


Praise from the Experts 
 
 
“Pharmaceutical Statistics Using SAS contains applications of cutting-edge statistical techniques using cutting-
edge software tools provided by SAS. The theory is presented in down-to-earth ways, with copious examples, 
for simple understanding. For pharmaceutical statisticians, connections with appropriate guidance documents 
are made; the connections between the document and the data analysis techniques make ‘standard practice’ 
easy to implement. In addition, the included references make it easy to find these guidance documents that are 
often obscure. 

“Specialized procedures, such as easy calculation of the power of nonparametric and survival analysis tests, are 
made transparent, and this should be a delight to the statistician working in the pharmaceutical industry, who 
typically spends long hours on such calculations. However, non-pharmaceutical statisticians and scientists will 
also appreciate the treatment of problems that are more generally common, such as how to handle dropouts and 
missing values, assessing reliability and validity of psychometric scales, and decision theory in experimental 
design. I heartily recommend this book to all.” 

 Peter H. Westfall 
 Professor of Statistics 

  Texas Tech University 
 

 
“The book is well written by people well known in the pharmaceutical industry. The selected topics are 
comprehensive and relevant. Explanations of the statistical theory are concise, and the solutions are up-to-date. 
It would be particularly useful for isolated statisticians who work for companies without senior colleagues.” 
 

 Frank Shen 
 Executive Director 
 Global Biometric Sciences 
 Bristol-Myers Squibb Co. 

 
 

“This book covers an impressive range of topics in clinical and non-clinical statistics. Adding the fact that all 
the datasets and SAS code discussed in the book are available on the SAS Web site, this book will be a very 
useful resource for statisticians in the pharmaceutical industry.” 
 

 Professor Byron Jones 
 Senior Director 
 Pfizer Global Research and 
 Development, UK 

 



“The first thing that catches one’s attention about this very interesting book is its breadth of coverage of 
statistical methods applied to pharmaceutical drug development. Starting with drug discovery, moving 
through pre-clinical and non-clinical applications, and concluding with many relevant topics in clinical 
development, the book provides a comprehensive reference to practitioners involved in, or just interested to 
learn about, any stage of drug development.  
 
“There is a good balance between well-established and novel material, making the book attractive to both 
newcomers to the field and experienced pharmaceutical statisticians. The inclusion of examples from real 
studies, with SAS code implementing the corresponding methods, in every chapter but the introduction, is 
particularly useful to those interested in applying the methods in practice, and who certainly will be the 
majority of the readers. Overall, an excellent addition to the SAS Press collection.” 

 
 José Pinheiro 
 Director of Biostatistics 
 Novartis Pharmaceuticals 

 
 
“This is a very well-written, state-of-the-art book that covers a wide range of statistical issues through all 
phases of drug development. It represents a well-organized and thorough exploration of many of the important 
aspects of statistics as used in the pharmaceutical industry. The book is packed with useful examples and 
worked exercises using SAS. The underlying statistical methodology that justifies the methods used is clearly 
presented. 
 
“The authors are clearly expert and have done an excellent job of linking the various statistical applications to 
research problems in the pharmaceutical industry. Many areas are covered including model building, 
nonparametric methods, pharmacokinetic analysis, sample size estimation, dose-ranging studies, and decision 
analysis. This book should serve as an excellent resource for statisticians and scientists engaged in 
pharmaceutical research or anyone who wishes to learn about the role of the statistician in the pharmaceutical 
industry.” 

 Barry R. Davis 
 Professor of Biomathematics  
 University of Texas 

 



Pharmaceutical Statistics

Edited by
Alex Dmitrienko

Christy Chuang-Stein
Ralph D’Agostino

Using SAS®

A Practical Guide       



 

 

The correct bibliographic citation for this manual is as follows: Dmitrienko, Alex, Christy Chuang-Stein, and Ralph 
D’Agostino. 2007. Pharmaceutical Statistics Using SAS®: A Practical Guide. Cary, NC: SAS Institute Inc.   

Pharmaceutical Statistics Using SAS®: A Practical Guide 

Copyright © 2007, SAS Institute Inc., Cary, NC, USA 

ISBN: 978-1-59047-886-8  

All rights reserved. Produced in the United States of America.  

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in 
any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission 
of the publisher, SAS Institute Inc. 

For a Web download or e-book: Your use of this publication shall be governed by the terms established by the 
vendor at the time you acquire this publication. 

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related 
documentation by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in 
FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987). 

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513. 

1st printing, February 2007 

SAS® Publishing provides a complete selection of books and electronic products to help customers use SAS software 
to its fullest potential. For more information about our e-books, e-learning products, CDs, and hard-copy books, visit 
the SAS Publishing Web site at support.sas.com/pubs or call 1-800-727-3228. 

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 
Institute Inc. in the USA and other countries. ® indicates USA registration. 

Other brand and product names are registered trademarks or trademarks of their respective companies. 



Contents

1 Statistics in Drug Development 1
By Christy Chuang-Stein and Ralph D’Agostino

1.1 Introduction 1
1.2 Statistical Support to Non-Clinical Activities 2
1.3 Statistical Support to Clinical Testing 3
1.4 Battling a High Phase III Failure Rate 4
1.5 Do Statisticians Count? 5
1.6 Emerging Opportunities 5
1.7 Summary 6

References 6

2 Modern Classification Methods for Drug Discovery 7
By Kjell Johnson and William Rayens

2.1 Introduction 7
2.2 Motivating Example 9
2.3 Boosting 10
2.4 Model Building 27
2.5 Partial Least Squares for Discrimination 33
2.6 Summary 42

References 42

3 Model Building Techniques in Drug Discovery 45
By Kimberly Crimin and Thomas Vidmar

3.1 Introduction 45
3.2 Example: Solubility Data 46
3.3 Training and Test Set Selection 47
3.4 Variable Selection 51
3.5 Statistical Procedures for Model Building 58
3.6 Determining When a New Observation Is Not in a Training Set 61
3.7 Using SAS Enterprise Miner 63
3.8 Summary 67

References 67



iv Pharmaceutical Statistics Using SAS: A Practical Guide

4 Statistical Considerations in Analytical Method Validation 69
By Bruno Boulanger, Viswanath Devanaryan, Walthère Dewé,
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Preface

Introduction
The past decades have witnessed significant developments of biostatistical methodology
applied to all areas of pharmaceutical drug development. These applications range from
drug discovery to animal studies to Phase III trials. The use of statistical methods helps
optimize a variety of drug development processes and ultimately helps ensure that new
chemical entities are pure and stable, new therapies are safe and efficacious.

For the most part, new developments in biostatistical theory and applications are
scattered across numerous research papers or books on specialized topics and rarely appear
under the same cover. The objective of this book is to offer a broad coverage of
biostatistical methodology used in drug development and practical problems facing today’s
drug developers.

Each chapter of the book features a discussion of methodological issues, traditional and
recently developed approaches to data analysis, practical advice from subject matter
experts, and review of relevant regulatory guidelines. The book is aimed at practitioners
and therefore does not place much emphasis on technical details. It shows how to
implement the algorithms presented in the various chapters by using built-in SAS
procedures or custom SAS macros written by the authors. In order to help readers better
understand the underlying concepts and facilitate application of the introduced
biostatistical methods, the methods are illustrated with a large number of case studies
from actual pre-clinical experiments and clinical trials. Since many of the statistical issues
encountered during late-phase drug development (e.g., survival analysis and interim
analyses) have been covered in other books, this book focuses on statistical methods to
support research and early drug development activities.

Although the book is written primarily for biostatisticians, it will benefit a broad group
of pharmaceutical researchers, including biologists, chemists, pharmacokineticists, and
pharmacologists. Most chapters are self-contained and include a fair amount of high-level
introductory material. This book will also serve as a useful reference for regulatory
scientists as well as academic researchers and graduate students.

We hope that this book will help close the gap between modern statistical theory and
existing data analysis practices in the pharmaceutical industry. By doing so, we hope the
book will help advance drug discovery and development.

Outline of the Book
The book begins with a review of statistical problems arising in pharmaceutical drug
development (Chapter 1, “Statistics in Drug Development”). This introductory chapter is
followed by thirteen chapters that deal with statistical approaches used in drug discovery
experiments, animal toxicology studies, and clinical trials. Since some of the chapters
discuss methods that are relevant at multiple stages of drug development (e.g.,
nonparametric methods), the chapters in this book are not grouped by the development
stage. Table helps the reader identify chapters that deal with a particular area in
pharmaceutical statistics.
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1.1 Introduction
In the past 50 years, the value of medicine has been clearly demonstrated by a longer life
expectancy, a lower infant mortality rate, and the higher quality of life many of our senior
citizens have been enjoying. Since the introduction of stomach-acid-blocking H2 antagonist
drugs in the late 70’s, the number of surgeries to treat ulcer has been greatly reduced.
Childhood vaccination has literally wiped out diphtheria, whooping cough, measles, and
polio in the U.S. Deaths from heart disease have been cut by more than half since 1950 and
continue to decline. Even though we still face great challenges in combating cancer, great
strides have been made in treating childhood leukemia. Early detection has led to
successful treatment of some types of cancer such as breast cancer. Treatments for
schizophrenia and bipolar disorder have allowed many patients to live almost normal lives.
A report (2006) on the value of medicine can be found at the Pharmaceutical Research and
Manufacturers of America (PhRMA) website.

The use of statistics to support discovery and testing of new medicines has grown
rapidly since the Kefauver-Harris Amendments, which became effective in 1962. The
Kefauver-Harris Amendments required drug sponsors to prove a product’s safety and
efficacy in controlled clinical trials in order to market the product. Since the Amendments,
the number of statisticians working in the pharmaceutical industry has greatly increased.
This increase took another jump when the manufacturing process came under close
scrutiny. As we move into the 21st century, the lure and the promise of genomics and

Christy Chuang-Stein is Site Head, Midwest Statistics, Pfizer, USA. Ralph D’Agostino is Professor, Department of Math-
ematics and Statistics, Boston University, USA.
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proteomics will further intensify scientists’ reliance on statistics. The need to enhance our
overall knowledge about diseases, the need to insert more points into the decision-making
process, and the need to bring economics into development strategy considerations will
undoubtedly present new opportunities for statisticians.

Even in the face of new opportunities, there are many well-established roles for
statisticians in the pharmaceutical industry. The term “well-established” is a relative term
since new roles will become more established over time. For example, trial simulation and
modeling, viewed as new advancements a decade ago, have now become common practice
to help design better trials across the pharmaceutical industry.

Concerned that the current medical product development path may have become
increasingly challenging, inefficient, and costly, the U.S. Food and Drug Administration
(FDA) issued a document in March 2004 entitled “Challenge and Opportunity on the
Critical Path to New Medical Products”. The document attempts to bridge the
technological disconnect between discovery and the product development process. The
disconnect is thought to be largely due to the fact that the pace of development work has
not kept up with the rapid advances in product discovery. The document addresses three
major scientific and technical dimensions in the critical path of product development. The
three dimensions relate to safety assessment, demonstration of a product’s medical utility
(benefit or effectiveness), and the product’s industrialization (scaling up). In addition to
understanding the challenges, establishing the right standards and developing better
toolkits for each dimension will be key to our ultimate success in overcoming the perceived
stagnation in getting new drugs and biologics to the market. Statisticians, with their
training in quantification and logical thinking, can play a major role in the preparation and
the execution of the action plan.

The call for innovation is nothing new for the pharmaceutical industry. The industry as
a whole has made great strides in its basic science research in recent years. Cutting edge
techniques are being developed on a daily basis to probe into the biologic origin and genetic
connection of diseases. The research on microarrays and genomics has produced more data
than could be perceived just a few years ago. With the race to unlock the mysteries of
many diseases and finding cures for them, statistical support needs to be broadened in
dimensions and increased in depth. Time has never been more right for statisticians to
work alongside with their colleagues, being discovery scientists, clinical personnel,
manufacturing engineers, or regulatory colleagues. The collaboration should not only help
transform data to knowledge, but also help use knowledge for better risk-based decisions.

In this chapter, we will briefly cover some traditional statistical support to show how
statistics has been used in many aspects of drug development. Our coverage is by no means
exhaustive. It is simply an attempt to illustrate how broad statistical applications have
been. We will also highlight some areas where a statistician’s contribution will be crucial in
moving forward, in view of the FDA’s Critical Path initiative and the pharmaceutical
industry’s collective effort to take advantage of the FDA’s call for innovation.

1.2 Statistical Support to Non-Clinical Activities
In an eloquent viewpoint article, Dennis Lendrem (2002) discussed non-clinical statistical
support. Traditionally, statistical thinking and approaches are more embraced in areas
where regulators have issued guidelines. Examples are pre-clinical testing of cardiac
liability, carcinogenicity, and stability testing. Recently, Good Manufacturing Practice has
also become a subject of great regulatory interest. The latter captured public attention
when manufacturing problems created a shortage of the flu vaccines for the 2004–2005
season. By comparison, statistical input in areas such as high-throughput screening,
chemical development, formulation development, drug delivery, and assay development is
being sought only when the scientists feel that statisticians could truly add value. This
mentality could limit statisticians’ contributions since researchers will not know how



Chapter 1 Statistics in Drug Development 3

statisticians could help unless they have previously worked with statisticians or have been
referred to statisticians by their grateful colleagues. For example, scientists who are used to
experimenting with one factor at a time won’t know the value of factorial experiments.
Similarly, even though statisticians well versed in Six Sigma and Design for Six Sigma are
well aware of the many applications of the Six Sigma principles, they need to actively sell
the applications to potential clients.

The non-clinical support model differs from that in the clinical area because of the
usually large client-to-statistician ratio. As a result, after a statistician completes a
particular job, he/she often looks for opportunity to consolidate the techniques and
institutionalize the tools for the client to use on a routine basis. The automation allows
statisticians to focus on opportunities for new collaboration and developing new
methodologies for applications.

Non-clinical statisticians often work individually with their clients. Lendrem (2002)
described them as “pioneers” because of the frequent needs to venture into unknown areas
of new technology. Quantifying gene expression via the microarray technology is one such
example. Another is industry’s (and government’s alike) investment in identifying
biomarkers for testing mechanism of action of new molecular or biologic entities. In both
cases, the findings will have great clinical implications, but the work starts in the research
laboratories and our non-clinical statisticians are the first to deal with the need to measure,
to quantify, and to validate the measurements from the technical perspective.

Because of the small number of non-clinical statisticians in many pharmaceutical
companies, it is useful for non-clinical statisticians to form an inter-company network to
benefit mutual learning. Some of this networking has been in existence for some time. In
the U.S., a CMC (Chemistry, Manufacturing, and Control) Statistical Expert Team was
formed in the late 60’s to focus on the chemistry and control issues related to the
manufacturing of pharmaceutical products. Another example is the Pharmacogenomics
Statistical Expert Team that was formed in the fall of 2003. Both teams are sanctioned by
PhRMA and consist of statisticians from major pharmaceutical companies.

1.3 Statistical Support to Clinical Testing
Clinical testing is typically conducted in a staged fashion to explore the effect of
pharmaceutical products on humans. The investigation starts with pharmacokinetic and
pharmacodynamic studies, followed by proof-of-concept and dose-ranging studies. Some
specialty studies such as drug effect on QT/QTc prolongation and drug-drug interactions
studies are conducted at this early stage. The identification of common adverse reactions
and early signs of efficacy are the objectives of such trials. The early testings, if
satisfactory, lead to the confirmatory phase where the efficacy and safety of the product
candidate are more thoroughly investigated in a more heterogeneous population.

Despite common statistical principles, different stages of clinical testing focus on
different statistical skill sets. For early proof-of-concept and dose-ranging efforts, study
designs could be more flexible and the goal is to learn as efficiently and effectively as
possible. Adaptations, in terms of dose allocation, early termination, and study population
give great flexibility to such trials. Extensive modeling that incorporates accumulated
learning on a real-time basis can lead a sponsor to decision points in a more expedited
fashion. Because the purpose of this phase of development is primarily to generate
information to aid internal decisions, the developers are freer to use innovative approaches
as long as they can successfully defend the decisions that become the basis for later
development.

By comparison, statistical approaches for the confirmatory phase need to be carefully
pre-planned, pre-specified, and followed in order to give credibility to the results. A
pharmaceutical sponsor needs to decide a priori study designs, primary endpoints, primary
analysis population, success criteria, handling of missing data, multiple comparisons, plus
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many others. ICH E9 (1998) gives a very detailed description of all aspects of trial design
and analysis that a statistician should consider at this stage. When adaptation is planned,
the rule needs to be clearly specified in advance. When interim analysis is anticipated, a
sponsor’s access to the interim results needs to be tightly controlled.

The confirmatory phase is the place where knowledge about a new molecular or biologic
entity is solidified to support a target label. The knowledge, along with the approved label,
becomes the basis for recommendations to prescribing physicians and the medical
community. The confirmatory trials are also the place where the risk-benefit and
cost-effectiveness of a new pharmaceutical product are first delineated. The greater number
of subjects studied at this stage gives a sponsor a decent chance to study adverse actions
that have a rate between 0.1% and 1%. This phase overlaps somewhat with the life cycle
management phase where new indications are being explored and drug differentiation is
being sought. If there is a post-marketing study commitment, additional studies will be
initiated to fulfill the conditions for approval.

Increasingly, statisticians are participating in promotion review and educational
communications to the general public. In addition, many statisticians contribute to
activities related to pharmacovigilance and epidemiology.

1.4 Battling a High Phase III Failure Rate
The attrition rate of compounds in the pharmaceutical industry is extremely high. Setting
aside compounds that fail the preclinical testing, it is generally recognized that less than
12% of compounds entering into the human phase testing will eventually make it to the
market place. The rate is a composite figure formed as the product of the success rates of
passing the Phase I testing, passing the Phase II testing, passing the Phase III testing, and
passing the regulatory review. Among failures at the various stages, Phase III attrition has
the greatest impact. This is so not only because of all the accumulated resources expended
up to this point, but it is also because Phase III failure represents a great disappointment
to the sponsor, leaving the sponsor short of a defendable marketing application.

In a recent article, Chuang-Stein (2004) conducted a root cause analysis of the Phase III
failure rate that was reported to be running at the 50% level. This most recent figure is
higher than the 32% rate reported in DiMasi, Hansen, and Grabowski (2003).
Chuang-Stein attributed the cause to three major factors: the candidate factor, the sponsor
factor, and the environmental factor. While we can’t dismiss the pipeline problem, and we
have admittedly very little control over the behaviors of some corporate decision-makers at
the highest level, many of the causes indeed relate to how clinical development is being
conducted and how decisions are made to move compounds through different phases of the
development. Chuang-Stein discussed what statisticians could do to help reduce the
attrition rate at the late stage. One area where the methodology is well developed and
statisticians could make immediate contributions is the judicious use of adaptive designs,
or at least group sequential designs, in Phase III trials. The goal of such designs is to give
the Phase III trials the best chance for success or to terminate them early if the trials are
not likely to meet their objectives. Implicit in such designs is the inclusion of more decision
points based on interim results to allow evidence-based decisions. The need to incorporate
regular decision points is not limited to Phase III testing. It should be part of every stage
of the drug development continuum. These decision points serve as reality checks on the
long and costly development journey.

The industry is at a crossroad, and changes are critically needed. Statisticians should
take advantage of the challenges and fully engage themselves in looking for better ways to
support clinical development of pharmaceutical products.
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1.5 Do Statisticians Count?
In a soul-searching article, Andy Grieve (2002) asks whether statisticians count. Even
though the number of statisticians working in the pharmaceutical industry has increased
by 50-fold since the late 70’s, Grieve felt that the influence statisticians had in their
respective companies had not increased proportionally. Grieve looked at the barriers that
prevented statisticians from contributing as much as they could and offered some solutions.

Particularly noteworthy is the assertion that it is the statistician, and not statistics,
that is important. Statistics, as a discipline, does not influence, does not persuade, does not
design studies, does not analyze data, does not interpret findings, and does not report
results. Statisticians are the ones who make the discipline meaningful by doing all of the
above. In other words, statisticians, through their own behavior and communication,
spread the statistical principles and promote the statistical thinking. So, when we discuss
the successful use of statistics in drug development, we need to bear in mind that as
statisticians working in the pharmaceutical industry, we need to be the champions for such
causes through our passion for the statistics profession.

1.6 Emerging Opportunities
The Critical Path initiative document describes many opportunities to improve the
efficiency of product development. We will mention just a few here. On better tools to
assess a compound’s safety, FDA states the need for new techniques to evaluate drug liver
toxicity, new methods to identify gene therapy risk, better predictors of human immune
responses to foreign antigens, new methods to further enhance the safety of transplanted
human tissues, and efficient protocols for qualifying biomaterials. On better tools to
demonstrate the medical utility of a compound, FDA shares the agency’s successful
experience with biomarkers in HIV infection and duodenal ulcer healing. FDA states the
need for more biomarkers and surrogate markers that can guide product development. In
addition, FDA discusses the need for better animal models to combat bioterrorism, more
clinically relevant endpoints, better imaging technologies, more innovative designs and
analysis methods, and the need for implementing the concept of model-based drug
development. The latter involves building mathematical and statistical characterization of
the time course of the disease and the drug effect, using available clinical data.

The Critical Path initiative document also discusses the need for better methods to
characterize, standardize, control, and manufacture medical products on the commercial
scale. Since manufacturing expenses could exceed the research and development
investment, there is a need for a better validation process that follows the risk-based
inspection paradigm advocated by the FDA in recent months. The latter includes more
attention to setting specifications and shifting from detailed data analysis to overall process
quality assessment. The same philosophy suggests moving toward acceptance of a
probabilistic definition, rather than a pass or fail on the manufacturing process. Most
important, FDA wants to encourage the manufacturers to integrate state-of-the-art science
and technology into their manufacturing processes.

Following the issuance of the Critical Path initiative document, different centers within
the FDA have further identified areas for innovations and have presented opportunities to
the FDA’s Science Board on November 5, 2004. Since May 2004, many workshops have
directed at least part of their agenda towards more efficient and effective ways to test and
develop new treatments. Common to many of the discussions are the needs to apply
quantitative thinking and techniques. Taking the clinical phase of product development as
an example, we see that a major emphasis is to use mathematical and statistical models to
help guide drug development and approval. The central idea is to pool data from multiple
trials to augment our knowledge base and actively incorporate such knowledge in
subsequent studies. Interestingly enough, the concept of pooling data has now been
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extended to pooling data of drugs that belong to the same class. The pooling of
information across companies, while challenging, will undoubtedly facilitate the collective
learning of the pharmaceutical industry.

The opportunities for statisticians to make substantial contributions at the strategic
level are beyond what one could have imagined 20 years ago. Along with the opportunities
come expectations that statisticians will help solve the puzzle faced by modern-day
scientists in the pharmaceutical industry.

1.7 Summary
Statistics, as a discipline, has broadened its scope significantly over the past 20 years.
Wherever there is a need for quantification, statistics has a role. The ability to think in
terms of variability, to separate signals from noise, to control sources of bias and variation,
and to optimize under given conditions, makes statisticians a valuable partner in the
development of new pharmaceutical and biological products.

Mining historical data to add to our cumulative knowledge is a low-cost and high-yield
activity. Many companies realize the value of this activity and are actively pursuing it. For
example, Bristol-Myers Squibb (Pink Sheet, December 13, 2004) formed a discovery
toxicology group and retrospectively analyzed approximately 100 development compounds
that failed during a 12-year period. Bristol-Myers Squibb hoped to use the acquired
knowledge to decide what assays and technology to implement early to reduce compound
attrition. Bristol-Myers Squibb concluded that a combination of in vitro, in vivo, and in
silico techniques was needed to improve productivity and reduce attrition. According to the
same report in the Pink Sheet (December 13, 2004), other pharmaceutical companies have
reached similar conclusions.

Data mining is also expected to help us look for better predictors for hepatotoxicity and
cardiovascular toxicity such as Torsade de pointes. Data mining examples can go on and
on. We can’t think of any scientists who are more poised and qualified to lead this
data-based learning endeavor than statisticians!

The challenge is definitely on us, statisticians!
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This chapter focuses on two modern methods for classification: boosting and partial least
squares for discrimination. For each of these methods, we provide detailed background
information about their theory as well as instruction and guidance on their implementation
in SAS. Finally, we apply these methods to a common drug discovery-type data set and
explore the performance of the two methods.

2.1 Introduction
Drug discovery teams are often faced with data for which the samples have been
categorized into two or more groups. For example, early in the drug discovery process, high
throughput screening is used to identify compounds’ activity status against a specific
biological target. At a subsequent stage of discovery, screens are used to measure
compounds’ solubility, permeability, and toxicity status. In other areas of drug discovery,
information from animal models on disease classification, survival status, and occurrence of
adverse events is obtained and scrutinized. Based on these categorizations, teams must
decide which compounds to pursue for further development.

In addition to the categorical response, discovery data often contain variables that
describe features of the samples. For example, many computational chemistry software
packages have the ability to generate structural and physical-property descriptors for any
defined set of compounds. In genomics and proteomics, expression profiles can be measured
on tissue samples.

Kjell Johnson is Associate Director, Nonclinical Statistics, Pfizer, USA. William Rayens is Professor, Department of Statis-
tics, University of Kentucky, USA.
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Given data that contain descriptors and a categorical response, teams desire to uncover
relationships between the descriptors and response that can provide them with scientific
intuition and help them predict the classification of future compounds or samples.

In drug discovery, data sets are often large and over-described (more descriptors exist
than samples or highly correlated descriptors). And often, the relationships between
descriptors and classification grouping are complex. That is, the different classes of samples
cannot be easily separated by a line or hyperplane. Hence, methods that rely on inverting
the covariance matrix of the descriptors, or methods that find the best separating
hyperplane are not effective for this type of data. Traditional statistical methods such as
linear discriminant analysis or logistic regression are both linear classification methods and
rely on the covariance matrix of the descriptors. For the reasons mentioned previously,
neither is optimal for modeling many discovery type data sets.

In this situation, one approach is to reduce the descriptor space in a way that stabilizes
the covariance matrix. Principal component analysis, variable selection techniques such as
genetic algorithms, or ridging approaches are popular ways to obtain a stable covariance
matrix. When the matrix is stable, traditional discrimination techniques can be
implemented. In each of these approaches, the dimension reduction is performed
independently of the discrimination. An alternative approach, partial least squares for
linear discrimination, has the added benefit of simultaneously reducing dimension while
finding the optimal classification rule.

Another promising classification method is support vector machines (Vapnik, 1996). In
short, support vector machines seek to find a partition through the data that maximizes
the margin (the space between observations from separate classes), while minimizing
classification error. For data in which classes are clearly separable into different groups, it
is possible to maximize the margin while minimizing classification error, regardless of the
complexity of the boundary. However, for data whose classes overlap, maximizing the
margin and minimizing classification error are competing constraints. In this case,
maximizing the margin produces a smoother classification boundary, while minimizing
classification error produces a more flexible boundary. Although support vector machines
are an effective classification tool, they can easily overfit a complex data set and can be
difficult to interpret.

Recursive partitioning seeks to find individual variables from the original data that
partition the samples into more pure subsets of the original data (Breiman et al., 1984).
Thus, a recursive partition model is a sequence of decision rules on the original variables.
Because recursive partitioning selects only one variable at each partition, it can be used to
model an overdetermined data set. This method can also find a more complex classification
boundary because it partitions the data into smaller and smaller hypercubes. While a
recursive partition model is easy to interpret, its greedy nature can prevent it from finding
the optimal classification model for the data.

More recently, methods which combine classifiers, known as ensemble techniques, have
been shown to outperform many individual classification techniques. Popular ensemble
methods include bagging (Breiman, 1996), ARCing (Breiman, 1998), and boosting (Freund
and Schapire, 1996a), which have been shown to be particularly effective classification tools
when used in conjunction with recursive partitioning.

Because of their popularity, effectiveness, and ease of implementation in SAS, we will
limit the focus of this chapter to boosting and partial least squares for discrimination.

In Section 2.2, we will motivate our methods with an example of a typical drug
discovery data set. Section 2.3 will explore boosting and its implementation in SAS as well
as its effectiveness on the motivating example and Section 2.4 will review model building
techniques. Section 2.5 will discuss the use of partial least squares for discrimination and
SAS implementation issues, and apply this method to the motivating example.
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To save space, some SAS code has been shortened and some output is not shown. The
complete SAS code and data sets used in this book are available on the book’s companion
Web site at http://support.sas.com/publishing/bbu/companion site/60622.html.

2.2 Motivating Example
Generally speaking, permeability is the ability of a molecule to cross a membrane. In the
body, key membranes exist in the intestine and brain, and are composed of layers of
molecules and proteins organized in a way to prevent harmful substances from crossing
while allowing essential substances to pass through. The intestine, for instance, allows
substances such as nutrients to pass from the gut into the blood stream. Another
membrane, the blood-brain barrier, prevents detrimental substances from crossing the
blood stream into the central nervous system. While a molecule may have the correct
characteristics to be effective against a specific disease or condition, it may not have the
correct characteristics to pass from the gut into the blood stream or from the blood stream
into the central nervous system. Therefore, if a potentially effective compound is not
permeable, then its effectiveness may be compromised.

Because a compound’s permeability status is critically important to its success,
pharmaceutical companies would like to identify poorly permeable compounds as early as
possible in the discovery process. These compounds can then be eliminated from follow-up,
or can be modified in an attempt to improve permeability while keeping their potential
target effectiveness.

To measure a compound’s ability to permeate a biological membrane, several in-vitro
assays such as PAMPA and Caco-2 have been developed (Kansy et al., 1998). In each of
these assays, cell layers are used to simulate a body-like membrane. A compound is then
placed into solution and is added to one side of the membrane. After a period of time, the
compound concentration is measured on the other side of the membrane. Compounds with
poor permeability will have low compound concentration, while compounds with high
permeability will have high compound concentration.

These screens are often effective at identifying the permeability status of compounds,
but the screening process is moderately labor- and material-intensive. At a typical
pharmaceutical company, resources are limited to screening only a few hundred compounds
per week. To process more compounds would require more resources. Alternatively, we
could attempt to build a model that would predict permeability status.

As mentioned above, biological membranes are a complex layer of molecules and
proteins. To pass through a membrane, a substance must have an appropriate chemical
composition. Therefore, to build a predictive model of permeability status we should
include appropriate chemical measurements for each compound.

For the example in this chapter, we have collected data on 354 compounds (the PERMY
data set can be found on the book’s companion Web site). For each compound we have its
measured permeability status (y = 0 is not permeable and y = 1 is permeable), and we have
used in-house software to compute 71 molecular properties that are theoretically related to
permeability (i.e., hydrogen bonding, polarity, molecular weight, etc.). For proprietary
reasons, these descriptors have been blinded and are labeled as X1, X2, . . . , X71.

As is common with many drug discovery data sets, the descriptor matrix for the data is
overdetermined (that is, at least one variable is linearly dependent on one or more of the
other variables). To check this in SAS, we can use the PRINCOMP procedure to generate
the eigenvalues of the covariance matrix. Recall that a full rank covariance matrix will have
no zero eigenvalues. Program 2.1 generates the eigenvalues of the covariance matrix.
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Program 2.1 Permeability data set: Computation of the eigenvalues of the covariance matrix

proc princomp data=permy cov n=71 outstat=outpca noprint;
var x1-x71;

data outpca;
set outpca(where=(_type_="EIGENVAL"));
keep x1-x71;

proc transpose data=outpca out=outpca_t(drop=_name_) prefix=eig;
var x1-x71;

proc print data=outpca_t;
run;

Output from Program 2.1

Obs eig1

1 531907.98
2 202322.50
3 39308.42
4 22823.33
5 9187.10
6 5087.36
7 2660.49
8 1229.59
9 814.62
10 495.17

62 .000003063
63 .000000857
64 .000000209
65 .000000149
66 0
67 0
68 0
69 0
70 0
71 0

Output 2.1 lists the first 10 and last 10 eigenvalues of the covariance matrix computed
from the permeability data set. Notice that the covariance matrix for the permeability data
is not full rank. In fact, six eigenvalues are zero, while more than 20 are less than 0.01.
This implies that the covariance matrix is not invertible and methods that rely on the
inverse of the covariance matrix will have a difficult time with these data.

Another common situation in which the descriptor matrix can be overdetermined occurs
when we have more descriptors than observations. Methods that rely on a full-rank
covariance matrix of the descriptors, such as linear discriminant analysis, will fail with this
type of data. Instead, we must either remove the redundancy in the data or employ
methods, such as boosting or partial least squares for linear discrimination, that can look
for predictive relationships in the presence of overdetermined data.

2.3 Boosting
Several authors have written thorough summaries of the historical development of boosting
(see, e.g., Friedman et al., 2000; Schapire, 2002) For completeness of this work, we provide
a brief overview of boosting and include recent findings.
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2.3.1 Evolution of Boosting
The concept of boosting originated in the machine learning community where Kearns and
Valiant (1989) explored weak learning algorithms (algorithms that can classify objects
better than random) and strong learning algorithms (algorithms that can classify
accurately). The question of the relationship between weak and strong learning algorithms
was initially posed, and was addressed soon after by Schapire (1990). In his work, Schapire
showed that if a concept was weakly learnable it was also strongly learnable, and he
formulated the first algorithm to “boost” a weak learner into a strong learner. Freund
(1995) improved upon Schapire’s initial algorithm by reducing its complexity and
increasing its efficiency. However, both Schapire’s algorithm and Freund’s algorithms were
difficult to implement in practice.

To overcome these practical implementation problems, Freund and Schapire (1996a)
collaborated to produce the well-known and widely applied AdaBoost algorithm described
below (the notation used in this algorithm is defined in Table 2.1).

1. Let w1,1 = · · · = w1,n = 1/n.
2. For t = 1, 2, . . . , T do:

(a) Fit ft using the weights, wt,1, . . . , wt,n, and compute the error, et.
(b) Compute ct = ln((1 − et)/et).
(c) Update the observation weights:

wt+1,i = wt,i exp(ctIt,i)/
n∑

j=1

(wt,j exp(ctIt,j)), i = 1, . . . , n.

3. Output the final classifier:

ŷi = F (xi) = sign

(
T∑

t=1

ctft(xi)

)
.

Table 2.1 Notation Used in the AdaBoost Algorithm

i Observation number, i = 1, 2, . . . , n.
t Stage number, t = 1, 2, . . . , T .
xi A p-dimensional vector containing the quantitative variables of the ith

observation.
yi A scalar quantity representing the class membership of the ith observation,

yi = −1 or 1.
ft The weak classifier at the tth stage.
ft(xi) The class estimate of the ith observation using the tth stage classifier
wt,i The weight for the ith observation at the tth stage,

∑
i wt,i = 1.

It,i Indicator function, I(ft(xi) �= yi).
et The classification error at the tth stage,

∑
i wt,iIt,i.

ct The weight of ft.
sign(x) = 1 if x ≥ 0 and = −1 otherwise.

In short, AdaBoost generates a sequentially weighted additive agglomeration of weak
classifiers. In each step of the sequence, AdaBoost attempts to find the best classifier
according to the current distribution of observation weights. If an observation is incorrectly
classified with the current distribution of weights, the observation receives more weight in
the next sequence, while correctly classified observations receive less weight in the next
iteration. In the final agglomeration, classifiers which are accurate predictors of the original
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data set receive more weight, whereas weak classifiers that are poor predictors receive less
weight. Thus, AdaBoost uses a sequence of simple weighted classifiers, each forced to learn
a different aspect of the data, to generate a final, comprehensive classifier, which often
classifies better than any individual classifier.

Friedman, Hastie, and Tibshirani (2000) dissected the AdaBoost algorithm and revealed
its statistical connections to loss functions, additive modeling, and logistic regression.
Specifically, AdaBoost can be thought of as a forward stagewise additive model that seeks
to minimize an exponential loss function:

e−yF (x),

where F (x) denotes the boosted classifier (i.e., the classifier defined in Step 3 of the
algorithm). Using this framework, Friedman, Hastie, and Tibshirani (2000) generalized the
AdaBoost algorithm to produce a real-valued prediction (Real AdaBoost) and
corresponding numerically stable version (Gentle AdaBoost). In addition, they replaced the
exponential loss function with a function more commonly used in the statistical field for
binary data, the binomial log-likelihood loss function, and named this method LogitBoost.
Table 2.2 provides a comparison of these methods.

Generalized Boosting Algorithm of Friedman, Hastie, and Tibshirani (2000)
1. Initialize the observation weights, w1,i, and response for model, ywork

i .
2. For t = 1, 2, . . . , T do:

(a) Fit the model ywork
i = f(xi) using the weights, wt,i.

(b) Compute ct(xi), a contribution of xi at stage t, to the final classifier.
(c) Update the weights, wt,i. Update ywork

i (for LogitBoost only).
3. Output the final classifier:

ŷi = F (xi) = sign

(
T∑

t=1

ct(xi)

)
.

2.3.2 Weak Learning Algorithms and Effectiveness of Boosting
As mentioned in the previous section, boosting can be applied to any classification method
that classifies better than random. By far, the most popular and effective weak learners are
tree-based methods, also known as recursive partitioning. Several authors have provided
explanations of why recursive partitioning can be boosted to produce effective classifiers
(see, for example, Breiman, 1998). In short, boosting is effective for classifiers that are
unstable (produce different models when given different training data from the same
distribution), but when combined, get approximately the correct solution (i.e., have low
bias). This breakdown is commonly known as the bias-variance trade-off (see, for example,
Bauer and Kohavi, 1999). The importance of using an unstable classifier can be easily seen
by examining the AdaBoost algorithms further. Specifically, if a classifier misclassifies the
same observations in consecutive iterations, then AdaBoost will be prevented from finding
additional structure in the data.

To explain further, let wt,i represent the weight of the ith observation at the tth stage of
AdaBoost. Without loss of generality, suppose that the first m observations are
misclassified and

∑n
i=1 wt,i = 1. By the AdaBoost algorithm, the updated weights are

wt+1,i = wt,ie
ctIt,i

⎛⎝ n∑
j=1

wt,je
ctIt,j

⎞⎠−1

.
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Table 2.2 Comparison of the Generalized Boosting Algorithms

AlgorithmAlgorithm
parameter AdaBoost Real AdaBoost

w1,i 1/n 1/n

yi ∈ {−1, 1} ∈ {−1, 1}
ywork

i yi yi

ft Any weak classification method Any weak classification method
that predicts a binary that predicts class probability

response: ft(xi) ∈ {−1, 1} P (yi = 1|xi), ft(xi) ∈ [0, 1]

ct(xi) αtft(xi), where αt = ln
1 − et

et
,

1
2

ln
ft(xi)

1 − ft(xi)
et =

∑n
i=1 wt,iI(ft(xi) �= yi)

wt+1,i
wt,i exp(αtI(ft(xi) �= yi))∑n
i=1 wt,i exp(αtI(ft(xi) �= yi))

wt,i exp(−yict(xi))∑n
i=1 wt,i exp(−yict(xi))

Gentle AdaBoost LogitBoost
w1,i 1/n 1/4
yi ∈ {−1, 1} ∈ {0, 1}

ywork
i yi 4yi − 2
ft Any method that Any method that

predicts a continuous predicts a continuous
response: ft(xi) ∈ R response: ft(xi) ∈ R

ct(xi) ft(xi) ft(xi)

wt+1,i
wt,i exp(−yift(xi))∑n
i=1 wt,i exp(−yift(xi))

[exp(Ft(xi)) + exp(−Ft(xi))]−2,

where Ft(xi) = (1/2)
∑t

j=1 fj(xi),

ywork
i =

(
yi − 1

1 + exp(−2Ft(xi))

)/
wt+1,i

Next, suppose the first m observations are again misclassified in the (t + 1)st stage. Then,

et+1 =
m∑

j=1

wt,je
ct

⎛⎝ m∑
j=1

wt,je
ct +

n∑
j=m+1

wt,j

⎞⎠−1

.

Notice that

m∑
j=1

wt,je
ct =

1 − et

et

m∑
j=1

wt,j =
m∑

j=1

wt,j

⎛⎝1 −
m∑

j=1

wt,j

⎞⎠⎛⎝ m∑
j=1

wt,j

⎞⎠−1

=
n∑

j=m+1

wt,j .

Therefore, et+1 = 0.5 and ct+1 = 0. This implies that the weights for iteration t + 2 will be
the same as the weights from iteration t + 1, and the algorithm will choose the same model.
This fact will prevent the algorithm from learning any more about the relationship between
the descriptor space and response classification. Hence, methods that are stable, such as
linear discriminant analysis, k-nearest neighbors, and recursive partitions with many
terminal nodes, will not be greatly improved by boosting. But, methods such as neural
networks (Freund and Schapire, 1996b), Naive-Bayes (Bauer and Kohavi, 1999), and
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recursive partitions with few terminal nodes (also referred to as stumps) will be improved
by boosting. For example, Optiz and Maclin (1999) compared boosting neural networks to
boosting decision trees on twenty-three empirical data sets. For a majority of the data sets,
boosting neural networks or decision trees produced a more accurate classifier than any
individual neural network or decision tree, respectively. However, Optiz and Maclin
illustrated that the performance of boosting was data dependent; for several data sets a
boosted neural network performed worse than an individual neural network. Additionally,
Bauer and Kohavi (1999) illustrated that boosting a Naive-Bayes classifier improves
classification, but can increase the variance of the prediction.

Because of the success of boosting with recursive partitioning using few terminal nodes,
in the next section we will explore the implementation of boosting using stumps, a
recursive partition with one split.

2.3.3 Implementation of Boosting in SAS
There are at least two ways to implement boosting in SAS. Conveniently, boosting can be
directly implemented in SAS Enterprise Miner software. However, the use of SAS
Enterprise Miner requires the purchase of this module. Boosting can also be implemented
through more commonly and widely available SAS software such as Base SAS, SAS/STAT,
and SAS/IML. This section will focus on the development of boosting code using widely
available SAS software. But, we begin this section by exploring a few details of boosting in
SAS Enterprise Miner.

2.3.4 Implementation with SAS Enterprise Miner
In SAS Enterprise Miner, an ensemble classifier is quite easy to create, and can be
generated with a minimum of four nodes (see Table 2.3). SAS documentation provides
thorough step-by-step directions for creating various ensembles of classifiers in the
Ensemble Node Help section; we refer you to this section for details on how to implement
an ensemble model. Here, we highlight a few key facts about boosting in SAS Enterprise
Miner.

Table 2.3 Required Nodes to Perform Boosting in SAS Enterprise Miner

Node Options

1. Input Data Source Select target (response) variable
2. Group Processing Mode = Weighted resampling for boosting
3. Model Select Tree model for a boosted recursive partition
4. Ensemble Ensemble node = Boosting

To generate an ensemble model, the software requires the Input Data Source, Group
Processing, Model, and Ensemble nodes. In the General tab under Group Processing, one
must select Weighted resampling for boosting and must specify the number of loops
(iterations) to perform. Then, in the ensemble node, boosting must be chosen as the
setting. It is important to note that SAS Enterprise Miner performs boosting by building
trees on weighted resamples of the observations rather than buildings trees based on
weighted observations. This type of boosting is more commonly referred to as adaptive
resampling and combining (ARCing) and was developed by Breiman (1998). In fact, the
SAS Enterprise Miner implementation of boosting is only a slight modification of Breiman’s
Arc-x4 algorithm. While boosting and ARCing have the same general flavor, Friedman,
Hastie and Tibshirani (2000) indicate that boosting via weighted trees generally performs
better than ARCing. Hence, a distinction should be made between the two methods.

Unfortunately, the constructs within SAS Enterprise Miner make it extremely difficult
to implement boosting with weighted trees and any of the boosting algorithms from
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Table 2.2. Instead, we implement the generalized boosting algorithms directly through
more commonly used SAS software.

2.3.5 Implementation of Boosting in Base SAS
For our implementation of boosting, we will use stumps—recursive partitions with one
split—as the weak learner. We begin this section by focusing on the construction of code to
find an optimal recursive partition in a set of data.

EXAMPLE: Recursive Partitioning
Recursive partitioning seeks to find successive partitions of the descriptor space that
separate the observations into regions (or nodes) of increasingly higher purity of the
response. As an illustration, consider a data set that contains 100 four-dimensional points,
(x1, x2, y, w), where y is the class identifier and w is the weight. The data set is generated
by Program 2.2. A plot of the generated data points is displayed in Figure 2.1.

Program 2.2 Simulated data in the recursive partitioning example

data example1;
do i=1 to 100;

x1 = 10*ranuni(1);
x2 = 10*ranuni(2);
if (x1<5 and x2<1.5) then y=0;
if (x1<5 and x2>=1.5) then y=1;
if (x1>=5 and x2<7.5) then y=0;
if (x1>=5 and x2>=7.5) then y=1;
w=1;
output;

end;
* Vertical axis;
axis1 minor=none label=(angle=90 "X2") order=(0 to 10 by 1) width=1;
* Horizontal axis;
axis2 minor=none label=("X1") order=(0 to 10 by 1) width=1;
symbol1 i=none value=circle color=black height=4;
symbol2 i=none value=dot color=black height=4;
proc gplot data=example1;

plot x2*x1=y/vaxis=axis1 haxis=axis2 frame nolegend;
run;
quit;

For this example, we desire to find a single partition of the data that creates two new
regions of highest possible purity. Of course, the best partition is dependent on the measure
of region impurity. An intuitive measure of impurity is misclassification error, but a more
accepted impurity measure is the Gini Index. Let pj represent the proportion of
observations of Class j in a node. For a two-class problem, the misclassification error of a
node is defined as min(p1, p2), and the Gini Index is defined as 2p1p2. The total measure of
impurity is a weighted sum of the impurity from each node, where each node is weighted
by the proportion of observations in that node, relative to the total number of observations
from its parent node.

For the EXAMPLE1 data set, a few possible partitions clearly stand out (see
Figure 2.1):

x1 = 5, x2 = 7.5 or x2 = 1.5.

Classification using these cut-points yields the results in Table 2.4. The corresponding
measures of misclassification error and Gini Index can be found in Table 2.5.
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Figure 2.1 Plot of the data in the recursive partitioning example
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Table 2.4 Classification Results

Class x1 ≥ 5 x1 < 5 x2 < 7.5 x2 ≥ 7.5 x2 < 1.5 x2 ≥ 1.5

y = 0 40 11 51 0 14 37
y = 1 7 42 32 17 0 49

Table 2.5 Computation of the Misclassification Error and Gini Index

Partition Misclassification error Gini index

x1 ≥ 5 min(7/47, 40/47) = 0.15 2(7/47)(40/47) = 0.25
x1 < 5 min(11/53, 42/53) = 0.21 2(11/53)(42/53) = 0.33
Total (0.47)(0.15) + (0.53)(0.21) = 0.18 (0.47)(0.25) + (0.53)(0.33) = 0.29

x2 ≥ 7.5 min(32/83, 51/83) = 0.39 2(32/83)(51/83) = 0.47
x2 < 7.5 min(0/17, 17/17) = 0 2(0/17)(17/17) = 0
Total (0.83)(0.39) + (0.17)(0) = 0.32 (0.83)(0.47) + (0.17)(0) = 0.39

x2 ≥ 1.5 min(37/86, 49/86) = 0.43 2(37/86)(49/86) = 0.49
x2 < 1.5 min(0/14, 14/14) = 0 2(0/14)(14/14) = 0
Total (0.14)(0) + (0.86)(0.43) = 0.37 (0.14)(0) + (0.86)(0.49) = 0.42

Table 2.5 shows that the partition at x1 = 5 yields the minimum value for both total
misclassification error (0.18) and the Gini Index (0.29).

Unequally Weighted Observations
As defined above, misclassification error and Gini Index assume that each observation is
equally weighted in determining the partition. These measures can also be computed for
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unequally weighted data. Define

p∗
j =

n∑
i=1

wiI(yi = j)

(
n∑

i=1

wi

)−1

.

Then, for the two-class problem, the misclassification error and Gini Index are min(p∗
1, p

∗
2)

and 2p∗
1p

∗
2, respectively.

While three partitions for the EXAMPLE1 data set visually stand out in Figure 2.1,
there are 198 possible partitions of these data. In general, the number of possible partitions
for any data set is the number of dimensions multiplied by one fewer than the number of
observations. And, to find the optimal partition one must search through all possible
partitions. Using data steps and procedures, we can construct basic SAS code to
exhaustively search for the best partition using the impurity measure of our choice, and
allowing for unequally weighted data.

%Split Macro
The %Split macro searches for the optimal partition using the Gini Index (the macro is
given on the book’s companion Web site). The input parameters for %Split are INPUTDS
and P. The INPUTDS parameter references the data set for which the optimal split will be
found, and this data set must have independent descriptors named X1, X2, . . . , XP, a
variable named W that provides each observation weight, and a response variable named Y
that takes values 0 and 1 for each class. The user must also specify the P parameter, the
number of independent descriptors. Upon being called, %Split produces an output data set
named OUTSPLIT that contains the name of the variable and split point that minimizes
the Gini Index.

Program 2.3 calls the %Split macro to find the optimal binary split in the EXAMPLE1
data set using the Gini Index.

Program 2.3 Optimal binary split in the recursive partitioning example

%split(inputds=example1,p=2);
proc print data=outsplit noobs label;

format gini cutoff 6.3;
run;

Output from Program 2.3

Gini Best Best
index variable cutoff

0.293 x1 5.013

Output 2.3 output identifies x1 = 5.013 as the split that minimizes the Gini Index. The
Gini Index associated with the optimal binary split is 0.293.

While the %Split macro is effective for finding partitions of small data sets, its looping
scheme is inefficient. Instead of employing data steps and procedures to search for the
optimal split, we have implemented a search module named IML SPLIT that is based on
SAS/IML and that replaces the observation loop with a small series of efficient matrix
operations.

AdaBoost Using the IML SPLIT Module

The AdaBoost algorithm described in Section 2.3.1 is relatively easy to implement using
the IML SPLIT module as the weak learner (see the %AdaBoost macro on the book’s
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companion Web site). Like the %Split macro, %AdaBoost has input parameters of
INPUTDS and P, as well as ITER, which specifies the number of boosting iterations to
perform. %AdaBoost creates a data set called BOOST that contains information about
each boosting iteration. The output variables included in the BOOST data set are defined
below.

• ITER is the boosting iteration number.
• GINI VAR is the descriptor number at the current iteration that minimizes the Gini

Index.
• GINI CUT is the cut-point that minimizes the Gini Index.
• P0 LH is the probability of class 0 for observations less than GINI CUT.
• P1 LH is the probability of class 1 for observations less than GINI CUT.
• C L is the class label for observations less than GINI CUT.
• P0 RH is the probability of class 0 for observations greater than GINI CUT.
• P1 RH is the probability of class 1 for observations greater than GINI CUT.
• C R is the class label for observations greater than GINI CUT.
• ALPHA is the weight of the cut-point rule at the current boosting iteration.
• ERROR is the misclassification error of the cumulative boosting model at the current

iteration.
• KAPPA is the kappa statistic of the cumulative boosting model at the current iteration.

To illustrate the %AdaBoost macro, again consider the EXAMPLE1 data set.
Program 2.4 calls %AdaBoost to classify this data set using ten iterations. The program
also produces plots of the misclassification error and kappa statistics for each iteration.

Program 2.4 AdaBoost algorithm in the recursive partitioning example

%AdaBoost(inputds=example1,p=2,iter=10);
proc print data=boost noobs label;

format gini_cut p0_lh p1_lh p0_rh p1_rh c_r alpha error kappa 6.3;
run;

* Misclassification error;
* Vertical axis;
axis1 minor=none label=(angle=90 "Error") order=(0 to 0.3 by 0.1) width=1;
* Horizontal axis;
axis2 minor=none label=("Iteration") order=(1 to 10 by 1) width=1;
symbol1 i=join value=none color=black width=5;
proc gplot data=boost;

plot error*iter/vaxis=axis1 haxis=axis2 frame;
run;
quit;

* Kappa statistic;
* Vertical axis;
axis1 minor=none label=(angle=90 "Kappa") order=(0.5 to 1 by 0.1) width=1;
* Horizontal axis;
axis2 minor=none label=("Iteration") order=(1 to 10 by 1) width=1;
symbol1 i=join value=none color=black width=5;
proc gplot data=boost;

plot kappa*iter/vaxis=axis1 haxis=axis2 frame;
run;
quit;
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Output from Program 2.4

iter gini_var gini_cut p0_LH p1_LH c_L p0_RH p1_RH c_R alpha error kappa

1 1 5.013 0.208 0.792 1 0.851 0.149 0.000 1.516 0.180 0.640
2 2 6.137 0.825 0.175 0 0.082 0.918 1.000 1.813 0.230 0.537
3 2 1.749 1.000 0.000 0 0.267 0.733 1.000 1.295 0.050 0.900
4 1 5.013 0.272 0.728 1 0.877 0.123 0.000 1.481 0.050 0.900
5 2 7.395 0.784 0.216 0 0.000 1.000 1.000 1.579 0.000 1.000
6 2 1.749 1.000 0.000 0 0.228 0.772 1.000 1.482 0.050 0.900
7 1 5.013 0.266 0.734 1 0.875 0.125 0.000 1.483 0.000 1.000
8 2 7.395 0.765 0.235 0 0.000 1.000 1.000 1.462 0.000 1.000
9 2 1.749 1.000 0.000 0 0.233 0.767 1.000 1.457 0.000 1.000

10 1 5.013 0.273 0.727 1 0.871 0.129 0.000 1.451 0.000 1.000

Output 2.4 lists the BOOST data set generated by the %AdaBoost macro. For the first
iteration, x1 minimizes the Gini index at 5.013. For observations with x1 < 5.013, the
probability of observing an observation in Class 0 is 0.208, while the probability of
observing an observation in Class 1 is 0.792. Hence the class label for observations taking
values of x1 < 5.013 is 1. Similarly, for observations with x1 > 5.013, the probabilities of
observing an observation in Class 0 and Class 1 are 0.851 and 0.149, respectively.
Therefore, the class label for observations taking values of x1 > 5.013 is 0. The stage weight
for the first boosting iteration is represented by ALPHA= 1.516, while the observed
classification error and kappa statistics are 0.18 and 0.64, respectively. Notice that the
AdaBoost algorithm learns the structure of the relationship between the descriptor space
and classification vector in seven iterations (the misclassification error and kappa statistic
displayed in Figure 2.2 reach a plateau by the seventh iteration), and in these iterations the
algorithm quickly identifies cut-points near the constructed splits of x1 = 5, x2 = 7.5, and
x2 = 1.5.

Figure 2.2 Misclassification error (left panel) and kappa statistic (right panel) plots for the EXAMPLE1 data
set using the %AdaBoost macro
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Program 2.5 models the permeability data of Section 2.2 with AdaBoost and plots the
misclassification error and kappa statistics at each iteration.
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Program 2.5 AdaBoost algorithm in the permeability data example

%AdaBoost(inputds=permy,p=71,iter=50);
proc print data=boost noobs label;

format gini_cut p0_lh p1_lh p0_rh p1_rh c_r alpha error kappa 6.3;
run;

* Misclassification error;
* Vertical axis;
axis1 minor=none label=(angle=90 "Error") order=(0 to 0.3 by 0.1) width=1;
* Horizontal axis;
axis2 minor=none label=("Iteration") order=(1 to 51 by 10) width=1;
symbol1 i=join value=none color=black width=5;
proc gplot data=boost;

plot error*iter/vaxis=axis1 haxis=axis2 frame;
run;
quit;

* Kappa statistic;
* Vertical axis;
axis1 minor=none label=(angle=90 "Kappa") order=(0.5 to 1 by 0.1) width=1;
* Horizontal axis;
axis2 minor=none label=("Iteration") order=(1 to 51 by 10) width=1;
symbol1 i=join value=none color=black width=5;
proc gplot data=boost;

plot kappa*iter/vaxis=axis1 haxis=axis2 frame;
run;
quit;

Output from Program 2.5

iter gini_var gini_cut p0_LH p1_LH c_L p0_RH p1_RH c_R alpha error kappa

1 6 1029.7 0.294 0.706 1 0.706 0.294 0.000 0.877 0.294 0.412
2 68 82.813 0.436 0.564 1 0.805 0.195 0.000 0.431 0.294 0.412
3 33 0.992 0.129 0.871 1 0.603 0.397 0.000 0.493 0.268 0.463
4 69 45.125 0.437 0.563 1 0.940 0.060 0.000 0.335 0.274 0.452
5 37 63.938 0.356 0.644 1 0.603 0.397 0.000 0.462 0.271 0.458
6 24 0.493 0.419 0.581 1 0.704 0.296 0.000 0.443 0.249 0.503
7 43 22.930 0.448 0.552 1 0.654 0.346 0.000 0.407 0.254 0.492
8 28 0.012 0.639 0.361 0 0.403 0.597 1.000 0.392 0.246 0.508
9 23 1.369 0.496 0.504 1 0.961 0.039 0.000 0.111 0.246 0.508
10 20 1.641 0.565 0.435 0 0.000 1.000 1.000 0.320 0.249 0.503
11 23 1.369 0.449 0.551 1 0.957 0.043 0.000 0.276 0.240 0.520
12 3 1.429 0.263 0.737 1 0.569 0.431 0.000 0.320 0.251 0.497
13 69 45.125 0.452 0.548 1 0.924 0.076 0.000 0.252 0.240 0.520
14 34 5.454 0.469 0.531 1 0.672 0.328 0.000 0.297 0.226 0.548
15 31 7.552 0.529 0.471 0 0.842 0.158 0.000 0.246 0.226 0.548
16 31 7.552 0.468 0.532 1 0.806 0.194 0.000 0.234 0.220 0.559
17 32 8.937 0.572 0.428 0 0.228 0.772 1.000 0.348 0.215 0.571
18 23 1.369 0.455 0.545 1 0.966 0.034 0.000 0.244 0.206 0.588
19 20 0.836 0.615 0.385 0 0.442 0.558 1.000 0.352 0.223 0.554
20 63 321.50 0.633 0.367 0 0.447 0.553 1.000 0.357 0.189 0.621
21 68 77.250 0.488 0.512 1 0.727 0.273 0.000 0.212 0.203 0.593
22 59 46.250 0.589 0.411 0 0.159 0.841 1.000 0.400 0.201 0.599
23 23 1.369 0.463 0.537 1 0.954 0.046 0.000 0.209 0.189 0.621
24 7 736.00 0.499 0.501 1 0.768 0.232 0.000 0.126 0.192 0.616
25 42 8.750 0.363 0.637 1 0.591 0.409 0.000 0.362 0.189 0.621
26 52 1.872 0.447 0.553 1 0.654 0.346 0.000 0.309 0.192 0.616
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27 61 -1.348 0.300 0.700 1 0.564 0.436 0.000 0.317 0.189 0.621
28 57 278.81 0.450 0.550 1 0.747 0.253 0.000 0.266 0.178 0.644
29 59 46.250 0.547 0.453 0 0.107 0.893 1.000 0.243 0.172 0.655
30 25 0.092 0.868 0.132 0 0.457 0.543 1.000 0.223 0.167 0.667
31 36 206.13 0.545 0.455 0 0.184 0.816 1.000 0.242 0.164 0.672
32 47 23.103 0.696 0.304 0 0.443 0.557 1.000 0.290 0.172 0.655
33 4 1.704 0.501 0.499 0 0.766 0.234 0.000 0.112 0.167 0.667
34 4 1.704 0.474 0.526 1 0.745 0.255 0.000 0.186 0.175 0.650
35 20 1.641 0.549 0.451 0 0.000 1.000 1.000 0.236 0.158 0.684
36 23 1.369 0.466 0.534 1 0.946 0.054 0.000 0.186 0.169 0.661
37 62 -0.869 0.262 0.738 1 0.548 0.452 0.000 0.254 0.150 0.701
38 6 1279.9 0.455 0.545 1 0.812 0.188 0.000 0.233 0.164 0.672
39 32 6.819 0.559 0.441 0 0.355 0.645 1.000 0.267 0.158 0.684
40 32 0.707 0.305 0.695 1 0.520 0.480 0.000 0.094 0.164 0.672
41 29 7.124 0.568 0.432 0 0.403 0.597 1.000 0.347 0.138 0.723
42 12 2.000 0.218 0.782 1 0.521 0.479 0.000 0.194 0.138 0.723
43 31 7.552 0.420 0.580 1 0.737 0.263 0.000 0.381 0.150 0.701
44 33 0.992 0.183 0.817 1 0.546 0.454 0.000 0.245 0.133 0.734
45 23 1.369 0.459 0.541 1 0.932 0.068 0.000 0.208 0.141 0.718
46 55 975.56 0.236 0.764 1 0.541 0.459 0.000 0.227 0.136 0.729
47 53 18.687 0.564 0.436 0 0.411 0.589 1.000 0.320 0.127 0.746
48 35 249.00 0.371 0.629 1 0.573 0.427 0.000 0.391 0.130 0.740
49 7 736.00 0.442 0.558 1 0.730 0.270 0.000 0.304 0.124 0.751
50 48 60.067 0.451 0.549 1 0.606 0.394 0.000 0.319 0.138 0.723

Output 2.5 provides important information for the progress of the algorithm for each
iteration. Is shows that in the first 50 iterations, variable X23 is selected six times, while
X20, X31, and X32 are selected three times each; boosting is focusing on variables that are
important for separating the data into classes. Also, a number of variables are not selected
in any iteration.

Figure 2.3 displays the error and kappa functions. Notice that after approximately 35
iterations, the error levels off at approximately 0.15. At this point, AdaBoost is learning
the training data at a much slower rate.

Figure 2.3 Misclassification error (left panel) and kappa statistic (right panel) plots for the PERMY data set
using the %AdaBoost macro
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2.3.6 Implementation of Generalized Boosting Algorithms
In most model building applications, we need to evaluate the model’s performance on an
independent set of data. This process is referred to as validation or cross-validation. In this
section we provide a more general macro, %Boost, that can be used to evaluate both
training and testing data. This macro also implements the other generalized forms of
boosting.

The generalized boosting algorithms described in Section 2.3.1 can be implemented
using the same structure of the %AdaBoost macro by making several appropriate
adjustments. To implement the Real AdaBoost algorithm, we must use predicted class
probabilities in place of predicted classification, and alter the observation contributions and
weights. Because the %Split macro generates predicted class probabilities, we can directly
construct Real AdaBoost. However, both Gentle AdaBoost and LogitBoost require a
method that predicts a continuous, real-valued response. This stipulation requires that we
implement a different form of recursive partitioning. Instead of using partitioning based on
a categorical response, we will implement partitioning based on a continuous response. In
short, we seek to find the partition that minimizes the corrected sum-of-squares, rather
than misclassification error or Gini Index, of the response across both new nodes. That is,
we seek the variable, xj , and cut-point, c, that minimize∑

r1j

(y1j − ȳ1j)2 +
∑
r2j

(y2j − ȳ2j)2,

where r1j = {i : xj < c} and r2j = {i : xj ≥ c}.
Like partitioning based on a categorical response, partitioning based on a continuous

response requires an exhaustive search to find the optimal cut-point. To find the variable
and optimal cut-point, we have created a SAS/IML module, REGSPLIT IML. This
module is included in our comprehensive macro, %Boost, that implements the AdaBoost,
Real AdaBoost, Gentle AdaBoost, and LogitBoost algorithms (the macro is provided on
the book’s companion Web site). The input variables for %Boost are the same as
%AdaBoost. In addition, the user must specify the type of boosting to perform (TYPE=1
performs AdaBoost, TYPE=2 performs Real AdaBoost, TYPE=3 performs Gentle
AdaBoost, and TYPE=4 performs LogitBoost). When AdaBoost or Real AdaBoost are
requested, %Boost produces an output data set with the same output variables as the
AdaBoost macro. However, if Gentle AdaBoost or LogitBoost are specified, then a different
output data set is created. The variables included in this data set are listed below.

• ITER is the boosting iteration number.
• REG VAR is the variable number that minimizes the corrected sum-of-squares.
• MIN CSS is the minimum corrected sum-of-squares.
• CUT VAL is the optimal cut-point.
• YPRED L is the predicted value for observations less than CUT VAL.
• YPRED R is the predicted value for observations greater than CUT VAL.
• ERROR is the misclassification error of the cumulative boosting model at the current

iteration.
• KAPPA is the kappa statistic of the cumulative boosting model at the current iteration.

As a diagnostic tool, the %Boost macro also creates an output data set named
OUTWTS that contains observation weights at the final boosting iteration. These can be
used to identify observations that are difficult to classify.

To illustrate the %Boost macro, Program 2.6 analyzes the EXAMPLE1 data set using
the Gentle AdaBoost algorithm with ten iterations.
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Program 2.6 Gentle AdaBoost algorithm in the recursive partitioning example

%boost(inputds=example1,p=2,outputds=out_ex1,outwts=out_wt1,iter=10,type=3);
proc print data=out_ex1 noobs label;

format min_css cut_val ypred_l ypred_r error kappa 6.3;
proc print data=out_wt1;

format weight 7.5;
run;

Output from Program 2.6

OUT_EX1 data set

iter reg_var min_css cut_val ypred_L ypred_R error kappa

1 1 0.587 5.013 0.585 -0.702 0.180 0.640
2 2 0.528 6.137 -0.574 0.835 0.160 0.682
3 2 0.679 1.749 -1.000 0.357 0.050 0.900
4 1 0.600 5.013 0.603 -0.656 0.070 0.860
5 2 0.627 7.395 -0.388 1.000 0.000 1.000
6 2 0.702 1.749 -1.000 0.365 0.000 1.000
7 1 0.577 5.013 0.639 -0.659 0.000 1.000
8 2 0.669 7.395 -0.343 1.000 0.000 1.000
9 2 0.722 1.749 -1.000 0.343 0.000 1.000

10 1 0.566 5.013 0.651 -0.665 0.000 1.000

OUT_WT1 data set

Obs weight

1 0.00019
2 0.01207
3 0.03347
4 0.00609
5 0.01820
6 0.00609
7 0.00010
8 0.00609
9 0.00295
10 0.00609

Output 2.6 provides a listing of the data set produced by the %Boost macro (OUT EX1
data set). For the first iteration, X1 minimizes the corrected sum-of-squares (0.587) at the
cut-point of 5.013. Observations that are less than this value have a predicted value of
0.585, whereas observations greater than this value have a predicted value of −0.702. For
Gentle AdaBoost, the error at the first iteration is 0.18, while the kappa value is 0.64.

In addition, Output 2.6 lists the first ten observations in the OUT WT1 data set, which
includes the final weights for each observation after ten iterations. These weights are
constrained to sum to one; therefore, relatively high weights represent observations that are
difficult to classify, and observations with low weights are relatively easy to classify.

One can also model the permeability data using Gentle AdaBoost. But first we should
split the data into training and testing sets in order to evaluate each model’s performance
on an independent set of data. For this chapter, the permeability data set has already been
separated into training and testing sets through the SET variable. Program 2.7 creates the
training and testing sets and invokes the %Boost macro to perform Gentle AdaBoost on
the training data with 35 iterations.
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Program 2.7 Gentle AdaBoost algorithm in the permeability data example

data train;
set permy(where=(set="TRAIN"));

data test;
set permy(where=(set="TEST"));
run;

%boost(inputds=train,p=71,outputds=genout1,outwts=genwt1,iter=35,type=3);
proc print data=genout1 noobs label;

format min_css ypred_l ypred_r error kappa 6.3;
run;

* Misclassification error;
* Vertical axis;
axis1 minor=none label=(angle=90 "Error") order=(0 to 0.3 by 0.1) width=1;
* Horizontal axis;
axis2 minor=none label=("Iteration") order=(1 to 36 by 5) width=1;
symbol1 i=join value=none color=black width=5;
proc gplot data=genout1;

plot error*iter/vaxis=axis1 haxis=axis2 frame;
run;
quit;

* Kappa statistic;
* Vertical axis;
axis1 minor=none label=(angle=90 "Kappa") order=(0.5 to 1 by 0.1) width=1;
* Horizontal axis;
axis2 minor=none label=("Iteration") order=(1 to 36 by 5) width=1;
symbol1 i=join value=none color=black width=5;
proc gplot data=genout1;

plot kappa*iter/vaxis=axis1 haxis=axis2 frame;
run;
quit;

Output from Program 2.7

iter reg_var min_css cut_val ypred_L ypred_R error kappa

1 6 0.838 1047.69 0.374 -0.434 0.299 0.402
2 42 0.910 8.75 0.649 -0.142 0.294 0.411
3 70 0.878 13.81 0.181 -0.734 0.238 0.523
4 33 0.933 1.17 0.706 -0.116 0.234 0.533
5 37 0.928 75.56 0.348 -0.201 0.238 0.523
6 7 0.922 745.06 0.101 -0.803 0.234 0.533
7 63 0.920 318.81 -0.325 0.241 0.196 0.607
8 43 0.943 16.74 0.333 -0.172 0.178 0.645
9 45 0.938 23.72 -0.464 0.136 0.173 0.654
10 56 0.939 452.44 0.337 -0.186 0.192 0.617
11 19 0.946 0.50 -0.349 0.157 0.154 0.692
12 71 0.944 549.46 -0.078 0.751 0.131 0.738
13 15 0.936 0.10 0.485 -0.122 0.126 0.748
14 32 0.953 8.85 -0.057 0.716 0.126 0.748
15 23 0.949 1.38 0.066 -0.924 0.112 0.776
16 1 0.950 624.00 1.000 -0.065 0.112 0.776
17 59 0.955 46.25 -0.037 0.849 0.103 0.794
18 57 0.941 278.81 0.091 -0.738 0.107 0.785
19 60 0.944 8.75 -0.142 0.424 0.098 0.804
20 68 0.951 84.94 0.073 -0.704 0.107 0.785
21 34 0.955 0.71 -0.539 0.074 0.103 0.794
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22 41 0.950 9.88 0.747 -0.137 0.103 0.794
23 34 0.956 0.71 -0.518 0.095 0.112 0.776
24 33 0.949 0.99 0.724 -0.137 0.107 0.785
25 13 0.957 0.02 1.000 -0.036 0.103 0.794
26 57 0.959 274.63 0.085 -0.573 0.103 0.794
27 32 0.957 1.58 0.191 -0.224 0.079 0.841
28 34 0.947 0.71 -0.584 0.093 0.084 0.832
29 32 0.938 8.85 -0.148 0.856 0.084 0.832
30 34 0.951 0.71 -0.546 0.099 0.070 0.860
31 34 0.947 0.71 -0.612 0.000 0.070 0.860
32 34 0.947 0.71 -0.612 0.000 0.070 0.860
33 34 0.947 0.71 -0.612 -0.000 0.070 0.860
34 34 0.947 0.71 -0.612 -0.000 0.070 0.860
35 34 0.947 0.71 -0.612 -0.000 0.070 0.860

Output 2.7 lists the GENOUT1 data set created by the %Boost macro. Figure 2.4
illustrates the performance of the Gentle AdaBoost algorithm on the training data set.
Notice that the training error decreases from 0.3 to around 0.1 after approximately 25
iterations.

Figure 2.4 Misclassification error (left panel) and kappa statistic (right panel) plots for the training subset of
the PERMY data set using the %Boost macro (Gentle AdaBoost algorithm)
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%Predict Macro
To complement the %Boost macro, we have also developed a macro, %Predict, to predict
new observations using the model information generated by %Boost. This macro can be
used to evaluate the performance of a model on an independent testing or validation data
set. The input variables to %Predict are:

• PRED DS is the name of the data set to be predicted. This data set must have
descriptors named X1, X2, . . . , XP. The response must be named Y and must assume
values of 0 or 1.

• P is the number of descriptors in the input data set.
• BOOST DS is the name of the data set with boost model information (the OUTPUTDS

from the %Boost macro).
• TYPE is the type of boosting for prediction.
• ITER is the number of boosting iterations desired.
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Program 2.8 calls the %Predict macro to examine the predictive properties of the
classification model in the permeability data example. The program analyzes the TEST
data set created in Program 2.7.

Program 2.8 Prediction in the permeability data example

%predict(pred_ds=test,p=71,boost_ds=genout1,outputds=gentst1,out_pred=genpred1,
type=3,iter=35);

* Misclassification error;
* Vertical axis;
axis1 minor=none label=(angle=90 "Error") order=(0 to 0.5 by 0.1) width=1;
* Horizontal axis;
axis2 minor=none label=("Iteration") order=(1 to 36 by 5) width=1;
symbol1 i=join value=none color=black width=5;
proc gplot data=gentst1;

plot error*iter/vaxis=axis1 haxis=axis2 frame;
run;
quit;

Figure 2.5 depicts changes in the model error across iterations. Although we saw a
decrease in the misclassification error for the training set across iterations (Figure 2.4), the
same is not true for the test set. Instead, the misclassification error goes up slightly across
iterations. For drug discovery data, this phenomenon is not surprising—often the response
in many data sets is noisy (a number of samples have been misclassified). These
misclassified samples hamper the learning ability of many models, preventing them from
learning the correct structure between the descriptors and the classification variable. In
Section 2.4, we further explain how to use boosting to identify noisy or mislabeled
observations. Removing these observations often produces a better overall predictive model.

Figure 2.5 Misclassification rates in the testing subset of the PERMY data set using the %Predict macro
(Gentle AdaBoost algorithm)
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2.3.7 Properties of Boosting
Many authors have shown that boosting is generally robust to overfitting; that is, as the
complexity of the boosting model increases for the training set (i.e., the number of
iterations increases), the test set error does not increase (Schapire, Freund, Bartlett and
Lee, 1998; Friedman, Hastie, and Tibshirani, 2000; Freund, Mansour and Schapire, 2001).
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However, boosting, by its inherent construction, is vulnerable to certain types of data
problems, which can make it difficult for boosting to find a model that can be generalized.

