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Preface 

"Whatever regrets may be, we have done our best." 
(Sir Ernest Shackleton, 

turning back on 9 January 1909 at 88°23' South.) 

Brahms struggled for 20 years to write his first symphony. Compared to 
this, the 10 years we have been working on these two volumes may even 
appear short. 

This second volume treats stiff differential equations and differential alge­
braic equations. It contains three chapters: Chapter IV on one-step (Runge­
Kutta) methods for stiff problems, Chapter Von multistep methods for stiff 
problems, and Chapter VI on singular perturbation and differential-algebraic 
equations. 

Each chapter is divided into sections. Usually the first sections of a 
chapter are of an introductory nature, explain numerical phenomena and 
exhibit numerical results. Investigations of a more theoretieal nature are 
presented in the later sections of each chapter. 

As in Volume I, the formulas, theorems, tables and figures are numbered 
consecutively in each section and indicate, in addition, the section num­
ber. In cross references to other chapters the (latin) chapter number is put 
first. References to the bibliography are again by "author" plus "year" in 
parentheses. The bibliography again contains only those papers which are 
discussed in the text and is in no way meant to be complete. 

It is a pleasure to thank J. Butcher, G. Dahlquist, and S.P. N!1Srsett 
(coauthor of Volume I) for their interest in the subject and for the nwner­
ous discussions we had with them which greatly inspired our work. Special 
thanks go to the participants of our seminar in Geneva, in particular Ch. Lu­
bieh, A. Ostermann and M. Roche, where all the subjects of this book have 
been presented and discussed over the years. Much help in preparing the 
manuscript was given by J. Steinig, Ch. Lubich and A. Ostermann who read 
and re-read the whole text and made innumerable corrections and sugges­
tions for improvement. We express our sincere gratitude to them. Many 
people have seen particular seetions and made invaluable suggestions and 
remarks: M. Crouzeix, P. Deuflhard, K. Gustafsson, G. Hall, W. Hunds­
dorfer, L. Jay, R. JeItsch, J.P. Kauthen, H. Kraaijevanger, R. März, and 
O. Nevanlinna. Finally we thank all those people who helped us to install 
and run our Apollo workstations on which most computations, most figures 
and the text processing were done. Several pictures were produced by our 
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children Klaudia Wanner and Martin Hairer, the one by drawing the other 
by hacking. 

The marveUous, per:fect and never failing TEX program of D. Knuth al­
lowed us to deli ver a camera-ready manuscript to Springer-Verlag, so that the 
book could be produced rapidly and at a reasonable price. We acknowledge 
with pleasure the numerous remarks of the planning and production group 
of Springer-Verlag concerning fonts, style and other questions of elegance. 

March, 1991 The Authors 
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Chapter IV. Stiff Problems - One-Step Methods 

This chapter introduces stiff (styv (Swedish first!), steif (German), stifar 
(Icelandic), stijf (Dutch), raide (French), kankea (Finnish), dgido (Span­
ish), stiff (Italian), merev (Hungarian), rigid (Rumanian), tog (Slovenian), 
cvrst (Serbo-Croatian), tuhy (Czecho-Slovak), sztywny (Polish), stign (Bre­
ton), JlCeCTK~~ (Russian), TBIbPA (Bulgarian), n~'Il)i' (Hebrew), ü\.;:. 

(Arabic), ~~(Urdu), ~ (Persian), cpfOuT (Sanscrit), ~ (Hindi), 

~J'11 (Chinese), 1i.f~\ (Japanese), clldng (Vietnam), ngumu (Swahili) ... ) 
differential equations. While the intuitive meaning of stiff is dear to all 
specialists, much controversy is going on about its correct mathematical 
definition (see e.g. Aiken 1985, p. 360-363). The most pragmatical opinion 
is also historically the first one (Curtiss & Hirschfelder 1952): stiff equations 
are equations where certain implicit methods, in particular BDF, perform 
better, usually tremendously better, than explicit ones. The eigenvalues of 
the J acobian 0 f / oy certainly play a role in this decision, but quantities 
such as the dimension of the system, the smoothness of the solution or the 
integration interval are also important (Sections IV.1 and IV.2). 

Stiff equations require new concepts of stability (A-stability, Section 
IV.3) and lead to mathematical theories on order restrictions (order stars, 
IV.4). Stiff equations require implicit methods; we therefore focus in Sections 
IV.5 and IV.6 on implicit Runge-Kutta methods, in IV.7 on (semi-implicit) 
Rosenbrock methods and in IV.9 on semi-implicit extrapolation methods. 
The actual efficient implementation of implicit Runge-Kutta methods poses 
a number of problems which are discussed in Section IV.8. Section IV.10 
then reports on some numerical experiments for all these methods. 

With Sections IV.lI, IV.12 and IV.13 we begin with the discussion of 
contractivity (B-stability) for linear and nonlinear differential equations. 
The chapter ends with quest ions of existence and numerical stability of the 
implicit Runge-Kutta solutions (Section IV.14) and a convergence theory 
which is independent of the stiffness (B-convergence, Section IV.15). 



IV.l. Examples of Stiff Equations 

" . . . Around 1960, things became completely 
different and everyone became aware that the 
world was fuH of stiff problems ." 

(G. Dahlquist in Aiken 1985) 

Stiff equations are problems for which explicit methods don't work. Curtiss 
& Hirschfelder (1952) explain stiffness on one-dimensional examples such as 

y' = -50(y - cosx) . (1.1) 

1 

implicit 
O~~L-~--------~ __ ~wu~ 

o 1 

Fig. 1.1. Solution curves of 
(1.1) with implicit Euler solution 

o 

/h=1.974/S0 

h=1. 875/50 

1 

Fig. 1.2. Explicit Euler for 
y(O) = 0, h = 1.974/50 and 1.875/50 

Solution curves of Equation (1.1) are shown in Fig.1.1. There is appar­
ently a smooth solution in the vicinity of y ~ cos x and all other solutions 
reach this one after a rapid "transient phase" . Such transients are typical 
of stiff equations, but are neither sufficient nor necessary. For example, the 
solution with initial value y(O) = 1 (more precisely 2500/2501) has no tran­
sient. Fig. 1.2 shows Euler polygons for the initial value y(O) = 0 and step 
sizes h = 1.974/50 (38 steps) and h = 1.875/50 (40 steps). We observe that 
whenever the step size is a little too large (larger than 2/50), the numerical 
solution goes too far beyond the equilibrium and violent oscillations occur. 

Looking for better methods for differential equations such as (1.1), Cur­
tiss and Hirschfelder discovered the BDF method (see Section III.l) : the 
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approximation Y ~ cosa: (i.e., f(z,y) = 0) is only a ci'ude approximation 
to the smooth solution, since the derivative of cos z is not zero. It is much 
better, for a given solution value Yn , to search for a point Yn +1 where the 
slope ofthe vector fidd is directed towards Yn , hence 

Yn +1 - Yn f( ) 
h = zn+1' Yn +1 • (1.2) 

This is the implicit Euler method. The dotted line in Fig.1.1 consists of 
three implicit Euler steps and demonstrates impressively the good stability 
property of this method. Equation (1.1) ia' thus apparently "stifI" in the 
sense of Curtiss and Hirschfelder . 

Extending the above idea "by taking higher order polynomials to fit Y 
at a large number of points" then leads to the BDF methods. 

Chemical Reaction Systems 

When the equations represent the behaviour of a system 
containing a number of fast and slow reactions, a forward 
integration of these equations becomes difficult. 

(H.H. Robertson 1966) 

The following example of Robertson's (1966) has become very popular in 
numerical studies (Willoughby 1974): 

A 0.04 B (slow) ----+ 

B+B S'107 
C+B (very fast) ----+ (1.3) 

B+C 104 
A+C (fast) ----+ 

which leads to the equations 

A: y~ = -0.04Y1 + 104Y2Ys Y1(0) = 1 

B: y' -2- 0.04Y1 - 104Y2Ys -3 .107y~ Y2(0) = 0 

C: y' -s- 3.107y~ ys(O) = O. (1,4) 

After a bad experience with explicit Euler just before, let's try a higher order 
method and a more elaborate code for this example: DOPRI5 (cf. Volume 1). 
The numerical solutions obtained for Y2 with Rtol = 2 . 10-2 (204 steps) as 
weIl as with Rtol = 10-s (203 steps) and Atol = 10-6 • Rtol are displayed in 
Fig.1.3. Fig.1,4 presents the step sizes used by the code and also the local 
error estimates. There, all rejected steps are crossed out. 

We observe that the solution Y2 rapidly reaches a quasi-stationary po­
sition in the vicinity of y~ = 0, which in the beginning (Y1 = 1, Ys = 0) is at 
0.04 ~ 3 .107y~, hence Y2 ~ 3.65.10-5 , and then very slowly goes back to 
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zero again. The numerical method, however, integrates this smooth solution 
by thousands of apparently unnecessary steps. Moreover, the chosen step 
sizes are more or less independent of the chosen tolerance. Hence, they seem 
to be governed by stability rat her than by precision requirements. It can 
also be seen that an implicit Runge-Kutta code (such as RADAU5 described 
in Sections IV.5 and IV.8) integrates this equation without any problem . 

. 000037 12 

Solution DOPRI5: 

-- transient 

.000032 
.0 .1 

-2 
13 steps, Tol=10 

-3 
Rtol=10 

.2 

x 

Fig.1.3. Numerical solution for problem (1.4) with DOPRI5 and RADAU5 

.003 
step sizes h 

~ ~ ~ 
1< 

~ ~~ 
.002 

.:0 .1 .2 

local error estirnates 

.3 

3 
.001 

10-4 

10-3 

10-2 

10-1 ~ \~ 
I 

iA 

~ ~. 

\JfI ~A ~~". x! 1<* ;I: 

10° 
.0 .1 .2 

Fig.1.4. Step sizes and local error estimates of DOPRI5, Tol = 2 . 10-2 

.3 
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Electrical Circuits 

"This behavior is known, at least in part, to any experi­
enced worker in the field." (G. Hall 1985) 

One of the simplest nonlinear equations describing a circuit is Van der Pol's 
equation (see Section 1.16) 

Y~ = Y2 

Y~ = JL(I-ynY2 - Yl 

Yl(O) = 2 

Y2(0) = 0 . 
(1.5) 

We have seen in Chapter II that this equation is easily integrated for mod­
erate values of JL. But we now choose JL = 500 and suspect that the problem 
might become difficult. It turns out that the period of the solution in­
creases with JL. We therefore rescale the solutions and introduce t = x/ JL, 
zl(t) = Yl(x), z2(t) = JLY2(x). In the resulting equation the factor JL2 mul­
tiplies the entire second line of f. Substituting again Y for z, x for t and 
JL2 = 1/ € we obtain 

y~ = Y2 
, 

Yl = Y2 

y~ = JL2((I-yi)Y2 - Yl) 
or 

€y~ = (l-yi)Y2 - Yl . 
(1.5') 

The steady-state approximation (see Vol. I, Formula (1.16.5)) then becomes 
independent of JL. 

Why not try a multistep code this time? For example the predictor­
corrector Adams code DEABM of Shampine & Watts. The results are shown 
in Figures 1.5 and 1.6. The code computes (with Atol=10-7 , Rtol=10-2 ) 

451 steps and stops at x=8.61·10-4 with Idid=-4 ("the problem appears 
to be stiff"). The implicit Runge-Kutta code RADAU5 integrates over the 
same interval in 11 steps. 

Diffusion 

"Stalling numerical processes must be wrong." 
(A "golden rule" of Achi Brandt) 

Another source of stiffness is the translation of diffusion terms by divided 
differences (method of lines, see Section 1.1) into a large system of ODE's. 
We choose the Brusselator (see (16.11) of Section 1.16) in one spatial vari­
able x 

~ ~u 
8t = A + u2v - (B + l)u + (): 8x2 

8v 2 82 v 
- = Bu - u v + (}:--
8t 8x 2 

(1.6) 
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-.5 Y2 

-.6 

-.7 

.000006 

.000004 

.000002 

I 
initial value 

Sol. of DEABM, 451 steps 

\ transient phase --~~~ 

RADAUS, 11 steps 

1.9996 1. 9998 2.0000 

Fig.1.5. Numerical solution for DEABM at equation (1.5), 
Rtol = 10-2 , Atol = 10-7 . 

step size 
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6 
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Yl 

Rtol= 10-2 
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o L-____ ~ __ ~ ____ ~ ____ ~ __ _ 

.0000 .0002 .0004 .0006 .0008 .0000 .0002 .0004 .0006 .0008 

.000006 
order 
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.000004 

.000002 

. 000000 L-__ ~ __ --,--__ ----,-__ ---,_--.J 

.0000 .0002 .0004 .0006 .0008 

Fig.1.6. Step sizes and orders for DEABM, Rtol = 10-2 , 10-6 , Atol = 5 . 10-8 
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with 0:::: x :::: 1, A=l, B=3, 0:=1/50 and boundary conditions 

U(O, t) = u(l, t) = 1, V(O, t) = v(l, t) = 3, 

U(x, 0) = 1 + sin(2'rr:z:), v(x, 0) = 3 . 

We replace the second spatial derivatives by finite differences on a grid of N 
points x i =i/(N+1) (1:::: i:::: N), 6.x=l/(N+ 1) and obtain from (1.6) 

, 2 0: ( 
ui = 1 + uivi - 4ui + (6.x)2 ui_l - 2ui + ui+l) , 

, 2 0: ( ) 
Vi = 3ui - Ui Vi + (6.x )2 Vi_1 - 2vi + Vi+l , 

(1.6') 

Uo(t) = UNH (t) = 1, vo(t) = vNH (t) = 3 , 

Table 1.1. Results for (1.6') with ODEX for 0 < t < 10 

N Tol accepted steps rejected steps function calls 

10 10-4 20 3 358 

20 10-4 84 27 1210 

30 10-4 180 58 2462 

40 10-4 317 108 4415 

40 10-2 268 44 3736 

This time we try the extrapolation code ODEX (see Volume I, p. 440) and 
integrate for 0 S; t S; 10. The number of necessary steps increases curiously 
with N, as is shown in Table 1.1. Again, for N large, the computing time is 
nearly independent of the desired tolerance, the computed sCillutions, how­
ever, differ considerably (see Fig.1.7). Even the smooth 1O-4-solution shows 
curious stripes which are evidently unconnected with the behaviour of the 
solution. Fig. 1.8 shows the extremely ragged step size and order changes 
which take place in this example. 

We again have all the characteristics of a "stiff" problem, and the use of 
an implicit method promises better results. However, when applying such a 
method, one must carefully take advantage of the banded or sparse structure 
of the J acobian matrix. Otherwise the numerical work involved in the linear 
algebra would increase with N3, precisely as the work for the explicit method 
(N2 for the number of steps and N for the work per step). 
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Tol = 0.9 . 10-2 Tol = 1.0 · 10-4 

Fig.1.7. Solution u(:I: , t) of (1.6') with N =40 using ODEX 

.10 
step size 10 order 

.08 
8 

.06 6 

.04 4 

.02 2 

.00 
0 5 10 5 10 

.10 
10 

.08 
8 

.06 6 

.04 4 

.02 2 Tol = 10-' 

0 
5 10 0 5 10 

Fig.1.8. Step size and order of ODEX at (1.6 ') with N =40 
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A "Stift'" Beam 

"Although it is common to talk about "stiff differential 
equations," an equation ~ se is not stiff, a particular ini­
tial value problem for that equation may be stiff, in some 
regions, but the sizes of these regions depend on the initial 
values and the error tolerance." (C.W. Gear 1982) 

Let us conclude our series of exam­
pIes by a problem from mechanics: 
the motion of an elastic beam. We 
suppose the beam inextensible of 
length 1 and thin. So we neglect 
shearing forces and rotatory iner­
tia. We further want to allow it 
arbitrarily large movements. Thus, 
the most natural coordinate system 
to use is the angle B as a function 
of are length sand time t. We fur­
ther suppose the beam clamped at 
s=O and a force F=(F." Fy ) act­
ing at the free end s = 1. The beam 
is then described by the equations 

? 

x(s, t) = 1" cosB(O', t)dO', y(s, t) = 1" sinB(O', t)dO'. (1.7) 

In order to obtain the equations of motion for this problem, we apply La­
gran ge theory (Lagrange 1788). This requires that we form L = T -U where 
T is the kinetic and U the potential energy. For the first of these we have 
simply 

( 1.8) 

The potential energy is made up of energy from bending (depending on the 
curvature) and from exterior forces as follows: 

111 U = - (B'(s, t))2ds - F.,(t)x(l, t) - Fy(t)Y(l, t) . 
2 0 

(1.9) 

Here dots and primes denote derivatives with respect to t and s respectively. 
The equations of motion are now obtained by a "trivial" calculation (we are 
grateful to our colleague J. Descloux for having shown us how this must be 
done!) using the Hamilton principle which leads to (see Exercise 2) 

11 G(s, 0') cos (B(s, t)-B(O', t))Ö(O', t)dO' 
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= 0"(8, t) + COSO(8, t)Fy(t) - sinO(8, t)Fz(t) (1.10) 

-11 G(8, 00) sin (0(8, t)-O(oo, t))(9(oo, t))2doo, 0 ~ 8 ~ 1 

0(0, t) = 0, 0'(1, t) = 0 (1.11 ) 

where 
G(8, 00) = 1 - max(8, 00) (1.12) 

is Green's function for the problem -W"(8) = g(8), w'(O) = w(l) = O. If we 
discretize the integrals with the help of the midpoint rule 

tIn Jo 1(0(00, t))du = - L I(0le)' k = 1, ... ,n 
o n 1e=1 

Equations (1.10) become 
n 

L a,1e81e = n4 (0,_1 - 20, + 0,+1) + n2 (COSOl Fy - sinO, Fz) 
1e=1 

1 = 1, ... ,n 

where 
1 

g,le = n + '2 - max(l, k) . 

(1.13) 

(1.10') 

(1.11 ') 

(1.14) 

"Integration without preparation is frustration." 
(Reverend Leon Sullivan) 

Numerical integration of (1.10') seems quite tedious, since the accelera­
tion 8 is only given implicitly. The computation of Öle requires the solution 
of a linear system AÖ = v. Due to the special structure of A, this can be 
done efficiently, since with B=(b,le ), bllc=g,le sin(O,-0Ie)' we have 

A + iB = diag(ei9t, ... , ei9n ) G diag( e-i91 , ••• , e-i9n ) • 

The matrix G = (g,le) has the beautiful inverse 

( 
1 -1 ) -1 2 -1 

G-1 = -1·.·. 
'. 2 -1 

-1 3 

(1.15) 

(1.16) 
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a positive definite tridiagonal matrix (a natural coincidence: G-1 represents 
the second order difference operator, and G comes from the Green function 
for a second order integration problem). Now 

(A + iB)-1 = C + iD = diag( ei9., ••• , e i9" )G-1 diag( e- i9., ••• , e- i9" ) 

(1.17) 
and 

AC - BD = I, AD + BC = ° (1.18) 

lead to 
A -1 = C + DC-1 D . 

We can also simplify the term - LgZk sin(8z-8k)8~, which in vector notation 
is -B82 , with the formula A -1 B = -DC-1 (from (1.18)). The accelerations 
Bk are now obtained from (1.10') as follows. 

a) Let v/=n4 (8z_1 -28z+8z+1)+n2(cos8ZFy-sin8zFz), 

b) Compute w=Dv+82 (D is bidiagonal)j 
c) Solve the tri diagonal system Cu=w, 
d) Compute B=Cv+Du. 

Thus the evaluation of (1.10') reduces to O( n) operations (instead of O( n3 )). 

We choose the initial conditions 

8(8,0) = 0, 

and apply the exterior forces 

F z = -<p(t), Fy = <p(t), 

8(8,0)=0 

Table 1.2. Results for the hearn (1.10') with DOPRI8 

n Tol accepted steps rejected steps function calls 

5 10-7 180 9 2472 
10 10-7 522 75 7722 
20 10-7 2215 390 33523 
40 10-7 8852 547 121700 

20 10-2 2227 671 37063 
20 10-3 2188 341 32572 
20 10-4 2208 433 33936 

20 10-5 2205 374 33189 
20 10-6 2200 369 33064 
20 10-7 2215 390 33523 

(1.19) 

(1.20) 
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The resulting system of ODE's is then integrated for 0 :::; t :::; 5 by the code 
DOPRI8 of Volume I, although strictly speaking, the code is of too high an 
order for such a problem. The results are summarized in Table 1.2. 

We observe the same phenomenon as before, the number of necessary 
steps increases like O( n 2 ) (the numerical work like O( n 3 )), and is more 
or less independent of the chosen tolerance. The numerical solution for 
n = 40 is displayed in Fig.1.9. Only each 20th of the nearly 9000 steps is 
drawn (otherwise the picture would just be completely black). The computed 
solution looks perfect1y smooth and there is no apparent reason for the need 
of so many steps. In fact due to lack of stability, the numerical method 
produces small vibrations which are invisible for Tol = 10-7 , and which 
force the integrator to such small step sizes. If we relax the high precision 
requirement, these oscillations become visible (Fig.1.10). 

High Oscillations 

Let us now choose slightly perturbed initial values in the beam equation 
(1.10'). Instead of (1.19) we put 

°1 = ... = 0n_l = 0, On = 004, Öl = ... = Ön = 0 . (1.19') 

This time, the correct solution for n = 10 of (1.10') computed with Tol = 10-6 

and more than 2000 steps is displayed in Fig.1.11. 
The solution is highly oscillatory, no damping wipes out the fast vi­

brations since the system is conservative. Hence also an implicit method, 
if required to follow all these oscillations, would need the same number of 
steps and there would of course be no advantage in using it. So we see that 
the decision whether a problem should be regarded as stiff or nonstiff (" ... 
that is the question"), mayaiso depend on the chosen initial conditions. 
On the other hand, we shall see in Section IV.2 that whenever these high 
oscillations are not desired, implicit methods are a marvellous instrument 
for wiping them out. 

Exercises 

1. (Curtiss & Hirschfelder 1952). "It is interesting to notice that this 
method of integration (the implicit Euler) may be used in either direc­
tion". Integrate equation (1.1) backward with step size -0.5 and initial 
value y(1.5) = 0 in three steps. Observe that the numerical solution 
remains stable and follows the smooth solution. 

2. Derive the equations of motion (1.10) for the elastic beam from (1.8) 
and (1.9). 
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Hint. If you want to avoid differentiation in function spaces, then dis­
cretize the beam as, say, 

j 

:Xj = ßs L COS Bk' 
k=l 

j 

Yj = ßs L sinBk , 

k=l 

1 
j = 1, ... , n, ßs = -

n 

j 

Zj = ßs L eifh 

k=l 

(1.21) 

ßs n (Bo-Bo 1) n n 
U = - L J ß J- 2 - F",ßs L cosBk - FyßS L sinBk , 

2 0 s 
J=l k=l k=l 

form the Lagrange function L = T -U and apply n-dimensional Lagrange 
theory (Lagrange (1788), Vol. 11, Sect. VII and VIII, a very clear deriva­
tion can be found in Sommerfeld (1942), Vol. I, §36) 

d (ÖL) öL 
dt öOk - öBk = 0 

or 

(1.22) 

3. Apply an explicit code to the Oregonator (Chapter I, Equation (16.15)) 

Y~ = 77.27(Y2 + Yl(l- 8.375 x 10-6Yl - Y2)) 

y~ = 7/27(Y3 - (1 + Yl)Y2) (1.23) 

y~ = O.161(Y1 - Y3) 

and study its performance. 

4. a) Compute the equations of motion of the hanging rope (Fig. 1.13) of 
length 1 by using the results of Exercise 2. The potential energy has to 
be replaced by 

U = -11 :x(s, t)ds. 

Re/mit. 

11 
G(s, 0') cos(B(s, t)-B(O', t))Ö(O', t)du (1.24) 

= -11 G(s, (7) sin(B(s, t)-B(O', t)) (0(0', t))2dO' - (l-s) sinO(s, t) 
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for 0 ~ 8 ~ 1, or, when discretized 

(1.24') 

b) Do numerical computations with DOPRI5 or DOPRI8. Choose as 
initial position a hanging rope in equilibrium which is then released at 
one end. 

Hint. The hanging rope in equilibrium satisfies, in the usual coordinates, 

with 1:1>1 

yVl + (y')2d:e = min 
:1>0 

which becomes, using a Lagrange multiplier 

r 1 (y _ A)Vl + (y')2d:e = stat, 
1:1>0 

and using (2.6) of Section 1.2, 

y - A = K VI + (y')2, 

to obtain 
y = A + K cosh (:e ; a) . 

Suitable choices of the parameters and change of coordinates (K = 1/2, 
A = -K cosh( a/ K), :e -+ y, Y -+ -:e) then lead to 

0(8,0) = i - arctan(sinh(2a) - 28). (1.25) 

Re8ult. DOPRI8 has computed the solution for 0 ~ t ~ 5, n = 60 and 
Tol = 10-5 , a = 0.6, in 207 steps (Fig.1.12). The number of steps 
increases here like O( n), so the rope is - evidently - less stiff than the 
beam. 

Fig.1.12. Movement of hanging rope, every step drawn 



IV.2. Stability Analysis für Explicit RK Methüds 

". .. werden wir bei dem Anfangswertproblem hyperboli­
scher Gleichungen erkennen, dass die Konvergenz allgemein 
nur dann vorhanden ist, wenn die Verhältnisse der Gitter­
masehen in verschiedenen Richtungen gewissen Ungleichun­
gen genügen." (Courant, Friedrichs & Lewy 1928) 

The first analysis of instability phenomena and step size restrictions for 
hyperbolic equations was made in the famous paper of Courant, Friedrichs 
& Lewy (1928). Later, many authors undertook astabilityanalysis, very 
often independently, in order to explain the phenomena encountered in the 
foregoing section. An early and beautiful paper on this subject is Guillou & 
Lago (1961). 

Stability Analysis for Euler's Method 

Let <p(:z:) be a smooth solution of y' = J(:z:, y). We linearize J in its neigh­
bourhood as follows 

y'(:z:) = J(:z:, <p(:z:)) + :~ (:z:, <p(:z:))(y(:z:) - <p(:z:)) +... (2.1) 

and introduce y(:z:) - <p(:z:) = y(:z:) to obtain 

y'(:z:) = :~ (:z:, <p(:z:)) . y(:z:) + ... = J(:z:)y(:z:) +... (2.2) 

As a first approximation we consider the Jacobian J(:z:) as constant and 
neglect the error terms. Omitting the bars we arrive at 

y' = Jy . (2.2') 

If we now apply, say, Euler's method to (2.2'), we obtain 

Ym+l = R(hJ)Ym (2.3) 

with 
R(z) = 1 + z . (2.4) 

The behaviour of (2.3) is studied by transforming J to Jordan canonical form 
(see Section 1.12). We suppose that J is diagonalizable with eigenvectors 
VI" •• , V .. and write Yo in this basis as .. 

Yo = Laivi' 
i=l 

(2.5) 
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Inserting this into (2.3) we obtain 

n 

Ym = L(R(h.\))mQi . vi , (2.6) 
i=1 

where the .\ are the corresponding eigenvalues (see also Exercises 1 and 2). 
Clearly Ym remains bounded for m ~ 00 if for all eigenvalues the complex 
number z = h.\ lies in the set 

s = {z E Ci IR(z)1 ::; I} = {z E Ci Iz - (-1)1 ::; 1 } 

which is the circle of radius 1 and centre -1. This leads to the explanation 
of the results encountered in Example (1.1). There we have A = -50, and 
hA E S means that 0 ::; h ::; 2/50, in perfect accordance with the numerical 
observations. 

Explicit RK Methods 

An explicit RK method (Section II.2, Formula (2.3)) applied to (2.2') gives 

i-I 

9 · = Y + hJ " a· .g . , m L..J 'J J 
j=1 

s 

Ym+1 = Ym + hJLbj 9j • 
j=1 

Inserting gj repeatedly from the first line, this becomes 

Ym+l = R(hJ)Ym 

where 

j j,k j,k,l 

is a polynomial of degree ::; s. 

(2.7) 

Definition 2.1. The function R(z) is called the stability function of the 
method. It can be interpreted as the numerical solution after one step for 

y' = AY, Yo = 1, z = hA, (2.9) 

the famous Dahlquist test equation. The set 

S = { z E Ci IR( z) 1 ::; 1 } (2.10) 

is called the stability domain of the method. 
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Theorem 2.2. 1/ the RK method is 0/ order p, then 

z2 zP ( P+l) R(z) = 1 + Z + I" + ... + I" + 0 z . 
2. p. 

Proof. The exact solution of (2.9) is eZ and therefore the numerical solution 
Yl = R( z) must satisfy 

eZ _ R(z) = O(hP+l) = O(ZP+l) . (2.11) 

Another argument is that the expressions in (2.8) appear in the order condi­
tions for the "tali" trees T, t21 , t32 , t44 , t59 , ••• (see Table 2.1 of Section 11.2, 
p. 147). They are therefore equal to l/q! for q ::; p. 0 

-3 . 5 

Fig.2.1. Stability domains 
for ERK methods of order p = s 

Fig. 2.2. Stability domains 
for DOPRI methods 

1 

As a consequence, all explicit RK methods with p = s possess the stability 
function 

Z6 

R( z) = 1 + z + .. . + I" . 
s. 

(2.12) 

The corresponding stability domains are represented in Fig. 2.1. 
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The method of Dormand & Prinee DOPRI5 (Seetion 11.4, Table 4.6) is 
of order 5 with s=6 (the 7th stage is for error estimation only). Here R(z) 
is obtained by direct eomputation. The result is 

Z2 Z3 z4 z5 z6 

R( z) = 1 + z + "2 + "6 + 24 + 120 + 600 . (2.13) 

For DOPRI8 (Section 11.6, Table 6.4), R(z) beeomes 

8 . 

'"' z] R(z) = L.J """1 + 0.27521279901 . 10-5 Z9 + 0.24231996586959 . 10-6 z10 

j=O J. 

+ 0.24389718205443 . 10-7 zU - 0.2034615289686 . 10-9 z12 • 

(2.14) 
The stability domains for these two methods are given in Fig.2.2. 

Extrapolation Methods 

The GBS-algorithm (see Section 11.9, Formulas (9.12), (9.13)) applied to 
y'=>'y, y(O)=lleads with z=H>. to 

YO = 1, 
Z 

Y1 = 1 +­
n· ] 

z 
Yi+1 = Yi-1 + 2 - Yi i = 1,2, ... , nj 

nj 

1 
Tj1 = 4(Ynj -1 + 2Ynj + Ynj +1) 

T. k - T. 1 k T· = T· +]' ]- , 
],k+1 ],k (nj/nj_k)2 - 1 . 

(2.15) 

The stability domains for the diagonal terms T22 , T33 , T44 , and T55 for the 
harmonie sequenee 

{nj} = {2,4,6,8,10, ... } 

(the one whieh is used in ODEX) are displayed in Fig.2.3. We have also 
added those for the methods without the smoothing step (II.9.13e), whieh 
shows some differenee for negative real eigenvalues. 
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with smoothing step without smoothing step 

Fig.2.3. Stability domains for GBS extrapolation methods 

Analysis of the Examples of IV.! 

The Jacobian for the Robertson reaction (1.3) is given by 

(
-0.04 104Y3 104 Y2 ) 
0.04 -104Y3 - 6 . 107 Y2 -104Y2 
o 6· 107Y2 0 

which in the neighbourhood of the equilibrium YI = 1, Y2 =0.0000365, Y3 =0 
18 

with eigenvalues 

(
-0.04 0 
0.04 -2190 
o 2190 

0.365 ) 
-0.365 

o 

Al = 0, A2 = -0.405, A3 = -2189.6. 

The third one produces stiffnes8. For stability we need (see the stability 
domain of DOPRI5 in Fig.2.2) -2190h ?:: -3.3, hence h :::; 0.0015. This 
again confirms the numerical observations. 
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The Jaeobian of example (1.6') (Brusselator reaction with diffusion) is a 
large 2N x 2N matrix. It is eomposed of reaction terms and diffusion terms: 

J = ( diag( 2u i vi - 4) diag(un) + _a_ (K KO) 
diag(3 - 2uivi) diag( -un (ilx)2 0 (2.16) 

where 
-2 1 
1 -2 1 

K = 1 (2.17) 

-2 1 
1 -2 

The eigenvalues of K are known (see Section 1.6, Formula (6.7b)), namely 

( 7rk)2 
J.tk = -4 sin 2N + 2 ' (2.18) 

and therefore the double eigenvalues of the right hand matrix in (2.16) are 

4a (. 1f'k)2 (N)2 ( . 1f'k)2 
- (ilx)2 sm 2N + 2 = -4a + 1 sm 2N + 2 (2.19) 

and are loeated between -4a( N + 1)2 and O. Sinee this matrix is symmetrie, 
its eigenvalues are wen eonditioned and the first matrix on the right side of 
(2.16) with much smaller eoefficients ean be regarded as a small perturbation. 
Therefore the eigenvalues of J in (2.16) will remain dose to those of the 
unperturbed matrix and He in a strip neighbouring the interval [-4a( N + 
1)2,0]. Numerieal eomputations for N = 40 show for example that the 
largest negative eigenvalue of J varies between -133.3 and -134.9, while 
the unperturbed value is -4·412 . sin2(401f'/82)/50 = -134.28. Sinee most 
stability domains for ODEX end dose to -5.5 on the real axis (Fig. 2.3), this 
leads for N =40 to h:S; 0.04 and the number of steps must be 2:: 250. 

In order to explain the behaviour of the beam equation, we linearize it 
in the neighbourhood oft he solution (Jk = 0k = 0, F", = F y = O. There (1.10') 
becomes 

-3 1 
1 -2 1 

1 

-2 1 
1 -1 

(J (2.20) 

sinee for 0=0 we have A=G and B=O. We now insert G-1 from (1.16) and 
observe that the matrices involved are, with the exeeption of two elements, 
equal to ±K of (2.17). We therefore approximate (2.20) by 

(2.21) 
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This second order equation was integrated in IV.1 as a first order system 

(2.22) 

By solving 

(2.23) 

we find that A is an eigenvalue of E iff A2 is an eigenvalue of -n4 K2. Thus 
Formula (2.18) shows that the eigenvalues of E are situated on the imaginary 
axis between -4n2 i and +4n2 i. We see from Fig.2.2 that the stability 
domain of DOPRl8 covers the imaginary axis between approximately -4i 
and +4i. Hence for stability we need h:S: 1/n2 and the number of steps for 
the interval 0 :s: t :s: 5 must be larger than ~ 5n2 • This, again, was observed 
in the numerical calculations (Table 1.2). 

Automatie Stiffness Deteetion 

"Neither is perfeet, but even an imperfeet test ean be 
quite useful, as we ean show from experienee ... " 

(L.F. Shampine 1977) 

Explicit codes applied to stiff problems are apparently not very efficient and 
the remaining part of the book will be devoted to the construction of more 
stable algorithms. In order to avoid that an explicit code waste too much 
effort when encountering stiffness (and to enable a switch to a more suitable 
method), it is important that the code be equipped with a cheap means of 
detecting stiffness. The analysis of the preceding subsection demonstrates 
that, whenever a nonstiff code encounters stiffness, the product of the step 
size with the dominant eigenvalue of the J acobian lies near the border of the 
stability domain. We shall show two manners of exploiting this observation 
to detect stiffness. 

Firstly, we adapt the ideas of Shampine & Hiebert (1977) to the Dormand 
& Prince method of order 5(4), given in Table IIA.6. The method possesses 
an error estimator err1 = Yl -rh which, in the nonstiff situation, is O( h5 ). 

However in the stiff case, when the method is working near the border of the 
stability domain S, the distance d1 = Yl -y( Zo + h) to the smooth solution is 
approximately d1 ~ R(hJ)do, where J denotes the Jacobian of the system, 
R( z) is the stability function of the method, and do = Yo-Y( zo). Here we have 
neglected the local error for an initial value on the smooth solution y( z). A 

similar formula, with R replaced by R, holds for the embedded method. The 
error estimator satisfies err1 ~E(hJ)do with E(z) =R(z)-R(z). The idea is 
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now to search for a second error estimator err1 (with err1 ~E(hJ)do) such 
that 

i) IE(z)1 ::; 9IE(z)1 on as n c- with a small 9 < 1; 
ii) err1 =O(h2 ) for h -+ O. 

Condition (i) implies that 11 err111 < II err111 when h>' is near as (the problem 
is possibly stiff), and condition (ii) will lead to II err111 ~ 11 err11l for step sizes 
which are determined by accuracy requirements (when the problem is not 
stiff). If II err11l < 11 err11l occurs several times in succession (say 15 times) 
then a stiff code might be more efficient. 

For the construction of err1 we put 

err1 = h( d1 k1 + d2 k2 + ... + dsk.) 

where the ki = I(:co +cih, gi) are the available function values of the method. 
The coefficients di are determined in such a way that 

(2.24) 
i=l i=l 

(so that (ii) holds) and that 9 in (i) is minimized. A computer search gave 
values which have been rounded to 

d1 = -2.134, d2 = 2.2, d3 = -0.24, d4 = 0.13, d5 = 0.144, d6 = -0.1 . 
(2.25) 

The factor 0.02 in (2.24) has been chosen such that 9 in (i) is dose to 0.3 on 
large parts of the border of S, but IE(z)/ E(z)1 soon becomes larger than 1 
if z approaches the origin. 

In Fig.2.4 we present the contour lines IE( z) / E( z)l = Const (Const = 
4,2,1,0.5,0.25,0.166,0.125) together with the stability domain of the meth­
od. A numerical experiment is illustrated in Fig.2.5. We applied the code 
DOPRI5 (see the Appendix to Volume I) to the Van der Pol equation (1.5') 
with e = 0.003. The upper picture shows the first component of the solution, 
the second picture displays the quotient 11 err11l / 11 err11l for the three toler­
ances Tol = 10-3 ,10-5,10-7 • The last picture is a plot of hl>'I/3.3 where h 
is the current step size and >. the dominant eigenvalue of the Jacobian and 
3.3 is the approximate distance of as to the origin. 

A second possibility for detecting stiffness is to estimate direct1y the 
dominant eigenvalue of the Jacobian of the problem. If v denotes an approx­
imation to the corresponding eigenvector with IIvll sufficiently small then, 
by the mean value theorem, 

1>'1 'V 11/(:c, y + v) - I(:c, y)1I 
'V Ilvll 

will be a good approximation to the leading eigenvalue. For the Dormand 
& Prince method (Table 11.4.6) we have c6 = c7 = 1. Therefore, a natural 
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Fig.2.4. Contour lines of E(z)jE(z) 

choice is 

(2.26) 

where k i = f(:l: o + cih, 9i) are the function values of the current step. Both 
values, 97 = Yl and 96' approximate the exact solution Y{:l:o + h) and it can 
be shown by Taylor expansion that 97 - 96 = O( h4 ). This difference is thus 
sufficiently small, in general. The same argument also shows that 97 - 96 = 

E(hJ)do' where J is the Jacobian of the linearized differential equation and 
E( z) is a polynomial with subdegree 4. Hence, 97 - 96 is essentially the 
vector obtained by 4 iterations of the power method applied to the matrix 
hJ. It will be a good approximation to the eigenvector corresponding to 
the leading eigenvalue. As in the above numerical experiment we applied 
the code DOPRI5 to the Van der Pol equation (1.5') with e; = 0.003. Fig.2.6 
presents a plot of he/3.3 where his the current step size and e the estimate 
(2.26). This is in perfect agreement with the exact values hIAI/3.3 (see third 
picture of Fig. 2.5). 

Further numerical examples have shown that the estimate (2.26) also 
gives satisfactory approximations of lAI when the dominant eigenvalue A is 
complex. However, if the argument of A is needed too, one can extend the 
power method as proposed by Wilkinson (1965, page 579). This has been 
elaborated by Sottas (1984) and Robertson (1987). 

The two techniques above allow us to detect the regions where the step 
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L-______________ ~ ________________ ~ ____________ ~ 

Fig.2.5. Stiffness detection with DOPRI5 

TOL=1.E-3 
10-2 

~--------------~----------------~------------~ 

Fig.2.6. Estimation of Lipschitz constant with DOPRI5 

size is restricted by stability. In order to decide whether a stiff integrator will 
be more efficient, one has to compare the expense of both methods. Studies 
on this question have been undertaken in Petzold (1983), Sottas (1984) and 
Butcher (1990). 
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Step-Control Stability 

We now come to the explanation of another phenomenon encountered in 
Section IV.l, that of the ragged behaviour of the step size (e.g. Fig. 104 or 
1.8), a research initiated by G. Hall (1985/86) and continued by G. Hall & 
D.J. Higham (1988). Do there exist methods or stift" equations for which the 
step sizes hn behave smoothly and no frequent step rejections appear? 

We make a numerical study on the equation 

y~ = - 2000 ( cosa:· Y 1 + sin z . Y2 + 1) 

y~ = -2000 (- sin z . Yl + COS z . Y2 + 1) 

Yl(O) = 1 

Y2(0) = 0 
(2.27) 

for 0 ~ z ~ 1.57, whose eigenvalues move slowly on a large cirele from -2000 
to ±2000i. If we apply Fehlberg's method RKF2(3) (Table 404 of Volume 
I, Section HA) and DOPRI5 to this equation (with Euclidean error norm 
without scaling), we obtain the step size behaviour presented in Fig. 2.7. 
There all rejected steps are crossed out. 

r~n, :' ::I,,;I:!I:. 
I : I. : 11 i I j : '. I , I· ,1. 1; , ,'t. 11 ~ 'Ii, I' • 

I I .'ljI"" 

h 

.0010 L--------~ 

RKF2(3) 
x .0005 L-______________ __________ __ ______________ 

.5 .5 

.0020 

.0015 

1.5 

Fig.2.7. Step sizes of RKF2(3) and DOPRI5 for (2.27) 

In order to explain this behaviour, we consider for y' = >'Y (of course!) 
the numerical process 

(2.28) 
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(where errn is the estimated error, E(z) = R(z) - R(z), a = 1/(p+1) and 
pis the order of R) as a dynamical system whose fixed points and stability 
we have to study. A possible safety factor ("fae" of formula (4.7') of Section 
11.4) can easily be incorporated into Tol and does not affect the theory. The 
analysis simplifies if we introduce logarithms 

1]n = log IYnl, 
so that (2.28) becomes 

Xn = loghn 

1]n+1 = log IR( eX " 'x)1 + 1]n , 

Xn+l = a( 'Y -log IE(e X",X)I-1]n) + Xn , 

(2.29) 

(2.30) 

where 'Y is a constant. This is now a map R2 ---t 1112. Its fixed point (1], X) 
satisfies 

IR(ex,X)1 = 1 ) (2.31 ) 

which determines the step size eX so that the point z = eX A must be on the 
border of the stability domain. Further 

1] = 'Y -log IE(z)1 

determines 1]. Now the Jacobian ofthe map (2.30) at this fixed point becomes 

u = Re (R'(z) . z) 
R(z) 

V=Re(~((:j .z). 
(2.32) 

Proposition 2.3. The atep-eontrol meehaniam ia atable for hA = z on the 
boundary of the atability domain if and only if the apeetral radius of C in 
(2.32) aatiajiea 

e(C) < 1. 

We then eall the method SC -atable at z. o 

The matrix C is independent of the given differential equation and of 
the given tolerance. It is therefore a characteristic of the numerical method 
and the boundary of its stability domain. 

We study the following methods of Section 11.4: 
a) RKF2(3) (Table 4.4), a = 1/3: 

Z2 z3 

R(z) = 1 + z + '2' E(z) ="6 . 
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b) RKF2(3)B (also Table 4.4), a = 1/3: 
Z2 117z3 Z3 3z4 

R(z) = 1 + z + "2 + 704 ' E(z) = 2112 - 1408 . 

e) RKF4(5) (Table 4.5), a = 1/5: 
z2 z3 z4 z5 z5 z6 

R(z) = 1 + z + "2 + 6 + 24 + 104' E(z) = 780 - 2080' (2.33) 

d) DOPRI5 (Table 4.6), a = 1/5: 

97 5 13 6 1 7 
R(z) = see (2.13), E(z) = 120000 z - 40000 z + 24000z (2.34) 

e) RKF5(4) (Fehlberg 5(4) with loeal extrapolation), a = 1/5: 
Z2 z3 z4 z5 z6 

R(z) = 1 + z + "2 + 6 + 24 + 120 + 2080' E(z) same as (2.33). 

f) HIHA5 (Method of Higham & Hall, see Table 2.1 below), a = 1/5: 
z2 z3 z4 z5 z6 

R(z) = 1 + z +"2 + 6 + 24 + 120 + 1440 ' 

1 5 1 6 1 7 

E(z) = -1200 z + 2400 z + 14400z 

g) DOPRI8 (Section 11.6, Table 6.4), a = 1/8: 

R(z) as in (2.14) , 

E(z) = 2.4266659177.10-7 Z8 - 1.710684228 . 10-7 z9 

+3.74237264635 .1O-8 z1o - 1.343923571.1O-8z11 

+1.0131679346.10- 10 Z12 

The eorresponding stability domains are represented in Fig. 2.8. There, 
the regions of the boundary, for whieh u( C) < 1 is satisfied, are represented 
as thick lines. It ean be observed that the phenomena of Fig. 2.7, as weIl as 
those of Section IV.l, are nieely verified. 

SC-Stahle Dormand and Prince Pairs 

Among the methods studied in the foregoing subsection, only the eases 
RKF2(3) and RKF5( 4) (Fehlberg in loeal extrapolation mode) are SC-stable 
in the vicinity of the negative real axis. We are therefore interested in find­
ing 5( 4)-th order ERK pairs from the family of Dormand & Prinee (1980) 
with larger regions of SC -stability, a research undertaken by D.J. Higham 
& G. Hall (1990). 

The Dormand & Prinee methods are eonstructed very similarly to the 
proeedure deseribed in Theorem 6.2 of Section 11.6. The only differenee is 
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"-+~V---RKF2 (3) B 

-5 1 

Fig.2.8. Regions of step-control stability 

that Formula (11.6.13) (or equivalently (11.6.11)) is replaced by the additional 
simplifying assumptions 

6 3 

Laijc; = i 
j=l 

i = 3, ... ,6. (2.35) 

This condition, for i = 3, divided by (11.6.7) with i = 3, simply means that 
c2 = 2c3 /3. We then suppose that Equation (11.6.6) is satisfied for j = 2, 5,6, 
i.e. that 

Then 

$ 

dj := L biaij - bj (l - Cj) = 0 
i=j+l 

j = 2,5,6. 

( ;; ;: ~) (;:) = (~::l,;~,) = (~) 
Cl c3 C4 4 L:j=l cjdj 

(2.36) 

because of (11.6.7), (2.35) and the quadrat ure conditions (11.6.9). Therefore, 
if c3 :f:- c4 and both are :f:- 0, the conditions (11.6.6) are satisfied for j = 1,3, 
and 4. The Dormand & Prince pairs are then obtained as follows: 
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1. choose cs, C4 , Cs as free parameters; 

c2 = 2cs /3, c6 = 1 ((2.36), j = 6), cl = 0 ; 

2. put b2 = 0, b7 = 0, and compute bl , bs' b4 , bs , b6 from the linear system 
(II.6.9); put a7i = bi for i = 1, ... 6. 

3. put a32 =cV(2. c2) ((11.6.7), i=3); solve the linear system 

((II.6.7) and (2.35), i = 4); 

4. put a6s =bs(1- cS)/b6 ((2.36) for j=5)j solve the linear system 

((11.6.12,12') )j 

The continuous extension is obtained as in (11.5.1) for the trees 'T, t 21 , 

t 31 , t41 of Table II.2.1, from b2(0)=0 and from L:ibi(0)ai2 =0 (see (2.36) 
for j =2). This gives the linear system 

1 1 1 1 1 bl (0) 0 

0 Cs c4 Cs c6 bs(O) 02/2 

0 c2 s c2 
4 c2 

S c2 
6 b4( 0) = 03/3 (2.37) 

0 cS 
3 cS 

4 c3 
S c3 

6 bs( 0) 04/4 

0 a32 a42 aS2 a62 b6( 0) 0 

and implies order 4 because of the simplifying assumptions (11.6.7) and 
(2.35). Last not least, using a similar argument, the embedded 4th-order 
error estimator is obtained by fixing an arbitrary b7 i= 0, putting b2 = 0, and 

solving for (bllb3,b4,bs,b6V a linear system with the same matrix as for 
(2.37), with right-hand side 

(1 - b7 , 1/2 - b7 , 1/3 - b7 , 1/4 - b7 ,0)T . (2.38) 

Higham and Hall have made an extensive computer search for good 
choices of the parameters C3' C4 and Cs in order to have a reasonable size of 
the stability domain, large parts of SC-stability and a small 6th order error 



IV.2. Stability Analysis for Explicit RK Methods 31 

Table 2.1. Method HIHA5 of Higham and Hall 

0 

2 2 
9 9 
1 1 1 
3 12 4 
1 1 

0 
3 

2 8 8 
3 91 27 78 8 
5 500 100 125 125 

11 27 12 36 
5 1 

20 20 5 5 
1 

0 
27 4 125 5 

1 
3 12 32 96 48 

bi 
1 

0 
27 4 125 5 

0 
12 32 3 96 48 

bi 
2 

0 
27 2 25 1 1 

15 80 15 48 24 10 
1 

0 
81 6 25 1 1 

ei 
20 160 5 32 16 10 

b1(8)=8_ 15 82 + 1683_~84 b4 (8) = -2282 + 152 83 - 3084 
3 4 3 2 

b (8) = 357 82 _ 6258s 125 84 b2(8)=0 s 32 24 + 8 

b3(8) = 459 82 _ 243 83 + 135 84 5 2 5 s 
b6(8) = --8 +-8 32 8 8 16 12 

constant. It turned out that the larger one wants the region of SG-stability, 
the larger the error constant becomes. A compromise choice between Scylla 
and Charybdis, which in addition yields nice rational coefficients, is given 
by Cs = 1/3, c4 = 1/2 and Cs = 3/5. This then leads to the method of Table 
2.1 which has satisfadory stability properties as can be seen from Fig. 2.8. 

A PI Step Size Control 

"We saw that it was an I-controler ... and a control­
man knows that PI is always better than I ... " 

(K. Gustafsson, June 1990) 

In 1986/87 two students of control theory attended a course of numerical 
analysis at the University of Lund. The outcome of this contact was the idea 
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to resolve the above instability phenomena in stiff computations by using 
the concept of "PID control" (Gustafsson, Lundh & Söderlind 1988). The 
motivation for PID control, a classic in control theory (Callender, Hartree 
& Porter 1936) is as follows: 

Suppose we have a continuous-time control problem where O(t) is the 
departure, at time t, of a quantity to be controlled from its normal value. 
Then one might suppose that 

8(t) = O(t) - mO(t) (2.39) 

where O(t) denotes the effect of the control and the term -mO(t) represents 
a self-regulating effect such as "a vessel in a constant temperature bath". 
The most simple assumption for the control would be 

(2.40) 

which represents, say, a valve opened or closed in dependence of O. The 
equations (2.39) and (2.40) together lead to 

(2.41) 

which, for n 1 > 0, m > 0, is always stable. If, however, we assume (more 
realistically) that our system has some time-lag, we must replace (2.40) by 

(2.40') 

and the stability of the process may be destroyed. This is precisely the same 
effect as the instability of Equation (15.6) of Section H.15 and is discussed 
similarly. In order to preserve stability, one might replace (2.40') by 

-O(t) = n10(t-T) + n2 8(t-T) (2.40") 

or even by 

(2.40"') 

Here, the first term on the right hand side represents the "Integral feedback" 
(I), the second term "Proportional feedback" (P) and the last term is the 
"Derivative feedback" (D). The P-term especiaHy increases the constant m 
in (2.41), thus adds eztra friction to the equation. It is thus natural to expect 
that the system becomes more stable. The precise tuning of the parameters 
n 1 , n2 , n s is, however, a long task of analytic study and practical experience. 

In order to adapt the continuous-time model (2.40") to our situation, we 
replace 

O(t) +----? log hn (the "control variable") 

O( t) +----? log I err nl - log Tol (the "deviation") 

and replace derivatives in t by differences. Then the formula (see (2.28)) 

( Tol ) nl 

hn +1 = hn · lerrnl ' 
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which is 
-(logh"'+1-logh",) = n1(log lerr",I-Iog Tol) , 

corresponds to (2.40'). The P I-control (2.40") would read 

-(log h"'+1 -log h",) = n 1 (log lerr ",I-log Tol) 

+ n 2 ((log lerr ",I-log Tol) - (log lerr"'_11-log Tol)) , 

or when resolved, 

(2.42) 

In order to perform a theoretical analysis of this new algorithm we again 
choose the problem y' = >.y and have as in (2.28) 

y",+1 = R(h",>')y", 

err", = E(h",>')Y", 

h _ h . (~)"'l (lerr"'_11)"'2 
"'+1 - '" I err", I I err", I 

= h (~)a (lerr"'_11)ß 
'" lerr ",I Tol 

(2.43a) 

(2.43b) 

(2.43c) 

where 0=n1 +n2, ß=n2. With the notation (2.29) this process becomes 

17",+1 = log IR(eX" >')1 + 17", 

X"'+1 = X'" - 0 log IE( eX" >') I - 017", + ß log IE( eX"-l >') I + ß17"'-1 + 'Y 
(2.44) 

with some constant 'Y. This can be considered as a map (17"" X"" 17",-1 , X"'-1) 
-+ (77"'+llX"'+ll77n ,Xn ). At a fixed point (77,X), which again satisn.es (2.31), 
the Jacobian is given by 

(2.45) 

with u and v as in (2.32). A numerical study of the spectral radius e( 0) 
with 0 = 1/ P (where p is the exponent of h of the leading term in the error 
estimator), ß = 0.08 along the boundary of the stability domains of the above 
RK-methods shows an impressive improvement (see Fig. 2.9) as compared to 
the standard algorithm of Fig. 2.8. Exercise 8 below shows that an increasing 
ß, for ß small, increases the stability of the system (2.43). 

The step size behaviour of DOPRI5 with the new strategy (ß = 0.13) 
applied to the problem (1.6') is compared in Fig. 2.10 to the undamped step 
size control (ß = 0). The improvement needs no comment. In order to make 
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Fig.2.9. Regions of step-control stability with stabilization factor ß = 0.08 

the difference clearly visible, we have chosen an extra-Iarge tolerance Tol = 
8.10-2 • With ß=O.13 the numerical solution becomes smooth in the time­
direction. The zig-zag error in the :z:-direction represents the eigenvector 
corresponding to the largest eigenvalue of the Jacobian and its magnitude is 
below Tol. 

"Man sieht dass selbst der frömmste Mann 
nicht allen Leuten gefallen kann". 

(W. Busch, Kritik des Herzens 1874) 

Study for small h. For the non-stiff case the new step size strategy may be 
slightly less efficient. In order to understand this, we assume that lerrnl ~ 
C h~ so that (2.43c) becomes 

(2.46) 

or, by taking logarithms, 

( Tol) 10ghnH + (pa-I) log hn - pßloghn _ 1 = (a-ß)log C 
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without stabilisation (ß=O) with stabilisation (ß=O.13) 
291 steps, 212 accepted, 79 rejected 165 steps, 165 accepted, 0 rejected 

Fig.2.10. Numerical solution of (1.6') with Tol = 8 . 10-2 

This is a linear difference equation with characteristic equation 

A2 + (pa-l)A - pß = 0, (2.47) 

the roots of which govern the response of the system to variations in C. 
Obviously, the choice a = l/p and ß = 0 would be most perfect by making 
both roots equal to zero; but this is just the classical step size control. We 
therefore have to compromise by choosing a and ß such that (2.45) remains 
stable for large parts of the stability boundary and at the same time keeping 
the roots of (2.47) significantly smaller than one. A fairly good choice, found 
by Gustafsson (1990) after some numerical computations, is 

0.7 
a~- , 

p 
ß ~ 0.4 . 

p 
(2.48) 
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Exercises 

1. Prove that Runge-Kutta methods are invariant under linear transfor­
mations y = Tz (i.e., if one applies the method to y' = /(x, y) and to 
z' = ']'-1/(x, Tz) with initial values satisfying Yo = Tzo' then we have 
Yl =Tz1 )· 

2. Consider the differential equation y' = Ay and a numerical solution given 
by Yn+1 =R(hA)Yn' Suppose that R(z) satisfies 

IR(z)1 :::; 1 for Re z:::; o. 
(i.e., it is A-stable) and show that 

a) if y' = Ay is stable, then {Yn} is boundedj 

b) if y' = Ay is asymptotically stable, then Yn -+ 0 for n -+ 00. 

Hint. Transform A to Jordan canonical form. 

3. (Optimal stability functions for parabolic problems, Guillou & Lago 
1961). 

a) For given m, find a polynomial Rm(z) = 1 + z + ... of degree m such 
that the stability domain on the negative axis is as large as possible. 

Result. The answer is Rm(z) = Tm(l + z/m2), the shifted and scaled 
Tchebychef (Chebyshev) polynomial (Tchebychef 1859). In particular 

R1 (z) = 1 + z 
1 

R2(z)=1+z+-z2 
8 
4 4 

R3(z) = 1 + z + _Z2 + _Z3 
27 729 
511 

R4(z) = 1 + z + 32 z2 + 128 z3 + 8192z4. 

Rm(z) is stable for -2m2 :::; z :::; 0 (see Fig.2.11). 

b) Plot the stability domains of the "damped" functions 

(2.49) 

e Tm(wO} 

Wo = 1 + m 2 ' wt = T:r,(wo) 

for small e > 0, say e = 0.05. 
Rm(z) =1+z+0(z2). 

(2.50) 
Prove that these functions again satisfy 

Remark. Runge-Kutta methods with (2.50) as stability function have 
been developed by Van der Houwen & Sommeijer (1980). For fur­
ther properties of these methods see Verwer, Hundsdorfer & Sommeijer 
(1990). 
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2 

Fig.2.11. Stability domains for Tchebychef-approximations (m=2,3,4) 

4. (Optimal stability for hyperbolic problems, Van der Houwen (1968), 
(1977), p.99): Given m, find a polynomial Rm(z) = 1 + z + ... of degree 
m + 1 such that IR(iy)1 ::; 1 for -ß ::; y ::; ß with ß as large as possible. 

Re8ult. The solution (Sonneveld & van Leer 1985) is given by 

z 
(= -

m 
(2.51 ) 

where Vm() =imTm(/i} are the Tchebychef polynomials with positive 
coefficients. R m (iy) is stable for -m ::; y ::; m. The first Rm are (see 
Abramowitz & Stegun, p. 795) 

(=~ 
m 

R2(z) = 1 + 2( + 2(2 + 2C 

R3 (z) = 1 + 3( + 5(2 + 4(3 + 4(4 (2.52) 

R4(z) = 1 + 4( + 8(2 + 12(3 + 8(4 + 8(5 

R 5 (z) = 1 + 5( + 13(2 + 20(3 + 28(4 + 16(5 + 16(6. 

As Tchebychef polynomials, they satisfy the recurrence relation R m+1 = 
2(Rm+Rm_1(m2:2). Their stability domains are given in Fig. 2.12. 

5. Linearize the rope equation (1.24) in the neighbourhood of (J = 8 = 0 and 
make astabilityanalysis. Apply to the linearized equation the coordinate 
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- 2 

Fig.2.12. Stability domains ror hyperbolic approximations 

transformation 

1 
-1 1 .} 

which should lead to Lagrange's equation (6.2) of Chapter 1. 

6. Fig.2.13 shows the numerical results of the classical 4th order Runge­
Kutta method with equidistant steps over 0 :s t :s 5 for the beam pro­
blem (1.7)-(1.20) with n=8. Explain the result with the help of Fig. 2.1. 

7. For the example of Exercise 6, the explicit Euler method, although con­
verging for h-tO, is never stable (see Fig.2.14). Why? 

8. Let A be an eigenvalue of the two-dimensionalleft upper submatrix of 
C in (2.45) (matrix C of (2.32)) and denote its analytic continuation as 
eigenvalue of C by A(ß). Prove that 

a) If ReA;fO, then for some y E R 

A(ß) = A' (1-~ (l-ReA) + ißy + O(ß2)) 

This shows that IA(ß)I < lAI for small ß> 0 if Re A < 1. 

b) If A and J-L are two distinct real eigenvalues of the above mentioned 
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421 steps 425 steps 430 steps 

Fig.2.13. Equidistant RK4 on the beam problem 

h=5/20000 h=5/28000 h=5/36000 

Fig.2.14. Explicit Euler on the beam problem (every 50th step drawn) 

submatrix, then 

,x(ß) = ,x. (1-~ (1_.!.)2_1_ + O(ß2)) 
0: ,x ,x-J.L 

Hint. Write the characteristic polynomial of 8 in the form 

det(,\J -8) = ,x(,xp(,x) + ßq(,x)) , 

where p(,x) = det(,\J - C) is the characteristic polynomial of C, and 
differentiate with respect to ß. 
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I didn't like all these "strong", "perfect" , "absolute", "gen­
eralized", "super", "hyper", "complete" and so on in ma­
thematical definitions, Iwanted something neutral; and 
having been impressed by David Young's "property A", I 
chose the term "A-stable". (G. Dahlquist in 1979) 

"There are at least two ways to combat stiffness. One is 
to design a better computer, the other, to design a better 
algorithm." (H. Lomax in Aiken 1985) 

Methods are called A-stable if there are no stability restrictions for y' = AY, 
Re A < 0 and h > o. This concept was introduced by Dahlquist (1963) for 
linear multistep methods, but also applied to Runge-Kutta processes. The 
first observation was that explicit methods were apparently not A-stable. 
Ehle (1968) and Axelsson (1969) then independently investigated the A­
stability of IRK methods and proposed new classes of A-stable methods. A 
nice paper of Wright (1970) studied coHocation methods. 

The Stability Function 

We start with the implicit Euler method. This method, Yl =Yo+hf(xu Yl)' 
applied to Dahlquist's equation y' = AY becomes Yl = Yo + h>"Yl which, after 
solving for Yl' gives 

Yl = R(hA)Yo with R(z) = _1_ . 
1-z 

This time, the stability domain is the exterior of the circle with radius 1 and 
centre +1. The stability domain thus covers the entire negative half-plane 
and a large part of the positive half-plane as weH. The implicit Euler method 
is thus very stable. 

Proposition 3.1. The &-stage IRK method 
& 

gi = Yo + h 2: ai)(xO + cjh, gj) 
j=l 

Yl = Yo + h 2: bjf(xo + cjh, gj) 
j=l 

applied to y' = AY yields Yl = R( hA )Yo with 

R(z) = 1 + zbT(I - zA)-ll1 . 

i = 1, ... ,s (3.1a) 

(3.1b) 

(3.2) 
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He re 

Remark. In accordance with Definition 2.1, R(z) is called the stability func­
tion of Method (3.1). 

Proof. Equation (3.1a) with f(x, y)=>'y, z=h>. becomes a linear system for 
the computation of 91 , ... ,9 s' Solving this and inserting into (3.1 b) leads to 
(3.2). 0 

Another useful formula for R(z) is the following (Stetter 1973, Scherer 
1979): 

Proposition 3.2. The stability function of (3.1) satisfies 

R(z) = det (I - zA + zl1bT) 
det (I - zA) 

Proof. Applying (3.1) to (2.9) yields the linear system 

(I_~;: ~) (~) = yo (~) . 

(3.3) 

Cramer's rule (Cramer 1750) implies that the denominator of R( z) is det (I­
zA), and its numerator 

det (I - zA 11) = det (I - zA + zl1bT 01 ) = det (I _ zA + zl1bT ) . 
-zbT 1 -zbT 

o 

The stability functions for the methods of Section 11.7 are presented in 
Table 3.1. The corresponding stability domains are given in Fig.3.1. 

We see that for implicit methods R( z) becomes a rational function with 
numerator and denominator of degree :S s. We write 

P(z) 
R(z) = Q(z) , degP = k, degQ =j . (3.4) 

If the method is of order p, then 

eZ - R(z) = Czp+1 + O{zp+2) for z --t 0 (3.5) 

(see Theorem 2.2). The constant C is usually ,; O. If not, we increase p in 
(3.5) until C becomes ,; O. We then called R( z) a rational approximation to 
eZ of order p and C its error constant. 
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Table 3.1. Stability functions for IRK of Section 11.7 

Method R{z) 

a) implicit Euler (7.3) 
1 

l-z 

b) implicit midpoint (7.4) 
1 + z/2 
1 - z/2 

c) trapezoidal rule (7.5) 
1 + z/2 
1- z/2 

d) Hammer-Hollingsworth (7.6) 
1 + 4z/6 + z2/6 

1- z/3 

e) SDffiK order 3 (Table 7.2) 
1 + z{1 - 2,,) + z2(1/2 - 2" + ,,2) 

(1 - "z)2 

f) Hammer-Hollingsw. 4 (Table 7.3) 
1 + z/2 + z2/12 

1 - z/2 + z2/12 

g) Kuntzm.-Butcher 6 (Table 7.4) 
1 + z/2 + z2/10 + z3/120 

1 - z/2 + z2/10 - z3/120 

h) Butcher's Lobatto 4 (Table 7.6) 
1 + 3z/4 + z2/4 + z3/24 

1- z/4 

i) Butcher's Lobatto 6 (Table 7.6) 
1 + 2z/3 + z2/5 + z3/30 + z4/360 

1 - z/3 + z2/30 

j) Radau IIA, order 5 (Table 7.7) 
1+2z/5+z2 /20 

1 - 3z/5 + 3z2/20 - z3/60 

k) Lobatto lIlA, order 4 (Table 7.7) 
1 + z/2 + z2/12 

1 - z/2 + z2/12 

A-Stability 

We observe that some methods are stable on the entire left half-plane C-. 
This is preeisely the set of eigenvalues, where the ezact solution of (2.9) is 
stable too (Section 1.13, Theorem 13.1). A desirable property for a numerical 
method is that it preserves this stability property: 
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Fig 3.1. Stability domains for IRK 

Definition 3.3 (Dahlquist 1963). A method whose stability domain satisfies 

S ~ c- = {z; Rez::; O} 

is called A-stable. 

A Runge-Kutta method with (3.4) as stability function is A-stable if and 
only if 

IR(iy)1 ::; 1 for a11 real y (3.6) 

and 
R( z) is analytic for Re z < 0 (3.7) 

This follows from the maximum principle applied to C -. By a slight abuse 
of language, we also call R( z) A-stable in this case (many authors use the 
notation "A-acceptable" in order to distinguish the method from its stability 
function, EWe (1968)). 

The condition (3.6) alone means stability on the imaginary axis and may 
be called I -stability. It is equivalent to the fact that the polynomial 

E(y) = IQ(iy)1 2 -IP(iy)12 = Q(iy)Q( -iy) - P(iy)P( -iy) (3.8) 

satisfies 
E(y) ~ 0 for all y ER . (3.9) 
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Proposition 3.4. E(y), defined by (3.8), is an even polynomial 0/ degree 
~ 2 max(deg P, degQ). I/R(z) is an approzimation %rderp, then 

E(y) = O(yp+l) /or y --+ 0 . 

Proof. Taking absolute values in (3.5) gives 

lezl- IP(z)1 = O(zP+l) 
IQ(z)1 . 

Putting z = iy and using leiY 1= 1 leads to 

IQ(iy)I-IP(iy)1 = O(yp+l) . 

The result now follows from 

E(y) = (IQ(iy)1 + IP(iy)I)(IQ(iy)I-IP(iy)1) . 
o 

Examples 3.5. For the implicit midpoint rule, the trapezoidal rule, the 
Hammer & Hollingsworth, the Kuntzmann & Butcher and Lobatto lIlA 
methods (b, c, f, g, k of Table 3.1) we have E(y) == 0 since Q(z) = P( -z). 
This also follows from Proposition 3.4 because p = 2j. A straightforward 
computation shows that (3.7) is satisfied, hence these methods are A-stable. 

For methods d, h, i of Table 3.1 we have deg P > deg Q and the leading 
coefficient of E is negative. Therefore (3.9) cannot be true for y --+ 00 and 
these methods are not A-stable. 

For the Radau HA method of order 5 (case j) we obtain E(y) = y6 /3600 
and by inspection of the zeros of Q( z) the method is seen to be A-stable. 

For the two-stage SDIRK method (case e) E(y) becomes 

(3.10) 

Thus the method is A-stable for 'Y ~ i. The 3rd order method is A-stable 
for 'Y=(3+J3')/6, but not for 'Y=(3-J3')/6. 

The following general result explains the I-stability properties of the 
foregoing examples. 

Proposition 3.6. A rational function (3.4) 0/ order p~ 2j-2 is I·stable if 
and only if IR( 00 ) I ~ 1. 

Proof. IR(oo)1 ~ 1 implies k ~ j. By Proposition 3.4, E(y) must be of the 
form K· y2i. By letting y --+ 00 in (3.6) and (3.9), we see that IR(oo)1 ~ 1 
is equivalent to K ~ O. 0 
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The trapezoidal rule for the numerical integration of first­
order ordinary differential equations is shown to possess, 
for a certain type of problem, an undesirable property. 

(A.R. Gourlay 1970) 

"A-stability is not the whole answer to the problem of stiff 
equations." (R. Alexander 1977) 

Some of the above methods seem to be optimal in the sense that the stability 
region coincides ezactly with the negative half-plane. This property is not 
as desirable as it may appear, since for a rational function 

lim R(z) = lim R(z) = )im R(z). 
z-+-oo z-+oo z=ty, y--+oo 

The latter must then be 1 in modulus, since IR(iy)1 = 1 for all real y. This 
means that for z elose to the real axis with a very large negative real part, 
IR(z)1 is, although< 1, very clo.se to one. As a consequence, stiff components 
in (2.6) are damped out only very slowly. We demonstrate this with the 
example 

y' = -2000(y - cos x) , y(O) = 0 , o :s x :s 1.5 (3.11) 

which is the same as (1.1), but with increased stiffness. The numerical 
results for the trapezoidal rule are compared to those of implicit Euler in 
Fig.3.2. The implicit Euler damps out the transient phase much faster than 
the trapezoidal rule. It thus appears to be a desirable property of a method 
that IR(z)1 be much smaller than 1 for z -+ -00. 

Definition 3.7 (Ehle 1969). A method is caHed L-.stable if it is A-stable 
and if in addition 

lim R(z) = 0 . 
z-+oo 

( 3.12) 

Among the methods of Table 3.1, the implicit Euler, the SDIRK method 
(e) with 1'=(2 ± V2)/2, as weH as the Radau HA formula (j) are L-stable. 

Proposition 3.8. I/ an 1RK method with nonsingular A satisfies one 0/ the 
/ollowing condition.s: 

a·=b. j=I, ... ,s, SJ J 

ail = b1 i = 1, ... ,.s , 

then R( 00) = O. This makes A-stable methods L-stable. 

Proo/. By (3.2) 

(3.13) 

(3.14) 

(3.15) 
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1.5 ,---lmpl. Trap. (h~l. 5/40) 

impl. Trap. (h-l. 5/80) 

impl.Eul. (h-1. 5/40) 
1.0 

.5 

.0 .5 

Fig.3.2. Trapezoidal rule vs. implicit Euler on (3.11) 

and (3.13) means that ATe• =b where e. = (0, ... ,0, 1)T. Therefore R( 00) = 
l-e;l1=I-I=O. 

In the case of (3.14) use Ae1 = 11b1 • 0 

Methods satisfying (3.13) are called stiffiy accurate (Prothero & Robin­
son 1974). 

A( a )-Stability 

The definition of A-stability is on the one hand too weak, as we have just 
seen, and on the other hand too strong in the sense that many methods 
which are not so bad at all are not A-stable. The following definition is a 
little weaker and will be specially useful in the chapter on multistep methods. 

Definition 3.9 (Widlund 1967). A method 
is said to be A( 0:) -stable if the sector 

So. = {z; I arg( - z) I ~ 0:, z::/= O} 

is contained in the stability region. 

For example, the Pade approximation R03 (z) = 

(see (3.29) below) is A(o:)-stable for 0: ~ 88.23°. 

( 2 3)_1 
1-z+:""_:"" 

2! 3! 



Fig.3.3. RADAUS on the beam 
(1.10'), every step drawn 

N umerical Results 
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Fig.3.4. RADAUS on oscillatory beam 
with large Tol (489 steps, all drawn) 

To demonstrate the effects of good stability properties on the stiff examples 
of Section IV.1, we choose the 3-stage Radau HA formula (Table 5.6 of Sec­
tion IV.5) which, as we have seen, is A-stable, L-stable and of reasonably 
high order. It has been coded (Subroutine RADAU5 of the Appendix) and 
the details of this program will be discussed later (Section IV.8). This pro­
gram integrates all the examples of Section IV.1 in a couple of steps and the 
plots of Fig. 1.3 and Fig. 1.5 show a clear difference. 

The beam equation (1.10') with n = 40 is integrated, with Tol = 10-3 

(absolute) and smooth initial values, in 35 steps (Fig.3.3). 
Since the Radau5 formula is L-stable, the stability domain also covers 

the imaginary axis and large parts of the right half-plane C+. This means 
that high oscillations of the true solution may be damped by the numerical 
method. This effect, sometimes judged undesirable (B. Lindberg (1974): 
"dangerous property ... "), may also be welcome to suppress uninteresting 
oscillations. This is demonstrated by applying RADAU5 with very large tol­
erance (Tol = 1) to the beam equation (1.10') with n = 10 and the perturbed 
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initial value 8n (0) = 004. Here, the high oscillations so on disappear and 
the numerical solution becomes perfectly smooth (Fig.3A). If, however, the 
tolerance requirement is increased, the program is forced to folIowall the 
oscillations and the picture remains the same as in Fig.1.11. 

Collocation Methods 

The following result gives the stability function of col1ocation methods as 
introduced in Definition 7.5 of Chapter 11: 

Theorem 3.9 (K. Wright 1970, S.P. Nf/lrsett 1975). The stability function 
01 the collocation method based on the points Cl' c2 , ••• ,cs is given by 

R(z) = M(s)(l) + M(s-l)(1)Z + ... + M(l)zs = P(z) 
M(s)(O) + M(s-l)(O)z + ... + M(O)zs Q(z) 

(3.16) 

where 
1 s 

M(x) = I II(x - ci) . 
s. 

i=l 

(3.17) 

Remark. The normalization factor l/s! just makes the constant M(s)(x) 
equal to one. 

Proof. (Nf/lrsett & Wanner 1979, Lie 1990). We assume xo=O, h=l, ).=z, 

Yo = 1 and let u(x) be the collocation polynomial. Since u'(x)-zu(x) is a 
polynomial of degree s which vanishes at the collocation points, there is a 
constant K such that 

u'(x) - zu(x) = KM(x) . (3.18) 

Differentiatillg this identity s times and replacillg u' (x) by zu( x) + KM (x) 
after each differentiation we obtain 

s 

0= u(S+l)(x) = zS+1 u(x) + K (2: M(j)(x )ZS-j) . (3.19) 
j=O 

Putting X= 0 allows us to express K in terms of u(O), and for x= 1, Formula 
(3.19) yields u(l)=R(z)u(O) with R(z) given by (3.16). 0 

Proposition 3.10. For any polynomial M(x) 01 exact degree s, R(z) given 
by (:I .16) is an approximation to eZ 0/ order :2: s. fts error is 

(3.20) 
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or 

(3.21) 

where 

j=1,2, .... (3.22) 

ProoJ. In the above proof we never used the special form of M(:v). Therefore, 
any polynomial solution u(:v) of (3.18) satisfies u(l) = R(z)u(O) with R(z) 
given by (3.16). In order to show that its order is ~ s, we apply the variation­
of-constants formula to (3.18) and obtain 

(3.23) 

For :v = 1 and u(O) = 1 this formula becomes identical to (3.20) if we insert 
K from (3.19) with z=O. 0 

The converse of this proposition is true. 

Proposition 3.11. 1/ R(z)=P(z)jQ(z) (degP~s, degQ~s, Q(O)=l) is 
an approzimation to eZ 0/ order 2 s, i.e., 

(3.24) 

then there is a unique polynomial M(z) satisfying M(6)(Z) = 1, such that 
R(z) is given by (3.16). 

Proo/. We write 

(3.25) 

By (3.24) we have P(z) = eZQ(z) + O(z·+l), and multiplying the Taylor 
series of eZ with Q( z) we obtain 

P( ) = 1 + (qo + ql) + 2 (qo + ql + q2) 
z z I! O! z 2! I! O! 

+ ... + Z6 (q~ + ( ~ )' + ... + q~), 
s. sI. O. 

(3.26) 

P(z) and Q{z) are now seen to verify (3.16) if we take 

(3.27) 

o 
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Pade Approximations to the Exponential Function 

"Comme cela est souvent le cas en ce qui concerne les 
decouvertes scientifiques, leur inventeur n'est pas H. Pade." 

(C. Brezinski 1984, <Euvres de H. Pade, p. 5) 

Pade approximations (Pade 1892) are rational functions whieh, for a given 
degree of the numerator and the denominator , have highest order of approxi­
mation. Their origin lies in the theory of eontinued fractions and they played 
a fundamental role in Hermite's (1873) and Lindemann's (1882) proofs of 
the transeendeney of e, respeetively 11'. 

These optimal approximations ean be obtained for the exponential fune­
tion eZ from (3.16) by the following idea (Pade 1899): ehoose M(x) such 
that in (3.16) as many terms as possible involving high powers of Z beeome 
zero, i.e., 

xk(x -1)i 
M(x) = (k + j)! ; 

then M(i)(O) =0 for i=O, ... , k-1 and M(i)(1) =0 for i=O, ... ,j-1. 

Theorem 3.12. The (k, j)-Pade approximation to eZ is given by 

where 

k k( k -1) z2 k( k -1) ... 1 zk 
Pki (Z)=1+ i+k z + (j+k)(i+k-1) 2! + ... + (j+k) ... (j+1)· k! 

(3.28) 

(3.29) 

. _ i i (i -1) z2 j i (j -1) ... 1 zi 
QkJ(z)-1- k+i z +(k+i)(k+j-1)2! - ... +(-1) (k+j) ... (k+1)· j! 

= Pik(-Z), 

with error 

. J"k' . k . k 
Z R ( ) _ ( 1)J . . J+ +1 ,h'I( J+ +2) 

e - ki Z - - (' k)'(' k )' Z + v Z • J+ .J+ +1. 
(3.30) 

It is the unique rational approximation to eZ 0/ order j + k, such that the 
degrees 0/ numerator and denominator are k and j, respectively. 

Proof. Inserting (3.28) into (3.16) and (3.22) gives the formulas for Pkj(z), 
Qkj(Z) and (3.30). The uniqueness is a eonsequenee of Proposition 3.11 
and the fact that the (j + k )-degree polynomial M (x) must have a zero of 
multiplicity k at x = 0, and one of multiplicity j at x = 1. 0 
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Table 3.2. Pade approximations for e" 

1 l+z 
,,2 

1+z+ 2r 
1 1 1 

1 1 + iz 
2 1 ,,2 

1+ ä Z+3'2r --
1-z 1- iz 1- jz 

1 1 + lz 1 1 ,,2 
1+2'Z+'62r 

,,2 
1-z+ 2r 

2 l,,2 
1- ä Z + 3'2T 

1 1 ,,2 
1-2'z+'62r 

1 1 + tz 2 1 ,,2 
1+'5'Z+Iö2r 

1-z+~-~ 3 1 ,,2 1 ,,3 1 3 3 ,,2 1 ,,3 
2. 3. 1 - 4 Z + 22T - 43!' - '5'z + Iö2r - Iö3!' 

Table 3.2 shows the first Pade approximations to e". We observe that the 
stability function of many methods of Table 3.1 are Pade approximations. 
The diagonal Pade approximations are those with k = j. 

Exercises 

1. Let R(z) be the stability funetion of (3.1) and R*(z) the stability funetion 
of its adjoint method (see Seetion 11.8). Prove that 

R*(z) = (R( _Z))-l . 

2. Consider an IRK with nonsingular A, distinct ci and non-zero bio Show 

a) If O( s) and C6 = 1 then (3.13); 

b) If D(s) and Cl =0 then (3.14). 

In both eases the stability function satisfies R( 00) = O. 

(For the definition ofthe assumptions O(s) and D(s) see Seetion IV.5). 

3. Show that eolloeation methods ean only be L-stable if M(l)=O, i.e., if 
one of the c's, usually c6 , equals 1. 
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4. (Pade (1899), see also Lagrange (1776)). Show that the continued frac­

5. 

tion 
e"' = 1 + -------::------a: 

1 a:2 

a: 
l--+ 

2 

---
1· 3 4 

1+ 

1 a: 2 
---
3·54 

1 a:2 

5·74 
1 + ----.".. 

1 a:2 

7·94 
1+---

1+ ... 

leads to the diagonal Pade approximations for e"'. 

Hint. Compute the first partial fractions. If you don't succeed in finding 
a general proof, read Section IV.5. 

The trapezoidal rule 
0 0 0 

1 1 1 
'2 '2 
1 1 
'2 '2 

satisfies aai = bi , hut not R( (0) = o. Why doesn't this contradict Propo­
sition 3.8? 



IV.4. Order Stars 

"Mein hochgeehrter Lehrer, der vor wenigen Jahren ver­
storbene Geheime Hofrath Gauss in Göttingen, pflegte in 
vertraulichem Gespräche häufig zu äussern, die Mathe­
matik sei weit mehr eine Wissenschaft für das Auge als 
eine für das Ohr. Was das Auge mit einem Blicke sogleich 
übersieht ... " (J.F. Encke 
1861, published in Kronecker's Werke, Vol. 5, page 391.) 

Order stars, discovered by searching for a better understanding of the stabil­
ity properties of the Pade approximations to eZ (Wanner, Hairer & Nszsrsett 
1978), offered nice and unexpected access to many other results: the "second 
barrier" of Dahlquist, the Daniel & Moore conjecture, highest possible or­
der with real poles, comparison of stability domains (Jeltsch & Nevanlinna 
1981, 1982), order bounds for hyperbolic or parabolic difference schemes 
(e.g., Iserles & Strang 1983, Iserles & Williamson 1983, Jeltsch 1988). 

Introduction 

"When I wrote my book in 1971 Iwanted to draw "relative 
stability domains", but curious stars came out from the 
plotter. I thought of an error in the program and I threw 
them away ... " (C.W. Gear 1979) 

We present in Fig. 4.1 the stability domains for the Pade approximations R33 , 

R 24 , R 15 , R 06 of Theorem 3.12, which are all 6th order approximations to 
exp(z). It ean be observed that R 33 and R 24 are nieely A-stable. The other 
two are not, R15 violates (3.6) and R06 violates (3.7). After some meditation 
on these and similar figures, trying to obtain a better understanding of these 
phenomena, one is finally led to 

Definition 4.1. The set 

A = {z E C; I R( z ) I > I eZ I} = { z E C; I q( z ) I > 1 } 

where q(z)=R(z)/ez , is called the order star of R. 

(4.1 ) 

The order star does not eompare IR( z) I to 1, as does the stability domain, 
but to the exact solution lez 1= e'" and it is hoped that this might give more 
information. As we always assume that the eoefficients of R( z) are real, 
the order star is symmetrie with respect to the real axis. Furthermore, 
since leiY 1= 1, A is the complementary set of the stability domain S on the 
imaginaryaxis. Therefore we have from (3.6) and (3.7): 
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Fig. 4 .1. Stability domains for Pade approximations 

Lemma 4.2. R( z) is I -stable if and only if 

(i) An iR = 0 . 
Further, R( z) is A-stable if and only if (i) and 

(ii) all poles of R( z) (= poles of q( z)) lie in the positive half plane C+. 
o 

Fig. 4.2 shows the order stars corresponding to the functions of Fig. 4.1. 
These order stars show a nice and regular behaviour: there are j black 
"fingers" to the right, each containing a pole of Rkj , and k white "fingers" 
to the left , each containing a zero. Exactly two boundary curves of A tend 
to infinity near to the imaginary axis. These properties are a consequence 
of the following three Lemmas. 
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k=3 
j=3 

-6 

Fig.4.2. Order stars for Pade approximations 

Lemma 4.3. 11 R(z) is an approximation to eZ 01 order p, i.e., il 

e Z - R(z) = CzP+1 + O(zp+2) 

6 

6 

( 4.2) 

with C # 0, then, lor z -t 0, A behaves like a "star" with p + 1 sectors 
01 equal width 7r /(p + 1), separated by p+ 1 similar "white" sectors 01 the 
complementary set. The positive real axis is inside a black sector iff C < 0 
and inside a white sector iff C > o. 

Proof. Dividing the error formula (4.2) by eZ gives 

R(z) = 1 _ Czp+l + O(Zp+2) . 
eZ 

Thus the value R( z) / eZ surrounds the point 1 as often as zP+1 surrounds 
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the origin, namely p+ 1 times. So, R( z ) / e Z is p+ 1 times alternatively inside 
or outside the unit circle. It lies inside for small positive real z whenever 
0>0. 0 

Lemma 4.4. 1f z = rei8 and r -+ 00, then z E A for tr/2 < 0 < 3tr/2 and 
z rf. A for -tr /2< 0 < tr /2. The border BA possesses only two branches which 
go to infinity. 1f 

R(z) = Kzl+O(zl-l) for z-+oo, (4.3) 

these branches asymptotically approach 

x = log IKI + f. log lyl ( 4.4) 

Proof. The first assertion is the well-known fact that the exponential func­
tion, for Re z -+ ±oo is much stronger than any polynomial or rational 
function. In order to show the uniqueness of the border lines, we consider 
for r -+ 00 the two functions 

!Pl(O) = le z I2 = e2rcos8 

!P2(0) = IR(zW = R(rei8 )R(re-i8 ) • 

Differentiation gives 

!p~ . 
- = -2r sm 0, 
!Pl 

!p' ( . R'(rei8 )) 
!P: = 2rRe ie,8. R(rei8 ) (4.5) 

Since IR' / RI -+ 0 for r -+ 00, we have 

d d 
dO log!Pl (0) < dO log !P2( 0) for 0 E [c, tr - cl. 

Hence in this interval there can only be one value of 0 with !Pl (0) = !P2( 0). 
Formula (4.4) is obtained from (4.3) by 

f. 
IKI(x2 + y2)l/2 ~ e"', log IKI + '2 log(x2 + y2) ~ x 

and by neglecting x 2 , which is justified because x/y -+ 0 whenever x+iy 
tends to infinity on the border of A. 0 

It is clear from the maximum principle that each bounded "finger" of A 
in Fig. 4.2 must contain a pole of q( z). A still stronger result is the following: 

Lemma 4.5. Each bounded subset F c A with common boundary BF c BA 
collecting m sectors at the origin must contain at least m poles of q( z) (each 
counted according to its multiplicity). Analogously, each bounded "white" 
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subset F C C\A with m sectors at the origin must contain at least m zeros 
0/ q(z). 

Proo/. Suppose first that oF is represented by a parametrized positively 
oriented loop c(t), to .s: t.s: t 1 • Let ä=(cHt),c~(t)) be the tangent vector 
and n=(c~(t), -c~(t)) an exterior normal vector. We write 

q(z) = r(z, y) . ei <p(z,lI), z = z + iy 

so that logq(z) =logr(z, y)+ic,o(z, y). Since the modulus increases inside 
F, we have 

8(logr) 
an < O. (4.6) 

Now the Cauchy-Riemann differential equations for log q are 

o(logr) oc,o 
oz = Gy; 

o(logr) 
= Gy - oz ' 

oc,o 
(4.7) 

so that (4.6) becomes 

( 4.8) 

This means that the argument of q decreases along c. If the contour curve 
c(t) returns m times to the origin, where the argument is a multiple of 211', 
the vector q(z) must perform at least m complete revolutions in the negative 
sense (Fig. 4.3). Thus the argument principle (an idea which we have already 
encountered in Section 1.13; see Volume I, pages 82 and 330), ensures the 
presence of at least m poles inside F (there are no zeros, because these are 
not in A). 

If the boundary curve is represented by several curves, all rotation num­
bers are added up. For "white" subsets the proof is similar, just that 
8(10gr)j8n> 0 and the argument rotates in the other sense. 0 

Fig.4.3 gives an illustration of two order stars for the SDIRK methods 
of order 3 (Table 3.1, case e). Here, q(z) possesses a double pole at z=1!1. 
However, for "y = (3-v'3)j6, the bounded component F of A collects only 
one sector at the origin. Since the vector q( z) performs two rotations, there 
is in addition to the origin a second point on 8F for which arg( q) = 0, Le., 
arg(R(z))=arg(ez). Thus, because IR(z)I=lezl on 8A, we have R(z)=ez • 

These points are called ezponential fitting points. Another version of Lemma 
4.5 is thus (Iserles 1981): 

Lemma 4.5'. Each bounded subset F C A with 8F c 8A contains ezactly 
as many poles as there are ezponential fitting points on its boundary. 0 
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a} 'Y = (3 - '1/3}/6 b) 'Y = (3 + '1/3}/6 

Fig.4.3. SDIRK methods, order 3; arrows indicate direction of q(z) 

Order and Stability for Rational Approximations 

In the sequel we suppose R( z) to be an arbitrary rational approximation of 
order p with k zeros and j poles. 

Theorem 4.6. I/ R is A-stable, then p ~ 2k1 + 2, where k1 is the number 
0/ different zeros 0/ R( z) in C- . 

Proof. At least [(p+ 1)/2] sectors of A start in C- (Lemma 4.3) . By A­
stability these have to be infinite and enclose at least [(p+1}/2]-1 bounded 
white fingers, each containing at least one zero by Lemma 4.5. Therefore 
[(p+1)/2]-1:::;k1 • 0 

Theorem 4.7. I/ R is I-stable, then p ~ 2jl' where jl is the number 0/ 
poles 0/ R( z) in C+. 

Proo/. At least [(p+ 1 )/2] sectors of A start in C+. They cannot cross iA 
and must therefore be bounded (Lemma 4.4). Again by Lemma 4.5 we have 
[(p+1)/2] ~ jl' 0 

Theorem 4 .8. Suppose that p ~ 2j-1 and IR(oo)1 :::; 1. Then R is A-stable. 

Proof. By Proposition 3.6 the function R( z) is I-stable. Applying Theorem 
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4.7 we get j1 2:: j so that I-stability implies A-stability. 0 

Theorem 4.9 (Crouzeix & Ruamps 1977). Suppose p 2:: 2j-2, IR(oo)1 ~ 1, 
and the coejJicients 01 the denominator Q( z) have alternating signs. Then 
R is A-stable. 

Proof. A similar argument as in the foregoing proof allows at most one 
pole in C-. It would then be real and its existence would contradict the 
hypothesis on signs of Q( z). 0 

Theorem 4.10. Suppose p 2:: 2j - 3, R is I -stable, and the coejJicients 0/ 
Q(z) have alternating signs. Then R is A-stable. 

Proo/. For p 2:: 2j - 3 the argument of the foregoing proof is still valid. 
However Proposition 3.6 is no longer applicable and we need the hypothesis 
on I-stability. 0 

We see from Fig. 4.2 that all poles and all zeros for Pad6 approximations 
must be simple. Whenever two poles coalesce, the corresponding sectors 
create a bounded white finger between them with the need for an additional 
zero. Thus the presence of multiple zeros or poles will require an order 
reduction. 

Theorem 4.11. Let R possess ko distinct zeros and jo distinct poles. Then 
p ~ ko+jo· 

Proo/. We identify the complex plane with the Gaussian sphere and the 
order star with a CW-complex decomposition of this sphere (Fig.4.4). Let 
8 2 be the number of 2-cells li' 8 1 the number of 1-cells Li (paths), and So 

the number of vertices. Then Euler's polyhedral formula ("Si enim numerus 
angulorum solidorum fuerit = S, numerus acierum = A et numerus hedrarum 
= H, semper habetur S+H = A+2, hincque vel S = A+2-H vel H = A+2-S vel 
A = S + H - 2, quae relationis simplicitas ob demonstrationis difficultatem ... 
", Euler (1752)), implies 

(4.9) 

Modern versions are in any book on algebraic topology, for particularly easy 
reading see e.g. Massey (1980, p. 87, Corollary 4.4). Formula (4.9) is only 
true if all f i are homeomorphic to disks. Otherwise, they have to be cut into 
disks by additional paths (dotted in Fig. 4.4). So, in general, we have 

(4.9') 
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Since each vertex is reached by at least 2 paths, the origin by hypothesis by 
2p+2, and since every path has two extremities, we have 

( 4.10) 

By Lemma 4.5 each 2-cell, with the exception of two (the two "infinite" 
ones) must contain at least a pole or a zero, so we have 

S2 :S ko + jo + 2 

These three inequalities give p :::; ko + jo' 

Fig.4.4. Order star on Gaussian sphere 

Stability of Pade Approximations 

(4.11) 

o 

" ... evidence is given to suggest that these are the only 
L.acceptable Pade approximations to the exponential." 

(B.L. Ehle 1973) 

Theorem 4.12. A Pade approzimation R kj given in (3.30) is A-stable if 
and only if k :::; j :::; k+2. All zeros and all poles are simple. 

Proof. The "if"-part is a consequence of Theorem 4.9. The "only if"-part 
follows from Theorem 4.6 since p=k+j. For the same reason Theorem 4.11 
shows that all poles and zeros are simple. 0 
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Comparing Stability Domains 

"Da ist der aller ärmste Mann 
dem ander'n viel zu reich, 
das Schicksal setzt den Hobel an 
und hobelt beide gleich." 

(F. Raimund, das Hobellied) 

Jeltsch & Nevanlinna (1978) proved the following "disk theorem": I/ S is 
the stability domain 0/ an s-stage explicit RK-method and D the disk with 
centre -8 and radius 8 (i.e the stability domain of 8 explicit Euler steps with 
step size h/8), then 

SjJD ( 4.12) 

unless S = D and the method in question is Euler's method. This curious 
result expresses the fact that Euler's method is "the most stable" of all 
methods with equal numerical work. After the discovery of order stars it 
became clear that the result is much more general and that any method has 
the same property (Jeltsch & Nevanlinna 1981). We shall also see in Chapter 
V that this result generalizes to many multistep methods. The main tool of 
this theory is 

Definition 4.13. Let Rl(z) and R2(z) be rational approximations to eZ , 

then their relative order star is den.ned as 

{ I Rl(z) I } B= zEC; R2(z) >1 . (4.13) 

Here, the stability function for method 1 is compared to the stability 
function for method 2 instead of to the exact solution eZ • The following 
order relations 

eZ - R1(z) = C1ZP1+ l + .. . 
eZ - R2 (z) = C2ZP2+ 1 + .. . 

lead, by subtraction, to 

R1(z) p+l 
R2(z)=1-Cz + ... 

where p=min(Pl' P2) and 

if Pl = P2 
if Pl > P2 
if Pl < P2' 

( 4.14) 

(4.15) 

Remark 4.14. The statement of Lemma 4.3 remains unchanged for B, 
whellever C#O. Sillce the fraction Rl (z)/R2(z) has no essential sillgularity 
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at infinity, there is no analogue of Lemma 4.4. Further, the boundedness 
assumption on F can be omitted in Lemmas 4.5 and 4.5' (if 00 is a pole of 
R1(z)/R2(z), it has to be counted also). With the correspondences displayed 
in Table 4.1, the statements of Theorems 4.6 and 4.7 remain true for B. 

Table 4.1. Correspondences between A and B 

order star A (4.1) f---+ relative order star B (4.13) 

imaginary axis f---+ a52 

c- f---+ interior of 52 
c+ f----+ exterior of 52 

method A-stable f----+ 51 :J 52 

P f---+ min(p1, P2) 

Theorem 4.15. I/ R 1(z) and R 2(z) are polynomial stability functions 0/ 
degree sand orders ~ 1, then the corresponding stability domains satisfy 

( 4.16) 

Proo/. Suppose that S1 =:> S2 (i.e., by Table 4.1, suppose "A-stability"). 
Then the analogue of Theorem 4.7 requires that R 1 (z) / R2 (z) have a pole 
outside S2' Since R1 (z) and R2 (z) have the same degree, R1 (z) / R2 (z) has 
no pole at infinity. Therefore the only poles of R 1 (z)/R2 (z) are the zeros of 
R2 and these are inside S2' This is a contradiction and proves the first part 
of (4.16). The second part is obtained by exchanging R1 and R 2 • 0 

In order to compare numerical methods with different numerical work, 
we define: 

Definition 4.16. Let R(z) be the stability function of degree s of an explicit 
RK method (usually with s stages), then 

S8eal = { Zj IR(sz)1 ~ I} = { Zj s . z ES} = ~S (4.17) 

will be called the scaled stability domain of the method. 

Theorem 4.17 (Jeltsch & Nevanlinna 1981). I/ R 1(z) and R 2(z) are the 
stability functions 0/ degrees s1 resp. s2 0/ two explicit RK-methods 0/ orders 
;::: 1, then 

steal 1; s~eal and stea1 C/. s;eal , (4.18) 

i.e., a scaled stability domain can never completely contain another. 
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The interesting interpretation of this result is that for any two methods, 
there exists a differential equation y' = >.y such that one of them performs 
better than the other. No "miracle" method is possible. 

Proof. We compare 8 2 steps of method 1 with step size h/82 to 8 1 steps 
of method 2 with step size h/8 1 • Both procedures then have comparable 
numerical work for the same advance in step size. Applied to y' = >'y, this 
compares 

to 

of the same degree. Theorem 4.15 now gives 

or 
o 

Fig. 4.5. Scaled stability domains for Tay lor methods (2.12) 

As an illustration to this theorem, we present in Fig.4.5 the scaled sta­
bility domains for the Taylor methods of orders 1, 2, 3, 4 (compare with 
Fig. 2.1). It can clearly be observed that none of them contains another. 
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Rational Approximations with Real Poles 

"The surprising result is that the maximum reachable order 
is m+1." (N!Ilrsett & Wolfbrandt 1977) 

The stability functions of diagonally implicit RK methods (DIRK methods), 
i.e., methods with aij = 0 for i < j, are 

(4.19) 

where I'i = aii (i = 1, ... ,s) and degree P ::; s. This follows at once from 
Formula (3.3) of Proposition 3.2, since the determinant of a triangular ma­
trix is the product of its diagonal elements. Thus R( z) possesses real poles 
1/1'1' 111'2, ... ,111'8' Such approximations to eZ will also appear in the next 
sections as stability functions of Rosenbrock methods and so-called singly­
implicit RK methods. They thus merit a more thorough study. Research 
on these real-pole approximations was started by Nj/lrsett (1974) and Wolf­
brandt (1977). Many results are collected in their joint paper Nj/lrsett & 
Wolfbrandt (1977). 

If the method is of order at least s, P( z) is given by (3.26). We shall 
here, and in the sequel, very often write the formulas for s = 3 without always 
mentioning how trivial their extension to arbitrary s iso Hence for s = 3 

( So SI) 2 (So SI S2) 3 (So SI S2 S3) 
R( z) = 1 + z 1T - Ü! + z 2! - 1T +2 Ü! + 3Z 3! - 2! + 1T - Ü! 

1 - zSI + Z S2 - Z S3 
( 4.20) 

where 

The error constant is for p = s 

C _ So SI S2 S3 
- 4! - 3T + 2f - 1T . ( 4.21) 

Theorem 4.18. Let R(z) be an approximation to eZ 01 order p with real 
poles only and let k be the degree 01 its numerator. Then 

p::;k+1. 

Proof. If a sector of the order star A ends up with a pole on the real axis, 
then by symmetry the complex conjugate sector must join the first one. All 
white sectors enclosed by these two must therefore be finite (Fig.4.6.). The 
same is true for sectors joining the infinite part of A. There is thus on each 
side of the real axis at m08t one white sector which can be infinite. Thus the 
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remaining p-1 white sectors require together at least p - 1 zeros by Lemma 
4.5, i.e., we have p-1 :=:; k. 0 

Fig.4.6. An approximation with real poles, 3 zeros, order 4 

Remark 4.19. If p;:: k, then at least one white sector 
must be unbounded. This is then either the first sector 
on the positive real axis, or, by symmetry, there is a pair 
of two sectors. By the proof of Theorem 4.18 the pair is 
unique alld we shall call it Cary Grant 's part. 

Remark 4 .20. If p = k + 1, the optimal case, there are k + 2 white sectors, 
two of them are infinite. Hence each of the remaining k sectors must then 
contain exactly one root of P(z). As a consequence, C < 0 iff P(z) has no 
positive real root between the origin and the first pole. 

The Real-Pole Sandwich 

We now analyze the approximations (4.19) with order p;:: s in more detail 
(N~rsett & Wanner 1979). We are interested in two sets: 

Definition 4.21. Let L be the set of Crll" .,1'.) for which degP(z) in 
(4.20) is ::; s-1 , i.e., R( 00) = 0 for I'i # 0 (i = 1,,,., s) . 

Definition 4.22. Denote by H the set of Cr}, ... , 1'.) for which the error 
constant (4.21) is zero, i.e., for which the approximation has highest possible 
order p=s+1. 
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A consequence of Theorem 4.18 is: 

LnH=0. (4.22) 

Written for the case s = 3 (generalizations to arbitrary s are straightforward) 
and using (4.20) and (4.21) the sets Land H become 

L - {( ) . .!.. _ 1'1 + 1'2 + 1'3 + 1'11'2 + 1'11'3 + 1'21'3 _ 1'11'21'3 - o} 
- 1'1,1'2,1'3'3! 2! 1! o! -

H - {( ) . .!.. _ 1'1 + 1'2 + 1'3 + 1'11'2 + 1'11'3 + 1'21'3 _ 1'11'21'3 - o} 
- 1'1,1'2,1'3, 4! 3! 2! 1! - . 

( 4.23) 

Theorem 4.23 (Nlllrsett & Wanner 1979). The sur/aces Hand L are each 
composed 0/ s disjoint connected sheets 

( 4.24) 

1/ a direction b = (b1 , •• • ,b.) ia chosen with all bi f:. 0 and i/ k 0/ them are 
positive, then the ray 

( 4.25) 

intersects the sheets H lI Lu H 2 , L2 , • •• , H /c' L/c in this order and no othera. 

(4.26) 

for L and H, respectively. These are third (in general sth) degree polyn0-
mials whose positive roots we have to study. We vary the b'S, and hence 
the ray X, starting with all b's negative. The polynomials (4.26) then have 
all coefficients positive and obviously no positive real roots. When now one 
delta, say bs' changes sign, the leading coefficients of (4.26) become zero and 
one root becomes infinite for each equation and satisfies asymptotically 

~~ ~~~ 1 -- - t-- ::::: 0 :=::::} t::::: -
I! O! b3 

b162 _ t616263 ::::: 0 ===} t::::: ~ 
2! 1! 263 

(4.27) 

for L and H, respectively. Thus H comes below and L comes above. Because 
of LnH =0 (4.22) these two roots can never cross and must therefore remain 
in this configuration (see Fig.4. 7). 

When then successively b2 and b1 change sign, the same scene repeats 
itself again and again, always two sheets of Hand L descend from above in 
that order and are layed on the lower sheets like slices of bread and ham of 
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Fig. 4.7. Formation of the sandwich 

a giant sandwich. Because Ln H = 0, these sheets can never cross, two roots 
for L or H can never come together and become complex. So all roots must 
remain real and the theorem must be true. 

A three-dimensional view of these surfaces is given in Fig.4.8. 0 

The following theorem describes the form of the corresponding order star 
in all these sheets: 

Theorem 4.24. Let G1 , ••• , Gabe the open connected components of RS\H 
such that Li lies in Gi' and let Go be the component containing the origin. 
Then the order star 0/ R(z) given by (4.20) p08sesses ezactly k bounded 
fingers if and only if 

Proof. We prove this by a continuity argument letting the point (7p ... ,1'a) 
travel through the sandwich. Since Cary Grant's part is always present 
(Remark 4.19), the number of bounded sectors can change only where the 
error constant C (4.21) changes sign, i.e., on the surfaces H l' H 2' ... , H B' 

Fig.4.9 gives some snap-shots from this voyage for s =3 and 1'1 =1'2 =1'3 =1'. 
In this case the equations (4.23) become 

(4.28) 
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Fig.4.8. The sandwich for s = 3 ... and for s=5 

whose roots 

'\ = 0.158984, >'2 = 0.435867, >'3 = 2.40515 

Xl = 0.128886, X2 = 0.302535, X3 = 1.06858 
(4.29) 

do interlace nicely as required by Theorem 4.23. The affirmation of Theorem 
4.24 for s = 3 can be clearly observed in Fig.4.9. 

For the proof of the general statement we also put 1'1 = ... = l' ~ = l' and 
investigate the two extreme cases: 

1. l' = 0: Here R( z) is the Taylor polynomiall +z+ . . . +z· / s! whose order 
star has no bounded sector at all. 

2. l' ~ 00: The numerator of R(z) in (4.20) becomes for s=3 
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Fig.4.9. Order stars for "I travelling through the sandwich 
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If we let, -+ 00, this becomes with Z,=w 

1 - w(3 + O(~)) + w 2 (3 + O(~)) - w 3 (1 + O(~)) 
Therefore all roots wi -+ 1, hence zi -+ 111 (see the last picture of Fig. 4.9). 
Therefore no zero of R( z) can remain left of Cary Grant's part and we have 
s bounded fingers. 

Since between these extreme cases, there are at most s crossings of the 
surface H, Theorem 4.24 must be true. 0 

Theorem 4.25. The function R( z) defined by (4.20) can be I-stable only if 

if s = 2q - 1 

and 

Proof. The reason for this result is similar to Theorem 4.12. For I-stability 
the imaginary axis cannot intersect the order star and must therefore reach 
the origin through Cary Grant's part. Thus I-stability (and hence A­
stability) is only possible (roughly) in the middle of the sandwich: Since 
at most [(p+2)/2] and at least [(p+1)/2] of the p+1 sectors of A start in 
C+ , the number k of bounded fingers satisfies 

[p ~ 2] ~ k and [p ~ 1] ~ k . 

Inserting p=s+l on H and p=s on G we get the above results. 0 

Multiple Real-Pole Approximations 

" ... the next main result is obtained, saying that the least 
value of C is obtained w hen all the zeros of the denominator 
are equal ... " (NlZlrsett & Wolfbrandt 1977) 

Approximations for which all poles are equal, i.e., for which '1 = '2 = ... = '8 =, are called "multiple" real-pole approximations (N!1Srsett 1974). We 
again consider only approximations for which the order is ~ s. These satisfy, 
for s =3, 

R(z) = P(z) 
(1-,Z)3 

where P(z) is given by (4.30), and their error constant is 

1 3, 3,2 ,3 
C = 4! - 3! + Tl - l! . 

(4.31) 

(4.32) 
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Approximations with multiple poles have many computational advantages 
(the linear systems to be solved in Rosenbrock or DIRK methods have all the 
same matrix (see Sections IV.6 and IV.7)). We are now pleasedto see that 
they also have the smallest error constants (N!2Irsett & Wolfbrandt 1977): 

Theorem 4.26. On each 01 the JurlaceJ Li and Hi (i = 1, ... ,8) the error 
conJtant C 01 (4.20) i8 minimized (in abJolute value) when'y! ='Y2 = ... ='Y •. 

Prool. Our proof uses relative order stars (similar to (4.13)) 

B = {Z E Cj Iq(z)1 > I}, (4.33) 

where Rold( z) is a real-pole approximation of order p = 8+1 corresponding to 
'Y1'''' ,'Y. and Rnew(z) is obtained by an infinitely small change of the 'Y's. 
We assume that not all 'Yi are identical and shall' show that then the error 
constant can be decreased. After apermutation of the indices, we assume 
'Y1 = maxbi) (by Theorem 4.23 'Y1 > 0, so that 1h1 represents the pole on 
the positive real axis which is closest to the origin) and 'Y. < 'Y1' We don't 
allow arbitrary changes of the 'Y's but we decreaJe 'Y1' keep 'Y2' ... ,'Y .-1 fixed 
and determine 'Y. by the defining equations for H (see (4.23)). For example, 
for 8=3 we have 

..!.. _ 'Y1 + 'Y2 + 'Y1'Y2 
'Y - 4! 3! 2! 

3 - ..!.. _ 'Y1 + 'Y2 + 'Y1 'Y2 
3! 2! 1! 

(4.34) 

Since the poles and zeros of Rold(z) depend continuously on the 'Yi' poles and 
zeros of q(z) appear always in pairs (we call them dipoles). By the maximum 
principle or by Remark 4.14, each boundary curve of B leaving the origin 
must lead to at least one dipole before it rejoins the origin. Since there are 
8+2 =p+1 dipoles of q(z) (identical poles for Rold(z) and Rnew(z) don't 
give rise to a dipole of q( z)) and p+ 1 pairs of boundary curves of B leaving 
the origin (Remark 4.14), each such boundary curve passes through exactly 
one dipole before rejoining the origin. As a consequence no boundary curve 
of B can cross the real axis except at dipoles. 

If the error constant of Rold(z) satisfies Cold< 0, then by Remark 4.20 
RolAz) has no zero between 1h1 and the origin. Therefore also q(z) pos­
sesses no dipole in this region. Since the pole of Rnew (z) is slightly larger 
than 1h1 (that of Rold(Z)), the real axis between 1h1 and the origin must 
belong to the complement of B. Thus we have Cnew-Cold > 0 by (4.14) 
and (4.15). 

If Cold> 0 there is one additional dipole of q(z) between 1h1 and the 
origin (see Remark 4.20). As above we conclude this time that Cnew-Cold < 
O. 
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In both cases ICnewl < IColdl, since by continuity Cnew is near to Cold' 
As a consequence no ('1"'" (8) E H with at least two different li can 
minimize the error constant. As it becomes large in modulus when at least 
one li tends to 00 (this follows from Theorem 4.18 and from the fact that 
in this case R( z) tends to an approximation with s replaced by s -1) the 
minimal value of C must be attained when all poles are identical. 

The proof for L is the same, there are only s -1 zeros of R( z) and the 
order is p= s. 0 

An illustration of the order star B compared to A is given in Fig.4.10. 
Another advantage of multiple real-pole approximations is exhibited by the 
following theorem: 

Theorem 4.27 (Keeling 1989). On each surface H i n {('I"'" (8); Ij > O} 
the value 1 R( 00) 1 of (4.20) is minimized when 11 = 12 = ... = 18' 

Proof. The beginning of the proof is identical to that of Theorem 4.26. 
Besides 1/'1 and 1/'8 there is at best an even number of dipoles on the 
positive real axis to the right of 1/11' As in the proof above we conclude 
that a right-neighbourhood of 1/11 belongs to B so that 00 must lie in its 
complement (cf. Fig.4.10). This implies 

1 Rnew(oo) 1<1 Rold(oo) 1 

As a consequence no element of H n {('I"'" (8); Ij > O} with at least two 
Ij different can minimize 1 R( 00) I· Also 1 R( 00) 1 increases if 11 -+ 00. The 
statement now follows from the fact that 1 R( 00) 1 tends to infinity when at 
least one Ij approaches zero. 0 

Exercises 

1. (Ehle 1968). Compute the polynomial E(y) for the third and fourth 
Pade sub diagonal Rk ,k+3 and R k ,/ct4 (which, by Proposition 3.4 consists 
of two terms only). Show that these approximations violate (3.6) and 
cannot be A-stable. 

2. Prove the general formula 

( k!)2 j (_l)j-r(j-r. ) 2r 
E(y) = (k+ j)! L (j-r)! II (J-q+1)(k+q)(r-k-q) y 

r=[<k+j+2)!2] q=l 

for the Pade approximations Rkj (j ~ k). 



Rnew 

left pictures: Cold< 0 

/1 = 1.2 
/2 = 1.1 
/3 = 0.9455446 

/1 = 1.17 

/2 = 1.1 
/3 = 0.9628661 
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right pictures: Cold> 0 

/1 = 0.35 
/2 = 0.33 
/3 = 0.2406340 

/1 = 0.345 
/2 = 0.33 
/3 = 0.2440772 

Fig.4.10. Order star A compared to B 

3. (For the fans of mathematical precision) . Derive the following formulas 
for the roots '\ and Xi of (4.28) 

1 1 1311" 
Xl = 2 + J3 cos 18' r.:; (8 + 211") >'1 = 1 + v2cos --3- , 

1 1 2511" 
X2 = 2 + J3 cos 18' r.:; (8 + 411") >'2 = 1 + v2cos --3- , 
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1 1 1f' 

X3 = 2 + J3 eos 18' 

where 0= arctan(v2/4). 

Hint. Use the Cardano-Viete formula (e.g. Abramowitz & Stegun p.17). 

4. Prove that all zeros of 
XS x s - 1 x s - 2 

-:;T-Sl(s_1)! +S2(s_2)! -",±Ss 

are real and distinct whenever all zeros of 

are real. Also, both polynomials have the same number of positive (and 
negative) zeros (NI/Srsett & Wanner 1979, Bales, Karakashian & Serbin 
1988). 

Hint. Apply Theorem 4.23. This furnishes a geometrie proof of a classi­
eal result (see e.g., P6lya & Szegö (1925), Volume II, Part V, No.65) and 
allows us to interpret R( z) as the stability function of a (real) eolloeation 
method. 

5. Prove that (T, ... ,7) E L (Definition 4.21) if and only if Ls (1/"Y) = 0, 
where Ls(x) denotes the Laguerre polynomial 0/ degree s (see Abramo­
witz & Stegun (1964), Formula 22.3.9 or Formula (6.11) below). 
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"Although most of these methods appear at the 
moment to be largely of theoretical interest ... " 

(B.L. Ehle 1968) 

In Section II.7 the first implicit Runge-Kutta methods were introduced. As 
we saw in IV.3, not all of them are suitable for the solution of stiff differential 
equations. This section is devoted to the collection of several classes of fully 
implicit RK-methods possessing good stability properties. 

The construction of such methods relies heavily on the simplifying as­
sumptions 

~b'C~-1 = ~ 
L...J • • i=l q 

B(p) : q = 1, ... ,p; 

• q 
"" q-l ci L...JaijCj = q 
j=l 

i = 1, ... ,8, q = 1, ... ,17 i 

D((): tbic!-laij= ;(1-c1) j=1, ... ,8, q=l, ... ,(. 
i=l 

Condition B(p) simply means that the quadrat ure formula (bi' ci) is of order 
p. The importance of the other two conditions is seen from the following 
fundamental theorem, which was derived in Section H. 7. 

Theorem 5.1 (Butcher 1964). I/ the coefficients bi , Ci' aij 0/ an RK-method 
satisfy B(p), 0(71), D(() with P :s; 71+( + 1 and p :s; 271+2, then the method 
is 01 order p. 0 

Gauss Methods 

These processes, named "Kuntzmann-Butcher methods" in Section 11.7, 
are collocation methods based on the Gaussian quadrat ure formulas, i.e., 
cl' ... , Ca are the zeros of the shifted Legendre polynomial of degree 8, 

da 
_(za(z-l)·) . 
dz· 

For the sake of completeness we present the first of these in Tables 5.1 
and 5.2. 
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Table 5.1. Gauss methods of order 2 and 4 

1 V3 1 1 V3 --- ---
2 6 4 4 6 

f. 
1V3 1V3 1 -+- -+-2 2 2 6 4 6 4 

1 
1 1 
2 2 

Table 5.2. Gauss method of order 6 

1 VI5 5 2 VI5 5 VI5 --- --- ---
2 10 36 9 15 36 30 

1 5 VI5 2 5 VI5 
36 +'24 ---

2 9 36 24 

1 VI5 5 VI5 2 VI5 5 
2+1:0 36 +30 9+15" 36 

5 4 5 
18 9 18 

Theorem 5.2 (Butcher 1964, Ehle 1968). The 8-stage Gauss method is 
0/ order 28. Its stability /unction is the (s, s) -Pade approzimation and the 
method is A-stable. 

Proof. The order result has already been proved in Section II.7. Since the 
degrees of the numerator and the denominator are not larger than 8 for any 
8-stage Runge-Kutta method, the stability function of this 28-order method 
must be the (s, 8 )-Pade approximation by Theorem 3.12. The A-stability 
thus follows from Theorem 4.12. 0 

Radau JA and Radau HA Methods 

Butcher (1964) introduced Runge-Kutta methods based on the Radau and 
Lobatto quadrat ure formulas. He called them processes of type I, II or III 
according to whether Cl' •.. 'Cs are the zeros of 
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I: da- 1 (ZB(Z _1)B-1) 
dza - 1 ' 

(Radau left) (5.1) 

11: dB
-

1 (Z8-1(Z _ 1)8) 
dza - 1 ' 

(Radau right) (5.2) 

111: dB
-

2 ( ) __ zB-1(z _1)8-1 . 
dZ 8 - 2 

(Lobatto) (5.3) 

The weights b1 , ••• , b B are chosen such that the quadrat ure formula satis­
fies B(s), which implies B(2s-1) in the Radau case and B(2s-2) in the 
Lobatto case (see Lemma 5.15 below). Unfortunately, none of these meth­
ods of Butcher turned out to be A-stable (see e.g. Table 3.1). Ehle (1969) 
took up the ideas of Butcher and constructed methods of type I, 11 and 111 
with excellent stability properties. Independently, Axelsson (1969) found 
the Radau IIA methods together with an elegant proof of their A-stability. 

The s-stage Radau IA method is a method of type I where the coefficients 
aij (i,j=l, ... ,s) are defined by condition D(s). This is uniquely possible 
since the ci are distinct and the bi not zero. Tables 5.3 and 5.4 present the 
first of these methods. 

Table 5.3. Radau IA methods of orders 1 and 3 

0 
1 1 
4 4 

+. 
2 1 5 
3 4 12 

1 3 
4 4 

Table 5.4. Radau IA method of order 5 

0 
1 -1- v'6 -1 + v'6 
9 18 18 

6 - v'6 1 88 + 7v'6 88 - 43v'6 
10 9 360 360 

6+ v'6 1 88 + 43v'6 88 - 7v'6 
10 9 360 360 

1 16 + v'6 16 - v'6 
9 36 36 

Ehle's type 11 processes are obtained by imposing condition C( s). By 
Theorem H. 7.7 this results in the collocation methods based on the zeros of 
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Table 5.5. Radau HA methods of orders 1 and 3 

1 5 1 
3 12 12 

-+- 1 
3 1 
4 4 
3 1 
4 4 

Table 5.6. Radau HA method of order 5 

4-V6 88 -7V6 296 -169V6 -2+3V6 
10 360 1800 225 

4+V6 296 + 169V6 88+ 7V6 -2 - 3V6 
10 1800 360 225 

16-V6 16+V6 1 
1 

36 36 9 

16-V6 16+V6 1 
36 36 9 

(5.2). They are called Radau IIA methods. Examples are given in Tables 
5.5 and 5.6. For s = 1 we obtain the implicit Euler method. 

Theorem 5.3. The s-stage Radau JA method and the s-stage Radau JJA 
method are 0/ order 2s-1. Their stability function is the (8-1,8) subdiagonal 
Pade approzimation. Both methods are A-stable. 

Proof. The stated orders follow from Theorem 5.1 and Lemma 5.4 below. 
Since Cl =0 for the Radau JA method, D(s) with j=1 and B(2s-1) imply 
(3.14). Similarly, for the Radau IIA method, c.=1 and 0(8) imply (3.13). 
Therefore, in both cases, the numerator of the stability function is of degree 
::; s -1 by Proposition 3.8. The statement now follows from Theorem 3.12 
and Theorem 4.12. 0 

Lemma 5.4. Let an s-stage Runge-Kutta method have distinct cl'" .,c. 
and non-zero weights b1 , •• • , b.. Then we have 

a) O(s) and B(s+v) imply D(v); 

b) D(s) and B(s+v) imply C(v). 

Proo/. Put 

d~q) := t biC1-1aij - b: (1 - cD . 
i=l 

(5.4) 
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Conditions G(s) and B(s+v) imply 

• 
'" d(.q)C~-1 = 0 ~ k 1 d 1 L..J J J lor = , ... ,8 an q = , ... , v. 
j=l 

The vector (4q), .•• , d~q») is thus the solution of a homogeneous linear system 
with a non singular matrix of Vandermonde type and must vanish. This 
proves D(v). 

For part b) one defines 
• q 

e~q) := '" a .. c~-1 _ Ci 
, L..J ~ J q 

j=1 

and applies a similar argument to 

k=1, ... ,s, q=1, ... ,v. 
i=l 

Lobatto lIlA, 11m and IIIC Methods 

o 

For all type III processes the Ci are the zeros of the polynomial (5.3) and 
the weights bi are such that B(2s-2) is satisfied. 

The coefficients aij are defined by G( s ) for the Lobatto lIlA methods. It 
is therefore a collocation method. For the Lobatto IIIß methods we impose 
D(s) and, finally, for the Lobatto IIIC methods we put 

ai1 = b1 for i = 1, ... , s (5.5) 

and determine the remaining aij by G(s-1). Ehle (1969) introduced the 
first two classes, and presented the I1IC methods for s S 3. The general 
definition of the IIIC methods is due to Chipman (1971); see also Axelsson 
(1972). Examples are given in Tables 5.7-5.12. 

Theorem 5.5. The s-8tage Lobatto lIlA, IlIB and IIIG methods are of 
order 2s-2. The stability function for the Lobatto lIlA and IIlB methods is 
the diagonal (s-1,s-1)-Pade' approzimation. For the Lobatto IIlG method 
it is the (s-2,s)-Pade approzimation. All the8e method8 are A-stable. 

Proof. We first prove that the IIIC methods satisfy D( s -1). Condition 

(5.5) implies d~q)=O (q=1, ... ,s-1) for d~q) given by (5.4). The conditions 
G(s-1) and B(2s-2) then yield 

• 
'" d(.q)c~-l = 0 ~ k 1 1 d 1 1 L..J J J lOr = , ... ,s- an q= , ... ,s- . 
j=2 
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Table 5.7. Lobatto lIlA methods of orders 2 and 4 

0 0 0 0 

0 0 0 
1 5 1 1 
2 24 3 24 

1 
1 1 

1 
1 2 1 

2 2 6 3 6 

1 1 1 2 1 
2 2 6 3 6 

Table 5.8. Lobatto lIIA method of order 6 

0 0 0 0 0 

5-V5 1l+V5 25-V5 25 -13V5 -1+V5 
10 120 120 120 120 

5+V5 ll-V5 25 + 13V5 25+V5 -1-V5 
10 120 120 120 120 

1 
1 5 5 1 
12 12 12 12 

1 5 5 1 
12 12 12 12 

Table 5.9. Lobatto lIm methods of orders 2 and 4 

0 
1 1 

0 -
6 6 

0 
1 

0 
1 1 1 

0 
2 2 6 3 

1 
1 
2 

0 1 
1 5 

0 
6 6 

1 1 1 2 1 -
2 2 6 3 6 

Table 5.10. Lobatto IIIß method of order 6 

0 
1 -1-V5 -1+V5 

0 
12 24 24 

5-V5 1 25+V5 25 -13V5 
0 

10 12 120 120 

5+V5 1 25 + 13V5 25-V5 
10 12 120 120 

0 

1 
1 11 - v'5 11 + v'5 
12 24 24 

0 

1 5 5 1 
12 12 12 12 
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Table 5.11. Lobatto IlIC methods of orders 2 and 4 

0 
1 1 1 
6 3 6 

0 
1 1 1 1 5 1 
2 2 2 6 12 12 

1 
1 1 

1 
1 2 1 

2 2 6 3 6 

1 1 1 2 1 
2 2 6 3 6 

Table 5.12. Lobatto lIIC method of order 6 

0 
1 -vs vs -1 

12 12 12 12 

5 - vs 1 1 10 - 7VS VS 
10 12 4 60 60 

5 +vs 1 10 + 7VS 1 -VS 
10 12 60 4 60 

1 
1 5 5 1 

12 12 12 12 

1 5 5 1 
12 12 12 12 

As in the proof of Lemma 5.4 we deduce D(s-1). All order statements now 
follow from Lemma 5.4 and Theorem 5.1. 

By definition, the first row of the RK-matrix A vanishes for the lIlA 
methods, and its last column vanishes for the IIIß methods. The denomina­
tor of the stability function is therefore of degree :::; s-l. Similarly, the last 
row of A-:fibT vanishes for lIlA, and the first column of A-:fibT for IlIß. 
Therefore, the numerator of the stability function is also of degree :::; s-1 by 
Formula (3.3). It now follows from Theorem 3.12 that both methods have 
the (s -1, s -1 )-Pade approximation as stability function. 

For the lIIC process the first column as weIl as the last row of A - :fibT 

vanish. Thus the degree of the numerator of the stability function is at most 
s-2 by Formula (3.3). Again, Theorem 3.12 and Theorem 4.12 imply the 
statement. 0 

For a summary of these statements see Table 5.13. 
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Table 5.13. Fully implicit Runge-Kutta methods 

method simplifying assumptions order stability function 

Gauss B(2s) C(s) D(s) 
Radau IA 1 B(2s-1) C(s-1) D(s) 
Radau IIA 1 B(2s-1) C(s) D(s-1) 
Lobatto lIlA 1 B(2s-2) C(s) D(s-2) 
Lobatto 11m 1 B(2s-2) C(s-2) D(s) 
Lobatto IIIC 1 B(2s-2) C(s-1) D(s-1) 

The W -Transformation 

2s 

1 2s - 1 

1 2s - 1 
1 2s - 2 

1 2s - 2 

1 2s - 2 

(s,s)-Pade 
1 (s-1,s)-Pade 
1 (s-1,s)-Pade 
1 (s-1,s-1)-Pade 
1 (s-1,s-1)-Pade 
1 (s-2,s)-Pade 

We now attack the explicit construction of all Runge-Kutta methods covered 
by Theorem 5.1. The first observation is (Chipman 1971, Burrage 1978) that 
C("7) can be written as 

I) (j ::u ~ (j 
Cl 

C 
Cl 

ad Ca Ca 

Rence, if V is the Vandermonde matrix 

V= (~ 7 
1 ca 

a_l) Cl 

: , 
a-l 

••• Ca 

n 
0 0 0 
1 0 0 
0 1 0 I 

c~ 0 0 1 
71 
(5.6) 

then the first "7 (for "7 ::; s-l ) columns of V-lAV must have the special 
structure (with many zeros) of the rightmost matrix in (5.6). This "V­
transformation" already considerably simplifies the discussion of order and 
stability of methods governed by C("7) with "7 elose to s (Burrage 1978). 
Thus, collocation methods ("7 = s) are characterized by 

0 -eo/s 
1 0 -el/s 

1/2 0 -e2/s 
V-lAV = (5.7) .. 

'. 0 -ea-2/s 
1/{s -1) -ua_ds 

where the e's are the coefficients of M(t)= TI~(t-Ci) and appear when the 
c1 in (5.6) are replaced by lower powers. Whenever some of the columns of 
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V -1 AV are not as in (5.7), a nice idea of N !Ilrsett allows one to interpret the 
method as a perturbed collocation method (see N!Ilrsett & Wanner (1981) for 
more details). 

However, the V-transformation has some drawbacks: it does not allow 
a similar characterization of D( (), and the discussions of A- and B-stability 
remain fairly complicated (see e.g. the above cited papers). It was then 
discovered (Hairer & Wanner 1981, 1982) that nicer results are obtained, if 
the Vandermonde matrix V is replaced by a matrix W whose elements are 
orthogonal polynomials evaluated at ci' We therefore use the (non standard) 
notation 

P,(.) = ~ ::. (.'(. -1)') = v'2k+ 1 t,(-l)H'CW; k).; 
for the shifted Legendre polynomials normalized so that 

11 P;(:l))d:lJ = 1 . 

These polynomials satisfy the integration formulas 

1z 1 
Po{t)dt = e1P1(:l)) + -Po(:l)) 

o 2 

1z 
Pk(t)dt = ekHPk+1(:lJ) - ekPk-1(:l)) k = 1, 2, ... 

with e _ 1 
k - 2V4k2-1 

(Exercise 1). We now have instead of (5.7): 

Theorem 5.6. Let W be defined by 

i = 1, ... ,8, j = 1, ... ,8 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

and let A be the coefficient matriz for the Gauss method of order 28. Then 

(1/2 -e1 

e1 0 -e2 
W-1AW= e2 '. ) =:Xa 

0 -es - 1 

es - 1 0 

(5.13) 

Proof. We first write C(71) in the form 

t aij p(cj ) = lei p(:l)) d:lJ if deg(p) ~ 71-1 , 
j=1 0 

(5.14) 
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which, by (5.10), becomes 

s 

2:: a ijPk(Cj) = ek+lPk+l(CJ - ekPk-l{Ci) 
j=l 

k=1, ... ,1]-1. 

For 1]=s, inserting (5.12), and using matrix notation, this becomes 

'. 

