (j > k).
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left pictures: Coiq < 0 right pictures: Coiq > 0
Rold Y1 = 1.2 Y1 = 0.35

2 =1.1 ~v2 = 0.33

3 = 0.9455446 ~3 = 0.2406340
Rnew Y1 = 1.17 Y1 = 0.345

v2 =1.1 2 = 0.33

v3 = 0.9628661 vs = 0.2440772

Fig.4.10. Order star A compared to B

3. (For the fans of mathematical precision). Derive the following formulas
for the roots A; and x; of (4.28)

1 1 137 0+ 27
X1=§+—3cos 3 )\1=1+\/§cos( 3 ),
1 1 257 0+4n
X2_§+———3cos——18, /\2:1+\/§cos< 3 ),
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1 1 ™ 0
X3=§+7§cosﬁ, /\3=1+\/§cos(§> ,

where § = arctan(v/2/4).
Hint. Use the Cardano-Viéte formula (e.g. Abramowitz & Stegun p.17).

. Prove that all zeros of

i ma—l :ca—2
Y S. —
s! 1(3-—1)!+ 2(s —2)! 5,
are real and distinct whenever all zeros of
Q(z) =1—128, + 225, —...£2°S,, S,#0

are real. Also, both polynomials have the same number of positive (and
negative) zeros (Ngrsett & Wanner 1979, Bales, Karakashian & Serbin
1988).

Hint. Apply Theorem 4.23. This furnishes a geometric proof of a classi-
cal result (see e.g., Pélya & Szego (1925), Volume II, Part V, No.65) and
allows us to interpret R(z) as the stability function of a (real) collocation
method.

Prove that (v,...,7) € L (Definition 4.21) if and only if L,(1/y) =0,
where L (z) denotes the Laguerre polynomial of degree s (see Abramo-
witz & Stegun (1964), Formula 22.3.9 or Formula (6.11) below).
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“Although most of these methods appear at the
moment to be largely of theoretical interest ...”
(B.L. Ehle 1968)

In Section II.7 the first implicit Runge-Kutta methods were introduced. As
we saw in IV.3, not all of them are suitable for the solution of stiff differential
equations. This section is devoted to the collection of several classes of fully
implicit RK-methods possessing good stability properties.

The construction of such methods relies heavily on the simplifying as-
sumptions

s
- 1
B(p): Y belt== g=1,...,p;
i=1 q
8 c?
0(77) : Za‘ijcg—l = ;z' 1=1,...,8, ¢=1,...,m;
j=1

s
_ b; .
D(¢): Zbicg 1ai]-=?](1—c‘]1-) j=1,...,8, q=1,...,C.
=1

Condition B(p) simply means that the quadrature formula (b;, ¢;) is of order
p. The importance of the other two conditions is seen from the following
fundamental theorem, which was derived in Section II.7.

Theorem 5.1 (Butcher 1964). If the coefficients b;, c;, a;; of an RK-method
satisfy B(p), C(n), D(¢) withp <n+({+1 and p < 2n+2, then the method
8 of order p. O

Gauss Methods

These processes, named “Kuntzmann-Butcher methods” in Section II.7,
are collocation methods based on the Gaussian quadrature formulas, i.e.,
¢yy--.,¢, are the zeros of the shifted Legendre polynomial of degree s,

ds
Tt (z*(z-1)°) .
For the sake of completeness we present the first of these in Tables 5.1
and 5.2.




76 IV. Stiff Problems — One Step Methods

Table 5.1. Gauss methods of order 2 and 4

1 V3 1 1 3
2 6 4 4 6

1 1 1 3 1 3 1
1]t 1,.v3 |1, v3 1
2 2 2" 6 4" 6 4
1 1
1 - bl
2 2

Table 5.2. Gauss method of order 6

1 V15 5 2 V15 5 /15
2710 36 9 15 36 30
1 5 /15 2 5 /15
2 TS 9 36 22
1 15 5 V15 2 /15
2770 | 3%t30 9T 36
5 4 5
18 9 18

Theorem 5.2 (Butcher 1964, Ehle 1968). The s-stage Gauss method is
of order 2s. Its stability function is the (s,s)-Padé approzimation and the
method is A-stable.

Proof. The order result has already been proved in Section II.7. Since the
degrees of the numerator and the denominator are not larger than s for any
s-stage Runge-Kutta method, the stability function of this 2s-order method
must be the (s,s)-Padé approximation by Theorem 3.12. The A-stability
thus follows from Theorem 4.12. O

Radau IA and Radau ITA Methods

Butcher (1964) introduced Runge-Kutta methods based on the Radau and
Lobatto quadrature formulas. He called them processes of type I, II or III
according to whether ¢,,...,c, are the zeros of
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ds—1 . o
I: e (z (z—-1) 1), (Radau left) (5.1)
ds—1 o . .
II: W(z Yz —1) ), (Radau right) (5.2)
ds—2 — o
I: — (+**(e = 1)*). (Lobatto) (5.3)

The weights b,,...,b, are chosen such that the quadrature formula satis-
fies B(s), which implies B(2s—1) in the Radau case and B(2s—2) in the
Lobatto case (see Lemma 5.15 below). Unfortunately, none of these meth-
ods of Butcher turned out to be A-stable (see e.g. Table 3.1). Ehle (1969)
took up the ideas of Butcher and constructed methods of type I, II and III
with excellent stability properties. Independently, Axelsson (1969) found
the Radau ITA methods together with an elegant proof of their A-stability.

The s-stage Radau IA method is a method of type I where the coefficients
a;; (i,j=1,...,s) are defined by condition D(s). This is uniquely possible
since the c; are distinct and the b; not zero. Tables 5.3 and 5.4 present the
first of these methods.

Table 5.3. Radau IA methods of orders 1 and 3

o | L 1

4 4

0o | 1 21 5
3 4 12

1 3

1 ud bl

4 4

Table 5.4. Radau IA method of order 5

0 1 -1-v6 -14+6
9 18 18
6—6 1 88+7v6 88-—43/6
10 9 360 360
6+v6 1 88+43v/6 88—T7V6
10 9 360 360
1 16 + /6 16 — V6
9 36 36

Ehle’s type II processes are obtained by imposing condition C(s). By
Theorem II.7.7 this results in the collocation methods based on the zeros of
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Table 5.5. Radau IIA methods of orders 1 and 3

1 5 1
3 12 12
3 1
1 1 1 - -
4 4
1 3 L
4 4

Table 5.8. Radau IIA method of order 5

1-6 88 — 76 296 — 169v6 —2+3v6
10 360 1800 225
4+6 296 + 169/6 88 + 7/6 -2-36
10 1800 360 225
1 16 — V6 16 + /6 1

36 36 9
16 — V6 16 + V6 1
36 36 9

(5.2). They are called Radau IIA methods. Examples are given in Tables
5.5 and 5.6. For s = 1we obtain the implicit Euler method.

Theorem 5.3. The s-stage Radau IA method and the s-stage Radau IIA
method are of order 2s—1. Their stability function is the (s—1,s) subdiagonal
Padé approzimation. Both methods are A-stable.

Proof. The stated orders follow from Theorem 5.1 and Lemma 5.4 below.
Since ¢, =0 for the Radau IA method, D(s) with j=1 and B(2s—1) imply
(3.14). Similarly, for the Radau ITA method, ¢, =1 and C(s) imply (3.13).
Therefore, in both cases, the numerator of the stability function is of degree
< s—1 by Proposition 3.8. The statement now follows from Theorem 3.12
and Theorem 4.12. |

Lemma 5.4. Let an s-stage Runge-Kutta method have distinct c,,...,c
and non-zero weights b,,...,b,. Then we have

a) C(s) and B(s+v) imply D(v);
b) D(s) and B(s+v) imply C(v).

8

Proof. Put

s ~ b.
49 =Y b ey - - (54
i=1
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Conditions C(s) and B(s+v) imply

8
ngq)cf_l =0 fork=1,...,sandg=1,...,v
j=1

The vector (d(lq), ceny d(,")) is thus the solution of a homogeneous linear system
with a non singular matrix of Vandermonde type and must vanish. This
proves D(v).

For part b) one defines

(q) Ea”] _ G

and applies a similar argument to

Zb,ck —1{0) — k=1,...,8, ¢q=1,...,v.

Q

|8

1 7

Lobatto IITA, ITIB and ITIC Methods

For all type III processes the c; are the zeros of the polynomial (5.3) and
the weights b, are such that B(2s—2) is satisfied.

The coefficients a,; are defined by C(s) for the Lobatto IIIA methods. It
is therefore a collocation method. For the Lobatto IIIB methods we impose
D(s) and, finally, for the Lobatto IIIC methods we put

a;=b for i=1,...,s (5.5)

and determine the remaining a,; by C(s—1). Ehle (1969) introduced the
first two classes, and presented the IIIC methods for s < 3. The general
definition of the IIIC methods is due to Chipman (1971); see also Axelsson
(1972). Examples are given in Tables 5.7-5.12.

Theorem 5.5. The s-stage Lobatto IITA, IIIB and IIIC methods are of
order 2s—2. The stability function for the Lobatto IIIA and IIIB methods is
the diagonal (s—1,s—1)-Padé approzimation. For the Lobatto IIIC method
it is the (s—2,s)-Padé approzimation. All these methods are A-stable.

Proof. We first prove that the IIIC methods satisfy D(s—1). Condition
(5.5) implies dﬁ") =0 (¢g=1,...,s—1) for d(lq) given by (5.4). The conditions
C(s—1) and B(2s—2) then yield

L]
Zd;q)c;_l =0 fork=1,...,s—1landg=1,...,5—1.
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Table 5.7. Lobatto IIIA methods of orders 2 and 4

0 0 0 0
1 5 1 1
2 | 7 3 m
1 2 1
1 5 3 5
1 2 1
5 3 &

Table 5.8. Lobatto IIIA method of order 6

0 0 0 0 0
5-5 1145 25—-+/5  25-13v5 —1+4++/5
10 120 120 120 120
5+5 11-v5 254135 2546 —-1-+/5
10 120 120 120 120
1 L3 S5 5 1
12 12 12
1 5 5

12 12 12 12

Table 5.9. Lobatto IIIB methods of orders 2 and 4

0 11
6 6
1 1 1 1
0 z 2 s 3 0
1 1 5
1 = 0 1 = =
2 6 6 0
11 12 1
2 2 6 3 6
Table 5.10. Lobatto IIIB method of order 6
0 1 -1-+v/5 1445 0
12 24 24
545 1 25 ++5 25 — 135 0
10 12 120 120
5++5 1 25+413v5  25—+/5 0
10 12 120 120
1 1 11 -5 114+ /5 0
12 24 24
1 5 5 1
12 12 12 12
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Table 5.11. Lobatto IIIC methods of orders 2 and 4

0 1 1 1

6 3 6
o | L _1 1 1 5 1
2 2 2 6 12 12

N | Loz

2 2 6 3 6

1 1 1 2 1

2 2 6 3 6

Table 5.12. Lobatto IIIC method of order 6

0 1 __\/_3 ﬁ -1

12 12 12 12

545 1 1 10-7/5 5

10 12 4 60 60
5+5 1 10475 1 -5
10 12 60 1 60

1 1 5 5 1

12 12 12 12

5 5 1
12 12 12 12

As in the proof of Lemma 5.4 we deduce D(s—1). All order statements now
follow from Lemma 5.4 and Theorem 5.1.

By definition, the first row of the RK-matrix A vanishes for the IITA
methods, and its last column vanishes for the IIIB methods. The denomina-
tor of the stability function is therefore of degree < s—1. Similarly, the last
row of A—1bT vanishes for IIIA, and the first column of A —1b7T for IIIB.
Therefore, the numerator of the stability function is also of degree < s—1 by
Formula (3.3). It now follows from Theorem 3.12 that both methods have
the (s—1,s—1)-Padé approximation as stability function.

For the IIIC process the first column as well as the last row of A — 1T
vanish. Thus the degree of the numerator of the stability function is at most
s—2 by Formula (3.3). Again, Theorem 3.12 and Theorem 4.12 imply the
statement. a

For a summary of these statements see Table 5.13.
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Table 5.13. Fully implicit Runge-Kutta methods

method simplifying assumptions order | stability function

Gauss B(2s) C(s) D(s) 2s (s, s)-Padé
Radau IA B(2s—-1) C(s—1) D(s) 2s—1 | (s—1,s)-Padé
Radau ITA B(2s-1) C(s) D(s—-1) | 2s—1 | (s—1,s)-Padé
Lobatto ITIA | B(2s—2) C(s) D(s—2) | 2s—2 | (s—1,s—1)-Padé
(2s-2) (
(2s-2) (

Lobatto IIIB | B(2s—2) C(s—2) D(s) 2s—2 | (s—1,8—1)-Padé
Lobatto IIIC | B(2s—2) C(s—1) D(s—-1) | 2s—2 | (s—2,s)-Padé

The W-Transformation

We now attack the explicit construction of all Runge-Kutta methods covered
by Theorem 5.1. The first observation is (Chipman 1971, Burrage 1978) that
C(n) can be written as

ail ... Qais 1 c1 ... c;’_l 1 c ... c’17 (1) g g
_ o 1.0
agl ... Qgs 1 Cs ... c:’;l 1 ¢ ... C:’ 0 0 %
(5.6)
Hence, if V is the Vandermonde matrix
1 ¢ ... &1
V= ),
1 ¢, ... ¢t

then the first n (for n < s—1 ) columns of V1AV must have the special
structure (with many zeros) of the rightmost matrix in (5.6). This “V-
transformation” already considerably simplifies the discussion of order and
stability of methods governed by C(n) with n close to s (Burrage 1978).
Thus, collocation methods (n=s) are characterized by

0 ~0/$
1 (/] . —91;3
1/2 —0,/8
V=14V = : (5.7)
0 _Qs——Z/s

(s =1) —g,1/s

where the g’s are the coefficients of M(t)=]].,(t—c;) and appear when the
¢} in (5.6) are replaced by lower powers. Whenever some of the columns of
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V-1AV are not as in (5.7), a nice idea of Ngrsett allows one to interpret the
method as a perturbed collocation method (see Ngrsett & Wanner (1981) for
more details).

However, the V-transformation has some drawbacks: it does not allow
a similar characterization of D((), and the discussions of A- and B-stability
remain fairly complicated (see e.g. the above cited papers). It was then
discovered (Hairer & Wanner 1981, 1982) that nicer results are obtained, if
the Vandermonde matrix V is replaced by a matrix W whose elements are
orthogonal polynomials evaluated at c;. We therefore use the (non standard)
notation

k .
P,(z) = —Viifld;‘i'% (eH(e ~ 1¥) = VERFT Y (-1 (f) (’ “fk) 2

J

(5.8)
for the shifted Legendre polynomials normalized so that

/01 Pi(z)de =1 . (5.9)

These polynomials satisfy the integration formulas

/0” Py(t)dt = ¢ Py(z) + %Po(m)

. (5.10)
/ P(t)dt =&y Pryy(2) — 6Py () k=1,2,...
0
with 1
£ = ———— 5.11)
F Vo — 1 (
(Exercise 1). We now have instead of (5.7):
Theorem 5.6. Let W be defined by
w;; = P;_y(c;) 1=1,...,8, j=1,...,s (5.12)
and let A be the coefficient matriz for the Gauss method of order 2s. Then
/2 =
&L 0 &
W1AW = & - .. = Xg . (5.13)
: 0 _53—1
63—1 0

Proof. We first write C(n) in the form

s

Zai].p(cj)=/oqp(z)dm if deg(p)<n-1, (5.14)

i=1
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which, by (5.10), becomes

Za‘ijpo(cj) =& Py(c;) + %Po(ci)
j=1

] (5.15)
Zaijpk(cj) =&er1Pry1(c) — & Peyle;)  k=1,...,m—1.
i=1
For n=s, inserting (5.12), and using matrix notation, this becomes
ay; ... G, Wy ... Wy,
= (5.16)
a, ... a,, W,y ... W,
1/2 ¢
w w,, P !
11 15 Puler) ¢, 0 -
62 K
. . . 0 _63-—1
: : : :
Wep o0 Wy, Pa(ca) 65—1 6
8
Since for the Gauss processes we have P,(c,) =...= P,(c,) = 0, the last
column respectively row of the right hand matrices can be dropped and we
obtain (5.13). a

In what follows we shall study similar results for other IRK methods.
We first formulate the following lemma, which is an immediate consequence

of (5.15) and (5.16):

Lemma 5.7. Let A be the coefficient matriz of an IRK method and let W
be a nonsingular matriz with

wy; = P;_y(c;) for i=1,...,8, j=1,...,m+1.

Then C(n) is equivalent to the fact that the first n columns of W-1AW are
equal to those of X in (5.13). m}

The second type of simplifying assumption, D({), is now written in the
form

Cj

s 1
Z b;p(c;)a;; = bj/ p(z)de if deg(p) <¢-—-1. (5.17)
=1 j
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The integration formulas (5.10) together with orthogonality relations

1 1 1
/ Py(z)dz =1, / P (z)dz = / Py(z)Py(z)de =0 for k=1,2,...
0 0 0

show that D(() (i.e., (5.17)) is equivalent to
2 1
ZPO(Ci)bia'ij = (EPU(CJ') _§1P1(Cj))bj (5.18)
=1

ZPk(Ci)bia‘ij = (kak—l(cj) - fk+1Pk+1(Cj))bj k=1,...,(-1.
=1

This can be stated as

Lemma 5.8. As in the preceding lemma, let W be a nonsingular matriz
with

wl.].sz_l(ci) for i=1,...,8, 7=1,...,(+1,

and let B = diag(b,,...,b,) with b, # 0. Then D(() is equivalent to the
condition that the first { rows of the matriz (WTB)A(WTB)-! are equal

to those of Xg in (5.13) (if B is singular, we still have (5.19) below).

Proof. Formulas (5.18), written in matrix form, give

1/2 =
& 0
T _ %o S “6(_1 T
wTBA = A wTB . (5.19)
* * . *
* * *

It is now a natural and interesting question, whether both transformation
matrices of the foregoing lemmas can be made equal, i.e., whether

WIB=W"! or WIBW=1I. (5.20)
A first result is:

Lemma 5.9. For any quadrature formula of order > 2s—1 the matriz

W= (Pis(e)), (5.21)

2,)=1,...,8

satisfies (5.20).
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Proof. If the quadrature formula is of sufficiently high order, the polynomials
P,(z)P)(z) (k+! < 25—2) are integrated exactly, i.e.,

S bReR(e) = [ PuoIPa)e =8y (522)

this, however, is simply WTBW =1. m|

Unfortunately, Condition (5.20) is too restrictive for many methods. We
therefore relax our requirements as follows:

Definition 5.10. Let 7, ¢ be given integers between 0 and s—1. We say
that an s X s-matrix W satisfies T'(n, () for the quadrature formula (b;,¢;)i_,
if

a) W is nonsingular

b) w;; = Pj—l(ci) t=1,...,8, J= 1,---,max(7l,(§)+1

¢) WTBW=(£ ;’2)

where I is the ((+1) x(¢+1) identity matrix; R is an arbitrary (s—(—1)x (s—(-1)
matrix.

T(n, ¢)

The main result can now be stated as:

Theorem 5.11. Let W satisfy T(7, ) for the quadrature formula (b,,c,)3

1) i /i=1"

Then for a Runge-Kutta method based on (b, ¢;) we have, for the matriz
X=W-14W,

a) the first n columns of X are those of X; << C(n),
b) the first { rows of X are those of X <= D(() .

Proof. The equivalence of a) with C(n) follows from Lemma 5.7. For the
proof of b) we multiply (5.19) from the right by W and obtain

wTBW.X =X . WTBW

where X is the large matrix of (5.19). Because of Condition c) of T(n,¢) the

first ¢ rows of X and X must be the same (write them as block matrices).
The statement now follows from Lemma 5.8. a

We have still left open the question of the existence of W satisfying
T(n, ¢). The following two lemmas and Theorem 5.14 give an answer:

Lemma 5.12. If the quadrature formula has distinct nodes c; and all weights
positive (b, > 0) and if it is of order p with p > 2n+1 and p > 2(+1, then
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the matriz
W = (pj_a(c)) (5.23)
1, j=1,...,8
possesses property T(n, {) and satisfies (5.20). Here p;(z) is the polynomial
of degree j orthonormalized for the scalar product

(2 ) = Y binleor() (524)

Proof. The positivity of the b’s makes (5.24) a scalar product on the space of
polynomials of degree < s—1. Because of the order property (compare with
(5.22)), the orthonormalized p;(z) must coincide for j < max(n, ) with the
Legendre polynomials P;(z). Orthonormality with respect to (5.24) means
that WTBW =1. a

Lemma 5.13. If the quadrature formula has distinct nodes c; and is of
order p > s+(, then W defined by (5.21) has property T'(n, ().

Proof. Because of p > s+(, (5.22) holds for £=0,...,s—1 and {=0,...,(.
This ensures c) of Definition 5.10. a

Theorem 5.14. Let the quadrature formula be of order p. Then there exists
a transformation with property T(n, {) if and only if

p2n+(+1 and p>2(+1 (5.25)

and at least max(n,()+1 numbers among c,,...,c, are distinct.

Proof. Set v =max(n,() and denote the columns of the transformation W
by wy,...,w,. In virtue of b) of T'(n,() we have

T .
wj=(P]—l(cl)""’P]—l(ca)) for J=1,..-,V+1.

These v+1 columns are linearly independent only if at least v+ 1 among
¢yy-+,¢, are distinct. Now condition c) of T(n, () means that w,,...,w,,
are orthonormal to w,,...,w, for the bilinear form uTBv. In particular,
the orthonormality of w,,...,w,, to wy,...,w, ., (compare with (5.22))
means that the quadrature formula is exact for all polynomials of degree
v+(. Therefore, p > v+({+1 (which is the same as (5.25)) is a necessary
condition for T'(n, ().

To show its sufficiency, we complete w,...,w, , to a basis of R*. The
new basis vectors @, ,,...,®, are then projected into the orthogonal com-
plement of span(w,...,w.,,) with respect to uTBv by a Gram-Schmidt
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type orthogonalization. This yields

¢+1
wjzﬁj—Z(waﬁ?j)wk for j=v+2,...,s.
k=1 O

Construction of Implicit Runge-Kutta Methods

For the construction of IRK methods satisfying B(p), C(n) and D(¢) with
the help of Theorem 5.11, we first have to choose a quadrature formula of
order p. The following lemma is the basic result for Gaussian integration:

Lemma 5.15. Letc,,...,c, be real and distinct and let by,...,b, be de-
termined by condition B(s) (i.e., the formula is “Interpolatory”). Then
this quadrature formula ts of order 2s —k if and only if the polynomial
M(z)=(z—c,)(z—¢;)...(x—c,) is orthogonal to all polynomials of degree
< s—k-1, te., if and only if

M(z) = C(P,(m) +ay P (z)+...+ akp,_k(z)) . (5.26)

For a proof see Exercise 2. |

We see from (5.26) that all quadrature formulas of order 2s—k can be
specified in terms of k parameters o, ay,..., .

Next, if the integers # and ( satisfy n+(+1 < 2s—k and 2{+1 < 2s—k (cf.
(5.25)), we can compute a matrix W satisfying T'(7, () from Theorem 5.14
(or one of Lemmas 5.12 and 5.13). Finally a matrix X is chosen which
satisfies a) and b) of Theorem 5.11. Then the IRK method with coefficients
A=WXW-1is of order at least min(n+(+1, 2n+2) by Theorem 5.1.

Example 5.16. We search for all IRK-methods satisfying B(2s-2), C(s—1)
and D(s—2), i.e., methods which are of order at least 2s—2. As in (5.26),
we put

M(z) = C(P,(2) + oy P,_s() + 2y P, (=) - (5.27)

If a, satisfies

s—1+4/2s+1
s +25s—-3

oy <
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then the roots of M are real and distinct (see Exercise 7). The matrix W
given in (5.21) has Property T(s—1, s—2) by Lemma 5.13. Finally we put

/2 =
& 0 .
X = - - ~€,_o . (5.28)
53—2 0 ﬂa—l
€a—1 :Ha

and obtain with A=W XW -1 a family of IRK methods of order 2s—2 with
the four parameters o, a,, 8,, B,_;.

All methods of Table 5.13 (with the exception of Lobatto IIIB) must
be special cases. The corresponding parameter values are indicated in Ta-
ble 5.14 (for their computation see Exercise 3). If we put a; = 0 and
a,=—+/2s + 1/+/2s — 3 (Lobatto quadrature), we obtain the two-parameter
family of Chipman (1976).

Table 5.14. Special cases of method (5.27, 5.28)

Method a ag Bs Bs—1

Gauss 0 0 0 —€,1
RadauIA | v2s+1/v/2s—1 0 1/(4s-2) .
Radau ITA  |-v2s+1/v/2s-1 0 1/(4s-2) —€s—1
Lobatto ITIA 0 —V2s+1/v2s=3| 0 0

Lobatto ITIC 0 —V25+1/v/25=3 |1/(28—2)|—€s-1(25-1)/(s-1)

Stability Function

We try to express the stability function of an implicit RK-method in terms
of the transformed RK-matrix X = W-1AW. From b) and c) of Property
T(n, ¢) it follows that

We, =1, WTB1 = €, e, =(1,0,...,00T . (5.29)
Hence Formulas (3.2) and (3.3) become
R(z) =1+ zeT(I — 2X) e, , (5.30)
_ det(I — zX + zee])
R(z) = det(I — zX) (5:31)

It is interesting to note that the stability function depends only on X and
not on the underlying quadrature formula. As a consequence the stability
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function of the method of Example 5.16 depends on 8, and 3,_, only. For-
mula (5.31) becomes more symmetric (Hairer & Tiirke 1984) if we introduce
the arithmetic mean of the matrices X and X — e, e and define

1
Y=X- Eeleir , (5.32)
which is just the matrix X without the 1/2 in the (1,1)-position.

Proposition 5.17. For an RK-method (3.1) let W satisfy T'(n, ¢) for some
n7,¢ >0, and let Y be given by (5.92) where X = W-1AW. The stability
function then satisfies

1+ 129(2)
R(z) = —2 (5.33)
1-19(2)
with
U(z) = zeT (I - 2Y) e, . (5.34)
Proof. Applying the RK-method to the test equation (2.9) yields
g=1y, + 249, y =y, +2b'g.
With W-1g =G=(4;,...,9,)T this becomes
-~ Z . -
I-2Y)g=e(vo+350), v =% +70, (5.35)

where we have used (5.29). Computing §; from the first equation of (5.35)
and inserting this into the second one gives the result. a

If the RK-method satisfies B(2v + 1), C(v) and D(v) for some integer
v, then Y is given by (see Theorem 5.11)

0 ¢

Y = 0 g : (5.36)

In this case the computation of (5.34) for the (s, s)-matrix Y can be reduced
to that of the smaller (s—v,s—v)-matrix Y, as follows:

Theorem 5.18. IfY is given by (5.96), the function ¥(z) of (5.94) has
the continued fraction representation
2| g+ y-17]

U(z) = |-T+| I +...+I"++§32\PV(7,) (5.37)
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where
U, (2) = zeT(I - 2Y,) e, .

Proof. Let Y; (for 0 < j < v+1 ) denote the (s—j, s—j) principal minors
of Y, where the first j rows and columns are suppressed. Expanding the
determinant of I —zY;_; with respect to the first row (and then the first
column) gives for j=1,...,v

det(I — zY;_;) = det(I — 2Y;) + £32° det(I — 2Y; ) - (5.38)
By Cramer’s rule, the functions ¥;(z) can also be written as

det(I — 2Y;,,;)

(z)=z2eT(I—2Y.) " te;, = g IT°7 .
V.(z)=ze;(I—2Y;) e, =2 de(T ==Y, (5.39)
Dividing (5.38) by det(I—2Y}) yields
P
V. (2)=+—5———. (5.40)
J 1+ £229,(z)
A repeated use of (5.40) gives (5.37) since ¥(z)=¥,(z). a

We are thus naturally led to continued fraction expansions, a technique
which was historically the earliest one: Birkhoff & Varga (1965) used it in
their proof of the A-stability of the diagonal Padé approximations. Later,
Ehle (1969, 1973) tried to extend “Varga’s proof” to verify the A-stability of
the first and second subdiagonals of the Padé table (“This was unsuccessful
because the resulting continued fraction expansions were not easily related
to one another.”). Therefore, Ehle (1973), Ehle & Picel (1975), proved
A-stability results for the first and second subdiagonal and some generaliza-
tions by a completely different method. The following study of A-stability
(see Butcher 1977, Hairer 1982, Hairer & Tiirke 1984) combines the above
continued fraction expansion with properties of positive functions.

Positive Functions
“Many stability conditions for numerical methods can be

expressed in the form that some associated function is po-
sitive.” (G. Dahlquist 1978)

A-stability of an implicit RK-method is defined by the property
|R(z)] <1 for Rez<0. (5.41)
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Since the transformation (14¢)/(1—() occurring in (5.33) maps the negative
half-plane onto the open unit disc, (5.41) is equivalent to

Re¥(z) <0 for Rez<0. (5.42)

This condition means that —W¥(—z) is a positive function; for rational func-
tions the concept of positivity can be defined as follows:

Definition 5.19. A rational function f(z) is called positive if
Re f(z) >0 for Rez>0.

A nice survey of the relevance of positive functions to numerical analysis
is given by Dahlquist (1978). The following lemmas collect some properties
of positive functions.

Lemma 5.20. Let f(z) and g(z) be positive functions. Then we have

a) af(z)+0g(z) is positive, if « > 0 and 8 > 0;

b) 1/f(z) is positive;

¢) f(9(z)) is positive. a

Observe that the poles of a positive function cannot lie in the positive
half-plane, but poles on the imaginary axis are possible, e.g. the function
1/z is positive.

Lemma 5.21. Suppose that
f(z) = -z— +9g(z) with g(z)=0(1) for z—0;

and g(z) #0. Then f(z) is positive if and only if c > 0 and g(z) is positive.

Proof. The “if-part” follows from Lemma 5.20. Suppose now that f(z) is
positive. The constant ¢ has to be non-negative, since for small positive
values of z we have Re f(z) > 0. On the imaginary axis we have (apart from
poles) Re g(iy) =Re f(iy) > 0 or more precisely
liminf R >0 .
Rl Res(5) 20 for e R
The maximum principle for harmonic functions then implies that either
g(z) =0 or g(z) is positive. a

A consequence of this lemma is the following characterization of A-
stability.
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Theorem 5.22. Consider an RK-method whose stability function is given
by (5.33) with Y as in (5.36). It is A-stable if and only if

Re¥,(2)<0 for Rez<0 (5.43)
where ¥ (z)=zeT(I-2Y,)"1e; as in (5.97).
Proof. We consider the submatrices Y; of ¥ and the functions ¥;(z) of
(5.39). As we prefer to work with positive functions we put
x;(2) = —¥;(-2) = zel(I+2Y,) e, . (5.44)

By (5.42), A-stability is equivalent to the positivity of x,(z) and condition
(5.43) means that x,(z) is a positive function. Relation (5.40) becomes

(X)) = - +Ex,(2) -

Since all x;(z) are bounded near the origin and do not vanish identically
(see (5.44)), it follows from Lemma 5.21 that x;(z) is a positive function iff
X;_1(2) is positive. This proves the theorem. a

Example 5.23. For the RK-method of Example 5.16 with X given by
(5.28) we have

_ Z(]. _ ﬂaz)
\I’a_z(Z) B 1- IBJZ - €a—lﬁa—1z2 ‘
Since g i
(‘I’,_z(z)) == 55_15.,_1m

it follows from Lemma 5.21 and Theorem 5.22 that the method is A-stable
iff

By =0 or (B,_;<0 and B,>0). (5.45)
Comparing this result with Tables 5.14 and 5.13 leads to a second proof for
the A-stability of the diagonal and the first two subdiagonal Padé approxi-
mations for e (see Theorem 4.12).

Example 5.24 (Construction of all A-stable RK-methods satisfying B(2s—
4), C(s—2) and D(s—3)). We take a quadrature formula of order 2s—4 and
construct, by Theorem 5.14, a matrix W satisfying Property T'(s—2, s—3).
The RK-matrix 4 is then of the form

1
A=W( + Eele?)w-l
with Y given by (5.36), v=s — 3 and

0 Vs—2 ﬂa—Z
Y;—S = 63—2 Ys—1 ﬂa-—l
0 v B
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For the study of A-stability we have to compute ¥, ,(z) from (5.39). Ex-
panding det(I — 2Y,_;) with respect to its first column we obtain

(T () =2+ —“—Zf"_'jc(l?Jr fgz 1:;)
where
fi =B+ 71 f2=BYe1 = Beo1Ves
9o = ~Vs-2» 91 =Bz + 8,27, -
By Lemma 5.21 and Theorem 5.22 we have A-stability iff either gy =g, =0
or

(5.46)

z(go +g1z) (5.47)
14 fiz + f,22
is a positive function, which is equivalent to (see Exercise 4b)
9% >0, 9,20, f,20, gof;—9,20. (5.48)

A similar characterization of A-stable RK-methods of order 2s—4 is given
in Wanner (1980).

Exercises

1. Verify the integration formulas (5.10) for the shifted Legendre polyno-
mials.
Hint. By orthogonality foz P,(t)dt must be a linear combination of
Piy1, P, and P,_; only. The coefficient of P, vanishes by symmetry.
For the rest just look at the coefficients of z¥+! and k-1,

2. Give a proof of Lemma 5.15.
Hint (Jacobi 1826). If f(z) is a polynomial of degree 2s—k—1, and r(z)
the interpolation polynomial of degree s—1, then

f(z) = q(z)M(z) + r(z) where degg(z) <s—-k-1.

3. Let R(z) be the stability function of the RK-method of Example 5.16.
a) The degree of its denominator is < s—1 iff
ﬂs = 163—165—12(23 - 3) .

Hint. Use Formula (5.31) and the fact that det(I—zX) is the denomi-
nator of the diagonal Padé approximation.

b) The degree of the numerator of R(z) is < s—1 iff
:Ba = —ﬂa-—lga—lz(zs - 3) . (549)
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c) The degree of the numerator of R(z) is < s—2iff in addition to (5.49),
B,=1/(25-2).
d) Verify the entries of Table 5.14.

. a) The function
o+ Bz
o(z) = v+ 6z
with v > 0 satisfies Res(z) > 0 for Rez > 0iff @« > 0,3 >0 and § > 0.
b) Use the identity (for g, > 0)

M__l_ — (f; ~91/90) + f>2

290 +912) 29, 90+ 912
to verify that the function given in (5.47) is positive iff (5.48) holds.

. Suppose that
f(z) = cz+ g(z) with  g(z) = O(1) for z — o0
and g(z) # 0. Then f(z) is a positive function, if and only if ¢ > 0 and
g(z) is positive.
Hint. Use the transformation z — 1/z in Lemma 5.21.
. Give an alternative proof of the Routh criterion (Theorem 13.4 of Chap-
ter I): All zeros of the real polynomial
p(z) =agz" +a,;z2" ' +...+a, (a >0)

lie in the negative half-plane Re z < 0 if and only if

C;pp >0 for :=0,1,...,n.

The c;; are the coefficients of the polynomials

_ n—1i n—i—2 n—i—4
pi(2) = ¢;p2" P 4 ¢;2 + ¢,z +...

where
Po(2) = agz" +a,2" 2 + ..., e, Cpj = ay;
p(2)=a; 2" 1 fagz" 4L e, € =0y -
and
Piy1(2) = c;opi_1(2) — ¢;y02pi(2),  i=1,...,n-1. (5.50)

Hint. By the maximum principle for harmonic functions the condition
“p(z) # 0 for Re z > 0” is equivalent to

‘P(—Z)
p(z)

<1 for Rez> 0
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and the condition that p,(z) and p,(z) are irreducible. Using the trans-
formation (5.33) this becomes equivalent to the positivity of py(2)/p;(2).
Now divide (5.50) by ¢;_; ¢p;(2) and use Exercise 5 recursively.

. Show that

s—1+/2s8+1
s 2s—3

is a sufficient condition for M(z) = P,(z )+, P,_,(z)+a,P,_,(z) to have
real and pairwise distinct roots.

Hint. (See “Lemma 18” of Ngrsett & Wanner 1981). Consider the set D
of all pairs («a,, a,) for which the roots ¢; of M(z) are real and distinct,
and the corresponding interpolatory quadrature formula has positive b,.
Verify that (0, 0) € D, and show that for (a,, a,) € 8D either one b,
becomes zero or two c; coalesce but the quadrature formula remains of
order 2s—2. Therefore it must be the Gaussian formula with s—1 nodes
of order 2s—2 and we must have

a, < (5.51)

Py(z) + o P,_(2) + ayP,_y(z) = c(z — B)P,_,() . (5.52)
Now use the three-term recursion formula
1
-SfaP’(.’l?) = (m - E)Pa—-l(w) - (s - l)ﬁa—IPs—Z(m) (553)

(Abramowitz & Stegun p.782, modified) to eliminate zP,_; on the right
of (5.52). Then obtain by comparing the coefficients of P,, P,_, and
Pa—2

1 1,1
Czs_ﬁ_ ‘11:;?(5“@, Qy =

s—1+/25+1

8 28 —

(5.54)

i

If B is one of the roots of P, ,, then (5.52) has a double root and the
estimate (5.51) for a, is optimal.

. Show that the polynomials (5.8) satisfy

Py(z) = (-1)*V2k + 1 F(~k,k + 1;1;2)

where

F(a,b;c;z) =1+ —

a-b ala+1)b(b+1) ,
T+ ————=——=
c-1 c(e+1)1-2

is the hypergeometric series (see Chapter I, (5.9)).
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“...they called their methods “diagonally implicit”, a term
which is reserved here for the special case where all diago-
nal entries are equal ...” (R. Alexander 1977)

We continue to quote from this nice paper: “To integrate a system of n
differential equations, an implicit method with a full s x s matrix requires
the solution of ns simultaneous implicit (in general nonlinear) equations in
each time step (...) One way to circumvent this difficulty is to use a lower
triangular matrix (a;;) (i.e., a matrix with a;; =0 for i < j); the equations
may then be solved in s successive stages with only an n-dimensional system
to be solved at each stage”. In accordance with many authors, and in disac-
cordance with others (see above), we call such a method diagonally implicit
(DIRK).

“In solving the n-dimensional systems by Newton-type iterations one
solves linear systems at each stage with a coeflicient matrix of the form
I—ha;;0f /8y. If all a,; are equal one may hope to use repeatedly the stored
LU-factorization of a single such matrix”. When we want to emphasize this
additional property for a DIRK method, we shall call it a singly diagonally
implicit (SDIRK) method.

It is a curious coincidence that in the early seventies at least four theses
dedicated a large part of their research to DIRK and SDIRK methods, very
often having in mind their usefulness for the treatment of partial differential
equations (R. Alt 1971, M. Crouzeix 1975, A. Kurdi 1974, S.P. Ngrsett 1974).
The classical paper on the subject is Alexander (1977).

Order Conditions

“The traditional problem of choosing the coefficients leads
to a nonlinear algebraic jungle, to which civilization and
order were brought in the pioneering work of J.C. Butcher,
further refined in the Thesis of M. Crouzeix.”

(R. Alexander 1977)

We want to make the “jungle” still a little more civilized by the following
idea: consider a SDIRK scheme
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¢ 04

) s Y

c, a,, Q5 ... 7
b, b, ... b,

with s stages. The order conditions (see Vol. I, Section I1.2) consist of sums

such as
> bjajuay =
Ikl

(6.1)

Cbli—l

Because there are now more non-zero entries in the matrix 4 than for explicit
methods, this sum contains far more terms as it did before. The trick is to
transfer all expressions containing a 7 to the right-hand side of (6.1). The

resulting sum, denoted by Z', is then only built upon the subdiagonal
entries as in the ERK-case. The right-hand side becomes (for this example)

!
Y biajan = Y bilaj = v85) (a4 — 18) (6.17)
ikl 3okl
where 6, denotes the Kronecker delta. Multiplying out we obtain

Z 'bjajkakl = Z bjajkakl - 7(2 bjaﬂ + ijajk) + 42 Z bj .
J J J

ikl ikl

D

For all sums on the right we insert order conditions (e.g. from Theo-
rem 2.1 of Section II.2) and obtain

r

—

!
Jik,l

(=)

The general rule is that there appears an alternating polynomial in 4 whose
coefficients are sums of 1/7(u), where u runs through all trees which are ob-
tained by “short-circuiting” one, two, three, etc. vertices of ¢ (with exception
of the root). The conditions for order 4 obtained in this way are summarized
in Table 6.1. For s=2, p=3 and s =3, p=4 these simplified conditions have
only very few non-zero terms and the equations become especially simple to
solve (see Exercise 1).
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Table 6.1. Order conditions for SDIRK methods

t o(t) |previous conditions simplified conditions
*J 1 Eb] =1 ZbJ =1
4" ,
j iy — 1 1
ke ,1 ’ 2 Zb]a]k‘f EbJaJk—'f"‘Y
Vi , \
’ >{ 3 |Xbjajre=3 > bjajka =3 — 7+
k
: , \
’ 3 Ebjajkakl = %‘ > bja;ra = % — v+
o
/ ) , .
T a |4 | Xbiikaiiaim =5 | X bjajkajiaim =z -7+ 57 -
m k
j '
L0 |t | Ebieikaneim =5 | X biajkanaim = § - §v+ 377 -
.k , 2
J 1 m 4 Ebjajkaklakm = 117 E bjajkaklakm = .112 — %_7 + ’%‘Y _ ,73
k 1 ' s
j 4 ijajkaklalm =33 Z bjajrariaim = 21—4 — %_7 + 572 —3

Stiffly Accurate SDIRK Methods

Our main interest here lies in methods satisfying

a,,=1>b, for

o) ; J=1,...,s,

(6.2)
i.e., in methods for which the numerical solution y, is identical to the last
internal stage. A first consequence of this property is that R(co) =0 (see

Proposition 3.8). The order conditions for such methods can, instead of

(6.1”), be simplified still further: Consider again the example (6.1), which

can now be written as
1
E :aajajka'kl iy

ksl

This time we have, instead of (6.1°)

]
Z AyjQjp Ay = Z(aaj - ‘75aj)(ajk - 76jk)(a'kl = Y61

ikl il
=) 4,00 —7 (Z IS DILNIEDY “ak“kl)
Jrk,l ik 3\l k,l

+72(Zasj+2ask+2asl) —73.]‘ :
k l

j
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Again inserting known order conditions, we now obtain

' 1 3
Z @50k = 5 ~ 37 T -7 (6.177)
vkl
The general rule is similar to the one above: the difference is that all vertices
(including the root) are now available for being short-circuited. Another
example, for the tree t,,, is sketched in Fig.6.1 and leads to the following
right-hand side:
1 1 1 1 1 1 1 1 1
Y T —) 2(— 1 141-14=4-= —>
8 ')’(3+3+ 2+6 +7 2-!- + -i-2+2-|-2

TH4 -4+t

oo |
Wk

—P(1+14141)+9* =

Fig.6.1. Short-circuiting tree ¢4

The order conditions obtained in this manner are displayed in Table 6.2 for

all trees of order < 4. The expressions Z' are written explicitly for the
SDIRK method (6.3) with s=5 satisfying condition (6.2)

o

T ¢y = ay

a1 aszg2 Y )

a1 a4z a4y 7 €3 = Gy + @y, (6.3)
!

by b2 b3 by v €y = Qg + Gyp + ayq

by by b3 by 7
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Observe that they become very similar to those of Formulas (1.11) in Sec-
tion II.2.