The primary known problem for boosting is noise in the response (Krieger, Long, and
Wyner, 2002; Schapire, 2002; Optiz and Maclin, 1999), which can occur when observations
are mislabeled or classes overlap in descriptor space. Under either of these circumstances,
boosting will place increasing higher weights on those observations that are inconsistent
with the majority of the data. As a check-valve, the performance of the model at each stage
is evaluated against the original training set. Models that poorly classify receive less
weight, while models that accurately classify receive more weight. But, the final
agglomerative model has attempted to fit the noise in the response. Hence, the final model
will use these rules to predict new observations, thus increasing prediction error.

For similar reasons, boosting will be negatively affected by observations that are outliers
in the descriptor space. In fact, because of this problem, Freund and Schapire (2001)
recommend removing known outliers before performing boosting.

Although noise can be the Achilles heel of boosting, its internal correction methods can
help us identify potentially mislabeled or outlying observations. Specifically, as the
algorithm iterates, boosting will place increasing larger weights on observations that are
difficult to classify. Hence, tracking observation weights can be used as a diagnostic tool for
identifying these problematic observations. In the following section, we will illustrate the
importance of examining observation weights.

2.4 Model Building
This section discusses model building with the %Boost macro introduced in Section 2.3.

Each modification of the AdaBoost algorithm (AdaBoost, Real AdaBoost, Gentle
AdaBoost, and LogitBoost) performs differently on various types of data. Because of this
fact, we should evaluate the performance of each model on a training and testing set to
identify the model with the best performance. For the permeability data, Program 2.9
performs each version of boosting on the training and testing sets (TRAIN and TEST data
sets) created in Program 2.7. The program also computes and plots the associated
misclassification errors to gauge the predictive ability of each model.

Program 2.9 Performance of the four boosting algorithms in the permeability data example

* AdaBoost;
%boost(inputds=train,p=71,outputds=adaout1,outwts=adawt1,iter=40,type=1);
%predict(pred_ds=test,p=71,boost_ds=adaout1,outputds=adatst1,out_pred=adapred1,

type=1,iter=40);
* Real AdaBoost;
%boost(inputds=train,p=71,outputds=realout1,outwts=realwt1,iter=40,type=2);
%predict(pred_ds=test,p=71,boost_ds=realout1,outputds=realtst1,out_pred=realpred1,

type=2,iter=40);
* Gentle AdaBoost;
%boost(inputds=train,p=71,outputds=genout1,outwts=genwt1,iter=40,type=3);
%predict(pred_ds=test,p=71,boost_ds=genout1,outputds=gentst1,out_pred=genprd1,

type=3,iter=40);
* LogitBoost;
%boost(inputds=train,p=71,outputds=logout1,outwts=logwt1,iter=40,type=4);
%predict(pred_ds=test,p=71,boost_ds=logout1,outputds=logtst1,out_pred=logprd1,

type=4,iter=40);
* Training set misclassification errors;
data adaout1;

set adaout1; method=1;
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data realout1;
set realout1; method=2;

data genout1;
set genout1; method=3;

data logout1;
set logout1; method=4;

data train_error;
set adaout1(keep=iter error method)
realout1(keep=iter error method)
genout1(keep=iter error method)
logout1(keep=iter error method);

axis1 minor=none label=(angle=90 "Error") order=(0 to 0.3 by 0.1) width=1;
axis2 minor=none label=("Iteration") order=(1 to 41 by 10) width=1;
symbol1 i=join value=none color=black line=1 width=3;
symbol2 i=join value=none color=black line=34 width=3;
symbol3 i=join value=none color=black line=20 width=3;
symbol4 i=join value=none color=black line=41 width=3;
proc gplot data=train_error;

plot error*iter=method/vaxis=axis1 haxis=axis2 frame nolegend;
run;
quit;

* Test set misclassification errors;
data adatst1;

set adatst1; method=1;
data realtst1;

set realtst1; method=2;
data gentst1;

set gentst1; method=3;
data logtst1;

set logtst1; method=4;
data test_error;

set adatst1(keep=iter error method)
realtst1(keep=iter error method)
gentst1(keep=iter error method)
logtst1(keep=iter error method);

axis1 minor=none label=(angle=90 "Error") order=(0.2 to 0.5 by 0.1) width=1;
axis2 minor=none label=("Iteration") order=(1 to 41 by 10) width=1;
symbol1 i=join value=none color=black line=1 width=3;
symbol2 i=join value=none color=black line=34 width=3;
symbol3 i=join value=none color=black line=20 width=3;
symbol4 i=join value=none color=black line=41 width=3;
proc gplot data=test_error;

plot error*iter=method/vaxis=axis1 haxis=axis2 frame nolegend;
run;
quit;

The misclassification error curves for the four boosting algorithms are displayed in the
left panel of Figure 2.6. After 40 iterations, each method has learned as much information
as possible about the structure of the training set in relation to compound permeability
classification (notice the flattening of each misclassification curve). These models are
subsequently applied to the test set and the resulting misclassification error curves are
shown in the right panel of Figure 2.6. This plot demonstrates that the predictive ability of
boosting does not improve as the number of iterations increases. Notice, however, that
boosting does not rapidly overfit; the test set error does not climb rapidly as iteration
number increases.
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Figure 2.6 Misclassification rates the training (left panel) and test (right panel) subsets of the PERMY data
set (solid curve, AdaBoost; dotted curve, Real AdaBoost; dashed curve, Gentle AdaBoost; dashed-dotted curve,
LogitBoost)

E
rr

or

0.0

0.1

0.2

0.3

Iteration

1 11 21 31 41

E
rr

or

0.2

0.3

0.4

0.5

Iteration

1 11 21 31 41

As mentioned in the previous section, boosting will focus its modeling efforts on
observations that are difficult to classify by increasing the observations’ weights. The
original classification of compounds in this data set is inherently noisy, which could be
causing boosting to focus on incorrect features of the data in an attempt to classify all
observations. Program 2.10 computes and plots the Real AdaBoost weights of each
observation after 40 iterations.

Program 2.10 Observation weights for the Real AdaBoost algorithm

%boost(inputds=train,p=71,outputds=realout1,outwts=realwt1,iter=40,type=2);
* Weights from Real AdaBoost;
proc sort data=realwt1 out=sortwts;

by descending weight;
data sortwts;

set sortwts;
obsnum=_n_;

* Vertical axis;
axis1 minor=none label=(angle=90 "Weight") order=(0 to 0.03 by 0.01) width=1;
* Horizontal axis;
axis2 minor=none label=("Observations") order=(0 to 225 by 25) width=1;
symbol1 i=none value=circle color=black height=4;
proc gplot data=sortwts;

plot weight*obsnum/vaxis=axis1 haxis=axis2 frame;
run;
quit;

Figure 2.7 displays the weights computed by Program 2.10. In this example, the Real
AdaBoost algorithm focuses 50 percent of the weight on only 20 percent of the data—a
telltale sign that boosting is chasing misclassified or difficult-to-classify observations.

In an attempt to find a predictive model, we have removed these observations and have
re-run each boosting algorithm (Program 2.11). The misclassification error curves
generated by Program 2.11 are displayed in Figure 2.8.
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Figure 2.7 Observation weights for the Real AdaBoost algorithm after 40 iterations (observations are ordered
by magnitude)
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Program 2.11 Performance of the four boosting algorithms in the permeability data example (reduced data
set)

* Real AdaBoost;
%boost(inputds=train,p=71,outputds=realout1,outwts=realwt1,iter=40,type=2);
data newtrain;

merge train realwt1;
if weight>0.007 then delete;
drop weight;

* AdaBoost;
%boost(inputds=newtrain,p=71,outputds=adaout2,outwts=adawt2,iter=40,type=1);
%predict(pred_ds=test,p=71,boost_ds=adaout2,outputds=adatst2,out_pred=adapred2,

type=1,iter=40);
* Real AdaBoost;
%boost(inputds=newtrain,p=71,outputds=realout2,outwts=realwt2,iter=40,type=2);
%predict(pred_ds=test,p=71,boost_ds=realout2,outputds=realtst2,out_pred=realpred2,

type=2,iter=40);
* Gentle AdaBoost;
%boost(inputds=newtrain,p=71,outputds=genout2,outwts=genwt2,iter=40,type=3);
%predict(pred_ds=test,p=71,boost_ds=genout2,outputds=gentst2,out_pred=genprd2,

type=3,iter=40);
* LogitBoost;
%boost(inputds=newtrain,p=71,outputds=logout2,outwts=logwt2,iter=40,type=4);
%predict(pred_ds=test,p=71,boost_ds=logout2,outputds=logtst2,out_pred=logprd2,

type=4,iter=40);
* Training set misclassification errors;
data adaout2;

set adaout2; method=1;
data realout2;

set realout2; method=2;
data genout2;

set genout2; method=3;
data logout2;

set logout2; method=4;
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data train_error2;
set adaout2(keep=iter error method)
realout2(keep=iter error method)
genout2(keep=iter error method)
logout2(keep=iter error method);

axis1 minor=none label=(angle=90 "Error") order=(0 to 0.3 by 0.1) width=1;
axis2 minor=none label=("Iteration") order=(1 to 41 by 10) width=1;
symbol1 i=join value=none color=black line=1 width=3;
symbol2 i=join value=none color=black line=34 width=3;
symbol3 i=join value=none color=black line=20 width=3;
symbol4 i=join value=none color=black line=41 width=3;
proc gplot data=train_error2;

plot error*iter=method/vaxis=axis1 haxis=axis2 frame nolegend;
run;
quit;

* Test set misclassification errors;
data adatst2;

set adatst2; method=1;
data realtst2;

set realtst2; method=2;
data gentst2;

set gentst2; method=3;
data logtst2;

set logtst2; method=4; run;
data test_error2;

set adatst2(keep=iter error method)
realtst2(keep=iter error method)
gentst2(keep=iter error method)
logtst2(keep=iter error method);

axis1 minor=none label=(angle=90 "Error") order=(0.2 to 0.5 by 0.1) width=1;
axis2 minor=none label=("Iteration") order=(1 to 41 by 10) width=1;
symbol1 i=join value=none color=black line=1 width=3;
symbol2 i=join value=none color=black line=34 width=3;
symbol3 i=join value=none color=black line=20 width=3;
symbol4 i=join value=none color=black line=41 width=3;
proc gplot data=test_error2;

plot error*iter=method/vaxis=axis1 haxis=axis2 frame nolegend;
run;
quit;

Figure 2.8 depicts the misclassification error curves for the four boosting algorithms in
the reduced data set. The initial training error is lower than for the original training set
(see Figure 2.6), and each boosting method more rapidly learns the features of the training
data that are related to permeability classification. This implies that the observations that
were removed from the training set were likely misclassified, but the predictive performance
on the test set does not improve (see the right panel of Figure 2.8).

Undoubtedly, the test set also contains observations that are misclassified. In a final
attempt to improve boosting’s predictive ability, we have run Real AdaBoost on the test
set and have removed the highest weighted observations. To this reduced test set, we have
applied each reduced training set boosting model (Program 2.12). The misclassification
error rates computed by the program are shown in Figure 2.9.
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Figure 2.8 Misclassification rates in the training (left panel) and test (right panel) subsets for the reduced
training set (solid curve, AdaBoost; dotted curve, Real AdaBoost; dashed curve, Gentle AdaBoost; dashed-
dotted curve, LogitBoost)
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Program 2.12 Predictive performance of the four boosting algorithms in the permeability data example
(reduced data set)

* Model test set data and identify compounds with high weights;
%boost(inputds=test,p=71,outputds=realout3,outwts=realwt3,iter=40,type=1);
data newtest;

merge test realwt3;
if weight>0.01 then delete;
drop weight;

* AdaBoost;
%predict(pred_ds=newtest,p=71,boost_ds=adaout2,outputds=adatst3,out_pred=adapred3,

type=1,iter=40);
* Real AdaBoost;
%predict(pred_ds=newtest,p=71,boost_ds=realout2,outputds=realtst3,out_pred=realpred3,

type=2,iter=40);
* Gentle AdaBoost;
%predict(pred_ds=newtest,p=71,boost_ds=genout2,outputds=gentst3,out_pred=genprd3,

type=3,iter=40);
* LogitBoost;
%predict(pred_ds=newtest,p=71,boost_ds=logout2,outputds=logtst3,out_pred=logprd3,

type=4,iter=40);
* Test set misclassification errors;
data adatst3;

set adatst3; method=1;
data realtst3;

set realtst3; method=2;
data gentst3;

set gentst3; method=3;
data logtst3;

set logtst3; method=4;
data test_error3;

set adatst3(keep=iter error method)
realtst3(keep=iter error method)
gentst3(keep=iter error method)
logtst3(keep=iter error method);
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axis1 minor=none label=(angle=90 "Error") order=(0 to 0.3 by 0.1) width=1;
axis2 minor=none label=("Iteration") order=(1 to 41 by 10) width=1;
symbol1 i=join value=none color=black line=1 width=3;
symbol2 i=join value=none color=black line=34 width=3;
symbol3 i=join value=none color=black line=20 width=3;
symbol4 i=join value=none color=black line=41 width=3;
proc gplot data=test_error3;

plot error*iter=method/vaxis=axis1 haxis=axis2 frame nolegend;
run;
quit;

Figure 2.9 Misclassification error rates in the test subset of the reduced set (solid curve, AdaBoost; dotted
curve, Real AdaBoost; dashed curve, Gentle AdaBoost; dashed-dotted curve, LogitBoost)
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Figure 2.9 demonstrates that the misclassification error rates on this set are noticeably
lower than on the original test set.

While boosting does not significantly reduce test set classification error across iterations
for this example, it does allow the user to identify difficult-to-classify, or possibly
misclassified observations. With these observations present, any method will have a difficult
time finding the underlying relationship between predictors and response.

2.5 Partial Least Squares for Discrimination
Perhaps the most commonly used method of statistical discrimination is simple linear
discriminant analysis (LDA). A fundamental problem associated with the use of LDA in
practice, however, is that the associated pooled within-groups sums-of-squares and
cross-products matrix has to be invertible. For data sets with collinear features or with
significantly more features than observations this may not be the case. In these situations
there are many different options available. By far the most common in the practice of
chemometrics is to first use principal components analysis (PCA) to reduce the dimension
of the data, and then to follow the PCA with a version of LDA, or to simply impose an ad
hoc classification rule at the level of the PCA scores and leave it at that. While both
approaches are sometimes successful in identifying class structure, the dimension reduction
step was not focused on the ultimate goal of discrimination.

Of course, PCA is not the only option for collinear data. Ridging or “shrinkage” can be
employed to stabilize the pertinent covariance matrices so that the classical discrimination
paradigms might be implemented (Friedman, 1989; Rayens, 1990; Rayens and Greene,
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1991; Greene and Rayens, 1989). Alternatively, variable selection routines based in genetic
algorithms are gaining popularity (e.g., Lavine, Davidson and Rayens, 2004) and have been
shown to be successful in particular on microarray data. Other popular methods include
flexible discriminant analysis (Ripley, 1996) and penalized discriminant analysis (Hastie
et al., 1995), which are also variations on the ridging theme.

It is well known that PCA is not a particularly reliable paradigm for discrimination
since, unlike simple LDA, it is capable of identifying only gross variability and is not
capable of distinguishing “among-groups” and “within-groups” variables. Indeed, a PCA
approach to discrimination is typically successful only when the among-groups variability
dominates the within-groups variability, as often happens with chromatography studies.
This point is illustrated in a small simulation study by Barker and Rayens (2003).

It turns out that partial least squares (PLS) is much more appropriate than PCA as a
dimension-reducing technique for the purposes of linear discrimination. Barker and Rayens
fully established this connection between PLS and LDA, and we will refer to their use of
PLS for facilitating a discriminant analysis as PLS-LDA. Some of the details of this
connection will be reviewed before illustrating how PLS-LDA can easily be implemented in
SAS using the PLS procedure.

To facilitate the discussion, we will use PROC PLS to perform PLS-LDA on the same
permeability data set that we used to illustrate boosting.

2.5.1 Review of PLS
PLS is based on Herman Wold’s original Nonlinear Iterative Partial Least Squares
(NIPALS) algorithm (Wold, 1966; Wold, 1981), adapted to reduce dimensionality in the
overdetermined regression problem. However, there are many different versions of the same
paradigm, some of which allow the original PLS problem to be viewed as a collection of
well-posed eigenstructure problems which better facilitate PLS being connected to
canonical covariates analysis (CCA) and, ultimately, to LDA. This is the perspective taken
on PLS in this chapter. With respect to SAS, this perspective is essentially equivalent to
invoking the METHOD=SIMPLS option, which we will revisit in the discussion below.

It should be noted at the outset that under this general eigenstructure perspective it is
especially obvious that different sets of constraints—and whether these constraints are
imposed in both the X- and Y -spaces or only one—will lead to different PLS directions.
This does not seem to be well known, or at least not often discussed in practice. With PCA
the resulting “directions” or weight vectors are orthogonal and, at the same time, the
associated component scores are uncorrelated. With PLS one has to choose since both
uncorrelated score constraints and orthogonal weights are not simultaneously possible.
Which constraint seems to be important and where you impose them depends on who you
talk to. In the neurosciences, orthogonal constraints are considered essential, since the
directions are often more important than the scores and having the directions be
orthogonal (interpreted in practice as “independent”) helps with the interpretation of the
estimated “signals”. Chemometricians, however, typically have no interest in an orthogonal
decomposition of variable space and are much more focused on creating “new” data with
uncorrelated features, which makes sense, since it is often a problem of collinearity that
brings them to PLS in the first place.

For example, this latter perspective is adopted in PROC PLS where uncorrelated score
constraints are implicitly assumed. We are going to simplify our presentation by largely
ignoring the constraints issue. Indeed, with all the standard constraint sets the product of
the sample covariance matrix and its transpose, SxySyx, emerges at the core construct in
the extraction of the PLS structure. As we will see below, it is this construct that is
intimately related to Fisher’s LDA. First, the definition of PLS is reviewed.
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Definition of PLS
Let x and y be random p- and q-dimensional vectors with dispersion matrices Σx and Σy,
respectively (the sample matrices will be denoted by Sx and Sy). Denote the covariance of
x and y by Σxy. The first pair of PLS directions are defined as p- and q-dimensional vectors
a and b that jointly maximize

Cov[(aT x, bT y)]2

(aT a)(bT b)
.

The objective of the maximization in this definition can be more clearly seen by rewriting
it as

Cov[(aT x, bT y)]2

(aT a)(bT b)
= Var(aT x)[Corr(aT x, bT y)]2Var(bT y).

In this framework, it is easy to see how PLS can be thought of as “penalized” canonical
correlations analysis (see Frank and Friedman, 1993). That is, the squared correlation term
alone represents the objective of CCA. However, this objective is penalized by a variance
term for the X-space and another for the Y -space. These variance terms represent the
objective of principal components analysis. Hence, from this representation, PLS seeks to
maximize correlation while simultaneously reducing dimension in the X- and Y -spaces.

PLS Theorem
The first PLS direction in the X-space, a1, is an eigenvector of ΣxyΣyx corresponding to the
largest eigenvalue, and the corresponding first PLS direction in the Y -space, b1, is given by
b1 = Σyxa1.

If orthogonality constraints are imposed on the directions in both the X- and Y -spaces,
then any subsequent PLS solution, say ak+1, follows analogously, with the computation of
the eigenvector of SxySyx corresponding to the (k + 1)st largest eigenvalue and the Y -space
direction emerges as bk+1 = Syxak+!. If, instead of orthogonal constraints, uncorrelated score
constraints are imposed, then the (k + 1)st X-space direction is an eigenvector
corresponding to the largest eigenvalue of

(Ip − (ΣxA
(k))

[
(ΣxA

(k))T ΣxA
(k)

]−1
(ΣxA

(k))T )ΣxyΣyx,

where A(k) = [a1, a2, . . . , ak]p×k. There is a completely similar expression for the Y -space
structure.

The described theorem is well known in the PLS literature and, for uncorrelated score
constraints, a variant was first produced by de Jong (1993) when the SIMPLS procedure
was introduced. Another proof of this Theorem under different constraint sets (and novel in
that it does not use Lagrange multipliers) is provided in the technical report by Rayens
(2000). For now, the point is simply that the derivation of the PLS directions will either
directly or indirectly involve the eigenstructure of SxySyx.

In the following presentation, CCA is first connected to LDA, then, using this
connection between PLS and CCA, PLS is formally connected and finally, PLS to LDA.

2.5.2 Connection between CCA and LDA
When CCA is performed on a training set, X (e.g., 71 molecular properties measured on
354 compounds described in Section 2.2) and an indicator matrix, Y , representing group
membership (e.g., a 1 for a permeable compound and a 0 for a non-permeable compound),
the CCA directions are just Fisher’s LDA directions. This well-known fact, which was first
recognized by Bartlett (1938), has been reproved more elegantly by Barker and Rayens
(2003) by using the following results, which are important for this presentation.
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Let xij be the p-dimensional vector for the jth observation in the ith group and g be the
number of groups. Denote the training set consisting of ni observations on each of p feature
variables by

Xn×p = (x11, x12, . . . , x1n1 , . . . , xg1, xg2, . . . , xgng)
T .

Let H denote the among-groups sums-of-squares and cross-products matrix and let E be
the pooled within-groups sums-of-squares and cross-products matrix,

H =
g∑

i=1

ni(x̄i − x̄)(x̄i − x̄)T , E =
g∑

i=1

ni∑
j=1

(xij − x̄i)(xij − x̄i)T ,

where

x̄i = (1/ni)
ni∑

j=1

xij , x̄ = (1/n)
g∑

i=1

ni∑
j=1

xij , n =
g∑

i=1

ni.

LDA, also known as “canonical discriminant analysis” (CDA) when expressed this way,
manipulates the eigenstructure of E−1H. The connections between CDA and a perspective
on LDA that is more focused on the minimization of misclassification probabilities are
well-known and will not be repeated here (see Kshiragar and Arseven, 1975).

There are two obvious ways that one can code the group membership in the matrix Y ,
either

Y =

⎡⎢⎢⎢⎣
1n1×1 0 · · · 0

0 1n2×1 · · · 0
...

...
. . .

...
0 0 · · · 1ng×1

⎤⎥⎥⎥⎦ or Z =

⎡⎢⎢⎢⎢⎢⎣
1n1×1 0 · · · 0

0 1n2×1 · · · 0
...

...
. . .

...
0 0 · · · 1ng−1×1
0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎦ .

For example, for the permeability data one could rationally choose

Y =
[

1177×1 0177×1
0177×1 1177×1

]
or Z =

[
1177×1
0177×1

]
.

Note that the sample “covariance” matrix Sy is g × g and rank g − 1, while Sz is
(g − 1) × (g − 1) and rank (g − 1). Regardless, the fact that both Y and Z are indicator
matrices suggests that Sy and Sz will have special forms. Barker and Rayens (2003) showed
the following:

S−1
z = (n − 1)

(
1
ng

1g−11T
g−1 + M−1

)
,

where

M =

⎡⎢⎢⎢⎣
n1 0 · · · 0
0 n2 · · · 0
...

...
. . .

...
0 0 · · · ng−1

⎤⎥⎥⎥⎦
(g−1)×(g−1)

, Sc
y =

[
S−1

z 0g−1
0g−1 0

]
g×g

.

With these simple expressions for S−1
z and Sc

y, it is possible to relate constructs that are
essential to PLS-LDA to Fisher’s H matrix, as will be seen in the next section.
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2.5.3 Connection between PLS and LDA
Since PLS is just a penalized version of CCA and CCA is, in turn, related to LDA
(Bartlett, 1938), it is reasonable to expect that PLS might have some direct connection to
LDA. Barker and Rayens (2003) gave a formal statistical explanation of this connection. In
particular, recall that above the USC-PLS directions were associated with the
eigenstructure of SxySyx or, for a classification application, SxzSzx, depending on how the
membership matrix was coded. In either case, Barker and Rayens (2003) related the
pertinent eigenstructure problem to H as follows:

SxySyx = H∗ =
1

n − 1

g∑
i=1

n2
i (x̄i − x̄)(x̄i − x̄)T ,

SxzSzx = H∗∗ =
1

n − 1

g−1∑
i=1

n2
i (x̄i − x̄)(x̄i − x̄)T .

It should be noted that when the Y block is coded with dummy variables, the presence of
the Y -space penalty (Var(bT y)) in the definition of PLS does not seem to be all that
appropriate, since Y -space variability is not meaningful. Barker and Rayens (2003)
removed this Y -space penalty from the original objective function, reposed the PLS
optimization problem, and were able to show that the essential eigenstructure problem that
is being manipulated in this case is one that involves exactly H, and not merely H∗ or H∗∗.
However, in the case of two groups, as with our permeability data, it is not hard to show
that

H∗ = 2H∗∗ =
n − 1

2

(
1
n1

+
1
n2

)
H

and, hence, that the eigenstructure problems are equivalent and all proportional to
(x̄1 − x̄)(x̄1 − x̄)T .

The practical upshot is simple: when one uses PLS to facilitate discrimination in the
“obvious” way, with the intuition of “predicting” group membership from a training set,
then the attending PLS eigenstructure problem is one that depends on (essentially)
Fisher’s among-groups sums-of-squares and cross-products matrix H. It is, therefore, no
surprise that PLS should perform better than PCA for dimension reduction when
discriminant analysis on the scores is the ultimate goal. This is simply because the
dimension reduction provided by PLS is determined by among-groups variability, while the
dimension reduction provided by PCA is determined by total variability. It is easy to
implement PLS-LDA in SAS, and this is discussed next.

2.5.4 Logic of PLS-LDA
There are many rational ways that PLS can be used to facilitate discrimination. Consistent
with how PCA has been used for this purpose, some will choose to simply plot the first two
or three PLS-LDA “scores” and visually inspect the degree of separation, a process that is
entirely consistent with the spirit of “territory plots” and classical CDA. The classification
of an unknown may take place informally, say, by mapping it to the same two or three
dimensional space occupied by the scores and then assigning it to the group that admits
the closest mean score, where “closest” may be assessed in terms of Mahalanobis distance
or Euclidean distance.

Alternately, the scores themselves may be viewed simply as new data that have been
appropriately “prepared” for an LDA, and a full LDA might be performed on the scores,
either with misclassification rates as a goal (the DISCRIM procedure) or visual separation
and territory plots as a goal (the CANDISC procedure). Figure 2.10 helps illustrate the
many options. In Section 2.5.5, we will discuss how to produce the PLS-LDA scores with
the PLS procedure.
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Figure 2.10 Schematic depicting the logic of PLS-LDA

Training data Xn×p

(choose q PLS components)

�

PLS-LDA scores Wn×q

� �

Plot scores,
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ad hoc rule)
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classification procedure,

PROC CANDISC or PROC DISCRIM
(classifying using formal rule)

� �

Find corresponding
score wq×1

�

Unknown xp×1

2.5.5 Application
As mentioned in the Introduction, drug discovery teams often generate data that contain
both descriptor information and a categorical measurement. Often, the teams desire to
search for a model that can reasonably predict the response. For this section, we apply
PLS-LDA to the permeability data set (the PERMY data set can be found on the book’s
companion Web site) introduced in Section 2.2.

Recall that this data set contains 354 compounds that have been screened to assess
permeability. While the original measure of permeability was a continuous value, scientists
have categorized these compounds into groups of permeable and non-permeable. In
addition, this data set contains an equal number of compounds in each group. Using
in-house software, 71 molecular properties, thought to be related to compound
permeability, were generated for each compound and were used as the descriptors for both
modeling techniques.

This is not an uncommon drug discovery-type data set—the original continuous
response is noisy and is subsequently reduced to a binary response. Hence, we fully expect
some compounds to be incorrectly classified. Also, the descriptor set is computationally
derived and is over-described. With these inherent problems, many techniques would have
a difficult time finding a relationship between the descriptors and the response.

Implementing PLS-LDA in SAS

The purpose of this presentation is not to detail the many options that are well known in
PROC DISCRIM or PROC CANDISC, or perhaps less well known in PROC PLS. Rather,
this presentation is focused on simply showing the reader how to use PROC PLS in
conjunction with, say, PROC DISCRIM to implement PLS-LDA as described above. To
better facilitate this discussion,f we will use the permeability data, as described in the
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previous subsection. For this analysis, all observations are used in the training set and
cross-validation is used to assess model performance.

Notice with subgroup matrices of size 177 by 71 one would not necessarily expect that
any dimension reduction would be necessary and that PROC DISCRIM could be applied
directly to the training set. However, many of the descriptors are physically related, so, we
expect these descriptors to be correlated to some extent. In fact, each of the individual
group covariance matrices, as well as the pooled covariance matrix, are 71 by 71 but only
have rank 63. So, in theory, Fisher’s linear discriminant analysis—whether in the form that
focuses on misclassification probabilities (PROC DISCRIM) or visual among-groups
separation (PROC CANDISC)—cannot be applied, owing to the singularity of these
matrices. Hence, these data are good candidates for first reducing dimension and then
performing a formal discriminant analysis.

There is an alternative that has to be mentioned, however. When confronted with a
singular covariance matrix, PROC DISCRIM will issue an innocuous warning and then
proceed to construct a classification rule anyway. It is not widely known, perhaps, but in
this situation SAS will employ a so-called “quasi-inverse,” which is a SAS innovation. To
construct the quasi-inverse “small values” are arbitrarily added to zero variance directions,
thereby forcing the corresponding covariance matrices to be nonsingular and preserving the
basic rationale behind the classification paradigm. Again, the purpose of this illustration is
not to compare dimension reduction followed by classification with direction classification
using a quasi-inverse, but it is important that the reader be aware that SAS already has
one method of dealing with collinear discriminant features.

Program 2.13 performs the PLS-LDA analysis of the permeability data using PROC
PLS. The initial PROC DISCRIM is invoked solely to produce the results of using the
quasi-inverse. Keep in mind that the Y variable is a binary variable in this two-group case,
designed to reflect corresponding group membership. In this example the first ten PLS
scores (XSCR1-XSCR10) are used for the discrimination (the LV=10 option is used to
request ten PLS components). For clarity of comparison, the pooled covariance matrix was
used in all cases.

Program 2.13 PLS-LDA analysis of the permeability data

ods listing close;
proc discrim data=permy list crosslist noprint;

class y;
var x1-x71;
run;

ods listing;
proc pls data=permy method=simpls lv=10;

model y=x1-x71;
output out=outpls xscore=xscr;

proc print data=outpls;
var xscr1 xscr2;
run;

ods listing close;
proc discrim data=outpls list crosslist noprint;

class y;
var xscr1-xscr10;
run;

ods listing;



40 Pharmaceutical Statistics Using SAS: A Practical Guide

Output from Program 2.13

The PLS Procedure

Percent Variation Accounted for by SIMPLS Factors

Number of
Extracted Model Effects Dependent Variables
Factors Current Total Current Total

1 26.6959 26.6959 18.5081 18.5081
2 16.6652 43.3611 2.9840 21.4921
3 8.3484 51.7096 3.0567 24.5488
4 3.5529 55.2625 3.2027 27.7515
5 6.2873 61.5498 0.8357 28.5872
6 4.0858 65.6356 0.8749 29.4621
7 3.5761 69.2117 0.8217 30.2838
8 7.0819 76.2935 0.4232 30.7070
9 2.2274 78.5209 0.9629 31.6699

10 4.7272 83.2481 0.4038 32.0737

Obs xscr1 xscr2

1 -4.2733 -0.78608
2 -3.7668 -5.29011
3 2.0578 8.04445
4 -1.0728 -0.52324
5 -5.0157 2.37940
6 1.7600 -0.93071
7 -5.2317 3.22951
8 -4.2919 -6.71816
9 -6.3754 -3.81705

10 0.8542 -0.96708

Output 2.13 displays a “variance summary” produced by PROC PLS as well as a listing
of first ten values of the two PLS components (XSCR1 and XSCR2). In general, navigating
and understanding the PROC PLS output was discussed in great detail by Tobias (1997a,
1997b), and there is little need for us to repeat that discussion here. Rather, our purpose is
simply to extract and then access the PLS scores for purposes of performing either a formal
or ad hoc classification analysis. However, it is relevant to see how well the original feature
space has been summarized by these extracted components.

When ten PLS components are requested, the “variance summary” in Output 2.13
appears for the permeability data. Notice that 26.70% of the variability in the model effects
(X-space) was summarized by the first PLS component and 43.36% was summarized by
the first two, etc. It may take as many as 20 components to adequately summarize the
descriptor space variability. The right-most columns have recorded the correlation between
the X-space score and the categorical response. For a discriminant application, this is not
meaningful since the group coding is arbitrary.

For purposes of this chapter, the X-space scores XSCR values are what we are primarily
interested in (see Figure 2.10) since it is these new data that are then transferred to PROC
DISCRIM for classification. These scores appear on the PROC PLS output as shown (for
two components) below. The results of the classification, summarized in terms of each
group’s misclassification (“error”) rate, for various numbers of PLS components, are
displayed in Table 2.6. These error rates are the so-called “apparent” misclassification rates
and are completely standard in discriminant analysis and can be read directly off the
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default SAS output. Both the error rates for a simple reclassification of the training set
(called “re-substitution” rates on the SAS output) and the leave-one-out cross-validated
rates (called “cross-validated” rates on the SAS output) are reported. In all cases the
pooled covariance matrix was used for the (linear) classification.

Table 2.6 Error Rates for PLS and PCA Followed by PROC DISCRIM on Component Scores (bolded entries
are the minimum (observed) misclassification rates)

Re-substitution method
(Cross-validation method)

Total error rate 0-class error rate 1-class error rateNumber of
components PLS PCA PLS PCA PLS PCA

2 0.3136 0.3390 0.2881 0.3220 0.3390 0.3559
(0.3192) (0.3418) (0.2938) (0.3277) (0.3446) (0.3559)

10 0.2345 0.2966 0.2599 0.2768 0.2090 0.3164
(0.2514) (0.3192) (0.2655) (0.2994) (0.2373) (0.3390)

20 0.2090 0.2885 0.2260 0.2768 0.1921 0.2881
(0.2571) (0.3390) (0.2881) (0.2994) (0.2260) (0.3785)

30 0.2401 0.2345 0.2260 0.2429 0.2542 0.2260
(0.3079) (0.2853) (0.3051) (0.2881) (0.3107) (0.2825)

40 0.2232 0.2345 0.2203 0.2712 0.2260 0.1977
(0.3136) (0.3220) (0.3164) (0.3616) (0.3107) (0.2825)

50 0.2429 0.2458 0.2316 0.2599 0.2542 0.2316
(0.3333) (0.3333) (0.3333) (0.3672) (0.3333) (0.3277)

PROC DISCRIM 0.2373 0.2316 0.2429
with quasi-inverse (0.3192) (0.2938) (0.3446)

The following assessments are evident from Table 2.6:

• The cross-validated estimates of total misclassification rates suggest about a 25-30%
rate. This rate is fairly consistent with the non-cross-validated direct re-substitution
method, although this latter method is overly optimistic, as expected.

• Practically stated, the permeable and non-permeable compounds are not well separated,
even with quadratic boundaries, and the corresponding misclassification rates can be
expected to be fairly high in practice if one were to use the classification rule that would
result from this analysis.

• PROC DISCRIM with the quasi-inverse is recorded on the last line of the table. Notice
that the cross-validated misclassification rates for this alternative appear to do no
better, perhaps worse, than PLS-LDA.

• As expected, PLS-LDA does a better job (with the exception of 30 components) than
does PCA followed by an LDA. This is not really a surprise, of course, since the PLS
dimension reduction step basically involved maximizing among-groups differences.

2.5.6 Summary
In Section 2.5 we have briefly reviewed the formal sense in which an empirically obvious
use of PLS for the purposes of discrimination is actually optimal. This formal connection is
easily turned into a functional paradigm using PROC PLS. Direct connections to the
theory developed by Barker and Rayens (2003) can be had by invoking the SIMPLS option
in PROC PLS, but the connections would certainly hold (on an intuitive level) for other
realizations of PLS as well.
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Again, what one does with the PLS scores after they are obtained seems to vary widely
by user. Some will want to then perform a formal discriminant analysis (as we did in the
example), while others will consider the problem “worked” at this point and simply do ad
hoc classification at the level of the scores, perhaps by identifying the sample group mean
score that is closest to an unknown observation.

The real point to the work of Barker and Rayens (2003) is that when a classical
discrimination is desired, but can’t be performed owing to singular covariances (either
within or pooled), then initially reducing the dimension of the problem by identifying
optimal linear combinations of the original features is a rational and well-accepted
approach. In fact, it is common to use PCA to accomplish this first step. One of the points
made clear by Barker and Rayens (2003) is that PLS can always be expected to do a better
job at this initial reduction than can PCA. It is an open question as to whether PLS used
in this fashion would outperform the SAS use of a quasi-inverse. One of the advantages
enjoyed by PLS-LDA (followed by PROC DISCRIM, perhaps) over using the quasi-inverse
is that the sense in which these activities are optimal is well understood. It also would be
interesting to know if employing the quasi-inverse leads to understated non-cross-validated
misclassification rates in general, or if that is just a characteristic that is somehow specific
to this data set. That issue is a matter for future research, however, and will not be
discussed further here.

2.6 Summary
Both boosting and partial least squares for linear discriminant analysis can be easily
implemented using widely available SAS modules. The theoretical properties and
performance of each of these methods have been thoroughly researched by a number of
authors. In this chapter, we have provided additional details about each method, have
provided code to implement each method, and have illustrated their application on a
typical drug discovery data set. Undoubtedly, as data structures become more complex,
methods like these become extremely valuable tools for uncovering relationships between
descriptors and response classification.
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This chapter focuses on techniques used in the early stages of drug discovery to optimize
the model building process. The main topics discussed in this chapter are selecting training
and test sets, selecting variables, and determining when the prediction of a new observation
is valid. Statistical procedures that are used to build models are also reviewed. For each of
the main topics we provide background, discuss a new procedure, and provide guidance on
implementation in SAS. We apply these methods to a real drug discovery data set.

3.1 Introduction
Computational models are used in many stages of drug discovery to predict structure
activity and property relationships. The models built are based on the principle that
compounds with similar structures are expected to have similar biological activities
(Golbraikh and Tropsha, 2002). In the early stage of drug discovery, high throughput
screens are used to identify a compound’s activity against a specific target. Computational
models used at this stage need to predict a compound’s activity but the model does not
need to be interpretable. Once a series of compounds has been identified as being active
against the biological target, then the goal is to optimize the compound in terms of
structure properties such as solubility, permeability, etc. At this stage, it is useful to have a
computational model that can be interpreted by the scientists so they understand the
impact on the property when a particular feature of the structure is changed. For example,
suppose solubility has an inverse relationship with a certain feature of the structure, such

Kimberly Crimin is Senior Principal Biostatistician II, Early Development, Wyeth, USA. Thomas Vidmar is Senior Director,
Midwest Nonclinical Statistics, Pfizer, USA.
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as number of rotatable bonds; if the goal is to increase solubility then the team knows that
decreasing the number of rotatable bonds will increase solubility. In this chapter we focus
on methods the statistician can use to optimize the model building process. As George Box
(Box et al., 1978) once said “All models are wrong, but some are useful”.

To build a model, a statistician will perform the following steps: divide the data into
training and test sets, select the variables, and select the best statistical tool for prediction.
There exists a vast body of literature on statistical procedures for model building, a few of
which we discuss here. In this chapter, we focus on statistical techniques that can optimize
the model building process independent of the statistical procedure used to build the model.

A computational model is evaluated on the ability to predict future observations. One
measure of this performance is the prediction error of the model calculated on an
independent test set; therefore, it is important that the test set be representative of the
training set. Otherwise, the prediction error obtained from the test set will not be
indicative of the model’s performance.

Molecular descriptors describe geometric, topological, and electronic properties of the
compound. The molecular descriptors used to build structure activity and property
relationship models are often computer generated and many programs are available to
generate molecular descriptors. Because of this, the modeler is often faced with hundreds, if
not thousands, of descriptors. Since the molecular descriptors are based on attributes of the
structure many of these descriptors are highly correlated. To build a model that is
interpretable, the goal of variable selection is to choose descriptors that are highly
predictive of the response and independent of one another. A computational model built
with independent descriptors will be more interpretable than a model built with correlated
descriptors.

When using a model to predict a response for a new set of data, it is important to know
how different the new data are from the data used to train the model. If the new set of
data is “far” from the data used to train and test the model, then one might consider
retraining the model because the error in the prediction will be large.

In Section 3.2 we provide an example using a real drug discovery data set. In Section 3.3
we review methods for training and test set selection, and we discuss a novel technique that
we found useful. In Section 3.4 we provide an overview of variable selection techniques and
provide a new technique. In Section 3.5 we briefly review statistical procedures for model
building. In Section 3.6 we discuss a simple procedure that can be used to determine if a
new observation is in the descriptor space the model was trained on. And in Section 3.7 we
use SAS Enterprise Miner to build a computational model.

To save space, some SAS code has been shortened and some output is not shown. The
complete SAS code and data sets used in this book are available on the book’s companion
Web site at http://support.sas.com/publishing/bbu/companion site/60622.html.

3.2 Example: Solubility Data
Solubility is an important physical-chemical property in drug discovery. In the simplest
definition, the solubility of a solute is the maximum amount of the solute that can dissolve
in a certain amount of solvent. Intrinsic solubility is the solubility of the neutral form of
the salt; the salt has not separated into ions. Some of the factors affecting solubility are:
temperature, molecular weight, number of hydrogen bonds, and polarity.

For a solvent to dissolve a solute, particles of the solvent must be able to separate the
particles of the solute and occupy the intervening spaces. Water is a polar substance and
polar solvents can generally dissolve solutes that are ionic. Dissolving takes place when the
solvent is able to pull ions out of their crystal structure. Separation of ions by the action of
a solvent is called dissociation; ions are dissociated by the water molecules and spread
evenly throughout the solution.
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Estimating solubility then becomes a bit more complicated when compounds have an
ionized group because multiple forms of the compound exist with varying solubilities. The
term aqueous solubility refers to the solubility of all forms of a compound. It is the sum of
the solubility for the neutral compound plus the solubility of each ionized form of the
compound; aqueous solubility is, therefore, a function of pH. Since most drugs are either
weakly acidic or basic, it is important to use the intrinsic solubility when building a
computational model to predict solubility.

The example that we use in this chapter is a solubility data set (SOLUBILITY data set
can be found on the book’s companion Web site). The solubilities were estimated using the
old-fashioned method. An excessive amount of the compound was added to a flask of
water; the flask was shaken and the amount of remaining compound measured. The
amount of the compound dissolved is the solubility of that compound. In this data set,
there are 171 compounds. To limit the complexity of the example, only one software
package was used to generate the molecular descriptors. The goal is to build an
interpretable computational model that predicts the solubility of new compounds.

3.3 Training and Test Set Selection
In order to build reliable and predictive models, care must be taken in selecting training
and test sets. When the test set is representative of the training set, one can obtain an
accurate estimate of the model’s performance. Ideally, if there is sufficient data, the
modeler can divide the data into three different data sets: training set, validation set, and
test set. The training set is used to train different models. Then each of these models is
applied to the validation set and the model with the minimum error is selected as the final
model and applied to the test data set to estimate the prediction error of the model. More
often than not, there is insufficient data to apply this technique.

Another method used to calculate the model prediction error is cross-validation. In this
method, the data are divided into K parts, each approximately the same size. For each of
the K parts, the model is trained on the remaining K − 1 parts and then applied to the Kth
part and the prediction error calculated. The final estimate of the model prediction error is
the average prediction error over all K parts. The biggest question associated with this
method is how to choose K. If K is chosen to be equal to the sample size, then the estimate
of error will be unbiased, but the variance will be high. As K decreases, the variance
decreases but the bias increases, so one needs to find the appropriate trade-off between bias
and variance. See Hastie, Tibshirani, and Friedman (2001) for more information.

Another method which is similar to cross-validation is the bootstrap method. This
method takes a bootstrap sample from the original data set and uses the data to train the
model. Then, to calculate the model prediction error, the model is applied to either the
original data set or to the data not included in the bootstrap sample. This procedure is
repeated a large number of times and the final prediction error is the average prediction
error over all bootstrap samples. The main issue with this method is whether the original
data set is used to calculate the prediction error or only the observations not included in
the bootstrap sample. When the original sample is used, the model will give relatively good
predictions because the bootstrap sample (training set) is very similar to the original
sample (test set). One solution to reduce this bias is to use the “0.632 estimator”. For more
information on this method see Efron and Tibshirani (1998).

3.3.1 Proposed Procedure for Selecting Training and Test Sets
The methods discussed above are easy to implement and will give adequate estimates of
the prediction error provided there are no outlying points in either the response space or
the descriptor space. Often in drug discovery data sets there are points of high influence or
outliers, so excluding them from the training set is an important consideration. Therefore,
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we developed a training and test set selection procedure that limits the number of outliers
and points of influence in the training set. In this section we provide an overview of the
proposed method and apply it to the solubility data set.

Our goal is to develop a training and test set selection algorithm that accomplishes the
following goals:

• Select a test set that is representative of the training set.
• Minimize the number of outliers and influential points in the training set.

Suppose a data set contains only one descriptor. Then it would be fairly easy to come
up with an algorithm that meets the above goals. For instance, the modeler could use a
two-dimensional plot to identify outliers and points of influence, assign these to the test
set, and then take a random sample of the remaining points and assign them to the
training set. To view the data set selection, the modeler could again use a two-dimensional
plot and if the test set did not visually appear to be representative of the training set, the
modeler could take another random sample.

The above procedure is simple and easy to explain to scientists and accomplishes the
two goals when p = 1, but it is not easily extendable for p > 1 because the modeler would
have to view (p+1

2 ) two-dimensional projections to identify outliers and points of influence.
Furthermore, selecting a representative sample in p + 1-dimensional space would be
impossible unless the following were true: instead of using each descriptor, a summary
measure for each observation in the descriptor space were used, for instance, the leverage
value of each observation. Recall that the leverage value for the ith observation is the
distance between the observation and the center of the descriptor space. By using the
leverage values and the responses, we have reduced the space down to 2 from p + 1 and the
algorithm discussed above (when p = 1) could be used to develop an algorithm for training
and test set selection.

The basic algorithm for the proposed procedure is defined as follows:

1. Calculate the leverage value for each observation.
2. Bin the leverage values and the responses and then combine the bins into cells. Two

possible ways to calculate the bin size are discussed below.
3. Potential outliers and points of influence are identified as points outside a (1 − α)%

confidence region around the responses and the leverage values. These points are
assigned to the test set.

4. For each cell, take a random selection of the points within the cell and assign them to
the training set; assign the other points to the test set.

To enhance the above algorithm, the user can select how the bin size is calculated. One
option, referred to as the normal bin width, defines the bin width to be:

W = 3.49σN−1/3,

where N is the number of samples and σ is the standard deviation of either the responses or
the leverages. The second option, referred to as robust bin width, defines the bin width to be:

W = 2(IQR)N−1/3,

where IQR is the interquartile range of either the response or the leverage values and N is
defined above. We have found that the robust bin width results in more cells being defined,
and we suggest the normal bin width be used if the data are sparse. For discussions on the
optimal bin size see Scott (1979).
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After running the basic algorithm on a number of examples, we added two additional
features to improve it. The user has an option of pre-allocating particular observations to
either the training or test data sets. The other feature we added allows the user to specify
the seed used to initialize the random number generator. This allows the user to get the
same results on multiple runs.

3.3.2 TRAINTEST Module
The algorithm described above was implemented in a SAS/IML module (TRAINTEST
module) that can be found on the book’s companion Web site. There are seven inputs to
this module:

• the matrix of descriptors
• the vector of responses
• the type of bins to use (normal or robust)
• the desired proportion of observations in the training set
• a vector indicating the data set each observation should be in (if the user doesn’t want to

pre-allocate any observations, then this vector should be initialized to a vector of zeros)
• the level of the confidence region around the leverage values and the response
• the seed

(If the seed is set to zero, then the module allows SAS to initialize the random number
generator; SAS uses the system time for initialization.)

The TRAINTEST module produces three outputs plus a visual display of the training
and test set selections. The three outputs are: a vector indicating the data set each
observation belongs to, the vector of leverage values, and the observed proportion of
observations in the training set. Finally, the module creates a SAS data set (PLOTINFO)
that can be used to create a plot of leverage values versus responses. The PLOTTYPE
variable in this data set serves as a label for individual observations: PLOTTYPE=1 if the
observation is in the training set, PLOTTYPE=2 if the observation is in the test set, and
PLOTTYPE=3 if the observation is an outlier.

3.3.3 Analysis of Solubility Data
The SOLUBILITY data set that can be found on the book’s companion Web site has 171
observations (compounds) and 21 possible descriptors. The response variable, the log of the
measured solubility of the compound, is continuous. The objective is to divide the data set
into two data sets, one for training the model and the other for testing the model. Based
on the size of the data set, we wanted approximately 75% of the observations to be
allocated to the training set and we considered any point outside the 95% confidence region
to be an outlier. Program 3.1 contains the SAS code to run the training and test set
selection module on the solubility data.

Program 3.1 first reads in the SOLUBILITY data set and stores the descriptors into a
matrix X and the response into a vector y. After that, it calls the TRAINTEST module
and, based on the allocations returned from the module, the full data set is divided into
the training and test sets.

Program 3.1 Training and test set selection in the solubility example

proc iml;
* Read in the solubility data;
use solubility;
read all var (’x1’:’x21’) into x;
read all var {y} into y;
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* Initialize the input variables;
type=1;
prop=0.75;
level=0.95;
init=j(nrow(x),1,0);
seed=7692;
* Next two lines of code are not executed on the first run,;
* only the second run to allocate certain observations to the training set;
*outindi={109, 128, 139, 165};
*init[outindi,1]=1;
call traintest(ds,hi,obsprop,x,y,type,prop,init,level,seed);
print obsprop[format=5.3];
* Using data set definitions returned in DS, create two data sets;
trindi=loc(choose(ds=1,1,0))‘;
tsindi=loc(choose(ds=2,1,0))‘;
trx=x[trindi,]; try=y[trindi,1]; trxy=trx||try;
tsx=x[tsindi,]; tsy=y[tsindi,1]; tsxy=tsx||tsy;
* Number of observations in the train and test data set;
ntrain=nrow(trxy); ntest=nrow(tsxy);
print ntrain ntest;
create soltrain from trxy[colname=(’x1’:’x21’||’y’)];
append from trxy;
close soltrain;
create soltest from tsxy[colname=(’x1’:’x21’||’y’)];
append from tsxy;
close soltest;
quit;

* Vertical axis;
axis1 minor=none label=(angle=90 "Response") order=(-7 to 5 by 2) width=1;
* Horizontal axis;
axis2 minor=none label=("Leverage") order=(0 to 0.8 by 0.2) width=1;
symbol1 i=none value=circle color=black height=5;
symbol2 i=none value=star color=black height=5;
symbol3 i=none value=dot color=black height=5;
proc gplot data=plotinfo;

plot response*leverage=plottype/vaxis=axis1 haxis=axis2 frame nolegend;
run;
quit;

Output from first run of Program 3.1

OUTINDI

14 96 109 128 139 140 151 155 165

OBSPROP

0.688

NTRAIN NTEST

117 53

Output 3.1 lists the IDs of the outlying observations (OUTINDI), observed proportion
(OBSPROP) and number of observations in the training and test sets (NTRAIN and
NTEST) after the first run of Program 3.1. Figure 3.1 contains the plot of the points
assigned to each data set.
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Figure 3.1 Initial assignment of observations, training set (circle), test set (star) and outlier (dot)
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Output from second run of Program 3.1

OUTINDI

14 96 140 151 155

OBSPROP

0.712

NTRAIN NTEST

121 49

The first run of the program allocated 117 observations (68.8%) to the training set and
53 observations to the test set. The proportion of the observations assigned to the training
set was a bit lower than the desired proportion. Upon visual inspection of the data set
definitions, Figure 3.1, it was decided to run the program again only this time allocating 4
observations identified as outliers to the training set (observations 109, 128, 139 and 165).
Figure 3.2 contains the plot after the second run of Program 3.1 and the output shows the
IDs of the outlying observations, observed proportion, and number of observations in each
data set after the second run. After the second run, 121 observations (71.2%) were assigned
to the training set and 49 observations to the test set.

3.4 Variable Selection
The data used to develop computational models can often be characterized by a few
observations and a large number of measured variables, some of which are highly
correlated. Traditional approaches to modeling these data are principle component
regression (PCR) and partial least squares (PLS) (Frank and Friedman, 1993). The factors
obtained from PCR and PLS are usually not interpretable, so if the goal is to develop an
interpretable model, these are not as useful. By considering the loadings given to each
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Figure 3.2 Final assignment of observations, training set (circle), test set (star) and outlier (dot)
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variable, these methods can be used to prune the variables, although the criteria for
removing variables can be inconsistent between data sets.

Other popular variable selection procedures are tied to model selection and are often
used when fitting multiple linear regression models, although they can be used with other
models, such as a linear discriminant model. A few of the more popular procedures are
discussed below. Shrinkage methods are also available to the modeler. Instead of selecting
variables, shrinkage methods shrink the regression coefficients by minimizing a penalized
error sum of squares, subject to a constraint. In ridge regression, a common shrinkage
method, the L2 norm is used as the constraint, and Lasso, another shrinkage method, the
L1 norm is used as the constraint.

Best K models examine all possible models and the top K models are selected for
further investigation by the modeler. The top models are selected using a measure of fit
such as adjusted R2 (R2

a) or Mallow’s Cp. Since all possible models are examined, the
sample size, n, must be strictly greater than the number of descriptors, p. Examining all
possible models is computationally intensive and, realistically, this method should be used
only if p is small. A rule of thumb is p < 11.

Best subset algorithms, such as leaps and bounds (Furnival and Wilson, 1974), do not
require the examination of all possible subsets, but use an efficient algorithm to search for
the K best models using a statistical criteria such as R2

a or Mallow’s Cp. It is recommended
that other variable selection procedures be used if p > 60.

Stepwise procedures, including forward selection and backward elimination, develop
models at each step by adding (forward selection) or deleting (backward elimination) the
variable that has the largest (forward selection) or smallest (backward elimination) F-value
meeting a particular pre-determined limit. Stepwise procedures are commonly used to build
computational models.

The variable selection methods mentioned above are dependent on the type of model
being fit and often select variables for the final model which are highly correlated. This is
not an issue unless the modeler is interested in an interpretable model. In the following
section we present a variable selection method that is based on a stable numerical linear
algebra technique. Our technique ranks the predictor variables in terms of importance,
taking into account the correlation with the response and the predictor variables previously
selected. Our technique deals with the collinearity problem by separating correlated
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variables during the ranking. Our procedure is a modification of the variable selection
procedure proposed by Golub and Van Loan (1996) and is not dependent on the modeler
pre-specifying the type of model.

3.4.1 Variable Selection Algorithm
The proposed variable selection algorithm is defined below:

1. Center the matrix of descriptors, X.
2. Center the vector of responses, Y.
3. Calculate Ŷ, where each column is the projection of y onto xi, where x′

i is the ith row of
X.

4. Use the Singular-Value Decomposition to calculate the rank of Ŷ.
5. Apply the QR decomposition with column-pivoting to Ŷ.

The output from the QR decomposition algorithm when column pivoting is invoked is an
ordering of the columns of Ŷ. The number of descriptors to use in the model can be
obtained from the magnitude of the singular values of the ordered descriptor matrix. This
is similar to using a scree plot in PCR to determine the number of directions to use.

The QR decomposition of the matrix X is X = QR, where Q is an orthogonal matrix
and R is upper triangular. The matrix Q if formed from the product of p Householder
matrices, Hi, i = 1, . . . , p. A Householder matrix is an elementary reflector matrix. When
column-pivoting is incorporated into the QR algorithm, prior to calculating each
Householder matrix, the column with the largest norm is moved to the front of the matrix.
Since the matrix on which the QR algorithm operates is Ŷ, at each stage the column
moved to the front of the matrix will correspond to the descriptor with the highest
correlation with y but relatively independent of the previously selected descriptors, xi. In
other words, the first column selected will be the descriptor that has the highest correlation
with the response. The second column selected will be the descriptor with the highest
correlation with the response and the lowest correlation with the first descriptor selected.
This continues until all the descriptors have been ordered.

3.4.2 ORDERVARS Module
The variable ordering procedure described in Section 3.4.1 was implemented in a SAS/IML
module (ORDERVARS module) that can be found on the book’s companion Web site. The
inputs to this module are the matrix X of descriptors and the vector y of responses. The
outputs are the variable ordering, the rank of X, and a scree plot of the singular values.

The ORDERVARS module starts by centering X and y and then calculates the matrix
Ŷ. The QR-algorithm implemented in SAS/IML (QR subroutine) is called.
Column-pivoting is invoked in the QR subroutine by initializing the input vector ORD to
all zeros. The ORDERVARS module also creates a SAS data set (SINGVALS) that stores
the computed singular values.

3.4.3 Example: Normally Distributed Responses
As an illustrative example, suppose x is distributed N5(0,Σ), where

Σ =

⎡⎢⎢⎢⎢⎣
1 0.75 0.05 0 0

0.75 1 0 0 0
0.05 0 1 0.98 0
0 0 0.98 1 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎦ .
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In this example, x1 is correlated with x2 and x3 is highly correlated with x4. Take 25
samples from the above distribution and define

y = 2x1 + 1.5x3 + x5 + ε,

where ε is distributed N(0, 1). The response is a linear function of three of the five
descriptors, namely, x1, x3, x5. A variable selection procedure should select 1, 3, 5 as the
first three variables.

Program 3.2 provides the code to randomly generate the descriptors for this example
and calls the ORDERVARS module on the simulated data. The program starts by
initializing the covariance matrix, randomly generating the matrix of descriptors, and then
calculating y. To randomly generate data from a multivariate distribution with mean μ and
positive-definite covariance matrix Σ, the following transformation was used

x = Σ1/2z + μ,

where z is a p × 1 vector of observations, zi distributed N(0, 1), and the matrix Σ1/2 is the
square root matrix of Σ. The square root matrix of a positive definite matrix can be
calculated from the spectral decomposition of Σ as:

Σ1/2 = CD1/2C ′,

where C is the matrix of eigenvectors and D is a diagonal matrix whose elements are the
square-root of the eigenvalues.

Program 3.2 Variable ordering in the simulated example

proc iml;
* Initialize Sigma;
call randseed(564);
sig={1 0.75 0.05 0 0,

0.75 1 0 0 0,
0.05 0 1 0.98 0,
0 0 0.98 1 0,
0 0 0 0 1};

* Calculate sigma^{1/2};
call eigen(evals,evecs,sig);
sig12=evecs*diag(evals##0.5)*evecs‘;
* Generate the matrix of descriptors, x;
n=25;
x=j(n,5,0);
do i=1 to n by 1;
d=j(1,5,.);
call randgen(d,’normal’,0,1);
x[i,]=(sig12*d‘)‘;
end;
err=j(1,n,.);
* Randomly generate errors and calculate y;
call randgen(err,’normal’,0,1);
y=j(n,1,0);
y=2*x[,1] + 1.5*x[,3] + x[,5] + err‘;
* Concatenate x and y into one matrix;
xy=x||y;
* Calculate the correlation matrix;
cormat=j(6,6,.);
cormat=corr(xy);
print cormat[format=5.3];
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* Save example data set;
create test from xy[colname={’x1’ ’x2’ ’x3’ ’x4’ ’x5’ ’y’}];
append from xy;
close test;
use test;
read all var (’x1’:’x5’) into x;
read all var {y} into y;
* Call the variable selection procedure;
call ordervars(x,y,order,rank);
* Print rank and variable ordering *;
print rank;
print order;
quit;

Output from Program 3.2

CORMAT

1.000 0.808 0.129 0.044 0.175 0.746
0.808 1.000 0.014 -.037 0.062 0.511
0.129 0.014 1.000 0.977 0.294 0.603
0.044 -.037 0.977 1.000 0.308 0.550
0.175 0.062 0.294 0.308 1.000 0.576
0.746 0.511 0.603 0.550 0.576 1.000

RANK

5

ORDER

1 3 5 2 4

After randomly generating the data, the correlation matrix is calculated for the matrix
[Xy]. The correlation matrix is given in the Output 3.2. The last row of the correlation
matrix corresponds to y. Looking at the correlations, we see that x1 has the highest
correlation with the response y and should be selected first by the variable ordering
procedure. Output 3.2 also contains the variable ordering produced by the ORDERVARS
module. The ordering of the variables is: x1, x3, x5, x2, and x4.

3.4.4 Forward Selection
Let’s compare the above results to the results obtained from forward selection. Program 3.3
contains the code to run forward selection in SAS using the REG procedure. The TEST
data set used in this program was created in Program 3.2.

Program 3.3 Forward selection on simulated data

proc reg data=test;
model y = x1 x2 x3 x4 x5/selection=forward;
run;
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Output from Program 3.3

All variables have been entered into the model.

Summary of Forward Selection

Variable Number Partial Model
Step Entered Vars In R-Square R-Square C(p) F Value Pr > F

1 x1 1 0.5572 0.5572 93.1599 28.94 <.0001
2 x4 2 0.2678 0.8250 26.1153 33.67 <.0001
3 x5 3 0.0956 0.9206 3.4650 25.29 <.0001
4 x2 4 0.0036 0.9242 4.5439 0.94 0.3432
5 x3 5 0.0021 0.9263 6.0000 0.54 0.4698

Output 3.3 contains the output from Program 3.3. Using forward selection, the variables
are entered x1, x4, x5, x2, x3, which is different from the variables used to generate y.

3.4.5 Variable Ordering in the Solubility Data
Program 3.4 executes the ORDERVARS module on the solubility training set. The
solubility training and test sets (SOLTRAIN and SOLTEST data sets) were generated in
Program 3.1. At the end of Program 3.4, the training and test data sets are created using
the new variable ordering, and they are stored as SAS data sets (SOLTRUSE and
SOLTSUSE data sets).

Program 3.4 Variable ordering in the solubility data

proc iml;
use soltrain;
read all var (’x1’:’x21’) into x;
read all var {y} into y;
* Call the variable ordering module;
call ordervars(x,y,order,rank);
print rank;
print order;
* Store the variable ordering;
create solorder var{order};
append;
close solorder;
* Create the training and test sets using the new variable order;
* Store the training and test sets;
trxy=x[,order[1,]]||y;
create soltruse from trxy[colname=(’x1’:’x21’||’y’)];
append from trxy;
close soltruse;
use soltest;
read all var (’x1’:’x21’) into tsx;
read all var {y} into tsy;
tsxy=tsx[,order[1,]]||tsy;
create soltsuse from tsxy[colname=(’x1’:’x21’||’y’)];
append from tsxy;
close soltsuse;
* Number of observations in the train and test data set;
ntrain=nrow(trxy); ntest=nrow(tsxy);
print ntrain ntest;
quit;



Chapter 3 Model Building Techniques in Drug Discovery 57

* Vertical axis;
axis1 minor=none label=(angle=90 "Singular value") order=(0 to 12000 by 2000) width=1;
* Horizontal axis;
axis2 minor=none label=("Index") order=(1 to 21 by 1) width=1;
symbol1 i=none value=dot color=black height=5;
proc gplot data=singvals;

plot singularvalues*index/vaxis=axis1 haxis=axis2 frame;
run;
quit;

Figure 3.3 Singular values in the solubility data set
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Output from Program 3.4

RANK

21

ORDER
COL1 COL2 COL3 COL4 COL5 COL6 COL7

ROW1 8 13 3 1 21 9 19

ORDER
COL8 COL9 COL10 COL11 COL12 COL13 COL14

ROW1 12 20 2 4 5 16 10

ORDER
COL15 COL16 COL17 COL18 COL19 COL20 COL21

ROW1 6 17 18 7 14 15 11

NTRAIN NTEST

121 49
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Figure 3.3 is a plot of the singular values for each descriptor. Based on this plot it
appears only five descriptors are needed to build a predictive model, but sequential
regression should probably be used to determine the number of descriptors needed in the
model. In sequential regression the variables can be added in order, provided that a certain
statistical criterion is met. An example is provided in Section 3.5.1. Output 3.4 contains
the variable ordering (ORDER) as well as the number of observations in the training and
test data sets (NTRAIN and NTEST).

3.5 Statistical Procedures for Model Building
In this section we review a number of procedures that can be used to build statistical
models. The potential model builder will need to obtain a substantial toolbox since no one
statistical tool will work on every set of data. As a corollary to the previous statement, the
nature of data will help determine the appropriate statistical model-building tool. See Two
Crows Corporation (1999) for a review of model building procedures used to extract
predictive patterns in data.

3.5.1 Multiple Linear Regression
Multiple linear regression has certainly been the workhorse for building predictive models
for many years. It is appropriate for the situation where there are many more observations
than descriptors and where the dependent variable is continuous. Models take the form of:

y = β0 + β1x1 + β2x2 + · · · + βpxp + e,

where y is the dependent variable, x1, . . . , xp are the independent variables, and e is the
random error. If a linear combination of the descriptors can approximate the response, then
this formulation works well and is simple to perform. Terms such as xn

i or xixj are also
allowed. PROC REG is appropriate and allows for variations of this simple procedure, such
as when terms are added or deleted in a stepwise fashion. Program 3.3 illustrated the use
of PROC REG with forward selection.

PROC REG can also be used interactively. After you specify a model in PROC REG
with a RUN command, but not a QUIT command, you can use a variety of other
commands interactively such as ADD, DELETE, PRINT. See the PROC REG
documentation for more information. To demonstrate the utility of this, Program 3.5
provides the commands for running PROC REG interactively on the solubility training set.
In Program 3.5, the initial model fit contains the five most important variables, x1, . . . , x5
(they are included in the MODEL statement) and the VAR statement specifies the other
variables that might be added to the model. The following commands add variables to the
initial model with the ADD statement. The QUIT command ends PROC REG. The results
for the final model are included in Output 3.5. The output contains, for the intercept and
each of the 11 variables added to the model interactively, the parameter estimate, the
standard error of the estimate, and the one-degree of freedom test.
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Program 3.5 Using PROC REG interactively on the solubility data

proc reg data=soltruse;
model y = x1 x2 x3 x4 x5;
var x6 x7 x8 x9 x10 x11 x12 x13 x14;
run;
add x6 x7;
print;
run;
add x8 x9;
print;
run;
add x10 x11;
print;
run;
quit;

Output from Program 3.5

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -3.40278 3.57476 -0.95 0.3433
x1 1 -0.00771 0.00198 -3.89 0.0002
x2 1 -0.00851 0.00162 -5.25 <.0001
x3 1 0.77612 0.22350 3.47 0.0007
x4 1 0.08929 0.04636 1.93 0.0567
x5 1 0.23927 0.11684 2.05 0.0430
x6 1 0.07884 0.03048 2.59 0.0110
x7 1 7.36932 3.37147 2.19 0.0310
x8 1 -0.00510 0.00126 -4.06 <.0001
x9 1 -0.40608 0.12531 -3.24 0.0016
x10 1 0.63875 0.29842 2.14 0.0345
x11 1 0.88649 0.20612 4.30 <.0001

3.5.2 Logistic Regression
Logistic regression is a generalization of linear regression in that it is formulated to use a
binary (0 or 1) dependent variable. It uses the log odds or logit transformation:

log
(

Pi

1 − Pi

)
= β0 + β1x1 + β2x2 + · · · + βpxp + e,

where Pi is the probability of the event occurring. The model above assumes the log odds
ratio is a linear function of the predictors. It is easy to see that similar pros and cons exist
between logistic regression and multiple linear regression discussed earlier.

There are several SAS procedures that you can use to perform logistic regression such as
the LOGISTIC, CATMOD, and GENMOD procedures.

3.5.3 Discriminant Analysis
Discriminant analysis is an extremely old statistical technique developed by R. A. Fisher in
the 1930’s and used to classify the famous Iris data set. This procedure determines the
hyper-planes that separate or discriminate between the various classes in the data. It is a
very simple technique to use and interpret since an observation is on one side of the plane
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or the other. However, there are assumptions such as normality of the descriptors, which
can be problematic, and the fact that the boundaries separating the different classes are
linear may reduce its discrimination ability.

There are several SAS procedures that you can use to perform discriminant analysis
such as the DISCRIM, CANDISC, and STEPDISC procedures.

3.5.4 Generalized Additive Regression
The standard linear regression model is used quite often for building models. It is
extremely easy to use but suffers from the fact that, in real life, many effects are not linear.
The generalized additive regression model offers a flexible statistical technique that can
accommodate factors that are not linear. Additionally, generalized additive regression is an
interesting tool because it allows both continuous and discrete responses.

Recall that the standard linear regression model assumes the expected value of y has the
linear form:

E(y|X) = f(x1, . . . , xp) = β0 + β1x1 + · · · + βpxp.

The additive model generalizes the linear model by modeling the expected value of y as

E(y|X) = s0 + s1(x1) + s2(x2) + · · · + sp(xp),

where si, i = 1, . . . , p are smooth functions. These function are estimated in a
nonparametric fashion. Generalized additive models are able to fit both discrete and
continuous responses by allowing for a link between f(x1, . . . , xp) and the expected value of
y. Additional details may be found in the GAM procedure documentation.

This procedure has a lot of appeal and can be very useful. Since it is new to SAS, we will
illustrate its use on the solubility training data set. Program 3.6 contains the SAS code to
read the solubility training set and fit the model using five variables. The GAM procedure
determines the values of smoothing parameters for each of the variables. For the solubility
example, the SPLINE smoothing effect was chosen for each variable. The other options
available are LOESS, SPLINE2, or PARAM. The LOESS option fits a local regression with
the variable, the SPLINE2 option fits a bivariate thin-plate spline to two variables, and
PARAM specifies a parametric variable; a smoothing function is not applied to the variable.

Program 3.6 Analysis of the solubility data using PROC GAM

proc gam data=soltruse;
model y=spline(x1) spline(x2) spline(x3) spline(x4) spline(x5)/dist=normal;
run;
quit;
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Output from Program 3.6

Regression Model Analysis
Parameter Estimates

Parameter Standard
Parameter Estimate Error t Value Pr > |t|

Intercept -0.73649 0.36152 -2.04 0.0442
Linear(x1) -0.00741 0.00118 -6.31 <.0001
Linear(x2) -0.00677 0.00158 -4.30 <.0001
Linear(x3) 0.79513 0.19670 4.04 0.0001
Linear(x4) 0.01799 0.03777 0.48 0.6349
Linear(x5) 0.17723 0.10212 1.74 0.0857

Smoothing Model Analysis
Analysis of Deviance

Sum of
Source DF Squares Chi-Square Pr > ChiSq

Spline(x1) 3.00000 14.958834 23.9431 <.0001
Spline(x2) 3.00000 5.345832 8.5565 0.0358
Spline(x3) 1.00000 0.038719 0.0620 0.8034
Spline(x4) 3.00000 1.252530 2.0048 0.5714
Spline(x5) 3.00000 7.541784 12.0714 0.0071

Output 3.6 provides the output from Program 3.6. From the output we can see that x1,
x2, and x3 have significant linear trends; p-values for the corresponding linear tests are
significant at 5%. From the analysis of deviance table, the chi-square tests are significant
for x1, x2, and x5, indicating that these variables need to be smoothed.

A plot of the smoothing components with 95% confidence bands for each of the five
descriptors can be created using the ODS GRAPHICS statement as shown below:

ods html;
ods graphics on;
proc gam data=soltruse plots(clm commonaxes);

model y=spline(x1) spline(x2) spline(x3) spline(x4) spline(x5)/dist=normal;
run;
quit;

ods graphics off;
ods html close;

The plot generated using ODS GRAPHICS is not provided because it is not
publication-quality and, due to the experimental nature of PROC GAM, the option to save
the smoothed components to a SAS data set is not yet available.

3.6 Determining When a New Observation Is Not in a Training Set
Often in drug discovery, a computational model is built for a non-statistician, and the user
relies on easily understood diagnostics and graphical representations to assess the accuracy
of the prediction.

Once a model is in use, a common question asked of the statistician is, “How accurate is
the prediction?” If the model is providing the user with a quantitative estimates, then the
error associated with the prediction can be used to answer this question. This measure
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takes into account the distance between the new observation and the training set as well as
the error in the model. If the model is providing the user with a categorical response and a
linear discriminant model is used, then a bar chart of the probability that an observation is
in each group can be provided to the user.

Another measure that can be provided to the user is the leverage value. Recall the
leverage value is simply the distance between the new observation and the centroid of the
training data set. If the leverage value of a new observation is greater than the maximum
observed leverage value in the training set, then the prediction for the new observation will
be unreliable.

Also, it is important for the modeler to keep track of the data sets the model is being
applied to. If the data is far from the data the model was trained on, then the modeler
should think about retraining the data sets so the predictions will be reliable.

Once the statistician has provided the model, along with easily understood diagnostics,
to the team, the statistician should also monitor how the model is being used. If the
chemistry space the model is being used on is different from the chemistry space the model
was trained on, then the statistician should consider retraining the model to provide the
team with a more useful model. This monitor can easily be done by keeping track of the
leverage value from each prediction and by using a flag to indicate whether the prediction
was an extrapolation or not.

As an example, let’s determine if the observations in the solubility test set are included
in the solubility training space. Program 3.7 contains the code to fit the selected model to
the test set and store the residuals in a SAS data set (RESDS data set). This is
accomplished using PROC REG.

Program 3.7 also contains SAS/IML code to calculate the maximum leverage value in
the training set. The program reads in the test set, finds the leverage values for each
observation and determines which, if any, observations are outside the training set space. If
some observations in the test set are outside the space, the program calculates the
prediction error excluding these observations.

