
Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two
Subdivisions

1389-2

1 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

We have solved the easiest case of the map overlay
problem, where the two maps are networks
represented as collections of line segments.
In general, maps have a more complicated structure:
they are subdivisions of the plane into labeled
regions.

2 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Before we can give an algorithm for computing the
overlay of two subdivisions, we must develop a
suitable representation for a subdivision.
Storing a subdivision as a collection of line segments
is not such a good idea.
Operations like reporting the boundary of a region
would be rather complicated.
Add topological information: which segments bound
a given region, which regions are adjacent, and so
on.

3 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

edge

vertex

face

disconnected
subdivision

Complexity of a subdivision
#faces+#edges+#vertices.

4 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

incident

Complexity of a subdivision
#faces+#edges+#vertices.

4 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

What kind of queries?
What is the face containing a given point? (TOO
MUCH!)
Walking around the boundary of a given face,
Find the face from an adjacent one if we are given a
common edge,
Visit all the edges around a given vertex.

The representation that we shall discuss supports these
operations. It is called the doubly-connected edge list
(DCEL).

5 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

DCEL

DCEL contains:
a record for each edge,
a record for each vertex,
a record for each face,
plus attribute information.

6 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

−→e

Tw
in(
−→e)

v

w

To be able to traverse the boundary of a face, we need to
keep a pointer to a half-edge of any boundary component
and isolated points.

7 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

To be able to traverse the boundary of a face, we need to
keep a pointer to a half-edge of any boundary component
and isolated points.

7 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

To be able to traverse the boundary of a face, we need to
keep a pointer to a half-edge of any boundary component
and isolated points.

7 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

To be able to traverse the boundary of a face, we need to
keep a pointer to a half-edge of any boundary component
and isolated points.

7 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

DCEL
DCEL contains:

a record for each vertex,
1 Coordinates(v): the coordinates of v,
2 IncidentEdge(v): a pointer to an arbitrary half-edge

that has v as its origin.
a record for each face,

1 OuterComponent(f): to some half-edge on its outer
boundary (nil if unbounded),

2 InnerComponents(f): a pointer to some half-edge
on the boundary of the hole, for each hole.

a record for each half-edge −→e ,
1 Origin(−→e): a pointer to its origin,
2 Twin(−→e) a pointer to its twin half-edge,
3 IncidentFace(−→e): a pointer to the face that it

bounds.
4 Next(−→e) and Prev(−→e): a pointer to the next and

previous edge on the boundary of IncidentFace(−→e).

8 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

DCEL
DCEL contains:

a record for each vertex,
1 Coordinates(v): the coordinates of v,
2 IncidentEdge(v): a pointer to an arbitrary half-edge

that has v as its origin.
a record for each face,

1 OuterComponent(f): to some half-edge on its outer
boundary (nil if unbounded),

2 InnerComponents(f): a pointer to some half-edge
on the boundary of the hole, for each hole.

a record for each half-edge −→e ,
1 Origin(−→e): a pointer to its origin,
2 Twin(−→e) a pointer to its twin half-edge,
3 IncidentFace(−→e): a pointer to the face that it

bounds.
4 Next(−→e) and Prev(−→e): a pointer to the next and

previous edge on the boundary of IncidentFace(−→e).

8 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

DCEL
DCEL contains:

a record for each vertex,
1 Coordinates(v): the coordinates of v,
2 IncidentEdge(v): a pointer to an arbitrary half-edge

that has v as its origin.
a record for each face,

1 OuterComponent(f): to some half-edge on its outer
boundary (nil if unbounded),

2 InnerComponents(f): a pointer to some half-edge
on the boundary of the hole, for each hole.

a record for each half-edge −→e ,
1 Origin(−→e): a pointer to its origin,
2 Twin(−→e) a pointer to its twin half-edge,
3 IncidentFace(−→e): a pointer to the face that it

bounds.
4 Next(−→e) and Prev(−→e): a pointer to the next and

previous edge on the boundary of IncidentFace(−→e).