° eS - l 

(5.15) 

(5.16) 

Since for the Gauss processes we have p. (Cl) = ... = Ps (c s) = 0, the last 
column respectively row of the right hand matrices can be dropped and we 
obtain (5.13). 0 

In what follows we shall study similar results for other IRK methods. 
We first formulate the following lemma, which is an immediate consequence 
of (5.15) and (5.16): 

Lemma 5.7. Let A be the coefficient matrix of an IRK method and let W 
be a nonsingular matrix with 

w·· = p. l(C.) 
'J J-' 

for i = 1, ... ,s, j = 1, ... ,1] + 1 . 

Then G( 1]) is equivalent to the fact that the first 1] columns of W-l AW are 
equalto those ofXo in (5.13). 0 

The second type of simplifying assumption, D( (), is now written in the 
form 

(5.17) 
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The integration formulas (5.10) together with orthogonality relations 

11 
Po{x)dx = 1, 11 

Pk(x)dx = 11 
Po(x)Pk(x)dx = 0 for k = 1,2, ... 

show that D{ () (i.e., (5.17)) is equivalent to 

(5.18) 

s 

LPk(cJbiaij = (ek Pk-1(Cj) - ek+1 Pk+1(Cj ))bj k = 1, ... ,( -1 . 
i=l 

This can be stated as 

Lemma 5.8. As in the preceding lemma, let W be a nonsingular matrix 
with 

w·· = p. l(c.) <) )-. for i = 1, ... , s, j = 1, ... , (+ 1 , 

and let B = diag(bll •.. , bs ) with bi 1= o. Then D{() is equivalent to the 
condition that the first ( rows of the matrix (WT B)A(WT B)-l are equal 
to those of X a in (5.13) (if B is singular, we still have (5.19) below). 

Proof. Formulas (5.18), written in matrix form, give 

WTBA= 

* 
* 

* 
* 

* 
* 

WTB. (5.19) 

o 

It is now a natural and interesting question, whether both transformation 
matrices of the foregoing lemmas can be made equal, i.e., whether 

W T B = W- 1 or W T BW = I . (5.20) 

A first result is: 

Lemma 5.9. For any quadrature formula of order 2: 2s -1 the matrix 

W = (P·_ 1{c.)) ) .. . 
1.,3=1, ... ,8 

(5.21) 

satisfies (5.20). 
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Proo/. If the quadrature formula is of sufficiently high order, the polynomials 
P,,(:c)PI(:c) (k+l :s 2s-2) are integrated exactly, i.e., 

8 11 
LbiP,,(Ci)PI(cJ = P,,(:c)PI(:c)dx = b"l ; 
i=1 0 

(5.22) 

this, however, is simply WTBW=1. o 

Unfortunately, Condition (5.20) is too restrictive for many methods. We 
therefore relax our requirements as follows: 

Definition 5.10. Let 11, ( be given integers between 0 and s -1. We say 
that an s X s-matrix W satisfies T( 11,0 for the quadrat ure formula (bi' ci )t=1 
if 

a) W is nonsingular } :: :~:;~'(t ir'···'" j = 1, ... ,m.*()+1 T(", () 

where 1 is the ((+l)x((+l) identity matrix; Ris an arbitrary (s-(-l) x (s--(-1) 
matrix. 

The main result can now be stated as: 

Theorem 5.11. Let W 8ati8fy T( 11, 0 tor the quadrature /ormula (bi' ci)i=l. 
Then tor a Runge-Kutta method based on (bi' ci) we have, tor the matrix 
X=W-IAW, 

a) the first 11 columns 0/ X are those 0/ X a ~ 0(11), 
b) the first ( rows 0/ X are th08e 0/ X a ~ D(O. 

Proof. The equivalence of a) with 0(11) follows from Lemma 5.7. For the 
proof of b) we multiply (5.19) from the right by W and obtain 

WTBW·X=X.WTBW 

where X is the large matrix of (5.19). Because of Condition c) of T(l1,() the 
first ( rows of X and X must be the same (write them as block matrices). 
The statement now follows from Lemma 5.8. 0 

We have still left open the quest ion of the existence of W satisfying 
T(l1, O. The following two lemmas and Theorem 5.14 give an answer: 

Lemma 5.12. 1/ the quadrature /ormula has distinct nodes Ci and all weights 
positive (bi > 0) and i/ it is 0/ order p with p ~ 211 + 1 and p ~ 2( + 1, then 
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the matriz 

W = (P'_l(C'») 3 ,.. 
t,3=1, ..• ,. 

(5.23) 

poueues property T(l1, () and satis/ies (5.20). Here Pj(;';) is the polynomial 
of degree j orthonormalized for the scalar product 

8 

(p, r) = L bip(Ci)r(ci ) . (5.24) 
i=l 

Proof. The positivity of the b's makes (5.24) a scalar product on the space of 
polynomials of degree :S s -1. Because of the order property (compare with 
(5.22», the orthonormalized Pj(;';) must coincide for j ::S max(l1, () with the 
Legendre polynomials Pj (;,;). Orthonormality with respect to (5.24) means 
that WT BW = I. 0 

Lemma 5.13. If the quadrature formula has distinct nodes ci and is of 
order p ~ s+(, then W de/ined by (5.21) has property T(l1, (). 

Proof. Because of p ~ 8+(, (5.22) holds for k=O, ... ,s-l and 1=0, ... ,(. 
This ensures c) of Definition 5.10. 0 

Theorem 5.14. Let the quadrature formula be of order p. Then there ezists 
a transformation with property T(l1, () if and only if 

and p ~ 2( + 1 (5.25) 

and at least max(l1, ()+1 numbers among Cl!'''' Cs are distinct. 

Proof. Set v = max( 11, () and denote the columns of the transformation W 
by wl , ... , w.' In virtue of b) of T(l1, () we have 

wj = (Pj_l(Cl)"",Pj_l(CS»)T for j = 1, ... ,v+1. 

These v + 1 columns are linearly independent only if at least v + 1 among 
Cl'"'' Cs are distinct. Now condition c) of T(l1, () means that Wl ' ... , W C+l 

are orthonormaJ. to Wl, ... ,w. for the bilinear form uTBv. In particular, 
the orthonormality of wl,,,,,WC+l to wl,,,,,wvH (compare with (5.22» 
means that the quadrat ure formula is exact for all polynomials of degree 
v+(. Therefore, p ~ v+(+l (which is the same as (5.25» is a necessary 
condition for T( 11, (). 

To show its sufficiency, we complete wl ' ..• , wv+l to a basis of Rs. The 
new basis vectors wv+2,"" Ws are then projected into the orthogonal com­
plement of span(wu "" WCH) with respect to uT Bv by a Gram-Schmidt 
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type orthogonalization. This yields 

(+1 

Wj = W; - 2:(wf BWj)Wk 

k=l 

for j = v + 2, ... ,s . 

Construction of Implicit Runge-Kutta Methods 

o 

For the construction of IRK methods satisfying B(p), C(71) and D() with 
the help of Theorem 5.11, we first have to choose a quadrat ure formula of 
order p. The fol1owing lemma is the basic result for Gaussian integration: 

Lemma 5.15. Let cl"'" Cs be real and diatinct and let bl , •.• , bs be de­
termined by condition B( 8) (i.e., the formula ia "interpolatory"). Then 
thia quadrature formula ia of order 2s - k if and only if the polynomial 
M( a:) = (a: - Cl )( a: - C2 } ••• (a: - Cs ) ia orthogonal to all polynomiala of degree 
:s: s-k-1, i.e., if and only if 

(5.26) 

For a proof see Exercise 2. o 

We see from (5.26) that all quadrature formulas of order 28 -k can be 
specified in terms of k parameters a 1l a 2, • •• , ak' 

N ext, if the integers 71 and ( satisfy 71+(+1 :s: 28-k and 2(+1 :s: 2s-k (cf. 
(5.25)), we can compute a matrix W satisfying T(71, () from Theorem 5.14 
(or one of Lemmas 5.12 and 5.13). Finally a matrix X is chosen which 
satisfies a) and b) of Theorem 5.11. Then the IRK method with coefficients 
A= WXW-l is of order at least min(71+( +1, 271+2} by Theorem 5.1. 

Example 5.16. We search for all IRK-methods satisfying B(2s-2), C(s-l) 
and D(s-2}, i.e., methods which are of order at least 2s-2. As in (5.26), 
we put 

If a2 satisfies 

s -1 y'2s + 1 
a 2 < -s - -y'-=2=s=-=3 

(5.27) 
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then the roots of M are real and distinct (see Exercise 7). The matrix W 
given in (5.21) has Property T(s-l, s-2) by Lemma 5.13. Finally we put 

( 

1/2 -~1 
~1 0 

X= '. '. (5.28) 

and obtain with A = W XW -1 a family of IRK methods of order 2s - 2 with 
the four parameters oll 02' ßs ' ßs - 1 • 

All methods of Table 5.13 (with the exception of Lobatto IIIß) must 
be special cases. The corresponding parameter values are indicated in Ta­
ble 5.14 (for their computation see Exercise 3). If we put 01 = ° and 
02 = -J2s + 1/ J2s - 3 (Lobatto quadrature), we obtain the two-parameter 
family of Chipman (1976). 

Table 5.14. Special cases of method (5.27, 5.28) 

Method ßs-1 

Gauss 

Radau IA 1 y!2s+1/-v'2s-1 1 0 11/(4s-2)1 -~s-l 
Radau lIA 1-y!2s+1/Y!2s-1 1 0 11/(4s-2)1 -~s-l 
Lobatto lIIAI 0 1-y!2s+1/y!2s-31 0 1 0 

Lobatto IIICI 0 1-J2STI/v'2s=311/(2s-2)1-~S_1(2s-1)/(S-1) 

Stability Function 

We try to express the stability function of an implicit RK-method in terms 
of the transformed RK-matrix X = W-1AW. From b) and c) of Property 
T( Tl, () it follows that 

We1 =11, W T B11 = eIl e1 =(l,O, ... ,of. 
Hence Formulas (3.2) and (3.3) become 

R(z) = 1 + zei(I - ZX)-l e1 , 

R(z) = det(I - zX + ze1 ei) . 
det(I - zX) 

(5.29) 

(5.30) 

(5.31 ) 

It is interesting to note that the stability function depends only on X and 
not on the underlying quadrature formula. As a consequence the stability 
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function of the method of Example 5.16 depends on ß. and ß.-1 oo1y. For­
mula. (5.31) beeomes more symmetrie (Hairer & Türke 1984) if we introduee 
the a.rithmetic mean of the matriees X and X-eI er and define 

1 T 
Y = X - 2e1e1 , (5.32) 

whieh is just the matrix X without the 1/2 in the (1, l)-position. 

Proposition 5.17. Por an RK-method (3.1) let W satisfy T(TI, () lor so me 
TI, ( 2: 0, and let Y be given by (5.32) where X = W-IAW. The stability 
function then satisfies 

() l+~W(z) 
Rz =-......;:-l~....:... 

1 - :2W(z) 
(5.33) 

with 
(5.34) 

Prool. Applying the RK-method to the test equation (2.9) yields 

9 = llyo + zAg, Yl = Yo + zbT 9 . 

With W -1 9 =g = (g1'" .. , g.)T this beeomes 

(1 - zY)g = e1(yo + ~gl)' Yl = Yo + z91 , (5.35) 

where we ha.ve used (5.29). Computing 91 from the first equation of (5.35) 
and inserting this into the seeond one gives the result. 0 

If the RK-method satisfies B(2v + 1), C(v) and D(v) for some integer 
v, then Y is given by (see Theorem 5.11) 

o -eI 
e1 

y= 0 -eil (5.36) 

e. I YII 

In this ease the eomputation of (5.34) for the (s, s)-matrix Y ean be redueed 
to that of the smaller (s-v,s-v)-matrix YII 80S follows: 

Theorem 5.18. 11 Y is given by (5.96), the function W(z) 01 (5.9-1) has 
the continued /raction repreaentation 

(5.37) 
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where 

Proof. Let Yj (for 0 :::; j :::; 1/+1 ) denote the (s-j, s-j) principal minors 
of Y, where the first j rows and eolumns are suppressed. Expanding the 
determinant of I -ZYj_1 with respect to the first row (and then the first 
column) gives for j = 1, ... ,1/ 

det(I - zYj_1) = det(I - zYj ) + ej z2 det(I - zYj+1) . (5.38) 

By Cramer's rule, the functions wj(z) can also be written as 

T -1 det(I - ZYi+1) 
w/z) = ze1 (I - zYj) e1 = z det(I _ zYj ) (5.39) 

Dividing (5.38) by det(I -zYj) yields 

z 
wj _ 1(z) = 1 + ejzw/z) (5.40) 

A repeated use of (5.40) gives (5.37) since W(z) = Wo(z). o 

We are thus naturally led to continued fraction expansions, a technique 
which was historically the earliest one: Birkhoff & Varga (1965) used it in 
their proof of the A-stability of the diagonal Pade approximations. Later, 
Ehle (1969,1973) tried to extend "Varga's proof' to verify the A-stability of 
the first and second subdiagonals of the Pade table ("This was unsuccessful 
because the resulting continued fraction expansions were not easily related 
to one another."). Therefore, Ehle (1973), Ehle & Picel (1975), proved 
A-stability results for the first and second subdiagonal and some generaliza­
tions by a completely different method. The following study of A-stability 
(see Butcher 1977, Hairer 1982, Hairer & Türke 1984) combines the above 
continued fraction expansion with properties of positive functions. 

Positive Functions 

"Many stability conditions for numerical methods ean be 
expressed in the form that some associated function is po­
sitive." (G. Dahlquist 1978) 

A-stability of an implicit RK-method is defined by the property 

IR(z)1 < 1 for Rez < 0 . (5.41) 
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Since the transformation (1+()/(1-() oceurring in (5.33) maps the negative 
half-plane onto the open unit dise, (5.41) is equivalent to 

ReW(z) < 0 for Rez < 0 . (5.42) 

This eondition means that - w( -z) is a positive funetionj for rational fune­
tions the eoneept of positivity ean be defined as follows: 

Definition 5.19. A rational function f(z) is ealled positive if 

ReJ(z) > 0 for Rez > 0 . 

A niee survey of the relevanee of positive functions to numerieal analysis 
is given by Dahlquist (1978). The following lemmas eolleet some properties 
of positive funetions. 

Lemma 5.20. Let f(z) and g(z) be positive functions. Then we have 

a) af(z)+ßg(z) is positive, ifa > 0 and ß 2:: 0; 

b) 1/f(z) is positive; 

c) f(g(z)) is positive. o 

Observe that the poles of a positive function eannot lie in the positive 
half-plane, but poles on the imaginary axis are possible, e.g. the function 
1/ z is positive. 

Lemma 5.21. Suppose that 

c 
f(z) = - + g(z) with g(z) = 0(1) for z -+ 0 ; 

z 

and g(z) ~ O. Then f(z) is positive if and only if c 2:: 0 and g(z) is positive. 

Proof. The "if-part" follows from Lemma 5.20. Suppose now that f(z) is 
positive. The eonstant c has to be non-negative, sinee for small positive 
values of z we have Re f( z) > O. On the imaginary axis we have (apart from 
poles) Reg(iy)=Ref(iy) 2:: 0 or more preeisely 

l~minf Reg(z) 2:: 0 for y ER. 
z-+ty, Re z>O 

The maximum principle for harmonie functions then implies that either 
g(z) == 0 or g(z) is positive. 0 

A eonsequenee of this lemma is the following eharaeterization of A­
stability. 
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Theorem 5.22. Consider an RK-method whose stability function is given 
by (5.33) with Y as in (5.36). It is A-stable if and only if 

ReWv(z) < 0 for Rez< 0 (5.43) 

where Wv(z)=zef(I-zYJ-1 e1 as in (5.37). 

Proof. We consider the submatrices Yj of Y and the functions W/z) of 
(5.39). As we prefer to work with positive functions we put 

Xj(z) = -W j ( -z) = zei(I + zYv)-l e1 . (5.44) 

By (5.42), A-stability is equivalent to the positivity of Xo(z) and condition 
(5.43) means that Xv(z) is a positive function. Relation (5.40) becomes 

-1 1 2 
(Xj_1(Z)) = - + ~jXj(z) . 

z 
Since all Xj( z) are bounded near the origin and do not vanish identically 
(see (5.44)), it follows from Lemma 5.21 that Xj(z) is a positive function iff 
Xj_1(Z) is positive. This proves the theorem. D 

Example 5.23. For the RK-method of Example 5.16 with X given by 
(5.28) we have 

,T. ()= z(1-ß.z) 
'J.' 8-2 z ß t ß 2 1 - .z - '>.-1 ._l Z 

Since 

(W._ 2 (Z))-1 = ~ -~'-lß.-11_zß.Z 
it follows from Lemma 5.21 and Theorem 5.22 that the method is A-stable 
iff 

ß.-1 = 0 or (ß.- 1 < 0 and ß. 2:: 0) . (5.45) 

Comparing this result with Tables 5.14 and 5.13 leads to a second proof for 
the A-stability of the diagonal and the first two sub diagonal Pade approxi­
mations for eZ (see Theorem 4.12). 

Example 5.24 (Construction of all A-stable RK-methods satisfying B(2s-
4), C(s-2) and D(s-3)). We take a quadrat ure formula of order 2s-4 and 
construct, by Theorem 5.14, a matrix W satisfying Property T(s-2, s-3). 
The RK-matrix A is then of the form 

1 T -1 A = W(Y + -e1e1 )W 
2 

with Y given by (5.36), V=S - 3 and 

y._, = ( e.~, 1'.-2 
1'.-1 
1'. 

ß.-2) 
ß.-1 

ßs 
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For the study of A-stability we have to compute W's_3(z) from (5.39). Ex­
panding det(I - zYs_3) with respect to its first column we obtain 

(W' (Z))-l = ~ + Z~s-2(90 - 91 z ) 
s-3 Z 1 - f 1 Z + f 2z2 

where 
f2 = ß/"Ys-1 - ßs-1"Ys' 

91 = -ßs "YS -2 + ßs - 2"Ys • 

(5.46) 

By Lemma 5.21 and Theorem 5.22 we have A-stability iff either 90 = 91 = 0 
or 

Z(90 + 91 z ) 
1 + f1z+ f2z2 

(5.47) 

is a positive function, which is equivalent to (see Exercise 4b) 

90 > 0, 91;:::: 0, f 2 ;:::: 0, 90f 1 - 91 ;:::: 0 . ( 5.48) 

A similar characterization of A-stable RK-methods of order 28 - 4 is given 
in Wanner (1980). 

Exercises 

1. Verify the integration formulas (5.10) for the shifted Legendre polyno­
mials. 

Hint. By orthogonality Jo'" Pk(t)dt must be a linear combination of 
Pk+1, Pk and Pk- 1 only. The coefficient of Pk vanishes by symmetry. 
For the rest just look at the coefficients of Xk+1 and x k- 1. 

2. Give a proof of Lemma 5.15. 

Hint (Jacobi 1826). If f(x) is a polynomial of degree 28-k-1, and r(x) 
the interpolation polynomial of degree 8 -1, then 

f(x) = q(x)M(x) + r(x) where deg q( x) ~ 8 - k - 1 . 

3. Let R(z) be the stability function of the RK-method of Example 5.16. 

a) The degree of its denominator is ~ 8 -1 iff 

Hint. Use Formula (5.31) and the fact that det(I -zXG) is the denomi­
nator of the diagonal Pade approximation. 

b) The degree of the numerator of R( z) is ~ 8 -1 iff 

(5.49 ) 
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e) The degree of the numerator of R( z) is :S 8-2 iff in addition to (5.49), 

ß, = 1/(28 - 2) . 

d) Verify the entries of Table 5.14. 

4. a) The function 

8(Z) = a +ßz 
,+6z 

with, > 0 satisfies Re8(z) 2: 0 for Rez > 0 iff a 2: 0, ß 2: 0 and 6 2: o. 
b) Use the identity (for go > 0 ) 

1+flz+f2Z2 1 (fl-gl/gO)+f2z --'-''----'-':,.- - - = 
z(go + glz) zgo go + glz 

to verify that the function given in (5.47) is positive iff (5.48) holds. 

5. Suppose that 

f(z) = cz + g(z) with g(z) = 0(1) for z -+ 00 

and g( z) t= o. Then f( z) is a positive function, if and only if c 2: 0 and 
g( z) is positive. 

Hint. U se the transformation z -+ 1/ z in Lemma 5.21. 

6. Give an alternative proof of the Routh eriterion (Theorem 13.4 of Chap­
ter I): All zeros 01 the real polynomial 

p(z) = aozn + alzn- l + ... + an (ao > 0) 

lie in the negative half-plane Re z < 0 il and only if 

for i = 0, 1, ... , n . 

The Cij are the coefficients of the polynomials 

where 

and 

( ) n-i + n-i-2 + n-i-4 + Pi Z = CiOz cil Z ci2 z ... 

i.e., COj = a 2j 

z.e., clj = a2j+l . 

i = 1, ... ,n -1 . (5.50) 

Hint. By the maximum principle for harmonie functions the eondition 
"p( z) i= 0 for Re z 2: 0" is equivalent to 

I p( - z) I < 1 for Re z > 0 
p(z) 
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and the condition that Po (z) and PI (z) are irreducible. U sing the trans­
formation (5.33) this becomes equivalent to the positivity of Po(z )/Pl (z). 
Now divide (5.50) by Ci_l,OPi(Z) and use Exercise 5 recursively. 

7. Show that 
s -1 ";28 + 1 °2 < ---'-=== 8 ";28 - 3 

(5.51) 

is a suflicient condition for M(:z:) = Pa (:Z:)+01 p.- l (:Z:)+02Pa_2(:Z:) to have 
real ahd pairwise distinct roots. 

Hint. (See "Lemma 18" of N!1lrsett & Wanner 1981). Consider the set D 
of all pairs (01' ( 2 ) for which the roots Ci of M(:z:) are real and distinct, 
and the corresponding interpolatory quadrat ure formula has positive bio 
Verify that (0,0) E D, and show that for (°1 , ( 2 ) E aD either one bi 
becomes zero or two Ci coalesce but the quadrat ure formula remains of 
order 28-2. Therefore it must be the Gaussian formula with 8-1 nodes 
of order 28 - 2 and we must have 

N ow use the three-term recursion formula 
1 

8~aPa(:Z:) = (:z: - 2)PS- 1 (:Z:) - (8 -1)~S-IP8-2(:Z:) 

(5.52) 

(5.53) 

(Abramowitz & Stegun p.782, modified) to eliminate :Z:PS _ l on the right 
of (5.52). Then obtain by comparing the coeflicients of Pa' Pa- l and 
Ps - 2 

1 °1 = 2.. (~_ ß), s -1 ffsTI (5.54) 
C = S~a sea 2 °2 = -s - ";2s - 3 . 

If ß is one of the roots of p.-1 , then (5.52) has a double root and the 
estimate (5.51) for °2 is optimal. 

8. Show that the polynomials (5.8) satisfy 

PIe(:z:) = (-I)k";2k + 1 F(-k,k + Ijlj:Z:) 

where 

a . b a( a + 1 )b( b + 1) 2 
F(a,bjcj:z:)=I+-:z:+ ( ) :v + ... 

c·l cc+ll·2 

is the hypergeometric series (see Chapter I, (5.9)). 
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" ... they called their methods "diagonally implicit", a term 
which is reserved here (or the special case where all diago­
nal entries are equal ... " (R. Alexander 1977) 

We continue to quote from this nice paper: "To integrate a system of n 
differential equations, an implicit method with a fuU s x s matrix requires 
the solution of ns simultaneous implicit (in general nonlinear) equations in 
each time step ( ... ) One way to circumvent this difficulty is to use a lower 
triangular matrix (aij) (i.e., a matrix with aij = 0 for i < j)j the equations 
may then be solved in s successive stages with only an n-dimensional system 
to be solved at each stage". In accordance with many authors, and in disac­
cordance with others (see above), we call such a method diagonally implicit 
(DIRK). 

"In solving the n-dimensional systems by Newton-type iterations one 
solves linear systems at each stage with a coefficient matrix of the form 
1-haii 8 f / 8y. If an aii are equal one may hope to use repeatedly the stored 
LU-factorization of a single such matrix". When we want to emphasize this 
additional property for a DIRK method, we shall call it a singly diagonally 
implicit (SDIRK) method. 

It is a curious coincidence that in the early seventies at least four theses 
dedicated a large part of their research to DIRK and SDIRK methods, very 
often having in mind their usefulness for the treatment of partial differential 
equations (R. Alt 1971, M. Crouzeix 1975, A. Kurdi 1974, S.P. N!Ilrsett 1974). 
The classical paper on the subject is Alexander (1977). 

Order Conditions 

"The traditional problem of choosing the coefficients leads 
to a nonlinear algebraic jungle, to which civilization and 
order were brought in the pioneering work of J.C. Butcher, 
further refined in the Thesis of M. Crouzeix." 

(R. Alexander 1977) 

We want to make the "jungle" still a little more civilized by the following 
idea: consider a SDIRK scheme 
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ca "'I 
c2 a 21 "'I 

c. a sl a.2 "'I 

b1 b2 b. 

with s stages. The order conditions (see Vol. I, Section 11.2) consist of sums 
such as 

(6.1) 

Because there are now more non-zero entries in the matrix A than for explicit 
methods, this sum contains far more terms as it did before. The trick is to 
transfer all expressions containing a "'I to the right-hand side of (6.1). The 
resulting sum, denoted by L:', is then only buHt upon the subdiagonal 
entries as in the ERK-case. The right-hand side becomes (for this example) 

(6.1 ') 
j,k,l j,k,l 

where 0jk denotes the Kronecker delta. Multiplying out we obtain 

I: 'bjajkakl = I: bjajkakl - "'I (I: bja jl + I: bjajk) + "'12 I: b j • 
j,k,l j,k,l j,l j,k j 

r~ 
Jj 

''; 

'. k 

./ ej 

For all sums on the right we insert order conditions (e.g. from Theo­
rem 2.1 of Section 11.2) and obtain 

(6.1") 

The general rule is that there appears an alternating polynomial in "'I whose 
coefficients are sums of l!"Y( u), where u runs through all trees which are ob­
tained by "short-circuiting" one, two, three, etc. vertices of t (with exception 
of the root). The conditions for order 4 obtained in this way are summarized 
in Table 6.1. For s =2, p=3 and s =3, p=4 these simplified conditions have 
only very few non-zero terms and the equations become especially simple to 
solve (see Exercise 1). 
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Table 6.1. Order conditions for SDIRK methods 

/?(t) previous conditions simplified conditions 

oj 
1 2:bj = 1 2: bj = 1 

.{k 1 2 1 I:bjajk = } 1I:'bjajk =}-/ 
k\{l ] 

12: bjajkajl = t 12:' 1 2 
] )k 1 3 bjajkajl = 3 -/ +/ 

1 I: bjajkakl = i II:' 1 2 k 1 m ] 1 3 bjajkakl = 6 -/ + / 

W 1 4 1 I: bjajkajlajm = i 1I:'b 1 3 2 3 ] 1 jajkajlajm = 4" -/ + 2/ - / 
m~k 12: bjajkaklajm = % 12:'b 1 5 3 2 3 l~mJ 1 4 jajkaklajm = 8" - 6/ + 2/ - / 

12: bjajkaklakm = -b 12:'b 1 2 3 2 3 

, '): I 4 jajkaklakm = 12 - 3/ + 2/ - / 

I: bjajkaklalm = 2~ I:'b 1 1 3 2 3 
] jajkaklalm = 24 - 2/ + 2/ - / 

Stiflly Accurate SDIRK Methods 

Our main interest here lies in methods satisfying 

a.j = bj for j = 1, ... ,8, (6.2) 

i.e., in methods for which the numerical solution Yl is identical to the last 
internal stage. A first consequence of this property is that R( 00) = 0 (see 
Proposition 3.8). The order conditions for such methods can, instead of 
(6.1"), be simplified still further: Consider again the example (6.1), which 
can now be written as 

This time we have, instead of (6.1 ') 

j,k,1 j,k,l 

= 2: asjajkakl -')'(2: asjajk + 2: asjaj1 + 2: aB kaki) 

j,k,1 j,k j,l k,l 

+ ')'2 (2: aBj + 2: aBk + 2: aBI) _')'3 ·1 . 
j k I 
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Again inserting known order conditions, we now obtain 

",",' 1 3 2 3 
L...J asjajkakt = "6 - "27 + 37 - 7 . (6.1"') 
j,k,t 

The general rule is similar to the one above: the difference is that all vertices 
(including the root) are now available for being short-circuited. Another 
example, for the tree t 42 , is sketched in Fig.6.1 and leads to the following 
right-hand side: 

1 (1 1 1 1) 2(1 1 1 1) --7 -+-+1·-+- +7 -+1·1+1·1+-+-+-
83326 2 222 

1 4 
_73 (1 + 1 + 1 + 1) + 7 4 = - - -7 + 472 - 473 + 7 4 • 

8 3 

v 
\ 

• 

""; 

"'; ;. ... 

Fig.6.1. Short-circuiting tree t42 

The order conditions obtained in this manner are displayed in Table 6.2 for 
all trees of order :S 4. The expressions L' are written explicitly for the 
SDIRK method (6.3) with 8=5 satisfying condition (6.2) 

I 

a2l I 
, 

c2 = a2l 
a3l a32 I 

c~ = a3l + a32 (6.3) 
a4l a42 a43 I 
bl b2 b3 b4 

, 
I c4 = a4l + a42 + a43 

bl b2 b3 b4 I 
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Observe that they become very similar to those of Formulas (1.11) in Sec­
tion II.2. 

Table 6.2. Order conditions for method (6.3) 

Solution of Equations (6.4) 

I (6.4;1) 

I (6.4;2) 

I (6.4;3) 

I (6.4;4) 

I (6.4;5) 

I (6.4;6) 

I (6.4;7) 

(6.4;8 ) 

By clever elimination from equations (6.4;4) and (6.4;6) as weH as (6.4;4) 
and (6.4;7) we obtain 

Multiplying these two equations and using (6.4;8) gives 

P8b3(C~ - c~)(c~ - c~)c~ = (C~P4 - P6)(C~P4 - P7) . 

(6.5) 
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We now compute b2 , b3 , b4 from (6.4;2), (6.4;3), (6.4;5). This gives 

b3 = [-P2C~C~ + P3(C~ + c~) - Ps]/[c~(c~ - c~)(c~ - c~)] (6.6) 

and b2 as wen as b4 by eyelie permutation. Comparing the last two equations 
leads to 

(6.7) 

We now ehoose "'I, c~ and c~ as free parameters. Then c~ is obtained from 
(6.7); b2, b3, b4 from (6.6), b1 from (6.4;1), a32 and a43 from (6.5), a42 from 
(6.4;4), and finally a21l a31l a41 from (6.3). 

Embedded 3rd order formula: As proposed by Cash (1979), we ean append 
to the above formula a third order expression 

4 

Y1 = Yo + h L biki 
i=1 

(thus by omitting bs = "'I ) for the sake of step size control. The eoefficients 
b1 , ••• ,b4 are simply obtained by solving the first 4 equations of Table 6.1 
(linear system). Continuous embedded 3rd order formulas ean be obtained 
in this way too (see (5.1) of Seetion II.5) 

4 

y(xo + Oh) ~ Yo + h L bi(O)k i . 
i=1 

The eoeffieients b1(0), ... ,b4 (0) are obtained by solving the first 4 (simpli­
fied) eonditions of Table 6.1, with the right-hand si des replaced by 

02 03 03 
(), 2' - "'I(), "3 - "'I()2 + "'120, 6 - "'I()2 + "'I2() , 

respectively. The eontinuous solution obtained in this way becomes Y1 for 
() = 1 instead of the 4-th order solution Y1' The global eontinuous solution 
would therefore be discontinuous. In order to avoid this diseontinuity, we 
add bs (0) and include the fifth equation from Table 6.1 with right-hand side 

()4 3"'1202 
- - "'103 + -- - "'13 () • 
4 2 
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The Stability Function 

By Formula (3.3), the stability function R(z) for a DIRK method is ofthe 
form 

R(z) = P(z) , 
(1 -a11 z)(1 -a22 z) ... (1 - a •• z) 

(6.8) 

because the determinant of a triangular matrix is the product of its diagonal 
entries. The numerator P(z) is a polynomial of degree 8 at most. If the 
method is of order P 2:: 8, this polynomial is uniquely determined by Formula 
(3.26). It is simply obtained from the first terms of the power series for 
(l-an z) ... (l-au z) . eZ • 

For SDIRK methods, with an = ... = a .. = "I, we obtain (see also Formula 
(3.26) with qj =( -"I)j (j) ) 

P(z) 
R(z) = ( )8' 1- "Iz 

(6.9) 

with error constant 

(6.10) 

where 

~ . (8):c j 
L.(:c) = L..J(-1)1 . 1 

;=0 J J. 
(6.11) 

is the 8-degree Laguerre polynomial. L~k)( 2:) denotes its k-th derivative. 
Since the function (6.9) is analytic in C- for"l > 0 , A-stability is equivalent 
to 

E(y) = Q(iy)Q( -iy) - P(iy)P( -iy) 2:: 0 for all y ( 6.12) 

(see (3.8)). This is an even polynomial of degree 28 (in general) and subde­
gree 2j where j = [(p+2)/2] (see Proposition 3.4). We therefore define the 
polynomial F( 2:) by 

F(y2) = E(y)/y2 j j = [(p+2)/2] . 

and check the condition F(2:) 2:: 0 for 2: 2:: 0 using Sturm sequences. We 
display the results obtained (similar to Burrage 1978) in Table 6.3. 

For completeness, we give the following explicit formulas for E(y). 

8=1; p=l : 
E = y2(2"1 -1) 

8=2; p=2: 

E = y4 ( - t + 2"1 - 5"12 + 4"13 ) = y4 (2"1 - 1)2 ( "I - t) 
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Table 6.3. A-stability for SDIRK with order p 2': s 

s A-stability A-stability and p = s + 1 

1 1/2::: I< 00 1/2 

2 1/4::: , <00 (3 + V3)/6 

3 1/3 ::: I ::: 1.06857902 1.06857902 

4 0.39433757 ::: I ::: 1.28057976 

5 { 0.24650519 ::: I ::: 0.36180340 
0.42078251::: I ::: 0.47326839 

0.47326839 

6 0.28406464::: I ::: 0.54090688 

7 

8 0.21704974::: ,::: 0.26471425 

8=3; p=3: 

E = y4 (112 _ , + 3,2 _ 2,3) + y6 ( _ 316 + ~ _ 134')'2 + 28/ _ 12,4 + 6,5 ) 

8=4; p=4: 

E - y6 (.1.. _ .1 + 17')'2 _ 32')'3 + 17",4 _ 8"'5) 
- 72 3 6 3 I I 

+ 8 __ 1_ + .2 _ ~ + .!k:L _ .!..!b:... + I2..:r.... _ 22",6 + 8 7 ( 
2 3 4 5 ) 

Y 576 18 36 3 12 3 I , 

A-stability means here that all coefficients must be non-negative. A general 
formula is as follows. 

Lemma 6.1. The E-polynomial for (6.8) with all = ... = ass =, and p 2:: 8 
satisfies 

Proof. Inserting Formula (6.9) into the definition of E(y) 

E(y) = (1 + ,2y2)S - P(iy)P( -iy) 

(6.13) 

= (1 + ,2y2)s - L L L~s-k) (~)L~S-I) (~ ) (fiy)k+ I( _1)1 
k 1 ' , 
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and using integration by parts for the verification of 

2 r Ls(x)L~2S+1-2j)(x)dx = (-1)" L (_I)IL~'-k)(x)L~'-I)(x)la 
10 k+l=2j 0 

one obtains the result, since 

o 

Multiple Real-Pole Approximations with R( 00) = 0 

For methods satisfying (6.2) we have R(oo) = O. Therefore the highest 
coefficient of P( z) in (6.9) is zero. If the order of the method is known to be 
p 2 s - 1, the remaining coefficients of P( z) are still uniquely determined 
by [ and we have 

with error constant 

The first polynomials E(y) of (6.12) are now: 

s=2, p=l: 

E = y2( -1 + 4[ _ 2[2) + y4[4 

s=3, p=2: 

E = y4 (-i + 3[- 12[2 + 18[3 - 6[4) + y6[6 

s=4, p=3: 

E = y4 (/2 - ~ + 6[2 - 8[3 + 2[4) 

(6.14) 

(6.15) 

+ y6 (_ 316 + 23"'( _ 6[2 + 76t _ 52[4 + 48[5 _ 12[6) + y8[8 . 

The regions of [ for A-( and hence L- )stability are displayed in Table 6.4. 
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Table 6.4. L-stability for SDIRK with order p ~ s - 1 

s L-stability 

2 (2 - .../2)/2 :S 1 :S (2 + .../2)/2 

3 0.18042531 :S 1 :S 2.18560010 

4 0.22364780 :S 1 :S 0.57281606 

5 0.24799464 :S 1 :S 0.67604239 

6 0.18391465 :S 1 :S 0.33414237 

7 0.20408345 :S 1 :S 0.37886489 

8 0.15665860 :S 1 :S 0.23437316 

Choice of Method 

L-stab. and p=s 

1 = (2 ± .../2)/2 

1 = 0.43586652 

1 = 0.57281606 

1 = 0.27805384 

1 = 0.33414237 

1 = 0.23437316 

We now determine the free parameters for method (6.3) with s = 5 and 
order 4. For a good choice of " we have displayed in Fig.6.2 the error 
constant C as weH as the regions for A- and A(O)-stability. 

ICI 
10-2 

10-3 

10-4 

A-stable A(O)-stab 
10-5 

10-6 

.1 .2 .3 .4 .5 .6 .7 gamma 

Fig.6.2. Error constant and A-stability domain for s=5, p=4. 

This suggests that , between 0.25 and 0.29 is a good choice. The method 
is then L-stable and the error constant is smalI. For various values of , in 
this range, we determined (by a nonlinear Gauss-N ewton code) c~ and c~ in 
order to minimize the fifth-order error terms. It turned out that 

c~ = 0.5, c~ = 0.3 

is elose to optimal. With this we coded two different choices of,: , = 4/15 = 
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0.2666 ... , which was numerically the hetter choice and "'(= 1/4, which gave, 
via Formulas (6.4), (6.5), (6.6) and (6.7), especially nice rational coefficients. 
These latter are displayed in Tahle 6.5. 

Table 6.5. L-stable SDrRK method of order 4 

1 1 
4 4 
3 1 1 
4 2 4 
11 17 1 1 
20 50 25 4 
1 371 137 15 1 
2 1360 2720 544 4 

25 49 125 85 
1 

24 48 16 12 

25 49 125 85 
Yl = 24 48 16 12 

59 17 225 85 
YI = 48 96 32 12 

3 27 25 
0 err = 

16 32 32 

A continuous solution to this method is given hy 

5 

y{xo + Bh):::::: Yo + h I>j{B)kj 

j=l 

where 

1 
4 

1 

4 

0 

1 
4 

(6.16) 

(6.17) 
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Exercises 

1. (Crouzeix & Raviart 1980). Compute the SDIRK methods (Table 6.1) 
for s=3, p=4. Obtain also (for s=2,p=3) on ce again the method of 
Table 7.2, Section II.7. 

Result. The last order condition is in both cases just a polynomial in 
,. Among the different solutions, the following presents an A-stable 
scheme: 

, , 
1 1 1 (7r) 1 
2 '2-' , , = V3 cos 18 + 2" 

(6.18) 
1-, 2, 1- 4, , 

h= 
1 

6(21 -1)2 . 
5 1- 25 5 

2. Verify all details of Tables 6.1 and 6.2. 

3. The four cases of A-stable SDIRK methods of order p = s + 1 indicated 
in Table 6.3 (right) are the only ones existing. This fact has not yet 
been rigorously proved, because the "proof" given in Wanner, Hairer & 
Nl2lrsett (1978) uses an asymptotic formula without error estimation. Do 
better. 

4. Cooper & Sayfy (1979) have derived many DIRK (which they Call "semi­
explicit") methods of high order. Their main aim was to minimize the 
number of implicit stages and not to maximize stability. One of their 
methods is 

6-V6 6-V6 
--ro- -10-

6+9V6 -6+5V6 6-V6 
-3-5- 14 --ro-

1 88S+607V6 126-161 V6 6-V6 
2850 1425 --ro-

4-V6 3153-3082V6 3213+1148V6 -267+B8V6 6-V6 
--ro- 14250 28500 500 --ro-
HV6 -32583+14638V6 -17199+364V6 1329-544V6 -96±131V6 6-V6 
--ro- 71250 142500 2500 625 --ro-

1 0 0 1 16-V6 16+/6" 0 
'9 -3-6- 36 

Show that it is of order 5 and A-stable, but not L-stable. 

5. It can be seen in Table 6.4 that for s = 2, 4, 6, and 8 the L-stability 
superconvergence point coincides with the right end of the A-stability 
interval. Explain this with the help of order star theory (Fig.6.3.a). 
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Further, for s = 7, a superconvergence point is given by 1 = 0.20406693, 
which misses the A-stability interval given there by less than 2 . 10-5 • 

Should the above argument also apply here and must there be a com­
putation error somewhere? Study the corresponding order star to show 
that this is not the case (Fig. 6.3.b). 

Fig.6.3.a. 
Multiple pole order star 

8=8, 1=0.23437316 

Fig.6.3.b. 
Multiple pole order star 

8=7, ,=0.20406693 
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"When the functions r.p are non-linear, implicit equations 
can in general be solved only by iteration. This is a severe 
drawback, as it adds to the problem of stability, that of 
convergence of the iterative process. An alternative, which 
avoids this difficulty, is ... " (H.H. Rosenbrock 1963) 

.. , is discussed in this section. Among the methods which already give 
satisfactory results for stiff equations, Rosenbrock methods are the easiest 
to program. We shall describe their theory in this section, which will lead 
us to our first "stiff" code. Rosenbrock methods belong to a large dass 
of methods which try to avoid nonlinear systems and replace them by a 
sequence of linear systems. We therefore call these methods linearly implicit 
RK.methods. In the literat ure such methods are often called "semi-implicit" 
(or was it "semi-explicit"?), or "generalized" or "modified" or "adaptive" or 
"additive" RK-methods. 

Derivation of the Method 

We start, say, with a diagonally IRK method 

( 
i-I ) 

ki = hf Yo + L aijkj + aiiki 
j=1 

8 

Yl = Yo + Lbiki 
i=1 

applied to the autonomous differential equation 

y' = f(y) . 

i = 1, ... ,s 

The main idea is to linearize Formula (7.1). This yields 

ki = hf(gi) + h!'(gi)aiiki 
i-I 

g·=Yo+"a .. k. t LJ tJ J ' 
j=1 

(7.1 ) 

(7.2) 

(7.3) 

and can be interpreted as the application of one Newton iteration to each 
stage in (7.1) with starting values k~O) = O. Instead of continuing the iter­
ations until convergence, we consider (7.3) as a new dass of methods and 
investigate anew its order and stability properties. 
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Important computational advantage is obtained by replacing the Jaco­
bians !'(gi) by J = I'(yo), so that the method requires its calculation only 
on ce (Calahan 1968). Many methods of this type and much numerical ex­
perience with them have been obtained by van der Houwen (1973), Cash 
(1976) and NiZSrsett (1975). 

We gain further freedom by introducing additional linear combinations 
of terms Jk j into (7.3) (NiZSrsett & Wolfbrandt 1979, Kaps & Rentrop 1979). 
We then arrive at the following dass of methods: 

Definition 7.1. An s-stage Rosenbrock method is given by the formulas 

ki = hl(YO + ~aijkj) + hJt,ijkj , i = 1, .. . ,s 
j=1 j=1 

• 
YI = Yo + Lbjkj 

j=1 

where aij' lij' bi are the determining coefficients and J = I'(yo)' 

(7.4) 

Each stage of this method consists of a system of linear equations with 
unknowns ki and with matrix I - h,iJ. Of special interest are methods for 
which 111 = ... = '.8 = " so that we need only one LU-decomposition per 
step. 

Non-autonomous problems: The equation 

y' = I(x, y) (7.2a) 

can be converted to autonomous form by adding x' = 1. If method (7.4) 
is applied to the augmented system, the components corresponding to the 
x-variable can be computed explicitly and we arrive at 

i-I 2 81 81 i 

ki = h/(xo+aih,yo+ Laijkj ) +,ih a(xo,Yo) + ha(xo,yo) L lijkj 
j=1 x Y j=l 

Yl = Yo + L bjkj , 
j=l 

where the additional coefficients are given by 

i-l 

a i = L a ij , 

j=l 

li = L lij . 
j=l 

Implicit differential equations: Suppose the problem is of the form 

My' = f(x, y) 

(7.4a) 

(7.5) 

(7.2b) 
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where M is a constant matrix (nonsingular for the moment). If we for­
mally multiply (7.2b) with M-l, apply method (7.4a), and then multiply 
the resulting formula with M, we obtain 

i-I 2 öj öj i 

Mki = hj (Xo+Oih,yO+ L Oijkj ) +'ih ÖX (X o, yo)+ha(xo'yo) L lijkj 
j=1 Y j=1 

Yl = Yo + L bjkj . 
j=1 

(7.4b) 

An advantage of this formulation is that the inversion of M is avoided and 
that possible band-structures of the matrices M and ö j / öy are preserved. 

Order Conditions 

Conditions on the free parameters which ensure that the method is of order p, 
i.e., the local error satisfies 

y(xo+h) - Yl = O(hPH ) , 

can be obtained either by straightforward differentiation or by the use of 
the theorems on B-series (Section 11.11). We follow here the first approach, 
since it requires only the knowledge of Section 11.2. The second possibility 
is sketched in Exercise 2. 

As in Section 11.2, we write the system (7.2) in tensor 
Method (7.4) as 1 

kf = hjJ(9j) + h L tk(yo) L Ijkkf 
K k 

9f = yt + Loijkf ' 
j 

yf = yt + L bjkf . 
j 

Again, we use Leibniz 's rule (cf. (11.2.4)) 

notation and 

(7.4') 

(kf)(q) I h=O= q(fJ (9j))(q-l) I h=O +q L jk(Yo) L Ijk(kf)(q-l) Ih=O 
K k 

(7.6) 

1 In the sequel, the reader will find many k' s of different meaning; on the one 
hand the "k" in Formula (7.1) which goes back to Runge and Kutta, on the other 
hand "k" as summation index as since ever in numerical analysis. Although this 
looks somewhat strange in certain formulas, we prefer to retain the notation of 
previous sections. 
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and have from the chain rule (cf. Section II.2, (2.6;1), (2.6;2)) 

(fJ(gj))' = Lfk(gj)· (gf)' 
K 

(fJ(gj))" = L fkL(gj)· (gf)' . (g;)' + L fk(gj) . (gf)" 
K~ K 

etc. Inserting this into (7.6) we obtain recursively 

(k"!)(O) I = 0 
J h=O 

(kf)<1)lh=O = fJ 

(kj)(2) Ih=O = 2 L fk fK L 0j/c + 2 L fk fK L 'Yj/c 
K /c K /c 

= 2 L fkf K L(aj/c + 'Yj/c) 
K /c 

K,L /c,1 

+ 3·2 L fkft fL L(ajle + 'Yj/c)(Okl + 'Y/C/) 
K,L le,1 

(7.7;0) 

(7.7; 1) 

(7.7;2) 

(7.7; 3) 

etc. All elementary differentials are evaluated at yo. Comparing the deriva­
tives of the numerical solution (q ~ 1) 

(yf)(q)lh=O= L b/kj)(q)lh=O 
j 

(7.8) 

with those ofthe true solution (Section 1I.2, Formula (2.7;1), (2.7;2), (2.7;3)), 
we arrive at the following conditions for order three: 

.{k 
J 

Lbj =1 

L bj(aj/c + 'Yjle) = ~ 

'" b·o ·lea"1 = ~ L..JJJ J 3 

Lbj(aj/c +'Yj/c)(akl +'Y/C/) = ~. 
The only difference with the order conditions for Runge-Kutta methods is 
that at singly-branched vertices of the corresponding trees 0j/c is replaced 
by aj/c +'Yjle. In order to arrive at a general result, the formulas obtained 
motivate the following definition: 
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Definition 7.2. Let t be a labelled tree of order q with root j; we denote 
by 

«Pj(t) = L 'Pj,k,l, ... 
k,l, ... 

the sum over the remaining q-1 indices k, l, ... etc. The summand 'Pj,k,l, ... 
is a product of q-1 factors, which are 

(Xkl + -Ykl if 1 is the only son of k; 
(Xkl if 1 is a son of k and k has at least two sons. 

Using the recursive representation of trees (Definition II.2.12) we have 
«P j( T) = 1 for the only tree of order 1 and, as in (II.2.19), 

if t = [t ll .. ·, tml, 
m22 

(7.9) 

Theorem 7.3. The derivatives of kf, given by (7.4'), satisfy 

(kf)(q)lh=O= L -y(t)«pj(t)pJ(t)(yo) (7.7; q) 
tELTq 

and the numerical solution yf satisfies 

(yf)(q)lh=O= L -y(t) Lbj«pj(t)pJ(t)(yo) , (7.10) 
tELTq j 

where pJ(t) are the elementary differentials (Definition 11.2.3). 

Proof. Because of (7.8) we only have to prove the first formula. This is 
done by induction on q and follows exactly the lines of the proof of Theorem 
11.2.11. We use (7.6), replace the expression fJ(gj)(q-l) by Faa di Bruno's 
formula (Lemma 11.2.8), use 

(gf)(6) = L (Xjk(k{;)(6) 
k 

for the derivatives of gj and insert the induction hypothesis (7.7;1) through 
(7.7;q-1). This gives 



!V.7. Rosenbrock-Type Methods 115 

(kf)(q)lh=O = q L L ... L ')'(t 1 )·· .,),(tm) 
uELSq tlELT61 t m ELT6m 

. L ajkl «P k1 (tl)'" L ajkm «P km (tm) 

L 
K 1 , ••• ,Km 

+ q L ')'(t1) L ')'jk «P k(t1) L IfdYo)FK(t 1)(yO) . 
tlELTq _ 1 k K 

The one-to-one correspondence between the summation set 
{(u, tw .. ,tm)lu E LSq , t j E LT6) and LTq together with the recursion 
formulas (7.9), (11.2.17), (11.2.18) now yields the result. 0 

Comparing Theorems 7.3 and 11.2.6 we obtain: 

Theorem 7.4. A Rosenbrock method (7.4) with J = I'(yo) is of order P iff 

1 
Lbj«Pj(t) = -( ) for e(t)::; p. (7.11) 

. ')'t 
1 0 

The expressions «Pj(t) simplify, if we introduce the abbreviation 

ßij = aij + ')'ij . (7.12) 

The order conditions (7.11) for all trees up to order 5 are given in Table 7.1. 
A further simplification of the order conditions (7.11) is possible if 

')'ii = ')' for all i (7.13) 

(It is unfortunate that in the current literature the letter')' is used for the 
parameter in (7.4) as weH as for ')'(t) in (7.11) and we hope that no confusion 
will arise). In the same way as for DIRK methods, the summations in the 
expressions for «P j(t) in the 5th column of Table 7.1 again contain more 
terms than the corresponding expressions for explicit RK methods, since 
the matrix ')'ij (and hence ßij ) contains non-zero elements in the diagonal. 
The difference is that here these diagonal')' appear only for singly-branched 
vertices (see Definition 7.2). Therefore the procedure explained in Section 
IV.6 (see Formulas (6.1') and (6.1") must be slightly modified and leads to 
order conditions of the form 

L \«pj(t) = Pt('/') 
j 

(7.11') 

where the polynomials Pt('/') are listed in the last column of Table 7.1. 
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Table 7.1. Trees and order conditions up to order 5 

u(t) t graph ;(t) <Fj(t) Pt(;) 

1 T oj 1 1 1 

2 t21 .{k 
] 

2 Lkßjk 1/2 -; 

3 t31 k'/;l 3 Lk,ICXjkCXjl 1/3 
] 

~k t32 6 Lk,Ißjkßkl 1/6 _; +;2 
] 

4 t41 
k 1 m 

4 Lk Im CXjkCXjlCXjm 1/4 W 
] 1 ' , 

t42 m~k 8 Lk,l,m CXjkßklCXjm 1/8 - ;/3 
] 

t43 
Ipm 12 Lk Im ßjkCXklCXkm 1/12 - ;/3 ] l~: ' , 

t44 24 Lk,l,m ßjkßklßlm 1/24 - ;/2 + 3;2/2 _;3 

5 tSl 
p ml k 
'V( 5 L CXjkCXjlCXjmCXjp 1/5 

tS2 P~k 10 L CXjkßklCXjmCXjp 1/10-;/4 
] 

tS3 p0m 
15 L CXjkCXklCXkmCXjp 1/15 

] ~m 
L CXjkßklßlm CX jp 1/30 - ;/4 +;2/3 tS4 P k 30 

j 

~ L CXjkßklCXjmßmp 1/20 - ;/4 +;2/3 tss m k 20 
j P m 1 

tS6 m~ 20 L ßjkCXklCXkmCXkp 1/20-;/4 

tS7 l~P 40 L ßjkCXklßlmCXkp 1/40 - 5;/24 +;2/3 

,~'~: t ss 60 L ßjkßklCXlmCXlp 1/60 - ; /6 +;2/3 
m ] 

tS9 
1 120 L ßjkßklßlmßmp 1/120 - ;/6 +;2 - 2;3 +;4 k 

j 

The Stability Function 

If we apply Method (7.4) to the test equation y' = >.y and if we assume 
J = !'(Yo)= >. then the numerical solution becomes Yl = R(h>')yo with 

R(z) = 1 + zbT(I - zB)-l:n (7.14) 

where we have used the notation bT = (bpo .. , bs ) and B = (ßij )i,j=l. Since 
B is a lower triangular matrix, the stability function (7.14) is equal to that 
of a DIRK-method with RK-matrix B. Properties of such stability functions 
have already been investigated in Section IV.6. 
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Construction of Methods of Order 4 

In order to construct 4-stage Rosenbrock methods of order 4 we list, for 
convenience, the whole set of order conditions (c.f. Table 7.1.). 

v 

b1 + b2 + b3 + b4 = 1 

/ b2ß; + bsß~ + b4ß~ = ~ - "'( = P21("'() 

) 

2 2 2 1 
b20!2 + bsO!s + b40!4 = 3 

b3ß32ß~ + b4(ß42ß; + ß43ß~) = ~ - "'( + "'(2 = P32("'() 

3 S s 1 
b20!2 + b3 0!s + b40!4 = -

4 

b30!30!32ß~ + b40!4(0!42ß~ + 0!43ß~) = ~ - i = P42("'() 

b3ß320!~ + b4(ß420!~ + ß43 0!;) = 1~ - i = P43("'() 

, 1 "'( 3 2 3 
b4ß43ß32ß2 = 24 - '2 + 2''''( - "'( = P44("'() 

Here we have used the abbreviations 

i-1 

O!i = LO!ij' 

j=l 

i-1 

ß; = Lßij' 
j=l 

(7.15a) 

(7.15b) 

(7 .15c) 

(7.15d) 

(7.15e) 

(7.15f) 

(7.15g) 

(7.15h) 

(7.16) 

For the sake of step size control we also look for an embedded formula 
(Wolfbrandt 1977, Kaps & Rentrop 1979) 

s 

Y1 = Yo + Lbjkj (7.17) 
j=l 

which uses the same krvalues as (7.4), but has different weights. This 
method should have order 3, i.e., the four conditions (7.15a)-(7.15d) should 
be satisfied also for the bio These equations constitute the linear system 

(7.18) 

Whenever the matrix in (7.18) is regular, uniqueness of the solutions of the 

linear system implies bi = bi (i = 1, ... ,4) and the approximation Y1 cannot 
be used for step size control. We therefore have to require that the matrix 
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(7.18) be singular, i.e., 

3 

(ß~a~ - ß~a;)ß32ß~ = (ß~a; - ß~aD L ß4jßj . (7.19) 
j=2 

This condition guarantees the existence of a 3rd order embedded method 
(7.17), whenever (7.15) possesses a solution. The computation of the coef­
ficients aij' ßij , I, bi satisfying (7.15), (7.16) and (7.19) is now done in the 
following steps: 

Step 1: Choose I> 0 such that the stability function (7.14) has desirable 
stability properties (c.f. Table 6.3). 
Step 2: Choose a 2, a 3, a 4 and bl , b2, b3, b4 in such a way that the three 
conditions (7.15a), (7.15c), (7.15e) are fulfilled. One obviously has four 
degrees of freedom in this choice. Observe that the (bi' ai) need not be the 
coefficients of a standard quadrature formula, since L: biai = 1/2 need not 
be satisfied. 
Step 3: Take ß43 as a free parameter and compute ß32ß~ from (7.15h), then 
(ß42ß~ +ß43ß~) from (7.15d). These expressions, inserted into (7.19) yield 
a second relation between ß~, ß~, ß~ (the first one is (7.15b)). Eliminating 
(b4ß42+b3ß32) from (7.15d) and (7.15g) gives 

b4ß43(ß~a; - ß~a~) = ß~P43(/) - a~P32(J) , 

a third linear relation for ß~, ß~, ß~. The resulting linear system is regular 
iff b4ß43a2/(31 - I):;f0. 
Step 4: Once the ß: are known we can find ß32 and ß42 from the values of 
ß32ß~ , (ß42ß~ +ß43 ß;) obtained in Step 3. 
Step 5: Choose a 32 , a 42 , a 43 according to (7.15f). One has two degrees of 
freedom to do this. Finally, the values ai' ß: yield ail' ßil via condition 
(7.16). 

Most of the popular Rosenbrock methods are special cases of this con­
struction (see Table 7.2). Usually the remaining free parameters are chosen 
as follows: if we require 

(7.20) 

then the argument of f in (7.4) is the same for i = 3 and i = 4. Hence, the 
number of function evaluations is reduced by one. Further free parameters 
can be determined so that several order conditions of order five are satisfied. 
Multiplying the condition (7.15g) with a 2 and subtracting it from the order 
condition for the tree t S6 yields 

b4ß43 a;(aS - ( 2) = P56(/) - a 2P4S(J) . (7.21) 

This determines ß4S ' The order condition for t 5l can also easily be fulfilled 
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Table 7.2 Rosenbrock methods of order 4 

method I, 1 parameter choices 1 A(a)-IIR(oo)1 
stable 

GRK4A 0.395 a2 = 0.438, a3 = 0.87 7r/2 0.995 

(Kaps-Rentrop 79) 1 

GRK4T 0.231 

1 b4 = 0.25 

a2 = 2" (7.22), b3 = 0 189.30 1 0.454 
(Kaps-Rentrop 79) 

Shampine (1982) 0.5 a2 = 2" (7.22), b3 = 0 7r/2 

Veldhuizen (1984) 0.225708 a2 = 2" (7.22), b3 = 0 89.50 

Veldhuizen (1984) 0.5 a2 = 2" a3 = 0.5, b3 = 0 7r/2 

L-stable method 0.572816 a2 = 2" (7.22), b3 = 0 7r/2 

in Step 2. If a 3 = 0:4 (see (7.20)) this leads to the restriction 

1/5 - 0: 2 /4 
0:3 = 1/4 - 0: 2 /3 . 

1/3 

0.24 

1/3 

0 

(7.22) 

In Table 7.2 we collect some well-known methods. All of them satisfy (7.20) 
and (7.21) (Only exception: the second method of van Veldhuizen for 1= 
0.5 has ß43 = 0 instead of (7.21)). The definition of the remaining free 
parameters is given in the first two columns. The last eolumns indieate 
some properties of the stability function. 

Higher Order Methods 

As for explicit Runge-Kutta methods the construction of higher order meth­
ods is facilitated by the use of simplifying assumptions. First, the condition 

8 

L bißij = bj (l - O:j), 
i=j 

j = 1, ... ,8 (7.23) 

plays a role similar to that of (11.1.12) for explicit Runge-Kutta methods. 
It implies that the order condition of the left-hand tree in Fig. 7.1 is a con­
sequence of the two on the right-hand side. A difference to Runge-Kutta 
methods is that here the vertex direct1y above the root has to be multiply­
branched. 

The second type of simplifying asumption is (with ßk = 2::7=1 ßkz) 

j-I o:~ 

L o:jkßk = -f' j = 2, ... ,8 . (7.24) 

k=1 
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It has an effect similar to that of (II.6.7). As a consequence of (7.24) the 
order conditions of the two trees in Fig. 7.2 are equivalent. Again the vertex 
marked by an arrow has to be multiply-branched. 

The use of the above simplifying assumptions has been exploited by 
Kaps & Wanner (1981) for their construction of methods up to order 6. Still 
higher order methods would need generalizations of the above simplifying 
assumptions (in analogy to (II.7.12) and (II.7.13)). 

/·_-v , , 
(> (:'.1 ("\ (\ 
\V/ and V/ 

, \ 
I I 
I + + + , 

\ I , 

Fig.7.1. Reduction with (7.23) Fig.7.2. Reduction with (7.24) 

Implementation of Rosenbrock-Type Methods 

A direct implementation of (7.4) requires, at each stage, the solution of a 
linear system with the matrix I - hliJ and also the matrix-vector multi­
plication J. L.lijkj . The latter can be avoided by the introduction of the 
llew variables 

U· = '"' 'V··k· > L...J / >J J' 
i = 1, ... ,8 . 

j=l 

If lii i= 0 for all i, the matrix r = (!ij) is invertible and the k i can be 
recovered from the ui: 

1 i-I 

k i = -::;. Ui - L CijUj , 
.. j=l 

C d· (-1 -1) r-1 = lag 111 ,. ",IS8 - . 

Inserting this formula into (7.4) and dividing by h yields 

i-I i-I 

(h 1" 1- J)u i = f(yo + L aijUj) + L(~ )Uj, i = 1, ... ,8 

I.. j=l j=l 

8 

Y1 = Yo + L mjUj , 

j=l 

(7.25 ) 
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where 

Compared to (7.4) the formulation (7.25) of a Rosenbrock method avoids 
not only the above mentioned matrix-vector multiplication, but also the 
n 2 multiplications for biih)J. Similar transformations were first proposed 
by Wolfbrandt (1977), Kaps & Wanner (1981) and Shampine (1982). The 
formulation (7.25) can be found in Kaps, Poon & Bui (1985). 

For non-autonomOU8 problems this transformation yields 

(7.26) 

with O:i and 'Yi given by (7.5). 

For implicit differential equation8 of the form (7 .2b) the transformed Rosen­
brock method becomes 

(7.27) 

Coding 

Rosenbrock methods are nearly as simple to implement as explicit Runge­
Kutta methods. The only difference is that at each step the Jacobian 8f/8y 
has to be evaluated and 8 linear systems have to be solved. Thus, one can 
take an explicit RK code (say DOPRI5), add four lines which compute 8// 8y 
by finite differences (or call a user-supplied subroutine JAC which furnishes 
it analyticallY)j add further a call to a Gaussian DEComposition routine, 
and add to each evaluation-stage a call to a linear SOLver. Since the method 
is of order 4(3), the step size prediction formula 

hnew=h. min{6., max(O.2,O.9.(Tol/err)1 /4)} (7.28) 

seems appropriate. 



122 IV. Stiff Problems - One Step Methods 

However, we want the code to work economically for non-autonomous 
problems as wen as for implicit equations. Further, if the dimension of the 
system is large, it becomes crucial that the linear algebra be done, whenever 
possible, in banded form. All these possibilities, autonomous or not, implicit 
or explicit, 8f/8y banded or not, B banded or not, 8f/8y analytic or not, 
(" ... that is the question") lead to 25 different cases, for each of which 
the code contains special parts for high efficiency. This makes it 16 pages 
long (code ROS4). Needless to say, it works well on all stiff problems of 
Section IV.1. A more thorough comparison and testing will be given in 
Section IV.10. 

The "Hump" 

On some very stiff equations, however, the code shows a curious behaviour: 
consider the Van der Pol equation in singular perturbation form (1.5') with 

e = 10-6 , Yl (0) = 2, Y2(0) = -0.66 . (7.29) 

We further select method GRK4T (Table 7.2; each other method there be­
haves similarly) and Tol = 7.10-5 • Fig.7.3 shows the numerical solution 
Yl as well as the step sizes chosen by the code. There all rejected steps are 
indicated by an x. 

Curious step size drops (by a factor of about 10-3 ) occur without any 
apparent exterior reason. Further , these drops are accompamed by a huge 
number of step rejections (up to 20). In order to understand this phe­
nomenon, we present in the left picture of Fig. 7.4 the ezact local error as 
well as the estimated local error IIY1~11l at z = 0.5925 as a function of the step 
size h (both in logarithmic scale). The current step size is marked by large 
symbols. The error behaves like O· h5 only for very small h (::; 10-6 =e). 
Between h = 10-5 and the step size actually used (::::i 10-2 ) the error is 
more or less constant. Whenever this constant is larger than Tol (horizontal 
broken line), the code is forced to decrease the step size until h ::::i e. As 
a first remedy, we accelerate this lengthy process, as Shampine (1982) also 
did, by more drastical step size reductions (hnew = h/10) after each second 
consecutive step rejection. It also turns out (see right picture of Fig.7.4) 
that the effect disappears in the neighbourhood of the actual step size for 
the L-stable method (where R( 00) = 0). Methods with R( 00 ) = 0 and also 
R(oo)=O have been derived by Kaps & Ostermann (1990). 

A more thorough understanding of these phenomena is possible by the 
t-n.ncz;,..l,:l'r!:llt;nn nf C!;nO"I11~'I" n~'P+"'I"haf.;n.n n .. rnhl~TnC! (r!laDn.+.:.T' 'Tl\ 
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-solution 
first component 

.5 1.0 1.5 2 

.... 

h " !-- ".. 
step size 

~ 
h 

Fig.7.3. Step sizes for GRK4T at Equation (1.5') 

H 

GRK4T L-stable method 

local error 

Fig.7.4. Study of local error for (1.5') at :Il = 0.5925 

Methods with Inexact Jacobian (W-Methods) 

"The relevant question is now, what is the cheapest type 
of implicitness we have to require." 

(Steihaug & Wolfbrandt 1979) 

o 

All the above theory is built on the assumption that J is the exact Jacobian 
8/ /8y. This implies that the matrix must be evaluated at every step, which 
can make the computations costly. The following attempt, due to Steihaug 
& Wolfbrandt (1979), searches for order conditions which assure classical 
order for all approximations A of 8// 8y. The latter is then maintained over 
several steps and is just used to assure stability. The derivation of the order 
conditions must now be done somewhat differently: if J is replaced by an 
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arbitrary matrix A, Formula (7.6) becomes 

(kj)(q)lh=O= q(jJ(9j))(q-l)lh=O + q L A"f L Ijk(kf)(q-l)lh=O (7.30) 
K k 

where A=(A"f)},K=l' and we obtain 

(kf)C2)lh=O= 2 L ffdK LQjk + 2 LA"ffK L Ijk . (7.31; 2) 
K k K k 

Inserted into (7.8), the first term must equal the derivative of the exact 
solution and the second must be zero. Similarly, we obtain instead of (7.7;3) 

(e)(3) I = 3'" fJ fKfL '" Q. Q. ) h=O L.J KL L.J)k )1 
K,L k,l 

(7.31; 3) 

+ 3·2 Lfkff fL LQjkQkl + 3·2 LfkAl{ fL LQjk1kl 
K,L k,l K,L k,l 

+ 3·2 L A"fff fL L IjkQkl + 3·2 L A"fAl{ fL L Ijk1kl 
K,L k,l K,L k,l 

and the order conditions for order three become 

• j Lbj = 1 
...-;k 

J L bjQjk = 1/2 
.,;k 

Lbj1jk=0 
k\/;l 

L bjQjkQjl = 1/3 1 J 

~k L bjQjkQkl = 1/6 J 1 

~k L bjQjk1kl = 0 1 J 

~k L bjljkQkl = 0 
J 1 

~k L bjljklkl = 0 . 

(7.32) 

For a graphical representation of the elementary differentials in (7.31jq) and 
of the order conditions (7.32) we need trees with two different kinds of ver­
tices (one representing fand the other A). As in Section II.14 we use "mea­
gre" and "fat" vertices (see Definitions 11.14.1 to 11.14.4). Not all trees with 
meagre and fat vertices (P -trees) have to be considered. From the above 
derivation we see that fat vertices have to be singly-branched (derivatives 
of the constant matrix A are zero) and that they cannot be at the end of a 
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branch. We therefore use the notation 

TW = {P-treesj end-vertices are meagre and 
fat vertices are singly-branched } 

(7.33) 

and if the vertices are labelled monotonically, we write LTW. 

Definition 7.5. The elementary differentials for trees t E TW are defined 
recursively by 

and 

Kt, ... ,Km 

if t = Jtp ... , tml (meagre root) 

LAi<. FK(t1)(y) if t = b[t1l (fat root). 
K 

Definition 7.6. For tE TW we let <Pj(T) = 1 and 

We remark that T (the set of trees as considered for Runge-Kutta meth­
ods) is a subset of TWand that the above definitions coincide with Def­
initions II.2.3 and II.2.9 (c.f. also Formulas (11.2.18) and (II.2.19)). The 
general result is now the following 

Theorem 7.7. A W-method (7.4) with J =A arbitrary is of order p iff 

1 L bj<pj(t) = -( ) 
. I t 

J 

L bj<pj(t) = 0 
j 

for tE T with e(t) ::; p, and 

jor t E TW \ T with e(t) ::; p . 

The prooj is essentially the same as for Theorems 7.3 and 7.4. o 

The number of order conditions for W-methods is rather large (see Ta­
ble 7.3), since each tree of T with '" singly-branched vertices gives rise to 21< 
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Table 7.3. Number of order conditions for W·methods 

order p 1 2 3 4 5 6 7 8 

no. of conditions 1 3 8 21 58 166 498 1540 

order conditions (in the case of symmetry some may be identical). Therefore, 
W -methods of higher order are best obtained by extrapolation (see Section 
IV.9). 

The .stability investigation for linearly implicit methods with A i= f'(Yo) 
is very complicated. If we linearize the differential equation (as in the be­
ginning of Section IV.2) and assurne the Jacobian to be constant, we arrive 
at a recursion of the form 

Since, in general, the matrices !'(Yo) and A cannot be diagonalized simulta­
neously, the consideration of scalar test equations is not justified. Stability 
investigations for the case when 11!'(Yo)-AIi is small will be considered in 
Section IV.ll. 

Exercises 

1. (Kaps 1977). There exists no Rosenbrock method (7.4) with oS = 4 and 
p = 5. Prove this. 

2. (N~rsett & Wolfbrandt 1979). Generalize the derivation of order condi­
tions for RK-methods with the help of B-series (Section 11.11, page 247) 
to Rosenbrock methods. 

Hint. Prove that, for a B-series B( a, Yo) with a : T ---t R satisfying 
a(0) =0, 

is again a B-series with coefficients 

a(t) = {oe(t)a(t l ) if t = [tl] 
else . 

3. Cooper & Sayfy (1983) consider additive Runge-Kutta methods 

i-I i 

9i = Yo + h L UiJ(XO + cjh, 9j) + hJ L 'TJij9j i = 1, ... , oS + 1 
j=l j=l 

(7.34) 
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i-l 

whose coefficients satisfy L aij =Ci , L 'Tlij =0. 
j=l j=l 

a) Prove that (7.34) is equivalent to (7.4) whenever aa+l,i=bi and 

(7.35) 

Here all matrices are of dimension (8+1) X (8+1). The last line of h'ij) 
need not be specified since the last column of (aij) is zero. 

b) If the coefficients of (7.34) satisfy ai,i-l i= 0 for all i, then we can 
always find an equivalent method of type (7.4). 

4. (Verwer 1980, Verwer & Scholz 1983). Derive order conditions for Rosen­
brock methods "with time-lagged Jacobian", i.e., methods of type (7.4) 
where J is assumed to be f'(Y(zo -wh)). If w is the step ratio ho1d/h, 
this allows re-use of the Jacobian of the previous step. 

5. (Kaps & Ostermann 1989). Show that some order conditions of (7.32) 
can be shifted to higher orders if it is assumed that 

f'(yo) - J = O(h) . 

This makes the conditions of Exercise 4 independent of w. 

Result. The number of order-shifts is equal to the number of fat nodes. 
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"These have not been used to any great extent ... " 
(S.P. Ni1lrsett 1976) 

"However, the implementation difficulties of these methods 
have precluded their general use; ... " (J.M. Varah 1979) 

"Although Runge-Kutta methods present an attractive alter­
native, especially for stiff problems, ... it is generally believed 
that they will never be competitive with multistep methods." 

(K. Burrage, J.C. Butcher & F.H. Chipman 1980) 

"Runge-Kutta methods for stiff problems, we are just begin­
ning to explore them ... " (1. Shampine in Aiken 1985) 

If the dimension of the differential equation y' = f( x, y) is n, then the s-stage 
fully implicit RK-method (3.1) involves an· s-dimensional nonlinear system 
for the unknowns 91' ... ,9 •. An efficient solution of this system is the main 
problem in the implementation of an implicit RK-method. 

Among the methods discussed in Section IV.5, the processes Radau HA 
of Ehle, which are L-stable and of high order, seem to be particularly promi­
sing. Most of the quest ions arising (stopping criteria for the simplified N ew­
ton iterations, efficient solution of the linear systems, starting values for 
the iterations and the selection of the step sizes) are discussed here for the 
particular Ehle method with s = 3 and p = 5. This then constitutes a de­
scription of the code RADAU5 of the appendix. We also describe briefly our 
implementation of the diagonal implicit method SDIRK4 (Formula (6.16)). 

An adaptation of RADAU5 to the 7th order and 9th order Radau HA 
methods has been realized by Reymond (1989); an independent implementa­
tion of the 5th order Radau method is the code FIRK5C, written by Th. Speer 
(1989), with which we experimented during our studies. 

Reformulation of the Nonlinear System 

In order to reduce the influence of round-off errors we prefer to work with 
the smaller quantities 

Then (3.1a) becomes 

• 
zi = h L aiJ(xO + cjh, Yo + Zj) 

j=l 

(8.1) 

i = 1, ... ,s . (8.2a) 
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Whenever the solution zl' ... ' Zs of the system (8.2a) is known, then (3.1b) 
is an explicit formula for Yl. A direet applieation of this requires s additional 
function evaluations. These ean be avoided, if the matrix A = (aij) of the 
RK-eoefficients is nonsingular. Indeed, (8.2a) ean be written as 

(7) =A (hf(Xo+C1;h'Yo+Zl)) , 

Zs hf(xo + csh,yo + Zs) 

so that (3.1b) is seen to be equivalent to 

where 

s 

Yl = Yo + 2: dizi 
i=l 

(8.2b) 

(8.3) 

For the 3-stage Radau HA method (Table 5.6) the vector dis simply (0,0,1), 
sinee bi = aBi for an i. 

Another advantage of Formula (8.2b) is the following: the quantities 
zl' . .. , Zs are eomputed iteratively and are therefore inaeeurate. The actual 
evaluation of f( X o + cih, Yo + zi) would then, due to the large Lipsehitz eon­
stant of f, amplify these errors, whieh then "ean be disastrously inaeeurate 
for a stiff problem" (L.F. Shampine 1980). 

Simplified Newton Iterations 

For a general nonlinear differential equation the system (8.2a) has to be 
solved iteratively. In the stone-age of stiff eomputation (i.e., before 1967) 
people were usually thinking of simple fixed-point iteration. But this trans­
forms the algorithm into an explieit method and destroys the good stability 
properties. The paper of Liniger & Willoughby (1970) then showed the 
advantages of using Newton's method for this purpose. Newton's method 
applied to system (8.2a) needs for eaeh iteration the solution of a linear 
system with matrix 

(
I - hau *(zo ,+ c, h,.o + z,) 

-hasl *(xo + c1h,yo + zl) 

-hals*(xO + csh,yo + ZB) ) 

1- ha88*(xo:+ csh, Yo + zs) 

In order to simplify this, we replace an Jacobians *(xo + cih,yo + zi) by 
an approximation 
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Then the simplified Newton iterations for (8.2a) beeome 

(I - hA ® J)tl.Z k = _Zk + h(A ® I)F(Zk) 

Zk+l = Zk + tl.Zk . 
(8.4) 

Here Zk = (z;, ... , z:)T is the k-th approximation to the solution, tl.Z k = 
(tl.z;, ... , tl.z:V are the inerements and F(Zk) is an abbreviation for 

k ( k k )T F(Z)= !(xo+c1h,Yo+zl), ... ,!(xo+csh,yo+zs) . 

Eaeh iteration requires s evaluations of ! and the solution of an· s-dimen­
sionallinear system. The matrix (I - hA ® J) is the same for all iterations. 
Its LU -deeomposition is done only onee and is usually very eostly. 

Stopping Criterion 

"It is clear that T must be smaller than e... However, 
the smaller T is made, the more it costs to compute y*. 
Experiments say that T a great deal smaller than e does 
not improve the solution ... " (L.F. Shampine 1980) 

"We agree with most of this. But that we should need T 

smaller than e is not obvious and may not be correct ... " 
(S.P. N!iSrsett & P.G. Thomsen 1986) 

This quest ion is closely related to an estimation of the iteration error. Since 
eonvergenee is linear, we have 

IItl.zk+11l ::; 011tl.Zkll, hopefully with 0< 1 . (8.5) 

Applying the triangle inequality to 

Zk+ 1 _ Z* = (Zk+l _ Zk+2) + (Zk+2 _ Zk+3) + ... 

(where Z* is the exaet solution of (8.2a)) yields the estimate 

IIZk+1 - Z*II ::; 1 ~ 0 11 tl.Zk ll . (8.6) 

The eonvergenee rate 0 ean be estimated by the eomputed quantities 

k ~ 1. (8.7) 

It is clear that the iteration error should not be larger than the loeal dis­
eretization error, whieh is usually kept elose to Tol. We therefore stop the 
iteration when 

1]kll tl.Zkll <_ ",. Tol with 1] _ 0 k 
k - 1 - 0 k 

(8.8) 
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and accept Zk+1 as approximation to Z*. This strategy can only be applied 
after at least two iterations. In order to be able to stop the computations 
after the first iteration already (which is especially advantageous for linear 
systems) we take for k=O the quantity 

"10 = (max(''10 1d' Uround))0.8 

where "1o ld is the last "1k of the preceding step. It remains to make a good 
choice for the parameter K in (8.8). To this end we applied the code RADAU5 
for many different values of K between 10 and 10-4 and with some different 
tolerances To1 to several differential equations. The observation was that 
the code works most efficiently for values of Karound 10-1 or 10-2 • 

It is our experience that the code becomes more efficient when we allow a 
relatively high number of iterations (e.g. kma:c = 7 or 10). During these kma:c 

iterations, the computations are interrupted and restarted with a smaller 
stepsize (for example with h:= h/2) if one of the following situations occurs 
a) there is a k with ek :::: 1 (the iteration "diverges")j 
b) for some k, 

ekmax-k 

k e 116Zk il > K' To1. 
1 - • k 

(8.9) 

The left-hand expression in (8.9) is a rough estimate of the iteration error to 
be expected after k maz -1 iterations. The norm, used in all these formulas, 
should be the same as the one used for the local error estimator. 

The Linear System 

An essential gain of numerical work for the solution of the linear system (8.4) 
is obtained by the following method, introduced independently by Butcher 
(1976) and Bickart (1977), which exploits with much profit the special struc­
ture of the matrix I -hA ® J in (8.4). 

The idea is to premultiply (8.4) by (hA)-1 ® I (we suppose here that 
A is invertible) and to transform A -1 to a simple matrix (diagonal, block 
diagonal, triangular or Jordan canonical form) 

(8.10) 

With the transformed variables Wk = (T-1 ® I)Zk, the iteration (8.4) be­
comes equivalent to 

(h-1 A ® I - I ® J)6Wk = _h-1(A ® I)Wk + (T-1 ® I)F((T ® I)Wk) 

Wk+1 = W k + 6Wk . (8.11) 

We also replace Zk and 6Zk by Wk and 6Wk in the formulas (8.7)-(8.9) 
(and thereby again save some work). 
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For the sequel, we suppose that the matrix A -1 has one real eigenvalue :y 
and one complex conjugate eigenvalue pair a±iß. This is a typical situation 
for 3-stage IRK-methods such as Radau HA. With "Y=h-1:y,a=h-1a,ß= 
h-1ß the matrix in (8.11) becomes 

(
"YI - J 0 0) 

o aI - J -ßI 
o ßI aI - J 

(8.12) 

so that (8.11) splits into two linear systems of dimension n and 2n, re­
spectively. Several ideas are possible to exploit the special structure of the 
2n x 2n-submatrix. The easiest and numerically most stable way has turned 
out to be the foHowing: transform the real subsystem of dimension 2n into 
an n-dimensional, complex system 

((a+iß)I-J)(u+iv) = a+ib (8.12') 

and apply simple Gaussian elimination. For machines without complex 
arithmetic, one just has to modify the linear algebra routines. Then a com­
plex multiplication consists of 4 real multiplications and the amount of work 
for the solution of (8.12') becomes approximately 4n3 /3 operations. Thus 
the total work for system (8.12) is about 5n3 /3 operations. Compared to 
(3n)3/3, which would be the number of operations necessary for decom­
posing the untransformed matrix I -hA ® J in (8.4), we gain a factor of 
about 5 in arithmetical operations. Observe that the transformations, such 
as Zk=(T®I)Wk, need only O(n) additions and multiplications. The gain 
is still more drastic for methods with more than 3 stages. 

Transformation to Hessenberg Form 

For large systems with a fuH Jacobian J a furt her gain is possible by trans­
forming J to Hessenberg form 

S-1JS = H = 
( : ** :~.) (8.13) 

This procedure was originally proposed for multistep methods by Enright 
(1978) and extended to the RK case by Varah (1979). With the code 
ELMHES, taken from LINPACK (1979) this is performed with 2n3 /3 op­
erations. Because the multiplication of S with a vector needs only n 2 /2 
operations (observe that S is triangular) the solution of (8.11) is found in 
O( n 2 ) operations, if the Hessenberg matrix H is known. This transformation 
is especially advantageous, if the Jacobian J is not changed during several 
steps. 



IV.S. hnplementation of hnplicit Runge-Kutta Methods 133 

Starting Values for the Newton Iteration 

A natural and simple choice for the starting values in the iteration (804) (or 
equivalently (8.11)), since the exact solution of (8.2a) satisfies zi = O(h), 
would be 

Z? = 0, i = 1, ... ,8 . (8.14) 

However, better choices are possible in general. If the implicit Runge-Kutta 
method satisfies the condition C(17) (see Sections IV.5 and II.7) for some 
7] :S 8, then 

(8.15) 

Suppose now that ci #- 0 (i = 1, ... ,8) and consider the interpolation poly­
nomial of degree 8, defined by 

q(O) = 0 

q(Ci) = Zi i = 1, ... ,8. 

Since the interpolation error is of size O(hs+1 ) we obtain together with (8.15) 

Y(:Z:o + th) - Yo - q(t) = O(h'1+l) 

(cf. Theorem 7.9 of Chapter H for collocation methods). We use the values 
of q(t) also beyond the interval [0,1] and take 

Z? = q(1 + wCi) + Yo - Yl' i = 1, ... ,8, W = hnew/hold (8.14') 

as starting values for the Newton iteration in the sub se quent step. Numerical 
experiments with the 3-stage Radau HA method have shown that (8.14') 
usually leads to a faster convergence than (8.14). 

Step Size Selection 

One possibility to select the step sizes is Richardson extrapolation (cf. Sec­
tion HA). We describe here the use of an embedded pair of methods which 
is easier to program and which makes the code more flexible. The following 
formulas are for the special case of the 3-stage Radau HA methods; similar 
ideas are also applicable to other implicit Runge-Kutta methods. 

Since our method is of optimal order, it is impossible to embed it effi­
ciently into one of still higher order. Therefore we search for a lower order 
method of the form 

3 

fA = Yo + h(bo!(:Z:o,Yo) + I:bd(:z:o + Ci h,9i)) (8.16) 
i=l 
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where 91,92,93 are the values obtained from the Radau HA method and 
bo f= 0 (the choice bo ="Yo =9-1 , where 9 is the real eigenvalue of the matrix 
A -1, again saves some multiplications). The difference 

3 

Y1 - Y1 = "Yohj(zo,Yo) + ~)bi - bi)hj(zo + ci h,9i) , 
i=l 

which can also be written in the form 

(8.17) 

then serves for error estimation. In order that Y1 - Y1 = O( h4 ) the coefficients 
have to satisfy 

(8.18) 

Unfortunately, for y' = >.y and h>' --+ 00 the difference (8.17) behaves like 
Y1 - Y1 ~ "Yoh>.yo, which is unbounded and therefore not suitable for stiff 
equations. We propose (an idea of Shampine) to use instead 

(8.19) 

The LU-decomposition of «h"Yo)-l[ -J) is available anyway from the pre­
vious work, so that the computation of (8.19) is cheap. For h --+ 0 we still 
have err = O( h4 ) and for h>' --+ 00 (if y' = >.y and J = >') we obtain err --+ -1. 
For the step size prediction we now use the usual formula 

( 
Tol )0.25 

hnew = fac . hold· 11 err 11 . (8.20) 

Here, the safety factor fac is proposed to depend on Newt, the number of 
Newton iterations of the current step and on the maximal number of Newton 
iterations kma"" say, as: fac=0.9 X (2kma",+1)/(2kma",+Newt). 

In the code RADAU5 (see appendix) we further included the following 
strategies: 

a) If only one Newton iteration (Newt = 1) was necessary to satisfy (8.8) 
or if the last (}Ie was very small, say (}Newt ~ 10-3 , then we don't re­
compute the Jacobian in the next step. As a consequence, the Jacobian 
is computed only once for linear problems with constant coefficients (as 
long as no step rejection occurs). 

b) If no Jacobian is recomputed and ifthe step size hnew ' defined by (8.20), 
satisfies 

(8.21) 

with, say Cl = 1.0 and c2 = 1.2, then we retain hold for the following step. 
This saves the LU-decomposition of the matrix (8.12). 
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c) In the first step and after every rejected step we used instead of (8.19) 
the expression 

(8.22) 

for step size prediction. This requires one additional function evaluation, 
but satisfies err1 -+ 0 for h>" -+ 00, as does the numerical solution. 

Numerical Study of the Step-Control Mechanism 

As a representative example we choose the Van der Pol equation (1.5') with 
g = 10-6 , initial values Y1 (0) = 2, Y2(0) = -0.6 and integration interval 
o :S x :S 2. Fig.8.1 shows four pictures. The first one presents the solution 
Y1 (x) with all accepted integration steps for Tol = 10-4 • Below this, the 
step sizes obtained by RADAUS are plotted as function of x. The solid 
line represents the accepted steps. The rejected steps are indicated by x 'so 
Observe the very small step sizes which are required in the rapid transients 
between the smooth parts of the solution. The lowest two pictures give the 
number of Newton iterations needed for solving the nonlinear system (8.2a), 
once as function of x, and once as function of the step-number. The last 
picture also indicates the steps where the J acobian has been changed. 

Another numerical experiment (Fig.8.2) illustrates the quality of the 
error estimates. We applied the code RADAU5 with Tol = 10-4 and initial 
step size h= 10-4 to the above problem and plotted at several chosen points 
of the numerical solution 

a) the exact local error (marked by 0) 
b) the estimates (8.19) and (8.22) (marked by + and x respectively) 

as functions of h. The large symbols indieate the position of the actually 
used step size. Newt is the number of required Newton iterations. 

It is interesting to note that the local error behaves like O(h6 ) (straight 
Hne of slope 6) only for h :S g and for large h. Between these regions, 
the local error grows like O( h -1) with decreasing h. This is the only region 
where the error estimate (8.22) is significantly better than (8.19). Therefore, 
we use the more expensive estimator (8.22) only in the first and after each 
rejected step. In any way, both error estimators are always above the actual 
local error, so that the code usually pro duces very precise results. 
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Fig.8.1. Solution, step sizes and Newton iterations ror RADAUS 

Implicit Differential Equations 

Many applications (such as space discretizations of parabolic differential 
equations) often lead to systems of the form 

My' = !(re,y), y(reo) = Yo (8.23) 

with a constant matrix M. For such problems we formally replace all f's 
by M-l! and multiply the resulting equations by M. Formulas (8.11) and 
(8.19) then have to be replaced by 

(h-1 A ® M - I ® J) ßWk = _h-1 (A ® M)Wk+ (T-1® I)F((T ® I)Wk) 
(8.11a) 

err = ((h'YO)-1 M - J)-1 (J(reo, Yo) + (h'YO)-1 M( e1 ZI + e2z2 + eszs )) . 
(8.19a) 
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Fig.8.2. Exact loeal error and the estimates (8.19) and (8.22) 
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Here the matrix J is again an approximation to 8f /8y. This implementa­
tion does not use the inverse of M and does not destroy banded or sparse 
structures of M and J. It may even be applied to certain problems (8.23) 
with singular M (for more details see Chapter VI). 

Banded J acobian 

Solving the linear system (8.11a) is done by a decomposition of the matrix 
(see (8.12), (8.12')) 

( "IM - J 0 ) 
o (0 + iß)M - J . 

(8.24) 

If M and J are banded, the matrices 'YM-J and (o+iß)M-J remain banded. 
The code RADAU5 of the appendix has options for banded structures. 

An SDIRK-Code 

We have also coded, using many of the above ideas, the SDIRK formula 
(6.16) together with the global solution (6.17). For this method also, it was 
again very important to replace the error estimator Y1 -Y1 by (8.19). 

Here, in contrast to fully implicit Runge-Kutta methods, one can treat 
the stages one after the other. Such aserial computation has the advantage 
that the information of the already computed stages can be used for a good 
choice of the starting values for the Newton iterations in the subsequent 
stages. For example, suppose that 

zl = 'Yhf(xo +'Yh,yo + Zl) 

z2 = 'Yhf(xo + c2h, Yo + z2) + a21 hf(xo + 'Yh , Yo + zl) 

are already available. Since for all i 

zi = cihf(xo, Yo) + (2~ ai jcj)h2(f., + fyf)(x o, Yo) + O(h3 ) , 

j 

by solving 

one finds °1,°2 such that 

01 Zl + 02 Z 2 = Z3 + O(h3 ) • 

The expression z;o) = 01 Zl + 02 Z2 then serves as starting value for the com­
putation of Z3' In the last stage one can take Y1' which is then available, 



IV.8. Implementation of Implicit Runge-Kutta Methods 139 

for starting the Newton iterations for g. =Y1' The computation of z3' Z4'Yl! 

done in this way, needs few Newton iterations and a failure of convergence 
is usually already detected in the first stage. 

However, when parallel processors are available, the exploitation of the 
tri angular structure of the RK-matrix may be less desirable. Whereas in 
the iteration (8.11) alls function evaluations and much of the linear algebra 
can be done in parallel, this is no longer possible for DIRK-methods, when 
Zl" •• , Z/c is used in the computations of z/C+1' 

SIRK-Methods 

"The fact that singly-implicit methods have a coefficient 
matrix with a one-point spectrum is the key to reducing 
the operation count for these methods to the level which 
prevails in linear multistep methods." 

(J.C. Butcher, K. Burrage & F.H. Chipman 1980) 

In order to avoid the difliculties (in writing an RK-code) caused by the 
complex eigenvalues of the RK-matrix A, one may look for methods with 
real eigenvalues, especially with a single s-fold real eigenvalue. Such methods 
were introduced by N!2Irsett (1976). Burrage (1978) provided them with error 
estimators, and codes in ALGOL and FORTRAN are presented in Butcher, 
Burrage & Chipman (1980). The basic methods for their code STRIDE are 
given by the following lemma. 

Lemma 8.1. For collocation methods (i.e., for RK-methods satisfying con­
dition O(s) of IV.5}, we have 

det(I - zA) = (1 -,z)· (8.25) 

if and only if 
i = 1, ... ,s (8.26) 

where :C 1 , ... ,:c. are the zeros ofthe Laguerre polynomial L.(z) (c.f. For­
mula {6.11}}. 

Proof. The polynomial det(I-zA) is the denominator of the stability function 
(Formula (3.3)), so that by Theorem 3.9 

M(·)(O) + M(·-l)(O)z + ... + M(O)z' = (1 - '/'zy (8.27) 

with M(:c) given by (3.17). Computing M(j)(O) from (8.27) we obtain 

~ IT(:c - Ci) = M(:c) = t (~)(-,/,Y-j~~ = (-,/,)·L.(!) 
s. . 1 . 0 J J. '/' = J= 

which leads to (8.26). o 
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The stability function of the method of Lemma 8.1 has been studied in 
Sections IV.4 (multiple real-pole approximations) and IV.6. We have furt her 
seen (Proposition 3.8) that R( 00) = 0 when xo+h is a collocation point. This 
means that cq =1 or '{= l/x q for q E {I, ... , s} where 0 < xl < ... < x. are 
the zeros of L.(x). However, if we want A-stable methods, Theorem 4.25 
restricts this point to be in the middle (more precisely: q=s/2 or s/2+1 for 
s even, q = (s + 1 )/2 for S odd). An apparently undesirable eonsequence of 
this is that many of the collocation points lie outside the integration interval 
(for example, for s = 5 and q = 3 we have Cl = 0.073, C2 = 0.393, c3 = 1, 
c4 = 1.970, Cs = 3.515). 

Since these methods with '{ = l/x q are of order p = s only, it is easy to 
embed them into a method of higher order. Burrage (1978) added a further 
stage 

.+1 
g.+1 = Yo + h L a.+1,jf(xo + cjh,gJ 

j=l 

where C.+ l and as+l,s+l are arbitrary and the other a s+1,j are determined 
so that the (s + 1 )-stage method satisfies C( s) too. In order to avoid a 
new LU-decomposition we choose a s+1,s+l =7. The eoefficient cs+1 is fixed 
arbitrarily as cs+l = O. We then find a unique method 

.+1 
Yl = Yo + h LbJ(xo + cjh,gJ 

j=l 

of order s + 1 by computing the coefficients of the interpolatory quadrat ure 
rule. An explicit formula for the matrix T which transforms the RK-matrix 
A to Jordan canonical form and A -1 to a very simple lower triangular matrix 
A is given in Exercise 1. It ean be used for economically solving the linear 
system (8.11). 

Exercises 

1. (Butcher 1979). For the eollocation method with Cl"'" C s given by 
(8.26) prove that (e.g. for s = 4) 

T-'AT~7(~1 1 J T-l A-lT = .!.. (i 1 J -1 1 '{ 1 1 
-1 1 1 

where the transformation T satisfies 
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and L j _ 1(x) are the Laguerre polynomials. 

Hint. Use the identities 

and the Christoffel-Darboux formula 

n n+l 
LLj(x)Lj(Y) = --=-;(Ln+1(x)Ln(y) - Ln+1(y)Ln(x)) 
j=O Y 

which, in the limit Y -+ x, becomes 
n 

L(Lj(x))2 = (n + l)(Ln+l(X)L~(x) - L~+1(x)Ln(x)) . 
j=O 



IV.9. Extrapolation Methods 

"It seems that a suitable version of an IEM (implicit ex­
trapolation method) which takes care of these difficulties 
may become a very strong competitor to any of the general 
discretization methods for stiff systems presently known". 

(the very last sentence of Stetter's book, 1973) 

Extrapolation of explicit methods is an interesting approach to solving non­
stiff differential equations (see Section 11.9). Here we show to what extent 
the idea of extrapolation can also be used for stiff problems. We shall use 
the results of Section 11.8 for the existence of asymptotic expansions and ap­
ply them to the study of those implicit and linearly implicit methods, which 
seem to be most suitable for the computation of stiff differential equations. 
Our theory here is restricted to classical h --t 0 order, the study of stability 
domains and A-stability. 

A big difficulty, however, is the fact that the coefficients and remainders 
of the asymptotic expansion can explode with increasing stiffness and the h­
interval, for which the expansion is meaningful, may tend to zero. Bounds on 
the remainder which hold uniformly for a dass of arbitrarily stiff problems, 
will be discussed later in Section VIA. 

Extrapolation of Symmetrie Methods 

It is most natural to look first for symmetrie one-step methods as the basic 
integration scherne. Promising candidates are the trapezoidal rule 

Yi+l = Yi + ~(!(:I:i'Yi) + !(:I:i+l'Yi+1)) 

and the implicit mid-point rule 

Yi+l =Yi+h!(:I:i+~'~(Yi+l +Yd) 

(9.1) 

(9.2) 

We take some step-number sequence n 1 < n2 < n 3 < ... , set hj=H/nj and 
define 

(9.3) 

the numerical solution obtained by performing n j steps with step size h j • 

As described in Section II.9 we extrapolate these values according to 

T T + Tj,k - Tj_1,k 
j,k+l = j,k (/ )2 . nj nj_k - 1 

(904) 
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Fig.9.1. Stability domains for the extrapolated trapezoidal rule 

This pro vi des an extrapolation tableau 

Tu 

T21 T22 

T31 T32 T33 
(9.5) 

all entries of which represent diagonally implicit RK-methods (see Exer­
eise 1). Due to the symmetry of the basic schemes (9.1) and (9.2), Tjk is a 
DIRK-method of order 2k. In order to study the stability properties of these 
methods, we apply them to the test equation y' = >.y. For both methods, 
(9.1) and (9.2), we obtain 

so that the stability function Rjk(z) of the method Tj k is given recursively 
by (z =H>') 

Rj1 (z) = (~ = ~)nj , (9.6a) 2nj 
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Rj,k(Z) - Rj_l,k(Z) 
Rj,k+l(z)=Rj,k(Z)+ (/ )2 n j n j _ k - 1 

Already Dahlquist (1963) noticed that for n l = 1 and n 2 = 2 we have 

5 
~ - > 1 

3 
for Z ~ 00 , 

(9.6b) 

(9.7) 

an undesirable property when solving stiff problems. Stetter (1973) proposed 
taking only even or only odd numbers in the step-number sequence {nj}. 
Then, all stability functions of the extrapolation tableau tend for z ~ 00 to 
1 or -1, respectively. But even in this situation extrapolation immediately 
destroys the A-stability of the underlying scheme (Exercise 2). Fig. 9.1 shows 
the stability domains {Zj IRkk(z)l:::; I} for the sequence {1,3,5, 7,9, ... }. 

Smoothing 

"Some numerical examples reveal the power of the smooth­
ing combined with extrapolation." (B. Lindberg 1971) 

Another possibility to overcome the difficulty encountered in (9.7) is smooth­
ing (Lindberg 1971). The idea is to replace the definition (9.3) by Gragg's 
smoothing step 

Tjl = Shj(XO + H), 
1 

Sh(x) = 4(Yh(X - h) + 2Yh(x) + Yh(x + h)) . 

(9.8) 

(9.9) 

With Yh(x), Sh(x) also possesses an asymptotic expansion in even powers of 
h. Therefore, extrapolation according to (9.4) is justified. For the stability 
function of Tjl we now obtain 

~ 1{(I+~)ni-l (1+~)ni (1+~)ni+l} R. (z) = _ 2n, + 2 2n, 2n, 
Jl 4 1 _ _ z_ 1 _ _ z_ + 1 _ _ z_ 2nj 2nj 2nj 

(
1 + _z )n;-l 1 2nj 

z 2 1 __ z_ 
(1- 2n.") 2n; , 

= (9.10) 

which is an L-stable approximation to the exponential function. The stabil­
ity functions Rjk(z) (obtained from (9.6b)) all satisfy Rjk(z) = O(Z-2) for 
Z ~ 00. For the step-number sequence 

{n) = {1,2,3,4,5,6, 7, ... } 

the stability domains of Rkk ( z) are plotted in Fig.9.2. 

(9.11) 
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Fig. 9.2. Stability domains of Rk k (z) 

The Linearly Implicit Mid-Point Rule 

Extrapolation eodes based on fully implieit methods are diffieult to imple­
ment effieiently. After extensive numerieal eomputations, G. Bader and 
P. Deuflhard (1983) found that a linearly implicit (Rosenbroek-type) ex­
tension of the GBS method of Section 11.9 gave promising results for stiff 
equations. This method is based on a two-step algorithm, sinee one-step 
Rosenbroek methods (7.4) eannot be symmetrie for nonlinear differential 
equations. 

The motivation for the Bader & Deuflhard method is based on Lawson's 
transformation (Lawson 1967) 

y(x) = eh. c(x) (9.12) 

where it is hoped that the matrix J ~ f'(y) will neutralize the stiffness. 
Differentiation gives 

c' = e-h . g(x,ehc) with g(x,y) = f(x,y) - Jy . (9.13) 

We now solve (9.13) by the Gragg algorithm (II.9.13b) 

+ 2h -JZi ( JZi) 
Ci+I = Ci_l e . 9 xi' e Ci 
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and obtain by back-substitution of (9.12) 

e-hJYi+1 = ehJYi_l + 2hg(:Ci'Yi) . (9.14) 

For evident reasons of computational ease we now replace e±hJ by the ap­
proximations I ± hJ and obtain, adding an appropriate starting and final 
smoothing step, 

(I - hJ)Yl = Yo + hg(:co,Yo) 

(I - hJ)Yi+l = (I + hJ)Yi_l + 2hg(:Ci 'Yi) 
1 

Sh(:C) = 2(Y2m-l + Y2m+l) where:c =:Co + 2mh. 

(9.15a) 

(9.15b) 

(9.15c) 

Substituting finally 9 from (9.13), we arrive at (with:c =:Co+2mh':Ci = :Co+ih) 

(I - hJ)(Yl - Yo) = hf(:co,Yo) (9.16a) 

(I - hJ)(Yi+l - Yi) = -(I + hJ)(Yi - Yi-l) + 2hf(:Ci'Yi) (9.16b) 
1 

Sh(:C) = 2(Y2m-l + Y2m+1) (9.16c) 

where J stands for some approximation to the J acobian U(:Co, Yo). Putting 
J = 0, Formulas (9.16a) and (9.16b) become equivalent to those of the GBS 
method. The scheme (9.16b) is the linearly implicit (or semi-implicit) mid­
point rule, Formula (9.16a) the linearly implicit Euler method. 

Theorem 9.1 (Bader & Deuflhard 1983). Let f(:c,y) be sujJiciently often 
differentiable and let J be an arbitrary matriz; then the numerical solution 
defined by (9.16a,b,c) possesses an asymptotic ezpansion of the form 

/ 

y(:c) - Sh(:C) = L ej(:c)h2j + h2/+2C(:c,h) 
j=l 

(9.17) 

where C(:c, h) is bounded for :Co ~ :c ~ Z and 0 ~ h ~ ho. For J i= 0 we 
have in general ei:co) i= o. 

Proof. As in Stetter's prooffor the GBS algorithm we introduce the variables 

h* = 2h, :ci; = :Co + kh*, U o = Vo = Yo' Uk = Y2k , 

Vk = (I - hJ)Y2k+l + hJY2k - hf( :C 2k' Y2k) 

= (I + hJ)Y2k_l - hJY2k + hf(:C2k'Y2k) . 

Method (9.16a,b) can then be rewritten as 

(9.18) 

(9.19) 
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- --
\ --

) (I-hJ)* 

) '\ 
) (I+hJ)* 

g(z2k+l'Y2k+l) 

Fig.9.3. Symmetry ofMethod (9.19) (see (9.16b)) 

The symmetry of (9.19) is illustrated in Fig. 9.3 and can be checked analyt­
ically by exchanging Uk+1 H uk' Vk+1 H vk' h* +-+ -h*, and xi: H xi: + h*. 
Method (9.19) is consistent with the differential equation 

u' = /(x,v) - J(v - u) , u(xo) = Yo 

v' = /(x,u) + J(v - u) , 

whose exact solution is u( x) = v( x) = y( x ), where y( x) is the solution of the 
original equation Y'=/(x,y). Applying Theorem II.8.9 we obtain 

I 

y(x) - uh.(x) = I>j(x)h2j + h21+2 A(x,h) 
j=l 

I 
(9.20) 

y(x) - vh' (x) = L bj(x )h2j + h21+2 B(x, h) 
j=l 

with aj(xo) = bj(xo) = O. With the help of Formulas (9.18) we can express 
the numerical solution (9.16c) in terms of um and Vm as folIows: 

~(Y2m+1 + Y2m-1) = (1 - h2 J2)-1 (vm + h2 J(J(x 2m , Um) - Ju m)) , 

and we obtain for x = X o + 2mh, 

y( x) - S h (x) = (1 - h 2 J2) -1 (y( X) - v h' (X) 

- h2J(/(X,Uh'(X)) + J(y(x) - Uh'(X)))) 

Inserting the expansions (9.20) we find (9.17). o 
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As an application of this theorem we obtain an interesting theoretical 
result on the existence of W-methods (7.4) (with inexact Jacobian). We saw 
in Volume I (Exercise 1 of Section II.9 and Theorem II.9.4) that the Tj,k of 
the extrapolated GBS method represent explicit Runge-Kutta methods. By 
analogy, it is not difficult to guess that the Tj,k for the above linearly implicit 
midpoint rule represent W -methods (more details in Exercise 3) and we have 
the following existence result for such methods: 

Theorem 9.2. For p even, there ezists a W -method (7.4) 0/ order p with 
s=p(p+2)/4 stages. 

Proo/. It follows from (9.20) that for Z = Zo +2mh the numerical solution 
Yh(z) = Y2m possesses an h2-expansion of the form (9.17) with ej(zo) = O. 
Therefore, extrapolation yields W-methods of order 2k (in the k-th column). 
The result follows by taking {nj}={2,4,6,8,10,12, ... } and counting the 
number of necessary function evaluations. 0 

For astabilityanalysis we apply the method (9.16) with J = A to the 
test equation y' = Ay. In this case Formula (9.16b) re duces to 

1 + hA 
Yi+l = 1 _ hA Yi-l 

and the numerical result is given by 

1 (1 + hA)m-l 
Sh(zO + 2mh) = (1 _ hA)2 1 _ hA Yo , (9.21) 

exactly the same as that obtained from the trapezoidal rule with smoothing 
(see Formula (9.10)). We next have to choose a step-number sequence {nj}. 
Clearly, nj = 2mj must be even. Bader & Deufihard (1983) proposed taking 
only odd numbers mj' since then Sh(zo+2mj h) in (9.21) has the same sign 
as the exact solution eA2mj h yo for all real hA ::; o. Consequently they were 
led to 

{nj} = {2,6,10,14,22,34,50, ... } . (9.22) 

Putting Tjl = Sh/ZO +H) with h j = H/nj and defining Tjk by (9.4) we 
obtain a tableau of W-methods (7.4) (Exercise 3). By Theorem 9.1 the k-th 
column of this tableau represents methods of order 2k - 1 independent of 
the choice of J (the methods are not of order 2k, since e/(zo) -# 0 in (9.17)). 
'l'tle stability function of Tjl is given by 

1 n" (
1 + L) nj/2-l 

Rjl(z) = (1_:j)2 l-~ (9.23) 
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and those of Tjk can be computed with the recursion (9.6b). An investigation 
of the E -polynomial (3.8) for these rational functions shows that not only 
Tjl1 but also T22 , T32 and T33 are A-stable (Hairer, Bader & Lubich 1982). 
The angle of A( 0: )-stability for some furt her elements in the extrapolation 
tableau are listed in Table 9.1. Stability domains of Tkk for k = 2, 3, 4, 5, 6 
are plotted in Fig. 9.4. 

Fig.9.4. Stability domains of extrapolated linearly implicit mid-point rule 

Table 9.1. A( a )-stability of extrapolated 
linearly implicit mid-point rule 

900 

900 900 

900 900 900 

900 89.340 87.550 87.340 

900 88.800 86.870 86.100 86.020 

900 88.490 87.300 86.61 0 86.360 86.330 

900 88.430 87.420 87.000 86.780 86.700 86.690 
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Implicit and Linearly Implicit Euler Method 

Why not consider also non-symmetrie methods as basic integration schemes? 
Deuflhard (1985) reports on experiments with extrapolation of the implicit 
Euler method 

Yi+l = Yi + hf(zi+llYi+l) 

and of the linearly implicit Euler method 

(9.24) 

(9.25) 

where, again, J is an approximation to F(zo,Yo)' These methods are not 
symmetrie and have only a h-expansion ol their global error. We therefore 
have to extrapolate the numerical solutions at Zo + H according to 

T. k - T'_ l k 

Tj,k+l = Tj,k + ( 3,/ 3)' 1 ' n j n j _ k -
(9.26) 

so that Tjk represents a method of order k. 
For both basie methods, (9.24) and (9.25), the stability function of Tjk 

is the same and defined recursively by 

( 
Z ) -n° 

Rj1(z) = 1-~ 1 

3 

(9.27a) 

R. (z)=R. (z)+ Rj,k(Z)-Rj_1,k(z) 
J,k+1 J,k (nj/nj_k) - 1 

(9.27b) 

Taking the step-number sequence 

{nj} = {1,2,3,4,5,6, 7, ... } (9.28) 

we have plotted in Fig. 9.5 the stability domains of Rkk ( z) (left pieture) and 
Rk,k_l(z) (right pieture). All these methods are seen to be A(a)-stable with 
a elose to 90°. The values of a (computed numerically) for Rjk(z) with j ::; 8 
are given in Table 9.2. 

We shall see in the chapter on differential algebraic systems that it is 
preferable to use the first sub diagonal of the extrapolation tableau resulting 
from (9.28). This is equivalent to the use of the step number sequence 
{ni} = {2, 3,4,5, ... }. Also an effective construction of a dense output can 
best be motivated in the setting of DAE systems (Section VIA). 
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Fig. 9.5. Stability domains of extrapolated Euler 

Table 9.2. A( a )-stabiliy of extrapolated Euler 

90° 
90° 90° 
90° 90° 89.85° 
90° 90° 89.90° 89.77° 
90° 90° 89.93° 89.84° 89.77° 
90° 90° 89.95° 89.88° 89.82° 89.78° 
90° 90° 89.96° 89.91 ° 89.86° 89.82° 89.80° 
90° 90° 89.97° 89.93° 89.89° 89.85° 89.83° 89.81° 

Implementation 

Extrapolation methods based on implicit discretizations are in general less 
efficient than those based on linearly implicit discretizations. The reason is 
that the arising nonlinear systems have to be solved very accurately, so that 
the asymptotic expansion of the error is not destroyed. The first success­
ful extrapolation code for stiff differential equations is METAN1 of Bader 
& Deuflhard (1983), which implements the linearly implicit mid-point rule 
(9.16). In fact, Formula (9.16b) is replaced by the equivalent formulation 

ßYi = ßYi_l + 2(1 - hJ)-l (hf(Xi' Yi) - ßYi-l)' ßYi = Yi+l - Yi (9.29) 

which avoids a matrix-vector multiplication. The step size and order se­
lection of this code is described in Deuflhard (1983) . Modifications in the 
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control of step size and order are proposed by Shampine (1987). We have 
implemented the following two extrapolation codes (see Appendix): 

SODEX is based on the linearly implicit mid-point rule (9.16), uses the 
step-number sequence (9.22) and is mathematically equivalent to METANl. 
The step size and order selection in SODEX is with some minor changes that 
of the non-stiff code ODEX of Section 1I.9. We just mention that in the 
formula for the work per unit step (1I.9.26) the number A k is augmented by 
the dimension of the differential equation in order to take into account the 
Jacobian evaluation. 

SEULEX is an implementation of the linearly implicit Euler method 
(9.25) using the step-number sequence {2,3,4,5,6,7, ... } (other sequences 
can be chosen as internal options). The step size and order selection is that 
of SODEX. The original code (EULSIM, first discussed by Deuflhard 1985) 
uses the same numerical method, but a different implementation. 

"Neither eode ean solve the Van der Pol equation problem 
in a straightforward way beeause of overflow ... " 

(L.F. Shampine 1987) 

A big difficulty in the implement at ion of extrapolation methods is the 
use of "I arge" step sizes. During the computation of Tjl one may easily get 
into trouble with exponential overflow when evaluating the right-hand side 
of the differential equation. As a remedy we propose the following strategies: 

a) In establishing the extrapolation tableau we compare the estimated error 
errj = IITj,j-l - Tjjll with the preceding one. Whenever errj ::::: errj _ 1 

for some j ::::: 3 we rest art the computation of the step with a smaller H, 
say, H =0.5· H. 

b) In order to be able to interrupt the computations already after the first 
f-evaluations, we require that the step sizes h = H /ni (for i = 1 and 
i = 2) be small enough so that a simplified Newton iteration applied to 
the implicit Euler method y = Yo +hf(a:, y), a: = a:o +h would converge 
("stability check", an idea of Deuflhard). The first two iterations read 

(1 - hJ)6.o = hf(a:o,yo), y(l) = Yo + 6.0 

(1 - hJ)6ol = hf(a:o + h,y(l») - 600 • 
(9.30) 

The computations for the step are restarted with a smaller H, if 11 6.1 11 ::::: 
116.0 11 (divergence of the iteration). Observe that for both methods, 
(9.16) and (9.25), no additional function evaluations are necessary. For 
the linearly implicit mid-point rule we have the simple relations 6.0 = 
6.Yo, 6.1 = t(6.Yl - 6oYo) (see (9.29)). 
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Non-Autonomous Differential Equations 

Given a non-autonomous differential equation y' = f(x,y), one has several 
possibilities to apply the above extrapolation algorithms: 

i) apply the Formula (9.16) or (9.25) directly (this is justified, since all 
asymptotic expansions hold for general non-autonomous problems); 

ii) transform the differential equation into an autonomous system by adding 
x' = 1 and then apply the algorithm. This yields 

( 28f 
(I - hJ) Yi+1 - Yi) = hf(xi'Yi) + h 8x (xo'Yo) (9.31) 

for the linearly implicit Euler method (the derivative *( xo' Yo) can also 
be replaced by some approximation). For the linearly implicit mid-point 
rule, (9.16a) has to be replaced by (9.31) with i = 0, the remaining two 
formulas (9.16b) and (9.16c) are not changed. 

iii) apply one simplified Newton iteration to the implicit Euler discretization 
(9.24). This gives 

(I - hJ)(Yi+1 - yJ = hf(Xi+llYi) . (9.32) 

The use of this formula avoids the computation ofthe derivative 8 f/ 8x, 
but requires one additional function evaluation for each Tj1 • In the 
case of the linearly implicit mid-point rule the re placement of (9.16a) by 
(9.32) would destroy symmetry and the expansions in h2 • 

A theoretical study of the three different approaches for the linearly implicit 
Euler method applied to the Prothero-Robinson equation (see Exercise 4 be­
low) indicates that the third approach is preferable. More theoretical insight 
into this question will be obtained from the study of singular perturbation 
problems (Chapter VI). 

Implicit Differential Equations 

Our codes in the appendix are written for problems of the form 

My' =f(x,y) (9.33) 

where M is a constant square matrix. The necessary modifications in the 
basic formulas are obtained, as usual, by replacing all f' sand J' s by M -1 f 
and M-1J, and premultiplying by M. The linearly implicit Euler method 
then reads 

(9.34) 

and the linearly implicit mid-point rule becomes, with D.Yi = Yi+l - Yi' 

(9.35) 
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Exercises 

1. Consider the implicit mid-point rule (9.2) as basic integration scheme 
and define Tjk by (9.3) and (9.4). 

a) Prove that Tjk represents a DIRK-method of order p = 2k with s = 
n1 +n2 + ... +n j stages. 

b) Tjk , defined by (9.8) and (9.4), is equivalent to a DIRK-method of 
order p=2k-l only. 

2. Let Rjk(z) be given by (9.6) and assume that the step-number sequence 
consists of even numbers only. Prove that R j2 (z) cannot be A-stable. 
More precisely, show that at most a finite number of points of the imag­
inary axis can lie in the stability domain of Rj2 (z) (interpret Fig.9.6). 

1 

Fig. 9.6. How extrapolation destroys A-stability 

3. Prove that Sh(x), defined by (9.16), is the numerical result ofthe (2n+l)­
stage W-method (7.4) with the following coefficients (n=2m): 

{ 
1jn if j = 1 and i even, 

Clij = 2jn if 1 < j < i and i - j odd, 
o else. 

{ (-I)i-ijn if j = 1 or j = i, 
lii = 2(-1)i-ijn if 1< j < i. 

for all i. 

4. Apply the three different versions of the linearly implicit Euler method 
(9.25), (9.31) and (9.32) to the problem y' = ..\(y-cp(x))+cp'(x). Prove 
that the errors ei=Yi-cp(Xi) satisfy ei+l = (1- h..\)-l ei +Oh(xi)' where 
for h--+O and h..\--+oo, 

8h(x) = -hcp'(x) + O(h2 ) + 0(..\-1), 

0h(x) = - ~2 cp"(x) + (1_h..\)-lh2 ..\(cp'(x)-cp'(xo)) +0(h3 ) +O(h..\-l), 

hh(x) = (1- h..\)-l (~2 cp"(x) + O(h3 )) , 

respectively. 
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"Theory without practice cannot survive and dies as quickly 
as it lives." (Leonardo da Vinci 1452-
1519, cited from M. Kline, Math. Thought 1972, p. 224) 

"La methode ... ne laisse rien de vague et d'indetermine 
dans les solutions; elle les conduit jusqu'aux dernieres ap­
plications numeriques, condition necessaire de toute recher­
che, et sans laquelle on n'arriverait qu'a. des transformations 
inutiles." 

(J. Fourier, Theorie de la chaleur 1822; Fourier placed 
Plato's "Et ignem regunt numeri" as motif on the first page.) 

After having seen so many different methods and ideas in the foregoing 
sections, it is legitimate to study how all these theoretical properties pay off 
in numerical efficiency. 

The Codes Used 

A bad program based on a bad method is bad; a good program based on 
a bad method is also bad; as is a bad program based on a good method. 
Badness is not additive! Hence, if we want to study the properties of meth­
ods, all codes must be written equally carefully. We made many efforts to 
approach this goal as closely as we could. We compared the following codes: 

ROS4 - a Rosenbrock code of order 4 with s = 4 and embedded 3rd order 
error estimator implementing the methods of Table 7.2. A switch allows 
one to choose between the different coefficient sets. The standard choice 
is method 2. 

RODAS - a Rosenbrock code of order 4(3) with s = 5 satisfying additional 
order conditions for differential-algebraic equations (see Section VI.3). 
This code requires a little more work per step than ROS4 and it is 
interesting to study how this handicap is compensated by the "algebraic 
conditions" which are satisfied. 

SDIRK4 - the L-stable SDIRK method (6.16) of order 4 of Table 6.5. 
Details of its implementation are given in Section IV.8. 

RADAU5 - the IRK method based on the Radau HA method with s = 3 of 
order 5 described in detail in Section IV.8. 

SEULEX - the Stiff linearly implicit EULer EXtrapolation method of Sec­
tion IV.9. 

SODEX - the EXtrapolation code based on the linearly implicit mid-point 
rule (method of Bader & Deuflhard) of Section IV.9, which is a "Stift'" 
extension of ODEX in Volume 1. 
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We have further induded in the present tests: 

STRIDE - the famous SIRK-code 1 of Butcher, Burrage & Chipman (1980) 
(see Lemma 8.1) as weH as 

LSODE - the BDF code of Hindmarsh as a representative of the dass of 
multistep methods to be described in Chapter V; 

DOPRI5 - many of the treated examples are very stiff and explicit methods 
would require hours to compute. On some examples, however, it was also 
interesting to see the performance of such methods and we have induded 
the 5th order Dormand & Prince method as a representative of the dass 
of explicit methods. 

Small Test Problems 

Man hüte sich, auf Grund einzelner Beispiele allgemeine 
Schlüsse über den Wert oder Unwert einer Methode zu 
ziehen. Dazu gehört sehr viel Erfahrung." 

(L. Collatz 1950) 

The first professional numerical comparisons for stiff equations were made 
by Enright, Hull & Lindberg (1975). Their STIFF·DETEST set of prob­
lems has become a veritable "must" for generations of software writers (see 
also Shampine 1981). As a consequence, today's codes have no difficulty 
in "crunching" these problems. Several additional test problems, usually 
from chemical kinetics, have been proposed by Enright & HuH (1976). An 
extensive review artide containing also problems of large dimension is due 
to Byrne & Hindmarsh (1987). 

The problems chosen for our tests are the foHowing: 

OREGO - the Oregonator, the famous model with a periodic solution de­
scribing the Belusov-Zhabotinskii reaction (Field & Noyes 1974, see also 
Enright & HuH 1976) 

Y~ = 77.27 (Y2 + Yl (1 - 8.375 x 1O-6 Y1 - Y2)) 

y~ = 77\7(Y3 - (1 + Yl)Y2) 

y~ = 0.161(Yl - Y3) 

Yl(O) = 1, Y2(0) = 2, Y3(0) = 3, 

For pictures see Volume I, p. 116. 

X out = 30,60,90, ... ,360 . 

(10.1) 

1 A new version of this code ("Mark II") is presently in elaborat ion and F. Chip. 
man, K. Burrage and J. Butcher plan to get it into its final form in the first half 
of1991. 
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ROBER - the reaction of Robertson (1966) (see (1.3) and (1.4)) 

Y~ = -0.04Yl + 104Y2Y3 Yl(O) = 1 

y~ = 0.04Yl -104Y2Y3 -3 .107y~ Y2(O) = 0 (10.2) 

y~ = Y3(O) = 0 , 

one of the most prominent examples of the "stiff" literature. It was usually 
treated on the interval 0 ~ :c ~ 40, until Hindmarsh discovered that many 
codes faH if :I: becomes very large (1011 say). The reason is that whenever 
the numerical solution of Y2 accidentally becomes negative, it then tends to 
-00 and the run ends by overflow. We have therefore chosen 

:l:o,.t = 1,10,102,103 , •.• ,1011 • 

VDPOL - the Van der Poloscillator (see (1.5)) 
, 

Yl = Y2 

y~ = ((1 - yDY2 - Yl)/e (10.3) 

VDPOL2 - we have also found it interesting to introduce into (10.3) a little 
discontinuity of the derivatives as follows: 

y~ = Y2 

y~= ((l-Y~) JI1-Y~IY2-Yl)/e e=10-6 (10.4) 

Yl (0) = 2, Y2(O) = 0, :l:o,.t = 1,2,3,4, ... ,11 . 

HIRES - this chemical reaction involving eight reactands was proposed 
by Schäfer (1975) to explain "the growth and differentiation of plant tissue 
independent of photosynthesis at high levels of irradiance by light". It has 
been promoted as a test example by Gottwald (1977). The corresponding 
equations are 

y~ = -1.71 . Yl + 0.43· Y2 + 8.32· Y3 + 0.0007 

y~ = 1.71 . Yl - 8.75· Y2 

Y; = -10.03· Y3 + 0.43· Y4 + 0.035· Ys 

Y~ = 8.32 . Y2 + 1.71 . Y3 - 1.12 . Y4 

Y~ = -1.745· Ys + 0.43· Y6 + 0.43· Y7 

y~ = -280· Y6Ys + 0.69· Y4 + 1.71 . Ys - 0.43· Y6 + 0.69· Y7 

Y~ = 280· Y6YS - 1.81 . Y7 , , 
Ys = -Y7 

(10.5) 
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and chosen output values 

x out = 321.8122 and 421.8122 . 

PLATE - this is a linear and non-autonomous example of medium stiffness 
and medium size. It describes the movement of a reet angular plate under 
the load of a car passing across it: 

82u 8u 
8t2 + W 8t + O"ßßu = f(x, y, t) . (10.6) 

The plate n = {( x, y) ; O:s; x:S; 2, O:S; y :s; 4/3} is discretized on a grid of 8 x5 
interior points xi =ih, Yj =jh, h=2/9 with initial and boundary conditions 

ulao = 0, ßulao = 0, u(x,y,O) = 0, 
8u 
8t (x,y,O) = 0 . (10.7) 

The integration interval is 0 S t S 7. The load f(x, y, t) is idealized by the 
sum of two Gaussian curves which move in the x-direction and which reside 
on "four wheels" 

{ 
200(e-S(t-z-2)2 + e-S(t-z-S)2) if Y=Y or Y 

f(x,y,t) = 2 4 
o for all other y. 

The plate operator ßß is discretized via the standard "computational mole-
eule" 

1 
2 -8 2 

1 -8 20 -8 1 
2 -8 2 

1 

and the friction and stiffness parameters are chosen as w = 1000 and 0" = 100. 
The resulting system is then of dimension 80 with negative real as weH as 
complex eigenvalues ranging between -500 :s; Re>. < 0 with maximal angle 
Q~71° (see Definition 3.9). 
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Large Test Problems 

BRUSS - this is the equation (1.6') with 0: = 1/50, the same initial condi­
tions as in Section IV.l, and integration interval 0::; t ::; 10. But we nOW let 
N = 500 so that (1.6') becomes a system of 1000 differential equations with 
largest eigenvalue elose to -20000. The equations therefore become consid­
erably stiff. The Jacobian of this system is banded with upper and lower 
bandwidth 2 (if the solution components are ordered as upvl,U2,v2,u3,v3' 
etc.) and the linear algebra is therefore done in the "banded versions" with 
"analytical Jacobian" (the code STRIDE which has no "banded" linear al­
gebra has not been ineluded). An explicit method, such as DOPRI5, would 
require elose to 60000 steps of integration with an approximate computing 
time (for our machine) of 14 hours. 

BURGERS - this is Burgers' Equation 

Ut + uu'" = /-tu",,,, or Ut + (~2) '" = /-tu",,,, /-t > 0 . (10.8) 

It is one of the equations originally designed by Burgers (1948) as "a math­
ematical model illustrating the theory of turbulence". However, soon after­
wards, E. Hopf (1950) presented an analytical solution (see Exercise 1 below) 
and coneluded that "we doubt that Burgers' equation fully illustrates the 
statistics of free turbulence. ( ... ) Equation (1) is too simple a model to dis­
play chance fluctuations ... ". Nowadays it remains interesting as a nonlinear 
equation resembling Euler's and Navier-Stokes' equations for fluid dynamics 
which possesses, for /-t small, shock waves and, for /-t -t 0, discontinuous 
solutions. It is used to study numerical methods which should also work in 
fluid dynamics. 

Several possibilities exist to transform (10.8) into a system of ODE's (by 
the method of lines); either by difference approximations of the left equation 
in (10.8) 

. ui( ui+l - ui_l) ui+l - 2ui + ui+l 
ui = - 26.x + /-t (6.x)2 (10.8a) 

or from the "conservative" form to the right of (10.8) giving 

. U7+1 - ULI ui+l - 2ui + ui+l 
ui = - 46.x + /-t (6.x)2 (10.8b) 

One can also write (10.8) in a "weak" formulation and apply finite element 
Galerkin approximations. This leads to implicit ODE systems with, usually, 
a tri diagonal mass matrix. 

As it turns out, the second system (10.8b) behaves better in the presence 
of shocks and is therefore chosen for the subsequent tests. We use the data 

o ::; t ::; 2.5 U(O, t) = u(l, t) = 0 (10.9) 
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u(x,O) = (sin(3rrx))2. (1_x)3/2 , 
1 

ßx=-
501 ' 

IL = 0.0003 

so that the system becomes banded of dimension 500. Two shock waves 
arise which later fuse into one (see Fig. 10.1). 

2 . 5 

Fig.l0.1. Burgers' equation with shocks (10.9) (SEULEX, Tol= 10-6 ) 

BSMOOTH - this is exactly the same differential equation as above with 
the same dimension and numerical discretization. The only difference is that 
the initial conditions are chosen as 

u(x,O) = 1.5x(1-x)2 , (10.10) 

so that no shock wave appears within the considered interval of integration 
(see Fig.10.2). 

FINAG - the famous FitzHugh & Nagumo nerve conduction 
(FitzHugh 1969, Nagumo, Arimoto & Yoshizawa 1962) 

8v 82 v 
8t = 8x2 - f(v) - w 

8w 
ßt = 11{V-ßW) 

where 11 and ß are constants and 

f(v) = v{v-a)(v-1) 

equation 

(10.11) 

(10.12) 
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2.5 

Fig.l0.2. Burgers' equation, smooth solution (SEULEX, Tol = 10-6 ) 

with a satisfying typically 0 < a < 1/2. The constant 1] is usually very 
small and positive. This is, after the pioneering work of Hodgkin & Huxley 
(1952), a simplified attempt to explain nerve conduction as a travelling wave 
solution of a nonlinear parabolic differential equation. The two dimensional 
system, without diffusion term 8 2v / 8x 2 , possesses a stable equilibrium point 
at the origin and slow movement along the curve w = - f( v) (Fig. l0.3). 
Below this curve there is rapid movement in the positive v-direction. If the 
nerve is excited at one end and if diffusion is added, then one neighbour 
after another is pulled into this stream and the wave solution is produced 
(Fig.l0A). Numerical studies for equation (10.11) were carried out by Rinzel 
(1977), from where we took the parameter values 

a = 0.139, 1] = 0.008 , ß = 2.54 (10.13) 

and the conditions 0 ~ x ~ 100 (discretized in 200 equidistant steps xl = 
1/4, x 2 = 3/4, ... ,x200 =399/4 with ~x=I/2), 0~t~400 

v(x,O) = w(x,O) = 0 (the nerve initially at rest) 

8v 
8x(0,t) = -0.3 (one end is constantly irrigated) (10.14) 

8v 
8x (100, t) = 0 (no irrigation at other end) 

(the last condition has been modified for easier programming). The resulting 
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system is of dimension 400 and banded with band width 5. The eigenvalues 
of the J acobian range between -16. 7 ~ Re.A ~ 0.04, most of them real, and 
make the problem, for the integration interval 0 ~ t ~ 400, mildly stift". 