Program 3.7 Determine if the test set is in the training set space

proc reg data=soltsuse;
model y=x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11;
output out=resds r=yresids;
run;
quit;

proc iml;
use soltruse;
read all var (’x1’:’x11’) into x;
* Calculate the maximum leverage value of the training set;
xtx=x‘*x;
call eigen(evals,evecs,xtx);
invxtx=evecs*diag(1/evals)*evecs‘;
himax=max(vecdiag(x*invxtx*x‘));
print himax[format=5.3];
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* Read in the test set and calculate the test set leverage values;
* Determine which ones are in training set space;
use soltsuse;
read all var (’x1’:’x11’) into x;
hi=vecdiag(x*invxtx*x‘);
indi=choose(hi>himax,1,0);
outindi=loc(indi);
print outindi;
use resds;
read all var{yresids} into e;
ein=e[loc(^indi),1];
err=sqrt(sum(e##2)/(nrow(e)-ncol(x)));
print err[format=5.3];
quit;

Output from Program 3.7

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 11 89.03923 8.09448 9.16 <.0001
Error 37 32.69240 0.88358
Corrected Total 48 121.73163

HIMAX

0.269

OUTINDI

6 40 41

ERR

0.928

The output analysis of variance table is contained in Output 3.7. The prediction error of
the model, which is the square root of the Mean Square Error, calculated from the test set
is

√
0.8836 ≈ 0.94. The maximum leverage value in the training set is approximately 0.269,

so any observation in the test set whose leverage value is greater than this is not in the
training set space. There were three observations in the test set that are outside the
training set space (observations 6, 40 and 41). Excluding these observations results in a
prediction error for the model of 0.928.

3.7 Using SAS Enterprise Miner
As an alternative to the procedures presented in the previous sections, model building can
be done using popular software, SAS Enterprise Miner. We will use SAS Enterprise Miner
to build a model for the SOLUBILITY data set and make comparisons to the results
presented in the previous sections.

To begin, we will use the basic SAS Enterprise Miner routines to input the solubility
data using the drag and drop Input Data Source node. This particular node, the first one
in Figure 3.4, allows the solubility data to be accessed by the software.
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Figure 3.4 SAS Enterprise Miner flow diagram

The second node in the Figure 3.4, the Data Partition node, provides an easy way to
partition the data into training, test, and validation subsets. Table 3.1 below contains the
settings used in this example. We excluded a validation set so the results could be
compared to the results obtained in Example 3.3.3.

Table 3.1 Settings Used in the Variable Selection Node

Setting value

Method Simple random
Random seed 5164
Training percentage 75%
Validation percentage 0%
Test percentage 25%

The output from running the Data Partition node is not included, but the procedure
selected 128 observations for the training set and 42 observations for the test set.

The Variable Selection node, the third in Figure 3.4, was used to select descriptors that
are associated with the designated target variable, log-solubility. The rules used by this
node are:

1. Compute the squared correlation for each descriptor with the target variable and then
assign the rejected role to those descriptors that have a value less than the squared
correlation criterion, 0.005.

2. Evaluate the remaining significant descriptors using a forward stepwise R2 regression.
Descriptors that have a stepwise R2 improvement less than the threshold criterion,
0.0005, are assigned the rejected role.

3. For binary descriptors, perform a logistic regression using the predicted values output
from the forward stepwise regression as the independent input.

The results from the variable selection process for the solubility data are shown below.
It follows from the output that variables x5, x6, x7, x11, x15, and x18 were rejected because
of a low R2 value.
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Output from the variable selection process

% # of
Name Role Rejection Reason Missing Levels

X1 input 0 12
X2 input 0 2
X3 input 0 3
X4 input 0 3
X5 rejected Low R2 w/ target 0 11
X6 rejected Low R2 w/ target 0 4
X7 rejected Low R2 w/ target 0 5
X8 input 0 122
X9 input 0 127
X10 input 0 116
X11 rejected Low R2 w/ target 0 117
X12 input 0 109
X13 input 0 71
X14 input 0 128
X15 rejected Low R2 w/ target 0 8
X16 input 0 49
X17 input 0 125
X18 rejected Low R2 w/ target 0 95
X19 input 0 128
X20 input 0 125
X21 input 0 126

The fourth node in Figure 3.4 is the Data Set Attributes node. This node allows the
user to change certain features of the input data sets, which are the training and test sets
after variable selection. This node is needed to re-specify the target variable, or the
response. The target variable was specified after running the Input Data Source node but is
no longer specified after the Variable Selection node.

The next two nodes in Figure 3.4 are for constructing a model to predict solubility. Two
models were fit to the training set, one using all the variables selected in the third node
and the second using forward selection on the variables selected by the software.

The output below displays the output from fitting a linear model using all the variables
the Variable Selection node did not reject. The output contains the analysis of variance
table, model fit statistics, and the parameter estimates along with the one-degree of
freedom tests. The Root Mean Squared Error (RMSE) for this model is 0.6992. The
p-values from the one-degree of freedom tests indicate that some of the variables are not
needed in the model.

Output that shows solubility model performance

Analysis of Variance

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 15 204.302215 13.620148 27.86 <.0001
Error 112 54.750576 0.488844
Corrected Total 127 259.052791
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Model Fit Statistics

R-Square 0.7887 Adj R-Sq 0.7603
AIC -76.7030 BIC -70.1724
SBC -31.0705 C(p) 16.0000

Analysis of Maximum Likelihood Estimates

Standard
Parameter DF Estimate Error t Value Pr > |t|

Intercept 1 4.0946 6.3716 0.64 0.5218
x1 1 0.0973 0.0435 2.24 0.0273
x16 1 0.1986 0.0631 3.15 0.0021
x17 1 -18.6201 6.4189 -2.90 0.0045
x19 1 -0.2266 5.7512 -0.04 0.9686
x2 1 0.7320 0.2485 2.95 0.0039
x20 1 -0.3103 0.1191 -2.60 0.0104
x21 1 -0.2759 0.1118 -2.47 0.0151
x4 1 0.6935 0.1936 3.58 0.0005
x8 1 0.00276 0.00883 0.31 0.7554
x9 1 0.3260 0.0984 3.31 0.0012
x3 1 0.4099 0.2569 1.60 0.1135
x12 1 -0.00290 0.00238 -1.22 0.2265
x13 1 -0.00929 0.00322 -2.88 0.0047
x14 1 -0.00695 0.00406 -1.71 0.0898
x10 1 -0.00119 0.00229 -0.52 0.6043

The next output contains a subset of the output from the Regression node when forward
selection is used. The output displays a summary of forward selection, the analysis of
variance table, model fit statistics, and parameter estimates along with the one-degree of
freedom tests. The RMSE for this model is 0.7673 which is slightly higher than the model
using all the variables. Therefore, the trade-off is complexity versus parsimony.

We decided to use the simpler model to obtain the model prediction error, which is the
prediction error of the test data set. The Assessment node, the last node in Figure 3.4, is
used to calculate the model prediction error. The RMSE for the test set is 1.0268.

Output that shows solubility model performance using forward selection

Summary of Forward Selection

Effect Number
Step Entered DF In F Value Pr > F

1 x8 1 1 89.36 <.0001
2 x16 1 2 94.15 <.0001
3 x3 1 3 13.48 0.0004
4 x2 1 4 4.28 0.0407

The selected model, based on the CHOOSE=AIC criterion, is
the model trained in Step 4. It consists of the following effects:

Intercept x16 x2 x8 x3
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Analysis of Variance

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 4 183.700468 45.925117 74.97 <.0001
Error 123 75.352323 0.612621
Corrected Total 127 259.052791

Model Fit Statistics

R-Square 0.7091 Adj R-Sq 0.6997
AIC -57.8215 BIC -57.5483
SBC -43.5614 C(p) 35.6797

Analysis of Maximum Likelihood Estimates

Standard
Parameter DF Estimate Error t Value Pr > |t|

Intercept 1 -0.0114 0.2261 -0.05 0.9599
x16 1 0.3613 0.0362 9.97 <.0001
x2 1 0.5384 0.2603 2.07 0.0407
x8 1 -0.0187 0.00129 -14.48 <.0001
x3 1 0.4819 0.1969 2.45 0.0158

3.8 Summary
This chapter described statistical techniques used in drug discovery to facilitate model
building. The techniques are useful for accelerating the pace of moving potential drugs
through the development process. Procedures provided in this chapter deal with
partitioning relevant data into training and test sets, selecting potential variables to be
used to construct the model, building the model, and making predictions.

The model building process described in the chapter is illustrated by using a real drug
discovery data set to predict the solubility of various chemical compounds. The SAS code is
provided so that the interested reader can use these procedures on their own sets of data.
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In the context of a pre-study validation of an analytical method, this chapter describes
some advanced statistical methodologies available in the literature and provides SAS code
to calculate the validation criteria. Both linear and nonlinear methods are described within
the calibration framework. In terms of validation criteria, i.e., when the calculated
concentrations are available, criteria based on measurement error are utilized, and useful
graphical representations are proposed.

4.1 Introduction
In the pharmaceutical industry, analytical methods play a vital role in all experiments
performed in the development of a drug product. If the quality of an analytical method is
doubtful, then the whole set of decisions based on those measures is questionable.
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Consequently, assessment of the quality of an analytical method is far more than a
statistical challenge, it is a matter of good ethics and good business practices.

Many regulatory documents have been released in the pharmaceutical industry to
address quality issues. These are primarily ICH and FDA documents. Those that are
related to analytical and bioanalytical method validation (ICH, 1995, 1997; FDA, 2001)
suggest that analytical methods must comply with specific acceptance criteria to be
recognized as validated procedures. The primary aim of these documents is to require
evidence that the analytical methods are suitable for their intended use. Unfortunately,
discrepancies exist among these documents with respect to the definition of acceptance
criteria, and limited guidance is provided for estimating the performance criteria.

In this chapter, background information will be provided on analytical method
validation concepts, and apparent inconsistencies will be addressed from a statistical
perspective. Statistical methods will be described for estimation of analytical performance
parameters, and decision criteria will be illustrated that are consistent with the concept of
a “good” analytical procedure. The impact of these methods on the design of experiments
needed to obtain reliable estimates of the performance criteria will be considered. A major
emphasis of this chapter will be the use of SAS programs to illustrate the computation of
assay performance parameters, with limited discussion about the philosophy of the assay
validation purpose or practices.

To save space, some SAS code has been shortened and some output is not shown. The
complete SAS code and data sets used in this book are available on the book’s companion
Web site at http://support.sas.com/publishing/bbu/companion site/60622.html.

4.1.1 Method Classification Based on Data Types
The ultimate goal of an analytical method or procedure is to measure accurately a
quantity, such as the concentration of an analyte, or to measure a specific activity, as for
example for a biomarker. However, many assays such as cell-based and enzyme activity
biomarker assays may not be very sensitive, may lack precision, and/or may not offer
definitive reference standards. Assays based on physicochemical (such as chromatographic
methods) or biochemical (such as ligand binding assays) properties of an analyte assume
that these quantifiable characteristics are reflective of the quantity, concentration, or
biological activity of the analyte. For the purpose of analytical validation, we will follow
the recently proposed classifications for assay data by Lee et al. (2003). These
classifications, summarized below, provide a clear distinction with respect to the analytical
validation practice and requirements.

Qualitative methods generate data which do not have a continuous proportionality
relationship with the amount of analyte in a sample; the data are categorical in nature.
Data may be nominal such as a present/absent call for a gene or gene product.
Alternatively, data might be ordinal in nature, with discrete scoring scales (e.g., 1 to 5 or
−, +, + + +) such as for immuno-histochemistry assays or Fluorescence In Situ
Hybridization (FISH).

Quantitative methods are assays where the response signal has a continuous relationship
with the quantity or activity of the analyte. These responses can therefore be described by
a mathematical function. Inclusion of reference standards at discrete concentrations allows
the quantification of sample responses by interpolation. The availability of a well-defined
reference standard may be limited, or may not be representative of the in vivo
presentation, so quantification may not be absolute. To that end, three types of
quantitative methods have been defined:

• A definitive quantitative assay uses calibrators fit to a known model to provide absolute
quantitative values for unknown samples. Typically, such assays are possible only where
the analyte is not endogenous. An example of this is a small molecule drug.
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• A relative quantitative assay is similar in approach, but generally involves the
measurement of endogenously occurring analytes. In this case, even a “zero” or blank
calibrator may contain some amount of analyte, and quantification can only be done
relative to this “zero” level. Examples of this include immunoassays for cytokines such
as sTNFRII, or gene expression assays, e.g., Reverse Transcriptase-Polymerase Chain
Reaction (RT-PCR).

• A quasi-quantitative assay does not involve the use of calibrators, mostly due to the lack
of suitable reference material, so the analytical result for a test sample is reported only
in terms of the assay signal (e.g., optical density in ELISA).

This chapter deals with the assessment of definite and relative quantitative assays. A
full discussion of quasi-quantitative and qualitative assays and statistical considerations
thereof is beyond the scope of this chapter. A good reference on the analytical validation of
a typical quasi-quantitative assay is a white paper on immunogenicity by Mire-Sluis et al.
(2004).

4.1.2 Objective of an Analytical Method
The objective of a definite and relative quantitative analytical method is to be able to
quantify as accurately as possible each of the unknown quantities that the laboratory will
have to determine. In other words, what all analysts expect from an analytical procedure is
that the difference between the measurement or observation (X) and the unknown “true
value” μT of the test sample be small or inferior to an acceptance limit λ:

−λ < X − μT < λ ⇐⇒ |X − μT | < λ. (4.1)

The acceptance limit λ can be different depending on the requirements of the analyst
and the objective of the analytical procedure. The objective is linked to the requirements
usually admitted by the practice (e.g., 1% or 2% on bulk, 5% on pharmaceutical
specialties, 15% for biological samples. Acceptance limits vary in clinical applications
depending on factors such as the physiological variability and the intent of use).

4.1.3 Objective of the Pre-Study Validation Phase
The aim of the pre-study validation phase is to generate information to guarantee that the
analytical method will provide, in routine use, measurements close to the true value
(DeSilva et al., 2003; Findlay, 2001; Hubert et al., 2004; Smith and Sittampalam, 1998;
Finney, 1978) without being affected by other elements present in the sample. In other
words, the validation phase should demonstrate that the inequality described in
Equation (4.1) holds for a certain proportion of the sample population.

The difference between the measurement X and its true value is a sum of a systematic
error (bias or trueness) and a random error (variance or precision). The true values of these
parameters are unknown but they can be estimated based on the validation experiments.
The reliability of these estimates depends on the adequacy of these experiments (design,
size).

Consequently, the objective of the validation phase is to evaluate whether, given the
estimates of bias and variance, the expected proportion of measures that will fall within
the acceptance limits is greater than a predefined level, say, β:

Eμ̂,σ̂ (P [|X − μT | < λ|μ̂M , σ̂M ]) ≥ β. (4.2)

Although Equation (4.2) cannot be solved exactly within a frequentist framework,
Section 4.6 will discuss approximate solutions that can be used in practice.
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4.1.4 Classical Design in Pre-Study Validation
Experiments performed during pre-study validation are designed to mimic the processes
and practices to be followed during routine application of a method. All aspects of the
analytical method should be taken into account, such as the lot of a solvent, operator,
preparation of samples, etc. If measurements generated under these “simulated” conditions
are acceptable (see Section 4.6) then the method will be declared valid for routine use.
Usually, two sets of samples will be prepared for simulating the real process: calibration
and validation samples.

• Calibration samples (CS) must be prepared according to the protocol that will be
followed during routine use, i.e., the same operational mode, the same number of
concentration levels for the standard curve, and the same number of repetitions at each
level.

• Validation samples (VS) must be prepared in the sample matrix when applicable. In the
validation phase, they mimic the unknown samples that the analytical procedure will
have to quantify in routine use. Each validation standard should be prepared
independently, in order to have realistic estimates of the variance components.

The minimum design of a pre-study validation phase is at least two replicates per run or
series in a minimum of three runs. However, it is highly recommended to consider at least
six runs in order to have a good estimate of the between-run variance. The number of runs
and replicates to perform at each concentration level to demonstrate that an analytical
procedure is valid could be estimated (by simulations) and depends, of course, on the
inherent but unknown properties of the analytical procedure itself. The more variable the
method, the more experiments are necessary.

Table 4.1 displays the minimal sample size for r runs and s replicates per run for 10%
acceptance limits (the table was computed via simulations, assuming a potential small bias
of 2%). It is clear that the number of runs increases with increasing between-run variance.
The higher number of runs can be compensated for by more replicates per runs, but this
leads to a larger total number of experiments (rs). Also, as expected when the sum of bias
(2%) and the within-run and between-run variances become greater than 10%, it becomes
unlikely that the method will ever be validated for such acceptance limits. More
development in the laboratory is required to achieve this objective. The reproducibility
that requires between-laboratory experiments will not be discussed in this chapter.

Table 4.1 Minimal Sample Size for r Runs and s Replicates per Run for 10% Acceptance Limits

Within-run variance
1% 2% 3% 4% 5%

Between
-run

variance r s r s r s r s r s

1% 4 3 4 3 4 3 4 4 5 9
5 3 5 3 5 3 5 4 6 7

2% 4 3 4 3 4 3 4 6 8 9
5 3 5 3 5 3 5 6 9 7

3% 4 4 4 6 5 6 7 10
5 3 5 3 6 5 8 9

4% 7 10 9 8
8 7 10 6
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4.1.5 Example: A Sandwich ELISA Assay
A sandwich ELISA assay, optimized by statistical design of experiments and validated at
Lilly Research Laboratories, will be used throughout this chapter for illustration purposes.
This data set is available on the book’s companion Web site.

The objective of this assay was to quantify a protein used as a biomarker in neurological
disease therapeutic research. The ELISA consisted of incubation of samples on plates
pre-coated with a capture antibody specific to the protein of interest followed by
immunological detection of the specific bound protein by an enzyme conjugate and
measurement (optical density) of the colored product. In order to validate this assay,
calibration standards and validation samples were prepared in appropriate matrices from
stock protein solution via serial dilution and then tested in triplicate. The procedure was
followed for four independent runs with two plates per run over four days.

4.2 Validation Criteria
The main validation criteria widely recommended by various regulatory documents (ICH,
FDA, European Union) and commonly used in analytical laboratories are:

• Specificity-selectivity.
• Response function (calibration curve).
• Linearity.
• Precision (repeatability and intermediate precision).
• Accuracy (trueness).
• Measurement error (total error).
• Limit of detection (LOD).
• Limit of quantification (LOQ).
• Assay range.
• Sensitivity.

In addition, according to the domains concerned, other specific criteria can be required:

• Analyte stability.
• Recovery.
• Effect of the dilution.

A full validation is necessary for an analytical procedure to pass from the development
phase to the phase of routine analysis. The validation step is not only necessary but also
required at the time specifications (tests and acceptance limits) are set up for an active
ingredient or a finished product.

The validation criteria mentioned above must be established, insofar as possible, in the
same matrix as that of samples to be analyzed. Every new analytical procedure will have to
be validated for each type of matrix (e.g., for each type of biological fluid and for each
animal species). Nevertheless, the definition of a matrix depends on analyst responsibility.
Some matrix regrouping, generally admitted by the profession for an application domain
given, can be performed.

This section will focus only on the main criteria that apply to most, if not all, analytical
methods and that must be adequately estimated and documented for ensuring compliance
to regulations. The criteria that are very analytical, but that have no particular statistical
content, will be defined here, but will not be discussed.
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4.2.1 Specificity-Selectivity
The specificity of an analytical procedure is the ability to unequivocally assess the analyte
in the presence of components that may be expected to be present. Usually, the analyst
must demonstrate that the measured result is directly related to the analyte or product of
interest and that other aspects in the sample, such as the matrix, do not interfere with the
signal or measurement. For example, selectivity of a chromatographic method is verified
typically by showing that the product of interest is clearly separated from all other
products.

4.3 Response Function or Calibration Curve
The response function for an analytical procedure is the existing relationship, within a
specified range, between the response (signal, e.g., area under the curve, peak height,
absorption) and the concentration (quantity) of the analyte in the sample. The calibration
curve should be described preferably by a simple monotonic response function that gives
accurate measurements. Note that the response function is frequently confused with the
linearity criteria. However, the latter criterion refers to the relationship between the
quantity introduced and the quantity back-calculated from the calibration curve (see
Section 4.4). Because of the confusion, it is common to see laboratory analysts try very
hard to ensure that the response function is linear in the classical sense, i.e., a straight line.
Not only is this not required, but it is often irrelevant and can lead to large errors in
measured results (e.g., for ligand binding assays). A significant source of bias and
imprecision in analytical measurements can be the choice of the statistical model for the
calibration curve.

4.3.1 Computational Aspects
Statistical models for calibration curves can be either linear or nonlinear in their
parameter(s). The choice between these two families of models will depend on the type of
method and/or the range of concentrations of interest. If the range is very narrow, an
unweighted linear model may suffice, while a larger range may require a more advanced
and weighted model. High Performance Liquid Chromatography (HPLC) methods are
usually linear while immunoassays are typically nonlinear. Weighting may be important for
both methods because a common feature for many analytical methods is that the variance
of the signal is a function of the level or quantity to be measured.

Methodologies for fitting linear and nonlinear models generally require different SAS
procedures. For both model types, curves are fit by finding values for the model parameters
that minimize the sum of squares of the distances between observations and the fitted
curve. For linear models, parameter estimates can be derived analytically while this is not
the case for many nonlinear models. Consequently, iterative procedures are often required
to estimate the parameters of a nonlinear model. In this section, both linear and nonlinear
models will be considered.

In case of heterogeneous variances of the signal across the concentration range, it is
recommended that observations be weighted when fitting a curve. If observations are not
weighted, an observation more distant to the curve than others has more influence on the
curve fit. As a consequence, the curve fit may not be good where the variances are smaller.
Weighting each term of the sum of squares is frequently used to solve this problem, where
this can be viewed as minimizing the relative distances instead of minimizing the actual
distances. When replicates are present at each concentration level, it is often better to fit
the model to their average/median response values. Regardless of model type, it is assumed
that all observations fit to a model are completely independent. In reality, replicates are
often not independent for many analytical procedures because of the steps followed in
preparation and analysis of samples. In such cases, replicates should not be used separately.
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Models are typically applied on either a linear scale or log scale of the assay signal
and/or the calibrator concentrations. The linear scale is used in case of homogeneous
variance across the concentration range, and the log scale is often more appropriate when
variance increases with increasing response.

4.3.2 Linear and Polynomial Models
Most commonly used types of polynomial models include simple linear regression (with or
without an intercept) and quadratic regression models.

As an illustration, consider a subset of the ELISA CS data set (Plate A, Series 1) that
includes three replicate measurements at each of eight concentration levels (the ELISA CS
data set is provided on the book’s web site). The selected measurements are included in the
CALIB data set shown below in Program 4.1. The CONCENTRATION variable is the
concentration value and the rep1, rep2, and rep3 variables represent the three replicates.
Program 4.1 uses the MIXED procedure to fit a linear model to the data collected in the
study. The model parameters are estimated using the restricted maximum likelihood
method, which is equivalent to the ordinary least square method when the data are
normally distributed. The SOLUTION option requests parameter estimates which are then
saved to a SAS data set specified in the ODS statement. The OUTPREDM option is used
to save the predicted signal values from the fitted linear model to another SAS data set.
The WEIGHT statement is used to assign weights to the individual measurements (the W
variable represents the weight). For example, the weights can be defined as the inverse of
the signal level or the inverse of the squared signal. In this example, the weights are defined
using the following formula: w = 1/s1.3, where s is the signal level. The choice of the
exponent (e.g., 1.3) depends on the relationship between the signal’s variability and its
average level.

Program 4.1 Fitting a simple linear regression model using PROC MIXED

data calib;
set elisa_cs;
if plate=’A’ and series=1;
array y(3) rep1 rep2 rep3;
do j=1 to 3;

signal=y(j);
w=1/signal**1.3;

output;
end;

proc mixed data=calib method=reml;
model signal=concentration/solution outpredm=predict;
weight w;
ods output solutionf=parameter_estimates;

proc sort data=predict;
by concentration;

axis1 minor=none label=(angle=90 ’Signal’) order=(0 to 4 by 1);
axis2 minor=none label=(’Concentration’) logbase=10 logstyle=expand;
symbol1 value=none i=join color=black line=1 width=3;
symbol2 value=dot i=none color=black height=5;
proc gplot data=predict;

plot (pred signal)*concentration/overlay frame haxis=axis2 vaxis=axis1;
run;
quit;
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Output from Program 4.1

Solution for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t|

Intercept 0.3684 0.02850 22 12.93 <.0001
concentration 0.005802 0.000339 22 17.12 <.0001

Output 4.1 lists the parameter estimates generated by PROC MIXED and associated
p-values. Figure 4.1 displays the fitted regression line. It is obvious that the linear model
provides a poor fit to the data.

Figure 4.1 Fit of the linear model
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While Program 4.1 focuses on a simple linear regression model with an intercept, one
can consider a linear regression model without an intercept, which is requested using the
following MODEL statement:

model signal=concentration/solution noint;

or a quadratic regression model:

model signal=concentration concentration*concentration/solution;

In addition, the BY statement can be included in PROC MIXED to fit a calibration
curve within each run.

4.3.3 Nonlinear Models (PROC NLIN)
As briefly mentioned in the introduction of this section, to fit a nonlinear model, one needs
to rely on iterative methods. These methods begin with an initial set of parameter values
for the model of interest and update the parameter values at each step in order to improve
the fit. The iterative process is stopped when the fit can no longer be improved.

Nonlinear models frequently used in curve calibration include the 4-parameter logistic
regression, 5-parameter logistic regression and power model. Consider, for example, the
4-parameter logistic regression model:

y = f(x) = β1 +
β2 − β1

1 + (x/β3)β4
,
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where β1, β2, β3, and β4 are the top asymptote, bottom asymptote, and concentration
corresponding to half distance between β1 and β2, and the slope, respectively.

Both the NLIN and NLMIXED procedures can be used to fit such models. Except for
the fact that they both optimize a function of interest, they do not work in the same
manner. PROC NLIN fits nonlinear models by minimizing the error sum of squares and it
can handle only models with fixed effects. PROC NLMIXED enables us to fit models with
fixed and random effects by maximizing an approximation to the likelihood function
integrated over the random effects. In this context, PROC NLMIXED is used only in
models with fixed effect, and thus the problem of integration is avoided.

Program 4.2 relies on PROC NLIN to model the relationship between concentration and
signal levels in the subset of the ELISA CS data set. PROC NLIN supports several
iterative methods for minimizing the error sum of squares (they can be specified using the
METHOD statement). The more robust methods are GAUSS, NEWTON, and
MARQUARDT. The default method is GAUSS, but the most commonly used is
MARQUARDT.

Program 4.2 analyzes the CALIB data set created in Program 4.1. The initial values of
the four parameters are specified in the PARAMETERS statement and the WEIGHT
statement is used to weight the observations when fitting the model.

Program 4.2 Fitting a 4-parameter logistic regression model using PROC NLIN

proc nlin data=calib method=marquardt outest=parameter_estimates;
parameters top=3 bottom=0.2 c50=250 slope=1;
model signal=top+(bottom-top)/(1+(concentration/c50)**slope);
_weight_=w;
output out=fitted_values predicted=pred;

proc sort data=fitted_values;
by concentration;

axis1 minor=none label=(angle=90 ’Signal’) order=(0 to 4 by 1);
axis2 minor=none label=(’Concentration’) logbase=10 logstyle=expand;
symbol1 value=none i=join color=black line=1 width=3;
symbol2 value=dot i=none color=black height=5;
proc gplot data=fitted_values;

plot (pred signal)*concentration/overlay frame haxis=axis2 vaxis=axis1;
run;
quit;

Output from Program 4.2

Sum of Mean Approx
Source DF Squares Square F Value Pr > F

Model 3 9.5904 3.1968 6181.88 <.0001
Error 20 0.0103 0.000517
Corrected Total 23 9.6008

Approx Approximate 95% Confidence
Parameter Estimate Std Error Limits

top 3.6611 0.1186 3.4138 3.9085
bottom 0.3198 0.00681 0.3056 0.3340
c50 219.9 13.9168 190.9 249.0
slope 1.2611 0.0391 1.1795 1.3427
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Output 4.2 shows that the overall F value is very large while the standard errors of the
four parameter estimates are small. This suggests that the model’s fit was excellent (see
also Figure 4.2). It is important to note that one sometimes encounters convergence
problems and it is helpful to examine the iteration steps included in the output. If the
iterative algorithm does not converge, it is prudent to explore different sets of initial values
that can be obtained by a visual inspection of the raw data.

Figure 4.2 Fit of the 4-parameter logistic regression model

S
ig

na
l

0

1

2

3

4

Concentration

1 10 100 1000

4.3.4 Nonlinear Models (PROC NLMIXED)
PROC NLMIXED supports a large number of iterative methods for fitting nonlinear
models. Unfortunately, there is no general rule for choosing the most appropriate method.
The choice is problem-dependent and, most of the time, one needs to select the iterative
method by trial and error (see PROC NLMIXED documentation for general
recommendations).

Note that the METHOD option in PROC NLMIXED does not specify the optimization
method as in PROC NLIN, but rather the method for approximating the integral of the
likelihood function over the random effects. The TECHNIQUE option is used in PROC
NLMIXED to select the optimization method. Program 4.3 fits a 4-parameter logistic
regression model to the concentration/signal data from the CALIB data set created in
Program 4.1. The program uses the Newton-Raphson method with ridging as an
optimization method (NRRIDG) in PROC NLMIXED. Other TECHNIQUE options
include NEWRAP (Newton-Raphson optimization combining a line-search algorithm with
ridging) or QUANEW (quasi-Newton). Since no random effects are included in this model,
the METHOD option is not used in this example.

PROC NLMIXED does not allow the fitting of weighted regression models; however, it
allows us to specify a variance function. The most popular variance function in nonlinear
calibration is the power of the mean (O’Connell, Belanger, and Haaland, 1993). To specify
this function in Program 4.3, we introduce the VAR and THETA parameters:

model signal~normal(expect,(expect**theta)*var);

Here VAR is the residual variance at baseline, and THETA defines the rate at which
this variance changes with the predicted concentration (EXPECT variable). The
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FITTED VALUES data set contains the fitted value for each concentration value as well as
the corresponding residual.

Program 4.3 Fitting a 4-parameter logistic regression model using PROC NLMIXED

proc nlmixed data=calib technique=nrridg;
parms top=3 bottom=0.2 c50=250 slope=1 theta=1 var=0.0001;
expect=top+(bottom-top)/(1+(concentration/c50)**slope);
model signal~normal(expect,(expect**theta)*var);
predict top+(bottom-top)/(1+(concentration/c50)**slope) out=fitted_values;
run;

Output from Program 4.3

Parameter Estimates

Standard
Parameter Estimate Error DF t Value Pr > |t| Alpha Lower Upper

top 3.6584 0.1213 24 30.16 <.0001 0.05 3.4081 3.9087
bottom 0.3205 0.006942 24 46.18 <.0001 0.05 0.3062 0.3349
c50 219.50 14.2383 24 15.42 <.0001 0.05 190.12 248.89

slope 1.2628 0.04151 24 30.42 <.0001 0.05 1.1771 1.3485
theta 1.2879 0.4150 24 3.10 0.0049 0.05 0.4313 2.1445
var 0.000434 0.000130 24 3.35 0.0027 0.05 0.000167 0.000701

Output 4.3 shows that the parameter estimates and their approximate standard errors
produced by PROC NLMIXED are very close to those displayed in the PROC NLIN
output (Output 4.2). This is partly due to the fact that the estimated THETA parameter
(1.2879) is very close to the exponent used in the weighting scheme in PROC NLIN. The
fitted calibration curve is very similar to the calibration curve displayed in Figure 4.2.

4.3.5 Precision Profile for Immuno-Assays
After a calibration curve and weighting model have been chosen, a precision profile may be
employed to characterize the precision of the back-calculated concentrations for unknown
test samples using this calibration curve. The precision profile is a plot of the
coefficient-of-variation (CV) of the calibrated concentration versus the true concentration
on a log scale. Ideally, the calculated standard error of the calibrated concentration must
take into account both the variability in the calibration curve and variability in the assay
response. Wald’s method is generally recommended for computing these standard errors
(Belanger, Davidian and Giltinan, 1996) and the resulting coefficient-of-variation is given
by:

CV(x0) =
100
x0

[(
∂f−1(y0, β̂)

∂y

)
σ̂2y2θ̂

0

m
+

(
∂f−1(y0, β̂)

∂y

)′

Σ(β̂)

(
∂f−1(y0, β̂)

∂y

)]1/2

,

where m is the number of replicates and Σ(β̂) is the covariance matrix of the parameter
estimates β̂.

As an illustration, Program 4.4 computes a precision profile for a 5-parameter logistic
model:

y = f(x) = β1 +
β2 − β1

[1 + (x/β3)β4 ]γ
.
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The γ parameter is known as the asymmetry factor and, when it is set to 1, this model is
equivalent to a 4-parameter logistic model fitted in Program 4.3. In fact, Program 4.4 fits
this special case of the 5-parameter logistic model by forcing the γ parameter to be 1 (note
the restrictions on this parameter in the BOUNDS statement). A general 5-parameter
logistic model can be obtained by removing these constraints. Further, Program 4.4 uses
the IML procedure to calculate the precision profile (in general, it is easier to use the
matrix language instead of DATA steps to calculate the two terms under the square root).
The covariance matrix is extracted from PROC NLMIXED and is imported into PROC
IML. The computed response profile is displayed in Figure 4.3.

Program 4.4 Computation of the precision profile for a 4-parameter logistic regression model using PROC
NLMIXED

proc nlmixed data=calib technique=nrridg;
parms top=3 bottom=0.2 c50=250 slope=1 theta=1 var=0.0001 g=1;
bounds g>=1, g<=1, theta>=0, var>0; * Constraints on model parameters;

expect=top+(bottom-top)/((1+(concentration/c50)**slope)**g);
model signal~normal(expect,(expect**theta)*var);
predict top+(bottom-top)/((1+(concentration/c50)**slope)**g) out=fitted_values;
ods output ParameterEstimates=parm_est_repl;

ods output CovMatParmEst=cov_parm;
* Data set containing parameter estimates;
data b;

set parm_est_repl;
where parameter in (’top’,’bottom’,’c50’,’slope’);
keep estimate;

* Data set containing the covariance matrix of the parameter estimates;
data covb;

set cov_parm;
where parameter in (’top’,’bottom’,’c50’,’slope’);

keep top bottom c50 slope;
proc sql noprint;

select distinct estimate into: sigma_sq from parm_est_repl where parameter=’var’;

select distinct estimate into: theta from parm_est_repl where parameter=’theta’;
select min(concentration) into: minconc from calib where concentration>0;
select max(concentration) into: maxconc from calib;

run;
quit;

%let m=3; * Number of replicates at each concentration level;
proc iml;

* Import the data sets;
use b; read all into b;
use covb; read all into covb;

* Initialize matrices;
y=j(101,1,0);
h=j(101,1,0);

hy=j(101,1,0);
hb=j(101,4,0);
varx0=j(101,1,0);

pp=j(101,1,0);
top=b[1];
bottom=b[2];
c50=b[3];

slope=b[4];
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* Calculate the precision profile;
do i=1 to 101;

h[i,1]=10**(log10(&minconc)+(i-1)*(log10(&maxconc)-log10(&minconc))/100);

y[i,1]=top+(bottom-top)/(1+(h[i,1]/c50)**slope);
hy[i,1]=h[i,1]*(top-bottom)/(slope*(bottom-y[i,1])*(y[i,1]-top));
hb[i,1]=h[i,1]/(slope*(y[i,1]-top));

hb[i,2]=h[i,1]/(slope*(bottom-y[i,1]));
hb[i,3]=h[i,1]/c50;
hb[i,4]=-h[i,1]*log((bottom-y[i,1])/(y[i,1]-top))/(slope**2);

varx0[i,1]=((hy[i,1]**2)*&sigma_sq*(y[i,1]**(2*&theta))/&m)+hb[i,]*covb*hb[i,]‘;
pp[i,1]=100*sqrt(varx0[i,1])/h[i,1];

end;
create plot var{h hy y pp};

append;
quit;

axis1 minor=none label=(angle=90 ’CV (%)’) order=(0 to 30 by 10);

axis2 minor=none label=(’Concentration’) logbase=10 logstyle=expand;
symbol1 value=none i=join color=black line=1 width=3;
proc gplot data=plot;

plot pp*h/frame haxis=axis2 vaxis=axis1 vref=20 lvref=34 href=4.2 lhref=34;
run;
quit;

Figure 4.3 Precision profile based on a 4-parameter logistic regression model
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It can be seen in Figure 4.3 that, for concentration levels above 4 μM, the fitted model
is a priori able to quantify with a precision better than 20% on a CV scale. Below this
threshold, the variability of the back-calculated measurements explodes as expected
because of the (low) asymptote effect. The precision achieves its maximum (approximately
2-3% on a CV scale) around the C50 value (220 μM).

The estimates of quantification limits from precision profiles are “optimistic” because
they are based on only the calibration curve data themselves. These limits do not take into
account matrix interference, cross-reactivity, operational factors, etc. However, these limits
serve as a useful screening tool before beginning the pre-study validation exercise. Since the
pre-study validation package encompasses several other sources of variability as well, if the
quantification limits from a precision profile are not satisfactory, then almost definitely, the
quantification limits derived from a rigorous pre-study validation package will not be
satisfactory. In this case, it will be worth going back to the drawing board and further
optimizing the assay protocol before proceeding to the pre-study validation phase.
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4.3.6 Back-Calculated Quantities or Inverse Predictions
Once a calibration curve is fitted, concentrations of the samples of interest are calculated
by inverting the estimated calibration function. In a pre-study validation, the calibration
curves are fitted separately for each run and the validation samples are calculated using the
calibration curve for the same run. The resulting data set consists of different concentration
levels and, at each level, there are multiple runs and replicates within each run. Most of the
time, the number of runs and the number of replicates are the same for all concentration
levels. Inverse functions for widely used response functions are shown in Table 4.2.

For example, Program 4.5 calculates the concentrations of the validation samples
(ELISA VS data set available on the book’s companion Web site) from the 4-parameter
logistic regression model fitted by series and by plate as described in Program 4.3.

Program 4.5 Concentration calculation based on a 4-parameter logistic regression model

data calib;
set elisa_cs;
array y(3) rep1 rep2 rep3;
do j=1 to 3;

signal=y(j);
output;
end;

proc datasets nolist;
delete parm_est;

%macro calib(series, plate);
proc nlmixed data=calib technique=nrridg;

parms top=3 bottom=0.2 c50=250 slope=1 theta=1 var=0.0001;
expect=top+(bottom-top)/(1+(concentration/c50)**slope);
model signal~normal(expect,(expect**(theta*2))*var);
where series=&series and plate=&plate;
ods output ParameterEstimates=parm_est_tmp;

data parm_est_tmp;
set parm_est_tmp;
series=&series;
plate=&plate;

proc append data=parm_est_tmp base=parm_est;
run;

%mend;
%calib(series=1, plate=’A’);
%calib(series=1, plate=’B’);
%calib(series=2, plate=’A’);
%calib(series=2, plate=’B’);
%calib(series=3, plate=’A’);
%calib(series=3, plate=’B’);
%calib(series=4, plate=’A’);
%calib(series=4, plate=’B’);
data valid;

set elisa_vs;
array y(3) rep1 rep2 rep3;
do j=1 to 3;

signal=y(j);
output;

end;
proc sort data=valid;

by series plate;
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proc transpose data=parm_est out=parm_est_t;
var estimate;
id parameter;
idlabel parameter;
by series plate;

data calc_conc;
merge valid parm_est_t;
by series plate;
drop _name_ theta var;

data calc_conc;
set calc_conc;
if plate=’A’ then run=series;
else run=series+4;
calc_conc=c50*((((bottom-top)/(signal-top))-1)**(1/slope));
run;

Table 4.2 Inverse Functions for Widely Used Response Functions

Back-calculated value x∗

Response function using the inverse function

Y = βX x∗ = y/β̂

Y = β0 + β1X x∗ = (y − β̂0)/β̂1

Y = β0 + β1X + β2X
2 x∗ =

(
−β̂1 +

√
β̂2

1 − 4β̂2(β̂0 − y)
)

/2β̂2

Y = β1 + β2 − β1
1 + (X/β3)β4

x∗ = β̂3

(
β̂2 − β̂1

y − β̂1
− 1

)−1/β̂4

4.4 Linearity
The linearity of an analytical procedure is defined in terms of its ability to obtain results
directly proportional to the concentrations (quantities) of the analyte in the sample within
a defined range (ICH, 1995). It is important to note that the linearity criterion is applied
to the results, i.e., back-calculated quantities or concentrations, rather than the response
signals or instrument response as a function of the dose or quantities.

To illustrate this concept, Program 4.6 performs a linearity assessment by comparing
the original concentrations from the ELISA VS data set to the corresponding
back-calculated concentrations obtained in Program 4.5. This program uses the
CALC CONC data set created in Program 4.5. The results are displayed in Figure 4.4.

Program 4.6 Linearity assessment based on a 4-parameter logistic regression model

proc sql;
create table linprof as
select concentration, calc_conc, ’t1’ as type

from calc_conc union
select distinct concentration, concentration*0.7 as calc_conc, ’t2’ as type

from calc_conc union
select distinct concentration, concentration*1.3 as calc_conc, ’t3’ as type

from calc_conc union
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select distinct concentration, concentration as calc_conc, ’t4’ as type
from calc_conc;

run;
quit;

proc sort data=linprof;
by type concentration;

axis1 label=("Nominal concentration") order=(0 to 600 by 200);
axis2 label=(angle=90 "Calculated concentration") order=(0 to 600 by 200);
symbol1 value=circle i=none color=black height=5;
symbol2 value=none i=join color=black line=34 width=3;
symbol3 value=none i=join color=black line=34 width=3;
symbol4 value=none i=join color=black line=1 width=3;
proc gplot data=linprof;

plot calc_conc*concentration=type/haxis=axis1 vaxis=axis2 nolegend;
run;
quit;

Figure 4.4 Linearity assessment based on a 4-parameter logistic regression model
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Figure 4.4 plots the raw concentrations versus the corresponding back-calculated
concentrations. The solid line is the identity line and, if the method is reasonably unbiased,
all data points are expected to cluster around this line. The two dotted lines represent the
[−30%, 30%] acceptance limits drawn on an absolute scale. If the precision of a method is
satisfactory, most data points should lie between the two lines.

Figure 4.4 displays the linearity of the results for the data obtained using the calibration
curve of Figure 4.2. The contrast between those two figures highlights clearly the contrast
between the concepts of linearity of the results and response function of the signals. When
chromatographic methods with narrow ranges are envisaged, both the response function
and linearity will look linear but, except for this specific case, the two graphs will look
different.
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4.5 Accuracy and Precision

4.5.1 Accuracy (Trueness)
The accuracy (the preferred term is trueness) of an analytical procedure, according to ICH
and related documents, expresses the closeness of agreement between the mean value
obtained from a series of measurements and the value which is accepted either as a
conventional true value or an accepted reference value (e.g., international standard,
standard from a pharmacopoeia). It is a measure of the systematic error of test results
obtained by the analytical method from its theoretical true/reference value. The measure
of trueness is generally expressed in terms of recovery and absolute/relative bias.

Note that “accuracy” is synonymous with bias or trueness only within the
pharmaceutical set of regulations covered by ICH (and related national documents
implementing ICH Q2A and Q2B). Outside the pharmaceutical industry, e.g., in industries
covered by the International Organization for Standardization or National Committee for
Clinical Laboratory Standards guidelines (food, chemistry, clinical biology, and other
industries), “accuracy” refers to the total error, i.e., the sum of trueness and precision.

4.5.2 Precision
The precision of an analytical procedure is defined by the closeness of agreement (usually
expressed as standard deviation or coefficient of variation) between a series of
measurements obtained from multiple sampling of the same homogeneous sample
(independent assays) under the prescribed conditions. The term “independent results”
means that the results are obtained and prepared the same way that unknown samples will
be quantified and prepared.

Precision provides information on random errors and can be evaluated at three levels:
repeatability, intermediate precision (within laboratory), and reproducibility (between
laboratories). The precision represents the distribution of the random errors only and is not
related to the true or specified value. A measure of precision is calculated from the
standard deviation of the results.

Quantitative measures of precision depend in a critical manner on stipulated conditions.
One can distinguish among the following three conditions:

• Repeatability. Repeatability expresses the precision under conditions where the results
of independent assays are obtained by the same analytical procedure on identical
samples in the same laboratory, with the same operator, using the same equipment
during a short interval of time. It is estimated by the within-series variance component.

• Intermediate precision. Intermediate precision expresses the precision under
conditions where the results of independent assays are obtained by the same analytical
procedure on identical samples in the same laboratory, with different operators, using
different equipment during a given time interval. It is estimated by the sum of
within-series and between-series variance components. Intermediate precision is
representative of the total random error for a single measurement within a laboratory,
whatever the day or series.

• Reproducibility. Reproducibility expresses the precision under conditions where the
results are obtained by the same analytical procedure on identical samples in different
laboratories, with different operators, using different equipment. It is estimated by the
sum of within-series, between-series and between-laboratories variance components.

4.5.3 Total Error or Measurement Error
The measurement error of an analytical procedure is related to the closeness of agreement
between the value found and the value that is accepted either as a conventional true value
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or an accepted reference value. The closeness of agreement observed is based on the sum of
the systematic and random errors; in other words, the total error linked to the result.
Consequently, the measurement error is the expression of the sum of the trueness and
precision, i.e., the total error.

As shown below, the observation X is a result of the true sample value μT , the method’s
Bias (estimated by the mean of many results) and Precision (estimated by the standard
deviation or, in most cases, the Intermediate Precision). Equivalently, the difference
between an observation X and the true value is the sum of the systematic and random
errors, i.e., Total Error or Measurement Error.

X = μT + Bias + Precision

⇔ X − μT = Bias + Precision

⇔ X − μT = Total error

⇔ X − μT = Measurement Error

4.5.4 Computational Aspects
As described in Section 4.1, the classical design of a pre-study validation consists in
performing different runs with replicates in each run. Let’s note p the number of runs, ni

the number of replicates in the ith run, N = n1 + · · · + np the total number of
measurements, and xij the jth measurement in the ith run.

Validation criteria such as accuracy and precision are estimated for each concentration
level by statistical analysis of the back-calculated quantities. Computationally, a one-factor
random effects Analysis of Variance (ANOVA) model is fit to the back-calculated values at
each level with run as the random effects factor:

xij = μ + αi + εij ,

where μ is the mean of calculated concentrations, αi and εij are normally distributed with
mean 0 and variances σ2

B and σ2
W , respectively. Here σ2

B is the run-to-run variance and σ2
W

is the within-run variance. The estimates of μ, σ2
B, and σ2

W are given by:

μ̂ = x·· =
1
N

p∑
i=1

nixi·, σ̂2
W =

1
N − p

p∑
i=1

ni∑
j=1

(xij − xi·)2,

σ̂2
B =

p − 1
N − n

[(
1

p − 1

p∑
i=1

(xi· − x··)2

)
− σ̂2

W

]
,

where xi· = n−1
i

∑ni

j=1 xij and n = N−1 ∑p
i=1 ni. By definition, the estimate of the within-run

variance corresponds to the variance of repeatability and the sum of the within-run and
run-to-run components corresponds to the intermediate precision. That is, the intermediate
precision variance is σ2

B + σ2
W .

The relative error (RE), the coefficient of variation of the intermediate precision (CVIP ),
and the total error (TE) are calculated as follows:

RE = 100
μ̂ − μ

μ
, CVIP = 100

√
σ̂2

W + σ̂2
B

μ
, TE = RE + CVIP .

Program 4.7 utilizes these formulas to compute the accuracy, precision, and total error
performance parameters. In this example, each combination of series and plate is considered
as a run. Again, this program uses the CALC CONC data set created in Program 4.5.
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Program 4.7 Computation of the accuracy and precision parameters

proc sort data=calc_conc;
by concentration;

proc mixed data=calc_conc;
class run;
model calc_conc=/solution;
random run;
by concentration;
ods output dimensions=dim;
ods output solutionf=solf;
ods output CovParms=var_comp;

proc sort data=calc_conc;
by concentration run plate;

proc univariate data=calc_conc noprint;
var calc_conc;
by concentration run;
output out=stat_by_conc_run n=n;

proc sql;
create table stat_by_conc as
select t1.concentration, cap_n, sum_n_sq/cap_n as n, n_run, mean,

sqrt(sigma_w_sq) as sigma_w,
100*sqrt(sigma_w_sq)/t1.concentration as cv_w,
sqrt(sigma_b_sq) as sigma_b,
100*sqrt(sigma_b_sq)/t1.concentration as cv_b,
sqrt(sigma_w_sq+sigma_w_sq) as sigma_t,
100*sqrt(sigma_w_sq+sigma_w_sq)/t1.concentration as cv_t

from (select concentration, value as cap_n from dim where
descr=’Observations Used’) as t1,
(select concentration, estimate as mean from solf) as t2,
(select concentration, sum(n**2) as
sum_n_sq from stat_by_conc_run group by concentration) as t3,
(select concentration, estimate as sigma_b_sq from var_comp
where covparm=’run’) as t4,
(select concentration, estimate as sigma_w_sq from var_comp
where covparm=’Residual’) as t5,
(select count(run) as n_run from (select distinct run from
stat_by_conc_run)) as t6 where t1.concentration=t2.concentration=
t3.concentration=t4.concentration=t5.concentration;

run;
quit;

* Calculation of validation criteria;
data stat_by_conc;

set stat_by_conc;
format mean re cv_w cv_b cv_t te 4.1 low_tol_lim_rel upp_tol_lim_rel 5.1;
re=100*(mean-concentration)/concentration;
te=abs(re)+cv_t;
r=(sigma_b/sigma_w)**2;
b=sqrt((r+1)/(n*r+1));
ip=sigma_b**2+sigma_w**2;
ddl=((r+1)**2)/(((r+1/n)**2)/(n_run-1)+(1-1/n)/(cap_n));
low_tol_lim_abs=mean-tinv(0.975,ddl)*sqrt(ip*(1+1/(cap_n*b**2)));
upp_tol_lim_abs=mean+tinv(0.975,ddl)*sqrt(ip*(1+1/(cap_n*b**2)));
low_tol_lim_rel=(low_tol_lim_abs-concentration)*100/concentration;
upp_tol_lim_rel=(upp_tol_lim_abs-concentration)*100/concentration;
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label concentration=’Nominal*concentration’
mean=’Calculated*concentration’
re=’Relative*error (%)’
cv_w=’Within-run*CV (%)’
cv_b=’Run-to-run*CV (%)’
cv_t=’Intermediate*precision*CV (%)’
te=’Total*error(%)’
low_tol_lim_rel=’Upper 95%*tolerance*limit’
upp_tol_lim_rel=’95% TI*upper*limit’;

proc print data=stat_by_conc noobs split=’*’;
format mean re cv_w cv_b cv_t te 4.1 low_tol_lim_rel upp_tol_lim_rel 5.1;
var concentration mean re cv_w cv_b cv_t te;
run;

Output from Program 4.7

Intermediate
Nominal Calculated Relative Within-run Run-to-run precision Total

concentration concentration error (%) CV (%) CV (%) CV (%) error(%)

3.5 3.2 -7.3 37.7 23.0 53.3 60.6
7.0 8.2 16.6 14.7 18.5 20.8 37.5

14.1 15.5 9.8 12.7 8.8 18.0 27.8
28.0 30.0 7.3 4.3 5.2 6.1 13.4
56.0 57.9 3.3 2.7 5.3 3.9 7.2
113.0 114 1.0 2.4 6.2 3.4 4.3
225.0 235 4.6 3.7 4.5 5.2 9.8
450.0 469 4.1 5.5 5.0 7.7 11.9

Output 4.7 shows the estimates of the main accuracy, precision, and total error
performance parameters of the method as a function of the estimated concentration. It is
clear that, at low concentration levels (less than or equal to 14.1 μM), either the trueness
or precision is not acceptable. This is well summarized by the total error that becomes
smaller than 30% for concentration values greater than 14.1 μM. This already gives an idea
about the capability of the method, but as it will be shown in the following section, the
decision rule should be established on a more refined method that takes the notion of risk
into consideration.

4.6 Decision Rule
It was mentioned in the Introduction that Equation (4.2), which describes the main
objective of an analytical method, cannot be solved exactly. A simple way to resolve this
problem and make a reliable decision, proposed by several authors (Hubert et al., 2004;
Boulanger et al., 2000a, 2000b; Hoffman and Kringle, 2005), relies on computing the
β-expectation tolerance intervals (Mee, 1984):

Eμ̂M ,σ̂M
(PX [μ̂M − kσ̂M < X < μ̂M + kσ̂M |μ̂M , σ̂M ]) = β,

where the k factor is determined so that the expected proportion of the population falling
within the interval is equal to β. If the β-expectation tolerance interval is totally included
within the acceptance limits [−λ,+λ], i.e., if μ̂M − kσ̂M > −λ and μ̂M + kσ̂M < λ, the
expected proportion of measurements within the same acceptance limits is greater than or
equal to β. Note that the opposite statement is not true, i.e., if either μ̂M − kσ̂M < −λ or
μ̂M + kσ̂M > λ, the expected proportion is not necessarily smaller than β.

Most of the time, an analytical procedure is intended to quantify over a range of
quantities or concentrations. Consequently, during the validation phase, samples are
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prepared to adequately cover this range, and a β-expectation tolerance interval is
calculated at each level.

A measurement error profile is obtained, on one hand, by connecting the lower limits
and, on the other hand, by connecting the upper limits. A procedure is valid over a certain
range of values if the measurement error profile is included within the acceptance limits
[−λ,+λ]. This concept is illustrated in Figure 4.5 for a chromatographic bio-analytical
method (Hubert et al., 1999). In the left panel of Figure 4.5, the measurement error profile
is included within the 20% acceptance limits over the entire range of concentrations, and
thus the method is valid to quantify concentration values over this range. However, in the
right panel of Figure 4.5, the method can accurately quantify only concentration values
greater than 300μM.

Figure 4.5 Measurement error profiles with observations, 20% acceptance limits (dotted lines), β-expectation
tolerance limits (solid curves), and biases (dashed curves) expressed in terms of relative errors as a function of
the concentration values for a chromatographic bio-analytical procedure
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A measurement error profile gives the analyst a sense of what a procedure will be able
to produce over the intended range. The interpretation of a measurement error profile is
that it shows where 100β% of the measures provided by this analytical method will lie,
which is directly connected to the objective of the analytical method (produce measures
close to the unknown true values).

In practice, the β-expectation tolerance interval is obtained as follows (on a relative
scale):[

RE − Qt

(
v,

1 + β

2

) √
1 +

1
pnB2 CVIP ,RE + Qt

(
v,

1 + β

2

) √
1 +

1
pnB2 CVIP

]
,

where p is the number of runs, n is the number of replicates within each run, Qt(a, b) is the
100b% quantile of the t distribution with a degrees of freedom, and

R =
σ̂2

B

σ̂2
W

, B =
√

R + 1
nR + 1

, v = (R + 1)2
[
(R + 1/n)2

p − 1
+

1 − 1/n

pn

]−1

.

Program 4.8 lists and plots the β-expectation tolerance limits for this study considered
in Program 4.7 (the limits are included in the STAT BY CONC data set created by
Program 4.7).
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Program 4.8 Computation of the β-expectation tolerance limits

proc print data=stat_by_conc noobs split=’*’;
var concentration mean low_tol_lim_rel upp_tol_lim_rel;
run;

axis1 minor=none label=(angle=90 "Total error (%)") order=(0 to 70 by 10);
axis2 minor=none label=("Nominal concentration") logbase=10 logstyle=expand;
symbol1 value=dot i=join color=black line=1 width=3 height=3;
proc gplot data=stat_by_conc;

format te 4.0;
plot te*concentration/frame haxis=axis2 vaxis=axis1 vref=30 lvref=34;
run;
quit;

axis1 minor=none label=(angle=90 "Relative error (%)") order=(-120 to 100 by 20);
axis2 minor=none label=("Nominal concentration") logbase=10 logstyle=expand;
symbol1 value=dot i=join color=black line=1 width=3 height=3;
symbol2 value=none i=join color=black line=8 width=3;
symbol3 value=dot i=join color=black line=1 width=3 height=3;
proc gplot data=stat_by_conc;

format low_tol_lim_rel re upp_tol_lim_rel 4.0;
plot (low_tol_lim_rel re upp_tol_lim_rel)*concentration/overlay frame

haxis=axis2 vaxis=axis1 vref=-30,30 lvref=34;
run;
quit;

Output from Program 4.8

Lower 95% Upper 95%
Nominal Calculated tolerance tolerance

concentration concentration limit limit

3.5 3.2 -103 88.4
7.0 8.2 -37.1 70.4

14.1 15.5 -23.8 43.4
28.0 30.0 -8.1 22.7
56.0 57.9 -10.8 17.4

113.0 114 -15.0 16.9
225.0 235 -8.5 17.7
450.0 469 -12.2 20.5

Output 4.8 shows that the tolerance interval is fully included within the 30% acceptance
limits for concentration levels strictly greater than 14.1 μM. It is also important to notice
that once the tolerance interval is fully included within the acceptance limits, the classical
validation criteria are also satisfied. That is, the accuracy and intermediate precision are
better than the usually recommended 15% threshold. Figure 4.6 provides a graphical
summary of the quantities produced by Program 4.8. In the right panel of Figure 4.6, the
two horizontal (dotted) lines represent the 30% acceptance limits and are equivalent to the
acceptance limits in Figure 4.4 on an absolute scale. The dashed curve represents the
accuracy (relative error).

Program 4.9 computes the individual total and individual relative errors and plots them
along with the total error and measurement error curves displayed in Figure 4.6. The
resulting total error and measurement error profiles are shown in Figure 4.7.
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Figure 4.6 Total error (left panel) and measurement error (right panel) profiles
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Program 4.9 Computation of individual total and individual relative errors

proc sql;
create table te as
select distinct 2 as type, calc_conc.concentration,

abs(calc_conc-calc_conc.concentration)*100/calc_conc.concentration as te
from calc_conc, stat_by_conc
where calc_conc.concentration=stat_by_conc.concentration

union
select 1 as type, concentration, te from stat_by_conc;
run;

quit;
axis1 minor=none label=(angle=90 "Total error (%)") order=(0 to 100 by 20);
axis2 minor=none label=("Nominal concentration") logbase=10 logstyle=expand;
symbol1 value=dot i=join color=black line=1 width=3;

symbol2 value=circle i=none color=black height=5;
proc gplot data=te;

plot te*concentration=type/vaxis=axis1 haxis=axis2 vref=30 lvref=34 nolegend;

run;
quit;

data me;

set stat_by_conc;
array y(3) low_tol_lim_rel re upp_tol_lim_rel;
do j=1 to 3;

me=y(j); type=j;

output;
end;

proc sql;

create table me as
select distinct 4 as type, calc_conc.concentration,

(calc_conc-calc_conc.concentration)*100/calc_conc.concentration as me

from calc_conc, stat_by_conc
where calc_conc.concentration=stat_by_conc.concentration
union

select type, concentration, me from me;
run;
quit;
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axis1 minor=none label=(angle=90 "Relative error (%)") order=(-120 to 100 by 20);

axis2 minor=none label=("Nominal concentration") logbase=10 logstyle=expand;
symbol1 value=dot i=join color=black line=1 width=3 height=5;
symbol2 value=none i=join color=black line=20 width=3;

symbol3 value=dot i=join color=black line=1 width=3 height=5;
symbol4 value=circle i=none color=black height=5;
proc gplot data=me;

plot me*concentration=type/frame haxis=axis2 vaxis=axis1 nolegend vref=-30,30 lvref=34;

run;
quit;

Figure 4.7 demonstrates that most of the individual relative errors are within the
tolerance limits. This highlights the fact that both the total error and measurement error
profiles provide clues about how extreme results may be when produced by an analytical
method. That is, most results will be within the calculated limits. The measurement error
profile is preferred because it is predictive (with a specified risk) of future results obtained
by the method, while the total error profile is more descriptive.

Figure 4.7 Total error (left panel) and measurement error (right panel) profiles with individual total and
individual relative errors
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The choice of the criteria depends on the analyst’s preference. If a certain amount of
risk is associated with the decision, the measurement error profile should be used.
Otherwise, the total error profile could be considered.

In conclusion, the measurement error profile is an easy-to-interpret tool that allows the
analyst to check trueness, precision, and accuracy of the method. Moreover, it is
statistically meaningful and objectively oriented. Note that the lower and upper limits of
quantitation can be estimated using either total error and measurement error profiles by
intersecting the profiles with the acceptance limits.

4.7 Limits of Quantification and Range of the Assay
The upper and lower limits of quantitation (ULOQ and LLOQ) of an analytical procedure
are the lowest and highest amounts of the targeted substance in the sample that can be
quantitatively determined under the prescribed experimental conditions. As a consequence,
the range of an analytical procedure is the range between the lower and upper limits of
quantitation for which the analytical procedure was demonstrated to have a suitable level
of measurement error.
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In practice, the information needed to establish the limits of quantitation and the
associated range is already available in the measurement profile plot. As proposed by
Hubert et al. (1999) and Hubert et al. (2004), the limits of quantitation are the most
extreme (low, high) concentrations (quantities) at which the tolerance interval is still
within the acceptance limits, should the tolerance limits cross the acceptance limits. If all
tolerance limits lie within the acceptance limits, the limits of quantitation are defined as
the most extreme quantities tested in the study.

Figure 4.8 Derivation of the limits of quantification and range of the assay using the measurement error profile
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Figure 4.8 shows how the upper and lower limits of quantitation are defined. In this
example, the lower limit is approximately 24 μM, and the upper limit is the maximum
concentration investigated in this study, i.e., 450 μM.

4.8 Limit of Detection
The limit of detection (LOD) of an analytical procedure is the lowest amount of the
targeted substance in the sample that can be detected reliably, but not necessarily
quantified as an accurate value using the experimental conditions prescribed. A variety of
methods to estimate the LOD have been proposed in the literature, generally based on the
calibration information and estimates. None of them are really satisfactory and are
sensitive to various assumptions related to the model, the design of experiment and
modeling of heterogeneity of variances. Based on our experience, the “best” and most
consistent estimate proposed for bioanalytical methods aiming at covering a large range of
concentrations is based on dividing the lower limit of quantitation by 3 or 3.33. This is
justified by the fact that it is largely accepted that the LOD is three times the noise of the
signal and the LLOQ is ten times the same noise.

So, for the example used in Program 4.8, the LOD can be established around 8 μM.
This is consistent with Figure 4.2. The 8 μM level appears to be the lowest concentration
level producing a signal that is clearly above the signals in the lower asymptote.

4.9 Summary
Throughout this chapter we have proposed ways to understand, estimate, and interpret
various criteria required for assessing the validity of an analytical method. These criteria
must be reported, and the code used to compute the criteria must be documented



94 Pharmaceutical Statistics Using SAS: A Practical Guide

according to best practices. Regardless of the complexity of computations and models, the
objective of an analytical method (are the measurement errors acceptable?) should never
be forgotten and should remain the primary focus. The information needed to make a
decision is contained in the measurement error profile. All performance criteria—linearity,
accuracy, precision, limits, measurement errors—can be assessed using a graphical profile
and can be easily understood and interpreted by an analyst.

Another important remark related to the decision is that, if the tolerance intervals are
within the acceptance limits, all of the required criteria are guaranteed to be met. The
opposite, however, is not true. That is, even when all of the performance criteria are
satisfied, the measurement errors will not necessarily be acceptable. Although it is common
to assume that good methods will always produce good results and most regulatory
documents were written in this spirit, it is important to remember that only the opposite
statement holds true: good results can only be obtained with a good method.

4.10 Terminology
Analytical procedure (or method or assay). Written procedure which describes all the
means and the operating procedures required to perform the analysis of the analyte. That
is, field of application, principle and/or reactions, definitions, reactants, equipments,
operating procedures, expression of results, suitability tests, test reports.
Analyte or activity. The analyte (or activity when relevant) is the matter of the
analytical procedure. The analyte is a physical entity (e.g., water activity), chemical entity
(e.g., active substance alone or in a pharmaceutical formulation, total lipids, aspartame,
lead) or biological entity (e.g., atpmetric activity). In the case of quantitative analytical
procedures of farm and food products, “analyte” is equivalent to “measurand”.
Matrix. All constituents of the laboratory sample other than the analyte. A type of matrix
is defined as a group of materials or of products considered by the analyst as having a
homogeneous behavior with regard to the analytical method used.
Blank. Test performed in the absence of the matrix (blank reactant) or in a matrix
without analyte (blank matrix). By extension, the instrument response in the absence of
the analyte is used (blank instrumental).
Accepted reference value. An accepted reference value is a value used as a reference,
agreed for a comparison and derived from:

• A theoretical or established value, based on scientific reasons.
• An assigned or certified value, based on experimental data from a national or

international organization.
• A consensus value, based on a collaborative experimental work.
• The mathematical expectation of the (measurable) quantity, in cases where the previous

points are not applicable, i.e., the mean of a specified population of determinations (cf.
NF ISO 5725-1).

Calibration standard (or calibration sample). Calibration standards are samples of
known concentrations, with or without matrix, that allow drawing the calibration curve.
Validation standard (or validation sample). Validation standards are samples
reconstituted in the matrix or in any other reference material with true values set by
consensus and used to validate the analytical procedure.
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Understanding the intrinsic toxicological properties of chemicals is fundamental to
evaluating their safety. Such data are derived from toxicological studies that are required
by national and international regulatory organizations. These data are used to determine
the potential hazards and to gain an understanding of the potential risks to humans. This
chapter provides a brief overview of the role of nonclinical safety assessment in drug
development and covers several important statistical considerations in defining hazards.
The topics include randomization, power evaluation, and data analysis. Examples are given
throughout the chapter to illustrate the described statistical methods for each topic.

5.1 Overview of Nonclinical Safety Assessment
The goal of drug development is to identify safe and efficacious treatments for human
diseases. Safety and efficacy are assessed through careful evaluation in animal models and
in vitro systems (nonclinical setting) and in exposed human populations (clinical setting)
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throughout drug development and post-marketing. This chapter focuses on the design and
analysis of studies that are integral to nonclinical safety assessment.

The objectives in nonclinical safety assessment are to define the toxicity profile of
candidate drugs, estimate the margin of safety by understanding the relationship between
toxic exposures and efficacious exposures, and provide a judgment on the likelihood that
the animal findings can be extrapolated to humans. These assessments are important

• prior to candidate selection because they provide internal decision-makers with a
probability of technical success for the new compound,

• during clinical development because they protect the safety of individuals in clinical
trials, and

• during the post-marketing phase because they support alternative formulations or
clinical indications or further investigation of newly discovered safety issues.

It is beyond the scope of this chapter to consider all questions asked in nonclinical
studies; however, a few questions are particularly central to safety assessment. These
include:

• What dose or plasma exposure of the experimental drug is not associated with any
adverse outcome (i.e., the no observed adverse effect level, or NOAEL)?

• What dose or plasma exposure of drug does not result in any observed biological effect
(i.e., the no observed effect level, or NOEL)?

• What is the maximum tolerated dose (MTD)?
• What is the nature of the dose-response relationship? For example, how steep is the

dose-response curve as judged by the difference between the NOAEL and the MTD, or
is the response monotonic or nonmonotonic?

• What are the target organs of toxicity?
• Are the toxicities monitorable? That is, are there antemortem measures that are

predictive of tissue pathology?
• Are the toxicities reversible?

Most of the studies designed to answer the questions above are mandated by regulatory
agencies worldwide. Guidance documents for pharmacology and toxicology are available
electronically via the Food and Drug Administration (FDA), European Medicines Agency
(EMEA), and the International Conference on Harmonization (ICH) Web sites. These
guidance documents assist in determining the relevant single-dose, repeat-dose, genetic
toxicity, safety pharmacology (e.g., central nervous system, cardiovascular, and respiratory)
studies, immunotoxicity, reproductive/developmental, and carcinogenicity studies as well as
the necessary studies to ensure adequate quality of the formulated material (e.g., impurity
qualification). Other studies to examine more closely certain mechanisms of toxicity or
compound-specific issues are conducted as needed.

5.2 Key Statistical Aspects of Toxicology Studies
The key statistical aspects of the design and analysis of toxicology studies to be discussed
are randomization, power evaluation, and data analysis.

5.2.1 Randomization
Since proper randomization is the foundation of valid statistical inference, this chapter
starts with the randomization methods for two commonly used designs in toxicology,
namely, the parallel design and Latin square design.
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Parallel designs include studies with one factor, two factors, one-factor with repeated
measurements, and more. In a parallel design, separate groups of animals are assigned to
combinations of factor levels. For example, in a one-factor design with four dose groups,
there would be four different groups of animals, each receiving one of the four doses. For a
two-factor design with four dose groups and two routes of delivery, there would be eight
different groups of animals, each receiving one of the eight combinations of the four doses
and two routes.

Latin square designs are efficient for incorporating three factors each with the same
number of levels. For example, a basic 4 × 4 Latin square design can accommodate four
animals, each receiving one of four treatments in four dosing periods. This design allows for
the evaluation of the treatment, animal, and time effects. However, one has to assume that
all two- or three-way interactions are not significant.

The random assignment of animals to the groups for the parallel and Latin square
designs is discussed in Section 5.3.

5.2.2 Power Evaluation
Power evaluation characterizes the strength of an inferential test. It is a function of the size
of the change to be detected, the variability, the Type I error rate, and the sample size.
Although certain sample sizes in standard toxicology studies are commonly accepted and
based, in part, on regulatory guidance, many toxicology studies targeted at special
endpoints merit an assessment of the power and sample size. An example of this is the
evaluation of QT prolongation in large animal toxicology studies with four treatment
groups and three or four animals per group for each sex. The QT interval is a measure of
the time between the start of the Q wave and the end of the T wave in the heart’s
electrical cycle. The details of the study design and statistical tests are described in
Section 5.4. The evaluation of power is performed in a two-factor analysis of variance
(ANOVA) framework by simulation.

5.2.3 Data Analysis
For each well-designed study, the statistical hypotheses and tests are defined in the
protocol. The most commonly collected data for toxicology studies is body weight. A body
weight change, either a gain or loss, is important for monitoring the well-being of the
animal and toxicities of a compound. Section 5.5 describes statistical methods used in the
analysis of body weight data in toxicology studies based on a one-factor ANOVA model
with repeated measures.

To save space, some SAS code has been shortened and some output is not shown. The
complete SAS code and data sets used in this book are available on the book’s companion
Web site at http://support.sas.com/publishing/bbu/companion site/60622.html.

5.3 Randomization in Toxicology Studies
One of the most important elements of any research design is the concept of
randomization. This concept is central to all types of toxicology research (Lin, 2001).
Random assignment of experimental animals to different groups helps reduce the potential
biases among the comparison groups and allows a valid interpretation of the research
results. Most statistical packages can produce random numbers within a specified range,
which can be used to assign experimental units to treatments. Some textbooks have tables
of random numbers designed for this purpose.

There are generally two approaches to creating randomization tables in SAS. The first
approach is based on a direct generation of randomization tables using a DATA step. The
other approach relies on the PLAN procedure that provides different randomization layouts
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depending on the experiment. For a more detailed description of random allocation
methods in pre-clinical and clinical studies, see Chapter 9, “Allocation in Randomized
Clinical Trials”.

5.3.1 Block Randomization in a Parallel Design
In this subsection, the randomized complete block design is discussed to illustrate the
randomization approach. Consider designing a study to determine whether different dose
levels of a compound affect the liver weight of a mouse after one week of treatment. If four
dose levels, including a control, are evaluated and 48 mice are available for the study, then
these mice would need to be assigned to the four dose groups. Since the liver weight is
related to the body weight, a common practice is to assign the animals to treatments using
a randomized complete block design with body weight stratification.

A randomized complete block design structure is any blocking scheme in which the
number of experimental units within a block is a multiple of the number of treatments, and
thus the experimental units can be assigned completely at random to a complete set of
treatments in each block.

Program 5.1 creates a randomization table for the study using a DATA step. First, the
program defines the allocation number for each animal based on the animal id and sorts
the animals by their body weights. The random variable RAND is created using the
RANUNI function that generates a random number from the uniform distribution on the
(0, 1) interval. The BLOCK variable assigns each animal to a block: the first four mice to
Block 1 (the four lightest animals), the second four mice to Block 2, etc. The RANK
procedure ranks the random numbers from the smallest to the largest within each block.
The ranking of the random numbers within a block is used for treatment assignment.

Program 5.1 Randomization using a DATA step

data bodyweight;
animal_id=_n_;
input bw @@;
datalines;

22.1 25.5 24.2 26.1 23.3 22.0 21.8 24.8 23.1 23.0 23.0 24.8
25.3 25.6 24.8 24.5 26.0 23.6 26.3 24.0 26.9 25.9 22.7 22.4
22.5 22.3 22.3 25.5 20.9 24.5 22.2 23.3 20.3 26.3 27.6 26.5
26.8 25.6 26.6 23.5 22.4 21.3 23.7 26.8 24.6 24.2 26.1 26.2
;
proc sort data=bodyweight;

by bw;
data bdwt;

set bodyweight;
rand=ranuni(1202019);
block=1+int((_n_-1)/4);

proc rank data=bdwt out=bwstrat (drop=rand);
by block;
var rand;
ranks group;

proc sort data=bwstrat;
by group animal_id;

proc print data=bwstrat noobs label;
label animal_id="Animal ID"

bw="Body weight"
block="Block"
group="Treatment group";

run;
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Partial output from Program 5.1

Animal Body Treatment
ID weight Block group

10 23.0 4 1
12 24.8 8 1
18 23.6 5 1
20 24.0 6 1
24 22.4 3 1
28 25.5 9 1
29 20.9 1 1
31 22.2 2 1
37 26.8 12 1
39 26.6 11 1
45 24.6 7 1
48 26.2 10 1
2 25.5 8 2
7 21.8 1 2

17 26.0 10 2

Output 5.1 displays the first 15 rows in the randomization table generated by
Program 5.1.

