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CHAPTER ©

Techniques of
Integration

ké m very good at integral and differential calculus,
| know the scientific names of beings animalculous;
In short, in matters vegetable, animal, and mineral,
| am the very model of a modern Major-General. yy

William Schwenck Gilbert 18361911
from The Pirates of Penzance

I n tr Od u C-t I O n This chapter is completely concqned Wit-h how to evalu-

ate integrals. The first four sections continue our search,
begun in Section 5.6, for ways to find antiderivatives and, therefore, definite integrals
by the Fundamental Theorem of Calculus. Section 6.5 deals with the problem of find-
ing definite integrals of functions over infinite intervals, or over intervals where the
functions are not bounded. The remaining three sections deal with techniques of nu-
merical integration that can be used to find approximate values of definite integrals
when an antiderivative cannot be found.

It is not necessary to cover the material of this chapter before proceeding to the
various applications of integration discussed in Chapter 7, but some of the examples
and exercises in that chapter do depend on techniques presented here.

Integration by Parts

Our next general method for antidifferentiation is called integration by parts. Just
as the method of substitution can be regarded as inverse to the Chain Rule for dif-
ferentiation, so the method for integration by parts is inverse to the Product Rule for
differentiation.

Suppose that U(x) and V(x) are two differentiable functions. According to the

Product Rule,
d dv dUu

Integrating both sides of this equation and transposing terms, we obtain

[U(x)fl—de = U(x)V(x)—/ V(x)a;—gdx

or, more simply,
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/UdV:UV—/VdU.

The above formula serves as a pattern for carrying out integration by parts, as we will
see in the examples below. In each application of the method, we break up the given
integrand into a product of two pieces, U and V', where V' is readily integrated and
where [ VU’ dx is usually (but not always) a simpler integral than [ UV'dx. The
technique is called integration by parts because it replaces one integral with the sum
of an integrated term and another integral that remains to be evaluated. That is, it
accomplishes only part of the original integration.

EXAMPLE 1 /xexdx Let U=x, dV =e*dx.
Then dU = dx, V =e*.
=xex—/exdx (e, UV —[VdU)
=xe¥ —e¥ +C.

L
Note the form in which the integration by parts is carried out. We indicate at the side
what choices we are making for U and d V' and then calculate dU and V from these.
However, we do not actually substitute U and V' into the integral; instead, we use the
formula [UdV = UV — [V dU as a pattern or mnemonic device to replace the
given integral by the equivalent partially integrated form on the second line.

Note also that had we included a constant of integration with V, for example,
V = e* + K, that constant would cancel out in the next step:

/xexdx =x(ex+K)—/(ex+K)dx

=xe* +Kx—e*—Kx+C =xe¥—e* +C.

In general, do not include a constant of integration with V' or on the right-hand side
until the last integral has been evaluated.

Study the various parts of the following example carefully; they show the various
ways in which integration by parts is used, and they give some insights into what
choices should be made for U and dV in various situations. An improper choice can
result in making an integral more difficult rather than easier. Look for a factor of the
integrand that is easily integrated, and include dx with that factor to make up d'V.
Then U is the remaining factor of the integrand. Sometimes it is necessary to take
dV = dx only. When breaking up an integrand using integration by parts, choose U
and dV so that, if possible, V d U is “simpler” (easier to integrate) than U d V.

EXAMPLE 2 Use integration by parts to evaluate

(a)/lnx dx, (b)/x2 sinx dx, (c)/x tan~ ! x dx, (d)/sin_lxdx.

Solution

(a) /lnx dx Let U =1nx, dV =dx.
Then dU =dx/x, V =x.

1
:xlnx—/x—dx
X

=xlnx—x+C.
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(b) We have to integrate by parts twice this time:

x? sinx dx Let U = x?, dV =sinx dx.
Then dU = 2x dx, V = —cos x.
=—x? cosx+2/x cosxdx Let U=x, dV =cosxdx.

Then dU = dx, V =sinx.
= —x2 cosx +2(x sinx —/sinx dx)
= —x2 cosx + 2x sinx + 2 cosx + C.

(©) /x tan~! x dx Let U =tan"lx, dV = xdx.
Then dU = dx/(1 +x2), V =1x2

2
1 1 2
:—xztan_lx——/ al dx

2 2 ) 1+ x2
1 1 1

= —x? tan_lx——/ 1-— dx
2 2 1+ x2
Lty =Lt Lantx g c

=—Xx“tan "x——Xx+ = tan x .
2 2 2

(d) /sinflxdx Let U =sin ' x, dV =dx.

Then dU =dx/~1—x2, V =x.

. X
:xsmlx—[—dx Letu = 1 — x2,

T2
I du = —2x dx
1
=x sin_lx—i—E/u_l/zdu

=xsin 'x4+u’2+C=xsintx+/1-x2+C.

The following are two useful rules of thumb for choosing U and dV':

(i) If the integrand involves a polynomial multiplied by an exponential, a sine or a
cosine, or some other readily integrable function, try U equals the polynomial
and dV equals the rest.

(i1) If the integrand involves a logarithm, an inverse trigonometric function, or some
other function that is not readily integrable but whose derivative is readily calcu-
lated, try that function for U and let d V' equal the rest.

(Of course, these “rules” come with no guarantee. They may fail to be helpful if
“the rest” is not of a suitable form. There remain many functions that cannot be anti-

differentiated by any standard techniques; e.g., exz.)

The following two examples illustrate a frequently occurring and very useful phe-
nomenon. It may happen after one or two integrations by parts, with the possible
application of some known identity, that the original integral reappears on the right-
hand side. Unless its coefficient there is 1, we have an equation that can be solved for
that integral.

EXAMPLE 3 Evaluate / :/sec3xdx.

Solution  Start by integrating by parts:

I = /sec3xdx Let U = secx, dV =sec? xdx.
Then dU = secx tanx dx, V =tanx.

= secx tanx — [ sec x tan? x dx
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=secx tanx — / secx(sec?x — 1) dx

=secxtanx—/sec3xdx+/secxdx

=secx tanx — [ + In|secx + tan x|.
This is an equation that can be solved for the desired integral /. Since

2] = secx tanx + In|sec x + tan x|, we have

1 1
/sec3xdx =/ = 3 sec x tan x + 3 In|secx + tanx| + C.

This integral occurs frequently in applications and is worth remembering.

EXAMPLE 4 Find/ :/e"x cosbx dx.

Solution If either a = 0 or b = 0, the integral is easy to do, so let us assume @ # 0
and b # 0. We have

I = /e‘”‘ cosbx dx Let U = e%*, dV =cosbhxdx.
Then dU = a e®* dx, V = (1/b)sinbx.

1
= Ze“x sinbx —% fe’” sinbx dx

Let U = e?*, dV =sinbx dx.

Then dU = ae**dx, V = —(cosbx)/b.
1 1
Ze“x sinbx — % (_Z e** cosbx + ;—l /e"x cosbx dx)
1 ax 2
b

a a
e** sinbx + ﬁe‘”‘ cosbhx — b—zl.

a? 1 a
(1 + —) I = Ee’” sinbx + b—ze’” cosbx + C;

and

ax o ax
/e“x cosbxdx:I:be sinbx +ae CObe—i—C.
b? + a?

L
Observe that after the first integration by parts we had an integral that was different
from, but no simpler than, the original integral. At this point we might have become
discouraged and given up on this method. However, perseverance proved worthwhile;
a second integration by parts returned the original integral / in an equation that could
be solved for /. Having chosen to let U be the exponential in the first integration by
parts (we could have let it be the cosine), we made the same choice for U in the second
integration by parts. Had we switched horses in midstream and decided to let U be the
trigonometric function the second time, we would have obtained

ax

1 1
I = —e* sinbx — —e** sinbx + I,
b b +

that is, we would have undone what we accomplished in the first step.

If we want to evaluate a definite integral by the method of integration by parts, we
must remember to include the appropriate evaluation symbol with the integrated term.
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EXAMPLE 5 (A definite integral)

/ x3(Inx)%dx Let U = (Inx)?, dV = x3dx.
! Then dU =2Inx (1/x)dx, V =x*/4.

e 1 e
——/ x3dx)
1 44

¢ et et 1 5 4, 1
=t
T8 TR TRt T

l e
-3 / x31Inxdx Let U=Inx, dV = x3dx.
! Then dU =dx/x, V = x*/4.

Reduction Formulas

Consider the problem of finding [ x*e™ dx. We can, as in Example 1, proceed by
using integration by parts four times. Each time will reduce the power of x by 1. Since

this is repetitive and tedious, we prefer the following approach. For n > 0, let

I, :/x"e_xdx.

We want to find /4. If we integrate by parts, we obtain a formula for 7, in terms of

In—l:

I, = /x"efx dx Let U = x", dV =e *dx.
Then dU = nx""'dx, V =—e*.

=—x"e™ + n/x”_1 e Xdx=—x"e ¥ +nl,_;.

The formula

In

—x"e ™ +nl,_

is called a reduction formula because it gives the value of the integral 7, in terms of

I,—1, an integral corresponding to a reduced value of the exponent n. Starting with

Iozfxoe_xdx:/e_xdx:—e_x—i—C,

we can apply the reduction formula four times to get

I1=—xe“+Ih=——e"x+1)+C

I
I3

Iy =

x2e T 421 = —e ¥ (x> +2x+2) + C,
x3e™ 430, = —e (x> +3x% +6x +6) + C3

—xteT 4413 = —e ¥ (x* + 4x3 + 12x% 4 24x + 24) + C4.

EXAMPLE 6 Obtain and use a reduction formula to evaluate

/2
I,,:f cos” x dx (n=0,1,2,3,...).
0
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Solution Observe first that

/2 P /2 /2
IO=/ dx = — and 11=/ cosx dx =sinx =1.
0 2 0 0

Now letn > 2:
/2 /2
I, = / cos" xdx = / cos" ! x cos x dx
0 0
U = cos" ! x, dV =cosxdx
dU = —(n —1)cos" 2 x sinxdx, V =sinx
/2 /2
= sinx cos" ! x +(n— 1)/ cos" 2 x sin® x dx
0 0
/2

:0—0+(n—1)/ cos" 2 x (1 —cos® x) dx
0
=m—-Dl——n—11,.
Transposing the term —(n — 1) I,,, we obtain nl, = (n — 1)I,,_5, or

n—1
I, = I >,
n

which is the required reduction formula. It is valid for n > 2, which was needed to
ensure that cos”~!(r/2) = 0. If n > 2 is an even integer, we have

n—1 n—1 n-—3

I, = Ino = In4 =
n n n—2
n—1 n—-3 n—-5 5 3 1
e . . -n.—.—-—.IO
n n—2 n—4 6 4 2
53 1

n—1 n—-3 n-5
n n—2 n—4 6 4 2 2°

If n > 3 is an odd integer, we have

n—1 n—-3 n-5 6 4 2
I, = . . A
n n—2 n—4 7 5 3

n—1 n—3 n—5 6 4
n n—2 n—4 7 5

See Exercise 38 for an interesting consequence of these formulas.

J
Evaluate the integrals in Exercises 1-28. 9, / xsin~ ! xdx 10. / e dx
1. | xcosxdx 2. [ (x +3)e**dx m/4
/ /( ) 11. / sec® x dx 12. / tan? x sec x dx
0
3. /x2 cosx dx 4. /‘(x2 —2x)ek* dx 13. /ezx sin 3x dx 14. | xeV=® dx
3 3 U osin™!x 1
5. [ x¥Inxdx 6. [ x(nx)?dx s, [ BN 16. / i sin(r /) dx
1/2 X 0
7. /tan_1 xdx 8. /x2 tan~! x dx 17. /x sec? x dx 18. /x sin? x dx
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19. / cos(lnx) dx 20. [ ‘ sin(Inx) dx (Hint: Use integration by parts on the left-hand side twice.)
1 This formula will be used in Section 6.6 to construct an error
In(1 4 estimate for the Trapezoid Rule approximation formula.
21, / Indnx) 4y 22. / JxeVE dx 8 . . ) .
b 0 37. If f and g are two functions having continuous second
. derivatives on the interval [, b], and if
23. / arccos x dx 24, /xsec xdx f(a) = gla) = f(b) = g(b) = 0, show that
2
25. [ sec lxdx H 26. /(sin_1 x)?dx , ,
1
| rogwar= [ 1w ewan.
H 27. /)c(tan_1 x)2dx H 2s. /xex cos x dx a a
29. Find the area below y = ¢~ sin x and above y = 0 from
x=0tox = m. What other assumptions about the values of f and g at @ and
30. Find the area of the finite plane region bounded by the curve b would give the same result?
y = Inx, the line y = 1, and the tangent line to y = Inx at H 38. (The Wallis Product) Let 7, = [, /2 cos™ x dx.
X : L. (a) Use the fact that 0 < cosx < 1 for 0 < x < /2 to show
Reduction formulas that Iop42 < Ippy1 < loy,forn=0,1,2,....
31. Obtain a reduction formula for /7, = [(Inx)" dx, and use it to (b) Use the reduction formula I, = ((n — 1)/n)I—»
evaluate /4. obtained in Example 6, together with the result of (a), to
32. Obtain a reduction formula for 7, = f(;z 12 %7 sin x dx, and show that
use it to evaluate /.
33. Obtain a reduction formula for 7, = f sin” x dx (where I
. . 2n+1
n > 2),and use it to find /¢ and 1. lim —— =1.
n—oo  [o,
34. Obtain a reduction formula for 1, = f sec” x dx (where
n > 3), and use it to find /¢ and 7.
H 3s. By writing (c) Combine the result of (b) with the explicit formulas
dx obtained for /,, (for even and odd n) in Example 6 to
In= / (2 ta?)n show that
1 / dx 1 / X
== | ——-——F—— | x——-—dx
a? ) (x24a?)"t a* ] " (32 +a?) 224466 2n 2n w
. . . . . . Iim - - -+ -+ — e — e — et ——— . —
and integrating the last integral by parts, using U = x, obtain nsool 3 3 5 5 7 2n—1 2n+1 2
a reduction formula for 7. Use this formula to find /5.
H 36. If f is twice differentiable on [a, b] and f(a) = f(b) =0, o ) )
show that This interesting product formula for 7 is due to the
b b seventeenth-century English mathematician John Wallis
/ (x —a)(b—x)f"(x)dx = —2/ f(x)dx. and is referred to as the Wallis Product.
a a

Integrals of Rational Functions

In this section we are concerned with integrals of the form
Px)
0(x)

where P and Q are polynomials. Recall that a polynomial is a function P of the form

P(X) = apx" + ap1x" V4 4+ arx? + a1x + ao,
where n is a nonnegative integer, ag, a1, dz, ...,a, are constants, and a, # 0. We
call n the degree of P. A quotient P(x)/Q (x) of two polynomials is called a rational
function. (See Section P.6 for more discussion of polynomials and rational functions.)
We need normally concern ourselves only with rational functions P (x)/Q (x) where
the degree of P is less than that of Q. If the degree of P equals or exceeds the degree
of @, then we can use division to express the fraction P(x)/Q(x) as a polynomial
plus another fraction R(x)/Q (x), where R, the remainder in the division, has degree
less than that of Q.

dx,
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3 2
EXAMPLE 1 Buatuate [ 552 ax.
x*+1

Solution  The numerator has degree 3 and the denominator has degree 2, so we need
to divide. We use long division:

x +3
x2 + 1 xz+3x2 , ,
X by x° +3x x+3
fo o YT e
3x?2 +3

—x -3
Thus,

x3 4+ 3x2 X dx
[ X2+ 1 dx_/(x+3)dx /x +1dx_3/x2+1

1
= §x2+3x—§ In(x?>+1)—3tan ! x + C.

dx.

EXAMPLE 2 Evaluate/h)c_l

Solution The numerator and denominator have the same degree, 1, so division is
again required. In this case the division can be carried out by manipulation of the
integrand:

X 1 2x _12x—1+1_1 - 1
2x—1 22x—1 2 2x—1 2 2x—1)"°

a process that we call short division (see Section P.6). We have

X 1 1 x 1
== 1+ —- ==+ -In[2x -1 .
[2x—1dx 2/(+2 _l)dx 2+4n|x |+ C
o

In the discussion that follows, we always assume that any necessary division has been
performed and the quotient polynomial has been integrated. The remaining basic prob-
lem with which we will deal in this section is the following:

The basic problem

P(x)
O(x)

Evaluate dx, where the degree of P < the degree of Q.

The complexity of this problem depends on the degree of Q.

Linear and Quadratic Denominators

Suppose that Q(x) has degree 1. Thus, Q(x) = ax + b, where a # 0. Then P(x)
must have degree 0 and be a constant c. We have P(x)/Q(x) = ¢/(ax + b). The
substitution u = ax + b leads to

d
/ ¢ _ax=% —u=51n|u|+C,
ax +b a u a

so that forc = 1:
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The case of a linear denominator

1 1
/ dx = — In|ax + b| + C.
ax +b a

Now suppose that Q (x) is quadratic, that is, has degree 2. For purposes of this discus-
sion we can assume that Q(x) is either of the form x2 + a2 or of the form x? — a2,
since completing the square and making the appropriate change of variable can always
reduce a quadratic denominator to this form, as shown in Section 6.2. Since P (x) can
be at most a linear function, P(x) = Ax 4+ B, we are led to consider the following

four integrals:

/ xdx / xdx / dx d / dx

5 . A5 9 5 A5 9 5 . A5 9 an 5 A5

x2 +a? x2 —a? x2 4 a? x2 —qa?

