
Energy Efficient GPS Sensing with Cloud Offloading

Jie Liu, Bodhi Priyantha, Ted Hart
Microsoft Research

Redmond, WA 98039, USA

{liuj,bodhip,tedhar}@microsoft.com

Heitor S. Ramos, Antonio A.F. Loureiro
Federal University of Minas Gerais

Belo Horizonte, MG,

{hramos,loureiro}@dcc.ufmg.br

Qiang Wang
Harbin Institute of Technology

Harbin, China

wangqiang@hit.edu.cn

Abstract
Location is a fundamental service for mobile computing.

Typical GPS receivers, although widely available, consume
too much energy to be useful for many applications. Ob-
serving that in many sensing scenarios, the location infor-
mation can be post-processed when the data is uploaded to
a server, we design a Cloud-Offloaded GPS (CO-GPS) solu-
tion that allows a sensing device to aggressively duty-cycle
its GPS receiver and log just enough raw GPS signal for post-
processing. Leveraging publicly available information such
as GNSS satellite ephemeris and an Earth elevation database,
a cloud service can derive good quality GPS locations from a
few milliseconds of raw data. Using our design of a portable
sensing device platform called CLEO, we evaluate the accu-
racy and efficiency of the solution. Compared to more than
30 seconds of heavy signal processing on standalone GPS
receivers, we can achieve three orders of magnitude lower
energy consumption per location tagging.

Categories and Subject Descriptors
C.3 [SPECIAL-PURPOSE AND APPLICATION-

BASED SYSTEMS]: [Real-time and embedded systems]

General Terms
Design

Keywords
location, assisted GPS, cloud-offloading, coarse-time

navigation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

SenSys’12, November 6–9, 2012, Toronto, ON, Canada.
Copyright c© 2012 ACM 978-1-4503-1169-4 ...$10.00

1 Introduction
Location is a fundamental service in mobile sensing. In

outdoor applications such as wildlife tracking [28, 26], par-
ticipatory environmental sensing [20], and personal health
and wellness applications, GPS is the most common modal-
ity for tagging data samples with their locations. GPS receiv-
ing, although becoming increasingly ubiquitous and lower in
cost, is processing-intensive and energy-consuming.

Take ZebraNet sensor nodes [28] as an example. On av-
erage, one GPS location fix requires turning on the GPS chip
for 25 seconds at 462mW power consumption, which domi-
nates its energy budget. As a result, the unit is equipped with
a 540-gram (1.2 pound) solar cell array and a 287-gram (0.6
pound) 2A-h lithium-ion battery in order to support one GPS
position reading every 3 minutes. Power generation and stor-
age accounts for over 70% of the sensor unit’s total weight
of 1151 grams (2.5 pounds).

Recent mobile sensing applications, especially those
leveraging participatory sensing paradigms, typically use
smart phones as sensors. While smart phones have built-
in GPS and cellular-based communication capabilities, their
battery life is rarely longer than a few days. A typical smart
phone will completely drain its battery in about 6 hours if the
GPS is running continuously [14, 21]. This prevents them
from being used in unattended deployments for long periods
of time.

As we will elaborate in section 2, there are two reasons
behind the high energy consumption of GPS receivers: 1) the
time and satellite trajectory information (called Ephemeris)
are sent from the satellites at a data rate as low as 50bps.
A standalone GPS receiver has to be turned on for up to 30
seconds to receive the full data packets from the satellites for
computing its location. 2) The amount of signal processing
required to acquire and track satellites is substantial due to
weak signal strengths and Doppler frequency shifts. As a
result, a GPS chip cannot easily be duty-cycled for energy
saving. In addition, it requires a powerful CPU for post-
processing and least-square calculation.

In this paper, we address the problem of energy consump-

tion in GPS receiving by splitting the GPS location sensing
into a device part and a cloud part. We take advantage of
several key observations.
• Many mobile sensing applications are delay-tolerant.

Instead of determining the location at the time that each
data sample is obtained, we can compute the locations
off-line after the data is uploaded to a server. This is
quite different from the design required by turn-by-turn
navigation in standalone GPS devices.

• Much of the information necessary to compute the loca-
tion of a GPS receiver is available through other chan-
nels. For example, NASA publishes satellite ephemeris
through its web services, so the device does not have to
stay on long enough to decode them locally from satel-
lite signals. The only information that the device needs
to provide is a rough notion of time, the set of visible
satellites, and the “code phase” information from each
visible satellite, as we will explain in section 2. Fur-
thermore, code phases can be derived from every mil-
lisecond of baseband signals. Thus, there is significant
opportunity to duty-cycle the receivers if the location
computation is moved to the cloud.

• In comparison to the constraints on processing power
and energy consumption, storage is relatively cheap to
put on sensor devices, so we can liberally store raw GPS
baseband signals together with sensor data.

Due to the split between local and cloud processing, the
device only needs to run for a few milliseconds at a time to
collect enough GPS baseband signals and tag them with a
rough time stamp. A cloud service can then process the sig-
nals off-line, leveraging its much greater available process-
ing power, online ephemeris, and geographical information
to disambiguate the signals and to determine the location of
the receiver. We call this approach Cloud-Offloaded GPS
(CO-GPS).

The CO-GPS idea also bears several challenges. For ex-
ample, for an energy and processing cycle constrained em-
bedded sensor, we cannot maintain a real-time clock that is
synchronized to the satellites. Secondly, it is hard to get
a nearby reference location (whose importance will be ex-
plained in section 2) as proposed in [23]. Finally, because of
aggressive duty cycling, the signal quality may suffer from
temporary degradation. In this paper, we evaluate the ac-
curacy of CO-GPS using real GPS traces and show that the
time synchronization requirement is not very high and the
amount of data needed for off-line processing is only a few
kilobytes. We built a sensor node, called CLEO, based on
the CO-GPS principle using a GPS receiving front end chip
MAX2769 and a WWVB-based time synchronization mech-
anism [19]. Through measurements, we show that it takes
less than 0.5mJ to collect a GPS data point, in comparison to
the order of 1J for GPS sensing on mobile phones – or more
than three orders of magnitude energy efficiency gain on de-
vices. In other words, with a pair of AA batteries (2Ah),
CLEO can theoretically sustain continuous GPS sensing (at
1s/sample granularity) for 1.5 years.

The rest of the paper is organized as follows. In section 2,
we first give an overview of how a typical GPS receiver pro-

cesses satellite signals, in order to motivate our solution.
Section 3 describes the principle of CO-GPS. We evaluate
performance of CO-GPS using real GPS traces in section 4.
Finally, section 5 presents the design of the CLEO sensor
node and evaluates its energy consumption in GPS receiv-
ing.

2 GPS Receiving Overview
A GPS receiver computes its location by measuring the

distance from the receiver to multiple GNSS satellites (also
called space vehicles, or SVs for short). Ultimately, it needs
to infer three pieces of information:
• A precise time T ;

• A set of visible SVs and their locations at time T ;

• The distances from the receiver to each SV at time T ,
often called the pseudoranges.

Typically, these are obtained from processing the signals and
data packets sent from the satellites. With them, a receiver
can use least-square (LS) minimization to estimate its loca-
tion.

To make this paper self-contained and to motivate our so-
lution, we give a brief (and much simplified) description of
the GPS receiving process. We start with standalone GPS re-
ceiving and then discuss Assisted GPS (A-GPS) and in par-
ticular a technique called coarse-time navigation. For a more
formal treatment of the principles of GPS and A-GPS, please
refer to [12, 27].

2.1 GPS Signals
There are 31 (plus one for redundancy) GNSS satellites

in the sky, each orbiting the Earth about two cycles a day.
A set of ground stations monitor the satellites’ trajectory
and health, and send the satellite parameters to the satellites.
These parameters include two kinds of trajectory informa-
tion: the almanac, which contains the coarse orbit and status
information, and the ephemeris, which contains the precise
values of the satellite’s trajectory. All satellites are time-
synchronized to within a few microseconds, and after clock
correction, their time stamps can be synchronized within a
few nanoseconds.