5.3.2 Randomization in a Latin Square Design
The other popular design used in toxicology studies is the Latin square design. The Latin
square design consists of blocking in two directions. For an experiment involving n
treatments, n2 experimental units are assigned into an n × n square in which the rows are
called row blocks and the columns are called column blocks. Thus, the n × n arrangement
of experimental units is blocked in two directions. In a Latin square design, the treatments
are randomly assigned to animals in the square such that each treatment occurs once and
only once in each row block and once and only once in each column block. See Box et al.
(1978) for various arrangements of treatments into row and column blocks.

The %LATINSQ macro in Program 5.2 uses PROC PLAN to generate an n × n Latin
square design. The macro includes two arguments: N is the dimension of the Latin square,
and SEED is the seed for randomization.

The FACTORS statement in PROC PLAN specifies the row and column blocks of the
design (ANIMAL ID and PERIOD). The TREATMENTS statement specifies the
treatment groups (GROUP). The OUTPUT statement saves the design generated to the
specified data set (LATIN). Creating a randomization schedule for a Latin square design
involves randomly permuting the row, column, and treatment values independently. To
accomplish this, the association type of each factor is specified as RANDOM in the
OUTPUT statement. The output is summarized using the TABULATE procedure.
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Program 5.2 Randomization in an n × n Latin square design

%macro latinsq(n,seed);
proc plan seed=&seed;

factors animal_id=&n ordered period=&n ordered/noprint;
treatments group=&n cyclic;
output out=latin period random animal_id random group random;

proc tabulate data=latin formchar=’ ’;
label animal_id="Animal ID" period="Period";
keylabel sum=’ ’;
class period animal_id;
var group;
table animal_id, period*(group=’’*f=3.)/rts=8;
run;

%mend latinsq;
%latinsq(n=4,seed=1034567);

Output from Program 5.2

Period

1 2 3 4

Animal ID

1 1 3 4 2
2 3 4 2 1
3 2 1 3 4
4 4 2 1 3

5.4 Power Evaluation in a Two-Factor Model for QT Interval
This section describes the process of estimating the power of a trend test in a two-factor
ANOVA model. The application is for a general toxicology study in beagle dogs with a
vehicle control (Dose 0) and three groups of increasing doses of a compound (Doses 1, 2,
and 3). A sample size of three or four animals per sex per group is generally used. The
purpose of the analysis is to evaluate the treatment effects on heart rate-corrected QT
intervals by identifying the highest no observed effect dose level (NOEL). The power
evaluation is important because the recent ICH S7B guideline (2004) recommends that the
sensitivity and reproducibility of the in vivo test system be characterized. See also Chiang
et al. (2004).

The QT interval of the electrocardiogram (ECG) is a common end-point for
characterizing potential drug-associated delayed ventricular repolarization in vivo (ICH
S7B, 2004). It has been conjectured that delayed ventricular repolarization caused by a
compound may lead to serious ventricular tachyarrhythmias in humans (see, for example,
Kinter, Siegl and Bass, 2004). Statistical analysis of QT interval data is complicated by the
fact that the analysis is inversely correlated with heart rate (HR). Therefore, analysis of
QT interval data generally includes an adjustment for the RR interval (the RR interval,
expressed in seconds, is equal to 60 times the reciprocal of heart rate, i.e., RR=60/HR).
Fridericia’s formula (QTc = QT/ 3

√
RR, Fridericia, 1920) is commonly used to obtain the

heart rate-corrected QT intervals in nonclinical evaluation.
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5.4.1 Sequential Testing Method
At Eli Lilly and Company, QT intervals in a general toxicology study are collected at
pre-specified time points both before and after treatment on selected dosing dates. QTc
data at each time point are analyzed using a two-factor ANOVA model. Factors in the
model include treatment, sex, and the interaction of those two factors. Effects associated
with treatment and treatment-by-sex interaction are tested using an F -test at the 0.05
significance level. Monotonicity of dose response is examined by first testing for an
interaction between the treatment linear trend and sex group at the 0.05 significance level.
If this interaction is significant, a sequential trend test (Tukey et al., 1985) on treatment
means is performed at the 0.05 significance level for each sex group and for the two sex
groups combined. Otherwise, the sequential trend test is performed only for the combined
group. For a detailed description of linear and other trend tests in dose-ranging studies, see
Chapter 11, “Design and Analysis of Dose-Ranging Clinical Studies”.

To define the sequential testing procedure in the two-factor ANOVA model, consider the
following four tests:

Test A. An interaction between the treatment linear trend and sex.
Test B. The overall treatment linear trend for combined sexes.
Test C. The treatment linear trend for each sex.
Test D. Test C when Test A is significant or Test B when Test A is not significant.

Figure 5.1 Flow chart for analysis of two-factor ANOVA

Linear trend by sex
interaction test

(Test A)

�

Significant at 0.05?

Yes

�

No

�
Linear trend test

for each sex
(Test C)

Linear trend test
for combined sexes

(Test B)

Figure 5.1 is a flow chart of the sequential testing procedure. Test D represents an
overall assessment of the study and is of primary interest.

The sequential trend test by Tukey et al. (1985) is carried out as follows. Let μ0 denote
the mean QTc effect in the control group (Dose 0) and μ1, μ2, μ3 denote the mean QTc
effects at Doses 1, 2, and 3, respectively. The linear trend based on an ordinal dosing scale
is examined by testing the following linear contrast:

Contrast of four means = −3μ0 − 1μ1 + 1μ2 + 3μ3.

This trend test is performed in a sequential fashion to identify the highest NOEL. If the
linear contrast of the four means is not significant, one concludes that the high dose (Dose
3) is the NOEL and no further testing is performed. If the linear contrast is significant, the
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test procedure continues to assess the significance of a linear trend in the first three means
using the following contrast:

Contrast of three means = −1μ0 + 0μ1 + 1μ2.

If this linear contrast is not significant, one concludes that the medium dose (Dose 2) is the
NOEL and testing stops. However, if the test is significant, the test procedure continues to
compare the control and low dose (Dose 1):

Contrast of two means = −1μ0 + 1μ1.

If this linear contrast is not significant, the low dose (Dose 1) is the NOEL. Otherwise, the
NOEL is not established for this response variable.

5.4.2 Power Evaluation
We evaluate the statistical power of the sequential testing method via simulation. The
following parameters are needed: the number of simulations, the sample size in each
treatment group, the effect size in each treatment group, and the common variance.

The simulation study will use 2000 simulations with n = 3 per sex or n = 4 per sex in
each treatment group. Let yijk denote the observation for the k-th animal in the i-th
treatment group (i = 0, 1, 2, 3) and j-th sex group (j = 1 denotes males and j = 2 denotes
females). Suppose that yijk is normally distributed with mean μij and variance σ2.

The dose-response profile is defined to be flat from Dose 0 up to Dose 2 and assumed to
show an increase at Dose 3. In other words,

μ0j = μ1j = μ2j

for j = 1, 2. To allow for a sex difference at Dose 3, we make the following assumptions.
The treatment effects in male and female animals at Dose 3 are given by

μ31 = μ01(1 + δ1), μ32 = μ02(1 + δ2).

Here δ1 is the relative treatment difference in the male animals at Dose 3 compared to Dose
0 and, similarly, δ2 is the relative treatment difference in the female animals at Dose 3
compared to Dose 0. It is worth noting that the assumptions given above result in
conservative power estimates. If drug effects were present at Doses 1 and 2, the power of
the sequential testing method would be greater.

The control means in males and females as well as the variance of QTc interval were
estimated from a historical database including pre-treatment QTc values from 91 male and
91 female beagle dogs:

μ01 = 236.35, μ02 = 237.88, σ2 = 102.98.

Power simulations are performed under 12 scenarios defined by 6 combinations of δ1 and
δ2 (δ1 = 0.05, δ2 = 0; δ1 = 0.05, δ2 = 0.05; δ1 = 0.1, δ2 = 0; δ1 = 0.1, δ2 = 0.1; δ1 = 0.15,
δ2 = 0; δ1 = 0.15, δ2 = 0.15) and two values of the sample size per sex per treatment group
(n = 3 and n = 4). Simulated data are generated by calling the %SIMULQT macro that
can be found on the book’s companion Web site. For example, the following call simulates
QTc interval data for δ1 = δ2 = 0.05 and three animals per sex per treatment group (the
parameters of the %SIMULQT macro are defined in the code available on the book’s
companion Web site):

%simulqt(n_sim=2000, avgmale=236.35, avgfemale=237.88, var=102.98,
n=3, delta1=0.05, delta2=0.05, out=simul1, seed=2631);
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Program 5.3 analyzes the simulated data using the MIXED procedure, with the
ESTIMATE statements specifying the linear contrasts of treatment means. The p-values
for Tests A, B, and C are saved in the TESTS data set. To evaluate the power of Test D,
the FINALCOUNT data set converts the three p-values into binary variables (TESTA,
TESTB, and TESTC) based on the 0.05 significance level. The TESTD variable is then
defined as the sum of TESTA*TESTC and (1-TESTA)*TESTB. Finally, the binary
variables are summarized using the MEANS procedure to compute the power of each test.

Program 5.3 Power evaluation in the two-factor model for QT interval

proc mixed data=simul1;
by simul;
class simul dose sex animal;
model qtc=sex|dose;
/* Test A */
estimate ’Linear trend*sex’ dose*sex 3 -3 1 -1 -1 1 -3 3;
/* Test B */
estimate ’Combined trend test’ dose -3 -1 1 3;
/* Test C */
estimate ’Trend test in females’ dose -3 -1 1 3

dose*sex -3 0 -1 0 1 0 3 0;
estimate ’Trend test in males’ dose -3 -1 1 3

dose*sex 0 -3 0 -1 0 1 0 3;
ods output estimates=tests;

data tests (keep=simul label probt);
set tests;
if probt<0.0001 then probt=0.0001;

proc transpose data=tests out=testfinal;
by simul;
var label probt;

data testfinal (drop=_name_ _label_);
set testfinal;
rename col1=flagp col2=combp col3=femalep col4=malep;
if _name_=’Probt’;

data finalcount;
set testfinal;
retain testA testB testC testD 0;
testA=(flagp<0.05);
testB=(combp<0.05);
testC=max((femalep<0.05),(malep<0.05));
testD=testA*testC+(1-testA)*testB;

proc means data=finalcount noprint;
var testA testB testC testD;
output out=power;

data summary (keep=testA testB testC testD);
set power;
if _stat_=’MEAN’;

proc print data=summary noobs;
format testA testB testC testD 5.3;
run;

Output from Program 5.3

testA testB testC testD

0.051 0.421 0.414 0.445
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Output 5.3 displays the estimated power of the four tests. The power of the overall
analysis (Test D) in this scenario (δ1 = δ2 = 0.05 and n = 3) is clearly too low (44.5%). The
estimated powers for all 12 scenarios are summarized in Table 5.1. The power of the
sequential testing procedure is above 95% when Dose 3 is expected to prolong the QTc
interval by 10% in both male and female beagle dogs.

Table 5.1 Estimated Power of Sequential Testing Procedure in the Two-Factor Model for QT Interval

Sample size per sex
per treatment groupTreatment effect

in males (δ1)
Treatment effect
in females (δ2) n = 3 n = 4

0.05 0 23.2% 30.2%
0.05 0.05 44.5% 59.2%
0.1 0 63.4% 78.7%
0.1 0.1 95.7% 98.8%
0.15 0 93.2% 98.4%
0.15 0.15 100.0% 100.0%

Evaluation of Type I Error Rate in a Two-Factor ANOVA Model
Another important characteristic of the sequential testing method is the probability of a
Type I error. The Type I error rates for Tests A and B are 5% and, under an additional
assumption of independent multiple tests, the Type I error rate for Test C is
1 − (1 − 0.05)2 = 9.75%. Although calculation of the Type I error rate for Test D is not as
straightforward, it can be evaluated by simulation.

To estimate the Type I error rate associated with Test D, one needs to create a
simulated data set under the global null hypothesis of no drug effect (δ1 = δ2 = 0) as shown
below:

%simulqt(n_sim=2000, avgmale=236.35, avgfemale=237.88, var=102.98,
n=3, delta1=0, delta2=0, out=simul1, seed=4641);

The Type I error rate of Test D is computed using Program 5.3.

Output from Program 5.3 (Computation of the Type I error rate)

testA testB testC testD

0.054 0.054 0.098 0.084

Output 5.3 (Computation of the Type I error rate) shows the estimated Type I error
probabilities of Tests A, B, C, and D. The estimated Type I error rate of the overall
analysis (Test D) is 8.4%. Since this rate is greater than 5%, one can consider adjusting the
significance levels for Tests A and B downward, i.e., carrying them out at a level that is
lower than 0.05.

5.5 Statistical Analysis of a One-Factor Design with Repeated Measures
In this section, we discuss the methods for analyzing the body weight data from rodent and
large animal toxicology studies. Since body weights of each animal are collected throughout
the study, they are repeated measures data. The repeated measures analysis is a logical
choice for large animal toxicology studies (Thakur, 2000) and rodent toxicology studies
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(Hoffman et al., 2002) with data that are repeated in nature. For a typical
four-treatment-group two-year carcinogenicity study, there could be as many as 60 rats per
sex for each treatment group, each receiving a 0 (vehicle), low, mid, or high dose of a
compound daily for the entire two years. The body weights of each animal are usually
collected weekly up to 13 weeks and biweekly thereafter. The purpose of the statistical
analysis is to evaluate compound-related effects on body weight. The statistical methods
are described and the analysis of the data is carried out using SAS. For a detailed
description of repeated measures models and issues arising in the analysis of incomplete
data, we refer the reader to Chapter 12, “Analysis of Incomplete Data.”

5.5.1 Objectives of Statistical Comparisons
The main interest of the analysis is to identify the NOEL on body weight in each sex by
comparing treatment groups to the vehicle control. Treatment-related effects need to be
interpreted with reference to the time intervals in which they were observed. The
compound-related effects at a single time point are discussed first to help lay the
foundation for evaluation of those effects within a time span.

5.5.2 Assessment of Compound-Related Effects at a Single Time Point
Compound-related effects can be assessed using the sequential trend test described in
Section 5.4.1. The trend test is performed to evaluate the monotonic dose-response
relationship in group means. However, if researchers are also interested in detecting
statistically significant differences between the lower doses and the control in the absence of
a high dose effect, then the Dunnett test (Dunnett, 1964) at the significance level of 0.05
can be applied as a secondary test. To avoid an inflated Type I error rate by routinely
performing Dunnett’s t-test in the absence of a high dose effect, researchers can first
perform an F -test at a lower significance level, 0.01. Dunnett’s t-test is performed only if
the F -test is significant. If the effects detected at lower doses in the absence of a high dose
effect would be dismissed as not being dose-responsive, then neither the F -test nor
Dunnett’s t-test would be considered.

5.5.3 Assessment of Compound-Related Effects within a Time Span
The evaluation of compound effects can be expanded from a single time point to the entire
time span of the experiment (Hoffman et al., 2002). As the duration of a study increases, so
does the number of body weight measurements. For example, in a two-year carcinogenicity
study there would be more than 50 body weight measurements for each animal surviving to
the end of the study. As one expects the growth pattern to change as animals mature, body
weights are averaged accordingly to capture the characteristics. The calculation of average
body weights in selected analysis intervals and the handling of missing data due to death
are discussed in this section. The inclusion of baseline and the selection of a covariance
structure for each animal across time are detailed first. After that, statistical methods for
evaluation of monotonic and nonmonotonic dose-response relationships are explained.

Calculation of Interval-Averaged Body Weights

Analysis intervals for averaging body weights that are used in rodent and large animal
studies at Eli Lilly and Company are listed in Table 5.2. Statistical analysis of rodent body
weights collected in the first 3 months of the rapid growth phase is performed in one
analysis. After 3 months, the growth of a rodent slows down and enters into the
maintenance phase. Body weights beyond 3 months are evaluated in the second statistical
analysis. The baseline body weight of each animal is included in both analyses as a
covariate. Large animal studies are typically 2 weeks, or 1, 3, 6, 9, or 12 months in
duration. Evaluation of large animal body weights collected in the first 6 months is
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Table 5.2 Analysis Intervals for Rodent and Large Animal Studies

Timea Rodent studies Large animal studies

Weeks 1–5 Every week Every week
Weeks 6–14 Every 2 weeks Every 4 weeks
Weeks 15–26 Every 4 weeks Every 4 weeks
Weeks 27–104b Every 14 weeks Every 4 weeks
aApproximate time intervals which may vary from study to study.
bDuration of dog studies is generally up to 52 weeks.

performed in one statistical analysis, while additional body weights collected beyond 6
months are analyzed in a second analysis.

Interval-averaged body weights for rodents are derived using the %ONEWEEK and
%WEEKINT macros provided on the book’s companion Web site. The INDDATA data set
includes body weight measurements, collection days and general study information. The
first few weeks of the study are called the initial period when no averaging is required.
Weekly body weights are saved as INT BW for those weeks starting from the study day
that the first weekly data are recorded, WKLY FIRST, to the study day that the last
weekly data are recorded, WKLY END. This is done using the %ONEWEEK macro. After
the initial period, body weights in the selected intervals are averaged and saved as INT BW
in the macro. To obtain a representative body weight for the selected interval, the initial
body weight in the current interval, which is the last body weight of the previous interval, is
also included in the calculation. The %WEEKINT macro computes INT BW by specifying
the number of time points for averaging (NUM TIMEPTS), the start day (INT START),
and the end day (INT END) of the interval. This macro pulls the last observation from the
previous interval into the calculation of INT BW for the current interval.

As an illustration, Program 5.4 applies the macros to derive five weekly body weights
and four biweekly interval-averaged body weights post dosing as INT BW. These are
appended to the base data set, ALL INTERVAL. ALL INTERVAL contains the weekly
body weights for Days -1, 6, 13, 20, 27, and 34, and biweekly interval-averaged body
weights for Days 48, 62, 76, and 90.

Program 5.4 Calculation of interval-averaged body weights

%oneweek(wkly_first=-1,wkly_end=34);
%weekint(num_timepts=2,int_start=41,int_end=90);

Partial output of ALL INTERVAL from Program 5.4

Gender Phase Day Animal Group BW INTVL_BW

Male Treatment -1 1001 1 132.5 132.5
Male Treatment 6 1001 1 166.5 166.5
Male Treatment 13 1001 1 194.8 194.8
Male Treatment 20 1001 1 212.1 212.1
Male Treatment 27 1001 1 246.3 246.3
Male Treatment 34 1001 1 255.5 255.5
Male Treatment 41 1001 1 277.3 NC
Male Treatment 48 1001 1 294.7 275.8
Male Treatment 55 1001 1 308.8 NC
Male Treatment 62 1001 1 317.3 306.9
Male Treatment 69 1001 1 330.8 NC
Male Treatment 76 1001 1 328.3 325.5
Male Treatment 83 1001 1 339.0 NC
Male Treatment 90 1001 1 339.8 335.7
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Female Treatment -1 2051 2 101.8 101.8
Female Treatment 6 2051 2 116.5 116.5
Female Treatment 13 2051 2 127.5 127.5
Female Treatment 20 2051 2 145.5 145.5
Female Treatment 27 2051 2 152.1 152.1
Female Treatment 34 2051 2 156.0 156
Female Treatment 41 2051 2 162.6 NC
Female Treatment 48 2051 2 171.9 163.5
Female Treatment 55 2051 2 178.6 NC
Female Treatment 62 2051 2 189.5 180
Female Treatment 69 2051 2 196.5 NC
Female Treatment 76 2051 2 197.8 194.6
Female Treatment 83 2051 2 201.9 NC
Female Treatment 90 2051 2 204.2 201.3

Handling of Missing Data Due to Death

As animals age, their mortality rate also increases. It is not unusual to see 50% of the
animals die before the end of a carcinogenicity study. Missing data due to death are
different from missing data due to other reasons. When averaging body weights for an
animal in a selected time interval, a missing value will be assigned in the former case while
an average would be calculated based on all available body weights in the latter case. All
body weights up to the time interval of death are included in the statistical analysis. Body
weights that are collected prior to death but that are not included in the statistical
analysis would be incorporated into the overall assessment of mortality data.

Program 5.5 demonstrates how to properly handle the missing data. For each animal, a
survival index (SURVIVAL DAY) is created to indicate the last day of non-missing
observations. This index is used to identify if a missing body weight is due to death or
other reasons. If this survival index day falls within an interval, the derived interval body
weight (INT BW) is set to missing for that animal. Otherwise, the program averages all
available non-missing body weights.

The following arguments are used in Program 5.5:

• SURVIVAL DAY is the last day of non-missing body weights.
• START is the first day of an interval (e.g., Day 48).
• END is the last day of an interval (e.g., Day 69).

Program 5.5 Handling of missing data

data survival_index;
set all;
if bw ne .;

proc sort data=survival_index;
by animal gender;

data survival_index;
set survival_index;
by animal gender day;
if last.animal;
survival_day=day;
keep animal gender survival_day;

data week&end;
merge week&end(in=in1) survival_index(in=in2);
by animal;
if in1 and in2;
if &start<=survival_day<&end then int_bw=.;
run;



110 Pharmaceutical Statistics Using SAS: A Practical Guide

The output of Program 5.5 can be summarized into four possible scenarios. To
illustrate, Table 5.3 includes both the weekly body weights and the derived interval body
weights. For the first month, INT BW values were captured directly from the five weekly
body weights. INT BW ending on Day 48 was computed by averaging the body weights
collected on Days 34, 41, and 48. For the last time interval that ended on Day 62, INT BW
is derived from the average of three time points: Days 48, 55, and 62. The following
scenarios are presented in Table 5.3:

Scenario 1. Animal 1001 did not have any missing values.
Scenario 2. Animal 1002 had a missing value on Day 55. Hence INT BW for Day 62 was

computed by averaging the body weights from Days 48 and 62.
Scenario 3. Animal 1003 had two missing values on Days 41 and 48. Hence INT BW for

Day 48 was computed from Day 34, and INT BW for Day 62 was computed
by averaging the body weights from Days 55 and 62.

Scenario 4. Animal 1004 is assumed dead right after Day 48 since there were no data
collected beyond Day 48. Therefore, INT BW for the last interval was set to
be missing.

Table 5.3 Examples of INT BW Computation and Missing Data Handling

Study dayAnimal
ID Parameter 6 13 20 27 34 41 48 55 62

1001 BW 166.5 194.8 212.2 246.3 277.3 294.7 308.8 317.3 330.8
INT BW 166.5 194.8 212.2 246.3 277.3 293.6 319.0

1002 BW 166.5 194.8 212.2 246.3 277.3 294.7 308.8 . 330.8
INT BW 166.5 194.8 212.2 246.3 277.3 293.6 319.8

1003 BW 166.5 194.8 212.2 246.3 277.3 . . 317.3 330.8
INT BW 166.5 194.8 212.2 246.3 277.3 277.3 324.1

1004 BW 166.5 194.8 212.2 246.3 277.3 294.7 308.8 . .
INT BW 166.5 194.8 212.2 246.3 277.3 293.6 .

5.5.4 Selection of the Covariance Structure for Each Animal
To account for the initial differences in baseline body weight, it is important to include it
as a covariate in the statistical model. In addition, to account for the correlation among
repeated measures from the same animal, one needs to select an appropriate covariance
structure for each animal. As a default covariance structure, consider repeated measures
data from a split-plot design with a treatments, b time points, and c animals. The split-plot
model (Aldworth and Hoffman, 2002) with treatment as the whole-plot factor, time as the
subplot factor, and baseline as a covariate is

yijk = μ + αi + γ(xik − x̄..) + dk(i) + βj + (αβ)ij + eijk,

where i = 1, . . . , a, j = 1, . . . , b and k = 1, . . . , c. In this equation, y is the body weight, μ is
the grand mean, α is the treatment effect, γ is the regression coefficient for the covariate x
and the overall mean of the covariate x̄, β is the time effect, αβ is the treatment by time
interaction, d is the random error for the animal nested in the treatment, and e is random
error at each time point.

The covariance matrix for an animal in this model has the variance components
structure (VC). The covariance terms in VC are nonnegative. If negative correlations are
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allowed in the covariance structure of VC, the matrix will have a compound symmetric
structure (CS).

In addition, the variances of an animal at different time points could be heterogeneous.
Therefore, one can consider other covariance structures, including homogeneous variance
components (VC), heterogeneous variance components (UN(1)), homogeneous compound
symmetry (CS), heterogeneous compound symmetry (CSH) and spatial power (SP[POW]).

For the UN(1) and SP(POW) structures, both REPEATED and RANDOM statements
are included in the MIXED procedure. An animal is specified as the subject in both
statements and the intercept is specified in the RANDOM statement as a random effect.

For the CS and CSH structures, only the REPEATED statement is included while for
the VC structure, only the RANDOM statement is included. The finite-sample corrected
Akaike’s Information Criterion (Keselman et al., 1998) can be used for selecting the
covariance structure. The Kenward and Roger method (Kenward and Roger, 1997) is
generally recommended for the denominator degrees of freedom. The PROC MIXED
syntax for each covariance structure discussed above follows:

Homogeneous variance components (VC)

proc mixed data=one;
class trt time animal;
id trt time animal;
model body_wt=trt time trt*time baseline/ddfm=kenwardroger solution;
random int/type=vc subject=animal s;

Heterogeneous variance components (UN(1))

proc mixed data=one;
class trt time animal;
id trt time animal;
model body_wt=trt time trt*time baseline/ddfm=kenwardroger solution;
repeated time/type=un(1) subject=animal r;
random int/subject=animal s;

Note that TYPE=UN(1) can be replaced with TYPE=VC GROUP=TIME.

Homogeneous compound symmetry (CS)

proc mixed data=one;
class trt time animal;
id trt time animal;
model body_wt=trt time trt*time baseline/ddfm=kenwardroger solution;
repeated time/type=cs subject=animal r;

Heterogeneous compound symmetry (CSH)

proc mixed data=one;
class trt time animal;
id trt time animal;
model body_wt=trt time trt*time baseline/ddfm=kenwardroger solution;
repeated time/type=csh subject=animal r;
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Spatial power (SP[POW])

proc mixed data=one;
class trt time animal;
id trt time animal;
model body_wt =trt time trt*time baseline/ddfm=kenwardroger solution;
repeated time/type=sp(pow) (time) subject=animal r;
random int/subject=animal s;

Evaluation of Monotonic and Nonmonotonic Dose-Response Relationships

A repeated measures analysis of variance is performed to assess compound-related effects
across time. Treatment and time are entered in the statistical model as the two main
factors. The interaction between treatment and time is also included in the model. Based
on the significance of the interaction, compound effects are assessed either at each time
point when the interaction is significant, or on results pooled across the entire time span
when the interaction is not significant. This approach allows researchers to detect the start
and end of compound-related effects.

The assessment of compound-related effects for repeated measures analysis of variance is
carried out in the same manner as for single-time measurements. The additional dimension
of time requires more detailed specifications for the comparisons of treatment groups at
selected time points. The basic concept of evaluating a monotonic dose-response
relationship using the sequential trend test by Tukey, Ciminera and Heyse (1985) and
supplementing it with a pairwise to control test for a nonmonotonic dose-response
relationship remains the overall strategy.

To test for a monotonic dose-response relationship in treatment, one first needs to
evaluate the interaction between time and treatment by performing the following three
interaction tests:

• Test 1 (linear trend in treatment by time at the 0.01 significance level). This test
evaluates the similarity of the monotonic dose-response relationship across time.
Consider a slope for each dose-response relationship being evaluated. The test checks for
equality of these slopes at all time points.

• Test 2 (linear trend in treatment by linear trend in time at the 0.05 level). This test
checks if the slopes defined above change consistently across time, e.g., if they continue
to rise or continue to drop.

• Test 3 (linear trend in treatment by quadratic trend in time at the 0.05 level). This test
checks if the slopes change in a quadratic fashion, i.e., rising or dropping in one
direction to a point and then changing directions for the rest of the time span.

Tests 2 and 3 help researchers understand the treatment related dose-response effects
within a time span. The interaction between the linear trend in treatment and time is a
more general catch-all test to capture those scenarios when the slopes of the monotonic
dose-response vary significantly across time and the profile of the slopes may be more
complicated than linear or quadratic.

Following the strategy for handling monotonic and nonmonotonic treatment effects at a
single time point, Test 1 is carried out at the 0.01 level and Tests 2 and 3 are carried out at
the 0.05 level. If any of the three interaction tests is statistically significant at the
respective significance level, contrasts need to be specified to examine the treatment effects
either on the results pooled across time, or at each time point in addition.

In order to evaluate the monotonic dose-response relationship in treatment and the
treatment by time interaction terms, several ESTIMATE and CONTRAST statements
need to be specified. The %REPMEAS49 macro provided on the book’s companion Web
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site is an example of proper ESTIMATE and CONTRAST parameters in a study design of
four groups with nine time points post dosing. The doses are measured on an ordinal scale.

If no monotonic dose-response relationship is detected in treatment and a lower dose
effect in the absence of a high dose effect may be meaningful, one can evaluate a
nonmonotonic dose-response relationship. In the one-factor design, this is accomplished by
conducting an F -test at a lower significance level, 0.01, and carrying out Dunnett’s t-test
at the 0.05 level only after the F -test is shown to be significant.

In the repeated measures analysis based on PROC MIXED, Dunnett’s t-test would
compare all combinations of treatment and time back to the first time point of the control
group. This is not the same as comparing the treated group means back to the control at
each time point. Therefore, Dunnett’s t-test is replaced with the Bonferroni-adjusted t-test
at the 0.05 level. The Bonferroni-adjusted t-test is preceded by two F -tests carried out at
the 0.01 level for (1) the treatment by time interaction and (2) the treatment main effect:

• If the treatment by time interaction is significant, the Bonferroni-adjusted t-test will be
applied to the treatment means for each time point.

• If the treatment main effect alone is significant, the Bonferroni-adjusted t-test will be
applied only to the treatment means pooled across all time points.

• If neither is significant, no further testing is performed.

Note that the Bonferroni-adjusted t-test can be carried out using the %BONF ADJ
macro given on the book’s companion Web site.

SAS Module for the Evaluation of Monotonic and Nonmonotonic Dose-Response
Relationships

A comprehensive and flexible SAS module was developed by the authors to carry out the
statistical analysis for the evaluation of monotonic and nonmonotonic dose-response
relationships in a repeated measures ANOVA framework. In this macro-parameter-driven
module, users can specify the names of the analysis variables and covariates (if any), levels
of time factor, the covariance structure, denominator degrees of freedom method (DDFM),
and an option of yes/no for inference tests. As an illustration, SAS code provided on the
book’s companion Web site uses the macro %PRF1FRM to analyze the INDDATA data
set. Results from the analysis of the INDDATA data set using the module are given in
Tables 5.4 and 5.5.

5.6 Summary
The growing complexity of guideline studies, and the increasing number of measurements
required therein, present major challenges to nonclinical scientists and statisticians. Central
to defining hazards and subsequently assessing risk is a clear understanding of the study
design and data characteristics. This chapter briefly defines statistical aspects of toxicology
studies with examples implemented using SAS. We have described randomization schemes
for two commonly used designs in toxicology, namely, the parallel design and Latin square
design. We have presented the statistical power evaluation of the heart-rate corrected QT
intervals from a large animal toxicology study. We have also discussed the statistical
analysis of treatment-related effects on body weights from general toxicology studies. From
creating randomization schemes, calculating the power of a test, performing statistical
analysis and finally to reporting results in nicely formatted tables, SAS has been an
indispensable tool for nonclinical statisticians in the pharmaceutical industry.
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Table 5.4 Summary Table for Body Weight Data Using a Repeated Measures Analysis of Variance, Days 6–48

Repeated Measures ANOVA : Compound - TEST STUDY Study - int parms BW test
Analysis Variable : Interval BW (g)

Baseline (Day -1) was used as covariate
GENDER = Female

Day
Group Statistics Baseline Overall Day 6 Day 13 Day 20 Day 27 Day 34 34–48

1 Mean 100.39 159.22 119.51 130.98 145.51 153.62 160.55 168.32
SD 4.34 NA 5.23 5.22 7.55 8.11 7.41 8.09
N 15 15 15 15 15 15 15 15
LSM NA 159.27 119.56 131.03 145.56 153.67 160.60 168.36
LSM s.e. NA 1.42 1.66 1.66 1.66 1.66 1.66 1.66

2 Mean 100.25 162.23 118.12 131.64 147.95 156.39 162.15 170.54
SD 4.36 NA 5.32 6.00 5.94 7.42 7.40 7.67
N 15 15 15 15 15 15 15 15
Mean: % Chg from Cntrl 0 2 -1 1 2 2 1 1
LSM NA 162.41 118.30 131.82 148.13 156.57 162.33 170.72
LSM s.e. NA 1.42 1.66 1.66 1.66 1.66 1.66 1.66
Trend p-val# NT 0.124 NT NT NT NT 0.462 0.317

3 Mean 100.49 152.19 117.95 129.25 142.09 151.23 155.19 160.28
SD 4.60 NA 5.27 5.03 5.79 5.92 7.03 7.21
N 15 15 15 15 15 15 15 15
Mean: % Chg from Cntrl 0 -4 -1 -1 -2 -2 -3 -5
LSM NA 152.14 117.90 129.20 142.03 151.17 155.13 160.22
LSM s.e. NA 1.42 1.66 1.66 1.66 1.66 1.66 1.66
Trend p-val# NT 0.001* NT NT 0.135 NT 0.022* 0.001*

4 Mean 100.61 154.34 117.62 129.28 142.68 151.04 155.15 161.36
SD 4.27 NA 5.88 6.01 7.24 7.75 7.84 7.20
N 15 15 15 15 15 15 15 15
Mean: % Chg from Cntrl 0 -3 -2 -1 -2 -2 -3 -4
LSM NA 154.17 117.45 129.11 142.51 150.87 154.97 161.18
LSM s.e. NA 1.42 1.66 1.66 1.66 1.66 1.66 1.66
Trend p-val# NT <.001* 0.364 0.260 0.042* 0.065 0.002* <.001*

ALL Trt F-test p-val++ <.001*

INTN Trt*Time p-val++ <.001*
LinTrt*Time p-val++ <.001*
LinTrt*LinTime p-val+ <.001*
LinTrt*QdrTime p-val+ 0.698

# : Level of significance tested = .05; Two-sided test. NT : Not tested.
++ : Level of significance tested = .01. NA : Not applicable.
+ : Level of significance tested = .05. KENWARDROGER was used for the DDFM.
* : Statistically significant. CS covariance structure over time was selected for the model.
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Table 5.5 Summary Table for Body Weight Data Using a Repeated Measures Analysis of Variance, Days
48–90

Repeated Measures ANOVA : Compound - TEST STUDY Study - int parms BW test
Analysis Variable : Interval BW (g)

Baseline (Day -1) was used as covariate
GENDER = Female

Day Day Day
Group Statistics 48–62 62–76 76–90

1 Mean 178.38 185.52 190.61
SD 9.99 11.50 12.82
N 15 15 15
LSM 178.43 185.56 190.67
LSM s.e. 1.66 1.66 1.66

2 Mean 182.91 192.63 197.70
SD 8.72 9.37 9.26
N 15 15 15
Mean: % Chg from Cntrl 3 4 4
LSM 183.09 192.82 197.88
LSM s.e. 1.66 1.66 1.66
Trend p-val# 0.049* 0.003* 0.003*

3 Mean 166.55 171.59 175.60
SD 8.08 8.86 8.87
N 15 15 15
Mean: % Chg from Cntrl -7 -8 -8
LSM 166.49 171.54 175.54
LSM s.e. 1.66 1.66 1.66
Trend p-val# <.001* <.001* <.001*

4 Mean 170.20 178.28 183.45
SD 7.21 7.98 8.06
N 15 15 15
Mean: % Chg from Cntrl -5 -4 -4
LSM 170.03 178.11 183.27
LSM s.e. 1.66 1.66 1.66
Trend p-val# <.001* <.001* <.001*

ALL Trt F-test p-val++

INTN Trt*Time p-val++
LinTrt*Time p-val++
LinTrt*LinTime p-val+
LinTrt*QdrTime p-val+

# : Level of significance tested = .05; Two-sided test. NT : Not tested.
++ : Level of significance tested = .01. NA : Not applicable.
+ : Level of significance tested = .05. KENWARDROGER was used for the DDFM.
* : Statistically significant. CS covariance structure over time was selected for the model.
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Nonparametric, or distribution-free, statistical methods are very useful in the setting of
pharmaceutical research. These methods afford data analysts the ability to relax some of
the assumptions typically made by their Gaussian (normality-based) analogues. In some
settings (e.g., drug discovery investigations), these assumptions may not be verifiable due
to small sample sizes. In others, where larger sample sizes are employed (e.g., clinical trial
settings), the assumption of a Gaussian (normal) distribution is not met because of the
presence of heavy-tails in measurement response or a large degree of skewness. This chapter
covers two settings found commonly in pharmaceutical research (two-sample setting and
one-way layout) and discusses sample size determination in a nonparametric sense. The
introduced statistical methods are illustrated using examples from drug discovery studies
and clinical trials.

6.1 Introduction
Why are nonparametric statistical methods important to pharmaceutical research? To
really address this question, we first must begin by looking at the nature of pharmaceutical
research. The goal of pharmaceutical research is to discover and develop new medicines
that are able to cure or moderate various disease symptoms or conditions. The disease
response (i.e., physiological trauma) can vary greatly from individual to individual because
of a complex inherent genetic variability. The corresponding statistical phenomenon
associated with this genetic variation to disease response is that measurements collected on
such a cohort can be skewed by the extreme response of a small portion of the individuals
under consideration.

Consider, as an example, the search for a new anti-inflammatory agent. Inflammatory
response (e.g., swelling) can vary greatly in untreated subjects. Some individuals can have
a very extreme response to a biological insult that produces an inflammatory response,
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causing the distribution of those responses to be very “heavy” or “long-tailed” in the upper
direction (e.g., a great deal of swelling). The common summary statistic for continuous
responses in such a setting, the mean, is greatly influenced by the presence of a small
number of high responses and “over-represents” the location of the untreated subjects’
distribution (we will see that a similar phenomenon can also occur in the study of novel
antibacterial drugs).

A similar phenomenon can occur, but this time in treated subjects, in the study of the
toxicology of new agents. The genetic variability of individuals can vary greatly as the
body responds to higher and higher levels of a compound. Some subjects in a high dose
group of a toxicology study may exhibit very high or very low responses that skew the
distribution. In both cases (the study of efficacy and toxicology), it becomes apparent that
traditional Gaussian (normal) statistical methods may fail because of the required
assumption of symmetry. Nonparametric, or distribution-free, statistical methods liberate
us from the need to assume symmetry in response. We no longer impose an assumption on
our inference that may not be verifiable (because of small sample sizes) or observable.

This chapter is an introduction to popular nonparametric statistical methods in the
analysis of studies in the pharmaceutical industry. It provides a review of some new
statistical methods for inference and an introduction to some fairly infrequently used
techniques that have existed “below the radar” for several years.

Section 6.2 will be devoted to the two-sample setting, exploring both the equal and
unequal dispersion cases. Section 6.3 will discuss aspects of the one-way layout and
associated multiple comparison procedures. Section 6.4 will introduce one approach to
sample size determination in a “nonparametric” sense, using data from pilot studies. Each
section also contains a mixture of SAS/STAT procedures and some original macros to
perform elementary nonparametric data analyses.

Throughout this chapter, the discussion of topics will be motivated by providing some
real or simulated examples of data from studies in medical research. In either situation, the
purpose of the example is not to make a medical claim (efficacy or safety of an anonymous
compound) but to illustrate a feature of data critical to the outcome of the statistical
inference.

To save space, some SAS code has been shortened and some output is not shown. The
complete SAS code and data sets used in this book are available on the book’s companion
Web site at http://support.sas.com/publishing/bbu/companion site/60622.html.

6.2 Two Independent Samples Setting
An experiment involving two independent groups is one of the most elementary types of
investigations in scientific research, yet is no less valuable than many other more
complicated multifactor or multilevel experiments. Typically, subjects are randomly
assigned to one of two groups, a treatment is applied, and a measurement is collected on all
subjects in both groups. It is then usually the desire of the investigators to ascertain
whether sufficient evidence exists to declare the two groups to be different. Although many
are familiar enough with statistics to perform two sample comparisons, often, key
assumptions are swept under the rug, as it were, and as a result, errors in inference
sometimes occur.

This section will begin with a review of the assumptions necessary to perform a
two-sample comparison and then discuss a common means to compare the location
parameters of two groups (Section 6.2.2). Section 6.2.3 will discuss one possible solution for
the problem of unequal spread (heteroscedasticity) between two groups. One important
false notion about the rank transform and its effect on groups with unequal dispersion will
also be discussed. This section will include examples of data from two clinical trials.
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6.2.1 A Review of the Two-Sample Setting
We will begin this section with a slight bit of mathematical formality. Suppose that we have
two random samples, denoted X1, . . . , Xn1 and Y1, . . . , Yn2 . We assume that the X’s and Y ’s
come from a distribution, say, F . Typically, the two-sample problem is characterized by a
desire to perform an inference about a shift in location between the distributions of the two
samples. Suppose FX = F (μ) is the distribution of the X’s (with location parameter μ) and
FY = F (μ + δ) is the distribution of the Y ’s, shifted by δ. What can be said about a
measure δ, where FX(μ) = FY (μ + δ)? Is δ “reasonably close” to zero or not? If the X’s
follow a Gaussian (normal) distribution, say, N(μ1, σ

2), and the Y ’s are distributed from
another Gaussian distribution, say, N(μ2, σ

2), we could think of the problem as considering
whether μ1 = μ2 + δ. In this classic “normal” case, it is very important to note that we
assume that the variance of the two Gaussian distributions is “reasonably” the same (often
referred to as a common σ2). If latter is not true, we are working under the conditions of a
famous setting in statistics, the Behrens-Fisher problem, and we need to make some
changes to our inferential procedures. In either case, some form of a Student’s t-statistic
may be used to compare the locations (means) of the two distributions.

Do the measurements we collect come from a Gaussian distribution? In drug discovery
settings in the pharmaceutical industry, sample sizes in some investigations can be very
small (total sample size for a study less than 12) and, thus, it might be very difficult to
establish the form of a measurement’s distribution. Moreover, as little is known in the
discovery stages of research about the impact of a compound on a complicated mammalian
physiology, a seemingly outlying or extreme value may in fact be part of the tail of a highly
skewed distribution. With small sample sizes and limited background information, it really
is anyone’s best guess as to the parametric form of a measurement’s distribution.

What if the distributions are not Gaussian? The standard Student’s t-test will perform
at the designated level of statistical significance. In most cases, departures from a Gaussian
distribution do not greatly affect the operating characteristics of inferential procedures if
the two distributions have mild skewness or kurtosis. However, moderate to high levels of
skewness can influence the power of a comparison of two location parameters (Bickel and
Docksum, 1977) and, thus, influence our ability to identify potentially efficacious or toxic
compounds.

Shortly, we will look at an example of a two-sample setting where the data are
sufficiently skewed to warrant the introduction of a distribution-free test that serves as a
competitor to the standard Student’s two-sample t-test. First, however, it is necessary to
describe a setting where such data could be found: asthma treatment research.

EXAMPLE: Asthma Clinical Trial
Asthma is a disease characterized by an obstruction of airflow in the lungs, and thus
referred to as an obstructive ventilatory defect (National Asthma Council Australia, 2002).
One of the chief measurements used to characterize the degree of disease is the Forced
Expiratory Volume in 1 second, or FEV1. A patient will exhale into a device (a spirometer)
that will measure his or her volume of expired air.

Physicians working on developing new drugs for treatment of asthma are interested in a
measure that characterizes the degree of reversibility of the airflow obstruction. Thus, a
patient’s baseline FEV1 will be measured before treatment (at baseline). Typically, 10-15
minutes after the administration of a treatment (e.g., a beta2 agonist bronchodilator),
FEV1 will be measured a second time. The percent improvement in FEV1 from baseline is
used to measure the effectiveness of a new drug:

Percent improvement =
Post-treatment FEV1 − Baseline FEV1

Baseline FEV1
100%.
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A medically important improvement is typically at least 12%; however, not all
researchers in the field accept this level.

Consider a simple trial to establish the efficacy of a new treatment for asthma. Seven
hundred patients are randomized to one of two groups. Patients randomized to the first
group had baseline FEV1 measurements collected, then received a placebo treatment and,
at 10 minutes post-treatment, had a second FEV1 measurement taken. The procedure was
similar for the second group of patients, except that after measurement at baseline, they
received a novel treatment. The percent changes in FEV1 collected in this study are
included in the SPIRO data set that can be found on the book’s companion Web site.
Table 6.1 provides a summary of the results in the two treatment groups and Figure 6.1
displays a box plot summary of percent changes in FEV1.

Table 6.1 Summary of Percent Changes in FEV1 in the Asthma Clinical Trial

Group Sample size Mean Standard deviation Median Interquartile range

Placebo 347 9.58 30.89 14.00 37.55
Treated 343 13.75 20.08 14.14 29.16

Figure 6.1 Results of the asthma clinical trial
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The box plots and summary statistics provide some interesting insight into the results of
the study. First, it appears that for a small number of patients (10 total) a full percent
change score was unavailable. Also, it appears that the placebo group included some
patients whose results were dramatically worse between the initial baseline FEV1 and the
later post-treatment measurement (note the large number of outliers represented by dots
outside the fence in the box plot). These results produce a long downward tail in the
distribution of change from baseline values and contribute to skewing of the distribution.
This also can be observed by the difference of 4 percentage points between the mean and
median for this group. The level of dispersion, or spread, of the two groups is not identical;
however, it is not greatly different. How do we compare the location parameters of two
distributions in the presence of equal, or similar, dispersion?
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6.2.2 Comparing the Location of Two Independent Samples I:
Similar Dispersion

Returning to the notation introduced previously in Section 6.2.1:

• Group 1: X1, . . . , Xn1 with Xi ∼ F (μ), i = 1, . . . , n1.
• Group 2: Y1, . . . , Yn2 with Yj ∼ F (μ + δ), j = 1, . . . , n2.

Here F (λ) is a continuous distribution with location parameter, λ.

Wilcoxon Rank Sum Test

The inference of interest is H0 : δ = 0 versus HA : δ > 0. This null hypothesis can be tested
using the Wilcoxon Rank Sum test (Wilcoxon, 1945). To carry out this test, we begin by
performing a joint ranking of the X’s and Y ’s from the smallest value to the largest. If two
or more values are tied, their ranks are replaced by the average of the tied ranks. The
Wilcoxon, W , is simply the sum of the corresponding ranks for the Y ’s, i.e., W =

∑n2
j=1 Rj ,

where Rj is the rank of Yj in the combined sample. We reject H0 : δ = 0 at an α level if
W ≥ cα, for a cutoff value, cα, that corresponds to the null distribution of W .

If the minimum of n1 and n2 is sufficiently large, an approximate procedure may be
employed. The Wilcoxon Rank Sum statistic specified above requires some modifications so
that the Central Limit Theorem will hold and the statistic will be asymptotically normal:

WL =
(

W − n1(n2 + n1 + 1)
2

)
/
√

Var(WT ).

What is the form of the variance of the W statistics for tied observations, i.e., Var(WT )?
Suppose that for all n1 + n2 observations, tied groups of size tv (1, 2, . . . , v, . . . , ξ) exist. The
variance in the denominator of the statistic is as follows (Hollander and Wolfe, 1999):

Var(WT ) =
n1n2

12

(
n1 + n2 + 1 −

∑ξ
v=1(tv − 1)tv(tv + 1)

(n1 + n2)(n1 + n2 − 1)

)
.

The large sample version of the one-sided hypothesis test is then: Reject H0 : δ = 0 at an α
level if WL ≥ zα, where zα is the 100(1 − α) quantile from a standard normal distribution.

Before we embark on a discussion of the lower-tailed and two-sided Wilcoxon Rank Sum
tests, let’s return to the asthma clinical trial example. Program 6.1 uses the NPAR1WAY
procedure to perform the Wilcoxon Rank Sum test using the SPIRO data set. The
Wilcoxon Rank Sum test is requested by the WILCOXON option. PROC NPAR1WAY
automatically uses tied ranks and performs the appropriate adjustment to the test statistic
based upon the large sample form of the statistic. The ODS statement is included to select
the relevant portion of the procedure’s output. The CLASS statement identifies the
classification or grouping variable. The VAR statement identifies the response variable
(percent change in FEV1).

Program 6.1 Wilcoxon Rank Sum test in the asthma trial example

proc npar1way data=spiro wilcoxon;
ods select WilcoxonTest;
class group;
var fevpc;
run;
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Output from Program 6.1

Wilcoxon Two-Sample Test

Statistic 120620.0000

Normal Approximation
Z 0.8071
One-Sided Pr > Z 0.2098
Two-Sided Pr > |Z| 0.4196

t Approximation
One-Sided Pr > Z 0.2099
Two-Sided Pr > |Z| 0.4199

Z includes a continuity correction of 0.5.

We conclude from Output 6.1 that a statistically significant improvement from baseline
FEV1 did not exist at the 0.05 level of statistical significance (one-tailed p-value based on
the normal approximation is 0.2098).

Student’s Two-Sample t-Test

What about other methods of data analysis? Commonly, in the face of skewed data,
analysts will use some form of transformation. A commonly used transformation is the
natural logarithm transformation applied to each of the responses. In the example
illustrated previously, a log or power transformation will not work, as negative values exist
in the data. Suppose we chose to ignore the long tail of the placebo group’s distribution and
performed a standard Student’s two-sample t-test (Student, 1908). Program 6.2 performs
Student’s two-sample t-test using PROC TTEST. The code to perform a Student’s
two-sample t-test is very similar to the PROC NPAR1WAY code. As in Program 6.1, the
ODS statement is included to select the relevant portion of the procedure’s output.

Program 6.2 Student’s two-sample t-test in the asthma trial example

proc ttest data=spiro;
ods select ttests;
class group;
var fevpc;
run;

Output from Program 6.2

T-Tests

Variable Method Variances DF t Value Pr > |t|

fevpc Pooled Equal 688 -2.10 0.0363
fevpc Satterthwaite Unequal 595 -2.10 0.0360

If we select the two-tailed p-value from Output 6.2 (assuming unequal variances in the
two groups) and adjust it so that it reflects a one-tailed t-test in (p = 0.036/2 = 0.018), we
will infer that the mean FEV1 percent change score was statistically significantly increased
by the new treatment. The long tail of extreme low responses in the control group
influenced this conclusion. The extreme negative FEV1 percent change scores did not
adversely affect the Wilcoxon Rank Sum test.
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Lower- and Two-Tailed Versions of the Wilcoxon Rank Sum Test
We will now move on to complete this section with a brief discussion of the lower-tailed
and two-tailed versions of the Wilcoxon Rank Sum test. If the inference of interest is
H0 : δ = 0 versus HA : δ < 0, we will reject the null hypothesis at level α if

W ≤ n1(n2 + n1 + 1) − cα,

where cα is the same cutoff mentioned in the first part of this section for the upper-tailed
test. Similarly, for the two-tailed test, if the testing problem is H0 : δ = 0 versus HA : δ �= 0,
the null hypothesis is rejected if

W ≤ n1(n2 + n1 + 1) − cα/2 or W ≥ cα/2.

For the large-sample approximate procedures, we will reject the null hypothesis at level α if
WL ≤ zα (upper-tailed test) or |WL| ≥ zα/2 (two-tailed test), where WL is the large-sample
Wilcoxon statistic (Hollander and Wolfe, 1999).

6.2.3 Comparing the Location of Two Independent Samples II:
Comparisons in the Presence of Unequal Dispersion

EXAMPLE: Antibacterial Clinical Trial
Let’s begin our discussion by examining a very simple clinical trial design from clinical
antibacterial research. Bacteria-resistant infections are becoming a serious public health
threat in many parts of the world (World Health Organization, 2002). Consider an agent
that is believed to show some effect against bacteria in an infection that is now thought to
be resistant to most common antibacterial agents. Infected patients are randomized to one
of two groups: a placebo group or a new treatment group. Originally, 400 subjects were
randomized to one of the two arms of the study. Forty-eight hours after receiving treatment,
5–10 milliliters of blood were drawn aseptically from each subject to determine his or her
blood bacterial count (BBC) in colony-forming units/ml of blood (CFU/ml). Due to some
clinical complications during the study, the resultant sample sizes were 184 and 109 (new
therapy and placebo, respectively). The blood bacterial count data collected in the study
are included in the BBC data set that can be found on the book’s companion Web site.

Table 6.2 Summary of Blood Bacterial Count Data in the Antibacterial Clinical Trial

Group Sample size Mean Standard deviation Median Interquartile range

Placebo 184 60.5 92.8 8.0 88.0
Treated 109 19.5 38.4 8.0 12.0

Table 6.2 and Figure 6.2 provide a summary of the blood bacterial count data in the
antibacterial clinical trial. A first inspection of the box plots in Figure 6.2 suggests some
rather peculiar behavior in the placebo subjects: the distribution of this group appears to
have a very long and significant tail upwards away from zero. Moreover, the data are quite
skewed (as evidenced by the difference between the mean and median in the summary
statistics). Note that despite the rather large difference in the two means, the medians are
the same. A final feature worth examining is the seemingly large difference in dispersion
between the two groups.

A rather näıve way to approach a comparison of the two location parameters would
begin with a simple application of a Student’s two-sample t-test based on the TTEST
procedure (Program 6.3).
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Figure 6.2 Results of the antibacterial clinical trial
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Program 6.3 Student’s two-sample t-test in the antibacterial trial example

proc ttest data=bbc;
ods select ttests;
class group;
var bbc;
run;

Output from Program 6.3

T-Tests

Variable Method Variances DF t Value Pr > |t|

bbc Pooled Equal 291 5.28 <.0001
bbc Satterthwaite Unequal 130 4.40 <.0001

Output 6.3 shows that the two- and one-tailed p-values (assuming unequal variances)
are highly significant (p < 0.0001). It will be unwise to be very happy at this statistically
significant result (we have evidence that a statistically significant decrease in the treatment
mean exists) and more prudent to reflect on the apparent lack of symmetry in the data.
Given the observed asymmetry, one can decide that perhaps an independent two-sample
nonparametric test might be more appropriate in this setting. Program 6.4 performs the
Wilcoxon Rank Sum test on the BBC data set.

Program 6.4 Wilcoxon Rank Sum test in the antibacterial trial example

proc npar1way data=bbc wilcoxon;
ods select WilcoxonTest;
class group;
var bbc;
run;
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Output from Program 6.4

Wilcoxon Two-Sample Test

Statistic 17223.0000

Normal Approximation
Z 1.7149
One-Sided Pr > Z 0.0432
Two-Sided Pr > |Z| 0.0864

t Approximation
One-Sided Pr > Z 0.0437
Two-Sided Pr > |Z| 0.0874

Z includes a continuity correction of 0.5.

The one-tailed p-value (based on the normal approximation) displayed in Output 6.4 is
significant (p = 0.0432). Once again, we appear to have a statistically significant difference
(this time, it is a difference between the two medians); however, this conclusion appears to
be at odds with the descriptive statistics in Table 6.2 which indicate that the two groups
have a median of 8.0.

The problem with the second analysis, although it accounts for a lack of symmetry in
the two distributions, is that it does not account for a difference in dispersion or scale. One
of the chief assumptions of the Wilcoxon Rank Sum test is that the two samples have the
same level of dispersion. This feature of our study could be the cause of the seemingly
strange statistical results. It appears that a difference exists in the dispersion of the two
distributions, yet does a more objective analytical means exist to substantiate this belief?

Comparison of Two Distributions’ Dispersion
One means to compare the dispersion or spread of two distributions, assuming that the
medians are identical, is to use the Ansari-Bradley test (Ansari and Bradley, 1960).
Inference about the equality of two distributions’ variation is based upon the ratio of the
two distributions’ scale parameters. If X comes from a distribution F (μ, ϕ1), with location
parameter μ and scale parameter ϕ1, and Y comes from a distribution F (μ, ϕ2), with
location parameter μ and scale parameter ϕ2, we are interested in φ = ϕ1/ϕ2. If φ is close
to unity, evidence does not exist to declare the two distributions to have differing amounts
of variation. Otherwise, one distribution is declared to have greater dispersion than the
other. Note that the Ansari-Bradley test assumes that the two distributions have a
common location parameter, μ.

What if we are working in an area of research where we really do not have knowledge
about the assumption of a common location parameter, μ? A way around making
assumptions in this setting is to transform each of the n1 X values and the n2 Y values by
subtracting each group’s median from the original raw data:

X∗
i = Xi − mX , i = 1, . . . , n1, Y ∗

j = Yj − mY , j = 1, . . . , n2,

where mX and mY are the medians of the X’s and Y ’s, respectively. To construct the
Ansari-Bradley statistic, we begin by jointly ordering the X∗’s and Y ∗’s from smallest to
largest. The ranking procedure is slightly different from most nonparametric techniques.
Table 6.3 shows how the ranking procedure works for the Ansari-Bradley test. The ranks
are assigned from the “outward edges, inward,” for the ordered values. Ties are resolved as
before in the calculation of the Wilcoxon Rank Sum test (see Section 6.2.2).
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Table 6.3 Ranking Procedure for the Calculation of the Ansari-Bradley Statistic

Step Procedure

0 Order X∗
1 , X∗

2 , . . . , X∗
n1

, Y ∗
1 , Y ∗

2 , . . . , Y ∗
n2

from smallest to largest,
label these values Oi for i = 1, . . . , n1 + n2

1 Assign O1 and On1+n2 rank= 1
2 Assign O2 and On1+n2−1 rank= 2
3 Assign O3 and On1+n2−2 rank= 3
. . . . . .

For the n1 +n2 ranked values, the Ansari-Bradley statistic is calculated by adding up the
n2 ranks of the Y ∗ values: S =

∑n2
j=1 Rj , where Rj is the rank of Y ∗

j in the combined sample.
The null hypothesis H0 : φ = 1 is rejected in favor of HA : φ �= 1 at level α = α1 + α2 if

S ≥ cα1 or S ≤ c1−α2 − 1, where cα1 and c1−α2 are quantiles from the null distribution of the
Ansari-Bradley statistic with α1 + α2 = α. If n1 = n2, it is reasonable to pick
α1 = α2 = α/2. A corresponding large sample approximate test exists as well as corrections
to the test statistic for the presence of ties. The interested reader is encouraged to read a
discussion of these items in Hollander and Wolfe (1999, Chapter 5).

Let’s now return to the antibacterial trial example. It would be interesting to test
whether the scale parameters of the two distributions are different. If evidence exists that
the dispersion of the two distributions is different, one of the principal assumptions of the
Wilcoxon Rank Sum test is violated.

The Ansari-Bradley test may be carried out easily with PROC NPAR1WAY
(Program 6.5). The first step in performing the version of the Ansari-Bradley test
described above is to determine each sample’s median (this is accomplished by using the
UNIVARIATE procedure). After that, each value is adjusted by its location (median) and
the Ansari-Bradley statistic is calculated from the adjusted values using PROC
NPAR1WAY with the AB option.

Program 6.5 Ansari-Bradley test in the antibacterial trial example

proc univariate data=bbc;
class group;
var bbc;
output out=medianbbc median=median;

proc sort data=bbc;
by group;

proc sort data=medianbbc;
by group;

data adjust;
merge bbc medianbbc;
by group;
bbc_star=bbc-median;

proc npar1way data=adjust ab;
ods select ABAnalysis;
class group;
var bbc_star;
run;
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Output from Program 6.5

Ansari-Bradley One-Way Analysis

Chi-Square 9.8686
DF 1
Pr > Chi-Square 0.0017

Output 6.5 lists the Ansari-Bradley test statistic (S = 9.8686) and associated p-value
based on a normal approximation (p = 0.0017). Note that the sample size is sufficiently
large to warrant the use of the large sample approximate test. At the 0.05 level of
statistical significance, we can declare that a statistically significant difference exists
between the two groups with respect to the scale parameter or, equivalently, dispersion of
the blood bacterial count data.

Fligner-Policello Approach to the Behrens-Fisher Problem
It is clear from Output 6.5 that one of the chief assumptions of the Wilcoxon Rank Sum
test is violated because the two distributions have differing amounts of variation. Does a
statistical inferential procedure exist that will compare two group medians in the face of
unequal spread?

Fligner and Policello (Fligner and Policello, 1981) suggested the following test to
compare two location parameters from distributions with differing amounts of variation.
The statistic is based upon a quantity called a placement. A placement is the number of
values in one sample strictly less than a given value of a second sample. Consider samples
X1, . . . , Xn1 and Y1, . . . , Yn2 . For a value Xi, i = 1, . . . , n1, its corresponding placement, Pi, is
the number of values from Y1, . . . , Yn2 less than Xi. Similarly, for a value Yj , j = 1, . . . , n2,
its placement, Qj , is the number of values from the first sample less than Yj . The next
steps involve calculating quantities similar to those required for a standard Student’s
two-sample t-test. To perform the hypothesis test

H0 : δ = 0 when ϕ1 �= ϕ2 versus HA : δ > 0 when ϕ1 �= ϕ2,

we need to compute the average placements, P̄ = n−1
1

∑n1
i=1 Pi and Q̄ = n−1

2
∑n2

j=1 Qj , as well
as the variances:

V1 =
n1∑
i=1

(Pi − P̄ )2, V2 =
n2∑

j=1

(Qj − Q̄)2.

The Fligner-Policello test statistic is of the form:

F =
n1P̄ − n2Q̄

2
√

V1 + V2 + P̄ Q̄
.

We reject H0 in favor of HA at level α if F ≥ cα, where cα is the cutoff from the null
distribution of the Fligner-Policello statistic. By the Central Limit Theorem, F ∼ N(0, 1),
cα may be conveniently replaced with the quantile from a standard normal distribution, zα,
when n1 and n2 are large. This gives us the large-sample versions of the lower and
two-tailed tests, respectively:

• Reject H0 : δ = 0 (when ϕ1 �= ϕ2) in favor of HA : δ < 0 (when ϕ1 �= ϕ2) if F ≤ −zα.
• Reject H0 : δ = 0 (when ϕ1 �= ϕ2) in favor of HA : δ �= 0 (when ϕ1 �= ϕ2) if |F | ≥ zα/2.

If ties exist in the data, one needs to adjust the Fligner-Policello statistic defined above.
The adjustment occurs at the level of the placements. When calculating one set of the
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placements, for example, to compute Pi, we count the number of the Y ’s less than Xi and
add half of the values equal to Xi. The same is true for the other set of placements. The
balance of the method remains unchanged.

%FPSTATISTIC Macro for Performing the Comparison of Two Location Parameters
in the Absence of Unequal Scale
The %FPSTATISTIC macro, available on the book’s companion Web site, performs the
large sample version of the Fligner-Policello test. To invoke the macro, the user needs to
specify three parameters:

• DATASET is the name of the data set.
• VAR is the name of the response variable.
• GROUPVAR is the name of the grouping (classification) variable for the macro. This

variable must have only two levels.

The macro begins by determining the sample size for each level of the grouping variable.
After the macro determines the two group sample sizes, it begins to calculate the
placements for each group including an adjustment for ties. The algorithm involves a loop
that iteratively compares values and assigns an indicator variable with the values 1 (greater
than response in other group), 0.5 (tied or equal values) or 0 (for less than response in
other group). These indicators are added to form the placements for the first group with n1
observations. The same procedure is followed for the n2 placements of the second group.

The final portion of the macro uses the MEANS procedure to calculate the sum of the
placements, mean placements, and corrected sums of squares for the placements for each
level of the grouping variable. The PROBNORM function is then used to determine the
p-values. The macro outputs three versions of the large sample Fligner-Policello test,
two-sided, upper and lower (the results are saved in the FPSTATISTIC data set).

Program 6.6 calls the %FPSTATISTIC macro to perform a comparison of the blood
bacterial count data in the placebo and treated groups. Note that the location parameters
for the two levels of the classification variable are compared in reverse alphanumeric sort
order. Thus, for the BBC data set, the macro will test whether the location parameter in
the treated group is greater than the location parameter in the placebo group. In the
antibacterial trial example, we are interested in knowing if the treatment lowered the blood
bacterial count. Thus we need to focus on the one-sided, lower-tailed test.

Program 6.6 Fligner-Policello test in the antibacterial trial example

%fpstatistic(dataset=bbc,var=bbc,groupvar=group);
proc print data=fpstatistic noobs label split="*";

format uhat 6.3 p2sided up1sided low1sided 5.3;
var n1 n2 uhat p2sided up1sided low1sided;
run;

Output from Program 6.6

Sample Sample
size size FP Two-sided Upper-tailed Lower-tailed

group 1 group 2 statistic p-value p-value p-value

109 184 -1.615 0.106 0.947 0.053

Output 6.6 shows that the one-sided, lower-tailed p-value is not significant at a 0.05
level (p = 0.053). Thus the Fligner-Policello test fails to reject the null. We conclude that
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there is not enough evidence to declare the blood bacterial counts to be statistically
significantly different between the two treatment groups. The results of this analysis are
much more in agreement with the summary statistics presented earlier in Table 6.2.

Role of Data Transformations

It is very common for data analysts to employ basic transformations on data so that the
transformed data will have desirable properties. Two common means of transforming data
are the use of logarithms and rank-transformations. Logarithmic transformations are not
always useful, as zeros or negative values may exist in data sets. Moreover, applying a
logarithmic transformation to data, followed by performing a two-sample Student’s t-test,
does not always test the desired hypothesis comparing the locations of two samples’
distributions (see Zhou et al., 1997, for a discussion of this practice).

Some folklore has evolved among practitioners of statistical methods in the field with
respect to the rank-transformations. A common misconception is that the rank-transform
eliminates the need to adjust for unequal dispersion, i.e., the rank-transformation corrects
for the problem of unequal variation. As illustrated previously, the results of performing a
rank-transformation and a large-sample approximate Wilcoxon Rank Sum test may
produce a counter-intuitive inference. The author would recommend the application of the
Fligner-Policello method in an analysis of two independent samples where the distributions
are believed to differ in scale.

Although, on the surface, the analysis of the two independent samples seems trivial, the
setting still requires the care necessary for any data analysis. The features of the data must
be understood and matched appropriately to the assumptions of the statistical method(s)
employed. This is a theme that will be reiterated more times throughout this chapter.

Now that we have examined a few aspects of the two independent samples case, it is
time to advance to the setting of k independent samples. The next section will address
several nonparametric approaches to analyzing data in this common experimental setting,
largely emphasizing examples from drug discovery research.

6.2.4 Summary
The two-sample problem is not unlike other problems in statistical inference: careful
examination of the assumptions is required to execute an appropriate analysis.
Nonparametric statistics methods afford techniques for handling the comparison of two
distributions’ locations in both the case of similar dispersion (Wilcoxon Rank Sum test)
and differing dispersion (Fligner-Policello test). In the case of the former, the corresponding
analysis may be carried out with PROC NPAR1WAY. In the latter case, the analysis may
be executed with a SAS macro created by the author (%FPSTATISTIC macro).

6.3 The One-Way Layout
The one-way layout is a commonly used experimental design in biological research. A
recent Web search of the archival scientific literature (Science Direct) covering the domain
of published pharmacological, toxicological, and pharmaceutical science research from 2000
to first quarter 2005 produced 3,671 hits pertaining to the application of a one-way layout
as the means to address a specific scientific hypothesis. The one-way layout is a powerful
means to study basic scientific questions because of its simplicity. Recall that in a one-way
layout, experimental units (e.g., subjects) are randomly assigned to two or more treatment
groups. The treatment groups could consist of two or more distinct treatments or increasing
doses of a single agent (as in the case of later stage drug discovery studies or many standard
toxicology investigations). Each unit receives its treatment and a continuous measurement
is collected. Formally, consider a study (drug discovery experiment or clinical trial) with k
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treatment groups and ni units/subjects in the ith group. Let Xij be the response of the jth
experiment unit (j = 1, . . . , ni) to the ith treatment (i = 1, . . . , k). The total sample size for
the study is N = n1 + . . . + nk. Let τi be the effect of the ith treatment group. Then, we can
express the relationship between the treatment and response with a simple linear model:

Xij = τi + εij . (6.1)

where εij represents the measurement error associated with the jth experimental unit
(subject) assigned to the ith group (or treatment). We will assume that the εij ’s are
independent and identically distributed by virtue of the original random assignment of
units to treatments.

EXAMPLE: Dopamine Experiment
In an effort to make the discussion more concrete, consider the following simple experiment
as an example (Juneau, 2004). Samples of PC12 cells were randomized to one of three
groups. The PC12 cells were cultured in one of three media: the first medium was infected
with a particular strain of bacteria postulated to be associated with the development of
Parkinson’s disease. The second group used a medium cultured with a second strain of
bacteria. The third group of cells was cultured in a normal uninfected medium. All cells
were incubated for 24 hours and harvested to determine the dopamine concentration. Due
to some unanticipated circumstances, some samples were lost during processing and the
resultant sample sizes were unequal at the end of the study. The dopamine concentration
data from this study are included in the DOPAMINE data set provided on the book’s
companion Web site.

From the formal statement above, Xij would represent the dopamine concentration
response of the jth experiment unit (j = 1, . . . , ni) to the ith treatment (i = 1, 2, 3), where
treatment 1 (control group) sample size is n1 = 14, treatment 2 (Strain I) sample size is
n2 = 7, and treatment 3 (Strain II) sample size is n3 = 10.

Typically, researchers will be interested in making decisions about the τi’s: “Does
evidence exist to declare the response of at least one of the treatment groups to be different
from the others?” Mathematically, one could ask: “Is it the case that τ1 = τ2 = . . . = τk or
does evidence exist to declare at least one τi �= τl for i �= l?” For the dopamine experiment
illustrated previously, this question would translate into “How does the presence of one of
the three treatments affect dopamine concentration?” Once again, one could express this
question mathematically: “Is it the case that τ1 = τ2 = τ3 or that at least one difference
exists among all pairs of τ1, τ2, or τ3?”

In some sense, evidence to reject the idea that the treatment effects are all the same is
not very informative. Typically, such conclusions do not establish differences in activity
among several novel agents. Investigators will often be more interested in examining
questions with alternatives designed for the comparison of one or more of the treatment
effects against a designated group (e.g., a control group) or elucidating where treatment
effects exist among the k treatments (e.g., pair-wise comparisons). This section will be
devoted to the examination of various alternative hypotheses that arise in typical
pharmaceutical investigations where the one-way layout is the design of choice.

Section 6.3.1 will address the general alternative hypothesis of unequal treatment effects
associated with the Kruskal-Wallis test. Examples will be demonstrated with PROC
NPAR1WAY. Section 6.3.2 will deal with nonparametric multiple comparison procedures
in the one-way layout when an investigator is interested in comparing all treatment groups
against a single designated (control) group or performing all simultaneous pair-wise
comparisons of treatment effects. Section 6.3.2 will introduce an original SAS macro code
to perform the desired statistical tests.
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6.3.1 Testing a General Alternative for k Groups: The Kruskal-Wallis Test
Table 6.4 and Figure 6.3 summarize the dopamine concentration response data collected in
the dopamine experiment. Notice the slight asymmetry in the distribution patterns of the
control and Strain I-infected samples. The control group has two responses that seem
extreme relative to the rest of the measurements.

Table 6.4 Summary of the Dopamine Concentration Response Data in the Dopamine Experiment

Group Sample size Mean Standard deviation Median Interquartile range

Control 14 100.00 15.14 95.24 13.71
Strain I 7 63.12 28.65 54.29 46.38
Strain II 10 78.04 29.81 72.98 45.12

Figure 6.3 Results of the dopamine experiment
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A standard approach to comparing these three treatments would be to begin with a
classical linear model relating the dopamine response to the treatment:

Xij = μ + τi + ηij ,

where for i = 1 (controls), j = 1, . . . , 14; i = 2 (Strain I), j = 1, . . . , 7; i = 3 (Strain II),
j = 1, . . . , 10, ηij are independent and identically distributed Gaussian errors (N(0, σ2)),
and μ represents the overall population dopamine concentration mean response. This
model could then be fit with the GLM procedure. Let’s examine a plot of the density of the
residuals after fitting the dopamine concentration data with a standard linear model based
upon analysis of variance assumptions.

The two curves superimposed in Figure 6.4 allow us to make an interesting conclusion.
The dashed curve represents a Gaussian (normal) distribution fitted to the residuals. A
solid kernel smooth curve fit to the same residuals suggests that the residuals are
asymmetrical (this is also demonstrated by the separation of the means and medians in
Table 6.4).

It appears by the evidence presented above that the normality assumption of the ηij’s is
in question. The typical parametric model and inferences based upon the analysis of
variance are thus inappropriate for the evaluation of this experiment. A more appropriate
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Figure 6.4 Plot of residuals after fitting a traditional analysis of variance-type model in the dopamine experiment
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analysis would be based upon the model introduced earlier in this section and the
Kruskal-Wallis test (Kruskal and Wallis, 1952).

Consider the model introduced at the beginning of Section 6.3.1 that relates the
response of an experimental unit to the effect of the ith treatment τi. The Kruskal-Wallis
test is used to test the following null hypothesis against a very general alternative:

H0 : τ1 = τ2 = · · · = τk

versus

HA : at least one τi �= τl for1 ≤ i ≤ k, 1 ≤ l ≤ k, i �= l.

In the dopamine study, H0 : τ1 = τ2 = τ3 is tested versus the alternative that states that at
least two out of three τ ’s are different from each other.

The test statistic for the Kruskal-Wallis test is constructed by ranking all N
observations from the smallest value to the largest. Tied values are assigned the average
rank. The mean rank is then calculated for each group. Denote the mean rank for the ith
group by Ri. The Kruskal-Wallis test statistic, K, is then defined by

K =
12T

N(N + 1)

k∑
i=1

ni

(
Ri − N + 1

2

)2

,

where T is a correction factor for tied values. If for all N values, ξ groups of size tv
(1, 2, . . . , v, . . . , ξ) exist, the correction factor T is expressed as (Hollander and Wolfe, 1999)

T = 1 − 1
N3 − N

ξ∑
v=1

(t3v − tv).

