
Parallel Programming

Introduction to Message Passing

1

Today’s Lecture

• Message Passing, largely for distributed memory

• Message Passing Interface (MPI):

• The most commonly-used distributed-memory
programming language for large-scale computation

• Chapter 3 in textbook

• Sources for this lecture

• Textbook slides

• Online MPI tutorial http://www-
unix.mcs.anl.gov/mpi/tutorial/gropp/talk.html

2

http://www-unix.mcs.anl.gov/mpi/tutorial/gropp/talk.html

Recall from L3: Two main classes of
parallel architecture organizations

3

• Shared memory multiprocessor architectures

• A collection of autonomous processors connected to a
memory system.

• Supports a global address space where each processor
can access each memory location.

• Distributed memory architectures

• A collection of autonomous systems connected by an
interconnect.

• Each system has its own distinct address space, and
processors must explicitly communicate to share data.

• Clusters of PCs connected by commodity interconnect
is the most common example.

Message Passing and MPI
• Message passing is the predominant programming model for

supercomputers and clusters

- Portable

- Low-level, but universal and matches earlier hardware execution
model

• What it is

- A library used within conventional sequential languagess (Fortran,
C, C++)

- Based on Single Program, Multiple Data (SPMD)

- Isolation of separate address spaces

+ no data races, but communication errors possible

+ exposes execution model and forces programmer to think about
locality, both good for performance

- Complexity and code growth!

4

Like OpenMP, MPI arose as a standard to replace a large number of

proprietary message passing libraries.

Message Passing Library Features
• All communication, synchronization require subroutine calls

- No shared variables

- Program runs on a single processor just like any uniprocessor
program, except for calls to message passing library

• Subroutines for
- Communication

- Pairwise or point-to-point: A message is sent from a specific sending
process (point a) to a specific receiving process (point b).

- Collectives involving multiple processors

– Move data: Broadcast, Scatter/gather

– Compute and move: Reduce, AllReduce

- Synchronization

- Barrier

- No locks because there are no shared variables to protect

- Queries

- How many processes? Which one am I? Any messages waiting?

5

MPI References

• The Standard itself:
- at http://www.mpi-forum.org

- All MPI official releases, in both postscript and
HTML

• Other information on Web:
- at http://www.mcs.anl.gov/mpi

- pointers to lots of stuff, including other talks and
tutorials, a FAQ, other MPI pages

Slide source: Bill Gropp, ANL
6

http://www.mpi-forum.org/
http://www.mcs.anl.gov/mpi

Finding Out About the Environment

• Two important questions that arise early in a
parallel program are:

-How many processes are participating in
this computation?

-Which one am I?

• MPI provides functions to answer these
questions:

-MPI_Comm_size reports the number of processes.

-MPI_Comm_rank reports the rank, a number
between 0 and size-1, identifying the calling
process

Slide source: Bill Gropp

7

Hello (C)

#include "mpi.h"

#include <stdio.h>

int main(int argc, char *argv[])

{

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

printf(”Greetings from process %d of
%d\n", rank, size);

MPI_Finalize();

return 0;

}

Slide source: Bill Gropp
8

Hello (C++)

#include "mpi.h"

#include <iostream>

int main(int argc, char *argv[])

{

int rank, size;

MPI::Init(argc, argv);

rank = MPI::COMM_WORLD.Get_rank();

size = MPI::COMM_WORLD.Get_size();

std::cout << ”Greetings from process " << rank << "

of " << size << "\n";

MPI::Finalize();

return 0;

}
Slide source: Bill Gropp,

9

Compilation

mpicc -g -Wall -o mpi_hello mpi_hello.c

wrapper script to compile

turns on all warnings

source file

create this executable file name

(as opposed to default a.out)

produce

debugging

information

10

Copyright © 2010, Elsevier Inc. All rights Reserved

Execution

mpiexec -n <number of processes> <executable>

mpiexec -n 1 ./mpi_hello

mpiexec -n 4 ./mpi_hello

run with 1 process

run with 4 processes

11

Copyright © 2010, Elsevier Inc. All rights Reserved

Execution

mpiexec -n 1 ./mpi_hello

mpiexec -n 4 ./mpi_hello

Greetings from process 0 of 1 !

Greetings from process 0 of 4 !

Greetings from process 1 of 4 !

Greetings from process 2 of 4 !

Greetings from process 3 of 4 !

12

Copyright © 2010, Elsevier Inc. All rights Reserved

MPI Components

• MPI_Init
- Tells MPI to do all the necessary setup.

• MPI_Finalize
- Tells MPI we’re done, so clean up anything allocated for this

program.

13

Copyright © 2010, Elsevier Inc. All rights Reserved

Basic Outline

14

Copyright © 2010, Elsevier Inc. All rights Reserved

MPI Basic Send/Receive

• We need to fill in the details in

• Things that need specifying:

- How will “data” be described?

- How will processes be identified?

- How will the receiver recognize/screen messages?

- What will it mean for these operations to
complete?

Process 0 Process 1

Send(data)

Receive(data)

Slide source: Bill Gropp

15

MPI Basic (Blocking) Send

MPI_SEND(start, count, datatype, dest, tag, comm)

• The message buffer is described by (start, count,
datatype).