The satellites simultaneously and continuously broad-
cast time and orbit information through CDMA signals at
L1 =1.575 GHz towards the Earth. The bit-rate of data pack-
ets is a mere 50 bps, but the bits are modulated with a higher
frequency (1MHz) signal for detecting propagation delays.
A full data packet from a satellite broadcast is 30 seconds
long, containing 5 six-second-long frames, as shown in Fig-
ure 1. A frame always starts with a preamble (called Teleme-
try Word, or TLM) and a time stamp (called Handover Word,
or HOW). Each data packet contains the ephemeris of the
transmitting satellite and the almanac of all satellites. In
other words, a precise time stamp can be decoded every 6
seconds, and the high accuracy satellite trajectory can be de-
coded every 30 seconds. This low data rate explains why a
standalone GPS, as seen in vehicles, can take up to a minute
to acquire its first location, a metric called time to first fix
(TTFF). The ephemeris information is constantly updated by
the ground stations. In theory, the ephemeris data included
in the SV broadcast is only valid for 30 minutes.

TLM HOW Clock corrections and SV health

TLM HOW Ephemeris parameters

TLM HOW Almanac

TLM HOW Almanac, ionospheric model, dUTC

TLM HOW Ephemeris parameters

6

12

18

24

30

Ti
m

e
(s

ec
)

300 bits (10 words)

preamble time stamp

Figure 1. The frame content of a GPS packet of length
1500 bits

While the precise time and satellite locations are decoded
from the packets, the pseudorange from each SV to the re-
ceiver is obtained using much lower-level signal processing
techniques. For that, we need to understand GPS signal mod-
ulation.

1.575GHz

50 bps

1023 kbps
repeat every 1ms

Figure 2. An illustration of GPS signal modulation
scheme.

As illustrated in Figure 2, each satellite encodes
its signal (CDMA encoded) using a satellite-specific
coarse/acquisition (C/A) code of length 1023 chips at
1023 kbps. Thus, the C/A code repeats every millisecond,
resulting in 20 repetitions of the C/A code for each data bit
sent. The purpose of the C/A code is to allow a receiver
to identify the sending satellite and to estimate how long it
took the signal to propagate from that satellite to the receiver.
Typically, the GPS signals take from 64 to 89 milliseconds
to travel from a satellite to the Earth’s surface. Since light
travels at 300 km/ms, in order to obtain an accurate distance
measurement, the receiver must estimate the signal propaga-
tion delay to the microsecond level. The millisecond (NMS)
and sub-millisecond (subMS) parts of the propagation time
are derived very differently: the NMS is decoded from the
packet frames, while the subMS propagation time is detected
at the C/A code level using correlations.

2.2 Acquisition
When a GPS receiver first starts up, it needs to detect what

satellites are in view. This is done by detecting the presence
of the corresponding C/A codes in the received signal, typ-
ically by correlating the signal with each known C/A code
template. Since the C/A codes are designed to be orthogonal

to each other, a visible satellite will show a spike in the cor-
relation results, and an invisible satellite will not cause any
detectable spike.

A challenge in acquiring satellites is the Doppler fre-
quency shift caused by the motion of the satellite and by
any movement of the receiver on the ground. For example,
a rising GPS satellite can move at up to 800m/s towards a
receiver, causing a frequency shift of L1 · 800/c = 4.2kHz,
where c is the speed of light. A shift of the same magnitude
occurs in the opposite direction for a setting satellite. To
reliably compute a correction under this shift, the receiver
must generate the C/A code within 500Hz of the shifted fre-
quency. Therefore, in the frequency dimension, the receiver
needs to search up to 18 bins. Most GPS receivers use 25 to
40 frequency bins to accommodate local receiver motion and
to provide better receiver sensitivity.

After compensating for the Doppler frequency shifts, the
receiver must determine code phase delays. Because the re-
ceiver does not have a clock synchronized with the satellite,
and because the signal propagation delay can be affected by
atmospheric conditions, the receiver must search over the de-
lay dimension. The receiver usually over samples the 1023
bps C/A code. Assuming that the receiver samples the base-
band signal at 8 MHz, in a brute force way, the receiver will
search 8184 code phase positions to find the best correlation
peak. Figure 3 shows an example of such correlation result
in the frequency and code phase search space that indicates
a successful satellite acquisition.

Code phases change over time as the satellites and the
device on the ground move. In continuous operation, GPS
receivers use a tracking mode to adjust previously acquired
Doppler frequency shifts and code phases to the new ones.
This is a relatively inexpensive process, using feedback
loops. So, once a GPS produces its first location fix, sub-
sequent location estimates become fast. However, once the
GPS receiver stops tracking, the utility of previously known
Doppler shifts and code phases diminishes quickly. Typi-
cally, after 30 seconds of non-tracking, the GPS receiver has
to start all over again.

Correlation

Figure 3. An example of acquisition result.

Acquisition is an expensive operation as it must search
through 30+ frequency bins times 8,000+ code phase pos-
sibilities for every single satellite. If the receiver has some
prior information about the satellites, it may be able to do
less work. Examples are:
• Cold Start. When the receiver has no prior knowledge

of the satellites and its own location, it has to search the
entire space. Usually, GPS receivers do not buffer the
raw data to perform the search, rather they perform one
code phase search per millisecond as the signal streams
in. Although there are hardware correlators that per-
form acquisition in parallel, it still takes a few seconds
to acquire one satellite. This is one of the main rea-
sons for the slow initial position fix and high energy
consumption for standalone GPS devices.

• Warm Start. When the receiver has a previous lock
to the satellites, it can start from the previous Doppler
shift and code phases and search around them. In gen-
eral, if the previous lock is less than 30 seconds old, a
warm start can quickly find the new lock. Otherwise,
the receiver has to revert to the cold start process.

• Hot Start. When the previous satellite locks are within
a second, the receiver can skip the acquisition process
and start directly from tracking to refine the Doppler
and code phases. In this mode, all information that the
receiver needs is already in place. This is the reason
that in mobile phones, “continuous GPS sampling” is
defined as one location sample per second.

• A-GPS. There are multiple ways that an infrastructure
can help the GPS receiver start up faster. In partic-
ular, in the Mobile-Station Based A-GPS (or AGPS-
B) mode, the infrastructure provides the up-to-date
ephemeris data so that the GPS receiver does not have
to decode them from the satellite signals. The first suc-
cessful decoding of HOW is enough to provide a loca-
tion fix. In this case, the TTFF is usually around 6 sec-
onds. In the Mobile-Station Assisted A-GPS (or AGPS-
A) mode, the infrastructure is given the estimated lo-
cation, so it can provide initial values for Doppler and
code phase searches. This allows the receiver to jump
directly into the warm start process.

2.3 Location Calculation
An important output of satellite acquisition and track-

ing processes is the code phase produced by the correla-
tion peaks. It gives the sub-millisecond level propagation
delay. If the receiver has decoded the satellite time stamps
(HOW), it knows the time that the signals have left the satel-
lites. Then, it can add these sub-millisecond delays to obtain
the whole propagation delay and thus the pseudoranges.

With correct tracking, the receiver can decode the packets
sent by the SVs. In general, without assistance information,
the receiver needs to decode SV ephemeris every 30 min-
utes (its valid time span) and time stamps every 6 seconds.
Decoding is energy consuming since it has to run tracking
continuously for the packet duration in order to receive all
the bits. With A-GPS, the receiver is not required to decode
ephemeris, but it must still decode HOW.

Next, given ephemeris, the propagation delays obtained
from code phases, and HOW, the GPS receiver performs po-
sition calculation using constraint optimization techniques
such as Least Squares minimization. Usually, the local clock
at the receiver does not know the precise satellite time, so it
is treated as one variable in the minimization solver. With the
receiver’s latitude, longitude, altitude, and the precise satel-
lite time as optimization variables, typical receivers must
have at least 4 SVs in view.

Notice that once the satellites are acquired, distance mea-
surements, and thus the location of the receiver, can be es-
timated every millisecond. A typical GPS receiver will av-
erage over multiple Least Square solutions to further reduce
noise and improve location accuracy.