H0 is rejected in favor of HA at level α, if K ≥ cα.
The cutoff value for the test, cα, comes in two varieties. The first is the large sample

approximate test, which is based upon a chi-squared cutoff. The degrees of freedom for this
test are k − 1, i.e., χ2

k−1(α). The other type of cutoff for this test is the exact version, based
upon the permutation distribution of the ranks. PROC NPAR1WAY has had the capability
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to perform the exact version of the test since SAS Version 6 via the EXACT statement.
The formulation of the Kruskal-Wallis statistic and test stated above is not truly an exact
α-level test, but only an approximate α-level test. Fortunately, if ties exist in the data,
PROC NPAR1WAY will perform the exact α-level test because it determines the
permutation distribution of the tied ranks when it determines the p-value for the analysis.

Large-Sample Kruskal-Wallis Test
Program 6.7 performs the large-sample Kruskal-Wallis test in the dopamine experiment
using PROC NPAR1WAY. The WILCOXON option is used in the procedure to specify
Wilcoxon-type scores to perform the Kruskal-Wallis test.

Program 6.7 Large-sample Kruskal-Wallis test in the dopamine experiment

proc npar1way data=dopamine wilcoxon;
class group;
var dopamine;
run;

Output from Program 6.7

Kruskal-Wallis Test

Chi-Square 9.0710
DF 2
Pr > Chi-Square 0.0107

Output 6.7 shows that the p-value produced by the large-sample Kruskal-Wallis test is
0.0107 and thus we would reject the null hypothesis of equal dopamine response for all
three groups in favor of the alternative that at least one difference exists among the three
sets of treated samples at α = 0.05.

Exact Kruskal-Wallis Test

If we examine the DOPAMINE data set, we notice that several tied responses exist for the
dopamine response. Tied values are a reality in many real experiments because of
limitations on measurement precision, rounding off of values by scientists, or various other
reasons. Let’s take advantage of the EXACT statement in PROC NPAR1WAY and see if
the results change dramatically (Program 6.8). The program is virtually identical to
Program 6.7, with the exception of the insertion of the EXACT statement with a
WILCOXON option.

Program 6.8 Exact Kruskal-Wallis test in the dopamine experiment

proc npar1way data=dopamine wilcoxon;
class group;
var dopamine;
exact wilcoxon;
run;
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Output from Program 6.8

Kruskal-Wallis Test

Chi-Square 9.0710
DF 2
Asymptotic Pr > Chi-Square 0.0107
Exact Pr >= Chi-Square 0.0074

Output 6.8 lists the exact p-value (p = 0.0074), which is also significant at a 0.05 level.
It is important to mention that running the exact Kruskal-Wallis test is very
resource-intensive. The real time run for this short program and relatively small data set
was about three hours long. From the author’s perspective, the additional resources
required may not justify the implementation of the exact test in this particular setting.
This may not always be the case, however. Let’s consider another experiment.

EXAMPLE: Hyperplastic Alveolar Nodule (HAN) Study
Samples of four types of cell subsets are prepared for a study of the progression of mouse
mammary preneoplastic hyperplastic alveolar nodule (HAN) line C4 to carcinoma. Hoechst
fluorescence is measured as a response for each sample. The data from this study are
included in the HAN data set given on the book’s companion Web site.

Let’s assume that the small sample size for this study is enough to warrant the selection
of a nonparametric statistical method (see Section 6.1). We also assume that the
investigator has a very wide alternative of interest: the investigator is interested in evidence
of any difference in response. Does the choice of an exact test or asymptotic test matter?
Program 6.9 carries out the large-sample and exact Kruskal-Wallis tests in the HAN study.

Program 6.9 Large-sample and exact Kruskal-Wallis tests in the HAN study

proc npar1way data=han wilcoxon;
class celltype;
var fluor;
exact wilcoxon;
run;

Output from Program 6.9

Kruskal-Wallis Test

Chi-Square 6.7315
DF 3
Asymptotic Pr > Chi-Square 0.0810
Exact Pr >= Chi-Square 0.0383

Output 6.9 lists the large-sample and exact p-values produced by the Kruskal-Wallis
tests. It appears that if the investigator were interested in using the traditional 0.05 level of
statistical significance, he or she might be disappointed with the results of the asymptotic
test (p = 0.0810 > 0.05), or elated at the conclusion reached by the exact Kruskal-Wallis
analysis (p = 0.0383 < 0.05). The point of this illustration is that small sample sizes can
influence the results of a testing procedure and should be considered before an analysis
strategy is selected. The next section offers some rules of thumb about group size and
about when the asymptotic procedures typically perform reasonably.
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6.3.2 Nonparametric Multiple Comparison Procedures for Specific Alternatives
A common objective of many pharmaceutical research investigations with a one-way layout
is to compare treatments in a pair-wise fashion. Investigators are typically interested in
comparing all treatment responses against one another or in comparing several agents
against a designated group (e.g., an inactive control group). Both of these settings involve
the simultaneous comparison of several group location parameters (say, means in the
parametric case, medians in the nonparametric). It is also often desirable to preserve the
family-wise error rate in this inference; i.e., the probability of declaring at least one
treatment to be different from another, when in fact, it is not.

If we return to the dopamine experiment first presented in Section 6.3.1, we can see an
example of a discovery biology study where investigators might be interested in performing
all pair-wise comparisons of treatment groups. The investigators would certainly be
interested in comparing the typical response in the Strain I and Strain II infected samples
with that of the untreated media samples (control); however, it might be of scientific
consequence to know if a difference exists between the two sets of infected samples as well.

Dunn’s Procedure for All Pair-Wise Comparisons

If an investigator is interested in comparing the location parameters of k experimental
groups simultaneously and preserving the family-wise error rate, he or she could use an
approach suggested by Dunn (Dunn, 1964) for the linear model introduced previously
(6.1), i.e., conclude that τi �= τl if

|Ri − Rl| > zα/k(k−1)

√
N(N + 1)

12

(
1
ni

+
1
nl

)
,

where Ri is the mean of the joint ranks for the ith group, Rc is the mean of the joint ranks
for the lth group, and ni and nl are sample sizes in the two groups, respectively, N is the
total sample size, k is the total number of groups (in the dopamine experiment, k = 3) and
zα/k(k−1) is the 100α/[k(k − 1)]th upper quantile from a standard Gaussian distribution.

Recall that the joint ranking of a data set is determined by ranking all of the N
observations together from smallest to largest.

Dunn’s procedure offers the following advantages:

• The symmetry assumption, which is often difficult to assess in drug discovery settings
with small sample sizes, may be relaxed or ignored.

• Equal sample sizes are not required.
• Relatively small total sample sizes may be analyzed with this technique, i.e., three

groups with five experimental units/group or more than three groups with four
units/group (see Lehman, 1975).

%DUNN Macro
A simple set of macros can be constructed in SAS to perform Dunn’s procedure for all
pair-wise comparisons. The author composed a simple SAS macro to perform Dunn’s
procedure as part of a presentation for the 2004 PharmaSUG meeting in San Diego
(Juneau, 2004). The %DUNN macro was designed to imitate PROC NPAR1WAY, with
respect to ease of use and input of information, and to produce output quite similar to
SAS’ very popular procedure, GLM, using the MEANS statement and the CLDIFF option.
The macro can be found on the book’s companion Web site.

The %DUNN macro consists of a body of code containing one embedded macro
(%GROUPS). The embedded macro determines the number of groups present and assigns
that value to a macro variable (NGRPS). If a group in the data set does not contain at
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least one response value (i.e., all values are missing), it will not be included in the analysis.
The embedded macro also creates one global macro variable that contains the group labels
(GRPVEC) for the levels of the class variable. The main body of the SAS code determines
summary statistics (e.g., average ranks, sample sizes, etc.). This information is employed to
calculate the pair-wise test statistics. The corresponding cutoff for the test statistic is
calculated with the PROBIT function. Results are then printed out using the PRINT
procedure.

Program 6.10 carries out Dunn’s test in the dopamine experiment by invoking the
%DUNN macro. The first parameter of the macro is the input SAS data set name
(DOPAMINE), the second the classification or grouping variable (GROUP), the third the
name of the response variable in the input data set (DOPAMINE), and the fourth macro
parameter is the overall family-wise error rate (0.05).

Program 6.10 Large-sample and exact Kruskal-Wallis tests in the HAN study

%dunn(dopamine,group,dopamine,0.05);

Output from Program 6.10

Large sample approximation multiple comparison procedure
designed for unbalanced data

3 groups: Control StrainI StrainII (respective sample sizes: 14 7 10)
Alpha = 0.05

Difference
in Cutoff

Comparison Group average at Significance
number comparisons ranks alpha=0.05 difference = **

1 Control-StrainI 11.8571 10.0759 **
2 Control-StrainI 7.6429 9.0121
3 StrainI-StrainI 4.2143 10.7266

Output 6.10 displays the output of the %DUNN macro. The %DUNN macro produces
TITLE statements that state the number of class levels, a list of each of the class levels
with non-missing values, and the corresponding group sample sizes. Moreover, the macro
generates output that contains the relevant test statistic for each comparison (a function of
the average ranks/class level), the corresponding cutoff for the chosen level of family-wise
error, and a symbol indicating whether the results of the statistical inference are
statistically significant. From this analysis, one would conclude that a statistically
significant difference existed between the median dopamine levels in the controls and
samples treated with the first strain of bacteria.

Dwass-Steel-Critchlow-Fligner Procedure for All Pair-Wise Comparisons
The Dwass-Steel-Critchlow-Fligner (DSCF) procedure is another popular form of
simultaneous nonparametric inference in the one-way layout for all pair-wise comparisons
(Hollander and Wolfe, 1999). If a pharmaceutical researcher is interested in comparing the
location parameters of k experimental groups (τ1, . . . , τk) simultaneously, and preserving
the family-wise error rate, he or she could use an approach suggested by Dwass (Dwass,
1960) and Steel (Steel, 1960) for the linear model previously introduced (6.1).

The procedure begins by calculating the k(k − 1)/2 pairs of Wilcoxon Rank Sum
statistics, Wil (Wilcoxon, 1945) for each pair, i and l (1 ≤ i ≤ l ≤ k). The Wilcoxon
statistics should include an adjustment for tied values. Conclude that τi �= τl if |Dil| > qα,
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where

Dil =

√
2

Var(Wil)

(
Wil − min(ni, nl)(ni + nl + 1)

2

)
,

Var(Wil) is the tie-adjusted variance for the Wilcoxon statistic, and qα is the 100αth upper
quantile from the Studentized Range distribution (Harter, 1960).

Suppose that for all ni + nl observations in the comparison, ξ tied groups of size tv
(1, 2, . . . , v, . . . , ξ) exist. The variance in the denominator of the statistic is given by
(Hollander and Wolfe, 1999)

ninl

24

(
ni + nl + 1 −

∑ξ
v=1(tv − 1)tv(tv + 1)

(ni + nl)(ni + nl − 1)

)
.

%DSCF Macro

An analysis using the DSCF method may be conducted using a SAS macro called %DSCF
created by the author for a 2004 PharmaSUG presentation (Juneau, 2004). The call of the
%DSCF macro is as follows:

%dscf(dataset,group,response,alpha);

The first parameter of the macro is the input data set name (DATASET), the second
the classification or grouping variable (GROUP), the third the name of the response
variable in the input data set (RESPONSE), and the fourth macro parameter is the overall
family-wise error rate (ALPHA).

The %DSCF macro consists of a body of code containing one embedded macro
(%GROUPS). The embedded macro determines the number of groups present (NGRPS) as
in the %DUNN macro. If a group in the input data set does not contain at least one
response value, it will be excluded from the analysis. The embedded macro also creates two
global macro variables that contain the group labels (GRPVEC) for the levels of the class
variable and information about the sample size for each group (NVEC). The main body of
the code calculates the necessary summary statistics (e.g., Wilcoxon Rank Sum test
statistics) and the number of ties present in each pair-wise comparison. This information is
then used to calculate the pair-wise test statistics. The cutoff for the test statistic is
calculated with the PROBMC function (using the Studentized Range distribution). As the
macro iterates between all pair-wise comparisons it concatenates successive results in a
data set called STAT. The final results are then printed out with PROC PRINT.

EXAMPLE: Cardiovascular Discovery Study
Subjects were randomized to one of four treatment groups: three active agents and one
vehicle control group. The goal of the experiment was to determine whether the agents
could affect triglyceride level (in mg/dl) relative to the vehicle controls and to determine
whether evidence existed to declare one agent different from another with respect to
triglyceride response. Each subject was treated and, after a fixed post-treatment period,
the blood triglyceride level was measured for each subject.

The data gathered in the study are included in the TRIG data set provided on the
book’s companion Web site. The results of the experiment are displayed in Table 6.5 and
Figure 6.5 with box plots and summary statistics. Note the balanced sample sizes. The
DSCF multiple comparison method works optimally under settings with equal sample sizes
per group.

The triglyceride data can be analyzed using the %DSCF macro designed to perform the
desired simultaneous pair-wise nonparametric comparisons of all treatments (see
Program 6.11).
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Table 6.5 Summary of Triglyceride Data in the Cardiovascular Discovery Study

Group Sample size Mean Standard deviation Median Interquartile range

Vehicle 5 99.8 16.71 105.0 20.00
Treatment A 5 78.2 29.75 71.0 26.00
Treatment B 5 49.0 17.33 42.0 24.00
Treatment C 5 59.0 15.00 62.0 26.00

Figure 6.5 Results of the cardiovascular discovery study
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Program 6.11 Dwass-Steel-Critchlow-Fligner (DSCF) method in the cardiovascular discovery study

%dscf(trig,group,trig,0.05);

Output from Program 6.11

Large sample approximation multiple comparison procedure

or all treatment pairs
based upon pairwise rankings

4 groups: TreatmentA TreatmentB TreatmentC Vehicle (respective sample sizes: 5 5 5 5)

Alpha = 0.05

Test statistic Cutoff

Group Comparison Test absolute at Significant
comparisons number statistic value alpha=0.05 difference = **

TreatmentA - TreatmentB 1 -2.21565 2.21565 3.63316
TreatmentA - TreatmentC 2 -1.62481 1.62481 3.63316
TreatmentA - Vehicle 3 1.92023 1.92023 3.63316
TreatmentB - TreatmentC 4 1.92023 1.92023 3.63316

TreatmentB - Vehicle 5 3.69274 3.69274 3.63316 **
TreatmentC - Vehicle 6 3.69274 3.69274 3.63316 **

The output of the %DSCF macro in Output 6.11 includes TITLE statements that state
the number of class levels, a list of each of the class levels with non-missing values and the
corresponding group sample sizes. The macro also lists the relevant test statistic for each
comparison (a function of the Wilcoxon statistic), the corresponding cutoff for the chosen
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level of family-wise error, and a symbol indicating whether the results of the statistical
inference are statistically significant. We conclude from Output 6.11 that a statistically
significant difference existed between the median triglyceride levels in the controls and
samples treated with Treatments B and C. Statistically significant differences did not exist
amongst the three active agents (Treatments A, B, and C).

Comparison of Dunn and Dwass-Steel-Critchlow-Fligner Methods

Is the DSCF method really necessary, when the multiple comparison procedure suggested
by Dunn is a more general case (unequal sample sizes)? The triglyceride data from the
cardiovascular discovery study used previously as an example for the application of the
DSCF method are analyzed in Program 6.12 with Dunn’s method for all pair-wise
comparisons.

Program 6.12 Dunn method in the cardiovascular discovery study

%dunn(trig,group,trig,0.05);

Output from Program 6.12

Large sample approximation multiple comparison procedure
designed for unbalanced data

4 groups: TreatmentA TreatmentB TreatmentC Vehicle (respective sample sizes: 5 5 5 5)
Alpha = 0.05

Difference
in Cutoff

Comparison Group average at Significance
number comparisons ranks alpha=0.05 difference = **

1 TreatmentA-TreatmentB 6.6 9.87145
2 TreatmentA-TreatmentC 3.6 9.87145
3 TreatmentA-Vehicle 5.0 9.87145
4 TreatmentB-TreatmentC 3.0 9.87145
5 TreatmentB-Vehicle 11.6 9.87145 **
6 TreatmentC-Vehicle 8.6 9.87145

It is instructive to compare Output 6.11 (DSCF method) and Output 6.12 (Dunn
method). Recall that in Output 6.11, Treatment C was also declared to be statistically
significantly different from the vehicle control group for the median triglyceride response. A
comparison of the properties of these two methods may shed some light on the reason for
the differing inferential conclusions. First, the Dunn method uses a Bonferroni-like
correction to the family-wise error rate (Miller, 1981) and might be a bit too conservative.
Second, the Dunn method employs joint ranking, and thus the comparison of two groups is
highly influenced by the behavior of other groups in the experiment as the data are initially
ranked over the entire experiment (Hollander and Wolfe, 1999). The balanced sample sizes
for all groups also suggest that the DSCF method might be the most appropriate technique
to employ for all pair-wise nonparametric comparisons.

Simultaneous Nonparametric Inference in the One-Way Layout for All Group Comparisons
with a Designated Control Group
It is often the case that investigators are interested in comparing the location parameters
of treatments against the location parameter of a designated group. This designated group
could be a control group consisting of the response of subjects or units completely
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untreated by any form of active agent. These are often referred to as untreated control
subjects or units. More commonly, a group of experimental units or subjects treated with
the vehicle, or medium for delivery of the compound, is the designated group of interest.
Such subjects or units are referred to as forming the vehicle control group. A third type of
control group is a set of subjects or units treated with an agent known to provoke a
response that is the same as one desired by proponents of one of the compounds under
examination. Such a collection of subjects or units is called a positive control group.

Other forms of designated control groups exist. The point, however, is that if
pharmaceutical researchers are interested in comparing the location parameters of several
experimental groups (τ1, . . . , τk) to a designated group (τc), simultaneously and preserving
the family-wise error rate, they can use one of two approaches originally suggested by
Dunn (Dunn, 1964) or Miller (Miller, 1966) for the linear model (6.1). These approaches
are described below.

Dunn’s Method for All Group Comparisons to a Designated Control Group
(Unequal Sample Sizes)
Using the notation first introduced in the beginning of Section 6.3, suppose that ni �= nj for
at least one (i, j) pair (1 ≤ i < j ≤ k) of treatments. We could conclude that τi �= τc if

|Ri − Rc| > zα/2(k−1)

√
N(N + 1)

12

(
1
ni

+
1
nc

)
,

where Ri is the mean of the joint ranks for the group i, Rc is the mean of the joint ranks
for the control group c, and ni and nc are sample sizes for group i and the control group, c,
respectively, N is the total sample size, k − 1 is the total number of comparisons desired,
and zα/2(k−1) is the 100α/[2(k − 1)]th upper quantile from a standard Gaussian distribution.

Miller’s Method for All Group Comparisons to a Designated Control Group (Equal Sample
Sizes)
Using the notation introduced above, assume that ni = nj for all (i, j) pairs (1 ≤ i < j ≤ k)
of treatments. Then τi is declared different from τc if

|Ri − Rc| > |Mα,k−1,∞|

√
N(N + 1)

12

(
1
ni

+
1
nc

)
,

where Ri, Rc, ni, nc, N , K are defined as above and |Mα,k−1,∞| is the αth quantile from the
Studentized Maximum Modulus distribution (Pillai and Ramachandran, 1954).

%NPARMCC Macro

All nonparametric pair-wise comparisons to a designated control group in a one-way layout
can be performed with the %NPARMCC macro that can be found on the book’s
companion Web site. The macro consists of a body of code containing one embedded macro
(%GROUPS). The embedded macro determines the number of groups present (NGRPS) as
in the %DUNN and %DSCF macros. If a group in the SAS data set does not contain at
least one response value, it will be excluded from the analysis. The embedded macro also
creates one global macro variable that contains the group labels (GRPVEC) for the levels
of the class variable. The main body of the macro determines the necessary summary
statistics (e.g., average ranks, sample sizes, etc.). This information is then employed to
calculate the pair-wise test statistics. The cutoff for the test statistic is calculated with the
PROBIT function for Dunn’s method and the PROBMC function (with the Studentized
Maximum Modulus distribution) for Miller’s method. The results are then printed out with
PROC PRINT.
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EXAMPLE: Thrombosis Experiment
An experiment was designed to study the effect of increasing the dose of a novel agent on
activated clotting time (ACT). Subjects were randomized to one of four groups: a vehicle
control group, a low dose group, a medium dose group, and a high dose group. About 200
minutes after receiving treatment, the ACT for each subject was measured (in seconds).
The data from this experiment are contained in the THROMB data set (available on the
book’s companion Web site) and its results are shown in Table 6.6 and Figure 6.6 (as
before, with box plots and summary statistics).

Table 6.6 Summary of Activated Clotting Times in the Thrombosis Experiment

Group Sample size Mean Standard deviation Median Interquartile range

Control 5 64.2 8.11 63.0 6.00
Low dose 5 98.4 17.47 106.0 14.00
Middle dose 5 91.8 14.06 98.0 16.00
High dose 5 156.4 9.40 153.0 2.00

Figure 6.6 Results of the thrombosis experiment
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The thrombosis experiment data can be analyzed using the %NPARMCC macro
designed to perform the desired simultaneous pair-wise nonparametric comparisons of all
groups against a designated control group. Program 6.13 applies the %NPARMCC macro
to the THROMB data.

Program 6.13 Dunn’s and Miller’s methods in the thrombosis experiment

%nparmcc(thromb,group,Control,act,0.05);
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Output from Program 6.13

Large sample approximation multiple comparison procedure
for all treatment compared against a control (control group = Control)

4 groups: Control HighDose LowDose MedDose (respective sample sizes: 5 5 5 5)
Alpha = 0.05

Difference Dunn Miller
in cutoff cutoff Significant Significant

Group Comparison average at at difference difference

comparisons number ranks alpha=0.05 alpha=0.05 Dunn’s = *D* Miller’s = *D*

HighDose-Control 1 14.6 8.95745 8.93410 *D* *M*
LowDose-Control 2 7.6 8.95745 8.93410

MedDose-Control 3 6.2 8.95745 8.93410

The output of the %NPARMCC macro displayed in Output 6.13 includes a list of the
class levels with non-missing values, corresponding group sample sizes, and relevant test
statistics for each comparison (the difference in the mean ranks), the corresponding cutoff
for the chosen level of family-wise error, and a symbol indicating whether the results of the
statistical inference are statistically significant by Dunn’s method (*D*) and Miller’s
method (*M*). We conclude from Output 6.13 that a statistically significant difference
existed between the median activated clotting time in the controls and samples treated
with a high dose of the new agent. As the experiment consisted of balanced sample sizes,
the conclusion presented by the Miller approach would be considered the appropriate one
to report.

Comparison of Dunn’s and Miller’s Methods for All Pair-Wise Comparisons Versus a
Designated Control Group
It is interesting to compare the behavior of Dunn’s and Miller’s respective methods using a
data set that is not balanced with respect to sample size. Suppose that we conducted a
similar thrombosis experiment as described previously a second time, yet this time with
unequal sample sizes. The experimental results are slightly different (the control and low
dose groups have different sample sizes than in the original thrombosis experiment). The
results are summarized in Table 6.7 and Figure 6.7. The data from this study are included
in the THROMB2 data set available on the book’s companion Web site.

Table 6.7 Summary of Activated Clotting Times in the Thrombosis Experiment with Unequal Sample Sizes

Group Sample size Mean Standard deviation Median Interquartile range

Control 9 62.2 11.10 63.0 6.00
Low dose 8 100.0 20.87 98.5 26.00
Middle dose 5 96.4 18.37 106.0 24.00
High dose 5 144.4 31.63 153.0 2.00

The data from the thrombosis experiment with unequal sample sizes were once again
analyzed using the %NPARMCC macro (Program 6.14).

Program 6.14 Dunn’s and Miller’s methods in the thrombosis experiment with unequal sample sizes

%nparmcc(thromb2,group,Control,act,0.05);
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Figure 6.7 Results of the thrombosis experiment with unequal sample sizes
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Output from Program 6.14

Large sample approximation multiple comparison procedure
for all treatment compared against a control (control group = Control)

4 groups: Control HighDose LowDose MedDose (respective sample sizes: 9 5 8 5)

Alpha = 0.05

Difference Dunn Miller
in cutoff cutoff Significant Significant

Group Comparison average at at difference difference
comparisons number ranks alpha=0.05 alpha=0.05 Dunn’s = *D* Miller’s = *D*

HighDose-Control 1 17.4667 9.42126 10.5710 *D* *M*
LowDose-Control 2 10.2917 8.20747 9.2091 *D* *M*
MedDose-Control 3 10.1667 9.42126 10.5710 *D*

Output 6.14 displays the cutoffs computed by the %NPARMCC macro in the modified
thrombosis experiment data set. The results of the analysis are quite interesting. Note that
Miller’s method does not declare the median response for the medium dose group to be
statistically significantly different from the control group, while Dunn’s method does
declare this result to be statistically significant. The difference in the inferential conclusions
can be attributed to the fact that Dunn’s method was derived to handle the unequal sample
size setting, whereas the Miller method, using the Studentized Maximum Modulus cutoff,
works optimally under conditions of equal sample size (Hochberg and Tamhane, 1987).

Summarization of the Nonparametric Multiple Comparison Methods
Table 6.8 summarizes the nonparametric methods presented in this section and provides
advice on the method to use given the study design of a particular investigation.
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Table 6.8 A Summary of the Nonparametric Multiple Comparison Methods Discussed in Section 6.4

Desired Study design Nonparametric SAS macro to
comparison feature method perform analysis

All pair-wise Equal group Dwass-Steel- %DSCF
comparison sample sizes Critchlow-Fligner

method
Unequal group Dunn’s method %Dunn
sample sizes

Comparisons
with a designated

control group

Equal group Miller’s %NPARMCC
sample sizes method

Unequal group Dunn’s method %NPARMCC
sample sizes

6.3.3 Summary
The one-way layout is commonly used in scientific investigations in the pharmaceutical
industry. For asymmetrical response data, nonparametric statistical methods offer data
analysis methods for a general alternatives of at least one change in location
(Kruskal-Wallis test) or more specific, such as all pair-wise comparisons of treatment group
locations (Dunn and Dwass-Steel-Critchlow-Fligner methods) or comparisons with a
designated control group (Dunn and Miller methods). All techniques can be useful in
settings where a small number of responses in a group skew responses or adversely affect the
mean response. As was the case for the two-sample setting, it is important to study data
properties (i.e., balanced vs. unbalanced sample sizes) before selecting a statistical method.

6.4 Power Determination in a Purely Nonparametric Sense
The title of this section must seem a bit of an enigma. What does the expression “in a
purely nonparametric sense” really mean? Let’s begin by reviewing some basic concepts in
experimental design and power in the familiar parametric sense. We will then demonstrate
a nonparametric approach to the same setting. Lastly, we will compare and contrast the
two approaches to highlight important features.

Consider the design of a simple two-group experiment. Subjects or samples are
randomized to one of two groups and receive a treatment. After treatment, a measurement
is collected and the investigators wish to see if evidence exists to declare the responses of
the two groups to be “different”.

What does it mean for two treatments to be different? Typically, the investigators are
interested in finding a statistically significant effect at some level (say, 0.05) with some
reasonable degree of certainty (say, at least 80% of the time). Using some common
symbolism from mathematical statistics, the latter expression may be written as:

Test H0 : μ1 − μ2 = 0 vesus HA : μ1 − μ2 = δ at some level α,

where:

• α = P (Conclude μ1 − μ2 > 0|(μ1 − μ2) = 0),
• 1 − β = P (Conclude μ1 − μ2 > 0|(μ1 − μ2) = δ).

In other words, we are interested in finding a statistically significant difference at an α level
with 1 − β power when the true difference is δ. If we make the standard assumptions of two
independent and identically distributed Gaussian samples (N(μ1, σ

2) and N(μ2, σ
2),
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respectively), we can perform such a comparison via a two-sample Student’s t-test, i.e.,
reject H0 in favor of HA if

t =
X̄1 − X̄2√

2s2/n
> T2(n−1)(α),

where X̄1 and X̄2 correspond to the sample means of Treatment Groups 1 and 2,
respectively, s2 is the pooled variance estimator, and T2(n−1)(α) is a quantile from a
standard Student’s t-distribution with 2(n − 1) degrees of freedom.

Naturally, the investigators are interested in the total number of experimental units or
subjects, 2n, required to conduct the experiment. The sample size per group, n, may be
determined iteratively, using a standard inequality:

n ≥
2s2(T2(n−1)(α) + T2(n−1)(β))2

δ2 ,

where T2(n−1)(α) and T2(n−1)(β) are quantiles from a standard Student’s t-distribution with
2(n − 1) degrees of freedom.

Note the key features of this method of sample size determination are

• The person using this method needs to feel fairly confident that his or her measure
comes from a distribution that is Gaussian (normal).

• He or she must have a reasonable idea of what the treatment effect should be.
• He or she must also have a reasonable estimate of the spread or dispersion of the desired

effect (s2).

It is generally difficult for scientific investigators (based on the author’s personal
experience in statistical consulting) to provide information about a measurement’s
distribution. In fact, it is sometimes very difficult in some scientific disciplines (e.g.,
toxicology) for investigators to predict the size of effect that will be elicited by a treatment
a priori.

One possible way to solve this problem is to conduct a small pilot study to get some
initial intuition about a measurement’s properties. Such a study will provide investigators
with insight into the size of treatment effect that is achievable, as well as some preliminary
ideas about the measurement’s properties, such as its pattern of dispersion. However, will
such a study address the fundamental question of distribution (e.g., Gaussian distribution)
when the sample size is small?

A distribution-free, or nonparametric, approach to sample size estimation frees scientists
from guessing about the distribution of measurement or treatment effect. One common way
to estimate a sample size in a study with two independent groups, suggested by Collings
and Hamilton (1988), requires that investigators perform a small pilot study. Investigators
then use the pilot study’s results to refine their estimates of achievable treatment effect.
The scientists must also provide an estimate of their desired statistical significance level;
however, they do not have to have any estimate of the dispersion or variation of the
measurement at the time of the sample size determination. This information can be
indirectly gleaned from the pilot study. For a given pair of sample sizes, say, n1 and n2,
scientists determine the level of power associated with the comparison.

6.4.1 Power Calculations in a Two-Sample Case
How does the Collings-Hamilton technique work? Suppose the pilot study consists of data
from two groups, say, X1, . . . , Xn1 and Y1, . . . , Yn2 . For the moment, let’s assume that
n1 = n2 = n and thus the total pilot sample size is 2n observations. Suppose we are
interested in determining the power of a comparison of two treatment groups’ location
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parameters, one shifted by an amount δ from the other, at the α-level of statistical
significance, with a total sample size of 2m (m samples per treatment group). We begin by
making a random selection (with replacement) of size 2m from the pilot study data, i.e.,
X1, . . . , Xn1 , Y1, . . . , Yn2 . Denote the first m randomly sampled observations by R1, . . . , Rm.
For the second set of randomly selected observations (denoted by Rm+1, . . . , R2m), add the
change in location, δ, to each of the m values. Denote the resulting values
Rm+1 + δ, . . . , R2m + δ by S1, . . . , Sm. Now compare R1, . . . , Rm with S1, . . . , Sm via a form of
two-sample location comparison test, with a statistic, say, W , at level α. Create an
indicator variable, I, and let I = 1 if W ≥ cα (cα represents the α-level cutoff of the test)
and 0 otherwise.

We can repeat the process B times (for some large value of B, i.e., B > 1000), recording
the value of the indicator variable I as Ib for the bth repetition of the process
(b = 1, . . . , B). An estimate of the power, π(α, β,m), of the test conducted at the α-level of
significance, for shift of size and sample size m per group is

π(α, β,m) =
1
B

B∑
b=1

Ib.

Collings and Hamilton went on to show in their paper that the described procedure can
be improved in the following way. Consider X1, . . . , Xn and randomly sample from the
group 2m times. For the second half of the 2m terms, add the shift value δ to each term:
Xm+1 + δ, . . . , X2m + δ. Perform the pair-wise comparison at level α between X1, . . . , Xm

and Xm+1 + δ, . . . , X2m + δ, record the result via an indicator variable, and repeat the
procedure B times, as described previously. The same procedure is carried out for
Y1, . . . , Yn. Let πX(α, β,m) be the power calculated for the Xi’s and πY (α, β,m) be the
power calculated for the Yi’s. The power for the comparison of X1, . . . , Xn and Y1, . . . , Yn

with respect to a shift δ, at level α, for total sample size 2m is:

π(α, β,m) =
1
2
(πX(α, β,m) + πY (α, β,m)).

Earlier in our discussion we assumed n1 = n2 = n. This condition is not necessary. If
n1 �= n2, this approach can be modified by using a weighted mean of the two power values;
see Collings and Hamilton (1988) for details.

6.4.2 Power Calculations in a k-Sample Case
Mahoney and Magel (1996) extended the results of Collings and Hamilton to cover the case
of k independent samples and their comparison by the Kruskal-Wallis test. The procedure
is similar in spirit to that described previously. Consider the testing problem defined in
Section 6.3, i.e., consider a study with k treatment groups and ni units/subjects in the ith
group. In the two-sample case, we talk about a single shift in location, δ. For a k-sample
one-way layout, we have to talk about a k-dimensional vector, δ̃ = (δ1, . . . , δk), where δi is
the shift-change in location of the ith group. Without loss of generality, we assume that the
first delta component is zero, i.e., δ1 = 0. As was the case in the two-sample setting, we
again need to randomly sample (with replacement) from each of the groups. For the ith
group, we sample km observations. We then apply the k location shifts to each of the km
observations as follows. The first m observations are unshifted because δ1 = 0. The second
set of m observations are then shifted by δ2, the third set by δ3, etc. Mahoney and Magel
point out that, essentially, we now have k random samples of size m, only differing by a
shift in location and thus we can perform a Kruskal-Wallis test at level α. If the test is
statistically significant, we let I1 = 1, otherwise I1 = 0. We repeat the process B times, for
a large value of B, recording the value of Ib for the bth repetition of the process. The power
for the ith group is calculated as before, i.e., πi(α, β,m) = B−1 ∑B

b=1 Ib. The outlined
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procedure is repeated for the remaining k − 1 groups and the power for the Kruskal-Wallis
test is then simply the average power determined k times:

π(α, β,m) =
1
k

k∑
i=1

πi(α, β,m).

6.4.3 Comparison of Parametric and Nonparametric Approaches
Now is probably a good time to compare and contrast the parametric approach to sample
size determination in a two-sample setting with the nonparametric approach. Notice we
require some similar pieces of information in both approaches: we require knowledge about
the level of the test, α, the desired effect, δ, and the number of observations per group, say,
m. For the parametric comparison, we assume a common form of distribution for both
groups, with an assumed known and identical scale parameter σ, and known location
parameters (means) μ1 and μ2, respectively. The nonparametric approach requires a small
pilot data set consisting of two groups without any assumptions about the common
distributional form. For pharmaceutical researchers, the nonparametric approach may
require more work because it requires data before the power may be calculated. However,
the benefits of the procedure may greatly outweigh the expenditure of resources for the
pilot.

First, investigators get to see the distribution of real data, as opposed to imagining what
it would look like, conditional on a value of location and scale and assuming some
pre-specified mathematically convenient form. Often investigators will use the summary
statistics from a previously published manuscript to determine the power in the parametric
approach for their investigation. Were the originally published data distributed normally?
Were they symmetrically distributed, for that matter? We really do not know by looking at
the summary statistics alone in the manuscript, nor can we learn much more if the authors
made a poor choice of data visualization to summarize the paper’s findings. We only know
for certain about the raw data’s features if we can see all of the data used in the original
manuscript. It has been the author’s experience that such data are difficult to get, as
scientific writers change institutional affiliations and are subsequently difficult to locate
years after they publish their research. Moreover, some are unwilling to share raw data, or
unable to share it because of the proprietary nature of their research or because the data
are stored in an inconvenient form (e.g., in several spreadsheets or laboratory notebooks).

Second, the nonparametric approach is intuitive, given that a scientist understands how
the nonparametric test works. Power corresponds to the probability of, in some sense,
finding a true and context meaningful difference, δ, at the α-level of significance for a given
sample size. By employing the calculations described above, scientists can see where the
value of power comes from without having to understand the mathematical statistical
properties of the Gaussian (normal) distribution.

%KWSS Macro
How do we perform a nonparametric power analysis in SAS? The Mahoney-Magel
generalization of the Collings-Hamilton approach to power determination in the k-sample
setting may be accomplished with a SAS macro called %KWSS provided on the book’s
companion Web site. The %KWSS macro consists of a body of code containing one
embedded macro (%BOOTSTRAP). The macro requires seven input parameters:

• IDSN is the name of an input SAS data set.
• GROUP is the grouping or classification variable.
• VAR is the response measurement variable.
• SHIFTLIST is the shift vector, δ̃ = (δ1, . . . , δk), for the test.
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• SAMPLE SIZE is the sample size for power determination.
• ITERATION NO is the number of re-sampled data sets.
• ALPHA is the desired level of statistical significance.

The macro first removes any observations that contain a missing response. It then
determines the number of groups in the input data set IDSN and creates a list of these
groups with the macro variable GRPVEC. The data are then subset by the various levels
of the classification variable. The embedded %BOOTSTRAP macro then performs the
required sampling (with replacement) of size SAMPLE SIZE*GROUP for each level of
GROUP. The location shifts specified in SHIFTLIST are applied to the re-sampled data by
GROUP. If the number of location shifts specified in SHIFTLIST does not equal the
number of groups or classes in the input data set, the program has a fail-safe that will
terminate its execution. The macro then performs a Kruskal-Wallis test by PROC
NPAR1WAY for each level of GROUP. The number of statistically significant (at level
ALPHA) results is recorded as a fraction of the total number of re-sampled data sets
(ITERATION NO) with PROC FREQ. For the GROUP levels of power determined,
PROC MEANS determines the mean power and the result is reported via PROC PRINT.

To illustrate the usage of %KWSS, Program 6.15 estimates the power of the
Kruskal-Wallis test based on simulated data from a four-group experiment with 10
observations/group. The response variable is assumed to follow a gamma distribution.
Suppose that we are interested in using this pilot study information to power a study, also
with four groups, but with a sample size allocation of 20 subjects/group. Suppose that we
are interested in seeing a statistically significant (p < 0.05) shift in the location parameters,
δ̃ = (0, 1.5, 1.5, 1.5). The macro call is specified as follows:

%kwss(one,group,x,0 1.5 1.5 1.5,20,5000,0.05)

The first parameter is the name of the input data set (ONE) containing a response
variable (X) and grouping or classification variable (GROUP) of interest (the second and
third macro parameters, respectively). The fourth parameter is the list of location shifts.
The fifth parameter is the desired sample size/group. The sixth parameter is the number of
iterations (bootstrapped samples) per group of size 4 × 20 = 80. The final parameter is the
desired level of statistical significance for this four-sample test.

As a large number of bootstrap samples are requested for this power calculation,
Program 6.15 will run for a considerable amount of time (about 20 minutes on the author’s
PC using an interactive SAS session). The NONOTES system option is specified before the
invocation of the %BOOTSTRAP macro. Using this option prevents the annoying
situation of a filled-up log in a PC SAS session that requires the user to empty or save the
log in a file.

Program 6.15 Nonparametric power calculation using the %KWSS macro

data one;
do i=1 to 10;

x=5+rangam(1,0.5); group="A"; output;
x=7+rangam(1,0.5); group="B"; output;
x=7.2+rangam(1,0.5); group="C"; output;
x=7.4+rangam(1,0.5); group="D"; output;
drop i;

end;
run;

%kwss(one,group,x,0 1.5 1.5 1.5,20,5000,0.05)
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Output from Program 6.15

The Mahoney-Magel Generalization of the Collings-Hamilton Approach 1
For Power Estimation with Location Shifts 0 1.5 1.5 1.5

of 4 Groups (A B C D) of Sample Size 20
Compared at the 0.05-level of Statistical Significance

(Power Based on a Bootstrap Conducted 5000 Times)

POWER

99.945

Output 6.15 shows the estimated power of the Kruskal-Wallis test (99.945%). As was
the case for other macros presented in this chapter, the titles of the output inform the user
about the information used to estimate the power (location shifts, number of groups,
sample size, etc.).

6.4.4 Summary
The approach to power estimation illustrated in this section differs from the classical
approach where an investigator is required to provide estimates of treatment effect and
variation. In novel experimental investigations with limited resources, it may be difficult to
provide such estimates without executing a pilot study first. The approach, suggested first
by Collings and Hamilton (1988) and later generalized by Mahoney and Magel (1996), is a
reasonable approach to estimation of the power of an inference comparing location
parameters when estimates of treatment effect and variation are difficult to obtain. The
author has developed a macro to estimate power using the approach suggested by Mahoney
and Magel (the %KWSS macro).
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In this chapter we discuss optimal experimental designs for nonlinear models arising in
various pharmaceutical applications and present a short survey of optimal design methods
and numerical algorithms. We provide SAS code to implement optimal design algorithms
for several examples:

• quantal models such as logistic models for analyzing success or failure in dose-response
studies

• multi-parameter continuous logistic models in bioassays or pharmacodynamic studies,
including models with unknown parameters in variance

• beta regression model
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• models with multiple responses, such as models that measure both efficacy and safety in
dose response studies and pharmacokinetic models with multiple samples per subject

• models with cost constraints.

For all examples, we use a first-order optimization algorithm in the space of information
matrices. A short survey of other software tools for constructing optimal model-based
designs is provided.

7.1 Optimal Design Problem
We start this chapter with the description of the general optimal design problems and
concepts.

7.1.1 General Model
Consider a vector of observations Y = {y1, . . . , yN} and assume it follows a general
parametric model. The joint probability density function of Y depends on x and θ, where x
is the independent, or design, variable and θ = (θ1, . . . , θm) is the vector of unknown model
parameters. The design variable x is chosen, or controlled, by researchers to obtain the best
estimates of the unknown parameters.

This general model can be applied to a wide variety of problems arising in clinical and
pre-clinical studies. The examples considered in this chapter are described below.

Dose-Response Studies
Dose-response models arise in clinical trials, either with a binary outcome (e.g.,
success-failure or dead-alive in toxicology studies; see Section 7.2) or continuous response
(e.g., studies of pain medications when patients mark their pain level on a visual analog
scale; see Section 7.4). In these examples, x represents the dose of a drug administered to
the patient. Figure 7.1 illustrates the dependence of the probability of the success π(x) at
the dose x for a two-parameter logistic model. Dotted horizontal lines correspond to the
probabilities of success for the two optimal doses x∗

1 and x∗
2. See Section 7.2 for details.

Figure 7.1 Optimal design points (vertical lines) in a two-parameter logistic model
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Bioassay Studies
Multi-parameter logistic models, sometimes referred to as the Emax or Hill models, are
widely used in bioassay studies. Examples include models that relate the concentration of
an experimental drug to the percentage or number of surviving cells in cell-based assays or
models that quantify the concentration of antigens or antibodies in enzyme-linked
immunosorbent assays (ELISA). In this context, the design variable x represents the drug
concentration level; see Sections 7.2 and 7.3 for details.

As an illustration, Figure 7.2 plots a four-parameter logistic model that describes the
number of surviving bad cells in a cell-based assay versus drug concentration x on the
log-scale. The concentration-effect relationship is negative. This is expected since an
increase in the drug concentration usually reduces the number of cells.

Figure 7.2 Four-parameter logistic model
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Two-Drug Combination Studies
Section 7.6.3 discusses two-drug combination studies in which drugs (e.g., Drug A and
Drug B) are administered simultaneously and their effect on the patient’s outcome is
analyzed. In this case, the design variable x is two-dimensional, i.e., x = (x1, x2), where x1
is the dose of Drug A and x2 is the dose of Drug B.

Clinical Pharmacokinetic Studies
Multiple blood samples are taken in virtually all clinical pharmacokinetic (PK) studies and
the collected data are analyzed by means of various PK compartmental models. This
analysis leads to quite sophisticated nonlinear mixed effects models which are discussed in
Section 7.8. In these models x is a k-dimensional vector that represents a collection
(sequence) of sampling times for a particular patient.

Cost-Based Designs
In the previous example (PK studies) it is quite obvious that each extra sample provides
additional information. On the other hand, the number of samples that may be drawn from
each patient is restricted because of blood volume limitations and other logistic and ethical
reasons. Moreover, the analysis of each sample is associated with monetary cost. Thus, it
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makes sense to incorporate costs in the design. One potential approach for the construction
of cost-based designs is discussed in Section 7.9.

SAS Code and Data Sets

To save space, some SAS code has been shortened and some output is not shown. The
complete SAS code and data sets used in this book are available on the book’s companion
Web site at http://support.sas.com/publishing/bbu/companion site/60622.html.

7.1.2 Information Matrix, Maximum Likelihood Estimates, and
Optimality Criteria

For any parametric model, one of the main goals is to obtain the most precise estimates of
unknown parameters θ. For example, in the context of a dose-response study, if clinical
researchers can select doses xi, in some admissible range, and number of patients ni on
each dose, then, given the total number of observations N , the question is how to allocate
those doses and patients to obtain the best estimates of unknown parameters. The quality
of estimators is traditionally measured by their variance-covariance matrix.

To introduce the theory underlying optimal design of experiments, we will assume that
ni is the number of independent observations yij that are made at design point xi and that
N = n1 + n2 + . . . + nn is the total number of observations, j = 1, . . . , ni, i = 1, . . . , n. Let
the probability density function of yij be p(yij |xi, θ). For example, in the context of a
dose-response study, xi is the ith dose of the drug and yij is the response of the jth patient
on dose xi.

Most of the examples discussed in this chapter deal with the case of a single
measurement per patient, i.e., both xi and yij are scalars (single dose and single response)
and yij and yi1,j1 are independent if i �= i1 or j �= j1. The exceptions are in Section 7.7 (two
binary responses for the same patient, such as efficacy and toxicity, at a given dose xi) and
Sections 7.8 and 7.9 that consider the problem of designing experiments with multiple PK
samples over time for the same patient, i.e., a design point is a sequence
xi = (x1

i , x
2
i , . . . , x

k
i ) of k sampling times and yij = (y1

ij , . . . , y
k
ij) is a vector of k observations.

Note that in the latter case the elements of vector yij are, in general, correlated because
they correspond to measurements on the same patient. However, similar to the case of a
single measurement per patient, yij and yi1,j1 are still independent if i �= i1 or j �= j1.

Information Matrix

Let μ(x, θ) be an m × m information matrix of a single observation at point x,

μ(x, θ) = E

[
∂ log p(Y |x, θ)

∂θ

∂ log p(Y |x, θ)
∂θT

]
, (7.1)

where the expectation is taken with respect to the distribution of Y . The Fisher
information matrix of the N experiments can be written as

MN(θ) =
n∑

i=1

niμ(xi, θ). (7.2)

Further, let M(ξ, θ) be a normalized information matrix,

M(ξ, θ) =
1
N

MN(θ) =
n∑

i=1

wiμ(xi, θ), wi =
ni

N
. (7.3)

The collection ξ = {xi, wi} is called a normalized (continuous or approximate) design
with w1 + . . . + wn = 1. In this setting N may be viewed as a resource available to
researchers; see Section 7.9 for a different normalization.
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Maximum Likelihood Estimates
The maximum likelihood estimate (MLE) of θ is given by

θ̂ = arg min
θ

n∏
i=1

ni∏
j=1

p(yij |xi, θ) = arg min
θ

n∑
i=1

ni∑
j=1

log p(yij |xi, θ),

It is well known that the variance-covariance matrix of θ̂ for large samples is approximated
by

Var(θ̂) ≈ M−1
N (θ) =

1
N

M−1(ξ, θ) =
1
N

D(ξ, θ), (7.4)

where D(ξ, θ) = M−1(ξ, θ) is the normalized variance-covariance matrix (Rao, 1973,
Chapter 5). Throughout this chapter we assume that the normalized information matrix
M(ξ, θ) is not singular and thus its inverse exists.

Optimality Criteria
In the convex design theory, it is standard to minimize various functionals depending on
D(ξ, θ),

ξ∗ = arg min
ξ

Ψ[D(ξ, θ)], (7.5)

where Ψ is a selected functional (criterion of optimality). The optimization is performed
with respect to designs ξ,

ξ = {wi, 0 ≤ wi ≤ 1,
n∑

i=1

wi = 1; xi ∈ X},

where X is a design region, e.g., admissible doses in a dose-response study, and the weights,
w1, . . . , wn, are continuous variables. The use of continuous weights leads to the concept of
approximate optimal designs; the word approximate should draw attention to the fact that
the solution of (7.5) does not generally give integer values ni = Nwi. However, this solution
is often acceptable, in particular when the total number of observations N is relatively
large and we round ni = Nwi to the nearest integer while keeping n1 + . . . + nn = N
(Pukelsheim, 1993).

The following optimality criteria are among the most popular ones:

D-optimality. Ψ = ln |D(ξ, θ)|, where |D| denotes the determinant of D. This criterion is
often called a generalized variance criterion since the volume of the confidence ellipsoid
for θ is proportional to |D(ξ, θ)|1/2; see Fedorov and Hackl (1997, Chapter 2).

A-optimality. Ψ = tr[AD(ξ, θ)], where A is an m × m non-negative definite matrix (utility
matrix) and tr(D) denotes the trace, or sum of diagonal elements, of D. For example, if
A = m−1Im, where Im is an m × m identity matrix, the A-criterion is based on the
average variance of the parameter estimates:

Ψ = m−1
m∑

i=1

Var(θ̂i).

c-optimality. Ψ = cT D(ξ, θ)c, where c is an m-dimensional vector. A c-optimal design
minimizes the variance of a linear combination of the model parameters, i.e., cT θ.

E -optimality. Ψ = λmin[M(ξ, θ)] = λmax[D(ξ, θ)], where λmin(M) and λmax(M) are minimal
and maximal eigenvalues of M , respectively. Note that the length of the largest principal
axis of the confidence ellipsoid is λ

−1/2
min [M(ξ, θ)].
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I -optimality. Ψ =
∫

X tr[μ(x, θ)D(ξ, θ)]dx. In linear regression models, tr[μ(x, θ)D(ξ, θ)]
represents the variance of the predicted response.

Minimax optimality. Ψ = maxx∈X tr[μ(x, θ)D(ξ, θ)].

For other criteria of optimality, see Fedorov (1972), Silvey (1980), or Pukelsheim (1993).
It is important to note that the D-, A-, and E-optimality criteria may be ordered for

any design since

|D|1/m ≤ m−1tr(D) ≤ λmax(D), D = D(ξ, θ),

see Fedorov and Hackl (1997, Chapter 2). Also, the disadvantage of c-optimal designs is
that they are often singular, i.e., the corresponding variance-covariance matrix is
degenerate.

D-Optimality Criterion

In this chapter we concentrate on the D-optimality criterion (note that the SAS programs
described in this chapter can also be used to construct A-optimal designs). D-optimal
designs are popular among theoretical and applied researchers due to the following
considerations:

• D-optimal designs minimize the volume of the asymptotic confidence region for θ. This
property is easy to explain to practitioners in various fields.

• D-optimal designs are invariant with respect to non-degenerate transformations of
parameters (e.g., changes of the parameter scale).

• D-optimal designs are attractive in practice because they often perform well according
to other optimality criteria; see Atkinson and Donev (1992, Chapter 11) or Fedorov and
Hackl (1997).

7.1.3 Locally Optimal Designs
It is easy to see from the definition of the information matrix M(ξ, θ) that, in general,
optimal designs depend on the unknown parameter vector θ. This assumption leads to the
concept of locally optimal designs that are defined as follows: first we need to specify a
preliminary estimate of θ, e.g., θ̃, and then solve the optimization problem for the given θ̃
(Chernoff, 1953, Fedorov, 1972).

It is worth noting that in linear parametric models the information matrix does not
depend on θ, which greatly simplifies the problem of computing optimal designs. Consider,
for example, a linear regression model

yij = θ1f1(xi) + . . . + θmfm(xi) + εij , i = 1, . . . , n, j = 1, . . . , ni

with normally distributed residuals, i.e., εij ∼ N(0, σ2(xi)). Here f(x) = [f1(x), . . . , fm(x)]T
is a vector of pre-defined basis functions. The information matrix is given by (Fedorov and
Hackl, 1997)

μ(x) = σ−2(xi)f(x)fT (x)

and thus we can construct designs that will be optimal for any value of θ. In non-linear
models, we need to select a value of θ first; however, once this value is fixed, the
construction of an optimal design is absolutely the same as for linear problems.

Obviously, the quality of locally optimal designs may be poor if the preliminary estimate
θ̃ significantly differs from the true value of θ. We mention in passing that this problem can
be tackled by using various techniques which include minimax designs (Fedorov and Hackl,
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1997), Bayesian designs (Chaloner and Verdinelli, 1995), adaptive designs (Box and
Hunter, 1965; Fedorov, 1972, Chapter 4; Zacks, 1996, Fedorov and Leonov, 2005, Section
5.6). While minimax and Bayesian approaches take into account prior uncertainties, they
lead to optimization problems which are computationally more demanding than the
construction of locally optimal designs. Instead of preliminary estimates of unknown
parameters, we must provide an uncertainty set for the minimax approach and a prior
distribution for Bayesian designs. The latter task is often based on a subjective judgment.
Locally optimal designs serve as a reference point for other candidate designs, and
sensitivity analysis with respect to parameter values is always required to validate the
properties of a particular optimal design; see a discussion in Section 7.3.1.

In this chapter we concentrate on the construction of locally optimal designs.

7.1.4 Equivalence Theorem
Many theoretical results and numerical algorithms of the optimal experimental design
theory rely on the following important theorem (Kiefer and Wolfowitz, 1960; Fedorov,
1972, White, 1973):

Generalized equivalence theorem. A design ξ∗ is locally D-optimal if and only if

ψ(x, ξ∗, θ) = tr
[
μ(x, θ)M−1(ξ∗, θ)

]
≤ m, (7.6)

where m is the number of model parameters. Similarly, a design ξ∗ is locally A-optimal if
and only if

ψ(x, ξ∗, θ) = tr
[
μ(x, θ)M−1(ξ∗, θ)AM−1(ξ∗, θ)

]
≤ tr

[
AM−1(ξ∗, θ)

]
. (7.7)

The equality in (7.6) and (7.7) is attained at the support points of the optimal design ξ∗.
The ψ(x, ξ, θ) function is termed the sensitivity function of the corresponding criterion.

The sensitivity function helps identify design points that provide the most information
with respect to the chosen optimality criterion (Fedorov and Hackl, 1997, Section 2.4). For
instance, if we consider dose-response studies, optimal designs can be constructed
iteratively by choosing doses x∗ that maximize the sensitivity function ψ(x, ξ, θ) over the
admissible range of doses.

As shown in the next subsection, the general formulas (7.6) and (7.7) form a basis of
numerical procedures for constructing D- and A-optimal designs.

7.1.5 Computation of Optimal Designs
Any numerical procedure for constructing optimal designs requires two key elements:

• The information matrix μ(x, θ) or, equivalently, sensitivity function ψ(x, ξ, θ).
• The design region X (the set of admissible design points).

In all examples discussed in this chapter (except for the examples considered in Sections
7.8 and 7.9), we define the design region as a compact set, but search for optimal points on
a pre-defined discrete grid. This grid can be rather fine in order to guarantee that the
resulting design is close to the optimal one.

The main idea behind the general nonlinear design algorithm is that, at each step of the
algorithm, the sensitivity function ψ(x, ξ, θ) is maximized over the design region to
determine the best new support point (forward step) and then minimized over the support
points of the current design to remove the worst point in the current design (backward
step). See Fedorov and Hackl (1997) or Atkinson and Donev (1992) for details.
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To define a design algorithm, let ξs = {Xis, wis}, i = 1, . . . , ns, be the design at Step s.
Here {Xis} is the vector of support points in the current design and wis is the vector of
weights assigned to Xis. The iterative algorithm is of the following form:

ξs+1 = (1 − αs)ξs + αsξ(Xs),

where ξ(X) is a one-point design supported on point X.

Forward step. At Step s, a point X+
s that maximizes ψ(x, ξ, θ) over x ∈ X is added to the

design ξs with weight αs = γs, where γs = 1/(n0 + s) and n0 is the number of points in
the initial design.

Backward step. After that, a point X−
s that minimizes ψ(x, ξ, θ) over all support points

in the current design is deleted from the design with weight

αs =
{

−γs, ws ≥ γs,
−ws/(1 − ws), ws < γs.

In general, the user can change γs to c1/(n0 + c2s), where c1 and c2 are two constants.
The default values of the constants are c1 = c2 = 1.

In Section 7.2 we provide a detailed description of a SAS macro that implements the
described optimal design algorithm for quantal dose-response models. However, once the
information matrix μ(x, θ) or the sensitivity function ψ(x, ξ, θ) is specified, the same
technique can be used to generate optimal designs for any other model.

7.1.6 Existing Software
Computer algorithms for generating optimal designs have existed for quite some time
(Fedorov, 1972; Wynn, 1970). These algorithms have been implemented in many
commercially available software systems. Additionally, software written by academic groups
is available. In general, the commercially available systems implement methods for
problems such as simple linear regression and factorial designs, but not for more complex
models such as nonlinear regression, beta regression, or population pharmacokinetics.
Academic groups have developed and made available programs for the latter cases.

On the commercial side, SAS offers both SAS/QC (the OPTEX procedure) and JMP.
The OPTEX procedure supports A- and D-optimal designs for simple regression models.
JMP generates D-optimal factorial designs, as do software packages such as Statistica. In
pharmacokinetic applications, the ADAPT II program developed at the University of
Southern California implements c- and D-optimal and partially optimal design generation
for individual pharmacokinetic models; however, it does not support more complex
population pharmacokinetic models (D’Argenio and Schumitzky, 1997). Ogungbenro et al.
(2005) implemented in Matlab the classical exchange algorithm for population PK
experiments using D-optimality (note that the exchange algorithm improves the initial
design with respect to selected optimality criterion but, in general, does not converge to
the optimal design). Retout and Mentré (2003) developed extensive implementation of
population pharmacokinetic designs in S-Plus.

In this chapter we discuss SAS/IML implementation of the general algorithm (which
cannot be executed in PROC OPTEX) with applications to several widely used nonlinear
models. We also describe optimal design algorithms for population pharmacokinetic models
analogous to the S-Plus programs of Retout and Mentré (2003).
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7.1.7 Structure of SAS Programs
There are five components in the programs:

• inputs
• establishment of the design region
• calculation of the information matrix
• using the optimal design algorithm
• outputs.

Only the optimal design algorithm component is unchanged for any model; the other
components are model-specific and need to be modified accordingly. In any model,
calculation of the information matrix is the critical (and most computationally intensive)
step.

7.2 Quantal Dose-Response Models
Quantal, or binary, models arise in various pharmaceutical applications, such as clinical
trials with a binary outcome, toxicology studies, and quantal bioassays.

7.2.1 General Model
In a quantal model, a binary response variable Y depends on the dose x,

Y = Y (x) =
{

1, a response is present at dose x,
0, no response,

and the probability of observing a response is modeled as

P{Y = 1|x} = η(x, θ),

where 0 ≤ η(x, θ) ≤ 1 is a given function and θ is a vector of m unknown parameters. It is
often assumed that

η(x, θ) = π(z),

where z is a linear combination of pre-defined functions of the dose x, i.e.,

z = θ1f1(x) + . . . + θmfm(x).

In many applications, π(z) is selected as a probability distribution function with a
continuous derivative (see Fedorov and Leonov, 2001). Among the most popular choices of
this function are:

Logistic (logit) model. The π(z) function is a logistic function

π(z) = ez/(1 + ez).

Probit model. π(z) is a standard normal cumulative distribution function,

π(z) =
1√
2π

∫ z

−∞
e−u2/2du.

In practice, when properly normalized, the two models lead to virtually identical results
(Cramer, 1991, Section 2.3; Finney, 1971, p. 98).
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In the quantal dose-response model the probability density function of Y at a point x is
given by

p(Y |x, θ) = η(x, θ)Y [1 − η(x, θ)]1−Y

and thus the information matrix of a single observation is equal to

μ(x, θ) =
[π′(z)]2

π(z)[1 − π(z)]
f(x)fT (x),

(Wu, 1988, Torsney and Musrati, 1993) where f(x) = [f1(x), . . . , fm(x)]T and thus the
variance-covariance matrix of the MLE, θ̂, can be approximated by D(ξ, θ)/N ; see (7.4).

The quantal logistic model provides an example where the statement of the generalized
equivalence theorem, (7.6) and (7.7), admits a more “numerically-friendly” presentation.
For example, the information matrix for a single observation can be written as
μ(x, θ) = g(x, θ)gT (x, θ), where

g(x, θ) =
π′(z)f(x)√

π(z)[1 − π(z)]
,

which, together with the matrix identity tr(AB) = tr(BA), leads to the following
presentation of the sensitivity functions for the quantal model:

D-criterion: ψ(x, ξ, θ) = g(x, θ)M−1(ξ, θ)gT (x, θ), (7.8)

A-criterion: ψ(x, ξ, θ) = g(x, θ)M−1(ξ, θ)AM−1(ξ, θ)gT (x, θ). (7.9)

7.2.2 Example 1: A Two-Parameter Logistic Model
In this subsection we will take a closer look at the logistic model with two unknown
parameters:

P{Y = 1|x} = ez/(1 + ez), z = θ1 + θ2x,

where θ1 and θ2 are the intercept and slope parameters, respectively.
It can be shown that D-optimal designs associated with the described model are

two-point designs, with half the measurements at each dose, i.e., w1 = w2 = 0.5 (White,
1975). It is interesting to note that, when the dose range is sufficiently wide, D-optimal
designs are uniquely defined in the z-space and the optimal design points correspond to
certain response probabilities. Specifically, the optimal design points on the z scale are
zopt = ±1.543 and the corresponding response probabilities are given by

π(−1.543) = 0.176, π(1.543) = 0.824,

where π(z) = ez/(1 + ez). Thus, if x∗
1 and x∗

2 are the two optimal doses corresponding to a
D-optimal design, then

θ1 + θ2x
∗
1 = −1.543, θ1 + θ2x

∗
2 = 1.543.

It is also worth pointing out that, if xp is a dose level that causes a particular response
in 100p% of subjects, i.e., η(xp, θ) = p, the normalized variance of the MLE x̂p in the
two-parameter logistic model is a special case of the c-optimality criterion and can be
written as

Ψ = Var(x̂p) = cT
p D(ξ, θ)cp = tr

[(
cpc

T
p

)
D(ξ, θ)

]
(Wu, 1988) with cp = f(xp)/θ2. For a discussion of c- and A-optimal designs for binary
models, see Ford, Torsney and Wu (1992), Sitter and Wu (1993).
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Illustration
Assume that the true values of the two parameters in the logistic model are θ1 = 1 and
θ2 = 3. Assume also that the admissible dose range (design region) is given by
X = [xmin, xmax] with xmin = −1 and xmax = 1. First of all, note that

1 + 3xmin < −1.543, 1 + 3xmax > 1.543

and therefore the D-optimal dose levels lie inside the design region. The optimal doses,
(x∗

1, x
∗
2), are found from

1 + 3x∗
1 = −1.543, 1 + 3x∗

2 = 1.543.

It is easy to verify that x∗
1 = −0.848 and x∗

2 = 0.181. The associated weights are
w1 = w2 = 0.5.

Computation of the D-Optimal Design

This subsection introduces the %OptimalDesign1 macro that implements the optimal
design algorithm in the univariate case (a single design variable x) and illustrates the
process of computing a D-optimal design for the two-parameter logistic model described
above. The advantage of using this simple model is that we can easily check individual
elements of the resulting optimal design, including the information matrix, optimal doses,
and weights.

The %OptimalDesign1 macro supports two main components of the optimal design
algorithm:

• calculation of the information matrix (%deriv and %infod macros)
• implementation of the forward and backward steps of the algorithm (%doptimal macro)

The first component (information matrix) in this list is model-specific, whereas the
second component (algorithm) does not depend on the chosen model. Note that the first
component is the critical (and most computationally intensive) step in this macro.

Program 7.1 invokes the %OptimalDesign1 macro to compute a D-optimal design for
the two-parameter logistic model. To save space, the complete SAS code is provided on the
book’s companion Web site. This subsection focuses on the user-specified parameters that
define the design problem and set up the optimal design algorithm.

The first four macro variables in Program 7.1 define the following design parameters:

• POINTS is a vector of doses included in the initial design. In this case, the initial design
contains four dose levels evenly spaced across the dose range X = [−1, 1].

• WEIGHTS defines the weights of the four doses in the initial design (the doses are
equally weighted).

• GRID defines the grid points in the optimal design algorithm. The grid consists of 201
equally spaced points in the dose range. The DO function in SAS/IML creates a list of
equally spaced points. In this case, DO produces the following row vector,
{−1,−0.99,−0.98, . . . , 0.98, 0.99, 1}.

• PARAMETER is a vector of model parameters. The true values of θ1 and θ2 are
assumed to be 1 and 3, respectively.

The other five macro variables define the algorithm properties of the optimal design
algorithm:

• CONVC is the convergence criterion. It determines when the iterative procedure
terminates.



162 Pharmaceutical Statistics Using SAS: A Practical Guide

• MAXIMIT is the maximum number of iterations. A typical value of MAXIMIT is 200.
A greater value is recommended when the final design is expected to contain a large
number of points.

• CONST1 and CONST2 are used in the calculation of weights in the optimal design
algorithm (Section 7.1.5). By default, these constants are set to 1. The user can change
these values to facilitate the convergence of the algorithm in models with a large number
of parameters.

• CMERGE is the merging constant in the optimal design algorithm that influences the
process of merging design points. The default value of CMERGE is 3 and a larger value
should be considered if the final design includes points with very small weights.

To calculate the information matrix μ(x, θ) and the sensitivity function ψ(x, ξ, θ), we
need to specify the g(x, θ) function introduced in Section 7.2.1. This function is defined in
the %deriv macro. The MATRIX variable is the vector that contains the values of x, and
the vector representing the g(x, θ) function is stored in the DERIVATIVE variable. In this
case, the g(x, θ) function is given by

g(x, θ) =
ez/2

1 + ez
f(x), f(x) = (1, x)T .

Program 7.1 D-optimal design for the two-parameter logistic model (Design parameters, algorithm
parameters and g(x, θ) function)

* Design parameters;
%let points={-1 -0.333 0.333 1};
%let weights={0.25 0.25 0.25 0.25};
%let grid=do(-1,1,0.01);
%let parameter={1 3};
* Algorithm parameters;
%let convc=1e-7;
%let maximit=200;
%let const1=1;
%let const2=1;
%let cmerge=3;
* G function;
%macro deriv(matrix,derivative);

nm=nrow(&matrix);
one=j(nm,1,1);
fm=one||&matrix;
gc=exp(0.5*fm*t(parameter))/(1+exp(fm*t(parameter)));
&derivative=gc#fm;

%mend deriv;
* Optimal design algorithm;
%OptimalDesign1;

Output from Program 7.1

Initial design

Weight X

0.250 -1.000
0.250 -0.333
0.250 0.333
0.250 1.000
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Optimal design

Weight X

0.501 -0.850
0.499 0.180

Determinants of the variance-covariance matrices

INITIAL OPTIMAL

271.1 179.6

Variance-covariance matrix, initial design

COL1 COL2

11.0 9.2
9.2 32.4

Variance-covariance matrix, optimal design

COL1 COL2

9.8 8.7
8.7 26.0

The output produced by Program 7.1 includes the following data sets (Output 7.1):

• INITIAL data set (design points and associated weights in the initial design).
• OPTIMAL data set (design points and associated weights in the D-optimal design).
• DDET data set (determinants of the variance-covariance matrix D(ξ, θ) for the initial

and optimal designs).
• DINITIAL data set (variance-covariance matrix D(ξ, θ) for the initial design).
• DOPTIMAL data set (variance-covariance matrix D(ξ, θ) for the optimal design).

The program also creates two plots (Figure 7.3):

• Plot of the initial and optimal designs.
• Plot of the sensitivity functions associated with the initial and optimal designs.

Output 7.1 shows that the optimal doses are x∗
1 = −0.85 and x∗

2 = 0.18 with equal
weights (see also the left panel in Figure 7.3). This example illustrates a well-known
theoretical result that if a D-optimal design is supported at m points for a model with m
unknown parameters, then the support points have equal weights, wi = 1/m, i = 1, . . . , m;
see Fedorov (1972, Corollary to Theorem 2.3.1). It is easy to check that the optimal doses
are very close to the doses we computed earlier from the equation zopt = ±1.543.

We can also see from Output 7.1 that the determinant of the optimal
variance-covariance matrix is 179.6 compared to the initial value of 271.1. There was also
an improvement in the variance of the parameter estimates. The variance of θ̂1 dropped
from 11.0 to 9.8 and the variance of θ̂2 decreased from 32.4 to 26.0.

The right panel in Figure 7.3 shows that the equivalence theorem serves as an excellent
diagnostic tool in optimization problems. The sensitivity function of the D-optimal design
hits the reference line m = 2 at the optimal doses, i.e., at x = −0.85 and x = 0.18. For the
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Figure 7.3 Left panel: Initial (open circles) and optimal (closed circles) designs. Right panel: Sensitivity func-
tions for the initial (dashed curve) and optimal (solid curve) designs.
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D-criterion, the sensitivity function is identical to the normalized variance of prediction.
Thus, since the sensitivity function of the initial design is greater than m = 2 at the left
end of the dose range, we conclude that

• The initial design is not D-optimal.
• More measurements should be placed at the left end of the design region in order to

reduce the variance of prediction or, equivalently, push the sensitivity function down
below the reference line defined by the equivalence theorem (m = 2).

7.2.3 Example 2: A Two-Parameter Logistic Model with a Narrow Dose Range
In Example 1, we considered the case when the admissible dose range was fairly wide,
X = [−1, 1]. If the dose range is not sufficiently wide, at least one of the D-optimal points
may coincide with the boundary and we will no longer be able to use the simple rule
introduced earlier in this section (zopt = ±1.543).

As an illustration, consider a narrower dose range, X = [0, 1]. To compute the D-optimal
design for the two-parameter logistic model in this case, all we need to do is to modify the
lower boundary of the dose range in Program 7.1. Program 7.2 derives the D-optimal
design for the modified dose range (complete SAS code is given on the book’s companion
Web site).

Program 7.2 D-optimal design for the two-parameter logistic model with a narrow dose range (Algorithm
parameters and g(x, θ) function are identical to those defined in Program 7.1)

* Design parameters;
%let points={0 0.333 0.667 1};
%let weights={0.25 0.25 0.25 0.25};
%let grid=do(0,1,0.025);
%let parameter={1 3};
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Output 7.2

Initial design

Weight X

0.250 0.000
0.250 0.333
0.250 0.667
0.250 1.000

Optimal design

Weight X

0.500 0.000
0.500 0.725

Output 7.2 shows that the resulting D-optimal design is still a two-point design with
equal weights w1 = w2 = 0.5; however, the optimal doses have changed. One dose is now
located at the boundary of the region, x∗

1 = 0, and the other dose has shifted to the right,
x∗

2 = 0.725 (see also Figure 7.4). As was pointed out in Section 7.1.5, optimal designs
depend not only on the information matrix (which is identical to the information matrix in
Example 1) but also on the dose range or, in general, the design region.

Figure 7.4 Left panel: Initial (open circles) and optimal (closed circles) designs. Right panel: Sensitivity func-
tions for the initial (dashed curve) and optimal (solid curve) designs.
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7.3 Nonlinear Regression Models with a Continuous Response
In this section we first formulate the optimal design problem for general nonlinear
regression models and then consider a popular dose-response model with a continuous
response variable (four-parameter logistic, or Emax, model).

7.3.1 General Nonlinear Regression Model
Consider a general nonlinear regression model that is used in the analysis of concentration-
or dose-response curves in a large number of clinical and pre-clinical studies. The model
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describes the relationship between a continuous response variable, Y , and design variable x
(dose or concentration level):

E(yij |xi; θ) = η(xi, θ), i = 1, . . . , n, j = 1, . . . , ni.

Here yij ’s are often assumed to be independent observations with Var(yij |xi; θ) = σ2(xi),
i.e., the variance of the response variable varies across doses or concentration levels. Also,
xi is the design variable that assumes values in a certain region, X . Lastly, θ is an
m-dimensional vector of unknown parameters.

When the response variable Y is normally distributed, the variance matrix of the MLE,
θ̂, can be approximated by D(ξ, θ)/N , see (7.4), and the information matrix of a single
observation is

μ(xi, θ) = g(xi, θ)gT (xi, θ), g(xi, θ) =
f(xi, θ)
σ(xi)

,

where f(x, θ) is a vector of partial derivatives of the response function η(x, θ),

f(x, θ) =
[
∂η(x, θ)

∂θ1
,
∂η(x, θ)

∂θ2
, . . . ,

∂η(x, θ)
∂θm

]T

. (7.10)

Now, as far as optimal experimental design is concerned, the sequence of steps that follow
is exactly the same as for quantal dose-response models that are considered in Section 7.2:

1. Select a preliminary parameter estimate, θ̃.
2. Select an optimality criterion, Ψ = Ψ[D(ξ, θ̃)], e.g., the D-optimality criterion.

3. Construct a locally optimal design ξ∗(θ̃) for the selected criterion.

It is recommended that sensitivity analysis be performed, i.e., steps 1 through 3 must be
repeated for slightly different θ̃s, s = 1, . . . , Ns, to verify robustness of the design ξ∗(θ̃); see
Atkinson and Fedorov (1988).

