Springer Series in Computational Mathematics

14

Editorial Board

R. L. Graham, Murray Hill J. Stoer, Würzburg R. Varga, Kent (Ohio) E. Hairer G. Wanner

Solving Ordinary Differential Equations II

Stiff and Differential-Algebraic Problems

With 129 Figures

Springer-Verlag Berlin Heidelberg GmbH

Ernst Hairer Gerhard Wanner Université de Genève Section de Mathématiques, C.P. 240 2–4 rue du Lièvre CH-1211 Genève 24

Mathematics Subject Classification (1980): 65L05, 65L20, 34A50

ISBN 978-3-662-09949-0 ISBN 978-3-662-09947-6 (eBook) DOI 10.1007/978-3-662-09947-6

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is only permitted under the provisions of the German Copyright Law of September 9, 1965, in its current version, and a copyright fee must always be paid. Violations fall under the prosecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1991 Originally published by Springer-Verlag Berlin Heidelberg New York in 1991 Softcover reprint of the hardcover 1st edition 1991 This book is dedicated to the memory of

Professor Peter Henrici (1923 - 1987)

His classical text-book of 1962 on our subject "has served as a lighthouse; it has established a clear framework of concepts and many fundamental results" (quoted from Stetter 1973).

Preface

"Whatever regrets may be, we have done our best." (Sir Ernest Shackleton, turning back on 9 January 1909 at 88°23' South.)

Brahms struggled for 20 years to write his first symphony. Compared to this, the 10 years we have been working on these two volumes may even appear short.

This second volume treats stiff differential equations and differential algebraic equations. It contains three chapters: Chapter IV on one-step (Runge-Kutta) methods for stiff problems, Chapter V on multistep methods for stiff problems, and Chapter VI on singular perturbation and differential-algebraic equations.

Each chapter is divided into sections. Usually the first sections of a chapter are of an introductory nature, explain numerical phenomena and exhibit numerical results. Investigations of a more theoretical nature are presented in the later sections of each chapter.

As in Volume I, the formulas, theorems, tables and figures are numbered consecutively in each section and indicate, in addition, the section number. In cross references to other chapters the (latin) chapter number is put first. References to the bibliography are again by "author" plus "year" in parentheses. The bibliography again contains only those papers which are discussed in the text and is in no way meant to be complete.

It is a pleasure to thank J. Butcher, G. Dahlquist, and S.P. Nørsett (coauthor of Volume I) for their interest in the subject and for the numerous discussions we had with them which greatly inspired our work. Special thanks go to the participants of our seminar in Geneva, in particular Ch. Lubich, A. Ostermann and M. Roche, where all the subjects of this book have been presented and discussed over the years. Much help in preparing the manuscript was given by J. Steinig, Ch. Lubich and A. Ostermann who read and re-read the whole text and made innumerable corrections and suggestions for improvement. We express our sincere gratitude to them. Many people have seen particular sections and made invaluable suggestions and remarks: M. Crouzeix, P. Deuflhard, K. Gustafsson, G. Hall, W. Hundsdorfer, L. Jay, R. Jeltsch, J.P. Kauthen, H. Kraaijevanger, R. März, and O. Nevanlinna. Finally we thank all those people who helped us to install and run our Apollo workstations on which most computations, most figures and the text processing were done. Several pictures were produced by our

VIII Preface

children Klaudia Wanner and Martin Hairer, the one by drawing the other by hacking.

The marvellous, perfect and never failing TEX program of D. Knuth allowed us to deliver a camera-ready manuscript to Springer-Verlag, so that the book could be produced rapidly and at a reasonable price. We acknowledge with pleasure the numerous remarks of the planning and production group of Springer-Verlag concerning fonts, style and other questions of elegance.

March, 1991

The Authors

Contents

Chapter IV. Stiff Problems – One-Step Methods

IV.1	Examples of Stiff Equations	2 3
	Chemical Reaction Systems Electrical Circuits	ა 5
	Diffusion	5
	A "Stiff" Beam	9
	High Oscillations	9 12
	Exercises	$12 \\ 12$
IV.2	Stability Analysis for Explicit RK Methods	16
1 V . 2	Stability Analysis for Explicit KK Methods	16
	Explicit RK Methods	10
	Extrapolation Methods	19
	Analysis of the Examples of IV.1	19 20
	Automatic Stiffness Detection	20 22
	Step-Control Stability	22 26
	SC-Stable Dormand and Prince Pairs	20 28
		20 31
	A PI Step Size Control Exercises	36
IV.3	A-Stable Runge-Kutta Methods	40
	The Stability Function	40
	A-Stability	42
	L-Stability	45
	$A(\alpha)$ -Stability	46
	Numerical Results	47
	Collocation Methods	48
	Padé Approximations to the Exponential Function	50
	Exercises	51
IV.4	Order Stars	53
	Introduction	53
	Order and Stability for Rational Approximations	58
	Stability of Padé Approximations	60
	Comparing Stability Domains	61
	Rational Approximations with Real Poles	64
	The Real-Pole Sandwich	65
	Multiple Real-Pole Approximations	70
	Exercises	72

X Contents

IV.5	Construction of Implicit Runge-Kutta Methods	75
	Gauss Methods	75
	Radau IA and Radau IIA Methods	
	Lobatto IIIA, IIIB and IIIC Methods	
	The W-Transformation	
	Construction of Implicit Runge-Kutta Methods	
	Stability Function	89
	Positive Functions	
	Exercises	
IV.6	Diagonally Implicit RK Methods	
	Order Conditions	97
	Stiffly Accurate SDIRK Methods	
	Solution of Equations (6.4)	
	The Stability Function Multiple Real-Pole Approximations with $R(\infty) = 0$	
	Choice of Method \dots	
	Exercises	
IV.7	Rosenbrock-Type Methods Derivation of the Method	110
	Order Conditions	
	The Stability Function	
	Construction of Methods of Order 4	
	Higher Order Methods	
	Implementation of Rosenbrock-Type Methods	
	Coding	
	The "Hump"	122
	Methods with Inexact Jacobian (W-Methods)	
	Exercises	
IV.8	Implementation of Implicit Runge-Kutta Methods	128
	Reformulation of the Nonlinear System	128
	Simplified Newton Iterations	129
	Stopping Criterion	
	Transformation to Hessenberg Form	131
	Starting Values for the Newton Iteration	132
	Step Size Selection	
	Numerical Study of the Step-Control Mechanism	
	Implicit Differential Equations	
	Banded Jacobian	138
	An SDIRK-Code	
	SIRK-Methods	
	Exercises	140
IV.9	Extrapolation Methods	
	Extrapolation of Symmetric Methods	
	Smoothing	144
	The Linearly Implicit Mid-Point Rule	145
	Implicit and Linearly Implicit Euler Method	
	Implementation	151
	Non-Autonomous Differential Equations Implicit Differential Equations	
	Exercises	
		104

B-Convergence Implies Algebraic Stability	247
The Trapezoidal Rule	250
Order Reduction for Rosenbrock Methods	252
Exercises	253

Chapter V. Multistep Methods for Stiff Problems

V.1	Stability of Multistep Methods The Stability Region	
	Computation of the Stability Domain	257
	Adams Methods	
	Predictor-Corrector Schemes	
	Nyström Methods	262
	BDF	263
	A-stability and the Second Dahlquist Barrier	
	Exercises	266
V.2	"Nearly" A-Stable Multistep Methods	
	$A(\alpha)$ -Stability and Stiff Stability	
	High Order $A(\alpha)$ -Stable Methods	
	Approximating Low Order Methods with High Order Ones	
	A Disc Theorem	
	Accuracy Barriers for Linear Multistep Methods	
	Exercises	
V.3	Generalized Multistep Methods	280
	Second Derivative Multistep Methods	
	Dense Output for Enright Methods	
	Second Derivative BDF Methods	
	Blended Multistep Methods	
	Extended Multistep Methods	
	Multistep Collocation Methods	
	Methods of "Radau" Type	
	Computation of the Nodes	
	Stability of the Radau-Type Methods Exercises	
V.4	Order Stars on Riemann Surfaces	
	Riemann Surfaces	
	More General Methods	
	Poles Representing Numerical Work	
	Order and Order Stars	306
	The "Daniel and Moore Conjecture"	308
	Methods with Property C	311
	General Linear Methods	
	Dual Order Stars Exercises	
V.5	Experiments with Multistep Codes	
4.0	The Codes Used	
V.6	One-Leg Methods and G-Stability	
	One-Leg (Multistep) Methods	
	Existence and Uniqueness	
	G-Stability	

	An Algebraic Criterion The Equivalence of A-Stability and G-Stability A Criterion for Positive Functions Error Bounds for One-Leg Methods Convergence of A-Stable Multistep Methods Exercises	334 337 338 342
V.7	Convergence for Linear Problems Difference Equations for the Global Error Formulation as a One-Step Method The Kreiss Matrix Theorem Some Applications of the Kreiss Matrix Theorem Global Error for Prothero and Robinson Problem Convergence for Linear Systems with Constant Coefficients Matrix Valued Theorem of von Neumann Discrete Variation of Constants Formula Exercises	346 348 351 353 354 356 357
V.8	Convergence for Nonlinear Problems Problems Satisfying a One-Sided Lipschitz Condition Multiplier Technique Construction of Multipliers Multipliers and Nonlinearities Discrete Variation of Constants and Perturbations Incompressible Navier-Stokes Equations Convergence for Nonlinear Parabolic Problems Exercises	365 368 371 373 374 376 378
V.9	Algebraic Stability of General Linear Methods G-Stability Algebraic Stability AN-Stability and Equivalence Results Multistep Runge-Kutta Methods Simplifying Assumptions Quadrature Formulas Algebraically Stable Methods of Order 2s B-Convergence Exercises	383 384 387 390 391 393 394 396

Chapter VI. Singular Perturbation Problems and Differential-Algebraic Equations

VI.1	Singular Perturbation and Index 1 Problems	
	Asymptotic Solution of van der Pol's Equation	
	Runge-Kutta Methods for Problems of Index 1	
	A Transistor Amplifier	404
	Problems of the Form $Mu' = \varphi(u)$	406
	Convergence of Runge-Kutta Methods	408
	Multistep Methods for Index 1 DAE's	410
	Multistep Methods for Singular Perturbation Problems	411
	Exercises	415
VI.2	Epsilon Expansions for Exact and RK Solutions	416
	Expansion of the Smooth Solution	416

	Numerical Experiments The Codes Used Small Test Problems Large Test Problems Results and Discussion Possible Improvements Partitioning and Projection Methods The Method of Gear and Saad The EKBWH-Method Exercises	155 156 159 165 169 171 172 174 176
	Contractivity for Linear Problems Euclidean Norms (Theorem of von Neumann) Study of the Contractivity Function Small Nonlinear Perturbations Contractivity in $\ \cdot\ _{\infty}$ and $\ \cdot\ _{1}$ Study of the Threshold Factor Absolutely Monotonic Functions Exercises	179 180 182 185 187 188 190
	B-Stability and Contractivity One-Sided Lipschitz Condition B-Stability Algebraic Stability Some Algebraically Stable IRK Methods AN-Stability Reducible Runge-Kutta Methods The Equivalence Theorem for S-Irreducible Methods (k, l)-Algebraic Stability Computation of the Optimal k Exercises	191 192 193 194 196 199 201 206 207
IV.13	Positive Quadrature Formulas and B-Stable RK Methods Quadrature Formulas and Related Continued Fractions Number of Positive Weights Characterization of Positive Quadrature Formulas Necessary Conditions for Algebraic Stability Characterization of Algebraically Stable Methods The "Equivalence" of A- and B-Stability Exercises	214 214 217 219 220 223 225
	Existence and Uniqueness of IRK Solutions Existence	229 231 233 234 236 238
IV.15	B-Convergence. The Order Reduction Phenomenon The Local Error Error Propagation B-Convergence for Variable Step Sizes	240 240 243 245

XIV Contents

	Expansions with Boundary Layer Terms Estimation of the Remainder Expansion of the Runge-Kutta Solution Convergence of RK-Methods for Differential-Algebraic Systems Existence and Uniqueness of the Runge-Kutta Solution Influence of Perturbations Estimation of the Remainder in the Numerical Solution Numerical Confirmation Perturbed Initial Values Exercises	420 421 423 425 426 428 432 432 435
VI.3	Rosenbrock Methods Definition of the Method Derivatives of the Exact Solution Trees and Elementary Differentials Taylor Expansion of the Exact Solution Taylor Expansion of the Numerical Solution Order Conditions Convergence Stiffly Accurate Rosenbrock Methods Construction of RODAS, a Stiffly Accurate Embedded Method Inconsistent Initial Values Exercises	436 438 440 442 445 447 448 450 453 455
VI.4	Extrapolation Methods Linearly Implicit Euler Discretization Perturbed Asymptotic Expansion Order Tableau Error Expansion for Singular Perturbation Problems Dense Output Exercises	457 460 463 465 470
VI.5	Higher Index ProblemsThe Weierstrass-Kronecker Canonical FormThe Differential IndexThe Perturbation IndexControl ProblemsMechanical SystemsProblems of the Form $M(u)u' = \varphi(u)$ Exercises	474 476 478 481 483 486
VI.6	Multistep Methods for Index 2 DAEExistence and Uniqueness of Numerical SolutionInfluence of PerturbationsThe Local ErrorConvergence for BDFGeneral Multistep MethodsSolution of the Nonlinear System by Simplified NewtonExercises	490 492 494 494 498 498
VI.7	Runge-Kutta Methods for Index 2 DAE The Nonlinear System Estimation of the Local Error Convergence for the y-Component Convergence for the z-Component	502 504 506

	Collocation Methods	508
	Superconvergence of Collocation Methods	
	Projected Runge-Kutta Methods	
	Summary of Convergence Results	514
	Exercises	
VI.8	Order Conditions for Index 2 DAE	
	Derivatives of the Exact Solution	
	Trees and Elementary Differentials	
	Taylor Expansion of the Exact Solution	
	Derivatives of the Numerical Solution	
	Order Conditions	
	Simplifying Assumptions	
	Projected Runge-Kutta Methods	527
	Exercises	530
VI.9	Computation of Multibody Mechanisms	531
	Description of the Model	
	Fortran Subroutines	536
	Computation of Consistent Initial Values	538
	Numerical Computations	
	A Stiff Mechanical System	
	Exercises	
		• • •
Appe	ndix Fortran Codes	547
	Driver for the Code RADAU5	
	Subroutine RADAU5	
	Subroutine SDIRK4	
	Subroutine ROS4	557
	Subroutine RODAS	
	Subroutine SEULEX	
	Subroutine SODEX	
		•••
Biblic	ography	565
\mathbf{Symb}	ol Index	593
Subje	ct Index	595

This chapter introduces stiff (styv (Swedish first!), steif (German), stifar (Icelandic), stijf (Dutch), raide (French), kankea (Finnish), rígido (Spanish), stiff (Italian), merev (Hungarian), rigid (Rumanian), tog (Slovenian), čvrst (Serbo-Croatian), tuhý (Czecho-Slovak), sztywny (Polish), stign (Breton), Жесткий (Russian), твъра (Bulgarian), קשיה (Hebrew), געוים, אויט, (Arabic), نَعْلَمُ (Urdu), سخت (Persian), 하이 (Sanscrit), 하 ਰ (Hindi), 創性 (Chinese), 硬い (Japanese), cương (Vietnam), ngumu (Swahili) ...) differential equations. While the intuitive meaning of stiff is clear to all specialists, much controversy is going on about its correct mathematical definition (see e.g. Aiken 1985, p. 360-363). The most pragmatical opinion is also historically the first one (Curtiss & Hirschfelder 1952): stiff equations are equations where certain implicit methods, in particular BDF, perform better, usually tremendously better, than explicit ones. The eigenvalues of the Jacobian $\partial f/\partial y$ certainly play a role in this decision, but quantities such as the dimension of the system, the smoothness of the solution or the integration interval are also important (Sections IV.1 and IV.2).

Stiff equations require new concepts of stability (A-stability, Section IV.3) and lead to mathematical theories on order restrictions (order stars, IV.4). Stiff equations require implicit methods; we therefore focus in Sections IV.5 and IV.6 on implicit Runge-Kutta methods, in IV.7 on (semi-implicit) Rosenbrock methods and in IV.9 on semi-implicit extrapolation methods. The actual efficient implementation of implicit Runge-Kutta methods poses a number of problems which are discussed in Section IV.8. Section IV.10 then reports on some numerical experiments for all these methods.

With Sections IV.11, IV.12 and IV.13 we begin with the discussion of contractivity (B-stability) for linear and nonlinear differential equations. The chapter ends with questions of existence and numerical stability of the implicit Runge-Kutta solutions (Section IV.14) and a convergence theory which is independent of the stiffness (B-convergence, Section IV.15).

IV.1. Examples of Stiff Equations

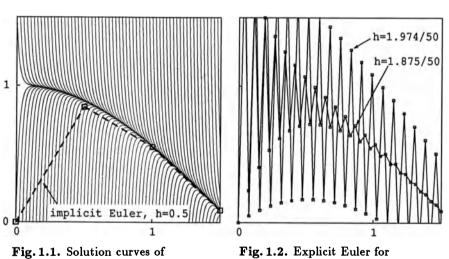
"... Around 1960, things became completely different and everyone became aware that the world was full of stiff problems."

(G. Dahlquist in Aiken 1985)

(1.1)

Stiff equations are problems for which explicit methods don't work. Curtiss & Hirschfelder (1952) explain stiffness on one-dimensional examples such as

 $y' = -50(y - \cos x) \; .$



(1.1) with implicit Euler solution

Fig. 1.2. Explicit Euler for y(0) = 0, h = 1.974/50 and 1.875/50

Solution curves of Equation (1.1) are shown in Fig. 1.1. There is apparently a smooth solution in the vicinity of $y \approx \cos x$ and all other solutions reach this one after a rapid "transient phase". Such transients are typical of stiff equations, but are neither sufficient nor necessary. For example, the solution with initial value y(0) = 1 (more precisely 2500/2501) has no transient. Fig. 1.2 shows Euler polygons for the initial value y(0) = 0 and step sizes h = 1.974/50 (38 steps) and h = 1.875/50 (40 steps). We observe that whenever the step size is a little too large (larger than 2/50), the numerical solution goes too far beyond the equilibrium and violent oscillations occur.

Looking for better methods for differential equations such as (1.1), Curtiss and Hirschfelder discovered the BDF method (see Section III.1): the

approximation $y \approx \cos x$ (i.e., f(x, y) = 0) is only a crude approximation to the smooth solution, since the derivative of $\cos x$ is not zero. It is much better, for a given solution value y_n , to search for a point y_{n+1} where the slope of the vector field is directed towards y_n , hence

$$\frac{y_{n+1} - y_n}{h} = f(x_{n+1}, y_{n+1}) .$$
 (1.2)

This is the implicit Euler method. The dotted line in Fig. 1.1 consists of three implicit Euler steps and demonstrates impressively the good stability property of this method. Equation (1.1) is thus apparently "stiff" in the sense of Curtiss and Hirschfelder.

Extending the above idea "by taking higher order polynomials to fit y at a large number of points" then leads to the BDF methods.

Chemical Reaction Systems

When the equations represent the behaviour of a system containing a number of fast and slow reactions, a forward integration of these equations becomes difficult.

(H.H. Robertson 1966)

The following example of Robertson's (1966) has become very popular in numerical studies (Willoughby 1974):

$$A \xrightarrow{0.04} B \quad (slow)$$

$$B + B \xrightarrow{3 \cdot 10^7} C + B \quad (very fast)$$

$$B + C \xrightarrow{10^4} A + C \quad (fast)$$
(1.3)

which leads to the equations

A:
$$y'_1 = -0.04y_1 + 10^4y_2y_3$$
 $y_1(0) = 1$
B: $y'_2 = 0.04y_1 - 10^4y_2y_3$ $-3 \cdot 10^7y_2^2$ $y_2(0) = 0$
C: $y'_3 = 3 \cdot 10^7y_2^2$ $y_3(0) = 0.$ (1.4)

After a bad experience with explicit Euler just before, let's try a higher order method and a more elaborate code for this example: DOPRI5 (cf. Volume 1). The numerical solutions obtained for y_2 with $Rtol = 2 \cdot 10^{-2}$ (204 steps) as well as with $Rtol = 10^{-3}$ (203 steps) and $Atol = 10^{-6} \cdot Rtol$ are displayed in Fig. 1.3. Fig. 1.4 presents the step sizes used by the code and also the local error estimates. There, all rejected steps are crossed out.

We observe that the solution y_2 rapidly reaches a quasi-stationary position in the vicinity of $y'_2 = 0$, which in the beginning $(y_1 = 1, y_3 = 0)$ is at $0.04 \approx 3 \cdot 10^7 y_2^2$, hence $y_2 \approx 3.65 \cdot 10^{-5}$, and then very slowly goes back to zero again. The numerical method, however, integrates this smooth solution by thousands of apparently unnecessary steps. Moreover, the chosen step sizes are more or less independent of the chosen tolerance. Hence, they seem to be governed by stability rather than by precision requirements. It can also be seen that an implicit Runge-Kutta code (such as RADAU5 described in Sections IV.5 and IV.8) integrates this equation without any problem.

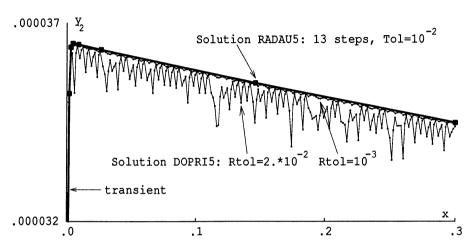


Fig. 1.3. Numerical solution for problem (1.4) with DOPRI5 and RADAU5

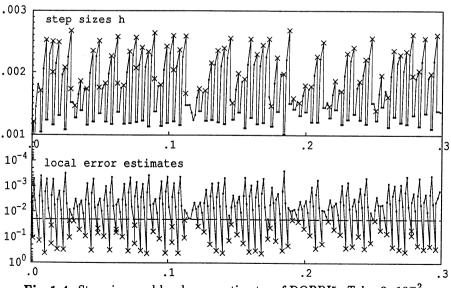


Fig. 1.4. Step sizes and local error estimates of DOPRI5, $Tol = 2 \cdot 10^{-2}$

Electrical Circuits

"This behavior is known, at least in part, to any experienced worker in the field." (G. Hall 1985)

One of the simplest nonlinear equations describing a circuit is Van der Pol's equation (see Section I.16)

$$\begin{aligned} y_1' &= y_2 & y_1(0) = 2 \\ y_2' &= \mu (1 - y_1^2) y_2 - y_1 & y_2(0) = 0 . \end{aligned}$$
 (1.5)

We have seen in Chapter II that this equation is easily integrated for moderate values of μ . But we now choose $\mu = 500$ and suspect that the problem might become difficult. It turns out that the period of the solution increases with μ . We therefore rescale the solutions and introduce $t = x/\mu$, $z_1(t) = y_1(x), z_2(t) = \mu y_2(x)$. In the resulting equation the factor μ^2 multiplies the entire second line of f. Substituting again y for z, x for t and $\mu^2 = 1/\varepsilon$ we obtain

$$\begin{array}{ll} y_1' = y_2 & y_1' = y_2 \\ y_2' = \mu^2 \big((1 - y_1^2) y_2 - y_1 \big) & \text{or} & \varepsilon y_2' = (1 - y_1^2) y_2 - y_1 \ . \end{array}$$
 (1.5')

.

The steady-state approximation (see Vol. I, Formula (I.16.5)) then becomes independent of μ .

Why not try a multistep code this time? For example the predictorcorrector Adams code DEABM of Shampine & Watts. The results are shown in Figures 1.5 and 1.6. The code computes (with $Atol=10^{-7}$, $Rtol=10^{-2}$) 451 steps and stops at $x=8.61 \cdot 10^{-4}$ with Idid=-4 ("the problem appears to be stiff"). The implicit Runge-Kutta code RADAU5 integrates over the same interval in 11 steps.

Diffusion

"Stalling numerical processes must be wrong." (A "golden rule" of Achi Brandt)

Another source of stiffness is the translation of diffusion terms by divided differences (method of lines, see Section I.1) into a large system of ODE's. We choose the Brusselator (see (16.11) of Section I.16) in one spatial variable x

$$\frac{\partial u}{\partial t} = A + u^2 v - (B+1)u + \alpha \frac{\partial^2 u}{\partial x^2}
\frac{\partial v}{\partial t} = Bu - u^2 v + \alpha \frac{\partial^2 v}{\partial x^2}$$
(1.6)

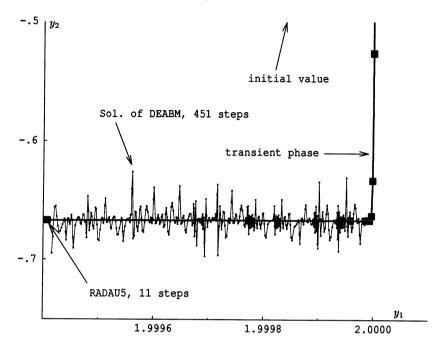


Fig. 1.5. Numerical solution for DEABM at equation (1.5), $Rtol = 10^{-2}$, $Atol = 10^{-7}$.

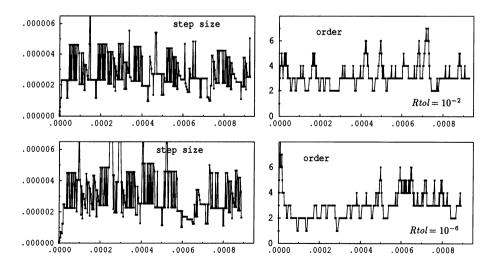


Fig. 1.6. Step sizes and orders for DEABM, $Rtol = 10^{-2}$, 10^{-6} , $Atol = 5 \cdot 10^{-8}$

with $0 \le x \le 1$, A=1, B=3, $\alpha=1/50$ and boundary conditions

$$u(0, t) = u(1, t) = 1,$$
 $v(0, t) = v(1, t) = 3,$
 $u(x, 0) = 1 + \sin(2\pi x),$ $v(x, 0) = 3.$

We replace the second spatial derivatives by finite differences on a grid of N points $x_i = i/(N+1)$ $(1 \le i \le N)$, $\Delta x = 1/(N+1)$ and obtain from (1.6)

$$\begin{aligned} u'_{i} &= 1 + u_{i}^{2} v_{i} - 4 u_{i} + \frac{\alpha}{(\Delta x)^{2}} (u_{i-1} - 2 u_{i} + u_{i+1}) , \\ v'_{i} &= 3 u_{i} - u_{i}^{2} v_{i} + \frac{\alpha}{(\Delta x)^{2}} (v_{i-1} - 2 v_{i} + v_{i+1}) , \\ u_{0}(t) &= u_{N+1}(t) = 1, \quad v_{0}(t) = v_{N+1}(t) = 3 , \\ u_{i}(0) &= 1 + \sin(2\pi x_{i}), \quad v_{i}(0) = 3, \quad i = 1, \dots, N . \end{aligned}$$

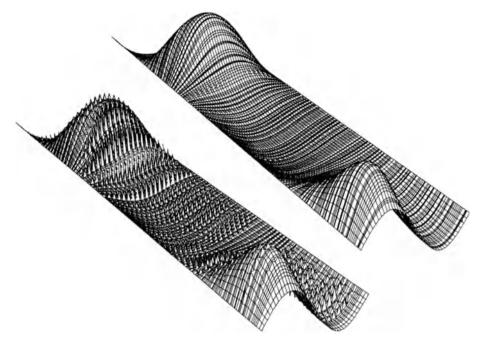
$$(1.6')$$

Table 1.1. Results for (1.6') with ODEX for $0 \le t \le 10$

N	Tol	accepted steps	rejected steps	function calls
10	10-4	20	3	358
20	10-4	84	27	1210
30	10-4	180	58	2462
40	10 ⁻⁴	317	108	4415
40	10 ⁻²	268	44	3736

This time we try the extrapolation code ODEX (see Volume I, p. 440) and integrate for $0 \le t \le 10$. The number of necessary steps increases curiously with N, as is shown in Table 1.1. Again, for N large, the computing time is nearly independent of the desired tolerance, the computed solutions, however, differ considerably (see Fig. 1.7). Even the smooth 10^{-4} -solution shows curious stripes which are evidently unconnected with the behaviour of the solution. Fig. 1.8 shows the extremely ragged step size and order changes which take place in this example.

We again have all the characteristics of a "stiff" problem, and the use of an implicit method promises better results. However, when applying such a method, one must carefully take advantage of the banded or sparse structure of the Jacobian matrix. Otherwise the numerical work involved in the linear algebra would increase with N^3 , precisely as the work for the explicit method $(N^2$ for the number of steps and N for the work per step). IV. Stiff Problems — One Step Methods



 $\mathit{Tol} = 0.9 \cdot 10^{-2}$ $Tol = 1.0 \cdot 10^{-4}$ Fig. 1.7. Solution u(x, t) of (1.6') with N = 40 using ODEX

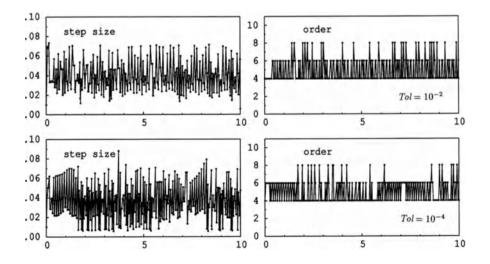


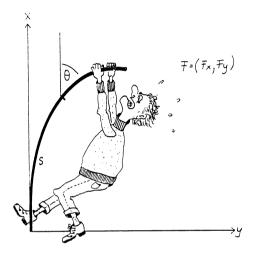
Fig. 1.8. Step size and order of ODEX at (1.6') with N = 40

8

A "Stiff" Beam

"Although it is common to talk about "stiff differential equations," an equation <u>per se</u> is not stiff, a particular initial value problem for that equation may be stiff, in some regions, but the sizes of these regions depend on the initial values <u>and</u> the error tolerance." (C.W. Gear 1982)

Let us conclude our series of examples by a problem from mechanics: the motion of an elastic beam. We suppose the beam inextensible of length 1 and thin. So we neglect shearing forces and rotatory inertia. We further want to allow it arbitrarily large movements. Thus, the most natural coordinate system to use is the angle θ as a function of arc length s and time t. We further suppose the beam clamped at s=0 and a force $\vec{F} = (F_x, F_y)$ acting at the free end s=1. The beam is then described by the equations



$$\boldsymbol{x}(s,\,t) = \int_0^s \cos\theta(\sigma,\,t)d\sigma, \quad \boldsymbol{y}(s,\,t) = \int_0^s \sin\theta(\sigma,\,t)d\sigma \;. \tag{1.7}$$

In order to obtain the equations of motion for this problem, we apply Lagrange theory (Lagrange 1788). This requires that we form L = T - U where T is the kinetic and U the potential energy. For the first of these we have simply

$$T = \frac{1}{2} \int_0^1 \left((\dot{x}(s,t))^2 + (\dot{y}(s,t))^2 \right) ds .$$
 (1.8)

The potential energy is made up of energy from bending (depending on the curvature) and from exterior forces as follows:

$$U = \frac{1}{2} \int_0^1 (\theta'(s, t))^2 ds - F_x(t) x(1, t) - F_y(t) y(1, t) . \qquad (1.9)$$

Here dots and primes denote derivatives with respect to t and s respectively. The equations of motion are now obtained by a "trivial" calculation (we are grateful to our colleague J. Descloux for having shown us how this must be done!) using the Hamilton principle which leads to (see Exercise 2)

$$\int_0^1 G(s, \sigma) \cos \left(\theta(s, t) - \theta(\sigma, t)\right) \ddot{\theta}(\sigma, t) d\sigma$$

10 IV. Stiff Problems — One Step Methods

$$=\theta''(s,t) + \cos\theta(s,t)F_y(t) - \sin\theta(s,t)F_x(t)$$
(1.10)

$$-\int_0^{\infty}G(s,\,\sigma)\sinig(heta(s,\,t)\!-\! heta(\sigma,\,t)ig)(\dot{ heta}(\sigma,\,t))^2d\sigma,\quad 0\leq s\leq 1$$

$$\theta(0, t) = 0, \qquad \theta'(1, t) = 0$$
 (1.11)

where

$$G(s, \sigma) = 1 - \max(s, \sigma) \tag{1.12}$$

is Green's function for the problem -w''(s) = g(s), w'(0) = w(1) = 0. If we discretize the integrals with the help of the midpoint rule

$$\int_0^1 f(\theta(\sigma, t)) d\sigma = \frac{1}{n} \sum_{k=1}^n f(\theta_k), \qquad \theta_k = \theta\left(\left(k - \frac{1}{2}\right) \frac{1}{n}, t\right), \qquad k = 1, \dots, n$$
(1.13)

Equations (1.10) become

$$\sum_{k=1}^{n} a_{lk} \ddot{\theta}_{k} = n^{4} \left(\theta_{l-1} - 2\theta_{l} + \theta_{l+1} \right) + n^{2} \left(\cos \theta_{l} F_{y} - \sin \theta_{l} F_{x} \right)$$

$$- \sum_{k=1}^{n} g_{lk} \sin(\theta_{l} - \theta_{k}) \dot{\theta}_{k}^{2}, \qquad l = 1, \dots, n$$

$$\theta_{0} = -\theta_{1}, \qquad \theta_{n+1} = \theta_{n} \qquad (1.11')$$

where

$$a_{lk} = g_{lk} \cos(\theta_l - \theta_k), \qquad g_{lk} = n + \frac{1}{2} - \max(l, k) .$$
 (1.14)

"Integration without preparation is frustration." (Reverend Leon Sullivan)

Numerical integration of (1.10') seems quite tedious, since the acceleration $\ddot{\theta}$ is only given implicitly. The computation of $\ddot{\theta}_k$ requires the solution of a linear system $A\ddot{\theta} = v$. Due to the special structure of A, this can be done efficiently, since with $B = (b_{lk})$, $b_{lk} = g_{lk} \sin(\theta_l - \theta_k)$, we have

$$A + iB = \operatorname{diag}\left(e^{i\theta_1}, \dots, e^{i\theta_n}\right) G \operatorname{diag}\left(e^{-i\theta_1}, \dots, e^{-i\theta_n}\right).$$
(1.15)

The matrix $G = (g_{lk})$ has the beautiful inverse

$$G^{-1} = \begin{pmatrix} 1 & -1 & & \\ -1 & 2 & -1 & & \\ & -1 & \ddots & \ddots & \\ & & \ddots & 2 & -1 \\ & & & -1 & 3 \end{pmatrix} , \qquad (1.16)$$

a positive definite tridiagonal matrix (a natural coincidence: G^{-1} represents the second order difference operator, and G comes from the Green function for a second order integration problem). Now

$$(A+iB)^{-1} = C+iD = \operatorname{diag}\left(e^{i\theta_1}, \dots, e^{i\theta_n}\right)G^{-1}\operatorname{diag}\left(e^{-i\theta_1}, \dots, e^{-i\theta_n}\right)$$
(1.17)

 \mathbf{and}

$$AC - BD = I, \quad AD + BC = 0 \tag{1.18}$$

lead to

$$A^{-1} = C + DC^{-1}D \; .$$

We can also simplify the term $-\sum g_{lk} \sin(\theta_l - \theta_k) \dot{\theta}_k^2$, which in vector notation is $-B\dot{\theta}^2$, with the formula $A^{-1}B = -DC^{-1}$ (from (1.18)). The accelerations $\ddot{\theta}_k$ are now obtained from (1.10') as follows.

- a) Let $v_l = n^4(\theta_{l-1} 2\theta_l + \theta_{l+1}) + n^2(\cos \theta_l F_y \sin \theta_l F_x)$,
- b) Compute $w = Dv + \dot{\theta}^2$ (D is bidiagonal);
- c) Solve the tridiagonal system Cu = w,
- d) Compute $\ddot{\theta} = Cv + Du$.

Thus the evaluation of (1.10°) reduces to $\mathcal{O}(n)$ operations (instead of $\mathcal{O}(n^3)$). We choose the initial conditions

$$\theta(s, 0) = 0, \qquad \dot{\theta}(s, 0) = 0$$
 (1.19)

and apply the exterior forces

$$F_x = -\varphi(t), \quad F_y = \varphi(t), \qquad \varphi(t) = \begin{cases} 1.5 \cdot \sin^2 t & 0 \le t \le \pi \\ 0 & \pi \le t \end{cases}$$
(1.20)

Table 1.2. Results for the beam (1.10') with DOPRI8

n	Tol	accepted steps	rejected steps	function calls
5	10^{-7}	180	9	2472
10	10 ⁻⁷	522	75	7722
20	10 ⁻⁷	2215	390	33523
40	10^{-7}	8852	547	121700
20	10 ⁻²	2227	671	37063
20	10^{-3}	2188	341	32572
20	10^{-4}	2208	433	33936
20	10^{-5}	2205	374	33189
20	10^{-6}	2200	369	33064
20	10^{-7}	2215	390	33523

The resulting system of ODE's is then integrated for $0 \le t \le 5$ by the code DOPRI8 of Volume I, although strictly speaking, the code is of too high an order for such a problem. The results are summarized in Table 1.2.

We observe the same phenomenon as before, the number of necessary steps increases like $\mathcal{O}(n^2)$ (the numerical work like $\mathcal{O}(n^3)$), and is more or less independent of the chosen tolerance. The numerical solution for n = 40 is displayed in Fig. 1.9. Only each 20th of the nearly 9000 steps is drawn (otherwise the picture would just be completely black). The computed solution looks perfectly smooth and there is no apparent reason for the need of *so* many steps. In fact due to lack of stability, the numerical method produces small vibrations which are invisible for $Tol = 10^{-7}$, and which force the integrator to such small step sizes. If we relax the high precision requirement, these oscillations become visible (Fig. 1.10).

High Oscillations

Let us now choose slightly perturbed initial values in the beam equation (1.10'). Instead of (1.19) we put

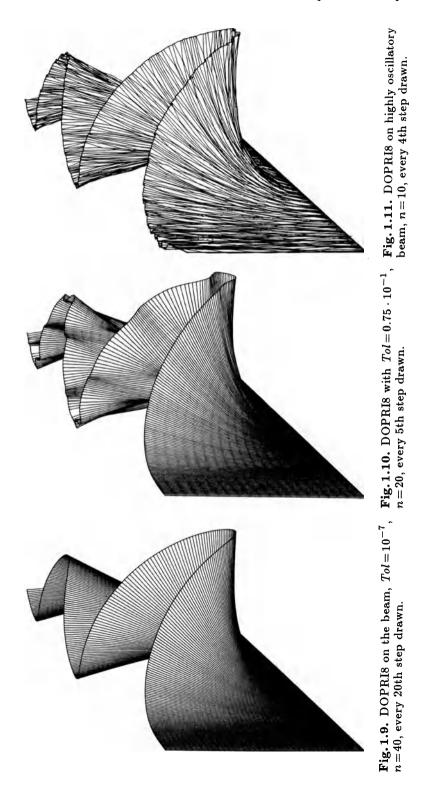
$$\theta_1 = \ldots = \theta_{n-1} = 0, \ \theta_n = 0.4, \quad \dot{\theta}_1 = \ldots = \dot{\theta}_n = 0.$$
 (1.19)

This time, the correct solution for n = 10 of (1.10') computed with $Tol = 10^{-6}$ and more than 2000 steps is displayed in Fig. 1.11.

The solution is highly oscillatory, no damping wipes out the fast vibrations since the system is conservative. Hence also an implicit method, if required to follow all these oscillations, would need the same number of steps and there would of course be no advantage in using it. So we see that the decision whether a problem should be regarded as stiff or nonstiff ("... that is the question"), may also depend on the chosen initial conditions. On the other hand, we shall see in Section IV.2 that whenever these high oscillations are not desired, implicit methods are a marvellous instrument for wiping them out.

Exercises

- 1. (Curtiss & Hirschfelder 1952). "It is interesting to notice that this method of integration (the implicit Euler) may be used in either direction". Integrate equation (1.1) backward with step size -0.5 and initial value y(1.5) = 0 in three steps. Observe that the numerical solution remains stable and follows the smooth solution.
- 2. Derive the equations of motion (1.10) for the elastic beam from (1.8) and (1.9).



14 IV. Stiff Problems — One Step Methods

Hint. If you want to avoid differentiation in function spaces, then discretize the beam as, say,

$$\begin{aligned} x_j &= \Delta s \sum_{k=1}^j \cos \theta_k, \quad y_j &= \Delta s \sum_{k=1}^j \sin \theta_k, \quad j = 1, \dots, n, \quad \Delta s = \frac{1}{n} \\ (1.21) \\ T &= \frac{\Delta s}{2} \sum_{j=1}^n \left(\dot{x}_j^2 + \dot{y}_j^2 \right) = \frac{\Delta s}{2} \sum_{j=1}^n \dot{z}_j \dot{z}_j, \qquad z_j &= \Delta s \sum_{k=1}^j e^{i\theta_k} \\ U &= \frac{\Delta s}{2} \sum_{j=1}^n \left(\frac{\theta_j - \theta_{j-1}}{\Delta s} \right)^2 - F_x \Delta s \sum_{k=1}^n \cos \theta_k - F_y \Delta s \sum_{k=1}^n \sin \theta_k, \end{aligned}$$

form the Lagrange function L = T - U and apply *n*-dimensional Lagrange theory (Lagrange (1788), Vol. II, Sect. VII and VIII, a very clear derivation can be found in Sommerfeld (1942), Vol. I, §36)

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\theta}_{k}}\right) - \frac{\partial L}{\partial \theta_{k}} = 0$$

or

$$\sum_{l=1}^{n} L_{\dot{\theta}_{k}\dot{\theta}_{l}}\ddot{\theta}_{l} = L_{\theta_{k}} - L_{\dot{\theta}_{k}t} - \sum_{l=1}^{n} L_{\dot{\theta}_{k}\theta_{l}}\dot{\theta}_{l}.$$
 (1.22)

3. Apply an explicit code to the Oregonator (Chapter I, Equation (16.15))

$$y_{1}' = 77.27 \left(y_{2} + y_{1} (1 - 8.375 \times 10^{-6} y_{1} - y_{2}) \right)$$

$$y_{2}' = \frac{1}{77.27} (y_{3} - (1 + y_{1}) y_{2})$$

$$y_{3}' = 0.161 (y_{1} - y_{3})$$

(1.23)

and study its performance.

4. a) Compute the equations of motion of the hanging rope (Fig. 1.13) of length 1 by using the results of Exercise 2. The potential energy has to be replaced by

$$U=-\int_0^1 x(s, t)ds.$$

Result.

$$\int_{0}^{1} G(s, \sigma) \cos(\theta(s, t) - \theta(\sigma, t)) \ddot{\theta}(\sigma, t) d\sigma$$

$$= -\int_{0}^{1} G(s, \sigma) \sin(\theta(s, t) - \theta(\sigma, t)) (\dot{\theta}(\sigma, t))^{2} d\sigma - (1 - s) \sin \theta(s, t)$$
(1.24)

for $0 \le s \le 1$, or, when discretized

$$\sum_{k=1}^{n} a_{lk} \ddot{\theta}_{k} = -\sum_{k=1}^{n} b_{lk} \dot{\theta}_{k}^{2} - n\left(n + \frac{1}{2} - l\right) \sin \theta_{l}.$$
 (1.24')

b) Do numerical computations with DOPRI5 or DOPRI8. Choose as initial position a hanging rope in equilibrium which is then released at one end.

Hint. The hanging rope in equilibrium satisfies, in the usual coordinates,

$$\int_{x_0}^{x_1} y \sqrt{1 + (y')^2} dx = \min \qquad \text{with} \qquad \int_{x_0}^{x_1} \sqrt{1 + (y')^2} dx = 1,$$

which becomes, using a Lagrange multiplier

$$\int_{x_0}^{x_1} (y-\lambda)\sqrt{1+(y')^2}dx = \text{ stat},$$

and using (2.6) of Section I.2,

$$y-\lambda=K\sqrt{1+(y')^2},$$

to obtain

$$y = \lambda + K \cosh\left(rac{x+lpha}{K}
ight).$$

Suitable choices of the parameters and change of coordinates $(K=1/2, \lambda = -K \cosh(\alpha/K), x \to y, y \to -x)$ then lead to

$$\theta(s, 0) = \frac{\pi}{2} - \arctan(\sinh(2\alpha) - 2s). \tag{1.25}$$

Result. DOPRI8 has computed the solution for $0 \le t \le 5$, n = 60 and $Tol = 10^{-5}$, $\alpha = 0.6$, in 207 steps (Fig. 1.12). The number of steps increases here like $\mathcal{O}(n)$, so the rope is — evidently — less stiff than the beam.

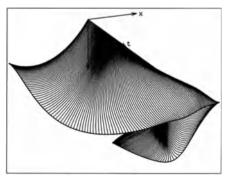


Fig. 1.12. Movement of hanging rope, every step drawn

IV.2. Stability Analysis for Explicit RK Methods

"... werden wir bei dem Anfangswertproblem hyperbolischer Gleichungen erkennen, dass die Konvergenz allgemein nur dann vorhanden ist, wenn die Verhältnisse der Gittermaschen in verschiedenen Richtungen gewissen Ungleichungen genügen." (Courant, Friedrichs & Lewy 1928)

The first analysis of instability phenomena and step size restrictions for hyperbolic equations was made in the famous paper of Courant, Friedrichs & Lewy (1928). Later, many authors undertook a stability analysis, very often independently, in order to explain the phenomena encountered in the foregoing section. An early and beautiful paper on this subject is Guillou & Lago (1961).

Stability Analysis for Euler's Method

Let $\varphi(x)$ be a smooth solution of y' = f(x, y). We linearize f in its neighbourhood as follows

$$y'(x) = f(x, \varphi(x)) + \frac{\partial f}{\partial y}(x, \varphi(x))(y(x) - \varphi(x)) + \dots$$
 (2.1)

and introduce $y(x) - \varphi(x) = \overline{y}(x)$ to obtain

$$\overline{y}'(x) = \frac{\partial f}{\partial y}(x, \varphi(x)) \cdot \overline{y}(x) + \ldots = J(x)\overline{y}(x) + \ldots$$
 (2.2)

As a first approximation we consider the Jacobian J(x) as constant and neglect the error terms. Omitting the bars we arrive at

$$y' = Jy . (2.2')$$

If we now apply, say, Euler's method to (2.2'), we obtain

$$y_{m+1} = R(hJ)y_m \tag{2.3}$$

with

$$R(z) = 1 + z . (2.4)$$

The behaviour of (2.3) is studied by transforming J to Jordan canonical form (see Section I.12). We suppose that J is diagonalizable with eigenvectors v_1, \ldots, v_n and write y_0 in this basis as

$$y_0 = \sum_{i=1}^n \alpha_i v_i . \qquad (2.5)$$

Inserting this into (2.3) we obtain

$$y_m = \sum_{i=1}^n (R(h\lambda_i))^m \alpha_i \cdot v_i , \qquad (2.6)$$

where the λ_i are the corresponding eigenvalues (see also Exercises 1 and 2). Clearly y_m remains bounded for $m \to \infty$ if for all eigenvalues the complex number $z = h\lambda_i$ lies in the set

$$S=\left\{z\in\mathbb{C}; |R(z)|\leq1
ight\}=\left\{z\in\mathbb{C}; |z-(-1)|\leq1
ight\}$$

which is the circle of radius 1 and centre -1. This leads to the explanation of the results encountered in Example (1.1). There we have $\lambda = -50$, and $h\lambda \in S$ means that $0 \leq h \leq 2/50$, in perfect accordance with the numerical observations.

Explicit RK Methods

An explicit RK method (Section II.2, Formula (2.3)) applied to (2.2') gives

$$g_{i} = y_{m} + hJ \sum_{j=1}^{i-1} a_{ij}g_{j}$$

$$y_{m+1} = y_{m} + hJ \sum_{j=1}^{s} b_{j}g_{j} .$$
(2.7)

Inserting g_j repeatedly from the first line, this becomes

$$y_{m+1} = R(hJ)y_m$$

where

$$R(z) = 1 + z \sum_{j} b_{j} + z^{2} \sum_{j,k} b_{j} a_{jk} + z^{3} \sum_{j,k,l} b_{j} a_{jk} a_{kl} + \dots$$
(2.8)

is a polynomial of degree $\leq s$.

Definition 2.1. The function R(z) is called the *stability function* of the method. It can be interpreted as the numerical solution after one step for

$$y' = \lambda y$$
, $y_0 = 1$, $z = h\lambda$, (2.9)

the famous Dahlquist test equation. The set

$$S = \left\{ z \in \mathbb{C}; |R(z)| \le 1 \right\}$$
(2.10)

is called the stability domain of the method.

18 IV. Stiff Problems — One Step Methods

Theorem 2.2. If the RK method is of order p, then

$$R(z) = 1 + z + \frac{z^2}{2!} + \ldots + \frac{z^p}{p!} + \mathcal{O}(z^{p+1})$$

Proof. The exact solution of (2.9) is e^z and therefore the numerical solution $y_1 = R(z)$ must satisfy

$$e^{z} - R(z) = \mathcal{O}(h^{p+1}) = \mathcal{O}(z^{p+1})$$
 (2.11)

Another argument is that the expressions in (2.8) appear in the order conditions for the "tall" trees τ , t_{21} , t_{32} , t_{44} , t_{59} ,... (see Table 2.1 of Section II.2, p. 147). They are therefore equal to 1/q! for $q \leq p$.

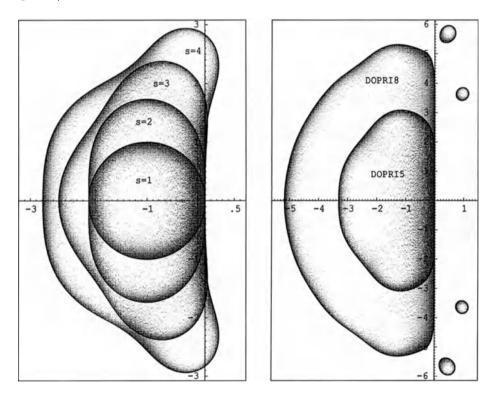


Fig. 2.1. Stability domains for ERK methods of order p = s

Fig. 2.2. Stability domains for DOPRI methods

As a consequence, all explicit RK methods with p = s possess the stability function

$$R(z) = 1 + z + \ldots + \frac{z^{s}}{s!} . \qquad (2.12)$$

The corresponding stability domains are represented in Fig. 2.1.

The method of Dormand & Prince DOPRI5 (Section II.4, Table 4.6) is of order 5 with s=6 (the 7th stage is for error estimation only). Here R(z)is obtained by direct computation. The result is

$$R(z) = 1 + z + \frac{z^2}{2} + \frac{z^3}{6} + \frac{z^4}{24} + \frac{z^5}{120} + \frac{z^6}{600} .$$
 (2.13)

For DOPRI8 (Section II.6, Table 6.4), R(z) becomes

$$R(z) = \sum_{j=0}^{8} \frac{z^{j}}{j!} + 0.27521279901 \cdot 10^{-5} z^{9} + 0.24231996586959 \cdot 10^{-6} z^{10} + 0.24389718205443 \cdot 10^{-7} z^{11} - 0.2034615289686 \cdot 10^{-9} z^{12} .$$
(2.14)

The stability domains for these two methods are given in Fig. 2.2.

Extrapolation Methods

The GBS-algorithm (see Section II.9, Formulas (9.12), (9.13)) applied to $y' = \lambda y, y(0) = 1$ leads with $z = H\lambda$ to

$$y_{0} = 1, \qquad y_{1} = 1 + \frac{z}{n_{j}}$$

$$y_{i+1} = y_{i-1} + 2 \frac{z}{n_{j}} y_{i} \qquad i = 1, 2, \dots, n_{j}$$

$$T_{j1} = \frac{1}{4} (y_{n_{j}-1} + 2y_{n_{j}} + y_{n_{j}+1})$$

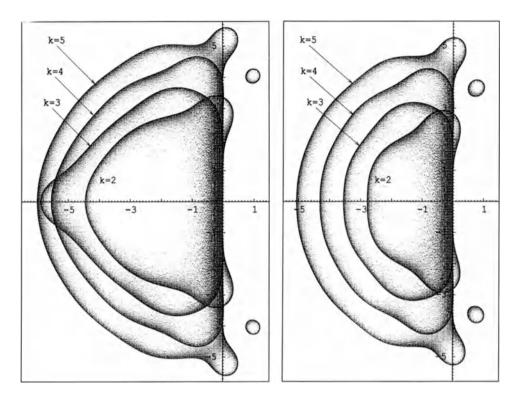
$$T_{j,k+1} = T_{j,k} + \frac{T_{j,k} - T_{j-1,k}}{(n_{j}/n_{j-k})^{2} - 1} .$$

$$(2.15)$$

The stability domains for the diagonal terms T_{22} , T_{33} , T_{44} , and T_{55} for the harmonic sequence

$$\{n_i\} = \{2, 4, 6, 8, 10, \ldots\}$$

(the one which is used in ODEX) are displayed in Fig. 2.3. We have also added those for the methods *without* the smoothing step (II.9.13c), which shows some difference for negative real eigenvalues.



with smoothing step without smoothing step Fig. 2.3. Stability domains for GBS extrapolation methods

Analysis of the Examples of IV.1

The Jacobian for the Robertson reaction (1.3) is given by

$$egin{pmatrix} -0.04 & 10^4y_3 & 10^4y_2 \ 0.04 & -10^4y_3 - 6\cdot 10^7y_2 & -10^4y_2 \ 0 & 6\cdot 10^7y_2 & 0 \end{pmatrix}$$

which in the neighbourhood of the equilibrium $y_1 = 1$, $y_2 = 0.0000365$, $y_3 = 0$ is

$$\left(\begin{array}{cccc} -0.04 & 0 & 0.365 \\ 0.04 & -2190 & -0.365 \\ 0 & 2190 & 0 \end{array}\right)$$

with eigenvalues

$$\lambda_1 = 0, \, \lambda_2 = -0.405, \, \lambda_3 = -2189.6$$

The third one produces stiffness. For stability we need (see the stability domain of DOPRI5 in Fig. 2.2) $-2190h \ge -3.3$, hence $h \le 0.0015$. This again confirms the numerical observations.

The Jacobian of example (1.6') (Brusselator reaction with diffusion) is a large $2N \times 2N$ matrix. It is composed of reaction terms and diffusion terms:

$$J = \begin{pmatrix} \operatorname{diag}(2u_i v_i - 4) & \operatorname{diag}(u_i^2) \\ \operatorname{diag}(3 - 2u_i v_i) & \operatorname{diag}(-u_i^2) \end{pmatrix} + \frac{\alpha}{(\Delta x)^2} \begin{pmatrix} K & 0 \\ 0 & K \end{pmatrix}$$
(2.16)

where

$$K = \begin{pmatrix} -2 & 1 & & \\ 1 & -2 & 1 & & \\ & 1 & \ddots & \ddots & \\ & & \ddots & -2 & 1 \\ & & & 1 & -2 \end{pmatrix} .$$
(2.17)

The eigenvalues of K are known (see Section I.6, Formula (6.7b)), namely

$$\mu_k = -4 \left(\sin \frac{\pi k}{2N+2} \right)^2 \,, \tag{2.18}$$

and therefore the double eigenvalues of the right hand matrix in (2.16) are

$$-\frac{4\alpha}{(\Delta x)^2} \left(\sin\frac{\pi k}{2N+2}\right)^2 = -4\alpha (N+1)^2 \left(\sin\frac{\pi k}{2N+2}\right)^2$$
(2.19)

and are located between $-4\alpha(N+1)^2$ and 0. Since this matrix is symmetric, its eigenvalues are well conditioned and the first matrix on the right side of (2.16) with much smaller coefficients can be regarded as a small perturbation. Therefore the eigenvalues of J in (2.16) will remain close to those of the unperturbed matrix and lie in a strip neighbouring the interval $[-4\alpha(N+1)^2, 0]$. Numerical computations for N = 40 show for example that the largest negative eigenvalue of J varies between -133.3 and -134.9, while the unperturbed value is $-4 \cdot 41^2 \cdot \sin^2(40\pi/82)/50 = -134.28$. Since most stability domains for ODEX end close to -5.5 on the real axis (Fig. 2.3), this leads for N = 40 to $h \leq 0.04$ and the number of steps must be ≥ 250 .

In order to explain the behaviour of the beam equation, we linearize it in the neighbourhood of the solution $\theta_k = \dot{\theta}_k = 0$, $F_x = F_y = 0$. There (1.10') becomes

$$G\ddot{\theta} = n^{4} \begin{pmatrix} -3 & 1 & & \\ 1 & -2 & 1 & & \\ & 1 & \ddots & \ddots & \\ & & \ddots & -2 & 1 \\ & & & 1 & -1 \end{pmatrix} \theta$$
(2.20)

since for $\theta = 0$ we have A = G and B = 0. We now insert G^{-1} from (1.16) and observe that the matrices involved are, with the exception of two elements, equal to $\pm K$ of (2.17). We therefore approximate (2.20) by

$$\ddot{\theta} = -n^4 K^2 \theta \ . \tag{2.21}$$

 $\mathbf{21}$

22 IV. Stiff Problems — One Step Methods

This second order equation was integrated in IV.1 as a first order system

$$\begin{pmatrix} \theta \\ \dot{\theta} \end{pmatrix}^{\cdot} = \begin{pmatrix} 0 & I \\ -n^4 K^2 & 0 \end{pmatrix} \begin{pmatrix} \theta \\ \dot{\theta} \end{pmatrix} = E \begin{pmatrix} \theta \\ \dot{\theta} \end{pmatrix} .$$
 (2.22)

By solving

$$\begin{pmatrix} 0 & I \\ -n^4 K^2 & 0 \end{pmatrix} \begin{pmatrix} y \\ z \end{pmatrix} = \lambda \begin{pmatrix} y \\ z \end{pmatrix} , \qquad (2.23)$$

we find that λ is an eigenvalue of E iff λ^2 is an eigenvalue of $-n^4K^2$. Thus Formula (2.18) shows that the eigenvalues of E are situated on the imaginary axis between $-4n^2i$ and $+4n^2i$. We see from Fig. 2.2 that the stability domain of DOPRI8 covers the imaginary axis between approximately -4iand +4i. Hence for stability we need $h \leq 1/n^2$ and the number of steps for the interval $0 \leq t \leq 5$ must be larger than $\approx 5n^2$. This, again, was observed in the numerical calculations (Table 1.2).

Automatic Stiffness Detection

"Neither is perfect, but even an imperfect test can be quite useful, as we can show from experience ..." (L.F. Shampine 1977)

Explicit codes applied to stiff problems are apparently not very efficient and the remaining part of the book will be devoted to the construction of more stable algorithms. In order to avoid that an explicit code waste too much effort when encountering stiffness (and to enable a switch to a more suitable method), it is important that the code be equipped with a cheap means of detecting stiffness. The analysis of the preceding subsection demonstrates that, whenever a nonstiff code encounters stiffness, the product of the step size with the dominant eigenvalue of the Jacobian lies near the border of the stability domain. We shall show two manners of exploiting this observation to detect stiffness.

Firstly, we adapt the ideas of Shampine & Hiebert (1977) to the Dormand & Prince method of order 5(4), given in Table II.4.6. The method possesses an error estimator $err_1 = y_1 - \hat{y}_1$ which, in the nonstiff situation, is $\mathcal{O}(h^5)$. However in the stiff case, when the method is working near the border of the stability domain S, the distance $d_1 = y_1 - y(x_0 + h)$ to the smooth solution is approximately $d_1 \approx R(hJ)d_0$, where J denotes the Jacobian of the system, R(z) is the stability function of the method, and $d_0 = y_0 - y(x_0)$. Here we have neglected the local error for an initial value on the smooth solution y(x). A similar formula, with R replaced by \hat{R} , holds for the embedded method. The error estimator satisfies $err_1 \approx E(hJ)d_0$ with $E(z) = R(z) - \hat{R}(z)$. The idea is

now to search for a second error estimator \widetilde{err}_1 (with $\widetilde{err}_1 \approx \widetilde{E}(hJ)d_0$) such that

- i) $|\tilde{E}(z)| \leq \theta |E(z)|$ on $\partial S \cap \mathbb{C}^-$ with a small $\theta < 1;$
- ii) $\widetilde{err}_1 = \mathcal{O}(h^2)$ for $h \to 0$.

Condition (i) implies that $\|\widetilde{err}_1\| < \|err_1\|$ when $h\lambda$ is near ∂S (the problem is possibly stiff), and condition (ii) will lead to $\|\widetilde{err}_1\| \gg \|err_1\|$ for step sizes which are determined by accuracy requirements (when the problem is not stiff). If $\|\widetilde{err}_1\| < \|err_1\|$ occurs several times in succession (say 15 times) then a stiff code might be more efficient.

For the construction of \widetilde{err}_1 we put

$$\widetilde{err}_1 = h(d_1k_1 + d_2k_2 + \ldots + d_sk_s)$$

where the $k_i = f(x_0 + c_i h, g_i)$ are the available function values of the method. The coefficients d_i are determined in such a way that

$$\sum_{i=1}^{s} d_i = 0 , \qquad \sum_{i=1}^{s} d_i c_i = 0.02$$
 (2.24)

(so that (ii) holds) and that θ in (i) is minimized. A computer search gave values which have been rounded to

$$d_1 = -2.134, \ d_2 = 2.2, \ d_3 = -0.24, \ d_4 = 0.13, \ d_5 = 0.144, \ d_6 = -0.1 \ . \tag{2.25}$$

The factor 0.02 in (2.24) has been chosen such that θ in (i) is close to 0.3 on large parts of the border of S, but $|\tilde{E}(z)/E(z)|$ soon becomes larger than 1 if z approaches the origin.

In Fig. 2.4 we present the contour lines $|\tilde{E}(z)/E(z)| = Const$ (Const = 4,2,1,0.5,0.25,0.166,0.125) together with the stability domain of the method. A numerical experiment is illustrated in Fig. 2.5. We applied the code DOPRI5 (see the Appendix to Volume I) to the Van der Pol equation (1.5') with $\varepsilon = 0.003$. The upper picture shows the first component of the solution, the second picture displays the quotient $\|\widetilde{err}_1\|/\|err_1\|$ for the three tolerances $Tol = 10^{-3}, 10^{-5}, 10^{-7}$. The last picture is a plot of $h|\lambda|/3.3$ where h is the current step size and λ the dominant eigenvalue of the Jacobian and 3.3 is the approximate distance of ∂S to the origin.

A second possibility for detecting stiffness is to estimate directly the dominant eigenvalue of the Jacobian of the problem. If v denotes an approximation to the corresponding eigenvector with ||v|| sufficiently small then, by the mean value theorem,

$$|\lambda| pprox rac{\|f(x,y+v)-f(x,y)\|}{\|v\|}$$

will be a good approximation to the leading eigenvalue. For the Dormand & Prince method (Table II.4.6) we have $c_6 = c_7 = 1$. Therefore, a natural

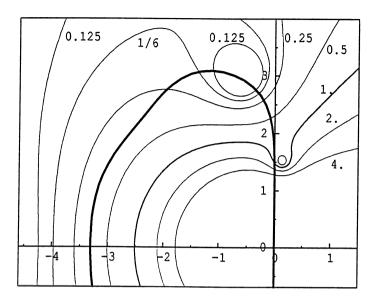


Fig. 2.4. Contour lines of $\tilde{E}(z)/E(z)$

choice is

$$\varrho = \frac{\|k_7 - k_6\|}{\|g_7 - g_6\|} \tag{2.26}$$

where $k_i = f(x_0 + c_i h, g_i)$ are the function values of the current step. Both values, $g_7 = y_1$ and g_6 , approximate the exact solution $y(x_0 + h)$ and it can be shown by Taylor expansion that $g_7 - g_6 = \mathcal{O}(h^4)$. This difference is thus sufficiently small, in general. The same argument also shows that $g_7 - g_6 = \tilde{E}(hJ)d_0$, where J is the Jacobian of the linearized differential equation and $\tilde{E}(z)$ is a polynomial with subdegree 4. Hence, $g_7 - g_6$ is essentially the vector obtained by 4 iterations of the power method applied to the matrix hJ. It will be a good approximation to the eigenvector corresponding to the leading eigenvalue. As in the above numerical experiment we applied the code DOPRI5 to the Van der Pol equation (1.5') with $\varepsilon = 0.003$. Fig. 2.6 presents a plot of $h\varrho/3.3$ where h is the current step size and ϱ the estimate (2.26). This is in perfect agreement with the exact values $h|\lambda|/3.3$ (see third picture of Fig. 2.5).

Further numerical examples have shown that the estimate (2.26) also gives satisfactory approximations of $|\lambda|$ when the dominant eigenvalue λ is complex. However, if the argument of λ is needed too, one can extend the power method as proposed by Wilkinson (1965, page 579). This has been elaborated by Sottas (1984) and Robertson (1987).

The two techniques above allow us to detect the regions where the step

 $\mathbf{25}$

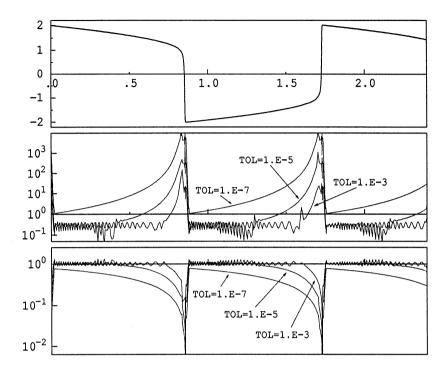


Fig. 2.5. Stiffness detection with DOPRI5

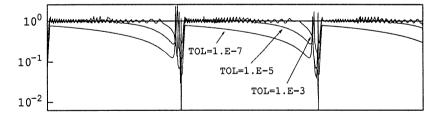


Fig. 2.6. Estimation of Lipschitz constant with DOPRI5

size is restricted by stability. In order to decide whether a stiff integrator will be more efficient, one has to compare the expense of both methods. Studies on this question have been undertaken in Petzold (1983), Sottas (1984) and Butcher (1990).

Step-Control Stability

We now come to the explanation of another phenomenon encountered in Section IV.1, that of the ragged behaviour of the step size (e.g. Fig. 1.4 or 1.8), a research initiated by G. Hall (1985/86) and continued by G. Hall & D.J. Higham (1988). Do there exist methods or stiff equations for which the step sizes h_n behave smoothly and no frequent step rejections appear?

We make a numerical study on the equation

$$y'_{1} = -2000 (\cos x \cdot y_{1} + \sin x \cdot y_{2} + 1) \qquad y_{1}(0) = 1$$

$$y'_{2} = -2000 (-\sin x \cdot y_{1} + \cos x \cdot y_{2} + 1) \qquad y_{2}(0) = 0$$
(2.27)

for $0 \le x \le 1.57$, whose eigenvalues move slowly on a large circle from -2000 to $\pm 2000i$. If we apply Fehlberg's method RKF2(3) (Table 4.4 of Volume I, Section II.4) and DOPRI5 to this equation (with Euclidean error norm without scaling), we obtain the step size behaviour presented in Fig. 2.7. There all rejected steps are crossed out.

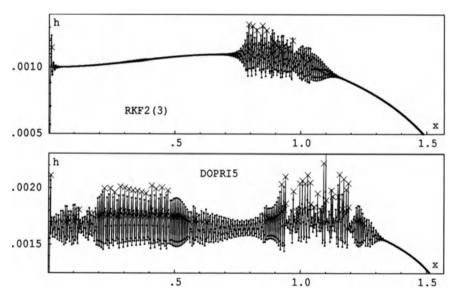


Fig. 2.7. Step sizes of RKF2(3) and DOPRI5 for (2.27)

In order to explain this behaviour, we consider for $y' = \lambda y$ (of course!) the numerical process

$$\begin{split} y_{n+1} &= R(h_n \lambda) y_n \\ err_n &= E(h_n \lambda) y_n \\ h_{n+1} &= h_n \cdot \left(\frac{Tol}{|err_n|} \right)^{\alpha} \end{split} \tag{2.28}$$

(where err_n is the estimated error, $E(z) = \hat{R}(z) - R(z)$, $\alpha = 1/(\hat{p}+1)$ and \hat{p} is the order of \hat{R}) as a dynamical system whose fixed points and stability we have to study. A possible safety factor ("fac" of formula (4.7') of Section II.4) can easily be incorporated into Tol and does not affect the theory. The analysis simplifies if we introduce logarithms

$$\eta_n = \log |y_n|, \qquad \chi_n = \log h_n \tag{2.29}$$

so that (2.28) becomes

$$\begin{aligned} \eta_{n+1} &= \log |R(e^{\chi_n}\lambda)| + \eta_n ,\\ \chi_{n+1} &= \alpha \Big(\gamma - \log |E(e^{\chi_n}\lambda)| - \eta_n \Big) + \chi_n , \end{aligned} \tag{2.30}$$

where γ is a constant. This is now a map $\mathbb{R}^2 \to \mathbb{R}^2$. Its fixed point (η, χ) satisfies

$$|R(e^{\chi}\lambda)| = 1 , \qquad (2.31)$$

which determines the step size e^{χ} so that the point $z = e^{\chi} \lambda$ must be on the border of the stability domain. Further

$$\eta = \gamma - \log |E(z)|$$

determines η . Now the Jacobian of the map (2.30) at this fixed point becomes

$$C = \frac{\partial(\eta_{n+1}, \chi_{n+1})}{\partial(\eta_n, \chi_n)} = \begin{pmatrix} 1 & u \\ -\alpha & 1 - \alpha v \end{pmatrix} \qquad u = \operatorname{Re}\left(\frac{R'(z)}{R(z)} \cdot z\right)$$

$$v = \operatorname{Re}\left(\frac{E'(z)}{E(z)} \cdot z\right) .$$
(2.32)

Proposition 2.3. The step-control mechanism is stable for $h\lambda = z$ on the boundary of the stability domain if and only if the spectral radius of C in (2.32) satisfies

$$\varrho(C) < 1$$
.

We then call the method SC-stable at z.

The matrix C is independent of the given differential equation and of the given tolerance. It is therefore a characteristic of the numerical method and the boundary of its stability domain.

We study the following methods of Section II.4: a) RKF2(3) (Table 4.4), $\alpha = 1/3$:

$$R(z) = 1 + z + rac{z^2}{2}\,, \quad E(z) = rac{z^3}{6}\,.$$

28 IV. Stiff Problems — One Step Methods

b) RKF2(3)B (also Table 4.4),
$$\alpha = 1/3$$
:
 $R(z) = 1 + z + \frac{z^2}{2} + \frac{117z^3}{704}$, $E(z) = \frac{z^3}{2112} - \frac{3z^4}{1408}$.
c) RKF4(5) (Table 4.5), $\alpha = 1/5$:
 $R(z) = 1 + z + \frac{z^2}{2} + \frac{z^3}{6} + \frac{z^4}{24} + \frac{z^5}{104}$, $E(z) = \frac{z^5}{780} - \frac{z^6}{2080}$. (2.33)
d) DOPRI5 (Table 4.6), $\alpha = 1/5$:
 $R(z) = \sec (2.13)$, $E(z) = \frac{97}{120000}z^5 - \frac{13}{40000}z^6 + \frac{1}{24000}z^7$ (2.34)
e) RKF5(4) (Fehlberg 5(4) with local extrapolation), $\alpha = 1/5$:
 $R(z) = 1 + z + \frac{z^2}{2} + \frac{z^3}{6} + \frac{z^4}{24} + \frac{z^5}{120} + \frac{z^6}{2080}$, $E(z)$ same as (2.33).
f) HIHA5 (Method of Higham & Hall, see Table 2.1 below), $\alpha = 1/5$:
 $R(z) = 1 + z + \frac{z^2}{2} + \frac{z^3}{6} + \frac{z^4}{24} + \frac{z^5}{120} + \frac{z^6}{1440}$,
 $E(z) = -\frac{1}{1200}z^5 + \frac{1}{2400}z^6 + \frac{1}{14400}z^7$
g) DOPRI8 (Section II.6, Table 6.4), $\alpha = 1/8$:
 $R(z) = 2.4266659177 \cdot 10^{-7}z^8 - 1.710684228 \cdot 10^{-7}z^9$
 $+ 3.74237264635 \cdot 10^{-8}z^{10} - 1.343923571 \cdot 10^{-8}z^{11}$

The corresponding stability domains are represented in Fig. 2.8. There, the regions of the boundary, for which $\rho(C) < 1$ is satisfied, are represented as **thick** lines. It can be observed that the phenomena of Fig. 2.7, as well as those of Section IV.1, are nicely verified.

SC-Stable Dormand and Prince Pairs

Among the methods studied in the foregoing subsection, only the cases RKF2(3) and RKF5(4) (Fehlberg in local extrapolation mode) are SC-stable in the vicinity of the negative real axis. We are therefore interested in finding 5(4)-th order ERK pairs from the family of Dormand & Prince (1980) with larger regions of SC-stability, a research undertaken by D.J. Higham & G. Hall (1990).

The Dormand & Prince methods are constructed very similarly to the procedure described in Theorem 6.2 of Section II.6. The only difference is

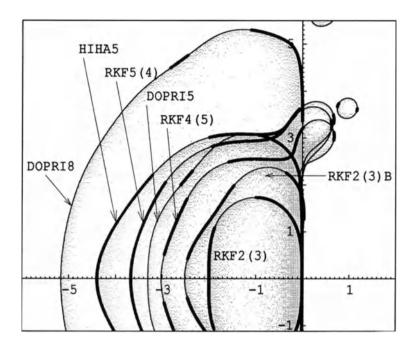


Fig. 2.8. Regions of step-control stability

that Formula (II.6.13) (or equivalently (II.6.11)) is replaced by the additional simplifying assumptions

$$\sum_{j=1}^{6} a_{ij} c_j^2 = \frac{c_i^3}{3} \qquad i = 3, \dots, 6 .$$
 (2.35)

This condition, for i = 3, divided by (II.6.7) with i = 3, simply means that $c_2 = 2c_3/3$. We then suppose that Equation (II.6.6) is satisfied for j = 2, 5, 6, i.e. that

$$d_j := \sum_{i=j+1}^{s} b_i a_{ij} - b_j (1-c_j) = 0 \qquad j = 2, 5, 6$$
 (2.36)

Then

$$\begin{pmatrix} 1 & 1 & 1 \\ c_1 & c_3 & c_4 \\ c_1^2 & c_3^2 & c_4^2 \end{pmatrix} \begin{pmatrix} d_1 \\ d_3 \\ d_4 \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^6 d_j \\ \sum_{j=1}^6 c_j d_j \\ \sum_{j=1}^6 c_j^2 d_j \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

because of (II.6.7), (2.35) and the quadrature conditions (II.6.9). Therefore, if $c_3 \neq c_4$ and both are $\neq 0$, the conditions (II.6.6) are satisfied for j=1,3, and 4. The Dormand & Prince pairs are then obtained as follows:

30 IV. Stiff Problems — One Step Methods

1. choose c_3, c_4, c_5 as free parameters;

$$c_2 = 2c_3/3, \quad c_6 = 1 \quad ((2.36), j = 6), \quad c_1 = 0$$
;

- 2. put $b_2 = 0$, $b_7 = 0$, and compute b_1, b_3, b_4, b_5, b_6 from the linear system (II.6.9); put $a_{7i} = b_i$ for i = 1, ... 6.
- 3. put $a_{32} = c_3^2/(2 \cdot c_2)$ ((II.6.7), i=3); solve the linear system

$$\begin{pmatrix} c_2 & c_3 \\ c_2^2 & c_3^2 \end{pmatrix} \begin{pmatrix} a_{42} \\ a_{43} \end{pmatrix} = \begin{pmatrix} c_4^2/2 \\ c_4^3/3 \end{pmatrix} \qquad ((\text{II.6.7}) \text{ and } (2.35), i = 4);$$

4. put $a_{65} = b_5(1 - c_5)/b_6$ ((2.36) for j = 5); solve the linear system

$$\begin{pmatrix} b_5 & b_6 \\ b_5 c_5 & b_6 c_6 \end{pmatrix} \begin{pmatrix} a_{52} \\ a_{62} \end{pmatrix} = \begin{pmatrix} -b_3 a_{32} - b_4 a_{42} \\ -b_3 c_3 a_{32} - b_4 c_4 a_{42} \end{pmatrix}$$
((II.6.12,12'));

5. solve the linear systems ((II.6.7) and (2.35), i=5 and 6)

$$\begin{pmatrix} c_3 & c_4 \\ c_3^2 & c_4^2 \end{pmatrix} \begin{pmatrix} a_{53} \\ a_{54} \end{pmatrix} = \begin{pmatrix} c_5^2/2 - a_{52}c_2 \\ c_5^3/3 - a_{52}c_2^2 \end{pmatrix}$$
$$\begin{pmatrix} c_3 & c_4 \\ c_3^2 & c_4^2 \end{pmatrix} \begin{pmatrix} a_{63} \\ a_{64} \end{pmatrix} = \begin{pmatrix} c_6^2/2 - a_{62}c_2 - a_{65}c_5 \\ c_6^3/3 - a_{62}c_2^2 - a_{65}c_5^2 \end{pmatrix}$$

6. finally compute $a_{21}, a_{31}, a_{41}, a_{51}, a_{61}$ from (II.1.9).

The continuous extension is obtained as in (II.5.1) for the trees τ , t_{21} , t_{31} , t_{41} of Table II.2.1, from $b_2(\theta) = 0$ and from $\sum_i b_i(\theta) a_{i2} = 0$ (see (2.36) for j=2). This gives the linear system

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & c_3 & c_4 & c_5 & c_6 \\ 0 & c_3^2 & c_4^2 & c_5^2 & c_6^2 \\ 0 & c_3^3 & c_4^3 & c_5^3 & c_6^3 \\ 0 & a_{32} & a_{42} & a_{52} & a_{62} \end{pmatrix} \begin{pmatrix} b_1(\theta) \\ b_3(\theta) \\ b_4(\theta) \\ b_5(\theta) \\ b_6(\theta) \end{pmatrix} = \begin{pmatrix} \theta \\ \theta^2/2 \\ \theta^3/3 \\ \theta^4/4 \\ 0 \end{pmatrix}$$
(2.37)

and implies order 4 because of the simplifying assumptions (II.6.7) and (2.35). Last not least, using a similar argument, the embedded 4th-order error estimator is obtained by fixing an arbitrary $\hat{b}_7 \neq 0$, putting $\hat{b}_2 = 0$, and solving for $(\hat{b}_1, \hat{b}_3, \hat{b}_4, \hat{b}_5, \hat{b}_6)^T$ a linear system with the same matrix as for (2.37), with right-hand side

$$(1 - \hat{b}_7, 1/2 - \hat{b}_7, 1/3 - \hat{b}_7, 1/4 - \hat{b}_7, 0)^T$$
. (2.38)

Higham and Hall have made an extensive computer search for good choices of the parameters c_3, c_4 and c_5 in order to have a reasonable size of the stability domain, large parts of SC-stability and a small 6th order error

31

0							
$\frac{2}{9}$	$\frac{2}{9}$						
$\frac{1}{3}$	$\frac{1}{12}$	$\frac{1}{4}$					
2 9 1 3 1 2 3 5 1	$ \begin{array}{r} \frac{2}{9} \\ \frac{1}{12} \\ \frac{1}{8} \\ \frac{91}{500} \\ -\frac{11}{20} \\ \frac{1}{12} \\ \frac{1}{12} \\ \frac{1}{12} \\ \frac{2}{15} \\ \frac{1}{20} \\ \end{array} $	0	$\frac{3}{8}$				
$\frac{3}{5}$	$\frac{91}{500}$	$-rac{27}{100}$	$\frac{78}{125}$	$\frac{8}{125}$			
1	$-\frac{11}{20}$	$\frac{27}{20}$	$\frac{12}{5}$	$-\frac{36}{5}$	5		
1	$\frac{1}{12}$	0	$\frac{27}{32}$	$-\frac{4}{3}$	$\frac{125}{96}$	$\frac{5}{48}$	
b _i	$\frac{1}{12}$	0	$ \begin{array}{r} 78 \\ \overline{125} \\ 12 \\ \overline{5} \\ 27 \\ \overline{32} \\ \overline{27} \\ \overline{32} \\ 27 \\ \overline{32} \\ 27 \\ \overline{80} \\ - \frac{81}{160} \end{array} $	$-\frac{36}{5}$ $-\frac{4}{3}$ $-\frac{4}{3}$ $-\frac{2}{15}$ $\frac{6}{5}$	$\frac{125}{96}$	$ \frac{5}{48} $ $ \frac{1}{24} $ $ -\frac{1}{16} $	0
b_i \widehat{b}_i	$\frac{2}{15}$	0	$\frac{27}{80}$	$-\frac{2}{15}$	$\frac{25}{48}$	$\frac{1}{24}$	$\frac{1}{10}$ $\frac{1}{10}$
e_i	$\frac{1}{20}$	0	$-\frac{81}{160}$		$-\frac{25}{32}$		
$\phi_1(heta)= heta-rac{15}{4} heta^2+rac{16}{3} heta^3-rac{5}{2} heta^4$				$b_4(\theta) = -22\theta^2 + \frac{152}{3}\theta^3 - 30\theta^4$ $b_5(\theta) = \frac{357}{32}\theta^2 - \frac{625}{24}\theta^3 + \frac{125}{8}\theta^4$ $b_6(\theta) = -\frac{5}{16}\theta^2 + \frac{5}{12}\theta^3$			
				$b_5(heta) =$	$=\frac{357}{32}\theta^2$	$-{625\over 24} heta^3$	$+\frac{125}{8}\theta^4$
$b_3(\theta) =$	$\frac{459}{32}\theta^2$ –	${243\over 8} heta^3+$	$\frac{135}{8}\theta^4$	$b_6(heta)$ =	$=-rac{5}{16} heta^2$	$+ \frac{5}{12} \theta^3$	

Table 2.1. Method HIHA5 of Higham and Hall

constant. It turned out that the larger one wants the region of SC-stability, the larger the error constant becomes. A compromise choice between Scylla and Charybdis, which in addition yields nice rational coefficients, is given by $c_3 = 1/3$, $c_4 = 1/2$ and $c_5 = 3/5$. This then leads to the method of Table 2.1 which has satisfactory stability properties as can be seen from Fig. 2.8.

A PI Step Size Control

ь ь ь

> "We saw that it was an I-controler ... and a controlman knows that PI is always better than I ..." (K. Gustafsson, June 1990)

In 1986/87 two students of control theory attended a course of numerical analysis at the University of Lund. The outcome of this contact was the idea

to resolve the above instability phenomena in stiff computations by using the concept of "PID control" (Gustafsson, Lundh & Söderlind 1988). The motivation for PID control, a classic in control theory (Callender, Hartree & Porter 1936) is as follows:

Suppose we have a continuous-time control problem where $\theta(t)$ is the departure, at time t, of a quantity to be controlled from its normal value. Then one might suppose that

$$\dot{\theta}(t) = C(t) - m\theta(t) \tag{2.39}$$

where C(t) denotes the effect of the control and the term $-m\theta(t)$ represents a self-regulating effect such as "a vessel in a constant temperature bath". The most simple assumption for the control would be

$$-\dot{C}(t) = n_1 \theta(t) \tag{2.40}$$

which represents, say, a value opened or closed in dependence of θ . The equations (2.39) and (2.40) together lead to

$$\ddot{\theta} + m\dot{\theta} + n_1\theta = 0 \tag{2.41}$$

which, for $n_1 > 0$, m > 0, is always stable. If, however, we assume (more realistically) that our system has some time-lag, we must replace (2.40) by

$$-\dot{C}(t) = n_1 \theta(t-T) \tag{2.40'}$$

and the stability of the process may be destroyed. This is precisely the same effect as the instability of Equation (15.6) of Section II.15 and is discussed similarly. In order to preserve stability, one might replace (2.40') by

$$-\dot{C}(t) = n_1 \theta(t - T) + n_2 \dot{\theta}(t - T)$$
(2.40")

or even by

$$-\dot{C}(t) = n_1 \theta(t-T) + n_2 \dot{\theta}(t-T) + n_3 \ddot{\theta}(t-T) . \qquad (2.40'')$$

Here, the first term on the right hand side represents the "Integral feedback" (I), the second term "Proportional feedback" (P) and the last term is the "Derivative feedback" (D). The *P*-term especially increases the constant m in (2.41), thus adds extra friction to the equation. It is thus natural to expect that the system becomes more stable. The precise tuning of the parameters n_1, n_2, n_3 is, however, a long task of analytic study and practical experience.

In order to adapt the continuous-time model (2.40") to our situation, we replace

$$egin{array}{lll} C(t) & \longleftrightarrow \log h_n & (ext{the "control variable"}) \ heta(t) & \longleftrightarrow \log |err_n| - \log Tol & (ext{the "deviation"}) \end{array}$$

and replace derivatives in t by differences. Then the formula (see (2.28))

$$h_{n+1} = h_n \cdot \left(\frac{Tol}{|err_n|}\right)^{n_1} \,,$$

which is

$$-(\log h_{n+1} - \log h_n) = n_1(\log |err_n| - \log Tol) ,$$

corresponds to (2.40'). The PI-control (2.40'') would read

$$\begin{split} -(\log h_{n+1} - \log h_n) &= n_1 (\log |err_n| - \log \operatorname{\mathit{Tol}}) \\ &+ n_2 \big((\log |err_n| - \log \operatorname{\mathit{Tol}}) - (\log |err_{n-1}| - \log \operatorname{\mathit{Tol}}) \big) \ , \end{split}$$

or when resolved,

$$h_{n+1} = h_n \cdot \left(\frac{Tol}{|err_n|}\right)^{n_1} \left(\frac{|err_{n-1}|}{|err_n|}\right)^{n_2} . \tag{2.42}$$

In order to perform a *theoretical analysis* of this new algorithm we again choose the problem $y' = \lambda y$ and have as in (2.28)

$$y_{n+1} = R(h_n \lambda) y_n \tag{2.43a}$$

$$err_n = E(h_n\lambda)y_n$$
 (2.43b)

$$\begin{split} h_{n+1} &= h_n \cdot \left(\frac{Tol}{|err_n|} \right)^{n_1} \left(\frac{|err_{n-1}|}{|err_n|} \right)^{n_2} \\ &= h_n \left(\frac{Tol}{|err_n|} \right)^{\alpha} \left(\frac{|err_{n-1}|}{Tol} \right)^{\beta} \quad (2.43c) \end{split}$$

where $\alpha = n_1 + n_2$, $\beta = n_2$. With the notation (2.29) this process becomes

$$\begin{split} \eta_{n+1} &= \log |R(e^{\chi_n}\lambda)| + \eta_n \\ \chi_{n+1} &= \chi_n - \alpha \log |E(e^{\chi_n}\lambda)| - \alpha \eta_n + \beta \log |E(e^{\chi_{n-1}}\lambda)| + \beta \eta_{n-1} + \gamma \\ (2.44) \end{split}$$

with some constant γ . This can be considered as a map $(\eta_n, \chi_n, \eta_{n-1}, \chi_{n-1}) \rightarrow (\eta_{n+1}, \chi_{n+1}, \eta_n, \chi_n)$. At a fixed point (η, χ) , which again satisfies (2.31), the Jacobian is given by

$$\widetilde{C} = \frac{\partial(\eta_{n+1}, \chi_{n+1}, \eta_n, \chi_n)}{\partial(\eta_n, \chi_n, \eta_{n-1}, \chi_{n-1})} = \begin{pmatrix} 1 & u & 0 & 0 \\ -\alpha & 1 - \alpha v & \beta & \beta v \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$
(2.45)

with u and v as in (2.32). A numerical study of the spectral radius $\rho(\tilde{C})$ with $\alpha = 1/p$ (where p is the exponent of h of the leading term in the error estimator), $\beta = 0.08$ along the boundary of the stability domains of the above RK-methods shows an impressive improvement (see Fig. 2.9) as compared to the standard algorithm of Fig. 2.8. Exercise 8 below shows that an increasing β , for β small, increases the stability of the system (2.43).

The step size behaviour of DOPRI5 with the new strategy ($\beta = 0.13$) applied to the problem (1.6') is compared in Fig. 2.10 to the undamped step size control ($\beta = 0$). The improvement needs no comment. In order to make

33

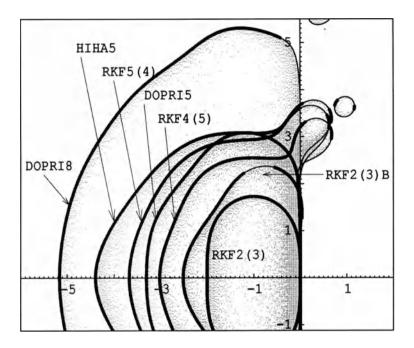


Fig. 2.9. Regions of step-control stability with stabilization factor $\beta = 0.08$

the difference clearly visible, we have chosen an extra-large tolerance $Tol = 8 \cdot 10^{-2}$. With $\beta = 0.13$ the numerical solution becomes smooth in the timedirection. The zig-zag error in the x-direction represents the eigenvector corresponding to the largest eigenvalue of the Jacobian and its magnitude is below *Tol*.

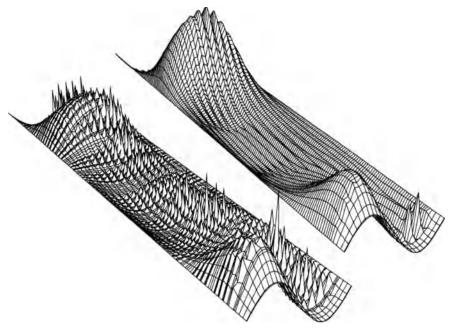
> "Man sieht dass selbst der frömmste Mann nicht allen Leuten gefallen kann". (W. Busch, Kritik des Herzens 1874)

Study for small h. For the non-stiff case the new step size strategy may be slightly less efficient. In order to understand this, we assume that $|err_n| \approx Ch_n^p$ so that (2.43c) becomes

$$h_{n+1} = h_n \left(\frac{Tol}{Ch_n^p}\right)^{\alpha} \left(\frac{Ch_{n-1}^p}{Tol}\right)^{\beta}$$
(2.46)

or, by taking logarithms,

$$\log h_{n+1} + (p\alpha - 1)\log h_n - p\beta \log h_{n-1} = (\alpha - \beta)\log\left(\frac{Tol}{C}\right)$$



without stabilisation $(\beta = 0)$ 291 steps, 212 accepted, 79 rejected **Fig. 2.10.** Numerical solution of (1.6') with $Tol = 8 \cdot 10^{-2}$

This is a linear difference equation with characteristic equation

$$\lambda^2 + (p\alpha - 1)\lambda - p\beta = 0 , \qquad (2.47)$$

the roots of which govern the response of the system to variations in C. Obviously, the choice $\alpha = 1/p$ and $\beta = 0$ would be most perfect by making both roots equal to zero; but this is just the classical step size control. We therefore have to compromise by choosing α and β such that (2.45) remains stable for large parts of the stability boundary and at the same time keeping the roots of (2.47) significantly smaller than one. A fairly good choice, found by Gustafsson (1990) after some numerical computations, is

$$\alpha \approx \frac{0.7}{p}, \qquad \beta \approx \frac{0.4}{p}.$$
(2.48)

35

Exercises

- 1. Prove that Runge-Kutta methods are invariant under linear transformations y = Tz (i.e., if one applies the method to y' = f(x, y) and to $z' = T^{-1}f(x, Tz)$ with initial values satisfying $y_0 = Tz_0$, then we have $y_1 = Tz_1$).
- 2. Consider the differential equation y' = Ay and a numerical solution given by $y_{n+1} = R(hA)y_n$. Suppose that R(z) satisfies

$$|R(z)| \leq 1$$
 for Re $z \leq 0$.

(i.e., it is A-stable) and show that a) if y' = Ay is stable, then $\{y_n\}$ is bounded; b) if y' = Ay is asymptotically stable, then $y_n \to 0$ for $n \to \infty$. Hint. Transform A to Jordan canonical form.

3. (Optimal stability functions for parabolic problems, Guillou & Lago 1961).

a) For given m, find a polynomial $R_m(z) = 1 + z + ...$ of degree m such that the stability domain on the negative axis is as large as possible.

Result. The answer is $R_m(z) = T_m(1 + z/m^2)$, the shifted and scaled Tchébychef (Chebyshev) polynomial (Tchébychef 1859). In particular

$$\begin{split} R_1(z) &= 1+z \\ R_2(z) &= 1+z+\frac{1}{8}z^2 \\ R_3(z) &= 1+z+\frac{4}{27}z^2+\frac{4}{729}z^3 \\ R_4(z) &= 1+z+\frac{5}{32}z^2+\frac{1}{128}z^3+\frac{1}{8192}z^4 \,. \end{split} \tag{2.49}$$

 $R_m(z)$ is stable for $-2m^2 \le z \le 0$ (see Fig. 2.11).

b) Plot the stability domains of the "damped" functions

$$R_m(z) = \frac{1}{T_m(w_0)} T_m(w_0 + w_1 z) , \quad w_0 = 1 + \frac{\varepsilon}{m^2} , \quad w_1 = \frac{T_m(w_0)}{T'_m(w_0)}$$
(2.50)

for small $\varepsilon > 0$, say $\varepsilon = 0.05$. Prove that these functions again satisfy $R_m(z) = 1 + z + O(z^2)$.

Remark. Runge-Kutta methods with (2.50) as stability function have been developed by Van der Houwen & Sommeijer (1980). For further properties of these methods see Verwer, Hundsdorfer & Sommeijer (1990).

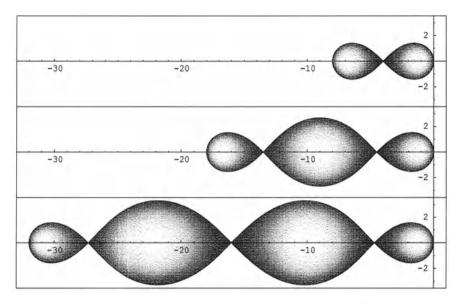


Fig. 2.11. Stability domains for Tchébychef-approximations (m=2,3,4)

4. (Optimal stability for hyperbolic problems, Van der Houwen (1968), (1977), p.99): Given m, find a polynomial $R_m(z) = 1 + z + \ldots$ of degree m + 1 such that $|R(iy)| \le 1$ for $-\beta \le y \le \beta$ with β as large as possible. *Result.* The solution (Sonneveld & van Leer 1985) is given by

$$R_m(z) = \frac{1}{2}V_{m-1}(\zeta) + V_m(\zeta) + \frac{1}{2}V_{m+1}(\zeta), \quad \zeta = \frac{z}{m}$$
(2.51)

where $V_m(\zeta) = i^m T_m(\zeta/i)$ are the Tchébychef polynomials with positive coefficients. $R_m(iy)$ is stable for $-m \leq y \leq m$. The first R_m are (see Abramowitz & Stegun, p. 795)

$$\begin{split} R_1(z) &= 1 + \zeta + \zeta^2 \qquad \qquad \zeta = \frac{z}{m} \\ R_2(z) &= 1 + 2\zeta + 2\zeta^2 + 2\zeta^3 \\ R_3(z) &= 1 + 3\zeta + 5\zeta^2 + 4\zeta^3 + 4\zeta^4 \\ R_4(z) &= 1 + 4\zeta + 8\zeta^2 + 12\zeta^3 + 8\zeta^4 + 8\zeta^5 \\ R_5(z) &= 1 + 5\zeta + 13\zeta^2 + 20\zeta^3 + 28\zeta^4 + 16\zeta^5 + 16\zeta^6 \,. \end{split}$$

As Tchébychef polynomials, they satisfy the recurrence relation $R_{m+1} = 2\zeta R_m + R_{m-1} (m \ge 2)$. Their stability domains are given in Fig. 2.12.

5. Linearize the rope equation (1.24) in the neighbourhood of $\theta = \dot{\theta} = 0$ and make a stability analysis. Apply to the linearized equation the coordinate

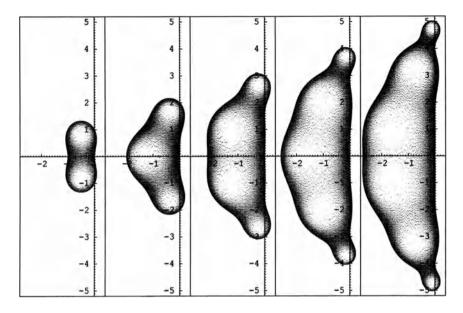


Fig. 2.12. Stability domains for hyperbolic approximations

transformation

$$y = egin{pmatrix} 1 & & & \ 1 & 1 & & \ 1 & 1 & 1 & \ dots & dots & dots & dots & dots \end{pmatrix} heta, \qquad heta = egin{pmatrix} 1 & & & & \ -1 & 1 & & \ & -1 & 1 & \ & & -1 & 1 & \ & & & \ddots & \ddots \end{pmatrix} y$$

which should lead to Lagrange's equation (6.2) of Chapter I.

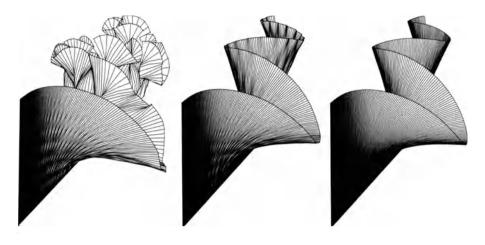
- 6. Fig. 2.13 shows the numerical results of the classical 4th order Runge-Kutta method with equidistant steps over $0 \le t \le 5$ for the beam problem (1.7)-(1.20) with n=8. Explain the result with the help of Fig. 2.1.
- 7. For the example of Exercise 6, the explicit Euler method, although converging for $h \rightarrow 0$, is never stable (see Fig. 2.14). Why?
- 8. Let λ be an eigenvalue of the two-dimensional left upper submatrix of \tilde{C} in (2.45) (matrix C of (2.32)) and denote its analytic continuation as eigenvalue of \tilde{C} by $\lambda(\beta)$. Prove that

a) If $\operatorname{Re} \lambda \neq 0$, then for some $y \in \mathbb{R}$

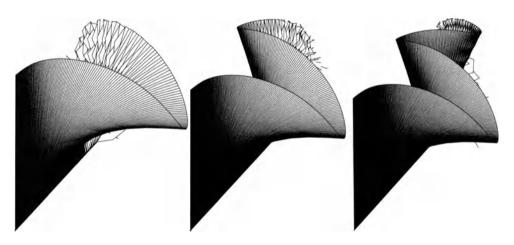
$$\lambda(eta) = \lambda \cdot \left(1\!-\!rac{eta}{lpha} \left(1\!-\!\operatorname{Re}\lambda
ight) + ieta y + \mathcal{O}(eta^2)
ight)\,.$$

This shows that $|\lambda(\beta)| < |\lambda|$ for small $\beta > 0$ if Re $\lambda < 1$.

b) If λ and μ are two distinct real eigenvalues of the above mentioned



421 steps425 steps430 stepsFig. 2.13. Equidistant RK4 on the beam problem



h=5/20000 h=5/28000 h=5/36000Fig. 2.14. Explicit Euler on the beam problem (every 50th step drawn)

submatrix, then

$$\lambda(eta) = \lambda \cdot \left(1\!-\!rac{eta}{lpha} \left(1\!-\!rac{1}{\lambda}
ight)^2\!rac{1}{\lambda-\mu} + \mathcal{O}(eta^2)
ight)\,.$$

Hint. Write the characteristic polynomial of \widetilde{C} in the form

$$\det(\lambda I\!-\!\widetilde{C}) = \lambda ig(\lambda p(\lambda) + eta q(\lambda)ig) \;,$$

where $p(\lambda) = \det(\lambda I - C)$ is the characteristic polynomial of C, and differentiate with respect to β .

IV.3. A-Stable Runge-Kutta Methods

I didn't like all these "strong", "perfect", "absolute", "generalized", "super", "hyper", "complete" and so on in mathematical definitions, I wanted something neutral; and having been impressed by David Young's "property A", I chose the term "A-stable". (G. Dahlquist in 1979)

"There are at least two ways to combat stiffness. One is to design a better computer, the other, to design a better algorithm." (H. Lomax in Aiken 1985)

Methods are called A-stable if there are no stability restrictions for $y' = \lambda y$, Re $\lambda < 0$ and h > 0. This concept was introduced by Dahlquist (1963) for linear multistep methods, but also applied to Runge-Kutta processes. The first observation was that explicit methods were apparently not A-stable. Ehle (1968) and Axelsson (1969) then independently investigated the Astability of IRK methods and proposed new classes of A-stable methods. A nice paper of Wright (1970) studied collocation methods.

The Stability Function

We start with the implicit Euler method. This method, $y_1 = y_0 + hf(x_1, y_1)$, applied to Dahlquist's equation $y' = \lambda y$ becomes $y_1 = y_0 + h\lambda y_1$ which, after solving for y_1 , gives

$$y_1 = R(h\lambda) y_0$$
 with $R(z) = \frac{1}{1-z}$

This time, the stability domain is the *exterior* of the circle with radius 1 and centre +1. The stability domain thus covers the *entire* negative half-plane and a large part of the positive half-plane as well. The implicit Euler method is thus *very* stable.

Proposition 3.1. The s-stage IRK method

$$g_i = y_0 + h \sum_{j=1}^{s} a_{ij} f(x_0 + c_j h, g_j)$$
 $i = 1, \dots, s$ (3.1a)

$$y_1 = y_0 + h \sum_{j=1}^{s} b_j f(x_0 + c_j h, g_j)$$
 (3.1b)

applied to $y' = \lambda y$ yields $y_1 = R(h\lambda)y_0$ with

$$R(z) = 1 + zb^{T}(I - zA)^{-1}\mathbb{1} .$$
(3.2)

Here

$$b^T = (b_1, \dots, b_s), \quad A = (a_{ij})_{i,j=1}^s, \quad 1 = (1, \dots, 1)^T$$

Remark. In accordance with Definition 2.1, R(z) is called the stability function of Method (3.1).

Proof. Equation (3.1a) with $f(x, y) = \lambda y$, $z = h\lambda$ becomes a linear system for the computation of g_1, \ldots, g_s . Solving this and inserting into (3.1b) leads to (3.2).

Another useful formula for R(z) is the following (Stetter 1973, Scherer 1979):

Proposition 3.2. The stability function of (3.1) satisfies

$$R(z) = \frac{\det\left(I - zA + z \operatorname{1}b^{T}\right)}{\det\left(I - zA\right)} .$$
(3.3)

Proof. Applying (3.1) to (2.9) yields the linear system

$$\begin{pmatrix} I - zA & 0 \\ -zb^T & 1 \end{pmatrix} \begin{pmatrix} g \\ y_1 \end{pmatrix} = y_0 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Cramer's rule (Cramer 1750) implies that the denominator of R(z) is det (I-zA), and its numerator

$$\det \begin{pmatrix} I - zA & 1 \\ -zb^T & 1 \end{pmatrix} = \det \begin{pmatrix} I - zA + z1b^T & 0 \\ -zb^T & 1 \end{pmatrix} = \det (I - zA + z1b^T) .$$

The stability functions for the methods of Section II.7 are presented in Table 3.1. The corresponding stability domains are given in Fig. 3.1.

We see that for implicit methods R(z) becomes a rational function with numerator and denominator of degree $\leq s$. We write

$$R(z) = \frac{P(z)}{Q(z)}$$
, $\deg P = k$, $\deg Q = j$. (3.4)

If the method is of order p, then

$$e^{z} - R(z) = C z^{p+1} + \mathcal{O}(z^{p+2}) \quad \text{for } z \to 0$$
 (3.5)

(see Theorem 2.2). The constant C is usually $\neq 0$. If not, we increase p in (3.5) until C becomes $\neq 0$. We then called R(z) a rational approximation to e^z of order p and C its error constant.

	Method	R(z)
a)	implicit Euler (7.3)	$\frac{1}{1-z}$
b)	implicit midpoint (7.4)	$\frac{1+z/2}{1-z/2}$
c)	trapezoidal rule (7.5)	$\frac{1+z/2}{1-z/2}$
d)	Hammer-Hollingsworth (7.6)	$\frac{1+4z/6+z^2/6}{1-z/3}$
e)	SDIRK order 3 (Table 7.2)	$\frac{1 + z(1 - 2\gamma) + z^2(1/2 - 2\gamma + \gamma^2)}{(1 - \gamma z)^2}$
f)	Hammer-Hollingsw. 4 (Table 7.3)	$\frac{1+z/2+z^2/12}{1-z/2+z^2/12}$
g)	KuntzmButcher 6 (Table 7.4)	$\frac{1+z/2+z^2/10+z^3/120}{1-z/2+z^2/10-z^3/120}$
h)	Butcher's Lobatto 4 (Table 7.6)	$\frac{1+3z/4+z^2/4+z^3/24}{1-z/4}$
i)	Butcher's Lobatto 6 (Table 7.6)	$\frac{1+2z/3+z^2/5+z^3/30+z^4/360}{1-z/3+z^2/30}$
j)	Radau IIA, order 5 (Table 7.7)	$\frac{1+2z/5+z^2/20}{1-3z/5+3z^2/20-z^3/60}$
k)	Lobatto IIIA, order 4 (Table 7.7)	$\frac{1+z/2+z^2/12}{1-z/2+z^2/12}$

Table 3.1. Stability functions for IRK of Section II.7

A-Stability

We observe that some methods are stable on the entire left half-plane \mathbb{C}^- . This is precisely the set of eigenvalues, where the *exact* solution of (2.9) is stable too (Section I.13, Theorem 13.1). A desirable property for a numerical method is that it preserves this stability property:

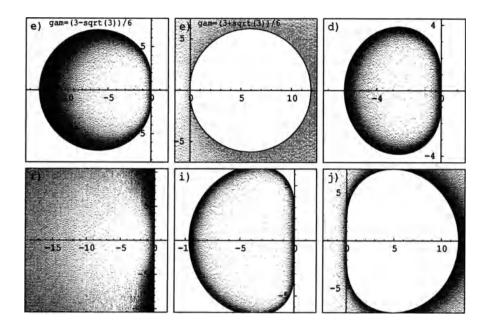


Fig 3.1. Stability domains for IRK

Definition 3.3 (Dahlquist 1963). A method whose stability domain satisfies

 $S \supset \mathbb{C}^- = \{z; \operatorname{Re} z \leq 0\}$

is called A-stable.

A Runge-Kutta method with (3.4) as stability function is A-stable if and only if

 $|R(iy)| \le 1$ for all real y (3.6)

and

R(z) is analytic for Re z < 0 (3.7)

This follows from the maximum principle applied to C^- . By a slight abuse of language, we also call R(z) A-stable in this case (many authors use the notation "A-acceptable" in order to distinguish the method from its stability function, Ehle (1968)).

The condition (3.6) alone means stability on the imaginary axis and may be called *I-stability*. It is equivalent to the fact that the polynomial

$$E(y) = |Q(iy)|^{2} - |P(iy)|^{2} = Q(iy)Q(-iy) - P(iy)P(-iy)$$
(3.8)

satisfies

$$E(y) \ge 0$$
 for all $y \in \mathbb{R}$. (3.9)

Proposition 3.4. E(y), defined by (3.8), is an even polynomial of degree $\leq 2 \max(\deg P, \deg Q)$. If R(z) is an approximation of order p, then

$$E(y) = \mathcal{O}(y^{p+1}) \qquad \textit{for } y o 0 \;.$$

Proof. Taking absolute values in (3.5) gives

$$|e^{z}| - rac{|P(z)|}{|Q(z)|} = \mathcal{O}(z^{p+1}) \; .$$

Putting z = iy and using $|e^{iy}| = 1$ leads to

$$|Q(iy)|-|P(iy)|=\mathcal{O}(y^{p+1})$$
 .

The result now follows from

$$E(y) = (|Q(iy)| + |P(iy)|)(|Q(iy)| - |P(iy)|) \;.$$
 \Box

Examples 3.5. For the implicit midpoint rule, the trapezoidal rule, the Hammer & Hollingsworth, the Kuntzmann & Butcher and Lobatto IIIA methods (b, c, f, g, k of Table 3.1) we have $E(y) \equiv 0$ since Q(z) = P(-z). This also follows from Proposition 3.4 because p = 2j. A straightforward computation shows that (3.7) is satisfied, hence these methods are A-stable.

For methods d, h, i of Table 3.1 we have deg $P > \deg Q$ and the leading coefficient of E is negative. Therefore (3.9) cannot be true for $y \to \infty$ and these methods are not A-stable.

For the Radau IIA method of order 5 (case j) we obtain $E(y) = y^6/3600$ and by inspection of the zeros of Q(z) the method is seen to be A-stable.

For the two-stage SDIRK method (case e) E(y) becomes

$$E(y) = \left(\gamma - \frac{1}{2}\right)^2 (4\gamma - 1)y^4 . \tag{3.10}$$

Thus the method is A-stable for $\gamma \ge \frac{1}{4}$. The 3rd order method is A-stable for $\gamma = (3+\sqrt{3})/6$, but not for $\gamma = (3-\sqrt{3})/6$.

The following general result explains the I-stability properties of the foregoing examples.

Proposition 3.6. A rational function (3.4) of order $p \ge 2j-2$ is I-stable if and only if $|R(\infty)| \le 1$.

Proof. $|R(\infty)| \leq 1$ implies $k \leq j$. By Proposition 3.4, E(y) must be of the form $K \cdot y^{2j}$. By letting $y \to \infty$ in (3.6) and (3.9), we see that $|R(\infty)| \leq 1$ is equivalent to $K \geq 0$.

L-Stability

The trapezoidal rule for the numerical integration of firstorder ordinary differential equations is shown to possess, for a certain type of problem, an undesirable property. (A.R. Gourlay 1970)

"A-stability is not the whole answer to the problem of stiff equations." (R. Alexander 1977)

Some of the above methods seem to be optimal in the sense that the stability region coincides *exactly* with the negative half-plane. This property is not as desirable as it may appear, since for a rational function

$$\lim_{z \to -\infty} R(z) = \lim_{z \to \infty} R(z) = \lim_{z = iy, y \to \infty} R(z) .$$

The latter must then be 1 in modulus, since |R(iy)| = 1 for all real y. This means that for z close to the real axis with a very large negative real part, |R(z)| is, although < 1, very close to one. As a consequence, stiff components in (2.6) are damped out only very slowly. We demonstrate this with the example

$$y' = -2000(y - \cos x) , \qquad y(0) = 0 , \qquad 0 \le x \le 1.5$$
 (3.11)

which is the same as (1.1), but with increased stiffness. The numerical results for the trapezoidal rule are compared to those of implicit Euler in Fig. 3.2. The implicit Euler damps out the transient phase much faster than the trapezoidal rule. It thus appears to be a desirable property of a method that |R(z)| be much smaller than 1 for $z \to -\infty$.

Definition 3.7 (Ehle 1969). A method is called *L*-stable if it is A-stable and if in addition

$$\lim_{z \to \infty} R(z) = 0 . \tag{3.12}$$

Among the methods of Table 3.1, the implicit Euler, the SDIRK method (e) with $\gamma = (2 \pm \sqrt{2})/2$, as well as the Radau IIA formula (j) are L-stable.

Proposition 3.8. If an IRK method with nonsingular A satisfies one of the following conditions:

$$a_{sj} = b_j \quad j = 1, \dots, s , \qquad (3.13)$$

$$a_{i1} = b_1 \quad i = 1, \dots, s ,$$
 (3.14)

then $R(\infty) = 0$. This makes A-stable methods L-stable.

Proof. By (3.2)

$$R(\infty) = 1 - b^T A^{-1} \mathbb{1}$$
(3.15)

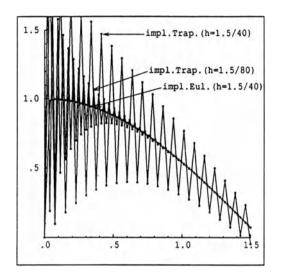


Fig. 3.2. Trapezoidal rule vs. implicit Euler on (3.11)

and (3.13) means that $A^T e_s = b$ where $e_s = (0, \dots, 0, 1)^T$. Therefore $R(\infty) = 1 - e_s^T \mathbb{1} = 1 - 1 = 0$.

In the case of (3.14) use $Ae_1 = \mathbb{1}b_1$.

Methods satisfying (3.13) are called *stiffly accurate* (Prothero & Robinson 1974).

$A(\alpha)$ -Stability

The definition of A-stability is on the one hand too weak, as we have just seen, and on the other hand too strong in the sense that many methods which are not so bad at all are not A-stable. The following definition is a little weaker and will be specially useful in the chapter on multistep methods.

> α α

Definition 3.9 (Widlund 1967). A method is said to be $A(\alpha)$ -stable if the sector

$$S_{\alpha} = \{z; \mid \arg(-z) \mid \leq \alpha \ , \ z \neq 0\}$$

is contained in the stability region.

For example, the Padé approximation $R_{03}(z) = \left(1 - z + \frac{z^2}{2!} - \frac{z^3}{3!}\right)^{-1}$ (see (3.29) below) is $A(\alpha)$ -stable for $\alpha \leq 88.23^{\circ}$.

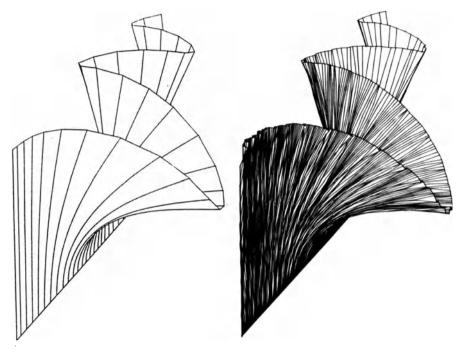


Fig. 3.3. RADAU5 on the beam (1.10'), every step drawn

Fig. 3.4. RADAU5 on oscillatory beam with large *Tol* (489 steps, all drawn)

Numerical Results

To demonstrate the effects of good stability properties on the stiff examples of Section IV.1, we choose the 3-stage Radau IIA formula (Table 5.6 of Section IV.5) which, as we have seen, is A-stable, L-stable and of reasonably high order. It has been coded (Subroutine RADAU5 of the Appendix) and the details of this program will be discussed later (Section IV.8). This program integrates all the examples of Section IV.1 in a couple of steps and the plots of Fig. 1.3 and Fig. 1.5 show a clear difference.

The beam equation (1.10') with n = 40 is integrated, with $Tol = 10^{-3}$ (absolute) and smooth initial values, in 35 steps (Fig. 3.3).

Since the Radau5 formula is L-stable, the stability domain also covers the imaginary axis and large parts of the right half-plane \mathbb{C}^+ . This means that high oscillations of the true solution may be damped by the numerical method. This effect, sometimes judged undesirable (B. Lindberg (1974): "dangerous property ..."), may also be welcome to suppress uninteresting oscillations. This is demonstrated by applying RADAU5 with very large tolerance (Tol=1) to the beam equation (1.10') with n=10 and the perturbed initial value $\theta_n(0) = 0.4$. Here, the high oscillations soon disappear and the numerical solution becomes perfectly smooth (Fig. 3.4). If, however, the tolerance requirement is increased, the program is forced to follow all the oscillations and the picture remains the same as in Fig. 1.11.

Collocation Methods

The following result gives the stability function of collocation methods as introduced in Definition 7.5 of Chapter II:

Theorem 3.9 (K. Wright 1970, S.P. Nørsett 1975). The stability function of the collocation method based on the points c_1, c_2, \ldots, c_s is given by

$$R(z) = \frac{M^{(s)}(1) + M^{(s-1)}(1)z + \dots + M(1)z^s}{M^{(s)}(0) + M^{(s-1)}(0)z + \dots + M(0)z^s} = \frac{P(z)}{Q(z)}$$
(3.16)

where

$$M(x) = \frac{1}{s!} \prod_{i=1}^{s} (x - c_i) . \qquad (3.17)$$

Remark. The normalization factor 1/s! just makes the constant $M^{(s)}(x)$ equal to one.

Proof. (Nørsett & Wanner 1979, Lie 1990). We assume $x_0 = 0$, h = 1, $\lambda = z$, $y_0 = 1$ and let u(x) be the collocation polynomial. Since u'(x) - zu(x) is a polynomial of degree s which vanishes at the collocation points, there is a constant K such that

$$u'(x) - zu(x) = KM(x) . (3.18)$$

Differentiating this identity s times and replacing u'(x) by zu(x) + KM(x)after each differentiation we obtain

$$0 = u^{(s+1)}(x) = z^{s+1}u(x) + K\left(\sum_{j=0}^{s} M^{(j)}(x)z^{s-j}\right).$$
 (3.19)

Putting x = 0 allows us to express K in terms of u(0), and for x = 1, Formula (3.19) yields u(1) = R(z)u(0) with R(z) given by (3.16).

Proposition 3.10. For any polynomial M(x) of exact degree s, R(z) given by (3.16) is an approximation to e^z of order $\geq s$. Its error is

$$e^{z} - R(z) = \left(z^{s+1} \int_{0}^{1} e^{z(1-\xi)} M(\xi) d\xi\right) / Q(z)$$
(3.20)

or

$$e^{z} - R(z) = \left(z^{s+1}M_{1}(1) + z^{s+2}M_{2}(1) + \ldots\right)/Q(z)$$
 (3.21)

where

$$M_j(x) = \int_0^x \frac{(x-\xi)^{j-1}}{(j-1)!} M(\xi) d\xi, \qquad j = 1, 2, \dots$$
 (3.22)

Proof. In the above proof we never used the special form of M(x). Therefore, any polynomial solution u(x) of (3.18) satisfies u(1) = R(z)u(0) with R(z) given by (3.16). In order to show that its order is $\geq s$, we apply the variation-of-constants formula to (3.18) and obtain

$$u(x) = e^{zx}u(0) + K \int_0^x e^{z(x-\xi)} M(\xi) d\xi . \qquad (3.23)$$

For x = 1 and u(0) = 1 this formula becomes identical to (3.20) if we insert K from (3.19) with x = 0.

The converse of this proposition is true.

Proposition 3.11. If R(z) = P(z)/Q(z) (deg $P \le s$, deg $Q \le s$, Q(0) = 1) is an approximation to e^z of order $\ge s$, i.e.,

$$e^{z} - R(z) = \mathcal{O}(z^{s+1}) \quad \text{for } z \to 0 , \qquad (3.24)$$

then there is a unique polynomial M(x) satisfying $M^{(s)}(x) = 1$, such that R(z) is given by (3.16).

Proof. We write

$$Q(z) = 1 + q_1 z + q_2 z^2 + \ldots + q_s z^s .$$
 (3.25)

By (3.24) we have $P(z) = e^z Q(z) + \mathcal{O}(z^{s+1})$, and multiplying the Taylor series of e^z with Q(z) we obtain

$$P(z) = 1 + z \left(\frac{q_0}{1!} + \frac{q_1}{0!}\right) + z^2 \left(\frac{q_0}{2!} + \frac{q_1}{1!} + \frac{q_2}{0!}\right) + \dots + z^s \left(\frac{q_0}{s!} + \frac{q_1}{(s-1)!} + \dots + \frac{q_s}{0!}\right), \qquad q_0 = 1.$$
(3.26)

P(z) and Q(z) are now seen to verify (3.16) if we take

$$M(x) = q_s + q_{s-1} \frac{x}{1!} + q_{s-2} \frac{x^2}{2!} + \ldots + \frac{x^s}{s!} . \qquad (3.27)$$

49

Padé Approximations to the Exponential Function

"Comme cela est souvent le cas en ce qui concerne les découvertes scientifiques, leur inventeur n'est pas H. Padé." (C. Brezinski 1984, Œuvres de H. Padé, p. 5)

Padé approximations (Padé 1892) are rational functions which, for a given degree of the numerator and the denominator, have highest order of approximation. Their origin lies in the theory of continued fractions and they played a fundamental role in Hermite's (1873) and Lindemann's (1882) proofs of the transcendency of e, respectively π .

These optimal approximations can be obtained for the exponential function e^z from (3.16) by the following idea (Padé 1899): choose M(x) such that in (3.16) as many terms as possible involving high powers of z become zero, i.e.,

$$M(x) = \frac{x^k(x-1)^j}{(k+j)!} ; \qquad (3.28)$$

then $M^{(i)}(0) = 0$ for i = 0, ..., k-1 and $M^{(i)}(1) = 0$ for i = 0, ..., j-1.

Theorem 3.12. The (k, j)-Padé approximation to e^z is given by

$$R_{kj}(z) = \frac{P_{kj}(z)}{Q_{kj}(z)}$$
(3.29)

where

$$\begin{aligned} P_{kj}(z) &= 1 + \frac{k}{j+k}z + \frac{k(k-1)}{(j+k)(j+k-1)}\frac{z^2}{2!} + \ldots + \frac{k(k-1)\ldots 1}{(j+k)\ldots(j+1)}\cdot\frac{z^k}{k!} \\ Q_{kj}(z) &= 1 - \frac{j}{k+j}z + \frac{j(j-1)}{(k+j)(k+j-1)}\frac{z^2}{2!} - \ldots + (-1)^j\frac{j(j-1)\ldots 1}{(k+j)\ldots(k+1)}\cdot\frac{z^j}{j!} \\ &= P_{jk}(-z), \end{aligned}$$

with error

$$e^{z} - R_{kj}(z) = (-1)^{j} \frac{j!k!}{(j+k)!(j+k+1)!} z^{j+k+1} + \mathcal{O}(z^{j+k+2}) .$$
(3.30)

It is the unique rational approximation to e^z of order j+k, such that the degrees of numerator and denominator are k and j, respectively.

Proof. Inserting (3.28) into (3.16) and (3.22) gives the formulas for $P_{kj}(z)$, $Q_{kj}(z)$ and (3.30). The uniqueness is a consequence of Proposition 3.11 and the fact that the (j+k)-degree polynomial M(x) must have a zero of multiplicity k at x=0, and one of multiplicity j at x=1.

$\frac{1}{1}$	$\frac{1+z}{1}$	$\frac{1+z+\frac{z^2}{2!}}{1}$
$\frac{1}{1-z}$	$\frac{1+\frac{1}{2}z}{1-\frac{1}{2}z}$	$\frac{1+\frac{2}{3}z+\frac{1}{3}\frac{z^2}{2!}}{1-\frac{1}{3}z}$
$\frac{1}{1-z+\frac{z^2}{2!}}$	$\frac{1+\frac{1}{3}z}{1-\frac{2}{3}z+\frac{1}{3}\frac{z^2}{2!}}$	$\frac{1+\frac{1}{2}z+\frac{1}{6}\frac{z^2}{2!}}{1-\frac{1}{2}z+\frac{1}{6}\frac{z^2}{2!}}$
$\frac{1}{1-z+\frac{z^2}{2!}-\frac{z^3}{3!}}$	$\frac{1+\frac{1}{4}z}{1-\frac{3}{4}z+\frac{1}{2}\frac{z^2}{2!}-\frac{1}{4}\frac{z^3}{3!}}$	$\frac{1 + \frac{2}{5}z + \frac{1}{10}\frac{z^2}{2!}}{1 - \frac{3}{5}z + \frac{3}{10}\frac{z^2}{2!} - \frac{1}{10}\frac{z^3}{3!}}$

Table 3.2. Padé approximations for e^z

Table 3.2 shows the first Padé approximations to e^z . We observe that the stability function of many methods of Table 3.1 are Padé approximations. The diagonal Padé approximations are those with k=j.

Exercises

1. Let R(z) be the stability function of (3.1) and $R^*(z)$ the stability function of its adjoint method (see Section II.8). Prove that

$$R^*(z) = (R(-z))^{-1}$$
.

- 2. Consider an IRK with nonsingular A, distinct c_i and non-zero b_i. Show

 a) If C(s) and c_s = 1 then (3.13);
 b) If D(s) and c₁ = 0 then (3.14).
 In both cases the stability function satisfies R(∞)=0.
 (For the definition of the assumptions C(s) and D(s) see Section IV.5).
- 3. Show that collocation methods can only be L-stable if M(1) = 0, i.e., if one of the c's, usually c_s , equals 1.

52 IV. Stiff Problems — One Step Methods

4. (Padé (1899), see also Lagrange (1776)). Show that the continued fraction

$$e^{x} = 1 + \frac{x}{1 - \frac{x}{2} + \frac{\frac{1}{1 \cdot 3} \frac{x^{2}}{4}}{1 + \frac{\frac{1}{3 \cdot 5} \frac{x^{2}}{4}}{1 + \frac{\frac{1}{5 \cdot 7} \frac{x^{2}}{4}}{1 + \frac{\frac{1}{7 \cdot 9} \frac{x^{2}}{4}}{1 + \frac{\frac{7}{7 \cdot 9} \frac{x^{2}}{4}}{1 + \dots}}}$$

leads to the diagonal Padé approximations for e^x .

Hint. Compute the first partial fractions. If you don't succeed in finding a general proof, read Section IV.5.

5. The trapezoidal rule

satisfies $a_{si} = b_i$, but not $R(\infty) = 0$. Why doesn't this contradict Proposition 3.8?

"Mein hochgeehrter Lehrer, der vor wenigen Jahren verstorbene Geheime Hofrath *Gauss* in Göttingen, pflegte in vertraulichem Gespräche häufig zu äussern, die Mathematik sei weit mehr eine Wissenschaft für das Auge als eine für das Ohr. Was das Auge mit einem Blicke sogleich übersieht..." (J.F. Encke 1861, published in Kronecker's Werke, Vol. 5, page 391.)

Order stars, discovered by searching for a better understanding of the stability properties of the Padé approximations to e^z (Wanner, Hairer & Nørsett 1978), offered nice and unexpected access to many other results: the "second barrier" of Dahlquist, the Daniel & Moore conjecture, highest possible order with real poles, comparison of stability domains (Jeltsch & Nevanlinna 1981, 1982), order bounds for hyperbolic or parabolic difference schemes (e.g., Iserles & Strang 1983, Iserles & Williamson 1983, Jeltsch 1988).

Introduction

"When I wrote my book in 1971 I wanted to draw "relative stability domains", but curious stars came out from the plotter. I thought of an error in the program and I threw them away..." (C.W. Gear 1979)

We present in Fig. 4.1 the stability domains for the Padé approximations R_{33} , R_{24} , R_{15} , R_{06} of Theorem 3.12, which are all 6th order approximations to $\exp(z)$. It can be observed that R_{33} and R_{24} are nicely A-stable. The other two are not, R_{15} violates (3.6) and R_{06} violates (3.7). After some meditation on these and similar figures, trying to obtain a better understanding of these phenomena, one is finally led to

Definition 4.1. The set

$$A = \left\{ z \in \mathbb{C}; |R(z)| > |e^z| \right\} = \left\{ z \in \mathbb{C}; |q(z)| > 1 \right\}$$
(4.1)

where $q(z) = R(z)/e^z$, is called the order star of R.

The order star does not compare |R(z)| to 1, as does the stability domain, but to the exact solution $|e^z| = e^x$ and it is hoped that this might give more information. As we always assume that the coefficients of R(z) are real, the order star is symmetric with respect to the real axis. Furthermore, since $|e^{iy}| = 1$, A is the complementary set of the stability domain S on the imaginary axis. Therefore we have from (3.6) and (3.7):

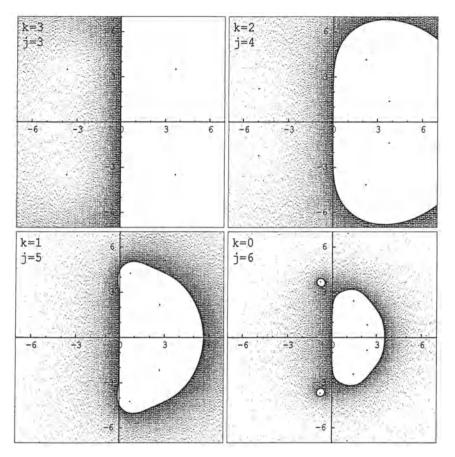


Fig. 4.1. Stability domains for Padé approximations

Lemma 4.2. R(z) is I-stable if and only if (i) $A \cap i\mathbb{R} = \emptyset$. Further, R(z) is A-stable if and only if (i) and (ii) all poles of R(z) (= poles of q(z)) lie in the positive half plane C⁺.

Fig. 4.2 shows the order stars corresponding to the functions of Fig. 4.1. These order stars show a nice and regular behaviour: there are j black "fingers" to the right, each containing a pole of R_{kj} , and k white "fingers" to the left, each containing a zero. Exactly two boundary curves of A tend to infinity near to the imaginary axis. These properties are a consequence of the following three Lemmas.

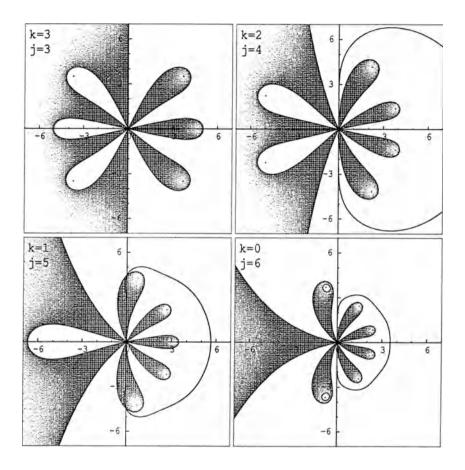


Fig. 4.2. Order stars for Padé approximations

Lemma 4.3. If R(z) is an approximation to e^z of order p, i.e., if

$$e^{z} - R(z) = Cz^{p+1} + \mathcal{O}(z^{p+2})$$
(4.2)

with $C \neq 0$, then, for $z \rightarrow 0$, A behaves like a "star" with p+1 sectors of equal width $\pi/(p+1)$, separated by p+1 similar "white" sectors of the complementary set. The positive real axis is inside a black sector iff C < 0and inside a white sector iff C > 0.

Proof. Dividing the error formula (4.2) by e^z gives

$$\frac{R(z)}{e^z} = 1 - Cz^{p+1} + \mathcal{O}(z^{p+2}) \; .$$

Thus the value $R(z)/e^z$ surrounds the point 1 as often as z^{p+1} surrounds

the origin, namely p+1 times. So, $R(z)/e^z$ is p+1 times alternatively inside or outside the unit circle. It lies inside for small positive real z whenever C > 0.

Lemma 4.4. If $z = re^{i\theta}$ and $r \to \infty$, then $z \in A$ for $\pi/2 < \theta < 3\pi/2$ and $z \notin A$ for $-\pi/2 < \theta < \pi/2$. The border ∂A possesses only two branches which go to infinity. If

$$R(z) = K z^{\ell} + \mathcal{O}(z^{\ell-1}) \quad \text{for} \quad z \to \infty \;,$$
 (4.3)

these branches asymptotically approach

$$x = \log|K| + \ell \log|y| \tag{4.4}$$

Proof. The first assertion is the well-known fact that the exponential function, for $\operatorname{Re} z \to \pm \infty$ is much stronger than any polynomial or rational function. In order to show the uniqueness of the border lines, we consider for $r \to \infty$ the two functions

$$\begin{split} \varphi_1(\theta) &= |e^z|^2 = e^{2r\cos\theta} \\ \varphi_2(\theta) &= |R(z)|^2 = R(re^{i\theta})R(re^{-i\theta}) \end{split}$$

Differentiation gives

$$\frac{\varphi_1'}{\varphi_1} = -2r\sin\theta, \qquad \frac{\varphi_2'}{\varphi_2} = 2r\operatorname{Re}\left(ie^{i\theta} \cdot \frac{R'(re^{i\theta})}{R(re^{i\theta})}\right). \tag{4.5}$$

Since $|R'/R| \to 0$ for $r \to \infty$, we have

$$rac{d}{d heta}\logarphi_1(heta) < rac{d}{d heta}\logarphi_2(heta) \qquad ext{for} \quad heta\in[arepsilon,\pi-arepsilon]$$

Hence in this interval there can only be one value of θ with $\varphi_1(\theta) = \varphi_2(\theta)$. Formula (4.4) is obtained from (4.3) by

$$|K|(x^2+y^2)^{\ell/2} \approx e^x, \qquad \log |K| + rac{\ell}{2} \log(x^2+y^2) \approx x$$

and by neglecting x^2 , which is justified because $x/y \to 0$ whenever x+iy tends to infinity on the border of A.

It is clear from the maximum principle that each bounded "finger" of A in Fig. 4.2 must contain a pole of q(z). A still stronger result is the following:

Lemma 4.5. Each bounded subset $F \subset A$ with common boundary $\partial F \subset \partial A$ collecting m sectors at the origin must contain at least m poles of q(z) (each counted according to its multiplicity). Analogously, each bounded "white"

subset $F \subset \mathbb{C} \setminus A$ with m sectors at the origin must contain at least m zeros of q(z).

Proof. Suppose first that ∂F is represented by a parametrized positively oriented loop c(t), $t_0 \leq t \leq t_1$. Let $\vec{a} = (c'_1(t), c'_2(t))$ be the tangent vector and $\vec{n} = (c'_2(t), -c'_1(t))$ an exterior normal vector. We write

$$q(z) = r(x, y) \cdot e^{i\varphi(x, y)}, \qquad z = x + iy$$

so that $\log q(z) = \log r(x, y) + i\varphi(x, y)$. Since the modulus increases inside F, we have

$$rac{\partial (\log r)}{\partial ec n} < 0 \; .$$

Now the Cauchy-Riemann differential equations for $\log q$ are

$$\frac{\partial(\log r)}{\partial x} = \frac{\partial \varphi}{\partial y}; \qquad \qquad \frac{\partial(\log r)}{\partial y} = -\frac{\partial \varphi}{\partial x} , \qquad (4.7)$$

so that (4.6) becomes

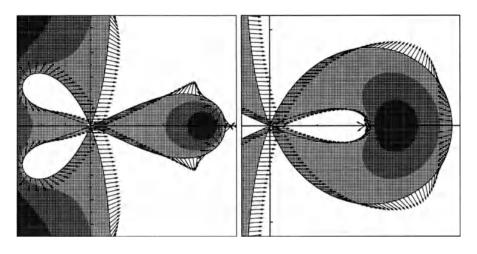
$$\frac{\partial \varphi}{\partial \vec{a}} < 0$$
 . (4.8)

This means that the argument of q decreases along c. If the contour curve c(t) returns m times to the origin, where the argument is a multiple of 2π , the vector q(z) must perform at least m complete revolutions in the negative sense (Fig. 4.3). Thus the argument principle (an idea which we have already encountered in Section I.13; see Volume I, pages 82 and 330), ensures the presence of at least m poles inside F (there are no zeros, because these are not in A).

If the boundary curve is represented by several curves, all rotation numbers are added up. For "white" subsets the proof is similar, just that $\partial(\log r)/\partial \vec{n} > 0$ and the argument rotates in the other sense.

Fig. 4.3 gives an illustration of two order stars for the SDIRK methods of order 3 (Table 3.1, case e). Here, q(z) possesses a double pole at $z=1/\gamma$. However, for $\gamma = (3-\sqrt{3})/6$, the bounded component F of A collects only one sector at the origin. Since the vector q(z) performs two rotations, there is in addition to the origin a second point on ∂F for which $\arg(q) = 0$, i.e., $\arg(R(z)) = \arg(e^z)$. Thus, because $|R(z)| = |e^z|$ on ∂A , we have $R(z) = e^z$. These points are called *exponential fitting points*. Another version of Lemma 4.5 is thus (Iserles 1981):

Lemma 4.5'. Each bounded subset $F \subset A$ with $\partial F \subset \partial A$ contains exactly as many poles as there are exponential fitting points on its boundary. \Box



a) $\gamma = (3 - \sqrt{3})/6$ b) $\gamma = (3 + \sqrt{3})/6$

Fig. 4.3. SDIRK methods, order 3; arrows indicate direction of q(z)

Order and Stability for Rational Approximations

In the sequel we suppose R(z) to be an arbitrary rational approximation of order p with k zeros and j poles.

Theorem 4.6. If R is A-stable, then $p \leq 2k_1+2$, where k_1 is the number of different zeros of R(z) in \mathbb{C}^- .

Proof. At least [(p+1)/2] sectors of A start in \mathbb{C}^- (Lemma 4.3). By A-stability these have to be infinite and enclose at least [(p+1)/2]-1 bounded white fingers, each containing at least one zero by Lemma 4.5. Therefore $[(p+1)/2]-1 \leq k_1$.

Theorem 4.7. If R is I-stable, then $p \leq 2j_1$, where j_1 is the number of poles of R(z) in \mathbb{C}^+ .

Proof. At least [(p+1)/2] sectors of A start in C⁺. They cannot cross $i\mathbb{R}$ and must therefore be bounded (Lemma 4.4). Again by Lemma 4.5 we have $[(p+1)/2] \leq j_1$.

Theorem 4.8. Suppose that $p \ge 2j-1$ and $|R(\infty)| \le 1$. Then R is A-stable.

Proof. By Proposition 3.6 the function R(z) is I-stable. Applying Theorem

4.7 we get $j_1 \ge j$ so that *I*-stability implies *A*-stability.

Theorem 4.9 (Crouzeix & Ruamps 1977). Suppose $p \ge 2j-2$, $|R(\infty)| \le 1$, and the coefficients of the denominator Q(z) have alternating signs. Then R is A-stable.

Proof. A similar argument as in the foregoing proof allows at most one pole in \mathbb{C}^- . It would then be real and its existence would contradict the hypothesis on signs of Q(z).

Theorem 4.10. Suppose $p \ge 2j-3$, R is I-stable, and the coefficients of Q(z) have alternating signs. Then R is A-stable.

Proof. For $p \ge 2j-3$ the argument of the foregoing proof is still valid. However Proposition 3.6 is no longer applicable and we need the hypothesis on *I*-stability.

We see from Fig. 4.2 that all poles and all zeros for Padé approximations must be *simple*. Whenever two poles coalesce, the corresponding sectors create a bounded white finger between them with the need for an additional zero. Thus the presence of multiple zeros or poles will require an order reduction.

Theorem 4.11. Let R possess k_0 distinct zeros and j_0 distinct poles. Then $p \leq k_0 + j_0$.

Proof. We identify the complex plane with the Gaussian sphere and the order star with a CW-complex decomposition of this sphere (Fig. 4.4). Let s_2 be the number of 2-cells f_i , s_1 the number of 1-cells l_i (paths), and s_0 the number of vertices. Then Euler's polyhedral formula ("Si enim numerus angulorum solidorum fuerit = S, numerus acierum = A et numerus hedrarum = H, semper habetur S+H = A+2, hincque vel S = A+2-H vel H = A+2-S vel A = S+H-2, quae relationis simplicitas ob demonstrationis difficultatem...", Euler (1752)), implies

$$s_0 - s_1 + s_2 = 2 . (4.9)$$

Modern versions are in any book on algebraic topology, for particularly easy reading see e.g. Massey (1980, p. 87, Corollary 4.4). Formula (4.9) is only true if all f_i are homeomorphic to disks. Otherwise, they have to be cut into disks by additional paths (dotted in Fig. 4.4). So, in general, we have

$$s_0 - s_1 + s_2 \ge 2 . \tag{4.9'}$$

Since each vertex is reached by at least 2 paths, the origin by hypothesis by 2p+2, and since every path has two extremities, we have

$$s_1 - s_0 \ge p . \tag{4.10}$$

By Lemma 4.5 each 2-cell, with the exception of two (the two "infinite" ones) must contain at least a pole or a zero, so we have

$$s_2 \le k_0 + j_0 + 2 \tag{4.11}$$

These three inequalities give $p \leq k_0 + j_0$.

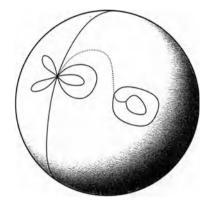


Fig. 4.4. Order star on Gaussian sphere

Stability of Padé Approximations

"... evidence is given to suggest that these are the only L-acceptable Padé approximations to the exponential." (B.L. Ehle 1973)

Theorem 4.12. A Padé approximation R_{kj} given in (3.30) is A-stable if and only if $k \leq j \leq k+2$. All zeros and all poles are simple.

Proof. The "if"-part is a consequence of Theorem 4.9. The "only if"-part follows from Theorem 4.6 since p=k+j. For the same reason Theorem 4.11 shows that all poles and zeros are simple.

Comparing Stability Domains

"Da ist der allerärmste Mann dem ander'n viel zu reich, das Schicksal setzt den Hobel an und hobelt beide gleich." (F. Raimund, das Hobellied)

Jeltsch & Nevanlinna (1978) proved the following "disk theorem": If S is the stability domain of an s-stage explicit RK-method and D the disk with centre -s and radius s (i.e the stability domain of s explicit Euler steps with step size h/s), then

$$S \not\supseteq D$$
 (4.12)

unless S = D and the method in question is Euler's method. This curious result expresses the fact that Euler's method is "the most stable" of all methods with equal numerical work. After the discovery of order stars it became clear that the result is much more general and that any method has the same property (Jeltsch & Nevanlinna 1981). We shall also see in Chapter V that this result generalizes to many multistep methods. The main tool of this theory is

Definition 4.13. Let $R_1(z)$ and $R_2(z)$ be rational approximations to e^z , then their relative order star is defined as

$$B = \left\{ z \in \mathbb{C}; \left| \frac{R_1(z)}{R_2(z)} \right| > 1 \right\}.$$
(4.13)

Here, the stability function for method 1 is compared to the stability function for method 2 instead of to the exact solution e^z . The following order relations

$$e^{z} - R_{1}(z) = C_{1}z^{p_{1}+1} + \dots$$

 $e^{z} - R_{2}(z) = C_{2}z^{p_{2}+1} + \dots$

lead, by subtraction, to

$$\frac{R_1(z)}{R_2(z)} = 1 - C z^{p+1} + \dots$$
(4.14)

where $p = \min(p_1, p_2)$ and

$$C = \begin{cases} C_1 - C_2 & \text{if } p_1 = p_2 \\ C_1 & \text{if } p_1 > p_2 \\ -C_2 & \text{if } p_1 < p_2. \end{cases}$$
(4.15)

Remark 4.14. The statement of Lemma 4.3 remains unchanged for B, whenever $C \neq 0$. Since the fraction $R_1(z)/R_2(z)$ has no essential singularity

at infinity, there is no analogue of Lemma 4.4. Further, the boundedness assumption on F can be omitted in Lemmas 4.5 and 4.5' (if ∞ is a pole of $R_1(z)/R_2(z)$, it has to be counted also). With the correspondences displayed in Table 4.1, the statements of Theorems 4.6 and 4.7 remain true for B.

order star A (4.1)	\longleftrightarrow	relative order star B (4.13)
imaginary axis	\longleftrightarrow	∂S_2
C-	\longleftrightarrow	interior of S_2
\mathbb{C}^+	\longleftrightarrow	exterior of S_2
method A-stable	\longleftrightarrow	$S_1 \supset S_2$
p	\longleftrightarrow	$\min(p_1,p_2)$

Table 4.1. Correspondences between A and B

Theorem 4.15. If $R_1(z)$ and $R_2(z)$ are polynomial stability functions of degree s and orders ≥ 1 , then the corresponding stability domains satisfy

$$S_1 \not\supseteq S_2 \quad and \quad S_1 \not\subset S_2 \ .$$
 (4.16)

Proof. Suppose that $S_1 \supset S_2$ (i.e., by Table 4.1, suppose "A-stability"). Then the analogue of Theorem 4.7 requires that $R_1(z)/R_2(z)$ have a pole outside S_2 . Since $R_1(z)$ and $R_2(z)$ have the same degree, $R_1(z)/R_2(z)$ has no pole at infinity. Therefore the only poles of $R_1(z)/R_2(z)$ are the zeros of R_2 and these are *inside* S_2 . This is a contradiction and proves the first part of (4.16). The second part is obtained by exchanging R_1 and R_2 .

In order to compare numerical methods with *different* numerical work, we define:

Definition 4.16. Let R(z) be the stability function of degree s of an explicit RK method (usually with s stages), then

$$S^{scal} = \left\{ z; |R(sz)| \le 1 \right\} = \left\{ z; s \cdot z \in S \right\} = \frac{1}{s}S$$

$$(4.17)$$

will be called the scaled stability domain of the method.

Theorem 4.17 (Jeltsch & Nevanlinna 1981). If $R_1(z)$ and $R_2(z)$ are the stability functions of degrees s_1 resp. s_2 of two explicit RK-methods of orders ≥ 1 , then

$$S_1^{scal} \not\supseteq S_2^{scal} \quad and \quad S_1^{scal} \not\subset S_2^{scal} ,$$
 (4.18)

i.e., a scaled stability domain can never completely contain another.

The interesting interpretation of this result is that for any two methods, there exists a differential equation $y' = \lambda y$ such that one of them performs better than the other. No "miracle" method is possible.

Proof. We compare s_2 steps of method 1 with step size h/s_2 to s_1 steps of method 2 with step size h/s_1 . Both procedures then have comparable numerical work for the same advance in step size. Applied to $y' = \lambda y$, this compares

$$\left(R_1\left(\frac{z}{s_2}\right)\right)^{s_2}$$
 to $\left(R_2\left(\frac{z}{s_1}\right)\right)^{s_1}$

of the same degree. Theorem 4.15 now gives

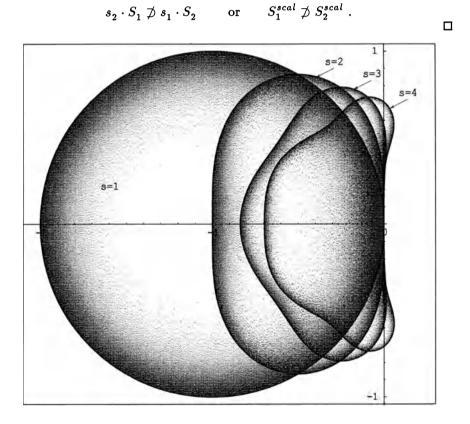


Fig. 4.5. Scaled stability domains for Taylor methods (2.12)

As an illustration to this theorem, we present in Fig. 4.5 the scaled stability domains for the Taylor methods of orders 1, 2, 3, 4 (compare with Fig. 2.1). It can clearly be observed that none of them contains another.

Rational Approximations with Real Poles

"The surprising result is that the maximum reachable order is m+1." (Nørsett & Wolfbrandt 1977)

The stability functions of diagonally implicit RK methods (DIRK methods), i.e., methods with $a_{ij} = 0$ for i < j, are

$$R(z) = \frac{P(z)}{(1 - \gamma_1 z)(1 - \gamma_2 z)\dots(1 - \gamma_s z)}$$
(4.19)

where $\gamma_i = a_{ii}$ (i = 1, ..., s) and degree $P \leq s$. This follows at once from Formula (3.3) of Proposition 3.2, since the determinant of a triangular matrix is the product of its diagonal elements. Thus R(z) possesses *real poles* $1/\gamma_1, 1/\gamma_2, ..., 1/\gamma_s$. Such approximations to e^z will also appear in the next sections as stability functions of Rosenbrock methods and so-called singlyimplicit RK methods. They thus merit a more thorough study. Research on these real-pole approximations was started by Nørsett (1974) and Wolfbrandt (1977). Many results are collected in their joint paper Nørsett & Wolfbrandt (1977).

If the method is of order at least s, P(z) is given by (3.26). We shall here, and in the sequel, very often write the formulas for s=3 without always mentioning how trivial their extension to arbitrary s is. Hence for s=3

$$R(z) = \frac{1 + z \left(\frac{S_0}{1!} - \frac{S_1}{0!}\right) + z^2 \left(\frac{S_0}{2!} - \frac{S_1}{1!} + \frac{S_2}{0!}\right) + z^3 \left(\frac{S_0}{3!} - \frac{S_1}{2!} + \frac{S_2}{1!} - \frac{S_3}{0!}\right)}{1 - zS_1 + z^2S_2 - z^3S_3}$$
(4.20)

where

$$\begin{split} S_0 &= 1, \qquad S_1 = \gamma_1 + \gamma_2 + \gamma_3, \qquad S_2 = \gamma_1 \gamma_2 + \gamma_1 \gamma_3 + \gamma_2 \gamma_3, \qquad S_3 = \gamma_1 \gamma_2 \gamma_3 \; . \end{split}$$

The error constant is for p=s

$$C = \frac{S_0}{4!} - \frac{S_1}{3!} + \frac{S_2}{2!} - \frac{S_3}{1!} .$$
 (4.21)

Theorem 4.18. Let R(z) be an approximation to e^z of order p with real poles only and let k be the degree of its numerator. Then

$$p\leq k+1$$
 .

Proof. If a sector of the order star A ends up with a pole on the real axis, then by symmetry the complex conjugate sector must join the first one. All white sectors enclosed by these two must therefore be finite (Fig. 4.6.). The same is true for sectors joining the infinite part of A. There is thus on each side of the real axis *at most one* white sector which can be infinite. Thus the remaining p-1 white sectors require together at least p-1 zeros by Lemma 4.5, i.e., we have $p-1 \leq k$.

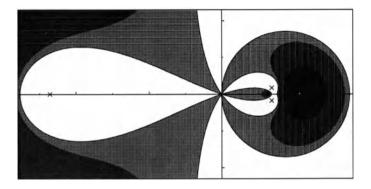


Fig. 4.6. An approximation with real poles, 3 zeros, order 4

Remark 4.19. If $p \ge k$, then at least one white sector must be unbounded. This is then either the first sector on the positive real axis, or, by symmetry, there is a pair of two sectors. By the proof of Theorem 4.18 the pair is unique and we shall call it *Cary Grant's part*.

Remark 4.20. If p=k+1, the optimal case, there are k+2 white sectors, two of them are infinite. Hence each of the remaining k sectors must then contain exactly one root of P(z). As a consequence, C < 0 iff P(z) has no positive real root between the origin and the first pole.

The Real-Pole Sandwich

We now analyze the approximations (4.19) with order $p \ge s$ in more detail (Nørsett & Wanner 1979). We are interested in two sets:

Definition 4.21. Let L be the set of $(\gamma_1, \ldots, \gamma_s)$ for which degP(z) in (4.20) is $\leq s-1$, i.e., $R(\infty)=0$ for $\gamma_i \neq 0$ $(i=1,\ldots,s)$.

Definition 4.22. Denote by H the set of $(\gamma_1, \ldots, \gamma_s)$ for which the error constant (4.21) is zero, i.e., for which the approximation has highest possible order p=s+1.

66 IV. Stiff Problems - One Step Methods

A consequence of Theorem 4.18 is:

$$L \cap H = \emptyset . \tag{4.22}$$

Written for the case s=3 (generalizations to arbitrary s are straightforward) and using (4.20) and (4.21) the sets L and H become

$$L = \left\{ (\gamma_1, \gamma_2, \gamma_3); \frac{1}{3!} - \frac{\gamma_1 + \gamma_2 + \gamma_3}{2!} + \frac{\gamma_1 \gamma_2 + \gamma_1 \gamma_3 + \gamma_2 \gamma_3}{1!} - \frac{\gamma_1 \gamma_2 \gamma_3}{0!} = 0 \right\}$$

$$H = \left\{ (\gamma_1, \gamma_2, \gamma_3); \frac{1}{4!} - \frac{\gamma_1 + \gamma_2 + \gamma_3}{3!} + \frac{\gamma_1 \gamma_2 + \gamma_1 \gamma_3 + \gamma_2 \gamma_3}{2!} - \frac{\gamma_1 \gamma_2 \gamma_3}{1!} = 0 \right\}.$$

(4.23)

Theorem 4.23 (Nørsett & Wanner 1979). The surfaces H and L are each composed of s disjoint connected sheets

$$L = L_1 \cup L_2 \cup \ldots \cup L_s , \qquad H = H_1 \cup H_2 \cup \ldots \cup H_s . \qquad (4.24)$$

If a direction $\delta = (\delta_1, \ldots, \delta_s)$ is chosen with all $\delta_i \neq 0$ and if k of them are positive, then the ray

$$X = \left\{ (\gamma_1, \dots, \gamma_s); \quad \gamma_i = t\delta_i, \quad 0 \le t < \infty \right\}$$
(4.25)

intersects the sheets $H_1, L_1, H_2, L_2, \ldots, H_k, L_k$ in this order and no others.

Proof. When the δ_i have been chosen, inserting $\gamma_i = t\delta_i$ into (4.23) gives

$$\frac{1}{3!} - t\frac{\delta_1 + \delta_2 + \delta_3}{2!} + t^2 \frac{\delta_1 \delta_2 + \delta_1 \delta_3 + \delta_2 \delta_3}{1!} - t^3 \frac{\delta_1 \delta_2 \delta_3}{0!} = 0$$

$$\frac{1}{4!} - t\frac{\delta_1 + \delta_2 + \delta_3}{3!} + t^2 \frac{\delta_1 \delta_2 + \delta_1 \delta_3 + \delta_2 \delta_3}{2!} - t^3 \frac{\delta_1 \delta_2 \delta_3}{1!} = 0$$
(4.26)

for L and H, respectively. These are third (in general sth) degree polynomials whose positive roots we have to study. We vary the δ 's, and hence the ray X, starting with all δ 's negative. The polynomials (4.26) then have all coefficients positive and obviously no positive real roots. When now one delta, say δ_3 , changes sign, the leading coefficients of (4.26) become zero and one root becomes infinite for each equation and satisfies asymptotically

$$\frac{\delta_{1}\delta_{2}}{1!} - t\frac{\delta_{1}\delta_{2}\delta_{3}}{0!} \approx 0 \qquad \Longrightarrow \qquad t \approx \frac{1}{\delta_{3}}$$

$$\frac{\delta_{1}\delta_{2}}{2!} - t\frac{\delta_{1}\delta_{2}\delta_{3}}{1!} \approx 0 \qquad \Longrightarrow \qquad t \approx \frac{1}{2\delta_{3}}$$
(4.27)

for L and H, respectively. Thus H comes below and L comes above. Because of $L \cap H = \emptyset$ (4.22) these two roots can never cross and must therefore remain in this configuration (see Fig. 4.7).

When then successively δ_2 and δ_1 change sign, the same scene repeats itself again and again, always two sheets of H and L descend from above in that order and are layed on the lower sheets like slices of bread and ham of

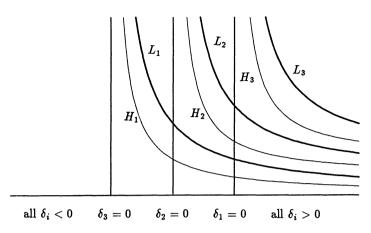


Fig. 4.7. Formation of the sandwich

a giant sandwich. Because $L \cap H = \emptyset$, these sheets can never cross, two roots for L or H can never come together and become complex. So all roots must remain real and the theorem must be true.

A three-dimensional view of these surfaces is given in Fig. 4.8. $\hfill \Box$

The following theorem describes the form of the corresponding order star in all these sheets:

Theorem 4.24. Let G_1, \ldots, G_s be the open connected components of $\mathbb{R}^s \setminus H$ such that L_i lies in G_i , and let G_0 be the component containing the origin. Then the order star of $\mathbb{R}(z)$ given by (4.20) possesses exactly k bounded fingers if and only if

$$(\gamma_1,\ldots,\gamma_s)\in G_k\cup H_k$$

Proof. We prove this by a continuity argument letting the point $(\gamma_1, \ldots, \gamma_s)$ travel through the sandwich. Since Cary Grant's part is always present (Remark 4.19), the number of bounded sectors can change only where the error constant C (4.21) changes sign, i.e., on the surfaces H_1, H_2, \ldots, H_s . Fig. 4.9 gives some snap-shots from this voyage for s=3 and $\gamma_1 = \gamma_2 = \gamma_3 = \gamma$. In this case the equations (4.23) become

$$\frac{1}{3!} - \frac{3\gamma}{2!} + \frac{3\gamma^2}{1!} - \frac{\gamma^3}{0!} = 0$$

$$\frac{1}{4!} - \frac{3\gamma}{3!} + \frac{3\gamma^2}{2!} - \frac{\gamma^3}{1!} = 0$$
(4.28)

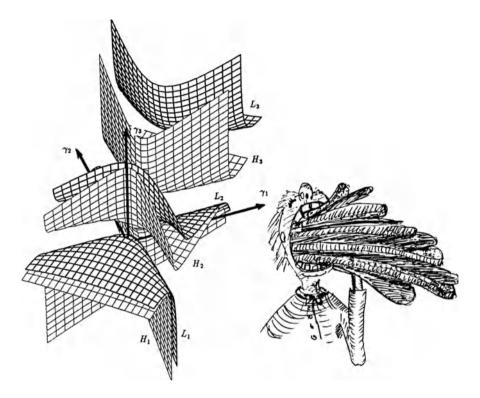


Fig. 4.8. The sandwich for $s = 3 \dots$ and for s = 5

whose roots

$$\begin{aligned} \lambda_1 &= 0.158984, \, \lambda_2 = 0.435867, \, \lambda_3 = 2.40515\\ \chi_1 &= 0.128886, \, \chi_2 = 0.302535, \, \chi_3 = 1.06858 \end{aligned} \tag{4.29}$$

do interlace nicely as required by Theorem 4.23. The affirmation of Theorem 4.24 for s=3 can be clearly observed in Fig. 4.9.

For the proof of the general statement we also put $\gamma_1 = \ldots = \gamma_s = \gamma$ and investigate the two extreme cases:

1. $\gamma = 0$: Here R(z) is the Taylor polynomial $1+z+\ldots+z^s/s!$ whose order star has no bounded sector at all.

2. $\gamma \to \infty$: The numerator of R(z) in (4.20) becomes for s=3

$$P(z) = 1 + z \left(\frac{1}{1!} - \frac{3\gamma}{0!}\right) + z^2 \left(\frac{1}{2!} - \frac{3\gamma}{1!} + \frac{3\gamma^2}{0!}\right) + z^3 \left(\frac{1}{3!} - \frac{3\gamma}{2!} + \frac{3\gamma^2}{1!} - \frac{\gamma^3}{0!}\right).$$
(4.30)

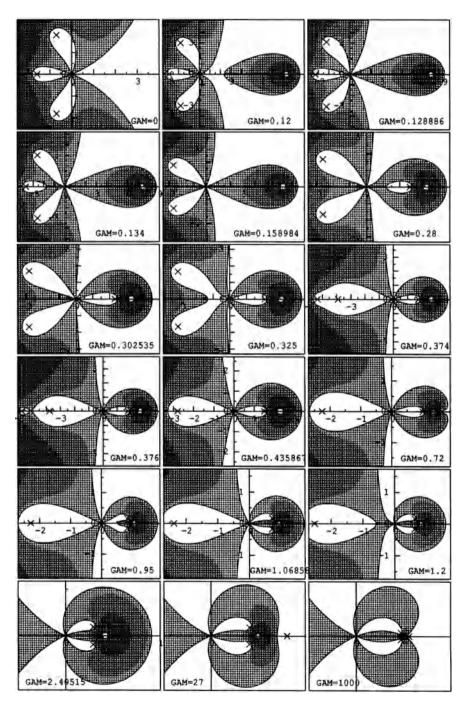


Fig. 4.9. Order stars for γ travelling through the sandwich

70 IV. Stiff Problems — One Step Methods

If we let $\gamma \to \infty$, this becomes with $z\gamma = w$

$$1-w\Big(3+\mathcal{O}ig(rac{1}{\gamma}ig)\Big)+w^2\Big(3+\mathcal{O}ig(rac{1}{\gamma}ig)\Big)-w^3\Big(1+\mathcal{O}ig(rac{1}{\gamma}ig)\Big)\;.$$

Therefore all roots $w_i \to 1$, hence $z_i \to 1/\gamma$ (see the last picture of Fig. 4.9). Therefore no zero of R(z) can remain left of Cary Grant's part and we have s bounded fingers.

Since between these extreme cases, there are at most s crossings of the surface H, Theorem 4.24 must be true.

Theorem 4.25. The function R(z) defined by (4.20) can be I-stable only if

$$(\gamma_1, \ldots, \gamma_s) \in H_q \cup G_q \cup H_{q+1}$$
 if $s = 2q - 1$

and

$$(\gamma_1,\ldots,\gamma_s)\in G_q\cup H_{q+1}\cup G_{q+1} \quad \ if \ \ s=2q \ .$$

Proof. The reason for this result is similar to Theorem 4.12. For *I*-stability the imaginary axis cannot intersect the order star and must therefore reach the origin through Cary Grant's part. Thus *I*-stability (and hence A-stability) is only possible (roughly) in the middle of the sandwich: Since at most [(p+2)/2] and at least [(p+1)/2] of the p+1 sectors of A start in \mathbb{C}^+ , the number k of bounded fingers satisfies

$$\Big[rac{p+2}{2}\Big] \geq k \quad ext{ and } \quad \Big[rac{p+1}{2}\Big] \leq k \, \, .$$

Inserting p=s+1 on H and p=s on G we get the above results.

Multiple Real-Pole Approximations

"... the next main result is obtained, saying that the least value of C is obtained when all the zeros of the denominator are equal ..." (Nørsett & Wolfbrandt 1977)

Approximations for which all poles are equal, i.e., for which $\gamma_1 = \gamma_2 = \ldots = \gamma_s = \gamma$ are called "multiple" real-pole approximations (Nørsett 1974). We again consider only approximations for which the order is $\geq s$. These satisfy, for s=3,

$$R(z) = \frac{P(z)}{(1 - \gamma z)^3}$$
(4.31)

where P(z) is given by (4.30), and their error constant is

$$C = \frac{1}{4!} - \frac{3\gamma}{3!} + \frac{3\gamma^2}{2!} - \frac{\gamma^3}{1!} .$$
 (4.32)

Approximations with multiple poles have many computational advantages (the linear systems to be solved in Rosenbrock or DIRK methods have all the same matrix (see Sections IV.6 and IV.7)). We are now pleased to see that they also have the smallest error constants (Nørsett & Wolfbrandt 1977):

Theorem 4.26. On each of the surfaces L_i and H_i $(i=1,\ldots,s)$ the error constant C of (4.20) is minimized (in absolute value) when $\gamma_1 = \gamma_2 = \ldots = \gamma_s$.

Proof. Our proof uses relative order stars (similar to (4.13))

$$B = \left\{ z \in \mathbb{C}; |q(z)| > 1 \right\}, \qquad q(z) = \frac{R_{new}(z)}{R_{old}(z)}$$

$$(4.33)$$

where $R_{old}(z)$ is a real-pole approximation of order p = s+1 corresponding to $\gamma_1, \ldots, \gamma_s$ and $R_{new}(z)$ is obtained by an infinitely small change of the γ 's. We assume that not all γ_i are identical and shall show that then the error constant can be decreased. After a permutation of the indices, we assume $\gamma_1 = \max(\gamma_i)$ (by Theorem 4.23 $\gamma_1 > 0$, so that $1/\gamma_1$ represents the pole on the positive real axis which is closest to the origin) and $\gamma_s < \gamma_1$. We don't allow arbitrary changes of the γ 's but we decrease γ_1 , keep $\gamma_2, \ldots, \gamma_{s-1}$ fixed and determine γ_s by the defining equations for H (see (4.23)). For example, for s = 3 we have

$$\gamma_{3} = \frac{\frac{1}{4!} - \frac{\gamma_{1} + \gamma_{2}}{3!} + \frac{\gamma_{1}\gamma_{2}}{2!}}{\frac{1}{3!} - \frac{\gamma_{1} + \gamma_{2}}{2!} + \frac{\gamma_{1}\gamma_{2}}{1!}}.$$
(4.34)

Since the poles and zeros of $R_{old}(z)$ depend continuously on the γ_i , poles and zeros of q(z) appear always in pairs (we call them dipoles). By the maximum principle or by Remark 4.14, each boundary curve of *B* leaving the origin must lead to at least one dipole before it rejoins the origin. Since there are s+2=p+1 dipoles of q(z) (identical poles for $R_{old}(z)$ and $R_{new}(z)$ don't give rise to a dipole of q(z)) and p+1 pairs of boundary curves of *B* leaving the origin (Remark 4.14), each such boundary curve passes through exactly one dipole before rejoining the origin. As a consequence no boundary curve of *B* can cross the real axis except at dipoles.

If the error constant of $R_{old}(z)$ satisfies $C_{old} < 0$, then by Remark 4.20 $R_{old}(z)$ has no zero between $1/\gamma_1$ and the origin. Therefore also q(z) possesses no dipole in this region. Since the pole of $R_{new}(z)$ is slightly larger than $1/\gamma_1$ (that of $R_{old}(z)$), the real axis between $1/\gamma_1$ and the origin must belong to the complement of B. Thus we have $C_{new} - C_{old} > 0$ by (4.14) and (4.15).

If $C_{old} > 0$ there is one additional dipole of q(z) between $1/\gamma_1$ and the origin (see Remark 4.20). As above we conclude this time that $C_{new}-C_{old} < 0$.

72 IV. Stiff Problems — One Step Methods

In both cases $|C_{new}| < |C_{old}|$, since by continuity C_{new} is near to C_{old} . As a consequence no $(\gamma_1, \ldots, \gamma_s) \in H$ with at least two different γ_i can minimize the error constant. As it becomes large in modulus when at least one γ_i tends to ∞ (this follows from Theorem 4.18 and from the fact that in this case R(z) tends to an approximation with s replaced by s-1) the minimal value of C must be attained when all poles are identical.

The proof for L is the same, there are only s-1 zeros of R(z) and the order is p=s.

An illustration of the order star B compared to A is given in Fig. 4.10. Another advantage of multiple real-pole approximations is exhibited by the following theorem:

Theorem 4.27 (Keeling 1989). On each surface $H_i \cap \{(\gamma_1, \ldots, \gamma_s); \gamma_j > 0\}$ the value $|R(\infty)|$ of (4.20) is minimized when $\gamma_1 = \gamma_2 = \ldots = \gamma_s$.

Proof. The beginning of the proof is identical to that of Theorem 4.26. Besides $1/\gamma_1$ and $1/\gamma_s$ there is at best an even number of dipoles on the positive real axis to the right of $1/\gamma_1$. As in the proof above we conclude that a right-neighbourhood of $1/\gamma_1$ belongs to B so that ∞ must lie in its complement (cf. Fig. 4.10). This implies

$$\mid R_{new}(\infty) \mid < \mid R_{old}(\infty) \mid$$

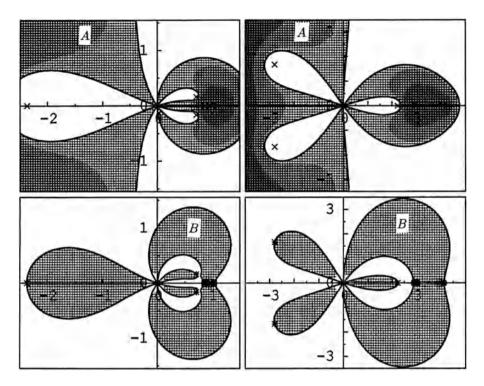
As a consequence no element of $H \cap \{(\gamma_1, \ldots, \gamma_s); \gamma_j > 0\}$ with at least two γ_j different can minimize $|R(\infty)|$. Also $|R(\infty)|$ increases if $\gamma_1 \to \infty$. The statement now follows from the fact that $|R(\infty)|$ tends to infinity when at least one γ_j approaches zero.

Exercises

- 1. (Ehle 1968). Compute the polynomial E(y) for the third and fourth Padé subdiagonal $R_{k,k+3}$ and $R_{k,k+4}$ (which, by Proposition 3.4 consists of two terms only). Show that these approximations violate (3.6) and cannot be A-stable.
- 2. Prove the general formula

$$E(y) = \left(\frac{k!}{(k+j)!}\right)^2 \sum_{r=\left[(k+j+2)/2\right]}^{j} \frac{(-1)^{j-r}}{(j-r)!} \left(\prod_{q=1}^{j-r} (j-q+1)(k+q)(r-k-q)\right) y^{2r}$$

for the Padé approximations R_{kj} $(j \ge k)$.



	left pictures: $C_{old} < 0$	right pictures: $C_{old} > 0$
Rold	$\gamma_1 = 1.2$	$\gamma_1 = 0.35$
	$\gamma_2 = 1.1$	$\gamma_2 = 0.33$
	$\gamma_3=0.9455446$	$\gamma_3=0.2406340$
R_{new}	$\gamma_1 = 1.17$	$\gamma_1 = 0.345$
	$\gamma_2 = 1.1$	$\gamma_2 = 0.33$
	$\gamma_3 = 0.9628661$	$\gamma_3=0.2440772$

Fig. 4.10. Order star A compared to B

3. (For the fans of mathematical precision). Derive the following formulas for the roots λ_i and χ_i of (4.28)

$$\begin{split} \chi_1 &= \frac{1}{2} + \frac{1}{\sqrt{3}}\cos\frac{13\pi}{18}, \qquad \lambda_1 = 1 + \sqrt{2}\cos\Big(\frac{\theta + 2\pi}{3}\Big), \\ \chi_2 &= \frac{1}{2} + \frac{1}{\sqrt{3}}\cos\frac{25\pi}{18}, \qquad \lambda_2 = 1 + \sqrt{2}\cos\Big(\frac{\theta + 4\pi}{3}\Big), \end{split}$$

74 IV. Stiff Problems — One Step Methods

$$\chi_3 = rac{1}{2} + rac{1}{\sqrt{3}} \cos rac{\pi}{18}, \qquad \lambda_3 = 1 + \sqrt{2} \cos \Bigl(rac{ heta}{3}\Bigr) \;,$$

where $\theta = \arctan(\sqrt{2}/4)$.

Hint. Use the Cardano-Viète formula (e.g. Abramowitz & Stegun p.17).

4. Prove that all zeros of

$$\frac{x^s}{s!} - S_1 \frac{x^{s-1}}{(s-1)!} + S_2 \frac{x^{s-2}}{(s-2)!} - \ldots \pm S_s$$

are real and distinct whenever all zeros of

 $Q(z) = 1 - zS_1 + z^2S_2 - \ldots \pm z^sS_s , \qquad S_s \neq 0$

are real. Also, both polynomials have the same number of positive (and negative) zeros (Nørsett & Wanner 1979, Bales, Karakashian & Serbin 1988).

Hint. Apply Theorem 4.23. This furnishes a geometric proof of a classical result (see e.g., Pólya & Szegö (1925), Volume II, Part V, No.65) and allows us to interpret R(z) as the stability function of a (real) collocation method.

5. Prove that $(\gamma, \ldots, \gamma) \in L$ (Definition 4.21) if and only if $L_s(1/\gamma) = 0$, where $L_s(x)$ denotes the Laguerre polynomial of degree s (see Abramowitz & Stegun (1964), Formula 22.3.9 or Formula (6.11) below).

IV.5. Construction of Implicit Runge-Kutta Methods

"Although most of these methods appear at the moment to be largely of theoretical interest" (B.L. Ehle 1968)

In Section II.7 the first implicit Runge-Kutta methods were introduced. As we saw in IV.3, not all of them are suitable for the solution of stiff differential equations. This section is devoted to the collection of several classes of fully implicit RK-methods possessing good stability properties.

The construction of such methods relies heavily on the simplifying assumptions

$$B(p): \sum_{i=1}^{s} b_i c_i^{q-1} = \frac{1}{q} \qquad q = 1, \dots, p;$$

$$C(\eta): \sum_{j=1}^{s} a_{ij} c_j^{q-1} = \frac{c_i^q}{q} \qquad i = 1, \dots, s, \quad q = 1, \dots, \eta;$$

$$D(\zeta): \sum_{i=1}^{s} b_i c_i^{q-1} a_{ij} = \frac{b_j}{q} (1 - c_j^q) \quad j = 1, \dots, s, \quad q = 1, \dots, \zeta.$$

Condition B(p) simply means that the quadrature formula (b_i, c_i) is of order p. The importance of the other two conditions is seen from the following fundamental theorem, which was derived in Section II.7.

Theorem 5.1 (Butcher 1964). If the coefficients b_i , c_i , a_{ij} of an RK-method satisfy B(p), $C(\eta)$, $D(\zeta)$ with $p \leq \eta + \zeta + 1$ and $p \leq 2\eta + 2$, then the method is of order p.

Gauss Methods

i=1

These processes, named "Kuntzmann-Butcher methods" in Section II.7, are collocation methods based on the Gaussian quadrature formulas, i.e., c_1, \ldots, c_s are the zeros of the shifted Legendre polynomial of degree s,

$$\frac{d^s}{dx^s} \left(x^s (x-1)^s \right) \ .$$

For the sake of completeness we present the first of these in Tables 5.1 and 5.2.

		$\frac{1}{2}-\frac{\sqrt{3}}{6}$	$\frac{1}{4}$	$\frac{1}{4}-\frac{\sqrt{3}}{6}$
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}+\frac{\sqrt{3}}{6}$	$\frac{1}{4} + \frac{\sqrt{3}}{6}$	$\frac{1}{4}$
	1		$\frac{1}{2}$	$\frac{1}{2}$

Table 5.1. Gauss methods of order 2 and 4

Table 5.2. Gauss method of order 6

$\frac{1}{2}-\frac{\sqrt{15}}{10}$	$\frac{5}{36}$	$\frac{2}{9}-\frac{\sqrt{15}}{15}$	$\frac{5}{36}-\frac{\sqrt{15}}{30}$
$\frac{1}{2}$	$\frac{5}{36}+\frac{\sqrt{15}}{24}$	$\frac{2}{9}$	$\frac{5}{36}-\frac{\sqrt{15}}{24}$
$\frac{1}{2}+\frac{\sqrt{15}}{10}$	$\frac{5}{36}+\frac{\sqrt{15}}{30}$	$\frac{2}{9}+\frac{\sqrt{15}}{15}$	$\frac{5}{36}$
	$\frac{5}{18}$	$\frac{4}{9}$	$\frac{5}{18}$

Theorem 5.2 (Butcher 1964, Ehle 1968). The s-stage Gauss method is of order 2s. Its stability function is the (s, s)-Padé approximation and the method is A-stable.

Proof. The order result has already been proved in Section II.7. Since the degrees of the numerator and the denominator are not larger than s for any s-stage Runge-Kutta method, the stability function of this 2s-order method must be the (s, s)-Padé approximation by Theorem 3.12. The A-stability thus follows from Theorem 4.12.

Radau IA and Radau IIA Methods

Butcher (1964) introduced Runge-Kutta methods based on the Radau and Lobatto quadrature formulas. He called them processes of type I, II or III according to whether c_1, \ldots, c_s are the zeros of

I:
$$\frac{d^{s-1}}{dx^{s-1}}\left(x^s(x-1)^{s-1}\right), \quad (\text{Radau left})$$
(5.1)

II:
$$\frac{d^{s-1}}{dx^{s-1}} \left(x^{s-1} (x-1)^s \right), \quad (\text{Radau right})$$
(5.2)

III:
$$\frac{d^{s-2}}{dx^{s-2}} \left(x^{s-1} (x-1)^{s-1} \right)$$
. (Lobatto) (5.3)

The weights b_1, \ldots, b_s are chosen such that the quadrature formula satisfies B(s), which implies B(2s-1) in the Radau case and B(2s-2) in the Lobatto case (see Lemma 5.15 below). Unfortunately, none of these methods of Butcher turned out to be A-stable (see e.g. Table 3.1). Ehle (1969) took up the ideas of Butcher and constructed methods of type I, II and III with excellent stability properties. Independently, Axelsson (1969) found the Radau IIA methods together with an elegant proof of their A-stability.

The s-stage Radau IA method is a method of type I where the coefficients a_{ij} (i, j = 1, ..., s) are defined by condition D(s). This is uniquely possible since the c_i are distinct and the b_i not zero. Tables 5.3 and 5.4 present the first of these methods.

Table 5.3. Radau IA methods of orders 1 and 3

Table 5.4. Radau IA method of order 5

0	$\frac{1}{9}$	$\frac{-1-\sqrt{6}}{18}$	$\frac{-1+\sqrt{6}}{18}$
$\frac{6-\sqrt{6}}{10}$	$\frac{1}{9}$	$\frac{88+7\sqrt{6}}{360}$	$\frac{88-43\sqrt{6}}{360}$
$\frac{6+\sqrt{6}}{10}$	$\frac{1}{9}$	$\frac{88+43\sqrt{6}}{360}$	$\frac{88-7\sqrt{6}}{360}$
	$\frac{1}{9}$	$\frac{16+\sqrt{6}}{36}$	$\frac{16-\sqrt{6}}{36}$

Ehle's type II processes are obtained by imposing condition C(s). By Theorem II.7.7 this results in the collocation methods based on the zeros of

77

Table 5.5. Radau IIA methods of orders 1 and 3

		$\frac{1}{3}$	$\frac{5}{12}$	$-\frac{1}{12}$
1	1	1	$\frac{3}{4}$	$\frac{1}{4}$
	1		$\frac{3}{4}$	$\frac{1}{4}$

Table 5.6. Radau IIA method of order 5

$\frac{4-\sqrt{6}}{10}$	$\frac{88-7\sqrt{6}}{360}$	$\frac{296-169\sqrt{6}}{1800}$	$\frac{-2+3\sqrt{6}}{225}$
$\frac{4+\sqrt{6}}{10}$	$\frac{296 + 169\sqrt{6}}{1800}$	$\frac{88+7\sqrt{6}}{360}$	$\frac{-2-3\sqrt{6}}{225}$
1	$\frac{16-\sqrt{6}}{36}$	$\frac{16+\sqrt{6}}{36}$	$\frac{1}{9}$
	$\frac{16-\sqrt{6}}{36}$	$\frac{16+\sqrt{6}}{36}$	$\frac{1}{9}$

(5.2). They are called Radau IIA methods. Examples are given in Tables 5.5 and 5.6. For s = 1 we obtain the implicit Euler method.

Theorem 5.3. The s-stage Radau IA method and the s-stage Radau IIA method are of order 2s-1. Their stability function is the (s-1,s) subdiagonal Padé approximation. Both methods are A-stable.

Proof. The stated orders follow from Theorem 5.1 and Lemma 5.4 below. Since $c_1 = 0$ for the Radau IA method, D(s) with j = 1 and B(2s-1) imply (3.14). Similarly, for the Radau IIA method, $c_s = 1$ and C(s) imply (3.13). Therefore, in both cases, the numerator of the stability function is of degree $\leq s-1$ by Proposition 3.8. The statement now follows from Theorem 3.12 and Theorem 4.12.

Lemma 5.4. Let an s-stage Runge-Kutta method have distinct c_1, \ldots, c_s and non-zero weights b_1, \ldots, b_s . Then we have

a) C(s) and B(s+ν) imply D(ν);
b) D(s) and B(s+ν) imply C(ν).

Proof. Put

$$d_j^{(q)} := \sum_{i=1}^s b_i c_i^{q-1} a_{ij} - \frac{b_j}{q} (1 - c_j^q) .$$
(5.4)

Conditions C(s) and $B(s+\nu)$ imply

$$\sum_{j=1}^s d_j^{(q)} c_j^{k-1} = 0$$
 for $k = 1, \dots, s$ and $q = 1, \dots,
u$

The vector $(d_1^{(q)}, \ldots, d_s^{(q)})$ is thus the solution of a homogeneous linear system with a non singular matrix of Vandermonde type and must vanish. This proves $D(\nu)$.

For part b) one defines

$$e_i^{(q)} := \sum_{j=1}^s a_{ij} c_j^{q-1} - \frac{c_i^q}{q}$$

and applies a similar argument to

$$\sum_{i=1}^{n} b_i c_i^{k-1} e_i^{(q)} = 0, \qquad k = 1, \dots, s, \quad q = 1, \dots, \nu.$$

Lobatto IIIA, IIIB and IIIC Methods

For all type III processes the c_i are the zeros of the polynomial (5.3) and the weights b_i are such that B(2s-2) is satisfied.

The coefficients a_{ij} are defined by C(s) for the Lobatto IIIA methods. It is therefore a collocation method. For the Lobatto IIIB methods we impose D(s) and, finally, for the Lobatto IIIC methods we put

$$a_{i1} = b_1 \quad \text{for} \quad i = 1, \dots, s \tag{5.5}$$

and determine the remaining a_{ij} by C(s-1). Ehle (1969) introduced the first two classes, and presented the IIIC methods for $s \leq 3$. The general definition of the IIIC methods is due to Chipman (1971); see also Axelsson (1972). Examples are given in Tables 5.7-5.12.

Theorem 5.5. The s-stage Lobatto IIIA, IIIB and IIIC methods are of order 2s-2. The stability function for the Lobatto IIIA and IIIB methods is the diagonal (s-1, s-1)-Padé approximation. For the Lobatto IIIC method it is the (s-2, s)-Padé approximation. All these methods are A-stable.

Proof. We first prove that the IIIC methods satisfy D(s-1). Condition (5.5) implies $d_1^{(q)} = 0$ $(q=1,\ldots,s-1)$ for $d_1^{(q)}$ given by (5.4). The conditions C(s-1) and B(2s-2) then yield

$$\sum_{j=2}^{s} d_{j}^{(q)} c_{j}^{k-1} = 0 \quad ext{ for } k = 1, \dots, s-1 ext{ and } q = 1, \dots, s-1 ext{ .}$$

Table 5.7. Lobatto IIIA methods of orders 2 and 4

			0	0	0	0
0	0	0	$\frac{1}{2}$	$\frac{5}{24}$	$\frac{1}{3}$	$-\frac{1}{24}$
1	$\frac{1}{2}$	$\frac{1}{2}$	1	$\frac{1}{6}$	$\frac{2}{3}$	$\frac{1}{6}$
<u> </u>	$\frac{1}{2}$	$\frac{1}{2}$		$\frac{1}{6}$	$\frac{2}{3}$	$\frac{1}{6}$

Table 5.8. Lobatto IIIA method of order 6

0	0	0	0	0
$\frac{5-\sqrt{5}}{10}$	$\frac{11+\sqrt{5}}{120}$	$\frac{25-\sqrt{5}}{120}$	$\frac{25-13\sqrt{5}}{120}$	$\frac{-1+\sqrt{5}}{120}$
$\frac{5+\sqrt{5}}{10}$	$\frac{11-\sqrt{5}}{120}$	$\frac{25+13\sqrt{5}}{120}$	$\frac{25+\sqrt{5}}{120}$	$\frac{-1-\sqrt{5}}{120}$
1	$\frac{1}{12}$	$\frac{5}{12}$	$\frac{5}{12}$	$\frac{1}{12}$
	$\frac{1}{12}$	$\frac{5}{12}$	$\frac{5}{12}$	$\frac{1}{12}$

Table 5.9. Lobatto IIIB methods of orders 2 and 4

		0	$\frac{1}{6}$	$-rac{1}{6}$	0
0	$\frac{1}{2}$ 0	$\frac{1}{2}$	$\frac{1}{6}$	$\frac{1}{3}$	0
1	$\frac{1}{2}$ 0	1	$\frac{1}{6}$	$\frac{5}{6}$	0
	$\frac{1}{2}$ $\frac{1}{2}$		$\frac{1}{6}$	$\frac{2}{3}$	$\frac{1}{6}$

Table 5.10. Lobatto IIIB method of order 6

0	$\left \begin{array}{c} \frac{1}{12} \end{array} \right $	$\frac{-1-\sqrt{5}}{24}$	$\frac{-1+\sqrt{5}}{24}$	0
$\frac{5-\sqrt{5}}{10}$	$\frac{1}{12}$	$\frac{25+\sqrt{5}}{120}$	$\frac{25-13\sqrt{5}}{120}$	0
$\frac{5+\sqrt{5}}{10}$	$\frac{1}{12}$	$\frac{25+13\sqrt{5}}{120}$	$\frac{25-\sqrt{5}}{120}$	0
1	$\frac{1}{12}$	$\frac{11-\sqrt{5}}{24}$	$\frac{11+\sqrt{5}}{24}$	0
	$\frac{1}{12}$	$\frac{5}{12}$	$\frac{5}{12}$	$\frac{1}{12}$

Table 5.11.	Lobatto II	[C methods	of orders	2 and 4
--------------------	------------	------------	-----------	---------

			0	$\frac{1}{6}$	$-\frac{1}{3}$	$\frac{1}{6}$
0	$\frac{1}{2}$	$-rac{1}{2}$	$\frac{1}{2}$	$\frac{1}{6}$	$\frac{5}{12}$	$-rac{1}{12}$
1	$\frac{1}{2}$	$\frac{1}{2}$	1	$\frac{1}{6}$	$\frac{2}{3}$	$\frac{1}{6}$
	$\frac{1}{2}$	$\frac{1}{2}$		$\frac{1}{6}$	$\frac{2}{3}$	$\frac{1}{6}$

Table 5.12. Lobatto IIIC method of order 6

0	$\frac{1}{12}$	$rac{-\sqrt{5}}{12}$	$rac{\sqrt{5}}{12}$	$\frac{-1}{12}$
$\frac{5-\sqrt{5}}{10}$	$\frac{1}{12}$	$\frac{1}{4}$	$\frac{10-7\sqrt{5}}{60}$	$\frac{\sqrt{5}}{60}$
$\frac{5+\sqrt{5}}{10}$	$\frac{1}{12}$	$\frac{10+7\sqrt{5}}{60}$	$\frac{1}{4}$	$\frac{-\sqrt{5}}{60}$
1	$\frac{1}{12}$	$\frac{5}{12}$	$\frac{5}{12}$	$\frac{1}{12}$
	$\frac{1}{12}$	$\frac{5}{12}$	$\frac{5}{12}$	$\frac{1}{12}$

As in the proof of Lemma 5.4 we deduce D(s-1). All order statements now follow from Lemma 5.4 and Theorem 5.1.

By definition, the first row of the RK-matrix A vanishes for the IIIA methods, and its last column vanishes for the IIIB methods. The denominator of the stability function is therefore of degree $\leq s-1$. Similarly, the last row of $A-1b^{T}$ vanishes for IIIA, and the first column of $A-1b^{T}$ for IIIB. Therefore, the numerator of the stability function is also of degree $\leq s-1$ by Formula (3.3). It now follows from Theorem 3.12 that both methods have the (s-1,s-1)-Padé approximation as stability function.

For the IIIC process the first column as well as the last row of $A-1b^T$ vanish. Thus the degree of the numerator of the stability function is at most s-2 by Formula (3.3). Again, Theorem 3.12 and Theorem 4.12 imply the statement.