Fig.l0.3. Flow of System (10.11) without diffusion 

Fig.l0.4. Solution of complete problem (10.11) and (10.14) 
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CUSP - this is a combination of (i) the above threshold-nerve-impulse 
mechanism, (ii) the cusp catastrophe 

(10.15) 

"with smooth return" (Zeeman 1972, see Fig.10.5) and (iii) the Van der Pol 
oscillator to keep the solutions away from the origin: 

where 

8y 1 3 8 2 y 
8t = --;(y +ay+b) + u 8x 2 

8a 82 a 
8t = b + 0.07v + u 8x 2 

& 2 ~b 
8t = (l-a )b - a - OAy + 0.035v + u 8x 2 

u 
v=--­

u + 0.1 ' 
u = (y-0.7)(y-1.3) . 

(10.16) 

We also found it nice to let the "nerve" be closed like a torus so that the nerve 
impulse goes round without stopping. The Jacobian of the resulting system 
then becomes, although sparse, not banded. Stiffness in this example has 
two sources: firstly the parameter g becoming small, secondly the diffusion 
term for small discretization intervals ~x. 

We choose g=10-4, u=1/144, O:::;x:::;l, ~x=1/32, N=32 and obtain 

ili = -104 (y: + aiYi + bi ) + D(Yi_l - 2Yi + Yi+l) 

ai = bi + 0.07vi + D( ai_l - 2ai + ai+l) i = 1, ... , N (10.16') 
• 2 
bi = (1 - ai )bi - ai - OAYi + 0.035vi + D(bi_ 1 - 2bi + bi+l) 

where 

and 

N2 
D-­

- 144 ' 

Yo := YN , ao := aN , bo := bN , 

YN+l := Yl , aN+l:= a1 , bN+1 := b1 , 

a system of dimension 3·N =96. We take the initial values 

Yi(O) = 0, ai(O) = -2COSC:), bi(O) = 2sinC:) i = 1, ... ,N . 

and x out = 1.1. 

BEAM - the elastic beam (1.10) of Section IV.1. We choose n = 40 in 
(1.10') so that the differential system is of dimension 80. The eigenvalues of 
the Jacobian are purely imaginary and vary between -6400i and +6400i (see 
equation (2.23)). The initial conditions (1.19) and (1.20) are chosen such 
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Fig.l0.5. The cusp catastrophe with N = 12. 

that the solution nevertheless appears to be smooth. However, a detailed 
numerical study shows that the exact solution possesses high oscillations 
with period :;:::j 211"/6400 and amplitude :;:::j 10-6 (see Fig. l0.6.). Therefore, 
stiff codes work weIl for low precision only. 

600 
400 
200 

-200 
-400 
-600 

0 .01 

Fig.l0.6. Third finite differences /:l. 3 Y80 / /:l.;e3 of solutions 
of the beam equation (1.10') with n= 40 for 0 ::; ;e ::; 0.07 

07 
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Results and Discussion 

For each of these examples we have computed very carefully (on a VAX 
machine in quadruple precision) the exact solution at the specified output 
points. Then the above codes have been applied with many different toler­
an ces 

Tol = 1O-Hm/8, or Tol = 10-Hm/ 4 m = 0,1,2, .... 

More precisely, we set the relative error tolerance to be Rtol = Tol and 
the absolute error tolerance Atol=10-6 ·Tol (for the problems OREGO and 
ROBER), Atol = 10-4·Tol (for HIRES) and Atol = Tol for all other problems. 
Several codes thereby returned numerical results which were considerably 
less precise than the required precision, while other methods turned out to 
be more reliable. As a reasonable measure of efficiency we have therefore 
chosen to compare 

- the actual error (the maximum taken over all components and all output 
points) compared to 

- the computing time (of an Apollo Workstation DN4000 in seconds). 
The obtained data are then displayed as a polygonal line in a "precision­
work diagram" in double logarithmic scales. The integer-exponent tolerances 
10-3 ,10-4 ,10-5 , ••• are displayed as enlarged symbols. The more this li ne 
is to the right, the higher was the obtained precision; the higher this line is 
to the top, the slower was the code. The "slope" of the curve expresses the 
(effective) order of the formula: lower order methods are steeper than higher 
order methods. The results of the above codes on the 6 small examples are 
displayed in Fig.10.7, those for the 6 large problems in Fig. 10.8. 

The general impression given by the results is that Rosenbrock codes, 
especially RODAS, are best for low tolerances (10-3 to 10-5 ) and the variable 
order extrapolation code SEULEX becomes superior for stringent tolerances. 
This is not very surprising and in accordance with theory. The multistep 
code LSODE is often very fast, but usually lacks precision in the computed 
solutions. RADAU5 is a safe and precise code for medium precision, but can 
become quite slow when Tol approaches 10-8 or 10-9 , say. The implicit 
codes based on real-pole RK methods (STRIDE and SDIRK4) are gener­
ally disappointing, but nevertheless good for a surprise: they are the best 
methods for the (hyperbolic) beam equation. The fact that the computing 
times for the explicit RK code DOPRI5 initially lie perfectly horizontal is, of 
course, no surprise and due to lack of stability. It is only for very stringent 
tolerances that the accuracy requirements surpass the stability requiremellts 
alld the problem ceases to be stiff. 

Compari/JOn between Rosenbrock codes: Fig.l0.9 shows for some selected 
problems the effect of the choice of different coefficiellt sets for Rosenbrock 
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02 

102 

01 

101 

0° 

10° 
100 10-3 10-6 10-9 10-3 10-6 10-9 

sec VDPOL2 

102 02 

Fig.l0.7. Work-precision dia.gra.ms for small problems 
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BRUSS 

02 
~~Uj~~~~~=U~~~~~ U~~~~~~~~~~~~~ 

10-6 10-9 10-3 10-6 10-9 

sec BSMOOTH 

Fig.l0.8. Work-precision diagrams for large problems 



168 IV. Stiff Problems - One Step Methods 

methods. The code RODAS certainly performs best in this comparisonj 
among the 4th order "classical" Rosenbrok methods of Table 7.2 the best 
is in general "method 2" with its small error constantj it fails completely, 
however, on the Beam problem due to lack of A-stability. 

3 sec 
10 

3 sec 
10 

sec BSMOOTH 

err r 

FINAG 

error 

10-3 

Fig.l0.9. Comparison between Rosenbrock codes 

Comparison between Radau codes: Fig.10.10 shows finally a study of Radau 
codes of different orders: RADAU7 and RADAU9, written by J.D. Reymond 
(1989), are codes for the Radau HA methods of classical orders 7 and 9 
with s = 4 and 5 implemented in the same way as RADAU5 of Section IV.8. 
The results obtained are partly in accordance with the theory: the lligher 
order methods are not so brilliant for low tolerances, but superior for high 
precision. It also seems clear that the higher order does not pay off on 
the Cusp problem with its wildly varying solution; we do not understand, 
however, why RADAU7 is so much better on the oscillatory Beam problem. 
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err r 

10-6 10-9 

Fig.l0.l0. Comparison between Radau codes 

Possible Improvements 

a) Tuning parameters. All codes in the above tests were applied throughout 
the tests with all parameters set to the standard values, without any added 
cosmetics. The failures of LSODE for the Beam problem are due to lack 
of A-stability and disappear if the maximum order is reduced to 2 (see 
Section V.5). The relatively poor performance of SEULEX for the Plate 
equation improves enormously if the code is told that Jacobian evaluations 
and LU-decompositions are expensive, i.e., if WORK(ll), WORK(12), and 
WORK(13) are increased (say, to 10, 100, 5, respectively). The same effect 
is shared by the RADAU5 code which significantly improves its performance 
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for the Beam problem if WORK(5) is set to 0.99 (intelligent codes such as 
Th. Speer's FIRK5 watch the dock themselves during the computation). 

b) Switching between ezplicit and implicit methods. In transient regions the 
step size usually becomes very small (~ 1/111'11) and ezplicit methods would 
do much better, especially when the dimension of the system is large. Seve­
ral authors have considered switching strategies, e.g. L. Petzold (1983) for 
Adams- and BDF methods and G. Sottas (1984) for Runge-Kutta and Rosen­
brock methods. While switching from the implicit to the explicit method 
is relatively easy (since hllf'll is available without much cost), switching 
in the inverse direction needs a cheap stiffness detection (cf. Section IV.2). 
Theoretical investigations of switching strategies have been undertaken by 
J. Butcher (1990). In the Cusp problem, for example, 90% of CPU time is 
wasted in regions where one of the solution components drops suddenly from 
the upper to the lower stable surface and switching would save an enormous 
amount of computation time. 

c) Sophisticated linear algebra. For large problems with full Jacobian it be­
comes important to transform J to a Hessenberg form (see (8.13)). Thereby, 
e.g., for the Plate problem with N =80, RADAU5 saves 55% of CPU time. 

Another substantial saving is possible for second order problems y" = 
f( x, y, y') such as the Plate or Beam problem. In these cases the linear 
equations to be solved at each Newton iteration have a matrix of the form 

( al I) 
Be' (10.17) 

We simply communicate this structure to the linear equation solver and ask 
it to do the first n/2 elimination sweeps without pivot search. The matrix 
(10.17) then becomes 

( al I ) 
o C-a-1B 

and the dimension of the linear equation is halved. All codes thereby save 
between 61% and 73% of computing time. If for the code RADAU5 this 
idea is combined with a better tuning of the parameters (WORK(3)= 0.1, 
WORK(4)= 0.3, WORK(5)= 0.99, WORK(6)= 2), the saving of CPU time 
accumulates in the mean to 92%, thus the code runs more than 10 times 
faster than indicated in Fig.10.8. 

d) Approzimate Jacobian. No methods, except Rosenbrock methods, require 
an exact J acobian for the simplified Newton iterations. Thus if the J acobian 
is replaced by an approximation with a simpler structure, the numerical work 
may decrease considerably. For example the Cusp problem has a J acobian 
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of the form 

(10.18) 

where Ai,Bi, Gi,Di are 3x 3matrices. If now the matrices D1 and DN 

are simply neglected by telling the code that J is banded with bandwidth 
ML=MU=3, all codes with iterative solution of implicit RK and extrapola­
tion equations save between 75% (for SDIRK4) and 90% (for RADAU5) of 
CPU time. 

This does not work for the Rosenbrock codes, which require an exact 
Jacobian and therefore lose precision. 

Partitioning and Projection Methods 

"Most codes for solving stiff systems ... spend most of their 
time solving systems of linear equations ... " 

(Watkins & HansonSmith 1983) 

Further spectacular reductions of the work for the linear algebra are often 
possible. One of the oldest ideas is to partition a stiff system into a (hope­
fully) small stiff system and a large nonstiff part, 

y~ = fa(Ya'Yb) 

y~ = fb(Ya'Yb) 

( stiff) 

(nonstiff) , 
(10.19) 

so that the two systems can be treated by two different methods, one implicit 
and the other explicit (e.g. Bofer 1976). The theory of P-series in Section 
11.14 had its origin in the study of the order properties of such methods. A 
difficulty of this approach is, of course, to decide which equations should be 
the stiff ones. Further, stiffness may affect subspaces which are not parallel 
to the coordinate axes. We shall therefore turn our attention to procedures 
which do not adapt the underlying numerical method to the partitioning, but 
the linear algebra only. An excellent survey of the older literature on these 
methods is given by Söderlind (1981). The following definition describes an 
especially promising dass of problems: 

Definition 10.1 (Björck 1983, 1984). The system Y' = f(x,y) is called 
separably stijj at a position xo,Yo if the Jacobian J = U(xo,Yo) possesses 
k < n eigenvalues >'1' ... '>'k such that 

(10.20) 
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The eigenvalues Al" .. , Ak are called the stiff eigenvalues and 

(10.21 ) 

the relative separation. The space D spanned by the stiff eigenvectors is 
called the dominant invariant subspace. 

For example, the Robertson problem (10.2) possesses only one stiff eigen­
value (elose to -2000), and is therefore separably stiff with k = 1. The CUSP 
problem (10.16') of dimension 96 has 32 large eigenvalues which range, ex­
cept for transient phases, between -20000 and -60000. All other eigen­
values satisfy approximately lAi< 30. This problem is, in fact, a singular 
perturbation problem (see Section VI.1), and such problems are all separa­
bly stiff. The other large problems of this Section have eigenvalues scattered 
all around. A.R. Curtis' study (1983) points out that in practical problems 
separably stiff problems are rat her seldom. 

The Method of Gear and Saad 

Implicit methods such as (transformed) RK or multistep formulas require 
the solution of a linear system (where we denote, as usual in linear algebra, 
the unknown vector by x) 

Ax = b 

with residual 

where 
1 

A=-I-J 
h, 

r = b - Ax . 

(10.22) 

(10.23) 

We now choose k (usually) orthogonal vectors q1' ... ,qk in such a way that 

the span {q1' ... ,qd = 15 is an approximation to the dominant subspace D, 
and denote by Q the k X n-matrix formed by the columns qj' 

(10.24) 

There are now several possibilities for replacing the numerical solution x 
of (10.22) by an approximate solution x E i5. One of the most natural is 
to require (Saad 1981, Gear & Saad 1983; in fact, Galerkin 1916) that the 
residual of x, 

r = b - Ax = A( x - x) , 

be orthogonal to 15, i.e., that 

or 

If we write x in the basis of (10.24) as x = Qy, this yields 

x = Q(QT AQ)-lQTb = QH- 1 QTb 

(10.25) 

(10.26) 

(10.27) 
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where 

or QH=AQ, (10.28) 

whieh means that we have to solve a linear system of dimension k with ma­
trix H. A partieularly good ehoice for i5 is a Krylov subspace spanned by 
an arbitrary vector T O (usually the residual of a wen chosen initial approxi­
mation xo)' 

(10.29) 

The vectors (10.29) eonstitute the sequence ereated by the well-known power 
method. Therefore, in the ease of a separably stiff system, as analyzed by 
D.J. Higham (1989), the spaee i5 approaehes the spaee D extremely well 
as soon as its dimension is suffieiently high. If the vectors of (10.29) are 
sueeessively orthonormalized (Gram-Sehmidt) as 

(10.30) 

and so on, we see that 

Aql = h21 q2 + hu ql 

Aq2 = h32 q3 + h22 q2 + h12 ql (10.31) 

whieh, eompared to (10.28), shows that 

"') ... 
(10.32) 

is Hessenberg. For Asymmetrie, H is also symmetrie, henee tridiagonal, so 
that the method is equivalent to the eonjugate gradient method. 

Two features are important for this method: Firstly, the matrix A need 
never be eomputed nor stored. All that is needed are the matrix-vector mul­
tiplications in (10.31), whieh ean be obtained from the "directional deriva­
tive" 

Jv ~ [J(x,y + t5v) - f(x, y)l/t5 . (10.33) 

Several people therefore eall such methods "matrix-free". Seeondly, the 
dimension k does not have to be known: one simply eomputes one eolumn 
of H after the other and periodieally estimates the residual. As soon as this 
estimate is small enough (or k beeomes too large) the algorithm stops. 



174 IV. Stift' Problems - One Step Methods 

We also mention two variants of the method: 
1. (Gear & Saad, p. 595). Before starting the computation of the Krylov 

subspace, perform some initial iteration of the power method on the initial 
vector r o, using either the matrix A or the matrix J. Lopez & Trigiante 
(1989) report excellent numerical results for this procedure. 

2. 1ncomplete orthogonalization (Saad 1982). The new vector Aqj is only 
orthogonalized against the previous p vectors, where p is somesmall integer. 
This makes H a banded matrix and saves computing time and memory. For 
symmetrie matrices, the ideal choice is of course p = 2, for matrices more 
and more unsymmetric p usually is increased to 10 or 15. 

The EKBWH-Method 

(this tongue-twister stands for Enright, Kamel, Björck, Watkins and Han­
sonSmith). Here, the matrices A (and J) in (10.22) are replaced by appro­
ximations 

- 1 -A= -1-J 
h"( 

(10.34) 

where j should approach J sufliciently well and the matrix 1 be relatively 
easy to invert. J is determined as follows: Complete (theoretically) the 
vectors (10.24) to an orthogonal basis of Rn 

(Q,Q) . (10.35) 

In the new basis J becomes 

J = (Q, Q) (TT,U Tl2 ) (q~) 
21 T22 Q 

(10.36) 

hence 

J(Q,Q) = (Q,Q) (TT,U Tl2 ) 
21 T22 

(10.37) 

and 

(10.38) 

If span Q = jj approaches D, then Tu will contain the stift' eigenvalues and 
T21 will tend to zero. If jj = D exactly, then T21 = 0 and (10.36) is a block­
Schur decomposition of J. For separably stift' systems IIT22 11 will become 
small compared to (h"()-1 and we define 

(10.39) 
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This shows J to be the orthogonal projection of J onto D. The inverse of Ä 
is computed by developing (I -B)-1 =1 +B+B2+ ... as a geometrie series 
(see (10.39) and (10.37)) 

Ä-1 = h"'f(I - h"'fQQT J)-1 

= h'Y(I + h"'fQQT J + h2"'f2Q QT JQ QT J + ... ) 
"-..--' 

Tu 

= h'Y(I + Q(h'Y1 + h2'Y2Tll + h3'Y3Ti1 + .. . )QT J) 

= h'Y(I + Q(:'Y I - Tll f1 QT J) 

(10.40) 

which only requires the solution of the "smali" system with matrix (I/h'Y­
Tll ) (the last expression is called the Sherman-Morrison-Woodbury for­
mula). 

Choice 0/ Q: 
- Björck (1983) computes the precise span of D, by Householder trans­

forms followed by block-QR iterations. For separably stift' systems the block 
T21 converges to zero linearly with ratio 1'-1 so that usually 2 or 3 iterations 
are sufficient. A disadvantage of the method is that an estimate for the 
dimension k of D must be known in advance. 

- Enright & Kamel (1979) transform J to Hessenberg form and stop the 
transformations when IIT21 11 + IIT22 11 become sufficiently small (remark that 
T21 is non zero in its last column only). Thus the dimension k can be dis­
covered dynamically. Enright & Kamel combine the Householder reflexions 
with a pivoting strategy and repeated row & column permutations in order 
to make T22 small as fast as possible. It was first observed numerically (by 
Carlsson) and then shown theoretically (Söderlind 1981) that this pivoting 
strategy "needs some comments": if we start from (10.37), by knowing that 

( Tll T12) 
T21 T22 

is Hessenberg in its first k columns, (with h21 =f:. 0, h32 =f:. 0, ... ) and do the 
analysis offormulas (10.32), (10.31), and (10.30) backwards, we see that the 
space D for the Enright & Kamel method is a Krylov subspace created by q1 
(D.J. Higham 1989). Thus only the first permutation influences the result. 

- Watkins & HansonSmith (1983) start from an arbitrary Q(O) followed 
by several steps of the block power method 

JQ(i) = Q(i+1) R(i+1) (10.41) 

where R(i+1) re-orthogonalizes the vectors of the product JQ(i). A great 
advantage of this procedure is that no large matrix needs to be computed 
nor stored. The formulas (10.41) as weIl as (10.40) only contain matrix-
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vector products which are computed by (10.33). The disadvantage is that 
the dimension of the space must be known. 

Stopping criteria. The above methods need a criterion on the goodness of the 
approximation I to decide whether the dimension k is sufficient. Suppose 
that we solve the linear equation (10.22) by a modified Newton correction 
which uses i as "approximate Jacobian" 

x = Xo + i-1(b-Ax o) , 

then the convergence of this iteration is governed by the condition 

U(I - i-I A) = u(i-1(i - A)) = u(i-1(J - I)) < 1 . (10.42) 

A reasonable condition is therefore that the spectral radius U of i-I (J - I) 
is plainly smaller than 1. Let us compute this value for the Björk method 
(T21 = 0): since the eigenvalues of a matrix C are invariant under the simi­
larity transformation T-1CT, we have 

u(i-1(J - I)) = u( (h\I - (T~l T~2)) -1 (~ ~2)) 
= u( Ch\I -OTU)-l ~~) (~ ~2)) 

= u( (~ h~~2)) = U(h,T22 ) . 
In practice, a condition of the form 

(10.43) 

where 11 ·11 is usually the Frobenius norm J'Ei,j a~j' ensures a reasonable 

rate of convergence. For an analogous condition in the Enright-Kamel case 
see Exercise 4 below. 

Exercises 

1. Reconstruct E. Hopf's analytic solution of Burgers' equation (10.8). 

Hint. Introduce the new dependent variable 

1 r t 
c,o(x, t) = exp{ - 2J.L Jo u(e, t) de - Jo c(r) dr} . 

Show that for a suitably chosen c(t) the function c,o(x, t) satisfies the one 
dimensional heat equation. The solution u(x, t) of (10.8) ean then be 
recovered from c,o(x, t) by 

u = -2J.L(10gc,o)", = -2J.L(c,o",/c,o) . 
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2. (The red-black reduction). The Jacobian matrix of the (periodic) cusp 
catastrophe model (10.16') is of the form 

Al BI Cl 
C2 A2 B 2 

(10.44) 

C2m - l A 2m - l B2m- l 

B 2m C2m A2m 

where Ai' Bi' Ci are (3 X 3)-matrices. Write a solver which solves linear 
equations with matrix (10.44) using the "red-black ordering reduction". 
This means that Al' A3 , A5 , ••• are used as (matricial) pivots to eliminate 
C2 , C4 , ••• , B 2 , B4 , ••• above and below by Gaussian block-elimination. 
Then the resulting system is again of the same structure as (10.44) with 
halved dimension. If the original system's dimension contains 2k as prime 
factor, this process can be iterated k times. Study the increase of per­
formance which this algorithm allows for the RADAU5 and Rosenbrock 
codes on model (10.16'). The algorithm is also highly parallelizable. 

3. Show by numerical experiments that the circular nerve (10.16') loses its 
limit cycle when the diffusion coefficient D becomes either too small (the 
message does not go ac ross the water fall) or too large (the limit cycle 
then melts down across the origin). 

4. (Stopping criterion for Enright & Kamel method; D.J. Higham 1989). 
Suppose that the matrix J has been transformed to partial Hessenberg 
form (see (10.37)) 

k n-k 

( QT) ~ k (H QT J(Q,Q) = n-k (0 b) 

where H is upper Hessenberg and b a column vector. Show that the 
criterion (10.42) then becomes 

e(h-yB) < 1 

where k-1 

k (0 B-
n-k 0 

with H = (I - h-y H). Since e( B) is the same as the spectral radius of its 
lower 1+n-k by 1+n-k principal submatrix, a sufficient condition for 
convergence IS 

--1 
where yT is the k-th row of the matrix -h-yH T12 (b T22 ). 
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"He who loves practice without theory is like the sailor 
who boards ship without a rudder and compass and 
never knows where he may be cast". 

(Leonardo da Vinci 1452-1519, cited from 
M. Kline, Mathematical Thought ... 1972, p. 224) 

The stability analysis of the preceeding sections is based on the transforma­
tion of the Jacobian J ~ 8f /8y to diagonal form (see Formulas (2.5), (2.6) 
of Section IV.2). Especially for large-dimensional problems, however, the 
matrix which performs this transformation may be badly conditioned and 
destroy all the nice estimations which have been obtained. 

Example 11.1. The discretization of the hyperbolic problem 

8u 8u 

by the method of lines leads to 

y' = Ay, A=A 
(

-1 

8t = 8x 

1 

-1 1 
A=->O. 

ßx 

(11.1) 

(11.2) 

This matrix has all eigenvalues at -A and the above spectral stability analy­
sis would indicate fast asymptotic convergence to zero. But neither the 
solution of (11.1), which just represents a travelling wave, nor the solution 
of (11.2), if the dimension becomes large, ha ve this property. So our interest 
in this section is to obtain rigorous bounds for the numerical solution (see 
(2.3)) 

Ym+l = R(hA)Ym (11.3) 

in different norms of Rn or Cn. Here R(z) represents the stability function 
of the method employed. We have from (11.3) 

IIYm+lll ~ IIR(hA)II'IIYmll (11.4) 

(see Volume I, Section 1.9, Formula (9.12)), and contractivity is assured if 

IIR(hA)11 :5 1 . 
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Euclidean Norms (Theorem of von Neumann) 

"People in mathematics and science should be reminded that 
many of the things we take for granted today owe their birth 
to perhaps one of the most brilliant people of the twentieth 
century - John von Neumann." 
(John Impagliazzo, quoted from SIAM News September 1988) 

Let the considered norm be Euclidean with the corresponding scalar product 
denoted by (-,.). Then, for the solution of y' = Ay we have 

d~ jjyjj2 = d~ (y, y) = 2Re (y, y') = 2Re (y, Ay) , 

hence the solutions are decaying in this norm if 

Re (y,Ay) :::; 0 for all y E Cn . 

This result is related to Theorem 10.6 of Seetion LI0, because 

Re (y,Ay) :::; JL2(A) jjyjj2 

(11.5) 

(11.6) 

(11. 7) 

where JL2(A) is the logarithmic norm of A (Formula (10.20) of Section 1.10). 

Theorem 11.2. Let the rational function R( z) be bounded for Re z :::; 0 
and assume that the matrix A satisfies (11.6). Then in the matrix norm 
corresponding to the scalar product we have 

jjR(A)II:::; sup jR(z)j. (11.8) 
Rez~O 

Remark. This is a finite-dimensional version of a result of J. von Neumann 
(1951). A short proof is given in Hairer, Bader & Lubich (1982). The 
following proof is due to M. Crouzeix (unpublished). 

Proof. a) Normal matrices can be transformed to diagonal form A=QDQ* 
where D = diag{.A1 , .•• , .An} by a unitary matrix Q (see Exercise 3 of Section 
1.12). In this case we have 

IIR(A)jj = jjQR(D)Q*jj = jjR(D)jj = . max jR(\)j 
z=l, ... ,n 

and (11.8) follows from the fact that the eigenvalues of A satisfy Re \ :::; 0 
by (11.6). 

b) For a general A we consider the matrix function 

w 1 
A(w) = '2(A + A*) + '2(A - A*) . 

We see from the identity 

(v,A(w)v) = wRe (v,Av) + ilm(v,Av) 
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that A(w) satisfies (11.6) for all w with Rew 2:: 0, so that also the eigenvalues 
of A( w) satisfy Re'x( w) ::::; 0 for Re w 2:: O. Therefore, the rational function 
(v fixed) 

cp(w) = IIR(A(w))vI1 2 = (R(A(w))v,R(A(w))v) 

has no poles in Rew 2:: O. Using A(1) = A we obtain from the maximum 
principle that 

IIR(A)vI1 2 = cp(1)::::; supcp(iy)::::; supIIR(A(iy))1121IvI12 
yER yER 

::::; ( sup IR(z)lfllvI12. 
Rez$O 

(11.9) 

The last inequality of (11.9) follows from part a), because A(iy) is a nor­
mal matrix (i.e., A(iy)A(iy)* = A(iy)* A(iy)). Formula (11.8) is now an 
immediate consequence of (11.9). D 

Corollary 11.3. 1/ the rational function R( z) is A-stable, then the nu­
merical solution Yn+l =R(hA)Yn is contractive in the Euc1idean norm (i.e., 
IIYn+1ll::::; IIYnll), whenever (11.6) is satisfied. 

Proof. A-stability implies that max IR( z) I ::::; 1. 
Rez::;O 

D 

Corollary 11.4. 1/ a matriz A satisfies 

Re (v,Av) ::; vllvl1 2 for all v E Cn 

then 
IIR(A)II::::; sup IR(z)l. (11.10) 

Rez::;11 

Proof. Apply Theorem 11.2 to R(z)=R(z+v) and Ä=A-vI. D 

Study of the Contractivity Function 

Guided by the above estimate, we define 

CPR(a:):= sup IR(z)l· (11.11) 
Rez::;., 

This function is monotonically increasing and, if R( z) is analytic in the 
half-plane Re z < x, the maximum principle implies that 

CPR(a:) = sup IR(x + iy)1 . 
yER 
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Examples. 

1. Implicit Euler method: 

1 
R(z) = -

1-z 

if -00 < x < 1 

if 1:::; x . 
(11.12) 

2. The stability function of the O-method (or of a one-stage Rosenbrock 
method): 

if x :::; eo 
R(z) = 1 + (1 - O)z 

1- Oz 
if eo :::; x < 1/0 

if 1/0:::; x , 
(11.13) 

where eo=(1-20)/(20(1-0)) for 0 < 0 < 1 and eo=-oo for 021. 

3. The (0,2)-Pade approximation: 

{ R(x) 
if -00 < x :::; 0 

1 
Cf'R(x) = _1_ R(z) - if O:::;x<1 - 1 - z + z2/2 I-x 

00 if 1 :::; x . 
(11.14) 

4. The (1,2)-Pade approximation R(z)= 1; z/3 2/ 
1- 2z 3 + z 6 

lR(X) if -oo<x:::;eo 

( ) _ J3V12x2 + 12x + 9 + 10x + 7 
Cf' R X - if eo :s; x < 2 

2(2 - x) 

00 if 2:::; x , 
(11.15) 

where eo = -6 - 3J1o. 

.. 1 + z/2 + z2/12 
5. The (2,2)-Pade apprmamatlon R(z)= 1- z/2 + z2/12 : 

{

I if -00 < x :::; 0 

Cf'R(x)= J9+7x 2 +4xV9+3x2 if 0:::;x<3 
3-x 

00 if 3:::; x . 

(11.16) 

Here is a general result on the shape of Cf' R (x) in the neighbourhood of 
the origin: 
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Theorem 11.5. Let R(z) be an A-stable appro:z:imation to eZ of e:z:act order 
p, i.e., R(z)=eZ-CzPH+O(zp+2) with C -1= o. 1f additionally IR(iy)1 < 1 
for y -1= 0 and IR(oo)1 < 1, then we have 

a) if pis odd 

b) ifp is even we have (11.17) only for (-1)p/2Cx > 0, otherwise 

r,oR(x) = e'" + O(xr+1 ) for x -+ 0 (11.18) 

for some positive rational number l' ~ p/2. 

P1'oof. The assumptions imply that for x -+ 0 the maximum of {IR(x + 
iy)l; y E R} must be located near the origin. We furt her observe that it 
must lie within the order star A = {z E C; IR(z)1 > lezl}. If p is odd, 
the order star consists of p+ 1 sectors near the origin (Lemma 4.3) and, 
asymptotically for z -+ 00, all elements of A satisfy Izl ~ DI:eI, D < 00. 

Therefore 

IR(z)1 = e'" + O(lzIPH) = e'" + O(:eP+1 ) for x -+ O. 

The same argument applies if pis even and (-1)p/2C:e > O. In the remaining 
case (p even and (-1)p/2Cx < 0) the maximum of {IR(:e+iy)l;y E R} is 
attained near the imaginary axis and a more detailed analysis is necessary 
(see Hairer, Bader & Lubich (1982) and Exercise 2 below). 0 

Small Nonlinear Perturbations 

The above estimates, valid only for linear autonomous equations y' = Jy, 
can be extended to problems with small nonlinear perturbations, so-called 
semi-linear problems 

where 

y' = J y + g( x, y) 

(y, Jy) ~ JLllYl12 

IIg(x,y) - g(x, z)11 ~ LIIY - zll 

with L assumed to be small. 

(11.19) 

(11.20) 

Here, in the presence of nonlinearities, stability properties are obtained 
by estimating the distance of two neighbouring solutiollS y( x) alld Y(:e). 
Illstead of (11.5) we therefore have 

d~ Ily(:e) - y(x)11 2 = 2(y' - y,y - y) 
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whieh gives, after inserting (11.19) for y' and 11, using the Cauehy-Sehwarz 
inequality and the estimates (11.20) 

d 
dz lIy(z) - Y(z)1I 2 ::; 2(1' + L) Ily(:z:) - Y(z)1I 2 • (11.21) 

We thus have eontractivity whenever I' + L ::; O. 
We now want to establish the same property for the numerical solu­

tions. In principle, these estimates ean be earried out for all methods of 
this ehapterj however, sinee the subsequent sections will deal with so many 
niee properties of IRK methods, we shall eoneentrate here on Rosenbrock 
methods. 

Example 11.6. Consider the I-stage Rosenbroek method 

(I -7hJ)k1 = h!(zo,yo) 

Y1 = Yo + k1 

with 7 > 0 as a free parameter. Its stability function is 

R(z) = 1+(1-7)Z 
1- 7Z 

(11.22) 

and we have A-stability for 7 ~ 1/2. Applieation of (11.22) to (11.19) yields 

(11.23) 

From von Neumann's theorem (Corollary 11.4) we obtain 11(1 -7hJ)-111 ::; 
(1-7hl')-1 and IIR(hJ)11 ::; If'R(hl') with If'R given in (11.13). If we take a 
seeond numerical solution Y1' also defined by (11.23), its differenee to Y1 can 
be estimated by 

whenever eo < hl' < Ih with eo given in (11.13). Therefore eontraetivity 
oeeurs for I'+L ::; 0, as desired. 

For the general Rosenbroek method (7.4) applied to problem (11.19) 

i 

ki = hg(:z:o + cih, 'Ui) + hJyo + hJ 2:(aij + 7ij)k j 
j=l 

i-1 • 

'U i = Yo + 2: aijkj , Y1 = Yo + L biki 
j=l i=l 

we easily find the following analogue of the variation of eonstants formula: 
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Theorem 11.7. The numerical solution of a Rosenbrock method applied to 
(11.19) can be written as 

Yl = R(hJ)yo + h 2: bJhJ)g(xo + cih , Ui) 
i=1 

i-I 

ui = Ri(hJ)yo + h 2:aij(hJ)g(xo + cjh,uj)' i = 1, ... ,8 . 

j=1 

(11.24) 

Here R(z) is the stability function, Ri(z) are the so-called internal stability 
functions and bi(z), aij(z) are rationalfunctions whose only pole is 1h and 
which satisfy bi(oo) =0, aij(OO) =0. 0 

Remark. For many classes of linearly implicit methods (e.g. the methods 
of van der Houwen (1977), Friedli (1978), Strehmel & Weiner (1982), etc.), 
the numerical solution can be expressed by (11.24) with certain rational 
functions. Thus the following analysis can be applied to these methods as 
well. 

We now take a second numerical solution fio' Ui, fi1 (again defined by 
(11.24)), take the difference to Yl and apply the triangle inequality. Using 
von Neumann's theorem (Corollary 11.4) the assumptions (11.20) then imply 

• 
!!fil - Ylil :::; <PR(hJl)!!fio - Yo!! + hL 2: <Pbi(hJl)!!ui - ui !! 

i=1 
(11.25 ) i-I 

IIUi - uill :::; <PR,(hJl)llflo - Yoll + hL 2: <Paij(hJl)lleuj - ujll . 
j=1 

Inserting the second inequality of (11.25) repeatedly into the first one yields 

Theorem 11.8. Under the assumption (11.20) the difference of two nu­
merical solutions 01 (7.4) can be estimated by 

(11.26) 

where <PR(x) is given by (11.11) (R(z) is the stability function 01 (7.4)) and 
c is a constant depending smoothly on hL and hJl but not on Pli (which 
represents the stiffness 01 the problem). 0 

This estimate shows numerical contractivity whenever <P R( hJl )+hL* :::; O. 
In Theorem 11.5 we have shown under certain assumptions that <PR(x) = 
l+x+o(x), so contractivity holds essentially for Jl+L* :::; O. In any case we 
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have that A-stability implies 

IIY1 - Y111 ::; (1 + hC*) Ilyo - Yoll 

for hJ-L ::; Const. Here, C* is a constant independent of the stiffness of 
(11.19). 

Remark. Since the rational functions bi and aij in (11.24) vanish at infin­
ity, also (l-"(hJ)bi(hJ) and (l-"(hJ)aij(hJ) are uniformly bounded for J 
satisfying (11.20) and for hJ-L ::; C < "(-I. Instead of the second condition of 
(11.20) we may therefore require that 

II(I _"(hJ)-lh(g(x,y) - g(x,z))11 ::; illy-zil , (11.27) 

and the statement of Theorem 11.8 holds with hL replaced by LObserve 
that the assumption (11.20) implies (11.27) with i=hL/(l-"(hJ-L). However, 
in some special situations the number i may be significantly smaller than 
hL. Related techniques have been used by Hundsdorfer (1985) and Strehmel 
& Weiner (1987) to prove contractivity and convergence for linearly implicit 
methods. Recently, Ostermann (1988) applied these ideas to nonlinear sin­
gular perturbation problems, where hL = O( he-I) with some very small c 
(c ~ h), but f can be bounded independently of Cl. 

Contractivity in 11·1100 and 11·111 

The study of contractivity in general norms has been carried out mainly by 
Spijker (1983, 1985) and his collaborators. Similar techniques of proof can be 
found in Bolley & Crouzeix (1978), where a related problem (monotonicity) 
is treated. 

The following theorem gives a condition which is necessary for contrac­
tivity just for the special equation (11.2) and for one of the two norms 11,11"" 
or 11· 111' Later, the same condition will also turn out to be sufficient for 
general problems and all norms. 

Theorem 11.9. Let A be the n-dimensional matrix of (11.2) with fixed 
.:\ 2': 0. For a rationalfunction R(z) satisfying R(O)=l we have 

IIR(hA)II"" ::; 1 in alt dimensions n = 1,2, ... (11.28) 

only if 

RU)(x)2':O for xE [-.:\h,O] and j=0,1,2, ... (11.29) 

(The same statement is true, if 11·1100 in (11.28) is replaced by 11·111)' 

Proof. We put h = 1 and write A = -AI +.:\N, where N is a nilpotent matrix. 
In a suitable norm, IINII is arbitrarily small and therefore we have by Taylor 
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expansion and Nn = 0 

R(A) = y: R(j)( -A) (A~)j ° 

j=O J. 

This means (e.g. for n=4) 

(

R(-A) AR'(-A) ;;R"(-A) ~;2R"'(_A)) 
R(A) = R( -A) AR'( -A) ;! R"( -A) 

R(-A) AR'(-A) 

R( -A) 

Application of Formula (1.9.11') shows that IIR(A)IIex> ::; 1 (or IIR(A)lll ::; 1) 
is equivalent to 

y: IR(j)( -A) I ~~ ::; 1 . 
j=o J. 

If (11.30) is valid for all n ~ 1, the series 

L R(j)( -A) ~~ 
">0 J. J_ 

is absolutely convergent, and therefore we have 

" (0) Aj" ( 0) Aj 1 = R(O) = L.t R J (-A)~ ::; L.t IR J (-A)I~ ::; 1 
°>0 J. °>0 J. J_ J_ 

implying R(j)( -A) ~ 0 for all j ~ o. Since the Taylor expansion 

R(j)(x) = " R(k)( -A) (x + A)ok- j 

f>'. (k-J)! 
_J 

(11.30) 

(11.31) 

consists for x ~ - A only of non-negative terms, we have (11.29). 0 

The next theorem shows that condition (11.29) is sufficient for contrac­
tivity in arbitrary norms. It can readily be applied to the system (11.27), 
since its matrix satisfies IIA+AIIIex>=A: 

Theorem 11.10. Consider an arbitrary norm and let A be such that for 
some A ~ 0, 

IIA + AlII::; A . 

If the stability function of a method satisfies R(O) = 1 and 

R(j)(x) ~ 0 for xE [-e,OJ and j = 0,1,2, ... 

(11.32) 

(11.33) 

then we have numerical contractivity IIR(hA)1I ::; 1, whenever hA ::; e. 
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Proof. We again put h = 1. Since for 0 :::; ,x :::; ewe have RU) ( -,x) 2: 0 for 
all j, the function 

(11.34) 

satisfies IR(z)1 :::; R(-,x+r) for all complex z in the disk Iz+,xl :::; r. This 
property and (11.33) imply that no pole of R(z) can lie in Iz+,xl :::; ,x, so that 
the radius of convergence of (11.34) is strictly larger than ,x. Consequently 
we have from (11.32) 

R(A) = L RU)( -,x) (A +.,AI)j . (11.35) 
'>0 J. J_ 

The triangle inequality applied to (11.35) yields the conclusion. 0 

Study of the Threshold Factor 

Definition 11.11. The largest e satisfying (11.33) is called the thre8hold­
factor of R(z). 

Example 11.12. The implicit Euler method, for which 

(j)( ) - j! R a: - (1 _ a: )Hl' j = 0,1,2, ... , 

satisfies (11.33) for all e > O. It possesses a threshold-factor e=oo. 

Example 11.13 (Threshold-factor for Pade-approximations). The deriva­
tives of the polynomials 

z2 zk 
RkO(z) = 1 + z + .. + ... + -k' 2. . 

are easily calculatedj the most dangerous one is l+z, therefore e = 1 for all k. 
The Pade approximations Rk1 (z) possess one simple pole only, so they 

can be written in the form 

Rk1 (z) = ~b + polynomial in z , 
1- z 

which has only a finite number of derivatives which can change sign (see 
Example 11.12). The numerical values obtained are shown in Table 11.1. 

The functions Rk2 (z) possess no real pole (see Section IVA). But the 
property IR(z)1 :::; R(-e+r) for Iz+el :::; r (see proof of Theorem 11.10) 
means that the maximum of IR(z)1 on the circle with center -e and radius 
r is assumed to the right on the real axis. For increasing r, the first pole 



188 IV. Stiff Problems - One Step Methods 

met by this circle must therefore be real and to the right of -fl. This is not 
possible here and therefore the approximations R k2 (z) never satisfy property 
(11.33). This is indicated by an asterisk (*) in Table 11.1. 

All further values of Table 11.1 were computed using the decomposition 
of R(z) into partial fractions and are cited from Kraaijevanger (1986) and 
van de Griend & Kraaijevanger (1986). 

Table 11.1. Threshold-factors of Pade approximations 

k 

I 
0 1 2 3 4 5 6 

j=O 1 1 1 1 1 1 

j=1 I 00 2 2.196 2.350 2.477 2.586 2.682 

j=2 I * * * * * * * 
j=3 I 0.584 1.195 1.703 2.208 2.710 3.212 3.713 

j=4 I * * * * * * * 
j=5 I 0.353 0.770 1.081 1.424 1.794 2.185 2.590 

It is curious to observe that in this table the methods with the largest 
threshold-factors are precisely those which are not A-stable. An exception 
is the implicit Euler method (k = 0, j = 1) for which fl = 00. 

Absolutely Monotonie Functions 

" ... on peut detinir la fonction e'" comme la seule fonc­
tion absolument monotone sur tout le demi-axe negatif 
qui prend a. l'origine, ainsi que sa derivee premiere [sie] 
la valeur un." (S. Bernstein 1928) 

A thorough study of real functions satisfying (11.33) was begun by S. Bern­
stein (1914) and continued by F. Hausdorff (1921). Such functions are called 
absolutely monotonie in [-fl, 0]. Later, S. Bernstein (1928) gave the follow­
ing characterization of functions which are absolutely monotonie in (-00,0] 
(see also D.V. Widder 1946). 

Theorem 11.14 (Bernstein 1928). A neeessary and suffieient eondition that 
R( x) be absolutely monotonie in (-00,0] is that 

R(x) = 100 
e",tda(t) , (11.36) 

where a( t) is bounded and non-deereasing and the integral eonverges /01' 
-00 < X ~ 0. 
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This is a hard result and the main key for the next two theorems. It 
does not seem to permit an elementary and easy proof. We therefore refer 
to the originalliterature, S. Bernstein (1928). For a more reeent deseription 
see e.g. Widder (1946), p. 160. 

From this result we immediately get the "limit ease A -t 00" of Theorem 
11.10, whieh also holds for an arbitrary norm. 

Theorem 11.15. Let R(x) be absolutely monotonie in (-00,0], R(O) = 1 
and A a matriz with non-positive logarithmie norm p,(A) :s; 0, then 

IIR(A)II :s; 1 . 

Proof. By Theorem 1.10.6 we have for the solution y( z) = eAOlyo of y' = Ay 
that Ily(x)1I :s; IIYolI, henee also IleAOlIi :s; 1 for x 2: 0. The statement now 
follows from 

IIR(A)II = 11100 
eAtdo:(t) 11 :s; 100 

IleAtlldo:(t) :s; 100 
do:(t) = R(O) = 1 

sinee 0:( t) is non-deereasing. o 

The following result proves that no Runge-Kutta method of order p> 1 
ean have astability function whieh is absolutely monotonie in (-00,0]. 

Theorem 11.16. IfR(z) is absolutely monotonie in (-00,0] and R(z)= 
l+x+ 0122 + O(x3 ) for z -t 0, then R(z) =eOl . 

Proof (Bolley & Crouzeix 1978). It follows from (11.36) that 

R(j)(O) = 100 tido:(t) . 

Sinee R(O) = R'(O) =R"(O) = 1, this yields 

100 
(1 - t)2do:(t) = 0 . 

Consequently, o:(t) must be the Heaviside function (o:(t) = 0 for t :s; 1 and 
o:(t)=l for t>l). Inserted into (11.36) this gives R(x)=eOl . 0 
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Exercises 

1. Prove Formula (11.14). For given z, study the set of y-values for which 
IR(z+iy)1 attains its maximum. 

2. (Hairer, Bader & Lubich 1982). Show that the contractivity function 
(11.11) for an A-stable R(z) of order p ~ 1 satisfies 

cpR(:z:»e'" forall 2:=10. 

Hint. For given 2:, cut the order star by the parallellines {2:+iy, y ER}. 

3. (Kraaijevanger 1986). Let R( z) be a polynomial of degree s satisfying 
R(z) = eZ + O(zP+l). Then the threshold factor {! (Definition 11.11) is 
restricted by 

(!~s-p+1. 

Hint. Justify the formula 

3-p+l . 

R(p-l)(z) = L O:j(l+~r, O:j ~ 0 
j=O {! 

and deduce the result from R(p-l)(O) =R(p)(O) =1. 

4. Let (! be the threshold factor of the rational function R( z). Show that 
its stability domain contains the disc Iz+{!1 ~ {!. 



IV.12. B-Stability and Contractivity 

"Next we need a generalization ofthe not ion of A-stability. 
The most natural generalization would be to eonsider the 
ease that :Il(t) is a uniform-asymptotieally stable solution 
... in the sense of Liapunov theory ... but this ease seems 
to be a little too wide." (G. Dahlquist 1963) 

"The theoretieal analysis of the applieation of numerieal 
methods on stift' nonlinear problems is still fairly ineom­
plete." (G. Dahlquist 1975) 

Here we enter a new era, the study of stability and convergence for general 
non-linear systems. All the "crimes" and diverse omissions of which we 
have been guilty in earlier sections, especially in Section IV.2, shall now be 
repaired. 

Large parts of Dahlquist's (1963) paper deal with a generalization of 
A-stability to nonlinear problems. His search for a sufficiently general dass 
of nonlinear systems was finally successful 12 years later. In his talk at the 
Dundee conference of July 1975 he proposed to consider differential equations 
satisfying a one-sided Lipschitz condition and he presented some first results 
for multistep methods. J.C. Butcher (1975) then extended (on the flight 
back from the conference) the ideas to implicit Runge-Kutta methods and 
the concept of B-stability was born. 

One-Sided Lipschitz Condition 

We consider the nonlinear differential equation 

y' = f(~,y) (12.1 ) 

such that for the Euclidean norm the one-sided Lipschitz condition 

(f(~,y) - I(~,z),y - z} ::; v lIy - zll2 (12.2) 

holds. The number v is the one-sided Lipschitz constant of I. This definition 
is motivated by the following 

Lemma 12.1. Let f(~,y) be continuous and satisfy (12.2). Then, lor any 
two solutions y(~) and z(~) 01 (12.1) we have 

lIy(~) - z(~)11 :S Ily(~o) - z(~o)ll' eV(z-zo) for ~ ~ ~o . 

Proof. Differentiation of m(~) = Ily(~ )-z(~ )11 2 yields 

m'(~) = 2(J(~,y(~))-/(~,z(~)) , y(~)-z(~))::; 2v m(~). 
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This differential inequality can be solved to give (see Theorem 1.10.3) 

m(:z:) ::; m(:Z:0)e2v(z-zo) for:z: 2: :z:o , 

which is equivalent to the statement. o 

Remarks. a) In an open convex set, condition (12.2) is equivalent to JL( ~~) ::; 
v (see Section 1.10, Exercise 6), if f is continuously differentiable. Lemma 
12.1 then becomes a special case of Theorem 1.10.6. 

b) For complex-valued y and f condition (12.2) has to be replaced by 

Re (f(:z:,y) - f(:z:,z),y - z) ::; vilY - z112, y,Z E Cn , (12.2') 

and Lemma 12.1 remains valid. 

B-Stability 

Whenever v ::; 0 in (12.2) the distance between any two solutions of (12.1) is 
a non-increasing function of:z:. The same property is then also desirable for 
the numerical solutions. We consider here implicit Runge-Kutta methods 

• 
Y1 = Yo + h L bJ(:z:o + cih ,9i) , 

i=1 

• 
9i = Yo + h L aijf(:z:o + cjh,9j) , 

j=1 

(12.3a) 

i=I, ... ,s. (12.3b) 

Definition 12.2 (Butcher 1975). A Runge-Kutta method is called B-stable, 
if the contractivity condition 

(f(:z:,y) - f(:z:,z),y - z) ::; 0 (12.2") 

implies for all h 2: 0 

IIY1 - Y111 ::; Ilyo - Yoll . 

Here, Y1 and Y1 are the numerical approximations after one step starting 
with initial values Yo and Yo, respectively. 

Clearly, B-stability implies A-stability. This is seen by applying the 
above definition to y'=>"y,>.. E C or, more precisely, to 

(12.4) 

Example 12.3. For the col1ocation methods based on Gaussian quadrat ure 
a simple proof of B-stability is possible (Wanner 1976). We denote by u(:z:) 



IV.12. B-Stability and Contractivity 193 

and u(z) the collocation polynomials (see Volume I, page 206) for the initial 
values Yo and Yo and differentiate the function m( z) = lIu( z )-u( z ) 11 2. At the 
collocation points ei = Zo +cih we thus obtain 

The result then follows from the fact that Gaussian quadrature integrates 
the polynomial m'(z) (which is of degree 28-1) exactly and that the weights 
bi are positive: 

= m(zo} + h L bim'(zO+cih } :::; m(zo} = lIyo - Yol12 . 
i=1 

Algebraic Stability 

An algebraic criterion for B-stability was found independently by Burrage 
& Butcher (1979) and Crouzeix (1979). The result is 

Theorem 12.4. I/ the coejJicients 0/ a Runge-K utta method (12.3) satisfy 

i) bi 2 0 for i=l, ... ,s, 
ii) M=(m .. )=(b.a .. +b.a .. -b.b.)~. 1 is non-negative definite, 

'J "J J J' • J ',J= 
then the method is B -stable. 

Definition 12.5. A Runge-Kutta method satisfying i) and ii) is called 
algebraically stable. 

Pro%/ Theorem 12.4. We introduce the differences 

t:J..Yo = Yo - Yo , t:J..Y1 = Y1 - Y1 , t:J..gi = gi - 9i , 
t:J..fi = f( Zo + cih , gi) - f( Zo + cih , 9i) , 

and subtract the Runge-Kutta formulas (12.3) for Y and Y 

i=1 
8 

t:J..gi = t:J..Yo + h L aij t:J..fj . 
j=1 

(12.5a) 

(12.5b) 



194 IV. Stift' Problems - One Step Methods 

Next we take the square of Formula (12.5a) 

• • • 
IIAYl112 = IIAYoI12+2hL:bi(Afi,AYo)+h2L:L:bibj(Afi,Afj)' (12.6) 

i=l i=l j=l 

The main idea of the proof is now to compute Ayo from (12.5b) and insert 
this into (12.6). This gives 

• • • 
IIAYl11 2 = IIAYoI12+2hL:bi(Afi,A9i)-h2L:L:mij(Afi,Afj)' (12.7) 

i=l i=l j=l 

The statement now follows from the fact that (Afi , Agi ) 50 by (12.2") and 
that Z::,j=l mij(Afi,Afj ) ~ 0 (see Exercise 2). 0 

Example 12.6. For the SDIRK method of Table 7.2 (Chapter II) the 
weights bi are seen to be positive and the matrix M becomes 

1 ( 1 -1) M={-r--)· . 
4 -1 1 

For 'Y ~ 1/4 this matrix is non-negative definite and therefore the Runge­
Kutta method is B-stable. Exactly the same condition was obtained by 
studying its A-stability {c.f. (3.10)). 

Some Aigehraically Stahle IRK Methods 

"La premiere de ces proprietes consiste en ce que tous les 
Ar. sont positifs." (T.-J. Stieltjes 1884) 

The general study of algebraic stability falls naturally into two steps: the 
positivity of the quadrat ure weights and the nonnegative-definitness of the 
matrix M. 

Theorem 12.7. Gonsider a quadrature formula {ci,b i )i=l of order p. 

a} 1fp ~ 28-1 then bi > 0 for alli. 

b} 1f ci are the zeros of (5.3) {Lobatto quadrature} then bi > 0 for all i. 

Proof (Stieltjes 1884). The first statement follows from the fact that for 
p ~ 28 -1 polynomials of degree 28 - 2 are integrated exactly, hence 

11 (a:-C')2 
bi = rr c' _ 3, da: > 0 . 

o #i • C3 

(12.8) 
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In the case of the LobaUo quadrat ure (Cl = 0, c6 = 1 and p = 28 -2) the 
factors for the indices j = 1 and j = 8 are taken without squaring and the 
same argument applies. 0 

In order to verify condition (ii) of Theorem 12.4 we find it convenient to 
use the W-transformation of Section IV.5 and to consider WT MW instead 
of M. In vector notation (b = (bw .. , b6 )T, B = diag(bll ... , bs ), A = (aij )) 

the matrix M becomes 

M = BA + AT B - bbT . (12.9) 

If we choose W according to Lemma 5.12, then WT BW = land, since 
WTb= e1 = (1, 0, ... ,O)T, condition (ii) becomes equivalent to 

W T MW = X + X T - e1 er is non-negative definite (12.10) 

where X = W-1 AW = WT BAW as in Theorem 5.11. 

Theorem 12.8. Suppo.se that a Runge-Kutta method with distinct ci and 
positive bi satisfies the simplifying assumptions B(28 - 2), C( s -1), D( s -1) 
(see beginning 0/ Section IV. 5). Then the method is algebraically stable if 
and only if IR(oo)1 ::; 1 (where R(z) denotes the stability function). 

Proo/. Since the order of the quadrat ure formula is p 228-2 the matrix W 
of Lemma 5.12 is 

W = WaD, D = diag(1, ... ,1,a-1 ) (12.11) 

where Wa = (Pj - 1 (Ci))i,j=l as in (5.21) and a 2 = 2::=1 biP:-1(CJfO. Using 
the relation (observe that WT BW = 1) 

X = W- 1 AW = D-1Wa1 AWaD = DWJBA(WJB)-l D-1 

and applying Lemma 5.7 with TI = S -1 and Lemma 5.8 with e = S - 1 we 
obtain 

If this matrix is inserted into (12.10) then, marvellous surprise, everything 
cancels with the exception of ß. Therefore, condition (ii) of Theorem 12.4 
is equivalent to ß 2 0. 

U sing the representation (5.31) of the stability function we obtain by 
developing the determinants 

IR( 00)1 = I det(X - e1 ef) I = I ßd._1 - a:e;_l dS - 2 1 (12.12) 
det X ßd._ 1 + a e.-1 d._ 2 
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where dk = k!/(2k)! is the determinant of the k-dimensional matrix X G of 
(5.13). Since o:2{;_1 d._ 2 > 0, the expression (12.12) is bounded by 1 Hf 
ß 2:: O. This proves the statement. 0 

Comparing these theorems with Table 5.13 yields 

Theorem 12.9. The methods Gauss, Radau lA, Radau llA and Lobatto 
IIlC are algebraically stable and therefore also B -stable. 0 

AN -Stability 

A-stability theory is based on the autonomous linear equation y' = >'y, 
whereas B-stability is based on general nonlinear systems y' = f( a:, y). The 
question arises whether there is a reasonable stability theory between these 
two extremes. A natural approach would be to study the scalar, linear, 
nonautonomous equation 

y' = >.( a: )y, Re >.( a:) ::; 0 (12.13) 

where >.( a:) is an arbitrarily varying complex-valued function (Burrage & 
Butcher 1979, Scherer 1979). The somewhat surprising result of this subsec­
tion will be that stability for (12.13) will, for most RK-methods, be equiva­
lent to B-stability. 

For the problem (12.13) the Runge-Kutta method (12.3) becomes (in 
vector notation g=(91"" ,9.)T, 11=(1, ... , 1)T) 

9 = 11yo + AZ9, Z = diag(z1" .. ,z.), Zj = h>.(a:o + cjh). (12.14) 

Computing 9 from (12.14) and inserting into (12.3a) gives 

Definition 12.10. A Runge-Kutta method is called AN -stable, if 

IK(Z)I ::; 1 { for an Z = diag( Z1 , ... , z.) satisf!ing Re Z j ::; 0 
and Zj = Zk whenever cj = Ck (J, k = 1, ... ,s). 

(12.15) 

Comparing (12.15) with (3.2) we find that 

K(diag(z,z, ... , z)) = R(z) , (12.16) 

the usual stability function. Further, arguing as with (12.4), B-stability 
implies AN -stability. Therefore we have: 
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Theorem 12.11. For Runge-Kutta methods we have: 

B -stable :::} AN -stable :::} A-stable. 
o 

For the trapezoidal rule Yl = Yo+~[f(xo,Yo)+f(xllYl)l the function 
K(Z) of (12.15) is given by 

K(Z) = 1 + zd2 . ( 
1 _ z2/2 12.17) 

For z2 = 0 and zl -+ -00 we see that this method is not AN-stable. More 
generally we have 

Theorem 12.12 (Scherer 1979). The Lobatto lIlA and Lobatto lIlE methods 
are not AN -stable and therefore not B -stable. 

Proof. As in Proposition 3.2 we find that 

K(Z) = det(l - (A - llbT)Z) 
det(l - AZ) 

(12.18) 

By definition, the first line of A and the last line of A - llbT vanish for the 
Lobatto lIlA methods (compare also the proof of Theorem 5.5). Therefore 
the denominator of K(Z) does not depend on ZI and the numerator not on 
Z •. Ifwe put for example Z2='" = z.=O, the function K(Z) is unbounded 
for ZI -+ -00. This contradicts AN -stability. 

For the Lobatto IlIB methods, one uses in a similar way that the last 
column of A and the first column of A - llbT vanish. 0 

The following result shows, as mentioned above, that AN -stability is 
closer to B-stability than to A-stability. 

Theorem 12.13 (Burrage & Butcher 1979). Suppose that 

IK(Z)I::; 1 {for all Z = diag(zw .. ,z.) with Rezj ::; 0 (12.19) 
and Izjl ::; e for some e > 0 , 

then the method is algebraically stable (and hence also B -stable). 

Proof. We first show that 

• 
IK(ZW -1 = 2 L biRezil9il2 - L m ij Zi9i Zj9j , (12.20) 

i=1 i,j=1 

where 9= (gI" .. ,9.)T is a solution of (12.14) with Yo = 1. To see this, we 
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take the square ofthe modulus of K(Z)=l+bT Zg and obtain 

• • 
IK(ZW = 1 + 2 L: biRe (Zi9i) + L: bibj Zi 9iZj9j . (12.21) 

i=l i,j=l 

Multiplication of the i-th component of (12.14) with zi9i yields 

(12.22) 

Substituting the real part of (12.22) into (12.21) gives Formula (12.20). 
To prove that bi ~ 0, choose zi = -e < 0 and Zj = 0 for j f= i. Assumption 

(12.19) together with (12.20) implies 

(12.23) 

For sufficiently small e, 9i is elose to 1 and the second term in (12.23) is 
negligible for bi f= O. Therefore bi must be non-negative. 

To verify the second condition of algebraic stability we choose the purely 
imaginary numbers Zj = ieej (ej ER). Since again 9i = 1 +O(e) for e ---+ 0, 
we have from (12.20) that 

• 
_e2 L: mijeiej + O(e3 ) ~ 0 . 

i,j=l 

Therefore M = (mij ) has to be non-negative definite. o 

Combining this result with those of Theorems 12.4 and 12.11 we obtain 

Corollary 12.14. For non-confluent Runge-Kutta methods (i.e., methods 
with all Cj distinct) the concepts 0/ AN -stability, B -stability and algebraic 
stability are equivalent. 0 

An equivalence result (between B- and algebraic stability) for confluent 
RK-methods is much more difficult to prove (see Theorem 12.18 below) and 
will be our next goal. To this end we first have to discuss reducible methods. 
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Reducible Runge-Kutta Methods 

For an RK-method (12.3) it may happen that for all differential equations 
(12.1 ) 

i) some stages don't influence the numerical solution; 

ii) several 9i are identical. 

In both situations the Runge-Kutta method can be simplified to an "equiv­
alent" one with fewer stages. 

For an illustration of situation (i) consider the method of Table 12.1. 
Its numerical solution is independent of g2 and equivalent to the implicit 
Euler solution. For the method of Table 12.2 one easily verifies that gl =g2' 
whenever the system (12.3b) possesses a unique solution. The method is 
thus equivalent to the implicit mid-point rule. 

The situation (i) above can be made more precise as follows: 

Definition 12.15 (Dahlquist & Jeltsch 1979). A Runge-Kutta method is 
called DJ -reducible, if for some non-empty index set T C {1, ... ,8}, 

bj = 0 for JET and aij = 0 for i f/. T,j E T . (12.24) 

Otherwise it is called DJ -irreducible. 

Table 12.1. Table 12.2. 
DJ-reducible method S-reducible method 

1 1 0 1/2 1/2 0 

1/2 1/4 1/4 1/2 1/4 1/4 

1 0 1/2 1/2 

Condition (12.24) implies that the stages JET don't influence the nu­
merical solution. This is best seen by permuting the stages so that the ele­
ments of T are the last ones (Cooper 1985). Then the Runge-Kutta tableau 
becomes that of Table 12.3, where the equivalent, reduced method is also 
given. 

Table 12.3. DJ-reducibility 

Cl Au 0 

c2 A21 A22 Cl I Au 
bf 0 bf 

An interesting property of DJ-irreducible and algebraically stable RK­
methods was discovered by Dahlquist & Jeltsch (1979): 
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Theorem 12.16. A DJ -irreducible, algebraically stable Runge-K utta me­
thod satisfies 

bi > 0 for i = 1, ... ,8 • 

Proof. Suppose bj = 0 for some index j. Then mjj = 0 by definition of M. 
Since M is non-negative definite, all elements in the j-th column of M must 
vanish (Exercise 12) so that biaij = 0 for all i. This implies (12.24) for the 
set T={j!bj=O}, a contradiction to DJ-irreducibility. 0 

An algebraic criterion for the situation (ii) was given for the first time 
(but incompletely) by Stetter (1973, p.127) and finally by Hundsdorfer & 
Spijker, 1981 (see also Butcher (1987), p.319 and Dekker & Verwer (1984), 
p.108). 

Definition 12.17. A Runge-Kutta method is 5-reducible, if for some par­
tition (51"'" Sr) of {1, ... ,8} with r < 8 we have for all 1 and m 

L aik = L ajk if i,j E S/ . (12.25) 
kESm kES", 

Otherwise it is called S -irreducible. Methods which are neither D J -reducible 
nor S-reducible are called irreducible. 

In order to understand condition (12.25) we assume that, after a certain 
permutation of the stages, 1 E S/ for 1 = 1, ... ,r. We then consider the 
r-stage method with coefficients 

(12.26) 

Application of this new method to (12.1) yields 9i, ... ,9;, Yi and one easily 
verifies that 9i and Yl defined by 

are a solution of the original method (12.3). A furt her example of an S­
reducible method is given in Table 11.4 of Section 11.11, p.249. There S1 = 
{1,2,3} and S2={4}. 
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The Equivalence Theorem for S-Irreducible Methods 

Theorem 12.18 (Hundsdorfer & Spijker 1981). For S-irreducible Runge­
Kutta methodlJ, 

B -lJtable {:::::} algebraically lJtable . 

Proo/. Because of Corollary 12.14, which covers nearly all cases of practical 
importance - and which was much easier to prove - this theorem seems to 
be oflittle practical interest. However, it is a deep and difficult mathematical 
result which had been conjectured by many people for many years, so we 
reproduce its proof, which also includes the three Lemmas 12.19-12.21. 

By Theorem 12.4 it is sufficient to prove that B-stability and S-irreduci­
bility imply algebraic stability. For this we take s complex numbers Zl' ... ,Z. 
which satisfy Re Zj < 0 and IZj I ::; c for some sufficiently small c > O. We 
show that there exists a continuous function / : C --t C satisfying 

Re (f(u) - /(v) , u - v} ::; 0 for all U,v E C , (12.27) 

such that the Runge-Kutta solutions Yl' gi and Yl' gi corresponding to Yo = 0, 
Yo = 1, h = 1 satisfy 

(12.28) 

This yields Yl -Yl = K(Z) with K(Z) given by (12.15). B-stability then 
implies IK(Z)I ::; 1. By continuity of K(Z) near the origin we then have 
IK(Z)I ::; 1 for all Zj which satisfy Re Zj ::; 0 and Izjl ::; c, so that Theorem 
12.13 proves the statement. 

ConlJtruction 0/ the function f: we denote by I::l.gi the solution of 

8 

!:l.gi = 1 + L aijZj!:l.gj 
j=l 

(the solution exists uniquely if IZj I ::; c and c is sufficiently small). With ~,11 
given by Lemma 12.19 (below) we define 

9i = t~i , f(gi) = t11i 
(12.29) 

gi = gi + I::l.gi , /(gi) = /(gi) + zi!:l.9i . 

with t sufficiently large (to be fixed later). Because all ~i are distinct and 
I::l.gi = 1 + O( c), all 9i and gi are distinct for sufficiently large t, so that 
(12.29) is well-defined. Clearly, gi and gi represent a Runge-Kutta solution 
for Yo = 0 and Yo = 1, and (12.28) is satisfied by definition. 

We next show that 

Re(f(u)-/(v) , u-v}<O if u=/=v (12.30) 
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is satisfied for u,v E D = {91'''' ,9.,91'''' ,9.}. This follows from the 
construction of e,TJ, if u,v E {91"" ,9.}. If u = 9i and v = 9i this is a 
consequence of (12.28). For the remaining case u = 9i' v E D \ {9i,:9;} we 
have 

(f(u) - f(v),u - v) = t2 (TJi - TJj,ei - ej ) + O(t) for t --+ 00 , 

so that (12.30) is satisfied, if t is sufficiently large. Applying Lemma 12.20 
below we find a continuous function f : C --+ C that extends (12.29) and 
satisfies (12.27). 0 

To complete the above proof we still need the following three lemmas: 

Lemma 12.19. Let A be the coefficient matriz 0/ an S-irreducible Runge­
K utta method. Then there eziJJt vectors e E R· and TJ = Ae such that 

Proof (see Butcher 1982). The first idea is to put 

e = t - eA11 with 11 = (1,1, ... , 1f , 

so that TJ becomes 
TJ = Ae = A11- eA2 11 . 

(12.31) 

If ci 1= Cj for all i,j, then ei -ej 1= 0 and for e sufficiently small we have 
l1i -l1j of opposite sign, thus (12.31) is true. 

For a proof of the remaining cases, we shall construct recursively vectors 
vo' v1' v2"" and denote by P/c the partition of {1, ... ,s} defined by the 
equivalence relation 

i"-'j {:::::::} (Vq)i=(Vq)j for q=O,l, ... ,k. 

For a given partition P of {1, 2, ... , 8} we introduce the space 

X(P) = {v E Wj (V)i = (V)j if i "-' j with respect to P} . 

With this notation, the method is S-irreducible if and only if 

AX(P) ct X(P) 

for every partition other than {{1}, {2}, ... ,{ 8 n. 
We start with Vo = 11 and Po = {{1, ... ,8 n and define 

if Av/c rt X(P/c) 

if Av/c E X(P/e) 

where w is an arbitrary vector of X(P/e) satisfying AV/C+1 rt X(P/e+1)' Such 
a choice is possible, since the method is assumed to be S-irreducible. After 
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a finite number of steps, say m, we arrive at Pm = {{1}, {2}, ... , {s}}, since 
the number of components of Pk is increasing, and strict1y increasing after 
every second step. Therefore aH elements of the vector 

~ = Vo - e;v1 + e;2 v2 - ••• + (-e; )mvm 

are distinct (for sufficiently small e; > 0) and (12.31) is satisfied. 0 

Lemma 12.20 (Minty 1962). Let u 1 , ••• , u k and u~, ... , u~ be elements of 
Rn with 

(U~-uj,ui-Ui) <0 for ii=i. 

Then there ezists a continuous function f : Rn -t Rn satisfying f( ui) = u~ 
fori=1, ... ,k and 

(f(u) - f(v),u - v) ::; 0 for all u,v ERn. 

Proof (Wakker (1985), see also Exercise 5 below). Define 

(u'. - u'. u· - u.) , J" J 
"( = max 11' , 11 2 < 0 i'li u i - u j 

and let 

Then 

and by Lemma 12.21 there exists a continuous function 9 : Rn -t Rn sat­
isfying g(ui) = ui' Ilg(u)-g(v)11 ::; Ilu-vll (i.e., 9 is non-expansive). The 
function 

1 
f(u) = -(g(u) + u) 

2"( 

then satisfies the requirements. o 

Lemma 12.21 (Kirszbraun 1934). Let u1 , .•. , uk and u~, . .. , u~ E Rn be 
such that 

(12.32) 

Then there ezists a continuous function 9 : Rn -t Rn with g( ui) = u~ such 
that 

Ilg(u)-g(v)ll::; Ilu-vll· (12.33) 
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Jl = 0.5543478 

Fig.12.1. Construction of p' = g(p) 

This was onee a diffieult result in set-theory. Based on furt her work of 
Valentine and Miekle, 1.J. Sehoenberg (1953) gave a partieularly niee proof: 

Proof. a) The main problem is to construct for one given point p the exten­
sion p'=g(p) such that (12.33) remains satisfied (Fig.12.1). This is done as 
follows: let r i = Ilui - pli and eonsider with J-L > 0 the balls 

i = 1, ... ,k . 

Now let J-L be the smallest possible value for whieh all these balls still have 
a eommon intersection pr (which is then unique). In virtue of (12.33), we 
have to show that this minimal JL satisfies 

(12.34) 

Suppose to the eontrary that JL > 1 and let u~, ... , u;" (2 ::; m ::; k) be the 
aetive points (i.e., the points for whieh pr lies on the boundary of JLB~j this 
ean be aehieved by a proper renumbering). Then put 

(12.35) 

so that JL > 1 means that 

i=1, ... ,m. (12.36) 

Now (12.32) may be rewritten as 
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Expanding this and subtracting appropriate inequalities (12.36) we have 

(12.37) 

Finally, we use the fact that p' lies in the convex hull of u~ , ... ,u~ (otherwise 
the balls /-LBi could be shrunk furt her ) 

m 

ci 2 0, L Ci = 1 , 
i=l 

which gives with (12.35) 
m 

LCiR~ = O. 
i=l 

Multiplying (12.37) by CiCj and summing up gives 

0= 11 I:Cß~112 > 11 I:Cßi112 , 
i=l i=l 

a contradiction. 
b) The rest is now standard (Kirszbraun): we choose a countable dense 

sequence of points Pl ,P2' P3' ... in Rn and extend 9 gradually to these points, 
so that (12.33) is always satisfied. By continuity (see (12.33)), our function 
is then defined everywhere. A crucial remark is that at every step our p' is 
uniquely determined, so we are not bothered with, as Wakker (1985) says 
so nicely, "the compactness of spheres w.r.t. the weak topology, the finite 
intersection property for compact sets, and the Lemma of Zorn". 

This completes the proof of Lemma 12.21 and with it the proof of The-
orem 12.18. 0 

"Nous ne connaissons pas d'exemples de methodes qui soient 
B-stables au sens de Butcher et qui ne soient pas B-stables 
suivant notre definition." (M. Crouzeix 1979) 

Remark. Burrage & Butcher (1979) distinguish between B N -stability (based 
on non-autonomous systems) and B-stability (based on autonomous sys­
tems). Since the differential equation constructed in the above proof (see 
(12.27)) is autonomous, both concepts are equivalent for irreducible methods. 
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(k,l)-Algebraic Stability 

All the above theory deals only with contractivity when the one-sided Lip­
schitz constant l/ in (12.2) is zero (see Definition 12.2). The quest ion arises 
whether we can sharpen the estimate when it is known that l/ < 0, and 
whether we can obtain estimates also in the case when (12.2) holds only for 
some l/ > o. 

Definition 12.22. Let an IRK-method be given. Then for a given I we 
define the growth /unction t,OB(l) to be the smallest number for which the 
estimate 

holds for all problems satisfying 

(f(x,y)-!(x,z) , y-z}:::; l/ Ily-zl12 
where l/ = 1/ hand h is the step size. 

(12.38) 

(12.39) 

If we restrict ourselves to linear autonomous problems, then (12.38) is 
the same as (11.4), therefore a first result is that 

(12.40) 

(see (11.10) and (11.11); R(z) is the stability function of the method). 
Upper bounds for t,OB(I) are much harder to obtain, since an extension of 

the ideas of Theorem 12.4 to the new situation is quite tricky (Burrage & 
Butcher (1980), compare with Lemma V.9.2 below): 

Let d1 , ••• , d. be arbitrary numbers with di 2 0 and k > o. Then we 
compute 

• 
IIßY111 2 - kllßyo 11 2 - 2h L di(ß!i' ßgi ) 

i=1 
• • 

= (ßyo + h L biß!i' ßyo + h L bjß!;)- (12.41 ) 
i=1 j=1 

8 

- k(ßyo, ßyo) - 2h L di(ß!i' ßyo + h L aijß!j) 
i=1 j=1 

by using (12.5a) and (12.5b). With hypothesis (12.39) we estimate 
8 • 

2h Ldi(ß!i,ßgi ):::; 21Ldi(ßgi,ßgi) 
i=1 i=1 

• • • 
:::; 21 L di (ßYo + h L aijß!j' ßyo + h L aimß!m) 

i=1 j=1 m=1 
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and insert this into (12.41). This gives 

II~Y1112 - kll~Yol12 
• • 

S -Cl(~Yo' ~Yo) - 2h L Ui(~Yo, ~fi) - h2 L wij(~fi' ~fj) 
i=1 i,j=1 

(12.42a) 
where 

• 
Cl = k - 1 - 21 L di 

i=1 

• 
U· = d· - b· - 21~ d·a .. < < < ~ J J< (12.42b) 

j=1 

• 
Wij = diaij + djaji - bibj - 21 L dmamiamj . 

m=1 

We thus have the following result. 

Theorem 12.23 (Burrage & Butcher 1980). If there ezist dl7' .. , d. 2': 0 
such that the matriz 

M= (: ~) 
is non-negative definite, where Cl, Ui' Wij are given in (12.4 2b), then 

hence 

(12.43) 

(12.44) 

(12.45) 

o 

The corresponding RK-method is then called (k, 1)-algebraically stable. 

Computation of the Optimal k 

Since M must be non-negative, the minor W (which depends on the di and 
1 only, but not on k) must also be non-negative. Suppose first that for a 
given 1 the di are chosen such that W is strictly positive. Then expanding 
det M by the first column shows that 

det M = k· Pl(d1 , ••• ,d., 1) + P2(du ... ,d.,1) (12.46) 

where PI and P2 are polynomials and PI = det W > O. A well-known theorem 
of linear algebra (due to Jacobi (1847) and CauchYi see e.g. Gantmacher 
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(1954), Chapter X, Sections 3 and 4) states that a matrix is positive definite 
iff all principal rninors (Fig. 12.2, left) are positive. It remains true, of course, 

(~ 
*1 *1 *1 

*1) (* 
* * * 

D 
~I *1 *1 *1 1* 1* * * 
~ ~I *1 *1 1* 1* 1* * 
~ ~ ~I *1 1* 1* 1* 1* 
~ ~ ~ ~I 1* 1* 1* 1* 

Fig.12.2. Principal Minors 

if we reverse the variables and consider the lower principal rninors (Fig. 12.2, 
right). Therefore, if W is positive definite and det M > 0, we have also M 
positive definite. Hence the smallest possible value of k for non-negativity 
of M in (12.46) is given by det M = 0, i.e., 

k=_P2(dw ··,d.,I). (12.47) 
Pl(d1,···,d.,l) 

This rational function must be rninirnized over the domain where di 2: 0 and 
W is positive definite. Sometimes, the minimal solution lies on the boundary 
where det W = 0 and we must then have 

(12.48) 

Several sirnilarity transformations of M can simplify these calculations (see 
Exercises 9 and 10 below). 

Example 12.24. Consider the 8-method (s=l,au =8,b1 =1) for which 

( 
k - 1 - 2ld d - 1 - 2ldB 

M-
- d - 1 - 2ldB 2dB(1 - IB) - 1 

Here (12.47) gives 

k = (1 21d) (d - 1 - 21dB)2 
+ + 2dB(1 - lB) - 1 

From 8k/8d=0 we obtain the two solutions 

d = 1 + 1(1 - B) 
1 - lB 

I-B 
or d= --; 

B 

) . 

(12.49) 

(12.50) 

only the larger one satisfies the non-negativity condition 2dB( l-lB) -1 2: O. 
Inserted into (12.49), this gives 

k= (1+1(I-B))2 
1 - lB 

( 1 - B)2 
or k = --

B 

respectively. Comparing with (11.13), we find that for this method 

'PB(l) = 'PR(l) . 

(12.51 ) 
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Example 12.25. Consider the Radau HA method with s = 2 of Table 5.5. 
Here we obtain after a straightforward (but tedious, if done by hand) calcu­
lation 

det M = k d1 - - + - - _1 + d1 d2 ___ + _ __2 { ( 1 1 ) d2 (13 41 12 ) 9d2 } 

12 18 144 24 9 9 16 

{ d~ 2 (2 21) 2 ( 2 21) } + 9 + d1 d2 -'3 + '9 + d1 d2 '3 + '9 . (12.52) 

The solution on the boundary (PI = P2 = 0, see (12.48)) is quite easily found 
as 

d _ (3 + 41)2 
1 - 4( 3 + 41 -212) , 

d _ 3 + 41 
2 - 4( 3 + 41 - 2[2) 

(12.53) 

whlch gives from (12.47), using de l'Höpital's rule, 

k = (3 + 41)2 
(3 - 21)(3 + 41 - 2l2 ) 

A second solution, for which -P2/Pl is minimized in the interior, is more 
difficult to find. The result is 

9 2. 16 
d1 = ( 1)( l)' d2 = --I wlth k = ( 1)2 (12.54) 3- 5-2 5-2 5-2 

This leads to the estimate (Burrage & Butcher 1980) 

{ 

4 
5 - 2l 

cpB(l) :::; 3 + 4l 

V(3 - 21)(3 + 41- 2[2) 

if 1 < 9 - 3m 
- 8 

l'f 9 - 3m 1 3 ---:-- < < -. 8 - 2 

(12.55) 

This time, when compared with (11.15), we do not obtain the same estimate 
as for the linear autonomous case. 

Example 12.26. Finally we choose the Gauss method with s = 2 of Table 
5.1. Here, we use the transformation of Burrage (see Exercise 10) which 
converts the matrix M into a Hankel form 

with 

(
ho 

H = h1 

h2 

ho = k -1- 31p 

h1 = -1 + p(18 - 181) + 6ml 

h 2 = -1 + p(18 - 121) + m( -6 + 61) 

h 3 = -1 + p(18 - 91) + m( -9 + 51) 

h4 = -1 + p(18 - 71) + m( -10 + 41) 

(12.56) 
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where 

Guided by a numerical study of the function (12.47), we search for the 
solution on the boundary (12.48). Then H becomes rank one and we must 
have 

and 

Developing these expressions and putting p = a . m, we are led to a third­
degree equation for a which factorizes as follows: 

The interesting solution is a = ~ j(ly3) and we finally obtain, again 
after tedious manipulations, 

d _ 3+(1+2y3)1(1+~) 
1 - 2(3 - 1) 

d _ 3 + (1 - 2V3) 1 (l- V3+r) 
2 - 2(3 - 1) 

(12.57) 

Jk = J9 + 712 + 41V9 + 3[2 
3-1 ' 

0:::;1<3 

which is the same as Cf'R(l) in (11.16). Hence we have Cf'R(l) = Cf'B(l). We 
also notice from the Taylor expansion (1 ;::: 0) 

12 [3 14 15 16 

Cf'B(l) = 1 + 1 + '2 + 6" + 24 + 72 + 144 + ... 

that Cf'B(l) is an approximation to e l of order 4. 
Burrage (1987) has proved the result that for all other Gauss methods 

Vk is an approximation to e l for 1 2: 0 of order at most 2 (see also Exercise 
11). On the other hand, the proof of Theorem 11.5 shows that Cf'R(l) = 
el+0(l2s+1) for the s-stage Gauss method and for 1 2: O. Thus Vk cannot 
be equal to Cf'R(I) for s > 2. 
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Exercises 

1. Prove, directly from Definition 12.2, that the implicit Euler method is 
B-stable. 

2. Let M be asymmetrie s X s-matrix and (.,.) the sealar product of Rn. 
Then M is non-negative definite, if and only if 

s 

L L mij(ui'Uj ) 20 for all u i ERn. 
i=l j=l 

Hint. Use M = QT DQ where D is diagonal. 

3. Give a simple proof for the B-stability of the Radau HA methods by 
extending the ideas of Example 12.3. 

Hint. For the quadrat ure , based on the zeros of (5.2), we have 

f1 s 

10 cp(x)dx = ~ bicp(Ci) + Ccp(2S-1)(O, 0 < ~ < 1 . 

with c< 0 (see e.g. Abramowitz & Stegun (1964, Formula 25.4.31)). 

4. (Dahlquist & Jeltseh 1987). Prove that Method I of Table 12.4 is S­
redueible with respeet to the partition ({I}, {2, 3}). The redueed method 
II itself is DJ-reducible and reduees to Method III. 

For the initial value problem y' = f(y), y(O) = 1, where f(y) =y2 for y 2 0 
and f(y) = 0 for y < 0, and for h = 2, Methods I and III have unique 
solutions whieh are different. Explain this apparent eontradiction. 

Table 12.4. Reduction of RK-methods 

0 0 0 0 

1/2 0 1 -1/2 0 0 0 

1/2 0 1/2 0 1/2 0 1/2 0 0 

1 b -b 1 0 1 

Method I Method 11 Method III 

5. Try to reeonstruet Minty's original (unpublished) proof of Lemma 12.20, 
whieh was, as he says (Minty 1962), "patterned after Sehoenberg's proof 
of Kirszbraun's theorem", without using Lemma 12.21. 
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6. a) Give a counter-example of a non-algehraically stahle reducihle B­
stahle method. 

h) Give a counter-example of an irreducihle AN -stahle hut not alge­
hraically stahle, and hence not B-stahle method. 

Hint. For a) see Exercise 7 helowj for b) start with any algebraically sta­
ble method with, say, two stages and modify it as indicated in Table 12.5. 
Find conditions on the free parameters d, e, Q such that the two meth­
ods are identical for equations y' = >'( x )y. This ensures AN -stability of 
the second method. Then play with the parameters to destroy algebraic 
stability. 

Table 12.5. Construction of AN-stable but not B-stable method 

Cl an a12 Q ad1- a) 
Cl an a12 

C2 C2 - d da d(l - a) 
c2 a2l a22 

C2 C2 - e ea e(l - a) 

bl b2 bl b2a b2(1 - a) 

7. Show that the method ofTable 12.1 is DJ-reducible, but not S-reduciblej 
show that it is algebraically stahle together with the reduced method. 

Show that the method of Table 12.2 is S-reducible, but not DJ-reduci­
blej show that it is not algebraically stable, but that the reduced method 
lS. 

8. (Sandberg & Shichman 1968, Vanselow 1979, Hundsdorfer 1985). 
Prove that Rosenhrock methods are not B-stahle in the sense of Defini­
tion 11.2. 

Hint. Apply the method to the scalar problem y' = f(y), Yo = 1 where 
f(y) is a non-increasing function satisfying (for a small c) 

_ {-y if Iy - 11 2: 2c 
f(y} - -1 if Iy - 11 :S c . 

9. (Burrage & Butcher 1980). Show that for an RK-method with invertible 
A the transformation 

( 
1 

T-
-A- l ll 

transforms the matrix M of (12.43) into 

M=TTMT 

~) 
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with (1, l)-element k - (R(oo))2. This simplifies M, espeeially for me­
thods with R(oo) =0. 

10. (Burrage 1987). Let V be the s x s matrix whose (i,j)-element is jc1- 1 

and let 

T=(~ ;). 
Show that the transformed matrix 

H = TTMT 

is then an (s + 1) x (s + 1) Hankel matrix whose (i,j)-element is hi+i - 2 

(i,j=l, ... ,s+l) where 

• 
ho = k - 1 - 21 L di 

i=l 

h = p" d.d:- 1 -1- 21" d.d: p ~. • ~ • • (p = 1, ... , 2s) . 
;=1 ;=1 

Hint. U se the simplifying assumptions C( s) and D( s ). 

11. Prove that for the 3-stage Gauss method we have for I ;::: 0 

(1) 1 + 1/2 
'PB ;::: 1-1/2 

Hint. With the help of (12.18) compute K(Z) for zl -+ -00, z2 = 1, 
Z3 -+ -00. 

12. Show that for a non-negative definite symmetrie matrix M = (m ii ) one 
has 

13. Interpret the meaning of the "N" in the definition for AN-stability. 
Cheek among 

0 Nune est bibendum 0 Nota bene 0 Nottinghamshire 

0 Nundobewunewun 0 New Zealand 0 No smoking 

0 Nee plus ultra 0 Non-autonomous 0 Nomen est omen 

0 Notre Dame 0 Non nova, sed nove 0 ......... (other) 

and send to the authors. The first prize, a guided tour to Mont Blane, 
will be drawn among the eorrect answers. 



IV.13. Positive Quadrature Formulas 

and B-Stable RK-Methods 

"Bien que le probleme (des quadratures ) ait une duree 
de deux cents ans a. peu pres, bien qu'il etait l'objet de 
nombreuses recherches de plusieurs geometres: Newton, 
Cotes, Gauss, Jacobi, Hermite, Tchebychef, Christoffei, 
Heine, Radeau [sie], A. Markov, T. Stitjes [sie], C. Posse, 
C. Andreev, N. Sonin et d'autres, il ne peut etre con­
sidere, cependant, comme suffisamment epuise." 

(v. Steklov 1918) 

We shall give a constructive characterization of all irreducible B-stable Run­
ge-Kutta methods (Theorem 13.15). Because of Theorem 12.16 we first have 
to study quadrature formulas with positive weights. 

Quadrature Formulas and Related Continued Fractions 

Steklov (1916) proved that a family of interpolatory quadrature formulas 
converges for all Riemann integrable functions, if all weights of the formulas 
are positive ("n faut remarquer cependant que de tels theoremes generaux 
ne peuvent avoir aucune valeur pratique ... "). This theorem, rediscovered 
around 1922 by Fejer, initiated an extensive search for quadrature formulas 
with positive weights. Fejer (1933, "weiter habe ich noch auf sehr kurzem 
Wege das folgende Resultat erhalten ... ") found the result: 

"1/ p. (z) are the Legendre polynomials normalized as in (13.4) and 
Cl' • •• ,cs are the zeros 0/ M( z) = p.( Z )+0:1 p.- 1 (z) +0:2P._2( z) with 0: 2 ::; 0, 
then the weights bi are all positive". 

The theory of B-stable methods renewed the interest in positive quadra­
ture formulas and Burrage (1978) obtained the sharp bound 

(8 - 1)2 
0: < --:-~'--...,....,...:..---:-

2 4(28 -1)(28 - 3) 
(13.1) 

for the positivity of the bi in the above case. This is the same as condition 
(5.51) in a different normalization. A short proof ofthis result (see "Lemma 
18" of N!Ilrsett & Wanner 1981) then led to a complete characterization of 
positive quadrature formulas by Sottas & Wanner (1982). An independent 
proof of an equivalent result was found by Peherstorfer (1981). In what 
follows, we give a new approach using continued fractions. 
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Consider a quadrat ure formula 

with distinct nodes ci and non-zero weights bio The main idea is to eonsider 
the rational function 

Q{z) = tbj - 1 - = N(z) 
z-c· M{z) j=1 J 

(13.2) 

where, as usual, M(z) = (z-c1) ... (z-cs )' We first express the order of the 
quadrat ure formula in terms ofthe function Q{z). 

Lemma 13.1. A quadrature formula is of order p if and only if Q(z), 
defined by (13.2), satisfies 

Q(z) = -log(l - ~) + 0(_1_) for z --+ 00 . (13.3) 
Z Zp+1 

Proof. Inserting the geometrie series for (1-Cj/z)-1 into (13.2) we obtain 

Therefore (13.3) is equivalent to 

for k = 1, ... ,p . 

o 

We now study the case of the Gaussian quadrature formulas, where the 
function (13.2) will be denoted by Q?(z) = Nfj(z)/Mfj(z)j here the ci are 
the zeros of the s-degree shifted Legendre polynomial 

() s! ds ( 8{ )S) 
p. Z = (2s)! dz. z z-l , (13.4) 

which are normalized so that the coeflicient of ZS is 1. The polynomials 
(13.4) satisfy the recurrenee relation (see Formula (5.53) or Abramowitz & 
Stegun, p. 782) 

S2 
T = -:-:-~--:-

8 4(4s2 -1) 
(13.5) 

and Po{z) = 1, P -1 (z) =0. Sinee this quadrat ure formula is of optimal order 
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2s, it follows from (13.3) that 

N;(z) = -M;(z) log( 1 - ~) + OC'~l) (13.6) 

We now insert Mf(z) = p.(z) (see (13.2)) into (13.5) and multiply by 
log(l-l/z) (which is O(l/z) for z -+ 00). A comparison with (13.6) shows 
that the polynomials Nf(z) must also satisfy the recurrence formula (13.5) 
(with Nf(z)=o, Nf(z)=l). It thus follows from elementary properties of 
continued fractions (Exercise 1 or Perron (1913), page 4) that 

G l' Tl' Ts_1 , 
Q. (z) = ,--I -,--I -... -,--I . z-2" z-2" z-2" 

(13.7) 

For an arbitrary quadrat ure formula we have 

Lemma 13.2. An irreducible rational function Q(z) = N(z)/M(z) (with 
deg M = s, deg N = s-1) satisfies (13.3) with p ? 2(s -k), iJ and only iJ 

Q(z) __ 1_'_ --.2J _ _ Ts- k- 1'_ g(z) , (13.7') 
- , 1 , 1 •.• ,. 1 , 

z-2" z-2" z-2" J(z) 

with degJ = k and degg:::; k-l. 

Proof. From Lemma 13.1 we know that Q(z) = Q;t(z) + O(1/z 2(s-k)+1). 
Therefore the first 2( s - k) coefficients in the continued fraction expansions 
for Q( z) and Q;t (z) must be the same. 0 

"Endlich sei noch die folgende Formel wegen ihrer häufigen 
Anwendungen ausdrücklich hervorgehoben:" 

(0. Perron 1913, page 5) 

Lemma 13.3. The functions M(z) and N(z) oJ Lemma 13.2 are related to 
J(z) and g(z) oJ (13. 7') as folIows: 

M(z) = p._k(z)J(z) - P._ k_1(z)g(z) , 

N(z) = N;_k(Z)J(Z) - N;_k_1(z)g(z) . 
(13.8) 

ProoJ. This follows from the recursion (13.30) and Exercise 1 below, if we 
put there bo = 0, b1 = ... = b._k = z -1/2, b.-k+1 = J(z) and a1 = 1, 
aj = -Tj_1U =2, ... , s-k), as -k+1 = -g(z). 0 

Solving the linear system (13.8) for J(z) and g(z) gives, with the use of 
Exercise 2, 

J(z). Tl' "Ts- k- 1 = N(z)Ps_k_1(z) - M(z)N:- k_1(Z) 

g(z). Tl "·T._ k_1 = N(z)P._k(z) - M(z)N:-k(z) . 
(13.9) 
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Number of Positive Weights 

For a given rational function (13.2), the weights are determined by 

b. = N(ci) 
• M'(ci)' 

(13.10) 

But we want our theory to work also for confiuent nodes for which M'(ci)= 
O. Therefore we suppose that Cl"'" Cm (m :s; s) are the real and distinct 
zeros of M(z) 0/ multiplicities 11" .. , 1m , Then we let 

i=l, ... ,m. (13.10') 

For li = 1 this is just (13.10); otherwise we are considering the weights for 
the highest derivative of a Hermitian quadrature formula (see Exercise 3). 

The main idea (following Sottas & Wanner 1982) is now to consider the 
path ,(t)=(I(t),g(t)) in the plane R2, where fand gare the polynomials 
of (13.7'). For t -t ±oo this path tends to infinity with horizontallimiting 
directions, since the degree of / is higher than that of g. Equation (13.8) 
tells us that for an irreducible Q( z) this path does not pass through the 
origin. 

Definition 13.4. The rotation number r of , is the integer for which T1r is 
the total angle of rotation around the origin for the path ,( t) (-00 < t < (0) 
measured in the negative (clockwise) sense. Counter-clockwise rotations are 
negative. 

An algebraic definition of r is possible as 

r = 2:sign (J(I;)(ti)g(t i )) , 

i 

where the summation is over all real zeros of /(t) with odd multiplicity li' 

Theorem 13.5 (Sottas & Wanner 1982). Let Q(z) = N(z)/M(z) be an 
irreducible rational function as in Lemma 13.2. Suppose that Cl" •• , Cm are 
the (distinct) real zeros 0/ M(z) with odd multiplicity and denote by n+ 
(respectively n_) the number 0/ positive (respectively negative) bio Further, 
let r be the rotation number o/,=(I,g) (Definition 13.4). Then 

(13.11) 

Proo/. The proof is by counting the number of crossings of the vectors 
,(t)=(I(t),g(t)) and ß(t) =(P._k_ 1(t), p._k(t)), like the crossings ofhands 
on a Swiss cuckoo clock. 
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Fig.13.1. The path (P6-k-l(t),P6-k(t)) for s-k=7 

From (13.9) we see that when t equals a zero ci of M, these two vectors 
are parallel in the same sense (N(ci) > 0) or in the opposite sense (N(Ci) < 
0). From (13.8) we observe that M(t) isjust the exterior product ')'(t) xß(t). 
By elementary geometry, and taking into ac count Formula (13.10'), we see 
that at every zero ci with odd multiplicity we have 

i) bi > 0, if the crossing of ')'(t) with ß(t) is clockwisej 

ii) bi < 0, if this crossing is counter-clockwise. 
Zeros of M(t) with even multiplicity don't give rise to crossings. 

Since the zeros of Ps_k and PS - k- 1 interlace (see e.g. Theorem 3.3.2 
of Szegö 1939), the vector ß(t) turns counter-clockwise with a total angle 
of -(s - k)1r (see Fig.13.1). The vector ')'(t) turns with a total angle r1r 
measured clockwise (Definition 13.4). Since the limiting directions of ')'(t) 
and ß(t) are different (horizontal for ')'(t) and vertical for ß(t)), ')'(t) must 
cross ß(t), as t increases from -00 to +00, exactly s-k+r times more often 
clockwise than counter-clockwise. This gives Formula (13.11). 0 

Corollary 13.6. Under the assumptions of Theorem 13.5, alt zeros of M(z) 
are real and simple, and the bi are positive if and only if 

r = k. 

Proof. r = k means by (13.11) that n+ -n_ = s. Because of n_ 2:: 0 and 
n+ S; s, this is equivalent to n+=s and n_=O. 0 
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Characterization of Positive Quadrature Formulas 

The following theorem gives a constructive characterization of all quadrat ure 
formulas with positive weights. 

Theorem 13.7. Let 

be arbitrary real numbers and C a positive constant. Then putting 

J(z) = (z-O'l) .. ·(Z-O'/e), g(z)=C(z-tl!) ... (z-Uk_1) ' (13.12) 

computing M(z), N(z) /rom (19.8), taking cll""c. as the zeros o/M(z) 
and bi /rom (19.10), one obtains all quadrat ure /ormulas with positive weights 
0/ order p 2 2(s-k). I/C=Ts_k the order isp 2 2(s-k)+1. 

Proof. The functions J(z) and g(z) are irreducible, so that also the frac­
tion N(z)!M(z) is irreducible by (13.9). The statement now follows from 
Corollary 13.6, since the polynomials (13.12) are all possible polynomials for 
which r = k. The stated order properties follow from Lemma 13.2. 0 

Example 13.8. Let Cl' ••• , Cs be the zeros of 

(13.13) 

In order to study when the corresponding quadrat ure formula has positive 
weights, we use (13.5) to write (13.13) as 

M(z) = p._1(z)(z - ~ + 0:1 ) - p._2(Z)(T._1 - 0:2 ) • 

Consequently J(z)=z-1!2+0: 11 g(z) =T._ 1 -0:2 and Theorem 13.7 implies 
that the zeros of M(z) are real and the weights positive, if and only if 
0:2 < T._ ll hence (13.1) is proved. 

For k > 1 the rotation number r of (J (t), g( t)) can be computed with 
Sturm's algorithm (Lemma 13.3 of Section 1.13). Consider, for example, 

M(z) = p.(z) + 0:1P._1(Z) + 0:2P._2(z) + 0:3P._3(z) 

= p._2(z)[(z - ~)(z - t + 0:1 ) + 0:2 - T8 _ 1] 

- p._3(z) [T._2(Z - ~ + 0:1 ) - 0:3 ] 

Application of Lemma I.13.3 to the polynomials J(z) = (z-t)( Z-~~O:l )+0:2-

T._1 and g(z) = Ts _ 2(Z-t+0:1 )-0:3 shows that the corresponding quadrat ure 
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formula has positive weights ifI 

Q3 ( Q3 ) -- Q1 - -- - Q2 + 7 8 _ 1 > 0 , 
7 8 _ 2 7 8 _ 2 

(13.14) 

a result first found by Burrage (1978). 

Necessary Conditions for Algebraic Stability 

We now turn our attention to algebraic stability. We again use the notation 
B(p), C(.,,), D(~) of Section IV.5. 

Lemma 13.9 (Burrage 1982). Con8ider Runge-K utta methods, which satisfy 
B(2) and the second condition for algebraic stability (i.e. M non-negative). 
Then 

a) C(k) implies B(2k-1); 

b) D(k) implies B(2k-1). 

Proof. Instead of considering M, we work with the transformed matrix M = 
VT MV where V = (C{-l)i,j=l is the Vandermonde matrix. The elements of 

Mare given by 

(13.15) 
We furt her introduce 

8 

9 = r '" b .C,:-l - 1 
r L..JJJ 

j=l 

so that B(v) is equivalent to 9r = 0 (r = 1, ... ,v). Then C(k) simplifies 
(13.15) to 

fiiqr = _1_ (9q+r + 1 - (9q + 1 )(9r + 1)) 
q·r 

Similarly, D( k) implies 

q :S k, r :S k . 

fiiqr = __ 1_ (9q+r + 9q . 9r) q:S k, r :S k . 
q·r 

We now start with the hypothesis B(2) i.e. B(21) for 1=1. This means that 
91 = ... = 921 = 0, so that, in both cases, fii ll = O. But if for a non-negative 
definite matrix a diagonal element is zero, the whole corresponding column 
must also be zero (see Exercise 12 of Section IV.12). This leads to 9!+q = 0 
for q = 1, ... , kj so we have B( k+l). We then repeat the argument inductively 
until we arrive at B(2k-1). 0 
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Since s-stage collocation methods satisfy B (s) and C( s) (see Theorem 
7.7 of Chapter 11) we have 

Corollary 13.10 (Burrage 1978). An s-stage algebraieally stable eolloeation 
method must be of order at least 2s -1. 0 

Because symmetrie methods have even order this gives: 

Corollary 13.11 (Ascher & Bader 1986). Asymmetrie algebraieally stable 
eolloeation seheme has to be at Gaussian points. 0 

The next result states the necessity of the simplifying assumption C( k). 
Observe that by Theorem 12.16 the weights bi of DJ-irreducible, alge­
braically stable methods have to be positive. 

Lemma 13.12. Ifa Runge-Kutta method of orderp 2 2k+1 satisfies bi > 0 
for i = 1, ... ,s, then the eondition C( k) holds. 

Proof(Dahlquist & Jeltsch (1979) attribute this idea to Butcher). The order 
conditions (see Section 11.2) 

imply that 

~b.e~q = _1_ 
~ • 0 2q+ 1 
0=1 

8 

" b.c~a .. c~-1 = 1 
.~ 00 0)) (2q+1)q 
0,)=1 

for 2q + 1 :::; p. Since the bi are positive, the individual terms of this sum 
must be zero for q :::; k. 0 

A simple consequence of this lemma are the following order barriers for 
diagonally implicit DIRK (aij = 0 for i < j) and singly diagonally implicit 
SDIRK (aij = 0 for i < j and aii = 'Y for all i) methods. 
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Theorem 13.13 (Rairer 1980). 
a) A DIRK method with alt bi positive has order at most 6j 

b) An SD1RK method with alt bi positive has order at most 4j 
c) An algebraicalty stable D1RK method has order at most 4. 

Proof. a) Suppose the order is greater than 6 and let i be the smallest index 
such that ci =J. O. Then by Lemma 13.12 

contradicting ci =J. O. 

C~ 
a··c· =....!.. ... 2' 

b) As above, we arrive for order greater than 4 at 

c~ c· 
a .. c. =....!.. or a .. = -2. (....L 0) . 
u, 2 u 2-r-

Since for SDIRK methods we have aii = an' this leads to Cl = an =J. 0, hence 
i = 1. N ow an = cd2 contradicts an = Cl • 

c) It is sufficient to consider DJ-irreducible methods, since the reduction 
process (see Table 12.3) leaves the class of DIRK methods invariant. From 
Theorem 12.16 and Lemma 13.12 we obtain that algebraic stability and order 
greater than 4 imply 

ci 
an = Cl , an Cl = 2 ' 

and hence an = O. Inserted into m n this yields m n = -bi < 0, contradicting 
the non-negativity of the matrix M. 0 

Similarly to Lemma 13.12 we have the following result for the second 
type of simplifying assumptions. 

Lemma 13.14. I/ a Runge-Kutta method 0/ order p 2:: 2k+1 is algebraicalty 
stable and satisfies bi > 0 tor all i, then the condition D( k) holds. 

Proo/. The main idea is to use the W-transformation of Section IV.5 and 
to consider WT MW instead of M (see also the proof of Theorem 12.8). 
By Theorem 5.14 there exists a matrix W satisfying T(k, k) (see Definition 
5.10). With the help of Lemma 13.12 and Theorem 5.11a we obtain that the 
first k diagonal elements of 

WTMW = (WTBW)X + XT(WTBWf - elef (13.16) 

are zero. Since M and hence also WT MW is non-negative definite, the 
first k columns and rows of WT MW have to vanish. Thus the matrix 
(WT BW)X must be skew-symmetric in these regions (with exception of the 
first element). Because of C( k) the first k columns and rows of (WT BW)X 
and X are identical. Thus the result follows from Theorem 5.11. 0 
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Characterization of Algehraically Stahle Methods 

Theorem 12.16, Lemma 13.12 and Lemma 13.14 imply that DJ-irreducible 
and algebraically stable RK-methods of order p 2:: 2k + 1 satisfy bi > 0 for 
all i, and the simplifying assumptions C( k) and D( k). These properties 
allow the following constructive characterization of all irreducible B-stable 
RK-methods. 

Theorem 13.15 (Hairer & Wanner 1981). Consider a p-th order quadrature 
formula (bi,cdi=l with positive weights and let W satisfy Property T(k,k) 
of Definition 5.10 with k = [(p-1)/2). Then all p-th order algebraically stable 
RK-methods corresponding to this quadrature formula are given by 

A = W XW- 1 (13.17) 

where 

(13.18) 

Q 

and Q is an arbitrary matrix of dimension s - k for which Q + QT is non­
negative definite. For p even we have to require that qll =0. 

ProoJ. Aigebraic stability and the positivity of the weights bi imply C( k) 
and D(k) with k= [(p-1)/2). The matrix A of such a method can be written 
as (13.17) with X given by (13.18). This follows from Theorem 5.11 and the 
fact that multiplication with WT BW does not change the first k columns 
and rows of X. This method is algebraically stable iff M (or WT MW) is 
non-negative definite. By (13.16) this means that Q + QT is non-negative 
definite. 

Conversely, any RK-method given by (13.17), (13.18) with Q+QT non­
negative definite is algebraically stable and satisfies C( k) and D( k). There­
fore it follows from Theorem 5.1 in the case of odd p = 2k + 1 that the 
RK-method is of order p. 

If p is even, say p = 2k + 2, the situation is slightly more complicated. 
Because of 

s 

i,j=l 

it follows from B(2k+2), C(k), D(k) that the order condition (13.19) below 
(with e =17=k) is equivalent to qll = O. The stated order p ofthe RK-method 
now follows from Lemma 13.16. 0 
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In the above proof we used the following modification of Theorem 5.1. 

Lemma 13.16. I/ the coefficients bi , Ci' aij 0/ an RK-method satis/y 

~ ~ '1 1 
.~ biciaijCj = (77+~+2)(77+1) 
',)-1 

(13.19) 

and B(p), C(77), D(e) with p:::; 77+e+2 and p :::; 277+2, then the method is 
0/ order p. 

Proof. The reduction process with the help of C( 77) and D(~) as described in 
Section II.7 (Volume I) reduces all trees to the bushy trees covered by B(p). 
The only exception is the tree corresponding to order condition (13.19). D 

Example 13.17 (Three-stage B-stable SIRK methods). Choose a third 
order quadrat ure formula with positive weights and let W satisfy WT BW = 
I. Then (13.18) becomes 

1 
e1 = 2V3 . 

The method is B-stable if XT + X - e1 er is non-negative, i.e. if 

a 2: 0, d 2: 0, 4ad 2: (c + b)2 . (13.20) 

If we want this method to be singly-implicit, we must have for the charac­
teristic polynomial of A 

XA(z) = (1 - ,z)3 = 1 - 3,z + 3,2 z2 _ ,3 z3 . 

This means that (see (13.17)) 

1 
2"+a+d=3, 

a 1 d 2 
2" + 12 + 2" + ad - cb = 3, 

ad - cb ~d _ 3 
2 + 12 -, . 

Some elementary algebra shows that these equations can be solved and the 
inequalities (13.20) satisfied if 1/3 S; , S; 1.06857902, i.e., ezadly i/ the 
corresponding rational approximation is A-stable (cf. Table 6.3; see also 
Hairer & Wanner (1981), where the analogous case with s=p=5 is treated). 
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The "Equivalence" of A- and B-Stability 

Many A-stable RK-methods are not B-stable (e.g., the trapezoidal rule, 
the Lobatto lIlA and Lobatto IlIß methods; see Theorem 12.12). On the 
other hand there is the famous result of Dahlquist (1978), saying that every 
A-stable one-leg-method is B-stable, whieh we shall prove in Seetion V.6. 
We have furt her seen in Example 13.17 that for a eertain dass of A-stable 
methods there is always a B-stable method with the same stability function. 
The general truth of this result was eonjectured for many years and is as 
follows: 

Theorem 13.18 (Hairer & Türke 1984, Hairer 1986). Let R(z) =P(z)/Q(z) 
(P(O) = Q(O) = 1, deg P ::; s, deg Q = s) be an irreducible, A-stable function 
satisfying R( z) - eZ = O( zpH ) for so me p 2:: 1. Then there ezists an s -stage 
B -stable RK-method of order p with R( z) as stability function. 

Proof. Sinee R( z) is an approximation to eZ of order p, it ean be written in 
the form 

zl ~r z21 ~Ll z21 2 
W(z) = f1 + 1-1- + ... + 1-1 - + ~kzWk(z) () 1 + ~W(z) 

R z = 1 ' 
1 - "2W(z) 

(13.21) 
where k=[(p-1)/2], ~j=1/(4(4P-1)) and Wk(z)=zg(z)/f(z) with g(O)= 
f(O) = 1, degf ::; s-k, degg ::; s-k-1 (for p even we have in addition 
g'(O)=/,(O)). For the diagonal Pade-approximation RG(z) oforder 2s this 
follows from Theorem 5.18 with v=s-l and WII =Z: 

G( ) _ 1 + ~wG(z) 
R z - 1 _ ~wG(z)' 

'T,G( ) _ .:J + ~r z21 + + ~~-l z21 
'f z - 11 1 1 ... I 1 . (13.22) 

For an arbitrary R(z) (satisfying the assumptions ofthe theorem) this is then 
a eonsequenee of R(z) = RG(z)+O(zPH), or equivalently W(z) = WG(z)+ 
O(zp+l ). 

The function R(z) of (13.21) is A-stable ifI (Theorem 5.22) 

ReWk(z) < 0 for Rez < 0 . 

Therefore, the function x(z) = -Wk(-l/z) is positive (c.f. Definition 5.19) 
and by Lemma 13.19 below there exists an (s-k)-dimensional matrix Q such 
that 

x(z) = ef{Q + zI)-leI and Q + QT non-negative definite. 

We now fix an arbitrary quadrat ure formula of order p with positive 
weights bi and (for the sake of simplicity) distinet no des ci' We let W 
be a matrix satisfying WT BW = land Property T( k, k) with k = [(p-
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1 )/2] (c.f. Lemma 5.12), and define the RK-coefficients (aij) by (13.17) 
and (13.18). This RK-method is algebraically stable since Q+QT is non­
negative definite and of order p (observe that 9'(0) =1'(0) implies that the 
upper left element of Q vanishes). Finally, it follows from Theorem 5.18 and 
"IP k(z) = -X( -1/ z) =zef(I -ZQ)-l e1 that its stability function is R(z). 0 

It remains to prove the following lemma. 

Lemma 13.19. Let X(z) = OI.(z)/ß(z) be an irreducible rational function 
with real polynomials 

OI.(z) = zn-1 + 0I.1Zn- 2 + ... , ß(z) = zn + ß1Zn- 1 +.... (13.23) 

Then X( z) is a positive function iff there ezists an n-dimensional real matriz 
Q, such that 

X(z) = ef(Q + zI)-l e1 and Q + QT non-negative definite. (13.24) 

Proof. a) The sufficiency follows from 

ReX(z) = q(z)*{Rez. I + t(Q + QT)}q(z) 

with q(z)=(Q+zI)-l eu since Q+QT is non-negative definite. 
b) For the proof of necessity, the hard part, we use Lemma 6.8 of Section 

V.6 below. This lemma is the essential ingredient for Dahlquist 's equivalence 
result and will be proved in the chapter on multistep methods. It states that 
the positivity of X( z) is equivalent to the existence of real, symmetrie and 
non-negative definite matrices A and B, such that for arbitrary z,w E C 
(z=(zn-1, ... ,z, 1)T, w=(wn- 1, ... ,w, 1», 

OI.(z)ß(w) + OI.(w)ß(z) = (z+w)zT Aüi + zTBw . (13.25) 

The matrix A is positive definite, if 01.( z) and ß( z) are relatively prime. 
Comparing the coefficients of w n in (13.25) we get 

OI.(z) = zT Ae1 (13.26) 

and observe that the first column of A consists of the coefficients of OI.(z). 
For the Cholesky decomposition of A, A = UTU (U is an upper triangular 
matrix) we thus have U e1 = e1 • We next consider the possible computation 
of the matrix Q from the relation 

(Q + zI)Uz= ß(z). e1 (13.27) 

or equivalently 
QUz= ß(z). e1 - zuz. (13.28) 

The right-hand side of (13.28) is a known polynomial of degree n-1, since 
U e1 = e1 • Therefore, a comparison of the coefficients in (13.28) yields the 
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matrix QU and henee also Q. It remains to prove that this matrix Q satisfies 
(13.24). 

Using (13.27), the formula Ael =UTUel =UTel and (13.26) we obtain 

(13.29) 

whieh verifies the first relation of (13.24). Further, from (13.27) and o:(z) = 
e[Uzwe get 

Inserting this formula and the analogous one (with z and w exehanged) into 
(13.25) yields O=zT(B-UT(Q+QT)U)w, so that B=UT(Q+QT)U. This 
verifies the seeond relation of (13.24), sinee B is symmetrie and non-negative 
definite. 0 

Exercises 

1. (Perron (1913) attributes this result to Wallis, Arithmetica infinitorum 
1655 and Euler 1737). Let the sequenees {Ak} and {Bk} be given by 

then 

A k = bkAk_l + akA k_2' 

Bk = bkBk_l + akB k_2' 

A_ l = 1, Ao = bo 

B_ l = 0, Bo = 1 
(13.30) 

(13.31 ) 

Hint. Let z=(zo':Z:ll .•• ,zn+1)T be the solution of Mz =(0, ... ,0, I)T, 
where 

M= 

One easily finds 

Zo a l I all a2 I 
-=bo+-I -=bo+-I +-1 -= ... 
:Z:l :z:t/:Z:2 bl :Z:2/z S 

so that :Z:O/Zl is equal to the right hand side of (13.31). The statement 
now fol1ows from the fact that 

(A_l,Ao, ... ,An)M = (1,0, ... ,0) 

(B_l,Bo, ... ,Bn)M = (0,1,0, ... ,0). 
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2. Let Ps(z) be the Legendre polynomial (13.4) and Nf(z) defined by the 
recursion (13.5) with N~(z)=O, NIG(z) = 1. Prove that 

N;_k(Z)Ps_k_I(Z) - N;_k_I(Z)Ps_k(z) = Tl' T2 " 'Ts-k-l . 

Hint. Use the relation 

( N~(z) Pm(z)) _ (Z - ~ -Tm_I) (N::_ 1 (Z) Pm_1(z)) 
N~_I(Z) Pm_1 (z) - 1 0 N::_ 2 (z) Pm_2 (z) 

3. Consider the Hermitian quadrat ure formula 

(13.32) 

Replace f'( c2 ) and f"( c2 ) by finite divided differences based on f( c2-c), 
f(c2 ), f(c 2 +c) to obtain a quadrature formula 

11 f(x)dx = bd(cl ) + bd(c2 - c) + bd(c2 ) + b4 f(c2 + c). (13.33) 

a) Compute Q(z) for Formula (13.33) and obtain, by letting c -+ 0, an 
expression which generalizes (13.2) to Hermitian quadrat ure formulas. 

b) Compute the values of b1 and b2 (11 =1,12 =3) of (13.10'). 

c) Show that n+ - n_ (see Theorem 13.5) is the same for (13.32) and 
(13.33) with c suffieiently small. 
Results. 

a) 

b) 

4. The rational function x(z)=a(z)/ß(z) with a(z)=z+a1 , ß(z)=z2+ 
ß1 z + ß2 is positive, iff (compare (5.48)) 

a 1 2 0, ß2 2 0, ßl - a l 2 0 . 

a) Find real, symmetrie and non-negative definite matrices A alld B such 
that (13.25) holds. 

b) Show that these matrices are, in general, not unique. 

c) As in the proof of Lemma 13.19, compute the matrix Q such that (13.24) 
holds. 
Hint. Begin with the eonstructioll of B by putting w = -z in (13.25). 
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"Jusqu'a present, nous avons suppose que le schema 
admettait une solution. Pour en demontrer l'exi­
stence ... " (Crouzeix & Raviart 1980) 

"Since contractivity without feasibility makes little 
sense ... " (M.N. Spijker 1985) 

Since the Runge-Kutta methods studied in the foregoing sections are a11 
implicit, we have to ensure that the numerical solutions, for which we have 
derived so many nice results, also rea11y exist. The existence theory for IRK 
methods of Volume I (Theorem 11.7.2) is for the non-stiff case only where 
hL is small (L the Lipschitz constant). This is not a reasonable assumption 
for the stiff case. 

We shall study here the existence of an RK solution, defined implicitly 
by 

9i = Yo + h L aijf(xo + cjh,9j)' i = 1, ... ,s 
j=l 

Yl = Yo + h L bjf(xo + cj h,9j) , 
j=l 

(14.1a) 

(14.1b) 

for differential equation problems which only satisfy the one-sided Lipschitz 
condition 

(f(x,y) - !(x,z),y - z) :::; vilY - zl12 . (14.2) 

Existence 

It was first pointed out by Crouzeix & Raviart (1980) that the coercivity of 
the RK-matrix A (or of its inverse) plays an important role for the proof of 
existence. 

Definition 14.1. Consider the inner product (u, v) D = uT Dv where D = 
diag(d1 , •• • ,ds ) with di > O. We then denote by Cl:D(A-l) the largest num­
ber CI: such that 

(14.3) 

We also set 
(14.4) 
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The first existence results for the above problem were given by Crouzeix 
& Raviart (1980), Dekker (1982) and Crouzeix, Hundsdorfer & Spijker 
(1983). Their results can be summarized as follows: 

Theorem 14.2. Let I be contin1.toully differentiable and latilfy (14.2). 11 
the RK-matriz A i, invertible and 

hv< O:o(A -1) (14.5) 

then the nonlinear IYltem (14.1a) pOllel1e8 a ,olution (gl" .. ,g.). 

Prool. The original proofs are based on deep theorems of Analysis and 
Topology (e.g. "Brouwer's fixed point theorem", the "Domain Invariance 
Theorem" or similar results). We present here a more elementary and more 
constructive version of the ideas which, however, has the disadvantage of 
requiring the differentiability hypothesis for I. 

The idea is to consider the homotopy 

• • 
gj = Yo + h L ajj/(zo + cjh,gj) + (T-l)h L ajj/(zo + cjh,yo) ' (14.6) 

j=l j=l 

which is constructed in such a way that for T=O the system (14.6) has the 
solution gj = Yo, and for T = 1 it is equivalent to (14.1a). We consider gi as 
functions of T and differentiate (14.6) with respect to this parameter. This 
gives 

or equivalently 
(I - h(A ® 1HI,I })g = h(A ® 1)10 (14.7) 

where we have used the notations 

(more precisely, 9 should be written as (gi, . .. ,g'!')T) and 

. (81 81 ) {/,1} = blockdiag 8y (Zo + c1h,gl)"'" 8y (Zo + c.h,g.) . 

In order to show that 9 can be expressed as g= G(g) with a globally bounded 
G(g), we take a D satisfying hv < O:D(A-1), multiply (14.7) by gT(DA-1®1) 
and so obtain 

gT(DA-1 ® l)iJ - hiJT(D ® 1HI,I }iJ = hiJT(D ® 1)/0 . (14.8) 

We now estimate the three individual terms of this equation. 
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a) The estimate 

iJT(DA-1 ® I)iJ ~ aD(A-1 ) IlIiJlll~ , (14.9) 

where we have introduced the notation IIliJlllb =iJT(D ® I)iJ, is (14.3) in the 
case of &calar differential equations (absence of "®I"). In the general case we 
must apply the ideas of Exercise 1 of Section IV.12 to the matrix HDA-l + 
(DA-l )T) - aD(A-l )D, which is non-negative definite by Definition 14.1. 

b) It follows from (14.2) with y=z+eu that 

(e~(z,z)u+o(e),eu) :S;ve2 I1uIl 2 • 

Dividing by e2 and taking the limit e -+ ° we obtain (u, *(z, z)u) :s; vllull 2 

for all (z,z) and all u. Consequently we also have 

(14.10) 

c) The right-hand term of (14.8) is bounded by hllliJlIlD ·lIlfolliD by the 
Cauchy-Schwarz-Bunjakowski inequality. 

Inserting these three estimates into (14.8) yields 

(aD(A-1 ) - hv) IIliJlIl~ :s; h IIliJlIID '1IlfolliD . 

This proves that iJ can be written as iJ = G(g) with 

IIIG(g)llI:S; hlllfolilD . 
D aD(A-l) - hv 

It now follows from Theorem 7.4 (Section 1.7) that this differential equation 
with initial values gi(O) =Yo possesses a solution for all '7", in particular also 
for '7"=1. This proves the existence of a solution of (14.1a). 0 

Remark. It has recently been shown by Kraaijevanger & Schneid (1990, 
Theorem 2.12) that Condition (14.5) is "essentiallyoptimal". 

A Counterexample 

"After our discussion that Monday afternoon (October 
1980) I went for a walk and I got the idea for the coun­
terexa.mple". (M.N. Spijker) 

The inequality in (14.5) is &trict, therefore Theorem 14.2 (together with 
Exercise 1 below) does not yet answer the simple question: "does a B-stable 
method on a contractive problem (v=O) always admit a solution". A first 
counterexample to this statement has been given by Crouzeix, Hundsdorfer 
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& Spijker (1983). An easy idea for constructing another counterexample is 
to use the W-transformation (see Sections IV.5 and IV.13) as follows: 

We put s = 4 and take a quadrature formula with positive weights, say, 

(Ci) = (0,1/3,2/3,1), (bJ = (1/8,3/8,3/8,1/8) . 

We then construct a matrix W satisfying property T(I,I) according to 
Lemma 5.12. This yields for the above quadrat ure formula 

-~) . 
-1 

1 

Finally, we put (with e1 = 1/(2V3)) 

A= WXW- I (
1/2 -eI 

with X = ~ ~ ~ 
o 0 ß 

o 

For ß = 1/( 4V3) this gives nice rational coefficients for the RK-matrix, 
namely 

A=418(: :8 
12 15 18 

3 
~6) 
o . 
3 

o 
9 

It follows from Theorem 13.15 that this method is algebraically stable and 
of order 4. However, ±iß is an eigenvalue pair of X and hence also of A. 

We thus choose the differential equation 

y'=Jy+f(x) with J=(1~ß -~ß), 
which satisfies (14.2) with 1I=0 independent of f(x). If we apply the above 
method with h=1 to this problem and initial values xo=O, yo=(O,O)T, the 
equations (14.1a) become equivalent to the linear system 

(I - A ® J)g = (A ® 1)fo 

where g= (g1'"'" g4)T and f o = (f(c l ),···, f(c4))T. The matrix (I -A ® J) 
is singular because the eigenvalues of I -A ® J are just I-All where A and IL 
are the eigenvalues of A and J, respectively. However, Ais regular, therefore 
it is possible to choose f( x) in such a way that this equation does not have 
a solution. 
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Inßuence of Perturbations and Uniqueness 

Our next problem is the question, how perturbations in the Runge-Kutta 
equations influence the numerical solution. Research into this problem was 
initiated independently by Frank, Schneid & Ueberhuber (preprint 1981, 
published 1985) and Dekker (1982). 

As above, we use the notations 

IluliD = ~ = V(U,U)D 

IllglllD = VgT(D ® I)g 

and IIAIID for the corresponding matrix norm. 

Theorem 14.3 (Dekker 1984). Let gi and Yl be given by (14.1) and consider 
perturbed values 9i and 1A satisfying 

6 

9i = Yo + h L aijf(xo + cjh,9j) + Si 
j=l 

s 

Yl = Yo + h L bjf(xo + cjh,9j) . 
j=l 

(14.11a) 

(14.11b) 

If the RK-matriz A is invertible, if the one-sided Lipschitz condition (14.2) 
is satisfied, and hv < QD(A-l) for some positive diagonal matriz D, then 
we have the estimates 

IIA-lil 
1119 - giliD ::; QD(A-l) ~ hv IIISIIID (14.12) 

IIYl - Ylil ::; IlbT A -llID (1 + Q D~I: ~lljl~ hV) IIISIIID . (14.13) 

Here we use vector notation 9 = (gl,···,gs)T, 9 = (91' ... ,9s )T and S = 
( Sl' ... , S 8)T . 

Proof. With the notation fl.9=9-9 and 

fl.f = (t( Xo +cl h, 91)- f(x o +cl h,gl)" .. , f(x o +csh, '9.) - f(x o +c.h,gs)) T 

the differenee of (14.11a) and (14.1a) ean be written as 

fl.g = h(A ® I)fl.f + S . 

As in the proof ofTheorem 14.2 we multiply this equation by fl.gT(DA-l®I) 
and obtain 
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This equation is very similar to equation (14.8) and we estimate it in the 
same way: since D is a diagonal matrix with positive entries, it follows from 
(14.2) that 

(14.15) 

Inserting (14.15) and (14.9) (with iJ replaced by fl.g) into (14.14) we get 

which implies (14.12). 
The estimate (14.13) then follows immediately from 

o 

Putting b = 0 in Theorem 14.3 we get the following uniqueness result. 

Theorem 14.4. Consider a differential equation satisfying (14.2). 1/ the 
RK-matriz A is invertible and hv < QO(A-1), then the system (14.1a) pos­
sesses at most one solution. 0 

Computation of 00(A-1) 

" ... the determination of a suitable matrix D ... This task 
does not seem easy at first glance ... " (K. Dekker 1984) 

The value QD(A -1) of Definition 14.1 is the smallest eigenvalue of the sym­
metrie matrix (D1/2 A -1 D-1/2+(D1/2 A -1 D-1/2)T) /2. The computation of 
Qo(A -1) is more difficult, because the optimal D is not known in general. 

An upper bound for QO(A-1) is 

(14.16) 

where Wij are the entries of A-1. This follows from (14.3) by putting u=ei, 
the i-th unit vector. 

Lower bounds for Qo(A -1) were first given by Frank, Schneid & Ueber­
huber in 1981. Following are the exact values due to Dekker (1984), Dekker 
& Verwer (1984, p. 55-164), and Dekker & Hairer (1985) (see also Liu & 
Kraaijevanger 1988 and Kraaijevanger & Schneid 1990). 
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Theorem 14.5. For the methods 0/ Section IV.5 we have: 

Gauss 

Radau IA 

Radau lIA 

Lobatto lIIe 

(A - 1 ) • 1 a o = . Inln , 
0=1, .. ,8 2Ci(1 - Ci) 

if 8 = 1, 

if 8 > 1, 

if 8 = 1, 

if 8> 1, 

if 8 = 2, 
if 8 > 2. 

Proo/. a) Gauss methods: written out in "symmetricized form", estimate 
(14.3) reads 

1 
'2uT(DA-1 + (DA- 1)T)u 2: auTDu. 

Evidently the sharpest estimates come out if D is such that the left-hand 
matrix is as "dose to diagonal as possible". After many numerical compu­
tations, Dekker had the nice surprise that with the choice D = B( C-1 - I), 
where B = diag (bl''''' bs) and C =diag (cl"'" cs)' the matrix 

(14.17) 

becomes completely diagonal. Then the optimal a is simply obtained by 
testing the unit vectors u = e /c' which gives 

. bi • bi . 1 = Inln -2- = Inln 2 
i 2c.d· i 2c.b.(1/c.-1) 

= Inln --,------,-
i 2ci(1 - ci) t t 2. t t 

It remains to prove (14.17): we verify the equivalent formula 

VT(ATD + DA - ATBC-2 A)V = 0 (14.18) 

where V = (c{-1) is the Vandermonde matrix. The {l,m)-element of the 
matrix (14.18) is 

L (1 ) 1-1 rn-1 L (1 ) 1-1 rn-1 b· --1 a .. c· c· + b. --1 a .. c· c· 
) C. )0 0) 0 c. 0) 0 ) 

iJ ) iJ 0 

(14.19) 
L I 1-1 rn-1 - b·-2 a./cc/c a .. c· . o c. 0 0) ) 

i,j,/c 0 

With the help ofthe simplifying assumptions C(8) and B(28) the expression 
(14.19) can be seen to be zero. 
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b) For the Radau IA methods we take D = diag(bT A) = B(I -C) and 
show that 

(14.20) 

The stated formula for Qo(A-1) then follows from 0 = cl < C2 < ... < C. 

and from 
b1 + 1 1 -->--b1 - 1 - c2 ' 

which is a simple consequence of b1 = 1/82 (see Abramowitz & Stegun 
(1964), Formula 25.4.31). For the verification of (14.20) one shows that 
VT(DA-1+(DA -l)T -B - e1 ei)V =0. Helpful formulas for this verification 
are A-1 Ve 1 =b~lell VT e1 =e1 and A-1 Vej =(j -1)Vej_1 for j 2: 2. 

c) Similarly, the statement for the Radau IlA methods follows with D= 
BC-1 from the identity 

DA-1 + (DA- 1f = BC-2 + e.e: . 

d) As in part b) one proves for the Lobatto IIlC methods that 

BA-1 + (BA- 1 )T = e1 er + e.e: . (14.21 ) 

Since this matrix is diagonal, we obtain Qo (A -1) = 1 for 8 = 2 and Qo (A -1) = 
o for 8 > 2. 0 

For diagonally implicit Runge-Kutta methods we have the following re­
sult. 