Table 6.2. Order conditions for method (6.3)

3

. Y 'ag; =bi+by+bs b =p (6.4;1)

4 '
7| Y agjajk = bach + bsch + bach = p2 (6.4;2)

kvl ,
3| Xasjakaj = bacy? +bscy® + bacy”® =ps (6.4;3)

k 1
>j Y asjajears = byaszcy + ba(aszch + asses) = pa (6.4;4)

Ke d,m '
g Y asjajkajiajm = bacy® +bsey’ +bacy’ = ps (6.4;5)

Mo Mk ! ! ! 1 1 1
\>j Y. asjajrajiam = bsczasacy + bacy(aszcy + asscy) = pe | (6.4;6)

| X asjajkamarm = bsasacy® +baanney” + asses’) = pr | (647
1

é.k > 04jajkaki01m = brassasach = ps (6.4;8)

1

pp=1-7 =727+ 7—47 +*

Py = 1 2y ++° 1 4 2 3, 4

272 Pe =g~ 37 T4 —4r +y

L 2_ .3 1 7

P3—§—2’7+3‘Y -7 p7=ﬁ_7+§72_473+74

PO A W S 12 34 0

76 2 Ps=§‘1——7+37 -4+

Solution of Equations (6.4)
By clever elimination from equations (6.4;4) and (6.4;6) as well as (6.4;4)
and (6.4;7) we obtain

(] o1
byag,cy(cy — ¢3) = 4Py — Pg

(6.5)
b4cga43(c'2 - c;) = CIzP«; —P7 -

Multiplying these two equations and using (6.4;8) gives

Psbs(c; - c;)(c'z - c;)c; = (C;P4 - Ps)(clzp‘; - Ppq) -
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We now compute b,, bs, by from (6.4;2), (6.4;3), (6.4;5). This gives

by = [—pachey + pa(ch + c3) — ps]/[ch(es — c3)(ch — ¢)] (6.6)

and b, as well as b, by cyclic permutation. Comparing the last two equations
leads to
1 _ PgP3C — PgPs — C3PePy + PePr
cy = : . (6.7)
PgPyCy — PPy — CoPyPy + PyPq

We now choose 7, ¢, and cj as free parameters. Then c} is obtained from
(6.7); by, by, by from (6.6), b, from (6.4;1), a3, and a,; from (6.5), a,, from
(6.4;4), and finally a,,, ay,, a,; from (6.3).

Embedded 3rd order formula: As proposed by Cash (1979), we can append
to the above formula a third order expression

4
U =Y +hzbiki
i=1
(thus by omitting by =< ) for the sake of step size control. The coefficients
b are simply obta.med by solving the first 4 equations of Table 6.1
(lmear system) Continuous embedded 3rd order formulas can be obtained
in this way too (see (5.1) of Section II.5)

y(z, + 0h) ~ y0+h2b

The coefficients b, (6),...,b,(0) are obtained by solving the first 4 (simpli-
fied) conditions of Table 6.1, with the right-hand sides replaced by
62 63 63
0, ——~0, — —~0%4+~%0, — —~40%++%9
v g T oYl = -0 0
respectively. The continuous solution obtained in this way becomes g, for
0 =1 instead of the 4-th order solution y,. The global continuous solution
would therefore be discontinuous. In order to avoid this discontinuity, we
add b;() and include the fifth equation from Table 6.1 with right-hand side

ﬁ _ 703 + 37202

3
1 5 78 .
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The Stability Function

By Formula (3.3), the stability function R(z) for a DIRK method is of the
form
P(z)

(1—ay2)(1~apz)...(1-a,z)’
because the determinant of a triangular matrix is the product of its diagonal
entries. The numerator P(z) is a polynomial of degree s at most. If the
method is of order p > s, this polynomial is uniquely determined by Formula
(3.26). It is simply obtained from the first terms of the power series for
(1—ayy2)...(1—a,,z2) - €2

For SDIRK methods, with a,; =...=a,, =7, we obtain (see also Formula
(3.26) with ¢; =(—7) (;) )

P(Z) s . 8—j 1 j
Ro)=qooyer  PE=() ;Ls (D)a=r  (69)

R(z) = (6.8)

with error constant

= —7’(311)15 = L (%) (6.10)
where .
L(z)=) (-1) (j)a;—: (6.11)

=0
is the s-degree Laguerre polynomial. ¥ (z) denotes its k-th derivative.

Since the function (6.9) is analytic in C— for ¥ > 0, A-stability is equivalent
to

E(y) = Q(1y)Q(—iy) — P(iy)P(—iy) 20  forally (6.12)

(see (3.8)). This is an even polynomial of degree 2s (in general) and subde-
gree 25 where j =[(p+2)/2] (see Proposition 3.4). We therefore define the
polynomial F(z) by

Fy*) = E@)/y" i=[p+2)/2].
and check the condition F(z) > 0 for £ > 0 using Sturm sequences. We

display the results obtained (similar to Burrage 1978) in Table 6.3.
For completeness, we give the following explicit formulas for E(y).

s=1; p=1:
E = y2(2—y - ].)
$s=2; p=2:

E= y4(—4l +2y-592 +473) =yH(2y -1)° (7 - i'>
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Table 6.3. A-stability for SDIRK with order p > s

s A-stability A-stability and p=s +1
1 1/2<y< o 1/2

2 1/4<v < (3++3)/6

3 1/3 < v < 1.06857902 1.06857902

4 0.39433757 < v < 1.28057976 —
R Ry

6 0.28406464 < v < 0.54090688 —
8 0.21704974 < v < 0.26471425 —_

E=yt(d—v+312-29°) +4° (—3i+g—”4—72+283—’3—1274+675)

B=ys(h—1+50 - B0 417yt —8y)
+o (et - BT - M I 0o ayT)

A-stability means here that all coefficients must be non-negative. A general
formula is as follows.

Lemma 6.1. The E-polynomial for (6.8) with a,;=...=a,,=v and p > s
satisfies
E(y) = (1-1L, (l)z)('ry)“
Y
I | (6.13)
2 Y (0w [ L@ e
i=l(p+2)/2] 0

Proof. Inserting Formula (6.9) into the definition of E(y)
E(y) = (1 +7°y")" — P(iy)P(~iy)

= (1++%y%)° - Z ZLS“"’)(%) i l)( )(7zy)k+l(—1)’

k
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and using integration by parts for the verification of

2 [ L@IE ey = (<)) Y (<))
0 k+1=2j

a

0

one obtains the result, since

S (L1 e (0 IED(0) = (~1)) () .

k+1=2] J

Multiple Real-Pole Approximations with R(c) =0

For methods satisfying (6.2) we have R(oo) = 0. Therefore the highest
coefficient of P(z) in (6.9) is zero. If the order of the method is known to be
p > s — 1, the remaining coefficients of P(z) are still uniquely determined
by v and we have

s—1

P(z) = (1) ¥ 109 () (72 (6.14)
with error constant .
C= (-1)’1:,(;)7’ . (6.15)

The first polynomials E(y) of (6.12) are now:

s=2,p=1:

E=y(-1+47-27") +y*y*
s=3,p=2:

E=y (—% + 3y — 1292 + 1843 — 674) + y88
s=4,p=3

E—_—y4<115—4—3'1+672—8'y3+274>
+y6<—31—6+ 33.1—672+1%ﬁ—5274+4875—1276) +y%° .

The regions of v for A-(and hence L-)stability are displayed in Table 6.4.
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Table 6.4. L-stability for SDIRK with order p > s —1

s L-stability L-stab. and p=s
2 | @-vVD2<1<2+VD2 | 1= (24vE)2
3 0.18042531 < v < 2.18560010 v = 0.43586652
4 0.22364780 < v < 0.57281606 v = 0.57281606
5 0.24799464 < v < 0.67604239 v = 0.27805384
6 0.18391465 < v < 0.33414237 v = 0.33414237
7 0.20408345 < v < 0.37886489 —

8 0.15665860 < v < 0.23437316 ~ = 0.23437316

Choice of Method

We now determine the free parameters for method (6.3) with s =5 and
order 4. For a good choice of 4, we have displayed in Fig.6.2 the error
constant C as well as the regions for A- and A(0)-stability.

F (Cl
1072
1073k
107 |
5 F -stab A-stable A(0)-stab
107 \
1076 | "
. 1 | BN Lavsaaasaal EsﬂﬁiﬁEl 1
.2 .3 .4 .5 .6 ) gamma

Fig.6.2. Error constant and A-stability domain for s =5, p=4.

This suggests that v between 0.25 and 0.29 is a good choice. The method
is then L-stable and the error constant is small. For various values of v in
this range, we determined (by a nonlinear Gauss-Newton code) ¢} and ¢} in
order to minimize the fifth-order error terms. It turned out that

c'2 = 0.5, c; =0.3

is close to optimal. With this we coded two different choices of v: y=4/15=



0.2666 . .
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., which was numerically the better choice and 7 =1/4, which gave,

via Formulas (6.4), (6.5), (6.6) and (6.7), especially nice rational coefficients.
These latter are displayed in Table 6.5.

Table 6.5. L-stable SDIRK method of order 4

1 1
4 4
3 1 1
4 2 4
11 17 _1 1
20 50 25 4
1 371 137 15 1
2 1360 2720 544 4 (6.16)
) 4 15 & 1
24 48 16 12 14
_ | B s m s 1
h1= 24 8 16 12 1
o | B moms s
n= 48 96 32 12
_ 3 2125 0 1
err = 16 32 32 1
A continuous solution to this method is given by
5
Y(zo +0h) R yo +h Y bi()k;
Where 463 217 20
b,(8 -0+ 0 -
1(0) = 0 72 36 9 6
385 661
—0-—0*+ —106*
b,(0) = 0 16 n —8
128 20125 ,, 8875 250
b,(0) = ——90 6% — 6 + =—o* 6.17
+(9) 18 + 432 216 + 27 (6-17)
85
by(6) = _—02 -0

557 3 80
by(8) = — =g+ 2 gz _ 3594

19 108 54 270
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Exercises

1. (Crouzeix & Raviart 1980). Compute the SDIRK methods (Table 6.1)
for s =3, p=4. Obtain also (for s=2,p=23) once again the method of
Table 7.2, Section II.7.

Result. The last order condition is in both cases just a polynomial in
v4. Among the different solutions, the following presents an A-stable

scheme:
i vy
1 1 »7 — —1_ COS(1> _|_ l
2 2”77 V3 \18/ "2
(6.18)
1—4 2y 1-4vy ~ _ 1
T 6(2y — 1)
§ 1-26 §

2. Verify all details of Tables 6.1 and 6.2.

3. The four cases of A-stable SDIRK methods of order p=s+1 indicated
in Table 6.3 (right) are the only ones existing. This fact has not yet
been rigorously proved, because the “proof” given in Wanner, Hairer &
Ngrsett (1978) uses an asymptotic formula without error estimation. Do
better.

4. Cooper & Sayfy (1979) have derived many DIRK (which they call “semi-
explicit”) methods of high order. Their main aim was to minimize the
number of implicit stages and not to maximize stability. One of their
methods is

6—16 6—6
10 10
6496 —6+5v6 6—V6
35 14 10
1 888460716 1261616 6—v6
2850 1425 10
4—6 3153—30826 3213411486 —267+488v6 6—6
10 14250 28500 500 10
4+v6 [=325831+14638v6 —17199+364v6 1329-544v6 —96+131v6 6—1/6
10 71250 142500 2500 — 625 10
1 0 0 % 163—616 1ei3616 0

Show that it is of order 5 and A-stable, but not L-stable.

5. It can be seen in Table 6.4 that for s = 2, 4, 6, and 8 the L-stability
superconvergence point coincides with the right end of the A-stability
interval. Explain this with the help of order star theory (Fig.6.3.a).
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Further, for s =7, a superconvergence point is given by v =0.20406693,
which misses the A-stability interval given there by less than 2 - 10-5,
Should the above argument also apply here and must there be a com-
putation error somewhere? Study the corresponding order star to show
that this is not the case (Fig.6.3.b).

Fig.6.3.a. Fig.6.3.b.
Multiple pole order star Multiple pole order star
=8, v=0.23437316 $=7, v=0.20406693
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“When the functions ¢ are non-linear, implicit equations
can in general be solved only by iteration. This is a severe
drawback, as it adds to the problem of stability, that of
convergence of the iterative process. An alternative, which
avoids this difficulty, is ...” (H.H. Rosenbrock 1963)

. is discussed in this section. Among the methods which already give
satisfactory results for stiff equations, Rosenbrock methods are the easiest
to program. We shall describe their theory in this section, which will lead
us to our first “stiff” code. Rosenbrock methods belong to a large class
of methods which try to avoid nonlinear systems and replace them by a
sequence of linear systems. We therefore call these methods linearly implicit
RK-methods. In the literature such methods are often called “semi-implicit”
(or was it “semi-explicit”?), or “generalized” or “modified” or “adaptive” or
“additive” RK-methods.

Derivation of the Method

We start, say, with a diagonally IRK method

i—1
ki=hf(y0+zaijkj+aiiki) 'I:=1,...,8
=1
, (7.1)
Y=Y + Zbiki
i=1

applied to the autonomous differential equation

v =f(y). (7.2)
The main idea is to linearize Formula (7.1). This yields

k; = hf(g;) + hf'(g;)a;k;
i-1

9; =Y+ Eaijkj ’
i=1

and can be interpreted as the application of one Newton iteration to each
stage in (7.1) with starting values kgo) =0. Instead of continuing the iter-
ations until convergence, we consider (7.3) as a new class of methods and

investigate anew its order and stability properties.

(7.3)
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Important computational advantage is obtained by replacing the Jaco-
bians f'(g;) by J = f'(y,), so that the method requires its calculation only
once (Calahan 1968). Many methods of this type and much numerical ex-
perience with them have been obtained by van der Houwen (1973), Cash
(1976) and Ngrsett (1975).

We gain further freedom by introducing additional linear combinations
of terms Jk; into (7.3) (Ngrsett & Wolfbrandt 1979, Kaps & Rentrop 1979).
We then arrive at the following class of methods:

Definition 7.1. An s-stage Rosenbrock method is given by the formulas

i—1 i
k; = hf(yo + Zaijkj) +hIY ik, i=1,...,8
= = (7.4)
v =Y + )bk
j=1

where a,;, 7;;, b; are the determining coefficients and J = f'(y,).

Each stage of this method consists of a system of linear equations with
unknowns k; and with matrix I—h~y,;J. Of special interest are methods for
which 7,, =...=7,, =", so that we need only one LU-decomposition per
step.

Non-autonomous problems: The equation

y' = f(z,9) (7.22)

can be converted to autonomous form by adding z' = 1. If method (7.4)
is applied to the augmented system, the components corresponding to the
z-variable can be computed explicitly and we arrive at

i1 i
of af
k; = hf(%'*‘“i’%!lo"'z aijkj) +‘7ih2%(wo,yo) + hé‘g(mo’yo)Z’)’ijkj
Jj=1

j=1
Y1 ="Yo + Z bik; , (7.4a)
Jj=1

where the additional coeflicients are given by
i—1 i
ai = aij y ’71: = Z’Y” . (7.5)
, e

J=1

Implicit differential equations: Suppose the problem is of the form
My' = f(z, y) (7.2b)
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where M is a constant matrix (nonsingular for the moment). If we for-
mally multiply (7.2b) with M ~1, apply method (7.4a), and then multiply
the resulting formula with M, we obtain

i—1 i
) of
2
Mk; = hf<wo+aih’yo+;aijkj) +7;h %(wo’yo)+h%(wo’yo);7ﬁki
s
Y1 =Y + Ebjkj . (7.4b)
j=1

An advantage of this formulation is that the inversion of M is avoided and
that possible band-structures of the matrices M and 8f/dy are preserved.

Order Conditions

Conditions on the free parameters which ensure that the method is of order p,
i.e., the local error satisfies

Y(zgt+h) -y, = O(hp+1) )

can be obtained either by straightforward differentiation or by the use of
the theorems on B-series (Section II.11). We follow here the first approach,
since it requires only the knowledge of Section II.2. The second possibility
is sketched in Exercise 2.

As in Section II.2, we write the system (7.2) in tensor notation and

Method (7.4) as !
K = hf7(9;) + 03 Fit(wo) Do ek
K k
9 =y + Zaijkjj ) (1.4)
i
v =uy + 3 bk
J
Again, we use Leibniz’s rule (cf. (I1.2.4))

(B9 zo= a(F7 (9,0 o +a D Fik(wo) D 75 (RE) @D, _,
K k
(7.6)

! Tn the sequel, the reader will find many k's of different meaning; on the one
hand the “k” in Formula (7.1) which goes back to Runge and Kutta, on the other
hand “k” as summation index as since ever in numerical analysis. Although this
looks somewhat strange in certain formulas, we prefer to retain the notation of
previous sections.
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and have from the chain rule (cf. Section II1.2, (2.6;1), (2.6;2))
)" = ZfKL 9;)- (g - (a7) + D fie(g;) - (g5)"

K

etc. Inserting this into (7.6) we obtain recursively

(k) =0 (7.7;0)
(k)P g = 7 (7.7:1)
(k}'])(z)|h=o = 22]‘}%]‘}{2“]'10 +22f}%fKZ’ij

K k K k

=2Zf}‘{’fK Z(ajk + k) (7.7;2)
k

kJ (3)|h-— =3 Z fJ foL Za]kajl (77,3)

K,L

+3 -2fof£{fl' E(ajk + Y (@ + Tra)
KL

k,l

etc. All elementary differentials are evaluated at y,. Comparing the deriva-
tives of the numerical solution (¢ > 1)

(yl )(q)lh 0 Zb kJ)(q)lh— (78)

with those of the true solution (Sectlon I1.2, Formula (2.7;1), (2.7;2), (2.7;3)),
we arrive at the following conditions for order three:

*J ij =1
4 1
3 Z bieje +vk) = 3
1
Y biajay = 3
1

j
)
k
3 ij(o‘jk + Vi) e + ) = &

The only difference with the order conditions for Runge-Kutta methods is
that at singly-branched vertices of the corresponding trees o, is replaced
by o) +7;- In order to arrive at a general result, the formulas obtained
motivate the following definition:

ke »1

N
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Definition 7.2. Let ¢ be a labelled tree of order ¢ with root j; we denote
by
®.(t) = Z Pkl
Byl

the sum over the remaining ¢—1 indices k,1,... etc. The summand ¢;;;

is a product of ¢—1 factors, which are
a + 7, if Lis the only son of k;

a,; if  is a son of k and k has at least two sons.

Using the recursive representation of trees (Definition I1.2.12) we have
®.(7) =1 for the only tree of order 1 and, as in (IL.2.19),

Z ajkl...ajk"‘le(tl)...Qk"‘(tm) ift= [tl""’tm]’

1yeeeyPm > 2
3,(t) = B yoee sk m >
Z(ajk + 75 )®i(t1) ift=1[t].
k
(7.9)
Theorem 7.3. The derivatives of k}’, given by (7.4°), satisfy
(k) D|o= D ¥()®;()F (t)(y,) (7.7:9)

teLT,

and the numerical solution yj satisfies
) @)oo= X 1) D58 ()F(2)(y,) (7.10)
teLT, j

where F(t) are the elementary differentials (Definition I1.2.3).

Proof. Because of (7.8) we only have to prove the first formula. This is
done by induction on g and follows exactly the lines of the proof of Theorem
I1.2.11. We use (7.6), replace the expression fJ(gj)(q‘l) by Faa di Bruno’s
formula (Lemma II.2.8), use

(g7)® = o (k)®
k

for the derivatives of g; and insert the induction hypothesis (7.7;1) through
(7.7;q-1). This gives
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E)Plmp=a Y D o D At

uequ tlELTﬁl tm ELTG",

Z"‘ 2, (t1) - Zo‘jk,,,q’k,,.(tm)
Z . k. y.,)F H(t)(Wo) - - FE™ (t,)(%0)

Kly ,
+q Z 1t qu’ Z i) F¥(4)(3o) -
t1 eLTq 1
The one-to-one correspondence between the summation set

{(w, s, t,)lu € LS, t; € LTy } and LT, together with the recursion

formulas (7.9), (I1.2.17), (I1.2.18) now yields the result. a

Comparing Theorems 7.3 and I1.2.6 we obtain:

Theorem 7.4. A Rosenbrock method (7.4) with J=f'(y,) is of order p iff

Y ob®i(t)=—~  for o(t)<p. (7.11)
j a

2
FL'_.
N

The expressions & j(t) simplify, if we introduce the abbreviation
ﬂij = aij + 71] . (7.12)

The order conditions (7.11) for all trees up to order 5 are given in Table 7.1.
A further simplification of the order conditions (7.11) is possible if

Vi = for all ¢ (7.13)

(It is unfortunate that in the current literature the letter  is used for the
parameter in (7.4) as well as for y(¢) in (7.11) and we hope that no confusion
will arise). In the same way as for DIRK methods, the summations in the
expressions for ®;(¢) in the 5th column of Table 7.1 again contain more
terms than the corresponding expressions for explicit RK methods, since
the matrix v,; (and hence §3;;) contains non-zero elements in the diagonal.
The difference is that here these diagonal v appear only for singly-branched
vertices (see Definition 7.2). Therefore the procedure explained in Section
IV.6 (see Formulas (6.1’) and (6.1”) must be slightly modified and leads to
order conditions of the form

Zb i) =p7) (7.10)

where the polynomials pt('y) are listed in the last column of Table 7.1.
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Table 7.1. Trees and order conditions up to order 5
o(t) |t graph  |y(t) | &;(t) pe(7)
1 T *j 1 1 1
2 |tn /j"k 2 Ekﬁjk 1/2—7
3 |ta ijl 3| Xk ik 1/3
1
ta2 >jk 6 Zk,zﬂjkﬂkl 1/6 — v ++2
k., 1
4 t41 \IJ/“‘ 4 Ek,l,m QRO m 1/4
1
taz m\>jk 8 | Xokm jkBricjm | 1/8 — /3
1
te3 >j{m 12 Zk,l,m ﬂjkaklakm 1/12 —')‘/3
m
tas 15’( 24 | 3k im BikBriBim | 1/24 —7/2 4397 /2-~°
J
P l1k
5 ts51 W 5 Za]'kajlajmajp 1/5
ol
t52 p\f%k 10 | > ajpBriajmajy | 1/10 —v/4
l,m
t53 P\>j!ﬁ . 15 Eajko‘klakmajp 1/15
tss p\éjk 30 | Y ajkBriBimajp |1/30 —v/4++%/3
Pyl
tss | ™4 20 | Y akBriajmBmp | 1/20 —v/4 ++2/3
Pe 51
tso | M | 20 | EBikariakmary (1/20-7/4
1
ts7 jkp 40 | Y BjkariBimaky | 1/40 — 5v/24 +~7/3
P,m
tss P ;" 60 | > BjkBricimarp 1/60 —v/6 +~%/3
m
ts0 lgj* 120 | 3 BikBriBimBmp | 1/120 — 7/6 + 4% — 2¢° + 4%

The Stability Function

If we apply Method (7.4) to the test equation y' = My and if we assume
J=f"(yy)=A then the numerical solution becomes y, = R(h))y, with

R(z) =1+ 2bT(I - 2zB)~'1 (7.14)

where we have used the notation b7 =(b,,...,b,) and B=(8,;);;_,. Since
B is a lower triangular matrix, the stability function (7.14) is equal to that
of a DIRK-method with RK-matrix B. Properties of such stability functions
have already been investigated in Section IV.6.
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Construction of Methods of Order 4

In order to construct 4-stage Rosenbrock methods of order 4 we list, for
convenience, the whole set of order conditions (c.f. Table 7.1.).

* by +b,+b;+b,=1 (7.15a)
S bBytbBy + b,y = % -7 =pu(7) (7.15b)

A\ by +byaf +byaf = '}; (7.15¢)
> bsB3585 + b4(B4385 + BasBs) = 213- — 1 +7% =ps(7) (7.15d)

V byad + byad +b,0d = % (7.15¢)

1
\> byorgagy By + byay(ayyBy + agsfs) = < — I P42(7) (7.15f)
1
>/ byBsy03 + by (Baz @i + Basal) = 12 = Pa3(7) (7.15g)

1 ¥ 3
§ byB43B320; = 273 + 5’72 —7° = pua(7) (7.15h)

Here we have used the abbreviations

a; = Zo‘ij’ B = Zﬂij . (7.16)

For the sake of step size control we also look for an embedded formula
(Wolfbrandt 1977, Kaps & Rentrop 1979)

~—

Y=Y + szkj (7.17)

J=1

which uses the same k;-values as (7.4), but has different weights. This
method should have order 3, i.e., the four conditions (7.15a)-(7.15d) should

be satisfied also for the Ei. These equations constitute the linear system

1 1 1

1 b, 1

0 B B Ba b, _ 1/2 —« (7.18)
0 o2 o al ’1;3 - 1/3 ’ ’

0 0 B8, Y88/ \b, 1/6 —y ++2

Whenever the matrix in (7.18) is regular, uniqueness of the solutions of the
linear system implies b, =b; (i=1,...,4) and the approximation ¥, cannot
be used for step size control. We therefore have to require that the matrix
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(7.18) be singular, i.e.,

(Baei — Bua3)BsaBa = (Brai — Pes Zﬂ4] . (7.19)

This condition guarantees the existence of a 3rd order embedded method
(7.17), whenever (7.15) possesses a solution. The computation of the coef-
ficients «;;, B;;, 7, b; satisfying (7.15), (7.16) and (7.19) is now done in the
following steps:

Step 1: Choose v > 0 such that the stability function (7.14) has desirable
stability properties (c.f. Table 6.3).

Step 2: Choose a,, a;, a, and b,, b,, by, b, in such a way that the three
conditions (7.15a), (7.15¢), (7.15€) are fulfilled. One obviously has four
degrees of freedom in this choice. Observe that the (b;, ;) need not be the
coefficients of a standard quadrature formula, since ) b,a; =1/2 need not
be satisfied.

Step 3: Take (3,4 as a free parameter and compute 3,,0, from (7.15h), then
(B42B5+By3P3) from (7.15d). These expressions, inserted into (7.19) yield
a second relation between 3;, f;, B, (the first one is (7.15b)). Eliminating
(04845 +b305,) from (7.15d) and (7.15g) gives

byBys(Bras — Byad) = Bypys(7) — a3ps,(7)

a third linear relation for 3;, B3, 8;. The resulting linear system is regular
iff b,0,50457(3y — 1) #0.

Step 4: Once the (] are known we can find 3;, and 8,, from the values of
Bs2B3 s (Ba2B2+B43Ps) obtained in Step 3.

Step 5: Choose ag,, a4y, 043 according to (7.15f). One has two degrees of
freedom to do this. Finally, the values a;, 8! yield a;;, 8;; via condition
(7.16).

Most of the popular Rosenbrock methods are special cases of this con-
struction (see Table 7.2). Usually the remaining free parameters are chosen
as follows: if we require

oy =0, Qg =ag, and oy =ay (7.20)

then the argument of f in (7.4) is the same for i =3 and i =4. Hence, the
number of function evaluations is reduced by one. Further free parameters
can be determined so that several order conditions of order five are satisfied.
Multiplying the condition (7.15g) with o, and subtracting it from the order
condition for the tree ¢z yields

byByses(as — ap) = Psg(7) — @3Pas(7) - (7.21)
This determines 3,3. The order condition for t5, can also easily be fulfilled
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Table 7.2 Rosenbrock methods of order 4

method ~ parameter choices A(a)- | |R(o0)|
stable

GRK4A 0.395 az = 0.438, az = 0.87 /2 0.995

(Kaps-Rentrop 79) by = 0.25

GRKA4T 0.231 az; =2v,(7.22),53 =0 89.3° | 0.454

(Kaps-Rentrop 79)

Shampine (1982) | 0.5 az =2v,(7.22),53 =0 w/2 | 1/3

Veldhuizen (1984) | 0.225708 | az = 2v, (7.22), b3 =0 89.5° | 0.24

Veldhuizen (1984) | 0.5 as =2y,a3 =05,b3=0|x/2 [1/3

L-stable method | 0.572816 | az = 2v, (7.22), b3 = 0 /2 0

in Step 2. If a; =a, (see (7.20)) this leads to the restriction
o = 1/5 —a,/4
37 1/4-a,/3
In Table 7.2 we collect some well-known methods. All of them satisfy (7.20)
and (7.21) (Only exception: the second method of van Veldhuizen for v =
0.5 has 8,; = 0 instead of (7.21)). The definition of the remaining free

parameters is given in the first two columns. The last columns indicate
some properties of the stability function.

(7.22)

Higher Order Methods

As for explicit Runge-Kutta methods the construction of higher order meth-
ods is facilitated by the use of simplifying assumptions. First, the condition

dobB=b1-0a;), J=1,...,8 (7.23)
i=j
plays a role similar to that of (II.1.12) for explicit Runge-Kutta methods.
It implies that the order condition of the left-hand tree in Fig.7.1 is a con-
sequence of the two on the right-hand side. A difference to Runge-Kutta
methods is that here the vertex directly above the root has to be multiply-
branched.
The second type of simplifying asumption is (with g, :Ef___l B

.

j-1 a2
Zajkﬂk=7, J=2,...,8. (7.24)
k=1
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It has an effect similar to that of (I1.6.7). As a consequence of (7.24) the
order conditions of the two trees in Fig. 7.2 are equivalent. Again the vertex
marked by an arrow has to be multiply-branched.

The use of the above simplifying assumptions has been exploited by
Kaps & Wanner (1981) for their construction of methods up to order 6. Still
higher order methods would need generalizations of the above simplifying
assumptions (in analogy to (II.7.12) and (IL.7.13)).

/ / \

! H oot

1. A [ H DR .

B ; .‘ \ o

e s K SR K

and \ ’ \ ‘

\ / \ ’
Mot AN

Fig. 7.1. Reduction with (7.23) Fig. 7.2. Reduction with (7.24)

Implementation of Rosenbrock-Type Methods

A direct implementation of (7.4) requires, at each stage, the solution of a
linear system with the matrix I — h+,;J and also the matrix-vector multi-
plication J - }°v;.k;. The latter can be avoided by the introduction of the
new variables

i
u; = E Yijkjs t=1,...,8.
i=1

If v,; # 0 for all i, the matrix I' = (7;;) is invertible and the k; can be

recovered from the u;:
1 i—1
ki:—ui—Zcijuj, C = diag('yl_ll,...,‘y;l)—r"l .
Vii =1

Inserting this formula into (7.4) and dividing by h yields

1 i—1 i—1 c. - .
(h’y..I—J>ui=f(y0+2aijuj)+2(%)uj, i=1,...,s
i ji=1 j=1
. (7.25)
v=vt ) i
i=1
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where
(aij)z(aij)r"l, (ml,...,m_‘):(bl,...,bs)rwl

Compared to (7.4) the formulation (7.25) of a Rosenbrock method avoids
not only the above mentioned matrix-vector multiplication, but also the
n? multiplications for (;;2)J. Similar transformations were first proposed
by Wolfbrandt (1977), Kaps & Wanner (1981) and Shampine (1982). The
formulation (7.25) can be found in Kaps, Poon & Bui (1985).

For non-autonomous problems this transformation yields

-1

a
('_}_I 8£(w0,y0))u —-f(%"’ah, y0+z z] ]

hv;; -
. =t (7.26)
Sy of
+ ]2::1(71]—)“] + 7ihb;(w0a Yo)

with «; and v; given by (7.5).

For implicit differential equations of the form (7.2b) the transformed Rosen-
brock method becomes

i—1
1
(WM (“’o:yo))" =f(zg + o;h, y0+za1] ]
=t (7.27)
¢ n9f
+MZ ] u; +7;h Oz 7-(205 Yo)-
Coding

Rosenbrock methods are nearly as simple to implement as explicit Runge-
Kutta methods. The only difference is that at each step the Jacobian 8f/dy
has to be evaluated and s linear systems have to be solved. Thus, one can
take an explicit RK code (say DOPRI5), add four lines which compute 0f /8y
by finite differences (or call a user-supplied subroutine JAC which furnishes
it analytically); add further a call to a Gaussian DEComposition routine,
and add to each evaluation-stage a call to a linear SOLver. Since the method
is of order 4(3), the step size prediction formula

ne

h,, =h- min{ﬁ., max<0.2, 0.9-(Tol/err)1/4>} (7.28)

seems appropriate.
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However, we want the code to work economically for non-autonomous
problems as well as for implicit equations. Further, if the dimension of the
system is large, it becomes crucial that the linear algebra be done, whenever
possible, in banded form. All these possibilities, autonomous or not, implicit
or explicit, 8f/dy banded or not, B banded or not, 8f/dy analytic or not,
(... that is the question”) lead to 25 different cases, for each of which
the code contains special parts for high efficiency. This makes it 16 pages
long (code ROS4). Needless to say, it works well on all stiff problems of
Section IV.1. A more thorough comparison and testing will be given in
Section IV.10.

The “Hump”

On some very stiff equations, however, the code shows a curious behaviour:
consider the Van der Pol equation in singular perturbation form (1.5’) with

e=10"% 4,(0)=2, u,(0)=—0.66. (7.29)

We further select method GRK4T (Table 7.2; each other method there be-
haves similarly) and Tol=7-10-%. Fig.7.3 shows the numerical solution
y, as well as the step sizes chosen by the code. There all rejected steps are
indicated by an x.

Curious step size drops (by a factor of about 10—3) occur without any
apparent exterior reason. Further, these drops are accompanied by a huge
number of step rejections (up to 20). In order to understand this phe-
nomenon, we present in the left picture of Fig.7.4 the ezact local error as
well as the estimated local error ||y,—7, || at £ =0.5925 as a function of the step
size h (both in logarithmic scale). The current step size is marked by large
symbols. The error behaves like C - h® only for very small h (< 10-¢ =¢).
Between h = 10-5 and the step size actually used (&~ 10-2) the error is
more or less constant. Whenever this constant is larger than Tol (horizontal
broken line), the code is forced to decrease the step size until A ~ ¢. As
a first remedy, we accelerate this lengthy process, as Shampine (1982) also
did, by more drastical step size reductions (h,,,,, =h/10) after each second
consecutive step rejection. It also turns out (see right picture of Fig.7.4)
that the effect disappears in the neighbourhood of the actual step size for
the L-stable method (where R(c0)=0). Methods with R(co) =0 and also
ﬁ(oo):O have been derived by Kaps & Ostermann (1990).

A more thorough understanding of these phenomena is possible by the

rancidaratinn af cinonlar nartnirhatian nrahlame ((thantar VT
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solution
1| first component

-2
10 step size

1074

o Bk B, b

1076

Fig. 7.3. Step sizes for GRK4T at Equation (1.5’)

H . L H o, . . . . L
1076 1074 1072

L-stable method To2 }

NFo....1074 L

1076+
exact local error
est. local ergor

exact local error
est. local error

Fig. 7.4. Study of local error for (1.5’) at = 0.5925

Methods with Inexact Jacobian (W-Methods)

“The relevant question is now, what is the cheapest type
of implicitness we have to require.”

(Steihaug & Wolfbrandt 1979)

All the above theory is built on the assumption that J is the exact Jacobian
8f /8y. This implies that the matrix must be evaluated at every step, which
can make the computations costly. The following attempt, due to Steihaug
& Wolfbrandt (1979), searches for order conditions which assure classical
order for all approximations A of 8f/8y. The latter is then maintained over
several steps and is just used to assure stability. The derivation of the order
conditions must now be done somewhat differently: if J is replaced by an
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arbitrary matrix A, Formula (7.6) becomes

(k}'j)(q)|h=0= ‘l(fj(gj))(q_l)h:o +4q Z Aé Z’ij(kkK)(q—l)h:o (7.30)
K k

where A=(A%)7} k—,, and we obtain
(kf)(Z)!hzozzsz%fKZajk+22A{{fKZ7jk . (7.31;2)
K k K k

Inserted into (7.8), the first term must equal the derivative of the exact
solution and the second must be zero. Similarly, we obtain instead of (7.7;3)

(k)] o =3 R F5 2 aja, (7.31;3)
K,L k,l
+3-22f1'£f1},{fLZajkakt+3'22f}£A§fLZajk‘Ykl
KL k,l K,L Py
+3'22AIJ{ i{ LZ’ijakz+3'22AﬁAffLZ’ij7kz
K,L k,l K,L k,l

and the order conditions for order three become

*3 ij=1

k
k
‘ > b =0
ke ,1

UVH
-~

1
>k
I
>k
3

ijajkak, =1/6
Y e =0
Dbt =0
2 b =0

(7.32)

For a graphical representation of the elementary differentials in (7.31;q) and
of the order conditions (7.32) we need trees with two different kinds of ver-
tices (one representing f and the other 4). Asin Section I1.14 we use “mea-
gre” and “fat” vertices (see Definitions I1.14.1 to I1.14.4). Not all trees with
meagre and fat vertices (P-trees) have to be considered. From the above
derivation we see that fat vertices have to be singly-branched (derivatives
of the constant matrix A are zero) and that they cannot be at the end of a
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branch. We therefore use the notation

W = { P-trees; end-vertices are meagre and

fat vertices are singly-branched } (7.33)

and if the vertices are labelled monotonically, we write LTW.

Definition 7.5. The elementary differentials for trees t € TW are defined
recursively by

Fl(1)(y) = f'(y)

and

> Ficn®) (FR @) FE (2,)())

Klv'"vK‘m .
FJ(t)(y) = ift= a[t;u ..yt (meagre root)

> Af - F¥(ty)(y) ift=,[t,] (fat root).
K

Definition 7.6. For t € TW we let ®;(r) =1 and

S e, B ()8 () = [t t,)]
klv-"1k7u

3 ,(t) =
Z’ij‘l’k(tﬂ ift=[t].
k

We remark that T (the set of trees as considered for Runge-Kutta meth-
ods) is a subset of TW and that the above definitions coincide with Def-
initions 11.2.3 and 11.2.9 (c.f. also Formulas (II.2.18) and (IL.2.19)). The
general result is now the following

Theorem 7.7. A W-method (7.4) with J=A arbitrary is of order p iff

1 .
Z b;®,(t) = 5@ for t € T with o(t) < p, and

- 7(?)
> b;®(t) =0 fort € TW\ T with o(t) < p .
J
The proof is essentially the same as for Theorems 7.3 and 7.4. |

The number of order conditions for W-methods is rather large (see Ta-
ble 7.3), since each tree of T' with « singly-branched vertices gives rise to 2%
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Table 7.3. Number of order conditions for W-methods

order p 1 2 3 4 5 6 7 8
no. of conditions 1 3 8 21 58 166 498 1540

order conditions (in the case of symmetry some may be identical). Therefore,
W-methods of higher order are best obtained by extrapolation (see Section
Iv.9).

The stability investigation for linearly implicit methods with 4 # f'(y,)
is very complicated. If we linearize the differential equation (as in the be-
ginning of Section IV.2) and assume the Jacobian to be constant, we arrive
at a recursion of the form

Y1 = R(hf'(yo), hA)y, -

Since, in general, the matrices f'(y,) and A cannot be diagonalized simulta-
neously, the consideration of scalar test equations is not justified. Stability
investigations for the case when || f'(y,)— A|| is small will be considered in
Section IV.11.

Exercises

1. (Kaps 1977). There exists no Rosenbrock method (7.4) with s =4 and
p=>5. Prove this.

2. (Ngrsett & Wolfbrandt 1979). Generalize the derivation of order condi-
tions for RK-methods with the help of B-series (Section II.11, page 247)
to Rosenbrock methods.

Hint. Prove that, for a B-series B(a, y,) with a : T — R satisfying
a(0)=o0,
hf'(yo)B(a,y,) = B(a, y,)

is again a B-series with coefficients

() {H0R(8) =1

0 else .

3. Cooper & Sayfy (1983) consider additive Runge-Kutta methods

i—1 1

9: =Y +h2a,-jf(:c0 +th7 gj)+hJZ’7ij9j t=1,...,8+1
j=1 j=1

Y1 = 9s41 (7.34)
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i1 i
whose coeflicients satisfy Z o =c;, Z n;;=0.
j=1 j=1
a) Prove that (7.34) is equivalent to (7.4) whenever o, ;=b, and

(m5) (i) = (ei5) (35 - (7.35)
Here all matrices are of dimension (s+1) X (s+1). The last line of (7ij)

need not be specified since the last column of () is zero.

b) If the coefficients of (7.34) satisfy a;; ; # 0 for all 4, then we can
always find an equivalent method of type (7.4).

. (Verwer 1980, Verwer & Scholz 1983). Derive order conditions for Rosen-
brock methods “with time-lagged Jacobian”, i.e., methods of type (7.4)
where J is assumed to be f'(y(zy—wh)). If w is the step ratio h,;;/h,
this allows re-use of the Jacobian of the previous step.

. (Kaps & Ostermann 1989). Show that some order conditions of (7.32)
can be shifted to higher orders if it is assumed that

f'(y) = J = O(h) .

This makes the conditions of Exercise 4 independent of w.

Result. The number of order-shifts is equal to the number of fat nodes.
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“These have not been used to any great extent ...”
(S.P. Ngrsett 1976)

“However, the implementation difficulties of these methods
have precluded their general use; ...” (J.M. Varah 1979)

“Although Runge-Kutta methods present an attractive alter-
native, especially for stiff problems, ... it is generally believed
that they will never be competitive with multistep methods.”