For a summary of these statements see Table 5.13.

method	simplifying assumptions	order	stability function	
Gauss	B(2s) $C(s)$ $D(s)$	2s	(s,s)-Padé	
Radau IA	B(2s-1) C(s-1) D(s)	2s - 1	(s-1,s)-Padé	
Radau IIA	B(2s-1) C(s) D(s-1)	2s-1	(s-1,s)-Padé	
Lobatto IIIA	B(2s-2) C(s) D(s-2)	2s-2	(s-1,s-1)-Padé	
Lobatto IIIB	B(2s-2) C(s-2) D(s)	2s-2	(s-1,s-1)-Padé	
Lobatto IIIC	B(2s-2) C(s-1) D(s-1)	2s-2	(s-2,s)-Padé	

Table 5.13. Fully implicit Runge-Kutta methods

The W-Transformation

We now attack the explicit construction of all Runge-Kutta methods covered by Theorem 5.1. The first observation is (Chipman 1971, Burrage 1978) that $C(\eta)$ can be written as

$$\begin{pmatrix} a_{11} & \dots & a_{1s} \\ \vdots & \vdots \\ \vdots & \vdots \\ a_{s1} & \dots & a_{ss} \end{pmatrix} \begin{pmatrix} 1 & c_1 & \dots & c_1^{\eta-1} \\ \vdots & \vdots & \vdots \\ 1 & c_s & \dots & c_s^{\eta-1} \end{pmatrix} = \begin{pmatrix} 1 & c_1 & \dots & c_1^{\eta} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & c_s & \dots & c_s^{\eta} \end{pmatrix} \begin{pmatrix} 0 & 0 & \dots & 0 \\ 1 & 0 & \dots & 0 \\ 0 & \frac{1}{2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & c_s & \dots & c_s^{\eta} \end{pmatrix}$$
(5.6)

Hence, if V is the Vandermonde matrix

$$V = \begin{pmatrix} 1 & c_1 & \dots & c_1^{s-1} \\ \vdots & \vdots & & \vdots \\ 1 & c_s & \dots & c_s^{s-1} \end{pmatrix},$$

then the first η (for $\eta \leq s-1$) columns of $V^{-1}AV$ must have the special structure (with many zeros) of the rightmost matrix in (5.6). This "V-transformation" already considerably simplifies the discussion of order and stability of methods governed by $C(\eta)$ with η close to s (Burrage 1978). Thus, collocation methods ($\eta = s$) are characterized by

$$V^{-1}AV = \begin{pmatrix} 0 & & -\varrho_0/s \\ 1 & 0 & & -\varrho_1/s \\ 1/2 & 0 & & -\varrho_2/s \\ & \ddots & \ddots & & \vdots \\ & & \ddots & 0 & -\varrho_{s-2}/s \\ & & & 1/(s-1) & -\varrho_{s-1}/s \end{pmatrix}$$
(5.7)

where the ρ 's are the coefficients of $M(t) = \prod_{i=1}^{s} (t-c_i)$ and appear when the c_i^s in (5.6) are replaced by lower powers. Whenever some of the columns of

 $V^{-1}AV$ are not as in (5.7), a nice idea of Nørsett allows one to interpret the method as a *perturbed collocation* method (see Nørsett & Wanner (1981) for more details).

However, the V-transformation has some drawbacks: it does not allow a similar characterization of $D(\zeta)$, and the discussions of A- and B-stability remain fairly complicated (see e.g. the above cited papers). It was then discovered (Hairer & Wanner 1981, 1982) that nicer results are obtained, if the Vandermonde matrix V is replaced by a matrix W whose elements are orthogonal polynomials evaluated at c_i . We therefore use the (non standard) notation

$$P_{k}(x) = \frac{\sqrt{2k+1}}{k!} \frac{d^{k}}{dx^{k}} \left(x^{k} (x-1)^{k} \right) = \sqrt{2k+1} \sum_{j=0}^{k} (-1)^{j+k} \binom{k}{j} \binom{j+k}{j} x^{j}$$
(5.8)

for the shifted Legendre polynomials normalized so that

$$\int_0^1 P_k^2(x) dx = 1 . (5.9)$$

These polynomials satisfy the integration formulas

$$\int_{0}^{x} P_{0}(t)dt = \xi_{1}P_{1}(x) + \frac{1}{2}P_{0}(x)$$

$$\int_{0}^{x} P_{k}(t)dt = \xi_{k+1}P_{k+1}(x) - \xi_{k}P_{k-1}(x) \qquad k = 1, 2, \dots$$
(5.10)

with

$$\xi_k = \frac{1}{2\sqrt{4k^2 - 1}} \tag{5.11}$$

(Exercise 1). We now have instead of (5.7):

Theorem 5.6. Let W be defined by

$$w_{ij} = P_{j-1}(c_i)$$
 $i = 1, \dots, s, \quad j = 1, \dots, s$ (5.12)

and let A be the coefficient matrix for the Gauss method of order 2s. Then

$$W^{-1}AW = \begin{pmatrix} 1/2 & -\xi_1 & & \\ \xi_1 & 0 & -\xi_2 & & \\ & \xi_2 & \ddots & \ddots & \\ & & \ddots & 0 & -\xi_{s-1} \\ & & & \xi_{s-1} & 0 \end{pmatrix} =: X_G .$$
(5.13)

Proof. We first write $C(\eta)$ in the form

$$\sum_{j=1}^{s} a_{ij} p(c_j) = \int_0^{c_i} p(x) \, dx \quad \text{if} \quad \deg(p) \le \eta - 1 \,, \qquad (5.14)$$

which, by (5.10), becomes

$$\sum_{j=1}^{s} a_{ij} P_0(c_j) = \xi_1 P_1(c_i) + \frac{1}{2} P_0(c_i)$$

$$\sum_{j=1}^{s} a_{ij} P_k(c_j) = \xi_{k+1} P_{k+1}(c_i) - \xi_k P_{k-1}(c_i) \qquad k = 1, \dots, \eta - 1.$$
(5.15)

For $\eta = s$, inserting (5.12), and using matrix notation, this becomes

$$\begin{pmatrix} a_{11} & \dots & a_{1s} \\ \vdots & & \vdots \\ \vdots & & \vdots \\ a_{s1} & \dots & a_{ss} \end{pmatrix} \begin{pmatrix} w_{11} & \dots & w_{1s} \\ \vdots & & \vdots \\ \vdots & & \vdots \\ w_{s1} & \dots & w_{ss} \end{pmatrix} =$$
(5.16)
$$\begin{pmatrix} w_{11} & \dots & w_{1s} & P_s(c_1) \\ \vdots & & \vdots & \vdots \\ \vdots & & \vdots & \vdots \\ w_{s1} & \dots & w_{ss} & P_s(c_s) \end{pmatrix} \begin{pmatrix} 1/2 & -\xi_1 \\ \xi_1 & 0 & -\xi_2 \\ \xi_2 & \ddots & \ddots \\ & & \ddots & 0 & -\xi_{s-1} \\ & & & \xi_{s-1} & 0 \\ & & & & \xi_s \end{pmatrix} .$$

Since for the Gauss processes we have $P_s(c_1) = \ldots = P_s(c_s) = 0$, the last column respectively row of the right hand matrices can be dropped and we obtain (5.13).

In what follows we shall study similar results for other IRK methods. We first formulate the following lemma, which is an immediate consequence of (5.15) and (5.16):

Lemma 5.7. Let A be the coefficient matrix of an IRK method and let W be a nonsingular matrix with

$$w_{ij} = P_{j-1}(c_i)$$
 for $i = 1, ..., s, j = 1, ..., \eta + 1$.

Then $C(\eta)$ is equivalent to the fact that the first η columns of $W^{-1}AW$ are equal to those of X_G in (5.13).

The second type of simplifying assumption, $D(\zeta)$, is now written in the form

$$\sum_{i=1}^{s} b_i p(c_i) a_{ij} = b_j \int_{c_j}^{1} p(x) dx \quad \text{if } \deg(p) \le \zeta - 1 \ . \tag{5.17}$$

The integration formulas (5.10) together with orthogonality relations

$$\int_0^1 P_0(x) dx = 1, \quad \int_0^1 P_k(x) dx = \int_0^1 P_0(x) P_k(x) dx = 0 \quad \text{for} \quad k = 1, 2, \dots$$

show that $D(\zeta)$ (i.e., (5.17)) is equivalent to

$$\sum_{i=1}^{s} P_0(c_i) b_i a_{ij} = \left(\frac{1}{2} P_0(c_j) - \xi_1 P_1(c_j)\right) b_j$$

$$\sum_{i=1}^{s} P_k(c_i) b_i a_{ij} = \left(\xi_k P_{k-1}(c_j) - \xi_{k+1} P_{k+1}(c_j)\right) b_j \qquad k = 1, \dots, \zeta - 1 .$$
(5.18)

This can be stated as

Lemma 5.8. As in the preceding lemma, let W be a nonsingular matrix with

$$w_{ij} = P_{j-1}(c_i)$$
 for $i = 1, ..., s, j = 1, ..., \zeta + 1$,

and let $B = \operatorname{diag}(b_1, \ldots, b_s)$ with $b_i \neq 0$. Then $D(\zeta)$ is equivalent to the condition that the first ζ rows of the matrix $(W^T B)A(W^T B)^{-1}$ are equal to those of X_G in (5.13) (if B is singular, we still have (5.19) below).

Proof. Formulas (5.18), written in matrix form, give

$$W^{T}BA = \begin{pmatrix} 1/2 & -\xi_{1} & & & \\ \xi_{1} & 0 & \ddots & & \\ & \ddots & \ddots & -\xi_{\zeta-1} & & \\ & & \xi_{\zeta-1} & 0 & -\xi_{\zeta} \\ & & * & \ddots & \ddots & \ddots & * \\ & * & * & \ddots & \ddots & \ddots & * \end{pmatrix} W^{T}B .$$
(5.19)

It is now a natural and interesting question, whether both transformation matrices of the foregoing lemmas can be made equal, i.e., whether

$$W^T B = W^{-1}$$
 or $W^T B W = I$. (5.20)

A first result is:

Lemma 5.9. For any quadrature formula of order $\geq 2s-1$ the matrix

$$W = \left(P_{j-1}(c_i)\right)_{i,j=1,\dots,s}$$
(5.21)

satisfies (5.20).

85

86 IV. Stiff Problems - One Step Methods

Proof. If the quadrature formula is of sufficiently high order, the polynomials $P_k(x)P_l(x)$ $(k+l \leq 2s-2)$ are integrated exactly, i.e.,

$$\sum_{i=1}^{s} b_i P_k(c_i) P_l(c_i) = \int_0^1 P_k(x) P_l(x) dx = \delta_{kl} ; \qquad (5.22)$$

this, however, is simply $W^T B W = I$.

Unfortunately, Condition (5.20) is too restrictive for many methods. We therefore relax our requirements as follows:

Definition 5.10. Let η , ζ be given integers between 0 and s-1. We say that an $s \times s$ -matrix W satisfies $T(\eta, \zeta)$ for the quadrature formula $(b_i, c_i)_{i=1}^s$ if

- a) W is nonsingular b) $w_{ij} = P_{j-1}(c_i)$ $i = 1, ..., s, \quad j = 1, ..., \max(\eta, \zeta) + 1$ c) $W^T B W = \begin{pmatrix} I & 0 \\ 0 & R \end{pmatrix}$ $T(\eta, \zeta)$

where I is the $(\zeta+1)\times(\zeta+1)$ identity matrix; R is an arbitrary $(s-\zeta-1)\times(s-\zeta-1)$ matrix.

The main result can now be stated as:

Theorem 5.11. Let W satisfy $T(\eta, \zeta)$ for the quadrature formula $(b_i, c_i)_{i=1}^s$. Then for a Runge-Kutta method based on (b_i, c_i) we have, for the matrix $X = W^{-1}AW$,

- a) the first η columns of X are those of $X_G \iff C(\eta)$,
- b) the first ζ rows of X are those of $X_G \iff D(\zeta)$.

Proof. The equivalence of a) with $C(\eta)$ follows from Lemma 5.7. For the proof of b) we multiply (5.19) from the right by W and obtain

$$W^T B W \cdot X = \widetilde{X} \cdot W^T B W$$

where \widetilde{X} is the large matrix of (5.19). Because of Condition c) of $T(\eta, \zeta)$ the first ζ rows of \widetilde{X} and X must be the same (write them as block matrices). The statement now follows from Lemma 5.8.

We have still left open the question of the existence of W satisfying $T(\eta, \zeta)$. The following two lemmas and Theorem 5.14 give an answer:

Lemma 5.12. If the quadrature formula has distinct nodes c_i and all weights positive $(b_i > 0)$ and if it is of order p with $p \ge 2\eta + 1$ and $p \ge 2\zeta + 1$, then the matrix

$$W = \left(p_{j-1}(c_i)\right)_{i, \, j=1,\dots,s}$$
(5.23)

possesses property $T(\eta, \zeta)$ and satisfies (5.20). Here $p_j(x)$ is the polynomial of degree j orthonormalized for the scalar product

$$\langle p, r \rangle = \sum_{i=1}^{s} b_i p(c_i) r(c_i) . \qquad (5.24)$$

Proof. The positivity of the b's makes (5.24) a scalar product on the space of polynomials of degree $\leq s-1$. Because of the order property (compare with (5.22)), the orthonormalized $p_j(x)$ must coincide for $j \leq \max(\eta, \zeta)$ with the Legendre polynomials $P_j(x)$. Orthonormality with respect to (5.24) means that $W^T B W = I$.

Lemma 5.13. If the quadrature formula has distinct nodes c_i and is of order $p \ge s + \zeta$, then W defined by (5.21) has property $T(\eta, \zeta)$.

Proof. Because of $p \ge s+\zeta$, (5.22) holds for $k=0,\ldots,s-1$ and $l=0,\ldots,\zeta$. This ensures c) of Definition 5.10.

Theorem 5.14. Let the quadrature formula be of order p. Then there exists a transformation with property $T(\eta, \zeta)$ if and only if

$$p \ge \eta + \zeta + 1$$
 and $p \ge 2\zeta + 1$ (5.25)

and at least $\max(\eta, \zeta) + 1$ numbers among c_1, \ldots, c_s are distinct.

Proof. Set $\nu = \max(\eta, \zeta)$ and denote the columns of the transformation W by w_1, \ldots, w_s . In virtue of b) of $T(\eta, \zeta)$ we have

$$w_j = \left(P_{j-1}(c_1), \dots, P_{j-1}(c_s)\right)^T$$
 for $j = 1, \dots, \nu + 1$.

These $\nu+1$ columns are linearly independent only if at least $\nu+1$ among c_1, \ldots, c_s are distinct. Now condition c) of $T(\eta, \zeta)$ means that $w_1, \ldots, w_{\zeta+1}$ are orthonormal to w_1, \ldots, w_s for the bilinear form $u^T B v$. In particular, the orthonormality of $w_1, \ldots, w_{\zeta+1}$ to $w_1, \ldots, w_{\nu+1}$ (compare with (5.22)) means that the quadrature formula is exact for all polynomials of degree $\nu+\zeta$. Therefore, $p \geq \nu+\zeta+1$ (which is the same as (5.25)) is a necessary condition for $T(\eta, \zeta)$.

To show its sufficiency, we complete $w_1, \ldots, w_{\nu+1}$ to a basis of \mathbb{R}^s . The new basis vectors $\widehat{w}_{\nu+2}, \ldots, \widehat{w}_s$ are then projected into the orthogonal complement of span $\langle w_1, \ldots, w_{\ell+1} \rangle$ with respect to $u^T B v$ by a Gram-Schmidt

87

type orthogonalization. This yields

$$w_j = \widehat{w}_j - \sum_{k=1}^{\zeta+1} (w_k^T B \widehat{w}_j) w_k \quad \text{for } j = \nu + 2, \dots, s \; .$$

Construction of Implicit Runge-Kutta Methods

For the construction of IRK methods satisfying B(p), $C(\eta)$ and $D(\zeta)$ with the help of Theorem 5.11, we first have to choose a quadrature formula of order p. The following lemma is the basic result for Gaussian integration:

Lemma 5.15. Let c_1, \ldots, c_s be real and distinct and let b_1, \ldots, b_s be determined by condition B(s) (i.e., the formula is "interpolatory"). Then this quadrature formula is of order 2s - k if and only if the polynomial $M(x) = (x - c_1)(x - c_2) \ldots (x - c_s)$ is orthogonal to all polynomials of degree $\leq s - k - 1$, i.e., if and only if

$$M(x) = C\left(P_{s}(x) + \alpha_{1}P_{s-1}(x) + \ldots + \alpha_{k}P_{s-k}(x)\right).$$
 (5.26)

For a *proof* see Exercise 2.

We see from (5.26) that all quadrature formulas of order 2s-k can be specified in terms of k parameters $\alpha_1, \alpha_2, \ldots, \alpha_k$.

Next, if the integers η and ζ satisfy $\eta+\zeta+1 \leq 2s-k$ and $2\zeta+1 \leq 2s-k$ (cf. (5.25)), we can compute a matrix W satisfying $T(\eta, \zeta)$ from Theorem 5.14 (or one of Lemmas 5.12 and 5.13). Finally a matrix X is chosen which satisfies a) and b) of Theorem 5.11. Then the IRK method with coefficients $A=WXW^{-1}$ is of order at least $\min(\eta+\zeta+1, 2\eta+2)$ by Theorem 5.1.

Example 5.16. We search for all IRK-methods satisfying B(2s-2), C(s-1) and D(s-2), i.e., methods which are of order at least 2s-2. As in (5.26), we put

$$M(x) = C\left(P_{s}(x) + \alpha_{1}P_{s-1}(x) + \alpha_{2}P_{s-2}(x)\right).$$
(5.27)

If α_2 satisfies

$$\alpha_2 < \frac{s-1}{s} \frac{\sqrt{2s+1}}{\sqrt{2s-3}}$$

then the roots of M are real and distinct (see Exercise 7). The matrix W given in (5.21) has Property T(s-1, s-2) by Lemma 5.13. Finally we put

$$X = \begin{pmatrix} 1/2 & -\xi_1 & & \\ \xi_1 & 0 & \ddots & \\ & \ddots & \ddots & -\xi_{s-2} & \\ & & \xi_{s-2} & 0 & \beta_{s-1} \\ & & & & \xi_{s-1} & \beta_s \end{pmatrix} .$$
(5.28)

and obtain with $A = WXW^{-1}$ a family of IRK methods of order 2s-2 with the four parameters $\alpha_1, \alpha_2, \beta_s, \beta_{s-1}$.

All methods of Table 5.13 (with the exception of Lobatto IIIB) must be special cases. The corresponding parameter values are indicated in Table 5.14 (for their computation see Exercise 3). If we put $\alpha_1 = 0$ and $\alpha_2 = -\sqrt{2s+1}/\sqrt{2s-3}$ (Lobatto quadrature), we obtain the two-parameter family of Chipman (1976).

Method	α_1	α2	β_s	β_{s-1}
Gauss	0	0	0	$-\xi_{s-1}$
Radau IA	$\sqrt{2s+1}/\sqrt{2s-1}$	0	1/(4s-2)	$-\xi_{s-1}$
Radau IIA	$-\sqrt{2s+1}/\sqrt{2s-1}$	0	1/(4s-2)	$-\xi_{s-1}$
Lobatto IIIA	0	$\left -\sqrt{2s+1}/\sqrt{2s-3}\right $	0	0
Lobatto IIIC	0	$-\sqrt{2s+1}/\sqrt{2s-3}$	1/(2s-2)	$-\xi_{s-1}(2s-1)/(s-1)$

Table 5.14. Special cases of method (5.27, 5.28)

Stability Function

We try to express the stability function of an implicit RK-method in terms of the transformed RK-matrix $X = W^{-1}AW$. From b) and c) of Property $T(\eta, \zeta)$ it follows that

$$We_1 = 1, \qquad W^T B 1 = e_1, \qquad e_1 = (1, 0, \dots, 0)^T$$
 (5.29)

Hence Formulas (3.2) and (3.3) become

$$R(z) = 1 + z e_1^T (I - zX)^{-1} e_1 , \qquad (5.30)$$

$$R(z) = \frac{\det(I - zX + ze_1e_1^T)}{\det(I - zX)} .$$
(5.31)

It is interesting to note that the stability function depends only on X and not on the underlying quadrature formula. As a consequence the stability

90 IV. Stiff Problems — One Step Methods

function of the method of Example 5.16 depends on β_s and β_{s-1} only. Formula (5.31) becomes more symmetric (Hairer & Türke 1984) if we introduce the arithmetic mean of the matrices X and $X - e_1 e_1^T$ and define

$$Y = X - \frac{1}{2}e_1e_1^T , (5.32)$$

which is just the matrix X without the 1/2 in the (1,1)-position.

Proposition 5.17. For an RK-method (3.1) let W satisfy $T(\eta, \zeta)$ for some $\eta, \zeta \geq 0$, and let Y be given by (5.32) where $X = W^{-1}AW$. The stability function then satisfies

$$R(z) = \frac{1 + \frac{1}{2}\Psi(z)}{1 - \frac{1}{2}\Psi(z)}$$
(5.33)

with

$$\Psi(z) = z e_1^T (I - zY)^{-1} e_1 .$$
(5.34)

Proof. Applying the RK-method to the test equation (2.9) yields

$$g = 1 y_0 + z A g, \qquad y_1 = y_0 + z b^T g \; .$$

With $W^{-1}g = \widehat{g} = (\widehat{g}_1, \dots, \widehat{g}_s)^T$ this becomes

$$(I-zY)\widehat{g} = e_1(y_0 + \frac{z}{2}\widehat{g}_1), \qquad y_1 = y_0 + z\widehat{g}_1 , \qquad (5.35)$$

where we have used (5.29). Computing \hat{g}_1 from the first equation of (5.35) and inserting this into the second one gives the result.

If the RK-method satisfies $B(2\nu + 1)$, $C(\nu)$ and $D(\nu)$ for some integer ν , then Y is given by (see Theorem 5.11)

$$Y = \begin{pmatrix} 0 & -\xi_{1} & & \\ \xi_{1} & \ddots & \ddots & \\ & \ddots & 0 & -\xi_{\nu} \\ & & \xi_{\nu} & & \\ & & & Y_{\nu} \end{pmatrix} .$$
(5.36)

In this case the computation of (5.34) for the (s, s)-matrix Y can be reduced to that of the smaller $(s-\nu, s-\nu)$ -matrix Y_{ν} as follows:

Theorem 5.18. If Y is given by (5.36), the function $\Psi(z)$ of (5.34) has the continued fraction representation

$$\Psi(z) = \frac{z}{|1|} + \frac{\xi_1^2 z^2}{|1|} + \dots + \frac{\xi_{\nu-1}^2 z^2}{|1|} + \xi_{\nu}^2 z \Psi_{\nu}(z)$$
(5.37)

where

$$\Psi_{\nu}(z) = z e_1^T (I - z Y_{\nu})^{-1} e_1$$

Proof. Let Y_j (for $0 \le j \le \nu+1$) denote the (s-j, s-j) principal minors of Y, where the first j rows and columns are suppressed. Expanding the determinant of $I-zY_{j-1}$ with respect to the first row (and then the first column) gives for $j=1,\ldots,\nu$

$$\det(I - zY_{j-1}) = \det(I - zY_j) + \xi_j^2 z^2 \det(I - zY_{j+1}) .$$
(5.38)

By Cramer's rule, the functions $\Psi_i(z)$ can also be written as

$$\Psi_j(z) = z e_1^T (I - zY_j)^{-1} e_1 = z \frac{\det(I - zY_{j+1})}{\det(I - zY_j)} .$$
(5.39)

Dividing (5.38) by $det(I-zY_i)$ yields

$$\Psi_{j-1}(z) = \frac{z}{1 + \xi_j^2 z \Psi_j(z)} .$$
 (5.40)

A repeated use of (5.40) gives (5.37) since $\Psi(z) = \Psi_0(z)$.

We are thus naturally led to continued fraction expansions, a technique which was historically the earliest one: Birkhoff & Varga (1965) used it in their proof of the A-stability of the diagonal Padé approximations. Later, Ehle (1969, 1973) tried to extend "Varga's proof" to verify the A-stability of the first and second subdiagonals of the Padé table ("This was unsuccessful because the resulting continued fraction expansions were not easily related to one another."). Therefore, Ehle (1973), Ehle & Picel (1975), proved A-stability results for the first and second subdiagonal and some generalizations by a completely different method. The following study of A-stability (see Butcher 1977, Hairer 1982, Hairer & Türke 1984) combines the above continued fraction expansion with properties of positive functions.

Positive Functions

"Many stability conditions for numerical methods can be expressed in the form that some associated function is positive." (G. Dahlquist 1978)

A-stability of an implicit RK-method is defined by the property

$$|R(z)| < 1$$
 for $\operatorname{Re} z < 0$. (5.41)

Since the transformation $(1+\zeta)/(1-\zeta)$ occurring in (5.33) maps the negative half-plane onto the open unit disc, (5.41) is equivalent to

$$\operatorname{Re} \Psi(z) < 0 \quad \text{for} \quad \operatorname{Re} z < 0 \; .$$
 (5.42)

This condition means that $-\Psi(-z)$ is a positive function; for rational functions the concept of positivity can be defined as follows:

Definition 5.19. A rational function f(z) is called *positive* if

 $\operatorname{Re} f(z) > 0$ for $\operatorname{Re} z > 0$.

A nice survey of the relevance of positive functions to numerical analysis is given by Dahlquist (1978). The following lemmas collect some properties of positive functions.

Lemma 5.20. Let f(z) and g(z) be positive functions. Then we have a) $\alpha f(z) + \beta g(z)$ is positive, if $\alpha > 0$ and $\beta \ge 0$; b) 1/f(z) is positive; c) f(g(z)) is positive.

Observe that the poles of a positive function cannot lie in the positive half-plane, but poles on the imaginary axis are possible, e.g. the function 1/z is positive.

Lemma 5.21. Suppose that

$$f(z)=rac{c}{z}+g(z) \hspace{0.5cm} with \hspace{0.5cm} g(z)=\mathcal{O}(1) \hspace{0.5cm} ext{for} \hspace{0.5cm} z
ightarrow 0 \hspace{0.5cm};$$

and $g(z) \neq 0$. Then f(z) is positive if and only if $c \geq 0$ and g(z) is positive.

Proof. The "if-part" follows from Lemma 5.20. Suppose now that f(z) is positive. The constant c has to be non-negative, since for small positive values of z we have Re f(z) > 0. On the imaginary axis we have (apart from poles) Re $g(iy) = \text{Re } f(iy) \ge 0$ or more precisely

$$\liminf_{z o iy, \; \operatorname{Re} z > 0} \operatorname{Re} g(z) \geq 0 \quad ext{ for } \quad y \in \mathbb{R} \; .$$

The maximum principle for harmonic functions then implies that either $g(z) \equiv 0$ or g(z) is positive.

A consequence of this lemma is the following characterization of A-stability.

Theorem 5.22. Consider an RK-method whose stability function is given by (5.33) with Y as in (5.36). It is A-stable if and only if

$$\operatorname{Re}\Psi_{
u}(z) < 0 \quad for \quad \operatorname{Re}z < 0$$
 (5.43)

where $\Psi_{\nu}(z) = z e_1^T (I - z Y_{\nu})^{-1} e_1$ as in (5.37).

Proof. We consider the submatrices Y_j of Y and the functions $\Psi_j(z)$ of (5.39). As we prefer to work with positive functions we put

$$\chi_j(z) = -\Psi_j(-z) = z e_1^T (I + z Y_\nu)^{-1} e_1 .$$
(5.44)

By (5.42), A-stability is equivalent to the positivity of $\chi_0(z)$ and condition (5.43) means that $\chi_{\nu}(z)$ is a positive function. Relation (5.40) becomes

$$(\chi_{j-1}(z))^{-1} = rac{1}{z} + \xi_j^2 \chi_j(z) \; .$$

Since all $\chi_j(z)$ are bounded near the origin and do not vanish identically (see (5.44)), it follows from Lemma 5.21 that $\chi_j(z)$ is a positive function iff $\chi_{j-1}(z)$ is positive. This proves the theorem.

Example 5.23. For the RK-method of Example 5.16 with X given by (5.28) we have

$$\Psi_{s-2}(z) = rac{z(1-eta_s z)}{1-eta_s z-\xi_{s-1}eta_{s-1} z^2} \; .$$

Since

$$\left(\Psi_{s-2}(z)\right)^{-1} = \frac{1}{z} - \xi_{s-1}\beta_{s-1}\frac{z}{1-\beta_s z}$$

it follows from Lemma 5.21 and Theorem 5.22 that the method is A-stable iff

 $\beta_{s-1} = 0 \quad \text{or} \quad (\beta_{s-1} < 0 \text{ and } \beta_s \ge 0) \ .$ (5.45)

Comparing this result with Tables 5.14 and 5.13 leads to a second proof for the A-stability of the diagonal and the first two subdiagonal Padé approximations for e^z (see Theorem 4.12).

Example 5.24 (Construction of all A-stable RK-methods satisfying B(2s-4), C(s-2) and D(s-3)). We take a quadrature formula of order 2s-4 and construct, by Theorem 5.14, a matrix W satisfying Property T(s-2, s-3). The RK-matrix A is then of the form

$$A = W(Y + \frac{1}{2}e_1e_1^T)W^{-1}$$

with Y given by (5.36), $\nu = s - 3$ and

$$Y_{s-3} = \begin{pmatrix} 0 & \gamma_{s-2} & \beta_{s-2} \\ \xi_{s-2} & \gamma_{s-1} & \beta_{s-1} \\ 0 & \gamma_s & \beta_s \end{pmatrix} \ .$$

For the study of A-stability we have to compute $\Psi_{s-3}(z)$ from (5.39). Expanding det $(I - zY_{s-3})$ with respect to its first column we obtain

$$(\Psi_{s-3}(z))^{-1} = \frac{1}{z} + \frac{z\xi_{s-2}(g_0 - g_1 z)}{1 - f_1 z + f_2 z^2}$$

where

$$\begin{aligned} f_1 &= \beta_s + \gamma_{s-1}, & f_2 &= \beta_s \gamma_{s-1} - \beta_{s-1} \gamma_s, \\ g_0 &= -\gamma_{s-2}, & g_1 &= -\beta_s \gamma_{s-2} + \beta_{s-2} \gamma_s . \end{aligned}$$
 (5.46)

By Lemma 5.21 and Theorem 5.22 we have A-stability iff either $g_0 = g_1 = 0$ or

$$\frac{z(g_0 + g_1 z)}{1 + f_1 z + f_2 z^2} \tag{5.47}$$

is a positive function, which is equivalent to (see Exercise 4b)

$$g_0 > 0, \quad g_1 \ge 0, \quad f_2 \ge 0, \quad g_0 f_1 - g_1 \ge 0$$
 (5.48)

A similar characterization of A-stable RK-methods of order 2s-4 is given in Wanner (1980).

Exercises

1. Verify the integration formulas (5.10) for the shifted Legendre polynomials.

Hint. By orthogonality $\int_0^x P_k(t)dt$ must be a linear combination of P_{k+1} , P_k and P_{k-1} only. The coefficient of P_k vanishes by symmetry. For the rest just look at the coefficients of x^{k+1} and x^{k-1} .

2. Give a proof of Lemma 5.15. Hint (Jacobi 1826). If f(x) is a polynomial of degree 2s-k-1, and r(x) the interpolation polynomial of degree s-1, then

$$f(x) = q(x)M(x) + r(x)$$
 where $\deg q(x) \le s - k - 1$.

3. Let R(z) be the stability function of the RK-method of Example 5.16.

a) The degree of its denominator is $\leq s-1$ iff

$$\beta_s = \beta_{s-1} \xi_{s-1} 2(2s-3) \; .$$

Hint. Use Formula (5.31) and the fact that $det(I-zX_G)$ is the denominator of the diagonal Padé approximation.

b) The degree of the numerator of R(z) is $\leq s-1$ iff

$$\beta_s = -\beta_{s-1}\xi_{s-1}2(2s-3) . \tag{5.49}$$

c) The degree of the numerator of R(z) is $\leq s-2$ iff in addition to (5.49),

$$\beta_s = 1/(2s-2) \; .$$

- d) Verify the entries of Table 5.14.
- 4. a) The function

$$s(z) = rac{lpha + eta z}{\gamma + \delta z}$$

with $\gamma > 0$ satisfies $\operatorname{Re} s(z) \ge 0$ for $\operatorname{Re} z > 0$ iff $\alpha \ge 0, \beta \ge 0$ and $\delta \ge 0$. b) Use the identity (for $g_0 > 0$)

$$\frac{1+f_1z+f_2z^2}{z(g_0+g_1z)}-\frac{1}{zg_0}=\frac{(f_1-g_1/g_0)+f_2z}{g_0+g_1z}$$

to verify that the function given in (5.47) is positive iff (5.48) holds.

5. Suppose that

$$f(z)=cz+g(z) \qquad ext{with} \qquad g(z)=\mathcal{O}(1) \qquad ext{for} \ \ z
ightarrow\infty$$

and $g(z) \not\equiv 0$. Then f(z) is a positive function, if and only if $c \ge 0$ and g(z) is positive.

Hint. Use the transformation $z \rightarrow 1/z$ in Lemma 5.21.

6. Give an alternative proof of the Routh criterion (Theorem 13.4 of Chapter I): All zeros of the real polynomial

$$p(z) = a_0 z^n + a_1 z^{n-1} + \ldots + a_n \quad (a_0 > 0)$$

lie in the negative half-plane $\operatorname{Re} z < 0$ if and only if

 $c_{i0} > 0$ for $i = 0, 1, \dots, n$.

The c_{ij} are the coefficients of the polynomials

$$p_i(z) = c_{i0}z^{n-i} + c_{i1}z^{n-i-2} + c_{i2}z^{n-i-4} + \dots$$

where

$$\begin{split} p_0(z) &= a_0 z^n + a_2 z^{n-2} + \dots, & i.e., \ c_{0j} &= a_{2j} \\ p_1(z) &= a_1 z^{n-1} + a_3 z^{n-3} + \dots, & i.e., \ c_{1j} &= a_{2j+1} \ . \end{split}$$

and

$$p_{i+1}(z) = c_{i0}p_{i-1}(z) - c_{i-1,0}zp_i(z), \qquad i = 1, \dots, n-1 .$$
(5.50)

Hint. By the maximum principle for harmonic functions the condition " $p(z) \neq 0$ for Re $z \ge 0$ " is equivalent to

$$\left|rac{p(-z)}{p(z)}
ight| < 1 \qquad ext{for} \;\; \operatorname{Re} z > 0$$

95

96 IV. Stiff Problems — One Step Methods

and the condition that $p_0(z)$ and $p_1(z)$ are irreducible. Using the transformation (5.33) this becomes equivalent to the positivity of $p_0(z)/p_1(z)$. Now divide (5.50) by $c_{i-1,0}p_i(z)$ and use Exercise 5 recursively.

7. Show that

$$\alpha_2 < \frac{s-1}{s} \frac{\sqrt{2s+1}}{\sqrt{2s-3}}$$
(5.51)

is a sufficient condition for $M(x) = P_s(x) + \alpha_1 P_{s-1}(x) + \alpha_2 P_{s-2}(x)$ to have real and pairwise distinct roots.

Hint. (See "Lemma 18" of Nørsett & Wanner 1981). Consider the set D of all pairs (α_1, α_2) for which the roots c_i of M(x) are real and distinct, and the corresponding interpolatory quadrature formula has positive b_i . Verify that $(0, 0) \in D$, and show that for $(\alpha_1, \alpha_2) \in \partial D$ either one b_i becomes zero or two c_i coalesce but the quadrature formula remains of order 2s-2. Therefore it must be the Gaussian formula with s-1 nodes of order 2s-2 and we must have

$$P_{s}(x) + \alpha_{1} P_{s-1}(x) + \alpha_{2} P_{s-2}(x) = c(x-\beta) P_{s-1}(x) .$$
 (5.52)

Now use the three-term recursion formula

$$s\xi_s P_s(x) = (x - \frac{1}{2})P_{s-1}(x) - (s - 1)\xi_{s-1}P_{s-2}(x)$$
(5.53)

(Abramowitz & Stegun p.782, modified) to eliminate xP_{s-1} on the right of (5.52). Then obtain by comparing the coefficients of P_s , P_{s-1} and P_{s-2}

$$c = \frac{1}{s\xi_s} \qquad \alpha_1 = \frac{1}{s\xi_s} \left(\frac{1}{2} - \beta\right), \qquad \alpha_2 = \frac{s-1}{s} \frac{\sqrt{2s+1}}{\sqrt{2s-3}} . \tag{5.54}$$

If β is one of the roots of P_{s-1} , then (5.52) has a double root and the estimate (5.51) for α_2 is optimal.

8. Show that the polynomials (5.8) satisfy

$$P_k(x) = (-1)^k \sqrt{2k+1} F(-k,k+1;1;x)$$

where

$$F(a,b;c;x) = 1 + \frac{a \cdot b}{c \cdot 1}x + \frac{a(a+1)b(b+1)}{c(c+1)1 \cdot 2}x^2 + \dots$$

is the hypergeometric series (see Chapter I, (5.9)).

IV.6. Diagonally Implicit RK Methods

"... they called their methods "diagonally implicit", a term which is reserved here for the special case where all diagonal entries are equal ..." (R. Alexander 1977)

We continue to quote from this nice paper: "To integrate a system of n differential equations, an implicit method with a full $s \times s$ matrix requires the solution of ns simultaneous implicit (in general nonlinear) equations in each time step (\ldots) One way to circumvent this difficulty is to use a lower triangular matrix (a_{ij}) (i.e., a matrix with $a_{ij} = 0$ for i < j); the equations may then be solved in s successive stages with only an n-dimensional system to be solved at each stage". In accordance with many authors, and in disaccordance with others (see above), we call such a method diagonally implicit (DIRK).

"In solving the *n*-dimensional systems by Newton-type iterations one solves linear systems at each stage with a coefficient matrix of the form $I-ha_{ii}\partial f/\partial y$. If all a_{ii} are equal one may hope to use repeatedly the stored LU-factorization of a single such matrix". When we want to emphasize this additional property for a DIRK method, we shall call it a *singly diagonally implicit* (SDIRK) method.

It is a curious coincidence that in the early seventies at least four theses dedicated a large part of their research to DIRK and SDIRK methods, very often having in mind their usefulness for the treatment of partial differential equations (R. Alt 1971, M. Crouzeix 1975, A. Kurdi 1974, S.P. Nørsett 1974). The classical paper on the subject is Alexander (1977).

Order Conditions

"The traditional problem of choosing the coefficients leads to a nonlinear algebraic jungle, to which civilization and order were brought in the pioneering work of J.C. Butcher, further refined in the Thesis of M. Crouzeix."

(R. Alexander 1977)

We want to make the "jungle" still a little more civilized by the following idea: consider a SDIRK scheme

$$\begin{array}{c|cccc} c_1 & \gamma & & \\ c_2 & a_{21} & \gamma & \\ \vdots & \vdots & \vdots & \ddots & \\ \hline c_s & a_{s1} & a_{s2} & \dots & \gamma \\ \hline & & b_1 & b_2 & \dots & b_s \end{array}$$

with s stages. The order conditions (see Vol. I, Section II.2) consist of sums such as

$$\sum_{j,k,l} b_j a_{jk} a_{kl} = \frac{1}{6}.$$
 (6.1)

Because there are now more non-zero entries in the matrix A than for explicit methods, this sum contains far more terms as it did before. The trick is to transfer all expressions containing a γ to the right-hand side of (6.1). The resulting sum, denoted by \sum' , is then only built upon the subdiagonal entries as in the ERK-case. The right-hand side becomes (for this example)

$$\sum_{j,k,l} b_{j} a_{jk} a_{kl} = \sum_{j,k,l} b_{j} (a_{jk} - \gamma \delta_{jk}) (a_{kl} - \gamma \delta_{kl})$$
(6.1)

where δ_{jk} denotes the Kronecker delta. Multiplying out we obtain

$$\sum_{j,k,l} b_j a_{jk} a_{kl} = \sum_{j,k,l} b_j a_{jk} a_{kl} - \gamma \left(\sum_{j,l} b_j a_{jl} + \sum_{j,k} b_j a_{jk} \right) + \gamma^2 \sum_j b_j .$$

For all sums on the right we insert order conditions (e.g. from Theorem 2.1 of Section II.2) and obtain

$$\sum_{j,k,l} {}^{\prime} b_j a_{jk} a_{kl} = \frac{1}{6} - \gamma + \gamma^2 .$$
 (6.1")

The general rule is that there appears an alternating polynomial in γ whose coefficients are sums of $1/\gamma(u)$, where u runs through all trees which are obtained by "short-circuiting" one, two, three, etc. vertices of t (with exception of the root). The conditions for order 4 obtained in this way are summarized in Table 6.1. For s=2, p=3 and s=3, p=4 these simplified conditions have only very few non-zero terms and the equations become especially simple to solve (see Exercise 1).

99

-	t	$\varrho(t)$	previous conditions	simplified conditions
-	•j	1	$\sum b_j = 1$	$\sum b_j = 1$
k.	∕j^`	2	$\sum b_j a_{jk} = rac{1}{2}$	$\sum' b_j a_{jk} = rac{1}{2} - \gamma$
	√j ¹	3	$\sum b_j a_{jk} a_{jl} = rac{1}{3}$	$\sum {}^{\prime}b_{j}a_{jk}a_{jl}=rac{1}{3}-\gamma+\gamma^{2}$
k.	j ^k 1 m	3	$\left \sum b_j a_{jk} a_{kl} = \frac{1}{6}\right $	$\sum b_j a_{jk} a_{kl} = rac{1}{6} - \gamma + \gamma^2$
k V	j ^m	4	$\left \sum b_j a_{jk} a_{jl} a_{jm} = \frac{1}{4}\right $	$\sum b_j a_{jk} a_{jl} a_{jm} = rac{1}{4} - \gamma + rac{3}{2} \gamma^2 - \gamma^3$
1,	[™] √j ^ĸ ∕m	4	$\left \sum b_j a_{jk} a_{kl} a_{jm} = \frac{1}{8}\right $	$\sum b_j a_{jk} a_{kl} a_{jm} = rac{1}{8} - rac{5}{6} \gamma + rac{3}{2} \gamma^2 - \gamma^3$
	yk j m 1	4	$\left \sum b_j a_{jk} a_{kl} a_{km} = \frac{1}{12}\right $	$\left \sum' b_{j}a_{jk}a_{kl}a_{km} = rac{1}{12} - rac{2}{3}\gamma + rac{3}{2}\gamma^{2} - \gamma^{3} ight.$
	} k	4	$\sum b_j a_{jk} a_{kl} a_{lm} = \frac{1}{24}$	$\sum' b_j a_{jk} a_{kl} a_{lm} = rac{1}{24} - rac{1}{2}\gamma + rac{3}{2}\gamma^2 - \gamma^3$

Table 6.1. Order conditions for SDIRK methods

Stiffly Accurate SDIRK Methods

Our main interest here lies in methods satisfying

$$a_{sj} = b_j \quad \text{for} \quad j = 1, \dots, s , \qquad (6.2)$$

i.e., in methods for which the numerical solution y_1 is identical to the last internal stage. A first consequence of this property is that $R(\infty) = 0$ (see Proposition 3.8). The order conditions for such methods can, instead of (6.1"), be simplified still further: Consider again the example (6.1), which can now be written as

$$\sum_{j,k,l}a_{sj}a_{jk}a_{kl}=\frac{1}{6}.$$

This time we have, instead of (6.1')

$$\begin{split} \sum_{j,k,l} 'a_{sj}a_{jk}a_{kl} &= \sum_{j,k,l} (a_{sj} - \gamma \delta_{sj})(a_{jk} - \gamma \delta_{jk})(a_{kl} - \gamma \delta_{kl}) \\ &= \sum_{j,k,l} a_{sj}a_{jk}a_{kl} - \gamma \Big(\sum_{j,k} a_{sj}a_{jk} + \sum_{j,l} a_{sj}a_{jl} + \sum_{k,l} a_{sk}a_{kl}\Big) \\ &+ \gamma^2 \Big(\sum_j a_{sj} + \sum_k a_{sk} + \sum_l a_{sl}\Big) - \gamma^3 \cdot 1 \; . \end{split}$$

100 IV. Stiff Problems — One Step Methods

Again inserting known order conditions, we now obtain

$$\sum_{j,k,l} 'a_{sj}a_{jk}a_{kl} = \frac{1}{6} - \frac{3}{2}\gamma + 3\gamma^2 - \gamma^3 .$$
 (6.1")

The general rule is similar to the one above: the difference is that *all* vertices (including the root) are now available for being short-circuited. Another example, for the tree t_{42} , is sketched in Fig. 6.1 and leads to the following right-hand side:

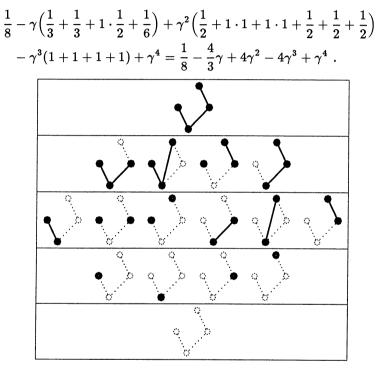


Fig. 6.1. Short-circuiting tree t_{42}

The order conditions obtained in this manner are displayed in Table 6.2 for all trees of order ≤ 4 . The expressions \sum' are written explicitly for the SDIRK method (6.3) with s=5 satisfying condition (6.2)

 <i>b</i> ₁	<i>b</i> ₂	<i>b</i> ₃	<i>b</i> ₄	γ	_	
a_{41}	a ₃₂ a ₄₂ b ₂	a_{43}		γ	$egin{aligned} c_2' &= a_{21} \ c_3' &= a_{31} + a_{32} \ c_4' &= a_{41} + a_{42} + a_{43} \end{aligned}$	(6.3)
$\begin{vmatrix} \gamma \\ a_{21} \end{vmatrix}$	γ				a' — a	

Observe that they become very similar to those of Formulas (1.11) in Section II.2.

•j	$\sum' a_{sj} = b_1 + b_2 + b_3 + b_4$	$= p_1$	(6.4;1)					
j	$ \sum_{k=1}^{j} \sum_{j=1}^{k} \left\{ \begin{array}{c} \sum_{j=1}^{j} a_{sj} = b_{1} + b_{2} + b_{3} + b_{4} = p_{1} \\ \sum_{j=1}^{j} a_{sj}a_{jk} = b_{2}c_{2}' + b_{3}c_{3}' + b_{4}c_{4}' = p_{2} \\ \sum_{j=1}^{j} a_{sj}a_{jk}a_{jl} = b_{2}c_{2}'^{2} + b_{3}c_{3}'^{2} + b_{4}c_{4}'^{2} = p_{3} \\ \sum_{j=1}^{j} a_{sj}a_{jk}a_{kl} = b_{3}a_{32}c_{2}' + b_{4}(a_{42}c_{2}' + a_{43}c_{3}') = p_{4} \end{array} \right\} $							
^k Vj ¹	$\sum_{j=1}^{j} \left \sum_{k=1}^{j} a_{sj} a_{jk} a_{jl} = b_2 c_2^{\prime 2} + b_3 c_3^{\prime 2} + b_4 c_4^{\prime 2} = p_3 \right $							
} ^k	$\sum_{j=1}^{k} \sum_{j=1}^{j} a_{sj} a_{jk} a_{kl} = b_3 a_{32} c_2' + b_4 (a_{42} c_2' + a_{43} c_3') = p_4$							
^k \sqrt{j}^{m}	$ \int_{j}^{1} \int_{1}^{m} \sum a_{sj} a_{jk} a_{jl} a_{jm} = b_2 c_2^{\prime 3} + b_3 c_3^{\prime 3} + b_4 c_4^{\prime 3} = p_5 $							
$m \bigvee_{j}^{k} k$	$\sum' a_{sj}a_{jk}a_{jl}a_{lm} = b_3c'_3a_{32}c'_2 + b_4c'_4(a_{42}c'_2 + a_{43}c'_3) = p_6$							
1 j k	$\sum' a_{sj} a_{jk} a_{kl} a_{km} = b_3 a_{32} c_2'^2 + b_4 (a_{42} c_2'^2 + a_{43} c_3'^2) = p_7$ $\sum' a_{sj} a_{jk} a_{kl} a_{lm} = b_4 a_{43} a_{32} c_2' = p_8$							
	$= 1 - \gamma$	$p_5={1\over 4}-2\gamma+{9\over 2}\gamma^2-4\gamma^3+$	γ^4					
$p_2 = rac{1}{2} - 2\gamma + \gamma^2 \qquad \qquad p_6 = rac{1}{8} - rac{4}{3}\gamma + 4\gamma^2 - 4\gamma^3 + rac{1}{8}\gamma^2 + 4\gamma^2 + 4\gamma^$								
$p_3 = rac{1}{3} - 2\gamma + 3\gamma^2 - \gamma^3 \qquad \qquad p_7 = rac{1}{12} - \gamma + rac{7}{2}\gamma^2 - 4\gamma^3 + rac{1}{12} - \gamma + rac{7}{2}\gamma^2 - 4\gamma^3 + rac{1}{12} - \gamma + rac{1}{2}\gamma^2 - 4\gamma^3 + rac{1}{2}\gamma^2 - 4\gamma^2 + 4\gamma^2 +$								
<i>p</i> ₄ =	$p_{4} = rac{1}{6} - rac{3}{2}\gamma + 3\gamma^{2} - \gamma^{3}$ $p_{8} = rac{1}{24} - rac{2}{3}\gamma + 3\gamma^{2} - 4\gamma^{3} + p_{8} = rac{1}{24} - rac{2}{3}\gamma + 3\gamma^{2} - 4\gamma^{3} + rac{1}{2}\gamma^{2} + 2\gamma^{2} + 2\gamma^$							

Table 6.2. Order conditions for method (6.3)

Solution of Equations (6.4)

By clever elimination from equations (6.4;4) and (6.4;6) as well as (6.4;4) and (6.4;7) we obtain

$$b_{3}a_{32}c_{2}'(c_{4}'-c_{3}') = c_{4}'p_{4} - p_{6}$$

$$b_{4}c_{3}'a_{43}(c_{2}'-c_{3}') = c_{2}'p_{4} - p_{7} .$$
(6.5)

Multiplying these two equations and using (6.4;8) gives

$$p_8b_3(c'_4-c'_3)(c'_2-c'_3)c'_3=(c'_4p_4-p_6)(c'_2p_4-p_7)$$

102 IV. Stiff Problems — One Step Methods

We now compute b_2 , b_3 , b_4 from (6.4;2), (6.4;3), (6.4;5). This gives

$$b_{3} = \left[-p_{2}c_{2}'c_{4}' + p_{3}(c_{4}' + c_{2}') - p_{5}\right] / \left[c_{3}'(c_{3}' - c_{2}')(c_{4}' - c_{3}')\right]$$
(6.6)

and b_2 as well as b_4 by cyclic permutation. Comparing the last two equations leads to

$$c'_{4} = \frac{p_{8}p_{3}c'_{2} - p_{8}p_{5} - c'_{2}p_{6}p_{4} + p_{6}p_{7}}{p_{8}p_{2}c'_{2} - p_{8}p_{3} - c'_{2}p_{4}p_{4} + p_{4}p_{7}} .$$
(6.7)

We now choose γ , c'_2 and c'_3 as free parameters. Then c'_4 is obtained from (6.7); b_2 , b_3 , b_4 from (6.6), b_1 from (6.4;1), a_{32} and a_{43} from (6.5), a_{42} from (6.4;4), and finally a_{21} , a_{31} , a_{41} from (6.3).

Embedded 3rd order formula: As proposed by Cash (1979), we can append to the above formula a third order expression

$$\widehat{y}_1 = y_0 + h \sum_{i=1}^4 \widehat{b}_i k_i$$

(thus by omitting $b_5 = \gamma$) for the sake of step size control. The coefficients $\hat{b}_1, \ldots, \hat{b}_4$ are simply obtained by solving the first 4 equations of Table 6.1 (linear system). Continuous embedded 3rd order formulas can be obtained in this way too (see (5.1) of Section II.5)

$$y(x_0 + \theta h) \approx y_0 + h \sum_{i=1}^4 b_i(\theta) k_i$$
.

The coefficients $b_1(\theta), \ldots, b_4(\theta)$ are obtained by solving the first 4 (simplified) conditions of Table 6.1, with the right-hand sides replaced by

$$heta, \;\; rac{ heta^2}{2} - \gamma heta, \;\; rac{ heta^3}{3} - \gamma heta^2 + \gamma^2 heta, \;\; rac{ heta^3}{6} - \gamma heta^2 + \gamma^2 heta\;,$$

respectively. The continuous solution obtained in this way becomes \hat{y}_1 for $\theta = 1$ instead of the 4-th order solution y_1 . The global continuous solution would therefore be discontinuous. In order to avoid this discontinuity, we add $b_5(\theta)$ and include the fifth equation from Table 6.1 with right-hand side

$$rac{ heta^4}{4} - \gamma heta^3 + rac{3\gamma^2 heta^2}{2} - \gamma^3 heta \; .$$

The Stability Function

By Formula (3.3), the stability function R(z) for a DIRK method is of the form

$$R(z) = \frac{P(z)}{(1 - a_{11}z)(1 - a_{22}z)\dots(1 - a_{ss}z)}, \qquad (6.8)$$

because the determinant of a triangular matrix is the product of its diagonal entries. The numerator P(z) is a polynomial of degree s at most. If the method is of order $p \ge s$, this polynomial is uniquely determined by Formula (3.26). It is simply obtained from the first terms of the power series for $(1-a_{11}z)\ldots(1-a_{ss}z)\cdot e^z$.

For SDIRK methods, with $a_{11} = \ldots = a_{ss} = \gamma$, we obtain (see also Formula (3.26) with $q_j = (-\gamma)^j \binom{s}{j}$)

$$R(z) = \frac{P(z)}{(1 - \gamma z)^{s}}, \qquad P(z) = (-1)^{s} \sum_{j=0}^{s} L_{s}^{(s-j)} \left(\frac{1}{\gamma}\right) (\gamma z)^{j} \qquad (6.9)$$

with error constant

$$C = \frac{\gamma^{s}(-1)^{s+1}}{s+1} L_{s+1}^{(1)}\left(\frac{1}{\gamma}\right)$$
(6.10)

where

$$L_{s}(x) = \sum_{j=0}^{s} (-1)^{j} {\binom{s}{j}} \frac{x^{j}}{j!}$$
(6.11)

is the s-degree Laguerre polynomial. $L_s^{(k)}(x)$ denotes its k-th derivative. Since the function (6.9) is analytic in C⁻ for $\gamma > 0$, A-stability is equivalent to

$$E(y) = Q(iy)Q(-iy) - P(iy)P(-iy) \ge 0 \qquad \text{for all } y \tag{6.12}$$

(see (3.8)). This is an even polynomial of degree 2s (in general) and subdegree 2j where j = [(p+2)/2] (see Proposition 3.4). We therefore define the polynomial F(x) by

$$F(y^2) = E(y)/y^{2j}$$
 $j = [(p+2)/2]$.

and check the condition $F(x) \ge 0$ for $x \ge 0$ using Sturm sequences. We display the results obtained (similar to Burrage 1978) in Table 6.3.

For completeness, we give the following explicit formulas for E(y).

$$s = 1; \ p = 1:$$

$$E = y^{2}(2\gamma - 1)$$

$$s = 2; \ p = 2:$$

$$E = y^{4}\left(-\frac{1}{4} + 2\gamma - 5\gamma^{2} + 4\gamma^{3}\right) = y^{4}(2\gamma - 1)^{2}\left(\gamma - \frac{1}{4}\right)$$

\$	A-stability	A-stability and $p = s + 1$
1	$1/2 \leq \gamma < \infty$	1/2
2	$1/4 \leq \gamma < \infty$	$(3+\sqrt{3})/6$
3	$1/3 \leq \gamma \leq 1.06857902$	1.06857902
4	$0.39433757 \leq \gamma \leq 1.28057976$	
5	$\left\{egin{array}{l} 0.24650519 \leq \gamma \leq 0.36180340 \ 0.42078251 \leq \gamma \leq 0.47326839 \end{array} ight.$	0.47326839
6	$0.28406464 \leq \gamma \leq 0.54090688$	
7		
8	$0.21704974 \leq \gamma \leq 0.26471425$	

Table 6.3. A-stability for SDIRK with order $p \ge s$

$$\begin{split} s &= 3; \ p = 3: \\ E &= y^4 \Big(\frac{1}{12} - \gamma + 3\gamma^2 - 2\gamma^3 \Big) + y^6 \Big(-\frac{1}{36} + \frac{\gamma}{2} - \frac{13\gamma^2}{4} + \frac{28\gamma^3}{3} - 12\gamma^4 + 6\gamma^5 \Big) \\ s &= 4; \ p = 4: \\ E &= y^6 \Big(\frac{1}{72} - \frac{\gamma}{3} + \frac{17\gamma^2}{6} - \frac{32\gamma^3}{3} + 17\gamma^4 - 8\gamma^5 \Big) \\ &+ y^8 \Big(-\frac{1}{576} + \frac{\gamma}{18} - \frac{25\gamma^2}{36} + \frac{13\gamma^3}{3} - \frac{173\gamma^4}{12} + \frac{76\gamma^5}{3} - 22\gamma^6 + 8\gamma^7 \Big) \ . \end{split}$$

 $A\mbox{-stability}$ means here that all coefficients must be non-negative. A general formula is as follows.

Lemma 6.1. The E-polynomial for (6.8) with $a_{11} = \ldots = a_{ss} = \gamma$ and $p \ge s$ satisfies

$$E(y) = \left(1 - L_s \left(\frac{1}{\gamma}\right)^2\right) (\gamma y)^{2s} - 2 \sum_{j=[(p+2)/2]}^{s-1} (-1)^{s+j} (\gamma y)^{2j} \int_0^{1/\gamma} L_s(x) L_s^{(2s+1-2j)}(x) dx .$$
(6.13)

Proof. Inserting Formula (6.9) into the definition of E(y)

$$\begin{split} E(y) &= (1 + \gamma^2 y^2)^s - P(iy) P(-iy) \\ &= (1 + \gamma^2 y^2)^s - \sum_k \sum_l L_s^{(s-k)} \Big(\frac{1}{\gamma}\Big) L_s^{(s-l)} \Big(\frac{1}{\gamma}\Big) (\gamma i y)^{k+l} (-1)^l \end{split}$$

and using integration by parts for the verification of

$$2\int_0^{\alpha} L_s(x) L_s^{(2s+1-2j)}(x) dx = (-1)^s \sum_{k+l=2j} (-1)^l L_s^{(s-k)}(x) L_s^{(s-l)}(x) \Big|_0^{\alpha}$$

one obtains the result, since

$$\sum_{k+l=2j} (-1)^l L_s^{(s-k)}(0) L_s^{(s-l)}(0) = (-1)^j \binom{s}{j} .$$

Multiple Real-Pole Approximations with $R(\infty) = 0$

For methods satisfying (6.2) we have $R(\infty) = 0$. Therefore the highest coefficient of P(z) in (6.9) is zero. If the order of the method is known to be $p \ge s - 1$, the remaining coefficients of P(z) are still uniquely determined by γ and we have

$$P(z) = (-1)^{s} \sum_{j=0}^{s-1} L_{s}^{(s-j)} \left(\frac{1}{\gamma}\right) (\gamma z)^{j}$$
(6.14)

with error constant

$$C = (-1)^{s} L_{s} \left(\frac{1}{\gamma}\right) \gamma^{s} .$$
(6.15)

The first polynomials E(y) of (6.12) are now:

$$\begin{split} s &= 2, \ p = 1: \\ & E = y^2 (-1 + 4\gamma - 2\gamma^2) + y^4 \gamma^4 \\ s &= 3, \ p = 2: \\ & E = y^4 \left(-\frac{1}{4} + 3\gamma - 12\gamma^2 + 18\gamma^3 - 6\gamma^4 \right) + y^6 \gamma^6 \\ s &= 4, \ p = 3: \\ & E = y^4 \left(\frac{1}{12} - \frac{4\gamma}{3} + 6\gamma^2 - 8\gamma^3 + 2\gamma^4 \right) \\ & + y^6 \left(-\frac{1}{36} + \frac{2\gamma}{3} - 6\gamma^2 + \frac{76\gamma^3}{3} - 52\gamma^4 + 48\gamma^5 - 12\gamma^6 \right) + y^8 \gamma^8 \; . \end{split}$$

The regions of γ for A-(and hence L-)stability are displayed in Table 6.4.

\$	L-stability	L-stab. and $p = s$
2	$(2-\sqrt{2})/2\leq\gamma\leq(2+\sqrt{2})/2$	$\gamma = (2\pm \sqrt{2})/2$
3	$0.18042531 \leq \gamma \leq 2.18560010$	$\gamma=0.43586652$
4	$0.22364780 \leq \gamma \leq 0.57281606$	$\gamma=0.57281606$
5	$0.24799464 \leq \gamma \leq 0.67604239$	$\gamma=0.27805384$
6	$0.18391465 \leq \gamma \leq 0.33414237$	$\gamma=0.33414237$
7	$0.20408345 \leq \gamma \leq 0.37886489$	—
8	$0.15665860 \leq \gamma \leq 0.23437316$	$\gamma=0.23437316$

Table 6.4. L-stability for SDIRK with order $p \ge s - 1$

Choice of Method

We now determine the free parameters for method (6.3) with s = 5 and order 4. For a good choice of γ , we have displayed in Fig. 6.2 the error constant C as well as the regions for A- and A(0)-stability.

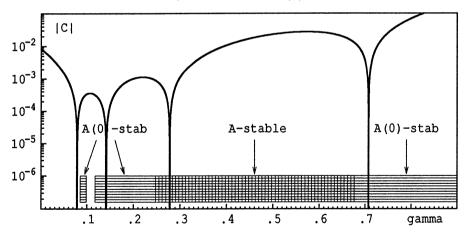


Fig. 6.2. Error constant and A-stability domain for s=5, p=4.

This suggests that γ between 0.25 and 0.29 is a good choice. The method is then *L*-stable and the error constant is small. For various values of γ in this range, we determined (by a nonlinear Gauss-Newton code) c'_2 and c'_3 in order to minimize the fifth-order error terms. It turned out that

$$c_2' = 0.5, c_3' = 0.3$$

is close to optimal. With this we coded two different choices of γ : $\gamma = 4/15 =$

0.2666..., which was numerically the better choice and $\gamma = 1/4$, which gave, via Formulas (6.4), (6.5), (6.6) and (6.7), especially nice rational coefficients. These latter are displayed in Table 6.5.

$\frac{1}{4}$	$\frac{1}{4}$	1				
$\frac{3}{4}$	$\frac{1}{2}$	$\frac{1}{4}$				
$\frac{11}{20}$	$\frac{17}{50}$	$-\frac{1}{25}$	$\frac{1}{4}$			
$\frac{1}{2}$	$\frac{371}{1360}$	$-\frac{137}{2720}$	$\frac{15}{544}$	$\frac{1}{4}$		(6.16)
1	$\frac{25}{24}$	$-\frac{49}{48}$	$\frac{125}{16}$	$-\frac{85}{12}$	$\frac{1}{4}$	()
$y_1 =$	$\frac{25}{24}$	$-\frac{49}{48}$	$\frac{125}{16}$	$-\frac{85}{12}$	$\frac{1}{4}$	
$\widehat{y}_1 =$	$\frac{59}{48}$	$-\frac{17}{96}$	$\frac{225}{32}$	$-\frac{85}{12}$	0	
err =	$-\frac{3}{16}$	$-\frac{27}{32}$	$\frac{25}{32}$	0	$\frac{1}{4}$	

Table 6.5. L-stable SDIRK method of order 4

A continuous solution to this method is given by

$$y(x_0 + \theta h) \approx y_0 + h \sum_{j=1}^{5} b_j(\theta) k_j$$

where

$$b_{1}(\theta) = \frac{11}{3}\theta - \frac{463}{72}\theta^{2} + \frac{217}{36}\theta^{3} - \frac{20}{9}\theta^{4}$$

$$b_{2}(\theta) = \frac{11}{2}\theta - \frac{385}{16}\theta^{2} + \frac{661}{24}\theta^{3} - 10\theta^{4}$$

$$b_{3}(\theta) = -\frac{128}{18}\theta + \frac{20125}{432}\theta^{2} - \frac{8875}{216}\theta^{3} + \frac{250}{27}\theta^{4}$$

$$b_{4}(\theta) = -\frac{85}{4}\theta^{2} + \frac{85}{6}\theta^{3}$$

$$b_{5}(\theta) = -\frac{11}{19}\theta + \frac{557}{108}\theta^{2} - \frac{359}{54}\theta^{3} + \frac{80}{27}\theta^{4}$$
(6.17)

Exercises

1. (Crouzeix & Raviart 1980). Compute the SDIRK methods (Table 6.1) for s=3, p=4. Obtain also (for s=2, p=3) once again the method of Table 7.2, Section II.7.

Result. The last order condition is in both cases just a polynomial in γ . Among the different solutions, the following presents an A-stable scheme:

- 2. Verify all details of Tables 6.1 and 6.2.
- 3. The four cases of A-stable SDIRK methods of order p = s+1 indicated in Table 6.3 (right) are the only ones existing. This fact has not yet been rigorously proved, because the "proof" given in Wanner, Hairer & Nørsett (1978) uses an asymptotic formula without error estimation. Do better.
- 4. Cooper & Sayfy (1979) have derived many DIRK (which they call "semiexplicit") methods of high order. Their main aim was to *minimize* the number of implicit stages and *not* to maximize stability. One of their methods is

$\frac{6-\sqrt{6}}{10}$	$\frac{6-\sqrt{6}}{10}$				
$\frac{6+9\sqrt{6}}{35}$	$\frac{-6+5\sqrt{6}}{14}$	$\frac{6-\sqrt{6}}{10}$			
1	$\frac{888+607\sqrt{6}}{2850}$	$\frac{126-161\sqrt{6}}{1425}$	$\frac{6-\sqrt{6}}{10}$		
$\frac{4-\sqrt{6}}{10}$	$\frac{3153 - 3082\sqrt{6}}{14250}$	$\frac{3213+1148\sqrt{6}}{28500}$	$\tfrac{-267+88\sqrt{6}}{500}$	$\frac{6-\sqrt{6}}{10}$	
$\frac{4+\sqrt{6}}{10}$	$\frac{-32583+14638\sqrt{6}}{71250}$	$\tfrac{-17199+364\sqrt{6}}{142500}$	$\frac{1329-544\sqrt{6}}{2500}$	$\tfrac{-96+131\sqrt{6}}{625}$	$\frac{6-\sqrt{6}}{10}$
1	0	0	$\frac{1}{9}$	$\frac{16-\sqrt{6}}{36}$	$\frac{16+\sqrt{6}}{36} 0$

Show that it is of order 5 and A-stable, but not L-stable.

5. It can be seen in Table 6.4 that for s = 2, 4, 6, and 8 the *L*-stability superconvergence point coincides with the right end of the *A*-stability interval. Explain this with the help of order star theory (Fig. 6.3.a).

Further, for s = 7, a superconvergence point is given by $\gamma = 0.20406693$, which misses the A-stability interval given there by less than $2 \cdot 10^{-5}$. Should the above argument also apply here and must there be a computation error somewhere? Study the corresponding order star to show that this is not the case (Fig. 6.3.b).

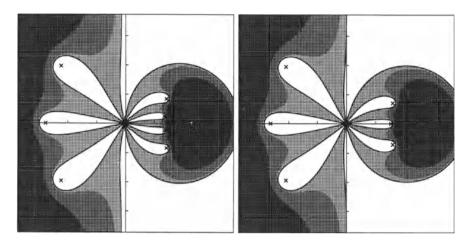


Fig. 6.3.a. Multiple pole order star $s=8, \gamma=0.23437316$

Fig. 6.3.b. Multiple pole order star $s=7, \gamma=0.20406693$

IV.7. Rosenbrock-Type Methods

"When the functions φ are non-linear, implicit equations can in general be solved only by iteration. This is a severe drawback, as it adds to the problem of stability, that of convergence of the iterative process. An alternative, which avoids this difficulty, is ..." (H.H. Rosenbrock 1963)

... is discussed in this section. Among the methods which already give satisfactory results for stiff equations, Rosenbrock methods are the easiest to program. We shall describe their theory in this section, which will lead us to our first "stiff" code. Rosenbrock methods belong to a large class of methods which try to avoid nonlinear systems and replace them by a sequence of linear systems. We therefore call these methods *linearly implicit* RK-methods. In the literature such methods are often called "semi-implicit" (or was it "semi-explicit"?), or "generalized" or "modified" or "adaptive" or "additive" RK-methods.

Derivation of the Method

We start, say, with a diagonally IRK method

$$k_{i} = hf\left(y_{0} + \sum_{j=1}^{i-1} a_{ij}k_{j} + a_{ii}k_{i}\right) \qquad i = 1, \dots, s$$

$$y_{1} = y_{0} + \sum_{i=1}^{s} b_{i}k_{i}$$

(7.1)

applied to the autonomous differential equation

$$y' = f(y) . \tag{7.2}$$

The main idea is to linearize Formula (7.1). This yields

$$k_{i} = hf(g_{i}) + hf'(g_{i})a_{ii}k_{i}$$

$$g_{i} = y_{0} + \sum_{j=1}^{i-1} a_{ij}k_{j} , \qquad (7.3)$$

and can be interpreted as the application of one Newton iteration to each stage in (7.1) with starting values $k_i^{(0)} = 0$. Instead of continuing the iterations until convergence, we consider (7.3) as a new class of methods and investigate anew its order and stability properties.

Important computational advantage is obtained by replacing the Jacobians $f'(g_i)$ by $J = f'(y_0)$, so that the method requires its calculation only once (Calahan 1968). Many methods of this type and much numerical experience with them have been obtained by van der Houwen (1973), Cash (1976) and Nørsett (1975).

We gain further freedom by introducing additional linear combinations of terms Jk_j into (7.3) (Nørsett & Wolfbrandt 1979, Kaps & Rentrop 1979). We then arrive at the following class of methods:

Definition 7.1. An s-stage Rosenbrock method is given by the formulas

$$k_{i} = hf\left(y_{0} + \sum_{j=1}^{i-1} \alpha_{ij}k_{j}\right) + hJ\sum_{j=1}^{i} \gamma_{ij}k_{j}, \quad i = 1, \dots, s$$

$$y_{1} = y_{0} + \sum_{j=1}^{s} b_{j}k_{j}$$

(7.4)

where α_{ij} , γ_{ij} , b_i are the determining coefficients and $J = f'(y_0)$.

Each stage of this method consists of a system of linear equations with unknowns k_i and with matrix $I - h\gamma_{ii}J$. Of special interest are methods for which $\gamma_{11} = \ldots = \gamma_{ss} = \gamma$, so that we need only one LU-decomposition per step.

Non-autonomous problems: The equation

$$y' = f(x, y) \tag{7.2a}$$

can be converted to autonomous form by adding x' = 1. If method (7.4) is applied to the augmented system, the components corresponding to the *x*-variable can be computed explicitly and we arrive at

$$k_{i} = hf\left(x_{0} + \alpha_{i}h, y_{0} + \sum_{j=1}^{i-1} \alpha_{ij}k_{j}\right) + \gamma_{i}h^{2}\frac{\partial f}{\partial x}(x_{0}, y_{0}) + h\frac{\partial f}{\partial y}(x_{0}, y_{0})\sum_{j=1}^{i} \gamma_{ij}k_{j}$$

$$y_{1} = y_{0} + \sum_{j=1}^{s} b_{j}k_{j} , \qquad (7.4a)$$

where the additional coefficients are given by

$$\alpha_i = \sum_{j=1}^{i-1} \alpha_{ij} , \qquad \gamma_i = \sum_{j=1}^{i} \gamma_{ij} . \qquad (7.5)$$

Implicit differential equations: Suppose the problem is of the form

$$My' = f(x, y) \tag{7.2b}$$

112 IV. Stiff Problems — One Step Methods

where M is a constant matrix (nonsingular for the moment). If we formally multiply (7.2b) with M^{-1} , apply method (7.4a), and then multiply the resulting formula with M, we obtain

$$Mk_{i} = hf\left(x_{0} + \alpha_{i}h, y_{0} + \sum_{j=1}^{i-1} \alpha_{ij}k_{j}\right) + \gamma_{i}h^{2}\frac{\partial f}{\partial x}(x_{0}, y_{0}) + h\frac{\partial f}{\partial y}(x_{0}, y_{0})\sum_{j=1}^{i} \gamma_{ij}k_{j}$$
$$y_{1} = y_{0} + \sum_{j=1}^{s} b_{j}k_{j} .$$
(7.4b)

An advantage of this formulation is that the inversion of M is avoided and that possible band-structures of the matrices M and $\partial f/\partial y$ are preserved.

Order Conditions

Conditions on the free parameters which ensure that the method is of order p, i.e., the local error satisfies

$$y(x_0+h) - y_1 = \mathcal{O}(h^{p+1})$$
,

can be obtained either by straightforward differentiation or by the use of the theorems on B-series (Section II.11). We follow here the first approach, since it requires only the knowledge of Section II.2. The second possibility is sketched in Exercise 2.

As in Section II.2, we write the system (7.2) in tensor notation and Method (7.4) as ¹

$$\begin{aligned} k_{j}^{J} &= hf^{J}(g_{j}) + h\sum_{K} f_{K}^{J}(y_{0}) \sum_{k} \gamma_{jk} k_{k}^{K} \\ g_{i}^{J} &= y_{0}^{J} + \sum_{j} \alpha_{ij} k_{j}^{J} , \\ y_{1}^{J} &= y_{0}^{J} + \sum_{j} b_{j} k_{j}^{J} . \end{aligned}$$
(7.4)

Again, we use Leibniz's rule (cf. (II.2.4))

$$(k_{j}^{J})^{(q)}\big|_{h=0} = q(f^{J}(g_{j}))^{(q-1)}\big|_{h=0} + q\sum_{K} f_{K}^{J}(y_{0})\sum_{k} \gamma_{jk}(k_{k}^{K})^{(q-1)}\big|_{h=0}$$
(7.6)

¹ In the sequel, the reader will find many k's of different meaning; on the one hand the "k" in Formula (7.1) which goes back to Runge and Kutta, on the other hand "k" as summation index as since ever in numerical analysis. Although this looks somewhat strange in certain formulas, we prefer to retain the notation of previous sections.

and have from the chain rule (cf. Section II.2, (2.6;1), (2.6;2))

$$(f^{J}(g_{j}))' = \sum_{K} f^{J}_{K}(g_{j}) \cdot (g^{K}_{j})'$$
$$(f^{J}(g_{j}))'' = \sum_{K,L} f^{J}_{KL}(g_{j}) \cdot (g^{K}_{j})' \cdot (g^{L}_{j})' + \sum_{K} f^{J}_{K}(g_{j}) \cdot (g^{K}_{j})''$$

etc. Inserting this into (7.6) we obtain recursively

$$(k_j^J)^{(0)}\Big|_{h=0} = 0 \tag{7.7,0}$$

$$(k_j^J)^{(1)}\big|_{h=0} = f^J \tag{7.7,1}$$

$$(k_{j}^{J})^{(2)}|_{k=0} = 2 \sum_{K} f_{K}^{J} f^{K} \sum_{k} \alpha_{jk} + 2 \sum_{K} f_{K}^{J} f^{K} \sum_{k} \gamma_{jk}$$

= $2 \sum_{K} f_{K}^{J} f^{K} \sum_{k} (\alpha_{jk} + \gamma_{jk})$ (7.7;2)

$$(k_{j}^{J})^{(3)}|_{h=0} = 3 \sum_{K,L}^{N} f_{KL}^{J} f^{K} f^{L} \sum_{k,l} \alpha_{jk} \alpha_{jl}$$

$$+ 3 \cdot 2 \sum_{K,L} f_{K}^{J} f_{L}^{K} f^{L} \sum_{k,l} (\alpha_{jk} + \gamma_{jk}) (\alpha_{kl} + \gamma_{kl})$$

$$(7.7;3)$$

etc. All elementary differentials are evaluated at y_0 . Comparing the derivatives of the numerical solution $(q \ge 1)$

$$(y_1^J)^{(q)}\big|_{h=0} = \sum_j b_j (k_j^J)^{(q)}\big|_{h=0}$$
(7.8)

with those of the true solution (Section II.2, Formula (2.7;1), (2.7;2), (2.7;3)), we arrive at the following conditions for order three:

$$\begin{array}{ll} \overset{\mathbf{\cdot}j}{} & \sum b_j = 1 \\ \overset{\mathbf{\prime}j}{}^{\mathbf{k}} & \sum b_j(\alpha_{jk} + \gamma_{jk}) = \frac{1}{2} \\ \overset{\mathbf{k}}{\bigvee_j}^{\mathbf{1}} & \sum b_j\alpha_{jk}\alpha_{jl} = \frac{1}{3} \\ \overset{\mathbf{\prime}}{\sum_j}^{\mathbf{k}} & \sum b_j(\alpha_{jk} + \gamma_{jk})(\alpha_{kl} + \gamma_{kl}) = \frac{1}{6} \end{array} .$$

The only difference with the order conditions for Runge-Kutta methods is that at singly-branched vertices of the corresponding trees α_{jk} is replaced by $\alpha_{jk} + \gamma_{jk}$. In order to arrive at a general result, the formulas obtained motivate the following definition:

Definition 7.2. Let t be a labelled tree of order q with root j; we denote by

$$\Phi_j(t) = \sum_{k,l,...} \varphi_{j,k,l,..}$$

the sum over the remaining q-1 indices k, l, \ldots etc. The summand $\varphi_{j,k,l,\ldots}$ is a product of q-1 factors, which are

 $\begin{array}{ll} \alpha_{kl}+\bar{\gamma}_{kl} & \text{ if } l \text{ is the only son of } k; \\ \alpha_{kl} & \text{ if } l \text{ is a son of } k \text{ and } k \text{ has at least two sons.} \end{array}$

Using the recursive representation of trees (Definition II.2.12) we have $\Phi_i(\tau) = 1$ for the only tree of order 1 and, as in (II.2.19),

$$\Phi_{j}(t) = \begin{cases} \sum_{k_{1},\dots,k_{m}} \alpha_{jk_{1}}\dots\alpha_{jk_{m}} \Phi_{k_{1}}(t_{1})\dots\Phi_{k_{m}}(t_{m}) & \text{if } t = [t_{1},\dots,t_{m}], \\ m \ge 2 \\ \sum_{k} (\alpha_{jk} + \gamma_{jk}) \Phi_{k}(t_{1}) & \text{if } t = [t_{1}]. \end{cases}$$
(7.9)

Theorem 7.3. The derivatives of k_i^J , given by (7.4'), satisfy

$$(k_j^J)^{(q)}\Big|_{h=0} = \sum_{t \in LT_q} \gamma(t) \Phi_j(t) F^J(t)(y_0)$$
(7.7;q)

and the numerical solution y_1^J satisfies

$$(y_1^J)^{(q)}\big|_{h=0} = \sum_{t \in LT_q} \gamma(t) \sum_j b_j \Phi_j(t) F^J(t)(y_0) , \qquad (7.10)$$

where $F^{J}(t)$ are the elementary differentials (Definition II.2.3).

Proof. Because of (7.8) we only have to prove the first formula. This is done by induction on q and follows exactly the lines of the proof of Theorem II.2.11. We use (7.6), replace the expression $f^{J}(g_{j})^{(q-1)}$ by Faà di Bruno's formula (Lemma II.2.8), use

$$(g_j^K)^{(\delta)} = \sum_k lpha_{jk} (k_k^K)^{(\delta)}$$

for the derivatives of g_j and insert the induction hypothesis (7.7;1) through (7.7;q-1). This gives

$$\begin{split} (k_{j}^{J})^{(q)}\big|_{h=0} &= q \sum_{u \in LS_{q}} \sum_{t_{1} \in LT_{\delta_{1}}} \dots \sum_{t_{m} \in LT_{\delta_{m}}} \gamma(t_{1}) \dots \gamma(t_{m}) \\ &\cdot \sum_{k_{1}} \alpha_{jk_{1}} \Phi_{k_{1}}(t_{1}) \dots \sum_{k_{m}} \alpha_{jk_{m}} \Phi_{k_{m}}(t_{m}) \\ &\cdot \sum_{K_{1},\dots,K_{m}} f_{K_{1}\dots K_{m}}^{J}(y_{0}) F^{K_{1}}(t_{1})(y_{0}) \dots F^{K_{m}}(t_{m})(y_{0}) \\ &+ q \sum_{t_{1} \in LT_{q-1}} \gamma(t_{1}) \sum_{k} \gamma_{jk} \Phi_{k}(t_{1}) \sum_{K} f_{K}^{J}(y_{0}) F^{K}(t_{1})(y_{0}) \ ... \end{split}$$

The one-to-one correspondence between the summation set $\{(u, t_1, \ldots, t_m) | u \in LS_q, t_j \in LT_{\delta_j}\}$ and LT_q together with the recursion formulas (7.9), (II.2.17), (II.2.18) now yields the result.

Comparing Theorems 7.3 and II.2.6 we obtain:

Theorem 7.4. A Rosenbrock method (7.4) with $J = f'(y_0)$ is of order p iff

$$\sum_{j} b_{j} \Phi_{j}(t) = \frac{1}{\gamma(t)} \qquad \text{for} \quad \varrho(t) \le p \;. \tag{7.11}$$

The expressions $\Phi_j(t)$ simplify, if we introduce the abbreviation

$$\beta_{ij} = \alpha_{ij} + \gamma_{ij} \ . \tag{7.12}$$

The order conditions (7.11) for all trees up to order 5 are given in Table 7.1.

A further simplification of the order conditions (7.11) is possible if

$$\gamma_{ii} = \gamma$$
 for all *i* (7.13)

(It is unfortunate that in the current literature the letter γ is used for the parameter in (7.4) as well as for $\gamma(t)$ in (7.11) and we hope that no confusion will arise). In the same way as for DIRK methods, the summations in the expressions for $\Phi_j(t)$ in the 5th column of Table 7.1 again contain more terms than the corresponding expressions for explicit RK methods, since the matrix γ_{ij} (and hence β_{ij}) contains non-zero elements in the diagonal. The difference is that here these diagonal γ appear only for singly-branched vertices (see Definition 7.2). Therefore the procedure explained in Section IV.6 (see Formulas (6.1') and (6.1'') must be slightly modified and leads to order conditions of the form

$$\sum_{j} b_{j} \Phi_{j}(t) = p_{t}(\gamma)$$
(7.11')

where the polynomials $p_t(\gamma)$ are listed in the last column of Table 7.1.

$\overline{\varrho(t)}$	t	graph	$\gamma(t)$	$\Phi_j(t)$	$p_t(\gamma)$
1	τ	•j	1	1	1
2	<i>t</i> ₂₁	∕j ^k	2	$\sum_{k} \beta_{jk}$	$1/2 - \gamma$
3	t ₃₁	$k \bigvee_{j}^{1}$	3	$\sum_{k,l} \alpha_{jk} \alpha_{jl}$	1/3
	t ₃₂	$\sum_{j=1}^{l} k$	6	$\sum_{k,l} \beta_{jk} \beta_{kl}$	$1/6 - \gamma + \gamma^2$
4	t ₄₁	k 1 m	4	$\sum_{k,l,m} \alpha_{jk} \alpha_{jl} \alpha_{jm}$	1/4
	t ₄₂	$m \bigvee_{j}^{k} k$	8	$\sum_{k,l,m} \alpha_{jk} \beta_{kl} \alpha_{jm}$	$1/8 - \gamma/3$
	t ₄₃	$\frac{1}{k}$	12	$\sum_{k,l,m} \beta_{jk} \alpha_{kl} \alpha_{km}$	$1/12 - \gamma/3$
	t ₄₄	1 k	24	$\sum_{k,l,m} eta_{jk} eta_{kl} eta_{lm}$	$1/24-\gamma/2+3\gamma^2/2-\gamma^3$
5	t ₅₁	p m l k	5	$\sum lpha_{jk} lpha_{jl} lpha_{jm} lpha_{jp}$	1/5
	t ₅₂	p m k	10	$\sum lpha_{jk} eta_{kl} lpha_{jm} lpha_{jp}$	$1/10 - \gamma/4$
	t ₅₃	$p \stackrel{m}{\underset{j}{\overset{m}{\overset{m}{\overset{m}{\overset{m}{\overset{m}{\overset{m}{\overset{m}{\overset$	15	$\sum lpha_{jk} lpha_{kl} lpha_{km} lpha_{jp}$	1/15
	t ₅₄		30	$\sum lpha_{jk} eta_{kl} eta_{lm} lpha_{jp}$	$1/30-\gamma/4+\gamma^2/3$
	t_{55}	m	20	$\sum lpha_{jk}eta_{kl}lpha_{jm}eta_{mp}$	$1/20-\gamma/4+\gamma^2/3$
	t_{56}		20	$\sum eta_{jk} lpha_{kl} lpha_{km} lpha_{kp}$	$1/20-\gamma/4$
	t_{57}	$\frac{1}{k}$	40	$\sum eta_{jk} lpha_{kl} eta_{lm} lpha_{kp}$	$1/40-5\gamma/24+\gamma^2/3$
	t ₅₈	$ \begin{array}{c} m & j^{n} \\ \downarrow & p \\ j & p & m \\ p & j \\ 1 \\ \end{pmatrix} \begin{array}{c} m & j^{n} \\ n \\ j \\ k \\ k$	60	$\sum eta_{jk} eta_{kl} lpha_{lm} lpha_{lp}$	$1/60-\gamma/6+\gamma^2/3$
	t 59	1 jk	120	$\sum eta_{jk} eta_{kl} eta_{lm} eta_{mp}$	$1/120-\gamma/6+\gamma^2-2\gamma^3+\gamma^4$

Table 7.1. Trees and order conditions up to order 5

The Stability Function

If we apply Method (7.4) to the test equation $y' = \lambda y$ and if we assume $J = f'(y_0) = \lambda$ then the numerical solution becomes $y_1 = R(h\lambda)y_0$ with

$$R(z) = 1 + zb^{T}(I - zB)^{-1} \mathbb{1}$$
(7.14)

where we have used the notation $b^T = (b_1, \ldots, b_s)$ and $B = (\beta_{ij})_{i,j=1}^s$. Since B is a lower triangular matrix, the stability function (7.14) is equal to that of a DIRK-method with RK-matrix B. Properties of such stability functions have already been investigated in Section IV.6.

Construction of Methods of Order 4

In order to construct 4-stage Rosenbrock methods of order 4 we list, for convenience, the whole set of order conditions (c.f. Table 7.1.).

•
$$b_1 + b_2 + b_3 + b_4 = 1$$
 (7.15a)

$$b_{2}\beta_{2}' + b_{3}\beta_{3}' + b_{4}\beta_{4}' = \frac{1}{2} - \gamma = p_{21}(\gamma)$$
(7.15b)

$$b_2 \alpha_2^2 + b_3 \alpha_3^2 + b_4 \alpha_4^2 = \frac{1}{3}$$
(7.15c)

•
$$b_3\beta_{32}\beta'_2 + b_4(\beta_{42}\beta'_2 + \beta_{43}\beta'_3) = \frac{1}{6} - \gamma + \gamma^2 = p_{32}(\gamma)$$
 (7.15d)

$$b_{3}\alpha_{3}\alpha_{32}\beta_{2}' + b_{4}\alpha_{4}(\alpha_{42}\beta_{2}' + \alpha_{43}\beta_{3}') = \frac{1}{8} - \frac{\gamma}{3} = p_{42}(\gamma)$$
(7.15f)

$$b_{3}\beta_{32}\alpha_{2}^{2} + b_{4}(\beta_{42}\alpha_{2}^{2} + \beta_{43}\alpha_{3}^{2}) = \frac{1}{12} - \frac{\gamma}{3} = p_{43}(\gamma)$$
(7.15g)

$$b_4 \beta_{43} \beta_{32} \beta_2' = \frac{1}{24} - \frac{\gamma}{2} + \frac{3}{2} \gamma^2 - \gamma^3 = p_{44}(\gamma)$$
 (7.15h)

Here we have used the abbreviations

$$\alpha_i = \sum_{j=1}^{i-1} \alpha_{ij}, \qquad \beta'_i = \sum_{j=1}^{i-1} \beta_{ij} .$$
(7.16)

For the sake of step size control we also look for an embedded formula (Wolfbrandt 1977, Kaps & Rentrop 1979)

$$\widehat{y}_{1} = y_{0} + \sum_{j=1}^{s} \widehat{b}_{j} k_{j}$$
(7.17)

which uses the same k_j -values as (7.4), but has different weights. This method should have order 3, i.e., the four conditions (7.15a)-(7.15d) should be satisfied also for the \hat{b}_i . These equations constitute the linear system

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & \beta'_2 & \beta'_3 & \beta'_4 \\ 0 & \alpha_2^2 & \alpha_3^2 & \alpha_4^2 \\ 0 & 0 & \beta_{32}\beta'_2 & \sum'\beta_{4j}\beta'_j \end{pmatrix} \begin{pmatrix} b_1 \\ \hat{b}_2 \\ \hat{b}_3 \\ \hat{b}_4 \end{pmatrix} = \begin{pmatrix} 1 \\ 1/2 - \gamma \\ 1/3 \\ 1/6 - \gamma + \gamma^2 \end{pmatrix} .$$
(7.18)

Whenever the matrix in (7.18) is regular, uniqueness of the solutions of the linear system implies $\widehat{b}_i = b_i \ (i = 1, \dots, 4)$ and the approximation \widehat{y}_1 cannot be used for step size control. We therefore have to require that the matrix (7.18) be singular, i.e.,

$$(\beta_2' \alpha_4^2 - \beta_4' \alpha_2^2) \beta_{32} \beta_2' = (\beta_2' \alpha_3^2 - \beta_3' \alpha_2^2) \sum_{j=2}^3 \beta_{4j} \beta_j' .$$
(7.19)

This condition guarantees the existence of a 3rd order embedded method (7.17), whenever (7.15) possesses a solution. The computation of the coefficients α_{ij} , β_{ij} , γ , b_i satisfying (7.15), (7.16) and (7.19) is now done in the following steps:

Step 1: Choose $\gamma > 0$ such that the stability function (7.14) has desirable stability properties (c.f. Table 6.3).

Step 2: Choose α_2 , α_3 , α_4 and b_1 , b_2 , b_3 , b_4 in such a way that the three conditions (7.15a), (7.15c), (7.15e) are fulfilled. One obviously has four degrees of freedom in this choice. Observe that the (b_i, α_i) need not be the coefficients of a standard quadrature formula, since $\sum b_i \alpha_i = 1/2$ need not be satisfied.

Step 3: Take β_{43} as a free parameter and compute $\beta_{32}\beta'_2$ from (7.15h), then $(\beta_{42}\beta'_2 + \beta_{43}\beta'_3)$ from (7.15d). These expressions, inserted into (7.19) yield a second relation between β'_2 , β'_3 , β'_4 (the first one is (7.15b)). Eliminating $(b_4\beta_{42} + b_3\beta_{32})$ from (7.15d) and (7.15g) gives

$$b_4eta_{43}(eta_2'lpha_3^2-eta_3'lpha_2^2)=eta_2'p_{43}(\gamma)-lpha_2^2p_{32}(\gamma)$$
 ,

a third linear relation for β'_2 , β'_3 , β'_4 . The resulting linear system is regular iff $b_4\beta_{43}\alpha_2\gamma(3\gamma-1)\neq 0$.

Step 4: Once the β'_i are known we can find β_{32} and β_{42} from the values of $\beta_{32}\beta'_2$, $(\beta_{42}\beta'_2 + \beta_{43}\beta'_3)$ obtained in Step 3.

Step 5: Choose α_{32} , α_{42} , α_{43} according to (7.15f). One has two degrees of freedom to do this. Finally, the values α_i , β'_i yield α_{i1} , β_{i1} via condition (7.16).

Most of the popular Rosenbrock methods are special cases of this construction (see Table 7.2). Usually the remaining free parameters are chosen as follows: if we require

$$\alpha_{43} = 0, \qquad \alpha_{42} = \alpha_{32} \quad \text{and} \quad \alpha_{41} = \alpha_{31}$$
(7.20)

then the argument of f in (7.4) is the same for i=3 and i=4. Hence, the number of function evaluations is reduced by one. Further free parameters can be determined so that several order conditions of order five are satisfied. Multiplying the condition (7.15g) with α_2 and subtracting it from the order condition for the tree t_{56} yields

$$b_4 \beta_{43} \alpha_3^2 (\alpha_3 - \alpha_2) = p_{56}(\gamma) - \alpha_2 p_{43}(\gamma) . \qquad (7.21)$$

This determines β_{43} . The order condition for t_{51} can also easily be fulfilled

method	γ	parameter choices	A(lpha)-stable	$ R(\infty) $
GRK4A (Kaps-Rentrop 79)	0.395	$lpha_2 = 0.438, lpha_3 = 0.87$ $b_4 = 0.25$	$\pi/2$	0.995
GRK4T (Kaps-Rentrop 79)	0.231	$\alpha_2 = 2\gamma, (7.22), b_3 = 0$	89.3°	0.454
Shampine (1982)	0.5	$\alpha_2 = 2\gamma, (7.22), b_3 = 0$	$\pi/2$	1/3
Veldhuizen (1984)	0.225708	$\alpha_2 = 2\gamma, (7.22), b_3 = 0$	89.5°	0.24
Veldhuizen (1984)	0.5	$\alpha_2 = 2\gamma, \alpha_3 = 0.5, b_3 = 0$	$\pi/2$	1/3
L-stable method	0.572816	$\alpha_2 = 2\gamma, (7.22), b_3 = 0$	$\pi/2$	0

Table 7.2 Rosenbrock methods of order 4

in Step 2. If $\alpha_3 = \alpha_4$ (see (7.20)) this leads to the restriction

$$\alpha_3 = \frac{1/5 - \alpha_2/4}{1/4 - \alpha_2/3} \ . \tag{7.22}$$

In Table 7.2 we collect some well-known methods. All of them satisfy (7.20) and (7.21) (Only exception: the second method of van Veldhuizen for $\gamma = 0.5$ has $\beta_{43} = 0$ instead of (7.21)). The definition of the remaining free parameters is given in the first two columns. The last columns indicate some properties of the stability function.

Higher Order Methods

As for explicit Runge-Kutta methods the construction of higher order methods is facilitated by the use of *simplifying assumptions*. First, the condition

$$\sum_{i=j}^{s} b_i \beta_{ij} = b_j (1 - \alpha_j), \qquad j = 1, \dots, s$$
(7.23)

plays a role similar to that of (II.1.12) for explicit Runge-Kutta methods. It implies that the order condition of the left-hand tree in Fig. 7.1 is a consequence of the two on the right-hand side. A difference to Runge-Kutta methods is that here the vertex directly above the root has to be multiplybranched.

The second type of simplifying asumption is (with $\beta_k = \sum_{l=1}^k \beta_{kl}$)

$$\sum_{k=1}^{j-1} \alpha_{jk} \beta_k = \frac{\alpha_j^2}{2}, \qquad j = 2, \dots, s .$$
 (7.24)

It has an effect similar to that of (II.6.7). As a consequence of (7.24) the order conditions of the two trees in Fig. 7.2 are equivalent. Again the vertex marked by an arrow has to be multiply-branched.

The use of the above simplifying assumptions has been exploited by Kaps & Wanner (1981) for their construction of methods up to order 6. Still higher order methods would need generalizations of the above simplifying assumptions (in analogy to (II.7.12) and (II.7.13)).

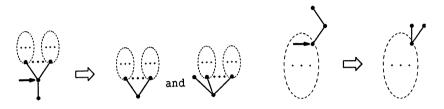


Fig. 7.1. Reduction with (7.23)

Fig. 7.2. Reduction with (7.24)

Implementation of Rosenbrock-Type Methods

A direct implementation of (7.4) requires, at each stage, the solution of a linear system with the matrix $I - h\gamma_{ii}J$ and also the matrix-vector multiplication $J \cdot \sum \gamma_{ij}k_j$. The latter can be avoided by the introduction of the new variables

$$u_i = \sum_{j=1}^i \gamma_{ij} k_j, \qquad i = 1, \dots, s \; .$$

If $\gamma_{ii} \neq 0$ for all *i*, the matrix $\Gamma = (\gamma_{ij})$ is invertible and the k_i can be recovered from the u_i :

$$k_i = \frac{1}{\gamma_{ii}} u_i - \sum_{j=1}^{i-1} c_{ij} u_j, \qquad C = \operatorname{diag}(\gamma_{11}^{-1}, \dots, \gamma_{ss}^{-1}) - \Gamma^{-1}.$$

Inserting this formula into (7.4) and dividing by h yields

$$\left(\frac{1}{h\gamma_{ii}}I - J\right)u_i = f(y_0 + \sum_{j=1}^{i-1} a_{ij}u_j) + \sum_{j=1}^{i-1} (\frac{c_{ij}}{h})u_j, \qquad i = 1, \dots, s$$

$$y_1 = y_0 + \sum_{j=1}^{s} m_j u_j , \qquad (7.25)$$

where

$$(a_{ij}) = (\alpha_{ij})\Gamma^{-1}, \qquad (m_1, \dots, m_s) = (b_1, \dots, b_s)\Gamma^{-1}.$$

Compared to (7.4) the formulation (7.25) of a Rosenbrock method avoids not only the above mentioned matrix-vector multiplication, but also the n^2 multiplications for $(\gamma_{ii}h)J$. Similar transformations were first proposed by Wolfbrandt (1977), Kaps & Wanner (1981) and Shampine (1982). The formulation (7.25) can be found in Kaps, Poon & Bui (1985).

For non-autonomous problems this transformation yields

$$\left(\frac{1}{h\gamma_{ii}}I - \frac{\partial f}{\partial y}(x_0, y_0)\right)u_i = f(x_0 + \alpha_i h, y_0 + \sum_{j=1}^{i-1} a_{ij}u_j) + \sum_{j=1}^{i-1} \left(\frac{c_{ij}}{h}\right)u_j + \gamma_i h \frac{\partial f}{\partial x}(x_0, y_0)$$

$$(7.26)$$

with α_i and γ_i given by (7.5).

For *implicit differential equations* of the form (7.2b) the transformed Rosenbrock method becomes

$$\left(\frac{1}{h\gamma_{ii}}M - \frac{\partial f}{\partial y}(x_0, y_0)\right)u_i = f(x_0 + \alpha_i h, y_0 + \sum_{j=1}^{i-1} a_{ij}u_j) + M \sum_{j=1}^{i-1} (\frac{c_{ij}}{h})u_j + \gamma_i h \frac{\partial f}{\partial x}(x_0, y_0).$$
(7.27)

Coding

Rosenbrock methods are nearly as simple to implement as explicit Runge-Kutta methods. The only difference is that at each step the Jacobian $\partial f/\partial y$ has to be evaluated and *s* linear systems have to be solved. Thus, one can take an explicit RK code (say DOPRI5), add four lines which compute $\partial f/\partial y$ by finite differences (or call a user-supplied subroutine JAC which furnishes it analytically); add further a call to a Gaussian DEComposition routine, and add to each evaluation-stage a call to a linear SOLver. Since the method is of order 4(3), the step size prediction formula

$$h_{new} = h \cdot \min\left\{6., \max\left(0.2, 0.9 \cdot (Tol/err)^{1/4}\right)\right\}$$
 (7.28)

seems appropriate.

122 IV. Stiff Problems — One Step Methods

However, we want the code to work economically for non-autonomous problems as well as for implicit equations. Further, if the dimension of the system is large, it becomes crucial that the linear algebra be done, whenever possible, in banded form. All these possibilities, autonomous or not, implicit or explicit, $\partial f/\partial y$ banded or not, B banded or not, $\partial f/\partial y$ analytic or not, ("... that is the question") lead to 2^5 different cases, for each of which the code contains special parts for high efficiency. This makes it 16 pages long (code ROS4). Needless to say, it works well on all stiff problems of Section IV.1. A more thorough comparison and testing will be given in Section IV.10.

The "Hump"

On some very stiff equations, however, the code shows a curious behaviour: consider the Van der Pol equation in singular perturbation form (1.5') with

$$\varepsilon = 10^{-6}, \quad y_1(0) = 2, \quad y_2(0) = -0.66$$
 . (7.29)

We further select method GRK4T (Table 7.2; each other method there behaves similarly) and $Tol = 7 \cdot 10^{-5}$. Fig. 7.3 shows the numerical solution y_1 as well as the step sizes chosen by the code. There all rejected steps are indicated by an \times .

Curious step size drops (by a factor of about 10^{-3}) occur without any apparent exterior reason. Further, these drops are accompanied by a huge number of step rejections (up to 20). In order to understand this phenomenon, we present in the left picture of Fig. 7.4 the exact local error as well as the estimated local error $\|y_1 - \widehat{y}_1\|$ at x = 0.5925 as a function of the step size h (both in logarithmic scale). The current step size is marked by large symbols. The error behaves like $C \cdot h^5$ only for very small $h (\leq 10^{-6} = \epsilon)$. Between $h = 10^{-5}$ and the step size actually used ($\approx 10^{-2}$) the error is more or less constant. Whenever this constant is larger than Tol (horizontal broken line), the code is forced to decrease the step size until $h \approx \epsilon$. As a first remedy, we accelerate this lengthy process, as Shampine (1982) also did, by more drastical step size reductions $(h_{new} = h/10)$ after each second consecutive step rejection. It also turns out (see right picture of Fig. 7.4) that the effect disappears in the neighbourhood of the actual step size for the L-stable method (where $R(\infty) = 0$). Methods with $R(\infty) = 0$ and also $R(\infty) = 0$ have been derived by Kaps & Ostermann (1990).

A more thorough understanding of these phenomena is possible by the consideration of singular perturbation problems (Chapter VI)

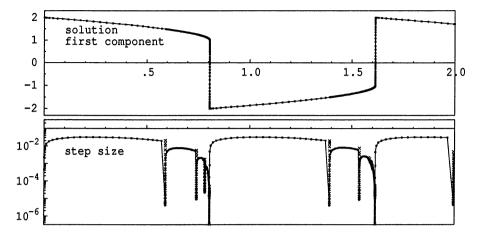


Fig. 7.3. Step sizes for GRK4T at Equation (1.5')

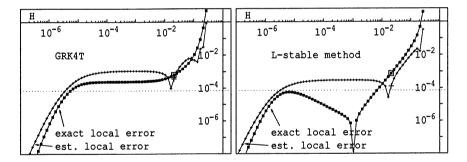


Fig. 7.4. Study of local error for (1.5') at x = 0.5925

Methods with Inexact Jacobian (W-Methods)

"The relevant question is now, what is the cheapest type of implicitness we have to require."

(Steihaug & Wolfbrandt 1979)

All the above theory is built on the assumption that J is the exact Jacobian $\partial f/\partial y$. This implies that the matrix must be evaluated at every step, which can make the computations costly. The following attempt, due to Steihaug & Wolfbrandt (1979), searches for order conditions which assure classical order for all approximations A of $\partial f/\partial y$. The latter is then maintained over several steps and is just used to assure stability. The derivation of the order conditions must now be done somewhat differently: if J is replaced by an

124 IV. Stiff Problems — One Step Methods

arbitrary matrix A, Formula (7.6) becomes

$$(k_j^J)^{(q)}\big|_{h=0} = q(f^J(g_j))^{(q-1)}\big|_{h=0} + q\sum_K A_K^J \sum_k \gamma_{jk} (k_k^K)^{(q-1)}\big|_{h=0}$$
(7.30)

where $A = (A_K^J)_{J,K=1}^n$, and we obtain

$$(k_j^J)^{(2)}\big|_{k=0} = 2\sum_K f_K^J f^K \sum_k \alpha_{jk} + 2\sum_K A_K^J f^K \sum_k \gamma_{jk} .$$
(7.31;2)

Inserted into (7.8), the first term must equal the derivative of the exact solution and the second must be zero. Similarly, we obtain instead of (7.7;3)

$$\begin{aligned} (k_{j}^{J})^{(3)} \big|_{h=0} &= 3 \sum_{K,L} f_{KL}^{J} f^{K} f^{L} \sum_{k,l} \alpha_{jk} \alpha_{jl} \\ &+ 3 \cdot 2 \sum_{K,L} f_{K}^{J} f_{L}^{K} f^{L} \sum_{k,l} \alpha_{jk} \alpha_{kl} + 3 \cdot 2 \sum_{K,L} f_{K}^{J} A_{L}^{K} f^{L} \sum_{k,l} \alpha_{jk} \gamma_{kl} \\ &+ 3 \cdot 2 \sum_{K,L} A_{K}^{J} f_{L}^{K} f^{L} \sum_{k,l} \gamma_{jk} \alpha_{kl} + 3 \cdot 2 \sum_{K,L} A_{K}^{J} A_{L}^{K} f^{L} \sum_{k,l} \gamma_{jk} \gamma_{kl} \end{aligned}$$
(7.31;3)

and the order conditions for order three become

$$\begin{array}{ccc} & & & \sum b_{j} = 1 \\ & & & \sum b_{j} \alpha_{jk} = 1/2 \\ & & & \sum b_{j} \alpha_{jk} = 0 \\ & & & \sum b_{j} \gamma_{jk} = 0 \\ & & & \sum b_{j} \alpha_{jk} \alpha_{jl} = 1/3 \\ & & & \sum b_{j} \alpha_{jk} \alpha_{kl} = 1/6 \\ & & & \sum b_{j} \alpha_{jk} \alpha_{kl} = 1/6 \\ & & & \sum b_{j} \alpha_{jk} \gamma_{kl} = 0 \\ & & & \sum b_{j} \gamma_{jk} \alpha_{kl} = 0 \\ & & & & \sum b_{j} \gamma_{jk} \alpha_{kl} = 0 \\ & & & & \sum b_{j} \gamma_{jk} \gamma_{kl} = 0 \\ & & & & \sum b_{j} \gamma_{jk} \gamma_{kl} = 0 \\ & & & & & \\ \end{array}$$

$$(7.32)$$

For a graphical representation of the elementary differentials in (7.31;q) and of the order conditions (7.32) we need trees with two different kinds of vertices (one representing f and the other A). As in Section II.14 we use "meagre" and "fat" vertices (see Definitions II.14.1 to II.14.4). Not all trees with meagre and fat vertices (*P*-trees) have to be considered. From the above derivation we see that fat vertices have to be singly-branched (derivatives of the constant matrix A are zero) and that they cannot be at the end of a branch. We therefore use the notation

$$TW = \left\{ \begin{array}{l} P\text{-trees; end-vertices are meagre and} \\ \text{fat vertices are singly-branched} \end{array} \right\}$$
(7.33)

and if the vertices are labelled monotonically, we write LTW.

Definition 7.5. The elementary differentials for trees $t \in TW$ are defined recursively by

$$F^J(\tau)(y) = f^J(y)$$

and

$$F^{J}(t)(y) = \begin{cases} \sum_{K_{1},...,K_{m}} f^{J}_{K_{1},...,K_{m}}(y) \cdot \left(F^{K_{1}}(t_{1})(y),\ldots,F^{K_{m}}(t_{m})(y)\right) \\ & \text{if } t = {}_{a}[t_{1},\ldots,t_{m}] \quad (\text{meagre root}) \\ \sum_{K} A^{J}_{K} \cdot F^{K}(t_{1})(y) \quad \text{if } t = {}_{b}[t_{1}] \quad (\text{fat root}). \end{cases}$$

Definition 7.6. For $t \in TW$ we let $\Phi_j(\tau) = 1$ and

$$\Phi_j(t) = \begin{cases} \sum_{k_1,\dots,k_m} \alpha_{jk_1}\dots\alpha_{jk_m} \Phi_{k_1}(t_1)\dots\Phi_{k_m}(t_m) & \text{if } t = {}_a[t_1,\dots,t_m] \\ \\ \sum_k \gamma_{jk} \Phi_k(t_1) & \text{if } t = {}_b[t_1] . \end{cases}$$

We remark that T (the set of trees as considered for Runge-Kutta methods) is a subset of TW and that the above definitions coincide with Definitions II.2.3 and II.2.9 (c.f. also Formulas (II.2.18) and (II.2.19)). The general result is now the following

Theorem 7.7. A W-method (7.4) with J = A arbitrary is of order p iff

$$egin{aligned} &\sum_j b_j \Phi_j(t) = rac{1}{\gamma(t)} & ext{ for } t \in T ext{ with } arrho(t) \leq p, ext{ and} \ &\sum_j b_j \Phi_j(t) = 0 & ext{ for } t \in TW \setminus T ext{ with } arrho(t) \leq p \ . \end{aligned}$$

The proof is essentially the same as for Theorems 7.3 and 7.4.

The number of order conditions for W-methods is rather large (see Table 7.3), since each tree of T with κ singly-branched vertices gives rise to 2^{κ}

order p	1	2	3	4	5	6	7	8
no. of conditions	1	3	8	21	58	166	498	1540

Table 7.3. Number of order conditions for W-methods

order conditions (in the case of symmetry some may be identical). Therefore, W-methods of higher order are best obtained by extrapolation (see Section IV.9).

The stability investigation for linearly implicit methods with $A \neq f'(y_0)$ is very complicated. If we linearize the differential equation (as in the beginning of Section IV.2) and assume the Jacobian to be constant, we arrive at a recursion of the form

$$y_1 = R(hf'(y_0), hA)y_0$$
 .

Since, in general, the matrices $f'(y_0)$ and A cannot be diagonalized simultaneously, the consideration of scalar test equations is not justified. Stability investigations for the case when $||f'(y_0) - A||$ is small will be considered in Section IV.11.

Exercises

- 1. (Kaps 1977). There exists no Rosenbrock method (7.4) with s = 4 and p = 5. Prove this.
- (Nørsett & Wolfbrandt 1979). Generalize the derivation of order conditions for RK-methods with the help of B-series (Section II.11, page 247) to Rosenbrock methods.

Hint. Prove that, for a B-series $B(\mathbf{a}, y_0)$ with $\mathbf{a} : T \longrightarrow \mathbb{R}$ satisfying $\mathbf{a}(\emptyset) = 0$,

$$hf'(y_0)B(\mathbf{a},y_0)=B(\widehat{\mathbf{a}},y_0)$$

is again a B-series with coefficients

$$\widehat{\mathbf{a}}(t) = \begin{cases} \varrho(t)\mathbf{a}(t_1) & \text{if } t = [t_1] \\ 0 & \text{else} \end{cases}.$$

3. Cooper & Sayfy (1983) consider additive Runge-Kutta methods

$$g_{i} = y_{0} + h \sum_{j=1}^{i-1} \alpha_{ij} f(x_{0} + c_{j}h, g_{j}) + h J \sum_{j=1}^{i} \eta_{ij} g_{j} \qquad i = 1, \dots, s+1$$

$$y_{1} = g_{s+1}$$
(7.34)

whose coefficients satisfy $\sum_{j=1}^{i-1} \alpha_{ij} = c_i, \quad \sum_{j=1}^{i} \eta_{ij} = 0.$

a) Prove that (7.34) is equivalent to (7.4) whenever $\alpha_{s+1,i} = b_i$ and

$$(\eta_{ij})(\alpha_{ij}) = (\alpha_{ij})(\gamma_{ij}) . \qquad (7.35)$$

Here all matrices are of dimension $(s+1) \times (s+1)$. The last line of (γ_{ij}) need not be specified since the last column of (α_{ij}) is zero.

b) If the coefficients of (7.34) satisfy $\alpha_{i,i-1} \neq 0$ for all *i*, then we can always find an equivalent method of type (7.4).

- 4. (Verwer 1980, Verwer & Scholz 1983). Derive order conditions for Rosenbrock methods "with time-lagged Jacobian", i.e., methods of type (7.4) where J is assumed to be $f'(y(x_0 \omega h))$. If ω is the step ratio h_{old}/h , this allows re-use of the Jacobian of the previous step.
- 5. (Kaps & Ostermann 1989). Show that some order conditions of (7.32) can be shifted to higher orders if it is assumed that

$$f'(y_0) - J = \mathcal{O}(h) \; .$$

This makes the conditions of Exercise 4 independent of ω .

Result. The number of order-shifts is equal to the number of fat nodes.

IV.8. Implementation of Implicit Runge-Kutta Methods

"These have not been used to any great extent ..." (S.P. Nørsett 1976)

"However, the implementation difficulties of these methods have precluded their general use; ..." (J.M. Varah 1979)

"Although Runge-Kutta methods present an attractive alternative, especially for stiff problems, ... it is generally believed that they will never be competitive with multistep methods." (K. Burrage, J.C. Butcher & F.H. Chipman 1980)

"Runge-Kutta methods for stiff problems, we are just beginning to explore them ..." (L. Shampine in Aiken 1985)

If the dimension of the differential equation y' = f(x, y) is *n*, then the *s*-stage fully implicit RK-method (3.1) involves a $n \cdot s$ -dimensional nonlinear system for the unknowns g_1, \ldots, g_s . An efficient solution of this system is the main problem in the implementation of an implicit RK-method.

Among the methods discussed in Section IV.5, the processes Radau IIA of Ehle, which are L-stable and of high order, seem to be particularly promising. Most of the questions arising (stopping criteria for the simplified Newton iterations, efficient solution of the linear systems, starting values for the iterations and the selection of the step sizes) are discussed here for the particular Ehle method with s = 3 and p = 5. This then constitutes a description of the code RADAU5 of the appendix. We also describe briefly our implementation of the diagonal implicit method SDIRK4 (Formula (6.16)).

An adaptation of RADAU5 to the 7th order and 9th order Radau IIA methods has been realized by Reymond (1989); an independent implementation of the 5th order Radau method is the code FIRK5C, written by Th. Speer (1989), with which we experimented during our studies.

Reformulation of the Nonlinear System

In order to reduce the influence of round-off errors we prefer to work with the smaller quantities

$$z_i = g_i - y_0 . (8.1)$$

Then (3.1a) becomes

$$z_i = h \sum_{j=1}^{s} a_{ij} f(x_0 + c_j h, y_0 + z_j)$$
 $i = 1, \dots, s$. (8.2a)

Whenever the solution z_1, \ldots, z_s of the system (8.2a) is known, then (3.1b) is an explicit formula for y_1 . A direct application of this requires s additional function evaluations. These can be avoided, if the matrix $A = (a_{ij})$ of the RK-coefficients is nonsingular. Indeed, (8.2a) can be written as

$$\begin{pmatrix} z_1 \\ \vdots \\ z_s \end{pmatrix} = A \begin{pmatrix} hf(x_0 + c_1h, y_0 + z_1) \\ \vdots \\ hf(x_0 + c_sh, y_0 + z_s) \end{pmatrix} ,$$

so that (3.1b) is seen to be equivalent to

$$y_1 = y_0 + \sum_{i=1}^{s} d_i z_i$$
 (8.2b)

where

$$(d_1, \dots, d_s) = (b_1, \dots, b_s)A^{-1}$$
 (8.3)

For the 3-stage Radau IIA method (Table 5.6) the vector d is simply (0,0,1), since $b_i = a_{si}$ for all i.

Another advantage of Formula (8.2b) is the following: the quantities z_1, \ldots, z_s are computed iteratively and are therefore inaccurate. The actual evaluation of $f(x_0 + c_i h, y_0 + z_i)$ would then, due to the large Lipschitz constant of f, amplify these errors, which then "can be disastrously inaccurate for a stiff problem" (L.F. Shampine 1980).

Simplified Newton Iterations

For a general nonlinear differential equation the system (8.2a) has to be solved iteratively. In the stone-age of stiff computation (i.e., before 1967) people were usually thinking of simple fixed-point iteration. But this transforms the algorithm into an explicit method and destroys the good stability properties. The paper of Liniger & Willoughby (1970) then showed the advantages of using Newton's method for this purpose. Newton's method applied to system (8.2a) needs for each iteration the solution of a linear system with matrix

$$\begin{pmatrix} I - ha_{11}\frac{\partial f}{\partial y}(x_0 + c_1h, y_0 + z_1) & \dots & -ha_{1s}\frac{\partial f}{\partial y}(x_0 + c_sh, y_0 + z_s) \\ \vdots & \vdots \\ -ha_{s1}\frac{\partial f}{\partial y}(x_0 + c_1h, y_0 + z_1) & \dots & I - ha_{ss}\frac{\partial f}{\partial y}(x_0 + c_sh, y_0 + z_s) \end{pmatrix}$$

In order to simplify this, we replace all Jacobians $\frac{\partial f}{\partial y}(x_0 + c_i h, y_0 + z_i)$ by an approximation

$$J pprox rac{\partial f}{\partial y}(x_0, y_0) \; .$$

Then the simplified Newton iterations for (8.2a) become

$$(I - hA \otimes J)\Delta Z^{k} = -Z^{k} + h(A \otimes I)F(Z^{k})$$
$$Z^{k+1} = Z^{k} + \Delta Z^{k} .$$
(8.4)

Here $Z^k = (z_1^k, \ldots, z_s^k)^T$ is the k-th approximation to the solution, $\Delta Z^k = (\Delta z_1^k, \ldots, \Delta z_s^k)^T$ are the increments and $F(Z^k)$ is an abbreviation for

$$F(Z^{k}) = \left(f(x_{0} + c_{1}h, y_{0} + z_{1}^{k}), \dots, f(x_{0} + c_{s}h, y_{0} + z_{s}^{k})\right)^{T}$$

Each iteration requires s evaluations of f and the solution of a $n \cdot s$ -dimensional linear system. The matrix $(I - hA \otimes J)$ is the same for all iterations. Its LU-decomposition is done only once and is usually very costly.

Stopping Criterion

"It is clear that τ must be smaller than ϵ ... However, the smaller τ is made, the more it costs to compute y^* . Experiments say that τ a great deal smaller than ϵ does not improve the solution ..." (L.F. Shampine 1980)

"We agree with most of this. But that we should need τ smaller than ϵ is not obvious and may not be correct ..." (S.P. Nørsett & P.G. Thomsen 1986)

This question is closely related to an estimation of the iteration error. Since convergence is linear, we have

$$\|\Delta Z^{k+1}\| \leq \Theta \|\Delta Z^k\|$$
, hopefully with $\Theta < 1$. (8.5)

Applying the triangle inequality to

$$Z^{k+1} - Z^* = (Z^{k+1} - Z^{k+2}) + (Z^{k+2} - Z^{k+3}) + \dots$$

(where Z^* is the exact solution of (8.2a)) yields the estimate

$$\|Z^{k+1} - Z^*\| \le \frac{\Theta}{1 - \Theta} \|\Delta Z^k\| .$$

$$(8.6)$$

The convergence rate Θ can be estimated by the computed quantities

$$\Theta_{k} = \|\Delta Z^{k}\| / \|\Delta Z^{k-1}\|, \qquad k \ge 1.$$
 (8.7)

It is clear that the iteration error should not be larger than the local discretization error, which is usually kept close to *Tol*. We therefore stop the iteration when

$$\eta_k \|\Delta Z^k\| \le \kappa \cdot Tol \quad \text{with} \quad \eta_k = \frac{\Theta_k}{1 - \Theta_k}$$

$$(8.8)$$

and accept Z^{k+1} as approximation to Z^* . This strategy can only be applied after at least two iterations. In order to be able to stop the computations after the first iteration already (which is especially advantageous for linear systems) we take for k=0 the quantity

$$\eta_0 = (\max(\eta_{old}, Uround))^{0.8}$$

where η_{old} is the last η_k of the preceding step. It remains to make a good choice for the parameter κ in (8.8). To this end we applied the code RADAU5 for many different values of κ between 10 and 10^{-4} and with some different tolerances *Tol* to several differential equations. The observation was that the code works most efficiently for values of κ around 10^{-1} or 10^{-2} .

It is our experience that the code becomes more efficient when we allow a relatively high number of iterations (e.g. $k_{max} = 7 \text{ or } 10$). During these k_{max} iterations, the computations are interrupted and restarted with a smaller stepsize (for example with h := h/2) if one of the following situations occurs a) there is a k with $\Theta_k \ge 1$ (the iteration "diverges");

b) for some k,

$$\frac{\Theta_k^{k_{max}-k}}{1-\Theta_k} \|\Delta Z^k\| > \kappa \cdot Tol .$$
(8.9)

The left-hand expression in (8.9) is a rough estimate of the iteration error to be expected after $k_{max}-1$ iterations. The norm, used in all these formulas, should be the same as the one used for the local error estimator.

The Linear System

An essential gain of numerical work for the solution of the linear system (8.4) is obtained by the following method, introduced independently by Butcher (1976) and Bickart (1977), which exploits with much profit the special structure of the matrix $I-hA \otimes J$ in (8.4).

The idea is to premultiply (8.4) by $(hA)^{-1} \otimes I$ (we suppose here that A is invertible) and to transform A^{-1} to a simple matrix (diagonal, block diagonal, triangular or Jordan canonical form)

$$T^{-1}A^{-1}T = \Lambda . (8.10)$$

With the transformed variables $W^{k} = (T^{-1} \otimes I)Z^{k}$, the iteration (8.4) becomes equivalent to

$$(h^{-1}\Lambda \otimes I - I \otimes J)\Delta W^{k} = -h^{-1}(\Lambda \otimes I)W^{k} + (T^{-1} \otimes I)F((T \otimes I)W^{k})$$
$$W^{k+1} = W^{k} + \Delta W^{k} .$$
(8.11)

We also replace Z^k and ΔZ^k by W^k and ΔW^k in the formulas (8.7)-(8.9) (and thereby again save some work).

132 IV. Stiff Problems — One Step Methods

For the sequel, we suppose that the matrix A^{-1} has one real eigenvalue $\widehat{\gamma}$ and one complex conjugate eigenvalue pair $\widehat{\alpha} \pm i\widehat{\beta}$. This is a typical situation for 3-stage IRK-methods such as Radau IIA. With $\gamma = h^{-1}\widehat{\gamma}, \alpha = h^{-1}\widehat{\alpha}, \beta = h^{-1}\widehat{\beta}$ the matrix in (8.11) becomes

$$\begin{pmatrix} \gamma I - J & 0 & 0\\ 0 & \alpha I - J & -\beta I\\ 0 & \beta I & \alpha I - J \end{pmatrix}$$
(8.12)

so that (8.11) splits into two linear systems of dimension n and 2n, respectively. Several ideas are possible to exploit the special structure of the $2n \times 2n$ -submatrix. The easiest and numerically most stable way has turned out to be the following: transform the real subsystem of dimension 2n into an n-dimensional, complex system

$$((\alpha + i\beta)I - J)(u + iv) = a + ib$$
(8.12)

and apply simple Gaussian elimination. For machines without complex arithmetic, one just has to modify the linear algebra routines. Then a complex multiplication consists of 4 real multiplications and the amount of work for the solution of (8.12') becomes approximately $4n^3/3$ operations. Thus the total work for system (8.12) is about $5n^3/3$ operations. Compared to $(3n)^3/3$, which would be the number of operations necessary for decomposing the untransformed matrix $I - hA \otimes J$ in (8.4), we gain a factor of about 5 in arithmetical operations. Observe that the transformations, such as $Z^k = (T \otimes I)W^k$, need only $\mathcal{O}(n)$ additions and multiplications. The gain is still more drastic for methods with more than 3 stages.

Transformation to Hessenberg Form

For large systems with a full Jacobian J a further gain is possible by transforming J to Hessenberg form

$$S^{-1}JS = H = \begin{pmatrix} * & \dots & * & * \\ * & & & * \\ & \ddots & & \vdots \\ & & & * & * \end{pmatrix} .$$
(8.13)

This procedure was originally proposed for multistep methods by Enright (1978) and extended to the RK case by Varah (1979). With the code ELMHES, taken from LINPACK (1979) this is performed with $2n^3/3$ operations. Because the multiplication of S with a vector needs only $n^2/2$ operations (observe that S is triangular) the solution of (8.11) is found in $\mathcal{O}(n^2)$ operations, if the Hessenberg matrix H is known. This transformation is especially advantageous, if the Jacobian J is not changed during several steps.

Starting Values for the Newton Iteration

A natural and simple choice for the starting values in the iteration (8.4) (or equivalently (8.11)), since the exact solution of (8.2a) satisfies $z_i = \mathcal{O}(h)$, would be

$$z_i^0 = 0, \qquad i = 1, \dots, s \;.$$
 (8.14)

However, better choices are possible in general. If the implicit Runge-Kutta method satisfies the condition $C(\eta)$ (see Sections IV.5 and II.7) for some $\eta \leq s$, then

$$z_i = y(x_0 + c_i h) - y_0 + \mathcal{O}(h^{\eta+1}) . \qquad (8.15)$$

Suppose now that $c_i \neq 0$ $(i=1,\ldots,s)$ and consider the interpolation polynomial of degree s, defined by

$$q(0) = 0$$

 $q(c_i) = z_i$ $i = 1, \dots, s$.

Since the interpolation error is of size $\mathcal{O}(h^{s+1})$ we obtain together with (8.15)

$$y(x_0 + th) - y_0 - q(t) = \mathcal{O}(h^{\eta+1})$$

(cf. Theorem 7.9 of Chapter II for collocation methods). We use the values of q(t) also beyond the interval [0,1] and take

$$z_i^0 = q(1 + wc_i) + y_0 - y_1, \quad i = 1, \dots, s, \quad w = h_{new}/h_{old}$$
 (8.14)

as starting values for the Newton iteration in the subsequent step. Numerical experiments with the 3-stage Radau IIA method have shown that (8.14') usually leads to a faster convergence than (8.14).

Step Size Selection

One possibility to select the step sizes is Richardson extrapolation (cf. Section II.4). We describe here the use of an embedded pair of methods which is easier to program and which makes the code more flexible. The following formulas are for the special case of the 3-stage Radau IIA methods; similar ideas are also applicable to other implicit Runge-Kutta methods.

Since our method is of optimal order, it is impossible to embed it efficiently into one of still higher order. Therefore we search for a lower order method of the form

$$\widehat{y}_{1} = y_{0} + h \Big(\widehat{b}_{0} f(x_{0}, y_{0}) + \sum_{i=1}^{3} \widehat{b}_{i} f(x_{0} + c_{i}h, g_{i}) \Big)$$
(8.16)

where g_1, g_2, g_3 are the values obtained from the Radau IIA method and $\hat{b}_0 \neq 0$ (the choice $\hat{b}_0 = \gamma_0 = \hat{\gamma}^{-1}$, where $\hat{\gamma}$ is the real eigenvalue of the matrix A^{-1} , again saves some multiplications). The difference

$$\widehat{y}_1 - y_1 = \gamma_0 hf(x_0, y_0) + \sum_{i=1}^3 (\widehat{b}_i - b_i) hf(x_0 + c_i h, g_i)$$

which can also be written in the form

$$\widehat{y}_1 - y_1 = \gamma_0 h f(x_0, y_0) + e_1 z_1 + e_2 z_2 + e_3 z_3 , \qquad (8.17)$$

then serves for error estimation. In order that $\widehat{y}_1-y_1=\mathcal{O}(h^4)$ the coefficients have to satisfy

$$(e_1, e_2, e_3) = \frac{\gamma_0}{3} (-13 - 7\sqrt{6}, -13 + 7\sqrt{6}, -1)$$
 (8.18)

Unfortunately, for $y' = \lambda y$ and $h\lambda \to \infty$ the difference (8.17) behaves like $\hat{y}_1 - y_1 \approx \gamma_0 h\lambda y_0$, which is unbounded and therefore not suitable for stiff equations. We propose (an idea of Shampine) to use instead

$$err = (I - h\gamma_0 J)^{-1}(\hat{y}_1 - y_1)$$
 (8.19)

The LU-decomposition of $((h\gamma_0)^{-1}I - J)$ is available anyway from the previous work, so that the computation of (8.19) is cheap. For $h \to 0$ we still have $err = \mathcal{O}(h^4)$ and for $h\lambda \to \infty$ (if $y' = \lambda y$ and $J = \lambda$) we obtain $err \to -1$. For the step size prediction we now use the usual formula

$$h_{new} = fac \cdot h_{old} \cdot \left(\frac{Tol}{\|err\|}\right)^{0.25} . \tag{8.20}$$

Here, the safety factor *fac* is proposed to depend on *Newt*, the number of Newton iterations of the current step and on the maximal number of Newton iterations k_{max} , say, as: $fac = 0.9 \times (2k_{max} + 1)/(2k_{max} + Newt)$.

In the code RADAU5 (see appendix) we further included the following strategies:

- a) If only one Newton iteration (Newt = 1) was necessary to satisfy (8.8) or if the last θ_k was very small, say $\theta_{Newt} \leq 10^{-3}$, then we don't recompute the Jacobian in the next step. As a consequence, the Jacobian is computed only once for linear problems with constant coefficients (as long as no step rejection occurs).
- b) If no Jacobian is recomputed and if the step size h_{new} , defined by (8.20), satisfies

$$c_1 h_{old} \le h_{new} \le c_2 h_{old} \tag{8.21}$$

with, say $c_1 = 1.0$ and $c_2 = 1.2$, then we retain h_{old} for the following step. This saves the LU-decomposition of the matrix (8.12). c) In the first step and after every rejected step we used instead of (8.19) the expression

$$err_{1} = (I - h\gamma_{0}J)^{-1} \left[\gamma_{0}hf(x_{0}, y_{0} + err) + e_{1}z_{1} + e_{2}z_{2} + e_{3}z_{3}\right]$$
(8.22)

for step size prediction. This requires one additional function evaluation, but satisfies $err_1 \rightarrow 0$ for $h\lambda \rightarrow \infty$, as does the numerical solution.

Numerical Study of the Step-Control Mechanism

As a representative example we choose the Van der Pol equation (1.5') with $\varepsilon = 10^{-6}$, initial values $y_1(0) = 2$, $y_2(0) = -0.6$ and integration interval $0 \le x \le 2$. Fig. 8.1 shows four pictures. The first one presents the solution $y_1(x)$ with all accepted integration steps for $Tol = 10^{-4}$. Below this, the step sizes obtained by RADAU5 are plotted as function of x. The solid line represents the accepted steps. The rejected steps are indicated by \times 's. Observe the very small step sizes which are required in the rapid transients between the smooth parts of the solution. The lowest two pictures give the number of Newton iterations needed for solving the nonlinear system (8.2a), once as function of x, and once as function of the step-number. The last picture also indicates the steps where the Jacobian has been changed.

Another numerical experiment (Fig. 8.2) illustrates the quality of the error estimates. We applied the code RADAU5 with $Tol = 10^{-4}$ and initial step size $h=10^{-4}$ to the above problem and plotted at several chosen points of the numerical solution

a) the exact local error (marked by \Box)

b) the estimates (8.19) and (8.22) (marked by + and \times respectively)

as functions of h. The large symbols indicate the position of the actually used step size. Newt is the number of required Newton iterations.

It is interesting to note that the local error behaves like $\mathcal{O}(h^6)$ (straight line of slope 6) only for $h < \epsilon$ and for large h. Between these regions, the local error grows like $\mathcal{O}(h^{-1})$ with decreasing h. This is the only region where the error estimate (8.22) is significantly better than (8.19). Therefore, we use the more expensive estimator (8.22) only in the first and after each rejected step. In any way, both error estimators are always above the actual local error, so that the code usually produces very precise results.

135

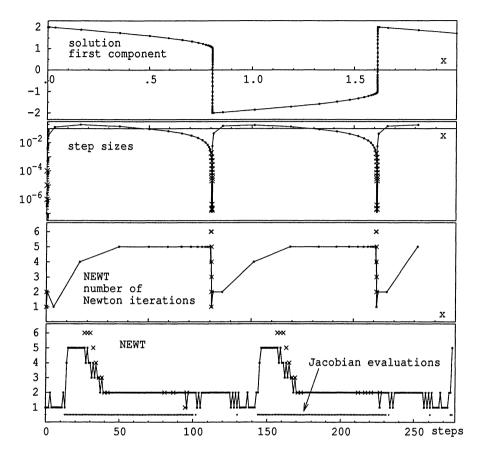


Fig. 8.1. Solution, step sizes and Newton iterations for RADAU5

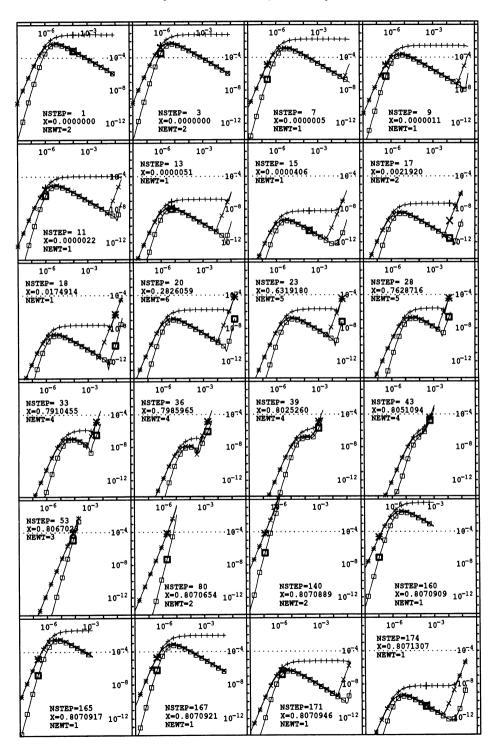
Implicit Differential Equations

Many applications (such as space discretizations of parabolic differential equations) often lead to systems of the form

$$My' = f(x, y), \qquad y(x_0) = y_0$$
 (8.23)

with a constant matrix M. For such problems we formally replace all f's by $M^{-1}f$ and multiply the resulting equations by M. Formulas (8.11) and (8.19) then have to be replaced by

$$\begin{pmatrix} h^{-1}\Lambda \otimes M - I \otimes J \end{pmatrix} \Delta W^{k} = -h^{-1} \begin{pmatrix} \Lambda \otimes M \end{pmatrix} W^{k} + (T^{-1} \otimes I) F((T \otimes I) W^{k}) \\ (8.11a) \\ err = ((h\gamma_{0})^{-1}M - J)^{-1} \begin{pmatrix} f(x_{0}, y_{0}) + (h\gamma_{0})^{-1} M(e_{1}z_{1} + e_{2}z_{2} + e_{3}z_{3}) \end{pmatrix} . \\ (8.19a)$$



IV.8. Implementation of Implicit Runge-Kutta Methods 137

Fig. 8.2. Exact local error and the estimates (8.19) and (8.22)

Here the matrix J is again an approximation to $\partial f/\partial y$. This implementation does not use the inverse of M and does not destroy banded or sparse structures of M and J. It may even be applied to certain problems (8.23) with singular M (for more details see Chapter VI).

Banded Jacobian

Solving the linear system (8.11a) is done by a decomposition of the matrix (see (8.12), (8.12'))

$$\begin{pmatrix} \gamma M - J & 0 \\ 0 & (\alpha + i\beta)M - J \end{pmatrix} . \tag{8.24}$$

If M and J are banded, the matrices $\gamma M-J$ and $(\alpha+i\beta)M-J$ remain banded. The code RADAU5 of the appendix has options for banded structures.

An SDIRK-Code

We have also coded, using many of the above ideas, the SDIRK formula (6.16) together with the global solution (6.17). For this method also, it was again very important to replace the error estimator $y_1 - \hat{y}_1$ by (8.19).

Here, in contrast to fully implicit Runge-Kutta methods, one can treat the stages one after the other. Such a serial computation has the advantage that the information of the already computed stages can be used for a good choice of the starting values for the Newton iterations in the subsequent stages. For example, suppose that

$$\begin{split} &z_1 = \gamma hf(x_0 + \gamma h, y_0 + z_1) \\ &z_2 = \gamma hf(x_0 + c_2 h, y_0 + z_2) + a_{21} hf(x_0 + \gamma h, y_0 + z_1) \end{split}$$

are already available. Since for all i

$$z_i = c_i h f(x_0, y_0) + (\sum_j a_{ij} c_j) h^2 (f_x + f_y f)(x_0, y_0) + \mathcal{O}(h^3) ,$$

by solving

$$\begin{pmatrix} c_1 & c_2 \\ \sum_j a_{1j}c_j & \sum_j a_{2j}c_j \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = \begin{pmatrix} c_3 \\ \sum_j a_{3j}c_j \end{pmatrix}$$

one finds α_1, α_2 such that

$$\alpha_1 z_1 + \alpha_2 z_2 = z_3 + \mathcal{O}(h^3) \; .$$

The expression $z_3^{(0)} = \alpha_1 z_1 + \alpha_2 z_2$ then serves as starting value for the computation of z_3 . In the last stage one can take \hat{y}_1 , which is then available,

for starting the Newton iterations for $g_s = y_1$. The computation of z_3, z_4, y_1 , done in this way, needs few Newton iterations and a failure of convergence is usually already detected in the first stage.

However, when *parallel* processors are available, the exploitation of the triangular structure of the RK-matrix may be less desirable. Whereas in the iteration (8.11) all s function evaluations and much of the linear algebra can be done in parallel, this is no longer possible for DIRK-methods, when z_1, \ldots, z_k is used in the computations of z_{k+1} .

SIRK-Methods

"The fact that singly-implicit methods have a coefficient matrix with a one-point spectrum is the key to reducing the operation count for these methods to the level which prevails in linear multistep methods."

(J.C. Butcher, K. Burrage & F.H. Chipman 1980)

In order to avoid the difficulties (in writing an RK-code) caused by the complex eigenvalues of the RK-matrix A, one may look for methods with real eigenvalues, especially with a single *s*-fold real eigenvalue. Such methods were introduced by Nørsett (1976). Burrage (1978) provided them with error estimators, and codes in ALGOL and FORTRAN are presented in Butcher, Burrage & Chipman (1980). The basic methods for their code STRIDE are given by the following lemma.

Lemma 8.1. For collocation methods (i.e., for RK-methods satisfying condition C(s) of IV.5), we have

$$det(I - zA) = (1 - \gamma z)^s \tag{8.25}$$

if and only if

$$c_i = \gamma x_i, \qquad i = 1, \dots, s \tag{8.26}$$

where x_1, \ldots, x_s are the zeros of the Laguerre polynomial $L_s(x)$ (c.f. Formula (6.11)).

Proof. The polynomial det(I-zA) is the denominator of the stability function (Formula (3.3)), so that by Theorem 3.9

$$M^{(s)}(0) + M^{(s-1)}(0)z + \ldots + M(0)z^{s} = (1 - \gamma z)^{s}$$
(8.27)

with M(x) given by (3.17). Computing $M^{(j)}(0)$ from (8.27) we obtain

$$\frac{1}{s!}\prod_{i=1}^{s}(x-c_{i}) = M(x) = \sum_{j=0}^{s} \binom{s}{j}(-\gamma)^{s-j}\frac{x^{j}}{j!} = (-\gamma)^{s}L_{s}(\frac{x}{\gamma})$$

which leads to (8.26).

140 IV. Stiff Problems — One Step Methods

The stability function of the method of Lemma 8.1 has been studied in Sections IV.4 (multiple real-pole approximations) and IV.6. We have further seen (Proposition 3.8) that $R(\infty) = 0$ when $x_0 + h$ is a collocation point. This means that $c_q = 1$ or $\gamma = 1/x_q$ for $q \in \{1, \ldots, s\}$ where $0 < x_1 < \ldots < x_s$ are the zeros of $L_s(x)$. However, if we want A-stable methods, Theorem 4.25 restricts this point to be *in the middle* (more precisely: q = s/2 or s/2+1 for s even, q = (s+1)/2 for s odd). An apparently undesirable consequence of this is that many of the collocation points lie *outside* the integration interval (for example, for s = 5 and q = 3 we have $c_1 = 0.073$, $c_2 = 0.393$, $c_3 = 1$, $c_4 = 1.970$, $c_5 = 3.515$).

Since these methods with $\gamma = 1/x_q$ are of order p = s only, it is easy to embed them into a method of higher order. Burrage (1978) added a further stage

$$g_{s+1} = y_0 + h \sum_{j=1}^{s+1} a_{s+1,j} f(x_0 + c_j h, g_j)$$

where c_{s+1} and $a_{s+1,s+1}$ are arbitrary and the other $a_{s+1,j}$ are determined so that the (s+1)-stage method satisfies C(s) too. In order to avoid a new LU-decomposition we choose $a_{s+1,s+1} = \gamma$. The coefficient c_{s+1} is fixed arbitrarily as $c_{s+1} = 0$. We then find a unique method

$$\widehat{y}_1 = y_0 + h \sum_{j=1}^{s+1} \widehat{b}_j f(x_0 + c_j h, g_j)$$

of order s+1 by computing the coefficients of the interpolatory quadrature rule. An explicit formula for the matrix T which transforms the RK-matrix A to Jordan canonical form and A^{-1} to a very simple lower triangular matrix Λ is given in Exercise 1. It can be used for economically solving the linear system (8.11).

Exercises

1. (Butcher 1979). For the collocation method with c_1, \ldots, c_s given by (8.26) prove that (e.g. for s=4)

where the transformation T satisfies

$$T = \left(L_{j-1}(x_i)\right)_{i,j=1}^{s}$$
, $T^{-1} = \left(\frac{x_j L_{i-1}(x_j)}{s^2 L_{s-1}(x_j)^2}\right)_{i,j=1}^{s}$

and $L_{j-1}(x)$ are the Laguerre polynomials. Hint. Use the identities

$$L'_n(x) = L'_{n-1}(x) - L_{n-1}(x), \qquad L_n(x) = L_{n-1}(x) + \frac{x}{n}L'_n(x)$$

and the Christoffel-Darboux formula

$$\sum_{j=0}^{n} L_{j}(x)L_{j}(y) = \frac{n+1}{y-x} \Big(L_{n+1}(x)L_{n}(y) - L_{n+1}(y)L_{n}(x) \Big)$$

which, in the limit $y \to x$, becomes

$$\sum_{j=0}^{n} (L_{j}(x))^{2} = (n+1) \Big(L_{n+1}(x) L_{n}'(x) - L_{n+1}'(x) L_{n}(x) \Big) \ .$$

IV.9. Extrapolation Methods

"It seems that a suitable version of an IEM (implicit extrapolation method) which takes care of these difficulties may become a very strong competitor to any of the general discretization methods for stiff systems presently known". (the very last sentence of Stetter's book, 1973)

Extrapolation of explicit methods is an interesting approach to solving nonstiff differential equations (see Section II.9). Here we show to what extent the idea of extrapolation can also be used for stiff problems. We shall use the results of Section II.8 for the existence of asymptotic expansions and apply them to the study of those implicit and linearly implicit methods, which seem to be most suitable for the computation of stiff differential equations. Our theory here is restricted to classical $h \rightarrow 0$ order, the study of stability domains and A-stability.

A big difficulty, however, is the fact that the coefficients and remainders of the asymptotic expansion can explode with increasing stiffness and the hinterval, for which the expansion is meaningful, may tend to zero. Bounds on the remainder which hold uniformly for a class of arbitrarily stiff problems, will be discussed later in Section VI.4.

Extrapolation of Symmetric Methods

It is most natural to look first for symmetric one-step methods as the basic integration scheme. Promising candidates are the trapezoidal rule

$$y_{i+1} = y_i + \frac{h}{2} \Big(f(x_i, y_i) + f(x_{i+1}, y_{i+1}) \Big)$$
(9.1)

and the implicit mid-point rule

$$y_{i+1} = y_i + hf\left(x_i + \frac{h}{2}, \frac{1}{2}(y_{i+1} + y_i)\right) .$$
(9.2)

We take some step-number sequence $n_1 < n_2 < n_3 < \ldots,$ set $h_j \,{=}\, H/n_j$ and define

$$T_{j1} = y_{h_j}(x_0 + H) , \qquad (9.3)$$

the numerical solution obtained by performing n_j steps with step size h_j . As described in Section II.9 we extrapolate these values according to

$$T_{j,k+1} = T_{j,k} + \frac{T_{j,k} - T_{j-1,k}}{(n_j/n_{j-k})^2 - 1} .$$
(9.4)

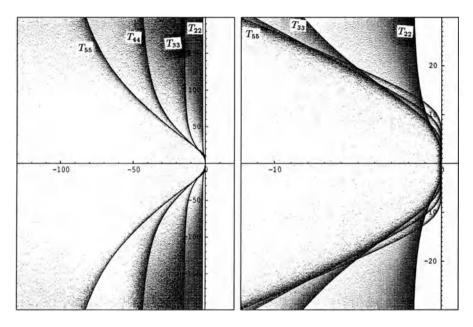


Fig. 9.1. Stability domains for the extrapolated trapezoidal rule

This provides an extrapolation tableau

all entries of which represent diagonally implicit RK-methods (see Exercise 1). Due to the symmetry of the basic schemes (9.1) and (9.2), T_{jk} is a DIRK-method of order 2k. In order to study the stability properties of these methods, we apply them to the test equation $y' = \lambda y$. For both methods, (9.1) and (9.2), we obtain

$$y_{i+1} = rac{1+rac{h\lambda}{2}}{1-rac{h\lambda}{2}}y_i$$

so that the stability function $R_{jk}(z)$ of the method T_{jk} is given recursively by $(z = H\lambda)$

$$R_{j1}(z) = \left(\frac{1 + \frac{z}{2n_j}}{1 - \frac{z}{2n_j}}\right)^{n_j} , \qquad (9.6a)$$

144 IV. Stiff Problems — One Step Methods

$$R_{j,k+1}(z) = R_{j,k}(z) + \frac{R_{j,k}(z) - R_{j-1,k}(z)}{(n_j/n_{j-k})^2 - 1} .$$
(9.6b)

Already Dahlquist (1963) noticed that for $n_1 = 1$ and $n_2 = 2$ we have

$$R_{22}(z) = \frac{1}{3} \left(4 \left(\frac{1 + \frac{z}{4}}{1 - \frac{z}{4}} \right)^2 - \left(\frac{1 + \frac{z}{2}}{1 - \frac{z}{2}} \right) \right) \to \frac{5}{3} > 1 \quad \text{for } z \to \infty , \quad (9.7)$$

an undesirable property when solving stiff problems. Stetter (1973) proposed taking only even or only odd numbers in the step-number sequence $\{n_j\}$. Then, all stability functions of the extrapolation tableau tend for $z \to \infty$ to 1 or -1, respectively. But even in this situation extrapolation immediately destroys the A-stability of the underlying scheme (Exercise 2). Fig. 9.1 shows the stability domains $\{z; |R_{kk}(z)| \leq 1\}$ for the sequence $\{1,3,5,7,9,\ldots\}$.

Smoothing

"Some numerical examples reveal the power of the smoothing combined with extrapolation." (B. Lindberg 1971)

Another possibility to overcome the difficulty encountered in (9.7) is smoothing (Lindberg 1971). The idea is to replace the definition (9.3) by Gragg's smoothing step

$$\widehat{T}_{j1} = S_{h_j}(x_0 + H), \qquad (9.8)$$

$$S_h(x) = \frac{1}{4} \left(y_h(x-h) + 2y_h(x) + y_h(x+h) \right) \,. \tag{9.9}$$

With $y_h(x)$, $S_h(x)$ also possesses an asymptotic expansion in even powers of h. Therefore, extrapolation according to (9.4) is justified. For the stability function of \hat{T}_{i1} we now obtain

$$\widehat{R}_{j1}(z) = \frac{1}{4} \left\{ \left(\frac{1 + \frac{z}{2n_j}}{1 - \frac{z}{2n_j}} \right)^{n_j - 1} + 2 \left(\frac{1 + \frac{z}{2n_j}}{1 - \frac{z}{2n_j}} \right)^{n_j} + \left(\frac{1 + \frac{z}{2n_j}}{1 - \frac{z}{2n_j}} \right)^{n_j + 1} \right\} \\
= \frac{1}{\left(1 - \frac{z}{2n_j} \right)^2} \left(\frac{1 + \frac{z}{2n_j}}{1 - \frac{z}{2n_j}} \right)^{n_j - 1}$$
(9.10)

which is an *L*-stable approximation to the exponential function. The stability functions $\widehat{R}_{jk}(z)$ (obtained from (9.6b)) all satisfy $\widehat{R}_{jk}(z) = \mathcal{O}(z^{-2})$ for $z \to \infty$. For the step-number sequence

$$\{n_j\} = \{1, 2, 3, 4, 5, 6, 7, \ldots\}$$
(9.11)

the stability domains of $\widehat{R}_{kk}(z)$ are plotted in Fig. 9.2.

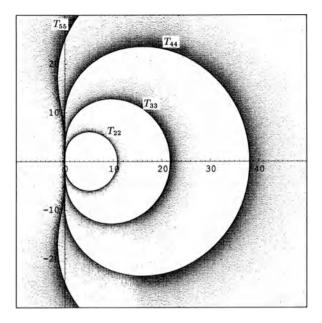


Fig. 9.2. Stability domains of $\widehat{R}_{kk}(z)$

The Linearly Implicit Mid-Point Rule

Extrapolation codes based on fully implicit methods are difficult to implement efficiently. After extensive numerical computations, G. Bader and P. Deuflhard (1983) found that a linearly implicit (Rosenbrock-type) extension of the GBS method of Section II.9 gave promising results for stiff equations. This method is based on a two-step algorithm, since one-step Rosenbrock methods (7.4) cannot be symmetric for nonlinear differential equations.

The motivation for the Bader & Deuflhard method is based on Lawson's transformation (Lawson 1967)

$$y(x) = e^{Jx} \cdot c(x) \tag{9.12}$$

where it is hoped that the matrix $J \approx f'(y)$ will neutralize the stiffness. Differentiation gives

$$c' = e^{-Jx} \cdot g(x, e^{Jx}c)$$
 with $g(x, y) = f(x, y) - Jy$. (9.13)

We now solve (9.13) by the Gragg algorithm (II.9.13b)

$$c_{i+1} = c_{i-1} + 2he^{-Jx_i} \cdot g(x_i, e^{Jx_i}c_i)$$

and obtain by back-substitution of (9.12)

$$e^{-hJ}y_{i+1} = e^{hJ}y_{i-1} + 2hg(x_i, y_i) .$$
(9.14)

For evident reasons of computational ease we now replace $e^{\pm hJ}$ by the approximations $I \pm hJ$ and obtain, adding an appropriate starting and final smoothing step,

$$(I - hJ)y_1 = y_0 + hg(x_0, y_0)$$
(9.15a)

$$(I - hJ)y_{i+1} = (I + hJ)y_{i-1} + 2hg(x_i, y_i)$$
(9.15b)

$$S_h(x) = \frac{1}{2}(y_{2m-1} + y_{2m+1})$$
 where $x = x_0 + 2mh$. (9.15c)

Substituting finally g from (9.13), we arrive at (with $x = x_0 + 2mh$, $x_i = x_0 + ih$)

$$(I - hJ)(y_1 - y_0) = hf(x_0, y_0)$$
 (9.16a)

$$(I - hJ)(y_{i+1} - y_i) = -(I + hJ)(y_i - y_{i-1}) + 2hf(x_i, y_i)$$
 (9.16b)

$$S_h(x) = \frac{1}{2}(y_{2m-1} + y_{2m+1})$$
(9.16c)

where J stands for some approximation to the Jacobian $\frac{\partial f}{\partial y}(x_0, y_0)$. Putting J=0, Formulas (9.16a) and (9.16b) become equivalent to those of the GBS method. The scheme (9.16b) is the linearly implicit (or semi-implicit) midpoint rule, Formula (9.16a) the linearly implicit Euler method.

Theorem 9.1 (Bader & Deuflhard 1983). Let f(x, y) be sufficiently often differentiable and let J be an arbitrary matrix; then the numerical solution defined by (9.16a,b,c) possesses an asymptotic expansion of the form

$$y(x) - S_h(x) = \sum_{j=1}^{l} e_j(x)h^{2j} + h^{2l+2}C(x,h)$$
(9.17)

where C(x,h) is bounded for $x_0 \leq x \leq \overline{x}$ and $0 \leq h \leq h_0$. For $J \neq 0$ we have in general $e_j(x_0) \neq 0$.

Proof. As in Stetter's proof for the GBS algorithm we introduce the variables

$$h^{*} = 2h , \quad x_{k}^{*} = x_{0} + kh^{*} , \quad u_{0} = v_{0} = y_{0} , \quad u_{k} = y_{2k} ,$$

$$v_{k} = (I - hJ)y_{2k+1} + hJy_{2k} - hf(x_{2k}, y_{2k})$$

$$= (I + hJ)y_{2k-1} - hJy_{2k} + hf(x_{2k}, y_{2k}) .$$
(9.18)

Method (9.16a,b) can then be rewritten as

$$\begin{pmatrix} u_{k+1} \\ v_{k+1} \end{pmatrix} = \begin{pmatrix} u_k \\ v_k \end{pmatrix}$$
(9.19)
+ $h^* \begin{pmatrix} f(x_k^* + \frac{h^*}{2}, y_{2k+1}) - Jy_{2k+1} + J(\frac{u_{k+1} + u_k}{2}) \\ \frac{1}{2} (f(x_k^* + h^*, u_{k+1}) + f(x_k^*, u_k)) + Jy_{2k+1} - J(\frac{u_{k+1} + u_k}{2}) \end{pmatrix}$

where, from (9.18), we obtain the symmetric representation

$$y_{2k+1} = \frac{v_{k+1} + v_k}{2} + h^* J\left(\frac{u_{k+1} - u_k}{4}\right) - \frac{h^*}{4} \left(f(x_{k+1}^*, u_{k+1}) - f(x_k^*, u_k)\right) \,.$$

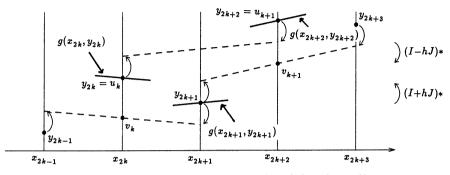


Fig. 9.3. Symmetry of Method (9.19) (see (9.16b))

The symmetry of (9.19) is illustrated in Fig. 9.3 and can be checked analytically by exchanging $u_{k+1} \leftrightarrow u_k$, $v_{k+1} \leftrightarrow v_k$, $h^* \leftrightarrow -h^*$, and $x_k^* \leftrightarrow x_k^* + h^*$. Method (9.19) is consistent with the differential equation

$$u' = f(x,v) - J(v-u) , \qquad u(x_0) = y_0$$

 $v' = f(x,u) + J(v-u) , \qquad v(x_0) = y_0$

whose exact solution is u(x) = v(x) = y(x), where y(x) is the solution of the original equation y' = f(x, y). Applying Theorem II.8.9 we obtain

$$y(x) - u_{h^*}(x) = \sum_{j=1}^{l} a_j(x)h^{2j} + h^{2l+2}A(x,h)$$

$$y(x) - v_{h^*}(x) = \sum_{j=1}^{l} b_j(x)h^{2j} + h^{2l+2}B(x,h)$$
(9.20)

with $a_j(x_0) = b_j(x_0) = 0$. With the help of Formulas (9.18) we can express the numerical solution (9.16c) in terms of u_m and v_m as follows:

$$\frac{1}{2}(y_{2m+1}+y_{2m-1})=(I-h^2J^2)^{-1}\left(v_m+h^2J(f(x_{2m},u_m)-Ju_m)\right)\,,$$

and we obtain for $x = x_0 + 2mh$,

$$\begin{split} y(x) - S_h(x) &= (I - h^2 J^2)^{-1} \left(y(x) - v_{h^*}(x) \right. \\ &- h^2 J \left(f(x, u_{h^*}(x)) + J \left(y(x) - u_{h^*}(x) \right) \right) \right) \,. \end{split}$$

Inserting the expansions (9.20) we find (9.17).

148 IV. Stiff Problems — One Step Methods

As an application of this theorem we obtain an interesting theoretical result on the existence of W-methods (7.4) (with inexact Jacobian). We saw in Volume I (Exercise 1 of Section II.9 and Theorem II.9.4) that the $T_{j,k}$ of the extrapolated GBS method represent explicit Runge-Kutta methods. By analogy, it is not difficult to guess that the $T_{j,k}$ for the above linearly implicit midpoint rule represent W-methods (more details in Exercise 3) and we have the following existence result for such methods:

Theorem 9.2. For p even, there exists a W-method (7.4) of order p with s = p(p+2)/4 stages.

Proof. It follows from (9.20) that for $x = x_0 + 2mh$ the numerical solution $y_h(x) = y_{2m}$ possesses an h^2 -expansion of the form (9.17) with $e_j(x_0) = 0$. Therefore, extrapolation yields W-methods of order 2k (in the k-th column). The result follows by taking $\{n_j\} = \{2, 4, 6, 8, 10, 12, \ldots\}$ and counting the number of necessary function evaluations.

For a stability analysis we apply the method (9.16) with $J = \lambda$ to the test equation $y' = \lambda y$. In this case Formula (9.16b) reduces to

$$y_{i+1} = rac{1+h\lambda}{1-h\lambda} \; y_{i-1}$$

and the numerical result is given by

$$S_h(x_0 + 2mh) = \frac{1}{(1 - h\lambda)^2} \left(\frac{1 + h\lambda}{1 - h\lambda}\right)^{m-1} y_0 , \qquad (9.21)$$

exactly the same as that obtained from the trapezoidal rule with smoothing (see Formula (9.10)). We next have to choose a step-number sequence $\{n_j\}$. Clearly, $n_j = 2m_j$ must be even. Bader & Deuflhard (1983) proposed taking only odd numbers m_j , since then $S_h(x_0 + 2m_jh)$ in (9.21) has the same sign as the exact solution $e^{\lambda 2m_jh}y_0$ for all real $h\lambda \leq 0$. Consequently they were led to

$$\{n_j\} = \{2, 6, 10, 14, 22, 34, 50, \ldots\} . \tag{9.22}$$

Putting $T_{j1} = S_{h_j}(x_0 + H)$ with $h_j = H/n_j$ and defining T_{jk} by (9.4) we obtain a tableau of W-methods (7.4) (Exercise 3). By Theorem 9.1 the k-th column of this tableau represents methods of order 2k - 1 independent of the choice of J (the methods are not of order 2k, since $e_i(x_0) \neq 0$ in (9.17)). The stability function of T_{j1} is given by

$$R_{j1}(z) = \frac{1}{(1 - \frac{z}{n_j})^2} \left(\frac{1 + \frac{z}{n_j}}{1 - \frac{z}{n_j}}\right)^{n_j/2 - 1}$$
(9.23)

and those of T_{jk} can be computed with the recursion (9.6b). An investigation of the *E*-polynomial (3.8) for these rational functions shows that not only T_{j1} , but also T_{22} , T_{32} and T_{33} are *A*-stable (Hairer, Bader & Lubich 1982). The angle of $A(\alpha)$ -stability for some further elements in the extrapolation tableau are listed in Table 9.1. Stability domains of T_{kk} for k = 2, 3, 4, 5, 6are plotted in Fig. 9.4.

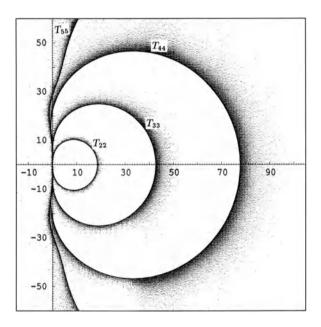


Fig. 9.4. Stability domains of extrapolated linearly implicit mid-point rule

Table 9.1. $A(\alpha)$ -stability of extrapolatedlinearly implicit mid-point rule

<u>90°</u>						
90°	90°					
90°	90°	90°				
90°	89.34°	87.55°	87.34°			
90°	88.80°	86.87°	86.10°	86.02°		
90°	88.49°	87.30°	86.61°	86.36°	86.33°	
90°	88.43°	87.42°	87.00°	86.78°	86.70°	86.69°

Implicit and Linearly Implicit Euler Method

Why not consider also non-symmetric methods as basic integration schemes? Deuflhard (1985) reports on experiments with extrapolation of the implicit Euler method

$$y_{i+1} = y_i + hf(x_{i+1}, y_{i+1})$$
(9.24)

and of the linearly implicit Euler method

$$(I - hJ)(y_{i+1} - y_i) = hf(x_i, y_i) , \qquad (9.25)$$

where, again, J is an approximation to $\frac{\partial f}{\partial y}(x_0, y_0)$. These methods are not symmetric and have only a *h*-expansion of their global error. We therefore have to extrapolate the numerical solutions at $x_0 + H$ according to

$$T_{j,k+1} = T_{j,k} + \frac{T_{j,k} - T_{j-1,k}}{(n_j/n_{j-k}) - 1} , \qquad (9.26)$$

so that T_{ik} represents a method of order k.

For both basic methods, (9.24) and (9.25), the stability function of T_{jk} is the same and defined recursively by

$$R_{j1}(z) = \left(1 - \frac{z}{n_j}\right)^{-n_j}$$
 (9.27a)

$$R_{j,k+1}(z) = R_{j,k}(z) + \frac{R_{j,k}(z) - R_{j-1,k}(z)}{(n_j/n_{j-k}) - 1} .$$
(9.27b)

Taking the step-number sequence

$$\{n_j\} = \{1, 2, 3, 4, 5, 6, 7, \ldots\}$$
(9.28)

we have plotted in Fig. 9.5 the stability domains of $R_{kk}(z)$ (left picture) and $R_{k,k-1}(z)$ (right picture). All these methods are seen to be $A(\alpha)$ -stable with α close to 90°. The values of α (computed numerically) for $R_{jk}(z)$ with $j \leq 8$ are given in Table 9.2.

We shall see in the chapter on differential algebraic systems that it is preferable to use the first subdiagonal of the extrapolation tableau resulting from (9.28). This is equivalent to the use of the step number sequence $\{n_i\} = \{2, 3, 4, 5, \ldots\}$. Also an effective construction of a *dense output* can best be motivated in the setting of DAE systems (Section VI.4).

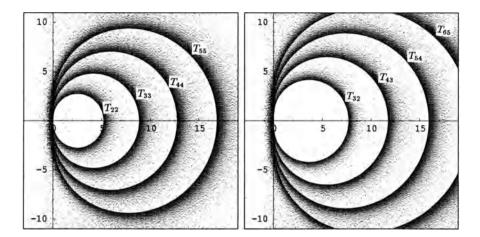


Fig. 9.5. Stability domains of extrapolated Euler

90)°						
90	° 90°						
90)° 90°	89.85°					
90)° 90°	89.90°	89.77°				
90)° 90°	89.93°	89.84°	89.77°			
90)° 90°	89.95°	89.88°	89.82°	89.78°		
90)° 90°	89.96°	89.91°	89.86°	89.82°	89.80°	
90)° 90°	89.97°	89.93°	89.89°	89.85°	89.83°	89.81°

Table 9.2. $A(\alpha)$ -stabiliy of extrapolated Euler

Implementation

Extrapolation methods based on implicit discretizations are in general less efficient than those based on linearly implicit discretizations. The reason is that the arising nonlinear systems have to be solved very accurately, so that the asymptotic expansion of the error is not destroyed. The first successful extrapolation code for stiff differential equations is METAN1 of Bader & Deuflhard (1983), which implements the linearly implicit mid-point rule (9.16). In fact, Formula (9.16b) is replaced by the equivalent formulation

$$\Delta y_i = \Delta y_{i-1} + 2(I - hJ)^{-1} \left(hf(x_i, y_i) - \Delta y_{i-1} \right), \quad \Delta y_i = y_{i+1} - y_i \quad (9.29)$$

which avoids a matrix-vector multiplication. The step size and order selection of this code is described in Deuflhard (1983). Modifications in the control of step size and order are proposed by Shampine (1987). We have implemented the following two extrapolation codes (see Appendix):

SODEX is based on the linearly implicit mid-point rule (9.16), uses the step-number sequence (9.22) and is mathematically equivalent to METAN1. The step size and order selection in SODEX is with some minor changes that of the non-stiff code ODEX of Section II.9. We just mention that in the formula for the work per unit step (II.9.26) the number A_k is augmented by the dimension of the differential equation in order to take into account the Jacobian evaluation.

SEULEX is an implementation of the linearly implicit Euler method (9.25) using the step-number sequence $\{2,3,4,5,6,7,\ldots\}$ (other sequences can be chosen as internal options). The step size and order selection is that of SODEX. The original code (EULSIM, first discussed by Deuflhard 1985) uses the same numerical method, but a different implementation.

"Neither code can solve the Van der Pol equation problem in a straightforward way because of overflow ..." (L.F. Shampine 1987)

A big difficulty in the implementation of extrapolation methods is the use of "large" step sizes. During the computation of T_{j1} one may easily get into trouble with exponential overflow when evaluating the right-hand side of the differential equation. As a remedy we propose the following strategies:

- a) In establishing the extrapolation tableau we compare the estimated error $err_j = ||T_{j,j-1} T_{jj}||$ with the preceding one. Whenever $err_j \ge err_{j-1}$ for some $j \ge 3$ we restart the computation of the step with a smaller H, say, $H = 0.5 \cdot H$.
- b) In order to be able to interrupt the computations already after the first f-evaluations, we require that the step sizes $h = H/n_i$ (for i = 1 and i = 2) be small enough so that a simplified Newton iteration applied to the implicit Euler method $y = y_0 + hf(x, y)$, $x = x_0 + h$ would converge ("stability check", an idea of Deuflhard). The first two iterations read

$$(I - hJ)\Delta_0 = hf(x_0, y_0), \qquad y^{(1)} = y_0 + \Delta_0$$

(I - hJ)\Delta_1 = hf(x_0 + h, y^{(1)}) - \Delta_0. (9.30)

The computations for the step are restarted with a smaller H, if $\|\Delta_1\| \ge \|\Delta_0\|$ (divergence of the iteration). Observe that for both methods, (9.16) and (9.25), no additional function evaluations are necessary. For the linearly implicit mid-point rule we have the simple relations $\Delta_0 = \Delta y_0$, $\Delta_1 = \frac{1}{2}(\Delta y_1 - \Delta y_0)$ (see (9.29)).

Non-Autonomous Differential Equations

Given a non-autonomous differential equation y' = f(x, y), one has several possibilities to apply the above extrapolation algorithms:

- i) apply the Formula (9.16) or (9.25) directly (this is justified, since all asymptotic expansions hold for general non-autonomous problems);
- ii) transform the differential equation into an autonomous system by adding x'=1 and then apply the algorithm. This yields

$$(I - hJ)(y_{i+1} - y_i) = hf(x_i, y_i) + h^2 \frac{\partial f}{\partial x}(x_0, y_0)$$
(9.31)

for the linearly implicit Euler method (the derivative $\frac{\partial f}{\partial x}(x_0, y_0)$ can also be replaced by some approximation). For the linearly implicit mid-point rule, (9.16a) has to be replaced by (9.31) with i = 0, the remaining two formulas (9.16b) and (9.16c) are not changed.

iii) apply one simplified Newton iteration to the implicit Euler discretization (9.24). This gives

$$(I - hJ)(y_{i+1} - y_i) = hf(x_{i+1}, y_i) .$$
(9.32)

The use of this formula avoids the computation of the derivative $\partial f/\partial x$, but requires one additional function evaluation for each T_{j1} . In the case of the linearly implicit mid-point rule the replacement of (9.16a) by (9.32) would destroy symmetry and the expansions in h^2 .

A theoretical study of the three different approaches for the linearly implicit Euler method applied to the Prothero-Robinson equation (see Exercise 4 below) indicates that the third approach is preferable. More theoretical insight into this question will be obtained from the study of singular perturbation problems (Chapter VI).

Implicit Differential Equations

Our codes in the appendix are written for problems of the form

$$My' = f(x, y) \tag{9.33}$$

where M is a constant square matrix. The necessary modifications in the basic formulas are obtained, as usual, by replacing all f's and J's by $M^{-1}f$ and $M^{-1}J$, and premultiplying by M. The linearly implicit Euler method then reads

$$(M - hJ)(y_{i+1} - y_i) = hf(x_i, y_i)$$
(9.34)

and the linearly implicit mid-point rule becomes, with $\Delta y_i = y_{i+1} - y_i$,

$$\Delta y_i = \Delta y_{i-1} + 2(M - hJ)^{-1} \left(hf(x_i, y_i) - M\Delta y_{i-1} \right) .$$
(9.35)

Exercises

 Consider the implicit mid-point rule (9.2) as basic integration scheme and define T_{jk} by (9.3) and (9.4).
 a) Prove that T_{jk} represents a DIRK-method of order p = 2k with s =

 $n_1 + n_2 + \ldots + n_j$ stages.

b) \hat{T}_{jk} , defined by (9.8) and (9.4), is equivalent to a DIRK-method of order p=2k-1 only.

2. Let $R_{jk}(z)$ be given by (9.6) and assume that the step-number sequence consists of even numbers only. Prove that $R_{j2}(z)$ cannot be A-stable. More precisely, show that at most a finite number of points of the imaginary axis can lie in the stability domain of $R_{j2}(z)$ (interpret Fig. 9.6).

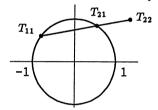


Fig. 9.6. How extrapolation destroys A-stability

3. Prove that $S_h(x)$, defined by (9.16), is the numerical result of the (2n+1)-stage W-method (7.4) with the following coefficients (n=2m):

$$\begin{split} \alpha_{ij} &= \begin{cases} 1/n & \text{if } j = 1 \text{ and } i \text{ even}, \\ 2/n & \text{if } 1 < j < i \text{ and } i - j \text{ odd}, \\ 0 & \text{else.} \end{cases} \\ \gamma_{ij} &= \begin{cases} (-1)^{i-j}/n & \text{if } j = 1 \text{ or } j = i, \\ 2(-1)^{i-j}/n & \text{if } 1 < j < i. \end{cases} \\ b_i &= \alpha_{n+1,i} + \gamma_{n+1,i} & \text{for all } i. \end{cases} \end{split}$$

4. Apply the three different versions of the linearly implicit Euler method (9.25), (9.31) and (9.32) to the problem $y' = \lambda(y - \varphi(x)) + \varphi'(x)$. Prove that the errors $e_i = y_i - \varphi(x_i)$ satisfy $e_{i+1} = (1 - h\lambda)^{-1}e_i + \delta_h(x_i)$, where for $h \to 0$ and $h\lambda \to \infty$,

$$\begin{split} &\delta_h(x) = -h\varphi'(x) + \mathcal{O}(h^2) + \mathcal{O}(\lambda^{-1}), \\ &\delta_h(x) = -\frac{h^2}{2}\varphi''(x) + (1-h\lambda)^{-1}h^2\lambda(\varphi'(x) - \varphi'(x_0)) + \mathcal{O}(h^3) + \mathcal{O}(h\lambda^{-1}), \\ &\delta_h(x) = (1-h\lambda)^{-1}\left(\frac{h^2}{2}\varphi''(x) + \mathcal{O}(h^3)\right), \end{split}$$

respectively.

IV.10. Numerical Experiments

"Theory without practice cannot survive and dies as quickly as it lives." (Leonardo da Vinci 1452-1519, cited from M. Kline, Math. Thought 1972, p. 224)

"La méthode ... ne laisse rien de vague et d'indéterminé dans les solutions; elle les conduit jusqu'aux dernières applications numériques, condition nécessaire de toute recherche, et sans laquelle on n'arriverait qu'à des transformations inutiles."

(J. Fourier, Théorie de la chaleur 1822; Fourier placed Plato's "Et ignem regunt numeri" as motif on the first page.)

After having seen so many different methods and ideas in the foregoing sections, it is legitimate to study how all these theoretical properties pay off in numerical efficiency.

The Codes Used

A bad program based on a bad method is bad; a good program based on a bad method is also bad; as is a bad program based on a good method. Badness is not additive! Hence, if we want to study the properties of *methods*, all *codes* must be written equally carefully. We made many efforts to approach this goal as closely as we could. We compared the following codes:

- ROS4 a Rosenbrock code of order 4 with s = 4 and embedded 3rd order error estimator implementing the methods of Table 7.2. A switch allows one to choose between the different coefficient sets. The standard choice is method 2.
- RODAS a Rosenbrock code of order 4(3) with s=5 satisfying additional order conditions for differential-algebraic equations (see Section VI.3). This code requires a little more work per step than ROS4 and it is interesting to study how this handicap is compensated by the "algebraic conditions" which are satisfied.
- SDIRK4 the L-stable SDIRK method (6.16) of order 4 of Table 6.5. Details of its implementation are given in Section IV.8.
- RADAU5 the IRK method based on the Radau IIA method with s=3 of order 5 described in detail in Section IV.8.
- SEULEX the Stiff linearly implicit EULer EXtrapolation method of Section IV.9.
- SODEX the EXtrapolation code based on the linearly implicit mid-point rule (method of Bader & Deuflhard) of Section IV.9, which is a "Stiff" extension of ODEX in Volume I.

We have further included in the present tests:

- STRIDE the famous SIRK-code ¹ of Butcher, Burrage & Chipman (1980) (see Lemma 8.1) as well as
- LSODE the BDF code of Hindmarsh as a representative of the class of multistep methods to be described in Chapter V;
- DOPRI5 many of the treated examples are very stiff and *explicit* methods would require hours to compute. On some examples, however, it was also interesting to see the performance of such methods and we have included the 5th order Dormand & Prince method as a representative of the class of explicit methods.

Small Test Problems

Man hüte sich, auf Grund einzelner Beispiele allgemeine Schlüsse über den Wert oder Unwert einer Methode zu ziehen. Dazu gehört sehr viel Erfahrung."

(L. Collatz 1950)

The first professional numerical comparisons for stiff equations were made by Enright, Hull & Lindberg (1975). Their STIFF-DETEST set of problems has become a veritable "must" for generations of software writers (see also Shampine 1981). As a consequence, today's codes have no difficulty in "crunching" these problems. Several additional test problems, usually from chemical kinetics, have been proposed by Enright & Hull (1976). An extensive review article containing also problems of large dimension is due to Byrne & Hindmarsh (1987).

The problems chosen for our tests are the following:

OREGO — the Oregonator, the famous model with a periodic solution describing the Belusov-Zhabotinskii reaction (Field & Noyes 1974, see also Enright & Hull 1976)

$$y'_{1} = 77.27 \left(y_{2} + y_{1} (1 - 8.375 \times 10^{-6} y_{1} - y_{2}) \right)$$

$$y'_{2} = \frac{1}{77.27} (y_{3} - (1 + y_{1})y_{2})$$

$$y'_{3} = 0.161 (y_{1} - y_{3})$$

$$y_{1}(0) = 1, \ y_{2}(0) = 2, \ y_{3}(0) = 3, \qquad x_{out} = 30, 60, 90, \dots, 360 .$$

(10.1)

For pictures see Volume I, p. 116.

¹ A new version of this code ("Mark II") is presently in elaboration and F. Chipman, K. Burrage and J. Butcher plan to get it into its final form in the first half of 1991.

ROBER — the reaction of Robertson (1966) (see (1.3) and (1.4))

$$\begin{array}{ll} y_1' = -0.04y_1 + 10^4 y_2 y_3 & y_1(0) = 1 \\ y_2' = & 0.04y_1 - 10^4 y_2 y_3 & -3 \cdot 10^7 y_2^2 & y_2(0) = 0 \\ y_3' = & 3 \cdot 10^7 y_2^2 & y_3(0) = 0 \end{array}$$
(10.2)

one of the most prominent examples of the "stiff" literature. It was usually treated on the interval $0 \le x \le 40$, until Hindmarsh discovered that many codes fail if x becomes very large (10¹¹ say). The reason is that whenever the numerical solution of y_2 accidentally becomes negative, it then tends to $-\infty$ and the run ends by overflow. We have therefore chosen

$$x_{out} = 1, 10, 10^2, 10^3, \dots, 10^{11}$$

VDPOL — the Van der Pol oscillator (see (1.5))

$$y'_{1} = y_{2}$$

$$y'_{2} = ((1 - y_{1}^{2})y_{2} - y_{1})/\varepsilon \quad \varepsilon = 10^{-6}$$

$$y_{1}(0) = 2, \ y_{2}(0) = 0; \ x_{out} = 1, 2, 3, 4, \dots, 11 .$$
(10.3)

VDPOL2 — we have also found it interesting to introduce into (10.3) a little discontinuity of the derivatives as follows:

$$y'_{1} = y_{2}$$

$$y'_{2} = \left((1 - y_{1}^{2}) \sqrt{|1 - y_{1}^{2}|} y_{2} - y_{1} \right) / \varepsilon \qquad \varepsilon = 10^{-6} \qquad (10.4)$$

$$y_{1}(0) = 2, \quad y_{2}(0) = 0, \quad x_{out} = 1, 2, 3, 4, \dots, 11 .$$

HIRES — this chemical reaction involving eight reactands was proposed by Schäfer (1975) to explain "the growth and differentiation of plant tissue independent of photosynthesis at high levels of irradiance by light". It has been promoted as a test example by Gottwald (1977). The corresponding equations are

$$\begin{split} y_1' &= -1.71 \cdot y_1 + 0.43 \cdot y_2 + 8.32 \cdot y_3 + 0.0007 \\ y_2' &= 1.71 \cdot y_1 - 8.75 \cdot y_2 \\ y_3' &= -10.03 \cdot y_3 + 0.43 \cdot y_4 + 0.035 \cdot y_5 \\ y_4' &= 8.32 \cdot y_2 + 1.71 \cdot y_3 - 1.12 \cdot y_4 \\ y_5' &= -1.745 \cdot y_5 + 0.43 \cdot y_6 + 0.43 \cdot y_7 \\ y_6' &= -280 \cdot y_6 y_8 + 0.69 \cdot y_4 + 1.71 \cdot y_5 - 0.43 \cdot y_6 + 0.69 \cdot y_7 \\ y_7' &= 280 \cdot y_6 y_8 - 1.81 \cdot y_7 \\ y_8' &= -y_7' \end{split}$$
(10.5)

158 IV. Stiff Problems — One Step Methods

$$y_1(0) = 1$$
, $y_2(0) = y_3(0) = \ldots = y_7(0) = 0$, $y_8(0) = 0.0057$

and chosen output values

$$x_{out} = 321.8122$$
 and 421.8122 .

PLATE — this is a linear and non-autonomous example of medium stiffness and medium size. It describes the movement of a rectangular plate under the load of a car passing across it:

$$rac{\partial^2 u}{\partial t^2} + \omega rac{\partial u}{\partial t} + \sigma \Delta \Delta u = f(x, y, t) \;.$$
 (10.6)

The plate $\Omega = \{(x, y) ; 0 \le x \le 2, 0 \le y \le 4/3\}$ is discretized on a grid of 8×5 interior points $x_i = ih, y_j = jh, h = 2/9$ with initial and boundary conditions

$$u|_{\partial\Omega} = 0$$
, $\Delta u|_{\partial\Omega} = 0$, $u(x, y, 0) = 0$, $\frac{\partial u}{\partial t}(x, y, 0) = 0$. (10.7)

The integration interval is $0 \le t \le 7$. The load f(x, y, t) is idealized by the sum of two Gaussian curves which move in the *x*-direction and which reside on "four wheels"

$$f(x, y, t) = \begin{cases} 200(e^{-5(t-x-2)^2} + e^{-5(t-x-5)^2}) & \text{if } y = y_2 \text{ or } y_4 \\ 0 & \text{for all other } y. \end{cases}$$

The plate operator $\Delta\Delta$ is discretized via the standard "computational molecule"

$$\begin{array}{cccccccc} & 1 \\ 2 & -8 & 2 \\ 1 & -8 & 20 & -8 & 1 \\ & 2 & -8 & 2 \\ & & 1 \end{array}$$

and the friction and stiffness parameters are chosen as $\omega = 1000$ and $\sigma = 100$. The resulting system is then of dimension 80 with negative real as well as complex eigenvalues ranging between $-500 \leq \text{Re } \lambda < 0$ with maximal angle $\alpha \approx 71^{\circ}$ (see Definition 3.9).

Large Test Problems

BRUSS — this is the equation (1.6') with $\alpha = 1/50$, the same initial conditions as in Section IV.1, and integration interval $0 \le t \le 10$. But we now let N = 500 so that (1.6') becomes a system of 1000 differential equations with largest eigenvalue close to -20000. The equations therefore become considerably stiff. The Jacobian of this system is banded with upper and lower bandwidth 2 (if the solution components are ordered as $u_1, v_1, u_2, v_2, u_3, v_3$, etc.) and the linear algebra is therefore done in the "banded versions" with "analytical Jacobian" (the code STRIDE which has no "banded" linear algebra has not been included). An explicit method, such as DOPRI5, would require close to 60000 steps of integration with an approximate computing time (for our machine) of 14 hours.

BURGERS — this is Burgers' Equation

$$u_t + uu_x = \mu u_{xx}$$
 or $u_t + \left(\frac{u^2}{2}\right)_x = \mu u_{xx}$ $\mu > 0$. (10.8)

It is one of the equations originally designed by Burgers (1948) as "a mathematical model illustrating the theory of turbulence". However, soon afterwards, E. Hopf (1950) presented an analytical solution (see Exercise 1 below) and concluded that "we doubt that Burgers' equation fully illustrates the statistics of free turbulence. (...) Equation (1) is too simple a model to display chance fluctuations ...". Nowadays it remains interesting as a nonlinear equation resembling Euler's and Navier-Stokes' equations for fluid dynamics which possesses, for μ small, shock waves and, for $\mu \to 0$, discontinuous solutions. It is used to study numerical methods which should also work in fluid dynamics.

Several possibilities exist to transform (10.8) into a system of ODE's (by the method of lines); either by difference approximations of the left equation in (10.8)

$$\dot{u}_i = -rac{u_i(u_{i+1}-u_{i-1})}{2\Delta x} + \mu rac{u_{i+1}-2u_i+u_{i+1}}{(\Delta x)^2}$$
 (10.8a)

or from the "conservative" form to the right of (10.8) giving

$$\dot{u}_{i} = -\frac{u_{i+1}^{2} - u_{i-1}^{2}}{4\Delta x} + \mu \frac{u_{i+1} - 2u_{i} + u_{i+1}}{(\Delta x)^{2}} .$$
 (10.8b)

One can also write (10.8) in a "weak" formulation and apply finite element Galerkin approximations. This leads to implicit ODE systems with, usually, a tridiagonal mass matrix.

As it turns out, the second system (10.8b) behaves better in the presence of shocks and is therefore chosen for the subsequent tests. We use the data

$$0 \leq x \leq 1 \;, \qquad 0 \leq t \leq 2.5 \qquad u(0,t) = u(1,t) = 0 \tag{10.9}$$

160 IV. Stiff Problems — One Step Methods

$$u(x,0) = (\sin(3\pi x))^2 \cdot (1-x)^{3/2}$$
, $\Delta x = \frac{1}{501}$, $\mu = 0.0003$

so that the system becomes banded of dimension 500. Two shock waves arise which later fuse into one (see Fig. 10.1).

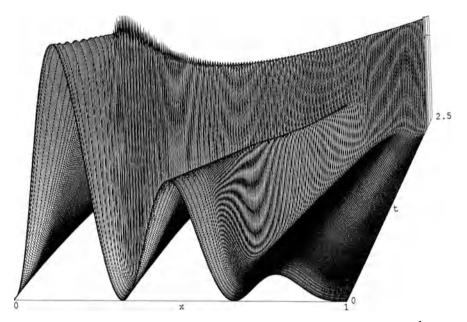


Fig. 10.1. Burgers' equation with shocks (10.9) (SEULEX, $Tol=10^{-6}$)

BSMOOTH — this is exactly the same differential equation as above with the same dimension and numerical discretization. The only difference is that the initial conditions are chosen as

$$u(x,0) = 1.5x(1-x)^2$$
, (10.10)

so that no shock wave appears within the considered interval of integration (see Fig. 10.2).

FINAG — the famous FitzHugh & Nagumo nerve conduction equation (FitzHugh 1969, Nagumo, Arimoto & Yoshizawa 1962)

$$\frac{\partial v}{\partial t} = \frac{\partial^2 v}{\partial x^2} - f(v) - w$$

$$\frac{\partial w}{\partial t} = \eta(v - \beta w)$$
(10.11)

where η and β are constants and

$$f(v) = v(v - \alpha)(v - 1)$$
(10.12)

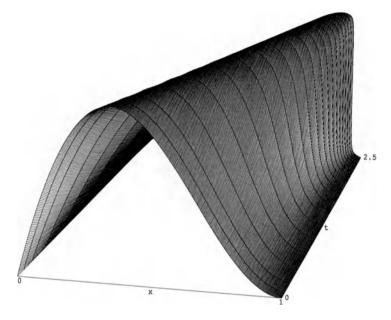


Fig. 10.2. Burgers' equation, smooth solution (SEULEX, $Tol=10^{-6}$)

with α satisfying typically $0 < \alpha < 1/2$. The constant η is usually very small and positive. This is, after the pioneering work of Hodgkin & Huxley (1952), a simplified attempt to explain nerve conduction as a travelling wave solution of a nonlinear parabolic differential equation. The two dimensional system, without diffusion term $\partial^2 v/\partial x^2$, possesses a stable equilibrium point at the origin and slow movement along the curve w = -f(v) (Fig. 10.3). Below this curve there is rapid movement in the positive v-direction. If the nerve is excited at one end and if diffusion is added, then one neighbour after another is pulled into this stream and the wave solution is produced (Fig. 10.4). Numerical studies for equation (10.11) were carried out by Rinzel (1977), from where we took the parameter values

$$lpha = 0.139 \;, \qquad \eta = 0.008 \;, \qquad eta = 2.54 \eqno(10.13)$$

and the conditions $0 \le x \le 100$ (discretized in 200 equidistant steps $x_1 = 1/4, x_2 = 3/4, \ldots, x_{200} = 399/4$ with $\Delta x = 1/2$), $0 \le t \le 400$

$$v(x,0) = w(x,0) = 0$$
 (the nerve initially at rest)
 $\frac{\partial v}{\partial x}(0,t) = -0.3$ (one end is constantly irrigated) (10.14)
 $\frac{\partial v}{\partial x}(100,t) = 0$ (no irrigation at other end)

(the last condition has been modified for easier programming). The resulting

system is of dimension 400 and banded with band width 5. The eigenvalues of the Jacobian range between $-16.7 \le \text{Re} \lambda \le 0.04$, most of them real, and make the problem, for the integration interval $0 \le t \le 400$, mildly stiff.