Theorem 14.6 (Montijano 1983). For a DIRK-method with positive aii we 
have 

(A - 1 ) • 1 
Qo = . ffiln -. 

1.=1, ... ,8 aii 
(14.22) 

Proof. With D=diag(1,.o2 ,.o4 , ••• ,.0 2.-2 ) we obtain 

D 1/ 2 A -1 D-1/2 + (D 1/2 A -1 D-1/2 f = diag (a~/, ... , a:;.l) + O( .0) , 

so that Qo(A-1) 2: mini aii1 +0(.0). This inequality fore --+ 0 and (14.16) 
prove the statement. 0 

Methods with Singular A 

For the Lobatto lIlA methods the first stage is explicit (the first row of A 
vanishes) and for the Lobatto IlIB methods the last stage is explicit (the 
last column of A vanishes). For these methods the RK-matrix is of the form 
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A = (~ 1) or A = (3 ~ ) (14.23) 

and we have the following variant of Theorem 14.2. 

Theorem 14.7. Let f be continuously differentiable and satisfy (14-2). 11 
the RK-matriz is given by one 01 the matrices in (14-23) with invertible 1, 
then the assumption 

implies that the nonlinear system (14.1a) has a solution. 

Proof. The explicit stage poses no problem for the existence of a solution. To 
obtain the result we repeat the proof of Theorem 14.2 for the s -1 implicit 
stages (i.e., A is replaced by 1 and the inhomogenity in (14.6) may be 
different) . 0 

An explicit formula for oo(Ä -1) for the Lobatto IIIß methods has beeIl 
giveIl by Dekker & Verwer (1984), aIld for the Lobatto lIlA methods by Liu, 
Dekker & Spijker (1987). The result is 

Theorem 14.8. We have foT' 

--1 {2 0o(A ) = -1 c._1 
Lobatto lIlA 

Lobatto IIIß --1 {2 
oo(A ) = (1 _ c2)-1 

il8 = 2, 
il8 > 2, 

il8 = 2, 
if 8> 2. 

PT'oof. For the Lobatto lIlA methods we put D = BC-2, where B = 
diag (b2 , ••• , b.) and C = (c2 , ••• , c.). As in part a) of the proof of Theo­
rem 14.5 we get 

DÄ-1 + (DÄ-1)T = e eT + 2BC-3 
.-1 .-1 

which implies the formula for 0 0(1-1) because b. =(8(8 -1))-1 and 
(1 + 2b.) ~ b./c._1 for 8 > 2. 

For the Lobatto IIIß methods the choice D = B(1 - C)2 (with B = 
diag (bll ••. , b._1 ), C =diag (cIl"'" cs _ 1)) leads to 

D1-1 + (DÄ-1)T = e1er + 2B(1 - C) . 

This proves the second statement. 0 
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Methods with explicit stages (such as Lobatto lIlA and IIlB) don't al­
low estimates of the numerical solution in the presence of arbitrary pertur­
bations. They are usually not AN-stable and K(Z) is not bounded (see 
Theorem 12.12). Nevertheless we have the following uniqueness result. 

Theorem 14.9. Consider a differential equation satisfying (14.2). 1f the 

RK-matriz is of the form (14.29) with invertible Ä and if hl/ < 0:0(Ä-1), 
then the nonlinear system (14.1 a) has at most one solution. 

Proof. Suppose that there exists a second solution 9i satisfying (14.l1a) with 
6i =0. 

a) If the first stage is explicit we have 91 = 91. The difference of the two 
RK-formulas then yields 

6.9 = h( Ä ® 1)6.f 

with 6.9= (9i-9i)i=2 and 6.f = (f(zO+ci h , 9i)- f(zO+cih,9i))1=2. As in the 
proof of Theorem 14.3 we then conclude that 6.9=0. 

b) In the second case we can apply Theorem 14.3 to the first s-1 stages, 
which yields uniqueness of 91' ... ,98 -1. Clearly, 98 also is unique, because 
the last stage is explicit. 0 

Lobatto IIIe Methods 

For the Lobatto IIlC methods with s 2 3 we have o:o(A -1) = 0 (see The­
orem 14.5). Since these methods are algebraically stable it is natural to 
ask whether the nonlinear system (14.1a) also has a solution for differential 
equations satisfying (14.2) with 1/ = O. A positive answer to this question 
has been given by Hundsdorfer & Spijker (1987) for the case s = 3, and by 
Liu & Kraaijevanger (1988) for the general case s 2 3 (see Exercise 6 below; 
see also Kraaijevanger & Schneid 1990). 

Exercises 

1. Prove that O:o(A) 2 0 for algebraically stable Runge-Kutta methods. 
Also, 0:0 (A -1) 2 0 if in addition the matrix A is invertible. 

2. Let A be a real matrix. Show that 0:0 (A) ::; Re >., where >. is an eigenvalue 
of A. 

3. (Hundsdorfer 1985, Cooper 1986). Prove that Theorem 14.2 remains 
valid for singular A, if (14.3) is replaced by 

(u, Au) D 2 o:(Au, Au) D for all u E W . 
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Hint. U se the transformation 9 = :n ® Yo + (A ® I)k and apply the ideas 
of the proof of Theorem 14.2 to the homotopy 

• 
ki = f(zo + cih,yo + h L aijkj ) + (r - 1)f(zo + cih,yO) . 

j=l 

4. (Barker, Berman & Plemmons 1978, Montijano 1983). Prove that for 
any two-stage method the condition 

det(A) > 0 (14.24) 

is equivalent to O:o(A-1) > O. 

Remark. For a generalization of this result to three-stage methods see 
Kraaijevanger (1990). 

5. For the two-stage Radau HA method we have O:O(A-1) =3/2. Construct 
a differential equation y' = A( z)y with Re A( z) = 3/2 + e (e > 0 arbitrarily 
small) such that for a fixed h the Runge-Kutta equations do not admit 
a unique solution. 

6. Prove that for the Lobatto IIlC methods (with s ;::: 3) the matrix 

1- (A ® I)J with J = blockdiag (J1, ... , J.) 

is non-singular, if 1-'2 (J/e) ::; O. This implies that the Runge-Kutta equa­
tions (14.1a) have a unique solution for problems y'=A(z)Y+f(z) with 
I-'2(A(z)) ::; O. 

Hint (Liu & Kraaijevanger 1988, Liu, Dekker & Spijker 1987). Let v = 
(v1, ... ,v.)T be a solution of (I - (A ® I)J)v = o. With the help of 
(14.21) show first that VI =v.=O. Then consider the (s-2)-dimensional 
submatrix Ä = (aij)i.j~2 and prove O:O(Ä-1) > 0 by considering the 

diagonal matrix i5 = diag (bi ( ci1 _1)2 ):::i . 
7. Consider an algebraically stable RK-method with invertible A and apply 

it to the differential equation y'=(J(z)-el)Y+f(z) where I-'(J(z»::; 0 
and e > O. Prove that the numerical solution Yl (e) converges to a limit 
for e --t 0, whereas the internal stages gi( e) need not converge. 

Hint. Expand the gi(e) in aseries gi(e) = e-1g~ -1) +g~O) +egF) + ... and 
prove the implication 

g=(A®I)Jg =} (bT®I)Jg=O 

where J = blockdiag (J(zo +c1h), ... , J(zo+c.h)). 
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"In using A-stable one-step methods to solve large systems 
of stiff nonlinear differential equations, we have found that 
- (a) some A-stable methods give highly unstable solu­
tions, and 
- (b) the accuracy of the solutions obtained when the 
equations are stiff often appears to be unrelated to the or­
der of the method used. 
This has caused us to re-examine the form of stability re­
quired when stiff systems of equations are solved, and to 
question the relevance of the concept of (nonstiff) order of 
accuracy for stift' problems." 

(A. Prothero & A. Robinson 1974) 

Prothero & Robinson (1974) were the first to discover the order reduction 
of implicit Runge-Kutta methods when applied to stiff differential equa­
tions. Frank, Schneid & Ueberhuber (1981) then introduced the "concept of 
B-convergence", which furnishes global error estimates independent of the 
stiffness. 

The Order Reduction Phenomenon 

For the study of the accuracy of Runge-Kutta methods applied to stiff dif­
ferential equations, Prothero & Robinson (1974) proposed considering the 
problem 

ReA:::;O. (15.1) 

This allows explicit formulas for the Iocal and global errors and provides 
much new insight. 

Applying a Runge-Kutta method to (15.1) yields 

• 
9i = Yo + h L aij{ A(9j - r,o(:Co+cjh)) + r,o'(:Co+cjh)} 

j=l 
(15.2) • 

Yl = Yo + h L bj { A(9j - r,o(:Co+cjh») + r,o'(xo + cjh)} . 
j=l 

If we replace here the 9i'Yo and Y1 by the exact solution values <P(:Co+cih), 



IV.IS. B-Convergence 241 

If'(zo) and If'(zo+h), respectively, we obtain adefeet which is given by 

8 

1f'(:Z:o + cih) = 1f'(:Z:o) + h L aijlf"(zO + cjh) + ßi,h(:Z:O) 
j=1 

8 

If'(Zo + h) = If'(zo) + h L bjlf"(zo + cjh) + ßO,h(:Z:O) . 
j=1 

Taylor series expansion of the functions in (15.3) shows that 

(15.3) 

(15.4) 

where p is the order of the quadrat ure formula (bi' ci) and q is the largest 
number such that the condition C(q) (see Section IV.5), i.e., 

for k = 1, ... , q and all i, (15.5) 

holds. The minimum of q and p is often called the stage order of the RK­
method. Subtracting (15.3) from (15.2) and eliminating the internal stages 
we get 

Y1-If'(zo+h) = R(z)(Yo-If'(:Z:o))-zbT(I-zA)-1A h(zo)-ßO,h(:Z:O) (15.6) 

where we have used the notation z=>.h, R(z)=I+zbT(I - zA)-lll for the 
stability function and ß h(:z:)=(ß1,h.(:z:), ... ,ß.,h(:z:»)T. We also denote the 
local error, which we get from (15.6) on putting Yo =If'(zo), by 

8h(z) = -zbT(I - zA)-1 ßh(:z:) - ßO,h(Z) . (15.7) 

If we repeat the above calculation with zn instead of Zo we obtain the 
recursion 

which leads to the following formula for the global error: 

n 

Yn+1 -1f'(zn+1) = R(zt+1(yo-lf'(zo» + L R(zt- j8h(Zj) . (15.9) 
j=o 

The classical (non-stiff) theory treats the case where z = O(h) and in this 
situation the global error behaves like O(hp ). When solving stiff differential 
equations one is interested in step sizes h which are much larger than 1>'1-1 • 

We therefore study the global error (15.9) under the assumption that simul­
taneously h --t 0 and z = >'h --t 00. In Table 15.1 we collect the results for the 
Runge-Kutta methods of Section IV.5. There in the last column (variable 
h) the symbols hand z have to be interpreted as max hi and z = >. min hi • 
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Table 15.1. Error for (15.1) when h -+ 0 and z = h>' -+ 00 

Method Ilocal error global error 
constant h variable h 

Gauss {: odd h,H { h,+l h' 
even h' 

Radau IA h' h' h' 

RadaulIA z-l h,+l z-l h,+l z- l h,+l 

Lobatto IIIA {: 
odd z-l h,+l { -lh' z- l h' 
even ~-lh8H 

Lobatto IIm {: odd zh,-l { zh,-2 zh,-2 
even zh,-l 

Lobatto IIIC z-lh' z-lh' z-lh' 

We remark that Formulas (15.7) and (15.8) (but not (15.9)) remain valid for 
variable h, if z is replaced by zn = hn A. 

Verification of Table 15.1. 
Gauss. Since the RK-matrix A is inverlible, we have -zbT(I - zA)-l = 
bTA-l + O(z-l) and (15.4) inserted into (15.7) gives c5h (:z:)=O(h,H) (ob­
serve that q = s). It then follows from (15.8) (for constant and variable h) 
that the global error behaves like O(h') because IR(z)1 :::; 1. For odd s we 
have R( 00 ) = -1 and the global error estimate Can be improved in the case 
of constant step sizes. This follows from partial summation 

Radau IA. The local error estimate follows in the same way as for the Gauss 
methods. Since R(z) = O(Z-l) the error propagation in (15.8) is negligible 
and the local and global errors have the same asymptotic behaviour. 

Radau IIA and Lobatto IIIe. These methods have a,i = bi for all i. 
Therefore the last internal stage is identical to the numerical solution and 
the local error can be written as 

Since A is invertible this formula shows the presence of Z-l in the local error. 
Again we have R( 00) = 0, so that the global error is essentially equal to the 
local error. 
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Lobatto lIlA. The first stage is explicit, 91 = Yo, and is done without 
introducing an error. Therefore ß 1,h(x) = 0 and (because of a.i = bi ) the 
local error has the form 

T - -1-<\(x) = -e._1 (I - zA) ßh(x) 

where Ä = (a ii H.i=2 and Llh = (ß2,h,"" ß.,h)T. The statements of Table 
15.1 now follow as for the Gauss methods. 

Lobatto IIIB. The matrix Ais singular (its last column vanishes), therefore 
the two "z" in (15.7) do not simply cancel for z -t 00. A more detailed 
analysis (see Exercise 5 below) shows that the local error is not bounded if 
z -t 00. Although A-stable, these methods are not suited for the solution of 
stiff problems. 0 

We observe from Table 15.1 that the order of convergence for problem 
(15.1) with large >. is considerably smaller than the classical order. Fur­
ther we see that methods satisfying a.i = bi (Radau IIA, Lobatto lIlA and 
Lobatto IIIC) give an asymptotically exact result for z -t 00. Prothero 
& Robinson (1974) call such methods stiffly accurate. The importance of 
this condition will appear again when we treat singularly perturbed and 
differential-algebraic problems (Chapter VI). 

The Local Error 

"Das besondere Schmerzenskind sind die Fehlerabschätzungen." 
(L. Collatz 1950) 

Our next aim is to extend the above results to general nonlinear differential 
equations y' = f( x, y) satisfying a one-sided Lipschitz condition 

(f(x,y) - f(x,z),y - z} ::; vilY - zl12 . (15.11 ) 

The following analysis, begun by Frank, Schneid & Ueberhuber (1981), was 
elaborated by Frank, Schneid & Ueberhuber (1985) and Dekker & Verwer 
(1984). We again denote the local error by 

6 h (x) = Y1 - y( X + h) , 

where Y1 is the numerical solution with initial value Yo = y( x) on the exact 
solution. 

Proposition 15.1. Consider a differential equation which satisfies (15.11). 
Assume that the RK-matrix A is invertible, 00(A-1) ;::: 0 (see Definition 
14.1), and that the stage order is q. 
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a) I/ Qo(A-1) > 0 then 

Ilhk(x )11 ::; G hq+1 max Ily(qH)(e)11 tor hv::; Q < Qo(A -1) . 
~E[:z:,:z:+k] 

b) I/ Q D( A -1) = 0 tor some positive diagonal matrix D and v < 0 then 

Ilhk(x)11 ::; IGI hq max Ily(q+1)(OII. 
v eE[:z:,:z:+k] 

In both cases the constant G depends only on the coefficients 0/ the RK­
matrix and on Q (for case a)). 

Remarks. a) The crucial fact in these estimates is that the right-hand side 
depends only on derivatives of the exact solution and not on the stiffness of 
the problem. These estimates are useful when a "smooth" solution of a stiff 
problem has to be approximated. 

b) The hypothesis QD(A -1) = 0 (see case b)) is stronger than Qo(A -1) = 0 
(see Exercise 4 below). For the Lobatto IIIC methods, for which Qo(A -1) =0 
(s >2), we have QD(A-1)=0 with D=B (see (14.21)). 

c) In the estimates of the above proposition the maximum is taken over 
e E [x, x +h]. In the case where 0::; ci::; 1 is not satisfied, this interval must 
of course be correspondingly enlarged. 

Proof. We put 9i=y(xO+cih), so that the relation (14.11a) is satisfied with 

8 

bi = y(xo + cih ) - y(xo) - h L aijY'(x O + cjh) . 
j=l 

Taylor expansion shows that 

Ilhill ::; Gi hq+1 max Ily(q+1)(x)11 
:z:E[:z:o,:z:d 

where Gi=(lcilq+1+(q+1) Li=l laijl· hlq)/(q+1)! is a method-dependent 
constant. Similarly the value Y1 of (14.11b) satisfies 

8 

y(xo+h)-Y1 = y(xo+h)-y(xo)-h Lbjy'(xo+cjh) = O(hq+1) , (15.12) 
j=1 

because the order of the quadrature formula (bi' ci) is ;:::: q. Since 

the desired estimates follow from (14.13) of Theorem 14.3. D 
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Error Propagation 

At the end of Section IV.12 we derived. for some particular RK-methods 
sharp estimates of the form 

(15.13) 

where Y1' Y1 are the numerieal solutions eorresponding to Yo' Yo' respectively, 
and where the differential equation satisn.es (15.11). We give here a simple 
proof of a erude estimate of <PB (hv) which, however, will be suffieient to 
derive interesting eonvergenee results. 

Proposition 15.2 (Dekker & Verwer 1984). Suppo8e that the differential 
equation 8ati8fie8 (15.11) and apply an algebraically 8table RK-method with 
invertible A and o:o{A -1) > O. Then for any 0: with 0< 0: < O:o{A -1) there 
ezi8t8 a con8tant C > 0 8uch that 

IIY1 - Y111 ~ {I + Chv)llyo - Yoll for 0 ~ hv ~ 0: • 

Proof. From (12.7) we have (using the notation of the proof of Theorem 
12.4) 

688 

IIAYl11 2 = IIAYo11 2 +2h Lbi(Afi,A9i)-h2 L L mij(Afi' Afj ) . (15.14) 
i=l i=l j=l 

By algebraie stability the last term in (15.14) is non-positive and ean be 
neglected. Using (15.11) and the estimate (14.12) with 0i = Yo-Yo we obtain 

8 8 

2h L bi(~fi' ~gi) ~ 2hv L bi lI~gill2 
i=l i=l 

111 111 2 2hvC2 2 
~ 2hvC1 ~g D ~ (O:D{A-1) _ hv)2l1AYoll . 

Inserting this into (15.14) yields 

IIAY111 ~ (1+ {O:D{:~~~hv)2)II~Yoll 
whieh proves the desired estimate. o 
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B-Convergence for Variable Step Sizes 

We are now in a position to present the main result of this section. 

Theorem 15.3. Consider an algebraically stable RK-method with invertible 
A and stage order q ::; p and suppose that (15.11) hoUs. 

a) 1/0< ° < 0o(A -1) and v > 0 then the global error satisfies 

(eCtll(:Z:n-:Z:o) -1) 
!!Yn - y(zn)!! ::; hq C C2 max lIy(q+1)(z)!! 

1V :z:E[:z:o,:Z: .. ] 

tor hv::; ° . 
b) I/ 0o(A -1) > 0 and v ::; 0 then 

!!Yn - Y(Zn)!! ::; hq(zn - ZO)C2 max !!y(q+1)(z)!! tor all h> 0 . 
:z:E[:z:o,:Z:n] 

c) I/ 0D(A-1 )=0 tor some positive diagonal matriz D and v< 0 then 

C 
!!Yn -y(zn)!!::; hq- 1-!v!(zn -zo) max lIy(q+1)(z)!!. 

:z:E[:z:o,:Z: .. ] 

The constants Cl' C2 , C depend only on the coefficients 0/ the RK-matrix. 
In the case 0/ variable step sizes, h has to be interpreted as h = max hi . 

Proo/. This convergence result is obtained in exactly the same way as that 
for non-stifr problems (Theorem II.3.6). For the transported errors Ei (see 
Fig.11.3.2) we have the es ti mate (for v 2 0) 

(15.15) 

by Proposition 15.2, because 1 +Chv ::; eCllh • We next insert the local error 
estimate of Proposition 15.1 into (15.15) and SUfi up the transported errors 
Ej • This yields the desired estimate for v 2 0 because 

= {(eCII(:z:n-:z:o) -1)/(Cv) 

Zn - Zo 

for v > 0 

for v = 0 . 

If v< 0 we have !!Ei !! ::; !!6hj _ t (Zi-1)!! by algebraic stability and the same 
arguments apply. 0 

Motivated by this result we define the order of B-convergence as follows: 
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Definition 15.4 (Frank, Schneid & Ueberhuber 1981). A Runge-Kutta 
method is called B -convergent 0/ order r for problems y' = /( x, y) satisfying 
(15.11), if the global error admits an estimate 

lIyn. -y(:Z:n.)II::; hr")'(:z:n.-zo'v) .max max lIyW(z)11 
1=1,,,.,1 zE[zo,z,,] (15.16) 

for hv::; Q 

where h = max hi • Here ")' is a method-dependent function and Q also depends 
only on the coefficients of the method. 

As an application of the above theorem we have 

Theorem 15.5. The Gauss and Radau IlA methods are B-convergent 0/ 
order s (number 0/ stages). The Radau lA methods are B-convergent 0/ 
order s -1. The 2-stage Lobatto lIlC method is B -convergent 0/ order 1. 0 

For the Lobatto lIIe methods with s ~3 stages (QO(A-1) =0 and q=s-1) 
Theorem 15.3 shows B-convergence of order s - 2 if v < O. This is not 
an optimal result. Spijker (1986) proved B-convergence of order s - 3/2 
for v< 0 and constant step sizes. Schneid (1987) improved this result to 
s - 1. Recently, Dekker, Kraaijevanger & Schneid (1990) showed that these 
methods are B-convergent of order 8 -1 for general step size sequences, if 
one allows the function "y in Definition 15.4 to depend also on the ratio 
max hd min hi . 

The Lobatto lIlA and lIIß methods cannot be B-convergent since they 
are not algebraically stable. This will be the content of the next subsection. 

B-Convergence Implies Algebraic Stability 

In order to find necessary conditions for B-convergence we consider the prob­
lem 

y' = 'x(x)(y - cp(x» + cp'(x) , Re 'x(x) ::; v (15.17) 

with exact solution cp( x) = xq+l. We apply a Runge-Kutta method with 
stage order q and obtain for the global error en. = Yn. - cp(xn.) the simple 
recursion 

(15.18) 

(cf. Formula (15.8) ofthe beginning ofthis section, where the case 'x(x)=,x 
was treated). Here Zn.=diag(h'x(xn.+c1h), ... ,h'x(xn.+cah» and 

K(Z) = 1 + bT Z(l -AZ)-11l, L(Z) = do + bT Z(l -AZ)-1d. (15.19) 
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The function K(Z) was already encountered in Definition 12.10, when treat­
ing AN-stability. The vector d=(dll ... ,d,)T and do in L(Z) characterize 
the local error and are given by 

, 8 

do = 1- (q+1) LbjC1 ' di = C!+l - (q+1) L aijc1 . (15.20) 
j=l j=l 

Observe that by definition of the stage order we have either do =1= 0 or d =1= 0 
(or both). We are DOW in the position to prove 

Theorem 15.6 (Dekker, Kraaijevanger & Schneid 1990). Consider a DJ­
irreducible RK-method which JatiJ/ies 0 ~ Cl < c2 < ... < Ca ~ 1. 1/, /or 
some r, I and V < 0, the global error satisfies the B -convergence estimate 
(15.16), then the method is algebraically stable. 

Proo/. Suppose that the method is not algebraically stable. Then, by The­
orem 12.13 and Lemma 15.17 below, there exists Z = diag (zl"'" za) with 
Re Zj < 0 such that (I -AZ)-l exists and 

IK(Z)I > 1 , L(Z) =1= 0 . (15.21) 

We consider the interval [0, (1+6)/2J and for even N the step size sequence 
(hn)r:,:l given by 

hn = 11N (for n even), hn = 61N (for n odd) . 

If N is sufficiently large it is possible to define a function A( a:) which satisfies 
ReA(a:) ~ vand 

{ 
NZi for n even 

A(a:n + Cihn) = N r dd za+l-i wr n 0 . 

Because of (15.18) the global error en = Yn - c,o( a: n ) for the problem (15.17) 
satisfies (with h= 11N) 

enH = K(Z)en - hqH L(Z) for n even 

enH = K(Z)en - hqH L(Z) for n odd 

where Z =diag (6z" ... , 6z l ). Consequently we have 

e2m+2 = K(Z)K(Z)e2m - hq+I(K(Z)L(Z) + 6q+1 L(Z)) 

and the error at a: end = (1 + 6) 12 is given by 

e = __ 1_ (K(Z)L(Z) + 6q+1 L(Z)) (K(Z~K(Z))N/2 -1 
N Nq+l K(Z)K(Z) _ 1 

(15.22) 

If 6 is sufficiently small, K(Z) ---t 1 and L(Z) ---t do, so that by (15.21) 

IK(Z)K(Z)I > 1 and K(Z)L(Z) + 6q+1 L(Z) =1= 0 . 
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Therefore leNI -+ 00 as N -+ 00 (N even), which contradicts the estimate 
(15.16) of B-convergence. 0 

To complete the above proof we give the following lemma: 

Lemma 15.7 (Dekker, Kraaijevanger & Schneid 1990). Consider a DJ­
irreducible RK-method and suppose 

bT Z(I - AZ)-ld = 0 (15.23) 

for all Z = diag(z1l" .,zs) with I-AZ invertible; then d=O. 

Prooj. We define 

T = {J'I b· a· . a· .... a· . = 0 for all k and i1 with ik = J'} . 1.1 tlt2 1.21.3 "k_lt.k 

Putting k = 1 we obtain b j = 0 for JET. Further , if i tf. T and JET there 
exists (i ll . .. ,ik) with ik=i such that 

b; a;; ... a; ; a;3' = 0 
010102 ok_10k 0 

implying aij = O. Therefore the method is DJ-reducible if Ti- 0. For the 
proof of the statement it thus suffices to show that di- 0 implies Ti- 0. 

Replacing (I-AZ)-l by its geometrie series, assumption (15.23) becomes 
equivalent to 

bTZ(AZ)k-1d = 0 ror all k and Z di ( ) l' = ag zl"'" Zs • (15.24) 

Comparing the coefficient of zi 1 ••• zi k gives 

"b. a· . · .. a· . d· = 0 L...J 31 3132 3k -13k Jk ' 
(15.25) 

where the summation is over all permutations (jl> ... ,jk) of (il> ... ,ik). 
Suppose now that dj i-0 for some index j. We shall prove by induction on 
k that 

b· a· .... a· . = 0 for all iA (€ = 1, ... , k) with i k = J', (15.26) 
1,1 1.11,2 1.1.:_11,1,: (;. 

so that JET and consequently Ti- 0. 
For k = 1 this follows immediately from (15.25). In order to prove 

(15.26) for k+1 we suppose, by contradiction, that (i ll ··· ,ik+l) with ik+l = 
J. exists such that b; a; ; ... a; ; i- O. The relation (15.25) then im-

°1 01 02 ok ok+1 

plies the existence of apermutation (jl"" ,jk+l) of (i ll ... , ik+l) such that 
b· a· .... a· J' i- 0, too. We now denote by q the smallest index for which 

J1 J132 Jk k+1 
i q i-jq. Then i q =jr for some r > q and 

(15.27) 

contradicts the induction hypothesis, because the expression in (15.27) con­
tains at most k factors. 0 
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The Trapezoidal Rule 

The trapezoidal rule 

hk 
Yk+l = Yk + "2[/{:Z:k'Yk) + /(:Z:k+lIYk+l)] (15.28) 

is not algebraieally stable. Therefore (Theorem 15.6) it eannot be B-eonver­
gent in the sense of Definition 15.4. Nevertheless it is possible to derive 
estimates (15.16), if we restrict ourselves to special step size sequenees (eon­
stant, monotonie ... ). This was first proved by Stetter (unpublished) and 
investigated in detail by Kraaijevanger (1985). The result is 

Theorem 15.8 (Kraaijevanger 1985). I/ the differential equation satisjies 
(15.11), then the global error 0/ the trapezoidal rule permits /or hjv ~ 0: < 2 
the estimate 

Proo/. We denote by Yk = Y(:Z:k) the exaet solution at the grid points. From 
the Taylor expansion we then get 

Yk+l = Yk + ~k (/(:Z:k'Yk) + /(:Z:k+l'Yk+l)) + Sk (15.29) 

where 
IISk 11 ~ ~h~ max lIy(S)(:z: )11 . 

12 zE[Z/o,Z"+l) 
(15.30) 

The main idea is now to introduee the intermediate values 
h k h k 

Yk+l/2 = Yk + "2/(:Z:k'Yk) = Yk+l - "2/(:Z:k+lIYk+l) 

~ ~ hk /( ~) S ~ hk /( ~) Yk+l/2 = Yk +"2 :Z:k'Yk + k = Yk+l -"2 :Z:k+lIYk+l . 

(15.31) 

The transition Yk-l/2 --t Yk+l/2 

1 
Yk+l/2 = Yk-l/2 + '2(hk- 1 +hk)/(:Z:k'Yk) 

ean then be interpreted as one step of the 8-method 

Ym+l = Ym + h/(:Z:m + 8h, Ym + 8(Ym+l -Ym )) 

with 8 = hk_t!(hk_1 +hk) and step size h = (hk_1 +hk)/2. A similar ealeu­
lation shows that the same 8-method maps fik-l/2 to flk+l/2 - Dk • Therefore 
we have 
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where the growth function 'PB(hv) is given by (see Example 12.24) 

'PB(hv) = max{(l - 9)/9, (1 + (1 - 9)hv)/(1 - 9hv)} 
1 1 (15.32) 

= max{h,./h"_l' (1 + 2'h,.v)/(l - 2'h,.-IV)} =: 'P,. . 

By the triangle inequality we also get 

1/1ITc+1/2 - YTc+1/211 :$ 'Plclllllc-1/2 - Ylc-1/211 + I/blcl/ . (15.33) 

Furtherit follows from (15.31) with k=O and from 1I0=Yo that 

1/111/2 - Yl/211 = Ilboll , (15.34) 

whereas the backward Euler steps Y""-1/2 -+ Y.", and 11""-1/2 -+ 11.", (see 
(15.31» imply 

1/11.", - y.",11 :$ (1 _ t~""-lV) 1/11""-1/2 - Y.",-1/211 (15.35) 

again by Example 12.24 with 9 = 1. A combination of (15.33), (15.34) and 
(15.35) yields 

(15.36) 

For v :$ 0 we have 'Plc :$ max(1,h,./h lc _1 ) and the statement follows if we 
insert (15.30) into (15.36). For v ~ 0 we use the estimate (h lc _1v :$ 1) 

1 + thlcv 1 + t hlc-l v 1 + th,.v 2/& (h,. ) 1 = 1 • 1 < e k_1 V • max 1,--
1- 'ih,._lv 1 - "ih,._lv 1 + Ih,._IV - hlc _1 

so that the statement holds with G = e2v(",,, -"'0) /12. o 

Corollary 15.9. Hthe step size sequence (hlc)f~(/ is constant or monotonie, 
then for h = max h i 

o 
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Order Red uction for Rosenbrock Methods 

Obviously, Rosenbrock methods (Definition 7.1) cannot be B-convergent in 
the sense of Definition 15.4 (see also Exercise 8 of Section IV.12). Neverthe­
less it is interesting to study their behaviour on stiff problems such as the 
Prothero & Robinson model (15.1). Since this equation is non-autonomous 
we have to use the formulation (7.4'). A straightforward calculation shows 
that the global error E n = Yn - '1'( x n ) satisfies the recursion 

(15.37) 

where R(z) is the stability function (7.14) and the local error is given by 

(15.38) 

with B = (a ij +'ij)' b = (bw '" bs)T, ß = (ß1 , ... , ßs)T and 

ß i = z(ep(x) - ep(x+aih) -'ihep'(X)) + hep'(x+aih) + lih2ep"(x) . 

Taylor expansion gives the following result. 

Lemma 15.10. The local error 6h (x) of a Rosenbrock method applied to 
(15.1) satisfies for h -+ 0 and z = >'h -+ 00 

6h (x) = (2:>iWij aj -1) h; ep"(x) + O(h3) + O(h2) , 
. . Z 
t,J 

where w ij are the entrie8 01 B-l. o 

Remarks. a) Unless the Rosenbrock method satisfies the new order condi­
tion 

8 

" b.w .. a~ = 1 L.J t t) J ' 
(15.39) 

i,j=l 

the local error and the global error (if I R( 00 ) I < 1) are only of size O( h 2 ). 

Since none of the classical Rosenbrock methods of Section IV. 7 satisfies 
(15.39), their order is only 2 for the problem (15.1) if >. is very large. 

b) A convenient way to satisfy (15.39) is to require 

(15.40) 

This is the analogue of the condition a.i = bi for Runge-Kutta methods. It 
implies not only (15.39) but even 

so that such methods yield asymptotically exact results for z -+ 00. 
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c) A deeper understanding of the condition (15.39) will be possible when 
studying the error of Rosenbrock methods for singular perturbation and 
differential-algebraic problems (Chapter VI). We shall construct there meth­
ods satisfying (15.40). 

d) Scholz (1989) wri tes the local error D h ( x) in the form 

Dh(X) = 2: Cj(z)hjcp(j)(x) 
j~2 

(15.41 ) 

and investigates the possibility of having Cj(z) == 0 for j = 2 (and also 
j > 2). Hundsdorfer (1986) and Strehmel & Weiner (1987) extend the above 
analysis to semi-linear problems (11.19) which satisfy (11.20). Their results 
are rat her technical but allow the construction of "B-convergent" methods 
of order p> 1. 

Exercises 

1. Prove that the stage order of an SDIRK method is at most 1, that of a 
DIRK method at most 2. 

2. Consider a Runge-Kutta method with 0 ::; cl < ... < Cs ::; 1 which 
has stage order q. Prove that the method cannot be B-convergent (for 
variable step sizes) of order q+ 1. 

Hint. Use Formula (15.22) and prove that 

K(Z)L(Z) + Bq+! L(Z) 

K(Z)K(Z) - 1 

cannot be uniformly bounded for 

Z = diag(zl""'zs)' 

(15.42) 

with Re zi ::; 0, Re zi ::; 0 (in the case cl = 0 and c. = 1 one has to prove 
this under the restriction zl = Bz., Zs = Bz1 ). For this consider values 
z j' Zj elose to the origin. 

3. (Burrage & Hundsdorfer 1987). Assume ci - Cj is not an integer for 
1 ::; i < j ::; s, and the order of B-convergence (for constant step sizes) 
of an RK-method is q+1 (q denotes the stage order). Then do = 0 and all 
components of d = (du" . , d.V are equal (see (15.20) for the definition 
of dj ). 

Hint. Study the uniform boundedness ofthe function L(Z)j(K(Z) -1). 
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4. (Kraaijevanger). Show that for 

r ' ~ (~1 ~ n (15.43) 

we have ao(A -1) = 0, hut there exists no positive diagonal matrix D 
such that av(A-1 )=0. For more insight see "Corollary 2.15" of Kraai­
jevanger & Schneid (1990). 

5. Prove that for the Lohatto IIIß methods, with 

A = (1 0) 
aT 0 

the dominant term ofthe local error (15.7) is (for h-+ 0 and z =h)" -+ 00) 
_ hq+1 

zb (aT A-1cq+1 -1)--r,o(q+1)(x). 
• (q+1)! 

Here q = s - 2 is the stage order and c = (cl!" . , c._ 1 )T. Show furt her 
that 

aT l- 1ck =1 

aT l- 1ck :f: 1 

for k = 1,2, ... q 

for k = q + 1 . 

(15.44) 

(15.45) 

Hint. Equation (15.44) follows from C(q). Show (15.45) hy supposing 
aT 1-1 cq+1 = 1 which together with (15.44) implies that 

0-1 

L dip(Ci) = p(l) 
i=l 

for every polynomial of deg p::; q + 1 = s -1 satisfying p( 0) = O. Arrive at 
a contradiction with 



Chapter V. Multistep Methods for Stiff Problems 

Multistep methods (BDF) were the first numerical methods to be proposed 
for stiff differential equations (Curtiss & Hirschfelder 1952) and since Gear's 
book (1971) computer codes based on these methods have been the most 
prominent and most widely used for all stiff computations. 

This chapter introduces the linear stability theory for multistep meth­
ods (Section V.l) and arrives at the famous theorem of Dahlquist which 
says that A-stable multistep methods cannot have high order. Attempts to 
circumvent this barrier proceed mainly in two directions: either study meth­
ods with slightly weaker stability requirements (Section V.2) or introduce 
new classes of methods (Section V.3). Order star theory on Riemann sur­
faces (Section V.4) then helps to extend Dahlquist's barrier to generalized 
methods and to explain various properties of stability domains. Section V.5 
presents numerical experiments with several codes based on the methods 
introduced. 

Since all the foregoing stability theory is based uniquely on linear au­
tonomous problems y' = Ay, the question arises of their validity for general 
nonlinear problems. This leads to the concepts of G-stability for multistep 
methods (Section V.6) and algebraic stability for general linear methods 
(Section V.9). 

Another important subject is convergence estimates for h --t 0 which 
are independent of the stiffness (the analogue of B-convergence in Section 
IV.15). We describe various techniques for obtaining such estimates in Sec­
tions V.7 (for linear problems) as well as V.6 and V.8 (for nonlinear prob­
lems). These techniques are: use of G-stability, the Kreiss matrix theorem, 
the multiplier technique and, last but not least, a discrete variation of con­
stants formula. 
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A general k-step multistep method is of the form 

QkYm+k + Qk-lYm+k-l + ... + QOYm = h(ßdm+k + ... + ßofm)· (1.1) 

For this methocl, we can clo the same stability analysis as in Section IV.2 for 
Euler's method. This means that we apply method (1.1) to the linearized 
and autonomous system 

y' = Jy (1.2) 

(see (IV.2.2')); this gives 

QkYm+k + ... + QOYm = hJ(ßkYm+k + ... + ßoYm) . (1.3) 

We again introduce a new basis for the vectors Ym+i consisting of the eigen­
vectors of J. Then for the coefficients of Ym+i' with respect to an eigenvector 
v of J, we obtain exactly the same reccurrence equation as (1.3), with J re­
placed by the corresponding eigenvalue A. This gives 1 

(1.4) 

ancl is the same as methocl (1.1) appliecl to Dahlquist 's test equation 

y' = >'Y . (1.5) 

The Stability Region 

The difference equation (1.4) is solved using Lagrange's method (see Vol­
ume I, Section 111.3): we set Yj = (i, divicle by (m ancl obtain the character­
istic equation 

1 In contrast to Chapter IV, where the product hA was denoted throughout by 
z, we write h>' = J1- here, since in multistep theory (Section III.3) z denotes the 
Cayley transform of (. 
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which depends on the complex parameter /-L. The polynomials e( () and 
0"( () are our old friends from (111.2.4). The difference equation (1.4) has 
stable solutions (for arbitrary starting values) iff all roots of (1.6) are::; 1 
in modulus. In addition, multiple roots must be strictly smaller than 1 (see 
Volume I, Section 111.3, Exercise 1). We therefore formulate 

Definition 1.1. The set 

S _ { C. all roots (j(/-L) of (1.6) satisfy I(j(/-L)I ::; I,} 
- /-L E 'multiple roots satisfy l(j(JL)I < 1 (1.7) 

is called the stability domain or stability region or region of absolute stability 
of Method (1.1). 

It is sometimes desirable to consider S as a subset of the compactified 
complex plane C. In this case, for /-L -+ 00, the roots of Equation (1.6) tend 
to those of 0"( () = O. 

For /-L = 0 equation (1.6) becomes e( 0 = O. Thus the usual stability (in 
the sense of Definition III.3.2) is equivalent to 0 E S. 

Theorem 1.2. All numerical solutions of Method (1.1) are bounded for the 
linearized equation (1. 2) with a diagonalizable matrix J iff h>' E S for all 
eigenvalues >. of J. 0 

Computation of the Stability Domain 

We start with a particular example, the explicit Adams method of order 4 
(see Volume I, Section III.1, Formula (1.5)), 

_ h(55 j _ 59 j 37 j _ ~j ) 
YmH - Ym +3 + 24 m+3 24 m+2 + 24 m+l 24 m , 

for which Equation (1.6) becomes 

(4 _ (1 + 55 /-L) (3 + 59/-L(2 _ 37 JL( + ~ /-L = 0 . 
24 24 24 24 

(1.8) 

For /-L = 0 Equation (1.8) has one root at ( = 1 (the so-called "principal 
root") and a three-fold root at (= O. We then move with /-L to the point 
-O.25+0.5i (see Fig.1.1a). Fig.1.1b shows the corresponding movement of 
the four roots of (1.8). 

For stability, all roots (//-L) of (1.8) must lie inside the unit circle. We see 
in Fig. 1.1 b that (3 (/-L) is the first to leave at a point exp( iO) where 0 ~ 37r /4. 
The corresponding /-L-value is easily found from (1.8) to be 

e( ei9 ) e4i9 _ e3i9 

/-L = 0"(ei9 ) = 55 e3i9 _ 59 e2i9 + 37 ei9 _ .1.. . 
24 24 24 24 

(1.9) 
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The whole curve (1.9), for 0 :s () :s 211", is called the root locus curve c, and 
represents the points of JL which can constitute the boundary of S (Liniger 
1956). 

The particular root locus curve of Fig.1.1a intersects itself and cuts 
several regions from C. What happens if our path for JL re-enters the uppel' 
loop of the root locus curve, i.e., if we move with JL to the point 0.25+iO.75!' 
WeH, as we see in Fig.1.1b, (s(JL) does not re-enter the unit circle, but 
another root (l(JL)) leaves! This is explained by the fact that the root 
locus curve surrounds this region in the opposite direction and that th(: 
mappings JL +-+ (j are locally holomorphic if (j f= 0, Le., preserve angles 
and orientations. 

Special attention must be paid to (1 (JL), which lies on the unit circle for 
JL=O. Differentiating (1.8) with respect to JL and putting JL=O, (=1 gives 

e'(1) . (~(O) - 0-(1) = 0 , 

hence (~(O) = 1 because of the consistency conditions e'(1) f= 0, 0-(1) = e'(1) 
(see Volume I, Formula (III.2.6)). Therefore (l(JL) moves inside the unit disc 
when JL moves inside C- and we have: 
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Fig.1.1b. Paths of the roots of (1.8) 
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Theorem 1.3. The boundary 0/ the stability domain S consists 0/ parts 0/ 
the root locus curve c given by 8 f-+ u( eie )/ 0'( eie). 1/ the method is consistent 
and all "parasitic" roots 0/ u( () = 0 lie inside the unit disc (i.e., the method 
18 "strictly stable "), at least a small disc 

{JL j IJL + ul ~ u} with u > 0 

lies inside S. o 

The precise location of S can be determined by studying how often, and 
in which sense, the root locus curve surrounds the different parts of C \ c 
(this is called the "Cauchy index" in complex analysis). 

Adams Methods 

It is now interesting to have alook at the methods of Section III.l of Vol­
ume I: 

The ezplicit Adams methods (III. 1. 5 ) applied to y' = >'Y give 

k-l 

Yn+l = Yn + JL L "'t; V;Yn , 
;=0 

1 5 3 
"'to = 1, "'tl = 2' "'t2 = 12' "'t3 = 8"" 

(1.10) 
or, after putting Yn = (n and dividing by (n, 

(-I=JL{"'t0+"'tl(I-~)+"'t2(1-~+ :2)+"'}' 
Hence the root locus curve becomes 

JL = ,,~-l .(1 _ 1); , 
L..JJ=o "'tJ , 

(-I 
(1.10') 

For k = 1 we again obtain the circle o{ Euler's method, centred at -1. These 
curves are plotted in Fig.1.2 tor k = 2,3, ... ,6 and show stability domains 
of rapidly decreasing sizes. These methods are thus surely not appropriate 
tor stiff problems. 

The implicit Adams methods (III.1.8) lead to 

k 

Yn+l = Yn + JL L "'tjV;Yn+l , 
;=0 

* * 1 * 1 () "'to = 1, "'tl = -2"' "'t2 = -12"" 1.11 

Here we put Yn = (n and divide by (n+l. This gives 

1_1 

JL = I;k *' 1" ( = eie. 
;=0 "'t; (1 - ,)3 

(1.11 ') 
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Fig. 1.2. Stability domains for explicit Adams methods 

For k = 1 this is the implicit trapezoidal rule and is A-stable. For k = 
2,3, ... ,6 the stability domains, though much larger than those of the ex­
plicit methods, do not cover C- (see Fig.1.3). Hence these methods are not 

A-stable. 

k=2 

-2 

k=6 

Fig.1.3. Stability domains of implicit Adams methods, 
compared to those of the explicit ones 

s 

-2 

Predictor-Corrector Schemes 

"The inadequacy of the theory incorporating the effect of 
the corrector equation only for predictor-corrector methods 
was first discovered through experimental computations on 
the prototype linear equation 

y' = f(re,y) = -100y + 100, y(O) = 0, 

( ... ) Very poor correlation of actual errors with the errors 
expected on the basis of the properties of the corrector 
equation alone was obtained. This motivated the develop­
ment of the theory ... " (P.E. Chase 1962) 

As we have seen in Section II I. 1 , the classical way of computing Yn+l from the 
implicit equations (III.1.8) is to use the result Y~+l of the explicit Adams 
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method as a predictor in ßkf( x n+1' Yn+1)' This destroys a good deal of 
the stability properties of the method (Chase 1962). The stability analysis 
changes as follows: the predictor formula 

Y~+1 = Yn + fL (I'oYn + 1'1 (Yn - Yn-1) + 1'2 (Yn - 2Yn-l + Yn -2) + ... ) (1.12) 

must be inserted into the corrector formula 

Yn+1 = Yn + fL( I';Y~+1 + 

I';(Y~+1 - Yn )+ 

I';(Y:+1 - 2Yn + Yn-1)+ 
(1.13) 

I';(Y~+1 - 3Yn + 3Yn_1 - Yn-2) + ... ) 
Since there is a fL in (1.12) and in (1.13), we obtain this time, by putting 
Yn = (n and dividing by (n, a quadratic equation for fL, 

(1.14) 

k k-1 

A= (LI'J) (LI'j(l- Z)j) , 
j=O j=O 

k k 

B=(1-0 LI'J+(LI'J(1-Z)j, 
j=O j=O 

0=1-(. 

For each (= eiO , equation (1.14) has two roots. These give rise to two root 
locus curves which determine the stability domain. These curves are repre­
sented in Fig. 1.4 and compared to those of the original implicit methods. 
It can be seen that we loose a lot of stability. In particular, for k = 1 the 
trapezoidal rule becomes an explicit second order Runge Kutta method and 
the A-stability is destroyed. 

Fig. 1.4. Stability domains for PECE compared to original implicit methods 
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While Chase (1962) studied real eigenva.lues only, the general complex 
case has been stated by Crane & Klopfenstein (1965) and, with beautiful 
figures, by Krogh (1966). All three papers also searched for procedures with 
increased stability domains. This research was brought to perfection by 
Stetter (1968). 

Nyström Methods 

"Thus we see that Milne's method will not handle so simple 
an equation as y' = -y, y(O) = 1 ... " 

(R.W. Hamming 1959) 

" ... Milne's method has a number ofvirtues not possessed 
by its principal riyal, the Runge-Kutta method, which are 
especially important when the order of the system of equa­
tions is fairly high (N=10 to 30 or more) ... " 

(R.W. Hamming 1959) 

The ezplicit Nyltröm method (111.1.13) for k = 1 and 2 is the "explicit mid­
point rule" 

YnH = Yn-l + 2h/n 

and leads to the root locus curve 
eiS _ e- ifJ 

JL= 2 =isin8. 

(1.15) 

(1.15') 

This curve moves up and down the imaginary ans between ±i and leaves 
as stability domain just the interval (-i, +i). All eigenvalues in the interior 
of the negative half plane lead to instabilities. This is caused by the second 
root -1 of e( () which moves out of the unit circle when JL goes West. This 
famous phenomenon is called the "weak instability" of the midpoint rule 
and was the "entry point" of Dahlquist's stability-career (Dahlquist 1951). 
The graphs of Fig. 111.9.2 nicely show the (weak) instability of the numerical 
solution. 

The implicit Milne-Simp8on method (111.1.15) for k=2 and 3 is 

( 1 4 1 ) 
YnH = Yn-l + h "i/nH + "i/n + "i/n-1 (1.16) 

and has the root locus curve 

eiS - e-iS sin 8 
JL - - 3i (1.16') 

- leiS + ! + le- i9 - cos 8 + 2 ' 
3 3 3 

which moves up and down the imaginary axis between ±iV3. Thus its 
behaviour is similar to the explicit Nyström method with a slightly larger 
stability interval. 
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The bigher order N yström and Milne-Simpson methods have root locus 
curves like those of Fig.1.5. Their stability domains therefore reduce to the 
smallest possible set (for stable methods): jU8t the origin. 

Nystroem, k=3 Nystroem, k-4 Kilne, k-4 Milne, k=5 

.5 .5 .5 .5 

.0 .0 

.5 .5 .5 

.5 .5 .5 

.5 .5 .5 .5 .5 

- .0 .0 .0 .0 .0 

- .5 .5 .5 .5 .5 

Fig.lo5. Root locus curves for Nyström and Milne methods 

BDF 

The backward differentiation formulas (III.1.22') 

lc 1 . L -:-V1 Yn H = hlnH 
;=1 J 

have the root locus curves given by 

lc 1 1· lc 

I' = I: -:-(1--r = I: ~(1_e-i9)j . 
;=1 J , ;=1 J 

(1.17) 

(1.17') 

For k = 1 we have the implicit Euler method with stability domain S = 
{/Lj 11'-112:: 1}. For k=2 the root locus curve (see Fig.1.6) has Re (I') = 
~-2 cos8+! cos 28 wbich is 2:: 0 for all 8. Therefore the method is A-stable 
and of order 2. However, for k=3,4,5 and 6, we see that the methods loose 
more and more stability on apart of the imaginary ans. For k 2:: 7, as we 
know, the formulas are unstable anyway, even at the origin. 
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Fig.1.6. Root locus curves and stability domains of BDF 

A-stability and the Second Dahlquist Barrier 

"I searched for a long time, finally Professor Lax showed 
me the Riesz-Herglotz theorem and 1 knew that 1 had my 
theorem." (G. Dahlquist 1979) 

The following definition is motivated by Theorem 1.2 and by the fact that 
for Re>. ::; 0 the exact solution of y' = >.y is bounded. 

Definition 1.4 (Dahlquist 1963). The multistep method (1.1) is called 
A-stable if S :J C -, i.e., if 

Re>. ::; 0 ===} numerical solution for y' = >.y is bounded. 

Theorem 1.5. I/ the multistep method (1.1) is A-stable, then 

/or !(! > 1 . (1.18) 

For irreducible methods the converse is also true: (1.18) implies A-stability. 

Proo/. If the method is A-stable then all roots of (1.6) must satisfy !(!::; 1 
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whenever Re JL::; o. The logically equivalent statement (Re JL > 0 whenever 
1(1)1) yields (1.18) since by (1.6) JL=e()jO'(). 

Suppose now that (1.18) holds and that the method is irreducible. Fix 
a JLo with ReJLo ~ 0 and let (0 be a root of (1.6). We then have O'(ohi: 0 
(otherwise the method would be reducible). Hence JLo = e( (0) j 0'( (0) and it 
follows from (1.18) that 1(01 ~ 1. We still have to show that (0 is a simple 
root if 1(01=1. By a continuity argument it follows from (1.18) that 1(01=1 
and Re JLo < 0 are contradictory. Therefore, it remains to prove that for 
Re JLo = 0 a root satisfying 1(0 I = 1 must be simple. In a neighbourbood of 
such a root we have 

e() 2 
O'() - JLo = Cl ( -(0) + C2( -(0) + ... 

and (1.18) implies that Cl =f:. O. This, however, is only possible if (0 is a 
simple root of (1.6). 0 

In all the above examples we have not yet seen an A-stable multistep formula 
of order p 2:: 3. The following famous theorem explains this observation. 

Theorem 1.6 (Dahlquist 1963). An A-stable multistep method must be 0/ 
order p ::; 2. 1/ the order is 2, then the error constant satisfies 

1 
C<--. - 12 

(1.19) 

The trapezoidal rule is the only A-stable method 0/ order 2 with C = -l2 . 
Proo/. Dahlquist's first proof of this theorem is difficult. More elementary 
versions emerged in Widlund (1967), in lecture notes of W. Liniger (Univ. of 
Neuchäte11971) and in the book of Grigorieff (1977, vo1.2, p. 218). 

We start by recalling some formulas from Volume I: Formula ii) of The­
orem III.2,4 and Formula (III.2.7) are 

e(eh ) - hO'(eh ) = Cp+1hPH +... for h --+ 0 . (1.20) 

From the consistency conditions (III.2.6) we have 

e(e h ) = e(1 + h + ... ) = e(1) + e'(1)h + ... = O'(1)h + ... 
We divide (1.20) by he(eh ) and obtain 

1 0'( eh) _ p-l 

h - e(eh) - Ch + ... for h --+ 0 (1.21) 

where C is the error constant (III.2.13). With (= eh this becomes 

_1 __ O'() = C(( _1)P-l + ... 
log ( e(() 

for ( --+ 1 . (1.22) 
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In this formula we put p = 2. Whenever the method is of higher order, 
we have 0 = O. When the order of the method is one, we have not hing to 
prove. The same formula for the trapezoidal rule for which eT( () = ( -1, 
O'T( () = ~(( + 1), becomes by series expansion (or by using Table 111.2.1) 

_1 __ O'T(() = _~(( -1) +... for ( --+ 1 . (1.23) 
log ( eT( () 12 

The idea is now to subtract the two formulas and obtain 

O'(() O'T(() ( 1 ) 
d(() : = e(() - eT(() = -0- 12 ((-1) + ... for ( --+ 1. (1.24) 

From (1.18) we have that 

Re (!~ ~~) > 0 or equivalently ( O'( ()) 
Re e( () > 0 for I (I > 1 . (1.25) 

The point here is that for the trapezoidal rule this Re( ... ) is zero for 1(1=1 
since this method has precisely C- as stability domain. Hence from (1.24) 
we obtain 

lim Red(() ~ 0 
(-(0 
1(1)1 

for 1(01 = 1 . (1.26) 

The poles of d( () are the roots of e( (), which, by stability, are not allowed 
outside the unit circle. Thus, by the maximum principle, (1.26) remains true 
everywhere outside the unit circle. Choosing then (= 1 + e with Re e > 0 
and lei small, we see from (1.24) that either -0-;2 > 0 or d(() == O. This 
concludes the proof. 0 

Exercises 

1. The Milne-Simpson methods for k = 4 and 5 satisfy Re(q(()/O'(()) ~ 
o for I( I = 1. Since their order is higher than 2, this seems to be in 
contradiction with the above proof of Theorem 1.6. Explain. 

2. For the explicit midpoint rule (1.15), do the endpoints ±i of the stability 
region belong to S? Study the (possible) stability ofthis method applied 
with h=l to u'=v, v'=-u. 

3. Compute for the explicit and implicit Adams methods the largest Ao E R 
such that the real interval [-AO' 0] lies in S. 

Hint. J ust set () = 7r in the root locus curve. 

4. Prove that the stability region of the k-step, implicit Adams methods is 
of finite size for every k ~ 2. 
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Hint. Show that (-1) 1c0'( -1) < 0, so that 0' has a real negative root, 
smaller than -1. 

5. a) Show that all 2-step methods of order 2 are given hy 

e(() = ((-I)(a( + 1- a) 
1 

O'(() = ((-1)2ß + ((-1)a + "2((+1) 

(which are irreducihle for a i- 2ß). 

h) The method is stahle at 0 iff a ~ 1/2. 

c) The method is stahle at 00 iff 

a ~ 1/2 and ß > a/2 . 

Apply the Schur-Cohn criterion (Section II1.3, Exercise 4). 

d) The method is A-stahle iff (1.27) holds. 

Hint. 

(1.27) 
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"We are not attempting to disprove Dahlquist's theorems 
but are trying to get round the conditions they impose ... " 

(J. Cash 1979) 

Dahlquist's condition p::; 2 for the order of an A-stable linear multistep 
method is a severe restriction for efficient practical calculations of high pre .. 
cision. There are only two ways of "breaking" this barrier: 

• either weaken the conditionj 

• or strengthen the method. 
These two points will occupy our attention in this and in the following; 
section. 

A( Q )-Stability and Stiff Stability 
"It is the purpose of this note to show that a slightly dif­
ferent stability requirement permits methods of higher ac­
curacy". (0. Widlund 1967) 

"The angle a is only one of a number of parameters which 
have been proposed for measuring the extent ofthe stability 
region. But it is probably the best such measure ... " 

(Skeel & Kong 1977) 

Many important classes of practical problems do not require stability on the 
entire left half-plane C-. Further, for eigenvalues on the imaginary axis, 
the solutions are often highly oscillatory and one is then forced anyhow to 
restrict the step size "to the highest frequency present in order to represent 
the signal" (Gear 1971, p. 214). 

Definition 2.1 (Widlund 1967). A convergent linear multistep method is 
A( a )-stable, 0 < a < 7r /2, if 

S:J So; = {JL j ! arg( -JL)! < a, JL =f O} . (2.1) 

A method is A(O)-stable if it is A(a)-stable for some (sufficiently small) 
a > O. 

Very similarly, Gear (1971) required in his famous concept of "stijJ sta­
bility" that 

S :J {JL j ReJL < -D} (2.2) 
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for some D > ° and that the method be "accurate" in a rectangle - D S; 
Re JL S; a, -8 S; ImJL S; 8 for some a> ° and 8 about 7r /5. Many subsequent 
writers didn't like the inaeeurate meaning of "accurate" in this definition 
and replaeed it by something else. For example JeItseh (1976) required that 
in addition to (2.2), 

(i =2, ... , k) in IReJLI S; a, IImJLI S; 8 , (2.3) 

where (l(JL) is the analytie eontinuation of the prineipal root (1(0) = 1 of 
(1.6). Also, the reet angle given by 

IImJLI S; 8 , -D S; ReJL S; -a 

should belong to S. 
Other concepts are A o -stable (Cryer 1973) if 

1(;(:z:)1<1 (i=l, ... ,k), -oo<:z:<o (2.4) 

and A-stable (a joke of O. Nevanlinna 1979) if 

(-00,0] eS. (2.5) 

Of course, we have 

A(O)-stable ==? Ao-stable ==? A-stable (2.6) 

but neither implication is reversible (Exercise 3; see also "Theorem I" of 
Jeltseh 1976). 

The BDF methods (1.18) satisfy (2.1) for A(a)-stability and (2.2) for 
stiff stability with the values 

k 1 2 

D 

3 

86.03° 
0.083 

4 5 

73.35° 51.84° 
0.667 2.327 

6 

17.84° 
6.075 

(2.7) 

High Order A( 0: )-Stable Methods 

"Dill and Gear ... and Jain and Srivastava ... have used 
computers to construct stiffly stahle methods of orders 
eight and eleven, respectively, hut were unahle to construct 
higher order stiffly stahle methods. Even though we have 
shown here that Ao-stahle methods of arhitrarily high or­
der exist, we conjecture that A(O)-stahle linear multistep 
methods of higher order, of order greater than 20 say, do 
not exist." (Cryer 1973) 

Widlund (1967) showed that for every a < 7r /2, a arbitrarily elose to 7r /2, 
there exist A( a )-stable multistep methods of order p = k for p = 3 and p = 4. 
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It is now an interesting question whether such methods also exist for higher 
orders. WeIl, the answer consists of good news and bad news. 

First the good news. The conjecture of Cryer (see quotation) was quickly 
disproved by combining Cryer's Ao-stable methods with the result of Jeltsch 
(1976) which says that certain Ao-stable methods are also A(o:)-stable. The 
following theorem shows that 0: can even be chosen arbitrarily dose to 'Ir /2: 

Theorem 2.2 (Grigorieff & SchroIl1978). Let 0: < 'Ir/2 be given. Then for 
every k E N there ezists an A( 0:) -stable linear k-step method of order p = k. 

Proof. For p=k=2 the two-step BDF method which is A-stable, and hence 
A( 0:2 )-stable for every 0:2 :::; 'Ir /2, does the job. For k arbitrary, we intercalate 
k-2 values between 0: and 'Ir/2, 

'Ir 
0: < 0:"_1 < 0:"_2 < ... < 0:3 < 0:2 :::; '2 ' (2.8) 

and extend the method step by step with the help of Lemma 2.3. 0 

Lemma 2.3. Suppose an A( 0: )-dable k-step method of order p is given with 

e(() -# 0 

oo(() -# 0 

if lei = 1, (-# 1 

if lei = 1 . 

(2.9a) 

(2.9b) 

Then for every Ci< 0: there ezists an A(Ci)-stable (k+1)-step method 01 order 
p+1 which also satisfies (2.9). 

The proof follows very dosely the ideas of Jeltsch & Nevanlinna (1982): Let 
e( () and oo( () represent the given k-step method with order condition 

l~~~ - oo(() = Gp+1((-l)p + O(((-l)P+1) . (2.10) 

If we multiply e and 00 by (( -1) we formally increase the order by 1 and 
at the same time leave the root locus curve unchanged. Everything seems 
to be proved. However, the new e-polynomial would have a double root at 
( = 1 and would thus lead to an unstable method. We therefore choose e> 0 
and multiply (2.10) by ((-l+e), which moves the root slightly inside the 
unit cirde. We then obtain a new method of order p+ 1 if we put 

ü(() = e(()(( -1 + e) 

ü(() = oo(()(( -1 + e) + e CpH (( - l)P . 
(2.11) 

Since p = k + 2 is exduded (by Theorem III.3.9 methods with p = k + 2 are 
symmetrie and violate Hypothesis (2.9a», both polynomials Ü and ü are of 
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degree :::; k + 1. N ow the formula 

u() u() eCp+1( -l)p 

ü'() - u() = u()( -1 + e) 
(2.12) 

allows us to eompare, for e small, the root-loeus eurves of the two meth­
ods. The fact that we are working with u( ei9 )/ u( ei9 ) = 1/ J-L instead of 
J-L = U( ei9)/ u( ei9) does not matter, beeause the transformation J-L t-+ 1/ J-L 

maps the seetor of Definition 2.1 onto itself. Beeause of Hypothesis (2.9a), 
1 is the only (simple) root of U( () on the unit eircle, therefore 

for ( = ei9 . (2.13) 

A small obstacle still separates us from "endless pleasure, endless love, 
Semele enjoys above": the denominator I( -1 +el, whieh beeomes small 
for e -t 0 and () -t O. For p> 1, this "small" denominator is simply balaneed 
by one of the faetors I( -11 from the numerator and we have 

I u( () - u( () I < C. 
ü'() U«) - e 

(2.14) 

which means uniform pointwise eonvergenee of u( ()!ü( () to u( ()/ U( () if 
e -t O. Sinee u( ()/ U( () is bounded away from the origin (Hypothesis (2.9b)), 
this also means uniform eonvergenee of the angles. 

This is already suffieient to prove Theorem 2.2, where we always have 
P?:. 2. However, Lemma 2.3 remains valid for P= 1 too: the eritieal region is 
when () -t 0, in whieh ease lu( ei9 )/ U( ei9 )1 and lu( ei9 )/ü'( ei9 )1 tend to infinity 
like Gonst/(). Instead of (2.14) we have for P= 1 

IU«() u«()1 Ce (e) 
ü'«() - U«) s I( -1 + el = 0 ö . 

Thus the angle (seen from the origin) between u«)/ü'«() and u«)/U«() is 
O(e). 0 

Approximating Low Order Methods 

with High Order Ones 

The above proof of Lemma 2.3 aetually shows more than angle-boundedness 
of the root loeus eurve, namely uniform eonvergenee of the root loeus curve 
of a high order method to that of a lower order one. This leads to the 
following theorem of Jeltsch & Nevanlinna (1982): 
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Theorem 2.4. Let a linear stable k-step method 01 order p and stability 
domain S be given which satisfies (2.9a). Then to any closed set n eInt S c 
C and any K E N there exists a linear k + K -step method of order p + K 
whose stability domain S satisfies 

s::::>n. 

Moreover if the first method is explicit, the higher-order method is also ex­
plicit. 

Proof. The proof is similar to that of Lemma 2.3. lnstead of the sequenee 
(2.8) we use a sequenee of embedded closed and open subsets between n 
and S (Urysohn's Lemma). Hypothesis (2.9b) is ruled out by passing to the 
eompaetified topology of C = Cu {oo}. 0 

Remark. No method with non-empty lnt S of praetieal interest violates 
Hypothesis (2.9a). Nevertheless, Theorem 2.4 remains valid without this 
hypothesis, but the proof beeomes more eomplieated (see "Lemma 3.6" of 
JeItseh & Nevanlinna 1982). 

A Disc Theorem 

Another weakening of A-stability is to require stability for 

D r = {JL ; IJL + r I :::; r} , (2.15) 

whieh is a dise of radius r in C - tangent to the imaginary axis at the origin. 
Theorems about stability in D rare stronger than theorems about A( 0:)­
stability for eigenvalues elose to the origin. The following resuIt is, again, 
due to Jeltseh & Nevanlinna (1982): 

Theorem 2.5. Let a linear k-step method 01 order p be given with S ::::> D r • 

Then for any r< rand any K E N there exists a linear k + K -step method 
01 order p+K whose stability domain S satisfies S ::::> D- . 

r 

Proof. The map JL f--+ 1/ JL used in the proof of Lemma 2.3 maps the exterior 
of D r onto the half-plane 

(2.16) 

Therefore the uniform eonvergenee established in (2.14) also covers the new 
situation if p> 1. The ease p = 1, however, needs a more eareful study and 
we refer to the original paper of Jeltseh & Nevanlinna (1982, pp. 277-279). 

o 
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Accuracy Barriers for Linear Multistep Methods 

Now here is the "bad news": high order A(o:)-stable methods, for 0: elose to 
71' /2, eannot be of practieal use, or in other words: "the seeond Dahlquist 
barrier eannot be broken". The reason is simpIy that high order alone is 
not sufficient for high aeeuraey, beeause the methods then have enormous 
error eonstants. Jeltseh & Nevanlinna (1982) give an impressive staeeato 
(from "Theorem 4.1" to "Lemma 4.15") of Iower bounds for error eonstants 
and Peano kerneis of methods having Iarge stability domains. The Peano 
kernels, the most serious measures for the error, are defined by the formulas 
(see (III.2.14) and (III.2.3) of Volume I) 

L(z) = hq+1 I: Kq(-8) y(q+l)(Z+8h) d8 

k 

= 2: (O:jY(Z + jh) - hßjy'(z+jh)) . 
j=O 

(2.17) 

(2.18) 

The kerneis Kq( -8) = K q( 8) are zero outside the interval 0 S 8 S k and are 
pieeewise polynomials given by eomplieated formulas (see (III.2.15)) whieh 
appear not very attraetive to work with. 

However, the formulas simplify if we use the Fourier transform whieh, 
for a function f ( z ), is defined by 

(2.19) 

We obtain L from (2.17) by insertion of the definitions, several integrations 
by parts and transformations of double integrals: 

and from (2.18) 

L(e) = hq+1 k:(he) . y{q+l)(e) 

= k:(he)( ihe)q+l y(e) , 

L(e) = (u(eihe)_iheO'(eihe)) ·y(e)· 

Thus (2.20) and (2.22) give 

K;( -e) = k:(e) = (u(eie ) - ie O'(eie )) (ie)-(q+l) , 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

a nice formula, involving the polynomials u and 0', with which we are better 
acquainted. 

What about the usefulness of K; for error estimates? Wen, it is the 
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Parseval identity (Exercise 4) 

(2.24) 

which allows us to obtain the P-estimate for the error 

(from (2.24)) 

(from (2.20)) 

(estimation) 

( definitions) 

(from (2.23),(2.24)) 

In order that the obtained estimates (2.25) for Lexpress the actual errors of 
the numerical solution, we adopt throughout this section the normalization 
0"(1)=1 (cf. Formula (III.2.13)). 

And here is the theorem which tells us that linear multistep methods of 
order p> 2 and "large" stability domain cannot be precise: 

Theorem 2.6 (JeItsch & Nevanlinna 1982). Consider k-step methods 0/ 
order p>2, normalized by 0"(1)=1, /or which the disc Dr 0/ (2.15) is in the 
stability domain S. Then there ezists a constant C > 0 (depending on k, p, qi 
but independent 0/ r) such that the Fourier trans/orm 0/ the Peano kernel 
K q (q5:p) satisfies 

(2.26) 

The pro%f Jeltsch & Nevanlinna is in two steps: 

a) The stability requirement forces some coefficients aj of R(z) to be large 
(Lemma 2.7 below), where as in (III.3.17) 

k 

R( z) = C ; 1) k e C ~ ~) = L aj zi 
j=O 

k 

S(z) = C;l)k O"C~~) = Lbjzj . 
j=O 

(2.27) 

(2.28) 
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b) 11K:IILoo can be bounded from below by maxj aj (Lemma 2.8). 

Lemma 2.7. 11 Dr C Sand p>2 then 

( r)j-1 (r)j-1 
ak_j 2: 3" . ak_1 = 3" ·21 - k lor j = 2, ... ,p - 1 . (2.29) 

Proof. Stability in Dr means that for J-t E D r all roots of e(()-J-t<T(() =0 He 
in "I :S 1. Hence 

e()/u() tf- D r for 1(1 > 1 . (2.30) 

Applying the Graeco-Roman transformation' = (z + 1 )/( z -1) and using 
(2.16) this means that 

S(z) 1 
Re-- >--

R(z) 2r 
for Rez > 0 (2.31) 

or 

R 2rS(z) + R(z) 0 
e R(z) > for Rez > 0 . (2.32) 

Next, we must consider the order conditions (Lemma III.3.7 of Volume land 
Exercise 9 of Section 11 I. 3 ) 

( z 1 2) ((I)P-k) R(z) - - - - - - ... - S(z) = 0 - , 
2 6z 45~ z 

z ---+ 00 . (2.33) 

This shows that R(z)=O(zk-l), S(z)=O(zk), but 2S(z)-zR(z)=O(zk-l). 
Thus we subtract rz from (2.32) in order to lower the degree of the numer­
ator. The resulting function again satisfies 

R r(2S(z) - zR(z)) + R(z) 
e R(z) > 0 for Rez > 0 (2.34) 

because of Re (r z) = 0 on z = iy and the maximum principle (an idea similar 
to that of Lemma IV.5.21). The function (2.34) can therefore have no zeros 
in C+ (since by Taylor expansion all arguments of a function appear in a 
complex neighbourhood of a zero). Therefore the numerator of (2.34) must 
have non-negative coefficients (cf. the proof of Lemma 111.3.6). Multiplying 
out (2.33) and (2.34) we obtain for the coefficient of zk-j (j :Sp-l): 

o :S r( -~ ak-j+1 - 4: ak-i+3 - ... ) + ak_j 

or by simplifying (cf. Lemmas 111.3.8 and 111.3.6) 

r 
- ak '+1 < ak . 3 -J - -J' 

Using ak_l =21- k e'(I) =21- k (see Lemma III.3.6), this leads to (2.29). 0 
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Lemma 2.8. There ezist8 C > 0 (depending on k, p and q with q = 0, 1, ... ,p) 
with the following property: if 0 ES, then 

(2.35) 

ProoJ. We set eie = (, e = -i log ( in Formula (2.23) so that the maximum 
must be taken over the set 1(1 = 1. Then we introduee ( = (z+I)/(z-l) 
and take the maximum over the imaginary axis. This gives with (2.27) and 
(2.28) 

_ 11 (R(it) . )II( 2it )kll (it+l)l-q 

I/Kqll Loo = s~p (it)k log ~ - S(ti) . it -1 . log it _ 1 
d 1, " 

~(t) ~(t) 
(2.36) 

We now insert, for Itl > 1, Formulas (III.3.19), (III.3.21) and (III.3.22) to 
obtain 

(2.37) 

where Pk is a polynomial of degree k and subdegree p (see Lemma 111.3.7), 
determined by the method. Sinee we want our estimates to be true for 
all methods, we treat Pk as an arbitrary polynomial. Separating real and 
imaginary parts and substituting l/t = s gives 

1~(t)12 =IQ/e-l(s) + d1 s k+1 _ dask+3 + - ... 12 (2.38) 

+ IQk(S) + d2s k+2 - d4 s kH + - ... 12 = l~l(tW + 1~2(tW 
where Qk_l(s) and Qk(s) are arbitrary (even or odd) polynomials of sub­
degree p and degree k -1 and k, respectively. Both terms are minorized 
separately, e.g. for the first we write 

l~l(t)1 ~ IQk-l(s) + d1Sk+11-ld3Sk+3 - dssk+S + -·.·1· (2.39) 

Since 1-'1 < 1-'3 < I-'s < ... < 0 (Exercise 6 below) and ai ~ 0 we have from 
(III.3.22) 

(2.40) 

Therefore, the second term in (2.39) is majorized by the altemating series 
argument for 0< s < 1 as 

Id3skH - dssk+ S + - ... 1:::; Id31sk+3 :::; Id11sk+3 . 

Since Qk_1(S) is an arbitrary polynomial, we ean replaee it by Id1IQk-l(S) 
so that Id11 becomes a eommon factor of the whole expression 

(2.41) 
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This suggests that we define the constants 

D2 =inf{ sup [(IQk(S)+sk+21-SkH) (~)k( 1 )q]} 
Qk 0<8<1 1 + S2 2 arctans 

(2.42) 
where the inf is taken over all polynomials Qk-1 (s) = Ck_1 sk-1 +ck_3Sk-3 + 
ck_5sk-5+ . .. respectively Q k( s) = cksk+ck_2sk-2+ck_4sk-4+ .. . of subdegree 
p. The last two factors represent \lf(t) of (2.36). Since sk+1 dominates sk+3 

for small s, D1 and D 2 are positive constants (see Exercise 8). We then have 
from (2.38) and (2.36) 

(2.43) 

Since both d1 and d2 are sums of a j with negative coefficients (see (III.3.22) 

and Lemma III.3.8), IJKq 1100 must be large if one ofthe coefficient aj is large. 
o 

This concludes the proof of Theorem 2.6 which, by the way, also proves 
Theorem 1.6 again. 0 

Exercises 

1. Show that no explicit method can be A(O)-stable. 

2. Show that ßklak > 0 is a necessary condition for an A(a)-stable linear 
k-step method. 

3. a) Show that the method 

h 
Yn+2 - Yn+1 = 4(fn+2 + 2fn+1 + fn) 

has astability domain bounded by a parabola. It is therefore Ao-stable, 
but not A( 0 )-stable (Cryer 1973). 

b) Find a "deformation" of the 5th order BDF scheme 

5 
",1 . 6 
L..J -;-V')Yn+1 + ßV' Yn+1 = hfn+1 
j=1 J 

with ß ;::;;;; 0.232 ... which is A-stable, but not Ao-stable. 
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c) Find a method which is Ao-stable, but not stable at infinity. 

Hint for (c). If you "lift up your heads, 0 ye gates" (just a few lines, not 
to heaven), the answer is easy to find. 

4. (Parseval1799). Prove the identity (2.24). 

Hint. Insert the definitions into 

to get a triple integral. Two of these integrals then disappear with the 
Fourier inversion formula. 

Remark. You may be astonished to see that Parseval's identity is older 
than Fourier series and Fourier transforms. WeH, Parseval's identity was 
originally a formula between an infinite sum and an integral, which was 
later re-interpreted and generalized to become what it is today. 

5. Substitute { = 7r in Formula (2.23) to obtain an easy minorization for 

IIR; IILoo. Then compute for the methods defined in the proof of Lemma 
2.3 (normalized by u{ 1) = 1) the value u{ -1) for e small. This then 
shows that R; becomes very large. 

6. Use the formula (see the proof of Lemma III.3.8) 

1+1 2' [ 1 +:z: 2 2] -1 
/-L2j+1 = -1 :z: J (log 1 _ :v) + 7r d:z: 

to show that /-LI </-L3 </-Ls < ... <0. 

7. Show that for q = p Formula (2.23) becomes, by substituting i{ = h 
and letting h --+ 0 in Formula (1.20), K;,(O) = CP+ll where Cp+1 is, for 
u{ 1 ) = 1, the error consta nt. 

Formula (2.36) then provides, for p= k and t --+ 00, lower bounds for the 
error constant (see "Theorem 4.5" of Jeltsch & Nevanlinna 1982). 

8. For p=k+1, the polynomials Qk-l and Qk in (2.42) vanish identically, 
because the subdegree must be p. Compute in this case the constants 
D 1 and D2 • It is also easy to compute them for p=k-1. In the general 
case the optimal solution satisfies a sort of "Tchebysheff alternative" . 
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Results. 
Case p=k+1 (Q=O): 

Dl I p = 3 P = 4 P = 5 P = 6 
Ik=2 k=3 k=4 k=5 

q = 0 0.4742 0.5695 0.7020 0.8813 

q = 1 0.3876 0.4435 0.5298 0.6505 

q = 2 I 0.3524 0.3659 0.4152 0.4933 
q = 3 I 0.5000 0.3381 0.3459 0.3891 

q = 4 I 0.5000 0.3251 0.3275 

q = 5 I 0.5000 0.3131 

q = 6 I 0.5000 

Case p=k-1 (one free constant in Q): 

D 1 Ip=3 p=4 p=5 p=6 
I k = 4 k=5 k=6 k=7 

q=O I 0.0511 0.0362 0.0262 0.0193 

q=1 I 0.0727 0.0499 0.0353 0.0256 

q=2 I 0.1100 0.0709 0.0486 0.0344 

q=3 I 0.2031 0.1070 0.0691 0.0474 

q=4 I 0.1962 0.1041 0.0673 

q=5 I 0.1894 0.1012 

q=6 I 0.1828 

Case p=k-3 (two free constants in Q): 

D 1 Ip=3 p=4 p=5 p=6 
I k = 6 k=7 k=8 k=9 

q=O I 0.0030 0.0014 0.0007 0.0003 

q=1 I 0.0066 0.0029 0.0014 0.0007 

q=2 I 0.0160 0.0066 0.0029 0.0014 
q=3 I 0.0457 0.0158 0.0065 0.0029 

q=4 I 0.0448 0.0156 0.0064 

q=5 I 0.0439 0.0154 

q=6 I 0.0431 

D2 I p = 3 P = 4 P = 5 P = 6 
Ik=2 k=3 k=4 k=5 

q = 0 10.3607 0.4501 0.5706 0.7319 

q = 1 I 0.2754 0.3347 0.4163 0.5263 

q = 2 I 0.2205 0.2570 0.3108 0.3852 

q = 3 I 0.1935 0.2075 0.2400 0.2888 

q = 4 I 0.1849 0.1956 0.2244 

q = 5 I 0.1770 0.1845 

q = 6 I 0.1698 

D 2 I p= 3 p=4 p=5 p=6 
I k = 4 k=5 k=6 k=7 

q=O I 0.0195 0.0142 0.0104 0.0077 

q=1 I 0.0269 0.0191 0.0138 0.0101 

q=2 I 0.0384 0.0263 0.0186 0.0135 

q=3 I 0.0583 0.0374 0.0256 0.0181 

q=4 I 0.0567 0.0365 0.0250 

q=5 I 0.0552 0.0356 

q=6 I 0.0537 

D 2 I p= 3 p=4 p=5 p=6 
I k = 6 k=7 k=8 k=9 

q=O I 0.0007 0.0004 0.0002 0.0001 

q=1 I 0.0015 0.0007 0.0003 0.0002 

q=2 I 0.0034 0.0015 0.0007 0.0003 
q=3 I 0.0082 0.0034 0.0015 0.0007 

q=4 I 0.0081 0.0033 0.0015 

q=5 I 0.0080 0.0033 
q=6 I 0.0079 
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"The Dahlquist bound of two on the order of A-stable 
multistep methods was the imperative to propound ... 
weaker stability properties, ... An alternative approach 
for circumventing Dahlquist's bound is to modify the dass 
of methods, rat her than the property." 

(T.A. Bickart & W.B. Rubin 1974) 

The search for higher order A-stable multistep methods is carried out in two 
main directions: 

• Use higher derivatives of the solutions; 

• Throw in additional stages, off-step points, super-future points and the 
like, which leads into the large field of general linear methods. 

Second Derivative Multistep Methods 

Differentiation of a differential equation 

y' = I(x,y) (3.1) 

with respect to x gives the second derivative of the solution 

y" = I., + I y • 1=: g(x,y) , (3.2) 

which we shall denote by g. Now a straightforward generalization of both 
multistep formulas (1.1) and, say, the Taylor series method (see 1.8.13) 

h2 

Yn+1 = Yn + hin + 2T gn 

can be written in the form 

k k k 

L (XiYn+i = h Lßdn+i + h2 L 1'ign+i (3.3) 
i=O i=O i=O 

where the D:i' ßi , 1'i are parameters which must be chosen appropriately. 
Most of the theory of linear multistep methods (Section II1.2) generalizes 
without difficulty. Taylor expansion similar to (III.2.5) shows that method 
(3.3) is of order p if and only if 

k k k 

L D:i iq = q L ßi i q - 1 + q( q - 1) L 1'i iq- 2 (3.4) 
i=O i=O i=O 
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for O:S q :Sp. The first two of these formulas are identical to (IlI.2.6), i.e., to 

e(l) = 0 , e'(I) = 0'(1) . (3.5) 

This allows us to apply the argumentation of Exercise 2 of Section lIlA 
which means that 

Cp +1 
C=--

0'(1 ) 

is the correct extension for the error constant Formula (III.2.13). 

(3.6) 

A search for a good choice of the free parameters 0i, ß i , li was under­
taken by Enright (1974) with the following ideas: 

(i) Set 0k = 1, 0k_l = -1, 0k_2 = ... = °0 = 0 to ensure reasonable stability 
in a neighbourhood of the origin as in the standard Adams formulas; 

(ii) Set Ik # 0, Ik-l = ... = 10 = 0 to ensure stability at infinity as in the 
BDF formulas; 

(iii) Determine the remaining k + 2 coefficients Ik, ßk , ßk - 1 , ••• , ßo from 
equations (304) for q=I,2, ... ,k+2 (q=O is satisfied with (i)) to ensure 
a reasonably high order. 

The result is a dass of k-step formulas of order k + 2, which are of the form 

k 

Yn+1 = Yn + h 'LßJn+i-k+1 + h2'k9n+l . 
i=O 

The first few of these methods are 

( 2 1) 1 2 
k = 1: Yn+l = Yn + h ,?,fn+1 + ,?,fn -"6 h 9n +l 

( 29 5 1 ) 1 2 
k = 2: Yn+l = Yn + h 48fn+1 + 12fn - 48fn-1 -"8 h 9n+1 

k = 3 : - + h(307 f + 19 f - ~f + _7_ f ) 
Yn+l - Yn 540 n+l 40 n 20 n-l 1080 n-2 

19 h 2 
- 180 9n +l 

_ h(3133 47 _ 41 ~ 
k = 4: Yn+l - Yn + 5760fn+1 + 90fn 480fn-1 + 45fn-2 

17 ) 3 h2 
- 5760 fn - 3 - 32 9n +l 

For a general expression, see Formula (3.12) below and Exercise 1. 

(3.7) 

(3.7') 



282 V. Multistep Methods for Stiff Problems 

The stability analysis for second derivative methods is again done by 
linearizing and leads to 

y' = >.y for which y" = >.2 y . (3.8) 

This, inserted into (3.3), gives as characteristic equation 

(3.9) 
i=O 

instead of (1.6). Equation (3.9) is, for (= eie, a quadratic equation which 
gives rise to two root locus curves which, together, describe the stability 
domain. The Enright methods (3.7) turn out to be A-stable for k = 1 and 
2 (hence for p = 3 and 4) and are stifHy stable for k = 3, 4, 5, 6 and 7. The 
corresponding values 0: (for A(o:)-stability), D and the error constants Gare 
given in Table 3.1. Pictures are shown in Fig.3.1. 

Table 3.1. Stability characteristics and error constants 
for Enright methods 

k 1 2 3 4 5 6 7 

P 3 4 5 6 7 8 9 

0: 90° 90° 87.88° 82.03° 73.10° 59.95° 37.61 0 

D O. O. 0.103 0.526 1.339 2.728 5.182 

C 0.01389 0.00486 0.00236 0.00136 0.00086 0.00059 0.00042 

Dense Output for Enright Methods 

"Hermite's formulas are rediscovered and republished 
every four years." (P.J. Davis 1963) 

We have seen in Section 111.1 that Newton's interpolation formula, based on 
the data :Z:n+l' :Z:n' ••• ':Z:n-k+l' 

• when integrated from :Z:n to :Z:n+l' leads to the implicit Adams methods; 

• when differentiated at X n+1 , leads to the BDF methods. 
It is natural to apply the same idea to Hermite interpolation (Addison 1979): 
guided by much previous experience (see above) we choose the data points 

:Z:n+l (double node), :Z:n' X n - U " ":Z:n-k+l (simple nodes). (3.10) 
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1 

s 
-1 1 

-1 

Fig.3.1. Stability domains of Enright methods 

This gives the following scheme of divided dift'erences 

8=1 11 

hf{ 
8=1 11 hl{ - V/1 

Vi1 
hf~ -V!1-t V2 !1 

v2b 2! 
hf~ -V!1-tv2 ft -iv3!1 8=0 io 2! V3b 3! 

'Vfo 3! 

8=-1 '-1 
Y!h. 

2! 

V'-l 
8=-2 '-2 

where Z =Zn+sh. For these "confluent" data, Newton's interpolation formula 
becomes 

i(zn +8h) = ft + (s-1)h/~ + (8-1)2(h/~ - Vi1) 

( ) 2 h/~-V/1-~V2il 
+ s-1 s , 

2. (3.11) 

hl' Vi 1 V2i 1 V31 + (s-1)2 s(s+1) 1- 1-2', 1-3' 1 + ... 
3. 

We now interpret I 80S the derivative I(z,y(z)) of the solution, so that I' 
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becomes the second derivative. Integrating Formula (3.11) from zn to Zn+! 
we obtain 

(3.12) 

where 

Vi = fl (s-1)2s(s+1)(s.+2) ... (s+i-2) ds = (_l)i f\s-1) (l-:-s)ds . 
10 t! 10 t 

i 

Table 3.2. Coeflicients for Enright methods 

o 
1 
2 

1 

1 
3 

2 3 4 5 6 7 

1 7 17 41 731 8563 
24 360 1440 5040 120960 1814400 

(3.13) 

The first few values of vi are given in Table 3.2 and Formula (3.12) is 
seen to be identical with (3.7). Dense output, of course, is obtained by 
integrating (3.11) from zn to Zn + fJh: 

where 

'19 (l-S) vi(fJ) = (-1)' 0 (s-l) i ds. 

Second Derivative BDF Methods 

If we are interested in a "second derivative" analogue of the BDF methods, 
we replace all f' s by y' s in (3.11) and differentiate twice at zn+!' This, set 
equal to y"(zn+!)=9n+l' results in the methods 

h2 ( k 1) k (k 1) Vi 
2" 9n+! = ?: i hfn+1 -?: ~ i ~n+! 

.=1 J=l z=J J 
(3.14) 

which we call "Second derivative BDF methods" (SDBDF, the reader is cau­
tioned against confusion: Cash (1981) uses this expression for the class of 
"Enright methods"). Analyzing the stability of these methods leads to the 
parameters of Table 3.3. The root locus curves are drawn in Fig.3.2. 
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In complete analogy to the behaviour of implicit Adams compared to 
BDF methods, the second derivative BDF methods have larger error con­
stants than the Enright methods, but allow stifHy stable methods of higher 
order. 

Fig.3.2. Root locus curves of SDBDF methods 

Table 3.3. Stability characteristics and error constants 
for SDBDF methods 

k 1 2 3 4 5 6 7 8 9 10 

p 2 3 4 5 6 7 8 9 10 11 

a 90° 90° 90° 89.36° 86.35° 80.82° 72.53° 60.71° 43.39° 12.34° 

D O. O. O. 0.015 0.128 0.401 0.886 1.646 2.770 4.373 

C .1667 .0556 .0273 .0160 .0104 .0073 .0054 .0041 .0032 .0026 

Blended Multistep Methods 

The original motivation for blended methods goes as follows (Skeel & Kong 
1977): We know that Adams methods 

k 

-Yn + Yn-l + h 'Lßdn+i-k = 0 (AMF(k+l») 
i=O 
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are a very good choice for nonstiff problems, and that BDF methods 

k 

-L °Wn+i-k + hin = 0 
i=O 

are a very good choice for stiff problems. Nonstiff problems are characterized 
by the fact that -h 8 f/ 8y is smalI, while stiff problems are characterized 
by Zarge -h8f/8y (at first this makes sense only for scalar equationsj but 
it works as weH for systems of equations if we descend into the eigenspaces 
of the J acobian matrix 81/ 8y = J). The idea is now to use a weighted mean 
("blend", a term suggested by C.W. Gear) of the two methods such as 

{AMF(k+1)} - ,(k)hJ{BDF(k)} = 0 (3.15) 

where ,(k) is a free parameter. The factor -hJ, when small or large, just 
puts the weight at the right place, as required by the above motivation. 
Taylor expansion shows that Formula (3.15) is for aH ,(k) of order p = 
k+1 (the factor "h" in the second term saves one order), even if J differs 
from 8f/8y. This method is thus a multistep analogue to the W-methods 
discussed in Section IV. 7. 

Example. We put k = 2 in (3.15) and insert the values from Section III.1 
(Formulas (III.1.8") and (III.1.22"): 

( 5 8 1 ) 
YnH = Yn + h 121nH + 121n - 121n-1 

- ,(2) hJ ( - ~Yn+l + 2Yn - ~Yn-l + hf n+l) 
(3.16) 

If we now suppose that our differential equation is linear and autonomous 
y' = Jy, then JYn+i = fn+i and the equation simplifies. Two special choices 
for ,(2) are then interesting: 

a) ,(2) =1/6: In this case the In-l cancels with JYn_l and Formula (3.16) 
becomes the (k-1)-step Enright formula of order k+1j 

b) ,(2) = 1/8 : This is a "superconvergence point" for linear equations and 
we obtain the k-step Enright formula of order k+2. 

Both properties generalize to arbitrary kj in the first case we have to put 
,(k)=-k,'k, where the ,'k are the values of Table III.1.2, and in the second 

case we use ,(k) =-L:7=o vi as in (3.12). Blended methods therefore share 
the exceHent stability properties of the Enright methods and seem, at the 
same time, easier to implement. A third possibility is to choose ,(k) in order 
to maximize the angle a for A( a )-stability. The root-Iocus-curve equation 
for general ,( k) becomes 

k k 

p2 . ,(k) + p( _ L ,j(1_e-i6 )j - ,(k) L ~(1_e-i9)j) + (1_e-i6) = 0 . 
j=O j=l J 
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Skeel & Kong (1977) have carefully computed the optimal,(k) (see Table 3.4, 
the imprecise values for the "Enright column" have been corrected) and 
arrived thereby at stifHy stable methods up to order 12. 

Table 3.4. Values for ,(k) and corresponding angles 
for blended methods 

k -k'k 
a for (k) a for 

p 
,(k) = -k'k 'opt ,(k) = ,(k) 

opt 

1 2 .5 90° [0, +00) 90° 

2 3 .1666667 90° [.125, +00) 90° 

3 4 .125 90° [.12189, .68379] 90° 

4 5 .1055556 87.88° .1284997 89.42° 

5 6 .09375 82.03° .1087264 86.97° 

6 7 .08561508 73.10° .0962596 82.94° 

7 8 .07957176 59.95° .08754864 77.43° 

8 9 .07485229 37.61 ° .08105624 70.22° 

9 10 .07103299 .07599875 60.68° 

10 11 .06785850 .07192937 47.63° 

11 12 .06516462 .06857226 28.68° 

Extended Multistep Methods 

The second possibility for circumventing Dahlquist's barrier, instead of ad­
ding higher derivatives, ia to add furt her stages, additional nodes, off-step 
points and the like. All this leads into the huge desert ("A fable of K. Bur­
rage") of general linear methods which have been discussed in Section II1.8. 
Pioneering results for stiff differential equations are the "composite mul­
tistep methods" of Sloate & Bickart (1973), Bickart & Rubin (1974), the 
"hybrid" methods of England (1982), and the "extended" BDF methods of 
Cash (1980). We shall present the basic ideas for the latter in some detail: 
In order to increase stability of the BDF methods, we extend them by adding 
a "super-future" point at x n +k+l 

k 

L ajYn+j = hßkfnH + hßk+dn+k+l , 
j=O 

(3.17) 
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where the coefficients are obtained by solving 2: j CXjjq = q 2: j ßjjq-l for 
q=0,1, ... ,k+1 and the normalization cxk=1. Formula (3.17) is then used 
as follows (see Fig.3.3): 

(i) Suppose that the solution values Yn , Yn+1 , ... , Yn+k-l are available. 
Compute Yn+k as the solution of the conventional BDF formula 

k 

L aj Yn+j = hfn+k ; (3.17i) 
j=O 

(ii) Compute Yn+k+l as the solution of the same BDF formula advanced by 
one step (using Yn+k for Yn+k) 

k 

L aj Yn+j+1 = hfn+k+l 
j=O 

and set f n+k+l = f( Xn+k+l' Yn+k+l); 

(3.17ii) 

(iii) Discard Yn+k' insert fn+k+l into (3.17) and solve for a new Yn+k which 
serves as final numerical solution of the method. 

The advance of the numerical solution by one step thus requires the solution 
of three nonlinear systems of dimension n. Two of these have a similar 
Jacobian matrix and can thus be treated with the same LU-decomposition. 

Yn+k 
Yn+k-l 

~:~ 
Yn+~ 

• 
Yn+k+1 

Fig.3.3. Errors of Cash's algorithm 

Lemma 3.1 (Cash 1980). 1f Formula (3.17) is of order k+1 and the BDF 
methods used in (3.17i) and (3.17ii) are of order k, then the whole predictor­
corrector algorithm (i)-(iii) is of order k+l. 

Proof. Suppose that Yn , ... , Yn+k-l are on the exact solution (Fig.3.3). 
Then a simple calculation (as in the proof of Lemma 111.2.2, see also Formula 
(111.2.7» shows that 

( ) - _ C hk+l (k+1)( ) t>'"I(h k+2 ) Y x n+k - Yn+k - 1 Y Xn+k + v (3.18) 

( ) - - C (1 ak_l )hk+l (k+1)( ) t>'"I(h k+2 ) (3.19) Y Xn+k+l - Yn+k+l - 1 - a k Y Xn+k +v 
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where Cl depends on the BDF method used. If now C2hk+2y(k+2)(~) is 
the defect of Formula (3.17) (with the exad solution inserted), replacing 
hf(xnH+1' y( Xn+k+1)) by hf( xn+k+1' Yn+k+1) adds the expression obtained 
in (3.19) to this error and we obtain 

() hk+2 (C (k+2) ß C ( a k_1 ) Bf (k+ 1)) ( ) 
Y xn+k - Yn+k = 2Y + k+1 1 1-~ By' y Xn+k 

+ O(hk+ 3 ) • (3.20) 

The method is thus of order k + 1. Like Runge-Kutta methods, but unlike 
linear multistep methods, the principal error term is composed of several 
"elementary differentials". 0 

For a stability analysis we insert hfj =/-LYj in (3.17), (3.17i) and (3.17ii), 
set Yn = 1, Yn+1 = (, ... 'Yn+k-1 = (k-1 and compute, following the algorithm 
(i), (ii), (iii), the solution YnH =: (k. This gives the charaderistic equation 

where 

A/-L3+B/-L2+C/-L+D=0 (3.21) 

A = ßk(k 

B = -2akßk(k - T + ßk+1 S 

C = ßka%(k + 2akT - akß k+1 S + ßk+1 a k_1 R 

D = -a%T 
k-1 

R = L aj(j, 
j=O 

k-2 
S = Laj(H1, 

j=O 

k 

T = Letj(j . 
j=O 

(3.22) 

Inserting (=e i9 , Equation (3.21) gives us three roots /-Li(O) i=1,2,3, which 
describe the stability domain. These, computed by Cardano's formula, are 
displayed in Fig.3.4. The corresponding stability charaderistics are given 
in Table 3.5. The methods are A-stable for p:::; 4 and are stifHy stable for 
orders up to 9. 

Not satisfied with this, Cash (1981) has also developed Extended se­
cond derivative methods which, surely difficult to implement, have excellent 
stability properties: He achieved A-stability for p up to 8. 

Table 3.5. Stability measures for Cash's EBDF methods 

k 1 2 3 4 5 6 7 8 

p 2 3 4 5 6 7 8 9 

a 90° 90° 90° 87.61° 80.21° 67.73° 48.82° 19.98° 

D O. O. O. 0.060 0.375 1.147 2.715 5.696 
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p=6 

s 
-2 5 6 

Fig.3.4. Stability domains for Cash's EBDF methods 

Multistep Collocation Methods 

" ... a theorem of great antiquity ... the simple theorem of 
polynomial interpolation upon which much practical nu­
merical analysis rests ... " 

(P.J. Davis, Interp. and Approx., Chapter II, 1963) 

There are essentially two possibilities to extend the idea of collocation, which 
is so successful in the Runge-Kutta case (see Section 11.7, Formulas (11.7.18)), 
into the multistep scene: 

a) In a Nordsieck type manner with given Yn , hy~, h2y~/2, ... compute 
Yn+l' hY~+l' h2Y~+l /2, ... The result is a spline function which approxi­
mates the solution globally. Butcher's generalized singly-implicit methods 
(Butcher 1981) are of this type. Extensive studies of these methods are due 
to Mühlthei (1982). 

b) In a multistep manner with given Yn, Yn-l' ... 'Yn-k+l compute Yn+l' 
then discard, as usual, the last point Yn-k+l and continue. This possibility 
was first proposed and analysed by Guillou & Soule (1969). It is also the 
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subject of arecent paper by Lie & N!1Srsett (1989) and will retain our atten­
tion here in more detail: In evident generalization of Definition 11.7.5, the 
method is defined as follows: 

Definition 3.2. Let s real numbers Cl"'" Cs (typically between 0 and 
1) be given and k solution values Yn,Yn-ll ... ,Yn-k+I' Then define the 
corresponding collocation polynomial u( z) of degree s+k-1 by (see Fig. 3.5) 

j = n - k + 1, ... , n 

The numerical solution is then 

Y,,+k-l 

'" JI ! X,,_l Xn ! xn+cjh 

tk-l tk=O Cl C2 

Fig.3.5. The collocation polynomial 

x 

! Xn+! 
)t 

(3.23a) 

(3.23b) 

(3.23c) 

If we suppose the derivatives u'(zn + cih) are known, equations (3.23a) 
and (3.23b) constitute a Hermite interpolation problem withincomplete 
data: the function values at zn + cjh are missing. We therefore have no 
nice formulas and reduce the problem to a linear algebraic equation. We 
introduce the dimensionless coordinate t = (z -zn)/h, Z = Zn +th, nodes 
t l = -k+ 1, ... , t k _ l =-1, t k = 0 and define polynomials 'Pi(t) (i = 1, ... , k) 
of degree s+k-1 by 

j = 1, ... k 

j=l, ... ,s 

andpolynomials1/Ji(t) (i=l, ... ,s) by 

1/Jj(tj ) = 0 

1/J~(Cj) = {~ 
j=l, ... ,k 

if i = j 

ifi=/:j 
j=l, ... ,s. 

(3.24) 

(3.25) 
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This makes these polynomials a (generalized) Lagrange basis and the poly­
nomial u( x) is readily written as 

k s 

u(xn +th) = L <f'j(t)Yn-k+j + h L 'lfj(t)u'(xn +cjh) . (3.26) 
j=l j=l 

Formulas (3.24) and (3.25) do not always have a solution (Exercise 4 below). 
A convenient way of computing them is indicated in Exercise 5. Putting t = c, 
in (3.26), writing u(xn+cih) = vi and inserting the collocation condition 
(3.23b) we obtain 

k 

Vi = L <f'j(Ci)Yn-k+j + h L 'lf/ci)f(xn +cjh, Vj) (3.27a) 
j=l j=l 

i=l, ... ,s 
k 

YnH = L <f'j(l)Yn-k+j + h L 'lfj(l)f(x n +cjh, Vj) , (3.27b) 
j=l j=l 

a general linear method as defined in (1I1.8.7). 

Theorem 3.3. The collocation method (3.23) is equivalent to the general 
linear method 

k 

vi = L aij Yn-k+j + h L bij f(x n + cjh,Vj) i=l, ... ,s 
j=l j=l 

k 
(3.28) 

Yn+l = L ak+l,j Yn-k+j + h L bk+1 ,j f(x n + cjh,vj ) 
j=l j=l 

where 

aij = <f'j(Ci), bij = 'lfj(Ci), ak+l,j = <f'j(l), bk+l,j = 'lfj(l) (3.29) 

and <f'j(t), 'lfj(t) are polynomials defined by (3.24) and (3.25). Formula 
(3.26) provides a continuous output. 0 

A straight forward extension of the proof of Theorem 1I.7.8, again using 
the Gröbner & Alekseev formula (I.14.18), yields 

Theorem 3.4 (Guillou & SouIe 1969). 1f the quadrature formula (3.27b) is 

exact for polynomials g(t) of degree ::=;s+k+r, i.e., L~=l <f'j(l)=l and 

k 1 s 

~ <f'j(l) l-k g(t)dt = ~ 'lfi(l)g(Ci) , 

then the multistep collocation method (3.28) also has order s+k+r. 0 
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Methods of "Radau" Type 

"Nous allons maintenant etudier une classe de formules 
qui generalise les formules ordinaires de Gauss, Radau et 
Lobatto". (Guillou & Soule 1969) 

An interesting question is now how to choose the nodes ci in order to obtain 
the highest possible order. Using an elegant idea of Krylov (1959) (see the 
last chapter of his book on integration), Guillou & Soule (1969) and Lie & 
N!Ilrsett (1989) constructed such methods of maximal order p = 2s+k-1. 
Unfortunately, these methods are not stiffiy stable and therefore of no use 
for stiff problems. Consequently, we fix Cs = 1 to achieve stability at infinity 
and try to determine Cl' . .. , C._ 1 so that the order becomes p = 2s + k - 2. 
Because of Theorem 3.4, it is sufficient to consider quadrature problems. 

And now to Krylov's idea for integrals, adapted to our situation. We fill 
in the gaps in the data for Hermite interpolation, i.e., we suppose that the 
function values vi = U(Xn+Cih) (i = 1, ... ,s-l) are known and we extend our 
Lagrange basis accordingly: firstly, we add polynomials Xl (t), ... , XS -1 (t) of 
degree 2s+k-2 which must satisfy 

Xi(t j ) = 0 

X~(Cj) = 0 

Xi(Cj) = {~ 

j = 1, ... ,k 

j = 1, ... ,s 

Z=J 
ii=j 

j=I, ... ,s-1 

(3.30a) 

(3.30b) 

(3.30c) 

(Caution: the last condition is not for j =S, because c. is not a free node). 

Secondly, the polynomials c,oi(t) and 1fi(t) are replaced by ~i(t), ;Ji(t) of 
degree 2s+k-2 which, in addition to (3.24) and (3.25), must satisfy 

~i(Cj) = 0 and ;Ji(Cj) = 0 

Then Formula (3.26) is replaced by 

j=I, ... ,s-l. 

k s-l s 

(3.31) 

u(xn+th) = L I{5j(t)Yn-k+j + L Xj(t)Vj + h L ;jj(t)u'(xn+cjh) , (3.32) 
j=l j=l j=l 

and (3.27b) becomes the integration formula 

k .-1 • 

Yn+l = L ~j(I)Yn-k+j + L Xj(I)Vj + h L ;jj(l)u'(xn +cjh) (3.33) 
j=l j=l j=l 

which is of order 2s+k-2. If now, by a miracle, all coefficients 

(j = 1, ... ,s - 1) (3.34) 
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were zero, then the quadrat ure Formula (3.27b) would become equal to 

(3.33), since by uniqueness the remaining coefficients <pj(l) and ~j(l) mus! 
also be equal to 'f'j(l) and 1f1j(1). 

Theorem 3.5. II the collocation points Cl' ••• ,cs _ I (with Cs = 1) are chosen 
such that the polynomials 'f'i(t),1f1Jt) 01 (3.24), (3.25) ezist uniquely and' 
that (3.34) is true, then the collocation method (3.28) is 01 highest possible 
order 2s+k-2. 0 

Computation of the N odes 

Equation (3.34) together with the conditions (3.30) allow us to write the 
polynomials Xi(t) in the simple form 

k s 

xJt) = C rr (t-t j ) rr (t-c j )2 . (3.35) 
j=1 j=l 

Ni 

where C is determined by Xi( ci) = 1. This then satisfies all derivative re­
quirements (3.30b), except at Ci' X~(Ci) is readily computed from (3.35) by 
taking logarithms and the conditions X~( ci) = 0 give 

k 1 s 2 
I: c. _ t. + I: c. _ c. = 0 , 
j=l t J j=1 t J 

Ni 

i = 1, ... , s - 1 . 

Example. The case s =3: here, Equations (3.36) become (c3 = 1) 

2 2 k 1 ---+L:-c2 - Cl - Cl - 1 j=1 cl - t j , 

2 2 k 1 -=-+2:-. 
cl - c2 c2 - 1 j=l c2 - t j 

(3.36) 

(3.37) 

These two equations can easily be solved for C2 and cl respectively, and 
lead to the curves displayed for k = 3 and k = 4 in Fig.3.6. We see that 
a huge number of solutions is possible (precisely (st~~l), Krylov imagined 
charged electrical particles in equilibrium to prove their existence), but most 
of these lead to totally unstable and therefore useless methods (in the sense 
of Section IIL3). Thus the only choice which we retain are the rightmost 
solutions Ci with 0 < cl' C2 < 1, shown in Table 3.6 below. In addition, as 
Krylov has shown (see Krylov (1959), English translation 1962, p. 329) this 
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· . . 
k=3 .. .) .... ~':'.< ...... ) ....... 1- ......... ;: < .. 

· . . · . . · . . · . 

2·· .......... ~ .... . 

Fig.3.6. Solutions of (3.37). X unstable, 0 stable 

choice leads to the smallest error constant (for once, stability and small error 
are not in conflict!) 

Stability of the Radau-Type Methods 

The stability analysis of the Radau methods is done by inserting y' = AY 
into (3.28). Since ce = 1 we have Yn+1 = Ve and thus obtain (for s = 3) the 
characteristic equation 

or 

-,."bl2 

1-,."b22 

-,."b32 

-,."b12 

1-,."b22 

-,."b32 

)
-1 ( ) ( ) 

- ,."b13 an a l2 a l3 1 
-,."b23 a21 a22 a23 ( 

1- ,."b33 a31 a32 a33 (2 

(3.38) 
which, when multiplied by det(I-,."B), becomes a polynomial of degree 3 in 
,.". For a general multistep collocation method (3.28) we obtain in this way 

qk(,.,,)(k + qk_1(,.,,)(k-1 + ... + qo("") = 0 

where qk(,.")=det(I-,.,,B) and all qi("") are polynomials of degree at most s. 
The root locus curves of Fig. 3.7 were again obtained by Cardano's for­

mula. Coeflicients and stability measures are given in Table 3.6. The meth­
ods for k = 1, 2 (orders p = 5 and 6) are A-stable. The subsequent methods 
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s 
5 

Fig.3.7. Root locus curves for multistep Radau methods (8=3) 

have surprisingly large Q-values for very high orders (up to P ~ 20), which 
makes this class very promising. 

Exercises 

1. Show that the coefficients vi in (3.13) for the Enright methods can be 
computed recursively by 

I 1 
where S '"' -:-:-:-----,-

I = ~ k(l+l-k) . 
k=l 

(3.39) 
Hint. See the proof of Formula (III.1.11). The generating function G(t) = 

L:~o vi ti becomes here Io1 (s-1)(1-t)1-sds. 

2. The Enright Formulas are stifRy stable for k S 7 and are not stifRy stable, 
as one can easily inspect, e.g. by a computer plot, for k = 8, k = 9, ... 
and so on. Hence, everybody agrees that they are not stifRy stable for 
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Table 3.6. Coefficients and stability measures 
for multistep Radau methods (s = 3) 

k p Cl C2 C3 a D 

1 5 0.155051025721682 0.644948974278318 1. 90° 0.000 

2 6 0.177891722985607 0.673235257220651 1. 90° 0.000 

3 7 0.192169638937766 0.689317969824851 1. 89.73° 0.016 

4 8 0.202814874040288 0.700407719104611 1. 89.13° 0.084 

5 9 0.211395456069620 0.708798418188500 1. 88.61° 0.178 

6 10 0.218626151232186 0.715507419158199 1. 88.14° 0.278 

7 11 0.224897548200883 0.721072684914921 1. 87.70° 0.376 

8 12 0.230448266933707 0.725812172023161 1. 87.28° 0.467 

9 13 0.235435607740434 0.729928926504599 1. 86.89° 0.555 

10 14 0.239969169367303 0.733560240031675 1. 86.51° 0.649 

11 15 0.244128606044551 0.736803122952198 1. 86.14° 0.763 

12 16 0.247973766491964 0.739728565298052 1. 85.79° 0.917 

13 17 0.251550844436705 0.742390019356757 1. 85.44° 1.135 

14 18 0.254896295040291 0.744828697795402 1. 85.07° 1.462 

15 19 0.258039429919700 0.747077018862741 1. 84.68° 1.995 

16 20 0.261004194709515 0.749160923778290 1. 84.23° 3.037 

any k > 7. However, no rigorous proof has been found for this, as for 
instance the proof of Theorem III.3.4. Why don't you try to find one? 

3. Prove that the second derivative BDF methods (3.14) are unstable (in 
the sense of Section II1.3) for k > 11. 

4. a) Show that for k = 2, t l = -1, t 2 = 0, S = 1, cl = -1/2 neither equations 
(3.24) nor equations (3.25) possess a solution. 

b) Show that (3.24) and (3.25) always admit unique solutions if all ci 
are distinct and satisfy Ci 2:: O. 

Hint for b). If <Pi (or "pi) are written as L;~; alt l - I , then (3.24) and 
(3.25) become linear systems with the same matrix and different right­
hand sides. The corresponding homogeneous system then possesses a 
non-zero solution iff the interpolation problem 

p( t j) = 0 j = 1, ... , k 

p'(Cj) =0 j=1, ... ,8 



298 V. Multistep Methods for Stiff Problems 

has a non-zero solution. Since p'(t) has at most k+s-2 real zeros and 
since (Rolle's theorem) each interval (tl' t l+1) must contain at least one 
of these, there can be at most s-1 zeros beyond t k = O. 

5. A convenient way of computing the polynomials (3.24), (3.25) (written 
here for the case s = 3) is to put 

k 

CPi(t) = (al + a2t + a3t2 + a4 t3) II (t-t l ) • 

1=1 
l=f;i 

(3.40) 

Show that equations (3.24) (for i = j) and (3.25) then become the fol­
lowing linear system 

a1 + tia2 + t~a3 + t~a4 = I/Ti' (3.41) 

sja1 + (sjcj+l)a2 + (sjc]+2cj )a3 + (SjC~+3c])a4 = 0, j = 1,2,3 

where 

Secondly, for 

k 

Ti= II(ti-tl), 
1=1 
l=f;i 

k 1 
s-L-j - c· - t l • 

1=1 J 
l=f;j 

k 

"pi(t) = (al + a2t + a3t2 ) II(t - t 1) 

/=1 

equation (3.25) becomes 

{ 
0 if j -::fi i 

s .a1 + (s ·c· + 1 )a2 + (s .c~ + 2c. )aa = 
J J J J J J 1/ T i if j = i 

where 
k 

Ti = II(Ci - t l ) , 

1=1 

k 1 
s'-L-J - c· - t 1 • 

1=1 J 

(3.42) 

j = 1,2,3 

(3.43) 

6. Generalize the proof and the result of Theorem IV.3.9 to multistep col­
location methods. 

Hint. Instead of KM(x) in (IV.3.18) we have to insert a linear combina­

tion L::=1 QlMl(x) where MAx)=M(x). xl - 1 , M(x)= ~ rr~=l(x - cJ 
and Ql> ••• , Qk are arbitrary. Instead of (IV.3.19) we then obtain 

k 8 Mij)(x) 
u(x) = - LQlL j+1 . 

l=l j=O JL 
(3.44) 
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Putting :z: = t1, t2 , ••• , t k' t kH and u( t i ) = Yi gives an overdetermined 
system for 0:1", ., O:k which has a solution only if a certain determinant 
is zero. Setting Y1 = 1, Y2 = ( , Y3 = (2, ... there leads to the characteristic 
equation 

~~ M(j)(t )u.-i L.J3=0 1 1 r 1 

det 
~~ MW(t )II.-i L.J3=0 1 2 r =0 

2:;=0 M~i)(tk+1)W'-i 2:;=0 Mki )(tk+1)J-tß -'-i (k 
(3.45) 

as a generalization of (IV.3.16). Tedious expansions of this determinant 
into powers of ( and J-t (with many coefficients equal to zero) then leads 
to an expHcit expression (see Theorem 7 of Lie 1990). 

7. Prove that the 2-step 2-stage collocation method with':2 = 1 is A-stable 
iff 

> Jf7-1 
cl - 8 . 

Hint. a) Show that the characteristic equation is 

q2(J-t)(2 + ql(J-t)( + qo(J-t) = 0 

where 

q2(J-t) = -(9cl + 5) + J-t(3c~ + 7cl + 2) - J-t22cl (Cl + 1) 

(3.46) 

ql(J-t) = 12cl + 4 - J-t4(c~-1) (3.47) 

qo (JL) = -3c1 + 1 + JLc1 (cl -1) . 

b) Apply Schur's criterion (1918) to the polynomial (3.46) with J.t = it, 
tE R. 

Schur's criterion. Let a() = ak(k+ak_l(k-l + ... + ao (ak =1=0) be a 
polynomial with complex coefficients and set 

a*() = ao(k + a 1(k-l + ... + ak . 

Then, all zeros of a( () He inside the unit circle, Hf 

i) laol < lakl 
ii) the zeros of (-l(a*(O)a() - a(O)a*()), a polynomial of degree k-1, 
are all inside the unit circle. 

8. Prove that cl = (Jf7 -1)/8 is a super-convergence point for the 2-step 
2-stage collocation methods with c2 = 1. 
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"Riemann ist der Mann der glänzenden Intuition. Durch seiDE~ 
umfassende Genialität überragt er alle seine Zeitgenossen ... Im 
Auftreten schüchtern, ja ungeschickt, musste sich der junge Dozent, 
zu dem wir Nachgeborenen wie zu einem Heiligen aufblicken, man­
cherlei Neckereien von seinen Kollegen gefallen lassen." 

(F. Klein, Entwicklung der Mathematik im 19. Jhd., p. 246,247) 

We have seen in the foregoing sections that the highest possible order of 
A-stable linear multistep methods is tWOj furthermore, the second derivative 
Enright methods as weil as the SDBDF methods were seen to be A-stable 
for p :::; 4j the three-stage Radau multistep methods were A-stable for p :::; 6. 
In this section we shall see that these observations are special cases of a 
general principle, the so-called "Daniel-Moore conjecture" which says that 
the order of an A-stable multistep method involving either 8 derivatives or 
8 implicit stages satisfies p :::; 28. Before proceeding to its proof, we should 
become familiar with Riemann surfaces. 

Riemann Surfaces 

"Für manche Untersuchungen, namentlich für die Untersuchung al­
gebraischer und Abel'scher Functionen ist es vortheilhaft, die Ver­
zweigungsart einer mehrwerthigen Function in folgender Weise geo­
metrisch darzustellen. Man denke sich in der (a:, y)-Ebene eine an­
dere mit ihr zusammenfallende Fläche (oder auf der Ebene einen 
unendlich dünnen Körper) ausgebreitet, welche sich so weit und 
nur so weit erstreckt, als die Function gegeben ist. Bei Fortsetzung 
dieser Function wird also diese Fläche ebenfalls weiter ausgedehnt 
werden. In einem Theile der Ebene, für welchen zwei oder mehrere 
Fortsetzungen der Function vorhanden sind, wird die Fläche dop­
pelt oder mehrfach seinj sie wird dort aus zwei oder mehreren 
Blättern bestehen, deren jedes einen Zweig der Function vertritt. 
Um einen Verzweigungspunkt der Function herum wird sich ein 
Blatt der Fläche in ein anderes fortsetzen, so dass in der Umgebung 
eines solchen Punktes die Fläche als eine Schraubenfläche mit einer 
in diesem Punkte auf der (a:, y)-Ebene senkrechten Axe und un­
endlich kleiner Höhe des Schraubenganges betrachtet werden kann. 
Wenn die Function nach mehreren Umläufen des z um den Verzwei­
gungswerth ihren vorigen Werth wieder erhält (wie z.B. (z_a)m/n, 
wenn m, n relative Primzahlen sind, nach n Umläufen von z um a), 
muss man dann freilich annehmen, dass sich das oberste Blatt der 
Fläche durch die übrigen hindurch in das unterste fortsetzt. 
Die mehrwerthige Function hat für jeden Punkt einer solchen ihre 
Verzweigungsart darstellenden Fläche nur einen bestimmten Werth 
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und kann daher als eine völlig bestimmte Function des Orts in dieser 
Flä.che angesehen werden." (B . Riemann 1857) 

We take as example the BDF method (111.1.22") for k = 2 which has the 
characteristic equation 

(~- Jl) (2 - 2( + ~ = 0 . ( 4.1) 

This quadratic equation expresses ( as a function of Jl, both are complex 
variables. It is immediately solved to yield 

( _ 2 ± yII+2"jL 
1,2 - 3 - 2Jl ( 4.2) 

which defines a two-valued function, i.e., to each Jl E ewe have two solutions 
(. These two solutions are displayed in Fig.4.1 (( is represented by small 
arrows attached to the point Jl). 
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Fig.4.1. The two solutions of the BDF2 characteristic equation 

We observe two essential facts. First, there is a pole of (1' but not 
of (2' at the point Jl = 3/2. This is due to the factor (3/2-Jl) in (4.1) 
which represents the implicit stage of the method. Second, we observe a 
curious discontinuity on the negative real axis left of the point -1/2, a 
phenomenon first observed in a famous paper of Puiseux (1850) (" ... a 
encore cet inconvenient, que u devient alors une fonction discontinue . .. "). 
It has its reason in the complex square root VI + 2Jl which, while 1 + 2Jl 
performs a revolution around the origin, only does half a revolution and 
exchanges the two roots. We cannot therefore speak in a natural way of the 
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Fig.4.2. Three dimensional view of the map (4.4) 

two complex functions (l(JL) and (2(JL). And here comes the great idea of 
Riemann (1857): Instead of varying JL in the complex plane C, we imagine it 
varying in a double sheet of (in Riemann's words: infinitely elose) complex 
planes C U C. The JL' s in the upper sheet are mapped to (p the JL' s in the 
lower sheet are mapped to (2' The double-valued function then becomes 
single-valued. At the "cut", left of the point -1/2, the two roots (1 and (2 
are interchanged, so we must imagine that the upper sheet for (1 continues 
into the lower sheet for (2 (shaded in Fig. 4.1) and vi ce-versa. If we denote 
the manifold obtained in this way by M, then the map 

(4.3) 

becomes an everywhere continuous and holomorphic map (with the excep­
tion of the pole). M is then called the Riemann surface of the algebraic 
function JL 1-+ (. 

A three-dimensional view of the map 

( 4.4) 

is represented in Fig.4.2. 
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More General Methods 

Most methods of Section V.3 are so-called multistep Runge-Kutta methods 
defined by the formulas 

k • 

YnH = L aj Yn+j-l + h L bj f(x n + cjh,vJn») ( 4.5a) 
j=l j=l 

k • 
(n) _ ,,- h "-b f( h (n») vi - L..J aij Yn+j-l + L..J ij X n + Cj , V j . ( 4.5b) 

j=l j=l 

This is the subclass of general linear methods (Example III.8.5) for which 
the external stages represent the solution y( x) on an equidistant grid. The 
bulk of numerical work for applying the above method are the implicit stages 
(4.5b ). 

For the stability analysis we set as now usual f(x, y) = )..Y, h)" = J.1, and 
(Yn , YnH" .. , YnH) = (1, (, ... , (k). Equation (4.5b) then becomes, in vector 
notation, 

- 1 - ( ~ ) v = (I - J.1,Bf A : ' 

(k-l 

(4.6) 

which is rational in J.1, with denominator det(I-J.1,B). Inserting this into (4.5a) 
and multiplying with this denominator we obtain a characteristic equation 
of the form 

Q(J-L, () == qk(J-L )(k + qk-l (J-L )(k-l + ... + qo(J.1,) = 0 (4.7) 

where qk(J.1,) = det(I - J.1,B) and all qj(J-L) are polynomials in J.1, of degree S s. 

Multiderivative multistep methods, on the other hand, may be written as 
(M. Reimer 1967, R. Jeltsch 1976) 

• k 

L h i L aijDjYn+i = 0 (4.8) 
j=O i=O 

where the computation of higher derivatives Djy is done by formula (11.12.3). 
For the equation y' = )..Y we have Diy = )..jy and inserting this into (4.8) 
together with (Yn,Yn+l," "YnH)=(l,(, ... ,(k) we obtain at on ce a char­
acteristic equation of the form (4.7). Here, the degree s of the polynomials 
Cf' j (J.1,) is equal to the order of the highest derivative taken. The bulk of 
numerical work for evaluating (4.8) is the determination of YnH from an 
implicit equation containing Yn+k' DYnH"'" DSYnH' If the last of these 
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derivatives is present (i.e., if G:ks =1= 0), then the degree of qk(/-l) in (4.7) will 
be s. 

The Riemann surface M of (4.7) will consist of k sheets, one for each of 
the k roots (j' The branch points are values of /-l for which two or several 
roots of (4.5) coalesce to an rn-fold root. These are the roots of a certain 
"discriminant" (see any classical book on Algebra, e.g., the famous "Weber", 
Vol. I, § 50); hence for irreducible Q(/-l, () there are only a finite number of 
such points. The movement of the coalescing roots (j' when /-l surrounds such 
a branch point, has been carefully studied by Puiseux: They usually form 
what Puiseux calls a "systeme circulaire", i.e., they are cyclically permuted 
at each revolution like the values of the complex function yIz near the origin. 
The Riemann surface must then follow these "monodromies" and must be 
cut along certain lines and rejoined appropriately. The location of these cuts 
is not unique. 

Example. Different possibilities for cutting the Riemann surface of, say, 
the function 

(4.9) 

with branch points at ±1 and ±i, are shown in a classical figure reproduced 
from the book of Hurwitz & Courant, se co nd edition 1925, p. 360 (Fig. 4.3) . 

------l ----

Fig.4.3. Different cuts for (4 .9) (Hurwitz & Courant 1925) 
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Poles Representing Numerical Work 

"Only 85 miles (geog.) from the Pole, but it's going to be 
a stiff pul! both ways apparently; still we do make progress, 
which is something." 

(R.F. Scott, January 10, 1912; first mention of 
interrelation between poles and stiffness in the literat ure ) 

We have just seen that the degree S of qk(t.J,) in (4.7) expresses the numeri­
cal work (either the number of implicit stages or the number of derivatives 
for the implicit solution). Now qk(J-L) will possess s zeros J-L1,J-L2"" ,J-L s ' 

What happens if J-L approaches one of these zeros? The polynomial (4.7) of 
degree k (with k roots (1 (J-L), ..• '(k(J-L)) suddenly becomes a polynomial of 
degree k -1 with only k -1 roots. Where does the last one go? WeIl, by 
Vieta's Theorem, it must go to infinity. In order to compute its asymptotic 
behaviour, suppose qk(J-LO)=O, q~(J-Loh~:O, qk_1(J-Lohf O and that (is large. 
Then aIl terms qk_2(J-L)(k-2, ••. , qo(J-L) are dominated by qk_1(J-L)(k-1 and 
may be neglected. It results that 

(rv _qk~l(J-LO) _1_ 
qk(J-LO) J-L-J-Lo 

as J-L --+ J-Lo , ( 4.10) 

hence the algebraic function ((J-L) possesses a pole on one of its sheets. If 
qk(J-LO)=O is a multiple root, the corresponding pole will be multiple too. 

It is also possible that the pole in question coincides with a branch point. 
This happens when in addition to qk(J-LO) = 0 also qk-1 (110) = O. In this 
case two roots (j(l1) tend to infinity, but more slowly, like ±C(I1-110)-1/2 
(Exercise 1). We therefore count both "half-poles" together as one pole 
again. If cis a boundary curve of a neighbourhood V of 110 (which around 
this branch point surrounds 110 twice before closing up), the argument of 
((11) makes just one clockwise revolution on this path. Fig.4.4 illustrates 
this fact with an example. 

Recapitulating we may state: 

Lemma 4.1. The Riemann sur/ace for the characteristic equation of a 
multistep Runge-K utta method with s implicit stages per step (or a multi­
derivative multistep method with s implicit derivative evaluations) includes 
at most s poles 0/ the algebraic function ((jL). D 

We shall see below that Lemma 4.1 remains true for the whole dass of 
general linear methods, but for the moment we are "impatient et joyeux 
d'aller au combat" (Asterix Legionnaire, pp. 29 and 30). The argument 
principle also remains valid on Riemann surfaces and we state it as follows: 
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Fig.4.4. Behaviour of roots of 1-'(2 + 2J-1( + 2 - I-' = 0 near the origin I-' = O. 

"On the left, isn't it ?" - "Right." 
"On the right ?" - "Left' leeeft!" 

(John Cleese in "Clockwise") 

Lemma 4.2. Suppose that a domain Fe M contains no zeros 0/ «(p,) and 
that its boundary consists 0/ closed loops 1'1 , ... , l' l' Then the number 0/ poles 
of «(p,) contained in F is equal to the total number 0/ clockwise revolutions 
0/ arg( «(p,)) along 1'1" . . ,1'[, each passed through in that direction which 
leaves F to the left o/'Yj 

The proo/ is by cutting F into thousand pieces, each of which is homeo­
morphic to a disc in C, and by adding up all revolution numbers which 
cancel along the cuts, because the adjacent edges are traversed in opposite 
directions. 0 

Order and Order Stars 

" ... denn das Klare und leicht Faßliche zieht uns an, 
das Verwickelte schreckt uns ab." 

(D. Hilbert, Paris 1900) 

Guided by the ideas of Section IV.4, we now compare the absolute values 
of the characteristic roots 1(11 and 1(21 for the BDF2 scheme (4.2) with the 
exponential function I eil I = eRe Il, hence we define (Wanner, Hairer & N ~rsett 
1978) 

j = 1,2. (4.11) 
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These sets, on precisely the same scale as in Fig. 4.1, are represented in 
Fig.4.5. 

1 

Fig.4.5. The order star (4.14) for BDF2 

The sets Aj continue across the cuts in the same way as do the roots, it 
is therefore natural to emhed them into the Riemann surface M and define 

(4.12) 

where 7r : M -+ C is the natural projection. 
Fig. 4.5 shows clearly an order star with three sectors for (1 (/-L), hut none 

for (2(/-L), and we guess that this has to do with the order of the method, 
which is two. Lemma 4.3 below will extend Lemma IV.4.3 to multistep 
methods. 

By putting h=O in (4.5) (hence /-L=O in (4.7)), and 

(Yn , Yn+ll'" ,Yn+k-1)=(I, 1, .. . ,1) 

(hence ( = 1 in (4.7)), we must have hy consistency that Yn+k = 1 too, i.e., 
that Q(O, 1) = O. This corresponds to the formula e(l) = 0 in the multistep 
case (see (III.2.6)) . But for h=O the difference equation (4.5a) is stahle only 
if (= 1 is a simple root of the polynomial equation Q(O , () = O. Hence we 
must have 

Q(O, 1) = 0, ( 4.13) 

The analytic continuation (1 (/-L) of this root in the neighbourhood of the 
origin (as far as it is not embarassed with branch points) will be called the 
principal root, the corresponding surface the principal sheet of M . 
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Lemma 4.3. For stable multistep RK (or multiderivative) methods 01 order 
p the set Apossesses a star 01 p+ 1 sectors on the prineipal sheet in the 
neighbourhood 01 the origin. 