Since we know that μ(xi, θ) = g(xi, θ)gT (xi, θ), the process of constructing D- or
A-optimal designs for the general nonlinear regression model will be virtually identical to
the process of finding optimal designs for quantal dose-response models (described in detail
in Section 7.2). We need only to redefine the g(x, θ) function that determines the
information matrix μ(x, θ) and sensitivity functions in (7.6) and (7.7) for the D- and
A-optimality criteria, respectively.

7.3.2 Example 3: A Four-Parameter Logistic Model with a
Continuous Response

The four-parameter logistic, or Emax, model, is used in many pharmaceutical applications,
including bioassays (of which ELISA, or enzyme-linked immunosorbent assay, and
cell-based assays are popular examples). See Finney (1976), Karpinski (1990), Hedayat
et al. (1997), Källén and Larsson (1999) for details and references.

This example comes from a study of a compound that inhibits the proliferation of bone
marrow erythroleukemia cells in a cell-based assay (Downing, Fedorov and Leonov, 2001;
Fedorov and Leonov, 2005). The logistic model used in the study is defined as follows:

E(Y |x, θ) = η(x, θ) = θ3 +
θ4 − θ3

1 + (x/θ1)θ2
,

where Y is a continuous outcome variable (number of cells in the assay) and x is the design
variable (concentration level). Further, θ1 is often denoted as ED50 and represents the
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concentration at which the median response (θ3 + θ4)/2 is attained, θ2 is a slope parameter,
θ4 and θ3 are the lower and upper asymptotes (minimal and maximal responses).

As an aside note, the four-parameter logistic model provides an example of a partially
nonlinear model since θ3 and θ4 enter the response function in a linear fashion. This linear
entry implies that the D-optimal design does not depend on values of θ3 and θ4 (Hill, 1980).

Computation of the D-Optimal Design
The vector of unknown parameters θ was estimated by modeling the data collected from a
96-well plate assay, with six repeated measurements at each of the ten concentrations,
{500, 250, 125, . . . , 500/29} ng/ml, which represents a two-fold serial dilution design with
N = 60 and weights wi = 1/10. The estimated parameters are

θ = (15.03, 1.31, 530, 1587)T .

The design region will be set to

X = [ln(500/29), ln(500)] = [−0.024, 6.215]

on a log-scale. The x values will be exponentiated to compute the response function η(x, θ).
Program 7.3 constructs the D-optimal design for the introduced four-parameter logistic

model by calling the %OptimalDesign1 macro. As in Programs 7.1 and 7.2, we need to
define the following parameters and pass them to the macro:

• The initial design is based on ten equally spaced and equally weighted log-transformed
concentration levels within the design region (POINTS and WEIGHTS variables).

• The grid consists of 801 equally spaced points in X = [−0.024, 6.215].
• The true values of the model parameters are specified using the PARAMETER variable.
• The algorithm parameters are identical to those used in Programs 7.1 and 7.2.
• To specify the g(x, θ) function, we need to compute a vector of partial derivatives. The

derivatives are defined in the %deriv macro. The MATRIX variable contains the values
of x. The DER1, DER2, DER3, and DER4 variables represent the derivatives of the
response function with respect to θ1, θ2, θ3, and θ4, respectively, and the DERIVATIVE
variable contains the vector of partial derivatives.

Also, note that in order to improve the stability of the iterative procedure, the merging
constant (CMERGE) needs to be increased to 12.

As before, we will concentrate on the user-defined parameters. The complete SAS code
can be found on the book’s companion Web site.

Program 7.3 D-optimal design for the four-parameter logistic model with a continuous response (Design
parameters, algorithm parameters and g(x, θ) function)

* Design parameters;
%let points=do(-0.024,6.215,6.239/9);
%let weights=repeat(0.1,1,10);
%let grid=do(-0.024,6.215,6.239/800);
%let parameter={15.03 1.31 530 1587};
* Algorithm parameters;
%let convc=1e-9;
%let maximit=1000;
%let const1=1;
%let const2=1;
%let cmerge=12;



168 Pharmaceutical Statistics Using SAS: A Practical Guide

* G function;
%macro deriv(matrix,derivative);

nm=nrow(&matrix);
one=j(nm,1,1);
dera=(parameter[4]-parameter[3])/(1+(exp(&matrix[,1])/parameter[1])

##parameter[2])##2#(parameter[2]/parameter[1])#(exp(&matrix[,1])
/parameter[1])##parameter[2];

derb=-(parameter[4]-parameter[3])/(1+(exp(&matrix[,1])/parameter[1])
##parameter[2])##2#(exp(&matrix[,1])/parameter[1])##parameter[2]
#log(exp(&matrix[,1])/parameter[1]);

derc=1-1/(1+(exp(&matrix[,1])/parameter[1])##parameter[2]);
derd=1/(1+(exp(&matrix[,1])/parameter[1])##parameter[2]);
&derivative=dera||derb||derc||derd;

%mend deriv;
%OptimalDesign1;

Output from Program 7.3

Initial design

Weight X

0.100 -0.024
0.100 0.669
0.100 1.362
0.100 2.056
0.100 2.749
0.100 3.442
0.100 4.135
0.100 4.829
0.100 5.522
0.100 6.215

Optimal design

Weight X

0.250 -0.024
0.250 2.027
0.250 3.540
0.250 6.215

Determinants of the variance-covariance matrices

INITIAL OPTIMAL

0.000031 0.000015

Variance-covariance matrix, initial design

COL1 COL2 COL3 COL4

0.019 0.000 -0.103 -0.283
0.000 0.000 0.027 -0.041

-0.103 0.027 6.745 -3.599
-0.283 -0.041 -3.599 12.639
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Variance-covariance matrix, optimal design

COL1 COL2 COL3 COL4

0.015 0.000 -0.118 -0.181
0.000 0.000 0.013 -0.019
-0.118 0.013 5.086 -1.065
-0.181 -0.019 -1.065 7.087

Output 7.3 shows that the D-optimal design includes two points on the boundary of the
design region (x∗

1 = −0.024 and x∗
4 = 6.215) and two in the middle of the design region

(x∗
2 = 2.027 and x∗

3 = 3.540). The optimal weights are equal to 1/m = 0.25 (compare
Output 7.1); see the left panel in Figure 7.5. As in Examples 1 and 2 given in Section 7.2,
the sensitivity function is equal to the number of the model parameters, m = 4, at the
optimal concentrations (see the right panel in Figure 7.5).

Figure 7.5 Left panel: Initial (open circles) and optimal (closed circles) designs. Right panel: Sensitivity func-
tions for the initial (dashed curve) and optimal (solid curve) designs.
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Output 7.3 also helps compare characteristics of the initial and optimal designs. The
determinant of the final variance-covariance matrix is 1.5×10−5, compared to the value of
3.1×10−5 for the initial design. The variance of individual parameter estimates has
improved, too. For example, the variance of θ1 has dropped from 0.019 to 0.015. Parameter
θ1, or ED50, is usually the most important for practitioners. This example illustrates a
good performance of a D-optimal design with respect to other criteria of optimality, like
c-criterion for the estimation of θ1.

7.4 Regression Models with Unknown Parameters in the
Variance Function
In various pharmaceutical applications it is often assumed that the variance of the error
term, σ2, depends not only on the control variable x, but also on the unknown parameter θ,
i.e., σ2

i = S(xi, θ).
Consider, for instance, the four-parameter logistic model introduced in Section 7.2. The

variance of the response variable, Y , may depend on its mean, as in the following power
model (Finney, 1976; Karpinski, 1990; Hedayat et al., 1997):

Var(Y |x, θ) = S(x, θ) ∼ ηδ(x, θ), δ > 0,
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In cell-based assay studies, the response variable is a cell count and is often assumed to
follow a Poisson distribution. Under this assumption, one can consider a power variance
model with δ = 1.

Another possible generalization of the nonlinear regression models considered in
Section 7.2 is a regression model with multiple correlated responses. Multiple correlated
responses are encountered in clinical trials with several endpoints or several objectives, e.g.,
simultaneous investigation of efficacy and toxicity in dose response studies (Heise and
Myers, 1996; Fan and Chaloner, 2001).

7.4.1 General Model
Let the observed response Y be a normally distributed k-dimensional vector with

E[Y |x] = η(x, θ), Var[Y |x] = S(x, θ), (7.11)

where η(x, θ) = (η1(x, θ), . . . , ηk(x, θ))T is a vector of pre-defined functions and S(x, θ) is a
k × k positive definite matrix. It can be shown that the Fisher information matrix of a
single observation, μ(x, θ), is the sum of two terms; see Magnus and Neudecker, 1988,
Chapter 6, or Muirhead, 1982, Chapter 1:

μ(x, θ) = μR(x, θ) + μV (x, θ), (7.12)

μR
ij(x, θ) =

∂ηT (x, θ)
∂θi

S−1(x, θ)
∂η(x, θ)

∂θj
, i, j = 1, . . . , m,

μV
ij(x, θ) =

1
2
tr

[
S−1(x, θ)

∂S(x, θ)
∂θi

S−1(x, θ)
∂S(x, θ)

∂θj

]
,

where m is the number of unknown parameters. In the univariate case (k = 1), μ(x, θ)
permits the following factorization:

μ(x, θ) = gR(x, θ)gT
R(x, θ) + gV (x, θ)gT

V (x, θ), (7.13)

where

gR(x, θ) =
f(x, θ)√
S(x, θ)

, gV (x, θ) =
h(x, θ)√
2S(x, θ)

,

f(x, θ) is the vector of partial derivatives of η(x, θ) as in (7.10) and h(x, θ) is the vector of
partial derivatives of S(x, θ) with respect to θ, i.e.,

h(x, θ) =
[
∂S(x, θ)

∂θ1
,

∂S(x, θ)
∂θ2

, . . . ,
∂S(x, θ)

∂θm

]T

. (7.14)

It is important to note that, since the information matrix μ(x, θ) consists of two terms,
its rank may be greater than 1 even in the univariate case. This may lead to the situation
when the number of support points in the optimal design is less than the number of
unknown parameters, i.e., less than m (see Downing, Fedorov and Leonov (2001) or Fan
and Chaloner (2001) for examples). This cannot happen in regression models with a single
response variable and a known variance since in this case the information matrix of the
design would become singular.

Sensitivity Functions

Using classic optimal design techniques, it can be shown that the equivalence theorem
(7.6), (7.7) remains valid for multivariate models in which the covariance matrix depends
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on unknown parameters (Atkinson and Cook, 1995; Fedorov, Gagnon and Leonov, 2002).
In the univariate case, sensitivity functions for the D- and A-optimality criteria can be
presented as the sum of two terms and can be factorized too. For example, the sensitivity
function for the D-optimality criterion can be written as

ψ(x, ξ, θ) = gR(x, θ)M−1(ξ, θ)gT
R(x, θ) + gV (x, θ)M−1(ξ, θ)gT

V (x, θ).

7.4.2 Example 4: A Four-Parameter Logistic Model with a Power Variance
Model

This example is concerned with the computation of the D-optimal design in a
four-parameter logistic model that extends the logistic model considered in Example 3 (see
Section 7.3). Assume that Y is a normally distributed response variable with

E[Y |x] = η(x, θ) = θ3 +
θ4 − θ3

1 + (x/θ1)θ2
,

Var[Y |x] = S(x, θ) = δ1η
δ2(x, θ),

where δ1 and δ2 are positive parameters.
Parameters θ1 − θ4 are selected as in Example 3, i.e., θ = (15.03, 1.31, 530, 1587)T and

δ1 = 0.5, δ2 = 1. The combined vector of model parameters is (15.03, 1.31, 530, 1587, 0.5, 1)T .

Computation of the D-Optimal Design
Program 7.4 computes the D-optimal design for the four-parameter logistic model specified
above. This program is conceptually similar to Program 7.3. We need only to make the
following changes:

• Add the two variance parameters to the PARAMETER variable.
• Change the method of calculating the derivatives since the analytic form of the

derivatives is rather complicated. The %deriv macro computes gR(x, θ) numerically
using the NLPFDD function. Since the information matrix and sensitivity function also
depend on gV (x, θ), we introduce a new macro (%derivs) that calculates this function
gV (x, θ) (it is also derived using a numerical approximation).

• Since the information matrix is now the sum of two terms, the %infod macro needs to
be modified as well.

• As in Program 7.3, the value of the merging constant (CMERGE) is increased to
improve the stability of the iterative procedure in this complex optimal design problem.

The complete version of Program 7.4 is provided on the book’s companion Web site.

Program 7.4 D-optimal design for the four-parameter logistic model with a continuous response and
unknown parameters in the variance function (Design and algorithm parameters)

* Design parameters;
%let points=do(-0.024,6.215,6.239/7);
%let weights=repeat(0.125,1,8);
%let grid=do(-0.024,6.215,6.239/400);
%let parameter={15.03 1.31 530 1587 0.5 1};
* Number of parameters;
%let paran=6;
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* Algorithm parameters;
%let convc=1e-9;
%let maximit=1000;
%let const1=1;
%let const2=1.2;
%let cmerge=7.5;
%OptimalDesign1;

Output from Program 7.4

Initial design

Weight X

0.125 -0.024
0.125 0.867
0.125 1.759
0.125 2.650
0.125 3.541
0.125 4.432
0.125 5.324
0.125 6.215

Optimal design

Weight X

0.294 -0.024
0.213 1.972
0.236 3.563
0.257 6.215

Output 7.4 lists the initial and optimal designs. Other parameters of the two designs,
e.g., the variance-covariance matrices and their determinants, can be obtained by printing
out the DINITIAL, DOPTIMAL, and DDET data sets. It was emphasized above that, in
models with unknown parameters in the variance function, the number of support points in
optimal designs can be less than the number of model parameters. Indeed, Output 7.4
shows that, although there are two more unknown parameters in this model compared to
the model with a constant variance (Example 3 of Section 7.3), the D-optimal design is still
a four-point design. The weights are no longer equal to 1/4, and are equal to
(0.294, 0.213, 0.236, 0.257) for the four design points (−0.024, 1.972, 3.563, 6.215) on the
log-scale.

Figure 7.6 provides a visual comparison of the initial and optimal designs (left panel)
and also plots the sensitivity functions associated with the two designs (right panel).

7.5 Models with a Bounded Response (Beta Models)
The Beta regression model provides another example where the information matrix can be
calculated in a closed form.

7.5.1 General Model
In clinical trials, investigators often need to deal with ordinal variables containing many
categories. The Beta regression model has been shown to be a good choice to analyze this
type of response; see Wu, Fedorov and Propert (2005).
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Figure 7.6 Left panel: Initial (open circles) and optimal (closed circles) designs. Right panel: Sensitivity func-
tions for the initial (dashed curve) and optimal (solid curve) designs.
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In this section we consider an example from a randomized, double-blind,
placebo-controlled, parallel group clinical trial. Each patient was randomized to one of four
treatment arms, with 0, 2, 4, and 8 dose units, respectively. The observations were taken at
baseline and the end of the study at 6 months. The response is a severity measure score
that varies between 0 and 1 on the normalized scale, with hundreds of levels. Higher scores
indicate higher degrees of severity of the illness.

After investigating the data on the descriptive level, we observed that the median score
has a slightly decreasing trend when dose increases. But the difference may not be big
enough to be statistically and/or clinically significant. However, the 8 dose units group has
a smaller variance than the other groups. Even among the other three treatment groups,
the estimated population variances are different from one group to another. These facts
indicate that, although the drug did not reduce the overall mean response, it might be
effective in some subjects.

Let yij denote the response rate from patient j under dose level xi and assume that yij

follows the Beta distribution with parameters p(xi) and q(xi). We can model p(xi) and
q(xi) as a function of the dose x:

ln p(x) = αT f(x) and ln q(x) = βT φ(x), (7.15)

Note that

E(yij) =
p(xi)

p(xi) + q(xi)
, Var(yij) =

p(xi)q(xi)
(p(xi) + q(xi))2(p(xi) + q(xi) + 1)2 ,

where B(p, q) = Γ(p)Γ(q)/Γ(p + q) and Γ(p) =
∫ ∞
0 tp−1e−tdt is the Gamma function. Let

θ = (αT , βT ), denote p(xi) and q(xi) as pi and qi, respectively, and consider the Digamma or
Trigamma functions (Abramowitz and Stegun, 1972):

ΨΓ(v) =
d lnΓ(v)

dv
, Ψ′(v) =

dΨΓ(v)
dv

.

The information matrix μ(xi, θ) of a single observation at point xi is given by(
[Ψ′(pi) − Ψ′(pi + qi)]p2

i f(xi)fT (xi) −Ψ′(pi + qi)piqif(xi)φT (xi)
−Ψ′(pi + qi)piqiφ(xi)fT (xi) [Ψ′(pi) − Ψ′(pi + qi)]p2

i φ(xi)φT (xi)

)
. (7.16)

The information matrix of N experiments, with ni independent observations at dose xi,
admits presentation (7.2).
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Here we consider a simple example with α = (α1, α2)T , β = (β1, β2)T , and
f(x) = φ(x) = (1, x)T . In that case the individual information matrix may be written as
follows:

μ(xi, θ) =
(

[Ψ′(pi) − Ψ′(pi + qi)]p2
i −Ψ′(pi + qi)piqi

−Ψ′(pi + qi)piqi [Ψ′(pi) − Ψ′(pi + qi)]p2
i

) ⊗(
1 xi

xi x2
i

)
, (7.17)

where
⊗

is the Kronecker product.
Figure 7.7 displays the fitted Beta densities for each treatment group with

θ = (α1, α2, β1, β2)T = (4,−0.49, 3.9, 0.15)T .

The figure shows that, as the dose level increases, the mean response becomes smaller and
thus we see evidence of a drug effect. Note also that the variance of the response variable
clearly changes with the average response level and the highest dose group has the smallest
variance.

Figure 7.7 Distribution of simulated responses in each treatment group
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Unlike quantal dose-response models discussed in Section 7.2 or continuous logistic
models from Sections 7.3–7.4, the presentation (7.16) for the information matrix of the
Beta regression model cannot be factorized. As a result, the general formulas (7.6) and
(7.7) have to be implemented in this case.

7.5.2 Example 5: Beta Regression Model
To construct a D-optimal design for the clinical trial example discussed above, we use the
following Beta regression model:

ln p(x) = 4 − 0.49x, ln q(x) = 3.9 + 0.15x.

Program 7.5 computes a D-optimal design for the Beta regression model by calling the
%OptimalDesign2 macro. The initial design contains 6 equally spaced doses between 0 and
8 dose units, i.e., X = [0, 8]. The true value of the parameter vector is
θ = (4,−0.49, 3.9, 0.15)T .

The overall optimal design algorithm in this problem remains the same; however, unlike
the previous examples, the information matrix is calculated directly, without using partial
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derivatives of the response function. Therefore, in this example (and subsequent examples
in this chapter) the user does not need to specify the %deriv1 or %deriv2 macros. The
direct calculation of the information matrix relies on the %Info, %infoele and %indinfo
macros. The analytical form of the information matrix is specified in the %info macro. The
%infoele macro is needed to store the individual information matrices based on the values
of covariates on the grid. Elements of the information matrices are stored in different
vectors based on the position in the matrix. Note that the information matrix is a
symmetric matrix so only the upper (lower) triangular matrix is needed when storing it.
For example, the ELEO14 vector contains the elements in the first row, fourth column of
all the information matrices. The %indinfo macro outputs the individual information
matrix for a given candidate point (note that the MDERIV macro variable is not used in
this program and can be set to any value). The complete SAS code for the updated macros
is provided on the book’s companion Web site.

Program 7.5 D-optimal design for the beta regression model (Design and algorithm parameters)

* Design parameters;
%let points=do(0,8,8/5);
%let weights=repeat(1/6,1,6);
%let grid=do(0,8,8/200);
%let parameter={4 -0.49 3.9 0.15};
* Number of parameters;
%let paran=4;
* Algorithm parameters;
%let convc=1e-9;
%let maximit=1000;
%let const1=2;
%let const2=1;
%let cmerge=5;
%OptimalDesign2;

Output from Program 7.5

Initial design

Weight X

0.167 0.000
0.167 1.600
0.167 3.200
0.167 4.800
0.167 6.400
0.167 8.000

Optimal design

Weight X

0.491 0.000
0.071 4.280
0.438 8.000

Output 7.5 shows the 6-point initial and 3-point optimal designs. Note that most of the
weight in this D-optimal design is assigned to the two points on the boundaries of the dose
range (placebo and 8 dose units). The middle point receives very little weight (only 7% of
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the patients will be allocated to this dose). Figure 7.8 displays the initial and optimal
designs and their sensitivity functions.

Figure 7.8 Left panel: Initial (open circles) and optimal (closed circles) designs. Right panel: Sensitivity func-
tions for the initial (dashed curve) and optimal (solid curve) designs.
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7.6 Models with a Bounded Response (Logit Link)
The Beta regression model takes care of the bounded variable naturally (by definition). In
this section we introduce an alternative way to model the dose-response trial example from
Section 7.5, using the linear regression model framework. After a simple transformation,
the responses are not bounded and can be treated as normally distributed variables.
Furthermore, to address the relationship between variance and dose level, one can model
the variance as a function of the dose.

7.6.1 One-Dimensional Case
The model with a single drug can be written as

ln
B − Y

Y − A
= θ1 + θ2x + σ2(x, θ)ε,

where the variance function is defined as follows

σ2(x, θ) = exp(θ3 + θ4x).

Further, Y is the response varying from A to B, x denotes the dose, and the error term is
normally distributed, i.e., ε ∼ N(0, 1).

In this example we take A = 0 and B = 1. Note that this model provides another
example of models with unknown parameters in the variance function (compare with
(7.11)). Thus formulas (7.13) and (7.14) can be applied here, with

f(x, θ) = (1, x, 0, 0)T , h(x, θ) = (0, 0, 1/
√

2, x/
√

2)T .

The information matrix of a single observation is

μ(x, θ) =
( 1

exp(θ3+θ4x) 0
0 0.5

) ⊗(
1 x
x x2

)
.

It follows from this equation that an optimal design will depend only on the values of θ3
and θ4.
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7.6.2 Example 6: A Bounded-Response Model with a Logit Link and Unknown
Parameters in the Variance Function

Program 7.6 calls the %OptimalDesign2 macro to find the D-optimal design for the
bounded-response model defined earlier in this subsection. We need to change the %infoele
macro that computes the information matrix and remove the %devpsi macro. The other
macros do not change compared to Example 5. The complete SAS code for Program 7.6
can be found on the book’s companion Web site.

Note that, as in Program 7.5, the initial design includes six equally spaced points in the
dose region X = [0, 8]. The parameter verctor is given by θ = (1,−0.5, 1,−0.6)T and the
fitted normal densities for each treatment group are displayed in Figure 7.9 (the densities
are shown on a normal scale, i.e., ln(1 − y)/y). As in Figure 7.7, we see that, as the dose
level increases, the mean response (disease severity) decreases and the variance decreases as
well.

Figure 7.9 Distribution of the response variable in each treatment group
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Program 7.6 D-optimal design for the bounded-response model with a logit link and unknown parameters in
the variance function (Design and algorithm parameters)

* Design parameters;
%let points=do(0,8,8/5);
%let weights=repeat(1/6,1,6);
%let grid=do(0,8,8/400);
%let parameter={-1 0.5 -1 -0.6};
* Number of parameters;
%let paran=4;
* Algorithm parameters;
%let convc=1e-9;
%let maximit=1000;
%let const1=1;
%let const2=1;
%let cmerge=3;
%OptimalDesign2;
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Output from Program 7.6

Initial design

Weight X

0.167 0.000
0.167 1.600
0.167 3.200
0.167 4.800
0.167 6.400
0.167 8.000

Optimal design

Weight X

0.307 0.000
0.228 4.720
0.465 8.000

Output 7.6 displays the initial and D-optimal designs. The optimal design is a
three-point design with two points on the boundaries and one design point inside the
design region. Comparing this optimal design with the design shown in Output 7.5, it is
easy to see that the middle dose (4.720) is not much different from the optimal middle dose
computed from the Beta regression model (4.280); however, it receives a much greater
weight. The initial and optimal designs as well as the associated sensitivity functions are
depicted in Figure 7.10.

Figure 7.10 Left panel: Initial (open circles) and optimal (closed circles) designs. Right panel: Sensitivity
functions for the initial (dashed curve) and optimal (solid curve) designs.
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7.6.3 Models with a Bounded Response (Combination of Two Drugs)
Under the same dose-response set-up as in Section 7.5, we now consider the case of a
two-drug combination: Drug A and Drug B. The daily dose of each drug ranges from 0.1
mg to 10 mg. Due to safety restrictions in drug development, often it is not safe to assign
patients to the treatment with both drugs at the highest dose. In this example, we require
that the total dose of the two drugs cannot exceed 10.1 mg. Note that the resulting design
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region is not square, it is a triangle.
Let x and z denote the daily doses of Drugs A and B, respectively. The corresponding

model is

ln
1 − y

y
= θ1 + θ2x + θ3z + θ4xz + θ5x

2 + θ6z
2 + σ2(x, θ, z)ε,

where the variance function is given by

σ2(x, θ, z) = exp(θ7 + θ8x + θ9z).

It can be shown that the information matrix of a single observation is

μ(xi, zj , θ) =
(

exp(−θ7 − θ8xi − θ9zj)f1f
T
1 0

0 0.5f2f
T
2

)
,

where i = 1, . . . , n, j = 1, . . . , n,

f1 = (1, xi, zj , xi, zj , x2
i , z2

j )
T , f2 = (1, xi, zj)T .

Here n is the number of possible doses of each drug. Note that, similar to the
one-dimensional case considered in Example 6, the optimal design depends only on the
parameters of the variance function, i.e., θ7, θ8 and θ9.

7.6.4 Example 7: Two Design Variables (Two Drugs)
Program 7.7 computes the D-optimal design for the introduced model. This program calls
the %OptimalDesign3 macro that supports a two-dimensional version of the optimal design
algorithm defined in Section 7.1.5. The design parameters are specified in the
%DesignParameters macro and then they are passed to the %OptimalDesign3 macro. The
initial design (POINTS and WEIGHTS variables) includes ten equally weighted points
that are evenly distributed across the triangular design region:

0.1 ≤ x ≤ 10, 0.1 ≤ z ≤ 10, x + z ≤ 10.1.

Program 7.7 D-optimal design for the bounded-response model with two design variables (Design and
algorithm parameters)

%macro DesignParameters;
* Initial design: Design points;
* Four equally spaced doses for each drug;
dosen=4;
* Total number of points;
dosem=dosen*(dosen+1)/2;
points=j(dosem,2,0);
k=0;
do i=1 to dosen;

do j=1 to dosen-i+1;
k=k+1;
points[k,1]=0.1+(i-1)*9.9/(dosen-1);
points[k,2]=0.1+(j-1)*9.9/(dosen-1);

end;
end;
* Initial design: Weights;
* Equally weighted points;
weights=t(repeat(1/10,1,10));
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* Grid;
* 26 equally spaced points on each axis;
gridn=26;
gridm=gridn*(gridn+1)/2;
grid=j(gridm,2,0);
k=0;
do i=1 to gridn;

do j=1 to gridn-i+1;
k=k+1;
grid[k,1]=0.1+(i-1)*9.9/(gridn-1);
grid[k,2]=0.1+(j-1)*9.9/(gridn-1);

end;
end;
* Parameter values;
para={1 1 1 1 1 1 1 0.6 0.4};

%mend DesignParameters;
* Number of parameters;
%let paran=9;
* Algorithm parameters;
%let convc=1e-9;
%let maximit=500;
%let const1=1;
%let const2=1;
%let cmerge=3;
%OptimalDesign3;

Output from Program 7.7

Initial design

Drug Drug
Weight A B

0.10 0.10 0.10
0.10 0.10 3.40
0.10 0.10 6.70
0.10 0.10 10.0
0.10 3.40 0.10
0.10 3.40 3.40
0.10 3.40 6.70
0.10 6.70 0.10
0.10 6.70 3.40
0.10 10.0 0.10

Optimal design

Drug Drug
Weight A B

0.17 0.10 0.10
0.14 0.10 2.87
0.20 0.10 10.0
0.14 2.48 0.10
0.14 3.66 5.64
0.21 10.0 0.10
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Figure 7.11 Left panel: two-dimensional grid for the optimal design problem involving a combination therapy
(dots) and initial design (open circles). Right panel: optimal design (closed circles)
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The grid (GRID variable) consists of 351 points in the design region. Figure 7.11 (left
panel) depicts the selected grid (dots) and initial design (open circles). The parameter
vector (PARAMETER variable) is given by

θ = (1, 1, 1, 1, 1, 1, 1, 0.6, 0.4).

The information matrix and sensitivity function are defined using the %infoele,
%indinfo, and %info macros. The complete version of Program 7.7 is given on the book’s
companion Web site.

Output 7.7 displays the initial and D-optimal designs. The right panel of Figure 7.11
provides a graphical summary of the optimal design (closed circles). It is worth noting that
five of the six points in the optimal design lie on the boundary of the design region. The
corresponding combination therapies involve the minimum dose (0.1 mg) of at least one of
the two drugs. There is only one “non-trivial” combination with 3.7 mg of Drug A and 5.6
mg of Drug B.

7.7 Bivariate Probit Models for Correlated Binary Responses
In clinical trial analysis, the toxicity and efficacy responses usually occur together and it
may be useful to assess them together. However, in practice the assessment of toxicity and
efficacy is sometimes separated. For example, determining the maximum tolerated dose
(MTD) is based on toxicity alone and then efficacy is evaluated in Phase II trials over the
predetermined dose range. Obviously, the fact that the two responses from the same
patient are correlated will introduce complexity into the analysis. But if we study these
outcomes simultaneously, more information will be gained for future trials and treatment
effects will be understood more thoroughly. In drug-response relationship, the correlation
between efficacy and toxicity can be negative or positive depending on the therapeutical
area. Two commonly used models, the Gumbel model (Kotz et al., 2000) and the bivariate
binary Cox model (Cox, 1970), have been introduced to incorporate the two dependent
outcomes, toxicity and efficacy, when both of them are dichotomous. In those two models,
we need to model the probabilities of different outcome combinations separately. When
both outcomes are binary, the total number of combinations is four, but when outcomes
contain more than two categories, the number of unknown parameters may increase
dramatically. Here we propose a bivariate probit model which incorporates the correlated
responses naturally via the correlation structure of the underlying bivariate normal
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distribution; see Lesaffre and Molenberghs (1991). When the number of responses is more
than two, the multivariate probit model may be used in a similar fashion.

Let Y = {0 or 1} denote the efficacy response and U = {0 or 1} denote the toxicity
response in a clinical trial. Here 0 indicates no response and 1 indicates a response. Let d
denote the dose of a drug and

pyu(x) = P (Y = y, U = u|d = x), y, u = 0 or 1.

Assume that Z1 and Z2 follow bivariate normal distribution with zero mean and
variance-covariance matrix

Σ =
(

1 ρ
ρ 1

)
,

where ρ may be interpreted as the correlation measure between toxicity and efficacy for the
same patient. This set-up may be viewed as a standardization of the observed responses Y
and U since under the natural scale the mean and variance vary from study to study. After
simple transformation, the correlated responses follow the standard bivariate normal
distribution,

p11 = F (θT
1 f1, θ

T
2 f2) =

∫ θT
1 f1

−∞

∫ θT
2 f2

−∞

1
2π|Σ|1/2 exp(−1

2
ZT Σ−1Z)dz1dz2,

where θ1, θ2 are unknown parameters and f1(x) and f2(x) contain the covariates of interest.
In this section, we will study a simple linear model defined as follows (refer to Fedorov,
Dragalin, and Wu, 2006).

θT
1 f1 = θ11 + θ12x, θT

2 f2 = θ21 + θ22x.

In this case, the efficacy and toxicity response rates (p1. and p.1, respectively) can be
expressed as the marginals of the bivariate normal distribution,

p1. = Φ(θT
1 f1), p.1 = Φ(θT

2 f2),

where Φ(z) is the cumulative distribution function of the standard normal distribution.
Note that p11, p1., and p.1 uniquely define the joint distribution of Y and U , i.e.,
p10 = p1. − p11, p01 = p.1 − p11 and p00 = 1 − p1. − p.1 + p11.

Assume that the {yi, ui}’s are independent for different i’s. Then the likelihood function
for {Y,U} is given by

L(Y,U |θ) =
N∏

i=1

yiui log p11 + yi(1 − ui) log p01 + (1 − yi)(1 − ui) log p00.

The information matrix of a single observation is[
[C1C2]

⊗
f

ϕ2 −ϕ2 −ϕ2

]
(P − ppT )−1

[
[C1C2]

⊗
f

ϕ2 −ϕ2 −ϕ2

]T

,

where

C1 =
(

ϕ(θT
1 f) 0
0 ϕ(θT

2 f)

)
, C2 =

(
F (u1) 1 − F (u1) −F (u1)
F (u2) −F (u2) 1 − F (u2)

)
,

u1 =
θT
2 f2 − ρθT

1 f1√
1 − ρ2

, u2 =
θT
1 f1 − ρθT

2 f2√
1 − ρ2

,

P =

⎛⎝ p11 0 0
0 p10 0
0 0 p01

⎞⎠ , p = (p11 p10 p01)T ,

ϕ(v) denotes the probability density function of the standard normal distribution,
ϕ2 = f(θT

1 f, θT
2 f, ρ) denotes the probability density function of bivariate normal distribution

with mean θT
1 f1 and θT

2 f2, variance 1 and correlation coefficient ρ.
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7.7.1 Example 8: A Bivariate Probit Model for Correlated Binary Responses
(Efficacy and Toxicity)

Consider the problem of constructing the D-optimal design for the following model:

θT
1 f1 = −0.9 + 10x, θT

2 f2 = −1.2 + 1.6x, ρ = 0.5.

Here x denotes the dose of the experimental drug with the dose range given by X = [0, 1].
Figure 7.12 depicts the response probabilities for

θ = (−0.9, 10,−1.2, 1.6)T and ρ = 0.5.

This setting represents a scenario which is often encountered in clinical trial applications.
The probabilities of efficacy and toxicity responses, p.1 and p1., are both increasing as the
dose increases. On the other hand, probability of “positive” response p10 (i.e., probability of
positive efficacy and no toxicity) increases at the beginning. Then, at a certain dose level it
begins to decrease (the probability of having a positive efficacy response without any side
effects is low at high dose levels).

Figure 7.12 Bivariate probit model, probability of positive response (solid line), probability of efficacy response
(dashed line), and probability of toxicity response (dotted line)
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Program 7.8 constructs the D-optimal design for the described bivariate probit model
by calling the %OptimalDesign4 macro. The initial design includes four equally spaced
doses in the dose range X = [0, 1] (POINTS variable), and the doses are assumed to be
equally weighted (WEIGHTS variable). The grid consists of 401 equally spaced points
(GRID variable), and the PARAMETER variable specifies the true values of θ and ρ. The
information matrix and sensitivity function are computed using the %infoele, %info, and
%infod macros. The complete version of Program 7.8 is provided on the book’s companion
Web site.
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Program 7.8 D-optimal design for the bivariate probit model with correlated binary responses (Design and
algorithm parameters)

* Design parameters;
%let points={0 0.333 0.667 1};
%let weights={0.25 0.25 0.25 0.25};
%let grid=do(0,1,1/400);
%let parameter={-0.9 10 -1.2 1.6 0.5};
* Number of parameters;
%let paran=5;
* Algorithm parameters;
%let convc=1e-9;
%let maximit=1000;
%let const1=1;
%let const2=1;
%let cmerge=5;
%OptimalDesign4;

Output from Program 7.8

Initial design

Weight X

0.250 0.000
0.250 0.333
0.250 0.667
0.250 1.000

Optimal design

Weight X

0.451 0.000
0.356 0.180
0.194 1.000

Output 7.8 displays the initial and D-optimal designs. The locally D-optimal design is a
three-point design with unequal weights. Two optimal doses are on the boundaries of the
dose range (x∗

1 = 0, x∗
2 = 1) and the other optimal dose lies in the middle (x∗

3 = 0.18).
Almost half of the patients are assigned to the lowest dose and about 20% of patients are
assigned to the highest dose. Figure 7.13 depicts the initial and optimal designs as well as
the sensitivity funtions.

7.8 Pharmacokinetic Models with Multiple Measurements per Patient
In this section we discuss a clinical pharmacokinetic (PK) study where multiple blood
samples are taken for each enrolled patient. This setup leads to nonlinear mixed effects
regression models with multiple responses.

7.8.1 Two-Compartment Pharmacokinetic Model
Consider a clinical trial in which the drug was administered as a bolus input D0 at the
beginning of the study (at time x = 0) and then bolus inputs Di were administered at 12-
or 24-hour intervals until 72 hours after the first dose. To describe the concentration of
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Figure 7.13 Left panel: Initial (open circles) and optimal (closed circles) designs. Right panel: Sensitivity
functions for the initial (dashed curve) and optimal (solid curve) designs.
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drug at time x, a two-compartment model was used with standard parameterization
(volume of distribution V , transfer rate constants K12, K21, and K10), see Figure 7.14.

Figure 7.14 Diagram of the two-compartment model
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Measurements of drug concentration yij were taken from the central compartment
(compartment 1 in Fig. 7.14) at times xj for each patient,

yij =
g1(xj)

Vi
+ zij , i = 1, . . . , N, j = 1, . . . , k, (7.18)

g1(xj) = g1(xj , γi) is the amount of the drug in the central compartment at time xj for
patient i, γi = (Vi, K12,i, K21,i, K10,i) are individual PK parameters of patient i, and zij are
measurement errors. The g1 function and population model are discussed in more detail
below.

In the trial under consideration, k = 16 samples were taken from each patient at times
xj ∈ X ,

xj ∈ X = {5, 15, 30, 45 min; 1, 2, 3, 4, 5, 6, 12, 24, 36, 48, 72, 144 h}.

Obviously, each extra sample provides additional information and increases the precision of
parameter estimates. However, the number of samples that may be drawn from each
patient is restricted because of blood volume limitations and other logistical and ethical
reasons. Moreover, the analysis of each sample is associated with monetary costs.
Therefore, it is reasonable to take the cost of drawing samples into account. If
X = (x1, ..., xk) is a collection of sampling times for a particular patient, we can consider
the cost of the sampling sequence X (denoted by c(X)).
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In this section we will consider the following questions:

1. Given restrictions on the number of samples for each patient, what are the optimal
sampling times (i.e., how many samples and at which times)?

2. If not all 16 samples are taken, what would be the loss of information/precision?
3. If costs are taken into account, what is the optimal sampling scheme? Cost-based

designs will be discussed in detail in Section 7.9.

By an optimal sampling scheme we mean a sequence which allows us to obtain the best
precision of parameter estimates in terms of their variance-covariance matrix and the
selected optimality criterion. First, we need to define the regression model with multiple
responses, see (7.11). In this and next sections, X will denote a k-dimensional vector of
sampling times and Y will be a k-dimensional vector of measurements at times X.

7.8.2 Regression Model
A two-compartment model described by the following system of linear differential
equations was used to model the data:{

q̇1(x) = −
(
K12 + K10

)
q1(x) +K21q2(x)

q̇2(x) = +K12q1(x) −K21q2(x), (7.19)

for x ∈ [ti, ti+1) with initial conditions

q1(ti) = q1(ti − 0) + Di, q1(0) = D0, q2(0) = 0,

where q1(x) and q2(x) are amounts of the drug at time x in the central and peripheral
compartments, respectively; ti is a time of i-th bolus input, t0=0; Di is the amount of the
drug administered at ti.

The solution of the system (7.19) is a sum of exponential functions which depend on
parameters (Gibaldi and Perrier, 1982, Appendix B):

γ = (V,K12, K21, K10)T , q(x) = [q1(x, γ), q2(x, γ)].

In population modeling it is often assumed that the γi parameters for patient i are
independently sampled from the normal population with

E(γi) = γ0,Var(γi) = Λ, i = 1, . . . , N, (7.20)

where the mγ-dimensional vector γ0 and (mγ × mγ) matrix Λ are usually referred to as the
“population”, or “global”, parameters; see Gagnon and Leonov (2005) for a discussion on
other population distributions.

To fit the model, it was assumed that the variance of the error term zij in (7.18)
depends on the model parameters through the mean response,

zij = ε1,ij + ε2,ij
q1(xj)

Vi
, (7.21)

where ε1,ij and ε2,ij are independent, identically distributed random variables with zero
mean and variance σ2

1 and σ2
2, respectively.

Let θ = (γ0,Λ, σ2
1 , σ

2
2)T denote a combined vector of model parameters and ki denote the

number of samples taken for patient i. Let

Xi = (x1i, x2i, . . . , xki,i)
T and Yi = (y1i, y2i, . . . , yki,i)

T
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be sampling times and measured concentrations, respectively, for patient i. Further,
η(xji, γi) = q1(xji, γi)/Vi, η(xji, θ) = q1(xji, γ

0)/V and

η(Xi, θ) = [η(x1i, θ), . . . , η(xki,i, θ)]
T

,

where j = 1, 2, . . . , ki.
If F is a (ki × mγ) matrix of partial derivatives of function η(Xi, θ) with respect to

parameters γ0,

F = F (Xi, γ
0) =

[
∂η(Xi, θ)

∂γα

]∣∣∣∣
γ=γ0

,

then, using the first order approximation together with (7.20) and (7.21), one obtains the
following approximation of the variance-covariance matrix S(Xi, θ) for Yi,

S(Xi, θ) 	 FΛF T + σ2
2Diag[η(Xi, θ)ηT (Xi, θ) + FΛF T ] + σ2

1Iki , (7.22)

where Diag(A) denotes a diagonal matrix with elements aii on the diagonal; see also
Fedorov, Gagnon and Leonov (2002; Section 4). If the γ parameters are assumed to be
log-normally distributed, then Λ on the right-hand side of (7.22) has to be replaced with

Λ1 = Diag(γ0)ΛDiag(γ0),

for details, see Gagnon and Leonov (2005). Therefore, for any sequence Xi, the response
vector η(Xi, θ) and variance-covariance matrix S(Xi, θ) are defined, and we can use general
formula (7.12) to calculate the information matrix μ(Xi, θ).

7.8.3 Example 9: Pharmacokinetic Model without Cost Constraints
Consider a problem of selecting an optimal sampling scheme with a single bolus input at
time x = 0. SAS code for generating optimal designs for the general case of multiple bolus
inputs is available (Gagnon and Leonov, 2005), but the complexity of this code is beyond
the scope of the chapter.

To fit the data, the K12 and K21 parameters were treated as constants (K12 = 0.400,
K21 = 0.345), i.e., they were not accounted for while calculating the information matrix
μ(x, θ). Therefore, the combined vector of unknown parameters θ was defined as

θ =
(
γ0

1 , γ
0
2 ;λ11, λ22, λ12;σ2

1 , σ
2
2
)
,

where

γ0
1 = CL, γ0

2 = V, λ11 = Var(CL), λ12 = Cov(CL, V ), λ22 = Var(V ),

CL is the plasma clearance, and K10 = CL/V . The total number of unknown parameters is
m = 7.

To construct locally optimal designs, we obtained the parameter estimates θ̂ using the
NONMEM software (Beal and Sheiner, 1992) based on 16 samples (from the design region
X ) for each of 27 subjects. The resulting estimate is given by

θ̂ = (0.211, 5.50; 0.0365, 0.0949, 0.0443; 8060, 0.0213)T .

Drug concentrations were expressed in μg/L, elimination rate constant K10 in L/h and
volume V in L.

The PK modeling problem considered in this section greatly increases the complexity of
the SAS implementation of D-optimal designs. Program 7.9 relies on a series of SAS
macros and SAS/IML modules to solve the optimal selection problem formulated earlier in
this section. Referring to Section 7.1.7, Components 1, 2, and 3 of the general optimal
design algorithm require extensive changes. These changes are summarized below.



188 Pharmaceutical Statistics Using SAS: A Practical Guide

• In order to generate the grid, the set of sampling times X is defined in the CAND data
set and the number of time points r in the final design is specified in the KS data set (in
this case, we are looking for 8-point designs). Note that r ranges between 1 and k, where
k is the total number of sampling times (k = 16 in this case). Any number of sets of size
r can be applied to the optimization algorithm; however, for designs with the standard
information matrix normalization, the design with the largest r will be D-optimal. This
will not (necessarily) be true for cost-normalized designs (see Section 7.9).

• The problem of selecting candidate points is a C(k, r) problem, where C(k, r) is a
binomial coefficient, C(k, r) = k!/[r!(k − r)!]. Sets of size r candidate points can become
very large. For example, for k = 16 and r = 8, the number of possible 8-point sampling
schemes is C(16, 8) = 12, 870 which means that 12,870 information matrices need to be
obtained. Note that in this example m = 7 and thus each information matrix is a 7 × 7
matrix. In order to store the information matrices for all possible 8-point designs, SAS
needs to store 12, 870 × 7 = 90, 090 rows (and 7 columns) of data. Hence the data
storage requirements for large designs can become formidable. Once the CAND and KS
data sets are specified, Program 7.9 will generate the set of possible candidate points
using the SAS/IML module TS. Also, the initial design is specified in the SAMPLE data
set (note that all points in the initial design must be elements of the design region X
and must be of length r, as specified in the KS dataset).

• The set of parameters has been defined as θ = (γ0
1 , γ

0
2 , λ11, λ22, λ12, σ

2
1 , σ

2
2)T . Since we are

dealing with a mixed effects model, the γ and λ parameters in the vector θ must be
identified. This is accomplished by ordering the parameters in a specific way. In general,
the parameters in θ must be entered as follows: vector γ, vector λ, and residual
variance(s). The number of components in γ is defined by the NF macro variable. The
ordering of the random effects (the λ’s) is also highly important. Parameters along the
main diagonal of Λ should be entered first: λ11, λ22. The off-diagonal element (λ12)
should be entered next. The Λ matrix is set up using the SAS/IML module LSETUP. In
the general case, when Λ is a b × b matrix, the components of Λ need to be ordered as
follows: diagonal elements, λ11, λ22, . . . , λbb, followed by off-diagonal elements
λ12, λ13, . . . , λ1b, λ23, λ24, λ2b, . . ., etc.

• The PK function, η(x, θ), derived from (7.19), is specified using the SAS/IML module
FPARA. The ordering of the γ’s in the vector of parameters must match the ordering in
the FPARA module. As shown in Program 7.9, CL (plasma clearance) should be
entered into θ first, and V (volume of distribution) should be entered second. In the
current version, the equations in (7.19) must be solved, and the solution must be
entered in the FPARA module.

• A computationally difficult issue is the calculation of derivatives for (7.12). Note that
first- and second-order partial derivatives are required; see equations (7.12), (7.22). In
the previous examples derivatives were obtained by either entering the analytical form
or by using the NLPFDD function in SAS/IML. Here, we find it more practical to
calculate the derivatives numerically using the following approximation

∂η(x, θ) =
η(x, θ + h) − η(x, θ − h)

2h
,

where the value of h is a macro variable and is entered by the user (h = 0.001 in this
example). The information matrix from (7.12) is computed via the SAS/IML module
MOLD, which calls six other modules (HIGHERD, HIGHERM, FPLUS, FMINUS,
FTHETA and JACOB2).

The complete SAS code for this example is provided on the book’s companion Web site.
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Program 7.9 D-optimal design for the pharmacokinetic model (Design and algorithm parameters)

* Design parameters;
%let h=0.001; * Delta for finite difference derivative approximation;
%let paran=7; * Number of parameters in the model;
%let nf=2; * Number of fixed effect parameters;
%let cost=1; * Cost function (1, no cost function,

2, user-specified function);
* Algorithm parameters;
%let convc=1e-9;
%let maximit=1000;
%let const1=2;
%let const2=1;
%let cmerge=5;
* PK parameters;
data para;

input CL V vCL vV covCLV m s;
datalines;
0.211 5.50 0.0365 0.0949 0.0443 0.0213 8060
;

* All candidate points;
data cand;

input x @@;
datalines;
0.083 0.25 0.5 0.75 1 2 3 4 5 6 12 24 36 48 72 144
;

* Number of time points in the final design;
data ks;

input r @@;
datalines;
8
;

* Initial design;
data sample;

input x1 x2 x3 x4 x5 x6 x7 x8 w @@;
datalines;
0.083 0.5 1 4 12 24 72 144 1.0
;
run;
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Output from Program 7.9

Determinant of the covariance matrix D (initial design)

IDED

0.0000136

Determinant of the covariance matrix D (final design)

DETD

8.4959E-6

Optimal design

COL1 COL2 COL3 COL4 COL5 COL6 COL7 COL8

0.083 0.25 0.5 0.75 36 48 72 144

Output 7.9 lists the optimal sampling times included in a D-optimal 8-point design (5
min, 15 min, 30 min, 45 min, 36 h, 48 h, 72 h and 144 h). The optimal design differs from
the initial design in that it puts more weight on earlier time points; e.g., the optimal design
includes the 15-min and 45-min which were not in the initial design. Note also that an
application of the D-optimal algorithm reduced the determinant of the optimal
variance-covariance matrix to 8.49 × 10−6 (from 1.36 × 10−5).

7.9 Models with Cost Constraints
Traditionally, when normalized designs are discussed, the normalization factor is equal to
the number of experiments N ; see (7.3). In this section we will consider cost-normalized
designs. Each measurement at point Xi is assumed to be associated with a cost c(Xi), and
a restriction on the total cost is given by

n∑
i=1

nic(Xi) ≤ C.

In this case it is quite natural to normalize the information matrix by the total cost C and
introduce

MC(ξ, θ) =
MN(θ)

C
=

∑
i

wiμ̃(Xi, θ), with wi =
nic(Xi)

C
, μ̃(X, θ) =

μ(X, θ)
c(X)

. (7.23)

Once the cost function c(X) is defined, we can introduce a cost-based design
ξC = {wi, Xi} and use exactly the same techniques of constructing continuous optimal
designs for various optimality criteria as described in the previous sections,

ξ∗ = arg min
ξ

Ψ[DC(ξ, θ)], where DC(ξ, θ) = M−1
C (ξ, θ) and ξ = {wi, Xi}.

As usual, to obtain counts ni, values ñi = wiC/c(Xi) have to be rounded to the nearest
integers ni subject to

∑
i nic(Xi) ≤ C.

We believe that the introduction of cost constraints and the alternative normalization
(7.23) makes the construction of optimal designs for models with multiple responses more
sound. It allows for a meaningful comparison of “points” X with distinct number of
responses.
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7.9.1 Example 10: Pharmacokinetic Model with Cost Constraints
The example considered in this section is the example discussed in Section 7.8.3 with cost
functions added. Program 7.10 computes a D-optimal design by invoking the same SAS
macros and SAS/IML modules as Program 7.9. The computational tools for calculating the
cost-normalized information matrices are built into the macros and modules; we need only
to specify the cost function and set the COST variable to 2 (to indicate that a user-defined
cost function will be provided).

The cost function must be entered by the user into the SAS/IML module MCOST. In
Program 7.10, we select a linear cost function with two components, the CV variable is
associated with an overall cost of the study (i.e., the cost of a patient visit), and CS is the
cost of obtaining/analyzing a single sample:

* Cost module;
start mcost(t);

* t is vector sampling times;
Cv = 1;
Cs = 0.3;
C = Cv + sum(Cs[1:nrow(t[loc(t>0)])]);
return(C);

finish(mcost);

In general, the cost function can have almost any form.
The design region is defined as follows

X1 =
{
X = (ti1 , . . . , tir), tij ∈ X , j = 1, 2, . . . , r, 3 ≤ r ≤ 5

}
,

that is, we allow any combination of r sampling times for each patient from the original
sequence X , 3 ≤ r ≤ 5. The values of r are specified in the KS data set. Note that a total of
6,748 information matrices (47,236 rows and 7 columns of data) are calculated and stored
in this example.

Program 7.10 D-optimal design for the pharmacokinetic model with cost constraints

* Design parameters;
%let h=0.001; * Delta for finite difference derivative approximation;
%let paran=7; * Number of parameters in the model;
%let nf=2; * Number of fixed effect parameters;
%let cost=2; * Cost function (1, no cost function, 2, user-specified function);
* Algorithm parameters;
%let convc=1e-9;
%let maximit=1000;
%let const1=2;
%let const2=1;
%let cmerge=5;
* PK parameters;
data para;

input CL V vCL vV covCLV m s;
datalines;
0.211 5.50 0.0365 0.0949 0.0443 0.0213 8060
;

* All candidate points;
data cand;

input x @@;
datalines;
0.083 0.25 0.5 0.75 1 2 3 4 5 6 12 24 36 48 72 144
;
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* Number of time points in the final design;
data ks;

input r @@;
datalines;
3 4 5
;

* Initial design;
data sample;

input x1 x2 x3 x4 x5 w @@;
datalines;
0.083 0.5 4 24 144 1.0
;
run;

Output from Program 7.10

Determinant of the covariance matrix D (initial design)

IDED

0.231426

Determinant of the covariance matrix D (optimal design)

DETD

0.0209139

Optimal design

Obs COL1 COL2 COL3 COL4 COL5

1 0.083 0.25 48 72 144
2 0.083 0.25 72 144

Optimal weights

Obs W

1 0.59125
2 0.40875

Output 7.10 displays the D-optimal design based on the linear cost funtion defined in
the MCOST module. The D-optimal design is a collection of two sampling sequences,

ξ∗ = {X∗1 = (5, 15 min, 48, 72, 144 h), X∗2 = (5, 15 min, 72, 144 h)},

with weights w1 = 0.59 and w2 = 0.41, respectively. This example shows that once costs are
taken into account, sampling sequences with a smaller number of samples may become
optimal.

7.10 Summary
Design optimization is a critical aspect of experimentation; this is particularly true in
pharmaceutical applications. There are many barriers to routine application of optimal
design theory. Among these is the lack of software. For the mathematically simplest cases,
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namely linear models where the parameters are independent of the variance function, many
software packages are available for finding optimal designs (see Section 7.1.6). However, as
models increase in complexity, the availability of software for solving optimal design
problems drops off dramatically and pharmaceutical researchers often find it frustrating.
Some academic labs have created software that supports selected optimal designs (see
Section 7.1.6) but a general software package accessible to researchers in the
pharmaceutical industry is not currently available. To this end, we have created a series of
powerful modules that are based on SAS software for constructing optimal experimental
designs for a large number of popular non-linear models. Although we focus on D-optimal
designs, the same algorithm can be used for constructing other types of optimal designs, in
particular A-optimal designs after minor changes.

In this chapter, we provide a brief introduction to optimal design theory, and we also
discuss optimal experimental designs for nonlinear models arising in various
pharmaceutical applications. We provide several examples, and the SAS code for executing
these examples is included. The examples increase in complexity as the chapter moves
forward. The first example generates D-optimal designs for quantal models; subsequent
examples, in order, generate D-optimal designs for continuous logistic models, logistic
regression models with unknown parameters in the variance function, the beta regression
model, models with binary response, bivariate probit models for correlated binary
responses, and pharmacokinetic models with multiple measurements per patient, with or
without cost constraints. The most important hurdle in contructing these designs is the
computation of the Fisher information matrix, and storage/retrieval of these matrices and
associated design points. As designs increase in complexity, computation time is increased
in order to handle the necessary calculations and storage/retrieval.
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This chapter introduces pharmacokinetic terminology and also describes the collection,
measurement, and statistical assessment of pharmacokinetic data obtained in Phase I and
clinical pharmacology studies. It focuses on the following two topics that play a key role in
pharmacokinetic analysis: testing for bioequivalence and assessing dose linearity. The
chapter establishes a basic framework, and the examples demonstrate how to use restricted
maximum likelihood models in the MIXED procedure to examine the most common
pharmacokinetic data of practical interest.

8.1 Introduction
When a tablet of drug is taken orally, in general, it reaches the stomach and begins to
disintegrate and is absorbed (A). When dissolved into solution in the stomach acid, the
drug is passed on to the small intestine (Rowland and Tozer, 1980). At this point, some of
the drug will pass through and be eliminated (E) from the body. Some will be metabolized
(M) into a different substance in the intestine, and some drug will be picked up by the
walls of the intestine and distributed (D) into the body. This last bit of drug substance
passes through the liver first, where it is also often metabolized (M). The drug substance
that remains then passes through the liver and reaches the bloodstream, where it is
circulated throughout the body.

Pharmacokinetics (PK) is the study of absorption, distribution, metabolism, and
excretion (ADME) properties (Atkinson et al., 2001). Following oral administration, the
drug is held to undergo these four stages prior to being completely eliminated from the
body. PK is also the study of what the body does to a drug, (as opposed to what a drug
does to the body).

Measurement is central to PK, and the most common method is to measure by means of
blood sampling how much drug substance has been put into the body (i.e., dose) relative to
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how much drug reached the systemic circulation. For bioequivalence trials (U.S. Food and
Drug Administration (FDA), 2003), at least 12 samples are collected over time following
dosing with an additional sample collected prior to dosing.

As the drug is absorbed and distributed, the plasma concentration rises and reaches a
maximum (called the Cmax or maximum concentration). Plasma levels then decline until
the body completely eliminates the drug from the body. The overall exposure to drug is
measured by computing the area under the plasma concentration curve (AUC). AUC is
derived in general by computing the area under each time interval and adding up all the
areas. Other common summary measures are:

• Tmax (time of maximum concentration),
• T1/2 (half-life of drug substance)

More details of techniques used in the derivation of AUC may be found in Yeh and Kwan
(1978). Cmax and Tmax are derived by inspection of the data, and T1/2 is estimated by linear
regression in accordance with the description of Rowland and Tozer (1980).

In this chapter, we will concentrate on the modeling of AUC and Cmax using PROC
MIXED (note that, in general, the methods described are applicable to other summary
measures). It is acknowledged that AUC and Cmax are log-normally distributed (Crow and
Shimizu, 1988) for the purposes of this discussion in accordance with the findings of
Westlake (1986), Lacey (1995), Lacey et al. (1997), and Julious and Debarnot (2000). Thus
AUC and Cmax data are analyzed under ln (natural-logarithmic) transformation (Box and
Cox, 1964).

Analysis of ln-transformed AUC and Cmax data in clinical pharmacology follows the
general principles of analysis of repeated-measures, cross-over data using mixed effect linear
models (Jones and Kenward, 2003; Wellek, 2003; Senn, 2002; Chow and Liu, 2000; Vonesh
and Chinchilli, 1997; Milliken and Johnson, 1992). To illustrate this assumption, consider a
study with n subjects and p periods where an observation y (either AUC or Cmax, etc.) is
observed for each subject in each period. Y may be expressed as a pn-dimensional response
vector. Then, in matrix notation, this model can be expressed as

Y = Xβ + Z1u + Z2e,

where Xβ is the usual design and fixed effects matrix, u is multivariate normal with
expectation 0 and variance-covariance matrix Ω, i.e.,

u ∼ MV N(0,Ω),

and

e ∼ MV N(0,Λ),

and u is independent of e. Subjects are assumed to be independent, and Z1 and Z2 are
design matrices used to construct the variance-covariance structure as appropriate to the
study design and desired variance components. The RANDOM and REPEATED
statements in PROC MIXED are included as appropriate to calculate the desired
variance-covariance structure.

Restricted maximum likelihood modeling (REML, Patterson, 1950; Patterson and
Thompson, 1971) is applied to calculate unbiased variance estimates and the degrees of
freedom (Kenward and Roger, 1997) are used to calculate appropriate degrees of freedom
for any estimates or contrasts of interest.

Nonparametric statistical analysis of cross-over data will not be discussed further in this
chapter but can be accomplished using SAS. Readers interested in such techniques should
see Jones and Kenward (2003), Wellek (2003), Chow and Liu (2000) and Hauschke et al.
(1990) for more details.
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Other topics of general interest to readers of this chapter include Population
Pharmacokinetics (FDA Guidance, 1999) and Exposure-Response Modeling (FDA Guidance,
2003). SAS is not generally used to support such nonlinear mixed-effect analyses, but is
used in data management support (which will not be discussed here). It is theoretically
possible to do such nonlinear mixed-effects modeling using the NLMIXED procedure, and
we refer readers interested in such analyses to Atkinson et al. (2001), Sheiner et al. (1989),
Sheiner (1997), Sheiner and Steimer (2000), and Machado et al. (1999) for more
information on these topics.

To save space, some SAS code has been shortened and some output is not shown. The
complete SAS code and data sets used in this book are available on the book’s companion
Web site at http://support.sas.com/publishing/bbu/companion site/60622.html

8.2 Bioequivalence Testing
Bioequivalence testing is performed to provide evidence that a new formulation of drug
substance (e.g., a new tablet) is equivalent in vivo to an existing formulation of drug
product. Such testing is used by manufacturers of new chemical entities when making
changes to a formulation of drug product used in confirmatory clinical trials, and
additionally is used by the generic pharmaceutical industry to secure market access at
patent expiration of an existing marketed product.

The new formulation (T) is generally studied relative to the existing formulation (R) in
a randomized, open-label, cross-over trial (Jones and Kenward, 2003; Wellek, 2003; Senn,
2002; Chow and Liu, 2000). The structure of testing the question of bioequivalence is:

H01 : μT − μR ≤ − ln 1.25,

H02 : μT − μR ≥ ln 1.25,

where μT is the adjusted mean for the test formulation and μR is the adjusted mean for the
reference formulation on the natural log scale. The factor ln 1.25 was chosen by regulatory
agencies (FDA, 1992; Barrett et al., 2000) and each one-sided test is performed at a 5%
significance level without adjustment for multiplicity (Hauck et al., 1995).

Both tests must reject the null hypotheses for AUC and Cmax in order for bioequivalence
to be declared. This testing procedure is referred to as the TOST (two-one sided testing, see
Schuirmann, 1987) assessment of average bioequivalence and constitutes the current FDA
standard approach. See the FDA guidance page, http://www.fda.gov/cder/guidance/ for
more details. In practice, a 90% confidence interval for μT − μR is derived for the
ln-transformed AUC and Cmax, using a model appropriate to the study design. If both
intervals fall completely within the interval (− ln 1.25, ln 1.25), bioequivalence is concluded.
This procedure is designated the average bioequivalence (ABE) because only the test and
reference means are compared. A summary of other approaches and issues of interest in
bioequivalence testing may be found in Hauck and Anderson (1992), Anderson and Hauck
(1996), Benet (1999) and Zariffa and Patterson (2001). This type of approach is termed a
confirmatory bioequivalence assessment for the purposes of this chapter.

This type of approach to data analysis is applied to clinical PK data in a variety of
other setting in exploratory clinical pharmacology research. Examples include drug-drug
interaction trials, food effect assessment and comparison of rate and extent of
bioavailability in renal-impaired and hepatic insufficient populations. See the FDA
guidance page, http://www.fda.gov/cder/guidance/ for details. In these studies, the
range of plausible values as expressed by a confidence interval is used to assess the degree
of equivalence or comparability, depending upon the setting. A TOST need not necessarily
be performed. Under such an approach, confidence level (Type I error rate) is termed
consumer or regulator risk, i.e., the risk of the regulator agency in making an incorrect
decision. Though often a pre-specified equivalence limit is difficult or impossible to define
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prior to study initiation, thus inhibiting the ability of study sponsors to adequately ensure
adequate power to demonstrate equivalence if such is desired, power is of less concern when
assessing the results of such studies than the confidence level. This approach to statistical
inference gives regulator agencies an easy standard under which to assess the results of
such exploratory pharmacokinetic studies.

We now turn to an example of a confirmatory bioequivalence trial.

EXAMPLE: Two-period cross-over study with test and reference formulations
Consider the following 2 × 2 cross-over study where a test formulation was compared to a
reference formulation in approximately 50 normal healthy volunteer subjects.

The AUC data set, reproduced with permission from Patterson (2001), summarizes
AUC values derived for the test and reference periods (the data set can be found on the
book’s companion Web site). The SUBJECT variable is the subject’s ID number, the
SEQUENCE variable codes the treatment sequence (RT denotes “‘reference-test” and TR
denotes “test-reference”) and, lastly, the AUCT and AUCR variables contain AUC values
when given Test and Reference formulations, respectively, in [ng/mL/h].

Program 8.1 uses PROC MIXED to fit a random-intercept model (Jones and Kenward,
2003) to the AUC data set once the AUC data are formatted by subject, sequence, period,
and formulation (program not shown).

Program 8.1 Comparison of AUC values in the two-period cross-over study with test and reference
formulations

data lnauc(keep=subject sequence period formula lnauc);
set auc;
lnauc=log(auc);

proc mixed data=lnauc method=reml;
class sequence subject period formula;
model lnauc=sequence period formula/ddfm=kenwardroger;
random subject(sequence);
estimate ’T-R’ formula -1 1/cl alpha=0.10;
run;

Output from Program 8.1

Cov Parm Estimate

subject(sequence) 1.5921
Residual 0.1991

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

sequence 1 44.8 0.12 0.7254
period 1 43.1 0.37 0.5463
formula 1 43.1 0.92 0.3424



Chapter 8 Analysis of Human Pharmacokinetic Data 201

Estimates

Standard
Label Estimate Error DF t Value Pr > |t|

T-R 0.09023 0.09399 43.1 0.96 0.3424

Label Alpha Lower Upper

T-R 0.1 -0.06776 0.2482

Output 8.1 displays the estimated difference between the test and reference formulations
in the ln-transformed AUC with a 90% confidence interval. The 90% confidence interval is
(−0.0678, 0.2482). As insufficient information is present to reject H02, bioequivalence was
not demonstrated. No significant differences in sequence (p = 0.7254), period (p = 0.5463),
and formulation (p = 0.3424) were detected. Between-subject variance in ln-AUC was
1.5921, and within-subject variance was 0.1991.

Alternatively we can use the following RANDOM statement to explicitly specify a
random-intercept model:

random int/subject=subject(sequence);

Specifying the RANDOM statement results in equivalent findings to the above.
These are the models required by FDA (1992) for the assessment of bioequivalence using

a 2 × 2 cross-over design. Note that the Huyhn-Feldt condition (Hinkelmann and
Kempthorne, 1994) is applied to the variance components using this model.

We may also use the REPEATED statement in PROC MIXED if the total variance
(between plus within subject variation) of test and reference formulations and their
covariance are of interest in a 2 × 2 cross-over study:

proc mixed data=lnauc method=reml;
class sequence subject period formula;
model lnauc=sequence period formula/ddfm=kenwardroger;
repeated formula/type=un subject=subject(sequence);
estimate ’T-R’ formula -1 1/cl alpha=0.10;
run;

Results of this last statement may differ slightly from the random-intercept model above
when data are missing. It is unlikely, but not impossible, that missing data can affect
inference.

8.2.1 Alternative Designs in Bioequivalence Testing
The FDA guidance also allows for alternative designs to demonstrate bioequivalence. One
such design is the replicate cross-over design where each subject receives each formulation
twice, with each administration being separated by a wash-out period of five half-lives.

EXAMPLE: A replicate cross-over study
Consider the following replicate design cross-over study where test and reference
formulations were adminstered in a randomized, four-period cross-over design in
approximately 36 normal healthy volunteer subjects.

The RAUC data summarizes AUC values collected in the test and reference periods (the
data set can be found on the book’s companion Web site). The SUBJECT variable is the
subject’s ID number, SEQUENCE variable codes the treatment sequence (ABBA denotes
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“test-reference-reference-test” and BAAB denotes “reference-test-test-reference”) and,
lastly, AUC1TEST, AUC2TEST, AUC1REF, AUC2REF variables contain AUC values
when given Test and Reference formulations in the first and second administrations,
respectively, in [ng/mL/h].

The FDA guidance requires that the construction of the confidence interval for μT − μR

be appropriate to the study design. In the case of a replicate design model, this
recommendation results in a requirement to specify a factor-analytic variance-covariance
structure for the between-subject variance components and calculation of within-subject
variances for each formulation; see Patterson and Jones (2002) for more details.

Program 8.2 uses PROC MIXED to fit a factor-analytic variance-covariance structure
using the FA0(2) option to the ln-transformed AUC data by subject, sequence, period, and
formulation. See FDA Guidance (2001) for a description of why this option is used.

Program 8.2 Analysis of AUC data from a replicate cross-over study with test and reference formulations

data lnauc(keep=subject sequence period formula lnauc);
set rauc;
lnauc=log(auc);

proc mixed data=lnauc method=reml;
class sequence subject period formula;
model lnauc=sequence period formula/ddfm=kenwardroger;
random formula/type=FA0(2) subject=subject;
repeated/group=formula subject=subject;
estimate ’T-R’ formula 1 -1/cl alpha=0.1;
ods output estimates=test;

data test;
set test;
lowerb=exp(lower); * Lower bound on original scale;
upperb=exp(upper); * Upper bound on original scale;

proc print data=test noobs;
var lowerb upperb;
run;

Output from Program 8.2

Covariance Parameter Estimates

Cov Parm Subject Group Estimate

FA(1,1) subject 0.5540
FA(2,1) subject 0.5542
FA(2,2) subject 1.24E-17
Residual subject formula A 0.09851
Residual subject formula B 0.1110

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

sequence 1 35.6 0.09 0.7706
period 3 106 2.28 0.0835
formula 1 106 7.68 0.0066
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Estimates

Standard
Label Estimate Error DF t Value Pr > |t|

T-R -0.1449 0.05227 106 -2.77 0.0066

Label Alpha Lower Upper

T-R 0.1 -0.2316 -0.05816

lowerb upperb

0.79324 0.94350

Output 8.2 lists the findings. For ln-transformed AUC, a confidence interval of
(−0.2316,−0.0582) is found. As insufficient information is present to reject H01 in this case,
bioequivalence was not demonstrated. These limits are saved in the TEST data set using an
ODS statement and may be exponentiated in an additional DATA step if findings on the
original scale are desired. In this case, the lower and upper bounds are 0.7932 and 0.9425.

Within-subject variation for the test and reference formulations were 0.09851 and
0.1110, respectively. Variation associated with subject-by-formulation was negligible, with
an estimated standard deviation of 1.24E-17.

No significant evidence of sequence (p = 0.7706) or period (p = 0.0835) effects was
detected; however, the formulations were observed to be significantly different (p = 0.0066).

The FDA guidance (2001) states that “In the Random statement, Type=FA0(2) could
possibly be replaced by Type=CSH. This guidance recommends that Type=UN not be
used, as it could result in an invalid (i.e., non-negative definite) estimated covariance
matrix.”

There is however a similar issue with use of TYPE=FA0(2) or CSH. These are
constrained structures in that their application does not allow all positive definite
covariance structures to be estimable (Patterson and Jones, 2002). For example, in the
CSH structure, the estimate for correlation, ρ, is constrained by PROC MIXED so that it
lies in the interval −1 ≤ ρ ≤ 1. The FA0(2) structure similarly imposes constraints such
that the estimate for the subject-by-formulation standard deviation is zero or greater.

The choice of FA0(2) is somewhat arbitrary and reflective in regulatory application of
George Box’s statement “All models are wrong, but some are useful.” In applications, it has
been shown that this procedure protects the Type I error rate (of key concern to regulators)
when variance estimates of interest are constrained to be positive or null (Patterson and
Jones, 2004). It has the additional benefit of providing variance-covariance estimates that
are readily interpretable (i.e., non-negative); however, statisticians using these procedures
should recognize that the variance-covariance estimates may be biased as a consequence of
this choice. Note that restricted maximum likelihood modeling (REML) is also specified as
a recommended option, and those desiring to apply a different method should first talk
with the FDA. Although REML estimates do possess less bias than maximum likelihood
estimates, they do not produce estimates which maximize the likelihood function. The
FDA has thus chosen a model which is readily interpretable and potentially biased, but
which protects their risk of making a false positive decision of bioequivalence.

Note that if the TYPE=UN option is specified in Program 8.2, removing this constraint,
a confidence interval of (−0.2220,−0.0710) is derived as subject-by-formulation variation is
estimated to be negative.
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8.3 Assessing Dose Linearity
As discussed in the introduction, when an oral tablet is taken it will be absorbed,
distributed, metabolized and eliminated. Imagine that the body is made up of many
different compartments. The drug amount that enters circulation is then both
simultaneously distributed into and eliminated from these compartments. Typically, a drug
is eliminated from the body through urine or feces. In order to facilitate this process, the
liver often metabolizes the compound to a chemical form that is more readily eliminated. If
all of the eliminations from one compartment to another are proportional to the
concentration of the compound in the compartment, the drug has dose linearity. Dose
linearity implies that the elimination rate from the body is proportional as well.

The following two conditions are therefore implied. First, the elimination rate is
proportional to drug concentration with k denoting the proportion. This constant is often
replaced with clearance. As can be seen, dose linearity implies that clearance is a constant.
Second, with repeated dosing there exists a point in time in which there is an equilibrium
between the amount of drug that enters the body and the amount that leaves. Once this
equilibrium has been reached, the drug is said to have achieved steady state.

As can be seen, it would be impossible to really tell if a drug were truly dose linear;
however, a drug that has dose linearity (or that at least approximates dose linearity)
should have certain properties. One of these is a proportional increase in concentration in
the blood or plasma as measured with AUC and Cmax, with increasing dose. This situation
is often referred to as dose proportionality. A second property is that the clearance ought to
be stationary with time. Both of these properties can be studied in human pharmacokinetic
studies.

8.3.1 Assessing Dose Proportionality
Dose proportionality is a proportional increase in concentration as measured with AUC
and Cmax, with increasing dose. Using AUC, this implies that

AUC = αd,

where d represents the dose. There are many different models to examine dose
proportionality. A discussion to the relative merits and demerits of these models can be
found is Smith (2004). This section will focus on the following model

lnAUC = α + β ln d.

This model is referred to as the power model on an ln-transformed AUC. The same model is
used for Cmax as discussed in the previous section. Notice that when we exponentiate both
sides of this equation we have

AUC = exp(α)dβ.

Thus, when β = 1, the drug is dose proportional.
In assessing dose proportionality, we may first consider a hypothesis test of the following

H0 : β = 1.