(K. Burrage, J.C. Butcher & F.H. Chipman 1980)

“Runge-Kutta methods for stiff problems, we are just begin-
ning to explore them ...” (L. Shampine in Aiken 1985)

If the dimension of the differential equation y' = f(x,y) is n, then the s-stage
fully implicit RK-method (3.1) involves a n - s-dimensional nonlinear system
for the unknowns g;,...,g,. An efficient solution of this system is the main
problem in the implementation of an implicit RK-method.

Among the methods discussed in Section IV.5, the processes Radau ITA
of Ehle, which are L-stable and of high order, seem to be particularly promi-
sing. Most of the questions arising (stopping criteria for the simplified New-
ton iterations, efficient solution of the linear systems, starting values for
the iterations and the selection of the step sizes) are discussed here for the
particular Ehle method with s =3 and p=5. This then constitutes a de-
scription of the code RADAUS5 of the appendix. We also describe briefly our
implementation of the diagonal implicit method SDIRK4 (Formula (6.16)).

An adaptation of RADAUS to the 7th order and 9th order Radau ITA
methods has been realized by Reymond (1989); an independent implementa-
tion of the 5th order Radau method is the code FIRK5C, written by Th. Speer
(1989), with which we experimented during our studies.

Reformulation of the Nonlinear System

In order to reduce the influence of round-off errors we prefer to work with
the smaller quantities

zZ;,=6;,—Y - (8.1)
Then (3.1a) becomes
z; =hZaijf(:co+cjh,yo+zj) t=1,...,s. (8.2a)

j=1
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Whenever the solution zy,..., z, of the system (8.2a) is known, then (3.1b)
is an explicit formula for y;. A direct application of this requires s additional
function evaluations. These can be avoided, if the matrix A =(a;;) of the
RK-coefficients is nonsingular. Indeed, (8.2a) can be written as

% hf(zg + crh,yy +2)
| =4 s ,
Zs hf(zo +Cah7y0 +zs)
so that (3.1b) is seen to be equivalent to
y=u+ Y dz (8.2b)
i=1
where
(dyyeovydy) = (by,...,b,)A . (8.3)

For the 3-stage Radau ITA method (Table 5.6) the vector d is simply (0,0,1),
since b, =a,; for all ¢.

Another advantage of Formula (8.2b) is the following: the quantities
24y...,2, are computed iteratively and are therefore inaccurate. The actual
evaluation of f(z, + c;h,y, + 2;) would then, due to the large Lipschitz con-
stant of f, amplify these errors, which then “can be disastrously inaccurate
for a stiff problem” (L.F. Shampine 1980).

Simplified Newton Iterations

For a general nonlinear differential equation the system (8.2a) has to be
solved iteratively. In the stone-age of stiff computation (i.e., before 1967)
people were usually thinking of simple fixed-point iteration. But this trans-
forms the algorithm into an explicit method and destroys the good stability
properties. The paper of Liniger & Willoughby (1970) then showed the
advantages of using Newton’s method for this purpose. Newton’s method
applied to system (8.2a) needs for each iteration the solution of a linear
system with matrix

I- hau%ﬁ(wo +tehy+21) e —hau%ﬁ(mo +c,hyyy + 2,)
—ha,lg—i(wo +ehyyy+2z) ... I-— ha“%f(:co + ¢, h,yo + 2,)

In order to simplify this, we replace all Jacobians %‘5(:30 + ¢;h,y, + 2;) by
an approximation
of

J~ —a—';(wo,yO) .
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Then the simplified Newton iterations for (8.2a) become
(I -hA®J)AZ* = —-Z* + H(AQ I)F(Z¥)
gkl _ 7k + AZk (8'4)

Here Zk =(zf,...,2%)T is the k-th approximation to the solution, AZk =
(Azk,..., Azf)T are the increments and F(Z*) is an abbreviation for
e\ T
F(Z*) = (f(zg + ¢ hyyo + 21), - o f(zo + ¢,hyyo + 2,))

Each iteration requires s evaluations of f and the solution of a n - s-dimen-
sional linear system. The matrix (I — hA ® J) is the same for all iterations.
Its LU-decomposition is done only once and is usually very costly.

Stopping Criterion

“It is clear that 7 must be smaller than ... However,
the smaller 7 is made, the more it costs to compute y*.
Experiments say that 7 a great deal smaller than ¢ does
not improve the solution ...” (L.F. Shampine 1980)

“We agree with most of this. But that we should need 7
smaller than ¢ is not obvious and may not be correct ...”
(S.P. Ngrsett & P.G. Thomsen 1986)

This question is closely related to an estimation of the iteration error. Since
convergence is linear, we have

|AZ**!|| < ©||AZ¥||, hopefully with © <1. (8.5)
Applying the triangle inequality to
Zk+l _7* = (Zlc+1 _ Zk+2) + (Zk+2 _ Zk+3) +...

(where Z* is the exact solution of (8.2a)) yields the estimate

||Zk+1 _ Z*“ _<_

Il - (8.6)
The convergence rate © can be estimated by the computed quantities
= lazZ*|/Iaz*], k21, (8.7)

It is clear that the iteration error should not be larger than the local dis-
cretization error, which is usually kept close to Tol. We therefore stop the
iteration when

O,
1-0,

Ml|AZ%|| < k- Tol with g, = (8.8)
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and accept Z*t! as approximation to Z*. This strategy can only be applied
after at least two iterations. In order to be able to stop the computations
after the first iteration already (which is especially advantageous for linear
systems) we take for k=0 the quantity

ng = (max(n,, Uround))”®

where 7, is the last 7, of the preceding step. It remains to make a good
choice for the parameter « in (8.8). To this end we applied the code RADAU5
for many different values of k between 10 and 10—# and with some different
tolerances Tol to several differential equations. The observation was that
the code works most efficiently for values of x around 10-! or 10-2.

It is our experience that the code becomes more efficient when we allow a
relatively high number of iterations (e.g. k,,,, =7 or 10). During these k,,,
iterations, the computations are interrupted and restarted with a smaller
stepsize (for example with h:=h/2) if one of the following situations occurs
a) there is a k with ©, > 1 (the iteration “diverges”);

b) for some k,
@k'mnz—k

—* ____||AZ* . . .
1=, |AZ"|| > & - Tol (8.9)

The left-hand expression in (8.9) is a rough estimate of the iteration error to
be expected after k,,,, —1 iterations. The norm, used in all these formulas,
should be the same as the one used for the local error estimator.

The Linear System

An essential gain of numerical work for the solution of the linear system (8.4)
is obtained by the following method, introduced independently by Butcher
(1976) and Bickart (1977), which exploits with much profit the special struc-
ture of the matrix I—hA ® J in (8.4).

The idea is to premultiply (8.4) by (hA)~! ® I (we suppose here that
A is invertible) and to transform A~! to a simple matrix (diagonal, block
diagonal, triangular or Jordan canonical form)

T'A7'T=A. (8.10)
With the transformed variables W* = (T'-! @ I)Z¥, the iteration (8.4) be-
comes equivalent to
(R ANQI-IQNAW* = —h Y (AQI)W* + (T @ )F((T ® I)W*)
W = wk 4 AWE (8.11)

We also replace Z* and AZ* by Wk and AW* in the formulas (8.7)-(8.9)
(and thereby again save some work).
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For the sequel, we suppose that the matrix A~! has one real eigenvalue ¥
and one complex conjugate eigenvalue pair a+i3. This is a typical situation
for 3-stage IRK-methods such as Radau IIA. With y=h-15,a=h"1a,8 =
h~13 the matrix in (8.11) becomes

~vI—-J 0 0
0 ol —J —BI (8.12)
0 Bl  al-J

so that (8.11) splits into two linear systems of dimension n and 2n, re-
spectively. Several ideas are possible to exploit the special structure of the
2n X 2n-submatrix. The easiest and numerically most stable way has turned
out to be the following: transform the real subsystem of dimension 2n into
an n-dimensional, complex system

((a+iB)I—J)(u+iv) = a +1b (8.127)

and apply simple Gaussian elimination. For machines without complex
arithmetic, one just has to modify the linear algebra routines. Then a com-
plex multiplication consists of 4 real multiplications and the amount of work
for the solution of (8.12’) becomes approximately 4n%/3 operations. Thus
the total work for system (8.12) is about 5n3/3 operations. Compared to
(3n)3/3, which would be the number of operations necessary for decom-
posing the untransformed matrix I —hA ® J in (8.4), we gain a factor of
about 5 in arithmetical operations. Observe that the transformations, such
as Zk=(T ® I)W¥, need only O(n) additions and multiplications. The gain
is still more drastic for methods with more than 3 stages.

Transformation to Hessenberg Form

For large systems with a full Jacobian J a further gain is possible by trans-
forming J to Hessenberg form
*

SyS=H=|" (8.13
=H=|" . | 13)

* %

This procedure was originally proposed for multistep methods by Enright
(1978) and extended to the RK case by Varah (1979). With the code
ELMHES, taken from LINPACK (1979) this is performed with 2n3/3 op-
erations. Because the multiplication of S with a vector needs only n2/2
operations (observe that S is triangular) the solution of (8.11) is found in
O(n?) operations, if the Hessenberg matrix H is known. This transformation
is especially advantageous, if the Jacobian J is not changed during several
steps.
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Starting Values for the Newton Iteration

A natural and simple choice for the starting values in the iteration (8.4) (or
equivalently (8.11)), since the exact solution of (8.2a) satisfies z; = O(h),
would be

2! =0, i=1,...,s. (8.14)

However, better choices are possible in general. If the implicit Runge-Kutta
method satisfies the condition C(n) (see Sections IV.5 and II.7) for some
n < s, then

z; = y(xg + c;h) — y, + O(R"11) . (8.15)

Suppose now that ¢; #0 (¢=1,...,s) and consider the interpolation poly-
nomial of degree s, defined by

q(0) =0

q(c;) = z; i=1,...,s.
Since the interpolation error is of size O(h**1) we obtain together with (8.15)
y(zo +th) —yo — q(t) = O(A™?)

(cf. Theorem 7.9 of Chapter II for collocation methods). We use the values
of ¢(t) also beyond the interval [0,1] and take

z? =q(l4+we))+Y—yy, t=1,...,8, w=h,/ b (8.14%)

as starting values for the Newton iteration in the subsequent step. Numerical
experiments with the 3-stage Radau ITA method have shown that (8.14’)
usually leads to a faster convergence than (8.14).

Step Size Selection

One possibility to select the step sizes is Richardson extrapolation (cf. Sec-
tion II.4). We describe here the use of an embedded pair of methods which
is easier to program and which makes the code more flexible. The following
formulas are for the special case of the 3-stage Radau IIA methods; similar
ideas are also applicable to other implicit Runge-Kutta methods.

Since our method is of optimal order, it is impossible to embed it effi-
ciently into one of still higher order. Therefore we search for a lower order
method of the form

3
=y + h(bof(wo,yo) + 2 bif(zg + cih’gi)) (8.16)
i=1
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where g,,9,,9; are the values obtained from the Radau IIA method and

30 # 0 (the choice 30 =7, =71, where ¥ is the real eigenvalue of the matrix
A-1, again saves some multiplications). The difference

3
91— 1 = Yohf(2o,90) + Z(bi = b)hf(zg + c;ihy9:)

=1

which can also be written in the form
U — Y1 = Yohf(2e:Yp) + €12 + €32, + €325, (8.17)

then serves for error estimation. In order that 7, —y; = O(h*) the coefficients
have to satisfy

(e1,€,€5) = 7?“(—13 — 76,13 + 7V6, 1) . (8.18)

Unfortunately, for y' = Ay and hA — oo the difference (8.17) behaves like
U1 —Y; = YohAyy, which is unbounded and therefore not suitable for stiff
equations. We propose (an idea of Shampine) to use instead

err = (I —hyJ) (9, —v;) - (8.19)

The LU-decomposition of ((hy,)~1I—J) is available anyway from the pre-
vious work, so that the computation of (8.19) is cheap. For h — 0 we still
have err =O(h*) and for hA — oo (if y' =Ay and J =) we obtain err — —1.
For the step size prediction we now use the usual formula

Tol )0.25

h = ch o | —— 8.20
new fac old (“err” ( 2 )
Here, the safety factor fac is proposed to depend on Newt, the number of
Newton iterations of the current step and on the maximal number of Newton
iterations k,,,, ., say, as: fac=0.9 x (2k,,,,+1)/(2k,,,, + Newt).

In the code RADAUS (see appendix) we further included the following

strategies:

a) If only one Newton iteration (Newt = 1) was necessary to satisfy (8.8)
or if the last 8, was very small, say 0p,,; < 10~3, then we don’t re-
compute the Jacobian in the next step. As a consequence, the Jacobian
is computed only once for linear problems with constant coefficients (as
long as no step rejection occurs).

b) If no Jacobian is recomputed and if the step size h
satisfies

defined by (8.20),

new’

clhold S hnew S czhold (8'21)

with, say ¢; =1.0 and ¢, =1.2, then we retain h_;; for the following step.
This saves the LU-decomposition of the matrix (8.12).
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c) In the first step and after every rejected step we used instead of (8.19)
the expression

err; = (I—h‘)’oJ)_1 [vohf(zg,yo + err) + €12y + €32, + e324] (8:22)

for step size prediction. This requires one additional function evaluation,
but satisfies err; — 0 for hA — oo, as does the numerical solution.

Numerical Study of the Step-Control Mechanism

As a representative example we choose the Van der Pol equation (1.5’) with
e = 10-%, initial values y,(0) = 2, y,(0) = —0.6 and integration interval
0 < z < 2. Fig.8.1 shows four pictures. The first one presents the solution
y,(z) with all accepted integration steps for Tol = 10—¢. Below this, the
step sizes obtained by RADAUS5 are plotted as function of z. The solid
line represents the accepted steps. The rejected steps are indicated by x’s.
Observe the very small step sizes which are required in the rapid transients
between the smooth parts of the solution. The lowest two pictures give the
number of Newton iterations needed for solving the nonlinear system (8.2a),
once as function of z, and once as function of the step-number. The last
picture also indicates the steps where the Jacobian has been changed.

Another numerical experiment (Fig.8.2) illustrates the quality of the
error estimates. We applied the code RADAU5 with Tol =10—* and initial
step size h=10"* to the above problem and plotted at several chosen points
of the numerical solution

a) the exact local error (marked by [J)
b) the estimates (8.19) and (8.22) (marked by + and x respectively)

as functions of h. The large symbols indicate the position of the actually
used step size. Newt is the number of required Newton iterations.

It is interesting to note that the local error behaves like O(h8) (straight
line of slope 6) only for A < ¢ and for large h. Between these regions,
the local error grows like O(h—1) with decreasing h. This is the only region
where the error estimate (8.22) is significantly better than (8.19). Therefore,
we use the more expensive estimator (8.22) only in the first and after each
rejected step. In any way, both error estimators are always above the actual
local error, so that the code usually produces very precise results.
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Fig. 8.1. Solution, step sizes and Newton iterations for RADAU5

Implicit Differential Equations

Many applications (such as space discretizations of parabolic differential
equations) often lead to systems of the form

My' = f(wvy)7 y(‘co) =Y (823)

with a constant matrix M. For such problems we formally replace all f’s

by M-1f and multiply the resulting equations by M. Formulas (8.11) and
(8.19) then have to be replaced by

(AAQM —I®J)AWF = —h~ (A M)W*+ (T '@ I)F((T ® I)W*)

(8.11a)

err = ((h'Yo)—lM - J)—l (f(%ayo) + (h’Yo)_lM(ele te3zy + e3z3)) .
(8.19a)
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Fig. 8.2. Exact local error and the estimates (8.19) and (8.22)
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Here the matrix J is again an approximation to 8f/8y. This implementa-
tion does not use the inverse of M and does not destroy banded or sparse
structures of M and J. It may even be applied to certain problems (8.23)
with singular M (for more details see Chapter VI).

Banded Jacobian

Solving the linear system (8.11a) is done by a decomposition of the matrix
(see (8.12), (8.12%))

(7M0_ ’ (a+ iﬂ[;M - J) : (8.24)

If M and J are banded, the matrices yM—J and (a+:3) M—J remain banded.
The code RADAUS of the appendix has options for banded structures.

An SDIRK-Code

We have also coded, using many of the above ideas, the SDIRK formula
(6.16) together with the global solution (6.17). For this method also, it was
again very important to replace the error estimator y, —; by (8.19).

Here, in contrast to fully implicit Runge-Kutta methods, one can treat
the stages one after the other. Such a serial computation has the advantage
that the information of the already computed stages can be used for a good
choice of the starting values for the Newton iterations in the subsequent
stages. For example, suppose that

z; = vhf(zy +vh,yo + 29)
zy = Yhf(zy + coh, Yy + 2,) + ay R f(zg + YR,y + ;)

are already available. Since for all 7

z; = c;hf(zg,y,) + (Z aijcj)hz(fz + £, F)(20:90) + O(R?)

J

( . . )(a1> ( . )
25 815€5  2lj G ay 205 8s5¢;

one finds o, a, such that

by solving

02 o,z = z5 + O(ha) .

. 0 .
The expression z:(, )= a,2; + a,z, then serves as starting value for the com-

putation of z;. In the last stage one can take 7, which is then available,
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for starting the Newton iterations for g, =y,. The computation of 23, 2,,¥,,
done in this way, needs few Newton iterations and a failure of convergence
is usually already detected in the first stage.

However, when parallel processors are available, the exploitation of the
triangular structure of the RK-matrix may be less desirable. Whereas in
the iteration (8.11) all s function evaluations and much of the linear algebra
can be done in parallel, this is no longer possible for DIRK-methods, when
Zy,...,2; is used in the computations of z, ;.

SIRK-Methods

“The fact that singly-implicit methods have a coefficient
matrix with a one-point spectrum is the key to reducing
the operation count for these methods to the level which
prevails in linear multistep methods.”

(J.C. Butcher, K. Burrage & F.H. Chipman 1980)

In order to avoid the difficulties (in writing an RK-code) caused by the
complex eigenvalues of the RK-matrix A, one may look for methods with
real eigenvalues, especially with a single s-fold real eigenvalue. Such methods
were introduced by Ngrsett (1976). Burrage (1978) provided them with error
estimators, and codes in ALGOL and FORTRAN are presented in Butcher,
Burrage & Chipman (1980). The basic methods for their code STRIDE are
given by the following lemma.

Lemma 8.1. For collocation methods (i.e., for RK-methods satisfying con-
dition C(s) of IV.5), we have

det(I — zA) = (1 — v2)° (8.25)

if and only if
c; =%, t=1,...,s (8.26)

where z,...,z, are the zeros of the Laguerre polynomial L (z) (c.f. For-
mula (6.11)).

Proof. The polynomial det(I—zA) is the denominator of the stability function
(Formula (3.3)), so that by Theorem 3.9

M@ (0) + MCD(0)z + ...+ M(0)2° = (1 — 72)* (8.27)
with M(z) given by (3.17). Computing M()(0) from (8.27) we obtain
1r (s o I or (&
1T -0 =1 = 33 (§) 5 = )

j=0
which leads to (8.26). a
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The stability function of the method of Lemma 8.1 has been studied in
Sections IV .4 (multiple real-pole approximations) and IV.6. We have further
seen (Proposition 3.8) that R(co)=0 when z,+h is a collocation point. This
means that ¢, =1 or y=1/z, for g€ {1,...,s} where 0 < z; <...< z, are
the zeros of L (x). However, if we want A-stable methods, Theorem 4.25
restricts this point to be in the middle (more precisely: ¢=s/2 or s/2+1 for
s even, ¢=(s+1)/2 for s odd). An apparently undesirable consequence of
this is that many of the collocation points lie outside the integration interval
(for example, for s = 5 and ¢ = 3 we have ¢, = 0.073, ¢, = 0.393, ¢, = 1,
¢, =1.970, ¢, =3.515).

Since these methods with v= 1/:cq are of order p=s only, it is easy to
embed them into a method of higher order. Burrage (1978) added a further

stage
s+1

9s41 = Yo + hz as+1,jf(‘co + th, gj)
i=1
where ¢, and a,,, ., are arbitrary and the other a,,, ; are determined
so that the (s+1)-stage method satisfies C(s) too. In order to avoid a
new LU-decomposition we choose a,; ,,; =7. The coefficient ¢, is fixed
arbitrarily as ¢, ; =0. We then find a unique method

s+1
G=vy+h D bf(zg+c;hg;)
i=1
of order s+1 by computing the coefficients of the interpolatory quadrature
rule. An explicit formula for the matrix T which transforms the RK-matrix
A to Jordan canonical form and A~! to a very simple lower triangular matrix

A is given in Exercise 1. It can be used for economically solving the linear
system (8.11).

Exercises

1. (Butcher 1979). For the collocation method with c,,...,c, given by
(8.26) prove that (e.g. for s=4)

1
-1 1
-1 1 ’
-1 1

1

T-YAT =5 T-14-IT = -
v

= e
—
-

where the transformation T satisfies

s - z;L;_y(z;) '
T=(LaE)m ., T7= (;;L_T(;—J)?)
s—1\%;

4j=1
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and L;_,(z) are the Laguerre polynomials.
Hint. Use the identities
T
Ly(=) = Lus(2) = Lya(@),  Lu(®) = Las(2) + ~Ly(2)
and the Christoffel-Darboux formula

Y L)L) =

y—

(L1 (@) En®) = Lusa (9)La(2))

which, in the limit y — z, becomes

Y (Li(@)? = (04 1)Ly (2)L4(2) = L (2)L(2)) -

141



IV.9. Extrapolation Methods

“It seems that a suitable version of an IEM (implicit ex-
trapolation method) which takes care of these difficulties
may become a very strong competitor to any of the general
discretization methods for stiff systems presently known”.

(the very last sentence of Stetter’s book, 1973)

Extrapolation of explicit methods is an interesting approach to solving non-
stiff differential equations (see Section I1.9). Here we show to what extent
the idea of extrapolation can also be used for stiff problems. We shall use
the results of Section II.8 for the existence of asymptotic expansions and ap-
ply them to the study of those implicit and linearly implicit methods, which
seem to be most suitable for the computation of stiff differential equations.
Our theory here is restricted to classical h — 0 order, the study of stability
domains and A-stability.

A big difficulty, however, is the fact that the coefficients and remainders
of the asymptotic expansion can explode with increasing stiffness and the A-
interval, for which the expansion is meaningful, may tend to zero. Bounds on
the remainder which hold uniformly for a class of arbitrarily stiff problems,
will be discussed later in Section VI.4.

Extrapolation of Symmetric Methods

It is most natural to look first for symmetric one-step methods as the basic
integration scheme. Promising candidates are the trapezoidal rule

h
Yir1 =Y + ’Z_(f(wivyi) + f(wi+1,yi+1)) (9.1)

and the implicit mid-point rule

h1
Yisr1 =¥ + hf(%' t33 (Yip1 + y,-)) . (9.2)

We take some step-number sequence n, < n, < n, < ..., set hj=H/n; and

define
Ty = yp,(zo + H) , (9.3)
the numerical solution obtained by performing n j steps with step size h;.
As described in Section I1.9 we extrapolate these values according to
T — T
T 1,k

_ j-
ikt = Tje + h

——_—(nj/n] 1 (9.4)



IV.9. Extrapolation Methods 143

Fig. 9.1. Stability domains for the extrapolated trapezoidal rule

This provides an extrapolation tableau

T,
T, Ty

9.5
Ty Ty Ti (5:5)

B

all entries of which represent diagonally implicit RK-methods (see Exer-
cise 1). Due to the symmetry of the basic schemes (9.1) and (9.2), T}, is a
DIRK-method of order 2k. In order to study the stability properties of these
methods, we apply them to the test equation y' = Ay. For both methods,
(9.1) and (9.2), we obtain
1422
Yit1 = l—_ﬂ Y:
2

so that the stability function R;(2) of the method T}, is given recursively

by (2z=HX
y ( ) L™
Rj1<z)=<1_ L’) , (9.6a)

2n;
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Rj,k(z) - Rj—l,k(z)
(nj/nj—lc)2 -1

Already Dahlquist (1963) noticed that for n, =1 and n, =2 we have

1 1+2\* (142 5
R22(2)=§<4(1_% - i——_g —>§>1 forz - o0, (9.7)
an undesirable property when solving stiff problems. Stetter (1973) proposed
taking only even or only odd numbers in the step-number sequence {nJ}
Then, all stability functions of the extrapolation tableau tend for z — oo to
1 or —1, respectively. But even in this situation extrapolation immediately

destroys the A-stability of the underlying scheme (Exercise 2). Fig. 9.1 shows
the stability domains {z; |R;,(z)| < 1} for the sequence {1,3,5,7,9,...}.

R;41(2) = R i(2) + (9.6b)

Smoothing

“Some numerical examples reveal the power of the smooth-
ing combined with extrapolation.” (B. Lindberg 1971)

Another possibility to overcome the difficulty encountered in (9.7) is smooth-
ing (Lindberg 1971). The idea is to replace the definition (9.3) by Gragg’s
smoothing step

~

T, = Sh,-('”o +H), (9.8)

Su(z) = 3 (wale — b) + 204(2) + va(e + 1)) | (99)

With y, (), S,(z) also possesses an asymptotic expansion in even powers of
h. Therefore, extrapolation according to (9.4) is justified. For the stability
function of T};; we now obtain

z \ -1 z \ " _z \ mitl
Ry(z) =2 a7 +2 oy + .
b 41\1- 3% 1- 5% 1- 52

-1
1 1+ 52\ "
-7 (1_4) (9.10)

2n; 2n;

which is an L-stable approximation to the exponential function. The stabil-
ity functions R;;(z) (obtained from (9.6b)) all satisfy R;,(z)=O(z-2) for
z — 0o. For the step-number sequence

{nj} = {1,2,3,4,5’6>7,---} (9.11)

the stability domains of R, ,(z) are plotted in Fig.9.2.
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Fig.9.2. Stability domains of Tikk(z)

The Linearly Implicit Mid-Point Rule

Extrapolation codes based on fully implicit methods are difficult to imple-
ment efficiently. After extensive numerical computations, G. Bader and
P. Deuflhard (1983) found that a linearly implicit (Rosenbrock-type) ex-
tension of the GBS method of Section II.9 gave promising results for stiff
equations. This method is based on a two-step algorithm, since one-step
Rosenbrock methods (7.4) cannot be symmetric for nonlinear differential
equations.

The motivation for the Bader & Deuflhard method is based on Lawson’s
transformation (Lawson 1967)

y(z) = e’ - () (9.12)

where it is hoped that the matrix J ~ f'(y) will neutralize the stiffness.
Differentiation gives

d =e 7% . g(z,e’®c) with g(z,y) = f(z,y) — Jy . (9.13)
We now solve (9.13) by the Gragg algorithm (I1.9.13b)

Ciy1=C_1 + 2he~ 7% 'g(wi’ejmic')

1
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and obtain by back-substitution of (9.12)
e ™y = ey, + 2hg(2,y;) - (9.14)

For evident reasons of computational ease we now replace et*J by the ap-
proximations I + hJ and obtain, adding an appropriate starting and final
smoothing step,

(I - hJ)y1 =Y+ hg(zo)yo) (9.15a.)
(I —hJ)y,p1 = +hd)y;_; + 2hg(z;,y;) (9.15b)

1
Sy () = -2—(3/2,“_1 + Yym41) Where z = z; 4+ 2mh. (9.15c)

Substituting finally g from (9.13), we arrive at (with z =z +2mh, ¢, =z,+ih)

(I =hJI)(y: — %) = hf(zg,90) (9.16a)
(I = hI)(Yiy1 — ¥:) = —(I + RJI)(y; — y;_1) + 2k f(2;,y;) (9.16b)
Sp(z) = %(yZm—l + Yom+1) (9.16¢)

where J stands for some approximation to the Jacobian %ﬁ(wo,yo). Putting

J =0, Formulas (9.16a) and (9.16b) become equivalent to those of the GBS
method. The scheme (9.16b) is the linearly implicit (or semi-implicit) mid-
point rule, Formula (9.16a) the linearly implicit Euler method.

Theorem 9.1 (Bader & Deuflhard 1983). Let f(z,y) be sufficiently often
differentiable and let J be an arbitrary matriz; then the numerical solution
defined by (9.16a,b,c) possesses an asymptotic ezpansion of the form

l
y(@) - Sp(®) = D e;(2)h* + K*2C(a, h) (9.17)

Jj=1
where C(z,h) is bounded for ¢y < © < T and 0 < h < hy. For J # 0 we
have in general e;(z,) # 0.
Proof. Asin Stetter’s proof for the GBS algorithm we introduce the variables
h*=2h, zy=zy+kh*, uy=v,=yy, U, =Yy,
v = (I = hd)Yypqa + B Yz — RS (251, Y21) (9.18)
= (I + hJ)ysp—1 — BJYsr + Rf(T2kY2r) -
Method (9.16a,b) can then be rewritten as

(:‘)Hl) - (:k) (9.19)
k+1 k
e (@ + 5 Vo) — Tyapg + 7 (25

%(f(wz +h*upy) + f(“’Zauk)) + JYaptr — J(%)
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where, from (9.18), we obtain the symmetric representation

Vit t Vg Upyy — U h* x
Yokt1 = — 5 + h*J('—4'——) - 'Z‘(f(mk+17uk+1) - f(wZa“k)) .
Yaiey2 =Br/\ li'/zk+a
9@y || - Dg(zw,yﬂfz‘o >(1 RJ)
-7 B
\ -3 | - - Viry

—y
Yok = Uk
Y2k } >(I+h-7)*
R

9(’2k+1» y2k+1)

Tok-1 Tok ZTok+1 Tok+2 ZT2k+3

Fig.9.3. Symmetry of Method (9.19) (see (9.16b))

The symmetry of (9.19) is illustrated in Fig.9.3 and can be checked analyt-
ically by exchanging u,, ¢ uy, vy © vy, h* & —h*, and ¢} < =} + h*.
Method (9.19) is consistent with the differential equation

u' = f(z,v) = J(v—u), u(zy) = Yo

v' = flz,u) +J(v—u),  v(z) =y
whose exact solution is u(z)=v(z)=y(z), where y(z) is the solution of the
original equation y' = f(z,y). Applying Theorem II.8.9 we obtain

l
y(z) —upe () = Y a;(x)h® + K2 A(a, k)
7= (9.20)

l
y(z) —vpe(2) = Y b;(2)h* + h*?B(,h)

j=1

with a;(zy) =b;(z,) =0. With the help of Formulas (9.18) we can express
the numerical solution (9.16¢) in terms of u,, and v, as follows:

1
'2'(y2m+1 + y2m—1) = (I - thz)—l (vm + th(f(z2m7um) - Jum)) ’

and we obtain for z =z, + 2mh,
y(z) — 5y(2) = (I - h2J7)" (y(w) e

-3 (Hay e (@) + T 0(2) — 0y (9))) )

Inserting the expansions (9.20) we find (9.17). m|
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As an application of this theorem we obtain an interesting theoretical
result on the existence of W-methods (7.4) (with inexact Jacobian). We saw
in Volume I (Exercise 1 of Section II.9 and Theorem I1.9.4) that the Tj . of
the extrapolated GBS method represent explicit Runge-Kutta methods. By
analogy, it is not difficult to guess that the T} , for the above linearly implicit
midpoint rule represent W -methods (more deta.lls in Exercise 3) and we have
the following existence result for such methods:

Theorem 9.2. For p even, there ezists a W-method (7.4) of order p with
s=p(p+2)/4 stages.

Proof. It follows from (9.20) that for z = z;,+2mh the numerical solution
Yr(z) = Yp,,, POssesses an hZ-expansion of the form (9.17) with e;(z,) =0
Therefore, extrapolation yields W-methods of order 2k (in the k-th column).
The result follows by taking {n;} = {2,4,6,8,10,12,...} and counting the
number of necessary function evaluations. (m|

For a stability analysis we apply the method (9.16) with J = ) to the
test equation y' =Ay. In this case Formula (9.16b) reduces to

1+ hA
Yit1 = T-7x Yia

and the numerical result is given by

1 /1+hAymt
Sa(eo +2mh) = sy (1 - h/\) Yo » (9.21)

exactly the same as that obtained from the trapezoidal rule with smoothing
(see Formula (9.10)). We next have to choose a step-number sequence {n;}.
Clearly, n; =2m; must be even. Bader & Deuflhard (1983) proposed taking
only odd numbers m;, since then S (z¢+2m;k) in (9.21) has the same sign

as the exact solution e*?™ity, for all real KA < 0. Consequently they were
led to

{n;} = {2,6,10,14,22,34,50,...} . (9.22)

Putting T}, = S, (2o + H) with h; = H/n; and defining T}, by (9.4) we
obtain a tableau of W-methods (7.4) (Exercise 3). By Theorem 9.1 the k-th
column of this tableau represents methods of order 2k — 1 independent of
the choice of J (the methods are not of order 2k, since ¢;(z,) # 0 in (9.17)).
‘I'he stability function of T}, is given by

1 1+;f—; nj/2—1
R (2) = ooy \12 (9.23)

Ty
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and those of T}, can be computed with the recursion (9.6b). An investigation
of the E-polynomial (3.8) for these rational functions shows that not only
T;,, but also T),, Ty, and Ty are A-stable (Hairer, Bader & Lubich 1982).
The angle of A(a)-stability for some further elements in the extrapolation
tableau are listed in Table 9.1. Stability domains of T}, for £ =2,3,4,5,6
are plotted in Fig.9.4.

Fig.9.4. Stability domains of extrapolated linearly implicit mid-point rule

Table 9.1.  A(a)-stability of extrapolated
linearly implicit mid-point rule

90°

90°  90°

90°  90° 90°

90° 89.34° 87.55° 87.34°

90° 88.80° 86.87° 86.10° 86.02°

90° 88.49° 87.30° 86.61° 86.36° 86.33°

90° 88.43° 87.42° 87.00° 86.78° 86.70° 86.69°




150 IV. Stiff Problems — One Step Methods

Implicit and Linearly Implicit Euler Method

Why not consider also non-symmetric methods as basic integration schemes?
Deuflhard (1985) reports on experiments with extrapolation of the implicit
Euler method

Yip1 =¥+ hf(Zi1¥ig) (9.24)
and of the linearly implicit Euler method
(I = hJ)(Yip1 — ¥i) = hf(=i,9:) (9.25)

where, again, J is an approximation to %(zo,yo). These methods are not
symmetric and have only a h-expansion of their global error. We therefore
have to extrapolate the numerical solutions at z,+ H according to

T,,—-T;
T.. . =T  k + 2k “i-lk (9.26)
Jyk+1 Ik (n:'/n]_k) — 1 ’
so that T}, represents a method of order k.
For both basic methods, (9.24) and (9.25), the stability function of T},

is the same and defined recursively by

z\ "

R;i(2) = (1 - n_) (9.27a)
j
R;i(2) — R 1 4(2)
R, i1(2) = R, 4(2) + 22 e 9.27b
ikr1(2) k(%) (n;/m; ) - 1 ( )
Taking the step-number sequence

{n;} =1{1,2,3,4,5,6,7,...} (9.28)

we have plotted in Fig. 9.5 the stability domains of R, (2) (left picture) and
Ry, _1(2) (right picture). All these methods are seen to be A(a)-stable with
o close to 90°. The values of o (computed numerically) for R, (z) with j < 8
are given in Table 9.2.

We shall see in the chapter on differential algebraic systems that it is
preferable to use the first subdiagonal of the extrapolation tableau resulting
from (9.28). This is equivalent to the use of the step number sequence
{n;} =1{2,3,4,5,...}. Also an effective construction of a dense output can
best be motivated in the setting of DAE systems (Section VI.4).
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Fig.9.5. Stability domains of extrapolated Euler
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Table 9.2.  A(a)-stabiliy of extrapolated Euler

90°

90° 90°

90° 90° 89.85°

90° 90° 89.90° 89.77°

90° 90° 89.93° 89.84° 89.77°

90° 90° 89.95° 89.88° 89.82° 89.78°

90° 90° 89.96° 89.91° 89.86° 89.82° 89.80°

90° 90° 89.97° 89.93° 89.89° 89.85° 89.83° 89.81°
Implementation

Extrapolation methods based on implicit discretizations are in general less
efficient than those based on linearly implicit discretizations. The reason is
that the arising nonlinear systems have to be solved very accurately, so that
the asymptotic expansion of the error is not destroyed. The first success-
ful extrapolation code for stiff differential equations is METAN1 of Bader
& Deuflhard (1983), which implements the linearly implicit mid-point rule
(9-16). In fact, Formula (9.16b) is replaced by the equivalent formulation

Ay, = Ay; 4 +2(I - hJ)_l (hf(‘”i’yi) - Ayi—l) y Ay, = Yit1 Y (9'29)

which avoids a matrix-vector multiplication. The step size and order se-
lection of this code is described in Deuflhard (1983). Modifications in the
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control of step size and order are proposed by Shampine (1987). We have
implemented the following two extrapolation codes (see Appendix):

SODEX is based on the linearly implicit mid-point rule (9.16), uses the
step-number sequence (9.22) and is mathematically equivalent to METAN1.
The step size and order selection in SODEX is with some minor changes that
of the non-stiff code ODEX of Section II.9. We just mention that in the
formula for the work per unit step (I1.9.26) the number A, is augmented by
the dimension of the differential equation in order to take into account the
Jacobian evaluation.

SEULEX is an implementation of the linearly implicit Euler method
(9.25) using the step-number sequence {2,3,4,5,6,7,...} (other sequences
can be chosen as internal options). The step size and order selection is that
of SODEX. The original code (EULSIM, first discussed by Deuflhard 1985)
uses the same numerical method, but a different implementation.

“Neither code can solve the Van der Pol equation problem
in a straightforward way because of overflow ...”
(L.F. Shampine 1987)

A big difficulty in the implementation of extrapolation methods is the
use of “large” step sizes. During the computation of T;; one may easily get
into trouble with exponential overflow when evaluating the right-hand side
of the differential equation. As a remedy we propose the following strategies:

a) In establishing the extrapolation tableau we compare the estimated error
err; = ||TJ-,J-_1 - T]-]-|| with the preceding one. Whenever err. > err._,
for some j > 3 we restart the computation of the step with a smaller H,
say, H=0.5-H.

b) In order to be able to interrupt the computations already after the first
f-evaluations, we require that the step sizes h = H/n; (for ¢ =1 and
t=2) be small enough so that a simplified Newton iteration applied to
the implicit Euler method y =y, +Ahf(z,y), ¢ =z,+h would converge
(“stability check”, an idea of Deuflhard). The first two iterations read

(- hJ)Ao = hf(zg,9) » y(l) =yt 4

(I —hJ)A, = hf(zy + hy™D) - A, . (9.30)

The computations for the step are restarted with a smaller H, if |A,|| >
|Ao|| (divergence of the iteration). Observe that for both methods,
(9.16) and (9.25), no additional function evaluations are necessary. For
the linearly implicit mid-point rule we have the simple relations A, =

Ayg, Ay =73(Ay; — Ayy) (see (9.29)).
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Non-Autonomous Differential Equations

Given a non-autonomous differential equation y' = f(z,y), one has several
possibilities to apply the above extrapolation algorithms:

i) apply the Formula (9.16) or (9.25) directly (this is justified, since all
asymptotic expansions hold for general non-autonomous problems);

ii) transform the differential equation into an autonomous system by adding
z'=1 and then apply the algorithm. This yields

(I = h)(3igs ~ %) = b (o) + 9 (20r0)  (931)

for the linearly implicit Euler method (the derivative %5(%» Yp) can also
be replaced by some approximation). For the linearly implicit mid-point
rule, (9.16a) has to be replaced by (9.31) with ¢ =0, the remaining two
formulas (9.16b) and (9.16c) are not changed.

iii) apply one simplified Newton iteration to the implicit Euler discretization
(9.24). This gives

(I = hd)(Yiy1 — vi) = hf(2i11, ) - (9.32)

The use of this formula avoids the computation of the derivative 8f/0z,

but requires one additional function evaluation for each Tj,. In the

case of the linearly implicit mid-point rule the replacement of (9.16a) by
(9.32) would destroy symmetry and the expansions in h2.

A theoretical study of the three different approaches for the linearly implicit

Euler method applied to the Prothero-Robinson equation (see Exercise 4 be-

low) indicates that the third approach is preferable. More theoretical insight

into this question will be obtained from the study of singular perturbation
problems (Chapter VI).

Implicit Differential Equations

Our codes in the appendix are written for problems of the form

My'=f(z,y) (9.33)
where M is a constant square matrix. The necessary modifications in the
basic formulas are obtained, as usual, by replacing all f's and J's by M1 f
and M-1J, and premultiplying by M. The linearly implicit Euler method
then reads

(M - h'])(?/i+1 -y;) = hf(wivyi) (9.34)
and the linearly implicit mid-point rule becomes, with Ay, = y;,, — v;,

Ay; = Ay, +2(M — h3)7 (hf(z, ) - MAY, ) . (9.35)
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Exercises

1. Consider the implicit mid-point rule (9.2) as basic integration scheme
and define T}, by (9.3) and (9.4).
a) Prove that T}, represents a DIRK-method of order p =2k with s =
ny+n,+...+n; stages.

b) T}, defined by (9.8) and (9.4), is equivalent to a DIRK-method of
order p=2k—1 only.

2. Let R;;(2) be given by (9.6) and assume that the step-number sequence
consists of even numbers only. Prove that R;,(z) cannot be A-stable.
More precisely, show that at most a finite number of points of the imag-
inary axis can lie in the stability domain of R;,(z) (interpret Fig.9.6).

Fig.9.6. How extrapolation destroys A-stability
3. Prove that S, (z), defined by (9.16), is the numerical result of the (2n+1)-
stage W-method (7.4) with the following coeflicients (n=2m):
1/n if 7 =1 and 7 even,
a;=42/n ifl<j<iand:-—jodd,
0 else.
_J(=1)-i/n ifj=1lorj=q4,
Yii T\ 2(=1)i-i/n ifl<j<i.

b =aniy;tVpy1,;  foralli.
4. Apply the three different versions of the linearly implicit Euler method
(9.25), (9.31) and (9.32) to the problem y' = Ay —¢(z))+¢'(z). Prove

that the errors e; =y;—p(z;) satisfy e, ; = (1 — hA)~le; + 8, (z;), where
for h—0 and hX — o0,

Su(e) = —he'(z) + O(R?) + O(A7Y),

u(2) = ~ (@) + (1-hN) RN () p'(2,)) +O(K) +O(hA™Y),

aa(e) = (1= )~ (G (a)+ O(R)),

respectively.
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“Theory without practice cannot survive and dies as quickly
as it lives.” (Leonardo da Vinci 1452-
1519, cited from M. Kline, Math. Thought 1972, p. 224)

“La méthode ... ne laisse rien de vague et d’indéterminé
dans les solutions; elle les conduit jusqu’aux derniéres ap-
plications numériques, condition nécessaire de toute recher-
che, et sans laquelle on n’arriverait qu’a des transformations
inutiles.”