(If @ = 0, there are only two integrals; each is easily evaluated.) The first two integrals
yield to the substitution ¥ = x? 4 a?; the third is a known integral. The fourth integral

will be evaluated by a different method below. The values of all four integrals are given
in the following box:

The case of a quadratic denominator

xdx 1 5. @
/m—zln(x +a)+C7

d 1
/l = s ln|x2—a2|—|—C,

x2 — g2

d 1
/2_’“2=_tan—1£+c,
X< +a a a

/ dx . 1l
x2—a2  2a t

To obtain the last formula in the box, let us try to write the integrand as a sum of two
fractions with linear denominators:

X —da

1 €

X +a

1 1 A B _Ax+Aa+Bx—Ba

3

xz—az_(x—a)(x—i-a):x—a xX+a x2 —q?

where we have added the two fractions together again in the last step. If this equation is
to hold identically for all x (except x = =£a), then the numerators on the left and right
sides must be identical as polynomials in x. The equation (A + B)x + (Aa — Ba) =
1 = Ox + 1 can hold for all x only if

A+B=0 (the coefficient of x),

Aa — Ba =1 (the constant term).

Solving this pair of linear equations for the unknowns A and B, we get A = 1/(2a)
and B = —1/(2a). Therefore,

/ dx B 1 / dx 1 dx
x2—a2  2a x—a 2a x+a

1 1
=—Injx—a|——1 C
5 n|x —al 5 nlx +al +

1 _
:—lnx ¢ + C.
2a X +a
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Partial Fractions

The technique used above, involving the writing of a complicated fraction as a sum of
simpler fractions, is called the method of partial fractions. Suppose that a polynomial
O (x) is of degree n and that its highest degree term is x” (with coefficient 1). Suppose
also that Q factors into a product of n distinct linear (degree 1) factors, say,

O(x) = (x —a)(x —az)--- (x —an),

where a; # a; iti # j,1 <i,j <n.If P(x) is a polynomial of degree smaller than
n, then P(x)/Q (x) has a partial fraction decomposition of the form

P(x A A A
( ) _ 1 2 4ot n
Okx) x—a; x—ap X —day
for certain values of the constants A1, A,, ..., A,. We do not attempt to give any

formal proof of this assertion here; such a proof belongs in an algebra course. (See
Theorem 1 below for the statement of a more general result.)

Given that P(x)/Q(x) has a partial fraction decomposition as claimed above,
there are two methods for determining the constants Ay, A,, ..., A,. The first of
these methods, and one that generalizes most easily to the more complicated decom-
positions considered below, is to add up the fractions in the decomposition, obtaining
anew fraction S(x)/Q(x) with numerator S(x), a polynomial of degree one less than
that of Q(x). This new fraction will be identical to the original fraction P(x)/Q (x) if
S and P are identical polynomials. The constants A, A,, ..., A, are determined by
solving the n linear equations resulting from equating the coefficients of like powers
of x in the two polynomials S and P.

The second method depends on the following observation: if we multiply the
partial fraction decomposition by x — a;, we get

( ) P
X —dj
7o)
X —aj —aj X —aj X —aj
=A—L 4+ 45 A+ A —— 4+ 4, —L
X —a X —aj_q X —ajt1 X —dy

All terms on the right side are 0 at x = a; except the jth term, A;. Hence,

P(a;)

(aj —a1)---(aj —aj-1)(aj —aj4+1) - (aj —an)

)

for 1 < j < n. In practice, you can use this method to find each number A; by
cancelling the factor x — a; from the denominator of P(x)/Q(x) and evaluating the
resulting expression at x = a;.

(x+4

—dx.
x2—-5x4+6

EXAMPLE 3 Evaluate/

Solution The partial fraction decomposition takes the form

x+4 _ x+4 A n B
x2—5x+6 (x—2)(x—3) x—-2 x-—-3

We calculate A and B by both of the methods suggested above.
METHOD 1. Add the partial fractions

x+4  Ax—3A+ Bx—-2B
x2-5x+6  (x—=2(x-=3)
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and equate the coefficient of x and the constant terms in the numerators on both sides
to obtain

A+ B =1 and —34A-2B =4.

Solve these equations to get A = —6 and B = 7.

METHOD IL. To find 4, cancel x—2 from the denominator of the expression P (x)/Q (x)
and evaluate the result at x = 2. Obtain B similarly.

x+4
x—=3

x+4
x—2

=-6 and B =

x=2

=17

x=3

In either case we have

(x+4 B / 1 / 1
/x2—5x+6dx_ 6 x—2dx+7 x_3dx

=—6In|x —2|+7n|x =3|+ C.

x34+2
x3—x

dx.

EXAMPLE 4 Evaluate =/

Solution  Since the numerator does not have degree smaller than the denominator, we
must divide:

3_ 2 2 2
I=/—x xrxt dxz/ 1+x—|— dx=x+[x+ dx.
x3—x x3—x x3—x

Now we can use the method of partial fractions.

x+2 x+2 _A+ B n C
3—x x(x—-Dx+1) x x—-1 x+1
A —1) 4 B(x* 4+ x) + C(x* —x)

x(x—=D(x+1)

We have
A+ B+ C =0 (coefficient of x?)
B —C =1 (coefficient of x)
— A =2 (constant term).

It follows that A = —2, B = 3/2, and C = 1/2. We can also find these values using
Method II of the previous example:

2
:—x+ :—27 B:—x+2 :2, and
x=Dx+1)]|,—0 x(x+1) |,y 2
2 1
C = Xtz - .
x(x=1)],=; 2

Finally, we have
1 3 1 1 1
I=x-2[—-d - | —d - [ ——d
* /x x+2/x—1 Sl
3 1
=x—21n|x|+§1n|x—1|+§1n|x+l|+C.

@
Next, we consider a rational function whose denominator has a quadratic factor that is
equivalent to a sum of squares and cannot, therefore, be further factored into a product
of real linear factors.



SECTION 6.2: Integrals of Rational Functions 345

2+ 3x 4+ x2

EXAMPLE 5 Evaluue [ ZI220

Solution Note that the numerator has degree 2 and the denominator degree 3, so no
division is necessary. If we decompose the integrand as a sum of two simpler fractions,
we want one with denominator x and one with denominator x? + 1. The appropriate
form of the decomposition turns out to be

2+43x+x> A Bx+C A*+1)+Bx?+Cx

x(x2+1)  x  x2+1 x(x2+1)

Note that corresponding to the quadratic (degree 2) denominator we use a linear (de-
gree 1) numerator. Equating coefficients in the two numerators, we obtain

A + B = 1 (coefficient of x?)
cC =3 (coefficient of x)
A = 2 (constant term).

Hence A =2, B = —1, and C = 3. We have, therefore,

2+ 3x + x? 1
=2 d d 3| ——d
/ x(x2+1) dx / T / * /x2+1 *
=21n|x|—5ln(x2+1)+3tan_1x+C.

We remark that addition of the fractions is the only reasonable real-variable method
for determining the constants A, B, and C here. We could determine A by Method II
of Example 3, but there is no simple equivalent way of finding B or C without using
complex numbers.

o
Completing the Square

Quadratic expressions of the form Ax2+ Bx + C are often found in integrands. These
can be written as sums or differences of squares using the procedure of completing
the square, as was done to find the formula for the roots of quadratic equations in
Section P.6. First factor out A so that the remaining expression begins with x2? + 2bx,
where 2b = B/A. These are the first two terms of (x + b)? = x2 + 2bx + b%. Add
the third term b2 = B2/4A? and then subtract it again:

B C
Ax> 4+ Bx+C =Ax*>+ = -
xX“+ Bx + (x +Ax+A)

— 4 +B+BZ+C B
=A\P It ot on

ey B 2+4AC—32
B Y a4

B
The substitution ¥ = x + ﬁ should then be made.

EXAMPLE 6 Evaluate / =/x3—l+ldx.

Solution Here Q(x) = x> + 1 = (x + 1)(x2 — x + 1). The latter factor has no real
roots, so it has no real linear subfactors. We have
o 1 A Bx+C
3+ x+DE2—x+1)  x+1 +x2—x+1
AP —x+ 1)+ B2 +x)+ Clx+1)
N (x+1D(x2—x+1)
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A+ B =0 (coefficient of x?)
- A+ B +C =20 (coefficient of x)
A + C =1 (constant term).

Hence, A = 1/3, B = —1/3, and C = 2/3. We have

iy,
3 x+1 3 x2—x+1

The first integral is easily evaluated; in the second we complete the square in the de-

2
nominator: xZ2 —x + 1 = (x — —) + 7 and make a similar modification in the

2
numerator.
1 3
! L[ “T5)
I=§ln|x+1|—§ 2 3dx Letu =x—1/2,
(X_E) +Z du = dx
1 1 1
=—ln|x+1|——/ “ du—i——/ du
3 3 u2+§ 2 u2+§
4 4
1 1 3 1 2 2
=—ln|x+1|—gln(u2+z)+§—3tan_l(—u3)+c
1 1 1 2x — 1
=—lnx+1——lnx2—x+1+—tan_l( + C
3 Inlx + 1] = In )+ 7

o
Denominators with Repeated Factors

We require one final refinement of the method of partial fractions. If any of the lin-
ear or quadratic factors of Q(x) is repeated (say, m times), then the partial fraction
decomposition of P(x)/Q (x) requires m distinct fractions corresponding to that fac-
tor. The denominators of these fractions have exponents increasing from 1 to m, and
the numerators are all constants where the repeated factor is linear or linear where the
repeated factor is quadratic. (See Theorem 1 below.)

EXAMPLE 7 Evalute [ ——dx.

Solution The appropriate partial fraction decomposition here is

1 A, B C
xx—12 x x—-1 (x—1)2
A2 -2x+ 1)+ B(x?—x)+ Cx

x(x —1)2

Equating coefficients of x2, x, and 1 in the numerators of both sides, we get
A+ B =0 (coefficient of x?2)
— 24 — B+ C =0 (coefficient of x)
A =1 (constant term).

Hence, A=1,B =—-1,C =1, and

/ﬁdxz/%dx—/xildx—i-/(x_;l)zdx

1
:ln|x|—ln|x—1|——1+C
x_

+C.

X 1

-l -
x—1 x—1
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x2 42

EXAMPLE 8 Evaluate =/m

Solution  The denominator factors to x(2x2 + 1)2, so the appropriate partial fraction
decomposition is

x2 42 A Bx+C N Dx+ E
x(2x24+ 12 x  2x241  (2x2+1)2
A@x* 4+ 4x%2 4+ 1) + Bx* +x2) + C(2x* + x) + Dx? + Ex

x(2x2 4+ 1)?
Thus,
44 + 2B =0 (coefficient of x*#)
2C =0 (coefficient of x3)
44 + B + D =1 (coefficient of x?)
C + E =0 (coefficient of x)
A = 2 (constant term).
Solving these equations, weget A =2, B =—4,C =0,D = —-3,and E = 0.
J—» dx 4[ xdx X dx Let 22 4 1
_ = _ - _— etu = 2x
X 2x2 4+ 1 2x2 4+ 1)? ’
( ) du = 4x dx
21| du 3 [ du
= nlx|— _— = —_—
u 4 u?

3
=2In|x|—Injul+ —+C
4u

(R S W B S
= In —_
2x2 +1 4 2x2+1
@

The following theorem summarizes the various aspects of the method of partial frac-
tions.

Partial fraction decompositions of rational functions

Let P and Q be polynomials with real coefficients, and suppose that the degree of P

is less than the degree of Q. Then

(a) Q(x) can be factored into the product of a constant K, real linear factors of the
form x — a;, and real quadratic factors of the form x? + b;x + ¢; having no real
roots. The linear and quadratic factors may be repeated:

Q(x) = K(x —a)™ (x —az)™ - (x —a;)™ (x* + byx + )"
s (2 b+ ),

The degree of Q ismy +my + -+ +mj + 2ny + 2ny + --- + 2ng.

(b) The rational function P(x)/Q (x) can be expressed as a sum of partial fractions
as follows:

(i) corresponding to each factor (x —a)™ of Q(x) the decomposition contains a
sum of fractions of the form
Al + A2 + 500 A—m’
x—a (x—a)? (x —a)yr
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(ii) corresponding to each factor (x? + bx + ¢)" of Q(x) the decomposition
contains a sum of fractions of the form

Bix +C
x2+bx+c

Box + Cy
(x% + bx + ¢)?

B,x + C,
(x2 4+ bx + o)

The constants Aq, Az, ..., Am, B1, B2, ..., By, C1, Ca, ..., C,, can be
determined by adding up the fractions in the decomposition and equating the
coefficients of like powers of x in the numerator of the sum with those in
P(x).

Part (a) of the above theorem is just a restatement of results discussed and proved in
Section P.6 and Appendix II. The proof of part (b) is algebraic in nature and is beyond

the scope of this text.

Note that part (a) does not tell us how to find the factors of Q(x); it tells us only
what form they have. We must know the factors of Q before we can make use of partial
fractions to integrate the rational function P (x)/Q (x). Partial fraction decompositions
are also used in other mathematical situations, in particular, to solve certain problems
involving differential equations.

Evaluate the integrals in Exercises 1-28.

[de
1.
2x —3
3-[ xdx
X + 2
5.
/x2 9
dx
7 fatz—x2
9/ 22dx
X 4+x—-2
11.
[x2+x
13. /7
1 — 6x + 9x2
1
15. [ x2 +
6x—9x2
17.
/x(x2—a2)
3
H 1. / dx3
3—a
21. [7
4x2 4 3x
23/
25.
[ 3x3
[Iz7f

€2% —deX + 4

[ dx

2.

5—4x
2

4.[ o dx
—4

dx
6.
/5—x2
8. [l?z—az)c2
10/ xdx
3x2 +8x —3
12[ dx
x3 4+ 9x
14/ xdx
2 + 6x 4+ 9x2
1
16[ x3 4+
12 4+ 7x + x2
dx
18. /x4_a4
20.
[x3+2x2+2x
1
22. [x3+ dx
x> 48

x2dx
2. f 2 D2 —4)
H 2. /(r—l)(z2—1)2

| 28, fL.
cos B(1 + sin 6)

In Exercises 29-30 write the form that the partial fraction
decomposition of the given rational function takes. Do not actually
evaluate the constants you use in the decomposition.

29.

31.

32.

H 33.

x4+ x3+1 30 123 — &7
(x—=DE2-D(3-1) T (x* —16)2
5
Write ol as the sum of a polynomial and a

(x2 —4)(x +2)?
partial fraction decomposition (with constants left
undetermined) of a rational function whose numerator has
smaller degree than the denominator.

Show that x* + 4x2 + 16 factors to
(x% 4 kx + 4)(x? — kx + 4) for a certain positive constant k.
What is the value of k? Now repeat the previous exercise for

the rational function —— .
x4 +4x2 416

Suppose that P and Q are polynomials such that the degree of
P is smaller than that of Q. If

0(x) =(x—a)(x—az)---

where a; # aj ifi # j(1 <i,j <n),sothat P(x)/Q(x)
has partial fraction decomposition

(x —ap),

P(x): Al A2 4t An .
Q(x) x—a; x—az X —ay
show that
P(aj) .
A; = (1=<j=n.
7 0'(a))

This gives yet another method for computing the constants in
a partial fraction decomposition if the denominator factors
completely into distinct linear factors.
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Inverse Substitutions

Figure 6.1

a

2

— X

The substitutions considered in Section 5.6 were direct substitutions in the sense that
we simplified an integrand by replacing an expression appearing in it with a single
variable. In this section we consider the reverse approach: we replace the variable
of integration with a function of a new variable. Such substitutions, called inverse
substitutions, would appear on the surface to make the integral more complicated.
That is, substituting x = g(u) in the integral

[a " fd

leads to the more “complicated” integral

x=b
/ () g'e) d.

xX=a

As we will see, however, sometimes such substitutions can actually simplify an in-
tegrand, transforming the integral into one that can be evaluated by inspection or to
which other techniques can readily be applied. In any event, inverse substitutions can
often be used to convert integrands to rational functions to which the methods of Sec-
tion 6.2 can be applied.

The Inverse Trigonometric Substitutions

Three very useful inverse substitutions are
x =asinb, x =atanf, and x =asech.
These correspond to the direct substitutions

1

X X B
0 =sin! =, 0 =tan " —, and 0 =sec”!
a a

1

by ., a
— =cos ' —.
a X

The inverse sine substitution
Integrals involving v/ a? — x2 (where @ > 0) can frequently be reduced to a

simpler form by means of the substitution

1

. . .1 X
x =asinf or, equivalently, 6 = sin" " —.
a

Observe that ~/a? — x2 makes sense only if —a < x < a, which corresponds to
—n/2 <6 < /2. Since cos 6 > 0 for such 8, we have

Va2 —x2 = /a?(1 —sin? ) = Va2 cos2 6 = acosb.