Proof. We fix A E C, set y' = AY and take for Yo, ... 'Yk-1 exact initial 
values 1, el', ... , e(k-1)1'. The order of the method then tells us that the 
loeal error (see Fig.III.2.1), i.e., the difference between ekl' and the numer­
ieal solution Yk computed from (4.5a), must be 8 . hp+1 for h --t 0, hence 
i.j,X-P-1 ILP+1 for IL --t O. Thus, Formula (4.5) with allYi replaced by eil' will 
lead to 

( 4.14) 

We subtract (4.14) from (4.7), choose for «IL) the principal root (1(J.t) (for 
which el' - (1 (IL) is small for IIL I small) and linearize. This gives 

8Q - +1 
8( (0,1). (el'-(1(IL)) = GILP + ... 

and by dividing through by the non-zero constant (4.13) 

el'-(1(IL) = G· ILP+1 + O(ILp+2 ) for IL --t 0 . (4.15) 

The rest of the proof now goes exactly analogously to that of Lemma 
IV.4.3. There is also not much difference in the case of multi derivative 
methods. 0 

The constant C of (4.15) is called the error eonstant of the method. This 
is consistent with Formula (111.2.6) and (III.2.13) for multistep methods and 
with (IV.3.5) for Runge-Kutta methods. 

The stability domain of multistep RK methods as weH as their A-stability 
is defined in the same way as for multistep methods (see Definitions 1.1 and 
1.4). One has only to interpret (1(IL), ... '(k(IL) as the roots of (4.7). 

The "Daniel and Moore Conjecture" 

"It is eonjeetured here that no A-stable method of the form 
of Eq. 5-6 ean be of order greater than 2J + 2 and that, of 
those A-stable methods of order 2J +2, the smallest error 
eonstant is exhibited by the Hermite method ... " 

(Daniel & Moore 1970, p. 80) 

At the time when no simple proof for Dahlquist 's second barrier was known, 
a proof of its generalization, the Daniel & Moore conjecture, seemed quite 
hopeless. Y. Genin (1974) constructed A-stable multistep multiderivative 
methods with astonishingly high "order" contradicting the conjecture. R. 
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Jeltsch (1976) later cleared up the mystery by showing that Genin's methods 
had 1 as multiple root of e( () and hence the "effective" order was lower. The 
conjecture was finally proved in 1978 with the help of order stars: 

Theorem 4.4. The highest order of an A-stable 5 -stage RK (or 5 -derivative) 
multistep method zs 25. For the A-stable methods of order 25 the error 
constant satisfies 

I I 
( -1 r C > .,..-.,.--,.5_. 5_._.,-

- (25)!(25+1)! 
( 4.16) 

Proof. By A-stability, we have for all roots l(j(iy)1 :S 1 along the imaginary 
axisj hence the order star A is nowhere allowed to cross the imaginary axis. 
We consider A+ =A n 1l'-1(C+), the part of the order star which lies above 
C+. As in Lemma IVo4o4, A+ must be finite on all sheets of M. The 
boundary of A + may consist of several closed curves. As in Lemma IV 04.5, 
the argument of ((J.L) / eil is steadily increasing along 8A +. Since at the origin 
we have a star with p+1 sectors (Lemma 4.3), of which at least [~J lie in 
C+, the boundary curves of A+ must visit the origin at least [~l times. 

Hence the total rotation number is at least [~J and from Lemmas 4.1 and 
4.2 we conclude that 

[p; 1] :S 5 . 

This implies that p :S 25 and the first assertion is proved. 
We now need a new idea for the part concerning the 

error constant. The following reasoning will help: the star 
A expresses the fact that the sudace I((J.L)/elll goes up and 
down around the origin like Montaigne's ruff. There, the 
error constant has to do with the height of these waves. 
So if we want to compare different error constants we 
must compare 1((J.L)/elLl to IR(J.L)/eILI, where R(J.L) is the 
characteristic function of a second method. By dividing 
the two expressions, eIL cancels and we define 

( 4.17) 

Michel 
de Montaigne 

(4.18) 

called the relative order star. For R(z) we choose the diagonal Pade ap­
proximation Ru(z) with s zeros and s poles (see (IV.3.30)). By subtracting 
(IV .3.31) (with j = k = s) from (4.15) (where it is now supposed that p= 2s) 
we obtain 

Ru (J.L)-(l(J.L) = (C_(_1)8 (2S)!~~:!+1)!) p2'+1+ ... ( 4.19) 
... ,J 

C 
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It is known that IRu(iy)1 = 1 for all y E Rand that all zeros of R .. (z) lie 
in C- (Theorem IVo4.12). Therefore the set B in (4.18) eannot cross the 
imaginary axis (as before) and the quotient 1((11-)/ R( 11"(11-))1 has no other poles 
above C+ than those of ((11-), of whieh, we know, there are at most s. There­
fore the sectors of the relative order star B must exhibit the same eolours 
as those of the classieal order star A for diagonal Pade (see Fig. IV 04.2). 
Otherwise an extra pole would be needed. We conclude that the error eon­
stants must have the same sign (see Lemma IVo4.3), henee (see IV.3.31) 
(-1)"0 > 0, whieh leads to (4.16). 

Equality 0 = 0 would produee an order star B of even higher order whieh 
is impossible with s poles, unless the two methods are identieal. 0 

Several remarks ean be made ab out the above proof: 
a) The first half is in fact superfluous, sinee the inequality (4.16) implies 

that the 2s-th order error eonstant 0 # 0, henee neeessarily p ::; 2s. It has 
been retained for its beauty and simplicity, and for readers who do not want 
to study the seeond half. 

b) The proof never uses the fuH hypothesis of A-stability; the only prop­
erty used is stability on the imaginary axis {I-stability, see (IV.3.6)). Thus 
Theorem 404 allows the following sharpening, whieh then extends Theorem 
IVo4.7 to multistep methods: 

Theorem 4.5. Suppo.se that an I -.stable s-stage RK (or s-derivative) mul­
tistep method possesses a characteristic function ((11-) with sI poles in C+. 
Then 

(4.20) 

and the error constant tor all such I -stable methods 0/ order p = 281 satisfies 

, , 
(-1)"'0 > Sl· S l· 

- (2s 1 )! (2s 1 + 1)! 
(4.21 ) 

o 

Another interpretation of this Theorem is the following result (see The­
orem IVo4.8), whiehin the ease 8=1 is due to R. Jeltseh (1978): 

Thorem 4.6. Suppose that an I-stable method with s poles satisfies p 2: 
2s -1. Then it is A-stable. 

Proof. If only 8-1 poles were in C+ , we would have p ::; 28-2, a contradiction. 
Henee all poles of ((11-) are in C+ and A-stability follows from the maximum 
principle. 0 
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Methods with Property C 

It is now tempting to extend the proof of Theorem 4.4 to any method other 
than the diagonal Pade method. But this meets with an essential difficulty 
in defining (4.18) if R(p.) is a multistep method defined on another Riemann 
surface, since then the definition of B makes no sense. The following ob­
servation will help: The second part of the proof of Theorem 4.4 only took 
place in C+, which was the instability domain of the "comparison method". 
This leads to 

Definition 4.7 (Jeltseh & Nevanlinna 1982). Let a method be given with 
characteristic polynomial (4.7) satisfying (4.13) and denote its stability do­
main by SR' We say that this method has Property C if the principal sheet 
includes no branch points outside of 1\"-l(SR) (with 00 included if SR is 
bounded), and the principal root R1 (p.) pro duces the whole instability of 
the method, i.e., 

(4.22) 

Examples: All one-step methods have Property C, of course. Linear mul­
tistep methods whose root locus curve is simply closed have Property C too. 
In this situation all roots except R1 (p.) have modulus smaller than one for 
all p. f/. 1\"-1 ( SR)' Thus the principal sheet cannot have a branch point there. 
The explicit 4th order Adams method analyzed in Fig.1.1 does not have 
Property C. The implicit Adams methods (see Fig.1.3) have Property C 
for k :S 5. Also, the 4th order implicit Milne-Simpson method (1.17) has 
property C. 

Definition 4.7 allows us to replace Rßs(p.) in the proof of Theorem 4.4 by 
R1(p.), C+ by the exterior of SR' the imaginary axis by ß R and to obtain 
the following theorem (JeItsch and Nevanlinna the 5th of April, 1979 at 5 
a.m. in Champaignj G.W. the 5th of April, 1979 at 4.30 a.m. in Urbana. 
How was this coincidence possible? E-mail was not yet in general use at 
that time; was it Psi-mail?) 

Theorem 4.8. Let a method with characteristic function R(p.), stability 
domain SR and order PR possess Property C. If another method with charac­
teristic function «(p.), stability domain S, and order P, is more stable than 
R, i.e., if 

( 4.23) 

then 

p:S 28 (4.24) 
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where 
( 4.25) 

and 8 is the number ofpoles of((J.t), each counted with its multiplicity, which 
are not poles of the principalroot R 1 (J.t) of R(J.t). 0 

" ... and tried to optimize the stability boundary. Despite 
many efforts we were not able to exceed -/3, the stability 
boundary of the Milne-Simpson method ... " 

(K. Dekker 1981) 

As an illustration of Theorem 4.8 we ask for the largest stability interval 
on the imaginary axis Ir = [-ir, ir J C C of a 3rd order multistep method 
(for hyperbolic equations). Since we have 8 = 1 for linear multistep methods, 
p = 3 contradicts (4.24) and we obtain from Theorem 4.8 by using for R(J.t) 
the Milne-Simpson method (1.17): 

Theorem 4.9 (Dekker 1981, Jeltsch & Nevanlinna 1982). If a linear multi­
step method of order p 2: 3 is stable on Ir' then r :s; ..j3. 0 

The second part of Theorem 4.4 also allows an extension, the essential 
ingredient for its proof has been the sign of the error constant for the diagonal 
Pade approximation. 

Theorem 4.10. Consider a method with characteristic equation (4-7) sat­
isfying (4.13) and let p denote its order and C its error constant. Suppose 

a) the method possesses Property C, 

b) the principalroot R 1 (J.t) possesses 8 poles, 

c) sign (C) = (-1)" 

d) p 2: 28 - 1. 
Then this method is "optimal" in the sense that every other method with 8 

poles which is stable on .6.R of (4.22) has either lower order 01', for the same 
order, a larger (in absolute value) error constant. 0 

Examples. The diagonal and first sub-diagonal Pade approximations sat­
isfy the above hypotheses (see Formula (IV.3.30)). Also I-stable linear mul­
tistep methods with Property C can be applied. 

Remark 4.11. Property C allows the extension of Theorem IV.4.17 of 
Jeltsch & Nevanlinna to explicit multistep methods. Thus explicit methods 
with comparable numerical work cannot have including stability domains. 
Exercise 4 below shows that Property Cis a necessary condition. Remember 
that explicit methods have all their poles at infinity. 
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General Linear Methods 

The large dass of general linear methods (Example III.8.5) written in obvious 
matrix notation 

V n = AUn + hBf(vn ) 

unH = AUn + hBf(vn ) 

( 4.26a) 

( 4.26b) 

seems to allow much more freedom to break the Daniel & Moore conjecture. 
This is not the case as we shall see in the sequel. 

The bulk of numerical work for solving (4.26) is represented by the im­

plicit stages (4.26a) and hence depends on the structure of the matrix B. 
Inserting y' = >.y leads to 

( 4.27) 

where 
( 4.28) 

The stability of the numerical method (4.27) is thus governed by the eigen­
values of the matrix S(p,). The elements of this matrix are seen to be rational 
functions in p,. 

Lemma 4.12. If the characteristic polynomial 01 S(p,) is multiplied by 

det(I -p,B) then it becomes polynomial in p,: 

- k k 1 det((I-S(p,)).det(I-p,B)=qk(P,)( +qk-l(P,)( - +···+qo(p,) 

=: Q(p" () (4.29) 

where qo, ... , qk are polynomials of degree ::; sand qk(P,) = det( 1- p,B). 

Proof. Suppose first that B is diagonalizable as 

T- 1 BT=diag (ß1 ,··· ,ßs ) 

so that from (4.28) 

S(I1) = A + BTdiag(w1 ,··· ,ws)T-1 A = A + L Wi~ cT 
i=l 

where 

w· = p, } t 1 - P,ßi 

d~ = i-th column of BT i = 1, ... s 

cT = i-th row of T-l A . 
We write the matrix (I - S(p,) in terms of its column vectors 

( 4.30) 

(4.31 ) 

( 4.32) 

(el-äl-WlCl1d~-W2C12d~- ••• , (e2-ä2-wIC21d~-W2C22d~- ..• , ..• ) • 
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Its determinant, the characteristic polynomial of S(p,), is computed using 
the multilinearity of det and considering (, wi' Cij as scalars. All terms con­
taining one of the W j to any power higher than 1 cancel, because the corre­
sponding factor is a determinant with two or more identical columns. Thus, 
if det( (I - S(p,)) is multiplied by n:=l (1- P,ßi) = det( I - p,B) it becomes a 
polynomial of the form (4.29). 

A non-diagonizable matrix B is considered as the limit of diagonizable 
matrices. The coefficients of the polynomial Q(p" () depend continuously 
on B. D 

We conclude that Lemma 4.1 again remains valid for general linear 
methods. The s poles on the Riemann surface for the algebraic function 
Q(p" () = 0 are located at the ~ositions p, = 1/ ß1 , ••• , p, = 1/ ß6 where ßi are 
the eigenvalues of the matrix B. 

We next have to investigate the order conditions, i.e., the analogue of 
Lemma 4.3. Recall that general linear methods must be equipped with a 
starting procedure (see Formula (111.8.4a)) which for the differential equation 
y' =,Xy will be of the form U o ='IjI(p,) 'Yo with 'IjI{O) 1= O. Here p,= h,X and 'IjI(p,) 
is a k-vector of polynomials or rational functions of p,. Then the diagram of 
Fig.ll1.8.1 becomes the one sketched in Fig.4.6. 

The order condition (see Formula (111.8.16) of Lemma IH.8.11) then 
gives: 

uo=lP( 1') 

~ - mcthod 

f~~.el' 
cxact solution 

Fig.4.6. General linear method for y' = ;"y 

Lemma 4.13. If the general linear method (4.26) is of order p then 

(eilI - S(p,))'IjI{p,) = O(p,P) for p, --+ 0 (4.33a) 

E(eIlI - S(p,))'IjI(p,) = O{p,pH) for p, -+ 0 (4.33b) 

where E is defined in (III.8.12) and S(p,) is given in (4.28). D 
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Formula (4.33) tells us, roughly, that 'ljJ(/1) is an approximate eigenvector 
of 5(/1) with eigenvalue eIL. We shall now see how this information can be 
turned into order conditions for the correct eigenvalues of 5(/1). 

Definition 4.14. Let l be the number 0/ principal sheets of (4.29), i.e., 
the multiplicity of 1 as eigenvalue of 5(0) (which, by stability, must then be 
a simple root of the minimal polynomial). l is also the dimension of I in 
(111.8.12) and the rank of E. 

Theorem 4.15. Suppose that there ezists 'ljJ(/1) with 'ljJ(0) # 0 such that the 
general linear method satisfies the conditions (4.33) /or order p ;:::: 1. Then 
the l-/old eigenvalue 1 0/5 continues into l eigenvalues (j(/1) 0/5(/1) which 
satisfy 

/1-+0 (4.34) 

with 

Pj ;:::: 0 , (4.35) 

Examples. a) The matrix 

( 
1 + /1 20/12) 

5(/1) = 3p, + !~p,2 1 _ 337: + 133/12 (4.36) 

has l=2 so that E=I in (4.33b). There is a vector 'ljJ(/1) (non-vanishing for 
/1 = 0) such that 

satisfy 
eIL - (1(P,) = O(p,6), eIL - (2(/1) = O(p,) , 

which is (4.34) with P1 =5, P2 =0. 
b) The matrix 

-p, ) 
1 + ~2 

satisfies (4.33) with l=2, p=4. Its eigenvalues 

/12 
(1,2(/1) = 1 + /1 + 2 

fulfil (4.34) with P1 =P2 =2. 

(4.37) 
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c) The example 

5(J1) = (1:2J1 -J1:J12) ( 4.38) 

has f=2, p=l in (4.33). Its eigenvalues 

(1,2(J1) = 1 + J1 ± n 
satisfy (4.34) with PI = P2 = t. This example shows that the Pj in (4.34) 
need not be integers. 

Proof of Theorem 4-15. We introduce the matrix 

5(J1) = cl" I - 5(J1) ( 4.39) 

which has the same eigenvectors as 5(J1) and the corresponding eigenvalues 

(j(J1) = cl" - (j(J1) . ( 4.40) 

Formulas (4.34) and (4.35) now say simply that 

l rr (j(J1) = O(J1pH) J1-+0. (4.41 ) 
j=1 

Since the product of the eigenvalues is, as we know, the determinant of the 
matrix, we look for information about det 5(J1). 

After a suitable change of coordinates (via the transformation matrix T 
of (111.8.12)) we suppose the matrix 5=5(0) in Jordan canonical form. We 
then separate blocks of dimensions fand k-f so that 

( I + 0(J1) 0(J1)) 
5(J1) = 0(J1) 0(1) , 

where it is important to notice that 522 (0) is invertiblej this is because E 
collects all eigenvalues equal to 1, thus 522 (0) has no eigenvalues equal to 1 

and 522 (0) has none equal to zero. Conditions (4.33) now read 

( 
~11 (J1) ~12(J1)) (1/;1 (J1)) = (O(J1P+l)) . (4.44) 
521 (J1) 522 (J1) 1/;2 (J1) O(J1p) 

Putting J1 = 0 in (4.44) we get 1/;2(0) = O. The assumption 1/;(0) i= 0 thus 
implies that at least one component of 1/;1 (0), say the j-th component 1/;1/0), 
does not vanish. Cramer's rule then yields 

( 4.45) 
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where T(J.L) is obtained from S(J.L) by replacing its j-th column by the right­
hand side of (4.44). One easily sees that det T(J.L) = O(J.LpH) (take out a 
factor J.L from each of the first e lines and a factor J.LP from the j-th column). 

Because of ~lj(O) #0 this implies det S(J.L) = O(J.LpH). We have thus proved 

(4.41) (hence (4.34) and (4.35)), because (Hl' ... , (k do not converge to zero 
for J.L -+ O. 0 

The next lemma excludes fractional orders for A-stable methods: 

Lemma 4.16. For I-stable general linear methods the orders Pi in (4.34) 
must be integers. 

Proof. Divide (4.34) by eIL, let 

( 4.46) 

where Pi + 1 = mir, and suppose that r > 1 and m, rare relatively prime. 
Since eIL-(j(J.L) are the eigenvalues of the matrix (4.39), hence the roots of 
an analytic equation, the presence of a root J.Lm/r involves the occurrence of 
all branches J.Lm/r. e2i7ri/r (j=O, 1, ... ,r-1). For J.L = ±iy = e±i7r/2y (y E A 
small), inserted into (4.46), we thus obtain 2r different values 

j=0,1, ... r-1 

which form a regular 2r-Mercedes star; hence whatever the argument of Cis, 
there are values of C(±iy)m/re2i7rj /r (for some 0 :::; j :::; r-1) with negative 
real part, such that from (4.46) l(j(±iy)1 > 1. This is a contradiction to 
I-stability. 0 

And here is the "Daniel-Moore conjecture" for general linear methods: 

Theorem 4.17. Let the characteristic function Q(J.L,() 01 an I-stable gen­
erallinear method possess 8 poles in C+. Then 

P:::; 28 . (4.47) 

Proof. Again we denote by A+ = A n ll'-l(C+), the part of the order star 
lying above C+. By I-stability A+ does not intersect the imaginary axis 
ll'-l(iA) on any sheet. 

By Theorem 4.15 the boundary curves Im of A+ visit the origin on the 

different principal sheets at least [Pi: 1 ] times (j = 1, ... ,C) (see (4.17)), 
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where the Pj are integers by Lemma 4.16. Thus by Lemma 4.2 

l 

L[Pj: 1] ~ s. (4.48) 
j=l 

Multiplying this by 2, using Pj ~ 2[ pji 1 ] and (4.35), we get p~2s. 0 

Dual Order Stars 

"Why not interchange the role of the two variables 
, and JL ••. ?" (J. Butcher, June 27, 1989, 
in West Park Hall, Dundee, at midsummernight) 

A-stability implies that for all solutions (j(JL) of Q(JL, () =0 we have 

ReJL ~ 0 ===? l(j(JL)1 ~ 1 . (4.49) 

This is logically equivalent to: For all solutions JLj( () of Q(JL, () = 0 we have 

1(12:: 1 ===? ReJLj() 2:: 0 (4.50) 

(in fact, pure logic gives us ">" on both sidesj the "2::" then follow by con­
tinuity). Further the order condition (4.15) becomes, by passing to inverse 
functions for the principal root, 

log ( - JLl() = -C(-1)P+l + .... (4.51) 

Thus order star theory can be very much dualized by the replacements 

a) JL f---t ( 

b) 0 f---t 1 

c) Imag. axis f---t U nit circle 

d) Re f---t I· 1 
e) Im f---t Arg 

f) exp f---t log 

The analogue of the star defined in (4.12) becomes 

A = {( ; ReJL() ~ Re (log()} = {( ; ReJL() ~ log I(I} 
and the analogue of the relative order star (4.18) becomes 

B = {( ; ReJL() ~ ReJLR()} . 

For the special case of the trapezoidal rule this is 

(4.52) 

(4.53) 

(4.54) 

(4.55) 
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The set A is displayed in Fig.4.7 for the BDF2 and BDF3 methods. It 
explains once again why A-stable methods of order > 28 are not possible 
(see Exercise 5). 

" ~ 
, 

~j ~:l4 
~-] ~ .. , 

• A ~ ~ 
BDF2 ~ BDF3 

V 

~ 
V 

~ ~ ~ 
1<Ii!!lI ~ <6~ 

~, f'--- (zoom) I'--- F3 (zoom) 

Fig. 4.7. Dual order stars (4.53) for BDF methods 

Still another possibility is to replace (4.50) by the obviously equivalent 
condition 

1 
1(12: 1 ===? Re I1j(O 2: 0 ( 4.56) 

in which case order condition (4.51) becomes 

1 1 _ C(t' )p-1 
log ( - 111 (0 - ., -1 + ... ( 4.57) 

since log ( as weil as 111 () are ( -1) + 0((( -1)2). The order stars now 
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become analogously 

(4.58) 

and 

B = {(; Re P,t() ~ Re P,R1(O}' ( 4.59) 

A special advantage of these last definitions is that for linear multistep meth­
ods 1/ P, = u( ()/ e( 0, hence the poles ofthe functions involved are the zeros of 
e( 0, which playa role in the definition of ordinary stability (Section III.3). 
This can be used to obtain a geometrie proof of the first Dahlquist bar­
rier (Theorem III.3.5), inspired by the paper Iserles & N~rsett (1984) (see 
Exercise 6). 

Also, the proof for Dahlquist's second barrier öf Section V.l (Theo­
rem 1.6) can be seen to be not hing else but a study of B of (4.59) where 
P, R( 0 represents the trapezoidal rule. 

Exercises 

1. Analyze the behaviour of the characteristic roots of (4.7) in the neigh­
bourhood of a pole which coincides with a branch point, i.e., solve (4.7) 
asymptotically for ( large in the case 

'Pk(/1-0) = 0, 'P~(/1-o) =1= 0, 'Pk-l (/Lo) = 0, 'f'k-2(/LO) =1= 0 . 

Show that these roots behave like ±C(p,_P,O)-1/2. 

2. Compute the approximate eigenvectors 'ljJ(p,) such that 

(eP-[ - S(Il))'ljJ(Il) = O(IlP+I ) 

for the matrices S(Il) given in (4.36), (4.37), (4.38). Show that the stated 
orders are optimal. 

3. Explain with the help of order stars, why the 2-step 2-stage collocation 
method with c2 = 1 (see Exercise 7 of Section V.3) looses A-stability 
exactly when cl cross es the superconvergence point (Exercise 8 of Sec­
tion V.3). 

4. Modify the coefficient ß in the method 

( 1 5 2 3) 
Yn+l = Yn + h in + ;{\7 in + 12 V In + ßV in , 

which for ß = 3/8 is the Adams method of order 4, in such a way that the 
stability domain becomes strictly larger. This example shows that the 
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multistep version of Theorem IV.4.17 of Jeltsch & Nevanlinna requires 
the hypothesis of "Property C". 

5. Prove the Daniel & Moore conjecture with the help of the order star A 
from (4.53). 

Hint. The set A is not allowed to cross the unit circle and along the 
borderlines of A the imaginary part oflog (-JL( () must steadily decrea.se 
(consult (4.52) and the proof of Lemma IV.4.5). Hence a borderline 
starting and ending at the origin must either pass through a pole (which 
is not outside the unit circle) or cross the negative real axis in the upward 
direction (where Im (log() increases by 211'). Since then the set A must 
be to the left, this is only possible once on each sheet. 

6. Prove the first Dahlquist barrier by order stars, i.e., prove that stable 
linear multistep methods satisfy p :S k + 2 (k even) and p :S k + 1 (k 
odd). Prove also that for methods with optimal order the smallest error 
constant is assumed by the method with 

(4.60) 

where k=k (if k is even) and k=k-1 (if k is odd). 

Hint. Study the order stars (4.58) (with JL = JLR) and (4.59) where 
JLR=UR/UR with UR from (4.60) (see Fig.4.8 for the case k=6, p=8, 
U( () = (6 -1). You must show that the two order stars in the vicinity of 
( = 1 have the .same colours. The following observations will help: 

i) The stars in the vicinity of ( = -1 (produced by the pole 1/(+ 1 );;-1 ) 
have oppo.site coloursj 

ii) By stability all poles of 

dA () = Re (JLR1(() - 10:() , dB () = Re (JLR1(() - JLt()) 

lie on or inside the unit circlej 

iii) The boundary curves of A and B cannot cross the unit circle arbi­
trarily often, since dA(ei'l') and dB(ei'l') are trigonometrie polynomials. 

iv) Study the behaviour of A and B at infinity. 

7. Prove the second Dahlquist barrier for linear multistep methods with 
the help ofthe order star (4.55). 

8. Compute on a computer for an implicit multistep method of order 3 
the order star B of ( 4.18), where R(JL) is the maximal root ofthe Milne­
Simpson method (1.17). Understand at once the validity of Theorem 4.9. 
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A B 

Fig.4.8. Dual order stars (4.58) and (4.59) for 

eR«()=«(-1)«(+1)5, e«()=(6-1, 

uR( () = (251(6 +2736(5 +6957(4 + 10352(3 +6957(2 +2736( +251 )/945 

0'( () = (41(6 +216(5 +27(4 +272(3 +27(2 +216( +41 )/140 



V.5. Experiments with Multistep Codes 

" ... we know that theory is unable to predict much of what 
happens in practice at present and software writers need 
to discover the way ahead by numerical experiment ... " 

(J.R. Cash, in Aiken 1985) 

This section presents numerical results of multistep codes on precisely the 
same problems as in Section IV.IO. There are the six "smali" problems 
OREGO (Oregonator (IV.IO.I)), ROBER (the famous Robertson problem 
(IV.IO.2)), VDPOL (Van der Pol equation (IV.IO.3)), VDPOL2 (modified 
Van der Pol equation (IV.IO.4) with mild discontinuity), HIRES (the physi­
ological problem (IV.IO.5)) and PLATE ((IV.IO.6), a car moving on a plate, 
the only linear and non autonomous problem). The corresponding results 
are displayed in Fig.5.1. 

Fig. 5.2 presents the corresponding results for the six "large" problems, 
(in a couple of years, this "Iarge" will probably be laughed atj but that 's 
wh at our present machine can crunch in a reasonable time and programming 
effort): BRUSS (the brusselator (IV.1.6') with one-dimensional diffusion), 
BURGERS (Burgers' equation (IV.IO.8) with shocks), BSMOOTH (Burgers' 
equation without shocks), FINAG (the FitzHugh & Nagumo nerve conduc­
ti on model (IV.IO.ll)), CUSP (the cusp catastrophe (IV.IO.I6)) and BEAM 
(the nonlinear elastic beam equation (IV.1.IO')). 

As in Section IV.IO, the codes have been applied with tolerances 

Rtol = IO- 3+m / 8 or Rtol = IO- 3+m / 4 m = 0,1,2, ... 

and Atol =Rtol (with exception of Atol = 1O-6 ·Rtol for OREGO and ROBER, 
Atol = 10-4 • Rtol for HIRES). A general impression is that, for a given 
tolerance, multistep codes run much fast er than one step codes, hut that the 
precision achieved is considerably less. Sometimes the tolerance 10-3 was 
too large for the code to workj we then started at 10-4 or 10-5 • 

The Codes Used 

Good multistep codes are much more difficult to write than one step codes. 
We were therefore grateful to receive from several people their codes in 
sour ce form, compile them all with the same compiler options and have the 
opportunity to experiment with them. As in Section IV.I0, all codes were 
then applied to the test problems with standard parameters. The results of 
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102 ,----------------------------
sec OREGO 

RADAUS 

0° 

10-3 10-3 10-6 10-9 

sec VDPOL2 

102 

02 

Fig.5.1. Performance of multistep methods for small problems 
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BRUSS sec BURGERS 

D BDF 

..-~ "_-DEBDF 

sec BSMOOTH sec FINAG 

r:s:: 
Z::::O--VODE 

101 error 02 
er er 

10-3 10-6 10-9 10° 10-3 10-6 10-9 

sec CUSP 

~AMS 
103 

03 

Fig.5.2. Performance of multistep methods for large problems 
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the Runge-Kutta code RADAU5 are included for comparison with a typical 
one step method. 

LSODE - is the "Livermore Solver" of Hindmarsh (1980). Since we are 
dealing with stiff equations, we use method flag MF= 21, 22, 24 or 25 so that 
the code is based on the Nordsieck representation of the fixed step size BDF 
methods (see Sections III.6 and III.7). It emerged from a long development 
starting with Gear's DIFSUB in 1971. Its exemplary user interface and 
ease of application has been a model for much sub se quent ODE Software 
(including ours). The method flag allows us to choose between analytically 
supplied J acobian or numerically computed finite difference approximations 
as wen as between fuH or banded linear algebra as follows: 

MF anal. Jac. numer.Jac. 

full 21 22 

banded 24 25 

Whenever possible, we have supplied analytical Jacobians. The only excep­
tions are the CUSP and BEAM problems. The problems BRUSS, BURGERS, 
BSMOOTH and FINAG were computed with banded linear algebra the others 
were treated as fuH. 

For low accuracy requirements (Tol = 10-3 or 10-4 for OREGO, VDPOL, 
VDPOL2, BSMOOTH and Tol = 10-3 through 10-6 for the PLATE problem) 
the code is often very fast but inaccurate. Otherwise it works weIl for all 
tolerances, is slightly less precise than RADAU5 for the small problems such 
as ROBER or VDPOL, but excellent on the larger problems BRUSS, BURG­
ERS, FINAG and CUSP. It does not work, of course, on the purely hyperbolic 
problem BEAM because of lack of A-stability. There are still some results 
for low precision (Tol = 10-3 ), since then the code automatically prefers to 
use the low order formulas which are A-stable. This becomes visible if the 
maximal order allowed for the method is restricted to 1 or 2. The code then 
works perfectly (see Fig. 5.3). 

DEBDF - this is Shampine & Watts's driver for a modification of the code 
LSODE and is included in the "DEPAC" family (Shampine & Watts 1979). It 
behaves nearly identically to LSODE, the only difference is that it generally 
appears to be a couple of seconds faster. 

VODE - is the new "Variable-coefficient Ordinary Differential Equation 
solver" of Brown, Byrne & Hindmarsh (1989). It is based on the EPISODE 
and EPISODEB packages (see Section III.7) which use BDF methods on a 
non uniform grid (Byrne & Hindmarsh 1975). The user interface is very 
similar to that of LSODE; the code again allows selection between full or 
banded linear algebra and between analytical or numerical Jacobian. The 
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sec LSODE sec VODE 

04 Ho--ord4 

ord3 ordl 
ord2 

Fig.5.3. Performance of LSODE and VODE at the BEAM problem 
with restricted maximal order 

numerical results of VODE (see Fig. 5.1 and 5.2) are very similar for the large 
problems to those of LSODE and DEBDF, the code is, however, considerably 
slower on the small problems. There was a particular tolerance in OREGO 
(Rtol = 10-5 .125 ) where the code failed. On the PLATE problem, this code 
was by far the best. On the BEAM problem, one has to restrict the maximal 
order to two (Fig. 5.3). 

SPRINT - this package written by M. Berzins (see Berzins & Furzeland 
1985) which has recently been incorporated into the NAg library ("subchap­
ter D02N"), contains several modules for the step integrator, one of which is 
SBLEND. This allows us to study the effect of the blended multistep meth­
ods (3.15) of Skeel & Kong (1977). It can be seen from Table 3.4 that 
these methods are A-stable for orders up to 4. We therefore expect them to 
be much better on the oscillatory BEAM problem. As can be observed in 
Fig.5.2 (as wen as in Fig.IV.10.8), this code is actually the best of all on 
this problem. It is also good on the FINAG problems and more robust on 
all problems than the other multistep codes. From time to time, it is fairly 
slow (e.g., in the PLATE problem). 

SECDER - this code, written in 1979 by C.A. Addison (see Addison 1979), 
implements the SECond DERivative multistep methods (3.7) of Enright. 
The high order of the methods accompanied with good stability leads us to 
expect good performance at high tolerances. This has shown to be true for 
OREGO, HIRES and PLATE; but for VDPOL and VDPOL2 the results do 
not increase beyond 10-7 , a behaviour which we do not understand. For 
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ROBER the code fails for known reasons (see Section IV.lO); we have not 
used it on the large problems since it has no buHt-in banded algebra and 
requires an analytic Jacobian. 

LADAMSI - this is the I'Livermore Adams" code, i.e., LSODE with method 
Hag M F = 10, included to demonstrate the performance of an ezplicit method 
on large and/or mildly stift" problems. One can see that it has its chance on 
severallarge problems (BURGERS, PLATE, BEAM). It is, when compared 
to DOPRI5 in Fig. IV.10.8, a good deal slower when i-evaluations are cheap 
(FINAG, CUSP), but not on BEAM. 

1 This ia neither a commercial for eastern cars nor for a western mathematical 
society! 



V.6. One-Leg Methods and G-Stability 

"0 0 0 the error analysis is simpler to formulate for one-Ieg 
methods than for linear multistep methodso" 

(Go Dahlquist 1975) 

The first stability results for nonlinear differential equations and multistep 
methods are fairly old (Liniger 1956, Dahlquist 1963), older than similar 
studies for Runge-Kutta methods. The great break-through occured in 1975 
(at the Dundee conference) when Dahlquist proposed considering nonlinear 
problems 

y' = f(x,y) (6.1) 

which satisfy a one-sided Lipschitz condition 

(f(x,y) - f(x,z), y - z) :S vilY - zl12 (6.2) 

or, if the functions are complex-valued, 

Re (f(z,y) - f(x,z), y - z):S vilY - zl12 (6.2') 

(see Section IV.12). He also found that the study of nonlinear stability for 
general multistep methods is simplified, if a related dass of methods - the 
so-called one-Ieg (multistep) methods - is considered. 

One-Leg (Multistep) Methods 

"000 the somewhat crazy name one-leg methods 000" 

(Go Dahlquist 1983) 

"Je ne suis absolument pas capable de traduire "one-Ieg" 
en franc;ais 000 uni-jambiste ?" (Mo Crouzeix 1987) 

"Signor mio, le gru non hanno se non una coscia ed una 
gamba 000" (Boccacio, 
Decamerone 1353; quotation suggested by Mo Crouzeix) 

Suppose that a linear k-step method 

k k 

LaiYm+i = h Lßd(xm+i,Ym+i) (6.3) 
i=O i=O 
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is given, and that the generating polynomials 

k k 

U«() = L Cti(i, 0'( () = L ßi(i (6.4) 
i=O i=O 

have real coefficients and no common divisor (see Section 111.2). We also 
assume throughout the normalization 

0'(1) = 1 . (6.5) 

Then the associated one-leg method is defined by 

k k k 

L CtiYm+i = hf (L ßixm+i , L ßiYm+i) 
~o ~o ~o 

(6.6) 

In this new method, the derivative f is evaluated at one point only, which 
makes it easier to analyze. 

It is, of course, interesting to know how the solutions of the one-leg 
method (6.6) are related to those of its "multistep twin" (6.3). If the dif­
ferential equation is linear and autonomous, y' = Ay, then both formulas -
(6.3) and (6.6) - are identical. For the BDF schemes (1.18) there is in any 
case only one f-value in the multistep-version, hence the equations (6.3) and 
(6.6) are the same. For general methods and general nonlinear equations, 
however, the formulas are not identical, but the solutions are related by 
certain transformations (see Exercise 3). We consider, as an example, the 
trapezoidal rule, which is a two-leg method, 

Ym+l - Ym = %(f(xm,Ym) + f(x m+1 ,Ym+l)) . (6.7) 

The corresponding one-leg method is the implicit midpoint rule, 

_ _ hf(Xm + xm+1 Ym + Ym+l) 
Ym+l Ym - 2' 2 

If {Ym } is a solution of the one-leg formula (6.8), then 

fim = ~(Ym + Ym+l)' xm = ~(xm + xm+1 ) 

satisfies (6.7). On the other hand, if {fim, xm } satisfy (6.7), then 

~ hf(~ ~) Ym = Ym - 2' xm,Ym , 
h 

x = x -­m m 2 

(6.8) 

is a solution of (6.8). This relationship has already been extensively exploited 
in the proof of Theorem IV.15.8. 
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Existence and U niqueness 

We suppose a/c i= 0 (as always) and ß/c i= 0 (otherwise the method is ex­
plicit). In the case of multistep methods, we write (6.3) in the form 

Y - Tf - hß/c f(;c,y) = 0 , (6.9) 
a/c 

where ;c is given, Tf is a vector composed of known quantities and y = Ym+/c 
is the unknown vector. The one-Ieg Formula (6.6) can also he hrought to 
the form (6.9) hy the transformation y = ß/cym+/c + .. . +ßoYm' so that all 
suhsequent results on existence and uniqueness will he valid for multistep 
and one-Ieg methods. To ohtain existence results for Equation (6.9), we 

replace hß/c/a/c hy a new "step size" hand ohtain not hing else hut implicit 
Euler. All theorems forimplicit Runge-Kutta methods (Theorems 14.2, 14.3, 
and 14.4 of Section IV.14) are immediately applicahle and give 

Theorem 6.1 (Dahlquist 1975). Let f be continuou8ly differentiable and 
8ati8fy (6.2). 1/ 

(6.10) 

then the nonlinear equation (6.9) ha8 a unique 8olution y. o 

Theorem 6.2. Let Y be given by (6.9) and con8ider a perturbed value y 
8ati8fying 

Y - Tf - h ß/c f(;c, y) = 8 . 
a/c 

(6.11) 

Under the a88umption (6.10) we then have 

Ily- Yll :S ~ 11 811. 
1- hv 

O<k 

(6.12) 

o 

Remark. Theorems IV.14.2, IV.14.3 and IV.14.4 are for much more general 
methods than just the implicit Euler needed here. The reader who is not 
interested in the more general case can rewrite the proofs of Section IV.14 
nearly word for word. Since there is now only one implicit stage, all tensor 
products disappear and the formulas, hut not the ideas of the proof, simplify 
considerahly. 
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G-Stability 

If the differential equation satisfies the one-sided Lipsehitz eondition (6.2) 
(or (6.2')) with v = 0, then the exaet solutions are eontractive (Lemma 
IV.12.1). We shall investigate here, whieh one-Ieg (multistep) methods then 
also have eontraetive solutions. Sinee the numerieal value Ym+k depends on 
all Ym+k-l"" ,Ym, it makes no sense to require IIYm+k-Ym+k11 S IIYm+k-l­
Ym+k-lll as in the one-step ease (Definition IV.12.2). We have to eonsider 
the method as a mapping Rn.k -+ Rn.k. For this we introduee the notation 

Ym = (Ym+k-ll'" ,Ym)T (6.13) 

and eonsider inner product norms on Rn.k 
k k 

IIYmll~ = L Lgii (Ym+i-llYm+i-l) , (6.14) 
i=l i=l 

where (-,.) is the inner product on Rn used in (6.2) and the k-dimensional 
matrix 

G = (g .. ) . . 1 k 'tJ 'I.,J= , ... , 

is assumed to be real, symmetrie and positive definite. 

Definition 6.3 (Dahlquist 1975). The one-Ieg method (6.6) is ealled G­
stable, if there exists a real, symmetrie and positive definite matrix G, such 
that for two numerieal solutions {Ym} and {Ym} we have 

IlYm+l - Ym+111 G :s IIYm - Ymli G (6.15) 

for all step sizes h > 0 and for all differential equations satisfying (6.2) or 
(6.2') with v=O. 

Sinee y' = ).Y, Re). S 0 satisfies (6.2') with v = 0, we immediately get 

Theorem 6.4. G-stability implies A-stability. o 

Example 6.5. Consider the 2-step BDF method 

3 1 
2Ym+2 - 2Ym+l + 2Ym = h!(:J;m+2'Ym+2) . ( 6.16) 

We take a seeond numerieal solution {Ym} and denote its differenee to {Ym} 
by dYm=Ym -Ym' If we insert (6.16) intoour assumption (6.2') 

Re (f(:J;m+2' Ym+2) - !(:J;m+2 ' Ym+2) , Ym+2 - Ym+2) SO 
we obtain 

E = Re (~dYm+2 - 2dYm+l + ~dYm , dYm+2) SO. (6.17) 
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The main idea is now to subtract from this inequality a weIl-chosen quadratic 
term lIa2.6.Ym+2+al.6.Ym+l+aO.6.YmI12 in order to bring it to the form required 
by (6.15). With .6.Ym =(.6.Ym+ll.6.ymV this means that 

E = II.6.Ym+111~ -11.6.Ymll~ + Ila2.6.Ym+2 + a1.6.Ym+1 + a o.6.Yml1 2 (6.18) 

with a positive definite matrix 

G = (911 921) . 
921 922 

Multiplying out and comparing the coefficients of Re (.6.Yi' .6.Yj) in (6.17) 
and (6.18) gives the six relations 

~ = 911 + a~, 0 = 922 - 911 + ai, 0 = -922 + a~ , (6.19a) 

-2 = 2921 + 2a2a1, t = 2a2aO' 0 = -2921 + 2a1aO . (6.19b) 

Adding all six equations gives 0 = (ao + a1 + a2 )2, so that ao + a1 + a2 = O. 
This relation together with (6.19b) determines the ai as ao=±1/2, a1 ==F1, 
a2 = ±1/2. Inserting this into (6.19) yields the positive definite matrix 

G = ~ ( 5 -2) . 
4 -2 1 

(6.20) 

Since E S 0 by (6.17), it follows from (6.18) that the 2-step BDF method is 
G-stable. 

An Algebraic Criterion 

The algebraic structures of the foregoing computations become much more 
visible, if we replace formally in (6.17) and (6.18) all 

(.6.Ym+i, .6.Ym+j) f--+ (iw j 

and use 

2Re(.6.Ym+i,.6.Ym+j) = (.6.Ym+i,.6.Ym+j) + (.6.Ym+j,.6.Ym+i) . 

This yields 

1 
E = 2 (e(Ocr(w) + e(w)cr()) ( 6.17') 

k k k 

E = (w -1) L 9ij(i-1 wj-1 + (Lai(i) (LajW j ) (6.18') 
i,j=l i=O j=o 

We can now formulate an algebraic criterion which, in a different notation, 
already appears in Dahlquist (1975). 
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Theorem 6.6 (Baiocchi & Crouzeix 1989). Consider a method (e,u). 11 
there exists a real, symmetrie and positive definite matrix G and real numbers 

ao, ... ,ak' such that 

1 
2(e()u(w) + e(w)u()) 

k k k (G) 
= (w - 1) 2::: 9ii(i-lwj -l + (2::: ai(i) (2::: ajwj ) , 

i,j=l i=O j=o 

then the eorresponding one-Ieg method is G-stable. 

Remark. The factor 1/2 on the left-hand side of (G) is of no significance and 
can be replaced by any other positive constant, leading to another scaling 
of the coefficients 9ij and ai' 

Proof. We just replace (iwi by (ßYm+i' ßYm+j) in equation (G) and obtain 

k k 

Re(2::: Q i ß Ym+i,2:::ß j ß Ym+j) = 
i=O j=O 

k 
(6.21 ) 

IIßYm+11It -IIßYmllt + 112::: ai ßYm+il1 2 • 

i=O 

We then insert (6.6) and use (6.2') with 1/= 0 and obtain the desired estimate 

IIßYm+11Ia ::; IIßYmlla . 0 

An interesting question is now, for which methods (e, u) Condition (6.21) 
is satisfied. By Theorem 6.4 the method is necessarily A-stable. 1s this also 
sufficient? 

The Equivalence of A-Stability and G-Stability 

Dahlquist struggled for three years to get the answer, which is 

Theorem 6.7 (Dahlquist 1978). 11 e and a have no eommon divisor, then 
the method (e, a) is A-stable il and only il the eorresponding one-leg method 
is G-stable. 

Prool. We follow here the presentation of Baiocchi & Crouzeix (1989). Recall 
first that A-stability of the method (e,O') implies 

Re e( ()a( () 2: 0 for 1(1 2: 1 (A) 
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(see Section V.l). Beeause of Theorems 6.4 and 6.6 it is suflicient to prove 
that eondition (A) implies the existenee of a real, symmetrie and positive 
definite matrix G and real numbers ao,"" ak such that Property (G) holds. 
The proof is in three steps: 

a) eomputation of ao,"" ak; 

b) eomputation of G; 
e) show that G is positive definite. 

a) The term eontaining the gi/S in (G) disappears if we put w= 1/(. We 
therefore eonsider the function 

1 
E() = 2" (/?()<T(I/() + /?(I/()<T()) , (6.22) 

whieh is of the form 

E( () = cr (C + (Ir) + Cr _ l (r-l + (r~l) + ... + Cl ( + z) + Co 

2r 

= C~ II( - (j) 
( j=l 

(6.23) 

with some r :::; k. Sinee E() = E(I/(), for eaeh root (j of the polynomial 
(r E( () the inverse 1/ (j is also a root with the same multiplicity. Therefore 
there are as many roots in8ide the unit eircle as there are out8ide. As to the 
roots on the unit eircle, Condition (A) teIls us that E() = Re/?()<T(() 2: 0 
on the unit circle. Therefore, all roots on the unit circle must have even 
multiplicity, half of them we declare "inside" and half of them we declare 
"outside". The clever idea is now to eollect all roots "outside" the unit eircle 
into a produet, so that 

E() = ~~ II ( - (j) II ( - (j) 
(j outside (j inside 

= ~~ II ( - (j) II ( - ~) 
(j outside (j outside (j 

=K II 
1 

(-(j) II (-,-(j) 
(j outside (j outside 

(6.24) 

where K is a eonstant. But this constant must be non-negative, as ean be 
seen thus: by Condition (A), E() is non-negative on the unit eircle. The 
same is true for the function divided by K, sinee eaeh factor (e i8 - (j) from 

the first product has a eomplex eonjugate brother (e- i8 _(j) in the seeond. 
Therefore E() in (6.24) ean be factored as 

E() = a() . a(l/() (6.25) 
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where 
k 

a() = JK rr ( -(j) =: Lai(i . 
(; outside i=O 

and step a) is done. 

b) It follows from (6.22) and (6.25) that the polynomial 

P(,w) = ~(u()u(w) + u(w)u(») - a()a(w) 

vanishes when (w-1=O. It can therefore be written as 

k 

P(,w) = (w - 1) L 9ij(i-1wj-1 . 
i,j=1 

(6.26) 

(6.27) 

(6.28) 

The coefficients gij are real and satisfy gij =gji' because P(,w) =P(w,(). 

c) Looking at (6.28), it appears at first sight a difficult task to prove 
positive definiteness for the matrix G = (gij) defined there. The crucial idea 
is the following: choose k (at first arbitrary) compiex numbers (1' ... , (k and 
replace in (6.28) ( f-+ (q, W f-+ (r' which gives together with (6.27) 

i,j=1 

Here the bqr are the elements of the matrix 

B = V*GV 

(6.29) 

where V = (;-1) is a Vandermonde matrix. Thus, we now have to prove 
that Bis positive definite, which appears much easier. First, we develop 

(6.30a) 

q=1,2, ... ,k. (6.30b) 

Next, we require that for all q 

for some >. > 0 . ( 6.31) 

With the exception of a finite number of ).'s, the k roots of equation (6.31) 
are all different. A-stability (assumption (A» implies (6.30b), because ->. 
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lies in the interior of the stability domain. Inserting (6.31) and (6.30a) into 
(6.29) gives, for an arbitrary non-zero vector v = (v1 , ••• , v/c), 

/c 00 k k 

v* Bv = L vqbq"v" = L {I L vq(;'a((q)12 + >'1 L Vq(;'0'((q)1 2 } , 

q,,,=l m=O q=l q=l 

whieh looks rat her positive. This expression eannot be zero for v # 0, beeause 
it follows from (6.31) that O'((q)#O for all q, otherwise (! and 0' would have a 
eommon factor. Therefore v* Bv > 0, thus the matrix B, and eonsequently 
the matrix G, is positive definite. 0 

It is worth noting that the above proof provides eonstructive formulas for 
the matrix G. As an illustration, we again eonsider the 2-step BDF method 
(6.16) with generating polynomials 

The function E(() (Formula (6.22» beeomes 

E(() = ~((2 +~) _ (( +~) + ~ = ~(( _1)2(~ _1)2 
4 (2 (2 4 ( 

so that a( () = ~ (( -1)2. Inserting this into (6.27) gives 

5 1 1 1 
P((,w) = ((w - l)('4(w - Z( - Zw + 4) , 

so that 911 = 5/4,912 = 921 =-1/2,922 = 1/4 is the same as (6.20). 

A Criterion for Positive Functions 

In the proof of Lemma IV.13.19 we have used the following eriterion for posi­
tive funetions, whieh is an immediate eonsequenee of the above equivalenee 
result. 

Lemma 6.8. Let x(z)=a(z)/ß(z) oe an irredueible rational function with 
real polynomials a(z) 0/ degree ::; k-l and ß(z) 0/ degree k. Then X(z) is a 
positive function, i.e., 

Rex(z»O /or Rez > 0 , (6.32) 

i/ and only i/ there ezist a real, symmetrie and positive definite matriz A 
and a real, symmetrie and non-negative definite matriz B, sueh that 

k k 

a(z)ß(w)+a(w)ß(z) = (z+w) L aiizi-1wi-1+ L biizi-1wi-1 . (6.33) 
i,j=l i,j=l 
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Proof. The "if"-part follows immediately by putting w =z in (6.33). For the 
"only if"-part we eonsider the transformations 

(=z+1, 
z-1 

(+1 
z=--

(-1 

and introduce the polynomials 

and 
w+1 W=--, 
w-1 

w+1 
w=-­

w-1 
(6.34) 

As the transformation (6.34) maps 1(1) 1 onto the half plane Rez > 0, 
Condition (6.32) is equivalent to Assumption (A). Therefore, Theorem 6.7 
implies the existence of a real, symmetrie and positive definite matrix G and 
of real numbers ao, ... , ak such that 

Baeksubstitution of the old variables yields 

1 
"2(a(z)ß(w) + a(w)ß(z)) 

k 

(6.35) 

= 2(z + w) L 9ii(z + 1)i-l(Z _1)k-i(w + 1)i-1(w _1)k-i 

i,i=l 
k k 

+ (2: ai(z + 1)i(z _1)k-i) (2: aj(w + 1)i(w - 1)k-i ) . 
i=O i=O 

Rearranging into powers of z and w gives (6.33). Since the polynomials 
(z+1)i-l(z-1)k-i for i = 1, ... ,k are linearly independent, the resulting 
matrix A is positive definite. The eoefficient of zkwk in the seeond term of 
the right-hand side of (6.35) must vanish, because the degree of a( z) is at 
most k -1. We remark that the matrix B of this construetion is only of 
rank 1. 0 

Error Bounds for One-Leg Methods 

We shall apply the stability results of this seetion to derive bounds for the 
global error of one-Ieg methods. For a differential equation (6.1) with exaet 
(smooth) solution y(:c) it is natural to define the diseretization error of (6.6) 
as 

k k 

SOL(:C) = L aiY(:C + ih) - hf(:C + ßh, LßiY(:C + ih)) 
i=O i=O 

(6.36) 
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with ß = 0"(1) = 'Eißi. For the BDF methods we have 'Eißiy(x+ih) = 
y(x+ßh), so that (6.36) equals 

k 

bD(x) = Lcxiy(x+ih)-hy'(x+ßh) , ( 6.37) 
i=O 

the so-called differentiation error of the method. For methods which do 
not satisfy 'Ei ßiy( X + ih) = y( x + ßh), the right hand side of (6.36) may 
become very large for stiff problems, even if the derivatives of the solution are 
bounded by a constant of moderate size. In this case, the expression (6.36) 
is not a suitable quantity for error estimates. Dahlquist (1983) proposed 
considering in addition to b D( x) also the interpolation error 

k 

b[(x) = LßiY(X + ih) - y(x + ßh) . (6.38) 
i=O 

For nonstiff problems (with bounded derivatives of f) these two error ex­
pressions are related to bOL (x) by 

8i 
bOL(x) = bD(x) - h 8y (x,y(x))b[(x) + 0(hI16[(x)11 2 ) • 

Taylor expansion of (6.37) and (6.38) shows that 

bD(x) = 0(hPD +1 ) , b[(x) = 0(hPd1 ) , (6.39) 

where the optimal orders PD and p[ are determined by certain algebraic 
conditions (see Exercise 1a). From ß = 0"(1) we always have p[ 2:: 1 and 
from the consistency conditions it follows that PD 2:: 1. However, the orders 
PD and p[ may be significantly smaller than the order of the corresponding 
multistep method (Exercise 1). The constants in the 0( .. . )-terms of (6.39) 
depend only on hounds for a certain derivative of the solution, hut not on 
the stiffness of the problem. 

Using 6D (x) and 6[(x) it is possible to interpret the exact solution of 
(6.1) as the solution of the following perturbed one-Ieg formula 

k k 

L cxiY(x + ih) - bD(x) = hi( x + ßh, LßiY(X + ih) - b[(X)) (6.40) 
~o ~o 

The next lemma, which extends results of Dahlquist (1975) and of Nevan­
linna (1976), investigates the infiuence of perturbations to the solution of a 
one-leg method. 
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Lemma 6.9. Consider, in addition to the one-leg method (6.6), the per­
turbed formula 

k k 

~ a/Ym+i - fJ m = hf(xm + ßh, ~ßdm+i - cm ) . (6.41 ) 

Suppose that the condition (6.2') holds for the differential equation (6.1) and 
that the method is G-stable. Then the differences 

ilYj = Yj - Yj , 

satisfy in the norm (6.14) 

IlilYm+1 1la ~ (1+chv)llilYmlla+C(llfJmll+llcmll) for 0 < hv ~ Const. 

The constants c, C, and Const depend only on the method, not on the dif­
ferential equation. If v ~ 0 we have 

for all h > O. 

Proof. We shall make the additional assumption that f is continuously 
differentiable. A direct proof without this assumption is possible, but leads 
to a quadratic inequality for IlilY m+llla. 

The idea is to subtract (6.6) from (6.41) and to use 

where 

j(xm +ßh, ~ßiYm+i-Cm) - j(xm+ßh, ~ßiYm+i) 

= Jm (~ßiilY=+i -c=) 

k k 

~ aiilYm+i = hJm ~ßiilYm+i + fJm - hJmcm . 
i=O i=O 

Computing ilYm+k from this relation gives 

ilYm+k = ilzm+k + (ak - ßkhJm)-l(fJm -hJmcm ) 

where ilzm+k is defined by 

k k 

~ aiilzm+i = hJm ~ ßiilzm+i 
i=O ;=0 

( 6.42) 

(6.43) 

and ilzj = ilYj for j < m+k. By our assumption (6.2') the matrix Jm 
satisfies the one-sided Lipschitz condition Re (Jmu, u) ~ vllul1 2 (see Exercise 



V.6. One-Leg Methods and G-stability 341 

6 of Section I.10). Taking the scalar product of (6.43) with L:ßi.6.zm +i and 
using (6.21) we thus obtain in the notation of (6.13) 

II.6.Zm+lll~ -11.6.Zmll~ ::; cohvll I: ßi.6.zm +i I1 2 

::; Cl hv(II.6.Zm+1 1Ia + II.6.Zmlla)2 

(the second inequality is only valid for v:::: 0; for negative values of v we 
replace v by 0 in (6.2')). A division by II.6.Zm+1 1Ia+II.6.Zmll a then leads to 
the estimate 

(6.44) 

With the help of von Neumann's theorem (Section IV.ll) the second term 
of (6.42) can be bounded by Con3t(llomll+llcmll). Inserting this and (6.44) 
into (6.42) yields the desired estimate. 0 

The above lemma allows us to derive a convergence result for one-leg 
methods, which is related to B-convergence for Runge-Kutta methods. 

Theorem 6.10. Consider a G-stable one-leg method with differentiation 
order PD ? p and interpolation order p [? p-l. Supp03e that the differential 
equation satisfies the one-sided Lipschitz condition (6.2'). Then there exists 
Co> 0 such that for hv::; Co 

(6.45 ) 

The con3tant C depends on the method and, for v> 0, on the length x m - Xo 
of the integration interval; the constant M depends in addition on bounds 
lor the p-th and (p+ 1 )-th derivative 01 the exact solution. 

Proof. A direct application of Lemma 6.9 to Formula (6.40) yields the desired 
error bounds only for p[?p. Following Hundsdorfer & Steininger (1989) we 
therefore introduce y(x) =y(x) -0 [(x) so that (6.40) becomes 

k k 

L Qiy(x+ih) - 8(x) = h/(x+ßh, Lßiy(x+ih) - f(x)) (6.46) 
i=O i=O 

where 

k k 

8(x) = ov(x) - I: Qio[(x+ih) , f(x) = o[(x) - Lßio[(x+ih) . (6.47) 
i=O i=O 

U sing {!( 1) = 0 and 0'( 1) = 1, Taylor expansion of these functions yields 

r+kh 
118(x)11 + IIf(x)ll::; ClP }'" Ily(P+1)(Olld( . 
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We thus can apply Lemma 6.9 to (6.46) and obtain 

I16,Ym+llla ::; (1+chv)II6,Ym ll a + M1hpH 

where 6,Yj = Y(Zj) - Yj' Using (1 + chv)j ::; exp(cv(Zj - zo)), a simple 
induction argument gives 

II6,Ym +1 Ila ::; CIl6,Yolia + MhP • 

The statement now follows from the equivalence of norms 

the estimate IIYm - y(zm)1I ::; IIYm - y(zm)1I + 116Azm)ll, and the fact that 
lIol(zm)11 =O(hP). 0 

Convergence of A-Stable Multistep Methods 

An interesting equivalence relation between one-Ieg and linear multistep 
methods is presented in Dahlquist (1975) (see Exercise 3). This allows us to 
translate the above convergence result into a corresponding one for multi­
step methods (Hundsdoder & Steininger 1989). A different and more direct 
approach will be presented in Section V.8 (Theorem 8.2). 

We consider the linear multistep method 

k k 

L (l:iYm+i = h L ßJ(fim+i, Ym+i) . ( 6.48) 
i=O i=O 

We let Zm = fim - ßh so that L::=o ßizm+i = fim' and, in view of Formula 
(6.54), we define {Yo, Yp ... , Y2k-l} as the solution of the linear system 

k k 

2:ßiYj+i = Yj , 2: (l:iYj+i = hj(fij , Yj) , j =0, ... ,k-1. (6.49) 
i=O i=O 

This system is uniquely solvable, because the polynomials u( () and 0'( () are 
relatively prime. With these starting values we define {Ym } as solution of 
the one-Ieg relation (for m 2': k) 

k k k 

2: (l:iYm+i = hj (2: ßiZm+i , 2: ßiYm+i) . 
i=O i=O i=O 

(6.50) 

By the second relation of (6.49), Formula (6.50) holds for all m2': O. Conse­
quently (Exercise 3a) the expression L:~=o ßiYm+i is a solution of the multi­
step Formula (6.48). Because of (6.49) and the uniqueness of the numerical 
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solution this gives 

lc 

LßiYm+i = Ym for all m ~ 0 . (6.51) 
i=O 

This relation leads to a proof of the following result. 

Theorem 6.11. Con8ider an A-8table linear multi8tep method 0/ order p. 
Supp08e the differential equation 8ati8fie8 (6.2 '). Then there ezi8t8 Co > 0 
8uch that /or hv "5. Co, 

lifim -y(zm)11 "5. C( max IIYj -y(zj)11 +h max IIf(zj' Yj)-y'(zj)lI) +MhP • 
0Sj<lc 0Sj<lc 

The con8tanu C and Mare a8 in Theorem 6.10. 

Proo/. By Theorem 6.7, A-stability implies G-stability of the corresponding 
one-Ieg method. Further, Taylor expansion of (6.37) and (6.38) shows that 
p D ~ min(p, 2) and PI ~ 1. Since P "5. 2 by Dahlquist 's second barrier, all 
assumptions of Theorem '6.10 are verified. The one-Ieg solution {Ym } thus 
satisfies (6.45). In order to estimate IIYj -y(zj)1I for j< k we subtract the 
definitions of bD(:C) and bi:c) from (6.48) and obtain 

k 

Lßi(Yj+i-Y(:Cj+i» = Yj - Y(Zj) - bI(:C j ) 
i=O 

lc 

L Qi(Yj+i-Y(:Cj+i » = hf(zj' Yj) - hy'(zj) - bD(:C j ) • 

i=O 

Solving these relations for Y j - y(:c j) yields 

max lIy, -Y(:c·)11 
0Sj<lc 1 1 

:"5. Co (max IIYj - Y(Zj)1I + h max Ilf(Zj' Yj) - Y'(Zj)ll) + MohP • 
0Sj<lc O~j<lc 

This proves the statement, because by (6.51) 

lc 

llfim - y(zm)11 "5. L IßilIlYm+i - Y(:Cm+i)11 + IlbI(:cm)11 . 
i=O o 
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Exercises 

1. a) Prove that the one-Ieg method (6.6) satisfies (6.39) iff 

k 

L ui iq = qßq-l for q = 0,1, ... ,PD 
i=O 

for q = 0, ... ,PI' 
i=O 

Compare this result with Theorem III.2.4. 

b) Compute the orders PD and PI for the Adams methods. 

(6.52) 

(6.53) 

2. a) Show that the one-Ieg method (6.6) can be written in the form of a 
general linear method (Section 111.8). 

b) Prove that the order of convergence P of this method is given by 

P = min(PD,PI + 1) 

with PD,PI defined in (6.39). 

c) The order of a one-leg method is never larger than the order of the 
corresponding multistep method. 

3. (Dahlquist 1975). 

a) Let {Ym } and {:l:m=:l:o+mh} satisfy the (one-leg) difference relation 
(6.6); then 

k 

Ym = LßjYm+j , 
j=O 

k 

:Vm = L ßj:l:m+j 
j=O 

satisfy the (linear multistep) difference relation (6.3). 

b) Conversely, let 

k-l k-l 

P(() = L aj(j , Q() = Lbj(j 
j=O j=O 

(6.54) 

be such that P(()O'(() - Q()e() = (I for some integer I (0 ::; I ::; k), 
then 

k-l k-l 

Ym+1 = L ajYm+j - h L bjf(:Vm+j,Ym+j) 
j=O j=O 

k-l k-l 

xm+l = L aj:Vm+j - h L bj 
j=O j=O 

satisfy (6.6), whenever {Y'm} and {:vm } are a solution of (6.3). 
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Hint for a). Multiply (6.6) by ßj , replace m by m+j, sum from j =0 to 
j = k, and interchange the summations. 

4. One-leg collocation methods (Dahlquist 1983). 

a) For a given ß there exists a unique k-step one-Ieg method with PD = k 
and PI = k. 

b) This one-Ieg method is of order P = k + 1 iff 

k 1 

~ (ß - i) = 0 . 
,=0 

c) Discuss numerically the zero-stability of these methods. 

5. (proposed by M. Crouzeix). a) Let R(z) = P(z)/Q(z) be an irreducible 
rational function where deg P :::: k, deg Q :::: k. Show that R( z) is A­
stable, if and only if there exist polynomials O:i(z), ß(z) with real coef­
ficients and with deg O:i :::: k - 1, deg ß :::: k, such that 

k 

Q(z)Q(w) - P(z)P(w) = -(z + w) I: O:i(z)O:i(w) + ß(z)ß(w). (6.48) 
i=l 

b) Use this characterization to give a new proof of von Neumann's the­
orem (Corollary IV.11.3). 

Hint. Part (a) can be proved along the lines of the proofs of Theo­
rem 6.7 and Lemma 6.8. Remark that (6.48) reduces to the E-polynomial 
(IV.3.8) if z = iy and w = -iy. For the proof of (b), deduce from (6.48) 
the identity 

k 

IIQ(A)uI1 2 - IIP(A)uI1 2 = - I: Re (O:i(A)u, Ao:i(A)u) + IIß(A)uI1 2 • 

i=l 



V.7. Convergence for Linear Problems 

Theorems 6.10 and 6.11 give satisfactory convergence results for G-stable 
one-Ieg methods and A-stable multistep methods. But there are only few 
such methods and their highest order is two (Theorem 1.6). It is therefore 
interesting to relax the requirement of A-stability and to investigate higher­
order multistep and one-Ieg methods. This section is devoted to linear stiff 
problems, while Section V.8 will treat non-linear problems. 

We shall describe two different approaches for convergence results. One 
is with the help of the discrete variation of constants formula and shall be 
given at the end of this section (see Lemma 7.9 and Theorem 7.10 below). 
The other possibility is based on a formulation as a one-step method and on 
the use of the Kreiss matrix theorem. 

Difference Equations for the Global Error 

Most of the difliculties can already be seen by studying the one-dimensional 
problem of Prothero and Robinson 

y' = >..y + g{z) , y{zo) = yo . (7.1) 

We assume Re>.. ::; 0 and the solution y( z) to be smooth in the sense that 
sufliciently many derivatives are bounded independently of the stiffness pa­
rameter >... 

Applying a linear multistep method to (7.1) yields 

k k k 

LO:iYm+i = h>" LßiYm+i + h Lßig(Zm+i) . (7.2) 
i=O i=O 

The global error 
em = Ym - y(zm) 

is seen to satisfy the difference relation 

k 

i=O 

L(O:i - h>"ßi)em+i = -CLM(a:m) 
i=O 

(7.3) 

(7.4) 
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with 
k k 

6LM(z) = L °iY(z + ih) - h L ßiy'(z + ih) (7.5) 
i=O i=O 

(to be eompared with Formula III.2.3). We observe that the right-hand side 
of (7.4) is independent of the stiffness (i.e., of 'x). Further, if the classical 
order of the method is p, then bLM(z)= O(hp+1 ). 

If we apply the method in its one-leg version, we obtain 

k k 

L °iYm+i = h,X L ßiYm+i + hg( zm + ßh) , (7.6) 
i=O i=O 

where I:ßi =1 and I:ßii=ß. In this ease the global error em =Ym -y(zm) 
satisfies 

k 

L(Oi - h,Xßi)em+i = h'xb[(zm) - 6D (zm) (7.7) 
i=O 

with 6D (z) and 6[(z) defined in (6.37) and (6.38), respectively. Unless 
6[(z) = 0 (whieh is the ease for the BDF methods), Equation (7.7) is 
disappointing, beeause its right-hand side beeomes large in the stiff ease 
(h'x -? 00). 

In order to overeome this diffieulty, Dahlquist (1983) proposes that one 
eonsider instead of em =Ym -y(zm) the quantities 

k 

e~ = LßiYm+i - y(zm + ßh) (7.8) 
i=O 

(" ... a more adequate measure of the global error than the eustomary one 
... ", Dahlquist 1983). Replacing m by m+i in (7.6), multiplying by ßi and 
summing up gives the error formula 

k 

L(Oi - h)..ßi)e~+i = -6LM(zm + ßh) (7.9) 
i=O 

with bLM(z) of (7.5). This differenee relation now has the same strength as 
(7.4). 

It has been pointed out by Hundsdorfer & Steininger (1989) that we 
usually get better error estimates for one-Ieg methods by eonsidering em = 
em+6[(zm)' We then have 

k 

L(ai - h,Xßi)em+i = h'xf(a:m) -;5(zm) (7.10) 
i=O 

with f(a:) and ;5(a:) given by (6.47). Observe that f(:v) = O(hPI+2) and 
;5(a:) = O(hmin(PD+l,pI+2). 
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Formulation as a One-Step Method 

The error relations (7.4), (7.7), (7.9), and (7.10) are all of the form 

k 

~)O:i - h>'ßi)em+i = hh(a:m) . (7.11) 
i=O 

In order to estimate em it is convenient to introduce, as in Section IIl.4, the 
vector 

(7.12) 

the companion matrix 

(7.13) 

and 

f..t = h>' . (7.14) 

Then Formula (7.11) becomes 

(7.15) 

which leads to 

m 

E = C(h>.)m+l E + ~ C(h>.)m-i ß· m+l 0 L....J 1 . (7.16) 
i=O 

To estimate Em+1 we have to bound the powers of C(h>') uniformly in h>'. 
This is the object of the next subsection. 

The Kreiss Matrix Theorem 

"Als Fakultätsopponent für meine Stockholmer Disserta­
tion brachte Dr. G. Dahlquist die Frage der Stabilitätsde­
finition zur Sprache." (H.-O. Kreiss 1962) 

The following Theorem of Kreiss (1962) is a powedul tool for proving uniform 
power boundedness of an arbitrary family of matrices. 
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Theorem 7.1 (Kreiss 1962). Let F be a family of k x k matrices A. Then 
the "power condition" 

for n = 0,1,2, ... and A E F 

is equivalent to the "resolvent condition" 

II(A - zI)-lll ::; _I 10 
z -1 

for Izl > 1 and A E F . 

(P) 

(R) 

Remark. The difficult step is to prove that (R) implies (P). Several math­
ematicians contributed to a better understanding of this result (Richtmyer 
& Morton 1967, Tadmor 1981). LeVeque & Trefethen (1984) have given a 
marvellous version of the proofj the best we can do is to copy it nearly word 
for word: 

Proof. Necessity. If (P) is true, the eigenvalues of A He within the closed 
unit disk and therefore (A-zI)-l exists for Izl > 1. Moreover, 

II(A-zI)-lll = II~ Anz-n-lll ::;M~lzl-n-l = ~, 
L..J L..J Izl - 1 
n=O n=O 

(7.17) 

so that (R) holds with 0 = M. 

Sufficiency. Assume condition (R), so that all eigenvalues of A He inside 
the closed unit disko The matrix An can then be written in terms of the 
resolvent by means of a Cauchy integral (see Exercise 1) 

An = _. zn(zI - A)-ldz , ·1 1 
211"t r 

(7.18) 

where the contour of integration is, for example, a circle of radius e > 1 
centred at the origin. Let u and v be arbitrary unit vectors, i.e., Ilull = IIvll = 
1. Then 

with q(z) = v*(zI - A)-lU . 

Integration by parts gives 

v* Anu = -1 f zn+lq'(z)dz . 
211"i(n + 1) Jr 

N ow fix as contour of integration the circle of radius e = 1 + 1/ (n + 1). On 
this path one has Izn+ll ::; e, and therefore 

Iv* Anul ::; (e ) f Iq'(z)lldzl . 
211" n+l Jr 

(7.19) 

By Cramer's rule, q(z) is a rational function of degree k. Applying Lemma 
7.2 below, the integral in (7.19) is bounded by 411"k times the supremum of 
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Iq(z)1 on r, and by (R) this supremum is at most (n+1)C. Hence 

Iv* Anul ::; 2ekC . 

Since IIAnll is the supremum of Iv*Anul over a.Il unit vectors u and v, this 
proves the estimate (P) with M =2ekC. 0 

The above proof used the following lemma, whieh relates the are length 
of a rational function on a eircle to its maximum value. For the ease of 
a polynomial of degree k the result is a eorollary of Bernstein's inequality 
sUPlzl=l Iq'(z)1 ::; ksuPlzl=l Iq(z)1 (see e.g., Marden 1966). 

Lemma 7.2. Let q(z) = p(z)/r(z) be a rational/unction with degp ::; k, 
deg r ::; k and suppose that no poles lie on the circle r : Izi = ",. Then 

f Iq'(z)lldzl ::; 4·7rk sup Iq(z)1 . (7.20) 
Jr Izl=I1 

"We believe that the bound is valid with a factor 211' instead 
of 411', but have been unable to prove this". 

(R.J. LeVeque & L.N. Trefethen 1984) 

Proof. Replacing q(z) by q(ez) we may assume without loss of generality 
that e = 1. With the parametrization eit of r we introduee 

"'(t) = q(eit ), "'('(t) = ieitq'(eit ) 

so that 
with g(t) = arg("'('(t)) . 

Integration by parts now yields 

llq'(z)lldz l = 12 
.. Iq'(eit)ldt = 12 

.. "'('(t)e-ig(t)dt 

= i 12 
.. ",(t)g'(t)e-ig(t)dt ::; sup 1"'((t)1·12 

.. Ig'(t)ldt . 

It remains to prove that the total variation of g, i.e., TV[g] = J02" Ig'(t)ldt, 
ean be bounded by 47!'k. To prove this, note that zq'( z) is a rational function 
of degree (2k,2k) and ean be written a.s a product 

2/c a.z + b. 
zq'(z) = rr J J 

. cJ.z + dJ. J=l 

This implies for z = eit 

2/c b 
7!' '"' (a.z + ') g(t) = arg(izq'(z)) = - + L...J arg J J. 
2 c·z + d· j=l J J 
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Since the Möbius transformation (az + b )/( cz + d) maps the unit circle to 
some other circle, the total variation of arg((az+b)/(cz+d)) is at most 211'. 
Consequently 

2k [ a.z + b. ] 
TV[gJ S LTV arg( J J) S 411'k. 

. cJ.z + dJ. J=1 
o 

Some Applications of the Kreiss Matrix Theorem 

Following Dahlquist, Mingyou & LeVeque (1981) we now obtain some results 
on the uniform power boundedness of the matrix C(J..t), defined in (7.13), 
with the help of the Kreiss matrix theorem. Similar results were found 
independently by Crouzeix & Raviart (1980) and Gekeler (1979, 1984). 

Lemma 7.3. Let see denote the stability region 0/ a method (e, 0'). 1/ S 
is closed in C, then there exists a constant M such that 

for J..t E S and n=0,1,2, ... 

Proof. Because of Theorem 7.1 it is sufficient to prove that 

II(C(J..t) - zI)-111 S _I IC 
z -1 

for J..t E Sand I z I > 1 . 

To show this, we make use of the inequality (Kato (1960), see Exercise 2) 

II(C(J..t) _ zI)-111 < (1IC(J..t)11 + Izl)k-l . 
- Idet(C(J..t)-zI)1 

IIC(J..t)11 is uniformly bounded for J..t E S. Therefore it suffices to show that 

( ) = inf Idet(C(J..t)-zI)1 
cp J..t Izl>1 Izlk-1(lzl- 1) (7.21) 

is bounded away from zero for all J..t E S. For Izl -+ 00 the expression in 
(7.21) tends to 1 and so poses no problem. Furt her ,observe that 

k 

Idet(C(J..t)-zI)l= III(z-(j(J..t))I, 
j=1 

where (j(J..t) are the eigenvalues of C(J..t), i.e., the roots of 

k 

2)O:i - J..tßi)(i = 0 . 
i=O 

(7.22) 

(7.23) 
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By definition of the stability region 5, the values (j(/L) lie, for /L E 5, inside 
the elosed unit disc and those on the unit cirele are weH separated. Therefore, 
for fixed /Lo E 5, only one of the (j(/Lo) can be elose to a z with Izl > 1. 
The corresponding factor in (7.22) will be minorized by Izl-1, the other 
factors are bounded away from zero. By continuity of the (j(/L), the same 
holds for all/L E 5 in a sufficiently small neighbourhood V(/Lo) of /Lo. Hence 
<.p(/L) 2: a > 0 for /L E V(/Lo) n 5. Since 5 is elosed (compact in C) it is 
covered by a finite nu mb er of V(/Lo). Consequently <.p(/L) 2: a > 0 for all 
/L E 5, which completes the proof of the theorem. 0 

Remark. The hypothesis "5 is elosed in C" is usually satisfied. For methods 
w hich do not satisfy this hypothesis (see e.g., Exercise 2 of Section V.1 or 
Dahlquist, Mingyou & LeVeque (1981)) the above lemma remains valid on 
elosed subsets D C 5 C C. 

The estimate of this lemma can be improved, if we consider elosed sets 
D lying in the interior of 5. 

Lemma 7.4. Let 5 be the .'Jtability region of a method (e, 0"). If D eInt 5 
i.s clo.'Jed in C, then there ezi.'Jt con.stant.'J M and", (0< '" < 1) .'Juch that 

for /L E D and n = 0,1,2, .... 

Proof. If /L lies in the interior of 5, all roots of (7.23) satisfy I(j(/L)I < 1 
(maximum principle). Since D is elosed, this implies the existence of 0: > 0 
such that 

DC5e ={/LECj l(j(/L)lsl-2c:, j=l, ... ,k}. 

We now consider R(/L) = ",-lC(/L) with '" = 1-0:. The eigenvalues of R(/L) 
satisfy I",-l(j(/L)I S (1-20:)/(1-0:) < 1-0: for /L E 5e • As in the proof of 
Lemma 7.3 (more easily, because R(/L) has no eigenvalues of modulus 1) we 
conelude that R(/L) is uniformly power bounded for /L E 5e • This implies 
the statement. 0 

Since the origin is never in the interior of 5, we add the following estimate 
for its neighbourhood: 

Lemma 7.5. Suppose that the method (e, 0") i.s consi.'Jtent and .strictly .stable 
(see 5ection 111.9, Assumption Al or Theorem V.l.5). Then there exists a 
neighbourhood V of 0 and constants M and a such that 

for /L E V and n = 0,1,2, .... 
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Proof. Since the method is strict1y stable there exists a compact neighbour­
hood V of 0, in which I(j (J.t) I < 1(1 (1')1 for j = 2, ... , k «j(JL) are the roots of 
(7.23)). The matrix R(JL) = (1 (JL)-lG(JL) then has a simple eigenvalue 1 and 
all other eigenvalues are strictly smaller than 1. As in the proof of Lemma 
7.3 we obtain IIR(JL)nll S M and consequently IIG(JL)nll S MI(l(JL)ln for 
I' E V. The stated estimate now follows from (1(1') = eIL +0(1'2). 0 

Global Error for Prothero and Robinson Problem 

The above lemmata permit us to continue our analysis of Formula (7.16). 
Whenever we consider >. and h such that their product >'h varies in a closed 
subset of S, it follows that 

m 

IIEm+1 11 ~ M(IIEoll + L IIßjll) (7.24) 
j=O 

(Lemma 7.3). If h>' varies in a closed sub set of the interior of S, we have 
the better estimate 

m 

IIEm+111 ~ M(Km+1I1Eoll + LKm-jIlßjll) with some K < 1 (7.25) 
j=O 

(Lemma 7.4). The resulting asymptotic estimates for the global errors em = 
Ym-Y(xm) for mh~ Const are presented in Table 7.1 (p denotes the classical 
order, PD the differentiation order and PI the interpolation order of Section 
V.6). We assurne that the initial values are exact and that simultaneously 
h>' - 00 and h - 0. This is the most interesting situation because any 
reasonable method for stiff problems should integrate the equation with step 
sizes h such that h>' is large. We distinguish two cases: 

(A) the half-ray {h>' j h > 0, Ih>'1 2:: c} U {oo} lies in S (Lemma 7.3 is 
applicable, i.e., Formula (7.24)). 

(B) 00 is an interior point of S (Formula (7.25) is applicablej the global error 
IIEmll is essentially equal to the last term in the sum of (7.25)). 

Table 7.1. Error for (7.1) when h>' -> 00 and h -> 0 

Method error (A) (B) 

multistep t!m 0(1).1-1 hP-I) 0(1).1-1hP) 

one-leg em 0(hP1+1 + 1>'1-1hPD - 1 ) 0(hP1+1 + 1>.1-1hPD ) 
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We remark that the global error of the multistep method contains a factor 
I.AI- l , so that the error decreases if I.AI increases ("the stiffer the better"). 
The estimate in case (A) for one-Ieg methods is obtained by the use of 
Recursion (7.10). 

Convergence for Linear Systems 
with Constant Coefficients 

The extension of the above results to linear systems 

y' = Ay + g(x) (7.26) 

is straightforward, if we assume that the matrix A is diagonalizable. The 
following results have been derived by Crouzeix & Raviart (1980). 

Theorem 7.6. Suppose that the multistep method (e, er) is of order p, A( a). 
stable and stable at infinity. 1f the matrix A of (7.26) is diagonalizable (i.e., 
T-l AT =diag (.Ap ... , An)) with eigenvalues satisfying 

I arg( -\)1 ::; a fori=l, ... ,n, 

then there exists a constant M (depending only on the method) such that for 
all h > 0 the global error satisfies 

Ily(xm)-Ymll::; M'IITII'IIT-lll( m?X IIY(Xj)-Yj ll+ hP l"'''' Ily(p+l)(e)llde) . 
OSJ<k "'0 

Proo f. The transformation Y = Tz decou pIes the system (7.26) into n scalar 
equations 

(7.27) 

Since this transformation leaves the numerical solution invariant, it suffices 
to consider Equation (7.27). Lemma 7.3 yields the power boundedness 

for h > 0, i = 1, ... , n and m:2: 0 . (7.28) 

The discretization error DLM{x) (Formula (7.5)) can be written as 

DLM{x) = hP+l l k Kp{s)z~P+l)(x + sh)ds , (7.29) 

where Kp(s) is the Peano-kernel of the multistep method (Theorem III.2.8). 
By A{a)-stabilitywehaveak·ßk > 0, so that lak-h.A;ßkl-l::; lakl- 1 . This 
together with (7.29) implies that 

IIßjl1 ::; ChP l"'i+k Iz~p+l)(e)lde , 
J 

(7.30) 
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where C depends only on the methode The estimates (7.28) and (7.30) 
inserted into (7.16) yield abound for the global error of (7.27), which, by 
backsubstitution into the original variables, proves the statement. 0 

Because of its exponentially decaying term, the following estimate is 
especially useful in the case when large time intervals are considered (or 
when the starting values do not lie on the exact solution). 

Theorem 7.7. Let the multistep method (11,0') be of order p ~ 1, A( a)-stable 
and strictly stable at zero and at infinity (i.e., O'() =0 impliesl(l < 1). 1f 
the matriz A of (7.26) is diagonalizable (T-l AT = diag (>'1'" ., >'n,)) with 
eigenvalues >'i satisfying 

Re>..<-X<o . -
then, for given ho > 0, there ezist constants M and v > 0 such that for 
0< h:::; ho 

Ily(zm) - Ymll <M ·IITII·IIT-111· (e-v(z",-Zo). max Ily(zj) - yjll 
- O$j<k 

+ hP l:m e-V (zm-Ü ll y(p+l)(e)llde) . 

Remark. The constants M and v may depend on ",(, X, ho and on the method, 
but they are independent of the eigenvalues \ and of the length zm - Zo of 
the integration interval. 

Proof. By Lemma 7.5 there exists an r > 0 such that 

IIC(h>'i)mll :::; Moe-mls'/2 for Ih>'il:::; r (7.31) 

(observe that IJLI :::; ConstlReJLI, if I arg( -JL)I :::; "'( < 7r/2). Since 

D = {JL j I arg(-JL)I :::; ",(, IJLI ~ r} U {co} 

lies in the interior of the stability region S, it follows from Lemma 7.4 that 

(7.32) 

with some 11< 1. Combining the estimates (7.31) and (7.32) we get 

for 0< h :::; ho , (7.33) 

where M = max(Mo, M l ) and v = min(X/2,-ln Il/ho)' Using (7.33) instead 
of (7.28) and mh = zm -zo, the statement now follows as in the proof of 
Theorem 7.6. 0 
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Matrix Valued Theorem of von Neumann 

An interesting contractivity result is obtained by the following matrix valued 
version of a theorem of von Neumann's (Theorem IV.11.2). 

We consider the Euclidean scalar product (-,.) on Rn, the norm 11 . Ila 
on Rk which is defined by a symmetrie, positiv definite matrix G, and 

k 

Illullla = I: 9ij(Ui' u j ) (7.34) 
i,j=l 

The corresponding operator norms are denoted by the same symbols. 

Theorem 7.8 (0. Nevanlinna 1985). Let G(f.L) = (cij(f.L))f,j=l be a matriz 
wh08e element8 are rational junction8 of f.L. 1f 

for Ref.L::; 0 , (7.35) 

then 
IIIG(A)llla ::; 1 (7.36) 

for all matriceJ A Juch that 

Re (y,Ay) ::; 0 for y E Cn . (7.37) 

Remark. If G(f.L) is the companion matrix of a G-stable method (e,u), 
the result follows from Theorem 6.7 and Exercise 3 below ("It would be 
interesting to have a more operator-theoretical proof of this." Dahlquist & 
Söderlind 1982). 

Proof. This is a straight-forward extension of Crouzeix's proof of Theorem 
IV.11.2. We first suppose that Ais normal, so that A= QDQ* with a unitary 
matrix Q and a diagonal matrix D = diag (>'1"'" >'n)' In this case we have 

IIIG(A)llla = 111(1 ® Q)G(D)(1 ® Q*)llIa = IIIG(D)lIla . (7.38) 

With the permutation matrix P = (I ® e1 , ••• ,I ® en ) (where I is the k­
dimensional identity and ej is the n-dimensional j-th unit vector) the matrix 
G(D) is transformed to block-diagonal form according to 

P*G(D)P = blockdiag (G(>'l)"'" G(>'n)) . 

We further have P*(G ® 1)P=I ® G. This implies that 

P*G(D)*(G ®I)G(D)P = blockdiag (G(A 1 )*GG(A1 ), ••• ) 

and hence also 

IIIG(D)lIla = . max IIG(Ai)lIa 
t=l, ... ,n 

(7.39) 
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The statement now follows from (7.38) and (7.39), because Re \ :S 0 by 
(7.37). 

For a general A we consider A(w) = ~(A + A*) + ~(A - A*) and define 
the rational function 

<p(w) = IIIC(A(w))vlll& = v*C(A(w))*(G ® I)C(A(w))v . 

The statement of the theorem can then be deduced exactly as in the proof 
of Theorem IV.11.2. 0 

This theorem can be used to derive convergence results for differential 
equations (7.26) with A satisfying (7.37). Indeed, if the method (e,O') is 
A-stable, the companion matrix (7.13) satisfies IIC(JL)lla :S 1 for ReJL :S 
o in some suitable norm (Exercise 3). The above theorem then implies 
IIIC(hA)llla :S 1 and Formula (7.16) with A replaced by A yields the estimate 

m 

IIIEm +1 11Ia :S IllEo lila + L Illß j lila· (7.40) 
j=O 

This proves convergence, because ß j can be bounded as in (7.30). 

Discrete Variation of Constants Formula 

A second approach to convergence results of linear multistep methods is by 
the use of a discrete variation of eonstants formula. This is an extension of 
the classieal proofs for nonstiff problems (Dahlquist 1956, Henriei 1962) to 
the ease J-t =1= O. It has been developed by Crouzeix & Raviart (1976), and 
more reeently by Lubieh (1988, 1990). 

We eonsider the error equation (cf. (7.13)) 

k 

L(ai-JLßi)em+i = dm+k for rn 20 (7.41) 
i=O 

and extend this relation to negative rn by putting ej = 0 (for j < 0) and by 
defining do,"" dk _ 1 aecording to (7.41). The main idea is now to introduee 
the generating power series 

e(() = 'L ej(j , 
j2:0 

d(() = 'Ldj(j 
i2:0 

so that (7.41) beeomes the rn-th coefficient of the identity 

(e(C I ) - JLO'(C1))e(() = Ckd(() . (7.42) 
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This gives 

and allows to eompute easily em in terms of dj as 

m 

em = Lrm_j(J.t)dj . 
j=O 

Here rj(p,) are the eoefficients of the diserete resolvent 

where 

() e( (-1) _a.::..;o(:....,.k_+_._._. +_a.:::.;k_;;:.!1:..:..(_+_a....:::.k 
6( =--= k 

0'( (-1) ßo( + ... + ßk- 1 ( + ßk 

(7.43') 

(7.44) 

(7.45) 

Sinee (e«(-1) - p,O'«(-l))r«(,p,) = (-k, the eoeffieients 'f'j(p,) ean be inter­
preted a.s the numerieal solution Yj of the multistep method applied to the 
homogeneous equation y' =p,y with step size h= 1, and with starting values 
Y-k+l = ... = Y-1 =0, Yo =(ak-p,ßk)-1. 

Formula (7.43') ean be used to estimate em , if appropriate bounds for 
the eoefficients rj(p,) of the discrete resolvent are known. Such bounds are 
given in the following lemma. 

Lemma 7.9. Let see denote the stability region 0/ the multistep method. 

a) 1/ S is closed in ethen 

M 
h(p,)1 :$ 1+1p,1 /or p, E Sand j = 0,1,2, ... 

b) 1/ D eInt S is clo&ed in ethen there ezi&t& a constant K, (0< K, < 1) such 
that 

/or p, E D and j = 0,1,2, ... 

c) 1/ the method is strictly stable then there ezists a neighbourhood V 0/0 
such that 

/or p, E V and j = 0,1,2, ... 

The constants M, K" and a are independent 0/ j and p,. 
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Proof. The estimates for h(IL)1 in (a), (b), and (c) can easily be deduced 
from Lemmas 7.3, 7.4, and 7.5 because rj(lL) is the numerical solution for the 
problem y' =ILY with step size h= 1 and starting values Y-k+1 = ... =Y-1 =0, 
Yo = (o.k -ILßk)-1. 

As noted by Orouzeix & Raviart (1976) and Lubich (1988) the estimates 
of Lemma 7.9 can be proved directly, without any use of the Kreiss matrix 
theorem. We illustrate these ideas by proving statement (b) (for a proof of 
statement (a) see Exercise 4). 

By definition of the stability region the function (k(e( (-1) -ILO'( (-1)) 
does not vanish for I( I ::; 1 if IL EInt S. Therefore there exists a K (0< K < 1) 
such that (k(e(-l) -1L0'(-1)) has no zeros in the disk 1(1 ::; l/K. Hence, 
for IL E D 

sup I (e( Cl) - ILO'( Cl)) -1 C k I ::; 1 +M
I 

I ' 
!(!9/1< IL 

and Oauchy's integral formula 

rj(lL) = ~ f (e((-l) _1L0'(C1))-1(-k(-j-1d( 
27l't 1!(!=1/ I< 

(7.46) 

yields the desired estimate. D 

The use of the discrete resolvent allows elegant convergence proofs for 
linear multistep methods. We shall demonstrate this for the linear problem 
(7.26) where the matrix A satisfies 

II(sI _A)-lll ::; 1 ~sl for I arg(s-c)1 ::; 71' - 0.' (7.47) 

with some cER. This is a common assumption in the theory of holomorphic 
semigroups for parabolic problems (see e.g., Kato (1966) or Pazy (1983)). If 
all eigenvalues.\ of A satisfy larg(\-c)-7l'1<o. ' then Oondition (7.47) is 
satisfied with a constant M depending on the matrix A (Exercise 2). The 
following theorem, which was communicated to us by Oh. Lubich, is an 
improvement of results of Orouzeix & Raviart (1976). 

Theorem 7.10. Let the multistep method be of order p 2: 1, A( 0.) -stable 
and strictly stable at zero and at infinity. 1f the matrix A of (7.26) satisfies 
(7.47) with 0. ' < 0., then there exist constants C, ho' and"Y h of the same 
sign as c in (7.47)), which depend only on M, c, 0. ' and the method, such 
that for h::; ho the global error satisfies 

Ily( zm) - Ym 11 

::; C(e'Y"'''' max IIY(z.) - Y·II + hP 1"'''' e'Y("''''-{)lly(P+1)(~)lld~) 
O~j<k J J "'0 

Moreover, if c::; 0, then ho can be chosen arbitrarily. 
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Proof. The global error em = y(xm)-Ym satisfies 

k 

,~)ai -hAßi)em +i = dm+k 
i=O 

where 

m ;:: 0 (7.48) 

and do' •.• ,dk _ 1 are linear combinations of the ej and hAej with j < k. We 
split these expressions into 

for R< k 

so that d~ and d~ are linear combinations of the e j (j< k) only. We also put 
d~ = de and d~ = 0 for R;:: k. The analysis at the beginning of this subsedion 
(Formula (7.43)) then shows that 

e(() = r((, hA)d'(() + r((,hA)hAd"(() (7.49) 

where as in the scalar case 

r((,hA) = (6(()I-hA)-1 O't(-~1) = ~rj(hA)(j . (7.50) 
J_ 

We now apply Lemma 7.11 below with <p(s) = (si -A)-1. Byassumption 
the estimate (7.57) holds with ß=l so that 

Ih(hA)11 ::; Ce'Yjh . (7.51) 

The second term in (7.49) can be written as 

r((,hA)hA(6(())-16(()d"(() = r'((, hA)d(() (7.52) 

where 

r'((, hA) = (6(()I -hA)-1hA(6(())-1 O't:~1) = ~ rj(hA)(j 
J_ 

d(() = 6(()d"(() = L ~(j . 
'>0 J_ 

We apply Lemma 7.11 again, this time to 

<p(s) = (si _A)-1 As-1 = (si _A)-1 - s-1 I . 

Condition (7.57) is satisfied with ß = 1 so that 

Ilrj(hA)11 ::; C'e'Yjh . 

(7.53) 

(7.54) 

The coefficients 6j of 6( () are exponentially decaying because all zeros of 
0'( () lie in I( I< 1. Consequently we have 

(7.55) 
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with some '" < 1. The coefficient of (m in (7.49) gives 

m m 

j=O j=O 

Inserting the estimates (7.48), (7.51), (7.54), and (7.55) proves the state­
me~. 0 

We still have to prove the estimates for rj(hA) and rj(hA). For this we 
let «p( s) be some analytic (scalar-, vector-, or matrix-valued) function and 
consider the coefficients of 

(7.56) 

We then have the following result. 

Lemma 7.11 (Lubich 1990). Assume that the multistep method is A(a)­
stable and strictly stable at zero and at infinity. Further suppose that «p( s) is 
analytic in a s eclor I arg( s -c) I < 11" -a' with a' < a, cER and there satisfies 

for some ß > 0 . (7.57) 

Then the coefficients 'Pj(h) of (7.56) are bounded for h::; ho (sufficiently 
smalI) by 

for j ~ 1 , (7.58) 

and for j=O the same bound holds as for j=1. The constants C, [, and ho 
depend only on a', c, M, ß, and the multistep method. Moreover, if c < 0, 
then also [< 0, and the result holds for arbitrary ho. 

Proof. By A( a)-stability we have ßk/ ak > 0, so that h(O)/ h lies in the region 
of analyticity of «P for h::;ho. Cauchy's integral formula thus gives 

(7.59) 

where r is a suitable contour from "00· e-i(lr-a')" to "00· ei(lr-a')" within 
the sector of analyticity of «P and does not meet the origin (see Fig. 7.1; 
observe that «p( s) decays sufficiently rapidly at infinity). Multiplying (7.59) 
by (-k / a( (-1) and comparing coefficients of equal powers of ( yields the 
represent ation 

·>0 J - (7.60) 

which is a discrete analogue of the Laplace inversion formula. We next 
substitute w = j h>' (for j = 0 we put w = h>') so that with r j = j h . r Formula 
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(7.60) becomes 

tpj(h) = 2~i l Tj (y)~ CWh ) ~~ , 
1 

j;::l, (7.61) 

and the use of (7.57) yields 

Iltpj(h)1I ::; ~ (jh)ß-l l h (y) l'lwl-ß 'Idwl . 
1 

(7.62) 

8(O)jh 

Fig.7.1. Contour r in Formula (7.59) 

We still have to show that the integral in (7.62) is bounded by C· e-yjh. For 
this we split it into two parts: the first one corresponcls to those w such 
that w j j lies in a elosed sub set of the interior of the stability domain of the 
method. There we can use Lemma 7.9b so that the corresponding part of 
the integral in (7.62) is bounded by 

j . ",j ! Iwl-ß-1Idwl ::; Ce-yjh for h::; ho . 

For the remaining part, the argument w/j = h>" of Tj in (7.62) lies, for 
sufficiently small ho' in a neighbourhood V of the origin, where the estimate 
of Lemma 7.9c holds. For jh;:: 1 we thus obtain the bound 

! eRew+a/w/2/ilwl-ßldwl::; Ce-yjh , 

because Rew = jhRe >.., Iw1 2 /j ::; jh . Const and Iwl ;:: 1>"1 is bounded away 
from the origin. For small j h the contour r j comes arbitrarily elose to the 
origin so that a more refined estimate is required. The idea is to replace the 
corresponding part of r j (in (7.61) and hence also in (7.62)) by an equivalent 
contour which is independent of jh E [h,l], has a positive distance to the 
origin and remains in the neighbourhood V. The corresponding integral is 
thus bounded by some constant. 0 
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Remark 7.12. In Lemma 7.11 it is sufficient to require the analyticity of 
iJ( s) and the estimate (7.57) in a seetor I arg ( s - c) I < 7r - 0:', where some 
eompact neighbourhood of the origin is removed. We just have to take the 
eontour r in (7.59) so that it lies outside this eompaet neighbourhood of O. 
In this situation, the eonstant 'Y may be positive also if c< O. 

Exercises 

1. Prove the Cauehy integral formula (7.18) in the ease where all eigenvalues 
A of A satisfy lAI :s; 1 and the eontour of integration is the circle Izl = f! 
with f! > 1. 
Hint. Integrate the identity 

00 

zn(zI - A)-l = LAi zn-i-l . 
i=O 

2. (Kato 1960). For a non-singular k x k-matrix B show that in the Eu­
clidean norm 

IIB-lil < IIBlllc-l . 
- I detBI 

Hint. Use the singular value deeomposition of B, i.e., B = UT AV, where 
U and V are orthogonal and A = diag(O'l , ... ,0',.) with 0'1 ~ 0'2 ~ ... > 
0',. > O. 

3. A method (e,O') is ealled A-contractive in the norm II ·IIG (Nevanlinna 
& Liniger 1978-79, Dahlquist & Söderlind 1982), if 

where 0(1') is the eompanion matrix (7.13). 

a) Prove that a method (e, 0') is A-eontractive for some positive definite 
matrix G, if and only if it is A-stable. 

b) Compute the eontraetivity region 

for the 2-step BDF method with G given in (6.20). Observe that it is 
strictly smaller than the stability domain. 

Result. The eontractivity region is {I' E Cj Re I' :s; O}. 
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4. Give a direct proof for the statement of Lemma 7.9a. 

Hint. Observe that 

1 k 1 
r( ( , /-L) = rr -:---~-:---:'7 

Qk-/-Lßk i=l (1-(· (i(/-L)) 
(7.63) 

where (1 (/-L), .. . '(k(/-L) are the k zeros of e( ()-/-LO"( (). If /-Lo EInt S then 
there exists a neighbourhood U of /-Lo such that I(i(/-L) I :::; a < 1 for all 
i and /-L EU. Hence the coefficients r j (/-L) are bounded. For /-Lo E as 
we have l(i(J.to)1 = 1 for, say, i = 1, ... , e with 1:::; e:::; k. These e zeros 
are simple for all /-L in a sufficiently small neighbourhood U of /-Lo and 
the other zeros satisfy I (i (/-L) I :::; a < 1 for J.t E UnS. A partial fraction 
decomposition 

shows that 

1 e 
rj(/-L) = Qk-/-Lßk (~Ci(/-L)((i(/-L))j + Sj(/-L)) (7.64) 

w here S j (/-L) are the coefficien ts of s ( ( , /-L ). Since S ( (, /-L) is uniformly 
bounded for 1(1 :::; 1 and /-L E uns, it follows from Cauchy's integral 
formula with integration along 1(1 = 1 that S j (/-L) is bounded. The state­
ment thus follows from (7.64) and the fact that a finite set of the family 
{U} !LoES covers S (Heine-Borel). 



V.8. ConverRence for Nonlinear Problems 

In Section V.6 we have seen a convergence result for one-leg methods (The­
orem 6.10) applied to nonlinear problems satisfying a one-sided Lipschitz 
condition. An extension to linear multistep methods has been given in The­
orem 6.11. A different and direct proof of this result will be the first goal of 
this section. Unfortunately, such a result is valid only for A-stable methods 
(whose order cannot exceed two). The subsequent parts of this section are 
then devoted to convergence results for nonlinear problems, where the as­
sumptions on the method are relaxed (e.g., A( a )-stability), but the dass of 
problems considered is restricted. We shall present two different theories: 
the multiplier technique of Nevanlinna & Odeh (1981) and Lubich's per­
turbation approach via the discrete variation of constants formula (Lubich 
1990). 

Problems Satisfying a One-Sided Lipschitz Condition 

Suppose that the differential equation y'=f(x,y) satisfies 

Re (f(x, y) - f(x, z), y-z} ::; vlly_zl12 (8.1 ) 

for some inner product. We consider the linear multistep method 

k k 

'2: a iYm+i = h '2: ßd(Xm+i'Ym+J (8.2) 
i=O i=O 

together with its perturbed formula 

k k 

Lai Ym+i = h L ßi f(xm+i' Ym+i) + dm+k . (8.3) 
i=O i=O 

The perturbations dm +k can be interpreted as the influence of round-off, as 
the error due to the iterative solution of the nonlinear equation, or as the 
local discretization error (compare Formula (7.5)). Taking the difference of 
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(8.3) and (8.2) we obtain (for m~ 0) 

k k 

L Qi AYm+i = h L ßi AI m+i + dmH ' (8.4) 
i=O i=O 

where we have introduced the notation 

(8.5) 

The one-sided Lipschitz condition cannot be used direct1y, because several 
A/j appear in (8.4) (in contrast to one-Ieg methods). In order to express 
one Alm in terms of AYj only we introduce the formal power series 

It is convenient to assume that AYj = 0, A/j = 0, dj = 0 for negative indices 
and that do,'''' dk _ 1 are defined by Formula (8.4) with m E {-k, ... , -I}. 
Then Equation (8.4) just compares the coefficient of (m in the identity 

U((-1) Ay(() = hO'((-1)A/(() + (-kd(() . (8.4') 

Dividing (8.4') by 0'((-1) and comparing the coefficients of (m yields 

where 

as in (7.45) and 

m 

Lbm-j AYj = hAlm + dm , 
j=O 

(8.6) 

(8.7) 

(8.8) 

In (8.6) Alm is now isolated as desired and we can take the scalar product 
of (8.6) with Aym. We then exploit the assumption (8.1) and obtain 

m 

(8.9) 

This allows us to prove the following estimate. 

Lemma 8.1. Let {AYj} and {A/j } 8ati8fy (8.6) with bj given by (8.7). 11 

Re (Alm' Aym) :S vilAYml1 2 , m ~ 0 , 
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and the method is A-stable, then there exist constants C and Co > 0 such 
thatformh5:xend-xO and hl/5:Co' 

m 

II~Y7nII5: CL II~II . 
j=O 

Proof. We first reformulate the left-hand side of (8.9). For this we introduce 
{~zi} by the relation 

k 

L ß;~zm+; = ~Ym , 
i=O 

m 2:: 0 (8.10) 

and assurne that ~zi = 0 for j < k. With ~z( 0 = Li ~zi (i this means that 
11( (-1 )~z( () = ~Y( (). Consequently we also have 

which is equivalent to 

m k 

L hm- i ~Yj = L °i ~zm+i . (8.11) 
j=O ;=0 

Inserting (8.11) and (8.10) into (8.9) yields 

k k 

Re \ L 0; ~zm+i , L ßi ~Zm+i) 
i=O i=O 

k 2 k 

5: hl/II Lßi ~zm+ill + Re \ dm' Lßi ~Zm+i) . 
i=O i=O 

By Theorem 6.7 the method (e, (1) is also G-stable, so that Formula (6.21) 
can be applied. As in the proof of Lemma 6.9 this yields for ~Zm = 

(~Zm+k_P'''' ~zm)T and l/ 2:: 0 

(if l/ < 0 replace l/ by l/= 0). But this implies 

m 

II~Zm+lIIG 5: C3 (11~ZoIIG + L IIdjll) . 
j=O 

By definition of ~Zj we have ßZo =0. The statement now follows from the 
fact that IIßYmll5: C4 (1IßZm+1 1IG+IIßZmIIG)· 0 
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This lemma allows a direet proof for the eonvergenee of A-stable multi­
step methods whieh are strietly stable at infinity (eompare Theorem 6.11). 

Theorem 8.2. Oonsider an A-stable multistep method 0/ order p which 
is strictly stable at injinity. Suppose that the differential equation satisjies 
(8.1). Then there ezists Co >0 such that /or hv:::; Co 

Ilym-y(zm)11 -:; C( max IIYj-y(zj)lI+h max IIf(zj,Yj)-y'(zj)lI) + MhP • 
O~j<k O~j<k 

The constant C depends on the method and, /or v> 0, on the length zm -zo 
0/ the integration interval; the constant M depends in addition on bounds 
/or the (p+ 1 )-th derivative 0/ the ezact solution. 

Proof. We put Ym = y(zm) in (8.3). The perturbations thus beeome the 
loeal truneation errors dm+k=hLM(zm)' where 

k k 

hLM(z) = l: aiy(z+ih) - h l:ßiy'(z+ih) . (8.12) 
i=O i=O 

If the zeros of 0'( () all lie inside the unit circle, then the eoeffieients of 
(-k/O'(-l) are absolutely summable and by (8.8) we have 

m m 

l: II~II -:; Cll: IIdjll . 
j=O j=O 

The statement then follows from Lemma 8.1, from IIhLM(z)1I -:; Mhp+1 , and 
from the fact that do,"" dk_ l are linear eombinations of the Yj-Y(z) and 

h(J( Zj' Yj) -Y'( z j)) for j < k. 0 

Multiplier Technique 

The above eonvergenee proofis based on Formula (8.6) and on the A-stability 
of the multistep method. How ean we modify this proof in order to get 
eonvergenee results also for methods whieh are not A-stable? This can be 
done by the so-ealled "multiplier teehnique", introdueed by Nevanlinna & 
Odeh (1981) and based on previous ideas of Nevanlinna (1977) and Odeh & 
Liniger (1977). 

The main idea is the following: instead of multiplying scalarly the iden­
tity (8.6) by fj.ym , we multiply it by 

m 

L JLm-j fj.Yj 
j=O 
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where {J.tj} are the coefficients of a rational function (the multiplier) 

. 1)(-1) 
J.t() = ~ J.tj(J = 7(-1) 

J_ 

(8.13) 

(1) and 7 are polynomials ). We obtain 
m m m 

Re (L bm_j tlYj , L J.tm-j tlYj) = hRe (tlfm, L J.tm-j tlYj) 
j=O j=O j=O 

(8.14) m 

+ (dm,LJ.tm-jtlYj) . 
j=O 

Our next aim is to introduce new variables tlzj such that the left-hand side 
of (8.14) becomes 

m m e e 

(L bm_j tlYj , L J.tm-j tlYj) = (L äi tlzm+i , L ßi tlzm+ i ) • (8.15) 
j=o j=O i=O i=O 

Denoting 
e e 

a() = L äi(i , 0:(0 = Lßi(i, 
i=O i=O 

the identity (8.15) certainly holds, if 

e( Cl) tly( () = 0"(-1) a( (-1) tlz( () 

1]( Cl) tly( () = 7( Cl) 0:( Cl) tlz( () . 

(8.16) 

(8.17) 

Dividing these two relations motivates the following definition of the new 
generating polynomials 

ü() = u()1J()/X() . (8.18) 

Here X() denotes the greatest common divisor of e()7() and 0"(()1)((). If 
we define tlz j = 0 for j < 0 and the remaining tlz j by 

(8.19) 

the identity (8.15) holds for all m. Suppose now that the multistep method 
(a,O:) is A-stable, then the left hand side of (8.14) can be minorized by the 
G-stability estimate (6.21) and we shall be able to derive convergence results. 
This motivates the following 

Definition 8.3. The rational function J.t(() of (8.13) is called a multiplier 
for (e, u) if J.t( () 'I- e( (-1)/ 0"( (-1) and if the method (a,O:), given by (8.18) 
is A-stable, i.e., if 

( 1 e(()) 
Re J.t((-1)·0"(() >0 for 1(1 > 1 . (8.20) 
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A continuation of the above analysis yields the following convergence 
result. 

Lemma 8.4. Let {AYj} and {.A/j } satisfy (8.6) with bj given by (8.7). 11 
N m 

I: I: JLm_jRe (Alm' AYj) ::; 0 lor all N 2: 0 
m=O j=O 

and il JL( () is a multiplier for the method, then there ezists a constant C 
such that for mh ::; zend-zO 

m 

IIAYml1 ::; CI: II~II . 
j=O 

Proof. Inserting (8.15) into (8.14) and using the estimate (6.21) for the 
A-stable method (Ü,u) yields for AZm =(AzmH_1,···, Azm)T 

m 

IIAZm+111~ - IIAZmll~ ::; hRe (Alm, I: JLm-j AYj) 
j=O 

l 

+ Ildmll·11 I:ßiAzm+ill· 
i=O 

Summing up this inequality from m=O to m=N gives 

N 

IlboZN+111~ ::; Cl ~ 11J:n1l· (1IboZm+lII G + IlboZmII G) , 
m=O 

because AZo =0 by (8.19). This also implies 

M 

max IIAZN+111~ ::; 2C1 ~ Ildmll' max IIAZm+11IG 
N<M LJ m<M - m=O-

(8.21) 

A division by maxN<M IIAZ N+111a yields the desired estimate, because AYM 
is a linear combinatTon ofthe elements of AZM +1• 0 

The proof of Theorem 8.2 applied to the A-stable method (Ü, u) now 
yields: 

Theorem 8.5 (Nevanlinna & Odeh 1981). Consider a linear multistep 
method (8.2) of order p, which is strictly stable at infinity and has a multi­
plier JL( (). Suppose that the differential equation satisfies 

N m 

I: LJLm_jRe (J(zm'um) - I(zm'vm), u j - Vj) ::; 0 (8.22) 
m=O j=o 
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tor all N"20 and tor all sequences {Uj} and {Vj}' Then we have 

Ilym-y(xm)ll::; C(max IIYj-y(x)')II+h max Ilf(x)·,Y)·)-Y'(x)·)II)+MhP , 
O~j<k O~j<k 

where the constants C and Mare as in Theorem 8.2. o 

In the next two subsections we shall study the existenee and construction 
of multipliers, and try to better understand the eondition (8.22). 

Construction of Multipliers 

" ... the best of aH multipliers would be {1, -11} with a very 
smaHl1>Oj ... " (Nevanlinna & Odeh 1981) 

Obviously 11-( () = 1 is a multiplier ifI the method itself is A-stable. Moreover, 
the limit 1(1 -+ 00 in (8.20) shows that 11-(0) must have the same sign as G:k / ßk 

(whieh we always assume to be positive). Therefore, the simplest (and most 
important) nontrivial multiplier has the form 

11-( () = 1 - 1]( . (8.23) 

Suppose now that the method (U,O') is stable at infinity. The maximum 
prineiple for harmonie functions then implies that (8.23) is a multiplier for 
(U, 0') ifI 1171::; 1 and 

( it e(e it )) 
Re (l-17 e ) 0'( eit) "2 0 for aH tE R . 

This eondition motivates the study of 

( ( U( eit ) ) ( it U( eit ) )) 
')'(t) = Re O'(eit ) , -Re e O'(eit ) , (8.24) 

whieh is called the modified root-Iocus curve by Nevanlinna & Odeh (1981). 
We then have: 

Criterion 8.6. Consider a method which is stable at infinity. The function 
(8.23) is a multiplier tor (U,O') iff 1171::; 1 and the modified root-locus curve 
lies to the right of the straight line through the origin with slope -1/17. 

Fig.8.1 shows the modified root-locus curves for the BDF sehemes for 
2::; k::; 6. The optimal values for 1] are given in Table 8.1. 
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30 
k=6 k=2 

-10 o 10 20 30 -1 o 1 

Fig.8.1. Modified root-locus curve for BDF schemes 

Table 8.1. Multiplier for BDF schemes 

k TI arccos TI A( a )-stable 

2 0 7r/2 7r/2 

3 0.0836 85.20° 86.03° 

4 0.2878 73.27° 73.35° 

5 0.8160 35.32° 51.84° 

6 5.0130 17.84° 

An interesting property of multipliers is the following. 

Proposition 8.7. 1f f.l(() is a multiplier for (/?,O') and we have 

7r 
1 arg f.l(() 1 ::; "2 - a for 1(1::; 1 (8.25) 

then the method is A( a )-stable. 

Proof. Condition (8.20) together with (8.25) implies that 

for 1(1 ~ 1 . 

But this condition implies A( a )-stability. o 

A simple calculation shows that the multiplier (8.23) satisfies (8.25) with 
a = arccos TI. For the BDF schemes we have included these values in Table 
8.1 together with the a-values for linear stability. 
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Multipliers and Nonlinearities 

We still have to investigate the problem under wh at conditions on the mul­
tiplier 11«() and on the function f(x,y) one has (8.22) for all sequences {Uj} 
and {Vj}. To get an idea of the nature of (8.22) we first look, following 
Nevanlinna & Odeh (1981), at the linear problem y' = Ay. 

Proposition 8.8. 1/ the multiplier 11«() satisfies (8.25) and i/ the range 0/ 
the matrix A lies in the sector 1 arg(Au,u) -11"1 S. 0: /01' all U E Cn, then we 
have 

N m 

L Ll1m-j Re (Aum,uj) S. 0 (8.26) 
m=O j=O 

/01' all N?O and all sequenees {u). 

Proof. A direct computation shows that the expression in (8.26) equals 

where 
N 

uN(t) = L e-ijtuj 
j=o 

(8.27) 

denotes the Fourier transform of (uo,ul> ... ,uN). The assumptions on 11«() 
alld on A imply that the integrand in (8.27) has non-positive real part. This 
proves (8.26). 0 

Problems which satisfy (8.22) for some multiplier 11«() must also satisfy 
the one-sided Lipschitz condition (8.1) with v = 0 (this is seen by putting 
N = 0 in (8.22)). A dass of nOlllinear problems, for which (8.22) holds, is 
given by the following perturbation result. 

Proposition 8.9. Let f(x,y)=-Ay+Ag(x,y) where Ais asymmetrie and 
positive semi-definite matrix. With Ilull~ =uT Au suppose that 

Ilg(x,y) - g(x, z)IIA s. LIIY - zilA . 
Then Condition (8.22) holds i/ 

L.maxll1(OI S. minRel1(O· 
1(1=1 1(1=1 

Remark. For the multiplier (8.23) COlldition (8.29) is equivalent to 
L· (1+17)S.(1-17). 

(8.28) 

(8.29) 
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Proof. As in the proof of Proposition 8.8 we get for Wj =Uj -Vj 

(8.30) 

where m o = min Re IL( eit ). On the other hand, the inequality of Cauchy­
Schwarz gives 

N m 

L Re(A(g(zm,um)-g(zm,vm», LJLm-j(Uj-Vj)) 
m=O j=O 

( N ) 1/2 (N 11 m 11 2 ) 1/2 ~ J; Ilg(Zm,Um) - g(Zm,Vm)ll: . J; ~JLm-j(Uj-Vj) A 

(8.31) 
The last term in (8.31) can be estimated as (for the moment put W j = 0 for 
j>N) 

where M = max IJL( e-it)l. These estimates together with (8.28) show that 
the expression in (8.22) is majorized by 

N 

(L. M -mo) L Iluj - vjll~ . 
j=O 

This is non-positive if (8.29) holds. o 

Discrete Variation of Constants and Perturbations 

We now turn our attention to the perturbation approach of Lubich (1990), 
which extends the ideas of Section V.7 (discrete variation of constants) to 
nonlinear problems. For this we consider nonlinear differential equations 
written in the form 

y' = Ay + g(t,y) . (8.32) 
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Inserting this equation into Formulas (8.2), (8.3), and (8.4) we get 

k 

~)o:J -hAßi )6.Ym+i = h6.gm +k + dm+k (8.33) 
i=O 

where 
k 

6.gm+k = L ßi (g(Zm+i' Ym+i) - g(:Z:m+i' Ym+i») (8.34) 
i=O 

for m ~ O. We further put 6.gj = 0 for j < k. Reeall that dj (for j ~ k) 
are usually the loeal truneation errors and do, . •• , dk _ 1 are defined by (8.33) 
with mE {-l, ... ,-k}. The differenees 6.Yj are then the global errors of 
the method. If we introduce the formal power series 

6.g«) = L Agj(j, d«) = L dj(i 
i~O j~O 

then the reeursion (8.33) can be written as 

6.y«) = r«,hA) (h6.g«) +d«» . (8.35) 

The resolvent r«,hA) was introdueed in (7.44) and (7.50). The coefficient 
of (m in (8.35) then yields 

m m 

(8.36) 
j=O j=O 

The second sum on the right-hand side of (8.36) ean be estimated as in 
Seetion V. 7. In order to estimate the first term we have to eombine estimates 
for rj(hA) with a Lipschitz eondition for g(:z:, y). This will lead to a Gronwall­
type inequality, whose resolution gives the desired estimates for 6.Ym' Let 
us illustrate this proeedure in a simple situation. 

Theorem 8.10. Let the multiltep method and the matriz A sati&/y the 
auumptions 0/ Theorem 7.10. 1/ the nonlinearity g( z, y) satisfies 

Ilg(z,y) - g(z,z)11 :::; Llly - zll (8.37) 

then there ezist conltants C, ho and'Y as in Theorem 7.10, and A (ho and 
A depend on L) such that 

Ily(zm) - Ymll 

:::;CeAzm(max Ily(z.)-Y.II+hP rm e'Y(z"'~)lly(p+l)(e)llde) 
O~j<k J J 1zo 
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Proof. It follows from the proof of Theorem 7.10 and from (8.36) that 

m m 

IIAYml1 :::; hLC1 L e'Y(m-j)hIIAYjll + C2 L e'Y(m-j)hCj (8.38) 
j=O j=O 

where (with O:::;K< 1) 

cm = Co (Km m~ IIAyjl1 + hP r m Ily(p+l)(e)llde) 
O~J<k J~m_k 

Application of Exercise 1 to the sequence {e-1'mh IIAym ll} yields the conclu­
~. 0 

Recently, Lubich (1990) has shown how the above estimates can be im­
proved to obtain convergence results for singularly perturbed problems and 
for discretized nonlinear parabolic equations. We shall present his results 
on parabolic problems in the next subsections. The result on singularly 
perturbed problems will be given in Section VI.1. 

Incompressible N avier-Stokes Equations 

Let us consider the incompressible Navier-Stokes equations 

8u d 8u 1 
- + LU i - = -Au-gradp, 
8t i=l 8xi R 

div u = 0 (8.39) 

where U= (u1 , ... , ud)T and R denotes the Reynolds number. In order to get 
a concrete idea of what a finite difference (or finite element) discretization 
of this system looks like, we denote by 00 the set of grid points in space 
and let Yj(t) be the vector which collects the approximations to the func­
tions {Uj(t,x)jX E 0o}. For simplicity, we assume homogeneous Dirichlet 
conditions U = 0 on the boundary. We denote by Di the matrix (not nec­
essarily square) which represents the differentiation 8/8xi , and by Si the 
matrix which provides the mean value of two neighbouring elements in the 
Xi direction. Typically D i and Si are tensor products of several identity 
matrices with 

1 1 1 
-1 1 1 1 

1 -1 1 1 1 1 
and -

AXi 2 
-1 1 1 1 

-1 1 1 



V.8. Convergence for Nonlinear Problems 377 

respectively. The discretized system is then given by 

d d 

yj + LYi. (SiDiYj) = - ~ L DTDiYj + (SjDjf z 
i=l i=l 

d 

LSiDiYi = O. 
i=l 

(8.40) 

Here • denotes the componentwise product of two vectors and z is the vector 
composed of values of p(:z:) (usually defined on a "staggered" grid). Finite 
element discretizations usually lead to (8.40), where Yj is multiplied by a 
positive definite, bounded and constant mass matrix M. Considering Ml/2 Yj 
instead of Yj, and Di M-l/2 instead of Di then gives a system of the very 
form (8.40). 

We next collect the vectors Yl" .. , Yd in a supervector Y, and set E = 
(SlD1"",SdDd) and 

DT = D[ ... DI (
Di ... DI 

The system (8.40) then becomes 

1 
y' = - R DTDy + g(y,Dy) + E T z 

Ey=O 
(8.41 ) 

where the nonlinear term in (8.40) is represented by g(y,Dy). In order to 
eliminate the algebraic equation in (8.41) we introduce V = {y E IFilN j Ey = 
O}, the discrete-divergence-free space, and denote by P=I -ET(EET)-lE 
the orthogonal projection onto V. Since PET = 0, and y = Py for the 
solution of (8.41) we see that y solves the equation on V, 

y' = - ~PDTDPy+Pg(y,DPY). (8.42) 

After a suitable basis transformation we may assume that y E Rn (where 
n is the dimension of the space V). Observe that multistep methods are 
invariant under the transformation of (8.41) into (8.42). 
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Convergence for Nonlinear Parabolic Problems 

We consider the system 

y' = _DTDy + g(y,Dy) , (8.43) 

and we assume that g(y,Dy) is locally Lipschitz bounded with respect to 
the Euclidean norm in both arguments: 

(8.44) 

The above considerations for the Navier-Stokes equations show that (8.42) 
is indeed of the form (8.43) (the matrix R-I/2DP in (8.42) plays the role 
of D in (8.43), and 9 is suitably redefined). Due to the quadratic term in 
(8.40) the condition (8.44) is satisfied with LI depending on max IIDyll, and 
L 2 depending on lIylI where y varies in some compact set. 

We shall work with the "energy norm" 

IIvll~ =vTBv, B=DTD+b1 (8.45) 

where b 2: 0 is chosen such that 

for all v E Rn (8.46) 

with some V > 0 independent of the dimension. In the case of Dirichlet 
boundary conditions the usual discretization yields (8.46) already with b= o. 
Positive values of b might be useful for more general boundary conditions. 

Application of a linear multistep method to (8.43) yields 

k k k 

L: O:iYm+i = _hDT D L: ßiYm+i + h L: ßig(Ym+i' DYm+i) . (8.47) 
i=O i=O i=O 

Instead of comparing the numerical solution {Ym} with the analytic solution 
y(t) of (8.43), it is more interesting to compare it with the exact solution 
of the original partial differential equation. We therefore denote by 11(t) a 
projection of the solution of the PDE into the finite-dimensional space under 
consideration. In this way we obtain 

11' = _DT D11 + g( 11, D11) + s( t) 
where s(t) is the spatialdiscretization error. 

Theorem 8.11 (Lubich 1990). Assume that the multistep method is 0/ order 
p, A( 0: )-stable /or some 0: > 0, and strictly stable at infinity. I/ applied to 
(8.43), the Jull discretization error ia bounded in the energy norm by 

lIy", -11(tm )IIB ~ G· (m~ IIYj -11(tj)IIB + hP l tm 1111(P+l)(t)IIB dt 
O~J<k 0 

+ IIB-Is(O)IIB + ltmIIB-IS'(t)IIB dt). (8.48) 
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The estimate holds lor t m = mh :S T provided that the expression on the 
right-hand side is bounded by a sufficiently small constant c. The constants 
C and c depend on maxO<t<T 1I1J(t)IIB' but are otherwise independent 01 D 
and the dimension 01 the system, and independent 01 m and h. 

Prool. a) The projected solution 1J(t) of the PDE, inserted into (8.47) gives 
with A=-DTD 

k k 

L Qi 1J(tm+i) = h L ßi (A1J(tm+i) + g(1J(tm+J, D1J(tm+i)) + s( t rn+i )) 
i=O i=O 

where 

(8.49) 

The same analysis which was necessary for (8.36), now gives for the error 
l1Ym =1J(tm)-Ym the relation 

rn rn 

j=O j=O 

As in (8.34) the quantities l1gj and l1s j are defined by 

k 

rn 

j=O 

l1gmH = L ßi (g(1J(t m+i ) , D7]( t m+i )) - g(Yrn+i' DYm+i)) 
i=O 

k 

l1smH = L ßi s( t rn+i ) 
i=O 

(8.50) 

for m:2 0, and l1gj = 0, l1s j = 0 for j < k. The values do, ••• ,dk _ 1 , are defined 
as usual (see their definition before (8.4')). The following three parts of the 
proof treat the three terms in the right-hand side of (8.50) separately. 

b) Due to the fact that IIB-l/2vIIB = Ilvll, and Ilvll :S v-11IvII B , and 
liDvii :S IlvilB the Lipschitz condition (8.44) can be written as 

IIB-1 / 2 (g(y, Dy) - g(z, Dz)) IIB :S Llly - zilB 
so that 

k 

IIB-1 / 2 l1grnH IIB :S L L Ißi l·IIl1Yrn+iIIB . (8.51) 
i=O 

Consequently we have to find an estimate for IIr rn_j(hA)Bl/21IB (here II·IIB 
denotes the matrix norm corresponding to the vector norm II·IIB; see Section 
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1.9). We note that Ilrm_j(hA)B1/21IB = IIB1/2rm _j (hA)11 and recall that 
B1/2rj (hA) is the coeflicient of (j in the series for 

B 1/2r(( hA) = B 1/ 2 (6(()I -hA)-l ~ , 0'((-1) . 

In order to apply Lemma 7.11 we have to estimate I))(s) = Bl/2(sI -A)-l. 
The matrices A and B can be transformed to diagonal form with the same 
orthogonal matrix. We therefore have for I arg si::; 7r - a' (0< a' < a) 

IIB1/2(sI-A)-111::; sup Ja+b ::; M(_1_ + Vb) 
a2:0 Is + al vIsI Isl 

and Lemma 7.11 can be applied with ß = 1/2 (see also Remark 7.12). We 
thus get 

for j ~ 0 . 

Together with the Lipschitz condition (8.51) this gives 

m m 1 
hIILrm_j(hA)t::..gjll ::;v'hL1L ' IIt::..YjIlB' (8.52) 

j=o B j=o y'm-J+1 

c) The second term in (8.50) is the coeflicient of (m in 

hr(, hA)t::..s() = r()~() 

where we have introduced 

r(() = (6(()_hA)-1 hB6(()-1 O't(-~l) = ~rj(j 
J_ 

t::..s(() = 6(()B-1 t::..s(() = Lt::..sj (j . 
j2:0 

In order to estimate IlrjllB we note that IlrjllB = IIB1/2rjB-1/211. In view 
of an application of Lemma 7.11 we have to consider I))(s) = B1/2(sI -
A)-l B1/2S-1. As above we obtain 

IIB1 / 2 (sI _A)-l B 1 / 2 s-ll1 < sup a + b < M (2- +~) . 
- a2:0 Is + al·lsl - Isl Isl2 

Lemma 7.11 with ß=1 thus yields IlrjllB ::; C2 • Further we have 

t::..s(() = :~~ . (B-1 t::..s k (k + L B-1(t::..s j -t::..s j _1)(j) 
j2:k+1 
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where the coefficients of 6( ()/(1- () are absolutely summable, because the 
zeros of 0"( () lie al1 inside 1(1< 1. Combining all these estimates we get 

m 

::; C3 (1IB-1 ~skllB + L IIB-1 (~Sj - ~Sj-l)IIB) (8.53) 
j=k+1 

::; C4 (IIB- 1 s(O)IIB + lt 
... IIB- 1 S'(t)IIB dt) . 

d) The last term in (8.50) can be estimated in the same way as the 
corresponding term in the proof of Theorem 7.10. We just have to replace 
the Euclidean norm by the energy norm (observe that Ih (hA) 11 = Ih (hA) 11 B 
and IIrj(hA)11 = Ilrj(hA)IIB' because the matrices A and B commute). We 
thus get 

hllt,rm-j(hA)djIIB::; C5C~}I~\IIYj-7J(tj)IIB+hP l t
"'II7J(P+l)(t)IIB dt). 