(J. Fourier, Théorie de la chaleur 1822; Fourier placed
Plato’s “Et ignem regunt numeri” as motif on the first page.)

After having seen so many different methods and ideas in the foregoing
sections, it is legitimate to study how all these theoretical properties pay off
in numerical efficiency.

The Codes Used

A bad program based on a bad method is bad; a good program based on
a bad method is also bad; as is a bad program based on a good method.
Badness is not additive! Hence, if we want to study the properties of meth-
ods, all codes must be written equally carefully. We made many efforts to
approach this goal as closely as we could. We compared the following codes:

ROS4 — a Rosenbrock code of order 4 with s =4 and embedded 3rd order
error estimator implementing the methods of Table 7.2. A switch allows
one to choose between the different coefficient sets. The standard choice
is method 2.

RODAS — a Rosenbrock code of order 4(3) with s=5 satisfying additional
order conditions for differential-algebraic equations (see Section VI.3).
This code requires a little more work per step than ROS4 and it is
interesting to study how this handicap is compensated by the “algebraic
conditions” which are satisfied.

SDIRK4 — the L-stable SDIRK method (6.16) of order 4 of Table 6.5.
Details of its implementation are given in Section IV.8.

RADAUS5 — the IRK method based on the Radau IIA method with s=3 of
order 5 described in detail in Section IV.8.

SEULEX — the Stiff linearly implicit EULer EXtrapolation method of Sec-
tion IV.9.

SODEX — the EXtrapolation code based on the linearly implicit mid-point

rule (method of Bader & Deuflhard) of Section IV.9, which is a “Stiff”
extension of ODEX in Volume I.
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We have further included in the present tests:
STRIDE — the famous SIRK-code ! of Butcher, Burrage & Chipman (1980)

(see Lemma 8.1) as well as

LSODE — the BDF code of Hindmarsh as a representative of the class of
multistep methods to be described in Chapter V;

DOPRI5 — many of the treated examples are very stiff and ezplicit methods
would require hours to compute. On some examples, however, it was also
interesting to see the performance of such methods and we have included
the 5th order Dormand & Prince method as a representative of the class
of explicit methods.

Small Test Problems

Man hiite sich, auf Grund einzelner Beispiele allgemeine
Schliisse iiber den Wert oder Unwert einer Methode zu
ziehen. Dazu gehort sehr viel Erfahrung.”

(L. Collatz 1950)

The first professional numerical comparisons for stiff equations were made
by Enright, Hull & Lindberg (1975). Their STIFF-DETEST set of prob-
lems has become a veritable “must” for generations of software writers (see
also Shampine 1981). As a consequence, today’s codes have no difficulty
in “crunching” these problems. Several additional test problems, usually
from chemical kinetics, have been proposed by Enright & Hull (1976). An
extensive review article containing also problems of large dimension is due
to Byrne & Hindmarsh (1987).

The problems chosen for our tests are the following;:

OREGO — the Oregonator, the famous model with a periodic solution de-
scribing the Belusov-Zhabotinskii reaction (Field & Noyes 1974, see also
Enright & Hull 1976)

vp = 7727y + 5 (1 - 8.375 x 10y, — %))

!

1
Y = ﬁ(ys -(1+ Y1)Y,) (10.1)
Ys = 0.161(y; — y,)
v (0) =1, y,(0) =2, y5(0) =3,  z,,, = 30,60,90,...,360 .

For pictures see Volume I, p. 116.

1" A new version of this code (“Mark II”) is presently in elaboration and F. Chip-
man, K. Burrage and J. Butcher plan to get it into its final form in the first half
of 1991.
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ROBER — the reaction of Robertson (1966) (see (1.3) and (1.4))
Yy = —0.04y, + 10%y,y, y,(0) =1
yp = 0.04y; —10%y,y; —3-107y; ¥,(0) =0 (10.2)
Ys = 3:107y;  yy(0) =0,

one of the most prominent examples of the “stiff” literature. It was usually
treated on the interval 0 < z < 40, until Hindmarsh discovered that many
codes fail if z becomes very large (10!! say). The reason is that whenever
the numerical solution of y, accidentally becomes negative, it then tends to
—oo and the run ends by overflow. We have therefore chosen

.. = 1,10,10%,10%, ... 10" .

VDPOL — the Van der Pol oscillator (see (1.5))
Y1 =Y,
p=(-yw-un)e =107 (10.3)
¥,(0) =2, 4,(0) = 0; z,,, =1,2,3,4,...,11 .

VDPOL2 — we have also found it interesting to introduce into (10.3) a little
discontinuity of the derivatives as follows:

Yy =Y,

= (- -l -w)/e  e=10" (104)

¥:(0) =2, 3%(0)=0, =z,,=1,2,34,...,11.

HIRES — this chemical reaction involving eight reactands was proposed
by Schéfer (1975) to explain “the growth and differentiation of plant tissue
independent of photosynthesis at high levels of irradiance by light”. It has
been promoted as a test example by Gottwald (1977). The corresponding
equations are
y; =171y, + 043 .y, + 8.32 . y; + 0.0007
yp =1.71.y, —8.75.y,
Yy = —10.03 - y; + 0.43 - y, +0.035 - y,
Yy =832y, +1.71 .y, — 112y, (10.5)
ys = —1.745 -y, + 0.43 - yo + 0.43 - y;
Y = —280 - ygys + 0.69 -y, + 1.71 - y5 — 0.43 - y5 + 0.69 - y,
' =280 ygys — 1.81 -y,

ys = —y7
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%:(0)=1, ,(0)=y5(0)=...=y;(0) =0, y,(0) = 0.0057
and chosen output values

z,,, = 321.8122 and 421.8122 .

PLATE — this is a linear and non-autonomous example of medium stiffness
and medium size. It describes the movement of a rectangular plate under
the load of a car passing across it:

8%y du

W+wa+o’AAu=f(z,y,t) . (10.6)
The plate Q={(z,y) ; 0<z <2, 0<y < 4/3} is discretized on a grid of 8x5
interior points ;=1h, y; =jh, h=2/9 with initial and boundary conditions

Ou
ulga =0, Aulga=0, u(z,y,0)=0, —gt—(:c,y,O) =0. (10.7)

The integration interval is 0 <¢ <7. The load f(z,y,t) is idealized by the
sum of two Gaussian curves which move in the z-direction and which reside
on “four wheels”

et = {

200(e~5(t-2-2)" 4 e=5(t-2=5)") if y—y, ory,
0 for all other y.

The plate operator AA is discretized via the standard “computational mole-
cule”

1
2 -8 2
1 -8 20 -8 1
2 -8 2
1

and the friction and stiffness parameters are chosen as w=1000 and ¢ = 100.
The resulting system is then of dimension 80 with negative real as well as
complex eigenvalues ranging between —500 < Re A < 0 with maximal angle
arT1° (see Definition 3.9).
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Large Test Problems

BRUSS — this is the equation (1.6’) with a=1/50, the same initial condi-
tions as in Section IV.1, and integration interval 0 < ¢ < 10. But we now let
N =500 so that (1.6’) becomes a system of 1000 differential equations with
largest eigenvalue close to —20000. The equations therefore become consid-
erably stiff. The Jacobian of this system is banded with upper and lower
bandwidth 2 (if the solution components are ordered as u,,v,,u,,v,,u;,v,,
etc.) and the linear algebra is therefore done in the “banded versions” with
“analytical Jacobian” (the code STRIDE which has no “banded” linear al-
gebra has not been included). An explicit method, such as DOPRI5, would
require close to 60000 steps of integration with an approximate computing
time (for our machine) of 14 hours.

BURGERS — this is Burgers’ Equation

u2
Uy + uU, = pu,, or  u,+ (7); = pu,, u>0. (10.8)

It is one of the equations originally designed by Burgers (1948) as “a math-
ematical model illustrating the theory of turbulence”. However, soon after-
wards, E. Hopf (1950) presented an analytical solution (see Exercise 1 below)
and concluded that “we doubt that Burgers’ equation fully illustrates the
statistics of free turbulence. (...) Equation (1) is too simple a model to dis-
play chance fluctuations ...”. Nowadays it remains interesting as a nonlinear
equation resembling Euler’s and Navier-Stokes’ equations for fluid dynamics
which possesses, for u small, shock waves and, for 4 — 0, discontinuous
solutions. It is used to study numerical methods which should also work in
fluid dynamics.

Several possibilities exist to transform (10.8) into a system of ODE’s (by
the method of lines); either by difference approximations of the left equation
in (10.8)

wi(Uigy —%iy) | Uigg — 2u Uy,

L, = — 0.8
u’ 2Az tu (Az)? (10.82)
or from the “conservative” form to the right of (10.8) giving
u? | —u? ;g — 2u; + u;
B = — 1+1 1—1 + © 141 1 141 (10.8b)

i 4Ac (Az)?

One can also write (10.8) in a “weak” formulation and apply finite element
Galerkin approximations. This leads to implicit ODE systems with, usually,
a tridiagonal mass matrix.

As it turns out, the second system (10.8b) behaves better in the presence
of shocks and is therefore chosen for the subsequent tests. We use the data

0<z<1, 0<t<25 u(0,t)=u(l,t)=0 (10.9)
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1
u(z,0) = (sin(37rz))? - (1-z)3/% Az = 501 = 0.0003

so that the system becomes banded of dimension 500. Two shock waves
arise which later fuse into one (see Fig.10.1).

Fig.10.1. Burgers’ equation with shocks (10.9) (SEULEX, Tol=10"°)

BSMOOTH — this is exactly the same differential equation as above with
the same dimension and numerical discretization. The only difference is that
the initial conditions are chosen as

u(z,0) = L5z(1—z)? , (10.10)
so that no shock wave appears within the considered interval of integration

(see Fig.10.2).

FINAG — the famous FitzHugh & Nagumo nerve conduction equation
(FitzHugh 1969, Nagumo, Arimoto & Yoshizawa 1962)

S 0%

5 =3~ f0)—w

ot  Ox?

4 ”5 (10.11)
Bt n(v—pBw)

where 7 and 3 are constants and

f(v) =v(v—a)(v-1) (10.12)
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Fig. 10.2. Burgers’ equation, smooth solution (SEULEX, Tol=10_6)

with o satisfying typically 0 < @ < 1/2. The constant 7 is usually very
small and positive. This is, after the pioneering work of Hodgkin & Huxley
(1952), a simplified attempt to explain nerve conduction as a travelling wave
solution of a nonlinear parabolic differential equation. The two dimensional
system, without diffusion term 82v/dz2, possesses a stable equilibrium point
at the origin and slow movement along the curve w = —f(v) (Fig.10.3).
Below this curve there is rapid movement in the positive v-direction. If the
nerve is excited at one end and if diffusion is added, then one neighbour
after another is pulled into this stream and the wave solution is produced
(Fig.10.4). Numerical studies for equation (10.11) were carried out by Rinzel
(1977), from where we took the parameter values

«=0139, n=0008, [B=254 (10.13)

and the conditions 0 < z < 100 (discretized in 200 equidistant steps z; =
1/4, z, = 3/4,...,2.0,=399/4 with Az=1/2), 0<¢<400

v(z,0) = w(z,0) =0 (the nerve initially at rest)

~a—1-)-(0,t) = —0.3 (one end is constantly irrigated) (10.14)
z .
a—(lOO,t) =0 (no irrigation at other end)
T

(the last condition has been modified for easier programming). The resulting
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system is of dimension 400 and banded with band width 5. The eigenvalues
of the Jacobian range between —16.7 <Re A <0.04, most of them real, and
make the problem, for the integration interval 0 <t <400, mildly stiff.

Fig.10.3. Flow of System (10.11) without diffusion

Fig.10.4. Solution of complete problem (10.11) and (10.14)
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CUSP — this is a combination of (i) the above threshold-nerve-impulse
mechanism, (ii) the cusp catastrophe

ey = —(y*+ay+b) (10.15)

“with smooth return” (Zeeman 1972, see Fig.10.5) and (iii) the Van der Pol
oscillator to keep the solutions away from the origin:

dy 1 4 9%y
5 = W tath togs
da 8%a
— =b+0.07 —_— 10.16
ot PO oG (10.16)
ob 9 9%b
5= (1—a®)b—a — 0.4y + 0.035v + )
where u
v = 701’ u=(y—0.7)(y—1.3).

We also found it nice to let the “nerve” be closed like a torus so that the nerve
impulse goes round without stopping. The Jacobian of the resulting system
then becomes, although sparse, not banded. Stiffness in this example has
two sources: firstly the parameter ¢ becoming small, secondly the diffusion
term for small discretization intervals Az.

We choose e =104, 0=1/144, 0<z <1, Az=1/32, N =32 and obtain

9, = —10%(y} + a;y; +b;) + D(y;_1 — 2y; + Yiy1)
di = bt +0.07vi +D(ai_1 "‘2011' +ai+1) l = 1,...,N (10.16’)
b, = (1 — a?)b; — a; — 0.4y; + 0.035v; + D(b;_; — 2b; + b, )

i 1

where
u, N2
v; = m ’ u;, = (y1_07)(yt—13)’ D = m ,
and
Yo ‘= YN » a, :=ap , by :==by,
YN+1 =W ANy =0y, bN+1 =by,
a system of dimension 3-N =96. We take the initial values
21 21
y:(0) =0, a;0) = —2cos(%) . b,(0) = 25in(%) i=1,...,N .

and z,,,=1.1.

BEAM — the elastic beam (1.10) of Section IV.1. We choose n = 40 in
(1.10’) so that the differential system is of dimension 80. The eigenvalues of
the Jacobian are purely imaginary and vary between —6400: and +6400: (see
equation (2.23)). The initial conditions (1.19) and (1.20) are chosen such
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Fig.10.5. The cusp catastrophe with N=12.

that the solution nevertheless appears to be smooth. However, a detailed
numerical study shows that the exact solution possesses high oscillations
with period ~ 27/6400 and amplitude ~ 10-% (see Fig.10.6.). Therefore,
stiff codes work well for low precision only.

Fig.10.6. Third finite differences Asygo/Aw3 of solutions
of the beam equation (1.10’) with n=40 for 0 < = < 0.07
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Results and Discussion

For each of these examples we have computed very carefully (on a VAX
machine in quadruple precision) the exact solution at the specified output
points. Then the above codes have been applied with many different toler-
ances

Tol = 1073t™/8  or Tol=1073+"/* m=0,1,2,... .

More precisely, we set the relative error tolerance to be Rtol = Tol and
the absolute error tolerance Atol=10-%.Tol (for the problems OREGO and
ROBER), Atol=10-*Tol (for HIRES) and Atol= Tol for all other problems.
Several codes thereby returned numerical results which were considerably
less precise than the required precision, while other methods turned out to
be more reliable. As a reasonable measure of efficiency we have therefore
chosen to compare

- the actual error (the maximum taken over all components and all output
points) compared to

- the computing time (of an Apollo Workstation DN4000 in seconds).
The obtained data are then displayed as a polygonal line in a “precision-
work diagram” in double logarithmic scales. The integer-exponent tolerances
10-3,10-4,10-5,... are displayed as enlarged symbols. The more this line
is to the right, the higher was the obtained precision; the higher this line is
to the top, the slower was the code. The “slope” of the curve expresses the
(effective) order of the formula: lower order methods are steeper than higher
order methods. The results of the above codes on the 6 small examples are
displayed in Fig.10.7, those for the 6 large problems in Fig. 10.8.

The general impression given by the results is that Rosenbrock codes,
especially RODAS, are best for low tolerances (10~3 to 10—5%) and the variable
order extrapolation code SEULEX becomes superior for stringent tolerances.
This is not very surprising and in accordance with theory. The multistep
code LSODE is often very fast, but usually lacks precision in the computed
solutions. RADAUS is a safe and precise code for medium precision, but can
become quite slow when Tol approaches 10—% or 10—?, say. The implicit
codes based on real-pole RK methods (STRIDE and SDIRK4) are gener-
ally disappointing, but nevertheless good for a surprise: they are the best
methods for the (hyperbolic) beam equation. The fact that the computing
times for the explicit RK code DOPRIS5 initially lie perfectly horizontal is, of
course, no surprise and due to lack of stability. It is only for very stringent
tolerances that the accuracy requirements surpass the stability requirements
and the problem ceases to be stiff.

Comparison between Rosenbrock codes: Fig.10.9 shows for some selected
problems the effect of the choice of different coefficient sets for Rosenbrock
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Fig.10.7. Work-precision diagrams for small problems
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Fig. 10.8. Work-precision diagrams for large problems
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methods. The code RODAS certainly performs best in this comparison;
among the 4th order “classical” Rosenbrok methods of Table 7.2 the best
is in general “method 2” with its small error constant; it fails completely,
however, on the Beam problem due to lack of A-stability.

sec BURGERS | sec BSMOOTH

10°

N

P error
I

IO N IR TTTTE WS [TIYE U A W TSR W)

error
L Loei oo o i 4 Il.n?..

1073 1073

Fig.10.9. Comparison between Rosenbrock codes

Comparison between Radau codes: Fig.10.10 shows finally a study of Radau
codes of different orders: RADAU7 and RADAUY, written by J.D. Reymond
(1989), are codes for the Radau ITA methods of classical orders 7 and 9
with s =4 and 5 implemented in the same way as RADAUS5 of Section IV.8.
The results obtained are partly in accordance with the theory: the higher
order methods are not so brilliant for low tolerances, but superior for high
precision. It also seems clear that the higher order does not pay off on
the Cusp problem with its wildly varying solution; we do not understand,
however, why RADAUT is so much better on the oscillatory Beam problem.
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Fig.10.10. Comparison between Radau codes

Possible Improvements

a) Tuning parameters. All codes in the above tests were applied throughout
the tests with all parameters set to the standard values, without any added
cosmetics. The failures of LSODE for the Beam problem are due to lack
of A-stability and disappear if the maximum order is reduced to 2 (see
Section V.5). The relatively poor performance of SEULEX for the Plate
equation improves enormously if the code is told that Jacobian evaluations
and LU-decompositions are expensive, i.e., if WORK(11), WORK(12), and
WORK(13) are increased (say, to 10, 100, 5, respectively). The same effect
is shared by the RADAUS5 code which significantly improves its performance
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for the Beam problem if WORK(5) is set to 0.99 (intelligent codes such as
Th. Speer’s FIRK5 watch the clock themselves during the computation).

b) Switching between ezplicit and implicit methods. In transient regions the
step size usually becomes very small (= 1/||f'||) and ezplicit methods would
do much better, especially when the dimension of the system is large. Seve-
ral authors have considered switching strategies, e.g. L. Petzold (1983) for
Adams- and BDF methods and G. Sottas (1984) for Runge-Kutta and Rosen-
brock methods. While switching from the implicit to the explicit method
is relatively easy (since h| f'|| is available without much cost), switching
in the inverse direction needs a cheap stiffness detection (cf. Section IV.2).
Theoretical investigations of switching strategies have been undertaken by
J. Butcher (1990). In the Cusp problem, for example, 90% of CPU time is
wasted in regions where one of the solution components drops suddenly from
the upper to the lower stable surface and switching would save an enormous
amount of computation time.

¢) Sophisticated linear algebra. For large problems with full Jacobian it be-
comes important to transform J to a Hessenberg form (see (8.13)). Thereby,
e.g., for the Plate problem with N =80, RADAUS5 saves 55% of CPU time.
Another substantial saving is possible for second order problems y" =
f(z,y,y') such as the Plate or Beam problem. In these cases the linear
equations to be solved at each Newton iteration have a matrix of the form

(4 1) 07

We simply communicate this structure to the linear equation solver and ask
it to do the first n/2 elimination sweeps without pivot search. The matrix

(10.17) then becomes
ol I
0 C-a'B

and the dimension of the linear equation is halved. All codes thereby save
between 61% and 73% of computing time. If for the code RADAUS5 this
idea is combined with a better tuning of the parameters (WORK(3)= 0.1,
WORK(4)= 0.3, WORK(5)= 0.99, WORK(6)= 2), the saving of CPU time
accumulates in the mean to 92%, thus the code runs more than 10 times
faster than indicated in Fig.10.8.

d) Approzimate Jacobian. No methods, except Rosenbrock methods, require
an exact Jacobian for the simplified Newton iterations. Thus if the Jacobian
is replaced by an approximation with a simpler structure, the numerical work
may decrease considerably. For example the Cusp problem has a Jacobian
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of the form
A, B D,
J G A (10.18)
. By_,

where A;, B;,C;,D; are 3 x 3 matrices. If now the matrices D, and Dy
are simply neglected by telling the code that J is banded with bandwidth
ML=MU=3, all codes with iterative solution of implicit RK and extrapola-
tion equations save between 75% (for SDIRK4) and 90% (for RADAUS5) of
CPU time.

This does not work for the Rosenbrock codes, which require an exact
Jacobian and therefore lose precision.

Partitioning and Projection Methods

“Most codes for solving stiff systems ... spend most of their
time solving systems of linear equations ...”
(Watkins & HansonSmith 1983)

Further spectacular reductions of the work for the linear algebra are often
possible. One of the oldest ideas is to partition a stiff system into a (hope-
fully) small stiff system and a large nonstiff part,

Yo = fo(Uart)  (stiff)
yi = f3(Yar¥s) (nonstiff),

so that the two systems can be treated by two different methods, one implicit
and the other explicit (e.g. Hofer 1976). The theory of P-series in Section
I1.14 had its origin in the study of the order properties of such methods. A
difficulty of this approach is, of course, to decide which equations should be
the stiff ones. Further, stiffness may affect subspaces which are not parallel
to the coordinate axes. We shall therefore turn our attention to procedures
which do not adapt the underlying numerical method to the partitioning, but
the linear algebra only. An excellent survey of the older literature on these
methods is given by Soderlind (1981). The following definition describes an
especially promising class of problems:

(10.19)

Definition 10.1 (Bjorck 1983, 1984). The system y' = f(z,y) is called
separably stiff at a position z,y, if the Jacobian J = By (z,Yo) possesses
k <n eigenvalues A,,..., A, such that

min |[X;| >> max )] . (10.20)
1<i<k k+1<i<n
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The eigenvalues A,,..., A, are called the stiff eigenvalues and

A; 0.
T <k Al /k+1< i<n Al (10.21)
the relative separation. The space D spanned by the stiff eigenvectors is
called the dominant invariant subspace.

For example, the Robertson problem (10.2) possesses only one stiff eigen-
value (close to —2000), and is therefore separably stiff with k=1. The CUSP
problem (10.16’) of dimension 96 has 32 large eigenvalues which range, ex-
cept for transient phases, between —20000 and —60000. All other eigen-
values satisfy approximately |A\| < 30. This problem is, in fact, a singular
perturbation problem (see Section VI.1), and such problems are all separa-
bly stiff. The other large problems of this Section have eigenvalues scattered
all around. A.R. Curtis’ study (1983) points out that in practical problems
separably stiff problems are rather seldom.

The Method of Gear and Saad

Implicit methods such as (transformed) RK or multistep formulas require
the solution of a linear system (where we denote, as usual in linear algebra,
the unknown vector by z)

Az =b h =—1I1-J 10.22
T where h’y ( )
with residual

r=b- Az . (10.23)
We now choose k (usually) orthogonal vectors g¢;,...,q, in such a way that
the span {g;,...,q,} =D is an approzimation to the dominant subspace D,

and denote by @ the k xn-matrix formed by the columns gjs
Q=1(q15-+59) - (10.24)

There are now several possibilities for replacing the numerical solution z
of (10.22) by an approximate solution Z € D. One of the most natural is
to require (Saad 1981, Gear & Saad 1983; in fact, Galerkin 1916) that the
residual of Z,

T=b—AZ = A(z-7), (10.25)
be orthogonal to D, i.e., that
QT(b—AZ)=0 or QT Az = Q. (10.26)
If we write Z in the basis of (10.24) as z = Qy, this yields
Z=0Q(QT4Q)'QTb=QH'Q b (10.27)
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where

H=QTAQ or QH = AQ , (10.28)

which means that we have to solve a linear system of dimension k£ with ma-
trix H. A particularly good choice for D is a Krylov subspace spanned by
an arbitrary vector r, (usually the residual of a well chosen initial approxi-
mation z,),

D = span {ry, Ary, A’ry,... A" r } . (10.29)

The vectors (10.29) constitute the sequence created by the well-known power
method. Therefore, in the case of a separably stiff system, as analyzed by
D.J. Higham (1989), the space D approaches the space D extremely well
as soon as its dimension is sufficiently high. If the vectors of (10.29) are
successively orthonormalized (Gram-Schmidt) as

r
9 = .
[I7oll (10.30)
G = Ag, — h — Z1\2 — . i .
9 = 44, 1% > 9 = 1%l = %
21
and so on, we see that
Aqy = hy195 + hyyqy
Agy = hgyq3 + hyyqp + iy (10.31)
which, compared to (10.28), shows that
le 212
H=| " o (10.32)

32

is Hessenberg. For A symmetric, H is also symmetric, hence tridiagonal, so
that the method is equivalent to the conjugate gradient method.

Two features are important for this method: Firstly, the matrix A need
never be computed nor stored. All that is needed are the matrix-vector mul-
tiplications in (10.31), which can be obtained from the “directional deriva-
tive”

Jv = [f(z,y + év) — f(z,9)]/6 . (10.33)

Several people therefore call such methods “matrix-free”. Secondly, the
dimension k does not have to be known: one simply computes one column
of H after the other and periodically estimates the residual. As soon as this
estimate is small enough (or k becomes too large) the algorithm stops.
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We also mention two variants of the method:

1. (Gear & Saad, p. 595). Before starting the computation of the Krylov
subspace, perform some initial iteration of the power method on the initial
vector 7y, using either the matrix A or the matrix J. Lopez & Trigiante
(1989) report excellent numerical results for this procedure.

2. Incomplete orthogonalization (Saad 1982). The new vector Ag; is only
orthogonalized against the previous p vectors, where p is some small integer.
This makes H a banded matrix and saves computing time and memory. For
symmetric matrices, the ideal choice is of course p = 2, for matrices more
and more unsymmetric p usually is increased to 10 or 15.

The EKBWH-Method

(this tongue-twister stands for Enright, Kamel, Bjorck, Watkins and Han-
sonSmith). Here, the matrices A (and J) in (10.22) are replaced by appro-
ximations

- 1 ~
=—I-7 .
A p (10.34)

where J should approach J sufficiently well and the matrix A be relatively
easy to invert. J is determined as follows: Complete (theoretically) the
vectors (10.24) to an orthogonal basis of R®

(@,Q) . (10.35)

In the new basis J becomes

1-@a(f ) (&) (10.36)

T Ty
hence
~ ~ (T,, T
J , — , 11 12 .37
@Q)=(@9 (Tzl Tzz) (1037)
and
RQTIQ=T, . (10.38)

If span Q = D approaches D, then T,, will contain the stiff eigenvalues and

T,, will tend to zero. If D= D exactly, then T,, =0 and (10.36) is a block-
Schur decomposition of J. For separably stiff systems ||T,,|| will become
small compared to (hy)~! and we define

(@,Q) (T61 T(l)z) (%ﬁ) (10.39)

J=(Q,
= (T11QT+T12@T) (10537) QQTJ-

Il
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This shows J to be the orthogonal projection of J onto D. The inverse of A
is computed by developing (I—B)~1=I+B+B2+... as a geometric series
(see (10.39) and (10.37))

A7 = hy(I - yQQTJ) ™!
= hy(I +mQQTJ + K2 4*QQTIQQTJ +..))
-

T (10.40)
= hy(I + Q(hyI + Ay’ Ty; + *4*TH +...)QT )

— (I + Q(% I-1,)7'Q%))

which only requires the solution of the “small” system with matrix (I/hy—
T,,) (the last expression is called the Sherman-Morrison-Woodbury for-

mula).

Choice of Q:

— Bjorck (1983) computes the precise span of D, by Householder trans-
forms followed by block-Q R iterations. For separably stiff systems the block
T,, converges to zero linearly with ratio 41 so that usually 2 or 3 iterations
are sufficient. A disadvantage of the method is that an estimate for the
dimension k of D must be known in advance.

— Enright & Kamel (1979) transform J to Hessenberg form and stop the
transformations when ||T), || + |15, || become sufficiently small (remark that
T,, is non zero in its last column only). Thus the dimension k can be dis-
covered dynamically. Enright & Kamel combine the Householder reflexions
with a pivoting strategy and repeated row & column permutations in order
to make T,, small as fast as possible. It was first observed numerically (by
Carlsson) and then shown theoretically (Soderlind 1981) that this pivoting
strategy “needs some comments”: if we start from (10.37), by knowing that

(Tn Ty, )

Ty Ty

is Hessenberg in its first k columns, (with h,; # 0, hy, #0,... ) and do the

analysis of formulas (10.32), (10.31), and (10.30) backwards, we see that the

space D for the Enright & Kamel method is a Krylov subspace created by q

(D.J. Higham 1989). Thus only the first permutation influences the result.
— Watkins & HansonSmith (1983) start from an arbitrary Q(®) followed

by several steps of the block power method

JQW = QU+ Rli+1) (10.41)

where R(it1) re-orthogonalizes the vectors of the product JQ(¥). A great
advantage of this procedure is that no large matrix needs to be computed
nor stored. The formulas (10.41) as well as (10.40) only contain matrix-
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vector products which are computed by (10.33). The disadvantage is that
the dimension of the space must be known.

Stopping criteria. The above methods need a criterion on the goodness of the
approximation J to decide whether the dimension k is sufficient. Suppose
that we solve the linear equation (10.22) by a modified Newton correction

which uses A as “approximate Jacobian”
T=ga,+ A (b-Az,),
then the convergence of this iteration is governed by the condition
o(I —A7TA) = g(A YA - A)) = (A} (I =T)) < 1. (10.42)

A reasonable condition is therefore that the spectral radius o of Z—l(.] -J )
is plainly smaller than 1. Let us compute this value for the Bjérk method
(T,; =0): since the eigenvalues of a matrix C are invariant under the simi-
larity transformation T-1CT, we have

(25 %) (2 1)
() 6 L)

(3 i)

In practice, a condition of the form

Ay Tyl <1, (10.43)

o(AY(J - T))

where || - || is usually the Frobenius norm /3, ; a};, ensures a reasonable
9,

rate of convergence. For an analogous condition in the Enright-Kamel case
see Exercise 4 below.

Exercises

1. Reconstruct E. Hopf’s analytic solution of Burgers’ equation (10.8).

Hint. Introduce the new dependent variable

o(z,t) = exp{—élz /02 u(,t)d€ — /0‘ c(‘r)dr} .

Show that for a suitably chosen ¢(t) the function ¢(z,t) satisfies the one
dimensional heat equation. The solution u(z,t) of (10.8) can then be
recovered from ¢(z,t) by

u=—2p(log ), = —2u(p,/p) .
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2. (The red-black reduction). The Jacobian matrix of the (periodic) cusp
catastrophe model (10.16°) is of the form

A, B, c,
c, A, B,
: : (10.44)
CZm—l AZm—l BZm—l
B2m CZm A'Zm

where A;, B;,C; are (3 x 3)-matrices. Write a solver which solves linear
equations with matrix (10.44) using the “red-black ordering reduction”.
This means that A,, A;, A;, ... are used as (matricial) pivots to eliminate
Cy,C4,...,By,B,,... above and below by Gaussian block-elimination.
Then the resulting system is again of the same structure as (10.44) with
halved dimension. If the original system’s dimension contains 2* as prime
factor, this process can be iterated k times. Study the increase of per-
formance which this algorithm allows for the RADAU5 and Rosenbrock
codes on model (10.16’). The algorithm is also highly parallelizable.

3. Show by numerical experiments that the circular nerve (10.16’) loses its
limit cycle when the diffusion coefficient D becomes either too small (the
message does not go across the water fall) or too large (the limit cycle
then melts down across the origin).

4. (Stopping criterion for Enright & Kamel method; D.J. Higham 1989).
Suppose that the matrix J has been transformed to partial Hessenberg

form (see (10.37)) . .
n—

(%)@= (o )

where H is upper Hessenberg and b a column vector. Show that the
criterion (10.42) then becomes

o(hyB) < 1
where k-1 14+n-k
k 0 —hyH 'T,(bT,,)
B =
n-k 0 (b T,,)

with H =(I—hyH). Since ¢(B) is the same as the spectral radius of its
lower 1+n—k by 1+n—k principal submatrix, a sufficient condition for
convergence is

vl I T 12 + 0112 + lyll? < 1

where yT is the k-th row of the matrix —h’yF_Ile(b T,,).
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“He who loves practice without theory is like the sailor
who boards ship without a rudder and compass and
never knows where he may be cast”.

(Leonardo da Vinci 1452-1519, cited from
M. Kline, Mathematical Thought ... 1972, p. 224)

The stability analysis of the preceeding sections is based on the transforma-
tion of the Jacobian J ~ 0f/dy to diagonal form (see Formulas (2.5), (2.6)
of Section IV.2). Especially for large-dimensional problems, however, the
matrix which performs this transformation may be badly conditioned and
destroy all the nice estimations which have been obtained.

Example 11.1. The discretization of the hyperbolic problem

Su Ou
5% - 82 (11.1)
by the method of lines leads to
-1 1
, -1 - 1
y = Ay, A=) . . s /\:E>0. (11.2)
-1

This matrix has all eigenvalues at —\ and the above spectral stability analy-
sis would indicate fast asymptotic convergence to zero. But neither the
solution of (11.1), which just represents a travelling wave, nor the solution
of (11.2), if the dimension becomes large, have this property. So our interest
in this section is to obtain rigorous bounds for the numerical solution (see
(2.3)

Ymis = R(bA)y,, (11.3)

in different norms of R™ or C». Here R(z) represents the stability function
of the method employed. We have from (11.3)

[t 1ll < IR(RA) - [l9m (11.4)

(see Volume I, Section 1.9, Formula (9.12)), and contractivity is assured if

[R(RA)| < 1.
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Euclidean Norms (Theorem of von Neumann)

“People in mathematics and science should be reminded that
many of the things we take for granted today owe their birth
to perhaps one of the most brilliant people of the twentieth
century — John von Neumann.”

(John Impagliazzo, quoted from SIAM News September 1988)

Let the considered norm be Euclidean with the corresponding scalar product
denoted by (,-). Then, for the solution of y'= Ay we have

Ly = Ligy) = 2Rely,y) =2Re(y Ay),  (115)
hence the solutions are decaying in this norm if
Re(y,Ay) <0 forall yeC™. (11.6)
This result is related to Theorem 10.6 of Section I.10, because
Re (y, 4y) < 1y(A) [y’ (11.7)

where p1,(A) is the logarithmic norm of A (Formula (10.20) of Section 1.10).

Theorem 11.2. Let the rational function R(z) be bounded for Rez < 0
and assume that the matriz A satisfies (11.6). Then in the matriz norm
corresponding to the scalar product we have

|R(A)]| < sup |R(z)| . (11.8)
Re 2<0

Remark. This is a finite-dimensional version of a result of J. von Neumann
(1951). A short proof is given in Hairer, Bader & Lubich (1982). The
following proof is due to M. Crouzeix (unpublished).

Proof. a) Normal matrices can be transformed to diagonal form A =QDQ*
where D =diag{},,...,A,} by a unitary matrix Q (see Exercise 3 of Section
I.12). In this case we have

IR(4)] = IQRD)Q"| = |R(D)]| = max_[R(\)

and (11.8) follows from the fact that the eigenvalues of A satisfy Re A; < 0
by (11.6).
b) For a general A we consider the matrix function

1
Aw) = S(A+ A7) +5(4-47).
We see from the identity
(v, A(w)v) = @Re (v, Av) + ilm (v, Av)
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that A(w) satisfies (11.6) for all w with Rew > 0, so that also the eigenvalues
of A(w) satisfy Re A(w) < 0 for Rew > 0. Therefore, the rational function
(v fixed)

o(w) = | R(A(w))o]* = (R(A(w))v, R(A(w))v)

has no poles in Rew > 0. Using A(1) = A we obtain from the maximum
principle that

| R(A)v|* = ¢(1) < sup p(iy) < sup || R(A(y))||?||v||?
yER yER

= ( sup |R(~'<)I)2|Iv||2 ) (11.9)

Re 2<0

The last inequality of (11.9) follows from part a), because A(iy) is a nor-
mal matrix (i.e., A(ty)A(iy)* = A(ty)*A(ty)). Formula (11.8) is now an
immediate consequence of (11.9). a

Corollary 11.3. If the rational function R(z) is A-stable, then the nu-
merical solution y,, ,, = R(hA)y, is contractive in the Euclidean norm (i.e.,
NYns1ll < lYnll), whenever (11.6) is satisfied.

Proof. A-stability implies that Jmax, |R(z)| < 1. a

Corollary 11.4. If a matriz A satisfies
Re (v, Av) < v|[v||* for all v e C™

then
IR(4)] < sup IR(2)] - (11.10)
Re 2<
Proof. Apply Theorem 11.2 to R(z):R(z-}-u) and A=A—vI. m|

Study of the Contractivity Function

Guided by the above estimate, we define
pgp(z):= sup |R(2)|. (11.11)

Re 25z

This function is monotonically increasing and, if R(z) is analytic in the
half-plane Re z < z, the maximum principle implies that

pp(z) = sup |R(z +1y)| .
yER



IV.11. Contractivity for Linear Problems 181

Examples.

1. Implicit Euler method:

1 R(z) if —,o<z<1
R()= = pale) = | (11.12)
—Z 00 if 1<e.
2. The stability function of the #-method (or of a one-stage Rosenbrock
method):
R if z <
0 R if =<
R(z) = —7—3——  vrl®) = K(2) if §<=z<1/0
00 if 1/6<z,

(11.13)
where £,=(1-260)/(26(1—0)) for 0 < 6 < 1 and ;= —oo for 6 > 1.

3. The (0,2)-Padé approximation:

R(z) if —co<z<0
1 1 .
RG)=1—77n vr(z)=§ 77— if0s=z<1
00 if 1<z,
(11.14)
1 3
4. The (1,2)-Padé approximation R(z):m;%——zi—/-g :
R(z) if —co<z <
2
o) = V3VI2el +122 49 4102 +7 f<z<2
2(2—=z)
00 if 2<z,
(11.15)

where {; = —6 — 3+/10.

142z/2+22/12

5. The (2,2)-Padé approximation R(z) =T 2t /12 "

1 if —co<z<0
9 4 Tz2 + 429 + 322
¢r(z) = V9+7a + 40 + 3z if 0<z<3 (11.16)
3—=z
00 if 3<z.

Here is a general result on the shape of pp(z) in the neighbourhood of
the origin:
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Theorem 11.5. Let R(z2) be an A-stable approzimation to e* of exact order
p, i.e., R(z)=e*—CzPt1 4+ O(2P*2) with C # 0. If additionally |R(iy)| < 1
for y # 0 and |R(c0)| < 1, then we have
a) if p is odd

pp(z) =€+ O(zP*) for z—0. (11.17)

b) if p is even we have (11.17) only for (—1)?/2Cz > 0, otherwise
pp(z) =€ +0(z™) for z—0 (11.18)

for some positive rational number r < p/2.

Proof. The assumptions imply that for £ — 0 the maximum of {|R(z +
iy)|;y € R} must be located near the origin. We further observe that it
must lie within the order star A = {z € C; |R(z)| > |e*|}. If p is odd,
the order star consists of p+1 sectors near the origin (Lemma 4.3) and,
asymptotically for z — oo, all elements of A satisfy |z| < D|z|, D < oo.
Therefore

|R(2)| = €® + O(]z|P*!) = € + O(zP*!) for z — 0.

The same argument applies if p is even and (—1)?/2Cz > 0. In the remaining
case (p even and (—1)?/2Cz < 0) the maximum of {|R(z+1y)|;y € R} is
attained near the imaginary axis and a more detailed analysis is necessary
(see Hairer, Bader & Lubich (1982) and Exercise 2 below). |

Small Nonlinear Perturbations

The above estimates, valid only for linear autonomous equations y' = Jy,
can be extended to problems with small nonlinear perturbations, so-called
semi-linear problems

¥ =Jy+g(z,y) (11.19)

where
(y, Jy) < pllyl?

lg(z,y) — g(=,2)|| < Ly — 2|

with L assumed to be small.

(11.20)

Here, in the presence of nonlinearities, stability properties are obtained
by estimating the distance of two nelghbounng solutions y(z) and F(z).
Instead of (11.5) we therefore have

Ily) W =20'-7,y-9)
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which gives, after inserting (11.19) for y' and ¥, using the Cauchy-Schwarz
inequality and the estimates (11.20)

2 Jo(e) - oI <26+ 1) y(x) - FIE . (1121)

We thus have contractivity whenever 4 + L < 0.

We now want to establish the same property for the numerical solu-
tions. In principle, these estimates can be carried out for all methods of
this chapter; however, since the subsequent sections will deal with so many
nice properties of IRK methods, we shall concentrate here on Rosenbrock
methods.

Example 11.6. Consider the 1-stage Rosenbrock method

I —~yhJ)k; = hf(z,,
( Y ) 1 f( 0 yo) (11_22)
y1=y0+k1

with 4 > 0 as a free parameter. Its stability function is

=1+(1——'y)z

R(z) 1 -~z

and we have A-stability for ¥ > 1/2. Application of (11.22) to (11.19) yields
yy = R(hJ)yo + (I — vhJ) " hg(zg,9p) - (11.23)

From von Neumann’s theorem (Corollary 11.4) we obtain ||(I —yhJ)-1|| <
(1—~hp)~1 and |R(hJ)|| < @g(hp) with pq given in (11.13). If we take a
second numerical solution 7, also defined by (11.23), its difference to y; can
be estimated by

" hL (L Bet D)y
Iy = %l < (Rebw) + 7= o = all = (1 + 2250 v — ol

whenever §, < hp < 1/ with §; given in (11.13). Therefore contractivity
occurs for p+L < 0, as desired.