(If cos @ were not nonnegative, we would have obtained a| cos 0| instead.) If needed,
the other trigonometric functions of 6 can be recovered in terms of x by examining a
right-angled triangle labelled to correspond to the substitution (see Figure 6.1)

2_ 2
a*—x X

cost) = ——— and tanf = ———.

a JaZ — x2

1
EXAMPLE 1 Evaluate/mdx.
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5—x2
Figure 6.2

W2 — 2

dl
-

Figure 6.3

va? + x?

Figure 6.4

=V

Solution Refer to Figure 6.2.

[mdx Let x = +/5sin0,
dx = +/5cos6 db
V5cos 6 db
/53/2cos30
1 1 X
=3 /sec 0do = - z tan0+C=§ﬁ+C

o
EXAMPLE 2 Find the area of the circular segment shaded in Figure 6.3.
Solution The area is
a
A=2[ va? —x2dx Let x = asind,
b dx =acosfdb
X=a
= 2[ a® cos*> 0 do
x=b
xX=a
=a” (0 + sinf cos 0) (as in Example 8 of Section 5.6)
x=b
2_ 2\ @
= a? (Sin_1 X + xa—zx) (See Figure 6.1.)
a a b
= %az —a? sin”! = — bva? — b2 square units.
o

The inverse tangent substitution

Integrals involving ~/a2 + x2 or > > (Where a > 0) are often simplified
X

by the substitution

. X
x =atan6 or, equivalently, 6 = tan L=
a

Since x can take any real value, we have —7/2 < 6 < 7/2, so sec > 0 and

va?+x2=a+1+tan20 = asech.

Other trigonometric functions of 6 can be expressed in terms of x by referring to a
right-angled triangle with legs a and x and hypotenuse ~/a? + x2 (see Figure 6.4):

X a
sinf = —— and cosf) = ——.
Ja? + x2 va? + x2

1 1
EXAMPLE 3 Evaluate (a)/ﬁdx and (b)/mdx

Solution Figures 6.5 and 6.6 illustrate parts (a) and (b), respectively.
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Let x = 2tan6,

1
(a) /—dx
/ 3
4+ x dx = 2sec?60do

2
:/2sec QdG
2sect

NZ Z/sec9d9
X
4 2
0 :1n|se00+tan9|+C:1n‘%+§_|_C
2
Figure 6.5 =In(vV4+x2+x)+C;.  whereC; =C —In2.
(Note that v/4 + x2 + x > 0 for all x, so we do not need an absolute value on it.)
1
(b) /—dx Let 3x = tan 0,
1 + 9x2)2
( ) 3dx = sec?0do,
1+ 9x2 = sec? 0
1 /sec29d9
3 sec* 0
1 1
N =§/00529d0:g(9+sin9 cosf) + C
3x
1 1 1 3x 1
=—tan (3x)+ — +C
6 6 0 6 T+ 9x2 /T 9x2
1 1 1 1 X
Figure 6.6 T 6 tan™"(3x) + 21+ 9x2 +C

The inverse secant substitution

Integrals involving +/ x2 — a? (where a > 0) can frequently be simplified by
using the substitution

: X
x =asec or equivalently, 6 =sec”! =

We must be more careful with this substitution. Although

Vx2—a? =avsec?0 — 1 = av'tan2 6 = a|tan b,

we cannot always drop the absolute value from the tangent. Observe that v/x2 — a2
makes sense for x > ¢ and for x < —a.

X a 7w
If x > a,then0 <0 =sec”! = = arccos — < > and tan@ > 0.
a X

1

g X a
If x < —a, then 5 < 6@ =sec'— = arccos — <, and tanf < 0.
a X

In the first case v/ x2 — a2 = g tan @; in the second case v/ x2 — a2 = —a tan@.

EXAMPLE 4 Find =/J%,wherea>o.

Solution  For the moment, assume that x > a.If x = asec6, then
dx = asecO tan0 df and vVx? —a? = a tan 6. (See Figure 6.7). Thus,

1 :/seCQd0:ln|se09+tan9|+C

=In
a a

X x2 —q?
—+—'+C=ln|x+\/x2—a2|+C1,
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X< —da

Figure 6.7

where C; = C —Ina. If x < —a, letu = —x sothatu > a and du = —dx. We have
du
I=—/—=—ln|u+«/u2—a2|+C1
fu? — a2
| 1 X+ v/x2—q? L
= In 1
—x + Vx2—a? x + Vx2—a?

X+ +/x%2—a?
2

—a

+C; =In|x + vVx2—a?| + C,,

=1In

where C, = Cy — 21Ina. Thus, in either case, we have

I =Inlx +vx2—a?|+C.

L
The following example requires the technique of completing the square as presented in
Section 6.2.

X

1
EXAMPLE 5 Evaluate (a)/‘m dx and (b)/ FRC R el
Solution

(@) /;dx—/ dx
V2x — x2 V1= (1-2x+x2)
dx

ﬁ Letu:x—l,
_x_

du = dx
_/ du
V1 —u?

=sin'u4+C =sin"t(x—-1)+C.

(b) /—x d —/
A2+ x4+ 1397 4(

xdx

9
x2+3x+z+1)

1 d
:_/—x x2 Letu = x + (3/2),
4 3
(x+§) +1 du = dx,

x=u—(3/2)

udu 3 du .
- = In the first integral
uz+1 8 ) uz+1
letv =u?+1,

dv =2udu

FN-

dv 3
— ——tan" u
v 8

3
In|v| — 3 tan ' u + C

0| =— 0| — 00| =—

3
= — In(4x? + 12x + 13) — 3 tan~ ! (x + —) + Cy,
where C; = C — (In4)/8.

Inverse Hyperbolic Substitutions

As an alternative to the inverse secant substitution x = a sec @ to simplify integrals
involving +/x2 — a2 (where x > a > 0), we can use the inverse hyperbolic cosine
substitution x = a coshu. Since cosh? u — 1 = sinh? u, this substitution produces
v/x2 —a? = asinhu. To express u in terms of x, we need the result, noted in Section
3.6,

cosh_lx:ln(x+VX2—1), x> 1.
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To illustrate, we redo Example 4 using the inverse hyperbolic cosine substitution.

EXAMPLE 6 Find I :[\/%,wherea>0.

Solution Again we assume x > a. (The case where x < —a can be handled simi-
larly.) Using the substitution x = a coshu, so that dx = a sinhu du, we have

inh
Iz/as% uduz/du=U+C
a sinh u

=cosh_1£+C=ln i—i—
a a

:ln(x+Vx2—a2)+C1 (where C; = C —1Ina)

L
Similarly, the inverse hyperbolic substitution x = a sinh u can be used instead of the
inverse tangent substitution x = a tan 6 to simplify integrals involving </ x2 + a? or

T In this case we have dx = a coshu du and x2 + a? = a2 cosh? u, and we
X a
may need the result

sinh ! x = In (x + Vx2+ 1)

valid for all x and proved in Section 3.6.

4 dx
EXAMPLE 7 Evaluatelzfo Epes

Solution  We use the inverse substitution x = 3 sinh u, so that dx = 3 cosh u du and
x2 + 9 = 9cosh? u. We have

x=4 x=4
3 cosh 1 1
12/ ﬂduz—/ sech?u du = — tanhu
x x 9

—o 27cosh?u 9 Jx=o0 o
x=4
1 sinhu 1 x/3 _1X4_4
9 coshu =0 9 (Wx2+ 9)/3 0 9 5 45

L
Integrals involving v/a? — x2, where |x| < a, can be attempted with the aid of the
inverse hyperbolic substitution x = a tanh 1, making use of the identity 1 — tanh? u =
sech ?u. However, it is usually better to use the inverse sine substitution x = a sin6
for such integrals. In general, it is better to avoid the inverse trigonometric substitutions
unless you are very familiar with the identities satisfied by the hyperbolic functions as
presented in Section 3.6.

Other Inverse Substitutions

Integrals involving +/ax + b can sometimes be made simpler with the substitution
ax +b =u>.
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1
EXAMPLE 8 /—_dx Let 2x = u?,
L+ v2x 2dx =2udu
=/ “ du
1+u
1 _
:/leu
14 u
:/(1_ ! )du Letv =14 u,
1 +u
dv =du

d
=u—/—U=u—ln|v|+C

v
=V2x—In(1 + vV2x) +C

Sometimes integrals involving “/ax + b will be much simplified by the hybrid sub-
stitutionax + b = u™, adx = nu"" ! du.

2
EXAMPLE / _r g
! —1/3 V3x +2 *

Let 3x + 2 = u?3,
3dx = 3u?du

1 [? 1 (u®
:—f(u4—2u)du:— Yo
3/ 35

Note that the limits were changed in this definite integral: ¥ = 1 when x = —1/3,
and, coincidentally, ¥ = 2 when x = 2.

> 16
T

L
If more than one fractional power is present, it may be possible to eliminate all of them
at once.

—l d
x1/2(1 + x1/3) -

EXAMPLE 10 Evaluate[

Solution  We can eliminate both the square root and the cube root by using the inverse

substitution x = u%. (The power 6 is chosen because 6 is the least common multiple
of 2 and 3.)

dx
SR Let x = u®
/ Y12(] + x1/3 )
( ) dx = 6u’ du
u? du

6/ 6/ v, 6/ 1 L )y
= —_— = u = — u
u3(1 + u?) 1 4 u? 1+ u?

=6um—tan 'u)+C =6(x"°—tan"! xV/%) + C.

o
The tan(6/2) Substitution

There is a certain special substitution that can transform an integral whose integrand is
arational function of sin 6 and cos @ (i.e., a quotient of polynomials in sin 6 and cos 6)
into a rational function of x. The substitution is

X = tan 0 or, equivalently, 6 = 2tan"! x.
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Observe that
cos? 0 1 1 . 1
= = = 5
2 seczg 1+tan2§ I+x
2 2
SO
0 2 1—x2
cosh =2cos? = —1= —1= X
2 1+ x2 1+ x2

0 0 0 0 2
sinf = 2sin — cos — = 2tan — cos> — = a .
2 2 2 2 1+ x2

1 0
Also, dx = = sec?* = db, so
2 2
0 2dx
df =2cos? —dx = ——.
cos > X e
In summary:

The tan(6 /2) substitution
If x = tan(6/2), then

il =52 2x 2dx

cosf =g S=q5 ad =

Note that cos 6, sin @, and d@ all involve only rational functions of x. We examined
general techniques for integrating rational functions of x in Section 6.2.

1
—df Let x = tan(6/2),
EXANPLE 11 [ 577 etx = tan(8/2),s0
9 I —x
cosf) = ——,
1+ x2
2d
do = =44
1+ x2
2dx
14+ x2 /
/ N 1 —x? 3+ x2
1+ x2
2 X
=—tan  —+C
3 V3
2 _1( 1 9)
= — tan —tan— | +C
3 V32
®
Evaluate the integrals in Exercises 1-42. 5. __dx 6. _dx
" x2+/9 — x2 xXV9—x2
1_[d_x g [_Xdx o[ xEl g dx
N V- 4x2 o e AN
x2dx dx x3dx V9 + x?
3. | —— 4. /— 9. 10 / T dx
V9 —x2 xvV1—4x2 V9 + x2 X
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11 [ a 12 [ H 39 [ dx H 40 / dx
)@ —n )@+ S xerei—2 ] 2o
x2dx dx dx dx
13. M [ — B4 |——— | 42. / —_—
[ (a2 —x2)3/2 [ 1+ 2x2)5/2 [ x(1+ x2)3/2 x(1 —x2)3/2
dx X In Exercises 4345, evaluate the integral using the special
15. [ —24, (x>2) 16. [ i (x >a>0) substitution x = tan(#/2) as in Example 11.
xv/x?% — x2+/x%2 —a
dx dx H 43 f il By /”/2 d6
17'[7x2+2x+10 18‘[7x2+x+1 ’ 2 +sin 6 “Jo  14cosf +sinf
de
dx xdx H 45. / —
19. ﬁ 20. [ # 3 + 2cos 0
(4x* +4x +5) —2x+3 46. Find the area of the region bounded by
51 xdx ”» dx y=02x—x2)"Y2 y =0, x=1/2,and x = 1.
") V2ax —x2 © ) (4x —x2)3/2 47. Find the area of the region lying below
dx y = 9/(x* + 4x? 4 4) and above y = 1.
. 2 A~v _ w2\3/2 . 2 Lo 192 . FInd the average value of the function
B | Gy el ey 48. Find th lue of the functi
f(x) = (x2 — 4x + 8)73/2 over the interval [0, 4].
dx x2dx . I . 2, .2 2
25 / 26. [ 49. Find the area inside the circle x* + y“ = a“ and above the
(14 x2)3 (1 + x2)2 liney = b, (—a <b <a).
V1= x2 50. Find the area inside both of the circles x2 + y2 = 1and
| 27. /%dx 28.[\/9+x2dx (x—2)2 4 y2 = 4.
X
d d 51. Find the area in the first quadrant above the hyperbola
2. [ 4 30. | X xy = 12 and inside the circle x? + y? = 25.
2 =+ ﬁ 1 + X1/3 XZ 2
| 12 N 52. Find the area to the left of Z—z = 1 and to the right of
H 31. /liixl“dx H 32. %d}c the line x = ¢, where —a<c<a
X
o H 53. Find the area of the region bounded by the x-axis, the
3. [0 o VT o2 di 1. /2 cos X dx hyperbOI.a x2—y? = 21, and the straight line from the origin
In2 0 V1 +sin?x to the point («/1 + Y=, Y) on that hyperbola. (Assume
i1 i ) I ); > O:) IIlr; particular, show that the area is /2 square units if
35. —_ 36. —_— = s
/_ x2+2x+2 [ 29— x2 '
H 54. Evaluate the integral / for x > a > 0, using
tdt xdx /—x2 I
H 37. 38. the inverse hyperbolic cosine substitution x = a coshu.
&+ D@2 +1)? (x2—x+1)2

Other Methods for Evaluating Integrals

Sections 5.6 and 6.1-6.3 explore some standard methods for evaluating both definite
and indefinite integrals of functions belonging to several well-defined classes. There is
another such method that is often used to solve certain kinds of differential equations
but can also be helpful for evaluating integrals; after all, integrating f(x) is equivalent
to solving the DE dy/dx = f(x). It goes by the name of the Method of Undeter-
mined Coefficients or the Method of Judicious Guessing, and we will investigate it
below.

Although anyone who uses calculus should be familiar with the basic techniques of
integration, just as anyone who uses arithmetic should be familiar with the techniques
of multiplication and division, technology is steadily eroding the necessity for being
able to do long, complicated integrals by such methods. In fact, today there are several
computer programs that can manipulate mathematical expressions symbolically (rather
than just numerically) and that can carry out, with little or no assistance from us, the
various algebraic steps and limit calculations that are required to calculate and simplify
both derivatives and integrals. Much pain can be avoided and time saved by having the
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computer evaluate a complicated integral such as

/ 1+ x + x2 i
(x4 —=1)(x*—16)2

rather than doing it by hand using partial fractions. Even without the aid of a computer,
we can use tables of standard integrals such as the ones in the back endpapers of
this book to help us evaluate complicated integrals. Using computers or tables can
nevertheless require that we perform some simplifications beforehand and can make
demands on our ability to interpret the answers we get. We also examine some such
situations in this section.

The Method of Undetermined Coefficients

The method consists of guessing a family of functions that may contain the integral,
then using differentiation to select the member of the family with the derivative that
matches the integrand. It should be stressed that both people and machines are able
to calculate derivatives with fewer complications than are involved in calculating inte-
grals.

The method of undetermined coefficients is not so much a method as a strategy,
because the family might be chosen on little more than an informed guess. But other
integration methods can involve guesswork too. There can be some guesswork, for
example, in deciding which integration technique will work best. What technique is
best can remain unclear even after considerable effort has been expended. For undeter-
mined coefficients, matters are clear. If the wrong family is guessed, a contradiction
quickly emerges. Moreover, because of its broad nature, it provides a general alterna-
tive to other integration techniques. Often the guess is easily made. For example, if
the integrand belongs to a family that remains unchanged under differentiation, then a
good first guess at the form of the antiderivative is that family. A few examples will
illustrate the technique.

EXAMPLE 1 Evaluate I = /(x2 + x + 1) e* dx using the method of undeter-

mined coefficients.

Solution  Experience tells us that the derivative of a polynomial times an exponential
is a different polynomial of the same degree times the exponential. Thus, we “guess”
that

I = (ap + aix + arx?)e* + C.

We differentiate / and equate the result to the integrand to determine the actual values
of the coeffieients ag, a;, and a,.

dl
— = (ay + 2a2x) €* + (ag + a1x + arx?) e*

dx
= (a2x? + (a1 + 2a2)x + (aop + ay))e”

= (x2 4 x + 1)e",

provided that a, = 1, a; + 2a, = 1, and ap + a; = 1. These equations imply that
a, = 1,a; = —1,and ag = 2. Thus,

/(xz—i—x—i—l)exdx:l=(x2—x+2)ex+C.