Finally, we discuss how much data is necessary for satel-
lite acquisition. Since the baseband C/A code repeats ev-
ery millisecond, in the ideal case, 1ms of data is enough for
satellite acquisition. Assume a 8 MHz baseband sampling
frequency, the minimum amount of data needed for acqui-
sition is 8*1023 = 8184 samples. For most GPS receiver
chips, each sample is two bits (one bit sign and one bit mag-
nitude), thus the storage requirement for 1ms of baseband
data is 2046 bytes. One corner case that deserves special at-
tention is the bit transition in the middle of the 1ms signal.
Since the C/A code is used to modulate the data packets at
50bps, for every 20ms, there is a possibility of a bit transi-
tion. If the transition is in the middle of the 1ms sample, then
the acquisition of the corresponding satellite will fail. So, in
practice, 2ms is more reliable for satellite acquisition.
2.4 Coarse-Time Navigation

The above discussion assumes that the receiver is stan-
dalone with no assistance information. A-GPS receivers re-
ceive assistance information from servers to improve their
TTFF. Typically, the assistance information includes the
ephemeris data so the receivers do not have to decode them
from the satellite signals. Some A-GPS approaches also pro-
vide Doppler shift and code phase guesses to the receiver so
their acquisition searches do not start blindly.

One A-GPS mechanism called Coarse-Time Navigation
(CTN) is particularly relevant to this paper. With this
method, the receiver does not require the timestamp (HOW)
decoded from the satellite. Instead, it only needs a coarse
time reference and treats common clock bias (i.e. the differ-
ence between the receiver clock and the ideal satellite clock)
as a variable in Least Square minimization. This method is
first described in [27] and further exploited in [23] to reduce
mobile phone GPS energy consumption.

Without decoding the HOW, the receiver cannot synchro-
nize to the satellites’ transmission times. So, a key idea
in using CTN is to leverage a nearby landmark to estimate
NMS. Since light travels at 300 km/ms, two locations within
150km of each other will have the same millisecond part of
the propagation delay, rounded to the nearest integer. For
mobile phones, it is natural and convenient to use cell tower
locations as the landmarks [23]. A cell tower usually covers
a radius less than 10km.

Although the millisecond part of the pseudorange can be
estimated by using the landmark location, the lack of a syn-
chronized clock presents an additional challenge. Since the

satellites move in the sky, a wrong estimate of time results
in using a wrong value for the satellite location and thus
the calculations yield an erroneous receiver location. Integer
rollover is the main source of such errors in CTN. Van Digge-
len [27] proposes the following method to reconstruct the full
pseudoranges while avoiding the integer rollover problem.
The signal travel time can be written as

NMS(k)+ϕ
(k) = τ

(k)−δ
(k)
t +b+ ε

(k) (1)

= τ̂
(k)−d(k)−δ

(k)
t +b+ ε

(k) (2)

where NMS(k) and ϕ(k) are the millisecond and sub-milli-
second components, respectively, of the transmission delay
from SV k, τ(k) is the actual travel time of the signal leav-
ing SV k, δ

(k)
t is the satellite clock errors obtained from the

ephemeris at the a priori coarse time for the satellite k, and
ε(k) represents some unknown errors (tropospheric model er-
ror and other stochastic errors). The common clock bias b is
the unknown to be eliminated.

As τ(k) is unknown, it can be written as τ(k) = τ̂(k)−d(k),
where τ̂(k) is the estimated travel time from the a priori posi-
tion at the coarse time of transmission, and d(k) is the error in
τ̂(k). The method involves the selection of a reference satel-
lite, k = 0, where NMS(0) = round(τ̂(0)−ϕ(0)) is the mil-
lisecond part of the pseudorange of the reference SV1. This
value is used to reconstruct the millisecond travel time of
all other satellites relative to the reference satellite. Thus, if
we subtract the Eq. (2) from the reference satellite full travel
time we get

NMS(k) = NMS(0)+ϕ
(0)−ϕ

(k)

+
(

τ̂
(k)−d(k)−δ

(k)
t +b+ ε

(k)
)

−
(

τ̂
(0)−d(0)−δ

(0)
t +b+ ε

(0)
)

(3)

We still do not know the values of d(0) and d(k), but con-
sidering that we have an initial position and coarse time close
to the correct values (about 100 km and 1 min), the order of
magnitude of (−d(k)+ ε(k)+d(0)− ε(0)) is far less than 1/2
second, thus, we can correctly estimate NMS(k) by

NMS(k) = round
(

NMS(0)+ϕ
(0)−ϕ

(k)

+(τ̂(k)−δ
(k)
t)− (τ̂(0)−δ

(0)
t)

)
. (4)

Now, the full pseudorange is estimated by using NMS as
the millisecond part, and the sub-millisecond is obtained by
the code phase estimate. So, with CTN, the only device-
dependent data are the acquisition results, which can be com-
puted with as little as 1ms of raw signal. This is the key
observation to move the location computation completely to
the cloud.
3 CO-GPS Design

The design of Cloud-Offloaded GPS (CO-GPS) leverages
the CTN principle but removes the dependency on nearby

1[27] recommends the use of the highest satellite in view as reference,
and provides a good reason for that.

landmarks. For embedded sensors without cellular connec-
tions that are expected to have high mobility over their life-
times, it is not always possible to provide nearby landmarks.
Our key idea is to leverage the computing resources in the
cloud to generate a number of candidate landmarks and then
use other geographical constraints to filter out the wrong so-
lutions.

3.1 Shadow Locations
The CO-GPS solution assumes a simple flow of informa-

tion. In addition to application-specific functionality such as
sensing, the device has three main components for location
sensing — a GPS receiving module, a time synchronization
module, and a data storage space.

In this section, we assume that the device is reasonably
synchronized with a global clock, which we will elaborate
upon further in section 5.2. When the device needs to sense
its location, it simply turns on the GPS receiving front end
and records a few milliseconds of GPS baseband signal. As
we discussed in the previous section, we require at least 2ms
worth of data to avoid possible bit boundaries.

The challenge of deriving receiver location with no refer-
ence landmark is the possible outliers, which we call shadow
locations. Figure 3.1 illustrate the reason behind it using two
satellites. Here, we model the pseudoranges from each SV
as a set of waves, each 1 light-ms apart. Clearly, these waves
intersect at multiple locations. Since we do not know the
exact millisecond part of the propagation delay, all intersec-
tions, A,B,C,D, ... are feasible solutions, even though only
one of them is real. When more satellites are visible, more
constraints are added to the triangulation, which helps re-
solve the ambiguity. However, the number of satellites alone
is not enough.

S1

S2

A

B

C

D

E

F
H

G

I

Figure 4. An illustration of multiple feasible solutions
under NMS ambiguity.

To illustrate this effect, we take a 1ms real GPS trace
and apply CTN with an array of landmarks across the globe.
There are 6 satellites in view. The landmarks are generated
by dividing the latitude and longitude with a 1o resolution
around the globe. In other words, we picked 180× 360 =
64800 landmarks with adjacent distance up to 111km on the
equator . Figure 5 shows the total of 166 converged points.

Figure 5. All converged solutions for an example data
trace, without landmark knowledge.

3.2 Guessing Reference Locations
The first step in eliminating shadow locations is to reduce

the number of possible landmark guesses. Of course, if we
know the past location of the sensor and can assume that it
has not moved more than 150km between the samples, then
we can use the past location as the landmark. However, in the
bootstrap process, or when the time difference between read-
ings is large enough to allow movement greater than 150km,
we have to assume no prior knowledge of the location of the
sensor.

Following the acquisition process, we can obtain the set
of visible satellites and the frequency bin (identifying the
Doppler shift) for each satellite. Knowing the signals’ trans-
mission frequency, the Doppler shifts tell us the relative ve-
locity between the satellites and the receiver. If we know the
absolute velocities of the satellites, which can be obtained
from the ephemeris, then we can derive each angle between
the satellite and the receiver, which defines a set of intersect-
ing cones, as illustrated in Figure 3.2.