8 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

DCEL
DCEL contains:

a record for each vertex,
1 Coordinates(v): the coordinates of v,
2 IncidentEdge(v): a pointer to an arbitrary half-edge

that has v as its origin.
a record for each face,

1 OuterComponent(f): to some half-edge on its outer
boundary (nil if unbounded),

2 InnerComponents(f): a pointer to some half-edge
on the boundary of the hole, for each hole.

a record for each half-edge −→e ,
1 Origin(−→e): a pointer to its origin,
2 Twin(−→e) a pointer to its twin half-edge,
3 IncidentFace(−→e): a pointer to the face that it

bounds.
4 Next(−→e) and Prev(−→e): a pointer to the next and

previous edge on the boundary of IncidentFace(−→e).

8 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

DCEL
DCEL contains:

a record for each vertex,
1 Coordinates(v): the coordinates of v,
2 IncidentEdge(v): a pointer to an arbitrary half-edge

that has v as its origin.
a record for each face,

1 OuterComponent(f): to some half-edge on its outer
boundary (nil if unbounded),

2 InnerComponents(f): a pointer to some half-edge
on the boundary of the hole, for each hole.

a record for each half-edge −→e ,
1 Origin(−→e): a pointer to its origin,
2 Twin(−→e) a pointer to its twin half-edge,
3 IncidentFace(−→e): a pointer to the face that it

bounds.
4 Next(−→e) and Prev(−→e): a pointer to the next and

previous edge on the boundary of IncidentFace(−→e).

8 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

DCEL
DCEL contains:

a record for each vertex,
1 Coordinates(v): the coordinates of v,
2 IncidentEdge(v): a pointer to an arbitrary half-edge

that has v as its origin.
a record for each face,

1 OuterComponent(f): to some half-edge on its outer
boundary (nil if unbounded),

2 InnerComponents(f): a pointer to some half-edge
on the boundary of the hole, for each hole.

a record for each half-edge −→e ,
1 Origin(−→e): a pointer to its origin,
2 Twin(−→e) a pointer to its twin half-edge,
3 IncidentFace(−→e): a pointer to the face that it

bounds.
4 Next(−→e) and Prev(−→e): a pointer to the next and

previous edge on the boundary of IncidentFace(−→e).

8 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

DCEL

Origin(−→e)
Twin(−→e)
N
ex
t(
−→ e
)

P
rev

(−→e
)

IncidentFace(−→e)

−→e

9 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

DCEL:Example
v1

−→e 1,1
v2

v3

v4

f1

f2

−→e 1,2

−→e
3,2

−→e
4
,2−→e

3,1

−→e 2,
1−→e 2,

2

−→ e
4
,1

10 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

DCEL

Time complexity of queries?
Walking around the boundary of a given face,
Find the face from an adjacent one if we are given a
common edge,
Visit all the edges around a given vertex.

11 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions

=⇒

12 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions

13 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating half-edges

e

v

the geometric situation and
the two doubly-connected
edge lists before handling the
intersection

the doubly-connected edge
list after handling the inter-
section

14 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating half-edges

Next() pointers of the two
new half-edges each copy the
Next() pointer of the old
half-edge that is not its twin.
The half-edges to which
these pointers point must also
update their Prev() pointer
and set it to the new
half-edges.

e′

e′′

15 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating half-edges

The half-edge for e′ that has v
as its destination must be
linked to the first half-edge,
seen clockwise from e′, with v
as its origin.
The half-edge for e′ with v as
its origin must be linked to the
first counterclockwise
half-edge with v as its
destination.
The same for e′′.
Time complexity: O(m) (m:
degree of v).

e′

e′′

first clockwise half-
edge from e′ with v as
its origin

16 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating half-edges

The half-edge for e′ that has v
as its destination must be
linked to the first half-edge,
seen clockwise from e′, with v
as its origin.
The half-edge for e′ with v as
its origin must be linked to the
first counterclockwise
half-edge with v as its
destination.
The same for e′′.
Time complexity: O(m) (m:
degree of v).

e′

e′′

first clockwise half-
edge from e′ with v as
its origin

16 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating half-edges

The half-edge for e′ that has v
as its destination must be
linked to the first half-edge,
seen clockwise from e′, with v
as its origin.
The half-edge for e′ with v as
its origin must be linked to the
first counterclockwise
half-edge with v as its
destination.
The same for e′′.
Time complexity: O(m) (m:
degree of v).