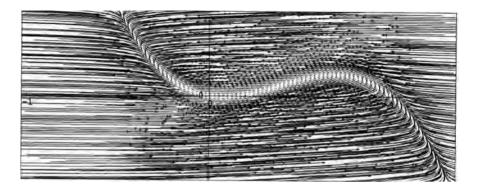


Fig. 10.3. Flow of System (10.11) without diffusion



Fig. 10.4. Solution of complete problem (10.11) and (10.14)

CUSP — this is a combination of (i) the above threshold-nerve-impulse mechanism, (ii) the cusp catastrophe

$$\varepsilon \dot{y} = -(y^3 + ay + b) \tag{10.15}$$

"with smooth return" (Zeeman 1972, see Fig. 10.5) and (iii) the Van der Pol oscillator to keep the solutions away from the origin:

$$\frac{\partial y}{\partial t} = -\frac{1}{\varepsilon}(y^3 + ay + b) + \sigma \frac{\partial^2 y}{\partial x^2}
\frac{\partial a}{\partial t} = b + 0.07v + \sigma \frac{\partial^2 a}{\partial x^2}
\frac{\partial b}{\partial t} = (1 - a^2)b - a - 0.4y + 0.035v + \sigma \frac{\partial^2 b}{\partial x^2}$$
(10.16)

where

$$v = rac{u}{u+0.1}$$
, $u = (y-0.7)(y-1.3)$.

We also found it nice to let the "nerve" be closed like a torus so that the nerve impulse goes round without stopping. The Jacobian of the resulting system then becomes, although sparse, not banded. Stiffness in this example has two sources: firstly the parameter ε becoming small, secondly the diffusion term for small discretization intervals Δx .

We choose $\varepsilon = 10^{-4}, \ \sigma = 1/144, \ 0 \le x \le 1, \ \Delta x = 1/32, \ N = 32$ and obtain

$$\begin{split} \dot{y}_i &= -10^4 (y_i^3 + a_i y_i + b_i) + D(y_{i-1} - 2y_i + y_{i+1}) \\ \dot{a}_i &= b_i + 0.07 v_i + D(a_{i-1} - 2a_i + a_{i+1}) \qquad i = 1, \dots, N \\ \dot{b}_i &= (1 - a_i^2) b_i - a_i - 0.4 y_i + 0.035 v_i + D(b_{i-1} - 2b_i + b_{i+1}) \end{split}$$
(10.16)

where

$$v_i = rac{u_i}{u_i + 0.1}$$
 , $u_i = (y_i - 0.7)(y_i - 1.3)$, $D = rac{N^2}{144}$,

and

a system of dimension $3 \cdot N = 96$. We take the initial values

$$y_i(0) = 0$$
, $a_i(0) = -2\cos\left(\frac{2i\pi}{N}\right)$, $b_i(0) = 2\sin\left(\frac{2i\pi}{N}\right)$ $i = 1, \dots, N$.
and $x_{out} = 1.1$.

BEAM — the elastic beam (1.10) of Section IV.1. We choose n = 40 in (1.10') so that the differential system is of dimension 80. The eigenvalues of the Jacobian are purely imaginary and vary between -6400i and +6400i (see equation (2.23)). The initial conditions (1.19) and (1.20) are chosen such

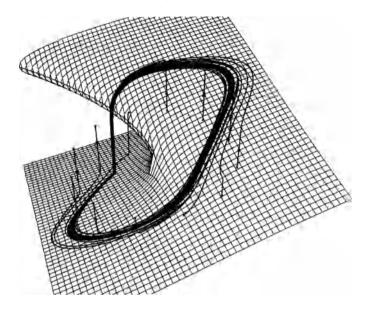


Fig. 10.5. The cusp catastrophe with N = 12.

that the solution nevertheless appears to be smooth. However, a detailed numerical study shows that the exact solution possesses high oscillations with period $\approx 2\pi/6400$ and amplitude $\approx 10^{-6}$ (see Fig. 10.6.). Therefore, stiff codes work well for low precision only.

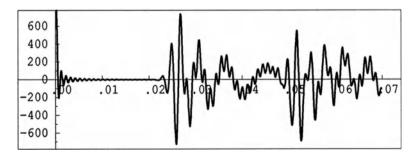


Fig. 10.6. Third finite differences $\Delta^3 y_{80} / \Delta x^3$ of solutions of the beam equation (1.10') with n=40 for $0 \le x \le 0.07$

Results and Discussion

For each of these examples we have computed very carefully (on a VAX machine in quadruple precision) the exact solution at the specified output points. Then the above codes have been applied with many different tolerances

$$Tol = 10^{-3+m/8}$$
, or $Tol = 10^{-3+m/4}$ $m = 0, 1, 2, ...$

More precisely, we set the relative error tolerance to be Rtol = Tol and the absolute error tolerance $Atol=10^{-6} \cdot Tol$ (for the problems OREGO and ROBER), $Atol=10^{-4} \cdot Tol$ (for HIRES) and Atol=Tol for all other problems. Several codes thereby returned numerical results which were considerably less precise than the required precision, while other methods turned out to be more reliable. As a reasonable measure of efficiency we have therefore chosen to compare

- the actual *error* (the maximum taken over all components and all output points) compared to
- the computing time (of an Apollo Workstation DN4000 in seconds).

The obtained data are then displayed as a polygonal line in a "precisionwork diagram" in double logarithmic scales. The integer-exponent tolerances $10^{-3}, 10^{-4}, 10^{-5}, \ldots$ are displayed as enlarged symbols. The more this line is to the right, the higher was the obtained precision; the higher this line is to the top, the slower was the code. The "slope" of the curve expresses the (effective) order of the formula: lower order methods are steeper than higher order methods. The results of the above codes on the 6 small examples are displayed in Fig. 10.7, those for the 6 large problems in Fig. 10.8.

The general impression given by the results is that Rosenbrock codes, especially RODAS, are best for low tolerances $(10^{-3} \text{ to } 10^{-5})$ and the variable order extrapolation code SEULEX becomes superior for stringent tolerances. This is not very surprising and in accordance with theory. The multistep code LSODE is often very fast, but usually lacks precision in the computed solutions. RADAU5 is a safe and precise code for medium precision, but can become quite slow when Tol approaches 10^{-8} or 10^{-9} , say. The implicit codes based on real-pole RK methods (STRIDE and SDIRK4) are generally disappointing, but nevertheless good for a surprise: they are the best methods for the (hyperbolic) beam equation. The fact that the computing times for the explicit RK code DOPRI5 initially lie perfectly horizontal is, of course, no surprise and due to lack of stability. It is only for very stringent tolerances that the accuracy requirements surpass the stability requirements and the problem ceases to be stiff.

Comparison between Rosenbrock codes: Fig. 10.9 shows for some selected problems the effect of the choice of different coefficient sets for Rosenbrock

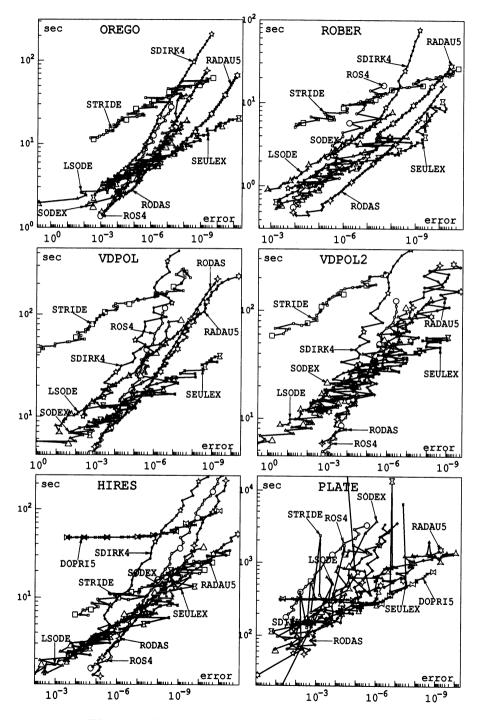


Fig. 10.7. Work-precision diagrams for small problems

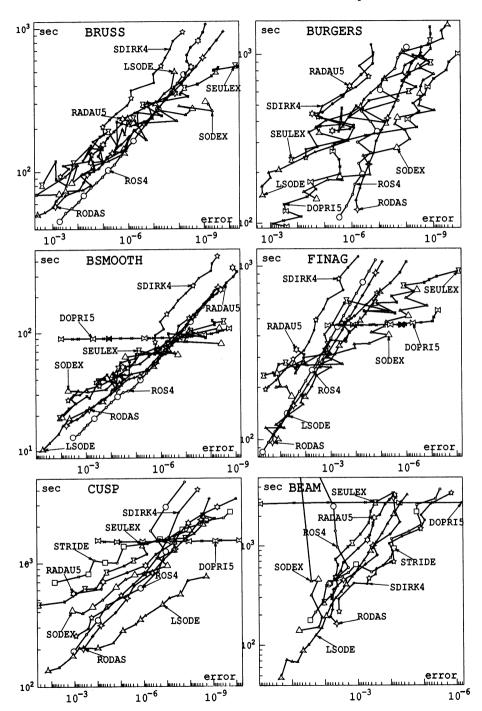


Fig. 10.8. Work-precision diagrams for large problems

methods. The code RODAS certainly performs best in this comparison; among the 4th order "classical" Rosenbrok methods of Table 7.2 the best is in general "method 2" with its small error constant; it fails completely, however, on the Beam problem due to lack of A-stability.

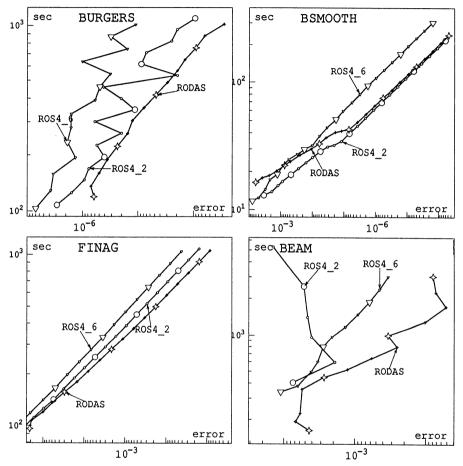


Fig. 10.9. Comparison between Rosenbrock codes

Comparison between Radau codes: Fig. 10.10 shows finally a study of Radau codes of different orders: RADAU7 and RADAU9, written by J.D. Reymond (1989), are codes for the Radau IIA methods of classical orders 7 and 9 with s = 4 and 5 implemented in the same way as RADAU5 of Section IV.8. The results obtained are partly in accordance with the theory: the higher order methods are not so brilliant for low tolerances, but superior for high precision. It also seems clear that the higher order does not pay off on the Cusp problem with its wildly varying solution; we do not understand, however, why RADAU7 is so much better on the oscillatory Beam problem.

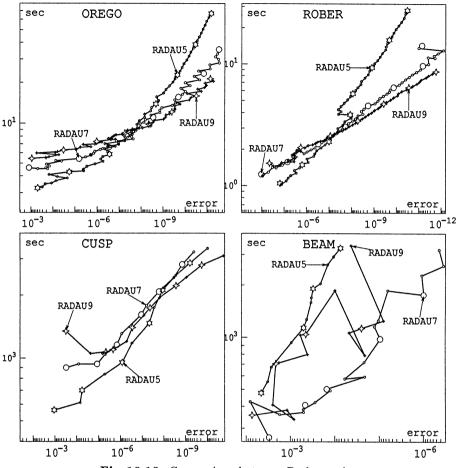


Fig. 10.10. Comparison between Radau codes

Possible Improvements

a) Tuning parameters. All codes in the above tests were applied throughout the tests with all parameters set to the standard values, without any added cosmetics. The failures of LSODE for the Beam problem are due to lack of A-stability and disappear if the maximum order is reduced to 2 (see Section V.5). The relatively poor performance of SEULEX for the Plate equation improves enormously if the code is told that Jacobian evaluations and LU-decompositions are expensive, i.e., if WORK(11), WORK(12), and WORK(13) are increased (say, to 10, 100, 5, respectively). The same effect is shared by the RADAU5 code which significantly improves its performance

for the Beam problem if WORK(5) is set to 0.99 (intelligent codes such as Th. Speer's FIRK5 watch the clock themselves during the computation).

b) Switching between explicit and implicit methods. In transient regions the step size usually becomes very small ($\approx 1/||f'||$) and explicit methods would do much better, especially when the dimension of the system is large. Several authors have considered switching strategies, e.g. L. Petzold (1983) for Adams- and BDF methods and G. Sottas (1984) for Runge-Kutta and Rosenbrock methods. While switching from the implicit to the explicit method is relatively easy (since h||f'|| is available without much cost), switching in the inverse direction needs a cheap stiffness detection (cf. Section IV.2). Theoretical investigations of switching strategies have been undertaken by J. Butcher (1990). In the Cusp problem, for example, 90% of CPU time is wasted in regions where one of the solution components drops suddenly from the upper to the lower stable surface and switching would save an enormous amount of computation time.

c) Sophisticated linear algebra. For large problems with full Jacobian it becomes important to transform J to a Hessenberg form (see (8.13)). Thereby, e.g., for the Plate problem with N=80, RADAU5 saves 55% of CPU time.

Another substantial saving is possible for second order problems y'' = f(x, y, y') such as the Plate or Beam problem. In these cases the linear equations to be solved at each Newton iteration have a matrix of the form

$$\begin{pmatrix} \alpha I & I \\ B & C \end{pmatrix} . \tag{10.17}$$

We simply communicate this structure to the linear equation solver and ask it to do the first n/2 elimination sweeps without pivot search. The matrix (10.17) then becomes

$$\begin{pmatrix} \alpha I & I \\ 0 & C - \alpha^{-1}B \end{pmatrix}$$

and the dimension of the linear equation is halved. All codes thereby save between 61% and 73% of computing time. If for the code RADAU5 this idea is combined with a better tuning of the parameters (WORK(3)=0.1, WORK(4)=0.3, WORK(5)=0.99, WORK(6)=2), the saving of CPU time accumulates in the mean to 92%, thus the code runs more than 10 times faster than indicated in Fig. 10.8.

d) Approximate Jacobian. No methods, except Rosenbrock methods, require an exact Jacobian for the simplified Newton iterations. Thus if the Jacobian is replaced by an approximation with a simpler structure, the numerical work may decrease considerably. For example the Cusp problem has a Jacobian of the form

$$J = \begin{pmatrix} A_1 & B_1 & & D_1 \\ C_2 & A_2 & \ddots & \\ & \ddots & \ddots & B_{N-1} \\ D_N & & C_N & A_N \end{pmatrix}$$
(10.18)

where A_i, B_i, C_i, D_i are 3×3 matrices. If now the matrices D_1 and D_N are simply neglected by telling the code that J is banded with bandwidth ML=MU=3, all codes with iterative solution of implicit RK and extrapolation equations save between 75% (for SDIRK4) and 90% (for RADAU5) of CPU time.

This does not work for the Rosenbrock codes, which require an exact Jacobian and therefore lose precision.

Partitioning and Projection Methods

"Most codes for solving stiff systems ... spend most of their time solving systems of linear equations ..." (Watkins & HansonSmith 1983)

Further spectacular reductions of the work for the linear algebra are often possible. One of the oldest ideas is to *partition* a stiff system into a (hopefully) small stiff system and a large nonstiff part,

$$\begin{array}{ll} y_a' = f_a(y_a, y_b) & (\text{stiff}) \\ y_b' = f_b(y_a, y_b) & (\text{nonstiff}), \end{array}$$
 (10.19)

so that the two systems can be treated by two different methods, one implicit and the other explicit (e.g. Hofer 1976). The theory of P-series in Section II.14 had its origin in the study of the order properties of such methods. A difficulty of this approach is, of course, to decide which equations should be the stiff ones. Further, stiffness may affect subspaces which are not parallel to the coordinate axes. We shall therefore turn our attention to procedures which do not adapt the underlying numerical method to the partitioning, but the linear algebra only. An excellent survey of the older literature on these methods is given by Söderlind (1981). The following definition describes an especially promising class of problems:

Definition 10.1 (Björck 1983, 1984). The system y' = f(x, y) is called separably stiff at a position x_0, y_0 if the Jacobian $J = \frac{\partial f}{\partial y}(x_0, y_0)$ possesses k < n eigenvalues $\lambda_1, \ldots, \lambda_k$ such that

$$\min_{1 \le i \le k} |\lambda_i| >> \max_{k+1 \le i \le n} |\lambda_i| .$$
(10.20)

172 IV. Stiff Problems — One Step Methods

The eigenvalues $\lambda_1, \ldots, \lambda_k$ are called the *stiff eigenvalues* and

$$\mu = \min_{1 \le i \le k} |\lambda_i| / \max_{k+1 \le i \le n} |\lambda_i|$$
(10.21)

the relative separation. The space D spanned by the stiff eigenvectors is called the dominant invariant subspace.

For example, the Robertson problem (10.2) possesses only one stiff eigenvalue (close to -2000), and is therefore separably stiff with k=1. The CUSP problem (10.16') of dimension 96 has 32 large eigenvalues which range, except for transient phases, between -20000 and -60000. All other eigenvalues satisfy approximately $|\lambda| < 30$. This problem is, in fact, a singular perturbation problem (see Section VI.1), and such problems are all separably stiff. The other large problems of this Section have eigenvalues scattered all around. A.R. Curtis' study (1983) points out that in *practical* problems separably stiff problems are rather seldom.

The Method of Gear and Saad

Implicit methods such as (transformed) RK or multistep formulas require the solution of a linear system (where we denote, as usual in linear algebra, the unknown vector by x)

$$Ax = b$$
 where $A = \frac{1}{h\gamma}I - J$ (10.22)

with residual

$$r = b - Ax av{10.23}$$

We now choose k (usually) orthogonal vectors q_1, \ldots, q_k in such a way that the span $\{q_1, \ldots, q_k\} = \tilde{D}$ is an *approximation* to the dominant subspace D, and denote by Q the $k \times n$ -matrix formed by the columns q_i ,

$$Q = (q_1, \dots, q_k) . \tag{10.24}$$

There are now several possibilities for replacing the numerical solution x of (10.22) by an approximate solution $\tilde{x} \in \tilde{D}$. One of the most natural is to require (Saad 1981, Gear & Saad 1983; in fact, Galerkin 1916) that the residual of \tilde{x} ,

$$\widetilde{r} = b - A\widetilde{x} = A(x - \widetilde{x}) , \qquad (10.25)$$

be orthogonal to \widetilde{D} , i.e., that

$$Q^{T}(b-A\widetilde{x})=0$$
 or $Q^{T}A\widetilde{x}=Q^{T}b$. (10.26)

If we write \tilde{x} in the basis of (10.24) as $\tilde{x} = Q\tilde{y}$, this yields

$$\widetilde{x} = Q(Q^T A Q)^{-1} Q^T b = Q H^{-1} Q^T b$$
(10.27)

where

$$H = Q^T A Q$$
 or $Q H = A Q$, (10.28)

which means that we have to solve a linear system of dimension k with matrix H. A particularly good choice for \tilde{D} is a *Krylov subspace* spanned by an arbitrary vector r_0 (usually the residual of a well chosen initial approximation x_0),

$$\widetilde{D} = \operatorname{span} \{ r_0, Ar_0, A^2 r_0, \dots A^{k-1} r_0 \} .$$
(10.29)

The vectors (10.29) constitute the sequence created by the well-known power method. Therefore, in the case of a separably stiff system, as analyzed by D.J. Higham (1989), the space \tilde{D} approaches the space D extremely well as soon as its dimension is sufficiently high. If the vectors of (10.29) are successively orthonormalized (Gram-Schmidt) as

$$q_{1} = \frac{r_{0}}{\|r_{0}\|}$$

$$\widehat{q}_{2} = Aq_{1} - h_{11}q_{1} , \qquad q_{2} = \frac{\widehat{q}_{2}}{\|\widehat{q}_{2}\|} = : \frac{\widehat{q}_{2}}{h_{21}}$$
(10.30)

and so on, we see that

$$Aq_{1} = h_{21}q_{2} + h_{11}q_{1}$$

$$Aq_{2} = h_{32}q_{3} + h_{22}q_{2} + h_{12}q_{1}$$
(10.31)

which, compared to (10.28), shows that

. . .

$$H = \begin{pmatrix} h_{11} & h_{12} & \dots \\ h_{21} & h_{22} & \dots \\ & h_{32} & \dots \\ & & \ddots \end{pmatrix}$$
(10.32)

is Hessenberg. For A symmetric, H is also symmetric, hence tridiagonal, so that the method is equivalent to the conjugate gradient method.

Two features are important for this method: Firstly, the matrix A need never be computed nor stored. All that is needed are the matrix-vector multiplications in (10.31), which can be obtained from the "directional derivative"

$$Jv pprox [f(x,y+\delta v)-f(x,y)]/\delta$$
 . (10.33)

Several people therefore call such methods "matrix-free". Secondly, the dimension k does not have to be known: one simply computes one column of H after the other and periodically estimates the residual. As soon as this estimate is small enough (or k becomes too large) the algorithm stops.

174 IV. Stiff Problems — One Step Methods

We also mention two variants of the method:

1. (Gear & Saad, p. 595). Before starting the computation of the Krylov subspace, perform some initial iteration of the power method on the initial vector r_0 , using either the matrix A or the matrix J. Lopez & Trigiante (1989) report excellent numerical results for this procedure.

2. Incomplete orthogonalization (Saad 1982). The new vector Aq_j is only orthogonalized against the previous p vectors, where p is some small integer. This makes H a banded matrix and saves computing time and memory. For symmetric matrices, the ideal choice is of course p = 2, for matrices more and more unsymmetric p usually is increased to 10 or 15.

The EKBWH-Method

(this tongue-twister stands for Enright, Kamel, Björck, Watkins and HansonSmith). Here, the matrices A (and J) in (10.22) are replaced by approximations

$$\widetilde{A} = \frac{1}{h\gamma} I - \widetilde{J} \tag{10.34}$$

where \tilde{J} should approach J sufficiently well and the matrix \tilde{A} be relatively easy to invert. \tilde{J} is determined as follows: Complete (theoretically) the vectors (10.24) to an orthogonal basis of \mathbb{R}^n

$$(Q,\widehat{Q})$$
 . (10.35)

In the new basis J becomes

$$J = (Q, \widehat{Q}) \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix} \begin{pmatrix} Q^T \\ \widehat{Q}^T \end{pmatrix}$$
(10.36)

hence

$$J(Q,\hat{Q}) = (Q,\hat{Q}) \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix}$$
(10.37)

and

$$Q^T J Q = T_{11} {.} (10.38)$$

If span $Q = \tilde{D}$ approaches D, then T_{11} will contain the stiff eigenvalues and T_{21} will tend to zero. If $\tilde{D} = D$ exactly, then $T_{21} = 0$ and (10.36) is a block-Schur decomposition of J. For separably stiff systems $||T_{22}||$ will become small compared to $(h\gamma)^{-1}$ and we define

$$\begin{split} \widetilde{J} &= (Q, \widehat{Q}) \begin{pmatrix} T_{11} & T_{12} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} Q^T \\ \widetilde{Q}^T \end{pmatrix} \\ &= Q(T_{11}Q^T + T_{12}\widehat{Q}^T) \stackrel{(10.37)}{=} QQ^T J . \end{split}$$
(10.39)

This shows \tilde{J} to be the orthogonal projection of J onto \tilde{D} . The inverse of \tilde{A} is computed by developing $(I-B)^{-1} = I+B+B^2+\ldots$ as a geometric series (see (10.39) and (10.37))

$$\begin{split} \widetilde{A}^{-1} &= h\gamma \left(I - h\gamma Q Q^{T} J \right)^{-1} \\ &= h\gamma \left(I + h\gamma Q Q^{T} J + h^{2} \gamma^{2} Q \underbrace{Q^{T} J Q}_{T_{11}} Q^{T} J + \ldots \right) \\ &= h\gamma \left(I + Q (h\gamma I + h^{2} \gamma^{2} T_{11} + h^{3} \gamma^{3} T_{11}^{2} + \ldots) Q^{T} J \right) \\ &= h\gamma \left(I + Q (\frac{1}{h\gamma} I - T_{11})^{-1} Q^{T} J \right) \end{split}$$
(10.40)

which only requires the solution of the "small" system with matrix $(I/h\gamma - T_{11})$ (the last expression is called the Sherman-Morrison-Woodbury formula).

Choice of Q:

— Björck (1983) computes the precise span of D, by Householder transforms followed by block-QR iterations. For separably stiff systems the block T_{21} converges to zero linearly with ratio μ^{-1} so that usually 2 or 3 iterations are sufficient. A disadvantage of the method is that an estimate for the dimension k of D must be known in advance.

— Enright & Kamel (1979) transform J to Hessenberg form and stop the transformations when $||T_{21}|| + ||T_{22}||$ become sufficiently small (remark that T_{21} is non zero in its last column only). Thus the dimension k can be discovered dynamically. Enright & Kamel combine the Householder reflexions with a pivoting strategy and repeated row & column permutations in order to make T_{22} small as fast as possible. It was first observed numerically (by Carlsson) and then shown theoretically (Söderlind 1981) that this pivoting strategy "needs some comments": if we start from (10.37), by knowing that

$$\begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix}$$

is Hessenberg in its first k columns, (with $h_{21} \neq 0, h_{32} \neq 0, \ldots$) and do the analysis of formulas (10.32), (10.31), and (10.30) backwards, we see that the space \tilde{D} for the Enright & Kamel method is a Krylov subspace created by q_1 (D.J. Higham 1989). Thus only the first permutation influences the result.

— Watkins & HansonSmith (1983) start from an arbitrary $Q^{(0)}$ followed by several steps of the block power method

$$JQ^{(i)} = Q^{(i+1)}R^{(i+1)} (10.41)$$

where $R^{(i+1)}$ re-orthogonalizes the vectors of the product $JQ^{(i)}$. A great advantage of this procedure is that no large matrix needs to be computed nor stored. The formulas (10.41) as well as (10.40) only contain matrixvector products which are computed by (10.33). The disadvantage is that the dimension of the space must be known.

Stopping criteria. The above methods need a criterion on the goodness of the approximation \tilde{J} to decide whether the dimension k is sufficient. Suppose that we solve the linear equation (10.22) by a modified Newton correction which uses \tilde{A} as "approximate Jacobian"

$$\widetilde{x} = x_0 + \widetilde{A}^{-1}(b - Ax_0) ,$$

then the convergence of this iteration is governed by the condition

$$\varrho(I-\widetilde{A}^{-1}A) = \varrho(\widetilde{A}^{-1}(\widetilde{A}-A)) = \varrho(\widetilde{A}^{-1}(J-\widetilde{J})) < 1.$$
 (10.42)

A reasonable condition is therefore that the spectral radius ρ of $\tilde{A}^{-1}(J-\tilde{J})$ is plainly smaller than 1. Let us compute this value for the Björk method $(T_{21}=0)$: since the eigenvalues of a matrix C are invariant under the similarity transformation $T^{-1}CT$, we have

$$\begin{split} \varrho(\widetilde{A}^{-1}(J-\widetilde{J})) &= \varrho \left(\left(\frac{1}{h\gamma} I - \begin{pmatrix} T_{11} & T_{12} \\ 0 & 0 \end{pmatrix} \right)^{-1} \begin{pmatrix} 0 & 0 \\ 0 & T_{22} \end{pmatrix} \right) \\ &= \varrho \left(\left(\begin{pmatrix} \left(\frac{1}{h\gamma} I - T_{11} \right)^{-1} & \times \infty \\ 0 & h\gamma I \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & T_{22} \end{pmatrix} \right) \\ &= \varrho \left(\begin{pmatrix} 0 & \times \infty \\ 0 & h\gamma T_{22} \end{pmatrix} \right) = \varrho(h\gamma T_{22}) \,. \end{split}$$

In practice, a condition of the form

$$\|h\gamma T_{22}\| < 1 \;,$$
 (10.43)

where $\|\cdot\|$ is usually the Frobenius norm $\sqrt{\sum_{i,j} a_{ij}^2}$, ensures a reasonable rate of convergence. For an analogous condition in the Enright-Kamel case see Exercise 4 below.

Exercises

 Reconstruct E. Hopf's analytic solution of Burgers' equation (10.8). Hint. Introduce the new dependent variable

$$arphi(x,t) = \exp \Big\{ -rac{1}{2\mu} \int_0^x u(\xi,t) \, d\xi - \int_0^t c(au) \, d au \Big\} \; .$$

Show that for a suitably chosen c(t) the function $\varphi(x,t)$ satisfies the one dimensional heat equation. The solution u(x,t) of (10.8) can then be recovered from $\varphi(x,t)$ by

$$u=-2\mu(\logarphi)_{m{x}}=-2\mu(arphi_{m{x}}/arphi)$$
 .

2. (The red-black reduction). The Jacobian matrix of the (periodic) cusp catastrophe model (10.16') is of the form

$$\begin{pmatrix} A_1 & B_1 & & C_1 \\ C_2 & A_2 & B_2 & & \\ & \ddots & \ddots & \ddots & \\ & & C_{2m-1} & A_{2m-1} & B_{2m-1} \\ B_{2m} & & & C_{2m} & A_{2m} \end{pmatrix}$$
(10.44)

where A_i, B_i, C_i are (3×3) -matrices. Write a solver which solves linear equations with matrix (10.44) using the "red-black ordering reduction". This means that A_1, A_3, A_5, \ldots are used as (matricial) pivots to eliminate $C_2, C_4, \ldots, B_2, B_4, \ldots$ above and below by Gaussian block-elimination. Then the resulting system is again of the same structure as (10.44) with halved dimension. If the original system's dimension contains 2^k as prime factor, this process can be iterated k times. Study the increase of performance which this algorithm allows for the RADAU5 and Rosenbrock codes on model (10.16'). The algorithm is also highly parallelizable.

- 3. Show by numerical experiments that the circular nerve (10.16') loses its limit cycle when the diffusion coefficient D becomes either too small (the message does not go across the water fall) or too large (the limit cycle then melts down across the origin).
- 4. (Stopping criterion for Enright & Kamel method; D.J. Higham 1989). Suppose that the matrix J has been transformed to partial Hessenberg form (see (10.37))

$$\begin{pmatrix} Q^T \\ \hat{Q}^T \end{pmatrix} J(Q, \hat{Q}) = \frac{\mathbf{k}}{\mathbf{n} - \mathbf{k}} \begin{pmatrix} \mathbf{k} & \mathbf{n} - \mathbf{k} \\ H & T_{12} \\ (0 \ b) & T_{22} \end{pmatrix}$$

where H is upper Hessenberg and b a column vector. Show that the criterion (10.42) then becomes

$$arrho(h\gamma B) < 1$$

where

$$B = \frac{k}{n-k} \begin{pmatrix} k-1 & 1+n-k \\ 0 & -h\gamma \overline{H}^{-1} T_{12}(b \ T_{22}) \\ 0 & (b \ T_{22}) \end{pmatrix}$$

with $\overline{H} = (I - h\gamma H)$. Since $\varrho(B)$ is the same as the spectral radius of its lower 1 + n - k by 1 + n - k principal submatrix, a sufficient condition for convergence is

$$|h\gamma|\sqrt{\|T_{22}\|^2+\|b\|^2+\|y\|^2} < 1$$

where y^T is the k-th row of the matrix $-h\gamma \overline{H}^{-1}T_{12}(b T_{22})$.

IV.11. Contractivity for Linear Problems

"He who loves practice without theory is like the sailor who boards ship without a rudder and compass and never knows where he may be cast".

(Leonardo da Vinci 1452-1519, cited from M. Kline, Mathematical Thought ... 1972, p. 224)

The stability analysis of the preceeding sections is based on the transformation of the Jacobian $J \approx \partial f / \partial y$ to diagonal form (see Formulas (2.5), (2.6) of Section IV.2). Especially for large-dimensional problems, however, the matrix which performs this transformation may be badly conditioned and destroy all the nice estimations which have been obtained.

Example 11.1. The discretization of the hyperbolic problem

$$\frac{\partial u}{\partial t} = \frac{\partial u}{\partial x} \tag{11.1}$$

by the method of lines leads to

$$y' = Ay , \qquad A = \lambda \begin{pmatrix} -1 & 1 & & \ & -1 & \ddots & \ & & \ddots & 1 \ & & & -1 \end{pmatrix} , \qquad \lambda = rac{1}{\Delta x} > 0 . \quad (11.2)$$

This matrix has all eigenvalues at $-\lambda$ and the above spectral stability analysis would indicate fast asymptotic convergence to zero. But neither the solution of (11.1), which just represents a travelling wave, nor the solution of (11.2), if the dimension becomes large, have this property. So our interest in this section is to obtain rigorous bounds for the numerical solution (see (2.3))

$$y_{m+1} = R(hA)y_m \tag{11.3}$$

in different norms of \mathbb{R}^n or \mathbb{C}^n . Here R(z) represents the stability function of the method employed. We have from (11.3)

$$\|y_{m+1}\| \le \|R(hA)\| \cdot \|y_m\|$$
(11.4)

(see Volume I, Section I.9, Formula (9.12)), and contractivity is assured if

$$\|R(hA)\|\leq 1 \ .$$

Euclidean Norms (Theorem of von Neumann)

"People in mathematics and science should be reminded that many of the things we take for granted today owe their birth to perhaps one of the most brilliant people of the twentieth century — John von Neumann."

(John Impagliazzo, quoted from SIAM News September 1988)

Let the considered norm be Euclidean with the corresponding scalar product denoted by $\langle \cdot, \cdot \rangle$. Then, for the solution of y' = Ay we have

$$rac{d}{dx}\|y\|^2 = rac{d}{dx}\langle y,y
angle = 2{
m Re}\,\langle y,y'
angle = 2{
m Re}\,\langle y,Ay
angle \;,$$
(11.5)

hence the solutions are decaying in this norm if

$$\operatorname{Re} \langle y, Ay
angle \leq 0 \quad ext{for all} \quad y \in \mathbb{C}^n \;.$$

This result is related to Theorem 10.6 of Section I.10, because

$$\operatorname{Re}\langle y, Ay \rangle \le \mu_2(A) \, \|y\|^2 \tag{11.7}$$

where $\mu_2(A)$ is the logarithmic norm of A (Formula (10.20) of Section I.10).

Theorem 11.2. Let the rational function R(z) be bounded for $\text{Re } z \leq 0$ and assume that the matrix A satisfies (11.6). Then in the matrix norm corresponding to the scalar product we have

$$||R(A)|| \leq \sup_{\text{Re } z \leq 0} |R(z)|$$
 (11.8)

Remark. This is a finite-dimensional version of a result of J. von Neumann (1951). A short proof is given in Hairer, Bader & Lubich (1982). The following proof is due to M. Crouzeix (unpublished).

Proof. a) Normal matrices can be transformed to diagonal form $A = QDQ^*$ where $D = \text{diag}\{\lambda_1, \ldots, \lambda_n\}$ by a unitary matrix Q (see Exercise 3 of Section I.12). In this case we have

$$||R(A)|| = ||QR(D)Q^*|| = ||R(D)|| = \max_{i=1,\dots,n} |R(\lambda_i)|$$

and (11.8) follows from the fact that the eigenvalues of A satisfy $\operatorname{Re} \lambda_i \leq 0$ by (11.6).

b) For a general A we consider the matrix function

$$A(\omega)=rac{\omega}{2}(A+A^*)+rac{1}{2}(A-A^*)$$

We see from the identity

$$\langle v, A(\omega)v
angle = ar{\omega} \mathrm{Re} \left\langle v, Av
ight
angle + i \mathrm{Im} \left\langle v, Av
ight
angle$$

that $A(\omega)$ satisfies (11.6) for all ω with Re $\omega \ge 0$, so that also the eigenvalues of $A(\omega)$ satisfy Re $\lambda(\omega) \le 0$ for Re $\omega \ge 0$. Therefore, the rational function (v fixed)

$$arphi(\omega) = \|R(A(\omega))v\|^2 = \langle R(A(\omega))v, R(A(\omega))v
angle$$

has no poles in $\operatorname{Re} \omega \geq 0$. Using A(1) = A we obtain from the maximum principle that

$$\begin{split} \|R(A)v\|^2 &= \varphi(1) \leq \sup_{y \in \mathbf{R}} \varphi(iy) \leq \sup_{y \in \mathbf{R}} \|R(A(iy))\|^2 \|v\|^2 \\ &\leq \left(\sup_{\mathbf{Re} \ z \leq 0} |R(z)|\right)^2 \|v\|^2 \ . \end{split}$$
(11.9)

The last inequality of (11.9) follows from part a), because A(iy) is a normal matrix (i.e., $A(iy)A(iy)^* = A(iy)^*A(iy)$). Formula (11.8) is now an immediate consequence of (11.9).

Corollary 11.3. If the rational function R(z) is A-stable, then the numerical solution $y_{n+1} = R(hA)y_n$ is contractive in the Euclidean norm (i.e., $||y_{n+1}|| \leq ||y_n||$), whenever (11.6) is satisfied.

Proof. A-stability implies that $\max_{\text{Re } z \leq 0} |R(z)| \leq 1.$

Corollary 11.4. If a matrix A satisfies

 $\operatorname{Re}\langle v, Av \rangle \leq \nu \|v\|^2$ for all $v \in \mathbb{C}^n$

then

$$||R(A)|| \le \sup_{\text{Re } z \le \nu} |R(z)|$$
 (11.10)

Proof. Apply Theorem 11.2 to $\tilde{R}(z) = R(z+\nu)$ and $\tilde{A} = A - \nu I$.

Study of the Contractivity Function

Guided by the above estimate, we define

$$\varphi_R(x) := \sup_{\operatorname{Re} z \le x} |R(z)| . \tag{11.11}$$

This function is monotonically increasing and, if R(z) is analytic in the half-plane Re z < x, the maximum principle implies that

$$\varphi_R(x) = \sup_{y \in \mathbb{R}} |R(x+iy)|$$
.

Examples.

1. Implicit Euler method:

$$R(z) = rac{1}{1-z} \qquad arphi_R(x) = egin{cases} R(x) & ext{if } -\infty < x < 1 \ \infty & ext{if } 1 \leq x \;. \end{cases}$$

2. The stability function of the θ -method (or of a one-stage Rosenbrock method):

$$\begin{split} R(z) &= \frac{1 + (1 - \theta)z}{1 - \theta z} \qquad \varphi_R(x) = \begin{cases} |R(\infty)| & \text{if } x \leq \xi_0 \\ R(x) & \text{if } \xi_0 \leq x < 1/\theta \\ \infty & \text{if } 1/\theta \leq x , \end{cases} \\ \end{split}$$
where $\xi_0 &= (1 - 2\theta)/(2\theta(1 - \theta)) \text{ for } 0 < \theta < 1 \text{ and } \xi_0 = -\infty \text{ for } \theta \geq 1. \end{cases}$

3. The (0,2)-Padé approximation:

4. The (1,2)-Padé approximation $R(z) = \frac{1 + z/3}{1 - 2z/3 + z^2/6}$:

$$arphi_R(x) = egin{cases} R(x) & ext{if} & -\infty < x \leq \xi_0 \ rac{\sqrt{3\sqrt{12x^2+12x+9}+10x+7}}{2(2-x)} & ext{if} & \xi_0 \leq x < 2 \ \infty & ext{if} & 2 \leq x \ , \end{cases}$$

where $\xi_0 = -6 - 3\sqrt{10}$.

5. The (2,2)-Padé approximation $R(z) = \frac{1 + z/2 + z^2/12}{1 - z/2 + z^2/12}$:

$$arphi_R(x) = egin{cases} 1 & ext{if} & -\infty < x \leq 0 \ rac{\sqrt{9+7x^2+4x\sqrt{9+3x^2}}}{3-x} & ext{if} & 0 \leq x < 3 \ \infty & ext{if} & 3 \leq x \;. \end{cases}$$

Here is a general result on the shape of $\varphi_R(x)$ in the neighbourhood of the origin:

Theorem 11.5. Let R(z) be an A-stable approximation to e^z of exact order p, i.e., $R(z) = e^z - Cz^{p+1} + \mathcal{O}(z^{p+2})$ with $C \neq 0$. If additionally |R(iy)| < 1 for $y \neq 0$ and $|R(\infty)| < 1$, then we have

a) if p is odd

$$\varphi_R(x) = e^x + \mathcal{O}(x^{p+1}) \quad for \quad x \to 0 \;. \tag{11.17}$$

b) if p is even we have (11.17) only for $(-1)^{p/2}Cx > 0$, otherwise

$$\varphi_R(x) = e^x + \mathcal{O}(x^{r+1}) \quad for \quad x \to 0 \tag{11.18}$$

for some positive rational number $r \leq p/2$.

Proof. The assumptions imply that for $x \to 0$ the maximum of $\{|R(x + iy)|; y \in R\}$ must be located near the origin. We further observe that it must lie within the order star $A = \{z \in \mathbb{C}; |R(z)| > |e^z|\}$. If p is odd, the order star consists of p+1 sectors near the origin (Lemma 4.3) and, asymptotically for $z \to \infty$, all elements of A satisfy $|z| \leq D|x|$, $D < \infty$. Therefore

$$|R(z)|=e^x+\mathcal{O}(|z|^{p+1})=e^x+\mathcal{O}(x^{p+1}) \quad ext{for} \quad x o 0 \;.$$

The same argument applies if p is even and $(-1)^{p/2}Cx > 0$. In the remaining case (p even and $(-1)^{p/2}Cx < 0$) the maximum of $\{|R(x+iy)|; y \in \mathbb{R}\}$ is attained near the imaginary axis and a more detailed analysis is necessary (see Hairer, Bader & Lubich (1982) and Exercise 2 below).

Small Nonlinear Perturbations

The above estimates, valid only for linear autonomous equations y' = Jy, can be extended to problems with small nonlinear perturbations, so-called *semi-linear* problems

$$y' = Jy + g(x, y)$$
 (11.19)

where

$$\langle y, Jy
angle \leq \mu \|y\|^2 \ \|g(x,y) - g(x,z)\| \leq L \|y - z\|$$
 (11.20)

with L assumed to be small.

Here, in the presence of nonlinearities, stability properties are obtained by estimating the *distance* of two neighbouring solutions y(x) and $\hat{y}(x)$. Instead of (11.5) we therefore have

$$rac{d}{dx} \|y(x) - \widehat{y}(x)\|^2 = 2 \langle y' - \widehat{y}', y - \widehat{y}
angle$$

which gives, after inserting (11.19) for y' and \hat{y}' , using the Cauchy-Schwarz inequality and the estimates (11.20)

$$\frac{d}{dx}\|y(x)-\widehat{y}(x)\|^2 \leq 2(\mu+L) \|y(x)-\widehat{y}(x)\|^2 . \qquad (11.21)$$

We thus have contractivity whenever $\mu + L \leq 0$.

We now want to establish the same property for the *numerical* solutions. In principle, these estimates can be carried out for all methods of this chapter; however, since the subsequent sections will deal with so many nice properties of IRK methods, we shall concentrate here on Rosenbrock methods.

Example 11.6. Consider the 1-stage Rosenbrock method

$$(I - \gamma hJ)k_1 = hf(x_0, y_0) y_1 = y_0 + k_1$$
(11.22)

with $\gamma > 0$ as a free parameter. Its stability function is

$$R(z)=rac{1+(1-\gamma)z}{1-\gamma z}$$

and we have A-stability for $\gamma \geq 1/2$. Application of (11.22) to (11.19) yields

$$y_1 = R(hJ)y_0 + (I - \gamma hJ)^{-1}hg(x_0, y_0) . \qquad (11.23)$$

From von Neumann's theorem (Corollary 11.4) we obtain $||(I-\gamma hJ)^{-1}|| \le (1-\gamma h\mu)^{-1}$ and $||R(hJ)|| \le \varphi_R(h\mu)$ with φ_R given in (11.13). If we take a second numerical solution \hat{y}_1 , also defined by (11.23), its difference to y_1 can be estimated by

$$\|y_1 - \widehat{y}_1\| \leq \left(R(h\mu) + \frac{hL}{1 - \gamma h\mu}\right)\|y_0 - \widehat{y}_0\| = \left(1 + \frac{h(\mu + L)}{1 - \gamma h\mu}\right)\|y_0 - \widehat{y}_0\|$$

whenever $\xi_0 < h\mu < 1/\gamma$ with ξ_0 given in (11.13). Therefore contractivity occurs for $\mu + L \leq 0$, as desired.

For the general Rosenbrock method (7.4) applied to problem (11.19)

$$\begin{split} k_i &= hg(x_0 + c_i h, u_i) + hJy_0 + hJ\sum_{j=1}^i (a_{ij} + \gamma_{ij})k_j \\ u_i &= y_0 + \sum_{j=1}^{i-1} a_{ij}k_j, \quad y_1 = y_0 + \sum_{i=1}^s b_i k_i \end{split}$$

we easily find the following analogue of the variation of constants formula:

Theorem 11.7. The numerical solution of a Rosenbrock method applied to (11.19) can be written as

$$y_{1} = R(hJ)y_{0} + h\sum_{i=1}^{s} b_{i}(hJ)g(x_{0} + c_{i}h, u_{i})$$

$$u_{i} = R_{i}(hJ)y_{0} + h\sum_{j=1}^{i-1} a_{ij}(hJ)g(x_{0} + c_{j}h, u_{j}), \quad i = 1, \dots, s .$$
(11.24)

Here R(z) is the stability function, $R_i(z)$ are the so-called internal stability functions and $b_i(z)$, $a_{ij}(z)$ are rational functions whose only pole is $1/\gamma$ and which satisfy $b_i(\infty) = 0$, $a_{ij}(\infty) = 0$.

Remark. For many classes of linearly implicit methods (e.g. the methods of van der Houwen (1977), Friedli (1978), Strehmel & Weiner (1982), etc.), the numerical solution can be expressed by (11.24) with certain rational functions. Thus the following analysis can be applied to these methods as well.

We now take a second numerical solution $\hat{y}_0, \hat{u}_i, \hat{y}_1$ (again defined by (11.24)), take the difference to y_1 and apply the triangle inequality. Using von Neumann's theorem (Corollary 11.4) the assumptions (11.20) then imply

$$\begin{aligned} \|\widehat{y}_{1} - y_{1}\| &\leq \varphi_{R}(h\mu) \|\widehat{y}_{0} - y_{0}\| + hL \sum_{i=1}^{s} \varphi_{b_{i}}(h\mu) \|\widehat{u}_{i} - u_{i}\| \\ \|\widehat{u}_{i} - u_{i}\| &\leq \varphi_{R_{i}}(h\mu) \|\widehat{y}_{0} - y_{0}\| + hL \sum_{j=1}^{i-1} \varphi_{a_{ij}}(h\mu) \|\widehat{e}\widehat{u}_{j} - u_{j}\| . \end{aligned}$$
(11.25)

Inserting the second inequality of (11.25) repeatedly into the first one yields

Theorem 11.8. Under the assumption (11.20) the difference of two numerical solutions of (7.4) can be estimated by

$$\|\widehat{y}_{1} - y_{1}\| \leq (\varphi_{R}(h\mu) + chL)\|\widehat{y}_{0} - y_{0}\|$$
(11.26)

where $\varphi_R(x)$ is given by (11.11) (R(z) is the stability function of (7.4)) and c is a constant depending smoothly on hL and hµ but not on ||J|| (which represents the stiffness of the problem).

This estimate shows numerical contractivity whenever $\varphi_R(h\mu) + hL^* \leq 0$. In Theorem 11.5 we have shown under certain assumptions that $\varphi_R(x) = 1 + x + o(x)$, so contractivity holds essentially for $\mu + L^* \leq 0$. In any case we have that A-stability implies

$$\|\widehat{y}_1-y_1\|\leq \left(1+hC^*
ight)\|\widehat{y}_0-y_0\|$$

for $h\mu \leq Const$. Here, C^* is a constant independent of the stiffness of (11.19).

Remark. Since the rational functions b_i and a_{ij} in (11.24) vanish at infinity, also $(1-\gamma hJ)b_i(hJ)$ and $(1-\gamma hJ)a_{ij}(hJ)$ are uniformly bounded for Jsatisfying (11.20) and for $h\mu \leq C < \gamma^{-1}$. Instead of the second condition of (11.20) we may therefore require that

$$\|(I - \gamma hJ)^{-1}h(g(x, y) - g(x, z))\| \le \ell \|y - z\| , \qquad (11.27)$$

and the statement of Theorem 11.8 holds with hL replaced by ℓ . Observe that the assumption (11.20) implies (11.27) with $\ell = hL/(1-\gamma h\mu)$. However, in some special situations the number ℓ may be significantly smaller than hL. Related techniques have been used by Hundsdorfer (1985) and Strehmel & Weiner (1987) to prove contractivity and convergence for linearly implicit methods. Recently, Ostermann (1988) applied these ideas to nonlinear singular perturbation problems, where $hL = \mathcal{O}(h\varepsilon^{-1})$ with some very small ε $(\varepsilon \ll h)$, but ℓ can be bounded independently of ε^{-1} .

Contractivity in $\|\cdot\|_{\infty}$ and $\|\cdot\|_{1}$

The study of contractivity in general norms has been carried out mainly by Spijker (1983, 1985) and his collaborators. Similar techniques of proof can be found in Bolley & Crouzeix (1978), where a related problem (monotonicity) is treated.

The following theorem gives a condition which is *necessary* for contractivity just for the special equation (11.2) and for one of the two norms $\|\cdot\|_{\infty}$ or $\|\cdot\|_1$. Later, the same condition will also turn out to be *sufficient* for general problems and *all* norms.

Theorem 11.9. Let A be the n-dimensional matrix of (11.2) with fixed $\lambda \geq 0$. For a rational function R(z) satisfying R(0)=1 we have

$$||R(hA)||_{\infty} \leq 1 \quad in \ all \ dimensions \quad n = 1, 2, \dots \tag{11.28}$$

only if

$$R^{(j)}(x) \ge 0$$
 for $x \in [-\lambda h, 0]$ and $j = 0, 1, 2, ...$ (11.29)

(The same statement is true, if $\|\cdot\|_{\infty}$ in (11.28) is replaced by $\|\cdot\|_{1}$).

Proof. We put h=1 and write $A=-\lambda I+\lambda N$, where N is a nilpotent matrix. In a suitable norm, ||N|| is arbitrarily small and therefore we have by Taylor expansion and $N^n = 0$

$$R(A) = \sum_{j=0}^{n-1} R^{(j)}(-\lambda) \frac{(\lambda N)^j}{j!}$$

This means (e.g. for n=4)

$$R(A) = \begin{pmatrix} R(-\lambda) & \lambda R'(-\lambda) & \frac{\lambda^2}{2!} R''(-\lambda) & \frac{\lambda^3}{3!} R'''(-\lambda) \\ R(-\lambda) & \lambda R'(-\lambda) & \frac{\lambda^2}{2!} R''(-\lambda) \\ R(-\lambda) & \lambda R'(-\lambda) \\ R(-\lambda) & R(-\lambda) \end{pmatrix}$$

Application of Formula (I.9.11') shows that $||R(A)||_{\infty} \leq 1$ (or $||R(A)||_1 \leq 1$) is equivalent to

$$\sum_{j=0}^{n-1} |R^{(j)}(-\lambda)| \frac{\lambda^j}{j!} \leq 1.$$
 (11.30)

If (11.30) is valid for all $n \ge 1$, the series

$$\sum_{j\geq 0} R^{(j)}(-\lambda) \frac{\lambda^j}{j!} \tag{11.31}$$

is absolutely convergent, and therefore we have

$$1 = R(0) = \sum_{j \ge 0} R^{(j)}(-\lambda) \frac{\lambda^{j}}{j!} \le \sum_{j \ge 0} |R^{(j)}(-\lambda)| \frac{\lambda^{j}}{j!} \le 1$$

implying $R^{(j)}(-\lambda) \ge 0$ for all $j \ge 0$. Since the Taylor expansion

$$R^{(j)}(x) = \sum_{k\geq j} R^{(k)}(-\lambda) rac{(x+\lambda)^{k-j}}{(k-j)!}$$

consists for $x \ge -\lambda$ only of non-negative terms, we have (11.29).

The next theorem shows that condition (11.29) is sufficient for contractivity in arbitrary norms. It can readily be applied to the system (11.27), since its matrix satisfies $||A+\lambda I||_{\infty} = \lambda$:

Theorem 11.10. Consider an arbitrary norm and let A be such that for some $\lambda \geq 0$,

$$\|A + \lambda I\| \le \lambda . \tag{11.32}$$

If the stability function of a method satisfies R(0) = 1 and

. ..

$$R^{(j)}(x) \ge 0$$
 for $x \in [-\varrho, 0]$ and $j = 0, 1, 2, ...$ (11.33)

then we have numerical contractivity $||R(hA)|| \leq 1$, whenever $h\lambda \leq \varrho$.

Proof. We again put h = 1. Since for $0 \le \lambda \le \rho$ we have $R^{(j)}(-\lambda) \ge 0$ for all j, the function

$$R(z) = \sum_{j \ge 0} R^{(j)}(-\lambda) \; \frac{(z+\lambda)^j}{j!} \tag{11.34}$$

satisfies $|R(z)| \leq R(-\lambda+r)$ for all complex z in the disk $|z+\lambda| \leq r$. This property and (11.33) imply that no pole of R(z) can lie in $|z+\lambda| \leq \lambda$, so that the radius of convergence of (11.34) is strictly larger than λ . Consequently we have from (11.32)

$$R(A) = \sum_{j \ge 0} R^{(j)}(-\lambda) \; \frac{(A+\lambda I)^j}{j!} \; . \tag{11.35}$$

The triangle inequality applied to (11.35) yields the conclusion.

Study of the Threshold Factor

Definition 11.11. The largest ρ satisfying (11.33) is called the *threshold*factor of R(z).

Example 11.12. The implicit Euler method, for which

$$R^{(j)}(x) = rac{j!}{(1-x)^{j+1}} \;, \;\;\; j = 0, 1, 2, \ldots \;,$$

satisfies (11.33) for all $\rho > 0$. It possesses a threshold-factor $\rho = \infty$.

Example 11.13 (Threshold-factor for Padé-approximations). The derivatives of the polynomials

$$R_{k0}(z) = 1 + z + rac{z^2}{2!} + \ldots + rac{z^k}{k!}$$

are easily calculated; the most dangerous one is 1+z, therefore $\varrho = 1$ for all k.

The Padé approximations $R_{k1}(z)$ possess one simple pole only, so they can be written in the form

$$R_{k1}(z) = rac{a}{1-bz} + ext{ polynomial in } z \ ,$$

which has only a finite number of derivatives which can change sign (see Example 11.12). The numerical values obtained are shown in Table 11.1.

The functions $R_{k2}(z)$ possess no real pole (see Section IV.4). But the property $|R(z)| \leq R(-\rho+r)$ for $|z+\rho| \leq r$ (see proof of Theorem 11.10) means that the maximum of |R(z)| on the circle with center $-\rho$ and radius r is assumed to the right on the real axis. For increasing r, the first pole

met by this circle must therefore be real and to the right of $-\varrho$. This is not possible here and therefore the approximations $R_{k2}(z)$ never satisfy property (11.33). This is indicated by an asterisk (*) in Table 11.1.

All further values of Table 11.1 were computed using the decomposition of R(z) into partial fractions and are cited from Kraaijevanger (1986) and van de Griend & Kraaijevanger (1986).

k	0	1	2	3	4	5	6
j=0		1	1	1	1	1	1
j=0 j=1 j=2 j=3 j=4	∞	2	2.196	2.350	2.477	2.586	2.682
j=2	*	*	*	*	*	*	*
j=3	0.584	1.195	1.703	2.208	2.710	3.212	3.713
j=4	*	*	*	*	*	*	*
j=5	0.353	0.770	1.081	1.424	1.794	2.185	2.590

Table 11.1. Threshold-factors of Padé approximations

It is curious to observe that in this table the methods with the largest threshold-factors are precisely those which are not A-stable. An exception is the implicit Euler method (k=0, j=1) for which $\rho = \infty$.

Absolutely Monotonic Functions

"... on peut définir la fonction e^x comme la seule fonction absolument monotone sur tout le demi-axe négatif qui prend à l'origine, ainsi que sa dérivée première [sic] la valeur un." (S. Bernstein 1928)

A thorough study of real functions satisfying (11.33) was begun by S. Bernstein (1914) and continued by F. Hausdorff (1921). Such functions are called *absolutely monotonic* in $[-\varrho, 0]$. Later, S. Bernstein (1928) gave the following characterization of functions which are absolutely monotonic in $(-\infty, 0]$ (see also D.V. Widder 1946).

Theorem 11.14 (Bernstein 1928). A necessary and sufficient condition that R(x) be absolutely monotonic in $(-\infty, 0]$ is that

$$R(x) = \int_0^\infty e^{xt} d\alpha(t) , \qquad (11.36)$$

where $\alpha(t)$ is bounded and non-decreasing and the integral converges for $-\infty < x \leq 0$.

This is a hard result and the main key for the next two theorems. It does not seem to permit an elementary and easy proof. We therefore refer to the original literature, S. Bernstein (1928). For a more recent description see e.g. Widder (1946), p. 160.

From this result we immediately get the "limit case $\lambda \to \infty$ " of Theorem 11.10, which also holds for an arbitrary norm.

Theorem 11.15. Let R(x) be absolutely monotonic in $(-\infty, 0]$, R(0) = 1and A a matrix with non-positive logarithmic norm $\mu(A) \leq 0$, then

$$\|R(A)\|\leq 1$$
 .

Proof. By Theorem I.10.6 we have for the solution $y(x) = e^{Ax}y_0$ of y' = Ay that $||y(x)|| \le ||y_0||$, hence also $||e^{Ax}|| \le 1$ for $x \ge 0$. The statement now follows from

$$\|R(A)\| = \|\int_0^\infty e^{At} dlpha(t)\| \le \int_0^\infty \|e^{At}\| dlpha(t) \le \int_0^\infty dlpha(t) = R(0) = 1$$

since $\alpha(t)$ is non-decreasing.

The following result proves that no Runge-Kutta method of order p>1 can have a stability function which is absolutely monotonic in $(-\infty, 0]$.

Theorem 11.16. If R(x) is absolutely monotonic in $(-\infty, 0]$ and $R(x) = 1+x+\frac{x^2}{2}+\mathcal{O}(x^3)$ for $x \to 0$, then $R(x)=e^x$.

Proof (Bolley & Crouzeix 1978). It follows from (11.36) that

$$R^{(j)}(0)=\int_0^\infty t^j dlpha(t)\;.$$

Since R(0) = R'(0) = R''(0) = 1, this yields

$$\int_0^\infty (1-t)^2 d\alpha(t) = 0 \; .$$

Consequently, $\alpha(t)$ must be the Heaviside function $(\alpha(t) = 0 \text{ for } t \leq 1 \text{ and } \alpha(t) = 1 \text{ for } t > 1)$. Inserted into (11.36) this gives $R(x) = e^x$.

Exercises

- 1. Prove Formula (11.14). For given x, study the set of y-values for which |R(x+iy)| attains its maximum.
- 2. (Hairer, Bader & Lubich 1982). Show that the contractivity function (11.11) for an A-stable R(z) of order $p \ge 1$ satisfies

$$\varphi_R(x) > e^x$$
 for all $x \neq 0$.

Hint. For given x, cut the order star by the parallel lines $\{x+iy, y \in \mathbb{R}\}$.

3. (Kraaijevanger 1986). Let R(z) be a polynomial of degree *s* satisfying $R(z) = e^{z} + \mathcal{O}(z^{p+1})$. Then the threshold factor ρ (Definition 11.11) is restricted by

$$arrho \leq s-p+1$$
 .

Hint. Justify the formula

$$R^{(p-1)}(z) = \sum_{j=0}^{s-p+1} lpha_j \left(1 + rac{z}{arrho}
ight)^j, \quad lpha_j \ge 0$$

and deduce the result from $R^{(p-1)}(0) = R^{(p)}(0) = 1$.

4. Let ρ be the threshold factor of the rational function R(z). Show that its stability domain contains the disc $|z+\rho| \leq \rho$.

IV.12. B-Stability and Contractivity

"Next we need a generalization of the notion of A-stability. The most natural generalization would be to consider the case that x(t) is a uniform-asymptotically stable solution ... in the sense of Liapunov theory ... but this case seems to be a little too wide." (G. Dahlquist 1963)

"The theoretical analysis of the application of numerical methods on stiff nonlinear problems is still fairly incomplete." (G. Dahlquist 1975)

Here we enter a new era, the study of stability and convergence for general *non-linear* systems. All the "crimes" and diverse omissions of which we have been guilty in earlier sections, especially in Section IV.2, shall now be repaired.

Large parts of Dahlquist's (1963) paper deal with a generalization of A-stability to nonlinear problems. His search for a sufficiently general class of nonlinear systems was finally successful 12 years later. In his talk at the Dundee conference of July 1975 he proposed to consider differential equations satisfying a one-sided Lipschitz condition and he presented some first results for multistep methods. J.C. Butcher (1975) then extended (on the flight back from the conference) the ideas to implicit Runge-Kutta methods and the concept of B-stability was born.

One-Sided Lipschitz Condition

We consider the nonlinear differential equation

$$y' = f(x, y) \tag{12.1}$$

such that for the Euclidean norm the one-sided Lipschitz condition

$$\langle f(x,y) - f(x,z), y - z \rangle \le
u ||y - z||^2$$
 (12.2)

holds. The number ν is the one-sided Lipschitz constant of f. This definition is motivated by the following

Lemma 12.1. Let f(x, y) be continuous and satisfy (12.2). Then, for any two solutions y(x) and z(x) of (12.1) we have

$$\|y(x)-z(x)\| \leq \|y(x_0)-z(x_0)\| \cdot e^{\nu(x-x_0)}$$
 for $x \geq x_0$.

Proof. Differentiation of $m(x) = ||y(x) - z(x)||^2$ yields

$$m'(x) = 2ig\langle f(x,y(x)) - f(x,z(x)) \;,\; y(x) - z(x)ig
angle \leq 2
u\; m(x) \;.$$

This differential inequality can be solved to give (see Theorem I.10.3)

$$m(x) \leq m(x_0) e^{2
u(x-x_0)} \qquad {
m for} \ \ x \geq x_0 \ ,$$

which is equivalent to the statement.

Remarks. a) In an open convex set, condition (12.2) is equivalent to $\mu(\frac{\partial f}{\partial u}) \leq$ ν (see Section I.10, Exercise 6), if f is continuously differentiable. Lemma 12.1 then becomes a special case of Theorem I.10.6.

b) For complex-valued y and f condition (12.2) has to be replaced by

 $\operatorname{Re} \left\langle f(x,y) - f(x,z), y - z \right\rangle \leq \nu \, \|y - z\|^2, \qquad y, z \in \mathbb{C}^n \,,$ (12.2')and Lemma 12.1 remains valid.

B-Stability

Whenever $\nu \leq 0$ in (12.2) the distance between any two solutions of (12.1) is a non-increasing function of x. The same property is then also desirable for the numerical solutions. We consider here implicit Runge-Kutta methods

$$y_1 = y_0 + h \sum_{i=1}^{s} b_i f(x_0 + c_i h, g_i)$$
, (12.3a)

$$g_i = y_0 + h \sum_{j=1}^{s} a_{ij} f(x_0 + c_j h, g_j) , \qquad i = 1, \dots, s .$$
 (12.3b)

Definition 12.2 (Butcher 1975). A Runge-Kutta method is called *B-stable*, if the contractivity condition

$$\langle f(x,y)-f(x,z),y-z
angle\leq 0$$
 (12.2")

implies for all $h \ge 0$

$$\|y_1 - \widehat{y}_1\| \leq \|y_0 - \widehat{y}_0\|$$
.

Here, y_1 and \widehat{y}_1 are the numerical approximations after one step starting with initial values y_0 and \hat{y}_0 , respectively.

Clearly, B-stability implies A-stability. This is seen by applying the above definition to $y' = \lambda y, \lambda \in \mathbb{C}$ or, more precisely, to

$$\begin{pmatrix} y_1' \\ y_2' \end{pmatrix} = \begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} .$$
(12.4)

Example 12.3. For the collocation methods based on Gaussian quadrature a simple proof of B-stability is possible (Wanner 1976). We denote by u(x)

and $\hat{u}(x)$ the collocation polynomials (see Volume I, page 206) for the initial values y_0 and \hat{y}_0 and differentiate the function $m(x) = ||u(x) - \hat{u}(x)||^2$. At the collocation points $\xi_i = x_0 + c_i h$ we thus obtain

$$m'(\xi_i) = 2ig\langle f(\xi_i, u(\xi_i)) - f(\xi_i, \widehat{u}(\xi_i)) \;, \; u(\xi_i) - \widehat{u}(\xi_i) ig
angle \leq 0 \;.$$

The result then follows from the fact that Gaussian quadrature integrates the polynomial m'(x) (which is of degree 2s-1) exactly and that the weights b_i are positive:

$$egin{aligned} &\|y_1 - \widehat{y}_1\|^2 = m(x_0 + h) = m(x_0) + \int_{x_0}^{x_0 + h} m'(x) \, dx \ &= m(x_0) + h \sum_{i=1}^s b_i m'(x_0 + c_i h) \leq m(x_0) = \|y_0 - \widehat{y}_0\|^2 \ . \end{aligned}$$

Algebraic Stability

An algebraic criterion for B-stability was found independently by Burrage & Butcher (1979) and Crouzeix (1979). The result is

Theorem 12.4. If the coefficients of a Runge-Kutta method (12.3) satisfy i) $b_i \ge 0$ for $i=1,\ldots,s$, ii) $M = (m_{ij}) = (b_i a_{ij} + b_j a_{ji} - b_i b_j)_{i,j=1}^s$ is non-negative definite, then the method is B-stable.

Definition 12.5. A Runge-Kutta method satisfying i) and ii) is called *algebraically stable*.

Proof of Theorem 12.4. We introduce the differences

$$egin{aligned} \Delta y_0 &= y_0 - \widehat{y}_0 \ , \qquad \Delta y_1 &= y_1 - \widehat{y}_1 \ , \qquad \Delta g_i &= g_i - \widehat{g}_i \ , \ \Delta f_i &= f(x_0 + c_i h, g_i) - f(x_0 + c_i h, \widehat{g}_i) \ , \end{aligned}$$

and subtract the Runge-Kutta formulas (12.3) for y and \widehat{y}

$$\Delta y_1 = \Delta y_0 + h \sum_{i=1}^s b_i \Delta f_i , \qquad (12.5a)$$

$$\Delta g_i = \Delta y_0 + h \sum_{j=1}^s a_{ij} \Delta f_j . \qquad (12.5b)$$

194 IV. Stiff Problems — One Step Methods

Next we take the square of Formula (12.5a)

$$\|\Delta y_1\|^2 = \|\Delta y_0\|^2 + 2h \sum_{i=1}^s b_i \langle \Delta f_i, \Delta y_0 \rangle + h^2 \sum_{i=1}^s \sum_{j=1}^s b_i b_j \langle \Delta f_i, \Delta f_j \rangle .$$
(12.6)

The main idea of the proof is now to compute Δy_0 from (12.5b) and insert this into (12.6). This gives

$$\|\Delta y_1\|^2 = \|\Delta y_0\|^2 + 2h \sum_{i=1}^{s} b_i \langle \Delta f_i, \Delta g_i \rangle - h^2 \sum_{i=1}^{s} \sum_{j=1}^{s} m_{ij} \langle \Delta f_i, \Delta f_j \rangle .$$
(12.7)

The statement now follows from the fact that $\langle \Delta f_i, \Delta g_i \rangle \leq 0$ by (12.2") and that $\sum_{i,j=1}^{s} m_{ij} \langle \Delta f_i, \Delta f_j \rangle \geq 0$ (see Exercise 2).

Example 12.6. For the SDIRK method of Table 7.2 (Chapter II) the weights b_i are seen to be positive and the matrix M becomes

$$M=(\gamma-rac{1}{4})\cdotinom{1}{-1}inom{-1}{-1}$$

For $\gamma \geq 1/4$ this matrix is non-negative definite and therefore the Runge-Kutta method is *B*-stable. Exactly the same condition was obtained by studying its *A*-stability (c.f. (3.10)).

Some Algebraically Stable IRK Methods

"La première de ces propriétés consiste en ce que tous les A_k sont positifs." (T.-J. Stieltjes 1884)

The general study of algebraic stability falls naturally into two steps: the positivity of the quadrature weights and the nonnegative-definitness of the matrix M.

Theorem 12.7. Consider a quadrature formula $(c_i, b_i)_{i=1}^s$ of order p. a) If $p \ge 2s-1$ then $b_i > 0$ for all i. b) If c_i are the zeros of (5.3) (Lobatto quadrature) then $b_i > 0$ for all i.

Proof (Stieltjes 1884). The first statement follows from the fact that for $p \ge 2s-1$ polynomials of degree 2s-2 are integrated exactly, hence

$$b_i = \int_0^1 \prod_{j \neq i} \left(\frac{x - c_j}{c_i - c_j} \right)^2 dx > 0 . \qquad (12.8)$$

In the case of the Lobatto quadrature $(c_1 = 0, c_s = 1 \text{ and } p = 2s - 2)$ the factors for the indices j = 1 and j = s are taken without squaring and the same argument applies.

In order to verify condition (ii) of Theorem 12.4 we find it convenient to use the W-transformation of Section IV.5 and to consider $W^T M W$ instead of M. In vector notation $(b = (b_1, \ldots, b_s)^T, B = \text{diag}(b_1, \ldots, b_s), A = (a_{ij}))$ the matrix M becomes

$$M = BA + A^T B - bb^T {.} (12.9)$$

If we choose W according to Lemma 5.12, then $W^T B W = I$ and, since $W^T b = e_1 = (1, 0, ..., 0)^T$, condition (ii) becomes equivalent to

$$W^T M W = X + X^T - e_1 e_1^T$$
 is non-negative definite (12.10)

where $X = W^{-1}AW = W^T BAW$ as in Theorem 5.11.

Theorem 12.8. Suppose that a Runge-Kutta method with distinct c_i and positive b_i satisfies the simplifying assumptions B(2s-2), C(s-1), D(s-1) (see beginning of Section IV.5). Then the method is algebraically stable if and only if $|R(\infty)| \leq 1$ (where R(z) denotes the stability function).

Proof. Since the order of the quadrature formula is $p \ge 2s-2$ the matrix W of Lemma 5.12 is

$$W = W_G D, \quad D = \text{diag}(1, \dots, 1, \alpha^{-1})$$
 (12.11)

where $W_G = (P_{j-1}(c_i))_{i,j=1}^s$ as in (5.21) and $\alpha^2 = \sum_{i=1}^s b_i P_{s-1}^2(c_i) \neq 0$. Using the relation (observe that $W^T B W = I$)

$$X = W^{-1}AW = D^{-1}W_{G}^{-1}AW_{G}D = DW_{G}^{T}BA(W_{G}^{T}B)^{-1}D^{-1}$$

and applying Lemma 5.7 with $\eta = s - 1$ and Lemma 5.8 with $\xi = s - 1$ we obtain

$$X = \begin{pmatrix} 1/2 & -\xi_1 & & \\ \xi_1 & 0 & & \\ & & -\xi_{s-2} & \\ & & \xi_{s-2} & 0 & -\alpha\xi_{s-1} \\ & & & \alpha\xi_{s-1} & \beta \end{pmatrix}$$

If this matrix is inserted into (12.10) then, marvellous surprise, everything cancels with the exception of β . Therefore, condition (ii) of Theorem 12.4 is equivalent to $\beta \geq 0$.

Using the representation (5.31) of the stability function we obtain by developing the determinants

$$|R(\infty)| = \left|\frac{\det(X - e_1 e_1^T)}{\det X}\right| = \left|\frac{\beta d_{s-1} - \alpha^2 \xi_{s-1}^2 d_{s-2}}{\beta d_{s-1} + \alpha^2 \xi_{s-1}^2 d_{s-2}}\right|$$
(12.12)

where $d_k = k!/(2k)!$ is the determinant of the k-dimensional matrix X_G of (5.13). Since $\alpha^2 \xi_{s-1}^2 d_{s-2} > 0$, the expression (12.12) is bounded by 1 iff $\beta \geq 0$. This proves the statement.

Comparing these theorems with Table 5.13 yields

Theorem 12.9. The methods Gauss, Radau IA, Radau IIA and Lobatto IIIC are algebraically stable and therefore also B-stable.

AN-Stability

A-stability theory is based on the autonomous linear equation $y' = \lambda y$, whereas B-stability is based on general nonlinear systems y' = f(x, y). The question arises whether there is a reasonable stability theory between these two extremes. A natural approach would be to study the scalar, linear, nonautonomous equation

$$y' = \lambda(x)y, \qquad \operatorname{Re}\lambda(x) \leq 0$$
 (12.13)

where $\lambda(x)$ is an arbitrarily varying complex-valued function (Burrage & Butcher 1979, Scherer 1979). The somewhat surprising result of this subsection will be that stability for (12.13) will, for most RK-methods, be equivalent to *B*-stability.

For the problem (12.13) the Runge-Kutta method (12.3) becomes (in vector notation $g = (g_1, \ldots, g_s)^T$, $\mathbb{1} = (1, \ldots, 1)^T$)

$$g = 1y_0 + AZg, \quad Z = diag(z_1, \dots, z_s), \quad z_j = h\lambda(x_0 + c_jh) .$$
 (12.14)

Computing g from (12.14) and inserting into (12.3a) gives

$$y_1 = K(Z)y_0, \quad K(Z) = 1 + b^T Z (I - AZ)^{-1} \mathbb{1}$$
 (12.15)

Definition 12.10. A Runge-Kutta method is called AN-stable, if

$$|K(Z)| \leq 1 \quad \left\{ egin{array}{l} ext{for all } Z = ext{diag}(z_1,\ldots,z_s) ext{ satisfying Re } z_j \leq 0 \ ext{and } z_j = z_k ext{ whenever } c_j = c_k \quad (j,k=1,\ldots,s). \end{array}
ight.$$

Comparing (12.15) with (3.2) we find that

$$K(\operatorname{diag}(z,z,\ldots,z))=R(z)\;,$$
 (12.16)

the usual stability function. Further, arguing as with (12.4), *B*-stability implies *AN*-stability. Therefore we have:

Theorem 12.11. For Runge-Kutta methods we have:

$$B\text{-stable} \Rightarrow AN\text{-stable} \Rightarrow A\text{-stable}$$
.

For the trapezoidal rule $y_1 = y_0 + \frac{h}{2}[f(x_0, y_0) + f(x_1, y_1)]$ the function K(Z) of (12.15) is given by

$$K(Z) = \frac{1 + z_1/2}{1 - z_2/2} .$$
 (12.17)

For $z_2 = 0$ and $z_1 \to -\infty$ we see that this method is not AN-stable. More generally we have

Theorem 12.12 (Scherer 1979). The Lobatto IIIA and Lobatto IIIB methods are not AN-stable and therefore not B-stable.

Proof. As in Proposition 3.2 we find that

$$K(Z) = \frac{\det(I - (A - 1b^T)Z)}{\det(I - AZ)} .$$
 (12.18)

By definition, the first line of A and the last line of $A - 1b^T$ vanish for the Lobatto IIIA methods (compare also the proof of Theorem 5.5). Therefore the denominator of K(Z) does not depend on z_1 and the numerator not on z_s . If we put for example $z_2 = \ldots = z_s = 0$, the function K(Z) is unbounded for $z_1 \to -\infty$. This contradicts AN-stability.

For the Lobatto IIIB methods, one uses in a similar way that the last column of A and the first column of $A - \mathbb{1}b^T$ vanish.

The following result shows, as mentioned above, that AN-stability is closer to B-stability than to A-stability.

Theorem 12.13 (Burrage & Butcher 1979). Suppose that

$$|K(Z)| \le 1 \quad \begin{cases} \text{for all } Z = \text{diag}(z_1, \dots, z_s) \text{ with } \operatorname{Re} z_j \le 0 \\ \text{and } |z_j| \le \varepsilon \text{ for some } \varepsilon > 0 \end{cases}, \tag{12.19}$$

then the method is algebraically stable (and hence also B-stable).

Proof. We first show that

$$|K(Z)|^2 - 1 = 2\sum_{i=1}^s b_i \operatorname{Re} z_i |g_i|^2 - \sum_{i,j=1}^s m_{ij} \bar{z}_i \bar{g}_i z_j g_j , \qquad (12.20)$$

where $g = (g_1, \ldots, g_s)^T$ is a solution of (12.14) with $y_0 = 1$. To see this, we

198 IV. Stiff Problems — One Step Methods

take the square of the modulus of $K(Z) = 1 + b^T Zg$ and obtain

$$|K(Z)|^{2} = 1 + 2\sum_{i=1}^{s} b_{i} \operatorname{Re}(z_{i}g_{i}) + \sum_{i,j=1}^{s} b_{i}b_{j}\bar{z}_{i}\bar{g}_{i}z_{j}g_{j} . \qquad (12.21)$$

Multiplication of the *i*-th component of (12.14) with $\bar{z}_i \bar{g}_i$ yields

$$\bar{z}_i \bar{g}_i = \bar{z}_i |g_i|^2 - \sum_{j=1}^s a_{ij} \bar{z}_i \bar{g}_i z_j g_j . \qquad (12.22)$$

Substituting the real part of (12.22) into (12.21) gives Formula (12.20).

To prove that $b_i \ge 0$, choose $z_i = -\varepsilon < 0$ and $z_j = 0$ for $j \ne i$. Assumption (12.19) together with (12.20) implies

$$-2\epsilon b_i |g_i|^2 - m_{ii}\epsilon^2 |g_i|^2 \le 0$$
 . (12.23)

For sufficiently small ε , g_i is close to 1 and the second term in (12.23) is negligible for $b_i \neq 0$. Therefore b_i must be non-negative.

To verify the second condition of algebraic stability we choose the purely imaginary numbers $z_j = i\varepsilon\xi_j$ ($\xi_j \in \mathbb{R}$). Since again $g_i = 1 + \mathcal{O}(\varepsilon)$ for $\varepsilon \to 0$, we have from (12.20) that

$$-arepsilon^2\sum_{i,j=1}^s m_{ij}\xi_i\xi_j + \mathcal{O}(arepsilon^3) \leq 0 \; .$$

Therefore $M = (m_{ii})$ has to be non-negative definite.

Combining this result with those of Theorems 12.4 and 12.11 we obtain

Corollary 12.14. For non-confluent Runge-Kutta methods (i.e., methods with all c_j distinct) the concepts of AN-stability, B-stability and algebraic stability are equivalent.

An equivalence result (between B- and algebraic stability) for confluent RK-methods is much more difficult to prove (see Theorem 12.18 below) and will be our next goal. To this end we first have to discuss reducible methods.

Reducible Runge-Kutta Methods

For an RK-method (12.3) it may happen that for all differential equations (12.1)

i) some stages don't influence the numerical solution;

ii) several g_i are identical.

In both situations the Runge-Kutta method can be simplified to an "equivalent" one with fewer stages.

For an illustration of situation (i) consider the method of Table 12.1. Its numerical solution is independent of g_2 and equivalent to the implicit Euler solution. For the method of Table 12.2 one easily verifies that $g_1 = g_2$, whenever the system (12.3b) possesses a unique solution. The method is thus equivalent to the implicit mid-point rule.

The situation (i) above can be made more precise as follows:

Definition 12.15 (Dahlquist & Jeltsch 1979). A Runge-Kutta method is called *DJ*-reducible, if for some non-empty index set $T \subset \{1, \ldots, s\}$,

 $b_j = 0$ for $j \in T$ and $a_{ij} = 0$ for $i \notin T, j \in T$. (12.24) Otherwise it is called DJ-irreducible.

Table 12.1.DJ-reducible method			Table 12.2.S-reducible method			
1	1	0	1/2 1/2	1/2	0	
1/2	1 1/4	1/4	1/2	1/4	1/4	
	1	0		1/2	1/2	

Condition (12.24) implies that the stages $j \in T$ don't influence the numerical solution. This is best seen by permuting the stages so that the elements of T are the last ones (Cooper 1985). Then the Runge-Kutta tableau becomes that of Table 12.3, where the equivalent, reduced method is also given.

Table 12.3. DJ-reducibility

An interesting property of DJ-irreducible and algebraically stable RKmethods was discovered by Dahlquist & Jeltsch (1979): **Theorem 12.16.** A DJ-irreducible, algebraically stable Runge-Kutta method satisfies

$$b_i > 0$$
 for $i = 1, \ldots, s$.

Proof. Suppose $b_j = 0$ for some index j. Then $m_{jj} = 0$ by definition of M. Since M is non-negative definite, all elements in the j-th column of M must vanish (Exercise 12) so that $b_i a_{ij} = 0$ for all i. This implies (12.24) for the set $T = \{j | b_j = 0\}$, a contradiction to DJ-irreducibility.

An algebraic criterion for the situation (ii) was given for the first time (but incompletely) by Stetter (1973, p.127) and finally by Hundsdorfer & Spijker, 1981 (see also Butcher (1987), p.319 and Dekker & Verwer (1984), p.108).

Definition 12.17. A Runge-Kutta method is *S*-reducible, if for some partition (S_1, \ldots, S_r) of $\{1, \ldots, s\}$ with r < s we have for all l and m

$$\sum_{k \in S_m} a_{ik} = \sum_{k \in S_m} a_{jk} \quad \text{if} \quad i, j \in S_l .$$

$$(12.25)$$

Otherwise it is called S-irreducible. Methods which are neither DJ-reducible nor S-reducible are called *irreducible*.

In order to understand condition (12.25) we assume that, after a certain permutation of the stages, $l \in S_l$ for $l = 1, \ldots, r$. We then consider the *r*-stage method with coefficients

$$c_i^* = c_i, \qquad a_{ij}^* = \sum_{k \in S_j} a_{ik}, \qquad b_j^* = \sum_{k \in S_j} b_k$$
 (12.26)

Application of this new method to (12.1) yields $g_1^*, \ldots, g_r^*, y_1^*$ and one easily verifies that g_i and y_1 defined by

$$egin{array}{ccc} m{g}_{m{i}} = m{g}_{m{l}}^{*} & ext{if} & m{i} \in S_{m{l}}, & m{y}_{1} = m{y}_{1}^{*} \ , \end{array}$$

are a solution of the original method (12.3). A further example of an S-reducible method is given in Table 11.4 of Section II.11, p.249. There $S_1 = \{1, 2, 3\}$ and $S_2 = \{4\}$.

The Equivalence Theorem for S-Irreducible Methods

Theorem 12.18 (Hundsdorfer & Spijker 1981). For S-irreducible Runge-Kutta methods,

B-stable \iff algebraically stable .

Proof. Because of Corollary 12.14, which covers nearly all cases of practical importance — and which was much easier to prove — this theorem seems to be of little practical interest. However, it is a deep and difficult mathematical result which had been conjectured by many people for many years, so we reproduce its proof, which also includes the three Lemmas 12.19-12.21.

By Theorem 12.4 it is sufficient to prove that *B*-stability and *S*-irreducibility imply algebraic stability. For this we take *s* complex numbers z_1, \ldots, z_s which satisfy Re $z_j < 0$ and $|z_j| \leq \varepsilon$ for some sufficiently small $\varepsilon > 0$. We show that there exists a continuous function $f : \mathbb{C} \to \mathbb{C}$ satisfying

$$\operatorname{Re}\left\langle f(u)-f(v)\;,\;u-v
ight
angle \leq 0 \quad ext{ for all } u,v\in\mathbb{C}\;\;,$$

such that the Runge-Kutta solutions y_1, g_i and \hat{y}_1, \hat{g}_i corresponding to $y_0 = 0$, $\hat{y}_0 = 1, h = 1$ satisfy

$$f(\widehat{g}_i) - f(g_i) = z_i(\widehat{g}_i - g_i) . \qquad (12.28)$$

This yields $\widehat{y}_1 - y_1 = K(Z)$ with K(Z) given by (12.15). *B*-stability then implies $|K(Z)| \leq 1$. By continuity of K(Z) near the origin we then have $|K(Z)| \leq 1$ for all z_j which satisfy Re $z_j \leq 0$ and $|z_j| \leq \varepsilon$, so that Theorem 12.13 proves the statement.

Construction of the function f: we denote by Δg_i the solution of

$$\Delta g_i = 1 + \sum_{j=1}^s a_{ij} z_j \Delta g_j$$

(the solution exists uniquely if $|z_j| \leq \epsilon$ and ϵ is sufficiently small). With ξ, η given by Lemma 12.19 (below) we define

$$g_i = t\xi_i , \qquad f(g_i) = t\eta_i
\widehat{g}_i = g_i + \Delta g_i , \qquad f(\widehat{g}_i) = f(g_i) + z_i \Delta g_i . \qquad (12.29)$$

with t sufficiently large (to be fixed later). Because all ξ_i are distinct and $\Delta g_i = 1 + \mathcal{O}(\varepsilon)$, all g_i and \hat{g}_i are distinct for sufficiently large t, so that (12.29) is well-defined. Clearly, g_i and \hat{g}_i represent a Runge-Kutta solution for $y_0 = 0$ and $\hat{y}_0 = 1$, and (12.28) is satisfied by definition.

We next show that

$$\operatorname{Re} \langle f(u) - f(v) , u - v \rangle < 0 \quad \text{if} \quad u \neq v \quad (12.30)$$

is satisfied for $u, v \in D = \{g_1, \ldots, g_s, \widehat{g}_1, \ldots, \widehat{g}_s\}$. This follows from the construction of ξ, η , if $u, v \in \{g_1, \ldots, g_s\}$. If $u = g_i$ and $v = \widehat{g}_i$ this is a consequence of (12.28). For the remaining case $u = \widehat{g}_i, v \in D \setminus \{g_i, \widehat{g}_i\}$ we have

$$\langle f(u) - f(v), u - v \rangle = t^2 \langle \eta_i - \eta_j, \xi_i - \xi_j \rangle + \mathcal{O}(t) \quad ext{for} \quad t o \infty$$

so that (12.30) is satisfied, if t is sufficiently large. Applying Lemma 12.20 below we find a continuous function $f : \mathbb{C} \to \mathbb{C}$ that extends (12.29) and satisfies (12.27).

To complete the above proof we still need the following three lemmas:

Lemma 12.19. Let A be the coefficient matrix of an S-irreducible Runge-Kutta method. Then there exist vectors $\xi \in \mathbb{R}^s$ and $\eta = A\xi$ such that

$$(\xi_i - \xi_j)(\eta_i - \eta_j) < 0 \quad for \quad i \neq j .$$
 (12.31)

Proof (see Butcher 1982). The first idea is to put

$$\xi = 1 - \epsilon A 1$$
 with $1 = (1, 1, ..., 1)^T$

so that η becomes

$$\eta = A\xi = A1 - \varepsilon A^2 1 .$$

If $c_i \neq c_j$ for all i, j, then $\xi_i - \xi_j \neq 0$ and for ε sufficiently small we have $\eta_i - \eta_j$ of opposite sign, thus (12.31) is true.

For a proof of the remaining cases, we shall construct recursively vectors v_0, v_1, v_2, \ldots and denote by P_k the partition of $\{1, \ldots, s\}$ defined by the equivalence relation

$$i\sim j \quad \Longleftrightarrow \quad (v_q)_{oldsymbol{i}} = (v_q)_{oldsymbol{j}} \quad ext{for} \quad q=0,1,\ldots,k \; .$$

For a given partition P of $\{1, 2, \ldots, s\}$ we introduce the space

$$X(P) = \{ v \in \mathbb{R}^s; \ (v)_i = (v)_j \quad \text{if} \quad i \sim j \quad \text{with respect to } P \} \ .$$

With this notation, the method is S-irreducible if and only if

$$AX(P) \not\subset X(P)$$

for every partition other than $\{\{1\}, \{2\}, \ldots, \{s\}\}$.

We start with $v_0 = 1$ and $P_0 = \{\{1, \dots, s\}\}$ and define

$$v_{k+1} = \begin{cases} Av_k & \text{if } Av_k \notin X(P_k) \\ \omega & \text{if } Av_k \in X(P_k) \end{cases}$$

where ω is an arbitrary vector of $X(P_k)$ satisfying $Av_{k+1} \notin X(P_{k+1})$. Such a choice is possible, since the method is assumed to be S-irreducible. After

a finite number of steps, say m, we arrive at $P_m = \{\{1\}, \{2\}, \ldots, \{s\}\}$, since the number of components of P_k is increasing, and strictly increasing after every second step. Therefore all elements of the vector

$$\xi = v_0 - \varepsilon v_1 + \varepsilon^2 v_2 - \ldots + (-\varepsilon)^m v_m$$

are distinct (for sufficiently small $\varepsilon > 0$) and (12.31) is satisfied.

Lemma 12.20 (Minty 1962). Let u_1, \ldots, u_k and u'_1, \ldots, u'_k be elements of \mathbb{R}^n with

$$\langle u_i'-u_j', u_i-u_j
angle < 0 \quad \textit{for} \quad i
eq j \; .$$

Then there exists a continuous function $f : \mathbb{R}^n \to \mathbb{R}^n$ satisfying $f(u_i) = u'_i$ for i = 1, ..., k and

$$\langle f(u) - f(v), u - v \rangle \leq 0$$
 for all $u, v \in \mathbb{R}^n$.

Proof (Wakker (1985), see also Exercise 5 below). Define

$$\gamma = \max_{i
eq j} rac{\langle u_i' - u_j', u_i - u_j
angle}{\|u_i' - u_j'\|^2} < 0$$

and let

$$\widehat{u}_i = 2\gamma u'_i - u_i \; .$$

Then

$$\|\widehat{u}_i - \widehat{u}_j\| \le \|u_i - u_j\|$$

and by Lemma 12.21 there exists a continuous function $g: \mathbb{R}^n \to \mathbb{R}^n$ satisfying $g(u_i) = \hat{u}_i$, $\|g(u) - g(v)\| \leq \|u - v\|$ (i.e., g is non-expansive). The function

$$f(u)=rac{1}{2\gamma}ig(g(u)+uig)$$

then satisfies the requirements.

Lemma 12.21 (Kirszbraun 1934). Let u_1, \ldots, u_k and $u'_1, \ldots, u'_k \in \mathbb{R}^n$ be such that

$$\|u'_i - u'_j\| \le \|u_i - u_j\|$$
 for $i, j = 1, \dots, k$. (12.32)

Then there exists a continuous function $g:\mathbb{R}^n\to\mathbb{R}^n$ with $g(u_i)=u_i'$ such that

$$||g(u) - g(v)|| \le ||u - v||$$
. (12.33)

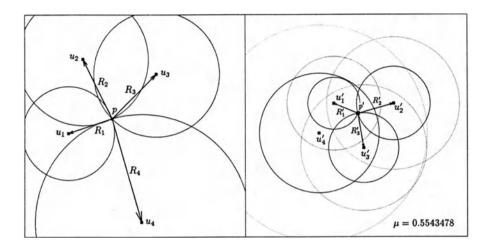


Fig. 12.1. Construction of p' = g(p)

This was once a difficult result in set-theory. Based on further work of Valentine and Mickle, I.J. Schoenberg (1953) gave a particularly nice proof:

Proof. a) The main problem is to construct for *one* given point p the extension p' = g(p) such that (12.33) remains satisfied (Fig. 12.1). This is done as follows: let $r_i = ||u_i - p||$ and consider with $\mu > 0$ the balls

$$\|\mu B_i': \|p'-u_i'\| \le \mu r_i \qquad i=1,\ldots,k \; .$$

Now let μ be the *smallest* possible value for which all these balls still have a common intersection p' (which is then unique). In virtue of (12.33), we have to show that this minimal μ satisfies

$$\mu \leq 1$$
 . (12.34)

Suppose to the contrary that $\mu > 1$ and let u'_1, \ldots, u'_m $(2 \le m \le k)$ be the active points (i.e., the points for which p' lies on the boundary of $\mu B'_i$; this can be achieved by a proper renumbering). Then put

$$R_i = u_i - p, \qquad R'_i = u'_i - p' , \qquad (12.35)$$

so that $\mu > 1$ means that

$$\|R'_i\|^2 > \|R_i\|^2 \qquad i = 1, \dots, m \;.$$
 (12.36)

Now (12.32) may be rewritten as

$$\|R'_i - R'_j\|^2 \le \|R_i - R_j\|^2$$
 .

Expanding this and subtracting appropriate inequalities (12.36) we have

$$\langle R'_i, R'_j \rangle > \langle R_i, R_j \rangle$$
 for all $i, j = 1, \dots, m$. (12.37)

Finally, we use the fact that p' lies in the convex hull of u'_1, \ldots, u'_m (otherwise the balls $\mu B'_i$ could be shrunk further)

$$p' = \sum_{i=1}^m c_i u'_i \;, \qquad c_i \ge 0 \;, \quad \sum_{i=1}^m c_i = 1 \;,$$

which gives with (12.35)

$$\sum_{i=1}^m c_i R_i' = 0$$

Multiplying (12.37) by $c_i c_j$ and summing up gives

$$0 = \left\|\sum_{i=1}^m c_i R'_i\right\|^2 > \left\|\sum_{i=1}^m c_i R_i\right\|^2,$$

a contradiction.

b) The rest is now standard (Kirszbraun): we choose a countable dense sequence of points p_1, p_2, p_3, \ldots in \mathbb{R}^n and extend g gradually to these points, so that (12.33) is always satisfied. By continuity (see (12.33)), our function is then defined everywhere. A crucial remark is that at every step our p' is uniquely determined, so we are *not* bothered with, as Wakker (1985) says so nicely, "the compactness of spheres w.r.t. the weak topology, the finite intersection property for compact sets, and the Lemma of Zorn".

This completes the proof of Lemma 12.21 and with it the proof of Theorem 12.18. $\hfill \Box$

"Nous ne connaissons pas d'exemples de méthodes qui soient B-stables au sens de Butcher et qui ne soient pas B-stables suivant notre définition." (M. Crouzeix 1979)

Remark. Burrage & Butcher (1979) distinguish between BN-stability (based on non-autonomous systems) and B-stability (based on autonomous systems). Since the differential equation constructed in the above proof (see (12.27)) is *autonomous*, both concepts are equivalent for irreducible methods.

(k, l)-Algebraic Stability

All the above theory deals only with contractivity when the one-sided Lipschitz constant ν in (12.2) is zero (see Definition 12.2). The question arises whether we can sharpen the estimate when it is known that $\nu < 0$, and whether we can obtain estimates also in the case when (12.2) holds only for some $\nu > 0$.

Definition 12.22. Let an IRK-method be given. Then for a given l we define the growth function $\varphi_B(l)$ to be the smallest number for which the estimate

$$\|y_1 - \widehat{y}_1\| \le \varphi_B(l) \|y_0 - \widehat{y}_0\|$$
 (12.38)

holds for all problems satisfying

$$\langle f(x,y) - f(x,z), y - z \rangle \le \nu ||y - z||^2$$
 (12.39)

where $\nu = l/h$ and h is the step size.

If we restrict ourselves to linear autonomous problems, then (12.38) is the same as (11.4), therefore a first result is that

$$\varphi_{\boldsymbol{R}}(l) \le \varphi_{\boldsymbol{B}}(l)$$
 (12.40)

(see (11.10) and (11.11); R(z) is the stability function of the method).

Upper bounds for $\varphi_B(l)$ are much harder to obtain, since an extension of the ideas of Theorem 12.4 to the new situation is quite tricky (Burrage & Butcher (1980), compare with Lemma V.9.2 below):

Let d_1,\ldots,d_s be arbitrary numbers with $d_i \geq 0$ and k>0. Then we compute

$$\begin{split} \|\Delta y_1\|^2 - k\|\Delta y_0\|^2 - 2h \sum_{i=1}^s d_i \langle \Delta f_i, \Delta g_i \rangle \\ &= \langle \Delta y_0 + h \sum_{i=1}^s b_i \Delta f_i, \ \Delta y_0 + h \sum_{j=1}^s b_j \Delta f_j \rangle - \\ &- k \langle \Delta y_0, \Delta y_0 \rangle - 2h \sum_{i=1}^s d_i \langle \Delta f_i, \ \Delta y_0 + h \sum_{j=1}^s a_{ij} \Delta f_j \rangle \end{split}$$
(12.41)

by using (12.5a) and (12.5b). With hypothesis (12.39) we estimate

$$egin{aligned} &2h\sum_{i=1}^{s}d_{i}ig\langle\Delta f_{i},\Delta g_{i}ig
angle\leq2l\sum_{i=1}^{s}d_{i}ig\langle\Delta g_{i},\Delta g_{i}ig
angle\ &\leq2l\sum_{i=1}^{s}d_{i}ig\langle\Delta y_{0}+h\sum_{j=1}^{s}a_{ij}\Delta f_{j},\,\Delta y_{0}+h\sum_{m=1}^{s}a_{im}\Delta f_{m}ig
angle \end{aligned}$$

and insert this into (12.41). This gives

$$egin{aligned} \|\Delta y_1\|^2 &-k\|\Delta y_0\|^2 \ &\leq -lphaig\langle\Delta y_0,\Delta y_0ig
angle - 2h\sum_{i=1}^s u_iig\langle\Delta y_0,\Delta f_iig
angle - h^2\sum_{i,j=1}^s w_{ij}ig\langle\Delta f_i,\Delta f_jig
angle \ &(12.42a) \end{aligned}$$

where

$$\alpha = k - 1 - 2l \sum_{i=1}^{s} d_{i}$$

$$u_{i} = d_{i} - b_{i} - 2l \sum_{j=1}^{s} d_{j}a_{ji}$$

$$w_{ij} = d_{i}a_{ij} + d_{j}a_{ji} - b_{i}b_{j} - 2l \sum_{j=1}^{s} d_{m}a_{mi}a_{mj}.$$
(12.42b)

m=1

We thus have the following result.

Theorem 12.23 (Burrage & Butcher 1980). If there exist $d_1, \ldots, d_s \ge 0$ such that the matrix

$$M = \begin{pmatrix} \alpha & u^T \\ u & W \end{pmatrix}$$
(12.43)

is non-negative definite, where α, u_i, w_{ij} are given in (12.42b), then

$$\|\Delta y_1\|^2 \le k \|\Delta y_0\|^2 , \qquad (12.44)$$

hence

$$\varphi_B(l) \le \sqrt{k}$$
 . (12.45)

The corresponding RK-method is then called (k, l)-algebraically stable.

Computation of the Optimal k

Since M must be non-negative, the minor W (which depends on the d_i and l only, but not on k) must also be non-negative. Suppose first that for a given l the d_i are chosen such that W is strictly positive. Then expanding det M by the first column shows that

$$\det M = k \cdot p_1(d_1, \dots, d_s, l) + p_2(d_1, \dots, d_s, l)$$
(12.46)

where p_1 and p_2 are polynomials and $p_1 = \det W > 0$. A well-known theorem of linear algebra (due to Jacobi (1847) and Cauchy; see e.g. Gantmacher

(1954), Chapter X, Sections 3 and 4) states that a matrix is positive definite iff all principal minors (Fig. 12.2, left) are positive. It remains true, of course,

Fig. 12.2. Principal Minors

if we reverse the variables and consider the *lower* principal minors (Fig. 12.2, right). Therefore, if W is positive definite and det M > 0, we have also M positive definite. Hence the smallest possible value of k for non-negativity of M in (12.46) is given by det M = 0, i.e.,

$$k = -\frac{p_2(d_1, \dots, d_s, l)}{p_1(d_1, \dots, d_s, l)} .$$
(12.47)

This rational function must be minimized over the domain where $d_i \ge 0$ and W is positive definite. Sometimes, the minimal solution lies on the *boundary* where det W = 0 and we must then have

$$p_1(d_1, \dots, d_s, l) = 0$$
 and $p_2(d_1, \dots, d_s, l) = 0$. (12.48)

Several similarity transformations of M can simplify these calculations (see Exercises 9 and 10 below).

Example 12.24. Consider the θ -method $(s=1, a_{11}=\theta, b_1=1)$ for which

$$M=egin{pmatrix} k-1-2ld&d-1-2ld heta\ d-1-2ld heta&\ d-1-2ld heta&\ 2d heta(1-l heta)-1 \end{pmatrix} \,.$$

Here (12.47) gives

$$k = (1 + 2ld) + \frac{(d - 1 - 2ld\theta)^2}{2d\theta(1 - l\theta) - 1} .$$
 (12.49)

From $\partial k/\partial d = 0$ we obtain the two solutions

$$d = \frac{1 + l(1 - \theta)}{1 - l\theta} \quad \text{or} \quad d = \frac{1 - \theta}{\theta} ; \qquad (12.50)$$

only the larger one satisfies the non-negativity condition $2d\theta(1-l\theta)-1 \ge 0$. Inserted into (12.49), this gives

$$k = \left(\frac{1+l(1-\theta)}{1-l\theta}\right)^2 \quad \text{or} \quad k = \left(\frac{1-\theta}{\theta}\right)^2 \tag{12.51}$$

respectively. Comparing with (11.13), we find that for this method

$$\varphi_B(l) = \varphi_R(l)$$
.

Example 12.25. Consider the Radau IIA method with s = 2 of Table 5.5. Here we obtain after a straightforward (but tedious, if done by hand) calculation

$$\det M = k \left\{ d_1 \left(-\frac{1}{12} + \frac{l}{18} \right) - \frac{d_1^2}{144} + d_1 d_2 \left(\frac{13}{24} - \frac{4l}{9} + \frac{l^2}{9} \right) - \frac{9d_2^2}{16} \right\} \\ + \left\{ \frac{d_1^2}{9} + d_1^2 d_2 \left(-\frac{2}{3} + \frac{2l}{9} \right) + d_1 d_2^2 \left(\frac{2}{3} + \frac{2l}{9} \right) \right\}.$$
(12.52)

The solution on the boundary $(p_1 = p_2 = 0, \text{ see } (12.48))$ is quite easily found as

$$d_1 = \frac{(3+4l)^2}{4(3+4l-2l^2)} , \qquad d_2 = \frac{3+4l}{4(3+4l-2l^2)}$$
(12.53)

which gives from (12.47), using de l'Hôpital's rule,

$$k=rac{(3+4l)^2}{(3-2l)(3+4l-2l^2)}$$

A second solution, for which $-p_2/p_1$ is minimized in the interior, is more difficult to find. The result is

$$d_1 = \frac{9}{(3-l)(5-2l)}$$
, $d_2 = \frac{2}{5-2l}$ with $k = \frac{16}{(5-2l)^2}$. (12.54)

This leads to the estimate (Burrage & Butcher 1980)

$$arphi_{B}(l) \leq egin{cases} rac{4}{5-2l} & ext{if} \ \ l \leq rac{9-3\sqrt{17}}{8} \ rac{3+4l}{\sqrt{(3-2l)(3+4l-2l^2)}} & ext{if} \ \ rac{9-3\sqrt{17}}{8} \leq l < rac{3}{2} \ . \end{cases}$$

This time, when compared with (11.15), we do *not* obtain the same estimate as for the linear autonomous case.

Example 12.26. Finally we choose the Gauss method with s = 2 of Table 5.1. Here, we use the transformation of Burrage (see Exercise 10) which converts the matrix M into a Hankel form

$$H=egin{pmatrix} h_{0} & h_{1} & h_{2} \ h_{1} & h_{2} & h_{3} \ h_{2} & h_{3} & h_{4} \end{pmatrix}$$

with

$$\begin{split} h_0 &= k - 1 - 3lp \\ h_1 &= -1 + p(18 - 18l) + 6ml \\ h_2 &= -1 + p(18 - 12l) + m(-6 + 6l) \\ h_3 &= -1 + p(18 - 9l) + m(-9 + 5l) \\ h_4 &= -1 + p(18 - 7l) + m(-10 + 4l) \end{split} \tag{12.56}$$

210 IV. Stiff Problems — One Step Methods

where

$$p = rac{d_1 + d_2}{18} \;, \qquad m = \sqrt{3} \; rac{(d_1 - d_2)}{18}$$

Guided by a numerical study of the function (12.47), we search for the solution on the *boundary* (12.48). Then *H* becomes rank one and we must have

$$h_1h_3 - h_2^2 = 0$$
 and $h_2h_4 - h_3^2 = 0$

Developing these expressions and putting $p = a \cdot m$, we are led to a thirddegree equation for a which factorizes as follows:

$$\left(a\cdot 3l-(l+3)
ight)\,(3a^2l^2-3-l^2)=0$$
.

The interesting solution is $a = \sqrt{3 + l^2}/(l\sqrt{3})$ and we finally obtain, again after tedious manipulations,

$$d_{1} = \frac{3 + (1 + 2\sqrt{3}) l (l + \sqrt{3 + l^{2}})}{2(3 - l)}$$

$$d_{2} = \frac{3 + (1 - 2\sqrt{3}) l (l - \sqrt{3 + l^{2}})}{2(3 - l)}$$

$$\sqrt{k} = \frac{\sqrt{9 + 7l^{2} + 4l\sqrt{9 + 3l^{2}}}}{3 - l}, \qquad 0 \le l < 3$$
(12.57)

which is the same as $\varphi_R(l)$ in (11.16). Hence we have $\varphi_R(l) = \varphi_B(l)$. We also notice from the Taylor expansion $(l \ge 0)$

$$\varphi_B(l) = 1 + l + rac{l^2}{2} + rac{l^3}{6} + rac{l^4}{24} + rac{l^5}{72} + rac{l^6}{144} + \dots$$

that $\varphi_B(l)$ is an approximation to e^l of order 4.

Burrage (1987) has proved the result that for all other Gauss methods \sqrt{k} is an approximation to e^l for $l \ge 0$ of order at most 2 (see also Exercise 11). On the other hand, the proof of Theorem 11.5 shows that $\varphi_R(l) = e^l + \mathcal{O}(l^{2s+1})$ for the s-stage Gauss method and for $l \ge 0$. Thus \sqrt{k} cannot be equal to $\varphi_R(l)$ for s > 2.

Exercises

- 1. Prove, directly from Definition 12.2, that the implicit Euler method is B-stable.
- 2. Let M be a symmetric $s \times s$ -matrix and $\langle \cdot, \cdot \rangle$ the scalar product of \mathbb{R}^n . Then M is non-negative definite, if and only if

$$\sum_{i=1}^s \sum_{j=1}^s m_{ij} \langle u_i, u_j \rangle \geq 0 \quad ext{for all} \quad u_i \in \mathbb{R}^n$$

Hint. Use $M = Q^T D Q$ where D is diagonal.

3. Give a simple proof for the *B*-stability of the Radau IIA methods by extending the ideas of Example 12.3.

Hint. For the quadrature, based on the zeros of (5.2), we have

$$\int_{0}^{1} arphi(x) dx = \sum_{i=1}^{s} b_{i} arphi(c_{i}) + C arphi^{(2s-1)}(\xi), \quad 0 < \xi < 1$$

with C < 0 (see e.g. Abramowitz & Stegun (1964, Formula 25.4.31)).

4. (Dahlquist & Jeltsch 1987). Prove that Method I of Table 12.4 is S-reducible with respect to the partition $(\{1\},\{2,3\})$. The reduced method II itself is DJ-reducible and reduces to Method III.

For the initial value problem y' = f(y), y(0) = 1, where $f(y) = y^2$ for $y \ge 0$ and f(y) = 0 for y < 0, and for h = 2, Methods I and III have unique solutions which are different. Explain this apparent contradiction.

Table 12.4. Reduction of RK-methods

0	0	0	0				
0 1/2 1/2	0	1	-1/2	0	0 0		
1/2	0	1/2	0	1/2	0 1/2	0	0
	1	ь	-b		1 0	······	1
Method I			Μ	Method II		hod III	

5. Try to reconstruct Minty's original (unpublished) proof of Lemma 12.20, which was, as he says (Minty 1962), "patterned after Schoenberg's proof of Kirszbraun's theorem", without using Lemma 12.21.

212 IV. Stiff Problems — One Step Methods

6. a) Give a counter-example of a non-algebraically stable reducible B-stable method.

b) Give a counter-example of an irreducible AN-stable but not algebraically stable, and hence not B-stable method.

Hint. For a) see Exercise 7 below; for b) start with any algebraically stable method with, say, two stages and modify it as indicated in Table 12.5. Find conditions on the free parameters d, e, α such that the two methods are identical for equations $y' = \lambda(x)y$. This ensures AN-stability of the second method. Then play with the parameters to destroy algebraic stability.

Table 12.5. Construction of AN-stable but not B-stable method

	1			c_1	a_{11}	$a_{12} \alpha$	$a_{12}(1-\alpha)$
	<i>a</i> ₁₁			c_2	$c_2 - d$	dlpha	d(1-lpha)
<i>c</i> ₂	<i>a</i> ₂₁	a_{22}	⇒	<i>c</i> ₂	$c_2 - e$	eα	e(1-lpha)
	b_1	b_2			b_1	$b_2 \alpha$	$b_2(1-lpha)$

- 7. Show that the method of Table 12.1 is DJ-reducible, but not S-reducible; show that it is algebraically stable together with the reduced method. Show that the method of Table 12.2 is S-reducible, but not DJ-reducible; show that it is not algebraically stable, but that the reduced method is.
- (Sandberg & Shichman 1968, Vanselow 1979, Hundsdorfer 1985). Prove that Rosenbrock methods are not B-stable in the sense of Definition 11.2.

Hint. Apply the method to the scalar problem y' = f(y), $y_0 = 1$ where f(y) is a non-increasing function satisfying (for a small ε)

$$f(y) = egin{cases} -y & ext{if } |y-1| \geq 2arepsilon \ -1 & ext{if } |y-1| \leq arepsilon \ . \end{cases}$$

9. (Burrage & Butcher 1980). Show that for an RK-method with invertible A the transformation

$$T = \begin{pmatrix} 1 & 0 \\ -A^{-1} \mathbb{1} & I \end{pmatrix}$$

transforms the matrix M of (12.43) into

$$\overline{M} = T^T M T$$

with (1,1)-element $k - (R(\infty))^2$. This simplifies M, especially for methods with $R(\infty) = 0$.

10. (Burrage 1987). Let V be the $s \times s$ matrix whose (i, j)-element is jc_i^{j-1} and let

$$T = \begin{pmatrix} 1 & 0 \\ 0 & V \end{pmatrix}$$

Show that the transformed matrix

$$H = T^T M T$$

is then an $(s+1) \times (s+1)$ Hankel matrix whose (i, j)-element is h_{i+j-2} $(i, j = 1, \dots, s+1)$ where

$$h_0 = k - 1 - 2l \sum_{i=1}^{s} d_i$$

$$h_p = p \sum_{i=1}^{s} d_i c_i^{p-1} - 1 - 2l \sum_{i=1}^{s} d_i c_i^{p} \qquad (p = 1, \dots, 2s) .$$

Hint. Use the simplifying assumptions C(s) and D(s).

11. Prove that for the 3-stage Gauss method we have for $l \ge 0$

$$arphi_B(l) \geq rac{1+l/2}{1-l/2}$$

Hint. With the help of (12.18) compute K(Z) for $z_1 \to -\infty$, $z_2 = l$, $z_3 \to -\infty$.

12. Show that for a non-negative definite symmetric matrix $M = (m_{ij})$ one has

$$|m_{ij}| \leq \sqrt{m_{ii}m_{jj}}$$
 .

- 13. Interpret the meaning of the "N" in the definition for AN-stability. Check among
 - Nottinghamshire Nunc est bibendum Nota bene Nundobewunewun New Zealand No smoking Nec plus ultra Non-autonomous Nomen est omen Notre Dame Non nova, sed nove \Box (other)

and send to the authors. The first prize, a guided tour to Mont Blanc, will be drawn among the correct answers.

IV.13. Positive Quadrature Formulas and B-Stable RK-Methods

"Bien que le problème (des quadratures) ait une durée de deux cents ans à peu près, bien qu'il était l'objet de nombreuses recherches de plusieurs géomètres: Newton, Cotes, Gauss, Jacobi, Hermite, Tchébychef, Christoffel, Heine, Radeau [sic], A. Markov, T. Stitjes [sic], C. Possé, C. Andréev, N. Sonin et d'autres, il ne peut être considéré, cependant, comme suffisamment épuisé."

(V. Steklov 1918)

We shall give a constructive characterization of all irreducible B-stable Runge-Kutta methods (Theorem 13.15). Because of Theorem 12.16 we first have to study quadrature formulas with positive weights.

Quadrature Formulas and Related Continued Fractions

Steklov (1916) proved that a family of interpolatory quadrature formulas converges for all Riemann integrable functions, if all weights of the formulas are positive ("Il faut remarquer cependant que de tels théorèmes généraux ne peuvent avoir aucune valeur pratique ..."). This theorem, rediscovered around 1922 by Fejér, initiated an extensive search for quadrature formulas with positive weights. Fejér (1933, "weiter habe ich noch auf sehr kurzem Wege das folgende Resultat erhalten ...") found the result:

"If $P_s(z)$ are the Legendre polynomials normalized as in (13.4) and c_1, \ldots, c_s are the zeros of $M(z) = P_s(z) + \alpha_1 P_{s-1}(z) + \alpha_2 P_{s-2}(z)$ with $\alpha_2 \leq 0$, then the weights b_i are all positive".

The theory of B-stable methods renewed the interest in positive quadrature formulas and Burrage (1978) obtained the sharp bound

$$\alpha_2 < \frac{(s-1)^2}{4(2s-1)(2s-3)} \tag{13.1}$$

for the positivity of the b_i in the above case. This is the same as condition (5.51) in a different normalization. A short proof of this result (see "Lemma 18" of Nørsett & Wanner 1981) then led to a complete characterization of positive quadrature formulas by Sottas & Wanner (1982). An independent proof of an equivalent result was found by Peherstorfer (1981). In what follows, we give a new approach using continued fractions.

Consider a quadrature formula

$$\sum_{j=1}^{s} b_j f(c_j) \approx \int_0^1 f(x) dx$$

with distinct nodes c_i and non-zero weights b_i . The main idea is to consider the rational function

$$Q(z) = \sum_{j=1}^{s} b_j \frac{1}{z - c_j} = \frac{N(z)}{M(z)}$$
(13.2)

where, as usual, $M(z) = (z-c_1)\cdots(z-c_s)$. We first express the order of the quadrature formula in terms of the function Q(z).

Lemma 13.1. A quadrature formula is of order p if and only if Q(z), defined by (13.2), satisfies

$$Q(z) = -\log\left(1 - \frac{1}{z}\right) + \mathcal{O}\left(\frac{1}{z^{p+1}}\right) \quad for \quad z \to \infty .$$
 (13.3)

Proof. Inserting the geometric series for $(1-c_i/z)^{-1}$ into (13.2) we obtain

$$Q(z) = \sum_{k\geq 1} \left(\sum_{j=1}^s b_j c_j^{k-1}\right) rac{1}{z^k}$$

Therefore (13.3) is equivalent to

$$\sum_{j=1}^{s} b_{j} c_{j}^{k-1} = \frac{1}{k} \quad \text{for} \quad k = 1, \dots, p \; .$$

We now study the case of the Gaussian quadrature formulas, where the function (13.2) will be denoted by $Q_s^G(z) = N_s^G(z)/M_s^G(z)$; here the c_i are the zeros of the s-degree shifted Legendre polynomial

$$P_{s}(z) = \frac{s!}{(2s)!} \frac{d^{s}}{dz^{s}} \left(z^{s} (z-1)^{s} \right) , \qquad (13.4)$$

which are normalized so that the coefficient of z^s is 1. The polynomials (13.4) satisfy the recurrence relation (see Formula (5.53) or Abramowitz & Stegun, p. 782)

$$P_{s+1}(z) = \left(z - \frac{1}{2}\right) P_s(z) - \tau_s P_{s-1}(z) , \quad \tau_s = \frac{s^2}{4(4s^2 - 1)}$$
(13.5)

and $P_0(z)=1$, $P_{-1}(z)=0$. Since this quadrature formula is of optimal order

2s, it follows from (13.3) that

$$N_{s}^{G}(z) = -M_{s}^{G}(z)\log\left(1 - \frac{1}{z}\right) + \mathcal{O}\left(\frac{1}{z^{s+1}}\right) .$$
(13.6)

We now insert $M_s^G(z) = P_s(z)$ (see (13.2)) into (13.5) and multiply by $\log(1-1/z)$ (which is $\mathcal{O}(1/z)$ for $z \to \infty$). A comparison with (13.6) shows that the polynomials $N_s^G(z)$ must also satisfy the recurrence formula (13.5) (with $N_0^G(z) = 0$, $N_1^G(z) = 1$). It thus follows from elementary properties of continued fractions (Exercise 1 or Perron (1913), page 4) that

$$Q_s^G(z) = \frac{1}{\left|z - \frac{1}{2}\right|} - \frac{\tau_1}{\left|z - \frac{1}{2}\right|} - \dots - \frac{\tau_{s-1}}{\left|z - \frac{1}{2}\right|}.$$
 (13.7)

For an arbitrary quadrature formula we have

Lemma 13.2. An irreducible rational function Q(z) = N(z)/M(z) (with deg M = s, deg N = s-1) satisfies (13.3) with $p \ge 2(s-k)$, if and only if

$$Q(z) = \frac{1}{\left|z - \frac{1}{2}\right|} - \frac{\tau_1}{\left|z - \frac{1}{2}\right|} - \dots - \frac{\tau_{s-k-1}}{\left|z - \frac{1}{2}\right|} - \frac{g(z)}{\left|f(z)\right|}$$
(13.7)

with deg f = k and deg $g \leq k-1$.

Proof. From Lemma 13.1 we know that $Q(z) = Q_s^G(z) + \mathcal{O}(1/z^{2(s-k)+1})$. Therefore the first 2(s-k) coefficients in the continued fraction expansions for Q(z) and $Q_s^G(z)$ must be the same.

"Endlich sei noch die folgende Formel wegen ihrer häufigen Anwendungen ausdrücklich hervorgehoben:" (O. Perron 1913, page 5)

Lemma 13.3. The functions M(z) and N(z) of Lemma 13.2 are related to f(z) and g(z) of (13.7') as follows:

$$M(z) = P_{s-k}(z)f(z) - P_{s-k-1}(z)g(z) ,$$

$$N(z) = N_{s-k}^{G}(z)f(z) - N_{s-k-1}^{G}(z)g(z) .$$
(13.8)

Proof. This follows from the recursion (13.30) and Exercise 1 below, if we put there $b_0 = 0$, $b_1 = \ldots = b_{s-k} = z - 1/2$, $b_{s-k+1} = f(z)$ and $a_1 = 1$, $a_j = -\tau_{j-1}(j=2,\ldots,s-k)$, $a_{s-k+1} = -g(z)$.

Solving the linear system (13.8) for f(z) and g(z) gives, with the use of Exercise 2,

$$\begin{aligned} f(z) &\cdot \tau_1 \cdots \tau_{s-k-1} = N(z) P_{s-k-1}(z) - M(z) N^G_{s-k-1}(z) \\ g(z) &\cdot \tau_1 \cdots \tau_{s-k-1} = N(z) P_{s-k}(z) - M(z) N^G_{s-k}(z) . \end{aligned} \tag{13.9}$$

Number of Positive Weights

For a given rational function (13.2), the weights are determined by

$$b_i = \frac{N(c_i)}{M'(c_i)} .$$
 (13.10)

But we want our theory to work also for confluent nodes for which $M'(c_i) = 0$. Therefore we suppose that c_1, \ldots, c_m $(m \leq s)$ are the real and distinct zeros of M(z) of multiplicities l_1, \ldots, l_m . Then we let

$$b_i = \frac{N(c_i)}{M^{(l_i)}(c_i)}$$
 $i = 1, \dots, m$. (13.10')

For $l_i = 1$ this is just (13.10); otherwise we are considering the weights for the highest derivative of a Hermitian quadrature formula (see Exercise 3).

The main idea (following Sottas & Wanner 1982) is now to consider the path $\gamma(t) = (f(t), g(t))$ in the plane \mathbb{R}^2 , where f and g are the polynomials of (13.7'). For $t \to \pm \infty$ this path tends to infinity with horizontal limiting directions, since the degree of f is higher than that of g. Equation (13.8) tells us that for an irreducible Q(z) this path does not pass through the origin.

Definition 13.4. The rotation number r of γ is the integer for which $r\pi$ is the total angle of rotation around the origin for the path $\gamma(t)$ $(-\infty < t < \infty)$ measured in the negative (clockwise) sense. Counter-clockwise rotations are negative.

An algebraic definition of r is possible as

$$r = \sum_{i} \operatorname{sign} \left(f^{(l_i)}(t_i) g(t_i) \right) \,,$$

where the summation is over all real zeros of f(t) with odd multiplicity l_i .

Theorem 13.5 (Sottas & Wanner 1982). Let Q(z) = N(z)/M(z) be an irreducible rational function as in Lemma 13.2. Suppose that c_1, \ldots, c_m are the (distinct) real zeros of M(z) with odd multiplicity and denote by n_+ (respectively n_-) the number of positive (respectively negative) b_i . Further, let r be the rotation number of $\gamma = (f,g)$ (Definition 13.4). Then

$$n_{+} - n_{-} = s - k + r$$
 (13.11)

Proof. The proof is by counting the number of crossings of the vectors $\gamma(t) = (f(t), g(t))$ and $\beta(t) = (P_{s-k-1}(t), P_{s-k}(t))$, like the crossings of hands on a Swiss cuckoo clock.

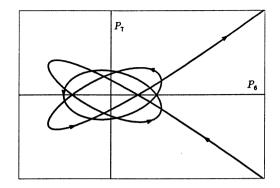


Fig. 13.1. The path $(P_{s-k-1}(t), P_{s-k}(t))$ for s-k=7

From (13.9) we see that when t equals a zero c_i of M, these two vectors are parallel in the same sense $(N(c_i) > 0)$ or in the opposite sense $(N(c_i) < 0)$. From (13.8) we observe that M(t) is just the exterior product $\gamma(t) \times \beta(t)$. By elementary geometry, and taking into account Formula (13.10'), we see that at every zero c_i with odd multiplicity we have

- i) $b_i > 0$, if the crossing of $\gamma(t)$ with $\beta(t)$ is clockwise;
- ii) $b_i < 0$, if this crossing is counter-clockwise.

Zeros of M(t) with even multiplicity don't give rise to crossings.

Since the zeros of P_{s-k} and P_{s-k-1} interlace (see e.g. Theorem 3.3.2 of Szegö 1939), the vector $\beta(t)$ turns counter-clockwise with a total angle of $-(s-k)\pi$ (see Fig.13.1). The vector $\gamma(t)$ turns with a total angle $r\pi$ measured clockwise (Definition 13.4). Since the limiting directions of $\gamma(t)$ and $\beta(t)$ are different (horizontal for $\gamma(t)$ and vertical for $\beta(t)$), $\gamma(t)$ must cross $\beta(t)$, as t increases from $-\infty$ to $+\infty$, exactly s-k+r times more often clockwise than counter-clockwise. This gives Formula (13.11).

Corollary 13.6. Under the assumptions of Theorem 13.5, all zeros of M(z) are real and simple, and the b_i are positive if and only if

$$r=k$$
.

Proof. r = k means by (13.11) that $n_+ - n_- = s$. Because of $n_- \ge 0$ and $n_+ \le s$, this is equivalent to $n_+ = s$ and $n_- = 0$.

Characterization of Positive Quadrature Formulas

The following theorem gives a constructive characterization of all quadrature formulas with positive weights.

Theorem 13.7. Let

$$\sigma_1 < arrho_1 < \sigma_2 < arrho_2 < \ldots < arrho_{k-1} < \sigma_k$$

be arbitrary real numbers and C a positive constant. Then putting

$$f(z) = (z - \sigma_1) \dots (z - \sigma_k), \quad g(z) = C(z - \varrho_1) \dots (z - \varrho_{k-1}) , \quad (13.12)$$

computing M(z), N(z) from (13.8), taking c_1, \ldots, c_s as the zeros of M(z)and b_i from (13.10), one obtains all quadrature formulas with positive weights of order $p \ge 2(s-k)$. If $C = \tau_{s-k}$ the order is $p \ge 2(s-k)+1$.

Proof. The functions f(z) and g(z) are irreducible, so that also the fraction N(z)/M(z) is irreducible by (13.9). The statement now follows from Corollary 13.6, since the polynomials (13.12) are all possible polynomials for which r = k. The stated order properties follow from Lemma 13.2.

Example 13.8. Let c_1, \ldots, c_s be the zeros of

$$M(z) = P_{s}(z) + \alpha_{1} P_{s-1}(z) + \alpha_{2} P_{s-2}(z) . \qquad (13.13)$$

In order to study when the corresponding quadrature formula has positive weights, we use (13.5) to write (13.13) as

$$M(z) = P_{s-1}(z) \left(z - \frac{1}{2} + \alpha_1 \right) - P_{s-2}(z) (\tau_{s-1} - \alpha_2) .$$

Consequently $f(z) = z - 1/2 + \alpha_1$, $g(z) = \tau_{s-1} - \alpha_2$ and Theorem 13.7 implies that the zeros of M(z) are real and the weights positive, if and only if $\alpha_2 < \tau_{s-1}$, hence (13.1) is proved.

For k > 1 the rotation number r of (f(t), g(t)) can be computed with Sturm's algorithm (Lemma 13.3 of Section I.13). Consider, for example,

$$\begin{split} M(z) &= P_s(z) + \alpha_1 P_{s-1}(z) + \alpha_2 P_{s-2}(z) + \alpha_3 P_{s-3}(z) \\ &= P_{s-2}(z) \big[(z - \frac{1}{2})(z - \frac{1}{2} + \alpha_1) + \alpha_2 - \tau_{s-1} \big] \\ &\quad - P_{s-3}(z) \big[\tau_{s-2}(z - \frac{1}{2} + \alpha_1) - \alpha_3 \big] \; . \end{split}$$

Application of Lemma I.13.3 to the polynomials $f(z) = (z - \frac{1}{2})(z - \frac{1}{2} + \alpha_1) + \alpha_2 - \tau_{s-1}$ and $g(z) = \tau_{s-2}(z - \frac{1}{2} + \alpha_1) - \alpha_3$ shows that the corresponding quadrature

formula has positive weights iff

$$\frac{\alpha_3}{\tau_{s-2}} \left(\alpha_1 - \frac{\alpha_3}{\tau_{s-2}} \right) - \alpha_2 + \tau_{s-1} > 0 , \qquad (13.14)$$

a result first found by Burrage (1978).

Necessary Conditions for Algebraic Stability

We now turn our attention to algebraic stability. We again use the notation $B(p), C(\eta), D(\xi)$ of Section IV.5.

Lemma 13.9 (Burrage 1982). Consider Runge-Kutta methods, which satisfy B(2) and the second condition for algebraic stability (i.e. M non-negative). Then

- a) C(k) implies B(2k-1);
- b) D(k) implies B(2k-1).

Proof. Instead of considering M, we work with the transformed matrix $\widehat{M} = V^T M V$ where $V = (c_i^{j-1})_{i,j=1}^s$ is the Vandermonde matrix. The elements of \widehat{M} are given by

$$\widehat{m}_{qr} = \sum_{i=1}^{s} b_i c_i^{q-1} \sum_{j=1}^{s} a_{ij} c_j^{r-1} + \sum_{j=1}^{s} b_j c_j^{r-1} \sum_{i=1}^{s} a_{ji} c_i^{q-1} - \sum_{i=1}^{s} b_i c_i^{q-1} \sum_{j=1}^{s} b_j c_j^{r-1} .$$
(13.15)

We further introduce

$$g_r = r \sum_{j=1}^s b_j c_j^{r-1} - 1$$

so that $B(\nu)$ is equivalent to $g_r = 0$ $(r = 1, ..., \nu)$. Then C(k) simplifies (13.15) to

$$\widehat{m}_{qr} = rac{1}{q \cdot r} \left(g_{q+r} + 1 - (g_q + 1)(g_r + 1)
ight) \qquad q \leq k, \ r \leq k \ .$$

Similarly, D(k) implies

$$\widehat{m}_{qr} = -rac{1}{q\cdot r}\left(g_{q+r} + g_q\cdot g_r
ight) \qquad q\leq k, \; r\leq k \; .$$

We now start with the hypothesis B(2) i.e. B(2l) for l=1. This means that $g_1 = \ldots = g_{2l} = 0$, so that, in both cases, $\widehat{m}_{ll} = 0$. But if for a non-negative definite matrix a diagonal element is zero, the whole corresponding column must also be zero (see Exercise 12 of Section IV.12). This leads to $g_{l+q} = 0$ for $q = 1, \ldots, k$; so we have B(k+l). We then repeat the argument inductively until we arrive at B(2k-1).

Since s-stage collocation methods satisfy B(s) and C(s) (see Theorem 7.7 of Chapter II) we have

Corollary 13.10 (Burrage 1978). An s-stage algebraically stable collocation method must be of order at least 2s-1.

Because symmetric methods have even order this gives:

Corollary 13.11 (Ascher & Bader 1986). A symmetric algebraically stable collocation scheme has to be at Gaussian points. \Box

The next result states the necessity of the simplifying assumption C(k). Observe that by Theorem 12.16 the weights b_i of DJ-irreducible, algebraically stable methods have to be positive.

Lemma 13.12. If a Runge-Kutta method of order $p \ge 2k+1$ satisfies $b_i > 0$ for $i=1,\ldots,s$, then the condition C(k) holds.

Proof (Dahlquist & Jeltsch (1979) attribute this idea to Butcher). The order conditions (see Section II.2)

$$\begin{split} \sum_{i=1}^{s} b_i c_i^{2q} &= \frac{1}{2q+1} \\ \sum_{i,j=1}^{s} b_i c_i^{q} a_{ij} c_j^{q-1} &= \frac{1}{(2q+1)q} \\ \sum_{i,j,m=1}^{s} b_i a_{ij} c_j^{q-1} a_{im} c_m^{q-1} &= \frac{1}{(2q+1)q^2} \end{split}$$

imply that

$$\sum_{i=1}^s b_i \left(\sum_{j=1}^s a_{ij} c_j^{q-1} - \frac{c_i^q}{q}\right)^2 = 0$$

for $2q+1 \le p$. Since the b_i are positive, the individual terms of this sum must be zero for $q \le k$.

A simple consequence of this lemma are the following order barriers for diagonally implicit DIRK $(a_{ij} = 0 \text{ for } i < j)$ and singly diagonally implicit SDIRK $(a_{ij} = 0 \text{ for } i < j \text{ and } a_{ii} = \gamma \text{ for all } i)$ methods.

Theorem 13.13 (Hairer 1980).

- a) A DIRK method with all b_i positive has order at most 6;
- b) An SDIRK method with all b; positive has order at most 4;
- c) An algebraically stable DIRK method has order at most 4.

Proof. a) Suppose the order is greater than 6 and let *i* be the smallest index such that $c_i \neq 0$. Then by Lemma 13.12

$$a_{ii}c_i = rac{c_i^2}{2} \;, \qquad a_{ii}c_i^2 = rac{c_i^3}{3} \;,$$

contradicting $c_i \neq 0$.

b) As above, we arrive for order greater than 4 at

$$a_{ii}c_i=rac{c_i^2}{2} \quad ext{or} \quad a_{ii}=rac{c_i}{2} \ (
eq 0) \ .$$

Since for SDIRK methods we have $a_{ii} = a_{11}$, this leads to $c_1 = a_{11} \neq 0$, hence i = 1. Now $a_{11} = c_1/2$ contradicts $a_{11} = c_1$.

c) It is sufficient to consider DJ-irreducible methods, since the reduction process (see Table 12.3) leaves the class of DIRK methods invariant. From Theorem 12.16 and Lemma 13.12 we obtain that algebraic stability and order greater than 4 imply

$$a_{11} = c_1 , \qquad a_{11}c_1 = \frac{c_1^2}{2} ,$$

and hence $a_{11} = 0$. Inserted into m_{11} this yields $m_{11} = -b_1^2 < 0$, contradicting the non-negativity of the matrix M.

Similarly to Lemma 13.12 we have the following result for the second type of simplifying assumptions.

Lemma 13.14. If a Runge-Kutta method of order $p \ge 2k+1$ is algebraically stable and satisfies $b_i > 0$ for all i, then the condition D(k) holds.

Proof. The main idea is to use the W-transformation of Section IV.5 and to consider $W^T M W$ instead of M (see also the proof of Theorem 12.8). By Theorem 5.14 there exists a matrix W satisfying T(k,k) (see Definition 5.10). With the help of Lemma 13.12 and Theorem 5.11a we obtain that the first k diagonal elements of

$$W^{T}MW = (W^{T}BW)X + X^{T}(W^{T}BW)^{T} - e_{1}e_{1}^{T}$$
(13.16)

are zero. Since M and hence also $W^T M W$ is non-negative definite, the first k columns and rows of $W^T M W$ have to vanish. Thus the matrix $(W^T B W) X$ must be skew-symmetric in these regions (with exception of the first element). Because of C(k) the first k columns and rows of $(W^T B W) X$ and X are identical. Thus the result follows from Theorem 5.11.

Characterization of Algebraically Stable Methods

Theorem 12.16, Lemma 13.12 and Lemma 13.14 imply that DJ-irreducible and algebraically stable RK-methods of order $p \ge 2k+1$ satisfy $b_i > 0$ for all *i*, and the simplifying assumptions C(k) and D(k). These properties allow the following constructive characterization of all irreducible *B*-stable RK-methods.

Theorem 13.15 (Hairer & Wanner 1981). Consider a p-th order quadrature formula $(b_i, c_i)_{i=1}^s$ with positive weights and let W satisfy Property T(k,k) of Definition 5.10 with k = [(p-1)/2]. Then all p-th order algebraically stable RK-methods corresponding to this quadrature formula are given by

$$A = W X W^{-1} (13.17)$$

where

$$(W^{T}BW)X = \frac{1}{2}e_{1}e_{1}^{T} + \begin{pmatrix} 0 & -\xi_{1} & & \\ \xi_{1} & \ddots & \ddots & \\ & \ddots & 0 & -\xi_{k} \\ & & & \xi_{k} & \\ & & & & Q \end{pmatrix}$$
(13.18)

and Q is an arbitrary matrix of dimension s-k for which $Q+Q^T$ is nonnegative definite. For p even we have to require that $q_{11}=0$.

Proof. Algebraic stability and the positivity of the weights b_i imply C(k) and D(k) with k = [(p-1)/2]. The matrix A of such a method can be written as (13.17) with X given by (13.18). This follows from Theorem 5.11 and the fact that multiplication with $W^T B W$ does not change the first k columns and rows of X. This method is algebraically stable iff M (or $W^T M W$) is non-negative definite. By (13.16) this means that $Q + Q^T$ is non-negative definite.

Conversely, any RK-method given by (13.17), (13.18) with $Q+Q^T$ nonnegative definite is algebraically stable and satisfies C(k) and D(k). Therefore it follows from Theorem 5.1 in the case of odd p = 2k + 1 that the RK-method is of order p.

If p is even, say p = 2k+2, the situation is slightly more complicated. Because of

$$q_{11} = \sum_{i,j=1}^{s} b_i P_k(c_i) a_{ij} P_k(c_j)$$

it follows from B(2k+2), C(k), D(k) that the order condition (13.19) below (with $\xi = \eta = k$) is equivalent to $q_{11} = 0$. The stated order p of the RK-method now follows from Lemma 13.16.

224 IV. Stiff Problems — One Step Methods

In the above proof we used the following modification of Theorem 5.1.

Lemma 13.16. If the coefficients b_i, c_i, a_{ij} of an RK-method satisfy

$$\sum_{i,j=1}^{s} b_i c_i^{\xi} a_{ij} c_j^{\eta} = \frac{1}{(\eta + \xi + 2)(\eta + 1)}$$
(13.19)

and B(p), $C(\eta)$, $D(\xi)$ with $p \le \eta + \xi + 2$ and $p \le 2\eta + 2$, then the method is of order p.

Proof. The reduction process with the help of $C(\eta)$ and $D(\xi)$ as described in Section II.7 (Volume I) reduces all trees to the bushy trees covered by B(p). The only exception is the tree corresponding to order condition (13.19). \Box

Example 13.17 (Three-stage *B*-stable SIRK methods). Choose a third order quadrature formula with positive weights and let W satisfy $W^T B W = I$. Then (13.18) becomes

$$X = egin{pmatrix} rac{1}{2} & -\xi_1 & 0 \ \xi_1 & a & b \ 0 & c & d \end{pmatrix} \;, \qquad \qquad \xi_1 = rac{1}{2\sqrt{3}} \;.$$

The method is B-stable if $X^T + X - e_1 e_1^T$ is non-negative, i.e. if

$$a \ge 0, \quad d \ge 0, \quad 4ad \ge (c+b)^2 \;.$$
 (13.20)

If we want this method to be singly-implicit, we must have for the characteristic polynomial of A

$$\chi_A(z) = (1 - \gamma z)^3 = 1 - 3\gamma z + 3\gamma^2 z^2 - \gamma^3 z^3 \; .$$

This means that (see (13.17))

$$egin{aligned} &rac{1}{2}+a+d=3\gamma\ &rac{a}{2}+rac{1}{12}+rac{d}{2}+ad-cb=3\gamma^2\ &rac{ad-cb}{2}+rac{1}{12}d=\gamma^3\ . \end{aligned}$$

Some elementary algebra shows that these equations can be solved and the inequalities (13.20) satisfied if $1/3 \le \gamma \le 1.06857902$, i.e., *exactly if* the corresponding rational approximation is A-stable (cf. Table 6.3; see also Hairer & Wanner (1981), where the analogous case with s=p=5 is treated).

The "Equivalence" of A- and B-Stability

Many A-stable RK-methods are not B-stable (e.g., the trapezoidal rule, the Lobatto IIIA and Lobatto IIIB methods; see Theorem 12.12). On the other hand there is the famous result of Dahlquist (1978), saying that every A-stable one-leg-method is B-stable, which we shall prove in Section V.6. We have further seen in Example 13.17 that for a certain class of A-stable methods there is always a B-stable method with the same stability function. The general truth of this result was conjectured for many years and is as follows:

Theorem 13.18 (Hairer & Türke 1984, Hairer 1986). Let R(z) = P(z)/Q(z) $(P(0) = Q(0) = 1, \deg P \leq s, \deg Q = s)$ be an irreducible, A-stable function satisfying $R(z) - e^z = O(z^{p+1})$ for some $p \geq 1$. Then there exists an s-stage B-stable RK-method of order p with R(z) as stability function.

Proof. Since R(z) is an approximation to e^z of order p, it can be written in the form

$$R(z) = \frac{1 + \frac{1}{2}\Psi(z)}{1 - \frac{1}{2}\Psi(z)} , \qquad \Psi(z) = \frac{z}{|1|} + \frac{\xi_1^2 z^2}{|1|} + \dots + \frac{\xi_{k-1}^2 z^2}{|1|} + \xi_k^2 z \Psi_k(z)$$
(13.21)

where k = [(p-1)/2], $\xi_j^2 = 1/(4(4j^2-1))$ and $\Psi_k(z) = zg(z)/f(z)$ with g(0) = f(0) = 1, deg $f \leq s-k$, deg $g \leq s-k-1$ (for p even we have in addition g'(0) = f'(0)). For the diagonal Padé-approximation $R^G(z)$ of order 2s this follows from Theorem 5.18 with $\nu = s-1$ and $\Psi_{\nu} = z$:

$$R^{G}(z) = \frac{1 + \frac{1}{2}\Psi^{G}(z)}{1 - \frac{1}{2}\Psi^{G}(z)}, \qquad \Psi^{G}(z) = \frac{z}{|1|} + \frac{\xi_{1}^{2}z^{2}}{|1|} + \dots + \frac{\xi_{s-1}^{2}z^{2}}{|1|}.$$
 (13.22)

For an arbitrary R(z) (satisfying the assumptions of the theorem) this is then a consequence of $R(z) = R^G(z) + \mathcal{O}(z^{p+1})$, or equivalently $\Psi(z) = \Psi^G(z) + \mathcal{O}(z^{p+1})$.

The function R(z) of (13.21) is A-stable iff (Theorem 5.22)

$$\operatorname{Re}\Psi_k(z) < 0 \quad \text{for} \quad \operatorname{Re}z < 0$$
.

Therefore, the function $\chi(z) = -\Psi_k(-1/z)$ is positive (c.f. Definition 5.19) and by Lemma 13.19 below there exists an (s-k)-dimensional matrix Q such that

 $\chi(z) = e_1^T (Q+zI)^{-1} e_1$ and $Q+Q^T$ non-negative definite .

We now fix an arbitrary quadrature formula of order p with positive weights b_i and (for the sake of simplicity) distinct nodes c_i . We let Wbe a matrix satisfying $W^T B W = I$ and Property T(k,k) with k = [(p - 1)/2] (c.f. Lemma 5.12), and define the RK-coefficients (a_{ij}) by (13.17) and (13.18). This RK-method is algebraically stable since $Q + Q^T$ is non-negative definite and of order p (observe that g'(0) = f'(0) implies that the upper left element of Q vanishes). Finally, it follows from Theorem 5.18 and $\Psi_k(z) = -\chi(-1/z) = ze_1^T (I-zQ)^{-1}e_1$ that its stability function is R(z).

It remains to prove the following lemma.

Lemma 13.19. Let $\chi(z) = \alpha(z)/\beta(z)$ be an irreducible rational function with real polynomials

$$\alpha(z) = z^{n-1} + \alpha_1 z^{n-2} + \dots, \quad \beta(z) = z^n + \beta_1 z^{n-1} + \dots$$
 (13.23)

Then $\chi(z)$ is a positive function iff there exists an n-dimensional real matrix Q, such that

$$\chi(z) = e_1^T (Q + zI)^{-1} e_1$$
 and $Q + Q^T$ non-negative definite. (13.24)

Proof. a) The sufficiency follows from

$$\operatorname{Re} \chi(z) = q(z)^* \{ \operatorname{Re} z \cdot I + \frac{1}{2}(Q + Q^T) \} q(z)$$

with $q(z) = (Q+zI)^{-1}e_1$, since $Q+Q^T$ is non-negative definite.

b) For the proof of *necessity*, the hard part, we use Lemma 6.8 of Section V.6 below. This lemma is the essential ingredient for Dahlquist's equivalence result and will be proved in the chapter on multistep methods. It states that the positivity of $\chi(z)$ is equivalent to the existence of real, symmetric and non-negative definite matrices A and B, such that for arbitrary $z, w \in C$ $(\vec{z}=(z^{n-1},\ldots,z,1)^T, \vec{w}=(w^{n-1},\ldots,w,1)),$

$$\alpha(z)\beta(w) + \alpha(w)\beta(z) = (z+w)\vec{z}^T A\vec{w} + \vec{z}^T B\vec{w} . \qquad (13.25)$$

The matrix A is positive definite, if $\alpha(z)$ and $\beta(z)$ are relatively prime.

Comparing the coefficients of w^n in (13.25) we get

$$\alpha(z) = \vec{z}^T A e_1 \tag{13.26}$$

and observe that the first column of A consists of the coefficients of $\alpha(z)$. For the Cholesky decomposition of A, $A = U^T U$ (U is an upper triangular matrix) we thus have $Ue_1 = e_1$. We next consider the possible computation of the matrix Q from the relation

$$(Q+zI)U\vec{z} = \beta(z) \cdot e_1 \tag{13.27}$$

or equivalently

$$QU\vec{z} = \beta(z) \cdot e_1 - zU\vec{z} . \qquad (13.28)$$

The right-hand side of (13.28) is a known polynomial of degree n-1, since $Ue_1 = e_1$. Therefore, a comparison of the coefficients in (13.28) yields the

matrix QU and hence also Q. It remains to prove that this matrix Q satisfies (13.24).

Using (13.27), the formula $Ae_1 = U^T U e_1 = U^T e_1$ and (13.26) we obtain

$$e_1^T (Q+zI)^{-1} e_1 \cdot \beta(z) = e_1^T U \vec{z} = e_1^T A^T \vec{z} = \alpha(z) , \qquad (13.29)$$

which verifies the first relation of (13.24). Further, from (13.27) and $\alpha(z) = e_1^T U \vec{z}$ we get

$$ec{z}^T U^T (Q+wI) U ec{w} = lpha(z) eta(w) \; .$$

Inserting this formula and the analogous one (with z and w exchanged) into (13.25) yields $0 = \vec{z}^T (B - U^T (Q + Q^T) U) \vec{w}$, so that $B = U^T (Q + Q^T) U$. This verifies the second relation of (13.24), since B is symmetric and non-negative definite.

Exercises

1. (Perron (1913) attributes this result to Wallis, Arithmetica infinitorum 1655 and Euler 1737). Let the sequences $\{A_k\}$ and $\{B_k\}$ be given by

$$A_{k} = b_{k}A_{k-1} + a_{k}A_{k-2}, \qquad A_{-1} = 1, \quad A_{0} = b_{0}$$

$$B_{k} = b_{k}B_{k-1} + a_{k}B_{k-2}, \qquad B_{-1} = 0, \quad B_{0} = 1$$
(13.30)

then

$$\frac{A_n}{B_n} = b_0 + \frac{a_1|}{|b_1|} + \ldots + \frac{a_n|}{|b_n|} .$$
 (13.31)

Hint. Let $x = (x_0, x_1, \dots, x_{n+1})^T$ be the solution of $Mx = (0, \dots, 0, 1)^T$, where

$$M = \begin{pmatrix} 1 & -b_0 & -a_1 & & \\ & 1 & -b_1 & -a_2 & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & -b_{n-1} & -a_n \\ & & & 1 & -b_n \\ & & & & 1 \end{pmatrix}$$

One easily finds

$$\frac{x_0}{x_1} = b_0 + \frac{a_1}{|x_1/x_2|} = b_0 + \frac{a_1|}{|b_1|} + \frac{a_2}{|x_2/x_3|} = \dots$$

so that x_0/x_1 is equal to the right hand side of (13.31). The statement now follows from the fact that

$$(A_{-1}, A_0, \dots, A_n)M = (1, 0, \dots, 0)$$
$$(B_{-1}, B_0, \dots, B_n)M = (0, 1, 0, \dots, 0) .$$

228 IV. Stiff Problems — One Step Methods

implying $x_0 = A_n$ and $x_1 = B_n$.

2. Let $P_s(z)$ be the Legendre polynomial (13.4) and $N_s^G(z)$ defined by the recursion (13.5) with $N_0^G(z)=0$, $N_1^G(z)=1$. Prove that

$$N^G_{s-k}(z)P_{s-k-1}(z) - N^G_{s-k-1}(z)P_{s-k}(z) = \tau_1 \cdot \tau_2 \cdots \tau_{s-k-1}$$
.

Hint. Use the relation

$$\begin{pmatrix} N_m^G(z) & P_m(z) \\ N_{m-1}^G(z) & P_{m-1}(z) \end{pmatrix} = \begin{pmatrix} z - \frac{1}{2} & -\tau_{m-1} \\ 1 & 0 \end{pmatrix} \begin{pmatrix} N_{m-1}^G(z) & P_{m-1}(z) \\ N_{m-2}^G(z) & P_{m-2}(z) \end{pmatrix}$$

3. Consider the Hermitian quadrature formula

$$\int_0^1 f(x)dx = b_1 f(c_1) + \alpha f(c_2) + \beta \frac{f'(c_2)}{1!} + \gamma \frac{f''(c_2)}{2!} . \qquad (13.32)$$

Replace $f'(c_2)$ and $f''(c_2)$ by finite divided differences based on $f(c_2-\varepsilon)$, $f(c_2)$, $f(c_2+\varepsilon)$ to obtain a quadrature formula

$$\int_{0}^{1} f(x)dx = \overline{b}_{1}f(c_{1}) + \overline{b}_{2}f(c_{2}-\varepsilon) + \overline{b}_{3}f(c_{2}) + \overline{b}_{4}f(c_{2}+\varepsilon) . \quad (13.33)$$

a) Compute Q(z) for Formula (13.33) and obtain, by letting $\varepsilon \to 0$, an expression which generalizes (13.2) to Hermitian quadrature formulas.

b) Compute the values of b_1 and b_2 $(l_1 = 1, l_2 = 3)$ of (13.10').

c) Show that $n_{+} - n_{-}$ (see Theorem 13.5) is the same for (13.32) and (13.33) with ε sufficiently small.

Results.

a)
$$Q(z) = \frac{b_1}{z - c_1} + \frac{\alpha}{z - c_2} + \frac{\beta}{(z - c_2)^2} + \frac{\gamma}{(z - c_2)^3}$$

b) $b_1 = b_1$ (sic!), $b_2 = \frac{\gamma}{3!}$.

4. The rational function $\chi(z) = \alpha(z)/\beta(z)$ with $\alpha(z) = z + \alpha_1$, $\beta(z) = z^2 + \beta_1 z + \beta_2$ is positive, iff (compare (5.48))

$$lpha_1 \geq 0, \quad eta_2 \geq 0, \quad eta_1 - lpha_1 \geq 0 \; .$$

- a) Find real, symmetric and non-negative definite matrices A and B such that (13.25) holds.
- b) Show that these matrices are, in general, not unique.
- c) As in the proof of Lemma 13.19, compute the matrix Q such that (13.24) holds.

Hint. Begin with the construction of B by putting w = -z in (13.25).

IV.14. Existence and Uniqueness of IRK Solutions

sense"

"Jusqu'à présent, nous avons supposé que le schéma admettait une solution. Pour en démontrer l'existence ..." (Crouzeix & Raviart 1980) "Since contractivity without feasibility makes little

(M.N. Spijker 1985)

Since the Runge-Kutta methods studied in the foregoing sections are all implicit, we have to ensure that the numerical solutions, for which we have derived so many nice results, also really exist. The existence theory for IRK methods of Volume I (Theorem II.7.2) is for the non-stiff case only where hL is small (L the Lipschitz constant). This is not a reasonable assumption for the stiff case.

We shall study here the existence of an RK solution, defined implicitly by

$$g_i = y_0 + h \sum_{j=1}^{s} a_{ij} f(x_0 + c_j h, g_j) , \quad i = 1, \dots, s$$
 (14.1a)

$$y_1 = y_0 + h \sum_{j=1}^{s} b_j f(x_0 + c_j h, g_j)$$
, (14.1b)

for differential equation problems which only satisfy the one-sided Lipschitz condition

$$\langle f(x,y) - f(x,z), y - z \rangle \leq \nu \|y - z\|^2 \;.$$
 (14.2)

Existence

It was first pointed out by Crouzeix & Raviart (1980) that the coercivity of the RK-matrix A (or of its inverse) plays an important role for the proof of existence.

Definition 14.1. Consider the inner product $\langle u, v \rangle_D = u^T D v$ where $D = \text{diag}(d_1, \ldots, d_s)$ with $d_i > 0$. We then denote by $\alpha_D(A^{-1})$ the largest number α such that

$$\langle u, A^{-1}u \rangle_D \ge \alpha \langle u, u \rangle_D \quad \text{for all} \quad u \in \mathbb{R}^s \ .$$
 (14.3)

We also set

$$\alpha_0(A^{-1}) = \sup_{D>0} \alpha_D(A^{-1}) .$$
 (14.4)

The first existence results for the above problem were given by Crouzeix & Raviart (1980), Dekker (1982) and Crouzeix, Hundsdorfer & Spijker (1983). Their results can be summarized as follows:

Theorem 14.2. Let f be continuously differentiable and satisfy (14.2). If the RK-matrix A is invertible and

$$h\nu < \alpha_0(A^{-1}) \tag{14.5}$$

then the nonlinear system (14.1a) possesses a solution (g_1, \ldots, g_s) .

Proof. The original proofs are based on deep theorems of Analysis and Topology (e.g. "Brouwer's fixed point theorem", the "Domain Invariance Theorem" or similar results). We present here a more elementary and more constructive version of the ideas which, however, has the disadvantage of requiring the differentiability hypothesis for f.

The idea is to consider the homotopy

$$g_i = y_0 + h \sum_{j=1}^{s} a_{ij} f(x_0 + c_j h, g_j) + (\tau - 1) h \sum_{j=1}^{s} a_{ij} f(x_0 + c_j h, y_0) , \quad (14.6)$$

which is constructed in such a way that for $\tau = 0$ the system (14.6) has the solution $g_i = y_0$, and for $\tau = 1$ it is equivalent to (14.1a). We consider g_i as functions of τ and differentiate (14.6) with respect to this parameter. This gives

$$\dot{g}_i = h \sum_{j=1}^s a_{ij} \frac{\partial f}{\partial y} (x_0 + c_j h, g_j) \dot{g}_j + h \sum_{j=1}^s a_{ij} f(x_0 + c_j h, y_0)$$

or equivalently

$$(I - h(A \otimes I) \{f_y\})\dot{g} = h(A \otimes I)f_0$$
(14.7)

where we have used the notations

$$\dot{g} = (\dot{g}_1, \dots, \dot{g}_s)^T$$
, $f_0 = (f(x_0 + c_1 h, y_0), \dots, f(x_0 + c_s h, y_0))^T$

(more precisely, \dot{g} should be written as $(\dot{g}_1^T, \ldots, \dot{g}_s^T)^T$) and

$$\{f_y\} = ext{blockdiag}\left(rac{\partial f}{\partial y}(x_0 + c_1h, g_1), \dots, rac{\partial f}{\partial y}(x_0 + c_sh, g_s)
ight)\,.$$

In order to show that \dot{g} can be expressed as $\dot{g} = G(g)$ with a globally bounded G(g), we take a D satisfying $h\nu < \alpha_D(A^{-1})$, multiply (14.7) by $\dot{g}^T(DA^{-1}\otimes I)$ and so obtain

$$\dot{g}^T (DA^{-1} \otimes I)\dot{g} - h\dot{g}^T (D \otimes I) \{f_y\}\dot{g} = h\dot{g}^T (D \otimes I)f_0 .$$
(14.8)

We now estimate the three individual terms of this equation.

a) The estimate

$$\dot{g}^{T}(DA^{-1}\otimes I)\dot{g} \geq \alpha_{D}(A^{-1}) \|\|\dot{g}\|\|_{D}^{2},$$
 (14.9)

where we have introduced the notation $\|\|\dot{g}\|\|_D^2 = \dot{g}^T(D \otimes I)\dot{g}$, is (14.3) in the case of *scalar* differential equations (absence of " $\otimes I$ "). In the general case we must apply the ideas of Exercise 1 of Section IV.12 to the matrix $\frac{1}{2}(DA^{-1} + (DA^{-1})^T) - \alpha_D(A^{-1})D$, which is non-negative definite by Definition 14.1.

b) It follows from (14.2) with $y = z + \epsilon u$ that

$$\left\langle arepsilon rac{\partial f}{\partial y}(x,z)u+o(arepsilon),arepsilon u
ight
angle \leq
uarepsilon^2\|u\|^2\;.$$

Dividing by ε^2 and taking the limit $\varepsilon \to 0$ we obtain $\langle u, \frac{\partial f}{\partial y}(x, z)u \rangle \leq \nu ||u||^2$ for all (x, z) and all u. Consequently we also have

$$\dot{g}^T(D \otimes I) \{f_y\} \dot{g} \le \nu \| \dot{g} \|_D^2$$
 (14.10)

c) The right-hand term of (14.8) is bounded by $h|||\dot{g}|||_D \cdot |||f_0||_D$ by the Cauchy-Schwarz-Bunjakowski inequality.

Inserting these three estimates into (14.8) yields

$$\left(lpha_D(A^{-1}) - h
u
ight) \| \dot{g} \| _D^2 \leq h \| \dot{g} \| _D \cdot \| f_0 \| _D$$

This proves that \dot{g} can be written as $\dot{g} = G(g)$ with

$$|||G(g)|||_D \leq \frac{h|||f_0|||_D}{\alpha_D(A^{-1}) - h\nu}$$
.

It now follows from Theorem 7.4 (Section I.7) that this differential equation with initial values $g_i(0) = y_0$ possesses a solution for all τ , in particular also for $\tau = 1$. This proves the existence of a solution of (14.1a).

Remark. It has recently been shown by Kraaijevanger & Schneid (1990, Theorem 2.12) that Condition (14.5) is "essentially optimal".

A Counterexample

"After our discussion that Monday afternoon (October 1980) I went for a walk and I got the idea for the counterexample". (M.N. Spijker)

The inequality in (14.5) is *strict*, therefore Theorem 14.2 (together with Exercise 1 below) does not yet answer the simple question: "does a *B*-stable method on a contractive problem ($\nu = 0$) always admit a solution". A first counterexample to this statement has been given by Crouzeix, Hundsdorfer

232 IV. Stiff Problems — One Step Methods

& Spijker (1983). An easy idea for constructing another counterexample is to use the W-transformation (see Sections IV.5 and IV.13) as follows:

We put s = 4 and take a quadrature formula with positive weights, say,

$$(c_i) = (0, 1/3, 2/3, 1)$$
, $(b_i) = (1/8, 3/8, 3/8, 1/8)$

We then construct a matrix W satisfying property T(1,1) according to Lemma 5.12. This yields for the above quadrature formula

$$W = \begin{pmatrix} 1 & -\sqrt{3} & \sqrt{3} & -1 \\ 1 & -\sqrt{3}/3 & -\sqrt{3}/3 & 1 \\ 1 & \sqrt{3}/3 & -\sqrt{3}/3 & -1 \\ 1 & \sqrt{3} & \sqrt{3} & 1 \end{pmatrix}$$

Finally, we put (with $\xi_1 = 1/(2\sqrt{3})$)

$$A = WXW^{-1} \quad ext{with} \quad X = egin{pmatrix} 1/2 & -\xi_1 & 0 & 0 \ \xi_1 & 0 & 0 & 0 \ 0 & 0 & 0 & -eta \ 0 & 0 & eta & 0 \end{pmatrix} \; .$$

For $\beta = 1/(4\sqrt{3})$ this gives nice rational coefficients for the RK-matrix, namely

$$A=rac{1}{48}egin{pmatrix} 3&0&3&-6\6&9&0&1\5&18&9&0\12&15&18&3 \end{pmatrix}$$

It follows from Theorem 13.15 that this method is algebraically stable and of order 4. However, $\pm i\beta$ is an eigenvalue pair of X and hence also of A.

We thus choose the differential equation

$$y'=Jy+f(x) \hspace{0.1in} ext{with} \hspace{0.1in} J=egin{pmatrix} 0 & -1/eta\ 1/eta & 0 \end{pmatrix} \hspace{0.1in},$$

which satisfies (14.2) with $\nu = 0$ independent of f(x). If we apply the above method with h=1 to this problem and initial values $x_0 = 0$, $y_0 = (0,0)^T$, the equations (14.1a) become equivalent to the linear system

$$(I - A \otimes J)g = (A \otimes I)f_0$$

where $g = (g_1, \ldots, g_4)^T$ and $f_0 = (f(c_1), \ldots, f(c_4))^T$. The matrix $(I - A \otimes J)$ is singular because the eigenvalues of $I - A \otimes J$ are just $1 - \lambda \mu$ where λ and μ are the eigenvalues of A and J, respectively. However, A is regular, therefore it is possible to choose f(x) in such a way that this equation does not have a solution.

Influence of Perturbations and Uniqueness

Our next problem is the question, how *perturbations* in the Runge-Kutta equations influence the numerical solution. Research into this problem was initiated independently by Frank, Schneid & Ueberhuber (preprint 1981, published 1985) and Dekker (1982).

As above, we use the notations

$$\begin{split} \|u\|_D &= \sqrt{u^T D u} = \sqrt{\langle u, u \rangle_D} \qquad u \in \mathbb{R}^s \\ \|\|g\|\|_D &= \sqrt{g^T (D \otimes I)g} \qquad g \in \mathbb{R}^{sn} \end{split}$$

and $||A||_D$ for the corresponding matrix norm.

Theorem 14.3 (Dekker 1984). Let g_i and y_1 be given by (14.1) and consider perturbed values \hat{g}_i and \hat{y}_1 satisfying

$$\widehat{g}_{i} = y_{0} + h \sum_{j=1}^{s} a_{ij} f(x_{0} + c_{j}h, \widehat{g}_{j}) + \delta_{i}$$
 (14.11a)

$$\widehat{y}_1 = y_0 + h \sum_{j=1}^s b_j f(x_0 + c_j h, \widehat{g}_j)$$
 (14.11b)

If the RK-matrix A is invertible, if the one-sided Lipschitz condition (14.2) is satisfied, and $h\nu < \alpha_D(A^{-1})$ for some positive diagonal matrix D, then we have the estimates

$$\|\widehat{g} - g\|_{D} \le \frac{\|A^{-1}\|_{D}}{\alpha_{D}(A^{-1}) - h\nu} \|\|\delta\|_{D}$$
(14.12)

$$\|\widehat{y}_{1} - y_{1}\| \leq \|b^{T}A^{-1}\|_{D} \left(1 + \frac{\|A^{-1}\|_{D}}{\alpha_{D}(A^{-1}) - h\nu}\right) \|\|\delta\|\|_{D} .$$
(14.13)

Here we use vector notation $g = (g_1, \ldots, g_s)^T$, $\widehat{g} = (\widehat{g}_1, \ldots, \widehat{g}_s)^T$ and $\delta = (\delta_1, \ldots, \delta_s)^T$.

Proof. With the notation $\Delta g = \widehat{g} - g$ and

$$\Delta f = \left(f(x_0 + c_1 h, \hat{g}_1) - f(x_0 + c_1 h, g_1), \dots, f(x_0 + c_s h, \hat{g}_s) - f(x_0 + c_s h, g_s) \right)^T$$

the difference of (14.11a) and (14.1a) can be written as

$$\Delta g = h(A\otimes I)\Delta f + \delta \; .$$

As in the proof of Theorem 14.2 we multiply this equation by $\Delta g^T(DA^{-1}\otimes I)$ and obtain

$$\Delta g^{T}(DA^{-1} \otimes I)\Delta g - h\Delta g^{T}(D \otimes I)\Delta f = \Delta g^{T}(DA^{-1} \otimes I)\delta .$$
 (14.14)

This equation is very similar to equation (14.8) and we estimate it in the same way: since D is a diagonal matrix with positive entries, it follows from (14.2) that

$$\Delta g^{T}(D \otimes I) \Delta f \leq \nu \| \Delta g \|_{D}^{2} . \qquad (14.15)$$

П

Inserting (14.15) and (14.9) (with \dot{g} replaced by Δg) into (14.14) we get

$$(lpha_D(A^{-1}) - h
u) \||\Delta g|||_D^2 \le \||\Delta g||_D \|||(A^{-1} \otimes I)\delta|||_D$$

which implies (14.12).

The estimate (14.13) then follows immediately from

$$\widehat{y}_1 - y_1 = h(b^T \otimes I)\Delta f = (b^T A^{-1} \otimes I)(\Delta g - \delta)$$
.

Putting $\delta = 0$ in Theorem 14.3 we get the following uniqueness result.

Theorem 14.4. Consider a differential equation satisfying (14.2). If the RK-matrix A is invertible and $h\nu < \alpha_0(A^{-1})$, then the system (14.1a) possesses at most one solution.

Computation of $\alpha_0(A^{-1})$

"... the determination of a suitable matrix D ... This task does not seem easy at first glance ..." (K. Dekker 1984)

The value $\alpha_D(A^{-1})$ of Definition 14.1 is the smallest eigenvalue of the symmetric matrix $(D^{1/2}A^{-1}D^{-1/2}+(D^{1/2}A^{-1}D^{-1/2})^T)/2$. The computation of $\alpha_0(A^{-1})$ is more difficult, because the optimal D is not known in general.

An upper bound for $\alpha_0(A^{-1})$ is

$$\alpha_0(A^{-1}) \le \min_{i=1,\dots,s} \omega_{ii} \tag{14.16}$$

where ω_{ij} are the entries of A^{-1} . This follows from (14.3) by putting $u = e_i$, the *i*-th unit vector.

Lower bounds for $\alpha_0(A^{-1})$ were first given by Frank, Schneid & Ueberhuber in 1981. Following are the exact values due to Dekker (1984), Dekker & Verwer (1984, p. 55-164), and Dekker & Hairer (1985) (see also Liu & Kraaijevanger 1988 and Kraaijevanger & Schneid 1990). **Theorem 14.5.** For the methods of Section IV.5 we have:

Gauss	$\alpha_0(A^{-1}) = \min_{i=1,,s} \frac{1}{2c_i(1-1)}$	$\overline{-c_i}$,
Radau IA	$lpha_0(A^{-1}) = egin{cases} 1 \ rac{1}{2(1-c_2)} \end{array}$	$\begin{array}{l} \text{if } s=1,\\ \text{if } s>1, \end{array}$
Radau IIA	$lpha_0(A^{-1}) = \begin{cases} 1 \\ rac{1}{2c_{s-1}} \end{cases}$	if $s = 1$, if $s > 1$,
Lobatto IIIC	$\alpha_0(A^{-1}) = \Big\{ \begin{matrix} 1 \\ 0 \end{matrix}$	$\begin{array}{l} \text{if } s=2,\\ \text{if } s>2. \end{array}$

Proof. a) Gauss methods: written out in "symmetricized form", estimate (14.3) reads

$$rac{1}{2} u^T ig(DA^{-1} + (DA^{-1})^T ig) u \geq lpha u^T Du$$

Evidently the sharpest estimates come out if D is such that the left-hand matrix is as "close to diagonal as possible". After many numerical computations, Dekker had the nice surprise that with the choice $D = B(C^{-1}-I)$, where $B = \text{diag}(b_1, \ldots, b_s)$ and $C = \text{diag}(c_1, \ldots, c_s)$, the matrix

$$DA^{-1} + (DA^{-1})^T = BC^{-2} (14.17)$$

becomes completely diagonal. Then the optimal α is simply obtained by testing the unit vectors $u = e_k$, which gives

$$\alpha_0(A^{-1}) = \min_i \frac{b_i}{2c_i^2 d_i} = \min_i \frac{b_i}{2c_i^2 b_i(1/c_i - 1)} = \min_i \frac{1}{2c_i(1 - c_i)}$$

It remains to prove (14.17): we verify the equivalent formula

$$V^{T}(A^{T}D + DA - A^{T}BC^{-2}A)V = 0$$
 (14.18)

where $V = (c_i^{j-1})$ is the Vandermonde matrix. The (l, m)-element of the matrix (14.18) is

$$\sum_{i,j} b_j \left(\frac{1}{c_j} - 1\right) a_{ji} c_i^{l-1} c_j^{m-1} + \sum_{i,j} b_i \left(\frac{1}{c_i} - 1\right) a_{ij} c_i^{l-1} c_j^{m-1} - \sum_{i,j,k} b_i \frac{1}{c_i^2} a_{ik} c_k^{l-1} a_{ij} c_j^{m-1} .$$
(14.19)

With the help of the simplifying assumptions C(s) and B(2s) the expression (14.19) can be seen to be zero.

236 IV. Stiff Problems — One Step Methods

b) For the Radau IA methods we take $D = \text{diag}(b^T A) = B(I - C)$ and show that

$$DA^{-1} + (DA^{-1})^T = B + e_1 e_1^T . (14.20)$$

The stated formula for $\alpha_0(A^{-1})$ then follows from $0 = c_1 < c_2 < \ldots < c_s$ and from

$$rac{b_1+1}{b_1} \geq rac{1}{1-c_2}$$
 ,

which is a simple consequence of $b_1 = 1/s^2$ (see Abramowitz & Stegun (1964), Formula 25.4.31). For the verification of (14.20) one shows that $V^T(DA^{-1}+(DA^{-1})^T-B-e_1e_1^T)V=0$. Helpful formulas for this verification are $A^{-1}Ve_1 = b_1^{-1}e_1$, $V^Te_1 = e_1$ and $A^{-1}Ve_j = (j-1)Ve_{j-1}$ for $j \ge 2$.

c) Similarly, the statement for the Radau IIA methods follows with $D = BC^{-1}$ from the identity

$$DA^{-1} + (DA^{-1})^T = BC^{-2} + e_s e_s^T$$
.

d) As in part b) one proves for the Lobatto IIIC methods that

$$BA^{-1} + (BA^{-1})^T = e_1 e_1^T + e_s e_s^T . (14.21)$$

Since this matrix is diagonal, we obtain $\alpha_0(A^{-1})=1$ for s=2 and $\alpha_0(A^{-1})=0$ for s>2.

For diagonally implicit Runge-Kutta methods we have the following result.

Theorem 14.6 (Montijano 1983). For a DIRK-method with positive a_{ii} we have

$$\alpha_0(A^{-1}) = \min_{i=1,\dots,s} \frac{1}{a_{ii}} .$$
 (14.22)

Proof. With $D = \text{diag}(1, \varepsilon^2, \varepsilon^4, \dots, \varepsilon^{2s-2})$ we obtain

$$D^{1/2}A^{-1}D^{-1/2} + (D^{1/2}A^{-1}D^{-1/2})^T = \operatorname{diag}\left(a_{11}^{-1}, \dots, a_{ss}^{-1}\right) + \mathcal{O}(\varepsilon)$$

so that $\alpha_0(A^{-1}) \ge \min_i a_{ii}^{-1} + \mathcal{O}(\varepsilon)$. This inequality for $\varepsilon \to 0$ and (14.16) prove the statement.

Methods with Singular A

For the Lobatto IIIA methods the first stage is explicit (the first row of A vanishes) and for the Lobatto IIIB methods the last stage is explicit (the last column of A vanishes). For these methods the RK-matrix is of the form

IV.14. Existence and Uniqueness of IRK Solutions 237

$$A = \begin{pmatrix} 0 & 0 \\ a & \widetilde{A} \end{pmatrix} \quad \text{or} \quad A = \begin{pmatrix} \widetilde{A} & 0 \\ a^T & 0 \end{pmatrix}$$
(14.23)

and we have the following variant of Theorem 14.2.

Theorem 14.7. Let f be continuously differentiable and satisfy (14.2). If the RK-matrix is given by one of the matrices in (14.23) with invertible \widetilde{A} , then the assumption

$$h\nu < lpha_0(\widetilde{A}^{-1})$$

implies that the nonlinear system (14.1a) has a solution.

Proof. The explicit stage poses no problem for the existence of a solution. To obtain the result we repeat the proof of Theorem 14.2 for the s-1 implicit stages (i.e., A is replaced by \tilde{A} and the inhomogenity in (14.6) may be different).

An explicit formula for $\alpha_0(\tilde{A}^{-1})$ for the Lobatto IIIB methods has been given by Dekker & Verwer (1984), and for the Lobatto IIIA methods by Liu, Dekker & Spijker (1987). The result is

Theorem 14.8. We have for

Lobatto IIIA	$\alpha_{0}(\widetilde{A}^{-1}) = \begin{cases} 2 \\ c_{s-1}^{-1} \end{cases}$	$egin{array}{l} {\it if}\ s=2,\ {\it if}\ s>2,\ {\it if}\ s>2, \end{array}$
Lobatto IIIB	$lpha_{0}(\widetilde{A}^{-1}) = iggl\{ egin{array}{c} 2 \ (1-c_{2})^{-1} \end{array} iggr\}$	if s = 2, if s > 2.

Proof. For the Lobatto IIIA methods we put $D = \tilde{B}\tilde{C}^{-2}$, where $\tilde{B} = \text{diag}(b_2, \ldots, b_s)$ and $\tilde{C} = (c_2, \ldots, c_s)$. As in part a) of the proof of Theorem 14.5 we get

$$D\widetilde{A}^{-1} + (D\widetilde{A}^{-1})^T = e_{s-1}e_{s-1}^T + 2\widetilde{B}\widetilde{C}^{-3}$$

which implies the formula for $\alpha_0(\tilde{A}^{-1})$ because $b_s = (s(s-1))^{-1}$ and $(1+2b_s) \ge b_s/c_{s-1}$ for s > 2.

For the Lobatto IIIB methods the choice $D = \tilde{B}(I - \tilde{C})^2$ (with $\tilde{B} = \text{diag}(b_1, \ldots, b_{s-1})$, $\tilde{C} = \text{diag}(c_1, \ldots, c_{s-1})$) leads to

$$D\widetilde{A}^{-1} + (D\widetilde{A}^{-1})^T = e_1 e_1^T + 2\widetilde{B}(I - \widetilde{C})$$
.

This proves the second statement.

Methods with explicit stages (such as Lobatto IIIA and IIIB) don't allow estimates of the numerical solution in the presence of arbitrary perturbations. They are usually not AN-stable and K(Z) is not bounded (see Theorem 12.12). Nevertheless we have the following uniqueness result.

Theorem 14.9. Consider a differential equation satisfying (14.2). If the RK-matrix is of the form (14.23) with invertible \tilde{A} and if $h\nu < \alpha_0(\tilde{A}^{-1})$, then the nonlinear system (14.1a) has at most one solution.

Proof. Suppose that there exists a second solution \hat{g}_i satisfying (14.11a) with $\delta_i = 0$.

a) If the first stage is explicit we have $\widehat{g}_1 = g_1$. The difference of the two RK-formulas then yields

$$\Delta g = h(A \otimes I) \Delta f$$

with $\Delta g = (\widehat{g}_i - g_i)_{i=2}^s$ and $\Delta f = (f(x_0 + c_i h, \widehat{g}_i) - f(x_0 + c_i h, g_i))_{i=2}^s$. As in the proof of Theorem 14.3 we then conclude that $\Delta g = 0$.

b) In the second case we can apply Theorem 14.3 to the first s-1 stages, which yields uniqueness of g_1, \ldots, g_{s-1} . Clearly, g_s also is unique, because the last stage is explicit.

Lobatto IIIC Methods

For the Lobatto IIIC methods with $s \ge 3$ we have $\alpha_0(A^{-1}) = 0$ (see Theorem 14.5). Since these methods are algebraically stable it is natural to ask whether the nonlinear system (14.1a) also has a solution for differential equations satisfying (14.2) with $\nu = 0$. A positive answer to this question has been given by Hundsdorfer & Spijker (1987) for the case s = 3, and by Liu & Kraaijevanger (1988) for the general case $s \ge 3$ (see Exercise 6 below; see also Kraaijevanger & Schneid 1990).

Exercises

- 1. Prove that $\alpha_0(A) \ge 0$ for algebraically stable Runge-Kutta methods. Also, $\alpha_0(A^{-1}) \ge 0$ if in addition the matrix A is invertible.
- 2. Let A be a real matrix. Show that $\alpha_0(A) \leq \operatorname{Re} \lambda$, where λ is an eigenvalue of A.
- 3. (Hundsdorfer 1985, Cooper 1986). Prove that Theorem 14.2 remains valid for singular A, if (14.3) is replaced by

$$\langle u,Au
angle_D\geq lpha\langle Au,Au
angle_D \quad ext{for all} \quad u\in {\sf R}^s \;.$$

Hint. Use the transformation $g = 1 \otimes y_0 + (A \otimes I)k$ and apply the ideas of the proof of Theorem 14.2 to the homotopy

$$k_i = f(x_0 + c_i h, y_0 + h \sum_{j=1}^{s} a_{ij} k_j) + (\tau - 1) f(x_0 + c_i h, y_0)$$

 (Barker, Berman & Plemmons 1978, Montijano 1983). Prove that for any two-stage method the condition

$$a_{11} > 0$$
, $a_{22} > 0$, $\det(A) > 0$ (14.24)

is equivalent to $\alpha_0(A^{-1}) > 0$.

Remark. For a generalization of this result to three-stage methods see Kraaijevanger (1990).

- 5. For the two-stage Radau IIA method we have $\alpha_0(A^{-1}) = 3/2$. Construct a differential equation $y' = \lambda(x)y$ with $\operatorname{Re} \lambda(x) = 3/2 + \varepsilon$ ($\varepsilon > 0$ arbitrarily small) such that for a fixed h the Runge-Kutta equations do not admit a unique solution.
- 6. Prove that for the Lobatto IIIC methods (with $s \ge 3$) the matrix

 $I - (A \otimes I)J$ with $J = \text{blockdiag}(J_1, \ldots, J_s)$

is non-singular, if $\mu_2(J_k) \leq 0$. This implies that the Runge-Kutta equations (14.1a) have a unique solution for problems y' = A(x)y + f(x) with $\mu_2(A(x)) \leq 0$.

Hint (Liu & Kraaijevanger 1988, Liu, Dekker & Spijker 1987). Let $v = (v_1, \ldots, v_s)^T$ be a solution of $(I - (A \otimes I)J)v = 0$. With the help of (14.21) show first that $v_1 = v_s = 0$. Then consider the (s-2)-dimensional submatrix $\widetilde{A} = (a_{ij})_{i,j=2}^{s-1}$ and prove $\alpha_0(\widetilde{A}^{-1}) > 0$ by considering the diagonal matrix $\widetilde{D} = \text{diag}(b_i(c_i^{-1}-1)^2)_{i=2}^{s-1}$.

7. Consider an algebraically stable RK-method with invertible A and apply it to the differential equation $y' = (J(x) - \varepsilon I)y + f(x)$ where $\mu(J(x)) \leq 0$ and $\varepsilon > 0$. Prove that the numerical solution $y_1(\varepsilon)$ converges to a limit for $\varepsilon \to 0$, whereas the internal stages $g_i(\varepsilon)$ need not converge.

Hint. Expand the $g_i(\varepsilon)$ in a series $g_i(\varepsilon) = \varepsilon^{-1} g_i^{(-1)} + g_i^{(0)} + \varepsilon g_i^{(1)} + \dots$ and prove the implication

 $g = (A \otimes I)Jg \implies (b^T \otimes I)Jg = 0$

where $J = \operatorname{blockdiag}(J(x_0+c_1h),\ldots,J(x_0+c_sh)).$

IV.15. B-Convergence

"In using A-stable one-step methods to solve large systems of stiff nonlinear differential equations, we have found that - (a) some A-stable methods give highly unstable solutions, and

- (b) the accuracy of the solutions obtained when the equations are stiff often appears to be unrelated to the order of the method used.

This has caused us to re-examine the form of stability required when stiff systems of equations are solved, and to question the relevance of the concept of (nonstiff) order of accuracy for stiff problems."

(A. Prothero & A. Robinson 1974)

Prothero & Robinson (1974) were the first to discover the order reduction of implicit Runge-Kutta methods when applied to stiff differential equations. Frank, Schneid & Ueberhuber (1981) then introduced the "concept of *B*-convergence", which furnishes global error estimates independent of the stiffness.

The Order Reduction Phenomenon

For the study of the accuracy of Runge-Kutta methods applied to stiff differential equations, Prothero & Robinson (1974) proposed considering the problem

$$y' = \lambda (y - \varphi(x)) + \varphi'(x) , \qquad y(x_0) = \varphi(x_0) , \qquad \operatorname{Re} \lambda \leq 0 .$$
 (15.1)

This allows explicit formulas for the local and global errors and provides much new insight.

Applying a Runge-Kutta method to (15.1) yields

$$g_{i} = y_{0} + h \sum_{j=1}^{s} a_{ij} \left\{ \lambda \left(g_{j} - \varphi(x_{0} + c_{j}h) \right) + \varphi'(x_{0} + c_{j}h) \right\}$$

$$y_{1} = y_{0} + h \sum_{j=1}^{s} b_{j} \left\{ \lambda \left(g_{j} - \varphi(x_{0} + c_{j}h) \right) + \varphi'(x_{0} + c_{j}h) \right\}.$$
(15.2)

If we replace here the g_i, y_0 and y_1 by the exact solution values $\varphi(x_0 + c_i h)$,

 $\varphi(x_0)$ and $\varphi(x_0+h)$, respectively, we obtain a defect which is given by

$$\varphi(x_{0} + c_{i}h) = \varphi(x_{0}) + h \sum_{j=1}^{s} a_{ij}\varphi'(x_{0} + c_{j}h) + \Delta_{i,h}(x_{0})$$

$$\varphi(x_{0} + h) = \varphi(x_{0}) + h \sum_{j=1}^{s} b_{j}\varphi'(x_{0} + c_{j}h) + \Delta_{0,h}(x_{0}) .$$
(15.3)

Taylor series expansion of the functions in (15.3) shows that

$$\Delta_{0,h}(x_0) = \mathcal{O}(h^{p+1}) , \qquad \Delta_{i,h}(x_0) = \mathcal{O}(h^{q+1})$$
(15.4)

where p is the order of the quadrature formula (b_i, c_i) and q is the largest number such that the condition C(q) (see Section IV.5), i.e.,

$$\sum_{j=1}^{s} a_{ij} c_j^{k-1} = \frac{c_i^k}{k} \quad \text{for} \quad k = 1, \dots, q \quad \text{and all} \quad i , \qquad (15.5)$$

holds. The minimum of q and p is often called the *stage order* of the RKmethod. Subtracting (15.3) from (15.2) and eliminating the internal stages we get

$$y_1 - \varphi(x_0 + h) = R(z)(y_0 - \varphi(x_0)) - zb^T (I - zA)^{-1} \Delta_h(x_0) - \Delta_{0,h}(x_0)$$
(15.6)

where we have used the notation $z = \lambda h$, $R(z) = 1 + zb^T (I - zA)^{-1} \mathbb{1}$ for the stability function and $\Delta_h(x) = (\Delta_{1,h}(x), \ldots, \Delta_{s,h}(x))^T$. We also denote the *local error*, which we get from (15.6) on putting $y_0 = \varphi(x_0)$, by

$$\delta_h(x) = -zb^T (I - zA)^{-1} \Delta_h(x) - \Delta_{0,h}(x) .$$
 (15.7)

If we repeat the above calculation with x_n instead of x_0 we obtain the recursion

$$y_{n+1} - \varphi(x_{n+1}) = R(z)(y_n - \varphi(x_n)) + \delta_h(x_n)$$
(15.8)

which leads to the following formula for the global error:

$$y_{n+1} - \varphi(x_{n+1}) = R(z)^{n+1} (y_0 - \varphi(x_0)) + \sum_{j=0}^n R(z)^{n-j} \delta_h(x_j) .$$
 (15.9)

The classical (non-stiff) theory treats the case where $z = \mathcal{O}(h)$ and in this situation the global error behaves like $\mathcal{O}(h^p)$. When solving stiff differential equations one is interested in step sizes h which are much larger than $|\lambda|^{-1}$. We therefore study the global error (15.9) under the assumption that simultaneously $h \to 0$ and $z = \lambda h \to \infty$. In Table 15.1 we collect the results for the Runge-Kutta methods of Section IV.5. There in the last column (variable h) the symbols h and z have to be interpreted as max h_i and $z = \lambda \min h_i$.

Method	local error	global error		
		constant h	variable h	
$Gauss \begin{cases} s & odd \\ s & even \end{cases}$	h^{s+1}	$\left\{ \begin{array}{c} h^{s+1} \\ h^s \end{array} \right.$	h^s	
Radau IA	h^s	h^s	h^s	
Radau IIA	$z^{-1}h^{s+1}$	$z^{-1}h^{s+1}$	$z^{-1}h^{s+1}$	
Lobatto IIIA $\begin{cases} s & odd \\ s & even \end{cases}$	$\left \begin{array}{c} z & h \\ z^{-1}h^{s+1} \end{array} \right $	$\left\{\begin{array}{c}z^{-1}h^s\\z^{-1}h^{s+1}\end{array}\right.$	$z^{-1}h^s$	
Lobatto IIIB $\begin{cases} s & odd \\ s & even \end{cases}$	zh^{s-1}	$\left\{\begin{array}{c}z & h\\zh^{s-2}\\zh^{s-1}\end{array}\right.$	zh^{s-2}	
Lobatto IIIC	$z^{-1}h^s$	$z^{-1}h^s$	$z^{-1}h^s$	

Table 15.1. Error for (15.1) when $h \to 0$ and $z = h\lambda \to \infty$

We remark that Formulas (15.7) and (15.8) (but not (15.9)) remain valid for variable h, if z is replaced by $z_n = h_n \lambda$.

Verification of Table 15.1.

Gauss. Since the RK-matrix A is invertible, we have $-zb^T(I-zA)^{-1} = b^TA^{-1} + \mathcal{O}(z^{-1})$ and (15.4) inserted into (15.7) gives $\delta_h(x) = \mathcal{O}(h^{s+1})$ (observe that q = s). It then follows from (15.8) (for constant and variable h) that the global error behaves like $\mathcal{O}(h^s)$ because $|R(z)| \leq 1$. For odd s we have $R(\infty) = -1$ and the global error estimate can be improved in the case of constant step sizes. This follows from partial summation

$$\sum_{j=0}^{n} \varrho^{n-j} \delta(x_j) = \frac{1-\varrho^{n+1}}{1-\varrho} \delta(x_0) + \sum_{j=1}^{n} \frac{1-\varrho^{n+1-j}}{1-\varrho} \left(\delta(x_j) - \delta(x_{j-1})\right) \quad (15.10)$$

of the sum in (15.9) and from the fact that $\delta_h(x_j) - \delta_h(x_{j-1}) = \mathcal{O}(h^{q+2})$.

Radau IA. The local error estimate follows in the same way as for the Gauss methods. Since $R(z) = \mathcal{O}(z^{-1})$ the error propagation in (15.8) is negligible and the local and global errors have the same asymptotic behaviour.

Radau IIA and **Lobatto IIIC**. These methods have $a_{si} = b_i$ for all *i*. Therefore the last internal stage is identical to the numerical solution and the local error can be written as

$$\delta_h(x) = -e_s^T (I - zA)^{-1} \Delta_h(x) \; .$$

Since A is invertible this formula shows the presence of z^{-1} in the local error. Again we have $R(\infty) = 0$, so that the global error is essentially equal to the local error. **Lobatto IIIA.** The first stage is explicit, $g_1 = y_0$, and is done without introducing an error. Therefore $\Delta_{1,h}(x) = 0$ and (because of $a_{si} = b_i$) the local error has the form

$$\delta_h(x) = -e_{s-1}^T (I - z\widetilde{A})^{-1} \widetilde{\Delta}_h(x)$$

where $\widetilde{A} = (a_{ij})_{i,j=2}^{s}$ and $\widetilde{\Delta}_{h} = (\Delta_{2,h}, \dots, \Delta_{s,h})^{T}$. The statements of Table 15.1 now follow as for the Gauss methods.

Lobatto IIIB. The matrix A is singular (its last column vanishes), therefore the two "z" in (15.7) do not simply cancel for $z \to \infty$. A more detailed analysis (see Exercise 5 below) shows that the local error is not bounded if $z \to \infty$. Although A-stable, these methods are not suited for the solution of stiff problems.

We observe from Table 15.1 that the order of convergence for problem (15.1) with large λ is considerably smaller than the classical order. Further we see that methods satisfying $a_{si} = b_i$ (Radau IIA, Lobatto IIIA and Lobatto IIIC) give an asymptotically exact result for $z \to \infty$. Prothero & Robinson (1974) call such methods stiffly accurate. The importance of this condition will appear again when we treat singularly perturbed and differential-algebraic problems (Chapter VI).