• The target process is specified by dest, which is the
rank of the target process in the communicator specified
by comm.

• When this function returns, the data has been delivered
to the system and the buffer can be reused. The
message may not have been received by the target
process.

Slide source: Bill Gropp

A(10)
B(20)

MPI_Send(A, 10, MPI_DOUBLE, 1, …) MPI_Recv(B, 20, MPI_DOUBLE, 0, …)

16

MPI Basic (Blocking) Receive

MPI_RECV(start, count, datatype, source, tag, comm, status)

• Waits until a matching (both source and tag) message is
received from the system, and the buffer can be used

•source is rank in communicator specified by comm, or
MPI_ANY_SOURCE

•tag is a tag to be matched on or MPI_ANY_TAG

• receiving fewer than count occurrences of datatype is OK,
but receiving more is an error

•status contains further information (e.g. size of message)
Slide source: Bill Gropp

A(10)
B(20)

MPI_Send(A, 10, MPI_DOUBLE, 1, …) MPI_Recv(B, 20, MPI_DOUBLE, 0, …)

17

Some Basic Clarifying Concepts

• How to organize processes
- Processes can be collected into groups

- Each message is sent in a context, and must be received in
the same context

- Provides necessary support for libraries

- A group and context together form a communicator

- A process is identified by its rank in the group associated
with a communicator

• There is a default communicator whose group
contains all initial processes, called
MPI_COMM_WORLD

Slide source: Bill Gropp,
18

MPI Datatypes

• The data in a message to send or receive is
described by a triple (address, count,
datatype), where

• An MPI datatype is recursively defined as:
- predefined, corresponding to a data type from

the language (e.g., MPI_INT, MPI_DOUBLE)

- a contiguous array of MPI datatypes

- a strided block of datatypes

- an indexed array of blocks of datatypes

- an arbitrary structure of datatypes

• There are MPI functions to construct custom
datatypes, in particular ones for subarrays

Slide source: Bill Gropp
19

MPI Tags

• Messages are sent with an accompanying
user-defined integer tag, to assist the
receiving process in identifying the message

• Messages can be screened at the receiving
end by specifying a specific tag, or not
screened by specifying MPI_ANY_TAG as
the tag in a receive

• Some non-MPI message-passing systems have
called tags “message types”. MPI calls them
tags to avoid confusion with datatypes

Slide source: Bill Gropp
10/23/2012 20CS4230

A Simple MPI Program

#include “mpi.h”

#include <stdio.h>

int main(int argc, char *argv[])

{

int rank, buf;

MPI_Status status;

MPI_Init(&argv, &argc);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

/* Process 0 sends and Process 1 receives */

if (rank == 0) {

buf = 123456;

MPI_Send(&buf, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);

}

else if (rank == 1) {

MPI_Recv(&buf, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,

&status);

printf(“Received %d\n”, buf);

}

MPI_Finalize();

return 0;

}

Slide source: Bill Gropp
21

Trapezoidal Rule: Serial algorithm

22

Copyright © 2010, Elsevier Inc. All rights Reserved

Parallel pseudo-code (naïve)

23

Copyright © 2010, Elsevier Inc. All rights Reserved

First version (1)

24

Copyright © 2010, Elsevier Inc. All rights Reserved

First version (2)

25

Copyright © 2010, Elsevier Inc. All rights Reserved

First version (3)

26

MPI_Reduce

27

Replace with reduction: OpenMP version

28

Copyright © 2010, Elsevier Inc. All rights Reserved

29

MPI also has reduction

int MPI_Reduce(void* sendbuf, void* recvbuf, int count, MPI_Datatype

datatype, MPI_Op op, int root, MPI_Comm comm)

MPI_REDUCE(sendbuf, recvbuf, count, datatype, op, root, comm) [IN

sendbuf] address of send buffer (choice) [OUT recvbuf] address of receive

buffer (choice, significant only at root) [IN count] number of elements in

send buffer (integer) [IN datatype] data type of elements of send buffer

(handle) [IN op] reduce operation (handle) [IN root] rank of root process

(integer) [IN comm] communicator (handle)

Predefined reduction operators in MPI

30

Collective vs. Point-to-Point Communications

• All the processes in the communicator must call the
same collective function.

• For example, a program that attempts to match a call
to MPI_Reduce on one process with a call to MPI_Recv
on another process is erroneous, and, in all likelihood,
the program will hang or crash.

31

Collective vs. Point-to-Point Communications

• The arguments passed by each process to an MPI
collective communication must be “compatible.”

• For example, if one process passes in 0 as the
dest_process and another passes in 1, then the
outcome of a call to MPI_Reduce is erroneous, and,
once again, the program is likely to hang or crash.

32

Collective vs. Point-to-Point Communications

• The output_data_p argument is only used on
dest_process.

• However, all of the processes still need to pass in an
actual argument corresponding to output_data_p, even
if it’s just NULL.

33

Collective vs. Point-to-Point Communications

• Point-to-point communications are matched on the basis
of tags and communicators.

• Collective communications don’t use tags.

• They’re matched solely on the basis of the
communicator and the order in which they’re called.

34

