
Elastic Stack
also known as ELK
Overview and Usage

About me
● Saeed Rasooli
● github.com/ilius
● Go and Python. Mostly Back-end and desktop
● Open Source projects: StarCalendar, PyGlossary,

AyanDict and several command line tools in Go
● saeed.gnu@gmail.com, saeedgnu@riseup.net

http://github.com/ilius
mailto:saeed.gnu@gmail.com
mailto:saeedgnu@riseup.net

About me

● Currently work at ParsPooyesh
● Most of this slide was made at work, as a result of a R&D

task.
● https://github.com/ParspooyeshFanavar

https://github.com/ParspooyeshFanavar

What is Elastic Stack?
● It’s a “Search Platform” according to its website:

● https://www.elastic.co/elastic-stack/
● It’s comprised of

● Elasticsearch: Distributed RESTful Search Engine
● Logstash: transport and process your logs, events or other data
● Kibana: Your window into the Elastic Stack
● Beats: Lightweight shippers (in Go) for Elasticsearch & Logstash

https://www.elastic.co/elastic-stack/

Why use Elastic Stack?
Because log files are:

● Not centralized or container-friendly
● Mount external storage for each instance of app.
● Each instance writes it’s own log files.
● Must observe free space for each instance (or share it)

● Not easy to filter and/or aggregate by level / component.
● Not easy / fast to search (no index).
● Need command line access to view / monitor logs.

● Centralized Logging: The Elastic Stack provides a centralized repository for
storing logs from various sources, making it easier to collect, manage, and
analyze log data.

● Real-time Analysis: Logs are ingested and indexed in real time, allowing for
immediate analysis and monitoring of system activity.

● Advanced Search and Analytics: Elasticsearch's powerful search capabilities
enable users to quickly find specific log entries and perform complex data
analysis.

● Visualization and Dashboards: Kibana provides a user-friendly interface for
visualizing log data in dashboards, charts, and graphs, making it easier to
identify trends and patterns.

● Scale and Reliability: The Elastic Stack is designed to handle large volumes of
log data and can be scaled horizontally to meet growing demands.

How we use it

A safer way to use it

APM: Application Performance Monitoring

Beats
A collection of lightweight shippers (data pipelines)

● Written in Go
● Licensed under the Apache License version 2.0
● https://github.com/elastic/beats

● libbeat: Go library containing the common packages for all the
Beats. It is Apache licensed and actively maintained by the Elastic
team.

https://github.com/elastic/beats

Beat Description

Audit beat Collects your Linux audit framework data and monitors the integrity of your files

File beat Tails and ships log files

Function beat Reads and ships events from serverless infrastructure

Heart beat Pings remote services for availability

Metric beat Fetches sets of metrics from the operating system and services

Packet beat Monitors the network and applications by sniffing packets

Winlog beat Fetches and ships Windows Event logs

Osquery beat Runs Osquery and manages interraction with it

What is Elasticsearch NOT?
● It is designed as a “Search Engine”, not a “Database”
● It’s not meant to be used as a primary store.
● Want to use it as a NoSQL Database? Read this post first:

● https://www.elastic.co/blog/found-elasticsearch-as-nosql
● “Elasticsearch is commonly used in addition to another database.

A database system with stronger focus on constraints,
correctness and robustness, and on being readily and
transactionally updatable”

https://www.elastic.co/blog/found-elasticsearch-as-nosql

Log collectors
Language GH Stars Last commit

logstash Java, Ruby 13.6k 2023

vector Rust 14.2k 2023

fluentd Ruby 12.1k 2023

fluent-bit C, C++ 4.8k 2023

gogstash Go 104 2023

logcool Go 164 2017

protologbeat Go 28 fork: 2022

logpeck Go 23 2020

Log collectors: performace

Source: Vector’s Github: https://github.com/vectordotdev/vector/

Splunk: US company, server is closed-source: https://en.wikipedia.org/wiki/Splunk

https://github.com/vectordotdev/vector/
https://en.wikipedia.org/wiki/Splunk

Log collectors: my choice
I chose Vector. Why?

● Startup time: much lower than Logstash
● Better performance (better than/comparable with Fluent Bit: C++)
● Documentation: very clean, organized, complete
● Errors on mis-config: nicer and more readable
● Runtime-safety of Rust (even better than Go or Java)
● Easier to build/compile than C/C++
● So many stars on Github (even more than Logstash)

Data streams
A data stream lets you store append-only time series data
across multiple indices while giving you a single named
resource for requests.

Data streams are well-suited for logs, events, metrics, and
other continuously generated data.

