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Probability and Statistics by Example: 11

Probability and statistics are as much about intuition and problem solving, as they
are about theorem proving. Because of this, students can find it very difficult to
make a successful transition from lectures to examinations to practice, since the
problems involved can vary so much in nature. Since the subject is critical in many
modern applications such as mathematical finance, quantitative management,
telecommunications, signal processing, bioinformatics, as well as traditional
ones such as insurance, social science and engineering, the authors have rectified
deficiencies in traditional lecture-based methods by collecting together a wealth
of exercises for which they have supplied complete solutions. These solutions are
adapted to needs and skills of students.

Following on from the success of Probability and Statistics by Example: Basic
Probability and Statistics, the authors here concentrate on random processes, par-
ticularly Markov processes, emphasising models rather than general constructions.
Basic mathematical facts are supplied as and when they are needed and historical
information is sprinkled throughout.
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Preface

This volume, like its predecessor, Probability and Statistics by Example, Vol. 1,
was initially conceived with the intention of giving Cambridge students an oppor-
tunity to check their level of preparation for Mathematical Tripos examinations.
And, as with the first volume, in the course of the preparation, another goal became
important: to give the general public a clearer picture of how probability- and
statistics-related courses are taught in a place like the University of Cambridge,
and what level of knowledge is achieved (or aimed for) by the end of these courses.
In addition, the specific topic of this volume, Markov chains and their applications,
has in recent years undergone a real surge. A number of remarkable theoretical
results were obtained in this field which only twenty years or so ago was con-
sidered by many probabilists as a ‘dead’ zone. Even more surprisingly, an active
part in this exciting development was played by applied research. Motivated by
a dramatically increasing number of problems emerging in such diverse areas as
computer science, biology and finance, applied people boldly invaded the territory
traditionally reserved for the few hardened enthusiasts who until then had contin-
ued to improve old results by removing one or another condition in theorems which
became increasingly difficult to read, let alone apply. We thus felt compelled to
include some of these relatively recent ideas in our book, although the correspond-
ing sections have little to do with current Cambridge courses. However, we have
tried to follow a distinctively Cambridge approach (as we see it) throughout the
whole volume.

On the whole, our feeling is that the modern theory of Markov chains can be
compared with a huge and complex living organism which has suddenly woken
from a period of hibernation and is now in a state of active consumption and
digestion of fresh foodstuff produced by fertile lands around it, flourishing under
blissful conditions. As often happens in nature, some parts of this living organism
go through vast changes: they become less or more important compared with the
previous state. In addition, some parts, like an old skin, may be sloughed off and

vii



viii Preface

replaced by new, better adapted to new realities. Our book then can be compared
with a photographic snapshot of this giant from a certain distance and angle. We
are not able to feature the whole animal (it is simply too big and fast-moving for
us), and many details of the picture within the frame of our snapshot are blurred.
However, we hope that the overall image is somewhat new and fresh.

At the same time, our goal was to treat those topics that are particularly impor-
tant, especially in the course of learning the basic concepts of Markov chains.
These are the aspects and issues that are particularly thought-provoking for a new-
comer and, not surprisingly, usually provide the most fertile grounds for setting up
problems suitable for exams. Roughly speaking, all the material from the theory of
Markov chains which proved to be useful in examinations in Cambridge during the
period 1991-2003 is included in the book.

It has to be said that studying via (or supporting the learning process by going
through) a large number of homogeneous problems (with or without solutions) can
be rather painstaking. A view popular among the mathematically-minded section of
the academic community could be that the most productive way of learning a math-
ematical subject is to digest proofs of a collection of theorems general enough to
serve many particular cases and then treat various questions as examples illustrat-
ing such theorems (the present authors were educated in precisely this fashion). The
problem is that it ideally suits the mathematically-minded section of the academic
community, but perhaps not the rest. ..

On the other hand, an increasing number of students (mainly, but not always,
with a non-mathematical background) strongly oppose (at least psychologically)
any attempt at a ‘decent’ proof of even basic theorems. Moreover, the manual cal-
culations often required in examples whose tailor-made background is obvious also
became increasingly unpopular with generations of students for whom computers
have become as ordinary as toothbrushes. The authors can refer to their own experi-
ence as lecturers when audiences have been convinced more by computer evidence
than by a formal proof. There is clearly a problem about how to teach an origi-
nally pure mathematics subject to a wider audience. There is some basis for the
above unpopularity, although we personally still believe that learning the proof of
convergence to an equilibrium distribution of a Markov chain is more productive
than seeing twenty or so numerical examples confirming this fact. But an artificial
example where, say, a four by four transition matrix is constructed so that its eigen-
values are of a ‘nice’ form (a particular value 1, easy to find from symmetry or an
other ‘educated guess’, and the remaining two from a quadratic equation), may
mis- or even back-fire, whereas an efficient modern package could do the job with-
out much fuss. However, our presentation disregards these aspects; we consider it
as first step towards a future style of book-writing.
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A particular feature of the book is the presence of what we have called “Worked
Examples’, along with ‘Examples’. The former show readers how to go about solv-
ing specific problems; in other words, give explicit guidance about how to make
the transition from the theory to the practical issue of solving problems. The end
of a worked example is marked by a symbol []. The latter are illustrative, and are
intended to reveal more about the underlying ideas. We must note that we have
been particularly influenced by books Norris, 1997, and Stroock, 2005. In addi-
tion, a number of past and present members of the Statistical Laboratory, DPMMS,
University of Cambridge, contributed to creating a particular style of presentation
(we wrote about it in the preface to the first volume). It is the pleasure to name here
David Williams, Frank Kelly, Geoffrey Grimmett, Douglas Kennedy, James Nor-
ris, Gareth Roberts and Colin Sparrow whose lectures we attended, whose lecture
notes we read and whose example sheets we worked on. In Swansea, great help
and encouragement came from Alan Hawkes, Aubrey Truman and again David
Williams. We are particularly grateful to Elie Bassouls who read the early ver-
sion of the book and made numerous suggestions for improving the presentation.
His help extended beyond the usual level of involvement of a careful reader into
preparation of a mathematical text and rendered the great service to the authors.

We would like to thank David Trarah for the efforts he made to clarify and
strengthen the structure of the book and for his careful editing work which went
much further than the usual copyediting. We also thank Sarah Shea-Simonds and
Eugenia Kelbert for checking the style of presentation.

The book comprises three chapters divided into sections. Chapters 1 and 2
include material from Cambridge undergraduate courses but go far beyond in vari-
ous aspects of Markov chain theory. In Chapter 3 we address selected topics from
Statistics where the structure of a Markov chain clarifies problems and answers.
Typically, these topics become straightforward for independent samples but are
technically involved in a general set-up.

The bibliography includes a list of monographs illustrating the dynamics of
development of the theory of random processes, particularly Markov chains, and
parallel progress in Statistics. References to relevant papers are given in the body
of the text. References to Vol. 1 mean Probability and Statistics by Example,
Volume 1.






1

Discrete-time Markov chains

1.1 The Markov property and its immediate consequences

Mathematics cannot be learned by lectures alone, anymore
than piano playing can be learned by listening to a player.
C. Runge (1856-1927), German applied mathematician

Typically, the subject of Markov chains represents a logical continuation from a
basic course of probability. We will study a class of random processes describing
a wide variety of systems of theoretical and practical interest (and sometimes sim-
ply amusing). The fact that deep insight into the subject is possible without using
sophisticated mathematical tools may also be an explanation of why Markov chains
are popular in so many different disciplines which are seemingly remote from pure
mathematics.

The basic model for the first half of the book will be a system which changes
state in discrete time, according to some random mechanism. The collection of
states is called a state space and throughout the whole book will be assumed
finite or countable; we will denote it by /. Each i € [ is called a state; our sys-
tem will always be in one of these states. Sometimes we will know what state the
system occupies and sometimes only that the system is in state i with some prob-
ability. Therefore it makes sense to introduce a probability measure or probability
distribution (or, more simply, a distribution) on /. A probability distribution A on /
is simply a countable collection (4;,i € I) of non-negative numbers of total sum 1:

>0, YA=1 (1.1)

icl
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2 Discrete-time Markov chains

We can think of a unit ‘mass’ spread over the set [ where point i has mass A;.
For that reason it is sometimes convenient to speak of a probability mass function
i € I — ;. Then the probability of asetJ C Iis A(J) = X ;c; 4.

If A; =1 for some i € I and A; = 0 when j # i, the distribution is ‘concentrated’
at point i. Then the state of our system becomes ‘deterministic’. We will denote
such a distribution by §; (the Dirac measure being an extreme case).

Sometimes the condition Y,;c; A; = 1 is not fulfilled; then we simply say that A is
ameasure on 1. If the total mass Y;.; A; < oo, the measure is called finite and can be
transformed into a probability distribution by the normalisation: Ii =X / et
which defines a probability measure on /, since Y ;; 1,- =Yicrhi / YjerhAj=1.But
even if Y,;c; A; = oo (i.e. the total mass is infinite), we still can assign a finite value
A(J) = Yics A to finite subsets J C 1.

The random mechanism through which a change of state occurs is described by
a transition matrix P, with entries p;;, i, j € 1. Entry p;; gives the probability that
the system will change state i to j in a unit of time. That is, p;; is the conditional
probability that the system will occupy state j at the next time-step given that it
is currently in state i. Hence, we have that each entry in P is non-negative but not
greater than 1, and the sum of entries along every row equals 1:

0< p;j<1foralli,j€land Y p;j=1foralli€l. (1.2)
jel

A matrix P with these properties is called stochastic. By analogy, a probability
distribution (A;) on I is often called a stochastic vector. Then a stochastic matrix is
one where every row is a stochastic vector.

Example 1.1.1 The simplest case is 2 x 2 (a two-state space). Without loss of
generality, we may think that the states are O and 1: then the entries will be p;;,
i, j = 0, 1. Here, the stochastic matrix has the form

(1 —-a o )

B 1-B

where 0 < o, 8 < 1. In particular, o« = 3 = 0 gives the identity matrix I and ov =
B =1 the anti-diagonal matrix:

b 1) (o)

A system with the identity transition matrix remains in the initial state forever; in
the anti-diagonal case it flips state every time, from O to 1 and vice versa.



1.1 The Markov property and its immediate consequences 3

On the other hand, o = B = 1/2 gives the matrix

1/2 1/2
1/2 1/2)°
In this case the system may stay in its state or change it with equal probabilities.

It is convenient to represent the transition matrix by a diagram where arrows
show possible transitions and are labelled with the corresponding transition proba-
bilities (arrows leading back to their own origin are often omitted as well as labels
for deterministic transitions). See Figure 1.1, top.

La Dolce Beta
(From the series ‘Movies that never made it to the Big Screen’.)

Example 1.1.2 The 4 x 4 matrix

0 1/3 1/3 1/3
1/4 1/4 1/4 1/4
1/2 1/2 0 0
0 0 0 1

is represented in Figure 1.1, bottom.

The time will take values n = 0,1,2,.... To complete the picture, we have to
specify in what state our system is at the initial time n = 0. Typically, we will
assume that the system at time n = 0 is in state i with probability A; for some given
‘initial” distribution A on 1.

Denote by X, the state of our system at time n. The rules specifying a Markov
chain with initial distribution A and transition matrix P are that

(1) Xo has distribution A:
P(Xo=1i)=A;, foralliel,

(ii) more generally, for all n and iy, ... ,i, € I, the probabilities P(Xp = ip,X| =
i1,...,X, = iy) that the system occupies states io, ii, ..., i, at times 0, 1,
..., nis written as a product

P(Xo =i, X1 = i1,..., X0 = in) = XigPigiy * ** Din_rin- (1.3)



4 Discrete-time Markov chains

oi—\ Oo

@ ol )

1/3
1/4

Fig. 1.1

Of course, (i) is a particular case of (ii), with n = 0.

An important corollary of (1.3) is the equation for the conditional probability
P(Xy41 = j|Xo = io,...,Xn—1 = iy—1,X, = i) that the state at time n+ 1 is j, given
states iy, ..., I,—j and i, =i attimes O, ..., n—1, n:

P(Xy1 = j|Xo =i0,- -, X1 = in—1, Xy =)
P(Xo =0y, Xn—1 = in—1,X0 = i, Xny1 = J)
P(Xo = igy-- s Xn—1 = lIn—1,Xy =)
7%191'0;'1 * Pi,_iPij

= = Dij- (1.4)
liopioil o Piy i Y

That is, conditional on X = iy,...,X,—1 = i,—1 and X,, = i, we see X1 has the
distribution (p;;, j € I). In particular, the conditional distribution of X, does not
depend on iy, .. .,i,—1, i.€., depends only on the state i at the last preceding time 7.

Formula (1.4) illustrates the ‘no memory’ property of a Markov chain (only the
current state counts for determining probabilities of future states).

Another consequence of (1.3) is an elegant formula involving matrix multiplica-
tion for the marginal probability distribution of X,,. Here we ask the question: what
is the probability P(X,, = j) that at time n our system is in state j? For example, for
n =1 we can write:

P(X; = j) = Y P(Xo =i, X1 = j),

icl



1.1 The Markov property and its immediate consequences 5
by considering all possible initial states i. In fact, the events
{state i at time 0, state j at time 1}
do not intersect for different i € I and their union gives the event
{state j at time 1}.

Now use (1.3) and recall the rules of matrix algebra:
Y P(Xo =i, X, = j) =Y Aipij = (AP);.
icl icl
By a direct calculation, this formula is extended to a general n:

PXa=j) = Y PXo=io. . X1 =in—1,X0=J)
105+ +5ln—1
= > AiPiiy P j = (AP, (1.5)
10y-sin—1
where P" is the nth power of the matrix P. That is, the stochastic vector describing
the distribution of X,, is obtained by applying the matrix P" to the initial stochastic
vector A.
Then, similarly,

P(Xn = i7Xn+1 = ])
= Y PXo=io,- Xn1 =in-1,X0 =i, X011 =)

105+ +sin—1
— z kzopzozl o ‘pz,,,ltpu - (A'P )ip117
10;---5in—1

and, hence

: N P =i X1 =J) _ (AP")pij
P(Xyr1 = jIX, = i) = ’ = L2 = pij. 1.6
( n+1 .]‘ n l) P(Xn :l) (AP}’[)I pl] ( )
In other words, the entry p;; is the conditional probability that the state at the next
time-step is j given that at the preceding one it is i.

Moreover,
P(Xo =i,X, =)

= Y PXo=iXi=it, , Xn1 = in-1,X0 = J)

il-,-~-7infl

= 2 A’ipii] o .pit1—lj = a’I(Pn)ij7

i15e5ln—1

and
i PXo=i,X,=j) A(P");
P(X, = jlXo=1i) = Ko n=J) _ M )l‘/Z(P")ij- (L.7)




6 Discrete-time Markov chains

That is, the entry (P");; of matrix P" gives the n-step transition probability from
(n)

state i to j. We also denote it sometimes by p;;”.

More generally,
P(Xy =i, Xp 1 = ) = (AP)i(P");5
and

P(Xy =i, Xpsn = j APK) (P ,

A corollary of this observation is that the power P" of a stochastic matrix is
again stochastic, viz. Y j¢; pl(;) =1 for all i € I. Of course, this fact can be verified
directly:

n
Zpgj): 2 piil.npin—l].:zpiil“'Zpin—ljzl
Jel i1 yeesin—1,J i J
as at each step (beginning with ;) we get the sum 1, owing to (1.2).

Another consequence is that if we apply to a stochastic vector a stochastic
matrix (P or more generally P"), we obtain another stochastic vector. Again, direct

calculation confirms this:

AP ;=3 Mi(P")ij = ZMZ(P")U =2 k=1
i,j i J i

J

An ultimate generalisation of (1.3) is the formula
]P)(Xkl = l];sz = l27 e ,an = ln)
= (lPkl)il (sz_kl) - (Pkll_kn—l)

valid for all times 0 < k; < k» < --- < k;, and states iy,...,i, € I.
It is now time to summarise our findings. Suppose that A = (4;) is a stochastic

(1.9)

i1ip in—1in

vector and P = (p;;) a transition matrix on /. The random state X, at time n is
considered as a random variable with values in /.

Definition 1.1.3 A sequence of random variables X,, with values in a finite or
countable set I is a discrete-time Markov chain (DTMC), or a Markov chain for
short, with the initial distribution A and transition matrix P if, for all i, ..., i, € I,
the joint probability P(Xy = iy, ..., X, = i,) is given by formula (1.3). In this case
we also say that (X,) is Markov (A, P) or call ita (A, P) Markov chain.

Theorem 1.1.4 If (X,) is Markov (A, P), then:
(i) the conditional probability

P(Xn+l = ]|XO = i(), oo aanl = inflan = l)
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is equal to the conditional probability P(X,+; = j|X, = i) and coincides
with p;;. In particular, the conditional distribution of X, given that X, =
ioy ..., Xp—1 =1iy—1,X, =i does not depend on iy, . .. ,i,— and coincides with
(plj,] €l), i.e. withrow i of P;

(ii) the probability P(X,, = i) that the state at time n is i equals (AP");;

(n)

(iii) the entry p;;" of matrix P" corresponds to the conditional probability

P(Xi+n = j|Xx =), i.e. gives the n-step transition probability from i to j;
(iv) the general probability

P(Xk| = l])sz = l27 e ,an = ln>
is given by (1.9).
Example 1.1.5 Suppose that all rows of P are the same, i.e. p;; = p; does not

depend on i. In addition, suppose that A; = p;, i.e. A coincides with the row of P.
Then, by (1.3)

P(Xo = io,Xl = i],...,Xn = ln) :Pi()l?i. "'pin'

Also, in this example P" = P, as

pl(;l): Z pll pln lp] Zpllzplzzplnflp‘]:p‘]7
1 yeeeyln—1 i 153 in—1
owing to the fact that },.; p; = 1. Hence,
P(X,=j) = (AP"); = Y pipl) = X.pip;=p
icl icl

We see that
P(Xo =io, X1 =i1,...,.Xn =In) =P(Xo =ip)P(X1 = i1) - - P(X,, = in).

That is (X,) is a sequence of independent, identically distributed (IID) random
variables.

Example 1.1.6 If P is diagonal then it must coincide with the identity matrix I
where row i is given by the stochastic vector 0;:

oS O O =
>Nl -
S = O O
- O O O
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In this case, every power P" again equals the identity matrix (this property is called
idempotency; correspondingly, such a matrix P is called idempotent). Hence,
by (1.5), P(X,, = i) = A;. That is, the distribution of X, is the same as Xj. In other
words, the initial distribution is preserved in time.

a
1-p
can be found by a straightforward calculation. In fact, P" = P"~! P, which for entry

po yields

Example 1.1.7 For a two-state DTMC, P = <1 Ba ), the entries of P"

p = pw ((1—a)+py B
= oty o)+ (1pip V) B =B —a—pipgy .

This is a recursion in n, with p(()%) =1 and p(()z)) = 1—o. Hence,

Py =A+B(1—a—B),
with
A+B=1,A+B(l—a-B)=1-c¢,

and, clearly,

B o .
n + l—-a—p)", ifa+p >0,
P = B a+ﬁ( B) B

1, ifo=p=0.
Entry pYi) is obtained by swapping « and 8, and entries pgi) and pgr(? as
complements to 1.

Example 1.1.8 In the general case, we can use the eigenvalues and eigenvectors
of P to find elements of P". Consider a 3 x 3 example

0 1 0
p=|o0 2/3 153
1/3 0 2/3

The eigenvalues are solutions to the characteristic equation:
—u 1 0

det | 0 2/3-u 1/3 = W out—u+—
13 0 2/3-pu
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whence

1+iv3
‘lL()Zl, Uty = 6 .

As the eigenvalues are distinct, matrix P is diagonalisable: there exists an invertible
matrix D such that

1 0 0
D'PD=10 (14+iV3)/6 0 ,
0 0 (1-iv3)/6
- 1 0 0
P=D[0 (1+iV3)/6 0 D'
0 0 (1-iv3)/6
Then
1 0 0
P'=D|0 [(1+iV3)/6]" 0 D,

o 0 [(1-iv/3)/6)"

and each entry of P" is a sum of the form

n n
14iv3 1—iv3
avp [LEV3) Lo (123
6 6
The coefficients A, B and C may be complex; they vary from entry to entry and are
found from the initial values n = 0, 1,2. For n = 0, P? is the identity matrix (just as

in the scalar case p® = 1 for any p (p = 0 included!)); for n = 1, we use the matrix
P and for n = 2 we have to square it, to obtain P?. For instance, suppose that the

states are 1, 2 and 3; then the entries are pf}l), i,j=1,2,3. Then, for pg):

14iV3 1—iV3

and
14+iv3 ’ 1—iV3 2 2
p§22)=A+B< +6’ ) +C< 761 > =3

The calculations may be simplified if we get rid of imaginary parts (as all

entries pl(;) of P" are real non-negative). To this end, observe that . are complex

conjugate roots and write

S () ey (e s ),
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1+iv3\ /1\" . 1\"
( é\f> = <3> etinT/3 — (3) (cos%iisin %),

n 1 n )
P,(j) =0+ <3> (Bcos%—i—ysm %) ,

Then

and

where ¢ = A, B = (B+C) and y = i(B— C) must be real. Again, we have the
equations for n =0, 1,2; for pg) they are

1(1 V3 1 1 V3 2
(X+ﬁ—0, OC+3<2,B+2'Y> —1, a+9<—2l3+2}/> —g,

whence

In particular, lim pgg) =3/17.
N—so0

Example 1.1.9 Consider another 3 x 3 matrix

1/3 0 2/3
P=(1/3 2/3 0
1/3 1/3 1/3

Here the characteristic equation is:
4 1 1
3 2
—wH-u——u=—(u—1 - = =0
u 3 i} 3 u (u—1) (/,L 3) U ,
with the eigenvalues

1
‘U()Zl,‘ul:g, Ho = 0.

