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Preface

In his study of long-term storage capacity and design of reservoirs based on
investigations of river water levels along the Nile, Hurst observed a phenomenon
which is invariant to changes in scale. Such a scale-invariant phenomenon was
also observed in studies of problems connected with traffic patterns of packet
flows in high-speed data networks such as the Internet. Mandelbrot introduced
a class of processes known as self-similar processes and studied applications of
these processes to understand the scale-invariant phenomenon. Long-range depen-
dence is connected with the concept of self-similarity in that the increments of
a self-similar process with stationary increments exhibit long-range dependence
under some conditions. A long-range dependence pattern is observed in modeling
in macroeconomics and finance. Mandelbrot and van Ness introduced the term
fractional Brownian motion for a Gaussian process with a specific covariance
structure and studied its properties. This process is a generalization of classical
Brownian motion also known as the Wiener process. Translation of such a process
occurs as a limiting process of the log-likelihood ratio in studies on estimation
of the location of a cusp of continuous density by Prakasa Rao. Kolmogorov
introduced this process in his paper on the Wiener skewline and other interesting
curves in Hilbert spaces. Levy discussed the properties of such a process in his
book Processus Stochastiques et Movement Brownien. Increments of fractional
Brownian motion exhibit long-range dependence.

Most of the books dealing with fractional Brownian motion look at the
probabilistic properties. We look at the statistical inference for stochastic pro-
cesses, modeled by stochastic differential equations driven by fractional Brownian
motion, which we term as fractional diffusion processes . Since fractional Brow-
nian motion is not a semimartingale, it is not possible to extend the notion of the
Ito integral for developing stochastic integration for a large class of random pro-
cesses with fractional Brownian motion as the integrator. Several methods have
been developed to overcome this problem. One of them deals with the notion
of the Wick product and uses the calculus developed by Malliavin and others.
We avoid this approach as it is not in the toolbox of most statisticians. Klept-
syna, Le Breton and their co-workers introduced another method by using the
notion of fundamental martingale associated with fractional Brownian motion.
This method turns out to be very useful in the context of statistical inference
for fractional diffusion processes. Our aim in this book is to consider parametric
and nonparametric inference problems for fractional diffusion processes when a
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complete path of the process over a finite interval is observable. There is no sig-
nificant work in the area of statistical inference for fractional diffusion processes
when discrete data or sampled data from the process is only available.

It is a pleasure to thank Professor V. Kannan and his colleagues in the Department
of Mathematics and Statistics, University of Hyderabad, for inviting me to visit
their university after I retired from the Indian Statistical Institute and for providing
me with excellent facilities for continuing my research work during the last five
years leading to this book. Professor M. N. Mishra, presently with the Institute of
Mathematics and Applications at Bhuvaneswar, collaborated with me during the
last several years in my work on inference for stochastic processes. I am happy
to acknowledge the same. Figures on the cover page were reproduced with the
permission of Professor Ton Dieker from his Master’s thesis “Simulation of
fractional Brownian motion”. Thanks are due to him.

Thanks are due to my wife Vasanta Bhagavatula for her unstinted support in
all of my academic pursuits.

B. L. S. Prakasa Rao
Hyderabad, India
January 18, 2010
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Fractional Brownian motion
and related processes

1.1 Introduction

In his study of long-term storage capacity and design of reservoirs based on
investigations of river water levels along the Nile, Hurst (1951) observed a
phenomenon which is invariant to changes in scale. Such a scale-invariant phe-
nomenon was recently observed in problems connected with traffic patterns of
packet flows in high-speed data networks such as the Internet (cf. Leland et al .
(1994), Willinger et al . (2003), Norros (2003)) and in financial data (Willinger
et al . (1999)). Lamperti (1962) introduced a class of stochastic processes known
as semi-stable processes with the property that, if an infinite sequence of contrac-
tions of the time and space scales of the process yield a limiting process, then
the limiting process is semi-stable. Mandelbrot (1982) termed these processes as
self-similar and studied applications of these models to understand scale-invariant
phenomena. Long-range dependence is related to the concept of self-similarity
for a stochastic process in that the increments of a self-similar process with
stationary increments exhibit long-range dependence under some conditions. A
long-range dependence pattern is also observed in macroeconomics and finance
(cf. Henry and Zafforoni (2003)). A fairly recent monograph by Doukhan et al .
(2003) discusses the theory and applications of long-range dependence. Before
we discuss modeling of processes with long-range dependence, let us look at
the consequences of long-range dependence phenomena. A brief survey of self-
similar processes, fractional Brownian motion and statistical inference is given
in Prakasa Rao (2004d).

Suppose {Xi, 1 ≤ i ≤ n} are independent and identically distributed (i.i.d.)
random variables with mean µ and variance σ 2. It is well known that the sample
mean X̄n = n−1∑n

i=1 Xi is an unbiased estimator of the mean µ and its variance

Statistical Inference for Fractional Diffusion Processes B. L. S. Prakasa Rao
 2010 John Wiley & Sons, Ltd
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is σ 2/n which is proportional to n−1. In his work on yields of agricultural
experiments, Smith (1938) studied mean yield X̄n as a function of the number n

of plots and observed that V ar(X̄n) is proportional to n−a where 0 < a < 1. If
a = 0.4, then approximately 100 000 observations are needed to achieve the same
accuracy of X̄n as from 100 i.i.d. observations. In other words, the presence of
long-range dependence plays a major role in estimation and prediction problems.

Long-range dependence phenomena are said to occur in a stationary time
series {Xn, n ≥ 0} if Cov(X0, Xn) of the time series tends to zero as n → ∞
and yet the condition

∞∑
n=0

|Cov(X0, Xn)| = ∞ (1.1)

holds. In other words, the covariance between X0 and Xn tends to zero as n → ∞
but so slowly that their sums diverge.

1.2 Self-similar processes

A real-valued stochastic process Z = {Z(t), −∞ < t < ∞} is said to be self-
similar with index H > 0 if, for any a > 0,

L({Z(at), −∞ < t < ∞}) = L({aH Z(t), −∞ < t < ∞}) (1.2)

where L denotes the class of all finite-dimensional distributions and the equality
indicates the equality of the finite-dimensional distributions of the process on the
right of Equation (1.2) with the corresponding finite-dimensional distributions
of the process on the left of Equation (1.2). The index H is called the scaling
exponent or the fractal index or the Hurst index of the process. If H is the scaling
exponent of a self-similar process Z, then the process Z is called an H -self-
similar process or H -ss process for short. A process Z is said to be degenerate
if P(Z(t) = 0) = 1 for all t ∈ R. Hereafter, we write X

�= Y to indicate that the
random variables X and Y have the same probability distribution.

Proposition 1.1: A non-degenerate H -ss process Z cannot be a stationary
process.

Proof: Suppose the process Z is a stationary process. Since the process Z is
non degenerate, there exists t0 ∈ R such that Z(t0) �= 0 with positive probability
and, for all a > 0,

Z(t0)
�= Z(at0)

�= aHZ(t0)

by stationarity and self-similarity of the process Z. Let a → ∞. Then the family
of random variables on the right diverge with positive probability, whereas the
random variable on the left is finite with probability one, leading to a contradic-
tion. Hence the process Z is not a stationary process.
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Proposition 1.2: Suppose that {Z(t), −∞ < t < ∞} is an H -ss process. Define

Y (t) = e−tHZ(et ), −∞ < t < ∞. (1.3)

Then the process {Y (t), −∞ < t < ∞} is a stationary process.

Proof: Let k ≥ 1 be an integer. For ai, 1 ≤ j ≤ k real and h ∈ R,

k∑
j=1

ajY (tj + h)
�=

k∑
j=1

aj e
−(tj +h)HZ(etj +h)

�=
k∑

j=1

aj e
−(tj +h)H ehHZ(etj )

(by self-similarity of the process Z)

�=
k∑

j=1

aj e
−tj HZ(etj )

�=
k∑

j=1

ajY (tj ). (1.4)

Since the above relation holds for every (a1, . . . , ak) ∈ Rk, an application of
the Cramér–Wold theorem shows that the finite-dimensional distribution of the
random vector (Y (t1 + h), . . . , Y (tk + h)) is the same as that of the random
vector (Y (t1), . . . , Y (tk)). Since this property holds for all ti , 1 ≤ i ≤ k, k ≥ 1
and for all h real, it follows that the process Y = {Y (t), −∞ < t < ∞} is a
stationary process.

The transformation defined by (1.3) is called the Lamperti transformation . By
retracing the arguments given in the proof of Proposition 1.2, the following result
can be proved.

Proposition 1.3: Suppose {Y (t), −∞ < t < ∞} is a stationary process. Let
X(t) = tH Y (log t) for t > 0. Then {X(t), t > 0} is an H -ss process.

Proposition 1.4: Suppose that a process {Z(t), −∞ < t < ∞} is a second-order
process, that is, E[Z2(t)] < ∞ for all t ∈ R, and it is an H -ss process with
stationary increments, that is,

Z(t + h) − Z(t)
�= Z(h) − Z(0)

for t ∈ R, h ∈ R. Let σ 2 = V ar(Z(1)). Then the following properties hold:

(i) Z(0) = 0 a.s.

(ii) If H �= 1, then E(Z(t)) = 0,−∞ < t < ∞.
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(iii) Z(−t)
�= −Z(t), −∞ < t < ∞.

(iv) E(Z2(t)) = |t |2HE(Z2(1)), −∞ < t < ∞.

(v) Suppose H �= 1. Then

Cov(Z(t), Z(s)) = (σ 2/2){|t |2H + |s|2H − |t − s|2H }.
(vi) 0 < H ≤ 1.

(vii) If H = 1, then Z(t)
�= tZ(1), −∞ < t < ∞.

Proof:

(i) Note that Z(0) = Z(a.0)
�= aHZ(0) for any a > 0 by the self-similarity

of the process Z. It is easy to see that this relation holds only if
Z(0) = 0 a.s.

(ii) Suppose H �= 1. Since Z(2t)
�= 2HZ(t), it follows that

2H E(Z(t)) = E(Z(2t))

= E(Z(2t) − Z(t)) + E(Z(t))

= E(Z(t) − Z(0)) + E(Z(t))

(by stationarity of the increments)

= 2 E(Z(t)) (1.5)

for any t ∈ R. The last equality follows from the observation that
Z(0) = 0 a.s. from (i). Hence E(Z(t)) = 0 since H �= 1.

(iii) Observe that, for any t ∈ R,

Z(−t)
�= Z(−t) − Z(0)

�= Z(0) − Z(t) (by stationarity of the increments)

�= −Z(t) (by Property (i)). (1.6)

Therefore Z(−t)
�= −Z(t) for every t ∈ R.

(iv) It is easy to see that, for any t ∈ R,

E(Z2(t)) = E(Z2(|t | sgn t))

= |t |2HE(Z2(sgn t)) (by self-similarity)

= |t |2HE(Z2(1)) (by Property (iii))

= σ 2|t |2H (by Property (ii)). (1.7)
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Here the function sgn t is equal to 1 if t ≥ 0 and is equal to −1 if t < 0.
If σ 2 = 1, the process Z is called a standard H -ss process with stationary
increments.

(v) Let RH(t, s) be the covariance between Z(t) and Z(s) for any −∞ < t,

s < ∞. Then

RH (t, s) ≡ Cov(Z(t), Z(s))

= E[Z(t)Z(s)] (by Property (ii))

= 1

2
{E(Z2(t)) + E(Z2(s)) − E[(Z(t) − Z(s))2]}

= 1

2
{E(Z2(t)) + E(Z2(s)) − E[(Z(t − s) − Z(0))2]}

(by stationarity of the increments)

= 1

2
{E(Z2(t)) + E(Z2(s)) − E(Z2(t − s))} (by Property (ii))

= σ 2

2
{|t |2H + |s|2H − |t − s|2H } (by Property (iv)). (1.8)

In particular, it follows that the function RH (t, s) is nonnegative definite
as it is the covariance function of a stochastic process.

(vi) Note that

E(|Z(2)|) = E(|Z(2) − Z(1) + Z(1)|)
≤ E(|Z(2) − Z(1)|) + E(|Z(1)|)
= E(|Z(1) − Z(0)|) + E(|Z(1)|)

(by stationarity of the increments)

= 2E(|Z(1)|) (by Property (i)). (1.9)

Self-similarity of the process Z implies that

E(|Z(2)|) = 2HE(|Z(1)|). (1.10)

Combining relations (1.9) and (1.10), we get

2H E(|Z(1)|) ≤ 2E(|Z(1)|)
which, in turn, implies that H ≤ 1 since the process Z is a non degenerate
process.
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(vii) Suppose H = 1. Then E(Z(t)Z(1)) = tE(Z2(1)) and E(Z2(t)) =
t2E(Z2(1)) by the self-similarity of the process Z. Hence

E(Z(t) − tZ(1))2 = E(Z2(t)) − 2t E(Z(t)Z(1)) + t2E(Z2(1))

= (t2 − 2t2 + t2)E(Z2(1))

= 0. (1.11)

This relation shows that Z(t) = tZ(1) a.s. for every t ∈ R.

Remarks: As was mentioned earlier, self-similar processes have been used for
stochastic modeling in such diverse areas as hydrology (cf. Montanari (2003)),
geophysics, medicine, genetics and financial economics (Willinger et al . (1999))
and more recently in modeling Internet traffic patterns (Leland et al . (1994)).
Additional applications are given in Goldberger and West (1987), Stewart et al .
(1993), Buldyrev et al . (1993), Ossandik et al . (1994), Percival and Guttorp
(1994) and Peng et al . (1992, 1995a,b). It is important to estimate the Hurst
index H for modeling purposes. This problem has been considered by Azais
(1990), Geweke and Porter-Hudak (1983), Taylor and Taylor (1991), Beran and
Terrin (1994), Constantine and Hall (1994), Feuverger et al . (1994), Chen et al .
(1995), Robinson (1995), Abry and Sellan (1996), Comte (1996), McCoy and
Walden (1996), Hall et al . (1997), Kent and Wood (1997), and more recently in
Jensen (1998), Poggi and Viano (1998), and Coeurjolly (2001).

It was observed that there are some phenomena which exhibit self-similar behav-
ior locally but the nature of self-similarity changes as the phenomenon evolves.
It was suggested that the parameter H must be allowed to vary as a function
of time for modeling such data. Goncalves and Flandrin (1993) and Flandrin
and Goncalves (1994) propose a class of processes which are called locally self-
similar with dependent scaling exponents and discuss their applications. Wang
et al . (2001) develop procedures using wavelets to construct local estimates for
time-varying scaling exponent H(t) of a locally self-similar process.

A second-order stochastic process {Z(t), t > 0} is called wide-sense H-self-
similar if it satisfies the following conditions for every a > 0:

(i) E(Z(at)) = aHE(Z(t)), t > 0;
(ii) E(Z(at)Z(as)) = a2HE(Z(t)Z(s)), t > 0, s > 0.

This definition can be compared with the definition of (strict) H -self-similarity
which is that the processes {Z(at)} and {aHZ(t)} have the same finite-
dimensional distributions for every a > 0. The wide-sense definition is more
general. However, it excludes self-similar processes with infinite second
moments such as non-Gaussian stable processes. Given a wide-sense H -ss
process Z, it is possible to form a wide-sense stationary process Y via the
Lamperti transformation

Y (t) = e−HtZ(et ).
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The Lamperti transformation helps in using the techniques developed for the
study of wide-sense stationary processes in wide-sense self-similar processes.
Yazici and Kashyap (1997) introduced the concept of wide-sense H -ss processes.
Nuzman and Poor (2000, 2001) discuss linear estimation of self-similar pro-
cesses via the Lamperti transformation and generalize reproducing kernel Hilbert
space methods for wide-sense self-similar processes. These results were applied
to solve linear problems including projection, polynomial signal detection and
polynomial amplitude estimation for general wide-sense self-similar processes.

1.3 Fractional Brownian motion

A Gaussian H -ss process WH = {WH(t), −∞ < t < ∞} with stationary incre-
ments and with fractal index 0 < H < 1 is termed fractional Brownian motion
(fBm). Note that E[WH(t)] = 0,−∞ < t < ∞. It is said to be standard if
V ar(WH(1)) = 1.

For standard fractional Brownian motion,

Cov(WH (t), WH(s)) = 1

2
(|t |2H + |s|2H − |t − s|2H ).

If H = 1
2 , then fBm reduces to the Brownian motion known as the Wiener

process. It is easy to see that if {X(t), −∞ < t < ∞} is a Gaussian process with
stationary increments with mean zero, with X(0) = 0 and E(X2(t)) = σ 2|t |2H

for some 0 < σ < ∞ and 0 < H < 1, then the process {X(t), −∞ < t < ∞} is
fBm. The following theorem gives some properties of standard fBm.

Theorem 1.5: Let {WH(t), −∞ < t < ∞} be standard fBm with Hurst index
H for some 0 < H < 1. Then:

(i) There exists a version of the process {WH(t), −∞ < t < ∞} such that
the sample paths of the process are continuous with probability one.

(ii) The sample paths of the process {WH(t), −∞ < t < ∞} are nowhere
differentiable in the L2-sense.

(iii) For any 0 < λ < H, there exist constants h> 0 and C > 0 such that, with
probability one,

|WH(t) − WH(s)| < C|t − s|λ, 0 ≤ t, s ≤ 1, |t − s| ≤ h.

(iv) Consider the standard fBm WH = {WH(t), 0 ≤ t ≤ T } with Hurst
index H . Then

lim
n→∞

2n−1∑
j=0

∣∣∣∣WH

(
j + 1

2n
T

)
−WH

(
j

2n
T

)∣∣∣∣p = 0 a.s. if pH > 1

= ∞ a.s. if pH < 1

= T a.s. if pH = 1. (1.12)
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Property (i) stated above follows from Kolmogorov’s sufficient condition for a.s.
continuity of the sample paths of a stochastic process and the fact that

E[|WH(t) − WH(s)|α] = E[|WH(1)|α]|t − s|αH , −∞ < t, s < ∞

for any α > 0. The equation given above follows from the observation that fBm
is an H -ss process with stationary increments. The constant α > 0 can be chosen
so that αH > 1 satisfies Kolmogorov’s continuity condition.

Property (ii) is a consequence of the relation

E

[∣∣∣∣WH(t) − WH(s)

t − s

∣∣∣∣2
]

= E[|WH(1)|2]|t − s|2H−2

and the last term tends to infinity as t → s since H < 1. Hence the paths of fBm
are not L2-differentiable.

For a discussion and proofs of Properties (iii) and (iv), see Doukhan et al .
(2003) and Decreusefond and Ustunel (1999). If the limit

lim
n→∞

2n−1∑
j=0

∣∣∣∣WH

(
j + 1

2n
T

)
− WH

(
j

2n
T

)∣∣∣∣p
exists a.s., then the limit is called the p-th variation of the process WH over the
interval [0, T ]. If p = 2, then it is called the quadratic variation over the interval
[0, T ]. If H = 1

2 and p = 2, in (iv), then the process WH reduces to the standard
Brownian motion W and we have the well-known result

lim
n→∞

2n−1∑
j=0

∣∣∣∣W (
j + 1

2n
T

)
− WH

(
j

2n
T

)∣∣∣∣2 = T a.s.

for the quadratic variation of the standard Brownian motion on the interval [0, T ].
If H < 1

2 , then, for p = 2, we have pH < 1 and the process has infinite quadratic
variation by Property (iv). If H > 1

2 , then, for p = 2, we have pH > 1 and the
process has zero quadratic variation by Property (iv). Such a process is called
a Dirichlet process . Furthermore, the process WH has finite p-th variation if
p = 1/H . In other words,

lim
n→∞

2n−1∑
j=0

∣∣∣∣WH

(
j + 1

2n
T

)
− WH

(
j

2n
T

)∣∣∣∣1/H

= T a.s. (1.13)

Let us again consider standard fBm WH with Hurst index H > 1
2 over an interval

[0, T ]. Let 0 = t
(n)
0 < t

(n)
1 < · · · < t

(n)
n = T be a subdivision of the interval [0, T ]

such that
max

0≤j≤n−1
|t (n)

j+1 − t
(n)
j | → 0
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as n → ∞. Note that

E[(WH(t) − WH(s))2] = |t − s|2H , 0 ≤ t, s ≤ T

and hence

n−1∑
j=0

E[(WH(t
(n)
j+1) − WH(t

(n)
j ))2] =

n−1∑
j=0

[t (n)
j+1 − t

(n)
j ]2H

≤ max
0≤j≤n−1

[t (n)
j+1 − t

(n)
j ]2H−1T

=
(

max
0≤j≤n−1

[t (n)
j+1 − t

(n)
j ]

)2H−1

T . (1.14)

Therefore

lim
n→∞

n−1∑
j=0

E[(WH(t
(n)
j+1) − WH(t

(n)
j ))2] = 0

or equivalently

lim
n→∞ E

n−1∑
j=0

(WH(t
(n)
j+1) − WH(t

(n)
j ))2

 = 0.

This statement in turn implies that

n−1∑
j=0

(WH(t
(n)
j+1) − WH(t

(n)
j ))2 p→ 0 as n → ∞.

As a consequence of this fact, it can be shown that the process WH is not a semi-
martingale from the results in Liptser and Shiryayev (1989). For the definition
of a semimartingale and its properties, see Prakasa Rao (1999b).

Representation of fBm as a stochastic integral

Suppose {W(t), −∞ < t < ∞} is standard Brownian motion and H ∈ ( 1
2 , 1
)
.

Define a process {Z(t), −∞ < t < ∞} with Z(0) = 0 by the relation

Z(t) −Z(s) = lim
a→−∞

(
cH

∫ t

a

(t − τ)H− 1
2 dWτ − cH

∫ s

a

(s − τ)H− 1
2 dWτ

)
= cH

∫ t

s

(t − τ)H− 1
2 dWτ + cH

∫ s

−∞
[(t − τ)H− 1

2 − (s − τ)H− 1
2 ]dWτ

(1.15)
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for t > s, where

cH =
(

2H �

(
3

2
− H

)
/�

(
1

2
+ H

)
�(2 − 2H)

)1/2

(1.16)

and �(.) is the gamma function. Here the integrals are defined as Wiener integrals
and the resulting process Z is a mean zero Gaussian process. In order to show
that the process Z is in fact fBm, we have to prove that its covariance function
is that of fBm. We will come back to this discussion later in this section.

Integration with respect to fBm

It is known that, in order to develop the theory of stochastic integration of a
random process with respect to another stochastic process satisfying the usual
properties of integrals such as linearity and dominated convergence theorem, it
is necessary for the integrator to be a semimartingale. This can be seen from
Theorem VIII.80 in Dellacherie and Meyer (1982). Semimartingales can also
be characterized by this property. Since fBm is not a semimartingale, it is not
possible to define stochastic integration of a random process with respect to fBm
starting with the usual method of limiting arguments based on Riemann-type sums
for simple functions as in the case of Ito integrals. However, the special case of
a stochastic integration of a deterministic integrand with respect to fBm as the
integrator can be developed using the theory of integration with respect to general
Gaussian processes as given, say, in Huang and Cambanis (1978) and more
recently in Alos et al . (2001). There are other methods of developing stochastic
integration of a random process with respect to fBm using the notion of Wick
product and applying the techniques of Malliavin calculus. We do not use these
approaches throughout this book and unless specified otherwise, we consider fBm
with Hurst index H > 1

2 throughout this book. The reason for such a choice of H

for modeling purposes will become clear from our discussion later in this section.

Let {Z(t), −∞ < t < ∞} be standard fBm with Hurst index H > 1
2

and suppose {Y (t), −∞ < t < ∞} is a simple process in the sense that
Y (t) =∑k

j=1 XjI(Tj−1,Tj ](t) where −∞ < T0 < T1 < · · · < Tk < ∞. We define
the stochastic integral of the process Y with respect to Z by the relation∫ ∞

−∞
Y (t)dZ(t) =

k∑
j=1

Xj(Z(Tj ) − Z(Tj−1)). (1.17)

If the process Y is of locally bounded variation, then we can define the integral
by using the integration by parts formula∫ b

a

Y (t)dZ(t) = Y (b)Z(b) − Y (a)Z(a) −
∫ b

a

Z(t)dY (t) (1.18)
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and the integral on the right of Equation (1.18) can be defined using the theory
of Lebesgue–Stieltjes integration. Suppose the process Y is non random, that
is, deterministic. Under suitable conditions on the non random function Y, the
integral on the left of (1.18) can be defined as an L2-limit of Riemann sums of
the type defined in (1.17) with nonrandom sequence Tj . Gripenberg and Norros
(1996) give an example of a random process Y illustrating the problem of non
continuity in extending the above method of stochastic integration with respect to
fBm for random integrands. We will consider integrals of non random functions
only with integrator as fBm throughout this book unless otherwise stated.

An alternate way of defining the stochastic integral of a non random function
f with respect to fBm Z is by the formula∫ ∞

−∞
f (t)dZ(t)

= cH

(
H − 1

2

)∫ ∞

−∞

(∫ ∞

τ

(t − τ)H− 3
2 f (t)dt

)
dWτ (1.19)

where W is a standard Wiener process and the constant cH is as defined in (1.16).
The integral defined on the right of (1.19) exists provided the function∫ ∞

τ

(t − τ)H− 3
2 f (t)dt

as a function of τ is square integrable. A sufficient condition for this to hold is
that f ∈ L2(R) ∩ L1(R). It is easy to see that the random variable∫ ∞

−∞
f (t)dZ(t)

is Gaussian and

E

(∫ ∞

−∞
f (t)dZ(t)

)
= 0

whenever f ∈ L2(R) ∩ L1(R). We now obtain the covariance formula for two
such integrals.

Theorem 1.6: For functions f, g ∈ L2(R) ∩ L1(R),

E

(∫ ∞

−∞
f (t)dZ(t)

∫ ∞

−∞
g(t)dZ(t)

)

= H(2H − 1)

∫ ∞

−∞

∫ ∞

−∞
f (t)g(s)|t − s|2H−2dtds. (1.20)
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Proof: Note that

E

(∫ ∞

−∞
f (t)dZ(t)

∫ ∞

−∞
g(t)dZ(t)

)

= c2
H

(
H − 1

2

)2

E

[(∫ ∞

−∞

(∫ ∞

τ

(t − τ)H− 3
2 f (t)dt

)
dWτ

)
(∫ ∞

−∞

(∫ ∞

τ

(t − τ)H− 3
2 g(t)dt

)
dWτ

)]

= c2
H

(
H − 1

2

)2∫ ∞

−∞

∫ ∞

−∞
f (t)g(s)

[∫ min(s,t)

−∞
(s − τ)H− 3

2 (t − τ)H− 3
2 dτ

]
dtds

by the properties of Wiener integrals. From the results in Abramowitz and Stegun
(1970), 6.2.1, 6.2.2, it follows that∫ min(s,t)

−∞
(s − τ)H− 3

2 (t − τ)H− 3
2 dτ =

∫ ∞

0
(|t − s| + τ)H− 3

2 τH− 3
2 dτ

= |t − s|2H−2
∫ ∞

0
(1 + τ)H− 3

2 τH− 3
2 dτ

= |t − s|2H−2 �(H − 1
2 )�(2 − 2H)

�( 3
2 − H)

. (1.21)

From the equations derived above, it follows that

E

(∫ ∞

−∞
f (t)dZ(t)

∫ ∞

−∞
g(t)dZ(t)

)

= H(2H − 1)

∫ ∞

−∞

∫ ∞

−∞
f (t)g(s)|t − s|2H−2dtds. (1.22)

As a consequence of Theorem 1.6, we obtain that

E

[∫ ∞

−∞
f (t)dZ(t)

]2

= H(2H − 1)

∫ ∞

−∞

∫ ∞

−∞
f (t)f (s)|t − s|2H−2dtds.

(1.23)

Our discussion of integration with respect to fBm given here is based on Gripen-
berg and Norros (1996). Another way of defining the integral of a non random
function with respect to fBm is given later in this section. Zahle (1998) has
defined path wise integration with respect to fBm when the integrand is possi-
bly random using the methods of fractional calculus. We will briefly review this
approach in the last section of this chapter.
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Inequalities for moments of integrals with respect to fBm

We assume as before that H > 1
2 . Let � denote the integral operator

�f (t) = H(2H − 1)

∫ ∞

0
f (s)|t − s|2H−2ds (1.24)

and define the inner product

〈f, g〉� = 〈f, �g〉 = H(2H − 1)

∫ ∞

0

∫ ∞

0
f (t)g(s)|t − s|2H−2dtds (1.25)

where 〈., .〉 denote the usual inner product in L2([0, ∞)). Let L2
� be the space of

functions f such that 〈f, f 〉� < ∞. Let L2
�([0, T ]) be the space of functions f

such that 〈f I[0,T ], f I[0,T ]〉� < ∞. Here IA denotes the indicator function of the
set A. The mapping Z(t) → I[0,t] can be extended to an isometry between the
Gaussian subspace of the space generated by the random variables Z(t), t ≥ 0,
and the function space L2

� , as well as to an isometry between a subspace of the
space generated by the random variables Z(t), 0 ≤ t ≤ T , and the function space
L2

�([0, T ]) (cf. Huang and Cambanis (1978)). For f ∈ L2
�, the integral∫ ∞

0
f (t)dZ(t)

is defined as the image of f by this isometry. In particular, for f, g ∈ L2
�([0, T ]),

E

(∫ T

0
f (t)dZ(t)

∫ T

0
g(t)dZ(t)

)
= H(2H − 1)

∫ T

0

∫ T

0
f (t)g(s)|t − s|2H−2dtds (1.26)

and

E

(∫ v

u

f (t)dZ(t)

)2

= H(2H − 1)

∫ v

u

∫ v

u

f (t)f (s)|t − s|2H−2dtds. (1.27)

Let

||f ||Lp((u,v)) =
(∫ v

u

|f (t)|p
)1/p

(1.28)

for p ≥ 1 and 0 ≤ u < v ≤ ∞.

Theorem 1.7: Let Z be standard fBm with Hurst index H > 1
2 . Then, for every

r > 0, there exists a positive constant c(H, r) such that for every 0 ≤ u < v < ∞,

E

∣∣∣∣∫ v

u

f (t)dZ(t)

∣∣∣∣r ≤ c(H, r)||f ||r
L1/H ((u,v))

(1.29)
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and

E

∣∣∣∣∫ v

u

f (t)dZ(t)

∫ v

u

g(t)dZ(t)

∣∣∣∣r ≤ c(H, r)||f ||r
L1/H ((u,v))

||g||r
L1/H ((u,v))

.

(1.30)

Proof: Since the random variable∫ T

0
f (t)dZ(t)

is a mean zero Gaussian random variable, for every r > 0, there exists a constant
k(r) > 0 such that

E

∣∣∣∣∫ T

0
f (t)dZ(t)

∣∣∣∣r ≤ k(r)

(
E

∣∣∣∣∫ T

0
f (t)dZ(t)

∣∣∣∣2
)r/2

= k(r)

[
H(2H − 1)

∫ T

0

∫ T

0
f (t)f (s)|t − s|2H−2dtds

]r/2

.

(1.31)

Furthermore∫ T

0

∫ T

0
|f (t)f (s)||t − s|2H−2dtds

=
∫ T

0
|f (t)|

(∫ T

0
|f (s)||t − s|2H−2ds

)
dt

≤
(∫ T

0
|f (u)|1/Hdu

)H
(∫ T

0
du

(∫ T

0
|f (v)||u − v|2H−2dv

)1/(1−H)
)1−H

(by Holder’s inequality)

≤ A

(
1

H
,

1

1 − H

)(∫ T

0
|f (u)|1/H du

)2H

(1.32)

for some positive constant A(1/H, 1/1−H). The last inequality follows from the
Hardy–Littlewood inequality (cf. Stein (1971), p. 119) stated below in Propo-
sition 1.8. Combining the inequalities in (1.31) and (1.32), the inequality (1.29)
stated in Theorem 1.7 is proved.

Proposition 1.8: Let 0 < α < 1 and 1 < p < q < ∞, 1/q = (1/p)−α. Suppose
f ∈ Lp((0, ∞)). Define

Iαf (x) = 1

�(α)

∫ ∞

0
|x − y|α−1f (y)dy. (1.33)
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Then there exists a positive constant A(p, q) such that

||Iαf ||Lq((0,∞)) ≤ A(p, q)||f ||Lp((0,∞)). (1.34)

We do not prove this inequality. For details, see Stein (1971), pp. 117–120.

The results stated above can be reformulated in the following manner. Let
{Wt, t ≥ 0} be standard fBm with Hurst index H > 1

2 . Suppose a function f :
[0, T ] → R satisfies the condition

||f ||L1/H ([0,T ]) =
(∫ T

0
|f (s)|1/H ds

)H

< ∞. (1.35)

Then the Wiener integral

YH
t =

∫ t

0
f (s)dWH

s , 0 ≤ t ≤ T

exists and is a mean zero Gaussian process, and for every r > 0, there exists a
positive constant c(r, H) such that

E|Y H
t2

− YH
t1

|r ≤ c(r, H)

(∫ t2

t1

|f (s)|1/H ds

)rH

, 0 ≤ t1 ≤ t2 ≤ T .

The inequalities proved in Theorem 1.7 are due to Memin et al . (2001). Exten-
sions of these inequalities are discussed in Slominski and Ziemkiewicz (2005).

We now discuss some maximal inequalities for fBm due to Novikov and
Valkeila (1999). Let {Z(t), t ≥ 0} be standard fBm. Let F = {Ft , t ≥ 0} be the
filtration generated by fBm Z where Ft is the σ -algebra generated by the family
{Z(s), 0 ≤ s ≤ t}. For any process X, define X∗

t = sup0≤s≤t |Xs |. Since fBm is

a self-similar process, it follows that Z(at)
�= aHZ(t) for every a > 0. This in

turn implies that Z∗(at)
�= aHZ∗(t) for every a > 0. In particular, we have the

following important result.

Proposition 1.9: Let T > 0 and Z be fBm with Hurst index H . Then, for every
p > 0,

E[(Z∗
T )p] = K(p, H)T pH (1.36)

where K(p, H) = E[(Z∗
1)p].

Proof: The result follows from the observation Z∗
T

�= T Z∗
1 by self-similarity.

Novikov and Valkeila (1999) proved the following result. Recall that a random
variable τ is said to be a stopping time with respect to the filtration F = {Ft ,

t ≥ 0} if the event [τ ≤ t] ∈ Ft for every t ≥ 0.



16 STATISTICAL INFERENCE FOR FRACTIONAL DIFFUSION PROCESSES

Proposition 1.10: Let τ be any stopping time with respect to the filtration F
defined above. Then, for any p > 0 and H > 1

2 , there exist positive constants
c1(p, H) and c2(p, H) depending only on the parameters p and H such that

c1(p, H)E(τpH ) ≤ E[(Z∗
τ )

p] ≤ c2(p, H)E(τpH ).

This result is the analogue of the classical Burkholder–Davis–Gundy inequality
for martingales. However, recall that fBm is not a semimartingale. We point
out that if {Bt, t ≥ 0} is standard Brownian motion, then, for any stopping time
τ with respect to the filtration generated by the Brownian motion B and for
any p > 0, there exist positive constants c1(p) and c2(p) depending only on p

such that
c1(p)E(τp/2) ≤ E[(B∗

τ )p] ≤ c2(p)E(τp/2).

For a proof of Proposition 1.10, see Novikov and Valkeila (1999).

Deconvolution of fBm

Samorodnitsky and Taqqu (1994) proved that there is an integral transformation
of standard Brownian motion W which provides a representation for standard
fBm WH with Hurst index H ∈ (0, 1). It is the moving average representation
of fBm and is given by

{WH(t), −∞ < t < ∞} �=
{∫ ∞

−∞
fH (t, u)dW(u), −∞ < t < ∞

}
(1.37)

in the sense that the processes on both sides have the same finite-dimensional
distributions where

fH (t, u) = 1

C1(H)
((t − u)

H− 1
2+ − (−u)H− 1

2 ) (1.38)

and

C1(H) =
[∫ ∞

0
((1 + u)H− 1

2 − uH− 1
2 )2du + 1

2H

]1/2

(1.39)

where aα+ = aα if a > 0 and aα+ = 0 if a ≤ 0. Pipiras and Taqqu (2002) obtained
a generalization of this result. They proved the following theorem.

Theorem 1.11: Let WH1 and WH2 be two standard fBms with the Hurst indices
Hi ∈ (0, 1), i = 1, 2 respectively. Further suppose that H1 �= H2. Then

{WH2(t), −∞ < t < ∞} �=
{∫ ∞

−∞
fH1,H2(t, u)dWH1(u), −∞ < t < ∞

}
(1.40)
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where

fH1,H2(t, u) = C1(H1)�(H2 + 1
2 )

C1(H2)�(H1 + 1
2 )�(H2 − H1 + 1)

((t − u)
H2−H1+ − (−u)

H2−H1+ )

(1.41)

with C1(
1
2 ) = 1.

By taking H2 = 1
2 in the above theorem, we get the following deconvolution

formula or autoregressive representation for fBm proved in Pipiras and Taqqu
(2002).

Theorem 1.12: Let WH be standard fBm with index H ∈ (0, 1) with H �= 1
2 .

Let W be standard Brownian motion. Then

{W(t), −∞ < t < ∞} �=
{∫ ∞

−∞
f

H, 1
2
(t, u)dWH(u), −∞ < t < ∞

}
(1.42)

where

f
H, 1

2
(t, u) = C1(H)

�(H + 1
2 )�( 3

2 − H)
((t − u)

1
2 −H

+ − (−u)
1
2 −H

+ ). (1.43)

Let FH,t denote the σ -algebra generated by the process {WH(s), 0 ≤ s ≤ t} and
F 1

2 ,t
denote the σ -algebra generated by the process {W(s), 0 ≤ s ≤ t}. Pipiras

and Taqqu (2002) proved that the inversion formula

W(t) =
∫ ∞

−∞
f

H, 1
2
(t, u)dWH (u) (1.44)

holds for each t ∈ R almost everywhere and hence the σ -algebras FH,t and F 1
2 ,t

are the same up to sets of measure zero for t > 0. The equality in (1.44) does
not hold for t < 0.

The fundamental martingale

We noted earlier that fBm Z is not a semimartingale and its paths are continuous
and locally of unbounded variation a.s. but with zero quadratic variation whenever
H > 1

2 . However, we will now show that such fBm can be transformed into a
martingale by an integral transformation following the work of Norros et al .
(1999) (cf. Molchan (1969)). We will first prove a lemma dealing with some
equations for integrals of fractional powers.

Lemma 1.13: Let B(α, β) denote the beta function with parameters α and β

given by

B(α, β) =
∫ 1

0
xα−1(1 − x)β−1dx. (1.45)



18 STATISTICAL INFERENCE FOR FRACTIONAL DIFFUSION PROCESSES

The following identities hold:

(i) For µ> 0, ν > 0 and c > 1,∫ 1

0
tµ−1(1 − t)ν−1(c − t)−µ−ν dt = c−ν(c − 1)−µB(µ, ν). (1.46)

(ii) For µ ∈ R, ν > −1 and c > 1,∫ c

1
tµ(t − 1)ν dt =

∫ 1−1/c

0
sν(1 − s)−µ−ν−2 ds. (1.47)

(iii) Suppose that µ> 0, ν > 0 and c > 1. Then∫ 1

0
tµ−1(1 − t)ν−1(c − t)−µ−ν+1 dt

= B(µ, 1 − µ) − (µ + ν − 1)B(µ, ν)

×
∫ 1−1/c

0
s−µ(1 − s)µ+ν−2 ds (if µ < 1)

= (µ + ν − 1)B(µ, ν)c−ν+1
∫ 1

0
sµ+ν−2(c − s)−µ ds (if µ + ν > 1).

(1.48)

(iv) For µ ∈ (0, 1) and for x ∈ (0, 1),∫ 1

0
t−µ(1 − t)−µ|x − t |2µ−1dt = B(µ, 1 − µ). (1.49)

We give a proof of this lemma following Norros et al . (1999).

Proof: The identities in (i) and (ii) can be proved by using the transformations
t = cs/(c−1 + s) and t = 1/(1−s) respectively. We now prove (iii).

Suppose µ < 1. Then∫ 1

0
tµ−1(1 − t)ν−1(c − t)−µ−ν+1 dt

=
∫

tµ−1(1 − t)ν−1
[
(1 − t)−µ−ν+1 + (−µ − ν + 1)

∫ c

1
(v − t)−µ−νdv

]
dt

= B(µ, 1 − µ) − (µ + ν − 1)

∫ c

1

[∫ 1

0
tµ−1(1 − t)ν−1(v − t)−µ−ν dt

]
dv

= B(µ, 1 − µ) − (µ + ν − 1)B(µ, ν)

∫ c

1
v−ν(v − 1)−µdv (by(i))

= B(µ, 1 − µ) − (µ + ν − 1)B(µ, ν)

∫ 1−1/c

0
s−µ(1 − s)µ+ν−2ds (by(ii))
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= B(µ, 1 − µ) − (µ + ν − 1)B(µ, ν)

×
[
B(1 − µ, µ + ν − 1) −

∫ 1/c

0
sµ+ν−2(1 − s)−µds

]
= (µ + ν − 1)B(µ, ν)

∫ 1/c

0
sµ+ν−2(1 − s)−µds. (1.50)

The last equality follows from the identity

(µ + ν − 1)B(µ, ν)B(1 − µ,µ + ν − 1) = B(µ, 1 − µ). (1.51)

Since the first term and the last term in (1.50) are analytic in µ for µ> 0, the
statement in (iii) holds for all µ> 0. The last result given in (iv) follows from
(iii) and (1.51) by elementary but tedious calculations. We omit the details.

Let � denote the integral operator

�f (t) = H(2H − 1)

∫ ∞

0
f (s)|s − t |2H−2ds.

Lemma 1.14: Suppose that H > 1
2 . Let w(t, s) be the function

w(t, s) = c1s
1
2 −H (t − s)

1
2 −H for 0 < s < t

= 0 for s > t (1.52)

where

c1 =
[

2H�

(
3

2
− H

)
�

(
H + 1

2

)]−1

. (1.53)

Then

�w(t, .)(s) = 1 for s ∈ [0, t)

= (H − 1
2 )sH− 1

2

( 3
2 − H)B(H + 1

2 , 2 − 2H)

∫ t

0
u1−2H (s − u)H− 3

2 du for s > t.

(1.54)

Proof: Recall that H > 1
2 . For s ∈ [0, t], the result follows from (iv) of

Lemma 1.13 by choosing µ = H− 1
2 . For s > t, the result is obtained from (iii)

of Lemma 1.13.

Let

Mt =
∫ t

0
w(t, s)dZs, t ≥ 0. (1.55)
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Theorem 1.15: The process {Mt, t ≥ 0} is a mean zero Gaussian process with
independent increments with E(M2

t ) = c2
2t

2−2H where

c2 = cH

2H(2 − 2H)1/2
(1.56)

and

cH =
[

2H�
( 3

2 − H
)

�(H + 1
2 )�(2 − 2H)

]1/2

(1.57)

In particular, the process {Mt, t ≥ 0} is a zero mean martingale.

Proof: From the properties of Wiener integrals, it follows that the process
{Mt, t ≥ 0} is a Gaussian process with mean zero. Suppose that s < t . In view
of Lemma 1.14, it follows that

cov(Ms,Mt) = 〈w(s, .), �w(t.)〉
= 〈w(s, .), I[0,t]〉

=
∫ s

0
w(s, u)du

= c1B

(
3

2
− H,

3

2
− H

)
s2−2H

= c2
2s

2−2H . (1.58)

Here 〈.〉 denotes the usual inner product in L2
((0,∞)). Note that the last term is

independent of t which shows that the process M has uncorrelated increments.
Since it is a mean zero Gaussian process, the increments will be mean zero inde-
pendent random variables. Let Ft denote the σ -algebra generated by the random
variables {Zs, 0 ≤ s ≤ t}. It is now easy to see that the process {Mt,Ft , t ≥ 0}
is a zero mean Gaussian martingale.

The martingale M defined above is called the fundamental martingale associated
with fBm Z.

It is easy to check that the process

Wt = 2H

cH

∫ t

0
sH− 1

2 dMs (1.59)

is standard Brownian motion. Stochastic integration with respect to a martingale
is defined in the obvious way as in the case of Ito integrals. For details, see
Prakasa Rao (1999b).
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Furthermore, for 0 ≤ s ≤ t ,

cov(Zs, Mt) = 〈I[0,s], �w(t, .)〉
= 〈I[0,s], I[0,t]〉
= s. (1.60)

In particular, it follows that the increment Mt−Ms is independent of Fs for
0 ≤ s ≤ t . Let

Yt =
∫ t

0
s

1
2 −H dZs.

Observing that the process {Yt , t ≥ 0} is a Gaussian process, it can be seen that

Zt =
∫ t

0
sH− 1

2 dYs.

In fact, the process Y generates the same filtration {Ft , t ≥ 0} as the filtration
generated by the process Z. It can be shown that

E[MtYT ] = c2
H

2H

∫ t

0
(T − s)H− 1

2 s1−2Hds if t < T

= T
3
2 −H

3
2 − H

if t ≥ T (1.61)

For proof, see Proposition 3.2 in Norros et al . (1999). We leave it to the reader
to check that

Mt = cH

2H

∫ t

0
s

1
2 −HdWs. (1.62)

The martingale M is the fundamental martingale associated with fBm Z in the
sense that the martingale M generates, up to sets of measure zero, the same
filtration as that generated by the process Z. Furthermore, the same holds for
the related processes W and Y defined above. In fact, the process Y has the
representation

YT = 2H

∫ T

0
(T − t)H− 1

2 dMt

and the martingale Mt can be represented in the form

Mt = c1

∫ t

0
(t − s)

1
2 −H dYs.

For detailed proofs of these results, see Norros et al . (1999). Let {FW
t } denote

the filtration generated by the process W defined by (1.59). It is known that all
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right-continuous square integrable {FW
t }-martingales can be expressed as stochas-

tic integrals with respect to the process W . Since the filtrations {FW
t } and {Ft }

coincide up to sets of measure zero, it follows that all the right-continuous square
integrable {Ft}-martingales can also be expressed as stochastic integrals with
respect to W .

Baxter-type theorem for fBm

In a fairly recent paper on the estimation of the Hurst index for fBm, Kurchenko
(2003) derived a Baxter-type theorem for fBm.

Let f : (a, b) → R be a function and let k be a positive integer. Let �
(k)
h f (t)

denote the increment of k-th order of the function f in an interval [t, t + h] ⊂
(a, b) as defined by

�
(k)
h f (t) =

k∑
i=0

(−1)ikCi
f

(
t + i

k
h

)
.

For any m ≥ 0, positive integer k ≥ 1 and 0 < H < 1, define

Vk(m, H) = 1

2

k∑
i,j=0

(−1)i+j+1kCi
kCj

∣∣∣∣m + i − j

k

∣∣∣∣2H

.

It can be checked that V1(0, H) = 1 and V2(0, H) = 22−2H−1. Note that

�
(2)
1 f (t) = f (t) − 2 f

(
t + 1

2

)
+ f (t + 1).

Kurchenko (2003) proved the following Baxter-type theorem for second-order
increments for fBm among several other results.

Theorem 1.16: Let {WH(t), t ≥ 0} be standard fBm with Hurst index H ∈ (0, 1)

as defined above. Then, with probability one,

lim
n→∞

1

n

n−1∑
m=0

(�
(2)
1 WH(m))2 = V2(0, H) a.s.

In other words,

lim
n→∞

1

n

n−1∑
m=0

[
WH(m) − 2 WH

(
m + 1

2

)
+ WH(m + 1)

]2

= V2(0, H) a.s.

for any standard fBm with Hurst index H ∈ (0, 1).

For a proof of Theorem 1.16, see Kurchenko (2003).
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Singularity of fBms for different Hurst indices

It is well known that if P and Q are probability measures generated by two
Gaussian processes, then these measures are either equivalent or singular with
respect to each other (cf. Feldman (1958), Hajek (1958)). For a proof, see Rao
(2000), p. 226.

Let {WHi
(t), t ≥ 0}, i = 1, 2, be two standard fBms with Hurst indices

H1 �= H2. From the result stated above, it follows that the probability measures
generated by these processes are either equivalent or singular with respect to
each other. We will now prove that they are singular with respect to each other
(cf. Prakasa Rao (2008c)).

Theorem 1.17: Let {WHi
(t), t ≥ 0}, i = 1, 2, be two standard fBms with Hurst

indices H1 �= H2. Let Pi be the probability measure generated by the process
{WHi

(t, t ≥ 0} for i = 1, 2. Then the probability measures P1 and P2 are singular
with respect to each other.

Proof: Applying Theorem 1.16, we obtain that

lim
n→∞

1

n

n−1∑
m=0

[
WHi

(m) − 2WHi

(
m + 1

2

)
+ WHi

(m + 1)

]2

= V2(0, Hi) a.s.[Pi], i = 1, 2.

Since V2(0, H1) �= V2(0, H2) if H1 �= H2, and since the convergence stated above
is a.s. convergence under the corresponding probability measures, it follows that
the measures P1 and P2 are singular with respect to each other.

Long-range dependence

Suppose {Z(t), −∞ < t < ∞} is fBm with Hurst index H for some
0 < H < 1. Define Xk = Z(k + 1)−Z(k) for any integer k ∈ R. The
process {Xk} is called fractional Gaussian noise. Since the process Z

is H -ss with stationary increments, it is easy to see that the discrete
time parameter process {Xk, −∞<k <∞} is stationary with mean
E(Xk) = 0, E(X2

k) = E(Z2(1)) = σ 2 (say) and the auto covariance

γ (k) = E(XiXk+i ) = γ (−k) = σ 2

2
(|k + 1|2H + |k − 1|2H − 2|k|2H). (1.63)

Suppose k �= 0. Then

γ (k) = 0 if H = 1

2

< 0 if 0 < H <
1

2

> 0 if
1

2
< H < 1. (1.64)
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This can be checked from the strict convexity of the function f (x) = x2H , x > 0,
for 1

2 < H < 1 and strict concavity of the function f (x) = x2H , x > 0, for 0 <

H < 1
2 . Furthermore, if H �= 1

2 , then

γ (k)  σ 2H(2H − 1)|k|2H−2

as |k| → ∞. In particular, γ (k) → 0 as |k| → ∞ if 0 < H < 1. Observe that,
if 1

2 < H < 1, then
∑∞

k=−∞ γ (k) = ∞ and the process {Xk, −∞ < k < ∞}
exhibits long-range dependence. In this case, the auto covariance tends to zero
but so slowly that the sum of auto covariances diverges. If 0 < H < 1

2 , then∑∞
k=−∞ |γ (k)| < ∞. This is the reason why the class of processes, driven by

fBm with Hurst index H > 1
2 , is used for modeling phenomena with long-range

dependence.

1.4 Stochastic differential equations driven by fBm

Fundamental semimartingale

Let (�,F, (Ft ), P ) be a stochastic basis satisfying the usual conditions. The
natural filtration of a process is understood as the P -completion of the filtration
generated by this process.

Let WH = {WH
t , t ≥ 0} be standard fBm with Hurst parameter H ∈ (0, 1),

that is, a Gaussian process with continuous sample paths such that WH
0 = 0,

E(WH
t ) = 0 and

E(WH
s WH

t ) = 1

2
[s2H + t2H − |s − t |2H ], t ≥ 0, s ≥ 0. (1.65)

Let us consider a stochastic process Y = {Yt , t ≥ 0} defined by the stochastic
integral equation

Yt =
∫ t

0
C(s)ds +

∫ t

0
B(s)dWH

s , t ≥ 0 (1.66)

where C = {C(t), t ≥ 0} is an (Ft )-adapted process and B(t) is a non vanishing,
non random function. For convenience, we write the above integral equation in
the form of a stochastic differential equation

dYt = C(t)dt + B(t)dWH
t , t ≥ 0 (1.67)

driven by fBm WH . Recall that the stochastic integral∫ t

0
B(s)dWH

s (1.68)

is not a stochastic integral in the Ito sense, but one can define the integral of a
deterministic function with respect to fBm as the integrator in a natural sense
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(cf. Gripenberg and Norros (1996), Norros et al . (1999)) as we discussed ear-
lier. Even though the process Y is not a semimartingale, one can associate a
semimartingale Z = {Zt, t ≥ 0} which is called a fundamental semimartingale
such that the natural filtration (Zt ) of the process Z coincides with the natural
filtration (Yt ) of the process Y (Kleptsyna et al . (2000a)). Define, for 0 < s < t ,

kH = 2H �

(
3

2
− H

)
�

(
H + 1

2

)
, (1.69)

kH (t, s) = k−1
H s

1
2 −H (t − s)

1
2 −H , (1.70)

λH = 2H �(3 − 2H) �(H + 1
2 )

�( 3
2 − H)

, (1.71)

wH
t = λ−1

H t2−2H , (1.72)

and

MH
t =

∫ t

0
kH (t, s)dWH

s , t ≥ 0. (1.73)

The process MH is a Gaussian martingale, called the fundamental martingale
(cf. Norros et al . (1999)), and its quadratic variation 〈MH 〉t = wH

t . Furthermore,
the natural filtration of the martingale MH coincides with the natural filtration
of fBm WH . In fact the stochastic integral∫ t

0
B(s)dWH

s (1.74)

can be represented in terms of the stochastic integral with respect to the martin-
gale MH . For a measurable function f on [0, T ], let

K
f

H(t, s) = −2H
d

ds

∫ t

s

f (r)rH− 1
2 (r − s)H− 1

2 dr, 0 ≤ s ≤ t (1.75)

when the derivative exists in the sense of absolute continuity with respect to
the Lebesgue measure (see Samko et al . (1993) for sufficient conditions). The
following result is due to Kleptsyna et al . (2000a).

Theorem 1.18: Let MH be the fundamental martingale associated with fBm
WH. Then ∫ t

0
f (s)dWH

s =
∫ t

0
K

f

H(t, s)dMH
s , t ∈ [0, T ] (1.76)

a.s. [P ] whenever both sides are well defined.
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Suppose the sample paths of the process {C(t)/B(t), t ≥ 0} are smooth enough
(see Samko et al . (1993)) so that

QH(t) = d

dwH
t

∫ t

0
kH (t, s)

C(s)

B(s)
ds, t ∈ [0, T ] (1.77)

is well defined, where wH and kH (t, s) are as defined in (1.72) and (1.70) respec-
tively and the derivative is understood in the sense of absolute continuity. The
following theorem due to Kleptsyna et al . (2000a) associates a fundamental semi-
martingale Z associated with the process Y such that the natural filtration (Zt )

coincides with the natural filtration (Yt ) of Y .

Theorem 1.19: Suppose the sample paths of the process QH defined by (1.77)
belong P -a.s. to L2([0, T ], dwH ) where wH is as defined by (1.72). Let the
process Z = {Zt, t ∈ [0, T ]} be defined by

Zt =
∫ t

0
kH (t, s)[B(s)]−1dYs (1.78)

where the function kH (t, s) is as defined in (1.70). Then the following results
hold:

(i) The process Z is an (Ft )-semimartingale with the decomposition

Zt =
∫ t

0
QH (s)dwH

s + MH
t (1.79)

where MH is the fundamental martingale defined by (1.73).

(ii) The process Y admits the representation

Yt =
∫ t

0
KB

H(t, s)dZs (1.80)

where the function KB
H(., .) is as defined in (1.75).

(iii) The natural filtrations (Zt ) and (Yt ) coincide.

Kleptsyna et al . (2000a) derived the following Girsanov-type formula as a con-
sequence of Theorem 1.19.

Theorem 1.20: Suppose the assumptions of Theorem 1.19 hold. Define

H (T ) = exp

(
−
∫ T

0
QH(t)dMH

t − 1

2

∫ t

0
Q2

H (t)dwH
t

)
. (1.81)
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Suppose that E(H(T )) = 1. Then the measure P ∗ = H(T )P is a probability
measure and the probability measure of the process Y under P ∗ is the same as
that of the process V defined by

Vt =
∫ t

0
B(s)dWH

s , 0 ≤ t ≤ T (1.82)

under the P -measure.

Stochastic differential equations

It is possible to define the stochastic integral of a random process {σ(t, Xt ), t ≥ 0}
with respect to fBm WH as the integrator for some class of stochastic processes
and to define a stochastic differential equation of the type

dXt = b(t, Xt )dt + σ(t, Xt )dWH
t , X0, t > 0.

Sufficient conditions for the existence and uniqueness of solutions of such
stochastic differential equations driven by fBm are discussed in Mishura (2008),
p. 197. We do not go into the details here. The following result due to Nualart
and Rascanu (2002) gives sufficient conditions for the existence and uniqueness
of the solution.

For any λ ∈ (0, 1], let Cλ[0, T ] be the space of continuous functions f

defined on the interval [0, T ] such that

sup
0≤x1 �=x2≤T

|f (x1) − f (x2)|
|x1 − x2|λ < ∞.