EXAMPLE 2 Evaluate y = / x> cos(3x) dx using the method of undetermined

coefficients.
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Solution The derivative of a sum of products of polynomials with sine or cosine
functions is a sum of products of polynomials with sine or cosine functions. Thus, we
try y = P(x)cos(3x) + Q(x)sin(3x) + C, where P(x) and Q(x) are polynomials
of degrees m and n, respectively. The degrees m and n and the coefficients of the
polynomials are determined by setting the derivative y’ equal to the given integrand
x3 cos(3x).

y' = P’(x)cos(3x) — 3P(x) sin(3x) + Q'(x) sin(3x) + 30’ (x) cos(3x)

= x> cos 3x.

Equating coefficients of like trigonometric functions, we find
P'(x)+30(x)=x> and Q'(x)—3P(x)=0.

The second of these equations requires that m = n — 1. From the first we conclude
that n = 3, which implies that m = 2. Thus, we let P(x) = po + p1x + p>x? and
Q(x) = qo + q1X + q2x? + ¢3x3 in these equations:
P1+2p2x 4 3(go + q1X + 2x% 4 g3x7) = x°

q1 + 2q2x + 3q3x> = 3(po + p1x + pax?) = 0.
Comparison of coefficients with like powers yields:

P1+3q0 =0 2p>+3q1=0 3¢2=0 3¢5 =1

q1=3po =0 2¢2=3p1 =0 3¢3—3p> =0,

which leads to g3 = 1/3, p» = 1/3, g1 = —2/9, and py = —2/27, with p; = qo =
¢> = 0. Thus,

2 x? 2x  x3
3 _(_ B .
/x cos(3x)dx =y = ( > + 5 )cos(3x) + ( 5 + 3 )sm(3x) + C.

EXAMPLE 3 Find the derivative of f,,,(x) = x™(Inx)"” and use the result to

suggest a trial formula for I = [ x3(Inx)?dx. Thus, evaluate

this integral.
Solution We have

£, (x) = mx™ (In x)" +nx™ (In x)" ! % = mx" 1(Inx)"+nx™"(Inx)" L.
This suggests that we try

1= fx3(lnx)2 dx = / faa(x)dx = Px*(Inx)®> + QOx*Inx + Rx* + C

for constants P, Q, R, and C. Differentiating, we get

dl
T 4Px3(Inx)?> +2Px>Inx +40x>Inx + Ox> + 4Rx® = x3(Inx)?,
X

provided4P = 1,2P +4Q =0,and Q +4R = 0. Thus, P = 1/4, Q = —1/8, and
R =1/32, and so

1 1 1
/363(lnx)2 dx = Zx“(lnx)2 — §x4lnx + 3—2x4 + C.
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Remark These examples and most in the following exercises can also be done using
integration by parts. Using undetermined coefficients does not replace other methods,
but it does provide an alternative that gives insight into what types of functions will not
work as guesses for the integral. This has implications for how computer algorithms
can and cannot do antiderivatives. This issue is taken up in Exercise 21. Moreover, with
access to a differentiation algorithm and a computer to manage details, this method
can sometimes produce integrals more quickly and precisely than classical techniques
alone.

Using Maple for Integration

Computer algebra systems are capable of evaluating both indefinite and definite in-
tegrals symbolically, as well as giving numerical approximations for those definite
integrals that have numerical values. The following examples show how to use Maple
to evaluate integrals.

T
We begin by calculating / 21 + 4% dx and / 21+ 4% dx.
0

LT3

We use Maple’s “int” command, specifying the function and the variable of inte-
gration:

> int (27°x*sqrt (1+4°x),x);
e(x(2) 1+(€(xln(2)))2 arcsinh(e(““'“(z”)
21In(2) 21n(2)

If you don’t like the inverse hyperbolic sine, you can convert it to a logarithm:

> convert (%,1n);

e(x1n(2)) 1+ ((?(XI“(Z)))ZZh’I(Z) +1n (e(xln(Z)) 4 1+ (e(xlrl(z)))Z)

21n(2)

The “%’ there refers to the result of the previous calculation. Note how Maple prefers
to use e* 2 in place of 2*.

For the definite integral, you specify the interval of values of the variable of inte-
gration using two dots between the endpoints as follows:

> int (2"x*sqgrt (1+4"x),x=0..P1);

—V2—In(1 + v/2) + 27 J/T+ 47 + In(2" + /T + 47)
21n(2)

If you want a decimal approximation to this exact answer, you can ask Maple to evalu-
ate the last result as a floating-point number:

> evalf(%);

56.95542155

Remark Maple defaults to giving 10 significant digits in its floating-point numbers
unless you request a different precision by declaring a value for the variable “Digits”:

> Digits := 20; evalf (Pi);
3.141592 6535897932385

Suppose we ask Maple to do an integral that we know we can’t do ourselves:
> int (exp (-x"2),x);
1
— +/merf(x
5 (x)

Maple expresses the answer in terms of the error function that is defined by

2 P
erf(x) = NG /(; e dt.
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But observe:
> Int (exp (-x"2),x=-infinity..infinity)

= int (exp (-x"2), x=—-infinity..infinity);

o0 2
/ DV dx = 1
—00

Note the use of the inert Maple command “Int” on the left side to simply print the
integral without any evaluation. The active command “int” performs the evaluation.

Computer algebra programs can be used to integrate symbolically many functions,
but you may get some surprises when you use them, and you may have to do some of
the work to get an answer useful in the context of the problem on which you are work-
ing. Such programs, and some of the more sophisticated scientific calculators, are able
to evaluate definite integrals numerically to any desired degree of accuracy even if
symbolic antiderivatives cannot be found. We will discuss techniques of numerical in-
tegration in Sections 6.6—6.8, but note here that Maple’s evalf (Int () ) can always
be used to get numerical values:

> evalf (Int (sin(cos(x)),x=0..1));

7386429980

Using Integral Tables

You can get some help evaluating integrals by using an integral table, such as the one in
the back endpapers of this book. Besides giving the values of the common elementary
integrals that you likely remember while you are studying calculus, they also give many
more complicated integrals, especially ones representing standard types that often arise
in applications. Familiarize yourself with the main headings under which the integrals
are classified. Using the tables usually means massaging your integral using simple
substitutions until you get it into the form of one of the integrals in the table.

tS
—dt.
3 =214

Solution This integral doesn’t resemble any in the tables, but there are numerous
integrals in the tables involving ~/a2? — x2. We can begin to put the integral into this
form with the substitution #2 = u, so that 2¢ dt = du. Thus,

EXAMPLE 4 Use the table to evaluate / = /

1 u?
| =< | ———=du.
2) V3-2u?
This is not quite what we want yet; let us get rid of the 2 multiplying the u#? under

the square root. One way to do this is with the change of variable v/2u = x, so that

du = dx//2:

1 x2
Iz—/—dx.
42 ) V3 —x2

Now the denominator is of the form v/a2 — x2 for a = /3. Looking through the part
of the table (in the back endpapers) dealing with integrals involving va? — x2, we
find the third one, which says that

/ x? dx = xx/az xz—l—azsin_lx—l-C
«/az_xz o 2 2 a ’

Thus,

1 3
= — (—%\/3 —x2 4 Esinl%) +C

2 2t2
= —%V3—2I4 + %Sin_1 [3 + Cl.
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Many of the integrals in the table are reduction formulas. (An integral appears on both
sides of the equation.) These can be iterated to simplify integrals as in some of the
examples and exercises of Section 6.1.

1 1
EXAMPLE 5 EvaluateI=/0 Epmte

Solution The fourth integral in the table of Miscellaneous Algebraic Integrals says
that if n # 1, then

dx 1 X dx
/ (a? 4+ x2)n - 2a%(n — 1) ((a2 + x2)n—1 +@n - 3)/ (a2 + xz)"—l) '

Using a = 1 and the + signs, we have

1 dx _ 1 X ! 5 3 1 dx
/0 (1 + x2)r a 2(n —1) \ (1 + x2)n—1 0+( n=3) o (1 4+ x2)n-1

__ L 2n-3 Y dx
T 2n—1)  2m—1)Jo (14 x2)n-1

Thus, we have
1 3/1 dx
I = — —|— — e —
16 4 )y (14 x2)2

1 3/1 1

E+Z(Z+ 01+x)
Zi—i-i—i-gtan x1
16 16 8

1 3
o 4 32°

Special Functions Arising from Integrals

The integrals

d d
/—lenx+C and/—xztan_1x+C
X 1+ x2

both take algebraic functions to a function that is not produced by adding, subtracting,
multiplying, or dividing. In the first case the integral expands the class of functions to
include logarithms, and in the second case, trigonometric functions.

The functions we have dealt with so far have mostly come from a class called Ele-
mentary Functions, which consists of polynomials, logarithms, exponentials, trigono-
metric and hyperbolic functions, and their inverses, and also finite sums, differences,
products, quotients, powers, and roots of such functions. The derivative of any dif-
ferentiable elementary function is elementary, but an integral may or may not be el-
ementary. This expands the class of functions to a wider class known, for historical
reasons, as Special Functions. The subject of Special Functions is a large topic in
applied mathematics. There are many standard special functions that are thoroughly
studied and important for applications. For instance,

1 T
Jo(x) = ;/ cos(x sint)dt
0

is a special function known as a Bessel function of the first kind of order zero. It is a
solution of Bessel’s equation (see Exercise 20), which is a differential equation. Tradi-
tionally, this function is introduced when series methods are used to solve differential
equations (see Section 18.8), but it can be defined as a definite integral.
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Another example is the Error Function, arising in the field of probability and
statistics. It is encountered in connection with the integral of f(x) = e_xz, which
does not have an elementary integral. If one did have such an integral, it would have
to be of the form

/e_)‘2 dx = P(x) e’

for some polynomial P having finite degree. Such is not possible. See Exercise 21
below.

To deal with this situation we use the error function defined as

2 T2
erf(x)zﬁ | e~ dt.

It follows that
[efxz dx = \/T;erf(x) + C.

Atfirst, this may seem like the integral is merely dressed up with a new name. In a way
that is true, but it would be equally true for In x or tan~! x above if we knew nothing
about them other than the integral definition. But we know more about In x, tan~! x,
and erf(x) than simply that they are antiderivatives of simpler functions. Above all, we
know that they are functions in their own right that are not algebraic in the case of the
first two and not an elementary function in the latter case.

In Exercises 14, use the method of undetermined coefficients to 13. / x4(ln x)4 dx 14. / X7 ex2 dx
evaluate the given integrals.
— V2x — x2
1. /e3x sin(4x) dx 2. /xe_x sinx dx 15. /X 2x —x2dx 16. / 2 dx
7 [ dx 18 / dx
3. [xs e dx 4. [xZ(lnx)4 dx ") (Vax —x2)3 ") (Vax —x2)s

. Use Maple or another computer algebra program to evaluate

dt
11. [—
12312 +5

5. Use Maple or another computer algebra program to check any
of the integrals you have done in the exercises from Sections
5.6 and 6.1-6.3, as well as any of the integrals you have been
unable to do.

6. Use Maple or another computer algebra program to evaluate
the integral in the opening paragraph of this section.

7. Use Maple or another computer algebra program to
re-evaluate the integral in Example 4.

8. Use Maple or another computer algebra program to
re-evaluate the integral in Example 5.

Use the integral tables to help you find the integrals in Exercises
9-18.

10. / (x2+4)3dx

IZ'IL
t/3t =5

2
. [ —S—ax
Vx2 =2

20.

21.

the integrals in Exercises 9-18.

Show that y = Jo(x) satisfies the Bessel equation of order
zero: xy” +y' +xy = 0.

The Error Function erf(x)

(a) Express the integral / ¢ dx in terms of the Error

Function.

(b) Given that [

oo

e dx = J7 (which will be proved in

Section 14.4iogvaluate limy_, o erf(x) and
limy o erf(x).

(c) Show that P (x)e_)‘2 cannot be an antiderivative of erf(x)
for any polynomial P.

(d) Use undetermined coefficients to evaluate

J = [erf(x) dx.
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Improper Integrals

Figure 6.8

* 1
(a)A=[ —2dx
1 X

R
(b) A= lim/ — dx
R—oc0 J1 X

Up to this point, we have considered definite integrals of the form

1 =fabf(x)dx,

where the integrand f is continuous on the closed, finite interval [a, b]. Since such a
function is necessarily bounded, the integral I is necessarily a finite number; for posi-
tive f it corresponds to the area of a bounded region of the plane, a region contained
inside some disk of finite radius with centre at the origin. Such integrals are also called
proper integrals. We are now going to generalize the definite integral to allow for two
possibilities excluded in the situation described above:

(1) We may have a = —oo or b = oo or both.
(ii) f may be unbounded as x approaches a or b or both.

Integrals satisfying (i) are called improper integrals of type I; integrals satisfying (ii)
are called improper integrals of type II. Either type of improper integral corresponds
(for positive f) to the area of a region in the plane that “extends to infinity” in some
direction and therefore is unbounded. As we will see, such integrals may or may not
have finite values. The ideas involved are best introduced by examples.

Improper Integrals of Type |

EXAMPLE 1 Find the area of the region A lying under the curve y = 1/x2 and
above the x-axis to the right of x = 1. (See Figure 6.8(a).)

Solution  We would like to calculate the area with an integral

o
[
1 X

which is improper of type I, since its interval of integration is infinite. It is not im-
mediately obvious whether the area is finite; the region has an infinitely long “spike”
along the x-axis, but this spike becomes infinitely thin as x approaches co. In order
to evaluate this improper integral, we interpret it as a limit of proper integrals over
intervals [1, R] as R — oo. (See Figure 6.8(b).)

© g R g 1
A:/ —leim/ Z = iim (——)
1 X R—o0 1 X R—o0 X

1
= li — 41 =1
Rgnoo ( R + )
Since the limit exists (is finite), we say that the improper integral converges. The region
has finite area A = 1 square unit.

R

1

®
Y4 ¥4

=V
=V
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Find the area of the region under y = 1/x, above y = 0, and to
EXAMPLE 2 the right of x = 1. (See Figure 6.9.)

Figure 6.9  The area under the red curve
is infinite. The area under the blue curve is
finite.

Solution This area is given by the improper integral

® dx . R gx . R .
A= — = lim — = lim Inx| = lim InR = oc.
1 X R—o0 J1 X R—o0 1 R—o0

We say that this improper integral diverges to infinity. Observe that the region has a
similar shape to the region under y = 1/x? considered in the above example, but its
“spike” is somewhat thicker at each value of x > 1. Evidently, the extra thickness
makes a big difference; this region has infinite area.

L
DEFINITION Improper integrals of type I
If f is continuous on [a, 00), we define the improper integral of f over [a, 00)
]_ as a limit of proper integrals:

[aoof(x)dx =R1i_r)noo[aRf(x)dx.

Similarly, if f is continuous on (—oo, b], then we define

b b
[_Oo f(x)dx = Rgrzloo/R f(x)dx.

In either case, if the limit exists (is a finite number), we say that the im-
proper integral converges; if the limit does not exist, we say that the improper
integral diverges. If the limit is co (or —00), we say the improper integral
diverges to infinity (or diverges to negative infinity).

. o0 . . . .
The integral [° f(x)dx is, for f continuous on the real line, improper of type I at
both endpoints. We break it into two separate integrals:

/_Zf(x)dx =/_;f(x)dx+/o°°f(x)dx'

The integral on the left converges if and only if both integrals on the right converge.

|

EXAMPLE 3 Evaluate/ dx.

oo 1+ x2



Figure 6.10

Figure 6.11  Not every divergent improper

integral diverges to co or —oco

DEFINITION

2
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Solution By the (even) symmetry of the integrand (see Figure 6.10), we have

/°° dx _/O dx +/°° dx
oo L+ x2 )0 1+ x2 o 1+ x2

R g
=2 lim [ 2
R—o0 0 1+X2

=2 lim tan" ' R = 2(%) = 7.

R—o0

The use of symmetry here requires some justification. At the time we used it we did
not know whether each of the half-line integrals was finite or infinite. However, since
both are positive, even if they are infinite, their sum would still be twice one of them.
If one had been positive and the other negative, we would not have been justified in
cancelling them to get O until we knew that they were finite. (co+ 0o = 0o, but co—o00
is not defined.) In any event, the given integral converges to 7.

00 R
EXAMPLE 4 [ cosxdx = lim cosx dx = lim sinR.
0

R—00 Jo R—o00

This limit does not exist (and it is not co or —o0), so all we can say is that the given
integral diverges. (See Figure 6.11.) As R increases, the integral alternately adds and
subtracts the areas of the hills and valleys but does not approach any unique limit.

YVa
y = cosx

\VZ2 VAR

A

Improper Integrals of Type Il
Improper integrals of type IT

If f is continuous on the interval (a, b] and is possibly unbounded near a, we
define the improper integral

b b
[ rwaxr= tim [ s,

Similarly, if f is continuous on [a, b) and is possibly unbounded near b, we
define

[ab f(x)dx =C£rlr)1[ac f(x)dx.

These improper integrals may converge, diverge, diverge to infinity, or diverge
to negative infinity.