Doppler uncertainty results in wider
intersection region

Receiver Location at cone
intersection(s) on the Earth’s surface

Figure 6. Two satellites A and B at the time of signal
reception, the tangents to their orbits, and the angles cal-
culated from the Doppler shifts at the receiver.

More specifically, as illustrated in Figure 3.2, let Sk =
(xk,yk,zk) be the position of satellite k, and Vk = (V x

k ,V
y
k ,V

z
k)

be its (absolute) velocity vectors in the Earth coordinate, the
center of the Earth being the origin. Let R = (x,y,z) be the
location of the receiver. Due to the rotation of the Earth,

the receiver inherits velocity VR = (Vx,Vy,Vz), uniquely de-
termined by R. Relative to the earth rotation and satellite
speeds, the receiver’s motion is negligible. Let • be the op-
erator for inner product and ||x|| be the operator of 2-norm.
Then,

φk = cos−1(
Vk •VR

||Vk|| · ||VR||
) (5)

is the angle between the two velocity vectors. So the relative
velocity of Vk in the direction of VR is VR +Vk · cos(φk). So,
the k-th Doppler shift can be represented as

Dk =
||VR +Vk · cos(φk)|| ·L1

c
, (6)

where L1 is the GPS signal frequency and c is the speed of
light. In this set of equations, (x,y,z) are unknowns, so we
need three satellites to uniquely identify the intersection. In
reality, we may have more satellites in view and the problem
can be formulated as a constrained optimization problem to
minimize the sum of squared angle errors, such as in angle
of arrival (AOA) localization solutions [1].

There are several uncertainties in our setting that make
the problem more challenging. First of all, we do not have
precise time stamps, so the satellite locations and their ve-
locities may contain errors. Furthermore, the Doppler shifts
we calculated during the acquisition process fall into bins
that can be as wide as 500Hz, which in the worst case can
cause 95m/s error in speed, or 12o error in latitude. In im-
plementation, we start with the solution assuming the precise
Doppler shifts and time stamps, and search the nearby grid
point landmarks to seek for converged solutions.
3.3 Solution Pruning

Due to the landmark guessing errors, the landmarks alone
cannot rule out all shadow locations. Because a light-ms is
300km, the elevation of a shadow location is likely to be far
away from the Earth’s surface. For example, Figure 7 shows
the number of possible solutions when we limit the elevation
to be within the [-500, 8000] meter range.

true
location

Figure 7. All converged solutions for an example data
trace, limited to the [-500, 8000] meter elevation range.

Obviously, absolute elevation by itself does not yield a
unique solution. However, the true elevation of the Earth’s

surface is known, and is available through web services from
map providers. For example, the United States Geological
Survey (USGS) maintains a service that returns the eleva-
tion of the Earth’s surface at any given latitude/longitude co-
ordinate. To see how this can be useful, we return to Fig-
ure 3.1. Location D is computed when the NMS we use
for S2 is one millisecond less than the true NMS. Assume
the angle between S2 and the tangent to the surface of the
Earth is α, then the elevation difference between A and D
is ‖zD− zA‖ = 300 · sin(α). Taking α = 15o, which is the
minimum elevation angle that GPS receivers consider a good
view of a satellite, then ‖zD − zA‖ = 77km. Adding more
satellites will make this difference even larger. It is almost
impossible to have two nearby locations (hundreds km apart)
such that both elevations are correct. We validate empirically
that using an elevation map can always yield the correct so-
lution.
3.4 Accuracy Considerations

A key design consideration of CO-GPS is the tradeoff be-
tween accuracy and energy expense. GPS signals are very
weak when they reach the Earth’s surface, and they suffer
from multipath errors and obstruction by objects. Typical
GPS receivers use long signal durations and tracking loops
to overcome the low signal quality and to improve location
accuracy progressively. Notice that the longer the signal is,
the more robust the correlation spikes. This is the right thing
to do for standalone GPS, since they need to subsequently
decode the packet content, which requires good signal qual-
ity. However, sampling and storing large quantities of raw
data brings energy and storage challenges to embedded sen-
sor devices.

In CO-GPS, the only things we acquire from the signal
are the code phases and Doppler shifts. The timing and
ephemeris data are all derived off line. Because we do not
decode signals, we can use much shorter signal lengths. An
additional advantage of this is that it increases the likelihood
of detecting satellites that are only intermittently visible, and
whose signals fade out over the course of a longer signal
sample.

The accuracy of time stamps is another concern. CTN can
tolerate a certain amount of time stamp error, since it treats
common time bias as another optimization variable. How-
ever, when this time error is too big, the least-squares process
may not converge, or may converge to a wrong value. From
the energy-efficiency perspective, maintaining a highly accu-
rate global clock prevents the device from sleeping for long
periods of time. To address the clock synchronization chal-
lenge, we can rely on clock radio [19] in different parts of
the world. Although technical details vary, the mechanism
is the same: a low power radio receiver can tune in to a low
frequency band (60kHz in US) to receive atomic clock syn-
chronization signals. The signals are not always available,
depending on the receiver location, but is guaranteed to be
present for a few hours every day in the entire continental
US. Real-time clocks can be used to keep clock drift under a
desired threshold between synchronizations. Obviously, the
more accurate a real-time clock is, the longer it can sustain
correct values between synchronization, and the less energy
the device needs to spend on receiving the WWVB signals.

In Section 4, we will evaluate the effects of signal length,
sampling rate, idling periods, and time accuracy in more de-
tail.
3.5 Web Services

The cloud portion of CO-GPS has two main responsibil-
ities: to update and maintain the ephemeris database, and to
compute receiver locations given GPS raw data. We imple-
mented these services on a cloud computing platform, Win-
dows Azure, to achieve high availability and scalability.
3.5.1 Ephemeris Service

There are at least three sources of GNSS satellite
ephemeris data sources on the web:
• NGS: The National Geodetic Survey of National

Oceanic and Atmospheric Administration (NOAA)2

publishes GPS satellite orbits in three types:
– final (igs): The final orbits take into account all

possible sources that may affect satellite trajec-
tory. It usually takes NGS a few weeks to process
and retrospect all inputs and to make igs available
online.

– rapid (igr): The rapid orbits are at least one day
behind the current time. Most factors that affect
satellite trajectories are taken into account, but not
all.

– Ultra-rapid (igu): The ultra-rapid orbits are pre-
dicted from known satellite trajectories into the
near future. NGS’s ultra-rapid orbits are published
four times a day.

Ephemeris published from NGS are in 15 minute inter-
vals, and contains the location and clock correction for
each GPS satellite.

• NGA: The National Geospatial-Intelligence Agency
also publishes an independent GPS orbit data3. This
data source, in addition to the satellite positions and
clock correction at 5-minute epochs, also contains the
velocity vector and the clock drift rate for each satellite.
While it may take GNS 12-14 days to produce the final
ephemeris, the NGA final ephemeris (called Precise)
is usually available with a 2-day latency. In addition,
NGA provides up to 7 days of predicted ephemeris,
which contains the current ephemeris, but is less accu-
rate.

• JPL: While NGS and NGA services are free, NASA JPL
provides a paid service called Global Differential GPS
(GDGPS) system4. It contains real-time ephemeris (po-
sition and clock correction only) updated every minute.

Our current implementation uses a combination of NGA and
NGS data in the following order. We use NGA Precise as
much as possible for historical dates. When NGA Precise is
not available, we use NGS Rapids to the most recent date.
After that, we use NGS Ultra-Rapids for real-time and near
real-time location queries. We implemented a “monitor role”
in Azure that periodically fetches data files from NGA and

2http://www.ngs.noaa.gov/orbits/
3http://earth-info.nga.mil/GandG/sathtml/ephemeris.html
4http://www.gdgps.net/

http://www.ngs.noaa.gov/orbits/
http://earth-info.nga.mil/GandG/sathtml/ephemeris.html
http://www.gdgps.net/

NGS. Then we perform a polynomial interpolation among
the 5 or 15 minute sampling points to obtain a set of param-
eters [10]. Thus, we have a function that given a satellite
and a time stamp returns its location and clock correction at
that time. We further differentiate the polynomial to obtain
satellite velocity at an arbitrary time.
3.5.2 Location Service

Putting everything together, the CO-GPS back-end web
service must perform the following steps, as shown in Fig-
ure 8.