Define the norm

||f ||Cλ = max
x∈[0,T ]

|f (x)| + sup
0≤x1 �=x2≤T

|f (x1) − f (x2)|
|x1 − x2|λ < ∞

on the space Cλ[0, T ]. Let

Cµ−[0, T ] = ∩λ<µCλ[0, T ].

Define

C0 = 1

2

[(
H − 1

2

)
H(1 − H) B

(
3

2
− H,

3

2
− H

)
B

(
H − 1

2
,

3

2
− H

)]−1/2

(1.83)

and

C1 = C0 B

(
3

2
− H,

3

2
− H

)
. (1.84)
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Let

z(t, u) = C0u
1
2 −H (t − u)

1
2 −H (1.85)

and

w(t, u) = C0u
3
2 −H (t − u)

1
2 −H . (1.86)

Norros et al . (1999) proved that

Mt =
∫ t

0
z(t, u)dWH

u (1.87)

is well defined as a pathwise integral and is a martingale with respect to the
filtration {Ft , t ≥ 0} generated by the process WH . The quadratic variation of
the martingale M is 〈M〉t = t2−2H

2−2H
.

Furthermore,

Wt =
∫ t

0
uH− 1

2 dMu (1.88)

is a Wiener process W adapted to the same filtration.

Theorem 1.21: Let a function S : [0, T ] × R → R be such that:

(i) for all N ≥ 0, there exists LN > 0 such that

|S(t, x) − S(t, y)| ≤ LN |x − y|, |x| ≤ N, |y| ≤ N, 0 ≤ t ≤ T ; (1.89)

(ii) and there exists M > 0 such that

|S(t, x)| ≤ M(1 + |x|), x ∈ R, 0 ≤ t ≤ T . (1.90)

Then the stochastic integral equation

Xt = x0 +
∫ t

0
S(u, Xu)du + εWH

t , 0 ≤ t ≤ T (1.91)

or equivalently the stochastic differential equation

dXt = S(t, Xt )dt + εdWH
t , X0 = x0, 0 ≤ t ≤ T (1.92)

has a unique solution {Xt, 0 ≤ t ≤ T } and the sample paths of this process belong
to CH−[0, T ] with probability one.

Theorem 1.22: Suppose that the function S(t, x) satisfies the conditions stated
in Theorem 1.21. Furthermore, suppose that the constant LN in Equation (1.89)
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does not depend on N , that is, LN = L for some L for every N ≥ 1. Let {Xt, 0 ≤
t ≤ T } be the solution of Equation (1.92) and

xt = x0 +
∫ t

0
S(u, xu)du, 0 ≤ t ≤ T . (1.93)

Then

sup
0≤t≤T

|Xt − xt | ≤ εC sup
0≤t≤T

|WH
t | (1.94)

where C = eLT .

This inequality is a consequence of the Gronwall lemma (see Chapter 5).

Absolute continuity of measures

Consider the stochastic differential equations (SDEs)

dXt = Si(t, Xt )dt + εdWH
t , X0 = x0, 0 ≤ t ≤ T , i = 1, 2. (1.95)

Suppose that sufficient conditions are satisfied by the functions Si so that there
exist unique solutions for the SDEs defined above. Let Xi be the solution of
the equation for i = 1, 2. Let P T

i be the probability measure generated by the
process Xi on the space C[0, T ] associated with the Borel σ -algebra induced
by the supremum norm on the space C[0, T ]. The following theorem, due to
Androshchuk (2005), gives sufficient conditions under which the probability
measures P T

i , i = 1, 2, are equivalent to each other and gives a formula for the
Radon–Nikodym derivative. An alternate form for the Radon–Nikodym deriva-
tive via the fundamental semimartingale is discussed in Theorem 1.20.

Theorem 1.23: Suppose the functions Si(t, x), i = 1, 2, satisfy the following
conditions: (i) Si(t, x) ∈ C1([0, T ] × R); (ii) there exists a constant M > 0 such
that |Si(t, x)| ≤ M(1 + |x|), x ∈ R, 0 ≤ t ≤ T . Then Equation (1.95) has unique
solutions for i = 1, 2 and these solutions belong to CH−[0, T ] a.s. In addition,
the probability measures P T

i , i = 1, 2, are absolutely continuous with respect to
each other and

dP T
2

dP T
1

(X1) = exp

(
1

ε
LT − 1

2ε2
〈L〉T

)
(1.96)

where

LT =
∫ T

0

{
(2 − 2H)t

1
2 −H

×
(

C1�S(0, x0) +
∫ t

0
u2H−3

[∫ u

0
w(u, v) d(�S(v, X1

v))

]
du

)
+ tH− 3

2

∫ t

0
w(t, u) d(�S(u, X1

u))

}
dWt (1.97)
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with

�S(t, x) = S2(t, x) − S1(t, x), (1.98)

C1 as defined by (1.84), w(t, u) as given in (1.86) and W the Wiener process
constructed from the process WH using (1.88).

We omit the proof of this theorem. For details, see Androshchuk (2005).

1.5 Fractional Ornstein–Uhlenbeck-type process

We now study the fractional analogue of the Ornstein–Uhlenbeck process, that
is, a process which is the solution of a one-dimensional homogeneous linear SDE
driven by fBm WH with Hurst index H ∈ [ 1

2 , 1).
Langevin (1908) suggested the following method to study the movement of

a particle immersed in a liquid. He modeled the particle’s velocity v by the
equation

dv(t)

dt
= −f

m
v(t) + F(t)

m
(1.99)

where m is the mass of the particle, f > 0 is a friction coefficient and F(t) is
the fluctuating force resulting from the impact of the particles with the surround-
ing medium. Uhlenbeck and Ornstein (1930) studied a random version of the
model by treating F(t), t ≥ 0, as a random process and then derived that, for
v(0) = x, the random variable v(t) has a normal distribution with mean xe−λt

and variance (σ 2/2λ)(1−e−2λt ) for λ = f/m and σ 2 = 2f kT /m2 where k is the
Boltzmann constant and T is the temperature. Doob (1942) observed that, if v(0)

is a Gaussian random variable with mean zero and variance σ 2/2λ independent
of the stochastic process {F(t), t ≥ 0}, then the solution {v(t), t ≥ 0} of (1.99)
is stationary and the process{

I[t > 0]t
1/2v

(
1

2λ
log t

)
, t ≥ 0

}
is Brownian motion. Since the sample paths of Brownian motion are nowhere dif-
ferentiable a.s., the differential equation (1.99) has to be interpreted as a stochastic
integral equation formulation or as a stochastic differential equation of the form

dXt = −λXtdt + dWt, X0 = x, t ≥ 0 (1.100)

where {Wt, t ≥ 0} is Brownian motion. It can be shown that this equation has
the unique solution

Xt = e−λt

(
x +

∫ t

0
eλsdWs

)
, t ≥ 0 (1.101)
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by an application of Ito’s lemma (cf. Prakasa Rao (1999a)). Such a process is
called the Ornstein–Uhlenbeck process. In analogy with this formulation, con-
sider the SDE

dXt = −λXtdt + σdWH
t , X0 = 0, t ≥ 0 (1.102)

where λ and σ 2 are constants. The existence and uniqueness of the solution
of this SDE are discussed in Cheridito et al . (2003). This process is called a
fractional Ornstein–Uhlenbeck-type process .

Existence and uniqueness

Theorem 1.24: Let {WH
t , −∞ < t < ∞} be fBm with index H ∈ (0, 1] defined

on a probability space (�,F, P ) and X(0, ω) = η(ω) ∈ R. Let −∞ ≤ a < ∞
and λ, σ > 0. Then, for almost every ω ∈ �, the following hold:

(a) for all t > a, ∫ t

a

eλudWH
u (ω)

exists as a Riemann–Stieltjes integral and is equal to

eλtWH
t (ω) − eλaWH

a (ω) − λ

∫ t

a

WH
u (ω)eλudu;

(b) the function ∫ t

a

eλudWH
u (ω), t > a

is continuous in t; and

(c) the unique continuous function x(t), that is, the solution of the integral
equation

x(t) = η(ω) − λ

∫ t

0
x(s)ds + σWH

t (ω), t ≥ 0

or equivalently of the SDE

dX(t) = −λX(t)dt + σdWH
t ,X(0) = η, t ≥ 0

is given by

x(t) = e−λt

[
η(ω) + σ

∫ t

0
eλudWH

u (ω)

]
, t ≥ 0.

In particular, the unique continuous solution of the equation

x(t) = σ

∫ 0

−∞
eλudWH

u (ω) − λ

∫ t

0
x(s)ds + σWH

t (ω), t ≥ 0
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is given by

x(t) = σ

∫ t

−∞
e−λ(t−u)dWH

u (ω), t ≥ 0.

For a proof of this theorem, see Cheridito et al . (2003).

Let

Y
H,η
t = e−λt

(
η + σ

∫ t

0
eλudWH

u

)
where the stochastic integral is defined as the pathwise Riemann–Stieltjes inte-
gral. As a consequence of the above theorem, it follows that {YH,η

t , t ≥ 0} is the
unique a.s. continuous process that is a solution of the SDE

dX(t) = −λX(t)dt + σdWH
t , t ≥ 0,X(0) = η. (1.103)

In particular, the process

YH
t = σ

∫ t

−∞
e−λ(t−u)dWH

u , 0 ≤ t < ∞

is the a.s. continuous solution of (1.103) with the initial condition

YH
0 = η = σ

∫ 0

−∞
eλudWH

u .

Note that the process {YH
t , −∞ < t < ∞} is a Gaussian process and is a sta-

tionary process as the increments of fBm WH are stationary. Furthermore, for
every η,

YH
t − Y

H,η
t

�= e−λt (YH
0 − η)

and
e−λt (YH

0 − η) → 0 a.s. as t → ∞.

The process {YH,η
t , t ≥ 0} is a fractional Ornstein–Uhlenbeck-type pro-

cess with the initial condition η and {Y H
t , t ≥ 0} is a stationary fractional

Ornstein–Uhlenbeck-type process. It can be checked that, for any fixed t, s,

cov(YH
t , YH

t+s ) = cov(YH
0 , YH

s )

= E

[
σ 2
∫ 0

−∞
eλudWH

u

∫ s

−∞
e−λ(s−v)dWH

v

]

= 1

2
σ 2

N∑
n=1

λ−2n(�2n−1
k=0 (2H − k))s2H − 2n + O(s2H−2N−2) (1.104)
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and the last equality holds as s → ∞ (for details, see Cheridito et al . (2003)).
It can be shown that the process {YH

t ,−∞ < t < ∞} is ergodic and exhibits
long-range dependence for H ∈ ( 1

2 , 1].

1.6 Mixed fBm

Cheridito (2001) introduced the class of mixed fBms. They are linear combina-
tions of different fBms. We first consider a special case.

Let a and b be real numbers not both zero. Mixed fractional Brownian motion
(mfBm) of parameters a, b and H is a process MH(a, b) = {MH

t (a, b), t > 0}
defined by

MH
t (a, b) = aWt + bWH

t , t > 0

where {Wt, t ≥ 0} is Brownian motion and the process {WH
t , t ≥ 0} is indepen-

dent fBm with Hurst index H . It is easy to check that the process MH(a, b) is
a zero mean Gaussian process with E[(MH

t (a, b))2] = a2t + b2t2H , and

cov(MH
t (a, b), MH

s (a, b)) = a2 min(t, s) + 1

2
b2(|t |2H + |s|2H − |t − s|2H ),

t > 0, s > 0.

Furthermore, the increments of the process MH(a, b) are stationary and it is
mixed-self-similar in the sense that, for any h > 0,

{MH
ht (a, b)} �= {MH

t (ah1/2, bhH )}.

Recall that the notation {Xt } �= {Yt } means that the processes specified on both
sides have the same finite-dimensional distributions.

Proposition 1.25: For all 0 < H < 1, H �= 1
2 , and b �= 0, the process MH(a, b)

is not a Markov process.

Proof: For notational convenience, we write MH for MH(a, b). If the process
MH is Markov, then, for all s < t < u,

cov(MH
s , MH

u ) var(MH
t ) = cov(MH

s , MH
t ) cov(MH

t , MH
u )

from the results in Revuz and Yor (1991). It can be checked that the above identity
does not hold, for instance, for s = 1

2 , t = 1 and u = 3
2 whenever 0 < H < 1 and

H �= 1
2 . For details, see Zili (2006).

Suppose b �= 0. We leave it to the reader to check that the increments of the
process MH are long-range dependent if H > 1

2 .
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Proposition 1.26: For all T > 0 and 0 < γ < min(H, 1
2 ), the mixed fBm MH

has a version of the process with sample paths which are Holder-continuous of
order γ in the interval [0, T ] with probability one.

Proof: Let α > 0 and 0 ≤ s ≤ t ≤ T . By the stationarity of the increments and
mixed-self-similarity of the process MH, it follows that

E(|MH
t − MH

s |α) = E(|MH
t−s |α)

= E(|MH
1 (a(t − s)1/2, b(t − s)H )|α). (1.105)

(i) Suppose H ≤ 1
2 . Then, there exist positive constants C1 and C2 depending

on α such that

E(|MH
t − MH

s |α) ≤ (t − s)αH E(|MH
1 (a(t − s)

1
2 −H , b)|α)

≤ (t − s)αH [C1|a|α(t − s)a( 1
2 −H)E|W1|α

+C2|b|αE(|WH
1 |α)]

≤ Cα(t − s)αH (1.106)

where

Cα = C1|a|α(t − s)a( 1
2 −H)E|W1|α + C2|b|αE(|WH

1 |α).

(ii) Suppose H > 1
2 . Then, there exist positive constants C3 and C4 depending

on α such that

E(|MH
t − MH

s |α) ≤ (t − s)α/2E(|MH
1 (a, b(t − s)H− 1

2 )|α)

≤ (t − s)α/2[C3|a|αE(|W1|α)

+C4|b|α(t − s)α(H− 1
2 )E(|WH

1 |α)]

≤ C′
α(t − s)α/2 (1.107)

where

C′
α = C3|a|αE(|W1|α) + C4|b|α(t − s)α(H− 1

2 )E(|WH
1 |α).

Hence, for every α > 0, there exists Cα > 0 such that

E(|MH
t − MH

s |α) ≤ Cα|t − s|α min( 1
2 ,H).

The result stated in the theorem now follows from Kolmogorov’s theorem (cf.
Revuz and Yor (1991), p. 25).

Miao et al . (2008) introduced the class of fractional mixed fractional Brownian
motion process {Zt, t > 0} given by

ZH
t = aW

H1
t + bW

H2
t ,
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where {WH1
t , t ≥ 0} and {WH2

t , t ≥ 0} are independent fBms with Hurst indices
H1 and H2 respectively, and studied the properties of such processes. For details,
see Miao et al . (2008).

Suppose b �= 0. Cheridito (2001) proved that the mixed fBm MH
t (a, b) is

not a semimartingale if H ∈ (0, 1
2 ) ∪ ( 1

2 , 3
4 ]. Furthermore, it is equivalent to a

multiple of the Wiener process if H = 1
2 and equivalent to a Wiener process if

H ∈ ( 3
4 , 1]. For details, see Cheridito (2001).

A function f (t), t ≥ 0, is said to belong to the lower class of a process X

defined on a probability space (�,F, P ) if, for almost all ω ∈ �, there exists
a function t0 = t0(ω) such that X(t) ≥ f (t) for every t > t0. El-Nouty (2001,
2002) characterized such classes for fBm and extended the results to fractional
mixed fBm in El-Nouty (2003a) and to integrated fBm in El-Nouty (2003b).

1.7 Donsker-type approximation for fBm
with Hurst index H > 1

2

Let Z = {Z(t), t ≥ 0} be standard fBm with Hurst index H > 1
2 . Norros et al .

(1999) obtained the following kernel representation of the process Z with respect
to standard Brownian motion W :

Z(t) =
∫ t

0
z(t, s)dWs (1.108)

where

z(t, s) = cH

(
H − 1

2

)
s

1
2 −H

∫ t

s

uH− 1
2 (u − s)H− 1

2 du, s ≤ t (1.109)

with

cH =
([

2H�

(
3

2
− H

)]
/

[
�

(
1

2
+ H

)
�(2 − 2H)

])1/2

. (1.110)

The function z(t, s) is defined to be zero if s ≥ t . We now briefly discuss an
analogue of the Donsker-type approximation theorem for fBm as a limit of a
random walk. This result is due to Sottinen (2001).

Let ψ
(n)
i be independent and identically distributed (i.i.d.) random variables

with mean zero and variance one and define

W
(n)
t = n−1/2

[nt]∑
i=1

ψ
(n)
i (1.111)

where [x] denotes the greatest integer not exceeding x. Donsker’s theorem
states that the process {W(n)

t , t ≥ 0} converges weakly to the standard Brownian
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motion W (cf. Billingsley (1968)). Let

Z
(n)
t =

∫ t

0
z(n)(t, s)dW(n)

s =
[nt]∑
i=1

n

(∫ (i/n)

(i−1/n)

z

(
[nt]

n
, s

)
ds

)
(n−1/2ψ

(n)
i )

(1.112)

where z(t, s) is the kernel that transforms standard Brownian into fBm. Note that
the function z(n)(t, .) is an approximation to the function z(t, .), namely,

z(n)(t, s) = n

∫ s

s−1/n

z

(
[nt]

n
, u

)
du.

Sottinen (2001) proved that the random walk Z(n) converges weakly to standard
fBm with index H . For a detailed proof, see Sottinen (2001).

Weak convergence to fBm was also investigated by Beran (1994) and Taqqu
(1975). The approximation schemes discussed by them involve Gaussian random
variables. Dasgupta (1998) obtained approximations using binary random vari-
ables and the representation of fBm due to Mandelbrot and Van Ness (1968).
Sottinen’s approximation scheme discussed above used i.i.d. random variables
with finite variance.

1.8 Simulation of fBm

We mentioned earlier that the increments of fBm with Hurst index H form a
sequence called fractional Gaussian noise and this sequence exhibits long-range
dependence whenever 1

2 < H < 1. Mandelbrot and Wallis (1969) provided a
discrete approximation to fBm and Mandelbrot (1971) suggested a fast algorithm
for simulating the fractional Gaussian noise. We now describe a few methods to
simulate paths of fBm. Dieker (2004) has given an extensive discussion on this
topic comparing different methods of simulation. Our remarks here are based on
Dieker (2004).

Willinger, Taqqu, Sherman and Wilson method

The following method for the simulation of fBm paths is due to Willinger
et al . (1997). Suppose there are S i.i.d. sources transmitting packets of infor-
mation. Each source s has active and inactive periods modeled by a stationary
time series {J (s)(t), t ≥ 0} where J (s)(t) = 1 if the source is sending a packet at
time t and J (s)(t) = 0 if the source is not sending a packet at time t . Suppose the
lengths of the active (‘ON’) periods are i.i.d. and those of the inactive (‘OFF’)
periods are also i.i.d., and the lengths of ON and OFF periods are independent.
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An OFF period follows an ON period and the ON and OFF period lengths may
have different distributions. Rescaling time by a factor T , let

JS(T t) =
∫ T t

0

[
S∑

s=1

J (s)(u)

]
du

be the aggregated cumulative packet counts in the interval [0, t]. Suppose the
distributions of the ON and OFF periods are Pareto with parameter 1 < α < 2.
Recall that a random variable X has the Pareto distribution with parameter α > 0
if P(X > t) = t−α for t ≥ 1. Note that the ON and OFF periods have infinite
variance under this distribution when 1 < α < 2. Willinger et al . (1997) proved
that

lim
T →∞

lim
S→∞

T −H S−1/2
(

JS(T t) − 1

2
T St

)
= σWH(t)

for some σ > 0 where H = (3−α/2) and WH(t) denotes fBm with Hurst index
H . In other words, the random variable JS(T t) closely resembles

1

2
T St + T H

√
SσWH(t)

which is fractional Brownian traffic with mean M = 1
2T S and variance coefficient

a = 2σ 2T 2H−1. We say that A(t) = Mt + √
aMWH(t) is fractional Brownian

traffic with mean input rate M > 0 and variance coefficient a. The process A(t)

represents the number of bits (or data packets) that is transmitted in the time
interval [0, t].

The method given above can be used for simulation of fBm by aggregating
a large number of sources with Pareto ON and OFF periods.

Decreusfond and Lavaud method

Decreusefond and Lavaud (1996) suggested the following method for the simu-
lation of an fBm sample. Recall that fBm {WH(t), t ≥ 0} can be represented in
the form

WH(t) =
∫ t

0
KH(t, s)dW(s)

for a suitable function KH(t, s) where {W(t), t ≥ 0} is Brownian motion. Sup-
pose that we need an fBm sample in the interval [0, 1]. Let tj = j/N, j =
0, 1, . . . , N . We estimate WH(tj ) at tj by the formula

WH(tj ) =
j∑

i = 0

1

ti+1 − ti

[∫ ti+1

ti

KH (tj , s)ds

]
(W(ti+1) − W(ti)). (1.113)
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Note that the integral ∫ ti+1

ti

KH (tj , s)ds

cannot be approximated by KH(tj , ti) or KH(tj , ti+1) since the function KH(tj , t)

is not continuous with respect to t in [0, tj ].

Dzhaparidze and van Zanten method

Dzhaparidze and van Zanten (2004) obtained a series expansion for fBm. This
series involves the positive zeroes x1 < x2 < . . . of the Bessel function J−H of
the first kind of order −H and the positive zeroes y1 < y2 < . . . of the Bessel
function J1−H . Then

WH(t) =
∞∑

n=1

sin(xnt)

xn

Xn +
∞∑

n=1

1 − cos(ynt)

yn

Yn. (1.114)

Equality holds in Equation (1.114) in the sense that random processes on both
sides have the same finite-dimensional distributions. The random variables
Xi, i ≥ 1, and Yi, i ≥ 1, are independent Gaussian random variables with mean
zero and with the variances given by

V ar(Xn) = 2C2
H x−2H

n J−2
1−H (xn),

V ar(Yn) = 2C2
H y−2H

n J−2
−H (yn),

and
C2

H = 1

π
�(1 + 2H) sin(πH).

Furthermore, the series on the right of (1.114) converge absolutely and uni-
formly in t ∈ [0, 1] a.s. The series expansion in (1.114) generalizes the result
on Karhunen–Loeve-type expansion for Brownian motion. The representation
(1.114) can be used for simulating an fBm sample from Gaussian samples. This
method is useful as there are efficient algorithms to compute the zeroes of Bessel
functions. Furthermore, the zeroes have to be computed only once regardless of
the number of samples to be simulated. For computational purposes, the series
on the right of (1.114) have to be truncated at some level N . Dzhaparidze and
van Zanten (2003) proved that

lim sup
N→∞

NH√
log N

E

[
sup

0≤t≤1

∣∣∣∣∣∑
n >N

sin(xnt)

xn

Xn +
∑
n >N

1 − cos(ynt)

yn

Yn

∣∣∣∣∣
]

< ∞.

Kuhn and Linde (2002) proved the rate N−H
√

log N is the ‘best’ possible.
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1.9 Remarks on application of modeling by fBm
in mathematical finance

Geometric Brownian motion is used for modeling stock prices in the theory of
mathematical finance but it was empirically observed that the model may not be
suitable due to several reasons, including the fact that the log-share prices may
follow long-range dependence. In recent years, fBm has been suggested as a
replacement for Brownian motion as the driving force in modeling various real-
world phenomena, including the modeling of stock prices. Absence of arbitrage,
that is, the impossibility of receiving a risk-less gain by trading in a market,
is a basic assumption or a condition that underlies all modeling in financial
mathematics. For, if there is a strategy that is feasible for investors and promises
a risk-less gain, then the investors would like to buy this strategy and will not
sell. By the law of demand and supply, the price of this strategy would increase
immediately, indicating that the market is not in equilibrium. Hence the absence
of arbitrage is a basic requirement of any useful pricing model. See Rogers (1997)
and Bender et al . (2006).

The first fundamental theorem of asset pricing (Delbaen and Schachermayer
(1994)) links the no-arbitrage property to the martingale property of the dis-
counted stock price process under a suitable pricing measure. Since fBm is not a
semimartingale, except when H = 1

2 (the Brownian motion case), the stock price
process driven by fBm cannot be transformed into a martingale in general by an
equivalent change of measure. Hence the fundamental theorem rules out these
models as sensible pricing models.

Hu and Oksendal (2003) and Elliott and van der Hock (2003) suggested a frac-
tional Black–Scholes model as an improvement over the classical Black–Scholes
model using the notion of a Wick integral. Necula (2002) studied option pric-
ing in a fractional Brownian environment using the Wick integral. Common to
these fractional Black–Scholes models is that the driving force is fBm but the
stochastic integral used is interpreted as the Wick integral. It was shown by
these authors that the fractional Black–Scholes models are arbitrage free, con-
tradicting earlier studies that the fractional Black–Scholes models do admit arbi-
trage. Bjork and Hult (2005) have, however, pointed out that the notion of self-
financing trading strategies and the definition of value used by Hu and Oksendal
(2003) and others, using the Wick integral, do not have a reasonable economic
interpretation.

1.10 Pathwise integration with respect to fBm

Zahle (1998) developed the theory of pathwise integration with respect to
fBm when the Hurst index H > 1

2 using the methods of fractional calculus.
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We will now briefly discuss these results. Zahle (1998) extends the classical
Lebesgue–Stieltjes integral ∫ b

a

f (x) dg(x)

for real or complex-valued functions on a finite interval (a, b) to a large class of
integrands f and integrators g of unbounded variation. The techniques used are
composition formulas and integration by parts rules for fractional integrals and
fractional derivatives (cf. Samko et al . (1993)).

Note that if f or g is a smooth function on a finite interval (a, b), the
Lebesgue–Stieltjes integral can be written in the form∫ b

a

f (x) dg(x) =
∫ b

a

f (x)g′(x)dx

or ∫ b

a

f (x) dg(x) = −
∫ b

a

f ′(x)g(x)dx + f (b−)g(b−) − f (a+)g(a+).

Here f (a+) = limδ↙0 f (a + δ) and g(b−) = limδ↗0 f (b−δ) whenever the lim-
its exist. The main idea of Zahle’s approach is to replace the ordinary derivatives
by the fractional derivatives. Let

fa+(x) = (f (x) − f (a+))1(a,b)(x)

and
gb−(x) = (g(x) − g(b−))1(a,b)(x)

where 1(a,b)(x) = 1 if x ∈ (a, b) and 1(a,b)(x) = 0 otherwise. For a function
f ∈ L1(R) and α > 0, define

Iα
a+f (x) = 1

�(α)

∫ x

a

(x − y)α−1f (y)dy

and

Iα
b−f (x) = 1

�(α)

∫ b

x

(y − x)α−1f (y)dy

where �(.) is the gamma function. For p ≥ 1, let Iα
a+(Lp) be the class of func-

tions f which may be represented as Iα
a+-integral for some function φ in Lp(R).

Similarly, let Iα
b−(Lp) be the class of functions f which may be represented as

Iα
b−-integral for some function φ in Lp(R). If p > 1, then f ∈ Iα

a+(Lp) if and
only if f ∈ Lp(R) and the integrals∫ x−ε

a

f (x) − f (y)

(x − y)α+1
dy
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converge in Lp(R) as a function of x as ε ↓ 0 defining f (y) = 0 if x is not in
(a, b). Similarly, f ∈ Iα

b−(Lp) if and only if f ∈ Lp(R) and the integrals∫ b

x+ε

f (x) − f (y)

(y − x)α+1
dy

converge in Lp(R) as a function of x as ε ↓ 0 defining f (y) = 0 if x is not in
[a, b] (cf. Samko et al . (1993)).

Suppose fa+ ∈ Iα
a+(Lp) and gb− ∈ I 1−α

b− (Lq) for some 1/p + 1/q ≤ 1 and
0 ≤ α ≤ 1. Define the integral∫ b

a

f (x) dg(x) = (−1)α
∫ b

a

Dα
a+fa+(x)D1−α

b− gb−(x)dx

+f (a+)(g(b−) − g(a+)) (1.115)

for some 0 ≤ α ≤ 1 where

Dα
a+f (x) = 1

�(1 − α)

[
f (x)

(x − a)α
+ α

∫ x

0

f (x) − f (y)

(x − y)α+1
dy

]
1(a,b)(x)

and

Dα
b−f (x) = (−1)α

�(1 − α)

[
f (x)

(b − x)α
+ α

∫ b

x

f (x) − f (y)

(y − x)α+1
dy

]
1(a,b)(x)

and the convergence of the integrals above at the singularity y = x holds point
wise for almost all x if p = 1 and in the Lp(R)-sense if p > 1. It can be shown
that the integral defined by Equation (1.115) is independent of the choice of α

(cf. Zahle (1998)). Furthermore, for αp < 1, the function fa+ ∈ Iα
a+(Lp) if and

only if f ∈ Iα
a+(Lp) and f (a+) exists.

It was pointed out earlier that fBm WH with Hurst index H has a version
with sample paths of Holder exponent H , that is, of Holder continuity of all
orders λ < H, in any finite interval [0, T ] with probability one. Holder continuity
implies existence path wise of the integral (1.115) and hence of the integral∫ t

0
f (s)dWH

s , 0 ≤ t ≤ T

with probability one for any function f defined in the interval [0, T ] such that
f0+ ∈ Iα

0+(L1(0, T )) with probability one for some α > 1−H . Note that there is
no condition where the function f has to be adapted with respect to the filtration
generated by the process WH . Let Hλ(0, T ) be the family of functions which are
Holder continuous of order λ in the interval [0, T ]. Suppose λ > 1−H . Then we
can interpret the integral as a Riemann–Stieltjes integral and use the change-of-
variable formula given below. In particular, we may define the stochastic integral
with respect to WH for functions of the form f (t) = σ(t, X(t)) for some real-
valued Lipschitz function σ(., .) and any stochastic process with sample paths in
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Hλ(0, T ) with probability one for some λ > 1−H . Since H > 1
2 , it is possible

to study SDEs of the type

dX(t) = aX(t)dt + bX(t)dWH
t , t ≥ 0 (1.116)

or equivalently

X(t) = X(0) + a

∫ t

0
X(s)ds + b

∫ t

0
X(s)dWH

s , t ≥ 0. (1.117)

It can be shown that the solution of the above SDE is

X(t) = X(0) exp[at + bWH (t)], t ≥ 0. (1.118)

Change-of-variable formula

It is known that the chain rule

dF (f (x)) = F ′(f (x))df (x)

does not hold for functions f of Holder exponent 1
2 arising as sample paths

of stochastic processes which are semimartingales. However, for functions of
Holder exponent greater than 1

2 , the classical formula remains valid in the sense
of Riemann–Stieltjes integration. The following change-of-variable formula can
be proved (cf. Zahle (1998)).

Theorem 1.27: If f ∈ Hλ(a, b) and F ∈ C1(R) is a real-valued function such
that F ′(f (.)) ∈ Hµ(a, b) for some λ + µ> 1, then, for any y ∈ (a, b),

F(f (y)) − F(f (a)) =
∫ y

a

F ′(f (x))df (x). (1.119)

Remarks: The conditions in Theorem 1.27 will be satisfied if f ∈ Hλ(a, b) for
some λ > 1

2 and F ∈ C1(R) with Lipschitzian derivative.

Theorem 1.27 can be extended to a more general version in the following way.

Theorem 1.28: Suppose f ∈ Hλ(a, b), F ∈ C1(R × (a, b)) and F ′
1(f (.), .) ∈

Hµ(a, b), λ + µ> 1. Then

F(f (y), y) − F(f (a), a) =
∫ y

a

F ′
1(f (x), x)df (x) +

∫ y

a

F ′
2(f (x), x)df (x)

(1.120)

where F ′
1 and F ′

2 are the partial derivatives of f with respect to the first and
second variable respectively.
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As an example, suppose that f ∈ Hλ(a, b) for some λ> 1
2 and F(u) = u2. Then∫ y

a

f (x)df (x) = 1

2
(f 2(y) − f 2(a)).

As an application of the change-of-variable formula, it follows that∫ y

x

WH
t dWH

t = 1

2
[(WH

y )2 − (WH
x )2], 0 ≤ x ≤ y < ∞

with probability one provided H > 1
2 .





2

Parametric estimation for
fractional diffusion processes

2.1 Introduction

Statistical inference for diffusion-type processes satisfying SDEs driven by
Wiener processes was studied earlier and a comprehensive survey of various
methods is given in Prakasa Rao (1999a). There has been some recent interest
in studying similar problems for stochastic processes driven by fBm.

2.2 SDEs and local asymptotic normality

One of the basic tools in the study of asymptotic theory of statistical inference
is the concept of local asymptotic normality. Several important properties of
estimators of parameters involved in such processes follow as a consequence of
the local asymptotic normality of the family of probability measures generated
by the processes. Consider the SDE

dXt = S(θ, t, Xt )dt + εdWH
t , X0 = x0, 0 ≤ t ≤ T (2.1)

where x0 ∈ R, ε ∈ (0, 1), S(θ, t, x) : Rd × [0, T ] × R → R is a non random
function of the drift, θ ∈ � ⊂ Rd is an unknown parameter and WH = {WH

t , 0 ≤
t ≤ T } is fBm with Hurst index H ∈ ( 1

2 , 1). Equation (2.1) models a dynamical
system with small noise which is fBm. We will call such a process a fractional
diffusion process hereafter. Suppose the process {Xt, 0 ≤ t ≤ T } is observed over
an interval [0, T ]. The problem of interest is the estimation of the parameter θ

Statistical Inference for Fractional Diffusion Processes B. L. S. Prakasa Rao
 2010 John Wiley & Sons, Ltd
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based on the observation or the data {Xt, 0 ≤ t ≤ T }. The problem of estimation
of the Hurst index H is also very important. However, we will assume that H

is known in the following discussion. We will discuss the problem of estimation
of the Hurst index briefly in Chapter 9. Several properties of estimators such as
maximum likelihood or Bayes estimators can be derived as a consequence of
the local asymptotic normality of the family of probability measures generated
by the processes satisfying the SDE. For the study of statistical inference for
diffusion-type processes, that is, for the case H = 1

2 , or for semimartingales, see
Prakasa Rao (1999a,b).

We now define the concept of local asymptotic normality for a family of
probability measures. Let (X ε,F ε, P ε

θ ) be a family of probability spaces and
let � ⊂ Rd be open. Let Eε = {X ε,F ε, P ε

θ , θ ∈ �} be a family of statistical
experiments and Xε be the corresponding observation. Let

dP ε
θ2

dP ε
θ1

be the Radon–Nikodym derivative of the absolutely continuous component of
the measure P ε

θ2
with respect to the measure P ε

θ1
. This is called the likelihood

ratio.

Definition: A family of probability measures {P ε
θ , θ ∈ �} is called locally

asymptotically normal at θ0 ∈ � as ε → 0, if

Zε,θ0(u) = dP ε
θ0+φεu

dP ε
θ0

= exp

[
u′�ε,θ0 − 1

2
||u||2 + ψε(u, θ0)

]
and L(�ε,θ0 |P ε

θ0
) → N(0, J ) as ε → 0 for all u ∈ Rd for some non singular

d × d matrix φε = φε(θ0), where J is the identity matrix of order d × d and the
function ψ is such that

ψε(u, θ0) → 0 in probability P ε
θ0

as ε → 0

for every u ∈ Rd .

Here L(X|P) denotes the probability law of the random vector X under the
probability measure P , N(0, J ) denotes the multivariate normal distribution with
mean zero and the covariance matrix J , and u′ denotes the transpose of the vector
u ∈ Rd .

Androshchuk (2005) gives sufficient conditions for the local asymptotic
normality of the family of probability measures {P ε

θ , θ ∈ �} generated by the
solutions of the SDE defined by (2.1) as ε → 0. Observe that P ε

θ is a probability
measure on the space C[0, T ] equipped with the uniform norm.

We will discuss the linear case in more detail in the next and the follow-
ing sections.
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2.3 Parameter estimation for linear SDEs

Le Breton (1998) studied parameter estimation and filtering in a simple linear
model driven by fBm. Kleptsyna and Le Breton (2002a) studied parameter esti-
mation problems for the fractional Ornstein–Uhlenbeck-type process discussed in
Chapter 1. This is a fractional analogue of the Ornstein–Uhlenbeck process, that
is, a continuous time first-order autoregressive process X = {Xt, t ≥ 0} which
is the solution of a one-dimensional homogeneous linear SDE driven by fBm
WH = {WH

t , t ≥ 0} with Hurst parameter H ∈ [1/2, 1). Such a process is the
unique Gaussian process satisfying the linear integral equation

Xt = θ

∫ t

0
Xsds + σWH

t , t ≥ 0. (2.2)

These authors investigate the problem of estimation of the parameters θ and σ 2

based on the observation {Xs, 0 ≤ s ≤ T } and prove that the maximum likelihood
estimator θ̂T is strongly consistent as T → ∞. We will discuss this problem in
more detail in Chapter 3.

We now discuss more general classes of stochastic processes satisfying lin-
ear SDEs driven by fBm and study the asymptotic properties of the maximum
likelihood and the Bayes estimators for parameters involved in such processes.

Let us consider the SDE

dX(t) = [a(t,X(t)) + θ b(t, X(t))] dt + σ(t) dWH
t , X(0) = 0, t ≥ 0 (2.3)

where θ ∈ � ⊂ R,W = {WH
t , t ≥ 0} is fBm with Hurst parameter H and σ(t)

is a positive non-vanishing function in [0,∞). In other words, X = {Xt, t ≥ 0}
is a stochastic process satisfying the stochastic integral equation

X(t) =
∫ t

0
[a(s, X(s)) + θ b(s, X(s))]ds +

∫ t

0
σ(s)dWH

s , t ≥ 0. (2.4)

Let

C(θ, t) = a(t, X(t)) + θ b(t, X(t)), t ≥ 0 (2.5)

and assume that the sample paths of the process {C(θ, t)/σ (t), t ≥ 0} are smooth
enough so that the process

QH,θ (t) = d

dwH
t

∫ t

0
kH (t, s)

C(θ, s)

σ (s)
ds, t ≥ 0 (2.6)

is well defined where wH
t and kH (t, s) are as defined in Chapter 1. Suppose the

sample paths of the process {QH,θ , 0 ≤ t ≤ T } belong a.s. to L2([0, T ], dwH
t ).

Define

Zt =
∫ t

0

kH (t, s)

σ (s)
dXs, t ≥ 0. (2.7)
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Then the process Z = {Zt, t ≥ 0} is an (Ft )-semimartingale with the decompo-
sition

Zt =
∫ t

0
QH,θ (s)dwH

s + MH
t (2.8)

where MH is the fundamental martingale defined in Chapter 1 and the process
X admits the representation

Xt =
∫ t

0
Kσ

H(t, s)dZs (2.9)

where the function Kσ
H is as defined by Equation (1.75) in Chapter 1. Let P T

θ be
the measure induced by the process {Xt, 0 ≤ t ≤ T } when θ is the true param-
eter. Following Theorem 1.20 in Chapter 1, we find that the Radon–Nikodym
derivative of P T

θ with respect to P T
0 is given by

dP T
θ

dP T
0

= exp

[∫ T

0
QH,θ (s)dZs − 1

2

∫ T

0
Q2

H,θ (s)dwH
s

]
. (2.10)

2.4 Maximum likelihood estimation

We now consider the problem of estimation of the parameter θ based on the obser-
vation of the process X = {Xt, 0 ≤ t ≤ T } and study its asymptotic properties
as T → ∞.

Strong consistency

Let LT (θ) denote the Radon–Nikodym derivative dP T
θ /dP T

0 . The maximum
likelihood estimator (MLE) θ̂T is defined by the relation

LT (θ̂T ) = sup
θ∈�

LT (θ). (2.11)

We assume that there exists a measurable maximum likelihood estimator. Suffi-
cient conditions can be given for the existence of such an estimator (cf. Lemma
3.1.2 in Prakasa Rao (1987)).

Note that

QH,θ (t) = d

dwH
t

∫ t

0
kH (t, s)

C(θ, s)

σ (s)
ds

= d

dwH
t

∫ t

0
kH (t, s)

a(s, X(s))

σ (s)
ds + θ

d

dwH
t

∫ t

0
kH (t, s)

b(s, X(s))

σ (s)
ds

= J1(t) + θJ2(t) (say). (2.12)
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Then

log LT (θ) =
∫ T

0
(J1(t) + θJ2(t))dZt − 1

2

∫ T

0
(J1(t) + θJ2(t))

2dwH
t (2.13)

and the likelihood equation is given by∫ T

0
J2(t)dZt −

∫ T

0
(J1(t) + θJ2(t))J2(t)dwH

t = 0. (2.14)

Hence the MLE θ̂T of θ is given by

θ̂T =
∫ T

0 J2(t)dZt − ∫ T

0 J1(t)J2(t)dwH
t∫ T

0 J 2
2 (t)dwH

t

. (2.15)

Let θ0 be the true parameter. Using the fact that

dZt = (J1(t) + θ0J2(t)) dwH
t + dMH

t , (2.16)

it can be shown that

dP T
θ

dP T
θ0

= exp

[
(θ − θ0)

∫ T

0
J2(t)dMH

t − 1

2
(θ − θ0)

2
∫ T

0
J 2

2 (t)dwH
t

]
. (2.17)

Following this representation of the Radon–Nikodym derivative, we obtain that

θ̂T − θ0 =
∫ T

0 J2(t)dMH
t∫ T

0 J 2
2 (t) dwH

t

. (2.18)

Note that the quadratic variation 〈Z〉 of the process Z is the same as the quadratic
variation 〈MH 〉 of the martingale MH which in turn is equal to wH . This follows
from the relations (1.79) and (1.73) in Chapter 1. Hence we obtain that

[wH
T ]−1 lim

n

∑
[Z

t
(n)
i+1

− Z
t
(n)
i

]2 = 1 a.s. [Pθ0 ]

where

0 = t
(n)
0 < t

(n)
1 < · · · < t

(n)
n−1 = T

is a partition of the interval [0, T ] such that

sup
0≤i≤n−1

|t (n)
i+1 − t

(n)
i | → 0

as n → ∞. If the function σ(.) is an unknown constant σ , the above property can
be used to obtain a strongly consistent estimator of σ 2 based on the continuous
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observation of the process X over the interval [0, T ]. Hereafter we assume that
the non random function σ(t) is known.

We now discuss the problem of estimation of the parameter θ on the basis of
the observation of the process X or equivalently of the process Z in the interval
[0, T ].

Strong consistency

Theorem 2.1: The MLE θ̂T is strongly consistent, that is,

θ̂T → θ0 a.s. [Pθ0 ] as T → ∞ (2.19)

provided ∫ T

0
J 2

2 (t)dwH
t → ∞ a.s. [Pθ0 ] as T → ∞. (2.20)

Proof: This theorem follows by observing that the process

RT ≡
∫ T

0
J2(t)dMH

t , t ≥ 0 (2.21)

is a local martingale with the quadratic variation process

〈R〉T =
∫ T

0
J 2

2 (t)dwH
t (2.22)

and applying the strong law of large numbers (cf. Liptser (1980), Prakasa Rao
(1999b), p. 61) under the condition (2.20) stated above.

Remarks: For the case of the fractional Ornstein–Uhlenbeck-type process inves-
tigated in Kleptsyna and Le Breton (2002a), it can be checked that the condition
stated in Equation (2.20) holds and hence the MLE θ̂T is strongly consistent as
T → ∞.

Limiting distribution

We now discuss the limiting distribution of the MLE θ̂T as T → ∞.

Theorem 2.2: Assume that the functions b(t, s) and σ(t) are such that the pro-
cess {Rt, t ≥ 0} is a local continuous martingale and that there exists a norming
function It , t ≥ 0, such that

I 2
T 〈R〉T = I 2

T

∫ T

0
J 2

2 (t)dwH
t → η2 in probability as T → ∞ (2.23)
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where IT → 0 a.s. as T → ∞ and η is a random variable such that P(η > 0) = 1.
Then

(IT RT , I 2
T 〈R〉T ) → (ηZ, η2) in law as T → ∞ (2.24)

where the random variable Z has the standard normal distribution and the random
variables Z and η are independent.

Proof: This theorem follows as a consequence of the central limit theorem for
local martingales (cf. Theorem 1.49 and Remark 1.47 in Prakasa Rao (1999b),
p. 65).

Observe that

I−1
T (θ̂T − θ0) = IT RT

I 2
T 〈RT 〉 . (2.25)

Applying Theorem 2.2, we obtain the following result.

Theorem 2.3: Suppose the conditions stated in Theorem 2.2 hold. Then

I−1
T (θ̂T − θ0) → Z

η
in law as t → ∞ (2.26)

where the random variable Z has the standard normal distribution and the random
variables Z and η are independent.

Remarks: If the random variable η is a constant with probability one, then the
limiting distribution of the MLE is normal with mean zero and variance η−2.
Otherwise it is a mixture of the normal distribution with mean zero and variance
η−2 with the mixing distribution as that of η.

2.5 Bayes estimation

Suppose that the parameter space � is open and  is a prior probability measure
on the parameter space �. Further suppose that  has the density λ(.) with respect
to the Lebesgue measure and the density function is continuous and positive in
an open neighborhood of θ0, the true parameter. Let

αT ≡ IT RT = IT

∫ T

0
J2(t)dMH

t (2.27)

and

βT ≡ I 2
T 〈R〉T = I 2

T

∫ T

0
J 2

2 (t)dwH
t . (2.28)
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We saw earlier that the MLE satisfies the relation

αT = (θ̂T − θ0)I
−1
T βT . (2.29)

The posterior density of θ based on the observation XT ≡ {Xs, 0 ≤ s ≤ T } is
given by

p(θ |XT ) = dP T
θ

dP T
θ0

λ(θ)

/∫
�

dP T
θ

dP T
θ0

λ(θ)dθ. (2.30)

Let t = I−1
T (θ−θ̂T ) and define

p∗(t |XT ) = IT p(θ̂T + tIT |XT ). (2.31)

Then the function p∗(t |XT ) is the posterior density of the transformed variable
t = I−1

T (θ−θ̂T ). Let

νT (t) ≡ dPθ̂T +tIT
/dPθ0

dPθ̂T
/dPθ0

= dPθ̂T +tIT

dPθ̂T

a.s. (2.32)

and

CT =
∫ ∞

−∞
νT (t)λ(θ̂T + tIT )dt. (2.33)

It can be checked that

p∗(t |XT ) = C−1
T νT (t)λ(θ̂T + tIT ). (2.34)

Furthermore, Equations (2.25) and (2.29)–(2.34) imply that

log νT (t) = I−1
T αT [(θ̂T + tIT − θ0) − (θ̂T − θ0)]

−1

2
I−2
T βT [(θ̂T + tIT − θ0)

2 − (θ̂T − θ0)
2]

= tαT − 1

2
t2βT − tβT I−1

T (θ̂T − θ0)

= −1

2
βT t2 (2.35)

in view of Equation (2.29).
Suppose that the convergence of the condition in Equation (2.23) holds a.s.

under the measure Pθ0 and the limit is a constant η2 > 0 with probability one.
For convenience, we write β = η2. Then

βT → β a.s. [Pθ0 ] as T → ∞. (2.36)
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It is obvious that

lim
T →∞

νT (t) = exp

[
−1

2
βt2
]

a.s. [Pθ0 ] (2.37)

and, for any 0 < ε < β,

log νT (t) ≤ −1

2
t2(β − ε) (2.38)

for every t for T sufficiently large. Furthermore, for every δ > 0, there exists
ε′ > 0 such that

sup
|t | > δI−1

T

νT (t) ≤ exp

[
−1

4
ε′I−2

T

]
(2.39)

for T sufficiently large.
Suppose H(t) is a nonnegative measurable function such that, for some

0 < ε < β, ∫ ∞

−∞
H(t) exp

[
−1

2
t2(β − ε)

]
dt < ∞. (2.40)

Suppose the MLE θ̂T is strongly consistent, that is,

θ̂T → θ0 a.s. [Pθ0 ] as T → ∞. (2.41)

For any δ > 0, consider∫
|t |≤δI−1

T

H(t)

∣∣∣∣νT (t)λ(θ̂T + tIT ) − λ(θ0) exp

(
−1

2
βt2
)∣∣∣∣ dt

≤
∫

|t |≤δI−1
T

H(t)λ(θ0)

∣∣∣∣νT (t) − exp

(
−1

2
βt2
)∣∣∣∣ dt

+
∫

|t |≤δI−1
T

H(t)νT (t)|λ(θ0) − λ(θ̂T + tIT )| dt

= AT + BT (say). (2.42)

It is clear that, for any δ > 0,

AT → 0 a.s. [Pθ0 ] as T → ∞ (2.43)

by the dominated convergence theorem in view of the inequality in (2.38),
Equation (2.37) and the condition in Equation (2.40). On the other hand, for
T sufficiently large,

0 ≤ BT ≤ sup
|θ−θ0|≤δ

|λ(θ) − λ(θ0)|
∫

|t |≤δI−1
T

H(t) exp

[
−1

2
t2(β − ε)

]
dt (2.44)
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since θ̂T is strongly consistent and I−1
T → ∞ a.s. as T → ∞. The last term on

the right of the above inequality can be made smaller than any given ρ > 0 by
choosing δ sufficiently small in view of the continuity of λ(.) at θ0. Combining
these remarks with Equations (2.43) and (2.44), we obtain the following lemma.

Lemma 2.4: Suppose conditions (2.36), (2.40) and (2.41) hold. Then there exists
δ > 0 such that

lim
T →∞

∫
|t |≤δI−1

T

H(t)

∣∣∣∣νT (t)λ(θ̂T + tIT ) − λ(θ0) exp

(
−1

2
βt2
)∣∣∣∣ dt = 0. (2.45)

For any δ > 0, consider∫
|t |>δI−1

T

H(t)

∣∣∣∣νT (t)λ(θ̂T + tIT ) − λ(θ0) exp

(
−1

2
βt2
)∣∣∣∣ dt

≤
∫

|t |>δI−1
T

H(t)νT (t)λ(θ̂T + tIT ) dt +
∫

|t |>δI−1
T

H(t)λ(θ0) exp

(
−1

2
βt2
)

dt

≤ exp

(
−1

4
ε′I−2

T

)∫
|t |>δI−1

T

H(t)λ(θ̂T + tIT ) dt

+ λ(θ0)

∫
|t |>δI−1

T

H(t) exp

(
−1

2
βt2
)

dt

= UT + VT (say). (2.46)

Suppose the following condition holds for every ε > 0 and δ > 0:

exp(−εI−2
T )

∫
|u|>δ

H(uI−1
T )λ(θ̂T + u)du → 0 a.s. [Pθ0 ] as T → ∞. (2.47)

It is clear that, for every δ > 0,

VT → 0 a.s. [Pθ0 ] as T → ∞ (2.48)

in view of the condition stated in (2.40) and the fact that I−1
T → ∞ a.s. [Pθ0 ] as

T → ∞. The condition stated in (2.47) implies that

UT → 0 a.s. [Pθ0 ] as T → ∞ (2.49)

for every δ > 0. Hence we have the following lemma.

Lemma 2.5: Suppose that conditions (2.36), (2.40) and (2.41) hold. Then for
every δ > 0,

lim
T →∞

∫
|t | > δI−1

T

H(t)

∣∣∣∣νT (t)λ(θ̂T + tIT ) − λ(θ0) exp

(
−1

2
βt2
)∣∣∣∣ dt = 0. (2.50)
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Lemmas 2.4 and 2.5 together prove that

lim
T →∞

∫
|t | > δI−1

T

H(t)

∣∣∣∣νT (t)λ(θ̂T + tIT ) − λ(θ0) exp

(
−1

2
βt2
)∣∣∣∣ dt = 0. (2.51)

Let H(t) ≡ 1 in (2.51). Note that

CT ≡
∫ ∞

−∞
νT (t)λ(θ̂T + tIT )dt.

Relation (2.51) implies that

CT → λ(θ0)

∫ ∞

−∞
exp

(
−1

2
βt2
)

dt = λ(θ0)

(
β

2π

)−1/2

a.s. [Pθ0 ] (2.52)

as T → ∞. Furthermore,∫ ∞

−∞
H(t)

∣∣∣∣∣p∗(t |XT ) −
(

β

2π

)1/2

exp

(
−1

2
βt2
)∣∣∣∣∣ dt

≤ C−1
T

∫ ∞

−∞
H(t)

∣∣∣∣νT (t)λ(θ̂T + tIT ) − λ(θ0) exp

(
−1

2
βt2
)∣∣∣∣ dt

+
∫ ∞

−∞
H(t)

∣∣∣∣∣C−1
T λ(θ0) −

(
β

2π

)1/2
∣∣∣∣∣ exp

(
−1

2
βt2
)

dt. (2.53)

The last two terms tend to zero a.s. [Pθ0 ] by Equations (2.51) and (2.52). Hence
we have the following theorem which is an analogue of the Bernstein–von Mises
theorem proved in Prakasa Rao (1981) for a class of processes satisfying a linear
SDE driven by the standard Wiener process.

Theorem 2.6: Let the assumptions (2.36), (2.40), (2.41) and (2.47) hold where
λ(.) is a prior density which is continuous and positive in an open neighborhood
of θ0, the true parameter. Then

lim
T →∞

∫ ∞

−∞
H(t)

∣∣∣∣∣p∗(t |XT ) −
(

β

2π

)1/2

exp

(
−1

2
βt2
)∣∣∣∣∣ dt = 0 a.s. [Pθ0 ].

(2.54)
As a consequence of the above theorem, we obtain the following result by choos-
ing H(t) = |t |m, for any integer m ≥ 0.

Theorem 2.7: Assume that the following conditions hold:

(C1) θ̂T → θ0 a.s. [Pθ0 ] as T → ∞, (2.55)

(C2) βT → β > 0 a.s. [Pθ0 ] as T → ∞. (2.56)
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Further suppose that (C3) λ(.) is a prior probability density on � which is
continuous and positive in an open neighborhood of θ0, the true parameter and

(C4)

∫ ∞

−∞
|θ |mλ(θ)dθ < ∞ (2.57)

for some integer m ≥ 0. Then

lim
T →∞

∫ ∞

−∞
|t |m

∣∣∣∣∣p∗(t |XT ) −
(

β

2π

)1/2

exp

(
−1

2
βt2
)∣∣∣∣∣ dt = 0 a.s. [Pθ0 ].

(2.58)
In particular, choosing m = 0, we obtain that

lim
T →∞

∫ ∞

−∞

∣∣∣∣∣p∗(t|XT ) −
(

β

2π

)1/2

exp

(
−1

2
βt2
)∣∣∣∣∣ dt = 0 a.s. [Pθ0 ] (2.59)

whenever the conditions (C1), (C2) and (C3) hold. This is the analogue of the
Bernstein–von Mises theorem for a class of diffusion processes proved in Prakasa
Rao (1981) and it shows the asymptotic convergence in L1-mean of the posterior
density to the probability density function of a normal distribution with mean
zero and suitable variance.

As a corollary to Theorem 2.7, we also obtain that the conditional expecta-
tion, under Pθ0 , of [I−1

T (θ̂T −θ)]m converges to the corresponding mth absolute
moment of the normal distribution with mean zero and variance β−1.

We define a regular Bayes estimator of θ , corresponding to a prior probability
density λ(θ) and the loss function L(θ, φ), based on the observation XT , as an
estimator which minimizes the posterior risk

BT (φ) ≡
∫ ∞

−∞
L(θ, φ)p(θ |XT )dθ (2.60)

over all estimators φ of θ . Here L(θ, φ) is a loss function defined on � × �.
Suppose there exists a measurable regular Bayes estimator θ̃T for the param-

eter θ (cf. Theorem 3.1.3 in Prakasa Rao (1987)). Suppose that the loss function
L(θ, φ) satisfies the following conditions:

L(θ, φ) = �(|θ − φ|) ≥ 0 (2.61)

and the function �(t) is nondecreasing for t ≥ 0. An example of such a loss
function is L(θ, φ) = |θ−φ|. Suppose there exist nonnegative functions J (t),
K(t) and G(t) such that

(D1) J (t)�(tIT ) ≤ G(t) for all T ≥ 0, (2.62)
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(D2) J (t)�(tIT ) → K(t) as T → ∞ (2.63)

uniformly on bounded intervals of t . Further suppose that the function

(D3)

∫ ∞

−∞
K(t + h) exp

(
−1

2
βt2
)

dt (2.64)

has a strict minimum at h = 0, and (D4) the function G(t) satisfies conditions
similar to those in (2.40) and (2.47). Then we have the following result giving
the asymptotic properties of the Bayes risk of the estimator θ̃T .

Theorem 2.8: Suppose the conditions (C1) to (C3) in Theorem 2.7 and the
conditions (D1) to (D4) stated above hold. Then

I−1
T (θ̃T − θ̂T ) → 0 a.s. [Pθ0 ] as T → ∞ (2.65)

and

lim
T →∞

R(T )BT (θ̃T ) = lim
T →∞

R(T )BT (θ̂T )

=
(

β

2π

)1/2 ∫ ∞

−∞
K(t) exp

(
−1

2
βt2
)

dt a.s. [Pθ0 ].