(n)

Hence, the entries p;;” have a simple form

1 n
pS”—A+B(3>-+C0¢

Again we use three initial conditions, with P°, P and P2. For instance, for p%’i):

A+B+C—1A+1B—1A+ 123—1
o 33 3 -3
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whence A = 1/3, B=0, C =2/3 and p\") = 1/3. Similarly, p%) = 1/3 — (1/3)"
and pg';) =1/3+4(1/3)". As n — oo, all entries of the first row of P" approach 1/3
(in fact, the same is true for all 9 entries in P").

Example 1.1.10 We can make a number of observations. First, 1 is always an
eigenvalue of any stochastic matrix P. In fact: (i) the eigenvalue equation reads
det (I — P) = det (uI — P)T =det (uI—PT) =0, i.c. the eigenvalues of P and
its transpose PT coincide; (ii) 1 is always an eigenvalue of PT: the corresponding
eigenvector is the row 1 = (1,...,1) of Is. Formally, 1PT = 1, or equivalently,
P1T =17 for the column 17. To check the last equation, observe that every entry
of the column P17 is 1

(PIT)i =2 pij=1,

jel
because P is stochastic.

Therefore, the characteristic polynomial of a stochastic matrix is divisible by
(1 —1); in the 3 x 3 case this leads to a quadratic quotient polynomial, and all
eigenvalues can be found.

Second, if there is a complex eigenvalue py of P then the complex conjugate
U = i is also an eigenvalue, as this is the only way of producing a real char-
acteristic polynomial from the product of linear monomials, (1 — p4)(u —p_) =
w? —(uy +u )i+ py u_, with real coefficients 4 4+p_ and gy = |u+|>. Then,
writing

pe = |pe|e™ = |p|(cos ¢ +isin ),

we can work with real summands only, of the form f3 cos(n¢) and ysin(n¢).

)
i
. This is because the modulus || < 1 for any eigenvalue u of P,

Third, the coefficient A (in front of 1) in the equation for p
the limit lim p"”

n—oo L

typically identifies

and ‘generically’ (although not always), any eigenvalue pt # 1 has |u| < 1. This
fact is more delicate and will be commented on in subsequent sections. Then in the
decomposition

p l(]n) =A+ 2 Bs.u.?
eigenvalues p,#1

1
all terms except for A are suppressed as n — oo. (In the case of P = (? O> this is
(n)

not true: the eigenvalues are 1 and —1 and there is no limit lim p;;” as P" oscillates
n—so0

between I for n even and P for n odd.)
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It has to be said that many (even very simple) examples may lead to rather
. ) .
cumbersome computations for entries p; I For example, the matrix

1/3 1/3 13
P=|o0 1/2 1)2
1/3 2/3 0

has the characteristic equation

5 5 1 1 1
u+6u+18u 5 (u )(u+6u 5 0,

with eigenvalues

117

Ho=1, H 12

This leads to the equation

) ERVTAY NN
) _pppl 2TV —iovis
Py =4 ( 12 M T ’

with

1417 1417
A+B+C:&ﬁA+B<EJ>+C<L>:mﬁ

and

12 12 Cr

2 2
—14+/17 —1-17
A+B<+'> +C<> =pi?.

For instance, for pg}) the final expression is

() () - B () (R

!
a(;: j>(x«Ar—1)
0

Fig. 1.2
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Example 1.1.11 A helpful property is the presence of symmetries in P: it may
reduce the number of states in the Markov chain. For example, the N x N matrix

-« o/(N—-1) ... a/(N—1)
B o/(N—1) l1-o o af/(N—1)
a/(N=1) a/(N=1) ... 1-a

describes a model of a virus mutation where a virus retains its genotype or changes
to one of (N — 1) other types with equal probabilities.

To calculate pg'i), we reduce the number of states to two (say, 1 and O (another)),
by considering original transitions from a state 1 to itself or to another state, and
backwards, without further specification (as for our problem all other states are

indistinguishable). The reduced two-state chain has the 2 x 2 transition matrix

l-o o
o/(N=1) 1—a/(N—-1))"
We can apply the formulas of Example 1.1.7 (with B = o/ (N — 1))

W a/N-1) o \"
Py = a+a/(N—1)  a+a/(N—1) (l—a—N—l)

_1+N—1 | oN \"
N N N—1) "

w _ 1-p\7

Dij N_1

Also, by symmetry,

fori # j.

We are now in a position to establish the famous Markov property of a DTMC. It
asserts that the Markov chain begins afresh after any given time n (from its current
state).

Theorem 1.1.12 Let (X,) be Markov (A,P). Then, for allm > 1 and i € I, con-
ditional on X,, = i, (Xyun,n > 0) is Markov (9;,P). In particular, conditional on
X = i, the random variables X,,,+ 1, Xi+2, ... are independent of the variables Xy,
e X1

In other words, in a DTMC, the past states (X, ..., X;;—1) and the future states
(Xin+1,Xm+2, - - -) are conditionally independent, given the present (X,,, = i).
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Proof Recall that the stochastic vector §; has entries §;;, j € I. We want to
check that for any event A determined by Xp,...,X,,—1, and B determined by
Xmt1y--, Xmi14n for some n, (i) the conditional probability P(A N B|X,, = i)
decouples:

P(ANB|X,, =i) =P(A|X,, = i)P(B|X,, = i), (1.10)
and (ii) the conditional probability P(B|X,, = i) is calculated as in the Markov chain
(5,', P )2

PBXy=1)= >, Piji Pivijn- (1.11)
(jlv"wjn)eB

First, let A and B be of the form
A= {XO = i07 ce 7Xm—1 = im—l}v B= {Xm-i-l = jla cee 7Xm+n = Jn}

for some sequence of states igp,...,im—1, ji,---,jn € I. Generally, A and B are
disjoint unions of such ‘elementary’ events.
For A and B as above,

P(ANBN{X, =i})
=P(Xo =10, -, Xn—1 = im—1,Xn = 1, Xnt1 = J1,- - Xonin = Jjn)
= AigPigiy *** Pinyrilijs " Pjurjun-
For a general B we have to sum over (ji, ..., j,) € B:
AigPigiy ** Piri Dy Piji " P
(J1rJn)EB

The sum Y;, . i)ep gives the conditional probability P(B|X,, = i), and it is
calculated as in the (9;, P) Markov chain.
Next, for a general A we sum over (i, ...,i,—1) € A:
P(ANBN{X,=i}) = Y. AigPigiy - PiniP(BI X = i)
(i(Jv"-,im—l)GA

= PAN{Xp=i})P(B|Xm = i).

Finally, to produce the conditional probability IP’(A NB|X,, = i), we divide by
P(X, =1):

P(ANBN{X,, =i})

P(ANB|X, =i) = B, =)
P(AN {X, = i}) .
P, =1 P(B|X,, = i)

= P(A[Xy = i) P(B|X,, = i),

as required. O
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In future we will write IP; for the conditional probabilities P( - | Xy = i) given that
the state at time O is i. Similarly, [E; stands for expectation under distribution P;.

Worked Example 1.1.13 Three girls A, B and C are playing table tennis. In each
game, two of the girls play against each other and the third girl does not play. The
winner of any given game n plays again in game n + 1. The probability that girl
x will beat girl y in any game that they play against each other is s,/(sy +sy) for
x,y € {A,B,C}, x # y, where sy, sp, sc represent the playing strengths of the three
girls.

(a) Represent this process as a DTMC by defining the possible states and
constructing the transition matrix.

(b) Determine the probability that the two girls who play each other in the
first game will play each other again in the fourth game. Show that this
probability does not depend on which two girls play in the first game.

Solution (a) Label states by A, B, C indicating which player is not playing in a
given game. Then the transition matrix is {A,B,C} x {A,B,C}:

0 Sc/(SB—I—Sc) SB/(SB+SC)
SC/(SA + Sc) 0 SA/(SA + Sc)
SB/(SA +SB) SA/(SA +SB) 0

The process is a Markov chain because the results of the subsequent games are
independent.

(b) Here, we look for the probability that after three steps the chain returns to a
given initial state.

From the symmetry, this probability is the same for any choice of the initial state
and is equal to

2SASBSC
sa+s8)(sp+sc)(sc+sa)

PABPBCPCA + PACPCBPBA = (

O

Worked Example 1.1.14 A rock concert held in a hall with N numbered seats
attracted a huge crowd of spectators. The lights have been dimmed and N — 1 seats
have already been taken, and now the last spectator enters the hall. The first N — 1
spectators were advised by the ushers, rather imprudently, to take their seats com-
pletely at random, but the last spectator is determined to sit in the place indicated
on her ticket. If her place is free, she takes it, and the concert is ready to begin.
However, if her seat is taken, she loudly insists that the occupier vacates it. In this
case the occupier decides to follow the same rule: if the free seat is his, he takes
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it, otherwise he insists on his place being vacated. The same policy is then adopted
by the next unfortunate spectator, and so on. Each move takes 45 seconds. What is
the expected duration of the delay caused by these displacements?

Solution (sketch) It is important to keep in mind that, initially, the N — 1 spectators
are distributed so that (a) the probability that seat j is free is 1/N, j=1,...,N,
(b) given that seat j is free, the probability that the first spectator entering the hall
takes seat i1, the second spectator takes seat iy, ..., the (N — 1)st takes seat iy_j,
equals 1 /(N —1)!, for any sequence iy, ..., iy—j covering the set {1,...,N}\ {/j}.
Consider a DTMC with states N, N — 1, .. ., 0. Here, state 0 means that the spectator
attempting the free seat ‘succeeds’ (i.e. the available seat is indeed her correct
place), state 1 < n < N — 1 means that the (N — n)th move is ‘unsuccessful’, and N
is the initial state. Then the probability of transition n — 0 is equal to 1/n and the
probability of transition from n — (n— 1) is (n — 1) /n; the probability of transition
0 — Oequals 1. Let E(n) denote the expected number of transitions (displacements)
until the Markov chain enters state O from state n; we are interested in the quantity
E(N). A useful remark is that E(n) is the expected number of displacements for
the hall with n seats.

The key fact is the following recursion

E(n) = ;1 X [l—I-E(n—l)]—I—%XO

—1
=— [1+E(n—-1)], n=1,2,...,N

with

The solution is

1 N-1
E(N)= G(N=14+N=2+4-+1) = ——.

120
If N = 121, the expected delay will be 45 x - secs = 45 min. O

Worked Example 1.1.15 The point about this problem is that it is often useful to
introduce probability where originally it was not present. Assume that the circle of

unit perimeter 41 = < z: |z| = " has been partitioned into two disjoint (mea-

surable) sets, one, called red, of length 2/3 and the other, called blue, of length
1/3. Prove that it is always possible to inscribe in the circle a square such that at
least three of its four vertices have the red colour.
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Solution Given such a partition, consider a random inscribed square where we
choose an anchor point on % uniformly; this determines the square uniquely. Let
us number the vertices 1, 2, 3, 4, say clock-wise, beginning with the anchor. Set

X; = I(Vertex i falls in the red set)7 i=1,2,3,4.
Then
E (the number of red Vertices) =EX; +EX; + EX3 + EXy = 4EX; =8/3 > 2.

Hence, the sum X + X 4+ X3 + X4 must take values 3 or 4 with positive probability,
and therefore the inscription in question is always possible.

We can actually assess the probability P that at least three vertices will be red. In
fact, the following bound holds: P > Py where Py = % is found from the equation

(1—P0)2+4P0:§

(which corresponds to the situation where with probability Py we have four red
vertices and with the complementary probability 1 — Fy just two). (I

Concluding this section, we would like to note that Definition 1.1.3 above intro-
duces a class of so-called homogeneous, or time-homogeneous Markov chains. We
omit the term ‘homogeneous’ except for a few cases when we consider ‘inhomoge-
neous’ chains (which will occur with continuous time Markov chains; see Section
2.4). We only mention that in an inhomogeneous Markov chain, the transition prob-
ability from state i to j depends on the time of transition. Consequently, instead of
a single transition matrix P, we have to introduce a family of matrices P, where
n=0,1,2,..., describing probabilities of transition from state i at time » to state j
attime n+ 1.

Dial M For Markov
(From the series ‘Movies that never made it to the Big Screen’.)

1.2 Class division

Communicating class struggle
(From the series ‘When they go political’.)

Class division is a natural partition of the state space /, generated by the transition
matrix P. We still work with finite state spaces and finite matrices, unless otherwise
stated.
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()
ij
> 0 for some n,n’ > 0. (Recall, for n = 0, P° is the identity matrix L.
(0)

il

Definition 1.2.1 States i and j belong to the same communicating class if p;;” >0
(')
Jt

Therefore, the diagonal entry p
pg) > 0 and pg';/) > 0 for some n,n’ > 0 is denoted by i < j. When one of these
conditions holds, we write i — j or j — i, and if we want to stress that some of

them do not, we write i 4~ jor j /4 i.

and p

in matrix P? is always equal to 1.) The fact that

To check that we have a correctly defined partition, observe that: (i) each state
communicates with itself, i.e. i < i, as pl(l.o ) — 1 (communication is a reflexive
relation); (ii) the relation i < j is symmetric, i.e. holds or does not hold regard-
less of the order within the pair i, j (this is obvious from the definition); (iii) if
i« jand j < k then i < k (communication is a transitive relation). Indeed, as
pl(,': ) Dier pfl") pl(Z,) > pl(;) pﬁn/), and similarly for p,({:.”r",). Then, because of (i),
each state i belongs to some class, because of (ii) each class is correctly defined as
an (unordered) subset of /, and because of (iii) any state j falls in no more than one
class. States from different classes, of course, do not communicate.

A useful fact is that i — j if and only if there exists a sequence of states
iO = iailu"winfluin :]

such that p;,;,, > 0 for each pair (i;,i;41), 0 < I < n. In fact,

pl(;l) = . Z Pii1 "'pl’nf]ja

i1yeeein—1

and the whole sum is > 0 if and only if there exists at least one non-zero summand.

Definition 1.2.2 A communicating class C is called closed if for all i € C and
j €1 such that i — j, state j € C. In other words, a state cannot escape from a
closed communicating class. Otherwise, i.e. when a state (and indeed, all states)
can escape from a class, it is called non-closed or open. States forming non-closed
communicating classes are often called non-essential: they indeed are not essential
in the long run. A state i is called absorbing if p;; = 1. Equivalently, the communi-
cating class of an absorbing state i consists solely of i (and is closed). An open class
consisting of a single state j occurs when this state can be visited only once, after
which the chain never returns. Some authors restrict their attention exclusively to
closed communicating classes and do not consider other types as classes.

What I did that was new was to prove . ..
that the class struggle necessarily leads

to the dictatorship of the proletariat.

K. Marx (1818-1883), German philosopher
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Example 1.2.3 A particle moves from state i = 1, ..., N — 1 to state i + 1 with
probability p and state i — 1 with probability 1 — p where 0 < p < 1.

From states 0 and N it cannot move, i.e. once it reaches one of them, it stays there
forever. This example describes a match between two players where the winner
of a given game gets from the loser one ‘score unit’, and the match continues
until one of the players is left with no units. Another interpretation is a walk of
a drunken person from a pub, where he makes a step towards home (state 0) or
a lake (state N). In the first case, the value N is the total number of units of both
players before the match; it is obviously preserved in the course of the game. In
the second case, it is the distance in steps between the home and the lake (the
pub is somewhere in between). The state i = 0,1,...,N is the number of units in
possession of player 1 or the distance from home; p and 1 — p are the probabilities
that player 1 wins or loses a game, or that the drunkard makes a step towards
home or the lake. Results of different games or directions of different moves are
independent.

Here, the transition matrix is (N+ 1) x (N +1):

1 0 00 0 0 0

1—p 0 p 0 0 0 0

0 1-p 0 p 0 0 0

P = : : Lol : R
0 0 00 .. 0 po

0 0 00 ... 1—-p 0 p

0 0 0o 0 ... 0 0 1

Communicating classes are {0}, {1,...,N—1} and {N}, and classes {0} and {N}
are closed (i.e. states 0 and N are absorbing). Thus, states 1,...,N — 1 are non-
essential, and the game will ultimately end at one of the border states.

Example 1.2.4 Consider a 6 X 6 transition matrix, on states {1,2,3,4,5,6}, of the
form

* 00 0 % O
00 x 0 0 O
P:OO*OO*
0 x 00 x O
*x 00 0 0 «
0« 00 0O
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Fig. 1.3

where * stands for a non-zero entry. The communicating classes are C; = {1,5},
C, ={2,3,6} and C3 = {4}, of which only C; is closed. If we start in class C;, we
remain in C, forever. If we start in C3 (i.e. at state 4), we will enter C, (and then
stay in C; forever) or C;. Intuitively, after spending some time in C;, we must leave
it, i.e. enter C,. This is what happens in reality, as we will soon discover.

A simple but useful fact is

Theorem 1.2.5 A Markov chain with a finite state space always has at least one
closed communicating class.

To prove Theorem 1.2.5, consider any class, say Cj. If it is not closed, take the
next class you can reach from Cj. If it is not closed, you continue. You should end
up this process with reaching a closed class.

Remark 1.2.6 The situation with a countable, or denumerable, Markov chains,
where the state space / is countably infinite, is more complicated. Here, you may
have no closed class. In addition, states from infinite closed classes may also be
non-essential, in the sense that the chain may visit each of them only finitely
many times before being driven ‘to infinity’ (although still within the same closed
class).
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The simplest examples of a DTMC with countably many states are those where the
space I is the set of non-negative integers Z, = {0,1,2,---}. Three examples are
shown in Figure 1.3; the corresponding transition matrices are:

0100 ... 0 ... 0 1 00 ... 0
0010 ..0 .. I-p 0 p 0 ... 0
@10 0 0 1 o ..l ®] 0o 1-p0p .0
and
0 1 0 0 ... 0
1—])1 0 P1 0 ... 0
(C) O 1—p2 0 p2 ... 0

These models describe so-called birth-and-death processes, or birth-death pro-
cesses, where state i represents the size of the population, and during a transition
a member of the population may die or a new member may be born. In case (a)
only births are allowed, and the chain is deterministic. Here, every state i forms a
non-closed class and is non-essential. In model (b) a ‘death’ occurs with the same
chance 1 — p and a birth with the same chance p, regardless of the size i of the pop-
ulation at the given time (unless i = 0 of course). In real life, it may be a queue of
‘tasks’ served by a ‘server’ (e.g. clients waiting in a barber shop with a single seat,
or computer programs subsequently executed by a processor). Then i is the number
of tasks in the queue. If, before the hairdresser finishes with a current client, a new
client comes, we have a jump i — i+ 1; otherwise a jump i — i — 1 occurs. From 0
we can only jump to 1 (although in the ‘real time’ the hairdresser may be waiting
for a while for this to happen). There are two situations: p > 1/2and 0 < p < 1/2.
Intuitively, if p > 1/2, tasks will arrive at least as often as they are served, and the
queue will become eventually infinite (which may rather please our hairdresser). In
this situation, as we shall see, each state i will be visited finitely many times and X,
(the size of the queue at time n) will grow indefinitely with n. If 0 < p < 1/2, the
tasks will arrive less often, and the system will be able to reach an ‘equilibrium’,
with some stationary distribution of the queue size.

An often used modification of model (b) is where 0 is made an absorbing state,
with poo = 1.

In the more general case (c), the rules of the population dynamics may include
chances for every member to die (but only one at a time); e.g. p, = A /(A +npu),
1 —p,=nu/(A+nu) where A > 0and u > 0 are ‘immigration” and death ‘rates’;
the whole picture becomes more complicated. We will be able to analyse some of
these models in detail in Sections 1.5-1.7.
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Let us now go back to finite-state Markov chains In general, after a re-
numeration of states, the finite transition matrix P acquires a particular structure,
see Figure 1.4. Traditionally, the top left corner is occupied by a square block
Oy formed by probabilities of possible transitions between non-essential states
(i.e. between and inside non-closed communicating classes). This block can be
zero, if such transitions are not present. Next, square blocks Cy,...,C,, are cen-
tred on the main diagonal. They represent (and denote) closed communicating
classes of various size; these blocks form stochastic submatrices. The latter means
that for all i = 1,...,m and for all states j € C;, the sum Y, pjx of the entries
inside class C; along row j equals 1. The Markov chains corresponding to individ-
ual blocks Cy,...,C,, may be studied separately from each other (which is easier,
owing to their lesser size). Blocks Oy, ...,0,,, to the right of Oy show transitions
from non-essential states to closed communicating classes. These blocks are non-
negative rectangular submatrices; some of blocks Oy, ...,0,, (but not all) may be
zero. (We should not forget that summing the entries along a row of P always
gives 1.) If the chain does not have non-essential states, then blocks Oy, Oy,...,0Op
are simply absent. The space outside blocks Og,0Oy,...,0, and Ci,...,C,, is
filled with zeros. (There may also be plenty of zeros inside these blocks;
see below.)

We call a finite DTMC (X,,) (or equivalently, its transition matrix P) irreducible
if it has a single communicating class C (which is then automatically closed). In
other words, a finite transition matrix is irreducible if any pair of states i,j € [
communicate; equivalently, the whole state space is one (closed) communicating
class: I = C. Pictorially, the matrix P is reduced in this case to a single block

C; see Figure 1.5a). A characteristic feature here is that, for any pair of states
(n)

i,j €1, the entry p;;” of matrix P" (i.e. the transition probability from i to j in
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a) b)

Fig. 1.5

n steps) is strictly greater than O for some n > 1 (depending, in general, on i
and j).