The Local Error

"Das besondere Schmerzenskind sind die Fehlerabschätzungen." (L. Collatz 1950)

Our next aim is to extend the above results to general nonlinear differential equations y' = f(x, y) satisfying a one-sided Lipschitz condition

$$\langle f(x,y) - f(x,z), y - z \rangle \le \nu \|y - z\|^2$$
. (15.11)

The following analysis, begun by Frank, Schneid & Ueberhuber (1981), was elaborated by Frank, Schneid & Ueberhuber (1985) and Dekker & Verwer (1984). We again denote the local error by

$$\delta_h(x) = y_1 - y(x+h) ,$$

where y_1 is the numerical solution with initial value $y_0 = y(x)$ on the exact solution.

Proposition 15.1. Consider a differential equation which satisfies (15.11). Assume that the RK-matrix A is invertible, $\alpha_0(A^{-1}) \geq 0$ (see Definition 14.1), and that the stage order is q.

244 IV. Stiff Problems — One Step Methods

a) If
$$\alpha_0(A^{-1}) > 0$$
 then
 $\|\delta_h(x)\| \le C h^{q+1} \max_{\xi \in [x, x+h]} \|y^{(q+1)}(\xi)\|$ for $h\nu \le \alpha < \alpha_0(A^{-1})$.

b) If $\alpha_D(A^{-1}) = 0$ for some positive diagonal matrix D and $\nu < 0$ then

$$\|\delta_h(x)\| \leq rac{C}{|
u|} \; h^q \max_{\xi \in [x,x+h]} \|y^{(q+1)}(\xi)\| \; .$$

In both cases the constant C depends only on the coefficients of the RKmatrix and on α (for case a)).

Remarks. a) The crucial fact in these estimates is that the right-hand side depends only on derivatives of the exact solution and not on the stiffness of the problem. These estimates are useful when a "smooth" solution of a stiff problem has to be approximated.

b) The hypothesis $\alpha_D(A^{-1})=0$ (see case b)) is stronger than $\alpha_0(A^{-1})=0$ (see Exercise 4 below). For the Lobatto IIIC methods, for which $\alpha_0(A^{-1})=0$ (s>2), we have $\alpha_D(A^{-1})=0$ with D=B (see (14.21)).

c) In the estimates of the above proposition the maximum is taken over $\xi \in [x, x+h]$. In the case where $0 \le c_i \le 1$ is not satisfied, this interval must of course be correspondingly enlarged.

Proof. We put $\hat{g}_i = y(x_0 + c_i h)$, so that the relation (14.11a) is satisfied with

$$\delta_i = y(x_0 + c_i h) - y(x_0) - h \sum_{j=1}^s a_{ij} y'(x_0 + c_j h) \; .$$

Taylor expansion shows that

$$\|\delta_i\| \le C_i h^{q+1} \max_{x \in [x_0, x_1]} \|y^{(q+1)}(x)\|$$

where $C_i = (|c_i|^{q+1} + (q+1)\sum_{j=1}^s |a_{ij}| \cdot |c_j|^q)/(q+1)!$ is a method-dependent constant. Similarly the value \hat{y}_1 of (14.11b) satisfies

$$y(x_0+h) - \hat{y}_1 = y(x_0+h) - y(x_0) - h \sum_{j=1}^{s} b_j y'(x_0+c_jh) = \mathcal{O}(h^{q+1}), \quad (15.12)$$

because the order of the quadrature formula (b_i, c_i) is $\geq q$. Since

$$\|\delta_h(x)\| \leq \|y_1 - \widehat{y}_1\| + \|\widehat{y}_1 - y(x_0 + h)\|$$

the desired estimates follow from (14.13) of Theorem 14.3.

Error Propagation

At the end of Section IV.12 we derived for some particular RK-methods sharp estimates of the form

$$\left\|\widehat{y}_{1}-y_{1}\right\| \leq \varphi_{B}(h\nu) \left\|\widehat{y}_{0}-y_{0}\right\|, \qquad (15.13)$$

where \hat{y}_1, y_1 are the numerical solutions corresponding to \hat{y}_0, y_0 , respectively, and where the differential equation satisfies (15.11). We give here a simple proof of a crude estimate of $\varphi_B(h\nu)$ which, however, will be sufficient to derive interesting convergence results.

Proposition 15.2 (Dekker & Verwer 1984). Suppose that the differential equation satisfies (15.11) and apply an algebraically stable RK-method with invertible A and $\alpha_0(A^{-1}) > 0$. Then for any α with $0 < \alpha < \alpha_0(A^{-1})$ there exists a constant C > 0 such that

$$\|\widehat{y}_1-y_1\|\leq (1+Ch
u)\|\widehat{y}_0-y_0\| \quad \textit{for} \quad 0\leq h
u\leq lpha$$
 .

Proof. From (12.7) we have (using the notation of the proof of Theorem 12.4)

$$\|\Delta y_1\|^2 = \|\Delta y_0\|^2 + 2h \sum_{i=1}^s b_i \langle \Delta f_i, \Delta g_i \rangle - h^2 \sum_{i=1}^s \sum_{j=1}^s m_{ij} \langle \Delta f_i, \Delta f_j \rangle .$$
(15.14)

By algebraic stability the last term in (15.14) is non-positive and can be neglected. Using (15.11) and the estimate (14.12) with $\delta_i = \hat{y}_0 - y_0$ we obtain

$$egin{aligned} &2h\sum_{i=1}^s b_i \langle \Delta f_i, \Delta g_i
angle &\leq 2h
u \sum_{i=1}^s b_i \, \|\Delta g_i\|^2 \ &\leq 2h
u \, C_1 \, \|\|\Delta g\|\|_D^2 \leq rac{2h
u C_2}{(lpha_D(A^{-1})-h
u)^2} \, \|\Delta y_0\|^2 \; . \end{aligned}$$

Inserting this into (15.14) yields

$$egin{aligned} & \|\Delta y_1\| \leq igg(1+rac{h
u C_2}{(lpha_D(A^{-1})-h
u)^2}igg)\|\Delta y_0\| \end{aligned}$$

which proves the desired estimate.

b) If $\alpha_0(A^{-1}) > 0$ and $\nu \leq 0$ then

B-Convergence for Variable Step Sizes

We are now in a position to present the main result of this section.

Theorem 15.3. Consider an algebraically stable RK-method with invertible A and stage order $q \leq p$ and suppose that (15.11) holds.

a) If $0 < \alpha < \alpha_0(A^{-1})$ and $\nu > 0$ then the global error satisfies

$$\|y_n - y(x_n)\| \le h^q rac{(e^{C_1
u(x_n - x_0)} - 1)}{C_1
u} C_2 \max_{x \in [x_0, x_n]} \|y^{(q+1)}(x)\|$$

for $h
u \le lpha$

 $||y_n - y(x_n)|| \le h^q(x_n - x_0)C_2 \max_{x \in [x_0, x_n]} ||y^{(q+1)}(x)|| \text{ for all } h > 0.$

c) If
$$\alpha_D(A^{-1}) = 0$$
 for some positive diagonal matrix D and $\nu < 0$ then

$$\|y_n - y(x_n)\| \le h^{q-1} \frac{C}{|\nu|} (x_n - x_0) \max_{x \in [x_0, x_n]} \|y^{(q+1)}(x)\|$$

The constants C_1, C_2, C depend only on the coefficients of the RK-matrix. In the case of variable step sizes, h has to be interpreted as $h = \max h_i$.

Proof. This convergence result is obtained in exactly the same way as that for non-stiff problems (Theorem II.3.6). For the transported errors E_j (see Fig. II.3.2) we have the estimate (for $\nu \geq 0$)

$$\|E_j\| \le e^{C\nu(x_n - x_j)} \|\delta_{h_{j-1}}(x_{j-1})\|$$
(15.15)

by Proposition 15.2, because $1+Ch\nu \leq e^{C\nu h}$. We next insert the local error estimate of Proposition 15.1 into (15.15) and sum up the transported errors E_j . This yields the desired estimate for $\nu \geq 0$ because

$$\sum_{j=1}^{n} h_{j-1} e^{C\nu(x_n - x_j)} \le \int_{x_0}^{x_n} e^{C\nu(x_n - x)} dx$$
$$= \begin{cases} (e^{C\nu(x_n - x_0)} - 1)/(C\nu) & \text{for } \nu > 0\\ x_n - x_0 & \text{for } \nu = 0 \end{cases}$$

If $\nu < 0$ we have $||E_j|| \le ||\delta_{h_{j-1}}(x_{j-1})||$ by algebraic stability and the same arguments apply.

Motivated by this result we define the order of B-convergence as follows:

Definition 15.4 (Frank, Schneid & Ueberhuber 1981). A Runge-Kutta method is called *B*-convergent of order r for problems y' = f(x, y) satisfying (15.11), if the global error admits an estimate

$$\|y_n - y(x_n)\| \le h^r \gamma(x_n - x_0, \nu) \max_{j=1,\dots,l} \max_{x \in [x_0, x_n]} \|y^{(j)}(x)\|$$
for $h\nu \le \alpha$
(15.16)

where $h = \max h_i$. Here γ is a method-dependent function and α also depends only on the coefficients of the method.

As an application of the above theorem we have

Theorem 15.5. The Gauss and Radau IIA methods are B-convergent of order s (number of stages). The Radau IA methods are B-convergent of order s-1. The 2-stage Lobatto IIIC method is B-convergent of order 1. \Box

For the Lobatto IIIC methods with $s \ge 3$ stages $(\alpha_0(A^{-1})=0 \text{ and } q=s-1)$ Theorem 15.3 shows *B*-convergence of order s-2 if $\nu < 0$. This is not an optimal result. Spijker (1986) proved *B*-convergence of order s-3/2for $\nu < 0$ and constant step sizes. Schneid (1987) improved this result to s-1. Recently, Dekker, Kraaijevanger & Schneid (1990) showed that these methods are *B*-convergent of order s-1 for general step size sequences, if one allows the function γ in Definition 15.4 to depend also on the ratio max $h_i/\min h_i$.

The Lobatto IIIA and IIIB methods cannot be B-convergent since they are not algebraically stable. This will be the content of the next subsection.

B-Convergence Implies Algebraic Stability

In order to find necessary conditions for B-convergence we consider the problem

$$y' = \lambda(x)(y - \varphi(x)) + \varphi'(x) , \qquad \operatorname{Re} \lambda(x) \leq
u$$
 (15.17)

with exact solution $\varphi(x) = x^{q+1}$. We apply a Runge-Kutta method with stage order q and obtain for the global error $\varepsilon_n = y_n - \varphi(x_n)$ the simple recursion

$$\varepsilon_{n+1} = K(Z_n)\varepsilon_n - L(Z_n)h^{q+1} \tag{15.18}$$

(cf. Formula (15.8) of the beginning of this section, where the case $\lambda(x) = \lambda$ was treated). Here $Z_n = \text{diag}(h\lambda(x_n+c_1h),\ldots,h\lambda(x_n+c_sh))$ and

$$K(Z) = 1 + b^T Z (I - AZ)^{-1} \mathbb{1}, \quad L(Z) = d_0 + b^T Z (I - AZ)^{-1} d. \quad (15.19)$$

The function K(Z) was already encountered in Definition 12.10, when treating AN-stability. The vector $d = (d_1, \ldots, d_s)^T$ and d_0 in L(Z) characterize the local error and are given by

$$d_0 = 1 - (q+1) \sum_{j=1}^{s} b_j c_j^q , \qquad d_i = c_i^{q+1} - (q+1) \sum_{j=1}^{s} a_{ij} c_j^q .$$
(15.20)

Observe that by definition of the stage order we have either $d_0 \neq 0$ or $d \neq 0$ (or both). We are now in the position to prove

Theorem 15.6 (Dekker, Kraaijevanger & Schneid 1990). Consider a DJirreducible RK-method which satisfies $0 \le c_1 < c_2 < \ldots < c_s \le 1$. If, for some r, l and $\nu < 0$, the global error satisfies the B-convergence estimate (15.16), then the method is algebraically stable.

Proof. Suppose that the method is not algebraically stable. Then, by Theorem 12.13 and Lemma 15.17 below, there exists $Z = \text{diag}(z_1, \ldots, z_s)$ with $\operatorname{Re} z_j < 0$ such that $(I - AZ)^{-1}$ exists and

$$|K(Z)| > 1$$
, $L(Z) \neq 0$. (15.21)

We consider the interval $[0, (1+\theta)/2]$ and for even N the step size sequence $(h_n)_{n=0}^{N-1}$ given by

$$h_n = 1/N$$
 (for *n* even), $h_n = \theta/N$ (for *n* odd)

If N is sufficiently large it is possible to define a function $\lambda(x)$ which satisfies $\operatorname{Re}\lambda(x)\leq
u$ and

$$\lambda(x_n + c_i h_n) = egin{cases} Nz_i & ext{for } n ext{ even} \ Nz_{s+1-i} & ext{for } n ext{ odd} \ . \end{cases}$$

Because of (15.18) the global error $\varepsilon_n = y_n - \varphi(x_n)$ for the problem (15.17) satisfies (with h=1/N)

$$egin{aligned} &arepsilon_{n+1} = K(Z)arepsilon_n - h^{q+1}L(Z) & ext{for n even} \\ &arepsilon_{n+1} = K(\widetilde{Z})arepsilon_n - h^{q+1}L(\widetilde{Z}) & ext{for n odd} \end{aligned}$$

where $\widetilde{Z} = \text{diag}(\theta z_s, \ldots, \theta z_1)$. Consequently we have

$$\epsilon_{2m+2} = K(\widetilde{Z})K(Z)\epsilon_{2m} - h^{q+1}(K(\widetilde{Z})L(Z) + \theta^{q+1}L(\widetilde{Z}))$$

and the error at $x_{end} = (1 + \theta)/2$ is given by

$$\epsilon_N = -\frac{1}{N^{q+1}} \left(K(\widetilde{Z})L(Z) + \theta^{q+1}L(\widetilde{Z}) \right) \frac{(K(\widetilde{Z})K(Z))^{N/2} - 1}{K(\widetilde{Z})K(Z) - 1} .$$
(15.22)

If θ is sufficiently small, $K(\widetilde{Z}) \to 1$ and $L(\widetilde{Z}) \to d_0$, so that by (15.21)

$$|K(\widetilde{Z})K(Z)|>1 \quad ext{and} \quad K(\widetilde{Z})L(Z)+ heta^{q+1}L(\widetilde{Z})
eq 0 \;.$$

Therefore $|\epsilon_N| \to \infty$ as $N \to \infty$ (N even), which contradicts the estimate (15.16) of B-convergence.

To complete the above proof we give the following lemma:

Lemma 15.7 (Dekker, Kraaijevanger & Schneid 1990). Consider a DJirreducible RK-method and suppose

$$b^T Z (I - AZ)^{-1} d = 0 (15.23)$$

for all $Z = \text{diag}(z_1, \ldots, z_s)$ with I - AZ invertible; then d = 0.

Proof. We define

$$T = \left\{ j \mid b_{i_1} a_{i_1 i_2} a_{i_2 i_3} \dots a_{i_{k-1} i_k} = 0 \quad \text{ for all } k \text{ and } i_l \text{ with } i_k = j \right\}.$$

Putting k=1 we obtain $b_j=0$ for $j \in T$. Further, if $i \notin T$ and $j \in T$ there exists (i_1, \ldots, i_k) with $i_k=i$ such that

$$b_{i_1}a_{i_1i_2}\ldots a_{i_{k-1}i_k} \neq 0$$
, $b_{i_1}a_{i_1i_2}\ldots a_{i_{k-1}i_k}a_{i_j} = 0$

implying $a_{ij} = 0$. Therefore the method is DJ-reducible if $T \neq \emptyset$. For the proof of the statement it thus suffices to show that $d \neq 0$ implies $T \neq \emptyset$.

Replacing $(I-AZ)^{-1}$ by its geometric series, assumption (15.23) becomes equivalent to

$$b^T Z(AZ)^{k-1} d = 0$$
 for all k and $Z = \operatorname{diag}(z_1, \dots, z_s)$. (15.24)

Comparing the coefficient of $z_{i_1} \cdots z_{i_k}$ gives

$$\sum b_{j_1} a_{j_1 j_2} \cdots a_{j_{k-1} j_k} d_{j_k} = 0 , \qquad (15.25)$$

where the summation is over all permutations (j_1, \ldots, j_k) of (i_1, \ldots, i_k) . Suppose now that $d_j \neq 0$ for some index j. We shall prove by induction on k that

$$b_{i_1}a_{i_1i_2}\dots a_{i_{k-1}i_k} = 0 \quad \text{for all} \quad i_{\ell} \ (\ell = 1,\dots,k) \quad \text{with} \quad i_k = j \ , \ (15.26)$$

so that $j \in T$ and consequently $T \neq \emptyset$.

For k = 1 this follows immediately from (15.25). In order to prove (15.26) for k+1 we suppose, by contradiction, that (i_1, \ldots, i_{k+1}) with $i_{k+1} = j$ exists such that $b_{i_1}a_{i_1i_2}\ldots a_{i_ki_{k+1}} \neq 0$. The relation (15.25) then implies the existence of a permutation (j_1, \ldots, j_{k+1}) of (i_1, \ldots, i_{k+1}) such that $b_{j_1}a_{j_1j_2}\ldots a_{j_kj_{k+1}} \neq 0$, too. We now denote by q the smallest index for which $i_q \neq j_q$. Then $i_q = j_r$ for some r > q and

$$b_{i_1}a_{i_1i_2}\cdots a_{i_{q-1}i_q}a_{j_rj_{r+1}}\cdots a_{j_kj_{k+1}}\neq 0$$
(15.27)

contradicts the induction hypothesis, because the expression in (15.27) contains at most k factors.

The Trapezoidal Rule

The trapezoidal rule

$$y_{k+1} = y_k + \frac{h_k}{2} [f(x_k, y_k) + f(x_{k+1}, y_{k+1})]$$
(15.28)

is not algebraically stable. Therefore (Theorem 15.6) it cannot be B-convergent in the sense of Definition 15.4. Nevertheless it is possible to derive estimates (15.16), if we restrict ourselves to special step size sequences (constant, monotonic ...). This was first proved by Stetter (unpublished) and investigated in detail by Kraaijevanger (1985). The result is

Theorem 15.8 (Kraaijevanger 1985). If the differential equation satisfies (15.11), then the global error of the trapezoidal rule permits for $h_j \nu \leq \alpha < 2$ the estimate

$$\|y_n - y(x_n)\| \le C \max_{x \in [x_0, x_n]} \|y^{(3)}(x)\| \sum_{k=0}^{n-1} \Big\{ \prod_{j=k+1}^{n-1} \max\left(1, h_j/h_{j-1}\right) \Big\} h_k^3$$

Proof. We denote by $\hat{y}_k = y(x_k)$ the exact solution at the grid points. From the Taylor expansion we then get

$$\widehat{y}_{k+1} = \widehat{y}_k + \frac{h_k}{2} \left(f(x_k, \widehat{y}_k) + f(x_{k+1}, \widehat{y}_{k+1}) \right) + \delta_k$$
(15.29)

where

$$\|\delta_k\| \leq \frac{1}{12} h_k^3 \max_{x \in [x_k, x_{k+1}]} \|y^{(3)}(x)\| .$$
 (15.30)

The main idea is now to introduce the intermediate values

$$y_{k+1/2} = y_k + \frac{h_k}{2} f(x_k, y_k) = y_{k+1} - \frac{h_k}{2} f(x_{k+1}, y_{k+1})$$

$$\widehat{y}_{k+1/2} = \widehat{y}_k + \frac{h_k}{2} f(x_k, \widehat{y}_k) + \delta_k = \widehat{y}_{k+1} - \frac{h_k}{2} f(x_{k+1}, \widehat{y}_{k+1}).$$
(15.31)

The transition $y_{k-1/2} \rightarrow y_{k+1/2}$

$$y_{k+1/2} = y_{k-1/2} + \frac{1}{2}(h_{k-1} + h_k)f(x_k, y_k)$$

can then be interpreted as one step of the θ -method

$$y_{m+1} = y_m + hf(x_m + \theta h, y_m + \theta(y_{m+1} - y_m))$$

with $\theta = h_{k-1}/(h_{k-1}+h_k)$ and step size $h = (h_{k-1}+h_k)/2$. A similar calculation shows that the same θ -method maps $\hat{y}_{k-1/2}$ to $\hat{y}_{k+1/2} - \delta_k$. Therefore we have

$$\|\widehat{y}_{k+1/2} - y_{k+1/2} - \delta_k\| \le \varphi_B(h\nu) \|\widehat{y}_{k-1/2} - y_{k-1/2}\|$$

where the growth function $\varphi_B(h\nu)$ is given by (see Example 12.24)

$$\varphi_{B}(h\nu) = \max\{(1-\theta)/\theta, (1+(1-\theta)h\nu)/(1-\theta h\nu)\}$$

= $\max\{h_{k}/h_{k-1}, (1+\frac{1}{2}h_{k}\nu)/(1-\frac{1}{2}h_{k-1}\nu)\} =: \varphi_{k}.$ (15.32)

By the triangle inequality we also get

$$\|\widehat{y}_{k+1/2} - y_{k+1/2}\| \le \varphi_k \|\widehat{y}_{k-1/2} - y_{k-1/2}\| + \|\delta_k\| .$$
 (15.33)

Further it follows from (15.31) with k=0 and from $\hat{y}_0 = y_0$ that

$$\|\widehat{y}_{1/2} - y_{1/2}\| = \|\delta_0\| , \qquad (15.34)$$

whereas the backward Euler steps $y_{n-1/2} \to y_n$ and $\widehat{y}_{n-1/2} \to \widehat{y}_n$ (see (15.31)) imply

$$\|\widehat{y}_n - y_n\| \le \frac{1}{(1 - \frac{1}{2}h_{n-1}\nu)} \|\widehat{y}_{n-1/2} - y_{n-1/2}\|$$
(15.35)

again by Example 12.24 with $\theta = 1$. A combination of (15.33), (15.34) and (15.35) yields

$$\|\widehat{y}_{n} - y_{n}\| \leq \frac{1}{(1 - \frac{1}{2}h_{n-1}\nu)} \sum_{k=0}^{n-1} \left\{ \prod_{j=k+1}^{n-1} \varphi_{j} \right\} \|\delta_{k}\| .$$
 (15.36)

For $\nu \leq 0$ we have $\varphi_k \leq \max(1, h_k/h_{k-1})$ and the statement follows if we insert (15.30) into (15.36). For $\nu \geq 0$ we use the estimate $(h_{k-1}\nu \leq 1)$

$$\frac{1+\frac{1}{2}h_k\nu}{1-\frac{1}{2}h_{k-1}\nu} = \frac{1+\frac{1}{2}h_{k-1}\nu}{1-\frac{1}{2}h_{k-1}\nu} \cdot \frac{1+\frac{1}{2}h_k\nu}{1+\frac{1}{2}h_{k-1}\nu} \le e^{2h_{k-1}\nu} \cdot \max\left(1,\frac{h_k}{h_{k-1}}\right)$$

so that the statement holds with $C = e^{2\nu(x_n - x_0)}/12$.

Corollary 15.9. If the step size sequence $(h_k)_{k=0}^{N-1}$ is constant or monotonic, then for $h = \max h_i$

$$\|y_n - y(x_n)\| \le C \max_{x \in [x_0, x_n]} \|y^{(3)}(x)\| \cdot h^2$$
.

Order Reduction for Rosenbrock Methods

Obviously, Rosenbrock methods (Definition 7.1) cannot be *B*-convergent in the sense of Definition 15.4 (see also Exercise 8 of Section IV.12). Nevertheless it is interesting to study their behaviour on stiff problems such as the Prothero & Robinson model (15.1). Since this equation is non-autonomous we have to use the formulation (7.4'). A straightforward calculation shows that the global error $\varepsilon_n = y_n - \varphi(x_n)$ satisfies the recursion

$$\varepsilon_{n+1} = R(z)\varepsilon_n + \delta_h(x_n) \tag{15.37}$$

where R(z) is the stability function (7.14) and the local error is given by

$$\delta_h(x) = \varphi(x) - \varphi(x+h) + b^T (I - zB)^{-1} \Delta$$
(15.38)

with $B = (\alpha_{ij} + \gamma_{ij}), b = (b_1, \dots, b_s)^T, \Delta = (\Delta_1, \dots, \Delta_s)^T$ and

$$\Delta_i = z(\varphi(x) - \varphi(x + \alpha_i h) - \gamma_i h \varphi'(x)) + h \varphi'(x + \alpha_i h) + \gamma_i h^2 \varphi''(x)$$

Taylor expansion gives the following result.

Lemma 15.10. The local error $\delta_h(x)$ of a Rosenbrock method applied to (15.1) satisfies for $h \to 0$ and $z = \lambda h \to \infty$

$$\delta_h(x) = \Bigl(\sum_{i,j} b_i \omega_{ij} lpha_j^2 - 1 \Bigr) rac{h^2}{2} arphi''(x) + \mathcal{O}(h^3) + \mathcal{O}\Bigl(rac{h^2}{z}\Bigr) \;,$$

where ω_{ij} are the entries of B^{-1} .

Remarks. a) Unless the Rosenbrock method satisfies the new order condition

$$\sum_{i,j=1}^{s} b_i \omega_{ij} \alpha_j^2 = 1 , \qquad (15.39)$$

the local error and the global error (if $|R(\infty)| < 1$) are only of size $\mathcal{O}(h^2)$. Since none of the classical Rosenbrock methods of Section IV.7 satisfies (15.39), their order is only 2 for the problem (15.1) if λ is very large.

b) A convenient way to satisfy (15.39) is to require

$$\alpha_{si} + \gamma_{si} = b_i \ (i = 1, \dots, s) \quad \text{and} \quad \alpha_s = 1 \ .$$
 (15.40)

This is the analogue of the condition $a_{si} = b_i$ for Runge-Kutta methods. It implies not only (15.39) but even

$$\delta_h(x) = \mathcal{O}\Big(rac{h^2}{z}\Big) \;,$$

so that such methods yield asymptotically exact results for $z \to \infty$.

c) A deeper understanding of the condition (15.39) will be possible when studying the error of Rosenbrock methods for singular perturbation and differential-algebraic problems (Chapter VI). We shall construct there methods satisfying (15.40).

d) Scholz (1989) writes the local error $\delta_h(x)$ in the form

$$\delta_h(x) = \sum_{j \ge 2} C_j(z) h^j \varphi^{(j)}(x) \tag{15.41}$$

and investigates the possibility of having $C_j(z) \equiv 0$ for j = 2 (and also j > 2). Hundsdorfer (1986) and Strehmel & Weiner (1987) extend the above analysis to semi-linear problems (11.19) which satisfy (11.20). Their results are rather technical but allow the construction of "*B*-convergent" methods of order p > 1.

Exercises

- 1. Prove that the stage order of an SDIRK method is at most 1, that of a DIRK method at most 2.
- 2. Consider a Runge-Kutta method with $0 \le c_1 < ... < c_s \le 1$ which has stage order q. Prove that the method cannot be *B*-convergent (for variable step sizes) of order q+1.

Hint. Use Formula (15.22) and prove that

$$\frac{K(\tilde{Z})L(Z) + \theta^{q+1}L(\tilde{Z})}{K(\tilde{Z})K(Z) - 1}$$
(15.42)

cannot be uniformly bounded for

$$Z = \operatorname{diag}(z_1, \ldots, z_s), \qquad \widetilde{Z} = \operatorname{diag}(\widetilde{z}_1, \ldots, \widetilde{z}_s)$$

with $\operatorname{Re} z_i \leq 0$, $\operatorname{Re} \tilde{z}_i \leq 0$ (in the case $c_1 = 0$ and $c_s = 1$ one has to prove this under the restriction $\tilde{z}_1 = \theta z_s$, $\tilde{z}_s = \theta z_1$). For this consider values z_i , \tilde{z}_i close to the origin.

3. (Burrage & Hundsdorfer 1987). Assume $c_i - c_j$ is not an integer for $1 \le i < j \le s$, and the order of *B*-convergence (for constant step sizes) of an RK-method is q+1 (q denotes the stage order). Then $d_0 = 0$ and all components of $d = (d_1, \ldots, d_s)^T$ are equal (see (15.20) for the definition of d_j).

Hint. Study the uniform boundedness of the function L(Z)/(K(Z)-1).

254 IV. Stiff Problems — One Step Methods

4. (Kraaijevanger). Show that for

$$A^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$
(15.43)

we have $\alpha_0(A^{-1}) = 0$, but there exists no positive diagonal matrix D such that $\alpha_D(A^{-1}) = 0$. For more insight see "Corollary 2.15" of Kraai-jevanger & Schneid (1990).

5. Prove that for the Lobatto IIIB methods, with

$$A = \begin{pmatrix} \tilde{A} & 0 \\ a^T & 0 \end{pmatrix}$$

the dominant term of the local error (15.7) is (for $h \rightarrow 0$ and $z = h\lambda \rightarrow \infty$)

$$zb_s(a^T\widetilde{A}^{-1}c^{q+1}-1)rac{h^{q+1}}{(q+1)!}\,arphi^{(q+1)}(x)\;.$$

Here q = s - 2 is the stage order and $c = (c_1, \ldots, c_{s-1})^T$. Show further that

$$a^T \tilde{A}^{-1} c^k = 1$$
 for $k = 1, 2, \dots q$ (15.44)

$$a^T \tilde{A}^{-1} c^k \neq 1$$
 for $k = q + 1$. (15.45)

Hint. Equation (15.44) follows from C(q). Show (15.45) by supposing $a^T \widetilde{A}^{-1} c^{q+1} = 1$ which together with (15.44) implies that

$$\sum_{i=1}^{s-1} d_i p(c_i) = p(1)$$
 where $d^T = a^T \widetilde{A}^{-1}$

for every polynomial of deg $p \le q+1 = s-1$ satisfying p(0) = 0. Arrive at a contradiction with

$$p(x) = (x-c_1)(x-c_2)\dots(x-c_{s-1})$$
.

Chapter V. Multistep Methods for Stiff Problems

Multistep methods (BDF) were the first numerical methods to be proposed for stiff differential equations (Curtiss & Hirschfelder 1952) and since Gear's book (1971) computer codes based on these methods have been the most prominent and most widely used for all stiff computations.

This chapter introduces the linear stability theory for multistep methods (Section V.1) and arrives at the famous theorem of Dahlquist which says that A-stable multistep methods cannot have high order. Attempts to circumvent this barrier proceed mainly in two directions: either study methods with slightly weaker stability requirements (Section V.2) or introduce new classes of methods (Section V.3). Order star theory on Riemann surfaces (Section V.4) then helps to extend Dahlquist's barrier to generalized methods and to explain various properties of stability domains. Section V.5 presents numerical experiments with several codes based on the methods introduced.

Since all the foregoing stability theory is based uniquely on linear autonomous problems y' = Ay, the question arises of their validity for general nonlinear problems. This leads to the concepts of G-stability for multistep methods (Section V.6) and algebraic stability for general linear methods (Section V.9).

Another important subject is convergence estimates for $h \rightarrow 0$ which are independent of the stiffness (the analogue of *B*-convergence in Section IV.15). We describe various techniques for obtaining such estimates in Sections V.7 (for linear problems) as well as V.6 and V.8 (for nonlinear problems). These techniques are: use of *G*-stability, the Kreiss matrix theorem, the multiplier technique and, last but not least, a discrete variation of constants formula.

V.1. Stability of Multistep Methods

A general k-step multistep method is of the form

$$\alpha_{k}y_{m+k} + \alpha_{k-1}y_{m+k-1} + \ldots + \alpha_{0}y_{m} = h(\beta_{k}f_{m+k} + \ldots + \beta_{0}f_{m}) . \quad (1.1)$$

For this method, we can do the same stability analysis as in Section IV.2 for Euler's method. This means that we apply method (1.1) to the linearized and autonomous system

$$y' = Jy \tag{1.2}$$

(see (IV.2.2')); this gives

$$\alpha_k y_{m+k} + \ldots + \alpha_0 y_m = h J(\beta_k y_{m+k} + \ldots + \beta_0 y_m) . \tag{1.3}$$

We again introduce a new basis for the vectors y_{m+i} consisting of the eigenvectors of J. Then for the *coefficients* of y_{m+i} , with respect to an eigenvector v of J, we obtain exactly the same recourrence equation as (1.3), with J replaced by the corresponding eigenvalue λ . This gives ¹

$$(\alpha_k - \mu \beta_k) y_{m+k} + \ldots + (\alpha_0 - \mu \beta_0) y_m = 0, \qquad \mu = h\lambda \qquad (1.4)$$

and is the same as method (1.1) applied to Dahlquist's test equation

$$y' = \lambda y \ . \tag{1.5}$$

The Stability Region

The difference equation (1.4) is solved using Lagrange's method (see Volume I, Section III.3): we set $y_j = \zeta^j$, divide by ζ^m and obtain the characteristic equation

$$(\alpha_k - \mu\beta_k)\zeta^k + \ldots + (\alpha_0 - \mu\beta_0) = \varrho(\zeta) - \mu\sigma(\zeta) = 0$$
(1.6)

¹ In contrast to Chapter IV, where the product $h\lambda$ was denoted throughout by z, we write $h\lambda = \mu$ here, since in multistep theory (Section III.3) z denotes the Cayley transform of ζ .

which depends on the complex parameter μ . The polynomials $\varrho(\zeta)$ and $\sigma(\zeta)$ are our old friends from (III.2.4). The difference equation (1.4) has stable solutions (for arbitrary starting values) iff all roots of (1.6) are ≤ 1 in modulus. In addition, *multiple* roots must be *strictly* smaller than 1 (see Volume I, Section III.3, Exercise 1). We therefore formulate

Definition 1.1. The set

$$S = \left\{ \mu \in \mathbb{C} \ ; \ \begin{array}{l} \text{all roots } \zeta_j(\mu) \text{ of } (1.6) \text{ satisfy } |\zeta_j(\mu)| \le 1, \\ \text{multiple roots satisfy } |\zeta_j(\mu)| < 1 \end{array} \right\}$$
(1.7)

is called the stability domain or stability region or region of absolute stability of Method (1.1).

It is sometimes desirable to consider S as a subset of the compactified complex plane $\overline{\mathbb{C}}$. In this case, for $\mu \to \infty$, the roots of Equation (1.6) tend to those of $\sigma(\zeta) = 0$.

For $\mu = 0$ equation (1.6) becomes $\varrho(\zeta) = 0$. Thus the usual stability (in the sense of Definition III.3.2) is equivalent to $0 \in S$.

Theorem 1.2. All numerical solutions of Method (1.1) are bounded for the linearized equation (1.2) with a diagonalizable matrix J iff $h\lambda \in S$ for all eigenvalues λ of J.

Computation of the Stability Domain

We start with a particular example, the explicit Adams method of order 4 (see Volume I, Section III.1, Formula (1.5)),

$$y_{m+4} = y_{m+3} + h \left(\frac{55}{24} f_{m+3} - \frac{59}{24} f_{m+2} + \frac{37}{24} f_{m+1} - \frac{9}{24} f_m \right) ,$$

for which Equation (1.6) becomes

$$\zeta^4 - \left(1 + \frac{55}{24}\mu\right)\zeta^3 + \frac{59}{24}\mu\zeta^2 - \frac{37}{24}\mu\zeta + \frac{9}{24}\mu = 0.$$
 (1.8)

For $\mu = 0$ Equation (1.8) has one root at $\zeta = 1$ (the so-called "principal root") and a three-fold root at $\zeta = 0$. We then move with μ to the point -0.25+0.5i (see Fig. 1.1a). Fig. 1.1b shows the corresponding movement of the four roots of (1.8).

For stability, all roots $\zeta_j(\mu)$ of (1.8) must lie inside the unit circle. We see in Fig. 1.1b that $\zeta_3(\mu)$ is the first to leave at a point $\exp(i\theta)$ where $\theta \approx 3\pi/4$. The corresponding μ -value is easily found from (1.8) to be

$$\mu = \frac{\varrho(e^{i\theta})}{\sigma(e^{i\theta})} = \frac{e^{4i\theta} - e^{3i\theta}}{\frac{55}{24}e^{3i\theta} - \frac{59}{24}e^{2i\theta} + \frac{37}{24}e^{i\theta} - \frac{9}{24}} .$$
(1.9)

The whole curve (1.9), for $0 \le \theta \le 2\pi$, is called the *root locus curve c*, and represents the points of μ which can constitute the boundary of S (Liniger 1956).

The particular root locus curve of Fig. 1.1a intersects itself and cuts several regions from C. What happens if our path for μ re-enters the *upper* loop of the root locus curve, i.e., if we move with μ to the point 0.25+i0.75? Well, as we see in Fig. 1.1b, $\zeta_3(\mu)$ does not re-enter the unit circle, but another root $(\zeta_1(\mu))$ leaves! This is explained by the fact that the root locus curve surrounds this region in the opposite direction and that the mappings $\mu \leftrightarrow \zeta_j$ are locally holomorphic if $\zeta'_j \neq 0$, i.e., preserve angles and orientations.

Special attention must be paid to $\zeta_1(\mu)$, which lies on the unit circle for $\mu = 0$. Differentiating (1.8) with respect to μ and putting $\mu = 0$, $\zeta = 1$ gives

$$\varrho'(1)\cdot\zeta_1'(0)-\sigma(1)=0,$$

hence $\zeta'_1(0) = 1$ because of the consistency conditions $\varrho'(1) \neq 0$, $\sigma(1) = \varrho'(1)$ (see Volume I, Formula (III.2.6)). Therefore $\zeta_1(\mu)$ moves *inside* the unit disc when μ moves *inside* \mathbb{C}^- and we have:

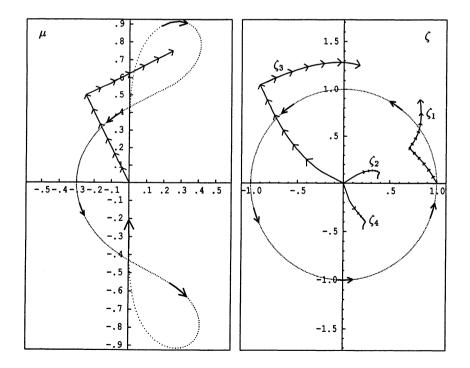


Fig. 1.1a. Path for μ

Fig. 1.1b. Paths of the roots of (1.8)

Theorem 1.3. The boundary of the stability domain S consists of parts of the root locus curve c given by $\theta \mapsto \varrho(e^{i\theta})/\sigma(e^{i\theta})$. If the method is consistent and all "parasitic" roots of $\varrho(\zeta) = 0$ lie inside the unit disc (i.e., the method is "strictly stable"), at least a small disc

$$\{\mu \ ; \ |\mu+arrho|\leq arrho\} \quad with \ arrho>0$$

lies inside S.

The precise location of S can be determined by studying how often, and in which sense, the root locus curve surrounds the different parts of $\mathbb{C} \setminus c$ (this is called the "Cauchy index" in complex analysis).

Adams Methods

It is now interesting to have a look at the methods of Section III.1 of Volume I:

The explicit Adams methods (III.1.5) applied to $y' = \lambda y$ give

$$y_{n+1} = y_n + \mu \sum_{j=0}^{k-1} \gamma_j \nabla^j y_n , \qquad \gamma_0 = 1, \ \gamma_1 = \frac{1}{2}, \ \gamma_2 = \frac{5}{12}, \ \gamma_3 = \frac{3}{8}, \dots$$
(1.10)

or, after putting $y_n = \zeta^n$ and dividing by ζ^n ,

$$\zeta - 1 = \mu \left\{ \gamma_0 + \gamma_1 \left(1 - \frac{1}{\zeta} \right) + \gamma_2 \left(1 - \frac{2}{\zeta} + \frac{1}{\zeta^2} \right) + \ldots \right\}$$

Hence the root locus curve becomes

$$\mu = \frac{\zeta - 1}{\sum_{j=0}^{k-1} \gamma_j (1 - \frac{1}{\zeta})^j} , \qquad \zeta = e^{i\theta} .$$
 (1.10')

For k=1 we again obtain the circle of Euler's method, centred at -1. These curves are plotted in Fig. 1.2 for $k=2,3,\ldots,6$ and show stability domains of rapidly decreasing sizes. These methods are thus surely not appropriate for stiff problems.

The implicit Adams methods (III.1.8) lead to

$$y_{n+1} = y_n + \mu \sum_{j=0}^k \gamma_j^* \nabla^j y_{n+1} , \qquad \gamma_0^* = 1, \ \gamma_1^* = -\frac{1}{2}, \ \gamma_2^* = -\frac{1}{12}, \dots$$
(1.11)

Here we put $y_n = \zeta^n$ and divide by ζ^{n+1} . This gives

$$\mu = \frac{1 - \frac{1}{\zeta}}{\sum_{j=0}^{k} \gamma_{j}^{*} (1 - \frac{1}{\zeta})^{j}} , \qquad \zeta = e^{i\theta} . \qquad (1.11')$$

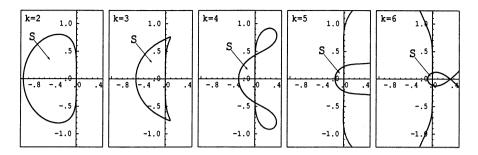


Fig. 1.2. Stability domains for explicit Adams methods

For k = 1 this is the implicit trapezoidal rule and is A-stable. For $k = 2, 3, \ldots, 6$ the stability domains, though much larger than those of the explicit methods, do not cover \mathbb{C}^- (see Fig. 1.3). Hence these methods are not A-stable.

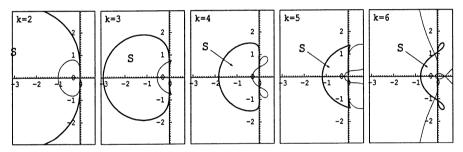


Fig. 1.3. Stability domains of implicit Adams methods, compared to those of the explicit ones

Predictor-Corrector Schemes

"The inadequacy of the theory incorporating the effect of the corrector equation only for predictor-corrector methods was first discovered through experimental computations on the prototype linear equation

$$y' = f(x,y) = -100y + 100, \quad y(0) = 0$$

 (\ldots) Very poor correlation of actual errors with the errors expected on the basis of the properties of the corrector equation alone was obtained. This motivated the development of the theory \ldots " (P.E. Chase 1962)

As we have seen in Section III.1, the classical way of computing y_{n+1} from the implicit equations (III.1.8) is to use the result y_{n+1}^* of the explicit Adams

method as a *predictor* in $\beta_k f(x_{n+1}, y_{n+1})$. This destroys a good deal of the stability properties of the method (Chase 1962). The stability analysis changes as follows: the predictor formula

$$y_{n+1}^* = y_n + \mu (\gamma_0 y_n + \gamma_1 (y_n - y_{n-1}) + \gamma_2 (y_n - 2y_{n-1} + y_{n-2}) + \dots)$$
(1.12)

must be inserted into the corrector formula

$$y_{n+1} = y_n + \mu \Big(\gamma_0^* y_{n+1}^* + \gamma_1^* (y_{n+1}^* - y_n) + \gamma_2^* (y_{n+1}^* - 2y_n + y_{n-1}) + \gamma_3^* (y_{n+1}^* - 3y_n + 3y_{n-1} - y_{n-2}) + \dots \Big) .$$
(1.13)

Since there is a μ in (1.12) and in (1.13), we obtain this time, by putting $y_n = \zeta^n$ and dividing by ζ^n , a quadratic equation for μ ,

$$A\mu^{2} + B\mu + C = 0 , \qquad (1.14)$$

$$A = \left(\sum_{j=0}^{k} \gamma_{j}^{*}\right) \left(\sum_{j=0}^{k-1} \gamma_{j} \left(1 - \frac{1}{\zeta}\right)^{j}\right) , \qquad (1.14)$$

$$B = (1 - \zeta) \sum_{j=0}^{k} \gamma_{j}^{*} + \zeta \sum_{j=0}^{k} \gamma_{j}^{*} \left(1 - \frac{1}{\zeta}\right)^{j} , \qquad (2 - 1 - \zeta) .$$

For each $\zeta = e^{i\theta}$, equation (1.14) has two roots. These give rise to two root locus curves which determine the stability domain. These curves are represented in Fig. 1.4 and compared to those of the original implicit methods. It can be seen that we loose a lot of stability. In particular, for k = 1 the trapezoidal rule becomes an explicit second order Runge Kutta method and the A-stability is destroyed.

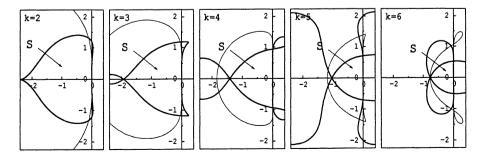


Fig. 1.4. Stability domains for PECE compared to original implicit methods

262 V. Multistep Methods for Stiff Problems

While Chase (1962) studied real eigenvalues only, the general complex case has been stated by Crane & Klopfenstein (1965) and, with beautiful figures, by Krogh (1966). All three papers also searched for procedures with increased stability domains. This research was brought to perfection by Stetter (1968).

Nyström Methods

"Thus we see that Milne's method will not handle so simple an equation as y' = -y, $y(0) = 1 \dots$ " (R.W. Hamming 1959)

"... Milne's method has a number of virtues not possessed by its principal rival, the Runge-Kutta method, which are especially important when the order of the system of equations is fairly high (N=10 to 30 or more)..."

(R.W. Hamming 1959)

The explicit Nyström method (III.1.13) for k=1 and 2 is the "explicit midpoint rule"

$$y_{n+1} = y_{n-1} + 2hf_n \tag{1.15}$$

and leads to the root locus curve

$$\mu = \frac{e^{i\theta} - e^{-i\theta}}{2} = i\sin\theta . \qquad (1.15')$$

This curve moves up and down the imaginary axis between $\pm i$ and leaves as stability domain just the interval (-i, +i). All eigenvalues in the interior of the negative half plane lead to instabilities. This is caused by the second root -1 of $\rho(\zeta)$ which moves out of the unit circle when μ goes West. This famous phenomenon is called the "weak instability" of the midpoint rule and was the "entry point" of Dahlquist's stability-career (Dahlquist 1951). The graphs of Fig. III.9.2 nicely show the (weak) instability of the numerical solution.

The implicit Milne-Simpson method (III.1.15) for k=2 and 3 is

$$y_{n+1} = y_{n-1} + h\left(\frac{1}{3}f_{n+1} + \frac{4}{3}f_n + \frac{1}{3}f_{n-1}\right)$$
(1.16)

and has the root locus curve

$$\mu = \frac{e^{i\theta} - e^{-i\theta}}{\frac{1}{3}e^{i\theta} + \frac{4}{3} + \frac{1}{3}e^{-i\theta}} = 3i \frac{\sin\theta}{\cos\theta + 2} , \qquad (1.16')$$

which moves up and down the imaginary axis between $\pm i\sqrt{3}$. Thus its behaviour is similar to the explicit Nyström method with a slightly larger stability interval.

The higher order Nyström and Milne-Simpson methods have root locus curves like those of Fig. 1.5. Their stability domains therefore reduce to the smallest possible set (for stable methods): just the origin.

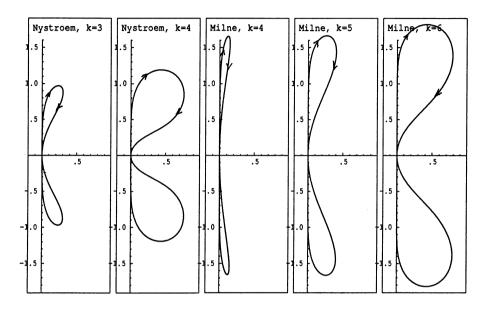


Fig. 1.5. Root locus curves for Nyström and Milne methods

BDF

The backward differentiation formulas (III.1.22')

$$\sum_{j=1}^{k} \frac{1}{j} \nabla^{j} y_{n+1} = h f_{n+1}$$
 (1.17)

have the root locus curves given by

$$\mu = \sum_{j=1}^{k} \frac{1}{j} \left(1 - \frac{1}{\zeta} \right)^{j} = \sum_{j=1}^{k} \frac{1}{j} \left(1 - e^{-i\theta} \right)^{j} .$$
 (1.17)

For k = 1 we have the implicit Euler method with stability domain $S = \{\mu; |\mu-1| \ge 1\}$. For k = 2 the root locus curve (see Fig. 1.6) has $\operatorname{Re}(\mu) = \frac{3}{2} - 2\cos\theta + \frac{1}{2}\cos 2\theta$ which is ≥ 0 for all θ . Therefore the method is A-stable and of order 2. However, for k = 3, 4, 5 and 6, we see that the methods loose more and more stability on a part of the imaginary axis. For $k \ge 7$, as we know, the formulas are unstable anyway, even at the origin.

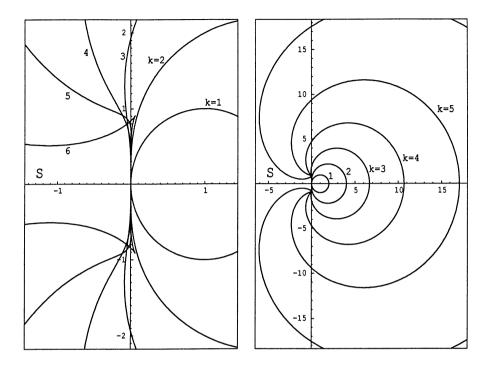


Fig. 1.6. Root locus curves and stability domains of BDF

A-stability and the Second Dahlquist Barrier

"I searched for a long time, finally Professor Lax showed me the Riesz-Herglotz theorem and I knew that I had my theorem." (G. Dahlquist 1979)

The following definition is motivated by Theorem 1.2 and by the fact that for $\operatorname{Re} \lambda \leq 0$ the exact solution of $y' = \lambda y$ is bounded.

Definition 1.4 (Dahlquist 1963). The multistep method (1.1) is called *A*-stable if $S \supset \mathbb{C}^-$, i.e., if

 $\operatorname{Re} \lambda \leq 0 \implies \text{numerical solution for } y' = \lambda y \text{ is bounded.}$

Theorem 1.5. If the multistep method (1.1) is A-stable, then

$$\operatorname{Re}\left(rac{arrho(\zeta)}{\sigma(\zeta)}
ight)>0 \qquad \textit{for}\qquad |\zeta|>1 \;.$$

For irreducible methods the converse is also true: (1.18) implies A-stability.

Proof. If the method is A-stable then all roots of (1.6) must satisfy $|\zeta| \leq 1$

whenever $\operatorname{Re} \mu \leq 0$. The logically equivalent statement ($\operatorname{Re} \mu > 0$ whenever $|\zeta| > 1$) yields (1.18) since by (1.6) $\mu = \varrho(\zeta) / \sigma(\zeta)$.

Suppose now that (1.18) holds and that the method is irreducible. Fix a μ_0 with $\operatorname{Re} \mu_0 \leq 0$ and let ζ_0 be a root of (1.6). We then have $\sigma(\zeta_0) \neq 0$ (otherwise the method would be reducible). Hence $\mu_0 = \rho(\zeta_0)/\sigma(\zeta_0)$ and it follows from (1.18) that $|\zeta_0| \leq 1$. We still have to show that ζ_0 is a simple root if $|\zeta_0|=1$. By a continuity argument it follows from (1.18) that $|\zeta_0|=1$ and $\operatorname{Re} \mu_0 < 0$ are contradictory. Therefore, it remains to prove that for $\operatorname{Re} \mu_0 = 0$ a root satisfying $|\zeta_0| = 1$ must be simple. In a neighbourbood of such a root we have

$$\frac{\varrho(\zeta)}{\sigma(\zeta)} - \mu_0 = C_1(\zeta - \zeta_0) + C_2(\zeta - \zeta_0)^2 + \dots$$

and (1.18) implies that $C_1 \neq 0$. This, however, is only possible if ζ_0 is a simple root of (1.6).

In all the above examples we have not yet seen an A-stable multistep formula of order $p \ge 3$. The following famous theorem explains this observation.

Theorem 1.6 (Dahlquist 1963). An A-stable multistep method must be of order $p \leq 2$. If the order is 2, then the error constant satisfies

$$C \le -\frac{1}{12}$$
 . (1.19)

The trapezoidal rule is the only A-stable method of order 2 with $C = -\frac{1}{12}$.

Proof. Dahlquist's first proof of this theorem is difficult. More elementary versions emerged in Widlund (1967), in lecture notes of W. Liniger (Univ. of Neuchâtel 1971) and in the book of Grigorieff (1977, vol.2, p. 218).

We start by recalling some formulas from Volume I: Formula ii) of Theorem III.2.4 and Formula (III.2.7) are

$$\varrho(e^h) - h\sigma(e^h) = C_{p+1}h^{p+1} + \dots \quad \text{for } h \to 0 \ . \tag{1.20}$$

From the consistency conditions (III.2.6) we have

$$\varrho(e^h) = \varrho(1+h+\ldots) = \varrho(1) + \varrho'(1)h + \ldots = \sigma(1)h + \ldots$$

We divide (1.20) by $h\rho(e^h)$ and obtain

$$\frac{1}{h} - \frac{\sigma(e^h)}{\varrho(e^h)} = Ch^{p-1} + \dots \quad \text{for } h \to 0 \tag{1.21}$$

where C is the error constant (III.2.13). With $\zeta = e^h$ this becomes

$$\frac{1}{\log \zeta} - \frac{\sigma(\zeta)}{\varrho(\zeta)} = C(\zeta - 1)^{p-1} + \dots \quad \text{for } \zeta \to 1 .$$
 (1.22)

266 V. Multistep Methods for Stiff Problems

In this formula we put p = 2. Whenever the method is of higher order, we have C = 0. When the order of the method is one, we have nothing to prove. The same formula for the trapezoidal rule for which $\rho_T(\zeta) = \zeta - 1$, $\sigma_T(\zeta) = \frac{1}{2}(\zeta + 1)$, becomes by series expansion (or by using Table III.2.1)

$$\frac{1}{\log \zeta} - \frac{\sigma_T(\zeta)}{\varrho_T(\zeta)} = -\frac{1}{12}(\zeta - 1) + \dots \quad \text{for } \zeta \to 1 . \tag{1.23}$$

The idea is now to subtract the two formulas and obtain

$$d(\zeta) := \frac{\sigma(\zeta)}{\varrho(\zeta)} - \frac{\sigma_T(\zeta)}{\varrho_T(\zeta)} = \left(-C - \frac{1}{12}\right)(\zeta - 1) + \dots \quad \text{for } \zeta \to 1 \ . \tag{1.24}$$

From (1.18) we have that

$$\operatorname{Re}\left(\frac{\varrho(\zeta)}{\sigma(\zeta)}\right) > 0 \quad \text{or equivalently} \quad \operatorname{Re}\left(\frac{\sigma(\zeta)}{\varrho(\zeta)}\right) > 0 \quad \text{for } |\zeta| > 1 \ . \tag{1.25}$$

The point here is that for the trapezoidal rule this $\operatorname{Re}(\ldots)$ is zero for $|\zeta|=1$ since this method has precisely C⁻ as stability domain. Hence from (1.24) we obtain

$$\lim_{\substack{\zeta \to \zeta_0 \\ |\zeta| > 1}} \operatorname{Re} d(\zeta) \ge 0 \quad \text{for } |\zeta_0| = 1 .$$
(1.26)

The poles of $d(\zeta)$ are the roots of $\varrho(\zeta)$, which, by stability, are not allowed outside the unit circle. Thus, by the maximum principle, (1.26) remains true everywhere outside the unit circle. Choosing then $\zeta = 1 + \varepsilon$ with $\operatorname{Re} \varepsilon > 0$ and $|\varepsilon|$ small, we see from (1.24) that either $-C - \frac{1}{12} > 0$ or $d(\zeta) \equiv 0$. This concludes the proof.

Exercises

- 1. The Milne-Simpson methods for k = 4 and 5 satisfy $\operatorname{Re}(\varrho(\zeta)/\sigma(\zeta)) \geq 0$ for $|\zeta| = 1$. Since their order is higher than 2, this seems to be in contradiction with the above proof of Theorem 1.6. Explain.
- 2. For the explicit midpoint rule (1.15), do the endpoints $\pm i$ of the stability region belong to S? Study the (possible) stability of this method applied with h=1 to u'=v, v'=-u.
- Compute for the explicit and implicit Adams methods the largest λ₀ ∈ R such that the real interval [-λ₀, 0] lies in S. Hint. Just set θ=π in the root locus curve.
- 4. Prove that the stability region of the k-step, implicit Adams methods is of finite size for every $k \ge 2$.

Hint. Show that $(-1)^k \sigma(-1) < 0$, so that σ has a real negative root, smaller than -1.

5. a) Show that all 2-step methods of order 2 are given by

$$\begin{split} \varrho(\zeta) &= (\zeta - 1)(\alpha \zeta + 1 - \alpha) \\ \sigma(\zeta) &= (\zeta - 1)^2 \beta + (\zeta - 1)\alpha + \frac{1}{2}(\zeta + 1) \end{split}$$

(which are irreducible for $\alpha \neq 2\beta$).

- b) The method is stable at 0 iff $\alpha \ge 1/2$.
- c) The method is stable at ∞ iff

$$lpha \geq 1/2 \qquad ext{and } eta > lpha/2 \ .$$

Apply the Schur-Cohn criterion (Section III.3, Exercise 4).

d) The method is A-stable iff (1.27) holds.

Hint.

$$rac{\sigma(\zeta)}{arrho(\zeta)} = rac{1}{2} \cdot rac{\zeta+1}{\zeta-1} + ig(eta-rac{lpha}{2}ig) \cdot rac{\zeta-1}{lpha\zeta+1-lpha} \; .$$

V.2. "Nearly" A-Stable Multistep Methods

"We are not attempting to disprove Dahlquist's theorems but are trying to get round the conditions they impose ..." (J. Cash 1979)

Dahlquist's condition $p \leq 2$ for the order of an A-stable linear multistep method is a severe restriction for efficient practical calculations of high precision. There are only two ways of "breaking" this barrier:

- either weaken the condition;
- or strengthen the method.

These two points will occupy our attention in this and in the following section.

$A(\alpha)$ -Stability and Stiff Stability

"It is the purpose of this note to show that a slightly different stability requirement permits methods of higher accuracy". (O. Widlund 1967)

"The angle α is only one of a number of parameters which have been proposed for measuring the extent of the stability region. But it is probably the best such measure ..." (Skeel & Kong 1977)

Many important classes of practical problems do not require stability on the entire left half-plane C^- . Further, for eigenvalues on the imaginary axis, the solutions are often highly oscillatory and one is then forced anyhow to restrict the step size "to the highest frequency present in order to represent the signal" (Gear 1971, p. 214).

Definition 2.1 (Widlund 1967). A convergent linear multistep method is $A(\alpha)$ -stable, $0 < \alpha < \pi/2$, if

$$S \supset S_{\alpha} = \{\mu \; ; \; |\arg(-\mu)| < \alpha, \; \mu \neq 0\} \; .$$
 (2.1)

A method is A(0)-stable if it is $A(\alpha)$ -stable for some (sufficiently small) $\alpha > 0$.

Very similarly, Gear (1971) required in his famous concept of "stiff stability" that

$$S \supset \{\mu \ ; \ \operatorname{Re} \mu < -D\} \tag{2.2}$$

for some D > 0 and that the method be "accurate" in a rectangle $-D \leq \operatorname{Re} \mu \leq a, -\theta \leq \operatorname{Im} \mu \leq \theta$ for some a > 0 and θ about $\pi/5$. Many subsequent writers didn't like the inaccurate meaning of "accurate" in this definition and replaced it by something else. For example Jeltsch (1976) required that in addition to (2.2),

$$|\zeta_1(\mu)| > |\zeta_i(\mu)|$$
 (i=2,...,k) in $|\text{Re}\,\mu| \le a$, $|\text{Im}\,\mu| \le heta$, (2.3)

where $\zeta_1(\mu)$ is the analytic continuation of the principal root $\zeta_1(0) = 1$ of (1.6). Also, the rectangle given by

$$|{
m Im}\,\mu|\le heta\,\,,\qquad -D\le{
m Re}\,\mu\le -a$$

should belong to S.

Other concepts are A_0 -stable (Cryer 1973) if

$$|\zeta_i(x)| < 1$$
 $(i = 1, ..., k), -\infty < x < 0$ (2.4)

and Å-stable (a joke of O. Nevanlinna 1979) if

$$(-\infty, 0] \subset S$$
 . (2.5)

Of course, we have

$$A(0)$$
-stable $\implies A_0$ -stable $\implies A$ -stable (2.6)

but neither implication is reversible (Exercise 3; see also "Theorem 1" of Jeltsch 1976).

The BDF methods (1.18) satisfy (2.1) for $A(\alpha)$ -stability and (2.2) for stiff stability with the values

\boldsymbol{k}	1	2	3	4	5	6	
				73.35°			(2.7)
D	0	0	0.083	0.667	2.327	6.075	

High Order $A(\alpha)$ -Stable Methods

"Dill and Gear ... and Jain and Srivastava ... have used computers to construct stiffly stable methods of orders eight and eleven, respectively, but were unable to construct higher order stiffly stable methods. Even though we have shown here that A_0 -stable methods of arbitrarily high order exist, we conjecture that A(0)-stable linear multistep methods of higher order, of order greater than 20 say, do not exist." (Cryer 1973)

Widlund (1967) showed that for every $\alpha < \pi/2$, α arbitrarily close to $\pi/2$, there exist $A(\alpha)$ -stable multistep methods of order p=k for p=3 and p=4.

It is now an interesting question whether such methods also exist for higher orders. Well, the answer consists of good news and bad news.

First the good news. The conjecture of Cryer (see quotation) was quickly disproved by combining Cryer's A_0 -stable methods with the result of Jeltsch (1976) which says that certain A_0 -stable methods are also $A(\alpha)$ -stable. The following theorem shows that α can even be chosen arbitrarily close to $\pi/2$:

Theorem 2.2 (Grigorieff & Schroll 1978). Let $\alpha < \pi/2$ be given. Then for every $k \in \mathbb{N}$ there exists an $A(\alpha)$ -stable linear k-step method of order p=k.

Proof. For p = k = 2 the two-step BDF method which is A-stable, and hence $A(\alpha_2)$ -stable for every $\alpha_2 \leq \pi/2$, does the job. For k arbitrary, we intercalate k-2 values between α and $\pi/2$,

$$\alpha < \alpha_{k-1} < \alpha_{k-2} < \ldots < \alpha_3 < \alpha_2 \le \frac{\pi}{2} , \qquad (2.8)$$

and extend the method step by step with the help of Lemma 2.3. \Box

Lemma 2.3. Suppose an $A(\alpha)$ -stable k-step method of order p is given with

$$\varrho(\zeta) \neq 0 \qquad if \quad |\zeta| = 1 , \quad \zeta \neq 1$$
(2.9a)

$$\sigma(\zeta) \neq 0 \qquad if \quad |\zeta| = 1 \ . \tag{2.9b}$$

Then for every $\tilde{\alpha} < \alpha$ there exists an $A(\tilde{\alpha})$ -stable (k+1)-step method of order p+1 which also satisfies (2.9).

The proof follows very closely the ideas of Jeltsch & Nevanlinna (1982): Let $\rho(\zeta)$ and $\sigma(\zeta)$ represent the given k-step method with order condition

$$\frac{\varrho(\zeta)}{\log \zeta} - \sigma(\zeta) = C_{p+1}(\zeta - 1)^p + \mathcal{O}\left((\zeta - 1)^{p+1}\right) \,. \tag{2.10}$$

If we multiply ρ and σ by $(\zeta - 1)$ we formally increase the order by 1 and at the same time leave the root locus curve unchanged. Everything seems to be proved. However, the new ρ -polynomial would have a double root at $\zeta = 1$ and would thus lead to an unstable method. We therefore choose $\varepsilon > 0$ and multiply (2.10) by $(\zeta - 1 + \varepsilon)$, which moves the root slightly inside the unit circle. We then obtain a new method of order p+1 if we put

$$\widetilde{\varrho}(\zeta) = \varrho(\zeta) \left(\zeta - 1 + \varepsilon\right)
\widetilde{\sigma}(\zeta) = \sigma(\zeta) \left(\zeta - 1 + \varepsilon\right) + \varepsilon C_{p+1} (\zeta - 1)^p .$$
(2.11)

Since p = k+2 is excluded (by Theorem III.3.9 methods with p = k+2 are symmetric and violate Hypothesis (2.9a)), both polynomials $\tilde{\varrho}$ and $\tilde{\sigma}$ are of

degree $\leq k+1$. Now the formula

$$\frac{\widetilde{\sigma}(\zeta)}{\widetilde{\varrho}(\zeta)} - \frac{\sigma(\zeta)}{\varrho(\zeta)} = \frac{\varepsilon C_{p+1}(\zeta-1)^p}{\varrho(\zeta)(\zeta-1+\varepsilon)}$$
(2.12)

allows us to compare, for ε small, the root-locus curves of the two methods. The fact that we are working with $\sigma(e^{i\theta})/\varrho(e^{i\theta}) = 1/\mu$ instead of $\mu = \varrho(e^{i\theta})/\sigma(e^{i\theta})$ does not matter, because the transformation $\mu \mapsto 1/\mu$ maps the sector of Definition 2.1 onto itself. Because of Hypothesis (2.9a), 1 is the only (simple) root of $\varrho(\zeta)$ on the unit circle, therefore

$$\left|\frac{\widetilde{\sigma}(\zeta)}{\widetilde{\varrho}(\zeta)} - \frac{\sigma(\zeta)}{\varrho(\zeta)}\right| \leq C \cdot \varepsilon \frac{|\zeta - 1|^{p-1}}{|\zeta - 1 + \varepsilon|} \quad \text{for } \zeta = e^{i\theta} . \tag{2.13}$$

A small obstacle still separates us from "endless pleasure, endless love, Semele enjoys above": the denominator $|\zeta - 1 + \epsilon|$, which becomes small for $\epsilon \to 0$ and $\theta \to 0$. For p > 1, this "small" denominator is simply balanced by one of the factors $|\zeta - 1|$ from the numerator and we have

$$\left| rac{\widetilde{\sigma}(\zeta)}{\widetilde{\varrho}(\zeta)} - rac{\sigma(\zeta)}{\varrho(\zeta)}
ight| \leq \widehat{C} \cdot \epsilon$$
 (2.14)

which means uniform pointwise convergence of $\tilde{\sigma}(\zeta)/\tilde{\varrho}(\zeta)$ to $\sigma(\zeta)/\varrho(\zeta)$ if $\varepsilon \to 0$. Since $\sigma(\zeta)/\varrho(\zeta)$ is bounded away from the origin (Hypothesis (2.9b)), this also means uniform convergence of the angles.

This is already sufficient to prove Theorem 2.2, where we always have $p \ge 2$. However, Lemma 2.3 remains valid for p=1 too: the critical region is when $\theta \to 0$, in which case $|\sigma(e^{i\theta})/\rho(e^{i\theta})|$ and $|\tilde{\sigma}(e^{i\theta})/\tilde{\rho}(e^{i\theta})|$ tend to infinity like $Const/\theta$. Instead of (2.14) we have for p=1

$$\left|rac{\widetilde{\sigma}(\zeta)}{\widetilde{arrho}(\zeta)} \ - \ rac{\sigma(\zeta)}{arrho(\zeta)}
ight| \ \le \ rac{Carepsilon}{|\zeta-1+arepsilon|} \ = \ \mathcal{O}\Bigl(rac{arepsilon}{ heta}\Bigr) \ .$$

Thus the angle (seen from the origin) between $\tilde{\sigma}(\zeta)/\tilde{\varrho}(\zeta)$ and $\sigma(\zeta)/\varrho(\zeta)$ is $\mathcal{O}(\varepsilon)$.

Approximating Low Order Methods with High Order Ones

The above proof of Lemma 2.3 actually shows more than angle-boundedness of the root locus curve, namely uniform convergence of the root locus curve of a high order method to that of a lower order one. This leads to the following theorem of Jeltsch & Nevanlinna (1982):

272 V. Multistep Methods for Stiff Problems

Theorem 2.4. Let a linear stable k-step method of order p and stability domain S be given which satisfies (2.9a). Then to any closed set $\Omega \subset \operatorname{Int} S \subset \overline{\mathbb{C}}$ and any $K \in \mathbb{N}$ there exists a linear k+K-step method of order p+K whose stability domain \widetilde{S} satisfies

 $\widetilde{S}\supset \Omega$.

Moreover if the first method is explicit, the higher-order method is also explicit.

Proof. The proof is similar to that of Lemma 2.3. Instead of the sequence (2.8) we use a sequence of embedded closed and open subsets between Ω and S (Urysohn's Lemma). Hypothesis (2.9b) is ruled out by passing to the compactified topology of $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$.

Remark. No method with non-empty Int S of practical interest violates Hypothesis (2.9a). Nevertheless, Theorem 2.4 remains valid *without* this hypothesis, but the proof becomes more complicated (see "Lemma 3.6" of Jeltsch & Nevanlinna 1982).

A Disc Theorem

Another weakening of A-stability is to require stability for

$$D_r = \{ \mu \ ; \ |\mu + r| \le r \} \ , \tag{2.15}$$

which is a disc of radius r in \mathbb{C}^- tangent to the imaginary axis at the origin. Theorems about stability in D_r are stronger than theorems about $A(\alpha)$ -stability for eigenvalues close to the origin. The following result is, again, due to Jeltsch & Nevanlinna (1982):

Theorem 2.5. Let a linear k-step method of order p be given with $S \supset D_r$. Then for any $\tilde{r} < r$ and any $K \in \mathbb{N}$ there exists a linear k+K-step method of order p+K whose stability domain \tilde{S} satisfies $\tilde{S} \supset D_{\tilde{r}}$.

Proof. The map $\mu \mapsto 1/\mu$ used in the proof of Lemma 2.3 maps the exterior of D_r onto the half-plane

$$\left\{ \mu \in \mathbb{C} \ ; \ \operatorname{Re} \mu > -\frac{1}{2r} \right\}$$
 (2.16)

Therefore the uniform convergence established in (2.14) also covers the new situation if p > 1. The case p = 1, however, needs a more careful study and we refer to the original paper of Jeltsch & Nevanlinna (1982, pp. 277-279).

Accuracy Barriers for Linear Multistep Methods

Now here is the "bad news": high order $A(\alpha)$ -stable methods, for α close to $\pi/2$, cannot be of practical use, or in other words: "the second Dahlquist barrier cannot be broken". The reason is simply that high order alone is not sufficient for high accuracy, because the methods then have enormous error constants. Jeltsch & Nevanlinna (1982) give an impressive staccato (from "Theorem 4.1" to "Lemma 4.15") of lower bounds for error constants and Peano kernels of methods having large stability domains. The Peano kernels, the most serious measures for the error, are defined by the formulas (see (III.2.14) and (III.2.3) of Volume I)

$$L(x) = h^{q+1} \int_{-\infty}^{\infty} \check{K}_q(-s) \, y^{(q+1)}(x+sh) \, ds \tag{2.17}$$

$$= \sum_{j=0}^{k} (\alpha_{j} y(x+jh) - h\beta_{j} y'(x+jh)) . \qquad (2.18)$$

The kernels $\check{K}_{a}(-s) = K_{a}(s)$ are zero outside the interval $0 \leq s \leq k$ and are piecewise polynomials given by complicated formulas (see (III.2.15)) which appear not very attractive to work with.

However, the formulas simplify if we use the Fourier transform which, for a function f(x), is defined by

$$\widehat{f}(\xi) = \int_{-\infty}^{\infty} e^{-ix\xi} f(x) dx . \qquad (2.19)$$

We obtain \widehat{L} from (2.17) by insertion of the definitions, several integrations by parts and transformations of double integrals:

$$\widehat{L}(\xi) = h^{q+1} \widehat{K}_{q}(h\xi) \cdot y^{(q+1)}(\xi)$$
(2.20)

$$=\widetilde{K}_{q}(h\xi)(ih\xi)^{q+1}\widehat{y}(\xi) , \qquad (2.21)$$

and from (2.18)

$$\widehat{L}(\xi) = \left(\varrho(e^{ih\xi}) - ih\xi\,\sigma(e^{ih\xi})\right) \cdot \widehat{y}(\xi) \ . \tag{2.22}$$

Thus (2.20) and (2.22) give

$$\widehat{K}_{q}(-\xi) = \widehat{\check{K}}_{q}(\xi) = \left(\varrho(e^{i\xi}) - i\xi\,\sigma(e^{i\xi})\right)(i\xi)^{-(q+1)} , \qquad (2.23)$$

a nice formula, involving the polynomials ρ and σ , with which we are better acquainted.

What about the usefulness of \widehat{K}_{q} for error estimates? Well, it is the

274 V. Multistep Methods for Stiff Problems

Parseval identity (Exercise 4)

$$\|f\|_{L^{2}(-\infty,\infty)} = \frac{1}{\sqrt{2\pi}} \|\widehat{f}\|_{L^{2}(-\infty,\infty)}$$
(2.24)

which allows us to obtain the L^2 -estimate for the error

$$\|L\|_{L^{2}(-\infty,\infty)} \leq h^{q+1} \|\widehat{K}_{q}\|_{L^{\infty}} \cdot \|y^{(q+1)}\|_{L^{2}} , \qquad (2.25)$$

as follows:

$$\|L\|_{L^{2}(-\infty,\infty)}^{2} = \frac{1}{2\pi} \|\widehat{L}\|_{L^{2}(-\infty,\infty)}^{2}$$
 (from (2.24))

$$=\frac{h^{2q+2}}{2\pi}\int_{-\infty}^{\infty}|\widehat{K}_{q}(\xi)|^{2}|\widehat{y^{(q+1)}}(\xi)|^{2}d\xi \qquad (\text{from (2.20)})$$

$$\leq rac{h^{2q+2}}{2\pi} \, \max |\widehat{ec{K}_q}(\xi)|^2 \cdot \int_{-\infty}^\infty \left| y^{\widehat{(q+1)}}(\xi)
ight|^2 d\xi \qquad (ext{estimation})$$

$$= \frac{h^{2q+2}}{2\pi} \|\widehat{\check{K}_q}\|_{L^{\infty}}^2 \cdot \|\widehat{y^{(q+1)}}\|_{L^2}^2 \qquad (\text{definitions})$$

$$= h^{2q+2} \|\widehat{K}_{q}\|_{L^{\infty}}^{2} \cdot \|y^{(q+1)}\|_{L^{2}}^{2} . \qquad (\text{from } (2.23), (2.24))$$

In order that the obtained estimates (2.25) for L express the actual errors of the numerical solution, we adopt throughout this section the normalization $\sigma(1)=1$ (cf. Formula (III.2.13)).

And here is the theorem which tells us that linear multistep methods of order p>2 and "large" stability domain cannot be precise:

Theorem 2.6 (Jeltsch & Nevanlinna 1982). Consider k-step methods of order p > 2, normalized by $\sigma(1) = 1$, for which the disc D_r of (2.15) is in the stability domain S. Then there exists a constant C > 0 (depending on k, p, q; but independent of r) such that the Fourier transform of the Peano kernel K_{σ} ($q \le p$) satisfies

$$\|\widehat{K}_{q}\|_{\infty} \ge C\left(\frac{r}{3}\right)^{p-2} . \tag{2.26}$$

The proof of Jeltsch & Nevanlinna is in two steps:

a) The stability requirement forces some coefficients a_j of R(z) to be large (Lemma 2.7 below), where as in (III.3.17)

$$R(z) = \left(\frac{z-1}{2}\right)^{k} \, \varrho\left(\frac{z+1}{z-1}\right) = \sum_{j=0}^{k} a_{j} z^{j} \tag{2.27}$$

$$S(z) = \left(\frac{z-1}{2}\right)^k \sigma\left(\frac{z+1}{z-1}\right) = \sum_{j=0}^k b_j z^j .$$
 (2.28)

b) $\|\widehat{K_{q}}\|_{L^{\infty}}$ can be bounded from below by $\max_{i} a_{i}$ (Lemma 2.8).

Lemma 2.7. If $D_r \subset S$ and p > 2 then

$$a_{k-j} \ge \left(\frac{r}{3}\right)^{j-1} \cdot a_{k-1} = \left(\frac{r}{3}\right)^{j-1} \cdot 2^{1-k} \quad for \ j = 2, \dots, p-1 \ .$$
 (2.29)

Proof. Stability in D_r means that for $\mu \in D_r$ all roots of $\varrho(\zeta) - \mu \sigma(\zeta) = 0$ lie in $|\zeta| \leq 1$. Hence

$$\varrho(\zeta)/\sigma(\zeta) \notin D_r \quad \text{for } |\zeta| > 1 .$$
(2.30)

Applying the Graeco-Roman transformation $\zeta = (z+1)/(z-1)$ and using (2.16) this means that

$$\operatorname{Re} \frac{S(z)}{R(z)} > -\frac{1}{2r} \qquad \text{for } \operatorname{Re} z > 0 \tag{2.31}$$

or

Re
$$\frac{2rS(z) + R(z)}{R(z)} > 0$$
 for Re $z > 0$. (2.32)

Next, we must consider the order conditions (Lemma III.3.7 of Volume I and Exercise 9 of Section III.3)

$$R(z)\left(\frac{z}{2}-\frac{1}{6z}-\frac{2}{45z^3}-\ldots\right)-S(z)=\mathcal{O}\left(\left(\frac{1}{z}\right)^{p-k}\right), \quad z\to\infty. \quad (2.33)$$

This shows that $R(z) = \mathcal{O}(z^{k-1})$, $S(z) = \mathcal{O}(z^k)$, but $2S(z) - zR(z) = \mathcal{O}(z^{k-1})$. Thus we subtract rz from (2.32) in order to lower the degree of the numerator. The resulting function again satisfies

$${
m Re} \; rac{r(2S(z)-zR(z))+R(z)}{R(z)} \; > 0 \qquad {
m for} \; {
m Re} \, z > 0 \qquad (2.34)$$

because of Re (rz) = 0 on z = iy and the maximum principle (an idea similar to that of Lemma IV.5.21). The function (2.34) can therefore have no zeros in C⁺ (since by Taylor expansion all arguments of a function appear in a complex neighbourhood of a zero). Therefore the *numerator* of (2.34) must have non-negative coefficients (cf. the proof of Lemma III.3.6). Multiplying out (2.33) and (2.34) we obtain for the coefficient of z^{k-j} ($j \le p-1$):

$$0 \leq r \Big(-rac{1}{3} \, a_{k-j+1} - rac{4}{45} \, a_{k-j+3} - \ldots \Big) + a_{k-j}$$

or by simplifying (cf. Lemmas III.3.8 and III.3.6)

$$rac{r}{3} \, a_{k-j+1} \, \leq \, a_{k-j} \; .$$

Using $a_{k-1} = 2^{1-k} \rho'(1) = 2^{1-k}$ (see Lemma III.3.6), this leads to (2.29).

Lemma 2.8. There exists C > 0 (depending on k, p and q with q = 0, 1, ..., p) with the following property: if $0 \in S$, then

$$\|\widehat{K}_{q}\|_{L^{\infty}} \geq C \cdot \max_{j} a_{j} . \qquad (2.35)$$

Proof. We set $e^{i\xi} = \zeta$, $\xi = -i \log \zeta$ in Formula (2.23) so that the maximum must be taken over the set $|\zeta| = 1$. Then we introduce $\zeta = (z+1)/(z-1)$ and take the maximum over the imaginary axis. This gives with (2.27) and (2.28)

$$\|\widehat{K}_{q}\|_{L^{\infty}} = \sup_{t} \underbrace{\left|\frac{1}{(it)^{k}} \left(\frac{R(it)}{\log \frac{it+1}{it-1}} - S(it)\right)\right|}{\Phi(t)} \cdot \underbrace{\left|\left(\frac{2it}{it-1}\right)^{k}\right| \cdot \left|\log\left(\frac{it+1}{it-1}\right)\right|^{-q}}{\Psi(t)}.$$
(2.36)

We now insert, for |t| > 1, Formulas (III.3.19), (III.3.21) and (III.3.22) to obtain

$$\Phi(t) = \left| P_k \left(\frac{1}{it} \right) + \frac{d_1}{(it)^{k+1}} + \frac{d_2}{(it)^{k+2}} + \dots \right|$$
(2.37)

where P_k is a polynomial of degree k and subdegree p (see Lemma III.3.7), determined by the method. Since we want our estimates to be true for all methods, we treat P_k as an *arbitrary* polynomial. Separating real and imaginary parts and substituting 1/t = s gives

$$\begin{split} |\Phi(t)|^{2} &= \left| Q_{k-1}(s) + d_{1}s^{k+1} - d_{3}s^{k+3} + \dots \right|^{2} \\ &+ \left| Q_{k}(s) + d_{2}s^{k+2} - d_{4}s^{k+4} + \dots \right|^{2} = |\Phi_{1}(t)|^{2} + |\Phi_{2}(t)|^{2} \end{split}$$

$$(2.38)$$

where $Q_{k-1}(s)$ and $Q_k(s)$ are arbitrary (even or odd) polynomials of subdegree p and degree k-1 and k, respectively. Both terms are minorized separately, e.g. for the first we write

$$|\Phi_1(t)| \ge |Q_{k-1}(s) + d_1 s^{k+1}| - |d_3 s^{k+3} - d_5 s^{k+5} + \dots| .$$
(2.39)

Since $\mu_1 < \mu_3 < \mu_5 < \ldots < 0$ (Exercise 6 below) and $a_i \ge 0$ we have from (III.3.22)

$$d_1 \leq d_3 \leq d_5 \leq \ldots \leq 0$$
 and $d_2 \leq d_4 \leq d_6 \leq \ldots \leq 0$. (2.40)

Therefore, the second term in (2.39) is majorized by the alternating series argument for 0 < s < 1 as

$$|d_3s^{k+3} - d_5s^{k+5} + \dots| \le |d_3|s^{k+3} \le |d_1|s^{k+3}$$

Since $Q_{k-1}(s)$ is an arbitrary polynomial, we can replace it by $|d_1|Q_{k-1}(s)$ so that $|d_1|$ becomes a common factor of the whole expression

$$|\Phi_1(t)| \ge |d_1| \Big(|Q_{k-1}(s) + s^{k+1}| - s^{k+3} \Big) .$$
 (2.41)

This suggests that we define the constants

$$D_{1} = \inf_{Q_{k-1}} \left\{ \sup_{0 < s < 1} \left[\left(\left| Q_{k-1}(s) + s^{k+1} \right| - s^{k+3} \right) \left(\frac{2}{\sqrt{1+s^{2}}} \right)^{k} \left(\frac{1}{2 \arctan s} \right)^{q} \right] \right\}$$
$$D_{2} = \inf_{Q_{k}} \left\{ \sup_{0 < s < 1} \left[\left(\left| Q_{k}(s) + s^{k+2} \right| - s^{k+4} \right) \left(\frac{2}{\sqrt{1+s^{2}}} \right)^{k} \left(\frac{1}{2 \arctan s} \right)^{q} \right] \right\}$$
(2.42)

where the inf is taken over all polynomials $Q_{k-1}(s) = c_{k-1}s^{k-1} + c_{k-3}s^{k-3} + c_{k-5}s^{k-5} + \ldots$ respectively $Q_k(s) = c_ks^k + c_{k-2}s^{k-2} + c_{k-4}s^{k-4} + \ldots$ of subdegree p. The last two factors represent $\Psi(t)$ of (2.36). Since s^{k+1} dominates s^{k+3} for small s, D_1 and D_2 are *positive* constants (see Exercise 8). We then have from (2.38) and (2.36)

$$\|\widehat{K}_{q}\|_{L^{\infty}} \geq \sqrt{d_{1}^{2}D_{1}^{2}+d_{2}^{2}D_{2}^{2}}$$
 (2.43)

Since both d_1 and d_2 are sums of a_j with negative coefficients (see (III.3.22) and Lemma III.3.8), $\|\hat{K}_q\|_{\infty}$ must be large if one of the coefficient a_j is large.

This concludes the proof of Theorem 2.6 which, by the way, also proves Theorem 1.6 again. $\hfill \Box$

Exercises

- 1. Show that no explicit method can be A(0)-stable.
- 2. Show that $\beta_k/\alpha_k > 0$ is a necessary condition for an $A(\alpha)$ -stable linear k-step method.
- 3. a) Show that the method

$$y_{n+2} - y_{n+1} = \frac{h}{4}(f_{n+2} + 2f_{n+1} + f_n)$$

has a stability domain bounded by a parabola. It is therefore A_0 -stable, but not A(0)-stable (Cryer 1973).

b) Find a "deformation" of the 5th order BDF scheme

$$\sum_{j=1}^{5} \frac{1}{j} \nabla^{j} y_{n+1} + \beta \nabla^{6} y_{n+1} = h f_{n+1}$$

with $\beta \approx 0.232...$ which is Å-stable, but not A_0 -stable.

278 V. Multistep Methods for Stiff Problems

c) Find a method which is A_0 -stable, but not stable at infinity. Hint for (c). If you "lift up your heads, o ye gates" (just a few lines, not to heaven), the answer is easy to find.

4. (Parseval 1799). Prove the identity (2.24). *Hint.* Insert the definitions into

$$\|\widehat{f}\|_{L^2}^2 = \int_{-\infty}^{\infty} \widehat{f}(\xi)\overline{\widehat{f}}(\xi)d\xi$$

to get a triple integral. Two of these integrals then disappear with the Fourier inversion formula.

Remark. You may be astonished to see that Parseval's identity is older than Fourier series and Fourier transforms. Well, Parseval's identity was originally a formula between an infinite sum and an integral, which was later re-interpreted and generalized to become what it is today.

- 5. Substitute $\xi = \pi$ in Formula (2.23) to obtain an easy minorization for $\|\widehat{K}_q\|_{L^{\infty}}$. Then compute for the methods defined in the proof of Lemma 2.3 (normalized by $\sigma(1) = 1$) the value $\sigma(-1)$ for ε small. This then shows that \widehat{K}_q becomes very large.
- 6. Use the formula (see the proof of Lemma III.3.8)

$$\mu_{2j+1} = \int_{-1}^{+1} x^{2j} \left[\left(\log \frac{1+x}{1-x} \right)^2 + \pi^2 \right]^{-1} dx$$

to show that $\mu_1 < \mu_3 < \mu_5 < \ldots < 0$.

7. Show that for q = p Formula (2.23) becomes, by substituting $i\xi = h$ and letting $h \to 0$ in Formula (1.20), $\widehat{K_p}(0) = C_{p+1}$, where C_{p+1} is, for $\sigma(1)=1$, the error constant.

Formula (2.36) then provides, for p = k and $t \to \infty$, lower bounds for the error constant (see "Theorem 4.5" of Jeltsch & Nevanlinna 1982).

8. For p=k+1, the polynomials Q_{k-1} and Q_k in (2.42) vanish identically, because the subdegree must be p. Compute in this case the constants D_1 and D_2 . It is also easy to compute them for p=k-1. In the general case the optimal solution satisfies a sort of "Tchebysheff alternative".

Results.

Case p = k+1 (Q = 0):

D_1	p=3 p=4 p=5 p=6	D_2	p=3 p=4 p=5 p=6
	k=2 k=3 k=4 k=5		$\begin{vmatrix} k=2 & k=3 & k=4 & k=5 \end{vmatrix}$
q = 0	0.4742 0.5695 0.7020 0.8813	q = 0	0.3607 0.4501 0.5706 0.7319
q = 1	0.3876 0.4435 0.5298 0.6505	q = 1	0.2754 0.3347 0.4163 0.5263
q = 2	0.3524 0.3659 0.4152 0.4933	q=2	0.2205 0.2570 0.3108 0.3852
q = 3	0.5000 0.3381 0.3459 0.3891	q = 3	0.1935 0.2075 0.2400 0.2888
q = 4	0.5000 0.3251 0.3275	q = 4	0.1849 0.1956 0.2244
q = 5	0.5000 0.3131	q = 5	0.1770 0.1845
q = 6	0.5000	q = 6	0.1698
-			•

Case p = k - 1 (one free constant in Q):

D_1	$\begin{array}{cccc} p=3 & p=4 & p=5 & p=6 \end{array}$	$D_2 p=3 p=4 p=5 p=6$
	k=4 k=5 k=6 k=7	k=4 k=5 k=6 k=7
q = 0	0.0511 0.0362 0.0262 0.0193	q = 0 0.0195 0.0142 0.0104 0.0077
q = 1	0.0727 0.0499 0.0353 0.0256	$q = 1 \mid 0.0269 \mid 0.0191 \mid 0.0138 \mid 0.0101$
q=2	0.1100 0.0709 0.0486 0.0344	$q = 2 \mid 0.0384 \mid 0.0263 \mid 0.0186 \mid 0.0135$
q = 3	0.2031 0.1070 0.0691 0.0474	$q=3 \mid 0.0583 \ 0.0374 \ 0.0256 \ 0.0181$
q = 4	0.1962 0.1041 0.0673	q = 4 0.0567 0.0365 0.0250
q = 5	0.1894 0.1012	q = 5 0.0552 0.0356
q = 6	0.1828	q = 6 0.0537

Case p=k-3 (two free constants in Q):

D_1	p=3 p=4 p=5 p=6	D_2	p=3 p=4 p=5 p=6
	k=6 k=7 k=8 k=9		k=6 k=7 k=8 k=9
q = 0	0.0030 0.0014 0.0007 0.0003	q = 0	0.0007 0.0004 0.0002 0.0001
q = 1	0.0066 0.0029 0.0014 0.0007	q = 1	0.0015 0.0007 0.0003 0.0002
q=2	0.0160 0.0066 0.0029 0.0014	q=2	0.0034 0.0015 0.0007 0.0003
q=3	0.0457 0.0158 0.0065 0.0029	q = 3	0.0082 0.0034 0.0015 0.0007
q = 4	0.0448 0.0156 0.0064	q = 4	0.0081 0.0033 0.0015
q = 5	0.0439 0.0154	q = 5	0.0080 0.0033
q = 6	0.0431	q = 6	0.0079

V.3. Generalized Multistep Methods

"The Dahlquist bound of two on the order of A-stable multistep methods was the imperative to propound ... weaker stability properties, ... An alternative approach for circumventing Dahlquist's bound is to modify the class of methods, rather than the property."

(T.A. Bickart & W.B. Rubin 1974)

The search for higher order A-stable multistep methods is carried out in two main directions:

- Use higher derivatives of the solutions;
- Throw in additional stages, off-step points, super-future points and the like, which leads into the large field of general linear methods.

Second Derivative Multistep Methods

Differentiation of a differential equation

$$y' = f(x, y) \tag{3.1}$$

with respect to x gives the second derivative of the solution

$$y'' = f_x + f_y \cdot f =: g(x, y) , \qquad (3.2)$$

which we shall denote by g. Now a straightforward generalization of both multistep formulas (1.1) and, say, the Taylor series method (see I.8.13)

$$y_{n+1} = y_n + hf_n + \frac{h^2}{2!}g_n$$

can be written in the form

$$\sum_{i=0}^{k} \alpha_{i} y_{n+i} = h \sum_{i=0}^{k} \beta_{i} f_{n+i} + h^{2} \sum_{i=0}^{k} \gamma_{i} g_{n+i}$$
(3.3)

where the α_i , β_i , γ_i are parameters which must be chosen appropriately. Most of the theory of linear multistep methods (Section III.2) generalizes without difficulty. Taylor expansion similar to (III.2.5) shows that method (3.3) is of *order* p if and only if

$$\sum_{i=0}^{k} \alpha_i \, i^q = q \sum_{i=0}^{k} \beta_i \, i^{q-1} + q(q-1) \sum_{i=0}^{k} \gamma_i \, i^{q-2} \tag{3.4}$$

for $0 \le q \le p$. The first two of these formulas are identical to (III.2.6), i.e., to

$$\varrho(1) = 0, \qquad \varrho'(1) = \sigma(1).$$
(3.5)

This allows us to apply the argumentation of Exercise 2 of Section III.4 which means that

$$C = \frac{C_{p+1}}{\sigma(1)}$$

$$= \frac{1}{\sigma(1)(p+1)!} \left[\sum_{i=0}^{k} \alpha_i \, i^{p+1} - (p+1) \sum_{i=0}^{k} \beta_i \, i^p - (p+1)p \sum_{i=0}^{k} \gamma_i \, i^{p-1} \right]$$
(3.6)

is the correct extension for the error constant Formula (III.2.13).

A search for a good choice of the free parameters α_i , β_i , γ_i was undertaken by Enright (1974) with the following ideas:

- (i) Set $\alpha_k = 1$, $\alpha_{k-1} = -1$, $\alpha_{k-2} = \ldots = \alpha_0 = 0$ to ensure reasonable stability in a neighbourhood of the origin as in the standard Adams formulas;
- (ii) Set $\gamma_k \neq 0$, $\gamma_{k-1} = \ldots = \gamma_0 = 0$ to ensure stability at infinity as in the BDF formulas;
- (iii) Determine the remaining k+2 coefficients γ_k , β_k , $\beta_{k-1}, \ldots, \beta_0$ from equations (3.4) for $q=1,2,\ldots,k+2$ (q=0 is satisfied with (i)) to ensure a reasonably high order.

The result is a class of k-step formulas of order k+2, which are of the form

$$y_{n+1} = y_n + h \sum_{i=0}^k \beta_i f_{n+i-k+1} + h^2 \gamma_k g_{n+1} . \qquad (3.7)$$

The first few of these methods are

$$\begin{split} k &= 1: \ y_{n+1} = y_n + h \Big(\frac{2}{3} f_{n+1} + \frac{1}{3} f_n \Big) - \frac{1}{6} h^2 g_{n+1} \\ k &= 2: \ y_{n+1} = y_n + h \Big(\frac{29}{48} f_{n+1} + \frac{5}{12} f_n - \frac{1}{48} f_{n-1} \Big) - \frac{1}{8} h^2 g_{n+1} \\ k &= 3: \ y_{n+1} = y_n + h \Big(\frac{307}{540} f_{n+1} + \frac{19}{40} f_n - \frac{1}{20} f_{n-1} + \frac{7}{1080} f_{n-2} \Big) \\ &- \frac{19}{180} h^2 g_{n+1} \\ k &= 4: \ y_{n+1} = y_n + h \Big(\frac{3133}{5760} f_{n+1} + \frac{47}{90} f_n - \frac{41}{480} f_{n-1} + \frac{1}{45} f_{n-2} \\ &- \frac{17}{5760} f_{n-3} \Big) - \frac{3}{32} h^2 g_{n+1} \end{split}$$
(3.7)

For a general expression, see Formula (3.12) below and Exercise 1.

282 V. Multistep Methods for Stiff Problems

The stability analysis for second derivative methods is again done by linearizing and leads to

$$y' = \lambda y$$
 for which $y'' = \lambda^2 y$. (3.8)

This, inserted into (3.3), gives as characteristic equation

$$\sum_{i=0}^{k} (\alpha_i - \mu \beta_i - \mu^2 \gamma_i) \zeta^i = 0, \quad \mu = h\lambda$$
(3.9)

instead of (1.6). Equation (3.9) is, for $\zeta = e^{i\theta}$, a quadratic equation which gives rise to *two* root locus curves which, together, describe the stability domain. The Enright methods (3.7) turn out to be A-stable for k = 1 and 2 (hence for p = 3 and 4) and are stiffly stable for k = 3, 4, 5, 6 and 7. The corresponding values α (for $A(\alpha)$ -stability), D and the error constants C are given in Table 3.1. Pictures are shown in Fig. 3.1.

 Table 3.1. Stability characteristics and error constants for Enright methods

k	1	2	3	4	5	6	7
p	3	4	5	6	7	8	9
α	90°	90°	87.88°	82.03°	73.10°	59.95°	37.61°
D	0.	0.	0.103	0.526	1.339	2.728	5.182
С	0.01389	0.00486	0.00236	0.00136	0.00086	0.00059	0.00042

Dense Output for Enright Methods

"Hermite's formulas are rediscovered and republished every four years." (P.J. Davis 1963)

We have seen in Section III.1 that Newton's interpolation formula, based on the data $x_{n+1}, x_n, \ldots, x_{n-k+1}$,

- when integrated from x_n to x_{n+1} , leads to the implicit Adams methods;
- when differentiated at x_{n+1} , leads to the BDF methods.

It is natural to apply the same idea to *Hermite* interpolation (Addison 1979): guided by much previous experience (see above) we choose the data points

 x_{n+1} (double node), x_n , x_{n-1} ,..., x_{n-k+1} (simple nodes). (3.10)

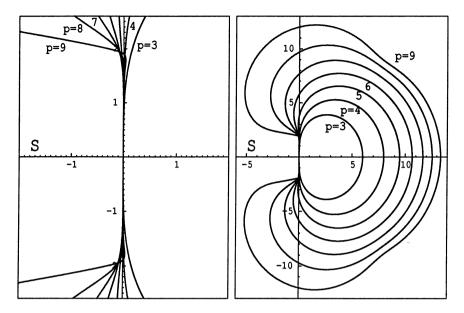


Fig. 3.1. Stability domains of Enright methods

This gives the following scheme of divided differences

where $x = x_n + sh$. For these "confluent" data, Newton's interpolation formula becomes

$$\begin{split} f(x_n+sh) &= f_1 + (s-1)hf_1' + (s-1)^2(hf_1' - \nabla f_1) \\ &+ (s-1)^2 s \, \frac{hf_1' - \nabla f_1 - \frac{1}{2} \nabla^2 f_1}{2!} \\ &+ (s-1)^2 s(s+1) \, \frac{hf_1' - \nabla f_1 - \frac{1}{2} \nabla^2 f_1 - \frac{1}{3} \nabla^3 f_1}{3!} + \dots \end{split} \tag{3.11}$$

We now interpret f as the derivative f(x, y(x)) of the solution, so that f'

284 V. Multistep Methods for Stiff Problems

becomes the second derivative. Integrating Formula (3.11) from x_n to x_{n+1} we obtain

$$y_{n+1} = y_n + hf_{n+1} - h\sum_{j=1}^k \frac{\nabla^j f_{n+1}}{j} \left(\sum_{i=j}^k \nu_i\right) + h^2 g_{n+1} \left(\sum_{i=0}^k \nu_i\right) \quad (3.12)$$

where

$$\nu_{i} = \int_{0}^{1} \frac{(s-1)^{2} s(s+1)(s+2) \dots (s+i-2)}{i!} \, ds = (-1)^{i} \int_{0}^{1} (s-1) \binom{1-s}{i} ds \; . \tag{3.13}$$

	Ta	ble 3	.2. Co	efficier	nts for l	Enright	methods	3
j	0	1	2	3	4	5	6	7
ν_j	$-\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{24}$	$\frac{7}{360}$	$\frac{17}{1440}$	$\frac{41}{5040}$	$\frac{731}{120960}$	$\frac{8563}{1814400}$

The first few values of ν_i are given in Table 3.2 and Formula (3.12) is seen to be identical with (3.7). Dense output, of course, is obtained by integrating (3.11) from x_n to $x_n + \theta h$:

$$y(x_n+\theta h) = y_n + \theta h f_{n+1} - h \sum_{j=1}^k \frac{\nabla^j f_{n+1}}{j} \left(\sum_{i=j}^k \nu_i(\theta)\right) + h^2 g_{n+1} \cdot \left(\sum_{i=0}^k \nu_i(\theta)\right)$$
(3.12)

where

$$u_i(heta)=(-1)^i\int_0^ heta(s\!-\!1)inom{1-s}{i}ds\;.$$

Second Derivative BDF Methods

If we are interested in a "second derivative" analogue of the BDF methods, we replace all f's by y's in (3.11) and differentiate twice at x_{n+1} . This, set equal to $y''(x_{n+1}) = g_{n+1}$, results in the methods

$$\frac{h^2}{2}g_{n+1} = \left(\sum_{i=1}^k \frac{1}{i}\right)hf_{n+1} - \sum_{j=1}^k \left(\sum_{i=j}^k \frac{1}{i}\right)\frac{\nabla^j y_{n+1}}{j}$$
(3.14)

which we call "Second derivative BDF methods" (SDBDF, the reader is cautioned against confusion: Cash (1981) uses this expression for the class of "Enright methods"). Analyzing the stability of these methods leads to the parameters of Table 3.3. The root locus curves are drawn in Fig. 3.2. In complete analogy to the behaviour of implicit Adams compared to BDF methods, the second derivative BDF methods have larger error constants than the Enright methods, but allow stiffly stable methods of higher order.

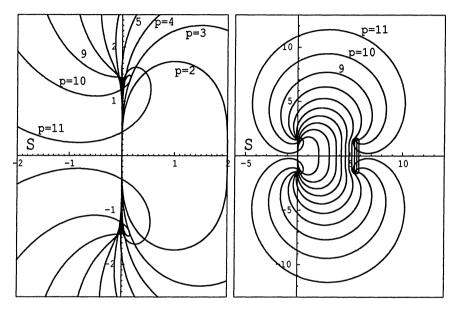


Fig. 3.2. Root locus curves of SDBDF methods

 Table 3.3. Stability characteristics and error constants for SDBDF methods

k	1	2	3	4	5	6	7	8	9	10
p	2	3	4	5	6	7	8	9	10	11
α	90°	90°	90°	89.36°	86.35°	80.82°	72.53°	60.71°	43.39°	12.34°
D	0.	0.	0.	0.015	0.128	0.401	0.886	1.646	2.770	4.373
C	.1667	.0556	.0273	.0160	.0104	.0073	.0054	.0041	.0032	.0026

Blended Multistep Methods

The original motivation for *blended methods* goes as follows (Skeel & Kong 1977): We know that Adams methods

$$-y_n + y_{n-1} + h \sum_{i=0}^k \beta_i f_{n+i-k} = 0 \qquad (AMF^{(k+1)})$$

286 V. Multistep Methods for Stiff Problems

are a very good choice for nonstiff problems, and that BDF methods

$$-\sum_{i=0}^{k} \alpha_i y_{n+i-k} + h f_n = 0 \qquad (BDF^{(k)})$$

are a very good choice for stiff problems. Nonstiff problems are characterized by the fact that $-h \partial f/\partial y$ is *small*, while stiff problems are characterized by *large* $-h \partial f/\partial y$ (at first this makes sense only for scalar equations; but it works as well for systems of equations if we descend into the eigenspaces of the Jacobian matrix $\partial f/\partial y = J$). The idea is now to use a weighted mean ("blend", a term suggested by C.W. Gear) of the two methods such as

$$\{AMF^{(k+1)}\} - \gamma^{(k)}hJ\{BDF^{(k)}\} = 0$$
(3.15)

where $\gamma^{(k)}$ is a free parameter. The factor -hJ, when small or large, just puts the weight at the right place, as required by the above motivation. Taylor expansion shows that Formula (3.15) is for all $\gamma^{(k)}$ of order p = k+1 (the factor "h" in the second term saves one order), even if J differs from $\partial f/\partial y$. This method is thus a multistep analogue to the W-methods discussed in Section IV.7.

Example. We put k = 2 in (3.15) and insert the values from Section III.1 (Formulas (III.1.8") and (III.1.22"):

$$y_{n+1} = y_n + h\left(\frac{5}{12}f_{n+1} + \frac{8}{12}f_n - \frac{1}{12}f_{n-1}\right) - \gamma^{(2)}hJ\left(-\frac{3}{2}y_{n+1} + 2y_n - \frac{1}{2}y_{n-1} + hf_{n+1}\right).$$
(3.16)

If we now suppose that our differential equation is linear and autonomous y' = Jy, then $Jy_{n+i} = f_{n+i}$ and the equation simplifies. Two special choices for $\gamma^{(2)}$ are then interesting:

- a) $\gamma^{(2)} = 1/6$: In this case the f_{n-1} cancels with Jy_{n-1} and Formula (3.16) becomes the (k-1)-step Enright formula of order k+1;
- b) $\gamma^{(2)} = 1/8$: This is a "superconvergence point" for linear equations and we obtain the k-step Enright formula of order k+2.

Both properties generalize to arbitrary k; in the first case we have to put $\gamma^{(k)} = -k\gamma_k^*$, where the γ_k^* are the values of Table III.1.2, and in the second case we use $\gamma^{(k)} = -\sum_{i=0}^k \nu_i$ as in (3.12). Blended methods therefore share the excellent stability properties of the Enright methods and seem, at the same time, easier to implement. A third possibility is to choose $\gamma^{(k)}$ in order to maximize the angle α for $A(\alpha)$ -stability. The root-locus-curve equation for general $\gamma^{(k)}$ becomes

$$\mu^{2} \cdot \gamma^{(k)} + \mu \left(-\sum_{j=0}^{k} \gamma_{j}^{*} (1 - e^{-i\theta})^{j} - \gamma^{(k)} \sum_{j=1}^{k} \frac{1}{j} (1 - e^{-i\theta})^{j} \right) + (1 - e^{-i\theta}) = 0 .$$

Skeel & Kong (1977) have carefully computed the optimal $\gamma^{(k)}$ (see Table 3.4, the imprecise values for the "Enright column" have been corrected) and arrived thereby at stiffly stable methods up to order 12.

k	p	$-k\gamma_k^*$	$\gamma^{(k)} = -k\gamma^*_k$	$\gamma_{opt}^{(k)}$	$\gamma^{(k)} = \gamma^{(k)}_{opt}$			
1	2	.5	90°	$[0, +\infty)$	90°			
2	3	.1666667	90°	$[.125,+\infty)$	90°			
3	4	.125	90°	$\left[.12189, .68379 ight]$	90°			
4	5	.1055556	87.88°	.1284997	89.42°			
5	6	.09375	82.03°	.1087264	86.97°			
6	7	.08561508	73.10°	.0962596	82.94°			
7	8	.07957176	59.95°	.08754864	77.43°			
8	9	.07485229	37.61°	.08105624	70.22°			
9	10	.07103299		.07599875	60.68°			
10	11	.06785850		.07192937	47.63°			
11	12	.06516462		.06857226	28.68°			

Table 3.4. Values for $\gamma^{(k)}$ and corresponding angles for blended methods

Extended Multistep Methods

The second possibility for circumventing Dahlquist's barrier, instead of adding higher derivatives, is to add further stages, additional nodes, off-step points and the like. All this leads into the huge desert ("A fable of K. Burrage") of general linear methods which have been discussed in Section III.8. Pioneering results for stiff differential equations are the "composite multistep methods" of Sloate & Bickart (1973), Bickart & Rubin (1974), the "hybrid" methods of England (1982), and the "extended" BDF methods of Cash (1980). We shall present the basic ideas for the latter in some detail: In order to increase stability of the BDF methods, we extend them by adding a "super-future" point at x_{n+k+1}

$$\sum_{j=0}^{k} \alpha_{j} y_{n+j} = h \beta_{k} f_{n+k} + h \beta_{k+1} f_{n+k+1} , \qquad (3.17)$$

288 V. Multistep Methods for Stiff Problems

where the coefficients are obtained by solving $\sum_{j} \alpha_{j} j^{q} = q \sum_{j} \beta_{j} j^{q-1}$ for $q=0,1,\ldots,k+1$ and the normalization $\alpha_{k}=1$. Formula (3.17) is then used as follows (see Fig. 3.3):

(i) Suppose that the solution values $y_n, y_{n+1}, \ldots, y_{n+k-1}$ are available. Compute \overline{y}_{n+k} as the solution of the conventional BDF formula

$$\sum_{j=0}^{k} \widehat{\alpha}_{j} y_{n+j} = h f_{n+k} ; \qquad (3.17i)$$

(ii) Compute \overline{y}_{n+k+1} as the solution of the same BDF formula advanced by one step (using \overline{y}_{n+k} for y_{n+k})

$$\sum_{j=0}^{k} \hat{\alpha}_{j} y_{n+j+1} = h f_{n+k+1} \qquad (y_{n+k} := \overline{y}_{n+k})$$
(3.17ii)

and set $\overline{f}_{n+k+1} = f(x_{n+k+1}, \overline{y}_{n+k+1});$

(iii) Discard \overline{y}_{n+k} , insert \overline{f}_{n+k+1} into (3.17) and solve for a new y_{n+k} which serves as final numerical solution of the method.

The advance of the numerical solution by one step thus requires the solution of three nonlinear systems of dimension n. Two of these have a similar Jacobian matrix and can thus be treated with the same LU-decomposition.

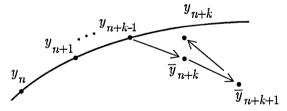


Fig. 3.3. Errors of Cash's algorithm

Lemma 3.1 (Cash 1980). If Formula (3.17) is of order k+1 and the BDF methods used in (3.17i) and (3.17ii) are of order k, then the whole predictor-corrector algorithm (i)-(iii) is of order k+1.

Proof. Suppose that y_n, \ldots, y_{n+k-1} are on the exact solution (Fig. 3.3). Then a simple calculation (as in the proof of Lemma III.2.2, see also Formula (III.2.7)) shows that

$$y(x_{n+k}) - \overline{y}_{n+k} = C_1 h^{k+1} y^{(k+1)}(x_{n+k}) + \mathcal{O}(h^{k+2})$$
(3.18)

$$y(x_{n+k+1}) - \overline{y}_{n+k+1} = C_1 \left(1 - \frac{\alpha_{k-1}}{\widehat{\alpha}_k} \right) h^{k+1} y^{(k+1)}(x_{n+k}) + \mathcal{O}(h^{k+2}) \quad (3.19)$$

where C_1 depends on the BDF method used. If now $C_2h^{k+2}y^{(k+2)}(\xi)$ is the defect of Formula (3.17) (with the exact solution inserted), replacing $hf(x_{n+k+1}, y(x_{n+k+1}))$ by $hf(x_{n+k+1}, \overline{y}_{n+k+1})$ adds the expression obtained in (3.19) to this error and we obtain

$$y(x_{n+k}) - y_{n+k} = h^{k+2} \left(C_2 y^{(k+2)} + \beta_{k+1} C_1 \left(1 - \frac{\widehat{\alpha}_{k-1}}{\alpha_k} \right) \frac{\partial f}{\partial y} \cdot y^{(k+1)} \right) (x_{n+k}) + \mathcal{O}(h^{k+3}) .$$
(3.20)

The method is thus of order k+1. Like Runge-Kutta methods, but unlike linear multistep methods, the principal error term is composed of several "elementary differentials".

For a stability analysis we insert $hf_j = \mu y_j$ in (3.17), (3.17i) and (3.17ii), set $y_n = 1, y_{n+1} = \zeta, \dots, y_{n+k-1} = \zeta^{k-1}$ and compute, following the algorithm (i), (ii), (iii), the solution $y_{n+k} =: \zeta^k$. This gives the characteristic equation

$$A\mu^3 + B\mu^2 + C\mu + D = 0 \tag{3.21}$$

where

$$A = \beta_k \zeta^k$$

$$B = -2\widehat{\alpha}_k \beta_k \zeta^k - T + \beta_{k+1} S$$

$$C = \beta_k \widehat{\alpha}_k^2 \zeta^k + 2\widehat{\alpha}_k T - \widehat{\alpha}_k \beta_{k+1} S + \beta_{k+1} \widehat{\alpha}_{k-1} R$$

$$D = -\widehat{\alpha}_k^2 T$$

$$R = \sum_{j=0}^{k-1} \widehat{\alpha}_j \zeta^j, \quad S = \sum_{j=0}^{k-2} \widehat{\alpha}_j \zeta^{j+1}, \quad T = \sum_{j=0}^k \alpha_j \zeta^j .$$
(3.22)

Inserting $\zeta = e^{i\theta}$, Equation (3.21) gives us three roots $\mu_i(\theta)$ i = 1, 2, 3, which describe the stability domain. These, computed by Cardano's formula, are displayed in Fig. 3.4. The corresponding stability characteristics are given in Table 3.5. The methods are A-stable for $p \leq 4$ and are stiffly stable for orders up to 9.

Not satisfied with this, Cash (1981) has also developed *Extended se*cond derivative methods which, surely difficult to implement, have excellent stability properties: He achieved A-stability for p up to 8.

k	1	2	3	4	5	6	7	8
p	2	3	4	5	6	7	8	9
α						67.73°		
D	0.	0.	0.	0.060	0.375	1.147	2.715	5.696

Table 3.5. Stability measures for Cash's EBDF methods

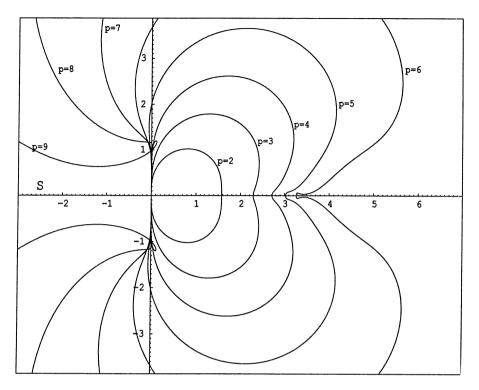


Fig. 3.4. Stability domains for Cash's EBDF methods

Multistep Collocation Methods

"... a theorem of great antiquity ... the simple theorem of polynomial interpolation upon which much practical numerical analysis rests ..."

(P.J. Davis, Interp. and Approx., Chapter II, 1963)

There are essentially two possibilities to extend the idea of collocation, which is so successful in the Runge-Kutta case (see Section II.7, Formulas (II.7.18)), into the multistep scene:

a) In a Nordsieck type manner with given $y_n, hy'_n, h^2y''_n/2, \ldots$ compute $y_{n+1}, hy'_{n+1}, h^2y''_{n+1}/2, \ldots$ The result is a spline function which approximates the solution globally. Butcher's generalized singly-implicit methods (Butcher 1981) are of this type. Extensive studies of these methods are due to Mühlthei (1982).

b) In a multistep manner with given $y_n, y_{n-1}, \ldots, y_{n-k+1}$ compute y_{n+1} , then discard, as usual, the last point y_{n-k+1} and continue. This possibility was first proposed and analysed by Guillou & Soulé (1969). It is also the

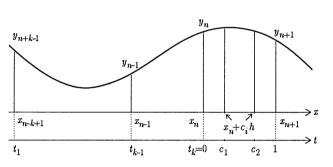
subject of a recent paper by Lie & Nørsett (1989) and will retain our attention here in more detail: In evident generalization of Definition II.7.5, the method is defined as follows:

Definition 3.2. Let s real numbers c_1, \ldots, c_s (typically between 0 and 1) be given and k solution values $y_n, y_{n-1}, \ldots, y_{n-k+1}$. Then define the corresponding collocation polynomial u(x) of degree s+k-1 by (see Fig. 3.5)

$$u(x_j) = y_j \qquad j = n - k + 1, \dots, n \tag{3.23a}$$

$$u'(x_n + c_i h) = f(x_n + c_i h, u(x_n + c_i h))$$
 $i = 1, \dots, s.$ (3.23b)

The numerical solution is then



 $y_{n+1} := u(x_{n+1})$ (3.23c)

Fig. 3.5. The collocation polynomial

If we suppose the derivatives $u'(x_n + c_i h)$ are known, equations (3.23a) and (3.23b) constitute a Hermite interpolation problem with incomplete data: the function values at $x_n + c_i h$ are missing. We therefore have no nice formulas and reduce the problem to a linear algebraic equation. We introduce the dimensionless coordinate $t = (x - x_n)/h$, $x = x_n + th$, nodes $t_1 = -k + 1, \ldots, t_{k-1} = -1$, $t_k = 0$ and define polynomials $\varphi_i(t)$ $(i = 1, \ldots, k)$ of degree s + k - 1 by

$$\varphi_i(t_j) = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases} \quad j = 1, \dots k$$

$$\varphi'_i(c_j) = 0 \qquad j = 1, \dots, s \qquad (3.24)$$

and polynomials $\psi_i(t)$ $(i=1,\ldots,s)$ by

$$\psi_{i}(t_{j}) = 0 \qquad j = 1, \dots, k$$

$$\psi_{i}'(c_{j}) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases} \qquad j = 1, \dots, s .$$
(3.25)

292 V. Multistep Methods for Stiff Problems

This makes these polynomials a (generalized) Lagrange basis and the polynomial u(x) is readily written as

$$u(x_n+th) = \sum_{j=1}^k \varphi_j(t) y_{n-k+j} + h \sum_{j=1}^s \psi_j(t) u'(x_n+c_jh) .$$
(3.26)

Formulas (3.24) and (3.25) do not always have a solution (Exercise 4 below). A convenient way of computing them is indicated in Exercise 5. Putting $t = c_i$ in (3.26), writing $u(x_n + c_i h) = v_i$ and inserting the collocation condition (3.23b) we obtain

$$v_{i} = \sum_{j=1}^{k} \varphi_{j}(c_{i}) y_{n-k+j} + h \sum_{j=1}^{s} \psi_{j}(c_{i}) f(x_{n} + c_{j}h, v_{j}) \qquad (3.27a)$$
$$i = 1, \dots, s$$

$$y_{n+1} = \sum_{j=1}^{k} \varphi_j(1) y_{n-k+j} + h \sum_{j=1}^{s} \psi_j(1) f(x_n + c_j h, v_j) , \qquad (3.27b)$$

a general linear method as defined in (III.8.7).

Theorem 3.3. The collocation method (3.23) is equivalent to the general linear method

$$v_{i} = \sum_{j=1}^{k} a_{ij} y_{n-k+j} + h \sum_{j=1}^{s} b_{ij} f(x_{n} + c_{j}h, v_{j}) \qquad i = 1, \dots, s$$

$$y_{n+1} = \sum_{j=1}^{k} a_{k+1,j} y_{n-k+j} + h \sum_{j=1}^{s} b_{k+1,j} f(x_{n} + c_{j}h, v_{j})$$
(3.28)

where

$$a_{ij} = \varphi_j(c_i), \quad b_{ij} = \psi_j(c_i), \quad a_{k+1,j} = \varphi_j(1), \quad b_{k+1,j} = \psi_j(1) \quad (3.29)$$

and $\varphi_j(t), \quad \psi_j(t)$ are polynomials defined by (3.24) and (3.25). Formula
(3.26) provides a continuous output.

A straightforward extension of the proof of Theorem II.7.8, again using the Gröbner & Alekseev formula (I.14.18), yields

Theorem 3.4 (Guillou & Soulé 1969). If the quadrature formula (3.27b) is exact for polynomials g(t) of degree $\leq s+k+r$, i.e., $\sum_{j=1}^{k} \varphi_j(1)=1$ and

$$\sum_{j=1}^k arphi_j(1) \int_{j-k}^1 g(t) dt = \sum_{i=1}^s \psi_i(1) g(c_i) \; ,$$

then the multistep collocation method (3.28) also has order s+k+r.

Methods of "Radau" Type

"Nous allons maintenant étudier une classe de formules qui généralise les formules ordinaires de Gauss, Radau et Lobatto". (Guillou & Soulé 1969)

An interesting question is now how to choose the nodes c_i in order to obtain the highest possible order. Using an elegant idea of Krylov (1959) (see the last chapter of his book on integration), Guillou & Soulé (1969) and Lie & Nørsett (1989) constructed such methods of maximal order p = 2s + k - 1. Unfortunately, these methods are not stiffly stable and therefore of no use for stiff problems. Consequently, we fix $c_s = 1$ to achieve stability at infinity and try to determine c_1, \ldots, c_{s-1} so that the order becomes p = 2s + k - 2. Because of Theorem 3.4, it is sufficient to consider quadrature problems.

And now to Krylov's idea for integrals, adapted to our situation. We fill in the gaps in the data for Hermite interpolation, i.e., we suppose that the function values $v_i = u(x_n+c_ih)$ $(i=1,\ldots,s-1)$ are known and we extend our Lagrange basis accordingly: firstly, we add polynomials $\chi_1(t),\ldots,\chi_{s-1}(t)$ of degree 2s+k-2 which must satisfy

$$\chi_i(t_j) = 0$$
 $j = 1, \dots, k$ (3.30a)

$$\chi'_i(c_j) = 0$$
 $j = 1, ..., s$ (3.30b)

$$\chi_i(c_j) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \quad j = 1, \dots, s - 1 \quad (3.30c)$$

(Caution: the last condition is not for j = s, because c_s is not a free node). Secondly, the polynomials $\varphi_i(t)$ and $\psi_i(t)$ are replaced by $\tilde{\varphi}_i(t)$, $\tilde{\psi}_i(t)$ of degree 2s+k-2 which, in addition to (3.24) and (3.25), must satisfy

$$\widetilde{arphi}_i(c_j)=0 \quad ext{and} \quad \widetilde{\psi}_i(c_j)=0 \qquad j=1,\ldots,s-1 \;.$$

Then Formula (3.26) is replaced by

$$\tilde{u}(x_n+th) = \sum_{j=1}^k \tilde{\varphi}_j(t) y_{n-k+j} + \sum_{j=1}^{s-1} \chi_j(t) v_j + h \sum_{j=1}^s \tilde{\psi}_j(t) u'(x_n+c_jh) , \quad (3.32)$$

and (3.27b) becomes the integration formula

$$y_{n+1} = \sum_{j=1}^{k} \tilde{\varphi}_{j}(1) y_{n-k+j} + \sum_{j=1}^{s-1} \chi_{j}(1) v_{j} + h \sum_{j=1}^{s} \tilde{\psi}_{j}(1) u'(x_{n} + c_{j}h)$$
(3.33)

which is of order 2s+k-2. If now, by a miracle, all coefficients

$$\chi_j(1) = 0$$
 $(j = 1, \dots, s - 1)$ (3.34)

were zero, then the quadrature Formula (3.27b) would become equal to (3.33), since by uniqueness the remaining coefficients $\tilde{\varphi}_j(1)$ and $\tilde{\psi}_j(1)$ must also be equal to $\varphi_i(1)$ and $\psi_i(1)$.

Theorem 3.5. If the collocation points c_1, \ldots, c_{s-1} (with $c_s=1$) are chosen such that the polynomials $\varphi_i(t), \psi_i(t)$ of (3.24), (3.25) exist uniquely and that (3.34) is true, then the collocation method (3.28) is of highest possible order 2s+k-2.

Computation of the Nodes

Equation (3.34) together with the conditions (3.30) allow us to write the polynomials $\chi_i(t)$ in the simple form

$$\chi_i(t) = C \prod_{j=1}^k (t-t_j) \prod_{\substack{j=1\\j \neq i}}^s (t-c_j)^2 .$$
(3.35)

where C is determined by $\chi_i(c_i) = 1$. This then satisfies all derivative requirements (3.30b), except at c_i . $\chi'_i(c_i)$ is readily computed from (3.35) by taking logarithms and the conditions $\chi'_i(c_i) = 0$ give

$$\sum_{j=1}^{k} \frac{1}{c_i - t_j} + \sum_{\substack{j=1 \ j \neq i}}^{s} \frac{2}{c_i - c_j} = 0 , \qquad i = 1, \dots, s - 1 .$$
(3.36)

Example. The case s=3: here, Equations (3.36) become $(c_3=1)$

$$\frac{2}{c_2 - c_1} = \frac{2}{c_1 - 1} + \sum_{j=1}^{k} \frac{1}{c_1 - t_j} ,$$

$$\frac{2}{c_1 - c_2} = \frac{2}{c_2 - 1} + \sum_{j=1}^{k} \frac{1}{c_2 - t_j} .$$
(3.37)

These two equations can easily be solved for c_2 and c_1 respectively, and lead to the curves displayed for k = 3 and k = 4 in Fig. 3.6. We see that a huge number of solutions is possible (precisely $\binom{s+k-1}{k-1}$), Krylov imagined charged electrical particles in equilibrium to prove their existence), but most of these lead to totally unstable and therefore useless methods (in the sense of Section III.3). Thus the only choice which we retain are the rightmost solutions c_i with $0 < c_1$, $c_2 < 1$, shown in Table 3.6 below. In addition, as Krylov has shown (see Krylov (1959), English translation 1962, p. 329) this

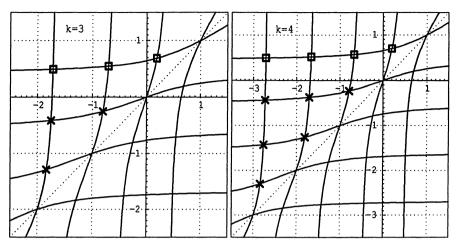


Fig. 3.6. Solutions of (3.37). \times unstable, \Box stable

choice leads to the smallest error constant (for once, stability and small error are *not* in conflict!)

Stability of the Radau-Type Methods

The stability analysis of the Radau methods is done by inserting $y' = \lambda y$ into (3.28). Since $c_s = 1$ we have $y_{n+1} = v_s$ and thus obtain (for s = 3) the characteristic equation

$$\begin{pmatrix} 1-\mu b_{11} & -\mu b_{12} & -\mu b_{13} \\ -\mu b_{21} & 1-\mu b_{22} & -\mu b_{23} \\ -\mu b_{31} & -\mu b_{32} & 1-\mu b_{33} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \zeta^3 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 \\ \zeta \\ \zeta^2 \end{pmatrix} ,$$

or

$$\zeta^{3} = (0,0,1) \begin{pmatrix} 1-\mu b_{11} & -\mu b_{12} & -\mu b_{13} \\ -\mu b_{21} & 1-\mu b_{22} & -\mu b_{23} \\ -\mu b_{31} & -\mu b_{32} & 1-\mu b_{33} \end{pmatrix}^{-1} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 \\ \zeta \\ \zeta^{2} \end{pmatrix}$$
(3.38)

which, when multiplied by $det(I-\mu B)$, becomes a polynomial of degree 3 in μ . For a general multistep collocation method (3.28) we obtain in this way

$$q_k(\mu)\zeta^k + q_{k-1}(\mu)\zeta^{k-1} + \ldots + q_0(\mu) = 0$$

where $q_k(\mu) = \det(I - \mu B)$ and all $q_i(\mu)$ are polynomials of degree at most s.

The root locus curves of Fig. 3.7 were again obtained by Cardano's formula. Coefficients and stability measures are given in Table 3.6. The methods for k=1,2 (orders p=5 and 6) are A-stable. The subsequent methods

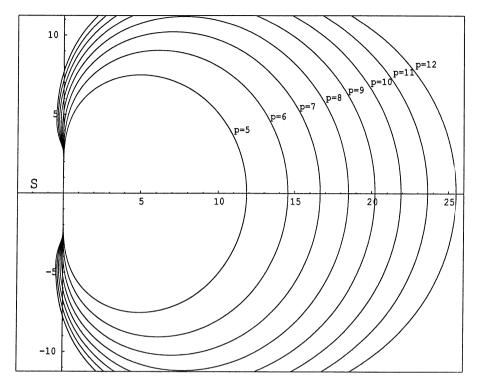


Fig. 3.7. Root locus curves for multistep Radau methods (s=3)

have surprisingly large α -values for very high orders (up to $p \approx 20$), which makes this class very promising.

Exercises

1. Show that the coefficients ν_j in (3.13) for the Enright methods can be computed recursively by

$$\nu_{j} = -\frac{1}{(j+1)(j+2)} - \sum_{k=0}^{j-1} \nu_{k} S_{j+1-k} \quad \text{where} \quad S_{l} = \sum_{k=1}^{l} \frac{1}{k(l+1-k)} .$$
(3.39)

Hint. See the proof of Formula (III.1.11). The generating function $G(t) = \sum_{j=0}^{\infty} \nu_j t^j$ becomes here $\int_0^1 (s-1)(1-t)^{1-s} ds$.

2. The Enright Formulas are stiffly stable for $k \leq 7$ and are *not* stiffly stable, as one can easily inspect, e.g. by a computer plot, for $k = 8, k = 9, \ldots$ and so on. Hence, everybody agrees that they are not stiffly stable for

k	p	c_1	<i>c</i> ₂	c_3	α	D					
1	5	0.155051025721682	0.644948974278318	1.	90°	0.000					
2	6	0.177891722985607	0.673235257220651	1.	90°	0.000					
3	7	0.192169638937766	0.689317969824851	1.	89.73°	0.016					
4	8	0.202814874040288	0.700407719104611	1.	89.13°	0.084					
5	9	0.211395456069620	0.708798418188500	1.	88.61°	0.178					
6	10	0.218626151232186	0.715507419158199	1.	88.14°	0.278					
7	11	0.224897548200883	0.721072684914921	1.	87.70°	0.376					
8	12	0.230448266933707	0.725812172023161	1.	87.28°	0.467					
9	13	0.235435607740434	0.729928926504599	1.	86.89°	0.555					
10	14	0.239969169367303	0.733560240031675	1.	86.51°	0.649					
11	15	0.244128606044551	0.736803122952198	1.	86.14°	0.763					
12	16	0.247973766491964	0.739728565298052	1.	85.79°	0.917					
13	17	0.251550844436705	0.742390019356757	1.	85.44°	1.135					
14	18	0.254896295040291	0.744828697795402	1.	85.07°	1.462					
15	19	0.258039429919700	0.747077018862741	1.	84.68°	1.995					
16	20	0.261004194709515	0.749160923778290	1.	84.23°	3.037					

Table 3.6. Coefficients and stability measures for multistep Radau methods (s=3)

any k > 7. However, no rigorous proof has been found for this, as for instance the proof of Theorem III.3.4. Why don't you try to find one?

- 3. Prove that the second derivative BDF methods (3.14) are unstable (in the sense of Section III.3) for k > 11.
- 4. a) Show that for $k=2, t_1=-1, t_2=0, s=1, c_1=-1/2$ neither equations (3.24) nor equations (3.25) possess a solution.

b) Show that (3.24) and (3.25) always admit unique solutions if all c_i are distinct and satisfy $c_i \ge 0$.

Hint for b). If φ_i (or ψ_i) are written as $\sum_{l=1}^{s+k} a_l t^{l-1}$, then (3.24) and (3.25) become linear systems with the same matrix and different right-hand sides. The corresponding *homogeneous* system then possesses a non-zero solution iff the interpolation problem

$$p(t_j)=0 \qquad j=1,\ldots,k$$

 $p'(c_j)=0 \qquad j=1,\ldots,s$

298 V. Multistep Methods for Stiff Problems

has a non-zero solution. Since p'(t) has at most k+s-2 real zeros and since (Rolle's theorem) each interval (t_l, t_{l+1}) must contain at least one of these, there can be at most s-1 zeros beyond $t_k = 0$.

5. A convenient way of computing the polynomials (3.24), (3.25) (written here for the case s=3) is to put

$$\varphi_i(t) = (a_1 + a_2 t + a_3 t^2 + a_4 t^3) \prod_{\substack{l=1\\l \neq i}}^k (t - t_l) . \qquad (3.40)$$

Show that equations (3.24) (for i = j) and (3.25) then become the following linear system

$$a_1 + t_i a_2 + t_i^2 a_3 + t_i^3 a_4 = 1/r_i$$
, (3.41)

$$s_j a_1 + (s_j c_j + 1) a_2 + (s_j c_j^2 + 2c_j) a_3 + (s_j c_j^3 + 3c_j^2) a_4 = 0, \qquad j = 1, 2, 3$$

where

$$r_i = \prod_{\substack{l=1 \\ l \neq i}}^k (t_i - t_l) \;, \qquad s_j = \sum_{\substack{l=1 \\ l \neq j}}^k \frac{1}{c_j - t_l} \;.$$

Secondly, for

$$\psi_i(t) = (a_1 + a_2 t + a_3 t^2) \prod_{l=1}^k (t - t_l)$$
(3.42)

equation (3.25) becomes

$$s_{j}a_{1} + (s_{j}c_{j}+1)a_{2} + (s_{j}c_{j}^{2}+2c_{j})a_{3} = \begin{cases} 0 & \text{if } j \neq i \\ 1/r_{i} & \text{if } j = i \end{cases} \qquad j = 1, 2, 3$$
(3.43)

where

$$r_i = \prod_{l=1}^k (c_i - t_l) \;, \qquad s_j = \sum_{l=1}^k \frac{1}{c_j - t_l}$$

6. Generalize the proof and the result of Theorem IV.3.9 to multistep collocation methods.

Hint. Instead of KM(x) in (IV.3.18) we have to insert a linear combination $\sum_{\ell=1}^{k} \alpha_{\ell} M_{\ell}(x)$ where $M_{\ell}(x) = M(x) \cdot x^{\ell-1}$, $M(x) = \frac{1}{s!} \prod_{i=1}^{s} (x - c_i)$ and $\alpha_1, \ldots, \alpha_k$ are arbitrary. Instead of (IV.3.19) we then obtain

$$u(x) = -\sum_{\ell=1}^{k} \alpha_{\ell} \sum_{j=0}^{s} \frac{M_{\ell}^{(j)}(x)}{\mu^{j+1}} . \qquad (3.44)$$

Putting $x = t_1, t_2, \ldots, t_k, t_{k+1}$ and $u(t_i) = y_i$ gives an overdetermined system for $\alpha_1, \ldots, \alpha_k$ which has a solution only if a certain determinant is zero. Setting $y_1 = 1, y_2 = \zeta, y_3 = \zeta^2, \ldots$ there leads to the characteristic equation

$$\det \begin{pmatrix} \sum_{j=0}^{s} M_{1}^{(j)}(t_{1})\mu^{s-j} & \dots & \sum_{j=0}^{s} M_{k}^{(j)}(t_{1})\mu^{s-j} & 1\\ \sum_{j=0}^{s} M_{1}^{(j)}(t_{2})\mu^{s-j} & \dots & \sum_{j=0}^{s} M_{k}^{(j)}(t_{2})\mu^{s-j} & \zeta\\ \vdots & \vdots & \vdots\\ \sum_{j=0}^{s} M_{1}^{(j)}(t_{k+1})\mu^{s-j} & \dots & \sum_{j=0}^{s} M_{k}^{(j)}(t_{k+1})\mu^{s-j} & \zeta^{k} \end{pmatrix} = 0$$

$$(3.45)$$

as a generalization of (IV.3.16). Tedious expansions of this determinant into powers of ζ and μ (with many coefficients equal to zero) then leads to an explicit expression (see Theorem 7 of Lie 1990).

7. Prove that the 2-step 2-stage collocation method with $x_2 = 1$ is A-stable iff

$$c_1 \geq \frac{\sqrt{17}-1}{8}$$

Hint. a) Show that the characteristic equation is

$$q_2(\mu)\zeta^2 + q_1(\mu)\zeta + q_0(\mu) = 0 \tag{3.46}$$

where

$$\begin{split} q_{2}(\mu) &= -(9c_{1}+5) + \mu(3c_{1}^{2}+7c_{1}+2) - \mu^{2}2c_{1}(c_{1}+1) \\ q_{1}(\mu) &= 12c_{1}+4 - \mu4(c_{1}^{2}-1) \\ q_{0}(\mu) &= -3c_{1}+1 + \mu c_{1}(c_{1}-1) . \end{split}$$

b) Apply Schur's criterion (1918) to the polynomial (3.46) with $\mu = it$, $t \in \mathbb{R}$.

Schur's criterion. Let $a(\zeta) = a_k \zeta^k + a_{k-1} \zeta^{k-1} + \ldots + a_0$ $(a_k \neq 0)$ be a polynomial with complex coefficients and set

$$a^*(\zeta) = \overline{a}_0 \zeta^k + \overline{a}_1 \zeta^{k-1} + \ldots + \overline{a}_k$$
.

Then, all zeros of $a(\zeta)$ lie inside the unit circle, iff

i) $|a_0| < |a_k|$

ii) the zeros of $\zeta^{-1}(a^*(0)a(\zeta) - a(0)a^*(\zeta))$, a polynomial of degree k-1, are all inside the unit circle.

8. Prove that $c_1 = (\sqrt{17} - 1)/8$ is a super-convergence point for the 2-step 2-stage collocation methods with $c_2 = 1$.

V.4. Order Stars on Riemann Surfaces

"Riemann ist der Mann der glänzenden Intuition. Durch seine umfassende Genialität überragt er alle seine Zeitgenossen ... Im Auftreten schüchtern, ja ungeschickt, musste sich der junge Dozent, zu dem wir Nachgeborenen wie zu einem Heiligen aufblicken, mancherlei Neckereien von seinen Kollegen gefallen lassen."

(F. Klein, Entwicklung der Mathematik im 19. Jhd., p. 246,247)

We have seen in the foregoing sections that the highest possible order of A-stable linear multistep methods is two; furthermore, the second derivative Enright methods as well as the SDBDF methods were seen to be A-stable for $p \leq 4$; the three-stage Radau multistep methods were A-stable for $p \leq 6$. In this section we shall see that these observations are special cases of a general principle, the so-called "Daniel-Moore conjecture" which says that the order of an A-stable multistep method involving either s derivatives or s implicit stages satisfies $p \leq 2s$. Before proceeding to its proof, we should become familiar with Riemann surfaces.

Riemann Surfaces

"Für manche Untersuchungen, namentlich für die Untersuchung algebraischer und Abel'scher Functionen ist es vortheilhaft, die Verzweigungsart einer mehrwerthigen Function in folgender Weise geometrisch darzustellen. Man denke sich in der (x, y)-Ebene eine andere mit ihr zusammenfallende Fläche (oder auf der Ebene einen unendlich dünnen Körper) ausgebreitet, welche sich so weit und nur so weit erstreckt, als die Function gegeben ist. Bei Fortsetzung dieser Function wird also diese Fläche ebenfalls weiter ausgedehnt werden. In einem Theile der Ebene, für welchen zwei oder mehrere Fortsetzungen der Function vorhanden sind, wird die Fläche doppelt oder mehrfach sein; sie wird dort aus zwei oder mehreren Blättern bestehen, deren jedes einen Zweig der Function vertritt. Um einen Verzweigungspunkt der Function herum wird sich ein Blatt der Fläche in ein anderes fortsetzen, so dass in der Umgebung eines solchen Punktes die Fläche als eine Schraubenfläche mit einer in diesem Punkte auf der (x, y)-Ebene senkrechten Axe und unendlich kleiner Höhe des Schraubenganges betrachtet werden kann. Wenn die Function nach mehreren Umläufen des z um den Verzweigungswerth ihren vorigen Werth wieder erhält (wie z.B. $(z-a)^{m/n}$, wenn m, n relative Primzahlen sind, nach n Umläufen von z um a), muss man dann freilich annehmen, dass sich das oberste Blatt der Fläche durch die übrigen hindurch in das unterste fortsetzt.

Die mehrwerthige Function hat für jeden Punkt einer solchen ihre Verzweigungsart darstellenden Fläche nur *einen* bestimmten Werth und kann daher als eine völlig bestimmte Function des Orts in dieser Fläche angesehen werden." (B. Riemann 1857)

We take as example the BDF method (III.1.22") for k = 2 which has the characteristic equation

$$\left(\frac{3}{2} - \mu\right)\zeta^2 - 2\zeta + \frac{1}{2} = 0 . \qquad (4.1)$$

This quadratic equation expresses ζ as a function of μ , both are complex variables. It is immediately solved to yield

$$\zeta_{1,2} = \frac{2 \pm \sqrt{1+2\mu}}{3-2\mu} \tag{4.2}$$

which defines a two-valued function, i.e., to each $\mu \in \mathbb{C}$ we have two solutions ζ . These two solutions are displayed in Fig. 4.1 (ζ is represented by small arrows attached to the point μ).

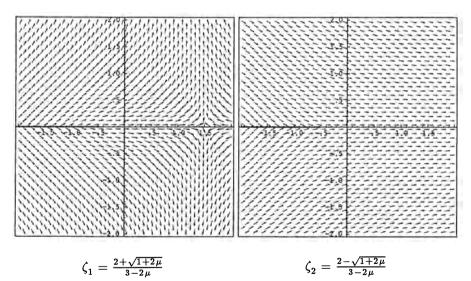


Fig. 4.1. The two solutions of the BDF2 characteristic equation

We observe two essential facts. First, there is a pole of ζ_1 , but not of ζ_2 , at the point $\mu = 3/2$. This is due to the factor $(3/2 - \mu)$ in (4.1) which represents the implicit stage of the method. Second, we observe a curious discontinuity on the negative real axis left of the point -1/2, a phenomenon first observed in a famous paper of Puiseux (1850) ("... a encore cet inconvénient, que u devient alors une fonction discontinue ..."). It has its reason in the complex square root $\sqrt{1+2\mu}$ which, while $1+2\mu$ performs a revolution around the origin, only does half a revolution and exchanges the two roots. We cannot therefore speak in a natural way of the

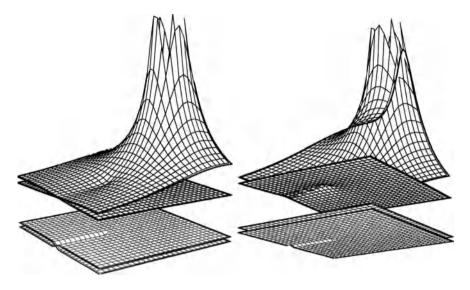


Fig. 4.2. Three dimensional view of the map (4.4)

two complex functions $\zeta_1(\mu)$ and $\zeta_2(\mu)$. And here comes the great idea of Riemann (1857): Instead of varying μ in the complex plane C, we imagine it varying in a *double sheet* of (in Riemann's words: infinitely close) complex planes $\mathbb{C} \cup \mathbb{C}$. The μ 's in the upper sheet are mapped to ζ_1 , the μ 's in the lower sheet are mapped to ζ_2 . The double-valued function then becomes single-valued. At the "cut", left of the point -1/2, the two roots ζ_1 and ζ_2 are interchanged, so we must imagine that the upper sheet for ζ_1 continues into the lower sheet for ζ_2 (shaded in Fig. 4.1) and vice-versa. If we denote the manifold obtained in this way by M, then the map

$$\begin{cases} M \longrightarrow \mathbb{C} \\ \mu \longmapsto \zeta \end{cases}$$
(4.3)

becomes an everywhere continuous and holomorphic map (with the exception of the pole). M is then called the *Riemann surface* of the algebraic function $\mu \mapsto \zeta$.

A three-dimensional view of the map

$$\begin{cases} M \longrightarrow \mathbb{R} \\ \mu \longmapsto |\zeta| \end{cases}$$
(4.4)

is represented in Fig. 4.2.

More General Methods

Most methods of Section V.3 are so-called multistep Runge-Kutta methods defined by the formulas

$$y_{n+k} = \sum_{j=1}^{k} a_j \, y_{n+j-1} + h \sum_{j=1}^{s} b_j \, f(x_n + c_j h, v_j^{(n)}) \tag{4.5a}$$

$$v_i^{(n)} = \sum_{j=1}^{\kappa} \tilde{a}_{ij} y_{n+j-1} + h \sum_{j=1}^{s} \tilde{b}_{ij} f(x_n + c_j h, v_j^{(n)}) .$$
(4.5b)

This is the subclass of general linear methods (Example III.8.5) for which the external stages represent the solution y(x) on an equidistant grid. The bulk of numerical work for applying the above method are the implicit stages (4.5b).

For the stability analysis we set as now usual $f(x, y) = \lambda y$, $h\lambda = \mu$ and $(y_n, y_{n+1}, \ldots, y_{n+k}) = (1, \zeta, \ldots, \zeta^k)$. Equation (4.5b) then becomes, in vector notation,

$$\vec{v} = \left(I - \mu \tilde{B}\right)^{-1} \tilde{A} \begin{pmatrix} 1\\ \zeta\\ \vdots\\ \zeta^{k-1} \end{pmatrix} , \qquad (4.6)$$

which is rational in μ with denominator det $(I-\mu \tilde{B})$. Inserting this into (4.5a) and multiplying with this denominator we obtain a characteristic equation of the form

$$Q(\mu,\zeta) \equiv q_k(\mu)\zeta^k + q_{k-1}(\mu)\zeta^{k-1} + \ldots + q_0(\mu) = 0$$
(4.7)

where $q_k(\mu) = \det(I - \mu \widetilde{B})$ and all $q_j(\mu)$ are polynomials in μ of degree $\leq s$.

Multiderivative multistep methods, on the other hand, may be written as (M. Reimer 1967, R. Jeltsch 1976)

$$\sum_{j=0}^{s} h^{j} \sum_{i=0}^{k} \alpha_{ij} D^{j} y_{n+i} = 0$$
(4.8)

where the computation of higher derivatives $D^j y$ is done by formula (II.12.3). For the equation $y' = \lambda y$ we have $D^j y = \lambda^j y$ and inserting this into (4.8) together with $(y_n, y_{n+1}, \ldots, y_{n+k}) = (1, \zeta, \ldots, \zeta^k)$ we obtain at once a characteristic equation of the form (4.7). Here, the degree s of the polynomials $\varphi_j(\mu)$ is equal to the order of the highest derivative taken. The bulk of numerical work for evaluating (4.8) is the determination of y_{n+k} from an implicit equation containing y_{n+k} , $Dy_{n+k}, \ldots, D^s y_{n+k}$. If the last of these derivatives is present (i.e., if $\alpha_{ks} \neq 0$), then the degree of $q_k(\mu)$ in (4.7) will be s.

The Riemann surface M of (4.7) will consist of k sheets, one for each of the k roots ζ_j . The branch points are values of μ for which two or several roots of (4.5) coalesce to an *m*-fold root. These are the roots of a certain "discriminant" (see any classical book on Algebra, e.g., the famous "Weber", Vol. I, § 50); hence for irreducible $Q(\mu, \zeta)$ there are only a finite number of such points. The movement of the coalescing roots ζ_j , when μ surrounds such a branch point, has been carefully studied by Puiseux: They usually form what Puiseux calls a "système circulaire", i.e., they are cyclically permuted at each revolution like the values of the complex function $\sqrt[m]{z}$ near the origin. The Riemann surface must then follow these "monodromies" and must be cut along certain lines and rejoined appropriately. The location of these cuts is not unique.

Example. Different possibilities for cutting the Riemann surface of, say, the function

$$\zeta^2 - (1 - \mu^4) = 0 \tag{4.9}$$

with branch points at ± 1 and $\pm i$, are shown in a classical figure reproduced from the book of Hurwitz & Courant, second edition 1925, p. 360 (Fig. 4.3).

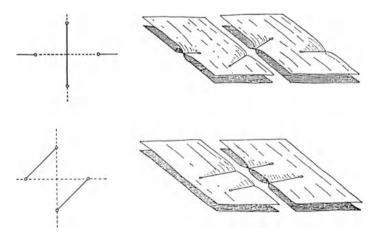


Fig. 4.3. Different cuts for (4.9) (Hurwitz & Courant 1925)

Poles Representing Numerical Work

"Only 85 miles (geog.) from the Pole, but it's going to be a stiff pull *both ways* apparently; still we do make progress, which is something."

(R.F. Scott, January 10, 1912; first mention of interrelation between poles and stiffness in the literature)

We have just seen that the degree s of $q_k(\mu)$ in (4.7) expresses the numerical work (either the number of implicit stages or the number of derivatives for the implicit solution). Now $q_k(\mu)$ will possess s zeros $\mu_1, \mu_2, \ldots, \mu_s$. What happens if μ approaches one of these zeros? The polynomial (4.7) of degree k (with k roots $\zeta_1(\mu), \ldots, \zeta_k(\mu)$) suddenly becomes a polynomial of degree k-1 with only k-1 roots. Where does the last one go? Well, by Vieta's Theorem, it must go to infinity. In order to compute its asymptotic behaviour, suppose $q_k(\mu_0) = 0$, $q'_k(\mu_0) \neq 0$, $q_{k-1}(\mu_0) \neq 0$ and that ζ is large. Then all terms $q_{k-2}(\mu)\zeta^{k-2}, \ldots, q_0(\mu)$ are dominated by $q_{k-1}(\mu)\zeta^{k-1}$ and may be neglected. It results that

$$\zeta \sim -rac{q_{k-1}(\mu_0)}{q_k'(\mu_0)} rac{1}{\mu-\mu_0} \quad ext{as} \quad \mu o \mu_0 \;,$$

hence the algebraic function $\zeta(\mu)$ possesses a pole on one of its sheets. If $q_k(\mu_0)=0$ is a multiple root, the corresponding pole will be multiple too.

It is also possible that the pole in question coincides with a branch point. This happens when in addition to $q_k(\mu_0) = 0$ also $q_{k-1}(\mu_0) = 0$. In this case two roots $\zeta_j(\mu)$ tend to infinity, but more slowly, like $\pm C(\mu - \mu_0)^{-1/2}$ (Exercise 1). We therefore count both "half-poles" together as one pole again. If c is a boundary curve of a neighbourhood V of μ_0 (which around this branch point surrounds μ_0 twice before closing up), the argument of $\zeta(\mu)$ makes just one clockwise revolution on this path. Fig. 4.4 illustrates this fact with an example.

Recapitulating we may state:

Lemma 4.1. The Riemann surface for the characteristic equation of a multistep Runge-Kutta method with s implicit stages per step (or a multiderivative multistep method with s implicit derivative evaluations) includes at most s poles of the algebraic function $\zeta(\mu)$.

We shall see below that Lemma 4.1 remains true for the whole class of general linear methods, but for the moment we are "impatient et joyeux d'aller au combat" (Astérix Légionnaire, pp. 29 and 30). The *argument principle* also remains valid on Riemann surfaces and we state it as follows:

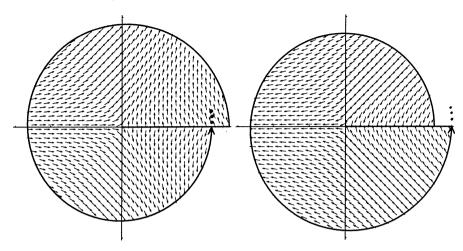


Fig. 4.4. Behaviour of roots of $\mu\zeta^2 + 2\mu\zeta + 2-\mu = 0$ near the origin $\mu = 0$.

"On the left, isn't it ?" — "Right." "On the right ?" — "Left, leeeft!" (John Cleese in "Clockwise")

Lemma 4.2. Suppose that a domain $F \subset M$ contains no zeros of $\zeta(\mu)$ and that its boundary consists of closed loops $\gamma_1, \ldots, \gamma_\ell$. Then the number of poles of $\zeta(\mu)$ contained in F is equal to the total number of clockwise revolutions of $\arg(\zeta(\mu))$ along $\gamma_1, \ldots, \gamma_\ell$, each passed through in that direction which leaves F to the left of γ_i

The *proof* is by cutting F into thousand pieces, each of which is homeomorphic to a disc in C, and by adding up all revolution numbers which cancel along the cuts, because the adjacent edges are traversed in opposite directions.

Order and Order Stars

"... denn das Klare und leicht Faßliche zieht uns an, das Verwickelte schreckt uns ab." (D. Hilbert, Paris 1900)

Guided by the ideas of Section IV.4, we now compare the absolute values of the characteristic roots $|\zeta_1|$ and $|\zeta_2|$ for the BDF2 scheme (4.2) with the exponential function $|e^{\mu}| = e^{\operatorname{Re} \mu}$, hence we define (Wanner, Hairer & Nørsett 1978)

$$A_{j} = \left\{ \mu \in \mathbb{C} \ ; \ |\zeta_{j}(\mu)| > |e^{\mu}| \right\} \qquad j = 1, 2 \ . \tag{4.11}$$

These sets, on precisely the same scale as in Fig. 4.1, are represented in Fig. 4.5.

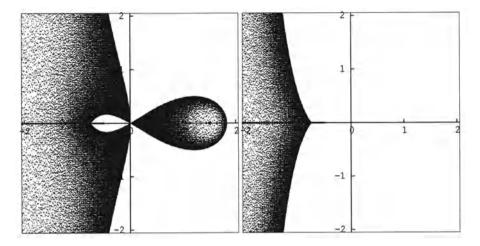


Fig. 4.5. The order star (4.14) for BDF2

The sets A_j continue across the cuts in the same way as do the roots, it is therefore natural to embed them into the Riemann surface M and define

$$A = \left\{ \mu \in M \; ; \; |\zeta(\mu)| > |e^{\pi(\mu)}| \right\}$$
(4.12)

where $\pi: M \to \mathbb{C}$ is the natural projection.

Fig. 4.5 shows clearly an order star with three sectors for $\zeta_1(\mu)$, but none for $\zeta_2(\mu)$, and we guess that this has to do with the order of the method, which is two. Lemma 4.3 below will extend Lemma IV.4.3 to multistep methods.

By putting h=0 in (4.5) (hence $\mu=0$ in (4.7)), and

$$(y_n, y_{n+1}, \ldots, y_{n+k-1}) = (1, 1, \ldots, 1)$$

(hence $\zeta = 1$ in (4.7)), we must have by consistency that $y_{n+k} = 1$ too, i.e., that Q(0,1) = 0. This corresponds to the formula $\varrho(1) = 0$ in the multistep case (see (III.2.6)). But for h = 0 the difference equation (4.5a) is stable only if $\zeta = 1$ is a *simple* root of the polynomial equation $Q(0, \zeta) = 0$. Hence we must have

$$Q(0,1) = 0, \qquad \frac{\partial Q}{\partial \zeta}(0,1) \neq 0$$
 (4.13)

The analytic continuation $\zeta_1(\mu)$ of this root in the neighbourhood of the origin (as far as it is not embarassed with branch points) will be called the *principal root*, the corresponding surface the *principal sheet* of M.

Lemma 4.3. For stable multistep RK (or multiderivative) methods of order p the set A possesses a star of p+1 sectors on the principal sheet in the neighbourhood of the origin.

Proof. We fix $\lambda \in \mathbb{C}$, set $y' = \lambda y$ and take for y_0, \ldots, y_{k-1} exact initial values $1, e^{\mu}, \ldots, e^{(k-1)\mu}$. The order of the method then tells us that the *local error* (see Fig. III.2.1), i.e., the difference between $e^{k\mu}$ and the numerical solution y_k computed from (4.5a), must be $\tilde{C} \cdot h^{p+1}$ for $h \to 0$, hence $\tilde{C}\lambda^{-p-1}\mu^{p+1}$ for $\mu \to 0$. Thus, Formula (4.5) with all y_j replaced by $e^{j\mu}$ will lead to

$$Q(\mu, e^{\mu}) = \overline{C}\mu^{p+1} + \mathcal{O}(\mu^{p+2}) . \qquad (4.14)$$

We subtract (4.14) from (4.7), choose for $\zeta(\mu)$ the principal root $\zeta_1(\mu)$ (for which $e^{\mu} - \zeta_1(\mu)$ is small for $|\mu|$ small) and linearize. This gives

$$\frac{\partial Q}{\partial \zeta}(0,1) \cdot (e^{\mu} - \zeta_1(\mu)) = \overline{C} \mu^{p+1} + \dots$$

and by dividing through by the non-zero constant (4.13)

$$e^{\mu} - \zeta_1(\mu) = C \cdot \mu^{p+1} + \mathcal{O}(\mu^{p+2}) \quad \text{for} \quad \mu \to 0 .$$
 (4.15)

The rest of the proof now goes exactly analogously to that of Lemma IV.4.3. There is also not much difference in the case of multiderivative methods. $\hfill \Box$

The constant C of (4.15) is called the *error constant* of the method. This is consistent with Formula (III.2.6) and (III.2.13) for multistep methods and with (IV.3.5) for Runge-Kutta methods.

The stability domain of multistep RK methods as well as their A-stability is defined in the same way as for multistep methods (see Definitions 1.1 and 1.4). One has only to interpret $\zeta_1(\mu), \ldots, \zeta_k(\mu)$ as the roots of (4.7).

The "Daniel and Moore Conjecture"

"It is conjectured here that no A-stable method of the form of Eq. 5-6 can be of order greater than 2J+2 and that, of those A-stable methods of order 2J+2, the smallest error constant is exhibited by the *Hermite method*..." (Daniel & Moore 1970, p. 80)

At the time when no simple proof for Dahlquist's second barrier was known, a proof of its generalization, the Daniel & Moore conjecture, seemed quite hopeless. Y. Genin (1974) constructed A-stable multistep multiderivative methods with astonishingly high "order" contradicting the conjecture. R. Jeltsch (1976) later cleared up the mystery by showing that Genin's methods had 1 as multiple root of $\rho(\zeta)$ and hence the "effective" order was lower. The conjecture was finally proved in 1978 with the help of order stars:

Theorem 4.4. The highest order of an A-stable s-stage RK (or s-derivative) multistep method is 2s. For the A-stable methods of order 2s the error constant satisfies

$$(-1)^{s}C \ge \frac{s!\,s!}{(2s)!\,(2s+1)!}$$
 (4.16)

Proof. By A-stability, we have for all roots $|\zeta_j(iy)| \leq 1$ along the imaginary axis; hence the order star A is nowhere allowed to cross the imaginary axis. We consider $A^+ = A \cap \pi^{-1}(\mathbb{C}^+)$, the part of the order star which lies above \mathbb{C}^+ . As in Lemma IV.4.4, A^+ must be finite on all sheets of M. The boundary of A^+ may consist of several closed curves. As in Lemma IV.4.5, the argument of $\zeta(\mu)/e^{\mu}$ is steadily increasing along ∂A^+ . Since at the origin we have a star with p+1 sectors (Lemma 4.3), of which at least $\left[\frac{p+1}{2}\right]$ lie in \mathbb{C}^+ , the boundary curves of A^+ must visit the origin at least $\left[\frac{p+1}{2}\right]$ times. Hence the total rotation number is at least $\left[\frac{p+1}{2}\right]$ and from Lemmas 4.1 and 4.2 we conclude that

$$\left[\frac{p+1}{2}\right] \le s \ . \tag{4.17}$$

This implies that $p \leq 2s$ and the first assertion is proved.

We now need a new idea for the part concerning the error constant. The following reasoning will help: the star A expresses the fact that the surface $|\zeta(\mu)/e^{\mu}|$ goes up and down around the origin like Montaigne's ruff. There, the *error constant* has to do with the *height* of these waves. So if we want to compare different error constants we must compare $|\zeta(\mu)/e^{\mu}|$ to $|R(\mu)/e^{\mu}|$, where $R(\mu)$ is the characteristic function of a second method. By dividing the two expressions, e^{μ} cancels and we define

Michel de Montaigne

$$B = \left\{ \mu \in M \; ; \; \left| rac{\zeta(\mu)}{R(\pi(\mu))}
ight| > 1
ight\} \; ,$$
 (4.18)

called the *relative order star*. For R(z) we choose the diagonal Padé approximation $R_{ss}(z)$ with s zeros and s poles (see (IV.3.30)). By subtracting (IV.3.31) (with j=k=s) from (4.15) (where it is now supposed that p=2s) we obtain

$$R_{ss}(\mu) - \zeta_1(\mu) = \underbrace{\left(C - (-1)^s \frac{s! \, s!}{(2s)! \, (2s+1)!}\right)}_{\widetilde{C}} \mu^{2s+1} + \dots \qquad (4.19)$$

It is known that $|R_{ss}(iy)| = 1$ for all $y \in \mathbb{R}$ and that all zeros of $R_{ss}(z)$ lie in \mathbb{C}^- (Theorem IV.4.12). Therefore the set B in (4.18) cannot cross the imaginary axis (as before) and the quotient $|\zeta(\mu)/R(\pi(\mu))|$ has no other poles above \mathbb{C}^+ than those of $\zeta(\mu)$, of which, we know, there are at most s. Therefore the sectors of the relative order star B must exhibit the same colours as those of the classical order star A for diagonal Padé (see Fig. IV.4.2). Otherwise an extra pole would be needed. We conclude that the error constants must have the same sign (see Lemma IV.4.3), hence (see IV.3.31) $(-1)^s \widetilde{C} > 0$, which leads to (4.16).

Equality $\tilde{C} = 0$ would produce an order star B of even higher order which is impossible with s poles, unless the two methods are identical.

Several remarks can be made about the above proof:

a) The first half is in fact superfluous, since the inequality (4.16) implies that the 2s-th order error constant $C \neq 0$, hence necessarily $p \leq 2s$. It has been retained for its beauty and simplicity, and for readers who do not want to study the second half.

b) The proof never uses the full hypothesis of A-stability; the only property used is stability on the imaginary axis (I-stability, see (IV.3.6)). Thus Theorem 4.4 allows the following sharpening, which then extends Theorem IV.4.7 to multistep methods:

Theorem 4.5. Suppose that an *I*-stable s-stage RK (or s-derivative) multistep method possesses a characteristic function $\zeta(\mu)$ with s_1 poles in \mathbb{C}^+ . Then

$$p \le 2s_1 \tag{4.20}$$

and the error constant for all such I-stable methods of order $p = 2s_1$ satisfies

$$(-1)^{s_1}C \geq \frac{s_1! s_1!}{(2s_1)! (2s_1+1)!}$$
(4.21)

Another interpretation of this Theorem is the following result (see Theorem IV.4.8), which in the case s=1 is due to R. Jeltsch (1978):

Thorem 4.6. Suppose that an I-stable method with s poles satisfies $p \ge 2s-1$. Then it is A-stable.

Proof. If only s-1 poles were in \mathbb{C}^+ , we would have $p \leq 2s-2$, a contradiction. Hence all poles of $\zeta(\mu)$ are in \mathbb{C}^+ and A-stability follows from the maximum principle.

Methods with Property C

It is now tempting to extend the proof of Theorem 4.4 to any method other than the diagonal Padé method. But this meets with an essential difficulty in defining (4.18) if $R(\mu)$ is a multistep method defined on another Riemann surface, since then the definition of B makes no sense. The following observation will help: The second part of the proof of Theorem 4.4 only took place in C⁺, which was the *instability* domain of the "comparison method". This leads to

Definition 4.7 (Jeltsch & Nevanlinna 1982). Let a method be given with characteristic polynomial (4.7) satisfying (4.13) and denote its stability domain by S_R . We say that this method has *Property* C if the principal sheet includes no branch points outside of $\pi^{-1}(S_R)$ (with ∞ included if S_R is bounded), and the principal root $R_1(\mu)$ produces the whole instability of the method, i.e.,

$$\Delta_R := \partial S_R = \{ \mu \in \mathbb{C} \; ; \; |R_1(\mu)| = 1 \} \; . \tag{4.22}$$

Examples: All one-step methods have Property C, of course. Linear multistep methods whose root locus curve is simply closed have Property C too. In this situation all roots except $R_1(\mu)$ have modulus smaller than one for all $\mu \notin \pi^{-1}(S_R)$. Thus the principal sheet cannot have a branch point there. The explicit 4th order Adams method analyzed in Fig. 1.1 does not have Property C. The implicit Adams methods (see Fig. 1.3) have Property C for $k \leq 5$. Also, the 4th order implicit Milne-Simpson method (1.17) has property C.

Definition 4.7 allows us to replace $R_{ss}(\mu)$ in the proof of Theorem 4.4 by $R_1(\mu)$, C⁺ by the exterior of S_R , the imaginary axis by Δ_R and to obtain the following theorem (Jeltsch and Nevanlinna the 5th of April, 1979 at 5 a.m. in Champaign; G.W. the 5th of April, 1979 at 4.30 a.m. in Urbana. How was this coincidence possible? E-mail was not yet in general use at that time; was it Psi-mail?)

Theorem 4.8. Let a method with characteristic function $R(\mu)$, stability domain S_R and order p_R possess Property C. If another method with characteristic function $\zeta(\mu)$, stability domain S_{ζ} and order p_{ζ} is more stable than R, i.e., if

$$S_{\zeta} \supset S_R$$
, (4.23)

then

$$p \leq 2s$$
 (4.24)

where

$$p = \min(p_R, p_\zeta) \tag{4.25}$$

and s is the number of poles of $\zeta(\mu)$, each counted with its multiplicity, which are not poles of the principal root $R_1(\mu)$ of $R(\mu)$.

"... and tried to optimize the stability boundary. Despite many efforts we were not able to exceed $\sqrt{3}$, the stability boundary of the Milne-Simpson method ..." (K. Dekker 1981)

As an illustration of Theorem 4.8 we ask for the largest stability interval on the imaginary axis $I_r = [-ir, ir] \subset \mathbb{C}$ of a 3rd order multistep method (for hyperbolic equations). Since we have s=1 for linear multistep methods, p=3 contradicts (4.24) and we obtain from Theorem 4.8 by using for $R(\mu)$ the Milne-Simpson method (1.17):

Theorem 4.9 (Dekker 1981, Jeltsch & Nevanlinna 1982). If a linear multistep method of order $p \ge 3$ is stable on I_r , then $r \le \sqrt{3}$.

The second part of Theorem 4.4 also allows an extension, the essential ingredient for its proof has been the sign of the error constant for the diagonal Padé approximation.

Theorem 4.10. Consider a method with characteristic equation (4.7) satisfying (4.13) and let p denote its order and C its error constant. Suppose

a) the method possesses Property C,

b) the principal root $R_1(\mu)$ possesses s poles,

c) sign
$$(C) = (-1)^{s}$$

d) $p \geq 2s-1$.

Then this method is "optimal" in the sense that every other method with s poles which is stable on Δ_R of (4.22) has either lower order or, for the same order, a larger (in absolute value) error constant.

Examples. The diagonal and first sub-diagonal Padé approximations satisfy the above hypotheses (see Formula (IV.3.30)). Also *I*-stable linear multistep methods with Property C can be applied.

Remark 4.11. Property C allows the extension of Theorem IV.4.17 of Jeltsch & Nevanlinna to explicit multistep methods. Thus explicit methods with comparable numerical work cannot have including stability domains. Exercise 4 below shows that Property C is a necessary condition. Remember that explicit methods have all their poles at infinity.

General Linear Methods

The large class of general linear methods (Example III.8.5) written in obvious matrix notation

$$v_n = A u_n + h B f(v_n) \tag{4.26a}$$

$$u_{n+1} = Au_n + hBf(v_n) \tag{4.26b}$$

seems to allow much more freedom to break the Daniel & Moore conjecture. This is not the case as we shall see in the sequel.

The bulk of numerical work for solving (4.26) is represented by the implicit stages (4.26a) and hence depends on the structure of the matrix \tilde{B} . Inserting $y' = \lambda y$ leads to

$$u_{n+1} = S(\mu)u_n \tag{4.27}$$

where

$$S(\mu) = A + \mu B (I - \mu \widetilde{B})^{-1} \widetilde{A} . \qquad (4.28)$$

The stability of the numerical method (4.27) is thus governed by the eigenvalues of the matrix $S(\mu)$. The elements of this matrix are seen to be rational functions in μ .

Lemma 4.12. If the characteristic polynomial of $S(\mu)$ is multiplied by $det(I-\mu \tilde{B})$ then it becomes polynomial in μ :

$$det(\zeta I - S(\mu)) \cdot det(I - \mu \vec{B}) = q_k(\mu)\zeta^k + q_{k-1}(\mu)\zeta^{k-1} + \dots + q_0(\mu)$$

= : $Q(\mu, \zeta)$ (4.29)

where q_0, \ldots, q_k are polynomials of degree $\leq s$ and $q_k(\mu) = \det(I - \mu \widetilde{B})$.

Proof. Suppose first that \widetilde{B} is diagonalizable as

$$T^{-1}\tilde{B}T = \operatorname{diag}\left(\beta_1, \dots, \beta_s\right) \tag{4.30}$$

so that from (4.28)

$$S(\mu) = A + BT \operatorname{diag}(w_1, \dots, w_s) T^{-1} \widetilde{A} = A + \sum_{i=1}^{s} w_i \, \vec{d_i} \, \vec{c_i}^T \qquad (4.31)$$

where

$$\begin{array}{l} w_{i} = \frac{\mu}{1 - \mu \beta_{i}} \\ \vec{d}_{i} = i \text{-th column of } BT \\ \vec{c}_{i}^{T} = i \text{-th row of } T^{-1} \widetilde{A} \end{array} \right\} \qquad i = 1, \dots s$$

$$(4.32)$$

We write the matrix $\zeta I - S(\mu)$ in terms of its column vectors

$$\left(\zeta \vec{e}_1 - \vec{a}_1 - w_1 c_{11} \vec{d}_1 - w_2 c_{12} \vec{d}_2 - \dots , \zeta \vec{e}_2 - \vec{a}_2 - w_1 c_{21} \vec{d}_1 - w_2 c_{22} \vec{d}_2 - \dots , \dots \right)$$

Its determinant, the characteristic polynomial of $S(\mu)$, is computed using the multilinearity of det and considering ζ, w_i, c_{ij} as scalars. All terms containing one of the w_j to any power higher than 1 cancel, because the corresponding factor is a determinant with two or more identical columns. Thus, if $\det(\zeta I - S(\mu))$ is multiplied by $\prod_{i=1}^{s} (1-\mu\beta_i) = \det(I-\mu\tilde{B})$ it becomes a polynomial of the form (4.29).

A non-diagonizable matrix \tilde{B} is considered as the limit of diagonizable matrices. The coefficients of the polynomial $Q(\mu, \zeta)$ depend continuously on \tilde{B} .

We conclude that Lemma 4.1 again remains valid for general linear methods. The s poles on the Riemann surface for the algebraic function $Q(\mu, \zeta) = 0$ are located at the positions $\mu = 1/\beta_1, \ldots, \mu = 1/\beta_s$ where β_i are the eigenvalues of the matrix \tilde{B} .

We next have to investigate the order conditions, i.e., the analogue of Lemma 4.3. Recall that general linear methods must be equipped with a starting procedure (see Formula (III.8.4a)) which for the differential equation $y' = \lambda y$ will be of the form $u_0 = \psi(\mu) \cdot y_0$ with $\psi(0) \neq 0$. Here $\mu = h\lambda$ and $\psi(\mu)$ is a k-vector of polynomials or rational functions of μ . Then the diagram of Fig. III.8.1 becomes the one sketched in Fig. 4.6.

The order condition (see Formula (III.8.16) of Lemma III.8.11) then gives:

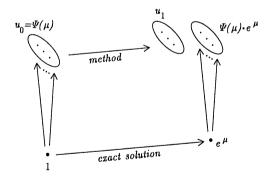


Fig. 4.6. General linear method for $y' = \lambda y$

Lemma 4.13. If the general linear method (4.26) is of order p then

$$(e^{\mu}I - S(\mu))\psi(\mu) = \mathcal{O}(\mu^p) \quad \text{for } \mu \to 0$$
 (4.33a)

$$E(e^{\mu}I - S(\mu))\psi(\mu) = \mathcal{O}(\mu^{p+1}) \quad \text{for } \mu \to 0$$
(4.33b)

where E is defined in (III.8.12) and $S(\mu)$ is given in (4.28).

Formula (4.33) tells us, roughly, that $\psi(\mu)$ is an approximate eigenvector of $S(\mu)$ with eigenvalue e^{μ} . We shall now see how this information can be turned into order conditions for the correct eigenvalues of $S(\mu)$.

Definition 4.14. Let ℓ be the number of principal sheets of (4.29), i.e., the multiplicity of 1 as eigenvalue of S(0) (which, by stability, must then be a simple root of the minimal polynomial). ℓ is also the dimension of I in (III.8.12) and the rank of E.

Theorem 4.15. Suppose that there exists $\psi(\mu)$ with $\psi(0) \neq 0$ such that the general linear method satisfies the conditions (4.33) for order $p \geq 1$. Then the ℓ -fold eigenvalue 1 of S continues into ℓ eigenvalues $\zeta_j(\mu)$ of $S(\mu)$ which satisfy

$$e^{\mu} - \zeta_j(\mu) = \mathcal{O}(\mu^{p_j+1}) \qquad \mu \to 0$$
 (4.34)

with

$$p_j \ge 0$$
, $\sum_{j=1}^{\ell} p_j \ge p$. (4.35)

Examples. a) The matrix

$$S(\mu) = \begin{pmatrix} 1+\mu & \frac{20}{9}\mu^2\\ 3\mu + \frac{11}{80}\mu^2 & 1 - \frac{37}{3}\mu + \frac{13}{3}\mu^2 \end{pmatrix}$$
(4.36)

has $\ell = 2$ so that E = I in (4.33b). There is a vector $\psi(\mu)$ (non-vanishing for $\mu = 0$) such that

$$(e^{\mu}I - S(\mu))\psi(\mu) = \mathcal{O}(\mu^6)$$

i.e., p=5. The eigenvalues

$$\zeta_{1,2}(\mu) = \left(1 - \frac{17\mu}{3} + \frac{13\mu^2}{6}\right) \pm \frac{20\mu}{3}\sqrt{1 - \frac{\mu}{2} + \frac{9\mu^2}{80}}$$

satisfy

$$e^{\mu}-\zeta_1(\mu)={\cal O}(\mu^6), \ \ e^{\mu}-\zeta_2(\mu)={\cal O}(\mu) \ ,$$

which is (4.34) with $p_1 = 5$, $p_2 = 0$.

b) The matrix

$$S(\mu) = \begin{pmatrix} 1 + 2\mu + \frac{\mu^2}{2} & -\mu \\ \mu & 1 + \frac{\mu^2}{2} \end{pmatrix}$$
(4.37)

satisfies (4.33) with $\ell = 2, p = 4$. Its eigenvalues

$$\zeta_{1,2}(\mu) = 1 + \mu + \frac{\mu^2}{2}$$

fulfil (4.34) with $p_1 = p_2 = 2$.

c) The example

$$S(\mu) = \begin{pmatrix} 1+2\mu & -\mu+\mu^2 \\ \mu & 1 \end{pmatrix}$$
(4.38)

has $\ell = 2, p = 1$ in (4.33). Its eigenvalues

$$\zeta_{1,2}(\mu) = 1 + \mu \pm \sqrt{\mu^3}$$

satisfy (4.34) with $p_1 = p_2 = \frac{1}{2}$. This example shows that the p_j in (4.34) need not be integers.

Proof of Theorem 4.15. We introduce the matrix

$$\tilde{S}(\mu) = e^{\mu}I - S(\mu)$$
 (4.39)

which has the same eigenvectors as $S(\mu)$ and the corresponding eigenvalues

$$\widetilde{\zeta}_j(\mu) = e^{\mu} - \zeta_j(\mu) . \qquad (4.40)$$

Formulas (4.34) and (4.35) now say simply that

$$\prod_{j=1}^{\ell} \widetilde{\zeta}_j(\mu) = \mathcal{O}(\mu^{p+\ell}) \qquad \mu \to 0 \ . \tag{4.41}$$

Since the product of the eigenvalues is, as we know, the determinant of the matrix, we look for information about det $\tilde{S}(\mu)$.

After a suitable change of coordinates (via the transformation matrix T of (III.8.12)) we suppose the matrix S = S(0) in Jordan canonical form. We then separate blocks of dimensions ℓ and $k-\ell$ so that

$$E = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}, \quad S(\mu) = \begin{pmatrix} I + \mathcal{O}(\mu) & \mathcal{O}(\mu) \\ \mathcal{O}(\mu) & \mathcal{O}(1) \end{pmatrix}, \quad \psi(\mu) = \begin{pmatrix} \psi_1(\mu) \\ \psi_2(\mu) \end{pmatrix}$$
(4.42)

$$\widetilde{S}(\mu) = \begin{pmatrix} \widetilde{S}_{11}(\mu) & \widetilde{S}_{12}(\mu) \\ \widetilde{S}_{21}(\mu) & \widetilde{S}_{22}(\mu) \end{pmatrix} = \begin{pmatrix} \mathcal{O}(\mu) & \mathcal{O}(\mu) \\ \mathcal{O}(\mu) & \mathcal{O}(1) \end{pmatrix}$$
(4.43)

where it is important to notice that $\tilde{S}_{22}(0)$ is invertible; this is because E collects all eigenvalues equal to 1, thus $S_{22}(0)$ has no eigenvalues equal to 1 and $\tilde{S}_{22}(0)$ has none equal to zero. Conditions (4.33) now read

$$\begin{pmatrix} \widetilde{S}_{11}(\mu) & \widetilde{S}_{12}(\mu) \\ \widetilde{S}_{21}(\mu) & \widetilde{S}_{22}(\mu) \end{pmatrix} \begin{pmatrix} \psi_1(\mu) \\ \psi_2(\mu) \end{pmatrix} = \begin{pmatrix} \mathcal{O}(\mu^{p+1}) \\ \mathcal{O}(\mu^p) \end{pmatrix} .$$
(4.44)

Putting $\mu = 0$ in (4.44) we get $\psi_2(0) = 0$. The assumption $\psi(0) \neq 0$ thus implies that at least one component of $\psi_1(0)$, say the *j*-th component $\psi_{1j}(0)$, does not vanish. Cramer's rule then yields

$$\det S(\mu) \cdot \psi_{1j}(\mu) = \det T(\mu), \tag{4.45}$$

where $T(\mu)$ is obtained from $\tilde{S}(\mu)$ by replacing its *j*-th column by the righthand side of (4.44). One easily sees that det $T(\mu) = \mathcal{O}(\mu^{p+\ell})$ (take out a factor μ from each of the first ℓ lines and a factor μ^p from the *j*-th column). Because of $\psi_{1j}(0) \neq 0$ this implies det $\tilde{S}(\mu) = \mathcal{O}(\mu^{p+\ell})$. We have thus proved (4.41) (hence (4.34) and (4.35)), because $\tilde{\zeta}_{\ell+1}, \ldots, \tilde{\zeta}_k$ do not converge to zero for $\mu \to 0$.

The next lemma excludes fractional orders for A-stable methods:

Lemma 4.16. For *I*-stable general linear methods the orders p_j in (4.34) must be integers.

Proof. Divide (4.34) by e^{μ} , let

$$\frac{\zeta_j(\mu)}{e^{\mu}} = 1 - C\mu^{m/r} + \dots$$
 (4.46)

where $p_j + 1 = m/r$, and suppose that r > 1 and m, r are relatively prime. Since $e^{\mu} - \zeta_j(\mu)$ are the eigenvalues of the matrix (4.39), hence the roots of an analytic equation, the presence of a root $\mu^{m/r}$ involves the occurrence of all branches $\mu^{m/r} \cdot e^{2i\pi j/r}$ $(j=0,1,\ldots,r-1)$. For $\mu = \pm iy = e^{\pm i\pi/2}y$ $(y \in \mathbb{R} \text{ small})$, inserted into (4.46), we thus obtain 2r different values

$$1 - Cy^{m/r} e^{\pm im\pi/2r} e^{2i\pi j/r} + \dots \qquad j = 0, 1, \dots r - 1$$

which form a regular 2*r*-Mercedes star; hence whatever the argument of *C* is, there are values of $C(\pm iy)^{m/r}e^{2i\pi j/r}$ (for some $0 \le j \le r-1$) with negative real part, such that from (4.46) $|\zeta_j(\pm iy)| > 1$. This is a contradiction to *I*-stability.

And here is the "Daniel-Moore conjecture" for general linear methods:

Theorem 4.17. Let the characteristic function $Q(\mu, \zeta)$ of an *I*-stable general linear method possess s poles in \mathbb{C}^+ . Then

$$p \leq 2s$$
 . (4.47)

Proof. Again we denote by $A^+ = A \cap \pi^{-1}(\mathbb{C}^+)$, the part of the order star lying above \mathbb{C}^+ . By *I*-stability A^+ does not intersect the imaginary axis $\pi^{-1}(i\mathbb{R})$ on any sheet.

By Theorem 4.15 the boundary curves γ_m of A^+ visit the origin on the different principal sheets at least $\left[\frac{p_j+1}{2}\right]$ times $(j = 1, \ldots, \ell)$ (see (4.17)),

where the p_i are integers by Lemma 4.16. Thus by Lemma 4.2

$$\sum_{j=1}^{\ell} \left[\frac{p_j + 1}{2} \right] \le s .$$
 (4.48)

Multiplying this by 2, using $p_j \leq 2[\frac{p_j+1}{2}]$ and (4.35), we get $p \leq 2s$.

Dual Order Stars

"Why not interchange the role of the two variables ζ and $\mu \dots$?" (J. Butcher, June 27, 1989, in West Park Hall, Dundee, at midsummernight)

A-stability implies that for all solutions $\zeta_j(\mu)$ of $Q(\mu, \zeta) = 0$ we have

$$\operatorname{Re} \mu \leq 0 \Longrightarrow |\zeta_j(\mu)| \leq 1 . \tag{4.49}$$

This is logically equivalent to: For all solutions $\mu_i(\zeta)$ of $Q(\mu, \zeta) = 0$ we have

$$|\zeta| \ge 1 \Longrightarrow \operatorname{Re} \mu_j(\zeta) \ge 0 \tag{4.50}$$

(in fact, pure logic gives us ">" on both sides; the " \geq " then follow by continuity). Further the order condition (4.15) becomes, by passing to inverse functions for the principal root,

$$\log \zeta - \mu_1(\zeta) = -C(\zeta - 1)^{p+1} + \dots$$
 (4.51)

Thus order star theory can be very much dualized by the replacements

The analogue of the star defined in (4.12) becomes

$$A = \left\{ \zeta \ ; \ \operatorname{Re} \mu(\zeta) \le \operatorname{Re} \left(\log \zeta \right) \right\} = \left\{ \zeta \ ; \ \operatorname{Re} \mu(\zeta) \le \log |\zeta| \right\}$$
(4.53)

and the analogue of the relative order star (4.18) becomes

$$B = \left\{ \zeta \; ; \; \operatorname{Re} \mu(\zeta) \le \operatorname{Re} \mu_R(\zeta) \right\} \; . \tag{4.54}$$

For the special case of the trapezoidal rule this is

$$B = \left\{ \zeta \; ; \; \operatorname{Re} \mu(\zeta) \leq \operatorname{Re} \left(2 \frac{\zeta - 1}{\zeta + 1} \right) \right\} \; . \tag{4.55}$$

The set A is displayed in Fig. 4.7 for the BDF2 and BDF3 methods. It explains once again why A-stable methods of order > 2s are not possible (see Exercise 5).

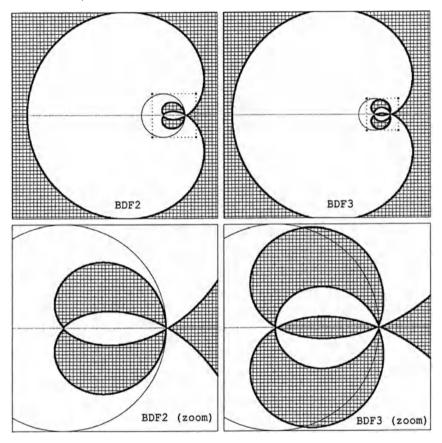


Fig. 4.7. Dual order stars (4.53) for BDF methods

Still another possibility is to replace (4.50) by the obviously equivalent condition

$$|\zeta| \ge 1 \Longrightarrow \operatorname{Re} \frac{1}{\mu_j(\zeta)} \ge 0$$
 (4.56)

in which case order condition (4.51) becomes

$$\frac{1}{\log \zeta} - \frac{1}{\mu_1(\zeta)} = C(\zeta - 1)^{p-1} + \dots$$
(4.57)

since $\log \zeta$ as well as $\mu_1(\zeta)$ are $(\zeta - 1) + \mathcal{O}((\zeta - 1)^2)$. The order stars now

become analogously

$$A = \left\{ \zeta \ ; \ \operatorname{Re} \frac{1}{\mu(\zeta)} \ge \operatorname{Re} \frac{1}{\log \zeta} \right\}$$
(4.58)

and

$$B = \left\{ \zeta \; ; \; \operatorname{Re} \frac{1}{\mu(\zeta)} \geq \operatorname{Re} \frac{1}{\mu_R(\zeta)} \right\} \; . \tag{4.59}$$

A special advantage of these last definitions is that for linear multistep methods $1/\mu = \sigma(\zeta)/\varrho(\zeta)$, hence the *poles* of the functions involved are the *zeros* of $\varrho(\zeta)$, which play a role in the definition of *ordinary* stability (Section III.3). This can be used to obtain a geometric proof of the *first* Dahlquist barrier (Theorem III.3.5), inspired by the paper Iserles & Nørsett (1984) (see Exercise 6).

Also, the proof for Dahlquist's second barrier of Section V.1 (Theorem 1.6) can be seen to be nothing else but a study of B of (4.59) where $\mu_R(\zeta)$ represents the trapezoidal rule.

Exercises

1. Analyze the behaviour of the characteristic roots of (4.7) in the neighbourhood of a pole which coincides with a branch point, i.e., solve (4.7) asymptotically for ζ large in the case

$$arphi_k(\mu_0) = 0 \;, \;\; arphi_k'(\mu_0)
e 0 \;, \;\; arphi_{k-1}(\mu_0) = 0 \;, \;\; arphi_{k-2}(\mu_0)
e 0 \;.$$

Show that these roots behave like $\pm C(\mu - \mu_0)^{-1/2}$.

2. Compute the approximate eigenvectors $\psi(\mu)$ such that

$$(e^{\mu}I - S(\mu))\psi(\mu) = \mathcal{O}(\mu^{p+1})$$

for the matrices $S(\mu)$ given in (4.36), (4.37), (4.38). Show that the stated orders are optimal.

- 3. Explain with the help of order stars, why the 2-step 2-stage collocation method with $c_2 = 1$ (see Exercise 7 of Section V.3) looses A-stability exactly when c_1 crosses the superconvergence point (Exercise 8 of Section V.3).
- 4. Modify the coefficient β in the method

$$y_{n+1} = y_n + h \Big(f_n + \frac{1}{2} \nabla f_n + \frac{5}{12} \nabla^2 f_n + \beta \nabla^3 f_n \Big) \ ,$$

which for $\beta = 3/8$ is the Adams method of order 4, in such a way that the stability domain becomes *strictly* larger. This example shows that the

multistep version of Theorem IV.4.17 of Jeltsch & Nevanlinna requires the hypothesis of "Property C".

5. Prove the Daniel & Moore conjecture with the help of the order star A from (4.53).

Hint. The set A is not allowed to cross the unit circle and along the borderlines of A the imaginary part of $\log \zeta - \mu(\zeta)$ must steadily *decrease* (consult (4.52) and the proof of Lemma IV.4.5). Hence a borderline starting and ending at the origin must either pass through a pole (which is not outside the unit circle) or cross the negative real axis in the upward direction (where $\operatorname{Im}(\log \zeta)$ increases by 2π). Since then the set A must be to the left, this is only possible once on each sheet.

6. Prove the first Dahlquist barrier by order stars, i.e., prove that stable linear multistep methods satisfy $p \leq k+2$ (k even) and $p \leq k+1$ (k odd). Prove also that for methods with optimal order the smallest error constant is assumed by the method with

$$\varrho_R(\zeta) = (\zeta - 1)(\zeta + 1)^{\widetilde{k} - 1} .$$
(4.60)

where $\tilde{k} = k$ (if k is even) and $\tilde{k} = k-1$ (if k is odd).