(2.66)
We omit the proof of this theorem as it is similar to the proof of Theorem 4.1 in
Borwanker et al . (1971).

We observed earlier that

I−1
T (θ̂T − θ0) → N(0, β−1) in law as T → ∞. (2.67)

As a consequence of Theorem 2.8, we obtain that

θ̃T → θ0 a.s. [Pθ0 ] as T → ∞ (2.68)

and

I−1
T (θ̃T − θ0) → N(0, β−1) in law as T → ∞. (2.69)

In other words, the Bayes estimator is asymptotically normal and has asymp-
totically the same distribution as the MLE. The asymptotic Bayes risk of the
estimator is given by Theorem 2.8. The results discussed in this section are due
to Prakasa Rao (2003).
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2.6 Berry–Esseen-type bound for MLE

Hereafter we assume that the random variable η in (2.23) is a positive constant
with probability one. Hence

I−1
T (θ̂T − θ0) → N(0, η−2) in law as T → ∞ (2.70)

where N(0, η−2) denotes the Gaussian distribution with mean zero and variance
η−2.

We will now study the rate of convergence of the asymptotic distribution of
the MLE θ̂T . The result studied here is from Prakasa Rao (2005a).

Suppose there exist non random positive functions αT decreasing to zero and
εT decreasing to zero such that

α−1
T ε2

T → ∞ as T → ∞, (2.71)

and

sup
θ∈�

P T
θ [|αT 〈R〉T − 1| ≥ εT ] = O(ε

1/2
T ) (2.72)

where the process {Rt, t ≥ 0} is as defined in (2.21). Note that the process
{Rt, t ≥ 0} is a locally square integrable continuous martingale. From the results
on the representation of locally square integrable continuous martingales (cf.
Ikeda and Watanabe (1981), Chapter II, Theorem 7.2), it follows that there
exists a standard Wiener process {W̃ (t), t ≥ 0} adapted to (Ft ) such that Rt =
W̃ (〈R〉t ), t ≥ 0. In particular

RT α
1/2
T = W̃ (〈R〉T αT ) a.s. [P ] (2.73)

for all T ≥ 0.

We use the following lemmas in the sequel.

Lemma 2.9: Let (�,F, P ) be a probability space and f and g be F-measurable
functions. Further suppose that g ≥ 0. Then, for any ε > 0,

sup
x

∣∣∣∣P (ω :
f (ω)

g(ω)
≤ x

)
− �(x)

∣∣∣∣ ≤ sup
y

|P(ω : f (ω) ≤ y) − �(y)|

+P(ω : |g(ω) − 1|>ε) + ε (2.74)

where �(.) is the distribution function of the standard Gaussian distribution.

Proof: See Michel and Pfanzagl (1971).

Lemma 2.10: Let {W(t), t ≥ 0} be a standard Wiener process and V be a non-
negative random variable. Then, for every x ∈ R and ε > 0,

|P(W(V ) ≤ x) − �(x)| ≤ (2ε)1/2 + P(|V − 1|> ε). (2.75)
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Proof: See Hall and Heyde (1980), p. 85.

Let us fix θ ∈ �. It is clear from the earlier remarks that

RT = 〈R〉T (θ̂T − θ) (2.76)

under P T
θ measure. Then it follows from Lemmas 2.9 and 2.10 that

|P T
θ [α−1/2

T (θ̂T − θ) ≤ x] − �(x)|

=
∣∣∣∣P T

θ

[
RT

〈R〉T α
−1/2
T ≤ x

]
− �(x)

∣∣∣∣
=
∣∣∣∣∣P T

θ

[
RT /α

−1/2
T

〈R〉T /α−1
T

≤ x

]
− �(x)

∣∣∣∣∣
≤ sup

x

|P T
θ [RT α

1/2
T ≤ x] − �(x)| + P T

θ [|αT 〈R〉T − 1| ≥ εT ] + εT

= sup
y

|P(W̃ (〈R〉T αT ) ≤ y) − �(y)| + P T
θ [|αT 〈R〉T − 1| ≥ εT ] + εT

≤ (2εT )1/2 + 2P T
θ [|αT 〈R〉T − 1| ≥ εT ] + εT . (2.77)

It can be checked that the bound obtained above is of the order O(ε
1/2
T ) under

the condition (2.72) and it is uniform in θ ∈ �. Hence we have the following
result.

Theorem 2.11: Under conditions (2.71) and (2.72),

sup
θ∈�

sup
x∈R

|P T
θ [α−1/2

T (θ̂T − θ) ≤ x] − �(x)|

≤ (2εT )1/2 + 2P T
θ [|αT 〈R〉T − 1| ≥ εT ] + εT = O(ε

1/2
T ). (2.78)

As a consequence of this result, we have the following theorem giving the rate
of convergence of the MLE θ̂T .

Theorem 2.12: Suppose conditions (2.71) and (2.72) hold. Then there exists a
constant c > 0 such that for every d > 0,

sup
θ∈�

P T
θ [|θ̂T − θ | ≥ d] ≤ cε

1/2
T + 2P T

θ [|αT 〈R〉T − 1| ≥ εT ] = O(ε
1/2
T ). (2.79)

Proof: Observe that

sup
θ∈�

P T
θ [|θ̂T − θ | ≥ d]

≤ sup
θ∈�

|P T
θ [α−1/2

T (θ̂T − θ) ≥ dα
−1/2
T ] − 2(1 − �(dα

−1/2
T ))|
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+2(1 − �(dα
−1/2
T ))

≤ (2εT )1/2 + 2 sup
θ∈�

P T
θ [|αT 〈R〉T − 1| ≥ εT ] + εT

+2d−1/2α
1/2
T (2π)−1/2 exp

(
−1

2
α−1

T d2
)

(2.80)

by Theorem 2.11 and the inequality

1 − �(x) <
1

x
√

2π
exp

(
−1

2
x2
)

(2.81)

for all x > 0 (cf. Feller (1968), p. 175). Since

α−1
T ε2

T → ∞ as T → ∞,

by condition (2.71), it follows that

sup
θ∈�

P T
θ [|θ̂T − θ | ≥ d] ≤ cε

1/2
T + 2 sup

θ∈�

P T
θ [|αT 〈R〉T − 1| ≥ εT ] (2.82)

for some constant c > 0 and the last term is of the order O(ε
1/2
T ) by condition

(2.72). This proves Theorem 2.12.

2.7 ε-upper and lower functions for MLE

Hereafter we assume that the non random function σ(t) in (2.3) is a known
constant σ . Without loss of generality, we assume that σ = 1.

Let

Rt ≡
∫ T

0
J2(t)dMH

t , t ≥ 0. (2.83)

The process {Rt, t ≥ 0} is a continuous local martingale with the quadratic vari-
ation process

〈R〉T =
∫ T

0
J 2

2 (t)dwH
t ≡ IT (θ0) (say). (2.84)

Assume that there exist non-random positive functions AT ↑ ∞ and εT ↓ 0 as
T → ∞ such that:

(A1) AT ε2
T → ∞;

(A2) lim
T →∞

IT (θ0)

AT

= 1 a.s. [Pθ0 ];
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(A3) P T
θ0

[∣∣∣∣IT (θ0)

AT

− 1

∣∣∣∣ ≥ εT

]
= O(ε

1/2
T );

(A4)
∫ ∞

3

log log AT

AT

ε
1/2
T dT < ∞.

From the results on the representation of locally continuous square integrable
martingales (cf. Ikeda and Watanabe (1981), Chapter II, Theorem 7.2), it follows
that there exists a standard Wiener process {W ∗(t), t ≥ 0} adapted to the filtration
{Ft , t ≥ 0} such that

Rt = W ∗(It (θ0)), t ≥ 0 a.s. [Pθ0 ].

Observe that

(θ̂T − θ0) = RT

IT (θ0)

and hence

A
1/2
T (θ̂T − θ0) = W ∗

T (IT (θ0))/A
1/2
T

IT (θ0)/AT

a.s. [Pθ0 ]. (2.85)

Theorem 2.13: Suppose conditions (A1) and(A3) hold. Then

sup
x

|P T
θ0

(A
1/2
T (θ̂T − θ0) ≤ x) − �(x)|

≤
√

2εT + 2P T
θ0

[∣∣∣∣IT (θ0)

AT

− 1

∣∣∣∣ ≥ εT

]
+ εT = O(ε

1/2
T ) (2.86)

where �(.) is the standard normal distribution function.

This theorem is a slight variant of Theorem 2.12 and is due to Prakasa Rao
(2005a).

Let h(t) be a nonnegative, nondecreasing function converging to infinity as
t → ∞. The function h(t) is said to belong to the ε-upper class of a stochastic
process {Y (t), t ≥ 0}, if

P(Y (t) >(1 + ε)h(t) infinitely often as t → ∞) = 0.

The function h(t) is said to belong to the lower class of a stochastic process
{Y (t), t ≥ 0}, if

P(Y (t) >h(t) infinitely often as t → ∞) = 1.

We now study ε-upper and lower class functions for a normalized process
obtained by taking the difference between the MLE of the trend parameter and
the true trend parameter for linear SDEs driven by fBm. The results in this section
are due to Mishra and Prakasa Rao (2008).
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Theorem 2.14: Suppose conditions (A1), (A3) and (A4) hold. Let h(.) be a
nonnegative, nondecreasing function converging to infinity as t → ∞. Then the
integrals ∫ ∞

3

log log AT

AT

P T
θ0

[A1/2
T (θ̂T − θ0) >h(AT )]dT

and ∫ ∞

3

log log AT

AT h(AT )
exp(−h2(AT )/2)dT

are either both convergent or both divergent.

Theorem 2.15: Suppose conditions (A1), (A3) and (A4) hold. Let h(.) be
a nonnegative, nondecreasing function converging to infinity as t → ∞. Let
0 < ε < 1. Then

P T
θ0

[A1/2
T (θ̂T − θ0) >(1 + ε)h(AT ) infinitely often as T → ∞] = 0

if the integral

K(h) ≡
∫ ∞

3

h(AT )

AT

exp(−h2(AT )/2)dT

is convergent and

P T
θ0

[A1/2
T (θ̂T − θ0) >h(AT ) infinitely often as T → ∞] = 1

if the integral K(h) is divergent.

Theorem 2.16: Suppose conditions (A1), (A3) and (A4) hold. Let h(.) be a
nonnegative, nondecreasing function converging to infinity as t → ∞. Let C ≥ 0.
Then the function h(.) belongs to the ε-upper or lower class of the process
{A1/2

T (θ̂T −θ0), T ≥ 0} according as the integral∫ ∞

3

log log AT

AT h(AT )
exp(−h2(AT )/2)

(
1 + C

log log AT

)
dT

is convergent or divergent.

We use the following lemmas to prove Theorems 2.14 to 2.16.

Lemma 2.17: Let h(.) be a nonnegative, nondecreasing function converging to
infinity as t → ∞. Let C ≥ 0. Then the integrals∫ ∞

3

h(AT )

AT

exp(−h2(AT )/2)dT
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and ∫ ∞

3

log log AT

AT h(AT )
exp(−h2(AT )/2)

(
1 + C

log log AT

)
dT

are either both convergent or both divergent.

The above lemma is a continuous version of a lemma proved in Davis (1969).

Lemma 2.18: Let J denote a class of functions h(.) which are continuous,
nondecreasing and converging to infinity as t → ∞. Let g(.) be a non-increasing
function from [1, ∞) to [0,∞) and f (.) be a measurable function from [1,∞)

to [0, ∞). For h(.) ∈ J, define F(h) = ∫∞
1 g(h(t))f (t) dt which may be finite

or infinite. Assume that:

(a1) for every h ∈ J, and A> 1,∫ A

1
g(h(t))f (t)dt < ∞;

(a2) there exists h1 ∈ J and h2 ∈ J such that h1 ≤ h2, F (h1) = ∞,

F (h2) < ∞ and

lim
A→∞

g(h1(A))

∫ A

1
f (t)dt = ∞.

Define ĥ = min[max(h, h1), h2]. Then, for h ∈ J ,

(i) F (h) < ∞ ⇒ ĥ ≤ h near infinity and F(ĥ)∞
and

(ii) F (h) = ∞ ⇒ F(ĥ) = ∞.

For the proof of Lemma 2.18, see Lemma 2.3 in Jain et al . (1975). Observe
that h1 ≤ ĥ ≤ h2. This lemma allows us to consider only those functions h ∈ J

which satisfy the condition h1 ≤ h ≤ h2 for proving the ε-upper and lower class
results in Theorem 2.15.

Remarks: Applying Lemma 2.17 and using Theorem 2.15, we find that the
integrals ∫ ∞

3

log log AT

AT h(AT )
exp(−h2(AT )/2)dT

and ∫ ∞

3

log log AT

AT h(AT )
exp(−h2(AT )/2)

(
1 + C

log log AT

)
dT
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are either both convergent or both divergent according as the function h(T )

belongs to the ε-upper class or lower class of the process {A1/2
T (θ̂T −θ0), T ≥ 0}.

We now prove Theorems 2.14–2.16.

Proof of Theorem 2.14: Let h(.) be a nonnegative, nondecreasing function con-
verging to infinity as t → ∞. Applying Theorem 2.13, we get

|P T
θ0

(A
1/2
T (θ̂T − θ0) >h(AT )) − (1 − �(h(AT ))| = O(ε

1/2
T ). (2.87)

In view of condition (A4),∫ ∞

3
(log log AT )A−1

T |P T
θ0

(A
1/2
T (θ̂T − θ0) >h(AT )) − (1 − �(h(AT )))|dT < ∞.

(2.88)
Applying the inequality(

1

x
− 1

x3

)
1√
2π

exp(−x2/2) ≤ 1 − �(x) ≤ 1

x

1√
2π

exp(−x2/2)

for x > 0 (cf. Feller (1968), p. 175), we get∫ ∞

3
(log log AT )A−1

T

∣∣∣∣P T
θ0

(A
1/2
T (θ̂T − θ0) >h(AT ))

− 1√
2π

h−1(AT ) exp

(
−h2(AT )

2

)∣∣∣∣ dT < ∞. (2.89)

This proves Theorem 2.14.

Proof of Theorem 2.15: We have seen, from Equation (2.85), that

A
1/2
T (θ̂T − θ0) = W ∗(IT (θ0))/A

1/2
T

IT (θ0)/AT

a.s. [Pθ0 ]

and hence

A
1/2
T (θ̂T − θ0)√
log log AT

=
{

W ∗(IT (θ0))√
2IT (θ0) log log IT (θ0)

×
√

2
√

2IT (θ0) log log IT (θ0)√
2AT log log AT

}/
IT (θ0)

AT

a.s. [Pθ0 ]

This relation in turn shows that

lim
T →∞

A
1/2
T (θ̂T − θ0)√
log log AT

−
√

2W ∗(AT )√
2AT log log AT

= 0 a.s. [Pθ0 ] (2.90)
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by using condition (A2) and from the law of iterated logarithm for the Wiener
process which shows that

lim
T →∞

W ∗(IT (θ0))√
2IT (θ0) log log IT (θ0)

= 1 a.s. [Pθ0 ]

and

lim
T →∞

W ∗(AT )√
2AT log log AT

= 1 a.s. [Pθ0 ]

(cf. Kulinich (1985), p. 564). In view of Equation (2.90), it follows that∣∣∣∣∣A1/2
T (θ̂T − θ0) − W ∗(AT )

A
1/2
T

∣∣∣∣∣ < ε
√

log log AT a.s. [Pθ0 ] (2.91)

as T → ∞. Let h1(t) = √log log t and h2(t) = 2
√

log log t . Suppose that

h1(AT ) ≤ h(AT ) ≤ h2(AT ) (2.92)

for T sufficiently large. We will prove the theorem under the above assumption
at first and then extend the result for any arbitrary nonnegative, nondecreasing
function h(t) converging to infinity as t → ∞ using Lemma 2.18. In view of the
inequality (2.91), we get that

W ∗(AT )

A
1/2
T

− ε
√

log log AT < A
1/2
T (θ̂T − θ0) <

W ∗(AT )

A
1/2
T

+ ε
√

log log AT (2.93)

a.s. [Pθ0 ] as T → ∞. Then

0 ≤ Pθ0 [A1/2
T (θ̂T − θ0) >(1 + ε)h(AT ) infinitely often as T → ∞]

≤ Pθ0

[
W ∗(AT )

A
1/2
T

+ εh1(AT ) >(1 + ε)h(AT ) infinitely often as T → ∞
]

= Pθ0

[
W ∗(AT )

A
1/2
T

>(1 + ε)h(AT ) − εh1(AT ) infinitely often as T → ∞
]

≤ Pθ0

[
W ∗(AT )

A
1/2
T

>h(AT ) infinitely often as T → ∞
]

= 0 (2.94)

by Kolmogorov’s test for the Wiener process (cf. Ito and McKean (1965), p. 163)
since the function h(AT ) is nondecreasing in T and since K(h) < ∞. Equation
(2.94) shows that

Pθ0 [A1/2
T (θ̂T − θ0) >(1 + ε)h(AT ) infinitely often as T → ∞] = 0
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which proves that the function h(AT ) belongs to the ε-upper class of the process
A

1/2
T (θ̂T − θ0) for every 0 < ε < 1. On the other hand, it follows, again from

(2.92), that

1 ≥ Pθ0 [A1/2
T (θ̂T − θ0) >h(AT ) infinitely often as T → ∞]

≥ Pθ0

[
W ∗(AT )

A
1/2
T

− εh1(AT ) >h(AT ) infinitely often as T → ∞
]

≥ Pθ0

[
W ∗(AT )

A
1/2
T

>h(AT ) + εh1(AT ) infinitely often as T → ∞
]

≥ Pθ0

[
W ∗(AT )

A
1/2
T

>h(AT ) infinitely often as T → ∞
]

. (2.95)

Furthermore, the function h(AT ) is nondecreasing in T . Hence, if K(h) = ∞,
then

Pθ0

[
W ∗(AT )

A
1/2
T

>h(AT ) infinitely often as T → ∞
]

= 1

which in turn shows that

Pθ0 [A1/2
T (θ̂T − θ0) >h(AT ) infinitely often as T → ∞] = 1.

Therefore the function h(AT ) belongs to the lower class of the process
A

1/2
T (θ̂T −θ0) for every 0 < ε < 1. Our arguments are similar to those in Jain

et al . (1975), p. 130. We now extend the result for arbitrary nondecreasing
function h(AT ) converging to infinity as T → ∞. Let h(AT ) be such a function.
Define ĥ(AT ) = min(max(h(At ), h1(AT )), h2(AT )), where h1(t) and h2(t) are
functions as defined earlier. In view of Lemma 2.18, it follows that

K(h) < ∞ ⇒ K(ĥ) < ∞ and ĥ ≤ h near infinity.

Suppose K(h) < ∞. Then K(ĥ) < ∞ and it follows that

Pθ0 [A1/2
T (θ̂T − θ0) >(1 + ε)ĥ(AT ) infinitely often as T → ∞] = 0.

But ĥ(AT ) ≤ h(AT ) near infinity as observed above. Hence

Pθ0 [A1/2
T (θ̂T −θ0) >(1 + ε)h(AT ) infinitely often as T → ∞] = 0.
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On the other hand, suppose that K(h) = ∞. Then, again by Lemma 2.18, we
note that K(h) = ∞ ⇒ K(ĥ) = ∞ and

Pθ0 [A1/2
T (θ̂T − θ0) > ĥ(AT ) infinitely often as T → ∞] = 1. (2.96)

Since K(h2) < ∞, it follows that

Pθ0 [A1/2
T (θ̂T − θ0) ≤ (1 + ε)h2(AT ) for large T ] = 1. (2.97)

Relations (2.96) and (2.97) imply that ĥ(AT ) ≤ (1 + ε)h2(AT ) near infinity.
Since the above inequality holds for all ε > 0, taking the limit as ε → 0, it
follows that

ĥ(AT ) ≤ h2(AT ) near infinity. (2.98)

Again, from the definition of ĥ and the inequality (2.98), we note that ĥ(AT ) ≥
h(AT ) for large T . Therefore

Pθ0 [A1/2
T (θ̂T − θ0) >h(AT ) infinitely often as T → ∞] = 1. (2.99)

This completes the proof of Theorem 2.15 following the techniques in Jain et al .
(1975).

Proof of Theorem 2.16: Let the function h(AT ) belong to the ε-upper class of
the process {A1/2

T (θ̂T −θ0), T ≥ 0}. Then∫ ∞

3

h(AT )

AT

exp

(
−h2(AT )

2

)
dT < ∞

by Theorem 2.15 which in turn implies that∫ ∞

3

log log AT

AT

P T
θ0

[A1/2
T (θ̂T − θ0) >h(AT )]dT < ∞

by Theorem 2.14. Conversely, suppose that∫ ∞

3

log log AT

AT

P T
θ0

[A1/2
T (θ̂T − θ0) >h(AT )]dT < ∞.

Then, Theorem 2.14 implies that∫ ∞

3

log log AT

AT h(AT )
exp

(
−h2(AT )

2

)
dT < ∞.
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Hence, by the remarks made after the statement given in Lemma 2.18 and by
Lemma 2.17, we get that∫ ∞

3

h(AT )

AT

exp

(
−h2(AT )

2

)
dT < ∞

which shows that the function h(AT ) belongs to the ε-upper class of the process
{A1/2

T (θ̂T − θ0), T ≥ 0}. Replacing ‘convergence’ by ‘divergence’ in the above
argument, the result for the lower class can be obtained in a similar manner. This
proves Theorem 2.16.

We now discuss an example where the conditions (A1)–(A4) of Section 2.3 can
be checked, ensuring that the results stated in Theorems 2.13 to 2.16 hold.

Consider the SDE

dX(t) = [a(t, X(t)) + θ ]dt + dWH
t , t ≥ 0, X(0) = 0. (2.100)

From the results described in Section 2.4, we get

θ̂T − θ0 =
∫ T

0 J2(t)dMH
t∫ T

0 J 2
2 (t)dwH

t

. (2.101)

where

J2(t) = d

dwH
t

∫ t

0
kH (t, s)ds

and kH (t, s) is as defined in (1.70) in Chapter 1. Let

RT =
∫ T

0
J2(t)dMH

t , t ≥ 0.

Then the process {RT , T ≥ 0} is a continuous local martingale with the quadratic
variation process

〈R〉T =
∫ T

0
J 2

2 (t)dwH
t =

∫ T

0

(
d

dwH
t

∫ t

0
kH (t, s)ds

)2

dwH
t = IT (say).

It is known that ∫ t

0
s

1
2 −H (t − s)

1
2 −H ds = �2( 3

2 − H)

�(3 − 2H)
t2−2H

and hence

d

dt

[∫ t

0
s

1
2 −H (t − s)

1
2 −H ds

]
= �2( 3

2 − H)

�(2 − 2H)
t1−2H .
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Therefore

d

dwH
t

[∫ t

0
kH (t, s)ds

]
= 1

kH

d

dt

[∫ t

0
s

1
2 −H (t − s)

1
2 −H ds

]
dt

dwH
t

= �2( 3
2 − H)

�(2 − 2H)
t1−2H dt

dwH
t

= �2( 3
2 − H)

�(2 − 2H)
t1−2H

[
1

λH

(2 − 2H)t1−2H

]−1

= C1H (say) (2.102)

which implies that 〈R〉T = IT = C2H t2−2H for some positive constant C2H . Let
AT = C2HT 2−2H , εT = T −γ where 0 < γ < 1−H . It can be checked that the
conditions (A1)−(A4) hold with these choices of AT and εT . Hence the results
stated in Theorems 2.14–2.16 hold.

Remarks: Results stated in Theorems 2.14–2.16 are analogous to those in
Acharya and Mishra (1994) for diffusion processes. However the proof of
Theorem 3.3 in their paper is incorrect. It is easy to check that our results
continue to hold in the case H = 1

2 , that is, for diffusion processes.

2.8 Instrumental variable estimation

Let us consider the SDE

dX(t) = [a(t,X(t)) + θ b(t, X(t))]dt + σ(t)dWH
t , X(0) = 0, t ≥ 0 (2.103)

where θ ∈ � ⊂ R,W = {WH
t , t ≥ 0} is fBm with known Hurst parameter H

and σ(t) is a positive non vanishing, non random function on [0, ∞). In other
words, X = {Xt, t ≥ 0} is a stochastic process satisfying the stochastic integral
equation

X(t) =
∫ t

0
[a(s, X(s)) + θ b(s, X(s))]ds +

∫ t

0
σ(s)dWH

s , t ≥ 0. (2.104)

Let

C(θ, t) = a(t, X(t)) + θ b(t, X(t)), t ≥ 0 (2.105)

and assume that the sample paths of the process {C(θ, t)/σ (t), t ≥ 0} are smooth
enough so that the process

QH,θ (t) = d

dwH
t

∫ t

0
kH (t, s)

C(θ, s)

σ (s)
ds, t ≥ 0 (2.106)
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is well defined where wH
t and kH (t, s) are as defined in (1.72) and (1.70)

of Chapter 1 respectively. Suppose the sample paths of the process {QH,θ ,

0 ≤ t ≤ T } belong a.s. to L2([0, T ], dwH
t ). Define

Zt =
∫ t

0

kH (t, s)

σ (s)
dXs, t ≥ 0. (2.107)

Then the process Z = {Zt, t ≥ 0} is an (Ft )-semimartingale with the decompo-
sition

Zt =
∫ t

0
QH,θ (s)dwH

s + MH
t (2.108)

where MH is the fundamental martingale defined by (1.73) in Chapter 1 and the
process X admits the representation

Xt =
∫ t

0
Kσ

H(t, s)dZs (2.109)

where the function Kσ
H is as defined by (1.75) in Chapter 1. Let P T

θ be the
measure induced by the process {Xt, 0 ≤ t ≤ T } when θ is the true parame-
ter. Following the discussion in Chapter 1, we get that the Radon–Nikodym
derivative of P T

θ with respect to P T
0 is given by

dP T
θ

dP T
0

= exp

[∫ T

0
QH,θ (s)dZs − 1

2

∫ T

0
Q2

H,θ (s)dwH
s

]
. (2.110)

We now consider another method of estimation of the parameter θ based on obser-
vation of the process X = {Xt, 0 ≤ t ≤ T } and study the asymptotic properties
of such estimators as T → ∞.

Let {α(t), t ≥ 0} be a stochastic process such that the function α(t) is Ft -
measurable. An example of such a process is α(t) = K(t, X̃(t)), where X̃(t) =
{X(s), 0 ≤ s ≤ t} and K(., .) is a real-valued measurable function defined on
R+ × R. Suppose that ∫ T

0
E[(α(t))2]dwH

T < ∞.

This condition implies that the stochastic integral∫ T

0
α(t)dMH

t

exists as a stochastic integral with respect to the martingale {MH
t ,Ft , t ≥ 0}. In

particular

E

(∫ T

0
α(t)dMH

t

)
= 0.
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Observing that

dZt = dMH
t + QH,θ (t)dwH

t

from (2.108), we can rewrite the above equation in the form

E

(∫ T

0
α(t)(dZt − QH,θ (t)dwH

t )

)
= 0

or equivalently

E

(∫ T

0
α(t)(dZt − (J1(t) + θJ2(t))dwH

t )

)
= 0 (2.111)

where

QH,θ (t) = d

dwH
t

∫ t

0
kH (t, s)

C(θ, s)

σ (s)
ds

= d

dwH
t

∫ t

0
kH (t, s)

a(s, X(s))

σ (s)
ds + θ

d

dwH
t

∫ t

0
kH (t, s)

b(s, X(s))

σ (s)
ds

= J1(t) + θJ2(t) (say). (2.112)

A sample analogue of Equation (2.111) is∫ T

0
α(t)(dZt − (J1(t) + θJ2(t))dwH

t ) = 0. (2.113)

which motivates an instrumental variable estimator defined below.

Definition: Corresponding to the Ft -adapted instrument process {α(t), t ≥ 0},
the instrumental variable estimator (IVE) of θ is defined by

θ̃T =
∫ T

0 α(t)(dZt − J1(t)dwH
t )∫ T

0 α(t)J2(t)dwH
t

.

Choosing the process {α(t), t ≥ 0} suitably, we can obtain a class of instru-
mental variable estimators (IVEs) for θ . In analogy with least squares estimation,
we can choose α(t) = J2(t) as defined above and the corresponding IVE may be
called a least squares estimator (LSE). In fact, it is also the MLE (cf. Prakasa Rao
(2003)). In the following discussion, we will choose α(t) = K(t, X̃(t)) where
K(., .) is a real-valued measurable function defined on R+ × R.

Suppose θ0 is the true value of the parameter θ . It is easy to check that

θ̃T − θ0 =
∫ T

0 K(t, X̃(t))dMH
t∫ T

0 K(t, X̃(t))J2(t)dwH
t

(2.114)
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using the fact that

dZt = (J1(t) + θ0J2(t))dwH
t + dMH

t . (2.115)

Note that the quadratic variation 〈Z〉 of the process Z is the same as the quadratic
variation 〈MH 〉 of the martingale MH which in turn is equal to wH . This follows
from Equations (1.79) and (1.73) in Chapter 1. Hence we obtain that

[wH
T ]−1 lim

n

∑
[Z

t
(n)
i+1

− Z
t
(n)
i

]2 = 1 a.s. [Pθ0 ]

where (t
(n)
i ) is a partition of the interval [0, T ] such that sup |t (n)

i+1−t
(n)
i | tends

to zero as n → ∞. If the function σ(.) is an unknown constant σ , the above
property can be used to obtain a strongly consistent estimator of σ 2 based on the
continuous observation of the process X over the interval [0, T ]. Hereafter we
assume that the non random function σ(t) is known.

We now discuss the problem of instrumental variable estimation of the param-
eter θ on the basis of observation of the process X or equivalently the process
Z in the interval [0, T ].

Equation (2.114) can be written in the form

θ̃T − θ0 =
∫ T

0 K(t, X̃(t))dMH
t∫ T

0 K(t, X̃(t))2dwH
t

∫ T

0 K(t, X̃(t))2dwH
t∫ T

0 K(t, X̃(t))J2(t)dwH
t

. (2.116)

Strong consistency

Theorem 2.19: The IVE θ̃T is strongly consistent, that is,

θ̃T → θ0 a.s. [Pθ0 ] as T → ∞ (2.117)

provided

(i)
∫ T

0
K(t, X̃(t))2dwH

t → ∞ a.s. [Pθ0 ] as T → ∞ (2.118)

and

(ii) lim sup
T →∞

∣∣∣∣∣
∫ T

0 K(t, X̃(t))2dwH
t∫ T

0 K(t, X̃(t))J2(t)dwH
t

∣∣∣∣∣ < ∞ a.s. [Pθ0 ]. (2.119)

Proof: This theorem follows by observing that the process

RT ≡
∫ T

0
K(t, X̃(t))dMH

t , t ≥ 0 (2.120)
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is a local martingale with the quadratic variation process

〈R〉T =
∫ T

0
K(t, X̃(t))2(t)dwH

t (2.121)

and applying the strong law of large numbers (cf. Liptser (1980), Prakasa Rao
(1999b), p. 61) under conditions (i) and (ii) stated above.

Remarks: For the case of the fractional Ornstein–Uhlenbeck-type process
defined by Equation (2.1) investigated in Kleptsyna and Le Breton (2002a), it
can be checked that the condition stated in the Equations (2.118) and (2.119)
hold when K(t, X̃(t)) = J2(t) and hence the MLE which is also the LSE is
strongly consistent as T → ∞.

Limiting distribution

We now discuss the limiting distribution of the IVE θ̃T as T → ∞. Let

βT =
∫ T

0 K(t, X̃(t))2dwH
t∫ T

0 K(t, X̃(t))J2(t)dwH
t

. (2.122)

It is easy to see that

θ̃T − θ0 = RT

〈R〉T βT . (2.123)

Theorem 2.20: Assume that the functions b(t, s) and σ(t) are such that the
process {Rt, t ≥ 0} is a local continuous martingale and that there exists a process
{γt , t ≥ 0} such that γt is Ft -adapted and

γ 2
T 〈R〉T = γ 2

T

∫ T

0
K(t, X̃(t))2(t)dwH

t → η2 in probability as T → ∞
(2.124)

where γ 2
T → 0 a.s. [P ] a.s. T → ∞ and η is a random variable such that

P(η > 0) = 1. Then

(γT RT , γ 2
T 〈R〉T ) → (ηZ, η2) in law as T → ∞ (2.125)

where the random variable Z has the standard normal distribution and the random
variables Z and η are independent.

Proof: This theorem follows as a consequence of the central limit theorem for
local martingales (cf. Theorem 1.49 and Remark 1.47 in Prakasa Rao (1999b),
p. 65).
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Observe that

β−1
T γ −1

T (θ̃T − θ0) = γT RT

γ 2
T 〈R〉T

. (2.126)

Applying Theorem 2.20, we obtain the following result.

Theorem 2.21: Suppose the conditions stated in Theorem 2.20 hold. Then

(βT γT )−1(θ̃T − θ0) → Z

η
in law as T → ∞ (2.127)

where the random variable Z has the standard normal distribution and the random
variables Z and η are independent.

Remarks:

(i) If the random variable η is a constant with probability one, then the limiting
distribution of the normalized IVE with random norming is normal with
mean zero and variance η−2. Otherwise it is a mixture of the normal
distributions with mean zero and variance η−2 with the mixing distribution
as that of η.

(ii) Note that the IVE is not necessarily asymptotically efficient. It is not
asymptotically efficient even when the random variable η is a constant.
It is asymptotically efficient in this case if K(t, X̃(t)) = J2(t) as defined
by Equation (2.112). Observe that the IVE reduces to the MLE in the case
K(t, X̃(t)) = J2(t).

The results discussed in this section are due to Prakasa Rao (2007).

Berry–Esseen-type bound for IVE

Hereafter we assume that the random variable η in (2.124) is a positive constant
with probability one. Hence

(βT γT )−1(θ̃T − θ0) → N(0, η−2) in law as T → ∞ (2.128)

where N(0, η−2) denotes the Gaussian distribution with mean zero and variance
η−2. We will now study the rate of convergence of the asymptotic distribution
of the IVE in (2.128).

Suppose there exist non-random positive functions δT decreasing to zero and
εT decreasing to zero such that

δ−1
T ε2

T → ∞ as T → ∞ (2.129)
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and

sup
θ∈�

P T
θ [|δT 〈R〉T − 1| ≥ εT ] = O(ε

1/2
T ) (2.130)

where the process {Rt, t ≥ 0} is as defined in (2.120). Note that the process
{Rt, t ≥ 0} is a locally square integrable continuous martingale. From the results
on the representation of locally square integrable continuous martingales (cf.
Ikeda and Watanabe (1981), Chapter II, Theorem 7.2), it follows that there
exists a standard Wiener process {W̃(t), t ≥ 0} adapted to (Ft ) such that Rt =
W̃ (〈R〉t ), t ≥ 0. In particular

RT δ
1/2
T = W̃ (〈R〉T δT ) a.s. [Pθ0 ] (2.131)

for all T ≥ 0.
Let us fix θ ∈ �. It is clear from the earlier remarks that

RT = 〈R〉T β−1
T (θ̃T − θ) (2.132)

under the Pθ -measure. Then it follows, from Lemmas 2.9 and 2.10, that

|Pθ [δ−1/2
T β−1

T (θ̂T − θ0) ≤ x] − �(x)|

=
∣∣∣∣Pθ

[
RT

〈R〉T δ
−1/2
T ≤ x

]
− �(x)

∣∣∣∣
=
∣∣∣∣∣Pθ

[
RT /δ

−1/2
T

〈R〉T /δ−1
T

≤ x

]
− �(x)

∣∣∣∣∣
≤ sup

x

|Pθ [RT δ
1/2
T ≤ x] − �(x)|

+Pθ [|δT 〈R〉T − 1| ≥ εT ] + εT

= sup
y

|P(W̃ (〈R〉T δT ) ≤ y) − �(y)| + Pθ [|δT 〈R〉T − 1| ≥ εT ] + εT

≤ (2εT )1/2 + 2Pθ [|δT 〈R〉T − 1| ≥ εT ] + εT . (2.133)

It is clear that the bound obtained above is of order O(ε
1/2
T ) under the condition

(2.130) and it is uniform in θ ∈ �. Hence we have the following result.

Theorem 2.22: Under conditions (2.129) and (2.130),

sup
θ∈�

sup
x∈R

|Pθ [δ−1/2
T β−1

T (θ̃T − θ) ≤ x] − �(x)|

≤ (2εT )1/2 + 2Pθ [|δT 〈R〉T − 1| ≥ εT ] + εT = O(ε
1/2
T ). (2.134)
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As a consequence of this result, we have the following theorem giving the rate
of convergence of the IVE θ̃T .

Theorem 2.23: Suppose conditions (2.129) and (2.130) hold. Then there exists
a constant c > 0 such that for every d > 0,

sup
θ∈�

Pθ [β−1
T |θ̃T − θ | ≥ d] ≤ cε

1/2
T + 2Pθ [|δT 〈R〉T − 1| ≥ εT ]

= O(ε
1/2
T ). (2.135)

Proof: Observe that

sup
θ∈�

Pθ [β−1
T |θ̃T − θ | ≥ d]

≤ sup
θ∈�

|Pθ [δ−1/2
T β−1

T (θ̃T − θ) ≥ dδ
−1/2
T ] − 2(1 − �(dδ

−1/2
T ))|

+2(1 − �(dδ
−1/2
T ))

≤ (2εT )1/2 + 2 sup
θ∈�

Pθ [|δT 〈R〉T − 1| ≥ εT ] + εT

+2d−1/2δ
1/2
T (2π)−1/2 exp

(
−1

2
δ−1
T d2

)
(2.136)

by Theorem 2.22 and the inequality

1 − �(x) <
1

x
√

2π
exp

(
−1

2
x2
)

(2.137)

for all x > 0 (cf. Feller (1968), p. 175). Since

δ−1
T ε2(T ) → ∞ as T → ∞

by the condition (2.129), it follows that

sup
θ∈�

Pθ [β−1
T |θ̃T − θ | ≥ d] ≤ cε

1/2
T + 2 sup

θ∈�

Pθ [|δT 〈R〉T − 1| ≥ εT ] (2.138)

for some constant c > 0 and the last term is of order O(ε
1/2
T ) by the condition

(2.130). This proves Theorem 2.23.



3

Parametric estimation for
fractional Ornstein–
Uhlenbeck-type process

3.1 Introduction

We studied parametric inference for processes defined by linear SDEs driven by
fBm in the previous chapter. We now consider a special case of such processes,
namely, the fractional Ornstein–Uhlenbeck-type process studied in Chapter 1.
Le Breton (1998) studied parameter estimation and filtering in a simple lin-
ear model driven by fBm. Kleptsyna and Le Breton (2002a) studied parameter
estimation problems for a fractional Ornstein–Uhlenbeck-type process. Such
processes play a potentially important role in the modeling of financial time
series. The fractional Ornstein–Uhlenbeck process is a fractional analogue of
the Ornstein–Uhlenbeck-process, that is, a continuous time first-order autore-
gressive process X = {Xt, t ≥ 0} which is the solution of a one-dimensional
homogeneous linear SDE driven by fBm WH = {WH

t , t ≥ 0} with Hurst param-
eter H ∈ (1/2, 1). Such a process is the unique Gaussian process satisfying the
linear integral equation

Xt = X0 + θ

∫ t

0
Xsds + σWH

t , t ≥ 0.

We now investigate the problem of estimation of the parameters θ and σ 2 based
on the observation {Xs, 0 ≤ s ≤ T } and prove that the MLE θ̂T is strongly con-
sistent as T → ∞. We follow the notation given in Chapter 1. For convenience,
we recall the earlier notation.

Statistical Inference for Fractional Diffusion Processes B. L. S. Prakasa Rao
 2010 John Wiley & Sons, Ltd
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3.2 Preliminaries

Let (�,F, (Ft ), P ) be a stochastic basis satisfying the usual conditions and
the processes discussed in the following are (Ft )-adapted. Further, the natural
filtration of a process is understood as the P -completion of the filtration generated
by this process.

Let WH = {WH
t , t ≥ 0} be standard fBm with Hurst parameter H ∈ (1/2, 1),

that is, a Gaussian process with continuous sample paths such that WH
0 = 0,

E(WH
t ) = 0 and

E(WH
s WH

t ) = 1

2
[s2H + t2H − |s − t |2H ], t ≥ 0, s ≥ 0. (3.1)

Let us consider a stochastic process {Xt, t ≥ 0} defined by the stochastic integral
equation

Xt = x0 + θ

∫ t

0
X(s)ds + σWH

t , 0 ≤ t ≤ T (3.2)

where θ is an unknown drift parameter. For convenience, we write the above
integral equation in the form of a SDE

dXt = θX(t)dt + σdWH
t , X0 = x0, 0 ≤ t ≤ T , (3.3)

driven by fBm WH . For a discussion on the equivalence of (3.2) and (3.3), see
Cheridito et al . (2003). Even though the process X is not a semimartingale, one
can associate a semimartingale Z = {Zt, t ≥ 0} which is called a fundamental
semimartingale such that the natural filtration (Zt ) of the process Z coincides
with the natural filtration (Xt ) of the process X (Kleptsyna et al . (2000a)). Define,
for 0 < s < t,

kH = 2H�

(
3

2
− H

)
�

(
H + 1

2

)
, (3.4)

kH (t, s) = k−1
H s

1
2 −H (t − s)

1
2 −H , (3.5)

λH = 2H �(3 − 2H)�(H + 1
2 )

�( 3
2 − H)

, (3.6)

wH
t = λ−1

H t2−2H , (3.7)

and

MH
t =

∫ t

0
kH (t, s)dWH

s , t ≥ 0. (3.8)

The process MH is a Gaussian martingale, called the fundamental martingale
(cf. Norros et al . (1999)), and its quadratic variance 〈MH 〉t = wH

t . Furthermore,
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the natural filtration of the martingale MH coincides with the natural filtration
of fBm WH . Let

KH(t, s) = H(2H − 1)
d

ds

∫ t

s

rH− 1
2 (r − s)H− 3

2 dr, 0 ≤ s ≤ t. (3.9)

The sample paths of the process {Xt, t ≥ 0} are smooth enough so that the process
Q defined by

Q(t) = d

dwH
t

∫ t

0
kH (t, s)Xsds, t ∈ [0, T ] (3.10)

is well defined where wH and kH are as defined in (3.7) and (3.5) respectively
and the derivative is understood in the sense of absolute continuity with respect
to the measure generated by wH . Moreover, the sample paths of the process Q

belong to L2([0, T ], dwH ) a.s. [P ]. The following theorem due to Kleptsyna
et al . (2000a) associates a fundamental semimartingale Z associated with the
process X such that the natural filtration (Zt ) coincides with the natural filtration
(Xt ) of X.

Theorem 3.1: Let the process Z = (Zt , t ∈ [0, T ]) be defined by

Zt =
∫ t

0
kH (t, s)dXs (3.11)

where the function kH (t, s) is as defined in (3.5). Then the following results
hold:

(i) The process Z is an (Ft )-semimartingale with the decomposition

Zt = θ

∫ t

0
Q(s)dwH

s + εMH
t (3.12)

where MH is the Gaussian martingale defined by (3.8);

(ii) the process X admits the representation

Xt =
∫ t

0
KH(t, s)dZs (3.13)

where the function KH is as defined in (3.9); and

(iii) the natural filtrations of (Zt ) and (Xt ) coincide.

3.3 Maximum likelihood estimation

Theorem 3.1 implies that the information available from the observation {Xs, 0 ≤
s ≤ T } is equivalent to that given by the process {Zs, 0 ≤ s ≤ T } for every
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T ≥ 0. We note that the parameter σ 2 can be estimated with probability one on
any finite time interval. This follows from the representation (3.12) and noting
that the quadratic variation of the process Z in the interval [0, T ] is given by
〈Z〉t = σ 2wH

t a.s. Hence the parameter σ 2 is obtained by noting that

(wH
T )−1 lim

n→∞
∑

[Z
t
(n)
i+1

− Z
t
(n)
i

]2 = σ 2 a.s.

where {t (n)
i } is a suitable partition of the interval [0, T ] such that supi |t (n)

i+1 −
t
(n)
i | → 0 as n → ∞. In view of this observation, we assume hereafter that σ 2 is

known and, without loss of generality, we assume that σ 2 = 1 in the following
discussion.

Let P T
θ be the probability measure generated by the process {Xs, 0 ≤ s ≤ T }

or equivalently by {Zs, 0 ≤ s ≤ T }. Applying the Girsanov-type formula derived
in Kleptsyna et al . (2000a) as discussed in Chapter 1, it follows that the measures
P T

θ and P T
0 are absolutely continuous with respect to each other and

log
dP

(T )
θ

dP
(T )
0

= θ

∫ T

0
Q(s)dZs − θ2

2

∫ T

0
Q2(s)dwH

s . (3.14)

It is easy to check that the MLE of θ, based on the observation {Xs, 0 ≤ s ≤ T },
is given by

θ̂T =
∫ T

0 Q(s)dZs∫ T

0 Q2(s)dwH
s

. (3.15)

Proposition 3.2: The estimator θ̂T is strongly consistent, that is, limT →∞ θ̂t = θ

a.s. for every θ ∈ R.

Proof: From the representation of Z given by (3.12), it can be shown that

θ̂T − θ =
∫ T

0 Q(s)dMH
s∫ T

0 Q2(s)dwH
s

(3.16)

where MH is the fundamental Gaussian martingale defined in (3.8) with the
quadratic variation wH . Since ∫ T

0
Q2(s)dwH

s

is the quadratic variation of the local martingale∫ T

0
Q(s)dMH

s ,
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it follows that θ̂T −θ converges to zero a.s. as T → ∞ provided

lim
T →∞

∫ T

0
Q2(s)dwH

s = ∞ a.s.

This follows from the strong law of large numbers for local martingales due to
Liptser (1980) (cf. Prakasa Rao (1999b)). Let

ψH
t (θ; a) = Eθ

[
exp

(
−a

∫ T

0
Q2(s)dwH

s

)]
, a > 0.

Kleptsyna and Le Breton (2002a) obtained an explicit formula for the function
�H

T (θ, a) for a > 0 and proved that

lim
T →∞

�H
T (θ, a) = 0.

This in turn proves that

lim
T →∞

∫ T

0
Q2(s)dwH

s = ∞ a.s.

completing the proof of this result.

Let
B(θ, T ) = Eθ [θ̂T − θ ]

and
V (θ, T ) = Eθ [(θ̂T − θ)2].

Then B(θ, T ) is the bias and V (θ, T ) is the mean square error of the estimator
θ̂T when θ is the true parameter. The following result is due to Kleptsyna and
Le Breton (2002a). We do not give details here. Recall that 1

2 < H < 1. We say
that f (t)  g(t) if f (t)/g(t) → 1 as t → ∞.

Proposition 3.3: The following properties hold:

(i) If θ < 0, then, as T → ∞,

B(θ, T )  2T −1 and V (θ, T )  2|θ |T −1.

(ii) If θ = 0, then, for all T ,

B(0, T ) = B(0, 1) T −1 and V (θ, T ) = V (0, 1)T −2.

(iii) If θ < 0, then, as T → ∞,

B(θ, T )  −2
√

π sin πHθ3/2e−θT T 1/2 and

V (θ, T )  2
√

π sin πHθ5/2e−θT T 1/2.
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Remarks: Observe that the rates of convergence to zero, for the bias and mean
square error, do not depend on the Hurst index H . Furthermore, if θ < 0, then
the process is asymptotically stationary. Limiting properties of the MLE θ̂T are
discussed in Chapter 2.

Following the notation introduced by Kleptsyna and Le Breton (2002a), we
now discuss the rate of convergence for the MLE for the fractional Ornstein–
Uhlenbeck-type process studied by them. Kleptsyna and Le Breton (2002a)
obtained expressions for the bias and the mean square error of the estimator
θ̂T in terms of the function

ψH
T (θ; a) = Eθ

[
exp

(
−a

∫ T

0
Q2(s)dwH

s

)]
, a > 0. (3.17)

where Eθ denotes the expectation when θ is the true parameter. They obtained
a closed form expression for this function involving modified Bessel functions
of the first kind (cf. Watson (1995)) and analyzed the asymptotic behavior as
T → ∞ for different values of θ . It follows that

Eθ

(∫ T

0
Q2(s)dwH

s

)
= − lim

a→0+
dψH

T (θ; a)

da
(3.18)

from (3.17). Let

LH
T (θ; ρ) = Eθ

[
exp

(
−ρ

∫ T

0
Q(s)dZs

)]
, ρ > 0. (3.19)

Kleptsyna and Le Breton (2002a) also obtained explicit expressions for the func-
tion LH

T (θ; ρ) again in terms of the modified Bessel functions of the first kind
and one can show that

Eθ

(∫ T

0
Q(s)dZs

)
= − lim

ρ→0+
dLH

T (θ; ρ)

dρ
. (3.20)

It seems to be difficult to obtain an explicit functional form for the expectations
defined in (3.18) and (3.20).

Remarks: One can approach the above problem by computing the joint charac-
teristic function of the vector(∫ T

0
Q(s)dZs,

∫ T

0
Q2(s)dwH

s

)
explicitly by using the results in Kleptsyna and Le Breton (2002a) and then
following the technique in Bose (1986) using Esseen’s lemma. However, this
approach does not seem to be helpful in view of the complex nature of the above
characteristic function involving the modified Bessel functions of first kind.
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Suppose there exist functions αT decreasing to zero as T → ∞ and εT decreasing
to zero as T → ∞ such that

sup
θ∈�

P T
θ

[∣∣∣∣αT

∫ T

0
Q2(t)dwH

t − 1

∣∣∣∣ ≥ εT

]
= O(ε

1/2
T ). (3.21)

Then it follows that

sup
θ∈�

sup
x

|P T
θ [α−1/2

T (θ̂T − θ) ≤ x] − �(x)| = O(ε
1/2
T ) (3.22)

and

sup
θ∈�

sup
d

P T
θ [|α−1/2

T (θ̂T − θ)| ≥ d] = O(ε
1/2
T ) (3.23)

from Theorems 2.11 and 2.12 discussed in Chapter 2.

3.4 Bayes estimation

Suppose that the parameter space � is open and  is a prior probability measure
on the parameter space � ⊂ R. Further suppose that the probability measure 

has a density λ(.) with respect to the Lebesgue measure and the density function
is continuous and positive in an open neighborhood of θ0, the true parameter. The
posterior density of θ, given the observation XT ≡ {Xs, 0 ≤ s ≤ T }, is given by

p(θ |XT ) = (dP T
θ /dP T

θ0
)λ(θ)∫

�
(dP T

θ /dP T
θ0

)λ(θ) dθ
. (3.24)

We define the Bayes estimate (BE) θ̃T of the parameter θ , based on the path
XT and the prior density λ(θ), to be the minimizer of the function

BT (φ) =
∫

�

L(θ, φ) p(θ |XT )dθ, φ ∈ �

where L(θ, φ) is a given loss function defined on � × �. In particular, for
the quadratic loss function |θ−φ|2, the Bayes estimator is the posterior mean
given by

θ̃T =
∫
�

up(u|XT )du∫
�

p(v|XT )dv
.

Suppose the loss function L(θ, φ) : � × � → R satisfies the following
conditions:

D(i) L(θ, φ) = �(|θ−φ|);
D(ii) �(θ) is nonnegative and continuous on R;

D(iii) �(.) is symmetric;
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D(iv) the sets {θ : �(θ) < c} are convex sets and are bounded for all c > 0;
and

D(v) there exist numbers γ > 0, H0 ≥ 0 such that, for H ≥ H0,

sup
{
�(θ) : |θ | ≤ Hγ

} ≤ inf {�(θ) : |θ | ≥ H } .

Obviously, the loss function of the form L(θ, φ) = |θ−φ|2 satisfies the conditions
D(i)–D(v).

Asymptotic properties of the Bayes estimator θ̃T follow from the results
discussed in Chapter 2. We do not deal with them again here.

3.5 Probabilities of large deviations of MLE and BE

Let

ψH
T (θ; a) = Eθ

[
exp

(
−a

∫ T

0
Q2

H (t)dwH (t)

)]
for a > 0. Kleptsyna and Le Breton (2002a) proved that

ψH
T (θ; a) =

(
4(sin πH)

√
θ2 + 2ae−θT

πT DH
T (θ;√

θ2 + 2a)

)1/2

where

DH
T (θ;β) =

[
β cosh

β

2
T − θ sinh

β

2
T

]2

I−H

(
β

2
T

)
IH−1

(
β

2
T

)
−
[
β sinh

β

2
T − θ cosh

β

2
T

]2

I1−H

(
β

2
T

)
IH

(
β

2
T

)
where Iν is the Bessel function of the first kind and order ν (cf. Watson (1995)).
It was also proved in Kleptsyna and Le Breton (2002a) that

lim
T →∞

ψH
T (θ; a) = 0

and hence

lim
T →∞

∫ T

0
Q2

H (t)dwH (t) = +∞ a.s. Pθ .

In view of these observations, we make the following assumption.

Condition (A): Fix θ ∈ �. Suppose that there exists a function αT tending to
zero as T → ∞ such that

αT

∫ T

0
Q2

H (t)dwH (t) → c > 0 a.s. [Pθ ] as T → ∞
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and there exists a neighborhood Nθ of θ such that

sup
φ∈Nθ

Eφ

[
αT

∫ T

0
Q2

H (t)dwH (t)

]
= O(1)

as T → ∞.

We now prove the following theorems giving the large-deviation probabilities
for the MLE and BE discussed in Section 3.3.

Theorem 3.4: Under the condition (A) stated above, there exist positive con-
stants C1 and C2, depending on θ and T , such that for every γ > 0,

P T
θ {|α−1/2

T (θ̂T − θ)|> γ } ≤ C1e
−C2γ 2

where θ̂T is the MLE of the parameter θ .

Theorem 3.5: Under the condition (A) stated above, there exist positive con-
stants C3 and C4, depending on θ and T , such that for every γ > 0,

P T
θ {|α−1/2

T (θ̃T − θ)|> γ } ≤ C3e
−C4γ 2

where θ̃T is the BE of the parameter θ with respect to the prior λ(.) and the loss
function L(., .) satisfying the conditions D(i)–D(v).

Let ET
θ denote the expectation with respect to the probability measure P T

θ . Fix
θ ∈ �. For proofs of the theorems stated above, we need the following lemmas.
Define

ZT (u) =
dP T

θ+uαT
1/2

dP T
θ

.

Lemma 3.6: Under the conditions stated above, there exist positive constants c1

and d1 such that

ET
θ [Z

1
2
T (u)] ≤ d1e

−c1u2

for −∞ < u < ∞.

Lemma 3.7: Under the conditions stated above, there exists a positive constant
c2 such that

ET
θ

{
Z

1
2
T (u1) − Z

1
2
T (u2)

}2

≤ c2(u1 − u2)
2

for −∞ < u1, u2 < ∞.
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Lemma 3.8: Let ξ(x) be a real-valued random function defined on a closed
subset F of the Euclidean space Rk. Assume that random process ξ(x) is mea-
surable and separable. Assume that the following conditions are fulfilled: there
exist numbers m ≥ r > k and a positive continuous function on G(x) : Rk → R

bounded on the compact sets such that for all x, h ∈ F, x + h ∈ F ,

E|ξ(x)|m ≤ G(x), E|ξ(x + h) − ξ(x)|m ≤ G(x)‖h‖r .

Then, with probability one, the realizations of ξ(t) are continuous functions on
F . Moreover, let

ω(δ, ξ, L) = sup |ξ(x) − ξ(y)|
where the upper bound is taken over x, y ∈ F with ‖x−y‖ ≤ h, ‖x‖ ≤
L, ‖y‖ ≤ L; then

E(ω(h, ξ, L)) ≤ B0

(
sup

‖x‖≤L

G(x)

)1/m

Lk/mh(r−k)/m log(h−1)

where the constant B0 depends on m, r and k.

We will use this lemma with ξ(u) = Z
1/2
T (u), m = 2, r = 2, k = 1, G(x) = e−cx2

and L = H + r + 1. For a proof of this lemma, see Ibragimov and Khasminskii
(1981) (correction, Kallianpur and Selukar (1993)).