(8.54) 
e) Inserting (8.52), (8.53), and (8.54) into (8.50) gives 

m 1 
II~Ymll ::; v'hL1 t; y'm-j+1 II~Yjll + cm (8.55) 

where cm denotes the right-hand side of (8.48) with C replaced by some 
other constant. Solving this Gronwall-type inequality (Exercise 2) gives 
II~Ymll ::;C1cm, the desired result. 0 

Remark. A different approach to convergence results of multistep methods 
for nonlinear parabolic equations is given by Le Roux (1980). 

Exercises 

1. Let L ~ 0 and consider two sequences {Uj} and {Cj} of nonnegative 
numbers which satisfy 

m m 

Um ::; hL L Uj + L Cj for m ~ 0 . 
j=O j=O 

Prove that for hL ::; 1-C-1 
m 

Um ::; CeLGmh L Cj . 

j=O 
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Hint. Show by induction that vm ::; hA Lj:~l Vj + M implies 

vm ::; M(l+hA)m ::; M eAmh . 

2. Consider the inequality 

m-l 

um ::; -./h L L ~ Uj + c for m ::: 0 
j=O J 

where L::: 0, c::: 0, and h::: O. Prove that 

Um::; c(1+2Lv'mh)eL2 11'mh . 

Hint. a) Prove that Um ::; y(mh), where y(x) is the solution of the 
Volterra integral equation 

1'" 1 
y( x) = L r.=--; y( t )dt + c . 

o yX-t 
(8.56) 

b) Compute the solution of (8.56). This can be done by multiplying 
(8.56) with (U-x)-l/2 and by integration from 0 to u. In this way we 
get an ordinary differential equation, which can be solved. 



v.g. Algebraic Stability of General Linear Methods 

"General linear methods were originally introduced as a 
means of unifying and generalizing existing theories for tra­
ditional methods." (J.C. Butcher 1987) 

In Sections IV.12 and V.6 we have studied the nonlinear stability of Runge­
Kutta methods (B-stability) and of one-leg methods (G-stability). It is 
natural to ask whether these theories can be combined within the dass of 
general linear methods. This work was initiated by Burrage & Butcher 
(1980). 

We consider the differential equation y' = f( x, y) where y and f are 
complex-valued vectors and we assume the one-sided Lipschitz condition 

Re(f(x,y)-f(x,z), y-z) ::;vlly_zI12. (9.1) 

General linear methods are defined by (see Example 8.5 of Section 111.8) 

k 8 

(n+l) '" (n) h'" b f( h (n)) Ui = L..J aijU j + L..J ij X n + Cj , Vj , i=I, ... ,k (9.2a) 
j=l j=l 

k 8 

(n) "'- (n) h"'-b f( h (n)) Vi = L..J aijUj + L..J ij X n + Cj , Vj , i=l, ... ,s. (9.2b) 
j=l j=l 

Here, Un = (uin), ... ,u~n))T contains the necessary information from the 

previous step. The internal stages (vinl, ... ,v~n)), defined by (9.2b), serve 
for the computation of u n +1 in (9.2a). 

G-Stability 

As in Section V.6, we consider inner product norms 

k k 

Ilunll~ = L L9ij(U~n),u;n)) (9.3) 
i=l j=l 

where G = (9ij) is a real, symmetrie and positive definite matrix. 



384 V. Multistep Methods for Stiff Problems 

Definition 9.1. The general linear method (9.2) is cal1ed G-stable, if there 
exists areal, symmetric and positive definite matrix G, such that for two 
numerical solutions {un} and {un}, 

(9.4) 

for all step sizes h> 0 and for al1 differential equations satisying (9.1) with 
v=O. 

For Runge-Kutta methods (where k=1 and apart from a scaling factor 
G = (1)) this definition reduces to B-stability as introduced in Definition 
IV.12.2. For one-Ieg methods (where s = 1 and un = (YnH-l"'" ynV) it is 
equivalent to Definition 6.3. 

Many methods can be written in different ways as general linear me­
thods and the above definition of G-stability may depend on the particular 
formulation. For example, the trapezoidal rule 

h 
YnH = Yn + '2(J(xn ,Yn) + f(x n+l'YnH)) 

can be considered as a Runge-Kutta method (with u n = yn ). In this case it is 
not G-stable (because it is not B-stable, see Theorem IV.12.12). However, if 
we let u n = (Yn' hy~) where y~ = f( X n , Yn ), then the trapezoidal rule satisfies 
(9.4) with 

( 1 1/2) 
G = 1/2 1/4 . (9.5) 

This follows from the fact that whenever {Yn } is the solution obtained by the 
trapezoidal rule, then zn = Yn +~y~ is a solution ofthe implicit midpoint rule, 
which is known to be B-stable (see Example IV.12.3 or Theorem IV.12.9). 
Therefore 

I h I I h I 
IYn+l + '2 YnH I ::; IIYn + '2 Ynll 

which proves the statement. The matrix G in (9.5) is singular and thus 
not strictly positive definite. Burrage & Butcher (1980), however, admit 
non-zero non-negative definite matrices G in their definition of G-stability 
(which they call monotonicity). Therefore the trapezoidal rule is G-stable 
in their definition. 

Aigebraic Stability 

In addition to (9.2) we consider a second numerical solution (denote by a 
circumflex) produced by the same method using different starting values. 
We denote the differences by 
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AUn = un -un 

Af}n) = f(x n + cih , v~n») - f(x n + cih , ~n») . 

The following lemma states an identity which will be essential in the study 
of G-stability. 

Lemma 9.2 (Burrage & Butcher 1980). Let G be areal, symmetric matrix 
and D = diag (d1, ... , d.) be a real diagonal matrix. The difJerence 0/ two 
solutions 0/ (9.2) then satisfies 

• s+k 

IIAun+lll~ -IiAunll~ = 2LdiRe(Aln),Av~n») - L mii(wi,Wi ) 
i=l i,i=l 

where (w1 , •. . ,w.+k)=(Auin), ... ,Au~n), A/~n), ... ,A/!n») and the matrix 
M =(mii ) is given by 

( G-ATGA ÄTD-ATGB) 
M = DÄ-BTGA DB +BTD _ BTGB 

(9.6) 

Proo/. As in the proof of Theorem IV.12.23, we consider 
s 

IIAun+lll~ -IiAunll~ - 2 L diRe (Af}n), Av~n») 
i=l 

i,i=l i,i=l 
• 8 

- L di(AJin), Av~n») - L di(Av~n), A/in») 
i=l i=l 

and insert the formulas (9.2). This gives 

k k 8 k 8 

... = L 9ii\L aitAu~n) +h L bilA/in) , L ailAu~n) +h L bilA/in») 
i,i=l l=l l=l t=l l=l 

k s k s 

- L 9ii(Au~n), Au;n») - L di\ A/i(n), LäilAu~n) +h LbuA/in») 
i,i=l i=l t=l l=l 

8 k 8 

- Ldi\LäilAu~n)+h LbitAf;n) , A/}n») . 
i=l t=l l=l 

Multiplying out and collecting suitable terms proves the statement. 0 
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Definition 9.3. The general linear method (9.2) is called algebraically 8ta­
ble, if there exist a real, symmetrie and positive definite matrix G and areal 
non-negative definite diagonal matrix D, such that the matrix M of (9.6) is 
non-negative definite. 

An immediate consequence of our assumption (9.1) with v = 0 and of 
Lemma 9.2 is the following result. 

Theorem 9.4. Algebraic 8tability implie8 G-8tability. o 

For a given method it may be difficult to find matrices D and G such 
that M of (9.6) is non-negative definite. The following lemma shows some 
useful relations, which hold if the method is assumed to be precon8iJtent, 
Le., if there exists a vector eo E Rle such that 

Aeo = eo , 

(cf. Formula (8.25) of Section 111.8). 

(9.7) 

Lemma 9.5. 1/ a general linear method i8 precon8i8tent and algebraically 
8table, then the matrice8 D and G 8ati8fy 

i) (dl!'",d.)T=D:ß.=BTGeo' 

ii) (1 -AT)Geo =0, i.e., Geo i8 a left-eigenvector 0/ A corre8ponding to the 
eigenvalue 1. 

Proo/. i) Let." E Rs and e ERbe arbitrary. The non-negativity of M, given 
by (9.6), implies 

so that 

enG-ATGA)eo+2e."T(DÄ-BTGA)eo+e2."T(DB+BTD-BTGB)1] 2: O. 

Since the e-independent term vanishes (due to Aeo = eo), the coefficient of e 
must be zero and since this holds for all 1], the result follows. 

ii) A similar argument applied to 

(eo + eel)T(G - ATGA)(eo + eel) 2: 0 for all el ERle, e E R 

implies the second statement. o 
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AN -Stability and Equivalence Results 

It is interesting to study in which situation algebraic stability is also ne ces­
sary for G-stability. For this we consider the differential equation 

y' = A(X)Y with Re A( x) :s 0 . 

If we apply the general linear method (9.2) to this problem, we obtain 

UnH = S(Z)un 

where Z=diag(zl""'zs), Zj = hA(:en+cjh) and 

S(Z) = A + BZ(I - BZ)-l Ä . 

(9.8) 

(9.9) 

In the sequel we assume that the abscissae Cj are related to the other coef­
ficients of the method by (see also Remark 111.8.17) 

(9.10) 

where ~l E Hk is the seeond eoeffieient vector of the exact value function 

This means that the internal stages approximate the exact solution as vJn ) = 
y(x n + cjh)+O(h2 ). 

Definition 9.6. A general linear method is ealled AN -stable, if there exists 
a real, symmetrie and positive definite matrix G such that 

IIS(Z)Ulla ~ Ilulia 
for all Z=diag(zl" .. ,zs) satisfying Rezj ~ 0 
(j = 1, ... ,.5) and Zj = zk whenever cj = ck' 

Other possible definitions of AN-stability are given in Buteher (1987). 
For example, if the condition IIS(Z)ulla :s Ilulia is replaced by the power­
boulldedness of the matrix S(Z), the method is ealled weakly AN -stable. 
This definition, however, does not allow the values Zj = hA(:en + cjh) to 
change at each step. Another modification is to consider arbitrary norms (in­
stead of inner produet norms only) in the definition of AN -stability. Buteher 
(1987) has shown that this does not lead to alarger class of AN-stable meth­
ods, but makes the analysis much more diffieult. 

We are now interested in the relations between the various stability def­
initions: the implications 

algebraieally stable ==} G-stable ==} AN -stable ==} A-stable 

are either trivial or follow from Theorem 9.4. We also know that A-stability 
does not, in general, imply AN-stability (see e.g., Theorem IV.12.12). The 
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following result shows that the other two implications are (nearly always) 
reversible. 

Theorem 9.7 (Butcher 1987). For preconsistent and non-conftuent general 
linear methods (i.e., methods with distinct c) we have 

algebraically stable <==? G-stable <==? AN -stable . 

Proof. It is suflicient to prove that AN -stability implies algebraic stability. 
For this we take the matrix G, whose existence is known by the definition of 
AN-stability, and show that the matrices D and M, given by Lemma 9.5i) 
and (9.6), are non-negative definite. 

In order to prove dj ~O we put Zj = -e (e > 0) and zk =0 for k=l=j. We 

furtherlet ~un = eo (the preconsistency vector of (9.7)) and ~f~n) = Zl~V~n), 
so that ~un+1 =S(Z)eo and ~v~n) =1+0(e). Using 

(9.11) 

which is a consequence of Lemma 9.5, the identity of Lemma 9.2 yields 

Since the left-hand side of this equation is non-positive by AN -stability, we 
ohtain dj ~ O. 

We next put zl = ieTJl where TJ = (TJ1, ... ,TJs )T E Rs is arbitrary and 
e is a small real parameter. We further put ~un = eo +ieJL with JL E Rk 

and ~f~n) = Zl~V~n). This again implies ~v~n) = 1+0(e). The identity of 
Lemma 9.2 together with (9.11) gives 

IIS(Z)eo II~ -lieoll~ = -(eo - ieJL, ieTJ + O(e2 ))M Ce~O: ~~~2)) = 

= -e2(JL'71)TM(~) + O(e3 ) • 

Since this relation holds for all JL and TJ, the matrix M has to be non-negative 
definite. 0 

Example 9.8. Let us investigate the G-stability of multistep collocation 
methods as introduced in Section V.3. We consider here the case k = 2 and 
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s = 2, and fix one collocation point at c2 = 1. The method is then given by 

(9.12) 

where 

We know from Exercise V.3.7 that the method is A-stable if and only if 
Cl ~ (.Jf7 -1)/8. For the study of its G-stability we assume that after an 
appropriate scaling of G, 911 = 1. By Lemma 9.5ii the matrix G must then 
be of the form (recall that eo =(1, I)T) 

( 1 1'-1) 
G = l' - 1 (I;'( 1) - 1 h + 1 . (9.13) 

A necessary condition for G to be positive definite is that det G > O. For 
cl ~ 0 this is equivalent to 

6(1 + cl) 
0<1'< 5 9 . + Cl 

Next we use Lemma 9.5i which implies that 

(9.14) 

(9.15) 

Inserting (9.13) and (9.15) into the matrix M of (9.6) yields for its lower 
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where 

A direct computation (see Exercise 2) shows that this 2x2 matrix can not 
be non-negative definite for Cl ~ (J17 -1)/8 and "y satisfying (9.14). Con­
sequently the considered methods are never G-stable. 

In the next subsections we shall show how high-order algebraically stable 
general linear methods can be constructed. 

Multistep Runge-Kutta Methods 

An interesting extension of multistep collocation methods are the so-called 
multistep Runge-Kutta methods. They are defined by the formulas 

k • 

Yn+1 = L>~jYn+1-j + h 'Lbj!(zn + cjh,v)n») 
j=l j=l 

k 8 
(9.17) 

v~n) = LaijYn+1-j + h Lbij!(Xn + Cjh,v~n») . 
j=l j=l 

They obviously form a subclass of the general linear methods (9.2). This is 
seen by putting un = (Yn, Yn-1 , ... , Yn_k+1)T so that the exact value function 
is 

z(z,h) = (y(z),y(z-h), ... ,y(z - (k-l)h)T . 

Further, the matrices A and B have the special form 

(9.18) 

The order conditions for such methods were derived in Section 111.8, Theo­
rem 111.8.14. It follows from this theorem that the method (9.17) is of order 
p, iff 

k • 

1 = 'Lo:;(I-j)II(t) + Lbjvj(t) for tE T, e(t) 5,p. (9.19) 
j=l j=l 
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The values vj(t) are given recursively by 

k 8 

Vi(t) = L aij(l-j)U(t) + Lbijvj(t) . (9.20) 
j=l j=l 

Recall from Corollary 11.11.7 that 

vj(0) = 0, vj(-r) = 1 

vj(t)=e(t)vj(t1)· .. ··vj(tm ) if t=[tu ... ,tml. 
(9.21) 

The order conditions (9.19) constitute a system of nonlinear equations in 
the coefficients of the method. Without any preparation, solving them may 
be difficult. We therefore introduce additional assumptions which simplify 
the construction of multistep Runge-Kutta methods. 

Simplifying Assumptions 

The conditions B(p), 0(1]) and D(e) of Section IV.5 were useful for the 
construction of high-order implicit Runge-Kutta methods. Burrage (1988) 
showed how these simplifying assumptions can be extended to general linear 
methods. In the sequel we specialize his approach to multistep Runge-Kutta 
methods. We consider the assumptions 

8 k 

B(p) : q Lbjcr1 + Laj(l-j)q = 1 q= 1, ... ,pj 
j=l j=l 

8 k 

~-b q-l ~- (1 .)q q q L...J ijCj + L...J aij - J = ci q = 1, ... ,1], all ij 
j=l j=l 

8 

q L biC~-laij = a/1 - (1- j)q) q=1, ... ,e, alljj 
i=l 

8 

q L biC~-lbij = bi1- c1) q=l, ... ,e, allj. 
i=l 

Condition B(p) is equivalent to the order conditions (9.19) for bushy trees. 
Condition 0(1]) me ans that vj(t), defined by (9.20), satisfies 

vit) = 4t ) for e(t) ::; 1] . (9.22) 

We remark that the preconsistency condition (9.7) with eo =(1, ... , 1)T, 

k 

L aij = 1 for i = 1, ... , s , 
j=l 

(9.23) 
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is obtained by putting q = 0 in B(p) and G(17). The condition D(e) for 
Runge-Kutta methods splits into DA(e) and DB(e). However, under certain 
assumptions one of these conditions is automatically satisfied. 

Lemma 9.9. Suppose that the coefficients Cl'" . ,cs 0/ a multistep Runge­
Kutta method are distinct and bd:O. Then 

i) B(e+k-1), G(k-1), DB(e) :=;. DA(e) 
ii) B(e + s), G(8), DA(e) :=;. DB(e) 
iii) B(17+S), DA(s), DB(s) :=;. G(17) 

Proo/. The first two implications are a consequence of the identity 

k 8 

L (q L biC~-laij - aj(l - (1- j)q)) (1- j)l 
j=l i=l 

S 8 

= -I. L (q L biC~-lbij - bj(1-c1)) C~-l 
j=l i=l 

which holds under the assumptions G(I.) and B(q+I.). The last implication 
can be proved similarly. 0 

The fundamental theorem, which generalizes Theorem IV.5.1, is 

Theorem 9.10 (Burrage 1988). I/ the coefficients 0/ a multistep Runge­
Kutta method (9.17) satisfy B(p), C(77), DA(e), DB(e) with P:'S 17+e+1 and 
p :'S 277+2, then the method is 0/ order p. 

Proo/. The conditions G(77) and DA(e), DB(e) allow the reduction of order 
conditions of trees as sketched in Fig. 7.1 and Fig. 7.2 of Section I1. 7, respec­
tively. Under the restrictions p :'S 77+e+1 and p :'S 277+2 all order conditions 
reduce to those for bushy trees which are satisfied by B(p). 0 

Remember that we are searching for high-order algebraically stable me­
thods. Due to the Daniel-Moore conjecture (Theorem V.4.4) the order is 
restricted by P:'S 2s. It is therefore natural to look for methods satisfying 
B(2s), G(s) and DA(s), DB(s). They will be of order 2s by Theorem 9.10 and 
are an extension of the Runge-Kutta methods based on Gauss quadrat ure. 
Let us begin by studying the condition B(2s). 
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Quadrature Formulas 

Because of (9.23) condition B(p) of the preceding subsection is equivalent 
to 

deg f ::; p-1 (9.24) 

where f stands for a polynomial of degree at most p-1. For the construction 
of such quadrat ure formulas it is useful to consider the bilinear form 

k 1 1 

(I,g) = t; 0j i-i f(x)g(x) dx = i-k w(x)f(x)g(x) dx (9.25) 

where w( x) is the step-function sketched in Fig.9.1. U nder the assumption 

0k ~ 0, 0k+ok_l ~ 0, ... , 0k+ ... +o2 ~ 0, 0k+ ... +ol = 1 (9.26) 

w(x) is non-negative and (9.25) becomes an inner product on the space of 
real polynomials. We call the quadrat ure formula (9.24) interpolatory if B( s) 
holds. This implies that 

(9.27) 

1 

I 

l-k -1 o 1 

Fig.9.1. Weight function for the inner product (9.25) 

The following results on Gaussian quadrature and orthogonal polynomi­
als are classical. 

Lemma 9.11. Let M(x)=(x-c1 ) ' ... ,(x-cs)' An interpolatory quadrature 
formula satisfies B(s+m) if and only if 

o 
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Let P.(:z:) be the polynomial of degree s which is orthogonal with respect 
to (9.25) to all polynomials of degree s -1. Lemma 9.11 then states that 
a quadrature formula (9.24) is of order 2s Hf M(:z:) is a sealar multiple of 
P.(:z:). The polynomials P.(:t) whieh depend on °1 " .. ,0" via the bilinear 
form (9.25) ean be eomputed from a standard three term reeursion 

Po (:z:) = 1 , P1 (:z:) = :z: - ßo 

P.+1(:t) = (:z: - ß.)Ps(:Z:) - "Y.Ps _1(:Z:) 
(9.28) 

where 

(9.29) 

Obviously this is only possible if (Pj,Pj) # 0 for j = 1, ... , s. This is eertainly 
the ease under the assumption (9.26). 

Lemma 9.12. /1°1, ... ,0" satisfy (9.26) then all zeros oIPs(:t) are real, 
simple and lie in the open interval (l-k, 1). 0 

For the construction of algebraieally stable methods, quadrat ure formu­
las with positive weights will be of particular interest. Suffieient eonditions 
for this property are given in the following theorem. 

Theorem 9.13. 11 the quadrature formula (9.24) ia of order p~2s-1 and 
if 0l!" .,0" satisfy (9.26), then 

lor i = 1, .. . ,s . 

o 

Aigehraically Stahle Methods of Order 28 

" ... the analysis of the algebraic stability properties of 
multivalue methods ... is not as difficult as was generally 
thought ... " (Burrage 1987) 

Following Burrage (1987) we eonsider the following class of multistep Runge­
Kutta methods: 

Definition 9.14. Let °11 ... ,0" with L 0j = 1 and 0" # 0 be given such 
that the zeros Cl!"" c. of P.(:z:) (Formula (9.28)) are real and simple. We 
then denote by E(ol!"" 0,,) the multistep Runge-Kutta method (9.17) 
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whose coefficients are given by 

i = 1, ... ,8, 

i = 1, ... ,8; j = 1, ... k 

i = 1, ... ,8; j = 1, ... 8 

where fi(:r) is the function of (9.27). 

The definitions of ci and bi imply B(28) by Lemma 9.11. The formulas 

for aij and bij are equivalent to DA (8) and DB ( 8), respectively. Lemma 9.9iii 
thus implies C( 8) and Theorem 9.10 finally proves that the considered meth­
ods are of order 28. The following theorem gives sufficient conditions for the 
algebraic stability of these methods. 

Theorem 9.15 (Burrage 1987). 1f aj 2: 0 for j = 1, ... , k then the method 
E(a1 , ... ,ak) i8 G-stable with 

(9.30) 

Proof. For multistep Runge-Kutta methods the preconsistency vector is 
given by eo =(1, 1, ... , 1)T. With the matrix G of (9.30) it therefore follows 
from Lemma 9.5 that 

for i = 1, ... ,8 . (9.31) 

By Theorem 9.13 this implies di > 0 so that the first condition for algebraic 
stability is satisfied. In order to verify that the matrix M of (9.6) is non­
negative definite, we transform it by a suitable matrix. We put 

v (j-l) = ci .. 
'1,1=1, ... ,8 

(9.32) 

A straightforward calculation using the simplifying assumptions DA (8), 
DB (8) and B(28) shows that 

(9.33) 

where 

( 1 .) W= -I-i) . .( ) t.=l, ... ,k 
J )=1, ... ,8 
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and the 2k X 2k matrix M is given by 

.-... (Z Z) 
M= Z Z ' (9.34) 

Since O:j ~ 0 and L: O:j = 1 it follows from the Cauchy-Schwarz inequality 
that 

Therefore the matrix Z, and hence also M, are non-negative definite matri­
ces. This completes the proof of the theorem. 0 

One can ask what are the advantages of the methods E( 0:1, ••• , O:k) with 
k > lover the 8-stage Gauss Runge-Kutta methods of order 28. All these 
methods have the same order and are algebraically stable for O:j ~o . 

• The Gauss methods have astability function whose value at infinity 
satisfies IR( 00)1 = 1. In contrast, the new methods allow the spectral radius 
e( S( 00)) to be smaller than 1, which improves stability at infinity. For 
example, numerical investigations of the case 8 = 2, k = 2 show that e( S( 00 )) 
has the minimal value y2 - 1 ;::::: 0.41421 for 0:1 = 12y2-16 and 0:2 = 1-0:1 

(see Exercise 7). There are some indications that L-stable methods do not 

exist: if we could find methods with an internal stage, say v~n), equal to 
Yn+1' then the method would be L-stable. Unfortunately, this would imply 
c. = 1, which is in contradiction to Lemma 9.12 and to O:j ~ o . 

• The eigenvalues of the Runge-Kutta matrix of the Gauss methods are 
complex (with the exception of one real eigenvalue, if 8 is odd). Can we 
hope that, for a suitable choice of O:j ~ 0, all eigenvalues of B become real? 
Numerical computations for 8 = 2 and k = 2 indicate that this is not possible. 

B-Convergence 

Many results of Sections IV.14 and IV.15 have a straightforward extension 
to general linear methods. The following theorem corresponds to Theorems 
IV.14.2, IV.14.3, and IV.14.4 and is proved in the same way: 

Theorem 9.16. Let f be continuously differentiable and satisfy (9.1). I/ 
the matrix B 0/ method (9.2) is invertible and i/ 

hv< O:o(B-1) 

then the nonlinear system (9.2b) has a unique solution. o 
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The next results give estimates of the local and global errors. We formu­
late these results only for multistep Runge-Kutta methods, because in this 
case the definitions of C(TJ) and B(p) are already available. In analogy to 
Runge-Kutta methods we say that method (9.17) has stage order q, if C( q) 
and B(q) are satisfied. Recall that for the definition of the local error 

S h (x) = Yl - y( X + h) 

one assumes that Yi = y( x + ih) for i = 1- k, ... ,0 lie on the exact solution. 

Theorem 9.17. Suppose that the differential equation satisfies (9.1). If the 

matrix B is invertible, if O:O(B-l) > 0 and if the stage order is q, then the 
Ioeal error of method (9.17) satisfies 

IISh(x)11 ~ Chq+l max Ily(q+l)(OII for hv ~ 0: < O:o(B- l ) 
eE[:z:-(k-l)h,:z:+h] 

where C depends only on the eoeffieients of the method and on 0:. 0 

This result, which corresponds to Proposition IV.15.1, is of particular 
interest for multistep collocation methods, for which the stage order q = 
s + k -1 is maximal. The global error allows the following estimate, which 
extends Theorem IV.15.3. 

Theorem 9.18. Suppose, in addition to the assumptions of Theorem 9.17, 
that the method (9.17) is algebraieally stable. 

a) If v > 0 then the global error satisfies for hv ~ 0: < O:O(B-l) 

b) Ifv ~ 0 then (for all h > 0) 

IIYn - y(xn)11 ~ hq(x n -xo) C2 max Ily(q+l)(x)ll. 
:z:E[:z:o,:Z:,,] 

The constants Cl and C2 depend only on the coefficients of the method and 
(for case a) on 0:. 0 

In contrast to the results of Section IV.15 the above theorem holds only 
for a constant step size implementation. 
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Exercises 

1. Show that for Runge-Kutta methods, where A = (1), Ä = 11, both defini­
tions of algebraic stability (IV.12.5 and V.9.3) are the same. 

2. Prove in detail the statement of Example 9.8, that the 2-step 2-stage 
collocation methods with c2 = 1 (and Cl 1= 1) are not G-stable. 

Hint. The non-negativity of the matrix (9.16) implies , ;::: 1/2 and by 
considering its determinant, 

,(4XI - (I+X2)2) ;::: 2(XI -X2) . 

This inequality contradicts (9.14). 

3. If a multistep Runge-Kutta method with distinct ci and Ci ;::: 0 satisfies 
B(s+k+~) and C(s+k-l), then it also satisfies DB(~)' 

Hint. Show that 

t, {q t, b,,:-'O;j - aj{1 -(I-j)')} (r(1)-r(I-j)) ~ 0 

for all polynomials r( x) of degree ::; s +k -1 which satisfy r( Cl) = ... = 
r( Cs ) = O. For given j, construct such a polynomial which also satisfies 

r(l-j)=I, r(l-i)=O for i=I, ... ,k and il=j. 

4. Disprove the conjecture of Burrage (1988) that for every k and s there 
exist zero-stable multistep Runge-Kutta methods of order 2s+k-1. 

Hint. Consider the case s = 1 so that these methods are equivalent to 
one-leg methods and consult a result of Dahlquist (1983). 

5. (Burrage 1988). Show that there exists a zero-stable multistep RK-me­
thod with s = 2 and k = 2 which is of order 5. 

Result. cI ,2 = t( J7 ± J2) 

6. (Stabilityat infinity). If a multistep Runge-Kutta method satisfies DA (s) 
and DB ( s) then we have, e.g., for s = 2 and k = 2, 

Q2) _ (1 1) (1 - Cl 
o 00 I-ci 

Formulate this result also for general s and k. 

7. Verify that for the method E( QI , Q2) with 0 ::; ~ ::; 1, Q2 = 1 - QI' the 
spectral radius e(S(oo)) is minimal for QI =12\1"2-16. 



Chapter VI. Singular Perturbation Problems 
and Differential Aigebraic Equations 

Singular perturbation problems (SPP) form a special dass of problems con­
taining a parameter e. When this parameter is small, the corresponding 
differential equation is stiff; when e tends to zero, the differential equation 
becomes differential algebraic. The first four sections investigate the nu­
merical solution of such singular perturba.tions problems. This allows us to 
understand many phenomena observed for very stifI problems. Much in­
sight is obtained by studying the limit case e = 0 ("the reduced system") 
which is usually much easier to analyze. We treat multistep methods in 
Section VI.l, Runge-Kutta methods in Section VI.2, Rosenbrock methods 
in Section VI.3 and extrapolation methods in Section VIA. Convergence re­
sults are for singular perturbation problems and for semi-explicit differential 
algebraic systems of "index 1". 

Many problems of practical interest are, however, of higher index; this 
means that differentiability properties of the data are destroyed by inherent 
differentiations and numerical methods become less and less efficient or even 
impossible (see Section VI.5). Sections VI.6 and VI.7 study the convergence 
properties for multistep methods and Runge-Kutta methods when applied to 
index 2 systems. We finally present order conditions for Runge-Kutta meth­
ods when applied to index 2 systems (Section VI.8) and numerical results 
of the RADAU5 code for computations of a non-stiff and a stiff mechanical 
multibody system. 



Vl.l. Singular Perturbation and Index 1 Problems 

Singular perturbation problems (SPP) have several origins in applied ma­
thematics. One comes from fluid dynamics and results in linear boundary 
value problems containing a small parameter e: (the coefficient of viscosity) 
such that for e: -+ 0 the differential equation loses the highest derivative (see 
Exercise 1 below). Others originate in the study of nonlinear oscillations 
with [arge parameters (Van der Pol 1926, Dorodnicyn 1947) or in the study 
of chemical kinetics with slow and fast reactions (see e.g., Example (IV.IA)). 

Asymptotic Solution of van der Pol's Equation 

The elassical paper of Dorodnicyn (1947) studied the Van der Pol Equation 
(IV.1.5') with large /L, i.e., with small e:. The investigation becomes a little 
easier if we use Lienard's coordinates (see Exercise 1.16.8). In equation 
(IV.1.5'), written here as 

e:z" + (z2-1)z' + z = 0, 

we insert the identity 

e:z"+(z2-1)z'= d~ (e:z'+(Z; -z)) 

so t.hat (1.1) Lecollles 

, 
y =-z 

e:z' = y - C: -z) 

, .; 

v 

:= y 

=:!(y,z) 

=: g(y, z) . 

(1.1) 

(1.2) 

Fig.1.1 shows solutions of Equation (1.2) with e: = 0.03 in the (y,z)-plane. 
One observes rapid movements towards the manifold M defined by y = z3/3-
z, elose to which the solution becomes smooth. In order to approximate the 
solution for very small e:, we set e = 0 in (1.2) and obtain the so-called reduced 
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system 
y' =-z =j(y,z) 

O=y- (~ -z) =g(y,z). 
(1.2') 

While (1.2) has no analytic solution, (1.2') can easily be solved to give 

y' = -z = (z2 -1 )z' or 

Fig.1.1. Solutions of SPP (1.2) 

Z2 
In Izl - - = x + C . 

2 

z 

(1.3) 

Fig. 1.2. Reduced problem (1.2') 

Equation (1.2') is called a differential algebraic equation (DAE), since 
it combines a differential equation (first line) with an algebraic equation 
(second line). Such a problem only makes sense if the initial values are 
consistent, i.e., lie on the manifold M. The points of M with coordinates 
y = ±2/3, z = =t=1 are of special interest (Fig.1.2): at these points the 
partial derivative gz = 8g / 8z vanishes and the defining manifold is no longer 
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"transversal" to the direction of the fast movement. Here the solutions of 
(1.2') cease to exist, while the solutions of the full problem (1.2) for e -t 0 
jump with "infinite" speed to the opposite manifold. For -1< z < 1 the 
manifold M is unstable for the solution of (1.2) (here gz > 0), otherwise M 
is stable (gz < 0). 

We demonstrate the power of the reduced equation by answering the 
question: what is the period T of the limit cycle solution of Van der Pol's 
equation for J.I. -t 00 (i.e., e -t O)? Fig.1.2 shows that the asymptotic value 
of T is just twice the time which z(:z:) of (1.3) needs to advance from z=-2 
to z=-l, i.e., 

T=3-2In2. (1.4) 

This is the first term of Dorodnicyn's asymptotic formula. We also see 
that z(:z:) reaches its largest values (Le., crosses the Poincare cut z, = 0, see 
Fig.1.16.2) at z = ±2. We thus have the curious result that the limit cycle 
of Van der Pol's equation (1.1) has the same asymptotic initial value z = 2 
and z, =0 for J.I.-tO and for J.I.-too (see Formula (1.16.10)). 

Runge-Kutta Methods for Problems of Index 1 

We now want to study the behaviour of the numerical solution for e -t 

O. This will give us insight into many phenomena encountered for very 
stift" equations and also suggest advantageous numerical procedures for stift" 
and dift"erential-algebraic equations. Let an arbitrary singular perturbation 
problem be given, 

y' = f(y, z) 
ez' = g(y, z) , 

(1.5a) 

(1.5b) 

where y and z are vectorsj suppose that fand 9 are sufficiently often dif­
ferentiable vector functions of the same dimensions as y and z respectively. 
The corresponding reduced equation is the DAE 

y'=f(y,z) 

o =g(y,z) 

(1.6a) 

(1.6b) 

whose initial values are consistent if 0 = g(yo, zo). A general assumption of 
Sections V1.1-V1.4 will be that the J acobian 

gAY, z) is invertible (1.7) 

in a neighbourhood of the solution of (1.6). Equation (1.6b) then possesses a 
locally unique solution z = G(y) ("implicit function theorem") which inserted 
into (1.6a) gives 

y' = f(y, G(y)) , (1.8) 
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the so-called "state space form", an ordinary differential system. Equation 
(1.6) is then said to be of indez 1. 

Let a Runge Kutta method with coefficients aij' bj be chosen. We apply 
this method to system (1.5) and obtain 

8 

Yni = Yn + h L aij f (Ynj , Znj) 
j=l 

8 

eZni = eZn + h L a ij 9 (Ynj , Znj) 
j=l 
8 

i=l 
8 

eZn+1 = eZn + h L bi 9 (Yni , Zni) . 
i=l 

(1.9a) 

(1.9b) 

(1.9c) 

(1.9d) 

We now suppose that the RK matrix (aij) is invertible and obtain from 
(1.9b) , 

hg(Yni , Zni) = e L Wij(Znj -Zn) (1.10) 
j=l 

where the wij are the elements of the inverse of (aij). Inserting this into 
(1.9d) makes the definition of zn+! independent of e. We thus put without 
more ado e = 0 (direct approach) and obtain 

, 
Yni = Yn + h L aij f (Ynj , Znj) 

j=l 

o = g(Yni , Znd 
8 

Yn+l = Yn + h L bi f (Yni , Zni) 
i=l 

Here 
8 

1- Lbiwij=R(oo) 

i,j=l 

(LIla) 

(1.11b) 

(1.11c) 

(1.11d) 

(1.11e) 

(see Formula (IV.3.15)), where R(z) is the stability function of the method. 
We observe that usually (Yn+1' zn+!) will not lie on the manifold g(y, z) = o. 
However, if we replace (1.11d) by 

(1.12) 
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then not only is Znj = G(Ynj ) (see (Lllb)), but also zn+l = G(Yn+1). In 
this case the method (Llla-e), (1.12) is identical to the solution ofthe state 
spaee form (1.8) with the same RK method. This will be ealled the indirect 
approach. The whole situation is summarized in the diagram 

e--+O 
DAE (1.6) 

z=G(y) 
ODE (1.8) Spp (1.5) --t --t 

RK j j RK j 
Sol. (1.9) 

e--+O direct approach (1.11) --t 

indirect approach f----. Sol. (1.12) 

Of special importanee here are stiffly accurate methods, i.e., methods which 
satisfy 

for i = 1, ... , s . (1.13) 

This means that Yn+l = Yn., zn+1 = Zn. and (1.12) is satisfied anyway. 
Hence for stiffly accurate methods the direct and the indirect approach are 
identical. For this reason, Griepentrog & März (1986) denote such methods 
by IRK(DAE). 

A Transistor Amplifier 

" ... auf eine merkwürdige Tatsache aufmerksam machen, 
das ist die außerordentlich grosse Zahl berühmter Math­
ematiker, die aus Königsberg stammen ... : Kant 1724, 
Richelot 1808, Hesse 1811, Kirchhoff 1824, Carl Neumann 
1832, Clebsch 1833, Hilbert 1862." 

(F. Klein, Entw. der Math., p. 159) 

Very often, DAE problems arising in praetice are not at onee in the semi­
explicit form (1.6), but rat her in the form M u' = r,o( u) where M is a constant 
singular matrix. 

As an example we compute the amplifier of Fig.1.3, where Ue(t) is the 
entry voltage, Ub = 6 the operating voltage, Ui(t) (i = 1, 2, 3, 4, 5) the voltages 
at the nodes 1,2,3,4,5, and U5 (t) the output voltage. The current through 
a resistor satisfies 1= U / R (Ohm 1827), the current through a capacitor 
1= C ·dU / dt, where Rand C are constants and U the voltage. The transistor 
acts as amplifier in that the current from node 4 to node 3 is 99 times larger 
than that from node 2 to node 3 and depends on the voltage differenee 
U3 - U2 in a nonlinear way. Kirchhoff's law (a Königsberg discovery) says 
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C3 
~---i 1-__ ~5 

Fig. 1.3. A transistor amplifier 

Rs 

that the sum of currents entering anode vanishes. This law applied to the 
5 nodes of Fig.1.3 leads to the following equations: 

node 1: 

node 2: 

node 3: (1.14) 

node 4: 

node 5: 

As constants we adopt the values reported (for a similar problem) by Ren­
trop, Roche & Steinebach (1989) 

j(U) = 10-6 (exP(0.~26) - 1) 

Ro = 1000, R1 = ... = Rs = 9000 

Ck = k .10-6 , k = 1,2,3 

and the initial signal is chosen as 

Ue(t) = 0.4 . sin(2007l"t) . (1.15) 
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Equations (1.14) are ofthe form Mu'=r,o(u) where 

Cl 
-Cl 

is obviously a singular matrix of rank 3. The sum of the first two and of 
the last two equations leads directly to two algebraic equations. Introducing 
e.g., 

Ul - U2 = Yl' Us = Y2' U4 - Us = Ys, Ul = Zl' U4 = Z2 , 

transforms equations (1.14) to the form (1.6). Consistent initial values must 
thus satisfy 

r,ol(U) + r,02(u) = 0 and r,04(U) + r,os(u) = 0 . 

If we put U2(O) = Us(O) we have f(U2(O) - Us(O)) = O. Since Ue(O) = 0 we 
then easily find a consistent solution, e.g., as 

Problems of the Form M u' = cp( u) 

For the definition of a Runge-Kutta method for a problem of the form 

Mu' = r,o(u) , (1.17) 

where M is a constant matrix, we first assume that M is regular. A pplying 
then an RK method to u' =M-lr,o(U) and multiplying the resulting formulas 
by M we obtain 

M(Uni-un) = h L aijr,o(Unj ) (1.18a) 
j=l 

(1.18b) 

where again (Wij) is the inverse of (aij)' The second formula was obtained 
from 

M(un+l -un) = h L bir,o(Uni ) 
i=l 

in exactly the same way as above (see (1.10)). 

(1.18c) 
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Formulas (1.18) also make sense formally when M is a singular matrix. 
In this case, problem (1.17) is mathematically equivalent to a semi-explicit 
system (1.6) and method (1.18) corresponds to method (1.11). This can be 
seen as follows: we decompose the matrix M (e.g., by Gaussian elimination 
with total pivoting) as 

(1.19) 

where Sand T are invertible matrices and the dimension of I represents the 
rank of M. Inserting this into (1.17), multiplying by S-1, and using the 
transformed variables 

Tu = (;) (1.20) 

g1ves 

(1.21 ) 

a problem of type (1.6). An initial value U o is consistent if <p(uo) lies in the 
range of the matrix M. 

Similarly, if (1.19) is inserted into (1.18) with 

TU - (Ynj ) nj - Znj , (1.22) 

then (1.18b) (for Zn+d and (1.18c) (for Yn+1 ) lead precisely to equations 
(1.11). This means that the diagram 

Problem (1.17) 

Meth. j (1.18) 

Transf. (1.20) 
I 

Transf. (1.22) 
I 

Problem (1.6) 

Meth. j (1.11) (1.23) 

commutes. An important consequence of this commutativity is that all 
results for semi-explicit systems (1.6) and method (1.11) (existence of a 
numerical solution, convergence, asymptotic expansions, ... ) also apply to 
implicit problems (1.17) with singular M and method (1.18). 

All codes, such as RADAU5, which have an option for implicit differential 
equations (1.17) can thus be applied directly. This has been done for problem 
(1.14) with initial values (1.16), integration interval Os x::; 0.2, and Tol = 
10-4 • The code computed the solution Us(t) displayed in Fig.l.4 without 
difficulty in 553 steps (65 rejected). The comparison with the entry voltage 
Ue(t) shows that our amplifier is working. See also Hairer, Lubich & Roche 
(1989), p. 108-111 for a more elaborate example. 
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1 
U5(~~ ~ n ~ r ~ r ~ n ~ ~ ~ n 

Ue(t) f: r 

o l' I ~ ~~~I~~/r\i/'\V\I\ll\l/l\jr\l/\I'\/!\I/\r\r1I\l/r\l/\:/\ 
-1 

-2 
t 

.05 .10 .15 
-3 

Fig.1.4. Computed solution of amplifier problem (1.14) 

Convergence of Runge-Kutta Methods 

If the method is stifHy accurate, the numerical solutions (1.11) are equivalent 
to those of the ordinary equation (1.8). Therefore the convergence of the 
solutions is described by Theorems 11.3.5 and 11.3.6 as 

(1.24) 

where p is the classical order of the method (the second formula follows 
from a Lipschitz condition for G). For general methods, the estimate (1.24) 
remains valid for Yn , because (1.11a,b,c) are independent of zn and do not 
change if (1.11d) is replaced by (1.12). Thus we only have to prove a con­
vergence result for Zn. An essential ingredient of the following theorem is 
the stage order q of the method, i.e., condition C( q) of Section H.7 or IV.5. 

Theorem 1.1. Suppose that the system (1.6) satisfies (1.7) in a neigh­
bourhood 0/ the exact solution (y( x), z( x)) and assume the initial values are 
consistent. Consider a Runge-K utta method 0/ order p, stage order q and 
with invertible matrix A. Then the numerical solution 0/ (1.11 a-d) has global 
error 

(1.25) 

where 
a) r = p /01' stiffly accurate methods, 
b) r = min(p, q+ 1) i/ the stability function satifljies -1:::; R( 00) < 1, 
c) r=min(p-1,q) i/ R(oo)=+1. 
d) 1/ IR( 00) I> 1, the numerical solution diverges. 
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Proof. Part a) has already been diseussed. For the remaining eases we 
proeeed as follows: we first observe that Condition C( q) and order p imply 

• 
z(zn+cih) = z(zn) + h LaijZ'(Zn+cjh) + O(hq+1 ) 

j=l 

• 
z(znH) = z(zn) + h LbiZ'(Zn+Cih) + O(hPH ) . 

i=l 

(1.26a) 

(1.26b) 

Sinee A is invertible we ean eompute z'(zn +cjh) from (1.26a) and insert it 
into (1.26b). This gives 

z(znH) = ez(zn) + bT A-1 Zn + O(hPH ) + O(hq+1) (1.27) 

where e = 1- bT A-1ll = R( 00) and Zn = (z(xn + Cl h), ... , Z(X n + c.h))T. 
We then denote the global error by ßZn = Zn -z(xn), and ßZn = Zn -Zn' 
Subtracting (1.27) from (1.11d) yields 

ßZnH = eßZn + bT A-1ßZn + O(hPH ) + O(hq+1) . (1.28) 

Our next aim is to estimate ßZn . For this we have to eonsider the Y­
eomponent of the system. Due to (1.11a-e) the values Yn, Yni are those of 
the Runge-Kutta method applied to (1.8). It thus follows from Theorem 
11.8.1 that Yn-y(xn)=ep(xn)hP+O(hPH). Sinee Formula (1.26a) also holds 
with z(z) replaeed by y(x), we ean subtract this formula from (1.1la) and 
so obtain 

Yni - y(zn +cih ) = Yn - y(zn) 

• 
+ h L aij (f(Ynj , G(Ynj )) - f(y(zn +cjh), G(y(xn +cjh))) + O(hq+1). 

j=l 

This implies that 

Yni - y(xn +cih) = O(hl/) with v = min(p, q + 1) . 

Beeause of (1.11b) we get 

Zni - z(xn +cih) = G(Yni ) - G(y(xn +cih)) = O(hl/) 

and Formula (1.28) beeomes 

ßZn +1 = eßzn + cnH , where cnH = O(hl/) . (1.29) 

Repeated insertion of this formula gives 
n 

ßZn = L en-iCi , (1.30) 
i=l 

because ßzo = O. This proves the statement for e ,; -1. For the case e = -1 
the error ßZn is a sum of differenees Cj+1 -Cj' Sinee CnH is actually of the 
form cn+1 = d( xn)hl/+O( hl/+1 ) we have cj+CCj = O( hl/+1 ) and the statement 
also follows in this situation. 0 
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The order reduction in the z-component (for non stifßy accurate meth­
ods) was first studied by Petzold (1986) in a more general context. 

Multistep Methods for Index 1 DAE's 

A multistep method applied to system (1.5) gives 

Ic Ic 

I: a i Y.,+i = h I: ßi f(y.,+i' Z.,+i) (1.31a) 
i=O i=O 

Ic Ic 

e I: ai Z.,+i = h I: ßi g(Yn+i' Zn+i) . (1.31b) 
i=O i=O 

By putting e = 0 we obtain (direct approach) 

Ic Ic 

I: ai Yn+i = h I: ßd(Yn+i, Zn+i) (1.32a) 
i=O i=O 

Ic 

0= 2: ßi g(Yn+i' zn+i) (1.32b) 
i=O 

which allows us to apply a multistep method to the differential-algebraic 
system (1.6). This approach was first proposed (for the BDF methods) by 
Gear (1971). 

Theorem 1.2. Suppoae that the ayatem (1.6) aatiafiea (1.7). Conaider a 
multiatep method of order p which ia atable at the origin and at infinity (0 and 
00 are in the atability region) and auppoae that the error of the atarting valuea 
Yj,Zj for j=O, . .. k-1 ia O(hp ). Then the global error of (1.32) aatiafiea 

for:l: n -:1: 0 =nh$; Conat. 

Proof. Formula (1.32b) is a stable recursion for 6n = g(yn , zn)' because 00 

lies in the stability region of the method. This together with the assumption 
on the starting values implies that 6.,=O(hp ) for all n~O. By the implicit 
function theorem g(yn , zn) = 6n can be solved for zn and yields 

(1.33) 

with G(y) as in (1.8). Inserting (1.33) into (1.32a) gives the multistep for­
mula for the differential equation (1.8) with an O(hp+1 ) perturbation. The 
statement then follows from the convergerice proof of Section 111.4. 0 
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For the implicit index 1 problem (1.17) the multistep method becomes 

k k 

M L aiun +i = h L ßiIP( un +i ) (1.34) 
i=O i=O 

and convergence without any order reduction for methods satisfying the 
hypotheses of Theorem 1.2 follows from the transformation (1.20) and the 
diagram (1.23). 

The indirect approach is also possible for multistep methods. We just 
have to replace (1.32b) by 

(1.32c) 

Method (1.32a,c) is equivalent to the solution of (1.8) by the above multistep 
method. Hence, we have convergence as for nonstiff ordinary differential 
equations. The assumption "00 E S" is nolonger necessary and even explicit 
methods can be applied. 

We shall turn our attention to a more difficult problem: convergence 
results for singular perturbation problems, valid uniformly in e. We begin 
with the discussion for multistep methods. The analogous theory for RK 
methods will be the subject of Section V1.2. 

Multistep Methods for Singular Perturbation Problems 

For such methods the error propagation has been studied by Söderlind & 
Dahlquist (1981) using G-stability estimates. Convergence results were first 
obtained by Lötstedt (1985) for BDF methods. The following convergence 
result by Lubich (1990), based on the smoothness of the exact solution and 
thus uniform in e as long as we stay away from transient phases, gives optimal 
error bounds for arbitrary multistep methods. 

The Jacobian of the system (1.5) is of the form 

and its dominant eigenvalues are seen to be dose to e-1,A where ,A represents 
the eigenvalues of 9z • For reasons of stability we assume throughout this 
subsection that the eigenvalues of 9z have negative real part. More precisely, 
we assume that 

the eigenvalues ,A of 9Ay, z) lie in 1 arg,A - 11'1 < a (1.35) 

for (y, z) in a neighbourhood of the considered solution. We then have the 
following result for method (1.31a,b): 



412 VI. Singular Perturbation Problems and Differential-Algebraic Equations 

Theorem 1.3 (Lubich 1990). Suppose that the multistep method is of order 
p, A(a)-stable and strictly stable at infinity. 1f the problem (1.5) satisfies 
(1.35), then the error is bounded for h'2c and nh:S: x-xo by 

IIYn - y(xn)11 + Ilzn -z(xn)11 

:s: C( max IIYj-y(xj)11 + hP t n Ily(P+l\X)11 dx 
O::;J<k J.,o 

+ (h + gn) max Ilzj-z(xj)11 + cP max Ilz(P+l)(x)ll) 
O~J<k "o~'"~". 

with 0 < g < 1. This estimate holds for h :s: ho (ho sufficiently small, but 
independent of c), and provided that the starting values are in a sufficiently 
small, h- and c-independent neighbourhood of the exact solution. The con­
stants C and g are independent of c and h. 

Proof. The proof is divided into several parts: in part (a) we shall derive 
recursive estimates for the global error, these will be solved in part (b); part 
(c) proves an inequality which is needed in (a). 

a) First we insert the exact solution of (1.5) into the method (1.31) and 
so obtain 

k k 

LaiY(xn+i ) = h Lßd(Y(xn+i),z(Xn+i )) +dnH (1.36a) 
i=O i=O 

(1.36b) 

where the perturbations dn+k , enH can be estimated (for n'2 0) as 

IldnHl1 :s: Cl hP l: n
+

k Ily(P+l)(x)lldx (1.37a) 

IlenHl1 :s: C2 hP+l max Ilz(P+l)(x)ll. 
""::;"::;",,+k 

(1.37b) 

We then denote the global errors by !::J..Yn = Yn -y( Xn), !::J..zn = zn - z( x n) and 
introduce the differences 

k 

!::J..fnH = Lßi(t(Yn+i,Zn+i)-f(Y(Xn+i)'Z(Xn+i ))) , n '20, 
i=O 

!::J..fj = 0 for j < k. Subtraction of (1.36a) from (1.31a) yields for n '2 0 

k 

L ai!::J..Yn+i = h!::J..fn+k - dnH . 
i=O 

(1.38) 

Guided by previous experience (see (V.7.41)), we define do,"" dk _ l so that 
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(1.38) also holds for negative n. Solving for f:l.Yn gives 
n n 

f:l.Yn = h 2: Tn_j(O)f:l.fj - 2:Tn_j(O)dj 
j=O j=O 

where Tj(O) is defined in (V.7.44). These numbers are the coefficients of 
T( (,0) = (-k / e( (-1). By zero-stability of the method, the sequence {T j(O)} 
is bounded, so that a Lipschitz condition for f(y, z) implies the estimate 

n n 

11 f:l.Yn 11 :::; h 2: (MIIf:l.Yj 11 + Nllf:l.zjll) + C3 2: Ildjll . (1.39) 
j=O j=O 

A more refined estimate is necessary for the z-component. We take the 
difference of (1.31 b) and (1.36b) and then subtract from both si des the 
quantity 

(1.40) 

This yields 

where 
k 

f:l.gn+k = 2: ßi(g(Yn+i,Zn+i) - g(Y(Xn+i),Z(Xn+i)) - J f:l.zn+i ) , (1.42) 
i=O 

and f:l.g j = 0 for j < k. We again define eo' ... , ek _ 1 such that (1.41) holds 
for negative n, and we then solve (1.41) for f:l.zn. This gives 

h n h n h 
f:l.zn = -; 2: Tn_j(-;J)f:l.gj - 2: Tn_ j(-;J)ej 

j=o j=O 
(1.43) 

where the matrices T j ( ~J) are defined by (see Formula (V.7.50)) 

h (h). (e; ) -1 (-k 
-; ~Tj -;J (J = "h 6(()I-J 0-((-1) 

J_ 

(1.44) 

with 6(0 given in (V.7.45). In part c) below we shall prove that 

with 0< I\, < 1 . (1.45) 

Inserted into (1.43) we thus get 
n n 

IIf:l.znll :::; 2: I\,n-j (Lllf:l.yjll + fllf:l.z j 11) + C4 X 2: I\,n-j Iiej II . (1.46) 
j=O j=O 
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It is important to remark that the Lipsehitz eonstant f ean be made arbi­
trarily small by shrinking the eonsidered interval. 

b) In order to solve the inequalities (1.39) and (1.46) we define sequenees 
{un } and {vn } by 

n n 

un = h ~)Muj+Nvj) + C3 L Ildjll , 
j=O j=o 

(1.47) n n 

vn = LKn-j(Luj+fvj) + C4~ LKn-jllejll . 
j=O j=O 

An induetion argument shows that 

provided f<l and h~ho' We then rewrite (1.47) as 

un = un_1 + hMun + hNvn + C3 11dnll , u_ I = 0, 
e 

vn = KVn_1 + LUn + lVn + C4 Xllenll , V_I = 0 . 

Solving for un,vn we get (with U=K/(l-f)) 

where 

(1.49) 

Inserting (1.48) repeatedly we obtain 

(1.50) 

If l is small enough so that u= K/(l-l) < 1 and if h ~ ho' then the eigenvalues 
of A( h) are distinct and A( h) ean be diagonalized as 

A(h) - T-I(h) (1 + O(h) 0 ) T(h) T(h) _ (1 O(h») 
- 0 U+O(h) , - 0(1) 1 . 

Inserted into (1.50) this yields 

n n 

un +vn ~ Const. (L~ + L(h+un-j)ej ) . 
j=1 j=1 

Since do,"" dk _ 1 are linear eombinations of the values 6.Yj (j < k), and 

eo,"" ek_1 are linear eombinations of the 6.zj and ~6.Zj' the statement of 
the theorem folIows from (1.49) and (1.37). Beeause of our assumption on 
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i (that e = K, / (1- i) < 1) we have proved the theorem tor sufficiently small 
(but e-independent) intervals. Compaet intervals [:1:0 , x] ean be eovered by 
repeated applieation of the above estimates. 

e) It still remains to prove (1.45). More generally, we shall show that 

with 0< K, < 1 (1.51) 

holds uniformly in a eompaet neighbourhood of the solution. This is neees­
sary, if the above estimates are applied to several subintervals. In order to 
prove (1.51) we remember that rj{ ~J) is defined by (1.44). If we are able 
to show that 

for 1(1 ~ 1/K, (1.52) 

then the estimate (1.51) follows immediately from Cauehy's integral formula 

-r. -J =-. -o(()I-J __ .(-J-1d(. h (h) 1 1. (e ) -1 (-k . 
e J e 27!'l 1'1=1/1< h 0'((-1) 

By definition of the stability region S of a multistep method, the value o( () 
lies outside of S whenever 1(1 < 1. Reeall that the method is A(o:)-stable 
and strietly stable at infinity, and the differential equation satisfies (1.35). 
Therefore the set of eigenvalues of gz(Y, z) (with (y, z) varying in a eompact 
neighbourhood ofthe solution) is weIl separated from {-yo( () ; 'i' ~ 1, 1(1 ~ I}. 
It is even separated from {-yo(() ; 'i' ~ 1, 1(1 ~ 1/ K,} with some K, < 1. Together 
with Exercise 2 of Seetion V.7 this proves (1.52). 0 

Exercises 

1. Compute the solutions of the boundary value problems 

ey" + y' + y = 1 respeetively ey" - y' + y = 1 

y( 0) = y( 1) = 0, for e > 0 . 

(1.50) 

Observe that the solutions possess, for e --+ 0, a "boundary layer" on 
one of the two sides of [0, 1] and that the limit solutions for e = 0 satisfy 

y' + y = 1 respeetively - y' + y = 1 

with one of the two boundary eonditions being lost. 

2. (Lubieh 1990). Prove that for the BDF-sehemes the estimate of Theo­
rem 1.2 (for n2::k) is valid with (h+en) replaced by e{l+en/h) in the 
factor multiplying the z-eomponent of the errors in the starting values. 

Hint. Give a direet prooffor n E {k, . .. ,2k-1}; then apply Theorem 1.2 
to shifted starting values. 
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In the preceding section we have proved convergence of multistep methods 
for singular perturbation problems. The same techniques do not yield op­
timal estimates for Runge-Kutta methods. We therefore investigate more 
thoroughly the structure of the solutions of singular perturbation problems. 
A first systematic study of the qualitative aspects of such problems is due to 
Tikhonov (1952). Asymptotic expansions were then analyzed by Vasil'eva 
(1963). Classical books on this subject are Wasow (1965), O'Malley (1974), 
and Tikhonov, Vasil'eva & Sveshnikov (1985). 

Expansion of the Smooth Solution 

"Tihonov's theorem is only the first step ... The actual 
approximate solution of such problems in series form is 
still a difficult question. It has been analyzed in aseries of 
papers by Vasil'eva ... " (W. Wasow 1965) 

We consider the singular perturbation problem 

y' = J(y,z) 

ez' = g(y, z) , 
(2.1) 

where 1 and gare sufficiently differentiable. The functions I,g and the initial 
values y(O), z(O) may depend smoothly on e. For simplicity of notation we 
suppress this dependence. The corresponding equation for e=O, 

y'=I(y,z) 
(2.2) 

0= g(y,z) , 

is the reduced problem. In order to guarantee the solvability of (2.2), we 
assume that gAY, z) is invertible (in a neighbourhood of the solution of 
(2.2)). 

We are mainly interested in smooth solutions of (2.1), which are of the 
form 

y(x) = Yo(x) + eYl(x) + e2Y2(x) + .. . 
z( x) = zo(:v) + eZ1 (:v) + e2 Z2(:Z:) + ... . 

(2.3) 
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Inserting (2.3) in to (2.1) and collecting equal powers of e yields 

y~ = f(yo, zo) } 

0= 9(Yo'Zo) 

Y~ = fy(Yo, ZO)Y1 + fAyo' ZO)Zl } 

Zo = 9y(YO,ZO)Y1 + 9AYo,zO)Zl 

(2.4a) 

(2.4b) 

eV : y~ = fy(Yo, zo)Yv + fAyo' zo)zv + tf'v(Yo' zo' ... 'Yv-ll zV_1) }(2.4C) 

z~_l = 9y(Yo, zo)Yv + 9z (Yo, zo)zv + 'l/Jv(Yo, zo,"" Yv-1' zv_1) 

As expected, we see from (2.4a) that Yo(x), zo(x) is a solution of the reduced 
system. Since 9z is invertible, the second equation of (2.4b) can be solved 
for Zl' By inserting Zl into the upper relation of (2.4b) we obtain a lin­
ear differential equation for Y1(x). Hence, Y1(x) and zl(x) are determined. 
Similarly, we get Y2(x), z2(x) from (2.4c), etc. 

This construction of the coeflicients of (2.3) shows that we can choose 
the initial values Yj(O) arbitrarily, but that there is no freedom in the choice 
of Zj(O). Consequently, not every solution of (2.1) can be written in the form 
(2.3). 

Expansions with Boundary Layer Terms 

"To construct a uniform asymptotic expansion we must 
combine the Maclaurin expansion with another expansion 
of special form. The terms in this expansion are expo­
nential functions that are appreciahle inside the houndary 
layer, hut negligihly small outside it." 

(A.B. Vasil'eva 1963) 

Example 2.1. We consider the problem (IV.1.1), written in the form 

ez' = -z + cosx . (2.5) 

Hs analytic solution 

z(x) = (1+e 2)-1(cosx+e sinx) + Ce-"/~ 
= cosx + esinx - c2 cosx - c3 sinx + ... + Ce-"/~ 

is a superposition of a smooth solution of the form (2.3) and of a rapidly 
decaying function. This additional term (transient phase, boundary layer) 
compensates the missing freedom in the choice of the initial values Zj(O). 

Motivated by this example, we seek solutions of the general problem 
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(2_1) which are of the form 

y(z) = :E eiYi(z) + e :E ei7]i(z/e) 
i~O i~O 

z(z) = :Eeizi(Z) + :Eei(j(z/e), 
(2.6) 

i~O i~O 

where Yi(z), zi(z) are determined by (2.4) and the e-independent functions 
7]j' (i are assumed to satisfy 

(2.7) 

with some K > O. Inserting (2.6) into (2.1) and using (2.4) we obtain formally 

:E ei 7]j (:.) = f (:E eiYj(z) + e :E ei7]j (;) , :E ej zi(z) + :E ei(j (;)) 
j~O e i~o i~o i~o i~o 

-f(:EejYj(Z), :Eeiz;(z)) (2.8a) 
j~O j~O 

:E ej(j(:') = g(:E ejYj(z) + e :E ej7]j(;) , :E eizj(z) + :E ei(i(;)) 
j~O e i~o j~O j~O j~O 

-g(:EejYj(Z), :EejZj(Z)) . (2.8b) 
'>0 '>0 1_ 1_ 

We then replace Z by the stretched variable 

e = z/e 

and compare like powers of ein (2.8). This gives for eO 

7]~(e) = f(Yo(O),zo(O) + (o(e)) - f(yo(O), zo(O)) 

(~(e) = g(yo(O),zo(O) + (o(e)) - g(yo(O),zo(O)) . 

(2.9) 

(2.10a) 

(2.10b) 

At this point it is necessary to introduce some stability assumption for (2.1) 
in order to obtain (2.7). We shall require that the logarithmic norm of gz 
satisfy 

",(gAY, z)) :::; -1 (2.11) 

in an e-independent neighbourhood of the solution of (2.2) (any negative 
bound other than -1 can be normalized by re-scaling e). By Theorem 1.10.6 
Equation (2.10b) and (2.11) imply 

II(o(e)ll:S; lI(o(O)lIe-e . 
Since f(y, z) satisfies locally a Lipschitz condition, the right-hand side of 
(2.10a), denoted by <p(e), is bounded by 1I<p(e)11 :s; LII(o(O)lIe-( Conse-
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quently, there is only one solution of (2.10a) whieh satisfies (2.7), namely 

7]o(e) = 1e cp(s) ds -100 
cp(s) ds . (2.12) 

A eomparison of the powers of e1 in (2.8) yields 

7]~(e) = Iy (Yo(O), zo(O) + (o(e)) (Y1(0) + ey~(O) + 7]o(e)) 

+ l"{yo(O), zo(O) + (o(e)) (Zl (0) + ez~(O) + (1 (e)) 

- ly(Yo(O), Zo (0))(Y1 (0) + ey~(O)) 
- I,.{Yo(O),zO(O))(Zl(O) +ez~(O)) (2.13a) 

(~(e) = gy(yo(O),zo(O) + (o(e)) (Y1(0) + ey~(O) + 7]o(e)) 

+ g,.{yo(O), zo(O) + (o(e)) (Zl (0) + ez~(O) + (1 (e)) 

- gy(yo(O),zo(O)) (Y1(0) +ey~(O)) 

- g,.{yo(O),zO(O))(Zl(O) +ez~(O)) . (2.13b) 

Formula (2.13b) is a linear differential equation for (1 (e). Its defeet, when (1 
is replaeed by 0, is bounded by C e-e. Therefore, an applieation of Theorem 
I.10.6 gives the estimate 

whieh implies (2.7) for any K, < 1. The right-hand side of (2.13a) is then 
bounded by Cl e- It( As in (2.12) we obtain a unique solution to (2.13a), 
whieh satisfies (2.7). This proeedure ean be eontinued to eonstruct all further 
7]j(e), (j(e). At eaeh step, the value of K, in (2.7) may beeome smaller. This 
is no serious diffieulty, beeause we are only interested in a finite part of the 
series (2.6). 

We point out that for the eonstruetion of 17/e) , (/e) we ean ehoose (j(O) 
arbitrarily, but that there is no freedom in the ehoice of 7]j(O). 

As a eonsequenee, for an arbitrary initial value for (2.1) with expansion 

y( 0) = yg + ey~ + e2 y~ + .. . 
z(O) = zg + ez~ + e2z~ + ... , 

(2.14) 

the eoefficients of the series (2.6) ean be eonstrueted as follows: put :v = 0 in 
(2.6) to obtain the neeessary relations 

Yo(O) = yg , Yj(O) + 17j_1(0) = yj , (2.15) 

This initial value Yo(O) =yg determines zo(O) by (2.4a), (0(0) is then given 
by (2.15), 7]0(0) by (2.12), Y1 (0) by (2.15), zl (0) by (2.4b), (1 (0) by (2.15), 
7]1(0) by (2.13a) and (2.7), Y2(0) by (2.15), ete. 
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Estimation of the Remainder 

The following result gives a rigorous estimate of the remainder in (2.6), when 
only a truncated series is considered. 

Theorem 2.2. Consider the initial value problem (2.1), (2.14), and suppose 
that (2.11) holds in an c-independent neighbourhood of the solution Yo(x), 
zo( x) (0::; x ::; x) of the reduced problem (Yo (0) = yg). 1f (yg, zg) lies in this 
neighbourhood, then the problem (2.1), (2.14) has a unique solution for c 
sufficiently small and for 0::; x ::; x, which is of the form 

N N-l 

y(x) = L cjYj(x) + c L cj1]j(x/c) + O(cN +1) 
j=O j=O 
N N 

(2.16) 

z(x) = LCjZj(X) + Lcj(j(x/c)+O(cN +1). 
j=O j=O 

The coefficients Yj(x), Zj(x), 1]/0, (j(e) are given by (2.4), (2.10), (2.13), 
and satisfy (2.7). 

Proof. We denote the truncated series by 

N N 

y( x) = L cj Y j (x) + c L cj 1] j (x / c) 
j=O j=O 
N N 

Z(x) = LCjZj(x) + Lcj(j(x/c) . 
j=O j=O 

Y/(X) = f(y(x), z(x)) + O(cN +1) 

ä/(x) = g(y(x), z(x)) + O(cN +1) . 

(2.17) 

(2.18) 

Subtracting (2.1) from (2.18) and exploiting Lipschitz conditions for fand 
9 we obtain 

D+IIY(x) - y(x)11 ::; L1IlY(x) - y(x)11 + L 2 1Iz(x) - z(x)11 + C1c N +1 

cD+llz(x) - z(x)11 ::; L3 1Iy(x) - y(x)II-llz(x) - z(x)11 + C2cN +1 . 
(2.19) 

Here, D+ denotes the Dini derivative introduced in Section 1.10. We have 
used D+ Ilw(x) 11::; Ilw/(x )11 (see Formula (I.10A)) and, for the second inequal­
ity of (2.19), Formula (I.10.17) together with (2.11). 
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In order to solve inequality (2.19) we replace :::; by = and so obtain 

Uo = Ily(O) - y(O)11 = O(cN +1) 
(2.20) 

Vo = 11=(0) - z(O)11 = O(cN +1) . 

This system is quasimonotone, it thus follows from Exercise 3 (Section 1.10) 
that 

Ily(x) - y(x)11 :::; u(x) , 11:z(x) - z(x)11 :::; v(x) . (2.21) 

Transforming (2.20) to diagonal form one easily finds its analytic solution 
and verifies that 

on compact intervals. Inserted into (2.21) this proves the statement. 0 

Expansion of the Runge-Kutta Solution 

After having understood the structure of the analytic solution of (2.1), we 
turn our attention to its numerical counterpart. We consider the Runge­
Kutta method 

(2.22) 

where 

( kni ) (!(Yni , ZnJ) 
eini - g(Yni , ZnJ 

(2.23) 

and the internal stages are given by 

(i::) = (~:) + h t, aij ( ~:: ) (2.24) 

For arbitrary initial values, the solution possesses a transient phase (as de­
scribed by Theorem 2.2), and the numerical method has anyway to take 
small step sizes of magnitude O( c). We shall therefore focus on the sit­
uation where the transient phase is over and the method has reached the 
smooth solution within the given tolerance. We thus suppose that the initial 
values lie on the smooth solution (i.e., that an expansion of the form (2.3) 
holds) and that the step size h is large compared to c. Our first goal is 
an c-expansion of the numerical solution. To this end, we formally expand 
all occuring quantities into powers of c with c-independent coefficients (see 
Hairer, Lubich & Roche 1988) 

o 1 2 2 
Yn = Yn + cYn + c Yn + ... 

Yni = Y~i + cY;i + c2Y;i + .. . 
kni = k~i + ck~i + c2k~i + .. . 

(2.25a) 

(2.25b) 

(2.25c) 
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and similarly for zn' Zni' i ni . Because of the linearity of the relations (2.22) 
and (2.24) we have 

(2.26) 

and 

( Y" ) (" ) 3 (k") ni _ Yn nj 
Z". - z" + h L aij i". . 

71., 71. j=1 nJ 

(2.27) 

Inserting (2.25b, c) into (2.23) and comparing equal powers of ewe obtain 

k~i = f(Y~i' Z~i) } 
o = g(Y~i' Z~i) 

k~i = f')Y~i' Z~i)Y;i + fAY~i' Z~i)Z!i } 

i~i = g1/(Y~i' Z~i)Y;i + gAY~i' Z~i)Z~i 

(2.28a) 

(2.28b) 

k~i = f')Y~i' Z~i)Y:i + fAY~i' Z~i)Z~i + <P"(Y~i' Z~i' ... , y:i- 1 ,Z~i1) } 
e"· 

. i~i1 = gY(Y~i' Z~i)Y:i + gAY~i' Z~i)Z~i + 1/J,,(Y~i' Z~i' ... , y:i- 1, Z~i1) 
(2.28c) 

Since (2.23) has the same form as the differential equation (2.1), it is obvious 
that the formulas of (2.28) are exactly the same as those of (2.4). An inter­
esting interpretation of this fact is the following: the coefficients y~, z~, Y;, 
z~, . .. represent the numerical solution of the Runge-Kutta method applied 
to the differential-algebraic system (2.4) (direct approach of Section VI.1). 
This can be expressed by the commutativity of the following diagram: 

Problem (2.1) 

RKl rn"hod 

(2.3) 

(2.25) 

Subtracting (2.25a) from (2.3) we get formally 

DAE (2.4) 

RKl rn.thod 

Yn -Y(:l:n ) = Le"(Y~-Y,,(:Z:n)) 
,,~o 

zn - Z(:l:n ) = Le"(z~-zlI(:l:n)) . 
,,~o 

(2.29) 

In order to study this error we first investigate the differences Y:;' -y,,(:l:n ), 

z:;,-z,,(:l:n) (next subsection). A rigorous estimate ofthe remainder in (2.29) 
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will then follow. The presentation follows that of Hairer, Lubich & Roche 
(1988). 

Convergence of RK-Methods 
for Differential-Algebraic Systems 

The first differences y~ - Yo(z,..), z~ - zO(zn) in the expansions of (2.29) are 
just the global errors of the Runge-Kutta method applied to the reduced 
system (2.4a). By assumption (2.11) this system is of index 1. Therefore, 
the following result is an immediate consequence of Theorem 1.1. 

Theorem 2.3. Consider a Runge-Kutta method 0/ (classical) order p, 
with invertible coefficient matriz (aij). Suppose that Problem (2.4a) sat­
isfies (2.11) and that the initial values are consistent. 
a) I/ the method is stiffly accurate (i.e., a.i = bi /or i = 1, ... ,s) then the 
global error satisfies 

(2.30) 

b) I/ the stability Junction satisfies IR( 00) I < 1, and the stage order is q 
(q<p), then 

(2.31) 

In both cases the estimates hold uni/ormly /or nh:::; Const. o 

Estimating the second differences Y; -Y1 (zn)' z; -Z1 (Zn) is not as simple, 
because the enlarged system (2.4a,b) with differential variables Yo, zo, Y1 and 
algebraic variable Z1' is no longer of index 1. It is actually of index 2, as will 
become dear in Section VI.5 below (Exercise 5). In principle it is possible 
to consult the results of Section VI.7 (theorems VI.7.5 and VI.7.6). For the 
special system (2.4a,b), however, a simpler proof is possible. It also extends 
more easily to the higher-index problems (2.4a-c). 

Theorem 2.4 (Hairer, Lubich& Roche 1988). Consider a Runge-Kutta 
method 0/ order p, stage order q (q < p), such that (aij) is invertible and 
the stability Junction satisfies IR(oo)l< 1. I/ (2.11) holds and i/ the initial 
values 0/ the differential-algebraic system (2.4a-c) are consistent, then the 
global error 0/ method (2.26)-(2.28) satisfies /or 1:::; v:::; q+ 1 
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Proof. We denote the differences to the exact solution values by 

ßy~ = y~ - y,,(:Z:n) , ßz~ = z~ - z,,(:Z:n) , 

ßY:i=Y:i-y,,(zn+cih ) , ßZ~i=Z~i-z,,(:Z:n+cih), 

ßk~i = k~i - y~(:Z:n+cih), ßf~i = f~i - z~(:Z:n+cih) . 

(2.32) 

Since the quadrat ure formula with nodes Ci and weights bi is of order p, we 
have from (2.26) 

(2.33) 

Similarly, the definition of the stage order implies 

( ßY:i ) = (ßY~) + h ~ a .. (ßk~i) + O(hq+1) 
ßZ" . ßz" L..J'J ßf" . . 

n. n i=1 nJ 
(2.34) 

It follows from Theorem 2.3 (see also the proof of Theorem 1.1) that 

ßy~ = O( hP ) , ßY!i = O( hq+1) , ßk~i = O( hq+1) 

ßz~ = O(hq+1) , ßZ~i = O(hq+1) , ßf~i = O(hq). 
(2.35) 

a) We first consider the case v = 1. Replacing in (2.28b) Y'?i' Z!i by 
Yo(:Z:n +cih)+ßY'?i' zo(zn +cih)+ßZ!i and subtracting equation (2.4b) at 
the position :z: =zn +cih, we obtain with the help of (2.35) 

ßk;i = fy(Zn+Cih)ßY~i + fAzn+Cih)ßZ~i 
+ O(hq+1+hq+11IßY~ill+hq+11IßZ~ill) 

ßf~i = 9y(:Z:n +cih)ßY~i + 9z(:Z:n +cih)ßZ~i 

+ O(hq+1+hq+1I1ßY~J+hq+1I1ßZ~ill) . 

(2.36) 

Here we have used the abbreviations fiz)=fy(Yo(z),zo(z)), etc. Comput­
ing ßZ;i from the second relation of (2.36) and inserting it into the first one 
yields 

ßk;i - (/z9-;1)(:Z:n +cih )ßf~i 

= (/y - fz;9-;1 9y )(zn +cih)ßY~i + O(hq+1 +hq+11IßY~ill) . 

Using (2.34) we can eliminate ßY':i and obtain (with (2.35)) 

ßk;i - (/z9-;1)(:Z:n+Cih)ßf~i = O(IIßy;II) + O(hQ+1) . (2.37) 

Since ßf~i is of size O(hq ), we only have ßk~i = O(IIßy;II)+O(hq ), and a 
direct estimation of ßy~ in (2.33) would lead to ßy~ =O(hq), which is not 
optimal. We therefore introduce the new variable 

(2.38) 
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From (2.33) we get 

• 
~u~+1 = ~u~ + h L bi (~k~i - (fzg;1)( :Vn)~l~i) (2.39) 

i=1 
- ((fzg;1)(:v n+h) - (fzg;l)(:Vn))~z~+1 + O(hP+1) . 

The estimates (2.35), (2.37) and the fact that ~Y; = ~u;. +O(hq+1 ) imply 
that 

(2.40) 

Standard techniques now show that ~u; = O( hq+1 ) for nh S. Con8t (observe 
that the initial values are assumed to be consistent, i.e., ~uÖ = 0), so that by 
(2.38) and (2.35) also ~Y; = O(hq+1 ). This implies ~k~i = O(hQ) by (2.37) 
and ~Y~i = O(hq+1 ) by (2.34). The second relation of (2.36) then proves 
that ~Z~i=O(hq). In order to estimate ~z;, we compute ~l~i from (2.34) 
and insert it into (2.33). Using ~Z~i =O(hq ) this gives 

~z~+1 = (l-bT A-11l)~z~ + O(hq ) , (2.41) 

and it follows from 11-bT A-11l1 = IR(oo)1 < 1 that ~z; = O(hq ). We have 
thus proved the ease v = 1. 

b) The proof for general v is by induction. We shall show that 

~Y~ = O(hq+2- V ) , ~Y:i = O(hq+2 - V ) 

(2.42) 

holds for v = 1, ... , q+ 1. The main difference to the ease v = 1 consists in the 
additional inhomogeneities "P v and 'l/J v in (2.4e). Using their Lipsehitz eonti­
nuity one obtains an additional term of size O(hq+2- v ) in (2.36). Otherwise 
the proof is identieal to that for v = 1. 0 

We next study the existence and local uniqueness of the solution of the 
Runge-Kutta method (2.22)-(2.24). Further, we investigate the influence of 
perturbations in (2.24) to the numerical solution. This will be important for 
the estimation of the remainder in the expansion (2.29). 

Existence and Uniqueness of the Runge-Kutta Solution 

For h small eompared to e, the existence of a unique numerical solution 
of (2.23), (2.24) follows from standard fixed point iteration (e.g., Theo­
rem II.7.2). For the (more interesting) ease where the step size h is large 
eompared to e, we suppose that (Yn, zn) are known, denote it by (7], (), and 
prove the existence of (Yn+1 , zn+1) as follows: 
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Theorem 2.5 (Hairer, Lubich & Roche 1988). Assume that 9(71,()=O(h), 
P.(9A71,()):::; -1 and that the eigenvalues 0/ the Runge-Kutta matrix (aij) 
have positive real part. Then, the nonlinear system 

(2.43) 

possesses a locally unique solution /or h:::; ho, where ho is sufficiently small 
but independent 0/ e. This solution satisfies 

(2.44) 

Proo/. We apply Newton's method to the nonlinear system (2.43), whose 
second equation is divided by h. The existence and uniqueness statement 
can then be deduced from the theorem ofNewton-Kantorovich (Kantorovich 
& Akilov 1959, Ortega & Rheinboldt 1970) as follows: for the starting values 
Yi(O) =71, Z}O) =( the Jacobian of the system is of the form 

( I + O(h) O(h) ) 
0(1) (e/h)I-A®gA71,() . 

(2.45) 

Since P.(9A71,()) :::; -1 it follows from the matrix-valued theorem of von 
Neumann (Theorem V.7.8) that 

11 (II:I - A ® 9A71, ())-111 s max II(II:I - p.A)-111 . (2.46) 
Re ,.~-1 

The right-hand side of (2.46) is bounded by a constant independent of 11: 20, 
because the eigenvalues of Aare assumed to have positive real part. Con­
sequently, also the inverse of (2.45) is uniformly bounded for e > 0 and 
h S ho. This together with 9(71,() = O(h) implies that the first increment 
(of Newton's method) is of size O(h). Hence, for sufliciently small h, the 
Newton-Kantorovich assumptions are fulfilled. 0 

Infiuence of Perturbations 

For the perturbed Runge-Kutta method 

( ~ -7]~ ) = h ta .. (/(~'~)) + h (6i ) 
e(Zi - 0 j=1 'J g(Yj, Zj) (Ji 

(2.47) 

we have the following result. 

Theorem 2.6 (Hairer, Lubich & Roche 1988). Let Yi, Zi be given by (2.49) 
and consider perturbed values JIi, Zi satisfying (2.47). In addition to the 
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assumptions of Theorem 2.5 suppose that fj-l1=O(h), (-(=O(h), h'i=O(I), 
and Oi=O(h). Then we have for h$.ho 

lIiIi - lill $. C(lIfj -1111 + ell( - (11) + hC(IIh'1I + 11(11) 
~ e ~ (2.48) 

IIZi - Zill $. C(II17 -1111 + ;;II( - (11) + C(hllh'1I + 11 ( 11) . 

Here h'=(h'1, ... ,h'.)T and O=(01, ... ,O.)T. 

Proof. The essential idea is to consider the homotopy 

( li-l1) h~ (!(Yj,Zj)) _ ( fj-l1+ hOi ) 
e(Zi-() - f;;taij g(Yj,Zj) -r e(-()+h(}i (2.49) 

which relates the system (2.43) for r=O to the perturbed system (2.47) for 
r = 1. The solutions li and Zi of (2.49) are functioDs of r. If we differentiate 
(2.49) with respect to rand divide its second formula by h, we obtain the 
differential equation 

( 1+0(h) O(h) ) (Y) (ll.(fj-l1)+hO) 
0(1) M(e/h,Y,Z) Z = (e/h)ll.(-()+O 

where 1l=(1, ... ,1)T, Y=(Y1, ... ,Y.)T, Z=(Zll ... ,Z.)T and 

(
9AY1, Z1) 0) 

M(~, Y, Z) = ~1 - A ® I· ... 

o gz(Y.' Z.) 

Whenever Illi-l1l1 $.d and IIZi-(II$.d for all i, we have 

M(~, Y, Z) = ~1 - A ® gAl1, () + O(d) 

(2.50) 

(2.51) 

(2.52) 

and it follows from (2.46) that M(~, Y, Z) is uniformly bounded for ~~O, if 
dis sufficiently small. Hence, the inverse of the matrix in (2.50) satisfies 

(I + O(h) O(h) )-1 (I + O(h) O(h)) 
0(1) M(e/h, Y,Z) = 0(1) 0(1) 

and the statement (2.48) follows from the fact that 

y - Y = 11 
Y(r)dr , Z - Z = 11 

Z(r)dr . 

o 

Remark 2.7. If the Runge-Kutta matrix A is only assumed to be invertible, 
the results of Theorems 2.5 and 2.6 still hold for e $. Kh, where K is any 
constant smaller than the modulus of the smallest eigenvalue of A (i.e., 
K< IAminl). In this situation, the right-hand side of (2.48) is also bounded, 
and the same conclusions hold. 
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Estimation ofthe Remainder in the Numerical Solution 

We are now in the position to estimate the remainder in (2.29). The result 
is the following. 

Theorem 2.8 (Hairer, Lubich & Roche 1988). ConJider the JtijJ prob­
lem (2.1), (2.11) with initial valueJ y(O), z(O) admitting a Jmooth Jolution. 
Apply the Runge-Kutta method (2.22)-(2.24) ot claJsical order p and stage 
order q (1 ::; q < p). Assume that the method iJ A-Jtable, that the Jtability 
function satisfies IR( (0) I < 1, and that the eigenvalues ot the coefficient ma­
triz A have positive real part. Then tor any fized constant c > 0 the global 
error satisfies tor e ::; eh and v::; q+ 1 

Yn - y(zn) = ßy~ + eßY~ + ... + eil ßy~ + O(e"+1) 

zn - z(Zn) = ßZ~ + eßz~ + ... + eil ßZ~ + O(e"+1 jh) . 
(2.53) 

Here ßy~=y~-YO(a:n)' ßz~=z~-zO(a:n)' ... (see Formula (2.32)) are the 
global errors ot the method applied to the system (2.4). The estimates (2.53) 
hold unitormly tor h::; ho and nh::; Const. 

Proot. By Theorem 2.4 it suffices to prove the result for v=q+1. We denote 
the truncated series of (2.25) by 

~ 0+ 1+ +"" Yn = Yn eYn . . . e Yn 

Yni = Y:i + eY';i + ... + e"Y:i 

kni = k~i + ek;i + ... + e"k~i 
and sirnilarly zn' Zni' ini . Further we denote 

(2.54) 

ßkni = kni - kni , ... (2.55) 

Using (2.3) and Theorem 2.4 the statement (2.53) is then equivalent to 

ßYn = O(e"+l), ßZn = O(e"+ljh). (2.56) 

a) We first estimate the differences ßYni , ßZni of the internal stages. 
For this we investigate the defect when (2.54) is inserted into (2.23). By our 
construction (2.28) it follows from (2.42) and v= q+ 1 that 

~ _ ~ ~ 11+1 " 11+1 elni - g(Yni , Zni) + e lni + O( e ) . 
(2.57) 

From (2.42) and (2.27) we know that l~i = O(h-1 ). Together with (2.27) 
this implies 

(2.58) 
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which is of the form (2.47). Application of Theorem 2.6 yields 

II6.Yni ll :S C(II6.Ynll + ell6.znlD + 0(eV+1) 
II6.Zni li :S C(II6.ynll + XII 6.znll) + 0(el/+ 1 Ih) 

(2.59) 

provided that 6.Yn and 6.zn are of size O(h). This will be justified later in 
part c). 

b) Our next aim is to prove the recursion 

( 116.Yn+1ll)< (1 + O(h) O(e) ) (116.Ynll )+( 0(ev+1)) 
II6.zn+111 - 0(1) a + O(e) II6.znll 0(el/+1Ih) 

(2.60) 
where we assume again that 6.Yn and 6.zn are of size O(h). The value a< 1 
will be given in Formula (2.63) below. The upper relation of (2.60) follows 
from 

s 

6.Yn+l = 6.Yn + h L bi (!(Yni , Zni) - !(Yni , Zni)) 
i=1 

by the use of (2.59) and a Lipschitz condition for f. 
For the verification of the second relation in (2.60) we subtract (2.57) 

from (2.23), and use (2.59) and (2.42) to obtain 

e6.f.ni = g,.(ren)6.Zni + O(II6.Yni ll + hll6.Zni ll) + 0(el/+1 Ih) . (2.61) 

Here we use the notation gz(re) = gz(Yo(re), zo(re)). Inserting 6.Zni = 6.zn + 
h L aij6.f.nj into this relation and using (2.59) again we obtain 

s 

e6.f.ni-h L aijgz( ren)6.f.nj = g,.( re n)6.zn +O( I16.Yn 11 +ell6.znll)+O( el/+1 I h). 
j=1 

We now solve for h6.f.ni and insert it into 6.zn+1 = 6.zn +h L bi6.f.ni . Since 
the matrix (elh)I -A ® g,.(ren) has a bounded inverse by (2.48), this gives 

6.zn+1 = R(~ g,.(re n))6.zn + O(II6.Ynll + ell6.znll) + 0(el/+1 Ih) , (2.62) 

where R(I') is the stability function ofthe method. Because of (2.11) we can 
apply von Neumann's theorem (Corollary IV.11.4) to estimate 

IIR( ~ gAren)) 11 ~ sup{IR(I')1 j Re I' ~ -hle} ~ a < 1 . (2.63) 

The bound a is strictly smaller than 1, because 1 R( 00 ) 1 < 1 and - h I e ~ 
-1/c< O. The triangle inequaHty applied to (2.62) completes the proof of 
Formula (2.60). 

c) Applying Lemma 2.9 below to the difference inequality (2.60) gives 

6.Yn = 0(el/+1Ih) , 6.zn = 0(el/+1/h) (2.64) 
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for nh:::; Gonst_ We are now in a position to justify the assumption f::1Yn = 
O( h) and f::1zn = O( h) of the beginning of the proof. Indeed, this follows by 
induction on n (f::1yo=O, f::1zo=O) and from (2.64), because lI=q+1~2. 

d) Formula (2.64) proves the desired result (2.56) for the z-component. 
However, the estimate (2.64) is not yet optimal for the y-component. The 
proof for the correct estimate is similar to that of Theorem 2.4. We have to 
treat more carefully the expression which gives rise to the O(gll+1 jh) term 
in (2.61). Using (2.59) and (2.64) the same calculations which gave (2.61), 
now yield 

f::1kni = /y(zn)f::1Yni + l.(zn)f::1Zni + O(gll+l) 

gf::1lni = gy(zn)f::1Yni + gAzn)f::1Zni + gHll~i + O(gll+l) . 

(2.65a) 

(2.65b) 

We compute f::1Zni from (2.65b) and insert it into (2.65a). This gives 

f::1kni - (/zg;I)( zn)( gf::1lni - gll+1l~i) 
(2.66) 

= (/y_/zg;l gy )(zn)f::1Yni + O(gHl) . 

Guided by this formula we put 

.6.un = .6.Yn - (/zg;I)(zn)(g.6.zn - gll+lz~) . (2.67) 

Since 
• 

f::1un+1 = f::1un + h L bi (.6.kni - (/zg;1 )(zn)(g.6.lni _gll+ll~i)) 
i=1 

- ((/zg;1 )(zn +h) - (/zg;1 )(zn)) (gf::1zn+1 _gll+1 Z~+l) 

it follows from (2.66), (2.64), and (2.42) that 

II.6.un +111 :::; (1 +eh) II.6.un 11 + O(hg H1 ) . (2.68) 

As in the proof of Theorem 2.4 we deduce .6.un = O( gHl) and .6.Yn = 
O(gll+l). 0 

In the above proof we used the following result. 

Lemma 2.9. Let {u n }, {vn } be two sequenees 0/ non-negative numbers 
satisfying (eomponentwise) 

(:::~):::; (16ft~h) a~~{g)) (::) +M(~) (2.69) 

with 0 :::; a < 1 and M ~ O. Then the following estimates hold for g :::; eh, 
h:::; ho and nh:::; Oonst 

U n :::; G( U o + gVo + M) 

vn ~ C(uo + (g+an)vo + M) . 
(2.70) 
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Proof. We transform the matrix in (2.69) to diagonal form and so obtain 

where Al = 1 +O( h), A2 = o:+O( e) are the eigenvalues and the transformation 
matrix T (composed of eigenvectors) satisfies 

T= (o~1) Oie)) . 
The statement now fol1ows from the fact that (o:+O( e))n = O( o:n )+O( e) for 
e ::; eh and nh::; Const. 0 

By combining Theorem 2.8 with Theorems 2.3 and 2.4 we get the fol­
lowing result. 

Corollary 2.10 (Hairer, Lubich & Roche 1988). Under the assumptions 01 
Theorem 2.8 the global error 01 a Runge-K utta method satisfies 

(2.71) 

11 in addition a&i = bi lor all i, we have 

(2.72) 

Remarks. a) If the A-stability assumption is dropped and the coefficient 
matrix A is only assumed to be invertible, then the estimates of Corollary 
2.10 still hold for e ::; Kh where K is a method-dependent constant (see 
Remark 2.7). 

b) A-stability and the invertibility of the matrix A imply in general that 
the eigenvalues of A have positive real part. Otherwise the stability function 
would have to be reducible. 

c) For several Runge-Kutta methods satisfying a.i = bi the estimate 
(2.71) for the y-component can be improved. E.g., for Radau IIA and for 
Lobatto IIIC one has Yn -y(xn )=O(hP )+O(e2hQ). This follows from Table 
VI.7.1 below. 

d) The analogues of Theorem 2.8 and Corollary 2.10 for Rosenbrock 
methods are given in Hairer, Lubich & Roche (1989). 

e) Estimates for p = q are given in Exercise 3 below. 
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N umerical Confirrnation 

The estimates of Corollary 2.10 can be observed numerically. As an example 
of (2.1) we choose the Van der Pol equation 

y' = Z 

E:Z' = (1- y2)z - Y 
(2.73) 

with E: = 10-5 and initial values 

y(O) = 2 , Z(O) = -0.6666654321121172 (2.74) 

on the smooth solution (Exercise 2). 
Table 2.1 shows the methods of our experiment together with the the­

oretical error bounds. In Fig.2.1 we have plotted the relative global error 
at ;r end = 0.5 as a function of the step size h, which was taken constant 
over the considered interval. The use of logarithmic scales in both directions 
makes the curves appear as straight lines of slope r, whenever the leading 
term of the global error behaves like Const· h r • The figures show complete 
agreement with our theoretical results. 

Table 2.1. Global errors predicted by Corollary 2.10 

Method asi = bi y-comp. z-comp. 

Radau IA no h 2s - 1 + eh s h S 

Radau UA yes h 2s - 1 + e2h s h2s - 1 + eh s 

Lobatto IUC yes h2s - 2 + e2 h s - 1 h 2s - 2 + ehs - 1 

SDIRK (IV.6.l6) yes h4 + eh2 h4 + eh 

SDIRK (IV.6.18) no h4 + eh2 h2 

Perturbed Initial Values 

When integrating a singular perturbation problem, the numerical solution 
approximates the smooth solution only within the given tolerance Tol. It 
is therefore interesting to investigate the influence of perturbations in the 
initial values on the global and IOCal errors of the method. Let us begin 
with a numerical experiment. We perturb the z(O) value of (2.74) by an 
amount of 10-6 and apply the Radau HA methods to the problem (2.73). 
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h 10-4 10-3 10-2 10-1 h 10-4 10-3 10-2 

Radau IA 

0 s=2 
10-6 

{> s=3 
0 s=4 

10-9 

10-12 10-12 

error error 

h 10-4 10-3 

0-3 

Radau IIA 
0-6 

0 s=l 
10-9 

{> s=2 
0 s=3 

10-12 

error 

h 10-4 10-3 10-2 10-1 h 10-4 10-3 10-2 10-1 

Lobatto IIIe 0-3 0-3 

0 s=2 
0-6 {> s=3 

0 s=4 

10-12 

error 

h 10-4 10-3 10-2 10-1 h 10-4 10-3 10-2 

Method (IV.6.18) 
10-3 

0 
{> Method (IV.6.16) 

10-9 

10-12 10-12 

error error 

y-component z-component 

Fig.2.1. Global error versus the step size 
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For the global error at x end = 0.5 we obtain exactly the same results as in 
Fig.2.1. This shows that the perturbation is completely damped out during 
integration. The results for the local error show a different behaviour and 
are displayed in Fig.2.2. We observe the presence of a "hump", exact1y as 
in Fig. IV.7.4 and in Fig. IV.8.2. 

Radau IIA 

o 5=1 

<} 

Fig.2.2. Local error of Radau HA (perturbed initial value) 

error 

In order to explain this phenomenon we denote by (Yo, zo) the considered 
initial value, and by (Yl' zl) the numerical solution after one step with step 
size h. The exact solution y(x), z(x) passing through (yo,zo) will have a 
boundary layer, and (under suitable assumptions, see Theorem 2.2) can be 
written as 

(2.75) 

Here y(x), z(x) represents a smooth solution of(2.1). Wedenote by Yo =y(O), 
Zo = z( 0) the initial values on this smooth solution, and by (Yl' zl) the 
numerical approximation obtained by the same method with step size hand 
initial values (Yo' zo)' The local error can now be written as 

Zl - z(h) = (Zl-zl) + (zl-z(h)) + (z(h)-z(h)) (2.76) 

and similarly for the y-component. The last term in (2.76), which is of size 
O( Tol e-h/e), can be neglected if the step size his significantly larger than 
c. The term Zl - z( h) represents the local error in the "smooth" situation 
and is bounded by at least O(hq+1 ) (apply Corollary 2.10 with n = 1). It 
can be observed in Fig. 2.2 whenever h or the error is large. The difference 
Zl - Zl is the term which causes the irregularity in Fig.2.2. U sing Theorem 

2.6 (with b = 0, 0 = 0, 17-11 = O(cTol), (" -( = O( Tol)) and the ideas of the 
proof of Theorem 2.8 (in particular Formula (2.62)) we obtain 

zl - zl = R(~gAO))(zo-zo) + O(cTol) 
(2.77) 
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For c < h we develop 

(2.78) 

This shows that an h-independent expression R(oo)(zo -zo) = O(Tol) will 
be observed in the local error, if R( 00) i= o. For methods with R( 00) = 0 
(such as Radau HA) the dominant part in zl - zl is C(cjh)g;l(O)(zO-zo)= 
O( Tol cjh). This term can be observed in Fig.2.2 as a straight line of 
slope -1. Thus in this region the local error increases like h-1 when h 
decreases. A similar perturbation, multiplied however by c, is observed for 
the y-component. 

This is not a serious drawback for a numerical implementation, because 
the phenomenon appears only for step sizes where the local error is smaller 
than Tol. 

Exercises 

1. Prove that the statement of Theorem 2.2 remains valid, if the assumption 
(2.11) is replaced by 

the eigenvalues A of gAY, z) satisfy Re A :S -1 

for all y,z in a neighbourhood ofthe solution yo(x), zo(x) ofthe reduced 
system. 

Hint. Split the interval into a finite number of small subintervals and 
construct for each of them an inner product norm such that, after a 
rescaling of c, (2.11) holds (see Nevanlinna 1976). 

2. Let y(O) = 2; find the corresponding z(O) for the Van der Pol equation 
(2.73), such that its solution is smooth. 

Result. 
2 10 292 2 1814 3 4 

z(O) = -- + -c - -c - --c + O(c ) . 
3 81 2187 19683 

3. If the assumption q < p (p classical order, q stage order) is dropped in 
Corollary 2.10, we still have 

Prove this statement. The implicit Euler method and the SIRK methods 
of Lemma IV.8.1 are typical examples with p=q. 

Hint. Apply Corollary 2.10 with q reduced by 1. 



VI.3. Rosenbrock Methods 

This section is devoted to the extension of Rosenbrock methods (see Section 
IV.7) to differential-algebraic equations in semi-explicit form 

y' = f(y, z) , 

0= g(y, z) , 
y(xo) = Yo 

z(xo) = Zo • 

(3.1a) 

(3.1b) 

We suppose that gz is invertible (see (1.7)), so that the problem is of index 1. 
We shall obtain new methods for the numerical solution of such problems, 
and at the same time get more insight into the behaviour of Rosenbrock 
methods for stiff differential equations. In particular, the phenomenon of 
Fig. IV. 7.4 will be explained. 

Definition of the Method 

The main advantage of Rosenbrock methods over implicit Runge-Kutta 
methods is that nonlinear systems are completely avoided. The indirect 
approach (transforming (3.1) to y' = f(y, G(y))) would destroy this advan­
tage. This is one more reason for applying Method (IV.7.4) to the singular 
perturbation problem (1.5) and then studying the limit as e ~ O. For the 
problem (1.5) a Rosenbrock method reads 

V· Yo k· ( ) ( ) 
i-l () 

• = + (l.. J , 
wi Zo ~ tJ f.j 

(3.3a) 
If we multiply the second line of (3.2) by e and then put e = 0 we obtain 

( ki)=h(f(Vi'Wi))+h(fy fz)(y Z)~"J.(kj). o g(v. w.) 9 9 0' 0 L...J ItJ f.. 
t' t y z j=l J 

(3.3b) 
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Formulas (3.3a) and (3.3b) together constitute the extension of a Rosenbrock 
method to the problem (3.1). This type of method was first considered 
by Michelsen (1976) (quoted by Feng, Holland & Gallun (1984)). Further 
studies are due to Roche (1988). We remark that the computation of (ki,fi ) 
from (3.3b) requires the solution of a linear system with matrix 

(3.4) 

where all derivatives are evaluated at (yo,zo)' For nonsingular gz' nonzero 
,,(, and small enough h > 0, this matrix is invertible. This can be seen by 
dividing the lower blocks by "(h and then putting h=O. 

Non-autonomous equations. If the functions 1 and gin (3.1) also depend on 
x, we replace (3.3b) by 

( ki ) = h (/(xo + aih,vi' Wi )) + h (/y Iz) t "(ij (kf~) + h2"(i (I.,) 
o g(xo + ai h, Vi' Wi) gy gz j=l J g., 

(3.5) 
(compare with (IV.7.4a) and recall the definition of a i and "(i in (IV.7.5)). 
All derivatives are evaluated at the initial value (xo,yo,zo)' 

Problems 01 the form M u' = t,O( u). Rosenbrock formulas for these problems 
have been developed in Section IV.7 (Formula (IV.7.4b)) in the case of re­
gular M. This formula is also applicable for singular M, and can be justified 
as folIows: It is theoretically possible to apply the transformation (1.20) so 
that M becomes the matrix 

(~ ~) . 

The method (IV.7.4b) is then identical to method (3.3). Therefore, the 
theory to be developed in this section will also be valid for Rosenbrock 
method (IV.7.4b) applied to index 1 problems ofthe form Mu'=t,O(u). 

Having introduced a new dass of methods, we must study their order 
conditions. As usual, this is done by Taylor expansion of both the exact 
and the numerical solution (similar to Section 11.2). A nice correspondence 
between the order conditions and certain rooted trees with two different 
kinds of vertices will be obtained (Roche 1988). 
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Derivatives of the Exact Solution 

In contrast to Section 11.2, where we used "hordes of indices" (see Dieu­
donne's preface to his "Foundations of Modern Analysis") to show us the 
way through the "woud met bornen" (Hundsdorfer), we here write higher 
derivatives as multilinear mappings. For example, the expression 

82gi L 8 8 . ujvk is written as gyz( u, v) , 
j,k Yj zk 

which simplifies the subsequent formulas. 
We differentiate (3.1b) to obtain 0 = gy . y' + gz . z' and, equivalently, 

(3.6) 

We now differentiate successively (3.1a) and (3.6) with respect to x. We use 
the formula 

(_g;-l)'U = (_g;l) (gZy (( _g;-l )u,J) + gzz (( _g;l )u, (_g;l )gyf) ) (3.7) 

which is a consequence of (A-1(x))' = -A-1(x)A'(x)A-1(X) and the chain 
rule. This gives 

z" = (_g;l) (gZy{{ _g;l )gyJ, f) + gzz{{ _g;-l )gyJ, (_g;l )gJ)) 

+( _g;-l) (gyy(f, f) + gyz(f, (_g;-l )gyf) 

+( _g;l )gy (JyJ + JA _g;l )gyf) . 

(3.8) 

(3.9) 

Clearly, these expressions soon become very complicated and a graphical 
representation of the terms in (3.8) and (3.9) is desirable. 

Trees and Elementary Differentials 

We shall identify each occuring f with a meagre vertex, and each of its 
derivatives with an upward leaving branch. The expression {_g;:l)g is idell­
tified with a fat vertex. The derivatives of 9 therein are again indicated by 
upwards leaving branches. For example, the second expression of (3.8) and 
the first one of (3.9) correspond to the trees in Fig. 3.1. 
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Fig.3.1. Graphical representation of elementary differentials 

The above formulas for y', z' , y" , z" thus become 

• 
y' = z' = 

> y" = / z" = 

I 
V \I V Y ) ) (3.10) 

The first and fourth expressions in (3.9) are identical, because 9 .. y (U,V) = 
9y .. (V,U). This is in nice accordance with .the fact that the corresponding 
trees are topologically equivalent. The lowest vertex of a tree will be called 
its root. 

We see that derivatives of y are characterized by trees with a meagre 
root. These trees will be denoted by t or t i , the tree consisting only of the 
root (for y') being T y' Derivatives of z have trees with a tat root. These will 
be written as U or Ui, the tree for z' being Tz' 

Definition 3.1. Let DAT = DAT y U DAT .. denote the set of (differential 
algebraic rooted) trees defined recursively by 

a) T y E DATy , T .. E DAT .. ; 

b) [tl, ... ,tm,u1""unly E DATy 
ift1, ... ,tm E DATy andu1""un E DATz ; 

c) [t1 , ••• ,tm ,u1 , ... ,un l .. E DATz 

ift1,. .. ,tm E DATy, u1I'",un E DATz, and (m,n) f:. (0,1). 
Here [tll ... ,tm,ul"",unly and [t1, ... ,tm,ul"",unlz represent unorde­
red (m+n)-tuples. 

The graphical representation of these trees is as follows: if we connect 
the roots of t1 , ••• , tm , u1 ' ••• , un by m+n branches to a new meagre vertex 
(the new root) we obtain [tl"'" tm, U1 ' ... , unl y; if we connect them to a 
new fat vertex we obtain [tl' ... , t m , U 1 , ••• , unL. For example, the two trees 
of Fig. 3.1 can be written as [Tzly and [Tz, Tylz' 



440 VI. Singular Perturbation Problems and Differential-Algebraic Equations 

Definition 3.2. The order of a tree t E DAT y or U E DATz , denoted by 
e(t) or e(u), is the number of its meagre vertices. 

We see in (3.10) that this definition of order coincides with the derivative 
order of y(i) or z(i) as far as they are computed there. 

We next give a recursive definition of the one-to-one correspondence 
between the trees in (3.10) and the expressions in (3.8) and (3.9). 

Definition 3.3. The elementary differentials F( t) (or F( u)) corresponding 
to trees in DAT are defined as follows: 

a) F(Ty)=/, F(Tz)=(_g;:l)gy/, 

8m +n / ( ) b) F(t)= 8ym8zn F(tl), ... ,F(tm), F(ul), ... ,F(un) 

ift=[tl,··.,tm , u l ' .. . ,un]y E DATy, 

8m +n g ( ) c) F(u)=(_gz)-I 8ym8z n F(t1 ), ... ,F(tm),F(u1 ), ... ,F(un ) 

ifu=[t1 , •• ·,tm , u 1 , ••• ,un ]z E DAT z • 

Because of the symmetry of partial derivatives, this definition is unaf­
fected by apermutation of t l , ••• , tm , u l , ... , U n and therefore the functions 
F ( t) and F ( u) are well defined. 

Taylor Expansion of the Exact Solution 

In order to get more insight into the process of (3.8) and (3.9) we study the 
differentiation of an elementary differential with respect to x. By Leibniz' 
rule the differentiation of F( t) (or F( u)) gives a sum of new elementary 
differentials which are obtained by the following four rules: 

i) attach to each vertex a branch with T y (derivative of / or 9 with respect 
to y and addition of the factor y' = /); 

ii) attach to each vertex a branch with Tz (derivative of / or 9 with respect 
to z and addition of the factor z' = (_g;:l )gy/); 

iii) split each fat vertex into two new fat vertices (linked by a new branch) 
and attach to the lower of these fat vertices a branch with T y ; 

iv) as in iii), but attach this time to the lower of the new fat vertices a 
branch with Tz' 

The rules iii) and iv) correspond to the differentiation of ( _g;:l) and follow 
at once from (3.7). We observe that the differentiation of a tree of order 
q (or, more precisely, of its corresponding elementary differential) generates 
trees of order q + 1. 
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As was the ease in Section II.2, some of these trees appear 8everal time8 
in the derivative (as the first and fourth tree for z" in (3.10)). In order to 
distinguish all these trees, we indieate the order 0/ generation of the meagre 
vertiees by labels. This is demonstrated, for the first derivatives of y, in 
Fig.3.2. Sinee in the above differentiation proeess the new meagre vertex is 
always an end-vertex of the tree, the labelling thus obtained is neeessarily 
inereasing from the root upwards alOllg eaeh braneh. 

-I 

/~ 

Fig.3.2. Monotonically labelled trees (LDAT y ) 

Definition 3.4. A tree tE DATy (or u E DAT z) together with a monotonie 
labelling of its meagre vertiees is ealled a monotonieally labe lied tree. The 
sets of all such m.l. trees are denoted by LDATy ' LDATz and LDAT. 

Definition 3.2 (order of a tree) and Definition 3.3 (elementary differential) 
are extended in a natural way to m. 1. trees. We can therefore write the 
derivatives of the exact solution as foUows: 

Theorem 3.5 (Roche 1988). For the ezact 801ution 0/ (3.1) we have: 

L F(t)(yo, zo) = L 
tELDAT, I(I(t)=q tEDATy,e(t)=q 

L F(u)(yo,zo) = L 
uELDAT. ,(1( u)=q uEDAT. ,e( u)=q 

The integer eoeffieient8 0:( t) and 0:( u) indieate the number 0/ p088ible mono­
tonie labelling8 0/ a tree. 

Proof. For q = 1 and q = 2 this is just (3.1a), (3.6), (3.8) and (3.9). For 
general q the above differentiation proeess of trees generates aU elements 
of LDAT, eaeh element exactly onee. If the sum is taken over DATy and 
DATz ,the factors o:(t) and o:(u) must be added. 0 
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Taylor Expansion of the Numerical Solution 

Our next aim is to prove an analogue of Theorem 3.5 for the numerical 
solution of a Rosenbrock method. We consider Y1' zl as functions of the step 
size hand compute their derivatives. From (3.3a) it follows that 

8 8 

y~q)(o) = L bik~q)(O) , z~q)(O) = L bl~q\o). (3.11) 
i=l i=l 

Consequently we have to compute the derivatives of ki and ii' This is done as 
for Runge-Kutta methods (Section II.2) or for Rosenbrock methods applied 
to ordinary differential equations (Section IV.7). 

We differentiate the first line of (3.3b) with respect to h. Using Leibniz' 
rule (II.2.4) this yields for h=O 

i i 

k~q) = q(J(Vi,Wi))(q-1) +(1y)o q L "'fij kJQ- 1) + (1z)o q L "'fii?-l) . (3.12) 
j=l j=l 

The index 0 in (1y)o and (1z)o indicates that the derivatives are evaluated 
at (Yo' zo)' The second line of (3.3b) is divided by h before differentiation. 
This gi ves (again for h = 0 ) 

i i 

0= (g(Vi,Wi))(q) + (gy)o L "'fijkJq) + (gz)o L "'fi/;q) . (3.13) 
j=l j=l 

The derivatives of ! and 9 can be computed by Faa di Bruno's formula 
(Lemma 11.2.8). This yields 

(J(V. w.))(Q-1) = " 8m +n !(vi ,wi) (v~ltd v~ltm) W~Vl) w~v .. ») 
., • L...J 8ym8zn • """ " , ... , • 

(3.14) 
where the sum is over all "special LDAT y 's" of order q. These are m.l. trees 
[tl"'" t m, U1"'" unl y where t j and Uj do not have any ramification and all 
their vertices are meagre with the exception of the roots of U 1 , ••• , un ' The 
integers /-Lj and v j are the orders of t j and u j ' respectively. They satisfy 
/-L1 + ... + /-Lm + vl + ... + vn = q-l. Similarly we apply Faa di Bruno's 
formula to 9 and obtain 

( (v. w.))(q) = ,,8m +ng(Vi,Wi) (v~ltd v~ltm) w~vd w~v,,») 
9 '" L...J aym8zn .,,,.,.,.'''''. 

(3.15) 

Here the sum is over all "special LDAT z's" of order q. They are defined 
as above but have a fat vertex. The integers /-Lj' Vj satisfy /-L1 + ... + /-Lm + 
v1 + ... + vn = q. The term with gz is written separately, because (by the 
definition of LDAT z) [udz is not an admissible tree. 
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We are now in a position to compute the derivatives of ki and li' For 
this it is convenient to introduce the notation 

ß ij = O:ij + "'(ij (3.16) 

(with O:ii=O) as in (IV.7.12). We also need the inverse ofthe matrix (ßij ), 

whose coeflicients we denote by Wij: 

(3.17) 

Theorem 3.6. The derivatives 0/ ki and li satisfy 

tELDAT.,g( t)=q 
(3.18) 

l~q)(O) = L "'((u)cpi(u)F(u)(yo, zo) , 
u.ELDAT.,g( u. )=q 

.cp (tl)· .. cp (t)cp (ul )··· cp (u) 1'1 ILm m 111 Vn n 

i/t = [tp ... ,tm,Uu.",unly andm+n 2': 2 

i/t = [tll y 

j 

;,1'1, .. ,,.,,,, .. ,V1 , .. ,Vn . 

cpi(U) = ·cpIJ.l (tl)··· CPIJ.m (tm)cpvl (Ul )··· CPv,.(Un ) ! L WijO:jIJ.l ••• O:jIJ.m O:jvl ••• O:jv" 

~/U = [tl, ... ,tm,Ul"",unlz and m+n 2': 2 

cpi(t l ) i/ U = [tll z 

and the integer coefficients "'((t) and "'((u) are defined by "'((7"y) =1, "'((7"z) = 1 
and 

"'((t) = u(th(tl) ... "'((tmh(ul) ... "'((un) i/t = [tl, ... ,tm,uw,.,unly 

"'(( u) = "'((tl) ... "'((tm) "'(( U l ) ••• "'(( Un) i/ U = [tl!" .. , tm, Ul!" .. , unl z . 

Proo/. By (3.3a) we have 

i-l 
w~v) = L O:i/;V) . (3.19) 

j=l 
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We now insert (3.19) into (3.14) and the resulting formula for (f( vi' Wi))(q-l) 
into (3.12). This yields (all expressions have to be evaluated at h=O) 

i i 
(3.20) 

+ q(fy)o L ßijkjq-l) + q(fz)o L ßi/?-l) . 
j=l j=l 

The same analysis for the second component leads to 

8m+n ( ) (i-l i-l ) 
0= L 8 !;;:zo L aijkJP-l), ... , L ai/;Vl), ... 

m+n2;2 Y j=l j=l 

i i 
(3.21) 

+ (gy)o Lßijk;q) + (gz)o Lßijljq) . 
j=l j=l 

The sums in (3.20) and (3.21) are over elements of LDAT exactly as in (3.14) 

and (3.15). Equation (3.21) allows us to extract li(q) if we use the inverse of 
(ßij)' This gives 

The proof of Formula (3.18) is now by induction on q. The case q = 1 follows 
immediately from (3.12) and (3.13). For general q, we insert the induction 
hypothesis into (3.20) and (3.22), exploit the multilinearity ofthe derivatives, 
and arrange the summations as in the proof of Theorem II.2.11. 0 

Finally, Formula (3.11) yields the derivatives of the numerical solution. 

Theorem 3.7 (Roche 1988). The numerical solution 0/ (3.3) satisfies: 

s 
(q)1 -Yl h=O-

tELDATy,lI(t)=q i=l 

(q)1 -
Zl h=O-

uELDAT. ,II( u)=q i=l 

where the coefficients 'Y and ~ i are given in Theorem 3.6. o 
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Order Conditions 

Comparing Theorem 3.5 and 3.7 we obtain 

Theorem 3.8. For the Roaenbrock method (3.3) we have: 

y(xo +h) - Yl = O(hP+1) ijJ 

s 1 
Lbi~i(t)=-(t) /or tEDATy' U(t):::;p; 
i=l "Y 

z(xo+h) - Zl = O(hQ+1 ) ijJ 

s 1 
L bi~i(u) = (u) /or u E DAT z' U(u) :::; q, 
i=l "Y 

where the coefficienta ~i and"Y are those 0/ Theorem 3.6. o 

Repeated application of the recursive definition of ~ i in Theorem 3.6 
yields the following algorithm: 

Forming the order condition for a given tree: attach to each meagre vertex 
one summation index, and to each fat vertex two indices (one above the 
other). Then the left hand side of the order condition is a sum over all 
indices of a product with factors 

bi if "i" is the index of the root (the lower index if the root is fat); 
a ij if "j" lies directly above "i" and "i" is multiply branched; 
ßij if "j" lies directly above "i" and "i" is singly branched; 
wij if "i,j" are the two indices of a fat vertex ("i" below "j"). 

m 

j .e 
k 

n p 

V' 
Fig. 3.3. Trees with labelling 

As an example, we present the order conditions for the first two trees of 
Fig.3.3. 

(3.23) 
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(3.24) 
i,i,/e,l,m,n,p 

The condition (3.23) can be further simplified if we use the fact that (wij) 

is the inverse of the matrix (ßij)' Indeed, (3.23) is equivalent to 

1 
~ b.a· ·a·,_ = -
L...J • ')'" 3 
i,j,/e 

which is the order condition for the third tree in Fig.3.3. Exploiting this 
reduction systematically we arrive at the following result. 

Lemma 3.9. For a Rosenbrock method (9.9) the order conditions cor­
responding to one of the following situations are redundant: 

a) a fat vertez is singly branched. 
b) a singly branched vertez is followed by a fat vertez. 0 

The subset of DAT 11 which consists of trees with only meagre vertices, 
is simply T (the set of trees of Section 11.2). The corresponding order con­
ditions are those given in Section IV.7. Consequently, a p-th order Rosen­
brock method has to satisfy all "classical" order conditions and, in addition, 
several "algebraic" conditions. The first of these new order conditions are 
given in Table 3.1. We have included the polynomial Pt( 'Y) in its last column, 
which is the right-hand side of the order condition, when written in the form 
(IV.7.11'). 

Table 3.1. Trees and elementary differentials 

g(t) t graph 'Y( t) ~j(t) Ptb) 

4 t45 \I 4 I: Oj/eOjlWlmOmnOmp 1/4 

2 U21 V 1 I: WjkOklOkm 1 

3 U31 0't' 1 I: Wj/e°/cl°/ema/en 1 

3 U32 2 I: wi/eO/clo/emßmn 1/2 - 'Y 

3 U33 Vi 1 I: wi/e°kl°/emwmnOnpOnq 1 
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Convergence 

Before we proeeed to the aetual eonstruetion of a new Rosenbroek method, 
we still have to study its eonvergenee property. The following result will also 
involve 

R(oo) = 1 - bTB-1n = 1- L biwij 
i,j 

where R(z) is the stability function (IV.7.14). 
We denote the loeal error of the Rosenbroek method (3.3) by 

(3.25) 

hYh(x) = Yl - y(x+h) , hZh(x) = zl - z(x+h) . (3.26) 
Here Yl' Zl is the numerieal solution obtained with the exact initial values 
Yo=Y(x), zo=z(x). 

Theorem 3.10. Suppose that 9% is regular in a neighbourhood 0/ the solution 
(y( x), z( x)) 0/ (3.1) and that the initial values (Yo' zo) are eonsistent. I/ 
IR( 00)1< 1, and the loeal error satisfies 

hYh(x) = O(hP+1) , hZh(x) = O(hP ) (3.27) 

then the Rosenbroek method (3.3) is eonvergent 0/ order pj i.e., 

Yn - y(xn) = O(hP ) , zn - z(x n) = O(hP) /01' X n -xo = nh:S Const . 

Proof. Sinee 9% is regular we have 

119;1(y, Z)9(Y, z)11 :S h (3.28) 

for (y, z) in a eompact neighbourhood U of the solution. The h-independent 
value of h ean be made arbitrarily small by shrinking U. We also suppose for 
the moment that the numerical solution and all its internal stages remain in 
this neighbourhood. The propagation of loeal errors will be studied in part 
a), and their aeeumulation over the whole interval in part b). 

a) We eonsider two pairs ofinitial values, (Yo, zo) and 010' ZO), and apply 
the method to eaeh (these values may be ineonsistent, but they are assumed 
to lie in U). We shall prove that 

IIYl - V111 :S (l+hL)llyo - Voll + hMllzo - zoll 

Ilzl - z111 :S Nilyo - Voll + Kllzo - zoll 
(3.29) 

where K < 1. For this we fix a sufficiently small step size h, and eonsider 
YP z1' ki , Pi as functions of (Yo, Zo)' We shall show that 

8Y1 = 1+ O(h) , 8Y1 = O(h) , 
8yo 8zo 
8z 8z 
_1 = 0(1) , -8 1 = R(oo)1 + O(h+h) . 
8yo Zo 

(3.30) 

The mean value theorem then implies (3.29). 
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We first estimate ki and Ri , defined in (3.3b). Using (3.28) we compute Ri 

from the seeond line and insert it into the first one. This yields sueeessively 
ki = O( h) and Ri = O( h + 15) for all internal stages. We then differentiate 
(3.3b) onee with respeet to Yo and onee with respeet to zo' An analysis 
similar to that for k i and Ri yields 

8k i = O(h) 
8zo 

8R· '" -' = - ~w"I + O(h+ö) 8zo . '3 
3 

and the estimates (3.30) follow from (3.3a) and (3.25). 

(3.31) 

b) As a consequenee of Lemma 2.9 (see Exercise 8), the propagation of 
the loeal errors ÖYh(x j_1 ), öZh(Xj_l) to the solution at xn ean be bounded 
by 

(3.32) 

Summing up these terms from j = 1 to j = n and using (3.27) gives the stated 
bounds for the global error, beeause 2:j=l(h+Kn-j) :::; Const. 

Our assumptiün that the numerieal solution and the internal stages lie in 
U ean now easily be justified by induction on the step number. The numerieal 
solution remains O( hp )-elose to the exaet solution and thus remains in U for 
suffieiently small h. This implies g(Yj,Zj) = O(hP ) für all j and henee also 
Ri=O(h). Consequently (vi,wi) are also as elose to the exact solution as we 
want. 0 

StifHy Accurate Rosenbrock Methods 

We have already had several occasions to admire the beneficial effect of 
stiffiy accurate Runge-Kutta methods (methods with a.i = bi for all ij see 
Theorem 1.1 and Corollary 2.10). What is the corresponding condition for 
Rosenbrock methods? 

Definition 3.11. A Rosenbrock method is called stiffiy accurate, if 

0si+lsi=bi (i=l,oo.,s) and 0s=l. (3.33) 

Recall that 0i = 2: j 0ij' It has already been remarked at the end of Sec­
tion IV.15 that methods satisfying (3.33) yield asymptotically exact results 
for the problem y' = A(y-r,o(X))+r,o'(x). A further interesting interpreta­
tion of this condition has been given by Schneider (1990). He argues that 
DAE's are combinations of differential equations and algebraic equationsj 



VI.3. Rosenbrock Methods 449 

hence methods should be equally valuable for both extreme cases, either a 
purely differential equation, or a purely algebraic equation 

X' = 1, 0= g(x, z) , gz invertible . (3.34) 

Proposition 3.12. A stiffly accurate Rosenbrock method, applied to (3.34), 
yields 

The numerical solution Zl is thus the result of one simplified Newton iteration 
for O=g(xo+h,z) (with starting value w.). 

Proof. Condition (3.33) together with l:i bi = 1 implies that I. = l:j I.j = o. 
Therefore, the second line of (3.3b) gives (observe that ki = h for the problem 
(3.34)) 

0= g(xo + h,w.) + gAxo'zo) L li/-j . 
j=l 

Inserting the expression thus obtained for l:j li/-j into 

Zl = Zo + L b/-j = w. + L I./-j 
j=l j=l 

proves the statement. o 

The values (v.,w.) of the last stage are often used as an embedded 
solution for step size control. If this is the case for a stifRy accurate method, 
then many of the algebraic order condition are automatically satisfied. This 
is a consequence of the following result. 

Proposition 3.13. Consider a stiffly accurate Rosenbrock method. For 
sufficiently regular problems (3.1) we have 

(3.35) 

if and only if 

v. - y(xo+h) = O(hq ) and (3.36) 

Proof. We use the characterization of Theorem 3.8 and the fact that (with 
Wij defined in (3.17)) 

'" b.w .. = {I L...J "J 0 
i 

if j = s 
else. 

(3.37) 
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Suppose first that (3.35) holds. For a tree U = ['Ty , t 21z with arbitrary t2 E, 
DATy we have, by definition of <Pj(u) and ,(u), 

L: bi<Pi(u) = L: biWijUjUjk<Pk(t2) = L: u&k<P k(t 2 ) (3.38) 
i,j,k k 

and ,( u ) = ,( t 2 ). Consequently, the order condi tion is satisfied for u iff i 1. 
is satisfied for t2. Since e(t2) = e(u)-l, we see that v. -y(xo +h) = O(hq } 

is a consequence of (3.35). By considering u = ['Ty , u1L with u1 E DAT z we 
deduce the second relation of (3.36). The "if" part is proved in a similar 
~ 0 

Finally we remark that because of (3.25) and (3.37) the stability function 
of a stifHy accurate Rosenbrock method always satisfies R( (0) = O. This is a 
desirable property when solving stiff or differential algebraic equations. 

Construction of RODAS, 
a Stiftly Accurate Embedded Method 

Our aim is to construct an embedded Rosenbrock method (where Yl = Va' 

Zl = w.), such that both methods are stifHy accurate. This imposes the 
following conditions 

(i=l, ... ,s), 

(i=l, ... ,s-l) , 
(3.39) 

(as usual ßij = uij +'ij). It follows from Proposition 3.12 that the last two 
stages represent simplified Newton iterations. Further, both methods have 
astability function which vanishes at infinity. The construction of such a 
method of order 4(3) seems to be impossible with s = 5. We therefore put 
s=6. 

Here is the list of order conditions which have to be solved. We use the 
abbreviations ui,m defined in (IV.7.16), and the coefficients Wij from (3.17). 
We shall require that 

Since we have sufficiently many parameters we also require 

By Proposition 3.13 this implies 

zl - z(xo+h) = O(h4 ) , 

(3.40) 

(3.41 ) 

(3.42) 
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which is more than sufficient to ensure convergence of order 4 (see Theo­
rem 3.10). The conditions for (3,40) and (3,41) are (see Table IV.7.1 and 
Table 3.1) 

b1 + b2 + b3 + b4 + (bs +b6) = 1 

b2ß~ + b3ß~ + b4ß~ + (bs+b6)(1-1 ) = ~-I 

b2a~ + b3a~ + b4a~ + (bs +b6) = t 
b3ß32ß~ + b4 2: 'ß4iß: + (bs +b6)(~ -21+12) = i _1+12 

b2a~ + b3a~ + b4a! + (bs +b6 ) = t 
b3a3a32ß~ + b4a4 2:' a 4ißi + (bs +b6)( ~ -I) = ~ - f 
b3ß32a~ + b4 2:'ß4iar + (bs+b6)(t -I) = /2 - ! 
b4ß43ß32ß; + (bs+b6)(i-~1+312-13) = 2~ -~+h2-13 

b3a3a32w22a~ + b4a4 2:i,j a 4iwij aJ + (bs +b6) = i 
a62ß~ + a63ß~ + a64ß~ = ~ - 21 + 1 2 

2+ 2+ 2_1 a 62 a 2 a 63 a3 a 64 a 4 - 3 -I 

ß ß' + ""ß ß' - 1 1 + 3 2 3 a 63 32 2 a 64 L..J 4i i - 6 - 21 1 - 1 
aS2ß~ + aS3ß~ + aS4ß~ = t - 1 

2::=1 a Si 2:~=1 wijaJ = 1 

(3,43a) 

(3,43b) 

(3,43c) 

(3,43d) 

(3,43e) 

(3.43f) 

(3,43g) 

(3,43h) 

(3,43i) 

(3,43j) 

(3,43k) 

(3,431) 

(3,43m) 

(3,43n) 

In order to solve the system (3.39), (3,43a-n) we can take I, a 2, a 3, a 4, 
ß~ = ß21 , ß~, ß~ as free parameters. The remaining coefficients can then be 
computed as follows: 

Step 1. We have b6 =1 by (3.39). The remaining bi can be chosen such 
that (3.43a,b,c,e) are satisfied. We have one degree offreedom which can be 
exploited to fulfill the additional order condition 2:i bi at = 1/5. This step 
also yields ß6i = bi for i = 1, ... ,6. 

Step 2. Compute the two expressions b3ß32 + b4ß42 and b4ß43 from 
(3,43d,g), and then ß32 from (3,43h). Because of ß: = 2:~:i ßij this de­
termines all ßij with i ::; 4. Observe that ßii =1 for all i. 

Step 3. Solve the linear system (3,43j,k,1) for a 62 , a 63 , a 64 . We have 
a 6S = 1 by (3.39) and compute a 61 from a 6 = 2:i a 6i = 1. This also yields 

ßSi = a 6i by (3.39). Hence all ßij and wij ' and also bi = ßSi (i = 1, ... ,5) are 
determined at this stage. 

Step 4. The conditions (3.43m,n) and a s = 1 constitute 3 linear equations 
in the four unknown parameters a S1' a S2 ' a S3 ' a S4 ' We have one degree of 
freedom in this step. 

Step 5. The remaining two conditions (3.43f,i) are linear equations in 
a 32 , a 42 , a 43 . We have one more degree of freedom which can be exploited 
to fulfill the order condition for the tree [Ty, Ty' [Ty]y]y. The values of ai1 are 
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then determined by ai = 2:~:i aij' and those of 'Yij are given by 'Yij = ßij-aij. 

The coefficients for the code RODAS of the appendix were computed 
with the above procedure. In step 4 we have added the condition 

LaSiWij = 1 
i,j 

(3.44) 

which will be explained in Exercise 3 below. The free parameters were chosen 
in order to get an A-stable method and to keep the error constants small. 
The result is 

'Y = 0.25 

a 2 = 0.386 

ß~ = 0.0317 

a 3 = 0.21 

ß~ = 0.0635 

a 4 = 0.63 

ß~ = 0.3438 

(3.45) 

We do not claim that these values are optimal. Nevertheless, the numerical 
results of Section IV.lO (Fig. IV.lO.7, IV.lO.8 and IV.I0.9) are encouraging. 
Although the new method needs 6 function evaluations per step, it is in 
general superior to the classical methods of Table IV. 7.2 which need only 3 
evaluations per step. 