Some authors allow a more complicated situation, and call a finite DTMC irre-
ducible if it has a unique closed communicating class and a number of non-closed
classes. (The reason is that in this case a finite chain has a unique invariant, or
equilibrium distribution; see Section 1.7). The corresponding matrix is shown in
Figure 1.5b): it has a single square block C forming a stochastic submatrix plus a
top left square block Og and a single rectangular block O; (or simply O). When you
iterate such a matrix P, raising it to a power n, block Og will tend to 0 as n — oo.
The behaviour of block O is more complicated: we will analyse it later. As to block
C, it will be simply raised to power n (which is handy).

This gives us an idea of what happens when we iterate a general finite transition
matrix P with several closed communicating classes. Again, block Og in the matrix
P" will tend to 0 as n — . And as before, blocks Ci,...,Cy, in P" will simply be
raised to the power n. The last remark illustrates the view that if we have a reducible
chain, with more than one closed class, we may study separately its ‘restrictions’
to various closed classes.

For simplicity, let us now assume that a finite matrix P is irreducible. It is not
hard to guess that inside block C we may have a ‘periodic’ picture, with a number
v of smaller square ‘cells’ of equal size which are cyclically permuted by P: cell 1
is taken to cell 2, and so forth, cell v to cell 1. See Figure 1.6. The space outside
cells is again filled with zeros.

Such a picture corresponds to a partition of the space I (which under our assump-
tion forms a single (and closed) communicating class) into periodic subclasses
Wi, ..., W, such that a one-step transition is possible only from a state j € W; to a
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state k € Wiyq, i =1,...,v. (Here the sum i+ 1 is understood modulo v, so that

W,4+1 = W1, v being called the period of class C.)

Worked Example 1.2.7 Given a state j, define the period v(j) of this state as the
greatest common divisor of numbers n such that p%) > 0. Prove that if states i and
J are from the same communicating class then v(i) = v(j). (This justifies the term
the ‘period of a communicating class’.)

(0
ij
> 0, then p

> 0 for
(n+k+1) >

i =

Solution Let i and j be two distinct communicating states. Then p
) (n)
Ji Ji
pg() pyj’-) p%) > 0. Therefore, v(i) divides n+ k -+ [. Next, v(i) divides 2n+k+1 as
pEiZHkH) > pg.() (p%))zp%) > 0. Thus, v(i) divides the difference (2n+k+1) — (n+
k+1) = n. This is true for all n with py]’-) > 0. Then v(i) must divide v(j), as v(j) is
the greatest common divisor. A similar argument leads to the conclusion that v( ;)
divides v(i). Therefore, v(i) = v(j). O

some k > 1 and p’/ > 0 for some [ > 1. Assume that p

In the large majority of our examples the period of a closed communicating class
equals 1. Such a class (or, equivalently, its transition matrix) is called aperiodic.
When all communicating classes are aperiodic, the whole Markov chain (or its
transition matrix) is called aperiodic.

In general, if you raise the transition matrix P corresponding to a closed com-
municating class C of period v to the power v, then matrix P” will decompose
into stochastic square submatrices centred on the main diagonal. Pictorially speak-
ing, periodic subclasses Wi, ..., W, will play a rdle of closed communicating
classes for matrix P”. (It has to be said that, formally, the last statement is not cor-
rect: some of the W;s may comprise several disjoint closed communicating classes
for P".)
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We see that the whole structure of a finite transition matrix P can be rather intri-
cate. Luckily, most applications and interesting examples do not need an excessive
level of generality, and we will be able to make simplifying assumptions.

Worked Example 1.2.8 Consider a stochastic 7 X 7 matrix

0 120 0 0 0 1/)2

1/3 0 0 0 0 1/3 1/3
0 1/2 0 1/20 0 0
p=l0 0 0 0 1 0 ©
0 0 0 1 0 0 0
0 1/20 0 0 0 1/2
1/3 1/30 0 0 1/3 0

Find all communicating classes of the associated DTMC.

Solution See Figure 1.7. The communicating classes are {1,2,6,7}, {3} and
{4,5}. The closed classes are {1,2,6,7} and {4,5}; 3 is a non-essential state.
Class {4,5} has a periodic structure. Thus, the limit pl(?) does not exist (because of
oscillations) for i = 3,4,5 and j = 4,5. For class {1,2,6,7} we have a transition
submatrix

0 12 0 1/2

13 0 1/3 1/3

0 12 0 1/2]°

1/3 1/3 1/3 0

with the symmetry 1 < 6 and 2 < 7. That is, if we merge 1 with 6 into state I and
2 with 7 into II, we get a two-state chain with the matrix

H:<;31%>

The last matrix has the characteristic equation

1 2
2
—Zu—-==o0
u 3 u 3 )
with the roots yy = 1, u; = —2/3. Hence, the entries of IT" have the form A +

B(—2/3)". Adjusting the constants yields
o — 2/5+3/5(=2/3)" 3/5-3/5(=2/3)"
- <2/5 —2/5(=2/3)" 3/5+2/5 (—2/3)"> '

Hence, as n — oo

= (35 3s)
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1

Fig. 1.7

Then, by symmetry, for the original {1,2,6,7}-block, the limiting matrix is

1/5 3/10 1/5 3/10
1/5 3/10 1/5 3/10
1/5 3/10 1/5 3/10
1/5 3/10 1/5 3/10

That is, p\”,p") — 1/5 and p%,p% — 3/10, i = 1,2,6,7. Probabilities

pg’j’.) converge to (1/2) lim pgjl-), J=12,6,7. =
Nn—oo

It has to be stressed that this is not the optimal way of calculating the limits

lim pg.z). Later on, we will learn about much more efficient ways of doing it.
Nn—oo

1.3 Hitting times and probabilities

A hit, a very palpable hit.
W. Shakespeare (1564-1616), English playwright and poet

From now on we denote by PP; the distribution of a DTMC (X,,) starting from the
state i € 1. Similarly, [E; stands for the expectation relative to P;. Let A C I be a
set of states. The hitting time H* (of set A in the chain (X)) is the first time the
Markov chain enters A

HY=inf{n>0: X, €A}. (1.12)
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The hitting probability k' (of set A from state i in chain (X;,)) is the probability that
the chain starting from state i will ever hit A

h =P;(H? < o) (1.13)
when A is a closed class, i is called the absorption probability. The expected value

of H# is denoted by k%
K =E(H") = Y nPy(H" =n)+co-Pi(H* =), (1.14)

0<n<oo

so that if P;(HA = o0) > 0, then k! = oo. In other words, E;(H”) = o when there is
a positive chance the chain starting from i never enters A.
The basis for calculating the hitting probabilities is provided by

Theorem 1.3.1 Given A C I, the hitting probabilities h?* give the minimal non-

negative solutions to the following linear system

1’ €A,
D Pijh?, otherwise. (1.15)
jel
That is, if g; > 0 is any solution of (1.15), then g; > h, i € I

Proof Recall that k! is calculated for Xo = i. When i € A, H* =0, so k! = 1. If
i€ A, we have H* > 1, and

no= Y Pi(H <o X = j) =Y Pi(Xi = j)Pi(H" < oo|X; = )
Jjel Jjel
= zpu H <°° zpijh?a
J
by the Markov property.

Now take any non-negative solution g;. Fori € A, g; = hlf-‘ =1.Fori €A,

8 = zpljgl 2pl]+2pljgj

JEA JEA
= zpij+ zpij ZijJr zpjkgk
jeA jeA keA kA
= Pi(Xi €A)+Pi(Xi €A X2 €A+ D, pijpik8k-

JEAKZA
By repeated substitution, for all n,
g = ]P),‘(Xl EA)—l-"-—l-Pi(Xl %A,...,thl gA,Xn EA)

+ z Z pijlple-Z.”pjnfljngjn’
jlgA jtng
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As g; > 0, omitting the last sum makes the right-hand side smaller. The first n
summands give P;(HA < n). Hence

g >P;(H* <n), foralln>0.
Then
8i = I}i_rgIP’i(HA <) = By(H < o0) = I,
|

In general, equations, even for more intricate hitting probabilities, give us a
powerful tool, especially when a symmetry of a DTMC can be used, as we shall
now see.

Worked Example 1.3.2 Construct a graph on seven vertices as follows: take a
regular hexagon and join opposite corners by a straight line; let the vertices be the
corners of the hexagon together with the point at the centre; let the edges be the
perimeter of the hexagon together with the lines joining the corners to the centre.
At discrete intervals a particle moves from one vertex of this graph to one of the
adjacent vertices at random, and independently of past moves. Suppose the particle
starts at a corner A. Find the probability that the particle will return to A without
hitting the central vertex C.

Solution See Figure 1.8. Set
h; = IP;(hit A before C).

Then the probability in question is s, and by the symmetry of paths to A,

2
hAzghB.
Now,
1 1 1 1
hg=—+—=-hp, hp==-h —h
B 3+3 D; D = 3 B+3 E;
D__E
B%
A

Fig. 1.8
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and again by symmetry,

2
hE — § hD.
Then
1 2 . 3
hD—ghB+§hD7 1.e. hD—?hB.
Next,
1 1 . 7

hB—§+?hBa 1.€. hB—E.

Hence, ha = 7/27. O

Example 1.3.3 Consider the birth-and-death process in Figure 1.3b. Set h; =
IP;(hit 0). Then h; is the minimal non-negative solution to

h() = 1, h,‘ :p/’lH_] +(1 —p)h,‘_], i> 1.
For p # 1/2, this is solved by

1—-p i
hi=A+B|——) .
p

If p < 1/2, minimality and non-negativity imply that B=0and A = 1, with i; = 1.
If p > 1/2, the conclusion is that A = 0 and B = 1, with

h; = <1—p> )
p

For p = 1/2, the solution has the form
h; = A+ Bi,

and again the minimality and non-negativity imply that B =0 and A = 1, with
h,‘ =1.

Note that 4; is the extinction and 1 — A; the survival probability (conditional on
Xo = i). Therefore, the survival probabilities are

- (1—71’) i>0, forpe(1/2,1]
0, for p € 10,1/2].

Every moment dies a man,
Every moment 1% is born
C. Babbage (1792-1871), English mathematician
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If we move to the process in Figure 1.3c, the equations become state-dependent:
ho=1, hi = pihiy1+ (1 —pi)hi—y, i>1.
We solve them by considering the differences
up = hi—y — hi, with piui1r = (1— pius,

and

U1 = i ’ ujp.

I_Piu _l=pil=pir 1-p
Pi Pi Pi-1 P1
Set 1 = ((1 = pi=1)/pi=1) -+ (1= p1)/p1); then, as,
up+---+u; = ho—h;,
we obtain

h,‘zl—A(’)/o—l—-"—}—’)/l‘,l).

Here 1 = 1 and A = u,. The constant A has to be determined from the condition

of non-negative minimality:
~1
A=Yn] .
>0

That is,
1, if Y yj=oo,
h; = Jj=0
(2%/ Tw) if Ly<
jzi j=0 j=0

In particular, in the second case, h;+1 < h; and lim;—./; = 0. The survival
probabilities become

- <27:i%/27:0w), if I707 <ee,
0 if T50% =

We proceed to consider the mean hitting times k'. We have
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Theorem 1.3.4 Given A C I, the mean hitting times k! give the minimal non-
negative solutions to the following linear system

0, icA,

ki = 1+ 3 pijk}, idA. (1.16)
JgA

That is, if g; > 0 is any solution of (1.16), then g; > k‘l4 foriel.

Proof Like hﬁ‘ before, the expected hitting time k2 is calculated for Xo = i. When
i €A, wehave HA = 0,50 k! =0.1f i ¢ A, then H* > 1, and
E;(H" X, = j) =1+E;H
by the Markov property. Thus,
k' =E(HY) = Y E(H'1(X) = j)) = D Pi(Xi = E(H X1 = j)

Jel J
=1+ Y Pi(X) = JE;(HY) =1+ pijkl.
j#A jeA

Now let g; be any non-negative solution. Then g; =k =0 fori c A. If i € A,

4
gi=1+Y pijgi=1+, pij <1+ ijkgk> :
JEA JEA k¢A
Writing 1 as P;(H* > 1) and ¥ ;44 p;; as P(H* > 2), obtain
g =Pi(H > 1)+P;(H* >2)+ Y pij . pjxg-
J¢A k¢A
By repeated substitution, for all n,

g = P(H >+ +PH =n)+ Y Y piiPiis Pinrin&in
jlgA JngA

>P(H* > 1)+ -+ Pi(H* > n)
since g; > 0. Then, as n — oo,
g > Y Pi(H' >n) =EH" = k.
n>1
|
Note that in some cases the only non-negative solution to (1.16) is k! = o0, i € A.

As in the case of the h‘;‘s, (1.16) can be efficiently used, especially when the system
has symmetries.
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Example 1.3.5 For the birth-and-death process featured in Figure 1.3b, set k; =
IE;(H®), the expected time of hitting 0. Then k; is the minimal non-negative solution
to

k():(), ki:1+pki+1+(1—p)ki_1, iZ 1.

The general solution here is of the form k; = A + Bi; the constants A and B are given
by A=0,B=1/(1—2p). However, for p > 1/2, there is no finite non-negative
solution. Hence, fori > 1:

o i/(1-2p), for 0<p<1/2,
b oo, for 1/2<p<I1.

Worked Example 1.3.6 A flight of stairs has N steps. A frog starts at the bottom
of the stairs and tries to jump to the top, making a series of independent jumps as
follows. When the frog is on the ith step (0 < i < N) it succeeds in jumping up to
step i+ 1 with probability o (0 < o < 1/2), but with probability ¢ it falls down to
step i — 1 and with probability 1 —2¢ it lands again on the ith step. When the frog
is at the bottom of the stairs (on step 0) it succeeds in jumping up to step 1 with
probability 8, 0 < B < 1, but with probability 1 — f3 it remains where it is. What is
the expected number of jumps before the frog reaches the top of the stairs?

Suppose that the same frog starts N steps below the top of an infinite flight
of descending stairs. What now is the expected number of jumps before the frog
reaches the top of the stairs?

Solution The system of equations for the [0, N] flight is

kv =0,
ki = 1+O€ki_1+(1—206)ki+06ki+1, ISiSN—l,
ko =14 (1—B)ko+ Bki.

Here, the general solution is
)
ki=A+Bi——1i°,
200
and the boundary conditions at i = 0 and N yield

N2—i2 N—i N-—i
ki: - + ’
20 20 B

with
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For infinite stairs, A + Bi — (i>/20) cannot be maintained non-negative. Hence,
j = ©°. |

Worked Example 1.3.7 Consider the Markov chain with state space
{1,2,3,4,5,6} and transition matrix

0o 0 1/2 0 0 1/2
1/5 1/5 1/5 1/5 1/5 0
1/3 0 1/3 0 0 1/3
1/6 1/6 1/6 1/6 1/6 1/6

o 0 0 0 1 0
1/4 0 1/2 0 0 1/4

Determine the communicating classes of the chain, and for each class indicate
whether it is closed or not.

Suppose that the chain starts in state 2; determine the probability that it ever
reaches state 6.

Suppose that the chain starts in state 3; determine the probability that it is in state
6 after exactly » transitions, n > 1.

Solution The chain structure is represented in Figure 1.9.

States 1,3,6 form a closed class, 2,4 a non-closed class, and state 5 is absorbing
(and forms a closed class). If #; = P;(hit 6) then 7; = h3 = 1, and

1 1 2

hh = =-h - h —
2 5 2+5 4+5,
hy = h+1h+1
4 64 62 27

Fig. 1.9
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whence hy = 13/19, hy = 14/19. Hence, the answer

13
Py(hit 6) = 5.

Now, on class {1,3,6}, the transition matrix is
0 12 1)2

1/3 1/3 1/3
1/4 1/2 1/4

To find its eigenvalues solve

—u (1/2) (1/2)
det | (1/3) (1/3)—p  (1/3) | =0,
(/4 (12) (/4 -u

ie.
7 9 1 5 1
3 2 2
Wi gk = )<“ +12“+24> ’
with
IS S
Hr=1, = 4’ H3 = 6
This yields
n n
W _prp(- L) 4oL —0,1
P3¢ + ( 4 + 6 , n I PR
Atn=0,1,2
A+B+C=0,A 1B 1C—1
ST 4T 6 ¥
1 1 13
A+ —B+—C=—
+16 +36 36’
giving
12 4 8
A== B=-,C=—-
357 57 )
with



1.4 Strong Markov property 35

1.4 Strong Markov property

Restore my Strong Markov property!
(From the series ‘When they go political’.)

The strong Markov property asserts that the process begins afresh not only after
any given time »n but also after a randomly chosen time. An example of such a time
is H', the time the chain hits a given state i € I. More generally,

Definition 1.4.1 A random variable T depending on Xy, X1, ... and taking values
0,1,2,...,00 is called a stopping time if the event {T = n} is described in terms of
random variables X1, ..., X, only, without involving X,,41,X;,12,. . ..

Pictorially, by watching the chain, you know when you should stop without
anticipating future states. The hitting time H“ is an example of a stopping time
as forn=0: {H* =0} = {Xy) € A}, and forn > 1

{HA=n} ={Xo € A,....Xo_1 €A, X, € A}.

When A is reduced to a single state i, the hitting time is often called the passage
time:

H/ =inf[n>0: X, = j].

Stop Man, Hit Woman
(From the series ‘Movies that never made it to the Big Screen’.)

On the other hand, the last exit time
A =sup[n: X, €A

is in general not a stopping time as the event {I* = n} requires knowledge of
XVH-I 7Xl1+27 s

Theorem 1.4.2 Let (X,,n > 0) be Markov (A, P) and assume that T is a stopping
time. Then, conditional on T < e and Xr = i, (X7.4,,n > 0) is Markov (8;,P). In
particular, conditional on T < o and Xy = i, the random variables X711, X142, ...
are independent of Xy, ..., X7—1.
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Proof Let A be an event determined by the chain before time 7', i.e. by Xo, ..., X7_1,
and B by the chain after time 7', i.e. by X711, ..., X7+, for some n. We want to check
that foralln > 1 andi € I: (i)

PANB|T < oo, Xr =i) =P(A| T < o0, Xy =i)P(B| T < o0, Xp =1i)

and (ii) the conditional probability P(B | T < e, X7 = i) is calculated as in the
(8, P) Markov chain:

IP(B‘T<°°,XT:l): 2 pijl..‘pjrzfljn‘
(o )EB

As in the proof of the Markov property, we first assume that A is of the form
{Xo =io,...,Xr—1 = ir—1} and B is of the form {X7| = ji,...,Xr1n = ju} for
some i, ...,ir—1,j1,---,Jjn € I. Given m, the event

AT =m}n{Xr =i} =An{T =m,X,, =i}
is simply
{Xo=1i0,.. -, Xin—1 = Im—1,Xm = i}

if T(io,...,im—1,i) = m; it is empty if T (ig,...,im—1,i) # m. Then the event
ANBN{T =m,Xr =i} =AN{T = m,X,, = i} N B has probability

2‘l'()pi()il o 'Pim,lipijl o 'pjnfljn I(T(l(), cee 7im717i) = m)
For a general B we have to sum over (ji,..., j,) € B:
XigPigiy *** Pigyi V(T (i0s- - sim—1,0) =m) D Piji = Pju -
(j17...7jn)€B

The sum 3(;, . i ep does not depend on m; it gives the conditional probability
P(B|T < oo, Xr =) and is indeed calculated as in the (§;, P) Markov chain.

For a general A we now sum over (i, ...,in—1) € A:

P(ANBN{T =m,Xr = i}) X
Y. AiPigis - Pinsi W(T (0, - yim—1,i) = m) P(B|T < oo, X7 =1i)
(iOw---,imfl)eA
=PAN{T =m Xy =i})P(B|T < o, X7 =1i).
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Summing over m then gives
PANBN{T < oo, X7 =i}) =P(AN{T < oo, X7 =i}) P(B|T < o0, X7 = 1i).

Finally, dividing by P(T < e, X7 = i) yields that the conditional probability P(A N
B | T < oo, Xr =1i) equals
PAN{T < oo, X =i})
P(T < oo, X7 = 1)
=PA| T <o Xr =i)P(B | T < oo, Xr =1i)

P(B’T < oo, X7 = i)

as required.

The conditional probability P(AN{T = m,Xr =i} NB | X,, = i), given that
X, = i, is obtained after division by P(X,, = i) = (AP™);: the ratio is determined
by Xo, ..., Xin, and the conditional probability

P((AN{T =m}) N {Xr1 = j1,- . Xr4n = jn} | Xn=1)
=P((AN{T =m}) N {Xpnt1 = j1s- -, Xnin = ju} | X =1).
By the Markov property we have the decomposition:

P((AN{T =m}) N { X1 = j1,- . Xonin = Jjn} | X =1)
=PAN{T =m} | Xpu=10) PXons1 = jis-- s Xongn = Jin | X =1)
=P(AN{T =m} | X =1) piji = Pjorjn-

Hence, the unconditional probability
P((AN{T =m}) N { X1 = j1,- - Xsn = jn} N{Xn = i})

=P((AN{T =m,Xpn = i}) N {Xpns1 = J1,- -, Xonsn = jn})
=PAN{T =m} | Xpn=1) P(Xn =10)Pij,*** Pjr_vri

Summing over m yields
P((AN{T < oo X7 =i} N {Xr41 = j1,- -, Xr4n = jn})
=PAN{T <o, X7 =i}) piji = Pju1ju
and, dividing by P(T < e, X7 =),
]P)(Aﬂ{XT_H = Jly. s XT4n = Jn} ’ T <oo X7 = l)
=P(A[{T <o, X7 =i}) pijy = Pjy 1)

Finally, for a general event B determined by X74{, ..., Xr4, we sum over
(J1s--+sJn) €EB. O
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Worked Example 1.4.3 In the homogeneous birth-and-death process (see Exam-
ple 1.3.5), what is the distribution of the hitting time H® = inf {n > 0: X, = 0}
(the time to extinction)? In other words, what are the probabilities P;(H® = k) for
given i and k?