Proof of Lemma 3.6: We know that

ET
θ (Z

1/2
T (u))

= ET
θ

(
dP T

θ+u
√

αT

dP T
θ

)1/2

= ET
θ

{
exp

[
u
√

αT

2

∫ T

0
QH (t)dMH (t) − 1

4
u2αT

∫ T

0
Q2

H (t)dwH (t)

]}

= ET
θ

{
exp

[
u
√

αT

2

∫ T

0
QH (t)dMH (t) − u2αT

6

∫ T

0
Q2

H (t)dwH (t)

]

× exp

[
−u2αT

12

∫ T

0
Q2

H (t)dwH (t)

]}

≤
{
ET

θ

[
exp

(
1

2
u
√

αT

∫ T

0
QH(t)dMH (t)

−(1/6)u2αT

∫ T

0
Q2

H (t)dwH (t)

)]4/3
}3/4
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×
{

ET
θ

[
exp

(
−(1/12)u2αT

∫ T

0
Q2

H (t)dwH (t)

)]4
}1/4

(by Holder’s inequality)

=
{
ET

θ

[
exp

(
2

3
u
√

αT

∫ T

0
QH (t)dMH (t)

−(2/9)u2αT

∫ T

0
Q2

H (t)dwH (t)

)]}3/4

× {ET
θ exp

[−(1/3)u2αT Q2
H (t)dt

]}1/4

≤
{
ET

θ

[
exp

(
−1

3
u2αT

∫ T

0
Q2

H (t)dwH (t)

)]}1/4

(since the first term is less than or equal to 1 (cf. Gikhman and Skorokhod (1972)).
The last term is bounded by e−c1u2

for some positive constant c1 depending on
θ and T by assumption (A) which completes the proof of Lemma 3.6.

We now prove Lemma 3.7.

Proof of Lemma 3.7: Note that

ET
θ

[
Z

1
2
T (u1) − Z

1
2
T (u2)

]2

= ET
θ [ZT (u1) + ZT (u2)] − 2ET

θ

[
Z

1
2
T (u1)Z

1
2
T (u2)

]
= 2

{
1 − ET

θ

[
Z

1
2
T (u1)Z

1
2
T (u2)

]}
since

ET
θ ZT (u) = ET

θ

{
exp

[
u
√

αT

∫ T

0
QH (t)dMH (t)

−1

2
u2αT

∫ T

0
Q2

H (t)dwH (t)

]}
= 1.

Denote

VT =
(

dP T
θ2

dP T
θ1

)1/2

where θ1 = θ + u1
√

αT and θ2 = θ + u2
√

αT . Then

VT = exp

[
1

2
(u2 − u1)

√
αT

∫ T

0
QH(t)dMH (t)

−1

4
(u2 − u1)

2αT

∫ T

0
Q2

H (t)dwH (t)

]
.
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Now

ET
θ

[
Z

1
2
T (u1)Z

1
2
T (u2)

]

= ET
θ

(dP T
θ+u1

√
αT

dP T
θ

)1/2 (
dP T

θ+u2
√

αT

dP T
θ

)1/2


=
∫ (

dP T
θ1

dP T
θ

)1/2 (
dP T

θ2

dP T
θ

)1/2

dP T
θ

=
∫ (

dP T
θ2

dP T
θ1

)1/2

dP T
θ1

= ET
θ1

(VT )

= ET
θ1

{
exp

[
1

2
(u2 − u1)

√
αT

∫ T

0
QH(t)dMH (t)

−1

4
(u2 − u1)

2αT

∫ T

0
Q2

H (t)dwH (t)

]}
.

Thus

2

{
1 − ET

θ

[
Z

1
2
T (u1)Z

1
2
T (u2)

]}

= 2

{
1 − ET

θ1

[
exp

(
1

2
(u2 − u1)

√
αT

∫ T

0
QH(t)dMH (t)

−1

4
(u2 − u1)

2αT

∫ T

0
Q2

H (t)dwH (t)

)]}

≤ 2

{
1 − exp

[
ET

θ1

(
1

2
(u2 − u1)

√
αT

∫ T

0
QH (t)dMH (t)

−1

4
(u2 − u1)

2αT

∫ T

0
Q2

H (t)dwH (t)

)]}
(by Jensen’s inequality)

= 2

{
1 − exp

[
− (u2 − u1)

2

4
αT ET

θ1

∫ T

0
Q2

H (t)dwH (t)

]}

≤ 2

[
(u2 − u1)

2

4
αT ET

θ1

∫ T

0
Q2

H (t)dwH (t)

]
(since 1 − e−x ≤ x, x ≥ 0)

= c2(u2 − u1)
2

for some positive constant c2 depending on θ and T .
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Proof of Theorem 3.4: Denote U = {u : θ + u ∈ �}. Let �r be the set of u
such that L + r ≤ |u| ≤ L + r + 1. We use the following inequality to prove the
theorem:

P T
θ {sup

�r

ZT (u) ≥ 1} ≤ c3(1 + L + r)
1
2 e− 1

4 (L+r)2
(3.25)

for some positive constant c3. Observe that

P T
θ {|α−1/2

T (θ̂T − θ)|>L} ≤ P T
θ { sup

|u| > L,u∈U

ZT (u) ≥ ZT (0)}

≤
∞∑

r=0

P T
θ {sup

�r

ZT (u) ≥ 1}

≤ c4

∞∑
r=0

e−c5(L+r)2

≤ c6e
−c7L2

.

This proves Theorem 3.4. We now prove the inequality (3.25). We divide the set
�r into N subsets {�(j)

r , 1 ≤ j ≤ N} each with length at most h. The number of
such subsets N ≤ [1/h] + 1. Choose uj ∈ �

(j)
r , 1 ≤ j ≤ N . Then

P T
θ { sup

u∈�r

ZT (u) ≥ 1} ≤
N∑

j=1

P T
θ

{
ZT (uj ) ≥ 1

2

}

+P T
θ

{
sup

|u−v|≤h,|u|,|v|≤L+r+1
|Z

1
2
T (u) − Z

1
2
T (v)| ≥ 1

2

}
.

(3.26)
From Chebyshev’s inequality and in view of Lemma 3.6, it follows that

P T
θ

{
Z

1
2
T (uj ) ≥ 1

2

}
≤ c8e

−(L+r)2
, 1 ≤ j ≤ N

for some positive constant c8. Applying Lemma 3.8 with ξ(u) = Z
1/2
T (u), and

using Lemma 3.7, we obtain that

ET
θ

 sup
|u−v|≤h

|u|,|v|≤(L+r+1)

|Z1/2
T (u) − Z

1/2
T (v)|

 ≤ c9(L + r + 1)
1
2 h1/2 log(h−1)

for some positive constant c9. Hence

P T
θ { sup

u∈�r

ZT (u) ≥ 1} ≤ c10

{
1

h
e−(L+r)2 + (L + r + 1)

1
2 h1/2 log(h−1)

}
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for some positive constant c10 depending on θ and T by using (3.26). Choosing
h = e−(L+r)2/2, we prove the inequality in Theorem 3.4.

Proof of Theorem 3.5: Observe that conditions (1) and (2) in Theorem 5.2 in
Chapter I of Ibragimov and Khasminskii (1981) are satisfied by Lemmas 3.6 and 3.7.
In view of the conditions D(i)–D(v) on the loss function mentioned in Section 3.4,
we can prove Theorem 3.5 by using Theorem 5.2 in Chapter I of Ibragimov and
Khasminskii (1981) with α = 2 and g(u) = u2. We omit the details.

Remarks: Bahadur (1960) suggested measuring the asymptotic efficiency of an
estimator δT of a parameter θ by the magnitude of concentration of the estimator
over the interval of a fixed length (independent of T ), that is, by the magnitude
of the probability Pθ {|δT −θ | < γ }. From the result obtained in Theorem 3.4
proved above, we note that the probability Pθ {|θ̂T −θ | < γ } is bounded above
by C1e

−C2γ 2α−1
T , C1 > 0, C2 > 0 for the MLE θ̂T . This bound in turn decreases

exponentially to zero as T → ∞ for any fixed γ > 0. Following the techniques in
Theorem 9.3 of Chapter I in Ibragimov and Khasminskii (1981), it can be shown
that the MLE is Bahadur efficient under some additional conditions. A similar
result follows for the Bayes estimator θ̃T following Theorem 3.5. The norming
factor αT can be chosen to be T −1 if θ < 0, T −2 if θ = 0 and e−θT T 1/2 in
case θ > 0. This can be seen from Proposition 2.3 of Kleptsyna and Le Breton
(2002a). Observe that the norming factor αT tends to zero as T → ∞.

The results discussed here are due to Mishra and Prakasa Rao (2006).

Sharp large deviations for MLE

Bercu et al . (2008) have recently obtained results on sharp large devia-
tions for fractional Ornstein–Uhlenbeck-type processes. We will briefly discuss
their results.

Consider the fractional Ornstein–Uhlenbeck-type process governed by the
SDE

dXt = θXtdt + dWH
t , X0 = 0 (3.27)

where θ < 0 and H > 1
2 . Let

kH (t, s) = k−1
H s

1
2 −H (t − s)

1
2 −H , 0 < s < t

where kH is as defined by (3.4),

Zt =
∫ t

0
kH (t, s)dXs, Mt =

∫ t

0
kH (t, s)dWH

s
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with
〈M〉t = wH

t = λ−1
H t2−2H

and λH as given in (3.6). From the earlier discussions, we know that

Zt = θ

∫ t

0
kH (t, s)Xsds + Mt

and

Zt = θ

∫ t

0
Qsd〈M〉s + Mt

where

Qt = �H

2

(
t2H−1Zt +

∫ t

0
s2H−1dZs

)
, �H = λH/[2(1 − H)].

This follows from results in Kleptsyna and Le Breton (2002a). The score function,
which is the derivative of the log-likelihood function based on the observations
over the interval [0, T ], is given by

�T (θ) =
∫ T

0
QtdZt − θ

∫ T

0
Q2

t d〈M〉t .

Let

St =
∫ T

0
Q2

t d〈M〉t .

Bishwal (2008) studied the large-deviation properties of the log-likelihood ratio

(θ − θ1)

∫ T

0
QtdZt − θ2 − θ2

1

2

∫ T

0
Q2

t d〈M〉t

for θ �= θ1. We will not discuss these properties.

Definition: A family of random variables {Vt, t ≥ 0} is said to satisfy the large-
deviation principle (LDP) with rate function I (.) if the function I (.) is lower
semi continuous from R to [0, ∞] such that, for any closed set F ⊂ R,

lim sup
T →∞

1

t
log P(Vt ∈ F) ≤ − inf

x∈F
I (x).

and, for any open set G ⊂ R,

− inf
x∈G

I (x) ≤ lim inf
T →∞

P(Vt ∈ G)

The function I (.) is called a good rate function if the level sets, that is, sets of
the form {x : I (x) ≤ c}, are compact sets in R (cf. Dembo and Zeitouni (1998)).
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For any a, b in R, let

LT (a, b) = 1

T
log E[eRT (a,b)]

where

RT (a, b) = a

∫ T

0
QtdZt + b

∫ T

0
Q2

t d〈M〉t .

Bercu et al . (2008) proved the following theorem.

Theorem 3.9: The following properties hold:

(i) limT →∞ ST /T = −1/2θ a.s.;

(ii) 1√
T

(
ST + T

2θ

) L→ N
(

0, − 1
2θ3

)
as T → ∞; and

(iii) the process {ST /T , T ≥ 0} satisfies the LDP with good rate function I (.)

defined by

I (c) = (2θc + 1)2

8c
if 0 < c ≤ − 1

2θδH

= cθ2

2
(1 − δ2

H ) + θ

2
(1 − δH ) if c ≥ − 1

2θδH

= ∞ otherwise (3.28)

where

δH = 1 − sin(πH)

1 + sin(πH)
. (3.29)

Note that δH = 0 if H = 1
2 . Bercu et al . (2008) derived the sharp LDP for

the process {ST /T } following the ideas of Bahadur and Ranga Rao (1960).

We saw earlier that the MLE is the solution of the equation �T (θ) = 0 and it is
given by

θ̂T =
∫ T

0 QtdZt∫ T

0 Q2
t d〈M〉t

.

It was mentioned earlier that the MLE θ̂T is strongly consistent as T → ∞. It is
easy to check that

P(
√

T (θ̂T − θ) ≤ c) = P(VT (c) ≤ 0)
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where

VT (c) = 1√
T

∫ T

0
QsdZs −

(
c√
T

+ θ

)
ST√
T

. (3.30)

Bercu et al . (2008) proved that

VT (c)
L→ V (c) as T → ∞

where the random variable V (c) has the Gaussian distribution with mean c/2θ

and variance −1/2θ . Note that

P(V (c) ≤ 0) = − 1

4πθ

∫ c

−∞
ex2/2θdx.

Hence √
T (θ̂T − θ)

L→ N(0, −2θ) as T → ∞.

Bercu et al . (2008) proved that the MLE θ̂T obeys LDP with a good rate function.

Theorem 3.10: The MLE θ̂T satisfies the LDP with the good rate function

I (c) = − (c − θ)2

4c
if c <

θ

3

= 2c − θ if c ≥ θ

3
. (3.31)

Observe that the rate function is independent of the Hurst index H .

3.6 Minimum L1-norm estimation

In spite of the fact that MLEs are consistent and asymptotically normal, and also
asymptotically efficient in general, they have some shortcomings at the same
time. Their calculation is often cumbersome as the expression for MLE involves
stochastic integrals which need good approximations for computational purposes.
Furthermore, the MLE is not robust in the sense that a slight perturbation in the
noise component will change the properties of the MLE substantially. In order to
circumvent such problems, the minimum distance approach is proposed. Proper-
ties of the minimum distance estimators (MDEs) were discussed in Millar (1984)
in a general framework. We now obtain the minimum L1-norm estimates of the
drift parameter of a fractional Ornstein–Uhlenbeck-type process and investigate
the asymptotic properties of such estimators following the work of Kutoyants
and Pilibossian (1994).
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We now consider the problem of estimation of the parameter θ based on the
observation of a fractional Ornstein–Uhlenbeck-type process X = {Xt, 0 ≤ t ≤
T } satisfying the SDE

dXt = θX(t)dt + εdWH
t , X0 = x0, 0 ≤ t ≤ T (3.32)

for a fixed time T where θ ∈ � ⊂ R and study its asymptotic properties as ε → 0.
Let xt (θ) be the solution of the above differential equation with ε = 0. It is

obvious that

xt (θ) = x0e
θt , 0 ≤ t ≤ T . (3.33)

Let

ST (θ) =
∫ T

0
|Xt − xt (θ)|dt. (3.34)

We define θ∗
ε to be a minimum L1-norm estimator if there exists a measurable

selection θ∗
ε such that

ST (θ∗
ε ) = inf

θ∈�
ST (θ). (3.35)

Conditions for the existence of a measurable selection are given in Lemma 3.1.2
in Prakasa Rao (1987). We assume that there exists a measurable selection θ∗

ε

satisfying the above equation. An alternate way of defining the estimator θ∗
ε is

by the relation

θ∗
ε = arg inf

θ∈�

∫ T

0
|Xt − xt (θ)|dt. (3.36)

Consistency

Let θ0 denote the true parameter. For any δ > 0, define

g(δ) = inf
|θ−θ0| >δ

∫ T

0
|Xt(θ) − xt (θ0)|dt. (3.37)

Note that g(δ) > 0 for any δ > 0.

Theorem 3.11: For every p > 0, there exists a constant K(p,H) such that for
every δ > 0,

P
(ε)
θ0

{|θ∗
ε − θ0|>δ} ≤ 2pT pH+pK(p,H)e|θ0|Tp(g(δ))−pεp

= O((g(δ))−pεp). (3.38)
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Proof: Let ||.|| denote the L1-norm. Then

P
(ε)
θ0

{|θ∗
ε − θ0|>δ} = P

(ε)
θ0

{ inf
|θ−θ0|≤δ

||X − x(θ)|| > inf
|θ−θ0| > δ

||X − x(θ)||}

≤ P
(ε)
θ0

{ inf
|θ−θ0|≤δ

(||X − x(θ0)|| + ||x(θ) − x(θ0)||)

> inf
|θ−θ0| >δ

(||x(θ) − x(θ0)|| − ||X − x(θ0)||)}

= P
(ε)
θ0

{2||X − x(θ0)|| > inf
|θ−θ0| > δ

||x(θ) − x(θ0)||}

= P
(ε)
θ0

{||X − x(θ0)||> 1

2
g(δ)}. (3.39)

Since the process Xt satisfies the SDE (3.32), it follows that

Xt − xt (θ0) = x0 + θ0

∫ t

0
Xsds + εWH

t − xt (θ0)

= θ0

∫ t

0
(Xs − xs(θ0))ds + εWH

t (3.40)

since xt (θ) = x0e
θt . Let Ut = Xt−xt (θ0). Then it follows from the above

equation that

Ut = θ0

∫ t

0
Us ds + εWH

t . (3.41)

Let Vt = |Ut | = |Xt−xt (θ0)|. The above relation implies that

Vt = |Xt − xt (θ0)| ≤ |θ0|
∫ t

0
Vsds + ε|WH

t |. (3.42)

Applying the Gronwall–Bellman lemma (cf. Kutoyants (1994), Lemma 1.11,
p. 25), we obtain

sup
0≤t≤T

|Vt | ≤ εe|θ0T | sup
0≤t≤T

|WH
t |. (3.43)

Hence

P
(ε)
θ0

{
||X − x(θ0)|| > 1

2
g(δ)

}
≤ P

{
sup

0≤t≤T

|WH
t | > e−|θ0T |g(δ)

2εT

}

= P

{
WH∗

T >
e−|θ0T |g(δ)

2εT

}
. (3.44)
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Applying Proposition 1.9 of Chapter 1 (cf. Novikov and Valkeila (1999)) to the
upper bound obtained above, we get

P
(ε)
θ0

{|θ∗
ε − θ0|>δ} ≤ 2pT pH+pK(p, H)e|θ0T |p(g(δ))−pεp

= O((g(δ))−pεp). (3.45)

Remarks: As a consequence of the above theorem, we obtain that θ∗
ε con-

verges in probability to θ0 under P
(ε)
θ0

-measure as ε → 0. Furthermore, the rate
of convergence is of the order (O(εp)) for every p > 0.

Asymptotic distribution

We will now study the asymptotic distribution of the estimator θ∗
ε after suitable

scaling. It can be checked that

Xt = eθ0t

{
x0 +

∫ t

0
e−θ0sεdWH

s

}
(3.46)

or equivalently

Xt − xt (θ0) = εeθ0t

∫ t

0
e−θ0sdWH

s . (3.47)

Let

Yt = eθ0t

∫ t

0
e−θ0sdWH

s . (3.48)

Note that {Yt , 0 ≤ t ≤ T } is a Gaussian process and can be interpreted as
the ‘derivative’ of the process {Xt, 0 ≤ t ≤ T } with respect to ε. Applying
Theorem 1.18 in Chapter 1, we obtain that, P -a.s.,

Yte
−θ0t =

∫ t

0
e−θ0sdWH

s =
∫ t

0
K

f

H(t, s)dMH
s , t ∈ [0, T ] (3.49)

where f (s) = e−θ0s , s ∈ [0, T ], and MH is the fundamental Gaussian martingale
associated with fBm WH . In particular it follows that the random variable Yte

−θ0t

and hence Yt have a normal distribution with mean zero and, furthermore, for
any h ≥ 0,

cov(Yt , Yt+h) = e2θ0t+θ0hE

(∫ t

0
e−θ0udWH

u

∫ t+h

0
e−θ0vdWH

v

)
= e2θ0t+θ0hH(2H − 1)

∫ t

0

∫ t+h

0
e−θ0(u+v)|u − v|2H−2dudv

= e2θ0t+θ0hγH (t, t + h) (say). (3.50)
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In particular

V ar(Yt ) = e2θ0t γH (t, t). (3.51)

Hence {Yt , 0 ≤ t ≤ T } is a zero-mean Gaussian process with Cov(Yt , Ys) =
eθ0(t+s)γH (t, s) for s ≥ t .

Let

ζ = arg inf−∞<u<∞

∫ T

0
|Yt − utx0e

θ0t |dt. (3.52)

Theorem 3.12: As ε → 0, the random variable ε−1(θ∗
ε −θ0) converges in prob-

ability to a random variable whose probability distribution is the same as that of
ζ under Pθ0 .

Proof: Let x′
t (θ) = x0te

θt and let

Zε(u) = ||Y − ε−1(x(θ0 + εu) − x(θ0))|| (3.53)

and

Z0(u) = ||Y − ux′(θ0)||. (3.54)

Furthermore, let

Aε = {ω : |θ∗
ε − θ0| < δε}, δε = ετ , τ ∈ (1/2, 1), Lε = ετ−1. (3.55)

Observe that the random variable u∗
ε = ε−1(θ∗

ε −θ0) satisfies the equation

Zε(u
∗
ε) = inf

|u|<Lε

Zε(u), ω ∈ Aε. (3.56)

Define

ζε = arg inf
|u|<Lε

Z0(u). (3.57)

Observe that, with probability one,

sup
|u|<Lε

|Zε(u) − Z0(u)| =
∣∣∣∣∣∣∣∣∣∣∣∣Y − ux′(θ0) − 1

2
εu2x′′(θ̃ )

∣∣∣∣∣∣∣∣− ||Y − ux′(θ0)||
∣∣∣∣

≤ ε

2
L2

ε sup
|θ−θ0<δε

∫ T

0
|x′′(θ)|dt

≤ Cε2τ−1. (3.58)

Here θ̃ = θ0 + α(θ−θ0) for some α ∈ (0, 1). Note that the last term in the above
inequality tends to zero as ε → 0. Furthermore, the process {Z0(u), −∞ < u <
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∞} has a unique minimum u∗ with probability one. This follows from the argu-
ments given in Theorem 2 of Kutoyants and Pilibossian (1994). In addition, we
can choose the interval [−L,L] such that

P
(ε)
θ0

{u∗
ε ∈ (−L, L)} ≥ 1 − βg(L)−p (3.59)

and

P {u∗ ∈ (−L, L)} ≥ 1 − βg(L)−p (3.60)

where β > 0. Note that g(L) increases as L increases. The processes Zε(u), u ∈
[−L, L], and Z0(u), u ∈ [−L, L], satisfy the Lipschitz conditions and Zε(u)

converges uniformly to Z0(u) over u ∈ [−L,L]. Hence the minimizer of Zε(.)

converges to the minimizer of Z0(u). This completes the proof.

Remarks:

(i) We saw earlier that the process {Yt , 0 ≤ t ≤ T } is a zero-mean Gaussian
process with the covariance function

Cov(Yt , Ys) = eθ0(t+s)γH (t, s)

for s ≥ t . Recall that

ζ = arg inf−∞<u<∞

∫ T

0
|Yt − utx0e

θ0t |dt. (3.61)

It is not clear what the distribution of ζ is. Observe that for every u,
the integrand in the above integral is the absolute value of a Gaussian
process {Jt , 0 ≤ t ≤ T } with the mean function E(Jt ) = −utx0e

θ0t and
the covariance function

Cov(Jt , Js) = eθ0(t+s)γH (t, s)

for s ≥ t . It would be interesting to say something about the distribution
of ζ through simulation studies even if an explicit computation of the
distribution seems to be difficult. The results studied here are due to
Prakasa Rao (2004a).

(ii) Hu and Nualart (2009) proposed a type of LSE for the parameter θ

and studied its properties. This estimator is motivated by the following
heuristic argument. The LSE is obtained by minimizing∫ T

0
|x′

t − θxt |2dt
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which leads to the solution

θ̂T =
∫ T

0 XtdXt∫ T

0 X2
t dt

.

Hu and Nualart (2009) call this estimator the LSE and interpret the inte-
gral

∫ T

0 XtdWH
t as a divergence-type integral which we have not used

or discussed in this book. We do not go into the details here. As this
estimator is difficult to compute, they suggest another estimator

θ̃T =
[

1

H�(2H)T

∫ T

0
X2

t dt

]−1/2H

.

It was shown that this estimator is strongly consistent and asymptotically
normal as T → ∞. In fact

√
T (θ̃T − θ)

L→ N

(
0,− θ

4H 2
σ 2

H

)
as T → ∞ where

σ 2
H = (4H − 1)

[
1 + �(3 − 4H)�(4H − 1)

�(2 − 2H)�(2H)

]
.

(iii) It is well known that the sequential estimation methods might lead to
efficient estimators from the process observed, possibly over a shorter
expected period of observation time as compared to observation over
a fixed observation time. We have investigated the conditions for
such a phenomenon for estimating the drift parameter of a fractional
Ornstein–Uhlenbeck-type process in Prakasa Rao (2004b). Novikov
(1972) investigated the asymptotic properties of a sequential MLE for
the drift parameter in the Ornstein–Uhlenbeck process.





4

Sequential inference
for some processes driven
by fBm

4.1 Introduction

Parametric estimation for classes of stochastic processes, satisfying linear SDEs
driven by fBm and observed over a fixed period of time T , was studied in
Chapter 2. It is well known that the sequential estimation methods might lead
to efficient estimators from a process observed possibly over a shorter expected
period of observation time as compared to estimators based on predetermined
fixed observation time. We now investigate the conditions for such a phenomenon.
Novikov (1972) investigated the asymptotic properties of a sequential MLE for
the drift parameter in the Ornstein–Uhlenbeck process. We now discuss analo-
gous results for the fractional Ornstein–Uhlenbeck-type process. We further study
the problem of sequential testing for a simple hypothesis that the observable pro-
cess is noise modeled by fBm against the simple hypothesis that the process
contains an unobservable signal along with noise. We follow the notation used
in Chapter 1.

4.2 Sequential maximum likelihood estimation

Consider the fractional Ornstein–Uhlenbeck-type process defined by the SDE

dXt = θXtdt + dWH
t , t ≥ 0 (4.1)

Statistical Inference for Fractional Diffusion Processes B. L. S. Prakasa Rao
 2010 John Wiley & Sons, Ltd
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where θ is an unknown parameter. We now consider the problem of sequential
maximum likelihood estimation of the parameter θ. Let h be a nonnegative
number. Define the stopping rule τ(h) by the rule

τ(h) = inf

{
t :
∫ t

0
Q2(s)dwH

s ≥ h

}
(4.2)

where the process {Q(t), t ≥ 0} is as defined in (3.10) of Chapter 3. Kleptsyna
and Le Breton (2002a) have shown that

lim
t→∞

∫ t

0
Q2(s)dwH

s = +∞ a.s. [Pθ ] (4.3)

for every θ ∈ R. Then it can be shown that Pθ(τ(h) < ∞) = 1. If the process
is observed up to a previously determined time T , we have observed that the
MLE is given by

θ̂T =
[∫ T

0
Q2(s)dwH

s

]−1 ∫ T

0
Q(s)dZs. (4.4)

The estimator

θ̂ (h) ≡ θ̂τ (h)

=
[∫ τ(h)

0
Q2(s)dwH

s

]−1 ∫ τ(h)

0
Q(s)dZs

= h−1
∫ τ(h)

0
Q(s)dZs (4.5)

is called the sequential maximum likelihood estimator of θ . We now study the
asymptotic properties of the estimator θ̂ (h).

We will first prove a lemma which is an analogue of the Cramér–Rao inequal-
ity for sequential plans (τ (X), θ̂τ (X)) for estimating the parameter θ satisfying
the property

Eθ {θ̂τ (X)} = θ (4.6)

for all θ .

Lemma 4.1: Suppose that differentiation under the integral sign with respect to
θ on the left of Equation (4.6) is permissible. Further suppose that

Eθ

{∫ τ(X)

0
Q2(s)dwH

s

}
< ∞ (4.7)
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for all θ . Then

V arθ {θ̂τ (X)} ≥
(

Eθ

{∫ τ(X)

0
Q2(s)dwH

s

})−1

(4.8)

for all θ .

Proof: Let Pθ be the measure generated by the process {X(t), 0 ≤ t ≤ τ(X)}
for given θ . Following Theorem 1.20 in Chapter 1, it can be shown that

dPθ

dPθ0

= exp

[
(θ − θ0)

∫ τ(X)

0
Q(s)dZs − 1

2
(θ2 − θ2

0 )

∫ τ(X)

0
Q2(s)dwH

s

]
a.s. [Pθ0 ] (4.9)

by using Sudakov’s lemma (cf. Basawa and Prakasa Rao (1980), p. 352).
Differentiating the functions on both sides of Equation (4.6) with respect to θ

under the integral sign, we get that

Eθ

[
θ̂τ (X)

{∫ τ(X)

0
Q(s)dZs − θ

∫ τ(X)

0
Q2(s)dwH

s

}]
= 1. (4.10)

Theorem 1.19 from Chapter 1 implies that

dZs = θQ(s)dwH
s + dMH

s (4.11)

and hence ∫ T

0
Q(s)dZs = θ

∫ T

0
Q2(s)dwH

s +
∫ T

0
Q(s)dMH

s . (4.12)

The above relation in turn implies that

Eθ

{∫ τ(X)

0
Q(s)dZs − θ

∫ τ(X)

0
Q2(s)dwH

s

}
= 0 (4.13)

and

Eθ

{∫ τ(X)

0
Q(s)dZs − θ

∫ τ(X)

0
Q2(s)dwH

s

}2

= Eθ

{∫ τ(X)

0
Q2(s)dwH

s

}
(4.14)

from the properties of the fundamental martingale MH and the fact that
the quadratic variation 〈MH 〉t of the process MH is wH

t . Applying the
Cauchy–Schwartz inequality to the left of Equation (4.14), we obtain that

V arθ {θ̂τ (X)} ≥
(

Eθ

{∫ τ(X)

0
Q2(s)dwH

s

})−1

(4.15)

for all θ .
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Definition: A sequential plan (τ (X), θ̂τ (X)) is said to be efficient if there is
equality in (4.8) for all θ .

We now prove the main result indicating the efficiency of the sequential plan
defined above.

Theorem 4.2: Consider the fractional Ornstein–Uhlenbeck-type process gov-
erned by the SDE (4.1) driven by fBm WH with H ∈ [ 1

2 , 1). Then the sequential
plan (τ (h), θ̂(h)) defined by Equations (4.2) and (4.5) has the following proper-
ties for all θ :

(i) θ̂ (h) ≡ θ̂τ (h) is normally distributed with Eθ(θ̂(h)) = θ and
V arθ (θ̂ (h)) = h−1;

(ii) the plan is efficient; and

(iii) the plan is closed, that is, Pθ(τ(h) < ∞) = 1.

Proof: Let

JT =
∫ T

0
Q(s)dMH

s . (4.16)

From the results in Kartazas and Shreve (1988), Revuz and Yor (1991) and Ikeda
and Watanabe (1981), it follows that there exists a standard Wiener process W

such that

JT = W(〈J 〉T ) a.s. (4.17)

with respect to the filtration {Fτt , t ≥ 0} under P where τt = inf{s : 〈J 〉s > t}.
Hence the process ∫ τ(h)

0
Q(s)dMH

s (4.18)

is a standard Wiener process. Observe that

θ̂ (h) = h−1
∫ τ(h)

0
Q(s)dZs

= h−1
[
θ

∫ τ(h)

0
Q2(s)dwH

s +
∫ τ(h)

0
Q(s)dMH

s

]
= θ + h−1

∫ τ(h)

0
Q(s)dMH

s

= θ + h−1Jτ(h)

= θ + h−1W(〈J 〉τ(h)) (4.19)
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which proves that the estimator θ̂ (h) is normally distributed with mean θ and
variance h−1. Since

Eθ

{∫ τ(h)

0
Q2(s)dwH

s

}
= h, (4.20)

it follows that the plan is efficient by Lemma 4.1. Since

Pθ(τ(h) ≥ T ) = Pθ

(∫ T

0
Q2(s)dwH

s < h

)
(4.21)

for every T ≥ 0, it follows that Pθ(τ(h) < ∞) = 1 from the observation

Pθ

(∫ ∞

0
Q2(s)dwH

s = ∞
)

= 1. (4.22)

The results in this section are from Prakasa Rao (2004b).

4.3 Sequential testing for simple hypothesis

We now study the sequential testing problem for a simple null hypothesis that
an observable process is a noise modeled by fBm against the simple alternate
hypothesis that the process also contains an unobservable signal along with the
noise. The motivation for the present study comes from the observation that the
problem can be looked at as modeling in the branch of signal processing. Suppose
we surmise that a signal (which is unobserved) is possibly transmitted over a
channel corrupted by fBm. We are interested in testing the simple hypothesis that
there is no transmitted signal but only noise modeled by fBm that is transmitted
through the channel against the hypothesis that a signal is transmitted corrupted
by noise modeled by fBm. We prove the existence of an optimal sequential
testing procedure for such a problem. The results obtained are analogues of
similar results for diffusion processes derived in Liptser and Shiryayev (2001)
and are due to Prakasa Rao (2005b).

Suppose that θ = {θt , t ≥ 0} is an unobservable Ft -adapted process indepen-
dent of fBm W = {WH

t , t ≥ 0}. Suppose that one of the following two hypotheses
holds for the Ft -adapted observable process ψ = {ψt, t ≥ 0}:

H0 : dψt = dWH
t , ψ0 = 0, t ≥ 0; (4.23)

and

H1 : dψt = θtdt + dWH
t , ψ0 = 0, t ≥ 0. (4.24)

If we interpret the process θ as a signal and fBm WH as the noise, then we
are interested in testing the simple hypothesis H1 indicating the presence of the
signal in the observation of the process ψ against the simple hypothesis H0 that
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the signal θ is absent. Assume that the sample paths of the process {θt , t ≥ 0}
are smooth enough so that the process

Q(t) = d

dwH
t

∫ t

0
kH (t, s)θsds, t ≥ 0 (4.25)

is well defined almost everywhere where wH
t and kH (t, s) are as defined in (1.72)

and (1.70) in Chapter 1 respectively. Suppose the sample paths of the process
{Q(t), 0 ≤ t ≤ T } belong a.s. to L2([0, T ], dwH

t ) for every T ≥ 0. Define

Zt =
∫ t

0
kH (t, s)dψs, t ≥ 0. (4.26)

Then the process Z = {Zt, t ≥ 0} is an (Ft )-semimartingale with the
decomposition

Zt =
∫ t

0
Q(s)dwH

s + MH
t (4.27)

where MH is the fundamental martingale defined by (1.73) of Chapter 1 and the
process ψ admits the representation

ψt =
∫ t

0
KH(t, s)dZs. (4.28)

Here the function KH(., .) is given by (1.75) in Chapter 1 with f ≡ 1. We
denote the probability measure of the process ψ under Hi as Pi for i = 0, 1.
Let E denote the expectation under the probability measure P and Ei denote the
expectation under the hypothesis Hi, i = 0, 1. Let P T

i be the measure induced by
the process {ψt, 0 ≤ t ≤ T } under the hypothesis Hi . Following Theorem 1.20
in Chapter 1, we get that the Radon–Nikodym derivative of P T

1 with respect to
P T

0 is given by

dP T
1

dP T
0

= exp

[∫ T

0
Q(s)dZs − 1

2

∫ T

0
Q2(s)dwH

s

]
. (4.29)

Let us consider the sequential plan � = �(τ, δ) for testing H0 versus H1 char-
acterized by the stopping time τ and the decision function δ. We assume that τ

is a stopping time with respect to the family of σ -algebras Bt = σ {x : xs, s ≤ t}
where x = {xt , t ≥ 0} are continuous functions with x0 = 0. The decision func-
tion δ = δ(x) is Bτ -measurable and takes the values 0 and 1. Suppose x is the
observed sample path. If δ(x) takes the value 0, then it amounts to the decision
that the hypothesis H0 is accepted; and if δ(x) takes the value 1, then it will indi-
cate the acceptance of the hypothesis H1. For any sequential plan � = �(τ, δ),

define

α(�) = P1(δ(ψ) = 0), β(�) = P0(δ(ψ) = 1).
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Observe that α(�) and β(�) are the first and second kinds of errors respectively.
Let �α,β be the class of sequential plans for which

α(�) ≤ α, β(�) ≤ β

where 0 < α + β < 1, and

Ei

(∫ τ(ψ)

0
m2

t (ψ)dwH
t

)
< ∞, i = 0, 1. (4.30)

where mt(ψ) = E1(Q(t)|Fψ
t ) and {Fψ

t } is the filtration generated by the process
ψ . We now state the main theorem giving the optimum sequential plan subject
to the conditions stated above.

Theorem 4.3: Suppose the process Q = {Q(t),Ft , t ≥ 0} defined above satisfies
the condition

E|Q(t)| < ∞, 0 ≤ t < ∞. (4.31)

Let

mt(ψ) = E1(Q(t)|Fψ
t ). (4.32)

Suppose that

Pi

(∫ ∞

0
m2

t (ψ)dwH
t = ∞

)
= 1, i = 0, 1. (4.33)

Then there exists a sequential plan �̃ = �(τ̃ , δ̃) in the class �α,β which is optimal
in the sense that for any other sequential plan � = �(τ, δ) in �α,β,

Ei

(∫ τ̃ (ψ)

0
m2

t (ψ)dwH
t

)
≤ Ei

(∫ τ(ψ)

0
m2

t (ψ)dwH
t

)
, i = 0, 1. (4.34)

The sequential plan �̃ = �(τ̃ , δ̃) is defined by the relations

τ̃ (ψ) = inf{t : λt(ψ) ≥ B or λt (ψ) ≤ A}
and

δ̃(ψ) = 1 if λτ̃(ψ) ≥ B,

= 0 if λτ̃(ψ) ≤ A,

where

λt(ψ) =
∫ t

0
ms(ψ)dZs − 1

2

∫ t

0
m2

s (ψ)dwH
s



108 STATISTICAL INFERENCE FOR FRACTIONAL DIFFUSION PROCESSES

and

A = log
α

1 − β
, B = log

1 − α

β
.

Furthermore,

E0

(∫ τ̃ (ψ)

0
m2

t (ψ)dwH
t

)
= 2 V (β, α), (4.35)

and

E1

(∫ τ̃ (ψ)

0
m2

t (ψ)dwH
t

)
= 2 V (α, β), (4.36)

where

V (x, y) = (1 − x) log
1 − x

y
+ x log

x

1 − y
. (4.37)

We first derive three lemmas which will be used to prove Theorem 4.3.

Lemma 4.4: The sequential plan �̃ = �(τ̃ , δ̃) satisfies the properties

Pi(τ̃ (ψ) < ∞) = 1, i = 0, 1. (4.38)

Proof: Note that

P0(τ̃ (ψ) < ∞) = P(τ̃ (WH) < ∞)

since ψt = WH
t under H0. Let

σn(W
H ) = inf

{
t :
∫ t

0
m2

s (W
H)dwH

s ≥ n

}
.

Then

λτ̃(WH )∧σn(WH )(W
H) =

∫ τ̃ (WH )∧σn(WH )

0
ms(W

H)dMH
s

− 1

2

∫ τ̃ (WH )∧σn(WH )

0
m2

s (W
H)dwH

s

and

A ≤ λτ̃(WH )∧σn(WH )(W
H) ≤ B.

Hence

A ≤ E(λτ̃(WH )∧σn(WH )(W
H)) ≤ B
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which implies that

E

(∫ τ̃ (WH )∧σn(WH )

0
m2

s (W
H)dwH

s

)
≤ 2(B − A) < ∞

since 0 < α + β < 1. In particular, we have

E

(∫ τ̃ (WH )

0
m2

s (W
H)dwH

s

)
≤ 2(B − A) < ∞. (4.39)

Since

E

(∫ τ̃ (WH )

0
m2

s (W
H)dwH

s

)
≥ E

(
I{τ̃ (WH )=∞}

∫ ∞

0
m2

s (W
H )dwH

s

)
,

it follows that P(τ̃ (WH ) < ∞) = 1 from Equation (4.33). Applying an analo-
gous argument, we can prove that P1(τ̃ (ψ) < ∞) = 1. This completes the proof.

Let

νt = Zt −
∫ t

0
ms(ψ)dwH

s . (4.40)

Then

dZt = ms(ψ)dwH
s + dνt , t ≥ 0 (4.41)

where {νt ,Fψ
t , t ≥ 0} is a continuous Gaussian martingale with 〈ν〉t = mH

t .
Furthermore, under the hypothesis H1,

λt (ψ) =
∫ t

0
ms(ψ)dνs + 1

2

∫ t

0
m2

s (ψ)dwH
s . (4.42)

This can be seen from Theorem 1.20 in Chapter 1 (cf. Kleptsyna et al. (2000a),
Theorem 2).

Remarks: Observe that the random variable λτ̃(ψ) takes the values A and B

only a.s. under the probability measures P0 as well as P1.

Lemma 4.5: The sequential plan �̃ = �(τ̃ , δ̃) defined in Theorem 4.3. has
the property

α(�̃) = α, β(�̃) = β.

Proof: Since

α(�̃) = P1(δ̃(ψ) = 0) = P1(λτ̃ (ψ)(ψ) = A)
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and

β(�̃) = P0(δ̃(ψ) = 1) = P1(λτ̃ (ψ)(ψ) = B),

it is sufficient to prove that

P1(λτ̃ (ψ)(ψ) = A) = α, P0(λτ̃ (ψ)(ψ) = A) = β. (4.43)

Following the techniques in Liptser and Shiryayev (2001), p. 251, let a(x) and
b(x), A ≤ x ≤ B, be the solutions of the differential equations

a′′(x) + a′(x) = 0, a(A) = 1, a(B) = 0 (4.44)

and

b′′(x) + b′(x) = 0, b(A) = 0, b(B) = 1. (4.45)

It can be checked that

a(x) = eA(eB−x − 1)

eB − eA
, b(x) = ex − eA

eB − eA
(4.46)

and

a(0) = α, b(0) = β. (4.47)

We will first prove that

P1(λτ̃ (ψ)(ψ) = A) = α. (4.48)

Let

σn(ψ) = inf

{
t :
∫ t

0
m2

s (ψ)dwH
s ≥ n

}
.

Applying the generalized Ito–Ventzell formula for continuous local martingales
(cf. Prakasa Rao (1999b), p. 76), we obtain that

a(λτ̃ (ψ)∧σn(ψ)(ψ)) = a(0) +
∫ τ̃ (ψ)∧σn(ψ)

0
a′(λs(ψ))ms(ψ)dνs

+1

2

∫ τ̃ (ψ)∧σn(ψ)

0
[a′(λs(ψ)) + a′′(λs(ψ))]m2

s (ψ)dwH
s

= α +
∫ τ̃ (ψ)∧σn(ψ)

0
a′(λs(ψ))ms(ψ)dνs . (4.49)
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But

E1

∫ τ̃ (ψ)∧σn(ψ)

0
[a′(λs(ψ))ms(ψ)]2dwH

s ≤

sup
A≤x≤B

[a′(x)]2 E1

(∫ τ̃ (ψ)∧σn(ψ)

0
m2

s (ψ)dwH
s

)
≤ n sup

A≤x≤B

[a′(x)]2 < ∞.

Hence

E1

(∫ τ̃ (ψ)∧σn(ψ)

0
a′(λs(ψ))ms(ψ)dνs

)
= 0.

Taking the expectation under the probability measure P1 on both sides of (4.49),
we get that

E1(a(λτ̃ (ψ)∧σn(ψ)(ψ))) = α

Observe that the function a(x) is bounded on the interval [A, B] and σn(ψ) → ∞
a.s. under P1 as n → ∞. An application of the dominated convergence theorem
proves that

E1[a(λτ̃ (ψ)∧σn(ψ)(ψ))] = α. (4.50)

Applying Lemma 4.4, noting that λτ̃(ψ) takes only the values A and B a.s.
under the probability measure P1, and observing that a(A) = 1 and a(B) = 0,

we find that

α = E1[a(λτ̃(ψ))]

= 1.P1(λτ̃ (ψ) = A) + 0.P1(λτ̃ (ψ) = B)

= P1(λτ̃ (ψ) = A). (4.51)

Similar arguments show that

P0(λτ̃ (ψ) = B) = β. (4.52)

Lemma 4.6: The relations (4.35) and (4.36) hold for the sequential plan
�̃ = �(τ̃ , δ̃).

Proof: Proof of this lemma is analogous to the proof of Lemma 17.9 in Liptser
and Shiryayev (2001) and the result can be proved as an application of the
generalized Ito–Ventzell formula for continuous local martingales (cf. Prakasa
Rao (1999b)). Let gi(x), A ≤ x ≤ B, i = 0, 1, be the solutions of the differential
equations

g′′
i (x) + (−1)i+1g′

i (x) = −2, gi(A) = gi(B) = 0, i = 0, 1.
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It can be checked that

g0(x) = 2

[
(eB − eA+B−x)(B − A)

eB − eA
+ A − x

]
,

g1(x) = 2

[
(eB − ex)(B − A)

eB − eA
− B + x

]
and

g0(0) = −2 V (β, α), g1(0) = 2 V (α, β).

Suppose the hypothesis H0 holds. Define

σn(W
H ) = inf

{
t :
∫ t

0
m2

s (W
H)dwH

s ≥ n

}
, n ≥ 1.

Applying the generalized Ito–Ventzell formula to g0(λt (W
H)), we obtain that

g0(λτ̃ (WH )∧σn(WH )(W
H))

= g0(0) +
∫ τ̃ (WH )∧σn(WH )

0
g′

0(λs(W
H ))ms(W

H )dMH
s

− 1

2

∫ τ̃ (WH )∧σn(WH )

0
[g′

0(λs(W
H
s )) − g′′

0 (λs(W
H
s ))]m2

s (W
H
s )dwH

s

= g0(0) +
∫ τ̃ (WH )∧σn(WH )

0
g′

0(λs(W
H
s ))ms(W

H
s )dMH

s

+
∫ τ̃ (WH )∧σn(WH )

0
m2

s (W
H
s )dwH

s . (4.53)

Since

E0

(∫ τ̃ (WH )∧σn(WH )

0
g′

0(λs(W
H
s ))ms(W

H
s )dMH

s

)
= 0,

taking expectations with respect to the probability measure P0 on both sides of
Equation (4.53), we have

E0

(∫ τ̃ (WH )∧σn(WH )

0
m2

s (W
H
s )dwH

s

)
= −g0(0) + E0(g0(λτ̃ (WH )∧σn(WH )(W

H ))).

Taking the limit as n → ∞, we obtain that

E0

(∫ τ̃ (ψ)

0
m2

t (ψ)dwH
t

)
= −g0(0) = 2V (β, α). (4.54)
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Similarly we can prove that

E1

(∫ τ̃ (ψ)

0
m2

t (ψ)dwH
t

)
= −g1(0) = 2V (α, β). (4.55)

This completes the proof of Lemma 4.6.

We now prove Theorem 4.3.

Proof of Theorem 4.3: Let � = �(τ, δ) be any sequential plan in the class
�α,β . Let P τ

i be the restriction of the probability measure Pi restricted to the
σ -algebra Bτ for i = 0, 1. In view of conditions (4.30), (4.31), (4.33) and the
representation (4.42), it follows that the probability measures P τ

i , i = 0, 1, are
equivalent by Theorem 7.10 in Liptser and Shiryayev (2001). Furthermore,

log
dP τ

1

dP τ
0

(τ, WH) =
∫ τ(WH )

0
ms(W

H )dMH
s − 1

2

∫ τ(WH )

0
m2

s (W
H )dwH

s

and

log
dP τ

1

dP τ
0

(τ, ψ) =
∫ τ(ψ)

0
ms(ψ)dZs − 1

2

∫ τ(ψ)

0
m2

s (ψ)dwH
s .

Therefore

E0

(
log

dP τ
0

dP τ
1

(τ, ψ)

)
= 1

2
E0

(∫ τ(ψ)

0
m2

s (ψ)dwH
s

)

= 1

2
E0

(∫ τ(WH )

0
m2

s (W
H)dwH

s

)
(4.56)

and

E1

(
log

dP τ
1

dP τ
0

(τ, ψ)

)
= 1

2
E1

(∫ τ(ψ)

0
m2

s (ψ)dwH
s

)
. (4.57)

Applying Jensen’s inequality and following the arguments similar to those in
Liptser and Shiryayev (2001), pp. 254–255, it can be shown that

1

2
E1

(∫ τ(ψ)

0
m2

s (ψ)dwH
s

)
≥ (1 − α) log

1 − α

β
+ α log

α

1 − β

= 1

2
E1

(∫ τ̃ (ψ)

0
m2

s (ψ)dwH
s

)
(4.58)

by using Lemma 4.6. Hence

E1

(∫ τ̃ (ψ)

0
m2

s (ψ)dwH
s

)
≤ E1

(∫ τ(ψ)

0
m2

s (ψ)dwH
s

)
. (4.59)
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Similarly we can prove that

E0

(∫ τ̃ (ψ)

0
m2

s (ψ)dwH
s

)
≤ E0

(∫ τ(ψ)

0
m2

s (ψ)dwH
s

)
. (4.60)

This completes the proof of Theorem 4.3

Remarks: As a special case of the above result, suppose that θt = h(t) where
h(t) is a non-random but differentiable function such that∫ ∞

0
h2(t)dt = ∞, h(t)h′(t) ≥ 0, t ≥ 0. (4.61)

Let α, β be given such that 0 < α + β < 1.

Let �α,β be the class of sequential plans as discussed earlier for given α, β

with 0 < α + β < 1. Consider the plan �T = (T , δT ) having the fixed observa-
tion time T for 0 < T < ∞ and belonging to the class �α,β . Then the optimal
sequential plan �̃ = (τ̃ , δ̃) ∈ �α,β has the properties

Ei(τ̃ ) ≤ T , i = 0, 1. (4.62)

This can be seen by checking that, for i = 0, 1,

Ei

(∫ τ̃ (ψ)

0
h2(t)dt

)
≤ Ei

(∫ T

0
h2(t)dt

)
=
∫ T

0
h2(t)dt = �(T ) (say) (4.63)

which in turn implies that

�(T ) ≥ Ei

(∫ τ̃ (ψ)

0
h2(t)dt

)
= Ei(�(τ̃ (ψ)))

≥ �(Ei(τ̃ (ψ))) (4.64)

by observing that the function �(.) is convex and by applying Jensen’s inequality.
The inequality derived above in turn proves that

Ei(τ̃ (ψ)) ≤ T , i = 0, 1. (4.65)



5

Nonparametric inference
for processes driven by fBm

5.1 Introduction

We have discussed parametric inference for a class of processes driven by fBm
when the trend parameter θ is finite dimensional. We now consider the problem
of estimation when it is infinite dimensional, in particular when the parameter θ is
an unknown function. We now discuss the problem of nonparametric estimation
or identification of the ‘drift’ or ‘trend’ function θ(.) for a class of stochastic
processes satisfying a SDE

dXt = θ(t)Xtdt + dWH
t , X0 = τ, t ≥ 0, (5.1)

where τ is a Gaussian random variable and {WH
t } is fBm, and the problem of

estimation of the ‘drift’ or ‘trend’ function S(.) for SDEs of the type

dXt = S(Xt )dt + ε dWH
t , X0 = x0, 0 ≤ t ≤ T (5.2)

5.2 Identification for linear stochastic systems

Consider the SDE

dXt = θ(t)Xtdt + dWH
t , X0 = τ, t ≥ 0 (5.3)

where τ is a Gaussian random variable and {WH
t } is fBm. We use the method

of sieves and study the asymptotic properties of the estimator. Identification of
non-stationary diffusion models by the method of sieves is studied in Nguyen
and Pham (1982). The results discussed here are from Prakasa Rao (2004c).

Statistical Inference for Fractional Diffusion Processes B. L. S. Prakasa Rao
 2010 John Wiley & Sons, Ltd
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Estimation by the method of sieves

Let us consider the linear stochastic system

dX(t) = θ(t)X(t)dt + dWH
t , X(0) = τ, 0 ≤ t ≤ T (5.4)

where θ(t) ∈ L2([0, T ], dt), W = {WH
t , t ≥ 0} is fBm with Hurst parameter H

and τ is a Gaussian random variable independent of fBm W. In other words,
X = {Xt, t ≥ 0} is a stochastic process satisfying the stochastic integral equation

X(t) = τ +
∫ t

0
θ(s)X(s)ds + WH

t , 0 ≤ t ≤ T . (5.5)

Let
Cθ(t) = θ(t) X(t), 0 ≤ t ≤ T (5.6)

and assume that the sample paths of the process {Cθ(t), 0 ≤ t ≤ T } are smooth
enough so that the process

QH,θ (t) = d

dwH
t

∫ t

0
kH (t, s)Cθ (s)ds, 0 ≤ t ≤ T (5.7)

is well defined where wH
t and kH (t, s) are as defined in (1.72) and (1.70) in

Chapter 1 respectively. Suppose the sample paths of the process {QH,θ (t), 0 ≤
t ≤ T } belong a.s. to L2([0, T ], dwH

t ). Define

Zt =
∫ t

0
kH (t, s)dXs, 0 ≤ t ≤ T . (5.8)

Then the process Z = {Zt, 0 ≤ t ≤ T } is an (Ft )-semimartingale with the decom-
position

Zt =
∫ t

0
QH,θ (s)dwH

s + MH
t (5.9)

where MH is the fundamental martingale defined by (1.73) in Chapter 1 and the
process X admits the representation

Xt = X0 +
∫ t

0
KH(t, s)dZs (5.10)

where the function KH is as defined by (1.75) in Chapter 1 with f ≡ 1. Let P T
θ be

the measure induced by the process {Xt, 0 ≤ t ≤ T } when θ(.) is the true ‘drift’
function. Following Theorem 1.20 in Chapter 1, we get that the Radon–Nikodym
derivative of P T

θ with respect to P T
0 is given by

dP T
θ

dP T
0

= exp

[∫ T

0
QH,θ (s)dZs − 1

2

∫ T

0
Q2

H,θ (s)dwH
s

]
. (5.11)
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Suppose the process X is observable on [0, T ] and Xi, 1 ≤ i ≤ n, is a random
sample of n independent observations of the process X on [0, T ]. Following
the representation of the Radon–Nikodym derivative of P T

θ with respect to P T
0

given above, it follows that the log-likelihood function corresponding to the
observations {Xi, 1 ≤ i ≤ n} is given by

Ln(X1, . . . , Xn; θ) ≡ Ln(θ)

=
n∑

i=1

(∫ T

0
Q

(i)
H,θ (s)dZi(s) − 1

2

∫ T

0
[Q(i)

H,θ ]2(s)dwH
s

)
(5.12)

where the process Q
(i)
H,θ is as defined by the relation (5.7) for the process Xi .

For convenience in notation, we write Qi,θ (s) hereafter for Q
(i)
H,θ (s).