Dense output. A natural way to define a continuous numerical solution for 
y(xo+Oh), z(xo+Oh) is 

8 

Yl(O) = Yo + Lbi(O)ki , Zl(O) = Zo + L bi(O)Ci , (3.46) 
i=l i=l 

where the bi( 0) are polynomials which satisfy bi(O) = 0, bi(l) = bio In com­
plete analogy to Theorem 3.8 we have 

s oe(t) 

~ b/O)q,i(t) = -(t) 
.=1 'Y 

for tE DAT y ' e(t)::; p, 

• oe(u) 
L bi(O)q,i(u) = -(-) 
i=1 'Y u 

(3.47) 

for u E DA Tz, e( u) ::; q . 

In our situation (8 = 6) it is easy to fulfill these conditions with p = 3 and 
q=2. The additional condition b.(O)='YO makes the solution unique. 
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Inconsistent Initial Values 

Even if we start the eomputation with eonsistent initial values, the nume­
rieal solution (Yn' zn) of a Rosenbroek method does not, in general, satisfy 
g(Yn' zn) = O. It is therefore of interest to investigate the loeal error also for 
ineonsistent initial values (Yo, zo)' But what is the loeal error? To whieh 
solution of (3.1) should we eompare the numerieal values? If 

(3.48) 

with suffieiently small b, we ean find (beeause of (1.7)) a loeally unique Zo 
whieh satisfies g(yo, zo) = O. It is natural to eompare the numerieal solution 
(Y1,zl) to that solution of (3.1) whieh passes through (yo,zo)' 

Our first aim is to write this solution in terms of elementary differentials 
evaluated at (Yo' zo)' Using 

Zo - Zo = (_g;l g)(yo,zo) + 0(82 ) , 

whieh is a consequenee of O=g(yo, zo)+gz(yo' zo)(zo -zo)+"" we get 

y(xo +h) = Yo + hf(yo, zo) + 0(h2 ) (3.49) 

= Yo + hf(yo, zo) + h(fA _g;l )g)(yo, zo) + 0(h2 +M2 ) 

z( X o +h) = Zo + h( _g;l gyf)(yo, zo) + 0(h2 ) (3.50) 

= Zo + (_g;l g)(yo, zo) + h( -g;lgy f)(Yo, zo) 

+ h( _g;l gzz (_g;l g, _g;l gyf) )(Yo' zo) 

+ h( _g;l gyz (j, _g;l g)) (Yo, zo) 

+ h(_g;l gy fz(-g;l)g)(yo,zo) + 0(h2 +82 ) 

The expressions so obtained allow a nice interpretation using trees. We 
only have to add in the reeursive Definition 3.1 a tree of order 0, which 
consists of a fat root. We denote this tree by 0z ' andextend Definition 3.3 
by setting F(0 z )(Y, z) = (_g;l 9 )(y, z). Then, the expressions of (3.49) and 
(3.50) correspond to the trees of Fig. 3.4. 

• I o 

Fig.3.4. Trees, to be considered for inconsistent initial values 

The numerieal solution also possesses an expansion of the form (3.49), 
(3.50) with additional method-dependent eoeffieients. The first few terms 
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are aB follows: 

Y1 = Yo + (I: bi )h!(yo, zo) + (I: bißijWjk )hUA _g;1 )g)(yo, zo) 
i i,j,Je 

Z1 = Zo + (I:b i wij )(_g;1g)(yo,Zo) + O(h+c52 ) • 

i,j 

In order to understand the form of these new coefficients we have to extend 
the proof of Theorem 3.6. It turns outthat the elementary differentials are 
multiplied by ")'(t) I:i bi~i(t) or ")'(u) I:i bi~i(u), where")' and ~i are defined 
by ,,),(0,,) = 1, ~i(0,,)= I:j Wij and the recursion ofTheorem 3.6. Equating the 
coefficients of the exact and numerical solutions yields new order conditions 
for the case of inconsistent initial values. The first of these (to be added to 
those of Table IV.7.1 and Table 3.1) are presented in Table 3.2. 

Table 3.2. Order conditions for inconsistent initial values 

tree order condition size of error term 

V I: biO'.iO'.ijWjk = 1/2 0(h25) 

0 I: biWij = 1 0(5) 

V I: biWijO'.jO'.jkWkl = 1 O(M) 

Remarks. a) The first condition of Table 3.2 is exact1y the same as that 
found by van Veldhuizen (1984) in a different context. It implies that the 
local error of the y-component is of size O(hp+1+h3 c5+hb2 ). 

b) Condition I:i,j biwij = 1 means that the stability function satisfies 
R( 00) = O. Unless this condition is satisfied, the local error of the z-com­
ponent contains an h-independent term of size 15 (which usually is near to 
Tol). This was observed numerically in Fig. IV. 7.4 and explains the phe­
nomenon of Fig.IV.7.3. 

c) For Rosenbrock methods which satisfy (3.39), the second and third 
conditions of Table 3.2 are automatically fulfilled. For such methods the 
local error of the z-component is of size O( hq+1 + h2 c5 +152 ). 
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Exercises 

1. (Roche 1989). Consider the implicit Runge-Kutta method (1.11) applied 
to (1.6). 

a) Prove that z1-z(xo+h)=O(hq+1) Hf 

• 1 ~bi<}i(U) = -(u) for u E DATz , e(u) ~ q, 
0=1 I 

where I( u) and <} i (u) are defined as in Theorem 3.6, but all coefficients 
aij and ßij are replaced by the Runge-Kutta coefficients aij' 

b) Show that those trees in DAT z which have more than one fat vertex, 
are redundant. 

2. The simplifying assumptions (3.39) imply that many of the (algebraic) 
order conditions are automatically satisfied. Characterize the correspon­
ding trees. 

3. State the order condition for the tree [7'y, [7'y, 0z1z Jz' 

a) Show that the corresponding error term is of size O(h2 S) with S given 
in (3.48). 

b) For methods satisfying (3.39), this condition is equivalent to (3.44). 

4. (Ostermann 1990). Suppose that the Rosenbrock method (3.3) satisfies 
(3.27). Define polynomials bi (8) of degree q = [(p+ 1)/2J by bi(O) = 0, 
bi (l)=b i , and 

11 bi(O)Ol-1 d8 = {L:j bj(~~1+ Iji) 
o "'.b.a. a .. 

L"J J J JO 

if f. = 1 

if f. = 2, ... , q-1 . 

Prove that the error of the dense output formulas (3.46) is O(hq+1). 
Hint. Extend the ideas of Exercise II.15.5 to Rosenbrock methods. 

5. Suppose that a Rosenbrock method is implemented in the form (IV. 7 .25). 
If it satisfies (3.39), then its last two stages allow a very simple imple­
mentation 

Hint. Prove that 

m i = {;.i i=l, ... ,s-l 

t = S , 

a . = {a._1,i 
so 1 

i=1, ... ,s-2 

i = s-l . 

6. Partitioned Rosenbrock methods (Rentrop, Roche & Steinebach 1989). 
Consider the method (3.3) with f y and f z replaced by O. Derive necessary 
and sufficient conditions that it be of order p. 
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Remark. Case a) of Lemma 3.9 remains valid in this new situation. 
However, the trees of Lemma 3.9b give rise to new conditions. 

7. What is the "algebraic order" of the classical 4th order Rosenbrock me­
thods of Section IV. 7? 

8. Let {u n }, {vn } be two sequences of non-negative numbers satisfying 
( componentwise) 

with 0 ::; K< 1 and positive constants L, M, N. Prove that for h::; ho 
and nh::; Const 

Hint. Apply Lemma 2.9 with ~ = hand M = o. 



VI.4. Extrapolation Methods 

The numerical computations of Section IV.10 have revealed the extrapola­
tion code SEULEX as one of the best method for very stringent tolerances. 
The aim of the present section is to justify theoretically the underlying nu­
merical method, the extrapolated linearly implicit Euler method, for singular 
perturbation problems as a representative of stiff equations. 

Linearly Implicit Euler Discretization 

The linearly implicit Euler method (IV.9.25) applied to the singular pertur­
bation problem (1.5) reads 

(4.1 ) 

Here we have used abbreviations such as fy(O) = fy(Yo, zo) for the partial 
derivatives. We recall that the numerical approximations at xo+H (H =nh) 
are extrapolated according to (IV.9.26). 

For the differential algebraic problem (1.6) we just put c = 0 in (4.1). 
This yields 

(4.2) 

Possible extensions to non-autonomous problems have been presented in 
Section IV.9. For problems Mu' = ip(u) we use the formulation (IV.9.34) 
also for singular M. Due to the invariance of the method with respect to 
the transformation (1.23), all results of this section are equally valid for 
Mu'=ip(u) ofindex 1. 

The performance of extrapolation methods relies heavily on the existence 
of an asymptotic expansion of the global error. Such expansions are weH 
understood, ifthe differential equation is nonstiff (see Sections II.8 and IV.9). 
But what happens if the problem is stiff or differential-algebraic? 



458 VI. Singular Perturbation Problems and Differential-Algebraic Equations 

"Continued study of special problems is still a commend· 
able way towards greater insight ... " (E. Hopf 1950) 

Example 4.1. Consider the test problem 

y' = 1 , o:Z' = -z + g(y) . ( 4.3} 

Method (4.1) yields the exact result Yi = xi = Xo +ih for the y-component" 
and the recursion 

( 4.4) 

for the z-component. In order to compute the coefficients of the asymptotic 
expansion (Theorem 11.8.1), we insert 

zi = z(xi) + hb1 (X i) + h2 b2(Xi) + h3b3 (X i ) +... (4.5) 

into (4.4), expand into a Taylor series and compare the coefficients of hi. 
This yields the differential equation 

o:b~(x) + b1(x) = -~z"(x) - z'(x) + g'(xo) 

for b1(x), and similar ones for b2 (x), b3(x), etc. Putting i = ° in (4.5) 
we get the initial values bi(xO) = ° (all i). In general, the computation of 
the functions b1(x), b2 (x), ... is rather tedious. We therefore continue this 
example for the special case Xo = 0, g( x) = x2 +20:x, and Zo = 0, so that the 
exact solution of (4.3) is z(x)=x2. In this situation we get 

b1(x) = -3ee-"/" + 30: - 2x 

b2(x) = -(1+ ~:)e-"/" + 1 (4.6) 

b (x) = (~ _ 3x2) e-"/" 
3 20:2 80: 3 

etc. We observe that for 0: --+ 0, the function bz (x) becomes discontinuous 
at x = 0, and b3 (x) is even not uniformly bounded. Hence, the expansion 
(4.5) is not useful for the study of extrapolation, if 0: is small compared to 
the step size H. 

The idea is now to omit in (4.6) the terms containing the factor e-"/" by 
requiring that the functions bi ( x) be smooth uniformly in 0: and, instead, to 
add a discrete perturbation ßi to (4.5). For our example, this then becomes 

(4.7a) 

Inserting (4.7a) into (4.4) gives the relation (o:+h)ßi+l =o:ßi . The value of 
ßo is obtained from (4.7a) with i=O. We thus get 

( 4.7b) 
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If the numerieal solution is extrap olated, the smooth terms in (4.7) are 
eliminated one after the other. It remains to study the effect of extrapolation 
on the perturbation terms ßi . If the differential equation is very stiff (c ~ h), 
these terms are very small and may be negleeted over a wide range of h 
(observe that i ~ n 1 ). 

Example 4.2. For the differential-algebraie problem 

y' = 1, O=-z+g(y) (4.8) 

with initial values yo=:ro, zo=g(:ro) the numerieal solution, given by (4.2), 
1S 

for i = 0 

for i ~ 1 

Developing its seeond formula (for i ~ 1) yields 

zi = g(:ri) + h(g'(:ro) - g'(:r i )) + ~2 g"(:r i ) _ h: g"'(:ri) + O(h4 ) • 

If we add the perturbation 

ßi = hßI + h2 ß; + h3 ß? + ... 
(w hieh is different from zero only for i = 0) we get for all i 

a 

( 4.9) 

Zi - g(:ri) = L. hj(bj(:ri) + ßI) + O(h4 ) ( 4.10) 
j=1 

where 

b1(:r) = g'(:ro) - g'(:r) , b2(:r) = ~g"(:r), ba(:r) = -~g"'(:r) 
are smooth functions and the perturbations are given by 

If we add a further algebraic equation to (4.8), e.g., 0 = u-k(z), and 
again apply Method (4.2), we get three different formulas for u i ' one for 
i = 0, one for i = 1, and a different one for i ~ 2. In an expansion of the type 
(4.10) for ui-k(g(:ri))' perturbation terms will be present for i=O and for 
i= 1. 
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Perturbed Asymptotic Expansion 

For general differential algebraic problems we have the following result. 

Theorem 4.3 (Deuflhard, Hairer & Zugck 1987). Consider the problem 
(1.6) with consistent initial values (Yo' zo), and suppose that (1.7) is satisfied .. 
The global error of the linearly implicit Euler method (4.2) then has an 
asymptotic h-ezpansion of the form 

M 

Yi - y(a:i) = I: hj (aj(a:i) + an + O(hM +1 ) 

j=1 

M 

Zi - z(a:i) = 2: hj (bj(a:i) + ßf) + O(hM +1) 

j=1 

(4.11) 

where a j ( a:), bj ( a:) are smooth functions and the perturbations satisfy (see 
Table 4.1 and 4.2) 

a} = 0, a; = 0, a~ = 0, ßI = 0 for i ~ 0 (4.12a) 

ßr = 0 for i ~ 1 ( 4.12b) 

a~ = 0 , for i ~ j -4 and j ~ 4 (4.12c) 

ßl = 0 for i ~ j - 2 and j ~ 3 . (4.12d) 

The error terms in (4.11) are uniformly bounded for a: i = ih ::; H, if H is 
sufficiently smalI. 

Table 4.1. Non-zero a 's Table 4.2. Non-zero ß's 

h h2 h3 h4 hS h6 h7 h h2 h3 h4 hS h6 

Yo 0 0 0 0 * * * Zo 0 * * * * * 
Yl 0 0 0 0 0 * * ZI 0 0 0 * * * 
Y2 0 0 0 0 0 0 * Z2 0 0 0 0 * * 
Y3 0 0 0 0 0 0 0 Z3 0 0 0 0 0 * 
Y4 0 0 0 0 0 0 0 Z4 0 0 0 0 0 0 

Ys 0 0 0 0 0 0 0 Zs 0 0 0 0 0 0 

Proof. In part a) we shall recursively construct truncated expansions 

M 

Yi = y(a:i) + :L:hj(aj(a:i) + an + hM+1af4'+1 

h7 

* 
* 
* 
* 
* 
0 

j=1 

M 
(4.13) 

zi = z(a:i) + 2: hj (bj(a:J + ßf) 
j=1 
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such that the defect of fh, zi inserted into the method is smallj more precisely, 
we require that 

For the initial values we require Yo = Yo' Zo = zo, or equivalently 

( 4.15) 

and the perturbation terms are assumed to satisfy 

a{ ~ 0, ßl ~ 0 for t ~ 00 , ( 4.16) 

otherwise, these limits could be added to the smooth parts. The result will 
then follow from astability estimate derived in part b). 

a) For the construction of aj(x), bj(x), a{, ßl we insert (4.13) into (4.14), 
and develop 

f(Yi' zi) = f(y(xJ, Z(Xi)) + fy(xJ(ha1 (xi) + ha~ + ... ) 
+ fz(Xi)(hb1(Xi) + hßI + ... ) 
+ fyy(Xi)(ha1(Xi) + ha~ + .. l + ... , 

Yi+l - Yi = Y(Xi+l) - Y(Xi) + h(a1(xi+l) - a1(xJ + a~+l - aD + .. . 

= hy'(Xi) + ~2 y"(Xi ) + ... + h2a~ (Xi) + h(aI+l - an + ... , 

where fy(x) = fy(Y( X), z(x )), etc. Similarly, we develop 9(Yi' Zi) and Zi+CZi' 
and compare coefficients of hi+ 1 (for j = 0, ... ,M). Each power of h will 
lead to two conditions - one containing the smooth functions and the other 
containing the perturbation terms. 

Fir.5t .5tep. Equating the coefficients of h1 yields the equations (1.6) for the 
smooth part (due to consistency of the method), and a}+l -at = 0 for i 2: O. 
Because of (4.16) we get a} =0 for all i2: 0 (compare (4.12a)). 

Second .5tep. The coefficents of h2 give 

a~ (x)+ ~Y"( x) - fy(O)y'(x)- fz(O)z'( x) = fy(x )a1 (x)+ fz( x )b1 (x) 

-9y(0)y'(x) - 9AO)z'( x) = 9y(X )a1 (x )+9z( X )b1 (x) 

a7+1 - a7 - fz(O)(ßI+l - ßI) = fz(O)ßI 

-9z(0)(ßI+l - ßI) = 9z(0)ß; . 

( 4.17a) 

( 4.17b) 

( 4.17c) 

(4.17d) 

Observe that the coefficients af, ßf have to be independent of h, so that 
fAO), 9z(0) cannot be replaced by fAxi), gAXi) in the right-hand sides of 
(4.17c, d). The system (4.17) can be solved as folIows. Compute b1 (x) from 
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(4.17b) and insert it into (4.17a). This gives a linear differential equation 
for a1(z). Because of (4.15) and a~ =0 the initial value is a1(0)=0. There­
fore a1(z) and b1(z) are uniquely determined by (4.17a, b). Differentiating 
g(y( z), z( z )) = 0 and putting z = 0 implies that the left-hand side of (4.17b) 
vanishes at :c =0. Consequently, we have b1 (0) =0 and by (4.15), also ßJ = o. 
Condition (4.17d) then impliesßt =0 (all i), and (4.17c) together with (4.16) 
give a~ = 0 (all i). 

Third step. As in the second step we get (for j=2) 

aj(z) = fy(z)aj(z) + fAz)bj(z) + r(z) 
0= gy(z)aj(z) + gAz)bj(z) + 8(Z) , 

( 4.18a) 

( 4.18b) 

where r( z), 8( z) are known functions depending on derivatives of y( z), z(:c), 
and on at(z), bt(x) with l~j-1. We furt her get 

a~+l - a~ = fz(O)ß;+l 

0= gAO)ß;+l . 

(4.18c) 

(4.18d) 

We compute a2(z), b2(z) as in step 2. However, b2(0)#0 in general, and for 
the first time, we are forced to introduce a perturbation term ß~ # o. From 
(4.18c, d) we then get ßl=o (for i;:::l) and a~=O (for all i). 

Fourth step. Comparing the coefficients of h4 we just get (4.18a,b) with j =3 
and (4.18c,d) with the upper index raised by 1. As above we conclude ß~ = 0 
(for i2::1) and a1=0 (for all i). 

General step. The conditions for the smooth functions are (4.18a,b). For 
the perturbation terms we get 

(4.19c) 

(4.19d) 

where ef, 0'1 are linear combinations of expressions which contain as factors 
af+l! af-l, ßf-1 with l ~ j. For example, we have e1 = fzz(0)(ßl)2 and 
0'[ = gzz(O)(ßl)2. The proof of (4.12) is now by induction on j. By the 
induction hypothesis we have ef = 0, O'f = 0 for i;::: j -3. Formula (4.19d) 
hence implies ß1+1 = 0 (for i 2:: j - 3) and (4.19c) together with (4.16) gives 
af+l =0 (for i2::j-3). But this is simply the statement (4.12c,d). 

b) We still have to estimate the remainder term, i.e., differences A.Yi = 
Yi - ih, A.zi = zi - Zi· Subtracting (4.14) from (4.2) and eliminating A.Yi+l' 
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( ~;::~) = (~;:) 
+ (1+0(h) O(h)) (h(J(Yi,Zi)-J(Yi,Zi))) (O(h M +2)) 

0(1) _g;-1(0) g(Yi' zi) - g(Yi' zi) + 0(hM +1) . 

The application of a Lipschitz condition for J(y,z) and g(y,z) then gives 

where lei< 1 if H is sufficiently small. Applying Lemma 2.9 we deduce 
II~Yill + II~zill =0(hM +1). 0 

Order Tableau 

We consider (4.2) as our basic method for extrapolation, i.e., we take some 
step number sequence n1 <n2 < ... , put hj=H/nj, and define 

Yj1 = Yhj(xo+H) , Zj1 = Zhj(xo+H) , (4.21) 

the numerical solution of (1.6) after n j steps with step size h j • We then 
extrapolate these values according to (IV.9.26) and obtain Yjk , Zjk. What 
is the order of the approximations thus obtained? 

Theorem 4.4 (Deufl.hard, Hairer & Zugck 1987). 11 we consider the har­
monie sequenee {I, 2,3,4, ... }, then the extrapolated values Yjk' Zjk satisfy 

Yjk - y(xo+h) = 0(HTj d 1) , Zjk - z(xo +H) = O(HSi k ) ( 4.22) 

where the differential-algebraie orders rjk' Sjk are given in Tables 4.3 and 

4-4· 

Table 4.3. orders rjk. Table 4.4. orders Sjk. 

1 2 
1 2 2 2 
1 2 3 2 2 3 
1 2 3 4 2 2 3 4 
1 2 3 4 4 2 2 3 4 4 
1 2 3 4 4 5 2 2 3 4 5 4 
1 2 3 4 4 5 5 2 2 3 4 5 5 4 
1 2 3 4 4 5 6 5 2 2 3 4 5 6 5 4 
1 2 3 4 4 5 6 6 5 2 2 3 4 5 6 6 5 4 
1 2 3 4 4 5 6 7 6 5 2 2 3 4 5 6 7 6 5 4 
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Proof. We use the expansion (4.11). It follows from o:} = ßI = 0 (for all 
i 2: 0) and from (4.15) that a1 (x O) = b1(x O) = O. Sinee aj(x) and bj(x) are 
smooth functions we obtain a1(x o+H)=0(H), b1(x o+H)=0(H) and the 
errors of Yj1 , Zj1 are seen to be of size 0(H2). This verifies the entries of 
the first eolumns of Tables 4.3 and 4.4. In the same way we deduee that 
a2(x o+H)=0(H). However, sinee ß~fO in general, we have b2(x o)fO by 
(4.15) and the term b2 (x o+H) is only of size 0(1). One extrapolation of 
the numerieal solution eliminates the terms with j = 1 in (4.11). The error 
is thus of size 0(H3) for Yj2 but only 0(H2) für Zj2' verifying the seeond 
eolumns of Tables 4.3 and 4.4. If we eontinue the extrapolation proeess, 
the smooth parts of the error expansion (4.11) are eliminated one after the 
other. The perturbation terms, however, are not eliminated. 

For the y-component the first non-vanishing perturbation for i 2: n 1 = 1 
is o:~. Therefore, the diagonal elements of the extrapolation tableau for the 
y-eomponent (Table 4.3) eontain an error term of size 0(H6) (observe that 
o:~ is multiplied by h6 in (4.11)). The elements Yj,j-1 ofthe first sub diagonal 

depend only on Yl1 = Ynl for f 2: 2. Sinee n 2 2: 2, only the perturbations o:{ 
with i 2: 2 ean have an influenee. We see from (4.12) that the first non­
vanishing perturbation for i 2: 2 is o:~. This explains the O( H7) error term 
in the first sub diagonal of Table 4.3. 

For the z-eomponent, ßt is the first perturbation term for i 2: 1. Hence 
the diagonal entries of the extrapolation tableau for the z-component eontain 
an error of size O( H4). All other entries of Tables 4.3 and 4.4 ean be verified 
analogously. 0 

If we eonsider a step number sequenee {n j } whieh is different from the 
harmonie sequenee, we obtain the eorresponding order tableaux as follows: 
the j-th diagonal of the new tableau is the nrth diagonal of Table 4.3 and 
4.4, respectively. Theorem 4.4 then remains valid with r jk , 8 jk given by 
these new tableaux. This implies that a larger n 1 , say n 1 = 2 inereases, the 
order of the extrapolated values. Numerieal eomputations have shown that 
the sequenee 

{2,3,4,5,6, ... } (4.23) 

lS superIOr to the harmonie sequenee. It is therefore reeommended for 
SEULEX. 

It is interesting to study the influenee of the perturbation terms on the 
extrapolated values. Suppose that O:~l (or ßt) is the leading perturbation 
term in Yll (or Zll)' Beeause ofthe reeursion (IV.9.26) all Ykk then eontain 
an error term of the form CkHjO:~ll whereas the Yjk (for j > k) do not 
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depend on a~l' The error constants C kare given recursively by 

( 4.24) 

and tend to zero exponentially, if k increases. 

Error Expansion for Singular Pert urbation Problems 

Our aim is to extend the analysis of Example 4.1 to general singular pertur­
bation problems 

y' = /(y, z) , y(O) = yo 
( 4.25) 

cz'=g(y,z) , z(O)=zo' O<c~l, 

where the solution y( x), z( x) is assumed to be sufficiently smooth (i.e., 
its derivatives up to a certain order are bounded independently of c). An 
important observation in Example 4.1 was the existence of smooth solutions 
of the (linear) differential equations for the coefficients bi ( x). In the general 
situation we shall be concerned with equations of the form 

a' = /y(x)a + /Ax)b + c(x,c) 

cb' = gy(x)a + gz(x)b + d(x,c) 
( 4.26) 

(the coefficients /y(x)=/y(y(x),z(x)), etc. depend smoothly on c because 
the solution of (4.25) itself depends on c, even if / and gare c-independent). 

Lemma 4.5. Suppose that the logarithmic norm 0/ gAx) satisfies 

/or 0 S x S x . 
For a given value 

a(O) = a~ + ca~ + .,. + cN a{; + O( cN +1 ) 

there e;xists a unique (up to O(c N +1)) 

b(O) = b~ + cb~ + ... + cNb{; + O(c N +1 ) 

( 4.27) 

such that the solutions a( x), b( x) 0/ (4.26) and their first N derivatives are 
bounded independently 0/ c. 

Proo/. We insert the finite expansions 

N 

a(x) = I>iai(x) , 
i=O 

N 

b(x) = I>ibi(x) 
i=O 

with c-independent coefficients ai ( x) bi ( x) into (4.26) and compare powers 
of c (see Section VI.2). This leads to the differential-algebraic system (2.4). 
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Consequently, ag determines bg; these two together with a~ determine b~, 
etc. The remainders a(:z: )-a(:z: ), b(:z: )-b( z) are then estimated as in the proof 
of Theorem 2.1. 0 

The next result exhibits the dominant perturbation terms in an asymp­
totic expansion of the error of the linearly implicit Euler method, when it is 
applied to a singular p~rturbation problem. 

Theorem 4.6 (Hairer & Lubich 1988). Aaaume that the aolution of (4.25) 
ia amooth. Under the condition 

for all 'Y ~ 1 (4.28) 

(which ia a conaequence of (4.27) and Theorem IV.l1.2), the numericalao­
lution of (4.1) p088e88ea for e ::; h a perturbed aaymptotic e:z:panaion of the 
form 

Yi = y(zi) + ha1(zi) + h2 a2 (zi) + 0(h3 ) (4.29) 

- efAO)g;I(O) (I - ~ gAO») -i (hb1(0) + h2 b2 (0» 

Zi = Z(:Z:i) + hb1(Zi) + h2b2 (:Z:i) + 0(h3 ) (4.30) 

- (I - ~ gAO») -i (hb1 (0) + h2b2 (0») 

where :Z:i = ih ::; H with H aufficiently amall (but independent of e). The 
amooth functiona aj(:Z:)' bj(z) aatiafy 

a1(0) = 0(e2 ) , a2 (0) = O(e) , b1(0) = O(e) , b2 (0) = 0(1) . 

Proof. This proof is organized like that of Theorem 4.3. In part a) we 
recursively construct truncated expansions (for M ::; 2) 

such that 

M 

Yi = y(zi) + L hj (aj(:Z:;) + an 
j=1 

M 

Zi = Z(Zi) + L hj (bj(:Z:i) + ßf) 
j=1 

(4.31) 

-hfAO») (~Hl-~i) =h(f(~i'!i») +O(hM +2). 
cI - hgAO) ZHI - Zi g(Yi' zi) 

( 4.32) 
The smooth functions aj(z), bj(:z:) clearly depend on e, but are indepen-

dent of h. The perturbation terms a{, ßl (for i ~ 1), however, will depend 
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smoothly on e and on e/h. As in the ease e=O, we shall require that (4.15) 
and (4.16) hold. The differenees Yi-Yi and zi-zi will then be estimated in 
part b). 

a) The construetion of the eoeflieients in (4.31) is done in several steps. 
First step (M = 0). The values Yi = y(zi)' zi = z(zd satisfy (4.32) with 
M=O. 
Second step (M = 1). We insert (4.31) into (4.32) and eompare the smooth 
eoeflieients of h2 • This gives 

a~ (z)+ ~Y"(z)- fy(O)y'(z)- fAO)z'(z) = fy(z )a1 (z)+ fAz )b1 (z) (4.33a) 

e 
eb~ (z)+ "2z" (z) - gy(O)Y'( z)-gz(O)z' (x) = gy( x )a1 (z)+ gz( Z )b1 (z) (4.33b) 

By Lemma 4.5 the initial value b1 (0) is uniquely determined by a 1 (0). Dif­
ferentiation of ez' =g(y,z) with respect to z gives ez"(z) =gy(z)y'(x)+ 
g..( z )z' (x). Inserted into (4.33b) this yields the relation 

(4.34) 

with known right-hand side. 
As to the perturbation terms, we obtain by eolleeting everything up to 

O(h2 ) 

a~+l - a! - hfy(O)(a!+l -aD - hf..(O)(ß:+1 -ßf) 

= hfy(zi)a; + hf..(xi)ßt 

e(ß:+1 - ßf) - hgy(O)(a!+l -aD - hg..(O)(ßt+l -ßf) 

= hgy(xi)a! + hg..(xi)ßt 

(4.35) 

and try to determine the most important parts of this. We firstly replaee 
hfy(zi)a; by hfy(O)a; and similarly for three other terms. This is motivated 
by the fact that we seareh for exponentially deeaying ai' Therefore with 
xi=ih, 

Then many terms eancel in (4.35). We next observe that ßt+1-ßt is mul­
tiplied by e, but not at+l - a;. This suggests that the ß;+l are an order of 
magnitude larger than a;+l' Neglecting therefore a;+l where it competes 
with ßt+l' we are led to define 

a!+l - a! = hf..(O)ß:+1 

e(ßt+l - ßt) = hg..(O)ßt+l . 

(4.33c) 

(4.33d) 

It remains to verify aposteriori, that there exist solutions of (4.33a,b,e,d) 
whieh produee an error term O(h3 ) in (4.32): from (4.33d) we obtain 

( h )-i 
ßt=I-;g..(O) ß~. ( 4.36a) 
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Since we require at ---+ 0 for i ---+ 00, the solution of (4_33c) is given by 

( 4.36b) 

For i = 0 this implies the relation 

(4.37) 

The assumption (4.15) together with (4.34) and (4.37) uniquely determine 
the coefficients a1 (0), b1 (0), aö, ßJ. We remark that b1 (0) = O( c) and 
a1 (0) = 0 ( c2 ). U sing the fact that a~ = O( c2 ) and c '5: h, one easily verifies 
that the quantities (4.31) with M = 1 satisfy (4.32). 
Third step (M = 2). Comparing the smooth coefficients of h3 in (4.32) gives 
two differential equations for a2 (x), b2 (x) which are of the form (4.26). It 
follows from Lemma 4.5 that the initial values have to satisfy a relation 

(4.38) 

with known right-hand side. As in the second step we require for the per­
turbations 

a7+1 - a; = hfAO)ßT+1 

C(ßT+1 - ßl) = hgz (0)ßT+1 . 
(4.39) 

and obtain the formulas (4.36) and (4.37) with a~, ßI replaced by aI, ß;. 
Again the values a2 (0), b2 (0), a~, ß~ are uniquely determined by (4.15), 
(4.38), and (4.37). Due to the 0(1) term in (4.38) we only have b2 (0) =0(1) 
and a2 (0)=0(c). 

We still have to verify (4.32) with M = 2. In the left-hand side we have 
neglected terms of the form hfy(O)(ha} +h2 aI). This is justified, because 
a} = O( c2 ), al = O( c) and c'5: h. The most dangerous term, neglected in the 
right-hand side of (4.32) is 

( 4.40) 

However, fz(x;)- fz(O) = O(ih), and ßt = 0(c2-;), ßl = 0(2- i ) by (4.28) 
and c '5: h. This shows that the term (4.40) is also of size O( h4 ), so that 
(4.32) holds with M = 2. 

b) In order to estimate the remainder term, i.e., the differences AYi = 
Yi-Yi' AZi = zi-zi we subtract (4.32) from (4.1) and eliminate AYi+1 and 
AZi+1. This gives 
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Due to (4.28) and e Sh we have 

We therefore again obtain (4.20) with some lei< 1, if His sufficiently small. 
We then deduce the result as in the proof of Theorem 4.3. 0 

Fig.4.1. Step size/error diagram Fig.4.2. Tjj as functions of H/e 

Of course, it is possible to add a fourth step to the above proof. However, 
the reeursions for a~, ß~ are no longer as simple as in (4.33) or (4.39). More­
over, the perturbations of (4.29) and (4.30) already deseribe very weH the 
situation eneountered in practiee. We shall illustrate this with the foHowing 
numerical example (see also Hairer & Lubich 1988). 

Consider Van der Pol's equation (2.73) with e = 10-5 and with initial val­
ues (2.74) on the smooth solution. We take the step number sequence (4.23) 
and apply Method (4.1) nj times with step size h=H/nj . The numerical re­
sult Yj1' Zj1 is then extrapolated according to (IV.9.26). In Fig. 4.1 we show 
in logarithmic scale the errors IZij-z(H)1 for j=1,2, ... ,6 as functions of 
H. We observe that whenever the error is larger than e2 = 10-10 , the curves 
appear as straight lines with slopes 2,2,3,4,5, and 6, respeetively. If its 
slope is q, we have log(error)~qlogH +ConJt, or equivalently error~CHq. 
This corresponds (with exception of the last one) to the orders predicted by 
the sub diagonal entries of Table 4.4 for the ease e = o. 

In order to understand the irregular behaviour of the eurves when the 
error becomes smaller than e2 = 10-10 , we study the influence of extrapo­
lation on the perturbation terms in (4.30). Since b1 (0) contains a factor e, 
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the dominant part ofthe perturbation in Zj1 is (I-(h/e)g.,(0))-n.;h2b2(0), 
where b2(0) is some constant and h=H/nj. We assume the matrix g.,(O) to 
be diagonalized and put g.,(O) = -1. The dominant perturbation in Zj1 is 
therefore e2Tj1 b2(0), where 

Tj1=(~f(1+~)-n.; . 
enj enj 

(4.42) 

Due to the linearity of extrapolation, the dominant perturbation in Zjj will 
be e2Tjjb2 (0), where Tjj is obtained from (4.42) and (IV.9.26). For the step 
number sequence (4.23) the values of Tjj are plotted as functions of H / e in 
Fig.4.2. For large values of H / e the curves appear as horizontallines. This 
is a consequence of our choice n 1 = 2 and of the fact that 

_ (H)2-n.1 ((H))1-n.1 
T .. -C.· - +0-

JJ J e e 
for 

H 
-;- --+ 00 , 

where Cl =1 and the other Cj are given by the recursion (4.24). 
The errors of Fig.4.1 are now seen to be a superposition of the errors, 

predicted from the case e = 0 (Theorem 4.4), and of the perturbations of 
Fig. 4.2 scaled by a factor O( e2 ). 

Remark. As mentioned in Section VI.1, the implicit Euler discretization 
possesses a dassical asymptotic expansion for differential-algebraic problems 
(1.6) of index 1 (case e = 0). However, for singular perturbation problems, 
perturbations ofthe same type as in (4.29) and (4.30) are present. The only 
difference is that all bi(O) contain a factor e for the implicit Euler method. 
For details and numerical experiments we refer to Hairer & Lubich (1988). A 
related analysis for a slightly different dass of singular perturbation problems 
is presented in Auzinger, Frank & Macsek (1990). 

Dense Output 

Extrapolation methods typically take very large (basic) step sizes during 
integration. This makes it important that the method possess a continuous 
numerical solution. The first attempt to get a dense output for extrapolation 
methods is due to Lindberg (1972). His approach, however, imposes severe 
restrictions on the step number sequence. We present here the dense output 
of Hairer & Ostermann (1990), which exists for any step number sequence. 

The main idea (due to eh. Lubich) is the following: when computing 
the j-th entry of the extrapolation tableau, we consider not only Yjl = Yn ;, 

but also compute the difference (Yn.; - Yn; _d/hj. Since these expressions 
possess an h-expansion, their extrapolation gives an accurate approximation 
to Y'(zo+H). By considering higher differences, we get also approximations 
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to higher derivatives of y( x) at X o + H. They are then used for Hermite 
interpolation. The reason for computing the derivatives only at the right 
end of the basic interval, is the presence of perturbation terms as described 
in Theorems 4.3 and 4.6. These perturbations are large at the beginning 
(near the initial value), but decrease exponentially for increasing i. For the 
same reason, one must not use differences of a too high an order. We thus 
choose an integer>. (usually 0 or 1) and avoid the values Yo,' .. 'Yn1 +>'-2 for 
the computation of the finite differences. We remark that a similar idea was 
used by Deuflhard & Nowak (1987) to construct consistent initial values for 
differential-algebraic problems. 

An algorithmic description of the dense output for the linearly implicit 
Euler method is as fol1ows (we suppose that the value YI<I< has been accepted 
as a numerical approximation to y(xo+H)). 
Step 1. For each j E {1, ... , K} we compute 

"k (j) 
(k) v Ynj 

r j =~ 
J 

for k = 1, ... ,j - >. . ( 4.43) 

Here y~j) is the approximation of y( xi)' obtained during the computatioll of 
Yjl' and VYi =Yi -Yi-l is the backward difference operator. 

Step 2. We extrapolate r J k), (K - k - >') times. This yields the improved 
approximation r(k) to y(k)(xo+H). 
Step 3. We define the polynomial P( 8) of degree K by 

P(O) = Yo , 

P(k)(l) = Hkr(k) 

P(l) = YI<I< 

for k = 1, ... , K - 1 . 
( 4.44) 

The following theorem shows to which order these polynomials approximate 
the exact solution. 

Theorem 4.7 (Hairer & Ostermann 1990). Con8ider a non8tiff differential 
equation and let>. E {O, 1}. Then, the error of the interpolation polynomial 
P( 8) 8ati8fie8 

P(8) - y(xo+8H) = O(HI<+l->') for H -+ 0 . 

Prooj. Since P( 8) is a polynomial of degree "-, the error due to interpolation 
is of size O(HI<+l). We know that YI<I< -y(xo +H) =O(HI<+l). Therefore it 
suffices to prove that 

for k = 1, ... , "- - 1. ( 4.45) 

Due to the asymptotic expansion of the global error Yi -y( xi)' the approxi-
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mations r}k) also have an expansion of the form 

rJk) = y<k)(:Vo+H) + hja~k) + h;a~k) + ... ( 4.46) 

The statement (4.45) now follows from the fact that each extrapolation eli­
minates one power of h in (4.46). 0 

It is now natural to investigate the error of the dense output P( 8) also for 
stiff differential equations, such as singular perturbation problems. We shall 
treat here the limit case e; = 0 which is easier to analyse and, nevertheless, 
gives much insight into the structure of the error for very stiff problems. 

For the differential-algebraic system (1.6) one defines the dense output 
in exactly the same way as for ordinary differential equations. As the system 
(1.6) is partitioned into y- and z-components, it is convenient to denote the 
corresponding interpolation polynomials by P( 8) and Q( 8), respectively. 

Theorem 4.8 (Hairer & Ostermann 1990). Let y(:v), z(:v) be the solution 
0/ (1.6). Suppose that the step number sequence satisfies n1 +A 2 2 with 
A E {Cl, I}. We then have 

P(8) - Y(:Vo+8H) = O(H"+l - A ) + O(H r +1 ) , 

Q(8) - z(:Vo+8H) = O(H"+l - A ) + O(H6 ) , 

( 4.47) 

where l' and s are the (K+n 1 +A-2,K)-entries 0/ Table 4.3 and Table 4.4, 
respectively. 

Proof. We use the perturbed asymptotic error expansions of Theorem 4.3. 
Their smooth terms are treated exactly as in the proof of Theorem 4.7 and 
yield the O(H .. +I-A) error termin (4.47). The second error terms in (4.47) 
are due to the perturbations in (4.11). We observe that the computation of 

r;k) involves only Yi (or zi) with i2nj-j+A. Since nj-j2nl-1, the values 

Yo, .. . , Ynl +A-2 do not enter into the formulas for rJk), so that the dominant 
perturbation comes from Yn1+A-l (or znl+>'-l). 0 

It is interesting to note that for A = 1, the second errror term in (4.47) 
is of the same size as that in the numerical solution Y .... , Z .... (see Theorem 
4.4). However, one power of H is lost in the first term of (4.47). On the 
other hand, one H may be lost in the second error term, if A = o. Both 
choices lead to a cheap (no additional function evaluations) and accurate 
dense output. Its order for 8 E (0,1) is at most one lower than the order 
obtained for 8 = 1. 
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Exercises 

1. The linearly implicit mid-point rule, applied to the differential-algebraic 
system (1.6), reads 

( 1- hfy(O) -hfz(O)) (Yi+1 - Yi) (4.48) 
-hgy(O) -hgz(O) zi+l - zi 

= _(I+hfy(O) hfAO)) (Yi=Yi-l)+2h(f(Yi,zJ) . 
hgAO) hgAO) zi zi_l g(Yi' zi) 

If we compute Yl' zl from (4.2), and if we define the numerical solution 
at xo+H (H =2mh) by 

this algorithm constitutes an extension of (IV.9.16) to differential-alge­
braic problems. 

a) Show that this method integrates the problem (4.8) exactly. 

b) Apply the algorithm to 

y' = 1, 0 = u - y2 , 0 = v - yu, 0 = w - yv, 0 = Z - yw 

with zero initial values and verify the formula 

t (z2m+l + z2m-l) - z(x 2m ) = -lOx;m h2 + 9x2m h4 

-(-lrGx~m+x~mh2+9x2mh4) . 

Remark. The error of the z-component thus contains an h-independent 
term of size O( H5), which is not affected by extrapolation. 

2. Consider the method of Example 1 as the basis of an h2-extrapolation 
method. Prove that for the step number sequence (IV.9.22) the extrap­
olated values satisfy 

Yjk - y(xo+H) = O(Hrjd1 ) , Zjk - z(xo+H) = O(HSjk) 

with r jk , Sjk given in Tables 4.5 and 4.6 ("*" indicates an unknown order 
between 5 and 7). 

Hint. Interpret Yjl' Zjl as numerical solution of a Rosenbrock method 
(Exercise 3 of Section IV.9) and verify the order condition derived in 
Section V1.3. 

Table 4.5. orders 'rjk' Table 4.6. orders Sjk. 
1 2 
1 3 2 4 
1 3 5 2 4 5 
1 3 5 * 2 4 5 5 
1 3 5 * * 2 4 5 5 5 
1 3 5 * * * 2 4 5 5 5 5 
1 3 5 * * * * 2 4 5 5 5 5 5 



VI.5. Higher Index Problems 

The most general form of a differential-algebraic system is that of an implicit 
differential equation 

F(u',u) =0 (5.1) 

where Fand u have the same dimension. We always assume F to be suf­
ficiently differentiable. A non-autonomous system is brought to the form 
(5.1) by appending :I: to the vector u, and by adding the equation :1:' = 1. 

If 8F/8u' is invertible we can formally solve (5.1) for u' to obtain an 
ordinary differential equation. In this section we are interested in problems 
(5.1) where 8F/8u' is singular. 

The Weierstrass-Kronecker Canonical Form 

"Uebrigens kann ich die Meinung des Hrn. Jordan nicht 
theilen, dass es ziemlich schwer sei, der Weierstrass-schen 
Analyse zu folgen; sie scheint mir im Gegentheil vollkom­
men durchsichtig zu sein, ... " (L. Kronecker 1874) 

The simplest and best understood problems of the form (5.1) are linear 
differential equations with constant coefficients 

Bu'+Au=d(x). (5.2) 

In looking for solutions ofthe form e>'''uo (if d(x)=O) we are led to consider 
the "matrix pencil" A + >"B. When A + >..B is singular for all values of >.., 
then (5.2) has either no solution or infinitely many solutions for a given 
initial value (Exercise 1). We shall therefore deal only with regular matrix 
pencils, i.e., with problems where the polynomial det(A+>"B) does not vanish 
identically. The key to the solution of (5.2) is the following simultaneous 
transformation of A and B to canonical form. 

Theorem 5.1 (Weierstrass 1868, Kronecker 1890). Let A+>..B be a regular 
matriz pencil. Then there exist nonsingular matrices P and Q such that 

PAQ = (~ ~) , PBQ = (~ ~) (5.3) 
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where N = blockdiag (NI' ... , N k)' each Ni is of the form 

1 

o 
of dimension m i , (5.4) 

and C can be assumed to be in Jordan canonical form. 

Proof (Gantmacher 1954 (Chapter XII), see also Exercises 2 and 3). We fix 
some c such that A+cB is invertible. If we multiply 

A + >.B = A + cB + (>' - c)B 

by the inverse of A+cB and then transform (A+cB)-l B to Jordan canonical 
form (Theorem I.12.2) we obtain 

(~ ~) + (>.-c) (~ J2 ) • (5.5) 

Here, J1 contains the Jordan blocks with non-zero eigenvalues, J2 those with 
zero eigenvalues (the dimension of J1 is just the degree of the polynomial 
det(A + >.B)). Consequently, J1 and 1- cJ2 are both invertible and multi­
plying (5.5) from the left by blockdiag (J11 , (I -cJ2 )-1 ) gives 

( J11 (1 - cJ1 ) 0) + >. (I 0 ) 
o I 0 (I - cJ2 )-IJ2 • 

The matrices J11(1 -cJl ) and (I -cJ2 )-IJ2 can then be brought to Jordan 
canonical form. Since all eigenvalues of (I -cJ2 )-1 J2 are zero, we obtain the 
desired decomposition (5.3). 0 

Theorem 5.1 allows us to solve (5.2) as follows: we premultiply (5.2) by 
P and use the transformation 

( 1J(X) ) 
Pd(x) = ö(x) . 

This decouples the differential-algebraic system (5.2) into 

y'+CY=1J(X) , Nz'+z=ö(x). (5.6) 

The equation for y is just an ordinary differential equation. The relation for 
z decouples again into k subsystems, each of the form (with m=mi ) 

z~+zl=Öl(x) 

z;" + zm_l = öm_l(x) 

zm = 0m(x) . 

(5.7) 
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Here zm is determined by the last equation, and the other eomponents are 
obtained reeursively by repeated differentiation. Thus zl depends on the 
(m-1)-th derivative of c5m(:z:). Sinee numerieal differentiation is an unstable 
proeedure, the largest mi appearing in (5.4) is a measure of numerieal diffi­
eulty for solving problem (5.2). This integer (maxmi) is ealled the indez 0/ 
nilpotency of the matrix peneil A+AB. It does not depend on the partieular 
transformation used to get (5.3) (see Exereise 4). 

The Differential Index 

Our next aim is to extend the above definition of the index to more general 
problems. There are several possible extensions. 

The first is now named the "differential index" (Gear 1990) and has 
been developed in several papers (Gear & Petzold 1983, 1984; Gear, Gupta 
& Leimkuhler 1985). It is based on the following idea: if we want to avoid 
numerieal differentiations, we perform analytical differentiations ofthe given 
equations until they ean be formulated as an explieit differential system. The 
number of differentiations neeessary to this end will be ealled the differential 
index. 

Definition 5.2. Equation (5.1) has differential indez di = m if m is the 
minimal number of analytieal differentiations 

F( ' ) - 0 dF(u',u) _ 0 dmF(u',u) _ 
u,u -, d -, ... , d - 0 :z: :z:m (5.8) 

such that equations (5.8) ean be transformed by algebraie manipulations 
into an explieit ordinary differential system u' = ~(u) (which is ealled the 
"underlying ODE"). 

An initially ordinary differential system is thus clearly of differential 
index O. 

As a first example we look at problem (5.7). Having seen above that 
c5m(:z:) is differentiated most often, c5m_l (:z:) seeond-most, and so on, we dif­
ferentiate the i-th equation of (5.7) i times (i = 1,2, . .. ,m) to obtain 

z~ + z~ = c5~ ( :z: ) 

(m) + (m-l) _ dm-l)( ) 
zm zm_l - Vm_l :z: 

(5.7') 

z~m) = c5~m)(:z:) . 

Adding up these equations with alternating signs, we finally obtain the 
"missing link" z~. This, together with equations 1 through m-l of (5.7), 
gives an explicit differential system. Thus (5.7) is of differential index m. 
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Systems of index 1. The differential-algebraie systems already eonsidered 
in Sections VI.1 to VIA 

y' = f(y, z) 
0= g(y,z) 

(5.9a) 

(5.9b) 

have no z'. We therefore differentiate (5.9b) to obtain 0 = gy .y' + gz' z'; here 
we insert y' from (5.9a) and solve for z', whieh is possible if gz is invertible 
in a neighbourhood of the solution. This gives 

z' = _g;l(y, z) . gy(y, z) . f(y, z) (5.ge) 

whieh, together with (5.9a), is an explicit system. The problem (5.9a,b), for 
invertible 9 z' is thus of differential index 1. 

Systems of index 2. In the system 

y' = f(y, z) 

0= g(y) 
( 5.10a) 

(5.10b) 

the variable z is totally absent in the algebraie eondition (5.10b). Differen­
tiating (5.10b) and substituting (5.10a) for y' gives 

0= gy(y) . f(y, z) . (5.10e) 

If 
gy(Y)fAY, z) is invertible (5.11) 

in a neighbourhood of the solution, then (5.10a) and (5.10e) eonstitute an 
index 1 problem whieh possesses a unique solution whenever the initial val­
ues satisfy 0 = gy(yo)' f(yo' zo)' Henee, consistent initial values must satisfy 
(5.10b) and also (5.10e). Equation (5.10e) thus eonsitutes a "hidden man­
ifold" for the solution of (5.10a,b). Integration of (5.10e) then shows that 
g(yo) = 0 implies g(y(x)) = 0 for all x. Our original problem ean be seen to 
be of differential index 2. 

System (5.10a,b) is a representative of the larger dass of problems of 
type (5.9a,b) with singular gz' If we assume that gz has eonstant rank in a 
neighbourhood of the solution, we ean eliminate eertain algebraie variables 
from 0 = g(y, z) until the system is of the form (5.10). This ean be done 
as follows: from the eonstant rank assumption it follows that either there 
exists a eomponent of 9 such that agd aZl 1= 0 locally, or ag / aZl vanishes 
identically so that 9 is already independent of Zl' In the first ease we can 
express zl as a function of y and the remaining components of z, and then 
we ean eliminate zl from the system. Repeating this proeedure with zz' Z3' 

ete., will lead to a system of the form (5.10). This transformation does 
not change the index. Moreover, the numerical methods of the following 
sections will be invariant under this transformation. Therefore, theoretieal 



478 VI. Singular Perturbation Problems and Differential-Algebraic Equations 

work done for systems of the form (5.10) will also be valid for more general 
problems. 

Systems of index 3. Problems of the form 

are of differential index 3, if 

y' = f(y, z) 
z' = k(y,z,u) 

o = g(y) 

is invertible 

(5.12a) 

(5.12b) 

(5.12c) 

(5.13) 

in a neighbourhood of the solution. This is seen by differentiating (5.12c) 
twice, which gives (omitting the function arguments) 

o =gyf 

o = gyy(f, 1) + gyfyf + gylilk . 

(5.12d) 

(5.12e) 

Equations (5.12a,b), (5.12e) together with Condition (5.13) are of the index 
1 form (5.9a,b). Consistent inital values must satisfy the three conditions 
(5.12c,d,e). 

An extensive study of the solution space of general differential-algebraic 
systems is due to Griepentrog & März (1986), März (1987, 1989). The/3e 
authors try to avoid assumptions on the smoothness on the problem as far as 
possible and replace the above differentiations by a careful study of suitable 
projections depending only on the first derivatives of F. 

The Perturbation Index 

A new concept of index, due to HLR89 1, interprets the index as a measure 
of sensitivity of the solutions with respect to perturbations of the given 
problem. 

Definition 5.3. Equation (5.1) has perturbation indez pi = m along a 
solution u( z) on [0, Z-], if m is the smallest integer such that, for all functions 
u( z) having a defect 

F(U',u) = ö(z) , (5.14) 

1 The "Lecture Notes" ofHairer, Lubich & Roche (1989) will be cited frequently 
in the subsequent sections. Reference to this publication will henceforth be denoted 
by HLR89. 
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there exists on [0, Z-] an estimate 

lIu(:z:)-u(:z:)1I ::; C(lIu(O)- u(O)II+ max IIS(e)1I + ... + max IIs(m-l)(e)lI) 
o~e~z o~e~z 

(5.15) 
whenever the expression on the right-hand side is sufficiently small. 

Again, for the linear problem (5.2), the perturbation index coincides with 
the index of nilpotency. This is because in (5.7) the component zl depends 
on the (m-1)-th derivative of 6m(:z:). 

If we want the above definition to be valid also for the index 0 case, we 
must interpret 6(-1)(e) as the integral of 6. More precisely, we say that (5.1) 
has perturbation index 0, if 

Remark. We deliberately do not write "Let u(:z:) be the solution of F(u', u) = 
S(:z:) ... " in this definition, because the existence of such a solution u(:z:) for 
an arbitrarily given S(:z:) is not assured. We start with u and then compute 
15 as defect of (5.15). 

Lemma 5.4 (Gear 1990). For problem8 (5.1), for which the differential and 
the perturbation indice8 ezi8t, we have 

pi::; di + 1 . 

Proof. Let m be the differential index of a system. If the perturbed equation 
(5.14) is differentiated as in (5.8), it becomes 

F( ' ) _ C() dF(u',u) _ C'( ) dmF(u',u) _ c(m)( ) 
u,u-v:Z:, d -V:Z:, ... , d -u:Z: :z: :z:m (5.17) 

and the algebraic manipulations of Definition 5.2 transform this into a per­
turbed underlying ODE 

ft = !p(u) + O(IIS(:z: )11) + ... + O( IIs(m)(x )11) 

instead of u' = !p( u). Subtracting these equations, taking norms, using a 
Lipschitz condition and the Gronwall Lemma (Exercise 1.10.2), we obtain, 
for a fixed interval [0, Z-], 

Ilu(:z:) - u(x)1I s C(ilu(O) - u(O)11 + l z IIS(t)1I dt + ... + l z 116(m)(t)11 dt) 

with the highest derivative of 6 one higher than in Definition 5.3. 0 
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If we want to prove a stronger result (namely pi = di), we must estimate 
more carefully: 

Systems of index 1. For the perturbation index of (5.9a,b) we consider 
the perturbed system 

y = f(fj,z) + 61(x) 
0= g(fj,z) + 62 (x) . 

(5.18a) 

(5.18b) 

The essential observation is that the difference z - z can be estimated with 
the help of the implicit function theorem, without any differentiation of 
the equation. Since gz is invertible by hypothesis, this theorem gives from 
(5.18b) compared to (5.9b) 

Ilz(x) - z(x)II ::; Cl (IIfj(x) - y(x)II + 1182 (x)II) (5.19a) 

as long as the right-hand side of (5.19a) is sufficiently small. We now subtraet 
(5.18a) from (5.9a), integrate from 0 to x, use a Lipschitz condition for f 
and the above estimate for z(x)-z(x). This gives for e(x)= IIfj(x)-y(x)II: 

e(x) ::; e(O) + C21'" e(t)dt + C31'" 1162 (t)lldt + 111'" 61(t) dt ll· 

In this estimate the norm is inside the integral for 82 , but outside the integral 
for 81 , This is due to the faet that perturbations of the algebraic equation 
(5.9b) are more serious than perturbations oft he differential equation (5.9a). 
We finally apply Gronwall's Lemma (Exercise 1.10.2) to obtain on a bounded 
interval [0, xl 

IIy(x)-y(x)II ::; C4 (IIy(O)- y(O)II + 1'" 1182 (t)IIdt+ orrtf", 111e 81(t) dt ID 
(5.19b) 

::; Cs (llfj(O)- y(O)II + orrtt.,ll82 (0 11 + orrtt.,ll81(~)II). 
(5.19c) 

Inequality (5.19c), together with (5.19a), shows that the perturbation index 
of the problem is 1. (5.19b) is a still sharper estimate. 

Systems of index 2. We consider the following perturbation of system 
(5.10a,b) 

Y=f(Y,z)+8(x) 
0= g(fj) + O(x) . 

Differentiation of (5.20b) gives 

(5.20a) 

(5.20b) 

(5.21 ) 
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Vnder the assumption (5.11) we can use the estimates of the index 1 case 
(with 02 replaced by gy(Y)o(x) + O'(:z:)) to obtain 

Ily(:z:)-y(x)1I :::; C(lIy(O)-y(O)1I + 1"' (1Io(e)1I + 1I 0'(e)ll) de) 

Ilz(:z:)-z(x)1I :::; c(lIy(O)-y(O)1I + o~tt"' Ilo(e)11 + o~ear", IIO'(e)lI) . 
(5.22) 

Since these estimates depend on the first derivative of 0, the perturbation 
index of this problem is 2. 

A counter-example. The differential index and the perturbation index 
are, however, not always the same. The following counter-example of type 
M(y)y' = f(y) is a slight modification of an example given by Lubich (1989) 
(compare with Exercise 6 below): 

y~ - YaY~ + Y2Y~ = 0 

y~ = 0 

y~ = 0 

....., . 
Y2 = ewsmw:z: 
....., 
Ya = ew coswx 

(5.23) 

with Yi(O)=O (i=1,2,3). Inserting Y2 = -ecoswx and Ys = esinw:z: into 
the first equation gives ~ = e2w which makes, for e fixed and w -+ 00, an 
estimate (5.16) impossible. This problem, which is obviously of differential 
index 0, is thus of perturbation index 1. 

A more detailed study of the relation between the two indices is given 
by Gear (1990). 

Control Problems 

In a control problem we usually have a differential equation of the form 
y'=f(y,u) where u represents a set of controls. These controls must be ap­
plied so that the solution satisfies some constraints 0 = g(y, u). Such control 
problems are thus naturally cast as differential-algebraic systems. Numeri­
cal computations for such a control problem (space shuttle simulation) are 
presented in Brenan (1983) (see also Brenan, Campbell & Petzold 1989). 
Another control problem (dynamic simulation in petrochemical engineer­
ing) has been treated by Preston, Berzins, Dew & Scales (1989) as weH as 
by HLR89 using the code RADAU5. 

Optimal control problems are differential equations y' = f(y, u) for­
mulated in such a way that the control u(:z:) has to minimize some cost 
functional. The Euler-Lagrange equation then often becomes a differential­
algebraic system (Pontryagin, Boltyanskij, Gamkrelidze & Mishchenko 1961, 
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Athans & Falb 1966, Campbe1l1982). We demonstrate this on the followin~~ 
problem: 

y' = f(y,u) , y(O) = Yo (5.24a) 

with cost functional 

J(u) = 11 <p(y(z),u(z))dz . (5.24b) 

For a given function u(z) the solution y(z) is determined by (5.24a). In order 
to find conditions for u(z) which minimize J(u) of (5.24b), we consider tht: 
perturbed control u(z)+eh"u(z) where h"u(z) is an arbitrary function and e: 
a small number. To this control there corresponds a solution y(z)+eh"y(z)+ 
O(e2) of (5.24a)j hence (by comparing powers of e) 

h"y'(z) = fy(z)h"y(z) + f,.(z)h"u(z) , h"y(O) = 0, (5.25) 

where, as usual, /y(z) = fy(Y(z),u(z)), etc. Linearization of (5.24b) shows 
that 

J(u+eh"u) - J(u) = e 11 (<piz)h"y(z)+<p,.(z)h"u(z))dz+O(e2) 

so that 

(5.26) 

is a necessary condition for u( z) to be an optimal solution of our problem, 
In order to express h"y in terms of h"u in (5.26), we introduce the adjoint 
differential equation 

v' = _/y(z)Tv - <py(zf , v(1) = 0 (5.27) 

with inhomogeneity <Py(z)T. Hence we have (see Exercise 7) 

11 <Py(z)h"y(z)dz = 11 
vT(z)f,.(z)h"u(z)dx . (5.28) 

Inserted into (5.26) this gives the necessary condition 

11 
(vT(x)f,.(a:) + <p,.(z))h"u(z)dx = 0 . (5.29) 

Since this relation has to be satisfied for all h"u we obtain the necessary 
relation v T (z ) f,. (a: ) + <P,. (z) = 0 by the so-called "fundamental lemma of 
variational calculus". 

In summary, we have proved that a solution of the above optimal control 
problem has to satisfy the system 

y' = f(y,u) , 

v' = -fy(y,u)Tv - <Py(y,u)T , 

o = vTf,.(y,u) + <p,.(y,u) . 

y(O) = Yo 

v(1) = 0 (5.30) 
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This is a boundary value differential-algebraic problem. It can also be ob­
tained directly from the Pontryagin minimum principle (see Pontryagin et 
al. 1961, Athans & Falb 1966). 

Differentiation of the algebraic relation in (5.30) shows that the system 
(5.30) has index 1 if the matrix 

n 821i 82~ LVi 8u2 (y,u) + 8u 2 (y,u) 
i=1 

(5.31) 

is invertible along the solution. A situation where the system (5.30) has 
index 3 is presented in Exercise 8. An index 5 problem of this type is given 
in "Example 3.1" of Clark (1988). 

Mechanical Systems 

". .. berechnen wir T, V, L. Mehr brauchen wir von der 
Geometrie und Mechanik unseres Systems nicht zu wissen. 
Alles übrige besorgt ohne unser Zutun der Formalismus 
von LAGRANGE." (Sommerfeld 1942, §35) 

An interesting dass of differential-algebraic systems appears in mechanical 
modeling of constrained systems. A choice method for deriving the equa­
tions of motion of mechanical systems is the Lagrange-Hamilton principle, 
whose long history goes back to merely theological ideas of Leibniz and Mau­
pertuis. Let q1" .. , qn be position coordinates of a system and ui = qi the 
velocities. Suppose a function L( q, q) is given; then the Euler equations of 
the variational problem 

It2 L(q,q)dt = min! 
tl 

are given by 

d (8L) 8L 
dt 8qk - 8qk = 0 k=I, ... ,n 

or 

The great discovery of Lagrange (1788) is that for 

L=T-U, 

( 5.32) 

(5.33) 

(5.34) 

(5.35) 

where T is the kinetic energy and U the potential energy, the differential 
equations (5.34) describe the movement of the corresponding "conservative 
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system". For a proof and various generalizations, consult any book on me­
chanics e.g., Sommerfeld (1942), vol. I, §§ 33-37, or Arnol'd (1979), part 
11. 

Example 1. For qi = xi' the Euclidean coordinates of a mass point, we 

have T = m L::~=1 x7!2 and (5.34) becomes the usual Newtonian equations 
of motion mXk = f k, where fk = -au /Bxk are the forces. 

Example 2. Consider the mathematical pendulum of length l. We choose 
first as position coordinate the angle B=q1 such that T=ml2iJ2/2 and U= 

-lmg cos B. Then (5.34) be comes lÖ = -g sin B, the well-known pendulum 
equation. 

Movement with constraints. Suppose now that we have some constraints 
g1 ( q) = 0, ... , gm ( q) = 0 on our movement. Another great idea of Lagrange 
is to vary the "Lagrange function" as follows in this case 

( 5.36) 

where the "Lagrange multipliers" >'i are appended to the coordinates. The 
important fact is that, since L is independent of \, the equation (5.34), for 
the derivatives with respect to >'k' just becomes O=gk(q), the desired side 
conditions. 

Example 3. We now describe the pendulum in ordinary orthogonal coordi­
nates x,y with constraint x 2+y2-12=O. This gives for (5.36) 

m 
L = _(X2+y2) _ mgy _ >.(x2 +y2_12) 

2 

and (5.34) becomes 
mx = -2x>. 

my = -mg - 2y>. ( 5.37) 

o = x 2 + y2 _ 12 . 

In this example the physical meaning of >. is the tension in the rod which 
maintains the mass point on the desired orbit. 

The general form of a constrained mechanical system (5.34) is in vector 
notation (after replacing dots by primes) 

q' = u (5.38a) 

M(q)u' = f(q,u) - GT(q)>. (5.38b) 

0= g(q) (5.38c) 

where M = Tqq = Tu,u, is a positive definite matrix G(q) = Bg/Bq, q = 
(q1'" ·,qn)T, u = (qu.·.,qn)T, >. = (>'u .. . ,>'m)T. Various formulations 
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are possible for such a problem, each of which leads to a different numerical 
approach. 

Index 3 formulation (position level, descriptor form). If we formally mul­
tiply (5.38b) by M-1, the system (5.38) becomes of the form (5.12) with 
(q,u,A) in the roles of(y,z,u). The condition (5.13), written out for (5.38), 
18 

is invertible . (5.39) 

This is satisfied, if the constraints (5.38c) are independent, i.e., if the rows of 
the matrix Gare linearly independent. Under this assumption, the system 
(5.38a,b,c) is thus an index 3 problem. 

Index 2 formulation (velocity level). Differentiation of (5.38c) gives 

0= G(q)u . (5.38d) 

If we replace (5.38c) by (5.38d) we obtain a system of the form (5.10a,b) 
with (q, u) in the role of y and A that of z. One verifies that Condition (5.11) 
is equivalent to (5.39), so that (5.38a,b,d) represents a problem of index 2. 

Index 1 formulation (acceleration level). Differentiating (5.38c) on ce more 
we get 

0= gqq(q)(u,u) + G(q)M-1(q)(J(q,u) - GT(q)A) . (5.38e) 

One readily verifies that (5.38a,b,e) is of the form (5.9a,b) and the index 1 
assumption (1.7) is again equivalent to (5.39). 

All these formulations are mathematically equivalent, if the initial values 
are consistent, i.e., if (5.38c,d,e) are satisfied. However, if for example the 
index 2 system (5.38a,b,d) is integrated numerically, the constraints of the 
original problem will no longer be exactly satisfied. For this reason Gear, 
Gupta & Leirnkuhler (1985) introduced another index 2 formulation (" ... an 
interesting way of reducing the problem to index two and adding variables 
so that the constraint continues to be satisfied".). 

GGL formulation. The idea is to introduce an additional Lagrange mul­
tiplier f.L in (5.38a) so that the whole system becomes 

q' = u - GT(q)f.L 

M(q)u' = f(q, u) - GT(q)A 

o =g(q) 

0= G(q)u . 

(5.40 ) 

Here the differential variables are (q, u) and the algebraic variables are (f.L, A). 
System (5.40) is of the form (5.10a,b) and the index 2 assumption is satisfied 
if (5.39) holds. 
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An extension of this idea is proposed by Führer & Leimkuhler (1990). 
They suggest adding (5.38e) to (5.40) by introducing a furt her Lagrange 
parameter. This approach is related to that of Führer (1988), who treated 
(5.38a-e) as an overdetermined system. 

A concrete mechanical system is described in detail, together with nu­
merical results for all the above formulations, in Section V1.9. 

Problems ofthe Form M(u)u'=<p(u) 

It may happen that a problem is modeled by an equation 

M(u)u' = cp(u) . (5.41 ) 

In contrast to Section V1.1, where M was a constant matrix, we assume here 
that M(u) is not constant and depends on the solution. 

If M(u) is invertible, Equation (5.41) is an ordinary differential equation 
(of differential index 0). It can be solved either by premultiplying (5.41) with 
M -1 (u), or by introducing a new variable for u', so that (5.41) becomes the 
index 1 system , 

u = z 

0= M(u)z - cp(u) . 
(5.42) 

Codes, like RADAU5, can be applied directly to (5.42) but not to (5.41). 
Both approaches are mathematically equivalent for implicit methods, such 
as mUltistep or Runge-Kutta methods. They differ only in the way in which 
the nonlinear systems are solved. A big advantage of the formulation (5.42) is 
that a numerical method can be applied (at least formally) also if the matrix 
M( u) is singular. Further, convergence results for semi-explicit problems 
(5.9a,b) of index 1 (or index 2, ... ) can be applied to obtain statements for 
the numerical solution of (5.41). 

An interesting special case of (5.41) occurs when the non-vanishing rows 
of M(u) are the Jacobian of some vector-valued function, i.e., 

bu(u)u' = CPl(u) 

0= CP2(U) 

(5.43a) 

(5.43b) 

(for an example from electrical circuit analysis see Roche 1990). The left­
hand side of (5.43a) is the total derivative of b(u(x)) and it is natural to 
introduce this quantity as a new variable. We thus obtain the equivalent 
system 

v' = CP1(U) 

O=v-b(u) 

0= CP2(u) . 

(5.44) 
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Exercises 

1. Prove that the initial value problem 

Bu' +Au = 0, u(O) = uo (5.45) 

has a unique solution if and only if the matrix pencil A+AB is regular. 

Hint for the "only if" part. If n is the dimension of u, choose arbitrarily 
n+l distinct \ and vectors vi#O satisfying (A+AiB)vi=O. Then take 
a linear combination, such that L: (XiVi =0, but L: (XieA':Cvi =t= o. 

2. (Stewart 1972). Let A+AB be a regular matrix pencil. Show that there 
exist unitary matrices Q and Z such that 

QAZ= (All A 12 ) , QBZ= (Bll 
o An 0 

(5.46) 

are both triangular. Further, the diagonal elements of An and B ll are 
all 1, those of B 22 are all O. 

Hint (Compare with the Schur decomposition of Theorem 1.12.1). Let 
Al be a zero of det(A+,XB) and VI # 0 be such that (A+AIB)v I = O. 
Verify that BV I #0 and that 

( -Al 
AZI = QI 0 

where QI' Zl are unitary matrices whose first columns are BV I and VI' 

respectively. The matrix pencil A + AB is again regular and this pro­
cedure can be continued until det( A + AB) = Const which implies that 
det B = O. In this case we take a vector V2 # 0 such that BV2 = 0 and 

transform A+AB with unitary matrices Q2' Z2' whose first columns are 
AV2 and V2 , respectively. For a practical computation of the decompo­
sition (5.46) see Golub & Van Loan (1989), Section 7.7. 

3. Under the assumptions of Exercise 2 show that there exist matrices S 
and T such that 

(~ ~) ( AJI (I T) _ (All 0) o I - 0 A22 ' 

(~ ~) (BJI (I T) = (Bll 0) o I 0 B n 

Hint. These matrices have to satisfy 

AllT + Al2 + SA22 = 0 

BuT + B l2 + SBn = 0 

(5.47a) 

(5.4 7b) 

and can be computed as fol1ows: the first column of T is obtained from 
(5.47b) because Bll is invertible and the first column of SEn vanishesj 
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then the first column of S is given by (5.47a) because An is invertible:; 
the second column of S B 22 is then known and we can compute the second 
column of T from (5.47b), etc. 

4. Prove that the index of nilpotency of a regular matrix pencil A+>.B does 
not depend on the choice of P and Q in (5.3). 

Hint. Consider two different decompositions ofthe form (5.3) and denote 
the matrices which appear by Cl' NI and C2 , N 2 , respectively. Show the 
existence of a regular matrix T such that N2 =T-lNlT. 

5. Prove that the system (2.4a,b) has index 2 (it is of the form (5.10a,b) 
and satisfies (5.11)). The fuU system (2.4) has perturbation index k. 

6. (Lubich 1989). For the problem 

y~ - Y3Y; + Y2Y~ = 0 , Y2 = 0, Y3 = 0 

with initial value Yl (0) = 0 the differential index is 1, whereas the per­
turbation index is 2. 

Hint. Consider the perturbation cS( x) = (0, c sin wx, c cos wx)T so that 
y~ =c2 w. For w-+oo the IIcS'(x)II term in (5.15) cannot be omitted. 

7. For the linear initial value problem 

y' = A(x)y + f(x) , y(O) = 0 

consider the adjoint problem 

v'=-A(xfv-g(x) , v(l)=O. 

Provethat 1 1g(x)Ty(x)dx= 11v(xff(x)dx. 

8. Consider a linear optimal control problem with quadratic cost functional 

y' = Ay + Bu + f(x) , y(O) = Yo 

J(u) = ~ 11 
(y(x)TCY(x) +u(x)TDu(x))dx, 

where C and D are assumed to be positive semi-definite. 
a) Prove that J(u) is minimal if and only if 

y'=Ay+Bu+f(x), y(O)=Yo 

v'=-ATv-Cy, v(l)=O 

0= BTv + Du. 

b) If Dis positive definite, then (5.48) has index l. 

(5.48) 

c) If D=O and BTCB is positive definite, then (5.48) has index 3. 
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"BDF is so beautiful that it is hard to imagine something 
else could be better." 

(L. Petzold 1988, heard by P. Deuflhard) 

Convergence results of multistep methods for problems of index at least 2 
are harder to obtain than for semi-explicit index 1 problems (see Section 
VI.1). A first convergence result for BDF schemes, valid for linear constant 
coefficient DAE's of arbitrary index, was given by Sincovec, Erisman, Yip 
& Epton (1981). Convergence of BDF for nonlinear DAE systems was then 
studied by Gear, Gupta & Leimkuhler (1985), Lötstedt & Petzold (1986) 
and Brenan & Engquist (1988). An independent convergence analysis was 
given by Griepentrog & März (1986), März (1987). They considered general 
linear multistep methods and problems, where the differential and algebraic 
equations (and/ or variables) are not explicitly separated. 

There are several implementations of the BDF schemes for differential­
algebraic systems. The most widely used code is DASSL of Petzold (1982). 
It is described in detail in the book of Brenan, Campbell & Petzold (1989). 
Further implementations are LSODI of Hindmarsh (1980) and SPRINT of 
Berzins & Furzeland (1985). 

In this section we consider semi-explicit problems 

y' = f(y, z) 

O=g(y). 

We assume that f and gare sufficiently differentiable and that 

gy(y)f,.(y,z) is invertible 

(6.1) 

(6.2) 

in a neighbourhood of the solution, so that the problem has index 2. A 
linear multistep method for (6.1) reads 

Te Te 

LOiYn+i = h LßJ(Yn+i,Zn+i) (6.3a) 
i=O i=O 

(6.3b) 

This is not the only meaningful definition of a multistep method for (6.1). 
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One could as weH replace (6.3b) by 

k 

o = L ßig(Yn+i) , 
i=O 

(6.4) 

which is obtained by putting e = 0 in (1.31). The foHowing results can be: 
extended without any difficulty to the second approach. For BDF schemes 
(where ßo = ... =ßk - 1 =0) both definitions are equivalent. 

The convergence results of this section are also valid for index 2 systems. 
of the form y' = /(y,z), 0 = g(y,z), if they can be transformed to (6.1) 
without any differentiation (as described in Section VI.5). This is because 
the multistep method (6.3) is invariant with respect to these transformations. 
The same is true for problems of the form M(u)u' = r,o(u), if the multistep 
method is defined by 

k k 

L aiun+i = h LßiVn+i' (6.5) 
i=O i=O 

Existence and Uniqueness of Numerical Solution 

Equations (6.3) constitute a nonlinear system for Yn+k' zn+k. We have the 
following result about the existence of its solution. 

Theorem 6.1. Suppose that /or a solution y(:c),z(:c) 0/ (6.1) the starting 
values satisfy /or j =0, ... , k -1 and x j = Xo + jh 

1/ (6.2) holds in a neighbourhood of this solution and if ßk f:. 0, then the 
nonlinear system 

k k 

L aiYi = h L ßd(Yi' zi) 
i=O i=O 

has a solution for h ~ ho. This solution is locally unique and satisfies 

Proo/. We put 
k-l a. k-l ß. 

TJ = - "-' y. + h" -' /(y.,z.) L...J a • L...J a •• 
i=O k i=O k 

(6.7a) 

(6.7b) 

(6.8) 

(6.9) 
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and define ( dose to z(:I:,,) such that 9,l'1)f(71,() = O. We further replace 
h(ß,,/o.,,) by a new step size which we again denote by h. Then the system 
(6.7) is equivalent to 

Yk = 71 + hf(Yk' zk) 
0= g(y,,) 

which is simply the implicit Euler method. 
We next show that 

(6.10a) 

(6.10b) 

The first relation follows from Yj -Y(:l:j) = O(h) and from 2::=oo.i = 0; 
the second is a consequence of the definition of ( and of (6.2). The last 
relation of (6.11) can be seen as follows: we replace all f(Yi,zi) in (6.9) by 
f(y(:c1c)' z(:C1c))' introducing an error of size O(h2 ) in 71. Hence 

k-l (1c-l ß ) 
71 - Y(:Ck) = - t; :: (Yi-Y(:C1c)) + h t; 0.: f(Y(:c k), z(x 1c )) + O(h2 ) • 

Because of (5.10b,c) this implies 

1c-l 
9(71) = - L o.i g1/(Y(:C1c»)(Yi-Y(X1c)) + O(h2 ) • (6.12) 

i=O o. 1c 

The last statement of (6.11) now follows from the fact that g1/(Y(:C1c))(Yi -
Y(:C1c))=g(Yi)+O(h2 ) and from (6.6). ' 

To show the existence of a locally unique solution of (6.10), it is possible 
to adapt the proof of "Theorem 4.1" of HLR89 to the implicit Euler method. 
We shall, however, reformulate (6.10) in such a way that the implicit function 
theorem is applicable. We write (6.10b) as 

0= g(y1c) = g(Yk) - 9(71(h)) + 9(71(h)) (6.13) 

= 11 
g1/ (71(h) + 7'(y1c - 71(h») )d7" (Y1c - 71(h)) + 9(71(h») 

where we have explicitly indicated the dependence of 71 on h. Replacing the 
factor Yk -71(h) by hf(y1c' Z1c) from (6.10a) and dividing by h we get the 
system 

(6.14a) 

(6.14b) 

which is the discrete analogue of system (5.10a,c). For h = 0 the values Y1c = 
71(0) alld z" = (0) satisfy (6.14) because 9(71(h» = O(h2 ) and 91/(71)!(71, () = 
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0. Further, the derivative of (6.14) with repect to (Y/" zk) is of the form 

( I + O(h) O(h) ) 
0(1) (gyfz)(TJ,O + O(h) , 

(6.15) 

which has a bounded inverse for h S ho. Therefore the implicit function 
theorem (Ortega & Rheinboldt 1970, p. 128) yields the existence of a locally 
unique solution of (6.14) and hence also of (6.10) and (6.7). [( 

Influence of Perturbations 

The influence of perturbations in the multistep formula (6.3) on the nume­
rical solution will be studied in the next theorem. 

Theorem 6.2. Let Yk,zk be given by (6.7) and consider perturbed value~ 

Yk' zk satisfying 

k k 

2: cxiYi = h 2: ßJ(fh, zJ + h8 (6.16a) 
i=O i=O 

(6.16b) 

In addition to the assumptions of Theorem 6.1 suppose that for j = 0, ... , k-1 

Then for h S ho we have the estimates 

IIYk-Ykll s C(IIYo-YoII + hllZo-Zoll + hlloll + 11( 11) 
k-l 

Ilzk-zkll s ~ (2: jjgy(Yk)(Yj-Yj)jj + hlJ:Yo-Yoll 
j=O 

0= 0(h2 ) • 

(6.17) 

(6.18) 

+ hlIZa-Zoll + hlloll + 11(11) 

where Yo-Yo =(Yk-l-Yk-l'···' Yo-YoF, IIYo-Yoll = max IIY·-Y·II, and 
O:-:;j:-:;k-l J J 

likewise for the z-component. 

Proof. In analogy to the proof of Theorem 6.1 we put 
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and rescale hand 6, so that (6.16) becomes 

Yk = Ti + hl(Yk' zk) + h6 
0= g(Yk) + 0. 

(6.19a) 

(6.19b) 

As in the proof of Theorem 6.1 we conclude from (6.17) that f},. -Ti= O(h) 
and zk-(=O(h), where Cis such that gll(fi)/(fi,C)=O. Inspired by Formula 
(6.13) we rewrite (6.19b) as 

0= 11 
gll (Ti + r(Yk - Ti) )dr. (J(f},., Zk) + 6) + ~9(fi) + ~o , (6.20) 

which is now a discrete analogue of Formula (5.21). Subtracting (6.20) from 
(6.14b) and exploiting the fact that the matrix gll/% is invertible, we deduce 
the estimate 

IIZk-Zkll ~ C(IIYk-Ykll+IlTi-7711+11611+~1I9(fi)-9(77)II+~1I01l). (6.21) 

A Lipschitz condition for 1 applied to the difference of (6.19a) and (6.14a) 
yields 

Combining the last two estimates we get 

IIYk - Ykll ~ C(lIfi - 7711 + hll611 + 11011) 

IIzk - Zk 11 ~ ~ (11911 (fi)(Ti - 77) 11 + hllfi - 7711 + hll611 + 11 011). 
(6.22) 

The conclusion now follows from the definitions of 77 and ( and from Yk -Ti = 
O(h). 0 

Remark 6.3. a) The above proof shows that the constant C in (6.18) 
depends on bounds for certain derivatives of 1 and 9, but not on the con­
stants implied by the 0( ... ) terms in (6.17) (if h is sufficiently small). This 
observation will be used in the convergence proof below. 

b) For one-step methods (e.g., implicit Euler, trapezoidal rule) the term 

11 L:~':~ 911 (Yk)(Yj-Yj) 11 can be omitted in (6.18), if we require g(yo) = 9(Yo) = 
O. Indeed, it follows from Y1 = Yo+O(h) that 911 (Y1)(YO -Yo) =911(Yo)(Yo­
Yo)+O(hIlYo-YolI). Further we have 

911 (Yo)(Yo-Yo) = g(Yo) - g(yo) + O(IIYo-YoIl2 ) , 

so that the term in question is estimated by O(hIlYo-YolI) if his sufficiently 
small. 
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The Local Error 

Consider initial values Yj = y( Zj), Zj = z( Zj) (j = 0, ... , k -1) on the exaet 
solution of (6.1) and apply the multistep formula (6.7) onee. The differenees 
Y/e-y(z/e) and z/e-z(z/e) are then ealled the loeal errorsof the method. 

Lemma 6.4. Suppose that the DAE (6.1) satisfies (6.2) and that the multi· 
step method (6.7) has order p (in the sense 0/ Seetion II1.2). Then its loeal 
error satisfies 

(6.23) 

Proo/. We put Yj = y(a:j), Zj = z(Zj) for j = 0, ... , k. These values satisfy 
(6.16) with 6 = O(hP) and e = O. Sinee Yj = Yj and Zj = Zj for j < k, the 
statement follows immediately from Theorem 6.2. 0 

Convergence for BDF 

The study of eonvergenee is simpler for BDF sehemes than for general mul· 
tistep methods, beeause Yn+/e depends only on Yn'''',Yn+/e-l' but not on 
zn"'" Zn+k-l (due to ßo = ... = ß/e-l = 0). Therefore the y. and Z· 
eomponents ean be treated separately. The following eonvergenee result was 
obtained by Gear, Gupta & Leimkuhler (1985), Lötstedt & Petzold (1986) 
and Brenan & Engquist (1988). 

Theorem 6.5. Consider an indez 2 problem (6.1) whieh satisfies (6.2). 
Then the k.step BDF seheme (111.1.22') is eonvergent of order p = k, if 
kSc.6i i.e., 

Zn - z(zn) = O(hP ) tor Zn = nh Sc. Const , 
(6.24) 

whenever the initial values satisfy 

Yj - y(a:j) = O(hPH ) tor j=0, ... ,k-1. (6.25) 

Remark. The assumption (6.25) ean be relaxed to Yj -Y(Zj) = O(hp ) for 
k2:3, but not for k=l (see Exercise 1). 

Proo/. We eombine the eonvergenee proof for Runge-Kutta methods (HLR89, 
Theorem 4.4) with the teehniques of Seetion III.4. Inspired by Lady Win­
dermere's Fan (Fig. III.4.1) we first study the propagation of the loeal errors 
and their aeeumulation over the whole interval for the y-eomponent (part 
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a). The z-component is treated in part (b) and technical details are given 
in part (c). 

a) In addition to the numerical solution {Yn , zn}, which we now also de­
note by {y~, z~}, we consider for i= 1, 2, ... the multistep solutions {y~, zn 
with starting values yff = y(a;j), zff = z(a;j) for j = i-I, ... , i+k-2 on the 

exact solution. Our first aim is to estimate y~ _y~H in terms of the local 
errors Y:+k-l-y:tLl (or starting errors if i= 0). For simplicity we omit the 
upper index and consider two neighbouring multistep solutions {Yn , zn} and 
{Yn, zn}' In order to be able to apply Theorem 6.2 we fix three sufliciently 
large constants Co, Cl' C2 and suppose that for nh ~ Const 

IIYn - y(a;n)11 ~ Coh , IIYn - Ynll ~ Cl h2 , IIzn - z(a;n)11 ~ C2h . 
(6.26) 

This will be justified in part (c) below. We introduce the notation 6.Yn = 

Yn -Yn, 6.zn = zn -Zn and 6.Yn = (6.Yn+k-l'·· .,6.Yn)T. Observing that 
Yn+k' zn+k do not depend on zn"" ,zn+k-l for the BDF schemes, it follows 
from Theorem 6.2 with c5 = 0 and 0 = 0 that 

(6.27a) 

(6.27b) 

Here C does not depend on the choice of Co, Cll C2 , if h is sufliciently small 
(see Remark 6.3a). Our assumption (6.26) together with (6.27) implies 
6.Yn+k = O(h2 ) and 6.zn+k = O(h). We therefore obtain by linearization 
of the multistep formula 

k 

L °i6.Yn+i = hßk fA Yn+k , zn+k)6.zn+k + O(hll6.Yn ll) (6.28a) 
i=O 

0= 9Y (Yn+k)6.Yn+k + O(hll6.Yn ID . 
We next use the projections (see also Definition 7.3 below) 

Qn = (JA9 y f,,)-19 y )(Yn+k' zn+k) , 

for which 

(6.28b) 

(6.29) 

P~ = Pn , Q! = Qn' PnQn = QnPn = 0, QnH = Qn + O(h) . 
(6.30) 

The last relation of (6.30) follows from (6.26) and the smoothness of the 
solution y(a;), z(a;). We then multiply (6.28a) by Pn+k (which eliminates 
6.zn+k) and (6.28b) by fA9 y f,J- 1. This yields with (6.30) 

k 

L °iPn+i6.Yn+i = O(hll6.Yn ll) (6.31a) 
i=O 
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1ntroducing the vectors 

Un = (Pn+A'-l~Yn+k-l,···,Pn~Ynf, 
Vn = (Qn+k-l~Yn+k-ll. ··,Qn~Yn)T, 

we have ~Yn=Un+Vn and the relations (6.31) become 

UnH = (A ® l)Un + O(hllUnll + hllVnll) 

VnH = (N ® I)Vn + O(hllUnll + hllVnlD 

where (with aj =aj/ak ) 

( , ") _ -a;_l··· -;1 -;0 
A- ... . . . . . . 

1 0 

(6.31b) 

(6.32a) 

(6.32b) 

(6.33) 

According to Lemma 111.4.4 we now choose a norm 11U11 such that IIA®/II :::; 1. 
We then choose a (possibly different) norm IIVII, for which IIN ® 1II :::; e < 1. 
Consequently it follows from (6.32) that 

( 1IUnHII) < (1+0(h) O(h)) (1IUnll) . 
IlVn+ll1 - O(h) e + O(h) IlVnll (6.34) 

As in the proof of Lemma 2.9 we diagonalize the matrix in (6.34) and so 
obtain 

II~Ynll :::; Const1 (llUnll + IlVnll) 

:::; Cons~ (llUoli + (en + h)llVolI) , 

IlVnll :::; Const3 (hllUoli + (en + h)IIYoII) . 

(6.35a) 

(6.35b) 

The vectors Uo and Vo are composed of local errors (of the y-component) 
or of errors in the starting values, which are of size O(hPH ) by (6.23) and 
(6.25). Hence, it follows from (6.35) that the propagated errors satisfy 

II~Ynll :::; C3hPH , 

Ilgy(Yn+k)~Yn+jll :::; C4(en+h)hPH for j = 0, ... , k - 1. 
(6.36) 

Summing up we obtain 

n-k+l 
IIYn - y(zn)ll:::; L IIY; - y;+lll :::; C5 hP , (6.37) 

l=O 

the desired estimate for the y-component. 
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b) Since zn depends only on Yn-k'" ., Yn-l but not on the previous z­
values, we can apply Theorem 6.2 with Yi=Y(x i), zi=z(xi), h=O(hp ) and 
0=0. This yields 

(6.38) 

Using (6.36) and Y; =y(xn)+O(hP ), which follows as in (6.37), we obtain 

n-k+l 
11 gy (y(xn))(Yn_j-y(xn_i)) 11 = 11 L gy(Y(Xn))(Y~_j-y~~j)11 

l=O 

n-k+l 
< L (IIgY(Y~)(Y~-i-y~~j)11 +O(h2P+l )) = O(hP+1) 

l=O 

and hence also 

(6.39) 

c) In general, the constants Ca,Cs and Ce will depend on CO, Cll C2 of 
our assumption (6.26). For p ~ 2 we can restrict the step size h so that 

CshP- l ::; Co , CahP- l ::; Cl , CohP- l ::; C2 

and the numerical solutions will never violate the conditions (6.26) on the 
considered interval. 

For p= 1 (the implicit Euler method) we know from Remark 6.3b that 
the estimate (6.27b) can be replaced by 

(6.40) 

Instead of (6.28a) we thus immediately get 

(6.41 ) 

where the constant implied by the 0( ... ) term is independent of Co, Cl' 
C2 , if h is sufficiently small. Standard techniques (without considering the 
projections (6.29)) then yield the convergence result. 0 

With the ideas of Section III.5 the above proof can be extended to cover 
variable step sizes as weIl. Originally, such a convergence result was given 
by Gear, Gupta & Leimkuhler (1985). 
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General Multistep Methods 

For a general multistep method (6.3) with generating polynomials 

Ic Ic 

e() = L ai (i , u() = Lßi(i 
i=O i=O 

we have the following convergence result. 

Theorem 6.6. Consider an indez 2 problem (6.1) which satisfies (6.2). 
Assume that the multistep method is stable (Definition 111.3.2) and strictly 
stable at infinity (the zeros 0/ u() lie inside the unit disc 1(1 < 1). 1/ its 
order is p ~ 2, then the global error satisfies 

whenever the initial values satisfy (for j = 0, ... , k -1) 

( 6.42) 

Proo/. The proof is essentially the same as for the BDF schemes. Due to 
the dependence of Yn+lc' zn+/c on Yn, . .. , Yn+Ic-1 and on zn" .. , Zn+Ic_1 the 
following modifications are necessary. 

In addition to (6.26) we assume Ilzn -znli::; C3 h. Instead of (6.27) we 
have (from Theorem 6.2) 

and (6.28) becomes 

Ic Ic 

L ai.6.Yn+i = h LßdAYn+/c, zn+/c).6.zn+i + O(hll.6.Ynll + h211.6.Znll) 
i=O i=O 

( 6.43) 

A recursion for .6.zn is obtained as follows: we multiply the upper line of 
(6.43) by ((gy/z)-lgy)(Yn+/c' zn+/c) and so get 

Ic Ic 

h L ßi .6.zn+i = Lai ((gyfz) -1 gy)(Yn+lc' Zn+/c) .6.Yn+i 
i=O i=O (6.44) 
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With the projections Pn , Qn of (6.29) and the vectors Un, Vn we thus obtain 
(6.32) with an additional 0(h2116Znll) term. From (6.44) we get 

h6ZnH = (B ®I)h6Zn + o (hl!Unll + IlVnll + h2116Znll) , 
where 

( 
-ßk-l . . . -ß~ -ß~ ) 

1 0 0 
B= ... . . . 

1 0 

with ßj = ßjlßk· For this equation we use a norm for which IIB ® III :::; 
'" < 1. This is possible, because the method is strictly stable at infinity. 
Summarizing, we get the inequality 

O(h) ) ( l!Unll ) 
O(h) IlVnll 

'" + O(h) h 116Znii 
(6.45 ) 

which can be solved as before and yields 

IlgyOln+k)6Yn+jll :::; C4(en+",n+h)hp+1 for j = 0, ... , k - 1 . 
( 6.46) 

Summing up the propagated errors as in (6.37) we obtain the desired esti­
mates for the y-and z-component. 0 

Solution of the Nonlinear System by Simplified Newton 

The nonlinear system (6.3) is usually solved by a simplified Newton iteration 
and it is interesting to study its convergence. As in the proof of Theorem 6.1 
we introduce T/ by (6.9) and rescale h so that the nonlinear system becomes 
(omitting the indices) 

Y-T/-hf(Y,z)=O 

g(y) = 0 . 
(6.4 7) 

This is just the implicit Euler method and we can apply the discussion of 
HLR89, Chapter 7. The Jacobian of the nonlinear system (6.47) is 

J = (I ~:fy -~fz) (6.48) 

and its inverse has the form 

J-1 _ ( P + O(h) fAg yfz)-1 + O(h) ) (649) 
- -h-1(gyfJ-l gy + 0(1) h-1(gyfz)-1 + 0(1) . 
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where P=I-fAgyfz)-1 gy is the projection of (6.29). We now eonsider the 
simplified Newton method as a fixed point iteration with the function 

(P(y z) = (y) _ J-1 (Y - TI - hf(Y,Z») . 
, z 0 g(y) (6.50) 

The subseript 0 in Jo indieates that the arguments of the derivatives in 
(6.48) are evaluated at some jized approximation (71, () to the solution of 
(6.47). We shall use the notation {fy}o for f y(71, (), ete. Direct ealeulation 
of (P'(y, z) gives 

( UAgyfz)-l}o({gylo-gy)+O(h) h{P}ofz+0(h2 ) ) 

h-1{(gyfz)-llo( {gylo -gy) + 0(1) {(gyfz)-lgy}o( {fzh - fz) + O(h) . 

If we assume that (71, () approximates the fixed point of (6.50) with an error 
of O(h), then we have at this fixed point 

, (O(h) 0(h2 ») 
(P (y,z) = 0(1) O(h) . (6.51) 

With the sealing matrix D = diag (I, hI) (this eorresponds to a multiplieation 
of the z-vanables by h) we have 

IID(P'(y,z)D-111 = O(h). 

In the norm lIylI +hllzll we therefore gain a factor hin eaeh simplified Newton 
iteration. 

Remark. The above analysis remains valid if f y or parts of it are replaced 
by zero in Jo' For mechanical problems such an algorithm was proposed by 
Gear, Gupta & Leimkuhler (1985). 

Exercises 

1. Show that the assumption g(y j) = O( h2 ) for j = 0, ... , k -1 cannot be 
omitted in Theorem 6.1. 

Counterezample. Consider the system 

;,:' = 1 

y' = k(z) 

O=y-z 

(6.52) 

where k(z)=(e Z - 1 +1)/2. Apply the implicit Euler method with initial 
values :1:0 = 0, Yo = h, Zo = 1. 
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2. (Gear, Hsu & Petzold 1981, Gear & Petzold 1984). Consider the problem 

(0 0) (Y') + (1 "Ix) (Y) _ (!(X)) 
1 "IX z, 0 1 + "I z - g( x) . (6.53) 

a) Prove that the system (6.53) has index 2 for all values of "I. 
b) The z-component of the exact solution is z( x ) = g( x) - f' (x ). 
c) The implicit Euler method, applied to (6.53) in an obvious manner, 
yields the recursion 

"I 1 ( !(xn+1 )-f(xn )) 
zn+l = -- zn + -- g(xn+1) - h . 

1+"1 1+"1 

Hence, the method is convergent for "I> -1/2, but unstable for "I< -1/2. 
For "I = -1 the numerical solution does not exist. 
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"RK methods prove popular at IMA conference 
on numerical üDEs." 
(Byrne & Hindmarsh, SIAM News, March 1990) 

This section is devoted to the convergence of implicit Runge-Kutta me­
thods for semi-explicit index 2 systems (6.1) which satisfy (6.2). The direct 
approach of Section VI.1 defines the numerical solution by 

where 

Yn+1 = Yn + h L bikni , 
i=l 

• 
zn+1 = zn + h L bi Rn; 

i=l 

kn; = !(Yni , Zni) , 

and the internal stages are given by 

• 
Yni = Yn + h L aijknj , 

j=l 

• 
Zni = Zn + h L aijRnj 

j=l 

(7.1a) 

(7.1b) 

(7.1c) 

(the indirect approach does not make sense here, because the algebraic con­
ditions do not depend on z). 

The first convergence results for this situation are due to Petzold (1986). 
They are formulated for general problems F(y', y) = 0 under the assumption 
of "uniform index one". Since the system (6.1) becomes "uniform index one" 
if we replace z by u' (Gear 1988, see also Exercise 1), the results of Petzold 
can be applied to (6.1). A further study for the semi-explicit system (6.1) 
is given by Brenan & Petzold (1989). Their main result is that for (7.1) the 
global error of the y-component is O( hQ+1), and that of the z-component 
is O(hq ) (where q denotes the stage order of the method). This result was 
improved by HLR89, using a different approach (Iocal and global error are 
studied separately). 

The Nonlinear System 

We first investigate existence, uniqueness and the influence of perturbations 
to the solution of the nonlinear system (7.1). In order to simplify the no­
tation we write (.",() for (Yn,zn)' which we assume h-dependent, and we 
suppress the index n in Yni , etc. The nonlinear system then reads 
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4 

Yi = 11 + h~aijf(Yj, Zj) } 

0= 9(Yi) 
i = 1, .. . ,s (7.2) 

Onee a solution to (7.2) is known, we ean eompute f ni from (7.1e) (whenever 
(aij ) is an invertible matrix) and then Yn+lI zn+! from (7.1a). 

Theorem 7.1 (HLR89, p. 31). Suppose that (11,() satisfy 

9(11) = O(h2 ) , 9y (11)f(11,() = O(h) (7.3) 

and that (6.2) holds in a neighbourhood 0/(11,(). I/the Runge-Kutta matriz 
(aij) is invertible, then the nonlinear system (7.2) possesses /or h :s; ho a 
locally unique solution which satisfies 

Yi -11 = O(h) , (7.4) 

Remark. Condition (7.3) expresses the fact that (11, () is elose to eonsistent 
initial values. We also see from (7.2) that the solution (Yi, Zi) does not 
depend on (. The value of ( in (7.3) only speeifies the solution branch of 
9y(y)f(y, z) = 0 to whieh the numerieal solution is elose. 

The pro%f Theorem 7.1 for the implieit Euler method was given in Section 
VI.6 (proof of Theorem 6.1). If we replaee (6.14) by 

s 

Yi -11(h) - h L aijf(Yj, Zj) = 0 (7.5a) 
j=1 

11 s 1 
9y (11(h) + T(Yi -11(h)) )dT' L aij!(Yj , Zj) + h9(11(h)) = 0 (7.5b) 

o j=1 

it extends in a straightforward manner to general Runge-Kutta methods. D 

The numerieal condition of the nonlinear system (7.2) is our next subject. 
Besides (7.2) we also consider the perturbed system 

s 

Yi = 7J + h LaiJ(Yj , Zj) + Mi} 
j=1 

0= 9(Yi) + Bi 

i = 1, ... ,s (7.6) 

and we investigate the influence of the perturbations 6i and Bi on the nu­
merical solution. 

Theorem 7.2 (HLR89, p. 33). Let Yi, Zi be a solution 0/ (7.2) and consider 
perturbed values Yi, Zi satisfying (7.6). In addition to the assumptions 0/ 
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Theorem 7.1 suppose that 

Then we have for h:S ho the estimates 

IIYi - Yill :s C(llry-1711 + hl1611 + 11 ( 11) (7.8a) 

IIZi - Zill :s ~ (1Igy(17)(ry-17)11 + hllry-1711 + hl1611 + 11(11) (7.8b) 

where 11611 = maxi 116i ll and 11811 = maxi 118i ll. 1f the initial values satisfy 
g( 17) = 0 and g(1}) = 0, then we have the stronger e8timate 

(7.9) 

The eonstant C in (7.8) and (7.9) depend8 only on bound8 for certain deriva­
tives of J and g, but not on the constants implied by the 0( . .. ) terms in (7.:1) 
and (7.7). 

Proof. The estimates (7.8) are obtained by extending the proof of Theo­
rem 6.2. When both initial values, 17 and ry, lie on the manifold g(y) = 0, we 
have by Taylor expansion 

0= g(ry) - g(17) = gy(17)(ry-17) + O(llry-1711 2) . 

In this situation the term 9y(17)(ry-77) in (7.8b) is of size O(h21Iry-17ID and 
may be neglected. 0 

Estimation of the Local Error 

We begin by defining two projections which will be important for the stucly 
of local errors for index 2 problems (6.1). 

Definition 7.3. For given Yo, Zo for which (gyJz)(yo, zo) is invertible we 
define the projections 

P=I-Q. (7.10) 

Geometrie interpretation. Let U be the manifold defined by U = {Yi g( y) = O} 
and let Tu = ker(gy(yo)) be the tangent space at a point Yo E U. Further 
let V={J(yo,z) i z arbitrary} and let Tv=ImUAyo'zo)) be its tangent 
space. Here, Zo is the value for which J(yo, zo) lies in Tu (i.e., for which 
the condition gy(Yo)J(yo,zo)=O is satisfied (see 5.10c)). By considering the 
arrows J(yo,z) with varying z (see Fig. 7.1), the space Tv ean be interpreted 
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Fig.7.1. Projections P and Q 

as the directions in which the control variables z bring the solution to the 
manifold U. By (6.2) these two spaces are transversal and their direct sum 
generates the y-space. It follows from (7.10) that P projects onto Tu parallel 
to Tv and Q projects onto Tv parallel to Tu. 

Consider now initial values Yo = y( x), Zo = z( x) on the exact solution and 
denote by YP Zl the numerical solution of the Runge-Kutta method (7.1). 
The local error 

(7.11) 

ean be estimated as follows: 

Lemma 7.4 (HLR89, p. 34). SuppoJe that a Runge-Kutta method with 
in·vertible coefficient matrix (aii) JatiJjieJ the aJJumptionJ B(p) and C( q) of 
Section IV.5 with p ~ q. Then we have 

hYh(x) = O(hq+1 ) , P(x)hYh(x) = O(hmin(p+1,q+2)) 

tSzh(X) = O(hq ) , 
(7.12) 

where P(x) iJ the projection (7.10) evaluated at (y(x),z(:z:)). If, in addition, 
the Runge-Kutta method iJ JtijJly accurate (i.e., JatilJjielJ aBi = bi for all i), 
then 

(7.13) 

Proof. The exact solution values 17= y(x), Yi = y(x+cih), Zi = z(x+cih) 
satisfy (7.6) with Bi =0 and 

hq q+l 8 

h. = _y(q+l)(X) (~- "a .. c~) + O(hq+1 ) • 
'q! q + 1 ~ '1 1 

1=1 

The differenee to the numerieal solution «7.2) with Tl = y(:z:») ean thus be 
estimated with Theorem 7.2, yielding 

(7.14) 
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Since the quadrature formula {bi' ci} is of order p, we have 
l/ 

y(x+h) - y(:z:) - h L bd(y(x+cih), Z(X+Cih)) = O(hPH ) • 

i=1 
Subtracting this formula from (7.1a) we get 

l/ 
Y1 - y(:z:+h) = hIAY(:z:) , z(:z:)) L bi(Zi - Z(X+Cih)) + O(hPH ) + O(hq+2) ; 

i=1 

because of P(x)/AY(x),z(x)) == 0, this proves (7.12) for the y-component. 
The estimate for the z-component follows from (see (1.28)) 

1I 

z1 - z(:z:+h) = L biWij(Zj - z(:z:+cjh)) + O(hQ+1) 

and (7.14). 
i,j=1 

Under the assumption al/i = bi (for all i) we have g(Y1) = 0 so that by 
Taylor expansion 

(7.15) 

This implies that Q(:Z:)OYh(:Z:) = O(hlloYh(x)ll), and (7.13) is a consequence 
of (7.12) and (7.10). 0 

For some important Runge-Kutta methods (such as Radau HA and Lo­
batto HIC) the estimates of Lemma 7.4 are not optimal. Sharp estimates 
will be given in Theorem 7.9 for collocation methods and in Section VI.8 for 
general Runge-Kutta methods. 

Convergence for the y-Component 

The numerical solution {Yn}, defined by (7.1), does not depend on {zn}. 
Consequently, the convergence for the y-component can be treated indepen­
dently of estimates for the z-component. 

Theorem 7.5 (HLR89, p. 36). Suppose that (6.2) holds in a neighbourhood 
01 the solution (y(:z:),z(:z:)) 01 (6.t) and that the initial values are consis­
tent. Suppose /urther that the Runge-K utta matriz (aij ) is invertible, that 
IR(oo)I<1 (see (t.tte}) and that the local error satisfies 

OYh(x) = O(hr ) , P(:Z:)OYh(:Z:) = O(hr+1) (7.16) 

with P(:z:) as in Lemma 7.4. Then the method (7.t) is convergent 01 order 
r, i.e., 

Yn - y(xn ) = O(hr ) lor xn -:Z:o = nh :s; Const. 

11 in addition OYh(x) =O(hrH ), then g(yn ) = O(hr+1). 
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Proof. A complete proof of this result is given in (HLR89, pp. 36-39). We 
restrict our presentation to stifRy accurate Runge-Kutta methods (i.e., asi = 
bi for all i). This considerably simplifies several parts of the proof, and 
nevertheless covers many important Runge-Kutta methods (such as Radau 
IIA, Lobatto IIIC and the SDIRK method (IV.6.16)). The assumption asi = 
bi (for all i) implies that g(yn)=O for all n and, as a consequence of (7.15) 
and (7.16), that 

( 7.17) 

The following proof is similar to that of Theorem 6.5 and uses, once again, 
Lady Windermere's Fan of Fig. II.3.2. 

In addition to the numerical solution {Yn, zn}' also denoted by {y~, z~}, 
we consider the Runge-Kutta solutions {Y;, zD with initial values Y; =Y( xl)' 
zi = z( X l) on the exact solution. We first estimate y; - y;H for n 2: e + 1 

in terms of the local error bYh(xl) = YiH -y:ti. In order to simplify the 
notation we denote two neighbouring Runge-Kutta solutions by {Yn}, {Yn} 
and their difference by tl.Yn = Yn -Yn' We suppose for the moment that 

(7.18) 

(this will bejustified below). Theorem 7.2 with bi=O and 8i =0 then yields 

(7.19) 

where C is some constant independent of Co and Cl' A Lipschitz condition 
for f(y, z) implies that 

s 

IItl.Yn+111 ~ IItl.ynll + h L Ibil (L1 1IYni - Ynill + L2 11 Zni - Znill) 
i=l 

Inserting (7.19) we get 

and hence also 

for nh ~ Const . (7.20) 

For our situation in Lady Windermere's Fan the use of (7.17) yields 

for n 2: C+1 and nh ~ Const. 

Summing up we obtain the desired estimate 

n-1 

IIYn - y(xn)11 ~ L Ily~ - y~+lll ~ C4 h r for nh ~ Const. 
[=0 

Since C3 and C4 do not depend on Co or Cl (if h is sufficiently small) , 
the assumption (7.18) is justified by induction on n provided the constants 
Co, Cl are chosen sufficiently large. 0 
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Convergence for the z-Component 

Theorem 7.6 (HLR89, p. 40). Consider the indez 2 problem (6.1)-(6.2) 
with eonsistent initial va lues and assume that the Runge-K utta matrix (aij ) 
is invertible and IR(oo)I<1. /fthe global error ofthe y-eomponent is O(hr), 
g(Yn) = O(hr+1 ) and the loeal error of the z-eomponent is O(hr), then we 
have for the global error 

fOT :1: n - :1:0 = nh :s: Const . 

Remark. If, in addition to the invertibility of (aij) and IR( 00) I < 1, the 
conditions B(q) and G(q) are satisfied then we have zn-z(:1:n)=O(hq) (see 
Lemma 7.4). 

ProoJ. We write the global error as 

zn+! - z(zn+!) = Zn+! - zn+l + c5zh,(zn) (7.21) 

where (Yn+!' zn+l) denotes the numerical solution obtained from the starting 
values (y(zn),z(zn)) and c5zh,(zn) is the local error. From (1.Ud) we have 

8 

Zn+l - Zn+! = R(oo) (Zn - Z(Zn)) + L biWij(Znj - Znj) . (7.22) 
i,j=l 

The assumption g(yn) = O( hr+1 ) implies that gy(Yn)(Yn -y( zn)) = O( hr+1 ) 

and, together with Yn -Y(:1:n) = O(hr), it follows from Theorem 7.2 that 
Znj-Znj=O(hr). Inserting (7.22) into (7.21) we obtain 

zn+! - z(zn+l) = R(oo) (zn - z(zn)) + O(hr) , 

which proves the statement. o 

Collocation Methods 

An important subclass of implicit Runge-Kutta methods are the collocation 
methorls as introduced in Section II.7. For the index 2 problem (6.1) they 
can be defined as follows. 

Definition 7.7. Let cl' ... ' e, be 8 distinct real numbers and denote by 
'11.( z), v( z) the polynomials of degree 8 (eolloeation polynomials ) which satisfy 

U(Zo) = Yo' v(zo) = Zo 

u'(ZO+Cih ) = J{U(Zo+Cih),V(Zo+Cih))} 

0= g(u(zo+cih)) 
i = 1, ... ,8 . 

(7.23a) 

(7.23b) 
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Then the numerical solution is given by 

(7.23c) 

A straightforward extension of Theorems H. 7.6 and 11. 7.7 to index 2 
problems shows that (7.23) is equivalent to the s-stage Runge-Kutta method 
(7.1) whose coefficients are defined by B(s) and O(s) (see Section IV.5 for 
their definition). This equivalence allows us to deduce from Theorem 7.1 
the existence and local uniqueness of the collocation polynomials provided 
that the corresponding Runge-Kutta matrix is invertible. Hence we assume 
in the sequel that Ci ::/= 0 for all i. The case of a singular Runge-Kutta matrix 
is considered in Exercises 2 and 3. 

The quality of u( a:), v( a:) as approximations to y( a:), z( a:) is described by 
the next theorem, which extends Theorem II.7.9. 

Theorem 7.8. Consider a collocation method (7.23) with all ci ::/= O. Then 
we have for k=O,1, ... ,s and a: E [a:o,a:o+h] 

Ilu(k)(a:) - y(k)(a:)11 ::::; 0 hs+!-k 

Ilv(k)(x) - z(k)(a:)11 ::::; 0 hs - k • 

Proof. We exploit the fact that u( a:o+cih) = Ji, v(a:o+cih) = Zi are the inter­
nal stages of the Runge-Kutta method (7.1). Consequently the collocation 
polynomials can be written as 

u(a:o+th) = yoCo(t) + L~Ci(t) (7.24a) 
i=1 

v( a: o +th) = Zo Ro(t) + L: Zi Ri(t) (7.24b) 
i=1 

where the Ri(t) are the Lagrange polynomials defined by 

t rrs (t-c.) R. t - _ J 
,()-c. (c.-c.) 

'j=1 ' J 
i#i 

Familiar estimates of the interpolation error imply that the exact solution 
y( a:) satisfies 

y(a:o+th) = yoCo(t) + Ly(a:O+cih)C;(t) + O(hs+1 ) • (7.25) 
i=1 

The factor hs+1 in the interpolation error comes from the (s+1 )-th derivative 
of y(a:o+th) with respect to t. Obviously, the interpolation error is differen­
tiable as often as the function y(x). If we differentiate (7.25) k times, then 
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by Rolle's theorem, the difference 
s 

hky(k)(xo+th) - (Yof~k)(t) + I:y(xo+cih)f~k)(t)) (7.25') 
i=l 

vanishes at least at s+l-k points. Hence, the polynomial enclosed in brackets 
in (7.25') can be interpreted as an interpolation polynomial of degree s-k 
for the function hkyCk)(xo+th). Its error is thus again of size O(hs+1). 
Subtracting (7.25) from (7.24a) and differentiating k times thus yields 

s 

hk(uCkl(xo+th) - yCk)(xo+th)) = I:(l'i - Y(Xo+Cih)) f~k)(t) + O(hs+1) 
i=l 

and a similar formula for the z-component. The conclusion now follows from 
(7.14) with q=s. CI 

Superconvergence of Collocation Methods 

It is now natural to ask whether superconvergence takes place at X o + h 
(as for ordinary differential equations; see Theorem I1.7.8). The answer is 
affirmative, if the method is stiffiy accurate, i.e., if Cs = 1. 

Theorem 7.9. 1f Ci i= 0 for alt i and Cs = 1, then the y-component of the 
local error 0/ the collocation method (7.23) satisfies 

Y1 - y(xo+h) = O(hP+1) 

where p is the order of the underlying quadrature formula. 

Proo/. We insert the collocation polynomials into the differential-algebraic 
problem and define the defect by 

u'(x) = f(u(x),v(x)) + o(x) 

0= g(u(x)) + O(x) . 

By Definition 7.7 we have 

O(xo+cih) = 0, 

We next differentiate (7.26b) with respect to x and use (7.26a): 

0= 9y (U(x))(J(u(x),v(x)) + o(x)) + O'(x) . 

This motivates the use of the equation 

0= 9y (u)(J(u,v) + o(x)) + O'(x) 

(7.26a) 

(7.26b) 

(7.27) 

(7.28) 

(7.29) 
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for arbitrary (u,v) in a neighbourhood of the solution of (6.1). Because of 
(6.2) we can extract v from (7.29) so that (7.29) can be written as 

v = G(u,8(:c),6'(:c)) . 

Inserting into (7.26a) and into (6.1) this yields 

u'(:c) = f(u(:c),G(u(:c),8(:c),6'(:c))) +8(:c) 

y'(:c) = f(y(:c),G(y(:c),O,O)) . 

(7.30) 

(7.31a) 

(7.31b) 

In order to compute u{:c) - y(:c) we now apply the nonlinear variation-of­
constants formula (Theorem I.14.5). This requires the computation of the 
defect of u(:c) inserted into (7.31 b) 

u'(:c) - f(u(:c),G(u(:c),O,O)) 

= f( u(:c), G(u(:c),8(:c),6'(:c))) + 8(:c) - f( u(:c),G(u(:c),O,O)) 

=q,(:c,1)-q,(:c,0)+8(:c) (7.32) 

where 
q,(:c,T) = f( u(:c), G(U(:c),T. 8(:c),T. O'(:c))) . 

Then the formula q,(:c,1) - q,(:c,0) = fo18q,/8T(:c,T)dT shows that the 
defect (7.32) can be written as 

Q 1 (:c )8 (:c) + Q 2 (:c )6' (:c) . 

We now insert this into Formula (L14.18) and obtain 

u(:c) - y(:c) = r resolvent(:c, t) . defect(t) dt 
1"0 

= 1: (Sl(:c,t)8(t) + S2(:c,t)0'(t)) dt. 

Integrating the second term by parts we get (since O(:Co) = 0) 

(7.32') 

l ",o+h( 8S ) 
Yl -y(:co+h) = "'0 Sl(:co+h,t)8(t) - 8t2 (:co+h,t) O(t) dt (7.33) 

+ S2(:C O +h,:co +h) 6(:co +h) . 

The assumption c6 = 1 implies that 6(:Co+h) =0 so that the last expression in 
(7.33) vanishes. The main idea is now to integrate the expression in (7.33) 
with the quadrat ure formula {bi,cJ (see also the proof of Theorem lI.7.8). 
With the abbreviation 

8S 
cr(t) = Sl{:Co+h, t) 8(t) - 8t2 (:Co+h, t) 6(t) (7.34) 
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this gives 

(7.35) 

Because of (7.27) we have O'(zO+cih)=O for all i and the quadrature error 
is estimated by 

(7.36) 

The p-th derivative of O'(t) contains derivatives of f,g and of c5(z), 8(z). By 
Theorem 7.8 they are uniformly bounded for h'.5:. ho' Hence Y1 - y( Zo + h) = 
err( 0') = O( hp+1 ), proving the theorem. 0 

Projected Runge-Kutta Methods 

For collocation methods which are not stiflly accurate it is possible to prove 
superconvergence (as in Theorem 7.9) if the method is combined with a 
certain projection. We start with a more careful study of the Iocal error of 
the y-component in (7.33). 

Lemma 7.10. 1f cd; 0 for alli, then the y-component of the local error 0/ 
the collocation method (7.23) satisfies 

Y1 - y( Zo +h) = - (fzCgyfz)-1) (y(zo + h), z(zo + h»)8(zo + h) + O(hP+1) 

(7.37) 
where 8 is the defect given by (7.26b) and p is the order 0/ the underlying 
quadrature formula. 

Proo/. The above proof of Theorem 7.9 (see Formula (7.33)) shows that the 
Iocal error satisfies 

Y1 - y(zo + h) = S2(zo+h,zo+h)8(zo+h) + O(hP+1) . 

Hence, we only have to compute S2(z,Z). Since any resolvent equals the 
identity matrix if both of its arguments are equal, it follows from the defini­
tion of S2(z, t) and from (7.32') that 

S2(z,z) = 11 f z (u(z),G(u(z),rc5(z),r8'(z»)) ~~ (u(z),rc5(z),r8'(z») dr. 

Differentiating (7.29) with respect to 8' gives 

oG ov -1 
08' = 0(J' = -(gyfz) (u,v). 
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Furthermore, it follows from (7.27) that o(:c) = O(h') and O'(:c) = O(h') 
for:c =:co + h. Using u(:c) - y(:c) = O(h·+1) (from Theorem 7.8) we thus 
obtain for :c = :Co + h 

S2(:C':C) = (i;;(gyfz) -1) (y(:c),z(:c)) + O(h·) . 

The statement now follows from p::; 2s and from O(:co + h) = O(h·+1 ). 0 

The geometrie interpretation of Lemma 7.10 is as follows: if we split 
the loeal error 0Yh(:CO) aeeording to the projections of Fig.7.1 then the 
eomponent Q(:co + h)OYh(:CO) is of size O(h'+1), whereas the eomponent 
P(zo +h)OYh(:CO) is O(hp+1). This suggests to project after every step the 
numerieal solution of a Runge-Kutta method onto the manifold g(y) = 0 
with the help of the projeetion operator P(:co + h) as folIows: 

Definition 7.11 (Ascher & Petzold 1990). Let Y1' Zl be the numerieal 
solution of an implicit Runge-Kutta method (7.1) and define Y1')' as the 
solution of the system 

fit = Y1 + fAY1,Zl)), 

0= g(Y1) . 
(7.38) 

If the value Y1 (and zl) is used for the step by step integration of (6.1), then 
we eall this proeedure projected Runge-K utta method. 

Remarks. 1) If g(Y1) is suffieiently small, then the nonlinear system (7.38) 
possesses a loeally unique solution. A Newton-type iteration with starting 
values fAO) = Y1' ),(0) = 0 will eonverge to this solution. This follows at 
onee from the theorem of Newton-Kantorovich (Ortega & Rheinboldt 1970) 
beeause the Jaeobian of (7.38) evaluated at the starting values 

( I -fAYllZ1)) 
gy(Y1) 0 

has a bounded inverse by (6.2). 
2) For stifHy accurate Runge-Kutta methods (i.e., if a.i = bi for all i) 

the projected and unprojected Runge-Kutta methods eoincide. 
3) The proof of the next theorem shows that the argument in f z (Y1 , zl) 

may be replaeed by some other approximation to y(:co + h), z(:Co + h) whose 
error is at most O(h·). 

The following theorem proves supereonvergenee for projeeted eolloeation 
methods (also if the eorresponding Runge-Kutta method is not stifHy aeeu­
rate). Supereonvergenee results for general Runge-Kutta methods are given 
in Section VI.8. 
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Theorem 7.12 (Ascher & Petzold 1990). I/ ci -:F 0 tor all i, then the y­
eomponent 0/ the loeal error 0/ the projected eolloeation method (7.23), (7.38) 
satisfies 

where p is the order 0/ the underlying quadrature /ormula. 

Proo/. We write el = Yl - y( Xo + h), el = Yl - y( Xo + h) for the local errors 
and denote the projections of Definition 7.3 by 

Q = (Jz(gyfz)-lgy)(YllZl) , 

The idea is to split el according to 

e1 = Pe1 + Qe1 

P=I-Q. 

(7.39) 

and to estimate both components separately. The first formula of (7.38) 
together with (7.37) and O( X o + h) = O( hs+1 ) imply that 

Pel = Pe l = O(hP+1 ) + O(h8 +l llel ll) . (7.40) 

Further we have 0 = g(Yl) - g(y(xo+ h)) = gy(Yl)el + O(IIeJ.112), implying 

Qe1 = O(lIel I1 2 ) . (7.41) 

Formulas (7.40) and (7.41) inserted into (7.39) give 

el = O(hP+1) + O(hs+llle111) + O(llel I1 2 ) 

and the statement of the theorem is an immediate consequence. [l 

Global convergence of order O(hp ) of the projected collocation methods 
is obtained exactly as in the proof of Theorem 7.5. We observe that the 
numerical solution always remains on the manifold g(y) = 0 so that the 
estimate (7.9) applies. 

Summary of Convergence Results 

Table 7.1 collects the optimal error estimates for some important Runge .. 
Kutta methods when applied to the index 2 problem (6.1)-(6.2). The local 
error estimates can be verified as follows: Gauss, Radau lA and SDlRK 
by Lemma 7.4, Radau HA by Theorem 7.9, Lobatto lHC by Theorem 8.10 
below and Lobatto lIlA with the help of Exercise 4. For the projected 
methods the estimates follow from Theorem 7.12 and the considerations of 
Section VI.8. Because there are several ways of defining the z-componen1; 
of the numerical solution, we do not present their convergence behaviour. 
The global convergence result follows from Theorems 7.5 and 7.6 for the 
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Radau IA, Radau IIA, Lobatto IIIe and SDIRK methods. The remaining 
methods (Gauss and Lobatto lIlA) require some more effort because their 
stability function only satisfies IR( 00)1 = 1. We refer to HLR89 for a detailed 
discussion of these methods. 

Table 7.1. Error estimates for the index 2 problem (6.1)-(6.2) 

Method stages local error global error 
y z y z 

Gauss {: odd h"+1 hS { h·+1 { h8 - 1 

even hS hs - 2 

projected Gauss s h2.+1 h2s 

Radau IA s h' hs - 1 hS hs - 1 

projected Radau lA s h2s - 1 h2s - 2 

Radau IlA s h2• hS h2s - 1 h" 

Lobatto IIlA {: odd h2s- 1 h' h2'-2 (*) { hB - 1 

even hS 

Lobatto IIIC s h2B- 1 hB- 1 h2s - 2 hB - 1 

SDIRK (IV.6.l6) 5 h3 h1 h2 h1 

SDIRK (IV.6.1S) 3 h2 h1 h2 h1 

(*) conjectured 

Exercises 

1. Consider the index 2 problem y' = f(y, z), O=g(y). Put z=u', v= (y,u)T 
so that the problem becomes 

F(v',v) = (Y' -~~),u')) = 0 . 

Prove that the matrix pencil F., + >'F." is of index 1 whenever 9yf z is 
invertible. 

Hint. Consider the transformation 

(~ ~) (F., + >'F.,,) (~ ;) (7.42) 

where a = fyf,.(gyfz)-l and b = fz are chosen such that the upper right 
block in (7.42) vanishes. 
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2. Consider Runge-Kutta methods whose coefficients satisfy: 

ali = 0 for all i and (aij )i,j~2 is invertible. 

(Examples are collocation methods with cl =0, such as Lobatto lIlA). 
If g('1])=O then the nonlinear system (7.2) has a locally unique solution 
which satisfies YI = '1], Zl = (. 

3. Let cl = 0, C2 , • •• 'Cs be s distinct real numbers. Show that there exist 
unique polynomials u( x) and v( x) (deg u = s, deg v = s -1) such that 
(7.23a,b) holds. 

Hint. Apply the ideas of the proof of Theorem I1.7.6 and Exercise 2. 

4. Investigate the validity of the conclusions of Theorems 7.8 and 7.9 for 
the situation where cl = O. 

5. (Computation of the algebraic variable Z by piecewise discontinuous in­
terpolation, see Ascher (1989)). Modify the definition of zn+l in the 
Runge-Kutta method (7.1) as follows: let v(x) be the polynomial of 
degree s -1 satisfying v( x n + cih) = Zni for all i, then define zn+l = 
v(xn + h). In the case of collocation methods (7.23) this definition re­
moves the condition v(xo)=zo while lowering the degree of v(x) by 1. 

a) Verify: zn+! does not depend on zn' also if the stability function of 
the method does not vanish at infinity. 

b) Prove that for pro jected collocation methods with ci ,; 0 for all i we 
have Zn - Z(X n ) = O(h s ). 

c) For the projected Gauss methods compare this result with that of the 
standard approach. 

6. The statement of Theorem 7.8 still holds, if one omits the condition 
v(xo) = Zo in Definition 7.7 and if one lets v(x) be a polynomial of 
degree 8-1. 
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For an application of the convergence result of the preceding section (Theo­
rem 7.5) it is desirable to know the optimal values of r in (7.16). Comparing 
the Taylor expansions of the exact and numerical solutions we derive condi­
tions for Ci,aij,b j which are equivalent to (7.16). For collocation methods 
we recover the result of Theorem 7.9. For other methods (such as Lobatto 
IIIC) the estimates of Lemma 7.4 are substantially improved. 

The theory of this section is given in HLR89 (Section 5). Our presenta­
tion is slightly different and is in complete analogy to the derivation of the 
index 1 order conditions of Section VI.3. The results of this section are here 
applied to Runge-Kutta methods onlYi analogous formulas for Rosenbrock 
methods can be found in Roche (1988). An independent investigation, con­
ducted for the index 2 problem f(y,z')=O, z=g(y) by A. Kvaernszs (1990), 
leads to the same order conditions for Runge-Kutta methods. 

Derivatives of the Exact Solution 

We consider the index 2 problem 

y' = f(y, z) 
o =g(y) 

(8.1a) 

(8.1b) 

and assume consistent initial values Yo' ZOo The first derivative ofthe solution 
y( x) is given by (8.1a). Differentiating this equation we get 

y" = fy(y, z )y' + fAy, z )z' . (8.2) 

In order to compute z' we differentiate (8.1b) twice 

0= gy(y)y' 

0= gyy(Y)(Y',Y') + gy(y)y" 

(8.3a) 

(8.3b) 

and insert (8.2) and (8.1a). This yields (omitting the obvious function ar­
guments) 

(8.4) 
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or equivalently 

z' = (-gyfz)-lgyy(f, 1) + (-gyfz)-lgyfyf . (8.5) 

Here we have used the index 2 assumption (6.2), that gyfz is invertible in a 
neighbourhood of the solution. We now differentiate (8.1a) and (8.5) with 
respect to x, and replace the appearing y' and z, by (8.1a) and (8.5). We 
use (for a constant vector u) 

d ) 1 - (-g f - u dx y z 

= (-gyfz)-l (gyy(lA-gyfz)-lu, f) + gyfzy(( -gyfz)-lU,f) (8.6) 

+ gyfzz (( -gyfz)-lu, (-gyfz)-lgyy(f, 1) + (-gyfz)-lgyfyf)) 

(cf. Formula (3.7)) and thus obtain 

y" = fyf + fA -gyfz)-lgyy(f, I) + fA -gyfz)-lgyfyf (8.7) 

z" = (-gyfJ-1gyyy(f,f,1) +3(-gyfz)-lgyy(f,fyl) (8.8) 

+ 3( -gyfz )-1 gyy (I, fA -gyfz )-1 gyy(f, 1)) 

+ 3( -gyfz)-1 gyy (I, fz( -gyfz)-1 gyfyf) + (-gyfz)-1 gyfyy(f, I) 

+ 2( -gyfz)-l gyfyz (I, (-gyfz)-l gyy(f, 1)) 

+ 2( _gyfJ-1 gJyZ (I, (-gyfz)-1 gyfyf) + (-gyfz)-lgyfyfyf 

+ (-gJJ-1 gyfyfz( -gyfz)-l gyy(f, I) 

+ (-gyfz)-l gy f yfz ( -gyfz)-l gyfyf 

+ (-gyfz)-l gyfzz (( -gyfz)-l gyy(f, 1), (-gyfz)-l gyy(f, 1)) 

+ 2( -gyfz)-l gyfzA( -gyfz)-l gyy(f, 1), ( -gyfz)-l gyfyf) 

+ (-gyfz)-l gyfzz (( -gyfz)-lgyfyf, (-gyfz)-lgyfyf) . 