Solution This can be found by calculating the probability-generating function
0:(5) = Ei (s"") = Socpces Pi(HO = ),
By the strong Markov property,

9i(s) = (6(s))', i>1,

where ¢(s) = ¢;(s). Thus it suffices to analyse the case i = 1. Then, given that
Xo = 1, we see that ¢ (s) is a root of the quadratic equation

ps¢> —d+gs=0,

given by
1
¢(s):2—(1—\/1—4pqs2>, 0<s<l.
DS
U

Example 1.4.4 The strong Markov property is very useful when you observe the
chain (X,,) only at certain times, for example, when it changes its states (i.e., when
X,+1 # X,,) or enters a subset J C I (i.e., when X, € J). The new chain is formally
described by introducing the sequence of observation times Ty, 71, . . ., Viz.

Ty=inf{n>0: X, #X,_1}, or y=inf{n>0: X, € J},
and
Tu=inf{n>T,: X, #Xy—1}, or Ty =inf{n>T,: X, €J}.
Then the chain (¥,,n > 0) is defined by ¥, = X7, .

In either case, each 7;, is a stopping time. Assuming that 7;, < oo for all m, the
strong Markov property guarantees that (V) is indeed a DTMC. The transition
probabilities pfj for the new chain are straightforward: in the first model

pii = I_Pii. i,jel, (1.17)

and in the second model

pi=pii+Y Y pijpg, for i, jEJ. (1.18)
k21 jy,...,jx€l\J
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PJJ PJI\J

PI\JJ njnJ

P

Fig. 1.10

Here P = (p;;) is the transition matrix of the original chain (X,).

The first model, with Y, | # Y,,, is called the jump chain (for the original DTMC
(X»)); this model will play an important role in the analysis of continuous-time
Markov chains in Chapter 2. The second model, with Y, € J, is called a partially
observed chain. For the partially observed Markov chain, the transition proba-
bilities piyj can be written in terms of matrix blocks P/, P/ \ , P! W and pIVIV

extracted from the transition matrix P:

-1
pl?’j = (pJJ)ij+ |:PJI\J (II\J_PI\JI\J> PI\JJ] ijed. (1.19)
ij
Here I\ ; stands for the identity matrix over I\ J. See Figure 1.10.

1.5 Recurrence and transience: definitions and basic facts

The eternal silence of these infinite spaces terrifies me.
B. Pascal (1623-1662), French mathematician and philosopher

Recurrence and transience are important properties of DTMCs with countably infi-
nite state spaces. In this book, we prefer to pass from a finite to a countable case
in a rather casual way: we just extend basic definitions to the case of a countable
state space I. Of course, this requires infinite transition matrices P = (p; i, jel );
we have seen such matrices before (see page 21). The theory of infinite matrices
is more subtle than the theory of finite matrices; some of its important aspects
require working with infinite-dimensional spaces. We will not sail too far in these
directions, focussing on properties that are either direct generalisations of their
finite-dimensional counterparts or have an intuitively clear probabilistic meaning.

Definition 1.5.1 Given a state i € I, we call it recurrent if

P; (X,, = i for infinitely many n) =1, (1.20)
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and transient if
P; (X,, = i for infinitely many n) =0, (1.21)
ie.
P; (Xn = i for finitely many n) =1.

Note that in Definition 1.5.1 no intermediate value of the probability (i.e. strictly
between 0 and 1) is mentioned. This is clarified in Theorem 1.5.2 below. Set

f; :="P;(X, = i for some n>1) (1.22)

Theorem 1.5.2 Statei is recurrent if f; = 1 and transient if f; < 1. Therefore, every
state is either recurrent or transient.

Proof A useful random variable is the hitting/passage time of state i (in our context
it could also be called the return time to state i):

Ti=infln>1:X,=1i, (1.23)
with
fi =Pi(T; < ). (1.24)

Then, as was noted, the random variable 7; is a stopping time. By the strong Markov
property,
IP; (X,, = i for at least two values of n > 1) = f7,

and more generally, for all &

IP; (X, = i for at least k values of n > 1) = 1k, (1.25)

4

Denote by B,(ci) the event that X,, = i for at least k values of n > 1. Then, obviously,

events B,(j) are decreasing with k: Bgi) D) Bg) D ..., and the event that X,, = i for

infinitely many values of n is the intersection ;> B,((i). Hence,

lim P(B\"), (1.26)

B k—o0

P; (X,, = i for infinitely many n)

which equals 1 when f; =1 and 0 when f; < 1. O

O the heavy change, ...

Now thou art gone,

and never must return!

J. Milton (1608-1674), English poet
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It is worthwhile to introduce yet another random variable (which will be used quite
often)

V; = number of visits to i = Y 1(X, =1). (1.27)

n>0

Equivalently, V; counts the total time spent at state i (including initial time O when
appropriate). Equation (1.25) can be re-written as

fE=Py(Vi > k). (1.28)

An important parameter is the expected value E;V;; more precisely, the formula

EVi= Y Pi(Vizn) =Y f (1.29)
n>1 n>0
On the other hand,
IE:iVi: ZEil(Xn:i) = zpz(zn)’ (1'30)
n>0 n>0

here, p(p) =1as P’ =1, the identity matrix. From (1.29), (1.30) we see that the

ii
following assertion holds true.

Theorem 1.5.3 The state i is recurrent if

Y pl) = oo, (1.31)
n>0

and transient if
3 i < oo, (1.32)
n>0

Proof According to (1.29), (1.30), the sum ¥, pl(l" ) coincides with the sum of
the geometric progression ¥~ fi'. The latter is finite when f; < 1 (and equals
1/(1— 7)), and infinite when f; = 1. O

Theorem 1.5.3 will be repeatedly used in the analysis of recurrence and
transience of states of various chains.

An alternative proof of Theorem 1.5.3 exploits the probability-generating
functions of a random variable 7;. Set

fi(n) =Py(T;=n)=P;(X,=ibutX, #iforl=1,....n—1),n>1, (1.33)
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and
F(z)(=F(2) =E"= Y 2'fi(n), |2/ <1 (1.34)
n>1
then f; = lin}F(z).
—
On the other hand,

P = Pi(Xy = i) = fi(n) + filn— Dpi+--+ fi(Dpy " (1.35)

this implies that if
U(R)(=Ui(2) = 3. p7", |2 < 1, (1.36)

n>1

then
F(2)
1-F(z)
Hence, the limiting value th (z) is finite if and only if hmF (z) < 1. That is,
(1.32) holds true if and only 1f fi<L

U(z) =F(z) +F(2)U(z), ie. U(z) =

We conclude this section with the following remark. Equation (1.21) can be
written as

Pi(Vi < o) =1, (1.37)
whereas (1.32) is
E;V; < oo. (1.38)

We see that if the random variable V; (the total number of visits to state i) is finite
with probability 1, then it must have a finite mean; the (more precisely, strong)
Markov property excludes an intermediate possibility where P;(V; < e) = 1 but
E,‘Vi = ©9°,

However, the situation is more subtle when we turn to the random variable 7;
(the passage, or return time to state i). We noticed that state i is recurrent if and
only if P;(T; < eo) = 1, i.e. the return time to i is finite with probability 1. However,
the mean E;T; (or equivalently, E}I} F'(z)) can be finite or infinite. This divides

recurrent states into two distinct categories: positive recurrent and null recurrent
(see Section 1.7).

Communicating classes for countable DTMCs are defined in the same way as
for finite chains. For convenience we repeat the definition:
Definition 1.5.4 States i, j € I belong to the same communicating class if pg.z)
(n)

and Pji

>0

> 0 for some n,n’ > 0. Again, the communicating classes form a partition



1.5 Recurrence and transience: definitions and basic facts 43

of the state space I, and, as some of them may be infinite, the number of commu-
nicating classes can also be infinite. Next, as in the finite case, a communicating
class C is called closed if i — j then j € C, for all i € C. Finally, we say that the
chain is irreducible if it has a unique communicating class (automatically closed).
In other words, in an irreducible DTMC, the whole of the state space [ is a single
(closed) communicating class.

Remark 1.5.5 Observe that if the state space [/ is finite, the definition of a transient
state coincides with that of a non-essential state (i.e., a state from a non-closed
communicating class). In other words, in the finite case every state from a non-
closed class is transient, and every state from a closed class is recurrent. However,
as we noted in Remark 1.2.6, in the case of a countable DTMC a closed class
can consist entirely of transient states, which are, from a ‘physical’ point of view,
non-essential. It shows that in the countable case the concept of transience is more
relevant than that of a closed communicating class.

Our aim now is to prove that recurrence and transience are class properties. This
means that if states i, j lie in the same communicating class then they are either
both recurrent or both transient. We therefore could use

Definition 1.5.6 A communicating class is called recurrent (resp. transient) if all
its states are recurrent (resp., transient).

Theorem 1.5.7 Within the same communicating class, all states are of the same
type. Every finite closed communicating class is recurrent.

Proof Let C be a communicating class. Then, for all distinct i, j € C, pg.”) > 0 and

PS?) > 0 for some m,n > 1. Then for all r > 0:

(n+m+r) (m) (r) _(n) (n_+m+r) (n)

Dii >pj;j pjjp; and pj; > ) (r) (m)

Pii Pij >

as the RHS in each inequality takes into account only a part of the possibilities of
return.

Hence
. p(n+m+r)
- o
Pij < =
Pij Pji
and, forr > n+m,
) = Pl .

Then the series Y, pg) and Y, pS.;) converge or diverge together.
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Now let C be a finite closed communicating class, and j € C. Then, with Xo =
j€C, X, € C for all n. Hence, there exists a state i € C visited infinitely often:

0 < Pj(V; = o0) = Py(T; < ) Pi(V; = o).

Then P;(V; = o) > 0, i.e. state i is recurrent. Then every state from C is recurrent.
O

Definition 1.5.8 A transition matrix P (and a (A,P) Markov chain) is called
recurrent (resp. transient) if every state i is recurrent (respectively, transient).

We conclude this section with one more statement involving passage, or return,
times.

Theorem 1.5.9 If P is irreducible and recurrent then each random variable T; (the
passage time to state j) is finite with probability 1. That is, P(T; < o) = 1 for all j
and initial distributions A.

Proof By the Markov property

P(Tj <o) = Z)LiP,-(TJ- < o).

Given i, take m with PE’T) > 0. Write
1=P;(V; =) <P;(X, = j for somen >m)
(obviously, there is equality here, but the inequality will also do). Further,

P;(X, = j for some n > m)
:ZP%)PJ‘(Xn = jforsomen>m | X, :k)
3

:%pﬁj{"@k(n <oo) < ;p%) —1.

We see that each summand pﬁ.’;:)IPk(Tj < 00) must be equal to p%); otherwise we

would have that 1 < 1. Therefore,

Fi(T; < 00) U = pli) e, By(T) < e0) = 1.

This is true for all i, hence for all initial distributions A. Also, it is true for all j. [J
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Worked Example 1.5.10 Suppose that P is irreducible and recurrent and that the
state space contains at least two states. Define a new transition matrix P = (p;;) by

(o if e,
Pij = e .
’ (1—pi)~tpij ifi#j.

Prove that P is also irreducible and recurrent.

Solution 1If P = (p;j) is irreducible then p; < 1 for all state i (unless the total
number of states is 1). The matrix P describes the Markov chain obtained from
the original DTMC by recording the jumps to the new state only; clearly it is irre-
ducible. Formally, take the sequence io, ..., i, as above, then p;,;,,, > 0. Now check
the recurrence of P: if in the ori ginal chain p;; = 0 then the return to state i occurs
in both chains on the same event, hence the return probability to state i will be the
same. If p;; > O then in the new chain, the return probability is equal to

1
1 —pii

x IP;(return to i after time 1 in the original chain)

— 1—ps

1 _ p” ( pll)
which is 1. Alternatively, hP = h if and only if AP = h, i.e. the solutions to both
equations are the same. Hence, the minimal solution to 2P = h with h; =1 is the
same as that to P = h. Therefore, it identically equals 1, and the new chain is
recurrent if and only if the original one is. O

1.6 Recurrence and transience: random walks on lattices

The only reason for time is so that everything doesn’t happen at once.
A. Einstein (1879-1955), German physicist

Random walks on cubic lattices are popular and interesting models of countable
Markov chains. Here we have a ‘particle’ that jumps at times n = 1,2,... from its
current position i € Z to another site j € Z¢ with probability pij, regardless of the
past sample trajectory. We will mostlgl focus on homogeneous nearest-neighbour
random walks where the probabilities p;; are greater than O only when i and j are
neighbouring sites and depend only on the direction from i to J (i.e. are determined
by po,; where j is a neighbour of the origin 0 = (0,...,0)). For d = 1 the lattice
74 is simply the set of integers; here a random walk (RW) is specified by the
probabilities p and ¢ = 1 — p of jumps to the right and the left.
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q9=1-p p p

O — P
} } } ' ' '

-1 0 1 2

Fig. 1.11

This is an intuitively appealing extended version of the drunkard model (or birth-
and-death process); see Example 1.2.3. Here, the state space is [ = Z(= Z!), and
the transition probability matrix is infinite and has a distinct ‘diagonal’ structure

, (1.39)

T ©

with entries p above and g below the main diagonal, and the rest filled with zeros.

If d = 2, then Z? is a plane square lattice; here we will consider the symmetric
nearest-neighbour RW where the probabilities of jumping in any direction are the
same and equal 1/4.

This is an infinitely extended two-dimensional version of the drunkard model.

If d = 3, then Z3 is the three-dimensional cubic lattice; we may think of it as an
infinitely extended crystal. Then our walking particle may model a solitary quan-
tum electron moving between heavy ions or atoms fixed at the sites of the lattice.
The probability of moving to one of the six neighbours equals 1/6.

One can also imagine a higher-dimensional model for any given d. Here, the
probability of jump equals 1/(2d).

Theorem 1.6.1 For d = 1, the nearest-neighbour random walk on 7 is transient,
unless p = g = 1/2, in which case it is recurrent.

Proof The DTMC in question is obviously irreducible, so it is enough to check

that the origin O is a recurrent state. We want to assess ., P(()’Z))- Observe that

w 0, n odd,

Poo = 4 (2k)! (1.40)
00 (k‘k)‘ pqu, n =2k even,
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0=(0,0,0)

Fig. 1.12

as we need to make an equal number of steps to the right and the left. By using
Stirling’s formula,

nl ~V2an 2 e, as n— oo,
we have
2k+1/2
@ _ (2k) k k 1 2k k 14
~ = — . 41
Poo T — (rq) (1.41)
Now,

1
pq:p(l—p)éz, 0<p<l,

and the only point of equality is p = ¢ = 1/2. In other words, p := 4pq < 1 for

1/2 and p =1 for p = 1/2. Consequently, with 0 o - k.
<eoo, p#£1/2,
Y ol 71 (1.42)
n =0, p= 1/2

O

Theorem 1.6.2 The nearest-neighbour symmetric random walk on Z¢ is recurrent
for d = 2 and transient for d = 3 (and also ford > 3).

Proof d = 2: again consider a fixed state, say 0 = (0,0). Every closed path on Z?
must have equally many jumps to the left and the right and equally many jumps up

and down.

Hence again p('g)) =0 when 7 is odd.

A useful idea is to project the random walk onto orthogonal axes rotated by 7 /4.
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The moves are in one-to-one correspondence:

old coordinates: chain (X)) new coordinates: chain (X))
move by vector +(1;0) >  move by vector & (1/v/2)(1;1)
move by vector £(0;1) move by vector & (1/v/2)(—1;1).

In the new coordinates, up to a factor 1/ /2, the jumps are along diagonals of the
unit square.

This means that the chain (X)) in the new coordinates is formed by a pair of
independent symmetric nearest-neighbour random walks on Z (in the horizontal
and vertical directions). Return to 0 = (0,0) means return to 0 in each of them.
Therefore, for n = 2k,

2
(2k) (2k)! 1 N 1
Poo = (k!k! 2% ) T mk (143)

Hence, Y p(()i)k) — oo, and the random walk is recurrent.
For d = 3, we still have p(()l)) = 0 when #n is odd. If n is even, a path returns to
0= (0,0,0) if and only if it makes equal numbers of jumps in each of three pairs

of opposite directions (up/down, east/west, north/south). So,

) (2k)! 1\
= 2 GRGR ()

i j+I=k

—(if?z z (/‘Lv)z(é)%

r+/+1 A

(

(2k)! 11 ko1
< — _—
=z \ M vzv 3k 22k ;0 il 3k

i jHi=k

Now, the sum

k!
) i =3 (1.44)
i,j,1>0: l]l
i+j+1=k

is the number of ways placing k balls into 3 boxes. Also, for k = 3m,

(3m)! S (3m)!

m!m!m! — iljl!

whenever i+ j+ 1 = 3m. (1.45)

In fact, suppose that i < m < I. Then when you pass to i!j!/! from (m!)3, you
either (a) replace the ‘tails’ (i+1)---m and (j+ 1)---m of m! by the product
(m+1)---(m+2m—i—j),ie., (m+1)---1 when j < m; or (b) replace the tail
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(i4+1)---m by the product (m + 1)---jm +1)---(3m — i — j); that is,
(m+1)---j(m+1)---1 when j > m. Either way you increase the denominator,
hence decrease the ratio.

Then, for n = 2k = 6m,

Gmy . (6m)! 1\ (Bm)! 1\
A< Gy (2) i 3) (140

which, by Stirling, is

1 \° 1
“ﬁ<m> —7 (1.47)

Hence, Y, Poo ) < 0. But for m > 1 we have P(()o > (1/6)*p 6m %) and p(()%m) >
(6m—4 B
(1/6)*piy" Y. ie.

6m—2 6m 6m—4
p(iom ) < 62p8£ ) and p(()om ) < 64p(()0 ).
Thus,
Zp <2p (1+6%+6%) < oo, (1.48)
and the walk is transient. |

A similar approach can be used in higher dimensions. But there is another way
to establish transience in all dimensions d > 3. Namely, project the random walk
(X4) on Z to three dimensions by discarding all coordinates but the first three. The
projected chain (X,f r°) ) on Z3 stays where it is with probability (d —3)/d (when
the original walk jumps in one of the discarded directions), but when it jumps, it
behaves as the nearest-neighbour symmetric walk in dimension 3:

P(X}jff_ziea\x,g’mj:;) :%:é’ o=1,23, (1.49)
with
= (1;0;0), > = (0;1;0), & = (0;0;1).
Clearly, if the original d-dimensional walk returns to 0 = (0,...,0), then the
projected walk returns to (0,0,0). Hence, if the original d-dimensional walk (X¢)

is recurrent then the projected chain (X,f roj) is too. But then consider the random

walk on Z> obtained from (X,[,’ o} ) by discarding the stays and recording the jumps
only. The latter is the nearest-neighbour symmetric random walk on Z> which is
transient. By Theorem 1.6.3 below, (X}f mJ) is also transient. Then so is (X¢).
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Nearest-neighbour symmetric random walks are often called simple walks. Re-
phrasing a famous saying, we could state that in two dimensions every road of a
simple random walk will lead you to the origin (or any other given site) while in
three dimensions and higher it is no longer so. The difference between two and
three dimensions emerges in virtually all domains of mathematics.

We conclude this section by analysing the relation between a general DTMC
(X,,) and its jump chain (Y, ) obtained when we record only the changes in the state
of (X,). Suppose that the transition matrix of (X,) is P = (p;;). Then for (¥,) the
transition matrix will be (p;;) where

0, i=
pij = ij C 1.50
V4 J ] Pij ’ l?é j. ( )
— Dii
Theorem 1.6.3 If the jump chain (Y,) is transient then so is the original chain (X,,).
Proof If (Y,) is transient then for all states i

fi = Bi((¥,) returns to i) < 1.

Now, for (X,,),

fi = IP’i((Xn) returns to i) = p;; + Zp,-jIP’j((Xn) hits i)
J#i
Dij ..
= pi+(1 —Pii)Z 1 Y P;((X,) hits i)
j#i LT Pii
< pi+(1—pa) 2}/7\,']' Pj((Yn) hits i),
J#i

because if (X) hits i from j then so does (Y,). The last expression may be written
fi<pi+(1—pa)fi<1.
Hence, f; < 1, and the chain (X,) is transient. O
We will return to this statement later on and give an alternative proof.
Worked Example 1.6.4 (i). Let (X,,Y,) be a simple symmetric random walk in

72, starting from (0,0), and set T = inf {n > 0: max{|X,|,|V,|} = 2}. Determine
the quantities ET and P(X7 =2 and Y7 =0).
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(ii). Let (X;)n>0 be a DTMC with state space / and transition matrix P. What
does it mean to say that a state i € I is recurrent? Prove that i is recurrent if and
only if Y~ pl(ln ) = oo, where pl(l" ) denotes the (i,i) entry in P".

Show that the simple symmetric random walk in Z? is recurrent.