Let {Vn, n ≥ 1} be an increasing sequence of subspaces of finite dimensions
{dn} such that ∪n≥1Vn is dense in L2([0, T ], dt). The method of sieves consists
of maximizing Ln(θ) on the subspace Vn. Let {ei} be a set of linearly independent
vectors in L2([0, T ], dt) such that the set of vectors {e1, . . . , edn} is a basis for
the subspace Vn for every n ≥ 1. For θ ∈ Vn, θ(.) =∑dn

j=1 θj ej (.), we have

Qi,θ (t) = d

dwH
t

∫ t

0
kH (t, s)θ(s)Xi(s)ds

= d

dwH
t

∫ t

0
kH (t, s)

 dn∑
j=1

θj ej (s)

Xi(s)ds

=
dn∑

j=1

θj

d

dwH
t

∫ t

0
kH (t, s)ej (s)Xi(s)ds

=
dn∑

j=1

θj�i,j (t)(say). (5.13)

Furthermore, ∫ T

0
Qi,θ (t)dZi(t) =

∫ T

0

 dn∑
j=1

θj�i,j (t)

 dZi(t)

=
dn∑

j=1

θj

∫ T

0
�i,j (t)dZi(t)

=
dn∑

j=1

θjRi,j (say) (5.14)
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and ∫ T

0
Q2

i,θ (t)dwH
t =

∫ T

0

 dn∑
j=1

θj�i,j (t)

2

dwH
t

=
dn∑

j=1

dn∑
k=1

θj θk

∫ T

0
�i,j (t)�i,k(t)dwH

t

=
dn∑

j=1

dn∑
k=1

θj θk〈Ri,j , Ri,k〉 (5.15)

where 〈., .〉 denotes the quadratic covariation. Therefore the log-likelihood func-
tion corresponding to the observations {Xi, 1 ≤ i ≤ n} is given by

Ln(θ) =
n∑

i=1

(∫ T

0
Qi,θ (t)dZi(t) − 1

2

∫ T

0
Q2

i,θ (t)dwH
t

)

=
n∑

i=1

 dn∑
j=1

θjRi,j − 1

2

dn∑
j=1

dn∑
k=1

θj θk〈Ri,j , Ri,k〉


= n

 dn∑
j=1

θjB
(n)
j − 1

2

dn∑
j=1

dn∑
k=1

θj θkA
(n)
j,k

 (5.16)

where

B
(n)
j = n−1

n∑
i=1

Ri,j , 1 ≤ j ≤ dn (5.17)

and

A
(n)
j,k = n−1

n∑
i=1

〈Ri,j , Ri,k〉, 1 ≤ j, k ≤ dn. (5.18)

Let θ(n), B(n) and A(n) be the vectors and the matrix with elements θj , j =
1, . . . , dn, B

(n)
j , j = 1, . . . , dn, and A

(n)
j,k, j, k = 1, . . . , dn, as defined above. Then

the log-likelihood function can be written in the form

Ln(θ) = n

[
B(n)θ (n) − 1

2
θ(n)′A(n)θ (n)

]
. (5.19)

Here α′ denotes the transpose of the vector α. The restricted MLE θ̂ (n)(.) of θ(.)

is given by

θ̂ (n)(.) =
dn∑

j=1

θ̂
(n)
j ej (.) (5.20)
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where

θ̂ (n) = (θ̂
(n)
1 , . . . , θ̂

(n)
dn

) (5.21)

is the solution of the equation

A(n)θ̂ (n) = B(n). (5.22)

Assuming that A(n) is invertible, we get that

θ̂ (n) = (A(n))−1B(n). (5.23)

We now construct an orthonormal basis for Vn with respect to a suitable inner
product so that the matrix A(n) is transformed into an identity matrix as n → ∞.
Note that

A
(n)
j,k →

∫ T

0
E

[(
d

dwH
t

∫ t

0
kH (t, s)ej (s)X(s)ds

)
×
(

d

dwH
t

∫ t

0
kH (t, s)ek(s)X(s)ds

)]
dwH

t (5.24)

a.s. as n → ∞ by the strong law of large numbers. We now consider a sequence
ψj , j ≥ 1, such that ψj , 1 ≤ j ≤ dn, is an orthonormal basis of Vn in the sense
of the inner product

〈h, g〉 =
∫ T

0
E

[(
d

dwH
t

∫ t

0
kH (t, s)h(s)X(s)ds

)
×
(

d

dwH
t

∫ t

0
kH (t, s)g(s)X(s)ds

)]
dwH

t . (5.25)

Let η̂
(n)
1 , η̂

(n)
2 , . . . , η̂

(n)
dn

be the coordinates of θ̂ (n)(.) in the new basis ψj, 1 ≤ j ≤
dn. Then the vector

η̂(n) = (η̂
(n)
1 , η̂

(n)
2 , . . . , η̂

(n)
dn

) (5.26)

is the solution of the equation

a(n)η̂(n) = b(n) (5.27)

where a(n) and b(n) are the matrix and the vector with general elements

a
(n)
j,k = n−1

n∑
i=1

∫ T

0

{
d

dwH
t

[∫ t

0
kH (t, s)ψj (s)Xi(s)ds

]

× d

dwH
t

[∫ t

0
kH (t, s)ψk(s)Xi(s)ds)

]}
dwH

t , (5.28)
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and

b
(n)
j = n−1

n∑
i=1

∫ T

0

d

dwH
t

[∫ t

0
kH (t, s)ψj (s)Xi(s)ds

]
dZi(t). (5.29)

Let θ(n)(.) =∑dn

k=1 ηiψi(.) be the orthogonal projection of θ(.) onto Vn in the
sense of the inner product 〈., .〉 defined above. Observe that

b
(n)
j −

dn∑
k=1

a
(n)
j,kηk

= n−1
n∑

i=1

∫ T

0
Qi,ψj

(t)dZi(t) −
dn∑

k=1

a
(n)
j,kηk

= n−1
n∑

i=1

∫ T

0
Qi,ψj

(t)[Qi,θ (t)dwH
t + dMH

it ] −
dn∑

k=1

a
(n)
j,kηk

= n−1
n∑

i=1

∫ T

0
Qi,ψj

(t)Qi,θ (t)dwH
t

+n−1
n∑

i=1

∫ T

0
Qi,ψj

(t)dMH
it −

dn∑
k=1

a
(n)
j,kηk

= n−1
n∑

i=1

∫ T

0
Qi,ψj

(t)

( ∞∑
r=1

ηrQi,ψr (t)

)
dwH

t

+n−1
n∑

i=1

∫ T

0
Qi,ψj

(t)dMH
it −

dn∑
k=1

a
(n)
j,kηk

= n−1
n∑

i=1

∫ T

0
Qi,ψj

(t)

 dn∑
r=1

ηrQi,ψr (t) +
∞∑

r=dn

ηrQi,ψr (t)

 dwH
t

+n−1
n∑

i=1

∫ T

0
Qi,ψj

(t)dMH
it − n−1

dn∑
k=1

ηk

∫ T

0
Qi,ψj

(t)Qi,ψk
(t)dwH

t

= n−1
n∑

i=1

∫ T

0
Qi,ψj

(t)Qi,θ−θ(n) (t)dwH
t + n−1

n∑
i=1

∫ T

0
Qi,ψj

(t)dMH
it
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= n−1
n∑

i=1

∫ T

0
[Qi,ψj

(t)Qi,θ−θ(n) (t) − E(Qi,ψj
(t)Qi,θ−θ(n) (t))]dwH

t

+n−1
n∑

i=1

∫ T

0
Qi,ψj

(t)dMH
it (5.30)

since

〈θ − θ(n), ψj 〉 = 0 (5.31)

for 1 ≤ j ≤ dn by the orthogonality of the basis {ψk, k ≥ 1} and the fact that

〈θ − θ(n), ψj 〉 = E

[∫ T

0
Qi,ψj

(t)Qi,θ−θ(n) (t)dwH
t

]
. (5.32)

Hence

a(n)(η̂(n) − η(n)) = c(n) (5.33)

where η(n) and c(n) are vectors with components ηj , 1 ≤ j ≤ dn, and

c
(n)
j = n−1

n∑
i=1

∫ T

0
[Qi,ψj

(t)Qi,θ−θ(n) (t) − E(Qi,ψj
(t)Qi,θ−θ(n) (t))] dwH

t

+ n−1
n∑

i=1

∫ T

0
Qi,ψj

(t)dMH
it . (5.34)

Let δjk = 0 if j �= k and δjk = 1 if j = k. In view of the orthonormality of the
basis {ψj , j ≥ 1}, it follows that

a
(n)
j,k − δj,k = n−1

n∑
i=1

∫ T

0
(Qi,ψj

(t)Qi,ψk
(t) − E(Qi,ψj

(t)Qi,ψk
(t)))dwH

t

= n−1ζijk (say) (5.35)

and

c
(n)
j = n−1

n∑
i=1

∫ T

0
[Qi,ψj

(t)Qi,θ−θ(n) (t) − E(Qi,ψj
(t)Qi,θ−θ(n) (t))]dwH

t

+n−1
n∑

i=1

∫ T

0
Qi,ψj

(t)dMH
it

= n−1
n∑

i=1

ζ
(n)
ij + n−1

n∑
i=1

ζ̃ij (say). (5.36)
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Note that E[a(n)
j,k] = δjk and E(ζijk) = 0. Hence

E[a(n)
j,k − δjk]2

= V ar(a
(n)
j,k )

= n−1V ar(ζ1jk) (since Xi, 1 ≤ i ≤ n, are i.i.d.)

= n−1E(ζ 2
1jk)

= n−1E

[∫ T

0
(Qi,ψj

(t)Qi,ψk
(t) − E[Qi,ψj

(t)Qi,ψk
(t)])dwH

t

]2

≤ n−1E

[∫ T

0
(Qi,ψj

(t)Qi,ψk
(t) − E[Qi,ψj

(t)Qi,ψk
(t)])2dwH

t wH
T

]
(by the Cauchy–Schwartz inequality)

= n−1
{∫ T

0
E[Qi,ψj

(t)Qi,ψk
(t) − E[Qi,ψj

(t)Qi,ψk
(t)]2]dwH

t

}
wH

T

≤ n−1wH
T

∫ T

0
E[Qi,ψj

(t)Qi,ψk
(t)]2dwH

t . (5.37)

Note that the process {QH,θ (t), t ≥ 0} defined by Equation (5.7) is a Gaussian
process and the fundamental martingale MH is a Gaussian martingale. We now
state a lemma to get an upper bound for the expression on the right of Equation
(5.37). The proof of this lemma is easy.

Lemma 5.1: Let Xi, i = 1, 2, be Gaussian random variables. Then there exists
a positive constant C such that

E[X2
1X

2
2] ≤ CE(X2

1)E(X2
2). (5.38)

Applying Lemma 5.1 on the right of Equation (5.37), we get

E[a(n)
j,k − δjk]2 ≤ n−1wH

T

∫ T

0
E[Qi,ψj

(t)Qi,ψk
(t)]2dwH

t

≤ Cn−1wH
T

∫ T

0
E[Qi,ψj

(t)2]E[Qi,ψk
(t)]2dwH

t

= Cn−1wH
T sup

0≤t≤T

E[Qi,ψj
(t)2]

∫ T

0
E[Qi,ψk

(t)]2dwH
t

= Cn−1wH
T sup

0≤t≤T

E[Qi,ψj
(t)2] (5.39)

since
∫ T

0 E(Qi,ψk
(t))2dwH

t = 1 by the choice of the orthonormal basis ψj , j ≥ 1.
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Observe that E(ζ̃ij ) = 0 and E(ζ
(n)
ij ) = 0. Furthermore,

E(ζ̃ 2
ij ) = E

[∫ T

0
Qi,ψj

(t)dMH
it

]2

=
∫ T

0
E[Q2

i,ψj
(t)]dwH

t

= 1 (5.40)

and it follows by the arguments given earlier and Lemma 5.1 that

E((ζ
(n)
ij )2) ≤ CwH

T sup
0≤t≤T

E[Qi,ψj
(t)2]||θ − θ(n)||2. (5.41)

We will now estimate E(c
(n)
j )2. Note that E(c

(n)
j ) = 0. Hence

E(c
(n)
j )2 = V ar(c

(n)
j )

= n−1V ar(ζ
(n)
1j + ζ̃1j )

≤ n−1E(ζ
(n)
1j + ζ̃1j )

2

≤ 2n−1[E(ζ
(n)
1j )2 + E(ζ̃1j )

2]

≤ 2n−1[1 + CwH
T sup

0≤t≤T

E[Q1,ψj
(t)2]||θ − θ(n)||2]. (5.42)

Lemma 5.2: Let ||A|| = sup{||Ax||, ||x|| ≤ 1} be the operator norm of a matrix
A = ((ajk)). Then ||A||2 ≤∑ a2

jk and

||A−1|| ≤

1 +
∑

j,k

(ajk − δjk)
2

−1/2


−1

(5.43)

provided that ∑
j,k

(ajk − δjk)
2 < 1.

Proof: See Lemma 3 of Nguyen and Pham (1982).

We now have the following result.

Theorem 5.3: Suppose Vn is an increasing sequence of subspaces of
L2([0, T ], dt) of dimension dn defined by the inner product given by (5.25)
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such that dn → ∞ and let {ψj, 1 ≤ j ≤ dn} be an orthonormal basis of Vn.
Suppose that

d2
nγ 2

n

n
→ 0

and

γndn

n
→ 0

as n → ∞ where

γn = sup
0≤t≤T

sup
1≤j≤dn

E

[
d

dwH
t

∫ t

0
kH (t, s)ψj (s)X(s)ds

]2

. (5.44)

Then

||η̂(n) − η(n)|| → 0 (5.45)

in probability as n → ∞.

Proof: Observe that

η̂(n) − η(n) = a(n)−1
c(n) (5.46)

from Equation (5.33). Applying Lemma 5.2, we get

||η̂(n) − η(n)|| ≤

1 −
 dn∑

j=1

dn∑
k=1

(a
(n)
j,k − δjk)

2

1/2


−1

||c(n)||. (5.47)

Applying the bounds obtained in (5.41) and (5.42), we get

E

 dn∑
j=1

dn∑
k=1

(a
(n)
j,k − δjk)

2

 ≤ Cn−1d2
nγ 2

n (5.48)

and the last term tends to zero as n → ∞. Similarly

E||c(n)||2 ≤ Cγn[n−1dn + n−1dnγn||θ − θ(n)||2] (5.49)

and the last term tends to zero as n → ∞. Hence

||η̂(n) − η(n)|| → 0 (5.50)

in probability as n → ∞.
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Corollary 5.4: Under the conditions stated in Theorem 5.3,

lim
n→∞

d

dwH
t

∫ t

0
kH (t, s)(θ̂ (n)(s) − θ(n)(s))X(s)ds = 0

in probability.

Proof: Observe that

||θ̂ (n) − θ(n)||2 =
∫ T

0
E

[
d

dwH
t

∫ t

0
kH (t, s)(θ̂ (n)(s) − θ(n)(s))X(s)ds

]2

dwH
t

which can also be written in the form

dn∑
j=1

|η̂(n)
j − ηj |2 +

∞∑
j=dn+1

η2
j .

The first term in the above sum tends to zero by Theorem 5.3. Since the set
∪n≥1Vn is dense in L2([0, T ]), it is also dense in the metric generated by the
norm corresponding to the inner product 〈., .〉. The result on convergence in
probability follows as a consequence of standard arguments.

Lemma 5.5: Let λ(n) = (λ
(n)
1 , λ

(n)
2 , . . . , λ

(n)
dn

) be such that

dn∑
j=1

(λ
(n)
j )2 → λ2 as n → ∞. (5.51)

Then the random variable
√

n
∑dn

j=1 λ
(n)
j c

(n)
j is asymptotically normal with mean

zero and variance λ2.

Proof: In view of Equation (5.36), it follows that

√
n

dn∑
j=1

λ
(n)
j c

(n)
j = n−1/2

n∑
i=1

 dn∑
j=1

λ
(n)
j ζ

(n)
ij +

dn∑
j=1

λ
(n)
j ζ̃ij

 . (5.52)

Using the arguments used to derive the inequality (5.41), it can be checked that

E

 dn∑
j=1

λ
(n)
j ζ

(n)
ij

2

≤ CwH
T n−1γn

dn∑
j=1

(λ
(n)
j )2||θ − θ(n)||2. (5.53)
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Note that E(ζ
(n)
ij ) = 0 and

E

√
n

dn∑
j=1

λ
(n)
j c

(n)
j

2

= V ar

√
n

dn∑
j=1

λ
(n)
j c

(n)
j


= V ar

 dn∑
j=1

λ
(n)
j ζ

(n)
1j

+ V ar

 dn∑
j=1

λ
(n)
j ζ̃1j


+2Cov

 dn∑
j=1

λ
(n)
j ζ

(n)
1j ,

dn∑
j=1

λ
(n)
j ζ̃1j


(since Xi, 1 ≤ i ≤ n, are i.i.d.)

= E

 dn∑
j=1

λ
(n)
j ζ

(n)
1j

2

+ E

 dn∑
j=1

λ
(n)
j ζ̃1j

2

+2Cov

 dn∑
j=1

λ
(n)
j ζ

(n)
1j ,

dn∑
j=1

λ
(n)
j ζ̃1j


= O

n−1wH
T γn

dn∑
j=1

(λ
(n)
j )2||θ − θ(n)||2

+ n−1
dn∑

j=1

(λ
(n)
j )2

+2n−1Cov

 dn∑
j=1

λ
(n)
j ζ

(n)
1j ,

dn∑
j=1

λ
(n)
j ζ̃1j

 . (5.54)

The first term on the right of the above equation tends to zero since γn/n ≤
γnd

2
n/n → 0, ||θ−θ(n)|| → 0 and the second term

∑dn

j=1(λ
(n)
j )2 → λ2 as n→ ∞.

It is easy to see that the third term tends to zero as n → ∞ by using the
Cauchy–Schwartz inequality. In other words,

n∑
i=1

 dn∑
j=1

λ
(n)
j ζ

(n)
ij

2

= op(1) (5.55)

and

V ar

 dn∑
j=1

λ
(n)
j ζ̃ij

 =
dn∑

j=1

(λ
(n)
j )2 = λ2 + o(1) (5.56)
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as n → ∞. We now obtain the asymptotic normality from central limit theorems
for triangular arrays.

As a consequence of the above lemma, the following theorem can be proved.

Theorem 5.6: Let λ(n) be as in the Lemma 5.5. Suppose that the conditions
stated in Theorem 5.3 hold. In addition, suppose that

d3
nγ 2

n

n
→ 0 as n → ∞

and

d3
nγ 3

n

n
→ 0 as n → ∞.

Then

√
n

dn∑
j=1

λ
(n)
j (η̂

(n)
i − ηi) (5.57)

is asymptotically normal with mean zero and variance λ2.

Proof: Observe that

a(n)(η̂(n) − η(n)) = c(n) (5.58)

and hence

η̂(n) − η(n) = (a(n))−1c(n) (5.59)

or equivalently

η̂(n) − η(n) − c(n) = (a(n))−1(I − a(n))c(n). (5.60)

Denoting the operator norm and the Euclidean norm by the same symbol ||.||,
we get

|λ(n)′(η̂(n) − η(n) − c(n))| ≤ ||λ(n)|| ||(a(n))−1|| ||a(n) − I || ||c(n)||. (5.61)

Relations (5.47) and (5.48) prove that

E||a(n) − I ||2 ≤ E

 dn∑
j=1

dn∑
k=1

(a
(n)
j,k − δjk)

2


≤ Cγnn

−1d2
nγ 2

n (5.62)
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and

nE||c(n)||2 ≤ Cγn[dn + dnγn||θ − θ(n)||2]. (5.63)

Therefore

(E[
√

n||a(n) − I ||||c(n)||])2

≤ nE||c(n)||2E||a(n) − I ||2
≤ Cγn([dn + dnγn||θ − θ(n)||2])(n−1d2

nγn) (5.64)

and the last term tends to zero since d3
nγ 2

n /n → 0 as n → ∞ and d3
nγ 3

n /n → 0
as n → ∞.Therefore

√
n||a(n) − I ||||c(n)|| → 0 (5.65)

in probability as n → ∞. We observed earlier that

||a(n)|| → 1 (5.66)

in probability as n → ∞. Hence

√
nλ(n)′(η̂(n) − η(n) − c(n)) → 0 (5.67)

in probability as n → ∞. But

√
nλ(n)′c(n)

is asymptotically normal with mean zero and variance λ2 by Lemma 5.5. This
proves the result stated in the theorem.

As an application of the previous theorem, we get the following result.

Corollary 5.7: Let h(.) be a function such that ||h|| < ∞ in the sense of the
inner product defined by (5.25). Suppose that the conditions stated in Theorem
5.6 hold. Then

√
n〈h, θ̂ (n) − θ(n)〉 (5.68)

is asymptotically normal with mean zero and variance 〈h, h〉.

Proof: Suppose that h(t) =∑∞
j=1 hjψj (t). Note that

θ̂ (n) − θ(n) =
dn∑

j=1

(η̂
(n)
j − ηj )ψj (5.69)
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and hence

〈h, θ̂ (n) − θ(n)〉 =
dn∑

j=1

hj (η̂
(n)
j − ηj ). (5.70)

Since
dn∑

j=1

h2
j → 〈h, h〉 = ||h||2 (5.71)

by Parseval’s theorem, the result follows from Theorem 5.3.

Remarks:

(i) If, in addition to the conditions stated in Corollary 5.7, we have

√
n〈h, θ(n) − θ(n)〉 → 0 as n → ∞, (5.72)

then

√
n〈h, θ̂ (n) − θ〉 (5.73)

is asymptotically normal with mean zero and variance 〈h, h〉.
(ii) It would be interesting to characterize the family of functions θ(t) and the

family of processes X(t) satisfying (5.4) for which

E

(∫ T

0
Q2

H , θ(s)dwH
s

)
< ∞.

Note that

QH,θ (t) = d

dwH
t

∫ t

0
kH (t, s)θ(s)X(s)ds

= dt

dwH
t

d

dt

[∫ t

0
kH (t, s)θ(s)X(s)

]
ds

= dt

dwH
t

∫ t

0

dkH (t, s)

dt
θ(s)X(s)ds (5.74)

from the form of the function kH (t, s). Hence

Q2
H,θ (t) =

(
dt

dwH
t

)2 ∫ t

0

∫ t

0

dkH (t, s)

dt
θ(s)X(s)

dkH (t, u)

dt
θ(u)X(u)dsdu.

(5.75)
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Therefore

E

(∫ T

0
Q2

H,θ (t)dwh
t

)
= E

[∫ T

0

(
dt

dwH
t

)2 (∫ t

0

∫ t

0

dkH (t, s)

dt

× θ(s)X(s)
dkH (t, u)

dt
θ(u)X(u)dsdu

)
dwH

t

]
=
∫ T

0

(
dt

dwH
t

)2 (∫ t

0

∫ t

0

dkH (t, s)

dt

× θ(s)
dkH (t, u)

dt
θ(u)E(X(s)X(u))dsdu

)
dwH

t

= DH1

∫ T

0
t4H−2

(∫ t

0

∫ t

0
s

1
2 −H (t − s)−

1
2 −H u

1
2 −H

×(t − u)−
1
2 −H θ(s)θ(u)E(X(s)X(u))dsdu

)
dwH

t

= DH2

∫ T

0
t2H−1

(∫ t

0

∫ t

0
s

1
2 −H (t − s)−

1
2 −H u

1
2 −H

×(t − u)−
1
2 −H θ(s)θ(u)E(X(s)X(u))dsdu

)
dt

(5.76)
where DH1 and DH2 are constants which can be explicitly computed. The finite-
ness of the term on the right of the above equation depends on the function θ(t)

and the covariance function of the process X(t). It is not clear whether it is
possible to characterize the class of functions θ(t) for which

E

(∫ T

0
Q2

H,θ (t)dwh
t

)
< ∞

explicitly without knowing the covariance structure of the process X(t).

5.3 Nonparametric estimation of trend

Let WH = {WH
t , t ≥ 0} be standard fBm with Hurst parameter H ∈ ( 1

2 , 1),
that is, a Gaussian process with continuous sample paths such that
WH

0 = 0, E(WH
t ) = 0 and

E(WH
s WH

t ) = 1

2
[s2H + t2H − |s − t |2H ], t ≥ 0, s ≥ 0. (5.77)

Let us consider the SDE

dXt = S(Xt ) dt + ε dWH
t , X0 = x0, 0 ≤ t ≤ T (5.78)
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where the function S(.) is unknown. The problem is to estimate the function
S(.) based on the observation {Xt, 0 ≤ t ≤ T }. Suppose {xt , 0 ≤ t ≤ T } is the
solution of the differential equation

dxt

dt
= S(xt ), x0, 0 ≤ t ≤ T . (5.79)

We assume that the trend coefficient S(Xt ) satisfies the following conditions
which ensure the existence and uniqueness of the solution of Equation (5.78):

(A1): for all N>0, there exists LN>0 such that

|S(Xt ) − S(Yt )| ≤ LN |Xt − Yt |

whenever |Xt | ≤ N and |Yt | ≤ N and t ∈ [0, T ].
(A2): There exists a constant M>0 such that

|S(Xt)| ≤ M(1 + |Xt |), t ∈ [0, T ].

Existence and uniqueness of the solution of the SDE (5.78) follow as a special
case of the results in Nualart and Rascanu (2002).

Lemma 5.8: Let the function S(.) satisfy the conditions (A1) and (A2) and
suppose that LN = L for all N ≥ 1. Let Xt and xt be the solutions of Equations
(5.78) and (5.79) respectively. Then, with probability one,

(a) |Xt − xt |<eLtε|WH
t | (5.80)

and

(b) sup
0≤t≤T

E(Xt − xt )
2 ≤ e2LT ε2T 2H . (5.81)

Proof:

(a) Let ut = |Xt−xt |. Then, by (A1), we have

ut ≤
∫ t

0
|S(Xv) − S(xv)| dv + ε |WH

t |

≤ L

∫ t

0
uvdv + ε |WH

t |. (5.82)

Applying Gronwall’s lemma (cf. Lemma 1.12 in Kutoyants (1994), p. 26),
it follows that

ut ≤ ε|WH
t |eLt . (5.83)
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(b) From (5.81), we have

E(Xt − xt )
2 ≤ e2Ltε2E(|Wt |H )2

= e2Ltε2t2H . (5.84)

Hence

sup
0≤t≤T

E(Xt − xt )
2 ≤ e2LT ε2T 2H . (5.85)

Let �(L) denote the class of trend coefficients S(Xt ) satisfying conditions (A1)

and (A2) with the same constant L. For 0<α ≤ 1, let �α,k denote the class
of non-random functions g(t) defined in the interval [0, T ] which are k-times
differentiable with respect to t and which satisfy the condition

|g(k)(t) − g(k)(s)| ≤ Lα|t − s|α, t, s ∈ [0, T ]

for some constant Lα>0. Here g(k)(t) denotes the k th derivative of g(.) at t

for k ≥ 0. If k = 0, we interpret g(0) as g. Let �1,k(L) be the class of trend
coefficients S(Xt ) belonging to �(L) such that S(xt ) belongs to �1,k when
ε = 0. Let G(u) be a bounded function with finite support [A,B] satisfying the
condition

(A3): G(u) = 0 for u<A and u>B, and
∫ B

A
G(u)du = 1.

It is obvious that the following conditions are satisfied by the function G(.):

(i)
∫∞
−∞ G2(u)du<∞;

(ii)
∫∞
−∞ u2(k+1)G2(u)du<∞; and

(iii)
∫∞
−∞ (G(u))1/H du<∞.

Following the procedure adapted in Kutoyants (1994), we define a kernel-type
estimator of the trend S(Xt ) as

Ŝt = 1

ϕε

∫ T

0
G

(
τ − t

ϕε

)
dXτ (5.86)

where the normalizing function ϕε → 0 with ε2ϕ−1
ε → 0 as ε → 0.

Theorem 5.9: Suppose that the trend function S(Xt ) ∈ �(L) and the function
ϕε → 0 such that ε2ϕ−1

ε −→ 0 as ε → 0. Suppose the conditions (A1), (A2)

and (A3) are satisfied. Then, for any 0<c ≤ d<T , the estimator Ŝt is uniformly
consistent, that is,

lim
ε→0

sup
S(Xt )∈�(L)

sup
c≤t≤d

ES(|Ŝt − S(xt )|2) = 0. (5.87)

In addition to the conditions (A1)−(A3), assume that
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(A4):
∫∞
−∞ ujG(u)du = 0 for j = 1, 2, . . . , k.

Theorem 5.10: Suppose that the function S(xt ) ∈ �1,k(L) and ϕε = ε1/(k−H+2).
Then, under the conditions (A1), (A2), (A3) and (A4),

lim sup
ε→0

sup
S(x)∈�1,k(L)

sup
c≤t≤d

ES(|Ŝt − S(xt )|2)ε−2(k+1)/(k−H+2)<∞. (5.88)

Theorem 5.11: Suppose that the function S(xt ) ∈ �1,k+1(L) and ϕε =
ε1/(k−H+2). Then, under the conditions (A1), (A2), (A3) and (A4), the
asymptotic distribution of

ε−(k+1)/(k−H+2)(Ŝt − S(xt ))

is Gaussian with the mean

m = S(k+1)(xt )

(k + 1)!

∫ ∞

−∞
G(u)uk+1du

and the variance

σ 2 = H(2H − 1)

∫ ∞

−∞

∫ ∞

−∞
G(u)G(v)|u − v|2H−2dudv

as ε → 0.

Suppose the trend function S(0)(Xt ) ∈ �1,k(L/2). Fix t0 ∈ (0, T ] and 0 ≤
t ≤ T . Suppose the function gt(v, Xt ) ∈ �1,k+1(L/2) where

gt0(0, xt ) = 1

gt0(v, xt ) = 0 if |v|>1

2
.

Here x = {xs, 0 ≤ s ≤ t} is a solution of Equation (5.79) with S(xt ) = S(0)(xt )

and suppose that

γ =
∫ 1/2

−1/2
[gt0(v, xt )]

2dv>0. (5.89)

Let

S(ε)(θ, Xt ) = S(0)(Xt ) + θε(k+1)/(k−H+2)gt0(γ (t − t0)ε
−2(1−H)/(k−H+2), Xt )

(5.90)
where θ ∈ � = {θ : |θ−θ0|<γ }. Consider the family of processes

dXt = S(ε)(θ,Xt )dt + ε dWH
t , X0 = x0, 0 ≤ t ≤ T , θ ∈ �. (5.91)
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Then, we have

dXt = (S(0)(Xt )+θε(k+1)/(k−H+2)gt0(γ (t − t0)ε
−2(1−H)/(k−H+2), Xt ))dt+ε dWH

t .

(5.92)

Following the notation introduced in Chapter 1, let

cH = 2H�

(
3

2
− H

)
�

(
H + 1

2

)
,

kH (t, u) = c−1
H u

1
2 −H (t − u)

1
2 −H ,

λH = 2 �(3 − 2H) �(H + 1
2 )

�( 3
2 − H)

,

wH
t = λ−1

H t2−2H ,

and

QH,θ (t) = d

dwH
t

1

ε

∫ t

0
kH (t, s)S(ε)(θ, Xs)ds. (5.93)

Suppose the sample paths of the process {QHθ(t), 0 ≤ t ≤ T } belong a.s. to
L2(0, T ). Define

Zt = 1

ε

∫ t

0
kH (t, s)dXs, t ≥ 0 (5.94)

Then the process Z = {Zt, t ≥ 0} is an Ft -semimartingale with the
decomposition

Zt =
∫ t

0
QH,θ (s)dwH

s + MH
t (5.95)

where {MH
t ,Ft , t ≥ 0} is the fundamental martingale as described in Kleptsyna

and Le Breton (2002a). Note that

QH,θ (t) = d

dwH
t

1

ε

∫ t

0
kH (t, s)S(ε)(θ, Xs)ds

= d

dwH
t

1

ε

∫ t

0
kH (t, s)(S(0)(Xs)

+ θε(k+1)/(k−H+2)gt0(γ (s − t0)ε
−2(1−H)/(k−H+2), Xs))ds

= J1(t) + θJ2(t) (say). (5.96)
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Then

dZt = [J1(t) + θJ2(t)] dwH
t + dMH

t . (5.97)

Let {P (ε)
θ , θ ∈ �} be the family of probability measures induced on the space

C[0,T ], the space of continuous functions in the interval [0, T ] endowed with
Borel σ -algebra generated by the supremum norm. Following Kleptsyna and
Le Breton (2002a), it follows that the probabilitymeasures P

(ε)

θ0+uA
−1/2
ε

and P
(ε)
θ0

are absolutely continuous with respect to each other and their Radon–Nikodym
derivative is given by

dP
(ε)

θ0+uA
−1/2
ε

dP
(ε)
θ0

(X) = exp

[
uA

− 1
2

ε

∫ T

0
J2(t)dMH

t − 1

2
u2A−1

ε

∫ T

0
J 2

2 (t)dwH
t

]

= exp

[
uA

− 1
2

ε ε(H−1)/(k−H+2)

∫ T

0
J ∗

2 (t)dMH
t

− 1

2
u2A−1

ε ε2(H−1)/(k−H+2)

∫ T

0
(J ∗

2 (t))2dwH
t

]
. (5.98)

where Aε is a positive non-random function and

J ∗
2 (t) = d

dwH
t

∫ t

0
kH (t, s)gt0(γ (s − t0)ε

2(H−1)/(k−H+2), Xs)ds. (5.99)

Denote

RT,ε =
∫ T

0
J ∗

2 (t)dMH
t (5.100)

and its quadratic variation 〈R〉T ,ε is

IT ,ε(θ0) =
∫ T

0
(J ∗

2 (t))2dwH
t . (5.101)

Then the representation (5.98) can be written as

dP
(ε)

θ0+uA
− 1

2
ε

dP
(ε)
θ0

(X)

= exp

(
u

A
1
2
ε ε(1−H)/(k−H+2)

RT ,ε − 1

2

u2

Aεε2(1−H)/(k−H+2)
IT ,ε(θ0)

)
. (5.102)

Assume that:

(A5)(i): Aεε
2(1−H)/(k−H+2) → ∞ as ε → 0;
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(A5)(ii): P
(ε)
θ0

{∣∣∣∣ IT ,ε(θ0)

A
1/2
ε ε(1−H)/(k−H+2)

−1

∣∣∣∣ ≥ δε

}
= O

(
δ

1/2
ε

)
where δε −→ 0

as ε → 0;

(A5)(iii): limε→0
IT ,ε(θ0)

A
1/2
ε ε(1−H)/(k−H+2)

= 1 a.s. (Pθ0).

Let �(.), the loss function, satisfy the following conditions:

(a) �(.) is non negative, continuous at zero and �(0) = 0;
(b) symmetric, that is, �(y) = �(−y); and

(c) the set {y : �(y) ≤ c} is convex for all c>0.

We will prove the following result.

Theorem 5.12: Let �(.) be the loss function as defined above and suppose that
the trend coefficient S(.) ∈ �1,k(L). Then, under the conditions (A1)−(A5),

lim inf
ε→0

inf
S∗
t0

sup
S∈�1,k(L)

Es�(ε
−(k+1)/(k−H+2)(S∗

t0
− S(xt0)))>0. (5.103)

The infimum here has been taken over all possible estimators S∗
t0

of the function
S(xt ) at the point t0.

Proof of Theorem 5.9: From (5.89) we have

ES[(Ŝt − S(xt ))
2] = ES

[
1

ϕε

∫ T

0
G

(
τ − t

ϕε

)
(S(Xτ ) − S(xτ )) dτ

+ 1

ϕε

∫ T

0
G

(
τ − t

ϕε

)
S(xτ )dτ − S(xt )

+ ε

ϕε

∫ T

0
G

(
τ − t

ϕε

)
dWH

τ

]2

≤ 3ES

[
1

ϕε

∫ T

0
G

(
τ − t

ϕε

)
(S(Xτ ) − S(xτ ))dτ

]2

+3ES

[
1

ϕε

∫ T

0
G

(
τ − t

ϕε

)
S(xτ )dτ − S(xt )

]2

+3ε2

ϕε2
ES

[∫ T

0
G

(
τ − t

ϕε

)
dWH

τ

]2

= I1 + I2 + I3(say). (5.104)



NONPARAMETRIC INFERENCE FOR PROCESSES DRIVEN BY fBm 137

Note that

I1 = 3ES

[
1

ϕε

∫ T

0
G

(
τ − t

ϕε

)
(S(Xτ ) − S(xτ ))dτ

]2

= 3ES

[∫ ∞

−∞
G(u)

(
S(Xt+ϕεu) − S(xt+ϕεu)

)
du

]2

≤ 3(B − A)

∫ ∞

−∞
G2(u)L2E

(
Xt+ϕεu − xt+ϕεu

)2
du

(by using the condition (A1))

≤ 3(B − A)

∫ ∞

−∞
G2(u)L2 sup

0≤t+ϕεu≤T

E
(
Xt+ϕεu − xt+ϕεu

)2
du

≤ C1ε
2 (by using (5.85)) (5.105)

for some positive constant C1 depending on H,T , L and B−A. Furthermore,

I2 = 3ES

[
1

ϕε

∫ T

0
G

(
τ − t

ϕε

)
S(xτ )dτ − S(xt )

]2

≤ 3L2ES

[∫ ∞

−∞
G(u)

(
S(xt+ϕεu) − S(xt )

)
du

]2

≤ 3

[∫ ∞

−∞
G(u)uϕεdu

]2

≤ C2ϕ
2
ε

∫ ∞

−∞
G2(u)u2du

≤ C3ϕ
2
ε (by (A3)(ii)) (5.106)

for some positive constant C3 depending on T ,L and B−A. Furthermore, the
last term tends to zero as ε → 0. In addition, for 1

2<H<1,

I3 = 3ε2

ϕε2
ES

(∫ T

0
G

(
τ − t

ϕε

)
dWH

τ

)2

≤ 3ε2

ϕ2
ε

C4(2, H)

{∫ T

0

[
G

(
τ − t

ϕε

)]1/H

dτ

}2H

( cf. Memin et al. (2001))

≤ C5ε
2

ϕ2
ε

ϕ2H
ε ((by using (A3)(iii))

= C6
ε2

ϕε

ϕ2H−1
ε (5.107)
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for some positive constant C6 depending on H and T . Theorem 5.9 is now
proved by using Equations (5.103) to (5.106).

Proof of Theorem 5.10: By Taylor’s formula,

S(xt+ϕεu) = S(xt ) +
k∑

j=1

S(j)(xt )
(ϕεu)j

j !
+ [S(k)(xt+τ(ϕεu)) − S(k)(xt )

] (ϕεu)k

k!

(5.108)
for some 0 ≤ τ ≤ 1. Using this expansion in I2 defined in the proof of Theorem
5.9 and using the conditions (A4) and (A5), we obtain that, for sufficiently
small ε,

I2 ≤ 3ES

[∫ ∞

−∞
G(u)

(
S(xt+ϕεu) − S(xt )

)
du

]2

= 3ES

 k∑
j=1

S(j)(xt )

(∫ ∞

−∞
G(u)ujdu

)
ϕj

ε (j !)−1

+
(∫ ∞

−∞
G(u)uk(S(k)(xt+τϕεu) − S(k)(xt ))du

)
ϕk

ε (k!)−1
]2

≤ C7L
2ES

[∫ ∞

−∞
G(u)uk+1ϕk+1

ε (k!)−1du

]2

≤ C8(B − A)(k!)−2ϕ2(k+1)
ε

∫ ∞

−∞
G2(u)u2(k+1)du ≤ C9ϕ

2(k+1)
ε (5.109)

for some positive constant C9 depending on H, T ,L and B−A. Combining the
relations (5.104), (5.106) and (5.108),we get that there exists a positive constant
C depending on H, T , L and B−A such that

sup
c≤t≤d

ES |Ŝt − S(xt )|2 ≤ C(ε2ϕ2H−2
ε + ϕ2(k+1)

ε + ε2). (5.110)

Choosing ϕε = ε1/(k−H+2), we get

lim sup
ε→0

sup
S(x)∈�1,k(L)

sup
c≤t≤d

ES |S̃t − S(xt )|2ε−2(k+1)/(k−H+2)<∞. (5.111)

This completes the proof of Theorem 5.10.

Remarks: Choosing ϕε = ε1/(2−H) and without assuming condition (A4), it can
be shown that

lim sup
ε→0

sup
S(x)∈�1,0(L)

sup
c≤t≤d

ES |Ŝt − S(xt )|2ε−2/(2−H)<∞ (5.112)

which gives a slower rate of convergence than the one obtained in Theorem 5.10.
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Proof of Theorem 5.11: From (5.89), we obtain that

Ŝt − S(xt ) =
[

1

ϕε

∫ T

0
G

(
τ − t

ϕε

)
(S(Xτ ) − S(xτ ))dτ

+ 1

ϕε

∫ T

0
G

(
τ − t

ϕε

)
S(xτ )dτ − S(xt )

+ ε

ϕε

∫ T

0
G

(
τ − t

ϕε

)
dWH

τ

]
=
[∫ ∞

−∞
G(u)(S(Xt+ϕε u) − S(xt+ϕεu))du

+
∫ ∞

−∞
G(u)(S(xt+ϕεu) − S(xt ))du

+ ε

ϕε

∫ T

0
G

(
τ − t

ϕε

)
dWH

τ

]
. (5.113)

Let ϕε = ε1/(k−H+2) and

[Ŝt − S(xt )] = R1 + R2 + R3 (say). (5.114)

By Taylor’s formula

S(xt+ϕεu) = S(xt ) +
k∑

j=1

S(j)(xt )
(ϕεu)j

j !

+S(k+1)(xt )

(k + 1)!
(ϕεu)k+1 + [S(k+1)(xt+τ(ϕεu))

−S(k+1)(xt )
] (ϕεu)k+1

(k + 1)!
. (5.115)

In view of relation (5.113), applying condition (A4), we get

ES(R2 − m)2 = ES

[∫ ∞

−∞
G(u)

(
S(k+1)(xt+τ(ϕεu)) − S(k+1)(xt )

) (ϕεu)k+1

(k + 1)!
du

]2

≤ C10L
2ES

(∫ ∞

∞
G(u)u(k+2) ϕk+2

ε

(k + 1)!
du

)2

(by (A3))

≤ C11ϕ
2(k+2)
ε (by (A3)) (5.116)

for some positive constant C11 depending on T , L, H and B−A. Therefore

ε−2(k+1)/(k−H+2)ES(R2 − m)2 → 0 as ε → 0. (5.117)
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Furthermore,

0 ≤ ε−2(k+1)/(k−H+2)ES[R2
1] = ε−2(k+1)/(k−H+2)O(φ2(k+2)

ε )

by arguments similar to those given for proving the inequality (5.116). Hence

ε−2(k+1)/(k−H+2)ES[R2
1] → 0 as ε → 0. (5.118)

In addition, it follows that ES[R2
3] is finite by (A3)(iii) and the variance of the

Gaussian random variable ∫ ∞

−∞
G(t)dWH

t

is

H(2H − 1)

∫ ∞

−∞

∫ ∞

−∞
G(u)G(v)|u − v|2H−2dudv

by Equation (1.23) in Chapter 1. Combining these observations, an application
of Slutsky’s lemma proves Theorem 5.11.

Proof of Theorem 5.12: From the results on the representation of locally
continuous square integrable martingales (cf. Ikeda and Watanabe (1981),
Chapter II, Theorem 7.2), it follows that there exists a standard Wiener process
{W ∗(t), t ≥ 0} adapted to the filtration {Ft , t ≥ 0} such that

Rt,ε

A
1
2
ε ε(1−H)/(k−H+2)

= W ∗
(

It,ε(θ0)

A
1
2
ε ε(1−H)/(k−H+2)

)
, t ≥ 0 a.s.(Pθ0). (5.119)

Hence Equation (5.98) can be written as

log

dP
(ε)

θ0+uA
− 1

2
ε

dP
(ε)
θ0

= uW ∗
(

It,ε(θ0)

A
1
2
ε ε(1−H)/(k−H+2)

)
− u2

2
. (5.120)

Now ∣∣∣∣∣P
{

W ∗
(

It,ε(θ0)

A
1
2
ε ε(1−H)/(k−H+2)

)
≤ x

}
− �(x)

∣∣∣∣∣
≤ (2δε)

1
2 + P

{∣∣∣∣ It,ε(θ0)

A
1
2 ε(1−H)/(k−H+2)

− 1

∣∣∣∣ ≥ δε

}
≤ (2δε)

1
2 + ψδε (θ0) = O(δ1/2

ε ) (5.121)
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by the condition (A5) where δε → 0 as ε → 0. Therefore

W ∗
(

It,ε(θ0)

A
1
2 ε(1−H)/(k−H+2)

)
∼ N(0, 1) (5.122)

and hence, from Equation (5.98), we get

log

dP
(ε)

θ0+uA
− 1

2
ε

dPθ0

= u�ε − u2

2
+ ψδε (θ0) (5.123)

where �ε
L→ N(0, 1) as ε → 0 and limε→0 ψδε (θ0) = 0. Following Remark 2.3

in Kutoyants (1994), p. 44, we can choose functions gt0(0, xt ) and γ>0 such
that

lim inf
ε→0

sup
|θ−θ0|<γ

Eθ [�(θε − θ)] ≥ 1

2
√

2π

∫
�(y)ε−y2/2dy. (5.124)

Let S∗
t be any estimator of S(ε)(θ, xt ). Let

θ∗
ε = [S∗

t0
− S(0)(Xt0)][gt0(0, Xt0)]

−1ε−(k+1)/(k−H+2).

Then

sup
S(.)∈�1,k(L)

ES[�(ε−(k+1)/(k−H+2)(S∗
t0

− S(xt0)))]

≥ sup
|θ−θ0|<γ

ES[�(ε−(k+1)/(k−H+2)(S∗
t0

− S(ε)(θ, xt0)))]

≥ sup
|θ−θ0|<γ

Eθ [�(θ∗
ε − θ + O(1))]

≥ 1

2
√

2π

∫
�(y)ε−y2/2dy (5.125)

following the arguments given by Kutoyants (1994), p. 151. Hence

lim inf
ε→0

inf
S∗
t0

sup
S∈�1,k(L)

Es�
(
ε−(k+1)/(k−H+2)(S∗

t0
− S(xt0))

)
>0. (5.126)

This proves Theorem 5.12.

Remarks: Since the trend coefficient S(ε)(θ, Xt ) ∈ �1,k(L), we can apply
Theorem 5.10 for the function �(u) = u2 and obtain that the estimator Ŝt has an
asymptotically optimal rate of convergence when ϕε = ε1/(k−H+2).

The results discussed in this section are due to Mishra and Prakasa Rao (2009a).





6

Parametric inference
for some SDEs driven
by processes related to fBm

6.1 Introduction

We studied parametric and nonparametric inference for some processes driven by
fBm in earlier chapters. We now consider extensions of these results and other
problems related to processes driven by fBm or mixed fBm. We will also discuss
the problem of estimation for translation of a process driven by fBm.

6.2 Estimation of the translation of a process
driven by fBm

Baran and Pap (2003) considered the problem of estimation of the mean for the
translation of an Ornstein–Uhlenbeck process. We now consider similar prob-
lems for processes governed by SDEs driven by fBm. Among other things, we
obtain sufficient conditions for the absolute continuity of the measures gener-
ated by a stochastic process {Y (t), 0 ≤ t ≤ T } driven by fBm with Hurst index
H ∈ (0, 1) and its translation {Ỹ (t), 0 ≤ t ≤ T }, with Ỹ (t) = Y (t) + g(t) and
g(t) non-random, and obtain the Radon–Nikodym derivative in case the measures
are absolutely continuous. As a consequence we study the maximum likelihood
estimation of the parameter m when the function g(t) = m h(t) with a known
function h(.) satisfying h(0) = 0 and unknown parameter m. We consider the

Statistical Inference for Fractional Diffusion Processes B. L. S. Prakasa Rao
 2010 John Wiley & Sons, Ltd
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special case of the fractional Ornstein–Uhlenbeck-type process with Hurst index
H ∈ ( 1

2 , 1) in more detail. Hu (2001) studied the prediction and translation prob-
lems for fBm using fractional calculus methods. However, our approach to the
problem is via the techniques developed by Kleptsyna et al. (2000a). Norros
et al. (1999) considered the case of constant drift or equivalently the case when
Ỹ (t) = Y (t) + mt and derived the MLE of the parameter m when Y is fBm with
Hurst index H ∈ [ 1

2 , 1). Results in this section are due to Prakasa Rao (2005c).

Preliminaries

Suppose a process {Y (t), t ≥ 0} satisfies the SDE

dY (t) = C(t)dt + B(t)dWH
t , Y (0) = 0, t ≥ 0

where C = {C(t), t ≥ 0} is an (Ft )-adapted process, B(t) is a known nonzero,
non-random function and WH is standard fBm with known Hurst index H .
Consider now the process

Ỹ (t) = Y (t) + g(t), t ≥ 0

where g(.) is an absolutely continuous function with g(0) = 0. Note that the
function g(.) is almost everywhere differentiable. Let g′(t) denote the derivative
of g(t) wherever it exists and define it to be zero elsewhere. Then the process
Ỹ (t) satisfies the integral equation

Ỹ (t) = g(t) +
∫ t

0
C(s)ds +

∫ t

0
B(s)dWH

s , t ≥ 0. (6.1)

For convenience, we write the above integral equation in the form of a SDE

dỸ (t) = (C(t) + g′(t))dt + B(t)dWH
t , Ỹ (0) = 0, t ≥ 0 (6.2)

driven by fBm WH . Let

C̃(t) = C(t) + g′(t) (6.3)

and define

Q̃H (t) = d

dwH
t

∫ t

0
kH (t, s)

C̃(s)

B(s)
ds, QH(t) = d

dwH
t

∫ t

0
kH (t, s)

C(s)

B(s)
ds

(6.4)

for t ≥ 0. Observe that

Q̃H (t) = QH(t) + d

dwH
t

∫ t

0
kH (t, s)

g′(s)
B(s)

ds

= QH(t) + g∗
H,B(t) (say). (6.5)
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Let

Zt =
∫ t

0
QH(s)dwH

s + MH
t , t ≥ 0

or equivalently

dZt = QH(t)dwH
t + dMH

t , Z(0) = 0, t ≥ 0

where MH is the fundamental Gaussian martingale defined in (1.73) of Chapter 1
with 〈MH 〉t = wH

t .
Suppose the function g(.) is such that the sample paths of the process Q̃H

defined by (6.5) belong P -a.s. to L2([0, T ], dwH ). Define

̃H (T ) = exp

[
−
∫ T

0
Q̃H (t) dMH

t − 1

2

∫ t

0
Q̃2

H (t)dwH
t

]
. (6.6)

Suppose that E(̃H (T )) = 1. As an application of Theorem 1.20 of Chapter 1,
we get that the measure P̃ ∗ = ̃H (T )P is a probability measure and the proba-
bility measure of the process Ỹ under P̃ ∗ is the same as that of the process V

defined by

Vt =
∫ t

0
B(s)dWH

s , 0 ≤ t ≤ T .

Hence we obtain the following result.

Theorem 6.1: Let P̃ ∗
T and P ∗

T be the probability measures generated by the
processes Ỹ and Y respectively in the interval [0, T ]. Then the measures are abso-
lutely continuous with respect to each other and the Radon–Nikodym derivative
of P̃ ∗

T with respect to P ∗
T is given by

dP̃ ∗
T

dP ∗
T

= exp

{
−
∫ T

0
[Q̃H (t) − QH (t)]dMH

t − 1

2

∫ t

0
[Q̃2

H (t) − Q2
H (t)]dwH

t

}
.

(6.7)

Maximum likelihood estimation of translation

Let us now suppose that g(t) = m h(t) with h(0) = 0 and suppose that the func-
tions h(.) and B(.) are known and h(.) is differentiable everywhere but the
constant m is unknown . The problem is to estimate the parameter m based on
the observation {Ỹt , 0 ≤ t ≤ T }. Observe that

Q̃H (t) = QH(t) + m

(
d

dwH
t

∫ t

0
kH (t, s)

h′(s)
B(s)

ds

)
= QH(t) + m h∗

H,B(t)

= QH(t) + m h∗∗(t) (say). (6.8)
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Following the notation used above, it can be seen that

Z̃t =
∫ t

0
Q̃H (s)dwH

s + MH
t , t ≥ 0. (6.9)

Observe that

dZ̃t = dZt + m h∗∗(t)dwH
t , t ≥ 0.

Applying Theorem 6.1, we get

dP̃ ∗
T

dP ∗
T

= exp

{
−m

∫ T

0
h∗∗(t)dMH

t − 1

2

∫ T

0
[2mQ̃H (t)h∗∗(t) − m2(h∗∗(t))2]dwH

t

}
= exp

{
−m

∫ T

0
h∗∗(t)(dZ̃t − Q̃H (t)dwH

t )

−1

2

∫ T

0
[2mQ̃H(t)h∗∗(t) − m2(h∗∗(t))2]dwH

t

}
= exp

{
−m

∫ T

0
h∗∗(t)dZ̃t + 1

2
m2
∫ T

0
(h∗∗(t))2dwH

t

}
. (6.10)

Suppose that

0 <

∫ T

0
(h∗∗(t))2dwH

t < ∞

for all T ≥ 0, and

0 <

∫ ∞

0
(h∗∗(t))2dwH

t = ∞. (6.11)

Then we obtain that the MLE of m based on the process {Ỹ (t), 0 ≤ t ≤ T } is
given by

m̂T =
∫ T

0 h∗∗(t)dZ̃t∫ T

0 (h∗∗(t))2dwH
t

. (6.12)

Remarks: Observe that the estimator m̂T does not directly depend on the process
{C(t)} but through observation of the process {Z̃t , 0 ≤ t ≤ T }.
Suppose m0 is the true value of m. Then it follows that

m̂T − m0 =
∫ T

0 h∗∗(t)dZt∫ T

0 (h∗∗(t))2dwH
t

(6.13)

=
∫ T

0 h∗∗(t)dMH
t∫ T

0 (h∗∗(t))2dwH
t

+
∫ T

0 h∗∗(t)QH (t)dwH
t∫ T

0 (h∗∗(t))2dwH
t

. (6.14)
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Since the process MH is a martingale with quadratic variation wH , it
follows that ∫ T

0 h∗∗(t)dMH
t∫ T

0 (h∗∗(t))2dwH
t

→ 0

a.s. as T → ∞ by the strong law of large numbers for local martingales given
in Liptser (1980) (cf. Prakasa Rao (1999b)) under condition (6.11). Hence we
have the following result.

Theorem 6.2: Suppose that m0 is the true value of the parameter m. Further
suppose that the following conditions hold:∫ T

0 h∗∗(t)QH (t)dwH
t∫ T

0 (h∗∗(t))2dwH
t

→ 0

as T → ∞ and ∫ ∞

0
(h∗∗(t))2dwH

t = ∞.

Then the estimator m̂T of m defined by Equation (6.12) is strongly consistent.

Suppose that h(t) ≡ t in the above discussion, which reduces to the constant drift
case. Then

h∗∗(t) = d

dwH
t

∫ t

0
kH (t, s)

1

B(s)
ds (6.15)

and the corresponding estimator m̂T for the parameter m can be computed using
Equation (6.12) once the function B(.) is known.

Fractional Ornstein–Uhlenbeck-type process

As a special case of the results obtained here, we now consider the problem
of estimation of translation for the fractional Ornstein–Uhlenbeck-type process.
Suppose the process {Yt , t ≥ 0} satisfies the stochastic integral equation

Yt = θ

∫ t

0
Ysds + σWH

t , t ≥ 0 (6.16)

or equivalently the SDE

dYt = θYtdt + σdWH
t , Y0 = 0, t ≥ 0 (6.17)

with known Hurst index H ∈ [ 1
2 , 1). Further suppose that we observe the process

{Ỹt , 0 ≤ t ≤ T } where Ỹt = Yt + m h(t) with h(0) = 0. In addition, assume
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that the function h(.) is known and everywhere differentiable and satisfies the
condition

0 <

∫ T

0
(h∗∗(t))2dwH

t < ∞,

but the parameter m is unknown . The problem is to estimate the parameter m

based on observation of the process {Ỹt , 0 ≤ t ≤ T }. Following the results given
above, we obtain that

m̂T =
∫ T

0 h∗∗(t)dZ̃t∫ T

0 (h∗∗(t))2dwH
t

(6.18)

where

dZ̃t = Q̃H (t)dwH
t + dMH

t

= (QH (t) + mh∗∗(t))dwH
t + dMH

t

= dZt + mh∗∗(t)dwH
t , (6.19)

Q̃H (t) = d

dwH
t

∫ t

0
kH (t, s)

θYs + mh′(s)
σ

ds,

QH (t) = d

dwH
t

∫ t

0
kH (t, s)

θYs

σ
ds (6.20)

and

h∗∗(t) = d

dwH
t

∫ t

0
kH (t, s)

h′(s)
σ

ds. (6.21)

Suppose m0 is the true value of m. Then it follows that

m̂T − m0 =
∫ T

0 h∗∗(t)dZt∫ T

0 (h∗∗(t))2dwH
t

. (6.22)

It is easy to see that the solution of the SDE (6.17) is given by

Yt = σ

∫ t

0
eθ(t−u)dWH

u , t ≥ 0. (6.23)

Hence the process {Yt , t ≥ 0} with Y0 = 0 is a zero-mean Gaussian process with
the covariance function given by

Cov(Yt , Ys) = σ 2E

{∫ t

0
eθ(t−u)dWH

u

∫ s

0
eθ(s−v)dWH

v

}
= σ 2H(2H − 1)eθ(t+s)

∫ t

0

∫ s

0
e−θue−θv|u − v|2H−2dvdu. (6.24)
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This follows from results in Chapter 1 (cf. Pipiras and Taqqu (2000)). From
the representation (6.23), we obtain that {Zt, t ≥ 0} is a zero-mean Gaussian
process. Hence it follows, from the representation given by (6.22), that m̂T −m0

has a Gaussian distribution with mean zero and variance given by

V ar(m̂T ) = E(
∫ T

0 h∗∗(t)dZt )
2

(
∫ T

0 (h∗∗(t))2dwH
t )2

(6.25)

and we have the following theorem.

Theorem 6.3: Suppose that the stochastic process Ỹt = Yt + m h(t), t ≥ 0,
where Yt is a fractional Ornstein–Uhlenbeck-type process defined by (6.17).
Further suppose that the process Ỹt is observed over the interval [0, T ] and
that the function h(t) is known. Let m̂T be the MLE of the parameter m based
on the observed process and let m0 be the true value of the parameter m.
Then m̂T −m0 has a Gaussian distribution with mean zero and variance given
by (6.25).