EXAMPLE 5 Find the area of the region S lying under y = 1/ /X, above the

x-axis, between x = 0 and x = 1.
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Solution The area A is given by

L
Yt A:/—dx,
0 VX

which is an improper integral of type II since the integrand is unbounded near x = 0.
The region S has a “spike” extending to infinity along the y-axis, a vertical asymptote
of the integrand, as shown in Figure 6.12. As we did for improper integrals of type I,
we express such integrals as limits of proper integrals:

1 1

A= lim | xY?dx= lim 2x"?| = lim 2—-2c) =2.
c—>0+ J. c—>0+ . 0+

This integral converges, and S has a finite area of 2 square units.
Figure 6.12  The shaded area is finite

L
While improper integrals of type I are always easily recognized because of the infinite
limits of integration, improper integrals of type II can be somewhat harder to spot. You
should be alert for singularities of integrands and especially points where they have
vertical asymptotes. It may be necessary to break an improper integral into several
improper integrals if it is improper at both endpoints or at points inside the interval of
integration. For example,

! ln|x|dx ln|x|dx 2 10 x| dx U In|x|dx

-1 V/1—x \/l—x 0 V1—x 1/2 VI=x'

Each integral on the right is improper because of a singularity at one endpoint.

EXAMPLE 6 Evaluate each of the following integrals or show that it diverges:

1 2 1
(a) /O;dx, (b) /()ﬁdx and () /Olnxdx.

Solution
'
(a) / —dx = lim —dx = lim (Inl —In¢) =
c—=>0+ J. X c—>0+
This integral diverges to infinity.

2 1 2
(b) / —dx:/ _ix Letu =x —1,
0 v2x —x2 0 1—(x—1)2
du = dx

= ———du
/—1 V1 —u?
1

(by symmetry)

1
:2/ LY
0 v1—u?

1
=2 lim/ —du
c—>1— 0 ./1_u2
c
=2 lim sin 'u
c—>1—

=2 lim sin"'e = 7.
0 c—>1—

This integral converges to 7. Observe how a change of variable can be made even
before an improper integral is expressed as a limit of proper integrals.
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1
() / Inxdx = 111‘(1)1 Inx dx (See Example 2(a) of Section 6.1.)

c
1

= lim (xInx —Xx)
c—>0+ ¢

= lim (0—1—clnc +c¢)

c—>0+
1 _
=—-140— lim ne [;oo]
=0+ 1/c 00
1/c

=—1— lim
0+ —(1/c?)

=—1— lim (=¢) =—-1+0=—1.
c—>0+

(by I’Ho6pital’s Rule)

The integral converges to —1.

L
The following theorem summarizes the behaviour of improper integrals of types I and
II for powers of x.

p-integrals
If 0 < a < oo, then

oo a'=? .
@ / P dy c?nverges to P Tf p>1
@ diverges to co if p<1

a al_p .
®) / P dy c?nverges to > Tf p<l1
0 diverges to co if p>1.

PROOF We prove part (b) only. The proof of part (a) is similar and is left as an
exercise. Also, the case p = 1 of part (b) is similar to Example 6(a) above, so we need

consider only the cases p < 1 and p > 1. If p < 1, then we have

a a
/ xPdx = lim x Pdx
0

c—>0+ J,
) x—ptl |4
= lim
c=>0+ —p + 1|,
alP _l-p al—p
= lim =
c—>0+ 1—-p 1—p

because 1 — p > 0. If p > 1, then

a a
/ xPdx = lim xPdx
0

c—>0+ ¢
x—ptl |4
= lim
c>0+ —p+ 1|,
=D _g=(-D
= lim = o0.
c—>0+ p—1

H
The integrals in Theorem 2 are called p-integrals. It is very useful to know when
they converge and diverge when you have to decide whether certain other improper
integrals converge or not and you can’t find the appropriate antiderivatives. (See the
discussion of estimating convergence below.) Note that fooo x~P dx does not converge
for any value of p.
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Remark If f is continuous on the interval [a,b] so that | : f(x)dx is a proper
definite integral, then treating the integral as improper will lead to the same value:

c—a+

b b c
lim f(x)dxz[ f(x)dx = lirlrjl_/ f(x)dx.

This justifies the definition of the definite integral of a piecewise continuous function

that was given in Section 5.4. To integrate a function defined to be different continuous

functions on different intervals, we merely add the integrals of the various component
Vs functions over their respective intervals. Any of these integrals may be proper or im-
proper; if any are improper, all must converge or the given integral will diverge.

1//x if0<x<l1
x—1 ifl<x<2.

2
EXAMPLE 7 Evaluate[ f(x)dx, where f(x) :%
0

Solution The graph of f is shown in Figure 6.13. We have

/Ozf(x)dx:/olj—;—i-flz(x—l)dx

i Udx N x?

im — ——x

1 x >0+ Jo x 2

Figure 6.13 A discontinuous function the first integral on the right is improper but convergent (see Example 5 above), and
the second is proper.

2—2+ 22 Llin) =2,
- 2 2

Estimating Convergence and Divergence

When an improper integral cannot be evaluated by the Fundamental Theorem of Calcu-
lus because an antiderivative can’t be found, we may still be able to determine whether
the integral converges by comparing it with simpler integrals. The following theorem
is central to this approach.

THEOREM A comparison theorem for integrals
Let —0o < a < b < o0, and suppose that functions f and g are continuous on the
3 interval (a,b) and satisfy 0 < f(x) < g(x). If [ ab g(x) dx converges, then so does

fab f(x)dx, and
b b
/ Fx)dx < / g(x) dx.

Equivalently, if [ : f(x)dx diverges to oo, then so does [ ab g(x)dx.

PROOF  Since both integrands are nonnegative, there are only two possibilities for
each integral: it can either converge to a nonnegative number or diverge to co. Since
f(x) < g(x) on (a, b), it follows by Theorem 3(e) of Section 5.4 thatifa <r < s <
b, then

/rs flyda < [g(x)dx.

This theorem now follows by taking limits as r — a+ and s — b—.

o

EXAMPLE 8 Show that / e dx converges, and find an upper bound for its
0

value.



Figure 6.14

Comparing e~

X
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X
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Solution  We can’tintegrate e‘xz, but we can integrate e . We would like to use the
inequality e’ < e™*, but this is only valid for x > 1. (See Figure 6.14.) Therefore,
we break the integral into two parts.

On [0, 1] we have 0 < ex’ <1, so

1 1
0</e_x2dx§/dx=1.
0 0

2
On [1, 00) we have x2 > x,s0 —x? < —x and 0 < e™* < e~ *. Thus,

oo 5 o0 e*.x
0</ e " dxf/ e *dx = lim —
1 1

Il
x,_‘
‘5
3

—
Q| =
|
Q
| =
——

[

Q| =

o0
Hence, / e dx converges and its value is less than 1 + (1/e).
0

®
We remark that the above integral is, in fact, equal to % 7, although we cannot prove
this now. See Section 14.4.

For large or small values of x many integrands behave like powers of x. If so, they
can be compared with p-integrals.

EXAMPLE 9 Determine whether / d_x converges.
0

Vx+x3

Solution The integral is improper of both types, so we write

*  dx 1 dx * dx
= + =1+ L.
0 x4+ x3 0 Vx+x3 1 A/x+x3
On (0, 1] we have v/x + x3 > /x, so

I; < /1 =2 (b heorem 2)
—_ = y .
1 \/_ I

On [1, 00) we have v/ x + x3 > Vv x3, s0
o0
I, < / x2dx =2 (by Theorem 2).
1

Hence, the given integral converges, and its value is less than 4.

L
In Section 4.10 we introduced big-O notation as a way of conveying growth-rate infor-
mation in limit situations. We wrote f(x) = O(g(x)) as x — a to mean the same
thing as | f(x)| < K|g(x)]| for some constant K on some open interval containing a.
Similarly, we can say that f(x) = O(g(x)) as x — oo if for some constants @ and K
we have | f(x)| < K|g(x)| for all x > a.

1+ x? 1
EXAMPLE 10 —— = O | — | as x — oo because, for x > 1 we have

I+ x4 x2
1+x%| 2x2 2
— <= ==
1+ x4 x4 x2
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Show that if p > 1 and f is continuous on [1, c0) and satisfies

f(x) = O(x~P), then floo f(x) dx converges, and the error £ (R)
in the approximation

EXAMPLE 11

[loof(x)dx %/;Rf(x)dx

satisfies E(R) = O(R'"?) as R — oo.

Solution Since f(x) = O(x~?) as x — oo, we have, for some @ > 1 and some K,
f(x) < Kx~?forall x > a. Thus,

E(R)| = ‘ [ reas

so E(R) = O(R'"?)as R — oo.

In Exercises 1-22, evaluate the given integral or show that it 24. Find the area below y = e™*, above y = ¢~ 2%, and to the
diverges. right of x = 0.
© 1 oo 1 25. Find the area of a region that lies above y = 0, to the right of
1. [ 7( E dx 2. [ 7(2 1273 dx L. and under th 4 2
X — — x = 1, and under the curve y = — .
2 ’ * Y 2x+1 x+2
o dx 26. Find the area of the plane region that lies under the graph of
3. [0 e dx o X241 y = x"2e~1/* above the x-axis, and to the right of the
y-axis.
! dx ¢ dx . . .
5. _ 6. - 27. Prove Theorem 2(a) by directly evaluating the integrals
—1 (x +1)2/3 0 a‘—x involved.
! 1 ! 1 28. Evaluate f_ll(x sgnx)/(x 4+ 2) dx. Recall that sgnx = x/|x]|.
7. —=dx 8. ——dx
o (1—x)1/3 0o x/1—x

[”/2 cos x dx
9. —_
o (1 —sinx)2/3

11

/1 dx

“Jo Vx(1—x)
[e @]

13.[ _ xdx
o (14+2x2)3/2
/2

15./ tan x dx
0
e

. / _ax
1 x+/Inx
o0

19.[ —dx
oo I+ x

o0 2
21.[ xe * dx

—00

10.

12.

14.

16.

18.

20.

22.

o0
[ xe *dx
0
o0
X
[
0 1+2X2

29. Evaluate foz xZsgn(x — 1) dx.

In Exercises 30—41, state whether the given integral converges or
diverges, and justify your claim.

[} 2 [ee] d
30./ X i 31./ &
0o x> +1 o 1+ 4/x

23. Find the area below y = 0, above y = Inx, and to the right of

x =0.

/2
sec x dx oo o0
[0 32. [ x/xdx 33. / e dx
2 x*—1 0
/oo dx o 1
X
e xlnx 3. / A 35. / —
© 4y 0 JxX+x 1 x+1
/e x(Inx)2 36, [” sin x dx a3 [°° | sin x| dx
00 X 0 X 0 x2
[ X gy
—o 1+ x4 72 dx /2
0o H 38. / —_— H 39. / cscx dx
[ ol g o l—cosyx —n/2
—o0 o0 oo
H 40 _dx [+ 0 / dx
2 /xInx 0o xeX



| 42.

43.

44.

H 4s.

1
Given that [;° e~ dx = Eﬁ evaluate

© 2 © 2
(a) / x2e ™ dxand (b) [ x*e ™ dx.
0 0
Suppose f is continuous on the interval (0, 1] and satisfies
f(x) = O(x?)as x - 0+, where p > —1. Show that
1
f(x) dx converges, and that if 0 < € < 1, then the error

0
E (¢) in the approximation

/(;1 f(x)dx%/:f(x)dx

satisfies E(€) = O(e?t!) as e — 0+.

What is the largest value of k such that the error E(¢) in the
approximation

*  dx Ve dx
fo NEEE SR Ve,
where 0 < € < 1, satisfies E(e) = O(e¥) as € — 0+.
If f is continuous on [a, b], show that

b

b
CEI;l+ ) f(x)dx:/a f(x)dx.

Hint: A continuous function on a closed, finite interval is
bounded: there exists a positive constant K such that

| f(x)| < K forall x in [a, b]. Use this fact, together with
parts (d) and (f) of Theorem 3 of Section 5.4, to show that

b b
Cl_l)r;l_’_([a f(x)dx—[c f(x)dx):O.

H 46.
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Similarly, show that

c

b
CEI?_ ; f(x)dxz/a f(x)dx.

(The gamma function) The gamma function I"(x) is defined
by the improper integral

oo
'(x) =/ t* et dt.
0

(I" is the Greek capital letter gamma.)
(a) Show that the integral converges for x > 0.

(b) Use integration by parts to show that I'(x 4+ 1) = xI'(x)
for x > 0.

(¢) ShowthatT'(n + 1) =n!forn =0,1,2,....

(d) Given that [5° e™ dx = 1 /7, show that (1) = /7
and F(%) = %ﬁ .

In view of (c), I'(x + 1) is often written x! and regarded as a

real-valued extension of the factorial function. Some scientific

calculators (in particular, HP calculators) with the factorial

function n! built in actually calculate the gamma function

rather than just the integral factorial. Check whether your

calculator does this by asking it for 0.5!. If you get an error

message, it’s not using the gamma function.

The Trapezoid and Midpoint Rules

Most of the applications of integration, within and outside of mathematics, involve the

definite integral

1 :fabf(x)dx.

Thanks to the Fundamental Theorem of Calculus, we can evaluate such definite inte-
grals by first finding an antiderivative of f. This is why we have spent considerable
time developing techniques of integration. There are, however, two obstacles that can
prevent our calculating / in this way:

(i) Finding an antiderivative of f in terms of familiar functions may be impossible,
or at least very difficult.

(i) We may not be given a formula for f(x) as a function of x; for instance, f(x)
may be an unknown function whose values at certain points of the interval [a, b]
have been determined by experimental measurement.

In the next two sections we investigate the problem of approximating the value of the
definite integral / using only the values of f(x) at finitely many points of [a, b]. Ob-
taining such an approximation is called numerical integration. Upper and lower sums
(or, indeed, any Riemann sum) can be used for this purpose, but these usually require
much more calculation to yield a desired precision than the methods we will develop
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Figure 6.15  The area under y = f(x) is
approximated by the sum of the areas of n
trapezoids

here. We will develop three methods for evaluating definite integrals numerically: the
Trapezoid Rule, the Midpoint Rule, and Simpson’s Rule (see Section 6.7). All of these
methods can be easily implemented on a small computer or using a scientific calcula-
tor. The wide availability of these devices makes numerical integration a steadily more
important tool for the user of mathematics. Some of the more advanced calculators
have built-in routines for numerical integration.

All the techniques we consider require us to calculate the values of f(x) at a set of
equally spaced points in [a, b]. The computational “expense” involved in determining
an approximate value for the integral /I will be roughly proportional to the number
of function values required, so that the fewer function evaluations needed to achieve
a desired degree of accuracy for the integral, the better we will regard the technique.
Time is money, even in the world of computers.

The Trapezoid Rule

We assume that f(x) is continuous on [a, b] and subdivide [a, b] into n subintervals
of equal length 4 = (b — a)/n using the n + 1 points

Xo=a, xi=a-+h, xx=a+2h, ..., x,=a+nh=0>h.
We assume that the value of f(x) at each of these points is known:

Yo = f(x0), y1=f(x1), y2=f(x2), .... yu= f(xn).

The Trapezoid Rule approximates | ab f(x) dx by using straight line segments between
the points (x;_1,y;-1) and (x;,y;), (1 < j < n), to approximate the graph of f,
as shown in Figure 6.15, and summing the areas of the resulting n trapezoids. A
trapezoid is a four-sided polygon with one pair of parallel sides. (For our discus-
sion we assume f is positive so we can talk about “areas,” but the resulting formulas
apply to any continuous function f.)

The first trapezoid has vertices (xg,0), (xo, Yo), (x1, y1), and (x1,0). The two
parallel sides are vertical and have lengths yy and y;. The perpendicular distance
between them is # = x; — xo. The area of this trapezoid is / times the average of the
parallel sides:

Yo + )1 .
h 7 square units.
y 2
y=f(x)
b
q
Yn—1
Yn
Yo 2
y1
h h h
a=xo X1 X2 Xn—1 x,=b X




y=/(x
/ Yo — )1
Yo h
y1 Y1
h
X0 X1
Figure 6.16  The trapezoid has area

yih + $(vo — yDh = $h(yo + y1)
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This can be seen geometrically by considering the trapezoid as the nonoverlapping
union of a rectangle and a triangle; see Figure 6.16. We use this trapezoidal area to
approximate the integral of f over the first subinterval [xg, x]:

X1

fumx%h”;yﬁ

X0

We can approximate the integral of f over any subinterval in the same way:

N f(x)dx ~ h

Xj—1

Yi-1+ Y

5 (1=<j=n).

It follows that the original integral / can be approximated by the sum of these trape-
zoidal areas:

b
+ + + -1+
/f(x)dx%h Yoty  yitys  yatys L Yeiton
a 2 2 2 2

1 1
=h(§yo+y1+y2+y3+"'+yn—1+§yl1).

The Trapezoid Rule

The n-subinterval Trapezoid Rule approximation to |/ : f(x)dx, denoted
Ty, is given by

1 1
Tn:h(§y0+yl+y2+y3+"'+Yn—l+§yn)-

We now illustrate the Trapezoid Rule by using it to approximate an integral whose
value we already know:

2
sz ld)c=ln2=0.69314718....
1 X

(This value, and those of all the approximations quoted in these sections, were cal-
culated using a scientific calculator.) We will use the same integral to illustrate other
methods for approximating definite integrals later.