Solution (1). If k; =E;T and h; = Pi(XTYT = 0) then

koo) = T+kip),
koo  k-1-1
oo = 14500 Fooy,
k(-10)
(—1,—1) + 5

hooy = h 10

1 hoo) | M-1-1)

hoo = gt T
h

~1.0
h1-1y = (2 ),

by conditioning on the first step, the Markov property and symmetry.
Hence,

9 1
ET =ko0) =7 hoo) =5
By symmetry,
1 1
IP)(XT =2 and YT = O) = Z h(070) = g

(ii) The state i is recurrent if f; = P;(T; <o) =1 where T; = inf{n > 1: X, = i}.
If V; is the total time spent in i then

Pi(Vizk+1) = Pi(Vi>k)Pi(Vi 2 k+1|V; > k)
= P(Vizk)fi=-=f"
Then
Ei(Vi) =Y P(Vi>k) =Y f.
k>1 k>0
On the other hand,

EVi=E Y 1X, =)= 3 pi.

n>0 n>0
Hence, f; = 1 if and only if ¥~ pfin) = oo,
Now let (X;) be a simple symmetric random walk in Z?2. It is irreducible, hence

it suffices to check that ¥, pl(l" ) = o for a single i € 72, say the origin (0,0).
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Write (XF) for the projection of (X,) on the diagonal {x = £y} in Z?. Then (X:*)
are independent simple symmetric random walks on %Z, and return to (0,0) in

(X,) means return to 0 in each of (X:F). Next,

2k\ 1
Pol¥=0)= (k) 2%

and
B9 — g (X5 = 0)Po(Xy =0
Poo = Po(Xy = 0)Po(Xy, = 0).
Then Stirling’s formula asserts that

2
2% V2 (2k)% 1 1
Q0 o | = — | =—, as k— o
Poo S\ A kR 2% | T wk :

Tk

Hence,
> o = ph =c

n>0 k>0

O

Random walks occupy a special place among Markov chains; their (often
strikingly beautiful) properties depend on the geometric and algebraic structures
(especially symmetries) existing in the state space (in the above examples, the
lattice Z4). In forthcoming sections, we will encounter examples of RWs on other
types of graphs and discover more aspects of the related theory.

1.7 Equilibrium distributions: definitions and basic facts

Time is a sort of river of passing events, and strong is its current;
no sooner is a thing brought to sight than it is swept by,

and another takes its place, and this too will be swept away.
Marcus Aurelius Antoninus (121-80), Roman Emperor

Let (X,,) be a DTMC with transition probability matrix P.

Definition 1.7.1 An initial probability distribution A is called an equilibrium dis-
tribution (also a stationary, or an invariant distribution) if it is preserved in time.
That is, for all j € I,

=P(Xo=j)=PXi=j)=-=BX,=j)=-. (5D

AsP(X,=j) =2, lipg;l) = (AP"),, this means that A = (4;) is an invariant vector
for P (that is, an eigenvector with the eigenvalue 1): AP = A.



1.7 Equilibrium distributions: definitions and basic facts 53

We will denote an equilibrium distribution (ED) by 7 = (7;) and use the equa-
tion TP = 7 without stressing it every time. Of course, the vector & satisfies two
properties: (a) entries 7; > O for all i € I (geometrically, this means that 7 lies in
the non-negative orthant of a Euclidean space); and (b), >,;m; = 1 (« lies on the
hyperplane orthogonal to the vector 1, with all entries 1, that passes through point
(1/11],...,1/|1])). If we have property (a), but property (b) is not satisfied, we
will use the notation u instead of 7 and say that y is an invariant measure (IM):
u= (), uP = u, w; > 0 for all states i.

One should not confuse two equations 7P = 7 (invariance) and Ph = h (the
hitting time equation).

Example 1.7.2 Consider the 2 x 2 transition matrix

P:<1§a 13B>‘

Then: (a) if o« + B > 0, it has a unique equilibrium distribution

"= (arpara)

(b)ifa =P =0then P= <(1) 0) , and every vector (x,y) is invariant.

1

Example 1.7.3 Let a,b > N, a,b,N € Z. . Consider a birth-death Markov chain
onn=0,1,...,N with

Ay = (N —n)(a—n), u, =n(b— (N —n)).

Show that the equilibrium distribution is hypergeometric

() (")
i) \N—i
=, i:O,l,...7N.
a+b
(V)

The non-uniqueness of an ED may occur when the chain has more than one
closed communicating class. It may have equilibrium distributions supported by
different closed classes. See Figure 1.4. An open communicating class cannot sup-
port an equilibrium distribution as m; always vanishes for states i from open classes.

The multitude of closed communicating classes is the only source of non-
uniqueness of an ED, and an irreducible transition matrix P has at most one ED

(i.e. one or none). A finite irreducible matrix P always has a unique ED.
Next, if P is (countable) irreducible and transient then it has no ED.



54 Discrete-time Markov chains
Furthermore, if P is irreducible and recurrent then two cases can occur:

(a) P has a (unique) equilibrium distribution 7. Then all probabilities 7; > 0.
In this case we say that P is positive recurrent.
(b) P has no equilibrium distribution. Then we say that P is null recurrent.

More precisely, every irreducible recurrent matrix P has an IM p, with uP =
u and all entries y; > 0. But the series Y ;c;1; may converge or diverge, and in
Definition 1.7.6 below we distinguish two cases:

z Ui < eo: P positive recurrent,

1
Y uj=-co: P null recurrent.
7

Note the following. Solutions to 4P = p admit addition ((u; + tp)P = P+ 1 P)
and multiplication by a constant ((cu)P = c(uP)). Hence we can compute
,LL,-/Z,/.LJ- =m to get X;m; = 1 (when X;u; < e). We will see that for an
irreducible chain all IMs u are proportional to each other: y’ = cu. In particular,
they all have y; >0 foralli e I.

We now turn to the proof of the above properties. The key statement here is
Theorem 1.7.4. Set

Ti—1

Yik = Ekzl(Xn:i)
n=0

Ex (number of visits to i before returning to k),
= if i £k (with 1 <n < Tp), (1.52)
1, if i = k (from n = 0).

Here, as in (1.23), T} is the return time to state k:
Tr=inf[n>1: X, =k|. (1.53)

Then 0 < yl" < 0. Consider vectors Y = (}{‘, i € I), parametrised by k € I. Observe
that

Sy = 1+ Y, Ei(number of visits to i before returning to k)
i€l iel:i#k
= 1 +Ek(Tk_ 1) = E;Ty. (1.54)

Theorem 1.7.4 (a) For all states k

()/‘P) = Z%p,-j = }/;, j # k (invariance), (1.55)
J iel '
and
()/"P)k = Zﬁpik < 1=19 (sub-invariance). (1.56)

icl
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(b) We have that ()/CP) . = 1 ifand only if k is recurrent. Hence, the vector '
is invariant: Y* = Y*P if and only if the state k is recurrent.
(c) If P is irreducible and recurrent then

0 < ¥¥ < oo for all states i,k € I.

Hence, for an irreducible and recurrent matrix P, the vector ¥* is a ‘genuine’
invariant vector with strictly positive and finite entries.
Proof (a) By the Markov property for all m > 2 and states i # k and j # k,

Py (Ti >m—1, X1 = i) pij = Pe (Te >m—1, X, =i.Xn = j),  (1.57)
and

Pk (Tk >m—1,X,_1 = i)P[k =P (Tk =m,Xpu—1 = i) . (1.58)
Then, for j £k,
o= B Y, 1Xu=j)= Y Ed(X,=j,Ti>n)

0<n<T;—1 n>1

= Y Pe(Xy=j,Ti >n)

n>1
= pijt Y DB (Ti>n—1,X 1 =i,X, = ))
n>2i:i#k
= p+ D, O Pu(Te>n—1,X,1 =i)pij by (1.57)
n>2ii#k
= Y+ Y D EL(T>nX,=i)p;= (7/(1’) -
fritkn>1 j

Further, for j =k,

(7/<P>k = Y ¥pw="Yprw+ Y ¥

iel initk
= put 2 Ee| Y, 1X.=1i) | pic
ik 1<n<T;
= put , 2 B (T >n.X, =) pi
iitkn>1
= put Y, X Pi(Ti=n+1,X,=1i) by (1.58)
ii£kn>1
= pu+ Y Pi(Ti=n)
n>2
= sz(Tk:n) ZPk(Tk<°°) =<1 :’/k(.
n>1

Observe that so far we have not used recurrence.
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(b) From the last equation, ()/‘P) , = 1 if and only if f; =1, i.e., the state k is
recurrent.

(c) If P is irreducible then for all i,k € I there exist m,n > 0 such that pf,':) >0
and p,(;") > 0. Assuming that P is recurrent, the vector ¥* is invariant and hence

YEP" = ¥k P" = 94X, So,
WAL CAE
I

On the other hand

_ 1
1=9 = Z%PZ(Z) 2 YikPl(/?)a ie, Y < Ol
! ik
O
Theorem 1.7.5 Suppose that u = (u;) is an IM: thus uP = p and y; > 0 for all
i € I. Suppose in addition that y, = 1 for some given state k. Then: (a) for all i € I,

> v
(b) for an irreducible and recurrent matrix P, we have

W= forall iel

Proof (a) Invariance plus the fact that g, = 1 imply that, for all j € Iandn > 1,

Hji = Zuzpu L pj+ D, Mipij = pij+ X, D Hupiipij

i ik i#k 1
= ij+2]?kipij+22ﬂlplipij=
i#k ik Ik
= ij-i—ZPkiPij-i-"'-i- Z Dkiy -+ - Pin_1j
ik ityoin_1 7k
+z 2 Hipiiy -+ - Diy_yj-

i1 yeesin— l#k

Now, the non-negativity implies that the last expression is

>Pe(Xi =5, Ti > 1)+ P (Xp = j, Ti >2) +---
‘Hpk( n—]aTk>n)

which tends to yJ" as n — oo,

(b) Now let P be irreducible and recurrent. Then 7 is invariant: Y*P = ¥*. Then
I = p —7¥ is also invariant: I = fLP, and, owing to (a), non-negative: f; > 0 for
alli€l.But, fori=k, =~y =1-1=0.

Next, given i € I, there exists n > 1 with pl(,':) > 0. Then, as

0= =Y fupy > Fipy,
1
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we obtain that [I; = 0. Hence, I = 0 and u = y*. O

We see that for an irreducible recurrent chain, everything is fixed by the condi-
tion Wi = 1. More precisely, if ¢ is a non-zero IM, i.e. uP = u, y; > 0 and ;. >0
for some state k, then

= ey~

This implies that all non-zero IMs are proportional: g’ = cu. Next, every non-
zero IM has all entries finite and strictly positive. In particular, all vectors y* are
proportional:

vy =7, ikel (1.59)

Now, for an irreducible recurrent chain, we have two cases: (i) all non-zero IMs
have

Yy <eo, (1.60)
jel

and (ii) all non-zero IMs u have
Y uj=ce. (1.61)
jel

Definition 1.7.6 In the case (i) we call the irreducible Markov chain (or matrix P)
positive recurrent, and in case (ii) null recurrent.

If the number of states |I| < oo then the case (ii) is impossible. Hence, an
irreducible finite DTMC is always positive recurrent and has a (unique) equilib-
rium distribution 7 = (7;). Furthermore, equilibrium probabilities 7; are strictly
positive.

We now see that, in general, when P is positive recurrent then normalising
M / YU = m; yields a (unique) equilibrium distribution. It has all 7; > 0. Then
¥ is recovered by division:

1 . Tt
V—amLm%—a. (1.62)

In other words, we obtain the following

Theorem 1.7.7 In an irreducible positive recurrent chain with equilibrium
distribution 7, for all states k # i

T

Ey (the number of visits to i before returning to k) = — (1.63)
k

For i = k we obtain
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Theorem 1.7.8 In an irreducible positive recurrent chain with equilibrium
distribution m, for all states k,

. 1
my, := [E; T}, = the mean return time to state k = — < oo, (1.64)
To

Proof In (1.54) we observed that

ExTi = 1+E (T —1) =1+ 2;{‘:2;{(@0.

ik i
Hence,
T 1
my = =
i T T,
implying that my = 1/m. O

Our results in this section are summarised in Table 1.1.

1.8 Positive and null recurrence

Not to know what has been transacted in former times

is to be always a child.

If no use is made of the labours of past ages,

the world must remain always in the infancy of knowledge.
Marcus Tullius Cicero (106—43 BC), Roman orator and statesman

Throughout this section we work with initial distributions A = &;, i.e. consider
DTMC:s starting from a particular state, and use the above notations PP; and E;. The
state space [ is assumed to be countably infinite (and further specified in examples
below). For simplicity, we omit reference to I: statements of the type ‘for all i’
mean for all i € 1, and we assume that the transition matrix P is irreducible.

We begin by elaborating Definitions 1.5.1 and 1.7.6. Recall

Ti:min[nZI:Xn:i]

stands for the return time to state i.
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(I)  Irreducible DTMCs with more than one state have transition
probabilities 0 < p;; < 1 for all states 7, j € I (no absorption).

(II) Anirreducible DTMC (X,,) can be transient or recurrent:
(i) Transient: IP; (return time 7; < oo) <l1,ie. IP’i(Y} = oo) >0,
for all i € I. Equivalently:
PP; (i is not visited in (X,,) after some finite time) = 1

and anopﬁ,-" )
h;l} =P; (hit i) < 1, for some states j and i.
(ii) Recurrent: P; ( return time 7; < o) = 1,
ie., IP’,-(Ti = <><>) =0 for all i € 1. Equivalently:
PP; (i visited in (X,,) at arbitrarily large times) = 1
and 3,-0p\)” = oo, for all i € I. Equivalently: 4" = P, (hit i)
=1, for all states j and i. In this case, for all i, the vector
Y= (y;) from (1.62) has 0 < }/j < oo and gives an IM for (X,,);
all such IMs are of the form o.y'. In particular,

vector ¥ = (/)7 x vector ¥/, for all states i, k.

< oo, for all i € I. Equivalently:

(II)  Next, an irreducible recurrent DTMC can be
(i) Null Recurrent: m; = E;(return time 7;) = oo,
for all i € I; in this case there is no IM p = (y;) with ¥ ; t; < eo.
Hence, there is no ED.
(ii) Positive Recurrent: m; < oo, for all i € I; in this case any
invariant measure { = (u;) has ¥ ; ; < o, and there exists
a unique equilibrium distribution 7 = (7;),
where 7; = (;/; 1t;) > 0. In this case, y* = m 7. Furthermore,

ET;, = P and E;(time at k before T;) = %7 for all states i, k.
Finite irreducible DTMCs are always PR.

Table 1.1

Definition 1.8.1 Set f; = P; (T; < o) and m; = E;T;. A state i is called

recurrent (R), if  f; =1; equivalently, Y, pl(ln ) = oo, Or
P; (Xn = i for infinitely many n) =1,
positive recurrent (PR), if m; =E;T; < oo,
null recurrent (NR), if m; =E;T; =0, but f; =1,
transient (T), if  f; < 1; equivalently, Y, pl(l" ) < oo, Or
P; (X,, = i for infinitely many n) =0. (1.65)

As these are class properties, in the case of an irreducible matrix P, either all
states are PR or all states are NR or all states are T.
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H . : I th return time to i

Ti( D: duration of [ th excursion to i

W@ time
Fig. 1.13
Definition 1.8.2 Given/=0,1,..., define the subsequent return (or passage) times
H(= H}) to state i by Hy =0, H; = T;, and
H=inf n>H_;+1: X,=i], [>1. (1.66)

The difference

(1.67)

70 _ H —H—y, if H_j <eo,
l 0, if H = 2,

gives the time between the (I — 1)st and /th return times to i, or the duration of the
[th excursion to states i, [ = 1,2,.... Obviously, 7}(1) = T;. See Figure 1.13.

May you always live in interesting return times.
(From the series ‘Thus spoke Superviser’.)

The above analysis of positive and null recurrence combined with the strong
Markov property leads to the following

Theorem 1.8.3 Assume that the chain (X,) is recurrent and let i be any state.
Under the distribution IP;, the variables Ti( ), Ti(z), ... are independent and iden-
tically distributed (IID) random variables, with positive integer values, finite with
probability 1. That is, for all k > 1 and positive integers ty, ...,

p(T(l)—tl, T = [] PiT;=1), and 2 Pi(T;=1)=1. (1.68)
1<I<k =12,
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Furthermore, the expectation

1/m;,  if the chain (Xj) is PR,
m; = E,T = (1.69)

oo, if the chain (X,,) is NR or T.

Here m = (m;) is the (unique) equilibrium distribution of the positive recurrent
DTMC (X,).

The example of IID random variables (RVs) Ti(l)7 Ti(z) ,... 18 quite intriguing, as
their (common) distribution is determined by the transition matrix P and varies in a
rather intricate way when we change P. Therefore, to analyse the sequence ( Ti(">),
one needs to develop a general theory of IID RVs (in particular, it was one of the
strong motives for a general theory of summation of IID RVs).

An example of a general statement about IID RVs which we will use in the next
section is the following ‘strong’ Law of Large Numbers (LLN) for the sequence
(1"

Theorem 1.8.4 Under the assumptions of Theorem 1.8.3, for all states i, with
probability 1, the average

%(Ti(l)JrTi(Z)Jr_”JrTi(n))

converges, as n — oo, to the expected value m; specified in (1.69); symbolically
(7;(1)+7;(2)+"'+7;(n)> /n Pi—as. m;. That is,

P; <lim1 y :mi> =1 (1.70)

Remark 1.8.5 In previous sections we have already used various properties and
facts that hold with probability 1; there will be more examples of this in the forth-
coming sections. It has to be said that some of these facts and properties are rather
delicate and require careful analysis. An example of such a property is convergence
with probability 1 in Theorem 1.8.4. (This property is behind the term ‘strong’, as
opposed to ‘weak’, LLN; see below.) The alternative term for this form of conver-
gence is ‘almost sure convergence with respect to the probability distribution IP;’,

D . . Pi-as. .
which is reflected in the notation '—" that we often use. When the probability
distribution in question is specified from the context, we write 5. We will discuss
properties of convergence with probability 1 in more detail in Chapter 3.

Remark 1.8.6 We want to stress that the statement of Theorem 1.8.4 holds in
‘full generality’, regardless of whether the value m; is finite or infinite, let alone
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existence of a finite second moment IE(TI.(I))2 or finite higher moments IE(TI.(U)",

n > 3. In fact, the assertion of Theorem 1.8.4 holds in a much wider context of
ergodic processes.

We will not discuss here the proof of Theorem 1.8.4; the interested reader is
referred to more advanced books, e.g., Grimmett & Stirzaker, 1982, Stroock, 2005.

Example 1.8.7 Random walks on Z¢

(a) Symmetric nearest-neighbour random walk. We know that the symmetric
nearest-neighbour RW on 74 (also called the simple RW) is recurrent for d = 1
and d = 2 and transient for d = 3. First, consider d = 1. The invariance equations

read

1 1 .
i = 5 Mol + 5 it i €Z,

and have an obvious non-negative solution m; = 1 (which is unique, up to a positive
factor). As Y ;<7 1 diverges, the walk is null recurrent.
Hence, any IM A > 0 has A; = const > 0. Then, for all { # k,

v =Fy (number of visits to i before returning to k) =1.
[You may find this surprising since it might be expected that
L< % <Moo <o

More precisely,

PPt (number of visits to i before returning to  is n)

1 2 1 n—1
=\ 57—~ l— —— s
(a=3) (=23)
see Worked Example 1.8.9 below. Also
my = Ey(return time to k) = o, k € Z.

For d = 2, the invariance equations are similar

1 . ..
iy in) = ZZ (n(ilztl,iz) + ”(il,izil)) , i=(i,i2) € 72,

and again have 7; = 1 as a solution. Hence, the walk is null recurrent, and as before,

yl.kzl.

For d =3, m; = 1 is still an IM (this remains true for all d). However, as the walk is
transient, the vectors y’i are sub-invariant, not invariant. Hence, it is no longer true
that ylk = 1, although my is still = eo.
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(b) Asymmetric nearest-neighbour random walk on 7. Here the invariance equa-
tions are

T, = pTi—1 +(1 _p)niJrl) i€ Za

and p # 1/2. The RW is transient. A general non-negative solution

i
n,-:A—l—B<p>
I=p

contains two parameters, A, B > 0, and violates Y ; ; < oo. We see that not all IMs
A are proportional. Again, the y¥ are sub-invariant, not invariant. Also, it is not true
that ¥ is of the form 2;/A for some IM A. But again my, = o, as

1 — fi = Pi(no return to k in a finite time) > 0.

Example 1.8.8 (Homogeneous birth-and-death process) This is a RW on the state
space Z; = {0,1,2,...}, with

piit1 =D, pi-1=1=p,i>1, por =¢q, poo=1—g¢,
where 0 < p,q < 1. Consider the case 0 < ¢ < 1 and 0 < p < 1, when the chain is
irreducible. Then the answer is

p <1/2: positive recurrent,
p=1/2: null recurrent,
p>1/2: transient,

regardless of g.
In fact, the invariance equations

T =pmi—1+ (1 = p)igr, i>1,

m =qm+(1-p)m,

m=(1-qg)m+(1-p)m,
still admit the solution ;; = A+ B(p/(1—p))', i > 0.
For p < 1/2, a further reduction seems reasonable: A = 0. Ati =0, 1 we obtain the
same equation

qmy = pB.