It is obvious that the estimator m̂T is a consistent estimator for m0 if V ar(m̂T ) →
0 as T → ∞. Observe that∫ T

0
h∗∗(t)dZt =

∫ T

0
h∗∗(t)QH (t)dwH

t +
∫ T

0
h∗∗(t)dMH

t (6.26)

and hence

E

(∫ T

0
h∗∗(t)dZt

)2

= V ar

(∫ T

0
h∗∗(t)dZt

)

= V ar

(∫ T

0
h∗∗(t)QH (t)dwH

t

)
+V ar

(∫ T

0
h∗∗(t)dMH

t

)

+ 2 Cov

(∫ T

0
h∗∗(t)QH (t)dwH

t ,

∫ T

0
h∗∗(t)dMH

t

)

= V ar

(∫ T

0
h∗∗(t)QH (t)dwH

t

)

+ 2 Cov

(∫ T

0
h∗∗(t)QH (t)dwH

t ,

∫ T

0
h∗∗(t)dMH

t

)

+
∫ T

0
(h∗∗(t))2dwH

t . (6.27)
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Therefore

V ar(m̂T ) =
V ar(

∫ T

0 h∗∗(t)QH (t)dwH
t ) + 2 Cov(

∫ T

0 h∗∗(t)QH (t)dwH
t ,
∫ T

0 h∗∗(t)dMH
t )

(
∫ T

0 (h∗∗(t))2dwH
t )2

+ 1∫ T

0 (h∗∗(t))2dwH
t

. (6.28)

Suppose that h(t) ≡ t in the above discussion. Then the problem reduces to the
constant drift case. Then

h∗∗(t) = 1

σ

d

dwH
t

∫ t

0
kH (t, s)ds = 1

σ
(6.29)

and the corresponding estimator m̂T for the parameter m can be computed using
Equation (6.18) once the constant σ is known. In fact

m̂T = σ
Z̃T

wH
T

, (6.30)

m̂T − m0 = σ
ZT

wH
T

. (6.31)

Furthermore,

V ar(m̂T )

= σ 2 V ar(
∫ T

0 QH(t)dwH
t ) + 2 Cov(

∫ T

0 QH (t)dwH
t ,MH

T )

(wH
T )2

+ σ 2 1

wH
T

≤ σ 2 E(
∫ T

0 QH (t)dwH
t )2 + 2 {[V ar(

∫ T

0 QH (t)dwH
t )][V ar(MH

T )]}1/2

(wH
T )2

+ σ 2 1

wH
T

≤ σ 2 E(
∫ T

0 Q2
H (t)dwH

t )wH
T + 2 {[E(

∫ T

0 QH (t)dwH
t )2][V ar(MH

T )]}1/2

(wH
T )2

+ σ 2 1

wH
T

≤ σ 2 E(
∫ T

0 Q2
H (t)dwH

t )wH
T + 2 {[E(

∫ T

0 Q2
H (t)dwH

t )wH
T ][V ar(MH

T )]}1/2

(wH
T )2

+ σ 2 1

wH
T

≤ σ 2DH

E(
∫ T

0 Q2
H(t)dwH

t ) + {E(
∫ T

0 Q2
H (t)dwH

t )}1/2

wH
T

+ σ 2 1

wH
T

(6.32)

for some constant DH > 0 from the representation (1.73) in Chapter 1 and an
application of the Cauchy–Schwartz inequality and Fubini’s theorem. We have
also used the observation that

V ar(MH
T ) = CH T 2−2H = O(wH

T )
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for some constant CH > 0. This can be checked from the results in Section 2 or
from Theorem 3.1 in Norros et al. (1999). If a bound on the term

E

(∫ T

0
Q2

H (t)dwH
t

)
can be obtained as a function of T , then it is possible to obtain an upper bound
on the variance term given above. It is possible to get an explicit expression for

�T (θ; a) = E

[
exp

(
−a

∫ T

0
Q2

H (t)dwH
t

)]
, a > 0

as given in Proposition 3.2 of Kleptsyna and Le Breton (2002a) and hence

E

(∫ T

0
Q2

H (t)dwH
t

)
= − lim

a→0+ � ′
T (θ : a).

It is known from the arguments given in Kleptsyna and Le Breton (2002a) that∫ T

0
Q2

H (t)dwH
t → ∞ a.s. as T → ∞.

However, explicit computation of the expectation defined above seems to be
difficult. If

E

(∫ T

0
Q2

H (t)dwH
t

)
= o(wH

T )

as T → ∞, then we obtain that

V ar(m̂T ) → 0 as T → ∞

and hence m̂T

p→ m0 as T → ∞ since E(m̂T ) = m0 for all T . Hence m̂T is a
consistent estimator of m0 under the above conditions.

An alternate way of viewing Equation (6.31) is by writing it in the form

wH
T (m̂T − m0)

σ
= ZT = 1

σ

∫ T

0
kH (T , s)dYs (6.33)

or equivalently

wH
T (m̂T − m0) =

∫ T

0
kH (T , s)dYs (6.34)

which in turn shows that the distribution of the estimator m̂T is normal with
mean m0 and variance

(wH
T )−2E

[∫ T

0
kH (T , s)dYs

]2

.
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Remarks: If the parameter θ = 0, then the process {Yt , t ≥ 0} reduces to fBm
and

V ar(m̂T ) = σ 2 1

wH
T

= σ 2λH T 2H−2 (6.35)

from (1.72) of Chapter 1 and the definition of the process {QH (t), t ≥ 0}. Since
the Hurst index H ∈ [ 1

2 , 1), it follows that

V ar(m̂T ) → 0 as T → ∞. (6.36)

Combining this observation with the fact that E(m̂T ) = m0, it follows that m̂T

p→
m0 as T → ∞. In other words, the estimator m̂T is a consistent estimator for
m0. A stronger result also follows from the fact that, in case θ = 0,

m̂T − m0 = σ
MH

T

wH
T

(6.37)

and the last term tends to zero a.s. as T → ∞ by the strong law of large numbers
for martingales (cf. Prakasa Rao (1999b), p. 61) since the quadratic variation of
the martingale MH is wH and wH

T → ∞ as T → ∞. The strong consistency
of the estimator m̂T , for the case of fBm, was proved earlier in Norros et al.
(1999).

Statistical inference from sampled data

We have assumed that the stochastic processes under consideration can be
observed continuously over a specified time period and that statistical inference
was based on either one or many realizations of the process over that time
period. In practice, it is virtually impossible to observe a process continuously
over any given time period, for example, due to limitations on the precision
of the measuring instruments or due to the unavailability of observations at
every time point. Hence statistical inference based on sampled data is of great
importance (cf. Prakasa Rao (1988)). For a discussion on parametric inference
for diffusion-type processes from sampled data, see Prakasa Rao (1999a),
Chapter 3. Except for some minor discussions in the case of inference from
discrete data on fractional Ornstein–Uhlenbeck-type processes, there is no
significant work in this area for fractional diffusion processes. We now discuss a
very special result due to Bertin et al. (2007) on maximum likelihood estimation
based on sampled data.

Suppose {Wt, t ≥ 0} is a standard Wiener process and let

Yt = θt + Wt, 0 ≤ t ≤ T .

with Yt0 = Y0 = 0. Suppose the process Y is observed at times ti , 0 ≤ i ≤ N−1,
with �t = tj+1−tj , 0 ≤ j ≤ N−1. Let Yti = Yi for convenience in notation. The
problem is to estimate the parameter θ based on the observations {Yi, 0 ≤ i ≤ N}
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and study its properties. Observe that

Ytj+1 − Ytj = θ�t + Wtj+1 − Wtj .

The conditional probability density of Yj+1 given Y1, . . . , Yj is the same as
the conditional probability density of Yj+1 given Yj by the Markov property
of the process {Yt , t ≥ 0}. It is given by

fYj+1|Yj
(yj+1|yj ) = (2π�t)−1/2 exp

[
−1

2

(yj+1 − yj − θ�t)2

�t

]
and the likelihood function corresponding to the observations y1, . . . , yn is

L(θ; y1, . . . , yN) = fY1(y1)
∏

fYj+1|Y1,...,Yj
(yj+1|y1, . . . , yj )

= fY1(y1)
∏

fYj+1|Yj
(yj+1|yj )

= (2π�t)−N/2 exp

−1

2

N−1∑
j=0

(yj+1 − yj − θ�t)2

�t

 . (6.38)

It is easy to check that the MLE of θ is given by

θ̂N = 1

N�t

N−1∑
j=0

(Yj+1 − Yj ).

Hence

θ̂N − θ = 1

N�t

N−1∑
j=0

(W(j+1)/N − Wj/N).

Therefore

E|θ̂N − θ |2 = 1

N�t

and the last term converges to zero only if

(C) N�t → ∞ as N → ∞.

Hence the estimator θ̂N is L2-consistent if the condition (C) is satisfied. Note
that the condition stated in (C) does not hold if tj = j/N, 0 ≤ j ≤ N . We need
to observe the process Y at times such that the time interval in between the times
of observations is of the order �t = N−α with 0 < α < 1 so that the condition
(C) holds. Equivalently, if we observe the process at Nα time points with α > 1,
that is, T >Nα−1 with �t = 1/N , then the condition (C) holds and the estimator
θ̂N is L2-consistent for the parameter θ .
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Suppose WH is fBm with 1
2 < H < 1. Consider the process

Yt = θt + WH
t , 0 ≤ t ≤ T

with Yt0 = Y0 = 0. Suppose the process Y is observed at times ti = i/N, 0 ≤
i ≤ Nα−1, with α > 1. Let Yti = Yi for convenience in notation. The problem is
to estimate the parameter θ based on the observations {Yi, 0 ≤ i ≤ Nα−1} and
study its properties. Observe that

Ytj+1 − Ytj = θ�t + WH
tj+1

− WH
tj

.

Since the process WH neither is Markov nor has independent increments, it is
not possible to write down the likelihood function in the form of (6.38) as it
was done in the case of the Wiener process. Suppose we interpret the function
as partial likelihood and write down the partial likelihood function in the form

PL(θ; y1, . . . , yN) = fY1(y1)

Nα−1∏
j=0

fYj+1|Yj
(yj+1|yj ) =

(2π(�t)2H )−Nα/2 exp

−1

2

Nα−1∑
j=0

(yj+1 − yj − θ�t)2

(�t)2H

 . (6.39)

Maximizing the partial likelihood function, we obtain the pseudo-likelihood
estimator for θ as

θ̂N = 1

Nα�t

Nα−1∑
j=0

(Yj+1 − Yj ).

Therefore

θ̂N − θ = N

Nα

Nα−1∑
j=0

(WH
(j+1)/N − WH

j/N). (6.40)

Hence

E|θ̂N − θ |2

= N2−2α

Nα−1∑
i=j=0

E[(WH
(i+1)/N − WH

i/N)(WH
(j+1)/N − WH

j/N)]

= N2−2H−2α + 2N2−2αN−2H
∑
i<j

[|i − j + 1|2H + |i − j − 1|2H − 2|i − j |2H ]
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= N2−2H−2α + 2N2−2αN−2H

Nα∑
k=1

(Nα − k)[|k + 1|2H + |k − 1|2H − 2k2H ]

= N2−2H−2α + 2N2−2αN−2HO(N2Hα). (6.41)

From the bound derived above on the mean square error of the estimator θ̂N , it
follows that the estimator θ̂N is L2-consistent for the parameter θ as N → ∞
since α > 1.

Let us again consider the model

Yt = θt + σWH
t , t ≥ 0

where H > 1
2 is known and θ and σ are unknown parameters to be esti-

mated from observations of the process {Yt , t ≥ 0} at discrete time instants
tk = kh, k = 1, 2, . . . , N , for some fixed h> 0. Then the observation vector is
Y = (Yt1 , Yt2 , . . . , YtN )′. Hu et al. (2009) obtained the MLEs of µ and σ 2 and
studied their asymptotic properties. For convenience, let t = (h, 2h, . . . , Nh)′
and WH

t = (WH
h ,WH

2h, . . . ,W
H
Nh)

′. Then the probability density function of the
random vector Y is

f (y) = (2πσ 2)−N/2|�H |−1/2 exp

[
− 1

2σ 2
(y − θ t)′�−1

H (y − θ t)
]

where

�H = ((cov(WH
ih , WH

jh)))i,j=1,2,...,N .

Note that

cov(WH
ih , WH

jh)) = 1

2
h2H (i2H + j 2H − |i − j |2H ), i, j = 1, 2, . . . , N.

It is easy to check that the MLEs of θ and σ 2 are given by

θ̂N = t′�−1
H Y

t′�−1
H t

(6.42)

and

σ̂ 2
N = 1

N

(Y′�−1
H Y)(t′�−1

H t) − (t′�−1
H Y)2

t′�−1
H t

. (6.43)

The following result is due to Hu et al. (2009).

Theorem 6.4: The estimators θ̂N and σ̂ 2
N are strongly consistent as N → ∞.

Furthermore, √
t′�−1

H t (θ̂N − θ)
L→ N(0, σ 2) (6.44)
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and √
N

2
(σ̂ 2

N − σ 2)
L→ N(0, σ 4) (6.45)

as N → ∞.

For a proof of the asymptotic normality of the estimator σ̂ 2
N , Hu et al. (2009)

use the central limit theorem for stochastic integrals proved in Nualart and Ortiz
(2008) using Malliavin calculus.

6.3 Parametric inference for SDEs with delay
governed by fBm

Gushchin and Kuchler (1999) investigated asymptotic inference for linear SDEs
with a time delay of the type

dX(t) = (aX(t) + bX(t − 1))dt + dWt, t ≥ 0

driven by standard Brownian motion {Wt, t ≥ 0} with the initial condition X(t) =
X0(t), −1 ≤ t ≤ 0, where X0(t) is a continuous process independent of W . They
investigated the asymptotic properties of the MLE of the parameter θ = (a, b).
They showed that the asymptotic behavior of the MLE depends on the ranges of
the values of a and b.

We now consider the linear SDE

dX(t) = (aX(t) + bX(t − 1))dt + dWH
t , t ≥ 0

with a time delay driven by fBm {WH
t , t ≥ 0}. We investigate the asymptotic

properties of the MLE of the parameter θ = (a, b).

Maximum likelihood estimation

Let us consider the SDE

dX(t) = (aX(t) + bX(t − 1))dt + dWH
t , t ≥ 0 (6.46)

where θ = (a, b) ∈ � ⊂ R2 and W = {WH
t , t ≥ 0} is fBm with a known Hurst

parameter H with the initial condition X(t) = X0(t), t ∈ [−1, 0], where X0(.)

is a continuous Gaussian stochastic process independent of WH . In other
words, X = {Xt, t ≥ 0} is a stochastic process satisfying the stochastic integral
equation

X(t) = X(0) +
∫ t

0
[aX(s) + bX(s − 1)]ds + WH

t , t ≥ 0,

X(t) = X0(t), −1 ≤ t ≤ 0. (6.47)



PARAMETRIC INFERENCE FOR SOME SDES 157

Let

C(θ, t) = aX(t) + bX(t − 1), t ≥ 0 (6.48)

and assume that the sample paths of the process {C(θ, t)}, t ≥ 0, are smooth
enough so that the process

QH,θ (t) = d

dwH
t

∫ t

0
kH (t, s)C(θ, s)ds, t ≥ 0 (6.49)

is well defined where wH
t and kH (t, s) are as defined in (1.72) and (1.70) of

Chapter 1 respectively. Suppose the sample paths of the process {QH,θ , 0 ≤ t ≤
T } belong a.s. to L2([0, T ], dwH

t ). Define

Zt =
∫ t

0
kH (t, s)dXs, t ≥ 0. (6.50)

Then the process Z = {Zt, t ≥ 0} is an (Ft )-semimartingale with the decompo-
sition

Zt =
∫ t

0
QH,θ (s)dwH

s + MH
t (6.51)

where MH is the fundamental martingale defined by (1.73) of Chapter 1 and the
process X admits the representation

X(t) = X(0) +
∫ t

0
KH(t, s)dZs, t ≥ 0

X(t) = X0(t), −1 ≤ t ≤ 0 (6.52)

where the function KH is as defined by (1.75) of Chapter 1 with f ≡ 1. Let
P θ

T be the measure induced by the process {Xt, −1 ≤ t ≤ T } on C[−1, T ] when
θ is the true parameter conditional on X(t) = X0(t), −1 ≤ t ≤ 0 . Following
Theorem 1.20 in Chapter 1, we get that the Radon–Nikodym derivative of P θ

T

with respect to P
(0,0)
T is given by

dP θ
T

dP
(0,0)
T

= exp

[∫ T

0
QH,θ (s)dZs − 1

2

∫ T

0
Q2

H,θ (s)dwH
s

]
. (6.53)

We now consider the problem of estimation of the parameter θ = (a, b)

based on observation of the process X = {Xt, 0 ≤ t ≤ T } conditional on
X(t) = X0(t), −1 ≤ t ≤ 0, and study its asymptotic properties as T → ∞.

Let LT (θ) denote the Radon–Nikodym derivative dP θ
T /dP

(0,0)
T . The MLE is

defined by the relation

LT (θ̂T ) = sup
θ∈�

LT (θ). (6.54)
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We assume that there exists a measurable MLE. Sufficient conditions can be
given for the existence of such an estimator (cf. Lemma 3.1.2 in Prakasa Rao
(1987)). Note that

QH,θ (t) = d

dwH
t

∫ t

0
kH (t, s)C(θ, s)ds

= d

dwH
t

∫ t

0
kH (t, s)aX(s)ds + d

dwH
t

∫ t

0
kH (t, s)bX(s − 1)ds

= aJ1(t) + bJ2(t) (say). (6.55)

Then

log LT (θ) =
∫ T

0
(aJ1(t) + bJ2(t))dZt − 1

2

∫ T

0
(aJ1(t) + bJ2(t))

2dwH
t (6.56)

and the likelihood equations are given by∫ T

0
J1(t)dZt = a

∫ T

0
J 2

1 (t)dwH
t + b

∫ T

0
J1(t)J2(t)dwH

t (6.57)

and ∫ T

0
J2(t)dZt = b

∫ T

0
J 2

2 (t)dwH
t + a

∫ T

0
J1(t)J2(t)dwH

t . (6.58)

Solving the above equations, we obtain that the MLE θ̂T of θ = (a, b)′ is
given by

θ̂T = (I 0
T )−1V 0

T (6.59)

where

V 0
T =

(∫ T

0
J1(t)dZt ,

∫ T

0
J2(t)dZt

)
(6.60)

and

I 0
T = ((Iij )) (6.61)

is the observed Fisher information matrix with

Iii =
∫ T

0
J 2

i (t)dwH
t , i = 1, 2 (6.62)

and

I12 = I21 =
∫ T

0
J1(t)J2(t)dwH

t . (6.63)
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We can write the log-likelihood function in the form

log
dP θ

T

dP
(0,0)
T

= θ ′V 0
T − 1

2
θ ′I 0

T θ, θ ∈ R2. (6.64)

Let θ0 = (a, b)′ ∈ R2 be arbitrary but fixed. Let θ = θ0 + φT γ where
γ = (α, β)′ ∈ R2 and φT = φT (θ0) is a normalizing matrix with ||φT || → 0 as
T → ∞. It is easy to see that

log
dP θ

T

dP
θ0
T

= γ ′VT − 1

2
γ ′IT γ (6.65)

where

V ′
T =

(∫ T

0
J1(t)dMH

t ,

∫ T

0
J2(t)dMH

t

)
φT (6.66)

and

IT = φ′
T I 0

T φT . (6.67)

For linear SDEs with a time delay driven by the standard Wiener process,
Gushchin and Kuchler (1999) discussed different conditions under which the
family of measures {P θ

T } is locally asymptotically normal (LAN) or locally
asymptotically mixed normal (LAMN) or in general locally asymptotically
quadratic (LAQ). For a discussion of these concepts, see Prakasa Rao (1999b),
Chapter 6.

In view of the representation (6.65) for the log-likelihood ratio process, the
family of measures {P θ

T } is LAQ at θ0 if we can choose the normalizing matrix
φT (θ0) in such a way that (i) the vectors VT and IT are bounded in probability
as T → ∞; (ii) if (VTn, ITn) converges in distribution to a limit (V∞, I∞) for a
subsequence Tn → ∞, then

E

(
exp

(
γ ′V∞ − 1

2
I∞γ

))
= 1

for every γ ∈ R2; and (iii) if ITn converges in distribution to a limit I∞ for a
subsequence Tn → ∞, then I∞ is a.s. positive definite. The family of measures
is LAMN at θ0 if (VT , IT ) converges in distribution to (I

1/2
∞ Z, I∞) as T → ∞

where the matrix I∞ is a.s. positive definite and Z is a standard Gaussian vector
independent of I∞. If, in addition, I∞ is non random, then the family of measures
is LAN at θ0. For the case b = 0, the process X(t) reduces to the fractional
Ornstein–Uhlenbeck-type process. Strong consistency of the MLE was proved
for such a process in Chapter 3 (cf. Kleptsyna and Le Breton (2002a)). Properties
such as the strong consistency and the existence of the limiting distribution
of the MLE for this process, as well as for more general processes governed
by linear SDEs driven by fBm, were studied in Chapter 2 and in Chapter 3
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(cf. Prakasa Rao (2003, 2005a)). The results discussed in this section are from
Prakasa Rao (2008b).

Suppose we are able to obtain a normalizing matrix φT such that ||φT || → 0
as T → ∞ and

(VT , IT )
L→ (V∞, I∞)

as T → ∞. Then we have

φ−1
T (θ̂T − θ0)

L→ I−1
∞ V∞

which shows the asymptotic behavior of the MLE θ̂T as T → ∞. If the family
of measures {P θ

T } is LAMN, then the local asymptotic minimax bound holds for
any arbitrary estimator θ̃T of θ and is given by

lim
r→∞ lim inf

T →∞
sup

||φ−1
T

(θ−θ0)||<r

Eθ [�(φ−1
T (θ̃T − θ))] ≥ E[�(I−1

∞ V∞)]

= E[�(I−1/2
∞ Z)] (6.68)

where Z is a bivariate vector with independent components with standard Gaus-
sian distributions and � : R2 → [0,∞) is a bowl-shaped loss function. The MLE
is asymptotically efficient in the sense that the Hajek–Le Cam lower bound
obtained above is achieved by the MLE θ̂T . These results are consequences of
the LAMN property for the family of measures {P θ

T }. We will discuss sufficient
conditions for LAMN later in this section.

A representation for the solution of (6.46)

Let us again consider the SDE

dX(t) = (aX(t) + bX(t − 1))dt + dWH
t , t ≥ 0 (6.69)

where θ = (a, b) ∈ � ⊂ R2 and W = {WH
t , t ≥ 0} is fBm with Hurst parameter

H with the initial condition X(t) = X0(t), t ∈ [−1, 0], where X0(.) is a contin-
uous Gaussian stochastic process independent of WH . Observe that the process
{WH

t , t ≥ 0} is a process with stationary increments. Applying the results in
Mohammed and Scheutzow (1990), we find that there exists a unique solution
X = {X(t), t ≥ −1} of Equation (6.69) and it can be represented in the form

X(t) = x0(t)X0(0) + b

∫ 0

−1
x0(t − s − 1)X0(s)ds +

∫ t

0
x0(t − s)dWH

s , t ≥ 0.

(6.70)

This process has continuous sample paths for t ≥ 0 a.s. and, conditionally on X0,
the process X is a Gaussian process. Furthermore, the function x0(.), defined for



PARAMETRIC INFERENCE FOR SOME SDES 161

t ≥ −1, is the fundamental solution of the differential equation

dx(t)

dt
= ax(t) + bx(t − 1), t > 0 (6.71)

subject to the conditions x(0) = 1, x(t) = 0, t ∈ [−1, 0).
Consider the characteristic equation

λ − a − be−λ = 0 (6.72)

of the above differential equation. A complex number λ is a solution of (6.72)
if and only if the function eλt is a solution of the differential equation

dx(t)

dt
= ax(t) + bx(t − 1), t ≥ 0.

Let  be the set of solutions of Equation (6.72). Define

v0 = max{Reλ|λ ∈ }

and

v1 = max{Reλ|λ ∈ , Reλ < v0}.

A complete discussion of the existence and representation of the fundamen-
tal solution x0(t) of (6.71) is given in Lemma 1.1 and the following discus-
sion in Gushchin and Kuchler (1999). For the class of linear SDEs driven by
the standard Wiener process, Gushchin and Kuchler (1999) have proved that
the corresponding family of measures {P θ

T } form (i) a LAN family if v0 < 0, (ii)
a LAQ family if v0 = 0, and (iii) a LAMN family if v0 > 0, v0 ∈  and v1 < 0
or v1 > 0 and v1 ∈  for suitable a and b.

Local asymptotic mixed normality

Observe that the processes

Ri(T ) =
∫ T

0
Ji(t)dMH

t , i = 1, 2 (6.73)

are zero-mean local martingales with the quadratic covariation processes

〈Rm, Rn〉T =
∫ T

0
Jm(t)Jn(t)dwH

t , 1 ≤ m,n ≤ 2. (6.74)

Let

R′
T = (R1(T ), R2(T )). (6.75)
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Let {〈R, R〉t , t ≥ 0} be the matrix of covariate processes defined above. Sup-
pose that there exist positive functions Qi(t) → 0 as t → ∞ possibly random
such that

Qt 〈R, R〉tQt

p→ η2

as t → ∞ where η2 is a random positive-definite symmetric matrix with proba-
bility one and Qt is a diagonal matrix of order 2 with diagonal elements Q1(t)

and Q2(t). Applying a modified version of the multidimensional version of the
central limit theorem for continuous local martingales (cf. Theorem 1.49 and
Remark 1.47 in Prakasa Rao (1999b)) to take into account possibly different
norming factors for different components Ri(t), i = 1, 2 (following the tech-
niques in Theorem A.1 of Sorensen (1991)), we obtain that

(QT RT ,QT 〈R, R〉T QT )
L→ (Z, η2)

as T → ∞, where Z′ is a bivariate random vector with the characteristic function

φ(u1, u2) = E

(
exp

(
−1

2
u′η2u

))
,

where u = (u1, u2)
′. From the representation (6.53) and the above observations,

we obtain the following result leading to sufficient conditions for the LAMN
property of the family of measures {P θ

T } (cf. Prakasa Rao (1999b), p. 271). No
further proof or additional arguments are needed to prove the LAMN property
of the family of measures {P θ

T } from the results in Prakasa Rao (1999b, p. 271).

Theorem 6.5: Suppose the parameters a and b are such that there exists a matrix
norming function Qt → 0 as t → ∞ as described above such that

Qt 〈R, R〉tQt

p→ η2

as t → ∞, where η2 is a random positive-definite symmetric matrix with prob-
ability one. Then the family of measures {P θ

T } forms a LAMN family.

Remarks: If the matrix η2 is non-random, then the family of measures {P θ
T }

forms a LAN family. We conjecture that, in general, the family is (i) LAN if
v0 < 0 with the norming diagonal matrix with diagonal elements (T −1/2, T −1/2);
(ii) LAMN if v0 > 0 and v1 < 0 with the norming diagonal matrix with diagonal
elements (e−v0T , T −1/2); and (iii) LAMN if v0 > 0, v1 > 0 and v1 ∈  with the
norming diagonal matrix with diagonal elements (e−v0T , e−v1T ). This conjecture
is supported by the results obtained by Gushchin and Kuchler (1999) for lin-
ear SDEs with a time delay driven by the Wiener process and by the results
in Kleptsyna and Le Breton (2002a) for the fractional Ornstein–Uhlenbeck-type
process (the case b = 0) which implies that v0 = a. In order to check this con-
jecture, one method is to obtain the moment generating function of the matrix
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RT explicitly using the methods developed in Kleptsyna and Le Breton (2002a)
and then study the asymptotic behavior of the matrix 〈R, R〉T under different
conditions on the parameters a and b. It is clear that the asymptotic behavior
of the log-likelihood ratio depends on the norming function QT which in turn
depends on the asymptotic behavior of the random variables∫ T

0
Jm(t)Jn(t)dwH

t , 1 ≤ m,n ≤ 2.

6.4 Parametric estimation for linear system of SDEs
driven by fBms with different Hurst indices

Geometric Brownian motion has been widely used for modeling the fluctuation
of share prices in the stock market and geometric fBm, that is, a process governed
by a SDE of the type

dX(t) = θX(t)dt + σ1X(t)dWh(t), X(0) = x0 ∈ R, 0 ≤ t ≤ T , (6.76)

has also been studied for modeling fluctuations of share prices in the stock market
in the presence of long-range dependence. In the present scenario where the
fluctuations of share prices in one country are influenced by the same in another
country or within the same country from different regions, it is reasonable to
model the share prices by a system of SDEs driven by noise components coming
from different environments which could be dependent or independent.

We now discuss estimation of the trend for a linear system of SDEs and
specialize the results to a linear system of geometric fBm later in this section.
The results obtained in this section are from Prakasa Rao (2008a).

General case

Let (�,F, P ) be a complete probability space and {Ft , t ≥ 0} be a filtration
defined on the same. Consider the linear stochastic differential system

dX(t) = θ a1(t, X(t))dt + b1(t, X(t))dWH (t), X(0) = x0 ∈ R, 0 ≤ t ≤ T1

dY (t) = θ a2(t, Y (t))dt + b2(t, Y (t))dWh(t), Y (0) = y0 ∈ R, 0 ≤ t ≤ T2

(6.77)
where θ ∈ � ⊂ R−{0}. The functions b1(., .) and b2(., .) are assumed to be
known and nonvanishing. We further assume that the functions a1(., .) and a2(., .)

are also known and that the fBms {Wh(t), 0 ≤ t ≤ T } and {WH(t), 0 ≤ t ≤ T }
with known Hurst indices h ∈ [ 1

2 , 1) and H ∈ [ 1
2 , 1) respectively are indepen-

dent and adapted to the filtration {Ft , t ≥ 0}. This can be achieved if neces-
sary by choosing Ft to be the σ -algebra generated by the family {Wh(s), 0 ≤
s ≤ t; WH(s), 0 ≤ s ≤ t}. We use path wise construction of the stochastic inte-
gral with respect to the fBm discussed in Zahle (1998). Suppose the system
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defined by (6.77) has a unique pathwise solution {X(s), 0 ≤ s ≤ T1;Y (s), 0 ≤
s ≤ T2}. Sufficient conditions for the existence and uniqueness of the solution
are given in Nualart and Rascanu (2002) (cf. Mishura and Rudomino-Dusyatska
(2004)). In addition to these conditions, We assume that a1(t, X(t))/b1(t, X(t))

is Lebesgue integrable on [0, T1] and a2(t, Y (t))/b2(t, Y (t)) is Lebesgue inte-
grable on [0, T2]. Let P X

t be the measure generated by the process X on [0, t] and
P Y

t be the measure generated by the process Y on [0, t]. We will now calculate
the Radon–Nikodym derivative for probability measures Q on (�,F) such that
P X

t is equivalent to QX
t , 0 ≤ t ≤ T1, and the process X has zero drift under the

measure Q. Let

φt ≡ ψ(t, X(t)) = a1(t, X(t))

b1(t, X(t))
.

Define, for 0 < s < t ≤ T1,

kH (t, s) = k−1
H s(1/2)−H (t − s)(1/2)−H , 0 ≤ s ≤ t

= 0 otherwise

where

kH = 2H�

(
3

2
− H

)
�

(
H + 1

2

)
. (6.78)

Suppose ψ(t, x) ∈ C1[0, T1] ∩ C2(R). Then, by Lemma 1 in Mishura and
Rudomino-Dusyatska (2004), there exists another Ft -predictable process
{δs, 0 ≤ s ≤ T1} such that∫ t

0
δsds < ∞ a.s. [P ], 0 ≤ t ≤ T1 (6.79)

and ∫ t

0
kH (t, s)φsds =

∫ t

0
δsds, 0 ≤ t ≤ T1. (6.80)

Norros et al. (1999) proved that∫ t

0
kH (t, s)dWH

s =
∫ t

0
s

1
2 −HdW̃s, 0 ≤ t ≤ T1 (6.81)

where the stochastic integral on the left exists as a path wise integral with respect
to fBm WH ,

W̃t =
∫ t

0
sH− 1

2 dM̃s, 0 ≤ t ≤ T1
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and

M̃t =
∫ t

0
kH (t, s)dWH

s , 0 ≤ t ≤ T1.

Furthermore, the process {W̃s, 0 ≤ t ≤ T1} is a standard Wiener process.
Suppose that

E

(∫ T1

0
s2H−1δ2

s ds

)
< ∞. (6.82)

Define

L̃t =
∫ t

0
sH− 1

2 δsdW̃s, 0 ≤ t ≤ T1.

Under the conditions stated above, the process {L̃t ,Ft , 0 ≤ t ≤ T1} is a square
integrable martingale. Suppose the martingale {L̃t ,Ft , 0 ≤ t ≤ T1} satisfies the
condition

E

[
exp

(
L̃t − 1

2
〈L̃〉t

)]
= 1, 0 ≤ t ≤ T1.

Then it is known that the process

BH
t = WH

t −
∫ t

0
φsds, 0 ≤ t ≤ T1

is fBm with respect to the probability measure QH defined on (�,F) by

dQH

dP

∣∣∣∣Ft = exp

(
L̃t − 1

2
〈L̃〉t

)
, 0 ≤ t ≤ T1.

Note that

dQH

dP

∣∣∣∣Ft = exp

(∫ t

0
sH− 1

2 δsdW̃s − 1

2

∫ t

0
s2H−1δ2

s ds

)
, 0 ≤ t ≤ T1.

In analogy with the above discussion, we construct another probability measure
Qh defined on (�,F) such that

dQh

dP

∣∣∣∣Ft = exp

(∫ t

0
sh− 1

2 ψsdŴs − 1

2

∫ t

0
s2h−1ψ2

s ds

)
, 0 ≤ t ≤ T2.

Here Ŵ is the Wiener process corresponding to fBm Wh, and {ψt, 0 ≤ t ≤ T2}
and {ηt , 0 ≤ t ≤ T2} are processes such that∫ t

0
kh(t, s)ηsds =

∫ t

0
ψsds, 0 ≤ t ≤ T2. (6.83)
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Observe that

Bh
t = Wh

t −
∫ t

0
ηsds, 0 ≤ t ≤ T2

is fBm with respect to the probability measure Qh defined by

dQh

dP

∣∣∣∣Ft = exp

(∫ t

0
sh− 1

2 ψsdŴs − 1

2

∫ t

0
s2h−1ψ2

s ds

)
, 0 ≤ t ≤ T2.

With respect to the probability measures QH and Qh, the trend term should be
zero for the first equation in the system over the interval [0, T1], and it should
be zero for the second equation in the system over the interval [0, T2]. Hence

b1(t, X(t))φt = −θ a1(t, X(t))

and

b2(t, Y (t))ηt = −θ a2(t, Y (t)).

Observe that

dQ

dP
= dQh

dP

∣∣∣∣FT2

dQH

dP

∣∣∣∣ FT1

= exp

(∫ T2

0
sh− 1

2 J ′
sdŴs − 1

2

∫ T2

0
s2h−1J ′

s
2
ds

)
× exp

(∫ T1

0
sH− 1

2 I ′
sdW̃s − 1

2

∫ T1

0
s2H−1I ′

s
2
ds

)
= exp

[∫ T2

0
sh− 1

2 J ′
sdŴs +

∫ T1

0
sH− 1

2 I ′
sdW̃s

−1

2

(∫ T2

0
s2h−1J ′

s
2
ds +

∫ T1

0
s2H−1I ′

s
2
ds

)]
.

Note that

J ′
t =

(∫ t

0
kh(t, s)ηsds

)′

t

=
[∫ t

0
kh(t, s)

(−θ a2(s, Y (s))

b2(s, Y (s))

)
ds

]′

t

= −θ

[∫ t

0
kh(t, s)

(
a2(s, Y (s))

b2(s, Y (s))

)
ds

]′

t

= −θ�t (say).
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Similarly

I ′
t = −θ

[∫ t

0
kH (t, s)

(
a1(s, X(s))

b1(s, X(s))

)
ds

]′

t

= −θ�t (say).

From the above relations, we get

log
dQ

dP
=
∫ T2

0
sh− 1

2 J ′
sdŴs +

∫ T1

0
sH− 1

2 I ′
s dW̃s

−1

2

(∫ T1

0
s2h−1J ′

s
2
ds +

∫ T2

0
s2H−1I ′

s
2
ds

)
=
∫ T2

0
sh− 1

2 (−θ�s)dŴs +
∫ T1

0
sH− 1

2 (−θ�s)dW̃s

−1

2

[∫ T2

0
s2h−1(−θ�s)

2 ds +
∫ T1

0
s2H−1(−θ�s)

2 ds

]
.

In order to estimate the parameter θ based on observations of the process
{X(s), 0 ≤ s ≤ T1} and of the process {Y (s), 0 ≤ s ≤ T2}, we maximize the
function dQ/dP or equivalently log dQ/dP . Differentiating the function
log dQ/dP with respect to θ and equating the derivative to zero, we obtain the
likelihood equation

θ

(∫ T1

0
s2H−1�2

s ds +
∫ T2

0
s2h−1�2

s ds

)
= −

(∫ T1

0
sH− 1

2 �sdW̃s +
∫ T2

0
sh− 1

2 �sdŴs

)
.

The solution θ̂T1,T2 of this equation is given by

θ̂T1,T2 = −
∫ T1

0 sH− 1
2 �sdW̃s + ∫ T2

0 sh− 1
2 �sdŴs∫ T1

0 s2H−1�2
s ds + ∫ T2

0 s2h−1�2
s ds

(6.84)

which is the MLE in this general case. It can be checked that (see Eq. (14) in
Mishura and Rudomino-Dusyatska (2004))

dW̃s = dW(1)
s − θsH− 1

2 �(s)ds

and

dŴs = dW(2)
s − θsh− 1

2 �(s)ds
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where W(1) and W(2) are independent Wiener processes under the measure Q.
Using these relations, it follows that

θ̂T1,T2 − θ = −
∫ T1

0 sH− 1
2 �sdW

(1)
s + ∫ T2

0 sh− 1
2 �sdW

(2)
s∫ T1

0 s2H−1�2
s ds + ∫ T2

0 s2h−1�2
s ds

. (6.85)

Let

J (T1, T2) ≡
∫ T1

0
s2H−1�2

s ds +
∫ T2

0
s2h−1�2

s ds.

Then we get

J (T1, T2)(θ̂T1,T2 − θ) = −
[∫ T1

0
sH− 1

2 �sdW(1)
s +

∫ T2

0
sh− 1

2 �sdW(2)
s

]
.

Let

M(1)(t) =
∫ t

0
sH− 1

2 �sdW(1)
s , 0 ≤ t ≤ T1

M(2)(t) =
∫ t

0
sh− 1

2 �sdW(2)
s , 0 ≤ t ≤ T2

and let M(T1, T2) be a diagonal matrix with diagonal elements (M(1)(T1),

M(2)(T2)). Note that M(i), i = 1, 2, are independent continuous local martingales
with quadratic variations

〈M(1), M(1)〉t =
∫ t

0
s2H−1�2

s ds, 0 ≤ t ≤ T1

and

〈M(2), M(2)〉t =
∫ t

0
s2h−1�2

s ds, 0 ≤ t ≤ T2.

Let 〈M〉t,u be a diagonal matrix with diagonal elements (〈M(1), M(1)〉t , 〈M(2),

M(2)〉u). Suppose there exists a vector-valued function (k1,t1 , k2,t2) such that
ki,ti > 0, i = 1, 2, increasing to infinity as ti → ∞. Let Kt,u be a diagonal matrix
with diagonal elements (k1,t , k2,u). Suppose that

K−1
T1,T2

〈M〉(T1,T2)K
−1
T1,T2

p→ η2 as T1 and T2 → ∞ (6.86)

where η2 is a random positive diagonal matrix. Following the results in
Theorem 1.50 in Prakasa Rao (1999b) and Theorem A.1 in Sorensen (1991), it
follows that

K−1
T1,T2

M(T1, T2)
L→ Zη as T1 and T2 → ∞
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where Z is a diagonal matrix with diagonal elements as independent standard
Gaussian random variables and the random matrices Z and η are independent.
As a consequence of this result, we can give a set of sufficient conditions for
asymptotic normality of the estimator θ̂T1,T2 as T1 → ∞ and T2 → ∞. We will
now discuss a special case.

Special case

The asymptotic properties of the estimator θ̂T1,T2 depend on the processes �s

and �s which in turn depend on the functions a1(., .), b1(., .), a2(., .), b2(., .),
the process {X(s), 0 ≤ s ≤ T1} and the process {Y (s), 0 ≤ s ≤ T2}. However, if
these functions and the process X(.) and Y (.) are such that �s = αs1−2h and
�s = βs1−2H for some constants α and β, then it follows that

θ̂T1,T2 − θ = −
∫ T1

0 sH− 1
2 βs1−2HdW

(1)
s + ∫ T2

0 sh− 1
2 αs1−2hdW

(2)
s∫ T1

0 s2H−1β2s2−4H ds + ∫ T2
0 s2h−1α2s2−4hds

= −β
∫ T1

0 s
1
2 −HdW

(1)
s + α

∫ T2
0 s

1
2 −hdW

(2)
s

β2
∫ T1

0 s1−2H ds + α2
∫ T2

0 s1−2hds

= − β
∫ T1

0 s
1
2 −HdW

(1)
s + α

∫ T2
0 s

1
2 −hdW

(2)
s

β2T 2−2H
1 (2 − 2H)−1 + α2T 2−2h

2 (2 − 2h)−1
. (6.87)

Since the processes W(1) and W(2) are independent Wiener processes, it easy to
see that the estimator θ̂T1,T2 has a Gaussian distribution with mean θ and variance

[β2T 2−2H
1 (2 − 2H)−1 + α2T 2−2h

2 (2 − 2h)−1]−1.

It is clear that the processes �s = αs1−2h and �s = βs1−2H hold for some con-
stants α and β if a1(., .) = β b1(., .) and a2(., .) = α b2(., .) hold.

Geometric fBm

We now specialize the results discussed earlier to a linear system generated by
geometric fBms.

Let (�,F, P ) be a complete probability space. Consider the linear system
of SDEs

dX(t) = θX(t)dt + σ1X(t)dWH (t), X(0) = x0 ∈ R, 0 ≤ t ≤ T1,

dY (t) = θY (t)dt + σ2Y (t)dWh(t), Y (0) = y0 ∈ R, 0 ≤ t ≤ T2, (6.88)

defined on (�,F, P ) where {θ, σ1, σ2} ⊂ R−{0} and the fBms {Wh(t), 0 ≤ t ≤
T1} and {WH(t), 0 ≤ t ≤ T2} with known Hurst indices h ∈ [ 1

2 , 1) and H ∈ [ 1
2 , 1)

respectively are independent. We further assume that the parameters σ1 and σ2

are known positive constants.
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Following the notation introduced earlier in this section, let Q be the product
measure of the probability measures Qh induced on C[0, T1] and QH induced
on C[0, T2]. With respect to this probability measure Q, the processes {φs} and
{ηs} chosen above should be such that the trend term should be zero in order that
the process {X(s), 0 ≤ s ≤ T1} is a solution of the first SDE in the system given
by (6.88) in the interval [0, T1] and the trend term should be zero in order that
the process {(Y (s), 0 ≤ s ≤ T2} is a solution of the second SDE in the system
given by (6.88) in the interval [0, T2]. Hence

σ1

∫ t

0
φsds = −θt, 0 ≤ t ≤ T1

and

σ2

∫ t

0
ηsds = −θt, 0 ≤ t ≤ T2.

Observe that

dQ

dP
= dQH

dP

∣∣∣∣FT1

dQh

dP

∣∣∣∣ FT2

= exp

(∫ T1

0
sH− 1

2 δsdW̃s − 1

2

∫ T1

0
s2H−1δ2

s ds

)
× exp

(∫ T2

0
sh− 1

2 ψsdŴs − 1

2

∫ T2

0
s2h−1ψ2

s ds

)
= exp

[∫ T2

0
sh− 1

2 ψsdŴs +
∫ T1

0
sH− 1

2 δsdW̃s

−1

2

(∫ T2

0
s2h−1ψ2

s ds +
∫ T1

0
s2H−1δ2

s ds

)]
. (6.89)

Note that

δt =
[∫ t

0
kH (t, s)φsds

]′

t

= − θ

σ1

[∫ t

0
kH (t, s)ds

]′

t

(6.90)

and

ψt =
[∫ t

0
kh(t, s)ηsds

]′

t

= − θ

σ2

[∫ t

0
kh(t, s)ds

]′

t

(6.91)

where g′
t denotes the derivative of g with respect to t evaluated at t . It is easy

to see, from the computations given in Norros et al. (1999), that∫ t

0
kH (t, s)ds = D2

H t2−2H
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where

DH = CH

2H(2 − 2H)1/2

and

CH =
(

2H�( 3
2 − H)

�(H + 1
2 )�(2 − 2H)

)1/2

.

Hence [∫ t

0
kH (t, s)ds

]′

t

= D2
H (2 − 2H)t1−2H .

Let

γH (t) = D2
H (2 − 2H)t1−2H .

It can be checked that

γH (t) = �( 3
2 − H)

2H�(H + 1
2 )�(2 − 2H)

t1−2H = JH t1−2H (say).

From the above relations, we get

log
dQ

dP
= − θ

σ1

∫ T1

0
sH− 1

2 γH (s)dW̃s − θ

σ2

∫ T2

0
sh− 1

2 γh(s)dŴs

− θ2

2σ 2
1

∫ T1

0
s2H−1γ 2

H (s)ds − θ2

2σ 2
2

∫ T2

0
s2h−1γ 2

h (s)ds. (6.92)

Estimation

Note that the Radon–Nikodym derivative dQ/dP obtained above is the
Radon–Nikodym derivative of the product measure of the probability measure
generated by the process {X(s), 0 ≤ s ≤ T1} on the space C[0, T1] and the
probability measure generated by the independent process {Y (s), 0 ≤ s ≤ T2}.
In order to estimate the parameter θ based on observation of the process
{X(s), 0 ≤ s ≤ T1} and of the process {Y (s), 0 ≤ s ≤ T2}, we maximize
the likelihood function dQ/dP or equivalently log dQ/dP . Differentiating the
function log dQ/dP with respect to θ and equating the derivative to zero, we
obtain the likelihood equation

θ

[
J 2

H

σ 2
1

T 2−2H
1

2 − 2H
+ J 2

h

σ 2
2

T 2−2h
2

2 − 2h

]
= −

[
JH

σ1

∫ T1

0
s

1
2 −H dW̃s + Jh

σ2

∫ T2

0
s

1
2 −hdŴs

]
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which leads to the estimator, namely, the MLE, given by

θ̂T1,T2 = − [(JH /σ1)
∫ T1

0 s
1
2 −H dW̃s + (Jh/σ2)

∫ T2
0 s

1
2 −hdŴs][

J 2
H

σ 2
1

T 2−2H
1

2 − 2H
+ J 2

h

σ 2
2

T 2−2h
2

2 − 2h

] .

It can be checked that (see Eq. (14) in Mishura and Rudomino-Dusyatska (2004))

dW̃s = dW(1)
s − θ

σ1
sH− 1

2 γH (s)ds

and

dŴs = dW(2)
s − θ

σ2
sh− 1

2 γh(s)ds

where W(1) and W(2) are independent Wiener processes under the measure Q.
Using these relations, it follows that

θ̂T1,T2 − θ = − [(JH/σ1)
∫ T1

0 s
1
2 −HdW

(1)
s + (Jh/σ2)

∫ T2
0 s

1
2 −hdW

(2)
s ][

J 2
H

σ 2
1

T 2−2H
1

2 − 2H
+ J 2

h

σ 2
2

T 2−2h
2

2 − 2h

] .

In particular, it follows that the estimator θ̂T1,T2−θ has a Gaussian distribution
with mean zero and variance[

J 2
H

σ 2
1

T 2−2H
1

2 − 2H
+ J 2

h

σ 2
2

T 2−2h
2

2 − 2h

]−1

.

Suppose h ≥ H . Further suppose that we observe the process X governed by
the first equation in the system up to time T1 = T and observe the process Y

governed by the second equation in the system up to time T2 = T (1−H)/(1−h).
Then the variance of the MLE is given by[

J 2
H

σ 2
1

T 2−2H
1

2 − 2H
+ J 2

h

σ 2
2

T 2−2h
2

2 − 2h

]−1

which is of the order O(T 2H−2). A better estimator with smaller variance can be
obtained by suitably choosing T1 = T and T2 = cT (1−H)/(1−h) where c is defined
by the relation

J 2
H

σ 2
1

T 2−2H

2 − 2H
= c2−2h J 2

h

σ 2
2

T 2−2h
2

2 − 2h
.
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Remarks: The methods of this section can be extended to study the problem of
estimation of the parameter θ for more general linear systems of the type

dXi(t) = [θai(t, Xi(t)) + ci(t, Xi(t))]dt

+ bi(t, Xi(t))dWHi (t), 0 ≤ t ≤ Ti, 1 ≤ i ≤ n.

6.5 Parametric estimation for SDEs driven
by mixed fBm

We have discussed estimation problems for SDEs of the form

dX(t) = θX(t)dt + σ1X(t)dWh(t), X(0) = x0 ∈ R, 0 ≤ t ≤ T (6.93)

for modeling fluctuations of share prices in the stock market in the presence of
long-range dependence. It is reasonable to model the share prices by SDEs driven
by two or more noise components coming from different environments which
could be dependent or independent. Recently there has been interest in studying
the problem of estimation of a parameter θ for a mixed Brownian and fractional
Brownian model of the type

dXt = θX(t)dt + σ1X(t)dW(t) + σ2X(t)dWH (t), X(0) = x0 ∈ R, 0 ≤ t ≤ T

(6.94)
where {θ, σ1, σ2} ⊂ R−{0},W is the standard Wiener process and WH is fBm
with Hurst index H (cf. Rudomino-Dusyatska (2003)). We studied properties of
the MLE of the parameter θ for a linear system of SDEs of the type

dX(t) = θa1(t, X(t))dt + b1(t, X(t))dWH (t), X(0) = x0, 0 ≤ t ≤ T1

dY (t) = θa2(t, X(t))dt + b2(t, X(t))dWh(t), Y (0) = y0, 0 ≤ t ≤ T2 (6.95)

driven by two fBms possibly with different Hurst indices, in the previous section.
We now consider a SDE of the type

dX(t) = θa(t, X(t))dt + b1(t, X(t))dWh(t) + b2(t, X(t))dWH (t),

X(0) = x0 ∈ R, (6.96)

where 0 ≤ t ≤ T , driven by a mixture of fBms with possibly different Hurst
indices and study the properties of a pseudo-likelihood estimator of the trend
parameter θ based on the observation {X(s), 0 ≤ s ≤ T }. The results discussed
in this section are due to Prakasa Rao (2009).
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Preliminaries

Let (�,F, P ) be a complete probability space and {Ft , t ≥ 0} be a filtration
defined on the same. Consider the SDE

dX(t) = θa(t, X(t))dt + b1(t, X(t))dWh(t) + b2(t, X(t))dWH (t) (6.97)

where X(0) = x0 ∈ R, 0 ≤ t ≤ T and θ ∈ � ⊂ R−{0}. The functions b1(., .)

and b2(., .) are assumed to be known and non-vanishing. We further assume
that the function a(., .) is also known and that the fBms {Wh(t), 0 ≤ t ≤ T }
and {WH(t), 0 ≤ t ≤ T } with known Hurst indices h ∈ [ 1

2 , 1) and H ∈ [ 1
2 , 1)

respectively are independent and adapted to the filtration {Ft , t ≥ 0}. This can
be achieved if necessary by choosing Ft to be the σ -algebra generated by the
family {Wh(s), 0 ≤ s ≤ t;WH(s), 0 ≤ s ≤ t}.

Define

kH (t, s) = k−1
H s(1/2)−H (t − s)(1/2)−H , 0 ≤ s ≤ t

= 0 otherwise

where

kH = 2H�

(
3

2
− H

)
�

(
H + 1

2

)
. (6.98)

Suppose there exists a Ft -predictable process {φs, s ≥ 0} such that∫ t

0
kH (t, s)|φs |ds < ∞ a.s. [P ], t ≥ 0 (6.99)

and another Ft -predictable process {δs, s ≥ 0} such that∫ t

0
kH (t, s)φsds =

∫ t

0
δsds < ∞ a.s. [P ], t ≥ 0. (6.100)

Let

It ≡
∫ t

0
kH (t, s)φsds =

∫ t

0
δsds, t ≥ 0. (6.101)

Note that

I ′
t = δt (6.102)

where g′
t denotes the derivative of g with respect to t evaluated at t .

Norros et al. (1999) proved that∫ t

0
kH (t, s)dWH

s =
∫ t

0
s

1
2 −HdŴs (6.103)
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where the stochastic integral on the left exists as a path wise integral with respect
to fBm WH ,

Ŵt =
∫ t

0
sH− 1

2 dM̂s

and

M̂s =
∫ t

0
kH (t, s)dWH

s .

Furthermore, the process {Ŵs, s ≥ 0} is a standard Wiener process. Suppose that

E

(∫ t

0
s2H−1δ2

s ds

)
< ∞. (6.104)

Define

L̂t =
∫ t

0
sH− 1

2 δsdŴs, t ≥ 0.

Under the conditions stated above, the process {L̂t ,Ft , t ≥ 0} is a square inte-
grable martingale. Suppose the martingale {L̂t ,Ft , t ≥ 0} satisfies the condition

E

[
exp

(
L̂t − 1

2
< L̂ >

t

)]
= 1.

Then it is known that the process

BH
t = WH

t −
∫ t

0
φsds, t ≥ 0

is fBm with respect to the probability measure QH defined by

dQH

dP

∣∣∣∣Ft = exp

(
L̂t − 1

2
〈L̂〉t

)
.

Note that

dQH

dP

∣∣∣∣Ft = exp

(∫ t

0
sH− 1

2 I ′
sdŴs − 1

2

∫ t

0
s2H−1I ′

s
2
ds

)
.

In analogy with the above discussion, we construct another probability measure
Qh such that

dQh

dP

∣∣∣∣Ft = exp

(∫ t

0
sh− 1

2 J ′
sdW̃s − 1

2

∫ t

0
s2h−1J ′

s
2
ds

)
.
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Here W̃ is the Wiener process corresponding to fBm Wh, and {ψt, t ≥ 0} and
{ηt , t ≥ 0} are Ft -predictable processes such that

Jt ≡
∫ t

0
kh(t, s)ηsds =

∫ t

0
ψsds, t ≥ 0. (6.105)

Observe that

Bh
t = Wh

t −
∫ t

0
ηsds, t ≥ 0

is fBm with respect to the probability measure Qh defined by

dQh

dP

∣∣∣∣Ft = exp

(∫ t

0
sh− 1

2 J ′
sdW̃s − 1

2

∫ t

0
s2h−1J ′

s
2
ds

)
.

Since the processes Wh and WH are independent, we define Q to be the product
measure of the probability measures Qh and QH . With respect to this probability
measure Q, the trend term should be θa(t, X(t)). Hence

b1(t, X(t))φt + b2(t, X(t))ηt = −θa(t, X(t)).

Therefore the processes {ηt , t ≥ 0} and {φt , t ≥ 0} are connected by the relation

ηt = −b1(t, X(t))φt − θa(t, X(t))

b2(t, X(t))
.

Observe that

dQ

dP

∣∣∣∣Ft = dQh

dP

∣∣∣∣Ft

dQH

dP

∣∣∣∣ Ft

= exp

(∫ t

0
sh− 1

2 J ′
sdW̃s − 1

2

∫ t

0
s2h−1J ′

s
2
ds

)
× exp

(∫ t

0
sH− 1

2 I ′
sdŴs − 1

2

∫ t

0
s2H−1I ′

s
2
ds

)
= exp

[∫ t

0
sh− 1

2 J ′
sdW̃s +

∫ t

0
sH− 1

2 I ′
sdŴs

−1

2

∫ t

0
[s2h−1J ′

s
2 + s2H−1I ′

s
2]ds

]
.
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Note that

J ′
t =

[∫ t

0
kh(t, s)ηsds

]′

t

=
[∫ t

0
kh(t, s)

(−θa(s,X(s)) − b1(s, X(s))φs

b2(s, X(s))

)
ds

]′

t

= −θ

[∫ t

0
kh(t, s)

(
a(s, X(s))

b2(s, X(s))

)
ds

]′

t

−
[∫ t

0
kh(t, s)

(
b1(s, X(s))φs

b2(s, X(s))

)
ds

]′

t

= −θ�t − Rt (say).

From the above relations, we get that

log
dQ

dP

∣∣∣∣Ft =
∫ t

0
sh− 1

2 J ′
sdW̃s +

∫ t

0
sH− 1

2 I ′
sdŴs

−1

2

∫ t

0
[s2h−1J ′

s
2 + s2H−1I ′

s
2]ds

=
∫ t

0
sh− 1

2 (−θ�s − Rs)dW̃s +
∫ t

0
sH− 1

2 I ′
sdŴs

−1

2

∫ t

0
[s2h−1(−θ�s − Rs)

2 + s2H−1I ′
s

2]ds.