Calculate the Trapezoid Rule approximations Ty, Tg, and T¢ for

EXAMPLE 1
21

I=/ —dx.
1 X

Solution Forn =4 wehave h = (2—1)/4 = 1/4; forn = 8 we have h = 1/8; for
n = 16 we have h = 1/16. Therefore,

8 8 8 8
ATy + -+ —+ =+ —= | =0.69412185...

T4=l_l(l)+i+z+f+l(l)i|=0.69702381...
412 5 3 7 2\2
Tszl_1(1)+§+i+£+2+£+i+i+l(l):|
812 9 5 11 3 13 7 15 2\2
1
8

9 11 13 15

—_—

;o gy 16,16 16 16 16 16 16 16
= 16" 17 T 19 T 21 " 23 T 25 T 27 T 29 31

= 0.69339120....



374 CHAPTER 6 Techniques of Integration

Figure 6.17  The trapezoid areas are

X

greater than the area under the curve if the

curve is concave upward

DEFINITION

4

Note how the function values used to calculate T were reused in the calculation of Ty,
and similarly how those in 7g were reused for 774. When several approximations are
needed, it is very useful to double the number of subintervals for each new calculation
so that previously calculated values of f can be reused.

L
All Trapezoid Rule approximations to I = || 12(1 /X) dx are greater than the true value
of 1. This is because the graph of y = 1/x is concave up on [1, 2], and therefore the
tops of the approximating trapezoids lie above the curve. (See Figure 6.17.)

We can calculate the exact errors in the three approximations since we know that
I =1In2 = 0.69314718... (We always take the error in an approximation to be the
true value minus the approximate value.)

I —-T4=0.69314718...—-0.69702381... = —0.00387663 ...
I —Tg =0.69314718...—-0.69412185... = —0.00097467 ...
I —Tig =0.69314718... -0.69339120... = —0.00024402....

Observe that the size of the error decreases to about a quarter of its previous value each
time we double 7. We will show below that this is to be expected for a “well-behaved”
function like 1/x.

Example 1 is somewhat artificial in the sense that we know the actual value of
the integral so we really don’t need an approximation. In practical applications of
numerical integration we do not know the actual value. It is tempting to calculate
several approximations for increasing values of n until the two most recent ones agree
to within a prescribed error tolerance. For example, we might be inclined to claim that
In2 ~ 0.69... from a comparison of T4 and Tg, and further comparison of 7T}¢ and
Tg suggests that the third decimal place is probably 3: I ~ 0.693.... Although this
approach cannot be justified in general, it is frequently used in practice.

The Midpoint Rule

A somewhat simpler approximation to [, : f(x) dx,based on the partition of [a, b] into
n equal subintervals, involves forming a Riemann sum of the areas of rectangles whose
heights are taken at the midpoints of the n subintervals. (See Figure 6.18.)

The Midpoint Rule
Ifh = (b—a)/n,letmj =a+ (j —3)hforl < j < n. The Midpoint
Rule approximation to |, ab f(x)dx, denoted M,, is given by

n

My = h(f(my) + f(ma) + -+ f(mp)) =h Y f(m)).

J=1

EXAMPLE 2 Find the Midpoint Rule approximations M4 and Mg for the inte-
2

gral [ = — dx, and compare their actual errors with those

1
obtained for the Trapezoid Rule approximations above.

Solution  To find My, the interval [1, 2] is divided into four equal subintervals,

5 53 37 7
L-1, |=-.=|, |=.=|, and |-=,2].
4 4’2 2°4 4
The midpoints of these intervals are 9/8, 11/8, 13/8, and 15/8, respectively. The mid-

points of the subintervals for Mg are obtained in a similar way. The required Midpoint
Rule approximations are



Figure 6.18  The Midpoint Rule

approximation M, to fab f(x)dx is the
Riemann sum based on the heights to the
graph of f at the midpoints of the
subintervals of the partition

;

=
~
(3]
=
~
(3]

\S -

Xj—1 Xj

Figure 6.19  The Midpoint Rule error (the
yellow area) is opposite in sign and about
half the size of the Trapezoid Rule error
(shaded in green)
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y=f(>y

/ |
|
/|
// L]
|
/l[ | | |
]
== | | ! | ! |
i I I I I I I
| | | | I | I |
| | | | | | | |
| | | [ | | |
! | | | | | | |
: | | | | | | |
. 1 1 I | I | I .
mi map ms mpy X
18 8 8

8
My=—|=+—+—+—|=069121989...
¢ 4[9+11+13+15}

M—1 16+16+16+16+16+16+16+16 = 0.692 660 55
87 %17 719 21 "23 25 "27 " 20 T 31|

The errors in these approximations are

I —M4=0.69314718...—0.69121989... =0.00192729...
I — Mg =0.69314718...—0.69266055... = 0.00048663 ...

These errors are of opposite sign and about half the size of the corresponding Trape-
zoid Rule errors I — T4 and I — Tg. Figure 6.19 suggests the reason for this. The
rectangular area /1 f (m;) is equal to the area of the trapezoid formed by the tangent
lineto y = f(x) at (m;, f(m;)). The shaded region above the curve is the part of the
Trapezoid Rule error due to the jth subinterval. The shaded area below the curve is
the corresponding Midpoint Rule error.

®
One drawback of the Midpoint Rule is that we cannot reuse values of f calculated for
M, when we calculate M,,. However, to calculate 75, we can use the data values
already calculated for 7,, and M,,. Specifically,

Ion = %(Tn + Mn)‘

A good strategy for using these methods to obtain a value for an integral / to a desired
degree of accuracy is to calculate successively

T, + M, Ton + My,

Ty = ———, Top = ——,
2n B 4n B
until two consecutive terms agree sufficiently closely. If a single quick approximation

is needed, M, is a better choice than 7.

Tns Mns M2n, M4n,

Error Estimates

The following theorem provides a bound for the error in the Trapezoid and Midpoint
Rule approximations in terms of the second derivative of the integrand.
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THEOREM

4

y=f(x)

A+ B(x — xo)

1
1
!

!
=
i
1
'
|
1
1
1
!
X

X0
Figure 6.20  The error in approximating
the area under the curve by that of the
trapezoid is j;i)' g(x)dx

X1

Error estimates for the Trapezoid and Midpoint Rules

If / has a continuous second derivative on [a, b] and satisfies | f”/(x)| < K there, then

b K(b—a) , K(b—a)
/af(x)dx_T"S LT

b

_Kb-a) o K(b—a)3

24 24n?

b

/ab fydx - M,

where i = (b — a)/n. Note that these error bounds decrease like the square of the
subinterval length as n increases.

PROOF  We will prove only the Trapezoid Rule error estimate here. (The one for the
Midpoint Rule is a little easier to prove; the method is suggested in Exercise 14 below.)
The straight line approximating y = f(x) in the first subinterval [xo, x1] = [a,a + 5]
passes through the two points (xg, yo) and (x1, y1). Its equationis y = A+ B(x —xyp),
where

A=y and B =

Ji—Yo _V1— Do

X1 — Xo h '
Let the function g(x) be the vertical distance between the graph of f and this line:
g(x) = f(x) —A— B(x — xo).

Since the integral of A+ B(x —x¢) over [xg, x1] is the area of the first trapezoid, which

is h(yo + y1)/2 (see Figure 6.20), the integral of g(x) over [xg, x1] is the error in the
approximation of || ;Ol f(x) dx by the area of the trapezoid:

X1 X1
f(x)dx—hyo—;yl =/ ¢(x) dx.
X

X0 0
Now g is twice differentiable, and g”(x) = f"(x). Also g(xo) = g(x1) = 0. Two
integrations by parts (see Exercise 36 of Section 6.1) show that

X1 X1

(x =xo)(x1 —x) f"(x)dx = | (x —x0)(x1 —x)g"(x)dx

X0 X0

= —2/:1 g(x)dx.

0
By the triangle inequality for definite integrals (Theorem 3(f) of Section 5.4),

[ ey =2 < 2 [ s =0 ol ds

K [
< > / (—x? 4 (xo + x1)x — xox1) dx

K , K
= — — = —h3‘
1m0 =33

A similar estimate holds on each subinterval [x;_;, x;] (1 < j < n). Therefore,
¢ Y Vi-1+ Y
= Z / f(x)dx —h =——=
=1 Xj—1 2
n xj ) )
yjfl + y]
< xX)dx —h =——
<3 / e .

_Z —h3 —nh3=—K(b_a) 0
2

/ab fydx —T,

sincenh = b —a.




SECTION 6.6: The Trapezoid and Midpoint Rules 3717

We illustrate this error estimate for the approximations of Examples 1 and 2 above.

EXAMPLE 3 Obtain bounds for the errors for Ty, Tg, T16, M4, and Mg for

2
1
I:[ —dx.
1 X

Solution If f(x) = 1/x, then f'(x) = —1/x% and f”(x) = 2/x>. On [1,2] we
have | f”(x)] < 2, so we may take K = 2 in the estimate. Thus,

22-1) (1\*

12

22-1) (1)
1= My| = == — () =00052...

22-1) (1\*
1=Tsl = =—(5) =00026...,

22-1) (1}
1= Ms| = —,—[g) =00013....

|I—T16|§M(i

16

2
=0.00065. . ..
12 )

The actual errors calculated earlier are considerably smaller than these bounds, be-
cause | /" (x)| is rather smaller than K = 2 over most of the interval [1, 2].

Remark Error bounds are not usually as easily obtained as they are in Example 3. In
particular, if an exact formula for f(x) is not known (as is usually the case if the values
of f are obtained from experimental data), then we have no method of calculating
f"(x), so we can’t determine K. Theorem 4 is of more theoretical than practical
importance. It shows us that, for a “well-behaved” function f, the Midpoint Rule error
is typically about half as large as the Trapezoid Rule error and that both the Trapezoid
Rule and Midpoint Rule errors can be expected to decrease like 1/n? as n increases;
in terms of big-O notation,

1 1
I=Tn+0(—2) and I=Mn+0(—2) asn — oo.
n n

Of course, actual errors are not equal to the error bounds, so they won’t always be cut
to exactly a quarter of their size when we double 7.

In Exercises 1-4, calculate the approximations Ty, My, Ty, Mg, Y
and T for the given integrals. (Use a scientific calculator or o
computer spreadsheet program.) Also calculate the exact value of 7
each integral, and so determine the exact error in each approx- //
imation. Compare these exact errors with the bounds for the size 6
of the error supplied by Theorem 4. 5 \
2 1 \
51.1:/(1+x2)dx Ez.z:[e—xarx ! r
0 0 3
/2 1 2
E3.I=//sinxdx E4.I=[d—x
0 o 1+x2 1
5. Figure 6.21 shows the graph of a function f over the interval
[1,9]. Using values from the graph, find the Trapezoid Rule 1 2 3 4 5 6 7 8 9 x

estimates T4 and Tg for flg f(x)dx. Figure 6.21
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6. Obtain the best Midpoint Rule approximation that you can for
f19 f(x) dx from the data in Figure 6.21.

7. The map of a region is traced on the grid in Figure 6.22,
where 1 unit in both the vertical and horizontal directions
represents 10 km. Use the Trapezoid Rule to obtain two
estimates for the area of the region.

Yy a

8

: AN
/

w
T~
7

[\
(98}

4 5

Figure 6.22

8. Find a Midpoint Rule estimate for the area of the region in

Exercise 7.

9. Find Ty, My, Ty, Mg, and Ti¢ for fol’ﬁ f(x) dx for the

function f whose values are given in Table 1.

Table 1.

x f(x) x Sx)
0.0 1.4142 0.1 1.4124
0.2 1.4071 0.3 1.3983
0.4 1.3860 0.5 1.3702
0.6 1.3510 0.7 1.3285
0.8 1.3026 0.9 1.2734
1.0 1.2411 1.1 1.2057
1.2 1.1772 1.3 1.1258
1.4 1.0817 1.5 1.0348
1.6 0.9853

g8 10.

11.

e 12.

e 13.
H 14.

Find the approximations Mg and 7 for fol e dx. Quote a
value for the integral to as many decimal places as you feel are
justified.

sin x
Repeat Exercise 10 for fon/ 222 dx. (Assume the integrand
X

islatx =0.)

Compute the actual error in the approximation fol x2dx ~ T,
and use it to show that the constant 12 in the estimate of
Theorem 4 cannot be improved. That is, show that the

absolute value of the actual error is as large as allowed by that
estimate.

Repeat Exercise 12 for M.

Prove the error estimate for the Midpoint Rule in Theorem 4
as follows: If x; — xo = h and m; is the midpoint of [x¢, x1],
use the error estimate for the tangent line approximation
(Theorem 11 of Section 4.9) to show that

G = flm) = £ m) e = mp)| < 5 e = mo)?.

Use this inequality to show that

[ " f)dx - f(ml)h‘

[ (s = 7m) = £ =) ax
< £h3.
=2

Complete the proof the same way used for the Trapezoid Rule
estimate in Theorem 4.

Simpson’s Rule

The Trapezoid Rule approximation to [, ab f(x) dx results from approximating the graph
of f by straight line segments through adjacent pairs of data points on the graph. In-
tuitively, we would expect to do better if we approximate the graph by more general
curves. Since straight lines are the graphs of linear functions, the simplest obvious
generalization is to use the class of quadratic functions, that is, to approximate the
graph of f by segments of parabolas. This is the basis of Simpson’s Rule.

Suppose that we are given three points in the plane, one on each of three equally
spaced vertical lines, spaced, say, /1 units apart. If we choose the middle of these lines
as the y-axis, then the coordinates of the three points will be, say, (—#, yr), (0, yu),
and (h, yR), as illustrated in Figure 6.23.
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Constants A, B, and C can be chosen so that the parabola y = A + Bx + Cx?
passes through these points; substituting the coordinates of the three points into the
equation of the parabola, we get

yL =A—Bh+ Ch?
v =A = A=yy and 2Ch* =y; —2yy + Y&
yr= A+ Bh+Ch*

Now we have

h

h B C 2
/ (A+Bx+Cx2)dx=(Ax+5x2+§x3) =2Ah+§Ch3
—h

—h

1
=h (ZJ/M + 3 (ye —2ym + yR))

h
=3 (v +4ym + yR)-

Thus, the area of the plane region bounded by the parabolic arc, the interval of length
2h on the x-axis, and the left and right vertical lines is equal to (#/3) times the sum
of the heights of the region at the left and right edges and four times the height at the
middle. (Itis independent of the position of the y-axis.)

Now suppose that we are given the same data for f as we were given for the
Trapezoid Rule; that is, we know the values y; = f(x;) (0 < j <n)atn + 1 equally
spaced points

Xo=a, xi=a-+h, xx=a+2h, ..., x,=a+nh=0>h,

where h = (b — a)/n. We can approximate the graph of f over pairs of the
subintervals [x;_;, x;] using parabolic segments and use the integrals of the corre-
sponding quadratic functions to approximate the integrals of f over these subintervals.
Since we need to use the subintervals two at a time, we must assume that n is even.
Using the integral computed for the parabolic segment above, we have

X

2 h
f(x)dx ~ 5()’0 +4y1 + y2)

X0

=

x4
fx)dx ~ = (y2 +4y3 + y4)

X2

w

Xn h
[ r@dx x5 Guma e+ )
X,

n—2
Adding these n/2 individual approximations, we get the Simpson’s Rule approxima-
tion to the integral |, ab f(x)dx.

Simpson’s Rule

The Simpson’s Rule approximation to | ab f(x) dx based on a subdivision of
[a, b] into an even number 7 of subintervals of equal length 47 = (b —a)/n is
denoted S, and is given by:

[ab f@)dx ~ S,

(yo+4y1+2y2+4y3 + 2y + -+ + 2yn—2 + 4yu_1 + yn)

(Z Yeends” + 4 Z Yeodds” 2 Z y“evens”) .

4
3
4
3
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Note that the Simpson’s Rule approximation S, requires no more data than does the
Trapezoid Rule approximation 7},; both require the values of f(x) at n + 1 equally
spaced points. However, Simpson’s Rule treats the data differently, weighting succes-
sive values either 1/3, 2/3, or 4/3. As we will see, this can produce a much better
approximation to the integral of f.

by
and compare them with the actual value / = In2 = 0.69314718... .,
and with the values of Ty, Tg, and T} obtained in Example 1 of Section 6.6.

2
1
EXAMPLE 1 Calculate the approximations Sy, Sg, and S16 for I = / —dx
1

Solution We calculate
S4 = ! 1+4 4 +2 2 + 4 4 +l = 0.69325397
T2 5 3 7) T2 e

S—11+1+48+8+8+8
Y 2 9 " 11 13" 15
4 2

4
2=+ =-+4+=]=0.69315453...,
+ (5+3+7)j|

(AN TR TR T T T T T

(8 4 8§ 2 8 4 8
+2

(16 16 16 16 16 16 16 16)
+4

—t -t =+t =+t

—)|=0.69314765....
9511 "3 137 15)} 69314765

The errors are

I —84=0.69314718... —0.69325397... = —0.000 106 79,
I — 83 =0.69314718 ... —0.69315453... = —0.000 007 35,
I — 816 =0.69314718... —0.69314765... = —0.000 000 47.