To normalise, write

1:B<Z+ P r 2_’_'”>:B<p+p/(1p)>

1—p (1-p) g 1-p/(1-p)
_ ,p(1-2p+q) nce g — 41 —2p)
=P i) B =)
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Therefore,
1-2p al p \'_ .
m=——, m=—(—| m,i>1,
T a+g-2p 7 p <l—p ’
and the chain is positive recurrent, as claimed.
Further, for p < 1/2,

7[.
7{‘ =T, (number of visits to i before returning to k) = ;l
k
» i—k
() . 0<ik<eo ik,
l-p)
p\l-p
p(1-p\*
()7 0=i<k<eo,
q p

and

1
my = Ey(return time to k) = g keZ,.

For p > 1/2, we have to consider f; = IP;(T; < o). Writing
P()(T() < °°) =1 —q+qIP’1(hit 0),
we see that if P (hit 0) < 1, the chain is transient. But

Pihiti—1) = =P > 1;
p
see Section 1.5. Hence, for p > 1/2 the chain is transient.
It remains to check the case p = 1/2. Here, f; = 1, and the chain is recurrent. The
invariance equations
= % i1 +% Tip1, i>1,
have the general solution ;; = A+ Bi, i > 1. Ati = 1,0 they have the form

1 1
M= qmo+ 5 M, m=(1—gq) o+ T

which yields B = 0 and
1
ﬂiEA, i> 1, 7'[0:*14,
29

and the non-negative IMs correspond to A > 0. We see that the inequality Y ; 7; < oo
cannot hold unless A = 0. Thus, the chain does not have an equilibrium distribution,
and hence is null recurrent.
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Then, for p = 1/2, (i) all non-negative IMs A = (4;) are proportional to each other,
and each such measure different from O has A, =A > 0fori> 1 and Ay =A/(2q) >
0. Furthermore, (ii) all vectors }/< , k > 0, must be invariant and hence proportional
to each other. With the normalisation }/,f = 1, the only possibility is that (a) }/f =1
and 1§ = 1/(2q) for all k,i > 1 and (b) 7 = 2¢ for all i > 1. (This looks even more
surprising, as one might expect that for k > 1

H< o <Ua<Ua<I<Uu<Kn<

and there is no reason to believe that 711571 = }/IJ{‘ 1 because of the asymmetry of the
model.)

Finally, it is not difficult to check that for all i > k > 1

Py (number of visits to i before returning to k is n)

(i) (ost)

as in the case of the symmetric RW on Z.

Cherchez la Gamme: a Musical On Vectorial Return Times
(From the series ‘Movies that never made it to the Big Screen’.)

Worked Example 1.8.9

(i) Let X = (X, : n>0) be arandom walk on the integers, which moves one step
rightwards or one step leftwards with probability 1/2, at each time step. Show that

P(X,, = 0|Xp = 0) = <2nn> <;>2n7

and deduce that X is recurrent.

(i1) Let X be given as above, and assume that Xo = 0. Let m be a strictly positive
integer, and let N be the number of visits to the point m before returning to 0.

Find P(N > 1), and deduce that

P(N = n) = Gﬂ)z <1—21n>nl, n> 1.
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Solution (i) First, P(X, = 0|X) = 0) = p{2") is the probability that the sample path

of length 2n starts at and returns to 0. This is because each such path must have n
. . (2
steps right and n steps left, the total number of such paths is ( nn) , and each of

them has the same probability (1/2)%". Hence the formula for P(X,, = 0|Xy = 0).

The sum Y, P(X,, = 0|Xo = 0) coincides with ¥~ P(X,, = 0|Xp = 0) (return
at odd times is not possible), and is evaluated via Stirling’s formula: n! =~

27n"*+1/2 ¢ This leads to the series Y, 1/(y/7tn) which diverges. So, by The-
orem 1.5.3, the state O is recurrent. The same argument works for every state i.
Hence, the chain is recurrent. (The same conclusion holds because recurrence is a
class property; see Theorem 1.5.7.)

(ii) For the present write P to mean Py, the distribution of the (&, P) chain. Then
P(N > 1) = Py(hit m before returning to 0). By conditioning on the first step, we
have

1
P(N>1)= 3 IP; (hit m before visiting 0),
where IP; stands for the distribution of the (J;, P) chain. Set
h; = IP;(hit m before visiting 0);

then

1 1 .
hi:ihi_]+§hi+l7 1§l<m

The general solution h; = A + Bi is specified by hp =0, h,, = 1: A=0,B=1/m.
Hence, i) = 1/m,and P(N > 1) = 1/(2m).
Clearly, 1 —1/(2m) = P(N = 0) = Py(hit 0 again before visiting m). By sym-
metry,
1

[P, (hit m again before visiting 0) = 1 — -
m

To be in event {N = n}, a sample path from 0 must hit m before returning to 0,
return to m n — 1 times without visiting O and then proceed to 0 without returning
to m. By the strong Markov property,

1 1\ 1
PN=n)=-—(1-—) —
(N=n) Zm( 2m> 2m’

the last factor being P, (hit O before returning to m), again by symmetry. Hence the
result. O

Worked Example 1.8.10 Consider a Markov chain on the state space
I =1{0,1,2,...} U{1',2/,3’,...} with transition probabilities as illustrated in
Figure 1.14 where 0 < g<land p=1—gq.
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\&\\\\\\

@»@» +@5

Fig. 1.14

For each value of g, determine whether the chain is transient, null recurrent or
positive recurrent.
When the chain is positive recurrent, calculate the invariant distribution.

Solution Fori> 1 set
a="P;(hiti—1), b="Py(hiti);

these probabilities do not depend on the value of i because of the homogeneous
property of the chain. Conditioning on the first jump and using the strong Markov
property we get

a= q+pba2, b= q+ pba,
whence

2
L, and a=q+ Pae

1—pa 1—pa

b=

Thus,
p(1+q)a* — (pg+1)a+q=0,

and the solutions are
q
—q

a=1 and a= I 5
We are interested in the minimal solution

5-1
q if and only if ¢ < Vs .
1—q?

Therefore, the chain is recurrent if and only if g > (ﬂ — 1) / 2 and transient if
and only if g < (ﬁ— 1) /2.
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To decide whether it is null- or positive recurrent, consider the invariance
equation & = 7wP:

Ty = Mg, T = Mit19+Trq, i > 1,
Ty = My, Ty = ﬂ(i,l)/p—l—ﬂfi_]p, i > 2.

This admits a recursive solution:

1
o= 5750, Ty = T,

| 114 1 1-¢’
T, = (2—1>7TO: qﬂO’ 71'2/:(1—6])<1+>7TO: qﬂ:o’
q q 9

q q

1 /1—g?\? 1—2\°
3 = ( q>7fo7 7T3'=< q>7fo
g\ ¢ q

By induction, one gets the general formulas

i—1 i—1
1 /(1-¢* 1—¢?
mz( ) o, mz( o,
q q q

and the equilibrium distribution will exist if and only if both series converge; that
is,(1-¢*)/qg<1,ie q> (\@— 1) /2. Hence, the chain is null recurrent when

q= (\@ — 1) /2 and positive recurrent when g > (\@ — 1) /2. In the latter case
1 =\ gt
1+2(+1)< q) S L iy
=\g q q-+2q

Worked Example 1.8.11 Let (W,) be the birth-and-death process on Z, =
{0,1,2,...} with the following transition probabilities

Ty =

O

I
Pii+1 = Piji—1 = 5 i>1
por = 1.

By relating (W,) to the symmetric simple random walk (¥,) on Z, or otherwise,
prove that (W,) is a recurrent Markov chain. By considering IMs, or otherwise,
prove that (W,,) is null recurrent.

Calculate the vectors ¥* = (y¥,i € Z ) for the chain (W), k € Z,..

Finally, let Wy = 0 and let N be the number of visits to 1 before returning to 0.
Show that Po(N =n) = (1/2)",n> 1.
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Solution Now, (W,) is an irreducible Markov chain. Also, W, = |Y,,| where (Y,,) is
the nearest-neighbour symmetric random walk on Z. Hence, for all i € Z,

;| (W) returns to i) > IP;((Y,) returns to i);

but the right-hand side equals 1 since (Y,) is recurrent. Hence, the left-hand side
equals 1, and (W,) is recurrent.

To check null recurrence, it suffices to prove that (W,) has no equilibrium
distribution. Consider the invariance equations

1

= —m, M=M+=T

o 5 T T o+2 2,
1 1 )

S Eﬂi—1+§ﬂi+17l22~

The second line has a general solution 7; = A+ Bi, i > 1. From the first line, B=0
and my = A/2. Hence, any IM 7 is of the form

1
ﬂi:A;iZL R-O:EA7

where A > 0. It has Y, ; = o unless A = 0. Thus, no equilibrium distribution can
exist, and (W,) is null recurrent.

Therefore, for the chain (W,),

1, i,k>1ori=k=0,
7[.
%:;’: 1/2, i=0,k>1,
2, i>1,k=0.

Next, by the strong Markov property,

Po(N=n) = Po(N>1)
X (IPy (return to 1 without visiting 0))

n—1

x Py (hit O without returning to 1)

In fact,

Po(N>1)=1 (as po1 = 1),

IP; (return to 1 without visiting 0) = 1 — pjp = %(as the chain
hits 0 from 1 with probability 1/2 and is recurrent),
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and

[Py (hit O without returning to 1) = pjg = %
U

There are many points in an infinite state space.
More than stars in the sky or grains of sand in Sahara.
(From the series ‘Thus spoke Superviser’.)

1.9 Convergence to equilibrium. Long-run proportions

Time is the image of eternity.
Laertius Diogenes, 2nd century AD, Greek writer

Convergence to equilibrium means that, as the time progresses, the Markov chain
“forgets’ about its initial distribution A. In particular, if A = §\), the Dirac delta
concentrated at i, the chain ‘forgets’ about the initial state i. Clearly, this is related
to properties of the n-step matrix P" as n — oo, Consider first the case of a finite
chain.

Theorem 1.9.1 Suppose that a finite m X m transition matrix P" converges, in each
entry, to a limiting matrix I1 = (m;;):

lim p{" = m;, forall i,j€l. (1.71)

n—eo’ L
Then: (a) every row () of I is an equilibrium distribution

TE(I)P = TE(I) or 7'L','J' = Znﬂplj.
1

(b) If P is irreducible then all rows 1) coincide: 1Y) = ... = 1™ = . In this
case,

lim P(X,, = j) = m; for all j € I and the initial distribution 7.

n—oo

Proof (a) For all states j we have

(ﬂ(i)P)j = Ympy= Y lim pipyy = lim ¥ pipi;
lel l l

= limp " =y = (29) . (1.72)
J
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(b) If P is irreducible then all rows 7\ of TI coincide as there is a unique
equilibrium distribution. Also,

lim P(X, = j) = lim Y 4p{) = 3 ; lim p?) = x;. (1.73)

n—oo

O

For a countable chain, our argument in (1.72) requires a justification of
exchanging the order of the limit and summation. We will do this later in this
section.

We see from Theorem 1.9.1 that the equilibrium distribution of a chain can be
identified from the limit of matrices P" as n — oo. More precisely, if we know that
P" converges to a matrix IT whose rows are equal to each other then these rows give
the equilibrium distribution . We see therefore that convergence P* — I1 where

n _— —
IT has a structure 7© - —— is a crucial factor.

So when does P" — I1? A simple counterexample is P = <(1) (1)> . Here,

Pt = <(1) (1)> , neven;
(1.74)

. (0 1
P—<1 O>’ n odd.

o 1 o0 - 0
. ) 1 -~ 0
More generally, consider an m X m matrix P =
1 0 0 - O
Here again, the equilibrium distribution is unique: # = (1/m, ..., 1/m).

We know that in these examples, the matrix P is periodic. Recall that P is
aperiodic if and only if for all i € /

pl(f) > 0 for all n large enough. (1.75)

If in addition, P is irreducible then, for all i, j € I,
pg’) > 0 for all n large enough. (1.76)

Theorem 1.9.2 Assume P is irreducible, aperiodic and positive recurrent. Then,
asn — oo,

P" —T1I.
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The entries of the limiting matrix I1 are constant along columns. In other words the
rows of Il are repetitions of the same vector m which is the (unique) equilibrium
distribution for P. Hence, the irreducible aperiodic and positive recurrent Markov
chain forgets its initial distribution: for all AL and j € I

n—oo

Proof Consider two Markov chains: (X,gi)), which is (& (i),P); and (X,7), which is
(7, P). Then

Py =X\ = j), = PB(X] = j).
To evaluate the difference between these probabilities, we will identify their ‘com-
mon part’, by coupling the two Markov chains, i.e. running them together. One
way is to run both chains independently. This means that we consider the Markov
chain (Y¥,) on I x I, with states (k,/) where k,/ € I, the transition probabilities

p{k,l)(mv) = PkuPlv; k. lu,v €1, (1.77)

and the initial distribution
P(Yo= (k1) =1(k=i)m, kI€L.

But a better way is to run the chain (W,) where the transition probabilities are

uPlys if k#1,
TR kAL Luver (1.78)
A pl(w=v), if k=1,
with the same initial distribution
P(Wy = (k,1))=1(k=i)m, kel (1.79)

Indeed, (1.78) determines a transition probability matrix on I x I: all entries

p(Wk’ 1) (wv) > 0 and the sum along a row equals 1. In fact,

Y PPy, if kFI
Z pW —Ju v = 1.
(k1) (u,v)

u,vel zpkm if k=1
u
Further, partial summation gives the original transitional probabilities P:

EEPKAWW):I%W Eipﬁnmy)zlnw
vel uel
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Pictorially, the two components of the chain (W, ) behave individually like (X,gi))
and (X); together they evolve independently (i.e. as in (¥,)) until the (random)
time T when they coincide

T=inf [n>1: X" =x7],
after which they stay together. Therefore,
P,(;l) —n;=P" (Xrgi) = j) —PY (X7 =j).
Writing
PV (Xn(i) - j) —p¥ (Xn(i) _jiT< n) PV (X,S” —iT> n) (1.80)
and
PY(X" = j) =PV (XT = j,T <n)+PY (X* = j,T >n), (1.81)
we see that the first summands cancel each other:
pY (X,Y) — T gn) —PY (X" = j,T <n),

as the events {X,Ei) =jT< n} and {XT = j, T < n} coincide. Hence

P —my =P (X3 = .7 > n) ~ PV (X = T > n)

and

pﬁ;‘)—nj‘ <PY(T > n) = PY(T > n). (1.82)

The last bound is called the coupling inequality.

Thus, it suffices to check that PY (7 > n) — 0, i.e. P(T < ) = 1. But (¥,,) is an
irreducible positive recurrent Markov chain. (Irreducibility follows from the fact
that the original matrix P is irreducible and aperiodic (equation (1.76) is helpful
here) and positive recurrence from the fact that (Y,,) has the equilibrium distribution
(7 X 7)) = mm.) Hence, by Theorem 1.5.9, for all states / € I,

P (Typy <) =1,
where
Ty = inf [n>0: X@:X”:l]
1) = n n

As T < T, the statement follows. O
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In the case of a finite irreducible aperiodic chain it is possible to establish that
(n)

the rate (or speed) of convergence of p, ; tom; is geometric. This means that for

some m > 1

pg.") > p for all states i, j. (1.83)

Theorem 1.9.3 If P is finite irreducible and aperiodic then for all states i, j

Pﬁf)—ﬂj(ﬁ(l—p)”/’"”, (1.84)
where m and p are as in (1.83).

Proof Repeat the scheme of the proof of Theorem 1.9.2: we have to assess
PY (T > n). But in the finite case, we can write

Pl (T <m) > S pmpm > p Y pim = p,

uel uel
i.e.
Pl (T >m) < (1—p) forallk,l €1.

Then, by the strong Markov property,

P <P (12 2]) <P

and the assertion of Theorem 1.9.3 follows. |

An instructive example is as follows

Worked Example 1.9.4 Consider a pack of cards labelled 1,2, ..., 52. We repeat-
edly take the top card and insert it uniformly at random in one of the 52 possible
places, that is, either on the top or on the bottom or in one of the 50 places inside
the pack. How long on average will it take for the bottom card to reach the top?

Let p, denote the probability that after n iterations the cards are found in increas-
ing order. Show that, irrespective of the initial ordering, p, converges as n — oo,
and determine the limit p. You should give precise statements of any general results
to which you appeal.

Show that, at least until the bottom card reaches the top, the ordering of cards
inserted beneath it, is uniformly random. Hence or otherwise show that, for all n,

\pn— p| < 52(1+1n52)/n.



1.9 Convergence to equilibrium. Long-run proportions 75

Solution Label the places 1,2, ..., 52 where 1 is bottom. Suppose the bottom card
has reached place m. Then the top card is inserted below it with probability m/52.
The expected time until this happens satisfies

m
ko = 1 (1 ——) ko,
5

with k,, = 52/m. Then the total expected time to reach the top equals

1 1
kit oo+ ksy =52 <1+2+-~-+51> .

The card ordering performs a Markov chain on the set of permutations .#5; (the
permutation group). The chain is aperiodic, as the top card may be replaced at the
top. The chain is also irreducible as it always can be brought to increasing order,
by repeatedly inserting the top card at the bottom until the bottom becomes 1, then
inserting the top card in place 2, etc. By symmetry, the uniform distribution on .%5;
is invariant.

Hence, by the theorem that for an irreducible aperiodic Markov chain (X,,) with
equilibrium distribution & = (m;), ,}LH;P(X” = j) = m; for all j, we have

, 1
nll_fgo Pn=PpP= @

Finally, suppose we have inserted k cards beneath the original bottom card, and
these are ordered equiprobably at random. When the next card is inserted beneath
the bottom card it is equally likely to go in each of the k+ 1 places. That is, the
k+ 1 cards will still be ordered randomly. This applies inductively until k = 51.

Then let 7 be the time the bottom card reaches the top. The pack is ran-
domly ordered at time T + 1. By the strong Markov property it remains so at time
(T +1)Vn=max[T + 1,n]. Therefore,

|pn — p| = |P(increasing at time n) — P(increasing at (T + 1) Vn)|
52 1 1

1 52
SP(T>n)<-ET =" (14244 ) <= (1+1n52).
<P(T2n) <~ n<+2+ +51>_n(+n)

What I say is, patience.
And shuffle the cards.
M de Cervantes (1547-1661), Spanish writer
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Remark 1.9.5 For a transient or null recurrent irreducible aperiodic chain, the
matrix P" converges to a zero matrix:

lim P" = O.

n—o0

We will not give here the formal proof of this assertion. (For a transient case the
proof is based on the fact that the series ¥, pEl-") < o))

The remaining part of this section focusses on long-run or long-time propor-
tions. This is a subject of so-called ergodic theorems which study time averages
along trajectories of random processes (in our situation, Markov chains). One of the
striking phenomena here is the fact that, under certain irreducibility-type assump-
tions, limiting time averages coincide with expected values relative to equilibrium
distributions. The latter can be considered as space averages (i.e. averages over
state space /). Thus, the above fact can be phrased as ‘the long-run time-average
equals the space average’; this is a formal expression of a ‘mixing property’ of a
random process (in fact, there exists an entire hierarchy of such properties). Mix-
ing properties are believed to be behind many phenomena observed in nature and
in various aspects of human activities. Historically, these properties are connected
with the names of two famous theoretical physicists of the 19th Century, American
J.W. Gibbs (1839-1903), and Austrian L. Boltzmann (1844—1906). Ergodic theo-
rems in turn form the basis of the Ergodic Theory, a well-developed mathematical
discipline embracing a broad spectrum of concepts and methods.

In the long-run proportion we are all dead.
J. Maynard Keynes (1883-1946), British economist

A natural example is as follows.

Definition 1.9.6 Consider the number of visits to state i before time n:

n—1
Vin) = Y 1(Xe =i). (1.85)
k=0
The limit (if it exists)
lim M (1.86)
n—eo 1N

is called the long-run proportion of the time spent in state i.

More generally, if f: I — R is a function on the state space I, then we consider
the sum

n—1
V(fin) = f(X) (1.87)
k=0
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and the limit
lim ( ’ ) .

n—o0 n

(1.88)
Theorem 1.9.7 For all states i € 1, the ratio V;(n) /n converges almost surely:

IP’i<limVi(n):ri> =1, (1.89)

Nn—o0 n

where

e . (1.90)
0, if { is null recurrent or transient.

{m, if i is positive recurrent,
ri =

Proof First, suppose that state i is transient. Then, as we know, the total number
V; of visits to i is finite with probability 1. See (1.27), (1.37). Hence, V;/n — 0 as
n — oo with probability 1. As 0 < V;(n) <V;, we deduce that V;(n)/n — 0 as n — oo
with probability 1.