For the general Rosenbrock method (7.4) applied to problem (11.19)

k; = hg(zy + c;h,u;) + hJyy + hJ E(aij +7%i;)k;

Jj=1

i—1 s
u; =Y + Ea'ijkj) Y1="Y t Z bik;
j=1 i=1

we easily find the following analogue of the variation of constants formula:
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Theorem 11.7. The numerical solution of a Rosenbrock method applied to
(11.19) can be written as

Yy = R(hT)yo + b Y _ b(hd)g(zq + c;hyu;)
i=1
i-1 (11.24)

u; = R;(hJ )y, + hZaij(hJ)g(z:o +chyuj), i=1,...,s.

i=1

Here R(z) is the stability function, R;(z) are the so-called internal stability
functions and b,(z), a;;(2) are rational functions whose only pole is 1/v and
which satisfy b;(c0) =0, a;;(c0)=0. a

Remark. For many classes of linearly implicit methods (e.g. the methods
of van der Houwen (1977), Friedli (1978), Strehmel & Weiner (1982), etc.),
the numerical solution can be expressed by (11.24) with certain rational
functions. Thus the following analysis can be applied to these methods as
well.

We now take a second numerical solution ¥,,%;,%, (again defined by
(11.24)), take the difference to y; and apply the triangle inequality. Using
von Neumann’s theorem (Corollary 11.4) the assumptions (11.20) then imply

8
”@3 - y1|| < ‘PR(hI‘J)”.% — Y% | + AL Z ‘Pb.-(h/‘)Hﬂi - ui||

i=1
i-1

”ai - “z” < ‘PR.v(hM)“?o - yo“ +hL ‘Pa;»(hﬂ)l|e77j - “j” .
‘ 7

J=1

(11.25)

Inserting the second inequality of (11.25) repeatedly into the first one yields

Theorem 11.8. Under the assumption (11.20) the difference of two nu-
merical solutions of (7.4) can be estimated by

Ilgl -yl < (pp(hu) + chL)||g, — yo” (11.26)

where pp(z) is given by (11.11) (R(z) is the stability function of (7.4)) and
c is a constant depending smoothly on hL and hy but not on ||J|| (which
represents the stiffness of the problem). m|

This estimate shows numerical contractivity whenever ¢ g(hu)+hL* < 0.
In Theorem 11.5 we have shown under certain assumptions that pp(z) =
14+z+0(z), so contractivity holds essentially for u+L* < 0. In any case we
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have that A-stability implies

18 = y1ll < (1 +RC) |15 — ol

for hu < Const. Here, C* is a constant independent of the stiffness of
(11.19).

Remark. Since the rational functions b; and a;; in (11.24) vanish at infin-
ity, also (1—~hJ)b;(hJ) and (1—vhJ)a,;(hJ) are uniformly bounded for J
satisfying (11.20) and for hu < C <~4~!. Instead of the second condition of
(11.20) we may therefore require that

I(I=7hT) " h(g(2,y) - g(z, )| < Ely—=]l, (11.27)

and the statement of Theorem 11.8 holds with AL replaced by £. Observe
that the assumption (11.20) implies (11.27) with £=hL/(1—vyhp). However,
in some special situations the number ¢ may be significantly smaller than
hL. Related techniques have been used by Hundsdorfer (1985) and Strehmel
& Weiner (1987) to prove contractivity and convergence for linearly implicit
methods. Recently, Ostermann (1988) applied these ideas to nonlinear sin-
gular perturbation problems, where hL = O(he~1) with some very small ¢
(e < h), but £ can be bounded independently of 1.

Contractivity in | .|, and |||,

The study of contractivity in general norms has been carried out mainly by
Spijker (1983, 1985) and his collaborators. Similar techniques of proof can be
found in Bolley & Crouzeix (1978), where a related problem (monotonicity)
is treated.

The following theorem gives a condition which is necessary for contrac-
tivity just for the special equation (11.2) and for one of the two norms ||- ||,
or || - ||;- Later, the same condition will also turn out to be sufficient for
general problems and all norms.

Theorem 11.9. Let A be the n-dimensional matriz of (11.2) with fized
A > 0. For a rational function R(z) satisfying R(0)=1 we have

|R(hA)|lo <1 in all dimensions n=1,2,... (11.28)
only if
R9(z)>0 for z€[-Ah,0] and j=0,1,2,... (11.29)
(The same statement is true, if || - || o in (11.28) is replaced by || - ||, ).

Proof. We put h=1 and write A=—AI+AN, where N is a nilpotent matrix.
In a suitable norm, || N|| is arbitrarily small and therefore we have by Taylor
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expansion and N*=0
n—1 .
; AN)I
R(A) =) R(J)(_,\)(_]T)_
Jj=0
This means (e.g. for n=4)
R(=A) AR(=X) 3R"(=X) 31R"™(-))
R(=))  AR(-)) 3fR"(-))
R(-X) AR'(-X)
R(-))
Application of Formula (1.9.11°) shows that ||R(A)||,, <1 (or |[R(4)||, <1)
is equivalent to

R(A) =

n—1 .
> |R(j)(—)\)|¥ <1. (11.30)
. 7!
Jj=0
If (11.30) is valid for all n > 1, the series
> RU(- A)— (11.31)
j>0

is absolutely convergent, and therefore we have
1=R(0)=Y RY ,\_< RU) ,\_<1
(0) Z:; (=2) 7 ;I (=)
1z 320

implying R(5)(—X) > 0 for all j > 0. Since the Taylor expansion

D(z) = S ROy EEN
ROe) = L RN

consists for z > — A only of non-negative terms, we have (11.29). a

The next theorem shows that condition (11.29) is sufficient for contrac-
tivity in arbitrary norms. It can readily be applied to the system (11.27),
since its matrix satisfies || A+ A1, = A:

Theorem 11.10. Consider an arbitrary norm and let A be such that for
some X > 0,

[A+ A <X, (11.32)
If the stability function of a method satisfies R(0)=1 and
RD(z)>0 for z€[—p,0] and j=0,1,2,... (11.33)

then we have numerical contractivity | R(hA)|| < 1, whenever h) < p.
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Proof. We again put h=1. Since for 0 < A < p we have R()(-)) > 0 for

all j, the function

(z+ )
7!

R(z) =Y _ RY(-))
j20
satisfies |R(z)| < R(—A+r) for all complex z in the disk |2+ A| < r. This
property and (11.33) imply that no pole of R(z) can lie in |z+A| < A, so that
the radius of convergence of (11.34) is strictly larger than A. Consequently
we have from (11.32)

(11.34)

- (A+ A
R(4) =Y RY(-)) — (11.35)
i%0
The triangle inequality applied to (11.35) yields the conclusion. (m|

Study of the Threshold Factor

Definition 11.11. The largest p satisfying (11.33) is called the threshold-
factor of R(z).

Example 11.12. The implicit Euler method, for which

) gt :
RY (m)=m, 7=0,1,2,...,

satisfies (11.33) for all ¢ > 0. It possesses a threshold-factor p=oo.

Example 11.13 (Threshold-factor for Padé-approximations). The deriva-
tives of the polynomials

2k
k!
are easily calculated; the most dangerous one is 1+z, therefore p=1 for all k.

The Padé approximations R,,(z) possess one simple pole only, so they
can be written in the form

2
Rko(z)=1+z+%+...+

R, (2) = T—a_bz + polynomial in z ,
which has only a finite number of derivatives which can change sign (see
Example 11.12). The numerical values obtained are shown in Table 11.1.
The functions R,,(z) possess no real pole (see Section IV.4). But the
property |R(z)] < R(—p+r) for |z+ | < r (see proof of Theorem 11.10)
means that the maximum of |R(z)| on the circle with center —p and radius
r is assumed to the right on the real axis. For increasing r, the first pole
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met by this circle must therefore be real and to the right of —p. This is not
possible here and therefore the approximations R, (z) never satisfy property
(11.33). This is indicated by an asterisk () in Table 11.1.

All further values of Table 11.1 were computed using the decomposition
of R(z) into partial fractions and are cited from Kraaijevanger (1986) and
van de Griend & Kraaijevanger (1986).

Table 11.1. Threshold-factors of Padé approximations

k 0 1 2 3 4 5 6
j=0 —_ 1 1 1 1 1 1
=1 00 2 2.196 2.350 2477 2.586 2.682
=2 * * * * * * *
=3 0.584 1.195 1.703 2.208 2.710 3.212 3.713
j=4 * * * * * * *
Jj=5 0.353 0.770 1.081 1.424 1.794 2.185 2.590

It is curious to observe that in this table the methods with the largest
threshold-factors are precisely those which are not A-stable. An exception
is the implicit Euler method (k=0,j=1) for which g =00.

Absolutely Monotonic Functions

“... on peut définir la fonction e¢® comme la seule fonc-

tion absolument monotone sur tout le demi-axe négatif
qui prend & l'origine, ainsi que sa dérivée premiere [sic|
la valeur un.” (S. Bernstein 1928)

A thorough study of real functions satisfying (11.33) was begun by S. Bern-
stein (1914) and continued by F. Hausdorff (1921). Such functions are called
absolutely monotonic in [—g,0]. Later, S. Bernstein (1928) gave the follow-
ing characterization of functions which are absolutely monotonic in (~oo, 0]
(see also D.V. Widder 1946).

Theorem 11.14 (Bernstein 1928). A necessary and sufficient condition that
R(z) be absolutely monotonic in (—o0,0] is that

R(z) = /0°° e*tda(t) , (11.36)

where a(t) is bounded and non-decreasing and the integral converges for
—oo <z <0.
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This is a hard result and the main key for the next two theorems. It
does not seem to permit an elementary and easy proof. We therefore refer

to the original literature, S. Bernstein (1928). For a more recent description
see e.g. Widder (1946), p. 160.

From this result we immediately get the “limit case A — 00” of Theorem
11.10, which also holds for an arbitrary norm.

Theorem 11.15. Let R(xz) be absolutely monotonic in (—o0,0], R(0) =1
and A a matriz with non-positive logarithmic norm pu(A) <0, then

IR(A)I <1 .

Proof. By Theorem 1.10.6 we have for the solution y(z) =eA%y, of y' = Ay
that ||[y(z)|| < ||yoll, hence also ||e4#|| < 1 for z > 0. The statement now
follows from
(oo} oo oo
IR =1 [ e*dal < [ eAda < [ datt) = R0) =1
0 0 0

since a(t) is non-decreasing. m|

The following result proves that no Runge-Kutta method of order p>1
can have a stability function which is absolutely monotonic in (—o0,0].

Theorem 11.16. If R(z) is absolutely monotonic in (—o0,0] and R(z)=
1-|-:z:-|—’°2—2 + O(z3) for ¢ — 0, then R(z)=e>.

Proof (Bolley & Crouzeix 1978). It follows from (11.36) that
RO)(0) = / " tida(t) .
0
Since R(0)=R'(0)=R"(0)=1, this yields
/w(1 —t)?da(t) =0.
0

Consequently, a(t) must be the Heaviside function (a(¢t) =0 for ¢ < 1 and
a(t)=1 for t >1). Inserted into (11.36) this gives R(z)=e>. a
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Exercises

1. Prove Formula (11.14). For given z, study the set of y-values for which
|R(z+1iy)| attains its maximum.

2. (Hairer, Bader & Lubich 1982). Show that the contractivity function
(11.11) for an A-stable R(z) of order p > 1 satisfies

pr(z) >e® forall z#0.
Hint. For given z, cut the order star by the parallel lines {z+iy,y € R}.

3. (Kraaijevanger 1986). Let R(z) be a polynomial of degree s satisfying
R(z) = €24+ O(zPt1). Then the threshold factor ¢ (Definition 11.11) is
restricted by

ess—p+1.
Hint. Justify the formula
s—p+1 N
RP-V(3) = a. 1+—) a, >0
( ) ]=Zo ]( 0 ? ] =

and deduce the result from R(»-1)(0)=R()(0)=1.

4. Let p be the threshold factor of the rational function R(z). Show that
its stability domain contains the disc |z+ 9| <p.



IV.12. B-Stability and Contractivity

“Next we need a generalization of the notion of A-stability.
The most natural generalization would be to consider the
case that #(¢) is a uniform-asymptotically stable solution
... in the sense of Liapunov theory ... but this case seems
to be a little too wide.” (G. Dahlquist 1963)

“The theoretical analysis of the application of numerical
methods on stiff nonlinear problems is still fairly incom-
plete.” (G. Dahlquist 1975)

Here we enter a new era, the study of stability and convergence for general
non-linear systems. All the “crimes” and diverse omissions of which we
have been guilty in earlier sections, especially in Section IV.2, shall now be
repaired.

Large parts of Dahlquist’s (1963) paper deal with a generalization of
A-stability to nonlinear problems. His search for a sufficiently general class
of nonlinear systems was finally successful 12 years later. In his talk at the
Dundee conference of July 1975 he proposed to consider differential equations
satisfying a one-sided Lipschitz condition and he presented some first results
for multistep methods. J.C. Butcher (1975) then extended (on the flight
back from the conference) the ideas to implicit Runge-Kutta methods and
the concept of B-stability was born.

One-Sided Lipschitz Condition

We consider the nonlinear differential equation

y' = f(z,y) (12.1)
such that for the Euclidean norm the one-sided Lipschitz condition
(f(z,9) — f(=z,2),y — 2) Sw ly — 2| (12.2)

holds. The number v is the one-sided Lipschitz constant of f. This definition
is motivated by the following

Lemma 12.1. Let f(z,y) be continuous and satisfy (12.2). Then, for any
two solutions y(z) and z(z) of (12.1) we have

ly(2) — 2(2)]| < lly(zo) — #(q)] - ”*~* for = >, .

Proof. Differentiation of m(z)=|y(z)—z(z)||? yields
m'(z) = 2(f(z,y(z))~ f(2,2(2)) , y(z)-2(z)) < 2v m(z) .
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This differential inequality can be solved to give (see Theorem 1.10.3)
m(z) < m(z,)e?” (=20 for z >z, ,

which is equivalent to the statement. O

Remarks. a) In an open convex set, condition (12.2) is equivalent to ,u.(-g—%) <

v (see Section 1.10, Exercise 6), if f is continuously differentiable. Lemma
12.1 then becomes a special case of Theorem 1.10.6.
b) For complex-valued y and f condition (12.2) has to be replaced by

Re(f(z,y) — f(z,2),y —2z) <v|y—z|?, wy,zeC”, (12.2’)

and Lemma 12.1 remains valid.

B-Stability

Whenever v < 0 in (12.2) the distance between any two solutions of (12.1) is
a non-increasing function of . The same property is then also desirable for
the numerical solutions. We consider here implicit Runge-Kutta methods

Y1 =Y + hZ b f(zo + c;ihy9:) (12.3a)

i=1

s
9=y +hY a;f(zo+cihyg), i=1,...,s. (12.3b)
j=1

Definition 12.2 (Butcher 1975). A Runge-Kutta method is called B-stable,
if the contractivity condition
(f(:c,y)—f(:c,z),y—z) <0 (12'2”)
implies for all A > 0
g2 = Full < llyo — Toll -

Here, y; and ¥, are the numerical approximations after one step starting
with initial values y, and ¥,, respectively.

Clearly, B-stability implies A-stability. This is seen by applying the
above definition to y' =Ay, A € C or, more precisely, to

)= D)) 124

Example 12.3. For the collocation methods based on Gaussian quadrature
a simple proof of B-stability is possible (Wanner 1976). We denote by u(z)
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and %(z) the collocation polynomials (see Volume I, page 206) for the initial
values y, and g, and differentiate the function m(z)=||u(z)—@(z)||2. At the
collocation points {; =z, +c;h we thus obtain

m'(fi) = 2<f(§ia“(€i)) - f(ﬁi’a(ﬁi)) ) “(fi) - ﬂ(f;‘)) <0.

The result then follows from the fact that Gaussian quadrature integrates
the polynomial m/(z) (which is of degree 2s—1) exactly and that the weights
b, are positive:

zo+h

v — Bull? = m(2q+h) = m(zo) + / m(z) da

To

= m(ze) +h Y bim'(zg+e;h) < m(zo) = llyg — Boll® -

i=1

Algebraic Stability

An algebraic criterion for B-stability was found independently by Burrage
& Butcher (1979) and Crouzeix (1979). The result is

Theorem 12.4. If the coefficients of a Runge-Kutta method (12.3) satisfy
i) b,>0 fori=1,...,s,

it) M=(m;;)=(b;a;;+b;a;;,—bb;); ,_, is non-negative definite,

then the method is B-stable.

Definition 12.5. A Runge-Kutta method satisfying i) and ii) is called
algebraically stable.

Proof of Theorem 12.4. We introduce the differences

Ay =Y -, Bdy=9%-%, ABg=¢-9G,
Af; = f(zg + c;hy ;) — f(zo + ¢k, 35)
and subtract the Runge-Kutta formulas (12.3) for y and §

Ay, = Ayy +hY b Af;, (12.5a)
i=1
8
Ag; = Ay, +hY a;Af; . (12.5b)

j=1
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Next we take the square of Formula (12.5a)

Ay |* = “Ayo||2+2hzb (Af;, Ayy) +h222b Af, Af;) . (12.6)

=1 i=1 j=1

The main idea of the proof is now to compute Ay, from (12.5b) and insert
this into (12.6). This gives

1Ay |1 = [|Agoll? + 2R Y b(Af;, Agy) hZZZm (Af, Af) . (12.7)

=1 =1 j=1

The statement now follows from the fact that (Af;, Ag;) < 0 by (12.2”) and
that Z:,j:l mij(Afi, AfJ> >0 (See Exercise 2) m|

Example 12.6. For the SDIRK method of Table 7.2 (Chapter II) the

weights b, are seen to be positive and the matrix M becomes

o (1)

For v > 1/4 this matrix is non-negative definite and therefore the Runge-
Kutta method is B-stable. Exactly the same condition was obtained by
studying its A-stability (c.f. (3.10)).

Some Algebraically Stable IRK Methods

“La premiére de ces propriétés consiste en ce que tous les
Ay, sont positifs.” (T.-J. Stieltjes 1884)

The general study of algebraic stability falls naturally into two steps: the
positivity of the quadrature weights and the nonnegative-definitness of the
matrix M.

Theorem 12.7. Consider a quadrature formula (c;,b;):_, of order p.
a) If p>2s—1 then b, > 0 for alli.
b) If c; are the zeros of (5.3) (Lobatto quadrature) then b, > 0 for all i.

Proof (Stieltjes 1884). The first statement follows from the fact that for
p > 2s—1 polynomials of degree 2s—2 are integrated exactly, hence

:c——c
b_/Hcﬁc da:>0 (12.8)
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In the case of the Lobatto quadrature (¢; =0, ¢, =1 and p = 2s—2) the
factors for the indices j =1 and j = s are taken without squaring and the
same argument applies. a

In order to verify condition (ii) of Theorem 12.4 we find it convenient to
use the W-transformation of Section IV.5 and to consider WT MW instead
of M. In vector notation (b=(b,,...,b,)T, B =diag(b,,...,d,), A=(a;;))
the matrix M becomes

M =BA+ ATB — b7 . (12.9)
If we choose W according to Lemma 5.12, then WTBW = I and, since
WTb=e, =(1,0,...,0)T, condition (ii) becomes equivalent to
WTMW = X + XT — e, el is non-negative definite (12.10)
where X =W 1AW =WTBAW as in Theorem 5.11.

Theorem 12.8. Suppose that a Runge-Kutta method with distinct c; and
positive b; satisfies the simplifying assumptions B(2s—2),C(s—1),D(s—1)
(see beginning of Section IV.5). Then the method is algebraically stable if
and only if |R(co0)| < 1 (where R(z) denotes the stability function).

Proof. Since the order of the quadrature formula is p > 2s—2 the matrix W
of Lemma 5.12 is

W =WgD, D =diag(l,...,1,a7}) (12.11)

where W =(P;_(c;))! ;=1 asin (5.21) and a®=Y3;_, b;P? ,(c;)#0. Using
the relation (observe that WTBW =1I)

X =W 'AW = D'W; AW D = DWEBA(WEB)"'D!
and applying Lemma 5.7 with n = s—1 and Lemma 5.8 with { =s—1 we

obtain

/2 =&

&L 0

X = “65—2
63——2 0 _a£3—1
aéa—l IB
If this matrix is inserted into (12.10) then, marvellous surprise, everything
cancels with the exception of 3. Therefore, condition (ii) of Theorem 12.4
is equivalent to 8 > 0.
Using the representation (5.31) of the stability function we obtain by

developing the determinants

det(X — e, el)
det X

- /Bda—l - a2£3—1d3~2
ﬂda*l + aZ z—lda—Z

|R(c0)| = (12.12)
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where d;, = k!/(2k)! is the determinant of the k-dimensional matrix X of
(5.13). Since a2¢2_,d,_, > 0, the expression (12.12) is bounded by 1 iff
B > 0. This proves the statement. a

Comparing these theorems with Table 5.13 yields

Theorem 12.9. The methods Gauss, Radau IA, Radau ITA and Lobatto
IIIC are algebraically stable and therefore also B-stable. O

AN-Stability

A-stability theory is based on the autonomous linear equation y' = My,
whereas B-stability is based on general nonlinear systems y' = f(z,y). The
question arises whether there is a reasonable stability theory between these
two extremes. A natural approach would be to study the scalar, linear,
nonautonomous equation

y' = XMz)y, Rel(z)<0 (12.13)

where A(z) is an arbitrarily varying complex-valued function (Burrage &
Butcher 1979, Scherer 1979). The somewhat surprising result of this subsec-
tion will be that stability for (12.13) will, for most RK-methods, be equiva-
lent to B-stability.

For the problem (12.13) the Runge-Kutta method (12.3) becomes (in
vector notation g=(g;,...,9,)7, 1=(1,...,1)T)

g=1Ny,+ AZg, Z =diag(zy,...,2,), z;=hAz,+c;h). (12.14)
Computing g from (12.14) and inserting into (12.3a) gives

y, = K(Z)y,, K(Z)=1+b"Z2(I-AZ)'1. (12.15)

Definition 12.10. A Runge-Kutta method is called AN -stable, if

K(Z)| <1 {

for all Z = diag(z,...,2,) satisfying Rez;, <0
and z; = z;, wheneverc; = ¢, (j,k=1,...,s).

Comparing (12.15) with (3.2) we find that

K(diag(z,z2,...,2)) = R(2) , (12.186)

the usual stability function. Further, arguing as with (12.4), B-stability
implies AN -stability. Therefore we have:
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Theorem 12.11. For Runge-Kutta methods we have:

B-stable = AN-stable =  A-stable.
|

For the trapezoidal rule y, = y, + %[f(mo,y0)+f(ml,y1 )] the function
K(Z) of (12.15) is given by

_142/2

K(z) = 1—2,/2°

(12.17)

For z, =0 and z; — —oco we see that this method is not AN-stable. More
generally we have

Theorem 12.12 (Scherer 1979). The Lobatto IIIA and Lobatto IIIB methods
are not AN -stable and therefore not B-stable.

Proof. As in Proposition 3.2 we find that

det(I — (A — 16T)Z)
K(2) = det(I — AZ)

By definition, the first line of A and the last line of A— 14T vanish for the
Lobatto IITA methods (compare also the proof of Theorem 5.5). Therefore
the denominator of K(Z) does not depend on z; and the numerator not on
z,. If we put for example z,=... = z,=0, the function K(Z) is unbounded
for z; — —oo. This contradicts AN-stability.

(12.18)

For the Lobatto IIIB methods, one uses in a similar way that the last
column of A and the first column of A — 15T vanish. O

The following result shows, as mentioned above, that AN-stability is
closer to B-stability than to A-stability.

Theorem 12.13 (Burrage & Butcher 1979). Suppose that

for all Z = diag(z,,...,2,) with Rez, <0
[K(2) <1 {and |z;] < € for some e >0, ! (12.19)
then the method is algebraically stable (and hence also B-stable).
Proof. We first show that
IK(Z)-1=2) bRezlg,l - > my;zgiz;9; , (12.20)

1=1 1,j=1

where g =(g;,...,9,)T is a solution of (12.14) with y, =1. To see this, we
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take the square of the modulus of K(Z)=1+bTZg and obtain

|K(Z)? =1+2) bRe(z,9)+ > bd;23,2;9; - (12.21)

i=1 1,j=1

Multiplication of the i-th component of (12.14) with z;g; yields
8
%9, = zl9;” - Zaijzigizjgj . (12.22)
i=1

Substituting the real part of (12.22) into (12.21) gives Formula (12.20).

To prove that b; > 0, choose z;=—¢ < 0 and z; =0 for j #4. Assumption
(12.19) together with (12.20) implies

—2¢b;g;|* —mye?lg;l® < 0. (12.23)

For sufficiently small ¢, g; is close to 1 and the second term in (12.23) is
negligible for b, #0. Therefore b, must be non-negative.

To verify the second condition of algebraic stability we choose the purely
imaginary numbers z; =ie{; (; € R). Since again g;=1+0(e) for ¢ — 0,
we have from (12.20) that

—&? Z m €6+ O0(e*) < 0.

ihj=1

Therefore M =(m,;) has to be non-negative definite. |

Combining this result with those of Theorems 12.4 and 12.11 we obtain

Corollary 12.14. For non-confluent Runge-Kutta methods (i.e., methods
with all c; distinct) the concepts of AN -stability, B-stability and algebraic
stability are equivalent. O

An equivalence result (between B- and algebraic stability) for confluent
RK-methods is much more difficult to prove (see Theorem 12.18 below) and
will be our next goal. To this end we first have to discuss reducible methods.
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Reducible Runge-Kutta Methods

For an RK-method (12.3) it may happen that for all differential equations
(12.1)

i) some stages don’t influence the numerical solution;

ii) several g; are identical.

In both situations the Runge-Kutta method can be simplified to an “equiv-
alent” one with fewer stages.

For an illustration of situation (i) consider the method of Table 12.1.
Its numerical solution is independent of g, and equivalent to the implicit
Euler solution. For the method of Table 12.2 one easily verifies that g, =g,,
whenever the system (12.3b) possesses a unique solution. The method is
thus equivalent to the implicit mid-point rule.

The situation (i) above can be made more precise as follows:

Definition 12.15 (Dahlquist & Jeltsch 1979). A Runge-Kutta method is
called DJ-reducible, if for some non-empty index set T C {1,...,s},

bj=0 for jET and a;; =0 for i ¢T,j€T. (12.24)
Otherwise it is called DJ-irreducible.

Table 12.1. Table 12.2.
DJ-reducible method S-reducible method
1 1 0 1/2 1/2 0

1/2 1/4 1/4 1/2 1/4 1/4
| 1 0 | 172 172

Condition (12.24) implies that the stages j € T' don’t influence the nu-
merical solution. This is best seen by permuting the stages so that the ele-
ments of T' are the last ones (Cooper 1985). Then the Runge-Kutta tableau
becomes that of Table 12.3, where the equivalent, reduced method is also
given.

Table 12.3. DJ-reducibility

c1 A1 0

c2 Ayr Az = a1 | An
e 4

An interesting property of DJ-irreducible and algebraically stable RK-
methods was discovered by Dahlquist & Jeltsch (1979):
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Theorem 12.16. A DJ-irreducible, algebraically stable Runge-Kutta me-
thod satisfies

b, >0 for i=1,...,s.

Proof. Suppose b; =0 for some index j. Then m;; =0 by definition of M.
Since M is non-negative definite, all elements in the j-th column of M must
vanish (Exercise 12) so that b,a;; =0 for all 4. This implies (12.24) for the
set T'={j|b; =0}, a contradiction to DJ-irreducibility. a

An algebraic criterion for the situation (ii) was given for the first time
(but incompletely) by Stetter (1973, p.127) and finally by Hundsdorfer &
Spijker, 1981 (see also Butcher (1987), p.319 and Dekker & Verwer (1984),
p.108).

Definition 12.17. A Runge-Kutta method is S-reducible, if for some par-
tition (S;,...,5,) of {1,...,s} with 7 < s we have for all l and m

Z Q= Z a;, if 3,5€5. (12.25)

k€ESm k€S

Otherwise it is called S-irreducible. Methods which are neither DJ-reducible
nor S-reducible are called irreducible.

In order to understand condition (12.25) we assume that, after a certain
permutation of the stages, [ € §, for I =1,...,7. We then consider the
r-stage method with coefficients

kES; kES;

Application of this new method to (12.1) yields gf,..., g,y and one easily
verifies that g; and y, defined by

g =g if 1€8, y, =y,

are a solution of the original method (12.3). A further example of an S-
reducible method is given in Table 11.4 of Section II.11, p.249. There S, =
{1,2,3} and S,={4}.
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The Equivalence Theorem for S-Irreducible Methods

Theorem 12.18 (Hundsdorfer & Spijker 1981). For S-irreducible Runge-
Kutta methods,

B-stable <= algebraically stable .

Proof. Because of Corollary 12.14, which covers nearly all cases of practical
importance — and which was much easier to prove — this theorem seems to
be of little practical interest. However, it is a deep and difficult mathematical
result which had been conjectured by many people for many years, so we
reproduce its proof, which also includes the three Lemmas 12.19-12.21.

By Theorem 12.4 it is sufficient to prove that B-stability and S-irreduci-
bility imply algebraic stability. For this we take s complex numbers z,,...,z,
which satisfy Rez; < 0 and |z;| < € for some sufficiently small ¢ > 0. We
show that there exists a continuous function f : C — C satisfying

Re(f(u) — f(v) , u—v) <0 forallu,veC , (12.27)

such that the Runge-Kutta solutions y,, g; and %;, g, corresponding to y, =0,
Yo=1, h=1 satisfy
£(@) — f(9:) = 2:(3; — 9:) - (12.28)

This yields §; —y, = K(Z) with K(Z) given by (12.15). B-stability then
implies |K(Z)| < 1. By continuity of K(Z) near the origin we then have
|K(Z)| <1 for all z; which satisfy Rez; < 0 and [¢;| < ¢, so that Theorem
12.13 proves the statement.

Construction of the function f: we denote by Ag; the solution of

j=1

(the solution exists uniquely if |z;| < e and ¢ is sufficiently small). With &, 7
given by Lemma 12.19 (below) we define

9; =1t , f(g;) = tn;
gi=9;+A4g;, f(3)=f(g)+2Ay.

with ¢ sufficiently large (to be fixed later). Because all ¢, are distinct and
Ag;, = 1+ O(¢), all g; and g; are distinct for sufficiently large ¢, so that
(12.29) is well-defined. Clearly, g; and g; represent a Runge-Kutta solution
for y, =0 and g, =1, and (12.28) is satisfied by definition.

We next show that

Re(f(u)— f(v), u—v) <0 if w#v (12.30)

(12.29)
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is satisfied for u,v € D = {gy,...,94:G11---19s}- This follows from the
construction of ¢,7, if u,v € {g;,...,9,}. f u=g; and v=7; this is a
consequence of (12.28). For the remaining case u =g;,v € D\ {g;,9;} we
have

(f(w) = f(v),u—v) =t2(7h' —771',{,' —fj) +0O(t) for t— o0,

so that (12.30) is satisfied, if ¢ is sufficiently large. Applying Lemma 12.20
below we find a continuous function f : C — C that extends (12.29) and
satisfies (12.27). a

To complete the above proof we still need the following three lemmas:

Lemma 12.19. Let A be the coefficient matriz of an S-irreducible Runge-
Kutta method. Then there exist vectors £ € R* and n= A€ such that

(&= &)y —m;) <0 for i#j. (12.31)

Proof (see Butcher 1982). The first idea is to put
§=1-eAl with 1=(1,1,...,1)T,

so that n becomes

n=Af = Al—cA’1.

I ¢; # c; for all 4,7, then {; —¢; # 0 and for ¢ sufficiently small we have
n; —n; of opposite sign, thus (12.31) is true.

For a proof of the remaining cases, we shall construct recursively vectors
V9,V;,V,,... and denote by P, the partition of {1,...,s} defined by the
equivalence relation

i~vj = (vy);=(vg); for ¢=0,1,...,k.
For a given partition P of {1,2,...,s} we introduce the space

X(P)={v eR’ (v); = (v);
With this notation, the method is S-irreducible if and only if
AX(P) ¢ X(P)
for every partition other than {{1}, {2},...,{s}}.
We start with vy =1 and P,={{1,...,s}} and define

. Av,, if Av, & X(P,)
17w if Av, € X(P,)

if i~j with respect to P}.

where w is an arbitrary vector of X(P,) satisfying Av,; & X(P;, ;). Such
a choice is possible, since the method is assumed to be S-irreducible. After
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a finite number of steps, say m, we arrive at P, ={{1},{2},...,{s}}, since
the number of components of P, is increasing, and strictly increasing after
every second step. Therefore all elements of the vector

£ =vy —ev, + v, — ...+ (—€)™v,,

are distinct (for sufficiently small ¢ > 0) and (12.31) is satisfied. a

Lemma 12.20 (Minty 1962). Let u,,...,u; and uj,...,u) be elements of
R™ with

(uj —ujyu; —u;) <O for i#7j.
Then there ezists a continuous function f : R* — R™ satisfying f(u;)=1u}
fori=1,...,k and

(f(u) — f(v),u—v) <0 forall u,veR™.

Proof (Wakker (1985), see also Exercise 5 below). Define

and let

Then

lla; - ﬁ]” <y = uj”

and by Lemma 12.21 there exists a continuous function g : R* — R™ sat-
isfying g(v;) = @;, |lg(v) —g(v)|| < |lu—v]|| (i.e., g is non-expansive). The
function

flu) = ;—7(g(u) +u)

then satisfies the requirements. a

Lemma 12.21 (Kirszbraun 1934). Let u,,...,u; and uy,...,u}, € R™ be
such that

Ju; = w5l < llw; —uill for 4,5 =1,...,k. (12.32)

Then there exists a continuous function g : R* — R™ with g(u;) = u} such
that

lg(w) — g(0)ll < [l —ol| - (12.33)
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Fig.12.1. Construction of p' =g(p)

This was once a difficult result in set-theory. Based on further work of
Valentine and Mickle, I.J. Schoenberg (1953) gave a particularly nice proof:

Proof. a) The main problem is to construct for one given point p the exten-
sion p' = g(p) such that (12.33) remains satisfied (Fig. 12.1). This is done as
follows: let r,=||u; — p|| and consider with x > 0 the balls

uBl: ' =l <pr;,  i=1,...,k.

Now let u be the smallest possible value for which all these balls still have
a common intersection p' (which is then unique). In virtue of (12.33), we
have to show that this minimal y satisfies

p<1. (12.34)

Suppose to the contrary that u > 1 and let u},...,u!, (2 < m < k) be the
active points (i.e., the points for which p' lies on the boundary of uB!; this
can be achieved by a proper renumbering). Then put

Ri =u;, —p, R: = u; — p' , (12.35)
so that 4 > 1 means that
|RYZ > IR12P  i=1,...,m. (12.36)
Now (12.32) may be rewritten as
IR; — Rj|I* < I|R; — R,|I* .
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Expanding this and subtracting appropriate inequalities (12.36) we have
(R;,R;-) > (Ri,Rj) forall ¢,j5=1,...,m. (12.37)

Finally, we use the fact that p' lies in the convex hull of u},...,u! (otherwise
the balls pB! could be shrunk further)

m m

p':Zciuz, c; >0, Zcizl,

i=1 =1

which gives with (12.35)

m

ZciR;:O.

i=1
Multiplying (12.37) by c;c; and summing up gives

m 2 m
o= cr| > Xk
i=1 i=1

2

I

a contradiction.

b) The rest is now standard (Kirszbraun): we choose a countable dense
sequence of points p,, p,,P;,...in R™ and extend g gradually to these points,
so that (12.33) is always satisfied. By continuity (see (12.33)), our function
is then defined everywhere. A crucial remark is that at every step our p' is
uniquely determined, so we are not bothered with, as Wakker (1985) says
so nicely, “the compactness of spheres w.r.t. the weak topology, the finite
intersection property for compact sets, and the Lemma of Zorn”.

This completes the proof of Lemma 12.21 and with it the proof of The-
orem 12.18. (|

“Nous ne connaissons pas d’exemples de méthodes qui soient
B-stables au sens de Butcher et qui ne soient pas B-stables
suivant notre définition.” (M. Crouzeix 1979)

Remark. Burrage & Butcher (1979) distinguish between B N-stability (based
on non-autonomous systems) and B-stability (based on autonomous sys-
tems). Since the differential equation constructed in the above proof (see
(12.27)) is autonomous, both concepts are equivalent for irreducible methods.
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(k,1)-Algebraic Stability

All the above theory deals only with contractivity when the one-sided Lip-
schitz constant v in (12.2) is zero (see Definition 12.2). The question arises
whether we can sharpen the estimate when it is known that v < 0, and
whether we can obtain estimates also in the case when (12.2) holds only for
some v > 0.

Definition 12.22. Let an IRK-method be given. Then for a given [ we
define the growth function ¢g(l) to be the smallest number for which the
estimate

lv: = Bl < eB(0) llyo — Bl (12.38)
holds for all problems satisfying
(f(z,y)—f(z,2), y—2) <v ly—z| (12.39)

where v=1[/h and h is the step size.

If we restrict ourselves to linear autonomous problems, then (12.38) is
the same as (11.4), therefore a first result is that

¢r(l) < ¢p(l) (12.40)

(see (11.10) and (11.11); R(z) is the stability function of the method).

Upper bounds for ¢ g(1) are much harder to obtain, since an extension of

the ideas of Theorem 12.4 to the new situation is quite tricky (Burrage &
Butcher (1980), compare with Lemma V.9.2 below):

Let d,,...,d, be arbitrary numbers with d; > 0 and k¥ > 0. Then we
compute

Ay, [I* — kll Ay, [1* - thdi<Afi> Ag,’)

i=1

= (Ayo+hY bAS, Ay +hY bAS)- (12.41)
i=1 j=1
— k(Ayo, Ayy) — 20 Y _d(Af;, Ay, + R e Af)
i=1 j=1

by using (12.5a) and (12.5b). With hypothesis (12.39) we estimate

ZhZ di<Af,'a Ag,') <2l Zdi<Agi,Agi>

i=1 =1

< ZIZdi<Ayo + hzaijAfj, Ay, +h Za: aimAfm>
i=1

Jj=1 m=1
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and insert this into (12.41). This gives
Ay, I12 — kil Ay, |I*
s

< —a{Ayy, Ayy) — 20 Y ui(Aye, Af;) =B Y wi(Af;, Af;)

i=1 i,j=1
(12.42a)
where
s
a = k -1 2l Z di
=1
u;=d; — b, —2Y  d;ay; (12.42b)

j=1
= d;a;; + dja;; — bb; — 21 Z GO -
We thus have the following result.

Theorem 12.23 (Burrage & Butcher 1980). If there ezist d,,...,d, > 0

such that the matriz
a uT
M=(2 (12.43)

is non-negative definite, where a,u;,w;; are given in (12.42b), then

Ay, 1> < & |Ay, |, (12.44)

hence
op(l) <Vk. (12.45)
o

The corresponding RK-method is then called (k,!)-algebraically stable.

Computation of the Optimal k

Since M must be non-negative, the minor W (which depends on the d; and
[ only, but not on k) must also be non-negative. Suppose first that for a
given [ the d; are chosen such that W is strictly positive. Then expanding
det M by the first column shows that

det M = k-p,(dy,...,d,, 1)+ py(dy, ..., d,,1) (12.46)

where p, and p, are polynomials and p, =det W >0. A well-known theorem
of linear algebra (due to Jacobi (1847) and Cauchy; see e.g. Gantmacher
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(1954), Chapter X, Sections 3 and 4) states that a matrix is positive definite
iff all principal minors (Fig. 12.2, left) are positive. It remains true, of course,

x| K| x| K| K| * * * * *
* k| K| K| K I« I*¥ ¥ * *
* x| | I

* ok x| x| x| I« I* |I¥ * *
* * *x x| K I |+ |x ¥ *
* o * x K K| Ix Ix 1% 1% |¥x

Fig.12.2. Principal Minors

if we reverse the variables and consider the lower principal minors (Fig.12.2,
right). Therefore, if W is positive definite and det M > 0, we have also M
positive definite. Hence the smallest possible value of k for non-negativity
of M in (12.46) is given by det M =0, i.e.,
py(dy,...,d,,10)
pi(dy,- .., d,,10) .
This rational function must be minimized over the domain where d; > 0 and

W is positive definite. Sometimes, the minimal solution lies on the boundary
where det W =0 and we must then have

pi(dyy...yd,,1) =0 and p,(dy,...,d,,l)=0. (12.48)

Several similarity transformations of M can simplify these calculations (see
Exercises 9 and 10 below).

k=— (12.47)

Example 12.24. Consider the §-method (s=1,a,; =6,b, =1) for which
(k—l—Zld d—1-2ld0 )
M =
d—1-2ld0 2d0(1-10)-1
Here (12.47) gives

(d—1—21d9)?
k=(1+2ld)+ ———77—"—. .
A+ 2+ T 18 -1 (12.49)
From 8k/0d =0 we obtain the two solutions
1+1(1-9 1-6
d:Ll(—_lo—) or d:T, (1250)

only the larger one satisfies the non-negativity condition 2d6(1—-16)—1 > 0.
Inserted into (12.49), this gives

k= (1—4_1-11_11;—0))2 or k= (l;—o)z (12.51)

respectively. Comparing with (11.13), we find that for this method
ep(l) = ¢r(l) .
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Example 12.25. Consider the Radau ITA method with s =2 of Table 5.5.
Here we obtain after a straightforward (but tedious, if done by hand) calcu-
lation

detM:k{dl(_i+L)_d_2+ d(13 4l+12)_%}

12 18 144 24 9 16
d? 2 2 2 2 21
{ +d2dy (- s+35 >+dd( 9)} (12.52)
The solution on the boundary (p, =p, =0, see (12.48)) is quite easily found
as
3 +41)2 3
(3+40) d, = + 4l (12.53)

1T 434l -217)° 43+ 4l —21%)
which gives from (12.47), using de I’Hépital’s rule,
(3 + 41)2
(3-20)(3+4l—-212)
A second solution, for which —p,/p, is minimized in the interior, is more

difficult to find. The result is
9 2 16

k=

dl = m y d2 = m with k= m . (1254)
This leads to the estimate (Burrage & Butcher 1980)
4 i< o 3\/1_7
n<{®® 12.55
ea(l) < 3+4l , 9-3\/_ (12:55)

3
2 .

i
V(B —20)(3 + 4 — 2B 8
This time, when compared with (11.15), we do not obtain the same estimate

as for the linear autonomous case.

Example 12.26. Finally we choose the Gauss method with s =2 of Table
5.1. Here, we use the transformation of Burrage (see Exercise 10) which
converts the matrix M into a Hankel form

hD hl h2
H=|h, h, h
h2 h3 h4

hg=k—-1-3lp

h, = —1+ p(18 — 18l) 4 6ml

hy = —1 + p(18 — 121) + m(—6 + 61) (12.56)
hy = —1+ p(18 — 91) + m(—9 + 5!)

h, = -1+ p(18 — 7l) + m(—10 + 4l)

with
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where

d, +d d, —d
p= 1+2 m=\/§ﬁigi)_

18’

Guided by a numerical study of the function (12.47), we search for the
solution on the boundary (12.48). Then H becomes rank one and we must
have

hihy—h2=0 and  hyh,—h:=0.