These errors are evidently much smaller than the corresponding errors for the Trape-
zoid or Midpoint Rule approximations.

Remark Simpson’s Rule S,, makes use of the same 2n + 1 data values that 7, and
M,, together use. It is not difficult to verify that

T, 2M, 2T M, 47T,, — T,
Son = %, Sy = $’ il oy = %

Figure 6.19 and Theorem 4 in Section 6.6 suggest why the first of these formulas ought
to yield a particularly good approximation to /.

Obtaining an error estimate for Simpson’s Rule is more difficult than for the Trape-
zoid Rule. We state the appropriate estimate in the following theorem, but we do not
attempt any proof. Proofs can be found in textbooks on numerical analysis.
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Error estimate for Simpson’s Rule

If f has a continuous fourth derivative on the interval [a, b], satisfying
| fF®(x)| < K there, then

_Kb-a

b
/ fx)dx —S,| < pt = K0 —ap

180 T 180n4

’

where h = (b — a)/n.

Observe that, as n increases, the error decreases as the fourth power of & and, hence,
as 1/n*. Using the big-O notation we have

b
[ f(x)d-x:Sn‘FO(n%) asn — 0o.

This accounts for the fact that S,, is a much better approximation than is 7}, provided
that 4 is small and | £ (x)| is not unduly large compared with | f”(x)|. Note also
that for any (even) n, S, gives the exact value of the integral of any cubic function
f(x) = A+ Bx + Cx?+ Dx3;, f®(x) = 0 identically for such £, so we can take
K = 0in the error estimate.

EXAMPLE 2 thgln bounds for the absolute values of the errors in the approx-
imations of Example 1.

Solution If f(x) = 1/x, then

1 6

fo=g SW=a Pw=-% Y=

Clearly, | f ®(x)| < 24 on [1,2], so we can take K = 24 in the estimate of Theorem 5.
We have

2402-1) (1\*
== (=) ~0.00052083,
180 \4

2402-1) (1\*
2 (=) ~0.00003255,
180 \8

[I — 84| <

|1 —Sg| <

|1_516|<w(i

16

4
= 0.000 002 03.
180

Again we observe that the actual errors are well within these bounds.

EXAMPLE 3 A function f satisfies | f*(x)| < 7 on the interval [1, 3], and
the values f(1.0) = 0.1860, f(1.5) = 0.9411, f(2.0) = 1.1550,
f(2.5) = 1.4511, and f(3.0) = 1.2144. Find the best possible Simpson’s Rule ap-
proximation to / = |’ 13 f(x)dx based on these data. Give a bound for the size of the
error, and specify the smallest interval you can that must contain the value of /.

Solution We take n = 4, so that h = (3 — 1)/4 = 0.5, and we obtain

3
1 :/1 f(x)dx

0.5
~ Sa = —-(0.1860 + 4(0.9411 + 1.4511) + 2(1.1550) + 1.2144)
=2.2132.
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Since | f® (x)| < 7 on [1, 3], we have
73-1)
180
I must therefore satisfy

2.2132 —0.0049 < I <2.2132 4 0.0049 or 22083 <1 < 2.2181.

|1 — 84| < (0.5)* < 0.0049.

EXERCISES 6.7

In Exercises 1-4, find Simpson’s Rule approximations S4 and Sg M,, refer to the appropriate Trapezoid and Midpoint Rule

for the given functions. ComPare your results vslith the actu?tl approximations, Deduce that Sz, = 4120 — Tn .

values of the integrals and with the corresponding Trapezoid Rule 3

approximations obtained in Exercises 1-4 of Section 6.6. & 9. Find S4, S, and Sy for f01'6 f(x) dx for the function f
whose values are tabulated in Exercise 9 of Section 6.6.

2 1
BEL /= / 1+ x?)dx BB 2. = [ e dx 10. Find the Simpson’s Rule approximations Sg and Sy¢ for
0 0

(] +]
]

fol e dx. Quote a value for the integral to the number of
/2 1 d
.I=/ sinx dx E4.I=/ ol
0

0 1 —+ )C2
. Find the Simpson’s Rule approximation Sg for the integral in
Exercise 5 of Section 6.6.

. Find the best Simpson’s Rule approximation that you can for

decimal places you feel is justified based on comparing the
two approximations.

. Compute the actual error in the approximation

fol x*dx ~ S, and use it to show that the constant 180 in the
estimate of Theorem 5 cannot be improved.

© 12. Since Simpson’s Rule is based on quadratic approximation, it
is not surprising that it should give an exact value for an
integral of 4 + Bx + Cx?2. It is more surprising that it is
exact for a cubic function as well. Verify by direct calculation
that fol xX3dx = S,.

the area of the region in Exercise 7 of Section 6.6.

ma 7. Use Theorem 5 to obtain bounds for the errors in the
approximations obtained in Exercises 2 and 3 above.

Tp +2M,  2Ton + M
8. Verify that S5, = "+3 = 2"3+ L

, where T}, and

Other Aspects of Approximate Integration

The numerical methods described in Sections 6.6 and 6.7 are suitable for finding ap-
proximate values for integrals of the form

1 =/abf(x)dx,

where [a, b] is a finite interval and the integrand f is “well-behaved” on [a, b]. In
particular, / must be a proper integral. There are many other methods for dealing
with such integrals, some of which we mention later in this section. First, however,
we consider what can be done if the function f isn’t “well-behaved” on [a,b]. We
mean by this that either the integral is improper or f doesn’t have sufficiently many
continuous derivatives on [, b] to justify whatever numerical methods we want to use.

The ideas of this section are best presented by means of concrete examples.

1
EXAMPLE 1 Describe how to would evaluate the integral / = / Vxe*dx
0

numerically?

Solution  Although I is a proper integral, with integrand f(x) = /x e* satisfying
f(x) = 0as x — 0+, nevertheless, the standard numerical methods can be expected
to perform poorly for / because the derivatives of f are not bounded near 0. This
problem is easily remedied; just make the change of variable x = 2 and rewrite / in
the form

1
I :2/ 12 dt,
0
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whose integrand g(r) = t? e has bounded derivatives near 0. The latter integral can
be efficiently approximated by the methods of Sections 6.6 and 6.7.

o
Approximating Improper Integrals

1 COsS X

o Vx

Solution The integral is improper, but convergent because, on [0, 1],

EXAMPLE 2 Describe how to evaluate I =

dx numerically.

1 la
cos ¥ < and & =2.

NN 0 VX

Jx
developed in Sections 6.6 and 6.7. (yg is infinite.) The substitution x = ¢ removes
this difficulty:

1 t2 1
I :f O ordr = 2/ cost?dt.
0 t 0

The latter integral is not improper and is well-behaved. Numerical techniques can be
applied to evaluate it.

0<

However, since limy_, o+ = 00, we cannot directly apply any of the techniques

by numerical

EXAMPLE 3 Show how to evaluate /| = /

means.

«/2+x2 + x4

Solution Here, the integral is improper of type I; the interval of integration is infinite.
Although there is no singularity at x = 0, it is still useful to break the integral into two
parts:

X *© dx
[ G S S
0 2+ x2+4x* 1 V24 x2+ x4

I, is proper. In I, make the change of variable x = 1/1:

s /1 dt /1 dt
2: R ——— —Y
1 1 V24 12+ 1
0 2 /2+_2+_4 0 +1°+
t t

This is also a proper integral. If desired, /7 and I, can be recombined into a single
integral before numerical methods are applied:

e
= X
0 \V2+x2+x% Vx4 x2+1

L
Example 3 suggests that when an integral is taken over an infinite interval, a change of
variable should be made to convert the integral to a finite interval.

Using Taylor’s Formula

Taylor’s formula (see Section 4.10) can sometimes be useful for evaluating integrals.
Here is an example.

Use Taylor’s formula for f (x) = e¥, obtained in Section 4.10,
EXAMPLE 4
to evaluate the integral fo % dx to w1th1n an error of less than

1074
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Solution In Example 4 of Section 4.10 we showed that

xz X3 x"
fO) =" = 14X+ + o 4o — + E,(x),
2! 3! n!
where
X
e
E — n+1
") =Tt

for some X between Oand x. If 0 < x < 1,then 0 < X < 1,s0¢X < e < 3.
Therefore,

3
|En(x)] < m K"t

Now replace x by x? in the formula for e* above and integrate from 0 to 1:

(I 1 x4 2 1
/ex dx=/ (1+x2+7+--~+ ')dx+/ En(x?)dx
0 0 : n: 0

1 1 1 !
=14+ -4 — e — E,(x?)dx.
RV TIN +(2n+1)n!+/0 n(x7) dx

We want the error to be less than 10™%, so we estimate the remainder term:

1
3
B2 dal < £ L S (s
'/O n(x)x_(n+l)!/()x * (n+1)!(2n+3)<

provided (2n + 3)(n + 1)! > 30,000. Since 13 x 6! = 9,360 and 15 x 7! = 75,600,
we need n = 6. Thus,

/lexzdx~1+1+ I I I —
0 T T3 T 5x21 T 7x30 0 9x4l 11x5! 0 13x6!

~~ 1.462 64

with error less than 1074,

Romberg Integration

Using Taylor’s formula, it is possible to verify that for a function f having continuous
derivatives up to order 2m + 2 on [a, b] the error E,, = I — T, in the Trapezoid Rule

approximation 7, to [ = |, : f(x) dx satisfies

G G G Cr 1
E”:I_T":n_2+n_4+n_6+m+nm+0(nzm—“)’

where the constants C; depend on the 2jth derivative of f. It is possible to use this
formula to obtain higher-order approximations to /, starting with Trapezoid Rule ap-
proximations. The technique is known as Romberg integration or Richardson ex-
trapolation.

To begin, suppose we have constructed Trapezoid Rule approximations for values
of n that are powers of 2: n = 1, 2, 4, 8, .. .. Accordingly, let us define

T =Tw. Thus, T9 =Ty, T =Ts, T) =T,
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Using the formula for 7,x = I — E,« given above, we write

i G (6™ ( 1

0 _
Tk_]_4_k_47 ..... ik m) (as k — 00).

Similarly, replacing k by k + 1, we get

G C, C, 1
0 _ e _m [—
Ty =1— gk+1  g2k+D gmk+1) +0 (4(m+1)(k+1))'

If we multiply the formula for T,? 1 by 4 and subtract the formula for T,? , the terms
involving C; will cancel out. The first term on the right will be 41 — I = 31, so let us

also divide by 3 and define Tkl 41 to be the result. Then as k — oo, we have

0 0
) e k) S & S & S o L

k+1 — 3 - 42k 43k gmk gm+Dk |
(The Cl.1 are new constants.) Unless these constants are much larger than the previous

ones, Tkl 4 ought to be a better approximation to /' than T]? 4 since we have elimi-

nated the lowest order (and therefore the largest) of the error terms, Cy/ 4k+1 Ip fact,

Exercise 8 in Section 6.7 shows that Tkl 41 = Sor+1, the Simpson’s Rule approximation

based on 2K+ subintervals.
We can continue the process of eliminating error terms begun above. Replacing

k + 1 by k 4 2 in the expression for Tk1 41> We obtain

cl Cl cl 1
1 _7_ 2 3 .. _Tm R —
Tepa =1 42(+1)  43(k+1) gm(k+1) +0 (4(m+1)(k+1)) :

To eliminate C21 we can multiply the second formula by 16, subtract the first formula,

and divide by 15. Denoting the result Tk2 we have, as k — oo,

+2°
1 1
2 1T =T, G Co oL
k+2 = 15 - 43k 4mk 4+ Dk |

We can proceed in this way, eliminating one error term after another. In general, for
j <mandk >0,

jrJ—1 j—1 j i
T/ = YT~ Tevjm -] — Cj_‘H ..... C_ri’ +0 _
k+j — 47 — 1 - 4G +Dk qmk 4m+Dk |-

The big-O term refers to k — oo for fixed j. All this looks very complicated, but it is
not difficult to carry out in practice, especially with the aid of a computer spreadsheet.
Let Rj = Tjj , called a Romberg approximation to /, and calculate the entries in the
following scheme in order from left to right and down each column when you come
to 1t:

Scheme for calculating Romberg approximations

T(?=T1=R() — T10=T2 — T20=T4 — T;):Tg —
2 i \
T! =58, =R T) = 84 T} = Ss
i +
T} =R, T2
i

T3 = Rs
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Stop when T]] “and R ; differ by less than the acceptable error, and quote R; as the
Romberg approximation to || ab f(x)dx.

The top line in the scheme is made up of the Trapezoid Rule approximations 77,
T, T4, Ts, . ... Elements in subsequent rows are calculated by the following formulas:

Formulas for calculating Romberg approximations

_— 4T — T _— 4T — T _— 479 - T
1 — 2 3
3 3 3
. 16T} — T} e 16T — T}
2 15 g 15
— 64T2 — T?
3 63
i mj—1 j—1
T T

In general, if 1 < j <k, then Tkj =

Each new entry is calculated from the one above and the one to the left of that one.

EXAMPLE 5 Calculate the Rombergza?prommatlons Ro, Ry, Ry, R3, and Ry
for the integral I = / —dx.
1 X

Solution  We will carry all calculations to 8 decimal places. Since we must obtain
R4, we will need to find all the entries in the first five columns of the scheme. First we
calculate the first two Trapezoid Rule approximations:

11
Roy=Ty =T = 5 + 7 = 0.75000000,
TO =7, = 1 l(1)+2+l ! = 0.70833333
LT 2702 3 2\2)] ‘

The remaining required Trapezoid Rule approximations were calculated in Example 1
of Section 6.6, so we will just record them here:

TY = T, = 0.697023 81,
T = Ty = 0.694 121 85,
T = Tis = 0.69339120.

Now we calculate down the columns from left to right. For the second column:

— _ 1_4T10_T00_ .
Ri=$ = T| = —5—5 = 0.69444444;
the third column:

419 — 1P
Sq=T,) = % = 0.69325397,
, 16T} —T}
Ry = Tj = —2—— = 0.69317460;
the fourth column:
419 — 19
Sg =T, = % = 0.693 15453,
16T} — T}
T = % = 0.693 147 90,
5 64T —T?
Ry=T; = —2—2 =0.69314748;

63



SECTION 6.8:  Other Aspects of Approximate Integration 387

and the fifth column:

| _ AT T
Sie=T; = 3 = 0.693 147 65,
167} — T}
T} = % = 0.693 14719,
64T2 — T2
T} = —%1—3 =0.69314718,
63
256T7 — T3
Ry=T} =" 3 =0.69314718.
255

Since 7,2 and R4 agree to the 8 decimal places we are calculating, we expect that

24
1=/ Y 102~ 0.69314718.. ..
1 X

L
The various approximations calculated above suggest that for any given value of n =
2k the Romberg approximation R, should give the best value obtainable for the inte-
gral based on the n + 1 data values yg, y1, ..., V». This is so only if the derivatives
£™(x) do not grow too rapidly as 7 increases.

The Importance of Higher-Order Methods

Higher-order methods, such as Romberg, remove lower-order error by manipulating
series. Removing lower-order error is of enormous importance for computation. With-
out it, even simple computations would be impossible for all practical purposes. For

2
1

example, consider again the integral [ = / —dx.

1 X

We can use Maple to compute this integral numerically to 16 digits (classical
double precision),
> Digits=1l6:
> int(l/x, x =1 .. 2.);
0.6931471805599453

Comparison with In 2
> 1n(2.);

0.6931471805599453

confirms the consistency of this calculation. Furthermore, we can compute the proces-
sor time for this calculation

> time(int(l/x, x =1 .. 2.));
0.033

which indicates that, on the system used, 16 digits of accuracy is produced in hun-
dredths of seconds of processor time.

Now let’s consider what happens without removing lower-order error. If we were
to estimate this integral using a simple end point Riemann sum, as we used in the
original definition of a definite integral, the error is O (1) or O(1/n). Let the step size
be 1077,

> le-7*add(1l/(1+i/1e7), 1 =1 .. 1le7);
0.6931471555599459

which has an error of 2.5 x 1078, The processor time used to do this sum computation
is given by
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> time(le-7*add(1l/ (1+i/1le7), 1 =1 .. 1le7));
175.777

that is, 175.577 seconds on the particular computer we used. (If you do the calculation
on your machine your result will vary according to the speed of your system.) Note that
we used the Maple “add” routine rather than “sum” in the calculations above. This
was done to tell Maple to add the floating-point values of the terms one after another
rather than to attempt a symbolic summation.

Because the computation time is proportional to the number n of rectangles used
in the Riemann sum, and because the error is proportional to 1/7, it follows that error
times computation time is roughly constant. We can use this to estimate the time to
compute the integral by this method to 16 digits of precision. Assuming an error of
10719, the time for the computation will be

—8

10
175.777 x 2.5 x ——— seconds,
1016

or about 1,400 years.

Maple is not limited to 16 digits, of course. For each additional digit of precision,
the Riemann sum method corresponds to a factor-of-ten increase in time because of
lower-order error. The ability to compute such quantities is a powerful and important
application of series expansions.