Now let i be recurrent. Then the times 7}(1) , Ti(z), ... between successive returns
to state i are finite with [P;-probability 1. By Theorem 1.8.3, they are IID random
variables, with mean value m; equal to 1/7; in the positive recurrent case and to oo
in the null recurrent case. Obviously,

(D) () o (D (i (i
OO T T Ty

Fig. 1.15
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but
1) (Vi(n)—1) .
T4 +T, <n—1:

see Figure 1.15. So we can write

(Ti(l)+"'+Ti(wn)))' (1.91)

1 (1) (Vi(m)—1)
— (T e TN <
Vin) (B )

By Theorem 1.8.4, on an event of [P;-probability 1, the limit lim %2?’:1 Tl.(l) =my
n—oo

holds:

=1

1 n
P; < ZTI.([) — mj, asn — °°> =1. (1.92)
n

Next, as i is recurrent, the sequence (V;(n)) increases indefinitely, again on an
event of [P;-probability 1:

P;(Vi(n) /oo, as n— o) = 1. (1.93)

Then we can put in (1.92) a summation up to V;(n), instead of n and, correspond-
ingly, divide by the factor V;(n):

This relation holds on the intersection of the two aforementioned events of
probability 1, which obviously has again P;-probability 1. On the same event,

(n)—1

1 Vi
> 7" =m.
Vi(n) =1

lim
n—oo
In other words, (1.92) and (1.93) together yield

L LS
P — T;"” — m; and T  —mj, asn—oo | =1. (1.94)
Vi(n) 1:21 Vi(n) 5

But then, owing to (1.91), still on the same intersection of two events of
[P;-probability 1, the ratio n/V;(n) tends to m;, i.e. the inverse ratio Vi(n)/n
tends to r; = 1/m;. This gives (1.89), (1.90) and completes the proof of
Theorem 1.9.7. U

Remark 1.9.8 A careful analysis of the proof of Theorem 1.9.7 shows that if P is
irreducible and positive recurrent, then we can claim that in (1.89) the probability
distribution IP; can be replaced by IP;, or, in fact, by the distribution [P generated by

an arbitrary initial distribution A. This is possible because sums Ti(l) + et Ti(n)
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still behave asymptotically as if the RVs Ti(l) were IID. (In reality, the distribution
of the first RV, Ti(1> =T = H{, will be different and depend on the choice of the
initial state.)

Theorem 1.9.9 Let P be a finite irreducible transition matrix. Then, for any initial
distribution A and a bounded function f on I,

P(}}ﬂ‘@:n(f)) =1, (1.95)
where
n(f) =Y, mf(i). (1.96)
i€l

Proof The proof of Theorem 1.9.9 is a refinement of that of Theorem 1.9.7. More
precisely, (1.95) is equivalent to

P <lim
n—oo
In other words, we have to check that on an event of P-probability 1,

’V(f,n)

n

V(f;n)

—n(f)’:0> ~1.

—n(f)’ — 0, as n — oo. (1.97)

Writing V(f,n) = Y;c;Vi(n) f(i) and m(f) = X,;c; mif (i), we can transform and
bound the left-hand side in (1.97) as follows

3 (f-m)s

V)

’V(fan)

n

<2

iel

—n(f)] _ 56|

n

We know that, for all i € 1, on an event of P;-probability 1, V;(n)/n — m;. Remark
1.9.5 allows us to claim convergence V;(n)/n — m; on an event of P;-probability 1
(that is, regardless of the choice of the initial state), or, even stronger, on an event
of P-probability 1, where P is the distribution of the (A, P) Markov chain with any
initial distribution A. Then (1.95) follows, which completes the proof. O

Worked Example 1.9.10 Describe the long-time behaviour of discrete time
Markov chains on a finite state space. What about the convergence of probabilities,
or almost-sure behaviour? Explain what happens when the chain is not irreducible.

Solution The state space splits into open classes Oq,...,0; and closed classes
Cit1,...,Cj. If I = 1 (a unique closed class), it is irreducible. Starting from
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an open class, say O;, we end up in closed class C; with probability hf.‘. These
probabilities satisfy
j+l
nE="Y piht.
r=1
Here, p;, is the probability that we exit class O; to class O, or C,, and for r = j+ 1,
...,j+li hlrc: 6,,’](.
The chain has a single ED n(") concentrated on C,r=j+1,..., j+1 (hence, a
unique ED when / = 1). Furthermore, any ED is a mixture of the EDs n).
Starting in C,, we have, for any function f on C,,

! if(X,) — z n:l.(r)f(i) almost surely.

=0 icC,
Moreover, in the aperiodic case (where ged {n : pf,';) > 0} =1 for some a € C,),
for all iy € C,,
P(Xn = i’XO = i()) — 7[[,

and the convergence is with geometric speed. O

1.10 Detailed balance and reversibility

Reversal of Time, Reversal of Fortune
(From the series ‘Movies that never made it to the Big Screen’.)

Let (Xo,Xi,...) be a Markov chain and fix N > 1. What can we say about the time
reversal of (X,), i.e. the family (Xy_,,n=0,1,...,N) = (Xy,Xy_1,...,X0)?

Theorem 1.10.1 Let (X,) be a (7, P) Markov chain where © = (;) is an equilib-
rium distribution for P with w; > O for all i € I. Then: (a) for all N > 1, the time

reversal (Xy,Xy_1,...,Xo) is a (m, P) Markov chain where P = (p;;) has
~ T
Pij = ;{ Pji- (1.98)

(b) If P is irreducible then so is P.

Proof (a) First, observe that P'is a stochastic matrix; that is, p; ;> 0and

1 1
== mpi=—m=1
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Next, 7 is P-invariant:
2Py = 2P = 2 Pji = T
i i i
Now pull the factor 7, through the product
IP’(XN =iN,..., X0 = io) = PXo=ip, -, Xy = iN)
Ty Pigiy * " Pin_1in
= 1/7\1'11'07171'1 “ Piy_yin
DivigDiniy T+
= ﬁilio e 'ﬁiNiN,lﬂiN
= n-iNﬁiNiNq T 'ﬁilio'
We see that (Xy_,) is a (7, P) Markov chain.
(b) If P is irreducible then any pair of states i, j is connected; that is, there exists
apath i =i, iy, ..., i, = j with
0 < pigiy ** Pirrin = (1/ i) Ty Pigiy *** i1
= (/7)) PirioTiy = * Piyi =
= (/M) Piviy" " Pinin 1 -
S0, Piiy - Dinin_, > 0, and j, i are connected in P. O

The case where chain (Xy_,) has the same distribution as (X)) is of a particular
interest.

Theorem 1.10.2 Let (X,) be a Markov chain. The following properties are
equivalent:
(i) for all n > 1 and states iy, . . ., iy,

P(Xo =i, ... Xp = in) =P(Xo = ip, ..., Xp = i) (1.99)

(ii) The chain (X,) is in equilibrium, i.e. (X,) ~ (7, P) where 7 is an equilibrium
distribution for P, and

mipij = w;p;; for all states i,j € 1. (1.100)

Proof (i) = (ii). Taken =1,
PXo=i,X1=j)=PXo = j,X1 =1),

and sum over j

Y P(Xo=i,X = j)=PXo=i)=A,
J
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ZIP’(XO = j,X) =i) =P(X; =i) = (AP),.

J

So, A; = (AP), for all i, i.e., AP = A. Hence, the chain is in equilibrium: A = 7.
Next, for all i, j,

P(Xo =i,X1 = j) = mpij =P(Xo = j,X1 = i) = 7jpji.
(i1) = (1). Write
IP)(XO =10,...,Xp = in) = Ty Pigiy * " Pin—rin

and use (1.100) to pull m, through the product

Ty Pigiy *** Pinyin =  Pioir Ty """ Pip_yin =
= pi()il T pinin—l n-in
T, Dinin_y " Pioiy

= P(Xo=1in....Xp=1ip).

O

Definition 1.10.3 A Markov chain (X,) satisfying (1.99) is called reversible.
Equations (1.100) are called detailed balance equations (DBEs).

So, the assertion of Theorem 1.10.2 reads: a Markov chain is reversible if and
only if it is in equilibrium, and the DBEs are satisfied.
DBEs are a powerful tool for identification of an ED.

Theorem 1.10.4 If A and P satisfy the DBEs
Aipij = Ajpji, i, j €1,

then A is an ED for P, that is AP = A.
Proof Sum over j:

Ai Zpi j = Ai,

J
QAipii = (AP):.
J

The two expressions are equal for all i, hence the result. O

So, for a given matrix P, if the DBEs can be solved (that is, a probability distri-
bution that satisfies them can be found), the solution will give an ED. Furthermore,
the corresponding Markov chain will be reversible.
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Fig. 1.16

An interesting and important class of Markov chains is formed by random walks
on graphs. We have seen examples of such chains: a birth-death process (a RW
on Z! or its subset), a RW on a plane square lattice 7Z?* and, more generally, a
RW on a d-dimensional cubic lattice Z¢. A feature of these examples is that a
wandering particle can jump to any of its neighbouring sites; in the symmetric case,
the probability of each jump is the same. This idea can be extended to a general
graph, with directed or non-directed links (edges). Here, we focus on non-directed
graphs; a graph is understood as a collection G of vertices some of which are joined
by non-directed edges, or links, possibly several. Non-directed here means that the
edges can be traversed in both directions; sometimes it’s convenient to think that
each edge is formed by a pair of opposite arrows.

A graph is called connected if any two distinct vertices are connected with a path
formed by edges. The valency v; of a vertex i is defined as the number of edges at
i. The connectedness v;; is the number of edges joining vertices i and j. These
features are illustrated in Figure 1.16.

The RW on a graph has the following transition matrix P = (p;;):

;i/v;i, if i and j are connected,
pl.j:{v’f/vl Panty (1.101)

0, otherwise.

The matrix P is irreducible if and only if the graph is connected. The vector v = (v;)
satisfies the DBEs. That is, for all vertices i, j,

ViDij = Vij = VjDji, (1.102)
and hence v is P-invariant. We obtain the following straightforward result.

Theorem 1.10.5 The RW on a graph with transition matrix P of the form (1.101),
is always positive or null recurrent. It is positive recurrent if and only if the total
valence Y ;v; < e, in which case m; = v; / > vi Is an equilibrium distribution.
Furthermore, the chain with equilibrium distribution 7 is reversible.
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Fig. 1.18

A simple but popular example of a graph is an /¢-site segment of a one-
dimensional lattice: here the valency of every vertex equals 2, except for the
endpoints where the valency is 1. See Figure 1.17.

An interesting class is formed by graphs with a constant valency: v; = v; again
the simplest case is v = 2, where ¢ vertices are placed on a circle (or on a perfect
polygon or any closed path). See again Figure 1.17. A popular example of a graph
with a constant valency is a fully connected graph with a given number of vertices,
say {1,...,m}: here the valency equals m — 1, and the graph has m(m — 1) /2 (non-
directed) edges in total. See Figure 1.18.

Another important example is a regular cube in d dimensions, with 2¢ vertices.
Here the valency equals d, and the graph has d29~! (still non-directed) edges
joining neigbouring vertices. See Figure 1.19.

Fig. 1.19
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Popular examples of infinite graphs of constant valency are lattices and trees.

In the case of a general finite graph of constant valency v; = v for any vertex i,
the sum Y;v; equals v x |G| where |G| is the number of vertices. Then probabili-
ties pi; = pji = vij/v, for all neighbouring pairs i, j. That is, the transition matrix
P = (p;;) is Hermitian: P = PT. Furthermore, the equilibrium distribution 7 = (7;)
is uniform: ; = 1/|G].

In Linear Algebra courses, it is asserted that a (complex) Hermitian matrix has
an orthonormal basis of eigenvectors, and its eigenvalues are all real. This handy
property is nice to retain whenever possible. For a DTMC, even when P is origi-
nally non-Hermitian, it can be ‘converted’ into a Hermitian matrix by changing the
scalar product. We will explore further this avenue in Sections 1.12-1.14.

Time present and time past
Are both perhaps present in the future,
And time future contained in time past.
T.S. Eliot (1888—1965), American poet

Worked Example 1.10.6 (i) We are given a finite set of airports. Assume that
between any two airports, i and j, there are a;; = aj; flights in each direction on
every day. A confused traveller takes one flight per day, choosing at random from
all available flights. Starting from i, how many days on average will pass until the
traveller returns again to i? Be careful to allow for the case where there may be no
flights at all between two given airports.

(i1)) Consider the infinite tree T with root R, where for all m > 0, all vertices at
distance 2™ from R have degree 3, and where all other vertices (except R) have
degree 2. Show that the random walk on T is recurrent.

Solution (i) Let Xy = i be the starting airport, X, the destination of the nth flight,
and 7 denote the set of airports reachable from i. Then (X,,) is an irreducible Markov
chain on /, so the expected return time to i is given by (1/7;), where 7 is the unique
equilibrium distribution. We will show that 1/7; = ¥ 1/ aj /Srer i -

In fact,
Cljk
Djk = and zajl Djk = zakl Dk;j-
%Iaﬂ lel lel

So the vector v = (v;) with v; = ¥,;a; is in detailed balance with P. Hence

7= za,k/zak,.

kel
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(ii) Consider the distance X, from the root R at time n. Then (Xj,),,>0 is a birth-death
Markov chain with transition

qi=pi=1/2, if i#2",
gi=1/3, pi=2/3, if i=2".
By a standard argument for 4; = P;(hit 0) we have
ho =1, hi = pihit1 +qihi—1, i 2 1,
pilliv1 = qilti, Ui = hi—1 — hy,

qi qi- - q1
Mi+1=*lui=%uly%: l
Di Pi--P1

)

and
up+-+up=ho—hi,hi =1-A(0++%-1)
The condition };¥; = oo forces A = 0 and hence #; = 1 for all i. Here,
P =27,
S0 ;i 7; = o and the walk is recurrent. O

DBEs are convenient tools for finding an equilibrium distribution: if a measure
A >0 is in detailed balance with P and has };A; < oo, then m; = 4;/Y,; A; is an
equilibrium distribution.

Worked Example 1.10.7 Suppose that © = (7;) forms an ED for the transition
matrix P = (p;;), with P = m, but that the DBEs (1.100) are not satisfied. What is
the time reversal of the chain (X)) in equilibrium?

Solution Assume, for definiteness, that P is irreducible, and 7; > O for all i € 1.
The answer comes out after we define the transition matrix PTR = ( pl-TjR) by

TP = Tipji, i, €1, (1.103)
or

TTj ..
pit="pji, i,j€L (1.104)
T
Equations (1.103), (1.104) indeed determine a transition matrix, as, for all i, j € I,

1 1
p;F/R > O, and ZP;F/R = fznjpﬁ = f.ﬂ'i =1.
jel T jer T
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Next, & gives an ED for PR for all jel,

2Py = D P = ).

il il
Then, repeating the argument from the proof of Theorem 1.10.1, we obtain that for
all N > 1, the time reversal (Xy_,, 0 <n < N) is a DTMC in equilibrium, with

transition matrix PTR and the same ED 7. Symbolically,
X, ®) ~ (m,P™) —DTMC, (1.105)
where (X,'}) = (Xy_,) stands for the time reversal of (X,). O

It is instructive to remember that PTR was proven to be a stochastic matrix

because 7 is an ED for the original transition matrix P while the proof that 7 is
an ED for PTR used only the fact that P is stochastic.

Example 1.10.8 The detailed balance equations have a useful geometric meaning.

Consider the state space I = {1,...,s}. The matrix P generates a linear transfor-
X1

mation R* — R®, where the vector x = | : | is taken to be PX. Assuming that P
xS

is irreducible, let w be the ED, with w; > 0,i=1,...,s. Consider a ‘tilted’ scalar
product ( -, - ) in R*, where

N

(X,¥)z = Y xiyim;. (1.106)
i=1
Then the detailed balance equations (1.100) mean that P is self-adjoint (or
Hermitian) relative to the scalar product ( -, - ). That is,
(X,Py)r = (PX,¥)r, X,y € R’. (1.107)
In fact,

(X, Py)r = inpijy]'ﬂ'i = inpji)’jﬂj = (PX,y)z-
ij i,
The converse is also true: equation (1.107) implies (1.100), since we can take as
x and y the vectors 6; and & ; with the only non-zero entries being 1 at positions i
and j, respectively, foralli,j=1,...,s.

This observation yields a benefit, since Hermitian matrices have all eigenvalues
real, and their eigenvectors are mutually orthogonal (relative to the scalar product
in question — in this instance, ( - , - )7). We will use this in Section 1.12.

Remark 1.10.9 The concept of reversibility and time reversal will be particularly
helpful in a continuous-time setting of Chapter 2.
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1.mn

1.2)

(IL1)

(IL.2)

(I1.3)

For h = P;(hit j) the equations are
Wo=1, hl= z puh] = (WPT)i, i # j,
where
W =(hli€l), with b} =1.
Here, h! = 1 is always a solution
1PT=1, as (1P ),pr” =1foralliel.

For kj [E;(time to hit ) the equatlons are
k=0, ki =1+ ¥ puki=1+EP"); i#].
lel, 1]
where ' '
K =(k,iel), with K =0.
Here, taking 0 - = 0, we have k{ = (1 — 0;j)ec is always a
solution when the chain is irreducible.
These equations are produced by conditioning on the first jump.
The vectors 4/ and k/ are labelled by the terminal states while

their entries hlj and kij indicate the initial states The solution
we look for is identified as a minimal non-negative solution

satisfying the normalisation constraints hj: =1and k; =0.

For
yik = FE(time spent in i before returning to k)
the equations are
=1, ﬁi%?;}‘mi, i#k,
or
7* = ¥*P, when k is recurrent.
Here, conditioning is on the last jump, and the vectors y* are
labelled by starting states. The identification of the solution
is by the conditions yf >0 and y,f =1.
Similarly, for an equilibrium distribution
(or more generally, an invariant measure),
T =nP.
The identification here is through the condition 7; > 0 and
Zi m=1.
A solution to the detailed balance equations
Tipij = ;pji,
always produces an invariant measure. If in addition,
>, m =1, it gives an equilibrium distribution. As the detailed
balance equations are usually easy to solve (when they have a
solution), they are a powerful tool which is always worth trying
when you need to find an equilibrium distribution.

Table 1.2
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It is now time to give a brief summary of essential results established so far
about the various equations emerging in the analysis of DTMCs. We have seen two
sets of equations: (I) for hitting probabilities hﬁ‘ and mean hitting times klA; and
(IT) for equilibrium distributions 7 = (7;) and expected times %k spent in state i
before returning to k. Although they are in a sense similar, there are also differences
between them which are important to remember. These are listed in Table 1.2.

1.11 Controlled and partially observed Markov chains

The Crying Control Theory
(From the series ‘Movies that never made it to the Big Screen’.)

We begin this section with a popular example of a controlled Markov chain.

Worked Example 1.11.1 Let m > 1 distinct objects be inspected in a random
order, one at a time, without return. One wishes to select the best object but can’t
take any previously rejected. By introducing a suitable Markov chain, argue that
your optimal strategy is to reject the initial k£ objects then take the first one better
than anything seen before and determine k = k(m). Check that m/k ~ e for m large.

Solution Set Xo =1 and

m+1, if the first object is the best,
X1 =141, if the ith object is the first one to be better than
anything before,

m+1, if the first or the X;th object is the best,
Xo =147, if the jth object is the first one after time X to be
better than anything before.

In general,

m+1, if X,_1 =m+1 or the X,_st object is the best,
Xr =<7, if the jth object is the first one after X,_; to be
better than anything before.
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2
3

Then X1,X5,.... X, = : (and X, = m+ 1 for n > m).
m

m-+1
Also, X1 > Xy, 2n if X, <m,1 <n<m.

A typical sample trajectory of (X)) is given in Figure 1.20.

object
index

Fig. 1.20

For (X,,) to be a Markov chain, we should have the lack of memory in conditional
probabilities

P(Xn+] = ]|Xn = i,Xn_l = in_l,...,Xl = i],X() = 1) :pij-

With the help of some combinatorics,

PP(i the (unique) best among {1,...,i}) = ~——— = -,

and

(-2)! 1
G-’

]P’(j the best, i the second best among {1, ... ,j}) =

Now

p1;=Pi(X; = j) =P(j the best, 1 the second best among {1,..., j})

1 .
e , 1< j<m,
jG-=1) /

and

1
Pim+1 =P1(X; =m+1) =P(1 the overall best) = —.
m
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Further,

Py (X2 = jIX1 =i) =

PP(i the best, 1 the second best, among {1,...,i})
x[P’(j the best, i the second best, among{1, ..., j};

1 the second best among{1, ..., z})
1/jG=1)-1/(=1) i

- - 1<i<j<m,

1/i(i—1) JG=1)

and

Pi (X =m+1,X; =i)
Pi (X1 =)
PP(1 the second best among {1,...,i}; i the absolute best)

P(i the best, 1 second best, among {1, .. .,i})
_ I/m-1/(i—1) i

—, 1 <i<m.

1/ii—1)  m

In general, for 1 <i < j <m,

Pl(Xz m+l|X1—l)

pij =P1 (X1 = j| X0 =i, X1 = in—1,.... X1 =11)
G-/ 1) 1/ (ip1 = 1) 1/(i1—1): i
1/i(i—1)1/(ip_g —1)---1/(i; — 1) JjG—=1)’

for j=m+1:

Pimr1 =P1 (Xpy1 = m"‘l’Xn:i’anl:inflw--aXl:il)
B IR P VT VR
Vili— D) (=1 =1 m  ='=™

and, of course, py+1m+1 = 1. The transition matrix is (m+1) x (m+1):

0 1/1-2 1/2:3 ... 1/(m—Dm  1/m 1
0 0 2/2.3 ... 2/(m—Dm  2/m 2
0 0 0 coo 3/(m—1)m 3/m 3
0 0 0 o Um meOm| met
0 0 0 0 1 m
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To determine where to stop, consider the decision rule

0 continue,

d(j):{ 1<j<m.