(from elastic.co)

https://www.elastic.co/guide/en/elasticsearch/reference/current/data-streams.html

Data streams: indices
Data stream automatically creates (backing) indices with
this naming pattern:

For example:
.ds-logs-myapp-auditlog-2023.09.03-000001
.ds-logs-myapp-auditlog-2023.09.04-000002
.ds-logs-myapp-auditlog-2023.09.04-000003

.ds-{data_stream}-{date}-{generation}

Data streams: examples
Some Examples:

Log Type Data Stream Name

Requests logs-myapp-request

Audit Log logs-myapp-auditlog

Email logs-myapp-email

SMS logs-myapp-sms

Internal logs logs-myapp-log

Index template

A data stream requires a matching “index template”.

For data streams, the index template configures the
stream’s backing indices as they are created.

An index template is a way to tell Elasticsearch how to
configure an index when it is created.

License! (more at the end)
Elasticsearch is dual-licensed since 2021:

● Elastic License: Proprietary, Source-available
● Server Side Public License (SSPL): Proprietary, Source-available

● Introduced by MongoDB Inc. in 2018
● Strong Copyleft, more copyleft than GNU Aferro GPL (AGPL)
● Rejected by Open Source Initiative (called “fauxpen”)
● Rejected by Debian, Fedora, RHEL
● No comments from Free Software Foundation!

● Now Elasticsearch is just like MongoDB!

Kibana Discover→
Uses Kibana Query Language (KQL)

KQL only filters data, and has no role in aggregating, transforming, or
sorting data.

Examples:

● @timestamp < now-2w

● response_status >= 500

● logger_name: "django.server" and level_no > 30

Kibana Discover→

More KQL Examples:

● http.request.method: (GET or POST or DELETE)

● remote_ip: 172.30.0.0/16 and object_type: "Branch"

● user:{ first: "John" and last: "Doe" }

● user.names:{ first: "John" and last: "Doe" }

Vector configuration
Components:

● Sources (inputs)
● Transforms (filters / modifiers)
● Sinks (outputs)
● Global options

https://vector.dev/docs/reference/configuration/

https://vector.dev/docs/reference/configuration/

Vector config example

[sources.udp_input]
type = "socket"
address = "0.0.0.0:5958"
mode = "udp"
decoding.codec = "bytes"`

Format: TOML (Tom's Obvious, Minimal Language)

File: /etc/vector/vector.toml
Mount it as volume in docker-compose.yml

[transforms.json_parser]
type = "remap"
inputs = ["udp_input"]
drop_on_error = false
source = '''
parsed, err = parse_json(.message)
if err == null {
 . |= object!(parsed)
} else {
 log("Failed to parse json from udp_input", level: "error")
}
'''

[sinks.elastic_output]
type = "elasticsearch"
inputs = ["json_parser"]
healthcheck = false
api_version = "v7"
endpoints = ["http://elasticsearch:9200"]
auth.user = "${VECTOR_ELASTIC_USERNAME}"
auth.password = "${VECTOR_ELASTIC_PASSWORD}"
auth.strategy = "basic"
mode = "data_stream"
data_stream.dataset = "{{ tags[0] }}"
data_stream.namespace = "{{ type }}"

Vector API
● GET /health
● POST /graphql
● GET /playground

Run It Yourself (RIY?)
Github repository with (almost) ready-to use configurations
and scripts (needs some initial setup)

https://github.com/ParspooyeshFanavar/docker-elk
● Install docker and docker-compose
● Copy ‘.env.default’ file to ‘.env’
● Edit ‘.env’ (change passwords etc)

● Don’t put funny characters in passwords (bug in Bash script)
● Best to use long alphanumerics (alphabet + numbers)

● Run: make init
● Run: make build and make up

https://github.com/ParspooyeshFanavar/docker-elk

License: why?
● Microsoft and Google were paying Elastic for their managed service
● Amazon launched it’s own managed service without paying Elastic, even

using Elastic’s trademarks with no authorization. Basically taking
advantage of it being Open Source. So Elastic changed it’s license!

● This does not effect other users / companies in practice (specially in Iran)
● SSPL is "Extreme Copyleft": those who offer the software to third-parties

as a service must release the entirety of their source code, including all
software, APIs, tools and other software that would be required for a user
to run an instance of the service themselves.

License: Amazon!

● Amazon forked Elasticsearch (called Opensearch) under Apache license,
and is trying to attract Open Source contributors (like free employeees),
by acting like defenders of Open Source, and fish from the muddy water
they helped create.

● Elasticsearch is not in the same boat as MongoDB who had the same
story with Amazon! (and Amazon forked it under name of DocumentDB).

● Amazon keeps using both forks the same way! Even getting contributors
from Open Source community!

License: Lessons
Lessons that we can learn:

● CLAs (Contributor License Agreement) allow the company to re-
license your code without your consent to suit their needs.

● It’s always hard to pick a side between the bad and the worse.
● Big Tech normally steals (ideas, codes etc) from smaller companies as

well as Open Source community!
● Cloud service providers challenge the fundumental concepts of Open

Source and Free Software.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