Developing these expressions and putting p=a - m, we are led to a third-
degree equation for a which factorizes as follows:

(a-31—(1+3) (3a*?-3-1%)=0.

The interesting solution is a = v/3 + [2/(Iv/3) and we finally obtain, again

after tedious manipulations,

g 3+ +2v3)I(1+ V3T P

1= 2(3-1)
4 3+(1 _2\2/(5;')1«(%— v3+1) (12.57)
Vi V9 + 7123+_4ll\/9 + 32 , 0<l<3

which is the same as @g(l) in (11.16). Hence we have pg(l) = pg(l). We
also notice from the Taylor expansion (I > 0)
2 B 1 B s
D=1+l+=+=4+—=4+=+—+...
ep) =1+t ot gt im?t
that ¢ (1) is an approximation to €' of order 4.
Burrage (1987) has proved the result that for all other Gauss methods

k is an approximation to e’ for ! > 0 of order at most 2 (see also Exercise
11). On the other hand, the proof of Theorem 11.5 shows that wg(l) =
el +O(12++1) for the s-stage Gauss method and for [ > 0. Thus vk cannot
be equal to pg(l) for s > 2.
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Exercises

1. Prove, directly from Definition 12.2, that the implicit Euler method is
B-stable.

2. Let M be a symmetric s X s-matrix and (-,-) the scalar product of R™.
Then M is non-negative definite, if and only if

Ezmij(ui’uj> >0 for all u; € R™ .

i=1 j=1
Hint. Use M =QTDQ where D is diagonal.

3. Give a simple proof for the B-stability of the Radau IIA methods by
extending the ideas of Example 12.3.

Hint. For the quadrature, based on the zeros of (5.2), we have

1 ]
[ ot@)dz = 3ot + o (e, 0<e<t.
0

=1

with C < 0 (see e.g. Abramowitz & Stegun (1964, Formula 25.4.31)).

4. (Dahlquist & Jeltsch 1987). Prove that Method I of Table 12.4 is S-
reducible with respect to the partition ({1}, {2,3}). The reduced method
II itself is DJ-reducible and reduces to Method III.
For the initial value problem y' = f(y), y(0)=1, where f(y)=y2 fory > 0
and f(y) =0 for y < 0, and for h =2, Methods I and III have unique
solutions which are different. Explain this apparent contradiction.

Table 12.4. Reduction of RK-methods

0 0 o 0

/2 |o 1 -1/2 0 0 o

1/2 |0 1/2 0 1/2 |0 1/2 0 | 0
[1 & b |1 o | 1
Method I Method II Method III

5. Try to reconstruct Minty’s original (unpublished) proof of Lemma 12.20,
which was, as he says (Minty 1962), “patterned after Schoenberg’s proof
of Kirszbraun’s theorem”, without using Lemma 12.21.
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a) Give a counter-example of a non-algebraically stable reducible B-
stable method.

b) Give a counter-example of an irreducible AN-stable but not alge-
braically stable, and hence not B-stable method.

Hint. For a) see Exercise 7 below; for b) start with any algebraically sta-
ble method with, say, two stages and modify it as indicated in Table 12.5.
Find conditions on the free parameters d, e, @ such that the two meth-
ods are identical for equations y' = A(z)y. This ensures AN-stability of
the second method. Then play with the parameters to destroy algebraic
stability.

Table 12.5. Construction of AN-stable but not B-stable method

c a1 apza apz(l—a)
“ 11 G c2 c2 —d da d(1-a)
€2 421 432 = c2 ca—e ea e(l—a)
| b, b, " b ba b(l-a)

. Show that the method of Table 12.1 is D J-reducible, but not S-reducible;

show that it is algebraically stable together with the reduced method.

Show that the method of Table 12.2 is S-reducible, but not DJ-reduci-
ble; show that it is not algebraically stable, but that the reduced method
is.

. (Sandberg & Shichman 1968, Vanselow 1979, Hundsdorfer 1985).

Prove that Rosenbrock methods are not B-stable in the sense of Defini-
tion 11.2.

Hint. Apply the method to the scalar problem y' = f(y), y, =1 where
f(y) is a non-increasing function satisfying (for a small ¢)
-~y ifly-1]>2e
fw={""
-1 ifjy—-1/<e.

. (Burrage & Butcher 1980). Show that for an RK-method with invertible

A the transformation

1 0
T =
(csn 1)

transforms the matrix M of (12.43) into
M=TTMT
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with (1,1)-element k — (R(00))2. This simplifies M, especially for me-
thods with R(c0)=0.

(Burrage 1987). Let V be the s x s matrix whose (7, j)-element is jcf—1

and let
1 0
T= .
oV

Show that the transformed matrix
H=TTMT

is then an (s 4 1) x (s + 1) Hankel matrix whose (7, j)-element is A, ;_,
(z,7=1,...,s+1) where

h0=k—1—2lidi
i=1

hy=pY ™ —1-20) did  (p=1,...,29).
i=1 i=1
Hint. Use the simplifying assumptions C(s) and D(s).
Prove that for the 3-stage Gauss method we have for [ > 0

Hint. With the help of (12.18) compute K(Z) for z; — —o0, 2, =1,
zg — —00.

Show that for a non-negative definite symmetric matrix M = (m;;) one

has
Im;| < VAU T

Interpret the meaning of the “N” in the definition for AN-stability.
Check among

0 Nunc est bibendum [J Nota bene 0 Nottinghamshire
[0 Nundobewunewun [] New Zealand 0 No smoking

O Nec plus ultra [0 Non-autonomous 0 Nomen est omen
O Notre Dame 0 Non nova,sednove [J ......... (other)

and send to the authors. The first prize, a guided tour to Mont Blanc,
will be drawn among the correct answers.



IV.13. Positive Quadrature Formulas
and B-Stable RK-Methods

“Bien que le probléme (des quadratures) ait une durée
de deux cents ans & peu prés, bien qu'il était ’objet de
nombreuses recherches de plusieurs géometres: Newton,
Cotes, Gauss, Jacobi, Hermite, Tchébychef, Christoffel,
Heine, Radeau [sic], A. Markov, T. Stitjes [sic], C. Possé,
C. Andréev, N. Sonin et d’autres, il ne peut étre con-
sidéré, cependant, comme suffisamment épuisé.”

(V. Steklov 1918)

We shall give a constructive characterization of all irreducible B-stable Run-
ge-Kutta methods (Theorem 13.15). Because of Theorem 12.16 we first have
to study quadrature formulas with positive weights.

Quadrature Formulas and Related Continued Fractions

Steklov (1916) proved that a family of interpolatory quadrature formulas
converges for all Riemann integrable functions, if all weights of the formulas
are positive (“Il faut remarquer cependant que de tels théorémes généraux
ne peuvent avoir aucune valeur pratique ...”). This theorem, rediscovered
around 1922 by Fejér, initiated an extensive search for quadrature formulas
with positive weights. Fejér (1933, “weiter habe ich noch auf sehr kurzem
Wege das folgende Resultat erhalten ...”) found the result:

“If P,(z) are the Legendre polynomials normalized as in (13.4) and
C1y---,C, are the zeros of M(z)=P,(z)+a, P,_,(z)+a,P,_,(z) with e, <0,
then the weights b, are all positive”.

The theory of B-stable methods renewed the interest in positive quadra-
ture formulas and Burrage (1978) obtained the sharp bound

(s =12
4(2s —1)(2s - 3)

for the positivity of the b; in the above case. This is the same as condition
(5.51) in a different normalization. A short proof of this result (see “Lemma
18” of Ngrsett & Wanner 1981) then led to a complete characterization of
positive quadrature formulas by Sottas & Wanner (1982). An independent
proof of an equivalent result was found by Peherstorfer (1981). In what
follows, we give a new approach using continued fractions.

ay < (13.1)
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Consider a quadrature formula

Z bif(c;) ~ /0 f(z)d

with distinct nodes ¢; and non-zero weights b;,. The main idea is to consider
the rational function

Q(z) = Z ,z 5 M((Z)) (13.2)

where, as usual, M(z)=(z—c¢;)--(2—c,). We first express the order of the
quadrature formula in terms of the function Q(z).

Lemma 13.1. A quadrature formula is of order p if and only if Q(z2),
defined by (13.2), satisfies

Q(z) = —log(l——)+0( p1+1) for z—00. (13.3)

Proof. Inserting the geometric series for (1—c;/2z)~! into (13.2) we obtain

Q(2) = Z (i: bjcf_1> ;’: .

k>1

Therefore (13.3) is equivalent to

L
ijc;?_lzk for k=1,...,p

We now study the case of the Gaussian quadrature formulas, where the
function (13.2) will be denoted by Q%(z) = N&(z)/ME(z); here the c; are
the zeros of the s-degree shifted Legendre polynomial

sl d¢
P (2-1)° 13.
( ) (28)‘ dz’ ( (z ) ) ’ ( 4)

which are normalized so that the coefficient of 2¢ is 1. The polynomials
(13.4) satisfy the recurrence relation (see Formula (5.53) or Abramowitz &
Stegun, p. 782)

82

Pen() = (s 5)P&) =P, =gy (139)

and Py(z)=1, P_;(z)=0. Since this quadrature formula is of optimal order
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2s, it follows from (13.3) that
G\ _ G 1 1
NE(z) = ~MZ(2)log(1 - -z-) +0(=5) - (13.6)

zs+1

We now insert ME(z) = P,(z) (see (13.2)) into (13.5) and multiply by
log(1—1/z) (which is O(1/z) for z — 00). A comparison with (13.6) shows
that the polynomials NG(z) must also satisfy the recurrence formula (13.5)
(with NE(2)=0, NE(z)=1). It thus follows from elementary properties of
continued fractions (Exercise 1 or Perron (1913), page 4) that

G Ts—1

Qs(z)z""—1__1—"'__1"|' (13.7)
2

For an arbitrary quadrature formula we have

Lemma 13.2. An irreducible rational function Q(z) = N(z)/M(z) (with
deg M =s, deg N =s—1) satisfies (13.3) with p > 2(s—k), if and only if

) R S S _M_}_’_(z_l 13.7°
SRl P o S i S = B

with deg f = k and degg < k—1.

Proof. From Lemma 13.1 we know that Q(z) = Q%(z)+ O(1/z2(s=k)+1),
Therefore the first 2(s—k) coeflicients in the continued fraction expansions
for Q(z) and Q%(z) must be the same. a

“Endlich sei noch die folgende Formel wegen ihrer haufigen
Anwendungen ausdriicklich hervorgehoben:”
(O. Perron 1913, page 5)

Lemma 13.3. The functions M(z) and N(z) of Lemma 13.2 are related to
f(z) and g(z) of (13.7°) as follows:

M(Z) = Pa—k(z)f(z) - Ps—k—l(z)g(z) ’
13.8
N() = N ()~ N4 (2l .

Proof. This follows from the recursion (13.30) and Exercise 1 below, if we
put there by =0, b, = ... =b, ;, =2-1/2, b,_;,, = f(z) and ¢, = 1,
a;=— j_l(j=2,...,s—-k), ay_pr1=—9(2). |

Solving the linear system (13.8) for f(z) and g(z) gives, with the use of
Exercise 2,

fz)emyeeety gy = N(Z)Ps-—k—-l(‘z) - M(Z)Nf—k_1(z)

9(2) 7y oy = N()P,_y(z) — M(:)NO . (z) . (13:)
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Number of Positive Weights

For a given rational function (13.2), the weights are determined by

N(c,;)
b, = = .
But we want our theory to work also for confluent nodes for which M'(¢;)=
0. Therefore we suppose that ¢,...,c,, (m < s) are the real and distinct
zeros of M(z) of multiplicities l,,...,1,,. Then we let
N(ci) . )
bl:m z:l,...,m. (13.10)

For [, =1 this is just (13.10); otherwise we are considering the weights for
the highest derivative of a Hermitian quadrature formula (see Exercise 3).

The main idea (following Sottas & Wanner 1982) is now to consider the
path v(t)=(f(t),g(t)) in the plane R2, where f and g are the polynomials
of (13.7’). For t — +oo this path tends to infinity with horizontal limiting
directions, since the degree of f is higher than that of g. Equation (13.8)
tells us that for an irreducible Q(z) this path does not pass through the
origin.

Definition 13.4. The rotation number r of « is the integer for which r is
the total angle of rotation around the origin for the path v(t) (—oo < t < o)
measured in the negative (clockwise) sense. Counter-clockwise rotations are
negative.

An algebraic definition of r is possible as

r= 3 sign (F(t)e(t)

where the summation is over all real zeros of f(t) with odd multiplicity ;.

Theorem 13.5 (Sottas & Wanner 1982). Let Q(z) = N(z)/M(z) be an
irreducible rational function as in Lemma 13.2. Suppose that c,...,c, are
the (distinct) real zeros of M(z) with odd multiplicity and denote by n
(respectively n_) the number of positive (respectively negative) b;. Further,
let v be the rotation number of y=(f,g) (Definition 13.4). Then

n,-n_=s—k+r. (13.11)

Proof. The proof is by counting the number of crossings of the vectors
(t)=(£(t),g(t)) and B(t) =(P,_;_,(t), P,_4(t)), like the crossings of hands

on a Swiss cuckoo clock.
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Py

3
>

Fig.13.1. The path (P,_j_1(t), Ps_i(t)) for s—k=7

From (13.9) we see that when ¢ equals a zero c; of M, these two vectors
are parallel in the same sense (N (c;) > 0) or in the opposite sense (N(c;) <
0). From (13.8) we observe that M(t) is just the exterior product y(t) x 8(%).
By elementary geometry, and taking into account Formula (13.10’), we see
that at every zero ¢; with odd multiplicity we have

i) b; > 0, if the crossing of v(t) with 3(t) is clockwise;
ii) b; < 0, if this crossing is counter-clockwise.
Zeros of M(t) with even multiplicity don’t give rise to crossings.

Since the zeros of P,_, and P,_,_, interlace (see e.g. Theorem 3.3.2
of Szegd 1939), the vector B(t) turns counter-clockwise with a total angle
of —(s—k)m (see Fig.13.1). The vector v(t) turns with a total angle r7
measured clockwise (Definition 13.4). Since the limiting directions of v(t)
and ((t) are different (horizontal for 4(¢) and vertical for 3(t)), v(¢) must
cross ((t), as t increases from —oo to +00, exactly s—k-+r times more often
clockwise than counter-clockwise. This gives Formula (13.11). (|

Corollary 13.6. Under the assumptions of Theorem 13.5, all zeros of M (z)
are real and simple, and the b; are positive if and only if

r=k%k.

Proof. r =k means by (13.11) that n, —n_ =s. Because of n_ > 0 and
n, < s, this is equivalent to n,=sand n_=0. a
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Characterization of Positive Quadrature Formulas

The following theorem gives a constructive characterization of all quadrature
formulas with positive weights.

Theorem 13.7. Let
0,010, <0< ... < Pp_q <0y
be arbitrary real numbers and C a positive constant. Then putting

f(z)=(2—-0y)...(z—0y), 9(z2)=C(z—pgy)...(2—0p_y), (13.12)

computing M(z), N(z) from (13.8), taking c,,...,c, as the zeros of M(z)
and b; from (13.10), one obtains all quadrature formulas with positive weights
of order p > 2(s—k). If C=7,_,, the order is p > 2(s—k)+1.

Proof. The functions f(z) and g(z) are irreducible, so that also the frac-
tion N(z)/M(z) is irreducible by (13.9). The statement now follows from
Corollary 13.6, since the polynomials (13.12) are all possible polynomials for
which » =k. The stated order properties follow from Lemma 13.2. a

Example 13.8. Let c,,...,c, be the zeros of
M(z) = P,(2) + oy P,_y(2) + 2 P, _,(2) . (13.13)

In order to study when the corresponding quadrature formula has positive
weights, we use (13.5) to write (13.13) as

M(2) = Poy(2) (2= 5+ o) = Puay(2)(mys — ) -

Consequently f(z)=2-1/2+a,, g(z)= —a, and Theorem 13.7 implies
that the zeros of M(z) are real and the welghts positive, if and only if
a, < T,_;, hence (13.1) is proved.

For k > 1 the rotation number r of (f(t),g(t)) can be computed with
Sturm’s algorithm (Lemma 13.3 of Section I.13). Consider, for example,

M(z) = P,(z) + o, P,_;(2) + oy P,_5(2) + a3 P,_4(2)
=Ps (z)[(z——)(z——+a1)+a2 Ts— 1]
_Ps—3( )[ 3—2(2—%+a1)_'a3] .

Application of Lemma I.13.3 to the polynomials f(z)=(z—3)(z—3+e; J+a,—
7,_y and g(2)=7,_,(z—3+a;)—a; shows that the corresponding quadrature
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formula has positive weights iff

— (e - — ) -ty >0, (13.14)
8—2 s—2

a result first found by Burrage (1978).

Necessary Conditions for Algebraic Stability

We now turn our attention to algebraic stability. We again use the notation

B(p), C(n), D(§) of Section IV.5.

Lemma 13.9 (Burrage 1982). Consider Runge-Kutta methods, which satisfy
B(2) and the second condition for algebraic stability (i.e. M non-negative).
Then

a) C(k) implies B(2k—1);
b) D(k) implies B(2k—1).

Proof. Instead of considering M, we work with the transformed matrix M =

VTMV where V:(c? ! ; j=1 is the Vandermonde matrix. The elements of

M are given by

s s s 8 8 k]
~ g—1 r—1 r—1 g—1 q-—1 r—1
My, = E b,c] E a;;ci + E bjcj E ajc;  — E b;c] bjcj .
i=1 Jj=1 j=1 i=1 i=1 Jj=1

(13.15)
We further introduce

s
_ r—1
g, =T E bjcj -1
i=1

so that B(v) is equivalent to g, =0 (r = 1,...,v). Then C(k) simplifies
(13.15) to

R 1
qr:qT(gq+r+1_(gq+1)(gr+1)) <k, r<k.

Similarly, D(k) implies

~ 1

mqrz_;—;(gq+r+gq.gr) qSk7TSk'
We now start with the hypothesis B(2)i.e. B(2l) for [=1. This means that
9y =...=9y =0, so that, in both cases, ;; =0. But if for a non-negative

definite matrix a diagonal element is zero, the whole corresponding column
must also be zero (see Exercise 12 of Section IV.12). This leads to 9i4q=0
forg=1,...,k; so we have B(k+l). We then repeat the argument inductively
until we arrive at B(2k—1). O
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Since s-stage collocation methods satisfy B(s) and C(s) (see Theorem
7.7 of Chapter II) we have

Corollary 13.10 (Burrage 1978). An s-stage algebraically stable collocation
method must be of order at least 2s—1. O

Because symmetric methods have even order this gives:

Corollary 13.11 (Ascher & Bader 1986). A symmetric algebraically stable
collocation scheme has to be at Gaussian points. a

The next result states the necessity of the simplifying assumption C(k).
Observe that by Theorem 12.16 the weights b, of DJ-irreducible, alge-
braically stable methods have to be positive.

Lemma 13.12. If a Runge-Kutta method of order p > 2k+1 satisfies b, > 0
fori=1,...,s, then the condition C(k) holds.

Proof (Dahlquist & Jeltsch (1979) attribute this idea to Butcher). The order
conditions (see Section II.2)

8
1
D bl =
2q+1

=1

- 1
-1
2 heteut™ = iy,

i|j=1

> 1

E biai-cq-_lai S R—
i,jym=1 7 - (29 +1)¢?

imply that
2
s s q
-1 C;
=1 j=1 q

for 2¢+1 < p. Since the b; are positive, the individual terms of this sum
must be zero for ¢ < k. O

A simple consequence of this lemma are the following order barriers for
diagonally implicit DIRK (a;; =0 for i < j) and singly diagonally implicit
SDIRK (a;;=0 for i < j and a;;=1 for all i) methods.



222 IV. Stiff Problems — One Step Methods

Theorem 13.13 (Hairer 1980).

a) A DIRK method with all b; positive has order at most 6;
b) An SDIRK method with all b; positive has order at most 4;
c¢) An algebraically stable DIRK method has order at most 4.

Proof. a) Suppose the order is greater than 6 and let ¢ be the smallest index
such that ¢; # 0. Then by Lemma 13.12

2 3
p—— 2=5
aiii—za aiii—37

contradicting c; # 0.

b) As above, we arrive for order greater than 4 at

2
a;iC¢; = 'czi or a;= % (#0).
Since for SDIRK methods we have a,; =a,,, this leads to ¢, =a,; # 0, hence
i=1. Now a,; =¢,/2 contradicts a,; =¢;.

c) It is sufficient to consider DJ-irreducible methods, since the reduction
process (see Table 12.3) leaves the class of DIRK methods invariant. From
Theorem 12.16 and Lemma 13.12 we obtain that algebraic stability and order
greater than 4 imply

a1 =6 a;:¢, = ’

N In—nﬁw

and hence a;; =0. Inserted into m,; this yields m;; = —b? < 0, contradicting
the non-negativity of the matrix M. |

Similarly to Lemma 13.12 we have the following result for the second
type of simplifying assumptions.

Lemma 13.14. If a Runge-Kutta method of order p > 2k+1 is algebraically
stable and satisfies b; > 0 for all i, then the condition D(k) holds.

Proof. The main idea is to use the W-transformation of Section IV.5 and
to consider WTMW instead of M (see also the proof of Theorem 12.8).
By Theorem 5.14 there exists a matrix W satisfying T'(k, k) (see Definition
5.10). With the help of Lemma 13.12 and Theorem 5.11a we obtain that the
first k diagonal elements of

WIMW = (WTBW)X + XT(WTBW)T — e,eT (13.16)

are zero. Since M and hence also WTMW is non-negative definite, the
first k columns and rows of WTMW have to vanish. Thus the matrix
(WTBW)X must be skew-symmetric in these regions (with exception of the
first element). Because of C(k) the first k columns and rows of (WTBW)X
and X are identical. Thus the result follows from Theorem 5.11. a
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Characterization of Algebraically Stable Methods

Theorem 12.16, Lemma 13.12 and Lemma 13.14 imply that DJ-irreducible
and algebraically stable RK-methods of order p > 2k+1 satisfy b, > 0 for
all ¢, and the simplifying assumptions C(k) and D(k). These properties
allow the following constructive characterization of all irreducible B-stable

RK-methods.

Theorem 13.15 (Hairer & Wanner 1981). Consider a p-th order quadrature
formula (b;,¢;)i_, with positive weights and let W satisfy Property T(k,k)

of Definition 5.10 with k=[(p—1)/2]. Then all p-th order algebraically stable
RK-methods corresponding to this quadrature formula are given by

A=wxw! (13.17)
where
0 =
. &
(WTBW)X = Eelef + 0 —g, (13.18)
€k
Q

and Q is an arbitrary matriz of dimension s—k for which Q+Q7T is non-
negative definite. For p even we have to require that ¢;, =0.

Proof. Algebraic stability and the positivity of the weights b; imply C(k)
and D(k) with k=[(p—1)/2]. The matrix A of such a method can be written
as (13.17) with X given by (13.18). This follows from Theorem 5.11 and the
fact that multiplication with WTBW does not change the first k columns
and rows of X. This method is algebraically stable iff M (or WTMW) is
non-negative definite. By (13.16) this means that Q +Q7T is non-negative
definite.

Conversely, any RK-method given by (13.17), (13.18) with Q+Q7T non-
negative definite is algebraically stable and satisfies C(k) and D(k). There-
fore it follows from Theorem 5.1 in the case of odd p = 2k + 1 that the
RK-method is of order p.

If p is even, say p = 2k+2, the situation is slightly more complicated.
Because of

9 = Z biPk(Ci)aiij(Cj)
i,j=1
it follows from B(2k+2), C(k), D(k) that the order condition (13.19) below

(with é =n=k) is equivalent to ¢;; =0. The stated order p of the RK-method
now follows from Lemma 13.16. a
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In the above proof we used the following modification of Theorem 5.1.

Lemma 13.16. If the coefficients b, c;, a;; of an RK-method satisfy

Z bicta,cl ! (13.19)
e 9T+ E+2)n+1)
and B(p), C(n), D(§) with p < n+£€+2 and p < 2n+2, then the method is
of order p.

Proof. The reduction process with the help of C(n) and D(¢) as described in
Section IL.7 (Volume I) reduces all trees to the bushy trees covered by B(p).
The only exception is the tree corresponding to order condition (13.19). O

Example 13.17 (Three-stage B-stable SIRK methods). Choose a third
order quadrature formula with positive weights and let W satisfy WTBW =
I. Then (13.18) becomes

O b R 6 = L
= 1 a y 1:——-,
0 c d 2v3

The method is B-stable if XT+X —e, el is non-negative, i.e. if
a>0, d>0, 4ad>(c+1b)*. (13.20)

If we want this method to be singly-implicit, we must have for the charac-
teristic polynomial of 4

xa(z2) = (1 —72)* =1 —-3yz+3y%22 — 4%2°
This means that (see (13.17))

1
§+a+d=3'y
a 1 d 2
§+E+§+ad—cb_3’y
ad — cb 1
+—d=
7 Tl

Some elementary algebra shows that these equations can be solved and the
inequalities (13.20) satisfied if 1/3 < v < 1.06857902, i.e., ezactly if the
corresponding rational approximation is A-stable (cf. Table 6.3; see also
Hairer & Wanner (1981), where the analogous case with s =p=5 is treated).
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The “Equivalence” of A- and B-Stability

Many A-stable RK-methods are not B-stable (e.g., the trapezoidal rule,
the Lobatto IIIA and Lobatto IIIB methods; see Theorem 12.12). On the
other hand there is the famous result of Dahlquist (1978), saying that every
A-stable one-leg-method is B-stable, which we shall prove in Section V.6.
We have further seen in Example 13.17 that for a certain class of A-stable
methods there is always a B-stable method with the same stability function.
The general truth of this result was conjectured for many years and is as
follows:

Theorem 13.18 (Hairer & Tiirke 1984, Hairer 1986). Let R(z)=P(z)/Q(2)
(P(0)=Q(0)=1, deg P < s, degQ =s) be an irreducible, A-stable function
satisfying R(z)—e*=0O(zP+1) for some p > 1. Then there ezists an s-stage
B-stable RK-method of order p with R(z) as stability function.

Proof. Since R(z) is an approximation to e? of order p, it can be written in
the form

_ 1439
C1-39(2)

d

_ 2| &4
BE

| 1

Ei—lzzl

| 1

R(z) ¥(z) + €20, (2)

(13.21)
where k=[(p—1)/2], £ =1/(4(42 1)) and ¥,(z)=2g(2)/ () with g(0)=
f(0)=1, degf < s—k, degg < s—k—1 (for p even we have in addition
g'(0) = £'(0)). For the diagonal Padé-approximation R%(z) of order 2s this
follows from Theorem 5.18 with v=s—1 and ¥, =2z:

1+ 1UG(2) z| €2
G, y_ 1t3 oy 2, 8

+ + ...+

63—132|
+...+| 1

(13.22)

For an arbitrary R(z) (satisfying the assumptions of the theorem) this is then
a consequence of R(z)= R%(z)+ O(2P+1), or equivalently ¥(z) = ¥CG(z)+
O(zpt1).

The function R(z) of (13.21) is A-stable iff (Theorem 5.22)

Re¥,(2) <0 for Rez<0.

Therefore, the function x(z) = —¥,(—1/2) is positive (c.f. Definition 5.19)
and by Lemma 13.19 below there exists an (s—k)-dimensional matrix @ such
that

x(z) =ef(Q+2I)""e;, and Q+ QT non-negative definite .

We now fix an arbitrary quadrature formula of order p with positive
weights b, and (for the sake of simplicity) distinct nodes ¢;. We let W
be a matrix satisfying WTBW = I and Property T(k,k) with k = [(p—
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1)/2] (cf. Lemma 5.12), and define the RK-coefficients (a;;) by (13.17)
and (13.18). This RK-method is algebraically stable since @+ Q7 is non-
negative definite and of order p (observe that ¢'(0) = f'(0) implies that the
upper left element of Q vanishes). Finally, it follows from Theorem 5.18 and
¥, (2)=—x(—1/2)=zel (I-2zQ)~1e, that its stability function is R(z). O

It remains to prove the following lemma.

Lemma 13.19. Let x(2) = a(z)/B(z) be an irreducible rational function
with real polynomials

a(z)=2"" 42" 2+, Bz)=2"+B "+ (13.23)
Then x(2) is a positive function iff there exists an n-dimensional real matriz

Q, such that
x(z) =eT(Q+2I)""e;, and Q+ QT non-negative definite . (13.24)

Proof. a) The sufficiency follows from
Rex(z) = ¢(2)"{Rez - I + 3(Q + Q)}a(2)
with ¢(z)=(Q+zI) e, since Q+Q7 is non-negative definite.

b) For the proof of necessity, the hard part, we use Lemma 6.8 of Section
V.6 below. This lemma is the essential ingredient for Dahlquist’s equivalence
result and will be proved in the chapter on multistep methods. It states that
the positivity of x(z) is equivalent to the existence of real, symmetric and
non-negative definite matrices A and B, such that for arbitrary z,w € C
(Z=(z""1,...,2,1)T, =(w"1,...,w,1)),

a(z)B(w) + a(w)B(z) = (z+w)z"TAzb' + zZTBw . (13.25)

The matrix A is positive definite, if a(z) and ((z) are relatively prime.
Comparing the coefficients of w™ in (13.25) we get

a(z) = 2T Ae, (13.26)

and observe that the first column of A consists of the coefficients of a(z).
For the Cholesky decomposition of A, A=UTU (U is an upper triangular
matrix) we thus have Ue, =e,. We next consider the possible computation
of the matrix @ from the relation

(Q+2I)UzZ=p(z) ¢ (13.27)

or equivalently
QUZ=p(z) ¢, — 2UZ. (13.28)

The right-hand side of (13.28) is a known polynomial of degree n—1, since
Ue, =e;. Therefore, a comparison of the coefficients in (13.28) yields the
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matrix QU and hence also Q. It remains to prove that this matrix @ satisfies
(13.24).
Using (13.27), the formula Ae, =UTUe, =UTe, and (13.26) we obtain

eT(Q+2I)7le, - B(2) = eTUZ = eTATZ = o(2) (13.29)
which verifies the first relation of (13.24). Further, from (13.27) and a(z)=
eTUZ we get

ZTUT(Q + wI)UW = o(z)B(w) .
Inserting this formula and the analogous one (with z and w exchanged) into
(13.25) yields 0=2ZT(B-UT(Q+QT)U)w, so that B=UT(Q+QT)U. This
verifies the second relation of (13.24), since B is symmetric and non-negative
definite. O

Exercises

1. (Perron (1913) attributes this result to Wallis, Arithmetica infinitorum
1655 and Euler 1737). Let the sequences {A,} and {B,} be given by

Ap=bp Ay +ap Ay, A =1, Ay=b

(13.30)
B =b.B,_; +a;B,_,, B_,=0, By=1
then I I
A, a, a
-2 = e T A 13.31
B, TR, (1331
Hint. Let z=(zg,2,,...,%,,,)7 be the solution of Mz =(0,...,0,1)7,
where
1 —b, —a
1 -b —a,
M= '
1 _bn—l —ay,
1 -b,
1
One easily finds
a
= b I = bo I + 2 I -
o |“’1/ Zy Ib Imz/ws

so that z,/z, is equa.l to the right hand side of (13.31). The statement
now follows from the fact that

(A_,,Ag,-..,A,)M = (1,0,...,0)
(B_,,By,...,B,)M = (0,1,0,...,0) .
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implying z,=A,, and =z, =B,,.

2. Let P,(z) be the Legendre polynomial (13.4) and NF(z) defined by the
recursion (13.5) with NF(z)=0, NE(z)=1. Prove that
NZW(2)Pjoa(2) = N1 ()P () =1y ooy gy
Hint. Use the relation

(v mia) =37 ) Gl 7).

3. Consider the Hermitian quadrature formula

Replace f'(c,) and f"(c,) by finite divided differences based on f(c,—¢),
f(¢y), f(cy+¢) to obtain a quadrature formula

(13.32)

[ He)de =Bif(e) +Bosler = ) 4 fle) + bl +e) . (1339)

a) Compute Q(z) for Formula (13.33) and obtain, by letting ¢ — 0, an
expression which generalizes (13.2) to Hermitian quadrature formulas.
b) Compute the values of b, and b, (I, =1,l,=3) of (13.107).
c) Show that n, — n_ (see Theorem 13.5) is the same for (13.32) and
(13.33) with e sufficiently small.
Results.

b @ B v
z—¢  z2—6 (2-¢)  (z-¢)®

b) b =b, (sic!), @:%.

4. The rational function x(z) = a(2)/B(z) with a(z) =z+a;, B(z) = 22+
B1z+0, is positive, iff (compare (5.48))

20, B,>20, B;—0a;2>0.
a) Find real, symmetric and non-negative definite matrices A and B such

that (13.25) holds.

b) Show that these matrices are, in general, not unique.

¢) Asin the proof of Lemma 13.19, compute the matrix @ such that (13.24)
holds.

Hint. Begin with the construction of B by putting w=—2z in (13.25).
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“Jusqu’a présent, nous avons supposé que le schéma
admettait une solution. Pour en démontrer 1’exi-
stence ...” (Crouzeix & Raviart 1980)

“Since contractivity without feasibility makes little
sense ...” (M.N. Spijker 1985)

Since the Runge-Kutta methods studied in the foregoing sections are all
implicit, we have to ensure that the numerical solutions, for which we have
derived so many nice results, also really exist. The existence theory for IRK
methods of Volume I (Theorem I1.7.2) is for the non-stiff case only where
hL is small (L the Lipschitz constant). This is not a reasonable assumption
for the stiff case.

We shall study here the existence of an RK solution, defined implicitly
by

9; :y0+hza‘ijf(w0 +th,gj) , 1=1,...,8 (141&)
=1

Y=Y +h Z b; f(zo + c;hy9;) 5 (14.1b)
=1

for differential equation problems which only satisfy the one-sided Lipschitz
condition

(f(z,y) = f(z,2),y —2) vy — 2| . (14.2)

Existence

It was first pointed out by Crouzeix & Raviart (1980) that the coercivity of
the RK-matrix A (or of its inverse) plays an important role for the proof of
existence.

Definition 14.1. Consider the inner product (u,v), =uTDv where D =
diag (d,,...,d,) with d; > 0. We then denote by a,(A~!) the largest num-
ber a such that

(u, A"'u)p > a(u,u)p forall uweR®. (14.3)
We also set

ay(A7) = sup ap(471) . (14.4)
D>o0
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The first existence results for the above problem were given by Crouzeix
& Raviart (1980), Dekker (1982) and Crouzeix, Hundsdorfer & Spijker
(1983). Their results can be summarized as follows:

Theorem 14.2. Let f be continuously differentiable and satisfy (14.2). If
the RK-matriz A is invertible and

hv < ag(A71) (14.5)

then the nonlinear system (14.1a) possesses a solution (g,,...,9,)-

Proof. The original proofs are based on deep theorems of Analysis and
Topology (e.g. “Brouwer’s fixed point theorem”, the “Domain Invariance
Theorem” or similar results). We present here a more elementary and more
constructive version of the ideas which, however, has the disadvantage of
requiring the differentiability hypothesis for f.

The idea is to consider the homotopy

9 =Y + hz a;; f(zg + ¢c;h,g;) + (T—-l)hz a;; f(zg + c;h,y,) , (14.6)

Jj=1 j=1

which is constructed in such a way that for 7 =0 the system (14.6) has the
solution g; =y,, and for 7=1 it is equivalent to (14.1a). We consider g, as
functions of 7 and differentiate (14.6) with respect to this parameter. This
gives

' s af . s
9; = hzaija_y(mo +¢;h,9;)9; + hz a;; f(zg + ¢jh,y,)
Jj=1 j=1

or equivalently

(I-hAD{f,})g=hARI)f, (14.7)
where we have used the notations
g="_(41,-- 'aga)T ) fo= (f(a:o +c1hyYp)se ooy flg + c,h,yo))T

(more precisely, § should be written as (§7,...,¢7)7) and

. (0f af
{£,} = blockdiag (5-(20 + e1hyg1)s- s 5o (20 +¢,sg,))

In order to show that § can be expressed as §=G(g) with a globally bounded
G(g), we take a D satisfying hv < ap(A~1), multiply (14.7) by ¢T(DA-1QI)

and so obtain
§T(DAT' @ g - hg"(D @ I){f,}g = h§"(D ® I)f, . (14.8)

We now estimate the three individual terms of this equation.
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a) The estimate
§T(DAT ®I)g 2 ap(47) llsllip (14.9)

where we have introduced the notation |||g|||% =¢T(D ® I)g, is (14.3) in the

case of scalar differential equations (absence of “@I”). In the general case we

must apply the ideas of Exercise 1 of Section IV.12 to the matrix %(DA—1 +

(DA-Y)T) — ap(A~1)D, which is non-negative definite by Definition 14.1.
b) It follows from (14.2) with y=2+eu that

of 2112
<€5-y— (=, 2)u + o(e),eu> <wed|ul)® .
Dividing by €2 and taking the limit ¢ — 0 we obtain (u, %(w,z)u) < vf|ul?
for all (z,z) and all . Consequently we also have

(D en{f,}g<vligl} - (14.10)

c¢) The right-hand term of (14.8) is bounded by &||g|llp - [IIfllp by the
Cauchy-Schwarz-Bunjakowski inequality.

Inserting these three estimates into (14.8) yields

(ap(A™Y) = ko) Il < R lgllp - folllp -
This proves that § can be written as §=G(g) with

gl
6@l < s %52 -

It now follows from Theorem 7.4 (Section 1.7) that this differential equation
with initial values g;(0) =y, possesses a solution for all 7, in particular also
for 7=1. This proves the existence of a solution of (14.1a). |

Remark. It has recently been shown by Kraaijevanger & Schneid (1990,
Theorem 2.12) that Condition (14.5) is “essentially optimal”.

A Counterexample

“After our discussion that Monday afternoon (October
1980) I went for a walk and I got the idea for the coun-
terexample”. (M.N. Spijker)

The inequality in (14.5) is strict, therefore Theorem 14.2 (together with
Exercise 1 below) does not yet answer the simple question: “does a B-stable
method on a contractive problem (v =0) always admit a solution”. A first
counterexample to this statement has been given by Crouzeix, Hundsdorfer
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& Spijker (1983). An easy idea for constructing another counterexample is
to use the W-transformation (see Sections IV.5 and IV.13) as follows:
We put s=4 and take a quadrature formula with positive weights, say,

(CJ =:(0a1/3’2/3a1)a (bD =:(1/8a3/8,3/831/8)'

We then construct a matrix W satisfying property T'(1,1) according to
Lemma 5.12. This yields for the above quadrature formula

1 —v3 V3 -
1 —v3/3 —v3/3 1
1 V3/3 —v3/3 -1
1 V3 V3 1

Finally, we put (with ¢, =1/(2v/3))

12 & 0 0

_ -1 . | & 0 0 o0
A=WXW with X = 0 0 0 -8
0 0 B8 0

For B = 1/(4v/3) this gives nice rational coefficients for the RK-matrix,
namely
3 0 3 -6
1 6 9 0 1
805 18 9 0
12 15 18 3

It follows from Theorem 13.15 that this method is algebraically stable and
of order 4. However, +if is an eigenvalue pair of X and hence also of A.
We thus choose the differential equation

A=

0 ——l/ﬂ)
/8 0 ’
which satisfies (14.2) with v=0 independent of f(z). If we apply the above

method with A=1 to this problem and initial values z; =0, y, =(0,0)7, the
equations (14.1a) become equivalent to the linear system

(I-A®J)g=(A®I)f,

where g=(g,,...,9,)T and fy=(f(c,),..., f(cy))T. The matrix (I-4® J)
is singular because the eigenvalues of I—-A ® J are just 1—Au where X and g
are the eigenvalues of A and J, respectively. However, 4 is regular, therefore
it is possible to choose f(z) in such a way that this equation does not have
a solution.

y' =Jy+ f(z) with J:(
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Influence of Perturbations and Uniqueness

Our next problem is the question, how perturbations in the Runge-Kutta
equations influence the numerical solution. Research into this problem was
initiated independently by Frank, Schneid & Ueberhuber (preprint 1981,
published 1985) and Dekker (1982).

As above, we use the notations

|ullp = VuTDu = 4/(u,u)p ~ uw€R’
llgllp = /9T(D ®I)g g € R*"

and ||4||p for the corresponding matrix norm.

Theorem 14.3 (Dekker 1984). Let g; and y, be given by (14.1) and consider
perturbed values g; and gy, satisfying

Gi=v +h)Y a;f(zg+c;hg;) + 8 (14.11a)
=1

% =0 +h Db f(zg + ¢;h,5;) - (14.11b)
=

If the RK-matriz A is invertible, if the one-sided Lipschitz condition (14.2)
is satisfied, and hv < ap(A~1) for some positive diagonal matriz D, then
we have the estimates

(RSl

~_ < = WD .
g - sllo < 5=y 27 I6llo (14.12)

- A7
Fy A < T 1 || D . .
19 — 3l < 1674 ||D<1+QD(A_1)_ — ) 6l - (14.13)

Here we use vector notation g = (94,...,9,)T, §=(9;,.-.,9,)T and § =
(615---,6,)T.

Proof. With the notation Ag=¢—g and

T
Af = (f(%+01hv§1)“f(“50+01h’91),---,f(%'*‘cah’gs)—f(":o"’cah,gs))
the difference of (14.11a) and (14.1a) can be written as
Ag=h(ARI)Af +6.

Asin the proof of Theorem 14.2 we multiply this equation by AgT(DA-1®I)
and obtain

AgT(DAT' @ I)Ag — hAGT(D @ I)Af = AgT(DAT* ®)§ . (14.14)
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This equation is very similar to equation (14.8) and we estimate it in the
same way: since D is a diagonal matrix with positive entries, it follows from
(14.2) that

AgT(D®IAS < v lagllp - (14.15)
Inserting (14.15) and (14.9) (with g replaced by Ag) into (14.14) we get

(ap(A71) = k) llAgll < llAglip (A7 @ Dillp

which implies (14.12).
The estimate (14.13) then follows immediately from

% —vy, =h(bT @NAFf=(bTATI @ I)(Ag-6) .

Putting § =0 in Theorem 14.3 we get the following uniqueness result.