We may consider declaring dose proportionality if we fail to reject this hypothesis. Smith
et al. (2000) argue that it is much more natural to think of dose proportionality as an
equivalence problem, implying that the structure for testing dose proportionality should be

H01 : β ≤ 1 − t,

H02 : β ≥ 1 + t.

Unlike bioequivalence, the equivalence region currently has no set regulatory standard.
Smith et al. (2000) considers the following:
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1. Examine dose-normalized concentrations.
2. Define some high dose (h) and low dose (l), where r = h/l, for which we wish to

examine dose proportionality.
3. Set the following structure for testing the equivalence of the dose-normalized

concentrations:

H03 : μh − μl ≤ − ln θ,

H04 : μh − μl ≥ ln θ,

where μh and μl denote the dose-normalized mean of the high dose and low doses on the
natural log scale, respectively.

Smith et al. (2000) show that this structure is equivalent to the structure of H01 and H02
with t = ln θ/ ln r. Notice that t → ∞ when r → 1 and t → 0 when r → ∞. Thus, there
exists a set of r’s such that both H01 and H02 will be rejected.

The largest of these r’s becomes the largest ratio of doses for which dose proportionality
can be declared. Smith et al. (2000) show that if H01 and H02 are tested at the α level and
that if L and H define the lower and upper limit of a (1 − 2α)100% confidence interval, this
largest ratio ρ1 is

ρ1 = θ(1/max(1−L,U−1)).

Furthermore, Smith et al. (2000) describe three possible conclusions that can be drawn
about dose proportionality:

1. Definitely dose proportional.
2. Definitely not dose proportional.
3. Inconclusive.

“Definitely not dose proportional” is concluded if either the null hypothesis H01 or the
null hypothesis H02 cannot be rejected. Smith et al. (2000) show that sometimes there exists
a smallest ratio, ρ2, in which dose proportionality definitely does not exist and is given by

ρ2 = θ(1/ max(L−1,1−U)).

It should be pointed out that this equation cannot be solved unless L > 1 or U < 1.
Data for examination of dose proportionality most often comes from first human, dose

escalation type trials in which randomization-to-period is not done. Occasionally, a
stand-alone study is performed to ensure that period effects do not confound inference.

EXAMPLE: First human-dose study
Consider the simulated data from a hypothetical first human dose trial (FHDAUC data set
can be found on the book’s companion Web site). Here 16 subjects received ascending
doses of drug, and AUC(0-∞) [ng/mL/h] was measured after each administration.

Program 8.3 shows how to perform the dose proportionality analysis of the AUC data
using a random-intercept model in PROC MIXED.
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Program 8.3 Analysis of AUC data from the first human-dose study

data fhdauc;
set fhdauc;
lndose=log(dose);
lnauc=log(auc);
study=1;

proc mixed data=fhdauc method=reml;
class subject;
model lnauc=lndose/s ddfm=kenwardroger cl alpha=0.1;
random subject;
ods output solutionf=one;

data one;
set one;
if effect=’lndose’ then delete;
rho1=(4/3)**(1/max(1-lower,upper-1));
if lower < 1 and upper > 1 then rho2=.;
else rho2=(4/3)**(1/max(lower-1,1-upper));

proc print data=one noobs;
var rho1 rho2;
run;

Output from Program 8.3

Covariance Parameter Estimates

Cov Parm Estimate

subject 0.04175
Residual 0.01861

Solution for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t|

Intercept -0.2583 0.07518 36.9 -3.44 0.0015
lndose 1.0395 0.01235 30.7 84.20 <.0001

Effect Alpha Lower Upper

Intercept 0.1 -0.3851 -0.1314
lndose 0.1 1.0186 1.0605

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

lndose 1 30.7 7088.96 <.0001

rho1 rho2

116.630 5344869.90
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Output 8.3 shows that β significantly differs from unity (p < 0.0001) with 90%
confidence bounds of (1.0186, 1.0605). Between-subject variation in ln-AUC was 0.0418,
and within-subject variation was observed to be 0.0186.

Output 8.3 also extracts information from PROC MIXED in order to calculate ρ1 and
ρ2. Notice that θ = 4/3 in Program 8.3. The choice for θ is user-defined. In this case the
resulting equivalence region is (0.75, 1.33), as compared to the equivalence region for
bioequivalence of (0.80, 1.25). Dose proportionality is concluded as the 90% confidence
interval for β falls within these limits.

In this first human-dose study, one derives ρ1 = 117 and ρ2 = 5, 340, 000. One would
interpret this to mean that dose proportionality has been demonstrated up to a 117-fold
range of doses. Said another way, if we knew the concentration (c) for some dose a, then a
good prediction of the concentration for a dose 117a would be 117c. The value of ρ2 in this
case is so large that it has little practical meaning. All and all, since it is unlikely in clinical
practice to have available a 117-fold range of doses, this molecule demonstrates a
significant degree of dose proportionality.

Note that, in this example, ρ1 = 117 and the dose range studied is 200-fold. It is quite
possible for ρ1 to be greater than the dose range studied. This brings up the question of
how we should interpret ρ1 if this is the case. Assume that in this example ρ1 turned out to
be 500. There would obviously be danger in saying that a good prediction of the
concentration for a dose 500a would be 500c, since we are obviously extrapolating beyond
available data. With this said, however, it is still useful to think of ρ1 as a measure of dose
proportionality. That is, a value of 500 indicates a greater degree of dose proportionality
than a value of 300 would have.

There are certainly other covariance structures that could be chosen in Program 8.3. For
instance, a random intercept and slope model can be generated with the following
RANDOM statement:

random subject subject*lndose;

8.3.2 Assessing Time Stationarity of Clearance
In the beginning of this section, clearance was defined as the rate of elimination divided by
the concentration. When an oral dose is administered, only a fraction of the total dose is
absorbed by the body. It can be shown that for a single dose of a drug that

Clearance =
Fd

AUC(0 − ∞)
,

where F is the fraction adsorbed, d is the dose and AUC(0 − ∞) is what has been called
AUC so far in this chapter. On the other hand, when a drug is at steady state, it can be
shown that

Clearance =
Fd

AUC(0 − τ)
,

where τ is the dosing interval (24 hours if dosed once a day), d is the amount of drug
delivered at each dosing interval, and AUC(0 − τ) is the area under the concentration when
the drug is at steady state. The implication of these two formulas is that if
AUC(0 − ∞) = AUC(0 − τ) for one dose, then clearance does not change with repeated
dosing. If this is true for all doses, then clearance is said to be stationary. Dose linearity
implies that clearance is a constant, which implies stationarity.

If the half-life of a drug is short enough, it may be possible to calculate AUC(0 − ∞) for
each individual in the first day of dosing of a multiple dose study and find AUC(0-τ) at the
last day. Subjects must be at steady state and measures should be taken to ensure this.
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The shorter the half-life, the quicker steady state can be achieved. Thus, since we need a
short half-life to be able to do this, the drug would most likely be at steady state. Having a
short enough half-life to be able to use day 1 data, however, is pretty unlikely.

Another possibility is doing the first human dose study in the same subjects as the
multiple dose study. Usually, when this is done, these studies are combined into one
protocol. Again, however, the opportunity to do this does not present itself very often. The
reason these options are appealing is it allows us to use a subject as its own control. The
most common case, however, is that the first human dose study and multiple dose study
are done in separate groups of subjects. We can, however, still combine this information to
examine stationarity of clearance.

EXAMPLE: Multiple-dose study
Consider the MDAUC data set that can be found on the book’s companion Web site. The
data set contains simulated data from a hypothetical multiple-dose study. This study
tested the compound examined in the first human-dose trial described above. It is assumed
that the multiple-dose study was performed in a different set of subjects from the first
study. Here, 16 subjects were dosed with 20 to 200 mg of drug repeatedly for several days,
and AUC(0-τ) [ng/mL/h] was measured over the dosing interval on the final day.

Program 8.4 examines stationarity of clearance in the multiple-dose study using PROC
MIXED. Stationarity of clearance would be concluded if the estimated geometric means
from the 20 mg first human dose trial and estimated geometric means from the 20 mg
multiple dose trial are equivalent and the estimated geometric means from the 200 mg first
human dose trial and estimated geometric means from the 200 mg multiple dose trial are
equivalent.

The PROC MIXED code in Program 8.4 fits a separate power model for both studies.
The ESTIMATE statements are then used to derive estimates for the single dose mean
AUC at 20 mg, the multiple dose mean AUC at 20 mg, their ratio, the single dose mean at
200 mg, the multiple dose mean at 200 mg, and their ratio, respectively. These estimates
are saved in the OUT data set and then exponentially transformed to the original scale in
order to compute 90% confidence intervals for each scenario. Program 8.4 suppresses the
standard PROC MIXED output using ODS LISTING statements. Note that the log-doses
of 20 and 200 mg are denoted as 2.995732 and 5.298317, respectively.

Program 8.4 Analysis of AUC data from the multiple-dose study

data mdauc;
set mdauc;
lnauc=log(auc);
lndose=log(dose);
study=2;

* Merge the data from the first human-dose and multiple-dose studies;
data cl;

set fhdauc mdauc;
ods listing close;
proc mixed data=cl method=reml;

class subject study;
model lnauc=lndose study lndose*study/ddfm=kenwardroger cl alpha=0.1;
random subject*study;
estimate ’Single dose AUC 20 mg’ intercept 1 lndose 2.995732

study 1 lndose*study 2.995732;
estimate ’Multiple dose AUC 20 mg’ intercept 1 lndose 2.995732

study 1 lndose*study 0 2.995732;
estimate ’Ratio single dose:multiple dose 20 mg’ study 1 -1

lndose*study 2.995732 -2.995732/cl alpha=0.1;
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estimate ’Single dose AUC 200 mg’ intercept 1 lndose 5.298317
study 1 lndose*study 5.298317;

estimate ’Multiple dose AUC 200 mg’ intercept 1 lndose 5.298317
study 0 1 lndose*study 0 5.298317;

estimate ’Ratio single dose:multiple dose 200 mg’ study 1 -1
lndose*study 5.298317 -5.298317/cl alpha=0.1;

ods output estimates=out;
data out;

set out;
gmean=exp(estimate);
lbound=exp(lower);
ubound=exp(upper);
drop estimate stderr df tvalue alpha lower upper;

proc print data=out noobs;
ods listing;
run;

Output from Program 8.4

Label Probt gmean lbound ubound

Single dose AUC 20 mg <.0001 17.385 15.617 19.354
Multiple dose AUC 20 mg <.0001 16.738 13.697 20.455
Ratio single dose:multiple dose 20 mg 0.7371 1.039 0.860 1.255
Single dose AUC 200 mg <.0001 190.365 170.987 211.939
Multiple dose AUC 200 mg <.0001 214.759 177.887 259.273
Ratio single dose:multiple dose 200 mg 0.2667 0.886 0.740 1.062

Output 8.4 lists the estimated geometric means and associated 90% confidence limits.
The 90% confidence interval of the ratio of geometric means for 20 mg is (0.860, 1.255) and
the 90% confidence interval of the ratio of geometric mean for 200 mg is (0.740, 1.062).
Although neither confidence interval meets the strict bioequivalence (0.8, 1.25) criteria, at
this point of drug development, given the limited amount of data, stationarity of clearance
would be assumed, until and unless compelling future data indicated otherwise.

Since dose proportionality can be concluded and dose stationarity seems highly tenable,
this molecule seems to exhibit dose linearity.

8.4 Summary
In this chapter, pharmacokinetic terminology frequently encountered in clinical trial
assessment of human pharmacokinetics was reviewed, and the collection, measurement, and
statistical assessment of pharmacokinetic data obtained in Phase I and clinical
pharmacology studies were described. REML models were used to examine the most
common pharmacokinetic data of practical interest, and tests for assessing bioequivalence
and dose linearity were developed and implemented using PROC MIXED.
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This chapter discusses the operational aspects of randomization designs used in the
pharmaceutical industry. Most of this chapter is devoted to the widely used permuted block
design and its variations. Allocation procedures that are balanced on baseline covariates,
such as stratified randomization, and covariate-adaptive randomization, are also described.
All methods are illustrated by examples that include SAS code to generate allocation
sequences. Although all of the examples in this chapter refer to clinical trials, the described
randomization methods can also be used in a non-clinical setting, i.e., in animal studies.

We refer the reader to Rosenberger and Lachin (2002) for a thorough coverage of other
aspects of randomization such as randomization-based inference and covariate-adjusted
analysis. A chapter in Senn’s book (1997) offers excellent insights on randomization in
clinical trials.

9.1 Introduction
Randomization, an allocation of subjects to treatment regimens using a random element, is
an essential component of clinical trials. Randomization promotes comparability of the
treatment groups with respect to known as well as unknown covariates and thus reduces
the chance for bias in the evaluation of the treatment effect. It can also serve as a basis for
a randomization approach to inference (Rosenberger and Lachin, 2002).

Several types of bias are considered in the context of randomization. Selection bias
occurs in an unmasked (unblinded) trial when the investigator, either consciously or
otherwise, uses knowledge of the upcoming treatment assignment to help decide whom to
enroll (Blackwell and Hodges, 1957). Observer bias is the bias in the evaluation of responses
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to a treatment that can occur if some of the assignments are known to the investigator.
Imbalance in a covariate strongly associated with the study outcome can also bias the
results. Although it is possible to adjust for known covariates, imbalance in unobserved
covariates can lead to accidental bias (Efron, 1971). Various allocation procedures differ in
how susceptible they are to these types of bias, and that fact influences the choice of an
allocation procedure for a clinical trial. Another consideration that needs to be taken into
account when selecting an allocation procedure is the procedure’s ability to achieve a
targeted allocation ratio.

Complete randomization, in which each subject is allocated at random with the
probability determined by the targeted allocation ratio, is totally unpredictable and does
not lead to selection bias in a trial unmasked to the investigator. Its significant drawback,
though, is the risk of undesirable imbalance in the number of subjects allocated to each
arm. Such imbalance can negatively affect the power of treatment comparisons, especially
when the total number of subjects in the trial is small. Also, if the subjects’ prognostic
factors exhibit a time trend during the course of the trial, a considerable imbalance in
treatment assignments throughout the trial can lead to accidental bias. Restricted
randomization implemented through a permuted block design (Rosenberger and Lachin,
2002) provides a good balance in the treatment assignments throughout the enrollment and
is more commonly used. Other designs that maintain a good balance in treatment
assignments at any time and have low potential for selection bias have recently been
suggested (Berger et al., 2003).

After an appropriate randomization procedure is selected, the sequence of random
assignments for the study subjects is generated and documented in the randomization
(allocation) schedule.

It might be desirable to maintain balance in important prognostic baseline covariates.
Balance is typically achieved through stratified randomization, in which a separate
restricted allocation schedule is prepared for each combination of levels of the stratification
factors. Alternatively, balance in baseline covariates can be maintained with a dynamic
allocation, in which a new subject is assigned to the treatment group that results in the
best balance (in some sense) across his or her set of covariates. A fixed allocation schedule
cannot be prepared for dynamic procedures, as the sequence of treatment assignments
depends on the covariates of the subjects entering the trial.

The randomization schedule or a sequence of treatment assignments for a dynamic
allocation procedure can be easily generated with SAS software, e.g., using the PLAN
procedure or random number generators. The flexibility of the PLAN procedure often
allows the same schedule to be generated in many different ways; we will cover a variety of
options in the examples throughout this chapter.

To save space, some SAS code has been shortened and some output is not shown. The
complete SAS code and data sets used in this book are available on the book’s companion
Web site at http://support.sas.com/publishing/bbu/companion site/60622.html.

9.2 Permuted Block Randomization
Permuted block randomization is commonly used in clinical trials to allocate subjects to the
treatment arms in required ratios. It is well accepted in the clinical community, provides
good balance in treatment assignments, and supports the needs of drug packaging and
distribution.

9.2.1 Permuted Block Designs
The permuted block schedule consists of a sequence of blocks that contain the treatment
assignments in desired ratios; the treatment assignments are randomly permuted within
the blocks. Consider, for example, a study in which subjects are to be assigned to three
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treatments (Treatment 1, Treatment 2, and Treatment 3) using a 2 : 2 : 1 ratio. The
smallest permuted block that provides the 2 : 2 : 1 treatment ratio is the block of size 5 and
is a random permutation of

(1, 1, 2, 2, 3).

An example of a sequence of treatment assignments (with blocks bracketed to illustrate the
technique) is

(2, 1, 1, 3, 2), (1, 1, 2, 3, 2), (3, 2, 1, 2, 1), . . . .

A larger block size (a multiple of 5) can also be used. If the block size of 10 is chosen, the
blocks will each be a random permutation of

(1, 1, 1, 1, 2, 2, 2, 2, 3, 3).

Stratifying the randomization is easy with the permuted block schedule. Since any set of
blocks constitutes a permuted block schedule on its own, each stratum can be assigned a
set of blocks from one common schedule. This property is useful in multi-center trials
where, as recommended by the ICH Guidance entitled “Guidance on Statistical Principles
for Clinical Trials” (ICH E-9), the allocation is typically stratified by center. The
stratification is implemented by assigning a set of blocks to each center.

The permuted block allocation provides a good balance in treatment assignments: when
most of the blocks in the allocation schedule are filled, the treatment ratio of allocated
subjects at the end of the study is close to the planned one. Unless there are many strata
and thus, many unfilled blocks, the balance stays reasonably tight throughout the
enrollment as well. This feature improves the efficiency of an interim analysis and helps
mitigate the accidental bias if a time trend in treatment effect is present.

These properties made the permuted block randomization an industry standard for
masked clinical trials. For unmasked trials, where selection bias is an issue, other
approaches such as a permuted block design with a random block size or maximal
procedure (Berger et al., 2003) might offer benefit.

9.2.2 Choice of Block Size in Permuted Block Designs
The choice of block size for a masked permuted block schedule requires some consideration.
It is preferred to have a block size big enough to include at least two subjects on each
treatment to mitigate the impact of rare instances when a subject’s allocation may need to
be unblinded due to a serious adverse event. Having at least two subjects on each
treatment within a permuted block will not narrow the list of possible assignments for
other subjects from the block that the unblinded subject belongs to. This provision would
lessen the potential for selection bias (if some of the subjects on the block are yet to be
enrolled) and for observer bias.

This approach will allow using the minimal block size when the smallest block with
required ratio already includes at least two subjects on each treatment (e.g., a 3 : 2 : 2
allocation ratio). When the smallest block includes only one subject on any of the
treatments, e.g., a 2 : 2 : 1 ratio, the preferred block size will be at least twice as large as
the minimal block size (that is, at least 10).

The outlined block size selection strategy is intended to lessen the impact of unblinding
and might not be advisable for a multi-center trial with small centers. For example, if the
minimal block size is 5 and most of the centers are expected to enroll about six subjects,
using a block size of 10 will lead to predominantly incomplete blocks and thus to
suboptimal balance in treatment assignments. A compromise can often be reached by using
one of the variations of permuted block designs (see Sections 9.3.2 and 9.3.4); however, if
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the possibility of unblinding is low, the most practical option might be to use the smallest
block size. In reality, designs with a block size of 2, in which an unblinding of one subject
leads to the unblinding of the other subject in the same block, are rarely used.

9.2.3 Generating Permuted Block Schedules
Permuted block schedules can be easily generated using PROC PLAN. PROC PLAN is a
powerful procedure and often allows to generate the same randomization schedule using
several different sets of options. We will present one of the options in the example below.

EXAMPLE: Three-arm clinical trial with a 2 : 2 : 1 randomization ratio
Consider a study in which 120 subjects are allocated to three treatment arms (Treatment
1, Treatment 2, and Treatment 3) with a 2 : 2 : 1 ratio using the permuted block
randomization with a block size 5. As is typically the case, it was decided to prepare an
allocation schedule for more than 120 subjects by generating a total of 60 permuted blocks.

Program 9.1 uses PROC PLAN to generate a permuted block schedule for the three-arm
trial. The first option (SEED=56789) in the PROC PLAN statement specifies a random
seed to make the schedule reproducible. If no seed is provided, the time of the day will be
used as a default seed and each run of the program will result in a different schedule. The
random seed used in the schedule should not be disclosed until the study is unblinded. The
next statement

factors block=60 ordered treatment=5;

requests that the BLOCK variable be created in the output data set with values ordered
from 1 to 60. For each value of BLOCK, five observations with five levels of the TREAT
variable will be generated in a random order. Next,

output out=schedule treatment nvals=(1 1 2 2 3);

specifies the name of the output data set (SCHEDULE) as well as numeric values (1, 1, 2,
2, and 3) that will be assigned to the five levels of the TREATMENT variable. PROC
PLAN is followed by a DATA step that assigns consecutive allocation numbers (AN
variable) from 1 to 300 to all observations on the list. The treatment assignment is stored
in the TREATMENT variable.

Program 9.1 Three-arm clinical trial with a 2 : 2 : 1 randomization ratio

ods listing close;
proc plan seed=56789;

factors block=60 ordered treatment=5;
output out=schedule treatment nvals=(1 1 2 2 3);

data schedule;
set schedule;
an=_n_;
label treatment=’Treatment group’

block=’Block number’
an=’Allocation number’;

proc print data=schedule noobs label;
var an treatment block;
ods listing;
run;
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Partial output from Program 9.1

Allocation Treatment Block
number group number

1 3 1
2 2 1
3 2 1
4 1 1
5 1 1
6 1 2
7 1 2
8 2 2
9 3 2
10 2 2

Output 9.1 shows the first ten observations in the SCHEDULE data set. These
observations represent the allocation of the first ten subjects (two permuted blocks).

To generate 30 permuted blocks of size 10, the PROC PLAN options in Program 9.1
need to be modified in the following way:

proc plan seed=56789;
factors block=30 ordered treatment=10;
output out=schedule treat nvals=(1 1 1 1 2 2 2 2 3 3);

The described approach to generating permuted block schedules relies on drawing
permuted blocks with replacement from a set of all existing permuted blocks with specified
contents. The resulting schedule does not necessarily use all existing permuted blocks of a
given structure and the same block can appear on the schedule multiple times. This
approach is simple to implement and, in most circumstances, adequately serves the needs
of clinical researchers.

An alternative approach was described by Zelen (1974) for two-arm studies with a 1:1
allocation that uses the permuted blocks of size 4. Zelen proposed to list all six existing
permuted blocks,

(1, 1, 2, 2), (1, 2, 1, 2), (1, 2, 2, 1), (2, 1, 1, 2), (2, 1, 2, 1), (2, 2, 1, 1),

and then randomly permute them to form a randomization sequence for the first 24
subjects. The procedure can be repeated as many times as needed to produce the
randomization schedule for any number of subjects. With this approach, the sets of all
existing permuted blocks are repeatedly used. This strategy can also be implemented with
PROC PLAN. Section 9.3.4 describes the circumstances under which the Zelen approach
can be beneficial.

9.3 Variations of Permuted Block Randomization
Although permuted block randomization provides a satisfactory allocation for the majority
of clinical trials, some variations of it are also employed.

9.3.1 Permuted Block Design with a Variable Block Size
In a study unmasked to the investigator, permuted block design with block of variable size
is sometimes employed (ICH E-9), with the intention of making it harder for the
investigator to guess the next treatment assignment and thus lessen the potential for
selection bias. This strategy and its limitations are discussed in Rosenberger and Lachin
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(2002). They mention that, under a commonly used model for selection bias, variable block
allocation “yields a substantial potential for selection bias in an unmasked study that is
approximately equal to that associated with the average block size M”. On the other hand,
variable block allocation reduces the expected number of assignments that may be
predicted with certainty compared to the sequence of permuted blocks of size M .

A permuted block randomization with variable block size can be generated in SAS using
random number generators.

EXAMPLE: A 1 : 1 randomization schedule with a variable block size
Consider a clinical trial with 20 subjects who are to be allocated to two treatments in a 1:1
ratio using permuted blocks of size 2, 4, or 6. The size of each permuted block will be
chosen at random with probabilities 0.25, 0.5, and 0.25, respectively. To provide a schedule
for a minimum of 20 subjects, 10 permuted blocks need to be generated. The set of 10
blocks can include up to 60 subjects; however, only the first 20 treatment assignments will
be used to allocate the study subjects.

Program 9.2 demonstrates how to generate a randomization schedule for the two-arm
trial. First, the BLOCKS data set with 10 blocks of variable size is created. The size of
each block is computed based on the HALF SIZE variable which is defined as follows

half_size=rantbl(12345,0.25,0.5,0.25);

This statement invokes the RANTBL function (with the random seed 12345) that
assigns values 1, 2, or 3 with probabilities 0.25, 0.5, and 0.25 to the HALF SIZE variable.
After the block size is determined (it is equal to two times HALF SIZE since there are two
treatment groups), HALF SIZE observations are created in each treatment group within
the block. After that, a random value uniformly distributed over (0,1) is added to the data
set (RANDOM variable) to randomly permute the treatment assignments within each
block. The RANDOM variable is generated using the RANUNI function with the seed set
to 678. The last DATA step assigns consecutive allocation numbers (AN variable) to all
observations on the list.

Program 9.2 A 1 : 1 randomization schedule with a variable block size

data blocks;
do block=1 to 10;

half_size=rantbl(12345,0.25,0.5,0.25);
do j=1 to half_size;

do treatment=1,2;
random=ranuni(678);
output;

end;
end;

end;
proc sort data=blocks out=schedule;

by block random;
data schedule;

set schedule;
an=_n_;
label treatment=’Treatment group’

block=’Block number’
an=’Allocation number’;

proc print data=schedule noobs label;
var an treatment block;
run;
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Output from Program 9.2

Allocation Treatment Block
number group number

1 2 1
2 1 1
3 1 1
4 2 1
5 1 2
6 1 2
7 2 2
8 2 2
9 2 3
10 1 3
11 1 3
12 2 3
13 1 4
14 2 4
15 2 4
16 1 4
17 1 4
18 2 4
19 2 5
20 1 5
21 2 5
22 1 5
23 2 6
24 1 6
25 1 7
26 2 7
27 2 7
28 1 7
29 2 8
30 1 8
31 1 9
32 2 9
33 2 9
34 1 9
35 1 10
36 2 10

Output 9.2 displays the allocation schedule generated by Program 9.2. The schedule
uses the following sequence of block sizes

(4, 4, 4, 6, 4, 2, 4, 2, 4, 2).

It should be noted that, although in the example above, the first 20 subjects happened
to be split equally (10 and 10) between the two groups, an unbalanced allocation of 9 : 11
might have also been an outcome. In general, when a sequence of permuted blocks with a
random block size is used, the maximum imbalance in treatment assignments between the
two groups is determined by the largest block size allowed. In studies of small size, the need
to achieve an exact balance in treatment assignments might be a consideration when
choosing an allocation procedure.
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9.3.2 Constrained Block Randomization
Clinical trials are often designed to have unequal allocation to different treatment arms.
This might be based on efficiency considerations, ethical considerations (placing more
subjects on the treatment believed to be more efficient), the need to accumulate more
experience with the experimental drug, or simply to meet regulatory exposure
requirements.

In multi-arm trials, the number of subjects enrolled in each arm may reflect the roles
played by the arms in the trial’s objective. For example, consider a three-arm study with
an experimental drug arm, an active control arm and a placebo arm. The primary
objective of the trial is to compare the experimental drug to the active control and the
placebo arm is included in the study to perform safety assessments. Power considerations
may call for a size of 500 subjects in each of the two active treatment arms, and an
additional 200 subjects to be enrolled in the placebo group.

The allocation ratio of 5 : 5 : 2 will lead to a large block size (the smallest block size is
12), which, in turn, can lead to logistical problems described below. However, changing the
treatment ratio to a similar, but more manageable ratio of 2 : 2 : 1, may not be acceptable
since it requires enrolling 50 additional placebo subjects.

When the allocation ratio calls for a large block size, permuted blocks can turn out to
be quite unbalanced with some treatment groups gathered at the beginning of the block
and other groups at the end. To illustrate, consider a three-arm clinical trial with a 5 : 5 : 2
treatment ratio. With this ratio, the smallest block size is 12, and we can theoretically find
the following unbalanced block

(1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3).

Highly unbalanced blocks of this kind are a concern in multi-center trials stratified by
center. If some of the centers enroll less than a full block of subjects, these centers might
end up with an extreme imbalance in treatment assignments, or even without all treatment
arms represented. That may lead to problems at the analysis stage and, if there are many
small centers, the described phenomenon will have a negative impact on the overall balance
of treatment assignments.

To avoid these problems when the block size is large, constrained randomization
methods proposed by Youden (1964, 1972) can be used. Constrained block randomization
does not use every existing permuted block with a given treatment ratio but only the
better balanced blocks specified in advance.

Consider again the trial with a 5 : 5 : 2 allocation to three treatments (Treatments 1, 2,
and 3). Blocks of size 12 can be constructed in the following way: five permuted blocks
(1, 2) or (2, 1) are lined up and then two Treatment 3 assignments are randomly inserted
(one among the first six assignments and the other one among the last six assignments).
An example of a block generated with the described algorithm is given below

(2, 1, 1, 2, 3, 1, 2, 2, 3, 1, 2, 1).

Another way to build a constrained randomization schedule with a block of size 12 is to
generate a random permutation of

(1, 1, 1, 2, 2, 3)

followed by a random permutation of

(1, 1, 2, 2, 2, 3),

or vice versa, at random. This set of assignments is less restrictive compared to the
allocation algorithm described above.
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It is worth noting that other constrained block randomization algorithms have been
proposed in the literature. For example, Berger et al. (2003) introduced a randomization
procedure (known as the maximal procedure) which uses any sequence in a block for which
the maximum imbalance does not exceed a prespecified number.

With constrained randomization, blocks left incomplete at the end of enrollment will
exhibit a better balance compared to a regular permuted blocks schedule, which might be
especially important if the trial uses interim analyses. Constrained randomization is also
less susceptible to accidental bias caused by a time trend in a prognostic covariate.

Constrained randomization schedules can easily be generated using PROC PLAN by
imposing a constraint on a full factorial design in which the number of factors is equal to
the block size (Song and Kuznetsova, 2003).

9.3.3 Allocation for Clinical Trials with Treatment Group Splitting
A common example of constrained randomization—perhaps not recognized as such—arises
when treatment groups are split for a washout period or safety extension.

EXAMPLE: Dose-ranging study with a placebo washout
Consider a multi-center dose-ranging study with six treatment arms in which each arm is
to be split in a 2 : 1 ratio at the end of the main study period for a placebo washout. Two
thirds of each treatment arm will continue on the base study treatment, while the
remaining third will be switched to placebo. This study design results in 12 different
treatment regimens defined by a combination of a treatment arm (one of 6) and whether a
subject will be switched to placebo or stay on the base study treatment during the placebo
washout period.

At the base study start, the subjects are randomized to one of the 12 regimens (Arm 1
without switch, Arm 1 with a switch, Arm 2 without switch, Arm 2 with a switch,. . ., Arm
6 without switch, Arm 6 with a switch) in a

2 : 1 : 2 : 1 : 2 : 1 : 2 : 1 : 2 : 1 : 2 : 1

ratio. The minimal block size (18) can be too large for the study if most centers are
expected to enroll about 6 to 9 subjects. Therefore, a constrained randomization schedule
will be employed in which each block of 18 is built of three sub-blocks of six consecutive
allocations in the following way:
• Each sub-block of six contains all six base study arms.
• In addition, to evenly spread the allocations to placebo washout across the three

sub-blocks, two of the six base study arms within each sub-block are assigned to placebo
washout and each sub-block has a different pair of the base study treatments assigned to
the placebo washout.

• The sub-blocks of six are distributed among the centers to achieve the balance across
the six base study arms within the centers and the balance in 12 treatment regimens
across the centers.

Program 9.3 implements the described constrained permuted block allocation algorithm
and generates a schedule with ten blocks of size 18. First, PROC PLAN outputs ten blocks
(BLOCK variable) of six arms (ARM variable assumes values 1 to 6 for each value of
BLOCK) into the WASHOUT data set. It assigns to each of the 6 arms a value of 1, 2, or 3
(WASHOUT variable) by randomly permuting the set of values 1, 1, 2, 2, 3, and 3, among
the six observations of each block:
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Program 9.3 Dose-ranging trial with a placebo washout, Part 1

ods listing close;
proc plan seed=56789;

factors block=10 ordered arm=6 ordered;
treatments washout=6;
output out=washout washout nvals=(1 1 2 2 3 3);

data washout;
set washout;
label block=’Block number’

arm=’Base study arm’
washout=’Washout’;

proc print data=washout noobs label;
ods listing;
run;

Partial output from Program 9.3

Base
Block study
number arm Washout

1 1 3
1 2 2
1 3 3
1 4 1
1 5 2
1 6 1
2 1 1
2 2 2
2 3 3
2 4 2
2 5 3
2 6 1
3 1 2
3 2 1
3 3 2
3 4 3
3 5 1
3 6 3
4 1 2
4 2 1
4 3 2
4 4 3
4 5 3
4 6 1

Output 9.3 lists the first four blocks in the WASHOUT data set. Within each block, The
WASHOUT variable determines which of the six treatment arms will be switched to
placebo in the first, second or third sub-block of six, respectively. In the first block of 18
(BLOCK=1), the first sub-block of six will have Arms 4 and 6 switched to placebo washout
(WASHOUT=1), the second sub-block of six will have Arms 2 and 5 switched to placebo
washout (WASHOUT=2) and the third sub-block of six will have Arms 1 and 3 switched
to placebo washout (WASHOUT=3).

The next step is to build the constrained blocks of 18 based on the WASHOUT data set.
To do that, for each BLOCK=1 to 10, for each ARM=1 to 6 within the block, three
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observations (with the value of variable SUBBLOCK equal to 1, 2, and 3) are output into
the REGIMENS data set. The SWITCH variable is set to YES when the
SUBBLOCK=WASHOUT (a sub-block where a respective arm switches to placebo) and
NO otherwise. The treatment regimen is then defined as (2 ∗ ARM − 1) if the arm does not
switch to placebo and as 2 ∗ ARM if the arm switches to placebo. A random key
(RANDOM) is added to each observation in order to randomly permute the treatment
regimens within each sub-block of 6. As in Program 9.2, this variable is uniformly
distributed over (0, 1).

Program 9.4 Dose-ranging trial with a placebo washout, Part 2

data regimens;
set washout;
length switch $3.;
do subblock=1 to 3;

if washout=subblock then do;
switch=’Yes’;
treatment=arm*2;

end;
else do;

switch=’No’;
treatment=arm*2-1;

end;
random=ranuni(6789);
output;

end;
label block=’Block number’

arm=’Base study arm’
washout=’Washout’
subblock=’Sub-block’
switch=’Switch to placebo?’
random=’Random key’
treatment=’Treatment group’;

proc print data=regimens noobs label;
var block arm washout subblock switch random treatment;
run;

Partial output from Program 9.4

Switch
Block Base study Sub- to Random Treatment

number arm Washout block placebo? key group

1 1 3 1 No 0.71089 1
1 1 3 2 No 0.93229 1
1 1 3 3 Yes 0.40721 2
1 2 2 1 No 0.05740 3
1 2 2 2 Yes 0.75990 4
1 2 2 3 No 0.42393 3
1 3 3 1 No 0.28561 5
1 3 3 2 No 0.65511 5
1 3 3 3 Yes 0.05164 6
1 4 1 1 Yes 0.92032 8

Output 9.4 lists the first ten observations in the REGIMENS data set.
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To complete the randomization schedule, the REGIMENS data set needs to be sorted by
block (BLOCK), subblock (SUBBLOCK) and randomly generated key (RANDOM) to have
the treatment regimens randomly permuted within each sub-block of 6 (see Program 9.5).

Program 9.5 Dose-ranging trial with a placebo washout, Part 3

proc sort data=regimens out=schedule;
by block subblock random;

data schedule;
set schedule;
an=_n_;
label an=’Allocation number’;

proc print data=schedule noobs label;
var an arm switch block subblock treatment;
run;

Partial output from Program 9.5

Switch
Allocation Base study to Block Sub- Treatment
number arm placebo? number block group

1 2 No 1 1 3
2 3 No 1 1 5
3 6 Yes 1 1 12
4 5 No 1 1 9
5 1 No 1 1 1
6 4 Yes 1 1 8
7 5 Yes 1 2 10
8 4 No 1 2 7
9 3 No 1 2 5

10 2 Yes 1 2 4
11 6 No 1 2 11
12 1 No 1 2 1
13 3 Yes 1 3 6
14 5 No 1 3 9
15 1 Yes 1 3 2
16 2 No 1 3 3
17 4 No 1 3 7
18 6 No 1 3 11
19 3 No 2 1 5
20 2 No 2 1 3

Output 9.5 lists the treatment assignments of the first 20 subjects in the dose-ranging
trial. The first column is the subject’s allocation number, the second column (Base study
arm) indicates the arm to which the subject will be assigned during the base study, and the
switch column shows whether or not the subject will be switched to placebo at the end of
the base study. The column “Treatment group” contains the treatment regimen (one of 12)
that the subject is allocated to at randomization. The other two columns help to explain
the allocation algorithm implemented in Programs 9.3, 9.4, and 9.5.

9.3.4 Balanced-Across-Centers Allocation
A large number of incomplete blocks can seriously impair the balance of treatment
assignments in clinical trials with stratified randomization (Hallstrom and Davis, 1988). As
the last block in each stratum is often left incomplete at the end of enrollment, stratified
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assignment can result in as many incomplete blocks as there are strata. If the number of
subjects in each stratum is small the imbalance in treatment assignments might be
considerable. Typically, this is of concern in a study with numerous small centers. For
example, in a 30-center study stratified by center, as many as 30 blocks might be
incomplete. Additional stratification by gender may result in as many as 2 × 30 = 60
incomplete blocks.

To avoid having a large number of incomplete blocks, a central randomization algorithm
can be employed to allocate the subjects. With central randomization, a subject is assigned
the next available allocation number (and the respective treatment) in his or her stratum
(for example, gender), regardless of what center this subject belongs to. This allocation
scheme can be easily implemented with the Interactive Voice Response System (IVRS).
However, if centers are small, the central randomization may result in some centers being
very unbalanced in treatment assignments, up to a point of having only one treatment
assigned to all subjects at the center. That may lead to bias if a center happens to deviate
from the other centers in efficacy or safety assessments due to a training issue. Also, it will
lead to a suboptimal drug re-supply pattern, where the drug kits at the center with an
unbalanced allocation will have to be replenished more frequently than would have been
necessary with a balanced allocation. Thus, even when an IVRS solution is available, there
are merits to having the allocation balanced within the centers.

If no IVRS or similar technology is available to support a central randomization
algorithm in a study, the randomization is stratified by center because of drug distribution,
if nothing else. In a study with a large number of small centers it may lead to a large
number of incomplete blocks.

The imbalance caused by incomplete blocks can be lessened by having the blocks
balanced across the centers. Consider a study with 40 small centers and a 2 : 1 : 2 ratio of
allocation to Treatments 1, 2, and 3. The subject allocation is stratified by center to
facilitate drug distribution. Stratification by gender is desired but the small size of the
centers, which are expected to enroll six to nine subjects, makes it problematic. Almost all
the permuted blocks of five will likely be left incomplete.

To improve the balance in treatment assignments within each stratum, the
randomization schedule for each stratum will be prepared following a modified version of
Zelen’s (1974) approach described in Section 9.2.3. There are 30 different permutations of
(1, 1, 2, 3, 3). These blocks can be arranged in six balanced sets of five blocks so that the
five permuted blocks within each set will have a 2 : 1 : 2 allocation ratio across the row of
subjects allocated first, second, and so on. Thus, when the five blocks within the first
balanced set are distributed among Centers 1 through 5 (see Table 9.1), a balance is
established across these five centers among the subjects allocated first, second, and so on,
at their respective center. If the same number of subjects are allocated to all five centers,
there will be a perfect balance in treatment assignments across the centers even if all five
blocks are incomplete. Of course, in real life the number of subjects enrolled will vary
across the centers but even in this case the described algorithm provides a better balance

Table 9.1 Permuted Blocks for the First Ten Centers in a Balanced-across-centers Allocation Scheme

CenterAllocation order
within each center 1 2 3 4 5 6 7 8 9 10

1st subject 2 1 3 1 3 2 3 1 1 3
2nd subject 3 2 1 3 1 3 1 3 1 2
3rd subject 1 3 3 1 2 1 1 2 3 3
4th subject 3 1 1 2 3 1 3 3 2 1
5th subject 1 3 2 3 1 3 2 1 3 1
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than an allocation schedule built from randomly selected permuted blocks. Further, the
second balanced set of five blocks will be sent out to Centers 6 through 10; the procedure
will be repeated until all the blocks are generated for all 40 study centers.

The described randomization schedule can be generated in SAS (Song and Kuznetsova,
2003). The algorithm is implemented in Program 9.6 using PROC PLAN. First, the six
balanced sets of blocks are generated as six 5 × 5 Latin squares, where the value of
TREATMENT=1 is mapped to 2, and the vector of 4 remaining values (2, 3, 4, 5) is
mapped to one of the six permutations of (1, 1, 3, 3). This is accomplished by calling PROC
PLAN with numeric values for treatment specified as (21133), (21313), (21331), (23113),
(23131) and (23311). After that, all six balanced sets of five blocks each are put together,
the order of the sets is randomly permuted, and the order of the blocks within each set is
randomly permuted.

Program 9.6 Balanced-across-centers allocation

proc plan seed=6767;
factors row=5 col=5 ordered/noprint;
treatments treatment=5 cyclic 4;
output out=sq1 treatment nvals=(2 1 1 3 3);

proc plan seed=7878;
factors row=5 col=5 ordered/noprint;
treatments treatment=5 cyclic 4;
output out=sq2 treatment nvals=(2 1 3 1 3);

proc plan seed=8989;
factors row=5 col=5 ordered/noprint;
treatments treatment=5 cyclic 4;
output out=sq3 treatment nvals=(2 1 3 3 1);

proc plan seed=9797;
factors row=5 col=5 ordered/noprint;
treatments treatment=5 cyclic 4;
output out=sq4 treatment nvals=(2 3 1 1 3);

proc plan seed=8791;
factors row=5 col=5 ordered/noprint;
treatments treatment=5 cyclic 4;
output out=sq5 treatment nvals=(2 3 1 3 1);

proc plan seed=6917;
factors row=5 col=5 ordered/noprint;
treatments treatment=5 cyclic 4;
output out=sq6 treatment nvals=(2 3 3 1 1);

data sixsq;
set sq1(in=in1) sq2(in=in2) sq3(in=in3) sq4(in=in4) sq5(in=in5) sq6(in=in6);
retain r1-r6;
if _n_=1 then do;

r1=ranuni(4565);
r2=ranuni(7271);
r3=ranuni(8171);
r4=ranuni(6171);
r5=ranuni(7567);
r6=ranuni(9231);

end;
random=r1*in1+r2*in2+r3*in3+r4*in4+r5*in5+r6*in6;

proc sort data=sixsq out=schedule;
by random row;

data schedule;
set schedule;
by random row;
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an=_n_;
center=ceil(_n_/5);
label an=’Allocation number’

center=’Center’
treatment=’Treatment group’;

proc print data=schedule noobs label;
var an center treatment;
run;

Partial output from Program 9.6

Allocation Treatment
number Center group

1 1 2
2 1 3
3 1 1
4 1 3
5 1 1
6 2 1
7 2 2
8 2 3
9 2 1
10 2 3
11 3 3
12 3 1
13 3 3
14 3 1
15 3 2
16 4 1
17 4 3
18 4 1
19 4 2
20 4 3

Output 9.6 displays the treatment assignments of the first 20 subjects. It is easy to see
that the obtained assignments are identical to the assignments at Centers 1 through 4 in
Table 9.1.

The benefits of balancing across the centers are most obvious when the block size is
large, e.g., in the case of a 5 : 5 : 2 allocation ratio. Balancing across centers can also be
advantageous when a stratification of the schedule by another factor, e.g., gender, is
contemplated in a study with small centers. Such a schedule will make the treatment
groups better balanced in gender and will provide at least as good a balance in overall
treatment assignments as a randomization not stratified by gender.

In the extreme case of a very small stratum, e.g., when only two to three subjects per
center are expected to be enrolled in a study with a minimal block size of 8, the schedule
built of incomplete blocks balanced across the centers can be considered for the stratum.
More examples can be found in Cho et al. (2004).

A balanced-across-centers allocation schedule is a special case (a single-factor case) of
the factorial stratification proposed by Sedransk (1973). In the multi-factor case, the
factorial stratification provides a close balance across all first, second, third, and so on
assignments in all strata. Factorial stratification is most beneficial if subjects are evenly
distributed across the strata, which is often not the case.
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9.4 Allocations Balanced on Baseline Covariates
When certain subject characteristics (baseline covariates) are known to affect the response,
it is often important to have the treatment groups balanced with respect to these
covariates:

• A balanced allocation helps minimize bias due to covariate imbalances unaccounted for
in the analysis model.

• A balance with respect to important covariates improves the efficiency of the analysis
(Senn, 1997). Note, however, that in large trials the gain in power resulting from the use
of a balanced allocation is typically small compared to post-stratified analysis without
balanced allocation (McEntegart, 2003). At the same time, as pointed out by
McEntegart, even a large trial can suffer from a substantial loss of power due to an
unbalanced allocation in the presence of many small strata. Also, an allocation balanced
by baseline predictors can considerably improve the efficiency of interim and subgroup
analyses.

• The results of a trial with treatment groups balanced with respect to major covariates
are more convincing for the medical community. Serious imbalance in important
covariates might raise concerns even if it is adjusted for in the analysis.

It is debatable to what extent the balance in prognostic factors should be pursued, when
statistical analysis can account for any imbalances in covariates; see, for example, a heated
discussion following Atkinson (1999). The decision to balance or not to balance in a
particular study can be guided by an assessment of the probability to conclude with an
imbalance that is either perceived as dangerously high in the clinical community or exceeds
the boundaries within which the model assumptions can be trusted. More insights can be
gained from McEntegart (2003).

It is recommended that the baseline predictors balanced upon be included in the
analysis model (International Conference on Harmonization, 1998; Gail, 1988; Simon, 1979;
Kalish and Begg, 1987; Senn, 1997; Scott et al., 2002). A failure to do so might result in an
incorrect Type I error rate. When the randomization-based analysis is performed, it should
follow the randomization procedure (Rosenberger and Lachin, 2002).

9.4.1 Stratified Permuted Block Randomization
The most common way to achieve balance in a given factor is stratified randomization
which relies on creating a separate randomization schedule for each level of the factor. If
there are several baseline covariates to balance upon, a separate restricted randomization
schedule (most commonly, a permuted block schedule) is prepared for each stratification
cell defined by a combination of factor levels. For example, in a study balanced by gender
(male or female) and smoking status (smoker, ex-smoker or never-smoker), a separate
schedule is generated for each of the six strata formed by a combination of the factor levels.

The stratified randomization approach has its limitations: only a small number of
factors can be balanced upon. If the number of strata is large, some strata will have few or
no subjects resulting in an inadequate balance across factor levels (Therneau, 1993;
Rosenberger and Lachin, 2002; Hallstrom and Davis, 1988).

9.4.2 Covariate-Adaptive Allocation Procedures
When there are too many important prognostic factors for stratification to handle, one of
the covariate-adaptive allocation procedures can be used to provide a balance in selected
covariates. Such procedures are dynamic in nature—the treatment assignment of a subject
depends on the subject’s vector of covariates and thus is determined only when the subject
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arrives. It is conceptually different from the regular stratified randomization method that
relies on a fixed allocation schedule prepared for each stratum prior to the study start.

Minimization, pioneered by Taves (1974) and expanded by Pocock and Simon (1975), is
the most commonly used covariate-adaptive allocation procedure. Minimization produces a
marginal balance in each individual factor but not in individual factor interaction cells. For
example, when balancing on gender and smoking status, the balance in treatment
assignments is achieved across factor levels (across males, females, smokers, ex-smokers,
and never-smokers) but not within each cell, e.g., male smokers, as is the case with the
stratified randomization. Because of that, minimization can simultaneously be balanced on
a large number of factors even in a moderate size trial.

Minimization achieves the balance in treatment assignments across factor levels by
choosing the allocation for the new subjects that would result in the least possible
imbalance (in some sense) across the set of his or her baseline characteristics.

In what follows we will describe the minimization algorithm proposed by Taves with a
variance imbalance function popularized by Freedman and White (1976). Due to its
simplicity, this algorithm is frequently used in clinical trials (McEntegart, 2003) and is
often described in the literature (Senn, 1997; Scott et al., 2002).

9.4.3 Taves Minimization Algorithm
Consider a parallel study in which subjects are to be allocated equally to two treatment
groups (Treatment A and Treatment B) and the allocation needs to be balanced in gender
(male or female) and smoking status (smoker, ex-smoker, or never-smoker).

When the minimization algorithm is described, it is convenient to assign scores of 1 and
−1 to the treatment groups A and B, respectively. Suppose a male ex-smoker arrives for
allocation when there are 20 allocated subjects in the trial. To select the treatment
assignment for this subject, we count the number of males and the number of ex-smokers in
each of the treatment arms. Assume that there are five males in the Treatment A group
and seven males in the Treatment B group. The imbalance across males, defined as the
difference in number of males allocated to A versus B, is 5 − 7 = −2. Also, there are three
ex-smokers in the Treatment A group and two ex-smokers in the Treatment B group. The
imbalance across ex-smokers is 3 − 2 = 1. The total imbalance, defined as the sum of
imbalances across males and across ex-smokers, is (−2) + 1 = −1. The negative total
imbalance indicates that, overall, Treatment A is underrepresented among males and
among ex-smokers combined. Thus, to improve the balance, the male ex-smoker is
allocated to Treatment A. When the group totals are equal, the subject is allocated to one
of the treatment arms at random with equal probability.

Given the covariates and treatment allocations of the subjects already in the study, the
treatment assignment of a new subject is fully determined by his or her set of covariates,
except when a tie in group totals is encountered. This is why Scott et al. (2002) referred to
the Taves minimization algorithm as “largely nonrandom”—that is, deterministic
assignments occur more often than random ones. Nevertheless, simulations show that
assignments at random occur often enough to provide a reasonably rich set of possible
allocation sequences for a given sequence of covariates (Kuznetsova and Troxell, 2004).
Thus, in a masked trial, a largely deterministic nature of the Taves minimization algorithm
does not lead to selection bias. However, in a single-center unmasked trial, a large share of
the treatment assignments will be predictable, providing a considerable opportunity for
selection bias.

9.4.4 Pocock-Simon Minimization Algorithm
Pocock and Simon (1975) extended the Taves minimization algorithm to make treatment
assignments less predictable. This is achieved by using an additional random element at
each treatment assignment. A subject is allocated to the treatment that results in the least
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imbalance with probability p < 1 rather than p = 1. If p is close to 1 (p = 0.9 or p = 0.95
are often used) the Pocock-Simon procedure still has good balancing properties and
somewhat less potential for selection bias in an unmasked trial. The ICH E-9 guidance
recommends using a random element at each allocation.

To define the Pocock-Simon minimization algorithm, consider a clinical study with
subjects allocated in a 1 : 1 ratio to Treatments A and B. The allocation scheme in this
study needs to be balanced by gender (male or female) and the smoking status (smoker,
ex-smoker, or never-smoker). As was explained above, the Pocock-Simon algorithm extends
the Taves algorithm by introducing a random element to each allocation step. In this trial,
a subject will be assigned to the treatment that results in a smaller imbalance with
probability p = 0.9 and to the opposite treatment with probability p = 0.1. When the tie in
total imbalances is encountered, the treatment will be assigned by a toss of a fair coin.

The Pocock-Simon procedure, which can be expanded to more than two treatment
groups, allows the use of different measures of imbalance across a factor level. If some of
the factors are considered more important than others, they can be included in combined
imbalance with higher weight. If an interaction between the two factors is known to affect
the response, the interaction should be included as a factor in the minimization algorithm
(Pocock and Simon, 1975).

The minimization approach has been shown to provide a good marginal balance in a
large number of factors simultaneously (Taves, 1974; Pocock and Simon, 1975; Therneau,
1993; Begg and Iglewicz, 1980; Birkett, 1985; Zielhuis et al., 1990; Weir and Lees, 2003).
By McEntegart’s (2003) estimate, minimization has been used in more than 1,000 trials,
including several prestigious mega-trials.

9.4.5 Implementation of Minimization Algorithms in SAS
Below we describe the %ASSIGN macro that must be invoked each time a new subject is
available for allocation. The set of the subject’s covariates is specified through the macro
parameters. The macro assigns a treatment to the new subject and also updates the
ALL ANS data set that stores the allocation numbers, covariates, and treatment
assignments of all allocated study subjects. This data set will have one observation for each
study subject and will include the following variables:

• The study subjects will be identified by their allocation numbers (AN variable),
assigned to them in the order they were allocated.

• The treatment assignments of the study subjects will be stored in the TREATMENT
variable. Treatments A and B will be coded by 1 and −1, respectively.

• The set of covariates of each subject will be described by five 0/1 variables, C1 to C5.
The first three variables, C1, C2, and C3, are 0/1 indicators of the subject’s level of the
smoking status (smoker, ex-smoker, or never-smoker, respectively), while C4 and C5 are
the indicators of the subject’s gender (male or female, respectively). For example, a male
ex-smoker will have the following set of variables: C1=0, C2=1, C3=0, C4=1, C5=0.

• Lastly, there will be five variables, M1 to M5, to store the marginal imbalances, that is,
the differences in the number of subjects allocated to A versus B across smokers (M1),
ex-smokers (M2), never-smoker (M3), males (M4), and females (M5), respectively, that
result after the subject is allocated.

Before the first subject is allocated, the ALL ANS data set must be initialized by
setting all of the variables to 0 in the following step as shown in Program 9.7.
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Program 9.7 Initialize the parameters in the ALL ANS data set

data all_ans;
label an=’Allocation Number’

c1=’Smoker’
c2=’Ex-smoker’
c3=’Never-smoker’
c4=’Male’
c5=’Female’
m1=’Imbalance across Smokers’
m2=’Imbalance across Ex-smokers’
m3=’Imbalance across Never-smokers’
m4=’Imbalance across Males’
m5=’Imbalance across Females’
treatment=’Treatment’;

input an c1-c5 m1-m5 treatment;
datalines;
0 0 0 0 0 0 0 0 0 0 0 0 0
;
run;

Each time a new subject arrives for allocation, the %ASSIGN macro is called to determine
the treatment assignment of the new subject and update the ALL ANS data set. The
macro works in the following way:

• The macro reads the current marginal imbalances into a one-observation data set
(ASSIGN data set). It creates indicator variables C1 to C5 that describe the covariates
of the new subject and assigns them values of the macro parameters &C1 to &C5. The
last macro parameter, &P, is the probability of assigning a new subject to Treatment B.

• The treatment assignment for the new subject is determined by the scalar product of
the vectors (C1, C2, C3, C4, C5) and (M1, M2, M3, M4, M5), the so-called total
imbalance (TOTIMB variable). If TOTIMB=0, the TREATMENT variable is set to 1
or −1 with probability 0.5. If TOTIMB is positive, the TREATMENT variable is set to
−1 (Treatment B) with probability &P and 1 (Treatment A) with probability 1-&P. If
TOTIMB is negative, TREATMENT=1 (Treatment A) with probability &P and value
TREATMENT=−1 (Treatment B) with probability 1 to &P.

• After the new subject has been assigned to a treatment group, the marginal imbalances
M1 to M5 are updated in the ASSIGN data set. This data set, which contains the
allocation number, covariate indicators C1 to C5, treatment assignment for the new
subject, and updated marginal imbalances, is appended to the ALL ANS data set.

We need to go through these steps every time a subject arrives for allocation. The
%ASSIGN macro is defined in Program 9.8.

Program 9.8 The %ASSIGN macro

%macro assign(c1,c2,c3,c4,c5,p);
data assign;

set all_ans(keep=m1-m5 an) end=lastobs;
if lastobs;
c1=&c1; c2=&c2; c3=&c3; c4=&c4; c5=&c5;
totimb=c1*m1+c2*m2+c3*m3+c4*m4+c5*m5;
* Assign -1 or 1 with probability 0.5 if totimb=0;
if totimb=0 then treatment=2*rantbl(0,0.5,0.5)-3;
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* Assign 1 with probability &p and -1 with probability 1-&p if totimb>0,
otherwise assign -1 with probability &p and 1 with probability 1-&p;

else treatment=-sign(totimb)*(2*rantbl(0,1-&p,&p)-3);
an=an+1;
m1=m1+c1*treatment;
m2=m2+c2*treatment;
m3=m3+c3*treatment;
m4=m4+c4*treatment;
m5=m5+c5*treatment;
keep an c1-c5 m1-m5 treatment;

data all_ans;
set all_ans assign;
if an>0;
run;

%mend assign;

Program 9.9 invokes the %ASSIGN macro to allocate the first three subjects in a study
that involves a never-smoking male, never-smoking female, and a smoker male in the order
of arrival. These subjects will be assigned to the treatment that produces better balance
with probability 0.9 and thus &P=0.9.

Program 9.9 Pocock-Simon minimization algorithm with p = 0.9

* 1st subject: never-smoking male;
%assign(c1=0,c2=0,c3=1,c4=1,c5=0,p=0.9);
* 2nd subject: never-smoking female;
%assign(c1=0,c2=0,c3=1,c4=0,c5=1,p=0.9);
* 3rd subject: smoker male;
%assign(c1=1,c2=0,c3=0,c4=1,c5=0,p=0.9);
proc print data=all_ans noobs;

var an treatment c1-c5 m1-m5;
run;

Output from Program 9.9

an treatment c1 c2 c3 c4 c5 m1 m2 m3 m4 m5

1 -1 0 0 1 1 0 0 0 -1 -1 0
2 1 0 0 1 0 1 0 0 0 -1 1
3 1 1 0 0 1 0 1 0 0 0 1

Output 9.9 lists the allocation numbers, treatment assignments, and values of the C1 to
C5 and M1 to M5 variables. The three subjects were assigned to Treatments B, A, and A,
respectively.

To change the probability of assigning subjects to the treatment that produces better
balance, we must change the &P macro parameter. For example, increasing the value of
&P to 0.95 will result in a tighter balance with respect to baseline covariates.

To implement the Taves minimization algorithm, the &P macro parameter is set to 1.
There are other approaches to balancing an allocation on baseline covariates. Atkinson

(1982) proposed an approach based on optimal design considerations that focuses on
minimizing the variance of treatment contrasts in the presence of covariates rather than on
balancing over the covariates to minimize the bias. A different approach (Miettinen, 1976)
is based on stratifying by a single risk score that accounts for the effect of all known
covariates.
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The CPMP Points to Consider document on adjustment for baseline covariates (EAEMP
CPMP, 2003) discourages the use of covariate-adaptive allocation procedures. The issues
involved are discussed by Roes (2004). He shows that some of the arguments against
dynamic allocation procedures (e.g., predictability of the assignments) apply to stratified
randomization as well, and might be even more pronounced with stratified randomization.
The utility of dynamic allocation procedures is well described by McEntergart (2003).

9.5 Summary
In this chapter we describe randomization procedures used by the pharmaceutical industry.
We devote most attention to the popular permuted block design and its variations brought
in by variable block size, constrained randomization, and randomization, balanced across
the centers. For each of the described approaches, we provide SAS code to create a
randomization schedule.

We also discuss covariate-adaptive allocation procedures. When there is a need to
balance the treatment groups with respect to baseline covariates, the stratified permuted
block randomization is typically used. However, if the number of baseline covariates to
balance upon is large, stratified randomization might not be feasible. In this case, one of
the dynamic covariate-adaptive allocation procedures can be used to achieve the required
balance. We describe the popular minimization procedure—a largely deterministic Taves
(1974) version and a version by Pocock and Simon (1975) where a random element is added
at each allocation step. Both algorithms are implemented in a SAS macro. An example
that illustrates the use of the macro to randomize the patients dynamically is provided.

The randomization designs not covered in this chapter include biased coin designs
(Efron, 1971), the maximal procedure (Berger et al., 2003), and designs based on urn
models (see the review in Wei and Lachin, 1988). The maximal procedure (Berger et al.,
2003) was proposed as an alternative to a sequence of permuted blocks of small sizes. The
maximal procedure maintains an imbalance no larger than a prespecified positive integer
number b throughout the enrollment and provides less potential for selection bias than the
set of randomized blocks of size 2b. Although originally developed for trials with two
treatments and a 1 : 1 treatment ratio, the maximal procedure can be easily expanded for
more than two treatments. Each of these designs achieves a certain trade-off between the
treatment balance and the amount of randomization the design provides.

Randomization designs can be viewed as adaptive allocations that use previous
treatment assignments to modify the probability of the next assignment to ensure good
balance in treatment assignments and to provide some amount of randomization. A
completely different class of randomization designs are response-adaptive allocation
procedures. These designs use responses observed so far in the trial to change allocation
away from perfectly balanced allocation based on a certain objective. We refer the reader
to Hu and Ivanova (2004) for the most recent review of response adaptive designs.
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Sample-size analysis continues to be transformed by ever-improving strategies, methods,
and software. Using these tools intelligently depends on what the investigators understand
about statistical science and what they know and conjecture about the particular research
questions driving the study planning. This chapter covers only the most common type of
sample-size analysis—power analysis, i.e., studying the chance that a given hypothesis test
will be “statistically significant,” p ≤ α. We focus on the core concepts and issues that the
collaborating statistician must master and that key investigators must understand.
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We begin by reviewing p values and discuss how to conduct sample-size analyses that
focus on the classical Type I and Type II error rates, α and β. Then we go further to
consider two other error rates, the crucial Type I error rate, α∗, which is the chance that
the null hypothesis is true even though p ≤ α, and the crucial Type II error rate, β∗, defined
as the chance that the null hypothesis is false in some particular way even though p > α.
We argue that α∗ and β∗ are just as relevant (if not more so) than α and β. These issues
are explored in depth through two examples stemming from a straightforward clinical trial.

10.1 Introduction
In their “Perspectives on Large-Scale Cardiovascular Clinical Trials for the New
Millennium,” Dr. Eric Topol and colleagues (1997) provide a fine preamble to our
discussions:

The calculation and justification of sample size is at the crux of the design of a trial. Ideally,
clinical trials should have adequate power, ≈ 90%, to detect a clinically relevant difference
between the experimental and control therapies. Unfortunately, the power of clinical trials is
frequently influenced by budgetary concerns as well as pure biostatistical principles. Yet an
underpowered trial is, by definition, unlikely to demonstrate a difference between the
interventions assessed and may ultimately be considered of little or no clinical value. From an
ethical standpoint, an underpowered trial may put patients needlessly at risk of a new therapy
without being able to come to a clear conclusion.

In addition, it must be stressed that investigators do not plan studies in a vacuum. They
design them based on their knowledge and thoughtful conjectures about the subject
matter, on results from previous studies, and on sheer speculation. They may already be
far along in answering a research question, or they may be only beginning. Richard
Feynman, the 1965 Nobel Laureate in Physics and self-described “curious character,”
stated this somewhat poetically (1999, P. 146):

Scientific knowledge is a body of statements of varying degrees of uncertainty,
some mostly unsure,

some nearly sure,
none absolutely certain.

This reflects what we will call The March of Science, which for clinical research is
sketched in Figure 10.1.

As we step forward, our sample-size considerations need to reflect what we know. At any
point, but especially at the beginning, the curious character inside us should be free to
conduct observational, exploratory, or pilot studies because, as Feynman said, “something
wonderful can come from them.” Such studies are still “scientific” but they are for
generating new and more specific hypotheses, not for testing them. Accordingly, little or no
formal sample-size analyses may be called for. But to become “nearly sure” about our
answers, we typically conduct convincing confirmatory studies under specific protocols.
This often requires innovative and sophisticated statistical planning, which is usually
heavily scrutinized by all concerned, especially by the reviewers. No protocol is ever
perfect, but paraphrasing the New York Yankee catcher and populist sage, Yogi Berra,
Don’t make the wrong mistake.

Medical research is still dominated by traditional (frequentist) hypothesis testing and
classical power analysis. Here, investigators and reviewers typically ask, “What is the
chance (inferential power) that some given key p-value will be significant, i.e. less than
some specified Type I error rate, α?” Thus, we cannot understand inferential power
without knowing what p-values are and what they are not. Researchers rely on them to
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Figure 10.1 March of science in clinical research

����
���

	�

�

����
�

��

�

	��
��

�

�
���

��

�

	��
��


�
	��

��
�

��
��


�
��

���
��


�
	��

��
�

��
	���

�	
�
�

	��
��

�

��
��
��

	
�
	��

��
�

��
��
��
��	

�
	�
�

�
���

�

��
��
���
� �
��


��
�
��
��



�
��


���
��
��
��
�
��
��



�
��


���
� �
��
�
��
�
��
��



��	��������������
�������������
������������������
���


�����������
	��
�����
���
���������
������	�
�
���������	
���� �����	����	� �
���������

����
���
���	�
�
������
�������	�� �����	����	� ����������

�������
�����
�

assess whether a given null hypothesis is true, but p-values are random variables, so they
can mislead us into making Type I and II errors. The respective classical error rates are
called α and β = 1 − power. All of this is reviewed in detail.

This chapter also considers other error rates that relate directly to two crucial questions
that researchers should address. First, if a test turns out to be significant, what is the
chance that its null hypothesis is actually true (Type I error)? A great many researchers
think that this chance is at most α. They might say something like, “We will use α = 0.05
as our level for statistical significance, so if we get a significant result, we will be more than
95% confident that the treatments are different with respect to this outcome.” Researchers
want to be able to make statements like this, but this particular logic is wrong. Likewise, if a
test turns out to be non-significant, they might ask, “What is the chance that its null
hypothesis is actually false (Type II error) to some particular degree?” Many researchers
think this is the usual Type II error rate, β. It is not.

So, what is an appropriate way to do this? We describe something we call the crucial
Type I error rate (here, α∗), which is the chance that the null hypothesis is true even after
obtaining significance, p ≤ α. Similarly, the crucial Type II error rate (β∗) is the chance
that the null hypothesis is false in some particular way even though a p > α result has
occurred. We argue that α∗ and β∗ are just as relevant (if not more so) than α and β. We
demonstrate how crucial error rates can be guesstimated if investigators are willing to state
and justify their current belief about the chance that the null hypothesis is indeed false.
Importantly, for a given α level, greater inferential power reduces both crucial error rates.

All these concepts will be developed and illustrated by carrying out a sample-size
analysis for a basic two-group trial to compare two treatments for children with severe
malaria: usual care only versus giving an adjuvant drug known to reduce high levels of
lactic acid. Two planned analyses will be covered. The first compares the groups with
respect to a binary outcome, death within the first ten days. The second compares them on
a continuous outcome, the ratio of two amino acids measured in plasma, using baseline
values as covariates. The principles covered apply to any traditional statistical test being
used to try to reject a null hypothesis, including analyses far more complex than those
discussed here.
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While obtaining an appropriate and justifiable sample size is important, going through
the analytical process itself may be just as vital in that it forces the research team to work
collaboratively with the statistician to delineate and critique the rationale undergirding the
study and all the components of the research protocol. The investigators must specify tight
research questions, the specific research design, the various measures, and an analysis plan.
They must come to agree on and justify reasonable conjectures for what the “infinite
dataset” may be for their study. In essence, they must imagine how the entire study will
proceed before the first subject is recruited. The “group think” on this can be invaluable.

Our reader audience includes both collaborating statisticians and content investigators.
While the examples given here involve clinical trials, the principles apply broadly across all
of science. Therefore, we present almost no mathematical details.

The SAS procedures POWER and GLMPOWER are the primary computational
engines, but we use only a small portion of their capabilities. Far more information can be
found in the current SAS/STAT User’s Guide.

To save space, some SAS code has been shortened and some output is not shown. The
complete SAS code and data sets used in this book are available on the book’s companion
Web site at http://support.sas.com/publishing/bbu/companion site/60622.html.

10.2 Research Question 1: Does “QCA” Decrease Mortality in Children
with Severe Malaria?
According to a report released in 2003 by the World Health Organization, malaria remains
one of the world’s foremost health problems, killing at least one million people annually,
mostly children under five years old in sub-Saharan Africa. Lactic acidosis (toxic levels of
lactic acid in the blood) is a frequent complication in severe malaria and is an incremental
statistical predictor (“independent risk factor”) of death. Moreover, a plausible biological
rationale supports the hypothesis that lactic acidosis is a contributing cause of death.

Dr. Peter Stacpoole of the University of Florida has spent decades investigating the
safety and efficacy of dichloroacetate (DCA) for treating lactic acidosis in genetic and
acquired diseases. In 1997–99, he collaborated with Dr. Sanjeev Krishna of the University
of London to lead a team that conducted a small, randomized, double-blind, controlled trial
of quinine-only versus quinine+DCA in treating lactic acidosis in Ghanaian children with
severe malaria (Agbenyega et al., 2003). They concluded that a single infusion of DCA was
well-tolerated, did not appear to interfere with quinine and, as hypothesized, reduced blood
lactate levels. The sample size of N = 62 + 62 was much too small to support comparing
mortality rates. The authors concluded that a large prospective study was warranted.

From now on the story is fictionalized. Suppose “quadchloroacetate” (QCA) has the
same molecular structure as DCA at the active biological site, and has now been shown in
large animal and human studies to be clinically equivalent to DCA in quickly reducing
abnormally high blood lactate levels. However, QCA is less expensive to produce (about
US$1/dose) and has a longer shelf-life, especially in tropical climates.

“Dr. Sol Capote” heads the malaria research group at “Children’s Health International
(CHI),” and he and his colleagues are now designing a large clinical trial to be coordinated
from “Jamkatnia” in West Africa. Dr. Capote is an experienced investigator, so he knows
that substantial thought, effort, and experience must go into developing the sample-size
analysis and the rest of the statistical considerations.

The CHI study will use a randomized, double-blind design to compare usual care only
(UCO) versus usual care plus a single dose of QCA. After reviewing all previous human
studies of both DCA and QCA, the CHI team is convinced that a single dose of QCA is
very likely to be safe. Accordingly, after consulting with Jamkatnian health officials and a
bioethicist, they decide that two-thirds of the subjects should get QCA.
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10.3 p-Values, α, β and Power
The primary efficacy analysis will yield a p-value that compares the mortality rates of
control versus QCA. Smaller p-values indicate greater statistical separation between the
two samples, but how that p-value is determined is an issue that is not critical to
understanding the essential concepts in sample-size analysis. In this case, that p-value may
come from one of the many methods to compare two independent proportions, including
the likelihood ratio chi-square test, as used here, or it may come from a logistic or hazard
modeling that includes co-predictors. Regardless of what test is used to get the p-value, if p
is small enough (“significant”) and the QCA mortality rates are better, Dr. Capote will
report that the study supported the hypothesis that QCA reduces mortality in children
with severe malaria complicated with lactic acidosis. If the p-value is not small enough
(“not significant”), then he will report that the data provided insufficient evidence to
support the hypothesis.

10.3.1 Null and Non-Null Distributions of p-Values; Type I and Type II Errors
Dr. Capote’s quest here is to answer the following question: Does QCA decrease mortality
in children with severe malaria? While Mother Nature knows the correct answer, only if we
were able to gather an infinitely large, perfectly clean dataset could we figure this out
ourselves. Rather, we must design a study or, usually, a series of studies, that will yield
sample datasets that give us a solid chance of inferring what Mother Nature knows.
Unfortunately, Lady Luck builds randomness into those sample datasets, and thus even the
best studies can deliver misleading answers.

Please study the top distribution in Figure 10.2. Here, there is no difference between the
two groups’ mortality in the infinite dataset, so regardless of the sample size, all values for
0 < p < 1 are equally likely. Accordingly, there is a 5% chance that p ≤ 0.05, or a 100α%
chance that p ≤ α (in practice, these percentages are rarely exact because the data are
discrete or they fail to perfectly meet the test’s underlying mathematical assumptions). If
there is no true effect, but p ≤ α indicates otherwise, then this result triggers a Type I
error, which is why α is called the Type I error rate. α should be chosen after some
thought; it should not be automatically set at 0.05.

What if QCA has some true effect, good or bad? Then the non-null (non-central)
distribution of the p-value will be skewed toward 0.0, as in the middle and bottom plots of
Figure 10.2. The middle one comes from presuming (1) true mortality rate of 0.28 for UCO
and 0.21 for QCA, which is a 25% reduction in mortality; (2) 700 patients randomized to
UCO versus 1400 to QCA, and (3) the p-value arises from testing whether the two
mortality proportions differ (non-directional) using the likelihood ratio chi-square statistic.
The bottom plot conforms to presuming that QCA cuts mortality by 33%.

Inferential power is the chance that p ≤ α when the null hypothesis is false, which is why
α could be called the “null power.” If there is some true effect, but p > α, then a Type II
error is triggered. Consider the middle plot, which is based on a 25% reduction in
mortality. Using the common Type I error rate, α = 0.05, the power is 0.68, so the Type II
error rate is β = 0.32. By tolerating a higher α-level, we can increase power (decrease β).
Here, using α = 0.20. the power is 0.87, so β = 0.13. If QCA is more effective (bottom plot,
33% reduction in mortality), then the power rises to 0.91 with α = 0.05 and 0.98 with
α = 0.20. Again, we will never know the true power, because Mother Nature will never tell
us the true mortality rates in the two groups, and Lady Luck will always add some natural
randomness into our outcome data.

10.3.2 Balancing Type I and II Error Rates
Recall that Topol et al. (1997) advocated that the power should be around 90%, which
puts the Type II error rate around 10%. We generally agree, but stress that there should
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Figure 10.2 Distribution of the p-value under the null hypothesis and two non-null scenarios
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be no standard power threshold that is accepted blindly as being satisfactory across all
situations. Why do so many people routinely perform power analyses using α = 0.05 and
80% power (β = 0.20)? Rarely do they give it any thought.