Other Methods

As developed above, the Trapezoid, Midpoint, Simpson, and Romberg methods all in-
volved using equal subdivisions of the interval [a,b]. There are other methods that
avoid this restriction. In particular, Gaussian approximations involve selecting eval-
uation points and weights in an optimal way so as to give the most accurate results
for “well-behaved” functions. See Exercises 11-13 below. You can consult a text on
numerical analysis to learn more about this method.

Finally, we note that even when you apply one of the methods of Sections 6.6 and
6.7, it may be advisable for you to break up the integral into two or more integrals over
smaller intervals and then use different subinterval lengths /& for each of the different
integrals. You will want to evaluate the integrand at more points in an interval where
its graph is changing direction erratically than in one where the graph is better behaved.

EXERCISES 6.8

Rewrite the integrals in Exercises 1-6 in a form to which
numerical methods can be readily applied.

I to the accuracy you feel is justified. Do the approximations
converge as quickly as you might expect? Can you think of a
reason why they might not?

1 1
dx e~
1. /(; x1/3(1 T x) 2. /(; dx 88 9. Evaluate I = fol e_x2 dx, by the Taylor’s formula method of

(] +]

[ X[ +]
on

1—x
. Example 4, to within an error of 1074,
e & dx 1
> /—1 1—x2 dx 4. /; 2t it 10. Recall that [;° ™" dx = Eﬁ Coni)ine this fact with the
5 /”/2 dx 6 [°° dx result of Exercise 9 to evaluate / = [ e dxto3
. . _— 1
0  +/sinx o x*t+1 decimal places.

. Find T», T4, Tg, and Ti¢ for fol /X dx, and find the actual
errors in these approximations. Do the errors decrease like
1/n? as n increases? Why?

. Transform the integral I = || 1°° e dx using the
substitution x = 1/1, and calculate the Simpson’s Rule
approximations Sz, Sy, and Sy for the resulting integral
(whose integrand has limit O as # — 0+). Quote the value of

. (Gaussian approximation) Find constants A and u, with u

between 0 and 1, such that

1
/_ f)dx = Af) + A7)

holds for every cubic polynomial
f(x) = ax3 + bx? 4 cx + d. For a general function f(x)
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9 13.

defined on [—1, 1], the approximation

1
f_ S0 dx ~ AF ) + A7)

is called a Gaussian approximation.

Use the method of Exercise 11 to approximate the integrals of
(a) x*, (b) cos x, and (c) e¥, over the interval [—1, 1], and find
the error in each approximation.
(Another Gaussian approximation) Find constants A and B,
and u between 0 and 1, such that

1
f_ ) dx = AF0) + B O) + Af@)

holds for every quintic polynomial
f(x) =ax® +bx* +cx3 +dx? +ex + f

. Use the Gaussian approximation

1
f_ ) dx ~ AFG0) + BAO)+ Af )

where A, B, and u are as determined in Exercise 13, to find
approximations for the integrals of (a) x°, (b) cos x, and (c)
e* over the interval [—1, 1], and find the error in each
approximation.

. Calculate sufficiently many Romberg approximations

Ri1, R2, R3, ... for the integral

1
2
/exdx
0

to be confident you have evaluated the integral correctly to
6 decimal places.

. Use the values of f(x) given in the table accompanying

Exercise 9 in Section 6.6 to calculate the Romberg
approximations R;, R, and Rj3 for the integral

1.6

f(x)dx

in that exercise.
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© 17. The Romberg approximation R, for /. ab f(x) dx requires five

H 18.

e 19.

® 20.

e 21.

values of f, yo = f(a), y1 = fla+h), ...,
v4 = f(x +4h) = f(b), where h = (b — a) /4. Write the
formula for R, explicitly in terms of these five values.

Explain why the change of variable x = 1/¢ is not suitable for

transforming the integral / > dx into a form to which
T

14+ x
numerical methods can be applied. Try to devise a method
whereby this integral could be approximated to any desired
degree of accuracy.

If f(x) = g for x ;é 0 and f(o) = 1’ show that f//(x)

has a finite limit as x — 0. Hence, " is bounded on finite

intervals [0, a], and Trapezoid Rule approximations 7, to
sin x
foa < dx converge suitably quickly as n increases. Higher

derivatives are also bounded (Taylor’s formula is useful for
showing this), so Simpson’s Rule and higher-order
approximations can also be used effectively.

(Estimating computation time) With higher-order methods,
the time to compute remains proportional to the number of
intervals n used to numerically approximate an integral. But
the error is reduced. For the Trapezoid Rule the error goes as
O(1/n?). When n = 1 x 107, the error turns out to be

6 x 10716, The computation time is approximately the same
as that computed for the Riemann sum approximation to
flz(l/x) dx discussed above (175.777 seconds for our
computer), because we need essentially the same number of
function evaluations. How long would it take our computer to
get the trapezoid approximation to have quadruple (i.e.,
32-digit) precession?

Repeat the previous exercise, but this time using Simpson’s
Rule, whose error is O(1/n*). Again use the same time,
175.777 s forn = 1 x 107, but for Simpson’s Rule the error for
this calculation is 3.15 x 10739, How long would we expect
our computer to take to achieve 32-digit accuracy (i.e., error
10732)? Note, however, that Maple’s integration package for
the computer used took 0.134 seconds to achieve this
precision. Will it have used a higher-order method than
Simpson’s Rule to achieve this time?

CHAPTER REVIEW

Key ldeas

e What do the following terms and phrases mean?

<&
<&
<
<
<
<
<o
<

integration by parts ¢ a reduction formula

an inverse substitution ¢ arational function
the method of partial fractions
a computer algebra system

an improper integral of type |
an improper integral of type 11
a p-integral

the Midpoint Rule

¢ the Trapezoid Rule

¢ Simpson’s Rule

e Describe the inverse sine and inverse tangent substitutions.

What is the significance of the comparison theorem for im-
proper integrals?

When is numerical integration necessary?

Summary of Techniques of Integration

Students sometimes have difficulty deciding which method to use

to

evaluate a given integral. Often no one method will suffice to

produce the whole solution, but one method may lead to a different,
possibly simpler, integral that can then be dealt with on its own
merits. Here are a few guidelines:

1

. First, and always, be alert for simplifying substitutions. Even
when these don’t accomplish the whole integration, they can
lead to integrals to which some other method can be applied.
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2. If the integral involves a quadratic expression Ax? + Bx +
C with A # 0 and B # 0, complete the square. A simple
substitution then reduces the quadratic expression to a sum or
difference of squares.

3. Integrals of products of trigonometric functions can sometimes
be evaluated or rendered simpler by the use of appropriate
trigonometric identities such as:

2

sin?x +cos?x =1

sec?x = 1 + tan® x

cse? x =1 + cot? x

sinx cosx = % sin 2x
21
sin®x = 5(1 —cos2x)

cos? x = %(1 + cos 2x).

4. Integrals involving (a2 — x2)1/2 can be transformed using x =
asin 0. Integrals involving (a2 + x2)Y/2 or 1/(a? + x2) may
yield to x = a tan 0. Integrals involving (x2 — a2)'/2 can be

transformed using x = a sec 6 or x = a cosh6.

5. Use integration by parts for integrals of functions such as prod-
ucts of polynomials and transcendental functions, and for in-
verse trigonometric functions and logarithms. Be alert for ways
of using integration by parts to obtain formulas representing
complicated integrals in terms of simpler ones.

6. Use partial fractions to integrate rational functions whose de-
nominators can be factored into real linear and quadratic fac-
tors. Remember to divide the polynomials first, if necessary, to
reduce the fraction to one whose numerator has degree smaller
than that of its denominator.

7. There is a table of integrals at the back of this book. If you
can’t do an integral directly, try to use the methods above to
convert it to the form of one of the integrals in the table.

8. If you can’t find any way to evaluate a definite integral for
which you need a numerical value, consider using a computer
or calculator and one of the numerical methods presented in
Sections 6.6-6.8.

Review Exercises on Techniques
of Integration

Here is an opportunity to get more practice evaluating integrals.
Unlike the exercises in Sections 5.6 and 6.1-6.3, which used only
the technique of the particular section, these exercises are grouped
randomly, so you will have to decide which techniques to use.

1 / xdx » xdx
) 2x245x 42 Y (x—1)3
1 1/3
3. /sin3xcos3xdx 4. /ﬂdx
Jx
3dx
S. o E— . 2 — i
/4x2—1 6 [(x 4+ x —2)sin3xdx
/1_ 2
7. /%dx 8. /x3 cos(x?) dx
X
N / x2dx 10 [ dx
T ) (5x3 —2)2/3 ") x242x-15

11

13.

15.

17.

19.

21.

23.

25.

27.

29.

31.

33.

35.

37.

39.

41.

43.

45.

47.

49.

5

53.

55.

57.

3

/2)‘«/1+4xdx

/

sin® x

5 dx
cos” x

/e_x sin(2x) dx

[005(3 Inx) dx

/
/

/
/
/

/
/

/
/
[ =
/
/

[a

1./

/

2

T2 e dx

/

xIn(1 4 x?)

1+ x2

*
—dax
V2 —x2

x2dx
(4x + 1)10
sin’ (4x) dx
dx
2+ e*
sin? x cos x
2 —sinx

dx
x2/1 — x2

X

—dx
V1 —4x2

x+1
Vx2 41
x3-3

——dx
x3 —9x

sin® x cos’ x dx

xdx

dx

x242x—1

x2sin~!(2x) dx

cos* x sin* x dx

(4+x)/x
x*—1
x3 +2x2

dx

sin(2 In x) d

X

2tan~ ! x

In(3 4 x2)
34+ x2

xdx

12.

14.

16.

18.

20.

22,

24.

26.

28.

30.

32.

3.

36.

38.

40.

42.

4.

46.

48.

50.
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54.

56.

58.

/(sinx + cosx) dx

f cos. x2 dx
1 4 sin“ x
x2dx

(3 4 5x2)3/2

/2x2+4x—3
———dx
x2 4+ 5x
f dx

4x3 + x

/ sin? x cos* x dx

/tan4xsecxdx

x2 41
x242x+2

/A)c3(1nx)2 dx
el/X dx

f x2

fe(xm) dx

10«/x+2
——dx
Vx 42
x2dx
VxZ—1
2x —3
Va4 —3x + x2

3x2 -1
/x—dx
X

/ Vx—x2dx

fx tan™! zabc
3

) /‘ dx
") o x(x2 +4)2

/ sin(In x) dx

x2

3 _
fx + x zdx
x2 -7

/ cos’ xdx
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. _1 2
59. s W72 (x/2) 60. tan4(rrx) dx
(4—x2)1/2
d
o, [LtDdx 62. [exa — )52
Vx2 4+6x+10
x3dx x?
63. 64. —d
[ (x2 + 2)7/2 / 234"
dx
65. [ ——_dx 66. [ — X
/ 1+x1/3 /x(x2+x+1)1/2
I +x xdx
6. 68. [ —
/l—i—\/— [4x4+4x2+5
xdx dx
69. 70. _
/(x —4)2 [x3+x2+x
71. [xz tan~! x dx 72. /ex sec(e®) dx
73. / __dx 7. [ _dx
4sinx — 3cos x x1/3 -1
/ dx xdx
75. _ 76. _—
tan x + sinx 3 —4x —4x2
77. VX dx 78. [ V1 +eXdx
1+ x
4d
79. / —x3 s 80. /xex cos x dx
x3—8

Other Review Exercises
1. Evaluate [ = [ xe* sinx dx by

differentiating e* ((ax +b)cosx + (cx +d)sin x) and exam-
ining coefficients.

Jxe* cosxdx and J =

2. For which real numbers r is the following reduction formula
(obtained using integration by parts) valid?

o0 o0
/ x"e ™ dx = r/ x"le™ dx
0 0
Evaluate the integrals in Exercises 3—6, or show that they diverge.

/2 ) 1
3. / cscxdx 4. [ ——dx
0 1 X +X3

1[ 1 dx
5. / xInxdx 6. _—
0 -1 xv1—x2

7. Show that the integral 7 = [;°(1/(4/x *)) dx converges and
that its value satisfies I < (2e + 1)/e.

8. By measuring the areas enclosed by contours on a topographic
map, a geologist determines the cross-sectional areas 4 (m?)
through a 60 m high hill at various heights 4 (m) given in
Table 2.

Table 2.

h 0 10 20 30 40 50 60

A 10,200 9,200 8,000 7,100 4,500 2,400 100

If she uses the Trapezoid Rule to estimate the volume of the
hill (whichis V = /0 A(h) dh), what will be her estimate, to
the nearest 1,000 m3?

9. What will be the geologist’s estimate of the volume of the hill in
Exercise 8 if she uses Simpson’s Rule instead of the Trapezoid
Rule?

g8 11.
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10. Find the Trapezoid Rule and Midpoint Rule approximations 74

and M, for the integral I = fol /2 + sin(rx) dx. Quote the
results to 5 decimal places. Quote a value of / to as many dec-

imal places as you feel are justified by these approximations.
Use the results of Exercise 10 to calculate the Trapezoid Rule
approximation 7g and the Simpson’s Rule approximation Sg
for the integral / in that exercise. Quote a value of / to as
many decimal places as you feel are justified by these approxi-
mations.

. Devise a way to evaluate [ = f1°/°2 x2/(x% + x3 + 1) dx nu-

merically, and use it to find / correct to 3 decimal places.

. You want to approximate the integral / = f: f(x)dx of an
unknown function f(x), and you measure the following values

of f:
Table 3.

x 0 1 2 3 4
f(x) 0730 1.001 1332 1729 2.198

(a) What are the approximations T4 and S4 to / that you cal-
culate with these data?

(b) You then decide to make more measurements in order to
calculate 7g and Sg. You obtain 7g = 5.5095. What do
you obtain for Sg?

(¢) You have theoretical reasons to believe that f(x) is, in fact,
a polynomial of degree 3. Do your calculations support
this theory? Why or why not?

Challenging Problems

H 1. (a) Some people think that 7 = 22/7. Prove that this is not

so by showing that

[1 x4 —x)* 22
-~ dx J—
0 X2+1 7

b)) IfI = fol x*(1 — x)* dx, show that

22 22 1
— =1l <n< .
7 7 2

(c) Evaluate I and hence determine an explicit small interval
containing .

2. (a) Find areduction formula for (1 — x2)" dx.

(b) Show that if n is a positive integer, then
1 22n (n !)2
/ (1—xH'dx = ——.

(c) Use your reduction formula to evaluate
(1 —x2)73/2 dx.
3. (a) Show that x* 4+ x2 + 1 factors into a product of two real
quadratics, and evaluate [ (x2+1)/(x*+x2+1) dx. Hint:
x4 x4+ 1= @24+ 1)2 -2
(b) Use the same method to find f(x2 +1)/(x*+ Ddx.
4. Let Iy = /01 x"(nx)" dx.
(a) Show that Iy = (=1)" [;° x"e~TDx gy,
(—1)"n!

(b) Show that I, , = (m + Hn+t
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H 5 Let/, = fol x"e > dx.

and hence that

1
Show that 0 < [,
(a) Show that 0 < "<n+1
limy o0 In =
1 1
(b) Show that I, =nl,—1 ——forn>1,and Iy =1 — —.
e e
n

1 1

(c) Verify by induction that /,, = n! 3
—~ j!
j=0

n
1
(d) Deduce from (a) and (c) that lim E — =e.
n—>00 4 o j!
j=

. If K is very large, which of the approximations 7790 (Trape-

zoid Rule), Moo (Midpoint Rule), and Sjpo (Simpson’s Rule)
will be closest to the true value for fol e~ X* dx? Which will
be farthest? Justify your answers. (Caution: This is trickier
than it sounds!)

. Simpson’s Rule gives the exact definite integral for a cubic f.

Suppose you want a numerical integration rule that gives the
exact answer for a polynomial of degree 5. You might ap-
proximate the integral over the subinterval [m — h,m + h]

h
by something of the form 2h (af(m —h)+bf(m— 5) +

f(m)+bf(m+ %) +af(m+ h)) for some constants a, b,

and c.

8.

(a) Determine a, b, and ¢ for which this will work. (Hint: Take
m = 0 to make things simple.)

(b) Use this method to approximate fol e~ dx using first one
and then two of these intervals (thus evaluating the inte-
grand at nine points).

The convergence of improper integrals can be a more delicate

matter when the integrand changes sign. Here is one method

that can be used to prove convergence in some cases where the
comparison theorem fails.

(a) Suppose that f(x) is differentiable on [1, c0), f’(x) is
continuous there, f’(x) < 0, and lim f(x) = 0.

X—>00
Show that floo f'(x) cos(x) dx converges. Hint: What is
o0
SO )ldx?

(b) Under the same hypotheses, show that |’ loo f(x)sinx dx

converges. Hint: Integrate by parts and use (a).

sin x sinx .
(c¢) Show that ffo —— dx converges but floo u dx di-
X X
) ) . 2 1 — cos(2x)
verges. Hint: |sinx| > sin“x = ——— . Note

2
that (b) would work just as well with sin x replaced by
cos(2x).