Theorem 14.4. Consider a differential equation satisfying (14.2). If the
RK-matriz A is invertible and hv < ag(A~1), then the system (14.1a) pos-
sesses at most one solution. m|

Computation of o,(A-?)

“... the determination of a suitable matrix D ... This task
does not seem easy at first glance ...” (K. Dekker 1984)

The value o, (A1) of Definition 14.1 is the smallest eigenvalue of the sym-

metric matrix (D1/24-1D~1/24(D1/2A-1D~1/2)T) /2. The computation of

ay(A~1) is more difficult, because the optimal D is not known in general.
An upper bound for oy (A4~1) is

ap(A7h) < min w;; (14.16)
where w;; are the entries of A~1. This follows from (14.3) by putting u=e;,
the i-th unit vector.

Lower bounds for ay(A~1) were first given by Frank, Schneid & Ueber-
huber in 1981. Following are the exact values due to Dekker (1984), Dekker
& Verwer (1984, p. 55-164), and Dekker & Hairer (1985) (see also Liu &
Kraaijevanger 1988 and Kraaijevanger & Schneid 1990).
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Theorem 14.5. For the methods of Section IV.5 we have:

1
-1 _ :
Gauss ao(A )= ,-fllfn,, 2ci(1 - c,) ’
1 ifs=1,
Radau IA ao(A—l) = { ! i
20— ) if s > 1,
1 ifs=1,
Radau I1A a(A7)=¢ _1 ifs>1
2cs—1 ’
1y f1 ifs=2,
Lobatto ITIC og(A77) = {0 if s > 2.

Proof. a) Gauss methods: written out in “symmetricized form”, estimate
(14.3) reads

~uT(DA™' + (DA™Y )u > auTDu .
Evidently the sharpest estimates come out if D is such that the left-hand
matrix is as “close to diagonal as possible”. After many numerical compu-

tations, Dekker had the nice surprise that with the choice D =B(C~1-1),
where B =diag(b,,...,b,) and C=diag(c,,...,c,), the matrix

DA™ +(DA™Y)T = BC™? (14.17)

becomes completely diagonal. Then the optimal « is simply obtained by
testing the unit vectors u=e,, which gives

b; . 1

-1 min —— 2 _r
(A7) = min 22, 2c2d 2c2b (/e —1) — in2ci(1 -¢)

It remains to prove (14.17): we verify the equivalent formula
VT(ATD + DA - ATBC2A)V =0 (14.18)

where V = (c!™!) is the Vandermonde matrix. The (I,m)-element of the
matrix (14.18) is

1 -1om-1 l-1m-1
ij(z_l) T +Zb(__1) a;je;ef
i,] J

-1
....th 2 tkck at] ] :

»J!

(14.19)

With the help of the simplifying assumptions C(s) and B(2s) the expression
(14.19) can be seen to be zero.
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b) For the Radau IA methods we take D = diag(bTA) = B(I-C) and
show that

DA™ ' + (DA™Y =B +¢,eT . (14.20)

The stated formula for a,(A~1) then follows from 0=¢, < ¢, < ... < ¢,
and from

bl 1
b, ~ l-¢’

which is a simple consequence of b, = 1/s? (see Abramowitz & Stegun
(1964), Formula 25.4.31). For the verification of (14.20) one shows that
VT(DA-'4+(DA-1)T—B —e,eT)V =0. Helpful formulas for this verification
are A=1Ve, =bi"e;, VTe,=e; and A~1Ve;=(j —1)Ve,_, for j > 2.

c) Similarly, the statement for the Radau ITA methods follows with D =
BC-! from the identity
DA™' + (DA™Y =BC™% 4 e,eT .

d) As in part b) one proves for the Lobatto IIIC methods that
BAT ' +(BA )T =eef f¢,eT . (14.21)

Since this matrix is diagonal, we obtain ay(A~1)=1 for s=2 and oy(4-1)=
0 for s > 2. O

For diagonally implicit Runge-Kutta methods we have the following re-
sult.

Theorem 14.6 (Montijano 1983). For a DIRK-method with positive a;; we

have 1
(A )= min — . (14.22)

=1 yeeeyS a,”:

Proof. With D =diag(1,e2,¢%,...,e24=2) we obtain
D2 A D72 L (D2 A7 DY) = diag (a7, ...,a7}) + O(e) ,
so that op(A~1) > min;aj;' +O(e). This inequality for ¢ — 0 and (14.16)

1
prove the statement. O

Methods with Singular A

For the Lobatto IIIA methods the first stage is explicit (the first row of A
vanishes) and for the Lobatto IIIB methods the last stage is explicit (the
last column of A vanishes). For these methods the RK-matrix is of the form
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(0 o _ (A o0
A_.<a A) or A—(aT 0) (14.23)

and we have the following variant of Theorem 14.2.

Theorem 14.7. Let f be continuously differentiable and satisfy (14.2). If
the RK-matriz is given by one of the matrices in (14.23) with invertible ,;{,
then the assumption

hv < ag(A71)

implies that the nonlinear system (14.1a) has a solution.

Proof. The explicit stage poses no problem for the existence of a solution. To
obtain the result we repeat the proof of Theorem 14.2 for the s—1 implicit
stages (i.e., A is replaced by A and the inhomogenity in (14.6) may be
different). o

An explicit formula for ao(;f—l) for the Lobatto IIIB methods has been
given by Dekker & Verwer (1984), and for the Lobatto IIIA methods by Liu,
Dekker & Spijker (1987). The result is

Theorem 14.8. We have for

- 2 ifs =2

-1\ __ ’

Lobatto IIIA ag(A7) = {Cs_—ll ifs>2
1T—1 _ 2 lfs = 2,

Lobatto IIIB (A7) = { (1—c,)! ifs>2

Proof. For the Lobatto IIIA methods we put D = BC-2, where B =
diag (b,,...,b,) and C =(¢,,...,¢,). As in part a) of the proof of Theo-
rem 14.5 we get

DA + (DA =e,_je]_, +2BC

which implies the formula for ag(A~1) because b,=(s(s—1))"! and
(1+2b,) >b,/c,_, for s >2.
For the Lobatto IIIB methods the choice D = B(I-C)? (with B =
diag (b;,...,b,_;), C=diag(cy,...,¢,_;)) leads to
DA™ + (DA™ =¢,eT +2B(I-C).

This proves the second statement. a
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Methods with explicit stages (such as Lobatto IIIA and IIIB) don’t al-
low estimates of the numerical solution in the presence of arbitrary pertur-
bations. They are usually not AN-stable and K(Z) is not bounded (see
Theorem 12.12). Nevertheless we have the following uniqueness result.

Theorem 14.9. Consider a differential equation satzsfymg (14.2). If the

RK-matriz is of the form (14.23) with invertible A and if hv < ao(A 1),
then the nonlinear system (14.1a) has at most one solution.

Proof. Suppose that there exists a second solution g; satisfying (14.11a) with
6i = 0.

a) If the first stage is explicit we have §, =g,. The difference of the two
RK-formulas then yields 5

Ag=h(ARI)Af

with Ag=(9;—9;)i-, and Af =(f(zy+c;h,§;)—f(zo+c;h,9;))i_,- Asin the
proof of Theorem 14.3 we then conclude that Ag=0.

b) In the second case we can apply Theorem 14.3 to the first s—1 stages,

which yields uniqueness of g,,...,g,_,. Clearly, g, also is unique, because
the last stage is explicit. ]

Lobatto ITIC Methods

For the Lobatto IIIC methods with s > 3 we have ay(4~1) =0 (see The-
orem 14.5). Since these methods are algebraically stable it is natural to
ask whether the nonlinear system (14.1a) also has a solution for differential
equations satisfying (14.2) with » =0. A positive answer to this question
has been given by Hundsdorfer & Spijker (1987) for the case s =3, and by
Liu & Kraaijevanger (1988) for the general case s > 3 (see Exercise 6 below;
see also Kraaijevanger & Schneid 1990).

Exercises

1. Prove that ay(A) > 0 for algebraically stable Runge-Kutta methods.
Also, ay(A~1) > 0 if in addition the matrix A is invertible.

2. Let A be areal matrix. Show that ay(A4) < Re ), where ) is an eigenvalue
of A.

3. (Hundsdorfer 1985, Cooper 1986). Prove that Theorem 14.2 remains
valid for singular A, if (14.3) is replaced by

(u,Au)p > a(Au,Au)p forall u€R’.
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Hint. Use the transformation g=1Q® yo+(A4 ® I)k and apply the ideas
of the proof of Theorem 14.2 to the homotopy

k; = f(xg + c;hyyo + hzaijkj) +(r - 1)f(‘”o + ¢;h,y,) -

J=1

. (Barker, Berman & Plemmons 1978, Montijano 1983). Prove that for
any two-stage method the condition

a;; >0, a,, >0, det(4) >0 (14.24)

is equivalent to ay(A-1) > 0.

Remark. For a generalization of this result to three-stage methods see
Kraaijevanger (1990).

. For the two-stage Radau IIA method we have aj(A~1)=3/2. Construct
a differential equation y' =A(z)y with Re A(z) =3/2+ ¢ (¢ > 0 arbitrarily
small) such that for a fixed h the Runge-Kutta equations do not admit
a unique solution.

. Prove that for the Lobatto IIIC methods (with s > 3) the matrix
I-(A®I)J with J =blockdiag(J,...,J,)

is non-singular, if p,(J,) < 0. This implies that the Runge-Kutta equa-
tions (14.1a) have a unique solution for problems y'= A(z)y+ f(z) with
Ko (A(z)) <O.

Hint (Liu & Kraaijevanger 1988, Liu, Dekker & Spijker 1987). Let v=
(v1y.++,9,)T be a solution of (I — (A ® I)J)v =0. With the help of
(14.21) show first that v, =v,=0. Then consider the (s—2)-dimensional
submatrix A = (aij);-’;iz and prove ay(A~1) > 0 by considering the
diagonal matrix D =diag (b;(c;* —1)2)IZ1.

. Consider an algebraically stable RK-method with invertible A and apply
it to the differential equation y'=(J(z)—el)y+ f(z) where u(J(z)) <0
and € > 0. Prove that the numerical solution y, (&) converges to a limit
for ¢ — 0, whereas the internal stages g;(¢) need not converge.

Hint. Expand the g;(¢) in a series gi(s)=e‘1g§—1)+g§°)+sg§1)+. .. and

prove the implication
g=(A®NJg = (HTRI)Jg=0
where J =blockdiag (J(zq+c,h),...,J(zq+c,h)).
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“In using A-stable one-step methods to solve large systems
of stiff nonlinear differential equations, we have found that
— (a) some A-stable methods give highly unstable solu-
tions, and
— (b) the accuracy of the solutions obtained when the
equations are stiff often appears to be unrelated to the or-
der of the method used.
This has caused us to re-examine the form of stability re-
quired when stiff systems of equations are solved, and to
question the relevance of the concept of (nonstiff) order of
accuracy for stiff problems.”

(A. Prothero & A. Robinson 1974)

Prothero & Robinson (1974) were the first to discover the order reduction
of implicit Runge-Kutta methods when applied to stiff differential equa-
tions. Frank, Schneid & Ueberhuber (1981) then introduced the “concept of
B-convergence”, which furnishes global error estimates independent of the
stiffness.

The Order Reduction Phenomenon

For the study of the accuracy of Runge-Kutta methods applied to stiff dif-
ferential equations, Prothero & Robinson (1974) proposed considering the
problem

Y =XMy—e(e) +¢'(z),  y(zo) =p(ze), ReA<0. (15.1)

This allows explicit formulas for the local and global errors and provides
much new insight.
Applying a Runge-Kutta method to (15.1) yields

;=Y + hz aij{)\(gj - go(w0+cjh)) + go'(“’o"'cjh)}
= (15.2)

v =90 +h Db {Mg; — elze+eh) + ¢ (2g + ;b)) -
i=1

If we replace here the g;,y, and y; by the exact solution values ¢(zy+c;h),
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¢(zy) and @(zy+h), respectively, we obtain a defect which is given by

w(zg + c;h) = p(zy) + hz a;;¢' (g + ¢;h) + A, ()

= (15.3)
p(zg + k) = p(zg) + hz bjS"l(wo + th) + Ao,h("’o) .
Jj=1
Taylor series expansion of the functions in (15.3) shows that
Ao p(zg) = O(RPFY) A 4(z,) = O(RTH) (15.4)

where p is the order of the quadrature formula (b;,c;) and g is the largest
number such that the condition C(q) (see Section IV.5), i.e.,
8 ck

Zaijc?_l = —Ié_ for k=1,...,q andall 17, (15.5)

i=1
holds. The minimum of ¢ and p is often called the stage order of the RK-
method. Subtracting (15.3) from (15.2) and eliminating the internal stages
we get

Y1 —80("’30 +h) = R(z)(y, “‘P(wo)) “ZbT(I_ZA)—lAh(%)‘“ Ao,h(wo) (15.6)

where we have used the notation z=MAh, R(z)=1+2bT(I — zA)-11 for the
stability function and A,(z)=(4, 4(),...,A, 4(z))T. We also denote the
local error, which we get from (15.6) on putting y, =¢(z,), by

bp(z) = —2bT(I — zA) 7 A () — Ay 4(2) - (15.7)

If we repeat the above calculation with z, instead of z, we obtain the
recursion

Ynt1 — ‘P(wn+1) = R(z)(y, — ¢(z,,)) + 8;(z,,) (15.8)

which leads to the following formula for the global error:

n

Ynt1 — ‘P(‘cn+1) = R(z)nH (yo_‘P(mo)) + Z R(Z)n—j‘sh(z]‘) . (15.9)

The classical (non-stiff) theory treats the case where z = O(h) and in this
situation the global error behaves like O(hP). When solving stiff differential
equations one is interested in step sizes h which are much larger than |A|~1.
We therefore study the global error (15.9) under the assumption that simul-
taneously h — 0 and z=Ah — co. In Table 15.1 we collect the results for the
Runge-Kutta methods of Section IV.5. There in the last column (variable
h) the symbols h and z have to be interpreted as maxh; and z=Aminh;.
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Table 15.1. Error for (15.1) when h — 0 and z = hA — oo

Method local error global error
constant h variable h
Gauss { s odd hetl { he+ h®
s even h®
Radau IA h® h® h®
Radau ITA P A z71pett z~1pet!
s odd —1;8+1 { 2 1R ~1;s
Lobatto ITIA { s odd o ok 2 1h
Lobatto ITIB { s odd 2he1 { zh® 2 2h°2
8 even zh®™1
Lobatto IIIC z7h® P z71ne

We remark that Formulas (15.7) and (15.8) (but not (15.9)) remain valid for
variable h, if z is replaced by 2z, =h, .

Verification of Table 15.1.

Gauss. Since the RK-matrix A is invertible, we have —2bT(I —24)-1 =
bTA-1 + O(z~1) and (15.4) inserted into (15.7) gives §,(z)= O(h*t1) (ob-
serve that ¢=s). It then follows from (15.8) (for constant and variable k)
that the global error behaves like O(h?) because |R(z)| < 1. For odd s we
have R(c0)= —1 and the global error estimate can be improved in the case
of constant step sizes. This follows from partial summation

Zg" i(z;) = —— 1- Q 1’0)+Z - g 6(:1: —é&(z;_y)) (15.10)

i=0
of the sum in (15.9) and from the fact that §,(z;)—&,(z;_,)=O(he+2).

Radau IA. The local error estimate follows in the same way as for the Gauss
methods. Since R(z)=O(z~!) the error propagation in (15.8) is negligible
and the local and global errors have the same asymptotic behaviour.

Radau IIA and Lobatto IIIC. These methods have a,; = b, for all s.
Therefore the last internal stage is identical to the numerical solution and
the local error can be written as

5u(2) = —eT(I - z4) A (a) .

Since A is invertible this formula shows the presence of z—! in the local error.
Again we have R(o0) = 0, so that the global error is essentially equal to the
local error.
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Lobatto IIIA. The first stage is explicit, g, = y,, and is done without
introducing an error. Therefore A ;(z) =0 and (because of a,; = b;) the
local error has the form

Su(2) = —e]_y(I-24) 7' By (w)

where 4 = (a;;)} j=2 and A, = (Ag py---»A, 1)T. The statements of Table
15.1 now follow as for the Gauss methods.

Lobatto IIIB. The matrix A is singular (its last column vanishes), therefore
the two “z” in (15.7) do not simply cancel for z — co0. A more detailed
analysis (see Exercise 5 below) shows that the local error is not bounded if
z—00. Although A-stable, these methods are not suited for the solution of
stiff problems. m|

We observe from Table 15.1 that the order of convergence for problem
(15.1) with large A is considerably smaller than the classical order. Fur-
ther we see that methods satisfying a,; =b, (Radau IIA, Lobatto IIIA and
Lobatto IIIC) give an asymptotically exact result for z — oco. Prothero
& Robinson (1974) call such methods stiffly accurate. The importance of
this condition will appear again when we treat singularly perturbed and
differential-algebraic problems (Chapter VI).

The Local Error

“Das besondere Schmerzenskind sind die Fehlerabschatzungen.”
(L. Collatz 1950)

Our next aim is to extend the above results to general nonlinear differential
equations y' = f(z,y) satisfying a one-sided Lipschitz condition

(f(z,y) = f(=,2),y —2) Svlly —2|* . (15.11)

The following analysis, begun by Frank, Schneid & Ueberhuber (1981), was
elaborated by Frank, Schneid & Ueberhuber (1985) and Dekker & Verwer
(1984). We again denote the local error by

u(z) =y, —y(e+h),
where y, is the numerical solution with initial value y, =y(z) on the exact

solution.

Proposition 15.1. Consider a differential equation which satisfies (15.11).
Assume that the RK-matriz A is invertible, ag(A~1) > 0 (see Definition
14.1), and that the stage order is q.
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a) If ag(A=1) > 0 then

165(2)]| < C AT 25x Iy D) for hv<a < ag(47).

b) If ap(A=1)=0 for some positive diagonal matriz D and v < 0 then
c
< L pe (g+1) .
ln(@)ll < o7 b%  max Tyl

In both cases the constant C depends only on the coefficients of the RK-
matriz and on a (for case a)).

Remarks. a) The crucial fact in these estimates is that the right-hand side
depends only on derivatives of the exact solution and not on the stiffness of
the problem. These estimates are useful when a “smooth” solution of a stiff
problem has to be approximated.

b) The hypothesis a,(A~1) =0 (see case b)) is stronger than ay(A-1)=0
(see Exercise 4 below). For the Lobatto IIIC methods, for which ay(A-1)=0
(s>2), we have a(A~1)=0 with D =B (see (14.21)).

c) In the estimates of the above proposition the maximum is taken over
¢ € [z,z+h]. In the case where 0<c¢, <1 is not satisfied, this interval must
of course be correspondingly enlarged.

Proof. We put G, =y(z,+c;h), so that the relation (14.11a) is satisfied with

L]
8; = y(zg + c;h) — y(zp) — hZaijy'(wo +¢jh) .
j=1

Taylor expansion shows that

6] < C;h*! max [ly(4+D(2)]

z€[z0,z1]

where C;=([e;|9+1+(g+1) 37, la;] - |e;19)/(¢+1)! is a method-dependent
constant. Similarly the value 7, of (14.11b) satisfies

Y(zo+h) =T = y(zg+h)—y(zo) - h Z bjyl(wo +ejh) = O(he+1), (15.12)
i=1
because the order of the quadrature formula (b;,c;) is > ¢. Since

I8a(2) < llys = Gull + 11 — w(zo + )
the desired estimates follow from (14.13) of Theorem 14.3. m|
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Error Propagation

At the end of Section IV.12 we derived for some particular RK-methods
sharp estimates of the form

1% = vl < eB(hv) 1T = oll » (15.13)

where ¥,,y, are the numerical solutions corresponding to g, y,, respectively,
and where the differential equation satisfies (15.11). We give here a simple
proof of a crude estimate of ¢ g(hv) which, however, will be sufficient to
derive interesting convergence results.

Proposition 15.2 (Dekker & Verwer 1984). Suppose that the differential
equation satisfies (15.11) and apply an algebraically stable RK-method with
invertible A and ag(A=1) > 0. Then for any o with 0 < a<ay(A~1) there
ezists a constant C > 0 such that

19 — vl < (1 + Ch”)“% -9l for 0<hr<a.

Proof. From (12.7) we have (using the notation of the proof of Theorem
12.4)

1|Ay1||2—||Ayo||2+2th (8 g K S Y mis(Af, AF) . (15.14)

i=1 j=1

By algebraic stability the last term in (15.14) is non-positive and can be
neglected. Using (15.11) and the estimate (14.12) with §, =7, —y, we obtain

8 L]
2h E bi(Af;, Ag;) < 2hv Z b; || Ag;||?

=1 =1

2hvC,
< 2hv C, [|AgllD <

(ap(471) — hv)?

1Ay 1* -

Inserting this into (15.14) yields

hvC.
18wl < (1 + ety g 1Al

which proves the desired estimate. a
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B-Convergence for Variable Step Sizes

We are now in a position to present the main result of this section.

Theorem 15.3. Consider an algebraically stable RK-method with invertible
A and stage order ¢ < p and suppose that (15.11) holds.
a) If0<a<ay(A-1) and v > 0 then the global error satisfies

eC1v(zn—20) _ 1)
Cv

(a+1) (&
C, msx )|

for hv<a.

I — w(z)]| < B

b) If ay(A~1) > 0 and v < 0 then

Y — y(z,)ll < h¥(z, —2,)C, max |yt (z)| forall A>0.
n n n 0/~2 2€[z0,n]

¢) If ap(A=1)=0 for some positive diagonal matriz D and v < 0 then
-1 9 (g+1)
[9n = y(@ )l S BT (2, —2)  max g4 (z)]| .
|V| z€[20,2a]
The constants C;,C,,C depend only on the coefficients of the RK-matriz.

In the case of variable step sizes, h has to be interpreted as h=maxh,.

Proof. This convergence result is obtained in exactly the same way as that
for non-stiff problems (Theorem I1.3.6). For the transported errors E; (see
Fig.I1.3.2) we have the estimate (for v > 0)

1Bl < eO¥(En=2i) 1163, _, (=51l (15.15)

by Proposition 15.2, because 1+ Chv < eCvk, We next insert the local error
estimate of Proposition 15.1 into (15.15) and sum up the transported errors
E;. This yields the desired estimate for v > 0 because

n

Z hj—1eov(:"—°") < /’n eCV(En=2) 4o
Zo

i=1
~ { (e%¥(@n=20) _ 1)/(Cv) forv >0
z

n—Zo forv=0.

If v < 0 we have ||E;|| < 16n;_,(z;_1)|| by algebraic stability and the same
arguments apply. |

Motivated by this result we define the order of B-convergence as follows:
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Definition 15.4 (Frank, Schneid & Ueberhuber 1981). A Runge-Kutta
method is called B-convergent of order r for problems y' = f(z,y) satisfying
(15.11), if the global error admits an estimate
¥ = y(za)| < B™y(2p—2g,v) max — max |ly'9)(z)|
]—l,-.‘,l 5€[30113u] (15.16)
for hv<a

where h=max h;. Here v is a method-dependent function and « also depends
only on the coefficients of the method.

As an application of the above theorem we have

Theorem 15.5. The Gauss and Radau IIA methods are B-convergent of
order s (number of stages). The Radau IA methods are B-convergent of
order s—1. The 2-stage Lobatto IIIC method is B-convergent of order 1. O

For the Lobatto IIIC methods with s >3 stages (ag(A~!)=0and ¢=s-1)
Theorem 15.3 shows B-convergence of order s —2 if v < 0. This is not
an optimal result. Spijker (1986) proved B-convergence of order s —3/2
for » < 0 and constant step sizes. Schneid (1987) improved this result to
s — 1. Recently, Dekker, Kraaijevanger & Schneid (1990) showed that these
methods are B-convergent of order s—1 for general step size sequences, if
one allows the function v in Definition 15.4 to depend also on the ratio
max h;/ min h;.

The Lobatto IITA and IIIB methods cannot be B-convergent since they
are not algebraically stable. This will be the content of the next subsection.

B-Convergence Implies Algebraic Stability

In order to find necessary conditions for B-convergence we consider the prob-
lem

=M@y -¢(@)+¢'(z), Red@)<v  (1517)

with exact solution ¢(z) = z9t!. We apply a Runge-Kutta method with
stage order ¢ and obtain for the global error €, =y, — ¢(z,) the simple
recursion

ent1 = K(Z,)e, — L(Z,)h?*! (15.18)

(cf. Formula (15.8) of the beginning of this section, where the case A(z)=A\
was treated). Here Z, =diag (hA(z,+c¢,h),...,hA(z,+c,h)) and

K(Z)=1+bTZ(I-AZ)™ 1, L(Z)=d,+bTZ(I-AZ)™*d. (15.19)
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The function K(Z) was already encountered in Definition 12.10, when treat-
ing AN-stability. The vector d=(d,,...,d,)T and d, in L(Z) characterize
the local error and are given by

s s
—(q+1) D b, di=cIT = (q+1)) e el (15.20)
. =
Observe that by definition of the stage order we have either d, # 0 or d # 0
(or both). We are now in the position to prove

Theorem 15.6 (Dekker, Kraaijevanger & Schneid 1990). Consider a DJ-
irreducible RK-method which satisfies 0 < ¢, < ¢, < ... < ¢, < 1. If, for
some r, | and v <0, the global error satisfies the B-convergence estimate
(15.16), then the method is algebraically stable.

Proof. Suppose that the method is not algebraically stable. Then, by The-
orem 12.13 and Lemma 15.17 below, there exists Z =diag(z,,...,z,) with
Rez; < 0 such that (I—AZ)~! exists and

K(Z)|>1, L(Z)#0. (15.21)

We consider the interval [0,(146)/2] and for even N the step size sequence
(hn)nzo given by

h, =1/N (for n even), h,=0/N (forn odd).

If N is sufficiently large it is possible to define a function A(z) which satisfies
ReA(z) < v and

Nz, for n even

A@n + eihn) = { Nz, _; formnodd.

Because of (15.18) the global error ¢, =y, —¢(z,,) for the problem (15.17)
satisfies (with h=1/N)

eny1 = K(Z2)e, — W9 L(Z) for n even
eni1 = K(Z)e, — W L(Z) for n odd
where Z =diag (8z,,...,02,). Consequently we have
camsr = K(2)K(Z)ey,, — W (K(Z)L(2) + 077 L(2))
and the error at z,,;,=(1+6)/2 is given by

eo— L (k(Z gy (EZ)K (2N 1
v= e KDUD)+ 6 LZ)) 2= rmm i

If 6 is sufficiently small, K(Z) — 1 and L(Z) — d,, so that by (15.21)
|K(Z)K(Z)|>1 and K(Z)L(Z)+69T'L(Z) #0.

(15.22)
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Therefore |e| — 0o as N — oo (N even), which contradicts the estimate
(15.16) of B-convergence. O

To complete the above proof we give the following lemma:

Lemma 15.7 (Dekker, Kraaijevanger & Schneid 1990). Consider a DJ-
irreducible RK-method and suppose

bI'Z(I-AZ)'d=0 (15.23)
for all Z = diag(2,,...,2,) with I—AZ invertible; then d=0.

Proof. We define

T = {j| b;,a;,;,0;yi, - &, _,;, =0 forall k and i; with i, = i}
Putting k=1 we obtain b; =0 for j € T. Further, if ¢ ¢ T and j € T there
exists (iy,...,1;) with ¢, =4 such that

b11a1112 e @iy 5& 0, bi1ai1i2 SRR TR Y e 0

implying a;; = 0. Therefore the method is DJ-reducible if T' # 0. For the
proof of the statement it thus suffices to show that d+£0 implies T'#0.

Replacing (I—AZ)~! by its geometric series, assumption (15.23) becomes
equivalent to

bTZ(AZ)*'d=0 forallkand Z = diag(z,,...,z,) - (15.24)

Comparing the coefficient of z; ---z; gives

Z bjla'j1j2 g ik dj,,. =0, (15.25)
where the summation is over all permutations (j;,...,7;) of (2;5...,%;).

Suppose now that d; #0 for some index j. We shall prove by induction on
k that

b, a, ; ...a;, , =0 forall i,(£=1,...,k) with i, =7, (15.26)

i1 “i1dg tk—1lk

so that 7 € T and consequently T'#0.
For k = 1 this follows immediately from (15.25). In order to prove

(15 26) for k+1 we suppose, by contradiction, that (,,...,7,,,) with i, , =
j exists such that b a; ; ...a;;  #0. The relatlon (15.25) then im-
plies the existence of a permutatlon (§1r--++Tkp1) Of (31,34, ) such that
beamz B #0, too. We now denote by g the smallest index for which

L F g Then 1 =Jr for some 7 > g and
b“amz i Yeder T Yk # (15.27)

contradicts the induction hypothesis, because the expression in (15.27) con-
tains at most k factors. O
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The Trapezoidal Rule

The trapezoidal rule

h
Yers = U + 5 (@0 00) + F(Zar1904)] (15.28)

is not algebraically stable. Therefore (Theorem 15.6) it cannot be B-conver-
gent in the sense of Definition 15.4. Nevertheless it is possible to derive
estimates (15.16), if we restrict ourselves to special step size sequences (con-
stant, monotonic ...). This was first proved by Stetter (unpublished) and
investigated in detail by Kraaijevanger (1985). The result is

Theorem 15.8 (Kraaijevanger 1985). If the differential equation satisfies
(15.11), then the global error of the trapezoidal rule permits for h;v <a <2
the estimate

Iy -3(e)l < O _max [y(a)] Z{ [T max (1, h/h;_0) b3

k=0 j=k+1

Proof. We denote by 3, = y(z,) the exact solution at the grid points. From
the Taylor expansion we then get

~ ~ h ~ ~
Yet1 =Y t+ '?k(f(mk’yk) + f(”k+1,yk+1)) + &, (15.29)

where

(3)
el < bt max W@ - (15.30)

[

The main idea is now to introduce the intermediate values

h h
Yet+1/2 = Ye t+ —zlgf(zk’yk) = Yr+1 — ?kf(wk+1ayk+1)
(15.31)

~ . h . R h R
Yrg1/2 = Yp T ff(mk,yk) + 6 = Ypp1 — 7kf(“’k+1,yk+1) .

The transition Ye—1/2 = Yit1/2

1
Yetr1/2 = Yk—1/2 T E(hk—l"'hk)f(zk’yk)
can then be interpreted as one step of the §-method

Ym+1 = YUm + hf (zm + 0h’ Ym + o(ym+1 —ym))

with 6 = h;,_, /(ht_, +h,) and step size h = (h;_, +hk)/2 A similar calcu-
lation shows that the same 6-method maps gy _,/, t0 1/, — &) Therefore
we have

Tis1/2 = Yiew12 = Skll £ 08(AY) [Gi—1/2 — Ys—1/2ll
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where the growth function ¢ g(hv) is given by (see Example 12.24)
¢p(hv) = max{(1 -6)/6, (1+ (1 —0)hv)/(1 — 6hv)}

1 1 (15.32)
= max{h;/hy_,, (1 + Ehk")/(l - Ehk—l")} =y -
By the triangle inequality we also get
1Tkt1/2 = Yitr/2ll S CollTie1/2 = Y1yl + 16, - (15.33)
Further it follows from (15.31) with k=0 and from 3, =y, that
”371/2 - 91/2” = 1%l (15.34)

whereas the backward Euler steps y,_,; /2~ Yo and G, 2 = U, (see
(15.31)) imply

_ 1 ~
1%n — yall < T ) 1Bn—1/2 = Yn—1/2ll (15.35)
2%n-1

again by Example 12.24 with §=1. A combination of (15.33), (15.34) and
(15.35) yields

I8 - 10l < =15 i{ T ehisd. as3s)
2 n—1 k=0

i=k+1

For v < 0 we have ¢, < max(1,h,/h,_,) and the statement follows if we
insert (15.30) into (15.36). For v > 0 we use the estimate (h;,_,;» < 1)

1+ 3hev 1+ 1k _ w14 $hiv
1—%—hk_lu 1—2hy v 1+ shi_iv

< eth_lv . max(l, hhk )

k—1

so that the statement holds with C = e2(2~20) /12, o

Corollary 15.9. If the step size sequence (h k)iv.___ol is constant or monotonic,
then for h = max h;

Itn = p(E| S C_muax [y @] k2
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Order Reduction for Rosenbrock Methods

Obviously, Rosenbrock methods (Definition 7.1) cannot be B-convergent in
the sense of Definition 15.4 (see also Exercise 8 of Section IV.12). Neverthe-
less it is interesting to study their behaviour on stiff problems such as the
Prothero & Robinson model (15.1). Since this equation is non-autonomous
we have to use the formulation (7.4’). A straightforward calculation shows
that the global error e, =y, —¢(z,,) satisfies the recursion

€ny1 = R(2)e, + 8,(z,,) (15.37)
where R(z) is the stability function (7.14) and the local error is given by
,(z) = p(z) — p(z + k) +bT(I — 2B) A (15.38)
with B = (a;;47;) b = (byy-++,5,)T, A= (4,,...,A,)T and
A; = z(p(z) — p(z+o;h) — 7;h¢'(2)) + he' (z+e;h) + ;R0 " (2) -
Taylor expansion gives the following result.

Lemma 15.10. The local error 6,(z) of a Rosenbrock method applied to
(15.1) satisfies for h — 0 and z = Ah — oo

) = (L o - D)2+ o) + (L)

where w;; are the entries of B—1. O

J

Remarks. a) Unless the Rosenbrock method satisfies the new order condi-
tion

Z bw ol =1, (15.39)

‘J 1

the local error and the global error (if |[R(c0)| < 1) are only of size O(h2).
Since none of the classical Rosenbrock methods of Section IV.7 satisfies
(15.39), their order is only 2 for the problem (15.1) if X is very large.
b) A convenient way to satisfy (15.39) is to require
a,;+7,=b;(i=1,...,s) and a,=1. (15.40)

This is the analogue of the condition a,; = b, for Runge-Kutta methods. It
implies not only (15.39) but even

su(z)=0(2)

so that such methods yield asymptotically exact results for z — oo.
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c) A deeper understanding of the condition (15.39) will be possible when
studying the error of Rosenbrock methods for singular perturbation and
differential-algebraic problems (Chapter VI). We shall construct there meth-
ods satisfying (15.40).

d) Scholz (1989) writes the local error é,(z) in the form

)= Ci(2)h V() (15.41)

j>2

and investigates the possibility of having C;(z) = 0 for j = 2 (and also
7 >2). Hundsdorfer (1986) and Strehmel & Weiner (1987) extend the above
analysis to semi-linear problems (11.19) which satisfy (11.20). Their results
are rather technical but allow the construction of “B-convergent” methods
of order p>1.

Exercises

1. Prove that the stage order of an SDIRK method is at most 1, that of a
DIRK method at most 2.

2. Consider a Runge-Kutta method with 0 < ¢; < ... < ¢, < 1 which
has stage order ¢q. Prove that the method cannot be B-convergent (for
variable step sizes) of order ¢+ 1.

Hint. Use Formula (15.22) and prove that

K(Z)L(Z) + 67T (Z)
K(Z)K(Z) -1

(15.42)

cannot be uniformly bounded for
Z = diag (z1,...,2,) » Z:diag(?l,...,'fa)

with Rez; < 0, ReZ; < 0 (in the case ¢, =0 and ¢, =1 one has to prove
this under the restriction z, = 0z,, Z, = 0z,). For this consider values

z;, Z; close to the origin.

3. (Burrage & Hundsdorfer 1987). Assume c; —c; is not an integer for
1 <i < j < s, and the order of B-convergence (for constant step sizes)
of an RK-method is g+1 (g denotes the stage order). Then d;=0 and all
components of d = (d,,...,d,)T are equal (see (15.20) for the definition
of d;).

Hint. Study the uniform boundedness of the function L(Z)/(K(Z)-1).
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4. (Kraaijevanger). Show that for
0
A7 =] -1
1

(15.43)

-
- o o

we have ag(A~!) =0, but there exists no positive diagonal matrix D
such that ap(A~1)=0. For more insight see “Corollary 2.15” of Kraai-
jevanger & Schneid (1990).

5. Prove that for the Lobatto IIIB methods, with
Ao
4= (4 0)
the dominant term of the local error (15.7) is (for A—0 and z=h\ — o)
het1

zb,(aTA 1t — 1) D et(g) .
Here ¢ = s—2 is the stage order and ¢ = (¢;,...,¢,_;)T. Show further
that
aTA'cF=1  for k=1,2,...q (15.44)
aTA 'k #1 for k=gq+1. (15.45)

Hint. Equation (15.44) follows from C(g). Show (15.45) by supposing
aTA-1c9+1 =1 which together with (15.44) implies that

s—1
Zdip(ci) = p(1) where dT = aTA™!
i=1

for every polynomial of deg p<q+1=s—1 satisfying p(0) =0. Arrive at
a contradiction with

p(z) = (z—¢;)(z—¢;)...(x—¢c, ;) .



Chapter V. Multistep Methods for Stiff Problems

Multistep methods (BDF) were the first numerical methods to be proposed
for stiff differential equations (Curtiss & Hirschfelder 1952) and since Gear’s
book (1971) computer codes based on these methods have been the most
prominent and most widely used for all stiff computations.

This chapter introduces the linear stability theory for multistep meth-
ods (Section V.1) and arrives at the famous theorem of Dahlquist which
says that A-stable multistep methods cannot have high order. Attempts to
circumvent this barrier proceed mainly in two directions: either study meth-
ods with slightly weaker stability requirements (Section V.2) or introduce
new classes of methods (Section V.3). Order star theory on Riemann sur-
faces (Section V.4) then helps to extend Dahlquist’s barrier to generalized
methods and to explain various properties of stability domains. Section V.5
presents numerical experiments with several codes based on the methods
introduced.

Since all the foregoing stability theory is based uniquely on linear au-
tonomous problems y' = Ay, the question arises of their validity for general
nonlinear problems. This leads to the concepts of G-stability for multistep
methods (Section V.6) and algebraic stability for general linear methods
(Section V.9).

Another important subject is convergence estimates for A — 0 which
are independent of the stiffness (the analogue of B-convergence in Section
IV.15). We describe various techniques for obtaining such estimates in Sec-
tions V.7 (for linear problems) as well as V.6 and V.8 (for nonlinear prob-
lems). These techniques are: use of G-stability, the Kreiss matrix theorem,
the multiplier technique and, last but not least, a discrete variation of con-
stants formula.



V.1. Stability of Multistep Methods

A general k-step multistep method is of the form
Ytk T O 1Ymiko1 oot Y = R(Befryp + -+ Bofm) - (11)

For this method, we can do the same stability analysis as in Section IV.2 for
Euler’s method. This means that we apply method (1.1) to the linearized
and autonomous system

y' =Jy (1.2)

(see (IV.2.2%)); this gives
O Ymik T oot Y = BRI (BrYmiie + - -+ BoYm) - (1.3)

We again introduce a new basis for the vectors y,, , ; consisting of the eigen-
vectors of J. Then for the coefficients of y,, , ;, with respect to an eigenvector
v of J, we obtain exactly the same reccurrence equation as (1.3), with J re-
placed by the corresponding eigenvalue A. This gives !

(ak = Bk )Ymyr + -+ (20 — #By)ym = 0, 1= hA (1.4)
and is the same as method (1.1) applied to Dahlquist’s test equation

y' =)y (1.5)

The Stability Region

The difference equation (1.4) is solved using Lagrange’s method (see Vol-
ume I, Section II1.3): we set y; =(7, divide by (™ and obtain the character-
istic equation

(ak—ﬂﬂk)ck+---+(a0—#ﬂo)=Q(C)_#V(C):0 (1-6)

! In contrast to Chapter IV, where the product kX was denoted throughout by
z, we write hA = p here, since in multistep theory (Section III.3) z denotes the
Cayley transform of (.
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which depends on the complex parameter p. The polynomials ¢(¢) and
o(¢) are our old friends from (II.2.4). The difference equation (1.4) has
stable solutions (for arbitrary starting values) iff all roots of (1.6) are < 1
in modulus. In addition, multiple roots must be strictly smaller than 1 (see
Volume I, Section III.3, Exercise 1). We therefore formulate

Definition 1.1. The set

_ . all roots (;(p) of (1.6) satisfy |¢;(r)] <1,
§= {“ €C; multiple roots satisfy |(;(u)| < i (L.7)

is called the stability domain or stability region or region of absolute stability
of Method (1.1).

It is sometimes desirable to consider S as a subset of the compactified
complex plane C. In this case, for 4 — oo, the roots of Equation (1.6) tend
to those of o(¢)=0.

For 1 =0 equation (1.6) becomes g({) =0. Thus the usual stability (in
the sense of Definition III.3.2) is equivalent to 0 € S.

Theorem 1.2. All numerical solutions of Method (1.1) are bounded for the
linearized equation (1.2) with a diagonalizable matriz J iff RA € S for all
eigenvalues A of J. a

Computation of the Stability Domain

We start with a particular example, the explicit Adams method of order 4
(see Volume I, Section IIL.1, Formula (1.5)),

55 59 37 9
Ymtas = Ymys T h(ﬁfm-m - ﬂfmn + ﬁfm-i-] - ﬂfm) y

for which Equation (1.6) becomes
. 55 \ ., 59 ., 37 9
¢ —(1+QM)C +'2“I#C —5‘1#(4‘51#—0- (1.8)
For p = 0 Equation (1.8) has one root at ¢( = 1 (the so-called “principal
root”) and a three-fold root at ( =0. We then move with x4 to the point
—0.25+40.5¢ (see Fig.1.1a). Fig.1.1b shows the corresponding movement of
the four roots of (1.8).

- For stability, all roots (;(x) of (1.8) must lie inside the unit circle. We see
in Fig. 1.1b that (5(p) is the first to leave at a point exp(i6) where § ~ 37 /4.
The corresponding p-value is easily found from (1.8) to be

g(eie) e4i9 _ esie

= i) 55 _3i0 _ 59 ,2i6 , 37.i0 _ 9 °
a(e) e 2a¢ T 3¢ 24

(1.9)
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The whole curve (1.9), for 0 < § < 2, is called the root locus curve ¢, and
represents the points of y which can constitute the boundary of S (Liniger
1956).

The particular root locus curve of Fig.1.la intersects itself and cuts
several regions from C. What happens if our path for u re-enters the upper
loop of the root locus curve, i.e., if we move with y to the point 0.254:0.757
Well, as we see in Fig.1.1b, (4(u) does not re-enter the unit circle, but
another root ({;(u)) leaves! This is explained by the fact that the root
locus curve surrounds this region in the opposite direction and that the
mappings p < (; are locally holomorphic if {; # 0, i.e., preserve angles
and orientations.