e′

e′′

first clockwise half-
edge from e′ with v as
its origin

16 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating half-edges

The half-edge for e′ that has v
as its destination must be
linked to the first half-edge,
seen clockwise from e′, with v
as its origin.
The half-edge for e′ with v as
its origin must be linked to the
first counterclockwise
half-edge with v as its
destination.
The same for e′′.
Time complexity: O(m) (m:
degree of v).

e′

e′′

first clockwise half-
edge from e′ with v as
its origin

16 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating faces

faces= # outer boundaries +1 (unbounded face).
From half-edges we can construct the boundaries.
To determine weather the boundary is outer
boundary or boundary of a hole:

f

17 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating faces

faces= # outer boundaries +1 (unbounded face).
From half-edges we can construct the boundaries.
To determine weather the boundary is outer
boundary or boundary of a hole:

f

17 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating faces

faces= # outer boundaries +1 (unbounded face).
From half-edges we can construct the boundaries.
To determine weather the boundary is outer
boundary or boundary of a hole:

f

17 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating faces

Which boundary cycles bound the same face?
Construct a graph G.
Every boundary cycle is a node in G.
One node for the imaginary outer boundary of the
unbounded face.
Add an arc between two cycles if and only if one of
the cycles is the boundary of a hole and the other
cycle has a half-edge immediately to the left of the
leftmost vertex of that hole cycle.
If there is no half-edge to the left of the leftmost
vertex of a cycle, then the node representing the
cycle is linked to the node of the unbounded face.

18 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating faces

Which boundary cycles bound the same face?
Construct a graph G.
Every boundary cycle is a node in G.
One node for the imaginary outer boundary of the
unbounded face.
Add an arc between two cycles if and only if one of
the cycles is the boundary of a hole and the other
cycle has a half-edge immediately to the left of the
leftmost vertex of that hole cycle.
If there is no half-edge to the left of the leftmost
vertex of a cycle, then the node representing the
cycle is linked to the node of the unbounded face.

18 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating faces

Which boundary cycles bound the same face?
Construct a graph G.
Every boundary cycle is a node in G.
One node for the imaginary outer boundary of the
unbounded face.
Add an arc between two cycles if and only if one of
the cycles is the boundary of a hole and the other
cycle has a half-edge immediately to the left of the
leftmost vertex of that hole cycle.
If there is no half-edge to the left of the leftmost
vertex of a cycle, then the node representing the
cycle is linked to the node of the unbounded face.

18 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating faces

Which boundary cycles bound the same face?
Construct a graph G.
Every boundary cycle is a node in G.
One node for the imaginary outer boundary of the
unbounded face.
Add an arc between two cycles if and only if one of
the cycles is the boundary of a hole and the other
cycle has a half-edge immediately to the left of the
leftmost vertex of that hole cycle.
If there is no half-edge to the left of the leftmost
vertex of a cycle, then the node representing the
cycle is linked to the node of the unbounded face.

18 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating faces

Which boundary cycles bound the same face?
Construct a graph G.
Every boundary cycle is a node in G.
One node for the imaginary outer boundary of the
unbounded face.
Add an arc between two cycles if and only if one of
the cycles is the boundary of a hole and the other
cycle has a half-edge immediately to the left of the
leftmost vertex of that hole cycle.
If there is no half-edge to the left of the leftmost
vertex of a cycle, then the node representing the
cycle is linked to the node of the unbounded face.

18 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating faces

C1
C∞

C2

C3

C4

C6

C5 C7

C1
C3

C6
C∞

C2

C5

C4

C7

G

19 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating faces

Lemma 2.5
Each connected component of the graph G corresponds
exactly to the set of cycles incident to one face.

20 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Computing G

new arc
C C′

f

C′

C

G

21 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions

Theorem 2.6
Let S1 be a planar subdivision of complexity n1, let S2 be
a subdivision of complexity n2, and let n := n1 + n2. The
overlay of S1 and S2 can be constructed in
O(n log n+ k log n) time, where k is the complexity of the
overlay.

22 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Application:Boolean Operations

P1 P2

P1 P2 P1 P2

union

intersection difference

23 / 24

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

END.

24 / 24

	Doubly Connected Edge List (DCEL)
	Computing the Overlay of Two Subdivisions