Raw
Signals

Signal
Conditioning

Acquisition

Ephemeris

Ephemeris
Agent

+

Code
Phases Landmark

Generation

Doppler
shifts

Landmark
grid points

Least Square

Pseudoranges

Timestamp

Elevation
DB

Posterior
Checking

Location

outliers

(x, y, z, t)

Prior
loc.

Figure 8. The flow of CO-GPS back-end web service.

We implement GPS satellite acquisition, course-time nav-
igation, and least square procedures on .NET using C# and
sho5, and deploy the service on the Windows Azure cloud
platform. A web role enqueues the location requests with
GPS signal data and sensor configurations, a worker role de-
queues and processes the requests, and a monitor role man-
ages ephemeris updates. We aggressively use multi-threaded
parallelism to achieve better scalability.

The Doppler shifts and code phases for each satellite are
determined as part of the process of acquisition. The Doppler
shifts are used with satellite velocities to infer the initial
landmarks, as described in section 3.2. Or, if the location
of the device is known in the recent past, then that history is
used as a landmark. Once the set of landmarks is obtained,
we can use equation (3) to calculate the NMS and apply the
CTN method in parallel to process each landmark and solve

5http://research.microsoft.com/en-us/projects/sho/

for its location. Finally, absolute elevation constraints and
the USGS elevation database are checked, and any result that
is outside the error bound is discarded.
4 Evaluation

We evaluate the quality and limitations of the CO-GPS
approach using raw GPS samples.

This evaluation uses about 100 sets of raw GPS data taken
from six different locations in both the northern and southern
hemispheres of Earth. We used a SiGe GN3S v3 sampler
dongle6, which gives us the flexibility of varying the sample
length for evaluation. Our data set contains the baseband
GPS signal sampled between 10 to 60 seconds.

To measure the server-side performance, we use a quad-
core PC with Intel Xeon 3520 @ 2.66GHz and 6GB mem-
ory. The acquisition process takes about 2.6 seconds to fin-
ish. Variations in signal length have a linear effects on the
execution time mainly due to computing correlations in the
frequency domain. Once the code phases are obtained, CTN
and least square processes take less than 300ms to calculate
the actual location. So if in a bootstrapping process we need
to test 10 landmark hypotheses, the total execution time on
the server side is less than 6 seconds.

For fair comparison, as the ground truth for these samples,
we use a software-defined GPS package, called Soft-GNSS
[4], to calculate the receiver’s positions from the traces. In all
data traces, Soft-GNSS achieves Geometric Dilution of Pre-
cision (GDOP) values below 6, which is considered at least
good. The results produced by Soft-GNSS have expected
errors less than 20 m.

When considering the values presented here it is im-
portant to note just how different the CO-GPS approach is
from a standalone GPS implementation when the same sig-
nal trace is used. In addition to regular GPS error sources,
CO-GPS adds the following possible sources of error: (i)
the position is calculated by using code phase from samples
that are closer to each other than in regular GPS; therefore
they are more likely to suffer from transient noise that spans
over multiple samples, (ii) CO-GPS does not use the lock
loops (PLL and DLL) that are implemented in the tracking
steps in regular GPS; only the code phase and Doppler fre-
quency estimated in the acquisition step are used, which may
contribute to less accurate results, and (iii) the use of CTN
technique adds additional potential error, especially when
the number of satellites is low.
4.1 Acquisition Quality

Since the goal of CO-GPS is to achieve the best possi-
ble energy efficiency in GPS sensing, we first evaluated how
much data to use and the best duty-cycle strategy to employ
to determine an appropriate trade-off between accuracy and
low energy use. One of the key parameters that improves sin-
gle location calculation is the number of satellites that can be
acquired. So, we first vary the parameters to check the ac-
quisition quality.

A potential method to improve accuracy is to use multiple
chunks within each GPS location fix. That is, the receiver
wakes up multiple times within a short period and collects

6available from Sparkfun Electronics http://www.sparkfun.com/
products/10981

http://research.microsoft.com/en-us/projects/sho/
http://www.sparkfun.com/products/10981
http://www.sparkfun.com/products/10981

chunks of raw samples. Then the backend service average
among the location results from each chunk to obtain the fi-
nal fix. As illustrated in Figure 9, the chunk and gap parame-
ters define the duty cycling of the receiver when sensing one
location. Table 1 shows the three scenarios we evaluated to
determine the appropriate amount of data to use to estimate
the receiver’s position. Each row is a different combination
of the number of chunks, the chunk duration in milliseconds,
and the time gap (or sleep period) between each chunk.

Table 1. Scenarios of Evaluation
of chunks chunk length (ms) gap length (ms)

1 1 {2, 4, 6, 8, 10} 0
2 {1, 2, 3, 4, 5} 2 0
3 5 2 {0, 10, 50, 100}

chunk gap

…
sampling idle

Figure 9. Duty cycling in experimental evaluation. After
an idle period (called a gap), the receiver collects a chunk
of raw data.

We extract a set of chunks of at least 2 ms duration and
average the position outcomes derived from them. When the
chunk length is longer than 2 ms, we use the first 2 ms for
acquisition and the rest for the tracking loop to refine the
code phase and Doppler results.

Figures 10 and 11 show the influence of these parameters
on the number of visible satellites detected and in the re-
sults in terms of absolute error, respectively. Since our goal
is to evaluate acquisition results, when multiple chunks are
used, we select the chunk of best quality (in terms of having
the maximum number of satellites) for location calculation.
We evaluate the effect of averaging locations from multiple
chunks in the next set of experiments.

Figure 10(a) shows that increasing the chunk length from
2 ms to 10 ms does not yield an increase in the number of
satellites in view, since the acquisition is only done once.
In Figure 11(a) we also observe that longer chunks do not
improve the error. Therefore, the tracking loop, for up to
10ms long, does not provide any benefits to location accu-
racy. This implies that we should duty-cycle the GPS cir-
cuitry to save energy, by intercalating sleeping intervals be-
tween each sensing interval.

Figure 10(b) shows that the number of visible satellites
detected can be improved if we take multiple chunks of data.
Observe that the acquisition results using a contiguous 10 ms
chunk of data are different from the results when we split
this data into 5 chunks of 2 ms. The acquisition algorithm
considers a satellite to be visible when it is stable along the
entire signal, so it is more likely to recognize transient satel-
lites in separate chunks of 2 ms than in a single 10 ms chunk.

These transient satellites may help improve the position cal-
culation. Thus, we can select only the chunk that yields the
highest number of satellites in view and use this chunk to
estimate the receiver’s position. In Figure 11(b) we can ob-
serve that when only the best chunk is used among multi-
ple chunks, the location accuracy only improved slightly. In
fact, the average error barely improves, while the variance is
lower with more chunks collected.

Figure 10(c) shows that we are also able to increase the
number of satellites in view when we separate the sampling
intervals by intercalating some sleep time (the gap duration).
We see that for this parameter, the number of satellites in
view generally increases as gap length increases, but not
monotonically. This is because the signal can change over
time in ways that are not always directly related to the gap
duration. For example, a moving receiver may be blocked
briefly by trees, buildings, bridges, or tunnels. Atmospheric
conditions may also change slightly, and for large gap inter-
vals, the satellite and/or receiver movement can result in a
different satellite arrangement relative to the receiver. Em-
pirically, we found that 50 ms appears to be a reasonable gap
value as the movement of the satellites and the receiver can
be considered negligible, and the obstacles and shadowing
are not likely to change significantly. We also observe in
Figure 11(c) that the error slightly decreases accordingly.

4.2 Overall Location Accuracy
Figure 12 presents graphs of satellite visibility and error

metrics. Figure 12(a) shows the number of visible satellites
recognized when each location request contained 5 chunks
of 2 ms with a 50 ms gap between them. To improve the
location accuracy, we use each chunk independently and then
average the result location to obtain the final location.