Hint. Study the order stars (4.58) (with $\mu = \mu_R$) and (4.59) where $\mu_R = \sigma_R/\varrho_R$ with ϱ_R from (4.60) (see Fig. 4.8 for the case k = 6, p = 8, $\varrho(\zeta) = \zeta^6 - 1$). You must show that the two order stars in the vicinity of $\zeta = 1$ have the same colours. The following observations will help:

i) The stars in the vicinity of $\zeta = -1$ (produced by the pole $1/(\zeta+1)^{\widetilde{k}-1}$) have opposite colours;

ii) By stability all poles of

$$d_A(\zeta) = \operatorname{Re}\left(rac{1}{\mu_R(\zeta)} - rac{1}{\log \zeta}
ight) \,, \quad d_B(\zeta) = \operatorname{Re}\left(rac{1}{\mu_R(\zeta)} - rac{1}{\mu(\zeta)}
ight)$$

lie on or inside the unit circle;

iii) The boundary curves of A and B cannot cross the unit circle arbitrarily often, since $d_A(e^{i\varphi})$ and $d_B(e^{i\varphi})$ are trigonometric polynomials. iv) Study the behaviour of A and B at infinity.

- 7. Prove the second Dahlquist barrier for linear multistep methods with the help of the order star (4.55).
- 8. Compute on a computer for an implicit multistep method of order 3 the order star B of (4.18), where $R(\mu)$ is the maximal root of the Milne-Simpson method (1.17). Understand at once the validity of Theorem 4.9.

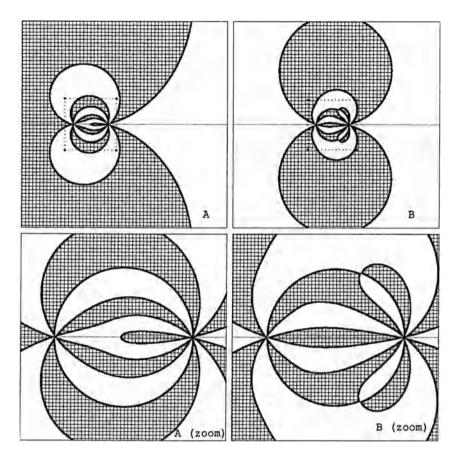


Fig. 4.8. Dual order stars (4.58) and (4.59) for

$$\begin{split} \varrho_R(\zeta) = & (\zeta - 1)(\zeta + 1)^5, \quad \varrho(\zeta) = \zeta^6 - 1, \\ \sigma_R(\zeta) = & (251\zeta^6 + 2736\zeta^5 + 6957\zeta^4 + 10352\zeta^3 + 6957\zeta^2 + 2736\zeta + 251)/945 \\ \sigma(\zeta) = & (41\zeta^6 + 216\zeta^5 + 27\zeta^4 + 272\zeta^3 + 27\zeta^2 + 216\zeta + 41)/140 \end{split}$$

V.5. Experiments with Multistep Codes

"... we know that theory is unable to predict much of what happens in practice at present and software writers need to discover the way ahead by numerical experiment ..." (J.R. Cash, in Aiken 1985)

This section presents numerical results of multistep codes on precisely the same problems as in Section IV.10. There are the six "small" problems OREGO (Oregonator (IV.10.1)), ROBER (the famous Robertson problem (IV.10.2)), VDPOL (Van der Pol equation (IV.10.3)), VDPOL2 (modified Van der Pol equation (IV.10.4) with mild discontinuity), HIRES (the physiological problem (IV.10.5)) and PLATE ((IV.10.6), a car moving on a plate, the only linear and non autonomous problem). The corresponding results are displayed in Fig. 5.1.

Fig. 5.2 presents the corresponding results for the six "large" problems, (in a couple of years, this "large" will probably be laughed at; but that's what our present machine can crunch in a reasonable time and programming effort): BRUSS (the brusselator (IV.1.6') with one-dimensional diffusion), BURGERS (Burgers' equation (IV.10.8) with shocks), BSMOOTH (Burgers' equation without shocks), FINAG (the FitzHugh & Nagumo nerve conduction model (IV.10.11)), CUSP (the cusp catastrophe (IV.10.16)) and BEAM (the nonlinear elastic beam equation (IV.1.10')).

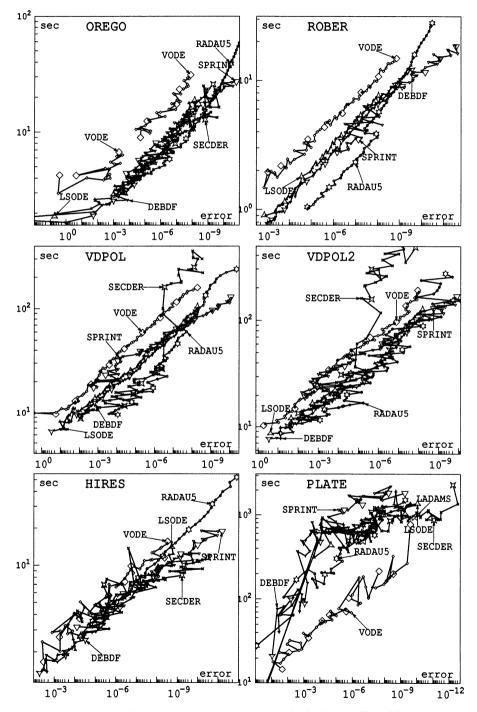
As in Section IV.10, the codes have been applied with tolerances

$$Rtol = 10^{-3+m/8}$$
 or $Rtol = 10^{-3+m/4}$ $m = 0, 1, 2, ...$

and Atol = Rtol (with exception of $Atol = 10^{-6} \cdot Rtol$ for OREGO and ROBER, $Atol = 10^{-4} \cdot Rtol$ for HIRES). A general impression is that, for a given tolerance, multistep codes run much faster than one step codes, but that the precision achieved is considerably less. Sometimes the tolerance 10^{-3} was too large for the code to work; we then started at 10^{-4} or 10^{-5} .

The Codes Used

Good multistep codes are much more difficult to write than one step codes. We were therefore grateful to receive from several people their codes in source form, compile them all with the same compiler options and have the opportunity to experiment with them. As in Section IV.10, all codes were then applied to the test problems with standard parameters. The results of



324 V. Multistep Methods for Stiff Problems

Fig. 5.1. Performance of multistep methods for small problems

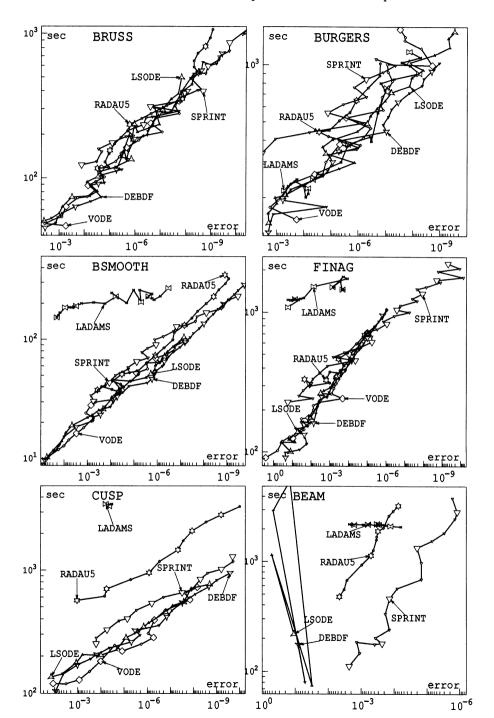


Fig. 5.2. Performance of multistep methods for large problems

the Runge-Kutta code RADAU5 are included for comparison with a typical one step method.

LSODE — is the "Livermore Solver" of Hindmarsh (1980). Since we are dealing with stiff equations, we use method flag MF=21, 22, 24 or 25 so that the code is based on the Nordsieck representation of the fixed step size BDF methods (see Sections III.6 and III.7). It emerged from a long development starting with Gear's DIFSUB in 1971. Its exemplary user interface and ease of application has been a model for much subsequent ODE Software (including ours). The method flag allows us to choose between analytically supplied Jacobian or numerically computed finite difference approximations as well as between full or banded linear algebra as follows:

MF	anal. Jac.	numer.Jac.
full	21	22
banded	24	25

Whenever possible, we have supplied analytical Jacobians. The only exceptions are the CUSP and BEAM problems. The problems BRUSS, BURGERS, BSMOOTH and FINAG were computed with banded linear algebra the others were treated as full.

For low accuracy requirements ($Tol = 10^{-3}$ or 10^{-4} for OREGO, VDPOL, VDPOL2, BSMOOTH and $Tol = 10^{-3}$ through 10^{-6} for the PLATE problem) the code is often very fast but inaccurate. Otherwise it works well for all tolerances, is slightly less precise than RADAU5 for the small problems such as ROBER or VDPOL, but excellent on the larger problems BRUSS, BURG-ERS, FINAG and CUSP. It does not work, of course, on the purely hyperbolic problem BEAM because of lack of A-stability. There are still some results for low precision ($Tol = 10^{-3}$), since then the code automatically prefers to use the low order formulas which are A-stable. This becomes visible if the maximal order allowed for the method is restricted to 1 or 2. The code then works perfectly (see Fig. 5.3).

DEBDF — this is Shampine & Watts's driver for a modification of the code LSODE and is included in the "DEPAC" family (Shampine & Watts 1979). It behaves nearly identically to LSODE, the only difference is that it generally appears to be a couple of seconds faster.

VODE — is the new "Variable-coefficient Ordinary Differential Equation solver" of Brown, Byrne & Hindmarsh (1989). It is based on the EPISODE and EPISODEB packages (see Section III.7) which use BDF methods on a non uniform grid (Byrne & Hindmarsh 1975). The user interface is very similar to that of LSODE; the code again allows selection between full or banded linear algebra and between analytical or numerical Jacobian. The

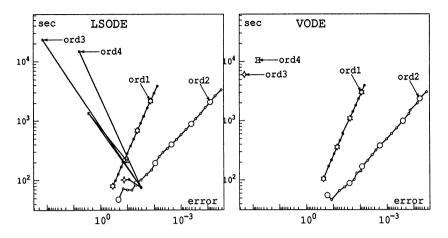


Fig. 5.3. Performance of LSODE and VODE at the BEAM problem with restricted maximal order

numerical results of VODE (see Fig. 5.1 and 5.2) are very similar for the large problems to those of LSODE and DEBDF, the code is, however, considerably slower on the small problems. There was a particular tolerance in OREGO $(Rtol = 10^{-5.125})$ where the code failed. On the PLATE problem, this code was by far the best. On the BEAM problem, one has to restrict the maximal order to two (Fig. 5.3).

SPRINT — this package written by M. Berzins (see Berzins & Furzeland 1985) which has recently been incorporated into the NAg library ("subchapter D02N"), contains several modules for the step integrator, one of which is SBLEND. This allows us to study the effect of the blended multistep methods (3.15) of Skeel & Kong (1977). It can be seen from Table 3.4 that these methods are A-stable for orders up to 4. We therefore expect them to be much better on the oscillatory BEAM problem. As can be observed in Fig. 5.2 (as well as in Fig. IV.10.8), this code is actually the best of all on this problem. It is also good on the FINAG problems and more robust on all problems than the other multistep codes. From time to time, it is fairly slow (e.g., in the PLATE problem).

SECDER — this code, written in 1979 by C.A. Addison (see Addison 1979), implements the SECond DERivative multistep methods (3.7) of Enright. The high order of the methods accompanied with good stability leads us to expect good performance at high tolerances. This has shown to be true for OREGO, HIRES and PLATE; but for VDPOL and VDPOL2 the results do not increase beyond 10^{-7} , a behaviour which we do not understand. For

ROBER the code fails for known reasons (see Section IV.10); we have not used it on the large problems since it has no built-in banded algebra and requires an analytic Jacobian.

LADAMS¹ — this is the "Livermore Adams" code, i.e., LSODE with method flag MF = 10, included to demonstrate the performance of an *explicit* method on large and/or mildly stiff problems. One can see that it has its chance on several large problems (BURGERS, PLATE, BEAM). It is, when compared to DOPRI5 in Fig. IV.10.8, a good deal slower when *f*-evaluations are cheap (FINAG, CUSP), but not on BEAM.

¹ This is neither a commercial for eastern cars nor for a western mathematical society!

V.6. One-Leg Methods and G-Stability

"... the error analysis is simpler to formulate for one-leg methods than for linear multistep methods." (G. Dahlquist 1975)

The first stability results for *nonlinear* differential equations and multistep methods are fairly old (Liniger 1956, Dahlquist 1963), older than similar studies for Runge-Kutta methods. The great break-through occured in 1975 (at the Dundee conference) when Dahlquist proposed considering nonlinear problems

$$y' = f(x, y) \tag{6.1}$$

which satisfy a one-sided Lipschitz condition

$$\langle f(x,y) - f(x,z), y - z \rangle \leq \nu \|y - z\|^2 \tag{6.2}$$

or, if the functions are complex-valued,

$$\operatorname{Re} \left\langle f(x,y) - f(x,z), \, y - z \right\rangle \leq \nu \|y - z\|^2 \tag{6.2'}$$

(see Section IV.12). He also found that the study of nonlinear stability for general multistep methods is simplified, if a related class of methods — the so-called one-leg (multistep) methods — is considered.

One-Leg (Multistep) Methods

"... the somewhat crazy name one-leg methods ..." (G. Dahlquist 1983)

"Je ne suis absolument pas capable de traduire "one-leg" en français ... uni-jambiste ?" (M. Crouzeix 1987)

"Signor mio, le gru non hanno se non una coscia ed una gamba ..." (Boccacio, Decamerone 1353; quotation suggested by M. Crouzeix)

Suppose that a linear k-step method

$$\sum_{i=0}^{k} \alpha_i y_{m+i} = h \sum_{i=0}^{k} \beta_i f(x_{m+i}, y_{m+i})$$
(6.3)

is given, and that the generating polynomials

$$\varrho(\zeta) = \sum_{i=0}^{k} \alpha_i \zeta^i, \qquad \sigma(\zeta) = \sum_{i=0}^{k} \beta_i \zeta^i \tag{6.4}$$

have real coefficients and no common divisor (see Section III.2). We also assume throughout the normalization

$$\sigma(1) = 1 . \tag{6.5}$$

Then the associated one-leg method is defined by

$$\sum_{i=0}^{k} \alpha_{i} y_{m+i} = hf\left(\sum_{i=0}^{k} \beta_{i} x_{m+i}, \sum_{i=0}^{k} \beta_{i} y_{m+i}\right) .$$
 (6.6)

In this new method, the derivative f is evaluated at one point only, which makes it easier to analyze.

It is, of course, interesting to know how the solutions of the one-leg method (6.6) are related to those of its "multistep twin" (6.3). If the differential equation is linear and autonomous, y' = Ay, then both formulas — (6.3) and (6.6) — are identical. For the BDF schemes (1.18) there is in any case only one *f*-value in the multistep-version, hence the equations (6.3) and (6.6) are the same. For general methods and general nonlinear equations, however, the formulas are *not* identical, but the solutions are related by certain transformations (see Exercise 3). We consider, as an example, the trapezoidal rule, which is a two-leg method,

$$y_{m+1} - y_m = \frac{h}{2} \left(f(x_m, y_m) + f(x_{m+1}, y_{m+1}) \right) . \tag{6.7}$$

The corresponding one-leg method is the implicit midpoint rule,

$$y_{m+1} - y_m = hf\left(\frac{x_m + x_{m+1}}{2}, \frac{y_m + y_{m+1}}{2}\right).$$
(6.8)

If $\{y_m\}$ is a solution of the one-leg formula (6.8), then

$$\widehat{y}_m = rac{1}{2} (y_m + y_{m+1}), \qquad \widehat{x}_m = rac{1}{2} (x_m + x_{m+1})$$

satisfies (6.7). On the other hand, if $\{\widehat{y}_m, \widehat{x}_m\}$ satisfy (6.7), then

$$y_m = \widehat{y}_m - \frac{h}{2}f(\widehat{x}_m, \widehat{y}_m), \qquad x_m = \widehat{x}_m - \frac{h}{2}$$

is a solution of (6.8). This relationship has already been extensively exploited in the proof of Theorem IV.15.8.

Existence and Uniqueness

We suppose $\alpha_k \neq 0$ (as always) and $\beta_k \neq 0$ (otherwise the method is explicit). In the case of multistep methods, we write (6.3) in the form

$$y - \eta - h \frac{\beta_k}{\alpha_k} f(x, y) = 0 , \qquad (6.9)$$

where x is given, η is a vector composed of known quantities and $y = y_{m+k}$ is the unknown vector. The one-leg Formula (6.6) can also be brought to the form (6.9) by the transformation $y = \beta_k y_{m+k} + \ldots + \beta_0 y_m$, so that all subsequent results on existence and uniqueness will be valid for multistep and one-leg methods. To obtain existence results for Equation (6.9), we replace $h\beta_k/\alpha_k$ by a new "step size" \tilde{h} and obtain nothing else but implicit Euler. All theorems for implicit Runge-Kutta methods (Theorems 14.2, 14.3, and 14.4 of Section IV.14) are immediately applicable and give

Theorem 6.1 (Dahlquist 1975). Let f be continuously differentiable and satisfy (6.2). If

$$h
u < rac{lpha_k}{eta_k}$$
 (6.10)

then the nonlinear equation (6.9) has a unique solution y.

Theorem 6.2. Let y be given by (6.9) and consider a perturbed value \hat{y} satisfying

$$\widehat{y} - \eta - h \frac{\beta_k}{\alpha_k} f(x, \widehat{y}) = \delta$$
 (6.11)

Under the assumption (6.10) we then have

$$\|\widehat{y} - y\| \leq rac{1}{1 - rac{eta_k}{lpha_k}h
u} \|\delta\|$$
 . (6.12)

Remark. Theorems IV.14.2, IV.14.3 and IV.14.4 are for much more general methods than just the implicit Euler needed here. The reader who is not interested in the more general case can rewrite the proofs of Section IV.14 nearly word for word. Since there is now only one implicit stage, all tensor products disappear and the formulas, but not the ideas of the proof, simplify considerably.

G-Stability

If the differential equation satisfies the one-sided Lipschitz condition (6.2) (or (6.2')) with $\nu = 0$, then the exact solutions are contractive (Lemma IV.12.1). We shall investigate here, which one-leg (multistep) methods then also have contractive solutions. Since the numerical value y_{m+k} depends on all y_{m+k-1}, \ldots, y_m , it makes no sense to require $||y_{m+k} - \widehat{y}_{m+k}|| \leq ||y_{m+k-1} - \widehat{y}_{m+k-1}||$ as in the one-step case (Definition IV.12.2). We have to consider the method as a mapping $\mathbb{R}^{n \cdot k} \to \mathbb{R}^{n \cdot k}$. For this we introduce the notation

$$Y_m = (y_{m+k-1}, \dots, y_m)^T$$
 (6.13)

and consider inner product norms on $\mathbb{R}^{n \cdot k}$

$$\left\|Y_{m}\right\|_{G}^{2} = \sum_{i=1}^{k} \sum_{j=1}^{k} g_{ij} \left\langle y_{m+i-1}, y_{m+j-1} \right\rangle , \qquad (6.14)$$

where $\langle \cdot, \cdot \rangle$ is the inner product on \mathbb{R}^n used in (6.2) and the k-dimensional matrix

$$G = (g_{ij})_{i,j=1,\ldots,k}$$

is assumed to be real, symmetric and positive definite.

Definition 6.3 (Dahlquist 1975). The one-leg method (6.6) is called *G*-stable, if there exists a real, symmetric and positive definite matrix *G*, such that for two numerical solutions $\{y_m\}$ and $\{\widehat{y}_m\}$ we have

$$\|Y_{m+1} - \widehat{Y}_{m+1}\|_G \le \|Y_m - \widehat{Y}_m\|_G \tag{6.15}$$

for all step sizes h > 0 and for all differential equations satisfying (6.2) or (6.2') with $\nu = 0$.

Since $y' = \lambda y$, Re $\lambda \leq 0$ satisfies (6.2') with $\nu = 0$, we immediately get

Theorem 6.4. G-stability implies A-stability.

Example 6.5. Consider the 2-step BDF method

$$\frac{3}{2}y_{m+2} - 2y_{m+1} + \frac{1}{2}y_m = hf(x_{m+2}, y_{m+2}).$$
(6.16)

We take a second numerical solution $\{\hat{y}_m\}$ and denote its difference to $\{y_m\}$ by $\Delta y_m = y_m - \hat{y}_m$. If we insert (6.16) into our assumption (6.2')

$$\operatorname{Re} \left\langle f(x_{m+2},y_{m+2}) - f(x_{m+2}\,,\,\widehat{y}_{m+2})\;,\; y_{m+2} - \widehat{y}_{m+2}
ight
angle \leq 0$$

we obtain

$$E = \operatorname{Re}\left\langle \frac{3}{2}\Delta y_{m+2} - 2\Delta y_{m+1} + \frac{1}{2}\Delta y_m, \Delta y_{m+2} \right\rangle \le 0.$$
(6.17)

The main idea is now to subtract from this inequality a well-chosen quadratic term $||a_2 \Delta y_{m+2} + a_1 \Delta y_{m+1} + a_0 \Delta y_m||^2$ in order to bring it to the form required by (6.15). With $\Delta Y_m = (\Delta y_{m+1}, \Delta y_m)^T$ this means that

$$E = \|\Delta Y_{m+1}\|_{G}^{2} - \|\Delta Y_{m}\|_{G}^{2} + \|a_{2}\Delta y_{m+2} + a_{1}\Delta y_{m+1} + a_{0}\Delta y_{m}\|^{2}$$
(6.18)

with a positive definite matrix

$$G = \begin{pmatrix} g_{11} & g_{21} \\ g_{21} & g_{22} \end{pmatrix}$$

Multiplying out and comparing the coefficients of $\operatorname{Re} \langle \Delta y_i, \Delta y_j \rangle$ in (6.17) and (6.18) gives the six relations

$$\frac{3}{2} = g_{11} + a_2^2, \qquad 0 = g_{22} - g_{11} + a_1^2, \quad 0 = -g_{22} + a_0^2, \qquad (6.19a)$$

$$-2 = 2g_{21} + 2a_2a_1, \quad \frac{1}{2} = 2a_2a_0, \qquad \qquad 0 = -2g_{21} + 2a_1a_0 \quad (6.19b)$$

Adding all six equations gives $0 = (a_0 + a_1 + a_2)^2$, so that $a_0 + a_1 + a_2 = 0$. This relation together with (6.19b) determines the a_i as $a_0 = \pm 1/2$, $a_1 = \mp 1$, $a_2 = \pm 1/2$. Inserting this into (6.19) yields the positive definite matrix

$$G = \frac{1}{4} \begin{pmatrix} 5 & -2 \\ -2 & 1 \end{pmatrix} .$$
 (6.20)

Since $E \leq 0$ by (6.17), it follows from (6.18) that the 2-step BDF method is G-stable.

An Algebraic Criterion

The algebraic structures of the foregoing computations become much more visible, if we replace formally in (6.17) and (6.18) all

$$\langle \Delta y_{m+i}, \Delta y_{m+j} \rangle \longmapsto \zeta^i \omega^j$$

and use

$$2\mathrm{Re}\left\langle \Delta y_{m+i}, \Delta y_{m+j} \right\rangle = \left\langle \Delta y_{m+i}, \Delta y_{m+j} \right\rangle + \left\langle \Delta y_{m+j}, \Delta y_{m+i} \right\rangle$$

This yields

$$E = \frac{1}{2} (\rho(\zeta)\sigma(\omega) + \rho(\omega)\sigma(\zeta))$$
(6.17)

$$E = (\zeta \omega - 1) \sum_{i,j=1}^{k} g_{ij} \zeta^{i-1} \omega^{j-1} + \left(\sum_{i=0}^{k} a_i \zeta^i \right) \left(\sum_{j=0}^{k} a_j \omega^j \right) .$$
(6.18)

We can now formulate an algebraic criterion which, in a different notation, already appears in Dahlquist (1975).

Theorem 6.6 (Baiocchi & Crouzeix 1989). Consider a method (ϱ, σ) . If there exists a real, symmetric and positive definite matrix G and real numbers a_0, \ldots, a_k , such that

$$\frac{1}{2} \left(\varrho(\zeta) \sigma(\omega) + \varrho(\omega) \sigma(\zeta) \right)$$

$$= \left(\zeta \omega - 1 \right) \sum_{i,j=1}^{k} g_{ij} \zeta^{i-1} \omega^{j-1} + \left(\sum_{i=0}^{k} a_i \zeta^i \right) \left(\sum_{j=0}^{k} a_j \omega^j \right) ,$$
(G)

then the corresponding one-leg method is G-stable.

Remark. The factor 1/2 on the left-hand side of (G) is of no significance and can be replaced by any other positive constant, leading to another scaling of the coefficients g_{ij} and a_i .

Proof. We just replace $\zeta^i \omega^j$ by $\langle \Delta y_{m+i}, \Delta y_{m+j} \rangle$ in equation (G) and obtain

$$\operatorname{Re}\left\langle\sum_{i=0}^{k}\alpha_{i}\Delta y_{m+i},\sum_{j=0}^{k}\beta_{j}\Delta y_{m+j}\right\rangle = \\ \|\Delta Y_{m+1}\|_{G}^{2} - \|\Delta Y_{m}\|_{G}^{2} + \|\sum_{i=0}^{k}a_{i}\Delta y_{m+i}\|^{2}.$$

$$(6.21)$$

We then insert (6.6) and use (6.2') with $\nu = 0$ and obtain the desired estimate $\|\Delta Y_{m+1}\|_G \leq \|\Delta Y_m\|_G$.

An interesting question is now, for which methods (ρ, σ) Condition (6.21) is satisfied. By Theorem 6.4 the method is necessarily A-stable. Is this also sufficient?

The Equivalence of A-Stability and G-Stability

Dahlquist struggled for three years to get the answer, which is

Theorem 6.7 (Dahlquist 1978). If ρ and σ have no common divisor, then the method (ρ, σ) is A-stable if and only if the corresponding one-leg method is G-stable.

Proof. We follow here the presentation of Baiocchi & Crouzeix (1989). Recall first that A-stability of the method (ρ, σ) implies

$$\operatorname{Re} \varrho(\zeta) \sigma(\zeta) \ge 0 \qquad ext{ for } |\zeta| \ge 1$$
 (A)

(see Section V.1). Because of Theorems 6.4 and 6.6 it is sufficient to prove that condition (A) implies the existence of a real, symmetric and positive definite matrix G and real numbers a_0, \ldots, a_k such that Property (G) holds. The proof is in three steps:

- a) computation of a_0, \ldots, a_k ;
- b) computation of G;
- c) show that G is positive definite.

a) The term containing the g_{ij} 's in (G) disappears if we put $\omega = 1/\zeta$. We therefore consider the function

$$E(\zeta) = \frac{1}{2} \left(\varrho(\zeta) \sigma(1/\zeta) + \varrho(1/\zeta) \sigma(\zeta) \right) , \qquad (6.22)$$

which is of the form

$$E(\zeta) = c_r \left(\zeta^r + \frac{1}{\zeta^r}\right) + c_{r-1} \left(\zeta^{r-1} + \frac{1}{\zeta^{r-1}}\right) + \dots + c_1 \left(\zeta + \frac{1}{\zeta}\right) + c_0$$

= $\frac{c_r}{\zeta^r} \prod_{j=1}^{2r} (\zeta - \zeta_j)$ (6.23)

with some $r \leq k$. Since $E(\zeta) = E(1/\zeta)$, for each root ζ_j of the polynomial $\zeta^r E(\zeta)$ the inverse $1/\zeta_j$ is also a root with the same multiplicity. Therefore there are as many roots *inside* the unit circle as there are *outside*. As to the roots on the unit circle, Condition (A) tells us that $E(\zeta) = \operatorname{Re} \varrho(\zeta)\sigma(\overline{\zeta}) \geq 0$ on the unit circle. Therefore, all roots on the unit circle must have *even multiplicity*, half of them we declare "inside" and half of them we declare "outside". The clever idea is now to collect all roots "outside" the unit circle into a product, so that

$$E(\zeta) = \frac{c_r}{\zeta^r} \prod_{\zeta_j \text{ outside}} (\zeta - \zeta_j) \prod_{\zeta_j \text{ inside}} (\zeta - \zeta_j)$$

= $\frac{c_r}{\zeta^r} \prod_{\zeta_j \text{ outside}} (\zeta - \zeta_j) \prod_{\zeta_j \text{ outside}} (\zeta - \frac{1}{\zeta_j})$
= $K \prod_{\zeta_j \text{ outside}} (\zeta - \zeta_j) \prod_{\zeta_j \text{ outside}} (\frac{1}{\zeta} - \zeta_j)$ (6.24)

where K is a constant. But this constant must be non-negative, as can be seen thus: by Condition (A), $E(\zeta)$ is non-negative on the unit circle. The same is true for the function divided by K, since each factor $(e^{i\theta} - \zeta_j)$ from the first product has a complex conjugate brother $(e^{-i\theta} - \overline{\zeta}_j)$ in the second. Therefore $E(\zeta)$ in (6.24) can be factored as

$$E(\zeta) = a(\zeta) \cdot a(1/\zeta) \tag{6.25}$$

where

$$a(\zeta) = \sqrt{K} \prod_{\zeta_j \text{ outside}} (\zeta - \zeta_j) = :\sum_{i=0}^k a_i \zeta^i .$$
 (6.26)

and step a) is done.

b) It follows from (6.22) and (6.25) that the polynomial

$$P(\zeta,\omega) = \frac{1}{2} \Big(\varrho(\zeta)\sigma(\omega) + \varrho(\omega)\sigma(\zeta) \Big) - a(\zeta)a(\omega)$$
(6.27)

vanishes when $\zeta \omega - 1 = 0$. It can therefore be written as

$$P(\zeta, \omega) = (\zeta \omega - 1) \sum_{i,j=1}^{k} g_{ij} \zeta^{i-1} \omega^{j-1} .$$
 (6.28)

The coefficients g_{ij} are real and satisfy $g_{ij} = g_{ji}$, because $P(\zeta, \omega) = P(\omega, \zeta)$.

c) Looking at (6.28), it appears at first sight a difficult task to prove positive definiteness for the matrix $G = (g_{ij})$ defined there. The crucial idea is the following: choose k (at first arbitrary) complex numbers ζ_1, \ldots, ζ_k and replace in (6.28) $\zeta \mapsto \overline{\zeta}_q, \omega \mapsto \zeta_r$, which gives together with (6.27)

$$b_{qr} = \sum_{i,j=1}^{k} \overline{\zeta}_{q}^{i-1} g_{ij} \zeta_{r}^{j-1}$$

$$= \frac{1}{1 - \overline{\zeta}_{q} \zeta_{r}} \left\{ -\frac{1}{2} \left(\varrho(\overline{\zeta}_{q}) \sigma(\zeta_{r}) + \varrho(\zeta_{r}) \sigma(\overline{\zeta}_{q}) \right) + a(\overline{\zeta}_{q}) a(\zeta_{r}) \right\}.$$
(6.29)

Here the b_{ar} are the elements of the matrix

 $B = V^* G V$

where $V = (\zeta_j^{i-1})$ is a Vandermonde matrix. Thus, we now have to prove that B is positive definite, which appears much easier. First, we develop

$$\frac{1}{1-\overline{\zeta}_q\zeta_r} = 1 + \overline{\zeta}_q\zeta_r + \overline{\zeta}_q^2\zeta_r^2 + \overline{\zeta}_q^3\zeta_r^3 + \dots$$
(6.30a)

which converges if

$$|\zeta_q| < 1$$
 $q = 1, 2, ..., k$. (6.30b)

Next, we require that for all q

$$arrho(\zeta_q)+\lambda\sigma(\zeta_q)=0 \qquad ext{for some } \lambda>0 \;.$$

With the exception of a finite number of $\lambda's$, the k roots of equation (6.31) are all different. A-stability (assumption (A)) implies (6.30b), because $-\lambda$

lies in the interior of the stability domain. Inserting (6.31) and (6.30a) into (6.29) gives, for an arbitrary non-zero vector $\vec{v} = (v_1, \ldots, v_k)$,

$$\vec{v}^*B\vec{v} = \sum_{q,r=1}^k \overline{v}_q b_{qr} v_r = \sum_{m=0}^\infty \left\{ \left| \sum_{q=1}^k v_q \zeta_q^m a(\zeta_q) \right|^2 + \lambda \left| \sum_{q=1}^k v_q \zeta_q^m \sigma(\zeta_q) \right|^2 \right\}$$

which looks rather positive. This expression cannot be zero for $\vec{v} \neq 0$, because it follows from (6.31) that $\sigma(\zeta_{\alpha}) \neq 0$ for all q, otherwise ρ and σ would have a common factor. Therefore $\vec{v}^* B \vec{v} > 0$, thus the matrix B, and consequently the matrix G, is positive definite.

It is worth noting that the above proof provides constructive formulas for the matrix G. As an illustration, we again consider the 2-step BDF method (6.16) with generating polynomials

$$arrho(\zeta)=rac{3}{2}\zeta^2-2\zeta+rac{1}{2},\qquad \sigma(\zeta)=\zeta^2\;.$$

The function $E(\zeta)$ (Formula (6.22)) becomes

$$E(\zeta) = \frac{1}{4} \left(\zeta^2 + \frac{1}{\zeta^2} \right) - \left(\zeta + \frac{1}{\zeta} \right) + \frac{3}{2} = \frac{1}{4} (\zeta - 1)^2 \left(\frac{1}{\zeta} - 1 \right)^2$$

so that $a(\zeta) = \frac{1}{2}(\zeta - 1)^2$. Inserting this into (6.27) gives

$$P(\zeta,\omega)=(\zeta\omega-1)ig(rac{5}{4}\zeta\omega-rac{1}{2}\zeta-rac{1}{2}\omega+rac{1}{4}ig)\;,$$

so that $g_{11} = 5/4$, $g_{12} = g_{21} = -1/2$, $g_{22} = 1/4$ is the same as (6.20).

A Criterion for Positive Functions

In the proof of Lemma IV.13.19 we have used the following criterion for positive functions, which is an immediate consequence of the above equivalence result.

Lemma 6.8. Let $\chi(z) = \alpha(z)/\beta(z)$ be an irreducible rational function with real polynomials $\alpha(z)$ of degree $\leq k-1$ and $\beta(z)$ of degree k. Then $\chi(z)$ is a positive function, i.e.,

$$\operatorname{Re} \chi(z) > 0$$
 for $\operatorname{Re} z > 0$, (6.32)

if and only if there exist a real, symmetric and positive definite matrix A and a real, symmetric and non-negative definite matrix B, such that

$$\alpha(z)\beta(w) + \alpha(w)\beta(z) = (z+w)\sum_{i,j=1}^{k} a_{ij}z^{i-1}w^{j-1} + \sum_{i,j=1}^{k} b_{ij}z^{i-1}w^{j-1} .$$
(6.33)

Proof. The "if"-part follows immediately by putting $w = \overline{z}$ in (6.33). For the "only if"-part we consider the transformations

$$\zeta = \frac{z+1}{z-1}, \quad z = \frac{\zeta+1}{\zeta-1} \quad \text{and} \quad \omega = \frac{w+1}{w-1}, \quad w = \frac{\omega+1}{\omega-1} \quad (6.34)$$

and introduce the polynomials

$$\varrho(\zeta) = \left(\frac{\zeta-1}{2}\right)^k \alpha\left(\frac{\zeta+1}{\zeta-1}\right), \qquad \sigma(\zeta) = \left(\frac{\zeta-1}{2}\right)^k \beta\left(\frac{\zeta+1}{\zeta-1}\right).$$

As the transformation (6.34) maps $|\zeta| > 1$ onto the half plane Re z > 0, Condition (6.32) is equivalent to Assumption (A). Therefore, Theorem 6.7 implies the existence of a real, symmetric and positive definite matrix G and of real numbers a_0, \ldots, a_k such that

$$\frac{1}{2}\big(\varrho(\zeta)\sigma(\omega)+\varrho(\omega)\sigma(\zeta)\big)=(\zeta\omega-1)\sum_{i,j=1}^k g_{ij}\zeta^{i-1}\omega^{j-1}+\Big(\sum_{i=0}^k a_i\zeta^i\Big)\Big(\sum_{j=0}^k a_j\omega^j\Big)\ .$$

Backsubstitution of the old variables yields

$$\frac{1}{2}(\alpha(z)\beta(w) + \alpha(w)\beta(z))$$

$$= 2(z+w)\sum_{i,j=1}^{k} g_{ij}(z+1)^{i-1}(z-1)^{k-i}(w+1)^{j-1}(w-1)^{k-j}$$

$$+ \left(\sum_{i=0}^{k} a_{i}(z+1)^{i}(z-1)^{k-i}\right) \left(\sum_{j=0}^{k} a_{j}(w+1)^{j}(w-1)^{k-j}\right).$$
(6.35)

Rearranging into powers of z and w gives (6.33). Since the polynomials $(z+1)^{i-1}(z-1)^{k-i}$ for $i=1,\ldots,k$ are linearly independent, the resulting matrix A is positive definite. The coefficient of $z^k w^k$ in the second term of the right-hand side of (6.35) must vanish, because the degree of $\alpha(z)$ is at most k-1. We remark that the matrix B of this construction is only of rank 1.

Error Bounds for One-Leg Methods

We shall apply the stability results of this section to derive bounds for the global error of one-leg methods. For a differential equation (6.1) with exact (smooth) solution y(x) it is natural to define the discretization error of (6.6) as

$$\delta_{OL}(x) = \sum_{i=0}^{k} \alpha_i y(x+ih) - hf\left(x+\beta h, \sum_{i=0}^{k} \beta_i y(x+ih)\right)$$
(6.36)

with $\beta = \sigma'(1) = \sum i\beta_i$. For the BDF methods we have $\sum_i \beta_i y(x+ih) = y(x+\beta h)$, so that (6.36) equals

$$\delta_D(x) = \sum_{i=0}^k \alpha_i y(x+ih) - h y'(x+\beta h) , \qquad (6.37)$$

the so-called differentiation error of the method. For methods which do not satisfy $\sum_i \beta_i y(x+ih) = y(x+\beta h)$, the right hand side of (6.36) may become very large for stiff problems, even if the derivatives of the solution are bounded by a constant of moderate size. In this case, the expression (6.36) is not a suitable quantity for error estimates. Dahlquist (1983) proposed considering in addition to $\delta_D(x)$ also the interpolation error

$$\delta_I(x) = \sum_{i=0}^k \beta_i y(x+ih) - y(x+\beta h) .$$
 (6.38)

For nonstiff problems (with bounded derivatives of f) these two error expressions are related to $\delta_{OL}(x)$ by

$$\delta_{OL}(x) = \delta_D(x) - h rac{\partial f}{\partial y} \left(x, y(x)
ight) \delta_I(x) + \mathcal{O}(h \| \delta_I(x) \|^2) \; .$$

Taylor expansion of (6.37) and (6.38) shows that

$$\delta_D(x) = \mathcal{O}(h^{p_D+1}) , \qquad \delta_I(x) = \mathcal{O}(h^{p_I+1}) , \qquad (6.39)$$

where the optimal orders p_D and p_I are determined by certain algebraic conditions (see Exercise 1a). From $\beta = \sigma'(1)$ we always have $p_I \ge 1$ and from the consistency conditions it follows that $p_D \ge 1$. However, the orders p_D and p_I may be significantly smaller than the order of the corresponding multistep method (Exercise 1). The constants in the $\mathcal{O}(\ldots)$ -terms of (6.39) depend only on bounds for a certain derivative of the solution, but not on the stiffness of the problem.

Using $\delta_D(x)$ and $\delta_I(x)$ it is possible to interpret the exact solution of (6.1) as the solution of the following perturbed one-leg formula

$$\sum_{i=0}^{k} \alpha_i y(x+ih) - \delta_D(x) = hf\left(x+\beta h, \sum_{i=0}^{k} \beta_i y(x+ih) - \delta_I(x)\right). \quad (6.40)$$

The next lemma, which extends results of Dahlquist (1975) and of Nevanlinna (1976), investigates the influence of perturbations to the solution of a one-leg method. **Lemma 6.9.** Consider, in addition to the one-leg method (6.6), the perturbed formula

$$\sum_{i=0}^{k} \alpha_i \widehat{y}_{m+i} - \delta_m = hf\left(x_m + \beta h, \sum_{i=0}^{k} \beta_i \widehat{y}_{m+i} - \varepsilon_m\right) .$$
(6.41)

Suppose that the condition (6.2') holds for the differential equation (6.1) and that the method is G-stable. Then the differences

$$\Delta y_j = \hat{y}_j - y_j , \qquad \Delta Y_m = (\Delta y_{m+k-1}, \dots, \Delta y_m)^T$$

satisfy in the norm (6.14)

$$\begin{split} \|\Delta Y_{m+1}\|_G &\leq (1+ch\nu) \|\Delta Y_m\|_G + C\big(\|\delta_m\| + \|\varepsilon_m\|\big) \qquad \text{for } 0 < h\nu \leq \text{Const.} \\ \text{The constants } c, \ C, \ \text{and Const depend only on the method, not on the dif-ferential equation. If } \nu \leq 0 \text{ we have} \end{split}$$

$$\|\Delta Y_{m+1}\|_G \leq \|\Delta Y_m\|_G + C\big(\|\delta_m\| + \|\varepsilon_m\|\big) \qquad \text{for all } h > 0.$$

Proof. We shall make the additional assumption that f is continuously differentiable. A direct proof without this assumption is possible, but leads to a quadratic inequality for $\|\Delta Y_{m+1}\|_{G}$.

The idea is to subtract (6.6) from (6.41) and to use

$$egin{aligned} &fig(x_m\!+\!eta h,\sumeta_i\widehat{y}_{m+i}\!-\!arepsilon_mig)-fig(x_m\!+\!eta h,\sumeta_iy_{m+i}ig)\ &=J_mig(\sumeta_i\Delta y_{m+i}\!-\!arepsilon_mig) \end{aligned}$$

where

$$J_m = \int_0^1 \frac{\partial f}{\partial y} \Big(x_m + \beta h, t \sum \beta_i y_{m+i} + (1-t) \big(\sum \beta_i \widehat{y}_{m+i} - \varepsilon_m \big) \Big) dt \ .$$

This yields

$$\sum_{i=0}^k lpha_i \Delta y_{m+i} = h J_m \sum_{i=0}^k eta_i \Delta y_{m+i} + \delta_m - h J_m \varepsilon_m \; .$$

Computing Δy_{m+k} from this relation gives

$$\Delta y_{m+k} = \Delta z_{m+k} + (\alpha_k - \beta_k h J_m)^{-1} (\delta_m - h J_m \varepsilon_m)$$
(6.42)

where Δz_{m+k} is defined by

$$\sum_{i=0}^{k} \alpha_i \Delta z_{m+i} = h J_m \sum_{i=0}^{k} \beta_i \Delta z_{m+i}$$
(6.43)

and $\Delta z_j = \Delta y_j$ for j < m+k. By our assumption (6.2') the matrix J_m satisfies the one-sided Lipschitz condition $\operatorname{Re} \langle J_m u, u \rangle \leq \nu \|u\|^2$ (see Exercise

6 of Section I.10). Taking the scalar product of (6.43) with $\sum \beta_i \Delta z_{m+i}$ and using (6.21) we thus obtain in the notation of (6.13)

$$\begin{split} \|\Delta Z_{m+1}\|_{G}^{2} - \|\Delta Z_{m}\|_{G}^{2} &\leq c_{0}h\nu\|\sum\beta_{i}\Delta z_{m+i}\|^{2} \\ &\leq c_{1}h\nu(\|\Delta Z_{m+1}\|_{G} + \|\Delta Z_{m}\|_{G})^{2} \end{split}$$

(the second inequality is only valid for $\nu \ge 0$; for negative values of ν we replace ν by 0 in (6.2')). A division by $\|\Delta Z_{m+1}\|_G + \|\Delta Z_m\|_G$ then leads to the estimate

$$\|\Delta Z_{m+1}\|_{G} \le (1+ch\nu) \|\Delta Z_{m}\|_{G} .$$
(6.44)

With the help of von Neumann's theorem (Section IV.11) the second term of (6.42) can be bounded by $Const(\|\delta_m\| + \|\varepsilon_m\|)$. Inserting this and (6.44) into (6.42) yields the desired estimate.

The above lemma allows us to derive a convergence result for one-leg methods, which is related to *B*-convergence for Runge-Kutta methods.

Theorem 6.10. Consider a G-stable one-leg method with differentiation order $p_D \ge p$ and interpolation order $p_I \ge p-1$. Suppose that the differential equation satisfies the one-sided Lipschitz condition (6.2'). Then there exists $C_0 > 0$ such that for $h\nu \le C_0$

$$\|y_m - y(x_m)\| \le C \max_{0 \le j < k} \|y_j - y(x_j)\| + Mh^p .$$
(6.45)

The constant C depends on the method and, for $\nu > 0$, on the length $x_m - x_0$ of the integration interval; the constant M depends in addition on bounds for the p-th and (p+1)-th derivative of the exact solution.

Proof. A direct application of Lemma 6.9 to Formula (6.40) yields the desired error bounds only for $p_I \ge p$. Following Hundsdorfer & Steininger (1989) we therefore introduce $\hat{y}(x) = y(x) - \delta_I(x)$ so that (6.40) becomes

$$\sum_{i=0}^{k} \alpha_i \widehat{y}(x+ih) - \widehat{\delta}(x) = hf(x+\beta h, \sum_{i=0}^{k} \beta_i \widehat{y}(x+ih) - \widehat{\varepsilon}(x))$$
(6.46)

where

$$\widehat{\delta}(x) = \delta_D(x) - \sum_{i=0}^k \alpha_i \delta_I(x+ih) , \quad \widehat{\varepsilon}(x) = \delta_I(x) - \sum_{i=0}^k \beta_i \delta_I(x+ih) . \quad (6.47)$$

Using $\rho(1) = 0$ and $\sigma(1) = 1$, Taylor expansion of these functions yields

$$\|\widehat{\delta}(x)\|+\|\widehat{arepsilon}(x)\|\leq C_1h^p\int_x^{x+kh}\|y^{(p+1)}(\zeta)\|d\zeta\;.$$

We thus can apply Lemma 6.9 to (6.46) and obtain

$$\|\Delta Y_{m+1}\|_G \le (1 + ch\nu) \|\Delta Y_m\|_G + M_1 h^{p+1}$$

where $\Delta y_j = \hat{y}(x_j) - y_j$. Using $(1 + ch\nu)^j \leq \exp(c\nu(x_j - x_0))$, a simple induction argument gives

$$\|\Delta Y_{m+1}\|_G \leq C \|\Delta Y_0\|_G + Mh^p$$
.

The statement now follows from the equivalence of norms

$$d_0 \|\Delta Y_0\|_G \leq \max_{0\leq j < k} \|\Delta y_j\| \leq d_1 \|\Delta Y_0\|_G \; ,$$

 $\begin{array}{l} \text{the estimate } \|y_m - y(x_m)\| \leq \|y_m - \widehat{y}(x_m)\| + \|\delta_I(x_m)\|, \text{ and the fact that} \\ \|\delta_I(x_m)\| = \mathcal{O}(h^p). \end{array}$

Convergence of A-Stable Multistep Methods

An interesting equivalence relation between one-leg and linear multistep methods is presented in Dahlquist (1975) (see Exercise 3). This allows us to translate the above convergence result into a corresponding one for multistep methods (Hundsdorfer & Steininger 1989). A different and more direct approach will be presented in Section V.8 (Theorem 8.2).

We consider the linear multistep method

$$\sum_{i=0}^{k} \alpha_i \widehat{y}_{m+i} = h \sum_{i=0}^{k} \beta_i f(\widehat{x}_{m+i}, \widehat{y}_{m+i}) .$$
 (6.48)

We let $x_m = \hat{x}_m - \beta h$ so that $\sum_{i=0}^k \beta_i x_{m+i} = \hat{x}_m$, and, in view of Formula (6.54), we define $\{y_0, y_1, \ldots, y_{2k-1}\}$ as the solution of the linear system

$$\sum_{i=0}^{k} \beta_{i} y_{j+i} = \widehat{y}_{j} , \qquad \sum_{i=0}^{k} \alpha_{i} y_{j+i} = hf(\widehat{x}_{j}, \widehat{y}_{j}) , \qquad j = 0, \dots, k-1 .$$
(6.49)

This system is uniquely solvable, because the polynomials $\varrho(\zeta)$ and $\sigma(\zeta)$ are relatively prime. With these starting values we define $\{y_m\}$ as solution of the one-leg relation (for $m \ge k$)

$$\sum_{i=0}^{k} \alpha_{i} y_{m+i} = hf\left(\sum_{i=0}^{k} \beta_{i} x_{m+i}, \sum_{i=0}^{k} \beta_{i} y_{m+i}\right) .$$
 (6.50)

By the second relation of (6.49), Formula (6.50) holds for all $m \ge 0$. Consequently (Exercise 3a) the expression $\sum_{i=0}^{k} \beta_i y_{m+i}$ is a solution of the multistep Formula (6.48). Because of (6.49) and the uniqueness of the numerical

solution this gives

$$\sum_{i=0}^{k} \beta_{i} y_{m+i} = \widehat{y}_{m} \qquad \text{for all } m \geq 0 \ . \tag{6.51}$$

This relation leads to a proof of the following result.

Theorem 6.11. Consider an A-stable linear multistep method of order p. Suppose the differential equation satisfies (6.2'). Then there exists $C_0 > 0$ such that for $h\nu \leq C_0$,

$$\|\widehat{y}_m - y(\widehat{x}_m)\| \leq C \Big(\max_{0 \leq j < k} \|\widehat{y}_j - y(\widehat{x}_j)\| + h \max_{0 \leq j < k} \|f(\widehat{x}_j, \widehat{y}_j) - y'(\widehat{x}_j)\|\Big) + Mh^p \ .$$

The constants C and M are as in Theorem 6.10.

Proof. By Theorem 6.7, A-stability implies G-stability of the corresponding one-leg method. Further, Taylor expansion of (6.37) and (6.38) shows that $p_D \ge \min(p, 2)$ and $p_I \ge 1$. Since $p \le 2$ by Dahlquist's second barrier, all assumptions of Theorem 6.10 are verified. The one-leg solution $\{y_m\}$ thus satisfies (6.45). In order to estimate $\|y_j - y(x_j)\|$ for j < k we subtract the definitions of $\delta_D(x)$ and $\delta_I(x)$ from (6.48) and obtain

$$\begin{split} &\sum_{i=0}^k \beta_i \big(y_{j+i} - y(x_{j+i}) \big) = \widehat{y}_j - y(\widehat{x}_j) - \delta_I(x_j) \\ &\sum_{i=0}^k \alpha_i \big(y_{j+i} - y(x_{j+i}) \big) = hf(\widehat{x}_j, \widehat{y}_j) - hy'(\widehat{x}_j) - \delta_D(x_j) \;. \end{split}$$

Solving these relations for $y_j - y(x_j)$ yields

$$\begin{split} \max_{0 \leq j < k} \|y_j - y(x_j)\| \\ & \leq C_0 \Big(\max_{0 \leq j < k} \|\widehat{y}_j - y(\widehat{x}_j)\| + h \max_{0 \leq j < k} \|f(\widehat{x}_j, \widehat{y}_j) - y'(\widehat{x}_j)\| \Big) + M_0 h^p \; . \end{split}$$

This proves the statement, because by (6.51)

$$\|\widehat{y}_m - y(\widehat{x}_m)\| \leq \sum_{i=0}^k |eta_i| \, \|y_{m+i} - y(x_{m+i})\| + \|\delta_I(x_m)\| \; .$$

Exercises

1. a) Prove that the one-leg method (6.6) satisfies (6.39) iff

$$\sum_{i=0}^{k} \alpha_i i^q = q \beta^{q-1} \qquad \text{for } q = 0, 1, \dots, p_D \qquad (6.52)$$

$$\sum_{i=0}^{k} \beta_i i^q = \beta^q \qquad \text{for } q = 0, \dots, p_I . \qquad (6.53)$$

$$\sum_{i=0} \beta_i i^q = \beta^q \qquad \text{for } q = 0, \dots, p_I.$$

Compare this result with Theorem III.2.4.

- b) Compute the orders p_D and p_I for the Adams methods.
- 2. a) Show that the one-leg method (6.6) can be written in the form of a general linear method (Section III.8).
 - b) Prove that the order of convergence p of this method is given by

$$p = \min(p_D, p_I + 1)$$

with p_D, p_I defined in (6.39).

c) The order of a one-leg method is never larger than the order of the corresponding multistep method.

3. (Dahlquist 1975).

a) Let $\{y_m\}$ and $\{x_m\!=\!x_0\!+\!mh\}$ satisfy the (one-leg) difference relation (6.6); then

$$\widehat{y}_{m} = \sum_{j=0}^{k} \beta_{j} y_{m+j}, \qquad \widehat{x}_{m} = \sum_{j=0}^{k} \beta_{j} x_{m+j}$$
(6.54)

satisfy the (linear multistep) difference relation (6.3).

b) Conversely, let

$$P(\zeta) = \sum_{j=0}^{k-1} a_j \zeta^j , \qquad Q(\zeta) = \sum_{j=0}^{k-1} b_j \zeta^j$$

be such that $P(\zeta)\sigma(\zeta) - Q(\zeta)\varrho(\zeta) = \zeta^l$ for some integer $l \ (0 \le l \le k)$, then

$$y_{m+l} = \sum_{j=0}^{k-1} a_j \widehat{y}_{m+j} - h \sum_{j=0}^{k-1} b_j f(\widehat{x}_{m+j}, \widehat{y}_{m+j})$$
$$x_{m+l} = \sum_{j=0}^{k-1} a_j \widehat{x}_{m+j} - h \sum_{j=0}^{k-1} b_j$$

satisfy (6.6), whenever $\{\widehat{y}_m\}$ and $\{\widehat{x}_m\}$ are a solution of (6.3).

Hint for a). Multiply (6.6) by β_j , replace m by m+j, sum from j=0 to j=k, and interchange the summations.

4. One-leg collocation methods (Dahlquist 1983).

a) For a given β there exists a unique k-step one-leg method with $p_D = k$ and $p_I = k$.

b) This one-leg method is of order p = k + 1 iff

$$\sum_{i=0}^{k} \frac{1}{(\beta - i)} = 0 \; .$$

c) Discuss numerically the zero-stability of these methods.

5. (proposed by M. Crouzeix). a) Let R(z) = P(z)/Q(z) be an irreducible rational function where deg $P \leq k$, deg $Q \leq k$. Show that R(z) is A-stable, if and only if there exist polynomials $\alpha_i(z)$, $\beta(z)$ with real coefficients and with deg $\alpha_i \leq k - 1$, deg $\beta \leq k$, such that

$$Q(z)Q(w) - P(z)P(w) = -(z+w)\sum_{i=1}^{k} \alpha_i(z)\alpha_i(w) + \beta(z)\beta(w).$$
(6.48)

b) Use this characterization to give a new proof of von Neumann's theorem (Corollary IV.11.3).

Hint. Part (a) can be proved along the lines of the proofs of Theorem 6.7 and Lemma 6.8. Remark that (6.48) reduces to the *E*-polynomial (IV.3.8) if z = iy and w = -iy. For the proof of (b), deduce from (6.48) the identity

$$\|Q(A)u\|^2 - \|P(A)u\|^2 = -\sum_{i=1}^k \operatorname{Re} \langle \alpha_i(A)u, A\alpha_i(A)u \rangle + \|\beta(A)u\|^2.$$

V.7. Convergence for Linear Problems

Theorems 6.10 and 6.11 give satisfactory convergence results for G-stable one-leg methods and A-stable multistep methods. But there are only few such methods and their highest order is two (Theorem 1.6). It is therefore interesting to relax the requirement of A-stability and to investigate higherorder multistep and one-leg methods. This section is devoted to linear stiff problems, while Section V.8 will treat non-linear problems.

We shall describe two different approaches for convergence results. One is with the help of the discrete variation of constants formula and shall be given at the end of this section (see Lemma 7.9 and Theorem 7.10 below). The other possibility is based on a formulation as a one-step method and on the use of the Kreiss matrix theorem.

Difference Equations for the Global Error

Most of the difficulties can already be seen by studying the one-dimensional problem of Prothero and Robinson

$$y' = \lambda y + g(x) , \qquad y(x_0) = y_0 .$$
 (7.1)

We assume $\operatorname{Re} \lambda \leq 0$ and the solution y(x) to be smooth in the sense that sufficiently many derivatives are bounded independently of the stiffness parameter λ .

Applying a linear multistep method to (7.1) yields

$$\sum_{i=0}^{k} \alpha_{i} y_{m+i} = h\lambda \sum_{i=0}^{k} \beta_{i} y_{m+i} + h \sum_{i=0}^{k} \beta_{i} g(x_{m+i}) .$$
 (7.2)

The global error

$$e_m = y_m - y(x_m) \tag{7.3}$$

is seen to satisfy the difference relation

$$\sum_{i=0}^{k} (\alpha_i - h\lambda\beta_i)e_{m+i} = -\delta_{LM}(x_m)$$
(7.4)

with

$$\delta_{LM}(x) = \sum_{i=0}^{k} \alpha_i y(x+ih) - h \sum_{i=0}^{k} \beta_i y'(x+ih)$$
(7.5)

(to be compared with Formula III.2.3). We observe that the right-hand side of (7.4) is independent of the stiffness (i.e., of λ). Further, if the classical order of the method is p, then $\delta_{LM}(x) = \mathcal{O}(h^{p+1})$.

If we apply the method in its one-leg version, we obtain

$$\sum_{i=0}^{k} \alpha_{i} y_{m+i} = h\lambda \sum_{i=0}^{k} \beta_{i} y_{m+i} + hg(x_{m} + \beta h) , \qquad (7.6)$$

where $\sum \beta_i = 1$ and $\sum \beta_i i = \beta$. In this case the global error $e_m = y_m - y(x_m)$ satisfies

$$\sum_{i=0}^{k} (\alpha_i - h\lambda\beta_i) e_{m+i} = h\lambda\delta_I(x_m) - \delta_D(x_m)$$
(7.7)

with $\delta_D(x)$ and $\delta_I(x)$ defined in (6.37) and (6.38), respectively. Unless $\delta_I(x) = 0$ (which is the case for the BDF methods), Equation (7.7) is disappointing, because its right-hand side becomes large in the stiff case $(h\lambda \to \infty)$.

In order to overcome this difficulty, Dahlquist (1983) proposes that one consider instead of $e_m = y_m - y(x_m)$ the quantities

$$e_{m}^{*} = \sum_{i=0}^{k} \beta_{i} y_{m+i} - y(x_{m} + \beta h)$$
(7.8)

("... a more adequate measure of the global error than the customary one ...", Dahlquist 1983). Replacing m by m+j in (7.6), multiplying by β_j and summing up gives the error formula

$$\sum_{i=0}^{k} (\alpha_i - h\lambda\beta_i)e_{m+i}^* = -\delta_{LM}(x_m + \beta h)$$
(7.9)

with $\delta_{LM}(x)$ of (7.5). This difference relation now has the same strength as (7.4).

It has been pointed out by Hundsdorfer & Steininger (1989) that we usually get better error estimates for one-leg methods by considering $\hat{e}_m = e_m + \delta_I(x_m)$. We then have

$$\sum_{i=0}^{k} (\alpha_i - h\lambda\beta_i)\widehat{e}_{m+i} = h\lambda\widehat{e}(x_m) - \widehat{\delta}(x_m)$$
(7.10)

with $\widehat{\varepsilon}(x)$ and $\widehat{\delta}(x)$ given by (6.47). Observe that $\widehat{\varepsilon}(x) = \mathcal{O}(h^{p_I+2})$ and $\widehat{\delta}(x) = \mathcal{O}(h^{\min(p_D+1,p_I+2)})$.

Formulation as a One-Step Method

The error relations (7.4), (7.7), (7.9), and (7.10) are all of the form

$$\sum_{i=0}^{k} (\alpha_i - h\lambda\beta_i)e_{m+i} = \delta_h(x_m) .$$
(7.11)

In order to estimate e_m it is convenient to introduce, as in Section III.4, the vector

$$E_m = (e_{m+k-1}, \dots, e_{m+1}, e_m)^T$$
, (7.12)

the companion matrix

$$C(\mu) = \begin{pmatrix} c_{k-1}(\mu) & \dots & c_1(\mu) & c_0(\mu) \\ 1 & & & \\ & \ddots & & \\ & & 1 & 0 \end{pmatrix} , \quad c_j(\mu) = -\frac{\alpha_j - \mu\beta_j}{\alpha_k - \mu\beta_k} \quad (7.13)$$

 \mathbf{and}

$$\Delta_m = \left(\delta_h(x_m)/(\alpha_k - \mu\beta_k), 0, \dots, 0\right)^T, \qquad \mu = h\lambda \ . \tag{7.14}$$

Then Formula (7.11) becomes

$$E_{m+1} = C(h\lambda)E_m + \Delta_m , \qquad (7.15)$$

which leads to

$$E_{m+1} = C(h\lambda)^{m+1}E_0 + \sum_{j=0}^m C(h\lambda)^{m-j}\Delta_j .$$
 (7.16)

To estimate E_{m+1} we have to bound the powers of $C(h\lambda)$ uniformly in $h\lambda$. This is the object of the next subsection.

The Kreiss Matrix Theorem

"Als Fakultätsopponent für meine Stockholmer Dissertation brachte Dr. G. Dahlquist die Frage der Stabilitätsdefinition zur Sprache." (H.-O. Kreiss 1962)

The following Theorem of Kreiss (1962) is a powerful tool for proving uniform power boundedness of an arbitrary family of matrices.

Theorem 7.1 (Kreiss 1962). Let \mathcal{F} be a family of $k \times k$ matrices A. Then the "power condition"

$$\|A^n\| \le M$$
 for $n = 0, 1, 2, \dots$ and $A \in \mathcal{F}$ (P)

is equivalent to the "resolvent condition"

$$\|(A-zI)^{-1}\| \leq rac{C}{|z|-1} \qquad \textit{for } |z|>1 \quad \textit{and } A \in \mathcal{F} \;.$$

Remark. The difficult step is to prove that (R) implies (P). Several mathematicians contributed to a better understanding of this result (Richtmyer & Morton 1967, Tadmor 1981). LeVeque & Trefethen (1984) have given a marvellous version of the proof; the best we can do is to copy it nearly word for word:

Proof. Necessity. If (P) is true, the eigenvalues of A lie within the closed unit disk and therefore $(A-zI)^{-1}$ exists for |z| > 1. Moreover,

$$\|(A-zI)^{-1}\| = \|\sum_{n=0}^{\infty} A^n z^{-n-1}\| \le M \sum_{n=0}^{\infty} |z|^{-n-1} = \frac{M}{|z|-1} , \qquad (7.17)$$

so that (R) holds with C = M.

Sufficiency. Assume condition (R), so that all eigenvalues of A lie inside the closed unit disk. The matrix A^n can then be written in terms of the resolvent by means of a Cauchy integral (see Exercise 1)

$$A^{n} = \frac{1}{2\pi i} \int_{\Gamma} z^{n} (zI - A)^{-1} dz , \qquad (7.18)$$

where the contour of integration is, for example, a circle of radius $\rho > 1$ centred at the origin. Let u and v be arbitrary unit vectors, i.e., ||u|| = ||v|| =1. Then

$$v^*A^nu=rac{1}{2\pi i}\int_{\Gamma}z^nq(z)dz\qquad ext{with}\qquad q(z)=v^*(zI-A)^{-1}u\,\,.$$

Integration by parts gives

$$v^*A^nu=rac{-1}{2\pi i(n+1)}\int_{\Gamma}z^{n+1}q'(z)dz$$
 .

Now fix as contour of integration the circle of radius $\rho = 1 + 1/(n+1)$. On this path one has $|z^{n+1}| \le e$, and therefore

$$|v^*A^n u| \le rac{e}{2\pi(n+1)} \int_{\Gamma} |q'(z)| |dz|$$
 (7.19)

By Cramer's rule, q(z) is a rational function of degree k. Applying Lemma 7.2 below, the integral in (7.19) is bounded by $4\pi k$ times the supremum of

349

|q(z)| on Γ , and by (R) this supremum is at most (n+1)C. Hence

 $|v^*A^nu| \leq 2ekC$.

Since $||A^n||$ is the supremum of $|v^*A^nu|$ over all unit vectors u and v, this proves the estimate (P) with M = 2ekC.

The above proof used the following lemma, which relates the arc length of a rational function on a circle to its maximum value. For the case of a polynomial of degree k the result is a corollary of Bernstein's inequality $\sup_{|z|=1} |q'(z)| \leq k \sup_{|z|=1} |q(z)|$ (see e.g., Marden 1966).

Lemma 7.2. Let q(z) = p(z)/r(z) be a rational function with deg $p \le k$, deg $r \le k$ and suppose that no poles lie on the circle $\Gamma : |z| = \rho$. Then

$$\int_{\Gamma} |q'(z)| \, |dz| \leq 4\pi k \sup_{|z|=\varrho} |q(z)| \, . \tag{7.20}$$

"We believe that the bound is valid with a factor 2π instead of 4π , but have been unable to prove this". (B. I. LeVeque & I. N. Trefethen 1984)

(R.J. LeVeque & L.N. Trefethen 1984)

Proof. Replacing q(z) by $q(\varrho z)$ we may assume without loss of generality that $\varrho = 1$. With the parametrization e^{it} of Γ we introduce

 $\gamma(t) = q(e^{it}), \qquad \gamma'(t) = i e^{it} q'(e^{it})$

so that

 $\gamma'(t) = |q'(e^{it})| \cdot e^{ig(t)}$ with $g(t) = \arg(\gamma'(t))$.

Integration by parts now yields

$$\int_{\Gamma} |q'(z)| |dz| = \int_{0}^{2\pi} |q'(e^{it})| dt = \int_{0}^{2\pi} \gamma'(t) e^{-ig(t)} dt$$
$$= i \int_{0}^{2\pi} \gamma(t) g'(t) e^{-ig(t)} dt \leq \sup |\gamma(t)| \cdot \int_{0}^{2\pi} |g'(t)| dt$$

It remains to prove that the total variation of g, i.e., $\text{TV}[g] = \int_0^{2\pi} |g'(t)| dt$, can be bounded by $4\pi k$. To prove this, note that zq'(z) is a rational function of degree (2k, 2k) and can be written as a product

$$zq'(z)=\prod_{j=1}^{2k}rac{a_jz+b_j}{c_jz+d_j}\;.$$

This implies for $z = e^{it}$

$$g(t) = rg(izq'(z)) = rac{\pi}{2} + \sum_{j=1}^{2k} rg\Big(rac{a_j z + b_j}{c_j z + d_j}\Big) \; .$$

Since the Möbius transformation (az+b)/(cz+d) maps the unit circle to some other circle, the total variation of $\arg((az+b)/(cz+d))$ is at most 2π . Consequently

$$\mathrm{TV}[g] \leq \sum_{j=1}^{2k} \mathrm{TV}igg[\mathrm{arg}igg(rac{a_j z + b_j}{c_j z + d_j}igg)igg] \leq 4\pi k \; .$$

Some Applications of the Kreiss Matrix Theorem

Following Dahlquist, Mingyou & LeVeque (1981) we now obtain some results on the uniform power boundedness of the matrix $C(\mu)$, defined in (7.13), with the help of the Kreiss matrix theorem. Similar results were found independently by Crouzeix & Raviart (1980) and Gekeler (1979, 1984).

Lemma 7.3. Let $S \subset \overline{\mathbb{C}}$ denote the stability region of a method (ϱ, σ) . If S is closed in $\overline{\mathbb{C}}$, then there exists a constant M such that

$$\|C(\mu)^n\| \leq M$$
 for $\mu \in S$ and $n = 0, 1, 2, ...$

Proof. Because of Theorem 7.1 it is sufficient to prove that

$$\|(C(\mu)-zI)^{-1}\| \ \le \ rac{C}{|z|-1} \qquad ext{for} \quad \mu\in S \ ext{ and } |z|>1 \ .$$

To show this, we make use of the inequality (Kato (1960), see Exercise 2)

$$\|(C(\mu)-zI)^{-1}\| \le rac{(\|C(\mu)\|+|z|)^{k-1}}{|\det(C(\mu)-zI)|}$$

 $||C(\mu)||$ is uniformly bounded for $\mu \in S$. Therefore it suffices to show that

$$\varphi(\mu) = \inf_{|z|>1} \frac{|\det(C(\mu) - zI)|}{|z|^{k-1}(|z|-1)}$$
(7.21)

is bounded away from zero for all $\mu \in S$. For $|z| \to \infty$ the expression in (7.21) tends to 1 and so poses no problem. Further, observe that

$$|\det(C(\mu) - zI)| = |\prod_{j=1}^{k} (z - \zeta_j(\mu))|,$$
 (7.22)

where $\zeta_i(\mu)$ are the eigenvalues of $C(\mu)$, i.e., the roots of

$$\sum_{i=0}^{k} (\alpha_i - \mu \beta_i) \zeta^i = 0 .$$
 (7.23)

By definition of the stability region S, the values $\zeta_j(\mu)$ lie, for $\mu \in S$, inside the closed unit disc and those on the unit circle are well separated. Therefore, for fixed $\mu_0 \in S$, only one of the $\zeta_j(\mu_0)$ can be close to a z with |z| > 1. The corresponding factor in (7.22) will be minorized by |z|-1, the other factors are bounded away from zero. By continuity of the $\zeta_j(\mu)$, the same holds for all $\mu \in S$ in a sufficiently small neighbourhood $V(\mu_0)$ of μ_0 . Hence $\varphi(\mu) \geq a > 0$ for $\mu \in V(\mu_0) \cap S$. Since S is closed (compact in $\overline{\mathbb{C}}$) it is covered by a finite number of $V(\mu_0)$. Consequently $\varphi(\mu) \geq a > 0$ for all $\mu \in S$, which completes the proof of the theorem. \Box

Remark. The hypothesis "S is closed in $\overline{\mathbb{C}}$ " is usually satisfied. For methods which do *not* satisfy this hypothesis (see e.g., Exercise 2 of Section V.1 or Dahlquist, Mingyou & LeVeque (1981)) the above lemma remains valid on closed subsets $D \subset S \subset \overline{\mathbb{C}}$.

The estimate of this lemma can be improved, if we consider closed sets D lying in the interior of S.

Lemma 7.4. Let S be the stability region of a method (ϱ, σ) . If $D \subset \text{Int } S$ is closed in $\overline{\mathbb{C}}$, then there exist constants M and κ $(0 < \kappa < 1)$ such that

$$||C(\mu)^n|| \leq M\kappa^n$$
 for $\mu \in D$ and $n = 0, 1, 2, \ldots$

Proof. If μ lies in the interior of S, all roots of (7.23) satisfy $|\zeta_j(\mu)| < 1$ (maximum principle). Since D is closed, this implies the existence of $\varepsilon > 0$ such that

$$D \subset S_{oldsymbol{arepsilon}} = ig\{ \mu \in \overline{\mathbb{C}} \,\,;\,\, |\zeta_j(\mu)| \leq 1-2arepsilon, \quad j=1,\dots,k ig\} \,\,.$$

We now consider $R(\mu) = \kappa^{-1}C(\mu)$ with $\kappa = 1 - \varepsilon$. The eigenvalues of $R(\mu)$ satisfy $|\kappa^{-1}\zeta_j(\mu)| \leq (1-2\varepsilon)/(1-\varepsilon) < 1-\varepsilon$ for $\mu \in S_{\varepsilon}$. As in the proof of Lemma 7.3 (more easily, because $R(\mu)$ has no eigenvalues of modulus 1) we conclude that $R(\mu)$ is uniformly power bounded for $\mu \in S_{\varepsilon}$. This implies the statement.

Since the origin is never in the interior of S, we add the following estimate for its neighbourhood:

Lemma 7.5. Suppose that the method (ϱ, σ) is consistent and strictly stable (see Section III.9, Assumption A1 or Theorem V.1.5). Then there exists a neighbourhood V of 0 and constants M and a such that

$$\|C(\mu)^n\| \le M e^{n(\operatorname{Re} \mu + a|\mu|^2)}$$
 for $\mu \in V$ and $n = 0, 1, 2, ...$

.....

Proof. Since the method is strictly stable there exists a compact neighbourhood V of 0, in which $|\zeta_j(\mu)| < |\zeta_1(\mu)|$ for $j = 2, \ldots, k$ ($\zeta_j(\mu)$ are the roots of (7.23)). The matrix $R(\mu) = \zeta_1(\mu)^{-1}C(\mu)$ then has a simple eigenvalue 1 and all other eigenvalues are strictly smaller than 1. As in the proof of Lemma 7.3 we obtain $||R(\mu)^n|| \le M$ and consequently $||C(\mu)^n|| \le M |\zeta_1(\mu)|^n$ for $\mu \in V$. The stated estimate now follows from $\zeta_1(\mu) = e^{\mu} + \mathcal{O}(\mu^2)$. \Box

Global Error for Prothero and Robinson Problem

The above lemmata permit us to continue our analysis of Formula (7.16). Whenever we consider λ and h such that their product λh varies in a closed subset of S, it follows that

$$\|E_{m+1}\| \le M\Big(\|E_0\| + \sum_{j=0}^m \|\Delta_j\|\Big)$$
(7.24)

(Lemma 7.3). If $h\lambda$ varies in a closed subset of the interior of S, we have the better estimate

$$||E_{m+1}|| \le M\left(\kappa^{m+1}||E_0|| + \sum_{j=0}^m \kappa^{m-j}||\Delta_j||\right)$$
 with some $\kappa < 1$ (7.25)

(Lemma 7.4). The resulting asymptotic estimates for the global errors $e_m = y_m - y(x_m)$ for $mh \leq Const$ are presented in Table 7.1 (p denotes the classical order, p_D the differentiation order and p_I the interpolation order of Section V.6). We assume that the initial values are exact and that simultaneously $h\lambda \to \infty$ and $h \to 0$. This is the most interesting situation because any reasonable method for stiff problems should integrate the equation with step sizes h such that $h\lambda$ is large. We distinguish two cases:

- (A) the half-ray $\{h\lambda ; h > 0, |h\lambda| \ge c\} \cup \{\infty\}$ lies in S (Lemma 7.3 is applicable, i.e., Formula (7.24)).
- (B) ∞ is an interior point of S (Formula (7.25) is applicable; the global error $||E_m||$ is essentially equal to the last term in the sum of (7.25)).

Method	error	(A)	(B)
multistep	em	$\mathcal{O}(\lambda ^{-1}h^{p-1})$	$\mathcal{O}(\lambda ^{-1}h^p)$
one-leg	em	$\mathcal{O}(h^{p_I+1}+ \lambda ^{-1}h^{p_D-1})$	$\mathcal{O}(h^{p_I+1}+ \lambda ^{-1}h^{p_D})$

Table 7.1. Error for (7.1) when $h\lambda \to \infty$ and $h \to 0$

We remark that the global error of the multistep method contains a factor $|\lambda|^{-1}$, so that the error decreases if $|\lambda|$ increases ("the stiffer the better"). The estimate in case (A) for one-leg methods is obtained by the use of Recursion (7.10).

Convergence for Linear Systems with Constant Coefficients

The extension of the above results to linear systems

$$y' = Ay + g(x)$$
 $y(x_0) = y_0$ (7.26)

is straightforward, if we assume that the matrix A is diagonalizable. The following results have been derived by Crouzeix & Raviart (1980).

Theorem 7.6. Suppose that the multistep method (ϱ, σ) is of order p, $A(\alpha)$ -stable and stable at infinity. If the matrix A of (7.26) is diagonalizable (i.e., $T^{-1}AT = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$) with eigenvalues satisfying

$$|\arg(-\lambda_i)| \leq lpha \qquad for \ i=1,\ldots,n$$

then there exists a constant M (depending only on the method) such that for all h > 0 the global error satisfies

$$\|y(x_m)-y_m\| \le M \cdot \|T\| \cdot \|T^{-1}\| \Big(\max_{0 \le j < k} \|y(x_j)-y_j\| + h^p \int_{x_0}^{x_m} \|y^{(p+1)}(\xi)\| d\xi \Big) \ .$$

Proof. The transformation y = Tz decouples the system (7.26) into n scalar equations

$$z'_{i} = \lambda_{i} z_{i} + (T^{-1}g)_{i}(x) . \qquad (7.27)$$

Since this transformation leaves the numerical solution invariant, it suffices to consider Equation (7.27). Lemma 7.3 yields the power boundedness

$$\|C(h\lambda_i)^m\| \le M_0 \qquad \text{for } h > 0, \quad i = 1, \dots, n \text{ and } m \ge 0.$$
 (7.28)

The discretization error $\delta_{LM}(x)$ (Formula (7.5)) can be written as

$$\delta_{LM}(x) = h^{p+1} \int_0^k K_p(s) z_i^{(p+1)}(x+sh) ds , \qquad (7.29)$$

where $K_p(s)$ is the Peano-kernel of the multistep method (Theorem III.2.8). By $A(\alpha)$ -stability we have $\alpha_k \cdot \beta_k > 0$, so that $|\alpha_k - h\lambda_i\beta_k|^{-1} \le |\alpha_k|^{-1}$. This together with (7.29) implies that

$$\|\Delta_j\| \le Ch^p \int_{x_j}^{x_{j+k}} |z_i^{(p+1)}(\xi)| d\xi , \qquad (7.30)$$

where C depends only on the method. The estimates (7.28) and (7.30) inserted into (7.16) yield a bound for the global error of (7.27), which, by backsubstitution into the original variables, proves the statement.

Because of its exponentially decaying term, the following estimate is especially useful in the case when large time intervals are considered (or when the starting values do not lie on the exact solution).

Theorem 7.7. Let the multistep method (ϱ, σ) be of order $p \ge 1$, $A(\alpha)$ -stable and strictly stable at zero and at infinity (i.e., $\sigma(\zeta) = 0$ implies $|\zeta| < 1$). If the matrix A of (7.26) is diagonalizable $(T^{-1}AT = \text{diag}(\lambda_1, \ldots, \lambda_n))$ with eigenvalues λ_i satisfying

$$|rg(-\lambda_i)| \leq \gamma < lpha, \qquad \operatorname{Re} \lambda_i \leq -\widehat{\lambda} < 0$$

then, for given $h_0 > 0$, there exist constants M and $\nu > 0$ such that for $0 < h \le h_0$

$$egin{aligned} \|y(x_m) - y_m\| \leq & M \cdot \|T\| \cdot \|T^{-1}\| \cdot \left(e^{-
u(x_m - x_0)} \cdot \max_{0 \leq j < k} \|y(x_j) - y_j\| \ & + h^p \int_{x_0}^{x_m} e^{-
u(x_m - \xi)} \|y^{(p+1)}(\xi)\| d\xi
ight) \,. \end{aligned}$$

Remark. The constants M and ν may depend on γ , $\hat{\lambda}$, h_0 and on the method, but they are independent of the eigenvalues λ_i and of the length $x_m - x_0$ of the integration interval.

Proof. By Lemma 7.5 there exists an r > 0 such that

$$\|C(h\lambda_i)^m\| \le M_0 e^{-mh\widehat{\lambda}/2} \qquad ext{for} \quad |h\lambda_i| \le r$$
 (7.31)

(observe that $|\mu| \leq Const |\operatorname{Re} \mu|$, if $|\arg(-\mu)| \leq \gamma < \pi/2$). Since

$$D=ig\{\mu \ ; \ |rg(-\mu)|\leq \gamma, \ |\mu|\geq r\}\cup\{\infty\}$$

lies in the interior of the stability region S, it follows from Lemma 7.4 that

$$||C(h\lambda_i)^m|| \le M_1 \varrho^m \qquad \text{for } |h\lambda_i| \ge r \tag{7.32}$$

with some $\rho < 1$. Combining the estimates (7.31) and (7.32) we get

$$\|C(h\lambda_i)^m\| \le M e^{-mh
u}$$
 for $0 < h \le h_0$, (7.33)

where $M = \max(M_0, M_1)$ and $\nu = \min(\hat{\lambda}/2, -\ln \rho/h_0)$. Using (7.33) instead of (7.28) and $mh = x_m - x_0$, the statement now follows as in the proof of Theorem 7.6.

Matrix Valued Theorem of von Neumann

An interesting contractivity result is obtained by the following matrix valued version of a theorem of von Neumann's (Theorem IV.11.2).

We consider the Euclidean scalar product $\langle \cdot, \cdot \rangle$ on \mathbb{R}^n , the norm $\|\cdot\|_G$ on \mathbb{R}^k which is defined by a symmetric, positiv definite matrix G, and

$$|||u|||_G = \sqrt{\sum_{i,j=1}^k g_{ij} \langle u_i, u_j \rangle} \quad \text{for } u = (u_1, \dots, u_k)^T \in \mathbb{R}^{nk} .$$
(7.34)

The corresponding operator norms are denoted by the same symbols.

Theorem 7.8 (O. Nevanlinna 1985). Let $C(\mu) = (c_{ij}(\mu))_{i,j=1}^k$ be a matrix whose elements are rational functions of μ . If

$$\|C(\mu)\|_G \le 1$$
 for $\operatorname{Re} \mu \le 0$, (7.35)

then

$$|||C(A)|||_{G} \le 1 \tag{7.36}$$

for all matrices A such that

$$\operatorname{Re}\langle y, Ay \rangle \leq 0 \qquad for \ y \in \mathbb{C}^n \ .$$
 (7.37)

Remark. If $C(\mu)$ is the companion matrix of a *G*-stable method (ϱ, σ) , the result follows from Theorem 6.7 and Exercise 3 below ("It would be interesting to have a more operator-theoretical proof of this." Dahlquist & Söderlind 1982).

Proof. This is a straight-forward extension of Crouzeix's proof of Theorem IV.11.2. We first suppose that A is normal, so that $A = QDQ^*$ with a unitary matrix Q and a diagonal matrix $D = \text{diag}(\lambda_1, \ldots, \lambda_n)$. In this case we have

$$|||C(A)|||_{G} = |||(I \otimes Q)C(D)(I \otimes Q^{*})|||_{G} = |||C(D)|||_{G} .$$
(7.38)

With the permutation matrix $P = (I \otimes e_1, \ldots, I \otimes e_n)$ (where I is the kdimensional identity and e_j is the n-dimensional j-th unit vector) the matrix C(D) is transformed to block-diagonal form according to

$$P^*C(D)P =$$
blockdiag $(C(\lambda_1), \ldots, C(\lambda_n))$.

We further have $P^*(G \otimes I)P = I \otimes G$. This implies that

$$P^*C(D)^*(G \otimes I)C(D)P = \text{blockdiag} (C(\lambda_1)^*GC(\lambda_1), \ldots)$$

and hence also

$$|||C(D)|||_{G} = \max_{i=1,\dots,n} ||C(\lambda_{i})||_{G}$$
(7.39)

The statement now follows from (7.38) and (7.39), because $\operatorname{Re} \lambda_i \leq 0$ by (7.37).

For a general A we consider $A(\omega) = \frac{\omega}{2}(A + A^*) + \frac{1}{2}(A - A^*)$ and define the rational function

$$\varphi(\omega) = |||C(A(\omega))v|||_G^2 = v^*C(A(\omega))^*(G \otimes I)C(A(\omega))v .$$

The statement of the theorem can then be deduced exactly as in the proof of Theorem IV.11.2. $\hfill \Box$

This theorem can be used to derive convergence results for differential equations (7.26) with A satisfying (7.37). Indeed, if the method (ϱ, σ) is A-stable, the companion matrix (7.13) satisfies $||C(\mu)||_G \leq 1$ for $\operatorname{Re} \mu \leq 0$ in some suitable norm (Exercise 3). The above theorem then implies $|||C(hA)||_G \leq 1$ and Formula (7.16) with λ replaced by A yields the estimate

$$|||E_{m+1}|||_{G} \le |||E_{0}|||_{G} + \sum_{j=0}^{m} |||\Delta_{j}|||_{G} .$$
(7.40)

This proves convergence, because Δ_i can be bounded as in (7.30).

Discrete Variation of Constants Formula

A second approach to convergence results of linear multistep methods is by the use of a discrete variation of constants formula. This is an extension of the classical proofs for nonstiff problems (Dahlquist 1956, Henrici 1962) to the case $\mu \neq 0$. It has been developed by Crouzeix & Raviart (1976), and more recently by Lubich (1988, 1990).

We consider the error equation (cf. (7.13))

$$\sum_{i=0}^{k} (\alpha_i - \mu \beta_i) e_{m+i} = d_{m+k} \qquad \text{for } m \ge 0$$
(7.41)

and extend this relation to negative m by putting $e_j = 0$ (for j < 0) and by defining d_0, \ldots, d_{k-1} according to (7.41). The main idea is now to introduce the generating power series

$$e(\zeta) = \sum_{j \ge 0} e_j \zeta^j \ , \qquad d(\zeta) = \sum_{j \ge 0} d_j \zeta^j$$

so that (7.41) becomes the *m*-th coefficient of the identity

$$\left(\varrho(\zeta^{-1}) - \mu\sigma(\zeta^{-1})\right)e(\zeta) = \zeta^{-k}d(\zeta) .$$
(7.42)

This gives

$$e(\zeta) = \left(\varrho(\zeta^{-1}) - \mu\sigma(\zeta^{-1})\right)^{-1} \zeta^{-k} d(\zeta) = r(\zeta, \mu) d(\zeta)$$
(7.43)

and allows to compute easily e_m in terms of d_i as

$$e_m = \sum_{j=0}^m r_{m-j}(\mu) d_j .$$
 (7.43')

Here $r_i(\mu)$ are the coefficients of the discrete resolvent

$$r(\zeta,\mu) = \left(\delta(\zeta) - \mu\right)^{-1} \frac{\zeta^{-k}}{\sigma(\zeta^{-1})} = \sum_{j \ge 0} r_j(\mu)\zeta^j \tag{7.44}$$

where

$$\delta(\zeta) = \frac{\varrho(\zeta^{-1})}{\sigma(\zeta^{-1})} = \frac{\alpha_0 \zeta^k + \ldots + \alpha_{k-1} \zeta + \alpha_k}{\beta_0 \zeta^k + \ldots + \beta_{k-1} \zeta + \beta_k}$$
(7.45)

Since $(\varrho(\zeta^{-1}) - \mu\sigma(\zeta^{-1}))r(\zeta,\mu) = \zeta^{-k}$, the coefficients $r_j(\mu)$ can be interpreted as the numerical solution y_j of the multistep method applied to the homogeneous equation $y' = \mu y$ with step size h = 1, and with starting values $y_{-k+1} = \ldots = y_{-1} = 0$, $y_0 = (\alpha_k - \mu\beta_k)^{-1}$.

Formula (7.43') can be used to estimate e_m , if appropriate bounds for the coefficients $r_j(\mu)$ of the discrete resolvent are known. Such bounds are given in the following lemma.

Lemma 7.9. Let $S \subset \overline{\mathbb{C}}$ denote the stability region of the multistep method. a) If S is closed in $\overline{\mathbb{C}}$ then

$$|r_j(\mu)| \leq rac{M}{1+|\mu|}$$
 for $\mu \in S$ and $j = 0, 1, 2, \ldots$

b) If $D \subset \text{Int } S$ is closed in $\overline{\mathbb{C}}$ then there exists a constant $\kappa \ (0 < \kappa < 1)$ such that

$$|r_j(\mu)| \leq rac{M\kappa^j}{1+|\mu|} \quad ext{ for } \mu \in D ext{ and } j=0,1,2,\ldots$$

c) If the method is strictly stable then there exists a neighbourhood V of 0 such that

$$|r_j(\mu)| \le M e^{j(\operatorname{Re} \mu + a|\mu|^2)}$$
 for $\mu \in V$ and $j = 0, 1, 2, ...$

The constants M, κ , and a are independent of j and μ .

Proof. The estimates for $|r_j(\mu)|$ in (a), (b), and (c) can easily be deduced from Lemmas 7.3, 7.4, and 7.5 because $r_j(\mu)$ is the numerical solution for the problem $y' = \mu y$ with step size h = 1 and starting values $y_{-k+1} = \ldots = y_{-1} = 0$, $y_0 = (\alpha_k - \mu \beta_k)^{-1}$.

As noted by Crouzeix & Raviart (1976) and Lubich (1988) the estimates of Lemma 7.9 can be proved *directly*, without any use of the Kreiss matrix theorem. We illustrate these ideas by proving statement (b) (for a proof of statement (a) see Exercise 4).

By definition of the stability region the function $\zeta^k(\varrho(\zeta^{-1}) - \mu\sigma(\zeta^{-1}))$ does not vanish for $|\zeta| \leq 1$ if $\mu \in \text{Int } S$. Therefore there exists a $\kappa(0 < \kappa < 1)$ such that $\zeta^k(\varrho(\zeta^{-1}) - \mu\sigma(\zeta^{-1}))$ has no zeros in the disk $|\zeta| \leq 1/\kappa$. Hence, for $\mu \in D$

$$\sup_{|\zeta|\leq 1/\kappa} |ig(arphi^{-1})-\mu\sigma(\zeta^{-1})ig)^{-1}\zeta^{-k}|\leq rac{M}{1+|\mu|}\;,$$

and Cauchy's integral formula

$$r_{j}(\mu) = \frac{1}{2\pi i} \int_{|\zeta|=1/\kappa} \left(\varrho(\zeta^{-1}) - \mu \sigma(\zeta^{-1}) \right)^{-1} \zeta^{-k} \zeta^{-j-1} d\zeta$$
(7.46)

yields the desired estimate.

The use of the discrete resolvent allows elegant convergence proofs for linear multistep methods. We shall demonstrate this for the linear problem (7.26) where the matrix A satisfies

$$\|(sI-A)^{-1}\| \le \frac{M}{1+|s|}$$
 for $|\arg(s-c)| \le \pi - \alpha'$ (7.47)

with some $c \in \mathbb{R}$. This is a common assumption in the theory of holomorphic semigroups for parabolic problems (see e.g., Kato (1966) or Pazy (1983)). If all eigenvalues λ_i of A satisfy $|\arg(\lambda_i - c) - \pi| < \alpha'$ then Condition (7.47) is satisfied with a constant M depending on the matrix A (Exercise 2). The following theorem, which was communicated to us by Ch. Lubich, is an improvement of results of Crouzeix & Raviart (1976).

Theorem 7.10. Let the multistep method be of order $p \ge 1$, $A(\alpha)$ -stable and strictly stable at zero and at infinity. If the matrix A of (7.26) satisfies (7.47) with $\alpha' < \alpha$, then there exist constants C, h_0 , and γ (γ of the same sign as c in (7.47)), which depend only on M, c, α' and the method, such that for $h \le h_0$ the global error satisfies

$$\begin{aligned} \|y(x_m) - y_m\| \\ &\leq C \Big(e^{\gamma x_m} \max_{0 \leq j < k} \|y(x_j) - y_j\| + h^p \int_{x_0}^{x_m} e^{\gamma(x_m - \xi)} \|y^{(p+1)}(\xi)\| d\xi \Big) \ . \end{aligned}$$

Moreover, if $c \leq 0$, then h_0 can be chosen arbitrarily.

Proof. The global error $e_m = y(x_m) - y_m$ satisfies

$$\sum_{i=0}^{k} (\alpha_i - hA\beta_i)e_{m+i} = d_{m+k}$$

where

$$\|d_{m+k}\| \le Ch^p \int_{x_m}^{x_{m+k}} \|y^{(p+1)}(\xi)\| d\xi , \qquad m \ge 0$$
 (7.48)

and d_0, \ldots, d_{k-1} are linear combinations of the e_j and hAe_j with j < k. We split these expressions into

$$d_\ell = d_\ell' + hAd_\ell'' \qquad ext{for} \quad \ell < k$$

so that d'_{ℓ} and d''_{ℓ} are linear combinations of the e_j (j < k) only. We also put $d'_{\ell} = d_{\ell}$ and $d''_{\ell} = 0$ for $\ell \ge k$. The analysis at the beginning of this subsection (Formula (7.43)) then shows that

$$e(\zeta) = r(\zeta, hA)d'(\zeta) + r(\zeta, hA)hAd''(\zeta)$$
(7.49)

where as in the scalar case

$$r(\zeta, hA) = (\delta(\zeta)I - hA)^{-1} \frac{\zeta^{-k}}{\sigma(\zeta^{-1})} = \sum_{j \ge 0} r_j(hA)\zeta^j .$$
(7.50)

We now apply Lemma 7.11 below with $\Phi(s) = (sI - A)^{-1}$. By assumption the estimate (7.57) holds with $\beta = 1$ so that

$$\|r_j(hA)\| \le Ce^{\gamma jh} . \tag{7.51}$$

The second term in (7.49) can be written as

$$r(\zeta, hA)hA(\delta(\zeta))^{-1}\delta(\zeta)d''(\zeta) = r'(\zeta, hA)\widehat{d}(\zeta)$$
(7.52)

where

$$r'(\zeta, hA) = (\delta(\zeta)I - hA)^{-1}hA(\delta(\zeta))^{-1}\frac{\zeta^{-k}}{\sigma(\zeta^{-1})} = \sum_{j\geq 0} r'_j(hA)\zeta^j$$

$$\widehat{d}(\zeta) = \delta(\zeta)d''(\zeta) = \sum_{j\geq 0} \widehat{d}_j\zeta^j .$$
(7.53)

We apply Lemma 7.11 again, this time to

$$\Phi(s) = (sI - A)^{-1} A s^{-1} = (sI - A)^{-1} - s^{-1} I .$$

Condition (7.57) is satisfied with $\beta = 1$ so that

$$\|r'_{j}(hA)\| \leq C' e^{\gamma j h}$$
 (7.54)

The coefficients δ_j of $\delta(\zeta)$ are exponentially decaying because all zeros of $\sigma(\zeta)$ lie in $|\zeta| < 1$. Consequently we have

$$\|\widehat{d}_j\| \le \kappa^j \widehat{C} \max_{0 \le \ell < k} \|e_\ell\| \tag{7.55}$$

with some $\kappa < 1$. The coefficient of ζ^m in (7.49) gives

$$e_m = \sum_{j=0}^m r_{m-j}(hA)d'_j + \sum_{j=0}^m r'_{m-j}(hA)\widehat{d}_j$$
.

Inserting the estimates (7.48), (7.51), (7.54), and (7.55) proves the statement.

We still have to prove the estimates for $r_j(hA)$ and $r'_j(hA)$. For this we let $\Phi(s)$ be some analytic (scalar-, vector-, or matrix-valued) function and consider the coefficients of

$$\Phi(\delta(\zeta)/h) \cdot \frac{\zeta^{-k}}{\sigma(\zeta^{-1})} = h \sum_{j \ge 0} \varphi_j(h) \zeta^j .$$
(7.56)

We then have the following result.

Lemma 7.11 (Lubich 1990). Assume that the multistep method is $A(\alpha)$ -stable and strictly stable at zero and at infinity. Further suppose that $\Phi(s)$ is analytic in a sector $|\arg(s-c)| < \pi - \alpha'$ with $\alpha' < \alpha$, $c \in \mathbb{R}$ and there satisfies

$$\|\Phi(s)\| \leq M \cdot |s|^{-eta}$$
 for some $eta > 0$. (7.57)

Then the coefficients $\varphi_j(h)$ of (7.56) are bounded for $h \leq h_0$ (sufficiently small) by

$$\|\varphi_j(h)\| \leq C \cdot (jh)^{\beta-1} e^{\gamma jh} \qquad for \quad j \geq 1 ,$$
 (7.58)

and for j=0 the same bound holds as for j=1. The constants C, γ , and h_0 depend only on α' , c, M, β , and the multistep method. Moreover, if c < 0, then also $\gamma < 0$, and the result holds for arbitrary h_0 .

Proof. By $A(\alpha)$ -stability we have $\beta_k/\alpha_k > 0$, so that $\delta(0)/h$ lies in the region of analyticity of Φ for $h \leq h_0$. Cauchy's integral formula thus gives

$$\Phi(\delta(\zeta)/h) = \frac{1}{2\pi i} \int_{\Gamma} (\delta(\zeta)/h - \lambda)^{-1} \Phi(\lambda) d\lambda$$
(7.59)

where Γ is a suitable contour from " $\infty \cdot e^{-i(\pi-\alpha')}$ " to " $\infty \cdot e^{i(\pi-\alpha')}$ " within the sector of analyticity of Φ and does not meet the origin (see Fig. 7.1; observe that $\Phi(s)$ decays sufficiently rapidly at infinity). Multiplying (7.59) by $\zeta^{-k}/\sigma(\zeta^{-1})$ and comparing coefficients of equal powers of ζ yields the representation

$$arphi_{j}(h) = rac{1}{2\pi i} \int_{\Gamma} r_{j}(h\lambda) \Phi(\lambda) d\lambda \;, \qquad j \geq 0$$
 (7.60)

which is a discrete analogue of the Laplace inversion formula. We next substitute $\omega = jh\lambda$ (for j = 0 we put $\omega = h\lambda$) so that with $\Gamma_j = jh \cdot \Gamma$ Formula

(7.60) becomes

$$\varphi_j(h) = \frac{1}{2\pi i} \int_{\Gamma_j} r_j\left(\frac{\omega}{j}\right) \Phi\left(\frac{\omega}{jh}\right) \frac{d\omega}{jh} , \qquad j \ge 1 , \qquad (7.61)$$

and the use of (7.57) yields

$$\|\varphi_{j}(h)\| \leq \frac{M}{2\pi} (jh)^{\beta-1} \int_{\Gamma_{j}} \left| r_{j}\left(\frac{\omega}{j}\right) \right| \cdot |\omega|^{-\beta} \cdot |d\omega| .$$
(7.62)

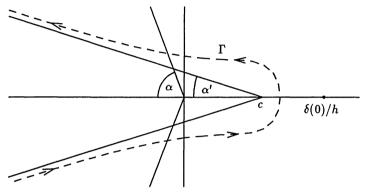


Fig. 7.1. Contour Γ in Formula (7.59)

We still have to show that the integral in (7.62) is bounded by $C \cdot e^{\gamma j h}$. For this we split it into two parts: the first one corresponds to those ω such that ω/j lies in a closed subset of the interior of the stability domain of the method. There we can use Lemma 7.9b so that the corresponding part of the integral in (7.62) is bounded by

$$j \cdot \kappa^j \int |\omega|^{-eta-1} |d\omega| \leq C e^{\gamma j h} \qquad ext{for} \quad h \leq h_0 \; .$$

For the remaining part, the argument $\omega/j = h\lambda$ of r_j in (7.62) lies, for sufficiently small h_0 , in a neighbourhood V of the origin, where the estimate of Lemma 7.9c holds. For $jh \ge 1$ we thus obtain the bound

$$\int e^{{f Re}\,\omega+a|\omega|^2/j}|\omega|^{-eta}|d\omega|\leq Ce^{\gamma jh}\;,$$

because $\operatorname{Re} \omega = jh\operatorname{Re} \lambda$, $|\omega|^2/j \leq jh \cdot Const$ and $|\omega| \geq |\lambda|$ is bounded away from the origin. For small jh the contour Γ_j comes arbitrarily close to the origin so that a more refined estimate is required. The idea is to replace the corresponding part of Γ_j (in (7.61) and hence also in (7.62)) by an equivalent contour which is independent of $jh \in [h, 1]$, has a positive distance to the origin and remains in the neighbourhood V. The corresponding integral is thus bounded by some constant. **Remark 7.12.** In Lemma 7.11 it is sufficient to require the analyticity of $\Phi(s)$ and the estimate (7.57) in a sector $|\arg(s-c)| < \pi - \alpha'$, where some compact neighbourhood of the origin is removed. We just have to take the contour Γ in (7.59) so that it lies outside this compact neighbourhood of 0. In this situation, the constant γ may be positive also if c < 0.

Exercises

1. Prove the Cauchy integral formula (7.18) in the case where all eigenvalues λ of A satisfy $|\lambda| \leq 1$ and the contour of integration is the circle $|z| = \rho$ with $\rho > 1$.

Hint. Integrate the identity

$$z^n(zI-A)^{-1} = \sum_{j=0}^{\infty} A^j z^{n-j-1}$$

2. (Kato 1960). For a non-singular $k \times k$ -matrix B show that in the Euclidean norm

$$\|B^{-1}\| \le \frac{\|B\|^{k-1}}{|\det B|}$$

Hint. Use the singular value decomposition of B, i.e., $B = U^T \Lambda V$, where U and V are orthogonal and $\Lambda = \text{diag}(\sigma_1, \ldots, \sigma_k)$ with $\sigma_1 \ge \sigma_2 \ge \ldots > \sigma_k > 0$.

3. A method (ϱ, σ) is called *A-contractive* in the norm $\|\cdot\|_G$ (Nevanlinna & Liniger 1978-79, Dahlquist & Söderlind 1982), if

 $\|C(\mu)\|_G \leq 1$ for $\operatorname{Re} \mu \leq 0$

where $C(\mu)$ is the companion matrix (7.13).

a) Prove that a method (ρ, σ) is A-contractive for some positive definite matrix G, if and only if it is A-stable.

b) Compute the contractivity region

$$\left\{\mu\in\mathbb{C}; \ \|C(\mu)\|_G\leq 1\right\}$$

for the 2-step BDF method with G given in (6.20). Observe that it is strictly smaller than the stability domain.

Result. The contractivity region is $\{\mu \in \mathbb{C}; Re \mu \leq 0\}$.

Give a direct proof for the statement of Lemma 7.9a. Hint. Observe that

$$r(\zeta,\mu) = \frac{1}{\alpha_k - \mu \beta_k} \prod_{i=1}^k \frac{1}{(1 - \zeta \cdot \zeta_i(\mu))}$$
(7.63)

where $\zeta_1(\mu), \ldots, \zeta_k(\mu)$ are the k zeros of $\varrho(\zeta) - \mu \sigma(\zeta)$. If $\mu_0 \in \text{Int } S$ then there exists a neighbourhood \mathcal{U} of μ_0 such that $|\zeta_i(\mu)| \leq a < 1$ for all i and $\mu \in \mathcal{U}$. Hence the coefficients $r_j(\mu)$ are bounded. For $\mu_0 \in \partial S$ we have $|\zeta_i(\mu_0)| = 1$ for, say, $i = 1, \ldots, \ell$ with $1 \leq \ell \leq k$. These ℓ zeros are simple for all μ in a sufficiently small neighbourhood \mathcal{U} of μ_0 and the other zeros satisfy $|\zeta_i(\mu)| \leq a < 1$ for $\mu \in \mathcal{U} \cap S$. A partial fraction decomposition

$$r(\zeta,\mu) = \frac{1}{\alpha_k - \mu \beta_k} \left(\sum_{i=1}^{\ell} \frac{c_i(\mu)}{1 - \zeta \cdot \zeta_i(\mu)} + s(\zeta,\mu) \right)$$

shows that

$$r_{j}(\mu) = \frac{1}{\alpha_{k} - \mu \beta_{k}} \left(\sum_{i=1}^{\ell} c_{i}(\mu) (\zeta_{i}(\mu))^{j} + s_{j}(\mu) \right)$$
(7.64)

where $s_j(\mu)$ are the coefficients of $s(\zeta, \mu)$. Since $s(\zeta, \mu)$ is uniformly bounded for $|\zeta| \leq 1$ and $\mu \in \mathcal{U} \cap S$, it follows from Cauchy's integral formula with integration along $|\zeta| = 1$ that $s_j(\mu)$ is bounded. The statement thus follows from (7.64) and the fact that a finite set of the family $\{\mathcal{U}\}_{\mu_0 \in S}$ covers S (Heine-Borel).

V.8. Convergence for Nonlinear Problems

In Section V.6 we have seen a convergence result for one-leg methods (Theorem 6.10) applied to nonlinear problems satisfying a one-sided Lipschitz condition. An extension to linear multistep methods has been given in Theorem 6.11. A different and direct proof of this result will be the first goal of this section. Unfortunately, such a result is valid only for A-stable methods (whose order cannot exceed two). The subsequent parts of this section are then devoted to convergence results for nonlinear problems, where the assumptions on the method are relaxed (e.g., $A(\alpha)$ -stability), but the class of problems considered is restricted. We shall present two different theories: the multiplier technique of Nevanlinna & Odeh (1981) and Lubich's perturbation approach via the discrete variation of constants formula (Lubich 1990).

Problems Satisfying a One-Sided Lipschitz Condition

Suppose that the differential equation y' = f(x, y) satisfies

$$\operatorname{Re}\left\langle f(x,y) - f(x,z) \,, \, y - z \right\rangle \leq \nu \|y - z\|^2 \tag{8.1}$$

for some inner product. We consider the linear multistep method

$$\sum_{i=0}^{k} \alpha_i y_{m+i} = h \sum_{i=0}^{k} \beta_i f(x_{m+i}, y_{m+i})$$
(8.2)

together with its perturbed formula

$$\sum_{i=0}^{k} \alpha_i \, \widehat{y}_{m+i} = h \sum_{i=0}^{k} \beta_i \, f(x_{m+i}, \widehat{y}_{m+i}) + d_{m+k} \, . \tag{8.3}$$

The perturbations d_{m+k} can be interpreted as the influence of round-off, as the error due to the iterative solution of the nonlinear equation, or as the local discretization error (compare Formula (7.5)). Taking the difference of

(8.3) and (8.2) we obtain (for $m \ge 0$)

$$\sum_{i=0}^{k} \alpha_{i} \Delta y_{m+i} = h \sum_{i=0}^{k} \beta_{i} \Delta f_{m+i} + d_{m+k} , \qquad (8.4)$$

where we have introduced the notation

$$\Delta y_j = \widehat{y}_j - y_j , \qquad \Delta f_j = f(x_j, \widehat{y}_j) - f(x_j, y_j) . \tag{8.5}$$

The one-sided Lipschitz condition cannot be used directly, because several Δf_j appear in (8.4) (in contrast to one-leg methods). In order to express one Δf_m in terms of Δy_j only we introduce the formal power series

$$\Delta y(\zeta) = \sum_{j \ge 0} \Delta y_j \, \zeta^j \, , \quad \Delta f(\zeta) = \sum_{j \ge 0} \Delta f_j \, \zeta^j \, , \quad d(\zeta) = \sum_{j \ge 0} d_j \, \zeta^j \, .$$

It is convenient to assume that $\Delta y_j = 0$, $\Delta f_j = 0$, $d_j = 0$ for negative indices and that d_0, \ldots, d_{k-1} are defined by Formula (8.4) with $m \in \{-k, \ldots, -1\}$. Then Equation (8.4) just compares the coefficient of ζ^m in the identity

$$\varrho(\zeta^{-1})\,\Delta y(\zeta) = h\sigma(\zeta^{-1})\,\Delta f(\zeta) + \zeta^{-k}d(\zeta) \;. \tag{8.4'}$$

Dividing (8.4') by $\sigma(\zeta^{-1})$ and comparing the coefficients of ζ^m yields

$$\sum_{j=0}^{m} \delta_{m-j} \, \Delta y_j = h \Delta f_m + \tilde{d}_m \,, \tag{8.6}$$

where

$$\frac{\varrho(\zeta^{-1})}{\sigma(\zeta^{-1})} = \delta(\zeta) = \sum_{j \ge 0} \delta_j \zeta^j \tag{8.7}$$

as in (7.45) and

$$\frac{\zeta^{-k}}{\sigma(\zeta^{-1})} d(\zeta) = \widetilde{d}(\zeta) = \sum_{j \ge 0} \widetilde{d}_j \zeta^j .$$
(8.8)

In (8.6) Δf_m is now isolated as desired and we can take the scalar product of (8.6) with Δy_m . We then exploit the assumption (8.1) and obtain

$$\sum_{j=0}^{m} \delta_{m-j} \operatorname{Re} \left\langle \Delta y_{j}, \Delta y_{m} \right\rangle \leq h \nu \|\Delta y_{m}\|^{2} + \operatorname{Re} \left\langle \widetilde{d}_{m}, \Delta y_{m} \right\rangle .$$

$$(8.9)$$

This allows us to prove the following estimate.

Lemma 8.1. Let $\{\Delta y_i\}$ and $\{\Delta f_i\}$ satisfy (8.6) with δ_i given by (8.7). If

$$\operatorname{Re}\left\langle \Delta f_{m}\,,\;\Delta y_{m}
ight
angle \leq
u\|\Delta y_{m}\|^{2}\;,\qquad m\geq0\;,$$

and the method is A-stable, then there exist constants C and $C_0 > 0$ such that for $mh \le x_{end} - x_0$ and $h\nu \le C_0$,

$$\|\Delta y_{\boldsymbol{m}}\| \leq C \sum_{j=0}^{\boldsymbol{m}} \|\widetilde{d}_{j}\| \; .$$

Proof. We first reformulate the left-hand side of (8.9). For this we introduce $\{\Delta z_i\}$ by the relation

$$\sum_{i=0}^{k} \beta_i \Delta z_{m+i} = \Delta y_m , \qquad m \ge 0$$
(8.10)

and assume that $\Delta z_j = 0$ for j < k. With $\Delta z(\zeta) = \sum_j \Delta z_j \zeta^j$ this means that $\sigma(\zeta^{-1})\Delta z(\zeta) = \Delta y(\zeta)$. Consequently we also have

$$\delta(\zeta) \Delta y(\zeta) = \varrho(\zeta^{-1}) \Delta z(\zeta) ,$$

which is equivalent to

$$\sum_{j=0}^{m} \delta_{m-j} \Delta y_j = \sum_{i=0}^{k} \alpha_i \Delta z_{m+i} . \qquad (8.11)$$

Inserting (8.11) and (8.10) into (8.9) yields

$$\begin{split} \operatorname{Re} \Big\langle \sum_{i=0}^{k} \alpha_{i} \, \Delta z_{m+i} \,, \, \sum_{i=0}^{k} \beta_{i} \, \Delta z_{m+i} \Big\rangle \\ & \leq h \nu \Big\| \sum_{i=0}^{k} \beta_{i} \, \Delta z_{m+i} \Big\|^{2} + \operatorname{Re} \Big\langle \widetilde{d}_{m}, \sum_{i=0}^{k} \beta_{i} \, \Delta z_{m+i} \Big\rangle \;. \end{split}$$

By Theorem 6.7 the method (ϱ, σ) is also G-stable, so that Formula (6.21) can be applied. As in the proof of Lemma 6.9 this yields for $\Delta Z_m = (\Delta z_{m+k-1}, \ldots, \Delta z_m)^T$ and $\nu \geq 0$

$$\|\Delta Z_{m+1}\|_G \le (1+C_1h
u)\|\Delta Z_m\|_G + C_2\|\widehat{d}_m\|$$
,

(if $\nu < 0$ replace ν by $\nu = 0$). But this implies

$$\|\Delta Z_{m+1}\|_G \le C_3 \Big(\|\Delta Z_0\|_G + \sum_{j=0}^m \|\tilde{d}_j\| \Big) .$$

By definition of Δz_j we have $\Delta Z_0 = 0$. The statement now follows from the fact that $\|\Delta y_m\| \leq C_4 (\|\Delta Z_{m+1}\|_G + \|\Delta Z_m\|_G)$.

This lemma allows a direct proof for the convergence of A-stable multistep methods which are strictly stable at infinity (compare Theorem 6.11).

Theorem 8.2. Consider an A-stable multistep method of order p which is strictly stable at infinity. Suppose that the differential equation satisfies (8.1). Then there exists $C_0 > 0$ such that for $h\nu \leq C_0$

$$\|y_m - y(x_m)\| \le C \Big(\max_{0 \le j < k} \|y_j - y(x_j)\| + h \max_{0 \le j < k} \|f(x_j, y_j) - y'(x_j)\|\Big) + Mh^p \; .$$

The constant C depends on the method and, for $\nu > 0$, on the length $x_m - x_0$ of the integration interval; the constant M depends in addition on bounds for the (p+1)-th derivative of the exact solution.

Proof. We put $\hat{y}_m = y(x_m)$ in (8.3). The perturbations thus become the local truncation errors $d_{m+k} = \delta_{LM}(x_m)$, where

$$\delta_{LM}(x) = \sum_{i=0}^{k} \alpha_i \, y(x+ih) - h \sum_{i=0}^{k} \beta_i \, y'(x+ih) \,. \tag{8.12}$$

If the zeros of $\sigma(\zeta)$ all lie inside the unit circle, then the coefficients of $\zeta^{-k}/\sigma(\zeta^{-1})$ are absolutely summable and by (8.8) we have

$$\sum_{j=0}^m \|\widetilde{d}_j\| \leq C_1 \sum_{j=0}^m \|d_j\|$$
 .

The statement then follows from Lemma 8.1, from $\|\delta_{LM}(x)\| \leq Mh^{p+1}$, and from the fact that d_0, \ldots, d_{k-1} are linear combinations of the $y_j - y(x_j)$ and $h(f(x_j, y_j) - y'(x_j))$ for j < k.

Multiplier Technique

The above convergence proof is based on Formula (8.6) and on the A-stability of the multistep method. How can we modify this proof in order to get convergence results also for methods which are not A-stable? This can be done by the so-called "multiplier technique", introduced by Nevanlinna & Odeh (1981) and based on previous ideas of Nevanlinna (1977) and Odeh & Liniger (1977).

The main idea is the following: instead of multiplying scalarly the identity (8.6) by Δy_m , we multiply it by

$$\sum_{j=0}^m \mu_{m-j}\,\Delta y_j$$

where $\{\mu_i\}$ are the coefficients of a rational function (the multiplier)

$$\mu(\zeta) = \sum_{j \ge 0} \mu_j \zeta^j = \frac{\eta(\zeta^{-1})}{\tau(\zeta^{-1})}$$
(8.13)

(η and τ are polynomials). We obtain

$$\operatorname{Re}\left\langle\sum_{j=0}^{m}\delta_{m-j}\,\Delta y_{j}\,,\,\sum_{j=0}^{m}\mu_{m-j}\,\Delta y_{j}\right\rangle = h\operatorname{Re}\left\langle\Delta f_{m},\sum_{j=0}^{m}\mu_{m-j}\,\Delta y_{j}\right\rangle + \left\langle\widetilde{d}_{m},\sum_{j=0}^{m}\mu_{m-j}\,\Delta y_{j}\right\rangle.$$
(8.14)

Our next aim is to introduce new variables Δz_j such that the left-hand side of (8.14) becomes

$$\left\langle \sum_{j=0}^{m} \delta_{m-j} \,\Delta y_j \,, \, \sum_{j=0}^{m} \mu_{m-j} \,\Delta y_j \right\rangle = \left\langle \sum_{i=0}^{\ell} \widetilde{\alpha}_i \,\Delta z_{m+i} \,, \, \sum_{i=0}^{\ell} \widetilde{\beta}_i \,\Delta z_{m+i} \right\rangle \,. \tag{8.15}$$

Denoting

$$\widetilde{\varrho}(\zeta) = \sum_{i=0}^{\ell} \widetilde{\alpha}_i \zeta^i , \qquad \widetilde{\sigma}(\zeta) = \sum_{i=0}^{\ell} \widetilde{\beta}_i \zeta^i , \qquad (8.16)$$

the identity (8.15) certainly holds, if

$$\varrho(\zeta^{-1}) \Delta y(\zeta) = \sigma(\zeta^{-1}) \widetilde{\varrho}(\zeta^{-1}) \Delta z(\zeta)
\eta(\zeta^{-1}) \Delta y(\zeta) = \tau(\zeta^{-1}) \widetilde{\sigma}(\zeta^{-1}) \Delta z(\zeta) .$$
(8.17)

Dividing these two relations motivates the following definition of the new generating polynomials

$$\widetilde{\varrho}(\zeta) = \varrho(\zeta)\tau(\zeta)/\chi(\zeta) , \qquad \widetilde{\sigma}(\zeta) = \sigma(\zeta)\eta(\zeta)/\chi(\zeta) .$$
 (8.18)

Here $\chi(\zeta)$ denotes the greatest common divisor of $\varrho(\zeta)\tau(\zeta)$ and $\sigma(\zeta)\eta(\zeta)$. If we define $\Delta z_j = 0$ for j < 0 and the remaining Δz_j by

$$\chi(\zeta^{-1})\Delta y(\zeta) = \sigma(\zeta^{-1})\tau(\zeta^{-1})\Delta z(\zeta)$$
(8.19)

the identity (8.15) holds for all m. Suppose now that the multistep method $(\tilde{\varrho}, \tilde{\sigma})$ is A-stable, then the left hand side of (8.14) can be minorized by the G-stability estimate (6.21) and we shall be able to derive convergence results. This motivates the following

Definition 8.3. The rational function $\mu(\zeta)$ of (8.13) is called a *multiplier* for (ρ, σ) if $\mu(\zeta) \neq \rho(\zeta^{-1})/\sigma(\zeta^{-1})$ and if the method $(\tilde{\rho}, \tilde{\sigma})$, given by (8.18) is A-stable, i.e., if

$$\operatorname{Re}\left(\frac{1}{\mu(\zeta^{-1})}\cdot\frac{\varrho(\zeta)}{\sigma(\zeta)}\right) > 0 \qquad \text{for} \quad |\zeta| > 1 \;. \tag{8.20}$$

A continuation of the above analysis yields the following convergence result.

Lemma 8.4. Let $\{\Delta y_i\}$ and $\{\Delta f_i\}$ satisfy (8.6) with δ_i given by (8.7). If

$$\sum_{m=0}^{N} \sum_{j=0}^{m} \mu_{m-j} \operatorname{Re} \left\langle \Delta f_{m} \,, \, \Delta y_{j}
ight
angle \leq 0 \quad \textit{ for all } \quad N \geq 0$$

and if $\mu(\zeta)$ is a multiplier for the method, then there exists a constant C such that for $mh \le x_{end} - x_0$

$$\|\Delta y_m\| \leq C \sum_{j=0}^m \|\widetilde{d}_j\|$$
 .

Proof. Inserting (8.15) into (8.14) and using the estimate (6.21) for the A-stable method $(\tilde{\varrho}, \tilde{\sigma})$ yields for $\Delta Z_m = (\Delta z_{m+\ell-1}, \ldots, \Delta z_m)^T$

$$\begin{split} \|\Delta Z_{m+1}\|_{G}^{2} - \|\Delta Z_{m}\|_{G}^{2} &\leq h \operatorname{Re}\left\langle\Delta f_{m}, \sum_{j=0}^{m} \mu_{m-j} \Delta y_{j}\right\rangle \\ &+ \|\widetilde{d}_{m}\| \cdot \left\|\sum_{i=0}^{\ell} \widetilde{\beta}_{i} \Delta z_{m+i}\right\|. \end{split}$$

$$(8.21)$$

Summing up this inequality from m=0 to m=N gives

$$\|\Delta Z_{N+1}\|_G^2 \le C_1 \sum_{m=0}^N \|\widetilde{d}_m\| \cdot (\|\Delta Z_{m+1}\|_G + \|\Delta Z_m\|_G)$$

because $\Delta Z_0 = 0$ by (8.19). This also implies

$$\max_{N \le M} \|\Delta Z_{N+1}\|_{G}^{2} \le 2C_{1} \sum_{m=0}^{M} \|\widetilde{d}_{m}\| \cdot \max_{m \le M} \|\Delta Z_{m+1}\|_{G}$$

A division by $\max_{N \leq M} \|\Delta Z_{N+1}\|_G$ yields the desired estimate, because Δy_M is a linear combination of the elements of ΔZ_{M+1} .

The proof of Theorem 8.2 applied to the A-stable method $(\tilde{\varrho}, \tilde{\sigma})$ now yields:

Theorem 8.5 (Nevanlinna & Odeh 1981). Consider a linear multistep method (8.2) of order p, which is strictly stable at infinity and has a multiplier $\mu(\zeta)$. Suppose that the differential equation satisfies

$$\sum_{m=0}^{N} \sum_{j=0}^{m} \mu_{m-j} \operatorname{Re} \left\langle f(x_m, u_m) - f(x_m, v_m), \, u_j - v_j \right\rangle \le 0$$
(8.22)

for all $N \ge 0$ and for all sequences $\{u_i\}$ and $\{v_i\}$. Then we have

$$\|y_m - y(x_m)\| \le C \Big(\max_{0 \le j < k} \|y_j - y(x_j)\| + h \max_{0 \le j < k} \|f(x_j, y_j) - y'(x_j)\| \Big) + Mh^p ,$$

where the constants C and M are as in Theorem 8.2.

In the next two subsections we shall study the existence and construction of multipliers, and try to better understand the condition (8.22).

Construction of Multipliers

"... the best of all multipliers would be $\{1, -\eta\}$ with a very small $\eta > 0$; ..." (Nevanlinna & Odeh 1981)

Obviously $\mu(\zeta) = 1$ is a multiplier iff the method itself is A-stable. Moreover, the limit $|\zeta| \to \infty$ in (8.20) shows that $\mu(0)$ must have the same sign as α_k/β_k (which we always assume to be positive). Therefore, the simplest (and most important) nontrivial multiplier has the form

$$\mu(\zeta) = 1 - \eta \zeta . \tag{8.23}$$

Suppose now that the method (ϱ, σ) is stable at infinity. The maximum principle for harmonic functions then implies that (8.23) is a multiplier for (ϱ, σ) iff $|\eta| \leq 1$ and

$$\mathrm{Re}\left((1\!-\!\eta e^{it})rac{arrho(e^{it})}{\sigma(e^{it})}
ight)\geq 0 \qquad ext{ for all } t\in \mathsf{R} \;.$$

This condition motivates the study of

$$\gamma(t) = \left(\operatorname{Re}\left(\frac{\varrho(e^{it})}{\sigma(e^{it})} \right), -\operatorname{Re}\left(e^{it}\frac{\varrho(e^{it})}{\sigma(e^{it})}\right) \right), \quad (8.24)$$

which is called the *modified root-locus* curve by Nevanlinna & Odeh (1981). We then have:

Criterion 8.6. Consider a method which is stable at infinity. The function (8.23) is a *multiplier for* (ϱ, σ) iff $|\eta| \leq 1$ and the modified root-locus curve lies to the right of the straight line through the origin with slope $-1/\eta$.

Fig. 8.1 shows the modified root-locus curves for the BDF schemes for $2 \le k \le 6$. The optimal values for η are given in Table 8.1.

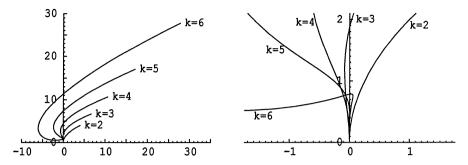


Fig. 8.1. Modified root-locus curve for BDF schemes

Table 8.1. Multiplier for BDF schemes				
k	η	$\arccos \eta$	$A(lpha) ext{-stable}$	
2	0	$\pi/2$	$\pi/2$	
3	0.0836	85.20°	86.03°	
4	0.2878	73.27°	73.35°	
5	0.8160	35.32°	51.84°	
6	5.0130		17.84°	

Table 8.1. Multiplier for BDF schemes

An interesting property of multipliers is the following.

Proposition 8.7. If $\mu(\zeta)$ is a multiplier for (ϱ, σ) and we have

$$|\arg \mu(\zeta)| \leq rac{\pi}{2} - lpha \qquad for \quad |\zeta| \leq 1 \tag{8.25}$$

then the method is $A(\alpha)$ -stable.

Proof. Condition (8.20) together with (8.25) implies that

$$\Big| rg \Big(rac{arrho(\zeta)}{\sigma(\zeta)} \Big) - \pi \Big| \geq lpha \qquad ext{ for } \quad |\zeta| \geq 1 \; .$$

But this condition implies $A(\alpha)$ -stability.

A simple calculation shows that the multiplier (8.23) satisfies (8.25) with $\alpha = \arccos \eta$. For the BDF schemes we have included these values in Table 8.1 together with the α -values for linear stability.

Multipliers and Nonlinearities

We still have to investigate the problem under what conditions on the multiplier $\mu(\zeta)$ and on the function f(x, y) one has (8.22) for all sequences $\{u_j\}$ and $\{v_j\}$. To get an idea of the nature of (8.22) we first look, following Nevanlinna & Odeh (1981), at the linear problem y' = Ay.

Proposition 8.8. If the multiplier $\mu(\zeta)$ satisfies (8.25) and if the range of the matrix A lies in the sector $|\arg(Au,u) - \pi| \leq \alpha$ for all $u \in \mathbb{C}^n$, then we have

$$\sum_{m=0}^{N} \sum_{j=0}^{m} \mu_{m-j} \operatorname{Re} \langle A u_m, u_j \rangle \leq 0$$
(8.26)

for all $N \ge 0$ and all sequences $\{u_i\}$.

Proof. A direct computation shows that the expression in (8.26) equals

$$\operatorname{Re}\left(\frac{1}{2\pi}\int_{0}^{2\pi}\mu(e^{it})\langle A\widehat{u}_{N}(t),\widehat{u}_{N}(t)\rangle dt\right)$$
(8.27)

where

$$\widehat{u}_N(t) = \sum_{j=0}^N e^{-ijt} u_j$$

denotes the Fourier transform of (u_0, u_1, \ldots, u_N) . The assumptions on $\mu(\zeta)$ and on A imply that the integrand in (8.27) has non-positive real part. This proves (8.26).

Problems which satisfy (8.22) for some multiplier $\mu(\zeta)$ must also satisfy the one-sided Lipschitz condition (8.1) with $\nu = 0$ (this is seen by putting N = 0 in (8.22)). A class of nonlinear problems, for which (8.22) holds, is given by the following perturbation result.

Proposition 8.9. Let f(x,y) = -Ay + Ag(x,y) where A is a symmetric and positive semi-definite matrix. With $||u||_A^2 = u^T Au$ suppose that

$$\|g(x,y) - g(x,z)\|_{A} \le L \|y - z\|_{A} .$$
(8.28)

Then Condition (8.22) holds if

$$L \cdot \max_{|\zeta|=1} |\mu(\zeta)| \le \min_{|\zeta|=1} \operatorname{Re} \mu(\zeta)$$
 (8.29)

Remark. For the multiplier (8.23) Condition (8.29) is equivalent to $L \cdot (1+\eta) \leq (1-\eta)$.

Proof. As in the proof of Proposition 8.8 we get for $w_j = u_j - v_j$

$$-\sum_{m=0}^{N}\sum_{j=0}^{m}\mu_{m-j}\operatorname{Re}\langle Aw_{m},w_{j}\rangle = -\operatorname{Re}\left(\frac{1}{2\pi}\int_{0}^{2\pi}\mu(e^{it})\langle A\widehat{w}_{N}(t),\widehat{w}_{N}(t)\rangle dt\right)$$
$$\leq -m_{0}\frac{1}{2\pi}\int_{0}^{2\pi}\langle A\widehat{w}_{N}(t),\widehat{w}_{N}(t)\rangle dt = -m_{0}\sum_{j=0}^{N}\langle Aw_{j},w_{j}\rangle$$
(8.30)

where $m_0 = \min \operatorname{Re} \mu(e^{it})$. On the other hand, the inequality of Cauchy-Schwarz gives

$$\sum_{m=0}^{N} \operatorname{Re} \left\langle A(g(x_{m}, u_{m}) - g(x_{m}, v_{m})), \sum_{j=0}^{m} \mu_{m-j}(u_{j} - v_{j}) \right\rangle$$

$$\leq \left(\sum_{m=0}^{N} \left\| g(x_{m}, u_{m}) - g(x_{m}, v_{m}) \right\|_{A}^{2} \right)^{1/2} \cdot \left(\sum_{m=0}^{N} \left\| \sum_{j=0}^{m} \mu_{m-j}(u_{j} - v_{j}) \right\|_{A}^{2} \right)^{1/2}.$$
(8.31)

The last term in (8.31) can be estimated as (for the moment put $w_j = 0$ for j > N)

$$\begin{split} \sum_{m=0}^{N} \left\| \sum_{j=0}^{m} \mu_{m-j} \, w_{j} \right\|_{A}^{2} &\leq \frac{1}{2\pi} \int_{0}^{2\pi} \left\| \sum_{m \geq 0} e^{-imt} \sum_{j=0}^{m} \mu_{m-j} \, w_{j} \right\|_{A}^{2} dt \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} |\mu(e^{-it})|^{2} \cdot \left\| \sum_{j \geq 0} e^{-ijt} w_{j} \right\|_{A}^{2} dt \leq M^{2} \sum_{j=0}^{N} \|w_{j}\|_{A}^{2} \end{split}$$

where $M = \max |\mu(e^{-it})|$. These estimates together with (8.28) show that the expression in (8.22) is majorized by

$$(L \cdot M - m_0) \sum_{j=0}^N \|u_j - v_j\|_A^2$$

This is non-positive if (8.29) holds.

Discrete Variation of Constants and Perturbations

We now turn our attention to the perturbation approach of Lubich (1990), which extends the ideas of Section V.7 (discrete variation of constants) to nonlinear problems. For this we consider nonlinear differential equations written in the form

$$y' = Ay + g(t, y)$$
. (8.32)

Inserting this equation into Formulas (8.2), (8.3), and (8.4) we get

$$\sum_{i=0}^{k} (\alpha_i I - hA\beta_i) \Delta y_{m+i} = h\Delta g_{m+k} + d_{m+k}$$
(8.33)

where

$$\Delta g_{m+k} = \sum_{i=0}^{k} \beta_i \Big(g(x_{m+i}, \hat{y}_{m+i}) - g(x_{m+i}, y_{m+i}) \Big)$$
(8.34)

for $m \ge 0$. We further put $\Delta g_j = 0$ for j < k. Recall that d_j (for $j \ge k$) are usually the local truncation errors and d_0, \ldots, d_{k-1} are defined by (8.33) with $m \in \{-1, \ldots, -k\}$. The differences Δy_j are then the global errors of the method. If we introduce the formal power series

$$\Delta y(\zeta) = \sum_{j \ge 0} \Delta y_j \zeta^j \,, \quad \Delta g(\zeta) = \sum_{j \ge 0} \Delta g_j \zeta^j \,, \quad d(\zeta) = \sum_{j \ge 0} d_j \zeta^j$$

then the recursion (8.33) can be written as

$$\Delta y(\zeta) = r(\zeta, hA) \left(h \Delta g(\zeta) + d(\zeta) \right) . \tag{8.35}$$

The resolvent $r(\zeta, hA)$ was introduced in (7.44) and (7.50). The coefficient of ζ^m in (8.35) then yields

$$\Delta y_m = h \sum_{j=0}^m r_{m-j}(hA) \Delta g_j + \sum_{j=0}^m r_{m-j}(hA) d_j .$$
 (8.36)

The second sum on the right-hand side of (8.36) can be estimated as in Section V.7. In order to estimate the first term we have to combine estimates for $r_j(hA)$ with a Lipschitz condition for g(x,y). This will lead to a Gronwalltype inequality, whose resolution gives the desired estimates for Δy_m . Let us illustrate this procedure in a simple situation.

Theorem 8.10. Let the multistep method and the matrix A satisfy the assumptions of Theorem 7.10. If the nonlinearity g(x, y) satisfies

$$||g(x,y) - g(x,z)|| \le L||y - z||$$
(8.37)

then there exist constants C, h_0 and γ as in Theorem 7.10, and Λ (h_0 and Λ depend on L) such that

$$\begin{aligned} \|y(x_m) - y_m\| \\ &\leq C e^{\Lambda x_m} \left(\max_{0 \leq j < k} \|y(x_j) - y_j\| + h^p \int_{x_0}^{x_m} e^{\gamma(x_m - \xi)} \|y^{(p+1)}(\xi)\| d\xi \right) \,. \end{aligned}$$

Proof. It follows from the proof of Theorem 7.10 and from (8.36) that

$$\|\Delta y_m\| \le hLC_1 \sum_{j=0}^m e^{\gamma(m-j)h} \|\Delta y_j\| + C_2 \sum_{j=0}^m e^{\gamma(m-j)h} \varepsilon_j$$
(8.38)

where (with $0 \le \kappa < 1$)

$$\varepsilon_m = C_0 \left(\kappa^m \max_{0 \le j < k} \|\Delta y_j\| + h^p \int_{x_{m-k}}^{x_m} \|y^{(p+1)}(\xi)\| d\xi \right)$$

Application of Exercise 1 to the sequence $\{e^{-\gamma mh} \| \Delta y_m \|\}$ yields the conclusion.

Recently, Lubich (1990) has shown how the above estimates can be improved to obtain convergence results for singularly perturbed problems and for discretized nonlinear parabolic equations. We shall present his results on parabolic problems in the next subsections. The result on singularly perturbed problems will be given in Section VI.1.

Incompressible Navier-Stokes Equations

Let us consider the incompressible Navier-Stokes equations

$$\frac{\partial \mathbf{u}}{\partial t} + \sum_{i=1}^{d} u_i \frac{\partial \mathbf{u}}{\partial x_i} = \frac{1}{R} \Delta \mathbf{u} - \operatorname{\mathbf{grad}} p , \qquad \operatorname{div} \mathbf{u} = 0 \qquad (8.39)$$

where $\mathbf{u} = (u_1, \ldots, u_d)^T$ and R denotes the Reynolds number. In order to get a concrete idea of what a finite difference (or finite element) discretization of this system looks like, we denote by Ω_0 the set of grid points in space and let $y_j(t)$ be the vector which collects the approximations to the functions $\{u_j(t,x); x \in \Omega_0\}$. For simplicity, we assume homogeneous Dirichlet conditions u = 0 on the boundary. We denote by D_i the matrix (not necessarily square) which represents the differentiation $\partial/\partial x_i$, and by S_i the matrix which provides the mean value of two neighbouring elements in the x_i direction. Typically D_i and S_i are tensor products of several identity matrices with

respectively. The discretized system is then given by

$$y'_{j} + \sum_{i=1}^{d} y_{i} \bullet (S_{i}D_{i}y_{j}) = -\frac{1}{R} \sum_{i=1}^{d} D_{i}^{T}D_{i}y_{j} + (S_{j}D_{j})^{T}z$$

$$\sum_{i=1}^{d} S_{i}D_{i}y_{i} = 0.$$
(8.40)

Here • denotes the componentwise product of two vectors and z is the vector composed of values of p(x) (usually defined on a "staggered" grid). Finite element discretizations usually lead to (8.40), where y'_j is multiplied by a positive definite, bounded and constant mass matrix M. Considering $M^{1/2}y_j$ instead of y_j , and $D_i M^{-1/2}$ instead of D_i then gives a system of the very form (8.40).

We next collect the vectors y_1, \ldots, y_d in a supervector y, and set $E = (S_1 D_1, \ldots, S_d D_d)$ and

The system (8.40) then becomes

$$y' = -\frac{1}{R}D^T Dy + g(y, Dy) + E^T z$$

$$Ey = 0$$
(8.41)

where the nonlinear term in (8.40) is represented by g(y, Dy). In order to eliminate the algebraic equation in (8.41) we introduce $V = \{y \in \mathbb{R}^N; Ey = 0\}$, the discrete-divergence-free space, and denote by $P = I - E^T (EE^T)^{-1}E$ the orthogonal projection onto V. Since $PE^T = 0$, and y = Py for the solution of (8.41) we see that y solves the equation on V,

$$y' = -\frac{1}{R}PD^TDPy + Pg(y, DPy) . \qquad (8.42)$$

After a suitable basis transformation we may assume that $y \in \mathbb{R}^n$ (where n is the dimension of the space V). Observe that multistep methods are invariant under the transformation of (8.41) into (8.42).

Convergence for Nonlinear Parabolic Problems

We consider the system

$$y' = -D^T D y + g(y, D y) ,$$
 (8.43)

and we assume that g(y, Dy) is locally Lipschitz bounded with respect to the Euclidean norm in both arguments:

$$\|g(y, Dy) - g(z, Dz)\| \le L_1 \|y - z\| + L_2 \|D(y - z)\| .$$
(8.44)

The above considerations for the Navier-Stokes equations show that (8.42) is indeed of the form (8.43) (the matrix $R^{-1/2}DP$ in (8.42) plays the role of D in (8.43), and g is suitably redefined). Due to the quadratic term in (8.40) the condition (8.44) is satisfied with L_1 depending on max ||Dy||, and L_2 depending on ||y|| where y varies in some compact set.

We shall work with the "energy norm"

$$\|v\|_B^2 = v^T B v$$
, $B = D^T D + bI$ (8.45)

where $b \ge 0$ is chosen such that

$$v^T B v \ge \nu v^T v$$
 for all $v \in \mathbb{R}^n$ (8.46)

with some $\nu > 0$ independent of the dimension. In the case of Dirichlet boundary conditions the usual discretization yields (8.46) already with b=0. Positive values of b might be useful for more general boundary conditions.

Application of a linear multistep method to (8.43) yields

$$\sum_{i=0}^{k} \alpha_{i} y_{m+i} = -hD^{T}D \sum_{i=0}^{k} \beta_{i} y_{m+i} + h \sum_{i=0}^{k} \beta_{i} g(y_{m+i}, Dy_{m+i}) .$$
 (8.47)

Instead of comparing the numerical solution $\{y_m\}$ with the analytic solution y(t) of (8.43), it is more interesting to compare it with the exact solution of the original partial differential equation. We therefore denote by $\eta(t)$ a projection of the solution of the PDE into the finite-dimensional space under consideration. In this way we obtain

$$\eta' = -D^T D\eta + g(\eta, D\eta) + s(t)$$

where s(t) is the spatial discretization error.

Theorem 8.11 (Lubich 1990). Assume that the multistep method is of order $p, A(\alpha)$ -stable for some $\alpha > 0$, and strictly stable at infinity. If applied to (8.43), the full discretization error is bounded in the energy norm by

$$\begin{aligned} \|y_m - \eta(t_m)\|_{B} &\leq C \cdot \left(\max_{0 \leq j < k} \|y_j - \eta(t_j)\|_{B} + h^p \int_0^{t_m} \|\eta^{(p+1)}(t)\|_{B} dt \\ &+ \|B^{-1}s(0)\|_{B} + \int_0^{t_m} \|B^{-1}s'(t)\|_{B} dt \right) \,. \end{aligned} \tag{8.48}$$

The estimate holds for $t_m = mh \leq T$ provided that the expression on the right-hand side is bounded by a sufficiently small constant c. The constants C and c depend on $\max_{0 \leq t \leq T} \|\eta(t)\|_B$, but are otherwise independent of D and the dimension of the system, and independent of m and h.

Proof. a) The projected solution $\eta(t)$ of the PDE, inserted into (8.47) gives with $A = -D^T D$

$$\begin{split} \sum_{i=0}^k \alpha_i \, \eta(t_{m+i}) &= h \sum_{i=0}^k \beta_i \Big(A \eta(t_{m+i}) + g\big(\eta(t_{m+i}), \, D\eta(t_{m+i})\big) + s(t_{m+i}) \Big) \\ &+ d_{m+k} \end{split}$$

where

$$\|d_{m+k}\|_{B} \leq C_{0}h^{p} \int_{t_{m}}^{t_{m+k}} \|\eta^{(p+1)}(t)\|_{B} dt , \qquad m \geq 0 .$$
 (8.49)

The same analysis which was necessary for (8.36), now gives for the error $\Delta y_m = \eta(t_m) - y_m$ the relation

$$\Delta y_{m} = h \sum_{j=0}^{m} r_{m-j}(hA) \Delta g_{j} + h \sum_{j=0}^{m} r_{m-j}(hA) \Delta s_{j} + h \sum_{j=0}^{m} r_{m-j}(hA) d_{j} .$$
(8.50)

As in (8.34) the quantities Δg_i and Δs_i are defined by

$$\begin{split} \Delta g_{m+k} &= \sum_{i=0}^{k} \beta_i \Big(g(\eta(t_{m+i}), D\eta(t_{m+i})) - g(y_{m+i}, Dy_{m+i}) \Big) \\ \Delta s_{m+k} &= \sum_{i=0}^{k} \beta_i s(t_{m+i}) \end{split}$$

for $m \ge 0$, and $\Delta g_j = 0$, $\Delta s_j = 0$ for j < k. The values d_0, \ldots, d_{k-1} , are defined as usual (see their definition before (8.4')). The following three parts of the proof treat the three terms in the right-hand side of (8.50) separately.

b) Due to the fact that $||B^{-1/2}v||_B = ||v||$, and $||v|| \le \nu^{-1} ||v||_B$, and $||Dv|| \le ||v||_B$ the Lipschitz condition (8.44) can be written as

$$\left\|B^{-1/2}ig(g(y,Dy)-g(z,Dz)ig)
ight\|_{B}\leq L\|y-z\|_{B}$$

so that

$$\|B^{-1/2}\Delta g_{m+k}\|_{B} \leq L \sum_{i=0}^{k} |\beta_{i}| \cdot \|\Delta y_{m+i}\|_{B} .$$
 (8.51)

Consequently we have to find an estimate for $||r_{m-j}(hA)B^{1/2}||_B$ (here $||\cdot||_B$ denotes the matrix norm corresponding to the vector norm $||\cdot||_B$; see Section

I.9). We note that $||r_{m-j}(hA)B^{1/2}||_B = ||B^{1/2}r_{m-j}(hA)||$ and recall that $B^{1/2}r_i(hA)$ is the coefficient of ζ^j in the series for

$$B^{1/2}r(\zeta,hA)=B^{1/2}\,(\delta(\zeta)I\!-\!hA)^{-1}\,rac{\zeta^{-k}}{\sigma(\zeta^{-1})}\;.$$

In order to apply Lemma 7.11 we have to estimate $\Phi(s) = B^{1/2}(sI-A)^{-1}$. The matrices A and B can be transformed to diagonal form with the same orthogonal matrix. We therefore have for $|\arg s| \leq \pi - \alpha' \ (0 < \alpha' < \alpha)$

$$\|B^{1/2}(sI\!-\!A)^{-1}\| \leq \sup_{a\geq 0}rac{\sqrt{a+b}}{|s+a|} \leq Migg(rac{1}{\sqrt{|s|}}+rac{\sqrt{b}}{|s|}igg)$$

and Lemma 7.11 can be applied with $\beta = 1/2$ (see also Remark 7.12). We thus get

$$\|r_j(hA)B^{1/2}\|_B \leq rac{C_1}{\sqrt{(j+1)h}} \qquad ext{for } j \geq 0 \; .$$

Together with the Lipschitz condition (8.51) this gives

$$h \left\| \sum_{j=0}^{m} r_{m-j}(hA) \,\Delta g_j \right\|_{B} \leq \sqrt{h} \, L_1 \sum_{j=0}^{m} \frac{1}{\sqrt{m-j+1}} \, \|\Delta y_j\|_{B} \,. \tag{8.52}$$

c) The second term in (8.50) is the coefficient of ζ^m in

$$hr(\zeta,hA)\Delta s(\zeta) = \widetilde{r}(\zeta)\widetilde{\Delta s}(\zeta)$$

where we have introduced

$$\begin{split} \widetilde{r}(\zeta) &= \left(\delta(\zeta) - hA\right)^{-1} hB \,\delta(\zeta)^{-1} \, \frac{\zeta^{-k}}{\sigma(\zeta^{-1})} = \sum_{j \ge 0} \widetilde{r}_j \,\zeta^j \\ \widetilde{\Delta s}(\zeta) &= \delta(\zeta) \, B^{-1} \,\Delta s(\zeta) = \sum_{j \ge 0} \widetilde{\Delta s}_j \,\zeta^j \,\,. \end{split}$$

In order to estimate $\|\tilde{r}_j\|_B$ we note that $\|\tilde{r}_j\|_B = \|B^{1/2}\tilde{r}_jB^{-1/2}\|$. In view of an application of Lemma 7.11 we have to consider $\Phi(s) = B^{1/2}(sI - A)^{-1}B^{1/2}s^{-1}$. As above we obtain

$$\|B^{1/2}(sI\!-\!A)^{-1}B^{1/2}s^{-1}\| \leq \sup_{a\geq 0}rac{a+b}{|s+a|\cdot|s|} \leq Migg(rac{1}{|s|}+rac{b}{|s|^2}igg)$$

Lemma 7.11 with $\beta = 1$ thus yields $\|\tilde{r}_j\|_B \leq C_2$. Further we have

$$\widetilde{\Delta s}(\zeta) = \frac{\delta(\zeta)}{1-\zeta} \cdot \left(B^{-1} \Delta s_k \, \zeta^k + \sum_{j \ge k+1} B^{-1} (\Delta s_j - \Delta s_{j-1}) \zeta^j \right)$$

where the coefficients of $\delta(\zeta)/(1-\zeta)$ are absolutely summable, because the zeros of $\sigma(\zeta)$ lie all inside $|\zeta| < 1$. Combining all these estimates we get

$$h \Big\| \sum_{j=0}^{m} r_{m-j}(hA) \,\Delta s_{j} \Big\|_{B} = \Big\| \sum_{j=0}^{m} \widetilde{r}_{m-j} \,\widetilde{\Delta s}_{j} \Big\|_{B}$$

$$\leq C_{3} \Big(\|B^{-1} \,\Delta s_{k}\|_{B} + \sum_{j=k+1}^{m} \|B^{-1} \,(\Delta s_{j} - \Delta s_{j-1})\|_{B} \Big) \qquad (8.53)$$

$$\leq C_{4} \Big(\|B^{-1} s(0)\|_{B} + \int_{0}^{t_{m}} \|B^{-1} \,s'(t)\|_{B} \,dt \Big) .$$

d) The last term in (8.50) can be estimated in the same way as the corresponding term in the proof of Theorem 7.10. We just have to replace the Euclidean norm by the energy norm (observe that $||r_j(hA)|| = ||r_j(hA)||_B$ and $||r'_j(hA)|| = ||r'_j(hA)||_B$, because the matrices A and B commute). We thus get

$$h \Big\| \sum_{j=0}^{m} r_{m-j}(hA) d_j \Big\|_{B} \le C_5 \left(\max_{0 \le j < k} \|y_j - \eta(t_j)\|_{B} + h^p \int_0^{t_m} \|\eta^{(p+1)}(t)\|_{B} \, dt \right).$$
(8.54)

e) Inserting (8.52), (8.53), and (8.54) into (8.50) gives

$$\|\Delta y_m\| \le \sqrt{h} L_1 \sum_{j=0}^m \frac{1}{\sqrt{m-j+1}} \|\Delta y_j\| + \varepsilon_m$$
(8.55)

where ε_m denotes the right-hand side of (8.48) with C replaced by some other constant. Solving this Gronwall-type inequality (Exercise 2) gives $\|\Delta y_m\| \leq C_1 \varepsilon_m$, the desired result.

Remark. A different approach to convergence results of multistep methods for nonlinear parabolic equations is given by Le Roux (1980).

Exercises

1. Let $L \ge 0$ and consider two sequences $\{u_j\}$ and $\{\varepsilon_j\}$ of nonnegative numbers which satisfy

$$u_m \leq hL\sum_{j=0}^m u_j + \sum_{j=0}^m arepsilon_j \quad ext{ for } \quad m \geq 0 \; .$$

Prove that for $hL \leq 1 - C^{-1}$

$$u_m \leq C e^{LCmh} \sum_{j=0}^m \varepsilon_j$$

Hint. Show by induction that $v_m \leq h\Lambda \sum_{j=0}^{m-1} v_j + M$ implies $v_m \leq M(1+h\Lambda)^m \leq Me^{\Lambda mh}$.

$$u_m \leq \sqrt{h} L \sum_{j=0}^{m-1} \frac{1}{\sqrt{m-j}} u_j + \epsilon \quad ext{ for } \quad m \geq 0$$

where $L \ge 0$, $\varepsilon \ge 0$, and $h \ge 0$. Prove that

$$u_{m}^{} \leq arepsilon(1\!+\!2L\sqrt{mh})e^{L^{2}\pi mh}$$
 .

Hint. a) Prove that $u_m \leq y(mh)$, where y(x) is the solution of the Volterra integral equation

$$y(x) = L \int_0^x \frac{1}{\sqrt{x-t}} y(t) dt + \varepsilon . \qquad (8.56)$$

b) Compute the solution of (8.56). This can be done by multiplying (8.56) with $(u-x)^{-1/2}$ and by integration from 0 to u. In this way we get an ordinary differential equation, which can be solved.

V.9. Algebraic Stability of General Linear Methods

"General linear methods were originally introduced as a means of unifying and generalizing existing theories for traditional methods." (J.C. Butcher 1987)

In Sections IV.12 and V.6 we have studied the nonlinear stability of Runge-Kutta methods (*B*-stability) and of one-leg methods (*G*-stability). It is natural to ask whether these theories can be combined within the class of general linear methods. This work was initiated by Burrage & Butcher (1980).

We consider the differential equation y' = f(x, y) where y and f are complex-valued vectors and we assume the one-sided Lipschitz condition

$$\operatorname{Re} \left\langle f(x,y) - f(x,z), \ y-z \right\rangle \leq \nu \|y-z\|^2 \ . \tag{9.1}$$

General linear methods are defined by (see Example 8.5 of Section III.8)

$$u_i^{(n+1)} = \sum_{j=1}^k a_{ij} u_j^{(n)} + h \sum_{j=1}^s b_{ij} f(x_n + c_j h, v_j^{(n)}), \quad i = 1, \dots, k$$
(9.2a)

$$v_i^{(n)} = \sum_{j=1}^k \tilde{a}_{ij} u_j^{(n)} + h \sum_{j=1}^s \tilde{b}_{ij} f(x_n + c_j h, v_j^{(n)}), \quad i = 1, \dots, s . \quad (9.2b)$$

Here, $u_n = (u_1^{(n)}, \ldots, u_k^{(n)})^T$ contains the necessary information from the previous step. The internal stages $(v_1^{(n)}, \ldots, v_s^{(n)})$, defined by (9.2b), serve for the computation of u_{n+1} in (9.2a).

G-Stability

As in Section V.6, we consider inner product norms

$$\|u_n\|_G^2 = \sum_{i=1}^k \sum_{j=1}^k g_{ij} \langle u_i^{(n)}, u_j^{(n)} \rangle$$
(9.3)

where $G = (g_{ij})$ is a real, symmetric and positive definite matrix.

Definition 9.1. The general linear method (9.2) is called *G*-stable, if there exists a real, symmetric and positive definite matrix G, such that for two numerical solutions $\{u_n\}$ and $\{\widehat{u}_n\}$,

$$\|u_{n+1} - \widehat{u}_{n+1}\|_{G} \leq \|u_n - \widehat{u}_n\|_{G}$$
(9.4)

for all step sizes h > 0 and for all differential equations satisying (9.1) with $\nu = 0$.

For Runge-Kutta methods (where k=1 and apart from a scaling factor G = (1)) this definition reduces to *B*-stability as introduced in Definition IV.12.2. For one-leg methods (where s=1 and $u_n = (y_{n+k-1}, \ldots, y_n)^T$) it is equivalent to Definition 6.3.

Many methods can be written in different ways as general linear methods and the above definition of G-stability may depend on the particular formulation. For example, the trapezoidal rule

$$y_{n+1} = y_n + \frac{h}{2} \big(f(x_n, y_n) + f(x_{n+1}, y_{n+1}) \big)$$

can be considered as a Runge-Kutta method (with $u_n = y_n$). In this case it is not *G*-stable (because it is not *B*-stable, see Theorem IV.12.12). However, if we let $u_n = (y_n, hy'_n)$ where $y'_n = f(x_n, y_n)$, then the trapezoidal rule satisfies (9.4) with

$$G = \begin{pmatrix} 1 & 1/2 \\ 1/2 & 1/4 \end{pmatrix} .$$
 (9.5)

This follows from the fact that whenever $\{y_n\}$ is the solution obtained by the trapezoidal rule, then $z_n = y_n + \frac{h}{2}y'_n$ is a solution of the implicit midpoint rule, which is known to be *B*-stable (see Example IV.12.3 or Theorem IV.12.9). Therefore

$$\|y_{n+1} + \frac{h}{2}y'_{n+1}\| \le \|y_n + \frac{h}{2}y'_n\|$$

which proves the statement. The matrix G in (9.5) is singular and thus not strictly positive definite. Burrage & Butcher (1980), however, admit non-zero non-negative definite matrices G in their definition of G-stability (which they call *monotonicity*). Therefore the trapezoidal rule is G-stable in their definition.

Algebraic Stability

In addition to (9.2) we consider a second numerical solution (denote by a circumflex) produced by the same method using different starting values. We denote the differences by

$$\begin{split} &\Delta u_i^{(n)} = u_i^{(n)} - \widehat{u}_i^{(n)} \ , \qquad \Delta u_n = u_n - \widehat{u}_n \\ &\Delta v_i^{(n)} = v_i^{(n)} - \widehat{v}_i^{(n)} \ , \qquad \Delta f_i^{(n)} = f(x_n + c_i h, v_i^{(n)}) - f(x_n + c_i h, \widehat{v}_i^{(n)}) \ . \end{split}$$

The following lemma states an identity which will be essential in the study of G-stability.

Lemma 9.2 (Burrage & Butcher 1980). Let G be a real, symmetric matrix and $D = \text{diag}(d_1, \ldots, d_s)$ be a real diagonal matrix. The difference of two solutions of (9.2) then satisfies

$$\|\Delta u_{n+1}\|_G^2 - \|\Delta u_n\|_G^2 = 2\sum_{i=1}^s d_i \operatorname{Re}\left\langle \Delta f_i^{(n)}, \Delta v_i^{(n)} \right\rangle - \sum_{i,j=1}^{s+k} m_{ij} \langle w_i, w_j \rangle$$

where $(w_1, \ldots, w_{s+k}) = (\Delta u_1^{(n)}, \ldots, \Delta u_k^{(n)}, \Delta f_1^{(n)}, \ldots, \Delta f_s^{(n)})$ and the matrix $M = (m_{ij})$ is given by

$$M = \begin{pmatrix} G - A^T G A & \tilde{A}^T D - A^T G B \\ D \tilde{A} - B^T G A & D \tilde{B} + \tilde{B}^T D - B^T G B \end{pmatrix} .$$
(9.6)

Proof. As in the proof of Theorem IV.12.23, we consider

$$\begin{split} \|\Delta u_{n+1}\|_G^2 - \|\Delta u_n\|_G^2 - 2\sum_{i=1}^s d_i \operatorname{Re}\left\langle\Delta f_i^{(n)}, \Delta v_i^{(n)}\right\rangle \\ &= \sum_{i,j=1}^k g_{ij} \langle\Delta u_i^{(n+1)}, \Delta u_j^{(n+1)}\rangle - \sum_{i,j=1}^k g_{ij} \langle\Delta u_i^{(n)}, \Delta u_j^{(n)}\rangle \\ &- \sum_{i=1}^s d_i \langle\Delta f_i^{(n)}, \Delta v_i^{(n)}\rangle - \sum_{i=1}^s d_i \langle\Delta v_i^{(n)}, \Delta f_i^{(n)}\rangle \end{split}$$

and insert the formulas (9.2). This gives

$$\begin{split} \dots &= \sum_{i,j=1}^{k} g_{ij} \Big\langle \sum_{\ell=1}^{k} a_{i\ell} \Delta u_{\ell}^{(n)} + h \sum_{\ell=1}^{s} b_{i\ell} \Delta f_{\ell}^{(n)} , \ \sum_{\ell=1}^{k} a_{j\ell} \Delta u_{\ell}^{(n)} + h \sum_{\ell=1}^{s} b_{j\ell} \Delta f_{\ell}^{(n)} \Big\rangle \\ &- \sum_{i,j=1}^{k} g_{ij} \big\langle \Delta u_{i}^{(n)}, \Delta u_{j}^{(n)} \big\rangle - \sum_{i=1}^{s} d_{i} \Big\langle \Delta f_{i}^{(n)}, \sum_{\ell=1}^{k} \tilde{a}_{i\ell} \Delta u_{\ell}^{(n)} + h \sum_{\ell=1}^{s} \tilde{b}_{i\ell} \Delta f_{\ell}^{(n)} \Big\rangle \\ &- \sum_{i=1}^{s} d_{i} \Big\langle \sum_{\ell=1}^{k} \tilde{a}_{i\ell} \Delta u_{\ell}^{(n)} + h \sum_{\ell=1}^{s} \tilde{b}_{i\ell} \Delta f_{\ell}^{(n)} , \ \Delta f_{i}^{(n)} \Big\rangle \,. \end{split}$$

Multiplying out and collecting suitable terms proves the statement.

385

Definition 9.3. The general linear method (9.2) is called *algebraically stable*, if there exist a real, symmetric and positive definite matrix G and a real non-negative definite diagonal matrix D, such that the matrix M of (9.6) is non-negative definite.

An immediate consequence of our assumption (9.1) with $\nu = 0$ and of Lemma 9.2 is the following result.

Theorem 9.4. Algebraic stability implies G-stability.

For a given method it may be difficult to find matrices D and G such that M of (9.6) is non-negative definite. The following lemma shows some useful relations, which hold if the method is assumed to be *preconsistent*, i.e., if there exists a vector $\xi_0 \in \mathbb{R}^k$ such that

$$A\xi_0 = \xi_0 , \qquad A\xi_0 = 1 \tag{9.7}$$

(cf. Formula (8.25) of Section III.8).

Lemma 9.5. If a general linear method is preconsistent and algebraically stable, then the matrices D and G satisfy

- *i*) $(d_1, \ldots, d_s)^T = D1 = B^T G \xi_0$,
- ii) $(I-A^T)G\xi_0 = 0$, i.e., $G\xi_0$ is a left-eigenvector of A corresponding to the eigenvalue 1.

Proof. i) Let $\eta \in \mathbb{R}^s$ and $\varepsilon \in \mathbb{R}$ be arbitrary. The non-negativity of M, given by (9.6), implies

$$({m \xi}_0^T, arepsilon \eta^T) M\left(egin{array}{c} {m \xi}_0 \ arepsilon \eta \end{array}
ight) \geq 0$$

so that

$$\xi_0^T(G-A^TGA)\xi_0+2\varepsilon\eta^T(D\widetilde{A}-B^TGA)\xi_0+\varepsilon^2\eta^T(D\widetilde{B}+\widetilde{B}^TD-B^TGB)\eta\geq 0\;.$$

Since the ε -independent term vanishes (due to $A\xi_0 = \xi_0$), the coefficient of ε must be zero and since this holds for all η , the result follows.

ii) A similar argument applied to

$$(\xi_0+arepsilon\xi_1)^T(G-A^TGA)(\xi_0+arepsilon\xi_1)\geq 0 \quad ext{ for all } \quad \xi_1\in \mathbb{R}^k, \; arepsilon\in \mathbb{R}^k$$

implies the second statement.

AN-Stability and Equivalence Results

It is interesting to study in which situation algebraic stability is also necessary for G-stability. For this we consider the differential equation

$$y' = \lambda(x)y$$
 with $\operatorname{Re}\lambda(x) \leq 0$

If we apply the general linear method (9.2) to this problem, we obtain

$$u_{n+1} = S(Z)u_n \tag{9.8}$$

where $Z = \operatorname{diag}(z_1, \ldots, z_s), z_j = h\lambda(x_n + c_j h)$ and

$$S(Z) = A + BZ(I - \tilde{B}Z)^{-1}\tilde{A} .$$
(9.9)

In the sequel we assume that the abscissae c_j are related to the other coefficients of the method by (see also Remark III.8.17)

$$(c_1,\ldots,c_s)^T = c = \widetilde{A}\xi_1 + \widetilde{B}\mathbb{1} , \qquad (9.10)$$

where $\xi_1 \in \mathbb{R}^k$ is the second coefficient vector of the exact value function

$$z(x,h) = y(x)\xi_0 + hy'(x)\xi_1 + \mathcal{O}(h^2) \; .$$

This means that the internal stages approximate the exact solution as $v_j^{(n)} = y(x_n + c_j h) + O(h^2)$.

Definition 9.6. A general linear method is called AN-stable, if there exists a real, symmetric and positive definite matrix G such that

$$\|S(Z)u\|_G \le \|u\|_G \qquad \begin{array}{l} \text{for all } Z = \text{diag}\,(z_1,\ldots,z_s) \text{ satisfying } \operatorname{Re} z_j \le 0\\ (j=1,\ldots,s) \quad \text{and } z_j = z_k \text{ whenever } c_j = c_k. \end{array}$$

Other possible definitions of AN-stability are given in Butcher (1987). For example, if the condition $||S(Z)u||_G \leq ||u||_G$ is replaced by the powerboundedness of the matrix S(Z), the method is called *weakly AN-stable*. This definition, however, does not allow the values $z_j = h\lambda(x_n + c_jh)$ to change at each step. Another modification is to consider arbitrary norms (instead of inner product norms only) in the definition of AN-stability. Butcher (1987) has shown that this does not lead to a larger class of AN-stable methods, but makes the analysis much more difficult.

We are now interested in the relations between the various stability definitions: the implications

algebraically stable \implies G-stable \implies AN-stable \implies A-stable

are either trivial or follow from Theorem 9.4. We also know that A-stability does not, in general, imply AN-stability (see e.g., Theorem IV.12.12). The

following result shows that the other two implications are (nearly always) reversible.

Theorem 9.7 (Butcher 1987). For preconsistent and non-confluent general linear methods (i.e., methods with distinct c_i) we have

algebraically stable
$$\iff$$
 G-stable \iff AN-stable .

Proof. It is sufficient to prove that AN-stability implies algebraic stability. For this we take the matrix G, whose existence is known by the definition of AN-stability, and show that the matrices D and M, given by Lemma 9.5i) and (9.6), are non-negative definite.

In order to prove $d_j \ge 0$ we put $z_j = -\epsilon$ ($\epsilon > 0$) and $z_k = 0$ for $k \ne j$. We further let $\Delta u_n = \xi_0$ (the preconsistency vector of (9.7)) and $\Delta f_{\ell}^{(n)} = z_{\ell} \Delta v_{\ell}^{(n)}$, so that $\Delta u_{n+1} = S(Z)\xi_0$ and $\Delta v_{\ell}^{(n)} = 1 + \mathcal{O}(\epsilon)$. Using

$$M\begin{pmatrix}\xi_0\\0\end{pmatrix} = 0 , \qquad (9.11)$$

which is a consequence of Lemma 9.5, the identity of Lemma 9.2 yields

$$\|S(Z)\xi_0\|_G^2 - \|\xi_0\|_G^2 = -2\epsilon d_j + \mathcal{O}(\epsilon^2)$$
.

Since the left-hand side of this equation is non-positive by AN-stability, we obtain $d_i \ge 0$.

We next put $z_{\ell} = i\varepsilon\eta_{\ell}$ where $\eta = (\eta_1, \ldots, \eta_s)^T \in \mathbb{R}^s$ is arbitrary and ε is a small real parameter. We further put $\Delta u_n = \xi_0 + i\varepsilon\mu$ with $\mu \in \mathbb{R}^k$ and $\Delta f_{\ell}^{(n)} = z_{\ell} \Delta v_{\ell}^{(n)}$. This again implies $\Delta v_{\ell}^{(n)} = 1 + \mathcal{O}(\varepsilon)$. The identity of Lemma 9.2 together with (9.11) gives

$$\begin{split} \|S(Z)\xi_0\|_G^2 - \|\xi_0\|_G^2 &= -(\xi_0 - i\varepsilon\mu, i\varepsilon\eta + \mathcal{O}(\varepsilon^2))M\binom{\xi_0 + i\varepsilon\mu}{i\varepsilon\eta + \mathcal{O}(\varepsilon^2)} = \\ &= -\varepsilon^2(\mu, \eta)^T M\binom{\mu}{\eta} + \mathcal{O}(\varepsilon^3) \ . \end{split}$$

Since this relation holds for all μ and η , the matrix M has to be non-negative definite.

Example 9.8. Let us investigate the G-stability of multistep collocation methods as introduced in Section V.3. We consider here the case k=2 and

s=2, and fix one collocation point at $c_2=1$. The method is then given by

$$\begin{pmatrix} y_{n+1} \\ y_n \end{pmatrix} = \overbrace{\begin{pmatrix} 1 - \varphi(1) & \varphi(1) \\ 1 & 0 \end{pmatrix}}^{A} \begin{pmatrix} y_n \\ y_{n-1} \end{pmatrix} \\ + h \overbrace{\begin{pmatrix} \psi_1(1) & \psi_2(1) \\ 0 & 0 \end{pmatrix}}^{B} \begin{pmatrix} f(x_n + c_1 h, v_1) \\ f(x_n + h, v_2) \end{pmatrix} \\ \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \underbrace{\begin{pmatrix} 1 - \varphi(c_1) & \varphi(c_1) \\ 1 - \varphi(1) & \varphi(1) \end{pmatrix}}_{\widetilde{A}} \begin{pmatrix} y_n \\ y_{n-1} \end{pmatrix} \\ + h \underbrace{\begin{pmatrix} \psi_1(c_1) & \psi_2(c_1) \\ \psi_1(1) & \psi_2(1) \end{pmatrix}}_{\widetilde{B}} \begin{pmatrix} f(x_n + c_1 h, v_1) \\ f(x_n + h, v_2) \end{pmatrix}$$
(9.12)

where

(

$$\begin{split} \varphi(x) &= -\frac{6}{5+9c_1} \left(\frac{x^3}{3} - \frac{x^2}{2}(1+c_1) + xc_1\right) \\ \psi_1(x) &= \frac{x(x+1)}{(1-c_1)(5+9c_1)} \left(5-3x\right) \\ \psi_2(x) &= \frac{x(x+1)}{(1-c_1)(5+9c_1)} \left((2c_1+1)x - c_1(3c_1+2)\right) \end{split}$$

We know from Exercise V.3.7 that the method is A-stable if and only if $c_1 \geq (\sqrt{17}-1)/8$. For the study of its G-stability we assume that after an appropriate scaling of G, $g_{11} = 1$. By Lemma 9.5ii the matrix G must then be of the form (recall that $\xi_0 = (1, 1)^T$)

$$G = \begin{pmatrix} 1 & \gamma - 1\\ \gamma - 1 & (\varphi(1) - 1)\gamma + 1 \end{pmatrix} .$$
(9.13)

A necessary condition for G to be positive definite is that $\det G > 0$. For $c_1 \ge 0$ this is equivalent to

$$0 < \gamma < \frac{6(1+c_1)}{5+9c_1} . \tag{9.14}$$

Next we use Lemma 9.5i which implies that

$$d_1 = \gamma \psi_1(1) , \qquad d_2 = \gamma \psi_2(1) .$$
 (9.15)

Inserting (9.13) and (9.15) into the matrix M of (9.6) yields for its lower

389

390 V. Multistep Methods for Stiff Problems

right block

$$\begin{pmatrix} \psi_1(1) & 0 \\ 0 & \psi_2(1) \end{pmatrix} \begin{pmatrix} 2\gamma\chi_1 - 1 & (\chi_2 + 1)\gamma - 1 \\ (\chi_2 + 1)\gamma - 1 & 2\gamma - 1 \end{pmatrix} \begin{pmatrix} \psi_1(1) & 0 \\ 0 & \psi_2(1) \end{pmatrix}$$
(9.16)

where

$$\chi_1 = rac{\psi_1(c_1)}{\psi_1(1)} = rac{1}{4}c_1(c_1+1)(5-3c_1) \;, \qquad \chi_2 = rac{\psi_2(c_1)}{\psi_2(1)} = rac{c_1^2(c_1+1)^2}{2(3c_1^2-1)} \;.$$

A direct computation (see Exercise 2) shows that this 2×2 matrix can not be non-negative definite for $c_1 \ge (\sqrt{17}-1)/8$ and γ satisfying (9.14). Consequently the considered methods are never G-stable.

In the next subsections we shall show how high-order algebraically stable general linear methods can be constructed.

Multistep Runge-Kutta Methods

An interesting extension of multistep collocation methods are the so-called multistep Runge-Kutta methods. They are defined by the formulas

$$y_{n+1} = \sum_{j=1}^{k} \alpha_j y_{n+1-j} + h \sum_{j=1}^{s} b_j f(x_n + c_j h, v_j^{(n)})$$

$$v_i^{(n)} = \sum_{j=1}^{k} \tilde{a}_{ij} y_{n+1-j} + h \sum_{j=1}^{s} \tilde{b}_{ij} f(x_n + c_j h, v_j^{(n)}) .$$
(9.17)

They obviously form a subclass of the general linear methods (9.2). This is seen by putting $u_n = (y_n, y_{n-1}, \ldots, y_{n-k+1})^T$ so that the exact value function is

$$z(x,h)=(y(x),y(x\!-\!h),\ldots,y(x\!-\!(k\!-\!1)h)^T)$$
 .

Further, the matrices A and B have the special form

$$A = \begin{pmatrix} \alpha_1 & \dots & \alpha_k \\ 1 & & 0 \\ & \ddots & & \vdots \\ & & 1 & 0 \end{pmatrix} , \qquad B = \begin{pmatrix} b_1 & \dots & b_s \\ 0 & \dots & 0 \\ \vdots & & \vdots \\ 0 & \dots & 0 \end{pmatrix} .$$
(9.18)

The order conditions for such methods were derived in Section III.8, Theorem III.8.14. It follows from this theorem that the method (9.17) is of order p, iff

$$1 = \sum_{j=1}^{k} \alpha_{j} (1-j)^{\varrho(t)} + \sum_{j=1}^{s} b_{j} \mathbf{v}_{j}'(t) \quad \text{for} \quad t \in T, \ \varrho(t) \le p \ . \tag{9.19}$$

The values $\mathbf{v}'_i(t)$ are given recursively by

$$\mathbf{v}_{i}(t) = \sum_{j=1}^{k} \tilde{a}_{ij}(1-j)^{\varrho(t)} + \sum_{j=1}^{s} \tilde{b}_{ij}\mathbf{v}_{j}'(t) .$$
(9.20)

Recall from Corollary II.11.7 that

$$\mathbf{v}_{j}^{\prime}(\boldsymbol{\theta}) = \mathbf{0} , \qquad \mathbf{v}_{j}^{\prime}(\tau) = 1$$

$$\mathbf{v}_{j}^{\prime}(t) = \varrho(t)\mathbf{v}_{j}(t_{1}) \cdot \ldots \cdot \mathbf{v}_{j}(t_{m}) \qquad \text{if} \qquad t = [t_{1}, \ldots, t_{m}] .$$
(9.21)

The order conditions (9.19) constitute a system of nonlinear equations in the coefficients of the method. Without any preparation, solving them may be difficult. We therefore introduce additional assumptions which simplify the construction of multistep Runge-Kutta methods.

Simplifying Assumptions

The conditions B(p), $C(\eta)$ and $D(\xi)$ of Section IV.5 were useful for the construction of high-order implicit Runge-Kutta methods. Burrage (1988) showed how these simplifying assumptions can be extended to general linear methods. In the sequel we specialize his approach to multistep Runge-Kutta methods. We consider the assumptions

$$B(p): \qquad q \sum_{j=1}^{s} b_j c_j^{q-1} + \sum_{j=1}^{k} \alpha_j (1-j)^q = 1 \qquad q = 1, \dots, p;$$

$$C(\eta): \qquad q \sum_{j=1}^{n} \tilde{b}_{ij} c_j^{q-1} + \sum_{j=1}^{n} \tilde{a}_{ij} (1-j)^q = c_i^q \qquad q = 1, \dots, \eta, \text{ all } i;$$

$$D_{A}(\xi): \qquad q\sum_{i=1}^{'} b_{i}c_{i}^{q-1}\widetilde{a}_{ij} = lpha_{j}(1-(1-j)^{q}) \qquad q=1,\ldots,\xi\,,\,\, {
m all}\,\, j\,;$$

$$D_{B}(\xi): \qquad q \sum_{i=1}^{s} b_{i} c_{i}^{q-1} \widetilde{b}_{ij} = b_{j} (1-c_{j}^{q}) \qquad \qquad q = 1, \dots, \xi, \text{ all } j.$$

Condition B(p) is equivalent to the order conditions (9.19) for bushy trees. Condition $C(\eta)$ means that $\mathbf{v}_i(t)$, defined by (9.20), satisfies

$$\mathbf{v}_{j}(t) = c_{j}^{\varrho(t)} \quad ext{for} \quad \varrho(t) \leq \eta \;.$$
 (9.22)

We remark that the preconsistency condition (9.7) with $\xi_0 = (1, ..., 1)^T$,

$$\sum_{j=1}^{k} \alpha_j = 1 , \qquad \sum_{j=1}^{k} \tilde{a}_{ij} = 1 \quad \text{for} \quad i = 1, \dots, s , \qquad (9.23)$$

is obtained by putting q = 0 in B(p) and $C(\eta)$. The condition $D(\xi)$ for Runge-Kutta methods splits into $D_A(\xi)$ and $D_B(\xi)$. However, under certain assumptions one of these conditions is automatically satisfied.

Lemma 9.9. Suppose that the coefficients c_1, \ldots, c_s of a multistep Runge-Kutta method are distinct and $b_i \neq 0$. Then

- i) $B(\xi+k-1), C(k-1), D_B(\xi) \Longrightarrow D_A(\xi)$
- ii) $B(\xi + s), C(s), D_A(\xi) \Longrightarrow D_B(\xi)$

iii) $B(\eta+s), D_A(s), D_B(s) \Longrightarrow C(\eta)$

Proof. The first two implications are a consequence of the identity

$$\begin{split} &\sum_{j=1}^{k} \Big(q \sum_{i=1}^{s} b_i c_i^{q-1} \widetilde{a}_{ij} - \alpha_j \big(1 - (1-j)^q \big) \Big) (1-j)^\ell \\ &= -\ell \sum_{j=1}^{s} \Big(q \sum_{i=1}^{s} b_i c_i^{q-1} \widetilde{b}_{ij} - b_j (1-c_j^q) \Big) c_j^{\ell-1} \end{split}$$

which holds under the assumptions $C(\ell)$ and $B(q+\ell)$. The last implication can be proved similarly.

The fundamental theorem, which generalizes Theorem IV.5.1, is

Theorem 9.10 (Burrage 1988). If the coefficients of a multistep Runge-Kutta method (9.17) satisfy B(p), $C(\eta)$, $D_A(\xi)$, $D_B(\xi)$ with $p \le \eta + \xi + 1$ and $p \le 2\eta + 2$, then the method is of order p.

Proof. The conditions $C(\eta)$ and $D_A(\xi)$, $D_B(\xi)$ allow the reduction of order conditions of trees as sketched in Fig. 7.1 and Fig. 7.2 of Section II.7, respectively. Under the restrictions $p \leq \eta + \xi + 1$ and $p \leq 2\eta + 2$ all order conditions reduce to those for bushy trees which are satisfied by B(p).

Remember that we are searching for high-order algebraically stable methods. Due to the Daniel-Moore conjecture (Theorem V.4.4) the order is restricted by $p \leq 2s$. It is therefore natural to look for methods satisfying B(2s), C(s) and $D_A(s), D_B(s)$. They will be of order 2s by Theorem 9.10 and are an extension of the Runge-Kutta methods based on Gauss quadrature. Let us begin by studying the condition B(2s).

Quadrature Formulas

Because of (9.23) condition B(p) of the preceding subsection is equivalent to

$$\sum_{j=1}^{s} b_j f(c_j) = \sum_{j=1}^{k} \alpha_j \int_{1-j}^{1} f(x) dx , \qquad \deg f \le p-1 \qquad (9.24)$$

where f stands for a polynomial of degree at most p-1. For the construction of such quadrature formulas it is useful to consider the bilinear form

$$\langle f,g \rangle = \sum_{j=1}^{k} \alpha_j \int_{1-j}^{1} f(x)g(x) \, dx = \int_{1-k}^{1} \omega(x)f(x)g(x) \, dx$$
 (9.25)

where $\omega(x)$ is the step-function sketched in Fig. 9.1. Under the assumption $\alpha_k \ge 0$, $\alpha_k + \alpha_{k-1} \ge 0$,..., $\alpha_k + \ldots + \alpha_2 \ge 0$, $\alpha_k + \ldots + \alpha_1 = 1$ (9.26)

 $\omega(x)$ is non-negative and (9.25) becomes an inner product on the space of real polynomials. We call the quadrature formula (9.24) *interpolatory* if B(s) holds. This implies that

$$b_i = \int_{1-k}^1 \omega(x) \ell_i(x) \, dx \,, \qquad \ell_i(x) = \prod_{\substack{l=1\\l \neq i}}^s \frac{(x-c_l)}{(c_i-c_l)} \,. \tag{9.27}$$

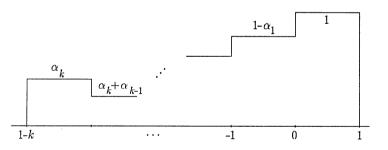


Fig. 9.1. Weight function for the inner product (9.25)

The following results on Gaussian quadrature and orthogonal polynomials are classical.

Lemma 9.11. Let $M(x) = (x-c_1) \cdot \ldots \cdot (x-c_s)$. An interpolatory quadrature formula satisfies B(s+m) if and only if

$$\sum_{j=1}^{k} \alpha_{j} \int_{1-j}^{1} M(x) x^{q-1} dx = 0 \quad for \quad q = 1, \dots, m .$$

394 V. Multistep Methods for Stiff Problems

Let $p_s(x)$ be the polynomial of degree s which is orthogonal with respect to (9.25) to all polynomials of degree s-1. Lemma 9.11 then states that a quadrature formula (9.24) is of order 2s iff M(x) is a scalar multiple of $p_s(x)$. The polynomials $p_s(x)$ which depend on $\alpha_1, \ldots, \alpha_k$ via the bilinear form (9.25) can be computed from a standard three term recursion

$$p_{0}(x) = 1 , \qquad p_{1}(x) = x - \beta_{0} p_{s+1}(x) = (x - \beta_{s})p_{s}(x) - \gamma_{s}p_{s-1}(x)$$
(9.28)

where

$$\beta_{s} = \frac{\langle xp_{s}, p_{s} \rangle}{\langle p_{s}, p_{s} \rangle} , \qquad \gamma_{s} = \frac{\langle p_{s}, p_{s} \rangle}{\langle p_{s-1}, p_{s-1} \rangle} .$$
(9.29)

Obviously this is only possible if $\langle p_j, p_j \rangle \neq 0$ for $j = 1, \ldots, s$. This is certainly the case under the assumption (9.26).

Lemma 9.12. If $\alpha_1, \ldots, \alpha_k$ satisfy (9.26) then all zeros of $p_s(x)$ are real, simple and lie in the open interval (1-k, 1).

For the construction of algebraically stable methods, quadrature formulas with positive weights will be of particular interest. Sufficient conditions for this property are given in the following theorem.

Theorem 9.13. If the quadrature formula (9.24) is of order $p \ge 2s-1$ and if $\alpha_1, \ldots, \alpha_k$ satisfy (9.26), then

$$b_i > 0$$
 for $i = 1, \dots, s$.

Algebraically Stable Methods of Order 2s

"... the analysis of the algebraic stability properties of multivalue methods ... is not as difficult as was generally thought ..." (Burrage 1987)

Following Burrage (1987) we consider the following class of multistep Runge-Kutta methods:

Definition 9.14. Let $\alpha_1, \ldots, \alpha_k$ with $\sum \alpha_j = 1$ and $\alpha_k \neq 0$ be given such that the zeros c_1, \ldots, c_s of $p_s(x)$ (Formula (9.28)) are real and simple. We then denote by $E(\alpha_1, \ldots, \alpha_k)$ the multistep Runge-Kutta method (9.17)

395

whose coefficients are given by

$$b_{i} = \sum_{j=1}^{k} \alpha_{j} \int_{1-j}^{1} \ell_{i}(x) dx , \qquad i = 1, \dots, s ,$$

$$\tilde{a}_{ij} = \frac{\alpha_{j}}{b_{j}} \int_{1-j}^{1} \ell_{i}(x) dx , \qquad i = 1, \dots, s ; \ j = 1, \dots, k$$

$$\tilde{b}_{ij} = \frac{b_{j}}{b_{i}} \int_{c_{j}}^{1} \ell_{i}(x) dx , \qquad i = 1, \dots, s ; \ j = 1, \dots, s$$

where $\ell_i(x)$ is the function of (9.27).

The definitions of c_i and b_i imply B(2s) by Lemma 9.11. The formulas for \tilde{a}_{ij} and \tilde{b}_{ij} are equivalent to $D_A(s)$ and $D_B(s)$, respectively. Lemma 9.9iii thus implies C(s) and Theorem 9.10 finally proves that the considered methods are of order 2s. The following theorem gives sufficient conditions for the algebraic stability of these methods.

Theorem 9.15 (Burrage 1987). If $\alpha_j \ge 0$ for j = 1, ..., k then the method $E(\alpha_1, ..., \alpha_k)$ is G-stable with

$$G = \operatorname{diag}\left(1, \alpha_2 + \ldots + \alpha_k, \ldots, \alpha_{k-1} + \alpha_k, \alpha_k\right) \,. \tag{9.30}$$

Proof. For multistep Runge-Kutta methods the preconsistency vector is given by $\xi_0 = (1, 1, ..., 1)^T$. With the matrix G of (9.30) it therefore follows from Lemma 9.5 that

$$d_i = b_i \qquad \text{for} \qquad i = 1, \dots, s \ . \tag{9.31}$$

By Theorem 9.13 this implies $d_i > 0$ so that the first condition for algebraic stability is satisfied. In order to verify that the matrix M of (9.6) is non-negative definite, we transform it by a suitable matrix. We put

$$V = \left(c_i^{j-1}\right)_{i,j=1,\dots,s} \quad \text{and} \quad \alpha = (\alpha_1,\dots,\alpha_k)^T . \tag{9.32}$$

A straightforward calculation using the simplifying assumptions $D_A(s)$, $D_B(s)$ and B(2s) shows that

$$\begin{pmatrix} I & 0 \\ 0 & V^T \end{pmatrix} M \begin{pmatrix} I & 0 \\ 0 & V \end{pmatrix} = \begin{pmatrix} I & 0 \\ 0 & W^T \end{pmatrix} \widehat{M} \begin{pmatrix} I & 0 \\ 0 & W \end{pmatrix}$$
(9.33)

where

$$W = \left(\frac{1}{j}(1-i)^j\right)_{\substack{i=1,\ldots,k\\j=1,\ldots,s}}$$

and the $2k \times 2k$ matrix \widehat{M} is given by

$$\widehat{M} = \begin{pmatrix} Z & Z \\ Z & Z \end{pmatrix}$$
, $Z = \operatorname{diag}(\alpha_1, \dots, \alpha_k) - \alpha \alpha^T$. (9.34)

Since $\alpha_j \ge 0$ and $\sum \alpha_j = 1$ it follows from the Cauchy-Schwarz inequality that

$$x^T Z x = \sum_{j=1}^\kappa lpha_j x_j^2 - \left(\sum_{j=1}^\kappa lpha_j x_j
ight)^2 \geq 0$$

Therefore the matrix Z, and hence also \widehat{M} , are non-negative definite matrices. This completes the proof of the theorem.

One can ask what are the advantages of the methods $E(\alpha_1, \ldots, \alpha_k)$ with k > 1 over the s-stage Gauss Runge-Kutta methods of order 2s. All these methods have the same order and are algebraically stable for $\alpha_i \geq 0$.

• The Gauss methods have a stability function whose value at infinity satisfies $|R(\infty)|=1$. In contrast, the new methods allow the spectral radius $\varrho(S(\infty))$ to be smaller than 1, which improves stability at infinity. For example, numerical investigations of the case s=2, k=2 show that $\varrho(S(\infty))$ has the minimal value $\sqrt{2}-1 \approx 0.41421$ for $\alpha_1 = 12\sqrt{2}-16$ and $\alpha_2 = 1-\alpha_1$ (see Exercise 7). There are some indications that L-stable methods do not exist: if we could find methods with an internal stage, say $v_s^{(n)}$, equal to y_{n+1} , then the method would be L-stable. Unfortunately, this would imply $c_s=1$, which is in contradiction to Lemma 9.12 and to $\alpha_j \geq 0$.

• The eigenvalues of the Runge-Kutta matrix of the Gauss methods are complex (with the exception of one real eigenvalue, if s is odd). Can we hope that, for a suitable choice of $\alpha_j \ge 0$, all eigenvalues of \tilde{B} become real? Numerical computations for s=2 and k=2 indicate that this is not possible.

B-Convergence

Many results of Sections IV.14 and IV.15 have a straightforward extension to general linear methods. The following theorem corresponds to Theorems IV.14.2, IV.14.3, and IV.14.4 and is proved in the same way:

Theorem 9.16. Let f be continuously differentiable and satisfy (9.1). If the matrix \tilde{B} of method (9.2) is invertible and if

$$h\nu < lpha_0(\widetilde{B}^{-1})$$

then the nonlinear system (9.2b) has a unique solution.

The next results give estimates of the local and global errors. We formulate these results only for multistep Runge-Kutta methods, because in this case the definitions of $C(\eta)$ and B(p) are already available. In analogy to Runge-Kutta methods we say that method (9.17) has *stage order q*, if C(q)and B(q) are satisfied. Recall that for the definition of the local error

$$\delta_h(x) = y_1 - y(x+h)$$

one assumes that $y_i = y(x + ih)$ for i = 1 - k, ..., 0 lie on the exact solution.

Theorem 9.17. Suppose that the differential equation satisfies (9.1). If the matrix \tilde{B} is invertible, if $\alpha_0(\tilde{B}^{-1}) > 0$ and if the stage order is q, then the local error of method (9.17) satisfies

$$\|\delta_h(x)\| \leq Ch^{q+1} \max_{\xi \in [x-(k-1)h,x+h]} \|y^{(q+1)}(\xi)\| \quad \textit{for} \quad h
u \leq lpha < lpha_0(\widetilde{B}^{-1})$$

where C depends only on the coefficients of the method and on α .

This result, which corresponds to Proposition IV.15.1, is of particular interest for multistep collocation methods, for which the stage order q = s+k-1 is maximal. The global error allows the following estimate, which extends Theorem IV.15.3.

Theorem 9.18. Suppose, in addition to the assumptions of Theorem 9.17, that the method (9.17) is algebraically stable.

a) If $\nu > 0$ then the global error satisfies for $h\nu \leq lpha < lpha_0(\widetilde{B}^{-1})$

$$\|y_n - y(x_n)\| \le h^q \, rac{e^{C_1
u(x_n - x_0)} - 1}{C_1
u} \, C_2 \, \max_{x \in [x_0, x_n]} \|y^{(q+1)}(x)\|$$

b) If $\nu \leq 0$ then (for all h > 0)

$$\|y_n - y(x_n)\| \leq h^q(x_n\!-\!x_0) \, C_2 \max_{x \in [x_0, x_n]} \|y^{(q+1)}(x)\|$$
 .