Special attention must be paid to (; (), which lies on the unit circle for
p=0. Differentiating (1.8) with respect to y and putting p=0, ( =1 gives

@'(1)-¢1(0) —e(1) =0,

hence ¢{(0) =1 because of the consistency conditions g'(1) #0, ¢(1)=p'(1)
(see Volume I, Formula (II1.2.6)). Therefore {;(u) moves inside the unit disc
when u moves inside C— and we have:

-.5-.4-{3-,2-1 1.2 .3 .4 .5 | FL.0

__1 L

\ -2+

h N

\\\_'3 L ‘«.,s\ -.5F /.'
- 4k \\ ..//"
-5 L . e N -
—6F O\
-1}
-8 -1.5 b
__9 -

Fig.1.1a. Path for u Fig. 1.1b. Paths of the roots of (1.8)
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Theorem 1.3. The boundary of the stability domain S consists of parts of
the root locus curve c given by 0 — o(e*®)/co(e*). If the method is consistent
and all “parasitic” roots of p(¢)=0 lie inside the unit disc (i.e., the method
is “strictly stable”), at least a small disc

{u; lp+el <o} withe>0
lies inside S. (m|

The precise location of S can be determined by studying how often, and
in which sense, the root locus curve surrounds the different parts of C\ ¢
(this is called the “Cauchy index” in complex analysis).

Adams Methods

It is now interesting to have a look at the methods of Section III.1 of Vol-
ume I:
The ezplicit Adams methods (I11.1.5) applied to y' = Ay give
k-1

Ynp1 = Yn T4 D7V, Yo=1,m=
=0

1 5 3
5’ Y2 = 1o '73:57"'

12
(1.10)
or, after putting y,, =(™ and dividing by (",

g—1=u{70+7,(1—%) +72(1—2Z+<1—2) +} .

Hence the root locus curve becomes
p= (-1
E;:; 7;(1 - %)’ ,
For k=1 we again obtain the circle of Euler’s method, centred at —1. These
curves are plotted in Fig.1.2 for £ =2,3,...,6 and show stability domains
of rapidly decreasing sizes. These methods are thus surely not appropriate
for stiff problems.

¢=¢€". (1.107)

The implicit Adams methods (111.1.8) lead to

k
i 1 1
Yni1 =Vt B Y W Vs N =L =g B =g (L11)
i=0
Here we put y,, =(™ and divide by ¢("*!. This gives
1-1
p= : (=€?. (1.11%)

% )
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k=4 o1 k=3 1. / k=6 1\-
O S st st

¥

o s -
N

Fig.1.2. Stability domains for explicit Adams methods

For k =1 this is the implicit trapezoidal rule and is A-stable. For k =
2,3,...,6 the stability domains, though much larger than those of the ex-
plicit methods, do not cover C— (see Fig.1.3). Hence these methods are not

A-stable.
k=2 k=4 k=5 k=6
2 2 2 2 f
5 1 S 1} 57(? 2 S% 2 S 2
AN ] Y S | A o
3 -2 2 -1 (3 -4 -1 (3 =2 ‘1 $—f3 -2 -1
AK-{ ¥ aP a A
N M
-2 F -2 -2 2

Fig. 1.3. Stability domains of implicit Adams methods,

compared to those of the explicit ones

Predictor-Corrector Schemes

“The inadequacy of the theory incorporating the effect of
the corrector equation only for predictor-corrector methods
was first discovered through experimental computations on
the prototype linear equation

v = f(z,y) = =100y + 100, y(0) =0,
(-..) Very poor correlation of actual errors with the errors
expected on the basis of the properties of the corrector

equation alone was obtained. This motivated the develop-
ment of the theory ...” (P.E. Chase 1962)

As we have seen in Section I1I.1, the classical way of computing y,, 41 fromthe
implicit equations (IIL.1.8) is to use the result y 4+1 of the explicit Adams
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method as a predictor in B, f(,,,,Y,,,). This destroys a good deal of
the stability properties of the method (Chase 1962). The stability analysis
changes as follows: the predictor formula

Vorr = Un + 0(Vo¥n + 11 (¥Un = Yne1) + V2 = 20n_y +Yn_s) +...) (L12)
must be inserted into the corrector formula
Ynt1 =Yn t ﬂ(73y;+1+
Y1 (Ynt1 = Yn)t
N : " (1.13)
Yo (Yns1 = 2Un + Yp_1)+
7;(y’:+1 - 3yn + 3yn_1 - yn_z) + .o .) .

Since there is a p in (1.12) and in (1.13), we obtain this time, by putting
Y, =¢™ and dividing by (", a quadratic equation for ,

Ap*+Bu+C=0, (1.14)
k . k—1 1 i
A= (Z%’)(Z%‘(l*z) ) ,
j=0 j=0
k k 1
B=(1-0)>. +CZ’Y}*(1—3)J ,
j=0 j=0
c=1-¢.

For each { =€, equation (1.14) has two roots. These give rise to two root
locus curves which determine the stability domain. These curves are repre-
sented in Fig.1.4 and compared to those of the original implicit methods.
It can be seen that we loose a lot of stability. In particular, for k =1 the
trapezoidal rule becomes an explicit second order Runge Kutta method and
the A-stability is destroyed.

k=2 2t

-

Fig. 1.4. Stability domains for PECE compared to original implicit methods
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While Chase (1962) studied real eigenvalues only, the general complex
case has been stated by Crane & Klopfenstein (1965) and, with beautiful
figures, by Krogh (1966). All three papers also searched for procedures with
increased stability domains. This research was brought to perfection by
Stetter (1968).

Nystrom Methods

“Thus we see that Milne’s method will not handle so simple
an equation as y' = —y, y(0)=1...”
(R.W. Hamming 1959)

“... Milne’s method has a number of virtues not possessed
by its principal rival, the Runge-Kutta method, which are
especially important when the order of the system of equa-
tions is fairly high (N=10 to 30 or more) ...”

(R.-W. Hamming 1959)

The ezplicit Nystrém method (I11.1.13) for k=1 and 2 is the “explicit mid-
point rule”

Ynt1 = Yn_1 + 2hf, (1.15)
and leads to the root locus curve
eif _ e—if
p= T:isinﬂ . (1.15%)

This curve moves up and down the imaginary axis between *i and leaves
as stability domain just the interval (—¢,+¢). All eigenvalues in the interior
of the negative half plane lead to instabilities. This is caused by the second
root —1 of p({) which moves out of the unit circle when p goes West. This
famous phenomenon is called the “weak instability” of the midpoint rule
and was the “entry point” of Dahlquist’s stability-career (Dahlquist 1951).
The graphs of Fig.II1.9.2 nicely show the (weak) instability of the numerical
solution.

The implicit Milne-Simpson method (II1.1.15) for k=2 and 3 is

1 4 1
Ynt1 = Yn_1 + h(gfn.,.l + -é'fn + §f _1> (1.16)
and has the root locus curve
eif — -0 . sinf
p= (1.16")

. — =31
jef+ 4+ 3e® cosf+2’

which moves up and down the imaginary axis between +i1/3. Thus its
behaviour is similar to the explicit Nystrom method with a slightly larger
stability interval.
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The higher order Nystréom and Milne-Simpson methods have root locus
curves like those of Fig.1.5. Their stability domains therefore reduce to the
smallest possible set (for stable methods): just the origin.

Nystroem, k=3 Nystroem, k=4 Milne, k=4 Milne, k=5 Milngs
1.5} 1.5} 1.5 1.5} 1.5
1.0 1.0 1.0} 1.0 1.0

5 5 .5 5 5

-3.0 r1.0

-3.5F r1.5 1.5\‘ r1.5 + .

Fig.1.5. Root locus curves for Nystrom and Milne methods

BDF

The backward differentiation formulas (II1.1.22°)

k
1.
) ;ijnﬂ =hfpi1 (1.17)

j=1

have the root locus curves given by

w1 1:’_"11_,.9,- -
“";J_'(l-f) _j;;( —emi0)7 (1.17)

For £ = 1 we have the implicit Euler method with stability domain S =
{w; |p—1] > 1}. For k=2 the root locus curve (see Fig.1.6) has Re(p) =
%—2 cos 0+% cos 20 which is > 0 for all 8. Therefore the method is A-stable
and of order 2. However, for k=3,4,5 and 6, we see that the methods loose
more and more stability on a part of the imaginary axis. For k > 7, as we
know, the formulas are unstable anyway, even at the origin.
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-1 1

_2\

Fig.1.6. Root locus curves and stability domains of BDF

A-stability and the Second Dahlquist Barrier

“I searched for a long time, finally Professor Lax showed
me the Riesz-Herglotz theorem and I knew that I had my
theorem.” (G. Dahlquist 1979)

The following definition is motivated by Theorem 1.2 and by the fact that
for Re A < 0 the exact solution of y' = Ay is bounded.

Definition 1.4 (Dahlquist 1963). The multistep method (1.1) is called
A-stable if S O C-, e, if

Red <0 = numerical solution for y'=\y is bounded.

Theorem 1.5. If the multistep method (1.1) is A-stable, then

€ & or
R (U(C)) >0 f IC|>1. (1.18)

For irreducible methods the converse is also true: (1.18) implies A-stability.

Proof. If the method is A-stable then all roots of (1.6) must satisfy (| <1
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whenever Rep < 0. The logically equivalent statement (Re u >0 whenever
|¢|>1) yields (1.18) since by (1.6) u=0({)/e(¢).

Suppose now that (1.18) holds and that the method is irreducible. Fix
a po with Repy < 0 and let {; be a root of (1.6). We then have o((,) #0
(otherwise the method would be reducible). Hence py=0(¢{,)/o(¢,) and it
follows from (1.18) that |(y| < 1. We still have to show that ¢, is a simple
root if |(y|=1. By a continuity argument it follows from (1.18) that |{,|=1
and Rep, < 0 are contradictory. Therefore, it remains to prove that for
Repy =0 a root satisfying |{,| =1 must be simple. In a neighbourbood of
such a root we have

% — o = C1(¢C—Go) + Cz((*(o)z t...

and (1.18) implies that C; # 0. This, however, is only possible if (, is a
simple root of (1.6). a

In all the above examples we have not yet seen an A-stable multistep formula
of order p> 3. The following famous theorem explains this observation.

Theorem 1.6 (Dahlquist 1963). An A-stable multistep method must be of
order p < 2. If the order is 2, then the error constant satisfies

1
C<——.
=12

The trapezoidal rule is the only A-stable method of order 2 with C’:——%.

(1.19)

Proof. Dahlquist’s first proof of this theorem is difficult. More elementary
versions emerged in Widlund (1967), in lecture notes of W. Liniger (Univ. of
Neuchatel 1971) and in the book of Grigorieff (1977, vol.2, p. 218).

We start by recalling some formulas from Volume I: Formula ii) of The-
orem II1.2.4 and Formula (III.2.7) are

o(e") —ho(e") = C,  hPTH +... for h—0. (1.20)
From the consistency conditions (II1.2.6) we have
o) =po(l+h+..)=01)+(Q)h+...=c(1)h+....
We divide (1.20) by hg(e”) and obtain
%—%:om-w... for h — 0 (1.21)
where C is the error constant (I11.2.13). With ( =e* this becomes

1 a(() ., 1 _
Togl " 200) - C(¢-1)P7" +... for( —1. (1.22)
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In this formula we put p = 2. Whenever the method is of higher order,
we have C =0. When the order of the method is one, we have nothing to
prove. The same formula for the trapezoidal rule for which op(¢) =(¢ -1,
o7(¢)=3(¢+1), becomes by series expansion (or by using Table II1.2.1)

L_”T_(C)=_1_12-((-1)+... for ¢ — 1. (1.23)

log¢  e7(¢)

The idea is now to subtract the two formulas and obtain

._3@_01‘(()2 - ——1- - or( —1. .
40) =55 = oD (c 12)(c )+... for¢—1. (1.24)

From (1.18) we have that

e(¢) : a({) or
Re(a(()) >0 or equivalently Re (Q(C)) >0 for|[{|>1. (1.25)

The point here is that for the trapezoidal rule this Re(...) is zero for |{|=1
since this method has precisely C— as stability domain. Hence from (1.24)
we obtain
ClinCl Red({) >0 for|{)|=1. (1.26)
fe1>1
The poles of d(¢) are the roots of g(¢), which, by stability, are not allowed
outside the unit circle. Thus, by the maximum principle, (1.26) remains true
everywhere outside the unit circle. Choosing then ¢ =1+¢ with Ree > 0

and |¢| small, we see from (1.24) that either —C—3% > 0 or d(¢) = 0. This
concludes the proof. O

Exercises

1. The Milne-Simpson methods for k =4 and 5 satisfy Re(o(¢)/o(¢)) >
0 for |(| = 1. Since their order is higher than 2, this seems to be in
contradiction with the above proof of Theorem 1.6. Explain.

2. For the explicit midpoint rule (1.15), do the endpoints £ of the stability
region belong to § ? Study the (possible) stability of this method applied
with h=1 to u'=v, v' =—u.

3. Compute for the explicit and implicit Adams methods the largest A\, € R
such that the real interval [—), 0] lies in S.

Hint. Just set §= in the root locus curve.

4. Prove that the stability region of the k-step, implicit Adams methods is
of finite size for every k > 2.
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Hint. Show that (—1)ko(—1) < 0, so that o has a real negative root,
smaller than —1.

. a) Show that all 2-step methods of order 2 are given by
e(Q)=((-1)(a{ +1-a)
#(¢) = (=16 + (¢=T)a + 5(¢+1)

(which are irreducible for a # 28).
b) The method is stable at 0 iff « > 1/2.
c) The method is stable at oo iff

a>1/2 andfB>a/2. (1.27)
Apply the Schur-Cohn criterion (Section III.3, Exercise 4).

d) The method is A-stable iff (1.27) holds.

Hint.
o) 1 ¢(+1 a (-1
Q(C)—§< 1+('B——2—).Tl—-'
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“We are not attempting to disprove Dahlquist’s theorems
but are trying to get round the conditions they impose ...”
(J. Cash 1979)

Dahlquist’s condition p < 2 for the order of an A-stable linear multistep
method is a severe restriction for efficient practical calculations of high pre-
cision. There are only two ways of “breaking” this barrier:

o either weaken the condition;

¢ or strengthen the method.
These two points will occupy our attention in this and in the following
section.

A(a)-Stability and Stiff Stability

“It is the purpose of this note to show that a slightly dif-
ferent stability requirement permits methods of higher ac-
curacy”. (O. Widlund 1967)

“The angle a is only one of a number of parameters which

have been proposed for measuring the extent of the stability

region. But it is probably the best such measure ...”
(Skeel & Kong 1977)

Many important classes of practical problems do not require stability on the
entire left half-plane C—. Further, for eigenvalues on the imaginary axis,
the solutions are often highly oscillatory and one is then forced anyhow to
restrict the step size “to the highest frequency present in order to represent
the signal” (Gear 1971, p. 214).

Definition 2.1 (Widlund 1967). A convergent linear multistep method is
A(a)-stable, 0 < a < /2, if
§25,=A{n; |arg(—p)| < a, p # 0} . (2.1)

A method is A(0)-stable if it is A(a)-stable for some (sufficiently small)
a>0.

Very similarly, Gear (1971) required in his famous concept of “stiff sta-
bility” that
SO{p; Rep < —-D} (2.2)
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for some D > 0 and that the method be “accurate” in a rectangle —D <
Repu<a, -0 <Imp <0 for some a>0 and 6 about 7/5. Many subsequent
writers didn’t like the inaccurate meaning of “accurate” in this definition
and replaced it by something else. For example Jeltsch (1976) required that
in addition to (2.2),

G ()| > 1¢(w)] (2=2,...,k) in|Rep[<@q, Imp|<f, (23)

where ¢;(p) is the analytic continuation of the principal root {;(0) =1 of
(1.6). Also, the rectangle given by

mp| <, -D<Rep<-a

should belong to S.
Other concepts are Ay -stable (Cryer 1973) if

I¢;(z)| < 1 (i=1,...,k), —co<z <0 (2.4)
and A-stable (a joke of O. Nevanlinna 1979) if
(—o0,0] C S . (2.5)

Of course, we have
A(0)-stable = A,-stable = A-stable (2.6)

but neither implication is reversible (Exercise 3; see also “Theorem 1” of
Jeltsch 1976).

The BDF methods (1.18) satisfy (2.1) for A(a)-stability and (2.2) for
stiff stability with the values

k | 1 2 3 4 5 6
o 90° 90° 86.03° 73.35° 51.84° 17.84° (2.7)
D 0 0 0083 0.667 2327 6.075

High Order A(oa)-Stable Methods

“Dill and Gear ... and Jain and Srivastava ... have used
computers to construct stiffly stable methods of orders
eight and eleven, respectively, but were unable to construct
higher order stiffly stable methods. Even though we have
shown here that Ag-stable methods of arbitrarily high or-
der exist, we conjecture that A(0)-stable linear multistep
methods of higher order, of order greater than 20 say, do
not exist.” (Cryer 1973)

Widlund (1967) showed that for every a < /2, a arbitrarily close to 7/2,
there exist A(a)-stable multistep methods of order p=k for p=3 and p=4.
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It is now an interesting question whether such methods also exist for higher
orders. Well, the answer consists of good news and bad news.

First the good news. The conjecture of Cryer (see quotation) was quickly
disproved by combining Cryer’s A,-stable methods with the result of Jeltsch
(1976) which says that certain Agy-stable methods are also A(«a)-stable. The
following theorem shows that a can even be chosen arbitrarily close to m/2:

Theorem 2.2 (Grigorieff & Schroll 1978). Let o <m/2 be given. Then for
every k € N there ezists an A(a)-stable linear k-step method of order p=k.

Proof. For p=k =2 the two-step BDF method which is A-stable, and hence
A( o, )-stable for every a, <m/2, does the job. For k arbitrary, we intercalate
k—2 values between « and 7/2,

a<ak_1<ak__2<...<a3<a2312—r, (2.8)
and extend the method step by step with the help of Lemma 2.3. O

Lemma 2.3. Suppose an A(a)-stable k-step method of order p is given with

A A0 i Cl=1, ¢#1 (2.92)
oQ)#£0  if I¢I=1. (2.9)

Then for every &< a there ezists an A(a)-stable (k+1)-step method of order
p+1 which also satisfies (2.9).

The proof follows very closely the ideas of Jeltsch & Nevanlinna (1982): Let
o(¢) and () represent the given k-step method with order condition

o(¢)
log ¢

If we multiply ¢ and o by (( —1) we formally increase the order by 1 and
at the same time leave the root locus curve unchanged. Everything seems
to be proved. However, the new p-polynomial would have a double root at
(=1 and would thus lead to an unstable method. We therefore choose ¢ >0
and multiply (2.10) by (¢ —1+¢), which moves the root slightly inside the
unit circle. We then obtain a new method of order p+1 if we put

o(¢) =e(() (¢ —1+¢)
() =a()((—1+e)+eCpy (¢ —1)7.

Since p=k+2 is excluded (by Theorem III.3.9 methods with p=k+2 are
symmetric and violate Hypothesis (2.9a)), both polynomials g and 7 are of

— 0(0) = Cpn(C—1) + O((¢~1)*) . (2.10)

(2.11)
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degree < k+1. Now the formula

7Q) _ o(¢) _ Cpmal¢~1)
70~ e0) T N1+ 9)

allows us to compare, for ¢ small, the root-locus curves of the two meth-
ods. The fact that we are working with o(ei?)/g(e?) = 1/u instead of
p = o(e?)/o(e?®) does not matter, because the transformation p — 1/u
maps the sector of Definition 2.1 onto itself. Because of Hypothesis (2.9a),
1 is the only (simple) root of ¢(¢) on the unit circle, therefore

1 _ 0] ¢ g -1
20 20| =TT

A small obstacle still separates us from “endless pleasure, endless love,
Semele enjoys above”: the denominator |( —1+¢|, which becomes small
for ¢ — 0 and § — 0. For p>1, this “small” denominator is simply balanced
by one of the factors | —1| from the numerator and we have

-5(—4) -GL(—)<6-E

a¢) e

which means uniform pointwise convergence of 3(¢)/2({) to o(¢)/o(¢) if
e — 0. Since o({)/0(¢) is bounded away from the origin (Hypothesis (2.9b)),
this also means uniform convergence of the angles.

This is already sufficient to prove Theorem 2.2, where we always have
p>2. However, Lemma 2.3 remains valid for p=1 too: the critical region is
when @ — 0, in which case |o(ei?)/p(e?®)| and |5(e*®)/g(e*)| tend to infinity
like Const/6. Instead of (2.14) we have for p=1

;(C) _ G(C) CE _ E
=0 ~ o0l = =i = 2

Thus the angle (seen from the origin) between 7({)/2({) and &(¢)/e(¢) is
O(e). |

(2.12)

for ¢ = €' . (2.13)

(2.14)

Approximating Low Order Methods
with High Order Ones

The above proof of Lemma 2.3 actually shows more than angle-boundedness
of the root locus curve, namely uniform convergence of the root locus curve
of a high order method to that of a lower order one. This leads to the
following theorem of Jeltsch & Nevanlinna (1982):
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Theorem 2.4. Let a linear stable k-step method of order p and stability
domain S be given which satisfies (2.9a). Then to any closed set 2 C IntS C

C and any K € N there exists a linear k+ K -step method of order p + K
whose stability domain S satisfies

$HQ.

Moreover if the first method is ezplicit, the higher-order method is also ez-
plicit.

Proof. The proof is similar to that of Lemma 2.3. Instead of the sequence
(2.8) we use a sequence of embedded closed and open subsets between (2
and S (Urysohn’s Lemma). Hypothesis (2.9b) is ruled out by passing to the
compactified topology of C=C U {oo}. a

Remark. No method with non-empty IntS of practical interest violates
Hypothesis (2.9a). Nevertheless, Theorem 2.4 remains valid without this
hypothesis, but the proof becomes more complicated (see “Lemma 3.6” of
Jeltsch & Nevanlinna 1982).

A Disc Theorem

Another weakening of A-stability is to require stability for
D.=A{u; lu+r| <7}, (2.15)

which is a disc of radius 7 in C— tangent to the imaginary axis at the origin.
Theorems about stability in D, are stronger than theorems about A(a)-
stability for eigenvalues close to the origin. The following result is, again,
due to Jeltsch & Nevanlinna (1982):

Theorem 2.5. Let a linear k-step method of order p be given with S D D,..
Then for any ¥ <r and any K € N there ezists a_linear k+ K -step method
of order p+K whose stability domain S satisfies S D D~ .

Proof. The map p +— 1/p used in the proof of Lemma 2.3 maps the exterior
of D, onto the half-plane

{/.LEC; Reu>—2lr} . (2.16)

Therefore the uniform convergence established in (2.14) also covers the new
situation if p>1. The case p =1, however, needs a more careful study and
we refer to the original paper of Jeltsch & Nevanlinna (1982, pp. 277-279).

a
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Accuracy Barriers for Linear Multistep Methods

Now here is the “bad news”: high order A(a)-stable methods, for a close to
m/2, cannot be of practical use, or in other words: “the second Dahlquist
barrier cannot be broken”. The reason is simply that high order alone is
not sufficient for high accuracy, because the methods then have enormous
error constants. Jeltsch & Nevanlinna (1982) give an impressive staccato
(from “Theorem 4.1” to “Lemma 4.15”) of lower bounds for error constants
and Peano kernels of methods having large stability domains. The Peano
kernels, the most serious measures for the error, are defined by the formulas

(see (I11.2.14) and (III.2.3) of Volume I)

L(z) = h7t! /°° Kq(—s)y(Q+1)(w+sh) ds (2.17)
k
= Z(ajy(:c +7h) — hB;y' (z+3h)) . (2.18)
j=0

The kernels f(q(—s) = K(s) are zero outside the interval 0 <s <k and are
piecewise polynomials given by complicated formulas (see (II1.2.15)) which
appear not very attractive to work with.

However, the formulas simplify if we use the Fourier transform which,
for a function f(z), is defined by

oo

fey= [ e sayis (2.19)

— 00

We obtain L from (2.17) by insertion of the definitions, several integrations
by parts and transformations of double integrals:

L(€) = hTIK, (k) -y (€) (2.20)
= K, (h&)(ihe)™9(6) (2.21)
and from (2.18)
L(¢) = (e(e™®) — ihg o (™)) - §(¢) - (2:22)
Thus (2.20) and (2.22) give
K, (=€) = K, (€) = (o) — i€ () (i)"Y, (2.23)

a nice formula, involving the polynomials g and o, with which we are better
acquainted.

What about the usefulness of I/{\q for error estimates? Well, it is the
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Parseval identity (Exercise 4)

1 ~
“f”L’(—oo,oo) = —\/—2;7; ”f ||L’(—oo,oo) (2'24)
which allows us to obtain the L2-estimate for the error
“LHL’(—oo,oo) < hq+1”Kq”L”° : “y(q+1)“L3 ) (2'25)
as follows:
1 -~
"LH%Z(_oo,oo) = or ||L||%,(_°°m) (from (2.24))
h2a+2 [ =~ 2 2
oy G PEIGIRT (from (2320))

h2g+2

< 2 max K (O / lyF(¢)[*d€  (estimation)

h2¢I+2 _ 2 Al 2 .
= —— 1Kz~ - llyte+D]|Zs (definitions)
= WK (e - [y @H)2s - (from (2.23),(2.24))

In order that the obtained estimates (2.25) for L express the actual errors of
the numerical solution, we adopt throughout this section the normalization
o(1)=1 (cf. Formula (II1.2.13)).

And here is the theorem which tells us that linear multistep methods of
order p>2 and “large” stability domain cannot be precise:

Theorem 2.6 (Jeltsch & Nevanlinna 1982). Consider k-step methods of
order p>2, normalized by 0(1) =1, for which the disc D, of (2.15) is in the
stability domain S. Then there ezists a constant C >0 (depending on k,p, q;
but independent of r) such that the Fourier transform of the Peano kernel
K, (¢<p) satisfies

1K Nl > C‘(g)p_2 : (2.26)

The proof of Jeltsch & Nevanlinna is in two steps:

a) The stability requirement forces some coefficients a;

(Lemma 2.7 below), where as in (II1.3.17) ’
k
Z a; P’z (2.27)

R - ()" o(20) -3
k

S(z) = (z - 1) o(iti) bzt . (2.28)

of R(z) to be large

<.
o

<.
Il
o
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b) ||I/{;||Loq can be bounded from below by max; a; (Lemma 2.8).

Lemma 2.7. If D, C S and p>2 then

ry\J—1 ry\Ji-1 _ .
ap_j > (§> “@p_q = (5) 2R forj=2,...,p—1. (2.29)

Proof. Stability in D, means that for 4 € D, all roots of o(¢)—pa(¢)=0 lie
in [(|<1. Hence

e(¢)/e(() ¢ D, for [([>1. (2.30)

Applying the Graeco-Roman transformation ¢ = (2+1)/(z—1) and using
(2.16) this means that

5(z) 1
Re ) > ~o for Rez >0 (2.31)
or
Re 27’_5(%)(_;_3(2_) >0 forRez>0. (2.32)

Next, we must consider the order conditions (Lemma III.3.7 of Volume I and
Exercise 9 of Section III.3)

R(z) (%—Glz—%—...)—S(z):O((%)p_k), s o0. (2.33)

This shows that R(z)=0(zk-1), §(2) =0(z*), but 25(z)—2R(z)=0O(z*-1).
Thus we subtract rz from (2.32) in order to lower the degree of the numer-
ator. The resulting function again satisfies

r(258(2) — zR(2)) + R(z)

Re RG)

>0 for Rez >0 (2.34)

because of Re (rz) =0 on z=1y and the maximum principle (an idea similar
to that of Lemma IV.5.21). The function (2.34) can therefore have no zeros
in Ct+ (since by Taylor expansion all arguments of a function appear in a
complex neighbourhood of a zero). Therefore the numerator of (2.34) must
have non-negative coefficients (cf. the proof of Lemma III1.3.6). Multiplying
out (2.33) and (2.34) we obtain for the coefficient of z*~7 (j <p—1):

1 4
0 ST(-‘gak_j+1 - Eak_j+3 hd ...) +ak__j

or by simplifying (cf. Lemmas III1.3.8 and III.3.6)
3 W—jt1 S Gy -

Using a;,_, =2!~F p'(1)=2'-F (see Lemma II1.3.6), this leads to (2.29). O
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Lemma 2.8. There ezists C >0 (depending on k,p and q with ¢=0,1,...,p)
with the following property: if 0 € S, then

IRl > C-maxa; .

; (2.35)

Proof. We set e =(, £ = —ilog( in Formula (2.23) so that the maximum
must be taken over the set |(| =1. Then we introduce { = (z+1)/(z—1)
and take the maximum over the imaginary axis. This gives with (2.27) and

(2.28)
k . -
o (e i1 ~°00)||(5) || (555)

a(1) ¥(t)

IRl = sup

(2.36)
We now insert, for || > 1, Formulas (II1.3.19), (II1.3.21) and (II1.3.22) to
obtain
d, d,

2()] =[P k(%) T e T (237

where P, is a polynomial of degree k and subdegree p (see Lemma IIL.3.7),
determined by the method. Since we want our estimates to be true for
all methods, we treat P, as an arbitrary polynomial. Separating real and
imaginary parts and substituting 1/t =s gives
1B()12 =|Qp_1(s) + dysFH! — dyskt3 4+ — (2.38)
+[@u() + dys**? — dys* 4 — L |* = (8, + |8,(1)P
where Q,_,(s) and Q(s) are arbitrary (even or odd) polynomials of sub-

degree p and degree k—1 and k, respectively. Both terms are minorized
separately, e.g. for the first we write

121(8)] 2 [Qp—1(s) + d13k+1| - |d33k+3 - dssk-ip5 +-.. (2.39)

Since p; < pg < pg < ... <0 (Exercise 6 below) and a;, > 0 we have from
(I11.3.22)

d<dy<dgy<...<0 and d,<d,<d;<...<0. (2.40)

Nk

Therefore, the second term in (2.39) is majorized by the alternating series
argument for 0<s<1 as

dys*t3 — dgs®+s 4 — 1| < |dg|s*T3 < |d, 850 .

Since Q_,(s) is an arbitrary polynomial, we can replace it by |d,|Q,_,(s)
so that |d,| becomes a common factor of the whole expression

|2,(8)] = |dy| (|Qucs (o) + 551 | = s*42) . (2.41)
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This suggests that we define the constants

_ . e SkHL| _ gk+3 2 k(___l_)q]}
gl 1) o) e

k q
D, _161215{0?:121 [('Qk(3)+3 +2l -3 +4) (m) (2 arctan3) ]}

(2.42)
where the inf is taken over all polynomials @, _,(s)=c¢,_;$* 1 +c;,_g8F 3+
C,_58k~5+.. . respectively Q,(s) = c8ktc,_p 8%~ 2+¢,_,s¥~%4... of subdegree
p. The last two factors represent ¥(t) of (2.36). Since sk*+! dominates sk+3

for small s, D, and D, are positive constants (see Exercise 8). We then have
from (2.38) and (2.36)

IR, ||~ > 4/d2D3 + d3D3 (2.43)

Since both d, and d, are sums of a; with negative coefficients (see (I11.3.22)

and Lemma III.3.8), ||I?q||°o must be large if one of the coefficient a; is large.
a

This concludes the proof of Theorem 2.6 which, by the way, also proves
Theorem 1.6 again. a

Exercises

1. Show that no explicit method can be A(0)-stable.

2. Show that B,/ >0 is a necessary condition for an A(«a)-stable linear
k-step method.

3. a) Show that the method

h
Yntz — Ynt1 = Z(fn+2 + 2fp41 + fn)

has a stability domain bounded by a parabola. It is therefore 4,-stable,
but not A(0)-stable (Cryer 1973).

b) Find a “deformation” of the 5th order BDF scheme

5

1 .
E ;ijn-i-l + ﬁvsyn+1 =hfi
Jj=1

with B = 0.232... which is A-stable, but not A,-stable.
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c¢) Find a method which is Ag-stable, but not stable at infinity.

Hint for (c). If you “lift up your heads, o ye gates” (just a few lines, not
to heaven), the answer is easy to find.

. (Parseval 1799). Prove the identity (2.24).

Hint. Insert the definitions into
> <) -
1715 = |~ Re)Tepe
)
to get a triple integral. Two of these integrals then disappear with the

Fourier inversion formula.

Remark. You may be astonished to see that Parseval’s identity is older
than Fourier series and Fourier transforms. Well, Parseval’s identity was
originally a formula between an infinite sum and an integral, which was
later re-interpreted and generalized to become what it is today.

Substitute £ = w in Formula (2.23) to obtain an easy minorization for

||I?:|| L. Then compute for the methods defined in the proof of Lemma
2.3 (normalized by (1) = 1) the value o(—1) for € small. This then

shows that I’(\q becomes very large.

Use the formula (see the proof of Lemma II1.3.8)
1

+1 -
i [ 22 ]

to show that p, <p;<p; <...<0.

Show that for ¢ = p Formula (2.23) becomes, by substituting i = h
and letting A — 0 in Formula (1.20), K (0) = C,,, where C,,, is, for
o(1)=1, the error constant.

Formula (2.36) then provides, for p=k and ¢ — oo, lower bounds for the
error constant (see “Theorem 4.5” of Jeltsch & Nevanlinna 1982).

. For p=k+1, the polynomials @,_, and Q,, in (2.42) vanish identically,

because the subdegree must be p. Compute in this case the constants
D, and D,. It is also easy to compute them for p=k—1. In the general
case the optimal solution satisfies a sort of “Tchebysheff alternative”.
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Results.
Case p=k+1 (Q=0):

279

D, p=3 p=4 p=5 p=6 D, p=3 p=4 p=5 p=6
k=2 k=3 k=4 k=5 k=2 k=3 k=4 k=5
g =0 |0.4742 0.5695 0.7020 0.8813 ¢=0 |0.3607 0.4501 0.5706 0.7319
g=1 |0.3876 0.4435 0.5298 0.6505 g=1 |0.2754 0.3347 0.4163 0.5263
g =2 |[0.3524 0.3659 0.4152 0.4933 q= 0.2205 0.2570 0.3108 0.3852
¢=3 [0.5000 0.3381 0.3459 0.3891 ¢=3 [0.1935 0.2075 0.2400 0.2888
g=4 0.5000 0.3251 0.3275 g=4 0.1849 0.1956 0.2244
=5 0.5000 0.3131 g=>5 0.1770 0.1845
g=6 05000 g¢g=6 0.1698
Case p=k—1 (one free constant in Q):

D, p=3 p=4 p=5 p=6 D, p=3 p=4 p=5 p=6
k=4 k=5 k=6 k=7 k=4 k=5 k=6 k=17

¢=0 [0.0511 0.0362 0.0262 0.0193 ¢=0 |0.0195 0.0142 0.0104 0.0077
g=1 [0.0727 0.0499 0.0353 0.0256 q= 0.0269 0.0191 0.0138 0.0101
¢=2 |0.1100 0.0709 0.0486 0.0344 ¢g=2 |0.0384 0.0263 0.0186 0.0135
¢ =3 [0.2031 0.1070 0.0691 0.0474 q= 0.0583 0.0374 0.0256 0.0181
qg=4 0.1962 0.1041 0.0673 qg=4 0.0567 0.0365 0.0250
g=>5 0.1894 0.1012 g=>5 0.0552 0.0356
qg==6 0.1828 qg==6 0.0537

Case p=k—3 (two free constants in Q):

D, p=3 p=4 p=5 p=6 D, p=3 p=4 p=5 p=6
k=6 k=7 k=8 k=9 k=6 k=7 k=8 k=9

¢ =20 |0.0030 0.0014 0.0007 0.0003 ¢=20 |0.0007 0.0004 0.0002 0.0001
g=1 |0.0066 0.0029 0.0014 0.0007 ¢g=1 [0.0015 0.0007 0.0003 0.0002
g =2 |0.0160 0.0066 0.0029 0.0014 g=2 |[0.0034 0.0015 0.0007 0.0003
¢ =3 [0.0457 0.0158 0.0065 0.0029 ¢g=3 |0.0082 0.0034 0.0015 0.0007
g=4 0.0448 0.0156 0.0064 =4 0.0081 0.0033 0.0015
g=>5 0.0439 0.0154 g=>5 0.0080 0.0033
qg==6 0.0431 qg==6 0.0079
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“The Dahlquist bound of two on the order of A-stable
multistep methods was the imperative to propound ...
weaker stability properties, ... An alternative approach
for circumventing Dahlquist’s bound is to modify the class
of methods, rather than the property.”

(T.A. Bickart & W.B. Rubin 1974)

The search for higher order A-stable multistep methods is carried out in two
main directions:

¢ Use higher derivatives of the solutions;

e Throw in additional stages, off-step points, super-future points and the
like, which leads into the large field of general linear methods.

Second Derivative Multistep Methods

Differentiation of a differential equation

¥ = f(z,y) (3.1)
with respect to z gives the second derivative of the solution
y":fz+fy-f=:g(:c,y) ) (3-2)

which we shall denote by g. Now a straightforward generalization of both
multistep formulas (1.1) and, say, the Taylor series method (see 1.8.13)

h2
Yn+1 =yn+h’fn+7gn

can be written in the form

k k k
Z OYnyi = h Z Bifnyi + 1 Z Yi9n+i (3.3)
=0 i=0

=0

where the «;, B;, 7; are parameters which must be chosen appropriately.
Most of the theory of linear multistep methods (Section III.2) generalizes
without difficulty. Taylor expansion similar to (III.2.5) shows that method
(3.3) is of order p if and only if

k k k
Yoaif=g) Bt +g(g—1) ) v (3:4)
=0 0

=0 i=
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for 0<g<p. The first two of these formulas are identical to (II.2.6), i.e., to
a)=0, 1) =0(1). (35)

This allows us to apply the argumentation of Exercise 2 of Section III.4
which means that

C 1
C = % (3.6)

k k
= p+1 [Za P+ (p+1)2ﬂ,~i”—(p+1)p2%i”“l]
=0

=0

is the correct extension for the error constant Formula (II1.2.13).
A search for a good choice of the free parameters a;, 3;, v; was under-
taken by Enright (1974) with the following ideas:
(i) Set ap=1, aj_;=-1, aj_,=...=a, =0 to ensure reasonable stability
in a neighbourhood of the origin as in the standard Adams formulas;

(ii) Set ¥4 #0, Y4_1 =... =7, =0 to ensure stability at infinity as in the
BDF formulas;
(iii) Determine the remaining k+ 2 coefficients v, B, Bk_1,---s By from

equations (3.4) for ¢=1,2,...,k+2 (¢=0 is satisfied with (i)) to ensure
a reasonably high order.
The result is a class of k-step formulas of order k+2, which are of the form

k

Ynt1 =Y th Eﬂifn+i—k+1 + h27kgn+1 . (3.7)
i=0

The first few of these methods are

2 1
k=1: yn+1=yn+h(3f‘n+1+ zfn ) h9n+1
k=2 Fh(Gafuis = g5facs) — 5 H0
=4 Yptp1 = Yn 28 n+1 287 n—1 3 n+1
307 1 7
=3: h(
F=30 Yngr =vnt 540f"+1+40f 23/ + Togotn-2) (3.7)
19 , ’
- mh In+1
3133 47 41 1
k=4: y,01 =Y, +h(%fn+1 + %'fn - Efn—l + Efn—Z

17 3
- — —p?
57607 "—3> 32" Int1

For a general expression, see Formula (3.12) below and Exercise 1.
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The stability analysis for second derivative methods is again done by
linearizing and leads to

y' =Xy for which " =\2y. (3.8)
This, inserted into (3.3), gives as characteristic equation

k
D (o —uBi—u*)¢ =0, p=h) (3.9)

=0

instead of (1.6). Equation (3.9) is, for {( = €%, a quadratic equation which
gives rise to two root locus curves which, together, describe the stability
domain. The Enright methods (3.7) turn out to be A-stable for k=1 and
2 (hence for p=3 and 4) and are stiffly stable for k=3, 4, 5, 6 and 7. The
corresponding values o (for A(a)-stability), D and the error constants C are
given in Table 3.1. Pictures are shown in Fig. 3.1.

Table 3.1. Stability characteristics and error constants
for Enright methods

E |1 2 3 4 5 6 7

p | 3 4 5 6 7 8 9

a | 90° 90° 87.88° 82.03° 73.10° 59.95° 37.61°
D | o 0. 0.103 0526 1339 2.728 5.182
C | 0.01389 0.00486 0.00236 0.00136 0.00086 0.00059 0.00042

Dense Output for Enright Methods

“Hermite’s formulas are rediscovered and republished
every four years.” (P.J. Davis 1963)

We have seen in Section III.1 that Newton’s interpolation formula, based on
the data z,, ), 2, ,..., 2, 441,
e when integrated from z,, to z,,,, leads to the implicit Adams methods;

o when differentiated at z,,,, leads to the BDF methods.
It is natural to apply the same idea to Hermite interpolation (Addison 1979):
guided by much previous experience (see above) we choose the data points

2,41 (double node), z,, ¢,_,,...,2,_;,, (simple nodes). (3.10)
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Fig.3.1. Stability domains of Enright methods

This gives the following scheme of divided differences

s=1 fi
hfi
=1 h ’_V
s h Vf h=vh b -VH-3Vf
1
s=0 fo 1 V_;& z hf{—v.fl—%;:zfl—%vafl
Vi 2 vszl
=1 £, e
Vi,

s=-2 f_,

where ¢ =z,+sh. For these “confluent” data, Newton’s interpolation formula
becomes

f(z,+sh) = f; + (s—1)hf] + (s—1)*(hf{ -V ;)

hfl —-Vf —1iv2f
+(s-1)%s ——F 2= (3.11)
hfl —Vf —ivzf _1ys
+(s=1)s(s+1) M=V o7 hosVih

We now interpret f as the derivative f(z,y(z)) of the solution, so that f’
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becomes the second derivative. Integrating Formula (3.11) from z,, to z,,,
we obtain

Vif, k k
Ynt1 =Y T hfppi —h Z E —n Z v | + g, (Z Vi) (3.12)
j=1 i=j =0
where

V,-=/01 (3—1)23(s+1)(si!-|-2)...(s+i—2) ds:(_1)"/01(3_1)(1';")(;123)

Table 3.2. Coefficients for Enright methods
j o 1 2 3 4 5 6 7

1 7 17 41 731 8563
24 360 1440 5040 120960 1814400

1
Vj - —3-
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