Pseudo-likelihood estimation

In order to estimate the parameter θ based on observation of the process
{X(s), 0 ≤ s ≤ T }, we maximize the pseudo-likelihood function dQ/dP |FT

or
equivalently log dQ/dP |FT

. Note that the function dQ/dP |FT
is not the usual

likelihood function based on observation of the process {X(s), 0 ≤ s ≤ T }, but
the product of the likelihood functions as if the process {X(s), 0 ≤ s ≤ T } was
driven by independent fBms WH and Wh with a common trend and possibly
different diffusion coefficients separately. Differentiating the pseudo-likelihood
function log dQ/dP |FT

with respect to θ and equating the derivative to zero,
we obtain the pseudo-likelihood equation

θ

∫ T

0
s2h−1�2

s ds +
∫ T

0
sh− 1

2 �sdW̃s +
∫ T

0
s2h−1�sRsds = 0

after some simplification.
The solution θ̃T of the pseudo-likelihood equation is given by

θ̃T

∫ T

0
s2h−1�2

s ds = −
(∫ T

0
sh− 1

2 �sdW̃s +
∫ T

0
s2h−1�sRsds

)
= −

(∫ T

0
sh− 1

2 �sdW̃s +
∫ T

0
s2h−1�s(−θ�s − ψs)ds

)
.
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Hence

(θ̃T − θ)

∫ T

0
s2h−1�2

s ds = −
∫ T

0
sh− 1

2 �sdW̃s +
∫ T

0
s2h−1�sψsds. (6.106)

Special case

The asymptotic properties of the pseudo-likelihood estimator θ̃T depend on the
processes �s and ψs which in turn depend on the functions a(., .), b1(., .) and
b2(., .) and the process X(.), 0 ≤ s ≤ T . However, if these functions and the
process X(.) are such that �s = γ s1−2h for some constant γ , then the above
equation reduces to

(θ̃T − θ)

∫ T

0
s2h−1γ 2s2−4hds = −

∫ T

0
sh− 1

2 γ s1−2hdW̃s +
∫ T

0
s2h−1γ s1−2hψsds

(6.107)
which implies that

γ (θ̃T − θ)

∫ T

0
s1−2hds = −

∫ T

0
s

1
2 −hdW̃s +

∫ T

0
ψsds

= −
∫ T

0
kh(T , s)dWh

s +
∫ T

0
kh(T , s)ηsds

= −
∫ T

0
kh(T , s)(dWh

s − ηsds)

= −
∫ T

0
kh(T , s)dBh

s .

Since the random variable ∫ T

0
kh(T , s)dBh

s

has the same distribution as the random variable∫ t

0
s

1
2 −hdZs

where Zs is a standard Wiener process, it follows that the random variable

γ
T 2−2h

2 − 2h
(θ̃T − θ)

has a normal distribution with mean zero and variance T 2−2h/(2−2h). This in
turn proves that the pseudo-likelihood estimator θ̃T is unbiased, consistent and

V ar(θ̃T ) = γ −2
(

2 − 2h

T 2−2h

)
.
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Note that the process

GT =
∫ T

0
s

1
2 −hdZs, T ≥ 0

is a square integrable martingale with 〈G〉T = T 2−2h/(2−2h) → ∞ as T → ∞.
Hence

GT

〈G〉T → 0

a.s. as T → ∞ (Liptser (1980), Prakasa Rao (1999b), Remark 1.46). Hence

θ̃T → θ

a.s. as T → ∞. Therefore the pseudo-likelihood estimator θ̃T is strongly consis-
tent for estimating the parameter θ .

Remarks: It is clear that the process �s = γ s1−2h for some constant γ if the
functions a(., ) and b1(., .) satisfy the condition a(., .) = γ b1(., .). A similar
estimator θ̂T can be obtained if the functions a(., .) and b2(., ) are proportional
to each other.

General case

In general, it is not possible to find the limiting distribution of the pseudo-
likelihood estimator θ̃T unless the functions a(., .), b1(., .) and b2(., .) are
specified.

Note that

θ̃T − θ = − ∫ T

0 sh− 1
2 �sdW̃s + ∫ T

0 s2h−1�sψsds∫ T

0 s2h−1�2
s ds

= − ∫ T

0 sh− 1
2 �sdW̃s∫ T

0 s2h−1�2
s ds

+
∫ T

0 s2h−1�sψsds∫ T

0 s2h−1�2
s ds

= −(αT )(ζT )−1 + βT (ζT )−1 (say).

Since the process W̃s is the standard Wiener process, the quadratic variation of
the stochastic integral

αT =
∫ T

0
sh− 1

2 �sdW̃s

is

ζT =
∫ T

0
s2h−1�2

s ds.
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Strong consistency

Theorem 6.6: Suppose that ZT → ∞ a.s. as T → ∞. Further suppose that

βT

ζT

→ 0

a.s. as T → ∞. Then

θ̃T → θ

a.s. as T → ∞.

Proof: This result follows from the strong law of large numbers for martingales
(cf. Liptser (1980), Prakasa Rao (1999b)).

Limiting distribution

Theorem 6.7: Suppose that βT = op(
√

ζT ). Then

ζ
1/2
T (θ̃T − θ)

L→ N(0, 1)

as T → ∞.

Proof: This result follows from the central limit theorem for local martingales
(cf. Prakasa Rao (1999b)).

Remarks:

(i) The conditions in Theorems 6.6 and 6.7 are difficult to verify in general.
However, in the case of geometric mixed fBm

dX(t) = θX(t)dt + σ1X(t)dWH (t)

+ σ2X(t)dWh(t), X(0) = x0, 0 ≤ t ≤ T (6.108)

these properties can be derived. Applying the Cauchy–Schwartz inequality,
we can see that

ζ
1/2
T (θ̃T − θ) = −αtζ

−1/2
T + O

√∫ T

0
s2h−1ψ2(s)ds

 .

(ii) The methods discussed above can be extended to study estimation of the
parameter θ for SDEs of the type

dX(t) = [θ a(t, X(t)) + c(t, X(t))]dt

+ b1(t, X(t))dWh(t) + b2(t, X(t))dWH (t), t ≥ 0. (6.109)
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(iii) It is not clear under what conditions the probability measure generated by
the process {X(s), 0 ≤ s ≤ T } satisfying the SDE (6.94) or (6.96) is abso-
lutely continuous with respect to the probability measure generated by fBm
or Brownian motion and, if so, how to obtain a Girsanov-type theorem
for the corresponding Radon–Nikodym derivatives. If this problem is
solved, then we can discuss the problem of genuine maximum likelihood
estimation for the parameter θ instead of the method of pseudo-likelihood
estimation presented above.

6.6 Alternate approach for estimation in models
driven by fBm

Our approach for estimation in models driven by fBm has been via the funda-
mental martingale associated with fBm. In some recent papers, Berzin and Leon
(2006, 2007) proposed a new method for the simultaneous estimation of parame-
ters σ and H in some models driven by fBm using regression methods. We will
briefly discuss their results.

Let {WH(t), t ≥ 0} be fBm with Hurst index H > 1
2 . Modifying slightly the

notation used earlier, we suppose that the process WH is a centered Gaussian
process with covariance function

E[WH(t)WH (s)] = 1

2
v2

2H [|t |2H + |s|2H − |t − s|2H ]

with v2
2H = [�(2H + 1) sin(πH)]−1.

The stochastic integral with respect to fBm can be defined path wise as the
limit of Riemann sums following the work in Lin (1995), Lyons (1994) and Zahle
(1998). This allows us to study SDEs of the type

dX(t) = µ(X(t))dt + σ(X(t))dWH (t), X(0) = c, t ≥ 0. (6.110)

Examples of such models include

dX(t) = µdt + σdWH(t), t ≥ 0, (6.111)

dX(t) = µ X(t)dt + σdWH(t), t ≥ 0, (6.112)

dX(t) = µ X(t)dt + σ X(t)dWH (t), t ≥ 0, (6.113)

and

dX(t) = µdt + σ X(t)dWH (t), t ≥ 0 (6.114)

with X(0) = c. The solutions of the SDEs given above are:

X(t) = σ WH(t) + µ t + c (cf. Lin (1995)); (6.115)

X(t) = σ WH(t) + exp(µt)

[
σµ

(∫ t

0
WH(s) exp(−µs)ds

)
+ c

]
; (6.116)
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X(t) = c exp[σ WH(t) + µt] (cf. Klingenhofer and Zahle (1999)); (6.117)

and

X(t) = exp(σ WH(t))

[
c + µ

∫ t

0
exp(−σ WH(s))ds

]
(6.118)

respectively. For any process Y (.) and ε > 0, let

Y (2)
ε (t) = Y (t + 2ε) − 2 Y (t + ε) + Y (t).

Observe that the process Y (2)
ε (.) denotes the second-order difference of the pro-

cess Y (.) with difference ε. For a probability density function φ in C2(R) with
compact support contained in (−1, 1], and for each t ≥ 0 and ε > 0, define

Wε
H(t) = 1

ε

∫ ∞

−∞
φ

(
t − x

ε

)
WH(x)dx,

Rε(t) = ε2−H Wε
H

(2)(t)

σ2H

with

σ 2
2H = V ar[ε(2−H)Wε

H
(2)

(t)] = 1

2π

∫ ∞

−∞
|x|3−2H |φ̂(−x)|2dx.

Here φ̂(.) is the Fourier transform of the function φ(.). Berzin and Leon (2007)
proved that, for 0 < H < 1 and any integer k ≥ 1,∫ 1

0
[Rε(u)]kdu

a.s.→ E(Nk) as ε → 0 (6.119)

where N is a standard Gaussian random variable.
Suppose we observe, instead of the process X(t), a smoothed process Xε(t) =

φε ∗ X(t) obtained by convolution where φε(u) = 1
ε
φ(u/ε). We extend the pro-

cess {X(.), t ≥ 0} to the interval (−∞, 0) by defining X(t) = c, for t < 0. For
the model specified by (6.114), it is assumed that the parameter µ and the constant
c have the same sign where µ could also be equal to zero.

Let

Zε(t) = ε2−H X(2)
ε (t)

σ2H

for the first two models

= ε2−H X(2)
ε (t)

σ2HXε(t)
for the last two models. (6.120)
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Let

Mk(ε) =
∫ 1

0
|X(2)

ε (u)|kdu for the first two models

=
∫ 1

0
|X(2)

ε (u)/Xε(u)|kdu for the last two models (6.121)

Berzin and Leon (2006) proved that

εk(2−H)Mk(ε)

σ k
2Hσkνk

a.s.→ 1 as ε → 0 (6.122)

for every integer k ≥ 1. Here νk denotes the kth absolute moment of the standard
Gaussian distribution. Hence

log(Mk(ε)) = k(H − 2) log(ε) + log(σ k
2Hσkνk) + o(1) a.s. (6.123)

as ε → 0. Let hi > 0, i = 1, . . . , r . Let Yi = log(Mk(hi)), xi = log(hi) and ak =
k(H−2), bk = log(σ k

2Hσkνk). Then Equation (6.123) can be written in the form
of a regression model

Yi = akxi + bk + ηi, i = 1, . . . , r (6.124)

where ηi, i = 1, . . . , r , are the errors. Applying the method of least squares, the
estimators Ĥk of H and B̂k of bk are given by

k(Ĥk − 2) =
r∑

i=1

zi log(Mk(hi)) (6.125)

and

B̂k = 1

r

r∑
i=1

log(Mk(hi)) − k(Ĥk − 2)
1

r

r∑
i=1

log(hi) (6.126)

where

zi = di∑r
i=1 d2

i

, di = log(ci) − 1

r

r∑
i=1

log(ci). (6.127)

Note that
r∑

i=1

zi = 0 and
r∑

i=1

zidi = 1. (6.128)

Let us choose

σ k̂
2H = σk

2Ĥk
(6.129)
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as an estimator of σk
2H and

σ k̂ = exp(B̂k)

σ k̂
2Hνk

(6.130)

as an estimator of σk. Let σ̂k be the estimator of σ defined by

σ̂k = (σ k̂)1/k. (6.131)

Berzin and Leon (2006) proved that the estimator Ĥk is a strongly consistent
estimator for H and

1√
ε
(Ĥk − H)

is asymptotically Gaussian with mean zero and suitable variance as ε → 0.
Furthermore, the estimator σ̂k is a weakly consistent estimator for σ and

1√
ε log(ε)

(σ̂k − σ)

is asymptotically Gaussian with mean zero and suitable variance. It was shown
in Berzin and Leon (2006) that the estimators with minimum asymptotic variance
are obtained for k = 2.

If H is known, then Berzin and Leon (2006) prove that the estimator

σ̃k = [
∫ 1

0 |Zε(u)|kdu]1/k

ν
1/k

k

(6.132)

is a strongly consistent estimator for σ and ε−1/2(σ̃k−σ) is asymptotically Gaus-
sian with mean zero and suitable variance. It can be shown that the asymptotic
variance is minimum when k = 2.

6.7 Maximum likelihood estimation under
misspecified model

We will now study the asymptotic behavior of the MLE of a parameter in the
drift term of a fractional diffusion process under conditions in which the true
drift function does not coincide with that specified by the parametric model. The
need for such an analysis arises from the desirability of using estimators that are
robust under departures from the underlying model.

Let us consider the problem of estimating the drift function of a fractional
diffusion process satisfying the SDE given by

dXt = b(Xt )dt + dWH
T , X0 = x, 0 ≤ t ≤ T (6.133)
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where WH is standard fBm with Hurst index H ∈ ( 1
2 , 1) and the process X is

observed over the interval [0, T ]. Suppose that the true model (6.133) is mis-
specified and a parametric model given by

dXt = f (θ, Xt )dt + dWH
t , X0 = x, 0 ≤ t ≤ T (6.134)

is used for estimating the trend parameter θ ∈ �. We now study the asymptotic
behavior of the MLE of θ under departure of the true drift function b(x) from
the function f (x, θ) specified by the parametric model. Define the process

QH,θ (t) = d

dwH
t

∫ t

0
kH (t, s)f (θ,Xs)ds, 0 ≤ t ≤ T (6.135)

where wH
t and kH (t, s) are as defined in (1.72) and (1.70) in Chapter 1 respec-

tively. Suppose the sample paths of the process {QH,θ (t), 0 ≤ t ≤ T } belong a.s.
to L2([0, T ], dwH

t ). Define

Zt =
∫ t

0
kH (t, s)dXs, 0 ≤ t ≤ T . (6.136)

Under the parametric model, the process Z = {Zt, 0 ≤ t ≤ T } is an
(Ft )-semimartingale with the decomposition

Zt =
∫ t

0
QH,θ (s)dwH

s + MH
t (6.137)

where MH is the fundamental martingale defined by (1.73) in Chapter 1 and the
process X admits the representation

Xt = X0 +
∫ t

0
KH(t, s)dZs (6.138)

where the function KH is as defined by (1.75) in Chapter 1 with f ≡ 1. Let
P T

θ be the measure induced by the fractional diffusion process {Xt, 0 ≤ t ≤ T }
specified by the model defined by (6.134). Let P T

0 be the probability measure
induced by fBm {WH(t), 0 ≤ t ≤ T }. Following Theorem 1.20 of Chapter 1, we
get that the Radon–Nikodym derivative of P T

θ with respect to P T
0 is given by

dP T
θ

dP T
0

= exp

[∫ T

0
QH,θ (s)dZs − 1

2

∫ T

0
Q2

H,θ (s)dwH
s

]
. (6.139)

In analogy with (6.135), we define the processes

QH (t) = d

dwH
t

∫ t

0
kH (t, s)b(Xs)ds, 0 ≤ t ≤ T . (6.140)
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Under the true model, the process Z defined by (6.136) can be represented in
the form

Zt =
∫ t

0
QH(s)dwH

s + MH
t , 0 ≤ t ≤ T (6.141)

or equivalently

dZt = QH(t)dwH
t + dMH

t , 0 ≤ t ≤ T (6.142)

From (6.139) and (6.142), we obtain the log-likelihood function and it is
given by

�T (θ) = log
dP T

θ

dP T
0

=
∫ T

0
QH,θ (s)dZs − 1

2

∫ T

0
Q2

H,θ (s)dwH
s

=
∫ T

0
QH,θ (s)(QH (s)dwH

s + dMH
s ) − 1

2

∫ T

0
Q2

H,θ (s)dwH
s

= −1

2

∫ T

0
(QH,θ (s) − QH (s))2dwH

s + 1

2

∫ T

0
Q2

H (s)dwH
s

+
∫ T

0
QH,θ (s)dMH

s . (6.143)

Let

IH,θ (T ) =
∫ T

0
(QH,θ (s) − QH (s))2dwH

s (6.144)

and

ηH (T ) =
∫ T

0
Q2

H (s)dwH
s . (6.145)

Then

�T (θ) = −1

2
IH,θ (T ) + 1

2
ηH(T ) +

∫ T

0
QH,θ (s)dMH

s . (6.146)

Suppose there exists a non random function γH (T ) → ∞ as T → ∞ such that

(C1) [γH (T )]−1IH,θ (T )
a.s.→ IH,θ uniformly in θ ∈ � as T → ∞

(C2) [γH (T )]−1ηH (T )
a.s.→ ηH ≥ 0 as T → ∞

(C3) [γH (T )]−1 supθ∈� | ∫ T

0 QH,θ (s)dMH
s | a.s.→ 0 in as T → ∞

under the true model.
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Let

θ∗ = argminθ∈�IH,θ . (6.147)

Suppose it is unique. Let θ̂T be the MLE of θ under the parametric model. Note
that the asymptotic behavior of the MLE or the maximizer of �T (θ) is equivalent
to the asymptotic behavior of the minimizer of IH,θ (T ) as T → ∞ in view of
the condition (C3). This implies the following result.

Theorem 6.8: Under conditions (C1)–(C3),

θ̂T
a.s.→ θ∗ as T → ∞.

Suppose the log-likelihood function �T (θ) is twice differentiable with respect
to θ ∈ �. Then �′

T (θ̂T ) = 0. Expanding �′
T (θ) in a neighborhood of θ∗, we get

that

�′
T (θ∗) = �′

T (θ̂T ) + (θ∗ − θ̂T )�′′
T (θ̄T ) (6.148)

where |θ̄T −θ∗| ≤ |θ̂T −θ∗| for T large. Since �′
T (θ̂T ) = 0, it follows that

�′
T (θ∗) = (θ∗ − θ̂T )�′′

T (θ̄T )

= (θ∗ − θ̂T )[�′′
T (θ∗) + (�′′

T (θ̄T ) − �′′
T (θ∗))]. (6.149)

Theorem 6.9: In addition to conditions (C1)–(C3), suppose that the following
conditions hold under the true model:

(C4) the log-likelihood function �T (θ) is twice differentiable with respect to
θ ∈ � and the function �′′

T (θ) is uniformly continuous in θ ∈ �;

(C5) [γH (T )]−1/2�′
T (θ)

L→ N(0, σ 2(θ)) as T → ∞, for every θ ∈ �; and

(C6) [γH (T )]−1�′′
T (θ)

p→ C(θ) as T → ∞ for every θ ∈ �, where C(θ) is
non-random and non-vanishing. Then

[γH (T )]1/2(θ̂T −θ∗) L→ N

(
0,

σ 2(θ∗)
C2(θ∗)

)
as T → ∞

under the true model.

This theorem can be proved by standard arguments using the relation

[γH (T )]1/2(θ̂T − θ∗) = [γH (T )]−1/2�′
T (θ∗)

[γH (T )]−1[�′′
T (θ∗) + op(1)]

(6.150)
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as T → ∞. This follows by the condition (C4). Applying conditions (C5) and
(C6), we get

[γH (T )]1/2(θ̂T − θ∗) L→ N

(
0,

σ 2(θ∗)
C2(θ∗)

)
as T → ∞

under the true model.



7

Parametric estimation
for processes driven
by fractional Brownian sheet

7.1 Introduction

We have studied parametric and nonparametric inference for stochastic processes
driven by fBm or mixed fBm. We will now study similar problems for random
fields driven by a fractional Brownian sheet. Some applications to modeling are
mentioned in the next section.

7.2 Parametric estimation for linear SDEs driven
by a fractional Brownian sheet

We now study the asymptotic behavior of the MLE and the Bayes estimator for
the parameter θ for random fields governed by SDEs of the type

Xt,s = θ

∫ t

0

∫ s

0
b(Xv,u)dudv + W

α,β
t,s , 0 ≤ t, s ≤ T (7.1)

where Wα,β is a fractional Brownian sheet (fBs) with Hurst parameters
α, β ∈ ( 1

2 , 1). The Bernstein–von Mises-type theorem and its application for
Bayes estimation of parameters for diffusion fields were discussed in Prakasa
Rao (1984). Sottinen and Tudor (2008) have recently investigated the problem
of maximum likelihood estimation for linear SDEs driven by a fractional

Statistical Inference for Fractional Diffusion Processes B. L. S. Prakasa Rao
 2010 John Wiley & Sons, Ltd
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Brownian sheet. Models of the form (7.1) have been used in the context of
identification or detection in signal estimation problems. Here the coefficient θ

is unobservable and it has to be estimated from observation of the process X.

Two-dimensional models where the noise has fractional behavior are used in
satellite imaging (cf. Pesquet-Popescu and Levy Vehel (2002)), in radar image
data classification (cf. Jung Lae and Chyi-Chying (1997)), in the classification
and segmentation of hydrological basins (cf. Maitre and Pinciroli (1999)) and
in medical applications such as the detection of osteoporosis from X-ray images
(cf. Leger (2001), Jeanne et al. (2001)).

Two-parameter martingales

We now give a brief introduction to two-parameter martingale theory which is
needed for results discussed later in this chapter.

Let R2+ be the positive orthant of R2 with the partial ordering z1 < z2 with
z1 = (t1, s1) and z2 = (t2, s2), ti ≥ 0, si ≥ 0, i = 1, 2, if t1 ≤ t2 and s1 ≤ s2. If
t1 < t2 and s1 < s2, we denote the ordering by z1 � z2. If z1 � z2, then (z1, z2]
will be the rectangle (t1, t2] × (s1, s2] and if fz is a function defined on R2+,

then f ((z1, z2]) will denote ft2,s2 − ft2,s1 − ft1,s2 + ft1,s1 . We will denote the
rectangle {ζ : 0 < ζ < z} by Rz.

Let (�,F, P ) be a probability space and {Fz, z ∈ R2+} be a family of sub-σ -
algebras of F satisfying the following conditions:

(F1) Fz1 ⊂ Fz2 if z1 < z2;
(F2) F0 contains all null sets of F;
(F3) for each z,Fz = ∩z�ζFζ ;
(F4) for each z = (t, s),F1

z and F2
z are conditionally independent. Here F1

z =
Ft,∞ and F2

z = F∞,s with

Ft,∞ = ∨s≥0Ft,s = σ(∪s≥0Ft,s )

and

F∞,s = ∨t≥0Ft,s = σ(∪t≥0Ft,s ).

Note that the condition (F4) is equivalent to the condition:

(F4′) for all bounded random variables X and for all z ∈ R2+,

E(X|Fz) = E[E(X|F1
z)|F2

z] = E[E(X|F2
z)|F1

z]a.s.

Definition: Let {Fz, z ∈ R2+} be a filtration satisfying conditions (F1)–(F4).

(i) A process X = {Xz, z ∈ R2+} is called a two-parameter martingale with
respect to {Fz, z ∈ R2+} if (a) for each z ∈ R2+, Xz is adapted to Fz and
integrable, and (b) for each z < z′, E(Xz′ |Fz) = Xz a.s.
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(ii) The process X = {Xz, z ∈ R2
+} is called a weak martingale with respect to

{Fz, z ∈ R2+} if (a) for each z ∈ R2+, Xz is adapted to Fz and integrable,
and (b) for each z < z′, E(X((z, z′])|Fz) = 0 a.s.

(iii) The process X = {Xz, z ∈ R2
+} is called an i-martingale, i = 1, 2, with

respect to {Fz, z ∈ R2+} if (a) for each z ∈ R2+, Xz is adapted to Fi
z and

integrable, and (b) for each z � z′, E(X((z, z′])|Fi
z) = 0 a.s.

(iv) The process X = {Xz, z ∈ R2+} is called a strong martingale, if, in addition,
X vanishes on the axes, that is, X0,s = Xt,0 = 0 for all 0 ≤ t, s, < ∞, and
E(X((z, z′])|F1

z ∨ F2
z) = 0 a.s. for all z � z′.

It can be checked that any two-parameter martingale is both a 1-and 2-martingale.
Conversely, if X is both a 1- and 2-martingale, then X is a two-parameter martin-
gale provided {Xt,0,F1

t,0, t ∈ R+} and {X0,s ,F1
0,s , s ∈ R+} are both martingales.

Furthermore, any two-parameter martingale is a weak martingale and any strong
martingale is a two-parameter martingale.

A process {Xz} is said to be right-continuous if limz′→z:z�z′ = Xz a.s.
Given a filtration {Fz, z ∈ R2+} satisfying properties (F1)–(F4), a process

X = {Xz, z ∈ R2+} is called an increasing process if (i) X is right-continuous and
adapted to {Fz, z ∈ R2+}, (ii)Xz = 0 a.s. on the axes and (iii) X(A) ≥ 0 for every
rectangle A ⊂ R2+.

Let T = (T1, T2) ∈ R2+. Let M2
S(T) be the class of strong martingales on

RT such that E|Mz|2 < ∞ for all z ∈ RT. Let M ∈ M2
S(T). It is known that

there exists a unique F1
z-predictable increasing process [M](1) and a unique F2

z-
predictable increasing process [M](2) such that M2

z − [M](i) is an i-martingale
for i = 1, 2 respectively. Following Cairoli and Walsh (1975), for a strong mar-
tingale M , one can choose either the process [M](1) or the process [M](2) as
the increasing process Az such that the process {M2

z − Az, z ∈ T} is a two-
parameter martingale. In general, it is not necessary that [M](1) = [M](2) a.s.
However, if {Fz, z ∈ R2+} is generated by the Brownian sheet defined below,
then [M](1) = [M](2) a.s. and this process is called the quadratic variation of the
two-parameter strong martingale M and is denoted by 〈M〉.

Let φ be a bi-measurable function of (ω, z) such that φz is Fz-measurable
and ∫

T
E[φ2

z ]dz < ∞.

Then it is possible to define the integral
∫

T φdM.

The Brownian sheet is a Gaussian process {Wt,s, 0 ≤ t, s ≤ T } starting from
zero with mean zero and covariance function

E(Wt,sWv,u) = min(t, v) min(s, u), 0 ≤ t, s, v, u ≤ T .

An alternative way of describing the process is as follows.
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The Wiener sheet (Brownian sheet) or the Wiener random field
W = {WZ,FZ, Z ∈ R2+} is a two-parameter Wiener process with continuous
sample paths with the property that, if Z = (t, s), then for any fixed t, the
process {Wt,s, 0 ≤ s ≤ ∞} is a standard Wiener process and for any fixed s, the
process {Wt,s, 0 ≤ t ≤ ∞} is a standard Wiener process.

For the case of the Wiener sheet described above, stochastic integrals of
the type ∫

T
φζdWζ

are studied in Wong and Zakai (1976) and Cairoli and Walsh (1975). Suppose
that φ = {φZ, Z ∈ R2+} is an FZ-adapted measurable random field such that

E

(∫
RZ

φ2
ζ dζ

)
< ∞.

Following Cairoli and Walsh (1975), the integral

IZ =
∫

RZ

φζ dWζ

can be defined. The following result is due to Etemadi and Kallianpur (1977).

Theorem 7.1: Let {Xz,Fz, z ∈ T} be a square integrable strong martingale such
that the filtration {Fz, z ∈ T} is generated by a Brownian sheet. Then

exp

(
Xz − 1

2
〈X〉z

)
is a martingale if and only if

E

[
exp

(
Xz − 1

2
〈X〉z

)]
= 1.

Our discussion here is based on Amirdjanova and Linn (2007) and Prakasa
Rao (1984).

Fractional Brownian sheet

Thefractional Brownian sheet with Hurst index (α, β) ∈ (0, 1) × (0, 1) is a
Gaussian process Wα,β ≡ {Wα,β

t,s , 0 ≤ t, s ≤ T } starting from zero with mean
zero and covariance function

E(W
α,β
t,s Wα,β

v,u )= 1

2
(t2α+v2α−|t−v|2α)

1

2
(s2β +u2β −|s−u|2β), 0≤ t, s, v, u≤T .
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As in the one-dimensional case, we can associate a two-parameter strong mar-
tingale with the fractional Brownian sheet following Sottinen and Tudor (2008).
We explain this in some detail to introduce the notation and for completeness.
Following the notation introduced in Chapter 1, let

M
α,β
t,s =

∫ t

0

∫ s

0
kα(t, v)kβ(s, u)dWα,β

u,v , 0 ≤ t, s, v, u ≤ T (7.2)

where kα(t, v) is as defined by (1.70) in Chapter 1. It can be shown that the pro-
cess Mα,β ≡ {Mα,β

t,s , 0 ≤ t, s, v, u ≤ T } is a Gaussian strong martingale with the
quadratic variation equal to wα

t w
β
s where wα

t is as given by (1.72) in Chapter 1.
The integral (7.2) can be defined as a Wiener integral with respect to the frac-
tional Brownian sheet Wα,β. The filtration generated by the martingale Mα,β

coincides with the filtration generated by the fractional Brownian sheet Wα,β.

Linear SDE driven by fractional Brownian sheet

Let us consider the SDE

dXζ = [ηζ (X) + θψζ (X)]dζ + σ(ζ ) dW
α,β

ζ , ζ ∈ R2
+ (7.3)

where θ ∈ � ⊂ R, W = {Wα,β

ζ , ζ ∈ R2+} is a fractional Brownian sheet with
parameter (α, β) and σ(ζ ) is a nonrandom positive function on [0,∞). In other
words, X = {Xt, t ≥ 0} is a stochastic process satisfying the stochastic integral
equation

X(Z) =
∫

RZ

[ηζ (X) + θψζ (X)]dζ +
∫

RZ

σ(ζ )dW
α,β
ζ , ζ ∈ R2

+. (7.4)

Let

C(θ, ζ ) = [ηζ (X) + θψζ (X)], ζ ∈ R2
+ (7.5)

and suppose that the random field is such that

Rt,s = d

dwα
t

d

dw
β
s

∫ t

0

∫ s

0
kα(t, v)kβ(s, u)[C(θ, (u, v))\σ(u, v))]dudv (7.6)

is well defined. For 0 < α, β < 1, and if C(θ, ζ ) is Lipschitz, then the sample
paths of the random field R over the region [0, T ] × [0, T ] belong to L2([0, T ] ×
[0, T ], wα × wβ). Following the arguments in Sottinen and Tudor (2008), define

Zt,s =
∫ t

0

∫ s

0
kα(t, v)kβ(s, u)[σ(v, u)]−1dXv,u

=
∫ t

0

∫ s

0
kα(t, v)kβ(s, u)[σ(v, u)]−1C(θ, (u, v))dudv + M

α,β
t,s . (7.7)
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Suppose 1
2 < α, β < 1 and σ(t, s) ≡ 1. Then

Xt,s =
∫ t

0

∫ s

0
Kα(t, v)Kβ(s, u)dZu,v (7.8)

where

Kα(t, v) = α(2α − 1)

∫ t

0
r2α−1(r − v)α− 3

2 dr.

The above representation is given in Sottinen and Tudor (2008) following con-
struction in Kleptsyna et al. (2000a) and Tudor and Tudor (2002). It is easy to
see that

Zt,s =
∫ t

0

∫ s

0
Ru,vdwα

udwβ
v + M

α,β
t,s . (7.9)

It can be shown that the filtrations generated by the random fields {Zt,s, 0 ≤ t,

s ≤ T } and {Xt,s, 0 ≤ t, s ≤ T } are the same (see Theorem 1.19 in Chapter 1 in
the one-dimensional case of fBm). Hence no information is lost by using the data
{Zt,s, 0 ≤ t, s ≤ T } instead of {Xt,s, 0 ≤ t, s ≤ T } for inferential purposes. We
use this observation for developing the methods of estimation for the parameter θ.

Let P T
θ be the probability measure induced by the random field {Xt,s, 0 ≤

t ≤ T , 0 ≤ s ≤ T }. Following Theorem 4.7 in Sottinen and Tudor (2008), the
Radon–Nikodym derivative of the measure P T

θ with respect to P T
0 is given by

dP T
θ

dP T
0

= exp

(∫ T

0

∫ T

0
Rt,sdZt,s − 1

2

∫ T

0

∫ T

0
R2

t,sdwα
t dwβ

s

)
. (7.10)

Maximum likelihood estimation

We now consider the problem of estimation of the parameter θ based on observa-
tion of the process X = {Xt,s, 0 ≤ t, s ≤ T } and study its asymptotic properties
as T → ∞.

Strong consistency

Let LT (θ) denote the Radon–Nikodym derivative dP T
θ /dP T

0 . The MLE is
defined by the relation

LT (θ̂T ) = sup
θ∈�

LT (θ). (7.11)

We assume that there exists a measurable MLE. Sufficient conditions can
be given for the existence of such an estimator (cf. Prakasa Rao (1987),
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Lemma 3.1.2). Note that

Rt,s = d

dwα
t

d

dw
β
s

∫ t

0

∫ s

0
kα(t, v)kβ(s, u)[C(θ, (u, v))/σ (u, v)]dudv

= d

dwα
t

d

dw
β
s

∫ t

0

∫ s

0
kα(t, v)kβ(s, u)[η(u, v)/σ (u, v)]dudv

+ θ
d

dwα
t

d

dw
β
s

∫ t

0

∫ s

0
kα(t, v)kβ(s, u)[ψ(u, v)/σ (u, v)]dudv

= J1(t, s) + θJ2(t, s)(say). (7.12)

Then

log LT (θ) =
∫ T

0

∫ T

0
(J1(t, s) + θJ2(t, s))dZt,s

− 1

2

∫ T

0

∫ T

0
(J1(t, s) + θJ2(t, s))

2dwα
t dwβ

s (7.13)

and the likelihood equation is given by∫ T

0

∫ T

0
J2(t, s)dZt,s −

∫ T

0

∫ T

0
(J1(t, s) + θJ2(t, s))J2(t, s) dwα

t dwβ
s = 0.

(7.14)

Hence the MLE θ̂T of θ is given by

θ̂T =
∫ T

0

∫ T

0 J2(t, s)dZt,s − ∫ T

0

∫ T

0 J1(t, s)J2(t, s)dwα
t dw

β
s∫ T

0

∫ T

0 J 2
2 (t, s)dwα

t dw
β
s

. (7.15)

Let θ0 be the true parameter. Using the fact that

dZt,s = (J1(t, s) + θ0J2(t, s))dwα
t dwβ

s + dM
α,β
t,s , (7.16)

it can be shown that

dP T
θ

dP T
θ0

= exp

[
(θ − θ0)

∫ T

0

∫ T

0
J2(t, s)dM

α,β
t,s − 1

2
(θ − θ0)

2

∫ T

0

∫ T

0
J 2

2 (t, s)dwα
t dwβ

s

]
. (7.17)

Following this representation of the Radon–Nikodym derivative, we obtain that

θ̂T − θ0 =
∫ T

0

∫ T

0 J2(t, s)dM
α,β
t,s∫ T

0

∫ T

0 J 2
2 (t, s)dwα

t dw
β
s

. (7.18)
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We now discuss the problem of estimation of the parameter θ on the basis of the
observation of the random field X or equivalently the random field Z over the
region [0, T ] × [0, T ].

(A1) Let {Mα,β
t,s } be a two-parameter strong martingale. Assume that a ran-

dom field {G(t, s), 0 ≤ t, s ≤ ∞} is such that the stochastic integral∫ T

0

∫ T

0
G(t, s)dM

α,β
t,s

exits in the Cairoli–Walsh sense and∫ T

0

∫ T

0
G2(t, s)dwα

t dwβ
s → ∞ a.s. as T → ∞.

Further suppose that∫ T

0

∫ T

0 G(t, s)dM
α,β
t,s∫ T

0

∫ T

0 G2(t, s)dwα
t dw

β
s

→ 0 a.s. as T → ∞. (7.19)

Theorem 7.2: Suppose the condition (A1) holds. Then the MLE θ̂T is strongly
consistent, that is,

θ̂T → θ0 a.s. [Pθ0 ] as T → ∞ (7.20)

provided∫ T

0

∫ T

0
J 2

2 (t, s)dwα
t dwβ

s → ∞ a.s. [Pθ0 ] as T → ∞. (7.21)

Limiting distribution

We now study the limiting distribution of the MLE θ̂T as T → ∞.

(A2) Let {Mα,β
t,s } be a two-parameter strong martingale. Assume that the

random field {G(t, s), 0 ≤ t, s ≤ ∞} is such that the stochastic integral

νT ≡
∫ T

0

∫ T

0
G(t, s)dM

α,β
t,s

exists in the Cairoli–Walsh sense and let

RT ≡
∫ T

0

∫ T

0
G2(t, s)dwα

t dwβ
s .
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Further assume that the process {Rt, t ≥ 0} is such that there exists a
norming function {It , t ≥ 0} such that

I 2
T RT = I 2

T

∫ T

0

∫ T

0
G2(t, s)dwα

t dwβ
s → η2in probability as T → ∞

(7.22)

where IT → 0 as T → ∞ and η is a random variable such that
P(η > 0) = 1. Furthermore,

(IT νT , I 2
T RT ) → (ηZ, η2) in law as T → ∞ (7.23)

where the random variable Z and η are independent.

Observe that

I−1
T (θ̂T − θ0) = IT νT

I 2
T RT

(7.24)

Then we obtain the following result under the condition (A2).

Theorem 7.3: Suppose that the condition (A2) holds. Then

I−1
T (θ̂T − θ0) → Z

η
in law as t → ∞ (7.25)

where the random variable Z has the standard normal distribution and the random
variables Z and η are independent.

Remarks: The problem of strong law of large numbers for normalized stochas-
tic integrals with respect to two-parameter martingales is open. The central limit
theorem for normalized stochastic integrals with respect to two-parameter martin-
gales is also an open problem. Knopov (1982) stated a central limit theorem for
stochastic integrals with respect to a Wiener sheet. The central limit theorem and
strong law of large numbers for stochastic integrals with respect to one-parameter
martingales are known (cf. Prakasa Rao (1999b)). Central limit theorems for
stochastic integrals with respect to martingales in one dimension are proved
using the fact that a one-parameter martingale can be transformed into a stan-
dard Wiener process by a random time change and a central limit theorem for
stochastic integrals with respect to a Wiener process is known (cf. Prakasa Rao
(1999a)). However, it is not possible to convert a two-parameter martingale into
a Wiener sheet by a random time change in general. Hence it is not clear how
to reduce the problem of study of the central limit theorem for two-parameter
martingales to the study of the central limit theorem for stochastic integrals with
respect to a Wiener sheet and apply the result stated in Knopov (1982).
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Bayes estimation

Suppose that the parameter space � is open and  is a prior probability measure
on the parameter space �. Further suppose that  has the density λ(.) with
respect to the Lebesgue measure and the density function is continuous and
positive in an open neighborhood of θ0, the true parameter. Let

AT ≡ IT

∫ T

0

∫ T

0
J2(t, s))dM

α,β
t,s (7.26)

and

BT ≡ I 2
T

∫ T

0

∫ T

0
J 2

2 (t, s)dwα
t dwβ

s . (7.27)

We saw earlier that the MLE satisfies the relation

AT = (θ̂T − θ0)I
−1
T BT . (7.28)

The posterior density of θ given the observation XT ≡ {Xt,s, 0 ≤ t, s ≤ T } is
given by

p(θ |XT ) = (dP T
θ /dP T

θ0
)λ(θ)∫

�
(dP T

θ /dP T
θ0

)λ(θ) dθ
. (7.29)

Let us write t = I−1
T (θ − θ̂T ) and define

p∗(t |XT ) = IT p(θ̂T + tIT |XT ). (7.30)

Then the function p∗(t |XT ) is the posterior density of the transformed variable
t = I−1

T (θ − θ̂T ). Let

νT (t) ≡ dPθ̂T +tIT
/dPθ0

dPθ̂T
/dPθ0

= dPθ̂T +tIT

dPθ̂T

a.s. (7.31)

and

CT =
∫ ∞

−∞
νT (t)λ(θ̂T + tIT )dt. (7.32)

It can be checked that

p∗(t |XT ) = C−1
T νT (t)λ(θ̂T + tIT ) (7.33)
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and

log νT (t) = I−1
T αT [(θ̂T + tIT − θ0) − (θ̂T − θ0)]

−1

2
I−2
T BT [(θ̂T + tIT − θ0)

2 − (θ̂T − θ0)
2]

= tαT − 1

2
t2BT − tBT I−1

T (θ̂T − θ0)

= −1

2
BT t2. (7.34)

Suppose that convergence of the condition in Equation (7.22) holds a.s. under
the measure Pθ0 and the limit is a constant η2 > 0 with probability one. For
convenience, we write γ = η2. Then

BT → γ a.s. [Pθ0 ] as T → ∞. (7.35)

Then it is obvious that

lim
T →∞

νT (t) = exp

(
−1

2
γ t2
)

a.s. [Pθ0 ] (7.36)

and, for any 0 < ε < γ,

log νT (t) ≤ −1

2
t2(γ − ε) (7.37)

for every t for T sufficiently large. Furthermore, for every δ > 0, there exists
ε′ > 0 such that

sup
|t | > δI−1

T

νT (t) ≤ exp

(
−1

4
ε′I−2

T

)
(7.38)

for T sufficiently large.
Suppose that H(t) is a nonnegative measurable function such that, for some

0 < ε < γ, ∫ ∞

−∞
H(t) exp

[
−1

2
t2(γ − ε)

]
dt < ∞. (7.39)

Further suppose that the MLE θ̂T is strongly consistent, that is,

θ̂T → θ0 a.s. [Pθ0 ] as T → ∞ (7.40)

The following lemmas can be proved following arguments similar to those given
in Chapter 2 for studying the properties of the Bayes estimators for SDEs driven
by fBm. We omit the details.
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Lemma 7.4: Under the conditions stated above, there exists δ > 0 such that

lim
T →∞

∫
|t |≤δI−1

T

H(t)

∣∣∣∣νT (t)λ(θ̂T + tIT ) − λ(θ0) exp

(
−1

2
γ t2
)∣∣∣∣ dt = 0. (7.41)

Suppose the following condition holds for every ε > 0 and δ > 0:

exp(−εI−2
T )

∫
|u| > δ

H(uI−1
T )λ(θ̂T + u)du → 0 a.s. [Pθ0 ] as T → ∞.

(7.42)

Lemma 7.5: Suppose that the conditions stated earlier hold. Then, for every
δ > 0,

lim
T →∞

∫
|t | > δI−1

T

H(t)

∣∣∣∣νT (t)λ(θ̂T + tIT ) − λ(θ0) exp

(
−1

2
γ t2
)∣∣∣∣ dt = 0. (7.43)

Lemmas 7.4 and 7.5 together prove that

lim
T →∞

∫ ∞

−∞
H(t)

∣∣∣∣νT (t)λ(θ̂T + tIT ) − λ(θ0) exp

(
−1

2
βt2
)∣∣∣∣ dt = 0. (7.44)

Let H(t) ≡ 1 in (7.44). Note that

CT ≡
∫ ∞

−∞
νT (t)λ(θ̂T + tIT )dt.

Relation (7.44) implies that

CT → λ(θ0)

∫ ∞

−∞
exp

(
−1

2
γ t2
)

dt = λθ0

( γ

2π

)−1/2
a.s. [Pθ0 ] (7.45)

as T → ∞. Furthermore,∫ ∞

−∞
H(t)

∣∣∣∣p∗(t |XT ) −
( γ

2π

)1/2
exp

(
−1

2
γ t2
)∣∣∣∣ dt

≤ C−1
T

∫ ∞

−∞
H(t)

∣∣∣∣νT (t)λ(θ̂T + tIT ) − λ(θ0) exp

(
−1

2
γ t2
)∣∣∣∣ dt

+
∫ ∞

−∞
H(t)

∣∣∣∣C−1
T λ(θ0) −

( γ

2π

)1/2
∣∣∣∣ exp

(
−1

2
βt2
)

dt. (7.46)

The last two terms tend to zero a.s. [Pθ0 ] by Equations (7.44) and (7.45). Hence
we have the following theorem which is an analogue of the Bernstein–von Mises
theorem for a class of processes satisfying a linear SDE driven by the standard
Wiener process proved in Prakasa Rao (1981).
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Theorem 7.6: Let the assumptions (7.35), (7.39), (7.40) and (7.42) hold where
λ(.) is a prior density which is continuous and positive in an open neighborhood
of θ0, the true parameter. Then

lim
T →∞

∫ ∞

−∞
H(t)

∣∣∣∣p∗(t |XT ) −
( γ

2π

)1/2
exp

(
−1

2
γ t2
)∣∣∣∣ dt = 0 a.s. [Pθ0 ]. (7.47)

As a consequence of the above theorem, we obtain the following result by choos-
ing H(t) = |t |m, for any integer m ≥ 0.

Theorem 7.7: Assume that the following conditions hold:

θ̂T → θ0 a.s. [Pθ0 ] as T → ∞, (7.48)

BT → γ > 0 a.s. [Pθ0 ] as T → ∞. (7.49)

Further suppose that λ(.) is a prior probability density on � which is continuous
and positive in an open neighborhood of θ0, the true parameter, and∫ ∞

−∞
|θ |mλ(θ)dθ < ∞ (7.50)

for some integer m ≥ 0. Then

lim
T →∞

∫ ∞

−∞
|t |m

∣∣∣∣p∗(t |XT ) −
( γ

2π

)1/2
exp

(
−1

2
γ t2
)∣∣∣∣ dt = 0 a.s. [Pθ0 ]. (7.51)

In particular, choosing m = 0, we obtain that

lim
T →∞

∫ ∞

−∞

∣∣∣∣p∗(t |XT ) −
( γ

2π

)1/2
exp

(
−1

2
γ t2
)∣∣∣∣ dt = 0 a.s. [Pθ0 ] (7.52)

whenever conditions (7.48) and (7.49) hold. This is the analogue of the
Bernstein–von Mises theorem for a class of diffusion fields proved in Prakasa
Rao (1984) and it shows the asymptotic convergence in L1-mean of the posterior
density to the Gaussian distribution.

As a corollary to Theorem 7.7, we also obtain that the conditional expecta-
tion, under Pθ0 , of [I−1

T (θ̂T − θ)]m converges to the corresponding m-th absolute
moment of the normal distribution with mean zero and variance γ −1.

We define a regular Bayes estimator of θ , corresponding to a prior probability
density λ(θ) and the loss function L(θ, φ), based on the observation XT , as an
estimator which minimizes the posterior risk

BT (φ) ≡
∫ ∞

−∞
L(θ, φ)p(θ |XT )dθ (7.53)

over all the estimators φ of θ. Here L(θ, φ) is a loss function defined on � × �.
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Suppose there exists a measurable regular Bayes estimator θ̃T for the param-
eter θ (cf. Prakasa Rao (1987), Theorem 3.1.3). Suppose that the loss function
L(θ, φ) satisfies the following conditions:

L(θ, φ) = �(|θ − φ|) ≥ 0 (7.54)

and the function �(t) is nondecreasing for t ≥ 0. An example of such a loss
function is L(θ, φ) = |θ − φ|. Suppose there exist nonnegative functions R(t),
K(t) and G(t) such that

(D1) R(t)�(tIT ) ≤ G(t) for all T ≥ 0 and

(D2) R(t)�(tIT ) → K(t) as T → ∞ uniformly on bounded intervals of t .
Further suppose that the function

(D3)
∫∞
−∞ K(t + h) exp(− 1

2βt2) dt has a strict minimum at h = 0 and

(D4) the function G(t) satisfies the conditions similar to (7.39) and (7.42).

We have the following result giving the asymptotic properties of the Bayes risk
of the estimator θ̃T .

Theorem 7.8: Suppose the conditions (7.48) and (7.49) in Theorem 7.7 hold and
that λ(.) is a prior probability density on � which is continuous and positive in
an open neighborhood of θ0, the true parameter. Further suppose that conditions
(D1) to (D4) stated above hold. Then

I−1
T (θ̃T − θ̂T ) → 0 a.s. [Pθ0 ] as T → ∞ (7.55)

and

lim
T →∞

R(T )BT (θ̃T ) = lim
T →∞

R(T )BT (θ̂T )

=
( γ

2π

)1/2
∫ ∞

−∞
K(t) exp

(
−1

2
γ t2
)

dt a.s. [Pθ0 ]. (7.56)

We omit the proof of this theorem as it is similar to the proof of the result
given in the one-dimensional case in Chapter 1 (cf. Theorem 4.1 in Borwanker
et al. (1971)). We observed earlier that

I−1
T (θ̂T − θ0) → Z

η
in law as T → ∞. (7.57)

As a consequence of Theorem 7.8, we obtain that

θ̃T → θ0 a.s. [Pθ0 ] as T → ∞ (7.58)
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and

I−1
T (θ̃T − θ0) → Z

η
in law as T → ∞. (7.59)

In other words, the limiting distribution of the Bayes estimator is the same as
that of the MLE after suitable normalization. The asymptotic Bayes risk of the
estimator is given by Theorem 7.8.





8

Parametric estimation
for processes driven by
infinite-dimensional fBm

8.1 Introduction

We studied parametric and nonparametric inference for stochastic processes
driven by fBm in the earlier chapters. We will now study similar problems for
processes driven by infinite-dimensional fBm following the works of Prakasa
Rao (2004e) and Cialenco et al. (2008).

8.2 Parametric estimation for SPDEs driven
by infinite-dimensional fBm

Kallianpur and Xiong (1995) discussed the properties of solutions of stochastic
partial differential equations (SPDEs) driven by infinite-dimensional fBm. They
indicate that SPDEs are being used for stochastic modeling, for instance, for the
study of neuronal behavior in neurophysiology and in building stochastic models
of turbulence. The theory of SPDEs is investigated in Ito (1984), Rozovskii
(1990) and Da Prato and Zabczyk (1992). Huebner et al. (1993) started the
investigation of maximum likelihood estimation of parameters of two types of
SPDEs and extended their results for a class of parabolic SPDEs in Huebner and
Rozovskii (1995). Asymptotic properties of Bayes estimators for such problems
were discussed in Prakasa Rao (2000). A short review and a comprehensive
survey of these results are given in Prakasa Rao (2001, 2002). Our aim in this

Statistical Inference for Fractional Diffusion Processes B. L. S. Prakasa Rao
 2010 John Wiley & Sons, Ltd
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section is to study the problems of parameter estimation for some SPDEs driven
by infinite-dimensional fBm.

SPDE with linear drift (absolutely continuous case)

Let U be a real separable Hilbert space and Q be a self-adjoint positive
operator. Further suppose that the operator Q is nuclear. Then Q admits a
sequence of eigenvalues {qn, n ≥ 1} with 0 < qn decreasing to zero as n → ∞
and

∑∞
n=0 qn < ∞. In addition, the corresponding eigenvectors {en, n ≥ 1} form

an orthonormal basis in U. We define infinite-dimensional fractional Brownian
motion on U with covariance Q as

WH
Q(t) =

∞∑
n=0

√
qnenW

H
n (t) (8.1)

where WH
n , n ≥ 1, are real independent fBms with Hurst index H (cf. Tindel

et al. (2003)). A formal definition is given in the next section.
Let U = L2[0, 1] and WH

Q be infinite-dimensional fBm on U with Hurst
index H and with the nuclear covariance operator Q.

Consider the process uε(t, x), 0 ≤ x ≤ 1, 0 ≤ t ≤ T , governed by the SPDE

duε(t, x) = (�uε(t, x) + θuε(t, x))dt + εdWH
Q(t, x) (8.2)

where � = ∂2/∂x2. Suppose that ε → 0 and θ ∈ � ⊂ R. Suppose also that the
initial and boundary conditions are given by

uε(0, x) = f (x), f ∈ L2[0, 1] (8.3)

uε(t, 0) = uε(t, 1) = 0, 0 ≤ t ≤ T . (8.4)

Let us consider a special covariance operator Q with ek = sin kπ, k ≥ 1, and
λk = (πk)2, k ≥ 1. Then {ek} is a complete orthonormal system with eigenvalues
qi = (1 + λi)

−1, i ≥ 1, for the operator Q and Q = (I−�)−1.
Tindel et al. (2003) have given sufficient conditions for the existence and

square integrability of a solution uε(t, x) for a SDE driven by infinite-dimensional
fBm. However, their results are not directly applicable to the problem under
discussion.

We assume that sufficient conditions hold so that there exists a unique square
integrable solution uε(t, x) of (8.2) under the conditions (8.3) and (8.4) and
consider it as a formal sum

uε(t, x) =
∞∑
i=1

uiε(t)ei(x). (8.5)
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It can be checked that the Fourier coefficient uiε(t) satisfies the SDE

duiε(t) = (θ − λi)uiε(t)dt + ε√
λi + 1

dWH
i (t), 0 ≤ t ≤ T (8.6)

with the initial condition

uiε(0) = vi, vi =
∫ 1

0
f (x)ei(x)dx. (8.7)

Let P
(ε)
θ be the probability measure generated by uε when θ is the true parameter.

Suppose θ0 is the true parameter. Observe that the process {uiε(t), 0 ≤ t ≤ T } is
a fractional Ornstein–Uhlenbeck-type process studied in Chapter 3 (cf. Kleptsyna
and Le Breton (2002a) and Prakasa Rao (2003, 2004a,b)).

Following the notation given in Chapter 1, we define

MH
i (t) =

∫ t

0
kH (t, s)dWH

i (s), 0 ≤ t ≤ T , (8.8)

Qiε(t) =
√

λi + 1

ε

d

dwH
t

∫ t

0
kH (t, s)uiε(s)ds, t ∈ [0, T ], (8.9)

Ziε(t) = (θ − λi)

∫ t

0
Qiε(s)dwH

s + MH
i (t) (8.10)

and it follows that

uiε(t) =
∫ t

0
K

fiε

H (t, s)dZiε(t), fiε(t) ≡ ε√
λi + 1

(8.11)

and K
f

H(t, s) is as defined in (1.75) of Chapter 1. Then MH
i is a zero-mean

Gaussian martingale. Furthermore, it follows, by Theorem 1.19 in Chapter 1,
that the process {Ziε(t)} is a semimartingale and the natural filtrations (Ziεt )

and (Uiεt ) of the processes Ziε and uiε respectively coincide. Let P
T,ε
iθ be the

probability measure generated by the process {uiε(t), 0 ≤ t ≤ T } when θ is the
true parameter. Let θ0 be the true parameter. It follows, by the Girsanov-type
theorem discussed in Theorem 1.20 in Chapter 1, that

log
dP

T,ε
iθ

dP
T,ε
iθ0

= λi + 1

ε2

{
(θ − θ0)

∫ T

0
Qiε(t)dZiε(t)

−1

2
[(θ − λi)

2 − (θ0 − λi)
2]
∫ T

0
Q2

iε(t)dwH
t

}
. (8.12)
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Let uN
ε (t, x) be the projection of the solution uε(t, x) onto the subspace spanned

by the eigenvectors {ei, 1 ≤ i ≤ N}. Then

uN
ε (t, x) =

N∑
i=1

uiε(t)ei(x). (8.13)

From the independence of the processes WH
i , 1 ≤ i ≤ N , and hence of the pro-

cesses uiε, 1 ≤ i ≤ N, it follows that the Radon–Nikodym derivative, of the
probability measure P

N,T ,ε
θ generated by the process uN

ε , 0 ≤ t ≤ T , when θ is
the true parameter with respect to the probability measure P

N,T ,ε
θ0

generated by
the process un

ε , 0 ≤ t ≤ T , when θ0 is the true parameter, is given by

log
dP

N,T ,ε
θ

dP
N,T ,ε
θ0

(uN
ε ) =

N∑
i=1

λi + 1

ε2

{
(θ − θ0)

∫ T

0
Qiε(t)dZiε(t)

−1

2
[(θ − λi)

2 − (θ0 − λi)
2]
∫ T

0
Q2

iε(t)dwH
t

}
. (8.14)

Furthermore, the Fisher information is given by

INε(θ) = Eθ

[
∂ log(dP

N,T ε
θ /dP

N,T ,ε
θ0

)

∂θ

]2

=
N∑

i=1

λi + 1

ε2
Eθ

[∫ T

0
Q2

iε(t)dwH
t

]
. (8.15)

It is easy to check that the MLE θ̂N,ε of the parameter θ based on the projection
uN

ε of uε is given by

θ̂N,ε =
∑N

i=1(λi + 1)
∫ T

0 Qiε(t)dZiε(t)∑N
i=1(λi + 1)

∫ T

0 Q2
iε(t)dwH

t

. (8.16)

Suppose θ0 is the true parameter. It is easy to see that

ε−1(θ̂N,ε − θ0) =
∑N

i=1

√
λi + 1

∫ T

0 Qiε(t)dMH
i (t)∑N

i=1(λi + 1)
∫ T

0 Q2
iε(t)dwH

t

. (8.17)

Observe that Mi, 1 ≤ i ≤ N , are independent zero-mean Gaussian martingales
with 〈Mi〉 = wH, 1 ≤ i ≤ N.

Theorem 8.1: The MLE θ̂N,ε is strongly consistent, that is,
θ̂N,ε → θ0 a.s. [Pθ0 ] as ε → 0 (8.18)

provided
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N∑
i=1

∫ T

0
(λi + 1)Q2

iε(t)dwH
t → ∞ a.s. [Pθ0 ] as ε → 0. (8.19)

Proof: This theorem follows by observing that the process

RN
ε ≡

N∑
i=1

∫ T

0
ε
√

λi + 1Qiε(t)dMH
i (t), T ≥ 0 (8.20)

is a local martingale with the quadratic variation process

〈RN
ε 〉T =

N∑
i=1

∫ T

0
ε2(λi + 1)Q2

iε(t)dwH
t (8.21)

and applying the strong law of large numbers (cf. Liptser (1980), Prakasa Rao
(1999b), p. 61) under the condition (8.19) stated above.