The constants C_1 and C_2 depend only on the coefficients of the method and (for case a) on α .

In contrast to the results of Section IV.15 the above theorem holds only for a constant step size implementation.

Exercises

- 1. Show that for Runge-Kutta methods, where A = (1), $\tilde{A} = 1$, both definitions of algebraic stability (IV.12.5 and V.9.3) are the same.
- 2. Prove in detail the statement of Example 9.8, that the 2-step 2-stage collocation methods with $c_2 = 1$ (and $c_1 \neq 1$) are not G-stable.

Hint. The non-negativity of the matrix (9.16) implies $\gamma \ge 1/2$ and by considering its determinant,

$$\gammaig(4\chi_1-(1\!+\!\chi_2)^2ig)\geq 2(\chi_1\!-\!\chi_2)$$
 .

This inequality contradicts (9.14).

3. If a multistep Runge-Kutta method with distinct c_i and $c_i \ge 0$ satisfies $B(s+k+\xi)$ and C(s+k-1), then it also satisfies $D_B(\xi)$.

$$\sum_{j=1}^{\kappa} \left\{ q \sum_{i=1}^{s} b_i c_i^{q-1} \widetilde{a}_{ij} - \alpha_j (1 - (1 - j)^q) \right\} \left(r(1) - r(1 - j) \right) = 0$$

for all polynomials r(x) of degree $\leq s+k-1$ which satisfy $r(c_1) = \ldots = r(c_s) = 0$. For given j, construct such a polynomial which also satisfies

$$r(1-j)=1 \ , \quad r(1-i)=0 \quad ext{for} \quad i=1,\ldots,k \quad ext{and} \quad i
eq j \ .$$

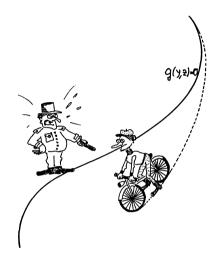
- 4. Disprove the conjecture of Burrage (1988) that for every k and s there exist zero-stable multistep Runge-Kutta methods of order 2s+k-1. Hint. Consider the case s = 1 so that these methods are equivalent to one-leg methods and consult a result of Dahlquist (1983).
- 5. (Burrage 1988). Show that there exists a zero-stable multistep RK-method with s=2 and k=2 which is of order 5. Result. $c_{1,2} = \frac{1}{5}(\sqrt{7} \pm \sqrt{2})$
- 6. (Stability at infinity). If a multistep Runge-Kutta method satisfies $D_A(s)$ and $D_B(s)$ then we have, e.g., for s=2 and k=2,

$$S(\infty) = \begin{pmatrix} \alpha_1 & \alpha_2 \\ 1 & 0 \end{pmatrix} - \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 - c_1 & 1 - c_2 \\ 1 - c_1^2 & 1 - c_2^2 \end{pmatrix}^{-1} \begin{pmatrix} \alpha_1 & 2\alpha_2 \\ \alpha_1 & 0 \end{pmatrix} .$$

Formulate this result also for general s and k.

7. Verify that for the method $E(\alpha_1, \alpha_2)$ with $0 \le \alpha_1 \le 1$, $\alpha_2 = 1 - \alpha_1$, the spectral radius $\rho(S(\infty))$ is minimal for $\alpha_1 = 12\sqrt{2} - 16$.

Chapter VI. Singular Perturbation Problems and Differential Algebraic Equations



Singular perturbation problems (SPP) form a special class of problems containing a parameter ε . When this parameter is small, the corresponding differential equation is stiff; when ε tends to zero, the differential equation becomes differential algebraic. The first four sections investigate the numerical solution of such singular perturbations problems. This allows us to understand many phenomena observed for very stiff problems. Much insight is obtained by studying the limit case $\varepsilon = 0$ ("the reduced system") which is usually much easier to analyze. We treat multistep methods in Section VI.1, Runge-Kutta methods in Section VI.2, Rosenbrock methods in Section VI.3 and extrapolation methods in Section VI.4. Convergence results are for singular perturbation problems and for semi-explicit differential algebraic systems of "index 1".

Many problems of practical interest are, however, of higher index; this means that differentiability properties of the data are destroyed by inherent differentiations and numerical methods become less and less efficient or even impossible (see Section VI.5). Sections VI.6 and VI.7 study the convergence properties for multistep methods and Runge-Kutta methods when applied to index 2 systems. We finally present order conditions for Runge-Kutta methods when applied to index 2 systems (Section VI.8) and numerical results of the RADAU5 code for computations of a non-stiff and a stiff mechanical multibody system.

VI.1. Singular Perturbation and Index 1 Problems

Singular perturbation problems (SPP) have several origins in applied mathematics. One comes from fluid dynamics and results in linear boundary value problems containing a small parameter ε (the coefficient of viscosity) such that for $\varepsilon \to 0$ the differential equation loses the highest derivative (see Exercise 1 below). Others originate in the study of nonlinear oscillations with *large* parameters (Van der Pol 1926, Dorodnicyn 1947) or in the study of chemical kinetics with slow and fast reactions (see e.g., Example (IV.1.4)).

Asymptotic Solution of van der Pol's Equation

The classical paper of Dorodnicyn (1947) studied the Van der Pol Equation (IV.1.5') with large μ , i.e., with small ϵ . The investigation becomes a little easier if we use Liénard's coordinates (see Exercise I.16.8). In equation (IV.1.5'), written here as

$$\varepsilon z'' + (z^2 - 1)z' + z = 0 , \qquad (1.1)$$

we insert the identity

$$arepsilon z'' + (z^2 - 1)z' = rac{d}{dx} \underbrace{\left(arepsilon z' + \left(rac{z^3}{3} - z
ight)
ight)}_{:= y}$$

so that (1.1) becomes

$$y' = -z \qquad \qquad =: f(y, z)$$

$$\varepsilon z' = y - \left(\frac{z^3}{3} - z\right) \qquad =: g(y, z) . \qquad (1.2)$$

Fig. 1.1 shows solutions of Equation (1.2) with $\varepsilon = 0.03$ in the (y, z)-plane. One observes rapid movements towards the manifold M defined by $y = z^3/3 - z$, close to which the solution becomes smooth. In order to approximate the solution for very small ε , we set $\varepsilon = 0$ in (1.2) and obtain the so-called *reduced* system

$$y' = -z = f(y,z)
0 = y - \left(\frac{z^3}{3} - z\right) = g(y,z) .$$
(1.2)

While (1.2) has no analytic solution, (1.2') can easily be solved to give

$$y' = -z = (z^2 - 1)z'$$
 or $\ln |z| - \frac{z^2}{2} = x + C$. (1.3)

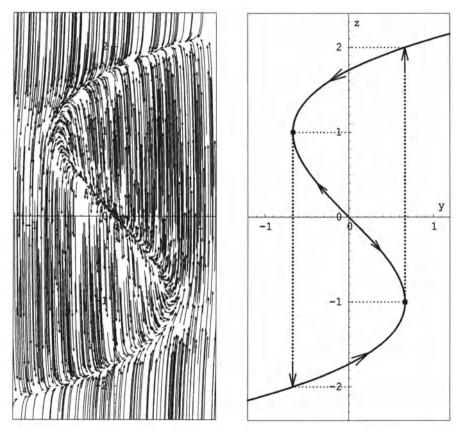


Fig. 1.1. Solutions of SPP (1.2)

Fig. 1.2. Reduced problem (1.2')

Equation (1.2') is called a differential algebraic equation (DAE), since it combines a differential equation (first line) with an algebraic equation (second line). Such a problem only makes sense if the initial values are consistent, i.e., lie on the manifold M. The points of M with coordinates $y = \pm 2/3$, $z = \mp 1$ are of special interest (Fig. 1.2): at these points the partial derivative $g_z = \partial g/\partial z$ vanishes and the defining manifold is no longer "transversal" to the direction of the fast movement. Here the solutions of (1.2') cease to exist, while the solutions of the full problem (1.2) for $\varepsilon \to 0$ jump with "infinite" speed to the opposite manifold. For -1 < z < 1 the manifold M is unstable for the solution of (1.2) (here $g_z > 0$), otherwise M is stable $(g_z < 0)$.

We demonstrate the power of the reduced equation by answering the question: what is the period T of the limit cycle solution of Van der Pol's equation for $\mu \to \infty$ (i.e., $\varepsilon \to 0$)? Fig. 1.2 shows that the asymptotic value of T is just twice the time which z(x) of (1.3) needs to advance from z = -2 to z = -1, i.e.,

$$T = 3 - 2\ln 2 . (1.4)$$

This is the first term of Dorodnicyn's asymptotic formula. We also see that z(x) reaches its largest values (i.e., crosses the Poincaré cut z'=0, see Fig. I.16.2) at $z = \pm 2$. We thus have the curious result that the limit cycle of Van der Pol's equation (1.1) has the same asymptotic initial value z = 2 and z'=0 for $\mu \to 0$ and for $\mu \to \infty$ (see Formula (I.16.10)).

Runge-Kutta Methods for Problems of Index 1

We now want to study the behaviour of the numerical solution for $\varepsilon \rightarrow 0$. This will give us insight into many phenomena encountered for very stiff equations and also suggest advantageous numerical procedures for stiff and differential-algebraic equations. Let an arbitrary singular perturbation problem be given,

$$y' = f(y, z) \tag{1.5a}$$

$$\varepsilon z' = g(y, z) , \qquad (1.5b)$$

where y and z are vectors; suppose that f and g are sufficiently often differentiable vector functions of the same dimensions as y and z respectively. The corresponding *reduced* equation is the DAE

$$y' = f(y, z) \tag{1.6a}$$

$$0 = g(y, z) \tag{1.6b}$$

whose initial values are *consistent* if $0 = g(y_0, z_0)$. A general assumption of Sections VI.1-VI.4 will be that the Jacobian

$$g_z(y,z)$$
 is invertible (1.7)

in a neighbourhood of the solution of (1.6). Equation (1.6b) then possesses a locally unique solution z = G(y) ("implicit function theorem") which inserted into (1.6a) gives

$$y' = f(y, G(y))$$
, (1.8)

the so-called "state space form", an ordinary differential system. Equation (1.6) is then said to be of *index 1*.

Let a Runge Kutta method with coefficients a_{ij}, b_j be chosen. We apply this method to system (1.5) and obtain

$$Y_{ni} = y_n + h \sum_{j=1}^{s} a_{ij} f(Y_{nj}, Z_{nj})$$
(1.9a)

$$\varepsilon Z_{ni} = \varepsilon z_n + h \sum_{j=1}^{s} a_{ij} g\left(Y_{nj}, Z_{nj}\right)$$
(1.9b)

$$y_{n+1} = y_n + h \sum_{i=1}^{s} b_i f(Y_{ni}, Z_{ni})$$
(1.9c)

$$\varepsilon z_{n+1} = \varepsilon z_n + h \sum_{i=1}^{s} b_i g\left(Y_{ni}, Z_{ni}\right) . \tag{1.9d}$$

We now suppose that the RK matrix (a_{ij}) is invertible and obtain from (1.9b)

$$hg(Y_{ni}, Z_{ni}) = \varepsilon \sum_{j=1}^{s} \omega_{ij}(Z_{nj} - z_n)$$
(1.10)

where the ω_{ij} are the elements of the inverse of (a_{ij}) . Inserting this into (1.9d) makes the definition of z_{n+1} independent of ε . We thus put without more ado $\varepsilon = 0$ (direct approach) and obtain

$$Y_{ni} = y_n + h \sum_{j=1}^{s} a_{ij} f(Y_{nj}, Z_{nj})$$
(1.11a)

$$0 = g(Y_{ni}, Z_{ni}) \tag{1.11b}$$

$$y_{n+1} = y_n + h \sum_{i=1}^{s} b_i f(Y_{ni}, Z_{ni})$$
 (1.11c)

$$z_{n+1} = \left(1 - \sum_{i,j=1}^{s} b_i \,\omega_{ij}\right) z_n + \sum_{i,j=1}^{s} b_i \,\omega_{ij} \,Z_{nj} \,. \tag{1.11d}$$

Here

$$1 - \sum_{i,j=1}^{s} b_i \,\omega_{ij} = R(\infty) \tag{1.11e}$$

(see Formula (IV.3.15)), where R(z) is the stability function of the method. We observe that usually (y_{n+1}, z_{n+1}) will not lie on the manifold g(y, z) = 0. However, if we replace (1.11d) by

$$0 = g(y_{n+1}, z_{n+1}) \tag{1.12}$$

403

then not only is $Z_{nj} = G(Y_{nj})$ (see (1.11b)), but also $z_{n+1} = G(y_{n+1})$. In this case the method (1.11a-c), (1.12) is *identical* to the solution of the state space form (1.8) with the same RK method. This will be called the *indirect approach*. The whole situation is summarized in the diagram

Of special importance here are *stiffly accurate* methods, i.e., methods which satisfy

$$a_{si} = b_i \qquad \text{for} \quad i = 1, \dots, s \;. \tag{1.13}$$

This means that $y_{n+1} = Y_{ns}$, $z_{n+1} = Z_{ns}$ and (1.12) is satisfied anyway. Hence for stiffly accurate methods the direct and the indirect approach are identical. For this reason, Griepentrog & März (1986) denote such methods by IRK(DAE).

A Transistor Amplifier

"... auf eine merkwürdige Tatsache aufmerksam machen, das ist die außerordentlich grosse Zahl berühmter Mathematiker, die aus Königsberg stammen ... : Kant 1724, Richelot 1808, Hesse 1811, Kirchhoff 1824, Carl Neumann 1832, Clebsch 1833, Hilbert 1862."

(F. Klein, Entw. der Math., p. 159)

Very often, DAE problems arising in practice are not at once in the semiexplicit form (1.6), but rather in the form $Mu' = \varphi(u)$ where M is a constant singular matrix.

As an example we compute the amplifier of Fig. 1.3, where $U_e(t)$ is the entry voltage, $U_b = 6$ the operating voltage, $U_i(t)$ (i=1,2,3,4,5) the voltages at the nodes 1,2,3,4,5, and $U_5(t)$ the output voltage. The current through a resistor satisfies I = U/R (Ohm 1827), the current through a capacitor $I = C \cdot dU/dt$, where R and C are constants and U the voltage. The transistor acts as amplifier in that the current from node 4 to node 3 is 99 times larger than that from node 2 to node 3 and depends on the voltage difference $U_3 - U_2$ in a nonlinear way. Kirchhoff's law (a Königsberg discovery) says

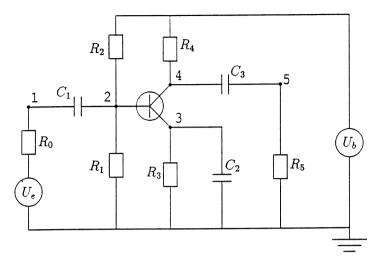


Fig. 1.3. A transistor amplifier

that the sum of currents entering a node vanishes. This law applied to the 5 nodes of Fig. 1.3 leads to the following equations:

$$\begin{array}{ll} \text{node 1:} & \frac{U_e(t)}{R_0} - \frac{U_1}{R_0} + C_1(U_2' - U_1') = 0\\ \\ \text{node 2:} & \frac{U_b}{R_2} - U_2 \Big(\frac{1}{R_1} + \frac{1}{R_2} \Big) + C_1(U_1' - U_2') - 0.01 \, f(U_2 - U_3) = 0\\ \\ \text{node 3:} & f(U_2 - U_3) - \frac{U_3}{R_3} - C_2 U_3' = 0\\ \\ \text{node 4:} & \frac{U_b}{R_4} - \frac{U_4}{R_4} + C_3(U_5' - U_4') - 0.99 f(U_2 - U_3) = 0\\ \\ \text{node 5:} & -\frac{U_5}{R_5} + C_3(U_4' - U_5') = 0 \end{array}$$

As constants we adopt the values reported (for a similar problem) by Rentrop, Roche & Steinebach (1989)

$$\begin{split} f(U) &= 10^{-6} \left(\exp \left(\frac{U}{0.026} \right) - 1 \right) \\ R_0 &= 1000 , \quad R_1 = \ldots = R_5 = 9000 \\ C_k &= k \cdot 10^{-6} , \quad k = 1, 2, 3 \end{split}$$

and the initial signal is chosen as

$$U_{e}(t) = 0.4 \cdot \sin(200\pi t) . \tag{1.15}$$

406 VI. Singular Perturbation Problems and Differential-Algebraic Equations

Equations (1.14) are of the form $Mu' = \varphi(u)$ where

$$M = \begin{pmatrix} -C_1 & C_1 & & & \\ C_1 & -C_1 & & & \\ & & -C_2 & & \\ & & & -C_3 & C_3 \\ & & & & C_3 & -C_3 \end{pmatrix}$$

is obviously a singular matrix of rank 3. The sum of the first two and of the last two equations leads directly to two algebraic equations. Introducing e.g.,

$$U_1 - U_2 = y_1, \quad U_3 = y_2, \quad U_4 - U_5 = y_3, \quad U_1 = z_1, \quad U_4 = z_2$$

transforms equations (1.14) to the form (1.6). Consistent initial values must thus satisfy

$$\varphi_1(u)+\varphi_2(u)=0 \quad \text{ and } \quad \varphi_4(u)+\varphi_5(u)=0 \ .$$

If we put $U_2(0) = U_3(0)$ we have $f(U_2(0) - U_3(0)) = 0$. Since $U_e(0) = 0$ we then easily find a consistent solution, e.g., as

$$U_1(0) = 0$$
, $U_2(0) = U_3(0) = \frac{U_b R_1}{R_1 + R_2}$, $U_4(0) = U_b$, $U_5(0) = 0$.
(1.16)

Problems of the Form $Mu' = \varphi(u)$

For the definition of a Runge-Kutta method for a problem of the form

$$Mu' = \varphi(u) , \qquad (1.17)$$

where M is a constant matrix, we first assume that M is regular. Applying then an RK method to $u' = M^{-1}\varphi(u)$ and multiplying the resulting formulas by M we obtain

$$M(U_{ni} - u_n) = h \sum_{j=1}^{s} a_{ij} \varphi(U_{nj})$$
(1.18a)

$$u_{n+1} = \left(1 - \sum_{i,j=1}^{s} b_{i} \omega_{ij}\right) u_{n} + \sum_{i,j=1}^{s} b_{i} \omega_{ij} U_{nj}$$
(1.18b)

where again (ω_{ij}) is the inverse of (a_{ij}) . The second formula was obtained from

$$M(u_{n+1} - u_n) = h \sum_{i=1}^{s} b_i \varphi(U_{ni})$$
(1.18c)

in exactly the same way as above (see (1.10)).

Formulas (1.18) also make sense formally when M is a *singular* matrix. In this case, problem (1.17) is mathematically equivalent to a semi-explicit system (1.6) and method (1.18) corresponds to method (1.11). This can be seen as follows: we decompose the matrix M (e.g., by Gaussian elimination with total pivoting) as

$$M = S \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} T \tag{1.19}$$

where S and T are invertible matrices and the dimension of I represents the rank of M. Inserting this into (1.17), multiplying by S^{-1} , and using the transformed variables

$$Tu = \begin{pmatrix} y \\ z \end{pmatrix} \tag{1.20}$$

gives

$$\begin{pmatrix} y'\\0 \end{pmatrix} = S^{-1}\varphi\Big(T^{-1}\begin{pmatrix}y\\z \end{pmatrix}\Big) = : \begin{pmatrix} f(y,z)\\g(y,z) \end{pmatrix}, \qquad (1.21)$$

a problem of type (1.6). An initial value u_0 is consistent if $\varphi(u_0)$ lies in the range of the matrix M.

Similarly, if (1.19) is inserted into (1.18) with

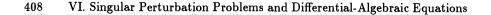
$$TU_{nj} = \begin{pmatrix} Y_{nj} \\ Z_{nj} \end{pmatrix}$$
, $Tu_n = \begin{pmatrix} y_n \\ z_n \end{pmatrix}$ (1.22)

then (1.18b) (for Z_{n+1}) and (1.18c) (for Y_{n+1}) lead precisely to equations (1.11). This means that the diagram

$$\begin{array}{ccc} \text{Problem (1.17)} & \xrightarrow{Transf. (1.20)} & \text{Problem (1.6)} \\ Meth. & & & \\ & & & \\ 1.18) & & & \\ & & &$$

commutes. An important consequence of this commutativity is that all results for semi-explicit systems (1.6) and method (1.11) (existence of a numerical solution, convergence, asymptotic expansions, ...) also apply to implicit problems (1.17) with singular M and method (1.18).

All codes, such as RADAU5, which have an option for implicit differential equations (1.17) can thus be applied directly. This has been done for problem (1.14) with initial values (1.16), integration interval $0 \le x \le 0.2$, and $Tol = 10^{-4}$. The code computed the solution $U_5(t)$ displayed in Fig. 1.4 without difficulty in 553 steps (65 rejected). The comparison with the entry voltage $U_e(t)$ shows that our amplifier is working. See also Hairer, Lubich & Roche (1989), p. 108-111 for a more elaborate example.



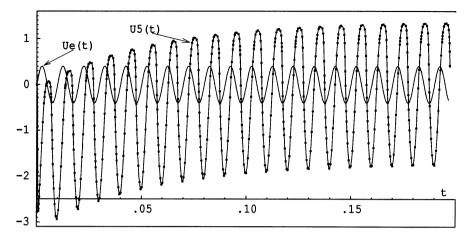


Fig. 1.4. Computed solution of amplifier problem (1.14)

Convergence of Runge-Kutta Methods

If the method is stiffly accurate, the numerical solutions (1.11) are equivalent to those of the *ordinary* equation (1.8). Therefore the convergence of the solutions is described by Theorems II.3.5 and II.3.6 as

$$y_n - y(x_n) = \mathcal{O}(h^p) , \qquad z_n - z(x_n) = \mathcal{O}(h^p)$$
(1.24)

where p is the classical order of the method (the second formula follows from a Lipschitz condition for G). For general methods, the estimate (1.24) remains valid for y_n , because (1.11a,b,c) are independent of z_n and do not change if (1.11d) is replaced by (1.12). Thus we only have to prove a convergence result for z_n . An essential ingredient of the following theorem is the stage order q of the method, i.e., condition C(q) of Section II.7 or IV.5.

Theorem 1.1. Suppose that the system (1.6) satisfies (1.7) in a neighbourhood of the exact solution (y(x), z(x)) and assume the initial values are consistent. Consider a Runge-Kutta method of order p, stage order q and with invertible matrix A. Then the numerical solution of (1.11a-d) has global error

$$z_n - z(x_n) = \mathcal{O}(h^r)$$
 for $x_n - x_0 = nh \le Const$, (1.25)

where

a) r = p for stiffly accurate methods,

- b) $r = \min(p, q+1)$ if the stability function satisfies $-1 \le R(\infty) < 1$,
- c) $r = \min(p-1,q)$ if $R(\infty) = +1$.
- d) If $|R(\infty)| > 1$, the numerical solution diverges.

Proof. Part a) has already been discussed. For the remaining cases we proceed as follows: we first observe that Condition C(q) and order p imply

$$z(x_n + c_i h) = z(x_n) + h \sum_{j=1}^{s} a_{ij} z'(x_n + c_j h) + \mathcal{O}(h^{q+1})$$
(1.26a)

$$z(x_{n+1}) = z(x_n) + h \sum_{i=1}^{s} b_i z'(x_n + c_i h) + \mathcal{O}(h^{p+1}) .$$
 (1.26b)

Since A is invertible we can compute $z'(x_n + c_i h)$ from (1.26a) and insert it into (1.26b). This gives

$$z(x_{n+1}) = \varrho z(x_n) + b^T A^{-1} \widehat{Z}_n + \mathcal{O}(h^{p+1}) + \mathcal{O}(h^{q+1})$$
(1.27)

where $\varrho = 1 - b^T A^{-1} \mathbb{1} = R(\infty)$ and $\widehat{Z}_n = (z(x_n + c_1 h), \dots, z(x_n + c_s h))^T$. We then denote the global error by $\Delta z_n = z_n - z(x_n)$, and $\Delta Z_n = Z_n - \widehat{Z}_n$. Subtracting (1.27) from (1.11d) yields

$$\Delta z_{n+1} = \rho \Delta z_n + b^T A^{-1} \Delta Z_n + \mathcal{O}(h^{p+1}) + \mathcal{O}(h^{q+1}) .$$
(1.28)

Our next aim is to estimate ΔZ_n . For this we have to consider the ycomponent of the system. Due to (1.11a-c) the values y_n, Y_{ni} are those of the Runge-Kutta method applied to (1.8). It thus follows from Theorem II.8.1 that $y_n - y(x_n) = e_n(x_n)h^p + \mathcal{O}(h^{p+1})$. Since Formula (1.26a) also holds with z(x) replaced by y(x), we can subtract this formula from (1.11a) and so obtain

$$\begin{split} Y_{ni} &- y(x_n + c_i h) = y_n - y(x_n) \\ &+ h \sum_{j=1}^s a_{ij} \Big(f \big(Y_{nj}, G(Y_{nj}) \big) - f \big(y(x_n + c_j h), G(y(x_n + c_j h)) \big) \Big) + \mathcal{O}(h^{q+1}). \end{split}$$

This implies that

$$Y_{ni} - y(x_n + c_i h) = \mathcal{O}(h^{\nu})$$
 with $\nu = \min(p, q+1)$

Because of (1.11b) we get

$$Z_{ni} - z(x_n + c_i h) = G(Y_{ni}) - G(y(x_n + c_i h)) = \mathcal{O}(h^{\nu})$$

and Formula (1.28) becomes

$$\Delta z_{n+1} = \rho \Delta z_n + \delta_{n+1} , \quad \text{where} \quad \delta_{n+1} = \mathcal{O}(h^{\nu}) . \quad (1.29)$$

Repeated insertion of this formula gives

$$\Delta z_n = \sum_{i=1}^n \varrho^{n-i} \delta_i , \qquad (1.30)$$

because $\Delta z_0 = 0$. This proves the statement for $\varrho \neq -1$. For the case $\varrho = -1$ the error Δz_n is a sum of differences $\delta_{j+1} - \delta_j$. Since δ_{n+1} is actually of the form $\delta_{n+1} = d(x_n)h^{\nu} + \mathcal{O}(h^{\nu+1})$ we have $\delta_{j+1} - \delta_j = \mathcal{O}(h^{\nu+1})$ and the statement also follows in this situation.

409

410 VI. Singular Perturbation Problems and Differential-Algebraic Equations

The order reduction in the z-component (for non stiffly accurate methods) was first studied by Petzold (1986) in a more general context.

Multistep Methods for Index 1 DAE's

A multistep method applied to system (1.5) gives

$$\sum_{i=0}^{k} \alpha_{i} y_{n+i} = h \sum_{i=0}^{k} \beta_{i} f(y_{n+i}, z_{n+i})$$
(1.31a)

$$\varepsilon \sum_{i=0}^{k} \alpha_i \, z_{n+i} = h \sum_{i=0}^{k} \beta_i \, g(y_{n+i}, z_{n+i}) \,. \tag{1.31b}$$

By putting $\varepsilon = 0$ we obtain (*direct approach*)

$$\sum_{i=0}^{k} \alpha_{i} y_{n+i} = h \sum_{i=0}^{k} \beta_{i} f(y_{n+i}, z_{n+i})$$
(1.32a)

$$0 = \sum_{i=0}^{\kappa} \beta_i g(y_{n+i}, z_{n+i})$$
(1.32b)

which allows us to apply a multistep method to the differential-algebraic system (1.6). This approach was first proposed (for the BDF methods) by Gear (1971).

Theorem 1.2. Suppose that the system (1.6) satisfies (1.7). Consider a multistep method of order p which is stable at the origin and at infinity (0 and ∞ are in the stability region) and suppose that the error of the starting values y_j, z_j for $j = 0, \ldots k-1$ is $\mathcal{O}(h^p)$. Then the global error of (1.32) satisfies

$$y_n - y(x_n) = \mathcal{O}(h^p)$$
, $z_n - z(x_n) = \mathcal{O}(h^p)$

for $x_n - x_0 = nh \leq Const.$

Proof. Formula (1.32b) is a stable recursion for $\delta_n = g(y_n, z_n)$, because ∞ lies in the stability region of the method. This together with the assumption on the starting values implies that $\delta_n = \mathcal{O}(h^p)$ for all $n \ge 0$. By the implicit function theorem $g(y_n, z_n) = \delta_n$ can be solved for z_n and yields

$$z_n = G(y_n) + \mathcal{O}(h^p) \tag{1.33}$$

with G(y) as in (1.8). Inserting (1.33) into (1.32a) gives the multistep formula for the differential equation (1.8) with an $\mathcal{O}(h^{p+1})$ perturbation. The statement then follows from the convergence proof of Section III.4.

For the implicit index 1 problem (1.17) the multistep method becomes

$$M\sum_{i=0}^{k}\alpha_{i}u_{n+i} = h\sum_{i=0}^{k}\beta_{i}\varphi(u_{n+i})$$
(1.34)

and convergence without any order reduction for methods satisfying the hypotheses of Theorem 1.2 follows from the transformation (1.20) and the diagram (1.23).

The *indirect approach* is also possible for multistep methods. We just have to replace (1.32b) by

$$g(y_{n+k}, z_{n+k}) = 0$$
. (1.32c)

Method (1.32a,c) is equivalent to the solution of (1.8) by the above multistep method. Hence, we have convergence as for nonstiff ordinary differential equations. The assumption " $\infty \in S$ " is no longer necessary and even explicit methods can be applied.

We shall turn our attention to a more difficult problem: convergence results for singular perturbation problems, valid uniformly in ε . We begin with the discussion for multistep methods. The analogous theory for RK methods will be the subject of Section VI.2.

Multistep Methods for Singular Perturbation Problems

For such methods the error propagation has been studied by Söderlind & Dahlquist (1981) using G-stability estimates. Convergence results were first obtained by Lötstedt (1985) for BDF methods. The following convergence result by Lubich (1990), based on the smoothness of the exact solution and thus uniform in ϵ as long as we stay away from transient phases, gives optimal error bounds for arbitrary multistep methods.

The Jacobian of the system (1.5) is of the form

$$\begin{pmatrix} f_y & f_z \\ \varepsilon^{-1}g_y & \varepsilon^{-1}g_z \end{pmatrix}$$

and its dominant eigenvalues are seen to be close to $\varepsilon^{-1}\lambda$ where λ represents the eigenvalues of g_z . For reasons of stability we assume throughout this subsection that the eigenvalues of g_z have negative real part. More precisely, we assume that

the eigenvalues
$$\lambda$$
 of $g_z(y, z)$ lie in $|\arg \lambda - \pi| < \alpha$ (1.35)

for (y, z) in a neighbourhood of the considered solution. We then have the following result for method (1.31a,b):

Theorem 1.3 (Lubich 1990). Suppose that the multistep method is of order $p, A(\alpha)$ -stable and strictly stable at infinity. If the problem (1.5) satisfies (1.35), then the error is bounded for $h \ge \varepsilon$ and $nh \le \overline{x} - x_0$ by

$$\begin{split} \|y_n - y(x_n)\| + \|z_n - z(x_n)\| \\ & \leq C \Big(\max_{0 \leq j < k} \|y_j - y(x_j)\| + h^p \int_{x_0}^{x_n} \|y^{(p+1)}(x)\| \, dx \\ & + (h + \varrho^n) \max_{0 \leq j < k} \|z_j - z(x_j)\| + \varepsilon h^p \max_{x_0 \leq x \leq x_n} \|z^{(p+1)}(x)\| \Big) \end{split}$$

with $0 < \rho < 1$. This estimate holds for $h \leq h_0$ (h_0 sufficiently small, but independent of ε), and provided that the starting values are in a sufficiently small, h- and ε -independent neighbourhood of the exact solution. The constants C and ρ are independent of ε and h.

Proof. The proof is divided into several parts: in part (a) we shall derive recursive estimates for the global error, these will be solved in part (b); part (c) proves an inequality which is needed in (a).

a) First we insert the exact solution of (1.5) into the method (1.31) and so obtain

$$\sum_{i=0}^{k} \alpha_{i} y(x_{n+i}) = h \sum_{i=0}^{k} \beta_{i} f(y(x_{n+i}), z(x_{n+i})) + d_{n+k}$$
(1.36a)

$$\sum_{i=0}^{k} \alpha_{i} z(x_{n+i}) = \frac{h}{\varepsilon} \sum_{i=0}^{k} \beta_{i} g(y(x_{n+i}), z(x_{n+i})) + e_{n+k} , \quad (1.36b)$$

where the perturbations d_{n+k} , e_{n+k} can be estimated (for $n \ge 0$) as

$$\|d_{n+k}\| \le C_1 h^p \int_{x_n}^{x_{n+k}} \|y^{(p+1)}(x)\| dx$$
 (1.37a)

$$\|e_{n+k}\| \le C_2 h^{p+1} \max_{x_n \le x \le x_{n+k}} \|z^{(p+1)}(x)\|$$
 . (1.37b)

We then denote the global errors by $\Delta y_n = y_n - y(x_n), \; \Delta z_n = z_n - z(x_n)$ and introduce the differences

$$\Delta f_{n+k} = \sum_{i=0}^k eta_i \Big(f(y_{n+i}, z_{n+i}) - f(y(x_{n+i}), z(x_{n+i})) \Big) \;, \qquad n \ge 0 \;,$$

 $\Delta f_j = 0$ for j < k. Subtraction of (1.36a) from (1.31a) yields for $n \ge 0$

$$\sum_{i=0}^{k} \alpha_i \Delta y_{n+i} = h \Delta f_{n+k} - d_{n+k} .$$
 (1.38)

Guided by previous experience (see (V.7.41)), we define d_0, \ldots, d_{k-1} so that

(1.38) also holds for negative n. Solving for Δy_n gives

$$\Delta y_n = h \sum_{j=0}^n r_{n-j}(0) \,\Delta f_j - \sum_{j=0}^n r_{n-j}(0) \,d_j$$

where $r_j(0)$ is defined in (V.7.44). These numbers are the coefficients of $r(\zeta,0) = \zeta^{-k}/\varrho(\zeta^{-1})$. By zero-stability of the method, the sequence $\{r_j(0)\}$ is bounded, so that a Lipschitz condition for f(y,z) implies the estimate

$$\|\Delta y_n\| \le h \sum_{j=0}^n (M\|\Delta y_j\| + N\|\Delta z_j\|) + C_3 \sum_{j=0}^n \|d_j\| .$$
 (1.39)

A more refined estimate is necessary for the z-component. We take the difference of (1.31b) and (1.36b) and then subtract from both sides the quantity

$$\frac{h}{\varepsilon} \sum_{i=0}^{k} \beta_i J \,\Delta z_{n+i} \qquad \text{where} \qquad J = g_z(y_0, z_0) \;. \tag{1.40}$$

This yields

$$\sum_{i=0}^{k} \left(\alpha_{i}I - \beta_{i}\frac{h}{\varepsilon}J\right) \Delta z_{n+i} = \frac{h}{\varepsilon} \Delta g_{n+k} - e_{n+k}$$
(1.41)

where

$$\Delta g_{n+k} = \sum_{i=0}^{k} \beta_i \Big(g(y_{n+i}, z_{n+i}) - g(y(x_{n+i}), z(x_{n+i})) - J \, \Delta z_{n+i} \Big) , \quad (1.42)$$

and $\Delta g_j = 0$ for j < k. We again define e_0, \ldots, e_{k-1} such that (1.41) holds for negative *n*, and we then solve (1.41) for Δz_n . This gives

$$\Delta z_n = \frac{h}{\varepsilon} \sum_{j=0}^n r_{n-j} \left(\frac{h}{\varepsilon} J\right) \Delta g_j - \sum_{j=0}^n r_{n-j} \left(\frac{h}{\varepsilon} J\right) e_j \tag{1.43}$$

where the matrices $r_i(\frac{h}{\epsilon}J)$ are defined by (see Formula (V.7.50))

$$\frac{h}{\varepsilon} \sum_{j \ge 0} r_j \left(\frac{h}{\varepsilon} J\right) \zeta^j = \left(\frac{\varepsilon}{h} \,\delta(\zeta) I - J\right)^{-1} \frac{\zeta^{-k}}{\sigma(\zeta^{-1})} \tag{1.44}$$

with $\delta(\zeta)$ given in (V.7.45). In part c) below we shall prove that

$$rac{h}{arepsilon} \Big\| r_j \Big(rac{h}{arepsilon} J \Big) \Big\| \leq C \kappa^j \qquad ext{with} \quad 0 < \kappa < 1 \; .$$

Inserted into (1.43) we thus get

$$\|\Delta z_{n}\| \leq \sum_{j=0}^{n} \kappa^{n-j} (L\|\Delta y_{j}\| + \ell \|\Delta z_{j}\|) + C_{4} \frac{\varepsilon}{h} \sum_{j=0}^{n} \kappa^{n-j} \|e_{j}\| .$$
 (1.46)

414 VI. Singular Perturbation Problems and Differential-Algebraic Equations

It is important to remark that the Lipschitz constant ℓ can be made arbitrarily small by shrinking the considered interval.

b) In order to solve the inequalities (1.39) and (1.46) we define sequences $\{u_n\}$ and $\{v_n\}$ by

$$u_{n} = h \sum_{j=0}^{n} (Mu_{j} + Nv_{j}) + C_{3} \sum_{j=0}^{n} ||d_{j}|| ,$$

$$v_{n} = \sum_{j=0}^{n} \kappa^{n-j} (Lu_{j} + \ell v_{j}) + C_{4} \frac{\varepsilon}{h} \sum_{j=0}^{n} \kappa^{n-j} ||e_{j}|| .$$
(1.47)

An induction argument shows that

$$\|\Delta y_n\| \le u_n$$
, $\|\Delta z_n\| \le v_n$

provided $\ell < 1$ and $h \leq h_0$. We then rewrite (1.47) as

$$\begin{split} & u_n = u_{n-1} + h M u_n + h N v_n + C_3 \|d_n\| \ , \qquad u_{-1} = 0 \ , \\ & v_n = \kappa v_{n-1} + L u_n + \ell v_n + C_4 \ \frac{\varepsilon}{h} \|e_n\| \ , \qquad v_{-1} = 0 \ . \end{split}$$

Solving for u_n, v_n we get (with $\rho = \kappa/(1-\ell)$)

$$\begin{pmatrix} u_n \\ v_n \end{pmatrix} = A(h) \begin{pmatrix} u_{n-1} \\ v_{n-1} \end{pmatrix} + \begin{pmatrix} \widehat{d}_n \\ \widehat{e}_n \end{pmatrix} , \qquad A(h) = \begin{pmatrix} 1 + \mathcal{O}(h) & \mathcal{O}(h) \\ \mathcal{O}(1) & \varrho + \mathcal{O}(h) \end{pmatrix}$$
(1.48)

where

$$\widehat{d}_{n}| \leq C_{5}\left(\|d_{n}\| + \varepsilon \|e_{n}\|\right), \qquad |\widehat{e}_{n}| \leq C_{6}\left(\|d_{n}\| + \frac{\varepsilon}{h} \|e_{n}\|\right).$$
(1.49)

Inserting (1.48) repeatedly we obtain

$$\begin{pmatrix} u_n \\ v_n \end{pmatrix} = \sum_{j=0}^n A(h)^{n-j} \begin{pmatrix} \hat{d}_j \\ \hat{e}_j \end{pmatrix} .$$
 (1.50)

If ℓ is small enough so that $\rho = \kappa/(1-\ell) < 1$ and if $h \le h_0$, then the eigenvalues of A(h) are distinct and A(h) can be diagonalized as

$$A(h)=T^{-1}(h)egin{pmatrix}1+\mathcal{O}(h)&0\0&arrho+\mathcal{O}(h)\end{pmatrix}T(h)\ ,\quad T(h)=egin{pmatrix}1&\mathcal{O}(h)\\mathcal{O}(1)&1\end{pmatrix}\ .$$

Inserted into (1.50) this yields

$$u_n + v_n \leq \textit{Const.}\left(\sum_{j=1}^n \widehat{d}_j + \sum_{j=1}^n (h + \varrho^{n-j}) \,\widehat{e}_j\right) \,.$$

Since d_0, \ldots, d_{k-1} are linear combinations of the values Δy_j (j < k), and e_0, \ldots, e_{k-1} are linear combinations of the Δz_j and $\frac{h}{\epsilon} \Delta z_j$, the statement of the theorem follows from (1.49) and (1.37). Because of our assumption on

 ℓ (that $\rho = \kappa/(1-\ell) < 1$) we have proved the theorem for sufficiently small (but ε -independent) intervals. Compact intervals $[x_0, \overline{x}]$ can be covered by repeated application of the above estimates.

c) It still remains to prove (1.45). More generally, we shall show that

$$\frac{h}{\varepsilon} \left\| r_j \left(\frac{h}{\varepsilon} g_z(y, z) \right) \right\| \le C \kappa^j \quad \text{with} \quad 0 < \kappa < 1 \quad (1.51)$$

holds uniformly in a compact neighbourhood of the solution. This is necessary, if the above estimates are applied to several subintervals. In order to prove (1.51) we remember that $r_j(\frac{h}{\epsilon}J)$ is defined by (1.44). If we are able to show that

$$\left\| \left(\frac{\varepsilon}{h} \,\delta(\zeta) I - g_z(y,z) \right)^{-1} \frac{\zeta^{-k}}{\sigma(\zeta^{-k})} \,\right\| \le C \qquad \text{for} \quad |\zeta| \le 1/\kappa \tag{1.52}$$

then the estimate (1.51) follows immediately from Cauchy's integral formula

$$\frac{h}{\varepsilon} r_j \left(\frac{h}{\varepsilon} J \right) = \frac{1}{2\pi i} \int_{|\zeta|=1/\kappa} \left(\frac{\varepsilon}{h} \, \delta(\zeta) I - J \right)^{-1} \frac{\zeta^{-k}}{\sigma(\zeta^{-1})} \cdot \zeta^{-j-1} d\zeta \; .$$

By definition of the stability region S of a multistep method, the value $\delta(\zeta)$ lies outside of S whenever $|\zeta| < 1$. Recall that the method is $A(\alpha)$ -stable and strictly stable at infinity, and the differential equation satisfies (1.35). Therefore the set of eigenvalues of $g_z(y, z)$ (with (y, z) varying in a compact neighbourhood of the solution) is well separated from $\{\gamma\delta(\zeta); \gamma \leq 1, |\zeta| \leq 1\}$. It is even separated from $\{\gamma\delta(\zeta); \gamma \leq 1, |\zeta| \leq 1/\kappa\}$ with some $\kappa < 1$. Together with Exercise 2 of Section V.7 this proves (1.52).

Exercises

1. Compute the solutions of the boundary value problems

$$arepsilon y'' + y' + y = 1$$
 respectively $arepsilon y'' - y' + y = 1$ (1.50)
 $y(0) = y(1) = 0$, for $arepsilon > 0$.

Observe that the solutions possess, for $\epsilon \to 0$, a "boundary layer" on one of the two sides of [0, 1] and that the limit solutions for $\epsilon = 0$ satisfy

$$y' + y = 1$$
 respectively $-y' + y = 1$

with one of the two boundary conditions being lost.

2. (Lubich 1990). Prove that for the BDF-schemes the estimate of Theorem 1.2 (for $n \ge k$) is valid with $(h + \varrho^n)$ replaced by $\varepsilon(1 + \varrho^n/h)$ in the factor multiplying the z-component of the errors in the starting values. *Hint*. Give a direct proof for $n \in \{k, \ldots, 2k-1\}$; then apply Theorem 1.2 to shifted starting values.

VI.2. Epsilon Expansions for Exact and RK Solutions

In the preceding section we have proved convergence of multistep methods for singular perturbation problems. The same techniques do not yield optimal estimates for Runge-Kutta methods. We therefore investigate more thoroughly the structure of the solutions of singular perturbation problems. A first systematic study of the qualitative aspects of such problems is due to Tikhonov (1952). Asymptotic expansions were then analyzed by Vasil'eva (1963). Classical books on this subject are Wasow (1965), O'Malley (1974), and Tikhonov, Vasil'eva & Sveshnikov (1985).

Expansion of the Smooth Solution

"Tihonov's theorem is only the first step ... The actual approximate solution of such problems in series form is still a difficult question. It has been analyzed in a series of papers by Vasil'eva ..." (W. Wasow 1965)

We consider the singular perturbation problem

$$y' = f(y,z)$$

 $\varepsilon z' = g(y,z)$, $0 < \varepsilon \ll 1$
 (2.1)

where f and g are sufficiently differentiable. The functions f, g and the initial values y(0), z(0) may depend smoothly on ε . For simplicity of notation we suppress this dependence. The corresponding equation for $\varepsilon = 0$,

$$y' = f(y, z)$$

 $0 = g(y, z)$, (2.2)

is the reduced problem. In order to guarantee the solvability of (2.2), we assume that $g_z(y,z)$ is invertible (in a neighbourhood of the solution of (2.2)).

We are mainly interested in smooth solutions of (2.1), which are of the form

$$y(x) = y_0(x) + \varepsilon y_1(x) + \varepsilon^2 y_2(x) + \dots$$

$$z(x) = z_0(x) + \varepsilon z_1(x) + \varepsilon^2 z_2(x) + \dots$$
(2.3)

Inserting (2.3) into (2.1) and collecting equal powers of ε yields

$$\epsilon^{0}: \begin{array}{c} y_{0}' = f(y_{0}, z_{0}) \\ 0 = g(y_{0}, z_{0}) \end{array}$$
 (2.4a)

$$\varepsilon^{1}: \begin{array}{c} y_{1}' = f_{y}(y_{0}, z_{0})y_{1} + f_{z}(y_{0}, z_{0})z_{1} \\ z_{0}' = g_{y}(y_{0}, z_{0})y_{1} + g_{z}(y_{0}, z_{0})z_{1} \end{array} \right\}$$
(2.4b)

$$\varepsilon^{\nu}: \begin{array}{c} y_{\nu}' = f_{y}(y_{0},z_{0})y_{\nu} + f_{z}(y_{0},z_{0})z_{\nu} + \varphi_{\nu}(y_{0},z_{0},\ldots,y_{\nu-1},z_{\nu-1}) \\ z_{\nu-1}' = g_{y}(y_{0},z_{0})y_{\nu} + g_{z}(y_{0},z_{0})z_{\nu} + \psi_{\nu}(y_{0},z_{0},\ldots,y_{\nu-1},z_{\nu-1}) \end{array} \} (2.4c)$$

As expected, we see from (2.4a) that $y_0(x)$, $z_0(x)$ is a solution of the reduced system. Since g_z is invertible, the second equation of (2.4b) can be solved for z_1 . By inserting z_1 into the upper relation of (2.4b) we obtain a linear differential equation for $y_1(x)$. Hence, $y_1(x)$ and $z_1(x)$ are determined. Similarly, we get $y_2(x)$, $z_2(x)$ from (2.4c), etc.

This construction of the coefficients of (2.3) shows that we can choose the initial values $y_j(0)$ arbitrarily, but that there is no freedom in the choice of $z_j(0)$. Consequently, not every solution of (2.1) can be written in the form (2.3).

Expansions with Boundary Layer Terms

"To construct a uniform asymptotic expansion we must combine the Maclaurin expansion with another expansion of special form. The terms in this expansion are exponential functions that are appreciable inside the boundary layer, but negligibly small outside it."

(A.B. Vasil'eva 1963)

Example 2.1. We consider the problem (IV.1.1), written in the form

$$\varepsilon z' = -z + \cos x \ . \tag{2.5}$$

Its analytic solution

$$z(x) = (1+\varepsilon^2)^{-1}(\cos x + \varepsilon \sin x) + Ce^{-x/\varepsilon}$$
$$= \cos x + \varepsilon \sin x - \varepsilon^2 \cos x - \varepsilon^3 \sin x + \ldots + Ce^{-x/\varepsilon}$$

is a superposition of a smooth solution of the form (2.3) and of a rapidly decaying function. This additional term (transient phase, boundary layer) compensates the missing freedom in the choice of the initial values $z_i(0)$.

Motivated by this example, we seek solutions of the general problem

418 VI. Singular Perturbation Problems and Differential-Algebraic Equations

(2.1) which are of the form

$$y(x) = \sum_{j \ge 0} \epsilon^{j} y_{j}(x) + \epsilon \sum_{j \ge 0} \epsilon^{j} \eta_{j}(x/\epsilon)$$

$$z(x) = \sum_{j \ge 0} \epsilon^{j} z_{j}(x) + \sum_{j \ge 0} \epsilon^{j} \zeta_{j}(x/\epsilon) , \qquad (2.6)$$

where $y_j(x)$, $z_j(x)$ are determined by (2.4) and the ϵ -independent functions η_i , ζ_i are assumed to satisfy

$$\|\eta_j(\xi)\| \le e^{-\kappa\xi} , \qquad \|\zeta_j(\xi)\| \le e^{-\kappa\xi}$$
 (2.7)

with some $\kappa > 0$. Inserting (2.6) into (2.1) and using (2.4) we obtain formally

$$\sum_{j\geq 0} \varepsilon^{j} \eta_{j}'\left(\frac{x}{\varepsilon}\right) = f\left(\sum_{j\geq 0} \varepsilon^{j} y_{j}(x) + \varepsilon \sum_{j\geq 0} \varepsilon^{j} \eta_{j}\left(\frac{x}{\varepsilon}\right), \sum_{j\geq 0} \varepsilon^{j} z_{j}(x) + \sum_{j\geq 0} \varepsilon^{j} \zeta_{j}\left(\frac{x}{\varepsilon}\right)\right) - f\left(\sum_{j\geq 0} \varepsilon^{j} y_{j}(x), \sum_{j\geq 0} \varepsilon^{j} z_{j}(x)\right)$$
(2.8a)

$$\sum_{j\geq 0} \varepsilon^{j} \zeta_{j}'\left(\frac{x}{\varepsilon}\right) = g\left(\sum_{j\geq 0} \varepsilon^{j} y_{j}(x) + \varepsilon \sum_{j\geq 0} \varepsilon^{j} \eta_{j}\left(\frac{x}{\varepsilon}\right), \sum_{j\geq 0} \varepsilon^{j} z_{j}(x) + \sum_{j\geq 0} \varepsilon^{j} \zeta_{j}\left(\frac{x}{\varepsilon}\right)\right) - g\left(\sum_{j\geq 0} \varepsilon^{j} y_{j}(x), \sum_{j\geq 0} \varepsilon^{j} z_{j}(x)\right).$$
(2.8b)

We then replace x by the stretched variable

$$\xi = x/\varepsilon \tag{2.9}$$

and compare like powers of ε in (2.8). This gives for ε^0

$$\eta_0'(\xi) = f(y_0(0), z_0(0) + \zeta_0(\xi)) - f(y_0(0), z_0(0))$$
(2.10a)

$$\zeta_0'(\xi) = g(y_0(0), z_0(0) + \zeta_0(\xi)) - g(y_0(0), z_0(0)) .$$
 (2.10b)

At this point it is necessary to introduce some stability assumption for (2.1) in order to obtain (2.7). We shall require that the logarithmic norm of g_z satisfy

$$\mu\big(g_{z}(y,z)\big) \leq -1 \tag{2.11}$$

in an ε -independent neighbourhood of the solution of (2.2) (any negative bound other than -1 can be normalized by re-scaling ε). By Theorem I.10.6 Equation (2.10b) and (2.11) imply

$$\|\zeta_0(\xi)\| \le \|\zeta_0(0)\|e^{-\xi}$$

Since f(y,z) satisfies locally a Lipschitz condition, the right-hand side of (2.10a), denoted by $\varphi(\xi)$, is bounded by $\|\varphi(\xi)\| \leq L \|\zeta_0(0)\| e^{-\xi}$. Conse-

quently, there is only one solution of (2.10a) which satisfies (2.7), namely

$$\eta_0(\xi) = \int_0^\xi \varphi(s) \, ds - \int_0^\infty \varphi(s) \, ds \, . \tag{2.12}$$

A comparison of the powers of ε^1 in (2.8) yields

$$\begin{split} \eta_{1}'(\xi) &= f_{y} \left(y_{0}(0), z_{0}(0) + \zeta_{0}(\xi) \right) \left(y_{1}(0) + \xi y_{0}'(0) + \eta_{0}(\xi) \right) \\ &+ f_{z} \left(y_{0}(0), z_{0}(0) + \zeta_{0}(\xi) \right) \left(z_{1}(0) + \xi z_{0}'(0) + \zeta_{1}(\xi) \right) \\ &- f_{y} \left(y_{0}(0), z_{0}(0) \right) \left(y_{1}(0) + \xi y_{0}'(0) \right) \\ &- f_{z} \left(y_{0}(0), z_{0}(0) \right) \left(z_{1}(0) + \xi z_{0}'(0) \right) \\ &+ g_{z} \left(y_{0}(0), z_{0}(0) + \zeta_{0}(\xi) \right) \left(y_{1}(0) + \xi y_{0}'(0) + \eta_{0}(\xi) \right) \\ &+ g_{z} \left(y_{0}(0), z_{0}(0) + \zeta_{0}(\xi) \right) \left(z_{1}(0) + \xi z_{0}'(0) + \zeta_{1}(\xi) \right) \\ &- g_{y} \left(y_{0}(0), z_{0}(0) \right) \left(y_{1}(0) + \xi y_{0}'(0) \right) \\ &- g_{z} \left(y_{0}(0), z_{0}(0) \right) \left(z_{1}(0) + \xi z_{0}'(0) \right) . \end{split}$$
(2.13b)

Formula (2.13b) is a linear differential equation for $\zeta_1(\xi)$. Its defect, when ζ_1 is replaced by 0, is bounded by $Ce^{-\xi}$. Therefore, an application of Theorem I.10.6 gives the estimate

$$\|\zeta_1(\xi)\| \le e^{-\xi} (\|\zeta_1(0)\| + C\xi) ,$$

which implies (2.7) for any $\kappa < 1$. The right-hand side of (2.13a) is then bounded by $C_1 e^{-\kappa\xi}$. As in (2.12) we obtain a unique solution to (2.13a), which satisfies (2.7). This procedure can be continued to construct all further $\eta_j(\xi), \zeta_j(\xi)$. At each step, the value of κ in (2.7) may become smaller. This is no serious difficulty, because we are only interested in a finite part of the series (2.6).

We point out that for the construction of $\eta_j(\xi)$, $\zeta_j(\xi)$ we can choose $\zeta_j(0)$ arbitrarily, but that there is no freedom in the choice of $\eta_j(0)$.

As a consequence, for an arbitrary initial value for (2.1) with expansion

$$y(0) = y_0^0 + \varepsilon y_1^0 + \varepsilon^2 y_2^0 + \dots$$

$$z(0) = z_0^0 + \varepsilon z_1^0 + \varepsilon^2 z_2^0 + \dots ,$$
(2.14)

the coefficients of the series (2.6) can be constructed as follows: put x=0 in (2.6) to obtain the necessary relations

$$y_0(0) = y_0^0$$
, $y_j(0) + \eta_{j-1}(0) = y_j^0$, $z_j(0) + \zeta_j(0) = z_j^0$. (2.15)

This initial value $y_0(0) = y_0^0$ determines $z_0(0)$ by (2.4a), $\zeta_0(0)$ is then given by (2.15), $\eta_0(0)$ by (2.12), $y_1(0)$ by (2.15), $z_1(0)$ by (2.4b), $\zeta_1(0)$ by (2.15), $\eta_1(0)$ by (2.13a) and (2.7), $y_2(0)$ by (2.15), etc.

Estimation of the Remainder

The following result gives a rigorous estimate of the remainder in (2.6), when only a truncated series is considered.

Theorem 2.2. Consider the initial value problem (2.1), (2.14), and suppose that (2.11) holds in an ε -independent neighbourhood of the solution $y_0(x)$, $z_0(x)$ ($0 \le x \le \overline{x}$) of the reduced problem ($y_0(0) = y_0^0$). If (y_0^0, z_0^0) lies in this neighbourhood, then the problem (2.1), (2.14) has a unique solution for ε sufficiently small and for $0 \le x \le \overline{x}$, which is of the form

$$y(x) = \sum_{j=0}^{N} \varepsilon^{j} y_{j}(x) + \varepsilon \sum_{j=0}^{N-1} \varepsilon^{j} \eta_{j}(x/\varepsilon) + \mathcal{O}(\varepsilon^{N+1})$$

$$z(x) = \sum_{j=0}^{N} \varepsilon^{j} z_{j}(x) + \sum_{j=0}^{N} \varepsilon^{j} \zeta_{j}(x/\varepsilon) + \mathcal{O}(\varepsilon^{N+1}) .$$

(2.16)

The coefficients $y_j(x)$, $z_j(x)$, $\eta_j(\xi)$, $\zeta_j(\xi)$ are given by (2.4), (2.10), (2.13), and satisfy (2.7).

Proof. We denote the truncated series by

$$\widehat{y}(x) = \sum_{j=0}^{N} \varepsilon^{j} y_{j}(x) + \varepsilon \sum_{j=0}^{N} \varepsilon^{j} \eta_{j}(x/\varepsilon)$$

$$\widehat{z}(x) = \sum_{j=0}^{N} \varepsilon^{j} z_{j}(x) + \sum_{j=0}^{N} \varepsilon^{j} \zeta_{j}(x/\varepsilon) .$$
(2.17)

By our construction of $y_i(x)$, $z_i(x)$, $\eta_i(\xi)$, $\zeta_i(\xi)$ we have

$$\widehat{y}'(x) = f(\widehat{y}(x), \widehat{z}(x)) + \mathcal{O}(\varepsilon^{N+1})
\varepsilon \widehat{z}'(x) = g(\widehat{y}(x), \widehat{z}(x)) + \mathcal{O}(\varepsilon^{N+1}) .$$
(2.18)

Subtracting (2.1) from (2.18) and exploiting Lipschitz conditions for f and g we obtain

$$D_{+}\|\widehat{y}(x) - y(x)\| \leq L_{1}\|\widehat{y}(x) - y(x)\| + L_{2}\|\widehat{z}(x) - z(x)\| + C_{1}\varepsilon^{N+1}$$

$$\varepsilon D_{+}\|\widehat{z}(x) - z(x)\| \leq L_{3}\|\widehat{y}(x) - y(x)\| - \|\widehat{z}(x) - z(x)\| + C_{2}\varepsilon^{N+1}.$$
(2.19)

Here, D_+ denotes the Dini derivative introduced in Section I.10. We have used $D_+ ||w(x)|| \le ||w'(x)||$ (see Formula (I.10.4)) and, for the second inequality of (2.19), Formula (I.10.17) together with (2.11).

In order to solve inequality (2.19) we replace \leq by = and so obtain

$$\begin{aligned} u' &= L_1 u + L_2 v + C_1 \varepsilon^{N+1} , & u_0 &= \|\widehat{y}(0) - y(0)\| = \mathcal{O}(\varepsilon^{N+1}) \\ \varepsilon v' &= L_3 u - v + C_2 \varepsilon^{N+1} , & v_0 &= \|\widehat{z}(0) - z(0)\| = \mathcal{O}(\varepsilon^{N+1}) . \end{aligned}$$
 (2.20)

This system is quasimonotone, it thus follows from Exercise 3 (Section I.10) that

$$\|\widehat{y}(x) - y(x)\| \le u(x) \;, \qquad \|\widehat{z}(x) - z(x)\| \le v(x) \;.$$
 (2.21)

Transforming (2.20) to diagonal form one easily finds its analytic solution and verifies that

$$u(x) = \mathcal{O}(arepsilon^{N+1}) \;, \qquad v(x) = \mathcal{O}(arepsilon^{N+1})$$

on compact intervals. Inserted into (2.21) this proves the statement.

Expansion of the Runge-Kutta Solution

After having understood the structure of the analytic solution of (2.1), we turn our attention to its numerical counterpart. We consider the Runge-Kutta method

$$\begin{pmatrix} y_{n+1} \\ z_{n+1} \end{pmatrix} = \begin{pmatrix} y_n \\ z_n \end{pmatrix} + h \sum_{i=1}^s b_i \begin{pmatrix} k_{ni} \\ \ell_{ni} \end{pmatrix}$$
(2.22)

where

$$\begin{pmatrix} k_{ni} \\ \varepsilon \ell_{ni} \end{pmatrix} = \begin{pmatrix} f(Y_{ni}, Z_{ni}) \\ g(Y_{ni}, Z_{ni}) \end{pmatrix}$$
(2.23)

and the internal stages are given by

$$\begin{pmatrix} Y_{ni} \\ Z_{ni} \end{pmatrix} = \begin{pmatrix} y_n \\ z_n \end{pmatrix} + h \sum_{j=1}^s a_{ij} \begin{pmatrix} k_{nj} \\ \ell_{nj} \end{pmatrix} .$$
 (2.24)

For arbitrary initial values, the solution possesses a transient phase (as described by Theorem 2.2), and the numerical method has anyway to take small step sizes of magnitude $\mathcal{O}(\varepsilon)$. We shall therefore focus on the situation where the transient phase is over and the method has reached the smooth solution within the given tolerance. We thus suppose that the initial values lie on the smooth solution (i.e., that an expansion of the form (2.3) holds) and that the step size h is large compared to ε . Our first goal is an ε -expansion of the numerical solution. To this end, we formally expand all occuring quantities into powers of ε with ε -independent coefficients (see Hairer, Lubich & Roche 1988)

$$y_n = y_n^0 + \varepsilon y_n^1 + \varepsilon^2 y_n^2 + \dots$$
 (2.25a)

$$Y_{ni} = Y_{ni}^{0} + \epsilon Y_{ni}^{1} + \epsilon^{2} Y_{ni}^{2} + \dots$$
 (2.25b)

$$k_{ni} = k_{ni}^0 + \varepsilon k_{ni}^1 + \varepsilon^2 k_{ni}^2 + \dots \qquad (2.25c)$$

and similarly for z_n , Z_{ni} , ℓ_{ni} . Because of the linearity of the relations (2.22) and (2.24) we have

$$\begin{pmatrix} y_{n+1}^{\nu} \\ z_{n+1}^{\nu} \end{pmatrix} = \begin{pmatrix} y_{n}^{\nu} \\ z_{n}^{\nu} \end{pmatrix} + h \sum_{i=1}^{s} b_{i} \begin{pmatrix} k_{ni}^{\nu} \\ \ell_{ni}^{\nu} \end{pmatrix}$$
(2.26)

and

$$\begin{pmatrix} Y_{ni}^{\nu} \\ Z_{ni}^{\nu} \end{pmatrix} = \begin{pmatrix} y_n^{\nu} \\ z_n^{\nu} \end{pmatrix} + h \sum_{j=1}^s a_{ij} \begin{pmatrix} k_{nj}^{\nu} \\ \ell_{nj}^{\nu} \end{pmatrix} .$$
(2.27)

Inserting (2.25b, c) into (2.23) and comparing equal powers of ε we obtain

$$\epsilon^{0}: \begin{array}{c} k_{ni}^{0} = f(Y_{ni}^{0}, Z_{ni}^{0}) \\ 0 = g(Y_{ni}^{0}, Z_{ni}^{0}) \end{array} \right\}$$
(2.28a)

$$\varepsilon^{1}: \begin{cases} k_{ni}^{1} = f_{y}(Y_{ni}^{0}, Z_{ni}^{0})Y_{ni}^{1} + f_{z}(Y_{ni}^{0}, Z_{ni}^{0})Z_{ni}^{1} \\ \ell_{ni}^{0} = g_{y}(Y_{ni}^{0}, Z_{ni}^{0})Y_{ni}^{1} + g_{z}(Y_{ni}^{0}, Z_{ni}^{0})Z_{ni}^{1} \end{cases}$$
(2.28b)

$$\varepsilon^{\nu} : \begin{array}{l} k_{ni}^{\nu} = f_{y}(Y_{ni}^{0}, Z_{ni}^{0})Y_{ni}^{\nu} + f_{z}(Y_{ni}^{0}, Z_{ni}^{0})Z_{ni}^{\nu} + \varphi_{\nu}(Y_{ni}^{0}, Z_{ni}^{0}, ..., Y_{ni}^{\nu-1}, Z_{ni}^{\nu-1}) \\ \ell_{ni}^{\nu-1} = g_{y}(Y_{ni}^{0}, Z_{ni}^{0})Y_{ni}^{\nu} + g_{z}(Y_{ni}^{0}, Z_{ni}^{0})Z_{ni}^{\nu} + \psi_{\nu}(Y_{ni}^{0}, Z_{ni}^{0}, ..., Y_{ni}^{\nu-1}, Z_{ni}^{\nu-1}) \\ \end{array}$$

$$(2.28c)$$

Since (2.23) has the same form as the differential equation (2.1), it is obvious that the formulas of (2.28) are exactly the same as those of (2.4). An interesting interpretation of this fact is the following: the coefficients y_n^0 , z_n^0 , y_n^1 , z_n^1,\ldots represent the numerical solution of the Runge-Kutta method applied to the differential-algebraic system (2.4) (direct approach of Section VI.1). This can be expressed by the commutativity of the following diagram:

$$\begin{array}{cccc} \text{Problem (2.1)} & \xrightarrow{(2.3)} & \text{DAE (2.4)} \\ RK & & \text{method} & & RK & \text{method} \\ \{y_n, z_n\} & \xrightarrow{(2.25)} & \{y_n^0, z_n^0, y_n^1, z_n^1, \ldots\} \end{array}$$

Subtracting (2.25a) from (2.3) we get formally

$$y_n - y(x_n) = \sum_{\nu \ge 0} \varepsilon^{\nu} \left(y_n^{\nu} - y_{\nu}(x_n) \right)$$

$$z_n - z(x_n) = \sum_{\nu \ge 0} \varepsilon^{\nu} \left(z_n^{\nu} - z_{\nu}(x_n) \right) .$$
(2.29)

In order to study this error we first investigate the differences $y_n^{\nu} - y_{\nu}(x_n)$, $z_n^{\nu} - z_{\nu}(x_n)$ (next subsection). A rigorous estimate of the remainder in (2.29)

will then follow. The presentation follows that of Hairer, Lubich & Roche (1988).

Convergence of RK-Methods for Differential-Algebraic Systems

The first differences $y_n^0 - y_0(x_n)$, $z_n^0 - z_0(x_n)$ in the expansions of (2.29) are just the global errors of the Runge-Kutta method applied to the reduced system (2.4a). By assumption (2.11) this system is of index 1. Therefore, the following result is an immediate consequence of Theorem 1.1.

Theorem 2.3. Consider a Runge-Kutta method of (classical) order p, with invertible coefficient matrix (a_{ij}) . Suppose that Problem (2.4a) satisfies (2.11) and that the initial values are consistent.

a) If the method is stiffly accurate (i.e., $a_{si} = b_i$ for i = 1, ..., s) then the global error satisfies

$$y_n^0 - y_0(x_n) = \mathcal{O}(h^p) , \qquad z_n^0 - z_0(x_n) = \mathcal{O}(h^p) .$$
 (2.30)

b) If the stability function satisfies $|R(\infty)| < 1$, and the stage order is q (q < p), then

$$y_n^0 - y_0(x_n) = \mathcal{O}(h^p) , \qquad z_n^0 - z_0(x_n) = \mathcal{O}(h^{q+1}) .$$
 (2.31)

In both cases the estimates hold uniformly for $nh \leq Const$.

Estimating the second differences $y_n^1 - y_1(x_n)$, $z_n^1 - z_1(x_n)$ is not as simple, because the enlarged system (2.4a,b) with differential variables y_0, z_0, y_1 and algebraic variable z_1 , is no longer of index 1. It is actually of index 2, as will become clear in Section VI.5 below (Exercise 5). In principle it is possible to consult the results of Section VI.7 (theorems VI.7.5 and VI.7.6). For the special system (2.4a,b), however, a simpler proof is possible. It also extends more easily to the higher-index problems (2.4a-c).

Theorem 2.4 (Hairer, Lubich & Roche 1988). Consider a Runge-Kutta method of order p, stage order q (q < p), such that (a_{ij}) is invertible and the stability function satisfies $|R(\infty)| < 1$. If (2.11) holds and if the initial values of the differential-algebraic system (2.4a-c) are consistent, then the global error of method (2.26)-(2.28) satisfies for $1 \le \nu \le q+1$

$$y_n^{
u} - y_
u(x_n) = \mathcal{O}(h^{q+2-
u}) \;, \qquad z_n^{
u} - z_
u(x_n) = \mathcal{O}(h^{q+1-
u}) \;.$$

Proof. We denote the differences to the exact solution values by

$$\begin{split} \Delta y_{n}^{\nu} &= y_{n}^{\nu} - y_{\nu}(x_{n}) , \qquad \Delta z_{n}^{\nu} = z_{n}^{\nu} - z_{\nu}(x_{n}) , \\ \Delta Y_{ni}^{\nu} &= Y_{ni}^{\nu} - y_{\nu}(x_{n} + c_{i}h) , \qquad \Delta Z_{ni}^{\nu} = Z_{ni}^{\nu} - z_{\nu}(x_{n} + c_{i}h) , \qquad (2.32) \\ \Delta k_{ni}^{\nu} &= k_{ni}^{\nu} - y_{\nu}^{\prime}(x_{n} + c_{i}h) , \qquad \Delta \ell_{ni}^{\nu} = \ell_{ni}^{\nu} - z_{\nu}^{\prime}(x_{n} + c_{i}h) . \end{split}$$

Since the quadrature formula with nodes c_i and weights b_i is of order p, we have from (2.26)

$$\begin{pmatrix} \Delta y_{n+1}^{\nu} \\ \Delta z_{n+1}^{\nu} \end{pmatrix} = \begin{pmatrix} \Delta y_{n}^{\nu} \\ \Delta z_{n}^{\nu} \end{pmatrix} + h \sum_{i=1}^{s} b_{i} \begin{pmatrix} \Delta k_{ni}^{\nu} \\ \Delta \ell_{ni}^{\nu} \end{pmatrix} + \mathcal{O}(h^{p+1}) .$$
(2.33)

Similarly, the definition of the stage order implies

$$\begin{pmatrix} \Delta Y_{ni}^{\nu} \\ \Delta Z_{ni}^{\nu} \end{pmatrix} = \begin{pmatrix} \Delta y_n^{\nu} \\ \Delta z_n^{\nu} \end{pmatrix} + h \sum_{j=1}^{s} a_{ij} \begin{pmatrix} \Delta k_{nj}^{\nu} \\ \Delta \ell_{nj}^{\nu} \end{pmatrix} + \mathcal{O}(h^{q+1}) .$$
(2.34)

It follows from Theorem 2.3 (see also the proof of Theorem 1.1) that

$$\Delta y_n^0 = \mathcal{O}(h^p) , \qquad \Delta Y_{ni}^0 = \mathcal{O}(h^{q+1}) , \qquad \Delta k_{ni}^0 = \mathcal{O}(h^{q+1}) \Delta z_n^0 = \mathcal{O}(h^{q+1}) , \qquad \Delta Z_{ni}^0 = \mathcal{O}(h^{q+1}) , \qquad \Delta \ell_{ni}^0 = \mathcal{O}(h^q) .$$
(2.35)

a) We first consider the case $\nu = 1$. Replacing in (2.28b) Y_{ni}^0 , Z_{ni}^0 by $y_0(x_n+c_ih)+\Delta Y_{ni}^0$, $z_0(x_n+c_ih)+\Delta Z_{ni}^0$ and subtracting equation (2.4b) at the position $x=x_n+c_ih$, we obtain with the help of (2.35)

$$\begin{split} \Delta k_{ni}^{1} &= f_{y}(x_{n} + c_{i}h)\Delta Y_{ni}^{1} + f_{z}(x_{n} + c_{i}h)\Delta Z_{ni}^{1} \\ &+ \mathcal{O}(h^{q+1} + h^{q+1} \|\Delta Y_{ni}^{1}\| + h^{q+1} \|\Delta Z_{ni}^{1}\|) \\ \Delta \ell_{ni}^{0} &= g_{y}(x_{n} + c_{i}h)\Delta Y_{ni}^{1} + g_{z}(x_{n} + c_{i}h)\Delta Z_{ni}^{1} \\ &+ \mathcal{O}(h^{q+1} + h^{q+1} \|\Delta Y_{ni}^{1}\| + h^{q+1} \|\Delta Z_{ni}^{1}\|) . \end{split}$$
(2.36)

Here we have used the abbreviations $f_y(x) = f_y(y_0(x), z_0(x))$, etc. Computing ΔZ_{ni}^1 from the second relation of (2.36) and inserting it into the first one yields

$$\begin{split} \Delta k_{ni}^1 &- (f_z g_z^{-1})(x_n + c_i h) \Delta \ell_{ni}^0 \\ &= (f_y - f_z g_z^{-1} g_y)(x_n + c_i h) \Delta Y_{ni}^1 + \mathcal{O}(h^{q+1} + h^{q+1} \| \Delta Y_{ni}^1 \|) \ . \end{split}$$

Using (2.34) we can eliminate ΔY_{ni}^1 and obtain (with (2.35))

$$\Delta k_{ni}^1 - (f_z g_z^{-1})(x_n + c_i h) \Delta \ell_{ni}^0 = \mathcal{O}(\|\Delta y_n^1\|) + \mathcal{O}(h^{q+1}) .$$
(2.37)

Since $\Delta \ell_{ni}^0$ is of size $\mathcal{O}(h^q)$, we only have $\Delta k_{ni}^1 = \mathcal{O}(\|\Delta y_n^1\|) + \mathcal{O}(h^q)$, and a direct estimation of Δy_n^1 in (2.33) would lead to $\Delta y_n^1 = \mathcal{O}(h^q)$, which is not optimal. We therefore introduce the new variable

$$\Delta u_n^1 = \Delta y_n^1 - (f_z g_z^{-1})(x_n) \Delta z_n^0 . \qquad (2.38)$$

From (2.33) we get

$$\Delta u_{n+1}^{1} = \Delta u_{n}^{1} + h \sum_{i=1}^{s} b_{i} \left(\Delta k_{ni}^{1} - (f_{z} g_{z}^{-1})(x_{n}) \Delta \ell_{ni}^{0} \right)$$

$$- \left((f_{z} g_{z}^{-1})(x_{n} + h) - (f_{z} g_{z}^{-1})(x_{n}) \right) \Delta z_{n+1}^{0} + \mathcal{O}(h^{p+1}) .$$
(2.39)

The estimates (2.35), (2.37) and the fact that $\Delta y_n^1 = \Delta u_n^1 + \mathcal{O}(h^{q+1})$ imply that

$$\|\Delta u_{n+1}^1\| \le (1+Ch) \|\Delta u_n^1\| + \mathcal{O}(h^{q+2}) .$$
(2.40)

Standard techniques now show that $\Delta u_n^1 = \mathcal{O}(h^{q+1})$ for $nh \leq Const$ (observe that the initial values are assumed to be consistent, i.e., $\Delta u_0^1 = 0$), so that by (2.38) and (2.35) also $\Delta y_n^1 = \mathcal{O}(h^{q+1})$. This implies $\Delta k_{ni}^1 = \mathcal{O}(h^q)$ by (2.37) and $\Delta Y_{ni}^1 = \mathcal{O}(h^{q+1})$ by (2.34). The second relation of (2.36) then proves that $\Delta Z_{ni}^1 = \mathcal{O}(h^q)$. In order to estimate Δz_n^1 , we compute $\Delta \ell_{ni}^1$ from (2.34) and insert it into (2.33). Using $\Delta Z_{ni}^1 = \mathcal{O}(h^q)$ this gives

$$\Delta z_{n+1}^1 = (1 - b^T A^{-1} \mathbb{1}) \Delta z_n^1 + \mathcal{O}(h^q) , \qquad (2.41)$$

and it follows from $|1-b^T A^{-1}1| = |R(\infty)| < 1$ that $\Delta z_n^1 = \mathcal{O}(h^q)$. We have thus proved the case $\nu = 1$.

b) The proof for general ν is by induction. We shall show that

$$\Delta y_n^{\nu} = \mathcal{O}(h^{q+2-\nu}) , \qquad \Delta Y_{ni}^{\nu} = \mathcal{O}(h^{q+2-\nu})$$

$$\Delta z_n^{\nu} = \mathcal{O}(h^{q+1-\nu}) , \qquad \Delta Z_{ni}^{\nu} = \mathcal{O}(h^{q+1-\nu})$$
(2.42)

holds for $\nu = 1, \ldots, q+1$. The main difference to the case $\nu = 1$ consists in the additional inhomogeneities φ_{ν} and ψ_{ν} in (2.4c). Using their Lipschitz continuity one obtains an additional term of size $\mathcal{O}(h^{q+2-\nu})$ in (2.36). Otherwise the proof is identical to that for $\nu = 1$.

We next study the existence and local uniqueness of the solution of the Runge-Kutta method (2.22)-(2.24). Further, we investigate the influence of perturbations in (2.24) to the numerical solution. This will be important for the estimation of the remainder in the expansion (2.29).

Existence and Uniqueness of the Runge-Kutta Solution

For h small compared to ε , the existence of a unique numerical solution of (2.23), (2.24) follows from standard fixed point iteration (e.g., Theorem II.7.2). For the (more interesting) case where the step size h is large compared to ε , we suppose that (y_n, z_n) are known, denote it by (η, ζ) , and prove the existence of (y_{n+1}, z_{n+1}) as follows: **Theorem 2.5** (Hairer, Lubich & Roche 1988). Assume that $g(\eta, \zeta) = \mathcal{O}(h)$, $\mu(g_z(\eta, \zeta)) \leq -1$ and that the eigenvalues of the Runge-Kutta matrix (a_{ij}) have positive real part. Then, the nonlinear system

$$\begin{pmatrix} Y_i - \eta \\ \varepsilon(Z_i - \zeta) \end{pmatrix} = h \sum_{j=1}^s a_{ij} \begin{pmatrix} f(Y_j, Z_j) \\ g(Y_j, Z_j) \end{pmatrix}$$
(2.43)

possesses a locally unique solution for $h \leq h_0$, where h_0 is sufficiently small but independent of ϵ . This solution satisfies

$$Y_i - \eta = O(h) , \qquad Z_i - \zeta = O(h) .$$
 (2.44)

Proof. We apply Newton's method to the nonlinear system (2.43), whose second equation is divided by h. The existence and uniqueness statement can then be deduced from the theorem of Newton-Kantorovich (Kantorovich & Akilov 1959, Ortega & Rheinboldt 1970) as follows: for the starting values $Y_i^{(0)} = \eta$, $Z_i^{(0)} = \zeta$ the Jacobian of the system is of the form

$$\begin{pmatrix} I + \mathcal{O}(h) & \mathcal{O}(h) \\ \mathcal{O}(1) & (\varepsilon/h)I - A \otimes g_{z}(\eta, \zeta) \end{pmatrix} .$$
(2.45)

Since $\mu(g_z(\eta,\zeta)) \leq -1$ it follows from the matrix-valued theorem of von Neumann (Theorem V.7.8) that

$$\|(\kappa I - A \otimes g_z(\eta, \zeta))^{-1}\| \le \max_{\operatorname{Re} \mu \le -1} \|(\kappa I - \mu A)^{-1}\|.$$
 (2.46)

The right-hand side of (2.46) is bounded by a constant independent of $\kappa \geq 0$, because the eigenvalues of A are assumed to have positive real part. Consequently, also the inverse of (2.45) is uniformly bounded for $\varepsilon > 0$ and $h \leq h_0$. This together with $g(\eta, \zeta) = \mathcal{O}(h)$ implies that the first increment (of Newton's method) is of size $\mathcal{O}(h)$. Hence, for sufficiently small h, the Newton-Kantorovich assumptions are fulfilled.

Influence of Perturbations

For the perturbed Runge-Kutta method

$$\begin{pmatrix} \widehat{Y}_i - \widehat{\eta} \\ \varepsilon(\widehat{Z}_i - \widehat{\zeta}) \end{pmatrix} = h \sum_{j=1}^s a_{ij} \begin{pmatrix} f(\widehat{Y}_j, \widehat{Z}_j) \\ g(\widehat{Y}_j, \widehat{Z}_j) \end{pmatrix} + h \begin{pmatrix} \delta_i \\ \theta_i \end{pmatrix}$$
(2.47)

we have the following result.

Theorem 2.6 (Hairer, Lubich & Roche 1988). Let Y_i, Z_i be given by (2.43) and consider perturbed values \hat{Y}_i, \hat{Z}_i satisfying (2.47). In addition to the

assumptions of Theorem 2.5 suppose that $\widehat{\eta} - \eta = \mathcal{O}(h), \ \widehat{\zeta} - \zeta = \mathcal{O}(h), \ \delta_i = \mathcal{O}(1),$ and $\theta_i = \mathcal{O}(h)$. Then we have for $h \leq h_0$

$$\begin{aligned} \|\widehat{Y}_{i} - Y_{i}\| &\leq C(\|\widehat{\eta} - \eta\| + \varepsilon \|\widehat{\zeta} - \zeta\|) + hC(\|\delta\| + \|\theta\|) \\ \|\widehat{Z}_{i} - Z_{i}\| &\leq C(\|\widehat{\eta} - \eta\| + \frac{\varepsilon}{h}\|\widehat{\zeta} - \zeta\|) + C(h\|\delta\| + \|\theta\|) . \end{aligned}$$

$$(2.48)$$

Here $\delta = (\delta_1, \ldots, \delta_n)^T$ and $\theta = (\theta_1, \ldots, \theta_n)^T$.

Proof. The essential idea is to consider the homotopy

$$\begin{pmatrix} Y_i - \eta \\ \varepsilon(Z_i - \zeta) \end{pmatrix} - h \sum_{j=1}^{s} a_{ij} \begin{pmatrix} f(Y_j, Z_j) \\ g(Y_j, Z_j) \end{pmatrix} = \tau \begin{pmatrix} \widehat{\eta} - \eta + h\delta_i \\ \varepsilon(\widehat{\zeta} - \zeta) + h\theta_i \end{pmatrix}$$
(2.49)

which relates the system (2.43) for $\tau = 0$ to the perturbed system (2.47) for $\tau = 1$. The solutions Y_i and Z_i of (2.49) are functions of τ . If we differentiate (2.49) with respect to τ and divide its second formula by h, we obtain the differential equation

$$\begin{pmatrix} I + \mathcal{O}(h) & \mathcal{O}(h) \\ \mathcal{O}(1) & M(\varepsilon/h, Y, Z) \end{pmatrix} \begin{pmatrix} \dot{Y} \\ \dot{Z} \end{pmatrix} = \begin{pmatrix} \mathbb{1} \cdot (\hat{\eta} - \eta) + h\delta \\ (\varepsilon/h)\mathbb{1} \cdot (\hat{\zeta} - \zeta) + \theta \end{pmatrix}$$
(2.50)

where $1 = (1, ..., 1)^T$, $Y = (Y_1, ..., Y_s)^T$, $Z = (Z_1, ..., Z_s)^T$ and

$$M(\kappa, Y, Z) = \kappa I - A \otimes I \cdot \begin{pmatrix} g_z(Y_1, Z_1) & 0 \\ & \ddots & \\ 0 & g_z(Y_s, Z_s) \end{pmatrix} .$$
(2.51)

Whenever $||Y_i - \eta|| \le d$ and $||Z_i - \zeta|| \le d$ for all *i*, we have

$$M(\kappa, Y, Z) = \kappa I - A \otimes g_z(\eta, \zeta) + \mathcal{O}(d)$$
(2.52)

and it follows from (2.46) that $M(\kappa, Y, Z)$ is uniformly bounded for $\kappa \ge 0$, if d is sufficiently small. Hence, the inverse of the matrix in (2.50) satisfies

$$\begin{pmatrix} I + \mathcal{O}(h) & \mathcal{O}(h) \\ \mathcal{O}(1) & M(\varepsilon/h, Y, Z) \end{pmatrix}^{-1} = \begin{pmatrix} I + \mathcal{O}(h) & \mathcal{O}(h) \\ \mathcal{O}(1) & \mathcal{O}(1) \end{pmatrix}$$

and the statement (2.48) follows from the fact that

$$\widehat{Y} - Y = \int_0^1 \dot{Y}(\tau) d\tau$$
, $\widehat{Z} - Z = \int_0^1 \dot{Z}(\tau) d\tau$.

Remark 2.7. If the Runge-Kutta matrix A is only assumed to be invertible, the results of Theorems 2.5 and 2.6 still hold for $\varepsilon \leq Kh$, where K is any constant smaller than the modulus of the smallest eigenvalue of A (i.e., $K < |\lambda_{\min}|$). In this situation, the right-hand side of (2.48) is also bounded, and the same conclusions hold.

427

Estimation of the Remainder in the Numerical Solution

We are now in the position to estimate the remainder in (2.29). The result is the following.

Theorem 2.8 (Hairer, Lubich & Roche 1988). Consider the stiff problem (2.1), (2.11) with initial values y(0), z(0) admitting a smooth solution. Apply the Runge-Kutta method (2.22)-(2.24) of classical order p and stage order q ($1 \le q < p$). Assume that the method is A-stable, that the stability function satisfies $|R(\infty)| < 1$, and that the eigenvalues of the coefficient matrix A have positive real part. Then for any fixed constant c > 0 the global error satisfies for $\varepsilon \le ch$ and $\nu \le q+1$

$$y_n - y(x_n) = \Delta y_n^0 + \varepsilon \Delta y_n^1 + \dots + \varepsilon^{\nu} \Delta y_n^{\nu} + \mathcal{O}(\varepsilon^{\nu+1})$$

$$z_n - z(x_n) = \Delta z_n^0 + \varepsilon \Delta z_n^1 + \dots + \varepsilon^{\nu} \Delta z_n^{\nu} + \mathcal{O}(\varepsilon^{\nu+1}/h) .$$
(2.53)

Here $\Delta y_n^0 = y_n^0 - y_0(x_n)$, $\Delta z_n^0 = z_n^0 - z_0(x_n)$,... (see Formula (2.32)) are the global errors of the method applied to the system (2.4). The estimates (2.53) hold uniformly for $h \leq h_0$ and $nh \leq Const$.

Proof. By Theorem 2.4 it suffices to prove the result for $\nu = q+1$. We denote the truncated series of (2.25) by

$$\begin{aligned} \widehat{y}_n &= y_n^0 + \varepsilon y_n^1 + \ldots + \varepsilon^{\nu} y_n^{\nu} \\ \widehat{Y}_{ni} &= Y_{ni}^0 + \varepsilon Y_{ni}^1 + \ldots + \varepsilon^{\nu} Y_{ni}^{\nu} \\ \widehat{k}_{ni} &= k_{ni}^0 + \varepsilon k_{ni}^1 + \ldots + \varepsilon^{\nu} k_{ni}^{\nu} \end{aligned}$$

$$(2.54)$$

and similarly $\hat{z}_n, \hat{Z}_{ni}, \hat{\ell}_{ni}$. Further we denote

$$\Delta y_n = \hat{y}_n - y_n , \qquad \Delta Y_{ni} = \hat{Y}_{ni} - Y_{ni} , \qquad \Delta k_{ni} = \hat{k}_{ni} - k_{ni} , \dots (2.55)$$

Using (2.3) and Theorem 2.4 the statement (2.53) is then equivalent to

$$\Delta y_n = \mathcal{O}(\varepsilon^{\nu+1}) , \qquad \Delta z_n = \mathcal{O}(\varepsilon^{\nu+1}/h) .$$
 (2.56)

a) We first estimate the differences ΔY_{ni} , ΔZ_{ni} of the internal stages. For this we investigate the defect when (2.54) is inserted into (2.23). By our construction (2.28) it follows from (2.42) and $\nu = q+1$ that

$$\begin{split} \widehat{k}_{ni} &= f(\widehat{Y}_{ni}, \widehat{Z}_{ni}) + \mathcal{O}(\varepsilon^{\nu+1}) \\ \varepsilon \widehat{\ell}_{ni} &= g(\widehat{Y}_{ni}, \widehat{Z}_{ni}) + \varepsilon^{\nu+1} \ell_{ni}^{\nu} + \mathcal{O}(\varepsilon^{\nu+1}) \;. \end{split}$$
(2.57)

From (2.42) and (2.27) we know that $\ell_{ni}^{\nu} = \mathcal{O}(h^{-1})$. Together with (2.27) this implies

$$\begin{pmatrix} \widehat{Y}_{ni} - \widehat{y}_n \\ \varepsilon(\widehat{Z}_{ni} - \widehat{z}_n) \end{pmatrix} = h \sum_{j=1}^s a_{ij} \begin{pmatrix} f(\widehat{Y}_{nj}, \widehat{Z}_{nj}) \\ g(\widehat{Y}_{nj}, \widehat{Z}_{nj}) \end{pmatrix} + \begin{pmatrix} \mathcal{O}(h\varepsilon^{\nu+1}) \\ \mathcal{O}(\varepsilon^{\nu+1}) \end{pmatrix} , \quad (2.58)$$

which is of the form (2.47). Application of Theorem 2.6 yields

$$\begin{aligned} \|\Delta Y_{ni}\| &\leq C(\|\Delta y_n\| + \varepsilon \|\Delta z_n\|) + \mathcal{O}(\varepsilon^{\nu+1}) \\ \|\Delta Z_{ni}\| &\leq C(\|\Delta y_n\| + \frac{\varepsilon}{h} \|\Delta z_n\|) + \mathcal{O}(\varepsilon^{\nu+1}/h) \end{aligned}$$
(2.59)

provided that Δy_n and Δz_n are of size $\mathcal{O}(h)$. This will be justified later in part c).

b) Our next aim is to prove the recursion

$$\begin{pmatrix} \|\Delta y_{n+1}\|\\ \|\Delta z_{n+1}\| \end{pmatrix} \leq \begin{pmatrix} 1 + \mathcal{O}(h) & \mathcal{O}(\varepsilon)\\ \mathcal{O}(1) & \alpha + \mathcal{O}(\varepsilon) \end{pmatrix} \begin{pmatrix} \|\Delta y_n\|\\ \|\Delta z_n\| \end{pmatrix} + \begin{pmatrix} \mathcal{O}(\varepsilon^{\nu+1})\\ \mathcal{O}(\varepsilon^{\nu+1}/h) \end{pmatrix}$$
(2.60)

where we assume again that Δy_n and Δz_n are of size $\mathcal{O}(h)$. The value $\alpha < 1$ will be given in Formula (2.63) below. The upper relation of (2.60) follows from

$$\Delta y_{n+1} = \Delta y_n + h \sum_{i=1}^{s} b_i \left(f(\widehat{Y}_{ni}, \widehat{Z}_{ni}) - f(Y_{ni}, Z_{ni}) \right)$$

by the use of (2.59) and a Lipschitz condition for f.

For the verification of the second relation in (2.60) we subtract (2.57) from (2.23), and use (2.59) and (2.42) to obtain

$$\varepsilon \Delta \ell_{ni} = g_z(x_n) \Delta Z_{ni} + \mathcal{O}(\|\Delta Y_{ni}\| + h\|\Delta Z_{ni}\|) + \mathcal{O}(\varepsilon^{\nu+1}/h) .$$
(2.61)

Here we use the notation $g_z(x) = g_z(y_0(x), z_0(x))$. Inserting $\Delta Z_{ni} = \Delta z_n + h \sum a_{ij} \Delta \ell_{nj}$ into this relation and using (2.59) again we obtain

$$\varepsilon \Delta \ell_{ni} - h \sum_{j=1}^{s} a_{ij} g_{z}(x_{n}) \Delta \ell_{nj} = g_{z}(x_{n}) \Delta z_{n} + \mathcal{O}(\|\Delta y_{n}\| + \varepsilon \|\Delta z_{n}\|) + \mathcal{O}(\varepsilon^{\nu+1}/h).$$

We now solve for $h\Delta \ell_{ni}$ and insert it into $\Delta z_{n+1} = \Delta z_n + h \sum b_i \Delta \ell_{ni}$. Since the matrix $(\epsilon/h)I - A \otimes g_z(x_n)$ has a bounded inverse by (2.48), this gives

$$\Delta z_{n+1} = R\left(\frac{h}{\varepsilon}g_z(x_n)\right)\Delta z_n + \mathcal{O}(\|\Delta y_n\| + \varepsilon\|\Delta z_n\|) + \mathcal{O}(\varepsilon^{\nu+1}/h) , \quad (2.62)$$

where $R(\mu)$ is the stability function of the method. Because of (2.11) we can apply von Neumann's theorem (Corollary IV.11.4) to estimate

$$\left\|R\left(rac{h}{arepsilon}\,g_z(x_n)
ight)
ight\|\leq \sup\{|R(\mu)|\;;\;\operatorname{Re}\mu\leq -h/arepsilon\}\leq lpha<1\;.$$

The bound α is strictly smaller than 1, because $|R(\infty)| < 1$ and $-h/\varepsilon \leq -1/c < 0$. The triangle inequality applied to (2.62) completes the proof of Formula (2.60).

c) Applying Lemma 2.9 below to the difference inequality (2.60) gives

$$\Delta y_n = \mathcal{O}(\varepsilon^{\nu+1}/h) , \qquad \Delta z_n = \mathcal{O}(\varepsilon^{\nu+1}/h)$$
 (2.64)

for $nh \leq Const$. We are now in a position to justify the assumption $\Delta y_n = \mathcal{O}(h)$ and $\Delta z_n = \mathcal{O}(h)$ of the beginning of the proof. Indeed, this follows by induction on n ($\Delta y_0 = 0$, $\Delta z_0 = 0$) and from (2.64), because $\nu = q+1 \geq 2$.

d) Formula (2.64) proves the desired result (2.56) for the z-component. However, the estimate (2.64) is not yet optimal for the y-component. The proof for the correct estimate is similar to that of Theorem 2.4. We have to treat more carefully the expression which gives rise to the $\mathcal{O}(\varepsilon^{\nu+1}/h)$ term in (2.61). Using (2.59) and (2.64) the same calculations which gave (2.61), now yield

$$\Delta k_{ni} = f_y(x_n) \Delta Y_{ni} + f_z(x_n) \Delta Z_{ni} + \mathcal{O}(\varepsilon^{\nu+1})$$
(2.65a)

$$\epsilon \Delta \ell_{ni} = g_y(x_n) \Delta Y_{ni} + g_z(x_n) \Delta Z_{ni} + \epsilon^{\nu+1} \ell_{ni}^{\nu} + \mathcal{O}(\epsilon^{\nu+1}) . \quad (2.65b)$$

We compute ΔZ_{ni} from (2.65b) and insert it into (2.65a). This gives

$$\Delta k_{ni} - (f_z g_z^{-1})(x_n) \left(\varepsilon \Delta \ell_{ni} - \varepsilon^{\nu+1} \ell_{ni}^{\nu} \right) = (f_y - f_z g_z^{-1} g_y)(x_n) \Delta Y_{ni} + \mathcal{O}(\varepsilon^{\nu+1}) .$$
(2.66)

Guided by this formula we put

$$\Delta u_n = \Delta y_n - (f_z g_z^{-1})(x_n) \left(\epsilon \Delta z_n - \epsilon^{\nu+1} z_n^{\nu} \right) \,. \tag{2.67}$$

Since

$$\begin{split} \Delta u_{n+1} &= \Delta u_n + h \sum_{i=1}^s b_i \Big(\Delta k_{ni} - (f_z g_z^{-1})(x_n) \big(\varepsilon \Delta \ell_{ni} - \varepsilon^{\nu+1} \ell_{ni}^{\nu} \big) \Big) \\ &- \Big((f_z g_z^{-1})(x_n + h) - (f_z g_z^{-1})(x_n) \Big) \big(\varepsilon \Delta z_{n+1} - \varepsilon^{\nu+1} z_{n+1}^{\nu} \big) \end{split}$$

it follows from (2.66), (2.64), and (2.42) that

$$\|\Delta u_{n+1}\| \le (1+ch) \|\Delta u_n\| + \mathcal{O}(h\varepsilon^{\nu+1}) .$$
(2.68)

As in the proof of Theorem 2.4 we deduce $\Delta u_n = \mathcal{O}(\epsilon^{\nu+1})$ and $\Delta y_n = \mathcal{O}(\epsilon^{\nu+1})$.

In the above proof we used the following result.

Lemma 2.9. Let $\{u_n\}$, $\{v_n\}$ be two sequences of non-negative numbers satisfying (componentwise)

$$\begin{pmatrix} u_{n+1} \\ v_{n+1} \end{pmatrix} \leq \begin{pmatrix} 1 + \mathcal{O}(h) & \mathcal{O}(\varepsilon) \\ \mathcal{O}(1) & \alpha + \mathcal{O}(\varepsilon) \end{pmatrix} \begin{pmatrix} u_n \\ v_n \end{pmatrix} + M \begin{pmatrix} h \\ 1 \end{pmatrix}$$
(2.69)

with $0 \le \alpha < 1$ and $M \ge 0$. Then the following estimates hold for $\varepsilon \le ch$, $h \le h_0$ and $nh \le Const$

$$u_n \leq C(u_0 + \varepsilon v_0 + M)$$

$$v_n \leq C(u_0 + (\varepsilon + \alpha^n)v_0 + M) .$$
(2.70)

Proof. We transform the matrix in (2.69) to diagonal form and so obtain

$$\begin{pmatrix} u_n \\ v_n \end{pmatrix} \leq T^{-1} \begin{pmatrix} \lambda_1^n & 0 \\ 0 & \lambda_2^n \end{pmatrix} T \begin{pmatrix} u_0 \\ v_0 \end{pmatrix} + M \sum_{j=1}^n T^{-1} \begin{pmatrix} \lambda_1^{n-j} & 0 \\ 0 & \lambda_2^{n-j} \end{pmatrix} T \begin{pmatrix} h \\ 1 \end{pmatrix}$$

where $\lambda_1 = 1 + \mathcal{O}(h)$, $\lambda_2 = \alpha + \mathcal{O}(\epsilon)$ are the eigenvalues and the transformation matrix T (composed of eigenvectors) satisfies

$$T = \begin{pmatrix} 1 & \mathcal{O}(\varepsilon) \\ \mathcal{O}(1) & 1 \end{pmatrix}$$
.

The statement now follows from the fact that $(\alpha + \mathcal{O}(\varepsilon))^n = \mathcal{O}(\alpha^n) + \mathcal{O}(\varepsilon)$ for $\varepsilon \leq ch$ and $nh \leq Const$.

By combining Theorem 2.8 with Theorems 2.3 and 2.4 we get the following result.

Corollary 2.10 (Hairer, Lubich & Roche 1988). Under the assumptions of Theorem 2.8 the global error of a Runge-Kutta method satisfies

$$y_n - y(x_n) = \mathcal{O}(h^p) + \mathcal{O}(\epsilon h^{q+1}) , \qquad z_n - z(x_n) = \mathcal{O}(h^{q+1}) .$$
 (2.71)

If in addition $a_{si} = b_i$ for all *i*, we have

$$z_n - z(x_n) = \mathcal{O}(h^p) + \mathcal{O}(\varepsilon h^q) . \qquad (2.72)$$

Remarks. a) If the A-stability assumption is dropped and the coefficient matrix A is only assumed to be invertible, then the estimates of Corollary 2.10 still hold for $\varepsilon \leq Kh$ where K is a method-dependent constant (see Remark 2.7).

b) A-stability and the invertibility of the matrix A imply in general that the eigenvalues of A have positive real part. Otherwise the stability function would have to be reducible.

c) For several Runge-Kutta methods satisfying $a_{si} = b_i$ the estimate (2.71) for the y-component can be improved. E.g., for Radau IIA and for Lobatto IIIC one has $y_n - y(x_n) = \mathcal{O}(h^p) + \mathcal{O}(\varepsilon^2 h^q)$. This follows from Table VI.7.1 below.

d) The analogues of Theorem 2.8 and Corollary 2.10 for Rosenbrock methods are given in Hairer, Lubich & Roche (1989).

e) Estimates for p = q are given in Exercise 3 below.

Numerical Confirmation

The estimates of Corollary 2.10 can be observed numerically. As an example of (2.1) we choose the Van der Pol equation

$$y' = z$$

$$\varepsilon z' = (1 - y^2)z - y$$
(2.73)

with $\varepsilon = 10^{-5}$ and initial values

y(0) = 2, z(0) = -0.66666654321121172 (2.74)

on the smooth solution (Exercise 2).

Table 2.1 shows the methods of our experiment together with the theoretical error bounds. In Fig. 2.1 we have plotted the relative global error at $x_{end} = 0.5$ as a function of the step size h, which was taken constant over the considered interval. The use of logarithmic scales in both directions makes the curves appear as straight lines of slope r, whenever the leading term of the global error behaves like $Const \cdot h^r$. The figures show complete agreement with our theoretical results.

Table 2.1. Global errors predicted by Corollary 2.10

Method	$a_{si} = b_i$	y-comp.	z-comp.
Radau IA	no	$h^{2s-1} + \epsilon h^s$	h^s
Radau IIA	yes	$h^{2s-1} + \epsilon^2 h^s$	$h^{2s-1} + \epsilon h^s$
Lobatto IIIC	yes	$h^{2s-2}+\epsilon^2h^{s-1}$	$h^{2s-2} + \epsilon h^{s-1}$
SDIRK (IV.6.16)	yes	$h^4+arepsilon h^2$	$h^4 + \epsilon h$
SDIRK (IV.6.18)	no	$h^4 + \epsilon h^2$	h^2

Perturbed Initial Values

When integrating a singular perturbation problem, the numerical solution approximates the smooth solution only within the given tolerance *Tol*. It is therefore interesting to investigate the influence of perturbations in the initial values on the global and local errors of the method. Let us begin with a numerical experiment. We perturb the z(0) value of (2.74) by an amount of 10^{-6} and apply the Radau IIA methods to the problem (2.73).

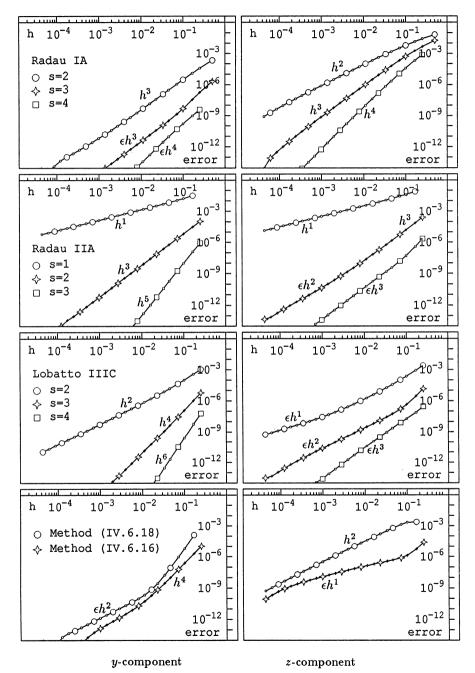


Fig. 2.1. Global error versus the step size

For the global error at $x_{end} = 0.5$ we obtain exactly the same results as in Fig. 2.1. This shows that the perturbation is completely damped out during integration. The results for the local error show a different behaviour and are displayed in Fig. 2.2. We observe the presence of a "hump", exactly as in Fig. IV.7.4 and in Fig. IV.8.2.

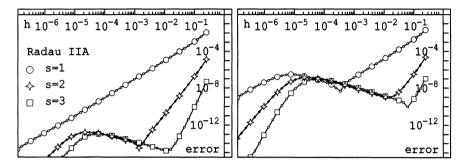


Fig. 2.2. Local error of Radau IIA (perturbed initial value)

In order to explain this phenomenon we denote by (y_0, z_0) the considered initial value, and by (y_1, z_1) the numerical solution after one step with step size *h*. The exact solution y(x), z(x) passing through (y_0, z_0) will have a boundary layer, and (under suitable assumptions, see Theorem 2.2) can be written as

$$y(x) = \tilde{y}(x) + \mathcal{O}(\varepsilon e^{-x/\varepsilon})$$
, $z(x) = \tilde{z}(x) + \mathcal{O}(e^{-x/\varepsilon})$. (2.75)

Here $\tilde{y}(x)$, $\tilde{z}(x)$ represents a smooth solution of (2.1). We denote by $\tilde{y}_0 = \tilde{y}(0)$, $\tilde{z}_0 = \tilde{z}(0)$ the initial values on this smooth solution, and by $(\tilde{y}_1, \tilde{z}_1)$ the numerical approximation obtained by the same method with step size h and initial values $(\tilde{y}_0, \tilde{z}_0)$. The local error can now be written as

$$z_1 - z(h) = (z_1 - \widetilde{z}_1) + (\widetilde{z}_1 - \widetilde{z}(h)) + (\widetilde{z}(h) - z(h))$$

$$(2.76)$$

and similarly for the y-component. The last term in (2.76), which is of size $\mathcal{O}(\text{Tol } e^{-h/\epsilon})$, can be neglected if the step size h is significantly larger than ϵ . The term $\tilde{z}_1 - \tilde{z}(h)$ represents the local error in the "smooth" situation and is bounded by at least $\mathcal{O}(h^{q+1})$ (apply Corollary 2.10 with n = 1). It can be observed in Fig. 2.2 whenever h or the error is large. The difference $z_1 - \tilde{z}_1$ is the term which causes the irregularity in Fig. 2.2. Using Theorem 2.6 (with $\delta = 0$, $\theta = 0$, $\hat{\eta} - \eta = \mathcal{O}(\epsilon \text{Tol})$, $\hat{\zeta} - \zeta = \mathcal{O}(\text{Tol})$) and the ideas of the proof of Theorem 2.8 (in particular Formula (2.62)) we obtain

$$\begin{aligned} z_1 &- \tilde{z}_1 = R\Big(\frac{h}{\varepsilon} g_z(0)\Big)(z_0 - \tilde{z}_0) + \mathcal{O}(\varepsilon \, Tol) \\ y_1 &- \tilde{y}_1 = \mathcal{O}(\varepsilon \, Tol) \;. \end{aligned} \tag{2.77}$$

For $\epsilon < h$ we develop

$$R\left(\frac{h}{\varepsilon}g_{z}(0)\right) = R(\infty) + C\frac{\varepsilon}{h}g_{z}^{-1}(0) + \mathcal{O}\left(\left(\frac{\varepsilon}{h}\right)^{2}\right).$$
(2.78)

This shows that an *h*-independent expression $R(\infty)(z_0 - \tilde{z}_0) = \mathcal{O}(Tol)$ will be observed in the local error, if $R(\infty) \neq 0$. For methods with $R(\infty) = 0$ (such as Radau IIA) the dominant part in $z_1 - \tilde{z}_1$ is $C(\varepsilon/h)g_z^{-1}(0)(z_0 - \tilde{z}_0) = \mathcal{O}(Tol \varepsilon/h)$. This term can be observed in Fig. 2.2 as a straight line of slope -1. Thus in this region the local error increases like h^{-1} when hdecreases. A similar perturbation, multiplied however by ε , is observed for the y-component.

This is not a serious drawback for a numerical implementation, because the phenomenon appears only for step sizes where the local error is smaller than *Tol*.

Exercises

1. Prove that the statement of Theorem 2.2 remains valid, if the assumption (2.11) is replaced by

the eigenvalues λ of $g_z(y,z)$ satisfy $\operatorname{Re} \lambda \leq -1$

for all y, z in a neighbourhood of the solution $y_0(x), z_0(x)$ of the reduced system.

Hint. Split the interval into a finite number of small subintervals and construct for each of them an inner product norm such that, after a rescaling of ε , (2.11) holds (see Nevanlinna 1976).

2. Let y(0) = 2; find the corresponding z(0) for the Van der Pol equation (2.73), such that its solution is smooth.

$$z(0) = -rac{2}{3} + rac{10}{81}arepsilon - rac{292}{2187}arepsilon^2 - rac{1814}{19683}arepsilon^3 + \mathcal{O}(arepsilon^4) \; .$$

3. If the assumption q < p (p classical order, q stage order) is dropped in Corollary 2.10, we still have

$$y_n - y(x_n) = \mathcal{O}(h^p)$$
, $z_n - z(x_n) = \mathcal{O}(h^p)$.

Prove this statement. The implicit Euler method and the SIRK methods of Lemma IV.8.1 are typical examples with p=q.

Hint. Apply Corollary 2.10 with q reduced by 1.

VI.3. Rosenbrock Methods

This section is devoted to the extension of Rosenbrock methods (see Section IV.7) to differential-algebraic equations in semi-explicit form

$$y' = f(y, z) , \qquad y(x_0) = y_0$$
 (3.1a)

$$0 = g(y, z)$$
, $z(x_0) = z_0$. (3.1b)

We suppose that g_z is invertible (see (1.7)), so that the problem is of index 1. We shall obtain new methods for the numerical solution of such problems, and at the same time get more insight into the behaviour of Rosenbrock methods for stiff differential equations. In particular, the phenomenon of Fig. IV.7.4 will be explained.

Definition of the Method

The main advantage of Rosenbrock methods over implicit Runge-Kutta methods is that nonlinear systems are completely avoided. The indirect approach (transforming (3.1) to y' = f(y, G(y))) would destroy this advantage. This is one more reason for applying Method (IV.7.4) to the singular perturbation problem (1.5) and then studying the limit as $\varepsilon \to 0$. For the problem (1.5) a Rosenbrock method reads

$$\begin{pmatrix} k_i \\ \ell_i \end{pmatrix} = h \begin{pmatrix} f(v_i, w_i) \\ \varepsilon^{-1}g(v_i, w_i) \end{pmatrix} + h \begin{pmatrix} f_y & f_z \\ \varepsilon^{-1}g_y & \varepsilon^{-1}g_z \end{pmatrix} (y_0, z_0) \sum_{j=1}^i \gamma_{ij} \begin{pmatrix} k_j \\ \ell_j \end{pmatrix}$$

$$\begin{pmatrix} v_i \\ w_i \end{pmatrix} = \begin{pmatrix} y_0 \\ z_0 \end{pmatrix} + \sum_{j=1}^{i-1} \alpha_{ij} \begin{pmatrix} k_j \\ \ell_j \end{pmatrix} , \qquad \begin{pmatrix} y_1 \\ z_1 \end{pmatrix} = \begin{pmatrix} y_0 \\ z_0 \end{pmatrix} + \sum_{i=1}^s b_i \begin{pmatrix} k_i \\ \ell_i \end{pmatrix} .$$

$$(3.3a)$$

If we multiply the second line of (3.2) by ε and then put $\varepsilon = 0$ we obtain

$$\begin{pmatrix} k_i \\ 0 \end{pmatrix} = h \begin{pmatrix} f(v_i, w_i) \\ g(v_i, w_i) \end{pmatrix} + h \begin{pmatrix} f_y & f_z \\ g_y & g_z \end{pmatrix} (y_0, z_0) \sum_{j=1}^i \gamma_{ij} \begin{pmatrix} k_j \\ \ell_j \end{pmatrix} .$$
(3.3b)

Formulas (3.3a) and (3.3b) together constitute the extension of a Rosenbrock method to the problem (3.1). This type of method was first considered by Michelsen (1976) (quoted by Feng, Holland & Gallun (1984)). Further studies are due to Roche (1988). We remark that the computation of (k_i, ℓ_i) from (3.3b) requires the solution of a linear system with matrix

$$\begin{pmatrix} I - \gamma h f_y & -\gamma h f_z \\ -\gamma h g_y & -\gamma h g_z \end{pmatrix}$$
(3.4)

where all derivatives are evaluated at (y_0, z_0) . For nonsingular g_z , nonzero γ , and small enough h > 0, this matrix is invertible. This can be seen by dividing the lower blocks by γh and then putting h=0.

Non-autonomous equations. If the functions f and g in (3.1) also depend on x, we replace (3.3b) by

$$\begin{pmatrix} k_i \\ 0 \end{pmatrix} = h \begin{pmatrix} f(x_0 + \alpha_i h, v_i, w_i) \\ g(x_0 + \alpha_i h, v_i, w_i) \end{pmatrix} + h \begin{pmatrix} f_y & f_z \\ g_y & g_z \end{pmatrix} \sum_{j=1}^i \gamma_{ij} \begin{pmatrix} k_j \\ \ell_j \end{pmatrix} + h^2 \gamma_i \begin{pmatrix} f_x \\ g_x \end{pmatrix}$$
(3.5)

(compare with (IV.7.4a) and recall the definition of α_i and γ_i in (IV.7.5)). All derivatives are evaluated at the initial value (x_0, y_0, z_0) .

Problems of the form $Mu' = \varphi(u)$. Rosenbrock formulas for these problems have been developed in Section IV.7 (Formula (IV.7.4b)) in the case of regular M. This formula is also applicable for singular M, and can be justified as follows: It is theoretically possible to apply the transformation (1.20) so that M becomes the matrix

$$\begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}$$

The method (IV.7.4b) is then identical to method (3.3). Therefore, the theory to be developed in this section will also be valid for Rosenbrock method (IV.7.4b) applied to index 1 problems of the form $Mu' = \varphi(u)$.

Having introduced a new class of methods, we must study their order conditions. As usual, this is done by Taylor expansion of both the exact and the numerical solution (similar to Section II.2). A nice correspondence between the order conditions and certain rooted trees with two different kinds of vertices will be obtained (Roche 1988).

Derivatives of the Exact Solution

In contrast to Section II.2, where we used "hordes of indices" (see Dieudonné's preface to his "Foundations of Modern Analysis") to show us the way through the "woud met bomen" (Hundsdorfer), we here write higher derivatives as multilinear mappings. For example, the expression

$$\sum_{j,k} \; \frac{\partial^2 g_i}{\partial y_j \partial z_k} \cdot u_j v_k \quad \text{ is written as } \quad g_{yz}(u,v) \;,$$

which simplifies the subsequent formulas.

We differentiate (3.1b) to obtain $0 = g_y \cdot y' + g_z \cdot z'$ and, equivalently,

$$z' = (-g_z^{-1})g_y f . ag{3.6}$$

We now differentiate successively (3.1a) and (3.6) with respect to x. We use the formula

$$(-g_{z}^{-1})'u = (-g_{z}^{-1})\left(g_{zy}\left((-g_{z}^{-1})u,f\right) + g_{zz}\left((-g_{z}^{-1})u,(-g_{z}^{-1})g_{y}f\right)\right)$$
(3.7)

which is a consequence of $(A^{-1}(x))' = -A^{-1}(x)A'(x)A^{-1}(x)$ and the chain rule. This gives

$$y'' = f_y \cdot y' + f_z \cdot z' = f_y f + f_z (-g_z^{-1})g_y f$$
(3.8)

$$z'' = (-g_z^{-1}) \Big(g_{zy}((-g_z^{-1})g_yf, f) + g_{zz}((-g_z^{-1})g_yf, (-g_z^{-1})g_yf) \Big)$$

+ $(-g_z^{-1}) \Big(g_{yy}(f, f) + g_{yz}(f, (-g_z^{-1})g_yf) \Big)$ (3.9)
+ $(-g_z^{-1})g_y \Big(f_yf + f_z(-g_z^{-1})g_yf \Big) .$

Clearly, these expressions soon become very complicated and a graphical representation of the terms in (3.8) and (3.9) is desirable.

Trees and Elementary Differentials

We shall identify each occuring f with a meagre vertex, and each of its derivatives with an upward leaving branch. The expression $(-g_z^{-1})g$ is identified with a fat vertex. The derivatives of g therein are again indicated by upwards leaving branches. For example, the second expression of (3.8) and the first one of (3.9) correspond to the trees in Fig. 3.1.

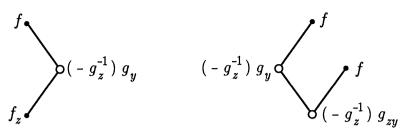


Fig. 3.1. Graphical representation of elementary differentials

The above formulas for y', z', y'', z'' thus become

$$y' = \cdot z' = \langle z' = \langle z'' = \langle$$

The first and fourth expressions in (3.9) are identical, because $g_{zy}(u,v) = g_{yz}(v,u)$. This is in nice accordance with the fact that the corresponding trees are topologically equivalent. The lowest vertex of a tree will be called its *root*.

We see that derivatives of y are characterized by trees with a *meagre* root. These trees will be denoted by t or t_i , the tree consisting only of the root (for y') being τ_y . Derivatives of z have trees with a fat root. These will be written as u or u_i , the tree for z' being τ_z .

Definition 3.1. Let $DAT = DAT_y \cup DAT_z$ denote the set of (differential algebraic rooted) *trees* defined recursively by

 $\begin{array}{l} \mathbf{a}) \ \tau_y \in DAT_y, \ \tau_z \in DAT_z; \\ \mathbf{b}) \ [t_1, \ldots, t_m, u_1, \ldots u_n]_y \in DAT_y \\ \quad \text{ if } t_1, \ldots, t_m \in DAT_y \ \text{ and } u_1, \ldots u_n \in DAT_z; \end{array}$

c) $[t_1, \ldots, t_m, u_1, \ldots, u_n]_z \in DAT_z$ if $t_1, \ldots, t_m \in DAT_y, u_1, \ldots, u_n \in DAT_z$, and $(m, n) \neq (0, 1)$.

Here $[t_1, \ldots, t_m, u_1, \ldots, u_n]_y$ and $[t_1, \ldots, t_m, u_1, \ldots, u_n]_z$ represent unordered (m+n)-tuples.

The graphical representation of these trees is as follows: if we connect the roots of $t_1, \ldots, t_m, u_1, \ldots, u_n$ by m+n branches to a new meagre vertex (the new root) we obtain $[t_1, \ldots, t_m, u_1, \ldots, u_n]_y$; if we connect them to a new fat vertex we obtain $[t_1, \ldots, t_m, u_1, \ldots, u_n]_z$. For example, the two trees of Fig. 3.1 can be written as $[\tau_z]_y$ and $[\tau_z, \tau_y]_z$. **Definition 3.2.** The order of a tree $t \in DAT_y$ or $u \in DAT_z$, denoted by $\rho(t)$ or $\rho(u)$, is the number of its meagre vertices.

We see in (3.10) that this definition of order coincides with the derivative order of $y^{(i)}$ or $z^{(i)}$ as far as they are computed there.

We next give a recursive definition of the one-to-one correspondence between the trees in (3.10) and the expressions in (3.8) and (3.9).

Definition 3.3. The elementary differentials F(t) (or F(u)) corresponding to trees in *DAT* are defined as follows:

$$\begin{array}{l} \text{a)} \ \ F(\tau_y) = f, \ F(\tau_z) = (-g_z^{-1})g_yf, \\ \text{b)} \ \ F(t) = \frac{\partial^{m+n}f}{\partial y^m \partial z^n} \ \left(F(t_1), \dots, F(t_m), \ F(u_1), \dots, F(u_n)\right) \\ \quad \text{if} \ t = [t_1, \dots, t_m, \ u_1, \dots, u_n]_y \in DAT_y, \\ \text{c)} \ \ F(u) = (-g_z)^{-1} \ \frac{\partial^{m+n}g}{\partial y^m \partial z^n} \ \left(F(t_1), \dots, F(t_m), \ F(u_1), \dots, F(u_n)\right) \\ \quad \text{if} \ u = [t_1, \dots, t_m, \ u_1, \dots, u_n]_z \in DAT_z. \end{array}$$

Because of the symmetry of partial derivatives, this definition is unaffected by a permutation of $t_1, \ldots, t_m, u_1, \ldots, u_n$ and therefore the functions F(t) and F(u) are well defined.

Taylor Expansion of the Exact Solution

In order to get more insight into the process of (3.8) and (3.9) we study the differentiation of an elementary differential with respect to x. By Leibniz' rule the differentiation of F(t) (or F(u)) gives a sum of new elementary differentials which are obtained by the following four rules:

- i) attach to each vertex a branch with τ_y (derivative of f or g with respect to y and addition of the factor y' = f);
- ii) attach to each vertex a branch with τ_z (derivative of f or g with respect to z and addition of the factor $z' = (-g_z^{-1})g_y f$);
- iii) split each fat vertex into two new fat vertices (linked by a new branch) and attach to the lower of these fat vertices a branch with τ_y ;
- iv) as in iii), but attach this time to the lower of the new fat vertices a branch with τ_z .

The rules iii) and iv) correspond to the differentiation of $(-g_z^{-1})$ and follow at once from (3.7). We observe that the differentiation of a tree of order q (or, more precisely, of its corresponding elementary differential) generates trees of order q+1. As was the case in Section II.2, some of these trees appear several times in the derivative (as the first and fourth tree for z'' in (3.10)). In order to distinguish all these trees, we indicate the order of generation of the meagre vertices by labels. This is demonstrated, for the first derivatives of y, in Fig. 3.2. Since in the above differentiation process the new meagre vertex is always an end-vertex of the tree, the labelling thus obtained is necessarily increasing from the root upwards along each branch.

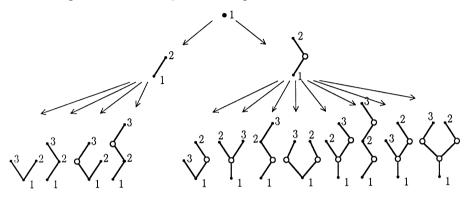


Fig. 3.2. Monotonically labelled trees $(LDAT_y)$

Definition 3.4. A tree $t \in DAT_y$ (or $u \in DAT_z$) together with a monotonic labelling of its meagre vertices is called a *monotonically labelled tree*. The sets of all such m. l. trees are denoted by $LDAT_y$, $LDAT_z$ and LDAT.

Definition 3.2 (order of a tree) and Definition 3.3 (elementary differential) are extended in a natural way to m. l. trees. We can therefore write the derivatives of the exact solution as follows:

Theorem 3.5 (Roche 1988). For the exact solution of (3.1) we have:

$$\begin{split} y^{(q)}(x_0) &= \sum_{t \in LDAT_y, \varrho(t) = q} F(t)(y_0, z_0) = \sum_{t \in DAT_y, \varrho(t) = q} \alpha(t) F(t)(y_0, z_0) \\ z^{(q)}(x_0) &= \sum_{u \in LDAT_z, \varrho(u) = q} F(u)(y_0, z_0) = \sum_{u \in DAT_z, \varrho(u) = q} \alpha(u) F(u)(y_0, z_0) \;. \end{split}$$

The integer coefficients $\alpha(t)$ and $\alpha(u)$ indicate the number of possible monotonic labellings of a tree.

Proof. For q = 1 and q = 2 this is just (3.1a), (3.6), (3.8) and (3.9). For general q the above differentiation process of trees generates all elements of LDAT, each element exactly once. If the sum is taken over DAT_y and DAT_z , the factors $\alpha(t)$ and $\alpha(u)$ must be added.

Taylor Expansion of the Numerical Solution

Our next aim is to prove an analogue of Theorem 3.5 for the numerical solution of a Rosenbrock method. We consider y_1, z_1 as functions of the step size h and compute their derivatives. From (3.3a) it follows that

$$y_1^{(q)}(0) = \sum_{i=1}^s b_i k_i^{(q)}(0) , \qquad z_1^{(q)}(0) = \sum_{i=1}^s b_i \ell_i^{(q)}(0). \tag{3.11}$$

Consequently we have to compute the derivatives of k_i and ℓ_i . This is done as for Runge-Kutta methods (Section II.2) or for Rosenbrock methods applied to ordinary differential equations (Section IV.7).

We differentiate the first line of (3.3b) with respect to h. Using Leibniz' rule (II.2.4) this yields for h=0

$$k_i^{(q)} = q \left(f(v_i, w_i) \right)^{(q-1)} + (f_y)_0 q \sum_{j=1}^i \gamma_{ij} k_j^{(q-1)} + (f_z)_0 q \sum_{j=1}^i \gamma_{ij} \ell_j^{(q-1)} .$$
(3.12)

The index 0 in $(f_y)_0$ and $(f_z)_0$ indicates that the derivatives are evaluated at (y_0, z_0) . The second line of (3.3b) is divided by h before differentiation. This gives (again for h=0)

$$0 = (g(v_i, w_i))^{(q)} + (g_y)_0 \sum_{j=1}^i \gamma_{ij} k_j^{(q)} + (g_z)_0 \sum_{j=1}^i \gamma_{ij} \ell_j^{(q)} .$$
(3.13)

The derivatives of f and g can be computed by Faà di Bruno's formula (Lemma II.2.8). This yields

$$(f(v_i, w_i))^{(q-1)} = \sum \frac{\partial^{m+n} f(v_i, w_i)}{\partial y^m \partial z^n} (v_i^{(\mu_1)}, \dots, v_i^{(\mu_m)}, w_i^{(\nu_1)}, \dots, w_i^{(\nu_n)})$$
(3.14)

where the sum is over all "special $LDAT_y$'s" of order q. These are m. l. trees $[t_1, \ldots, t_m, u_1, \ldots, u_n]_y$ where t_j and u_j do not have any ramification and all their vertices are meagre with the exception of the roots of u_1, \ldots, u_n . The integers μ_j and ν_j are the orders of t_j and u_j , respectively. They satisfy $\mu_1 + \ldots + \mu_m + \nu_1 + \ldots + \nu_n = q - 1$. Similarly we apply Faà di Bruno's formula to g and obtain

$$(g(v_i, w_i))^{(q)} = \sum \frac{\partial^{m+n} g(v_i, w_i)}{\partial y^m \partial z^n} (v_i^{(\mu_1)}, \dots, v_i^{(\mu_m)}, w_i^{(\nu_1)}, \dots, w_i^{(\nu_n)}) + g_z(v_i, w_i) w_i^{(q)} .$$
 (3.15)

Here the sum is over all "special $LDAT_z$'s" of order q. They are defined as above but have a fat vertex. The integers μ_j, ν_j satisfy $\mu_1 + \ldots + \mu_m + \nu_1 + \ldots + \nu_n = q$. The term with g_z is written separately, because (by the definition of $LDAT_z$) $[u_1]_z$ is not an admissible tree. We are now in a position to compute the derivatives of k_i and ℓ_i . For this it is convenient to introduce the notation

$$\beta_{ij} = \alpha_{ij} + \gamma_{ij} \tag{3.16}$$

(with $\alpha_{ii} = 0$) as in (IV.7.12). We also need the inverse of the matrix (β_{ij}) , whose coefficients we denote by ω_{ij} :

$$(\omega_{ij}) = (\beta_{ij})^{-1}$$
 (3.17)

Theorem 3.6. The derivatives of k_i and ℓ_i satisfy

$$k_{i}^{(q)}(0) = \sum_{t \in LDAT_{y}, \varrho(t)=q} \gamma(t) \Phi_{i}(t) F(t)(y_{0}, z_{0})$$

$$\ell_{i}^{(q)}(0) = \sum_{u \in LDAT_{z}, \varrho(u)=q} \gamma(u) \Phi_{i}(u) F(u)(y_{0}, z_{0}) , \qquad (3.18)$$

where the coefficients $\Phi_i(t)$ and $\Phi_i(u)$ are given by $\Phi_i(\tau_y) = 1$, $\Phi_i(\tau_z) = 1$ and

$$\Phi_{i}(t) = \begin{cases} \sum_{\mu_{1},..,\mu_{m},\nu_{1},..,\nu_{n}} \alpha_{i\mu_{1}} \cdots \alpha_{i\mu_{m}} \alpha_{i\nu_{1}} \cdots \alpha_{i\nu_{n}} \\ \cdot \Phi_{\mu_{1}}(t_{1}) \cdots \Phi_{\mu_{m}}(t_{m}) \Phi_{\nu_{1}}(u_{1}) \cdots \Phi_{\nu_{n}}(u_{n}) \\ if t = [t_{1},...,t_{m},u_{1},...,u_{n}]_{y} \text{ and } m + n \geq 2 \end{cases} \\ \sum_{j} \beta_{ij} \Phi_{j}(t_{1}) \quad if t = [t_{1}]_{y} \\ \sum_{j} \beta_{ij} \Phi_{j}(u_{1}) \quad if t = [u_{1}]_{y} , \end{cases} \\ \Phi_{i}(u) = \begin{cases} \sum_{j,\mu_{1},...,\mu_{m},\nu_{1},...,\nu_{n}} \omega_{ij}\alpha_{j\mu_{1}} \cdots \alpha_{j\mu_{m}}\alpha_{j\nu_{1}} \cdots \alpha_{j\nu_{n}} \\ \cdot \Phi_{\mu_{1}}(t_{1}) \cdots \Phi_{\mu_{m}}(t_{m})\Phi_{\nu_{1}}(u_{1}) \cdots \Phi_{\nu_{n}}(u_{n}) \\ if u = [t_{1},...,t_{m},u_{1},...,u_{n}]_{z} \text{ and } m + n \geq 2 \end{cases} \\ \Phi_{i}(t_{1}) \quad if u = [t_{1}]_{z} \end{cases}$$

and the integer coefficients $\gamma(t)$ and $\gamma(u)$ are defined by $\gamma(\tau_y)\!=\!1,\,\gamma(\tau_z)\!=\!1$ and

$$\begin{split} \gamma(t) &= \varrho(t)\gamma(t_1)\ldots\gamma(t_m)\gamma(u_1)\ldots\gamma(u_n) \quad if \ t = [t_1,\ldots,t_m,u_1,\ldots,u_n]_y\\ \gamma(u) &= \gamma(t_1)\ldots\gamma(t_m) \ \gamma(u_1)\ldots\gamma(u_n) \quad if \ u = [t_1,\ldots,t_m,u_1,\ldots,u_n]_z \end{split}$$

Proof. By (3.3a) we have

$$v_i^{(\mu)} = \sum_{j=1}^{i-1} \alpha_{ij} k_j^{(\mu)} , \qquad w_i^{(\nu)} = \sum_{j=1}^{i-1} \alpha_{ij} \ell_j^{(\nu)} . \tag{3.19}$$

We now insert (3.19) into (3.14) and the resulting formula for $(f(v_i, w_i))^{(q-1)}$ into (3.12). This yields (all expressions have to be evaluated at h=0)

$$k_{i}^{(q)} = q \sum_{m+n \ge 2} \frac{\partial^{m+n} f(y_{0}, z_{0})}{\partial y^{m} \partial z^{n}} \left(\sum_{j=1}^{i-1} \alpha_{ij} k_{j}^{(\mu_{1})}, \dots, \sum_{j=1}^{i-1} \alpha_{ij} \ell_{j}^{(\nu_{1})}, \dots \right) + q(f_{y})_{0} \sum_{j=1}^{i} \beta_{ij} k_{j}^{(q-1)} + q(f_{z})_{0} \sum_{j=1}^{i} \beta_{ij} \ell_{j}^{(q-1)} .$$

$$(3.20)$$

The same analysis for the second component leads to

$$0 = \sum_{m+n \ge 2} \frac{\partial^{m+n} g(y_0, z_0)}{\partial y^m \partial z^n} \left(\sum_{j=1}^{i-1} \alpha_{ij} k_j^{(\mu_1)}, \dots, \sum_{j=1}^{i-1} \alpha_{ij} \ell_j^{(\nu_1)}, \dots \right) + (g_y)_0 \sum_{j=1}^{i} \beta_{ij} k_j^{(q)} + (g_z)_0 \sum_{j=1}^{i} \beta_{ij} \ell_j^{(q)} .$$
(3.21)

The sums in (3.20) and (3.21) are over elements of LDAT exactly as in (3.14) and (3.15). Equation (3.21) allows us to extract $\ell_i^{(q)}$ if we use the inverse of (β_{ij}) . This gives

$$\ell_{i}^{(q)} = (-g_{z})_{0}^{-1} \sum_{j=1}^{i} \omega_{ij} \sum_{m+n \ge 2} \frac{\partial^{m+n}g(y_{0}, z_{0})}{\partial y^{m}\partial z^{n}} \left(\sum_{\kappa=1}^{j-1} \alpha_{j\kappa} k_{\kappa}^{(\mu_{1})}, \dots, \sum_{\kappa=1}^{j-1} \alpha_{j\kappa} \ell_{\kappa}^{(\nu_{1})}, \dots \right) + \left((-g_{z}^{-1})g_{y} \right)_{0} k_{i}^{(q)} .$$
(3.22)

The proof of Formula (3.18) is now by induction on q. The case q=1 follows immediately from (3.12) and (3.13). For general q, we insert the induction hypothesis into (3.20) and (3.22), exploit the multilinearity of the derivatives, and arrange the summations as in the proof of Theorem II.2.11.

Finally, Formula (3.11) yields the derivatives of the numerical solution.

Theorem 3.7 (Roche 1988). The numerical solution of (3.3) satisfies:

$$\begin{split} y_1^{(q)}|_{h=0} &= \sum_{t \in LDAT_y, \varrho(t)=q} \gamma(t) \sum_{i=1}^s b_i \Phi_i(t) F(t)(y_0, z_0) \\ z_1^{(q)}|_{h=0} &= \sum_{u \in LDAT_z, \varrho(u)=q} \gamma(u) \sum_{i=1}^s b_i \Phi_i(u) F(u)(y_0, z_0) \end{split}$$

where the coefficients γ and Φ_i are given in Theorem 3.6.

Order Conditions

Comparing Theorem 3.5 and 3.7 we obtain

Theorem 3.8. For the Rosenbrock method (3.3) we have:

$$\begin{split} y(x_0+h) - y_1 &= \mathcal{O}(h^{p+1}) \quad iff \\ &\sum_{i=1}^s b_i \Phi_i(t) = \frac{1}{\gamma(t)} \quad for \quad t \in DAT_y, \ \varrho(t) \leq p \,; \\ z(x_0+h) - z_1 &= \mathcal{O}(h^{q+1}) \quad iff \\ &\sum_{i=1}^s b_i \Phi_i(u) = \frac{1}{\gamma(u)} \quad for \quad u \in DAT_z, \ \varrho(u) \leq q \,, \end{split}$$

where the coefficients Φ_i and γ are those of Theorem 3.6.

Repeated application of the recursive definition of Φ_i in Theorem 3.6 yields the following algorithm:

Forming the order condition for a given tree: attach to each meagre vertex one summation index, and to each fat vertex two indices (one above the other). Then the left hand side of the order condition is a sum over all indices of a product with factors

 $\begin{array}{ll} b_i & \text{if "}i" \text{ is the index of the root (the lower index if the root is fat);} \\ \alpha_{ij} & \text{if "}j" \text{ lies directly above "}i" \text{ and "}i" \text{ is multiply branched;} \\ \beta_{ij} & \text{if "}j" \text{ lies directly above "}i" \text{ and "}i" \text{ is singly branched;} \\ \omega_{ii} & \text{if "}i,j" \text{ are the two indices of a fat vertex ("}i" \text{ below "}j"). \end{array}$

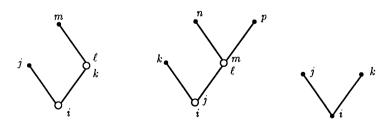


Fig. 3.3. Trees with labelling

As an example, we present the order conditions for the first two trees of Fig. 3.3.

$$\sum_{i,j,k,\ell,m} b_i \alpha_{ij} \alpha_{ik} \omega_{k\ell} \beta_{\ell m} = \frac{1}{3}$$
(3.23)

$$\sum_{i,j,k,\ell,m,n,p} b_i \omega_{ij} \alpha_{jk} \alpha_{j\ell} \omega_{\ell m} \alpha_{m n} \alpha_{m p} = 1 .$$
 (3.24)

The condition (3.23) can be further simplified if we use the fact that (ω_{ij}) is the inverse of the matrix (β_{ij}) . Indeed, (3.23) is equivalent to

$$\sum_{i,j,k} b_i \alpha_{ij} \alpha_{ik} = \frac{1}{3}$$

which is the order condition for the third tree in Fig. 3.3. Exploiting this reduction systematically we arrive at the following result.

Lemma 3.9. For a Rosenbrock method (3.3) the order conditions corresponding to one of the following situations are redundant:

a) a fat vertex is singly branched.

b) a singly branched vertex is followed by a fat vertex.

The subset of DAT_y which consists of trees with only meagre vertices, is simply T (the set of trees of Section II.2). The corresponding order conditions are those given in Section IV.7. Consequently, a *p*-th order Rosenbrock method has to satisfy all "classical" order conditions and, in addition, several "algebraic" conditions. The first of these new order conditions are given in Table 3.1. We have included the polynomial $p_t(\gamma)$ in its last column, which is the right-hand side of the order condition, when written in the form (IV.7.11').

$\varrho(t)$	t	graph	$\gamma(t)$	$\Phi_j(t)$	$p_t(\gamma)$
4	t ₄₅	Y	4	$\sum \alpha_{jk} \alpha_{j\ell} \omega_{\ell m} \alpha_{mn} \alpha_{mp}$	1/4
2	<i>u</i> ₂₁	\bigvee	1	$\sum \omega_{jk} \alpha_{k\ell} \alpha_{km}$	1
3	u_{31}	$\backslash \vee$	1	$\sum \omega_{jk} \alpha_{k\ell} \alpha_{km} \alpha_{kn}$	1
3	u ₃₂	\bigvee	2	$\sum \omega_{jk} \alpha_{k\ell} \alpha_{km} \beta_{mn}$	$1/2 - \gamma$
3	u ₃₃	\bigvee	1	$\sum \omega_{jk} \alpha_{k\ell} \alpha_{km} \omega_{mn} \alpha_{np} \alpha_{nq}$	1

Table 3.1. Trees and elementary differentials

Convergence

Before we proceed to the actual construction of a new Rosenbrock method, we still have to study its convergence property. The following result will also involve

$$R(\infty) = 1 - b^T B^{-1} \mathbb{1} = 1 - \sum_{i,j} b_i \omega_{ij}$$
(3.25)

where R(z) is the stability function (IV.7.14).

We denote the local error of the Rosenbrock method (3.3) by

 $\delta y_h(x) = y_1 - y(x+h)$, $\delta z_h(x) = z_1 - z(x+h)$. (3.26) Here y_1, z_1 is the numerical solution obtained with the exact initial values $y_0 = y(x)$, $z_0 = z(x)$.

Theorem 3.10. Suppose that g_z is regular in a neighbourhood of the solution (y(x), z(x)) of (3.1) and that the initial values (y_0, z_0) are consistent. If $|R(\infty)| < 1$, and the local error satisfies

$$\delta y_h(x) = \mathcal{O}(h^{p+1}) , \qquad \delta z_h(x) = \mathcal{O}(h^p)$$
(3.27)

then the Rosenbrock method (3.3) is convergent of order p; i.e.,

$$y_n - y(x_n) = \mathcal{O}(h^p) \ , \quad z_n - z(x_n) = \mathcal{O}(h^p) \quad for \quad x_n - x_0 = nh \leq Const \ .$$

Proof. Since g_z is regular we have

$$\|g_{z}^{-1}(y,z)g(y,z)\| \le \delta$$
(3.28)

for (y, z) in a compact neighbourhood \mathcal{U} of the solution. The *h*-independent value of δ can be made arbitrarily small by shrinking \mathcal{U} . We also suppose for the moment that the numerical solution and all its internal stages remain in this neighbourhood. The propagation of local errors will be studied in part a), and their accumulation over the whole interval in part b).

a) We consider two pairs of initial values, (y_0, z_0) and (\hat{y}_0, \hat{z}_0) , and apply the method to each (these values may be inconsistent, but they are assumed to lie in \mathcal{U}). We shall prove that

$$\begin{aligned} \|y_1 - \hat{y}_1\| &\leq (1 + hL) \|y_0 - \hat{y}_0\| + hM \|z_0 - \hat{z}_0\| \\ \|z_1 - \hat{z}_1\| &\leq N \|y_0 - \hat{y}_0\| + \kappa \|z_0 - \hat{z}_0\| \end{aligned}$$
(3.29)

where $\kappa < 1$. For this we fix a sufficiently small step size h, and consider y_1, z_1, k_i, ℓ_i as functions of (y_0, z_0) . We shall show that

$$\frac{\partial y_1}{\partial y_0} = I + \mathcal{O}(h) , \qquad \frac{\partial y_1}{\partial z_0} = \mathcal{O}(h) ,
\frac{\partial z_1}{\partial y_0} = \mathcal{O}(1) , \qquad \frac{\partial z_1}{\partial z_0} = R(\infty)I + \mathcal{O}(h+\delta) .$$
(3.30)

The mean value theorem then implies (3.29).

We first estimate k_i and ℓ_i , defined in (3.3b). Using (3.28) we compute ℓ_i from the second line and insert it into the first one. This yields successively $k_i = \mathcal{O}(h)$ and $\ell_i = \mathcal{O}(h+\delta)$ for all internal stages. We then differentiate (3.3b) once with respect to y_0 and once with respect to z_0 . An analysis similar to that for k_i and ℓ_i yields

$$\frac{\partial k_i}{\partial y_0} = \mathcal{O}(h) , \qquad \frac{\partial k_i}{\partial z_0} = \mathcal{O}(h)
\frac{\partial \ell_i}{\partial y_0} = \mathcal{O}(1) , \qquad \frac{\partial \ell_i}{\partial z_0} = -\sum_j \omega_{ij} I + \mathcal{O}(h+\delta)$$
(3.31)

and the estimates (3.30) follow from (3.3a) and (3.25).

b) As a consequence of Lemma 2.9 (see Exercise 8), the propagation of the local errors $\delta y_h(x_{j-1})$, $\delta z_h(x_{j-1})$ to the solution at x_n can be bounded by

$$C(\|\delta y_h(x_{j-1})\| + (h + \kappa^{n-j})\|\delta z_h(x_{j-1})\|) .$$
(3.32)

Summing up these terms from j=1 to j=n and using (3.27) gives the stated bounds for the global error, because $\sum_{j=1}^{n} (h+\kappa^{n-j}) \leq Const.$

Our assumption that the numerical solution and the internal stages lie in \mathcal{U} can now easily be justified by induction on the step number. The numerical solution remains $\mathcal{O}(h^p)$ -close to the exact solution and thus remains in \mathcal{U} for sufficiently small h. This implies $g(y_j, z_j) = \mathcal{O}(h^p)$ for all j and hence also $\ell_i = \mathcal{O}(h)$. Consequently (v_i, w_i) are also as close to the exact solution as we want.

Stiffly Accurate Rosenbrock Methods

We have already had several occasions to admire the beneficial effect of stiffly accurate Runge-Kutta methods (methods with $a_{si} = b_i$ for all *i*; see Theorem 1.1 and Corollary 2.10). What is the corresponding condition for Rosenbrock methods?

Definition 3.11. A Rosenbrock method is called *stiffly accurate*, if

$$\alpha_{si} + \gamma_{si} = b_i \quad (i = 1, \dots, s) \quad \text{and} \quad \alpha_s = 1 . \tag{3.33}$$

Recall that $\alpha_i = \sum_j \alpha_{ij}$. It has already been remarked at the end of Section IV.15 that methods satisfying (3.33) yield asymptotically exact results for the problem $y' = \lambda(y - \varphi(x)) + \varphi'(x)$. A further interesting interpretation of this condition has been given by Schneider (1990). He argues that DAE's are combinations of differential equations and algebraic equations;

hence methods should be equally valuable for both extreme cases, either a purely differential equation, or a purely algebraic equation

$$x'=1$$
, $0=g(x,z)$, g_z invertible . (3.34)

Proposition 3.12. A stiffly accurate Rosenbrock method, applied to (3.34), yields

$$z_1 = w_s - g_z^{-1}(x_0, z_0) \cdot g(x_0 + h, w_s)$$
.

The numerical solution z_1 is thus the result of one simplified Newton iteration for $0 = g(x_0 + h, z)$ (with starting value w_s).

Proof. Condition (3.33) together with $\sum_i b_i = 1$ implies that $\gamma_s = \sum_j \gamma_{sj} = 0$. Therefore, the second line of (3.3b) gives (observe that $k_i = h$ for the problem (3.34))

$$0 = g(x_0 + h, w_s) + g_z(x_0, z_0) \sum_{j=1}^{i} \gamma_{ij} \ell_j .$$

Inserting the expression thus obtained for $\sum_{i} \gamma_{ij} \ell_{j}$ into

$$z_1 = z_0 + \sum_{j=1}^{s} b_j \ell_j = w_s + \sum_{j=1}^{s} \gamma_{sj} \ell_j$$

proves the statement.

The values (v_s, w_s) of the last stage are often used as an embedded solution for step size control. If this is the case for a stiffly accurate method, then many of the algebraic order condition are automatically satisfied. This is a consequence of the following result.

Proposition 3.13. Consider a stiffly accurate Rosenbrock method. For sufficiently regular problems (3.1) we have

$$z_1 - z(x_0 + h) = \mathcal{O}(h^{q+1}) \tag{3.35}$$

if and only if

$$v_s - y(x_0 + h) = \mathcal{O}(h^q) \qquad and \qquad w_s - z(x_0 + h) = \mathcal{O}(h^q) \quad (3.36)$$

Proof. We use the characterization of Theorem 3.8 and the fact that (with ω_{ij} defined in (3.17))

$$\sum_{i} b_{i} \omega_{ij} = \begin{cases} 1 & \text{if } j = s \\ 0 & \text{else} \end{cases}$$
(3.37)

Suppose first that (3.35) holds. For a tree $u = [\tau_y, t_2]_z$ with arbitrary $t_2 \in DAT_y$ we have, by definition of $\Phi_j(u)$ and $\gamma(u)$,

$$\sum_{i} b_i \Phi_i(u) = \sum_{i,j,k} b_i \omega_{ij} \alpha_j \alpha_{jk} \Phi_k(t_2) = \sum_{k} \alpha_{sk} \Phi_k(t_2)$$
(3.38)

and $\gamma(u) = \gamma(t_2)$. Consequently, the order condition is satisfied for u iff it is satisfied for t_2 . Since $\varrho(t_2) = \varrho(u) - 1$, we see that $v_s - y(x_0 + h) = \mathcal{O}(h^q)$ is a consequence of (3.35). By considering $u = [\tau_y, u_1]_z$ with $u_1 \in DAT_z$ we deduce the second relation of (3.36). The "if" part is proved in a similar way.

Finally we remark that because of (3.25) and (3.37) the stability function of a stiffly accurate Rosenbrock method always satisfies $R(\infty) = 0$. This is a desirable property when solving stiff or differential algebraic equations.

Construction of RODAS, a Stiffly Accurate Embedded Method

Our aim is to construct an embedded Rosenbrock method (where $\hat{y}_1 = v_s$, $\hat{z}_1 = w_s$), such that both methods are stiffly accurate. This imposes the following conditions

$$\begin{aligned} b_i &= \beta_{si} \quad (i = 1, \dots, s) , & \alpha_s = 1 \\ \hat{b}_i &= \alpha_{si} = \beta_{s-1,i} \quad (i = 1, \dots, s-1) , & \alpha_{s-1} = 1 \end{aligned}$$
 (3.39)

(as usual $\beta_{ij} = \alpha_{ij} + \gamma_{ij}$). It follows from Proposition 3.12 that the last *two* stages represent simplified Newton iterations. Further, both methods have a stability function which vanishes at infinity. The construction of such a method of order 4(3) seems to be impossible with s = 5. We therefore put s = 6.

Here is the list of order conditions which have to be solved. We use the abbreviations α_i, β'_i defined in (IV.7.16), and the coefficients ω_{ij} from (3.17). We shall require that

$$y_1 - y(x_0 + h) = \mathcal{O}(h^5)$$
, $\hat{y}_1 - y(x_0 + h) = \mathcal{O}(h^4)$. (3.40)

Since we have sufficiently many parameters we also require

$$w_{s-1} - y(x_0 + h) = \mathcal{O}(h^3)$$
, $w_{s-1} - z(x_0 + h) = \mathcal{O}(h^3)$. (3.41)

By Proposition 3.13 this implies

$$\widehat{z}_1 - z(x_0 + h) = \mathcal{O}(h^4)$$
, $z_1 - z(x_0 + h) = \mathcal{O}(h^5)$, (3.42)

which is more than sufficient to ensure convergence of order 4 (see Theorem 3.10). The conditions for (3.40) and (3.41) are (see Table IV.7.1 and Table 3.1)

$$b_1 + b_2 + b_3 + b_4 + (b_5 + b_6) = 1 \tag{3.43a}$$

$$b_2\beta'_2 + b_3\beta'_3 + b_4\beta'_4 + (b_5 + b_6)(1 - \gamma) = \frac{1}{2} - \gamma$$
(3.43b)

$$b_2\alpha_2^2 + b_3\alpha_3^2 + b_4\alpha_4^2 + (b_5 + b_6) = \frac{1}{3}$$
(3.43c)

$$b_{3}\beta_{32}\beta_{2}' + b_{4}\sum'\beta_{4i}\beta_{i}' + (b_{5}+b_{6})\left(\frac{1}{2}-2\gamma+\gamma^{2}\right) = \frac{1}{6}-\gamma+\gamma^{2}$$
(3.43d)

$$b_2 \alpha_2^3 + b_3 \alpha_3^3 + b_4 \alpha_4^3 + (b_5 + b_6) = \frac{1}{4}$$
(3.43e)

$$b_{3}\alpha_{3}\alpha_{32}\beta_{2}' + b_{4}\alpha_{4}\sum'\alpha_{4i}\beta_{i}' + (b_{5}+b_{6})(\frac{1}{2}-\gamma) = \frac{1}{8} - \frac{\gamma}{3}$$
(3.43f)

$$b_{3}\beta_{32}\alpha_{2}^{2} + b_{4}\sum^{\gamma}\beta_{4i}\alpha_{i}^{2} + (b_{5} + b_{6})(\frac{1}{3} - \gamma) = \frac{1}{12} - \frac{\gamma}{3}$$
(3.43g)
$$b_{1}\beta_{2}\beta_{3}\beta_{4}\beta_{4}\beta_{4} + (b_{1} + b_{2})(\frac{1}{3}\beta_{4}\beta_{4}) = \frac{1}{12} - \frac{\gamma}{3} + \frac{3}{3}\beta_{2}\beta_{4} + \frac{1}{3}\beta_{4}\beta_{4} + \frac{1}{3}\beta_{4} + \frac{1}{3}\beta_{4}$$

$$b_{4}\beta_{43}\beta_{32}\beta_{2}^{2} + (b_{5} + b_{6})(\frac{1}{6} - \frac{1}{2}\gamma + 3\gamma^{2} - \gamma^{3}) = \frac{1}{24} - \frac{1}{2} + \frac{1}{2}\gamma^{2} - \gamma^{3}$$
(3.43h)
$$b_{2}\alpha_{2}\alpha_{22}\omega_{22}\alpha_{2}^{2} + b_{4}\alpha_{4}\sum_{i,j}\alpha_{4,j}\omega_{i,j}\alpha_{i}^{2} + (b_{5} + b_{6}) = \frac{1}{4}$$
(3.43i)

$$\alpha_{62}\beta'_{2} + \alpha_{63}\beta'_{3} + \alpha_{64}\beta'_{4} = \frac{1}{2} - 2\gamma + \gamma^{2}$$
(3.43j)

$$\alpha_{62}\alpha_2^2 + \alpha_{63}\alpha_3^2 + \alpha_{64}\alpha_4^2 = \frac{1}{3} - \gamma$$
(3.43k)

$$\alpha_{63}\beta_{32}\beta'_{2} + \alpha_{64}\sum'\beta_{4i}\beta'_{i} = \frac{1}{6} - \frac{3}{2}\gamma + 3\gamma^{2} - \gamma^{3}$$
(3.431)

$$\alpha_{52}\beta_2' + \alpha_{53}\beta_3' + \alpha_{54}\beta_4' = \frac{1}{2} - \gamma$$
(3.43m)

$$\sum_{i=1}^{4} \alpha_{5i} \sum_{j=1}^{i} \omega_{ij} \alpha_{j}^{2} = 1$$
 (3.43n)

In order to solve the system (3.39), (3.43a-n) we can take γ , α_2 , α_3 , α_4 , $\beta'_2 = \beta_{21}$, β'_3 , β'_4 as free parameters. The remaining coefficients can then be computed as follows:

Step 1. We have $b_6 = \gamma$ by (3.39). The remaining b_i can be chosen such that (3.43a,b,c,e) are satisfied. We have one degree of freedom which can be exploited to fulfill the additional order condition $\sum_i b_i \alpha_i^4 = 1/5$. This step also yields $\beta_{6i} = b_i$ for $i = 1, \ldots, 6$.

Step 2. Compute the two expressions $b_3\beta_{32} + b_4\beta_{42}$ and $b_4\beta_{43}$ from (3.43d,g), and then β_{32} from (3.43h). Because of $\beta'_i = \sum_{j=1}^{i-1} \beta_{ij}$ this determines all β_{ij} with $i \leq 4$. Observe that $\beta_{ii} = \gamma$ for all i.

Step 3. Solve the linear system (3.43j,k,l) for α_{62} , α_{63} , α_{64} . We have $\alpha_{65} = \gamma$ by (3.39) and compute α_{61} from $\alpha_6 = \sum_i \alpha_{6i} = 1$. This also yields $\beta_{5i} = \alpha_{6i}$ by (3.39). Hence all β_{ij} and ω_{ij} , and also $\hat{b}_i = \beta_{5i}$ $(i = 1, \ldots, 5)$ are determined at this stage.

Step 4. The conditions (3.43m,n) and $\alpha_5 = 1$ constitute 3 linear equations in the four unknown parameters α_{51} , α_{52} , α_{53} , α_{54} . We have one degree of freedom in this step.

Step 5. The remaining two conditions (3.43f,i) are linear equations in $\alpha_{32}, \alpha_{42}, \alpha_{43}$. We have one more degree of freedom which can be exploited to fulfill the order condition for the tree $[\tau_y, \tau_y, [\tau_y]_y]_y$. The values of α_{i1} are

then determined by $\alpha_i = \sum_{j=1}^{i-1} \alpha_{ij}$, and those of γ_{ij} are given by $\gamma_{ij} = \beta_{ij} - \alpha_{ij}$.

The coefficients for the code RODAS of the appendix were computed with the above procedure. In step 4 we have added the condition

$$\sum_{i,j} \alpha_{5i} \omega_{ij} = 1 \tag{3.44}$$

which will be explained in Exercise 3 below. The free parameters were chosen in order to get an A-stable method and to keep the error constants small. The result is

$$\begin{array}{ll} \gamma &= 0.25 \\ \alpha_2 &= 0.386 \\ \beta_2' &= 0.0317 \\ \end{array} \begin{array}{ll} \alpha_3 &= 0.21 \\ \beta_3' &= 0.0635 \\ \beta_4' &= 0.3438 \end{array} \tag{3.45}$$

We do not claim that these values are optimal. Nevertheless, the numerical results of Section IV.10 (Fig. IV.10.7, IV.10.8 and IV.10.9) are encouraging. Although the new method needs 6 function evaluations per step, it is in general superior to the classical methods of Table IV.7.2 which need only 3 evaluations per step.

Dense output. A natural way to define a continuous numerical solution for $y(x_0 + \theta h), z(x_0 + \theta h)$ is

$$y_1(\theta) = y_0 + \sum_{i=1}^s b_i(\theta)k_i , \qquad z_1(\theta) = z_0 + \sum_{i=1}^s b_i(\theta)\ell_i , \qquad (3.46)$$

where the $b_i(\theta)$ are polynomials which satisfy $b_i(0) = 0$, $b_i(1) = b_i$. In complete analogy to Theorem 3.8 we have

$$y(x_{0}+\theta h) - y_{1}(\theta) = \mathcal{O}(h^{p+1}) \quad \text{iff} \quad \sum_{i=1}^{s} b_{i}(\theta)\Phi_{i}(t) = \frac{\theta^{\varrho(t)}}{\gamma(t)}$$

for $t \in DAT_{y}, \ \varrho(t) \leq p$,
$$z(x_{0}+\theta h) - z_{1}(\theta) = \mathcal{O}(h^{q+1}) \quad \text{iff} \quad \sum_{i=1}^{s} b_{i}(\theta)\Phi_{i}(u) = \frac{\theta^{\varrho(u)}}{\gamma(u)}$$

for $u \in DAT_{z}, \ \varrho(u) \leq q$.
$$(3.47)$$

In our situation (s = 6) it is easy to fulfill these conditions with p = 3 and q=2. The additional condition $b_s(\theta) = \gamma \theta$ makes the solution unique.

Inconsistent Initial Values

Even if we start the computation with consistent initial values, the numerical solution (y_n, z_n) of a Rosenbrock method does not, in general, satisfy $g(y_n, z_n) = 0$. It is therefore of interest to investigate the local error also for inconsistent initial values (y_0, z_0) . But what is the local error? To which solution of (3.1) should we compare the numerical values? If

$$\|(g_z^{-1}g)(y_0, z_0)\| \le \delta \tag{3.48}$$

with sufficiently small δ , we can find (because of (1.7)) a locally unique \hat{z}_0 which satisfies $g(y_0, \hat{z}_0) = 0$. It is natural to compare the numerical solution (y_1, z_1) to that solution of (3.1) which passes through (y_0, \hat{z}_0) .

Our first aim is to write this solution in terms of elementary differentials evaluated at (y_0, z_0) . Using

$$\widehat{z}_0 - z_0 = (-g_z^{-1}g)(y_0, z_0) + \mathcal{O}(\delta^2) \; ,$$

which is a consequence of $0 = g(y_0, z_0) + g_z(y_0, z_0)(\widehat{z}_0 - z_0) + \ldots$, we get

$$\begin{split} y(x_{0}+h) &= y_{0} + hf(y_{0}, \hat{z}_{0}) + \mathcal{O}(h^{2}) & (3.49) \\ &= y_{0} + hf(y_{0}, z_{0}) + h(f_{z}(-g_{z}^{-1})g)(y_{0}, z_{0}) + \mathcal{O}(h^{2} + h\delta^{2}) \\ z(x_{0}+h) &= \hat{z}_{0} + h(-g_{z}^{-1}g_{y}f)(y_{0}, \hat{z}_{0}) + \mathcal{O}(h^{2}) & (3.50) \\ &= z_{0} + (-g_{z}^{-1}g)(y_{0}, z_{0}) + h(-g_{z}^{-1}g_{y}f)(y_{0}, z_{0}) \\ &+ h(-g_{z}^{-1}g_{zz}(-g_{z}^{-1}g, -g_{z}^{-1}g_{y}f))(y_{0}, z_{0}) \\ &+ h(-g_{z}^{-1}g_{yz}(f, -g_{z}^{-1}g))(y_{0}, z_{0}) \\ &+ h(-g_{z}^{-1}g_{y}f_{z}(-g_{z}^{-1})g)(y_{0}, z_{0}) + \mathcal{O}(h^{2} + \delta^{2}) \end{split}$$

The expressions so obtained allow a nice interpretation using trees. We only have to add in the recursive Definition 3.1 a tree of order 0, which consists of a fat root. We denote this tree by \emptyset_z , and extend Definition 3.3 by setting $F(\emptyset_z)(y,z) = (-g_z^{-1}g)(y,z)$. Then, the expressions of (3.49) and (3.50) correspond to the trees of Fig. 3.4.

Fig. 3.4. Trees, to be considered for inconsistent initial values

The numerical solution also possesses an expansion of the form (3.49), (3.50) with additional method-dependent coefficients. The first few terms

are as follows:

In order to understand the form of these new coefficients we have to extend the proof of Theorem 3.6. It turns out that the elementary differentials are multiplied by $\gamma(t) \sum_i b_i \Phi_i(t)$ or $\gamma(u) \sum_i b_i \Phi_i(u)$, where γ and Φ_i are defined by $\gamma(\emptyset_z) = 1$, $\Phi_i(\emptyset_z) = \sum_j \omega_{ij}$ and the recursion of Theorem 3.6. Equating the coefficients of the exact and numerical solutions yields new order conditions for the case of inconsistent initial values. The first of these (to be added to those of Table IV.7.1 and Table 3.1) are presented in Table 3.2.

tree	order condition	size of error term	
\checkmark	$\sum b_i lpha_i lpha_{ij} \omega_{jk} = 1/2$	$\mathcal{O}(h^2\delta)$	
•	$\sum b_i \omega_{ij} = 1$	$\mathcal{O}(\delta)$	
\checkmark	$\sum b_i \omega_{ij} \alpha_j \alpha_{jk} \omega_{k\ell} = 1$	$\mathcal{O}(h\delta)$	

Table 3.2. Order conditions for inconsistent initial values

Remarks. a) The first condition of Table 3.2 is exactly the same as that found by van Veldhuizen (1984) in a different context. It implies that the local error of the y-component is of size $\mathcal{O}(h^{p+1}+h^3\delta+h\delta^2)$.

b) Condition $\sum_{i,j} b_i \omega_{ij} = 1$ means that the stability function satisfies $R(\infty) = 0$. Unless this condition is satisfied, the local error of the z-component contains an *h*-independent term of size δ (which usually is near to *Tol*). This was observed numerically in Fig. IV.7.4 and explains the phenomenon of Fig. IV.7.3.

c) For Rosenbrock methods which satisfy (3.39), the second and third conditions of Table 3.2 are automatically fulfilled. For such methods the local error of the z-component is of size $\mathcal{O}(h^{q+1} + h^2\delta + \delta^2)$.

Exercises

- 1. (Roche 1989). Consider the implicit Runge-Kutta method (1.11) applied to (1.6).
 - a) Prove that $z_1 z(x_0 + h) = O(h^{q+1})$ iff

$$\sum_{i=1}^s b_i \Phi_i(u) = rac{1}{\gamma(u)} \qquad ext{for} \quad u \in DAT_z, \; arrho(u) \leq q \; ,$$

where $\gamma(u)$ and $\Phi_i(u)$ are defined as in Theorem 3.6, but all coefficients α_{ij} and β_{ij} are replaced by the Runge-Kutta coefficients a_{ij} .

b) Show that those trees in DAT_z which have more than one fat vertex, are redundant.

- 2. The simplifying assumptions (3.39) imply that many of the (algebraic) order conditions are automatically satisfied. Characterize the corresponding trees.
- 3. State the order condition for the tree $[\tau_y, [\tau_y, \emptyset_z]_z]_z$.
 - a) Show that the corresponding error term is of size $\mathcal{O}(h^2\delta)$ with δ given in (3.48).
 - b) For methods satisfying (3.39), this condition is equivalent to (3.44).
- 4. (Ostermann 1990). Suppose that the Rosenbrock method (3.3) satisfies (3.27). Define polynomials $b_i(\theta)$ of degree q = [(p+1)/2] by $b_i(0) = 0$, $b_i(1) = b_i$, and

$$\int_0^1 b_i(\theta) \theta^{\ell-1} d\theta = \begin{cases} \sum_j b_j(\alpha_{ji} + \gamma_{ji}) & \text{if } \ell = 1 \\ \sum_j b_j \alpha_j^{\ell-1} \alpha_{ji} & \text{if } \ell = 2, \dots, q-1 \end{cases}.$$

Prove that the error of the dense output formulas (3.46) is $\mathcal{O}(h^{q+1})$. Hint. Extend the ideas of Exercise II.15.5 to Rosenbrock methods.

 Suppose that a Rosenbrock method is implemented in the form (IV.7.25). If it satisfies (3.39), then its last two stages allow a very simple implementation

Hint. Prove that

$$m_i = \begin{cases} a_{si} & i = 1, \dots, s-1 \\ 1 & i = s \end{cases}, \qquad a_{si} = \begin{cases} a_{s-1,i} & i = 1, \dots, s-2 \\ 1 & i = s-1 \end{cases}.$$

6. Partitioned Rosenbrock methods (Rentrop, Roche & Steinebach 1989). Consider the method (3.3) with f_y and f_z replaced by 0. Derive necessary and sufficient conditions that it be of order p.

Remark. Case a) of Lemma 3.9 remains valid in this new situation. However, the trees of Lemma 3.9b give rise to new conditions.

- 7. What is the "algebraic order" of the classical 4th order Rosenbrock methods of Section IV.7?
- 8. Let $\{u_n\}$, $\{v_n\}$ be two sequences of non-negative numbers satisfying (componentwise)

$$\begin{pmatrix} u_{n+1} \\ v_{n+1} \end{pmatrix} \leq \begin{pmatrix} 1+hL & hM \\ N & \kappa \end{pmatrix} \begin{pmatrix} u_n \\ v_n \end{pmatrix}$$

with $0 \leq \kappa < 1$ and positive constants L, M, N. Prove that for $h \leq h_0$ and $nh \leq Const$

$$u_n \leq C(u_0 + hv_0)$$
, $v_n \leq C(u_0 + (h + \kappa^n)v_0)$.

Hint. Apply Lemma 2.9 with $\epsilon = h$ and M = 0.

VI.4. Extrapolation Methods

The numerical computations of Section IV.10 have revealed the extrapolation code SEULEX as one of the best method for very stringent tolerances. The aim of the present section is to justify theoretically the underlying numerical method, the extrapolated linearly implicit Euler method, for singular perturbation problems as a representative of stiff equations.

Linearly Implicit Euler Discretization

The linearly implicit Euler method (IV.9.25) applied to the singular perturbation problem (1.5) reads

$$\begin{pmatrix} I - hf_y(0) & -hf_z(0) \\ -hg_y(0) & \varepsilon I - hg_z(0) \end{pmatrix} \begin{pmatrix} y_{i+1} - y_i \\ z_{i+1} - z_i \end{pmatrix} = h \begin{pmatrix} f(y_i, z_i) \\ g(y_i, z_i) \end{pmatrix} .$$
(4.1)

Here we have used abbreviations such as $f_y(0) = f_y(y_0, z_0)$ for the partial derivatives. We recall that the numerical approximations at x_0+H (H=nh) are extrapolated according to (IV.9.26).

For the differential algebraic problem (1.6) we just put $\varepsilon = 0$ in (4.1). This yields

$$\begin{pmatrix} I - hf_y(0) & -hf_z(0) \\ -hg_y(0) & -hg_z(0) \end{pmatrix} \begin{pmatrix} y_{i+1} - y_i \\ z_{i+1} - z_i \end{pmatrix} = h \begin{pmatrix} f(y_i, z_i) \\ g(y_i, z_i) \end{pmatrix} .$$
(4.2)

Possible extensions to non-autonomous problems have been presented in Section IV.9. For problems $Mu' = \varphi(u)$ we use the formulation (IV.9.34) also for singular M. Due to the invariance of the method with respect to the transformation (1.23), all results of this section are equally valid for $Mu' = \varphi(u)$ of index 1.

The performance of extrapolation methods relies heavily on the existence of an asymptotic expansion of the global error. Such expansions are well understood, if the differential equation is nonstiff (see Sections II.8 and IV.9). But what happens if the problem is stiff or differential-algebraic? "Continued study of special problems is still a commendable way towards greater insight ..." (E. Hopf 1950)

Example 4.1. Consider the test problem

$$y' = 1$$
, $\varepsilon z' = -z + g(y)$. (4.3)

Method (4.1) yields the exact result $y_i = x_i = x_0 + ih$ for the y-component, and the recursion

$$(\varepsilon+h)z_{i+1} = \varepsilon z_i + hg(x_i) + h^2g'(x_0)$$
(4.4)

for the z-component. In order to compute the coefficients of the asymptotic expansion (Theorem II.8.1), we insert

$$z_i = z(x_i) + hb_1(x_i) + h^2b_2(x_i) + h^3b_3(x_i) + \dots$$
(4.5)

into (4.4), expand into a Taylor series and compare the coefficients of h^j . This yields the differential equation

$$\epsilon b_1'(x) + b_1(x) = -\frac{\epsilon}{2} z''(x) - z'(x) + g'(x_0)$$

for $b_1(x)$, and similar ones for $b_2(x)$, $b_3(x)$, etc. Putting i = 0 in (4.5) we get the initial values $b_i(x_0) = 0$ (all *i*). In general, the computation of the functions $b_1(x)$, $b_2(x)$,... is rather tedious. We therefore continue this example for the special case $x_0 = 0$, $g(x) = x^2 + 2\varepsilon x$, and $z_0 = 0$, so that the exact solution of (4.3) is $z(x) = x^2$. In this situation we get

$$b_1(x) = -3\varepsilon e^{-x/\varepsilon} + 3\varepsilon - 2x$$

$$b_2(x) = -\left(1 + \frac{3x}{2\varepsilon}\right)e^{-x/\varepsilon} + 1$$

$$b_3(x) = \left(\frac{x}{2\varepsilon^2} - \frac{3x^2}{8\varepsilon^3}\right)e^{-x/\varepsilon}$$
(4.6)

etc. We observe that for $\varepsilon \to 0$, the function $b_2(x)$ becomes discontinuous at x = 0, and $b_3(x)$ is even not uniformly bounded. Hence, the expansion (4.5) is not useful for the study of extrapolation, if ε is small compared to the step size H.

The idea is now to omit in (4.6) the terms containing the factor $e^{-x/\varepsilon}$ by requiring that the functions $b_i(x)$ be *smooth* uniformly in ε and, instead, to add a discrete perturbation β_i to (4.5). For our example, this then becomes

$$z_i = x_i^2 + h(3\epsilon - 2x_i) + h^2 + \beta_i$$
 (4.7a)

Inserting (4.7a) into (4.4) gives the relation $(\epsilon + h)\beta_{i+1} = \epsilon\beta_i$. The value of β_0 is obtained from (4.7a) with i=0. We thus get

$$\beta_i = -\left(1 + \frac{h}{\varepsilon}\right)^{-i} (3\varepsilon h + h^2) . \qquad (4.7b)$$

If the numerical solution is extrapolated, the smooth terms in (4.7) are eliminated one after the other. It remains to study the effect of extrapolation on the perturbation terms β_i . If the differential equation is very stiff ($\varepsilon \ll h$), these terms are very small and may be neglected over a wide range of h (observe that $i \ge n_1$).

Example 4.2. For the differential-algebraic problem

$$y' = 1$$
, $0 = -z + g(y)$ (4.8)

with initial values $y_0 = x_0$, $z_0 = g(x_0)$ the numerical solution, given by (4.2), is

$$z_i = egin{cases} g(x_0) & ext{ for } i=0 \ g(x_{i-1}) + hg'(x_0) & ext{ for } i \geq 1 \ . \end{cases}$$

Developing its second formula (for $i \ge 1$) yields

$$z_i = g(x_i) + h(g'(x_0) - g'(x_i)) + rac{h^2}{2}g''(x_i) - rac{h^3}{6}g'''(x_i) + \mathcal{O}(h^4) \; .$$

If we add the perturbation

$$\beta_{i} = h\beta_{i}^{1} + h^{2}\beta_{i}^{2} + h^{3}\beta_{i}^{3} + \dots$$
(4.9)

(which is different from zero only for i=0) we get for all i

$$z_i - g(x_i) = \sum_{j=1}^3 h^j(b_j(x_i) + \beta_i^j) + \mathcal{O}(h^4)$$
(4.10)

where

$$b_1(x) = g'(x_0) - g'(x) , \quad b_2(x) = \frac{1}{2}g''(x) , \quad b_3(x) = -\frac{1}{6}g'''(x)$$

are smooth functions and the perturbations are given by

$$\beta_0^1 = 0$$
, $\beta_0^2 = -\frac{1}{2}g''(x_0)$, $\beta_0^3 = \frac{1}{6}g'''(x_0)$.

If we add a further algebraic equation to (4.8), e.g., 0 = u - k(z), and again apply Method (4.2), we get three different formulas for u_i , one for i=0, one for i=1, and a different one for $i \ge 2$. In an expansion of the type (4.10) for $u_i - k(g(x_i))$, perturbation terms will be present for i=0 and for i=1.

Perturbed Asymptotic Expansion

Table 4.1. Non-zero α 's

For general differential algebraic problems we have the following result.

Theorem 4.3 (Deuflhard, Hairer & Zugck 1987). Consider the problem (1.6) with consistent initial values (y_0, z_0) , and suppose that (1.7) is satisfied. The global error of the linearly implicit Euler method (4.2) then has an asymptotic h-expansion of the form

$$y_{i} - y(x_{i}) = \sum_{j=1}^{M} h^{j} (a_{j}(x_{i}) + \alpha_{i}^{j}) + \mathcal{O}(h^{M+1})$$

$$z_{i} - z(x_{i}) = \sum_{j=1}^{M} h^{j} (b_{j}(x_{i}) + \beta_{i}^{j}) + \mathcal{O}(h^{M+1})$$
(4.11)

where $a_j(x)$, $b_j(x)$ are smooth functions and the perturbations satisfy (see Table 4.1 and 4.2)

$$\alpha_i^1 = 0, \quad \alpha_i^2 = 0, \quad \alpha_i^3 = 0, \quad \beta_i^1 = 0 \quad for \ i \ge 0 \quad (4.12a)$$

$$\beta_i^2 = 0 \qquad \text{for } i \ge 1 \tag{4.12b}$$

$$\alpha_i^j = 0 \quad \text{for } i \ge j - 4 \text{ and } j \ge 4$$
(4.12c)

$$eta_i^j = 0 \qquad \textit{for } i \geq j-2 \textit{ and } j \geq 3 \textit{ .}$$

Table 4.2.

Non-zero β 's

The error terms in (4.11) are uniformly bounded for $x_i = ih \leq H$, if H is sufficiently small.

1	h	h^2	h^3	h^4	h^5	h^6	h^7	h	h^2	h^3	h^4	h^5	h^6	h^7
y_0	0	0	0	0	*	*	*	$z_0 = 0$	*	*	*	*	*	*
y_1	0	0	0	0	0	*	*	$z_1 = 0$	0	0	*	*	*	*
y_2	0	0	0	0	0	0	*	$z_2 \mid 0$	0	0	0	*	*	*
y_3								$z_3 = 0$	0	0	0	0	*	*
					0			$z_4 = 0$						
y_5								$z_5 = 0$						

Proof. In part a) we shall recursively construct truncated expansions

• •

$$\begin{aligned} \widehat{y}_{i} &= y(x_{i}) + \sum_{j=1}^{M} h^{j} \left(a_{j}(x_{i}) + \alpha_{i}^{j} \right) + h^{M+1} \alpha_{i}^{M+1} \\ \widehat{z}_{i} &= z(x_{i}) + \sum_{j=1}^{M} h^{j} \left(b_{j}(x_{i}) + \beta_{i}^{j} \right) \end{aligned}$$
(4.13)

such that the defect of $\widehat{y}_i, \widehat{z}_i$ inserted into the method is small; more precisely, we require that

$$\begin{pmatrix} I - hf_y(0) & -hf_z(0) \\ -hg_y(0) & -hg_z(0) \end{pmatrix} \begin{pmatrix} \widehat{y}_{i+1} - \widehat{y}_i \\ \widehat{z}_{i+1} - \widehat{z}_i \end{pmatrix} = h \begin{pmatrix} f(\widehat{y}_i, \widehat{z}_i) \\ g(\widehat{y}_i, \widehat{z}_i) \end{pmatrix} + \mathcal{O}(h^{M+2}) .$$

$$(4.14)$$

For the initial values we require $\widehat{y}_0=y_0\,,\,\widehat{z}_0=z_0\,,\, {\rm or}$ equivalently

$$a_j(0) + \alpha_0^j = 0$$
, $b_j(0) + \beta_0^j = 0$, (4.15)

and the perturbation terms are assumed to satisfy

$$lpha_i^j o 0 \;, \qquad eta_i^j o 0 \qquad ext{for} \quad i o \infty \;, \tag{4.16}$$

otherwise, these limits could be added to the smooth parts. The result will then follow from a stability estimate derived in part b).

a) For the construction of $a_j(x)$, $b_j(x)$, α_i^j , β_i^j we insert (4.13) into (4.14), and develop

$$\begin{split} f(\widehat{y}_{i},\widehat{z}_{i}) &= f(y(x_{i}),z(x_{i})) + f_{y}(x_{i})(ha_{1}(x_{i}) + h\alpha_{i}^{1} + \ldots) \\ &+ f_{z}(x_{i})(hb_{1}(x_{i}) + h\beta_{i}^{1} + \ldots) \\ &+ f_{yy}(x_{i})(ha_{1}(x_{i}) + h\alpha_{i}^{1} + \ldots)^{2} + \ldots , \\ &- \widehat{y}_{i} = y(x_{i+1}) - y(x_{i}) + h(a_{i}(x_{i+1}) - a_{i}(x_{i}) + \alpha_{i+1}^{1} - \alpha_{i}^{1}) + \ldots \end{split}$$

$$\begin{split} \widehat{y}_{i+1} - \widehat{y}_i &= y(x_{i+1}) - y(x_i) + h\big(a_1(x_{i+1}) - a_1(x_i) + \alpha_{i+1}^1 - \alpha_i^1\big) + \dots \\ &= hy'(x_i) + \frac{h^2}{2} \, y''(x_i) + \dots + h^2 a_1'(x_i) + h(\alpha_{i+1}^1 - \alpha_i^1) + \dots, \end{split}$$

where $f_y(x) = f_y(y(x), z(x))$, etc. Similarly, we develop $g(\hat{y}_i, \hat{z}_i)$ and $\hat{z}_{i+1} - \hat{z}_i$, and compare coefficients of h^{j+1} (for $j = 0, \ldots, M$). Each power of h will lead to *two* conditions — one containing the smooth functions and the other containing the perturbation terms.

First step. Equating the coefficients of h^1 yields the equations (1.6) for the smooth part (due to consistency of the method), and $\alpha_{i+1}^1 - \alpha_i^1 = 0$ for $i \ge 0$. Because of (4.16) we get $\alpha_i^1 = 0$ for all $i \ge 0$ (compare (4.12a)).

Second step. The coefficients of h^2 give

$$a_{1}'(x) + \frac{1}{2}y''(x) - f_{y}(0)y'(x) - f_{z}(0)z'(x) = f_{y}(x)a_{1}(x) + f_{z}(x)b_{1}(x) \quad (4.17a)$$

$$-g_{y}(0)y'(x) - g_{z}(0)z'(x) = g_{y}(x)a_{1}(x) + g_{z}(x)b_{1}(x) \quad (4.17b)$$

$$\alpha_{i+1}^2 - \alpha_i^2 - f_z(0)(\beta_{i+1}^1 - \beta_i^1) = f_z(0)\beta_i^1$$
(4.17c)

$$-g_{z}(0)(\beta_{i+1}^{1} - \beta_{i}^{1}) = g_{z}(0)\beta_{i}^{1} .$$
(4.17d)

Observe that the coefficients α_i^{ℓ} , β_i^{ℓ} have to be independent of h, so that $f_z(0)$, $g_z(0)$ cannot be replaced by $f_z(x_i)$, $g_z(x_i)$ in the right-hand sides of (4.17c, d). The system (4.17) can be solved as follows. Compute $b_1(x)$ from

(4.17b) and insert it into (4.17a). This gives a linear differential equation for $a_1(x)$. Because of (4.15) and $\alpha_0^1 = 0$ the initial value is $a_1(0) = 0$. Therefore $a_1(x)$ and $b_1(x)$ are uniquely determined by (4.17a, b). Differentiating g(y(x), z(x)) = 0 and putting x = 0 implies that the left-hand side of (4.17b) vanishes at x = 0. Consequently, we have $b_1(0) = 0$ and by (4.15), also $\beta_0^1 = 0$. Condition (4.17d) then implies $\beta_i^1 = 0$ (all *i*), and (4.17c) together with (4.16) give $\alpha_i^2 = 0$ (all *i*).

Third step. As in the second step we get (for j=2)

$$a'_{j}(x) = f_{y}(x)a_{j}(x) + f_{z}(x)b_{j}(x) + r(x)$$
(4.18a)

$$0 = g_y(x)a_j(x) + g_z(x)b_j(x) + s(x) , \qquad (4.18b)$$

where r(x), s(x) are known functions depending on derivatives of y(x), z(x), and on $a_{\ell}(x)$, $b_{\ell}(x)$ with $\ell \leq j-1$. We further get

$$\alpha_{i+1}^3 - \alpha_i^3 = f_z(0)\beta_{i+1}^2 \tag{4.18c}$$

$$0 = g_z(0)\beta_{i+1}^2 . (4.18d)$$

We compute $a_2(x)$, $b_2(x)$ as in step 2. However, $b_2(0) \neq 0$ in general, and for the first time, we are forced to introduce a perturbation term $\beta_0^2 \neq 0$. From (4.18c, d) we then get $\beta_i^2 = 0$ (for $i \geq 1$) and $\alpha_i^3 = 0$ (for all i).

Fourth step. Comparing the coefficients of h^4 we just get (4.18a,b) with j=3 and (4.18c,d) with the upper index raised by 1. As above we conclude $\beta_i^3 = 0$ (for $i \ge 1$) and $\alpha_i^4 = 0$ (for all i).

General step. The conditions for the smooth functions are (4.18a,b). For the perturbation terms we get

$$\alpha_{i+1}^{j+1} - \alpha_i^{j+1} = f_z(0)\beta_{i+1}^j + \varrho_i^j$$
(4.19c)

$$0 = g_z(0)\beta_{i+1}^j + \sigma_i^j , \qquad (4.19d)$$

where ϱ_i^j , σ_i^j are linear combinations of expressions which contain as factors α_{i+1}^{ℓ} , $\alpha_i^{\ell-1}$, $\beta_i^{\ell-1}$ with $\ell \leq j$. For example, we have $\varrho_i^4 = f_{zz}(0)(\beta_i^2)^2$ and $\sigma_i^4 = g_{zz}(0)(\beta_i^2)^2$. The proof of (4.12) is now by induction on j. By the induction hypothesis we have $\varrho_i^j = 0$, $\sigma_i^j = 0$ for $i \geq j-3$. Formula (4.19d) hence implies $\beta_{i+1}^j = 0$ (for $i \geq j-3$) and (4.19c) together with (4.16) gives $\alpha_i^{j+1} = 0$ (for $i \geq j-3$). But this is simply the statement (4.12c,d).

b) We still have to estimate the remainder term, i.e., differences $\Delta y_i = y_i - \hat{y}_i$, $\Delta z_i = z_i - \hat{z}_i$. Subtracting (4.14) from (4.2) and eliminating Δy_{i+1} ,

 Δz_{i+1} yields

$$\begin{split} \begin{pmatrix} \Delta y_{i+1} \\ \Delta z_{i+1} \end{pmatrix} &= \begin{pmatrix} \Delta y_i \\ \Delta z_i \end{pmatrix} \\ &+ \begin{pmatrix} I + \mathcal{O}(h) & \mathcal{O}(h) \\ \mathcal{O}(1) & -g_z^{-1}(0) \end{pmatrix} \begin{pmatrix} h(f(y_i, z_i) - f(\hat{y}_i, \hat{z}_i)) \\ g(y_i, z_i) - g(\hat{y}_i, \hat{z}_i) \end{pmatrix} + \begin{pmatrix} \mathcal{O}(h^{M+2}) \\ \mathcal{O}(h^{M+1}) \end{pmatrix}. \end{split}$$

The application of a Lipschitz condition for f(y, z) and g(y, z) then gives

$$\begin{pmatrix} \|\Delta y_{i+1}\|\\ \|\Delta z_{i+1}\| \end{pmatrix} \leq \begin{pmatrix} 1+\mathcal{O}(h) & \mathcal{O}(h)\\ \mathcal{O}(1) & \varrho \end{pmatrix} \begin{pmatrix} \|\Delta y_i\|\\ \|\Delta z_i\| \end{pmatrix} + \begin{pmatrix} \mathcal{O}(h^{M+2})\\ \mathcal{O}(h^{M+1}) \end{pmatrix} , \quad (4.20)$$

where $|\varrho| < 1$ if *H* is sufficiently small. Applying Lemma 2.9 we deduce $\|\Delta y_i\| + \|\Delta z_i\| = \mathcal{O}(h^{M+1})$.

Order Tableau

We consider (4.2) as our basic method for extrapolation, i.e., we take some step number sequence $n_1 < n_2 < \dots$, put $h_j = H/n_j$, and define

$$Y_{j1} = y_{h_j}(x_0 + H) , \qquad Z_{j1} = z_{h_j}(x_0 + H) , \qquad (4.21)$$

the numerical solution of (1.6) after n_j steps with step size h_j . We then extrapolate these values according to (IV.9.26) and obtain Y_{jk} , Z_{jk} . What is the order of the approximations thus obtained?

Theorem 4.4 (Deuflhard, Hairer & Zugck 1987). If we consider the harmonic sequence $\{1, 2, 3, 4, \ldots\}$, then the extrapolated values Y_{jk} , Z_{jk} satisfy

$$Y_{jk} - y(x_0 + h) = \mathcal{O}(H^{r_{jk} + 1}), \qquad Z_{jk} - z(x_0 + H) = \mathcal{O}(H^{s_{jk}}) \qquad (4.22)$$

where the differential-algebraic orders r_{jk} , s_{jk} are given in Tables 4.3 and 4.4.

Table 4.3. orders r_{jk} .									Table 4.4. orders s_{jk} .											
1										2	2									
1	2									2	2	2								
1	2	3								2	2	2	3							
1	2	3	4							2	2	2	3	4						
1	2	3	4	4						2	2	2	3	4	4					
1	2	3	4	4	5					2	2	2	3	4	5	4				
1	2	3	4	4	5	5					2	2	3	4	5	5	4			
1	2	3	4	4	5	6	5				2	2	3	4	5	6	5	4		
1	2	3	4	4	5	6	6	5		:	2	2	3	4	5	6	6	5	4	
1	2	3	4	4	5	6	7	6	5		2	2	3	4	5	6	7	6	5	4

Proof. We use the expansion (4.11). It follows from $\alpha_i^1 = \beta_i^1 = 0$ (for all $i \ge 0$) and from (4.15) that $a_1(x_0) = b_1(x_0) = 0$. Since $a_j(x)$ and $b_j(x)$ are smooth functions we obtain $a_1(x_0 + H) = \mathcal{O}(H)$, $b_1(x_0 + H) = \mathcal{O}(H)$ and the errors of Y_{j_1} , Z_{j_1} are seen to be of size $\mathcal{O}(H^2)$. This verifies the entries of the first columns of Tables 4.3 and 4.4. In the same way we deduce that $a_2(x_0 + H) = \mathcal{O}(H)$. However, since $\beta_0^2 \neq 0$ in general, we have $b_2(x_0) \neq 0$ by (4.15) and the term $b_2(x_0 + H)$ is only of size $\mathcal{O}(1)$. One extrapolation of the numerical solution eliminates the terms with j = 1 in (4.11). The error is thus of size $\mathcal{O}(H^3)$ for Y_{j_2} but only $\mathcal{O}(H^2)$ for Z_{j_2} , verifying the second columns of Tables 4.3 and 4.4. If we continue the extrapolation process, the smooth parts of the error expansion (4.11) are eliminated one after the other. The perturbation terms, however, are *not* eliminated.