1 stop,

We have d(m) = 1, trivially. To set up d(m — 1), recall that state m — 1 means the
(m — 1)st object is the best among {1,...,m — 1}. The probability that it is the best
overall is py—1m+1 = (m—1)/m and is bigger than (m —1)/m(m—1) =1/m =
Pm—1mPmm+1, the probability that the mth is the best overall. Hence, d(m — 1) = 1.
Similarly, to determine d(m — 2), we compare p,_om+1 = (m —2)/m and
Pm—2mPmm+1+ Pm—2m—1Pm—1m+1 Which equals
m—2 m—2 m—1 m—2 1

mm—1) " m—Dm=2) m  mm—1) m

Equivalently, we compare

1
m—1 m—2

And so on. Clearly,
dm)=dm—1)=---=dk+1)=1, dk)=---=d(1)=0,
and k = k(m) is determined as the largest value for which

L
k m—1 '

For m large, seek k such that

ie.m/k~eandk~mfe.
It is worth noting that the probability of the successful choice under the optimal
strategy equals 1 /e =0.3678 in the limit m — . Indeed, the probability of success,

k(m)—1 ™=V 1 k(m)—1 m—1 1
Popt = ——— -~ 1 ~-=0.
Pt m 2 i m k(m)—1 e 0.3678

as k(m) ~m/e. O
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Worked Example 1.11.2 Check that the optimal value k = k(m) satisfies the
bounds

m—1/2 1 3e—1 m—1/2 3

- — <k< —.

e T3 22m+3e—1) — = e T3

Solution [Sketch] Use the following inequalities

nbor o el dx m—1/2
1< f,</ — =In : 1.108
< 2 Jooesp x [k—3/2} (1109

and

mdx 1
1> Z 7>/ <k—m> (1.109)

Observe that bound (1.108) implies that

—-1/2 3
m/_l_

k< —
e 2’

whereas (1.109) implies that

1/1 1
m p-ymp s ™ L1
€= %° ~ % [ + <k mﬂ

m—1/2
e

3
Substituting for k its upper bound + 3 yields the result. (I

Remark 1.11.3 Worked Example 1.11.1 is known in the literature as the Sec-
retary Problem. Other names are also used: a dowry problem, a beauty contest
problem and a Googol problem (the name for the number 10'%, used long before
Google appeared). It has generated a noticeable literature as the problem provides
a direct challenge and is easy to state. For the historical background and relation to
other known problems, see T.S. Ferguson. “Who solved the secretary problem?”,
Statistical Science, 4 (1989), 282-296; J. Havil. “Optimal Choice”; in Gamma:
Exploring Euler’s Constant, Princeton University Press (2003), 34-138. We men-
tion also the following papers: Y.S. Chow, S. Moriguti, H. Robbins, S.M. Samuel.
“Optimal selection based on relative rank (the ‘Secretary problem’)”, Israel Journ.
Math., 2 (1964), 81-90; J.P. Gilbert, F. Mosteller. “Recognizing the maximum
of a sequence”, Journ. Amer. Statist. Assoc., 61 (1966), 35-73. In the last paper
an asymptotic formula is derived for the mean number of attempts in the above
scheme (that is, mean stopping time). The problem also admits various gener-
alisations, for instance when one takes into account a ‘satisfaction’ value which
attains a maximum when the overall best object had been selected, a value which
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is somewhat less if the selected object is the second in quality, and so on. See T.J.
Stewart. “The secretary problem with an unknown number of options.” Oper. Res.,
29 (1981), 130-145.

I claim not to have controlled events, but
confess plainly that events have controlled me.
A. Lincoln (1809-1865), US President

Worked Example 1.11.4 (The Secretary problem with two choices.) Suppose
two attempts are allowed, and you are successful if the best candidate is among
the two selected. Prove that, asymptotically as m — oo, the probability of success
is 0.5910.

Solution An argument similar to that used above in Worked Example 1.11.1
shows that the optimal strategy lies within the class of strategies indexed by a
pair of natural numbers (r,s) (thresholds), where 1 < r < s < m. These strate-
gies work as follows. First, we reject r — 1 initial objects. After that, we mark
the first object that is better than everyone earlier, and make a ‘conditional (or
tentative) offer’. This object is called the first candidate, or candidate one. If the
first candidate occurred before round (s — 1), we reject all objects seen after him
but prior to round (s — 1) (included). In this case we wait until an object appears,
after round (s — 1), who is better than everyone before him and select him (of
course, he has to be better than the first candidate). This is called the second
candidate, or candidate two. If candidate two does not appear, the choice goes
to the first candidate. If the first candidate occurred after round s then we sim-
ply wait for a better object, and our choice, naturally, would go to him. In the
absence of the second candidate we are forced to accept candidate one, and if
the first candidate does not occur then we concede a defeat and do not make
choice.

To compute the probability of success with the threshold strategy (r,s), the event
that the choice is a success is partitioned into three pairwise disjoint events:

(a) the first candidate is the best among all m (in this case the second choice is
not made);

(b) the second candidate is the best among all m, and no choice has been made
before s — 1 (included);

(c) the second candidate is the best among all m, and the first choice has been
used in one of the rounds r,r+1,...,s — 1.
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It is possible to show that the probability of the events (a), (b) and (c) are

r—1 1 1 1 .
—|—f—|—-~-+71 , ifr>1,

P(a) = 1m r—1 r m—
—, if r=1,
m
r—1 & 'd 1
P(b): ’
m v:s2+1uz::v(u_1)<v_l)
P(C)_s—ri 1
 m v—1

Remember too that
P(success with (r,5)) = P(a) + P(b) + P(c).
We evaluate in detail only the probability P(b): this case is the most involved.
Every term in the sum in the right-hand side for P(b) can be written as
r—1 1 u

1
X = P(I) x P(I) x P(IIT) x P(IV).

Here

P(I) = P(no candidate appears between rounds r and u — 1),
P(II) = PP(a candidate appears in round u),
P(IIT) = P(no candidate appears between u+ 1 and v — 1),
P(IV) = PP(a global leader occurs in round v).

The above formulas are computationally rather cumbersome. However, assume
that m and r are large (and hence so is s). Then

P(a)%r_lln<m_21>.

m r—

Next, applying a similar approximation to the internal sum in the expression for

P(b), we get
r—1 & 1 v—2
P(b) = 1 .
( ) Z n(s—2>

m = v—1

Replacing the sum by an integral, we get that

r Mm1 % m

Po)~~ [ ‘i (7) v - (mf)z.

mdJs v K} 2m s

The similar approximation for P(c) is that P(c) ~ (s — r> I’
m s
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To find the asymptotic optimal value of r and s, set r = am and s = Bm and
maximise in 0 < o < 8 < 1. Then

PP(success with (r,5)) ~ aIn(1/a) + (ct/2) [ln(l/ﬁ)]2+ (B—o)In(1/B).

Differentiating with respect to & and 8 and equating the derivatives to zero, we get
two pairs of roots. One pair gives B* =e ™', and o* = e~3/2, with the optimal value
~e ! +e732 = 0.5910.

The other pair of roots yields o = 8 = e V2, which gives the best probability
under a strategy with (s —r) /m ~ 0. For m large it yields the value ~ ¢~ V2 (V2+1)
~ 0.5860. This is only marginally worse than the first pair (which is an overall
optimum). O

For finite m the computations may be done numerically. In the table below the
optimal r and s and the corresponding probabilities of success are listed for m =
5,10,20,...,100,00 :

m  Fopt Sopt P, opt m Topt Sopt P, opt

5 2 3 0.70833 40 10 16 0.60386
10 3 4 0.64632 50 12 19 0.60143
20 5 8 061781 100 23 38 0.59617
30 7 12 0.60829 o m/e’? m/e 0.59100

We now pass to partially observed chains.

Worked Example 1.11.5 (i) Let J be a proper subset of the finite state space I of
an irreducible Markov chain (X),), whose transition matrix P is partitioned as

ply piIv
P = < pI\JJ PI\JI\J)'

If only visits to states in J are recorded, we see a J-valued Markov chain (Xvn);
show that its transition matrix is

P — plapIV z ( PI\JI\J)" pi\J

n>0

— plpiv (II\J - PI\JI\J) -1 PI\JJj

where I\ ; is the unit matrix with rows and columns labeled by i, j € 1 \J.

(i1) The local MP Bill Sykes spends his time in London in the House of Com-
mons (C), in his flat (F), in the bar (B) or with his girlfriend (G). Each hour, he
moves from one to another according to the transition matrix P, though his wife
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(who knows nothing of his girlfriend) believes that his movements are governed by
transition matrix P%:

cC F B G
c/1/3 1/3 1/3 0
Fl o 1/3 1/3 1/3
Bl1/3 o 13 13|
G\1/3 1/3 0 1/3

C F B

c/1/3 1/3 1/3
PY=F(1/3 1/3 1/3
B\1/3 1/3 1/3

pP=

The public only sees Bill when he is in J = {C, F, B}; calculate the transition matrix
P which they believe controls his movements.

Each time Bill moves, in the public eye, to a new location, he calls his
wife’s mobile phone number; write down the transition matrix that governs the
sequence of locations from which the public Bill phones, and calculate its invariant
distribution.

Bill’s wife notes down the location of each of his calls, and is getting suspicious —
he does not come to his flat often enough. Confronted, Bill swears his fidelity and
resolves to dump his troublesome transition matrix, choosing instead

c F B G
C/1/4 1/4 1/2 0
Fl 12 1/4 1/4 0
Bl o 358 1/8 1,2
G \2/10 1/10 1/10 6/10

P =

and still insisting that his moves are governed by P". Will this deal with his wife’s
suspicions? Explain your answer.

Solution (1) Compare with Example 1.4.4. To verify that P =P/ 4 piV (I—
PIVIV)=1PIY | write

P (%= jl%=i)
= pij+ zP( w=J, X, &Jforr=1,...,n—1|Xo =)

= pij+ z T 3 pi [PV s i€
n>0kdJ 1]

(ii) By the first part, with J = {C, F, B}, we have

1/3 1/3 1/3
P=pP’ 4PN a—pNVVYIPNI — | 1/6 1/2 1/3
1/2 1/6 1/3
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Next, the transition matrix for calls from C, F and B is

0 1/2 1/2
1/3 0 2/3|;
3/4 1/4 0

its invariant distribution 7 = (7¢, g, mp) satisfies

n—ln—|—37t n—1n+17r 717—17'C—|—27'C
c—3F4B, F—2C437 B—2C3F7

and is uniquely determined

. 4 3 4
S\ ir 1)
Now, with P*,
N 1/4 1/4 1)2
Pr=|1/2 1/4 1/4],
1/4 1/2 1/4

the invariant distribution for P* is

oo (L 11
~\3'33)°

In other words, on average he is spending equal time in each of public states C, F’
and B.

However, his wife can observe the following differences from PV

(a) calls from B following calls from C are twice as frequent as calls from B
following calls from F,

(b) he will phone on average 50/71 > 2/3 of the time whereas with PV it would
be 2/3. However, the difference is small and this method is not very practical.
Indeed, the invariant distribution ©* = (n, my, 73, 7 ) for P* obeys n*P* = ir¥, i.e.

nt=ns /A4 np 2+ 15 /5, ie. mi/4=m;/2+ w53,

np =ng/4+np 4+ /8415 /10, ie. wp/4=ni/4+4 /8 + ng/10,
ny=nr/2+np/4+n5/8+ w5 /10, ie. mp/8=m/2+mp/8+ mg/10,
n = mg/2+ng/5, ie. m;/5=my/2.

It is again uniquely determined:

n_zgﬁ_q4ﬂh_4 5
CTa T BT
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Hence, in the long term, the frequency of calls will be

7174 7174 7178 71710 71

Who can control his fate?
W. Shakespeare (1564-1616), English playwright and poet

1.12 Geometric algebra of Markov chains, 1. Eigenvalues and spectral gaps

Theorem 1.9.3 provides some bounds for the speed of convergence to an equilib-
rium distribution. This theorem shows that the convergence happens exponentially
(or geometrically) fast in n, which is good news. However, the quantity (1 —p) 1/m
in (1.84) can be pretty close to 1, especially if we consider a natural sequence of
Markov chains on increasing state spaces Iy.

An example of a situation where such a problem can arise is as follows. Consider
an £ x £ matrix A with entries a;; equal O or 1. The permanent of A is defined like
the determinant, but with signs omitted:

[
perA = z Haio(i)
o i=1

where ¢ is a permutation of order ¢. Then perA equals the number of ‘per-
fect matches’ between points i € {1,...,¢} labelling the rows and j € {1,...,¢}
labelling the columns. A popular interpretation is that of a group of ¢ boys and /¢
girls; the equation a;; = 1 means that girl i and boy j like each other, and a;; = 0
that they do not. Then perA counts the number of partnerships where each partner
in the pair likes the other. This is a computationally hard problem; the best cur-
rently available algorithms for calculating perA take of the order of £2¢ steps. A
stochastic method of computing perA involves an associated Markov chain, and it
is important to assess how rapidly it converges to its equilibrium distribution for
¢ large.

Example 1.12.1 Let ¢ be a positive integer and place £ points O, 1,. .., — 1 around
a unit circle at the vertices of a regular ¢-gon. Consider a random walk (X,) on
these points, where a particle jumps to one of its nearest neighbour sites with
probability 1/2.
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(I+D/2 (I-D/2 1

l: odd 1 : even

Fig. 1.21

The transition matrix of this Markov chain

0 1/2 0 .. 0 1/2
p_ |12 0 12 .. 0 0 (1.110)
12 0 0 .. 1/2 0

and has many zeros. In fact, for ¢ even, the whole set of vertices is partitioned into
an ‘even’ subset, W, = {0,2,...,£—2},and an ‘odd’, W, = {1,3,...,£—1}. These
form periodic subclasses: i.e., if you start at a vertex from the even subset, you will
be in the odd subset at all odd times and in the even subset at even times. That
is, for ¢ even, the chain (Xj) is periodic, with two subclasses. For ¢ odd, the first
power P with all positive entries is when m = ¢ — 1. Further, the minimal entry in
P~ 1is 1271, which gives the probability Po(X,_; = 1) = Po(X,_; = £ —1) (as
we can get from O to 1 or £ — 1 in £ — 1 steps only by travelling all the way along
in the corresponding direction).

It is obvious that for all /, the chain is irreducible and has a unique ED
1

e A .
77:—<€,...,€>—£1, where 1= 1 . (1.111)

Moreover, P is reversible with this equilibrium distribution.
Thus, for £ odd, the right-hand side of (1.84) will take the form

NI .
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I+)/2 (A-1)/2

l: odd

Fig. 1.22

That is, if we want uniformity in convergence when both £,n — oo, we must ensure
that n/(2°¢) — oo, i.e. n must grow faster than 2°¢. Is it a true bound?

To find out the answer, let us employ some algebra. Matrix (1.110) is Hermi-
tian: PT = P. Hence, it has ¢ orthonormal eigenvectors forming a basis in the
(-dimensional real Euclidean space R’ (and the ¢-dimensional complex Euclidean
space C’), and its eigenvalues are all real. The eigenvectors can be found by using
the elegant apparatus of a discrete Fourier transform. Namely, consider

. 1 . .
wp(J):% exp (277:lp é) jp=01,. .. 0-1. (1.113)

Here j =0,1,...,£ — 1 is a discrete argument of these functions, while p =
0,1,...,£—1 is a discrete parameter labeling the functions. Equivalently, we can
v,(0)
think of y, as vectors from C*, writing Yy, = : (the entries here are
Wp(f—1)
indexed by 0,...,¢ — 1 instead of the traditional 1,...,¢, to make the algebra more
transparent). So,

1 52 1 .
vl = (ezwﬂ/f,,,, ez’”!’@—l)/f), p=0,1,....,0—1;(1.114)
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all our vectors feature the first entry 1/ /€. So renormalising by this factor ensures
that the vectors are orthonormal:

I, p=p,
<‘I’mllfp/>=5p,p/:{0 bty (1.115)

To check (1.115), write

1[—1 lf—l p_p/
<WpaV/p’>:*Z‘Vp(j)l//p’(j)zfzexp 2mi J-
fj:() Ej:() /

When p = p/, the right-hand side is equal to (1/¢) Z?;(l) 1 = 1. Otherwise, i.e. when
p # p', we have the sum of a geometric progression, with the complex denominator
exp 2i(p — p') /{]:

_ lexpRri(p—p')t/f]—1
o ¥r) = 3 explmilp—p) 01

as, in the numerator, exp [27i(p — p’)¢/{] = exp[2mi(p — p')] = 1.

Now, we want to verify that the vectors y, are eigenvectors of P:

(Pyp)(J) = pr( )+ vp(j+1)

— L (emp(rl)/f + e2mp(1+1)/5>

2V/1

= \}ECOS (275 %) e27ripj/€

— cos (27: %) vo(). (1.116)

Hence, Py, = U, V), and the eigenvalues are

up:cos(zn%), p=01,.. 01, (1.117)

. . . 1
The first eigenvalue iy = 1, and the corresponding eigenvector Yy = 7 1is
proportional to the (transpose of the) equilibrium distribution 7 (compare (1.111)):

Y.

Sl-
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As mentioned before, the change of the normalisation is explained by differences
in requirements: on the one hand, we want ||yo||* = (wo, W) = 1, requiring v, =

1
W 1, and on the other, we need ¥ ; 7r; = (rT,1) = 1, requiring 77 = 7 1.

Back To The Fourier
(From the series ‘Movies that never made it to the Big Screen’.)

As a matter of fact, one can easily produce real eigenvectors of P (as expected,
since P is a real matrix). Note that the complex conjugate Y, coincides with y;_,,
p=0,1,....£—1.In fact,

; 1 g 1 . o
w(j) = ﬁ exp (—Zﬂlpé> = ﬁ exp <2m—2mp é)

1 ) J N
\/Z exp < 7'L'l( p) £> Yy p(])a J 0’ ’ )

The respective eigenvalues coincide: U, = Uy, as

cos(27r %) :cos(27r—27c %), p=0,1,....0—1.
For p = 0 this is trivial, as l[/g = 1= %T is real. If £ is even and p = ¢/2, the

vector Y, is again real: y,(j) =

Sl=50-

e™/ = 41 or —1, depending on the parity of

Jj. In vector notation

Vi = \}Z 1% where 1= |
1

—1
In other words, the vector 1* has entries alternating from 1 (for even labels
j=0,2,...,£—2) to —1 (for odd labels j = 1,3,...,£ — 1). The corresponding
eigenvalue [y, = cosm = —1.

So, apart from p =0 and p = ¢/2, for even ¢, the eigenvectors are grouped into
conjugate pairs, with the same eigenvalue. In other words, each of these eigenval-

ues has multiplicity two. Hence, we can produce the following real orthonormal
eigenvectors

1 2 ]
\ﬁ (v, +V,), with entries ﬁ cos <27Tp é) , j=0,...,0—1,
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and

: .2 J
th entries — 2ep =], j=0,....,0—1,
t\f( —V,), withentries VT s1n( p£> J

where p = 1,2,...,£/2 — 1. For our purposes it matters little whether we use
complex or real eigenvectors; what is important is that they form a complete
orthonormal system (a basis).

Why such meticulous (although beautiful) algebra? Because we can represent
(the transpose of) an initial distribution row-vector A = (A;) as

1
AT = Z MT?‘I’IJW/IH

p=0
and write the row-vector A P" of probabilities P(X,, = i) as a linear combination:
(-1 n
2
(AP = (AT ) [cos (’;”ﬂ V. (1.118)
p=0
The term with p = 0 on the right-hand side of (1.118) has the cosine factor 1 and

is equal to

l=n (AT.1) 21—1

| o=

1
<AT3 WO>W0 = Z <A‘T7l>l:

All other terms comprise factors w), = [cos (27rp/()]"; if £ is odd, all u,, with p #0
lie strictly between —1 and 1 and hence the rest of the sum on the right-hand side
of (1.118) is suppressed as n — oo:

AP ~x', or AP~ . (1.119)
If ¢ is even, we should also count the term with p = ¢/2: it comprises the cos
factor (—1)" and equals
1 1
7 AT ) (—1)"yn = 7 (AT,1%) 12
The last expression can be rewritten as

(A% —A"d) al, where A% = > A, A% = Y Ai, and ol

ieven iodd

m\»—‘

In this case all u, with p # 0,£/2 lie strictly between —1 and 1, and their
contribution is suppressed:

(AP m 7T+ (~1)" (A — A", or AP" &+ (—1)"(AY — A ax
(1.120)
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Note that A®Y 4+ A = (AT 1) = 1, and for A = 7, the invariant distribution,
A® = A% = 1/2 (cancelling the difference A®Y — A°?). On the other hand, suppose
that A = 1 and A°d = 0; i.e., the initial distribution A is concentrated on the even
subclass. Then, for n even,

1

5 0
(1) 2 L. where 1, |
1

0

In other words, if £ is even and A is concentrated on the even periodic subclass,
then, as n = 2N — oo, the vector (QLP”)T approaches a uniform distribution on
the even subclass. Similarly, as n = 2N 4+ 1 — oo, the vector (AP")T approaches
a uniform distribution on the odd periodic subclass. The picture for ¢ even and A
concentrated on the odd subclass is symmetric.

Now we can assess the speed of convergence of the approximations in (1.119)
and (1.120) quite accurately. It is convenient to introduce a ‘spectral gap’ measur-
ing the distance from the points %1 to the absolute values of the ,,s:

8" =min[|1—|4,/|: p=1,2,... with2p < {].

Then, for £ odd, 8 is attained at p = (£ £1)/2:

2
8 =14cos(m(t+1)/0) = 2”72 +0(1/0%), (1.121)
and
(AP = 2T+ 0(te "), or AP"=r+0(te "), (1.122)

In other words, we have convergence to equilibrium as ¢ — o if n grows faster than
£%1In /. This is much less stringent a restriction, compared with (1.112).
Similarly, for £ even, §(*) is attained at p = 1 and p = £/2 + 1:

2
8 =1—cos(2m/l) = 1 +cos(m+2m/l) ~ % +0(1/0%), (1.123)
and
AP =+ (—1)"(A® — Ao+ O(le ™"y, (1.124)

whic