Limiting distribution

We now discuss the limiting distribution of the MLE θ̂Nε as ε → 0.

Theorem 8.2: Assume that the process {RN
ε , ε ≥ 0} is a local continuous mar-

tingale and that there exists a norming function IN
ε , ε ≥ 0, such that

(IN
ε )2〈RN

ε 〉T = (IN
ε )2

N∑
i=1

∫ T

0
ε2(λi + 1)Q2

iε(t) dwH
t → η2

in probability as ε → 0 (8.22)
where IN

ε → 0 as ε → 0 and η is a random variable such that P(η > 0) = 1.

Then

(IN
ε RN

ε , (IN
ε )2〈RN

ε 〉T ) → (ηZ, η2) in law as ε → 0 (8.23)

where the random variable Z has the standard Gaussian distribution and the
random variables Z and η are independent.

Proof: This theorem follows as a consequence of the central limit theorem
for local martingales (cf. Theorem 1.49 and Remark 1.47 in Prakasa Rao
(1999b), p. 65).

Observe that

(IN
ε )−1(θ̂Nε − θ0) = IN

ε RN
ε

(IN
ε )2〈RN

ε 〉 . (8.24)
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Applying the above theorem, we obtain the following result.

Theorem 8.3: Suppose the conditions stated in Theorem 8.2 hold. Then

(IN
ε )−1(θ̂Nε − θ0) → Z

η
in law as ε → 0 (8.25)

where the random variable Z has the standard Gaussian distribution and the
random variables Z and η are independent.

Remarks:

(i) If the random variable η is a constant with probability one, then the limiting
distribution of the MLE is Gaussian with mean zero and variance η−2.

Otherwise it is a mixture of the Gaussian distributions with mean zero and
variance η−2 with the mixing distribution as that of η.

(ii) Suppose that

lim
N→∞

lim
ε→0

ε2INεθ = I (θ) (8.26)

exists and is positive. Since the sequence of Radon–Nikodym derivatives{
dP

N,T ,ε
θ

dP
N,T ,ε
θ0

, n ≥ 1

}

form a nonnegative martingale with respect to the filtration generated by the
sequence of random variables {uN

ε , N ≥ 1}, it converges a.s. to a random
variable νε,θ,θ0 as N → ∞ for every ε > 0. It is easy to see that the limiting
random variable is given by

νε,θ,θ0(uε) = exp

{ ∞∑
i=1

λi + 1

ε2

[
(θ − θ0)

∫ T

0
Qiε(t)dZiε(t)

−1

2
[(θ − λi)

2 − (θ0 − λi)
2]
∫ T

0
Q2

iε(t)dwH
t

]}
. (8.27)

Furthermore, the sequence of random variables uN
ε (t) converges in probability

to the random variable uε(t) as N → ∞ for every ε > 0. Hence, by Lemma 4
in Skorokhod (1965, p. 100), it follows that the measures P ε

θ generated by the
processes uε for different values of θ are absolutely continuous with respect to
each other and the Radon–Nikodym derivative of the probability measure P ε

θ
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with respect to the probability measure P ε
θ0

is given by

dP ε
θ

dP ε
θ0

(uε) = νε,θ,θ0(uε)

= exp

{ ∞∑
i=1

λi + 1

ε2

[
(θ − θ0)

∫ T

0
Qiε(t)dZiε(t)

−1

2
[(θ − λi)

2 − (θ0 − λi)
2]
∫ T

0
Q2

iε(t)dwH
t

]}
. (8.28)

It can be checked that the MLE θ̂ε of θ based on uε satisfies the likelihood
equation

αε = ε−1(θ̂ε − θ0)βε (8.29)

when θ0 is the true parameter, where

αε =
∞∑
i=1

√
λi + 1

∫ T

0
Qiε(t)dMi(t) (8.30)

and

βε =
∞∑
i=1

(λi + 1)

∫ T

0
Q2

iε(t)dwH
t . (8.31)

One can obtain sufficient conditions for studying the asymptotic behavior of the
estimator θ̂ε as in the finite projection case discussed above. We omit the details.

SPDE with linear drift (singular case)

Let (�,F, P ) be a probability space and consider the process uε(t, x), 0 ≤ x ≤
1, 0 ≤ t ≤ T , governed by the SPDE

duε(t, x) = θ �uε(t, x)dt + ε(I − �)−1/2dW(t, x) (8.32)

where θ > 0 satisfies the initial and boundary conditions

uε(0, x) = f (x), 0 < x < 1, f ∈ L2[0, 1], (8.33)

uε(t, 0) = uε(t, 1) = 0, 0 ≤ t ≤ T .

Here I is the identity operator, � = ∂2/∂x2 as defined above and the process
W(t, x) is cylindrical infinite-dimensional fBm with H ∈ [ 1

2 , 1) (cf. Tindel et al.
(2003)). If H = 1

2 , then cylindrical infinite-dimensional fBm reduces to cylin-
drical infinite-dimensional Brownian motion and the solution for such a SPDE
generates measures which are singular with respect to each other (cf. Huebner
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et al. (1993)). In analogy with this, we have designated this problem as a singular
case. Following the discussion in the previous section, we assume the existence of
a square integrable solution uε(t, x) for Equation (8.32) subject to the boundary
conditions (8.33). Then the Fourier coefficients uiε(t) satisfy the SDEs

duiε(t) = −θλiuiε(t)dt + ε√
λi + 1

dWH
i (t), 0 ≤ t ≤ T (8.34)

with

uiε(0) = vi, vi =
∫ 1

0
f (x)ei(x)dx. (8.35)

Let u(N)
ε (t, x) be the projection of uε(t, x) onto the subspace spanned by

{e1, . . . , eN } in L2[0, 1]. In other words,

u(N)
ε (t, x) =

N∑
i=1

uiε(t)ei(x). (8.36)

Let P
(ε,N)
θ be the probability measure generated by u(N)

ε on the subspace spanned
by {e1, . . . , eN } in L2[0, 1]. It can be shown that the measures {P (ε,N)

θ , θ ∈ �}
form an equivalent family and

log
dP

(ε,N)
θ

dP
(ε,N)
θ0

(u(N)
ε )

= − 1

ε2

N∑
i=1

λi(λi + 1)

[
(θ − θ0)

∫ T

0
Qiε(t)dZiε(t)

−1

2
(θ − θ0)

2λi

∫ T

0
Q2

iε(t)dwH
t

]
. (8.37)

It can be checked that the MLE θ̂ε,N of θ based on u(N)
ε satisfies the likelihood

equation

αε,N = −ε−1(θ̂ε,N − θ0)βε,N (8.38)

when θ0 is the true parameter, where

αε,N =
N∑

i=1

λi

√
λi + 1

∫ T

0
Qiε(t)dMi(t) (8.39)

and

βε,N =
N∑

i=1

(λi + 1)λ2
i

∫ T

0
Q2

i,ε(t)dwH
t . (8.40)
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Asymptotic properties of these estimators can be investigated as in the previous
example. We do not go into the details as the arguments are similar. For more
details, see Prakasa Rao (2004e).

Remarks: One can study the local asymptotic mixed normality (LAMN) of the
family of probability measures generated by the log-likelihood ratio processes
by standard arguments as in Prakasa Rao (1999b) and hence investigate the
asymptotic efficiency of the MLE using Hajek–Lecam-type bounds.

8.3 Parametric estimation for stochastic parabolic
equations driven by infinite-dimensional fBm

We now discuss some recent work of Cialenco et al. (2008) dealing with problems
of estimation in models more general than those discussed in the previous section.
First, we introduce some notation.

Let H be a separable Hilbert space with the inner product (., .)0 and with the
corresponding norm ||.||0. Let  be a densely defined linear operator on H with
the property that there exists c > 0 such that

||u||0 ≥ c||u||0
for every u in the domain of the operator . The operator powers γ , γ ∈ R,
are well defined and generate the spaces Hγ with the properties (i) for γ > 0, Hγ

is the domain of γ ; (ii) H0 = H; and (iii) for γ < 0, Hγ is the completion of
H with respect to the norm ||.||γ ≡ ||γ .||0 (cf. Krein et al. (1982)). The family
of spaces {Hγ , γ ∈ R} has the following properties:

(i) γ (Hr ) = Hr−γ , γ, r ∈ R.

(ii) For γ1 < γ2, the space Hγ2 is densely and continuously embedded into Hγ1 ,
that is, Hγ2 ⊂ Hγ1 , and there exists a constant c12 > 0 such that ||u||γ1 ≤
c12||u||γ2 .

(iii) For every γ ∈ R and m> 0, the space Hγ−m is the dual of the space Hγ+m

with respect to the inner product in Hγ , with duality 〈., .〉γ,m given by

〈u1, u2〉γ,m = (γ−mu1, 
γ+mu2)0, u1 ∈ Hγ−m, u2 ∈ Hγ+m.

Let (�,F, P ) be a probability space and let {WH
j , j ≥ 1} be a family of inde-

pendent standard fBms on this space with the same Hurst index H in (0, 1).

Consider the SDE

du(t) + (A0 + θA1)u(t)dt =
∑
j≥1

gj (t)dWH
j (t), 0 ≤ t ≤ T , u(0) = u0 (8.41)
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where A0,A1 are linear operators, gj , j ≥ 1, are non-random and θ ∈ � ⊂ R.

Equation (8.41) is called diagonalizable if the operators A0,A1 have the same
system of eigenfunctions {hj , j ≥ 1} such that {hj , j ≥ 1} is an orthonormal
basis in H and each hj belongs to ∩γ∈RHγ . It is called (m, γ )-parabolic for
some m ≥ 0, γ ∈ R, if:

(i) the operator A0 + θA1 is uniformly bounded from Hγ+m to Hγ−m for
every θ ∈ �, that is, there exists C1 > 0 such that

||A0 + θA1||γ−m ≤ C1||v||γ+m, θ ∈ �, v ∈ Hγ+m; (8.42)

(ii) there exists a δ > 0 and C ∈ R such that

−2〈(A0 + θA1)v, v〉γ,m + δ||v||2γ+m ≤ C||v||2γ , v ∈ Hγ+m, θ ∈ �.

(8.43)

If Equation (8.41) is (m, γ )-parabolic, then the condition (8.43) implies that

〈(2A0 + 2θA1 + CI)v, v〉γ,m ≥ δ||v||γ+m

where I is the identity operator. The Cauchy–Schwartz inequality and the con-
tinuous embedding of Hγ+m into Hγ will imply that

||(2A0 + 2θA1 + CI)v||γ ≥ δ1||v||γ
for some δ1 > 0 uniformly in θ ∈ �.

Let us choose  = [2A0 + 2θ0A1 + CI ]1/(2m) for some fixed θ0 ∈ �. If the
operator A0 + θA1 is unbounded, we say that A0 + θA1 has order 2m and 

has order 1. If Equation (8.41) is (m, γ )-parabolic and diagonalizable, we will
assume that the operator  has the same eigenfunctions as the operators A0 and
A1. This is justified by the comments made above.

Suppose Equation (8.41) is diagonalizable. Then there exists eigenvalues
{ρj , j ≥ 1} and {νj , j ≥ 1} such that

A0hj = ρjhj , A1hj = νjhj .

Without loss of generality, we can also assume that there exists {λj , j ≥ 1} such
that

hj = λjhj .

Following the arguments in Cialenco et al. (2008), it can be shown that Equation
(8.41) is (m, γ )-parabolic if and only if there exists δ > 0, C1 > 0 and C2 ∈ R

such that, for all j ≥ 1, θ ∈ �,

|ρj + θνj | ≤ C1λ
2m
j (8.44)
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and

−2(ρj + θνj ) + δλ2m
j ≤ C2. (8.45)

As the conditions in (8.44) and (8.45) do not depend on γ, we conclude that a
diagonalizable equation (8.41) is (m, γ )-parabolic for some γ if and only if it is
(m, γ )-parabolic for every γ. Hereafter we will say that Equation (8.41) is m-
parabolic. We will assume that it is diagonalizable and fix the basis {hj , j ≥ 1}
in H consisting of the eigenfunctions of A0, A1 and λ. Recall that the set of
eigenfunctions is the same for all three operators. Since hj belongs to every Hγ ,

and since ∩γ Hγ is dense in ∪γ Hγ , every element f of ∪γ Hγ has a unique
expansion

∑
j≥1 fjhj where fj = 〈f, hj 〉0,m for suitable m.

Infinite-dimensional fBm WH is an element of ∪γ∈RHγ with the expansion

WH(t) =
∑
j≥1

WH
j (t)hj . (8.46)

The solution of the diagonalizable equation

du(t) + (A0 + θA1)u(t)dt = dWH(t), 0 ≤ t ≤ T , u(0) = u0, (8.47)

with u0 ∈ H, is a random process with values in ∪γ Hγ and has an expansion

u(t) =
∑
j≥1

uj (t)hj (8.48)

where

uj (t) = (u0, hj )e
−(θνj +ρj ) +

∫ t

0
e−(θνj +ρj )(t−s)dWH

j (s). (8.49)

Let

µj(θ) = θνj + ρj , j ≥ 1. (8.50)

In view of (8.45), we get that there exists a positive integer J such that

µj(θ) > 0 for j ≥ J (8.51)

if Equation (8.41) is m-parabolic and diagonalizable.

Theorem 8.4: Suppose that H ≥ 1
2 and Equation (8.41) is m-parabolic and diag-

onizable. Further suppose that there exists a positive real number γ such that

∑
j≥1

(1 + |µj(θ)|)−γ < ∞. (8.52)

Then, for every t > 0, WH(t) ∈ L2(�, H−mγ ) and u(t) ∈ L2(�, H−mγ+2mH ).

For proof, see Cialenco et al. (2008).
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Maximum likelihood estimation

Consider the diagonalizable equation

du(t) + (A0 + θA1)u(t)dt = dWH(t), u(0) = 0, 0 ≤ t ≤ T (8.53)

with

u(t) =
∑
j≥1

uj (t)hj (8.54)

as given by (8.49). Suppose the process {ui(t), 0 ≤ t ≤ T } can be observed
for i = 1, . . . , N. The problem is to estimate the parameter θ using these
observations.

Note that µj(θ) = ρj + νj θ, where ρj and νj are the eigenvalues
of A0 and A1 respectively. Furthermore, each process uj is a fractional
Ornstein–Uhlenbeck-type process satisfying the SDE

duj (t) = −µj(θ)uj (t)dt + dWH
j (t), uj (0) = 0, 0 ≤ t ≤ T . (8.55)

Since the processes {WH
j , j ≥ 1} are independent, it follows that the pro-

cess {uj , 1 ≤ j ≤ N} is independent. Following the notation introduced in
Chapter 1, let

MH
j (t) =

∫ t

0
kH (t, s)dwH

j (s), Qj (t) = d

dwH
j (t)

∫ t

0
kH (t, s)uj (s)ds (8.56)

and

Zj(t) =
∫ t

0
kH (t, s)duj (s) (8.57)

for j = 1, . . . , N. Applying the Girsanov-type formula as given in Chapter 1,
it can be shown that the measure generated by the process (u1, . . . , uN) is
absolutely continuous with respect to the measure generated by the process
(WH

1 , . . . , WH
N ) and their Radon–Nikodym derivative is given by

exp

−
N∑

j=1

µj(θ)

∫ T

0
Qj(s)dZj (s) −

N∑
j=1

[µj(θ)]2

2

∫ T

0
Q2

j (s)dwH (s)

 .

(8.58)
Maximizing this function with respect to the parameter θ, we get the MLE

θ̂N = −
∑N

j=1

∫ T

0 νjQj (s)(dZj (s) + ρjQj (s)dwH (s))∑N
j=1

∫ T

0 ν2
j Q

2
j (s)dwH (s)

.

Theorem 8.5: Under the assumptions stated in Theorem 8.4, the following con-
ditions are equivalent:
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(i)
∑∞

j=1 ν2
j /µj (θ) = ∞

(ii) limN→∞ θ̂N = θ a.s.

when θ is the true parameter. Furthermore, if the condition (i) holds, then

lim
N→∞

 N∑
j=J

ν2
j

µj (θ)

1/2

(θ̂N − θ)
L→ N(0, σ 2) as N → ∞ (8.59)

for some σ 2 where J = min{j : µi(θ) = 0 for all i ≥ j }.
Proof of this theorem follows by observing that

lim
j→∞

µj(θ) E

[∫ T

0
Q2

j (s)dwH (s)

]
= T

2
(8.60)

lim
j→∞

µ3
j (θ) V ar

[∫ T

0
Q2

j (s)dwH (s)

]
= T

2
(8.61)

and using the strong law of large numbers and the central limit theorem for sums
of independent random variables. For a detailed proof, see Cialenco et al. (2008).
Ergodicity and parameter estimation for infinite-dimensional fractional Ornstein–
Uhlenbeck-type processes are investigated in Maslowski and Pospisil (2008).





9

Estimation of self-similarity
index

9.1 Introduction

As we discussed in Chapter 1, self-similar processes can be thought of as pro-
cesses with sample paths that retain the same general appearance irrespective
of the scale of measurement or regardless of the distance from which they are
observed. Estimation of self-similarity index or Hurst index is of great impor-
tance and interest. We have discussed parametric and nonparametric inference for
processes driven by fBm with known self-similarity index in the earlier chapters.
Our aim here is to discuss some methods of estimation of Hurst index H . The
estimation of the constant H has been well studied in the case of long-range
dependence, that is, when 1

2 < H < 1. This can be seen from the works of
Geweke and Porter-Hudak (1983), Taylor and Taylor (1991), Constantine and
Hall (1994), Chen et al . (1995), Robinson (1995), Abry and Sellan (1996), Comte
(1996), McCoy and Walden (1996), Hall et al . (1997), Kent and Wood (1997)
and Jensen (1998) among others. Beran and Terrin (1994) and Beran (1994) have
discussed the problem of estimation of the constant H . Dieker (2004) has given
a short review of some methods for estimation of the Hurst index and studied
their computational efficiency. Some of these methods are intuitive without a
sound theoretical justification. Our short review of these methods here is based
on Dieker (2004). Techniques for estimating a constant self-similarity index H

are generally based on log-linear regression between suitable variables.
In some modeling applications, treatment of the self-similarity index H as a

constant may be right. However, there are many other phenomena which exhibit
self-similar behavior but the nature of self-similarity changes as the phenomenon
evolves. To model such data, the parameter H should be treated as a function

Statistical Inference for Fractional Diffusion Processes B. L. S. Prakasa Rao
 2010 John Wiley & Sons, Ltd
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of time and not as a constant. Goncalves and Flandrin (1993) and Flandrin and
Goncalves (1994) studied a class of processes which are locally self-similar with
time-dependent Hurst index. For such processes, the local Hurst index function
H(t) contains information about the behavior of the process. Hence it is important
to study methods for estimation of the function H(t). We will describe one such
method due to Wang et al . (2001).

9.2 Estimation of the Hurst index H when H

is a constant and 1
2 < H < 1 for fBm

Let Y0, Y1, . . . , YN−1 be a fBm sample observed at the time points t0 = 0,

t1 = 1/N, . . . , tN−1 = (N − 1)/N respectively. Let Xk = Yk+1 − Yk, k = 0,

1, . . . , N − 2. Then V ar(Xk) = N−2H for k = 0, 1, . . . , N − 2. We now
describe different methods of estimation based on a ‘time domain’ approach.
Other methods based on a ‘spectral domain’ approach using a periodogram or
wavelets are described in Dieker (2004).

Aggregated variance method

The aggregated variance method is based on the self-similarity of the sample.
Let m be a positive integer. Divide the sequence {Xk} into blocks of size m. The
aggregated process {X(m)

k } is defined by the relation

X
(m)
k = m−1(Xkm + · · · + X(k+1)m−1).

In view of the self-similarity of the process Y, the process X(m) = {X(m)
k , k ≥ 0}

has the same finite-dimensional distributions as the process mH−1X where X =
{Xk, k ≥ 0}. Therefore

V ar(X
(m)
k ) = m2H−2V ar(Xk) = m2H−2N−2H

is the same for every k ≥ 0. Let M = integer part of N/m. An estimator for
V ar(X

(m)
k ) is

̂
V ar(X

(m)
k ) = M−1

M−1∑
i=0

(X
(m)
i − X̄(m))2 (9.1)

where

X̄(m) = M−1
M−1∑
i=0

X
(m)
i . (9.2)

The estimator of H is obtained by plotting ̂
V ar(X

(m)
k ) against m on a log–log

scale. If the estimates of the variance were equal to their true values, then all the
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points would fall on a straight line with slope 2H − 2. The slope is estimated in
practice by fitting a line through these points.

Discrete variations method

This method is due to Coeurjolly (2001). Let a be a filter of length � + 1 and of
order p ≥ 1, that is, a vector a = (a0, . . . , ap−1) of real numbers such that

�∑
q=0

aqq
r = 0, r = 0, . . . , p − 1 (9.3)

and

�∑
q=0

aqq
r �= 0, r = p. (9.4)

Note that Yi =∑i
k=0 Xk, i = 0, . . . , N − 1. Let

V a
k =

�∑
q=0

aqYk−q, k = �, . . . , N − 1. (9.5)

An example of a filter of order 2 is a = (0, 1) and then V a
k = Xk. Let

S(k, a) = 1

N − �

N−1∑
i=�

|V a
i |k (9.6)

for some k > 0. Since the sequence {Xk, k ≥ 1} is a fractional Gaussian noise, it
can be shown that

E[S(k, a)] = �((k + 1)/2)√
π

N−kH [2 V ar(NHV a
1 )]k/2. (9.7)

This method consists of obtaining an estimator of E[S(k, a)] and equating it to
the right hand side of Equation (9.7) to solve for an estimator for H . Observe
that V ar(NHV a

1 ) does not depend on H from the self-similarity of fBm.
Coeurjolly (2001) also studied a slightly modified version of this method.
Define the sequence of filters a(m), 1 ≤ m ≤ M, for some integer M ≥ 1, by
the relation

a
(m)
i = aj for i = jm

= 0 otherwise. (9.8)

An application of (9.3) and (9.7) for r = 0 shows that

E[S(k, a(m))] = mHkE[S(k, a)]. (9.9)
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An estimator of H is obtained by linearly regressing {log S(k, a(m)), 1 ≤ m ≤ M}
on {k log m, 1 ≤ m ≤ M}. Couerjolly (2001) proved that this estimator converges
at a rate

√
N to the Gaussian distribution with mean zero and some variance

σ 2(k, a) depending on k and a. Furthermore, the asymptotic variance is minimal
when k = 2.

Higuchi method

Following Higuchi (1988), define

L(m) = N − 1

m3

m∑
i=1

1

Mi

Mi∑
k=1

∣∣∣∣∣∣
i+km∑

j=i+(k−1)m+1

Xj

∣∣∣∣∣∣ (9.10)

where Mi is the integral part of (N − i)/m. The estimator of H is obtained
by plotting L(m) in a log–log plot versus m and adding 2 to the slope of the
fitted line.

Method using variance of the regression residuals

Following Peng et al . (1994) and Cannon et al . (1997), the series {Xk, 1 ≤ k ≤
N − 2} is broken into blocks of size m. Within each block, the partial sums are
regressed on a line ˆα(k) + i ˆβ(k). The residuals of the regression are given by

e
(k)
i =

km+i−1∑
j=km

Xj − ( ˆα(k) + i ˆβ(k)). (9.11)

The sample variance of the residuals is then computed for each block. The average
of the sample variances over all blocks is proportional to m2H (cf. Taqqu et al .
(1995)). This fact is used for estimating H .

Method of rescaled range analysis R/S

This method was suggested by Hurst (1951). The series {Xj, 1 ≤ j ≤ N − 2} is
divided into K nonoverlapping blocks such that each block contains M elements
where M is the integral part of N/K . Let ti = M(i − 1) and

R(ti, r) = max[W(t1, 1), . . . ,W(ti, r)] − min[W(t1, 1), . . . ,W(ti, r)]

where

W(ti, k) =
k−1∑
j=0

Xti+j − k

1

r

r−1∑
j=0

Xti+j

 , k = 1, . . . , r.
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Note that R(ti, r) ≥ 0 since W(ti, r) = 0 and the quantity R(ti, r) can be com-
puted only when ti + r ≤ N . Define

S2(ti , r) = 1

r

r−1∑
j=0

X2
ti+j −

1

r

r−1∑
j=0

Xti+j

2

. (9.12)

The ratio R(ti, r)/S(ti , r) is called the rescaled adjusted range. It is computed
for a number of values of r where ti = M(i − 1) is the starting point of the ith
block for i = 1, . . . , K . Observe that, for each value of r, we obtain a number
of R/S samples. The number of samples decrease as r increases. However, the
resulting samples are not independent. It is believed that the R/S-statistic is
proportional to rH as r → ∞ for the fractional Gaussian noise. Assuming this
property, we regress log(R/S) against log r to obtain an estimator for H . For
details, see Bassingthwaighte and Raymond (1994, 1995).

Poggi and Viano method

This method is due to Poggi and Viano (1998) using multi-scale aggregates. Let

�τ(k) = Yk − Yk−τ

be the τ -increments of fBm Y . Define

mn(j) = 1

n

τ+jn−1∑
k=τ+n(j−1)

�τ (k) (9.13)

and

S2
N(n) = 1

[(N − τ + 1)/n]

[(N−τ+1)/n]∑
j=1

m2
n(j). (9.14)

Poggi and Viano (1998) proved the following under the assumption that the
process Y is standard fBm:

(i) If τ = 1, then E[m2
n(j)] = n2H−2.

(ii) If τ > 1, then E[m2
n(j)]  n2H−2τ 2 as n → ∞.

(iii) S2
N(n) → E[m2

n(j)] a.s. and in quadratic mean as N → ∞.

Let ns, s = 1, . . . , �, be different values for n. Let ĤN be the estimator of H

obtained by linearly regressing log S2
N(ns) on log ns, s = 1, . . . , �. Poggi and

Viano (1998) proved that ĤN is a strongly consistent estimator of H and

N1/2(ĤN − H)
L→ N(0, σ 2) as N → ∞

for some σ 2, depending on ns, s = 1, . . . , �, and constants τ and H, which can
be explicitly computed.
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Kurchenko’s method using a Baxter-type theorem

Recall the following notation introduced in Chapter 1 for stating a Baxter-type
theorem for fBm due to Kurchenko (2003).

Let f : (a, b) → R be a function and let k be a positive integer. Let �
(k)
h f (t)

denote the increment of kth order of the function f in an interval [t, t + h] ⊂
(a, b) as given, namely,

�
(k)
h f (t) =

k∑
i=0

(−1)ikCi
f

(
t + i

k
h

)
.

Here kCi
denotes the binomial coefficient. For any m ≥ 0, positive integer k ≥ 1

and 0 < H < 1, define

Vk(m, H) = 1

2

k∑
i,j=0

(−1)i+j+1kCi
kCj

∣∣∣∣m + i − j

k

∣∣∣∣2H

.

It can be checked that V1(0, H) = 1 and V2(0, H) = 22−2H − 1. Note that

�
(2)
1 f (t) = f (t) − 2f

(
t + 1

2

)
+ f (t + 1).

Let {an, n ≥ 1} be a sequence of positive integers and {hn} be a sequence of
positive real numbers converging to 0 ≤ c ≤ ∞. Kurchenko (2003) stated the
following theorem. For the proof, see Kurchenko (2003).

Theorem 9.1: Let Y be fBm with Hurst index H ∈ (0, 1). Let k ≥ 1. Suppose
that one of the following conditions holds:

(i) log n = o(an) if k = 1 and H ∈ (0, 1
2 );

(ii) log n = o(a2−2H
n ) if k = 1 and H ∈ ( 1

2 , 1);
(iii) log n = o(an) if k ≥ 2.

Then

1

an

an−1∑
m=0

[
�

(k)
hn

Y (mhn)

hH
n

√
Vk(0, H)

]2
a.s.→ 1 as n → ∞. (9.15)

Remarks: Observe that conditions (i)–(iii) of Theorem 9.1 are satisfied if an =
nα where α is a positive integer or if an = αn where α is an integer grater than 1.
In particular, for all 0 < H < 1, and k ≥ 1,

1

n

n−1∑
m=0

[
�

(k)
hn

Y (mhn)

hH
n

√
Vk(0, H)

]2
a.s.→ 1 as n → ∞. (9.16)
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Suppose fBm Y is observed at the points{
mhn + ihn

k
: i = 0, . . . , k − 1;m = 0, . . . , an − 1; n ≥ 1

}
for k = 2, an = n and hn = c ∈ (0, 5

2 ). From the remarks made above, it follows
that

1

n

n−1∑
m=0

[
�(2)

c Y (mc)

]2 a.s.→ c2HV2(0, H) as n → ∞. (9.17)

Let θ(H) ≡ c2HV2(0, H) = c2H(22−2H − 1). The function θ(H) is continuous
and strictly decreasing in the interval (0, 1) for c ∈ (0, 5

2 ). Furthermore,
θ(0+) = 3 and θ(1−) = 0. Hence the function θ(H) has an inverse and
the inverse function H(θ), defined for θ ∈ (0,3), is continuous and strictly
decreasing in the interval (0, 3). Hence the problem of estimation of the
parameter θ is equivalent to that of estimation of the Hurst index H.

Let

θn = 1

n

n−1∑
m=0

[�(2)
c Y (mc)]2 (9.18)

and

θ̂n = θn if θn < 3

= 3θn
n /(1 + θn

n ) if θn ≥ 3. (9.19)

The following theorem is due to Kurchenko (2003). For the proof, see Kurchenko
(2003).

Theorem 9.2: For any c ∈ (0, 5
2 ), the estimator θ̂n is strongly consistent for θ

and
√

n(θ̂n − θ) is asymptotically normal with mean zero and variance

σ 2 =
[

2V 2
2 (0, H) + 4

∞∑
m=1

V 2
2 (m, H)

]
c4H (9.20)

as n → ∞ where H = H(θ).

9.3 Estimation of scaling exponent function
H(.) for locally self-similar processes

Let {Y (t), −∞ ≤ t < ∞} be a stochastic process with E[Y (t)] = 0 for every
t ≥ 0 and with covariance

Rt(u1, u2) = E[Y (t + u1)Y (t + u2)].
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This process is said to be locally self-similar if

Rt(u1, u2) = Rt(0, 0) − C(t)|u1 − u2|2 H(t)(1 + O(1)) (9.21)

as |u1| + |u2| → 0, for every t ≥ 0, where C(t) > 0. The function H(t) is called
the local scaling exponent function.

An example of such a process is

Y (t) =
∫ 0

−∞
[(t − u)H(t)− 1

2 − (−u)H(t)− 1
2 ]dW(u)

+
∫ t

0
(t − u)H(t)− 1

2 dW(u), t ≥ 0 (9.22)

where {W(u), −∞ < u < ∞} is standard Brownian motion and the integrals
in (9.22) are Wiener integrals. The function H(t) in (9.22) takes values in the
interval (0, 1) and is called the scaling exponent function. This process is a
generalization of fBm and allows the self-similarity index to vary over time. It
is called generalized fractional Brownian motion (gfBm). For a smooth function
H(t), the covariance function of gfBm satisfies (9.21) and hence the process Y is
locally self-similar (Wang (1999)). Let ψ denote the Daubechies mother wavelet
(Daubechies (1992)) and let Ŷa(t) denote the wavelet transform of the locally
self-similar process Y corresponding to the scale a and location t. Then

Ŷa(t) = a−1/2
∫ ∞

−∞
ψ

(
u − t

a

)
Y (u)du

= a1/2
∫ ∞

−∞
ψ(x)Y (t + ax)dx. (9.23)

Then

E|Ŷa(t)|2 = 1

a

∫ ∞

−∞

∫ ∞

−∞
ψ

(
u − t

a

)
ψ

(
v − t

a

)
E[Y (u)Y (v)]dudv

= a

∫ ∞

−∞

∫ ∞

−∞
ψ(x)ψ(y)E[Y (a + tx)Y (a + ty)]dxdy

= a

∫ ∞

−∞

∫ ∞

−∞
ψ(x)ψ(y)Rt (ax, ay)dxdy

 a

∫ ∞

−∞

∫ ∞

−∞
ψ(x)ψ(y)[Rt (0, 0) − C(t)|ax − ay|2 H(t)]dxdy

= C1a
1+2 H(t) (9.24)

where

C1 = −C(t)

∫ ∞

−∞

∫ ∞

−∞
|x − y|2 H(t)ψ(x)ψ(y)dxdy. (9.25)
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Let

yt (a) = log(|Ŷa(t)|2), (9.26)

C2 = E[log(|Ŷa(t)|2/E|Ŷa(t)|2)], (9.27)

and

εt (a) = log(|Ŷa(t)|2/E|Ŷa(t)|2) − C2. (9.28)

Then

yt (a) = C2 + log(E|Ŷa(t)|2) + εt (a). (9.29)

Equation (9.24) derived above implies the regression model

yt (a)  c + (2 H(t) + 1) log a + εt (a) (9.30)

for small-scale a where c = log C1 + C2. This model suggests that the function
H(t) can be estimated by the method of least squares using the above regression
model. Suppose we select a sequence of scales a1 > · · · >ak, say, aj = 2−j ,

j = 1, . . . , k. Let xj = log aj and yj = yt (aj ). Treating (xj , yj ), j = 1, . . . , k,
as a set of bivariate data, the least squares estimator of the function H(t) can be
obtained, using the regression model (9.30), as

Ĥk(t) = 1

2

[∑k
j=1(xj − x̄)(yj − ȳ)∑k

j=1(xj − x̄)2
− 1

]
(9.31)

where x̄ = k−1∑k
j=1 xj and ȳ = k−1∑k

j=1 yj . Wang et al . (2001) stated the
following theorem.

Theorem 9.3: Suppose Y is a Gaussian process such that the covariance function
satisfies the condition (9.21). Then

Ĥk(t)
p→ H(t) as k → ∞.

We omit the proof of this result. For a proof of this theorem and related results,
see Wang et al . (2001).





10

Filtering and prediction for
linear systems driven by fBm

10.1 Introduction

We now study extensions of classical filtering theory to linear systems driven by
fBms through the techniques developed by Kleptsyna, Le Breton and others.

10.2 Prediction of fBm

Let WH = {WH
t ,−∞ < t < ∞} be standard fBm with Hurst index H ∈ ( 1

2 , 1).

We now study the problem of prediction of Wh
s for some s > 0 on the basis of

observations {WH
t , −T < t < 0} for T > 0. By the stationarity of the increments

of fBm WH, this problem is equivalent to the problem of predicting the difference
WH

t+u−WH
t on the basis of the observations {WH

u −WH
t , t−T < u < t} for any t .

For a > 0 and T > 0, let

ˆWH
a,T = E[WH

a |WH
s , s ∈ (−T , 0)]. (10.1)

Since the process WH is Gaussian, the random variable ˆWH
a,T is a linear function

of the family {WH
s , s ∈ (−T , 0)} and it is the optimal predictor under the squared

error loss function. Suppose that

ˆWH
a,T =

∫ 0

−T

gT (a, t)dWH
t (10.2)

Statistical Inference for Fractional Diffusion Processes B. L. S. Prakasa Rao
 2010 John Wiley & Sons, Ltd
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for some real-valued function gT (a, t). From the fact that the random variable
ˆWH
a,T has to be an optimal predictor, given {WH

s , s ∈ (−T , 0)}, it follows that

E

[(
WH

a −
∫ 0

−T

gT (a, t)dWH
t

)
(WH

u − WH
v )

]
= 0, −T < v < u ≤ 0 (10.3)

from the underlying Hilbertian structure of the class of functions g for which the
stochastic integral in (10.2) is defined. Using the fact that

E

[(∫ ∞

−∞
f (s)dWH

s

)(∫ ∞

−∞
g(s)dWH

s

)]
= H(2H − 1)

∫ ∞

−∞

∫ ∞

−∞
f (s)g(t)|s − t |2H−2dtds,

Equation (10.3) reduces to

(2H − 1)

∫ T

0
gT (a, −t)|t − s|2H−2dt = (a + s)2H−1 − s2H−1, 0 ≤ s ≤ T .

(10.4)

Furthermore, the function gT (a, t) has the scaling property

gT (a, t) = gT/a

(
1,

t

a

)
from the self-similarity of fBm WH. Gripenberg and Norros (1996) proved that
Equation (10.4) holds if

gT (a, −t) = sin(π(H − 1
2 ))

π
t−H+ 1

2 (T − t)−H+ 1
2

∫ a

0

σH− 1
2 (σ + T )H− 1

2

σ + t
dσ

(10.5)

for T < ∞, t > 0, and

g∞(a, −t) = sin(π(H − 1
2 ))

π
t−H+ 1

2

∫ a

0

σH− 1
2

σ + t
dσ. (10.6)

for t > 0. For details, see Gripenberg and Norros (1996).

10.3 Filtering in a simple linear system driven
by fBm

Suppose the signal is a fixed random variable ξ with Gaussian distribution, with
mean zero and variance σ 2, independent of fBm WH . Further suppose that the
observation process Y is defined by the SDE

dY (s) = ξ a(s)ds + b(s)dWH
s , 0 ≤ s ≤ t. (10.7)
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We assume that the functions a(.) and b(.) are known nonrandom real-valued
continuous functions with b(.) nonvanishing. The problem is to compute the best
estimator of ξ based on the observations {Y (s), 0 ≤ s ≤ t}. Since the system
(ξ, Y ) is Gaussian, it is known that the conditional expectation

ξ̂ = E[ξ |Y (s), 0 ≤ s ≤ t] (10.8)

is the best estimator under the squared error loss function and it a linear function
of {Y (s), 0 ≤ s ≤ t}. Consider estimators of the form

ξ̂t (f ) =
∫ t

0
f (s)dYs. (10.9)

The stochastic integral in (10.9) is well defined for functions f ∈ L2((0, t); R).

We have to find a function g ∈ L2((0, t); R) such that

E([ξ̂t (g) − ξ ]2) ≤ E([ξ̂t (f ) − ξ ]2)

for every f ∈ L2((0, t); R). Due to the Hilbertian structure of the space
L2((0, t); R), it follows that the optimal function g(.) satisfies the condition

E([ξ̂t (g) − ξ ][Yu − Yv)]) = 0, 0 ≤ v < u < t. (10.10)

Note that

ξ̂t (f ) − ξ =
∫ t

0
f (s)dY (s) − ξ

=
∫ t

0
f (s)[a(s)ξds + b(s)dWH (s)] − ξ

=
[∫ t

0
a(s)f (s) ds − 1

]
ξ +

∫ t

0
b(s)f (s)dWH (s) (10.11)

and

Yu − Yv =
[∫ u

v

a(s)ds

]
ξ +

∫ u

v

b(s)dWH (s), 0 ≤ v ≤ u < t. (10.12)

Combining Equations (10.10)–(10.12) and using the fact that the random variable
ξ is independent of the process WH, it follows that

E([ξ̂t (g) − ξ ][Yu − Yv)])

=
[∫ t

0
a(s)g(s)ds − 1

] [∫ u

v

a(s)ds

]
V ar(ξ)

+Cov

[∫ u

v

b(s)dWH (s),

∫ t

0
b(s)g(s)dWH (s)

]
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= σ 2
[∫ t

0
a(s)g(s)ds − 1

] [∫ u

v

a(s)ds

]
+H(2H − 1)

∫ u

v

b(r)

[∫ t

0
b(s)g(s)|s − r|2H−2ds

]
dr (10.13)

for 0 ≤ v ≤ u ≤ t. Suppose we choose g(.) ∈ L2((0, t); R) such that∫ t

0
b(s)g(s)|s − r|2H−2ds = σ 2

H(2H − 1)[
1 −

∫ t

0
a(s)g(s)ds

]
a(r)

b(r)
, 0 ≤ r ≤ t.

Then the estimator ξt̂ (g) will satisfy Equation (10.10) and hence the optimal
filter. Le Breton (1998) has devised a method to solve the above equation. For
details, see Le Breton (1998). Le Breton (1998) has also studied the problem
when the observation process Y satisfies a SDE of the type

dY (t) = ξ a(t)dt + λ a(t)dWH (t), t ≥ 0.

10.4 General approach for filtering for linear
systems driven by fBms

We now study a general approach developed by Kleptsyna et al . (2000b) for
filtering for linear systems driven by fBms.

Let (�,F, {Ft }, P ) be a stochastic basis satisfying the usual conditions and
the processes under discussion are {Ft }-adapted. We further assume the natural
filtration of a process as the P -completion of the filtration generated by the
process. For any process {Ft }-adapted Z, we denote its natural filtration by {Zt }.

Suppose the processes X = {X(t), 0 ≤ t ≤ T } and Y = {Y (t), 0 ≤ t ≤ T }
represent the signal and the observation respectively and they are governed by
the linear system of SDEs

dX(t) = a(t)X(t)dt + b(t)dWh
t , X0 = η, 0 ≤ t ≤ T

dY (t) = A(t)X(t)dt + B(t)dWH
t , X0 = η, 0 ≤ t ≤ T (10.14)

where Wh and WH are independent standard fBms with Hurst indices h and H

respectively with h ∈ ( 1
2 , 1) and H ∈ ( 1

2 , 1). Further assume that the coefficients
a(.), b(.), A(.) and B(.) are nonrandom (deterministic), bounded and smooth
functions with B(.) nonvanishing such that 1/B(.) is bounded. In addition,
assume that the random variable η is a Gaussian random variable independent of
the process (Wh,WH) with mean m0 and variance γ0. Then the system (10.14)
has a uniquely defined solution (X, Y ) which is Gaussian.
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For any process Z = {Zt, 0 ≤ t ≤ T }, such that E|Zt | < ∞, 0 ≤ t ≤ T ,

define

πt(Z) = E(Zt |Ys, 0 ≤ s ≤ t) ≡ E(Zt |Yt ) (10.15)

where Yt denotes the σ -algebra generated by the process {Ys, 0 ≤ s ≤ t}.
Suppose that the process {Ys, 0 ≤ s ≤ t} is observed and we wish to estimate

Xt . From the discussion in the previous section, it follows that the solution to
this problem is the conditional expectation of Xt given the process {Ys, 0 ≤
s ≤ t} or equivalently the conditional expectation of Xt given Yt . This is called
the optimal filter for the problem. Since the system (X, Y ) is Gaussian, the
optimal filter is a linear function of {Ys, 0 ≤ s ≤ t} and it is Gaussian, hence
it is characterized by its mean πt(X) = E(Xt |Yt ) and its variance γXX(t) =
E[(Xt−πt(X))2|Yt ].

Let C(t) = A(t)X(t). Following the notation introduced in Chapter 1,
define

Q(t) = d

dwH
t

∫ t

0
kH (t, s)

C(s)

B(s)
ds, 0 ≤ t ≤ T . (10.16)

Suppose the sample paths of the process Q belong P -a.s. to L2([0, T ], dwH
s ).

Then ∫ t

0
C(s)ds =

∫ t

0
KB

H(t, s)Q(s)dwH
s (10.17)

where

KB
H(t, s) = H(2H − 1)

∫ t

s

B(r)rH− 1
2 (r − s)H− 1

2 dr. (10.18)

It is interesting to note that∫ t

0
B(s)dWH

s =
∫ t

0
KB

H(t, s)dMH
s (10.19)

P -a.s. where MH is the fundamental Gaussian martingale associated with the
process WH .

The following Lemma is proved in Kleptsyna et al . (2000a).

Lemma 10.1: Let X be the process as in (10.14) and Q be the process as defined
by (10.16). Let Mh be the fundamental Gaussian martingale associated with fBm
Wh. Then the following representations hold:

Xt = η +
∫ t

0
a(s)Xsds +

∫ t

0
Kb

h(t, s)dMh
s (10.20)
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and

Qt = p(t, 0)η +
∫ t

0
a(s)p(t, s)Xsds +

∫ t

0
q(t, s)dMh

s (10.21)

where

p(t, s) = d

dwH
t

∫ t

s

kH (t, r)
A(r)

B(r)
dr (10.22)

and

q(t, s) = d

dwH
t

∫ t

s

kH (t, r)Kb
h(r, s)

A(r)

B(r)
dr. (10.23)

Let

Y ∗
t =

∫ t

0

kH (t, s)

B(s)
dYs, 0 ≤ t ≤ T . (10.24)

Then the process Y ∗ is a semimartingale with the decomposition

Y ∗
t =

∫ t

0
Q(s)dwH

s + MH
t , 0 ≤ t ≤ T (10.25)

and the natural filtrations of Y and Y ∗ coincide. Let ν = {νt , 0 ≤ t ≤ T } be
defined by

νt = Y ∗
t −

∫ t

0
πt(Q)dwH

s , 0 ≤ t ≤ T . (10.26)

The process ν is a continuous Gaussian {Yt}-martingale with the quadratic vari-
ation wH . Furthermore, if R = {Rt, 0 ≤ t ≤ T } is a square integrable {Yt }-
martingale with R0 = 0, then there exists a {Yt}-adapted process � = {�t, 0 ≤
t ≤ T } such that

E

[∫ T

0
�2

t dwH
t

]
< ∞

and P -a.s.,

Rt =
∫ t

0
�sdµs, 0 ≤ t ≤ T . (10.27)

This gives a representation of square integrable {Yt}-martingales.

For a detailed proof, see Kleptsyna et al . (2000b). The following theorem is
due to Kleptsyna et al . (2000b).
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Theorem 10.2: In addition to the assumptions stated above, let ζ = {ζt , 0 ≤
t ≤ T } be a semimartingale with the decomposition

ζt = ζ0 +
∫ t

0
βsds + mt, 0 ≤ t ≤ T (10.28)

where E[ζ0]2 < ∞, E[
∫ T

0 β2
s ds] < ∞ and m = {mt, 0 ≤ t ≤ T } is a square inte-

grable {Ft }-martingale with quadratic covariation

〈m, MH 〉t =
∫ t

0
λsdwH

s .

Then, P -a.s., for 0 ≤ t ≤ T , the process πt(ζ ) = E(ζ |Yt ) satisfies the equation

πt(ζ ) = π0(ζ ) +
∫ t

0
πs(β)ds +

∫ t

0
[πs(λ) + πs(ζQ) − πs(ζ )πs(Q)]dνs .

(10.29)

For any t ∈ [0, T ], define the Gaussian semimartingale ξ t = (Xt , Qt)′ =
((Xt

s , Q
t
s)

′, s ∈ [0, t]) given by

Xt
s = η +

∫ s

0
a(u)Xudu +

∫ s

0
Kb

h(t, u)dMh
u (10.30)

and

Qt
s = p(t, 0)η +

∫ s

0
a(u)p(t, u)Xudu +

∫ s

0
q(t, u)dMh

u (10.31)

from the representation given in Lemma 10.1. Here α′ denotes the transpose
of the vector α. Kleptsyna et al . (2000b) obtained the solution of the filtering
problem for the linear system given in (10.14) in terms of Kalman-type filtering
equations for the bivariate process ξ. Let

πt(ξ)′ = (πt (X), πt (Q))

and
γξξ (t) = E[(ξt − πt(ξ))(ξt − πt(ξ))′].

Note that the mean πt(X) and the variance γXX(t) of the optimum Gaussian
filter are the first component of the vector πt(ξ) and the (1,1)th entry of the
covariance matrix γξξ (t) respectively. For more details and proofs, see Kleptsyna
et al . (2000b).

Special case

Suppose the linear system, as specified in (10.14), is given by

dX(t) = θX(t)dt + dV H
t , X0 = 0, 0 ≤ t ≤ T

dY (t) = µX(t)dt + dWH
t , 0 ≤ t ≤ T (10.32)
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where V H and WH are independent standard fBms with the same Hurst index
H ∈ ( 1

2 , 1) and the parameters θ and µ �= 0 are fixed constants.
Let

Zt =
∫ t

0
kH (t, s)dXs, 0 ≤ t ≤ T

and

Z0
t =

∫ t

0
kH (t, s)dYs, 0 ≤ t ≤ T

where kH (t, s) is as defined in Equation (1.70) of Chapter 1. Let

Q(t) = d

dwH
t

∫ t

0
kH (t, s)X(s)ds, 0 ≤ t ≤ T .

Then

Zt = θ

∫ t

0
Q(s)dwh

s + MH
t , 0 ≤ t ≤ T (10.33)

and

Z0
t = θ

∫ t

0
Q(s)dwh

s + NH
t , 0 ≤ t ≤ T (10.34)

where MH and NH are independent fundamental Gaussian martingales associated
with fBms V H and WH respectively. Furthermore, the natural filtrations of the
processes X and Z are the same as well as those of Y and Z0. Also, the following
representations hold P -a.s.:

Xt =
∫ t

0
KH(t, s)dZs, Yt =

∫ t

0
Kh(t, s)dZ0

s

where

KH(t, s) = H(2H − 1)

∫ t

s

rH− 1
2 (r − s)H− 1

2 dr, 0 ≤ s ≤ t.

In particular, it follows that

Xt = θ

∫ t

0
KH(t, s)Q(s)dwH

s +
∫ t

0
KH(t, s)dMH

s . (10.35)

Kleptsyna and Le Breton (2002a) have shown that

Q(t) = λH

2(2 − 2H)

[
t2H−1Zt +

∫ t

0
r2H−1dZr

]
(10.36)
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where λH is given in Equation (1.71) of Chapter 1. We observe that filtering the
signal X from the observations Y is equivalent to filtering the signal X from the
observations Z0. Kleptsyna and Le Breton (2002b) obtained the optimal filter
in an explicit form in this special case. See Proposition 3.1 in Kleptsyna and
Le Breton (2002b). We do not go into the details here.

Remarks:

(i) Ahmad and Charalambous (2002) studied continuous time filtering
for linear multidimensional systems driven by fBm. They derive the
optimum linear filter equations which involve a pair of functional–
differential equations giving the optimum covariance (matrix-valued)
functions and the optimum filter. These equations are the analogues of
matrix–Ricatti differential equations in classical Kalman filtering.

(ii) We now discuss an example due to Kleptsyna et al . (2000a) illustrating
the nonlinear optimal filtering problem. Suppose that the signal is a fixed
F0-measurable random variable η with a probability measure π0 and the
observation process Y is governed by the SDE

dY (t) = a(t, η)dt + B(t)dWH
t , 0 ≤ t ≤ T (10.37)

where a(., .) and B(.) are deterministic functions with B(.) nonvan-
ishing. Suppose further that the random variable η and fBm WH are
independent . Following the arguments given earlier, it can be shown
that solution of the filtering problem up to time t or the optimal filter
up to time t in this case is the conditional distribution πt of η given the
σ -algebra generated by the process {Ys, 0 ≤ s ≤ t}. Let

Q(t, x) = d

dwH
t

∫ t

0

kH (t, s)

B(s)
a(s, x)ds, 0 ≤ t ≤ T , x ∈ R. (10.38)

Suppose the process Q(., x) is well defined and, for all x ∈ R,Q(., x) ∈
L2([0, T ], dwH

t ). Let

πt(φ) = E[φ(η)|Ys, 0 ≤ s ≤ t]

for any bounded continuous real-valued function φ(.). Applying the
Girsanov-type result given in Theorem 1.20 in Chapter 1, we get that

πt(φ) = σt (φ)

σt (1)

where

σt(φ) = Ẽ[φ(η)(t )
−1|Ys, 0 ≤ s ≤ t]
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and

t = exp

[
−
∫ t

0
Q(s, η)dMH

s − 1

2

∫ t

0
Q2(s, η)dwH

s

]
.

Here Ẽ(.) denotes the expectation with respect to the measure P̃ =T P .
Kleptsyna et al . (2000a) derive the equations for the optimal filter.

(iii) Nonlinear filtering problems with fBm as observational noise has been
studied by Coutin and Decreusefond (1999), Gawarecki and Mandrekar
(2001) and Amirdjanova (2002). Xiong and Zhao (2005) consider the
nonlinear filtering problem when the signal process is a Markov diffusion
process and the observation process is corrupted by fBm noise. We do
not go in to details here.

(iv) Bishwal (2003) considered a partially observed stochastic differential
system of the type

dYt = θ f (t, Xt )dt + g(t)dWH
t , Y0 = ξ, 0 ≤ t ≤ T

dXt = a(t, Xt )dt + b(t, Xt )dWt , X0 = η, 0 ≤ t ≤ T

where H ∈ ( 1
2 , 1), WH is fBm with Hurst index H independent of

Brownian motion W and the random vector (η, ξ) is independent
of the process (W, WH). The problem is to estimate θ on the basis of
observations {Ys, 0 ≤ s ≤ T }. Under some regularity conditions on the
functions a(., .), b(., .) and f (., .), Bishwal (2003) obtained asymptotic
properties of the MLE of θ . We omit the details.
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ANDĔL · Mathematics of Chance
ANDERSON · An Introduction to Multivariate Statistical Analysis, Third Edition
∗ANDERSON · The Statistical Analysis of Time Series
ANDERSON, AUQUIER, HAUCK, OAKES, VANDAELE and WEISBERG ·

Statistical Methods for Comparative Studies
ANDERSON and LOYNES · The Teaching of Practical Statistics
ARMITAGE and DAVID (editors) · Advances in Biometry
ARNOLD, BALAKRISHNAN and NAGARAJA · Records
∗ARTHANARI and DODGE · Mathematical Programming in Statistics
∗BAILEY · The Elements of Stochastic Processes with Applications to the Natural

Sciences
BALAKRISHNAN and KOUTRAS · Runs and Scans with Applications
BALAKRISHNAN and NG · Precedence-Type Tests and Applications
BARNETT · Comparative Statistical Inference, Third Edition
BARNETT · Environmental Statistics: Methods & Applications

∗Now available in a lower priced paperback edition in the Wiley Classics Library.



BARNETT and LEWIS · Outliers in Statistical Data, Third Edition
BARTOSZYNSKI and NIEWIADOMSKA-BUGAJ · Probability and Statistical

Inference
BASILEVSKY · Statistical Factor Analysis and Related Methods: Theory and

Applications
BASU and RIGDON · Statistical Methods for the Reliability of Repairable Systems
BATES and WATTS · Nonlinear Regression Analysis and Its Applications
BECHHOFER, SANTNER and GOLDSMAN · Design and Analysis of Experiments for

Statistical Selection, Screening and Multiple Comparisons
BEIRLANT, GOEGEBEUR, SEGERS, TEUGELS and DE WAAL · Statistics of

Extremes: Theory and Applications
BELSLEY · Conditioning Diagnostics: Collinearity and Weak Data in Regression
BELSLEY, KUH and WELSCH · Regression Diagnostics: Identifying Influential Data

and Sources of Collinearity
BENDAT and PIERSOL · Random Data: Analysis and Measurement Procedures, Third

Edition
BERNARDO and SMITH · Bayesian Theory
BERRY, CHALONER and GEWEKE · Bayesian Analysis in Statistics and

Econometrics: Essays in Honor of Arnold Zellner
BHAT and MILLER · Elements of Applied Stochastic Processes, Third Edition
BHATTACHARYA and JOHNSON · Statistical Concepts and Methods
BHATTACHARYA and WAYMIRE · Stochastic Processes with Applications
BIEMER, GROVES, LYBERG, MATHIOWETZ and SUDMAN · Measurement Errors

in Surveys
BILLINGSLEY · Convergence of Probability Measures, Second Edition
BILLINGSLEY · Probability and Measure, Third Edition
BIRKES and DODGE · Alternative Methods of Regression
BISWAS, DATTA, FINE and SEGAL · Statistical Advances in the Biomedical Sciences:

Clinical Trials, Epidemiology, Survival Analysis, and Bioinformatics
BLISCHKE and MURTHY (editors) · Case Studies in Reliability and Maintenance
BLISCHKE and MURTHY · Reliability: Modeling, Prediction and Optimization
BLOOMFIELD · Fourier Analysis of Time Series: An Introduction, Second Edition
BOLLEN · Structural Equations with Latent Variables
BOLLEN and CURRAN · Latent Curve Models: A Structural Equation Perspective
BOROVKOV · Ergodicity and Stability of Stochastic Processes
BOSQ and BLANKE · Inference and Prediction in Large Dimensions
BOULEAU · Numerical Methods for Stochastic Processes
BOX · Bayesian Inference in Statistical Analysis
BOX · R. A. Fisher, the Life of a Scientist
BOX and DRAPER · Empirical Model-Building and Response Surfaces
∗BOX and DRAPER · Evolutionary Operation: A Statistical Method for Process

Improvement
BOX · Improving Almost Anything Revised Edition
BOX, HUNTER and HUNTER · Statistics for Experimenters: An Introduction to

Design, Data Analysis and Model Building

∗Now available in a lower priced paperback edition in the Wiley Classics Library.



BOX, HUNTER and HUNTER · Statistics for Experimenters: Design, Innovation and
Discovery, Second Edition
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