For the y-component the first non-vanishing perturbation for $i \ge n_1 = 1$ is α_1^6 . Therefore, the diagonal elements of the extrapolation tableau for the y-component (Table 4.3) contain an error term of size $\mathcal{O}(H^6)$ (observe that α_1^6 is multiplied by h^6 in (4.11)). The elements $Y_{j,j-1}$ of the first subdiagonal depend only on $Y_{\ell 1} = y_{n_{\ell}}$ for $\ell \ge 2$. Since $n_2 \ge 2$, only the perturbations α_i^j with $i \ge 2$ can have an influence. We see from (4.12) that the first nonvanishing perturbation for $i \ge 2$ is α_2^7 . This explains the $\mathcal{O}(H^7)$ error term in the first subdiagonal of Table 4.3.

For the z-component, β_1^4 is the first perturbation term for $i \ge 1$. Hence the diagonal entries of the extrapolation tableau for the z-component contain an error of size $\mathcal{O}(H^4)$. All other entries of Tables 4.3 and 4.4 can be verified analogously.

If we consider a step number sequence $\{n_j\}$ which is different from the harmonic sequence, we obtain the corresponding order tableaux as follows: the *j*-th diagonal of the new tableau is the n_j -th diagonal of Table 4.3 and 4.4, respectively. Theorem 4.4 then remains valid with r_{jk} , s_{jk} given by these new tableaux. This implies that a larger n_1 , say $n_1 = 2$ increases, the order of the extrapolated values. Numerical computations have shown that the sequence

$$\{2,3,4,5,6,\ldots\}\tag{4.23}$$

is superior to the harmonic sequence. It is therefore recommended for SEULEX.

It is interesting to study the influence of the perturbation terms on the extrapolated values. Suppose that $\alpha_{n_1}^j$ (or $\beta_{n_1}^j$) is the leading perturbation term in Y_{11} (or Z_{11}). Because of the recursion (IV.9.26) all Y_{kk} then contain an error term of the form $C_k H^j \alpha_{n_1}^j$, whereas the Y_{jk} (for j > k) do not

depend on $\alpha_{n_1}^j$. The error constants C_k are given recursively by

$$C_1 = \frac{1}{n_1^j}$$
, $C_k = -\frac{n_1}{n_k - n_1} C_{k-1}$ (4.24)

and tend to zero exponentially, if k increases.

Error Expansion for Singular Perturbation Problems

Our aim is to extend the analysis of Example 4.1 to general singular perturbation problems

$$egin{array}{lll} y' = f(y,z) \;, & y(0) = y_0 \ arepsilon z' = g(y,z) \;, & z(0) = z_0 \;, & 0 < arepsilon \ll 1 \;, \end{array}$$

where the solution y(x), z(x) is assumed to be sufficiently smooth (i.e., its derivatives up to a certain order are bounded independently of ε). An important observation in Example 4.1 was the existence of smooth solutions of the (linear) differential equations for the coefficients $b_i(x)$. In the general situation we shall be concerned with equations of the form

$$a' = f_y(x)a + f_z(x)b + c(x,\varepsilon)$$

$$\varepsilon b' = g_y(x)a + g_z(x)b + d(x,\varepsilon)$$
(4.26)

(the coefficients $f_y(x) = f_y(y(x), z(x))$, etc. depend smoothly on ε because the solution of (4.25) itself depends on ε , even if f and g are ε -independent).

Lemma 4.5. Suppose that the logarithmic norm of $g_z(x)$ satisfies

$$\mu(g_z(x)) \leq -1$$
 for $0 \leq x \leq \overline{x}$. (4.27)

For a given value

$$a(0) = a_0^0 + \varepsilon a_0^1 + \ldots + \varepsilon^N a_0^N + \mathcal{O}(\varepsilon^{N+1})$$

there exists a unique (up to $\mathcal{O}(\epsilon^{N+1})$)

$$b(0) = b_0^0 + \varepsilon b_0^1 + \ldots + \varepsilon^N b_0^N + \mathcal{O}(\varepsilon^{N+1})$$

such that the solutions a(x), b(x) of (4.26) and their first N derivatives are bounded independently of ε .

Proof. We insert the finite expansions

$$\widehat{a}(x) = \sum_{i=0}^{N} \varepsilon^{i} a_{i}(x) \;, \quad \widehat{b}(x) = \sum_{i=0}^{N} \varepsilon^{i} b_{i}(x)$$

with ε -independent coefficients $a_i(x) b_i(x)$ into (4.26) and compare powers of ε (see Section VI.2). This leads to the differential-algebraic system (2.4).

Consequently, a_0^0 determines b_0^0 ; these two together with a_0^1 determine b_0^1 , etc. The remainders $a(x) - \hat{a}(x)$, $b(x) - \hat{b}(x)$ are then estimated as in the proof of Theorem 2.1.

The next result exhibits the dominant perturbation terms in an asymptotic expansion of the error of the linearly implicit Euler method, when it is applied to a singular perturbation problem.

Theorem 4.6 (Hairer & Lubich 1988). Assume that the solution of (4.25) is smooth. Under the condition

$$\|(I-\gamma g_z(0))^{-1}\| \leq \frac{1}{1+\gamma} \quad \text{for all} \quad \gamma \geq 1 \quad (4.28)$$

(which is a consequence of (4.27) and Theorem IV.11.2), the numerical solution of (4.1) possesses for $\epsilon \leq h$ a perturbed asymptotic expansion of the form

$$y_{i} = y(x_{i}) + ha_{1}(x_{i}) + h^{2}a_{2}(x_{i}) + \mathcal{O}(h^{3})$$

$$- \varepsilon f_{z}(0)g_{z}^{-1}(0)\left(I - \frac{h}{\varepsilon}g_{z}(0)\right)^{-i}(hb_{1}(0) + h^{2}b_{2}(0))$$

$$z_{i} = z(x_{i}) + hb_{1}(x_{i}) + h^{2}b_{2}(x_{i}) + \mathcal{O}(h^{3})$$

$$- \left(I - \frac{h}{\varepsilon}g_{z}(0)\right)^{-i}(hb_{1}(0) + h^{2}b_{2}(0))$$

$$(4.29)$$

$$(4.30)$$

where $x_i = ih \leq H$ with H sufficiently small (but independent of ε). The smooth functions $a_i(x)$, $b_i(x)$ satisfy

$$a_1(0)=\mathcal{O}(\varepsilon^2)\;,\quad a_2(0)=\mathcal{O}(\varepsilon)\;,\quad b_1(0)=\mathcal{O}(\varepsilon)\;,\quad b_2(0)=\mathcal{O}(1)\;.$$

Proof. This proof is organized like that of Theorem 4.3. In part a) we recursively construct truncated expansions (for $M \leq 2$)

$$\widehat{y}_{i} = y(x_{i}) + \sum_{j=1}^{M} h^{j} \left(a_{j}(x_{i}) + \alpha_{i}^{j} \right)$$

$$\widehat{z}_{i} = z(x_{i}) + \sum_{j=1}^{M} h^{j} \left(b_{j}(x_{i}) + \beta_{i}^{j} \right)$$

$$(4.31)$$

such that

$$\begin{pmatrix} I - hf_y(0) & -hf_z(0) \\ -hg_y(0) & \epsilon I - hg_z(0) \end{pmatrix} \begin{pmatrix} \widehat{y}_{i+1} - \widehat{y}_i \\ \widehat{z}_{i+1} - \widehat{z}_i \end{pmatrix} = h \begin{pmatrix} f(\widehat{y}_i, \widehat{z}_i) \\ g(\widehat{y}_i, \widehat{z}_i) \end{pmatrix} + \mathcal{O}(h^{M+2}) .$$

$$(4.32)$$

The smooth functions $a_j(x)$, $b_j(x)$ clearly depend on ε , but are independent of h. The perturbation terms α_i^j , β_i^j (for $i \ge 1$), however, will depend

smoothly on ε and on ε/h . As in the case $\varepsilon = 0$, we shall require that (4.15) and (4.16) hold. The differences $y_i - \hat{y}_i$ and $z_i - \hat{z}_i$ will then be estimated in part b).

a) The construction of the coefficients in (4.31) is done in several steps. First step (M = 0). The values $\hat{y}_i = y(x_i)$, $\hat{z}_i = z(x_i)$ satisfy (4.32) with M = 0.

Second step (M = 1). We insert (4.31) into (4.32) and compare the smooth coefficients of h^2 . This gives

$$a_{1}'(x) + \frac{1}{2}y''(x) - f_{y}(0)y'(x) - f_{z}(0)z'(x) = f_{y}(x)a_{1}(x) + f_{z}(x)b_{1}(x) \quad (4.33a)$$

$$\varepsilon b_1'(x) + \frac{\varepsilon}{2} z''(x) - g_y(0) y'(x) - g_z(0) z'(x) = g_y(x) a_1(x) + g_z(x) b_1(x) \quad (4.33b)$$

By Lemma 4.5 the initial value $b_1(0)$ is uniquely determined by $a_1(0)$. Differentiation of $\varepsilon z' = g(y, z)$ with respect to x gives $\varepsilon z''(x) = g_y(x)y'(x) + g_z(x)z'(x)$. Inserted into (4.33b) this yields the relation

$$g_{y}(0)a_{1}(0) + g_{z}(0)b_{1}(0) = \mathcal{O}(\varepsilon)$$
(4.34)

with known right-hand side.

As to the perturbation terms, we obtain by collecting everything up to $\mathcal{O}(h^2)$

$$\begin{aligned} \alpha_{i+1}^{1} - \alpha_{i}^{1} - hf_{y}(0)(\alpha_{i+1}^{1} - \alpha_{i}^{1}) - hf_{z}(0)(\beta_{i+1}^{1} - \beta_{i}^{1}) \\ &= hf_{y}(x_{i})\alpha_{i}^{1} + hf_{z}(x_{i})\beta_{i}^{1} \\ \varepsilon(\beta_{i+1}^{1} - \beta_{i}^{1}) - hg_{y}(0)(\alpha_{i+1}^{1} - \alpha_{i}^{1}) - hg_{z}(0)(\beta_{i+1}^{1} - \beta_{i}^{1}) \\ &= hg_{y}(x_{i})\alpha_{i}^{1} + hg_{z}(x_{i})\beta_{i}^{1} \end{aligned}$$

$$(4.35)$$

and try to determine the most important parts of this. We firstly replace $hf_y(x_i)\alpha_i^1$ by $hf_y(0)\alpha_i^1$ and similarly for three other terms. This is motivated by the fact that we search for exponentially decaying α_i . Therefore with $x_i = ih$,

$$(f_y(x_i) - f_y(0))\alpha_i^1 = \mathcal{O}(h)$$
.

Then many terms cancel in (4.35). We next observe that $\beta_{i+1}^1 - \beta_i^1$ is multiplied by ε , but not $\alpha_{i+1}^1 - \alpha_i^1$. This suggests that the β_{i+1}^1 are an order of magnitude larger than α_{i+1}^1 . Neglecting therefore α_{i+1}^1 where it competes with β_{i+1}^1 , we are led to define

$$\alpha_{i+1}^1 - \alpha_i^1 = h f_z(0) \beta_{i+1}^1$$
(4.33c)

$$\varepsilon(\beta_{i+1}^1 - \beta_i^1) = hg_z(0)\beta_{i+1}^1 . \qquad (4.33d)$$

It remains to verify a posteriori, that there exist solutions of (4.33a,b,c,d) which produce an error term $\mathcal{O}(h^3)$ in (4.32): from (4.33d) we obtain

$$\beta_i^1 = \left(I - \frac{h}{\varepsilon} g_z(0)\right)^{-i} \beta_0^1 . \qquad (4.36a)$$

Since we require $\alpha_i^1 \to 0$ for $i \to \infty$, the solution of (4.33c) is given by

$$\alpha_{i}^{1} = \varepsilon f_{z}(0)g_{z}^{-1}(0)\left(I - \frac{h}{\varepsilon}g_{z}(0)\right)^{-i}\beta_{0}^{1} . \qquad (4.36b)$$

For i=0 this implies the relation

$$\alpha_0^1 = \varepsilon f_z(0) g_z^{-1}(0) \beta_0^1 . \qquad (4.37)$$

The assumption (4.15) together with (4.34) and (4.37) uniquely determine the coefficients $a_1(0)$, $b_1(0)$, α_0^1 , β_0^1 . We remark that $b_1(0) = \mathcal{O}(\varepsilon)$ and $a_1(0) = \mathcal{O}(\varepsilon^2)$. Using the fact that $\alpha_i^1 = \mathcal{O}(\varepsilon^2)$ and $\varepsilon \leq h$, one easily verifies that the quantities (4.31) with M = 1 satisfy (4.32).

Third step (M=2). Comparing the smooth coefficients of h^3 in (4.32) gives two differential equations for $a_2(x)$, $b_2(x)$ which are of the form (4.26). It follows from Lemma 4.5 that the initial values have to satisfy a relation

$$g_y(0)a_2(0) + g_z(0)b_2(0) = \mathcal{O}(1) \tag{4.38}$$

with known right-hand side. As in the second step we require for the perturbations

$$\begin{aligned} &\alpha_{i+1}^2 - \alpha_i^2 = h f_z(0) \beta_{i+1}^2 \\ &\varepsilon(\beta_{i+1}^2 - \beta_i^2) = h g_z(0) \beta_{i+1}^2 \end{aligned}$$
(4.39)

and obtain the formulas (4.36) and (4.37) with α_i^1 , β_i^1 replaced by α_i^2 , β_i^2 . Again the values $a_2(0)$, $b_2(0)$, α_0^2 , β_0^2 are uniquely determined by (4.15), (4.38), and (4.37). Due to the $\mathcal{O}(1)$ term in (4.38) we only have $b_2(0) = \mathcal{O}(1)$ and $a_2(0) = \mathcal{O}(\varepsilon)$.

We still have to verify (4.32) with M=2. In the left-hand side we have neglected terms of the form $hf_y(0)(h\alpha_i^1+h^2\alpha_i^2)$. This is justified, because $\alpha_i^1 = \mathcal{O}(\varepsilon^2), \ \alpha_i^2 = \mathcal{O}(\varepsilon)$ and $\varepsilon \leq h$. The most dangerous term, neglected in the right-hand side of (4.32) is

$$h(f_{z}(x_{i}) - f_{z}(0))(h\beta_{i}^{1} + h^{2}\beta_{i}^{2}) . \qquad (4.40)$$

However, $f_z(x_i) - f_z(0) = \mathcal{O}(ih)$, and $\beta_i^1 = \mathcal{O}(\epsilon 2^{-i})$, $\beta_i^2 = \mathcal{O}(2^{-i})$ by (4.28) and $\epsilon \leq h$. This shows that the term (4.40) is also of size $\mathcal{O}(h^4)$, so that (4.32) holds with M = 2.

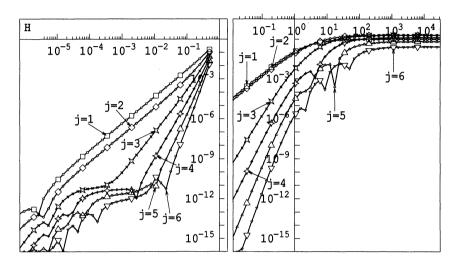
b) In order to estimate the remainder term, i.e., the differences $\Delta y_i = y_i - \hat{y}_i$, $\Delta z_i = z_i - \hat{z}_i$ we subtract (4.32) from (4.1) and eliminate Δy_{i+1} and Δz_{i+1} . This gives

$$\begin{split} & \begin{pmatrix} \Delta y_{i+1} \\ \Delta z_{i+1} \end{pmatrix} = \begin{pmatrix} \Delta y_i \\ \Delta z_i \end{pmatrix} \\ & + \begin{pmatrix} I + \mathcal{O}(h) & \mathcal{O}(h) \\ \mathcal{O}(1) & \left(\frac{\varepsilon}{h}I - g_z(0)\right)^{-1} \end{pmatrix} \begin{pmatrix} h\left(f(y_i, z_i) - f(\widehat{y}_i, \widehat{z}_i)\right) \\ g(y_i, z_i) - g(\widehat{y}_i, \widehat{z}_i) \end{pmatrix} + \begin{pmatrix} \mathcal{O}(h^{M+2}) \\ \mathcal{O}(h^{M+1}) \end{pmatrix}. \end{split}$$

Due to (4.28) and $\varepsilon \leq h$ we have

$$\left\|I + \left(\frac{\varepsilon}{h}I - g_z(0)\right)^{-1}g_z(0)\right\| = \left\|\left(I - \frac{h}{\varepsilon}g_z(0)\right)^{-1}\right\| \le \frac{\varepsilon}{\varepsilon + h} \le \frac{1}{2} . \quad (4.41)$$

We therefore again obtain (4.20) with some $|\varrho| < 1$, if *H* is sufficiently small. We then deduce the result as in the proof of Theorem 4.3.



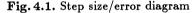


Fig. 4.2. T_{jj} as functions of H/ϵ

Of course, it is possible to add a fourth step to the above proof. However, the recursions for α_i^3 , β_i^3 are no longer as simple as in (4.33) or (4.39). Moreover, the perturbations of (4.29) and (4.30) already describe very well the situation encountered in practice. We shall illustrate this with the following numerical example (see also Hairer & Lubich 1988).

Consider Van der Pol's equation (2.73) with $\varepsilon = 10^{-5}$ and with initial values (2.74) on the smooth solution. We take the step number sequence (4.23) and apply Method (4.1) n_j times with step size $h = H/n_j$. The numerical result Y_{j1}, Z_{j1} is then extrapolated according to (IV.9.26). In Fig. 4.1 we show in logarithmic scale the errors $|Z_{jj} - z(H)|$ for $j = 1, 2, \ldots, 6$ as functions of H. We observe that whenever the error is larger than $\varepsilon^2 = 10^{-10}$, the curves appear as straight lines with slopes 2, 2, 3, 4, 5, and 6, respectively. If its slope is q, we have $\log(error) \approx q \log H + Const$, or equivalently $error \approx CH^q$. This corresponds (with exception of the last one) to the orders predicted by the subdiagonal entries of Table 4.4 for the case $\varepsilon = 0$.

In order to understand the irregular behaviour of the curves when the error becomes smaller than $\varepsilon^2 = 10^{-10}$, we study the influence of extrapolation on the perturbation terms in (4.30). Since $b_1(0)$ contains a factor ε ,

the dominant part of the perturbation in Z_{j1} is $(I-(h/\varepsilon)g_z(0))^{-n_j}h^2b_2(0)$, where $b_2(0)$ is some constant and $h=H/n_j$. We assume the matrix $g_z(0)$ to be diagonalized and put $g_z(0) = -1$. The dominant perturbation in Z_{j1} is therefore $\varepsilon^2 T_{j1}b_2(0)$, where

$$T_{j1} = \left(\frac{H}{\varepsilon n_j}\right)^2 \left(1 + \frac{H}{\varepsilon n_j}\right)^{-n_j} \,. \tag{4.42}$$

Due to the linearity of extrapolation, the dominant perturbation in Z_{jj} will be $\varepsilon^2 T_{jj} b_2(0)$, where T_{jj} is obtained from (4.42) and (IV.9.26). For the step number sequence (4.23) the values of T_{jj} are plotted as functions of H/ε in Fig. 4.2. For large values of H/ε the curves appear as horizontal lines. This is a consequence of our choice $n_1 = 2$ and of the fact that

$$T_{jj} = C_j \cdot \left(\frac{H}{\varepsilon}\right)^{2-n_1} + \mathcal{O}\Big(\Big(\frac{H}{\varepsilon}\Big)\Big)^{1-n_1} \qquad \text{for} \quad \frac{H}{\varepsilon} \to \infty \ ,$$

where $C_1 = 1$ and the other C_i are given by the recursion (4.24).

The errors of Fig. 4.1 are now seen to be a superposition of the errors, predicted from the case $\varepsilon = 0$ (Theorem 4.4), and of the perturbations of Fig. 4.2 scaled by a factor $\mathcal{O}(\varepsilon^2)$.

Remark. As mentioned in Section VI.1, the implicit Euler discretization possesses a classical asymptotic expansion for differential-algebraic problems (1.6) of index 1 (case $\varepsilon = 0$). However, for singular perturbation problems, perturbations of the same type as in (4.29) and (4.30) are present. The only difference is that all $b_i(0)$ contain a factor ε for the implicit Euler method. For details and numerical experiments we refer to Hairer & Lubich (1988). A related analysis for a slightly different class of singular perturbation problems is presented in Auzinger, Frank & Macsek (1990).

Dense Output

Extrapolation methods typically take very large (basic) step sizes during integration. This makes it important that the method possess a continuous numerical solution. The first attempt to get a dense output for extrapolation methods is due to Lindberg (1972). His approach, however, imposes severe restrictions on the step number sequence. We present here the dense output of Hairer & Ostermann (1990), which exists for any step number sequence.

The main idea (due to Ch. Lubich) is the following: when computing the *j*-th entry of the extrapolation tableau, we consider not only $Y_{j1} = y_{n_j}$, but also compute the difference $(y_{n_j} - y_{n_j-1})/h_j$. Since these expressions possess an *h*-expansion, their extrapolation gives an accurate approximation to $y'(x_0+H)$. By considering higher differences, we get also approximations to higher derivatives of y(x) at $x_0 + H$. They are then used for Hermite interpolation. The reason for computing the derivatives only at the right end of the basic interval, is the presence of perturbation terms as described in Theorems 4.3 and 4.6. These perturbations are large at the beginning (near the initial value), but decrease exponentially for increasing *i*. For the same reason, one must not use differences of a too high an order. We thus choose an integer λ (usually 0 or 1) and avoid the values $y_0, \ldots, y_{n_1+\lambda-2}$ for the computation of the finite differences. We remark that a similar idea was used by Deuflhard & Nowak (1987) to construct consistent initial values for differential-algebraic problems.

An algorithmic description of the dense output for the linearly implicit Euler method is as follows (we suppose that the value $Y_{\kappa\kappa}$ has been accepted as a numerical approximation to $y(x_0+H)$).

Step 1. For each $j \in \{1, \ldots, \kappa\}$ we compute

$$r_{j}^{(k)} = rac{
abla^{k} y_{n_{j}}^{(j)}}{h_{j}^{k}} \qquad ext{for} \qquad k = 1, \dots, j - \lambda \;.$$

Here $y_i^{(j)}$ is the approximation of $y(x_i)$, obtained during the computation of Y_{j1} , and $\nabla y_i = y_i - y_{i-1}$ is the backward difference operator.

Step 2. We extrapolate $r_j^{(k)}$, $(\kappa - k - \lambda)$ times. This yields the improved approximation $r^{(k)}$ to $y^{(k)}(x_0+H)$.

Step 3. We define the polynomial $P(\theta)$ of degree κ by

$$P(0) = y_0 , \qquad P(1) = Y_{\kappa\kappa} P^{(k)}(1) = H^k r^{(k)} \qquad \text{for } k = 1, \dots, \kappa - 1 .$$
(4.44)

The following theorem shows to which order these polynomials approximate the exact solution.

Theorem 4.7 (Hairer & Ostermann 1990). Consider a nonstiff differential equation and let $\lambda \in \{0,1\}$. Then, the error of the interpolation polynomial $P(\theta)$ satisfies

$$P(heta) - y(x_0 + heta H) = \mathcal{O}(H^{\kappa + 1 - \lambda}) \quad for \quad H \to 0$$

Proof. Since $P(\theta)$ is a polynomial of degree κ , the error due to interpolation is of size $\mathcal{O}(H^{\kappa+1})$. We know that $Y_{\kappa\kappa} - y(x_0 + H) = \mathcal{O}(H^{\kappa+1})$. Therefore it suffices to prove that

$$r^{(k)} = y^{(k)}(x_0 + H) + \mathcal{O}(H^{\kappa - k - \lambda + 1})$$
 for $k = 1, \dots, \kappa - 1$. (4.45)

Due to the asymptotic expansion of the global error $y_i - y(x_i)$, the approxi-

mations $r_i^{(k)}$ also have an expansion of the form

$$r_j^{(k)} = y^{(k)}(x_0 + H) + h_j a_1^{(k)} + h_j^2 a_2^{(k)} + \dots$$
 (4.46)

The statement (4.45) now follows from the fact that each extrapolation eliminates one power of h in (4.46).

It is now natural to investigate the error of the dense output $P(\theta)$ also for stiff differential equations, such as singular perturbation problems. We shall treat here the limit case $\varepsilon = 0$ which is easier to analyse and, nevertheless, gives much insight into the structure of the error for very stiff problems.

For the differential-algebraic system (1.6) one defines the dense output in exactly the same way as for ordinary differential equations. As the system (1.6) is partitioned into y- and z-components, it is convenient to denote the corresponding interpolation polynomials by $P(\theta)$ and $Q(\theta)$, respectively.

Theorem 4.8 (Hairer & Ostermann 1990). Let y(x), z(x) be the solution of (1.6). Suppose that the step number sequence satisfies $n_1 + \lambda \ge 2$ with $\lambda \in \{0, 1\}$. We then have

$$P(\theta) - y(x_0 + \theta H) = \mathcal{O}(H^{\kappa+1-\lambda}) + \mathcal{O}(H^{r+1}) ,$$

$$Q(\theta) - z(x_0 + \theta H) = \mathcal{O}(H^{\kappa+1-\lambda}) + \mathcal{O}(H^s) ,$$
(4.47)

where r and s are the $(\kappa + n_1 + \lambda - 2, \kappa)$ -entries of Table 4.3 and Table 4.4, respectively.

Proof. We use the perturbed asymptotic error expansions of Theorem 4.3. Their smooth terms are treated exactly as in the proof of Theorem 4.7 and yield the $\mathcal{O}(H^{\kappa+1-\lambda})$ error term in (4.47). The second error terms in (4.47) are due to the perturbations in (4.11). We observe that the computation of $r_j^{(k)}$ involves only y_i (or z_i) with $i \ge n_j - j + \lambda$. Since $n_j - j \ge n_1 - 1$, the values $y_0, \ldots, y_{n_1+\lambda-2}$ do not enter into the formulas for $r_j^{(k)}$, so that the dominant perturbation comes from $y_{n_1+\lambda-1}$ (or $z_{n_1+\lambda-1}$).

It is interesting to note that for $\lambda = 1$, the second error term in (4.47) is of the same size as that in the numerical solution $Y_{\kappa\kappa}$, $Z_{\kappa\kappa}$ (see Theorem 4.4). However, one power of H is lost in the first term of (4.47). On the other hand, one H may be lost in the second error term, if $\lambda = 0$. Both choices lead to a cheap (no additional function evaluations) and accurate dense output. Its order for $\theta \in (0,1)$ is at most one lower than the order obtained for $\theta = 1$.

Exercises

1. The linearly implicit mid-point rule, applied to the differential-algebraic system (1.6), reads

$$\begin{pmatrix} I - hf_{y}(0) & -hf_{z}(0) \\ -hg_{y}(0) & -hg_{z}(0) \end{pmatrix} \begin{pmatrix} y_{i+1} - y_{i} \\ z_{i+1} - z_{i} \end{pmatrix}$$

$$= - \begin{pmatrix} I + hf_{y}(0) & hf_{z}(0) \\ hg_{z}(0) & hg_{z}(0) \end{pmatrix} \begin{pmatrix} y_{i} - y_{i-1} \\ z_{i} - z_{i-1} \end{pmatrix} + 2h \begin{pmatrix} f(y_{i}, z_{i}) \\ g(y_{i}, z_{i}) \end{pmatrix} .$$

$$(4.48)$$

If we compute y_1, z_1 from (4.2), and if we define the numerical solution at $x_0 + H$ (H = 2mh) by

$$y_h(x_0+H) = \frac{1}{2}(y_{2m+1}+y_{2m-1})$$
, $z_h(x_0+H) = \frac{1}{2}(z_{2m+1}+z_{2m-1})$,
this algorithm constitutes an extension of (IV.9.16) to differential-algebraic problems.

- a) Show that this method integrates the problem (4.8) exactly.
- b) Apply the algorithm to

y' = 1, $0 = u - y^2$, 0 = v - yu, 0 = w - yv, 0 = z - ywwith zero initial values and verify the formula

$$\begin{split} \tfrac{1}{2} \left(z_{2m+1} + z_{2m-1} \right) - z(x_{2m}) &= -10 x_{2m}^3 h^2 + 9 x_{2m} h^4 \\ &- (-1)^m \big(\tfrac{1}{8} x_{2m}^5 + x_{2m}^3 h^2 + 9 x_{2m} h^4 \big) \; . \end{split}$$

Remark. The error of the z-component thus contains an h-independent term of size $\mathcal{O}(H^5)$, which is not affected by extrapolation.

2. Consider the method of Example 1 as the basis of an h^2 -extrapolation method. Prove that for the step number sequence (IV.9.22) the extrapolated values satisfy

$$Y_{jk} - y(x_0 + H) = \mathcal{O}(H^{r_{jk}+1}) , \qquad Z_{jk} - z(x_0 + H) = \mathcal{O}(H^{s_{jk}})$$

with r_{jk} , s_{jk} given in Tables 4.5 and 4.6 ("*" indicates an unknown order between 5 and 7).

Hint. Interpret Y_{j1} , Z_{j1} as numerical solution of a Rosenbrock method (Exercise 3 of Section IV.9) and verify the order condition derived in Section VI.3.

	Ta	ıble	4.	5.	ore	lers r _{ik} .		Tab	o	rde	rs s	: L .		
1						510	2						J	1 ~
1	3						2	4						
1	3	5					2	4	5					
1	3	5	*				2	4	5	5				
1	3	5	*	*			2	4	5	5	5			
1	3	5	*	*	*		2	4	5	5	5	5		
1	3	5	*	*	*	*	2	4	5	5	5	5	5	

VI.5. Higher Index Problems

The most general form of a differential-algebraic system is that of an implicit differential equation

$$F(u',u) = 0 \tag{5.1}$$

where F and u have the same dimension. We always assume F to be sufficiently differentiable. A non-autonomous system is brought to the form (5.1) by appending x to the vector u, and by adding the equation x' = 1.

If $\partial F/\partial u'$ is invertible we can formally solve (5.1) for u' to obtain an ordinary differential equation. In this section we are interested in problems (5.1) where $\partial F/\partial u'$ is singular.

The Weierstrass–Kronecker Canonical Form

"Uebrigens kann ich die Meinung des Hrn. Jordan nicht theilen, dass es ziemlich schwer sei, der Weierstrass-schen Analyse zu folgen; sie scheint mir im Gegentheil vollkommen durchsichtig zu sein, ..." (L. Kronecker 1874)

The simplest and best understood problems of the form (5.1) are linear differential equations with constant coefficients

$$Bu' + Au = d(x) . (5.2)$$

In looking for solutions of the form $e^{\lambda x}u_0$ (if $d(x) \equiv 0$) we are led to consider the "matrix pencil" $A + \lambda B$. When $A + \lambda B$ is singular for all values of λ , then (5.2) has either no solution or infinitely many solutions for a given initial value (Exercise 1). We shall therefore deal only with *regular matrix pencils*, i.e., with problems where the polynomial det $(A+\lambda B)$ does not vanish identically. The key to the solution of (5.2) is the following simultaneous transformation of A and B to canonical form.

Theorem 5.1 (Weierstrass 1868, Kronecker 1890). Let $A + \lambda B$ be a regular matrix pencil. Then there exist nonsingular matrices P and Q such that

$$PAQ = \begin{pmatrix} C & 0 \\ 0 & I \end{pmatrix}$$
, $PBQ = \begin{pmatrix} I & 0 \\ 0 & N \end{pmatrix}$ (5.3)

where $N = \text{blockdiag}(N_1, \ldots, N_k)$, each N_i is of the form

$$N_{i} = \begin{pmatrix} 0 & 1 & & 0 \\ & \ddots & \ddots & \\ & & 0 & 1 \\ 0 & & & 0 \end{pmatrix} , \quad of \ dimension \ m_{i} \ , \qquad (5.4)$$

and C can be assumed to be in Jordan canonical form.

Proof (Gantmacher 1954 (Chapter XII), see also Exercises 2 and 3). We fix some c such that A+cB is invertible. If we multiply

$$A + \lambda B = A + cB + (\lambda - c)B$$

by the inverse of A+cB and then transform $(A+cB)^{-1}B$ to Jordan canonical form (Theorem I.12.2) we obtain

$$\begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix} + (\lambda - c) \begin{pmatrix} J_1 & 0 \\ 0 & J_2 \end{pmatrix} .$$
 (5.5)

Here, J_1 contains the Jordan blocks with non-zero eigenvalues, J_2 those with zero eigenvalues (the dimension of J_1 is just the degree of the polynomial det $(A + \lambda B)$). Consequently, J_1 and $I - cJ_2$ are both invertible and multiplying (5.5) from the left by blockdiag $(J_1^{-1}, (I - cJ_2)^{-1})$ gives

$$\begin{pmatrix} J_1^{-1}(I-cJ_1) & 0 \\ 0 & I \end{pmatrix} + \lambda \begin{pmatrix} I & 0 \\ 0 & (I-cJ_2)^{-1}J_2 \end{pmatrix}$$

The matrices $J_1^{-1}(I-cJ_1)$ and $(I-cJ_2)^{-1}J_2$ can then be brought to Jordan canonical form. Since all eigenvalues of $(I-cJ_2)^{-1}J_2$ are zero, we obtain the desired decomposition (5.3).

Theorem 5.1 allows us to solve (5.2) as follows: we premultiply (5.2) by P and use the transformation

$$u = Q \left(egin{array}{c} y \ z \end{array}
ight) \;, \qquad P d(x) = \left(egin{array}{c} \eta(x) \ \delta(x) \end{array}
ight) \;.$$

This decouples the differential-algebraic system (5.2) into

$$y' + Cy = \eta(x)$$
, $Nz' + z = \delta(x)$. (5.6)

The equation for y is just an ordinary differential equation. The relation for z decouples again into k subsystems, each of the form (with $m = m_i$)

$$z'_{2} + z_{1} = \delta_{1}(x)$$

$$\vdots$$

$$z'_{m} + z_{m-1} = \delta_{m-1}(x)$$

$$z_{m} = \delta_{m}(x) .$$
(5.7)

Here z_m is determined by the last equation, and the other components are obtained recursively by repeated differentiation. Thus z_1 depends on the (m-1)-th derivative of $\delta_m(x)$. Since numerical differentiation is an unstable procedure, the largest m_i appearing in (5.4) is a measure of numerical difficulty for solving problem (5.2). This integer $(\max m_i)$ is called the *index of nilpotency* of the matrix pencil $A+\lambda B$. It does not depend on the particular transformation used to get (5.3) (see Exercise 4).

The Differential Index

Our next aim is to extend the above definition of the index to more general problems. There are several possible extensions.

The first is now named the "differential index" (Gear 1990) and has been developed in several papers (Gear & Petzold 1983, 1984; Gear, Gupta & Leimkuhler 1985). It is based on the following idea: if we want to avoid *numerical* differentiations, we perform *analytical* differentiations of the given equations until they can be formulated as an explicit differential system. The number of differentiations necessary to this end will be called the differential index.

Definition 5.2. Equation (5.1) has differential index di = m if m is the minimal number of analytical differentiations

$$F(u',u) = 0$$
, $\frac{dF(u',u)}{dx} = 0$, ..., $\frac{d^m F(u',u)}{dx^m} = 0$ (5.8)

such that equations (5.8) can be transformed by algebraic manipulations into an explicit ordinary differential system $u' = \varphi(u)$ (which is called the "underlying ODE").

An initially ordinary differential system is thus clearly of differential index 0.

As a first example we look at problem (5.7). Having seen above that $\delta_m(x)$ is differentiated most often, $\delta_{m-1}(x)$ second-most, and so on, we differentiate the *i*-th equation of (5.7) *i* times (i = 1, 2, ..., m) to obtain

$$z_{2}'' + z_{1}' = \delta_{1}'(x)$$

$$\vdots$$

$$z_{m}^{(m)} + z_{m-1}^{(m-1)} = \delta_{m-1}^{(m-1)}(x)$$

$$z_{m}^{(m)} = \delta_{m}^{(m)}(x) .$$
(5.7)

Adding up these equations with alternating signs, we finally obtain the "missing link" z'_1 . This, together with equations 1 through m-1 of (5.7), gives an explicit differential system. Thus (5.7) is of differential index m.

Systems of index 1. The differential-algebraic systems already considered in Sections VI.1 to VI.4

$$y' = f(y, z) \tag{5.9a}$$

$$0 = g(y, z) \tag{5.9b}$$

have no z'. We therefore differentiate (5.9b) to obtain $0 = g_y \cdot y' + g_z \cdot z'$; here we insert y' from (5.9a) and solve for z', which is possible if g_z is invertible in a neighbourhood of the solution. This gives

$$z' = -g_z^{-1}(y, z) \cdot g_y(y, z) \cdot f(y, z)$$
 (5.9c)

which, together with (5.9a), is an explicit system. The problem (5.9a,b), for invertible g_z , is thus of differential index 1.

Systems of index 2. In the system

$$y' = f(y, z) \tag{5.10a}$$

$$0 = g(y) \tag{5.10b}$$

the variable z is totally absent in the algebraic condition (5.10b). Differentiating (5.10b) and substituting (5.10a) for y' gives

$$0 = g_y(y) \cdot f(y,z) . \tag{5.10c}$$

If

$$g_y(y)f_z(y,z)$$
 is invertible (5.11)

in a neighbourhood of the solution, then (5.10a) and (5.10c) constitute an index 1 problem which possesses a unique solution whenever the initial values satisfy $0 = g_y(y_0) \cdot f(y_0, z_0)$. Hence, consistent initial values must satisfy (5.10b) and also (5.10c). Equation (5.10c) thus consitutes a "hidden manifold" for the solution of (5.10a,b). Integration of (5.10c) then shows that $g(y_0) = 0$ implies g(y(x)) = 0 for all x. Our original problem can be seen to be of differential index 2.

System (5.10a,b) is a representative of the larger class of problems of type (5.9a,b) with singular g_z . If we assume that g_z has constant rank in a neighbourhood of the solution, we can eliminate certain algebraic variables from 0 = g(y, z) until the system is of the form (5.10). This can be done as follows: from the constant rank assumption it follows that either there exists a component of g such that $\partial g_i/\partial z_1 \neq 0$ locally, or $\partial g/\partial z_1$ vanishes identically so that g is already independent of z_1 . In the first case we can express z_1 as a function of y and the remaining components of z, and then we can eliminate z_1 from the system. Repeating this procedure with z_2, z_3 , etc., will lead to a system of the form (5.10). This transformation does not change the index. Moreover, the numerical methods of the following sections will be invariant under this transformation. Therefore, theoretical

work done for systems of the form (5.10) will also be valid for more general problems.

Systems of index 3. Problems of the form

$$y' = f(y, z) \tag{5.12a}$$

$$z' = k(y, z, u) \tag{5.12b}$$

$$\mathbf{0} = g(y) \tag{5.12c}$$

are of differential index 3, if

$$g_y f_z k_u$$
 is invertible (5.13)

in a neighbourhood of the solution. This is seen by differentiating (5.12c) twice, which gives (omitting the function arguments)

$$0 = g_y f \tag{5.12d}$$

$$0 = g_{yy}(f, f) + g_y f_y f + g_y f_z k . (5.12e)$$

Equations (5.12a,b), (5.12e) together with Condition (5.13) are of the index 1 form (5.9a,b). Consistent initial values must satisfy the three conditions (5.12c,d,e).

An extensive study of the solution space of general differential-algebraic systems is due to Griepentrog & März (1986), März (1987, 1989). These authors try to avoid assumptions on the smoothness on the problem as far as possible and replace the above differentiations by a careful study of suitable projections depending only on the first derivatives of F.

The Perturbation Index

A new concept of index, due to HLR89¹, interprets the index as a measure of sensitivity of the solutions with respect to perturbations of the given problem.

Definition 5.3. Equation (5.1) has perturbation index pi = m along a solution u(x) on $[0, \overline{x}]$, if m is the smallest integer such that, for all functions $\widehat{u}(x)$ having a defect

$$F(\widehat{u}', \widehat{u}) = \delta(x) , \qquad (5.14)$$

¹ The "Lecture Notes" of Hairer, Lubich & Roche (1989) will be cited frequently in the subsequent sections. Reference to this publication will henceforth be denoted by HLR89.

there exists on $[0, \overline{x}]$ an estimate

$$\|\widehat{u}(x) - u(x)\| \le C \Big(\|\widehat{u}(0) - u(0)\| + \max_{0 \le \xi \le x} \|\delta(\xi)\| + \ldots + \max_{0 \le \xi \le x} \|\delta^{(m-1)}(\xi)\| \Big)$$
(5.15)

whenever the expression on the right-hand side is sufficiently small.

Again, for the linear problem (5.2), the perturbation index coincides with the index of nilpotency. This is because in (5.7) the component z_1 depends on the (m-1)-th derivative of $\delta_m(x)$.

If we want the above definition to be valid also for the index 0 case, we must interpret $\delta^{(-1)}(\xi)$ as the integral of δ . More precisely, we say that (5.1) has perturbation index 0, if

$$\|\widehat{u}(x)-u(x)\| \leq C\left(\|\widehat{u}(0)-u(0)\| + \max_{0\leq \xi\leq x} \left\|\int_{0}^{\xi} \delta(t)dt\right\|\right).$$
 (5.16)

Remark. We deliberately do not write "Let $\hat{u}(x)$ be the solution of $F(\hat{u}', \hat{u}) = \delta(x) \dots$ " in this definition, because the existence of such a solution $\hat{u}(x)$ for an arbitrarily given $\delta(x)$ is not assured. We start with \hat{u} and then compute δ as defect of (5.15).

Lemma 5.4 (Gear 1990). For problems (5.1), for which the differential and the perturbation indices exist, we have

$$pi \leq di+1$$
 .

Proof. Let m be the differential index of a system. If the perturbed equation (5.14) is differentiated as in (5.8), it becomes

$$F(u',u) = \delta(x) , \ \frac{dF(u',u)}{dx} = \delta'(x) , \dots, \ \frac{d^m F(u',u)}{dx^m} = \delta^{(m)}(x) \quad (5.17)$$

and the algebraic manipulations of Definition 5.2 transform this into a perturbed underlying ODE

$$\widehat{u}' = arphi(\widehat{u}) + \mathcal{O}(\|\delta(x)\|) + \ldots + \mathcal{O}(\|\delta^{(m)}(x)\|)$$

instead of $u' = \varphi(u)$. Subtracting these equations, taking norms, using a Lipschitz condition and the Gronwall Lemma (Exercise I.10.2), we obtain, for a fixed interval $[0, \overline{x}]$,

$$\|\widehat{u}(x)-u(x)\|\leq C\Big(\|\widehat{u}(0)-u(0)\|+\int_0^x\|\delta(t)\|\,dt+\ldots+\int_0^x\|\delta^{(m)}(t)\|\,dt\Big)$$

with the highest derivative of δ one higher than in Definition 5.3.

If we want to prove a stronger result (namely pi = di), we must estimate more carefully:

Systems of index 1. For the perturbation index of (5.9a,b) we consider the perturbed system

$$\widehat{y}' = f(\widehat{y}, \widehat{z}) + \delta_1(x) \tag{5.18a}$$

$$0 = g(\hat{y}, \hat{z}) + \delta_2(x) . \qquad (5.18b)$$

The essential observation is that the difference $\hat{z} - z$ can be estimated with the help of the implicit function theorem, without any differentiation of the equation. Since g_z is invertible by hypothesis, this theorem gives from (5.18b) compared to (5.9b)

$$\|\widehat{z}(x) - z(x)\| \le C_1(\|\widehat{y}(x) - y(x)\| + \|\delta_2(x)\|)$$
 (5.19a)

as long as the right-hand side of (5.19a) is sufficiently small. We now subtract (5.18a) from (5.9a), integrate from 0 to x, use a Lipschitz condition for f and the above estimate for $\hat{z}(x) - z(x)$. This gives for $e(x) = \|\hat{y}(x) - y(x)\|$:

$$e(x) \leq e(0) + C_2 \int_0^x e(t) dt + C_3 \int_0^x \|\delta_2(t)\| dt + \left\| \int_0^x \delta_1(t) dt \right\|$$

In this estimate the norm is *inside* the integral for δ_2 , but *outside* the integral for δ_1 . This is due to the fact that perturbations of the algebraic equation (5.9b) are more serious than perturbations of the differential equation (5.9a). We finally apply Gronwall's Lemma (Exercise I.10.2) to obtain on a bounded interval $[0, \overline{x}]$

Inequality (5.19c), together with (5.19a), shows that the perturbation index of the problem is 1. (5.19b) is a still sharper estimate.

Systems of index 2. We consider the following perturbation of system (5.10a,b)

$$\widehat{y}' = f(\widehat{y}, \widehat{z}) + \delta(x)$$
 (5.20a)

$$0 = g(\widehat{y}) + \theta(x) . \qquad (5.20b)$$

Differentiation of (5.20b) gives

$$0 = g_y(\widehat{y})f(\widehat{y},\widehat{z}) + g_y(\widehat{y})\delta(x) + \theta'(x) . \qquad (5.21)$$

Under the assumption (5.11) we can use the estimates of the index 1 case (with δ_2 replaced by $g_y(\hat{y})\delta(x) + \theta'(x)$) to obtain

$$\begin{aligned} \|\widehat{y}(x) - y(x)\| &\leq C \Big(\|\widehat{y}(0) - y(0)\| + \int_0^x \big(\|\delta(\xi)\| + \|\theta'(\xi)\| \big) d\xi \Big) \\ \|\widehat{z}(x) - z(x)\| &\leq C \Big(\|\widehat{y}(0) - y(0)\| + \max_{0 \leq \xi \leq x} \|\delta(\xi)\| + \max_{0 \leq \xi \leq x} \|\theta'(\xi)\| \Big) . \end{aligned}$$
(5.22)

Since these estimates depend on the first derivative of θ , the perturbation index of this problem is 2.

A counter-example. The differential index and the perturbation index are, however, not always the same. The following counter-example of type M(y)y' = f(y) is a slight modification of an example given by Lubich (1989) (compare with Exercise 6 below):

$$y'_{1} - y_{3}y'_{2} + y_{2}y'_{3} = 0 \qquad \qquad \widehat{y}'_{1} - \widehat{y}_{3}\widehat{y}'_{2} + \widehat{y}_{2}\widehat{y}'_{3} = 0$$
$$y'_{2} = 0 \qquad \qquad \qquad \widehat{y}'_{2} = \varepsilon\omega\sin\omega x \qquad (5.23)$$
$$y'_{3} = 0 \qquad \qquad \qquad \widehat{y}'_{3} = \varepsilon\omega\cos\omega x$$

with $y_i(0) = 0$ (i = 1, 2, 3). Inserting $\hat{y}_2 = -\varepsilon \cos \omega x$ and $\hat{y}_3 = \varepsilon \sin \omega x$ into the first equation gives $\hat{y}'_1 = \varepsilon^2 \omega$ which makes, for ε fixed and $\omega \to \infty$, an estimate (5.16) impossible. This problem, which is obviously of differential index 0, is thus of perturbation index 1.

A more detailed study of the relation between the two indices is given by Gear (1990).

Control Problems

In a control problem we usually have a differential equation of the form y' = f(y, u) where u represents a set of controls. These controls must be applied so that the solution satisfies some constraints 0 = g(y, u). Such control problems are thus naturally cast as differential-algebraic systems. Numerical computations for such a control problem (space shuttle simulation) are presented in Brenan (1983) (see also Brenan, Campbell & Petzold 1989). Another control problem (dynamic simulation in petrochemical engineering) has been treated by Preston, Berzins, Dew & Scales (1989) as well as by HLR89 using the code RADAU5.

Optimal control problems are differential equations y' = f(y, u) formulated in such a way that the control u(x) has to minimize some cost functional. The Euler-Lagrange equation then often becomes a differentialalgebraic system (Pontryagin, Boltyanskij, Gamkrelidze & Mishchenko 1961, Athans & Falb 1966, Campbell 1982). We demonstrate this on the following problem:

$$y' = f(y, u)$$
, $y(0) = y_0$ (5.24a)

with cost functional

$$J(u) = \int_0^1 \varphi(y(x), u(x)) dx . \qquad (5.24b)$$

For a given function u(x) the solution y(x) is determined by (5.24a). In order to find conditions for u(x) which minimize J(u) of (5.24b), we consider the perturbed control $u(x) + \varepsilon \delta u(x)$ where $\delta u(x)$ is an arbitrary function and ε a small number. To this control there corresponds a solution $y(x) + \varepsilon \delta y(x) + O(\varepsilon^2)$ of (5.24a); hence (by comparing powers of ε)

$$\delta y'(x) = f_y(x) \delta y(x) + f_u(x) \delta u(x) , \qquad \delta y(0) = 0 , \qquad (5.25)$$

where, as usual, $f_y(x) = f_y(y(x), u(x)), \mbox{ etc. Linearization of (5.24b) shows that}$

$$J(u+arepsilon\delta u)-J(u)=arepsilon\int_0^1\Bigl(arphi_y(x)\delta y(x)+arphi_u(x)\delta u(x)\Bigr)dx+\mathcal{O}(arepsilon^2)$$

so that

$$\int_0^1 \left(\varphi_y(x) \delta y(x) + \varphi_u(x) \delta u(x) \right) dx = 0$$
 (5.26)

is a necessary condition for u(x) to be an optimal solution of our problem. In order to express δy in terms of δu in (5.26), we introduce the adjoint differential equation

$$v' = -f_y(x)^T v - \varphi_y(x)^T$$
, $v(1) = 0$ (5.27)

with inhomogeneity $\varphi_y(x)^T$. Hence we have (see Exercise 7)

$$\int_{0}^{1} \varphi_{y}(x) \delta y(x) dx = \int_{0}^{1} v^{T}(x) f_{u}(x) \delta u(x) dx . \qquad (5.28)$$

Inserted into (5.26) this gives the necessary condition

$$\int_0^1 \left(v^T(x) f_u(x) + \varphi_u(x) \right) \delta u(x) dx = 0 . \qquad (5.29)$$

Since this relation has to be satisfied for all δu we obtain the necessary relation $v^T(x)f_u(x) + \varphi_u(x) = 0$ by the so-called "fundamental lemma of variational calculus".

In summary, we have proved that a solution of the above optimal control problem has to satisfy the system

$$\begin{aligned} y' &= f(y, u) , & y(0) = y_0 \\ v' &= -f_y(y, u)^T v - \varphi_y(y, u)^T , & v(1) = 0 \\ 0 &= v^T f_u(y, u) + \varphi_u(y, u) . \end{aligned}$$
 (5.30)

This is a boundary value differential-algebraic problem. It can also be obtained directly from the Pontryagin minimum principle (see Pontryagin et al. 1961, Athans & Falb 1966).

Differentiation of the algebraic relation in (5.30) shows that the system (5.30) has index 1 if the matrix

$$\sum_{i=1}^{n} v_{i} \frac{\partial^{2} f_{i}}{\partial u^{2}}(y, u) + \frac{\partial^{2} \varphi}{\partial u^{2}}(y, u)$$
(5.31)

is invertible along the solution. A situation where the system (5.30) has index 3 is presented in Exercise 8. An index 5 problem of this type is given in "Example 3.1" of Clark (1988).

Mechanical Systems

"... berechnen wir T, V, L. Mehr brauchen wir von der Geometrie und Mechanik unseres Systems nicht zu wissen. Alles übrige besorgt ohne unser Zutun der Formalismus von LAGRANGE." (Sommerfeld 1942, §35)

An interesting class of differential-algebraic systems appears in mechanical modeling of constrained systems. A choice method for deriving the equations of motion of mechanical systems is the Lagrange-Hamilton principle, whose long history goes back to merely theological ideas of Leibniz and Maupertuis. Let q_1, \ldots, q_n be position coordinates of a system and $u_i = \dot{q}_i$ the velocities. Suppose a function $L(q, \dot{q})$ is given; then the Euler equations of the variational problem

$$\int_{t_1}^{t_2} L(q, \dot{q}) dt = \min!$$
 (5.32)

are given by

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_k}\right) - \frac{\partial L}{\partial q_k} = 0 \qquad k = 1, \dots, n \tag{5.33}$$

or

$$\sum_{\ell=1}^{n} L_{\dot{q}_{k}\dot{q}_{\ell}} \ddot{q}_{\ell} = L_{q_{k}} - \sum_{\ell=1}^{n} L_{\dot{q}_{k}q_{\ell}} \dot{q}_{\ell} .$$
 (5.34)

The great discovery of Lagrange (1788) is that for

$$L = T - U , \qquad (5.35)$$

where T is the kinetic energy and U the potential energy, the differential equations (5.34) describe the movement of the corresponding "conservative

system". For a proof and various generalizations, consult any book on mechanics e.g., Sommerfeld (1942), vol. I, §§ 33-37, or Arnol'd (1979), part II.

Example 1. For $q_i = x_i$, the Euclidean coordinates of a mass point, we have $T = m \sum_{i=1}^{3} \dot{x}_i^2/2$ and (5.34) becomes the usual Newtonian equations of motion $m\ddot{x}_k = f_k$, where $f_k = -\partial U/\partial x_k$ are the forces.

Example 2. Consider the mathematical pendulum of length ℓ . We choose first as position coordinate the angle $\theta = q_1$ such that $T = m\ell^2\dot{\theta}^2/2$ and $U = -\ell mg\cos\theta$. Then (5.34) becomes $\ell\ddot{\theta} = -g\sin\theta$, the well-known pendulum equation.

Movement with constraints. Suppose now that we have some constraints $g_1(q) = 0, \ldots, g_m(q) = 0$ on our movement. Another great idea of Lagrange is to vary the "Lagrange function" as follows in this case

$$L = T - U - \lambda_1 g_1(q) - \ldots - \lambda_m g_m(q)$$
(5.36)

where the "Lagrange multipliers" λ_i are appended to the coordinates. The important fact is that, since L is independent of $\dot{\lambda}_i$, the equation (5.34), for the derivatives with respect to λ_k , just becomes $0 = g_k(q)$, the desired side conditions.

Example 3. We now describe the pendulum in ordinary orthogonal coordinates x, y with constraint $x^2 + y^2 - \ell^2 = 0$. This gives for (5.36)

$$L = \frac{m}{2} (\dot{x}^2 + \dot{y}^2) - mgy - \lambda (x^2 + y^2 - \ell^2)$$

and (5.34) becomes

$$egin{aligned} m\ddot{x}&=-2x\lambda\ m\ddot{y}&=-mg-2y\lambda\ 0&=x^2+y^2-\ell^2 \end{aligned}$$
 (5.37)

In this example the physical meaning of λ is the tension in the rod which maintains the mass point on the desired orbit.

The general form of a constrained mechanical system (5.34) is in vector notation (after replacing dots by primes)

$$q' = u \tag{5.38a}$$

$$M(q)u' = f(q, u) - G^{T}(q)\lambda$$
(5.38b)

$$\mathbf{0} = g(q) \tag{5.38c}$$

where $M = T_{\dot{q}\dot{q}} = T_{uu}$ is a positive definite matrix $G(q) = \partial g/\partial q$, $q = (q_1, \ldots, q_n)^T$, $u = (\dot{q}_1, \ldots, \dot{q}_n)^T$, $\lambda = (\lambda_1, \ldots, \lambda_m)^T$. Various formulations

are possible for such a problem, each of which leads to a different numerical approach.

Index 3 formulation (position level, descriptor form). If we formally multiply (5.38b) by M^{-1} , the system (5.38) becomes of the form (5.12) with (q, u, λ) in the roles of (y, z, u). The condition (5.13), written out for (5.38), is

$$GM^{-1}G^T$$
 is invertible . (5.39)

This is satisfied, if the constraints (5.38c) are independent, i.e., if the rows of the matrix G are linearly independent. Under this assumption, the system (5.38a,b,c) is thus an index 3 problem.

Index 2 formulation (velocity level). Differentiation of (5.38c) gives

$$0 = G(q)u av{5.38d}$$

If we replace (5.38c) by (5.38d) we obtain a system of the form (5.10a,b) with (q, u) in the role of y and λ that of z. One verifies that Condition (5.11) is equivalent to (5.39), so that (5.38a,b,d) represents a problem of index 2.

Index 1 formulation (acceleration level). Differentiating (5.38c) once more we get

 $0 = g_{qq}(q)(u,u) + G(q)M^{-1}(q)(f(q,u) - G^{T}(q)\lambda) .$ (5.38e)

One readily verifies that (5.38a,b,e) is of the form (5.9a,b) and the index 1 assumption (1.7) is again equivalent to (5.39).

All these formulations are mathematically equivalent, if the initial values are consistent, i.e., if (5.38c,d,e) are satisfied. However, if for example the index 2 system (5.38a,b,d) is integrated numerically, the constraints of the original problem will no longer be exactly satisfied. For this reason Gear, Gupta & Leimkuhler (1985) introduced another index 2 formulation ("... an interesting way of reducing the problem to index two and adding variables so that the constraint continues to be satisfied".).

GGL formulation. The idea is to introduce an additional Lagrange multiplier μ in (5.38a) so that the whole system becomes

$$q' = u - G^{T}(q)\mu$$

$$M(q)u' = f(q, u) - G^{T}(q)\lambda$$

$$0 = g(q)$$

$$0 = G(q)u$$
(5.40)

Here the differential variables are (q, u) and the algebraic variables are (μ, λ) . System (5.40) is of the form (5.10a,b) and the index 2 assumption is satisfied if (5.39) holds.

An extension of this idea is proposed by Führer & Leimkuhler (1990). They suggest adding (5.38e) to (5.40) by introducing a further Lagrange parameter. This approach is related to that of Führer (1988), who treated (5.38a-e) as an overdetermined system.

A concrete mechanical system is described in detail, together with numerical results for all the above formulations, in Section VI.9.

Problems of the Form $M(u)u' = \varphi(u)$

It may happen that a problem is modeled by an equation

$$M(u)u' = \varphi(u) . \tag{5.41}$$

In contrast to Section VI.1, where M was a constant matrix, we assume here that M(u) is not constant and depends on the solution.

If M(u) is invertible, Equation (5.41) is an ordinary differential equation (of differential index 0). It can be solved either by premultiplying (5.41) with $M^{-1}(u)$, or by introducing a new variable for u', so that (5.41) becomes the index 1 system u' = z

$$u = z$$

 $0 = M(u)z - \varphi(u)$. (5.42)

Codes, like RADAU5, can be applied directly to (5.42) but not to (5.41). Both approaches are mathematically equivalent for implicit methods, such as multistep or Runge-Kutta methods. They differ only in the way in which the nonlinear systems are solved. A big advantage of the formulation (5.42) is that a numerical method can be applied (at least formally) also if the matrix M(u) is singular. Further, convergence results for semi-explicit problems (5.9a,b) of index 1 (or index 2, ...) can be applied to obtain statements for the numerical solution of (5.41).

An interesting special case of (5.41) occurs when the non-vanishing rows of M(u) are the Jacobian of some vector-valued function, i.e.,

$$b_u(u)u' = \varphi_1(u) \tag{5.43a}$$

$$0 = \varphi_2(u) \tag{5.43b}$$

(for an example from electrical circuit analysis see Roche 1990). The lefthand side of (5.43a) is the total derivative of b(u(x)) and it is natural to introduce this quantity as a new variable. We thus obtain the equivalent system

$$v' = \varphi_1(u)$$

$$0 = v - b(u)$$

$$0 = \varphi_2(u) .$$
(5.44)

Exercises

1. Prove that the initial value problem

$$Bu' + Au = 0 , \qquad u(0) = u_0 \tag{5.45}$$

has a unique solution if and only if the matrix pencil $A + \lambda B$ is regular. *Hint* for the "only if" part. If n is the dimension of u, choose arbitrarily n+1 distinct λ_i and vectors $v_i \neq 0$ satisfying $(A + \lambda_i B)v_i = 0$. Then take a linear combination, such that $\sum \alpha_i v_i = 0$, but $\sum \alpha_i e^{\lambda_i x} v_i \neq 0$.

2. (Stewart 1972). Let $A + \lambda B$ be a regular matrix pencil. Show that there exist unitary matrices Q and Z such that

$$QAZ = \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix} , \qquad QBZ = \begin{pmatrix} B_{11} & B_{12} \\ 0 & B_{22} \end{pmatrix}$$
(5.46)

are both triangular. Further, the diagonal elements of A_{22} and B_{11} are all 1, those of B_{22} are all 0.

Hint (Compare with the Schur decomposition of Theorem I.12.1). Let λ_1 be a zero of det $(A + \lambda B)$ and $v_1 \neq 0$ be such that $(A + \lambda_1 B)v_1 = 0$. Verify that $Bv_1 \neq 0$ and that

$$AZ_1 = Q_1 \begin{pmatrix} -\lambda_1 & * \\ 0 & \widetilde{A} \end{pmatrix} \ , \qquad BZ_1 = Q_1 \begin{pmatrix} 1 & * \\ 0 & \widetilde{B} \end{pmatrix}$$

where Q_1, Z_1 are unitary matrices whose first columns are Bv_1 and v_1 , respectively. The matrix pencil $\tilde{A} + \lambda \tilde{B}$ is again regular and this procedure can be continued until $\det(\tilde{A} + \lambda \tilde{B}) = Const$ which implies that $\det \tilde{B} = 0$. In this case we take a vector $v_2 \neq 0$ such that $\tilde{B}v_2 = 0$ and transform $\tilde{A} + \lambda \tilde{B}$ with unitary matrices Q_2, Z_2 , whose first columns are $\tilde{A}v_2$ and v_2 , respectively. For a practical computation of the decomposition (5.46) see Golub & Van Loan (1989), Section 7.7.

3. Under the assumptions of Exercise 2 show that there exist matrices S and T such that

$$\begin{pmatrix} I & S \\ 0 & I \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix} \begin{pmatrix} I & T \\ 0 & I \end{pmatrix} = \begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} \end{pmatrix} ,$$
$$\begin{pmatrix} I & S \\ 0 & I \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ 0 & B_{22} \end{pmatrix} \begin{pmatrix} I & T \\ 0 & I \end{pmatrix} = \begin{pmatrix} B_{11} & 0 \\ 0 & B_{22} \end{pmatrix} .$$

Hint. These matrices have to satisfy

$$A_{11}T + A_{12} + SA_{22} = 0 \tag{5.47a}$$

$$B_{11}T + B_{12} + SB_{22} = 0 \tag{5.47b}$$

and can be computed as follows: the first column of T is obtained from (5.47b) because B_{11} is invertible and the first column of SB_{22} vanishes;

then the first column of S is given by (5.47a) because A_{22} is invertible; the second column of SB_{22} is then known and we can compute the second column of T from (5.47b), etc.

4. Prove that the index of nilpotency of a regular matrix pencil $A+\lambda B$ does not depend on the choice of P and Q in (5.3).

Hint. Consider two different decompositions of the form (5.3) and denote the matrices which appear by C_1, N_1 and C_2, N_2 , respectively. Show the existence of a regular matrix T such that $N_2 = T^{-1}N_1T$.

- 5. Prove that the system (2.4a,b) has index 2 (it is of the form (5.10a,b) and satisfies (5.11)). The full system (2.4) has perturbation index k.
- 6. (Lubich 1989). For the problem

$$y_1' - y_3 y_2' + y_2 y_3' = 0$$
, $y_2 = 0$, $y_3 = 0$

with initial value $y_1(0) = 0$ the differential index is 1, whereas the perturbation index is 2.

Hint. Consider the perturbation $\delta(x) = (0, \varepsilon \sin \omega x, \varepsilon \cos \omega x)^T$ so that $\hat{y}'_1 = \varepsilon^2 \omega$. For $\omega \to \infty$ the $\|\delta'(x)\|$ term in (5.15) cannot be omitted.

7. For the linear initial value problem

$$y'=A(x)y+f(x)\;,\qquad y(0)=0$$

consider the *adjoint* problem

$$v' = -A(x)^T v - g(x) \;, \qquad v(1) = 0 \;.$$

Prove that $\int_0^1 g(x)^T y(x) dx = \int_0^1 v(x)^T f(x) dx \;.$

8. Consider a linear optimal control problem with quadratic cost functional

$$y' = Ay + Bu + f(x) , \qquad y(0) = y_0$$

 $J(u) = rac{1}{2} \int_0^1 \left(y(x)^T C y(x) + u(x)^T D u(x)
ight) dx ,$

where C and D are assumed to be positive semi-definite. a) Prove that J(u) is minimal if and only if

$$y' = Ay + Bu + f(x) , \qquad y(0) = y_0$$

 $v' = -A^T v - Cy , \qquad v(1) = 0$ (5.48)
 $0 = B^T v + Du .$

b) If D is positive definite, then (5.48) has index 1.

c) If D=0 and B^TCB is positive definite, then (5.48) has index 3.

VI.6. Multistep Methods for Index 2 DAE

"BDF is so beautiful that it is hard to imagine something else could be better."

(L. Petzold 1988, heard by P. Deuflhard)

Convergence results of multistep methods for problems of index at least 2 are harder to obtain than for semi-explicit index 1 problems (see Section VI.1). A first convergence result for BDF schemes, valid for linear constant coefficient DAE's of arbitrary index, was given by Sincovec, Erisman, Yip & Epton (1981). Convergence of BDF for nonlinear DAE systems was then studied by Gear, Gupta & Leimkuhler (1985), Lötstedt & Petzold (1986) and Brenan & Engquist (1988). An independent convergence analysis was given by Griepentrog & März (1986), März (1987). They considered general linear multistep methods and problems, where the differential and algebraic equations (and/or variables) are not explicitly separated.

There are several implementations of the BDF schemes for differentialalgebraic systems. The most widely used code is DASSL of Petzold (1982). It is described in detail in the book of Brenan, Campbell & Petzold (1989). Further implementations are LSODI of Hindmarsh (1980) and SPRINT of Berzins & Furzeland (1985).

In this section we consider semi-explicit problems

$$y' = f(y, z)$$

 $0 = g(y)$. (6.1)

We assume that f and g are sufficiently differentiable and that

$$g_y(y)f_z(y,z)$$
 is invertible (6.2)

in a neighbourhood of the solution, so that the problem has index 2. A linear multistep method for (6.1) reads

$$\sum_{i=0}^{k} \alpha_{i} y_{n+i} = h \sum_{i=0}^{k} \beta_{i} f(y_{n+i}, z_{n+i})$$
(6.3a)

$$0 = g(y_{n+k}) . \tag{6.3b}$$

This is not the only meaningful definition of a multistep method for (6.1).

One could as well replace (6.3b) by

$$0 = \sum_{i=0}^{k} \beta_{i} g(y_{n+i}) , \qquad (6.4)$$

which is obtained by putting $\varepsilon = 0$ in (1.31). The following results can be extended without any difficulty to the second approach. For BDF schemes (where $\beta_0 = \ldots = \beta_{k-1} = 0$) both definitions are equivalent.

The convergence results of this section are also valid for index 2 systems of the form y' = f(y, z), 0 = g(y, z), if they can be transformed to (6.1) without any differentiation (as described in Section VI.5). This is because the multistep method (6.3) is invariant with respect to these transformations. The same is true for problems of the form $M(u)u' = \varphi(u)$, if the multistep method is defined by

$$\sum_{i=0}^{k} \alpha_{i} u_{n+i} = h \sum_{i=0}^{k} \beta_{i} v_{n+i}, \qquad M(u_{n+k}) v_{n+k} = \varphi(u_{n+k}) .$$
 (6.5)

Existence and Uniqueness of Numerical Solution

Equations (6.3) constitute a nonlinear system for y_{n+k}, z_{n+k} . We have the following result about the existence of its solution.

Theorem 6.1. Suppose that for a solution y(x), z(x) of (6.1) the starting values satisfy for j = 0, ..., k - 1 and $x_j = x_0 + jh$

$$y_j - y(x_j) = \mathcal{O}(h) , \qquad z_j - z(x_j) = \mathcal{O}(h) , \qquad g(y_j) = \mathcal{O}(h^2) .$$
 (6.6)

If (6.2) holds in a neighbourhood of this solution and if $\beta_k \neq 0$, then the nonlinear system

$$\sum_{i=0}^{k} \alpha_i y_i = h \sum_{i=0}^{k} \beta_i f(y_i, z_i)$$
(6.7a)

$$0 = g(y_k) \tag{6.7b}$$

has a solution for $h \leq h_0$. This solution is locally unique and satisfies

$$y_k - y(x_k) = \mathcal{O}(h) , \qquad z_k - z(x_k) = \mathcal{O}(h) .$$
 (6.8)

Proof. We put

$$\eta = -\sum_{i=0}^{k-1} \frac{\alpha_i}{\alpha_k} y_i + h \sum_{i=0}^{k-1} \frac{\beta_i}{\alpha_k} f(y_i, z_i)$$
(6.9)

and define ζ close to $z(x_k)$ such that $g_y(\eta)f(\eta,\zeta) = 0$. We further replace $h(\beta_k/\alpha_k)$ by a new step size which we again denote by h. Then the system (6.7) is equivalent to

$$y_k = \eta + hf(y_k, z_k) \tag{6.10a}$$

$$0 = g(y_k) \tag{6.10b}$$

which is simply the implicit Euler method.

We next show that

$$\eta - y(x_k) = \mathcal{O}(h)$$
, $\zeta - z(x_k) = \mathcal{O}(h)$, $g(\eta) = \mathcal{O}(h^2)$. (6.11)

The first relation follows from $y_j - y(x_j) = \mathcal{O}(h)$ and from $\sum_{i=0}^k \alpha_i = 0$; the second is a consequence of the definition of ζ and of (6.2). The last relation of (6.11) can be seen as follows: we replace all $f(y_i, z_i)$ in (6.9) by $f(y(x_k), z(x_k))$, introducing an error of size $\mathcal{O}(h^2)$ in η . Hence

$$\eta - y(x_k) = -\sum_{i=0}^{k-1} \frac{\alpha_i}{\alpha_k} \left(y_i - y(x_k) \right) + h\left(\sum_{i=0}^{k-1} \frac{\beta_i}{\alpha_k} \right) f\left(y(x_k), z(x_k) \right) + \mathcal{O}(h^2) \; .$$

Because of (5.10b,c) this implies

$$g(\eta) = -\sum_{i=0}^{k-1} \frac{\alpha_i}{\alpha_k} g_y(y(x_k)) (y_i - y(x_k)) + \mathcal{O}(h^2) .$$
 (6.12)

The last statement of (6.11) now follows from the fact that $g_y(y(x_k))(y_i - y(x_k)) = g(y_i) + O(h^2)$ and from (6.6).

To show the existence of a locally unique solution of (6.10), it is possible to adapt the proof of "Theorem 4.1" of HLR89 to the implicit Euler method. We shall, however, reformulate (6.10) in such a way that the implicit function theorem is applicable. We write (6.10b) as

$$0 = g(y_k) = g(y_k) - g(\eta(h)) + g(\eta(h))$$
(6.13)
= $\int_0^1 g_y \Big(\eta(h) + \tau (y_k - \eta(h)) \Big) d\tau \cdot (y_k - \eta(h)) + g(\eta(h))$

where we have explicitly indicated the dependence of η on h. Replacing the factor $y_k - \eta(h)$ by $hf(y_k, z_k)$ from (6.10a) and dividing by h we get the system

$$y_k - \eta(h) - hf(y_k, z_k) = 0$$
 (6.14a)

$$\int_{0}^{1} g_{y} \Big(\eta(h) + \tau \big(y_{k} - \eta(h) \big) \Big) d\tau \cdot f(y_{k}, z_{k}) + \frac{1}{h} g \big(\eta(h) \big) = 0 \qquad (6.14b)$$

which is the discrete analogue of system (5.10a,c). For h=0 the values $y_k = \eta(0)$ and $z_k = \zeta(0)$ satisfy (6.14) because $g(\eta(h)) = \mathcal{O}(h^2)$ and $g_y(\eta)f(\eta,\zeta) = \zeta(0)$

492 VI. Singular Perturbation Problems and Differential-Algebraic Equations

0. Further, the derivative of (6.14) with repect to (y_k, z_k) is of the form

$$\begin{pmatrix} I + \mathcal{O}(h) & \mathcal{O}(h) \\ \mathcal{O}(1) & (g_y f_z)(\eta, \zeta) + \mathcal{O}(h) \end{pmatrix} ,$$
 (6.15)

which has a bounded inverse for $h \le h_0$. Therefore the implicit function theorem (Ortega & Rheinboldt 1970, p. 128) yields the existence of a locally unique solution of (6.14) and hence also of (6.10) and (6.7).

Influence of Perturbations

The influence of perturbations in the multistep formula (6.3) on the numerical solution will be studied in the next theorem.

Theorem 6.2. Let y_k, z_k be given by (6.7) and consider perturbed values \hat{y}_k, \hat{z}_k satisfying

$$\sum_{i=0}^{k} \alpha_i \widehat{y}_i = h \sum_{i=0}^{k} \beta_i f(\widehat{y}_i, \widehat{z}_i) + h\delta$$
(6.16a)

$$0 = g(\hat{y}_k) + \theta . \tag{6.16b}$$

In addition to the assumptions of Theorem 6.1 suppose that for $j = 0, \ldots, k-1$

$$\widehat{y}_j - y_j = \mathcal{O}(h^2) , \qquad \widehat{z}_j - z_j = \mathcal{O}(h) , \qquad \delta = \mathcal{O}(h) , \qquad \theta = \mathcal{O}(h^2) .$$
(6.17)

Then for $h \leq h_0$ we have the estimates

$$\begin{aligned} \|\widehat{y}_{k} - y_{k}\| &\leq C \left(\|\widehat{Y}_{0} - Y_{0}\| + h\|\widehat{Z}_{0} - Z_{0}\| + h\|\delta\| + \|\theta\| \right) \\ \|\widehat{z}_{k} - z_{k}\| &\leq \frac{C}{h} \left(\sum_{j=0}^{k-1} \left\| g_{y}(\widehat{y}_{k})(\widehat{y}_{j} - y_{j}) \right\| + h\|\widehat{Y}_{0} - Y_{0}\| \\ &+ h\|\widehat{Z}_{0} - Z_{0}\| + h\|\delta\| + \|\theta\| \right) \end{aligned}$$
(6.18)

where $\hat{Y}_0 - Y_0 = (\hat{y}_{k-1} - y_{k-1}, \dots, \hat{y}_0 - y_0)^T$, $\|\hat{Y}_0 - Y_0\| = \max_{0 \le j \le k-1} \|\hat{y}_j - y_j\|$, and likewise for the z-component.

Proof. In analogy to the proof of Theorem 6.1 we put

$$\widehat{\eta} = -\sum_{i=0}^{k-1} \frac{\alpha_i}{\alpha_k} \, \widehat{y}_i + h \sum_{i=0}^{k-1} \frac{\beta_i}{\alpha_k} \, f(\widehat{y}_i, \widehat{z}_i)$$

and rescale h and δ , so that (6.16) becomes

$$\widehat{y}_{k} = \widehat{\eta} + hf(\widehat{y}_{k}, \widehat{z}_{k}) + h\delta$$
(6.19a)

$$0 = g(\hat{y}_k) + \theta . \tag{6.19b}$$

As in the proof of Theorem 6.1 we conclude from (6.17) that $\widehat{y}_k - \widehat{\eta} = \mathcal{O}(h)$ and $\widehat{z}_k - \widehat{\zeta} = \mathcal{O}(h)$, where $\widehat{\zeta}$ is such that $g_y(\widehat{\eta})f(\widehat{\eta},\widehat{\zeta}) = 0$. Inspired by Formula (6.13) we rewrite (6.19b) as

$$0 = \int_0^1 g_y \Big(\widehat{\eta} + \tau \big(\widehat{y}_k - \widehat{\eta} \big) \Big) d\tau \cdot \big(f(\widehat{y}_k, \widehat{z}_k) + \delta \big) + \frac{1}{h} g(\widehat{\eta}) + \frac{1}{h} \theta , \qquad (6.20)$$

which is now a discrete analogue of Formula (5.21). Subtracting (6.20) from (6.14b) and exploiting the fact that the matrix $g_y f_z$ is invertible, we deduce the estimate

$$\|\widehat{z}_{k} - z_{k}\| \leq C \Big(\|\widehat{y}_{k} - y_{k}\| + \|\widehat{\eta} - \eta\| + \|\delta\| + \frac{1}{h}\|g(\widehat{\eta}) - g(\eta)\| + \frac{1}{h}\|\theta\|\Big).$$
(6.21)

A Lipschitz condition for f applied to the difference of (6.19a) and (6.14a) yields

$$\|\widehat{y}_k - y_k\| \le \|\widehat{\eta} - \eta\| + hL(\|\widehat{y}_k - y_k\| + \|\widehat{z}_k - z_k\|) + h\|\delta\|$$

Combining the last two estimates we get

$$\begin{split} \|\widehat{y}_{k} - y_{k}\| &\leq C\big(\|\widehat{\eta} - \eta\| + h\|\delta\| + \|\theta\|\big)\\ \|\widehat{z}_{k} - z_{k}\| &\leq \frac{C}{h}\big(\|g_{y}(\widehat{\eta})(\widehat{\eta} - \eta)\| + h\|\widehat{\eta} - \eta\| + h\|\delta\| + \|\theta\|\big). \end{split} \tag{6.22}$$

The conclusion now follows from the definitions of η and ζ and from $\hat{y}_k - \hat{\eta} = \mathcal{O}(h)$.

Remark 6.3. a) The above proof shows that the constant C in (6.18) depends on bounds for certain derivatives of f and g, but not on the constants implied by the $\mathcal{O}(\ldots)$ terms in (6.17) (if h is sufficiently small). This observation will be used in the convergence proof below.

b) For one-step methods (e.g., implicit Euler, trapezoidal rule) the term $\|\sum_{j=0}^{k-1} g_y(\widehat{y}_k)(\widehat{y}_j-y_j)\|$ can be omitted in (6.18), if we require $g(y_0) = g(\widehat{y}_0) = 0$. Indeed, it follows from $\widehat{y}_1 = \widehat{y}_0 + \mathcal{O}(h)$ that $g_y(\widehat{y}_1)(\widehat{y}_0 - y_0) = g_y(\widehat{y}_0)(\widehat{y}_0 - y_0) + \mathcal{O}(h\|\widehat{y}_0 - y_0\|)$. Further we have

$$g_{\boldsymbol{y}}(\widehat{y}_{\boldsymbol{0}})(\widehat{y}_{\boldsymbol{0}}-\boldsymbol{y}_{\boldsymbol{0}}) = g(\widehat{y}_{\boldsymbol{0}}) - g(\boldsymbol{y}_{\boldsymbol{0}}) + \mathcal{O}(\|\widehat{y}_{\boldsymbol{0}}-\boldsymbol{y}_{\boldsymbol{0}}\|^2) ,$$

so that the term in question is estimated by $\mathcal{O}(h\|\widehat{y}_0-y_0\|)$ if h is sufficiently small.

The Local Error

Consider initial values $y_j = y(x_j)$, $z_j = z(x_j)$ (j = 0, ..., k-1) on the exact solution of (6.1) and apply the multistep formula (6.7) once. The differences $y_k - y(x_k)$ and $z_k - z(x_k)$ are then called the *local errors* of the method.

Lemma 6.4. Suppose that the DAE (6.1) satisfies (6.2) and that the multistep method (6.7) has order p (in the sense of Section III.2). Then its local error satisfies

$$y_k - y(x_k) = \mathcal{O}(h^{p+1}) , \qquad z_k - z(x_k) = \mathcal{O}(h^p) .$$
 (6.23)

Proof. We put $\hat{y}_j = y(x_j)$, $\hat{z}_j = z(x_j)$ for $j = 0, \ldots, k$. These values satisfy (6.16) with $\delta = \mathcal{O}(h^p)$ and $\theta = 0$. Since $\hat{y}_j = y_j$ and $\hat{z}_j = z_j$ for j < k, the statement follows immediately from Theorem 6.2.

Convergence for BDF

The study of convergence is simpler for BDF schemes than for general multistep methods, because y_{n+k} depends only on y_n, \ldots, y_{n+k-1} , but not on z_n, \ldots, z_{n+k-1} (due to $\beta_0 = \ldots = \beta_{k-1} = 0$). Therefore the y- and zcomponents can be treated separately. The following convergence result was obtained by Gear, Gupta & Leimkuhler (1985), Lötstedt & Petzold (1986) and Brenan & Engquist (1988).

Theorem 6.5. Consider an index 2 problem (6.1) which satisfies (6.2). Then the k-step BDF scheme (III.1.22') is convergent of order p = k, if $k \leq 6$; i.e.,

$$y_n - y(x_n) = \mathcal{O}(h^p)$$
, $z_n - z(x_n) = \mathcal{O}(h^p)$ for $x_n = nh \leq Const$,
(6.24)

whenever the initial values satisfy

$$y_j - y(x_j) = \mathcal{O}(h^{p+1})$$
 for $j = 0, \dots, k-1$. (6.25)

Remark. The assumption (6.25) can be relaxed to $y_j - y(x_j) = \mathcal{O}(h^p)$ for $k \ge 3$, but not for k = 1 (see Exercise 1).

Proof. We combine the convergence proof for Runge-Kutta methods (HLR89, Theorem 4.4) with the techniques of Section III.4. Inspired by Lady Windermere's Fan (Fig. III.4.1) we first study the propagation of the local errors and their accumulation over the whole interval for the y-component (part

a). The z-component is treated in part (b) and technical details are given in part (c).

a) In addition to the numerical solution $\{y_n, z_n\}$, which we now also denote by $\{y_n^0, z_n^0\}$, we consider for $\ell = 1, 2, \ldots$ the multistep solutions $\{y_n^\ell, z_n^\ell\}$ with starting values $y_j^\ell = y(x_j)$, $z_j^\ell = z(x_j)$ for $j = \ell - 1, \ldots, \ell + k - 2$ on the exact solution. Our first aim is to estimate $y_n^\ell - y_n^{\ell+1}$ in terms of the local errors $y_{\ell+k-1}^\ell - y_{\ell+k-1}^{\ell+1}$ (or starting errors if $\ell = 0$). For simplicity we omit the upper index and consider two neighbouring multistep solutions $\{\hat{y}_n, \hat{z}_n\}$ and $\{\tilde{y}_n, \tilde{z}_n\}$. In order to be able to apply Theorem 6.2 we fix three sufficiently large constants C_0, C_1, C_2 and suppose that for $nh \leq Const$

$$\|\widehat{y}_n - y(x_n)\| \le C_0 h , \qquad \|\widetilde{y}_n - \widehat{y}_n\| \le C_1 h^2 , \qquad \|\widehat{z}_n - z(x_n)\| \le C_2 h .$$

(6.26)

This will be justified in part (c) below. We introduce the notation $\Delta y_n = \tilde{y}_n - \hat{y}_n$, $\Delta z_n = \tilde{z}_n - \hat{z}_n$ and $\Delta Y_n = (\Delta y_{n+k-1}, \ldots, \Delta y_n)^T$. Observing that y_{n+k}, z_{n+k} do not depend on z_n, \ldots, z_{n+k-1} for the BDF schemes, it follows from Theorem 6.2 with $\delta = 0$ and $\theta = 0$ that

$$\|\Delta y_{n+k}\| \le C \|\Delta Y_n\| \tag{6.27a}$$

$$\|\Delta z_{n+k}\| \le \frac{C}{h} \left(\sum_{j=0}^{k-1} \|g_{y}(\hat{y}_{n+k}) \Delta y_{n+j}\| + h \|\Delta Y_{n}\| \right) \,. \tag{6.27b}$$

Here C does not depend on the choice of C_0, C_1, C_2 , if h is sufficiently small (see Remark 6.3a). Our assumption (6.26) together with (6.27) implies $\Delta y_{n+k} = \mathcal{O}(h^2)$ and $\Delta z_{n+k} = \mathcal{O}(h)$. We therefore obtain by linearization of the multistep formula

$$\sum_{i=0}^{k} \alpha_i \Delta y_{n+i} = h \beta_k f_z(\widehat{y}_{n+k}, \widehat{z}_{n+k}) \Delta z_{n+k} + \mathcal{O}(h \| \Delta Y_n \|) \quad (6.28a)$$

$$0 = g_y(\widehat{y}_{n+k})\Delta y_{n+k} + \mathcal{O}(h\|\Delta Y_n\|) .$$
(6.28b)

We next use the projections (see also Definition 7.3 below)

$$Q_n = (f_z(g_y f_z)^{-1} g_y)(\hat{y}_{n+k}, \hat{z}_{n+k}) , \qquad P_n = I - Q_n$$
(6.29)

for which

$$P_n^2 = P_n , \quad Q_n^2 = Q_n , \quad P_n Q_n = Q_n P_n = 0 , \quad Q_{n+1} = Q_n + \mathcal{O}(h) .$$
(6.30)

The last relation of (6.30) follows from (6.26) and the smoothness of the solution y(x), z(x). We then multiply (6.28a) by P_{n+k} (which eliminates Δz_{n+k}) and (6.28b) by $f_z(g_y f_z)^{-1}$. This yields with (6.30)

$$\sum_{i=0}^{k} \alpha_i P_{n+i} \Delta y_{n+i} = \mathcal{O}(h \| \Delta Y_n \|)$$
(6.31a)

496 VI. Singular Perturbation Problems and Differential-Algebraic Equations

$$Q_{n+k}\Delta y_{n+k} = \mathcal{O}(h\|\Delta Y_n\|) . \tag{6.31b}$$

Introducing the vectors

$$\begin{split} U_n &= (P_{n+k-1} \Delta y_{n+k-1}, \dots, P_n \Delta y_n)^T, \\ V_n &= (Q_{n+k-1} \Delta y_{n+k-1}, \dots, Q_n \Delta y_n)^T, \end{split}$$

we have $\Delta Y_n = U_n + V_n$ and the relations (6.31) become

$$U_{n+1} = (A \otimes I)U_n + \mathcal{O}(h||U_n|| + h||V_n||)$$
(6.32a)

$$V_{n+1} = (N \otimes I)V_n + \mathcal{O}(h||U_n|| + h||V_n||)$$
(6.32b)

where (with $\alpha_j' = \alpha_j / \alpha_k$)

$$A = \begin{pmatrix} -\alpha'_{k-1} & \dots & -\alpha'_1 & -\alpha'_0 \\ 1 & 0 & 0 \\ & \ddots & \vdots & \vdots \\ & & 1 & 0 \end{pmatrix}, \quad N = \begin{pmatrix} 0 & \dots & 0 & 0 \\ 1 & & 0 & 0 \\ & \ddots & \vdots & \vdots \\ & & 1 & 0 \end{pmatrix}. \quad (6.33)$$

According to Lemma III.4.4 we now choose a norm ||U|| such that $||A \otimes I|| \le 1$. We then choose a (possibly different) norm ||V||, for which $||N \otimes I|| \le \varrho < 1$. Consequently it follows from (6.32) that

$$\begin{pmatrix} \|U_{n+1}\|\\\|V_{n+1}\| \end{pmatrix} \leq \begin{pmatrix} 1+\mathcal{O}(h) & \mathcal{O}(h)\\ \mathcal{O}(h) & \varrho+\mathcal{O}(h) \end{pmatrix} \begin{pmatrix} \|U_n\|\\\|V_n\| \end{pmatrix} .$$
 (6.34)

As in the proof of Lemma 2.9 we diagonalize the matrix in (6.34) and so obtain

$$\begin{split} \|\Delta Y_n\| &\leq Const_1\Big(\|U_n\| + \|V_n\|\Big) \\ &\leq Const_2\Big(\|U_0\| + (\varrho^n + h)\|V_0\|\Big), \end{split} \tag{6.35a}$$

$$\|V_n\| \le Const_3\left(h\|U_0\| + (\varrho^n + h)\|V_0\|\right).$$
 (6.35b)

The vectors U_0 and V_0 are composed of local errors (of the y-component) or of errors in the starting values, which are of size $\mathcal{O}(h^{p+1})$ by (6.23) and (6.25). Hence, it follows from (6.35) that the propagated errors satisfy

$$\begin{aligned} \|\Delta y_n\| &\leq C_3 h^{p+1} ,\\ \|g_y(\widehat{y}_{n+k})\Delta y_{n+j}\| &\leq C_4(\varrho^n + h) h^{p+1} \quad \text{for } j = 0, \dots, k-1 . \end{aligned}$$
(6.36)

Summing up we obtain

$$\|y_n - y(x_n)\| \le \sum_{\ell=0}^{n-k+1} \|y_n^{\ell} - y_n^{\ell+1}\| \le C_5 h^p , \qquad (6.37)$$

the desired estimate for the y-component.

b) Since z_n depends only on y_{n-k}, \ldots, y_{n-1} but not on the previous z-values, we can apply Theorem 6.2 with $\hat{y}_i = y(x_i)$, $\hat{z}_i = z(x_i)$, $\delta = \mathcal{O}(h^p)$ and $\theta = 0$. This yields

$$\|z_n - z(x_n)\| \le \frac{C}{h} \sum_{j=1}^k \|g_y(y(x_n))(y_{n-j} - y(x_{n-j}))\| + \mathcal{O}(h^p) .$$
(6.38)

Using (6.36) and $y_n^{\ell} = y(x_n) + \mathcal{O}(h^p)$, which follows as in (6.37), we obtain

$$\begin{split} \|g_y(y(x_n))(y_{n-j}-y(x_{n-j}))\| &= \Big\|\sum_{\ell=0}^{n-k+1} g_y(y(x_n))(y_{n-j}^{\ell}-y_{n-j}^{\ell+1})\Big\| \\ &\leq \sum_{\ell=0}^{n-k+1} \Big(\Big\|g_y(y_n^{\ell})(y_{n-j}^{\ell}-y_{n-j}^{\ell+1})\Big\| + \mathcal{O}(h^{2p+1}) \Big) = \mathcal{O}(h^{p+1}) \end{split}$$

and hence also

$$||z_n - z(x_n)|| \le C_6 h^p . (6.39)$$

c) In general, the constants C_3, C_5 and C_6 will depend on C_0, C_1, C_2 of our assumption (6.26). For $p \ge 2$ we can restrict the step size h so that

$$C_5 h^{p-1} \le C_0$$
 , $C_3 h^{p-1} \le C_1$, $C_6 h^{p-1} \le C_2$

and the numerical solutions will never violate the conditions (6.26) on the considered interval.

For p=1 (the implicit Euler method) we know from Remark 6.3b that the estimate (6.27b) can be replaced by

$$\|\Delta z_{n+k}\| \le C \|\Delta Y_n\| . \tag{6.40}$$

Instead of (6.28a) we thus immediately get

$$\Delta y_{n+1} - \Delta y_n = \mathcal{O}(h \| \Delta y_n \|) \tag{6.41}$$

where the constant implied by the $\mathcal{O}(\ldots)$ term is independent of C_0, C_1, C_2 , if *h* is sufficiently small. Standard techniques (without considering the projections (6.29)) then yield the convergence result.

With the ideas of Section III.5 the above proof can be extended to cover variable step sizes as well. Originally, such a convergence result was given by Gear, Gupta & Leimkuhler (1985).

General Multistep Methods

For a general multistep method (6.3) with generating polynomials

$$arrho(\zeta) = \sum_{i=0}^k lpha_i \zeta^i \;, \qquad \sigma(\zeta) = \sum_{i=0}^k eta_i \zeta^i$$

we have the following convergence result.

Theorem 6.6. Consider an index 2 problem (6.1) which satisfies (6.2). Assume that the multistep method is stable (Definition III.3.2) and strictly stable at infinity (the zeros of $\sigma(\zeta)$ lie inside the unit disc $|\zeta| < 1$). If its order is $p \ge 2$, then the global error satisfies

$$y_n - y(x_n) = \mathcal{O}(h^p) , \qquad z_n - z(x_n) = \mathcal{O}(h^p) \quad for \quad x_n = nh \leq Const$$

whenever the initial values satisfy (for j = 0, ..., k-1)

$$y_j - y(x_j) = \mathcal{O}(h^{p+1}) , \qquad z_j - z(x_j) = \mathcal{O}(h^p) .$$
 (6.42)

Proof. The proof is essentially the same as for the BDF schemes. Due to the dependence of y_{n+k}, z_{n+k} on y_n, \ldots, y_{n+k-1} and on z_n, \ldots, z_{n+k-1} the following modifications are necessary.

In addition to (6.26) we assume $\|\tilde{z}_n - \hat{z}_n\| \leq C_3 h$. Instead of (6.27) we have (from Theorem 6.2)

$$\begin{split} \|\Delta y_{n+k}\| &\leq C(\|\Delta Y_n\| + h\|\Delta Z_n\|) \\ \|\Delta z_{n+k}\| &\leq \frac{C}{h} \bigg(\sum_{j=0}^{k-1} \|g_j(\widehat{y}_{n+k})\Delta y_{n+j}\| + h\|\Delta Y_n\| + h\|\Delta Z_n\| \bigg) \end{split}$$

and (6.28) becomes

$$\sum_{i=0}^{k} \alpha_i \Delta y_{n+i} = h \sum_{i=0}^{k} \beta_i f_z(\widehat{y}_{n+k}, \widehat{z}_{n+k}) \Delta z_{n+i} + \mathcal{O}(h \| \Delta Y_n \| + h^2 \| \Delta Z_n \|)$$
$$0 = g_y(\widehat{y}_{n+k}) \Delta y_{n+k} + \mathcal{O}(h \| \Delta Y_n \| + h^2 \| \Delta Z_n \|) .$$
(6.43)

A recursion for Δz_n is obtained as follows: we multiply the upper line of (6.43) by $((g_y f_z)^{-1} g_y)(\widehat{y}_{n+k}, \widehat{z}_{n+k})$ and so get

$$h\sum_{i=0}^{k} \beta_{i} \Delta z_{n+i} = \sum_{i=0}^{k} \alpha_{i} \left((g_{y}f_{z})^{-1}g_{y} \right) (\widehat{y}_{n+k}, \widehat{z}_{n+k}) \Delta y_{n+i} + \mathcal{O}(h \| \Delta Y_{n} \| + h^{2} \| \Delta Z_{n} \|) .$$
(6.44)

With the projections P_n, Q_n of (6.29) and the vectors U_n, V_n we thus obtain (6.32) with an additional $\mathcal{O}(h^2 \|\Delta Z_n\|)$ term. From (6.44) we get

$$h\,\Delta Z_{n+1} = \left(B\otimes I\right)h\,\Delta Z_n + \mathcal{O}\Big(h\|U_n\| + \|V_n\| + h^2\|\Delta Z_n\|\Big) \,,$$

where

$$B = egin{pmatrix} -eta'_{k-1} & \ldots & -eta'_1 & -eta'_0 \ 1 & 0 & 0 \ & \ddots & \vdots & \vdots \ & & 1 & 0 \end{pmatrix}$$

with $\beta'_j = \beta_j / \beta_k$. For this equation we use a norm for which $||B \otimes I|| \le \kappa < 1$. This is possible, because the method is strictly stable at infinity. Summarizing, we get the inequality

$$\begin{pmatrix} \|U_{n+1}\|\\\|V_{n+1}\|\\h\|\Delta Z_{n+1}\| \end{pmatrix} \leq \begin{pmatrix} 1+\mathcal{O}(h) & \mathcal{O}(h) & \mathcal{O}(h)\\ \mathcal{O}(h) & \varrho + \mathcal{O}(h) & \mathcal{O}(h)\\ \mathcal{O}(h) & \mathcal{O}(1) & \kappa + \mathcal{O}(h) \end{pmatrix} \begin{pmatrix} \|U_n\|\\\|V_n\|\\h\|\Delta Z_n\| \end{pmatrix}$$
(6.45)

which can be solved as before and yields

$$\begin{aligned} \|\Delta y_n\| &\leq C_3 h^{p+1} , \qquad \|\Delta z_n\| \leq C_7 (\varrho^n + \kappa^n + h) h^p , \\ \|g_y(\widehat{y}_{n+k}) \Delta y_{n+j}\| &\leq C_4 (\varrho^n + \kappa^n + h) h^{p+1} \text{ for } j = 0, \dots, k-1 . \end{aligned}$$
(6.46)

Summing up the propagated errors as in (6.37) we obtain the desired estimates for the y-and z-component.

Solution of the Nonlinear System by Simplified Newton

The nonlinear system (6.3) is usually solved by a simplified Newton iteration and it is interesting to study its convergence. As in the proof of Theorem 6.1 we introduce η by (6.9) and rescale h so that the nonlinear system becomes (omitting the indices)

$$y - \eta - hf(y,z) = 0$$

 $g(y) = 0$. (6.47)

This is just the implicit Euler method and we can apply the discussion of HLR89, Chapter 7. The Jacobian of the nonlinear system (6.47) is

$$J = \begin{pmatrix} I - hf_y & -hf_z \\ g_y & 0 \end{pmatrix}$$
(6.48)

and its inverse has the form

$$J^{-1} = \begin{pmatrix} P + \mathcal{O}(h) & f_z(g_y f_z)^{-1} + \mathcal{O}(h) \\ -h^{-1}(g_y f_z)^{-1}g_y + \mathcal{O}(1) & h^{-1}(g_y f_z)^{-1} + \mathcal{O}(1) \end{pmatrix}$$
(6.49)

where $P = I - f_z (g_y f_z)^{-1} g_y$ is the projection of (6.29). We now consider the simplified Newton method as a fixed point iteration with the function

$$\Phi(y,z) = \begin{pmatrix} y \\ z \end{pmatrix} - J_0^{-1} \begin{pmatrix} y - \eta - hf(y,z) \\ g(y) \end{pmatrix} .$$
(6.50)

The subscript 0 in J_0 indicates that the arguments of the derivatives in (6.48) are evaluated at some *fixed* approximation $(\hat{\eta}, \hat{\zeta})$ to the solution of (6.47). We shall use the notation $\{f_y\}_0$ for $f_y(\hat{\eta}, \hat{\zeta})$, etc. Direct calculation of $\Phi'(y, z)$ gives

$$\begin{pmatrix} \{f_z(g_yf_z)^{-1}\}_0(\{g_y\}_0 - g_y) + \mathcal{O}(h) & h\{P\}_0f_z + \mathcal{O}(h^2) \\ h^{-1}\{(g_yf_z)^{-1}\}_0(\{g_y\}_0 - g_y) + \mathcal{O}(1) & \{(g_yf_z)^{-1}g_y\}_0(\{f_z\}_0 - f_z) + \mathcal{O}(h) \end{pmatrix}.$$

If we assume that $(\hat{\eta}, \hat{\zeta})$ approximates the fixed point of (6.50) with an error of $\mathcal{O}(h)$, then we have at this fixed point

$$\Phi'(y,z) = \begin{pmatrix} \mathcal{O}(h) & \mathcal{O}(h^2) \\ \mathcal{O}(1) & \mathcal{O}(h) \end{pmatrix} .$$
(6.51)

With the scaling matrix D = diag(I, hI) (this corresponds to a multiplication of the z-variables by h) we have

$$\|D\Phi'(y,z)D^{-1}\| = \mathcal{O}(h)$$
 .

In the norm ||y|| + h||z|| we therefore gain a factor h in each simplified Newton iteration.

Remark. The above analysis remains valid if f_y or parts of it are replaced by zero in J_0 . For mechanical problems such an algorithm was proposed by Gear, Gupta & Leimkuhler (1985).

Exercises

1. Show that the assumption $g(y_j) = O(h^2)$ for j = 0, ..., k-1 cannot be omitted in Theorem 6.1.

Counterexample. Consider the system

$$\begin{aligned} x' &= 1 \\ y' &= k(z) \\ 0 &= y - x \end{aligned}$$
 (6.52)

where $k(z) = (e^{z-1}+1)/2$. Apply the implicit Euler method with initial values $x_0 = 0$, $y_0 = h$, $z_0 = 1$.

2. (Gear, Hsu & Petzold 1981, Gear & Petzold 1984). Consider the problem

$$\begin{pmatrix} 0 & 0 \\ 1 & \eta x \end{pmatrix} \begin{pmatrix} y' \\ z' \end{pmatrix} + \begin{pmatrix} 1 & \eta x \\ 0 & 1+\eta \end{pmatrix} \begin{pmatrix} y \\ z \end{pmatrix} = \begin{pmatrix} f(x) \\ g(x) \end{pmatrix} .$$
(6.53)

a) Prove that the system (6.53) has index 2 for all values of η .

b) The z-component of the exact solution is z(x) = g(x) - f'(x).

c) The implicit Euler method, applied to (6.53) in an obvious manner, yields the recursion

$$z_{n+1} = rac{\eta}{1+\eta} \, z_n + rac{1}{1+\eta} \left(g(x_{n+1}) - rac{f(x_{n+1}) - f(x_n)}{h}
ight) \, .$$

Hence, the method is convergent for $\eta > -1/2$, but unstable for $\eta < -1/2$. For $\eta = -1$ the numerical solution does not exist.

VI.7. Runge-Kutta Methods for Index 2 DAE

"RK methods prove popular at IMA conference on numerical ODEs." (Byrne & Hindmarsh, SIAM News, March 1990)

This section is devoted to the convergence of implicit Runge-Kutta methods for semi-explicit index 2 systems (6.1) which satisfy (6.2). The direct approach of Section VI.1 defines the numerical solution by

$$y_{n+1} = y_n + h \sum_{i=1}^{s} b_i k_{ni}$$
, $z_{n+1} = z_n + h \sum_{i=1}^{s} b_i \ell_{ni}$ (7.1a)

where

$$k_{ni} = f(Y_{ni}, Z_{ni})$$
, $0 = g(Y_{ni})$ (7.1b)

and the internal stages are given by

$$Y_{ni} = y_n + h \sum_{j=1}^{s} a_{ij} k_{nj}$$
, $Z_{ni} = z_n + h \sum_{j=1}^{s} a_{ij} \ell_{nj}$ (7.1c)

(the indirect approach does not make sense here, because the algebraic conditions do not depend on z).

The first convergence results for this situation are due to Petzold (1986). They are formulated for general problems F(y', y) = 0 under the assumption of "uniform index one". Since the system (6.1) becomes "uniform index one" if we replace z by u' (Gear 1988, see also Exercise 1), the results of Petzold can be applied to (6.1). A further study for the semi-explicit system (6.1) is given by Brenan & Petzold (1989). Their main result is that for (7.1) the global error of the y-component is $\mathcal{O}(h^{q+1})$, and that of the z-component is $\mathcal{O}(h^q)$ (where q denotes the stage order of the method). This result was improved by HLR89, using a different approach (local and global error are studied separately).

The Nonlinear System

We first investigate existence, uniqueness and the influence of perturbations to the solution of the nonlinear system (7.1). In order to simplify the notation we write (η, ζ) for (y_n, z_n) , which we assume *h*-dependent, and we suppress the index *n* in Y_{ni} , etc. The nonlinear system then reads

$$Y_{i} = \eta + h \sum_{j=1}^{s} a_{ij} f(Y_{j}, Z_{j})$$

$$0 = g(Y_{i})$$

$$i = 1, \dots, s$$

$$(7.2)$$

Once a solution to (7.2) is known, we can compute ℓ_{ni} from (7.1c) (whenever (a_{ij}) is an invertible matrix) and then y_{n+1}, z_{n+1} from (7.1a).

Theorem 7.1 (HLR89, p. 31). Suppose that (η, ζ) satisfy

$$g(\eta) = \mathcal{O}(h^2)$$
, $g_y(\eta)f(\eta,\zeta) = \mathcal{O}(h)$ (7.3)

and that (6.2) holds in a neighbourhood of (η, ζ) . If the Runge-Kutta matrix (a_{ij}) is invertible, then the nonlinear system (7.2) possesses for $h \leq h_0$ a locally unique solution which satisfies

$$Y_i - \eta = \mathcal{O}(h) , \qquad Z_i - \zeta = \mathcal{O}(h) .$$

$$(7.4)$$

Remark. Condition (7.3) expresses the fact that (η, ζ) is close to consistent initial values. We also see from (7.2) that the solution (Y_i, Z_i) does not depend on ζ . The value of ζ in (7.3) only specifies the solution branch of $g_y(y)f(y,z)=0$ to which the numerical solution is close.

The proof of Theorem 7.1 for the implicit Euler method was given in Section VI.6 (proof of Theorem 6.1). If we replace (6.14) by

$$Y_i - \eta(h) - h \sum_{j=1}^{s} a_{ij} f(Y_j, Z_j) = 0$$
(7.5a)

$$\int_{0}^{1} g_{y} \Big(\eta(h) + \tau \big(Y_{i} - \eta(h) \big) \Big) d\tau \cdot \sum_{j=1}^{s} a_{ij} f(Y_{j}, Z_{j}) + \frac{1}{h} g \big(\eta(h) \big) = 0 \quad (7.5b)$$

it extends in a straightforward manner to general Runge-Kutta methods. \square

The numerical condition of the nonlinear system (7.2) is our next subject. Besides (7.2) we also consider the perturbed system

$$\left. \begin{array}{l} \widehat{Y}_i = \widehat{\eta} + h \sum_{j=1}^{n} a_{ij} f(\widehat{Y}_j, \widehat{Z}_j) + h \delta_i \\ \\ 0 = g(\widehat{Y}_i) + \theta_i \end{array} \right\} \qquad i = 1, \dots, s$$

$$(7.6)$$

and we investigate the influence of the perturbations δ_i and θ_i on the numerical solution.

Theorem 7.2 (HLR89, p. 33). Let Y_i, Z_i be a solution of (7.2) and consider perturbed values $\widehat{Y}_i, \widehat{Z}_i$ satisfying (7.6). In addition to the assumptions of

Theorem 7.1 suppose that

$$\widehat{\eta} - \eta = \mathcal{O}(h^2) , \qquad \widehat{Z}_i - \zeta = \mathcal{O}(h) , \qquad \delta_i = \mathcal{O}(h) , \qquad \theta_i = \mathcal{O}(h^2) .$$
(7.7)

Then we have for $h \leq h_0$ the estimates

$$\|\widehat{Y}_{i} - Y_{i}\| \leq C \Big(\|\widehat{\eta} - \eta\| + h\|\delta\| + \|\theta\|\Big)$$
(7.8a)

$$\|\widehat{Z}_{i} - Z_{i}\| \leq \frac{C}{h} \left(\|g_{y}(\eta)(\widehat{\eta} - \eta)\| + h\|\widehat{\eta} - \eta\| + h\|\delta\| + \|\theta\| \right)$$
(7.8b)

where $\|\delta\| = \max_i \|\delta_i\|$ and $\|\theta\| = \max_i \|\theta_i\|$. If the initial values satisfy $g(\eta) = 0$ and $g(\hat{\eta}) = 0$, then we have the stronger estimate

$$\|\widehat{Z}_i - Z_i\| \le \frac{C}{h} \left(h\|\widehat{\eta} - \eta\| + h\|\delta\| + \|\theta\|\right) . \tag{7.9}$$

The constant C in (7.8) and (7.9) depends only on bounds for certain derivatives of f and g, but not on the constants implied by the $\mathcal{O}(\ldots)$ terms in (7.3) and (7.7).

Proof. The estimates (7.8) are obtained by extending the proof of Theorem 6.2. When both initial values, η and $\hat{\eta}$, lie on the manifold g(y)=0, we have by Taylor expansion

$$0=g(\widehat{\eta})-g(\eta)=g_y(\eta)(\widehat{\eta}\!-\!\eta)+\mathcal{O}(\|\widehat{\eta}\!-\!\eta\|^2)\;.$$

In this situation the term $g_y(\eta)(\hat{\eta}-\eta)$ in (7.8b) is of size $\mathcal{O}(h^2\|\hat{\eta}-\eta\|)$ and may be neglected.

Estimation of the Local Error

We begin by defining two projections which will be important for the study of local errors for index 2 problems (6.1).

Definition 7.3. For given y_0, z_0 for which $(g_y f_z)(y_0, z_0)$ is invertible we define the projections

$$Q = (f_z(g_y f_z)^{-1} g_y)(y_0, z_0) , \qquad P = I - Q .$$
(7.10)

Geometric interpretation. Let \mathcal{U} be the manifold defined by $\mathcal{U} = \{y; g(y) = 0\}$ and let $T_{\mathcal{U}} = \ker(g_y(y_0))$ be the tangent space at a point $y_0 \in \mathcal{U}$. Further let $\mathcal{V} = \{f(y_0, z) ; z \text{ arbitrary }\}$ and let $T_{\mathcal{V}} = \operatorname{Im}(f_z(y_0, z_0))$ be its tangent space. Here, z_0 is the value for which $f(y_0, z_0)$ lies in $T_{\mathcal{U}}$ (i.e., for which the condition $g_y(y_0)f(y_0, z_0) = 0$ is satisfied (see 5.10c)). By considering the arrows $f(y_0, z)$ with varying z (see Fig. 7.1), the space $T_{\mathcal{V}}$ can be interpreted

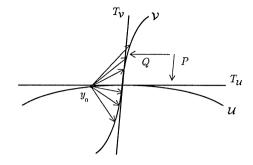


Fig. 7.1. Projections P and Q

as the directions in which the control variables z bring the solution to the manifold \mathcal{U} . By (6.2) these two spaces are transversal and their direct sum generates the y-space. It follows from (7.10) that P projects onto $T_{\mathcal{U}}$ parallel to $T_{\mathcal{V}}$ and Q projects onto $T_{\mathcal{V}}$ parallel to $T_{\mathcal{U}}$.

Consider now initial values $y_0 = y(x)$, $z_0 = z(x)$ on the exact solution and denote by y_1, z_1 the numerical solution of the Runge-Kutta method (7.1). The *local error*

$$\delta y_h(x) = y_1 - y(x+h) , \qquad \delta z_h(x) = z_1 - z(x+h) \tag{7.11}$$

can be estimated as follows:

Lemma 7.4 (HLR89, p. 34). Suppose that a Runge-Kutta method with invertible coefficient matrix (a_{ij}) satisfies the assumptions B(p) and C(q) of Section IV.5 with $p \ge q$. Then we have

$$\delta y_h(x) = \mathcal{O}(h^{q+1}), \qquad P(x)\delta y_h(x) = \mathcal{O}(h^{\min(p+1,q+2)})$$

$$\delta z_h(x) = \mathcal{O}(h^q), \qquad (7.12)$$

where P(x) is the projection (7.10) evaluated at (y(x), z(x)). If, in addition, the Runge-Kutta method is stiffly accurate (i.e., satisfies $a_{si} = b_i$ for all i), then

$$\delta y_h(x) = \mathcal{O}(h^{\min(p+1,q+2)}) . \tag{7.13}$$

Proof. The exact solution values $\hat{\eta} = y(x)$, $\hat{Y}_i = y(x+c_ih)$, $\hat{Z}_i = z(x+c_ih)$ satisfy (7.6) with $\theta_i = 0$ and

$$\delta_i = \frac{h^q}{q!} \, y^{(q+1)}(x) \left(\frac{c_i^{q+1}}{q+1} - \sum_{j=1}^s a_{ij} c_j^q \right) + \mathcal{O}(h^{q+1}) \; .$$

The difference to the numerical solution ((7.2) with $\eta = y(x)$) can thus be estimated with Theorem 7.2, yielding

$$Y_i - y(x + c_i h) = \mathcal{O}(h^{q+1}) , \qquad Z_i - z(x + c_i h) = \mathcal{O}(h^q) .$$
 (7.14)

506 VI. Singular Perturbation Problems and Differential-Algebraic Equations

Since the quadrature formula $\{b_i, c_i\}$ is of order p, we have

$$y(x+h) - y(x) - h \sum_{i=1}^{s} b_i f(y(x+c_ih), z(x+c_ih)) = \mathcal{O}(h^{p+1}).$$

Subtracting this formula from (7.1a) we get

$$y_1 - y(x+h) = hf_z(y(x), z(x)) \sum_{i=1}^s b_i (Z_i - z(x+c_ih)) + \mathcal{O}(h^{p+1}) + \mathcal{O}(h^{q+2});$$

because of $P(x)f_z(y(x), z(x)) \equiv 0$, this proves (7.12) for the y-component. The estimate for the z-component follows from (see (1.28))

$$z_1 - z(x+h) = \sum_{i,j=1}^{s} b_i \omega_{ij} (Z_j - z(x+c_jh)) + \mathcal{O}(h^{q+1})$$

and (7.14).

Under the assumption $a_{si} = b_i$ (for all *i*) we have $g(y_1) = 0$ so that by Taylor expansion

$$0 = g(y_1) - g(y(x+h)) = g_y(y(x))\delta y_h(x) + \mathcal{O}(h\|\delta y_h(x)\|) .$$
(7.15)

This implies that $Q(x)\delta y_h(x) = \mathcal{O}(h\|\delta y_h(x)\|)$, and (7.13) is a consequence of (7.12) and (7.10).

For some important Runge-Kutta methods (such as Radau IIA and Lobatto IIIC) the estimates of Lemma 7.4 are not optimal. Sharp estimates will be given in Theorem 7.9 for collocation methods and in Section VI.8 for general Runge-Kutta methods.

Convergence for the *y*-Component

The numerical solution $\{y_n\}$, defined by (7.1), does not depend on $\{z_n\}$. Consequently, the convergence for the y-component can be treated independently of estimates for the z-component.

Theorem 7.5 (HLR89, p. 36). Suppose that (6.2) holds in a neighbourhood of the solution (y(x), z(x)) of (6.1) and that the initial values are consistent. Suppose further that the Runge-Kutta matrix (a_{ij}) is invertible, that $|R(\infty)| < 1$ (see (1.11e)) and that the local error satisfies

$$\delta y_h(x) = \mathcal{O}(h^r) , \qquad P(x) \delta y_h(x) = \mathcal{O}(h^{r+1})$$
(7.16)

with P(x) as in Lemma 7.4. Then the method (7.1) is convergent of order r, i.e.,

$$y_n - y(x_n) = \mathcal{O}(h^r) \qquad for \qquad x_n - x_0 = nh \leq Const.$$

If in addition $\delta y_h(x) = \mathcal{O}(h^{r+1})$, then $g(y_n) = \mathcal{O}(h^{r+1})$.

Proof. A complete proof of this result is given in (HLR89, pp. 36-39). We restrict our presentation to stiffly accurate Runge-Kutta methods (i.e., $a_{si} = b_i$ for all *i*). This considerably simplifies several parts of the proof, and nevertheless covers many important Runge-Kutta methods (such as Radau IIA, Lobatto IIIC and the SDIRK method (IV.6.16)). The assumption $a_{si} = b_i$ (for all *i*) implies that $g(y_n) = 0$ for all *n* and, as a consequence of (7.15) and (7.16), that

$$\delta y_h(x) = \mathcal{O}(h^{r+1}) . \tag{7.17}$$

The following proof is similar to that of Theorem 6.5 and uses, once again, Lady Windermere's Fan of Fig. II.3.2.

In addition to the numerical solution $\{y_n, z_n\}$, also denoted by $\{y_n^0, z_n^0\}$, we consider the Runge-Kutta solutions $\{y_n^\ell, z_n^\ell\}$ with initial values $y_\ell^\ell = y(x_\ell)$, $z_\ell^\ell = z(x_\ell)$ on the exact solution. We first estimate $y_n^\ell - y_n^{\ell+1}$ for $n \ge \ell+1$ in terms of the local error $\delta y_h(x_\ell) = y_{\ell+1}^\ell - y_{\ell+1}^{\ell+1}$. In order to simplify the notation we denote two neighbouring Runge-Kutta solutions by $\{\tilde{y}_n\}, \{\hat{y}_n\}$ and their difference by $\Delta y_n = \tilde{y}_n - \hat{y}_n$. We suppose for the moment that

$$\|\widehat{y}_n - y(x_n)\| \le C_0 h , \qquad \|\Delta y_n\| \le C_1 h^2$$
 (7.18)

(this will be justified below). Theorem 7.2 with $\delta_i = 0$ and $\theta_i = 0$ then yields

$$\|\widetilde{Y}_{ni} - \widehat{Y}_{ni}\| \le C \|\Delta y_n\|, \qquad \|\widetilde{Z}_{ni} - \widehat{Z}_{ni}\| \le C \|\Delta y_n\|$$
(7.19)

where C is some constant independent of C_0 and C_1 . A Lipschitz condition for f(y, z) implies that

$$\|\Delta y_{n+1}\| \leq \|\Delta y_n\| + h\sum_{i=1}^s |b_i| \Big(L_1\|\widetilde{Y}_{ni} - \widehat{Y}_{ni}\| + L_2\|\widetilde{Z}_{ni} - \widehat{Z}_{ni}\|\Big) \;.$$

Inserting (7.19) we get

$$\lVert \Delta {y_{n+1}}
Vert \leq (1\!+\!hL) \lVert \Delta {y_n}
Vert$$

and hence also

$$\|\Delta y_n\| \le C_2 \|\Delta y_0\|$$
 for $nh \le Const$. (7.20)

For our situation in Lady Windermere's Fan the use of (7.17) yields

$$\|y_n^\ell - y_n^{\ell+1}\| \leq C_2 \|\delta y_h(x_\ell)\| \leq C_3 h^{r+1} \quad \text{for } n \geq \ell+1 \text{ and } nh \leq \textit{Const.}$$

Summing up we obtain the desired estimate

$$\|y_n-y(x_n)\|\leq \sum_{\ell=0}^{n-1}\|y_n^\ell-y_n^{\ell+1}\|\leq C_4h^r \qquad ext{for } nh\leq ext{ Const.}$$

Since C_3 and C_4 do not depend on C_0 or C_1 (if *h* is sufficiently small), the assumption (7.18) is justified by induction on *n* provided the constants C_0, C_1 are chosen sufficiently large.

Convergence for the z-Component

Theorem 7.6 (HLR89, p. 40). Consider the index 2 problem (6.1)-(6.2) with consistent initial values and assume that the Runge-Kutta matrix (a_{ij}) is invertible and $|R(\infty)| < 1$. If the global error of the y-component is $\mathcal{O}(h^r)$, $g(y_n) = \mathcal{O}(h^{r+1})$ and the local error of the z-component is $\mathcal{O}(h^r)$, then we have for the global error

$$z_n - z(x_n) = \mathcal{O}(h^r)$$
 for $x_n - x_0 = nh \leq Const$.

Remark. If, in addition to the invertibility of (a_{ij}) and $|R(\infty)| < 1$, the conditions B(q) and C(q) are satisfied then we have $z_n - z(x_n) = \mathcal{O}(h^q)$ (see Lemma 7.4).

Proof. We write the global error as

$$z_{n+1} - z(x_{n+1}) = z_{n+1} - \hat{z}_{n+1} + \delta z_h(x_n)$$
(7.21)

where $(\hat{y}_{n+1}, \hat{z}_{n+1})$ denotes the numerical solution obtained from the starting values $(y(x_n), z(x_n))$ and $\delta z_h(x_n)$ is the local error. From (1.11d) we have

$$z_{n+1} - \hat{z}_{n+1} = R(\infty) \left(z_n - z(x_n) \right) + \sum_{i,j=1}^s b_i \omega_{ij} \left(Z_{nj} - \hat{Z}_{nj} \right) \,. \tag{7.22}$$

The assumption $g(y_n) = \mathcal{O}(h^{r+1})$ implies that $g_y(y_n)(y_n - y(x_n)) = \mathcal{O}(h^{r+1})$ and, together with $y_n - y(x_n) = \mathcal{O}(h^r)$, it follows from Theorem 7.2 that $Z_{nj} - \widehat{Z}_{nj} = \mathcal{O}(h^r)$. Inserting (7.22) into (7.21) we obtain

$$z_{n+1} - z(x_{n+1}) = R(\infty) \left(z_n - z(x_n) \right) + \mathcal{O}(h^r)$$

which proves the statement.

Collocation Methods

An important subclass of implicit Runge-Kutta methods are the collocation methods as introduced in Section II.7. For the index 2 problem (6.1) they can be defined as follows.

Definition 7.7. Let c_1, \ldots, c_s be s distinct real numbers and denote by u(x), v(x) the polynomials of degree s (collocation polynomials) which satisfy

$$u(x_0) = y_0, \qquad v(x_0) = z_0$$
 (7.23a)

$$\begin{array}{c} u'(x_0 + c_i h) = f(u(x_0 + c_i h), v(x_0 + c_i h)) \\ 0 = g(u(x_0 + c_i h)) \end{array} \right\} \qquad i = 1, \dots, s \; . \tag{7.23b}$$

Then the numerical solution is given by

$$y_1 = u(x_0 + h)$$
, $z_1 = v(x_0 + h)$. (7.23c)

A straightforward extension of Theorems II.7.6 and II.7.7 to index 2 problems shows that (7.23) is equivalent to the s-stage Runge-Kutta method (7.1) whose coefficients are defined by B(s) and C(s) (see Section IV.5 for their definition). This equivalence allows us to deduce from Theorem 7.1 the existence and local uniqueness of the collocation polynomials provided that the corresponding Runge-Kutta matrix is invertible. Hence we assume in the sequel that $c_i \neq 0$ for all *i*. The case of a singular Runge-Kutta matrix is considered in Exercises 2 and 3.

The quality of u(x), v(x) as approximations to y(x), z(x) is described by the next theorem, which extends Theorem II.7.9.

Theorem 7.8. Consider a collocation method (7.23) with all $c_i \neq 0$. Then we have for k = 0, 1, ..., s and $x \in [x_0, x_0 + h]$

$$egin{aligned} \|u^{(k)}(x)-y^{(k)}(x)\|&\leq C\,h^{s+1-k}\ \|v^{(k)}(x)-z^{(k)}(x)\|&\leq C\,h^{s-k}\ . \end{aligned}$$

Proof. We exploit the fact that $u(x_0+c_ih)=Y_i$, $v(x_0+c_ih)=Z_i$ are the internal stages of the Runge-Kutta method (7.1). Consequently the collocation polynomials can be written as

$$u(x_0 + th) = y_0 \ell_0(t) + \sum_{i=1}^{s} Y_i \ell_i(t)$$
(7.24a)

$$v(x_0 + th) = z_0 \ell_0(t) + \sum_{i=1}^s Z_i \ell_i(t)$$
 (7.24b)

where the $\ell_i(t)$ are the Lagrange polynomials defined by

$$\ell_0(t) = \prod_{j=1}^s \frac{(t-c_j)}{(-c_j)} , \qquad \ell_i(t) = \frac{t}{c_i} \prod_{\substack{j=1 \ j \neq i}}^s \frac{(t-c_j)}{(c_i-c_j)}$$

Familiar estimates of the interpolation error imply that the exact solution y(x) satisfies

$$y(x_0+th) = y_0\ell_0(t) + \sum_{i=1}^s y(x_0+c_ih)\ell_i(t) + \mathcal{O}(h^{s+1}) .$$
 (7.25)

The factor h^{s+1} in the interpolation error comes from the (s+1)-th derivative of $y(x_0+th)$ with respect to t. Obviously, the interpolation error is differentiable as often as the function y(x). If we differentiate (7.25) k times, then

510 VI. Singular Perturbation Problems and Differential-Algebraic Equations

by Rolle's theorem, the difference

$$h^{k}y^{(k)}(x_{0}+th) - \left(y_{0}\ell_{0}^{(k)}(t) + \sum_{i=1}^{s}y(x_{0}+c_{i}h)\ell_{i}^{(k)}(t)\right)$$
(7.25')

vanishes at least at s+1-k points. Hence, the polynomial enclosed in brackets in (7.25') can be interpreted as an interpolation polynomial of degree s-kfor the function $h^k y^{(k)}(x_0 + th)$. Its error is thus again of size $\mathcal{O}(h^{s+1})$. Subtracting (7.25) from (7.24a) and differentiating k times thus yields

$$h^k \big(u^{(k)}(x_0 + th) - y^{(k)}(x_0 + th) \big) = \sum_{i=1}^s \big(Y_i - y(x_0 + c_ih) \big) \, \ell_i^{(k)}(t) + \mathcal{O}(h^{s+1})$$

and a similar formula for the z-component. The conclusion now follows from (7.14) with q = s.

Superconvergence of Collocation Methods

It is now natural to ask whether superconvergence takes place at $x_0 + h$ (as for ordinary differential equations; see Theorem II.7.8). The answer is affirmative, if the method is stiffly accurate, i.e., if $c_s = 1$.

Theorem 7.9. If $c_i \neq 0$ for all *i* and $c_s = 1$, then the y-component of the local error of the collocation method (7.23) satisfies

$$y_1 - y(x_0 + h) = \mathcal{O}(h^{p+1})$$

where p is the order of the underlying quadrature formula.

Proof. We insert the collocation polynomials into the differential-algebraic problem and define the defect by

$$u'(x) = f(u(x), v(x)) + \delta(x)$$
(7.26a)

$$0 = g(u(x)) + \theta(x)$$
. (7.26b)

By Definition 7.7 we have

$$\delta(x_0 + c_i h) = 0 , \qquad \theta(x_0) = 0 , \qquad \theta(x_0 + c_i h) = 0 . \qquad (7.27)$$

We next differentiate (7.26b) with respect to x and use (7.26a):

$$0 = g_{y}(u(x))(f(u(x), v(x)) + \delta(x)) + \theta'(x) .$$
(7.28)

This motivates the use of the equation

$$0 = g_y(u)(f(u,v) + \delta(x)) + \theta'(x)$$

$$(7.29)$$

for arbitrary (u, v) in a neighbourhood of the solution of (6.1). Because of (6.2) we can extract v from (7.29) so that (7.29) can be written as

$$v = G(u, \delta(x), \theta'(x)) . \qquad (7.30)$$

Inserting into (7.26a) and into (6.1) this yields

$$u'(x) = f\Big(u(x), G\big(u(x), \delta(x), \theta'(x)\big)\Big) + \delta(x)$$
 (7.31a)

$$y'(x) = f(y(x), G(y(x), 0, 0))$$
 (7.31b)

In order to compute u(x) - y(x) we now apply the nonlinear variation-ofconstants formula (Theorem I.14.5). This requires the computation of the defect of u(x) inserted into (7.31b)

$$u'(x) - f(u(x), G(u(x), 0, 0))$$

= $f(u(x), G(u(x), \delta(x), \theta'(x))) + \delta(x) - f(u(x), G(u(x), 0, 0))$
= $\Phi(x, 1) - \Phi(x, 0) + \delta(x)$ (7.32)

where

$$\Phi(x, au) = f\Big(u(x), Gig(u(x), au \cdot \delta(x), au \cdot heta'(x)ig)\Big) \; .$$

Then the formula $\Phi(x,1) - \Phi(x,0) = \int_0^1 \partial \Phi / \partial \tau(x,\tau) d\tau$ shows that the defect (7.32) can be written as

$$Q_1(x)\delta(x) + Q_2(x)\theta'(x)$$
 (7.32')

We now insert this into Formula (I.14.18) and obtain

$$egin{aligned} u(x)-y(x)&=\int_{x_0}^x \operatorname{resolvent}(x,t)\cdot\operatorname{defect}(t)\,dt\ &=\int_{x_0}^x \Bigl(S_1(x,t)\delta(t)+S_2(x,t) heta'(t)\Bigr)\,dt \end{aligned}$$

Integrating the second term by parts we get (since $\theta(x_0) = 0$)

$$y_{1} - y(x_{0} + h) = \int_{x_{0}}^{x_{0} + h} \left(S_{1}(x_{0} + h, t) \,\delta(t) - \frac{\partial S_{2}}{\partial t}(x_{0} + h, t) \,\theta(t) \right) dt + S_{2}(x_{0} + h, x_{0} + h) \,\theta(x_{0} + h) .$$
(7.33)

The assumption $c_s = 1$ implies that $\theta(x_0+h) = 0$ so that the last expression in (7.33) vanishes. The main idea is now to integrate the expression in (7.33) with the quadrature formula $\{b_i, c_i\}$ (see also the proof of Theorem II.7.8). With the abbreviation

$$\sigma(t) = S_1(x_0 + h, t) \,\delta(t) - \frac{\partial S_2}{\partial t}(x_0 + h, t) \,\theta(t) \tag{7.34}$$

512 VI. Singular Perturbation Problems and Differential-Algebraic Equations

this gives

$$y_1 - y(x_0 + h) = \int_{x_0}^{x_0 + h} \sigma(t) dt = h \sum_{i=1}^s b_i \sigma(x_0 + c_i h) + err(\sigma) .$$
 (7.35)

Because of (7.27) we have $\sigma(x_0 + c_i h) = 0$ for all *i* and the quadrature error is estimated by

$$\|err(\sigma)\| \le Ch^{p+1} \max_{t \in [x_0, x_0+h]} \|\sigma^{(p)}(t)\| .$$
(7.36)

The *p*-th derivative of $\sigma(t)$ contains derivatives of f, g and of $\delta(x), \theta(x)$. By Theorem 7.8 they are uniformly bounded for $h \leq h_0$. Hence $y_1 - y(x_0 + h) = err(\sigma) = \mathcal{O}(h^{p+1})$, proving the theorem.

Projected Runge-Kutta Methods

For collocation methods which are not stiffly accurate it is possible to prove superconvergence (as in Theorem 7.9) if the method is combined with a certain projection. We start with a more careful study of the local error of the y-component in (7.33).

Lemma 7.10. If $c_i \neq 0$ for all *i*, then the y-component of the local error of the collocation method (7.23) satisfies

$$y_1 - y(x_0 + h) = -\left(f_z(g_y f_z)^{-1}\right)\left(y(x_0 + h), z(x_0 + h)\right)\theta(x_0 + h) + \mathcal{O}(h^{p+1})$$
(7.37)

where θ is the defect given by (7.26b) and p is the order of the underlying quadrature formula.

Proof. The above proof of Theorem 7.9 (see Formula (7.33)) shows that the local error satisfies

$$y_1 - y(x_0 + h) = S_2(x_0 + h, x_0 + h) \,\theta(x_0 + h) + \mathcal{O}(h^{p+1}) \;.$$

Hence, we only have to compute $S_2(x,x)$. Since any resolvent equals the identity matrix if both of its arguments are equal, it follows from the definition of $S_2(x,t)$ and from (7.32') that

$$S_2(x,x) = \int_0^1 f_z\Big(u(x), G\big(u(x), \tau\delta(x), \tau\theta'(x)\big)\Big) \frac{\partial G}{\partial \theta'}\Big(u(x), \tau\delta(x), \tau\theta'(x)\Big) d\tau.$$

Differentiating (7.29) with respect to θ' gives

$$rac{\partial G}{\partial heta'} = rac{\partial v}{\partial heta'} = -(g_y f_z)^{-1}(u,v) \; .$$

Furthermore, it follows from (7.27) that $\delta(x) = \mathcal{O}(h^s)$ and $\theta'(x) = \mathcal{O}(h^s)$ for $x = x_0 + h$. Using $u(x) - y(x) = \mathcal{O}(h^{s+1})$ (from Theorem 7.8) we thus obtain for $x = x_0 + h$

$$S_2(x,x) = \Big(f_z \big(g_y f_z\big)^{-1}\Big) \big(y(x),z(x)\big) + \mathcal{O}(h^s) \ .$$

The statement now follows from $p \leq 2s$ and from $\theta(x_0 + h) = \mathcal{O}(h^{s+1})$. \Box

The geometric interpretation of Lemma 7.10 is as follows: if we split the local error $\delta y_h(x_0)$ according to the projections of Fig. 7.1 then the component $Q(x_0+h)\delta y_h(x_0)$ is of size $\mathcal{O}(h^{s+1})$, whereas the component $P(x_0+h)\delta y_h(x_0)$ is $\mathcal{O}(h^{p+1})$. This suggests to project after every step the numerical solution of a Runge-Kutta method onto the manifold g(y) = 0with the help of the projection operator $P(x_0+h)$ as follows:

Definition 7.11 (Ascher & Petzold 1990). Let y_1, z_1 be the numerical solution of an implicit Runge-Kutta method (7.1) and define \hat{y}_1, λ as the solution of the system

$$\begin{aligned} \widehat{y}_1 &= y_1 + f_z(\widehat{y}_1, z_1)\lambda \\ 0 &= g(\widehat{y}_1) \end{aligned} \tag{7.38}$$

If the value \hat{y}_1 (and z_1) is used for the step by step integration of (6.1), then we call this procedure projected Runge-Kutta method.

Remarks. 1) If $g(y_1)$ is sufficiently small, then the nonlinear system (7.38) possesses a locally unique solution. A Newton-type iteration with starting values $\hat{y}_1^{(0)} = y_1$, $\lambda^{(0)} = 0$ will converge to this solution. This follows at once from the theorem of Newton-Kantorovich (Ortega & Rheinboldt 1970) because the Jacobian of (7.38) evaluated at the starting values

$$egin{pmatrix} I & -f_z(y_1,z_1) \ g_y(y_1) & 0 \end{pmatrix}$$

has a bounded inverse by (6.2).

2) For stiffly accurate Runge-Kutta methods (i.e., if $a_{si} = b_i$ for all *i*) the projected and unprojected Runge-Kutta methods coincide.

3) The proof of the next theorem shows that the argument in $f_z(\hat{y}_1, z_1)$ may be replaced by some other approximation to $y(x_0 + h)$, $z(x_0 + h)$ whose error is at most $\mathcal{O}(h^s)$.

The following theorem proves superconvergence for projected collocation methods (also if the corresponding Runge-Kutta method is not stiffly accurate). Superconvergence results for general Runge-Kutta methods are given in Section VI.8. **Theorem 7.12** (Ascher & Petzold 1990). If $c_i \neq 0$ for all *i*, then the y-component of the local error of the projected collocation method (7.23), (7.38) satisfies

$$\widehat{y}_1 - y(x_0 + h) = \mathcal{O}(h^{p+1})$$

where p is the order of the underlying quadrature formula.

Proof. We write $\hat{e}_1 = \hat{y}_1 - y(x_0 + h)$, $e_1 = y_1 - y(x_0 + h)$ for the local errors and denote the projections of Definition 7.3 by

$$Q = \left(f_z(g_y f_z)^{-1} g_y\right)(\widehat{y}_1, z_1) , \qquad P = I - Q .$$

The idea is to split \hat{e}_1 according to

$$\widehat{e}_1 = P \, \widehat{e}_1 + Q \, \widehat{e}_1 \tag{7.39}$$

and to estimate both components separately. The first formula of (7.38) together with (7.37) and $\theta(x_0 + h) = \mathcal{O}(h^{s+1})$ imply that

$$P\,\widehat{e}_1 = Pe_1 = \mathcal{O}(h^{p+1}) + \mathcal{O}(h^{s+1}\|\widehat{e}_1\|) .$$
(7.40)

Further we have $0 = g(\hat{y}_1) - g(y(x_0+h)) = g_y(\hat{y}_1)\hat{e}_1 + \mathcal{O}(\|\hat{e}_1\|^2)$, implying

$$Q\,\widehat{e}_1 = \mathcal{O}(\|\widehat{e}_1\|^2) \ . \tag{7.41}$$

Formulas (7.40) and (7.41) inserted into (7.39) give

$$\widehat{e}_1 = \mathcal{O}(h^{p+1}) + \mathcal{O}(h^{s+1} \| \widehat{e}_1 \|) + \mathcal{O}(\| \widehat{e}_1 \|^2)$$

and the statement of the theorem is an immediate consequence.

Global convergence of order $\mathcal{O}(h^p)$ of the projected collocation methods is obtained exactly as in the proof of Theorem 7.5. We observe that the numerical solution always remains on the manifold g(y) = 0 so that the estimate (7.9) applies.

Summary of Convergence Results

Table 7.1 collects the optimal error estimates for some important Runge-Kutta methods when applied to the index 2 problem (6.1)-(6.2). The local error estimates can be verified as follows: Gauss, Radau IA and SDIRK by Lemma 7.4, Radau IIA by Theorem 7.9, Lobatto IIIC by Theorem 8.10 below and Lobatto IIIA with the help of Exercise 4. For the projected methods the estimates follow from Theorem 7.12 and the considerations of Section VI.8. Because there are several ways of defining the z-component of the numerical solution, we do not present their convergence behaviour. The global convergence result follows from Theorems 7.5 and 7.6 for the Radau IA, Radau IIA, Lobatto IIIC and SDIRK methods. The remaining methods (Gauss and Lobatto IIIA) require some more effort because their stability function only satisfies $|R(\infty)|=1$. We refer to HLR89 for a detailed discussion of these methods.

Method	stages	local error	global error
		y z	y z
Gauss	$\begin{cases} s & \text{odd} \\ s & \text{even} \end{cases}$	h^{s+1} h^s	$\left\{ \begin{array}{c} h^{s+1} \\ h^s \end{array} \right. \left\{ \begin{array}{c} h^{s-1} \\ h^{s-2} \end{array} \right.$
projected Gauss	8	h^{2s+1}	h^{2s}
Radau IA	\$	h^s h^{s-1}	h^s h^{s-1}
projected Radau IA	\$	h^{2s-1}	h^{2s-2}
Radau IIA	\$	h^{2s} h^s	h^{2s-1} h^s
Lobatto IIIA	$\begin{cases} s & \text{odd} \\ s & \text{even} \end{cases}$	h^{2s-1} h^s	$\left \begin{array}{c} h^{2s-2} \ (*) \\ h^{s} \end{array} \right \left\{ \begin{array}{c} h^{s-1} \\ h^{s} \end{array} \right.$
Lobatto IIIC	\$	h^{2s-1} h^{s-1}	h^{2s-2} h^{s-1}
SDIRK (IV.6.16)	5	h^3 h^1	h^2 h^1
SDIRK (IV.6.18)	3	h^2 h^1	h^2 h^1

Table 7.1. Error estimates for the index 2 problem (6.1)-(6.2)

(*) conjectured

Exercises

1. Consider the index 2 problem y' = f(y, z), 0 = g(y). Put $z = u', v = (y, u)^T$ so that the problem becomes

$$F(v',v)=igg(egin{array}{c} y'-f(y,u')\ g(y) \end{array}igg)=0$$

Prove that the matrix pencil $F_v + \lambda F_{v'}$ is of index 1 whenever $g_y f_z$ is invertible.

Hint. Consider the transformation

$$\begin{pmatrix} I & a \\ 0 & I \end{pmatrix} \begin{pmatrix} F_v + \lambda F_{v'} \end{pmatrix} \begin{pmatrix} I & b \\ 0 & I \end{pmatrix}$$
(7.42)

where $a = f_y f_z (g_y f_z)^{-1}$ and $b = f_z$ are chosen such that the upper right block in (7.42) vanishes.

2. Consider Runge-Kutta methods whose coefficients satisfy:

 $a_{1i} = 0$ for all i and $(a_{ij})_{i,j>2}$ is invertible.

(Examples are collocation methods with $c_1 = 0$, such as Lobatto IIIA). If $g(\eta) = 0$ then the nonlinear system (7.2) has a locally unique solution which satisfies $Y_1 = \eta$, $Z_1 = \zeta$.

3. Let $c_1 = 0, c_2, \ldots, c_s$ be s distinct real numbers. Show that there exist unique polynomials u(x) and v(x) (deg u = s, deg v = s - 1) such that (7.23a,b) holds.

Hint. Apply the ideas of the proof of Theorem II.7.6 and Exercise 2.

- 4. Investigate the validity of the conclusions of Theorems 7.8 and 7.9 for the situation where $c_1 = 0$.
- 5. (Computation of the algebraic variable z by piecewise discontinuous interpolation, see Ascher (1989)). Modify the definition of z_{n+1} in the Runge-Kutta method (7.1) as follows: let v(x) be the polynomial of degree s-1 satisfying $v(x_n + c_i h) = Z_{ni}$ for all *i*, then define $z_{n+1} =$ $v(x_n + h)$. In the case of collocation methods (7.23) this definition removes the condition $v(x_0) = z_0$ while lowering the degree of v(x) by 1.

a) Verify: z_{n+1} does not depend on z_n , also if the stability function of the method does not vanish at infinity.

b) Prove that for projected collocation methods with $c_i \neq 0$ for all *i* we have $z_n - z(x_n) = \mathcal{O}(h^s)$.

c) For the projected Gauss methods compare this result with that of the standard approach.

6. The statement of Theorem 7.8 still holds, if one omits the condition $v(x_0) = z_0$ in Definition 7.7 and if one lets v(x) be a polynomial of degree s-1.

VI.8. Order Conditions for Index 2 DAE

For an application of the convergence result of the preceding section (Theorem 7.5) it is desirable to know the optimal values of r in (7.16). Comparing the Taylor expansions of the exact and numerical solutions we derive conditions for c_i, a_{ij}, b_j which are equivalent to (7.16). For collocation methods we recover the result of Theorem 7.9. For other methods (such as Lobatto IIIC) the estimates of Lemma 7.4 are substantially improved.

The theory of this section is given in HLR89 (Section 5). Our presentation is slightly different and is in complete analogy to the derivation of the index 1 order conditions of Section VI.3. The results of this section are here applied to Runge-Kutta methods only; analogous formulas for Rosenbrock methods can be found in Roche (1988). An independent investigation, conducted for the index 2 problem f(y, z') = 0, z = g(y) by A. Kværnø (1990), leads to the same order conditions for Runge-Kutta methods.

Derivatives of the Exact Solution

We consider the index 2 problem

$$y' = f(y, z) \tag{8.1a}$$

$$0 = g(y) \tag{8.1b}$$

and assume consistent initial values y_0, z_0 . The first derivative of the solution y(x) is given by (8.1a). Differentiating this equation we get

$$y'' = f_y(y, z)y' + f_z(y, z)z' .$$
(8.2)

In order to compute z' we differentiate (8.1b) twice

$$0 = g_y(y)y' \tag{8.3a}$$

$$0 = g_{yy}(y)(y',y') + g_y(y)y''$$
(8.3b)

and insert (8.2) and (8.1a). This yields (omitting the obvious function arguments)

$$0 = g_{yy}(f, f) + g_y f_y f + g_y f_z z'$$
(8.4)

518 VI. Singular Perturbation Problems and Differential-Algebraic Equations

or equivalently

$$z' = (-g_y f_z)^{-1} g_{yy}(f, f) + (-g_y f_z)^{-1} g_y f_y f .$$
(8.5)

Here we have used the index 2 assumption (6.2), that $g_y f_z$ is invertible in a neighbourhood of the solution. We now differentiate (8.1a) and (8.5) with respect to x, and replace the appearing y' and z' by (8.1a) and (8.5). We use (for a constant vector u)

$$\frac{d}{dx} (-g_y f_z)^{-1} u
= (-g_y f_z)^{-1} \Big(g_{yy} \big(f_z (-g_y f_z)^{-1} u, f \big) + g_y f_{zy} \big((-g_y f_z)^{-1} u, f \big)
+ g_y f_{zz} \Big((-g_y f_z)^{-1} u, (-g_y f_z)^{-1} g_{yy} (f, f) + (-g_y f_z)^{-1} g_y f_y f \Big) \Big)$$
(8.6)

(cf. Formula (3.7)) and thus obtain

$$y'' = f_y f + f_z (-g_y f_z)^{-1} g_{yy}(f, f) + f_z (-g_y f_z)^{-1} g_y f_y f$$
(8.7)

$$z'' = (-g_y f_z)^{-1} g_{yyy}(f, f, f) + 3(-g_y f_z)^{-1} g_{yy}(f, f_y f)$$
(8.8)

Obviously, a graphical representation of these expressions will be of great help.

Trees and Elementary Differentials

As in Section VI.3 we identify each occuring f with a meagre vertex, each of its derivatives with an upwards leaving branch, the expression $(-g_y f_z)^{-1}g$ with a fat vertex and the derivatives of g therein again with upwards leaving branches. The corresponding graphs for y', z', y'', z'' (see Formulas (8.1a), (8.5), (8.7), (8.8)) are given in Fig. 8.1.

The derivatives of y are characterized by trees with a meagre root (the lowest vertex). These trees will be denoted by t or t_i , the tree consisting of

the root only (for y') being τ . Derivatives of z have trees with a *fat root*. They will be denoted by u or u_i . Extending Definitions 3.1, 3.2 and 3.3 to our present situation we have:

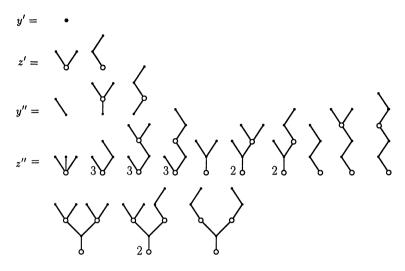


Fig. 8.1. Graphical representation of the first derivatives

Definition 8.1. Let $DAT2 = DAT2_y \cup DAT2_z$ denote the set of (differential algebraic index 2) trees defined recursively by

- a) $\tau \in DAT2_y$, b) $[t_1, \dots, t_m, u_1, \dots, u_n]_y \in DAT2_y$ if $t_1, \dots, t_m \in DAT2_y$ and $u_1, \dots, u_n \in DAT2_z$; c) $[t_1, \dots, t_n] \in DAT2_y$ if $t_1, \dots, t_n \in DAT2_z$;
- c) $[t_1, \ldots, t_m]_z \in DAT2_z$ if $t_1, \ldots, t_m \in DAT2_y$ and either m > 1 or m = 1 and $t_1 \neq [u]_y$ with $u \in DAT2_z$.

Definition 8.2. The order of a tree $t \in DAT2_y$ or $u \in DAT2_z$, denoted by $\varrho(t)$ or $\varrho(u)$, is the number of meagre vertices minus the number of fat vertices.

Definition 8.3. The elementary differentials F(t) (or F(u)) corresponding to trees in DAT2 are defined as follows:

$$\begin{split} \mathbf{a}) \quad F(\tau) &= f, \\ \mathbf{b}) \quad F(t) &= \frac{\partial^{m+n} f}{\partial y^m \partial z^n} \, \left(F(t_1), \dots, F(t_m), \, F(u_1), \dots, F(u_n) \right) \\ &\quad \text{if } t = [t_1, \dots, t_m, \, u_1, \dots, u_n]_y \in DAT2_y, \\ \mathbf{c}) \quad F(u) &= (-g_y f_z)^{-1} \, \frac{\partial^m g}{\partial y^m} \, \left(F(t_1), \dots, F(t_m) \right) \\ &\quad \text{if } u = [t_1, \dots, t_m]_z \in DAT2_z. \end{split}$$

Taylor Expansion of the Exact Solution

In order to continue the process which led to (8.7) and (8.8) we need the differentiation of elementary differentials F(t) and F(u). This is described by the following rules:

- i) attach to each vertex a branch with τ (derivative of f or g with respect to y and addition of the factor y' = f);
- ii) attach to each meagre vertex a branch with [τ, τ]_z; attach to each meagre vertex a branch with [[τ]_y]_z (this yields two new trees and corresponds to the derivative of f with respect to z and to the addition of the factors (-g_yf_z)⁻¹g_{yy}(f, f) and (-g_yf_z)⁻¹g_yf_yf of (8.5));
- iii) split each fat vertex into two new fat vertices (one above the other) and link them via a new meagre vertex. Then four new trees are obtained as follows: attach a branch with τ to the lower of these fat vertices; attach a branch with $\tau, [\tau, \tau]_z$ or $[[\tau]_y]_z$ to the new meagre vertex (this corresponds to the derivation of $(-g_y f_z)^{-1}$ and follows at once from Formula (8.6)).

Some of the elementary differentials in (8.8) appear more than once. In order to understand how often such an expression (or the corresponding tree) appears in the derivatives of y or z, we indicate the order of generation of the vertices as follows (see Fig. 8.2): for the trees of order 1, namely $\tau, [\tau, \tau]_z$ and $[[\tau]_y]_z$, we add the label 1 to a meagre vertex such that

each fat vertex is followed by at least one unlabelled meagre vertex. (8.9)

Each time a tree is "differentiated" according to the above rules we provide the newly attached tree (of order 1) with a new label such that (8.9) still holds. The labelling so obtained is obviously increasing along each branch.

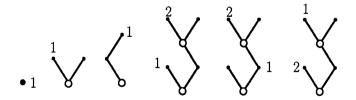


Fig. 8.2. Examples of monotonically labelled trees

Definition 8.4. A tree $t \in DAT2_y$ (or $u \in DAT2_z$), together with a monotonic labelling of $\varrho(t)$ (or $\varrho(u)$) among its meagre vertices such that (8.9) holds, is called a monotonically labelled tree. The sets of such m. l. trees are denoted by $LDAT2_y$, $LDAT2_z$, and LDAT2.

Since the differentiation process of trees described above generates all elements of LDAT2, and each of them exactly once, and since each differentiation increases the order of the trees by one, we have the following result.

Theorem 8.5 (HLR89, p. 58). For the exact solution of (8.1) we have:

$$\begin{split} y^{(q)}(x_0) &= \sum_{t \in LDAT2_y, \varrho(t) = q} F(t)(y_0, z_0) = \sum_{t \in DAT2_y, \varrho(t) = q} \alpha(t)F(t)(y_0, z_0) \\ z^{(q)}(x_0) &= \sum_{u \in LDAT2_z, \varrho(u) = q} F(u)(y_0, z_0) = \sum_{u \in DAT2_z, \varrho(u) = q} \alpha(u)F(u)(y_0, z_0). \end{split}$$

The integer coefficients $\alpha(t)$ and $\alpha(u)$ indicate the number of possible monotonic labellings of a tree.

Derivatives of the Numerical Solution

For the problem (8.1) with consistent initial values (y_0, z_0) we write one step of a Runge-Kutta method in the form

$$y_1 = y_0 + \sum_{i=1}^{s} b_i k_i$$
, $z_1 = z_0 + \sum_{i=1}^{s} b_i \ell_i$ (8.10a)

where

$$k_i = hf(Y_i, Z_i)$$
, $0 = g(Y_i)$ (8.10b)

and

$$Y_i = y_0 + \sum_{j=1}^s a_{ij}k_j$$
, $Z_i = z_0 + \sum_{j=1}^s a_{ij}\ell_j$. (8.10c)

We have replaced hk_{ni} , hl_{ni} of Formula (7.1) by k_i , ℓ_i . This is not essential, but adjusts the derivation of the order conditions to the presentation of Section VI.3. Since the following derivation is very similar to the one given in Section VI.3, we restrict ourselves to the main ideas.

We consider $y_1, z_1, k_i, \ell_i, Y_i, Z_i$ as functions of h and compute their derivatives at h=0. From (8.10a) we get

$$y_1^{(q)}(0) = \sum_{i=1}^s b_i k_i^{(q)}(0) , \qquad (8.11)$$

and (8.10b) yields

$$k_i^{(q)}(0) = q \left(f(Y_i, Z_i) \right)^{(q-1)} \Big|_{h=0} , \qquad 0 = \left(g(Y_i) \right)^{(q)} \Big|_{h=0} . \tag{8.12}$$

The total derivatives of $f(Y_i, Z_i)$ and $g(Y_i)$ can be computed by Faà di Bruno's formula (see (3.14) and (3.15)). This gives

$$\left(f(Y_i, Z_i)\right)^{(q-1)} = \sum \frac{\partial^{m+n} f(Y_i, Z_i)}{\partial y^m \partial z^n} \left(Y_i^{(\mu_1)}, \dots, Y_i^{(\mu_m)}, Z_i^{(\nu_1)}, \dots, Z_i^{(\nu_n)}\right)$$
(8.13)

with $\mu_1 + ... + \mu_m + \nu_1 + ... + \nu_n = q - 1$, and

$$\left(g(Y_i)\right)^{(q)} = \sum \frac{\partial^m g(Y_i)}{\partial y^m} \left(Y_i^{(\mu_1)}, \dots, Y_i^{(\mu_m)}\right)$$
(8.14)

with $\mu_1 + \ldots + \mu_m = q$. The summations in (8.13) and (8.14) are over sets of suitable "special labelled trees". We next insert

$$Y_i^{(\mu)} = \sum_{j=1}^s a_{ij} k_j^{(\mu)}$$
(8.15)

into (8.13) and (8.14) and so obtain from (8.12)

$$k_i^{(q)}(0) = q \sum \frac{\partial^{m+n} f(y_0, z_0)}{\partial y^m \partial z^n} \left(\sum_{j=1}^s a_{ij} k_j^{(\mu_1)}(0), \dots, Z_i^{(\nu_1)}(0), \dots \right)$$
(8.16)

and

$$0 = g_{y}(y_{0}) \sum_{j=1}^{s} a_{ij} k_{j}^{(q)}(0) + \sum_{m \ge 2} \frac{\partial^{m} g(y_{0})}{\partial y^{m}} \left(\sum_{j=1}^{s} a_{ij} k_{j}^{(\mu_{1})}(0), \ldots \right) .$$
(8.17)

Inserting (8.16) into the first term of (8.17) and extracting $Z_j^{(q-1)}(0)$ we get

$$(-g_y f_z)(y_0, z_0) \sum_{j=1}^s a_{ij} Z_j^{(q-1)}(0)$$
(8.18)

$$= \sum_{(m,n)\neq(0,1)} g_y(y_0) \frac{\partial^{m+n} f(y_0, z_0)}{\partial y^m \partial z^n} \left(\sum_{j=1}^s a_{ij} k_j^{(\mu_1)}(0), \dots, Z_i^{(\nu_1)}(0), \dots \right) \\ + \frac{1}{q} \sum_{m \ge 2} \frac{\partial^m g(y_0)}{\partial y^m} \left(\sum_{j=1}^s a_{ij} k_j^{(\mu_1)}(0), \dots \right).$$

This formula allows us to compute $Z_i^{(q-1)}$, whenever $(g_y f_z)$ and (a_{ij}) are invertible. We denote the coefficients of the inverse of (a_{ij}) by ω_{ij} , i.e.,

$$(\omega_{ij}) = (a_{ij})^{-1}$$
 (8.19)

The following result then follows by induction on q from (8.16) and (8.18).

Theorem 8.6 (HLR89). The derivatives of k_i and Z_i satisfy

$$\begin{split} k_i^{(q)}(0) &= \sum_{t \in LDAT2_y, \varrho(t) = q} \gamma(t) \Phi_i(t) F(t)(y_0, z_0) \\ Z_i^{(q)}(0) &= \sum_{u \in LDAT2_x, \varrho(u) = q} \gamma(u) \Phi_i(u) F(u)(y_0, z_0) \ , \end{split}$$

where the coefficients $\Phi_i(t)$ and $\Phi_i(u)$ are given by $\Phi_i(\tau)\!=\!1$ and

$$\Phi_i(t) = \sum_{\mu_1,\dots,\mu_m} a_{i\mu_1} \cdots a_{i\mu_m} \cdot \Phi_{\mu_1}(t_1) \cdots \Phi_{\mu_m}(t_m) \Phi_i(u_1) \cdots \Phi_i(u_n)$$

if $t = [t_1,\dots,t_m,u_1,\dots,u_n]_y$

$$\Phi_i(u) = \sum_{j,\mu_1,\dots,\mu_m} \omega_{ij} a_{j\mu_1} \cdots a_{j\mu_m} \cdot \Phi_{\mu_1}(t_1) \cdots \Phi_{\mu_m}(t_m)$$
$$if \ u = [t_1,\dots,t_m]_{z}$$

and the rational coefficients $\gamma(t)$ and $\gamma(u)$ are defined by $\gamma(\tau)=1$ and

$$\begin{split} \gamma(t) &= \varrho(t)\gamma(t_1)\ldots\gamma(t_m)\gamma(u_1)\ldots\gamma(u_n) \quad \text{ if } t = [t_1,\ldots,t_m,u_1,\ldots,u_n]_y \\ \gamma(u) &= \frac{1}{\varrho(u)+1} \gamma(t_1)\ldots\gamma(t_m) \qquad \text{ if } u = [t_1,\ldots,t_m]_z \ . \end{split}$$

The derivatives of the numerical solution y_1 are now obtained from (8.11). In order to get those of z_1 , we compute ℓ_i from (8.10c) and insert it into (8.10a). This yields

$$z_1 = z_0 + \sum_{i,j=1}^{s} b_i \omega_{ij} (Z_j - z_0)$$
(8.20)

and its derivatives are given by

$$z_1^{(q)}(0) = \sum_{i,j=1}^s b_i \omega_{ij} Z_j^{(q)}(0) .$$
(8.21)

We thus obtain the following result.

Theorem 8.7. The numerical solution of (8.10) satisfies:

$$\begin{split} y_1^{(q)}|_{h=0} &= \sum_{t \in LDAT2_y, \varrho(t)=q} \gamma(t) \sum_{i=1}^s b_i \Phi_i(t) F(t)(y_0, z_0) \\ z_1^{(q)}|_{h=0} &= \sum_{u \in LDAT2_x, \varrho(u)=q} \gamma(u) \sum_{i,j=1}^s b_i \omega_{ij} \Phi_j(u) F(u)(y_0, z_0) \end{split}$$

where the coefficients γ and Φ_i are given in Theorem 8.6.

Order Conditions

A comparison of Theorem 8.7 with Theorem 8.5 gives

Theorem 8.8 (HLR89). For the Runge-Kutta method (8.10) we have

$$\begin{split} y(x_0+h) - y_1 &= \mathcal{O}(h^{p+1}) \quad iff \\ &\sum_{i=1}^s b_i \Phi_i(t) = \frac{1}{\gamma(t)} \quad for \quad t \in DAT2_y, \quad \varrho(t) \leq p \ , \\ z(x_0+h) - z_1 &= \mathcal{O}(h^{q+1}) \quad iff \\ &\sum_{i,j=1}^s b_i \omega_{ij} \Phi_j(u) = \frac{1}{\gamma(u)} \quad for \quad u \in DAT2_z, \quad \varrho(u) \leq q \ , \end{split}$$

where the coefficients γ and Φ_i are those of Theorem 8.6 and ω_{ij} is given by (8.19).

Remark 8.9. Let $P(x_0) = I - (f_z(g_y f_z)^{-1} g_y)(y_0, z_0)$ be the projection introduced in Definition 7.3. Since $P(x_0)f_z(y_0, z_0) = 0$ we have

 $P(x_0)F(t)(y_0, z_0) = 0 (8.22)$

for all trees $t \in DAT2_y$ of the form $t = [u]_y$ with $u \in DAT2_z$. Consequently, such trees of order p need not be considered for the construction of Runge-Kutta methods of order p (see Theorem 7.5).

Applying repeatedly the definition of Φ_i in Theorem 8.6 we get the following algorithm:

Forming the order condition for a given tree: attach to each vertex one summation index; if the root is fat, attach three indices to this root. Then the left hand side of the order condition is a sum over all indices of a product with factors

b_i	if " i " is the index of a meagre root;		
$b_i \omega_{ij} \omega_{jk}$	if " i, j, k " are the three indices of a fat root;		
a_{ij}	if "j" lies directly above "i" and "j" is meagre;		
ω_{ij}	if "j" lies directly above "i" and "j" is fat.		

In Table 8.1 we collect the order conditions for some trees of DAT2. We have not included the trees which have only meagre vertices, because their order condition is exactly the same as that of Section II.2 (Table 2.1). Several trees of DAT2 lead to the same order condition (Exercise 2). We also observe that some of the order conditions for the trees $[u]_y$ with $u \in DAT2_z$ are identical to those for index 1 problems (see Exercise 1 of Section VI.3).

$\varrho(t)$	graph	order condition
2	Y	$\sum b_i \omega_{ij} c_j^2 = 1$
3 3 3 3	$\begin{array}{c} \mathbb{Y}_{\mathbf{y}}\\ \mathbb{Y}_{\mathbf{y}}\\ \mathbb{Y}_{\mathbf{y}}\end{array}$	$egin{aligned} &\sum b_i \omega_{ij} c_j^3 = 1 \ &\sum b_i \omega_{ij} c_j a_{jk} c_k = rac{1}{2} \ &\sum b_i c_i \omega_{ij} c_j^2 = rac{2}{3} \ &\sum b_i \omega_{ij} c_j^2 \omega_{ik} c_k^2 = rac{4}{3} \end{aligned}$
$\varrho(u)$	graph	order condition
1	\bigvee	$\sum b_i \omega_{ij} \omega_{jk} c_k^2 = 2$
2 2	\checkmark	$\sum b_i \omega_{ij} \omega_{jk} c_k^3 = 3$ $\sum b_i \omega_{ij} \omega_{jk} c_k a_{k\ell} c_\ell = rac{3}{2}$

 Table 8.1. Trees and order conditions

Simplifying Assumptions

For the construction of implicit Runge-Kutta methods the simplifying conditions B(p), $C(\eta)$, $D(\xi)$ of Section IV.5 play an important role. The following result extends Theorem IV.5.1 to index 2 problems.

Theorem 8.10 (HLR89, p. 67). Suppose that the Runge-Kutta matrix (a_{ij}) is invertible and that $b_i = a_{si}$ for i = 1, ..., s. Then the conditions B(p), $C(\eta)$, $D(\xi)$ with $p \leq 2\eta$ and $p \leq \eta + \xi + 1$ imply that the y-component of the local error of (8.1) satisfies

$$y_1 - y(x_0 + h) = \mathcal{O}(h^{p+1})$$
.

Proof. We just outline the main ideas; details are given in (HLR89, pp. 64-67). As in Section II.7 (Fig. II.7.1) we first simplify the order conditions with the help of $C(\eta)$. This implies that trees with a branch ending with $[\tau, \ldots, \tau]_y$ (the number of τ 's is k-1) where $k \leq \eta$ need no longer be considered. If we write $C(\eta)$ in the form

$$\sum_{j=1}^{s} \omega_{ij} c_j^k = k c_i^{k-1} \quad \text{for} \quad k = 1, \dots, \eta , \qquad (8.23)$$

we observe that trees ending with $[\tau, \ldots, \tau]_z$ can also be reduced if the number of τ 's is between 1 and η .

The simplifying condition $D(\xi)$ allows us to remove trees $[\tau, \ldots, \tau, t]_y$ with $t \in DAT_y$, where the number of τ 's is $\leq \xi$. Writing $D(\xi)$ as

$$\sum_{i=1}^{s} b_i c_i^k \omega_{ij} = \sum_{i=1}^{s} b_i \omega_{ij} - k b_j c_j^{k-1} \quad \text{for} \quad k = 1, \dots, \xi$$
(8.24)

it follows that the trees $[\tau, \ldots, \tau, u]_y$ with $u \in DAT_z$ (number of τ 's is k) can also be eliminated for $1 \le k \le \xi$. Since $p \le 2\eta$ and $p \le \eta + \xi + 1$ all that remains after these reductions are the bushy trees $[\tau, \ldots, \tau]_y$ whose order conditions are satisfied by B(p), and trees of the form $[u]_y$ with $u \in DAT_z$. Because of the assumption $b_i = a_{si}$ we have

$$\sum_{i=1}^{s} b_{i} \omega_{ij} = \begin{cases} 0 & \text{if} \quad j = 1, \dots, s - 1 \\ 1 & \text{if} \quad j = s \end{cases},$$
(8.25)

and these trees can also be reduced to the bushy trees.

Remark. If the function f of (8.1a) is linear in z, i.e.,

$$f(y,z) = f_0(z) + f_z(y)z , \qquad (8.26)$$

then the elementary differentials for trees $[t_1, \ldots, t_m, u_1, \ldots, u_n]_y$ with $n \geq 2$ vanish identically and the corresponding order conditions need not be considered. In this situation the assumption $p \leq 2\eta$ can be relaxed to $p \leq 2\eta + 1$. An important class of problems satisfying (8.26) are constrained mechanical systems in the index 2 formulation (5.38a,b,d).

As an illustration of Theorem 8.10 we consider the Lobatto IIIC methods. They satisfy $B(p), C(\eta), D(\xi)$ with $p=2s-2, \eta=s-1$ and $\xi=s-1$ (see Table IV.5.13) and also $a_{si}=b_i$. It therefore follows from Theorem 8.10 that the local error satisfies $\delta y_h(x) = \mathcal{O}(h^{2s-1})$.

The following result shows that for methods which do not satisfy $a_{si} = b_i$ it is unlikely that the estimates of Lemma 7.4 can be improved.

Lemma 8.11. Let p be the largest integer such that the y-component of the local error satisfies

$$\delta y_h(x) = \mathcal{O}(h^{p+1}) \; .$$

If the Runge-Kutta matrix is invertible and $c_i \neq 1$ for all i, then

$$p \leq s^*$$

where s^* is the number of distinct non-zero values among c_1, \ldots, c_s .

Proof. The order conditions for the trees $[[\tau, \ldots, \tau]_z]_y$ imply that

$$\sum_{i,j=1}^{s} b_i \omega_{ij} \int_0^{c_j} q(t) dt = \int_0^1 q(t) dt$$
 (8.27)

for all polynomials q(t) of degree $\leq p-1$. Put q(t) = d'(t), where d(t) is a polynomial of minimal degree such that $d(c_i) = 0$ for all i, d(0) = 0 and $d(1) \neq 0$. Condition (8.27) is violated by this polynomial. The inequality $p \leq s^*$ now follows because the degree of this polynomial q(t) is s^* .

Projected Runge-Kutta Methods

It is, of course, interesting to study the convergence order of projected Runge-Kutta methods (Definition 7.11) which are not yet covered by Theorem 7.12. The main tool for the subsequent study is the following interpretation of projected Runge-Kutta methods.

Lemma 8.12 (Lubich 1990). Consider an s-stage Runge-Kutta method with invertible coefficient matrix A and the extended (s + 1)-stage method defined in Table 8.2. For an initial value y_0 satisfying $g(y_0) = 0$ denote their numerical solutions after one step by y_1 and y_1^{ϵ} , respectively. If the function f in (8.1a) is linear in z (i.e., (8.26) is satisfied), then the numerical solution \hat{y}_1 of the projected Runge-Kutta method (7.1), (7.38) satisfies

$$\widehat{y}_1 - y_1^{\epsilon} = \mathcal{O}(h\epsilon) \tag{8.28}$$

for h sufficiently small and $\epsilon \to 0$.

$$\begin{array}{c|c|c|c} c & A & 0 \\ \hline \\ \hline \\ b^T \end{array} \qquad \begin{array}{c|c|c|c} c & A & 0 \\ \hline 1 + \epsilon & b^T & \epsilon \\ \hline \\ b^T & \epsilon \end{array}$$

Proof. The last stage of the extended (s+1)-stage Runge-Kutta method reads

$$Y_{s+1} = y_1 + h\varepsilon f(Y_{s+1}, Z_{s+1}) 0 = g(Y_{s+1})$$
(8.29)

and we have $y_1^{\epsilon} = Y_{s+1}$ (note that this is the result of an implicit Euler step with step size $h\epsilon$ starting from y_1). Using the linearity of f with respect to

528 VI. Singular Perturbation Problems and Differential-Algebraic Equations

z and putting $\lambda = h \varepsilon Z_{s+1}$ we obtain

$$y_1^{\epsilon} = y_1 + h\epsilon f_0(y_1^{\epsilon}) + f_z(y_1^{\epsilon})\lambda$$

$$0 = g(y_1^{\epsilon}) .$$
(8.30)

Comparing (8.30) with (7.38) the implicit function theorem implies that (8.28) is satisfied for sufficiently small h and ε .

The implicit function theorem, applied to (8.30), also shows that y_1^{ε} is as often differentiable with respect to h and ε as the right-hand side of the problem (8.1) is. Hence, the Taylor series expansion of y_1^{ε} with respect to hhas coefficients which converge to a finite limit as $\varepsilon \to 0$.

The order conditions for a projected Runge-Kutta method (applied to (8.1), (8.26)) can thus be obtained by considering the limit $\varepsilon \to 0$ in the order conditions for the extended Runge-Kutta method (Exercise 5). Let us illustrate this by extending the statement of Theorem 8.10 to projected Runge-Kutta methods.

Theorem 8.13 (Lubich 1990). Suppose that the Runge-Kutta matrix A is invertible and that the index 2 problem satisfies (8.26). Then the conditions $B(p), C(\eta), D(\xi)$ with $p \leq 2\eta+1$ and $p \leq \eta+\xi+1$ imply that the the local error of the projected Runge-Kutta method satisfies

$$\widehat{y}_1 - y(x_0 + h) = \mathcal{O}(h^{p+1})$$
 (8.31)

If in addition $p \leq 2\eta$ then (8.31) holds also when f is nonlinear in z.

Proof. One verifies that the conditions B(p), $C(\eta)$, $D(\xi)$, (8.23), (8.24) and (8.25) are, in the limit $\epsilon \to 0$, also satisfied for the extended method of Table 8.2. Let us demonstrate this for the Condition (8.23). The inverse of the extended Runge-Kutta matrix is given by

$$\begin{pmatrix} A & 0 \\ b^T & \varepsilon \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} & 0 \\ -\varepsilon^{-1}b^T A^{-1} & \varepsilon^{-1} \end{pmatrix} .$$
 (8.32)

Therefore (8.23) is seen to be satisfied for $i=1,\ldots,s$. For i=s+1 one gets

$$\sum_{j=1}^{s+1} \omega_{s+1,j} c_j^k = -\varepsilon^{-1} \sum_{i,j=1}^s b_i \omega_{ij} c_j^k + \varepsilon^{-1} (1+\varepsilon)^k .$$
 (8.33)

Using (8.23) for $i \leq s$ and B(p) the right-hand expression of (8.33) becomes $-\varepsilon^{-1} + \varepsilon^{-1}(1+\varepsilon)^k$ and tends to k for $\varepsilon \to 0$. Hence, Condition (8.23) is, in the limit $\varepsilon \to 0$, also satisfied for i=s+1. As in the proof of Theorem 8.10 (see also the remark after that proof) we deduce the statement for the case where f(y, z) is linear in z.

The generalization to nonlinear problems can be proved by a perturbation argument. We let z(x) be the exact solution of (8.1) and consider the problem (Lubich 1990)

$$u' = f(u, z(x)) + f_z(u, z(x))\lambda$$

$$0 = g(u)$$
(8.34)

in the variables u and λ . This new problem is of index 2 again and has obviously the solution u(x) = y(x) and $\lambda(x) = 0$. Since (8.34) is linear in the algebraic variable λ , the theorem can be applied and we get for the projected Runge-Kutta solution

$$\widehat{u}_1 - y(x_0 + h) = \mathcal{O}(h^{p+1})$$
 (8.35)

We still have to estimate $\hat{y}_1 - \hat{u}_1$. This is possible with the help of Theorem 7.2. In addition to the nonlinear system (7.2) (with $\eta = y_0$) we consider the method applied to (8.34):

$$U_{i} = y_{0} + h \sum_{j=1}^{s} a_{ij} \left(f(U_{j}, z(x_{0} + c_{j}h)) + f_{z}(U_{j}, z(x_{0} + c_{j}h))\Lambda_{j} \right)$$

$$0 = g(U_{i}) .$$
(8.36)

Its first line can be written as

$$U_i = y_0 + h \sum_{j=1}^s a_{ij} f\left(U_j, z(x_0 + c_j h) + \Lambda_j\right) + \mathcal{O}(h \|\Lambda\|^2)$$

where $\|\Lambda\| = \max_{i} \|\Lambda_{i}\|$. Theorem 7.2 thus yields

$$\|\boldsymbol{U}_i - \boldsymbol{Y}_i\| \le Ch \|\boldsymbol{\Lambda}\|^2 \tag{8.37a}$$

$$\|\Lambda_i + z(x_0 + c_i h) - Z_i\| \le C \|\Lambda\|^2$$
 . (8.37b)

Since $C(\eta)$ holds, the estimate (7.14) together with (8.37b) proves $\Lambda_i = \mathcal{O}(h^{\eta})$. We thus obtain $y_1 - u_1 = \mathcal{O}(h^{2\eta+1})$ with the help of (8.37), and $\hat{y}_1 - \hat{u}_1 = \mathcal{O}(h^{2\eta+1})$ as a consequence of $z_1 - z(x_0 + h) = \mathcal{O}(h^{\eta})$.

Examples. 1) Collocation methods satisfy B(p), C(s) and D(p-s) where s is the number of stages and p the order of the underlying quadrature formula (consult Lemma IV.5.4). Hence, the above presentation provides an alternative proof of Theorem 7.12.

2) The projected s-stage Radau IA method (see Table IV.5.13) has order 2s-1 for problems which are linear in z, and order 2s-2 for general nonlinear index 2 problems.

Exercises

1. Denote by r the largest number such that the local error of the zcomponent satisfies $\delta z_h(x) = \mathcal{O}(h^r)$. For implicit Runge-Kutta methods with invertible coefficient matrix, $R(\infty) = 0$ and $c_j \leq 1$ (all j) prove that

$$r \leq s^*$$

where s^* is the number of distinct non-zero values among c_1, \ldots, c_s . Hint. The order conditions for the bushy trees $[\tau, \ldots, \tau]_z$ imply that

$$\sum_{i,j,k} b_i \omega_{ij} \omega_{jk} \int_0^{c_k} q(t) dt = q(1)$$

for all polynomials q(t) of degree $\leq r-1$.

- 2. If a tree of DAT2 satisfies one of the following two conditions
 - a) a fat vertex is singly branched

b) a singly branched meagre vertex (\neq root) is followed by a fat vertex then the corresponding order condition is equivalent to that of a tree of the same order but with fewer fat vertices. Consequently, trees satisfying either a) or b) need not be considered for the construction of Runge-Kutta methods.

- 3. Suppose that the function f(y, z) in (8.1) is linear in z. Characterize the trees of DAT2 for which the elementary differential vanishes identically.
- 4. With the help of Theorem 8.10 and Lemma IV.5.4 give a new (algebraic) proof of Theorem 7.9.
- 5. (Lubich 1990). Consider a projected Runge-Kutta method for index 2 problems which are linear in z. Prove that $\hat{y}_1 y(x_0 + h) = \mathcal{O}(h^4)$ iff the condition

$$\sum_{i,j=1}^{s} b_i (1-c_i) \omega_{ij} c_j^2 = \frac{1}{3}$$

is satisfied in addition to the four order conditions already needed for ordinary differential equations.

VI.9. Computation of Multibody Mechanisms

"Dynamics of multibody systems is of great importance in the fields of robotics, biomechanics, spacecraft control, road and rail vehicle design, and dynamics of machinery." (W. Schiehlen 1990)

In Section VI.5 we have seen several formulations for the computation of mechanical systems. We now study the efficiency of an implicit Runge-Kutta code (RADAU5) for two particular multibody mechanisms with constraints, one nonstiff and one stiff. General references for the computation of mechanical systems are Haug (1989) and Roberson & Schwertassek (1988).

Description of the Model

We first consider "Andrew's squeezing mechanism", which has become prominent through the work of Giles (1978) and Manning (1981), who promoted it as a test example for numerical codes. It consists of 7 rigid bodies connected by joints without friction in plane motion. It is represented in Figures 9.1 and 9.2, which we have copied (with permission) from the book of Schiehlen (1990). The numerical constants, also taken from Schiehlen (1990), are displayed in Tables 9.1 and 9.2. The arrows in Fig. 9.2 indicate the positions of the centres of gravity C_1, \ldots, C_7 . In Table 9.1 the spring coefficient of the spring connecting the point D with C is denoted by c_0 and the unstretched length is ℓ_0 . We suppose that the mechanism is driven by a motor, located at O, whose constant drive torque is given by mom = 0.033. The coordinate origin is the point O in Fig. 9.1 and the coordinates of the other fixed points A, B and C are given by

$$\begin{pmatrix} xa \\ ya \end{pmatrix} = \begin{pmatrix} -0.06934 \\ -0.00227 \end{pmatrix}, \quad \begin{pmatrix} xb \\ yb \end{pmatrix} = \begin{pmatrix} -0.03635 \\ 0.03273 \end{pmatrix}, \quad \begin{pmatrix} xc \\ yc \end{pmatrix} = \begin{pmatrix} 0.014 \\ 0.072 \end{pmatrix}. \quad (9.1)$$

In order to derive the equations of motion we use the angles (see Fig. 9.1)

$$q_1 = \beta, \quad q_2 = \Theta, \quad q_3 = \gamma, \quad q_4 = \Phi, \quad q_5 = \delta, \quad q_6 = \Omega, \quad q_7 = \varepsilon, \quad (9.2)$$

as position coordinates for the mechanical system. If (x_j, y_j) are the cartesian coordinates of the centre of gravity C_j $(j=1,\ldots,7)$, the kinetic energy of the multibody system is

$$T = \sum_{j=1}^{7} m_j \frac{\dot{x}_j^2 + \dot{y}_j^2}{2} + \sum_{j=1}^{7} I_j \frac{\dot{\omega}_j^2}{2}$$
(9.3)

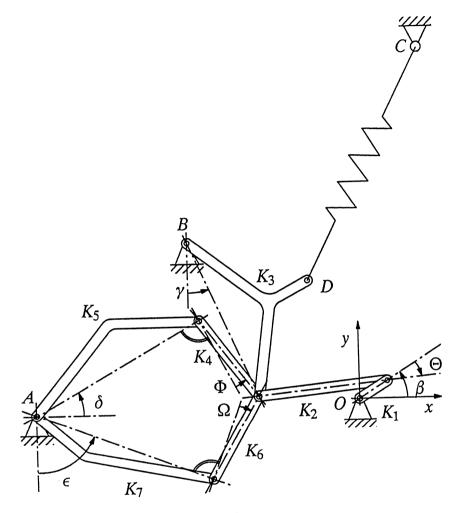


Fig. 9.1. Seven body mechanism (Schiehlen 1990, with permission)

d = 0.028	da = 0.0115	e = 0.02
ea = 0.01421	zf = 0.02	fa = 0.01421
rr = 0.007	ra = 0.00092	ss = 0.035
sa = 0.01874	sb = 0.01043	sc = 0.018
sd = 0.02	zt = 0.04	ta = 0.02308
tb = 0.00916	u = 0.04	ua = 0.01228
ub = 0.00449	$c_0 = 4530$	$\ell_0=0.07785$

Table 9.1. Geometrical parameters

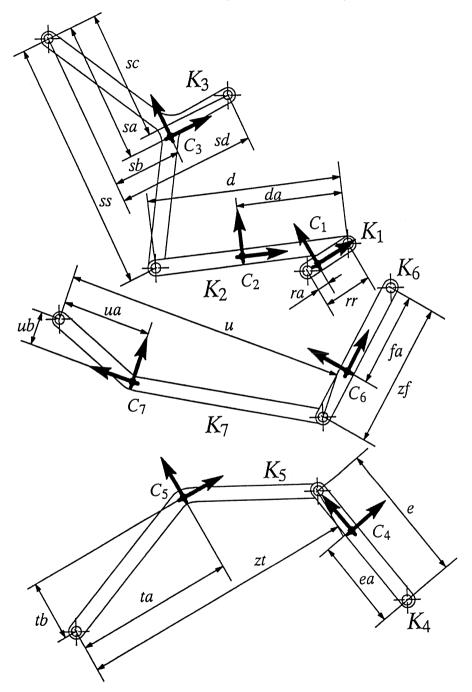


Fig. 9.2. Geometrical design (Schiehlen 1990, with permission)

No.	masses m_1 to m_7	inertias I_1 to I_7
1	0.04325	$2.194\cdot 10^{-6}$
2	0.00365	$4.410 \cdot 10^{-7}$
3	0.02373	$5.255\cdot 10^{-6}$
4	0.00706	$5.667\cdot 10^{-7}$
5	0.07050	$1.169 \cdot 10^{-5}$
6	0.00706	$5.667 \cdot 10^{-7}$
7	0.05498	$1.912 \cdot 10^{-5}$

Table 9.2. Parameters of the 7 bodies

where ω_j is the total angle of rotation of the *j*-th body and m_j , I_j are constants given in Table 9.2. The values of x_j, y_j , $\dot{x}_j^2 + \dot{y}_j^2$ and $\dot{\omega}_j$ can be obtained in terms of (9.2) by simple geometry (see Fig. 9.1 and Fig. 9.2):

$$\begin{split} C_1: \quad x_1 &= ra \cdot \cos \beta \\ y_1 &= ra \cdot \sin \beta \\ \dot{x}_1^2 + \dot{y}_1^2 &= ra^2 \cdot \dot{\beta}^2 \\ \dot{\omega}_1 &= \dot{\beta} \\ \end{split}$$

$$\begin{split} C_2: \quad x_2 &= rr \cdot \cos \beta - da \cdot \cos(\beta + \Theta) \\ y_2 &= rr \cdot \sin \beta - da \cdot \sin(\beta + \Theta) \\ \dot{x}_2^2 + \dot{y}_2^2 &= (rr^2 - 2 \cdot da \cdot rr \cdot \cos \Theta + da^2) \cdot \dot{\beta}^2 \\ &\quad + 2 \cdot (-rr \cdot da \cdot \cos \Theta + da^2) \cdot \dot{\beta} \cdot \dot{\Theta} + da^2 \cdot \dot{\Theta}^2 \\ \dot{\omega}_2 &= \dot{\beta} + \dot{\Theta} \end{split}$$

$$C_3: \quad x_3 = xb + sa \cdot \sin\gamma + sb \cdot \cos\gamma$$
$$y_3 = yb - sa \cdot \cos\gamma + sb \cdot \sin\gamma$$
$$\dot{x}_3^2 + \dot{y}_3^2 = (sa^2 + sb^2) \cdot \dot{\gamma}^2$$
$$\dot{\omega}_3 = \dot{\gamma}$$

$$\begin{array}{ll} C_4: & x_4 = xa + zt \cdot \cos \delta + (e - ea) \cdot \sin(\Phi + \delta) \\ & y_4 = ya + zt \cdot \sin \delta - (e - ea) \cdot \cos(\Phi + \delta) \\ & \dot{x}_4^2 + \dot{y}_4^2 = (e - ea)^2 \cdot \dot{\Phi}^2 + 2 \cdot \left((e - ea)^2 + zt \cdot (e - ea) \cdot \sin \Phi\right) \cdot \dot{\Phi} \cdot \dot{\delta} \\ & + \left(zt^2 + 2 \cdot zt \cdot (e - ea) \cdot \sin \Phi + (e - ea)^2\right) \cdot \dot{\delta}^2 \\ & \dot{\omega}_4 = \dot{\Phi} + \dot{\delta} \end{array}$$

The *potential energy* of the system is due to the motor at the origin and to the spring connecting the point D with C. By Hooke's law it is

$$U = -mom \cdot \beta + c_0 \, \frac{(\ell - \ell_0)^2}{2} \tag{9.4}$$

where ℓ is the distance between D and C, namely

$$\ell = \sqrt{(xd - xc)^2 + (yd - yc)^2}$$

 $xd = xb + sc \cdot \sin \gamma + sd \cdot \cos \gamma$
 $yd = yb - sc \cdot \cos \gamma + sd \cdot \sin \gamma$.

Finally, we have to formulate the algebraic constraints. The mechanism contains three loops. The first loop connects O with B via K_1, K_2, K_3 ; the other two loops connect O with A, one via K_1, K_2, K_4, K_5 , the other via K_1, K_2, K_6, K_7 . For each loop we get two algebraic conditions:

$$rr \cdot \cos \beta - d \cdot \cos(\beta + \Theta) - ss \cdot \sin \gamma = xb$$

$$rr \cdot \sin \beta - d \cdot \sin(\beta + \Theta) + ss \cdot \cos \gamma = yb$$

$$rr \cdot \cos \beta - d \cdot \cos(\beta + \Theta) - e \cdot \sin(\Phi + \delta) - zt \cdot \cos \delta = xa$$

$$rr \cdot \sin \beta - d \cdot \sin(\beta + \Theta) + e \cdot \cos(\Phi + \delta) - zt \cdot \sin \delta = ya$$

$$rr \cdot \cos \beta - d \cdot \cos(\beta + \Theta) - zf \cdot \cos(\Omega + \varepsilon) - u \cdot \sin \varepsilon = xa$$

$$rr \cdot \sin \beta - d \cdot \sin(\beta + \Theta) - zf \cdot \sin(\Omega + \varepsilon) + u \cdot \cos \varepsilon = ya.$$

(9.5)

With the position coordinates q from (9.2) the equations (9.5) represent the constraint g(q) = 0 where $g : \mathbb{R}^7 \to \mathbb{R}^6$. Together with the kinetic energy T

of (9.3) the potential energy U of (9.4) and $L = T - U - \lambda_1 g_1 - \ldots - \lambda_6 g_6$ the equations of motion (5.34) are fully determined.