For our data, the receiver often has between 6 and 8 satel-
lites in view, with 7 being the most frequent count obtained
(Figure 12(a)). We see that in general, the more satellites in
view, the more accurate the individual location fixes are (Fig-
ure 12(b)). As CO-GPS uses CTN, at least five satellites are
required, and the accuracy is greatly improved when more
satellites are available. Figure 12(c) compares the the er-
ror histogram when we use the single chunk approach, (i.e.,
when we process only the chunk that yields the largest num-
ber of visible satellites and discard the other 4 chunks) ver-
sus the error histogram from averaging results from multi-
ple chunk. We observe that when we use multiple chunks,
the results have a smaller variance and thus are more accu-
rate.The significant improvements are because we are using
more information to calculate the position while the samples
are independent. Table 2 presents some statistics of the abso-
lute error corresponding to the single and multiple chunk ap-
proaches. Observe that the mean error is about 20% smaller
when the multiple chunk approach is adopted.

Figure 13 visualizes some outcomes of CO-GPS’s loca-
tion estimation for the 6 locations we evaluated. We plot a
circle of radius 100 m around the ground truth, represented
by a push pin, to give the sense of a block level accuracy
(accurate to within a city block). As we can see, on average
CO-GPS can achieve < 35m location accuracy with 10ms of
data.

0%

20%

40%

60%

80%

100%

2 4 6 8 10

of Satellites
5 6 7 8

(a) Chunk Length

0%

20%

40%

60%

80%

100%

1 2 3 4 5

of Satellites
5 6 7 8 9

(b) # of Chunks

0%

20%

40%

60%

80%

100%

0 10 50 100

of Satellites
5 6 7 8 9

(c) Gap Duration

Figure 10. The number of acquired satellites in various experiment settings.

A
bs

ol
ut

e
E

rr
or

 (
m

)

0

50

100

2 4 6 8 10

(a) Chunk Length

A
bs

ol
ut

e
E

rr
or

(m
)

0

50

100

1 2 3 4 5

(b) # of Chunks

A
bs

ol
ut

e
E

rr
or

 (
m

)
50

100

0 10 50 100

(c) Gap duration

Figure 11. Location error distribution in various experiment settings when single chunk is used for location calculation.
In (b), we select the “best” chunk according to the number of satellites in view.

4.3 Time Sensitivity
Two pieces of information are required in order to obtain

good results when CTN navigation is adopted: the initial
position, and the time stamp corresponding to the moment
that the GPS signal was collected. In order to fine-tune CO-
GPS’s time synchronization mechanism, we evaluated how
the error changes as the time drift increases. This is a key
parameter that influences how tight the time synchronization
must be on a CO-GPS implementation.

Figure 14 shows the error boxplots when the time drift
increases from 0 up to 300 s. Observe that the error does
not change significantly when the time drift varies from 0
to 60 s. After that, the error increases sharply, eventually
reaching 106 m. This is due to the fact that under bad ini-
tial conditions, CTN navigation is not able to estimate the
pseudorange millisecond part properly. Thus, as light travels
about 3.105 m/ms, errors of the same order of magnitude are
expected due to integer rollover.

5 Platform Implementation
Based on the CO-GPS principle and web service, we built

a GPS sensor platform, code-named CLEO7. It is a reference
design for low power embedded sensing nodes that can log
time and the GPS signals received by a mobile object at a
high sampling rate.

This reference platform consists of a GPS receiver
(Maxim MAX2769), a microcontroller (TI MCU-
MSP430F5338), a WWVB receiver module for time
synchronization, and a serial flash chip for storage and some
glue logic. The 8Mbit flash enables storing up to 1000 GPS
sample points. The goal of the design is to demonstrate the
low energy consumption per GPS sample. In addition, the
platform also has a solar cell, a thin-film Micro-Energy cell
battery, and a Hi-Jack[13] inspired audio communication
port. For the purpose of this paper, the energy evaluation is

7CLEO: Cultivating the Long tail in Environmental Observations, for
the potential applications of the platform in eScience.

of Satellites

P
er

ce
nt

 o
f T

ot
al

0

10

20

30

40

5 6 7 8 9 10 11

(a) Statistics of the # of Satellites in view in 100
traces

of Satellites
A

bs
ol

ut
e

E
rr

or
 (

m
)

50

100

5 6 7 8 9

(b) Individual location error statistic as a func-
tion of satellites in view

Error

Pe
rc

en
t o

f T
ot

al

0

10

20

30

40

50

100 200 300

Multiple chunks

100 200 300
Single chunk

(c) Error distribution when results from multi-
ple chunks are averaged to get a final location.

Figure 12. Overall location accuracy distribution.

Table 2. Error statistics
Min. 1st Qu. Median Mean 3rd Qu. Max.

Single Chunk 0.96 19.00 32.45 43.16 56.79 349.70
Multiple Chunk 0.45 16.56 26.67 33.77 42.17 181.10

on the GPS sensing part.
5.1 GPS Sensing

We selected the MAX2769 for the GPS receiver chip
due to the relatively low power consumption (18mA in ac-
tive mode), support for multiple GNSS standards (GPS,
GLONASS, and Galileo), and the simple receiver design
with fewer external components. MAX2769 includes a ra-
dio front end, RF down converter, and an ADC that gen-
erates a bit stream of the sampled down converted RF sig-
nal. We used the pre-configured mode 2 (c.f. MAX2769
datasheet[17]) of the receiver which uses a 2 bit ADC to gen-
erate 3 output signals : I0, I1, and GPS data clock. Each of
these generates data at 16.368 Mbits/s.

Capturing the GPS data at this high data rate directly will
require the microcontroller to operate at a very high fre-
quency. For example, even a DMA based transfer requires 5
clock cycles on the MSP430, requiring a ' 80MHz clock at
the microcontroller. This is beyond the operating frequency
of the MSP430. Microcontrollers operating with that high
frequency will lead to huge power consumption in compar-
ison. Hence, we first use a serial-to-parallel converter glue
logic to reduce the microcontroller-side data transfer rate.

Figure 16 shows the serial to parallel glue logic. Each of
the two data signals, I0 and I1, is connected to an 8 bit serial-
to-parallel converter IC (74LV595) clocked by the 16.368
Mbits/s data clock. The data clock signal is divided by 8 us-
ing a binary counter IC (74LV161) to generate a 2.046 MHz
signal which is used as a DMA trigger input to the microcon-
troller as well as a parallel load signal to the shift registers.
Effectively, the glue logic converts the GPS signal to a 16bit
parallel data stream and a GPS trigger signal that updates at
2.046 MHz. We use DMA, operating at 12MHz, for captur-
ing and buffering this data inside the MSP430.

5.2 Time Synchronization using WWVB
Correct time stamping is a fundamental requirement to

make CO-GPS work. To achieve low-power, high-accuracy
time synchronization, we borrowed the approach of using
WWVB signals, which is previously exploited in [6]. A
CME6005 WWVB module offers universal time signal de-
coding from dedicated radio stations around the globe, such
as WWVB (in US), DCF77 (in Europe), JJY (in Japan), BPC
(in China) etc. Experimental evaluations in [6] have shown
that at 2,400 km away from the WWVB station, the signal
is available 47% of the time indoors and 75% of the time
outdoors, while at 700 km away from the DCF77 station,
the signal is available 97% of the time indoors. The time
synchronization can achieve an accuracy of 3.9ms (indoor)
or 4.3ms (outdoor). Furthermore, the power consumption of
CME6005 is low, consuming less than 100µA in active mode
and 0.03µA in shutdown mode.