Obviously, a graphical representation of these expressions will be of great 
help. 

Trees and Elementary Differentials 

As in Section VI.3 we identify each occuring f with a meagre vertex, each of 
its derivatives with an upwards leaving branch, the expression (-gyfz)-lg 
with a fat vertex and the derivatives of 9 therein again with upwards leaving 
branches. The corresponding graphs for y', z' , y" ,z" (see Formulas (8.1 a), 
(8.5), (8.7), (8.8)) are given in Fig.8.1. 

The derivatives of y are characterized by trees with a meagre root (the 
lowest vertex). These trees will be denoted by t or t i , the tree consisting of 
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the root only (for y') being T. Derivatives of z have trees with a lat root. 
They will be denoted by U or ui . Extending Definitions 3.1, 3.2 and 3.3 to 
our present situation we have: 

y' = 

z' = 

y" = 

Zll = 

Fig.8.1. Graphical representation of the first derivatives 

Definition 8.1. Let DAT2= DAT2y UDAT2 z denote the set of (differential 
algebraic index 2) trees defined recursively by 

a) TE DAT2y , 

b) [tl, ... ,tm'UI, ... unly E DAT2 y 
if t l , ... , t m E DAT2 y and U I ,.·· u n E DAT2 z ; 

c) [tl' ... ' tmlz E DAT2z if t1, ... , tm E DAT2y and either m > 1 or 
m = 1 and t1 f [ul y with U E DAT2z • 

Definition 8.2. The order of a tree t E DAT2y or U E DAT2z , denoted 
by e( t) or e( u), is the number of meagre vertices minus the number of fat 
vertices. 

Definition 8.3. The elementary differentials F( t) (or F( u)) corresponding 
to trees in DAT2 are defined as follows: 
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Taylor Expansion of the Exact Solution 

In order to continue the process which led to (8.7) and (8.8) we need the 
differentiation of elementary differentials F( t) and F( u). This is described 
by the following rules: 

i) attach to each vertex a branch with T (derivative of f or 9 with respect 
to y and addition of the factor y' = f); 

ii) attach to each meagre vertex a branch with [T, Tl z ; attach to each meagre 
vertex a braneh with [[Tlyt. (this yields two new trees and eorresponds 
to the derivative of f with respect to z and to the addition of the factors 
(-gyfz)-lgyy(f,f) and (-gyfz)-lgyfyf of (8.5»; 

iii) split eaeh fat vertex into two new fat vertices (one above the other) and 
link them via a new meagre vertex. Then four new trees are obtained 
as folIows: attaeh a braneh with T to the lower of these fat vertices; 
attaeh a braneh with T, [T, Tl z or [[Tlyl z to the new meagre vertex (this 
corresponds to the derivation of (-gyfz)-l and follows at once from 
Formula (8.6». 

Some of the elementary differentials in (8.8) appear more than onee. In 
order to understand how often such an expression (or the eorresponding 
tree) appears in the derivatives of y or z, we indicate the order of generation 
of the vertices as follows (see Fig.8.2): for the trees of order 1, namely 
T, [T, 'Tl .. and [[Tlyl .. , we add the label 1 to a meagre vertex such that 

eaeh fat vertex is followed by at least one unlabelled meagre vertex. (8.9) 

Each time a tree is "differentiated" aceording to the above rules we provide 
the newly attaehed tree (of order 1) with a new label such that (8.9) still 
holds. The labelling so obtained is obviously increasing along each braneh. 

1 

V ( 1~ ~1 2~ 
Fig.8.2. Examples of monotonically labelIed trees 

Definition 8.4. A tree t E DAT2y (or u E DAT2 .. ), together with a. 
monotonie labelling of U(t) (or U(u» among its meagre vertices such that 
(8.9) holds, is called a monotonically labelled tree. The sets of such m. 1. trees 
are denoted by LDAT2y ' LDAT2 .. , and LDAT2. 
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Sinee the differentiation proeess of trees deseribed above generates all 
elements of LDAT2, and eaeh of them exactly onee, and since each dif­
ferentiation inereases the order of the trees by one, we have the following 
result. 

Theorem 8.5 (HLR89, p. 58). For the ezact solution 0/ (8.1) we have: 

tELDAT2 y ,e( t)=q tEDAT2 y ,e( t)=q 

uELDAT2 .. e(u)=q uEDAT2% ,e( u)=q 

The integer eoefficients 0:( t) and 0:( u) indieate the number 0/ possible mono­
tonie labellings 0/ a tree. 0 

Derivatives of the Numerical Solution 

For the problem (8.1) with eonsistent inital values (Yo,zo) we write one step 
of a Runge-Kutta method in the form 

s 

Y1 = Yo + 2: biki , zl = Zo + 2: bi( (8.10a) 
i=l i=l 

where 
ki = hf(~, Zi) , o =g(~) (8.10b) 

and 
s s 

~ = Yo + z= aijkj , Zi = Zo + z=ai/ j . (8.10e) 
j=l j=l 

We have replaced hkni , hlni of Formula (7.1) by ki , ei • Trus is not essential, 
but adjusts the derivation of the order eonditions to the presentation of 
Section VI.3. Sinee the following derivation is very similar to the one given 
in Section VI.3, we restriet ourselves to the main ideas. 

We eonsider Yll Zu ki, ei , ~,Zi as functions of h and compute their 
derivatives at h=O. From (8.10a) we get 

s 

y~q)(O) = 2: bik~q)(O) , (8.11) 
;=1 

and (8.10b) yields 

(q) ( )(q-1)1 
ki (0) = q f(~, Zi) h=O ' (8.12) 
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The total derivatives of /(Y", Zi) and g(y") ean be eomputed by Faa di 
Bruno's formula (see (3.14) and (3.15)). This gives 

(/(Y Z.))(q-l) =" 8m +n /(y",Zi) (Y(l'l) y(I'''') Z~vd Z~v .. ») 
" , L..J 8ym8zn " .. '" " , ... , , 

(8.13) 
with 1-'1 + ... + I-'m + VI + ... + Vn = q-1, and 

(8.14) 

with 1-'1 + ... + I-'m = q. The summations in (8.13) and (8.14) are over sets 
of suitable "speciallabelled trees". We next insert 

(8.15) 

into (8.13) and (8.14) and so obtain from (8.12) 

k~q)(O) = q L 8m~~~;~ zo) (t aij k11'1)(O), ... , Z}Vd(O), ... ) (8.16) 
]=1 

and 

(8.17) 

Inserting (8.16) into the first term of (8.17) and extracting Zjq-l)(O) we get 

• 
(-gy/z)(yo'zo) L aij Zjq-l)(O) (8.18) 

j=1 

= 

This formula allows us to eompute Zlq-l), whenever (gy/z) and (aij) are 
invertible. We denote the eoeffieients of the inverse of (aiJ by Wij' i.e., 

(8.19) 

The following result then follows by induction on q from (8.16) and (8.18). 
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Theorem 8.6 (HLR89). The derivatives 0/ ki and Zi satisfy 

k~q)(O) = L 'Y(t)~i(t)F(t)(yo' zo) 
tELDAT2 y ,e( t)=q 

uELDAT2. ,e( u )=q 

where the coefficients ~Jt) and ~i(U) are given by ~i(7) =1 and 

~.(t)= '""" a· .. ·a· .~ (t1)"'~ (t )~.(u1)"·~·(u) 
t ~ "1-'1 "'1-'111. /LI JLm m t 1 n 

~Ju)= w .. a· .. ·a· .~ (tl)"'~ (t) '3 3 P1 3 Pm P1 Pm m 

i/ u = [tl" .. ,tmlz 

and the rational coefficients 'Y( t) and 'Y( u) are defined by 'Y( 7) = 1 and 

i/ t = [tl" .. , tm' ul" .. , unl y 

i/ u = [tl' ... ,tmlz . o 

The derivatives of the numerieal solution Yl are now obtained from 
(8.11). In order to get those of z1' we eompute f. i from (8.10e) and insert it 
into (8.10a). This yields 

s 

Z1 = Zo + L biWij(Zj -zo) (8.20) 
i,j=l 

and its derivatives are given by 
s 

z~q)(O) = L b;wijZjq)(O) . (8.21) 
i,j=1 

We thus obtain the following result. 

Theorem 8.7. The numerical solution 0/ (8.10) satisfies: 
s 

(q)1 -
Yl h=O- 'Y(t) L bi~i(t)F(t)(yo' zo) 

tELDAT2 y ,e(t)=q i=1 

8 

'Y(U) L biWij~j(u)F(u)(yo,Zo) 
uELDAT2. ,e( u)=q i,j=1 

where the coefficients 'Y and ~ i are given in Theorem 8.6. o 
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Order Conditions 

A comparison of Theorem 8.7 with Theorem 8.5 gives 

Theorem 8.8 (HLR89). For the Runge-Kutta method (8.10) we have 

Y(:Vo+h) - Yl = O(hP+l) ifJ 
8 1 
~ biCPi(t) = ,(t) for tE DAT2y' e(t):S p , 

z(:Vo+h) - zl = O(hQ+1 ) ifJ 
8 1 

i~l biWijCPj(U) = --y(u} for u E DAT2z ' e(u}:S q , 

where the coefficients , and cP i are those of Theorem 8.6 and Wij is given by 
(8.19). 0 

Remark 8.9. Let P(:Vo} = I -(JAgyfJ-lgy)(yo,zo) be the projection in­
troduced in Definition 7.3. Since P(:Vo)fAyo' zo) = 0 we have 

(8.22) 

for a11 trees t E DAT2y ofthe form t=[u]y with u E DAT2z • Consequently, 
such trees of order p need not be considered for the construction of Runge­
Kutta methods of order p (see Theorem 7.5). 

Applying repeatedly the definition of CPi in Theorem 8.6 we get the fol­
lowing algorithm: 

Forming the order condition for a given tree: attach to each vertex one 
summation index; if the root is fat, attach three indices to this root. Then 
the left hand side of the order condition is a sum over a11 indices of a product 
with factors 

bi 
b.w .. w.", 

< <) ) 

aij 
w·· <) 

if "i" is the index of a meagre rootj 
if "i, j, k" are the three indices of a fat rootj 
if "j" lies directly above "i" and "j" is meagrej 
if "j" lies directly above "i" and "j" is fat. 

In Table 8.1 we collect the order conditions for some trees of DAT2. 
We have not included the trees which have only meagre vertices, because 
their order condition is exactly the same as that of Section 11.2 (Table 2.1). 
Several trees of DAT2lead to the same order condition (Exercise 2). We also 
observe that some of the order conditions for the trees [u]y with u E DAT2 z 

are identical to those for index 1 problems (see Exercise 1 of Section VI.3). 
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Table 8.1. Trees and order conditions 

o{t) graph order condition 

2 y 2: biWijC~ = 1 

3 't'y 2: biWijCJ = 1 

3 L: biWijCjajkCk = ! 
3 

V\(j 
L: biCiWijC~ = j 

3 2: b 2 2 4 iWijCjWikCk = ! 

O{u) graph order condition 

1 V 2: biWijWjkCi = 2 

2 't' V 
L: biWijWjkC~ = 3 

2 2: biWijWjkCkaklCl = ~ 

Simplifying Assumptions 

For the construction of implicit Runge-Kutta methods the simplifying condi­
tions B(p), C(l1), D(~) of Section IV.5 play an important role. The following 
result extends Theorem IV.5.1 to index 2 problems. 

Theorem 8.10 (HLR89, p. 67). Suppose that the Runge-Kutta matrix (aij ) 

is invertible and that bi = aßi for i = 1, ... , s. Then the eonditions B(p), 
C{l1), D{O with p~211 and p~l1+e+l imply that the y-component 0/ the 
loeal error 0/ (8.1) satisfies 

Yl - y(xo+h) = O(hPH ) . 

Proo/. We just outline the main ideasj details are given in (HLR89, pp. 64-
67). As in Section 11.7 (Fig. 11.7.1) we first simplify the order conditions with 
the help of C( 11)' This implies that trees with a branch ending with [T, ... ,T]y 
(the number of T'S is k -1) where k '5:.11 need no longer be considered. If we 
write C(l1) in the form 

8 

" k k k-l L.J WijCj = Ci for k = 1, ... ,11 , (8.23) 
j=l 

we observe that trees ending with [T, ... , T]z can also be reduced if the num­
ber of T'S is between 1 and 11. 
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The simplifying eondition D( {) allows us to remove trees [7", ... ,7", tl y 

with tE DATy ' where the number of7"'s is ~ {. Writing D({) as 

s s 

L biC~Wij = L biWij - kbjcJ-I for k = 1, ... ,{ (8.24) 
i=l i=l 

it follows that the trees [7", ... ,7", u]y with u E DAT z (number of 7"'S is k) ean 
also be eliminated for 1 ~ k ~ {. Sinee p ~ 21/ and p ~ 1/+{ + 1 all that remains 
after these reductions are the bushy trees [7", ... ,7"]y whose order eonditions 
are satisfied by B(p), and trees ofthe form [u]y with u E DATz • Beeause of 
the assumption bi = asi we have 

~b.w .. ={O if j=l, ... ,s-l 
~ • OJ l'f i=l 1 J = s , 

(8.25) 

and these trees ean also be redueed to the bushy trees. o 

Remark. If the function f of (8.1a) is linear in z, i.e., 

f(y,z) = fo(z) + f,Ay)z , (8.26) 

then the elementary differentials for trees [tl"'" t m , U I , ••• , un]y with n ;::: 
2 varush identically and the eorresponding order eonditions need not be 
eonsidered. In this situation the assumption p ::::; 211 ean be relaxed to p ::::; 

21/ + 1. An important dass of problems satisfying (8.26) are eonstrained 
meehanieal systems in the index 2 formulation (5.38a,b,d). 

As an illustration ofTheorem 8.10 we eonsider the Lobatto IIIC methods. 
They satisfy B(p),C(1/),D({) with p=2s-2, 1/=s-l and {=s-l (see Table 
IV.5.13) and also asi = bio It therefore follows from Theorem 8.10 that the 
loeal error satisfies bYh (a: ) = O( h2s - 1 ). 

The following result shows that for methods whieh do not satisfy asi = bi 
it is unlikely that the estimates of Lemma 7.4 ean be improved. 

Lemma 8.11. Let p be the largest integer such that the y-component of the 
local error satisfi.es 

1f the Runge-K utta matriz is invertible and ci:;H for all i, then 

p ~ s* 

where s* is the number of distinct non-zero values among Cl" •• ,cs ' 
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Proof. The order conditions for the trees [['T, . •. ,'TLl y imply tImt 

(8.27) 

for all polynomials q(t) of degree :::; p-l. Put q(t) = d'(t), where d(t) is 
a polynomial of minimal degree such that d( ci) = 0 for all i, d( 0) = 0 and 
d(l) -=f. O. Condition (8.27) is violated by this polynomial. The inequality 
p:::; s* now follows because the degree of this polynomial q( t) is s * . 0 

Projected Runge-Kutta Methods 

It is, of course, interesting to study the convergence order of projected 
Runge-Kutta methods (Definition 7.11) which are not yet covered by Theo­
rem 7.12. The main tool for the subsequent study is the following interpre­
tation of projected Runge-Kutta methods. 

Lemma 8.12 (Lubich 1990). Consider an 8-stage Runge-Kutta method 
with invertible coefficient matrix A and the extended (8 + l)-stage method 
defined in Table 8.2. Por an initial value Yo satisfying g(yo) = 0 denote their 
numerical solutions after one step by Yl and Yi, respectively. 1f the function 
f in (8.1a) is linear in z (i.e., (8.26) is satisfied), then the numerical solution 
fA of the projected Runge-Kutta method (7.1), (7.38) satisfies 

JA - Y; = O(ho:) (8.28) 

for h sufficiently small and 0: -+ O. 

Table 8.2. Original and extended Runge-Kutta methods 

c A 0 

Proof. The last stage of the extended (s + 1 )-stage Runge-Kutta method 
reads 

Ys+1 = Yl + ho:f(Ys+ll Z.+1) 

0= g(YS+1) 
(8.29) 

and we have Yi = Y.+l (note that this is the result of an implicit Euler step 
with step size ho: starting from Yl)' U sing the linearity of f with respect to 
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z and putting A = he:Z.+1 we obtain 

y~ = Y1 + he:/o(yD + IAY~)A 
0=9(Y~). 

(8.30) 

Comparing (8.30) with (7.38) the implicit function theorem implies that 
(8.28) is satisfied for sufficiently small hand e:. 0 

The implicit function theorem, applied to (8.30), also shows that Yi is 
as often differentiable with respect to hand e: as the right-hand side of the 
problem (8.1) iso Hence, the Taylor series expansion of Yi with respect to h 
has coefficients which converge to a finite limit as e: ---+ O. 

The order conditions for a projected RUllge-Kutta method (applied to 
(8.1), (8.26)) can thus be obtained by considering the limit e: ---+ 0 in the 
order conditions for the extended Runge-Kutta method (Exercise 5). Let 
us illustrate this by extending the statement of Theorem 8.10 to projected 
Runge-Kutta methods. 

Theorem 8.13 (Lubich 1990). Suppose that the Runge-Kutta matrix A is 
invertible and that the index 2 problem satisfies (8.26). Then the conditions 
B(p), C(11), D(e) withp:S;211+1 andp:S;11+e+1 imply that the the local 
error 01 the projected Runge-Kutta method satisfies 

(8.31 ) 

I/ in addition ps.211 then (8.31) holds also when 1 is nonlinear in Z. 

Proof. One verifies that the conditions B(p), C(11), D(e), (8.23), (8.24) and 
(8.25) are, in the limit e: ---+ 0, also satisfied for the extended method of Table 
8.2. Let us demonstrate this for the Condition (8.23). The inverse of the 
extended Runge-Kutta matrix is given by 

(~ ~)-1 -(-e;-1;:A-1 e:~1)' (8.32) 

Therefore (8.23) is seen to be satisfied for i=l, ... ,s. For i=s+l one gets 

8+1 s 

LW.+1,jCj = _e:-1 L biWijcj + e:-1(1 + e:)k . (8.33) 
j=1 i,j=1 

Using (8.23) for i S. sand B(p) the right-hand expression of (8.33) becomes 
-e:-1 + e:-1(1 + e:)k and tends to k for e: ---+ O. Hence, Condition (8.23) is, in 
the limit e: ---+ 0, also satisfied for i = s+ 1. As in the proof of Theorem 8.10 
(see also the remark after that proof) we deduce the statement for the case 
where 1 (y, z) is linear in Z. 
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The generalization to nonlinear problems ean be proved by a perturba­
tion argument. We let z(z) be the exaet solution of (8.1) and eonsider the 
problem (Lubieh 1990) 

u' = f(u,z(z)) + fAu,z(:z:))). 

o =g(u) 
(8.34) 

in the variables u and)'. This new problem is of index 2 again and has 
obviously the solution u(:z:) = y(z) and ).(:z:) = O. Sinee (8.34) is linear 
in the algebraie variable A, the theorem ean be applied and we get for the 
projected Runge-Kutta solution 

(8.35) 

We still have to estimate Y1 - u1 • This is possible with the help of Theorem 
7.2. In addition to the nonlinear system (7.2) (with 11 = Yo) we eonsider the 
method applied to (8.34): 

4 

Ui = Yo + h L aij (f(Uj , z(:Z:o + ejh)) + f z (Uj' z(:z:o + cjh))Aj ) 
j=1 

Its first line ean be written as 
4 

Ui = Yo + h L aijf(Uj , z(zo + cjh) + Aj ) + O(hIIAI1 2 ) 

j=1 

where IIAII = maxj IIA;II. Theorem 7.2 thus yields 

IlUi - Yill ~ ChilAI1 2 

IIAi + z(zo + cih) - Zill :::; GIIAII2 • 

(8.36) 

(8.37a) 

(8.37b) 

Sinee C( 11) holds, the estimate (7.14) together with (8.37b) proves Ai = 
O(hll ). We thus obtain Y1 - u1 = O(h211+1 ) with the help of (8.37), and 
Y1 - u1 = O(h211+1 ) as a eonsequenee of z1 - z(:z:o + h) = O(hll ). 0 

Ezamples. 1) Colloeation methods satisfy B(p), C(s) and D(p-s) where 
8 is the number of stages and p the order of the underlying quadrat ure 
formula (eonsult Lemma IV.5.4). Henee, the above presentation provides an 
alternative proof of Theorem 7.12. 

2) The projected 8-stage Radau IA method (see Table IV.5.13) has ordt>l' 
28-1 for problems whieh are linear in z, and order 28-2 for generalnonlint>cn 
index 2 problems. 
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Exercises 

1. Denote by r the largest number such that the local error of the z­
component satisfies 6zh (x)=O(hr ). For implicit Runge-Kutta methods 
with invertible coefficient matrix, R( (0) = 0 and Cj ::; 1 (all j) prove that 

r ::; s* 

where s* is the number of distinct non-zero values among cl' ... ,Cs • 

Hint. The order conditions for the bushy trees [T, ... , Tl z imply that 

for all polynomials q( t) of degree ::; r -1. 

2. If a tree of DAT2 satisfies one of the following two conditions 

a) a fat vertex is singly branched 

b) a singly branched meagre vertex (# root) is followed by a fat vertex 

then the corresponding order condition is equivalent to that of a tree of 
the same order but with fewer fat vertices. Consequently, trees satisfying 
either a) or b) need not be considered for the construction of Runge­
Kutta methods. 

3. Suppose that the function f(y, z) in (8.1) is linear in z. Characterize the 
trees of DAT2 for which the elementary differential vanishes identically. 

4. With the help ofTheorem 8.10 and Lemma IV.5.4 give a new (algebraic) 
proof of Theorem 7.9. 

5. (Lubich 1990). Consider a projected Runge-Kutta method for index 2 
problems which are linear in z. Prove that fit - y(xo + h) = O(h4 ) iff 
the condition 

is satisfied in addition to the four order conditions already needed for 
ordinary differential equations. 



VI.9. Computation of Multibody Mechanisms 

"Dynamics of multibody systems is of great import an ce 
in the fields of robotics, biomechanics, spacecraft control, 
road and rail vehicle design, and dynamics of machinery." 

(W. Schiehlen 1990) 

In Section VI.5 we have seen se ver al formulations for the computation of me­
chanical systems. We now study the efficiency of an implicit Runge-Kutta 
code (RADAUS) for two particular multibody mechanisms with constraints, 
one nonstiff and one stiff. General references for the computation of me­
chanical systems are Haug (1989) and Roberson & Schwertassek (1988). 

Description of the Model 

We first consider "Andrew's squeezing mechanism", which has become pro­
minent through the work of Giles (1978) and Manning (1981), who pro­
moted it as a test example for numerical codes. It consists of 7 rigid bodies 
connected by joints without friction in plane motion. It is represented in 
Figures 9.1 and 9.2, which we have copied (with permission) from the book 
of Schiehlen (1990). The numerical constants, also taken from Schiehlen 
(1990), are displayed in Tables 9.1 and 9.2. The arrows in Fig.9.2 indicate 
the positions of the cent res of gravity Cl' ... ' C7 • In Table 9.1 the spring 
coefficient of the spring connecting the point D with C is denoted by Co and 
the unstretched length is t o' We suppose that the mechanism is driven by a 
motor, located at 0, whose constant drive torque is given by mom = 0.033. 
The coordinate origin is the point 0 in Fig.9.1 and the coordinates of the 
other fixed points A, Band C are given by 

(:: )=( =~:~~~~~), (:: )=( -~:~~~~~), (:~ )=( ~:~~~). (9.1) 

In order to derive the equations of motion we use the angles (see Fig. 9.1) 

q1 = ß, q2 = 0, q3 = I, q4 = <TI, qs = 8, q6 = n, q7 = c, (9.2) 

as position coordinates for the mechanical system. If (x j' Y j) are the carte­
sian coordinates of the cent re of gravity C j (j = 1, ... ,7), the kinetic energy 
of the multibody system is 

(9.3) 
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Fig.9.1. Seven body mechanism (Schiehlen 1990, with permission) 

Table 9.1. Geometrical parameters 

d = 0.028 da = 0.0115 e = 0.02 
ea = 0.01421 zJ= 0.02 Ja = 0.01421 
rr = 0.007 Ta = 0.00092 ss = 0.035 
sa = 0.01874 sb = 0.01043 sc = 0.018 
sd = 0.02 zt = 0.04 ta = 0.02308 
tb = 0.00916 u = 0.04 ua = 0.01228 
ub = 0.00449 Co = 4530 lo = 0.07785 



1II9. Co,"pn, •• io. of Mnltibody Meoh.";",,. 633 

F;g .•.•. <komet'kol de,;g. (S'hiehl.., 199., wi.h P"' .... .;oo) 



534 VI. Singular Perturbation Problems and Differential-Algebraic Equations 

Table 9.2. Parameters of the 7 bodies 

No. masses m1 to m7 inertias 11 to h 

1 0.04325 2.194.10-6 

2 0.00365 4.410.10-7 

3 0.02373 5.255.10-6 

4 0.00706 5.667.10-7 

5 0.07050 1.169.10-5 

6 0.00706 5.667.10-7 

7 0.05498 1.912.10-5 

where wj is the total angle of rotation of the j-th body and m j , I j are 
eonstants given in Table 9.2. The values of x"Yj' ä:]+iI~ and wj ean be 
obtained in terms of (9.2) by simple geometry (see Fig.9.1 and Fig. 9.2): 

Cl: Xl = ra· eos ß 
Y1 = ra· sinß 

ä:i + ili = ra2 • /32 
W1 = /3 

C2 : X 2 = rr· eosß - da· cos{ß+0) 

Y2 = rr· sinß - da· sin(ß+0) 

x~ + iJ~ = (rr2 -2· da· rr· eos 0+da2 ) • /32 
+ 2 . (-rr. da· eos 0+da2 ) • /3.0 + da2 .02 

w2 = /3 + 0 

Ca: xa = :cb+sa.sin"Y+sb·eos"Y 

Ya = yb - sa . eos"Y + sb· sin "Y 

x; + iI; = (sa2 +sb2 ) .;./ 

wa = i' 

C 4: x 4 = :ca + zt . eos 0 + ( e - ea) . sin( cI> + 0) 

Y4 = ya + zt . sin 0 - (e - ea) . cos{ cI> + 0) 
·2·2 2'2 (2 . ) .. 

X 4 + Y4 = (e - ea) . c;P + 2· ( e - ea) + zt . ( e - ea) . sm c;P • c;P • h 

+ (zt2 +2· zt· (e- ea) . sin cI>+{e- ea)2) . h2 

w4 = <P + h 
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Os: X s = :va + ta· cos 6 - tb· sin 6 

Ys = ya + ta . sin 6 + tb . cos 6 

:i:~ + y~ = (ta2+tb2) . b2 

Ws = b 

0 6 : x 6 = :va + u . sin e: + (zf - fa) . cos( n + e: ) 

Y6 = ya - u· cose + (zf-fa). sin(n+e:) 

:i:~ + y~ = (zf-fa)2. 02 + 2· ((zf-fa)2 - u· (zf-fa). sinn). O. i 
+ ((zf-fa)2 - 2·u· (zf-fa). sinn+u2). i 2 

w6 = n + i 
0 7 : X7 = :va + ua . sin e: - ub . cos e: 

Y7 = ya - ua . cos e: - ub . sin e: 

:i:~ + y~ = (ua2 + ub2) . i 2 

w7 = i 

The potential energy of the system is due to the motor at the origin and to 
the spring connecting the point D with O. By Hooke's law it is 

(C-l)2 
U = -mom· ß + Co 0 (9.4) 

2 

where l is the distance between D and 0, namely 

l = J(:vd - zc)2 + (yd - yc)2 

:vd = :vb + sc . sill"Y + sd . cos, 

yd = yb - sc . cos, + sd . sin, . 

Finally, we have to formulate the algebraic constraints. The mechanism 
contaills three loops. The first loop connects 0 with B via Ku K 2 , K 3 ; the 
other two loops connect 0 with A, one via K 1 ,K2 ,K4 ,Ks, the other via 
K 1 , K 2 , K 6 , K 7 • For each loop we get two algebraic conditions: 

rr· cosß - d· cos(ß+0) - SB' sin, =:vb 

rr· sinß - d· sin(ß+0) + sS· cos, = yb 

rr· cosß - d· cos(ß+0) - e· sin(cf> +6) - zt· cos6 =:va 

rr . sin ß - d . sin(ß + 0) + e . cos( cf> + 6) - zt . sin 8 = ya 

rr . cos ß - d . cos(ß + 0) - zf· cos( n +e:) - u . sin e: = :va 

rr· sinß - d· sin(ß+0) - zf· sin(n+e:) + u . cos e: = ya . 

(9.5) 

With the position coordinates q from (9.2) the equations (9.5) represent the 
constraint g( q) = 0 where 9 : FF -> R6. Together with the kinetic energy T 
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of (9.3) the potential energy U of (9.4) and L = T-U - >'191 - ... - >'696 
the equations of motion (5.34) are fuHy determined. 

Fortran Subroutines 

For the reader's convenience we include the essential parts of the FORTRAN 
subroutines describing the differential-algebraic problem. The equations of 
motion are of the form 

M(q)ij = !(q,q) - QT(q)>. 

0= 9(q) 

(9.6a) 
(9.6b) 

where q E R7 is the vector defined in (9.2) and >. E R6. In the foHowing 
description the variables Q(i), ... ,Q(7) correspond to ß, ... , e (exactly as in 
(9.2)) and QP(1), ... ,QP(7) to their derivatives,ß, ... ,e. In all subroutines 
we have used the abbreviations 

SIBE = SIN (Q(l» 
SITH = SIN (Q(2» 
SIGI = SIN (Q(3» 
SIPH = SIN (Q(4» 
SIDE = SIN (Q(6» 
SIOK = SIN (Q(6» 
SIEP = SIN (Q(7» 

SIBETB = SIN (Q(1)+Q(2» 
SIPHDE = SIN (Q(4)+Q(6» 
SIOMEP = SIN (Q(6)+Q(7» 

BEP = QP(1) 
PHP = QP(4) 
oKP = QP(6) 

COBE = COS (Q(l» 
CoTH = COS (Q(2» 
CoGA = COS (Q(3» 
CoPH = COS (Q(4» 
CODE = COS (Q(6» 
COoK = COS (Q(6» 
CoEP = COS (Q(7» 

COBETH = COS (Q(1)+Q(2» 
COPHDE = COS (Q(4)+Q(6» 
COOMEP = COS (Q(6)+Q(7» 

THP = QP(2) 
DEP = QP(6) 
EPP = QP(7) 

The remaining parameters XA, YA, ... ,D ,DA,E,EA, ... ,Mi, 1i ,M2, ... are tho­
se of (9.1) and Tables 9.1 and 9.2. They usually reside in a COMMON block. 
The elements of M(q) in (9.6) are given by 

82L 82T 
mij = 8qi8qj = 8qi8qj . 

This matrix is symmetrie and (due to the special arrangement of the co­
ordinates) tridiagonal. The non-zero elements (on and below the diagonal) 
are 

M(l.l) = Ml*Rl**2 + M2*(RR**2-2*Dl*aa*COTH+DA**2) + 11 + 12 
M(2.1) = M2*(Dl**2-Dl*RR*CoTH) + 12 
M(2.2) = M2*Dl**2 + 12 
M(3,3) = K3*(SI**2+SB**2) + 13 



M(4,4) 
M(5,4) 
M(5,5) 

+ 
M(6,6) 
H(7,6) 
M(7 ,7) 

+ 
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= H4*(E-EA)**2 + 14 
= M4*«E-EA)**2+ZT*(E-EA)*S1PH) + 14 
= M4*(ZT**2+2*ZT*(E-EA)*S1PH+(E-EA)**2) + M5*(TA**2+TB**2) 
+ 14 + 15 

= M6*(ZF-FA)**2 + 16 
= M6*«ZF-FA)**2-U*(ZF-FA)*S10H) + 16 
= H6*«ZF-FA)**2-2*U*(ZF-FA)*510M+U**2) + H7*(UA**2+UB**2) 
+ 16 + 17 

The i-th component of the function f in (9.6) is defined by 

f .( ') = 8(T - U) _ ~ 82 (T - U) . '. 
• q, q 8 ~ 8' 8 q] 

qi j=l qi qj 

Written as FORTRAN statements we have 

XD = SD*COGA + SC*S1GA + XB 
TD = 5D*S1GA - SC*COGA + TB 
LANG = 5QRT «XD-XC)**2 + (TD-TC)**2) 
FORCE = - CO * (LANG - LO)/LANG 
FX = FORCE * (XD-XC) 
FT = FORCE * (TD-TC) 
F(l) = MOH - M2*DA*RR*THP*(THP+2*BEP)*SITH 
F(2) = M2*DA*RR*BEP**2*SITH 
F(3) = FX*(SC*COGA - SD*S1GA) + FT*(SD*COGA + SC*SIGA) 
F(4) = M4*ZT*(E-EA)*DEP**2*COPH 
F(5) - M4*ZT*(E-EA)*PHP*(PHP-2*DEP)*COPH 
F(6) = - M6*U*(ZF-FA)*EPP**2*COOM 
F(7) = M6*U*(ZF-FA)*OMP*(OMP+2*EPP)*COOM 

The algebraic constraints g( q) = 0 are given by the following six equations 
(see (9.5)) 

G(l) = RR*COBE - D*COBETH - 55*5IGA - XB 
G(2) = RR*5IBE - D*S1BETH + S5*COGA - TB 
G(3) = RR*COBE - D*COBETH - E*51PHDE - ZT*CODE - XA 
G(4) = RR*S1BE - D*S1BETH + E*COPHDE - ZT*51DE - TA 
G(5) = RR*COBE - D*COBETH - ZF*COOHEP - U*S1EP - XA 
G(6) = RR*SIBE - D*SIBETH - ZF*SIOMEP + U*COEP - YA 

And here is the Jacobian matrix G(q)=gq(q). The non-zero entries of this 
6 x 7 array are 

GP(l,l) = - RR*SIBE + D*S1BETH 
GP(1,2) = D*S1BETH 
GP(1,3) = - SS*COGA 
GP(2,1) = RR*COBE - D*COBETH 
GP(2,2) = - D*COBETH 
GP(2,3) - SS*S1GA 
GP(3,1) = - RR*SIBE + D*S1BETH 
GP(3,2) = D*S1BETH 
GP(3,4) = - E*COPHDE 
GP(3,5) = - E*COPHDE + ZT*SIDE 
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GP(4,1) = RR*COBE - D*COBETH 
GP(4,2) = - D*COBETH 
GP(4,4) = - E*SIPHDE 
GP(4,6) = - E*SIPHDE - ZT*CODE 
GP(6,1) = - RR*SIBE + D*SIBETH 
GP(6,2) = D*SIBETH 
GP(6,6) = ZF*SIOHEP 
GP(6,7) = ZF*SIOHEP - U*COEP 
GP(6,1) = RR*COBE - D*COBETH 
GP(6,2) = - D*COBETH 
GP(6,6) = - ZF*COOHEP 
GP(6,7) = - ZF*COOHEP - U*SIEP 

Computation of Consistent Initial Values 

We first compute a solution of g(q) = O. Since 9 consists of 6 equations in 
7 unknowns we can fix one of them arbitrarily, say 0(0) = 0, and compute 
the remaining coordinates by Newton iterations. This gives 

The condition 

ß(O) = -0.0617138900142764496358948458001 

0(0) = 0 

')'(0) = 0.455279819163070380255912382449 

~(O) = 0.222668390165885884674473185609 

ö(O) = 0.487364979543842550225598953530 

0(0) = -0.222668390165885884674473185609 

e(O) = 1.23054744454982119249735015568 . 

G(q)q=O 

is satisfied if we put 

ß(O) = 0, 0(0) = 0, 1'(0) = 0, ci;(0) = 0, 

6(0) = 0, 0(0) = 0, i(O) = O. 

(9.7) 

(9.8) 

(9.9) 

The values of A(O) and q(O) are then uniquely determined by (9.6a) and 

0= gqq(q)(q, q) + G(q)q . (9.10) 

We just have to solve a linear system with the matrix 

( M(q) GT(q)) 
G(q) 0 . (9.11) 

Observe that gqq need not be evaluated, because q(O)=O. Due to the choice 
0(0) = 0 most components of A(O) and q(O) vanish. Only the first two of 
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these are different from zero and given by 

,8(0) = 14222.4439199541138705911625887 

6(0) = -10666.8329399655854029433719415 

Al (O) = 98.5668703962410896057654982170 

A2 (0) = -6.12268834425566265503114393122 . 

(9.12) 

The solution ofthis seven body mechanismis plotted (mod 211") in Fig. 9.3 
for 0 ::; t ::; 0.03 . 

. 6 

.4 

- • 2 f-----:::~-"" 

-.4 

-.6 

Fig. 9.3. Solution of 7 body mechanism 

N umerical Computations 

We first transform (9.6) into a first order system by introducing the new 
variable v = q. The Runge-Kutta code RADAU5 of the appendix applies 
only to problems where the derivative is multiplied by a constant matrix. 
We therefore also consider w = ij as a variable so that (9.6a) becomes an 
algebraic equation. The various formulations of the problem, as discussed 
in Section VI.5, are now as follows: 

Indez 3 formulation. With v = q and w = ij the system (9.6) can be written 
as 

(9.13a) 
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V=W 
0= M(q)w - f(q,v) + GT(q)A 

0= g(q) . 

(9.13b) 

(9.13c) 

(9.13d) 

Index 2 formulation. Ifwe differentiate O=g(q) once and replace (9.13d) by 

O=G(q)v, (9.13e) 

we get an index 2 problem which is mathematically equivalent to (9.6). 

Index 1 formulation. One more differentiation of (9.13e) yields 

0= gqq(q)(v,v) + G(q)w , (9.13f) 

so that (9.13a,b,c,f) constitutes an index 1 problem. Indeed, the algebraic 
equations (9.13c,f) can be solved for v and A, because the matrix (9.11) is 
invertible. 

GGL formulation. If we introduce an additional Lagrange parameter JL E R6, 
the problem (9.6) can also be written as 

q = v + GT(q)JL 

0= M(q)w - f(q,v) + GT(q)A 

o =g(q) 

0= G(q)v 

The equations (9.14) represent an index 2 system. 

(9.14) 

We have applied the code RADAU5 with many different tolerances be­
tween 10-3 and 10-9 to each of the above formulations. The results are given 
in Fig. 9.4. We have plotted the number of function evaluations against the 
error of the q-components at zend=0.03 (in double logarithmic scale). For 
the purpose of error estimation and step size control we have scaled the 
components of v by the step size hand those of W,A (and JL) by h2 (see 
HLR89, Chapter 7 for a justification). This is done by setting IWORK(5) 
= 7, IWORK(6) = 7 and IWORK(7) = 13 (IWORK(7) = 19 for the GGL 
formulation (9.14» in the call of RADAU5. For the solution of the nonlinear 
system we supplied an analytic approximation of the Jacobian. For example, 
for the index 2 formulation we used 

(
0 

J = 0 0 
o 0 
o G(q) 

I o 
I 

M(q) 
o 

(9.15) 
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number of 
function evaluations 

RADAUS-index-2-----.l~ 

RADAUS-index-3---/ 

RADAUS-index-l---,7""'--"":::.l'I 

error 

Fig.9.4. Work-precision diagram 

where we have neglected the derivatives of f(q,u) as weH as those of M(q) 
and G( q). The evaluation of such a Jacobian is free, because M( q) and 
G( q) have to be evaluated anyway for the right-hand side of the differential­
algebraic system. 

We also found it interesting to compare the results with the extrapolation 
code MEXX of Lubich (1989) (see also HLR89, page 50), which is adapted 
to mechanical problems of the form 

M(q)q = f(q,q) - GT(q)A 

0= G(q)q 
(9.16) 

(index 2 formulation). This is an explicit method and only requires the 
solution of linear systems with matrices of type (9.11). 

The above index 1 formulation aHows us to apply also explicit Runge­
Kutta methods such as DOPRI5 of Volume I (indirect approach of Sec­
tion VI.1). For this we have written a function subroutine which solves 
in each call the linear system (9.13c,f) for wand A and inserts the result 
into (9.13a,b). Since there is no stiffness in the mechanical system, it is not 
surprising that here the explicit codes work more efliciently than the implicit 
code. 

The step size control of MEXX and DOPRI5 is based on local error es-
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timates of q and q (without any scaling by h of the derivative). Therefore 
they yield more accurate results in the first derivative of q than the code 
RADAU5. 

Savings in linear algebra. One might ask whether the number of function 
evaluations is a meaningful measure in the comparison of Fig.9.4. Isn't 
the linear algebra much more expensive for the implicit codes than for the 
explicit ones? We shall show that this is not the case if the method is 
implemented carefully. 

Consider, for example, an implicit Runge-Kutta method applied to the 
index 2 formulation (9.13a,b,c,e). Each step requires the solution of linear 
systems of the form 

cr 
I 0 

-al I 
o M 
G 0 

(9.17) 

with a = (h"Y)-l, h the step size and "Y an eigenvalue of the Runge-Kutta 
matrix. Eliminating the variable 6.v in the last line of (9.17) yields the 
smaller system 

(9.18) 

which is of the same type as those for the explicit methods. Once a solution 
to (9.18) is known the values of ßv and ßq are easily obtained from the first 
two lines of (9.17). 

We observe that the matrix in (9.18) does not depend on a = (h"Y)-l. 
Hence only one LU decomposition is necessary for a step, independently of 
the number of distinct eigenvalues ofthe Runge-Kutta matrix. Furthermore, 
one has the possibility of retaining the decomposed matrix over several steps 
even in the case where the step size is changed. These ideas reduced the 
computation time for the above problem and the code RADAU5 by a factor 
3. In contrast to this, explicit codes usually require an LU decomposition 
of (9.11) for every function call. This may be a disadvantage for higher 
dimensional systems. 

These ideas for reducing the linear algebra extend straightforwardly to 
the index 3 and index 1 problems above. For the GGL formulation one has 
to solve the linear system 

I 0 
-al I 

o M 
o 0 
G 0 

o 
o 

GT 

o 
o 

(9.19) 
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which is equivalent to 

(~ ~T) (~~) = C~e~Gb)' (~ ~T) ( -~~q) = ( a~~v) 
(9.20) 

and 6.v = (6.w - b) / a. Since two matrices have to be decomposed, the over­
head for GGL is larger than for the other formulations. A similar reduction 
ofthe linear algebra was first proposed by Gear, Gupta & Leimkuhler (1985) 
for the BDF schemes. 

number of 
function 
evaluations 

error 

Fig.9.5. Work-precision diagram 

Our next experiment (Fig.9.5) shows a comparison with the BDF code 
DASSL of Petzold (1982); see also Brenan, Campbell & Petzold (1989). This 
program is written for problems of the form F( u, u', x) = 0, so that it is not 
necessary to introduce q of (9.6) as new variable. We applied the code with 
tolerances Tol between 10-3 and 10-11 to the above formulations of the 7 
body mechanism. We used default values for aH parameters except for the 
scaling of the error estimation. We put INFO(2)=1 and 

ATOL(I) = RTOL(I) = { Tol 
1.DO 

for I = 1, ... , 7 , 

for 128. 

The code worked weH for the index 1 and index 2 formulations (slightly better 
than RADAUS with respect to function evaluations), but failed for the index 
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3 formulation and showed an irregular behaviour for the GGL formulation. 
In the comparison of Fig.9.5 both methods used the full Jacobian of the 
problem, obtained by numerical differentiation. 

A Stift" Mechanical System 

We now want to introduce some "stiffness" into the above mechanical sys­
tem. To this end we take into account the elasticity of one of these bodies 
(K6 appears to be the simplest one) and replace it by aspring with very 
large spring constant Cl. Thus the length of this spring will become an 
additional unknown variable qs. We let the unstretched length be zf (of 
Table 9.1) and assume that the cent re of gravity 06 has constant distance 
fa from the upper joint (see Fig.9.2). Obviously the algebraic constraints 
(9.5) remain unchanged; we only have to replace the constant zfin (9.5) by 
the new variable qs. The derivative matrix G(q)=9'(q) has to be changed 
accordingly. It is now a 6 x 8 matrix. 

The equations of motion for this modified problem are obtained as fol­
lows: in the kinetic energy (9.3) only the contribution of the 6th body (the 
new spring) changes, namely 

06: z6=za+u.sine+(qs-fa).cos(O+e) 

Y6 = ya - u· cose + (qs-fa). sin(O+e) 

:i:~ + y; = (qs-fa)2. 02 + 2· ((qs-fa)2 - u· (qs-fa). sinO). O. e 

+ (qs-fa)2 - 2·u· (qs-fa). sinO+u2). i 2 

+2.u.cosO.e·qs+q~ 

Ws = n + e 
In the potential energy we have to add a term which is due to the new spring. 
We thus get (compare (9.4)) 

(I. - I. )2 (q - zf)2 
U = -mom· ß + Co· 2 0 + Cl· S 2 ' (9.21) 

where the spring constant cl of the new spring is large. The resulting system 
is again of the form (9.6), but with q E RS. The initial values (9.7), (9.9), 
(9.12) for the 7 angles (9.2) are consistent for the new problem, if we require 
in addition 

(9.22) 

This then implies qs(O) = 0. For the choice cl = 1010 we applied the im­
plict codes RADAU5 and DASSL to the above stiff mechanical system. The 
behaviour of these methods was nearly identical to that for the original prob­
lem (Fig.9.5). So there ,was no need to draw another picture. Obviously, 
the explicit codes DOPRI5 and MEXX do not work any longer. 
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It should be remarked that for Tol:S I/Cl the efficiency of the implicit 
codes suddenly decreases. This is due to the fact that the exact solution of 
the problem (with the initial values described above) is highly oscillatory 
with frequency O(JC1) and amplitude O(l/c l ) ab out a smooth solution. 
A general theory for such situations has been elaborated by Ch. Lubich 
(unpublished). For very stringent tolerances any code is forced to follow the 
oscillations and the step sizes become small. 

Exercises 

1. Consider the differential equation (so-called "Kreiss problem") 

y' = UT(~) (~1 _~/~) U(~)y , U(~) = (~:~:~ ~~~:) 
(9.23) 

andapply the Runge-Kutta code RADAU5 to this stiff problem. You 
will observe that for a fixed tolerance the number of function evaluations 
increases with decreasing ~ > O. 

Then apply the method to the equivalent system 
, 

y = z 

o=(~ ~)U(~)Z+U(~)y. (9.24) 

and show that the number of function evaluations does not increase when 
~-tO. 

a) Explain this phenomenon by studying the convergence of the simpli­
fied Newton iterations. 

b) Prove that the index of the system (9.24) with ~=O is two. 

Iso gehl alles zu Ende allhier: 
Feder. Time, Tobak und auch wir. 
Zum letltenmal wird eingetunkt, 
Dann komml der große 

schwane 

• (W. Busch, Bilder zur Jobsiade 1872) 



Appendix. Fortran Codes 

During the preparation of this book several programs have been developed 
for solving stiff and differential-algebraic problems of the form 

My' = f(:e, y), y(:e o) = Yo' 

where M is a constant square matrix. If M is singular, the problem is 
differential-algebraic. In this case the initial values must be consistent. Only 
the code RADAU5 is adapted for the solution of higher index (;::: 2) problems. 

Experiences with all of our codes are welcome. The programs can be 
obtained from the authors (if E-mail is not possible, pIe ase send an IBM 
diskette): 
Addl'ess: Section de Mathematiques, Case postale 240, CH-1211 Geneve 24, 

Switzerland 
E-mail: HAIRER@CGEUGE51.BITNET WANNER@CGEUGE51.BITNET 

Driver for the Code RADAU5 

"The Van der Pol equation problem is so much harder 
than the rest ... " (L.F. Shampine 1987) 

We consider the Van der Pol equation 

y~ = Y2 

y~ = ((1 - ynY2 - Yl) /g 
Yl (0) = 2 
Y2(0) = -0.66 

with g = 10-6 on the interval [0,2]. The subroutines FVPOL, JVPOL com­
pute the right-hand side of this differential equation and its Jacobian. The 
subroutine SOLOUT is used to print the solution at equidistant points. 

C --------------------------------
C --- FOR DRIVER 
C --- FOR RADAUS 
C --- FOR DECSOL 
C --- LINK DRIVER,RADAUS,DECSOL 
C --------------------------------

IMPLICIT REAL*8 (A-H,O-Z) 
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C --- PARAMETERS FOR RADAU6 (FULL JACOBIAN) 
PARAMETER (ND=2,LWORK=4*ND*ND+8*ND+7,LIWORK=3*ND+7) 
PARAMETER (LRCONT=4*ND+4) 
COMMON /CONT/ICONT(3),RCONT(LRCONT) 

C --- DECLARATIONS 
DIMENSION Y(ND),WORK(LWORK),IWORK(LIWORK) 
COMMON/STAT/NPCN,NJAC,NSTEP,NACCPT,NREJCT,NDEC,NSOL 
EXTERNAL FYPOL,JYPOL,SOLOUT 

C DIMENSION OF TRE SYSTEM 
N=2 

C COMPUTE TRE JACOBIAN ANALYTICALLY 
IJAC=1 

C JACOBIAN IS A PULL MATRIX 
MLJAC=N 

C DIPPERENTIAL EQUATION IS IN EXPLICIT PORH 
IHAS=O 

C OUTPUT ROUTINE IS USED DURING INTEGRATION 
IOUT=1 

C INITIAL YALUES 
X=O.ODO 
Y(1)=2.0DO 
Y(2)=-0.66DO 

C END POINT OP INTEGRATION 
XEND=2.0DO 

C --- REQUIRED TOLERANCE 
RTOL=1.0D-6 
ATOL=RTOL 
ITOL=O 

C INITIAL STEP SIZE 
R=1.0D-6 

C SET DEPAULT YALUES 
DO 10 1=1,7 
IWORK(I) =0 

10 WORK(I)=O.DO 
C CALL OF TRE SUBROUTINE lADAU6 

CALL RADAU6(N,FVPOL,X,Y,XEND,R, 
+ lTOL,ATOL,ITOL, 
+ JVPOL,IJAC,HLJAC,HUJAC, 
+ FVPOL,IMAS,HLMAS,HUHAS, 
+ SOLOUT,IOUT, 
+ WORK,LWORK,IWORK,LIWORK,LRCONT,IDID) 

C PRINT PINAL SOLUTION 
WRITE (6,99) X,Y(l),Y(2) 

99 PORMAT(1X,'X =',P6.2,' Y =',2E18.10) 
C --- PRINT STATISTICS 

C 
C 

WRITE (6,90) RTOL 
90 PORMAT( , rt01=' ,D8. 2) 

WRITE (6,91) NPCN,NJAC,NSTEP,NACCPT,NREJCT,NDEC,NSOL 
91 PORMAT(' fcn=',I6,' jac=',I4,' 8tep=',I4, 

+ , accpt=',I4,' rejct=',I3,' dec=',I4, 
+ , 801=',16) 

STOP 
END 

SUBROUTINE SOLOUT (NR,XOLD,X,Y,N,IRTRN) 
C --- PRINTS SOLUTION AT EQUIDISTANT OUTPUT-POINTS 
C --- BY USING "CONTl6" 

IKPLICIT RE1L*8 (A-R,O-Z) 
DIHENSION Y(N) 
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COMMON /INTERN/XOUT 
IF (NR.EQ.1) THEN 

WRITE (6,99) X,Y(1),Y(2),NR-1 
XOUT=0.1DO 

ELSE 
10 CONTINUE 

IF (X.GE.XOUT) THEN 
C --- CONTINUOUS OUTPUT FOR RADAU5 

WRITE (6,99) XOUT,CONTR5(1,XOUT),CONTR5(2,XOUT),NR-1 
XOUT=XOUT+0.1DO 
GOTO 10 

END IF 
END IF 

99 FORMAT(1X,'X =',F5.2,' Y =',2E18.10,' NSTEP =',14) 
RETURN 

C 
C 

END 

SUBROUTINE FVPOL(N,X,Y,F) 
·C --- RIGHT-HAND SIDE OF VAN DER POL'S EQUATION 

IHPLICIT REAL*8 (A-H,O-Z) 

C 
C 

DIMENSION Y(N),F(N) 
EPS=1.0D-6 
F(1)=Y(2) 
F(2)=«1-Y(1)**2)*Y(2)-Y(1»/EPS 
RETURN 
END 

SUBROUTINE JVPOL(N,X,Y,DFY,LDFY) 
C JACOBIAN OF VAN DER POL'S EQUATION 

IHPLICIT REAL*8 (A-H,O-Z) 
DIMENSION Y(N),DFY(LDFY,N) 
EPS=1.0D-6 
DFY(l,1)=O.ODO 
DFY(l,2)=1.0DO 
DFY(2,1)=(-2.0DO*Y(1)*Y(2)-1.0DO)/EPS 
DFY(2,2)=(1.ODO-Y(1)**2)/EPS 
RETURN 
END 

The result, obtained on an Apollo workstation, is the following: 

x = 0.00 Y = 0.2000000000E+01 -0. 6600000000E+00 NSTEP = 0 
X 0.10 Y = 0.1931361529E+01 -0.7074151877E+00 NSTEP = 14 
X = 0.20 Y = 0.1858204676E+01 -0.7575443999E+00 NSTEP = 15 
X = 0.30 Y = 0.1779394566E+01 -0.8214201331E+00 NSTEP = 16 
X = 0.40 Y = 0.1693209270E+01 -0.9069428212E+00 NSTEP = 16 
X = 0.50 Y = 0.1596768703E+Ol -0.1030401438E+01 NSTEP = 17 
X = 0.60 Y = 0.1484575388E+01 -0. 1233048474E+01 NSTEP = 19 
X = 0.70 Y = 0.1342892320E+Ol -0.1671615664E+01 NSTEP = 21 
X = 0.80 Y = 0.1083921569E+Ol -0.6195343946E+01 NSTEP = 32 
X = 0.90 Y = -0. 1936443329E+01 0.7042084938E+00 NSTEP = 237 
X = 1.00 Y = -0. 1863646716E+Ol 0.7536455796E+00 NSTEP = 238 
X = 1.10 Y = -0. 1786296380E+01 0.8162134722E+00 NSTEP 239 
X = 1.20 Y = -0. 1699713796E+01 0.8997617000E+00 NSTEP = 240 
X = 1.30 Y = -0. 1604147430E+Ol 0.1019596637E+01 NSTEP = 241 
X = 1.40 Y = -0. 1493387337E+Ol 0.1213936300E+Ol NSTEP = 242 
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I = 1.60 
I = 1.60 
I = 1.70 
I = 1.80 
I = 1.90 
I = 2.00 

T = -0.1364746772E+01 0.1621820474E+01 
T = -0.1120811876E+01 0.4373846668E+01 
T = 0.1941602817E+01 -0.7010468166E+00 
Y = 0.1869068816E+01 -0.7496098398E+00 
Y = 0.1791164047E+01 -0.8111194791E+00 
Y = 0.1706167729E+01 -0.8928088236E+00 

rtol=0.10E-04 

NSTEP = 244 
NSTEP = 263 
NSTEP = 460 
NSTEP = 461 
NSTEP = 462 

fcn= 3473 jac= 294 step= 476 accpt= 463 rejct= 12 dec= 379 801= 1003 

Subroutine RADAUS 

Implicit Runge-Kutta code based on the 3stage Radau HA method, given in 
Table IV.5.6. Details on the implementation are described in Section IV.8. 

SUBROUTINE RADAU6(N,FCN,I,T,IEND,R, 
+ RTOL,ATOL,ITOL, 
+ JAC ,IJAC,HLJAC,HUJAC, 
+ HAS ,IHAS,HLHAS,HUMAS, 
+ SOLOUT,IOUT, 
+ WORK,LWORK,IWORK,LIWORK,LRCONT,IDID) 

C ----------------------------------------------------------C NUHERICAL SOLUTION OF A STIFF (OR DIFFERENTIAL ALGEBRAIC) 
C SYSTEH OF FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS 
C H*Y'=F(I,Y). 
C TRE SYSTEH CAN BE (LINEARLY) IHPLICIT (HASS-MATRII M .NE. I) 
C OR EIPLICIT (H=I). 
C TRE HETROD USED IS AN IHPLICIT RUNGE-KUTTA HETROD (RADAU IIA) 
C OF ORDER 6 WITH STEP SIZE CONTROL AND CONTINUOUS OUTPUT. 
C C.F. SECTION IV.8 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

!UTRORS: E. RAUER AND G. WANNER 
UNIVERSITE DE GENEVE, DEPT. DE HATREHATIQUES 
CR-1211 GENEVE 24, SWITZERLAND 
E-HAIL: RAIRERG CGEUGE61.BITNET, WANNERG CGEUGE61.BITNET 

TRIS CODE IS PART OF TRE BOOK: 
E. RAIRER AND G. WARRER, SOLVING ORDINARY DIFFERENTIAL 
EQUATIONS 11. STIFF AND DIFFERENTIAL-ALGEBRAIC PROBLEMS. 
SPRINGER SERIES IN COHPUTATIONAL HATREHATICS, 
SPRINGER-VERLAG (1990) 

VERSION OF NOVEHBER 14, 1989 

INPUT PARAHETERS 

N 

FCN 

I 

DIHENSION OF TRE SYSTEH 

NAHE (EITERNAL) OF SUBROUTINE COHPUTING TRE 
VALUE OF F(I,Y): 

SUBROUTINE FCN(N,I,Y,F) 
REAL*8I,Y(N),F(N) 
F(l)=... ETC. 

INITIAL I-VALUE 
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C Y(N) INITIAL VALUES FOR Y 
C 
C XEND FINAL X-VALUE (XEND-X MAY BE POSITIVE OR NEGATIVE) 
C 
C H INITIAL STEP SIZE GUESS; 
C FOR STIFF EQUATIONS WITH INITIAL TRANSIENT, 
C H=1.DO/(NORM OF F'), USUALLY 1.D-3 OR 1.D-5, IS GOOD. 
C THIS CHOICE IS NOT VERY IMPORTANT, THE CODE QUICKLY 
C ADAPTS ITS STEP SIZE. STUDY THE CHOSEN VA LUES FOR A FEW 
C STEPS IN SUBROUTINE "SOLOUT", WHEN YOU ARE NOT SURE. 
C (IF H=O.DO, THE CODE PUTS H=1.D-6). 
C 
C RTOL,ATOL RELATIVE AND ABSOLUTE ERROR TOLERANCES. THEY 
C CAN BE BOTH SCALARS OR ELSE BOTH VECTORS OF LENGTH N. 
C 
C ITOL SWITCH FOR RTOL AND ATOL: 
C ITOL=O: BOTH RTOL AND ATOL ARE SCALARS. 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

JAC 

IJAC 

MLJAC 

MUHC 

TBE CODE KEEPS, ROUGHLY, THE LOCAL ERROR OF 
Y(I) BELOW RTOL*ABS(Y(I»+ATOL 

ITOL=1: BOTH RTOL AND ATOL ARE VECTORS. 
THE CODE KEEPS THE LOCAL ERROR OF Y(I) BELOW 
RTOL(I)*ABS(Y(I»+ATOL(I). 

NAHE (EXTERN AL) OF THE SUBROUTINE WHICH COHPUTES 
THE PARTIAL DERIVATIVES OF F(X,Y) WITH RESPECT TO Y 
(THIS ROUTINE IS ONLY CALLED IF IJAC=1; SUPPLY 
A DUMMY SUBROUTINE IN THE CA SE IJAC=O). 
FOR IJAC=l, THIS SUBROUTINE MUST HAVE TBE FORM 

SUBROUTINE JAC(N,X,Y,DFY,LDFY) 
REAL*8 X,Y(N),DFY(LDFY,N) 
DFY(1,1)= ... 

LDFY, THE COLUMN-LENGTH OF THE ARRAY, IS 
FURNISHED BY TBE CALLING PROGRAM. 
IF (HLJAC.EQ.N) THE JACOBIAN IS SUPPOSED TO 

BE FULL AND THE PARTIAL DERIVATIVES ARE 
STORED IN DFY AS 

DFY(I,J) = PARTIAL F(I) / PARTIAL Y(J) 
ELSE, THE JACOBIAN IS TAKEN AS BANDED AND 

THE PARTIAL DERIVATIVES ARE STORED 
DIAGONAL-WISE AS 

DFY(I-J+HUJAC+l,J) = PARTIAL F(I) / PARTIAL Y(J). 

SWITCH FOR THE COHPUTATION OF THE JACOBIAN: 
IJAC=O: JACOBIAN IS COMPUTED INTERNALLY BY FINITE 

DIFFERENCES, SUBROUTINE "JAC" IS NEVER CALLED. 
IJAC=l: JACOBIAN IS SUPPLIED BY SUBROUTINE JAC. 

SWITCB FOR THE BANDED STRUCTURE OF THE JACOBIAN: 
MLJAC=N: JACOBIAN IS A FULL HATRIX. THE LINEAR 

ALGEBRA IS DONE BY FULL-HATRIX GAUSS-ELIMINATION. 
O<=MLJAC<N: MLJAC IS TBE LOWER BANDWITB OF JACOBIAN 

MATRIX (>= NUMBER OF NON-ZERO DIAGONALS BELOW 
THE HAIN DIAGONAL). 

UPPER BANDWITH OF JACOBIAN MATRIX (>= NUMBER OF NON­
ZERO DIAGONALS ABOVE THE MAIN DIAGONAL). 
NEED NOT BE DEFINED IF KLJAC=N. 

MAS,IMAS,KLMAS, AND KUMAS HAVE ANALOG KEANINGS 
FOR TBE "MASS KATRIX" (TBE MATRIX "M" OF SECTION IV.8): 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 
C 
C 
C 

HAS 

IIUS 

MLHAS 

P1U1US 

SOLOUT 

IOUT 

NAHE (EXTERNAL) OF SUBROUTINE COPIPUTING THE P1ASS­
MATRIX M. 
IF IMAS=O, TBIS P1ATRIX IS ASSUHED TO BE TBE IDENTITY 
MATRIX AND NEEDS NOT TO BE DEFINED; 
SUPPLY A DUHHY SUBROUTINE IN TBIS CASE. 
IF IMAS=l, TBE SUBROUTINE HAS IS OF TBE FORH 

SUBROUTINE MAS(N,AM,LMAS) 
REAL*8 AM(LPlAS,N) 
AH(l,!)= .... 
IF (P1LHAS.EQ.N) TBE MASS-MATRIX IS STORED 
AS FULL HATRIX LIKE 

AM(I,J) = M(I,J) 
ELSE, TBE HATRIX IS TAKEN AS BANDED AND STORED 
DIAGONAL-IHSE AS 

AM(I-J+MUMAS+l,J) = H(I,J). 

GIVES INFORHATION ON TBE HASS-HATRIX: 
IHAS=O: M IS SUPPOSED TO BE TBE IDENTITY 

MATRIX, MAS IS NEVER CALLED. 
IMAS=l: HASS-HATRIX IS SUPPLIED. 

SWITCB FOR TBE BANDED STRUCTURE OF THE MASS-P1ATRIX: 
MLHAS=N: TBE FULL MATRIX CASE. TBE LINEAR 

ALGEBRA IS DONE BY FULL-MATRIX GAUSS-ELIMINATION. 
O<=HLMAS<N: HLMAS IS THE LOWER BANDWITB OF TBE 

MATRIX (>= NURBER OF NON-ZERO DIAGONALS BELOW 
TBE MAIN DIAGONAL). 

MLHAS IS SUPPOSED TO BE .LE. HLJAC. 

UPPER BANDWITB OF MASS-MATRIX (>= NUHBER OF NON­
ZERO DIAGONALS ABOVE TBE MAIN DIAGONAL). 
NEED NOT BE DEFINED IF MLMAS=N. 
MUPlAS IS SUPPOSED TO BE .LE. KUJAC. 

NAKE (EXTERN AL) OF SUBROUTINE PROVIDING TBE 
NUKERICAL SOLUTION DURING INTEGRATION. 
IF IOUT=l, IT IS CALLED AFTER EVERY SUCCESSFUL STEP. 
SUPPLY A DUHMY SUBROUTINE IF IOUT=O. 
IT MUST BAVE TBE FORM 

SUBROUTINE SOLOUT (NR,XOLD,X,Y,N,IRTRN) 
REAL*8 X,Y(N) 

SOLOUT FURNISBES TBE SOLUTION "Y" AT TBE NR-TB 
GRID-POINT "X" (TBEREBY TBE INITIAL VALUE IS 
TBE FIRST GRID-POINT). 

"XOLD" IS TBE PRECEEDING GRID-POINT. 
"IRTRN" SERVES TO INTERRUPT TBE INTEGRATION. IF IRTRN 

IS SET <0, RADAU6 RETURNS TO TBE CALLING PROGRAM. 

CONTINUOUS OUTPUT: -----
DURING CALLS TO "SOLOUT", A CONTINUOUS SOLUTION 
FOR TBE INTERVAL [XOLD,X] IS AVAILABLE TBROUGB 
TBE REAL*8 FUNCTION 

»> CONTR6(I,S) «< 
WBICB PROVIDES AN APPROXIMATION TO TBE I-TB 
COHPONENT OF TBE SOLUTION AT TBE POINT S. TBE VALUE 
S SBOULD LIE IN TBE INTERVAL [XOLD,X]. 

SWITCB FOR CALLING TBE SUBROUTINE SOLOUT: 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

WORK 

LWORK 

IWORK 

LIWORK 

LRCONT 
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IOUT=O: SUBROUTINE IS NEVER CALLED 
IOUT=1: SUBROUTINE IS AVAILABLE FOR OUTPUT. 

ARRAY OF WORKING SPACE OF LENGTB "LWORK". 
WORK(1). WORK(2) •..• WORK(7) SERVE AS PARAMETERS 
FOR TBE CODE. FOR STANDARD USE OF TBE CODE 
WORK(1) •..• WORK(7) MUST BE SET TO ZERO BEFORE 
CALLING. SEE BELOW FOR A MORE SOPBISTICATED USE. 
WORK(8) •..• WORK(LWORK) SERVE AS WORKING SPACE 
FOR ALL VECTORS AND MATRICES. 
"LWORK" MUST BE AT LEAST 

N*(LJAC+LMAS+3*LE+8)+7 
WBERE 

LJAC=N IF MLJAC=N (FULL JACOBIAN) 
LJAC=MLJAC+MUJAC+1 IF MLJAC<N (BANDED JAC.) 

AND 

AND 

LMAS=O 
LMAS=N 
LMAS=MLMAS+MUMAS+1 

IF IMAS=O 
IF IMAS=1 AND MLMAS=N (FULL) 
IF MLMAS<N (BANDED MASS-M.) 

LE=N IF MLJAC=N (FULL JACOBIAN) 
LE=2*MLJAC+MUJAC+1 IF MLJAC<N (BANDED JAC.) 

IN TBE USUAL CA SE WBERE TBE JACOBIAN IS FULL AND TBE 
MASS-MATRIX IS TBE INDENTITY (IMAS=O). TBE MINIMUM 
STORAGE REQUIREMENT IS 

LWORK = 4*N*N+8*N+7. 

DECLARED LENGTB OF ARRAT "WORK". 

INTEGER WORKING SPACE OF LENGTR "LIWORK". 
IWORK(1).IWORK(2) •...• IWORK(7) SERVE AS PARAMETERS 
FOR TBE CODE. FOR STANDARD USE, SET IWORK(l) •..• 
IWORK(7) TO ZERO BEFORE CALLING. 
IWORK(8) •...• IWORK(LIWORK) SERVE AS WORKING AREA. 
"LIWORK" MUST BE AT LEAST 3*N+7. 

DECLARED LENGTR OF ARRAT "IWORK". 

DECLARED LENGTR OF COMMON BLOCK 
»> COMMON /CONT/ICONT(3).RCONT(LRCONT) «< 

WBICB MUST BE DECLARED IN TBE CALLING PROGRAM. 
"LRCONT" MUST BE AT LEAST 

4*N+4 . 
TBIS IS USED FOR STORING TBE COEFFICIENTS OF TRE 
CONTINUOUS SOLUTION AND MAKES TBE CALLING LIST FOR TBE 

C FUNCTION "CONTR6" AS SIMPLE AS POSSIBLE. 
C 

C ----------------------------------------------------------------------
C 
C SOPBISTICATED SETTING OF PARAMETERS 
C -----------------------------------
C SEVERAL PARAMETERS OF TRE CODE ARE TUNED TO MAKE IT WORK 
C WELL. TBEY MAT BE DEFINED BT SETTING WORK(1) •..• WORK(7) 
C AS WELL AS IWORK(1) •..• IWORK(7) DIFFERENT FROM ZERO. 
C FOR ZERO INPUT. TBE CODE CUOOSES DEFAULT VALUES: 
C 
C IWORK(l) IF IWORK(1).NE.O. TUE CODE TRANSFORMS TBE JACOBIAN 
C MATRIX TO BESSENBERG FORM. TBIS IS PARTICULARLY 
C ADVANTAGEOUS FOR LARGE SYSTEMS WITB FULL JACOBIAN. 
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C IT DOES NOT WORK FOR BANDED JACOBIAN (MLJAC<N) 
C AND NOT FOR IHPLICIT SYSTEMS (IHAS=l). IT IS 
C ALSO NOT RECOHMENDED FOR SPARSE JACOBIANS. 
C 
C IWORK(2) TBIS IS TBE MAXIMAL NUMBER OF ALLOWED STEPS. 
C TBE DEFAULT VALUE (FOR IWORK(2)=0) IS 100000. 
C 
C IWORK(3) TBE MAXIMUH NUMBER OF NEWTON ITERATIONS FOR TBE 
C SOLUTION OF THE IMPLICIT SYSTEM IN EACH STEP. 
C TBE DEFAULT VALUE (FOR IWORK(3)=0) IS 7. 
C 
C IWORK(4) IF IWORK(4).EQ.0 TBE EXTRAPOLATED COLLOCATION SOLUTION 
C IS TAKEN AS STARTING VALUE FOR NEWTON'S METBOD. 
e IF IWORK(4).NE.0 ZERO STARTING VALUES ARE USED. 
C TBE LATTER IS RECOHMENDED IF NEWTON'S METHOD BAS 
C DIFFICULTIES WITH CONVERGENCE (THIS IS TBE CASE WBEN 
C NSTEP IS LARGER TBAN NACCPT + NREJCT). 
C DEFAULT IS IWORK(4)=0. 
C 
C THE FOLLOWING 3 PARAMETERS ARE IMPORTANT FOR 
C DIFFERENTIAL-ALGEBRAIC SYSTEMS OF INDEX> 1. 
C THE FUNCTION-SUBROUTINE SHOULD BE WRITTEN SUCH THAT 
C THE INDEX 1,2,3 VARIABLES APPEAR IN THIS ORDER. 
C IN ESTIMATING THE ERROR THE INDEX 2 VARIABLES ARE 
C MULTIPLIED BY H, THE INDEX 3 VARIABLES BY H**2. 
C 
C IWORK(5) DIMENSION OF THE INDEX 1 VARIABLES (MUST BE > 0). FOR 
C ODE'S TBIS EQUALS THE DIMENSION OF THE SYSTEM. 
C DEFAULT IWORK(5)=N. 
C 
C IWORK(6) DIMENSION OF THE INDEX 2 VARIABLES. DEFAULT IWORK(6)=0. 
C 
C IWORK(7) DIMENSION OF THE INDEX 3 VARIABLES. DEFAULT IWORK(7)=0. 
C 
e 
C WORK(l) URDUND. TBE ROUNDING UNIT. DEFAULT 1.D-16. 
C 
C WORK(2) THE SAFETY FACTOR IN STEP SIZE PREDICTION. 
C DEFAULT 0.9DO. 
C 
C WORK(3) DECIDES WHETHER THE JACOBIAN SHOULD BE RECOMPUTEDj 
C INCREASE WORK(3). TO 0.1 SAY. WHEN JACOBIAN EVALUATIONS 
C ARE COSTLY. FOR SMALL SYSTEMS WORK(3) SB DULD BE SMALLER 
C (O.OOlDO. SAY). NEGATIV WORK(3) FORCES THE CODE THE 
C COMPUTE THE JACOBIAN AFTER EVERY ACCEPTED STEP. 
C DEFAULT O.OOlDO. 
C 
C WORK(4) STOPPING CRIERION FOR NEWTON'S METBOD. USUALLY CBOSEN <1. 
C SMALLER VALUES OF WORK(4) MAKE TBE CODE SLOWER, BUT SAFER. 
C DEFAULT 0.03DO. 
C 
C WORK(5) AND WORK(6): IF WORK(5) < HNEW/HOLD < WORK(6). THEN THE 
C STEP SIZE IS NOT CHANGED. THIS SAVES, TOGETHER WITH A 
C LARGE WORK(3). LU-DECOMPOSITIONS AND COMPUTING TIME FOR 
C LARGE SYSTEMS. FOR SMALL SYSTEMS ONE MAY HAVE 
C WORK(5)=1.DO. WORK(6)=1.2DO. FOR LARGE FULL SYSTEMS 
C WORK(5)=0.99DO, WORK(6)=2.DO HIGHT BE GOOD. 
C DEFAULTS WORK(5)=1.DO. WORK(S)=1.2DO 
C 
C WORK(7) MAXIHAL STEP SIZE. DEFAULT XEND-X. 
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C 

C-----------------------------------------------------------------------
C 
C OUTPUT PARAMETERS 
C -----------------
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

x 

Y(N) 

H 

IDID 

X-VALUE FOR WHICH THE SOLUTION HAS BEEN COMPUTED 
(AFTER SUCCESSFUL RETURN X=XEND). 

NUMERICAL SOLUTION AT X 

PREDICTED STEP SIZE OF THE LAST ACCEPTED STEP 

REPORTS ON SUCCESSFULNESS UPON RETURN: 
IDID=1 COMPUTATION SUCCESSFUL, 
IDID=-1 COMPUTATION UNSUCCESSFUL. 

C-----------------------------------------------------------------------
C *** *** *** *** *** *** *** *** *** *** *** *** *** 
C DECLARATIONS 
C *** *** *** *** *** *** *** *** *** *** *** *** *** 

IMPLICIT REAL*8 (A-H,O-Z) 
DIMENSION Y(N),ATOL(1),RTOL(1),WORK(LWORK),IWORK(LIWORK) 
LOGICAL IMPLCT,JBAND,ARRET,STARTN 
EXTERNAL FCN,JAC,MAS,SOLOUT 
COMMON/STAT/NFCN,NJAC,NSTEP,NACCPT,NREJCT,NDEC,NSOL 

C COMMON STAT CAN BE INSPECTED FOR STATISTICAL PURPOSES: 
C NFCN NUMBER OF FUNCTION EVALUATIONS (THOSE FOR NUMERICAL 
C EVALUATION OF THE JACOBIAN ARE NOT COUNTED) 
C NJAC NUMBER OF JACOBIAN EVALUATIONS (EITHER ANALYTICALLY 
C OR NUMERICALLY) 
C NSTEP NUMBER OF COMPUTED STEPS 
C 
C 
C 
C 
C 
C 
C 

NACCPT 
NREJCT 

NDEC 
NSOL 

NUMBER OF ACCEPTED STEPS 
NUMBER OF REJECTED STEPS (DUE TO ERROR TEST), 
(STEP REJECTIONS IN THE FIRST STEP ARE NOT COUNTED) 
NUMBER OF LU-DECOMPOSITIONS OF BOTH MATRICES 
NUMBER OF FORWARD-BACKWARD SUBSTITUTIONS, OF BOTH 
SYSTEMS; THE NSTEP FORWARD-BACKWARD SUBSTITUTIONS, 
NEEDED FOR STEP SIZE SELECTION, ARE NOT COUNTED 

Subroutine SDIRK4 

Singly diagonally implicit Runge-Kutta code based on the 5stage SDIRK 
method of Table IV.6.5. The implementation is similar to that of RADAU5 
and is described in Section IV.8. In the following description we have omitted 
the parts which are identical to those for RADAU5. 

SUB ROUTINE SDIRK4(N,FCN,X,Y,XEND,H, 
+ RTOL,ATOL,ITOL, 
+ JAC ,IJAC,MLJAC,MUJAC, 
+ MAS ,IMAS,MLMAS,MUMAS, 
+ SOLOUT,IOUT, 
+ WORK,LWORK,IWORK,LIWORK,LRCONT,IDID) 

C ----------------------------------------------------------
C NUMERICAL SOLUTION OF A STIFF 
C SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS MY'=F(X,Y). 
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C TB HETBOD USED IS A SINGLY DIAGONALLT IHPLICIT RUNGE-KUTTA METHOD 
C OF ORDER 4 (WITB STEP SIZE CONTROL). 
C C.F. SECTION IV.6 
C 
C AUTBORS: E. BAIRER AND G. WANNER 
C UNIVERSITE DE GENEVE. DEPT. DE MATBEMATIQUES 
C CB-1211 GENEVE 24. SWITZERLAND 
C E-MAIL: BAIRERO CGEUGE61.BITNET. WANNERO CGEUGE61.BITNET 

C 
C VERSION OF APRIL 19. 1989 
.......... 

C 
C 
C 
C 
C 
........... 

C WORK 
C 
C 
C 
........... 

C 
C 
C 
C 
........... 

C IWORK 
C 
........... 

C LRCONT 
C 
C 
C 
C 
.......... 

C 

CONTINUOUS OUTPUT: 
DURING CALLS TO "SOLOUT". A CONTINUOUS SOLUTION 
FOR TBE INTERVAL [XOLD.X] IS AVAILABLE TBROUGB 
TBE REAL*8 FUNCTION 

»> CONTS4(I.S) «< 

ARRAT OF WORKING SPACE OF LENGTB "LWORK". 
SERVES AS WORKING SPACE FOR ALL VECTORS AND HATRICES. 
"LWORK" MUST BE AT LEAST 

N*(LJAC+LMAS+LE+12)+7 

IN TBE USUAL CASE WBERE TBE JACOBIAN IS FULL AND TBE 
MASS-HATRIX IS TBE INDENTITT (IMAS=O). TBE MINIMUM 
STORAGE REQUIREMENT IS 

LWORK = 2*N*N+12*N+7. 

INTEGER WORKING SPACE OF LENGTB "LIWORK". 
"LIWORK" MUST BE AT LEAST 2*N+4. 

DECLARED LENGTB OF COMMON BLOCK 
»> COMMON /CONT/ICONT(4).RCONT(LRCONT) «< 

WHICB MUST BE DECLARED IN TBE CALLING PROGRAH. 
"LRCONT" MUST BE AT LEAST 

6*N+2 . 

C SOPBISTICATED SETTING OF PARAMETERS 
C -----------------------------------
C SEVERAL PARAHETERS OF TBE CODE ARE TUNED TO HAKE IT WORK 
C WELL. TBET HAT BE DEFINED BY SETTING WORK(1) •..• WORK(7) 
C AS WELL AS IWORK(l) •..• IWORK(4) DIFFERENT FROH ZERO. 
C FOR ZERO INPUT. TBE CODE CBOOSES DEFIULT VILUES: 

C IWORK(4) SWITCB FOR TBE COEFFICIENTS OF TBE METBOD 
C IWORK(4)=1 COEFFICIENTS WITB GAHMI=0.26 
C IWORK(4)=2 COEFFICIENTS WITH GAMMI=4./16. 
C IWORK(4)=3 COEFFICIENTS OF CASB (1979) 
C TBE DEFAULT VILUE (FOR IWORK(4)=0) IS 2. 
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Subroutine ROS4 

Classical Rosenbrock methods of Table IV.7.2. The choice among these 
methods can be made with the help of IWORK(2). Again, the missing parts 
in the description are identical to those for RADAU5. 

SUBROUTINE ROS4(N,FCN,IFCN,X,Y,XEND,H, 
+ RTOL,ATOL,ITOL, 
+ JAC ,IJAC,MLJAC,MUJAC,DFX,IDFX, 
+ MAS ,IMAS,MLMAS,MUMAS, 
+ SOLOUT,IOUT, 
+ WORK,LWORK,IWORK,LIWORK,IDID) 

C ----------------------------------------------------------
C NUMERICAL SOLUTION OF A STIFF 
C SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS MY'=F(X,Y). 
C THIS IS AN EMBEDDED ROSENBROCK METHOD OF ORDER (3)4 
C (WITH STEP SIZE CONTROL). 
C C.F. SECTION IV.7 
C 
C AUTHORS: E. HAIRER AND G. WANNER 
C UNIVERSITE DE GENEVE, DEPT. DE MATHEMATIQUES 
C CH-1211 GENEVE 24, SWITZERLAND 
C E-MAIL: HAIRERC CGEUGE51.BITNET, WANNERC CGEUGE51.BITNET 

C 
C VERSION OF APRIL 19, 1989 
.......... 

C IFCN 
C 
C 
.......... 

C DFX 
C 
C 
C 
C 
C 
C 
C 
C 
C IDFX 
C 
C 
C 
.......... 

C WORK 
C 
C 
C 
.......... 

C 
C 
C 
C 

.0 •....... 
C IWORK 
C 

GIVES INFORMATION ON FCN: 
IFCN=O: F(X,Y) INDEPENDENT OF X (AUTONOMOUS) 
IFCN=l: F(X,Y) MAY DEPEND ON X (NON-AUTONOMOUS) 

NAME (EXTERNAL) OF THE SUBROUTINE WHICH COMPUTES 
THE PARTIAL DERIVATIVES OF F(X,Y) WITH RESPECT TO X 
(THIS ROUTINE IS ONLY CALLED IF IDFX=l AND IFCN=l; 
SUPPLY A DUMMY SUBROUTINE IN THE CASE IDFX=O OR IFCN=O). 
OTHERWISE, THIS SUBROUTINE MUST HAVE THE FORM 

SUBROUTINE DFX(N,X,Y,FX) 
REAL*8 X,Y(N),FX(N) 
FX(l)= .,. 

SWITCH FOR THE COMPUTATION OF THE DF/DX: 
IDFX=O: DF/DX IS COMPUTED INTERNALLY BY FINITE 

DIFFERENCES, SUBROUTINE "DFX" IS NEVER CALLED. 
IDFX=l: DF/DX IS SUPPLIED BY SUBROUTINE DFX. 

ARRAT OF WORKING SPACE OF LENGTH "LWORK". 
SERVES AS WORKING SPACE FOR ALL VECTORS AND MATRICES. 
"LWORK" MUST BE AT LEAST 

N*(LJAC+LMAS+LE+8)+5 

IN THE USUAL CASE WHERE THE JACOBIAN IS FULL AND THE 
MASS-MATRIX IS THE INDENTITY (IMAS=O), THE MINIMUM 
STORAGE REQUIREMENT IS 

LWORK = 2*N*N+8*N+5. 

INTEGER WORKING SPACE OF LENGTH "LIliORK". 
"LIWORK" MUST BE AT LEAST N+2. 
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C 
C SOPBISTICATED SETTING OF PARAMETERS 

C -----------------------------------
C SEVERAL PARAMETERS OF TBE CODE ARE TUNED TO MAKE IT WORK 
C WELL. THEY MAY BE DEFINED BY SETTING WORK(l) •..• WORK(S) 
C AS WELL AS IWORK(1).IWORK(2) DIFFERENT FROM ZERO. 
C FOR ZERO INPUT. THE CODE CBOOSES DEFAULT VALUES: 
C 
C IWORK(l) THIS IS TBE MAlIMAL NUMBER OF ALLOWED STEPS. 
C TBE DEFAULT VALUE (FOR IWORK(l)=O) IS 100000. 
C 
C IWORK(2) SWITCH FOR THE CHOICE OF THE COEFFICIENTS 
C IF IWORK(2).EQ.l METHOD OF SHAMPINE 
C IF IWORK(2).EQ.2 METHOD GRK4T OF KIPS-RENTROP 
C IF IWORK(2).EQ.3 METBOD GRK4A OF KAPS-RENTROP 
C IF IWORK(2).EQ.4 METBOD OF VAN VELDBUIZEN (GAMHA=1/2) 
C IF IWORK(2).EQ.S METHOD OF ViN VELDHUIZEN ("D-STABLE") 
C IF IWORK(2).EQ.6 AN L-STABLE HETHOD 
C THE DEFAULT VALUE (FOR IWORK(2)=0) IS IWORK(2)=2. 
C 
C WORK(l) UROUND. THE ROUNDING UNIT. DEFAULT 1.D-16. 
C 
C WORK(2) MAlIMAL STEP SIZE. DEFAULT IEND-X. 
C 
C WORK(3). WORK(4) PARAMETERS FOR STEP SIZE SELECTION 
C THE NEW STEP SIZE IS CHOSEN SUBJECT TO THE RESTRICTION 
C WORK(3) <= BREW/HOLD <= WORK(4) 
C DEFAULT VALUES: WORK(3)=0.2DO. WORK(4)=6.DO 
C 
C WORK(S) AVOID TBE HUHP: AFTER TWO CONSECUTIVE STEP REJECTIONS 
C THE STEP SIZE IS MULTIPLIED BY WORK(S) 
C DEFAULT VALUES: WORK(S)=O.lDO 

Subroutine RODAS 

Rosenbrock method described in Section VI.3. It also satisfies the algebraic 
order conditions and can thus be applied to differential-algebraic problems 
of index 1. The missing parts in the description are identical to those for 
RADAU5. 

SUBROUTINE RODAS(N.FCN.IFCN.X.Y.XEND.H. 
+ RTOL.ATOL.ITOL. 
+ JAC .IJAC.MLJAC.HUJAC.DFX.IDFX. 
+ MAS .IMAS.MLHAS.HUMAS. 
+ SOLOUT.IOUT. 
+ WORK.LWORK.IWORK.LIWORK.LRCONT.IDID) 

C ----------------------------------------------------------
C NUHERICAL SOLUTION OF A STIFF (OR DIFFERENTIAL ALGEBRAIC) 
C SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS HY'=F(X.Y). 
C THIS IS AN EMBEDDED ROSENBROCK HETHOD OF ORDER (3)4 
C (WITR STEP SIZE CONTROL). 
C C.F. SECTIONS IV.7 AND VI.3 
C 
C AUTBORS: E. HAIRER AND G. WANNER 



C 
C 
C 

C 
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UNIVERSITE DE GENEVE. DEPT. DE MATREMATIQUES 
CR-1211 GENEVE 24. SWITZERLAND 
E-MAIL: RAIRERO CGEUGE6l.BITNET. WANNERO CGEUGE6l.BITNET 

C VERSION OF APRIL 11. 1990 

C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
C 

C 
C 
C 
C 

C 
C 
C 
C 

C 
C 

C 
C 
C 
C 
C 

C 

IFCN 

DFX 

IDFX 

WORK 

IWORK 

LRCONT 

GIVES INFORMATION ON FCN: 
IFCN=O: F(X.Y) INDEPENDENT OF X (AUTONOMOUS) 
IFCN=l: F(X.Y) MAY DEPEND ON X (NON-AUTONOMOUS) 

NAME (EXTERNAL) OF TRE SUBROUTINE WRICR COMPUTES 
TRE PARTIAL DERIVATIVES OF F(X.Y) WITR RESPECT TO X 
(TRIS ROUTINE IS ONLY CALLED IF IDFX=l AND IFCN=l; 
SUPPLY A DUMMY SUBROUTINE IN TRE CASE IDFX=O OR IFCN=O). 
OTRERWISE. TRIS SUBROUTINE MUST RAVE THE FORM 

SUBROUTINE DFX(N.X.Y.FX) 
REAL*8 X.Y(N).FX(N) 
FX(l)= ... 

SWITCR FOR TRE COMPUTATION OF TRE DF/DX: 
IDFX=O: DF/DX IS COMPUTED INTERNALLY BY FINITE 

DIFFERENCES. SUBROUTINE "DFX" IS NEVER CALLED. 
IDFX=1: DF/DX IS SUPPLIED BY SUBROUTINE DFX. 

CONTINUOUS OUTPUT: -----
DURING CALLS TO "SOLOUT". A CONTINUOUS SOLUTION 
FOR TRE INTERVAL [XOLD.X] IS AVAILABLE THROUGH 
TRE FUNCTION 

»> CONTRO(I.S) «< 

ARRAY OF WORKING SPACE OF LENGTH "LWORK". 
SERVES AS WORKING SPACE FOR ALL VECTORS AND MATRICES. 
"LWORK" MUST BE AT LEAST 

N*(LJAC+LMAS+LE+l0)+4 

IN TRE USUAL CASE WRERE TRE JACOBIAN IS FULL AND TRE 
MASS-MATRIX IS TRE INDENTITY (IMAS=O). THE MINIMUM 
STORAGE REQUIREMENT IS 

LWORK = 2*N*N+l0*N+4. 

INTEGER WORKING SPACE OF LENGTR "LIWORK". 
"LIWORK" MUST BE AT LEAST N+2. 

DECLARED LENGTR OF COMMON BLOCK 
»> COMMON /CONROS/ICONT(3).RCONT(LRCONT) «< 

WRICR MUST BE DECLARED IN TRE CALLING PROGRAM. 
"LRCONT" MUST BE AT LEAST 

4*N+2 . 

C SOPRISTICATED SETTING OF PARAMETERS 
C -----------------------------------
C SEVERAL PARAMETERS OF TRE CODE ARE TUNED TO MAKE IT WORK 
C WELL. TREY MAY BE DEFINED BY SETTING WORK(1) •..• WORK(4) 
C AS WELL AS IWORK(1).IWORK(2) DIFFERENT FROM ZERO. 
C FOR ZERO INPUT. TRE CODE CROOSES DEFAULT VALUES: 
C 
C IWORK(l) TRIS IS TRE MAXIMAL NUMBER OF ALLOWED STEPS. 
C TRE DEFAULT VALUE (FOR IWORK(l)=O) IS 100000. 
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C 
C IWORK(2) SWITCH FOR THE CHOICE OF THE COEFFICIENTS 
C IF IWORK(2).EQ.l METHOD 1 WITH GAMM=0.26 
C IF IWORK(2).EQ.2 METHOD 2 WITH GAMM=0.26 
C THE DEFAULT VALUE (FOR IWORK(2)=O) IS IWORK(2)=1. 
C 
C WORK(l) URDUND, THE ROUNDING UNIT, DEFAULT 1.D-16. 
C 
C WORK(2) MAXIMAL STEP SIZE, DEFAULT XEND-X. 
C 
C WORK(3), WORK(4) PARAMETERS FOR STEP SIZE SELECTION 
C THE NEW STEP SIZE IS CHOSEN SUBJECT TO THE RESTRICTION 
C WORK(3) <= HNEW(J)/HOLD <= WORK(4) 
C DEFAULT VALUES: WORK(3)=O.2DO, WORK(4)=6.DO 

Subroutine SEULEX 

Extrapolation code based on the linearly implicit Euler method (Sections 
IV.9 and VI.4). A dense output has been included in co operation with 
A. Ostermann. The missing parts in the description are identical to those 
for RADAUS. 

SUBROUTINE SEULEX(N,FCN,IFCN,X,Y,XEND,H, 
+ RTOL,ATOL,ITOL, 
+ JAC ,IJAC,MLJAC,MUJAC, 
+ MAS ,IMAS,MLMAS,MUMAS, 
+ SOLOUT,IOUT, 
+ WORK,LWORK,IWORK,LIWORK,LRCONT,LICONT,IDID) 

C ----------------------------------------------------------
C NUMERICAL SOLUTION OF A STIFF (OR DIFFERENTIAL ALGEBRAIC) 
C SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS MY'=F(X,Y). 
C THIS IS AN EXTRAPOLATION-ALGORITHM, BASED ON THE 
C LINEARLY IMPLICIT EULER METHOD (WITH STEP SIZE CONTROL 
C AND ORDER SELECTION). 
C 
C 
C 
C 
C 
C 

C 

AUTHORS: E. HAIRER AND G. WANNER 
UNIVERSITE DE GENEVE, DEPT. DE MATHEMATIQUES 
CH-1211 GENEVE 24, SWITZERLAND 
E-MAIL: HAIRERO CGEUGE61.BITNET, WANNERO CGEUGE61.BITNET 
INCLUSION OF DENSE OUTPUT BT E. HAIRER AND A. OSTERMANN 

C VERSION OF APRIL 11, 1990 
.......... 

C IFCN GIVES INFORMATION ON FCN: 
C IFCN=O: F(X,Y) INDEPENDENT OF X (AUTONOKOUS) 
C IFCN=l: F(X,Y) MAT DEPEND ON X (NON-AUTONOMOUS) 
.......... 

C CONTINUOUS OUTPUT (IF IOUT=2): 
C DURING CALLS TO "SOLOUT", A CONTINUOUS SOLUTION 
C FOR THE INTERVAL [XOLD,X] IS AVAILABLE THROUGH 
C THE REAL*8 FUNCTION 
C »> CONTEX(I,S) «< 
.......... 

C WORK URAY OF WORKING SPACE OF LENGTH "LWORK". 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

.......... 
IWORK 

.......... 
LRCONT 

LICONT 
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SERVES AS WORKING SPACE FOR ALL VECTORS AND HATRICES. 
"LWORK" IIUST BE AT LEAST 

N*(LJAC+LIIAS+LE+KK+8)+4*KII+13+KM2*NRDENS 
WBERE 

KII2=KH*(KH+1)/2 AND NRDENS=IWORK(6) (SEE BELOW) 
AND 

LJAC=N IF MLJAC=N (FULL JACOBIAN) 
LJAC=MLJAC+IIUJAC+1 IF IILJAC<N (BANDED JAC.) 

AND 
LHAS=O 
LHAS=N 
LHAS=IILKAS+KUHAS+1 

AND 
LE=N 
LE=2*IILJAC+HUJAC+1 

AND 
KH=12 
KII=IWORK(3) 

IF IHAS=O 
IF IHAS=l AND KLIIAS=N (FULL) 
IF IILHAS<N (BANDED HASS-H.) 

IF IILJAC=N (FULL JACOBIAN) 
IF IILJAC<N (BANDED JAC.). 

IF IWORK(3)=0 
IF IWORK(3).GT.0 

IN TBE USUAL CASE WBERE TBE JACOBIAN IS FULL AND TBE 
HASS-HATRIX IS TBE INDENTITY (IIIAS=O). TBE IIINIIIUII 
STORAGE REQUIREHENT IS 

LWORK = 2*N*N+(KH+8)*N+4*KH+13+KM2*NRDENS. 

INTEGER WORKING SPACE OF LENGTB "LIWORK". 
"LIWORK" IIUST BE AT LEAST 2*N+KM+9+NRDENS. 

DECLARED LENGTB OF COIIIION BLOCK 
»> COHHON /CONTR/RCONT(LRCONT) «< 

WBICB HUST BE DECLARED IN TBE CALLING PROGRAII. 
"LRCONT" HUST BE AT LEAST 

( KH + 2 ) * NRDENS + 2 
WBERE KII=IWORK(3) AND NRDENS=IWORK(6) (SEE BELOW). 

DECLARED LENGTB OF COIIHON BLOCK 
»> COHHON /CONTI/ICONT(LICONT) «< 

WBICB HUST BE DECLARED IN TBE CALLING PROGRAM. 
"LICONT" HUST BE AT LEAST 

NRDENS + 2 

C SOPBISTICATED SETTING OF PARAMETERS 
C -----------------------------------
C SEVERAL PARAMETERS OF TBE CODE ARE TUNED TO KAKE IT WORK 
C WELL. TBEY IIAY BE DEFINED BY SETTING WORK(1) •..• WORK(13) 
C AS WELL AS IWORK(1) •..• IWORK(NRDENS+9) DIFFERENT FROK ZERO. 
C FOR ZERO INPUT. TBE CODE CBOOSES DEFAULT VALUES: 
C 
C IWORK(l) IF IWORK(l).NE.O. TBE CODE TRANSFORIIS TBE JACOBIAN 
C HATRIX TO BESSENBERG FORK. TBIS IS PARTICULARLY 
C ADVANTAGEOUS FOR LARGE SYSTEKS WITB FULL JACOBIAN. 
C IT DOES NOT WORK FOR BANDED JACOBIAN (HLJAC<N) 
C AND NOT FOR IKPLICIT SYSTEIIS (IIIAS=l). IT IS 
C ALSO NOT GOOD FOR SPARSE JACOBIANS. 
C 
C IWORK(2) TBIS IS TBE IIAXIIIAL NUHBER OF ALLOWED STEPS. 
C TBE DEFAULT VALUE (FOR IWORK(2)=O) IS 100000. 
C 
C IWORK(3) TBE IIAXIIIUK NUHBER OF COLUIINS IN TBE EXTRAPOLATION 
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C IF IWORK(3).NE.0 TREN IWORK(3) SROULD BE .GE.3. 
C 
C IWORK(4) SWITCR FOR TRE STEP SIZE SEQUENCE 
C IF IWORK(4).EQ.l TREN 1,2,3,4,6,8,12,16,24,32,48, .. . 
C IF IWORK(4).EQ.2 TREN 2,3,4,6,8,12,16,24,32,48,64, .. . 
C IF IWORK(4).EQ.3 TREN 1,2,3,4,5,6,7,8,9,10, .. . 
C IF IWORK(4).EQ.4 TREN 2,3,4,5,6,7,8,9,10,11, .. . 
C TRE DEFAULT VALUE (FOR IWORK(4)=O) IS IWORK(4)=4. 
C 
C IWORK(5) PARAMETER "LAMBDA" OF DENSE OUTPUT; POSSIBLE VALUES 
C ARE 0 AND 1; DEFAULT IWORK(5)=0. 
C 
C IWORK(6) = NRDENS = NUMBER OF COHPONENTS, FOR WRICR DENSE OUTPUT 
C IS REQUIRED 
C 
C IWORK(10), ... ,IWORK(NRDENS+9) INDICATE TRE COHPONENTS, FOR WRICR 
C DENSE OUTPUT IS REQUIRED 
C 
C WORK(l) UROUND, TRE ROUNDING UNIT, DEFAULT 1.D-16. 
C 
C WORK(2) MAXIMAL STEP SIZE, DEFAULT XEND-X. 
C 
C WORK(3) DECIDES WRETRER TRE JiCOBIAN SROULD BE RECOMPUTED; 
C INCREASE WORK(3), TO 0.1 SAT, WREN JACOBIAN EVALUATIONS 
C ARE COSTLY. FOR SHALL SYSTEMS WORK(3) SHOULD BE SHALLER 
C (O.OOlDO, SAY). DEFAULT RTOL(l). 
C 
C WORK(4), WORK(5) PARAMETERS FOR STEP SIZE SELECTION 
C TRE NEW STEP SIZE FOR THE J-TH DIAGONAL ENTRY IS 
C CHOSEN SUBJECT TO THE RESTRICTION 
C FACMIN/WORK(5) <= HNEW(J)/HOLD <= 1/FACMIN 
C WlERE FACMIN=WORK(4)**(1/(J-l» 
C DEFAULT VALUES: WORK(4)=0.1DO, WORK(5)=4.DO 
C 
C WORK(6), WORK(7) PARAMETERS FOR TRE ORDER SELECTION 
C ORDER IS DECREASED IF W(K-l) <= W(K)*WORK(6) 
C ORDER IS INCREASED IF W(K) <= W(K-1)*WORK(7) 
C DEFAULT VALUES: WORK(6)=O.7DO, WORK(7)=0.9DO 
C 
C WORK(8), WORK(9) SAFETY FACTORS FOR STEP CONTROL ALGORITHH 
C HNEW=H*WORK(9)*(WORK(8)*TOL/ERR)**(1/(J-l» 
C DEFAULT VALUES: WORK(8)=O.8DO, WORK(9)=0.93DO 
C 
C WORK(10), WORK(ll), WORK(12), WORK(13) ESTIMATED WORKS FOR 
C A CALL TO FCN, JAC, DEC, SOL, RESPECTIVELY. 
C DEFAULT VALUES ARE: WORK(10)=1.DO, WORK(11)=5.DO, 
C WORK(12)=1.DO, WORK(13)=1.DO. 

Subroutine SODEX 

Extrapolation code based on the linearly implicit mid-point rule (Section 
IV.9). The missing parts in the description are identical to those for RADAUS. 

SUBROUTINE SODEX(N,FCN,IFCN,X,Y,XEND,R, 
+ RTOL,ATOL,ITOL, 
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JAC ,IJAC,MLJAC,MUJAC,DFX,IDFX, 
MAS ,IMAS,MLMAS,MUMAS, 
SOLOUT,IOUT, 
WORK,LWORK,IWORK,LIWORK,IDID) 

C ----------------------------------------------------------
C NUMERICAL SOLUTION OF A STIFF (OR DIFFERENTIAL ALGEBRAIC) 
C SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS MY'=F(X,Y). 
C THIS IS AN EXTRAPOLATION-ALGORITHH, BASED ON THE 
C LINEARLY IMPLICIT MID-POINT RULE, DUE TO BADER-DEUFLHARD 
C (WITH STEP SIZE CONTROL AND ORDER SELECTION). 
C C.F. SECTION IV.9 
C 
C AUTHORS: E. HAIRER AND G. WANN ER 
C UNIVERSITE DE GENEVE, DEPT. DE MATHEMATIQUES 
C CH-1211 GENEVE 24, SWITZERLAND 
C E-MAIL: HAIRER~ CGEUGE61.BITNET, WANNER~ CGEUGE51.BITNET 

C 
C VERSION OF APRIL 19, 1989 
.......... 

C IFCN 
C 
C 
.......... 

C DFX 
C 
C 
C 
C 
C 
C 
C 
C 
C IDFI 
C 
C 
C 
.......... 

C WORK 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

GIVES INFORMATION ON FCN: 
IFCN=O: F(X,Y) INDEPENDENT OF X (AUTONOMOUS) 
IFCN=l: F(X,Y) MAY DEPEND ON X (NON-AUTONOMOUS) 

NAME (EXTERNAL) OF THE SUBROUTINE WHICH COMPUTES 
THE PARTIAL DERIVATIVES OF F(X,Y) WITH RESPECT TO X 
(THIS ROUTINE IS ONLY CALLED IF IDFX=l AND IFCN=lj 
SUPPLY A DUMMY SUBROUTINE IN THE CASE IDFX=O OR IFCN=O). 
OTHERWISE, THIS SUBROUTINE MUST HAVE THE FORM 

SUBROUTINE DFX(N,X,Y,FX) 
REAL*8 X,Y(N),FX(N) 
FI(l)= ... 

SWITCH FOR THE COMPUTATION OF THE DF/DX: 
IDFX=O: DF/DX IS COMPUTED INTERNALLY BY FINITE 

DIFFERENCES, SUBROUTINE "DFX" IS NEVER CALLED. 
IDFX=l: DF/DX IS SUPPLIED BY SUBROUTINE DFX. 

ARRAY OF WORKING SPACE OF LENGTH "LWORK". 
SERVES AS WORKING SPACE FOR ALL VECTORS AND MATRICES. 
"LWORK" MUST BE AT LEAST 

N*(LJAC+LMAS+LE1+KM+9)+3*KM+13 
WHERE 

LJAC=N IF MLJAC=N (FULL JACOBIAN) 
LJAC=MLJAC+MUJAC+1 IF MLJAC<N (BANDED JAC.) 

AND 
LMAS=O IF IMAS=O 
LHAS=N IF IMAS=l AND MLMAS=N (FULL) 
LHAS=MLMAS+MUMAS+1 IF MLMAS<N (BANDED MASS-M.) 

AND 
LE1=N 
LE1=2*MLJAC+MUJAC+l 

AND 

IF MLJAC=N (FULL JACOBIAN) 
IF MLJAC<N (BANDED JAC.). 

KM=6 IF IWORK(3)=0 
KH=IWORK(3) IF IWORK(3).GT.0 

IN THE USUAL CASE WHERE THE JACOBIAN IS FULL AND THE 
MASS-MATRIX IS THE INDENTITY (IMAS=O), THE MINIMUM 
STORAGE REQUIREMENT IS 

LWORK = 2*N*N+(KM+9)*N+3*KM+13. 
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C 
C 

C 

IWORK INTEGER WORKING SPACE OF LENGTH "LIWORK". 
"LIWORK" MUST BE AT LEAST 2*N+KH+4. 

C SOPBISTICATED SETTING OF PARAMETERS 
C -----------------------------------
C SEVERAL PARAMETERS OF THE CODE ARE TUNED TO HAKE IT WORK 
C WELL. TBET MAT BE DEFINED BT SETTING WORK(1), .. ,WORK(13) 
C AS WELL AS IWORK(1), .. ,IWORK(4) DIFFERENT FROH ZERO. 
C FOR ZERO INPUT, TBE CODE CBOOSES DEFAULT VALUES: 
C 
C IWORK(l) IF IWORK(l).NE.O, THE CODE TRANSFORMS THE JACOBIAN 
C MATRIX TO HESSENBERG FORM. TBIS IS PARTICULARLT 
C ADVANTAGEOUS FOR LARGE SYSTEMS WITH FULL JACOBIAN. 
C IT DOES NOT WORK FOR BANDED JACOBIAN (HLJAC<N) 
C AND NOT FOR IHPLICIT STSTEMS (IMAS=l). IT IS 
C ALSO NOT GOOD FOR SPARSE JACOBIANS. 
C 
C IWORK(2) THIS IS THE MAXIMAL NUMBER OF ALLOWED STEPS. 
C THE DEFAULT VALUE (FOR IWORK(2)=0) IS 100000. 
C 
C IWORK(3) THE MAXIMUM NUMBER OF COLUKNS IN THE EXTRAPOLATION 
C TABLE. THE DEFAULT VALUE (FOR IWORK(3)=0) IS 6. 
C IF IWORK(3).NE.0 THEN IWORK(3) SHOULD BE .GE.3. 
C 
C IWORK(4) SWITCB FOR TBE STEP SIZE SEQUENCE 
C IF IWORK(4).EQ.l THEN 2,6,10,14,22,34,50, ... 
C THE DEFAULT VALUE (FOR IWORK(4)=0) IS IWORK(4)=1. 
C 
C WORK(l) UROUND, TBE ROUNDING UNIT, DEFAULT 1.D-16. 
C 
C WORK(2) MAXIMAL STEP SIZE, DEFAULT XEND-X. 
C 
C WORK(3) DECIDES WBETHER TBE JACOBIAN SBOULD BE RECOKPUTEDj 
C INCREASE WORK(3), TO 0.1 SAT, WBEN JACOBIAN EVALUATIONS 
C ARE COSTLT. FOR SMALL STSTEHS WORK(3) SHOULD BE SMALLER 
C (O.OOlDO, SAT). DEFAULT RTOL(l). 
C 
C WORK(4}, WORK(5) PARAMETERS FOR STEP SIZE SELECTION 
C THE NEW STEP SIZE FOR TBE J-TH DIAGONAL ERTRT IS 
C CBOSEN SUBJECT TO THE RESTRICTION 
C FACMIN/WORK(5) <= HNEW(J)/HOLD <= l/FACMIN 
C WHERE FACHIN=WORK(4)**(1/(J-l» 
C DEFAULT VALUES: WORK(4)=0.lDO, WORK(5)=4.DO 
C 
C WORK(6), WORK(7) PARAMETERS FOR TBE ORDER SELECTION 
C STEP SIZE IS DECREASED IF W(K-1) <= W(K)*WORK(6) 
C STEP SIZE IS INCREASED IF W(K) <= W(K-l)*WORK(7) 
C DEFAULT VALUES: WORK(6)=0.9DO, WORK(7)=0.9DO 
C 
C WORK(8), WORK(9) SAFETT FACTORS FOR STEP CORTROL ALGORITHM 
C HNEW=H*WORK(9)*(WORK(8)*TOL/ERR)**(1/(J-l» 
C DEFAULT VALUES: WORK(8)=0.8DO, WORK(9)=0.93DO 
C 
C WORK(10), WORK(ll), WORK(12), WORK(13) ESTIHATED WORKS FOR 
C A CALL TO FCN, JAC, DEC, SOL, RESPECTIVELT. 
C DEFAULT VALUES ARE: WORK(10)=1.DO, WORK(11}=5.DO, 
C WORK(12)=1.DO, WORK(13}=1.DO. 
C 
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Lagrange polynomial, 509. 
Lagrange function, 483, 536. 
Laguerre polynomial, 103, 139, 141. 
set of labelled trees of order q, 114. 
projection, 495, 504. 
differentiation order, 339. 
perturbation index, 478. 
interpolation order, 339. 
(shifted) Legendre polynomial, 83, 215. 
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projection, 495, 504. 
characteristic polynomial, 303, 313. 
Pade approximation, 50. 
stability function, 16, 17, 40, 41, 116, 143, 144. 
coeflicient of discrete resolvent, 358, 380, 413. 
discrete resolvent, 358, 380. 
stability domain, 17, 257. 
scaled stability domain, 62. 
stability matrix, 387. 
sector of A( ° )-stability, 268. 
stability matrix, 313. 
kinetic energy, 483, 53!. 
set of trees, 125. 
Tchebychel polynomial, 36. 
set of trees for W-methods, 124. 
property T, 86. 
potential energy, 483, 535. 
norm, 233. 
norm in product space, 231, 233. 
norm in product space, 356. 
inner product norm, 332, 383. 
coercivity coeflicient, 229. 
coercivity coeflicient, 229, 396. 
differentiation error, 339. 
Iocal error, 241, 243, 348, 505. 
interpolation error, 339. 
linear multistep error, 346. 
one-Ieg error, 338. 
logarithmic norm, 179, 418. 
multiplier, 369. 
one-sided Lipschitz constant, 191, 229, 329, 365. 
threshold factor, 187. 
order of a tree, 116, 439, 519. 
generating polynomial, 256. 
generating polynomial, 256. 
growth function, 206. 
contractivity function, 180. 
backward difference operator, 259, 283. 
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A-aeeeptable approximations, 43. 
A-stability 

of multistep methods, 264. 
of one-step methods, 42. 
of Pade approximations, 60. 
of rational approximations, 58-59. 
via positive functions, 93. 

A(O)-stable multistep methods, 268. 
Ao-stable multistep methods, 269. 
A( a )-stability 

of multistep methods, 268. 
of RK methods, 46. 

A( a )-stable multistep methods of high 
order, 269. 

absolutely monotonie funetions, 188. 
aceeleration level, 485. 
aeeuraey barriers for linear multistep 

methods, 273. 
Adams methods, 257,259,266,285. 
adjoint differential equation, 482, 488. 
algebraie eriterion for G-stability, 332, 

333. 
algebraie stability, 

of general linear methods, 383, 386. 
of multivalue methods, 394. 
of RK methods, 193, 201, 220, 247. 

amplifier, 404, 408. 
Andrew's squeezing meehanism, 531. 
AN-stability, 

of RK methods 196, 213. 
of general linear methods, 387. 

approximate Jaeobian, 170. 
asymptotie expansions, 146, 460,466. 
asymptotie solution 

of Van der Pol's equation, 400. 
automatie stiffness deteetion, 22. 

baekward differentiation formulas, 
see BDF 

Bader-Deuflhard method, 145, 146. 
B-eonvergenee, 240. 

of G-stable one-Ieg methods, 341. 
of multistep methods, 396. 
of order r, 247. 
of RK methods, 240. 
of trapezoidal rule, 250. 
of variable step sizes, 246. 

BDF methods, 2-3, 255, 263, 277, 286, 
287, 301, 319, 332. 

BEAM,163. 
Beam equation, 9f., 21, 39. 
blended multistep methods, 285. 
boundary layer terms, 417. 
BRUSS, 159. 
Brusselator, 5, 21. 
BSMOOTH, 160. 
B -stability 

of Radau HA, 211. 
of RK methods, 191, 192, 197, 201, 

214. 
of Rosenbroek methods, 212. 

BURGERS, 159, 176. 

Cary Grant's part, 65. 
Cash's algorithm, 288. 
characteristic equation 

for general linear methods, 313. 
for linear multistep methods, 256. 
for multistep RK methods, 303. 
for predietor-eorrector sehemes, 261. 

charaeteristic roots, 258. 
eharaeterization 

of algebraieally stable methods, 223. 
of positive quadrat ure formulas, 219. 

Chebyshev polynomial, 36. 
ehemieal reaetions, 3. 
Christoffel-Darboux formula, 141. 
eireuits, 5, 404, 408. 
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coercivity coefficient 229, 396. 
collocation methods 

for index 2 DAE, 508. 
multi-step, 290. 
one-step, 48, 82. 
projected, 514. 

companion matrix, 348. 
comparing stability domains, 61. 
comparison 

between Radau codes, 169. 
between Rosenbrock codes, 168. 

composite multistep methods, 287. 
conservative form of Burgers equations, 

159. 
consistency conditions, 265. 
consistent initial values 

for index 1, 401-402, 406-407. 
for index 2, 477. 
for mechanical systems, 538. 

constrained mechanical system, 484. 
construction of mK methods, 88. 
continued fraction representation, 90. 
continued fractions related to quadra-

ture formulas, 214. 
continuous solution, see 'dense output' 
contractivity 

for linear problems, 178. 
see also' B-stability' 

contractivity function, 180. 
control problems, 481. 
convergence 

for linear problems, 346. 
for nonlinear problems, 365. 
of A-stable multistep methods, 342. 
of BDF for index 2, 494. 
ofDAE Rosenbrock methods, 447. 
of multistep methods for index 2, 494. 
of multistep methods for SPP, 411. 
of RK for index 1, 408. 
ofRK for index 2 DAE, 506, 508, 514. 
of RK methods for DAE, 423f. 
of RK methods for SPP, 431. 
see also 'B-convergence' 

counter-examples 
for existence, 231. 
for stability properties, 212. 

criterion for G-stability, 332, 333. 
CUSP, 163. 
cusp catastrophe, 164. 

DAE, 399, 401. 

Dahlquist's second barrier, 264, 308, 320. 
Dahlquist's test equation, 17, 256. 
Daniel-Moore conjecture, 308, 317, 392. 
DASSL,489. 
DEABM, 5,6. 
DEBDF,326. 
dense output 

of DAE extrapolation methods, 470. 
of DAE Rosenbrock methods, 452. 
of Dormand &; Prince methods, 30. 
of Enright methods, 282. 
of multistep methods, 292. 
of SDIRK4, 107. 

derivative feedback (D), 32. 
descriptor form, 485. 
diagonally implicit RK methods, 97f. 
difference approximations of Burgers 

equa.tions, 159. 
differential algebraic equations, 399,401. 
differential index, 476. 
differentiation error, 339. 

order, 339, 344. 
diffusion, 5. 
direct approa.ch, 403. 
DffiK,97. 
disc stability, 272, 274. 
disc theorem, 61, 272. 
discrete resolvent, 358, 380. 
discrete variation of constants formula, 

357,374. 
DJ-reducible RK methods, 199. 
dominant invariant subspace, 172. 
DOPRI5, 3, 19, 24, 25, 26, 28, 33, 156. 

for mechanical system, 541. 
DOPRI8, 11, 15, 19, 28. 
Dormand &; Prince methods, 28. 
Dorodnicyn's asymptotic formula, 402. 
dual order stars, 318. 

efficiency diagram, 166-167, 543. 
EKBWH-method, 174. 
elastic beam, 163. 
electrical circuits, 5, 404, 408. 
elementary differentials, 114. 

for index 1 DAE, 438, 440. 
for index 2 DAE, 519. 

Enright &; Kamel method, 175. 
Enright methods, 281, 286. 
e-expansions for SPP 

for exact solution, 416. 
for RK solution, 421. 



equivalence 
between stability concepts, 198, 20l. 
of A and B stability, 225. 
of A and G-stability, 334. 

error 
local, 241, 243, 348, 505. 
global 241, 346,347,353,428. 

error bounds for one-Ieg methods, 338. 
error constant, 265, 308, 309. 

of rational approximations, 41, 64, 7l. 
of second derivative multistep meth­

ods, 281, 282. 
for SDBDF methods, 285. 

error propagation, 245. 
Euler equations, 483. 
Euler's polyhedral formula, 59. 
EULSIM, 152. 
existence 

of multistep solutions, 33l. 
of numerical RK solutions, 229. 

expansion of SPP solutions, 416f. 
experiments with multistep codes, 323. 
explicit 

Runge-Kutta methods, 16. 
Adams methods, 259. 
midpoint rule, 262, 266. 
Nyström methods, 262, 266. 

exponential fitting points, 57. 
extended BDF methods, 287,289. 
extended multistep methods, 287. 
extrapolation methods, 142. 

for index 1 DAE, 457. 
GBS, 19. 

FINAG,160. 
FitzHugh & Nagumo equations, 160. 
Fortran codes, 547. 
Fourier transform, 273. 

Gauss methods, 75, 196, 209, 235, 242. 
Gaussian quadrat ure formulas, 215. 
Gear & Saad method, 172. 
general linear methods, 313. 

algebraic stability of, 383, 386. 
generalized multistep methods, 280. 
generating polynomials, 256. 
GGL formulation of mechanical system, 

485, 540. 
global error, 24l. 

expansion for SPP, 428. 
for Prothero & Robinson problem, 353. 
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of linear multistep methods, 346. 
of one-Ieg methods, 347. 

Graeco-Roman transformation, 275. 
Green's function, 10. 
GRK4A,119. 
Gronwalliemma, 479,480. 
growth function 206. 
G-stability, 

of one-Ieg methods, 332. 
of BDF2 method, 332. 
of general linear methods, 383, 386. 

hanging rope, 14. 
Hermite interpolation, 29l. 
Hessenberg form, 132. 
high order A( a}stable multistep meth­

ods, 269. 
high oscillations, 12. 
HffiA5, method of Higham & Hall, 28, 

3l. 
HIRES, 157. 
HLR89,478 
hump, 122. 
hybrid multistep methods, 287. 
hyperbolic problems, 37. 

implementation 
of extrapolation schemes, 15l. 
of IRK methods, 128f. 
of Rosenbrock methods, 120. 

implicit 
Adams methods, 259. 
Euler method, 3, 263. 
midpoint rule, 142, 330. 
Milne-Simpson methods, 262, 266. 
RK methods, 40, 75f. 

implicit differential equations 
Mu' ==~(u), 111, 136, 153,406,437. 
M(u)u' ==~(u), 486. 
F(u',u) == 0, 474, 479. 

inconsistent initial values 
for DAE Rosenbrock methods, 453. 

index, 474f. 
differential, 476. 
index 1,403,477,485,540. 
index 2, 477, 485,540. 
index 3, 478, 485, 539. 
of nilpotency, 476. 
perturbation, 478. 

indirect approach, 404, 41l. 
inexact Jacobian, 123. 
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influence of perturbations, 233, 492, 503. 
integral feedback (I), 32. 
interpolation error, 339. 

order, 339, 344. 
IRK(DAE), 404. 
irreducible RK methods, 200. 
I-stability, 43. 

Jeltsch-Nevanlinna theorem, 62, 312. 

(k,l)-algebraic stability, 206,207. 
kinetic energy, 483, 531. 

of mechanical systems, 53l. 
Kirchhoff's law, 404. 
Kreiss matrix theorem, 348. 
Kuntzmann-Butcher methods, 75. 

labelled trees, 114, 441, 520. 
LADAMS, 327. 
Lagrange multipliers, 484. 
Lagrange theory, 9, 14, 483. 
Lagrange-Hamilton principle, 483. 
Laguerre polynomials 103, 139, 14l. 
Legendre polynomials, 75, 83, 215. 
linear algebra savings, 170. 
linear problems, contractivity, 178. 
linearly implicit 

Euler method, 150. 
Euler for index 1 DAE, 457. 
midpoint rule, 145, 487. 
RK method, 110. 

Lobatto lIIA methods, 79, 80, 197, 225, 
237,242. 

Lobatto lIIB methods, 79, 80, 197,225, 
237,242. 

Lobatto IIIC methods, 79, 81, 196, 235, 
238,242. 

local error, 241,243,348,505. 
logarithmic norm 179, 418. 
LSODE, 156, 326. 
Lsom, 489. 
L-stability, 45. 

of SDIRK methods, 106. 

matrix pencil, 474. 
mechanical system, 483, 53l. 
MEXX for mechanical system, 54l. 
midpoint rule, 262, 266. 
Milne-Simpson methods, 262, 266. 
monotonically labelIed trees, 114, 441, 

520. 

Montaigne's ruff, 309. 
multibody mechanisms, 53l. 
multiderivative multistep methods, 303. 
multiple real-pole approximations, 

70, 105. 
multiplier, 368. 

and nonlinearities, 373. 
construction of, 371. 

multistep collocation methods, 290. 
as general linear method, 292. 
G-stability of, 388. 

multistep methods, 255, 256. 
for index 1, 410. 
for index 2, 489. 
of Radau type, 293. 

multistep Runge-Kutta methods, 
303,390. 

multistep twin, 330. 

Navier-Stokes equations, 376. 
nonlinear perturbations, 182. 
number of positive weights of QF, 217. 
numerical experiments, 155. 
numerical work and poles, 305. 
Nyström methods, 262. 

ODEX, 7,8. 
one-Ieg multistep methods, 329, 330. 

error bounds for, 338. 
one-sided Lipschitz condition, 191, 229, 

329,365. 
one-sided Lipschitz constant, 191. 
one-step methods, H. 
optimal control problems, 48l. 
optimal stability regions, 36-37. 
order conditions 

for DAE Rosenbrock methods, 445. 
for index 2 DAE, 517, 524. 
for multistep methods, 292. 
for Rosenbrock methods, 112-115. 
for SDIRK methods, 98. 
for second derivative multistep meth-

ods, 280. 
order of a tree, 439, 519. 
order of B-convergence, 247. 
order of a quadrat ure formulas, 215. 
order reduction, 240. 

for Rosenbrock methods, 252. 
order stars. 

dual,318. 
for BDF2, 307. 
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for multistep methods, 300,306. 
for one-step methods, 53. 
for Pade approximations, 55. 
for SDIRK methods, 58. 
relative, 61, 71, 309. 

order tableau 
for DAE extrapolation methods, 463. 

OREGO, 156. 
Oregonator, 14. 

Pade approximations to e Z , 50. 
parabolic problems, 36, 378. 
parasitic roots, 259. 
Parseval identity, 274, 278. 
partitioned Rosenbrock methods, 455. 
partitioning methods, 171. 
Peano kerneis, 273, 274, 276. 
pendulum, 484. 
perturbation index, 478. 
perturbations 

of linear equations, 374. 
of RK solutions, 233. 

perturbed asymptotic expansions, 460, 
466. 

PI step size control, 31. 
PLATE,158. 
plate differential equation, 158. 
poles representing numerical work, 305. 
position level, 485. 
positive functions, 91, 92, 337. 
positive quadrat ure formulas, 194, 214, 

219. 
potential energy, 483, 535. 

of mechanical systems, 535. 
preconsistency, 386. 
predictor-corrector schemes, 260. 
principal root, 307,257. 
principal sheet, 307, 315. 
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550. 
for mechanical system, 540. 

RADAU7, 168. 
RADAU9, 168. 
rational approximations with real poles, 

64. 
real-pole sandwich, 65. 
red-black reduction, 176. 
reduced system, 400-401, 402, 416. 
reducible RK methods, 199, 200. 
region of absolute stability, see 'stability 

domain' 
region of step-control stability, 29. 
regular matrix pencil, 474. 
relative order star, 61, 71, 309. 
relative separation, 172. 
re solvent (discrete), 358, 380. 
Riemann surfaces, 300, 302. 
RKF2(3), 26. 
RKF4(5), 28. 
ROBER,157. 
Robertson reaction, 3, 20, 157. 
RODAS, 155, 450, 558. 
root locus curve, 258. 

for BDF methods, 264. 
for explicit Adams methods, 260. 
for implicit Adams methods, 260. 
for Milne-Simpson methods, 263. 
for Nyström methods, 263. 
for SDBDF methods, 285. 

ROS4, 119, 155, 557. 
Rosenbrock comparisons, 165, 168. 
Rosenbrock methods 

for stiff problems, 110, 111. 
for DAE, 436. 
with inexact Jacobian, 123. 

rotation number, 217. 
Routh criterion, 95. 
Runge-Kutta methods 

projected collocation methods, 514. 
projected Runge-Kutta methods, 512, 527. 
projection methods, 171. 

explicit, 17. 
implicit, 40, 75. 
for index 1 problems, 402. 
for index 2 DAE, 502. projections (index 2), 495, 504. 

property C, 311. 
property T, 86. 
proportional feedback (P), 32. 

RADAU IA, 77, 196, 235, 242. 
RADAU HA, 78, 196, 209, 235, 242. 
Radau methods of multistep type, 293. 
RADAU5,4, 5, 47, 128f., 407, 155, 547, 

for SPP, 416f. 
projected, 512, 527. 

savings in linear algebra, 542. 
scaled stability domain, 62. 

for Taylor methods, 63. 
Schur's criterion, 299. 
SC-stability, 26, 27. 
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for Dormand & Prince methods, 28. of Pade approximations, 54. 
SDBDF, 284. of predictor-corrector schemes, 261. 
SDffiK code, 138. stability function R(z), 17. 
SDffiK method, 42, 44, 97. of collocation method, 48. 
SDffiK4, 107, 155, 555. of extrapolation methods, 143, 144. 
SECDER, 327. of IRK methods, 40, 89. 
second Dahlquist barrier, 264,273. of Rosenbrock methods, 116. 
second derivative BDF methods, 284. of SDIRK methods, 103. 
second derivative multistep meth., 280. stability function for y' = >'( a:)y 
separably stiff problems, 171. of general linear methods, 247. 
SEULEX, 161, 152, 155, 560. of ffiK methods, 196,197. 
simplified Newton, 129, 499. stability region, see stability domain. 
simplifying assumptions, 75, 83, 84, 85, stable numerical solutions, 257. 

86, 195,221, 222, 391. stage order, 241. 
for index 2 DAE, 525. starting values for Newton iteration, 133. 

singly diagonally implicit RK methods, state space form, 403. 
97. step size selection, 133. 

singly implicit RK methods, 139. step-control stability, 26. 
singular perturbation problems, stiff, H. 

399f., 465. stiff eigenvalues, 172. 
SIRK-methods, 139. stiff eigenvectors, 172. 
smoothing step for extrapolation, 144. stiff mechanical system, 544. 
SODEX, 152, 155, 562. stiff stability of multistep methods, 268. 
SPP, 399f., 465. stiff-detest, 156. 
SPRINT, 327, 489. stifHy accurate 
S-reducible RK methods, 200. RK methods,46, 404. 
stability analysis Rosenbrock methods, 448. 

for Cash's algorithm, 289, 290. SDIRK methods, 99. 
for Euler's method, 16. stiffness, 2. 
for explicit RK methods, 16f. detection, 22. 
for extended BDF methods, 289, 290. stopping criterion, 130. 
for multistep Radau methods, 295, 297. for Enright & Kamel method, 177. 
for multistep Runge-Kutta methods, strictly stable multistep methods, 259. 

303. STRIDE, 156. 
stability domain, 17. Sullivan, Leon, 10. 

of Bader-Deuflhard method, 149. superconvergence,510. 
of BDF methods, 264. super-future point, 287. 
of Cash's algorithm, 289. switching between explicit and implict, 
of DOPRI methods, 18. 170. 
of Enright methods, 283. 
of ERK methods, 18. 
of explicit Adams methods, 260. 
of extended BDF methods, 289, 290. 
of extrapolated Euler, 151. 
of GBS extrapolation, 20. 
of implicit Adams methods, 260, 266. 
of implicit Euler method, 263. 
of Milne-Simpson methods, 263. 
of multistep methods, 257. 
of multistep Radau methods, 296. 
of Nyström methods, 263. 

Taylor expansion 
for index 2 DAE, 517, 520. 
of DAE Rosenbrock solution, 442. 
of DAE solutions, 440. 
of index 2 RK solution, 523. 

Taylor series method, 280. 
Tchebychef polynomial, 36. 
theorem of von Neumann, 356. 
9-method, 208. 
threshold factor, 187. 
transient phase, 2. 



transistor amplifier, 404, 408. 
trapezoidal rule, 197, 250, 265, 330, 384. 
trees 

for ODE, 98, 113. 
for index 1 DAE, 438. 
for index 2 DAE, 519. 
for W -methods, 124. 
monotonically labelIed, 114, 441, 520. 

tuning parameters, 169. 

underlying ODE, 476. 
umqueness 

of multistep solutions, 331. 
of RK solutions, 233. 

Van der Pol's equation, 5, 157, 400. 
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Vandermonde matrix, 82. 
VDPOL,157. 
VDPOL2,157. 
velocity level, 485. 
VODE,326. 
Von Neumann's theorem, 179. 
V-transformation, 82. 

W-methods,123. 
weak AN-stability, 387. 
weak instability, 262. 
Weierstrass-Kronecker form, 474. 
work-precision diagram, 166-167,324, 

325. 
W-transformation, 82, 195. 
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