Fortran Subroutines

For the reader's convenience we include the essential parts of the FORTRAN subroutines describing the differential-algebraic problem. The equations of motion are of the form

$$M(q)\ddot{q} = f(q,\dot{q}) - G^{T}(q)\lambda$$
(9.6a)

$$0 = g(q) \tag{9.6b}$$

where $q \in \mathbb{R}^7$ is the vector defined in (9.2) and $\lambda \in \mathbb{R}^6$. In the following description the variables $Q(1), \ldots, Q(7)$ correspond to $\beta, \ldots, \varepsilon$ (exactly as in (9.2)) and $QP(1), \ldots, QP(7)$ to their derivatives $\dot{\beta}, \ldots, \dot{\varepsilon}$. In all subroutines we have used the abbreviations

SIBE = SIN (Q(1))	COBE = COS (Q(1))
SITH = SIN (Q(2))	COTH = COS(Q(2))
SIGA = SIN (Q(3))	COGA = COS (Q(3))
SIPH = SIN (Q(4))	COPH = COS(Q(4))
SIDE = SIN (Q(5))	CODE = COS (Q(5))
SIOM = SIN (Q(6))	COOM = COS (Q(6))
SIEP = SIN (Q(7))	COEP = COS(Q(7))
SIBETH = SIN $(Q(1)+Q(2))$	COBETH = COS (Q(1)+Q(2))
SIPHDE = SIN (Q(4)+Q(5))	COPHDE = COS (Q(4)+Q(5))
SIOMEP = SIN (Q(6)+Q(7))	COOMEP = COS (Q(6)+Q(7))
$\mathbf{REP} = \mathbf{OP}(1)$	TUP = OP(2)
BEP = QP(1)	THP = QP(2)
BEP = QP(1) PHP = QP(4) OMP = QP(6)	THP = QP(2) DEP = QP(5) EPP = QP(7)

The remaining parameters XA, YA,..., D, DA, E, EA,..., M1, I1, M2,... are those of (9.1) and Tables 9.1 and 9.2. They usually reside in a COMMON block. The elements of M(q) in (9.6) are given by

$$m_{ij} = rac{\partial^2 L}{\partial \dot{q}_i \partial \dot{q}_j} = rac{\partial^2 T}{\partial \dot{q}_i \partial \dot{q}_j} \; .$$

This matrix is symmetric and (due to the special arrangement of the coordinates) tridiagonal. The non-zero elements (on and below the diagonal) are

```
M(1,1) = M1*RA**2 + M2*(RR**2-2*DA*RR*COTH+DA**2) + I1 + I2
M(2,1) = M2*(DA**2-DA*RR*COTH) + I2
M(2,2) = M2*DA**2 + I2
M(3,3) = M3*(SA**2+SB**2) + I3
```

```
\begin{array}{l} \mathsf{M}(4,4) = \mathsf{M}4*(\mathsf{E}-\mathsf{EA})**2 + \mathsf{I4} \\ \mathsf{M}(5,4) = \mathsf{M}4*((\mathsf{E}-\mathsf{EA})**2+\mathsf{ZT}*(\mathsf{E}-\mathsf{EA})*\mathsf{SIPH}) + \mathsf{I4} \\ \mathsf{M}(5,5) = \mathsf{M}4*(\mathsf{ZT}**2+2*\mathsf{ZT}*(\mathsf{E}-\mathsf{EA})*\mathsf{SIPH}+(\mathsf{E}-\mathsf{EA})**2) + \mathsf{M5}*(\mathsf{TA}**2+\mathsf{TB}**2) \\ + & + \mathsf{I4} + \mathsf{I5} \\ \mathsf{M}(6,6) = \mathsf{M}6*(\mathsf{ZF}-\mathsf{FA})**2 + \mathsf{I6} \\ \mathsf{M}(7,6) = \mathsf{M}6*((\mathsf{ZF}-\mathsf{FA})**2-\mathsf{U}*(\mathsf{ZF}-\mathsf{FA})*\mathsf{SIOM}) + \mathsf{I6} \\ \mathsf{M}(7,7) = \mathsf{M}6*((\mathsf{ZF}-\mathsf{FA})**2-\mathsf{U}*(\mathsf{ZF}-\mathsf{FA})*\mathsf{SIOM}+\mathsf{U}**2) + \mathsf{M7}*(\mathsf{UA}**2+\mathsf{UB}**2) \\ + & + \mathsf{I6} + \mathsf{I7} \end{array}
```

The *i*-th component of the function f in (9.6) is defined by

$$f_i(q,\dot{q}) = rac{\partial (T-U)}{\partial q_i} - \sum_{j=1}^T rac{\partial^2 (T-U)}{\partial \dot{q}_i \partial q_j} \cdot \dot{q}_j$$

Written as FORTRAN statements we have

```
XD = SD*COGA + SC*SIGA + XB
YD = SD*SIGA - SC*COGA + YB
LANG = SQRT ((XD-XC)**2 + (YD-YC)**2)
FORCE = - CO * (LANG - LO)/LANG
FX = FORCE * (XD-XC)
FY = FORCE * (YD-7C)
F(1) = MOM - M2*DA*RR*THP*(THP+2*BEP)*SITH
F(2) = M2*DA*RR*BEP**2*SITH
F(3) = FX*(SC*COGA - SD*SIGA) + FY*(SD*COGA + SC*SIGA)
F(4) = M4*ZT*(E-EA)*DEP**2*COPH
F(5) = - M6*ZT*(E-EA)*DEP**2*COPH
F(6) = - M6*U*(ZF-FA)*EPP**2*COM
```

The algebraic constraints g(q) = 0 are given by the following six equations (see (9.5))

```
G(1) = RR*COBE - D*COBETH - SS*SIGA - XB
G(2) = RR*SIBE - D*SIBETH + SS*COGA - YB
G(3) = RR*COBE - D*COBETH - E*SIPHDE - ZT*CODE - XA
G(4) = RR*SIBE - D*SIBETH + E*COPHDE - ZT*SIDE - YA
G(5) = RR*COBE - D*COBETH - ZF*COMEP - U*SIEP - XA
G(6) = RR*SIBE - D*SIBETH - ZF*SIOMEP + U*COEP - YA
```

And here is the Jacobian matrix $G(q) = g_q(q)$. The non-zero entries of this 6×7 array are

```
GP(1,1) = - RR*SIBE + D*SIBETH
GP(1,2) = D*SIBETH
GP(1,3) = - SS*COGA
GP(2,1) = RR*COBE - D*COBETH
GP(2,2) = - D*COBETH
GP(2,3) = - SS*SIGA
GP(3,1) = - RR*SIBE + D*SIBETH
GP(3,2) = D*SIBETH
GP(3,4) = - E*COPHDE
GP(3,5) = - E*COPHDE + ZT*SIDE
```

```
GP(4,1) = RR*COBE - D*COBETH

GP(4,2) = - D*COBETH

GP(4,4) = - E*SIPHDE

GP(4,5) = - E*SIPHDE - ZT*CODE

GP(5,1) = - RR*SIBE + D*SIBETH

GP(5,2) = D*SIBETH

GP(5,6) = ZF*SIOMEP

GP(6,7) = ZF*SIOMEP - U*COEP

GP(6,2) = - D*COBETH

GP(6,6) = - ZF*COMEP

GP(6,7) = - ZF*COMEP - U*SIEP
```

Computation of Consistent Initial Values

We first compute a solution of g(q) = 0. Since g consists of 6 equations in 7 unknowns we can fix one of them arbitrarily, say $\Theta(0) = 0$, and compute the remaining coordinates by Newton iterations. This gives

$$\begin{split} \beta(0) &= -0.0617138900142764496358948458001\\ \Theta(0) &= 0\\ \gamma(0) &= 0.455279819163070380255912382449\\ \Phi(0) &= 0.222668390165885884674473185609\\ \delta(0) &= 0.487364979543842550225598953530\\ \Omega(0) &= -0.222668390165885884674473185609\\ \varepsilon(0) &= 1.23054744454982119249735015568 \;. \end{split}$$

The condition

$$G(q)\dot{q} = 0 \tag{9.8}$$

is satisfied if we put

$$\dot{\beta}(0) = 0, \quad \dot{\Theta}(0) = 0, \quad \dot{\gamma}(0) = 0, \quad \dot{\Phi}(0) = 0,$$

 $\dot{\delta}(0) = 0, \quad \dot{\Omega}(0) = 0, \quad \dot{\epsilon}(0) = 0.$
(9.9)

The values of $\lambda(0)$ and $\ddot{q}(0)$ are then uniquely determined by (9.6a) and

$$0 = g_{qq}(q)(\dot{q}, \dot{q}) + G(q)\ddot{q} . \qquad (9.10)$$

We just have to solve a linear system with the matrix

$$\begin{pmatrix} M(q) & G^T(q) \\ G(q) & 0 \end{pmatrix} .$$
(9.11)

Observe that g_{qq} need not be evaluated, because $\dot{q}(0) = 0$. Due to the choice $\Theta(0) = 0$ most components of $\lambda(0)$ and $\ddot{q}(0)$ vanish. Only the first two of

these are different from zero and given by

$$\begin{split} \ddot{\beta}(0) &= 14222.4439199541138705911625887\\ \ddot{\Theta}(0) &= -10666.8329399655854029433719415\\ \lambda_1(0) &= 98.5668703962410896057654982170\\ \lambda_2(0) &= -6.12268834425566265503114393122 \;. \end{split} \tag{9.12}$$

The solution of this seven body mechanism is plotted (mod 2π) in Fig. 9.3 for $0 \le t \le 0.03$.

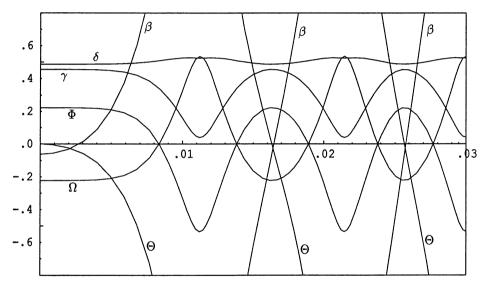


Fig. 9.3. Solution of 7 body mechanism

Numerical Computations

We first transform (9.6) into a first order system by introducing the new variable $v = \dot{q}$. The Runge-Kutta code RADAU5 of the appendix applies only to problems where the derivative is multiplied by a constant matrix. We therefore also consider $w = \ddot{q}$ as a variable so that (9.6a) becomes an algebraic equation. The various formulations of the problem, as discussed in Section VI.5, are now as follows:

Index 3 formulation. With $v = \dot{q}$ and $w = \ddot{q}$ the system (9.6) can be written as

$$\dot{q} = v$$
 (9.13a)

540 VI. Singular Perturbation Problems and Differential-Algebraic Equations

$$\dot{v} = w$$
 (9.13b)

$$0 = M(q)w - f(q, v) + G^{T}(q)\lambda$$
(9.13c)

$$0 = g(q)$$
 . (9.13d)

Index 2 formulation. If we differentiate 0 = g(q) once and replace (9.13d) by

$$\mathbf{0} = G(q)\mathbf{v} , \qquad (9.13e)$$

we get an index 2 problem which is mathematically equivalent to (9.6).

Index 1 formulation. One more differentiation of (9.13e) yields

$$0 = g_{qq}(q)(v,v) + G(q)w , \qquad (9.13f)$$

so that (9.13a,b,c,f) constitutes an index 1 problem. Indeed, the algebraic equations (9.13c,f) can be solved for v and λ , because the matrix (9.11) is invertible.

GGL formulation. If we introduce an additional Lagrange parameter $\mu \in \mathbb{R}^6$, the problem (9.6) can also be written as

$$\dot{q} = v + G^{T}(q)\mu$$

$$\dot{v} = w$$

$$0 = M(q)w - f(q, v) + G^{T}(q)\lambda$$

$$0 = g(q)$$

$$0 = G(q)v$$
(9.14)

The equations (9.14) represent an index 2 system.

We have applied the code RADAU5 with many different tolerances between 10^{-3} and 10^{-9} to each of the above formulations. The results are given in Fig. 9.4. We have plotted the number of function evaluations against the error of the *q*-components at $x_{end} = 0.03$ (in double logarithmic scale). For the purpose of error estimation and step size control we have scaled the components of *v* by the step size *h* and those of w, λ (and μ) by h^2 (see HLR89, Chapter 7 for a justification). This is done by setting IWORK(5) = 7, IWORK(6) = 7 and IWORK(7) = 13 (IWORK(7) = 19 for the GGL formulation (9.14)) in the call of RADAU5. For the solution of the nonlinear system we supplied an analytic approximation of the Jacobian. For example, for the index 2 formulation we used

$$J = \begin{pmatrix} 0 & I & 0 & 0 \\ 0 & 0 & I & 0 \\ 0 & 0 & M(q) & G^{T}(q) \\ 0 & G(q) & 0 & 0 \end{pmatrix}$$
(9.15)

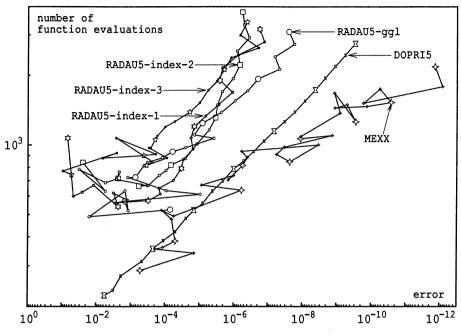


Fig. 9.4. Work-precision diagram

where we have neglected the derivatives of f(q, u) as well as those of M(q)and G(q). The evaluation of such a Jacobian is free, because M(q) and G(q) have to be evaluated anyway for the right-hand side of the differentialalgebraic system.

We also found it interesting to compare the results with the extrapolation code MEXX of Lubich (1989) (see also HLR89, page 50), which is adapted to mechanical problems of the form

$$M(q)\ddot{q} = f(q,\dot{q}) - G^{T}(q)\lambda$$

$$0 = G(q)\dot{q}$$
(9.16)

(index 2 formulation). This is an explicit method and only requires the solution of linear systems with matrices of type (9.11).

The above index 1 formulation allows us to apply also explicit Runge-Kutta methods such as DOPRI5 of Volume I (indirect approach of Section VI.1). For this we have written a function subroutine which solves in each call the linear system (9.13c,f) for w and λ and inserts the result into (9.13a,b). Since there is no stiffness in the mechanical system, it is not surprising that here the explicit codes work more efficiently than the implicit code.

The step size control of MEXX and DOPRI5 is based on local error es-

timates of q and \dot{q} (without any scaling by h of the derivative). Therefore they yield more accurate results in the first derivative of q than the code RADAU5.

Savings in linear algebra. One might ask whether the number of function evaluations is a meaningful measure in the comparison of Fig. 9.4. Isn't the linear algebra much more expensive for the implicit codes than for the explicit ones? We shall show that this is not the case if the method is implemented carefully.

Consider, for example, an implicit Runge-Kutta method applied to the index 2 formulation (9.13a,b,c,e). Each step requires the solution of linear systems of the form

$$\begin{pmatrix} -\alpha I & I & 0 & 0\\ 0 & -\alpha I & I & 0\\ 0 & 0 & M & G^{T}\\ 0 & G & 0 & 0 \end{pmatrix} \begin{pmatrix} \Delta q\\ \Delta v\\ \Delta w\\ \Delta \lambda \end{pmatrix} = \begin{pmatrix} a\\ b\\ c\\ d \end{pmatrix}$$
(9.17)

with $\alpha = (h\gamma)^{-1}$, h the step size and γ an eigenvalue of the Runge-Kutta matrix. Eliminating the variable Δv in the last line of (9.17) yields the smaller system

$$\begin{pmatrix} M & G^T \\ G & 0 \end{pmatrix} \begin{pmatrix} \Delta w \\ \Delta \lambda \end{pmatrix} = \begin{pmatrix} c \\ \alpha d + Gb \end{pmatrix}$$
(9.18)

which is of the same type as those for the explicit methods. Once a solution to (9.18) is known the values of Δv and Δq are easily obtained from the first two lines of (9.17).

We observe that the matrix in (9.18) does not depend on $\alpha = (h\gamma)^{-1}$. Hence only one LU decomposition is necessary for a step, independently of the number of distinct eigenvalues of the Runge-Kutta matrix. Furthermore, one has the possibility of retaining the decomposed matrix over several steps even in the case where the step size is changed. These ideas reduced the computation time for the above problem and the code RADAU5 by a factor 3. In contrast to this, explicit codes usually require an LU decomposition of (9.11) for every function call. This may be a disadvantage for higher dimensional systems.

These ideas for reducing the linear algebra extend straightforwardly to the index 3 and index 1 problems above. For the GGL formulation one has to solve the linear system

$$\begin{pmatrix} -\alpha I & I & 0 & 0 & G^{T} \\ 0 & -\alpha I & I & 0 & 0 \\ 0 & 0 & M & G^{T} & 0 \\ G & 0 & 0 & 0 & 0 \\ 0 & G & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \Delta q \\ \Delta v \\ \Delta w \\ \Delta \lambda \\ \Delta \mu \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \\ d \\ e \end{pmatrix}$$
(9.19)

which is equivalent to

$$\begin{pmatrix} M & G^T \\ G & 0 \end{pmatrix} \begin{pmatrix} \Delta w \\ \Delta \lambda \end{pmatrix} = \begin{pmatrix} c \\ \alpha e + Gb \end{pmatrix}, \quad \begin{pmatrix} I & G^T \\ G & 0 \end{pmatrix} \begin{pmatrix} -\alpha \Delta q \\ \Delta \mu \end{pmatrix} = \begin{pmatrix} a - \Delta v \\ -\alpha d \\ (9.20) \end{pmatrix}$$

and $\Delta v = (\Delta w - b)/\alpha$. Since two matrices have to be decomposed, the overhead for GGL is larger than for the other formulations. A similar reduction of the linear algebra was first proposed by Gear, Gupta & Leimkuhler (1985) for the BDF schemes.

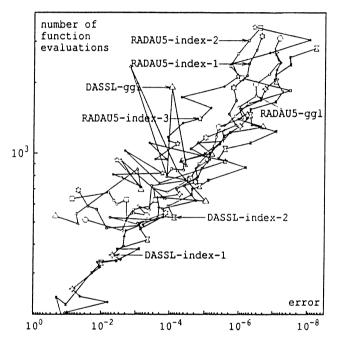


Fig. 9.5. Work-precision diagram

Our next experiment (Fig. 9.5) shows a comparison with the BDF code DASSL of Petzold (1982); see also Brenan, Campbell & Petzold (1989). This program is written for problems of the form F(u, u', x) = 0, so that it is not necessary to introduce \ddot{q} of (9.6) as new variable. We applied the code with tolerances *Tol* between 10^{-3} and 10^{-11} to the above formulations of the 7 body mechanism. We used default values for all parameters except for the scaling of the error estimation. We put INFO(2)=1 and

$$ATOL(I) = RTOL(I) = \begin{cases} Tol & \text{for } I = 1, \dots, 7, \\ 1.D0 & \text{for } I \geq 8. \end{cases}$$

The code worked well for the index 1 and index 2 formulations (slightly better than RADAU5 with respect to function evaluations), but failed for the index

3 formulation and showed an irregular behaviour for the GGL formulation. In the comparison of Fig. 9.5 both methods used the full Jacobian of the problem, obtained by numerical differentiation.

A Stiff Mechanical System

We now want to introduce some "stiffness" into the above mechanical system. To this end we take into account the elasticity of one of these bodies $(K_6$ appears to be the simplest one) and replace it by a spring with very large spring constant c_1 . Thus the length of this spring will become an additional unknown variable q_8 . We let the unstretched length be zf (of Table 9.1) and assume that the centre of gravity C_6 has constant distance fa from the upper joint (see Fig. 9.2). Obviously the algebraic constraints (9.5) remain unchanged; we only have to replace the constant zf in (9.5) by the new variable q_8 . The derivative matrix G(q) = g'(q) has to be changed accordingly. It is now a 6×8 matrix.

The equations of motion for this modified problem are obtained as follows: in the *kinetic energy* (9.3) only the contribution of the 6th body (the new spring) changes, namely

$$\begin{split} C_6: \quad x_6 &= xa + u \cdot \sin \varepsilon + (q_8 - fa) \cdot \cos(\Omega + \varepsilon) \\ y_6 &= ya - u \cdot \cos \varepsilon + (q_8 - fa) \cdot \sin(\Omega + \varepsilon) \\ \dot{x}_6^2 &+ \dot{y}_6^2 &= (q_8 - fa)^2 \cdot \dot{\Omega}^2 + 2 \cdot \left((q_8 - fa)^2 - u \cdot (q_8 - fa) \cdot \sin \Omega\right) \cdot \dot{\Omega} \cdot \dot{\varepsilon} \\ &+ \left((q_8 - fa)^2 - 2 \cdot u \cdot (q_8 - fa) \cdot \sin \Omega + u^2\right) \cdot \dot{\varepsilon}^2 \\ &+ 2 \cdot u \cdot \cos \Omega \cdot \dot{\varepsilon} \cdot \dot{q}_8 + \dot{q}_8^2 \\ \dot{\omega}_8 &= \dot{\Omega} + \dot{\varepsilon} \end{split}$$

In the *potential energy* we have to add a term which is due to the new spring. We thus get (compare (9.4))

$$U = -mom \cdot \beta + c_0 \cdot \frac{(\ell - \ell_0)^2}{2} + c_1 \cdot \frac{(q_8 - zf)^2}{2} , \qquad (9.21)$$

where the spring constant c_1 of the new spring is large. The resulting system is again of the form (9.6), but with $q \in \mathbb{R}^8$. The initial values (9.7), (9.9), (9.12) for the 7 angles (9.2) are consistent for the new problem, if we require in addition

$$q_8(0) = zf$$
, $\dot{q}_8(0) = 0$. (9.22)

This then implies $\ddot{q}_8(0) = 0$. For the choice $c_1 = 10^{10}$ we applied the implict codes RADAU5 and DASSL to the above *stiff* mechanical system. The behaviour of these methods was nearly identical to that for the original problem (Fig. 9.5). So there was no need to draw another picture. Obviously, the explicit codes DOPRI5 and MEXX do not work any longer.

It should be remarked that for $Tol \leq 1/c_1$ the efficiency of the implicit codes suddenly decreases. This is due to the fact that the exact solution of the problem (with the *initial* values described above) is highly oscillatory with frequency $\mathcal{O}(\sqrt{c_1})$ and amplitude $\mathcal{O}(1/c_1)$ about a smooth solution. A general theory for such situations has been elaborated by Ch. Lubich (unpublished). For very stringent tolerances any code is forced to follow the oscillations and the step sizes become small.

Exercises

1. Consider the differential equation (so-called "Kreiss problem")

$$y' = U^{T}(x) \begin{pmatrix} -1 & 0 \\ 0 & -1/\varepsilon \end{pmatrix} U(x)y , \qquad U(x) = \begin{pmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{pmatrix}$$
(9.23)

and apply the Runge-Kutta code RADAU5 to this stiff problem. You will observe that for a fixed tolerance the number of function evaluations increases with decreasing $\varepsilon > 0$.

Then apply the method to the equivalent system

$$y' = z$$

$$0 = \begin{pmatrix} 1 & 0 \\ 0 & \epsilon \end{pmatrix} U(x)z + U(x)y .$$
(9.24)

and show that the number of function evaluations does not increase when $\varepsilon \rightarrow 0$.

a) Explain this phenomenon by studying the convergence of the simplified Newton iterations.

b) Prove that the index of the system (9.24) with $\varepsilon = 0$ is two.

Appendix. Fortran Codes

During the preparation of this book several programs have been developed for solving stiff and differential-algebraic problems of the form

$$My' = f(x, y), \qquad y(x_0) = y_0,$$

where M is a constant square matrix. If M is singular, the problem is differential-algebraic. In this case the initial values must be consistent. Only the code RADAU5 is adapted for the solution of higher index (≥ 2) problems.

Experiences with all of our codes are welcome. The programs can be obtained from the authors (if E-mail is not possible, please send an IBM diskette):

Address: Section de Mathématiques, Case postale 240, CH-1211 Genève 24, Switzerland

E-mail: HAIRER@CGEUGE51.BITNET WANNER@CGEUGE51.BITNET

Driver for the Code RADAU5

"The Van der Pol equation problem is so much harder than the rest ..." (L.F. Shampine 1987)

We consider the Van der Pol equation

$$\begin{array}{ll} y_1' = y_2 & y_1(0) = 2 \\ y_2' = \left((1-y_1^2)y_2 - y_1\right)/\epsilon & y_2(0) = -0.66 \end{array}$$

with $\varepsilon = 10^{-6}$ on the interval [0,2]. The subroutines FVPOL, JVPOL compute the right-hand side of this differential equation and its Jacobian. The subroutine SOLOUT is used to print the solution at equidistant points.

```
C --- PARAMETERS FOR RADAU5 (FULL JACOBIAN)
        PARAMETER (ND=2,LWORK=4*ND*ND+8*ND+7,LIWORK=3*ND+7)
        PARAMETER (LRCONT=4*ND+4)
        COMMON /CONT/ICONT(3), RCONT(LRCONT)
C --- DECLARATIONS
        DIMENSION Y(ND), WORK(LWORK), IWORK(LIWORK)
        COMMON/STAT/NFCN, NJAC, NSTEP, NACCPT, NREJCT, NDEC, NSOL
        EXTERNAL FVPOL, JVPOL, SOLOUT
C --- DIMENSION OF THE SYSTEM
        N=2
C --- COMPUTE THE JACOBIAN ANALYTICALLY
        IJAC=1
C --- JACOBIAN IS A FULL MATRIX
        MLJAC=N
C --- DIFFERENTIAL EQUATION IS IN EXPLICIT FORM
        IMAS=0
C --- OUTPUT ROUTINE IS USED DURING INTEGRATION
        IOUT=1
C --- INITIAL VALUES
        X=0.0D0
        Y(1)=2.0D0
        Y(2) = -0.66D0
C --- ENDPOINT OF INTEGRATION
        XEND=2.0D0
C --- REQUIRED TOLERANCE
        RTOL=1.0D-5
        ATOL=RTOL
        ITOL=0
C --- INITIAL STEP SIZE
        H=1.0D-6
C --- SET DEFAULT VALUES
        DO 10 I=1,7
        IWORK(I)=0
        WORK(I)=0.DO
  10
C --- CALL OF THE SUBROUTINE RADAUS
        CALL RADAU5(N, FVPOL, X, Y, XEND, H,
                         RTOL, ATOL, ITOL,
     +
                         JVPOL, IJAC, MLJAC, MUJAC,
     +
                         FVPOL, IMAS, MLMAS, MUMAS,
     +
                         SOLOUT, IOUT,
     +
                         WORK, LWORK, IWORK, LIWORK, LRCONT, IDID)
C --- PRINT FINAL SOLUTION
        WRITE (6,99) X,Y(1),Y(2)
 99
        FORMAT(1X, 'X = ', F5.2, '
                                   Y = ', 2E18.10)
C --- PRINT STATISTICS
        WRITE (6,90) RTOL
 90
        FORMAT('
                       rtol=',D8.2)
        WRITE (6,91) NFCN, NJAC, NSTEP, NACCPT, NREJCT, NDEC, NSOL
        91
              ' sol=',I5)
     +
        STOP
        END
С
С
        SUBROUTINE SOLOUT (NR, XOLD, X, Y, N, IRTRN)
C --- PRINTS SOLUTION AT EQUIDISTANT OUTPUT-POINTS
C --- BY USING "CONTR5"
        IMPLICIT REAL*8 (A-H,O-Z)
        DIMENSION Y(N)
```

```
COMMON /INTERN/XOUT
        IF (NR.EQ.1) THEN
           WRITE (6,99) X,Y(1),Y(2),NR-1
           XOUT=0.1D0
        ELSE
           CONTINUE
 10
           IF (X.GE.XOUT) THEN
C --- CONTINUOUS OUTPUT FOR RADAUS
              WRITE (6,99) XOUT, CONTR5(1, XOUT), CONTR5(2, XOUT), NR-1
              XOUT=XOUT+0.1D0
              GOTO 10
           END IF
        END IF
 99
        FORMAT(1X,'X =',F5.2,'
                                 Y =',2E18.10,'
                                                      NSTEP =^{,14}
        RETURN
        END
С
С
        SUBROUTINE FVPOL(N,X,Y,F)
C --- RIGHT-HAND SIDE OF VAN DER POL'S EQUATION
        IMPLICIT REAL*8 (A-H,O-Z)
        DIMENSION Y(N), F(N)
        EPS=1.0D-6
        F(1)=Y(2)
        F(2)=((1-Y(1)**2)*Y(2)-Y(1))/EPS
        RETURN
        END
С
С
        SUBROUTINE JVPOL(N,X,Y,DFY,LDFY)
C --- JACOBIAN OF VAN DER POL'S EQUATION
        IMPLICIT REAL*8 (A-H, 0-Z)
        DIMENSION Y(N), DFY(LDFY, N)
        EPS=1.0D-6
        DFY(1,1)=0.0D0
        DFY(1,2)=1.0D0
        DFY(2,1)=(-2.0D0*Y(1)*Y(2)-1.0D0)/EPS
        DFY(2,2)=(1.0D0-Y(1)**2)/EPS
        RETURN
        END
```

The result, obtained on an Apollo workstation, is the following:

X = 0.00	Y =	0.200000000E+01	-0.660000000E+00	NSTEP = 0
X = 0.10	Y =	0.1931361529E+01	-0.7074151877E+00	NSTEP = 14
X = 0.20	Y =	0.1858204676E+01	-0.7575443999E+00	NSTEP = 15
X = 0.30	Y =	0.1779394565E+01	-0.8214201331E+00	NSTEP = 16
X = 0.40	Y =	0.1693209270E+01	-0.9069428212E+00	NSTEP = 16
X = 0.50	Y =	0.1596768703E+01	-0.1030401438E+01	NSTEP = 17
X = 0.60	Y =	0.1484575388E+01	-0.1233048474E+01	NSTEP = 19
X = 0.70	Y =	0.1342892320E+01	-0.1671615654E+01	NSTEP = 21
X = 0.80	Y =	0.1083921569E+01	-0.6195343946E+01	NSTEP = 32
X = 0.90	Y =	-0.1936443329E+01	0.7042084938E+00	NSTEP = 237
X = 1.00	Y =	-0.1863646716E+01	0.7535455796E+00	NSTEP = 238
X = 1.10	Y =	-0.1785295380E+01	0.8162134722E+00	NSTEP = 239
X = 1.20	Y =	-0.1699713795E+01	0.8997617000E+00	NSTEP = 240
X = 1.30	Y =	-0.1604147430E+01	0.1019596637E+01	NSTEP = 241
X = 1.40	Y =	-0.1493387337E+01	0.1213935300E+01	NSTEP = 242

```
X = 1.50
           Y = -0.1354745772E+01 0.1621820474E+01
                                                      NSTEP = 244
           Y = -0.1120811876E+01 0.4373845558E+01
X = 1.60
                                                      NSTEP = 253
X = 1.70
           Y = 0.1941502817E+01 - 0.7010468156E+00
                                                      NSTEP = 460
           Y = 0.1869058815E+01 -0.7496098398E+00
X = 1.80
                                                      NSTEP = 461
           Y = 0.1791154047E+01 - 0.8111194791E+00
                                                      NSTEP = 462
X = 1.90
           Y = 0.1706167729E+01 - 0.8928088236E+00
X = 2.00
     rtol=0.10E-04
fcn= 3473 jac= 294 step= 476 accpt= 463 rejct= 12 dec= 379 sol= 1003
```

Subroutine RADAU5

Implicit Runge-Kutta code based on the 3stage Radau IIA method, given in Table IV.5.6. Details on the implementation are described in Section IV.8.

SUBROUTINE RADAU5(N,FCN,X,Y,XEND,H, + RTOL, ATOL, ITOL, ÷ JAC ,IJAC,MLJAC,MUJAC, + MAS , IMAS, MLMAS, MUMAS, + SOLOUT, IOUT. WORK, LWORK, IWORK, LIWORK, LRCONT, IDID) C ----NUMERICAL SOLUTION OF A STIFF (OR DIFFERENTIAL ALGEBRAIC) С С SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS С M * Y' = F(X, Y).С THE SYSTEM CAN BE (LINEARLY) IMPLICIT (MASS-MATRIX M .NE. I) С OR EXPLICIT (M=I). С THE METHOD USED IS AN IMPLICIT RUNGE-KUTTA METHOD (RADAU IIA) OF ORDER 5 WITH STEP SIZE CONTROL AND CONTINUOUS OUTPUT. С C C.F. SECTION IV.8 С С AUTHORS: E. HAIRER AND G. WANNER С UNIVERSITE DE GENEVE, DEPT. DE MATHEMATIQUES С CH-1211 GENEVE 24, SWITZERLAND С E-MAIL: HAIRERO CGEUGE51.BITNET, WANNERO CGEUGE51.BITNET С C THIS CODE IS PART OF THE BOOK: С E. HAIRER AND G. WANNER, SOLVING ORDINARY DIFFERENTIAL C EQUATIONS II. STIFF AND DIFFERENTIAL-ALGEBRAIC PROBLEMS. С SPRINGER SERIES IN COMPUTATIONAL MATHEMATICS. С SPRINGER-VERLAG (1990) С С VERSION OF NOVEMBER 14, 1989 С С INPUT PARAMETERS С С N DIMENSION OF THE SYSTEM С С FCN NAME (EXTERNAL) OF SUBROUTINE COMPUTING THE С VALUE OF F(X,Y): С SUBROUTINE FCN(N,X,Y,F) С REAL*8 X,Y(N),F(N) C F(1)=... ETC. С С X INITIAL X-VALUE С

C Y(N) INITIAL VALUES FOR Y C

C	XEND	FINAL X-VALUE (XEND-X MAY BE POSITIVE OR NEGATIVE)
C		TNIMILL AMON AIGO ANDAA
C	н	INITIAL STEP SIZE GUESS;
C		FOR STIFF EQUATIONS WITH INITIAL TRANSIENT,
С		H=1.DO/(NORM OF F'), USUALLY 1.D-3 OR 1.D-5, IS GOOD.
C		THIS CHOICE IS NOT VERY IMPORTANT, THE CODE QUICKLY
C		ADAPTS ITS STEP SIZE. STUDY THE CHOSEN VALUES FOR A FEW
С		STEPS IN SUBROUTINE "SOLOUT", WHEN YOU ARE NOT SURE.
С		(IF H=0.DO, THE CODE PUTS H=1.D-6).
C		
č	RTOL, AT	OL RELATIVE AND ABSOLUTE ERROR TOLERANCES. THEY
č		CAN BE BOTH SCALARS OR ELSE BOTH VECTORS OF LENGTH N.
č		ORN DE DOTH SORDARD ON EDDE DOTH VEGTORD OF EENVIR N.
	7707	SWITCH FOR RTOL AND ATOL:
C	ITOL	
C		ITOL=0: BOTH RTOL AND ATOL ARE SCALARS.
С		THE CODE KEEPS, ROUGHLY, THE LOCAL ERROR OF
С		Y(I) BELOW RTOL*ABS(Y(I))+ATOL
С		ITOL=1: BOTH RTOL AND ATOL ARE VECTORS.
C		THE CODE KEEPS THE LOCAL ERROR OF Y(I) BELOW
C		RTOL(I)*ABS(Y(I))+ATOL(I).
С		
С	JAC	NAME (EXTERNAL) OF THE SUBROUTINE WHICH COMPUTES
С		THE PARTIAL DERIVATIVES OF F(X,Y) WITH RESPECT TO Y
С		(THIS ROUTINE IS ONLY CALLED IF IJAC=1; SUPPLY
C		A DUMMY SUBROUTINE IN THE CASE IJAC=0).
c		FOR IJAC=1, THIS SUBROUTINE MUST HAVE THE FORM
č		SUBROUTINE JAC(N,X,Y,DFY,LDFY)
č		REAL*8 X, Y(N), DFY(LDFY, N)
		$DFY(1,1) = \dots$
C		
C		LDFY, THE COLUMN-LENGTH OF THE ARRAY, IS
C		FURNISHED BY THE CALLING PROGRAM.
C		IF (MLJAC.EQ.N) THE JACOBIAN IS SUPPOSED TO
С		BE FULL AND THE PARTIAL DERIVATIVES ARE
С		STORED IN DFY AS
C		DFY(I,J) = PARTIAL F(I) / PARTIAL Y(J)
С		ELSE, THE JACOBIAN IS TAKEN AS BANDED AND
C		THE PARTIAL DERIVATIVES ARE STORED
С		DIAGONAL-WISE AS
C		DFY(I-J+MUJAC+1,J) = PARTIAL F(I) / PARTIAL Y(J).
C		
C	IJAC	SWITCH FOR THE COMPUTATION OF THE JACOBIAN:
С		IJAC=0: JACOBIAN IS COMPUTED INTERNALLY BY FINITE
С		DIFFERENCES, SUBROUTINE "JAC" IS NEVER CALLED.
С		IJAC=1: JACOBIAN IS SUPPLIED BY SUBROUTINE JAC.
C		
Ċ	MLJAC	SWITCH FOR THE BANDED STRUCTURE OF THE JACOBIAN:
c		MLJAC=N: JACOBIAN IS A FULL MATRIX. THE LINEAR
c		ALGEBRA IS DONE BY FULL-MATRIX GAUSS-ELIMINATION.
č		O<=MLJAC <n: bandwith="" is="" jacobian<="" lower="" mljac="" of="" td="" the=""></n:>
c		MATRIX (>= NUMBER OF NON-ZERO DIAGONALS BELOW
		•
C		THE MAIN DIAGONAL).
C		WARDER REVENUE OF TROOPTIN VIENTY / NEWSTR OF YOU
C	MUJAC	UPPER BANDWITH OF JACOBIAN MATRIX (>= NUMBER OF NON-
С		ZERO DIAGONALS ABOVE THE MAIN DIAGONAL).
C		NEED NOT BE DEFINED IF MLJAC=N.
С		
C		MAS,IMAS,MLMAS, AND MUMAS HAVE ANALOG MEANINGS
C		FOR THE "MASS MATRIX" (THE MATRIX "M" OF SECTION IV.8): -

С		
С	MAS	NAME (EXTERNAL) OF SUBROUTINE COMPUTING THE MASS-
С		MATRIX M.
С		IF IMAS=O, THIS MATRIX IS ASSUMED TO BE THE IDENTITY
С		MATRIX AND NEEDS NOT TO BE DEFINED;
С		SUPPLY A DUMMY SUBROUTINE IN THIS CASE.
С		IF IMAS=1, THE SUBROUTINE MAS IS OF THE FORM
С		SUBROUTINE MAS(N,AM,LMAS)
С		REAL*8 AM(LMAS,N)
Ċ		$AM(1,1) = \dots$
Ċ		IF (MLMAS.EQ.N) THE MASS-MATRIX IS STORED
č		AS FULL MATRIX LIKE
č		AM(I,J) = M(I,J)
č		ELSE, THE MATRIX IS TAKEN AS BANDED AND STORED
c		DIAGONAL-WISE AS
		AM(I-J+MUMAS+1,J) = M(I,J).
C		$\operatorname{Am}(1-J+\operatorname{MOMAS}+1,J) = \operatorname{M}(1,J).$
C C	IMAS	GIVES INFORMATION ON THE MASS-MATRIX:
	IMAS	
C		IMAS=0: M IS SUPPOSED TO BE THE IDENTITY
C		MATRIX, MAS IS NEVER CALLED.
С		IMAS=1: MASS-MATRIX IS SUPPLIED.
С		
С	MLMAS	SWITCH FOR THE BANDED STRUCTURE OF THE MASS-MATRIX:
C		MLMAS=N: THE FULL MATRIX CASE. THE LINEAR
C		ALGEBRA IS DONE BY FULL-MATRIX GAUSS-ELIMINATION.
С		O<=MLMAS <n: bandwith="" is="" lower="" mlmas="" of="" td="" the="" the<=""></n:>
C		MATRIX (>= NUMBER OF NON-ZERO DIAGONALS BELOW
С		THE MAIN DIAGONAL).
С		MLMAS IS SUPPOSED TO BE .LE. MLJAC.
С		
С	MUMAS	UPPER BANDWITH OF MASS-MATRIX (>= NUMBER OF NON-
С		ZERO DIAGONALS ABOVE THE MAIN DIAGONAL).
C		NEED NOT BE DEFINED IF MLMAS=N.
c		MUMAS IS SUPPOSED TO BE .LE. MUJAC.
c		
С	SOLOUT	NAME (EXTERNAL) OF SUBROUTINE PROVIDING THE
С		NUMERICAL SOLUTION DURING INTEGRATION.
С		IF IOUT=1, IT IS CALLED AFTER EVERY SUCCESSFUL STEP.
С		SUPPLY A DUMMY SUBROUTINE IF IOUT=0.
С		IT MUST HAVE THE FORM
C		SUBROUTINE SOLOUT (NR, XOLD, X, Y, N, IRTRN)
Ċ		REAL*8 X,Y(N)
Ċ		
č		SOLOUT FURNISHES THE SOLUTION "Y" AT THE NR-TH
c		GRID-POINT "X" (THEREBY THE INITIAL VALUE IS
č		THE FIRST GRID-POINT).
C		"XOLD" IS THE PRECEEDING GRID-POINT.
c		"IRTRN" SERVES TO INTERRUPT THE INTEGRATION. IF IRTRN
C		IS SET <0, RADAU5 RETURNS TO THE CALLING PROGRAM.
C		
C		CONTINUOUS OUTPUT:
C		DURING CALLS TO "SOLOUT", A CONTINUOUS SOLUTION
C		FOR THE INTERVAL [XOLD,X] IS AVAILABLE THROUGH
С		THE REAL*8 FUNCTION
С		>>> CONTR5(1,S) <<<
С		WHICH PROVIDES AN APPROXIMATION TO THE I-TH
C		COMPONENT OF THE SOLUTION AT THE POINT S. THE VALUE
С		S SHOULD LIE IN THE INTERVAL [XOLD,X].
C		
С	IOUT	SWITCH FOR CALLING THE SUBROUTINE SOLOUT:

С		IOUT=0: SUBROUTINE IS NEVER CALLED
C		IOUT=1: SUBROUTINE IS AVAILABLE FOR OUTPUT.
C		
C	WORK	ARRAY OF WORKING SPACE OF LENGTH "LWORK".
C		WORK(1), WORK(2),, WORK(7) SERVE AS PARAMETERS
C		FOR THE CODE. FOR STANDARD USE OF THE CODE
C		WORK(1),,WORK(7) MUST BE SET TO ZERO BEFORE
C		CALLING. SEE BELOW FOR A MORE SOPHISTICATED USE.
C		WORK(8),,WORK(LWORK) SERVE AS WORKING SPACE
С		FOR ALL VECTORS AND MATRICES.
С		"LWORK" MUST BE AT LEAST
С		N*(LJAC+LMAS+3*LE+8)+7
С		WHERE
С		LJAC=N IF MLJAC=N (FULL JACOBIAN)
C		LJAC=MLJAC+MUJAC+1 IF MLJAC <n (banded="" jac.)<="" td=""></n>
C		AND
C		LMAS=0 IF IMAS=0
C		LMAS=N IF IMAS=1 AND MLMAS=N (FULL)
C		LMAS=MLMAS+MUMAS+1 IF MLMAS <n (banded="" mass-m.)<="" td=""></n>
C		AND
С		LE=N IF MLJAC=N (FULL JACOBIAN)
С		LE=2*MLJAC+MUJAC+1 IF MLJAC <n (banded="" jac.)<="" td=""></n>
C		
С		IN THE USUAL CASE WHERE THE JACOBIAN IS FULL AND THE
C		MASS-MATRIX IS THE INDENTITY (IMAS=0), THE MINIMUM
С		STORAGE REQUIREMENT IS
С		LWORK = 4 * N * N + 8 * N + 7.
С		
С	LWORK	DECLARED LENGTH OF ARRAY "WORK".
С		
С	IWORK	INTEGER WORKING SPACE OF LENGTH "LIWORK".
С		IWORK(1),IWORK(2),,IWORK(7) SERVE AS PARAMETERS
С		FOR THE CODE. FOR STANDARD USE, SET IWORK(1),,
С		IWORK(7) TO ZERO BEFORE CALLING.
C		IWORK(8),,IWORK(LIWORK) SERVE AS WORKING AREA.
C		"LIWORK" MUST BE AT LEAST 3≭N+7.
C		
C	LIWORK	DECLARED LENGTH OF ARRAY "IWORK".
С		
C	LRCONT	DECLARED LENGTH OF COMMON BLOCK
С		<pre>>>> COMMON /CONT/ICONT(3),RCONT(LRCONT) <<<</pre>
С		WHICH MUST BE DECLARED IN THE CALLING PROGRAM.
С		"LRCONT" MUST BE AT LEAST
С		4*N+4 .
С		THIS IS USED FOR STORING THE COEFFICIENTS OF THE
С		CONTINUOUS SOLUTION AND MAKES THE CALLING LIST FOR THE
С		FUNCTION "CONTR5" AS SIMPLE AS POSSIBLE.
С		
C		
С		
C	SUPHISTI	CATED SETTING OF PARAMETERS
C		
C		SEVERAL PARAMETERS OF THE CODE ARE TUNED TO MAKE IT WORK
C		WELL. THEY MAY BE DEFINED BY SETTING WORK(1),,WORK(7)
C		AS WELL AS IWORK(1),,IWORK(7) DIFFERENT FROM ZERO.
C		FOR ZERO INPUT, THE CODE CHOOSES DEFAULT VALUES:
C		
C	IWORK(1)	•
С		MATRIX TO HESSENBERG FORM. THIS IS PARTICULARLY
С		ADVANTAGEOUS FOR LARGE SYSTEMS WITH FULL JACOBIAN.

553

554 Appendix. Fortran Codes

C C C		IT DOES NOT WORK FOR BANDED JACOBIAN (MLJAC <n) AND NOT FOR IMPLICIT SYSTEMS (IMAS=1). IT IS ALSO NOT RECOMMENDED FOR SPARSE JACOBIANS.</n)
С С С С	IWORK(2)	THIS IS THE MAXIMAL NUMBER OF ALLOWED STEPS. The default value (for iwork(2)=0) is 100000.
с с с с	IWORK(3)	THE MAXIMUM NUMBER OF NEWTON ITERATIONS FOR THE SOLUTION OF THE IMPLICIT SYSTEM IN EACH STEP. THE DEFAULT VALUE (FOR IWORK(3)=0) IS 7.
	IWORK(4)	IF IWORK(4).EQ.0 THE EXTRAPOLATED COLLOCATION SOLUTION IS TAKEN AS STARTING VALUE FOR NEWTON'S METHOD. IF IWORK(4).NE.0 ZERO STARTING VALUES ARE USED. THE LATTER IS RECOMMENDED IF NEWTON'S METHOD HAS DIFFICULTIES WITH CONVERGENCE (THIS IS THE CASE WHEN NSTEP IS LARGER THAN NACCPT + NREJCT). DEFAULT IS IWORK(4)=0.
	DIFFER The Fu The IN IN EST	OLLOWING 3 PARAMETERS ARE IMPORTANT FOR LENTIAL-ALGEBRAIC SYSTEMS OF INDEX > 1. INCTION-SUBROUTINE SHOULD BE WRITTEN SUCH THAT IDEX 1,2,3 VARIABLES APPEAR IN THIS ORDER. IIMATING THE ERROR THE INDEX 2 VARIABLES ARE LIED BY H, THE INDEX 3 VARIABLES BY H**2.
С С С С	IWORK(5)	DIMENSION OF THE INDEX 1 VARIABLES (MUST BE > 0). FOR ODE'S THIS EQUALS THE DIMENSION OF THE SYSTEM. DEFAULT IWORK(5)=N.
C C	IWORK(6)	DIMENSION OF THE INDEX 2 VARIABLES. DEFAULT IWORK(6)=0.
C C	IWORK(7)	DIMENSION OF THE INDEX 3 VARIABLES. DEFAULT IWORK(7)=0.
C C C	WORK(1)	UROUND, THE ROUNDING UNIT, DEFAULT 1.D-16.
C C C	WORK(2)	THE SAFETY FACTOR IN STEP SIZE PREDICTION, DEFAULT 0.9D0.
	WORK(3)	DECIDES WHETHER THE JACOBIAN SHOULD BE RECOMPUTED; INCREASE WORK(3), TO 0.1 SAY, WHEN JACOBIAN EVALUATIONS ARE COSTLY. FOR SMALL SYSTEMS WORK(3) SHOULD BE SMALLER (0.001D0, SAY). NEGATIV WORK(3) FORCES THE CODE THE COMPUTE THE JACOBIAN AFTER EVERY ACCEPTED STEP. DEFAULT 0.001D0.
C C C C	WORK(4)	STOPPING CRIERION FOR NEWTON'S METHOD, USUALLY CHOSEN <1. SMALLER VALUES OF WORK(4) MAKE THE CODE SLOWER, BUT SAFER. DEFAULT 0.03D0.
		ND WORK(6) : IF WORK(5) < HNEW/HOLD < WORK(6), THEN THE STEP SIZE IS NOT CHANGED. THIS SAVES, TOGETHER WITH A LARGE WORK(3), LU-DECOMPOSITIONS AND COMPUTING TIME FOR LARGE SYSTEMS. FOR SMALL SYSTEMS ONE MAY HAVE WORK(5)=1.D0, WORK(6)=1.2D0, FOR LARGE FULL SYSTEMS WORK(5)=0.99D0, WORK(6)=2.D0 MIGHT BE GOOD. DEFAULTS WORK(5)=1.D0, WORK(6)=1.2D0. MAXIMAL STEP SIZE, DEFAULT XEND-X.

```
С
C-
                     _____
С
С
     OUTPUT PARAMETERS
С
С
                X-VALUE FOR WHICH THE SOLUTION HAS BEEN COMPUTED
     X
С
                (AFTER SUCCESSFUL RETURN X=XEND).
С
С
     Y(N)
               NUMERICAL SOLUTION AT X
С
С
     н
                PREDICTED STEP SIZE OF THE LAST ACCEPTED STEP
С
С
     IDID
              REPORTS ON SUCCESSFULNESS UPON RETURN:
                  IDID=1 COMPUTATION SUCCESSFUL,
С
С
                  IDID=-1 COMPUTATION UNSUCCESSFUL.
С
C-
              C *** *** *** *** *** *** *** *** ***
С
         DECLARATIONS
IMPLICIT REAL*8 (A-H,O-Z)
     DIMENSION Y(N),ATOL(1),RTOL(1),WORK(LWORK),IWORK(LIWORK)
     LOGICAL IMPLCT, JBAND, ARRET, STARTN
     EXTERNAL FCN, JAC, MAS, SOLOUT
     COMMON/STAT/NFCN,NJAC,NSTEP,NACCPT,NREJCT,NDEC,NSOL
C --- COMMON STAT CAN BE INSPECTED FOR STATISTICAL PURPOSES:
C ---
       NFCN
                 NUMBER OF FUNCTION EVALUATIONS (THOSE FOR NUMERICAL
С
                 EVALUATION OF THE JACOBIAN ARE NOT COUNTED)
С ---
     NJAC
                 NUMBER OF JACOBIAN EVALUATIONS (EITHER ANALYTICALLY
С
                 OR NUMERICALLY)
     NSTEP
     NSTEP
NACCPT
NREJCT
C ----
                NUMBER OF COMPUTED STEPS
C ---
                NUMBER OF ACCEPTED STEPS
                NUMBER OF REJECTED STEPS (DUE TO ERROR TEST),
C ---
С
                 (STEP REJECTIONS IN THE FIRST STEP ARE NOT COUNTED)
     NDEC
NSOL
C ----
                NUMBER OF LU-DECOMPOSITIONS OF BOTH MATRICES
       NSOL
                NUMBER OF FORWARD-BACKWARD SUBSTITUTIONS, OF BOTH
C ---
С
                 SYSTEMS; THE NSTEP FORWARD-BACKWARD SUBSTITUTIONS.
C
                 NEEDED FOR STEP SIZE SELECTION, ARE NOT COUNTED
```

Subroutine SDIRK4

Singly diagonally implicit Runge-Kutta code based on the 5stage SDIRK method of Table IV.6.5. The implementation is similar to that of RADAU5 and is described in Section IV.8. In the following description we have omitted the parts which are identical to those for RADAU5.

TH METHOD USED IS A SINGLY DIAGONALLY IMPLICIT RUNGE-KUTTA METHOD С OF ORDER 4 (WITH STEP SIZE CONTROL). С С C.F. SECTION IV.6 С С AUTHORS: E. HAIRER AND G. WANNER UNIVERSITE DE GENEVE, DEPT. DE MATHEMATIQUES С С CH-1211 GENEVE 24, SWITZERLAND С E-MAIL: HAIRERO CGEUGE51.BITNET, WANNERO CGEUGE51.BITNET С VERSION OF APRIL 19, 1989 С С ----- CONTINUOUS OUTPUT: -----DURING CALLS TO "SOLOUT", A CONTINUOUS SOLUTION С С FOR THE INTERVAL [XOLD, X] IS AVAILABLE THROUGH THE REAL*8 FUNCTION С С >>> CONTS4(I,S) ~~~ WORK ARRAY OF WORKING SPACE OF LENGTH "LWORK". С С SERVES AS WORKING SPACE FOR ALL VECTORS AND MATRICES. С "LWORK" MUST BE AT LEAST С N*(LJAC+LMAS+LE+12)+7 IN THE USUAL CASE WHERE THE JACOBIAN IS FULL AND THE С MASS-MATRIX IS THE INDENTITY (IMAS=0). THE MINIMUM С STORAGE REQUIREMENT IS С LWORK = 2*N*N+12*N+7. С INTEGER WORKING SPACE OF LENGTH "LIWORK". С IWORK "LIWORK" MUST BE AT LEAST 2*N+4. С LRCONT DECLARED LENGTH OF COMMON BLOCK С >>> COMMON /CONT/ICONT(4), RCONT(LRCONT) <<< С WHICH MUST BE DECLARED IN THE CALLING PROGRAM. С С "LRCONT" MUST BE AT LEAST 5*N+2 . С С С SOPHISTICATED SETTING OF PARAMETERS С -------SEVERAL PARAMETERS OF THE CODE ARE TUNED TO MAKE IT WORK С С WELL. THEY MAY BE DEFINED BY SETTING WORK(1),...,WORK(7) С AS WELL AS IWORK(1),..., IWORK(4) DIFFERENT FROM ZERO. FOR ZERO INPUT, THE CODE CHOOSES DEFAULT VALUES: С С IWORK(4) SWITCH FOR THE COEFFICIENTS OF THE METHOD С IWORK(4)=1 COEFFICIENTS WITH GAMMA=0.25 IWORK(4)=2 COEFFICIENTS WITH GAMMA=4./15. С С IWORK(4)=3 COEFFICIENTS OF CASH (1979) С THE DEFAULT VALUE (FOR IWORK(4)=0) IS 2.

Subroutine ROS4

Classical Rosenbrock methods of Table IV.7.2. The choice among these methods can be made with the help of IWORK(2). Again, the missing parts in the description are identical to those for RADAU5.

SUBROUTINE ROS4(N,FCN,IFCN,X,Y,XEND,H, RTOL, ATOL, ITOL, + JAC ,IJAC,MLJAC,MUJAC,DFX,IDFX. MAS ,IMAS,MLMAS,MUMAS, ÷ SOLOUT, IOUT, ÷ WORK, LWORK, IWORK, LIWORK, IDID) с -----С NUMERICAL SOLUTION OF A STIFF SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS MY'=F(X,Y). С С THIS IS AN EMBEDDED ROSENBROCK METHOD OF ORDER (3)4 С (WITH STEP SIZE CONTROL). С C.F. SECTION IV.7 С С AUTHORS: E. HAIRER AND G. WANNER С UNIVERSITE DE GENEVE, DEPT. DE MATHEMATIQUES С CH-1211 GENEVE 24, SWITZERLAND С E-MAIL: HAIRERO CGEUGE51.BITNET, WANNERO CGEUGE51.BITNET С С VERSION OF APRIL 19, 1989 С IFCN GIVES INFORMATION ON FCN: С IFCN=0: F(X,Y) INDEPENDENT OF X (AUTONOMOUS) С IFCN=1: F(X,Y) MAY DEPEND ON X (NON-AUTONOMOUS) NAME (EXTERNAL) OF THE SUBROUTINE WHICH COMPUTES С DFX THE PARTIAL DERIVATIVES OF F(X,Y) WITH RESPECT TO X С С (THIS ROUTINE IS ONLY CALLED IF IDFX=1 AND IFCN=1; С SUPPLY A DUMMY SUBROUTINE IN THE CASE IDFX=0 OR IFCN=0). С OTHERWISE, THIS SUBROUTINE MUST HAVE THE FORM С SUBROUTINE DFX(N,X,Y,FX) С REAL*8 X,Y(N),FX(N) С FX(1)= ... С С IDFX SWITCH FOR THE COMPUTATION OF THE DF/DX: С IDFX=0: DF/DX IS COMPUTED INTERNALLY BY FINITE С DIFFERENCES, SUBROUTINE "DFX" IS NEVER CALLED. С IDFX=1: DF/DX IS SUPPLIED BY SUBROUTINE DFX. С WORK ARRAY OF WORKING SPACE OF LENGTH "LWORK". С SERVES AS WORKING SPACE FOR ALL VECTORS AND MATRICES. С "LWORK" MUST BE AT LEAST С N*(LJAC+LMAS+LE+8)+5 С IN THE USUAL CASE WHERE THE JACOBIAN IS FULL AND THE С MASS-MATRIX IS THE INDENTITY (IMAS=0), THE MINIMUM С STORAGE REQUIREMENT IS С LWORK = 2*N*N+8*N+5.С IWORK INTEGER WORKING SPACE OF LENGTH "LIWORK". С "LIWORK" MUST BE AT LEAST N+2.

C C S	SOPHISTICATED SETTING OF PARAMETERS			
с – - с с с с		SEVERAL PARAMETERS OF THE CODE ARE TUNED TO MAKE IT WORK WELL. THEY MAY BE DEFINED BY SETTING WORK(1),,WORK(5) AS WELL AS IWORK(1),IWORK(2) DIFFERENT FROM ZERO. FOR ZERO INPUT, THE CODE CHOOSES DEFAULT VALUES:		
C C IW C	ORK(1)	THIS IS THE MAXIMAL NUMBER OF ALLOWED STEPS. The default value (for iwork(1)=0) is 100000.		
C IW C C		SWITCH FOR THE CHOICE OF THE COEFFICIENTS IF IWORK(2).EQ.1 METHOD OF SHAMPINE IF IWORK(2).EQ.2 METHOD GRK4T OF KAPS-RENTROP IF IWORK(2).EQ.3 METHOD GRK4A OF KAPS-RENTROP IF IWORK(2).EQ.4 METHOD OF VAN VELDHUIZEN (GAMMA=1/2) IF IWORK(2).EQ.5 METHOD OF VAN VELDHUIZEN ("D-STABLE") IF IWORK(2).EQ.6 AN L-STABLE METHOD THE DEFAULT VALUE (FOR IWORK(2)=0) IS IWORK(2)=2.		
	RK(1)	UROUND, THE ROUNDING UNIT, DEFAULT 1.D-16.		
C WOI C	RK(2)	MAXIMAL STEP SIZE, DEFAULT XEND-X.		
	RK(3),	<pre>WORK(4) PARAMETERS FOR STEP SIZE SELECTION THE NEW STEP SIZE IS CHOSEN SUBJECT TO THE RESTRICTION WORK(3) <= HNEW/HOLD <= WORK(4) DEFAULT VALUES: WORK(3)=0.2D0, WORK(4)=6.D0</pre>		
	RK(5)	AVOID THE HUMP: AFTER TWO CONSECUTIVE STEP REJECTIONS THE STEP SIZE IS MULTIPLIED BY WORK(5) DEFAULT VALUES: WORK(5)=0.1D0		

Subroutine RODAS

Rosenbrock method described in Section VI.3. It also satisfies the algebraic order conditions and can thus be applied to differential-algebraic problems of index 1. The missing parts in the description are identical to those for RADAU5.

SUBROUTINE RODAS(N, FCN, IFCN, X, Y, XEND, H, RTOL, ATOL, ITOL, JAC ,IJAC,MLJAC,MUJAC,DFX,IDFX, ÷ + MAS ,IMAS,MLMAS,MUMAS, + SOLOUT, IOUT, WORK, LWORK, IWORK, LIWORK, LRCONT, IDID) с ----С NUMERICAL SOLUTION OF A STIFF (OR DIFFERENTIAL ALGEBRAIC) С SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS MY'=F(X,Y). С THIS IS AN EMBEDDED ROSENBROCK METHOD OF ORDER (3)4 С (WITH STEP SIZE CONTROL). С C.F. SECTIONS IV.7 AND VI.3 С С AUTHORS: E. HAIRER AND G. WANNER

с с с		UNIVERSITE DE GENEVE, DEPT. DE MATHEMATIQUES CH-1211 GENEVE 24, SWITZERLAND E-MAIL: HAIRER© CGEUGE51.BITNET, WANNER© CGEUGE51.BITNET
		OF APRIL 11, 1990
C C C	IFCN	GIVES INFORMATION ON FCN: IFCN=0: F(X,Y) INDEPENDENT OF X (AUTONOMOUS) IFCN=1: F(X,Y) MAY DEPEND ON X (NON-AUTONOMOUS)
 c c c c c c c c c c c	DFX	NAME (EXTERNAL) OF THE SUBROUTINE WHICH COMPUTES THE PARTIAL DERIVATIVES OF F(X,Y) WITH RESPECT TO X (THIS ROUTINE IS ONLY CALLED IF IDFX=1 AND IFCN=1; SUPPLY A DUMMY SUBROUTINE IN THE CASE IDFX=0 OR IFCN=0). OTHERWISE, THIS SUBROUTINE MUST HAVE THE FORM SUBROUTINE DFX(N,X,Y,FX) REAL*8 X,Y(N),FX(N) FX(1)=
с с с с	IDFX	SWITCH FOR THE COMPUTATION OF THE DF/DX: IDFX=0: DF/DX IS COMPUTED INTERNALLY BY FINITE DIFFERENCES, SUBROUTINE "DFX" IS NEVER CALLED. IDFX=1: DF/DX IS SUPPLIED BY SUBROUTINE DFX.
с с с с с		CONTINUOUS OUTPUT: DURING CALLS TO "SOLOUT", A CONTINUOUS SOLUTION FOR THE INTERVAL [XOLD,X] IS AVAILABLE THROUGH THE FUNCTION >>> CONTRO(I,S) <<<
 c c c c	WORK	ARRAY OF WORKING SPACE OF LENGTH "LWORK". SERVES AS WORKING SPACE FOR ALL VECTORS AND MATRICES. "LWORK" MUST BE AT LEAST N*(LJAC+LMAS+LE+10)+4
с с с с		IN THE USUAL CASE WHERE THE JACOBIAN IS FULL AND THE MASS-MATRIX IS THE INDENTITY (IMAS=0), THE MINIMUM STORAGE REQUIREMENT IS LWORK = 2*N*N+10*N+4.
с с с	IWORK	INTEGER WORKING SPACE OF LENGTH "LIWORK". "LIWORK" MUST BE AT LEAST N+2.
С С С	LRCONT	DECLARED LENGTH OF COMMON BLOCK >>> COMMON /CONROS/ICONT(3),RCONT(LRCONT) <<< WHICH MUST BE DECLARED IN THE CALLING PROGRAM. "LRCONT" MUST BE AT LEAST 4*N+2 .
C C		CATED SETTING OF PARAMETERS
с с с с с с с		SEVERAL PARAMETERS OF THE CODE ARE TUNED TO MAKE IT WORK WELL. THEY MAY BE DEFINED BY SETTING WORK(1),,WORK(4) AS WELL AS IWORK(1),IWORK(2) DIFFERENT FROM ZERO. FOR ZERO INPUT, THE CODE CHOOSES DEFAULT VALUES:
c c	IWORK(1)	THIS IS THE MAXIMAL NUMBER OF ALLOWED STEPS. The default value (for iwork(1)=0) is 100000.

С

С	IWORK(2)	SWITCH FOR THE CHOICE OF THE COEFFICIENTS
С		IF IWORK(2).EQ.1 METHOD 1 WITH GAMM=0.25
С		IF IWORK(2).EQ.2 METHOD 2 WITH GAMM=0.25
C		THE DEFAULT VALUE (FOR IWORK(2)=0) IS IWORK(2)=1.
С		
С	WORK(1)	UROUND, THE ROUNDING UNIT, DEFAULT 1.D-16.
C		
C	WORK(2)	MAXIMAL STEP SIZE, DEFAULT XEND-X.
С		
C	WORK(3), 1	WORK(4) PARAMETERS FOR STEP SIZE SELECTION
C		THE NEW STEP SIZE IS CHOSEN SUBJECT TO THE RESTRICTION
C		WORK(3) <= HNEW(J)/HOLD <= WORK(4)
C		DEFAULT VALUES: WORK(3)=0.2D0, WORK(4)=6.D0

Subroutine SEULEX

Extrapolation code based on the linearly implicit Euler method (Sections IV.9 and VI.4). A dense output has been included in cooperation with A. Ostermann. The missing parts in the description are identical to those for RADAU5.

```
SUBROUTINE SEULEX(N,FCN,IFCN,X,Y,XEND,H,
                        RTOL, ATOL, ITOL,
     ÷
                        JAC ,IJAC,MLJAC,MUJAC,
     ÷
     ŧ
                        MAS , IMAS, MLMAS, MUMAS,
     +
                        SOLOUT, IOUT,
                        WORK, LWORK, IWORK, LIWORK, LRCONT, LICONT, IDID)
     +
C -----
С
     NUMERICAL SOLUTION OF A STIFF (OR DIFFERENTIAL ALGEBRAIC)
     SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS MY'=F(X,Y).
С
С
     THIS IS AN EXTRAPOLATION-ALGORITHM, BASED ON THE
С
     LINEARLY IMPLICIT EULER METHOD (WITH STEP SIZE CONTROL
С
     AND ORDER SELECTION).
С
С
     AUTHORS: E. HAIRER AND G. WANNER
С
               UNIVERSITE DE GENEVE, DEPT. DE MATHEMATIQUES
С
               CH-1211 GENEVE 24, SWITZERLAND
С
               E-MAIL: HAIRER@ CGEUGE51.BITNET, WANNER@ CGEUGE51.BITNET
С
               INCLUSION OF DENSE OUTPUT BY E. HAIRER AND A. OSTERMANN
 . . . . . . . . . .
С
С
     VERSION OF APRIL 11, 1990
 . . . . . . . . . .
С
     IFCN
                  GIVES INFORMATION ON FCN:
С
                     IFCN=0: F(X,Y) INDEPENDENT OF X (AUTONOMOUS)
С
                     IFCN=1: F(X,Y) MAY DEPEND ON X (NON-AUTONOMOUS)
 . . . . . . . . . .
С
           ----- CONTINUOUS OUTPUT (IF IOUT=2): -----
С
                  DURING CALLS TO "SOLOUT", A CONTINUOUS SOLUTION
С
                  FOR THE INTERVAL [XOLD, X] IS AVAILABLE THROUGH
С
                  THE REAL*8 FUNCTION
С
                         >>>
                               CONTEX(I,S)
                                             <<<
С
     WORK
                 ARRAY OF WORKING SPACE OF LENGTH "LWORK".
```

c c		SERVES AS WORKING SPACE FOR ALL VECTORS AND MATRICES. "LWORK" MUST BE AT LEAST
č		N*(LJAC+LMAS+LE+KM+8)+4*KM+13+KM2*NRDENS
č		WHERE
č		KM2=KM*(KM+1)/2 AND NRDENS=IWORK(6) (SEE BELOW)
č		AND AND
c		
c		
		LJAC=MLJAC+MUJAC+1 IF MLJAC <n (banded="" jac.)<="" td=""></n>
C		AND
C		LMAS=0 IF IMAS=0 LMAS=N IF IMAS=1 AND MLMAS=N (FULL) LMAS=MLMAS+MUMAS+1 IF MLMAS <n (banded="" mass-m.)<="" td=""></n>
C		LMAS=N IF IMAS=1 AND MLMAS=N (FULL)
C		
C		AND
C		LE=N IF MLJAC=N (FULL JACOBIAN)
C		LE=2*MLJAC+MUJAC+1 IF MLJAC <n (banded="" jac.).<="" td=""></n>
С		AND
С		KM=12 IF IWORK(3)=0
С		KM=IWORK(3) IF IWORK(3).GT.0
С		
С		IN THE USUAL CASE WHERE THE JACOBIAN IS FULL AND THE
С		MASS-MATRIX IS THE INDENTITY (IMAS=0), THE MINIMUM
С		STORAGE REQUIREMENT IS
С		LWORK = $2*N*N+(KM+8)*N+4*KM+13+KM2*NRDENS$.
С	IWORK	INTEGER WORKING SPACE OF LENGTH "LIWORK".
C		"LIWORK" MUST BE AT LEAST 2*N+KM+9+NRDENS.
		DECLARED LENGTH OF COMMON BLOCK
č	LINCONT	>>> COMMON /CONTR/RCONT(LRCONT) <<<
č		WHICH MUST BE DECLARED IN THE CALLING PROGRAM.
č		"LRCONT" MUST BE AT LEAST
č		(KM + 2) * NRDENS + 2
č		WHERE KM=IWORK(3) AND NRDENS=IWORK(6) (SEE BELOW).
c		WHERE AN-IWORA(3) AND NADENS-IWORA(0) (SEE DELOW).
c	TCONT	DEGLADED LENGTH OF CONNON DLOCK
c	LICONT	DECLARED LENGTH OF COMMON BLOCK >>> COMMON /CONTI/ICONT(LICONT) <<<
C		WHICH MUST BE DECLARED IN THE CALLING PROGRAM.
C		"LICONT" MUST BE AT LEAST
C		NRDENS + 2
	• • • • • • • • •	
C	CODUTOTT	
C	SUPHISII	CATED SETTING OF PARAMETERS
C C		SEVERAL PARAMETERS OF THE CODE ARE TUNED TO MAKE IT WORK
		WELL. THEY MAY BE DEFINED BY SETTING WORK(1),,WORK(13)
C C		AS WELL AS IWORK(1),, IWORK(NRDENS+9) DIFFERENT FROM ZERO.
c		FOR ZERO INPUT, THE CODE CHOOSES DEFAULT VALUES:
č		FOR ZERU INFOI, THE CODE CHOUSES DEFROLI VALUES:
c		IF IWORK(1).NE.O, THE CODE TRANSFORMS THE JACOBIAN
č	IWORK(I)	MATRIX TO HESSENBERG FORM. THIS IS PARTICULARLY
-		
C		ADVANTAGEOUS FOR LARGE SYSTEMS WITH FULL JACOBIAN. IT DOES NOT WORK FOR BANDED JACOBIAN (MLJAC <n)< td=""></n)<>
C		AND NOT FOR IMPLICIT SYSTEMS (IMAS=1). IT IS
C		· · ·
C		ALSO NOT GOOD FOR SPARSE JACOBIANS.
C	THOPK(C)	THE TO THE MANTHAL NUMBER OF ALLOUPD OTEDO
C	IWORK(2)	
C		THE DEFAULT VALUE (FOR IWORK(2)=0) IS 100000.
c		
С	IMORK(3)	THE MAXIMUM NUMBER OF COLUMNS IN THE EXTRAPOLATION

561

C		IF IWORK(3).NE.O THEN IWORK(3) SHOULD BE .GE.3.
с с с с с с с с	IWORK(4)	SWITCH FOR THE STEP SIZE SEQUENCE IF IWORK(4).EQ.1 THEN 1,2,3,4,6,8,12,16,24,32,48, IF IWORK(4).EQ.2 THEN 2,3,4,6,8,12,16,24,32,48,64, IF IWORK(4).EQ.3 THEN 1,2,3,4,5,6,7,8,9,10, IF IWORK(4).EQ.4 THEN 2,3,4,5,6,7,8,9,10,11, THE DEFAULT VALUE (FOR IWORK(4)=0) IS IWORK(4)=4.
C C C	IWORK(5)	PARAMETER "LAMBDA" OF DENSE OUTPUT; POSSIBLE VALUES ARE 0 AND 1; DEFAULT IWORK(5)=0.
C C C	IWORK(6)	= NRDENS = NUMBER OF COMPONENTS, FOR WHICH DENSE OUTPUT IS REQUIRED
C C C	IWORK(10)	,,IWORK(NRDENS+9) INDICATE THE COMPONENTS, FOR WHICH DENSE OUTPUT IS REQUIRED
c c	WORK(1)	UROUND, THE ROUNDING UNIT, DEFAULT 1.D-16.
c c	WORK(2)	MAXIMAL STEP SIZE, DEFAULT XEND-X.
с с с с с с	WORK(3)	DECIDES WHETHER THE JACOBIAN SHOULD BE RECOMPUTED; INCREASE WORK(3), TO 0.1 SAY, WHEN JACOBIAN EVALUATIONS ARE COSTLY. FOR SMALL SYSTEMS WORK(3) SHOULD BE SMALLER (0.001D0, SAY). DEFAULT RTOL(1).
С С С С С С С С С	WORK(4),	WORK(5) PARAMETERS FOR STEP SIZE SELECTION THE NEW STEP SIZE FOR THE J-TH DIAGONAL ENTRY IS CHOSEN SUBJECT TO THE RESTRICTION FACMIN/WORK(5) <= HNEW(J)/HOLD <= 1/FACMIN WHERE FACMIN=WORK(4)**(1/(J-1)) DEFAULT VALUES: WORK(4)=0.1D0, WORK(5)=4.D0
000000000	WORK(6),	WORK(7) PARAMETERS FOR THE ORDER SELECTION ORDER IS DECREASED IF W(K-1) <= W(K)*WORK(6) ORDER IS INCREASED IF W(K) <= W(K-1)*WORK(7) DEFAULT VALUES: WORK(6)=0.7D0, WORK(7)=0.9D0
		WORK(9) SAFETY FACTORS FOR STEP CONTROL ALGORITHM HNEW=H*WORK(9)*(WORK(8)*TOL/ERR)**(1/(J-1)) DEFAULT VALUES: WORK(8)=0.8D0, WORK(9)=0.93D0
с с с с с		WORK(11), WORK(12), WORK(13) ESTIMATED WORKS FOR A CALL TO FCN, JAC, DEC, SOL, RESPECTIVELY. DEFAULT VALUES ARE: WORK(10)=1.DO, WORK(11)=5.DO, WORK(12)=1.DO, WORK(13)=1.DO.

Subroutine SODEX

Extrapolation code based on the linearly implicit mid-point rule (Section IV.9). The missing parts in the description are identical to those for RADAU5.

```
SUBROUTINE SODEX(N,FCN,IFCN,X,Y,XEND,H,
+ RTOL,ATOL,ITOL,
```

	+	JAC ,IJAC,MLJAC,	
	+	MAS ,IMAS,MLMAS,	MUMAS,
	+	SOLOUT,IOUT,	
_	+	WORK, LWORK, IWORK	,LIWURK,IDID)
c c c c c c c c c c	SYSTEM OF H This is an Linearly im	EXTRAPOLATION-ALGORITHM MPLICIT MID-POINT RULE, P SIZE CONTROL AND ORDER 3	FERENTIAL EQUATIONS MY'=F(X,Y). , BASED ON THE DUE TO BADER-DEUFLHARD
C		WATER AND C HANNED	
C		. HAIRER AND G. WANNER	T DE NATUENATIONES
C		VIVERSITE DE GENEVE, DEP'	
C		I-1211 GENEVE 24, SWITZE	
C	E-	-MAIL: HAIRERQ CGEUGEDI	.BITNET, WANNERC CGEUGE51.BITNET
с	•••••		
c	VERSION OF	APRIL 19, 1989	
-		AFRIL 19, 1905	
с	IFCN	GIVES INFORMATION ON F	CN :
c	IFON		EPENDENT OF X (AUTONOMOUS)
c			DEPEND ON X (NON-AUTONOMOUS)
		IFON-I. F(X,I) MAI	DEFEND ON X (NON XOTONOHOOD)
с	DFX	NAME (EXTERNAL) OF THE	SUBROUTINE WHICH COMPUTES
č	DIA	•••••••••••	S OF F(X,Y) WITH RESPECT TO X
č			CALLED IF IDFX=1 AND IFCN=1;
č		•	INE IN THE CASE IDFX=0 OR IFCN=0).
č			TINE MUST HAVE THE FORM
c		SUBROUTINE DFX(N,X,	
č		REAL*8 X, Y(N), FX(N)	
č		FX(1) =	
č		IX(1)	
č	IDFX	SWITCH FOR THE COMPUTA	TION OF THE DF/DX:
č	IDIX		OMPUTED INTERNALLY BY FINITE
č			ROUTINE "DFX" IS NEVER CALLED.
č			UPPLIED BY SUBROUTINE DFX.
•		1012-11 01/02 10 0	
c	WORK	ARRAY OF WORKING SPACE	OF LENGTH "LWORK".
Ċ		SERVES AS WORKING SPAC	E FOR ALL VECTORS AND MATRICES.
С		"LWORK" MUST BE AT LEA	ST
С		N*(LJAC+LM	AS+LE1+KM+9)+3*KM+13
С		WHERE	
С		LJAC=N	IF MLJAC=N (FULL JACOBIAN)
С		LJAC=MLJAC+MUJAC+1	IF MLJAC <n (banded="" jac.)<="" td=""></n>
С		AND	
С		LMAS=0	IF IMAS=0
С		LMAS=N	IF IMAS=1 AND MLMAS=N (FULL)
С		LMAS=MLMAS+MUMAS+1	IF MLMAS <n (banded="" mass-m.)<="" td=""></n>
С		AND	
С		LE1=N	IF MLJAC=N (FULL JACOBIAN)
C			IF MLJAC <n (banded="" jac.).<="" td=""></n>
C		AND	
C		KM=6	IF IWORK(3)=0
C		KM=IWORK(3)	IF IWORK(3).GT.0
C			
C			E THE JACOBIAN IS FULL AND THE
C			ENTITY (IMAS=0), THE MINIMUM
C		STORAGE REQUIREMENT IS	
C		LWORK = 2*	N*N+(KM+9)*N+3*KM+13.

c c	IWORK	INTEGER WORKING SPACE OF LENGTH "LIWORK". "LIWORK" MUST BE AT LEAST 2*N+KM+4.			
C C	SOPHISTICATED SETTING OF PARAMETERS				
с с с с с с с		SEVERAL PARAMETERS OF THE CODE ARE TUNED TO MAKE IT WORK WELL. THEY MAY BE DEFINED BY SETTING WORK(1),,WORK(13) AS WELL AS IWORK(1),,IWORK(4) DIFFERENT FROM ZERO. FOR ZERO INPUT, THE CODE CHOOSES DEFAULT VALUES:			
	IWORK(1)	IF IWORK(1).NE.O, THE CODE TRANSFORMS THE JACOBIAN MATRIX TO HESSENBERG FORM. THIS IS PARTICULARLY ADVANTAGEOUS FOR LARGE SYSTEMS WITH FULL JACOBIAN. IT DOES NOT WORK FOR BANDED JACOBIAN (MLJAC <n) AND NOT FOR IMPLICIT SYSTEMS (IMAS=1). IT IS ALSO NOT GOOD FOR SPARSE JACOBIANS.</n) 			
C C C	IWORK(2)	THIS IS THE MAXIMAL NUMBER OF ALLOWED STEPS. The default value (for iwork(2)=0) is 100000.			
с с с с	IWORK(3)	THE MAXIMUM NUMBER OF COLUMNS IN THE EXTRAPOLATION TABLE. THE DEFAULT VALUE (FOR IWORK(3)=0) IS 6. IF IWORK(3).NE.O THEN IWORK(3) SHOULD BE .GE.3.			
C C C C	IWORK(4)	SWITCH FOR THE STEP SIZE SEQUENCE IF IWORK(4).EQ.1 THEN 2,6,10,14,22,34,50, THE DEFAULT VALUE (FOR IWORK(4)=0) IS IWORK(4)=1.			
C C	WORK(1)	UROUND, THE ROUNDING UNIT, DEFAULT 1.D-16.			
C C	WORK(2)	MAXIMAL STEP SIZE, DEFAULT XEND-X.			
с с с с с	WORK(3)	DECIDES WHETHER THE JACOBIAN SHOULD BE RECOMPUTED; INCREASE WORK(3), TO 0.1 SAY, WHEN JACOBIAN EVALUATIONS ARE COSTLY. FOR SMALL SYSTEMS WORK(3) SHOULD BE SMALLER (0.001D0, SAY). DEFAULT RTOL(1).			
с с с с с с с с с с	WORK(4),	WORK(5) PARAMETERS FOR STEP SIZE SELECTION THE NEW STEP SIZE FOR THE J-TH DIAGONAL ENTRY IS CHOSEN SUBJECT TO THE RESTRICTION FACMIN/WORK(5) <= HNEW(J)/HOLD <= 1/FACMIN WHERE FACMIN=WORK(4)**(1/(J-1)) DEFAULT VALUES: WORK(4)=0.1D0, WORK(5)=4.D0			
с с с с с	WORK(6),	WORK(7) PARAMETERS FOR THE ORDER SELECTION STEP SIZE IS DECREASED IF W(K-1) <= W(K)*WORK(6) STEP SIZE IS INCREASED IF W(K) <= W(K-1)*WORK(7) DEFAULT VALUES: WORK(6)=0.9D0, WORK(7)=0.9D0			
	WORK(8),	WORK(9) SAFETY FACTORS FOR STEP CONTROL ALGORITHM HNEW=H*WORK(9)*(WORK(8)*TOL/ERR)**(1/(J-1)) DEFAULT VALUES: WORK(8)=0.8D0, WORK(9)=0.93D0			
с с с с с с с	WORK(10),	WORK(11), WORK(12), WORK(13) ESTIMATED WORKS FOR A CALL TO FCN, JAC, DEC, SOL, RESPECTIVELY. DEFAULT VALUES ARE: WORK(10)=1.DO, WORK(11)=5.DO, WORK(12)=1.DO, WORK(13)=1.DO.			

Bibliography

This bibliography includes the publications referred to in the text. Italic numbers in square brackets following a reference indicate the sections where the reference is cited.

- M. Abramowitz & I.A. Stegun (1964): Handbook of mathematical functions. Dover, 1000 pages. [IV.2], [IV.4], [IV.12], [IV.13], [IV.14]
- C.A. Addison (1979): Implementing a stiff method based upon the second derivative formulas. Techn. Rep. 130/79, Dept. of Comput. Sc., Univ. of Toronto, Canada. [V.3], [V.5]
- R.C. Aiken ed. (1985): Stiff computation. Oxford, Univ. Press, 462pp. [IV.1], [IV.3], [IV.8], [V.5]
- G. Akilov, see L. Kantorovich & G. Akilov.
- R. Alexander (1977): Diagonally implicit Runge-Kutta methods for stiff O.D.E.'s. SIAM J. Numer. Anal., vol. 14, pp. 1006-1021. [IV.3], [IV.6]
- R. Alt (1971): Méthodes A-stables pour l'intégration de systèmes différentielles mal conditionnés. Thèse, Univ. Paris VI. [IV.6]
- S. Arimoto, see J. Nagumo, S. Arimoto & S. Yoshizawa.
- V.I. Arnol'd (1979): Matematičeskie metody klassičeskoi mechaniki. Nauka, Moskva; English translation: Springer Verlag 1984, 1989. [IV.1], [VI.5]
- U. Ascher (1989): On numerical differential algebraic problems with application to semiconductor device simulation. SIAM J. Numer. Anal., vol. 26, pp. 517-538. [VI.7]
- U. Ascher & G. Bader (1986): Stability of collocation at Gaussian points. SIAM J. Numer. Anal., vol. 23, pp. 412-422. [IV.13]
- U. Ascher & L.R. Petzold (1990): Projected implicit Runge-Kutta methods for differential-algebraic equations. Report 90-20, Dept. of Comp. Sci., Univ. of British Columbia, Vancouver. Submitted to SIAM J. Numer. Anal. /VI.7/
- M. Athans & P.L. Falb (1966): Optimal Control. McGraw-Hill Book Company, New York, 879pp. [VI.5]
- W. Auzinger, R. Frank, & F. Macsek (1990): Asymptotic error expansions for stiff equations: the implicit Euler scheme. SIAM J. Numer. Anal., vol. 27, pp. 67-104. [VI.4]

- O. Axelsson (1969): A class of A-stable methods. BIT, vol. 9, pp. 185-199. [IV.3], [IV.5]
- O. Axelsson (1972): A note on a class of strongly A-stable methods. BIT, vol. 12, pp. 1-4. [IV.5]
- G. Bader & P. Deuflhard (1983): A semi-implicit mid-point rule for stiff systems of ordinary differential equations. Numer. Math., vol. 41, pp. 373-398. [IV.9]
- G. Bader, see also U. Ascher & G. Bader; E. Hairer, G. Bader & Ch. Lubich.
- C. Baiocchi & M. Crouzeix (1989): On the equivalence of A-stability and Gstability. Appl. Numer. Math., vol.5, pp. 19-22. [V.6]
- L.A. Bales, O.A. Karakashian & S.M. Serbin (1988): On the A₀-acceptability of rational approximations to the exponential function with only real poles. BIT, vol. 28, pp. 70-79. [IV.4]
- G.P. Barker, A. Berman & R.J. Plemmons (1978): Positive diagonal solutions to the Lyapunov equations. Linear and Multilinear Algebra, vol. 5, pp. 249-256. [IV.14]
- A. Berman, see G.P. Barker, A. Berman & R.J. Plemmons.
- S. Bernstein (1914): Sur la définition et les propriétés des fonctions analytiques d'une variable réelle. Math. Annalen, vol. 75, pp. 449-468. [IV.11]
- S. Bernstein (1928): Sur les fonctions absolument monotones. Acta Mathematica, vol. 51, pp. 1-66. [IV.11]
- M. Berzins & R.M. Furzeland (1985): A user's manual for SPRINT a versatile software package for solving systems of algebraic, ordinary and partial differential equations: part 1 – algebraic and ordinary differential equations. Thornton Research Centre, Shell Research Ltd. TNER.85.058. [V.5], [VI.6]
- M. Berzins, see also A.J. Preston, M. Berzins, P.M. Dew & L.E. Scales.
- T.A. Bickart (1977): An efficient solution process for implicit Runge-Kutta methods. SIAM J. Numer. Anal., vol. 14, 1022-1027. [IV.8]
- T.A. Bickart & W.B. Rubin (1974): Composite multistep methods and stiff stability. In: Stiff Differential Systems, R.A. Willoughby (ed.), Plenum Press, New York. [V.3]
- T.A. Bickart, see also H.M. Sloate & T.A. Bickart.
- G. Birkhoff & R.S. Varga (1965): Discretization errors for well-set Cauchy problems, I. J. Math. Phys., vol. 44, pp. 1-23. [IV.5]
- Å. Björck (1983): A block QR algorithm for partitioning stiff differential systems. BIT, vol. 23, pp. 329-345. [IV.10]
- Å. Björck (1984): Some methods for separating stiff components in initial value problems. In: Numerical Analysis, Dundee 1983, D.F. Griffiths, ed., Lecture Notes in Math. 1066, Springer Verlag, pp. 30-43. /IV.10/
- C. Bolley & M. Crouzeix (1978): Conservation de la positivité lors de la discrétisation des problèmes d'évolution paraboliques. R.A.I.R.O. Analyse numérique, vol. 12, pp. 237-245. [IV.11]

- V.G. Boltyanskii, see L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze & E.F. Mishchenko.
- K.E. Brenan (1983): Stability and convergence of difference approximations for higher-index differential-algebraic systems with applications in trajectory control. Doctoral thesis, Dep. Math., Univ. of California, Los Angeles. [VI.5]
- K.E. Brenan, S.L. Campbell & L.R. Petzold (1989): Numerical solution of initialvalue problems in differential-algebraic equations. North Holland, New York, 210pp. [VI.5], [VI.6], [VI.9]
- K.E. Brenan & L.R. Engquist (1988): Backward differentiation approximations of nonlinear differential/algebraic equations, and Supplement. Math. Comp., vol. 51, pp. 659-676, pp. S7-S16. [VI.6]
- K.E. Brenan & L.R. Petzold (1986): The numerical solution of higher index differential/algebraic equations by implicit Runge-Kutta methods. SIAM J. Numer. Anal., vol. 26, pp. 976-996. [VI.7]
- P.N. Brown, G.D. Byrne & A.C. Hindmarsh (1989): VODE: a variable coefficient ODE solver. SIAM J. Sci. Stat. Comput., vol. 10, pp. 1039-1051. [V.5]
- T.D. Bui, see P. Kaps, S.W.H. Poon & T.D. Bui.
- J.M. Burgers (1948): A mathematical model illustrating the theory of turbulence. Advances in appl. mech., vol. 1, pp. 171-199. [IV.10]
- K. Burrage (1978): High order algebraically stable Runge-Kutta methods. BIT, vol. 18, pp. 373-383. [IV.5], [IV.13]
- K. Burrage (1978): A special family of Runge-Kutta methods for solving stiff differential equations. BIT, vol. 18, pp. 22-41. [IV.5], [IV.6], [IV.8]
- K. Burrage (1982): Efficiently implementable algebraically stable Runge-Kutta methods. SIAM J. Numer. Anal., vol. 19, pp. 245-258. [IV.13]
- K. Burrage (1987): (k,l)-Algebraic stability of Gauss methods. IMA J. of Numer. Anal., vol. 7, pp. 251-259. [IV.12]
- K. Burrage (1987): High order algebraically stable multistep Runge-Kutta methods. SIAM J. Numer. Anal., vol. 24, pp. 106-115. [V.9]
- K. Burrage (1988): (k, l)-Algebraic stability of Runge-Kutta methods. IMA J. of Numer. Anal., vol. 8, pp. 385-400. [IV.12]
- K. Burrage (1988): Order properties of implicit multivalue methods for ordinary differential equations. IMA J. Numer. Anal., vol. 8, pp. 43-69. [V.9]
- K. Burrage & J.C. Butcher (1979): Stability criteria for implicit Runge-Kutta methods. SIAM J. Numer. Anal., vol. 16, pp. 46-57. [IV.12]
- K. Burrage & J.C. Butcher (1980): Non-linear stability of a general class of differential equation methods. BIT, vol. 20, pp. 185-203. [IV.12], [V.9]
- K. Burrage, J.C. Butcher & F.H. Chipman (1980): An implementation of singlyimplicit Runge-Kutta methods. BIT, vol. 20, pp. 326-340. [IV.8], [IV.10]
- K. Burrage & W.H. Hundsdorfer (1987): The order of B-convergence of algebraically stable Runge-Kutta methods. BIT, vol. 27, pp. 62-71. [IV.15]

- J.C. Butcher (1964): Implicit Runge-Kutta processes. Math. Comput., vol. 18, pp. 50-64. [IV.5]
- J.C. Butcher (1964): Integration processes based on Radau quadrature formulas. Math. Comput., vol. 18, pp. 233-244. [IV.5]
- J.C. Butcher (1975): A stability property of implicit Runge-Kutta methods. BIT, vol. 15, pp. 358-361. [IV.12]
- J.C. Butcher (1976): On the implementation of implicit Runge-Kutta methods. BIT, vol. 6, pp. 237-240. [IV.8]
- J.C. Butcher (1977): On A-stable implicit Runge-Kutta methods. BIT, vol. 17, pp. 375-378. [IV.5]
- J.C. Butcher (1979): A transformed implicit Runge-Kutta method. J. Assoc. Comput. Mach., vol. 26, pp. 731-738. [IV.8]
- J.C. Butcher (1981): A generalization of singly-implicit methods. BIT, vol. 21, pp. 175-189. [V.3]
- J.C. Butcher (1982): A short proof concerning B-stability. BIT, vol. 22, pp. 528-529. [IV.12]
- J.C. Butcher (1987): Linear and non-linear stability for general linear methods. BIT, vol. 27, pp. 182-189. [V.9]
- J.C. Butcher (1987): The equivalence of algebraic stability and AN-stability. BIT, vol. 27, pp. 510-533. [V.9]
- J.C. Butcher (1987): The numerical analysis of ordinary differential equations. Runge-Kutta and general linear methods. John Wiley & Sons, 512pp. [IV.12]
- J.C. Butcher (1990): Order, stepsize and stiffness switching. To appear in Computing. [IV.2], [IV.10]
- J.C. Butcher, see also K. Burrage & J.C. Butcher; K. Burrage, J.C. Butcher & F.H. Chipman.
- G.D. Byrne & A.C. Hindmarsh (1975): A polyalgorithm for the numerical solution of ordinary differential equations. ACM Trans. Math. Software, vol. 1, pp. 71-96. [V.5]
- G.D. Byrne & A.C. Hindmarsh (1987): Stiff ODE solvers: a review of current and coming attractions. J. of Comput. Physics, vol. 70, pp. 1-62. [IV.10]
- G.D. Byrne, see also P.N. Brown, G.D. Byrne & A.C. Hindmarsh.
- D.A. Calahan (1968): A stable, accurate method of numerical integration for nonlinear systems. Proc. IEEE, vol. 56, p. 744. [IV.7]
- A. Callender, D.R. Hartree & A. Porter (1936): Time-lag in a control system. Phil. Trans. of the Royal Society (London), Series A, vol. 235, pp. 415-444. [IV.2]
- S.L. Campbell (1982): Singular Systems of Differential Equations II. Pitman, London. [VI.5]
- S.L. Campbell, see also K.E. Brenan, S.L. Campbell & L.R. Petzold.

- J.R. Cash (1976): Semi-implicit Runge-Kutta procedures with error estimates for the numerical integration of stiff systems of ordinary differential equations. JACM, vol. 23, pp. 455-460. [IV.7]
- J.R. Cash (1979): Diagonally implicit Runge-Kutta formulae with error estimates. J. Inst. Math. Applics, vol. 24, pp. 293-301. [IV.6]
- J.R. Cash (1979): Stable recursions, with applications to the numerical solution of stiff systems. Academic Press, 223 pp. [V.2], [V.3]
- J.R. Cash (1980): On the integration of stiff systems od O.D.E.s using extended backward differentiation formulae. Numer. Math., vol. 34, pp. 235-246. [V.3]
- J.R. Cash (1981): Second derivative extended backward differentiation formulas for the numerical integration of stiff systems. SIAM J. Numer. Anal., vol. 18, pp. 21-36. [V.3]
- P.E. Chase (1962): Stability properties of Predictor-Corrector methods for ordinary differential equations, J. Assoc. Comput. Mach., vol. 9, pp.457-468. [V.1]
- F.H. Chipman (1971): A-stable Runge-Kutta processes. BIT, vol. 11, pp. 384-388. [IV.5]
- F.H. Chipman (1976): A note on implicit A-stable RK methods with parameters. BIT, vol. 16, pp. 223-227. [IV.5]
- F.H. Chipman, see also K. Burrage, J.C. Butcher & F.H. Chipman.
- K. Clark (1988): A structural form for higher index semistate equations I: Theory and applications to circuit and control theory. Linear Alg. Appl., vol. 98, pp. 169-197. [VI.5]
- L. Collatz (1950): Numerische Behandlung von Differentialgleichungen. Grundlehren, Springer Verlag, Band LX (later editions and translations). [IV.15]
- G.J. Cooper (1985): Reducible Runge-Kutta methods. BIT, vol. 25, pp. 675-680. [IV.12]
- G.J. Cooper (1986): On the existence of solutions for algebraically stable Runge-Kutta methods. IMA J. Numer. Anal., vol. 6, pp. 325-330. [IV.14]
- G.J. Cooper & A. Sayfy (1979): Semiexplicit A-stable Runge-Kutta methods. Math. of Comp., vol. 33, pp. 541-556. [IV.6]
- G.J. Cooper & A. Sayfy (1983): Additive Runge-Kutta methods for stiff ordinary differential equations. Math. of Comp., vol. 40, pp. 207-218. [IV.7]
- R. Courant, K. Friedrichs & H. Lewy (1928): Ueber die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann., vol. 100, pp. 32-74. [IV.2]
- R. Courant, see A. Hurwitz & R. Courant.
- G. Cramer (1750): Introduction à l'analyse des lignes courbes algébriques. Genève, 1750. [IV.3]
- R.L. Crane & R.W. Klopfenstein (1965): A predictor-corrector algorithm with an increased range of absolute stability. J. ACM, vol. 12, pp.227-241. [V.1]
- M. Crouzeix (1975): Sur l'approximation des équations différentielles opérationnelles linéaires par de méthodes de Runge-Kutta. Thèse, Univ. Paris VI. [IV.6]

- M. Crouzeix (1979): Sur la B-stabilité des méthodes de Runge-Kutta. Numer. Math., vol. 32, pp. 75-82. [IV.12]
- M. Crouzeix (1979): Approximation d'équations d'évolution linéaires à coefficients constants par des méthodes multipas. Report, Université Paul Sabatier, Toulouse. [V.7]
- M. Crouzeix, W.H. Hundsdorfer & M.N. Spijker (1983): On the existence of solutions to the algebraic equations in implicit Runge-Kutta methods. BIT, vol. 23, pp. 84-91. [IV.14]
- M. Crouzeix & P.A. Raviart (1976): Approximation d'équations d'évolutions linéaires par des méthodes multipas. Report, Université de Rennes. [V.7]
- M. Crouzeix & P.A. Raviart (1980): Approximation des problèmes d'évolution. Unpublished Lecture Notes, Université de Rennes. [IV.6], [IV.14], [V.7]
- M. Crouzeix & F. Ruamps (1977): On rational approximations to the exponential. R.A.I.R.O. Analyse Numérique, vol. 11, pp. 241-243. [IV.4]
- M. Crouzeix, see also C. Baiocchi & M. Crouzeix; C. Bolley & M. Crouzeix.
- C.W. Cryer (1973): A new class of highly stable methods. A₀-stable methods. BIT, vol. 13, pp.153-159. [V.2]
- A.R. Curtis (1983): Jacobian matrix properties and their impact on choice of software for stiff ODE systems. IMA J. Numer. Anal., vol. 3, pp. 397-415. [IV.10]
- C.F. Curtiss & J.O. Hirschfelder (1952): Integration of stiff equations. Proc. Nat. Acad. Sci., vol. 38, pp.235-243. [IV.1]
- G. Dahlquist (1951): Fehlerabschätzungen bei Differenzenmethoden zur numerischen Integration gewöhnlicher Differentialgleichungen. ZAMM, vol. 31, pp. 239-240. [V.1]
- G. Dahlquist (1956): Convergence and stability in the numerical integration of ordinary differential equations. Math. Scand., vol. 4, pp. 33-53. [V.7]
- G. Dahlquist (1963): A special stability problem for linear multistep methods. BIT, vol. 3, pp. 27-43. [IV.3], [IV.9], [IV.12], [V.1], [V.6]
- G. Dahlquist (1975): Error analysis for a class of methods for stiff nonlinear initial value problems. Numerical Analysis, Dundee 1975, Lecture Notes in Math., No. 506, pp. 60-74. [IV.12], [V.6]
- G. Dahlquist (1978): G-stability is equivalent to A-stability. BIT, vol. 18, pp. 384-401. [IV.13], [V.6]
- G. Dahlquist (1978): Positive functions and some applications to stability questions for numerical methods. In: Recent Advances in Numerical Analysis, C. de Boor & G.H. Golub (eds.), Academic Press, New York, pp. 1-19. [IV.5]
- G. Dahlquist (1983): On one-leg multistep methods. SIAM J. Numer. Anal., vol. 20, pp. 1130-1138. [V.6], [V.7], [V.9]
- G. Dahlquist & R. Jeltsch (1979): Generalized disks of contractivity for explicit and implicit Runge-Kutta methods. TRITA-NA Report 7906. [IV.12]

- G. Dahlquist & R. Jeltsch (1987): Reducibility and contractivity of Runge-Kutta methods revisited. Report Nr. 46, Inst. f. Geometrie u. Prakt. Math., RWTH Aachen. [IV.12]
- G. Dahlquist, H. Mingyou & R. LeVeque (1981): On the uniform boundedness of a family of matrices and the applications to one-leg and linear multistep methods. Report TRITA-NA-8101, Dept. of CComp. Sc.e,Royal Institute of Technology, Stockholm. [V.7]
- G. Dahlquist & G. Söderlind (1982): Some problems related to stiff nonlinear differential systems. In: Computing Methods in Applied Sciences and Engineering, V.R. Glowinski & J.L. Lions (eds.), North-Holland, INRIA [V.7]
- G. Dahlquist, see also G. Söderlind & G. Dahlquist.
- J.W. Daniel & R.E. Moore (1970); Computation and theory in ordinary differential equations, W.H. Freeman and Company, 172 pp. [V.4]
- P.J. Davis (1963): Interpolation and approximation. Blaisdell 1963; Dover 1975. [V.3]
- K. Dekker (1981): Stability of linear multistep methods on the imaginary axis. BIT, vol. 21, pp. 66-79. [V.4]
- K. Dekker (1982): On the iteration error in algebraically stable Runge-Kutta methods. Report NW 138/82, Math. Centrum, Amsterdam. [IV.14]
- K. Dekker (1984): Error bounds for the solution to the algebraic equations in Runge-Kutta methods. BIT, vol. 24, pp. 347-356. [IV.14]
- K. Dekker & E. Hairer (1985): A necessary condition for BSI-stability. BIT, vol. 25, pp. 285-288. [IV.14]
- K.Dekker, J.F.B.M. Kraaijevanger & J. Schneid (1990): On the relation between algebraic stability and B-convergence for Runge-Kutta methods. Numer. Math., vol. 57, pp.249-262. [IV.15]
- K. Dekker & J.G. Verwer (1984): Stability of Runge-Kutta methods for stiff nonlinear differential equations. North-Holland, Amsterdam-New-York-Oxford. [IV.12], [IV.14], [IV.15]
- K. Dekker, see also M.Z. Liu, K. Dekker & M.N. Spijker.
- P. Deuflhard (1983): Order and stepsize control in extrapolation methods. Numer. Math., vol. 41, pp. 399-422. [IV.9]
- P. Deuflhard (1985): Recent progress in extrapolation methods for ordinary differential equations. SIAM Review, vol. 27, pp. 505-535. [IV.9]
- P. Deuflhard, E. Hairer & J. Zugck (1987): One-step and extrapolation methods for differential-algebraic systems. Numer. Math., vol. 51, pp. 501-516. [VI.4]
- P. Deuflhard & U. Nowak (1987): Extrapolation integrators for quasilinear implicit ODEs. In P. Deuflhard & B. Engquist (eds.), Large-Scale Scientific Computing. Birkhäuser, Boston. [VI.4]
- P. Deuflhard, see also G. Bader & P. Deuflhard.
- P.M. Dew, see A.J. Preston, M. Berzins, P.M. Dew & L.E. Scales.

- J.R. Dormand & P.J. Prince (1980): A family of embedded Runge-Kutta formulae. J. Comp. Appl. Math., vol. 6, pp. 19-26. [IV.2]
- A.A. Dorondicyn (1947): Asymptotic solution of the van der Pol equation. Prikl. Mat. i Meh., vol. 11, pp. 313-328; Translations AMS, Ser. 1, vol. 4, pp. 1-23. [VI.1]
- B.L. Ehle (1968) : High order A-stable methods for the numerical solution of systems of DEs. BIT, vol. 8, pp. 276-278. [IV.3], [IV.4], [IV.5]
- B.L. Ehle (1969) : On Padé approximations to the exponential function and A-stable methods for the numerical solution of initial value problems. Research Report CSRR 2010, Dept. AACS, Univ. of Waterloo, Ontario, Canada. /IV.3], /IV.5]
- B.L. Ehle (1973): A-stable methods and Padé approximations to the exponential. SIAM J. Math. Anal., vol. 4, pp. 671-680. [IV.4], [IV.5]
- B.L. Ehle & Z. Picel (1975): Two-parameter, arbitrary order, exponential approximations for stiff equations. Math. Comput., vol. 29, pp.501-511. [IV.5]
- R. England (1982): Some hybrid implicit stiffly stable methods for ordinary differential equations. In: Numerical Analysis, Proc. Mexico, (ed. J.P. Hennart), Lecture Notes in Math., No. 909, Springer Verlag, pp. 147-158. [V.3]
- L.R. Engquist, see K.E. Brenan & L.R. Engquist.
- W.H. Enright (1974): Optimal second derivative methods for stiff systems. In: Stiff Differential Systems, ed. by R.A. Willoughby, Plenum Press, New York. (V.3)
- W.H. Enright (1974): Second derivative multistep methods for stiff ordinary differential equations, SIAM J. Numer. Anal., vol. 11, pp. 321-331. [V.3]
- W.H. Enright (1978): Improving the efficiency of matrix operations in the numerical solution of stiff ordinary differential equations. ACM Trans. on Math. Software, vol. 4, pp. 127-136. [IV.8]
- W.H. Enright & T.E. Hull (1976): Comparing numerical methods for the solution of stiff systems of ODEs arising in chemistry. In: Numerical methods for differential systems, recent developments in algorithms, software and applications, L. Lapidus & W.E. Schiesser, Eds., Academic Press, New York, 1976, pp. 45-66. [IV.10]
- W.H. Enright, T.E. Hull & B. Lindberg (1975): Comparing numerical methods for stiff systems of ODEs. BIT, vol. 15, pp. 10-48. [IV.10]
- W.H. Enright & M.S. Kamel (1979): Automatic partitioning of stiff systems and exploiting the resulting structure. ACM TOMS, vol. 5, pp. 374-385. [IV.10]
- M.A. Epton, see R.F. Sincovec, A.M. Erisman, E.L. Yip & M.A. Epton.
- A.M. Erisman, see R.F. Sincovec, A.M. Erisman, E.L. Yip & M.A. Epton.
- L. Euler (1737): De fractionibus continuis dissertatio. Comm. acad. sc. Petrop., vol. 9, pp. 98-137; Opera Omnia vol. XIV, pp. 187-215 (vide §7). /IV.13/
- L. Euler (1752): Elementa doctrinae solidorum. Nov. comm. acad. sci. Petropolitanae vol. 4, p. 109-140; Opera Omnia vol. XXVI, pp. 71-93. [IV.4]
- P.L. Falb, see M. Athans & P.L. Falb.

- L. Fejér (1933): Mechanische Quadraturen mit positiven Coteschen Zahlen. Math. Zeitschrift, vol. 37, pp. 287-309. [IV.13]
- A. Feng, C.D. Holland & S.E. Gallun (1984): Development and comparison of a generalized semi-implicit Runge-Kutta method with Gear's method for systems of coupled differential and algebraic equations. Comp. & Chem. Eng., vol. 8, pp. 51-59. [VI.3]
- J. Field & R.M. Noyes (1974); Oscillations in chemical systems. IV: Limit cycle behavior in a model of a real chemical reaction. J. Chem. Phys., vol. 60, pp. 1877-1884. [IV.10]
- R. FitzHugh (1969): Mathematical models of excitation and propagation in nerve, in: Biological Engineering (H.P. Schwan, ed., McGraw-Hill, NY.), pp. 1-85. [IV.10]
- R. Frank, J. Schneid & C.W. Ueberhuber (1981): The concept of B-convergence. SIAM J. Numer. Anal., vol. 18, pp. 753-780. [IV.15]
- R. Frank, J. Schneid & C.W. Ueberhuber (1985): Stability properties of implicit Runge-Kutta methods. SIAM J. Numer. Anal., vol. 22, pp. 497-514. [IV.14], [IV.15]
- R. Frank, J. Schneid & C.W. Ueberhuber (1985): Order results for implicit Runge-Kutta methods applied to stiff systems. SIAM J. Numer. Anal., vol. 22, pp. 515-534. [IV.14], [IV.15]
- R. Frank, see also W. Auzinger, R. Frank, & F. Macsek.
- A. Friedli (1978): Verallgemeinerte Runge-Kutta Verfahren zur Lösung steifer Differentialgleichungssysteme. Oberwolfach Conference 1976, Lecture Notes in Math. 631, pp. 35-50. [IV.11]
- K. Friedrichs, see R. Courant, K. Friedrichs & H. Lewy.
- C. Führer (1988): Differential-algebraische Gleichungssysteme in mechanischen Mehrkörpersystemen: Theorie, numerische Ansätze und Anwendungen. Doctoral thesis, Technische Universität München [VI.5].
- C. Führer & B. Leimkuhler (1990): Numerical solution of differential-algebraic equations for constrained mechanical motion. Numer. Math., submitted for publication. [VI.5]
- C. Führer & B. Leimkuhler (1990): A new class of generalized inverses for the solution of discretized Euler Lagrange equations. In E. Haug & R. Deyo (eds.): NATO Research Workshop, Snowbird, Utah (USA), August 7-11, 1989, Springer Verlag, Berlin. [VI.5]
- R.M. Furzeland, see M. Berzins & R.M. Furzeland.
- B.G. Galerkin (1915): Series expansions for some cases of equilibria of plates and beams (Russian). Vestnik Ingenerov Petrograd, H.10. [IV.10]
- S.E. Gallun, see A. Feng, C.D. Holland & S.E. Gallun.
- R.V. Gamkrelidze, see L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze & E.F. Mishchenko.

- F.R. Gantmacher (1954): Teorya Matrits. Two volumes, Gosudarstv. Izdat. Techn. Teor. Lit., Moscva 1953; translations: Chelsea NY 1959, Interscience NY and London 1959, D. Verl. d. Wiss. Berlin 1958/59, Dunod Paris 1966. [IV.12], [VI.5]
- C.W. Gear (1971): Numerical initial value problems in ordinary differential equations, Prentice Hall, 253 pp. [V.2], [V.5]
- C.W. Gear (1971): Simultaneous numerical solution of differential-algebraic equations. IEEE Trans. Circuit Theory, vol. CT-18, pp. 89-95. [VI.1]
- C.W. Gear (1982): Automatic detection and treatment of oscillatory and/or stiff ordinary differential equations. In: Numerical integration of differential equations, Lecture notes in Math., vol. 968, pp. 190-206. [IV.1]
- C.W. Gear (1988): Differential-algebraic equation index transformations. SIAM J. Sci. Stat. Comput., vol. 9, pp. 39-47. [VI.7]
- C.W. Gear (1990): Differential-algebraic equations, indices, and integral algebraic equations. SIAM J. Numer. Anal., vol. 27. [VI.5]
- C.W. Gear, G.K. Gupta & B. Leimkuhler (1985): Automatic integration of Euler-Lagrange equations with constraints. J. Comp. Appl. Math., vol. 12&13, pp. 77-90. [VI.5], [VI.6], [VI.9]
- C.W. Gear, H.H. Hsu & L. Petzold (1981): Differential-algebraic equations revisited. Proc. Numerical Methods for Solving Stiff Initial Value Problems, Oberwolfach, BRD. [VI.6]
- C.W. Gear & L.R. Petzold (1983): Differential/algebraic systems and matrix pencils. In: Matrix Pencils, B. Kagstrom & A. Ruhe (eds.), Lecture Notes in Math. 973, Springer Verlag, pp. 75-89. [VI.5]
- C.W. Gear & L.R. Petzold (1984): ODE methods for the solution of differential-/algebraic systems. SIAM J. Numer. Anal., vol. 21, pp. 716-728. [VI.5], [VI.6]
- C.W. Gear & Y. Saad (1983): Iterative solution of linear equations in ODE codes. SIAM J. Sci. Stat. Comput., vol. 4, pp. 583-601. [IV.10]
- E. Gekeler (1979): Uniform stability of linear multistep methods in Galerkin prodecures for parabolic problems. J. Math. Sciences, vol. 2, pp. 651-667. [V.7]
- E. Gekeler (1984): Discretization Methods for Stable Initial Value Problems. Lecture Notes in Math., No. 1044, Springer Verlag. [V.7]
- Y. Genin (1974): An algebraic approach to A-stable linear multistep-multiderivative integration formulas. BIT, vol. 14, pp. 382-406. [V.4]
- D.R.A. Giles (1978): A comparison of three problem-oriented simulation programs for dynamic mechanical systems. Thesis, Univ. Waterloo, Ontario. [VI.9]
- G.H. Golub & C.F. Van Loan (1989): Matrix Computations. Second edition, John Hopkins Univ. Press, Baltimore and London. [VI.5]
- B.A. Gottwald (1977): MISS Ein einfaches Simulations-System für biologische und chemische Prozesse, EDV in Medizin und Biologie, vol. 3, pp. 85-90. [IV.10]
- A.R. Gourlay (1970): A note on trapezoidal methods for the solution of initial value problems. Math. of Comp., vol. 24, pp. 629-633. [IV.3]

- J.A. van de Griend & J.F.B.M. Kraaijevanger (1986): Absolute monotonicity of rational fonctions occuring in the numerical study of initial value problems. Numer. Math., vol. 49, pp. 413-424. [IV.11]
- E. Griepentrog & R. März (1986): Differential-algebraic equations and their numerical treatment. Teubner Texte zur Math., Band 88. [VI.1], [VI.5], [VI.6]
- R.D. Grigorieff (1977): Numerik gewöhnlicher Differentialgleichungen, Band 2, Mehrschrittverfahren. Teubner Studienbücher, 411 Seiten "mit 49 Figuren, 32 Tabellen und zahlreichen Beispielen". [V.1]
- R.D. Grigorieff & J. Schroll (1978): Über $A(\alpha)$ -stabile Verfahren hoher Konsistenzordnung. Computing, vol. 20, pp. 343-350. [V.2]
- A. Guillou & B. Lago (1961): Domaine de stabilité associé aux formules d'intégration numérique d'équations différentielles, à pas séparés et à pas liés. Recherche de formules à grand rayon de stabilité. ler Congr. Assoc. Fran. Calcul, AFCAL, Grenoble, Sept. 1960, pp. 43-56. [IV.2]
- A. Guillou & J.L. Soulé (1969): La résolution numérique des problèmes différentiels aux conditions initiales par des méthodes de collocation. R.I.R.O., vol. R-3, pp. 17-44. [V.3]
- G.K. Gupta, see C.W. Gear, G.K. Gupta & B. Leimkuhler.
- K. Gustafsson (1990): Control theoretic techniques for stepsize selection in explicit Runge-Kutta methods. To appear in ACM TOMS. [IV.2]
- K. Gustafsson, M. Lundh & G. Söderlind (1988): A PI stepsize control for the numerical solution of ordinary differential equations. BIT, vol. 28, pp. 270-287. [IV.2]
- E. Hairer (1980: Highest possible order of algebraically stable diagonally implicit Runge-Kutta methods. BIT, vol. 20, pp. 254-256. [IV.13]
- E. Hairer (1982): Constructive characterization of A-stable approximations to exp z and its connection with algebraically stable Runge-Kutta methods. Numer. Math., vol. 39, pp. 247-258. [IV.5]
- E. Hairer (1986): A- and B-stability for Runge-Kutta methods characterizations and equivalence. Numer. Math., vol. 48, pp. 383-389. [IV.13]
- E. Hairer, G. Bader & Ch. Lubich (1982): On the stability of semi-implicit methods for ordinary differential equations. BIT, vol. 22, pp. 211-232. [IV.9], [IV.11]
- E. Hairer & Ch. Lubich (1988): Extrapolation at stiff differential equations. Numer. Math., vol. 52, pp. 377-400. [VI.4]
- E. Hairer, Ch. Lubich & M. Roche (1988): Error of Runge-Kutta methods for stiff problems studied via differential algebraic equations. BIT, vol. 28, pp. 678-700. [VI.2]
- E. Hairer, Ch. Lubich & M. Roche (1989): Error of Rosenbrock methods for stiff problems studied via differential algebraic equations. BIT, vol. 29, pp. 77-90. [VI.2]

- E. Hairer, Ch. Lubich & M. Roche (1989): The numerical solution of differentialalgebraic systems by Runge-Kutta methods (abbreviated as HLR89). Lecture Notes in Math. 1409, Springer Verlag. [VI.1], [VI.5], [VI.6], [VI.7], [VI.8], [VI.9]
- E. Hairer & A. Ostermann (1990): Dense output for extrapolation methods. To appear in Numer. Math. [VI.4]
- E. Hairer & H. Türke (1984): The equivalence of B-stability and A-stability. BIT, vol. 24, pp. 520-528. [IV.5], [IV.13]
- E. Hairer & G. Wanner (1981): Algebraically stable and implementable Runge-Kutta methods of high order. SIAM J. Numer. Anal., vol. 18, pp. 1098-1108. [IV.5], [IV.13]
- E. Hairer & G. Wanner (1982): Characterization of non-linearly stable implicit Runge-Kutta methods. In: Numerical integration of differential equations, Lecture notes in Math., vol. 968, pp. 207-219. [IV.5], [IV.13]
- E. Hairer, see also K. Dekker & E. Hairer; P. Deuflhard, E. Hairer & J. Zugck; G. Wanner, E. Hairer & S.P. Nørsett.
- G. Hall (1985): Equilibrium states of Runge-Kutta schemes. ACM Trans. Math. Software, vol. 11, pp. 289-301. [IV.1], [IV.2]
- G. Hall (1986): Equilibrium states of Runge-Kutta schemes, part II. ACM Trans. Math. Software, vol. 12, pp. 183-192. [IV.2]
- G. Hall & D.J. Higham (1988): Analysis of stepsize selection schemes for Runge-Kutta codes. IMA J. Numer. Anal., vol. 8, pp. 305-310. [IV.2]
- G. Hall, see also D.J. Higham & G. Hall.
- R.W.Hamming (1959): Stable predictor-corrector methods for ordinary differential equations. J. ACM, vol. 6, pp. 37-47. [V.1]
- R.W. HansonSmith, see D.S. Watkins & R.W. HansonSmith.
- D.R. Hartree, see A. Callender, D.R. Hartree & A. Porter.
- E.J. Haug (1989): Computer-aided Kinematics and Dynamics of Mechanical Systems. Allyn & Bacon, Boston. [VI.9]
- F. Hausdorff (1921): Summationsmethoden und Momentfolgen. Math. Zeitschrift, vol. 9, pp. 74-109 and pp. 280-299. [IV.11]
- P. Henrici (1962): Discrete Variable Methods in Ordinary Differential Equations. Wiley, New York. [V.7]
- Ch. Hermite (1873): Sur la fonction exponentielle. Comptes rendus de l'Acad. Sciences, vol. 77, pp. 18-24, 74-79, 226-233, 285-293. Œuvres, tome III, pp. 150-181. [IV.3]
- K.L. Hiebert, see L.F. Shampine & K.L. Hiebert.
- D.J. Higham & G. Hall (1990): Embedded Runge-Kutta formulae with stable equilibrium states. J. of Comp. and Appl. Math., vol. 29, pp. 25-33. [IV.2]
- D.J. Higham (1989): Analysis of the Enright-Kamel partitioning method for stiff ordinary differential equations. IMA J. Numer. Anal., vol. 9, pp. 1-14. [IV.10]

- D.J. Higham, see also G. Hall & D.J. Higham.
- A.C. Hindmarsh (1980): LSODE and LSODI, two new initial value ordinary differential equation solvers. ACM-SIGNUM Newsletter 15, pp. 10-11. [V.5], [VI.6]
- A.C. Hindmarsh, see also P.N. Brown, G.D. Byrne & A.C. Hindmarsh; G.D. Byrne & A.C. Hindmarsh.
- J.O. Hirschfelder, see C.F. Curtiss & J.O. Hirschfelder.
- A.L. Hodgkin & A.F. Huxley (1952): A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (London), Vol. 117, pp. 500-544. [IV.10]
- E. Hofer (1976): A partially implicit method for large stiff systems of ODE's with only few equations introducing small time-constants. SIAM J. Numer. Anal., vol. 13, pp. 645-663. [IV.10]
- C.D. Holland, see A. Feng, C.D. Holland & S.E. Gallun.
- E. Hopf (1950): The partial differential equation $u_t + uu_x = \mu u_{xx}$. Comm. on Pure and Appl. Math., vol. 3, pp. 201-230. [IV.10], [VI.4]
- P.J. van der Houwen (1968): Finite difference methods for solving partial differential equations. MC Tract 20, Math. Centrum, Amsterdam. [IV.2]
- P.J. van der Houwen (1973): One-step methods with adaptive stability functions for the integration of differential equations. Lecture Notes in Mathematics No. 333, Springer-Verlag, Berlin, pp. 164-174. [IV.7]
- P.J. van der Houwen (1977): Construction of integration formulas for initial value problems. North Holland series in Applied Math. and Mech., 269 pp. [IV.2], [IV.11]
- P.J. van der Houwen & B.P. Sommeijer (1980): On the internal stability of explicit, m-stage Runge-Kutta methods for large m-values. Z. Angew. Math. Mech., vol. 60, pp. 479-485. [IV.2]
- H.H. Hsu, see C.W. Gear, H.H. Hsu & L. Petzold.
- T.E. Hull, see W.H. Enright & T.E. Hull; W.H. Enright, T.E. Hull & B. Lindberg.
- W.H. Hundsdorfer (1985): The numerical solution of nonlinear stiff initial value problems: an analysis of one step methods. CWI Tract, Nr. 12, Mathematisch Centrum, Amsterdam. [IV.11], [IV.12], [IV.14]
- W.H. Hundsdorfer (1986): Stability and B-convergence of linearly implicit Runge-Kutta methods. Numer. Math., vol. 50, pp. 83-95. [IV.15]
- W.H. Hundsdorfer & M.N. Spijker (1981): A note on B-stability of Runge-Kutta methods. Numer. Math., vol. 36, pp. 319-331. [IV.12]
- W.H. Hundsdorfer & M.N. Spijker (1987): On the algebraic equations in implicit Runge-Kutta methods. SIAM J. Numer. Anal., vol. 24, pp. 583-594. [IV.14]
- W.H. Hundsdorfer & B.I. Steininger (1989): Convergence of linear multistep and one-leg methods for stiff nonlinear initial value problems. Report NM-R8924, CWI, Amsterdam. To appear in BIT. [V.6], [V.7]
- W.H. Hundsdorfer, see also K. Burrage & W.H. Hundsdorfer; M. Crouzeix, W.H. Hundsdorfer & M.N. Spijker; J.G. Verwer, W.H. Hundsdorfer & B.P. Sommeijer.

578 Bibliography

- A. Hurwitz & R. Courant (1925): Funktionentheorie. 2. Aufl., Verlag von Julius Springer, Berlin. [V.4]
- A.F. Huxley, see A.L. Hodgkin & A.F. Huxley.
- A. Iserles (1981): Generalized order star theory, in : Padé approximations and its applications. Amsterdam 1980, ed. M.G. de Bruin & H. van Rossum, Lecture Notes in Math. #888. [IV.4]
- A. Iserles & G. Strang (1983): The optimal accuracy of difference schemes. Trans. Am. Math. Soc., vol. 277, pp. 779-803. [IV.4]
- A. Iserles & S,P. Nørsett (1984): A proof of the first Dahlquist barrier by order stars. BIT, vol. 24, pp. 529-537. [V.4]
- A. Iserles & R.A Williamson (1983): Stability and accuracy of semi-discretized finite difference methods. IMA J. Numer. Anal., vol. 4, pp. 289-307. [IV.4]
- C.G.J. Jacobi (1826): Ueber Gauss' neue Methode die Werthe der Integrale näherungsweise zu finden. Journ. f. reine u. angew. Math., vol. I, pp. 301-308; Werke Vol. VI (1981), pp. 1-11. [IV.5]
- C.G.J. Jacobi (1847): Ueber eine elementare Transformation eines in Bezug auf jedes von zwei Variablen-Systemen linearen und homogenen Ausdrucks. J. f. Math. (Crelle), vol. 53, (1857), pp. 265-270, see also p. 281; Werke Bd. III, pp. 583-590. [IV.12]
- R. Jeltsch (1976): Stiff stability and its relation to A₀- and A(0)-stability, SIAM J. Numer. Anal., vol. 13, pp. 8-17. [V.2]
- R. Jeltsch (1976): Note on A-stability of multistep multiderivative methods. BIT, vol. 16, pp. 74-78. [V.4]
- R. Jeltsch (1978): Stability on the imaginary axis and A-stability of linear multistep methods. BIT, vol. 18, pp. 170-174. [V.4]
- R. Jeltsch (1988): Order barriers for difference schemes for linear and nonlinear hyperbolic problems. In: Numerical Analysis 1987, D.F. Griffiths & G.A. Watson (eds.), Pitman Research Notes in Math., No. 170, pp. 157-175. [V.4]
- R. Jeltsch & O. Nevanlinna (1978): Largest disk of stability of explicit Runge-Kutta methods. BIT, vol. 18, pp. 500-502. [IV.4]
- R. Jeltsch & O. Nevanlinna (1981): Stability of explicit time discretizations for solving initial value problems. Numer. Math., vol. 37, pp. 61-91; Corrigendum: Numer. Math., vol. 39, p.155. [IV.4]
- R. Jeltsch & O. Nevanlinna (1982): Stability and accuracy of time discretizations for initial value problems. Numer. Math., vol. 40, pp. 245-296. [IV.4], [V.2], [V.4]
- R. Jeltsch, see also G. Dahlquist & R. Jeltsch.
- M.S. Kamel, see W.H. Enright & M.S. Kamel.
- L. Kantorovich & G. Akilov (1959): Functional Analysis in Normed Spaces. Fizmatgiz, Moscow (German translation: Akademic-Verlag, Berlin, 1964). [VI.2]

- P. Kaps (1977): Modifizierte Rosenbrockmethoden der Ordnungen 4,5 und 6 zur numerischen Integration steifer Differentialgleichungen. Dissertation, Univ. Innsbruck. [IV.7]
- P. Kaps & A. Ostermann (1989): Rosenbrock methods using few LU-decompositions. IMA J. Numer. Anal., vol. 9, pp. 15-27. [IV.7]
- P. Kaps & A. Ostermann (1990): $L(\alpha)$ -stable variable order Rosenbrock-methods. To appear in: K. Strehmel, ed., Proceedings of the Halle Seminar 1989, Teubner Texte zur Mathematik. [IV.7]
- P. Kaps, S.W.H. Poon & T.D. Bui (1985): Rosenbrock methods for stiff ODEs: a comparison of Richardson extrapolation and embedding technique. Computing, vol. 34, pp. 17-40. [IV.7]
- P. Kaps & P. Rentrop (1979): Generalized Runge-Kutta methods of order four with stepsize control for stiff ordinary differential equations. Numer. Math., vol. 33, pp. 55-68. [IV.7]
- P. Kaps & G. Wanner (1981): A study of Rosenbrock-type methods of high order. Numer. Math., vol. 38, pp. 279-298. [IV.7]
- O.A. Karakashian, see L.A. Bales, O.A. Karakashian & S.M. Serbin.
- T. Kato (1960): Estimation of iterated matrices, with application to the von Neumann condition. Numer. Math., vol. 2, pp. 22-29. [V.7]
- T. Kato (1966): Perturbation Theory for Linear Operators. Grudlehren der math. Wissenschaften, Bd. 132, Springer Verlag, Berlin. [V.7]
- S.L. Keeling (1989): On implicit Runge-Kutta methods with a stability function having distinct real poles. BIT, vol. 29, pp. 91-109. [IV.4]
- M.D. Kirszbraun (1934): Ueber die zusammenziehenden und Lipschitzschen Transformationen. Fund. Math., vol. 23, pp. 77-108. [IV.12]
- R.W. Klopfenstein, see R.L. Crane & R.W. Klopfenstein.
- A.K. Kong, see R.D. Skeel & A.K. Kong.
- J.F.B.M. Kraaijevanger (1985): B-convergence of the implicit midpoint rule and the trapezoidal rule. BIT, vol. 25, pp. 652-666. [IV.15]
- J.F.B.M. Kraaijevanger (1986): Absolute monotonicity of polynomials occuring in the numerical solution of initial value problems. Numer. Math., vol. 48, pp. 303-322. [IV.11]
- J.F.B.M. Kraaijevanger (1990): A characterization of Lyapunov diagonal stability using Hadamard products. MIT Numer. Anal. Rep.90-3, submitted to Linear Alg. Appl. [IV.14]
- J.F.B.M. Kraaijevanger & J. Schneid (1990): On the unique solvability of the Runge-Kutta equations. MIT Numer. Anal. Rep.90-6, submitted to Numer. Math. [IV.14], [IV.15]
- J.F.B.M. Kraaijevanger, see also K.Dekker, J.F.B.M. Kraaijevanger & J. Schneid; J.A. van de Griend & J.F.B.M. Kraaijevanger; M.Z. Liu & J.F.B.M. Kraaijevanger.

- H.O. Kreiss (1962): Über die Stabilitätsdefinition für Differenzengleichungen die partielle Differentialgleichungen approximieren. BIT, vol. 2, pp. 153-181. /V.7/
- F.T. Krogh (1966): Predictor-Corrector methods of high order with improved stability characteristics. J. Assoc. Comput. Mach., vol. 13, pp. 374-385. [V.1]
- L. Kronecker (1874): Über Schaaren von quadratischen und bilinearen Formen. Akad. der Wiss. Berlin 19. Jan. 1874, Werke vol. I, pp. 351-413. [VI.5]
- L. Kronecker (1890): Algebraische Reduction der Schaaren bilinearer Formen. Akad. der Wiss. Berlin 27. Nov. 1890, Werke vol. III², pp. 141-155. [VI.5]
- V.I. Krylov (1959): Priblizhennoe Vychislenie Integralov. Goz. Izd. Fiz.-Mat. Lit., Moscow. English translation: Approximate calculation of integrals. Macmillan, New York, 1962. [V.3]
- M.A. Kurdi (1974): Stable high order methods for time discretization of stiff differential equations. Thesis, Univ. of California. [IV.6]
- A. Kværno (1990): Runge-Kutta methods applied to fully implicit differential-algebraic equations of index 1. Math. Comp., vol. 54, pp. 583-625. [VI.8]
- B. Lago, see A. Guillou & B. Lago.
- J.L. Lagrange (1776): Sur l'usage des fractions continues dans le calcul intégral. Nouv. Mém. de l'Acad. royale du Sc. et Belles-Lettres de Berlin, Oeuvres Tome quatrième, pp. 301-332. [IV.3]
- J.L. Lagrange (1788): Méchanique analitique. Paris, chez la Veuve Desaint, Libraire, MDCCLXXXVIII, avec approbation et privilège du Roi. Oeuvres vol. 11 et 12. [IV.1]
- J.D. Lawson (1967): Generalized Runge-Kutta processes for stable systems with large Lipschitz constants. SIAM J. Numer. Anal., vol. 4, pp. 372-380. [IV.9]
- B. van Leer, see P. Sonneveld & B. van Leer.
- B. Leimkuhler, see C. Führer & B. Leimkuhler; C.W. Gear, G.K. Gupta & B. Leimkuhler.
- M.-N. Le Roux (1980): Méthodes multipas pour des équations paraboliques non linéaires. Numer. Math., vol. 35, pp. 143-162. [V.8]
- R.J. LeVeque & L.N. Trefethen (1984): On the resolvent condition in the Kreiss matrix theorem. BIT, vol. 24, pp. 584-591. [V.7]
- R. LeVeque, see also G. Dahlquist, H. Mingyou & R. LeVeque.
- H. Lewy, see R. Courant, K. Friedrichs & H. Lewy.
- I. Lie (1990): The stability function for multistep collocation methods. Numer. Math., vol. 57, pp. 779-787. [IV.3]
- I. Lie & S.P. Nørsett (1989): Superconvergence for multistep collocation. Math. of Comput., vol. 52, pp. 65-79. [V.3]
- B. Lindberg (1971): On smoothing and extrapolation for the trapezoidal rule. BIT, vol. 11, pp. 29-52. [IV.9]

- B. Lindberg (1972): A simple interpolation algorithm for improvement of the numerical solution of a differential equation. SIAM J. Numer. Anal., vol. 9, pp. 662-668. [VI.4]
- B. Lindberg (1974): On a dangerous property of methods for stiff differential equations. BIT, vol. 14, pp. 430-436. [IV.3]
- B. Lindberg, see also W.H. Enright, T.E. Hull & B. Lindberg.
- F. Lindemann (1882): Ueber die Zahl π. Math. Ann., vol. 20, pp. 213-225. [IV.3]
- W. Liniger (1956): Zur Stabilität der numerischen Integrationsmethoden für Differentialgleichungen. Thèse, Université de Lausanne, 95 p. [V.1], [V.6]
- W. Liniger & R.A. Willoughby (1970): Efficient integration methods for stiff systems of ordinary differential equations. SIAM J. Numer. Anal., vol. 7, pp. 47-66. [IV.8]
- W. Liniger, see also O. Nevanlinna & W. Liniger; F. Odeh & W. Liniger.
- M.Z. Liu, K. Dekker & M.N. Spijker (1987): Suitability of Runge-Kutta methods. J. Comp. Appl. Math., vol. 91, pp. 53-63. [IV.14]
- M.Z. Liu & J.F.B.M. Kraaijevanger (1988): On the solvability of the systems of equations arising in implicit Runge-Kutta methods. BIT, vol. 28, pp. 825-838. [IV.14]
- C.F. Van Loan, see G.H. Golub & C.F. Van Loan.
- L. Lopez & D. Trigiante (1989): A projection method for the numerical solution of linear systems in separable stiff differential equations. Intern. J. Computer Math., vol. 30, pp. 191-206. [IV.10]
- P. Lötstedt (1985): Discretization of singular perturbation problems by BDF methods. Report No.99, Uppsala Univ., Dept. of Comp. Sci. [VI.1]
- P. Lötstedt (1985): On the relation between singular perturbation problems and differential-algebraic equations. Report No.100, Uppsala Univ., Dept. of Comp. Sci. [VI.1]
- P. Lötstedt & L. Petzold (1986): Numerical solution of nonlinear differential equations with algebraic constraints I: Convergence results for backward differentiation formulas. Math. Comput., vol 46, pp. 491-516. [VI.6]
- Ch. Lubich (1988): Convolution quadrature and discretized operational calculus I. Numer. Math., vol. 52, pp. 129-145. [V.7]
- Ch. Lubich (1989): Linearly implicit extrapolation methods for differential-algebraic systems. Numer. Math., vol. 55, pp. 197-211. [VI.5]
- Ch. Lubich (1989): h²-extrapolation methods for differential-algebraic systems of index 2. Impact Comput. Sc. Eng., vol. 1, pp. 260-268. [VI.9]
- Ch. Lubich (1990): On the convergence of multistep methods for nonlinear stiff differential equations. To appear in Numer. Math. [V.7], [V.8], [VI.1]
- Ch. Lubich (1990): On projected Runge-Kutta methods for differential-algebraic equations. Submitted for publication. [VI.8]
- Ch. Lubich, see also E. Hairer, G. Bader & Ch. Lubich; E. Hairer & Ch. Lubich; E. Hairer, Ch. Lubich & M. Roche.

582 Bibliography

- M. Lundh, see K. Gustafsson, M. Lundh & G. Söderlind.
- F. Macsek, see W. Auzinger, R. Frank, & F. Macsek.
- D.W. Manning (1981): A computer technique for simulating dynamic multibody systems based on dynamic formalism. Thesis, Univ. Waterloo, Ontario. /VI.9/
- M. Marden (1966): Geometry of polynomials. Mathematical Surveys, American Mathematical Society, Providence, Rhode Island, 2nd edition, 243 p. /V.7/
- R. März (1987): Higher index differential-algebraic equations: Analysis and numerical treatment. Preprint Nr. 159, Humboldt-Universität Berlin, to appear in Banach Center Publications. [VI.5], [VI.6]
- R. März (1989): Index-2 differential-algebraic equations. Results in Mathematics, vol. 15, pp. 149-171. [VI.5]
- R. März, see also E. Griepentrog & R. März.
- W.S. Massey (1980): Singular homology theory. Graduate Texts in Mathematics 70, Springer Verlag, 265 pp. [IV.4]
- M.L. Michelsen (1976): Semi-implicit Runge-Kutta methods for stiff systems, program description and application examples. Inst. f. Kemiteknik, Danmarks tekniske Højskole, Lyngby. [VI.3]
- H. Mingyou, see G. Dahlquist, H. Mingyou & R. LeVeque.
- G.J. Minty (1962): On a simultaneous solution of a certain system of linear inequalities. Proc. Amer. Math. Soc., vol. 13, pp. 11-12. [IV.12]
- E.F. Mishchenko, see L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze & E.F. Mishchenko.
- J.I. Montijano (1983): Estudio de los metodos SIRK para la resolucion numérica de ecuaciones diferenciales de tipo stiff. Thesis, Univ. Zaragoza. [IV.14]
- R.E. Moore, see J.W. Daniel & R.E. Moore.
- K.W. Morton, see R.D. Richtmyer & K.W. Morton.
- H.N. Mühltei (1982): Maximale Konvergenzordnung bei der numerischen Lösung von Anfangswertproblemen mit Splines. Numer. Math., vol. 39, pp. 449-463. [V.3]
- H.N. Mühltei (1982): A-stabile Kollokationsverfahren mit mehrfachen Knoten. Computing, vol. 29, pp. 51-61. [V.3]
- J. Nagumo, S. Arimoto & S. Yoshizawa (1962): An active pulse transmission line simulating nerve axon. Proc. IRE. vol. 50, pp. 2061-2070. [IV.10]
- J. von Neumann (1951): Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes. Math. Nachrichten, vol. 4, pp. 258-281. [IV.11]
- O. Nevanlinna (1976): On the logarithmic norms of a matrix. Report HTKK-MAT-A94, Helsinki Univ. of Tech. [VI.2]
- O. Nevanlinna (1976): On error bounds for G-stable methods. BIT, vol. 16, pp. 79-84. [V.6]
- O. Nevanlinna (1977): On the numerical integration of nonlinear initial value problems by linear multistep methods. BIT, vol. 17, pp. 58-71. [V.8]

- O. Nevanlinna (1985): Matrix valued versions of a result of von Neumann with an application to time discretization. J. Comput. Appl. Math., vol. 12& 13, pp. 475-489. [V.7]
- O. Nevanlinna & W. Liniger (1978): Contractive methods for stiff differential equations, I. BIT, vol. 18, pp. 457-474. [V.7]
- O. Nevanlinna & W. Liniger (1979): Contractive methods for stiff differential equations, II. BIT, vol. 19, pp. 53-72. [V.7]
- O. Nevanlinna & F. Odeh (1981): Multiplier techniques for linear multistep methods. Numer. Funct. Anal. Optim., vol. 3, pp. 377-423. [V.8]
- O. Nevanlinna, see also R. Jeltsch & O. Nevanlinna.
- S.P. Nørsett (1974): Multiple Padé approximations to the exponential function. Report No. 4/74, Dept. of Math., Univ. of Trondheim, Norway. [IV.4]
- S.P. Nørsett (1974): Semi-explicit Runge-Kutta methods. Report No. 6/74, Dept. of Math., Univ. of Trondheim, Norway. [IV.6]
- S.P. Nørsett (1975): Runge-Kutta methods with coefficients depending on the Jacobian. Report No. 1/75, Dept. of Math., Univ. of Trondheim, Norway. [IV.7]
- S.P. Nørsett (1975): C-polynomials for rational approximations to the exponential function. Numer. Math., vol. 25, pp.39-56. [IV.3]
- S.P. Nørsett (1976): Runge-Kutta methods with a multiple real eigenvalue only. BIT, vol. 16, pp. 388-393. [IV.8]
- S.P. Nørsett & P.G. Thomsen (1986): Local error control in SDIRK-methods. BIT, vol. 26, pp. 100-113. [IV.8]
- S.P. Nørsett & G. Wanner (1979): The real-pole sandwich for rational approximations and oscillation equations. BIT, vol. 19, pp. 79-94. [IV.3], [IV.4]
- S.P. Nørsett & G. Wanner (1981): Perturbed collocation and Runge-Kutta methods. Numer. Math., vol. 38, pp. 193-208. [IV.5], [IV.13]
- S.P. Nørsett & A. Wolfbrandt (1977): Attainable order of rational approximations to the exponential function with only real poles. BIT, vol. 17, pp. 200-208. [IV.4]
- S.P. Nørsett & A. Wolfbrandt (1979): Order conditions for Rosenbrock types methods. Numer. Math., vol. 32, pp. 1-15. [IV.7]
- S,P. Nørsett, see also A. Iserles & S,P. Nørsett; I. Lie & S.P. Nørsett; G. Wanner, E. Hairer & S.P. Nørsett.
- U. Nowak, see P. Deuflhard & U. Nowak.
- R.M. Noyes, see J. Field & R.M. Noyes.
- F. Odeh & W. Liniger (1977): Non-linear fixed-h stability of linear multistep formulae. J. Math. Anal. Appl., vol. 61, pp. 691-712. [V.8]
- F. Odeh, see also O. Nevanlinna & F. Odeh.
- R.E. O'Malley (1974): Introduction to Singular Perturbations. Academic Press, New York. [VI.2]
- J.M. Ortega & W.C. Rheinboldt (1970): Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, NewYork. [VI.2], [VI.6], [VI.7]

- A. Ostermann (1988): Ueber die Wahl geeigneter Approximationen an die Jacobimatrix bei linear-impliziten Runge-Kutta-Verfahren. Dissertation, Univ. Innsbruck, pp. 66. [IV.11]
- A. Ostermann (1990): Continuous extensions of Rosenbrock-type methods. Computing, vol. 44, pp. 59-68. [VI.3]
- A. Ostermann, see also E. Hairer & A. Ostermann; P. Kaps & A. Ostermann.
- H. Padé (1892): Sur la représentation approchée d'une fonction par des fractions rationnelles. Première Thèse ("A Monsieur Hermite"), Ann. Ec. Norm. Sup. (3), vol. 9, Supp. 3-93, Oeuvres pp. 72-165. [IV.3]
- H. Padé (1899): Mémoire sur les développements en fractions continues de la fonction exponentielle pouvant servir d'introduction à la théorie des fractions continues algébriques. Ann. Ec. Norm. Sup. (3), vol. 16, pp. 395-426; Oeuvres pp. 231-262. [IV.3]
- M.A. Parseval (1799): Private communication to S.F. Lacroix. See: Lacroix, Traité des différences et des séries, Paris 1800, p. 377, or Traité du calcul diff. et du calcul int., 2^e éd, vol. 3, p. 394, Paris 1819. Also published in Paris Mémoires présentés par divers savants à l'acad. d. sc., vol 1, (1806), p. 639.
- A. Pazy (1983): Semigroups of Linear Operators and Applications to Partial Differential Equations. Appl. Math. Sciences 44, Springer Verlag. [V.7]
- F. Peherstorfer (1981): Characterization of positive quadrature formulas. SIAM J. Math. Anal., vol. 12, pp. 935-942. [IV.13]
- O. Perron (1913): Die Lehre von den Kettenbrüchen. Teubner, 520 pp., 3rd ed., repr. 1977. [IV.13]
- L.R. Petzold (1982): A description of DASSL: A Differential/Algebraic System Solver. Proceedings of IMACS World Congress, Montreal, Canada. [VI.6], [VI.9]
- L.R. Petzold (1983): Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations. SIAM J. Sci. Stat. Comp., vol. 4, pp. 136-148. [IV.2], [IV.10]
- L.R. Petzold (1986): Order results for implicit Runge-Kutta methods applied to differential/algebraic systems. SIAM J. Numer. Anal., vol. 23, pp. 837-852. [VI.1], [VI.7]
- L.R. Petzold, see also U. Ascher & L.R. Petzold; K.E. Brenan, S.L. Campbell & L.R. Petzold; K.E. Brenan & L.R. Petzold; C.W. Gear, H.H. Hsu & L. Petzold; C.W. Gear & L.R. Petzold; P. Lötstedt & L. Petzold.
- Z. Picel, see B.L. Ehle & Z. Picel.
- R.J. Plemmons, see G.P. Barker, A. Berman & R.J. Plemmons.
- B. Van der Pol (1926): On "Relaxation Oscillations". Phil. Mag., vol. 2, pp. 978-992; reproduced in: B. Van der Pol, Selected Scientific Papers, vol. I, North-Holland Publ. Comp. Amsterdam (1960). [VI.1]
- G. Pólya & G. Szegö (1925): Aufgaben und Lehrsätze aus der Analysis. Two volumes, Grundlehren Band XX, Springer Verlag, many later editions and translations. [IV.4]

- L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze & E.F. Mishchenko (1961): The mathematical theory of optimal processes. Fizmatgiz Moscow, english translations: Wiley 1962, Pergamon Press 1964; german translation: Oldenbourg 1964. [VI.5]
- S.W.H. Poon, see P. Kaps, S.W.H. Poon & T.D. Bui.
- A. Porter, see A. Callender, D.R. Hartree & A. Porter.
- A.J. Preston, M. Berzins, P.M. Dew & L.E. Scales (1989): Towards efficient D.A.E solvers for the solution of dynamic simulation problems. To appear in the proceedings of the IMA Computational ODE-conference 1989, London. [VI.5]
- P.J. Prince, see J.R. Dormand & P.J. Prince.
- A. Prothero & A. Robinson (1974): On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations. Math. of Comput., vol. 28, pp. 145-162. [IV.3], [IV.15]
- V. Puiseux (1850): Recherches sur les fonctions algébriques. Journal de Math. vol 15, pp. 365-480. [V.4]
- P.A. Raviart, see M. Crouzeix & P.A. Raviart.
- M. Reimer (1967): Zur Theorie der linearen Differenzenformeln. Math. Zeitschr., vol. 95, pp. 373-402. [V.4]
- P. Rentrop, M. Roche & G. Steinebach (1989): The application of Rosenbrock-Wanner type methods with stepsize control in differential-algebraic equations. Numer. Math., vol. 55, pp. 545-563. [VI.1], [VI.3]
- P. Rentrop, see also P. Kaps & P. Rentrop.
- J.D. Reymond (1989): Implementation des méthodes Radau IIA d'ordre 7 et 9. Diploma thesis, Univ. Geneva. [IV.8], [IV.10]
- R.D. Richtmyer & K.W. Morton (1967): Difference Methods for Initial-Value Problems. Wiley-Interscience. [V.7]
- B. Riemann (1857): Allgemeine Voraussetzungen und Hülfsmittel für die Untersuchung von Functionen unbeschränkt veränderlicher Größen. J. f. d. r. u. angew. Math., vol. 54, pp. 101-104; Werke pp. 81-84. [V.4]
- J. Rinzel (1977): Repetitive nerve impulse propagation: numerical results and methods. In: W.E. Fitzgibbon (III) & H.F. Walker (eds), Nonlinear Diffusion, Pitman, London. [IV.10]
- W.C. Rheinboldt, see J.M. Ortega & W.C. Rheinboldt.
- R.E. Roberson & R. Schwertassek (1988): Dynamics of Multibody Systems. Springer Verlag. [VI.9]
- B.C. Robertson (1987): Detecting stiffness with explicit Runge-Kutta formulas. Report 193/87, Dept. Comp. Sci., University of Toronto. [IV.2]
- H.H. Robertson (1966): The solution of a set of reaction rate equations. In: J. Walsh ed.: Numer. Anal., an Introduction, Academ. Press, pp. 178-182. [IV.1], [IV.10]
- A. Robinson, see A. Prothero & A. Robinson.

- M. Roche (1988): Rosenbrock methods for differential algebraic equations. Numer. Math., vol. 52, pp. 45-63. [VI.3]
- M. Roche (1988): Runge-Kutta and Rosenbrock methods for differential-algebraic equations and stiff ODEs. Doctoral thesis, Université de Genève. [VI.8]
- M. Roche (1989): Runge-Kutta methods for differential algebraic equations. SIAM J. Numer. Anal., vol. 26, pp. 963-975. [VI.3]
- M. Roche (1990): The numerical solution of differential algebraic systems by Rosenbrock methods. To appear in: K. Strehmel, ed., Proceedings of the Halle Seminar 1989, Teubner Texte zur Mathematik. [VI.5]
- M. Roche, see also E. Hairer, Ch. Lubich & M. Roche; P. Rentrop, M. Roche & G. Steinebach.
- H.H. Rosenbrock (1962-63): Some general implicit processes for the numerical solution of differential equations. Computer J., vol. 5, pp. 329-330. [IV.6]
- F. Ruamps, see M. Crouzeix & F. Ruamps.
- W.B. Rubin, see T.A. Bickart & W.B. Rubin.
- Y. Saad (1981): Krylov subspace methods for solving large unsymmetric linear systems. Math. Comp., vol. 37, pp. 105-126. [IV.10]
- Y. Saad (1982): The Lanczos biorthogonalization algorithm and other oblique projection methods for solving large unsymmetric systems. SIAM J. Numer. Anal., vol. 19, pp. 485-506. [IV.10]
- Y. Saad, see also C.W. Gear & Y. Saad.
- I.W. Sandberg & H. Sichman (1968): Numerical integration of systems of stiff nonlinear differential equations. The Bell System Technical Journal, vol. 47, pp. 511-527. [IV.12]
- A. Sayfy, see G.J. Cooper & A. Sayfy.
- L.E. Scales, see A.J. Preston, M. Berzins, P.M. Dew & L.E. Scales,
- E. Schäfer (1975): A new approach to explain the "High Irradiance Responses" of photomorphogenesis on the basis of phytochrome. J. of Math. Biology, vol. 2, pp. 41-56. [IV.10]
- W. Schiehlen, ed. (1990): Multibody systems handbook. Springer Verlag, Berlin. [VI.9]
- R. Scherer (1979): A necessary condition for B-stability. BIT, vol. 19, pp. 111-115. [IV.3], [IV.12]
- J. Schneid (1987): B-convergence of Lobatto IIIC formulas. Numer. Math., vol. 51, pp. 229-235. [IV.15]
- J. Schneid, see also K.Dekker, J.F.B.M. Kraaijevanger & J. Schneid; R. Frank, J. Schneid & C.W. Ueberhuber; J.F.B.M.Kraaijevanger & J. Schneid.
- C. Schneider (1990): ROW-methods adapted to differential-algebraic systems. To appear in Math. Comp. [VI.3]
- I.J. Schoenberg (1953): On a Theorem of Kirszbraun and Valentine. Amer. Math. Monthly, vol. 60, pp. 620-622. [IV.12]

- S. Scholz (1989): Order barriers for the B-convergence of ROW methods. Computing, vol. 41, pp. 219-235. [IV.15]
- S. Scholz, see also J.G. Verwer & S. Scholz.
- J. Schroll, see R.D. Grigorieff & J. Schroll.
- J. Schur (1918): Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. J. Reine u. angew. Math., vol. 147, pp. 205-232. [V.3]
- R. Schwertassek, see R.E. Roberson & R. Schwertassek.

S.M. Serbin, see L.A. Bales, O.A. Karakashian & S.M. Sebin.

- L.F. Shampine (1977): Stiffness and nonstiff differential equation solvers, II: detecting stiffness with Runge-Kutta methods. ACM TOMS, vol. 3, pp. 44-53. [IV.2]
- L.F. Shampine (1980): Implementation of implicit formulas for the solution of ODEs. SIAM J. Sci. Stat. Comput., vol. 1, pp. 103-118. [IV.8]
- L.F. Shampine (1981): Evaluation of a test set for stiff ODE solvers. Report SAND80-2772, Sandia Nat. Lab., Livermore, CA. [IV.10]
- L.F. Shampine (1982): Implementation of Rosenbrock methods. ACM, Trans. on Math. Soft., vol. 8, pp. 93-113. [IV.7]
- L.F. Shampine (1987): Control of step size and order in extrapolation codes. J. Comp. Appl. Math., vol. 18, pp. 3-16. [IV.9]
- L.F. Shampine & K.L. Hiebert (1977): Detecting stiffness with the Fehlberg (4,5) formulas. Comp. & Maths. with Appls., vol. 3, pp. 41-46. [IV.2]
- L.F. Shampine & H.A. Watts (1979): DEPAC design of a user oriented package of ODE solvers. Report SAND-79-2374, Sandia Nat. Lab., Albuquerque, New Mexico. [V.5]
- H. Sichman, see I.W. Sandberg & H. Sichman.
- R.F. Sincovec, A.M. Erisman, E.L. Yip & M.A. Epton (1981): Analysis of descriptor systems using numerical algorithms. IEEE Trans. Aut. Control, AC-26, pp. 139-147. [VI.6]
- R.D. Skeel & A.K. Kong (1977): Blended linear multistep methods. ACM TOMS, vol. 3, pp. 326-343. [V.2], [V.3], [V.5]
- H.M. Sloate & T.A. Bickart (1973): A-stable composite multistep methods. J. ACM, vol. 20, pp. 7-26. [V.3]
- G. Söderlind (1981): On the efficient solution of nonlinear equations in numerical methods for stiff differential systems. Report TRITA-NA-8114, Royal Inst. of Tech., Stockholm. [IV. 10]
- G. Söderlind & G. Dahlquist (1981): Error propagation and stiff differential systems of singular perturbation type. Rep. TRITA-NA-8108, Royal Inst. of Tech., Stockholm. [VI.1]
- G. Söderlind, see also G. Dahlquist & G. Söderlind; K. Gustafsson, M. Lundh & G. Söderlind.

- B.P. Sommeijer, see P.J. van der Houwen & B.P. Sommeijer; J.G. Verwer, W.H. Hundsdorfer & B.P. Sommeijer.
- A. Sommerfeld (1942): Vorlesungen über theoretische Physik. Bd.1., Mechanik; translated from the 4th german ed.: Acad. Press. [IV.1], [VI.5]
- P. Sonneveld & B. van Leer (1985): A minimax problem along the imaginary axis. Nieuw Archief V. Wiskunde (4), vol. 3, pp. 19-22. [IV.2]
- G. Sottas (1984): Dynamic adaptive selection between explicit and implicit methods when solving ODE's. Report, Sect. de math., Univ. Genève. [IV.2], [IV.10]
- G. Sottas & G. Wanner (1982): The number of positive weights of a quadrature formula. BIT, vol. 22, pp. 339-352. [IV.13]
- J.L. Soulé, see A. Guillou & J.L. Soulé.
- Th. Speer (1989): Kontinuierliche Runge-Kutta-Approximationen für steife Differentialgleichungen mit Anwendung in der Fahrzeugdynamik. Dissertation, Tech. Univ. München. /IV.8]
- M.N. Spijker (1983): Contractivity in the numerical solution of initial value problems. Numer. Math., vol. 42, pp. 271-290. [IV.11]
- M.N. Spijker (1985): Feasibility and contractivity in implicit Runge-Kutta methods. J. Comp. Appl. Math., vol. 12 et 13, pp. 563-578. [IV.14]
- M.N. Spijker (1985): Stepsize restrictions for stability of one-step methods in the numerical solution of initial value problems. Math. Comp., vol. 45, pp. 377-392. [IV.11]
- M.N. Spijker (1986): The relevance of algebraic stability in implicit Runge-Kutta methods. Teubner Texte zur Mathematik 82 (K. Strehmel, ed.), pp. 158-164. [IV.15]
- M.N. Spijker, see also M. Crouzeix, W.H. Hundsdorfer & M.N. Spijker; W.H.Hundsdorfer & M.N. Spijker; M.Z. Liu, K. Dekker & M.N. Spijker.
- I.A. Stegun, see M. Abramowitz & I.A. Stegun.
- T. Steihaug & A. Wolfbrandt (1979): An attempt to avoid exact Jacobian and nonlinear equations in the numerical solution of stiff differential equations. Math. Comp., vol. 33, pp. 521-534. [IV.7]
- G. Steinebach, see P. Rentrop, M. Roche & G. Steinebach.
- B.I. Steininger, see W.H. Hundsdorfer & B.I. Steininger.
- V. Steklov (1916): On the approximate computation of definite integrals with the help of so-called mechanical quadrature I. Convergence of mechanical quadrature formulas. Petrograd, Bull. Acad. Sciences, ser. VI, vol. 10, pp. 169-186 (russian). See also same Journal vol. 11 (1917), pp. 557-558 for a french explanation. [IV.13]
- H.J. Stetter (1968): Improved absolute stability of predictor-corrector schemes. Computing, vol. 3, pp. 286-296. [V.1]
- H.J. Stetter (1973): Analysis of discretization methods for ordinary differential equations. Springer, Berlin. [IV.3], [IV.9], [IV.12]

- G.W. Stewart (1972): On the sensitivity of the eigenvalue problem $Ax = \lambda Bx$. SIAM J. Numer. Anal., vol. 9, pp. 669-686. [VI.5]
- T.J. Stieltjes (1884): Quelques recherches sur la Théorie des quadrature dites mécaniques. Annales Scientif. de l'Ecole Norm. Sup., troisième série, tome I, pp. 409-426. [IV.12]
- G. Strang, see A. Iserles & G. Strang.
- K. Strehmel & R. Weiner (1982): Behandlung steifer Anfangswertprobleme gewöhnlicher Differentialgleichungen mit adaptiven Runge-Kutta Methoden. Computing, vol. 29, pp. 153-165. [IV.11]
- K. Strehmel & R. Weiner (1987): B-convergence results for linearly implicit one step methods. BIT, vol. 27, pp. 264-281. [IV.11], [IV.15]
- A.G. Sveshnikov, see A.N. Tikhonov, A.B. Vasil'eva & A.G. Sveshnikov.
- G. Szegö (1939): Orthogonal Polynomials. AMS Coll. Publ., vol. XXIII, 403pp. [IV.13]
- G. Szegö, see also G. Pólya & G. Szegö.
- E. Tadmor (1981): The equivalence of L₂-stability, the resolvent condition, and strict H-stability. Lin. Alg. and its Applics., vol. 41, pp. 151-159. [V.7]
- P.L. Tchebychef (1859): Sur les questions de minima qui se rattachent à la représentation approximative des fonctions. Mém. de l'Acad. Imp. St.-Pétersbourg, Sixième série, Math-Phys., tome VII, pp.199-291; Oeuvres Tome I, pp.273-378. [IV.2]
- P.G. Thomsen, see S.P. Nørsett & P.G. Thomsen.
- A.N. Tikhonov (1952): Systems of differential equations containing small parameters in the derivatives. Mat. Sb. (Russian), vol. 31 (73), pp. 575-586. [VI.2]
- A.N. Tikhonov, A.B. Vasil'eva & A.G. Sveshnikov (1985): Differential Equations. Trans. from the Russian by A.B. Sossinskij. Springer Verlag, 238pp. [VI.2]
- L.N. Trefethen, see R.J. LeVeque & L.N. Trefethen.
- D. Trigiante, see L. Lopez & D. Trigiante.
- H. Türke, see E. Hairer & H. Türke.
- C.W. Ueberhuber, see R. Frank, J. Schneid & C.W. Ueberhuber.
- R. Vanselow (1979): Stabilitäts-und Fehleruntersuchungen bei numerischen Verfahren zur Lösung steifer nichtlinearer Anfangswertprobleme. Diplomarbeit, Sektion Mathematik, TU-Dresden. [IV.12]
- J.M. Varah (1979): On the efficient implementation of implicit Runge-Kutta methods. Math. Comp., vol. 33, pp. 557-561. [IV.8]
- R.S. Varga, see G. Birkhoff & R.S. Varga.
- A.B. Vasil'eva (1963): Asymptotic behaviour of solutions to certain problems involving non-linear differential equations containing a small parameter multiplying the highest derivatives. Usp. Mat. Nauk (Russian), vol. 18, pp.15-86. English translation: Russian Math. Surveys, vol.18, Nr. 3, pp. 13-84. [VI.2]
- A.B. Vasil'eva, see also A.N. Tikhonov, A.B. Vasil'eva & A.G. Sveshnikov.

- M.V. van Veldhuizen (1984): D-stability and Kaps-Rentrop methods. Computing vol. 32, pp. 229-237. [IV.7], [VI.3]
- J.G. Verwer (1980): On generalized Runge-Kutta methods using an exact Jacobian at a non-step point. ZAMM, vol. 60, pp. 263-265. [IV.7]
- J.G. Verwer, W.H. Hundsdorfer & B.P. Sommeijer (1990): Convergence properties of the Runge-Kutta-Chebyshev method. Numer. Math., vol. 57, pp. 157-178. [IV.2]
- J.G. Verwer & S. Scholz (1983): Rosenbrock methods and time-lagged Jacobian matrices. Beiträge zur Numer. Math., vol. 11, pp. 173-183. [IV.7]
- J.G. Verwer, see also K. Dekker & J.G. Verwer.
- P.P. Wakker (1985): Extending monotone and non-expansive mappings by optimization. Cahiers du C.E.R.O., vol. 27, pp. 141-149. [IV.12]
- J. Wallis (1655): Arithmetica infinitorum, Oxoniae 1655; Opera mathematica, vol I, pp.355-476 (vide p. 475), Oxonae 1695. [IV.12]
- G. Wanner (1976): A short proof on nonlinear A-stability. BIT, vol. 16, pp. 226-227. [IV. 12]
- G. Wanner (1980): Characterization of all A-stable methods of order 2m 4. BIT, vol. 20, pp. 367-374. [IV.5]
- G. Wanner, E. Hairer & S.P. Nørsett (1978): Order stars and stability theorems. BIT, vol. 18, pp. 475-489. [IV.4], [IV.6], [V.4]
- G. Wanner, E. Hairer & S.P. Nørsett (1978): When I-stability implies A-stability. BIT, vol. 18, p. 503. [IV.4]
- G. Wanner, see also E. Hairer & G. Wanner; P. Kaps & G. Wanner; S.P. Nørsett & G. Wanner; G. Sottas & G. Wanner.
- W. Wasow (1965): Asymptotic expansions for ordinary differential equations. Interscience, John Wiley & Sons, New York, 263pp. [VI.2]
- D.S. Watkins & R.W. HansonSmith (1983): The numerical solution of sparably stiff systems by precise partitioning. ACM trans. Math. Soft., vol. 9, pp. 293-301. [IV.10]
- H.A. Watts, see L.F. Shampine & H.A. Watts.
- K. Weierstrass (1868): Zur Theorie der bilinearen und quadratischen Formen. Akad. der Wiss. Berlin 18. Mai. 1868, Werke vol. II, pp. 19-44. [VI.5]
- R. Weiner, see K. Strehmel & R. Weiner.
- D.V. Widder (1946): The Laplace Transform. Princeton University Press, London. [IV.11]
- O.B. Widlund (1967): A note on unconditionally stable linear multistep methods. BIT, vol. 7, pp. 65-70. [IV.3], [V.1], [V.2]
- J.H. Wilkinson (1965): The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, 662 p. [IV.2]
- R.A Williamson, see A. Iserles & R.A Williamson.

- R.A. Willoughby (ed.) (1974): Stiff Differential Systems. Plenum Press, New York. [IV.1]
- R.A. Willoughby, see also W. Liniger & R.A. Willoughby.
- A. Wolfbrandt (1977): A study of Rosenbrock processes with respect to order conditions and stiff stability. Thesis, Chalmers Univ. of Techn., Göteborg, Sweden. [IV.4], [IV.7]
- A. Wolfbrandt, see also S.P. Nørsett & A. Wolfbrandt; T. Steihaug & A. Wolfbrandt.
- K. Wright (1970): Some relationships between implicit Runge-Kutta, collocation and Lanczos τ methods, and their stability properties. BIT, vol. 10, pp.217-227. [IV.3]
- E.L. Yip, see R.F. Sincovec, A.M. Erisman, E.L. Yip & M.A. Epton.
- S. Yoshizawa, see J. Nagumo, S. Arimoto & S. Yoshizawa.
- E.C. Zeeman (1972): Differential equations for the heartbeat and nerve impulse. Published in Towards a theoretical biology (Edited C.H. Waddington) Edinburgh University Press, Volume 4, pp. 8-67. Reprinted in Catastrophe theory, Selected papers 1972-1977, Addison-Wesley 1977, pp. 81-140. [IV.10]
- J. Zugck, see P. Deuflhard, E. Hairer & J. Zugck.

Symbol Index

A	order star, 53, 306.
$A\otimes J$	tensor product, 230, 356.
B	relative order star, 61, 71, 309.
$\overline{B}(p)$	simplifying assumption, 75, 391.
C	error constant, 41, 55, 265, 281, 308.
$\widetilde{C}(\eta)$	simplifying assumption, 75, 391.
C+	positive half plane, 54.
C-	negative half plane, 58.
$\widetilde{C}(\mu)$	companion matrix, 348.
DAT, DAT2	sets of differential algebraic trees, 439, 519.
$DAT_y, DAT2_y$	sets of differential algebraic trees, 439, 519.
$DAT_{z}^{y}, DAT2_{z}^{y}$ $DAT_{z}, DAT2_{z}$	sets of differential algebraic trees, 439, 519.
$DAI_z, DAIZ_z$ $D(\xi)$	simplifying assumption, 75.
$D_A(\xi)$	simplifying assumption, 391.
$D_B(\xi)$	simplifying assumption, 391.
$\frac{D}{di}B(\zeta)$	differential index, 476.
D_r	disc of radius r , 272.
E_r	<i>E</i> -polynomial, 43, 103.
F(t)	elementary differential, 114, 440, 519.
$\widehat{f}(\xi)$	Fourier transform, 273.
$K_q(s)$	Peano kernel, 273.
K(Z)	stability function for $y' = \lambda(x)y$, 196, 197, 247.
LDAT, LDAT2	sets of differential algebraic trees, 441, 520.
$LDAT_y, LDAT2_y$	sets of differential algebraic trees, 441, 520.
$LDAT_{z}$, $LDAT2_{z}$	sets of differential algebraic trees, 441, 520.
$\ell_i(t)$	Lagrange polynomial, 509.
$L(q,\dot{q})$	Lagrange function, 483, 536.
$L_{s}(x)$	Laguerre polynomial, 103, 139, 141.
LT_q	set of labelled trees of order q , 114.
P^{D_q}	projection, 495, 504.
p_D	differentiation order, 339.
pi	perturbation index, 478.
p_I p_I	interpolation order, 339.
$P_{k}^{P_{I}}$	(shifted) Legendre polynomial, 83, 215.
-k(w)	(Sintea) 2360 are porfuential, 00, 210.

594 Symbol Index

Q	projection, 495, 504.
$\dot{Q}(\mu,\zeta)$	characteristic polynomial, 303, 313.
$R_{kj}(z)$	Padé approximation, 50.
R(z)	stability function, 16, 17, 40, 41, 116, 143, 144.
$r_i(\mu)$	coefficient of discrete resolvent, 358, 380, 413.
$r(\zeta,\mu)$	discrete resolvent, 358, 380.
S	stability domain, 17, 257.
Sscal	scaled stability domain, 62.
S(Z)	stability matrix, 387.
S_{α}	sector of $A(\alpha)$ -stability, 268.
$S(\mu)$	stability matrix, 313.
T	kinetic energy, 483, 531.
T	set of trees, 125.
$T_m(z)$	Tchébychel polynomial, 36.
TW	set of trees for W-methods, 124.
$T(\eta,\zeta)$	property T , 86.
U	potential energy, 483, 535.
$\ u\ _D$	norm, 233.
$\ \ u\ \ _D$	norm in product space, 231, 233.
$\ u \ _G$	norm in product space, 356.
$\ v\ _G$	inner product norm, 332, 383.
$\alpha_D(A^{-1})$	coercivity coefficient, 229.
$\alpha_0(A^{-1})$	coercivity coefficient, 229, 396.
$\delta_D(x)$	differentiation error, 339.
$\delta_h(x)$	local error, 241, 243, 348, 505.
$\delta_I(x)$	interpolation error, 339.
$\delta_{LM}(x)$	linear multistep error, 346.
$\delta_{OL}(x)$	one-leg error, 338.
$\mu(A)$	logarithmic norm, 179, 418.
$\mu(\zeta)$	multiplier, 369.
ν	one-sided Lipschitz constant, 191, 229, 329, 365.
$\varrho_{a(t)}$	threshold factor, 187.
$arrho (t) \ arrho (\zeta)$	order of a tree, 116, 439, 519.
	generating polynomial, 256.
$\sigma(\zeta)$	generating polynomial, 256.
$\varphi_B(\ell)$	growth function, 206.
$arphi_R(x) abla$	contractivity function, 180.
v	backward difference operator, 259, 283.

Subject Index

A-acceptable approximations, 43. A-stability of multistep methods, 264. of one-step methods, 42. of Padé approximations, 60. of rational approximations, 58-59. via positive functions, 93. A(0)-stable multistep methods, 268. A_0 -stable multistep methods, 269. $A(\alpha)$ -stability of multistep methods, 268. of RK methods, 46. $A(\alpha)$ -stable multistep methods of high order, 269. absolutely monotonic functions, 188. acceleration level, 485. accuracy barriers for linear multistep methods, 273. Adams methods, 257, 259, 266, 285. adjoint differential equation, 482, 488. algebraic criterion for G-stability, 332, 333. algebraic stability, of general linear methods, 383, 386. of multivalue methods, 394. of RK methods, 193, 201, 220, 247. amplifier, 404, 408. Andrew's squeezing mechanism, 531. AN-stability, of RK methods 196, 213. of general linear methods, 387. approximate Jacobian, 170. asymptotic expansions, 146, 460, 466. asymptotic solution of Van der Pol's equation, 400. automatic stiffness detection, 22. backward differentiation formulas, see BDF

Bader-Deuflhard method, 145, 146. B-convergence, 240. of G-stable one-leg methods, 341. of multistep methods, 396. of order r, 247. of RK methods, 240. of trapezoidal rule, 250. of variable step sizes, 246. BDF methods, 2-3, 255, 263, 277, 286, 287, 301, 319, 332. BEAM, 163. Beam equation, 9f., 21, 39. blended multistep methods, 285. boundary layer terms, 417. BRUSS, 159. Brusselator, 5, 21. BSMOOTH, 160. B-stability of Radau IIA, 211. of RK methods, 191, 192, 197, 201, 214.of Rosenbrock methods, 212. BURGERS, 159, 176. Cary Grant's part, 65. Cash's algorithm, 288. characteristic equation for general linear methods, 313. for linear multistep methods, 256. for multistep RK methods, 303. for predictor-corrector schemes, 261. characteristic roots, 258. characterization of algebraically stable methods, 223. of positive quadrature formulas, 219. Chebyshev polynomial, 36. chemical reactions, 3. Christoffel-Darboux formula, 141. circuits, 5, 404, 408.

coercivity coefficient 229, 396. collocation methods for index 2 DAE, 508. multi-step, 290. one-step, 48, 82. projected, 514. companion matrix, 348. comparing stability domains, 61. comparison between Radau codes, 169. between Rosenbrock codes, 168. composite multistep methods, 287. conservative form of Burgers equations, 159. consistency conditions, 265. consistent initial values for index 1, 401-402, 406-407. for index 2, 477. for mechanical systems, 538. constrained mechanical system, 484. construction of IRK methods, 88. continued fraction representation, 90. continued fractions related to quadrature formulas, 214. continuous solution, see 'dense output' contractivity for linear problems, 178. see also 'B-stability' contractivity function, 180. control problems, 481. convergence for linear problems, 346. for nonlinear problems, 365. of A-stable multistep methods, 342. of BDF for index 2, 494. of DAE Rosenbrock methods, 447. of multistep methods for index 2, 494. of multistep methods for SPP, 411. of RK for index 1, 408. of RK for index 2 DAE, 506, 508, 514. of RK methods for DAE, 423f. of RK methods for SPP, 431. see also 'B-convergence' counter-examples for existence, 231. for stability properties, 212. criterion for G-stability, 332, 333. CUSP, 163. cusp catastrophe, 164.

DAE, 399, 401.

Dahlquist's second barrier, 264, 308, 320. Dahlquist's test equation, 17, 256. Daniel-Moore conjecture, 308, 317, 392. DASSL, 489. DEABM, 5, 6. DEBDF, 326. dense output of DAE extrapolation methods, 470. of DAE Rosenbrock methods, 452. of Dormand & Prince methods, 30. of Enright methods, 282. of multistep methods, 292. of SDIRK4, 107. derivative feedback (D), 32. descriptor form, 485. diagonally implicit RK methods, 97f. difference approximations of Burgers equations, 159. differential algebraic equations, 399, 401. differential index, 476. differentiation error, 339. order, 339, 344. diffusion, 5. direct approach, 403. DIRK, 97. disc stability, 272, 274. disc theorem, 61, 272. discrete resolvent, 358, 380. discrete variation of constants formula, 357, 374. DJ-reducible RK methods, 199. dominant invariant subspace, 172. DOPRI5, 3, 19, 24, 25, 26, 28, 33, 156. for mechanical system, 541. DOPRI8, 11, 15, 19, 28. Dormand & Prince methods, 28. Dorodnicyn's asymptotic formula, 402. dual order stars, 318. efficiency diagram, 166-167, 543. EKBWH-method, 174. elastic beam, 163. electrical circuits, 5, 404, 408. elementary differentials, 114. for index 1 DAE, 438, 440. for index 2 DAE, 519. Enright & Kamel method, 175. Enright methods, 281, 286. ϵ -expansions for SPP for exact solution, 416. for RK solution, 421.

equivalence between stability concepts, 198, 201. of A and B stability, 225. of A and G-stability, 334. error local, 241, 243, 348, 505. global 241, 346, 347, 353, 428. error bounds for one-leg methods, 338. error constant, 265, 308, 309. of rational approximations, 41, 64, 71. of second derivative multistep methods, 281, 282. for SDBDF methods, 285. error propagation, 245. Euler equations, 483. Euler's polyhedral formula, 59. EULSIM, 152. existence of multistep solutions, 331. of numerical RK solutions, 229. expansion of SPP solutions, 416f. experiments with multistep codes, 323. explicit Runge-Kutta methods, 16. Adams methods, 259. midpoint rule, 262, 266. Nyström methods, 262, 266. exponential fitting points, 57. extended BDF methods, 287, 289. extended multistep methods, 287. extrapolation methods, 142. for index 1 DAE, 457. GBS, 19. FINAG, 160. FitzHugh & Nagumo equations, 160. Fortran codes, 547. Fourier transform, 273. Gauss methods, 75, 196, 209, 235, 242. Gaussian quadrature formulas, 215. Gear & Saad method, 172. general linear methods, 313. algebraic stability of, 383, 386. generalized multistep methods, 280. generating polynomials, 256. GGL formulation of mechanical system, 485, 540. global error, 241. expansion for SPP, 428. for Prothero & Robinson problem, 353. inexact Jacobian, 123.

of linear multistep methods, 346. of one-leg methods, 347. Graeco-Roman transformation, 275. Green's function, 10. GRK4A, 119. Gronwall lemma, 479, 480. growth function 206. G-stability, of one-leg methods, 332. of BDF2 method, 332. of general linear methods, 383, 386. hanging rope, 14. Hermite interpolation, 291. Hessenberg form, 132. high order $A(\alpha)$ -stable multistep methods, 269. high oscillations, 12. HIHA5, method of Higham & Hall, 28, 31. HIRES, 157. HLR89, 478 hump, 122. hybrid multistep methods, 287. hyperbolic problems, 37. implementation of extrapolation schemes, 151. of IRK methods, 128f. of Rosenbrock methods, 120. implicit Adams methods, 259. Euler method, 3, 263. midpoint rule, 142, 330. Milne-Simpson methods, 262, 266. RK methods, 40, 75f. implicit differential equations $Mu' = \varphi(u), 111, 136, 153, 406, 437.$ $M(u)u' = \varphi(u), \ 486.$ F(u', u) = 0, 474, 479.inconsistent initial values for DAE Rosenbrock methods, 453. index, 474f. differential, 476. index 1, 403, 477, 485, 540. index 2, 477, 485, 540. index 3, 478, 485, 539. of nilpotency, 476. perturbation, 478. indirect approach, 404, 411.

integral feedback (I), 32. interpolation error, 339. order, 339, 344. IRK(DAE), 404. irreducible RK methods, 200. I-stability, 43. Jeltsch-Nevanlinna theorem, 62, 312. (k, ℓ) -algebraic stability, 206, 207. kinetic energy, 483, 531. of mechanical systems, 531. Kirchhoff's law, 404. Kreiss matrix theorem, 348. Kuntzmann-Butcher methods, 75. labelled trees, 114, 441, 520. LADAMS, 327. Lagrange multipliers, 484. Lagrange theory, 9, 14, 483. Lagrange-Hamilton principle, 483. Laguerre polynomials 103, 139, 141. Legendre polynomials, 75, 83, 215. linear algebra savings, 170. linear problems, contractivity, 178. linearly implicit Euler method, 150. Euler for index 1 DAE, 457. midpoint rule, 145, 487. RK method, 110. Lobatto IIIA methods, 79, 80, 197, 225, 237, 242. Lobatto IIIB methods, 79, 80, 197, 225, 237, 242. Lobatto IIIC methods, 79, 81, 196, 235, 238, 242. local error, 241, 243, 348, 505. logarithmic norm 179, 418. LSODE, 156, 326. LSODI, 489. L-stability, 45. of SDIRK methods, 106. matrix pencil, 474. mechanical system, 483, 531. MEXX for mechanical system, 541. midpoint rule, 262, 266. Milne-Simpson methods, 262, 266. monotonically labelled trees, 114, 441, 520.

influence of perturbations, 233, 492, 503. Montaigne's ruff, 309. multibody mechanisms, 531. multiderivative multistep methods, 303. multiple real-pole approximations. 70, 105. multiplier, 368. and nonlinearities, 373. construction of, 371. multistep collocation methods, 290. as general linear method, 292. G-stability of, 388. multistep methods, 255, 256. for index 1, 410. for index 2, 489. of Radau type, 293. multistep Runge-Kutta methods, 303, 390. multistep twin, 330.

> Navier-Stokes equations, 376. nonlinear perturbations, 182. number of positive weights of QF, 217. numerical experiments, 155. numerical work and poles, 305. Nyström methods, 262.

ODEX, 7, 8. one-leg multistep methods, 329, 330. error bounds for, 338. one-sided Lipschitz condition, 191, 229, 329, 365. one-sided Lipschitz constant, 191. one-step methods, 1f. optimal control problems, 481. optimal stability regions, 36-37. order conditions for DAE Rosenbrock methods, 445. for index 2 DAE, 517, 524. for multistep methods, 292. for Rosenbrock methods, 112-115. for SDIRK methods, 98. for second derivative multistep methods, 280. order of a tree, 439, 519. order of B-convergence, 247. order of a quadrature formulas, 215. order reduction, 240. for Rosenbrock methods, 252. order stars. dual, 318. for BDF2, 307.

- for general linear methods, 313. for multistep methods, 300, 306. for one-step methods, 53. for Padé approximations, 55. for SDIRK methods, 58. relative, 61, 71, 309. order tableau for DAE extrapolation methods, 463. OREGO, 156. Oregonator, 14.
- Padé approximations to e^{z} , 50. parabolic problems, 36, 378. parasitic roots, 259. Parseval identity, 274, 278. partitioned Rosenbrock methods, 455. partitioning methods, 171. Peano kernels, 273, 274, 276. pendulum, 484. perturbation index, 478. perturbations of linear equations, 374. of RK solutions, 233. perturbed asymptotic expansions, 460, root locus curve, 258. 466. PI step size control, 31. PLATE, 158. plate differential equation, 158. poles representing numerical work, 305. position level, 485. positive functions, 91, 92, 337. positive quadrature formulas, 194, 214, 219. potential energy, 483, 535. of mechanical systems, 535. preconsistency, 386. predictor-corrector schemes, 260. principal root, 307, 257. principal sheet, 307, 315. projected collocation methods, 514. projected Runge-Kutta methods, 512, 527. projection methods, 171. projections (index 2), 495, 504. property C, 311. property T, 86. proportional feedback (P), 32. RADAU IA, 77, 196, 235, 242. RADAU IIA, 78, 196, 209, 235, 242. Radau methods of multistep type, 293. RADAU5,4, 5, 47, 128f., 407, 155, 547,

550.

- for mechanical system, 540. RADAU7, 168. RADAU9, 168. rational approximations with real poles, 64. real-pole sandwich, 65. red-black reduction, 176. reduced system, 400-401, 402, 416. reducible RK methods, 199, 200. region of absolute stability, see 'stability domain' region of step-control stability, 29. regular matrix pencil, 474. relative order star, 61, 71, 309. relative separation, 172. resolvent (discrete), 358, 380. Riemann surfaces, 300, 302. RKF2(3), 26. RKF4(5), 28. ROBER, 157. Robertson reaction, 3, 20, 157. RODAS, 155, 450, 558. for BDF methods, 264. for explicit Adams methods, 260. for implicit Adams methods, 260. for Milne-Simpson methods, 263. for Nyström methods, 263. for SDBDF methods, 285. ROS4, 119, 155, 557. Rosenbrock comparisons, 165, 168. Rosenbrock methods for stiff problems, 110, 111. for DAE, 436. with inexact Jacobian, 123. rotation number, 217. Routh criterion, 95. Runge-Kutta methods explicit, 17. implicit, 40, 75. for index 1 problems, 402. for index 2 DAE, 502. for SPP, 416f. projected, 512, 527. savings in linear algebra, 542. scaled stability domain, 62. for Taylor methods, 63.
- Schur's criterion, 299.
- SC-stability, 26, 27.

for Dormand & Prince methods, 28. SDBDF, 284. SDIRK code, 138. SDIRK method, 42, 44, 97. SDIRK4, 107, 155, 555. SECDER, 327. second Dahlquist barrier, 264, 273. second derivative BDF methods, 284. second derivative multistep meth., 280. separably stiff problems, 171. SEULEX, 161, 152, 155, 560. simplified Newton, 129, 499. simplifying assumptions, 75, 83, 84, 85, 86, 195, 221, 222, 391. for index 2 DAE, 525. singly diagonally implicit RK methods, 97. singly implicit RK methods, 139. singular perturbation problems, 399f., 465. SIRK-methods, 139. smoothing step for extrapolation, 144. SODEX, 152, 155, 562. SPP, 399f., 465. SPRINT, 327, 489. S-reducible RK methods, 200. stability analysis for Cash's algorithm, 289, 290. for Euler's method, 16. for explicit RK methods, 16f. for extended BDF methods, 289, 290. for multistep Radau methods, 295, 297. for multistep Runge-Kutta methods, 303. stability domain, 17. of Bader-Deuflhard method, 149. of BDF methods, 264. of Cash's algorithm, 289. of DOPRI methods, 18. of Enright methods, 283. of ERK methods, 18. of explicit Adams methods, 260. of extended BDF methods, 289, 290. of extrapolated Euler, 151. of GBS extrapolation, 20. of implicit Adams methods, 260, 266. of implicit Euler method, 263. of Milne-Simpson methods, 263. of multistep methods, 257. of multistep Radau methods, 296.

of Nyström methods, 263.

of Padé approximations, 54. of predictor-corrector schemes, 261. stability function R(z), 17. of collocation method, 48. of extrapolation methods, 143, 144. of IRK methods, 40, 89. of Rosenbrock methods, 116. of SDIRK methods, 103. stability function for $y' = \lambda(x)y$ of general linear methods, 247. of IRK methods, 196, 197. stability region, see stability domain. stable numerical solutions, 257. stage order, 241. starting values for Newton iteration, 133. state space form, 403. step size selection, 133. step-control stability, 26. stiff, 1f. stiff eigenvalues, 172. stiff eigenvectors, 172. stiff mechanical system, 544. stiff stability of multistep methods, 268. stiff-detest, 156. stiffly accurate RK methods,46, 404. Rosenbrock methods, 448. SDIRK methods, 99. stiffness, 2. detection, 22. stopping criterion, 130. for Enright & Kamel method, 177. strictly stable multistep methods, 259. STRIDE, 156. Sullivan, Leon, 10. superconvergence, 510. super-future point, 287. switching between explicit and implict, 170. Taylor expansion for index 2 DAE, 517, 520. of DAE Rosenbrock solution, 442. of DAE solutions, 440. of index 2 RK solution, 523. Taylor series method, 280. Tchébychef polynomial, 36. theorem of von Neumann, 356. θ -method, 208. threshold factor, 187.

transient phase, 2.

transistor amplifier, 404, 408. trapezoidal rule, 197, 250, 265, 330, 384. trees for ODE, 98, 113. for index 1 DAE, 438. for index 2 DAE, 519. for W-methods, 124. monotonically labelled, 114, 441, 520. tuning parameters, 169.

underlying ODE, 476. uniqueness of multistep solutions, 331. of RK solutions, 233.

Van der Pol's equation, 5, 157, 400.

Vandermonde matrix, 82. VDPOL, 157. VDPOL2, 157. velocity level, 485. VODE, 326. Von Neumann's theorem, 179. V-transformation, 82. W-methods, 123.

weak AN-stability, 387. weak instability, 262. Weierstrass-Kronecker form, 474. work-precision diagram, 166-167, 324,

325.

W-transformation, 82, 195.

Editorial Board: R. L. Graham, J. Stoer, R. Varga

Computational Mathematics is a series of outstanding books and monographs which study the applications of computing in numerical analysis, optimization, control theory, combinatorics, applied function theory, and applied functional analysis. The connecting link among these various disciplines will be the use of high-speed computers as a powerful tool. The following list of topics best describes the aims of **Computational Mathematics**: finite element methods, multigrade methods, partial differential equations, multivariate splines and applications, numerical solutions of ordinary differential equations, numerical methods of optimal control, nonlinear programming, simulation techniques, software packages for quadrature, and p.d.e. solvers.

Computational Mathematics is directed towards mathematicians and appliers of mathematical techniques in disciplines such as engineering, computer science, economics, operations research and physics.

Volume 1

R. Piessens, E. de Doncker-Kapenga, C. W. Überhuber, D. K. Kahaner

QUADPACK

A Subroutine Package for Automatic Integration

1983. VII, 301 pp. 26 figs. Hardcover DM 89,-ISBN 3-540-12553-1

Volume 2

J. R. Rice, R. F. Boisvert

Solving Elliptic Problems Using ELLPACK

1985. X, 497 pp. 53 figs. Hardcover DM 168,-ISBN 3-540-90910-9

Volume 3

N.Z.Shor

Minimization Methods for Non-Differentiable Functions

Translated from the Russian by K. C. Kiwiel, A. Ruszczyński 1985. VIII, 162 pp. Hardcover DM 114,-ISBN 3-540-12763-1

Volume 4

W. Hackbusch

Multi-Grid Methods and Applications

1985. XIV, 377 pp. 43 figs. 48 tabs. Hardcover DM 198,- ISBN 3-540-12761-5 Volume 5

V. Girault, P-A. Raviart

Finite Element Methods for Navier-Stokes Equations

Theory and Algorithms

1986. X, 374 pp. 21 figs. Hardcover DM 198,- ISBN 3-540-15796-4

Volume 6 F. Robert

Discrete Iterations A Metric Study

Translated from the French by J. Rokne 1986. XVI, 195 pp. 126 figs. Hardcover DM 168,- ISBN 3-540-13623-1

Volume 7 D. Braess

Nonlinear Approximation Theory

1986. XIV, 290 pp. 38 figs. Hardcover DM 168,-ISBN 3-540-13625-8

Volume 8 E. Hairer, S. P. Nørsett, G. Wanner

Solving Ordinary Differential Equations I Nonstiff Problems

1987. XIII, 480 pp. 105 figs. Hardcover DM 128,-ISBN 3-540-17145-2

Volume 9 Z. Ditzian, V. Totik

Moduli of Smoothness

1987. IX, 227 pp. Hardcover DM 108,- ISBN 3-540-96536-X

Volume 10 Yu. Ermoliev, R. J.-B. Wets (Eds.)

Numerical Techniques for Stochastic Optimization

1988. XV, 571 pp. 62 figs. Hardcover DM 148,- ISBN 3-540-18677-8

Volume 11

J-P. Delahaye

Sequence Transformations

With an Introduction by C. Brezinski

1988. XXI, 252 pp. 164 figs. Hardcover DM 128,-ISBN 3-540-15283-0

Volume 12 C. Brezinski

History of Continued Fractions and Pade Approximants

1991. VIII, 551 pp. 6 figs. Hardcover DM 188,- ISBN 3-540-15286-5 Volume 13 E. L. Allgower, K. Georg

Numerical Continuation Methods

An Introduction 1990. XIV, 388 pp. 37 figs. Hardcover DM 128,- ISBN 3-540-12760-7

Volume 14 E. Hairer, G. Wanner

Solving Ordinary Differential Equations II Stiff and Differential – Algebraic Problems

1991. XV, 601 pp. 150 figs. Hardcover DM 128,-ISBN 3-540-53775-9

Volume 15 F. Brezzi, M. Fortin

Mixed and Hybrid Finite Element Methods

1991. Approx. 355 pp. 66 figs. Hardcover DM 108,- ISBN 3-540-97582-9