To further reduce energy consumption, CLEO uses a real-
time clock (RTC) in the MCU to manage time between syn-
chronizations with WWVB. A normal 32,768 Hz crystal for
RTC has an accuracy of 20ppm, which may induce a maxi-
mum of 1.728s drift over the course of a day. In the previ-
ous section, we have validated that CO-GPS can tolerate up
to 60s time drift without increasing the location calculation
error. This means that CLEO only needs to perform time
synchronization once a month, which greatly reduces the en-
ergy consumption for receiving WWVB signals. Although
the receiver itself only consumes 100µA active power, the
MCU needs to be active to decode the time synchronization
messages. Assuming that the device needs to run continu-
ously for 12 hours to successfully receive the WWVB signal,
amortizing the cost over 30 days will result in only 30µA av-
erage power consumption. Further reduction of WWVB sig-

Figure 13. Overall results from 6 locations. The shadow
is 100m in diameter. We see that there are bias errors in
some cases.

nal searching is also possible by predicting the signal avail-
able time and duty-cycling the listening time.
5.3 Energy Consumption Evaluation

We use several techniques to control the power consump-
tion of the platform. First, we turn off the power to modules
with high leakage currents and make use of different power
modes. We completely turn off the GPS receiver and the
glue logic by using the Enable pin of the dedicated voltage
regulator. We use glue logic with low-leakage power off ca-
pability to reduce the leakage current between the glue logic
and the microcontroller. When not active, we operate the mi-
crocontroller at the LP3 sleep mode, with only the real time
clock active.

Second, we use 3 different clock domains on the Micro-
controller to reduce the average power consumption. Mi-
crocontroller DMA module operates at 12MHz to support
GPS data rate, as well as for high speed burst writes to flash.
Since the microcontroller CPU is only responsible for setting
up of data transfers between GPS and flash modules through
the internal RAM, and for decoding low-frequency WWVB
data, the CPU core uses a ' 2MHz internal low-accuracy
clock. We use a low-power 32kHz real-time clock for main-
taining system time.

To measure the power consumption of the CLEO plat-

Time drift

A
bs

ol
ut

e
E

rr
or

 (
m

)

10^0

10^2

10^4

10^6

0
0.

5 1 2 15 30 45 60 90 12
0

18
0

30
0

Figure 14. Errors due to time drift (in seconds).

Thin-film battery of 0.7mAh capacity

GPS logger

WWVB
Receiver

Audio
port

Microcontroller

Figure 15. CLEO hardware platform and description.

form, which runs at 3V , we connect its power supply through
two resistors (15Ω and 100kΩ) and short circuit the larger
resistor at system power up and during certain operating
modes; we measure the voltage drop across these resistors to
calculate the current. The measured current draw at different
operating modes is shown in Table 3. The average current for
GPS receiving is significantly higher than the average oper-
ating current (27mA) due to the large in-rush current spike
to charge the capacitors. There are opportunities to further
optimize this factor.

Figure 17 shows an active working cycle for sampling and
storing 2ms of GPS signal. The process starts from an idle
state. It turns on the GPS receiving module for 2ms, and
spends 28.8ms to write them into the flash chip. The total
energy consumption of the process is 3V× [1.5mA ·28.8ms+
42mA · 2.2ms] = 0.407mJ. By comparison, an A-GPS on
mobile phones takes about 1J for the first location fix. We
achieve a gain of more than three orders of magnitude in
device-side energy efficiency.

GPS Receiver
Max 2769

Shift register
74LV595

Shift register
74LV595

Counter
74LV161

I0

I1
GPS Clock

Data

Load

Load

(÷ 8)

2-bit
A/D

Clock

Clock

DMA trigger

Microcontroller
MSP430F5338

Port 3 & 4
odd pins

Port 3 & 4
even pins

Figure 16. Glue logic between the GPS receiver and the
microcontroller.

Mode Current (mA) Duration(ms)
System idle (RTC on) 0.01 –
MCU only (@2MHz) 0.65 –
Flash writing (GPS off) 1.5 28.8
GPS receiving (average) 42 2.2
WWVB (GPS off) 1.9 < 12hrs/month
Total (logging 2ms GPS data) 4.37 31

Table 3. The power consumption of major components
on CLEO

6 Related Work
Location sensing is a basic service in sensor networks.

In most outdoor environments and for stationary sensors, re-
searchers usually assume the locations are set using GPS at
deployment time. For mobile sensors, there are two classes
of solutions: one is to use public infrastructure and the other
is to use deployed infrastructure. Public infrastructure in-
cludes GPS, WiFi access points8, and FM radio stations [5].
When the system includes deployed nodes to assist localiz-
ing mobile nodes, signals like RF [7], sound/ultrasound [22,
3, 25], and magnetic coupling [15, 11] can be used as prop-
agation media to provide distance or angle measurements.
Our method falls into the first category of using publicly
available infrastructure.

Although our solution is the first to propose cloud-
offloaded GPS for embedded sensing, it is based on a rich
body of work in GPS [18], A-GPS [27], and time synchro-
nization [19]. With their integration into mobile phones,
GPS and A-GPS have increasingly become low cost, low
power and highly accurate. Commercial services, such as
from Skyhook, Google, Apple and Microsoft, are available
and may use WiFi and other signatures to improve location
sensing coverage and latency. However, most previous work
focuses on how to assist the mobile device in obtaining its
own location. LEAP [23] is a first attempt to move GPS loca-
tion calculation to the cloud. In contrast to CO-GPS, LEAP
relies on the local processing power on mobile phones to de-
rive the code phases. In our embedded sensing applications,
the device may not have the processing power or energy to
compute code phases locally. So we allow the device to sim-
ply store the raw data and later send it to the cloud for offline

8e.g., http://www.skyhookwireless.com/

Figure 17. The current draw of a GPS sensing cycle

processing.
Our approach of using Doppler shifts to estimate the

rough location of the receiver is related to the approach used
in mobile transmitter tracking systems such as Argos9, which
is used in applications such as wildlife tracking and environ-
mental monitoring. Argos uses multiple signals sent by a
mobile transmitter to a single satellite over a given time in-
terval. The satellite uses the varying Doppler shifts of these
signals to infer the angles of arrival, which define cones with
the satellite at their apex at each signal time. The intersec-
tion of these cones gives the location of transmitter. In gen-
eral, the accuracy of Argos is within a few kilometers [2].
CO-GPS uses the same principle in the reverse way. We use
multiple simultaneous signals sent by different satellites, and
from these we determine the Doppler shifts, angles of arrival,
and the cones that we intersect to guess the location of the
GPS receiver.

Time synchronization is another rich topic in sensing sys-
tems. Most previous work focuses on synchronizing clocks
within the system to achieve communication efficiency or
activity coordination [8, 9, 16]. Since we process infrastruc-
ture signals, we need to synchronize with the global clock.
Our application of WWVB receiver is learned from [6]. In
indoor environments, [24] proposes to synchronize sensor
clocks through observations of power line interference.

There are many options to choose from in communicat-
ing between sensors and data uploading devices. Our design
is inspired by Hijack [13]. Alternatively, one may consider
using Bluetooth, USB, or flash storage cards (e.g. MicroSD
cards) that can be read by a computer.
7 Conclusion

Motivated by the possibility of offloading GPS process-
ing to the cloud, we propose a novel embedded GPS sensing
approach called CO-GPS. By using a coarse-time navigation
technique and leveraging information that is already avail-
able on the web, such as satellite ephemeris and Earth eleva-
tions, we show that 2ms of raw GPS signals is enough to ob-
tain a location fix. By averaging multiple such short chunks
over a short period of time, CO-GPS can achieve < 35m lo-
cation accuracy using 10ms of raw data (40kB). Without the
need to do satellite acquisition, tracking and decoding, the

9See http://www.argos-system.org/

http://www.skyhookwireless.com/
http://www.argos-system.org/

GPS receiver can be very simple and aggressively duty cy-
cled. We built an experimental platform using WWVB time
synchronization and a GPS front end. On this platform, sens-
ing a GPS location takes more than 3 orders of magnitude
less energy than GPS on mobile phones.

The initial success of CO-GPS motivates us to extend the
work further. On the sensor platform, we will explore other
microcontrollers, especially those with FRAMs to further re-
duce the energy required to store the data. We will also ex-
ploit various compression techniques, especially those based
on compressive sensing principles, to further reduce the stor-
age requirements. On the web service side, we are exploring
further optimizations to improve processing speed and loca-
tion accuracy.

References
[1] I. Amundson, X. Koutsoukos, J. Sallai, and A. Ledeczi. Mobile sensor

navigation using rapid rf-based angle of arrival localization. In Pro-
ceedings of the 2011 17th IEEE Real-Time and Embedded Technology
and Applications Symposium, (RTAS ’11), pages 316–325. Chicago,
IL, April 11-14, 2011.

[2] Argos Systems. Argos User’s Manual. CLS group, 2011.
[3] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik,

V. Mittal, H. Cao, M. Demirbas, M. Gouda, Y. Choi, T. Her-
man, S. Kulkarni, U. Arumugam, M. Nesterenko, A. Vora, and
M. Miyashita. A line in the sand: a wireless sensor network for
target detection, classification, and tracking. Computer Networks,
46(5):605–634, Dec. 2004.

[4] K. Borre, D. M. Akos, N. Bertelsen, P. Rinder, and S. H. Jensen. A
Software-Defined GPS and Galileo Receiver: A Single-Frequency Ap-
proach. Birkhäuser, 2006.

[5] Y. Chen, D. Lymberopoulos, J. Liu, and B. Priyantha. FM-based in-
door localization. In Proceedings of The 10th International Confer-
ence on Mobile Systems, Applications and Services, (MobiSys ’12).
Lake District, UK, June 25-29, 2012.

[6] Y. Chen, Q. Wang, M. Chang, and A. Terzis. Ultra-low power time
synchronization using passive radio receivers. In Proceedings of the
10th International Conference on Information Processing in Sensor
Networks, (IPSN’11). Chicago, IL, April 12-14, 2011.

[7] K. Chintalapudi, A. Padmanabha Iyer, and V. N. Padmanabhan. In-
door localization without the pain. In Proceedings of the Sixteenth
Annual International Conference on Mobile Computing and Network-
ing, (MobiCom ’10), pages 173–184. Chicago, IL, Sept. 20-14, 2010.

[8] J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchro-
nization using reference broadcasts. In Proceedings of the 5th Sympo-
sium on Operating Systems Design and Implementation, (OSDI ’02),
pages 147–163. Boston, MA, Dec. 9-11, 2002.

[9] S. Ganeriwal, D. Ganesanl, M. Hansen, M. B. Srivastava, and D. Es-
trin. Rate-adaptive time synchronization for long-lived sensor net-
works. In Proceedings of the 2005 ACM SIGMETRICS Interna-
tional Conference on Measurement and Modeling of Computer Sys-
tems, (SIGMETRICS ’05), pages 374–375. Banff, Alberta, Canada,
June 6-10, 2005.

[10] M. Horemuz and J. V. Andersson. Polynomial interpolation of gps
satellite coordinates. GPS Solut, 10:67–72, 2006.

[11] X. Jiang, C.-J. M. Liang, F. Zhao, K. Chen, J. Hsu, B. Zhang, and
J. Liu. Demo: Creating interactive virtual zones in physical space
with magnetic-induction. In Proceedings of the 9th ACM Conference
on Embedded Networked Sensor Systems, (SenSys ’11), pages 431–
432. Seattle, WA, Nov. 4-7, 2011.

[12] E. D. Kaplan and C. J. Hegarty. Understanding GPS: Principles and
Applications. Artech House, second edition, 2005.

[13] Y.-S. Kuo, S. Verma, T. Schmid, and P. Dutta. Hijacking power and
bandwidth from the mobile phone’s audio interface. In Proceedings
of the First ACM Symposium on Computing for Development, (ACM

DEV ’10), pages 24:1–24:10. London, United Kingdom, Dec. 17-18,
2010.

[14] K. Lin, A. Kansal, D. Lymberopoulos, and F. Zhao. Energy-accuracy
trade-off for continuous mobile device location. In Proceedings of the
8th International Conference on Mobile Systems, Applications, and
Services, (MobiSys ’10), pages 285–298. San Francisco, CA, June
15-18, 2010.

[15] A. Markham, N. Trigoni, S. A. Ellwood, and D. W. Macdonald.
Revealing the hidden lives of underground animals using magneto-
inductive tracking. In Proceedings of the 8th ACM Conference on
Embedded Networked Sensor Systems, (SenSys ’10), pages 281–294.
Zurich, Switzerland, Nov. 3-5 2010.

[16] M. Maróti, B. Kusy, G. Simon, and A. Lédeczi. The flooding time
synchronization protocol. In Proceedings of the 2nd International
Conference on Embedded Networked Sensor Systems, (SenSys ’04),
pages 39–49. Baltimore, MD, Nov. 3-5, 2004.

[17] Maxim Integrated. Max2769 universal gps receiver.
[18] P. Misra and P. Enge. Global Positioning System: Signals, Measure-

ments, and Performance. Ganga-Jamuna Press, 2006.
[19] National Institute of Standards and Technology. NIST time and fre-

quency radio stations: WWW, WWVH, and WWVB. Books LLC, Ref-
erence Series, 2011.

[20] M. Olson, A. Liu, M. Faulkner, and K. M. Chandy. Rapid detection of
rare geospatial events: earthquake warning applications. In Proceed-
ings of the 5th ACM International Conference on Distributed Event-
based System, (DEBS ’11), pages 89–100. New York, NY, July 11-15
2011.

[21] J. Paek, J. Kim, and R. Govindan. Energy-efficient rate-adaptive gps-
based positioning for smartphones. In Proceedings of the 8th Inter-
national Conference on Mobile Systems, Applications, and Services,
(MobiSys ’10), pages 299–314. San Francisco, Ca, June 15-18 2010.

[22] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The cricket
location-support system. In Proceedings of the 6th Annual Interna-
tional Conference on Mobile Computing and Networking, (MobiCom
’00), pages 32–43. Boston, MA, Aug. 6-11, 2000.

[23] H. S. Ramos, T. Zhang, J. Liu, N. B. Priyantha, and A. Kansal. LEAP:
a low energy assisted gps for trajectory-based services. In Proceed-
ings of the 13th International Conference on Ubiquitous Computing,
(UbiComp ’11), pages 335–344. Beijing, China, Sept. 17-21, 2011.

[24] A. Rowe, V. Gupta, and R. R. Rajkumar. Low-power clock synchro-
nization using electromagnetic energy radiating from ac power lines.
In Proceedings of the 7th ACM Conference on Embedded Networked
Sensor Systems, (SenSys ’09), pages 211–224. Berkeley, CA, Nov.
4-6, 2009.

[25] Z. Sun, A. Purohit, P. De Wagter, I. Brinster, C. Hamm, and P. Zhang.
Poster: Pandaa: a physical arrangement detection technique for net-
worked devices through ambient-sound awareness. In Proceedings of
the ACM SIGCOMM 2011 Conference, (SIGCOMM ’11), pages 442–
443. Toronto, Ontario, Canada, Aug. 15-19, 2011.

[26] B. Thorstensen, T. Syversen, T.-A. Bjørnvold, and T. Walseth. Elec-
tronic shepherd - a low-cost, low-bandwidth, wireless network sys-
tem. In Proceedings of the 2nd International Conference on Mobile
Systems, Applications, and Services, (MobiSys ’04), pages 245–255.
Boston, MA, June 6-9, 2004.

[27] F. van Diggelen. A-GPS: Assisted GPS, GNSS, and SBAS. Artech
House, Boston/London, 2009.

[28] P. Zhang, C. M. Sadler, S. A. Lyon, and M. Martonosi. Hardware de-
sign experiences in zebranet. In Proceedings of the 2nd International
Conference on Embedded Networked Sensor Systems, (SenSys ’04),
pages 227–238. Baltimore, MD, Nov. 3-5, 2004.

	Introduction
	GPS Receiving Overview
	GPS Signals
	Acquisition
	Location Calculation
	Coarse-Time Navigation

	CO-GPS Design
	Shadow Locations
	Guessing Reference Locations
	Solution Pruning
	Accuracy Considerations
	Web Services
	Ephemeris Service
	Location Service

	Evaluation
	Acquisition Quality
	Overall Location Accuracy
	Time Sensitivity

	Platform Implementation
	GPS Sensing
	Time Synchronization using WWVB
	Energy Consumption Evaluation

	Related Work
	Conclusion