Consider the middle plot in Figure 10.2. We could achieve a much better Type II error
rate of 13% if we are willing to accept a substantially greater Type I error rate of 20%.
Investigators should seek to obtain α versus β values that are in line with the consequences
of making a Type I error versus a Type II error. In some cases, making a Type II error may
be far more costly than making a Type I error. In particular, in the early stages of the
March of Science, making a Type I error may only extend the research to another stage.
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This is undesirable, of course, as are all mistaken inferences in science, but making a Type
II error may be far more problematic, because it may halt a line of research that would
ultimately be successful. So it might be justified to use α = 0.20 (maybe more) in order to
reduce β as much as possible. Using such high α values is not standard, so investigators
adopting this philosophy must be convincing in their argument.

10.4 A Classical Power Analysis
Dr. Capote and his team plan their trial as follows.

Study Design

This trial follows the small (N = 62 + 62) DCA trial reported by Agbenyega et al. (2003).
It will be double-blind, but instead of a 1:1 allocation, the team would like to consider
giving one patient usual care only for every two patients that get QCA, where the QCA is
given in a single infusion of 50 mg/kg.

Subjects
Study patients will be less than 13 years old with severe malaria complicated by lactic
acidosis. “Untreatable” cases (nearly certain to die) will be excluded. These terms will
require operational definitions and the CHI team will formulate the other
inclusion/exclusion criteria and state them clearly in the protocol. They think it is feasible
to study up to 2100 subjects in a single malaria season using centers in Jamkatnia alone. If
needed, they can add more centers in neighboring “Gabrieland” and increase the total size
to 2700. Drop-outs should not be a problem in this study, but all studies must consider this
and enlarge recruitment plans accordingly.

Primary Efficacy Outcome Measure
Death before Day 10 after beginning therapy. Almost all subjects who survive to Day 10
will have fully recovered. Time to death (i.e., survival analysis) is not a consideration.

Primary Analysis

To keep this story and example relatively simple, we will limit our attention to the basic
relative risk that associates treatment group (UCO vs. QCA) with death (no or yes). For
example, if 10% died under QCA and 18% died under UCO, then the estimated relative risk
would be 0.10/0.18 = 0.55 in favor of QCA. p-values will be based on the likelihood ratio
chi-square statistic for association in a 2 × 2 contingency table. The group’s biostatistician,
“Dr. Phynd Gooden,” knows that the test of the treatment comparison could be made with
greater power through the use of a logistic regression model that includes baseline
measurements such as a severity score or lactate levels, etc. (as was done in Holloway et al.,
1995). In addition, this study will be completed in a single malaria season, so performing
interim analyses is not feasible. These issues are beyond the scope of this chapter.

10.4.1 Scenario for the Infinite Dataset
A prospective sample-size analysis requires the investigators to characterize the
hypothetical infinite dataset for their study. Too often, sample-size analysis reports fail to
explain the rationale undergirding the conjectures. If we explain little or nothing, reviewers
will question the depth of our thinking and planning, and thus the scientific integrity of our
proposal. We must be as thorough as possible and not apologize for having to make some
sound guesstimates. All experienced reviewers have had to do this themselves.

Dr. Stacpoole’s N = 62 + 62 human study (Agbenyega et al., 2003) had eight deaths in
each group. This yields 95% confidence intervals of [5.7%, 23.9%] for the quinine-only
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mortality rate (using the EXACT statement’s BINOMIAL option in the FREQ procedure)
and [0.40, 2.50] for the DCA relative risk (using the asymptotic RELRISK option in the
OUTPUT statement in PROC FREQ). These wide intervals are of little help in specifying
the scenario. However, CHI public health statistics and epidemiologic studies in the
literature indicate that about 19% of these patients die within ten days using quinine only.
This figure will likely be lower for a clinical trial, because untreatable cases are being
excluded and the general level of care could be much better than is typical. Finally, the
Holloway et al. (1995) rat study obtained a DCA relative risk of 0.67 [95% CI: 0.44, 1.02],
and the odds ratios adjusting for baseline covariates were somewhat more impressive, e.g.,
OR= 0.46 (one-sided p = 0.021).

Given this information, the research team conjectures that the mortality rate is 12-15%
for usual care. They agree that if QCA is effective, then it is reasonable to conjecture that
it will cut mortality 25-33% (relative risk of 0.67-0.75).

Topol et al. (1999) wrote about needing sufficient power to detect a clinically relevant
difference between the experimental and control therapies.” Some authors speak of
designing studies to detect the smallest effect that is clinically relevant. How do we define
such things? Everyone would agree that mortality reductions of 25-33% are clinically
relevant. What about 15%? Even a 5% reduction in mortality would be considered very
clinically relevant in a disease that kills so many people annually, especially because a
single infusion of QCA is relatively inexpensive. Should the CHI team feel they must power
this study to detect a 5% reduction in mortality? As we shall see, this is infeasible. It is
usually best to ask: “What do we actually know at this point? What do we think is
possible? What scenarios are supportable? Will the reviewers agree with us?”

10.4.2 What Allocation Ratio? One-Sided or Two-Sided Test?
Dr. Gooden is aware of the fact that the likelihood ratio chi-square test for two independent
proportions can be more powerful when the sample sizes are unbalanced. Her first task is
to assess how the planned 1:2 (UCO: QCA) allocation ratio affects the power. As shown in
Program 10.1, this is relatively easy to do in PROC POWER. Its syntax is literal enough
that we will not explain it, but note particularly the GROUPWEIGHTS statement.

Table 10.1 displays results obtained using Program 10.1 and some simple further
computations. For this conjecture of 15% mortality versus 0.67 × 15% mortality, the most
efficient of these four designs is the 1:1 allocation ratio. It has a power of 0.930 or β = 0.070
with Ntotal = 2100 (α = 0.05), and to get a 0.90 power requires Ntotal = 1870. Compared to
the 1:1 design, the 1:2 design has a 36% larger Type II error rate (“relative Type II risk
ratio”) at Ntotal = 2100 and requires 2064 subjects to achieve a 0.90 power. Thus, the 1:2
design has a relative efficiency of 1870/2064 = 0.91 and requires about 10% more subjects
to achieve 0.90 power (relative inefficiency: 2064/1870 = 1.10). The relative inefficiencies for
the 2:3 and 1:3 designs are 1.03 and 1.29, respectively.

Table 10.1 Effect of the Allocation Ratio, NUCO : NQCA, on Power, β, and Sample Size for Two-Sided
α = 0.05 Assuming 15% Mortality with Usual Care and a Relative Risk of 0.67 in Favor of QCA

Allocation ratio (NUCO : NQCA)
1:1 2:3 1:2 1:3

Power 0.930 0.923 0.905 0.855
Ntotal = 2100 β 0.070 0.077 0.095 0.145

Relative Type II risk ratio 1.00 1.10 1.36 2.07

Ntotal 1870 1925 2064 2420
Power = 0.90 Relative efficiency 1.00 0.97 0.91 0.77

Relative inefficiency 1.00 1.03 1.10 1.29
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Program 10.1 Compare allocation weights

* Powers at Ntotal=2100;
proc power;

TwoSampleFreq
GroupWeights = (1 1) (2 3) (1 2) (1 3) /* UCO:QCA */
RefProportion = .15 /* Usual Care Only (UCO) mortality rate*/
RelativeRisk = .67 /* QCA mortality vs. UCO mortality */
alpha = .05
sides = 1 2
Ntotal = 2100
test = lrchi
power = .;

* Ntotal values for power = 0.90;
proc power;

TwoSampleFreq
GroupWeights = (1 1) (2 3) (1 2) (1 3)/* UCO:QCA */
RefProportion = .15 /* Usual Care Only (UCO) mortality rate*/
RelativeRisk = .67 /* QCA mortality vs. UCO mortality */
alpha = .05
sides = 1 2
Ntotal = .
test = lrchi
power = .90;
run;

Note that Dr. Gooden uses SIDES=1 2 in Program 10.1 to consider both one-sided and
two-sided tests. Investigators and reviewers too often dogmatically call for two-sided tests
only because they believe using one-sided tests is not trustworthy. But being good
scientists, Dr. Capote’s team members think carefully about this issue. Some argue that
the scientific question is simply whether QCA is efficacious versus whether it is not
efficacious, where “not efficacious” means that QCA has no effect on mortality or it
increases mortality. This conforms to the one-sided test. For the design, scenario, and
analysis being considered here, the one-sided test requires 1683 subjects versus 2064 for the
two-sided test, giving the two-sided test a relative inefficiency of 1.23. At N = 2100, the
Type II error rate for the one-sided test is β = 0.052, which is 45% less than the two-sided
rate of β = 0.095. On the other hand, other members argue that it is important to assess
whether QCA increases mortality. If it does, then the effective Type II error rate for the
one-sided test is 1.00. This logic causes many to never view one-sided tests favorably under
any circumstances. After considering these issues with Dr. Gooden, Dr. Capote decides to
take the traditional approach and use a two-sided test.

For some endpoints, such as for rare adverse events or in trials involving rare diseases,
the argument in favor of performing one-sided tests is often compelling. Suppose there is
some fear that a potential new treatment for arthritis relief could increase the risk of
gastrointestinal bleeding in some pre-specified at-risk subpopulation, say, raising this from
an incidence rate in the first 30 days from 8% to 24%, a relative risk of 3.0. A balanced
two-arm trial with N = 450 + 450 subjects may be well-powered for testing efficacy
(arthritis relief), but suppose the at-risk group is only 20% of the population being
sampled, so that only about N = 90 + 90 will be available for this planned sub-group
analysis. Using α = 0.05, the likelihood ratio test for comparing two independent
proportions will provide 0.847 power for the two-sided test and 0.910 power for the
one-sided test. Thus, using a one-sided test cuts the Type II error rate from 0.153 to 0.090,
a 41% reduction. Stated differently, using a two-sided test increases β by 70%. However, if
this research aim is concerned only with detecting an increase in GI bleeding, why not use
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the statistical hypothesis—the one-sided version—that conforms to that aim? If using the
two-sided test increases the Type II error rate by 70%, why is that more trustworthy?

For completeness, and because it takes so little time to do, Dr. Gooden also uses PROC
POWER to find the approximate optimal allocation ratio. After iterating the group
weights, she settles on using Program 10.2 to show that while the theoretical optimal is
approximately 0.485:0.515, the balanced (0.500:0.500) design has almost the same efficiency.

Program 10.2 Find optimal allocation weights

proc power;
TwoSampleFreq
GroupWeights = /* UCO : QCA */
(.50 .50) (.49 .51) (.485 .515) (.48 .52) (.45 .55) (.33 .66)
RefProportion = .15 /* Usual Care Only (UCO) mortality rate*/
RelativeRisk = .67 /* QCA mortality vs. UCO mortality */
alpha = .05
sides = 2
Ntotal = .
test = LRchi /* likelihood ratio chi-square */
power = .90
nfractional;
run;

Output from Program 10.2

Fractional Actual Ceiling
Index Weight1 Weight2 N Total Power N Total

1 0.500 0.500 1868.510571 0.900 1869
2 0.490 0.510 1867.133078 0.900 1868
3 0.485 0.515 1867.002923 0.900 1868
4 0.480 0.520 1867.245653 0.900 1868
5 0.450 0.550 1876.616633 0.900 1877
6 0.330 0.660 2061.667869 0.900 2062

Should the study use the less efficient 1:2 design? After substantial debate within his
team, Dr. Capote decides that the non-statistical attributes of the 1:2 design give it more
practical power than the 1:1 design. First, nobody has safety concerns about giving a single
dose of QCA. Second, Jamkatnian health officials and parents will prefer hearing that two
out of three subjects will be treated with something that could be life-saving for some.
Third, the extra cost associated with a 10% increase in the sample size is not prohibitive.
Given that this study’s set-up costs are high and the costs associated with data analysis
and reporting are unaffected by the sample size, the total cost will increase by only
about 3%.

10.4.3 Obtaining and Tabling the Powers
The stage is now set to carry out and report the power analysis. Please examine
Program 10.3 together with Output 10.3, which contains the essential part of the results.
In SAS 9.1, PROC POWER provides plain graphical displays of the results (not shown
here), but lacks corresponding table displays. As this chapter was going to press, a
general-purpose SAS macro, %Powtable, was being developed to help meet this need; see
the book’s website. Here, Dr. Gooden uses the ODS OUTPUT command and the
TABULATE procedure to create a basic table.
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Program 10.3 Power analysis for comparing mortality rates

options ls=80 nocenter FORMCHAR="|----|+|---+=|-/\<>*";

proc power;
ODS output output=MortalityPowers;
TwoSampleFreq
GroupWeights = (1 2) /* 1 UCO : 2 QCA*/
RefProportion = .12 .15 /* UCO mortality rate */
RelativeRisk = .75 .67 /* QCA rate vs UCO rate*/
alpha = .01 .05 .10
sides = 2
Ntotal = 2100 2700
test = LRchi /* likelihood ratio chi-square */
power = .;
plot vary (panel by RefProportion RelativeRisk);

/* Avoid powers of 1.00 in table */
data MortalityPowers;

set MortalityPowers;
if power>0.999 then power999=0.999;
else power999=power;

proc tabulate data=MortalityPowers format=4.3 order=data;
format Alpha 4.3;
class RefProportion RelativeRisk alpha NTotal;
var Power999;
table
RefProportion="Usual Care Mortality"

* RelativeRisk="QCA Relative Risk",
alpha="Alpha"

* Ntotal="Total N"
* Power999=""*mean=" "/rtspace=28;

run;

Output from Program 10.3

----------------------------------------------------------
| | Alpha |
| |-----------------------------|
| | .010 | .050 | .100 |
| |---------+---------+---------|
| | Total N | Total N | Total N |
| |---------+---------+---------|
| |2100|2700|2100|2700|2100|2700|
|--------------------------+----+----+----+----+----+----|
|Usual Care |QCA Relative | | | | | | |
|Mortality |Risk | | | | | | |
|------------+-------------| | | | | | |
|0.12 |0.75 |.329|.437|.569|.677|.687|.780|
| |-------------+----+----+----+----+----+----|
| |0.67 |.622|.757|.823|.905|.893|.948|
|------------+-------------+----+----+----+----+----+----|
|0.15 |0.75 |.438|.566|.677|.783|.781|.864|
| |-------------+----+----+----+----+----+----|
| |0.67 |.757|.872|.905|.960|.948|.981|
----------------------------------------------------------
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Figure 10.3 Plots for the mortality analysis showing how changing the reference proportion or the relative risk
rate affects power.
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Figure 10.3 juxtaposes three plots that were produced by using the same ODS output
data set, MortalityPowers, with a SAS/GRAPH program not given here, but which is
available at this book’s companion Website. This shows concretely how power increases for
larger UCO mortality rates or better (smaller) relative risks for QCA versus UCO.

Colleagues and reviewers should have little trouble understanding and interpreting the
powers displayed as per Output 10.3. If the goal is to have 0.90 power using α = 0.05, then
N = 2100 will suffice only under the most optimistic scenario considered: that is, if the
usual care mortality rate is 15% and QCA reduces that risk 33%. N = 2700 seems to be
required to ensure adequate power over most of the conjecture space.

Tables like this are valuable for teaching central concepts in traditional hypothesis
testing. We can see with concrete numbers how power is affected by various factors. While
we can set N and α, Mother Nature sets the mortality rate for usual care and the relative
risk associated with QCA efficacy.

Let us return to the phrase from Topol et al. (1997) that called for clinical trials to have
adequate power “to detect a clinically relevant difference between the experimental and
control therapies.” With respect to our malaria study, most people would agree that even a
true 5% reduction in mortality is clinically relevant and it would also be economically
justifiable to provide QCA treatment given its low cost and probable safety. But could we
detect such a small effect in this study? If QCA reduces mortality from 15% to
0.95 × 15% = 14.25%, then the proposed design with N = 900 + 1800 has only 0.08 power
(two-sided α = 0.05). In fact, under this 1:2 design and scenario, it will require almost
104,700 patients to provide 0.90 power. This exemplifies why confirmatory trials (Phase
III) are usually designed to detect plausible outcome differences that are considerably
larger than “clinically relevant.” The plausibility of a given scenario is based on biological
principles and from data gathered in previous relevant studies of all kinds and qualities. By
ordinary human nature, investigators and statisticians tend to be overly optimistic in
guesstimating what Mother Nature might have set forth, and this causes our studies to be
underpowered. This problem is particularly relevant when new therapies are tested against
existing therapies that might be quite effective already. It is often the case that potentially
small but important improvements in therapies can be reliably assessed only in very large
trials. Biostatisticians are unwelcome and even sometimes disdained when they bring this
news, but they did not make the Fundamental Laws of Chance—they are only charged
with policing and adjudicating them.
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10.5 Beyond α and β: Crucial Type I and Type II Error Rates
Are α and β (or power= 1 − β) the only good ways to quantify the risk of making Type I
and Type II errors? While they may be the classical rates to consider and report, they fail
to directly address two fundamental questions:

• If the trial yields traditional statistical significance (p ≤ α), what is the chance this will
be an incorrect inference?

• If the trial does not yield traditional statistical significance (p > α), what is the chance
this will be an incorrect inference?

To answer these in some reasonable way, we need to go beyond using just α and β.

10.5.1 A Little Quiz: Which Study Provides the Strongest Evidence?
Table 10.2 summarizes outcomes from three possible QCA trials. Which study has the
strongest evidence that QCA is effective? Studies #1 and #2 have N = 150 + 300 subjects,
whereas #3 has N = 700 + 1400 subjects. Studies #1 and #3 have identical 0.79 estimates
of relative risk, but with p = 0.36, Study #1 does not adequately support QCA efficacy.
Choosing between Studies #2 and #3 is harder. They have the same p-value, so many
people would argue that they have the same inferential support. If so, then #2 is the
strongest result, because its relative risk of 0.57 is substantially lower than the relative risk
of 0.79 found in Study #3. However, Study #3 has nearly five times the sample size, so it
has greater power. How should that affect our assessment?

Table 10.2 Which Study Has the Strongest Evidence That QCA is Effective?

Deaths/N Mortality Relative risk
Study UCO QCA UCO QCA RR [95% CI]

LR test
p-value

#1 21/150 33/300 14.0% 11.0% 0.79 [0.47, 1.31] 0.36
#2 21/150 24/300 14.0% 8.0% 0.57 [0.33, 0.992] 0.05
#3 98/700 154/1400 14.0% 11.0% 0.79 [0.62, 0.995] 0.05

10.5.2 To Answer the Quiz: Compare the Studies’ Crucial Error Rates
Suppose that Mother Nature has set the true usual care mortality rate at 0.15 and the
QCA relative risk at 0.67, the most powerful scenario we considered above. We have
already seen (Figure 10.3, Output 10.3) that with N = 700 + 1400 subjects and using
α = 0.05 (two-sided), the power is 90%. With 150 subjects getting usual care and 300
getting QCA, the power is only about 33%.

Now, in addition, suppose that Dr. Capote and his team are quite optimistic that QCA
is effective. This does not mean they have lost their ordinary scientific skepticism and
already believe that QCA is effective. Consider another Feynman-ism (1999, P. 200):

The thing that’s unusual about good scientists is that they’re not so sure of themselves as
others usually are. They can live with steady doubt, think “maybe it’s so” and act on that, all
the time knowing it’s only “maybe.”

Dr. Capote’s team understands that even for the most promising experimental
treatments, the clear majority fail to work when tested extensively. In fact, Lee and Zelen
(2000) estimated that among 87 trials completed and reported out by the Eastern
Cooperative Oncology Group at Harvard from 1980-1995, only about 30% seem to have
been testing therapies that had some clinical efficacy.
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Let us suppose that Dr. Capote’s team conducted 1000 independent trials looking for
significant treatment effects, but Mother Nature had set things up so that 700 effects were
actually null. What would we expect to happen if Dr. Capote ran all 1000 trials at average
powers of 33%? 90%? Table 10.3 presents some straightforward computations that
illustrate what we call the crucial Type I and Type II error rates. With 700 null tests, we
would expect to get 35 (5%) Type I errors (false positives). From the 300 non-null
hypotheses tested with 33% power, we would expect to get 99 true positives. Thus, each
“significant” test (p ≤ 0.05) has an α∗ = 35/134 = 0.26 chance of being misleading. Note
how much larger this is than α = 0.05. Some people (including authors of successful
statistics books) confuse α and α∗, and hence they also misinterpret what p-values are. A
p-value of 0.032 does not imply that there is a 0.032 chance that the null hypothesis is true.

Table 10.3 Expected Results for 1000 Tests Run at α = 0.05. Note: The true hypothesis is null in 700 tests.
For the 300 non-null tests, the average power is 33% or 90%.

Result of hypothesis test
p ≤ 0.05 (“significant”) p > 0.05 (“not significant”)

33% average power

700 true null 5% of 700 = 35 95% of 700 = 665
300 true non-null 33% of 300 = 99 67% of 300 = 201

Crucial Type I error rate: Crucial Type II error rate:
α∗ = 35/134 = 0.26 β∗ = 201/866 = 0.23

90% average power

700 true null 5% of 700 = 35 95% of 700 = 665
300 true non-null 90% of 300 = 270 10% of 300 = 30

Crucial Type I error rate: Crucial Type II error rate:
α∗ = 35/305 = 0.11 β∗ = 30/695 = 0.04

The crucial Type II error rate, β∗, is defined similarly. With 33% power, we would
expect to get 201 Type II errors (false negatives) to go with 665 true negatives; thus β∗ =
210/866 = 0.23. Note that this is not equal to β = 0.67.

10.5.3 Greater Power Reduces Both Types of Crucial Error Rates
A key point illustrated in Table 10.3 is that greater power reduces both types of crucial error
rates. In other words, statistical inferences are generally more trustworthy when the
underlying power is greater. Let us return to Table 10.2. Again, which study has the
strongest evidence that QCA is effective? Even under our most powerful scenario, a
p ≤ 0.05 result has a 0.26 chance of being misleading when using N = 150 + 300, as per
Study #2. This falls to 0.11 using N = 700 + 1400 (Study #3). Both studies may have
yielded p = 0.05, but they do not provide the same level of support for inferring that QCA
is effective. Study #3 provides the strongest evidence that QCA has some degree of
efficacy. This concept is poorly understood throughout all of science.

10.5.4 The March of Science and Sample-Size Analysis
Consistent with Lee and Zelen (2000), we think that investigators designing clinical trials
are well served by considering α∗ and β∗. (Note that Lee and Zelen’s definition is reversed
from ours in that our α∗ and β∗ correspond to their β∗ and α∗, respectively.) Ioannidis
(2005b) used the same logic in arguing “why most published research findings are false.”
Wacholder et al. (2004) described the same methodology to more carefully infer whether a
genetic variant is really associated with a disease. Their “false positive report probability”
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is identical to α∗. Also, readers familiar with accuracy statistics for medical tests will see
that 1 − α and β are isomorphic to the specificity and sensitivity of the diagnostic method
and 1 − α∗ and 1 − β∗ are isomorphic with the positive and negative predictive values.

Formally, let γ be the probability that the null hypothesis is false. We like to think of γ
as measuring where the state of knowledge currently is in terms of confirming the non-null
hypothesis; in short, its location along its March of Science (Figure 10.1). Thus, for novel
research hypotheses, γ will be nearer to 0. For mature hypotheses that are ready for solid
confirmation with say, a large Phase III trial, γ will be markedly greater than 0. We might
regard γ = 0.5 as scientific equipoise, saying that the hypothesis is halfway along its path
to absolute confirmation in that we consider the null and non-null hypothesis as equally
viable. Lee and Zelen’s (2000) calculations put γ around 0.3 for Phase III trials coordinated
in the Eastern Cooperative Oncology Group.

Given γ, α and some β set by some particular design, sample size, and non-null scenario,
we can apply Bayes’ Theorem to get

α∗ = Prob[H0 true | p ≤ α] =
α(1 − γ)

α(1 − γ) + (1 − β)γ

and

β∗ = Prob[H0 false | p > α] =
βγ

βγ + (1 − α)(1 − γ)
.

To be precise, “H0 false” really means “H0 false, as conjectured in some specific manner.”
For the example illustrated first in Table 10.3, we have γ = 0.30, α = 0.05 and β = 0.67,
thus

α∗ =
(0.05)(1 − 0.30)

(0.05)(1 − 0.30) + (1 − 0.67)(0.30)
= 0.261

and

β∗ =
(0.67)(0.30)

(0.67)(0.30) + (1 − 0.05)(1 − 0.30)
= 0.232.

In Bayesian terminology, γ = 0.3 is the prior probability that QCA is effective, and
1 − α∗ = 0.739 is the posterior probability given that p ≤ α. However, nothing here involves
Bayesian data analysis methods, which have much to offer in clinical research, but are not
germane to this chapter. Some people are bothered by the subjectivity involved in
specifying prior probabilities like γ, but we counter by pointing out that there are many
other subjectivities involved in sample-size analysis for study planning, especially the
conjectures made in defining the infinite dataset. Indeed, we find that most investigators
are comfortable specifying γ, at least with a range of values, and that computing various α∗

and β∗ values of interest gives them much better insights into the true inferential strength
of their proposed (frequentist) analyses.

10.6 Research Question 1, Continued: Crucial Error Rates for
Mortality Analysis
In developing the statistical considerations for the QCA/malaria trial, Dr. Gooden
understands the value in assessing its crucial Type I and Type II error rates, and she
presses her CHI colleagues to complete the exercise faithfully. As mentioned before, they
are optimistic that QCA is effective, but to compute crucial error rates, they must now
quantify that optimism by setting γ. Initial discussions place γ near 0.75, but the 0.30
value reported by Lee and Zelen (2000) tempers their thinking substantially. They settle on
γ = 0.50. Dr. Gooden will also use γ = 0.30.
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Program 10.4 Compute crucial error rates for mortality endpoint

options ls=80 nocenter FORMCHAR="|----|+|---+=|-/\<>*";

proc power;
ODS output output=MortalityPowers;
TwoSampleFreq
GroupWeights = (1 2) /* 1 UCO for every 2 QCA */
RefProportion = .12 .15 /* UCO mortality rate */
RelativeRisk = .75 .67 /* QCA rate vs UCO rate */
alpha = .01 .05
sides = 2
Ntotal = 2700
test = LRchi /* likelihood ratio chi-square */
power = .;

plot key=OnCurves;
run;

* Call %CrucialRates macro, given in Appendix B of this chapter;
%CrucialRates( PriorPNullFalse = .30 .50,

Powers = MortalityPowers,
CrucialErrRates = MortalityCrucRates )

proc tabulate data=MortalityCrucRates format=4.3 order=data;
title3 "Crucial Error Rates for QCA Malaria Trial";
format alpha 4.3;
class RefProportion RelativeRisk alpha gamma TypeError NTotal;
var CrucialRate;
table
Ntotal="Total N: ",
RefProportion="Usual Care Mortality"

* RelativeRisk="QCA Relative Risk",
alpha="Alpha"

* gamma="PriorP[Null False]"
* TypeError="Crucial Error Rate"
* CrucialRate=""*mean=" "

/ rtspace = 26;
run;

Program 10.4 gives the code to handle this. First, a more focused version of
Program 10.3 computes the powers. Second, a macro called %CrucialRates (given in
Appendix B and available on the book’s web site) converts the PROC POWER results into
crucial Type I and Type II error rates. Finally, PROC TABULATE organizes these crucial
rates effectively.

Output 10.4 shows that the most optimistic case considered here presumes that the
mortality rate is 0.15 under usual care, and it takes QCA to have a prior probability of
γ = 0.50 of being effective, where “effective” is a QCA relative risk of 0.67. If so, then by
using α = 0.05, the crucial Type I and Type II error rates are α∗ = 0.050 and β∗ = 0.040,
respectively, which seem very good. However, for α = 0.01, β∗ rises to 0.115. Now consider
the most pessimistic case. If γ = 0.30 and the non-null scenario has a mortality rate of 0.12
under usual care and a QCA relative risk is 0.75, then using α = 0.05 gives α∗ = 0.147 and
β∗ = 0.127. The team from Children’s Health International decides that they can tolerate
these values and, thus, planning continues around N = 2700.
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After going through this process, Dr. Capote remarks that if all clinical trial protocols
were vetted in this manner, a great many of them would show crucial Type I and Type II
error rates that would severely temper any inferences that can be made. This is true.

Output from Program 10.4

Total N: 2700
------------------------------------------------------------------
| | Alpha |
| |---------------------------------------|
| | .010 | .050 |
| |-------------------+-------------------|
| |PriorP[Null False] |PriorP[Null False] |
| |-------------------+-------------------|
| | 0.3 | 0.5 | 0.3 | 0.5 |
| |---------+---------+---------+---------|
| | Crucial | Crucial | Crucial | Crucial |
| | Error | Error | Error | Error |
| | Rate | Rate | Rate | Rate |
| |---------+---------+---------+---------|
| |Type|Type|Type|Type|Type|Type|Type|Type|
| | I | II | I | II | I | II | I | II |
|------------------------+----+----+----+----+----+----+----+----|
|Usual Care |QCA Relative| | | | | | | | |
|Mortality |Risk | | | | | | | | |
|-----------+------------| | | | | | | | |
|0.12 |0.75 |.051|.196|.022|.362|.147|.127|.069|.254|
| |------------+----+----+----+----+----+----+----+----|
| |0.67 |.030|.095|.013|.197|.114|.041|.052|.091|
|-----------+------------+----+----+----+----+----+----+----+----|
|0.15 |0.75 |.040|.158|.017|.305|.130|.089|.060|.186|
| |------------+----+----+----+----+----+----+----+----|
| |0.67 |.026|.053|.011|.115|.108|.018|.050|.040|
------------------------------------------------------------------

10.7 Research Question 2: Does “QCA” Affect the
“Elysemine : Elysemate” Ratios (EER)?
This section expands Dr. Capote’s planning to consider a test that compares the UCO and
QCA arms with respect to a continuous outcome, adjusted for baseline covariates. PROC
GLMPOWER is used to perform the calculations.

10.7.1 Rationale Behind the Research Question
Now the team turns to investigating potential adverse effects.

A descriptive analysis being completed in Jamkatnia has compared 34 children who have
severe malaria with 42 healthy children on some 27 measures related to metabolic
functioning, including two amino acids, “elysemine” and “elysemate” (both fictitious).
Elysemine is synthesized by the body from elysemate, which is abundant in food grains and
meat. Phagocytes (a type of white blood cell) need elysemine to fight infection. Low
plasma elysemine levels have been shown to be an incremental risk factor for death in
critically ill adults and children, especially in very premature infants. Thus, a suppressed
elysemine:elysemate ratio (EER) seems to be associated with a weakened immune system.
In addition, plasma elysemine concentrations fall, and plasma elysemate concentrations
rise, in response to extended periods of physical exertion, such as marathon running. Of
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course, typical marathon runners have no problem rapidly converting elysemate to
elysemine and their EERs rebound within two hours.

This Jamkatnian study is of keen interest because the children with malaria had a
median EER of 2.00 (inter-95% range: 1.10-3.04) compared to 2.27 (inter-95% range:
1.50-3.28) for the healthy children (p = 0.01, two-tailed median test). The researchers now
rationalize that children with severe malaria may show reduced EERs, because the parasite
attacks red blood cells and this reduces blood oxygen levels. Given that so many measures
were analyzed in an exploratory manner, this p = 0.01 result is supportive, but not
confirmatory. Nevertheless, it stirs great attention.

Related to this was a study of seven healthy adult human volunteers who were given a
single standard dose of QCA and monitored intensively for 24 hours in a General Clinical
Research Center. The data are summarized in Table 10.4. By four hours post infusion,
their EERs fell by a geometric average of 14.9% (p = 0.012; 95% CI: 4.9-23.8% reduction
via one-sample, two-sided t test comparing log(EER) values measured pre and post). In
that the EER may already be suppressed in these diseased children, any further reduction
caused by QCA would be considered harmful. On the other hand, EERs could rebound
(rise) more quickly as QCA reduces lactic acid levels and thus helps restore metabolic
normality. Accordingly, now the research question is “Does QCA increase or decrease
elysemine:elysemate ratios in children with severe malaria complicated by lactic acidosis?”

Table 10.4 Elysemine and Elysemate Levels from Seven Healthy Adults Given QCA

Baseline 4 Hours After QCA
Subject E’mine0 E’mate0 EER0 E’mine4 E’mate4 EER4 EER4/EER0

1 288 143 2.01 260 167 1.56 0.77
2 357 163 2.19 302 135 2.24 1.02
3 285 122 2.34 246 129 1.91 0.82
4 349 143 2.44 317 157 2.02 0.83
5 332 127 2.61 285 152 1.88 0.72
6 329 119 2.76 294 114 2.58 0.93
7 389 114 3.41 365 118 3.09 0.91

Geometric
mean 331 132 2.51 293 138 2.13 0.85

Upper 95%
limit 367 149 2.94 331 158 2.63 0.95

Lower 95%
limit 298 117 2.14 260 120 1.73 0.76

Review of Study Design and Subjects
To reiterate, this double-blinded trial will randomize 900 subjects to receive usual care only
(UCO) and 1800 to receive a single infusion of 50 mg/kg QCA. Study patients will be less
than 13 years old diagnosed with severe malaria complicated by lactic acidosis.

Continuous Outcome Measure and Baseline Covariates

Our focus here is on the elysemine:elysemate ratio measured four hours post-infusion
(EER4). The three primary covariates being considered are the baseline (five minutes prior
to QCA infusion) measures of log EER0, plasma lactate level, and log parasitemia, the
percentage of red blood cells infected.
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It should be mentioned that elysemine and elysemate assays are expensive to conduct,
costing about US$60 for each time, and thus costing US$120 for each subject.

Planned Analysis
Ratio measurements like EER are usually best handled after being log transformed; for
ease of understanding we shall use log2(EER4), so that a 1.0 log discrepancy between two
values equates to having one value twice that of the other.

Scenarios for the Infinite Datasets

Figure 10.4 Scenario for EER4 distributions of the Usual Care Only and QCA arms. Note: The medians, as well
as the geometric means, are 2.0 and 1.8, and the common inter-95% relative spread is 3.16/1.26 = 2.85/1.14 =
2.5.
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Based on the Jamkatnian study reviewed above, the investigators speculate that the
median EER4 for the Usual Care Only arm is 2.0. See Figure 10.4. Two scenarios for the
QCA arm are considered, a 10% decrease in EER4 (2.0 versus 1.8; as per Figure 10.4) and a
15% decrease (2.0 versus 1.7). Assuming that log2(EER4) has a Normal distribution, EER4
medians of 2.0 versus 1.8 (or 1.7) become log2(EER4) means of 1.00 versus 0.85 (or 0.77).

Making conjectures for the spread is a knotty problem, and the values chosen have
critical influence on the sample-size analysis. Dr. Gooden usually takes a pragmatic
approach based on the fact that, for a Normal distribution, the inter-95% range spans
about four standard deviations. Thus, when the outcome variable is Normal, it is sufficient
to estimate or guesstimate the range of the middle 95% of the infinite dataset for a group
and divide by four to set the scenario for the standard deviation.

Here, Dr. Gooden takes log(EER4) to be Normal, i.e. EER4 is logNormal, so the process
is a bit more complex. Let EER40.025 and EER40.975 be the 2.5% and 97.5% quantiles of a
distribution of EER4 values. With respect to log2(EER4) values, the approximate standard
deviation is

σ =
log2(EER40.975) − log2(EER40.025)

4
=

log2(EER40.975/EER0.025)
4

.

Define RS95 = EER40.975/EER40.025 to be the inter-95% relative spread of EER4. For
the Jamkatnian study, these were 3.04/1.10 = 2.76 and 3.28/1.50 = 2.18. To be
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conservative, Dr. Capote sets RS95 to be either 2.5 (as per Figure 10.4) or 3.0. Both arms
are assumed to have the same relative spread. These give values for σ of log2(2.5)/4 = 0.33
and log2(3.0)/4 = 0.40.

Now Dr. Gooden needs to have the team decide how strongly the three baseline
covariates are correlated to log2(EER4). Technically, this correlation is the partial multiple
correlation, R, of X1 = log2(EER0), X2 = plasma lactate, and X3 = log2(parasitemia) with
Y = log2(EER4), controlling for treatment group, but this terminology is not likely to be
well understood by the CHI team. Is there any existing data on this? Not for children
infected with malaria. So, Gooden asks Dr. Capote’s group to imagine that some baseline
index is computed by taking a linear combination of the three covariates
(b1X1 + b2X2 + b3X3) in such a way that this index is maximally correlated with
log2(EER4) within the two treatment groups. Dr. Gooden needs to know what R might be
in the infinite dataset, but she does not simply ask them this directly, because few
investigators have good understandings about what a given correlation value, say ρ = 0.30,
conveys. Instead, she shows them a version of Figure 10.5 that has the values of the
correlations covered from view.

The strongest correlation is most likely to be between log2(EER0) and log2(EER4). The
team agrees and suspects that this is at least ρ = 0.20, even if the malaria and the
treatments have a substantial impact on the metabolic pathways affecting EER. Using
plasma lactate and parasitemia to also predict log2(EER4) can only increase R. Looking at
the scatterplots in Figure 10.5, the team agrees that R is, conservatively, between 0.20 and
0.50.

Figure 10.5 Scatterplots showing eight degrees of correlation. The order of presentation is unsystematic to aid
in eliciting more careful conjectures.

Finally, Dr. Capote wants a minimal risk of committing a Type I or Type II error for
this question, so he would like to keep both α and β levels below 0.05. We will investigate
the crucial error rates, α∗ and β∗, later.
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Classical Power Analysis
In order for SAS to compute the powers for this problem, two programming steps are
necessary. First, Program 10.5 creates an “exemplary” dataset that conforms to the
conjectured infinite dataset.

Program 10.5 Build and print an exemplary dataset

data EER;
group = "UCO";

CellWgt = 1;
meanlog2EER_a = log2(2.0);
meanlog2EER_b = log2(2.0);
output;

group = "QCA";
CellWgt = 2;
meanlog2EER_a = log2(1.8);
meanlog2EER_b = log2(1.7);
output;

run;

proc print data=EER;
run;

The PROC PRINT output shows that there are only two exemplary cases in the
dataset, one to specify the UCO group and the other to specify the QCA group.

Output from Program 10.5

Obs group CellWgt meanlog2EER_a meanlog2EER_b
1 UCO 1 1.00000 1.00000
2 QCA 2 0.84800 0.76553

Secondly, Program 10.6 analyzes the exemplary dataset using PROC GLMPOWER.

Program 10.6 Use PROC GLMPOWER to see range of Ntotal values

proc GLMpower data=EER;
ODS output output=EER_Ntotals;
class group;
model meanlog2EER_a meanlog2EER_b = group;
weight CellWgt;
power

StdDev = 0.33 0.40 /* log2(2.5)/4 and log2(3.0)/4 */
Ncovariates = 3
CorrXY = .2 .35 .50
alpha = .01 .05
power = 0.95 0.99
Ntotal = .;

run;

Lastly, Program 10.7 summarizes the Ntotal values in a basic, but effective manner
(Output 10.7). Again, more sophisticated methods are possible.
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Program 10.7 Table the Ntotal values

* Augment GLMPOWER output to facilitate tabling ;
data EER_Ntotals; set EER_Ntotals;
if dependent = "meanlog2EER_a" then EEratio = "2.0 vs 1.8";
if dependent = "meanlog2EER_b" then EEratio = "2.0 vs 1.7";;
if UnadjStdDev = 0.33 then RelSpread95 = 2.5;
if UnadjStdDev = 0.40 then RelSpread95 = 3.0;
run;

proc tabulate data=EER_Ntotals format=5.0 order=data;
format Alpha 4.3 RelSpread95 3.1;
class EEratio alpha RelSpread95 CorrXY NominalPower;
var Ntotal;
table
EEratio="EE Ratios: "

* alpha="Alpha"
* NominalPower="Power",

RelSpread95="95% Relative Spread"
* CorrXY="Partial R for Covariates"
* Ntotal=""*mean=" "

/rtspace=35;
run;

Output from Program 10.7

-----------------------------------------------------------------------
| | 95% Relative Spread |
| |-----------------------------------|
| | 2.5 | 3.0 |
| |-----------------+-----------------|
| | Partial R for | Partial R for |
| | Covariates | Covariates |
| |-----------------+-----------------|
| |0.20 |0.35 |0.50 |0.20 |0.35 |0.50 |
|---------------------------------+-----+-----+-----+-----+-----+-----|
|EE Ratios:|Alpha |Power | | | | | | |
|----------+----------+-----------| | | | | | |
|2.0 vs 1.8|.010 |0.95 | 369| 336| 288| 537| 492| 420|
| | |-----------+-----+-----+-----+-----+-----+-----|
| | |0.99 | 495| 453| 387| 723| 663| 567|
| |----------+-----------+-----+-----+-----+-----+-----+-----|
| |.050 |0.95 | 267| 246| 210| 393| 360| 306|
| | |-----------+-----+-----+-----+-----+-----+-----|
| | |0.99 | 378| 345| 297| 552| 507| 432|
|----------+----------+-----------+-----+-----+-----+-----+-----+-----|
|2.0 vs 1.7|.010 |0.95 | 156| 144| 123| 228| 210| 180|
| | |-----------+-----+-----+-----+-----+-----+-----|
| | |0.99 | 210| 192| 165| 306| 282| 240|
| |----------+-----------+-----+-----+-----+-----+-----+-----|
| |.050 |0.95 | 114| 105| 90| 168| 153| 132|
| | |-----------+-----+-----+-----+-----+-----+-----|
| | |0.99 | 162| 147| 126| 234| 216| 183|
-----------------------------------------------------------------------
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Upon scanning the results in Output 10.7, Drs. Capote and Gooden decide that
Ntotal = 100 + 200 may be minimally sufficient, and Gooden focuses on this by using
Program 10.8.

Program 10.8 Compute and table powers at Ntotal = 300 for EER4 outcome

proc GLMpower data=EER;
ODS output output=EER_powers;
class group;
model meanlog2EER_a meanlog2EER_b = group;
weight CellWgt;
power

StdDev = 0.33 0.40 /* log2(2.5)/4 and log2(3.0)/4 */
Ncovariates = 3
CorrXY = .2 .35 .5
alpha = .01 .05
Ntotal = 300
power = .;

run;

* Augment GLMPOWER output to facilitate tabling ;
data EER_powers; set EER_powers;
if dependent = "meanlog2EER_a" then EEratio = "2.0 vs 1.8";
if dependent = "meanlog2EER_b" then EEratio = "2.0 vs 1.7";;
if UnadjStdDev = 0.33 then RelSpread95 = 2.5;
if UnadjStdDev = 0.40 then RelSpread95 = 3.0;
if power > .999 then power999 = .999;

else power999 = power;
run;

proc tabulate data=EER_powers format=4.3 order=data;
format Alpha 4.3 RelSpread95 3.1;
class EEratio alpha RelSpread95 CorrXY Ntotal;

var power999;
table
Ntotal="Total Sample Size: ",
EEratio="EE Ratios: "
* alpha="Alpha",

RelSpread95="95% Relative Spread"
* CorrXY="Partial R for Covariates"
* power999=""*mean=" "

/rtspace=35;
run;

Output 10.8 shows that only in the most pessimistic scenario does the power drop a
little below 0.90 using Ntotal = 300 and α = 0.05, and the mid-range scenarios even have
substantial power at α = 0.01. Furthermore, with Ntotal = 300, the assay costs associated
with this aim will run about 300 × US$120 = US$36000, which is deemed practical. The
CHI team still wants to assess the crucial Type I and Type II error rates.
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Output from Program 10.8

Total Sample Size: 300
-----------------------------------------------------------------
| | 95% Relative Spread |
| |-----------------------------|
| | 2.5 | 3.0 |
| |--------------+--------------|
| |Partial R for |Partial R for |
| | Covariates | Covariates |
| |--------------+--------------|
| |0.20|0.35|0.50|0.20|0.35|0.50|
|---------------------------------+----+----+----+----+----+----|
|EE Ratios: |Alpha | | | | | | |
|----------------+----------------| | | | | | |
|2.0 vs 1.8 |.010 |.893|.922|.959|.717|.764|.838|
| |----------------+----+----+----+----+----+----|
| |.050 |.969|.979|.991|.884|.910|.946|
|----------------+----------------+----+----+----+----+----+----|
|2.0 vs 1.7 |.010 |.999|.999|.999|.989|.994|.998|
| |----------------+----+----+----+----+----+----|
| |.050 |.999|.999|.999|.998|.999|.999|
-----------------------------------------------------------------

10.7.2 Crucial Type I and Type II Error Rates
Based on the current state of knowledge reviewed above, Dr. Capote’s team believes that
while this hypothesis is important to investigate seriously, there is only a 20-30% chance
that QCA affects EER. Accordingly, Dr. Gooden uses Program 10.9 to convert the results
given in Output 10.8 to the crucial error rates.

Program 10.9 Compute and table crucial error rates for EER4 outcome

%CrucialRates ( PriorPNullFalse= .20 .30,
Powers = EER_powers,
CrucialErrRates = EERCrucRates )

proc tabulate data=EERCrucRates format=4.3 order=data;
title3 "Crucial Error Rates for EER Outcome";
format Alpha 4.3 RelSpread95 3.1;
class TypeError gamma EEratio alpha RelSpread95 CorrXY Ntotal;
var CrucialRate;
table
Ntotal="Total N: ",
EEratio="EE Ratios: "

* RelSpread95="95% Relative Spread"
* CorrXY="Partial R for Covariates",

alpha="Alpha"
* gamma="PriorP[Null False]"
* TypeError="Crucial Error Rate"
* CrucialRate=""*mean=" "

/ rtspace = 32;
run;
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Output from Program 10.9

Total N: 300
------------------------------------------------------------------------
| | Alpha |
| |---------------------------------------|
| | .010 | .050 |
| |-------------------+-------------------|
| |PriorP[Null False] |PriorP[Null False] |
| |-------------------+-------------------|
| | 0.2 | 0.3 | 0.2 | 0.3 |
| |---------+---------+---------+---------|
| | Crucial | Crucial | Crucial | Crucial |
| | Error | Error | Error | Error |
| | Rate | Rate | Rate | Rate |
| |---------+---------+---------+---------|
| |Type|Type|Type|Type|Type|Type|Type|Type|
| | I | II | I | II | I | II | I | II |
|------------------------------+----+----+----+----+----+----+----+----|
|EE |95% |Partial R | | | | | | | | |
|Ratios: |Relative |for | | | | | | | | |
|---------|Spread |Covariates| | | | | | | | |
|2.0 vs |---------+----------| | | | | | | | |
|1.8 |2.5 |0.20 |.043|.026|.025|.044|.171|.008|.107|.014|
| | |----------+----+----+----+----+----+----+----+----|
| | |0.35 |.042|.019|.025|.033|.170|.005|.106|.009|
| | |----------+----+----+----+----+----+----+----+----|
| | |0.50 |.040|.010|.024|.017|.168|.002|.105|.004|
| |---------+----------+----+----+----+----+----+----+----+----|
| |3.0 |0.20 |.053|.067|.032|.109|.184|.030|.117|.050|
| | |----------+----+----+----+----+----+----+----+----|
| | |0.35 |.050|.056|.030|.093|.180|.023|.114|.039|
| | |----------+----+----+----+----+----+----+----+----|
| | |0.50 |.046|.039|.027|.065|.174|.014|.110|.024|
|---------+---------+----------+----+----+----+----+----+----+----+----|
|2.0 vs |2.5 |0.20 |.038|.000|.023|.000|.167|.000|.104|.000|
|1.7 | |----------+----+----+----+----+----+----+----+----|
| | |0.35 |.038|.000|.023|.000|.167|.000|.104|.000|
| | |----------+----+----+----+----+----+----+----+----|
| | |0.50 |.038|.000|.023|.000|.167|.000|.104|.000|
| |---------+----------+----+----+----+----+----+----+----+----|
| |3.0 |0.20 |.039|.003|.023|.005|.167|.000|.105|.001|
| | |----------+----+----+----+----+----+----+----+----|
| | |0.35 |.039|.002|.023|.003|.167|.000|.105|.000|
| | |----------+----+----+----+----+----+----+----+----|
| | |0.50 |.039|.000|.023|.001|.167|.000|.104|.000|
------------------------------------------------------------------------

Dr. Capote likes what he sees here using α = 0.01, because almost all the α∗ and β∗

values are less than 0.05. The CHI team decides to use α = 0.01 and Ntotal = 100 + 200
subjects for the EER component of this trial.

10.7.3 Using Baseline Covariates in Randomized Studies
What are the consequences of failing to use helpful baseline covariates when comparing
adjusted group means in randomized designs? What are the consequences of using
worthless baseline covariates—those that have no value whatsoever in predicting the
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outcome (Y )? Researchers face this question because each additional covariate requires
another parameter to be estimated, and this decreases by 1 the degrees of freedom for error
for the F test of the group differences.

The question is easily addressed, and the answer surprises many. The power values
displayed in Table 10.5 were obtained by modifying the PROC GLMPOWER code in
Program 10.8. Here, we limit our focus to the case with EER medians of 2.0 versus 1.8, a
95% relative spread of 2.5, Ntotal = 300, and α = 0.01. On the other hand, we consider
several more values for R (SAS Code: CorrXY = 0 .20 .35 .50 .70) and three possible
values for the number of covariates (SAS Code: Ncovariates = 0 3 50).

Table 10.5 Powers Obtained Using or Not Using Baseline Covariates in Randomized Studies

Multiple partial correlation (R)Number of
covariates used 0.00 0.20 0.35 0.50 0.70

0 .878 .878 .878 .878 .878
3 .878 .893 .922 .959 .996

50 .877 .892 .921 .959 .996

The point here is obvious. In a randomized design, there is virtually no cost associated
with using worthless baseline covariates, because they are uncorrelated with the group
assignment. The only cost is that the nominal null F distributions change, but in this case,
the 0.01 critical values for F(1, 298) and F(1, 248) are 6.72 and 6.74, respectively, which
are virtually equal. On the other hand, there is a high cost to be paid by not using baseline
covariates that have some value in predicting the outcome. This concept holds for both
continuous and categorical outcomes.

10.8 Crucial Error Rates When the Null Hypothesis Is Likely to Be True
Suppose “Dr. Art Ary” is planning a small trial to obtain some sound human data on a
novel biologic called nissenex, which could reduce percent atheroma volume in patients
with atherosclerosis. Even Dr. Ary is skeptical about nissenex, however, giving it a 2%
chance of being truly effective: γ = 0.02. Using a reasonable characterization of the infinite
dataset presuming nissenex is really efficacious, the power for the key hypothesis test is
judged to be 0.83 at α = 0.05 and N = 120. Accordingly, the crucial error rates are
α∗ = 0.75 and β∗ = 0.004. Thus, three out of four significant tests will be misleading.

Does this high α∗ value imply that the study should not be run? No. If this trial yields
p ≤ 0.05, it would push this line of research forward to a 1 − 0.75 = 0.25 chance that
nissenex is effective, a major shift from the prior γ = 0.02. If p > 0.05, then there is a
1 − 0.004 = 0.996 chance that nissenex has null or near-null efficacy, perhaps solidifying Dr.
Ary’s initial skepticism. Thus, either outcome will help Dr. Ary decide whether to continue
with further studies. He also considers using α = 0.20, which gives 0.95 power and makes
α∗ = 0.91 and β∗ = 0.001.

1 − α∗ = 0.09 is considerably weaker than the 0.25 computed for α = 0.05, and there is
little practical difference in β∗ values (0.004 versus 0.001). Thus, Dr. Ary will use α = 0.05,
but he understands that, given his current prior skepticism regarding the efficacy of
nissenex in treating atherosclerosis, not even a p ≤ 0.05 outcome will sway him to
prematurely publicly tout nissenex as effective. It will, of course, encourage him and his
sponsors to design and carry out a more confirmatory study. This is prudent scientific
practice. If everyone followed this practice, the scientific literature would not be cluttered
with “significant” findings that fail to replicate in further, larger studies and meta-analyses,
provided that any such work takes place (Ioannidis, 2005a, b).
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10.9 Table of Crucial Error Rates
Table 10.6 shows how α∗ and β∗ depend on γ, α, and β. Type I errors are more frequent
early in the March of Science (low γ), whereas Type II errors are more frequent later in the
March. Reducing either α or β reduces both α∗ and β∗. Note also that when γ = 0.50 and
α = β, then α = α∗ = β = β∗.

Table 10.6 Crucial Type I and Type II Error Rates as a Function of γ, α and Power

α∗: Pr[H0 true | p ≤ α] β∗: Pr[H0 false | p > α]
γ : Pr[H0 false] Power β α: 0.01 0.05 0.10 0.20 α: 0.01 0.05 0.10 0.20

0.05 0.30 0.70 .388 .760 .864 .927 .036 .037 .039 .044
0.50 0.50 .275 .655 .792 .884 .026 .027 .028 .032
0.70 0.30 .213 .576 .731 .844 .016 .016 .017 .019
0.80 0.20 .192 .543 .704 .826 .011 .011 .012 .013
0.90 0.10 .174 .514 .679 .809 .005 .006 .006 .007
0.95 0.05 .167 .500 .667 .800 .003 .003 .003 .003

0.30 0.30 0.70 .072 .280 .438 .609 .233 .240 .250 .273
0.50 0.50 .045 .189 .318 .483 .178 .184 .192 .211
0.70 0.30 .032 .143 .250 .400 .115 .119 .125 .138
0.80 0.20 .028 .127 .226 .368 .080 .083 .087 .097
0.90 0.10 .025 .115 .206 .341 .041 .043 .045 .051
0.95 0.05 .024 .109 .197 .329 .021 .022 .023 .026

0.50 0.30 0.70 .032 .143 .250 .400 .414 .424 .438 .467
0.50 0.50 .020 .091 .167 .286 .336 .345 .357 .385
0.70 0.30 .014 .067 .125 .222 .233 .240 .250 .273
0.80 0.20 .012 .059 .111 .200 .168 .174 .182 .200
0.90 0.10 .011 .053 .100 .182 .092 .095 .100 .111
0.95 0.05 .010 .050 .095 .174 .048 .050 .053 .059

0.70 0.30 0.70 .014 .067 .125 .222 .623 .632 .645 .671
0.50 0.50 .008 .041 .079 .146 .541 .551 .565 .593
0.70 0.30 .006 .030 .058 .109 .414 .424 .438 .467
0.80 0.20 .005 .026 .051 .097 .320 .329 .341 .368
0.90 0.10 .005 .023 .045 .087 .191 .197 .206 .226
0.95 0.05 .004 .022 .043 .083 .105 .109 .115 .127

10.10 Summary
In writing a single chapter on sample-size analysis, one strives for either breadth or depth.
We opted to cover two examples in depth, and thus we failed to even mention any of the
vast array of other tools now available to help investigators carefully assess and justify
their choices for sample sizes across the statistical landscape. What have we not discussed?
The list of topics and references is too long to begin and would soon be outdated anyway.

What readers need to understand is that if they have a sample-size analysis issue, there
may be good methodological articles and strategies that address it. If no such help can be
found, then Monte Carlo simulation can provide results that are entirely satisfactory. In
fact, some excellent statisticians now use simulation for all such problems, even for
traditional ones that have sound “mathematical” solutions that are widely used.
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We hope the two examples given here provide a rich context to fashion good strategies
to address other problems that may be encountered. Though the methods may vary widely,
the core concepts and issues do not.
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Appendix A Guidelines for “Statistical Considerations” Sections
A well-developed statistical considerations section persuades reviewers that solid skill and
effort have gone into framing the research questions, planning the study, and forming an
appropriate team. The writing should be crafted for the clinical researcher who is a good
“para-statistician,” as well as for the professional biostatistician. The “Statistical
Considerations” section should be mostly self-contained and thus may reiterate information
found elsewhere in the proposal.

A.1 Components
Design. Summarize the study design. It may be helpful to use appropriate terms such as
randomized, double blind, cross-over, controlled, comparative, case-control, prospective,
retrospective, longitudinal, and cohort.
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Research questions. Strictly speaking, not all studies are driven by testable hypotheses,
but all studies have research questions that should be delineated in your Specific Aims
section. Summarize the outcome measures and describe how you expect them to be related
to the components of the study design and other predictor variables. Restate/translate
your primary research questions into specific estimates of effects and their confidence
intervals, and/or into statistical hypotheses or other methods. Similar descriptions
regarding secondary questions are valuable, too.

Statistical analysis plan. Specify what statistical methods will be used to analyze the
primary and secondary outcome measures. Cite statistical references for non-routine
methods. (Example: The two groups will be compared on KMOB830430 and its
metabolites using estimates and 95% confidence limits for the generalized odds ratio
(Agresti, 1980), which is directly related to the common Wilcoxon rank-sum test.) These
sections often state what statistical software package and version will be used, but this
usually provides little or no information about what actually will be done.

Randomization (if appropriate). Specify how the randomization will be done,
especially if it involves blocking or stratification to control for possible confounding factors.

Sample-size analyses. State the proposed sample size and discuss its feasibility.
Estimate the key inferential powers, or other measures of statistical sensitivity/precision,
such as the expected widths of key confidence intervals. Strive to make your sample-size
analyses congruent with the statistical methods proposed previously, and discuss any
incongruencies. State how you arrived at the conjectures for all the unknowns that underlie
the sample-size analysis, citing specific articles and/or summarizing analyses of
“preliminary” data or analyses presented in unpublished works. If a sample-size analysis
was not performed, state this categorically and explain why. For example, the proposal
may be only a small pilot study.

Data management. Summarize the schema for collecting, checking, entering, and
managing the data. What database software will be used? How will the database be tapped
to build smaller analysis datasets? Note how you will meet modern standards for data
security.

Technical support. Who will perform the necessary database and statistical work? If
such people are less experienced, who will supervise the work?

Appendix B SAS Macro Code to Automate the Programming
In the interest of simplicity, the SAS code provided above avoided all macro programming,
except for using the %CrucialRates macro. However, analysts can profit greatly by making
elementary use of the SAS Macro Language. Below is the full program that was used in
developing the EER example. Note how the parameters that shape the problem are
specified only once at the beginning. Due to rounding, the results obtained with this code
differ slightly from those given above.

options ls=80 nocenter;
/************************************************************************\
Program Name: EER_SSAnalysis060722.sas

Date: 22 July 2006

Investigator: "Sol Capote, MD; CHI Malaria Research Group"
Statistician: "Phynd Gooden, PhD" (Actually, Ralph O’Brien)
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Purpose: Sample-size analysis for comparing usual care only vs.
QCA on elysemine:elysemate ratios at 4 hours (EER4).
Assumes data will be logNormal in distribution with same
relative range in the two groups.

\************************************************************************/

*options symbolgen mlogic mprint; * for macro debugging;
*options FORMCHAR="|----|+|---+=|-/\<>*"; * for ordinary text tables;

title1 "Usual Care Only (UCO) vs. Usual Care + QCA (QCA)";
title2 "Difference in 4-hour elysemine-elysemate ratio (EER4),adjusted";
title3 "for three baseline covariates: EER0, plasma lactate, parasitemia";

/*******************************************************************\
This program is structured so that all the defining values are set
through %let macro statements at the start of the code.
\*******************************************************************/

/**********************************\
BEGIN TECHNICAL SPECIFICATIONS

/**********************************/

* Set label for Y;
* ---------------;
%let Ylabel = EE Ratio;

* Set variable labels for the two groups ;
* ---------------------------------------;
%let GrpLabel_1 = UCO;
%let GrpLabel_2 = DCA;

/*************************************************************************\
Each distribution is logNormal with different medians, but same relative
spread (defined below). This is the same as saying that the distributions
have different means but the same coefficients of variation.
\*************************************************************************/

* Supply guesstimates for medians ;
* ------------------------------- ;
%let Ymedian0 = 2.0; * median for control arm, only one scenario ;
%let Ymedian1A = 1.8; * median for experimental arm, scenario A ;
%let Ymedian1B = 1.7; * median for experimental arm, scenario B ;

* Supply guesstimates for the 95% relative spread, defined below;
* ------------------------------------------------------------- ;
%let YRelSpread95_1 = 2.5; * YRelSpread95, scenario 1 ;
%let YRelSpread95_2 = 3.0; * YRelSpread95, scenario 2 ;

*Set NCovariates and supply guesstimates for PrtlCorr(XXX,logY);
* -------------------------------------------------------------;
%let NCovariates = 0 3 50; * number of covariates ;
%let PrtlCorr_XXXlogY = .2 .35 .50 ; * Multiple partial correlation (R) ;

* between covariates ("XXX") and ;
* logY, within treatment groups. ;

* Supply prior probabilities that null is false;
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* ---------------------------------------------;
%let PriorPNullFalse = .20 .30;

/*******************************\
END TECHNICAL SPECIFICATIONS

\*******************************/

/**********************************************************************\
=====
Notes
=====

1. Each distribution is logNormal with different medians, but same
relative spread (defined below). This is the same as saying that the
distributions have different means but the same coefficients of
variation. Under logNormality, medians are also geometric means.

2. Let Y025, Y500 and Y975 be the 2.5%, 50%, and 97.5% quantiles for Y,
i.e., Y500 is the median of Y and Y025 and Y975 are the limits of
the mid-95% range for Y.

3. Define YRelSpread95 = Y975/Y025 to be the inter-95% relative spread.
These relative spreads are taken to be equal in control and
experimental groups.

4. Log(Y025), log(Y500), and log(Y925) are the 2.5% quantile, the
median, and the 97.5% quantiles for logY.

If Y ~ logNormal, then log(Y) ~ Normal, so

mean_logY = median_logY = log(Y500).

Let SD_logY be the standard deviation of logY. Then, log(Y025) and
log(Y925) are each 1.96*SD_log2Y units from mean_logY, so

SD_logY = [log(Y025) - log(Y025)]/(2*1.96),

where 1.96 is the 97.5% quantile (Z975) of the standard Normal,
Z ~ N(0,1).

Taking 1.96 to "equal" 2, we have,

SD_logY = [log(Y025) - log(Y025)]/4,

With YRelSpread95 = Y975/Y025, we get,

SD_logY = log(YRelSpread95)/4.

5. It some cases it may be more convenient to use another
relative spread, say YRelSpread90 or YRelSpread50. Using
Z900 = 1.65 and Z750 = 0.67, we have

SD_logY = log(YRelSpread90)/(2*1.65)

and
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SD_logY = log(YRelSpread50)/(2*0.67).

Whereas [log(Y750) - log(Y250)] is the interquartile range for logY
YRelSpread50 could be called the interquartile relative range for Y.

6. One can show that the coefficient of variation is

CoefVar_Y = sqrt(exp(SD_logY**2 - 1)).

See page 213 of Johnson, Kotz, Balakrishnan (1994), Continuous
Univariate Distributions, Vol. I.

7. All logs are taken at base 2, but this choice is irrelevant for
sample-size analysis.

\*********************************************************************/

/*********\
Main code

\*********/

%let SD_log2Y_1 = %sysevalf(%sysfunc(log2(&YRelSpread95_1))/4);
%let SD_log2Y_2 = %sysevalf(%sysfunc(log2(&YRelSpread95_2))/4);

data exemplary;
group = "&GrpLabel_1";
CellWgt = 1;
mean_log2Y_A = log2(&Ymedian0);
mean_log2Y_B = log2(&Ymedian0);
output;

group = "&GrpLabel_2";
CellWgt = 2;
mean_log2Y_A = log2(&Ymedian1A);
mean_log2Y_B = log2(&Ymedian1B);
output;

run;

proc print data=exemplary;
run;

proc GLMpower data=exemplary;
ODS output output=Ntotals;
class group;
model mean_log2Y_A mean_log2Y_B = group;
weight CellWgt;
power
StdDev = &SD_log2Y_1 &SD_log2Y_2
NCovariates = &NCovariates
CorrXY = &PrtlCorr_XXXlogY
alpha = .01 .05
power = 0.95 0.99
Ntotal = .;

run;
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data Ntotals;
set Ntotals;
if dependent = "mean_log2Y_A"
then comparison = "&Ymedian0 vs &Ymedian1A";

if dependent = "mean_log2Y_B"
then comparison = "&Ymedian0 vs &Ymedian1B";

if UnadjStdDev = &SD_log2Y_1
then YRelSpread95 = &YRelSpread95_1;

if UnadjStdDev = &SD_log2Y_2
then YRelSpread95 = &YRelSpread95_2;

run;

proc tabulate data=Ntotals format=5.0 order=data;
format Alpha 4.3 YRelSpread95 3.1;
class comparison alpha YRelSpread95 CorrXY
NominalPower Ncovariates;

var Ntotal;
table
Ncovariates="Number of covariates; ",
comparison="&Ylabel: "
* alpha="Alpha"
* NominalPower="Power",

YRelSpread95="95% Relative Spread"
* CorrXY="Partial R for Covariates"
* Ntotal=""*mean=" "

/rtspace=35;
run;

proc GLMpower data=exemplary;
ODS output output=powers;
class group;
model mean_log2Y_A mean_log2Y_B = group;
weight CellWgt;
power
StdDev = &SD_log2Y_1 &SD_log2Y_2
Ncovariates = &NCovariates
CorrXY = &PrtlCorr_XXXlogY
alpha = .01 .05
Ntotal = 300
power = .;

run;

data powers;
set powers;
if dependent = "mean_log2Y_A"
then comparison = "&Ymedian0 vs &Ymedian1A";

if dependent = "mean_log2Y_B"
then comparison = "&Ymedian0 vs &Ymedian1B";

if UnadjStdDev = &SD_log2Y_1
then YRelSpread95 = &YRelSpread95_1;

if UnadjStdDev = &SD_log2Y_2
then YRelSpread95 = &YRelSpread95_2;

if power > .999
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then power999 = .999;
else power999 = power;

run;

proc tabulate data=powers format=4.3 order=data;
format Alpha 4.3 YRelSpread95 3.1;
class comparison alpha YRelSpread95 CorrXY
Ntotal Ncovariates;

var power999;
table
Ntotal="Total Sample Size: "
* Ncovariates="Number of covariates; ",

comparison="&Ylabel.: "
* alpha="Alpha",
YRelSpread95="95% Relative Spread"
* CorrXY="Partial R for Covariates"
* power999=""*mean=" "

/rtspace=35;
run;

%macro CrucialRates (PriorPNullFalse = ,
Powers = powers,
CrucialErrRates = CrucialErrRates
);

/**********************************************************************\
Converts Alphas and Powers to Crucial Error Rates
-------------------------------------------------

<> PriorPNullFalse= value1 value2 ... value10
This is gamma = PriorP[Ho false].

<> Powers= InputDSName
"InputDSName" corresponds to ODS output statement in PROC POWER
or PROC GLMPOWER, such as

proc power;
ODS output output=MoralityPowers;

<> CrucialErrRates= OutputDSName
"OutputDSName" is SAS dataset name; default: "CrucialErrRates"

\*********************************************************************/

data &CrucialErrRates;
set &Powers;
array PrNullFalseV{10} _temporary_ (&PriorPNullFalse);
beta = 1 - power;
iPNF = 1;
do until (PrNullFalseV{iPNF} = .);

gamma = PrNullFalseV{iPNF};
/* Compute Crucial Type I error rate */
TypeError = "Type I";
CrucialRate
= alpha*(1 - gamma)/(alpha*(1 - gamma) + (1 - beta)*gamma);

output;
/* Compute Crucial Type II error rate */
TypeError = "Type II";
CrucialRate
= beta*gamma/(beta*gamma + (1 - alpha)*(1 - gamma));

output;
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iPNF + 1;
end;

run;
%mend; *CrucialRates;

%CrucialRates ( PriorPNullFalse = &PriorPNullFalse,
Powers=powers,
CrucialErrRates = CrucRates );

proc tabulate data=CrucRates format=4.3 order=data; *&UniversalText;
title3 "Crucial Error Rates for QCA Malaria Trial";
format Alpha 4.3 YRelSpread95 3.1;
class TypeError gamma comparison alpha YRelSpread95 CorrXY
Ntotal Ncovariates;

var CrucialRate;
table
Ntotal="Total Sample Size: "
* Ncovariates="Number of covariates; ",

comparison="&Ylabel.: "
* YRelSpread95="95% Relative Spread"
* CorrXY="Partial R for Covariates",

alpha="Alpha"
* gamma="PriorP[Null False]"
* TypeError="Crucial Error Rate"
* CrucialRate=""*mean=" "

/ rtspace = 32;
run;
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Dose-ranging clinical studies play a very important role in early evaluation of safety and
efficacy profiles of experimental drugs. The chapter reviews popular statistical methods
used in dose-response analysis, including trend tests, dose-response modeling, and multiple
tests for identifying safe and effective doses. The testing and estimation procedures
discussed in this chapter are illustrated using examples from dose-ranging clinical trials.

11.1 Introduction
Dose-ranging studies are conducted at early stages of drug development (both pre-clinical
and clinical stages) to evaluate safety and efficacy of experimental drugs. A large number of
publications deal with the analysis of dose-ranging studies designed to test several doses (or
dose regimens) of an experimental drug versus a control. This area of research, commonly
referred to as dose-response analysis, covers the relationship between dose and clinical
response.
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There are several distinct research topics within dose-response analysis (Ruberg, 1995a):

1. Assessment of the dose-related trend in the response variable.
2. Estimation of the shape of the dose-response function.
3. Determination of optimal doses (including identification of the minimum effective dose,

which is of increasing concern as safety issues arise with marketed products).

The three objectives of dose-response analysis are obviously intertwined; however, it is
generally prudent to examine them one at a time.

First, before making a decision to invest more research dollars in an experimental drug,
drug developers need to ensure that a drug effect, manifested by a positive dose-response
relationship, is present. A positive dose-response relationship, defined as a non-decreasing
shape in the response variable from the lowest dose to the highest dose, plays a key role in
early drug evaluation. As pointed out by Kodell and Chen (1991), “evidence of a
dose-response relationship is taken to be a more compelling finding than evidence of a
positive effect that does not appear to be dose-related”.

Once it has been demonstrated that an overall dose-related trend is present, one needs
to characterize the dose-response function and determine efficacious and safe doses. To
understand the importance of this step, note that a significant overall trend is rarely
accompanied by significant treatment differences at all dose levels. In most cases,
significant treatment differences are observed only at some doses included in a dose-ranging
study and it is critical to identify the range of doses over which a positive dose-response is
truly present. This information is used to determine a therapeutic window (a contiguous
interval within which every dose is safe and effective) and will ultimately guide the
selection of doses for registration studies.

Dose-response testing and modeling have received much attention in the clinical trial
literature. For a general overview of issues arising in dose-response studies and a discussion
of relevant statistical methods, see Ruberg (1995a, 1995b), Chuang-Stein and Agresti
(1997) and Phillips (1997, 1998). Also, Westfall et al. (1999, Section 8.5) provide an
overview of dose-finding methods in clinical trials with a large number of SAS examples.

This chapter summarizes popular statistical methods used in dose-response analysis,
e.g., trend tests, dose-response models, and dose-finding strategies based on multiple tests.
The statistical procedures introduced in this chapter are illustrated using examples from
dose-ranging clinical trials.

11.1.1 Clinical Trial Examples
To illustrate the dose-response tests and models that will be introduced in this chapter, we
will use the following three clinical trials examples. The first one is a cross-over trial
representative of trials conducted at early stages of clinical development. The other two
trials use a parallel group design and serve as examples of dose-ranging Phase II or Phase
III trials.

11.1.2 Clinical Trial in Diabetes Patients (Cross-Over Design)
A Phase I study in patients with Type II diabetes was conducted to test four doses of an
experimental drug versus placebo using a cross-over design with two periods. Patients
enrolled into the study were assigned to one of four groups (six patients to each group).
Each group of patients received 24-hour placebo and experimental drug infusions on two
occasions. The primary pharmacodynamic objective of the study was to examine effects of
the selected doses on fasting serum glucose. Specifically, the primary pharmacodynamic
endpoint was defined as the fasting serum glucose concentration at the end of a 24-hour
infusion.
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Figure 11.1 Fasting serum glucose level in the diabetes trial example
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Figure 11.1 displays the dose-response relationship observed in the diabetes trial. The
mean fasting serum glucose level decreases as the infusion rate increases in a monotone
fashion. The mean glucose levels are based on least square means computed from a mixed
model with a fixed group effect and a random subject effect.

The data set with fasting serum glucose measurements (DIABETES data set) can be
found on the book’s companion Web site.

To save space, some SAS code has been shortened and some output is not shown. The
complete SAS code and data set used in this book are available on the book’s companion
Web site at http://support.sas.com/publishing/bbu/companion site/60622.html.

11.1.3 Clinical Trial in Patients with Asthma (Parallel Group Design)
A Phase II trial in 108 patients with mild to moderate asthma was conducted to compare
three doses of an experimental drug to placebo. The drug was administered daily (50, 250,
and 1000 mg/day). The efficacy of the experimental drug was studied using spirometry
measurements. The primary efficacy endpoint was the forced expiratory volume in one
second (FEV1).

Figure 11.2 displays the results of the trial. It shows the relationship between the mean
FEV1 improvement (estimated using least square means) and daily dose in the asthma
trial. The observed dose-response relationship is not monotone—this is an example of the

Figure 11.2 Mean improvement in FEV1 in the asthma trial example
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so called umbrella-shaped relationship. The mean FEV1 improvement achieves its maximum
at the medium dose (250 mg/day) and then drops to a lower value. The treatment effect at
the high dose is even less than that at the low dose. Note, however, that the non-monotone
trend depicted in Figure 11.2 may be due to sampling variability, and the underlying
dose-response relationship may still be positive. A statistical trend test is required to draw
conclusions about the true dose-response curve.

The data set with FEV1 measurements (ASTHMA data set) can be found on the book’s
companion Web site.

11.1.4 Clinical Trial in Patients with Hypertension (Parallel Group Design)
Consider a Phase II study in 68 patients with hypertension. The patients were randomly
assigned to receive one of three doses of an antihypertensive drug (10, 20 or 40 mg/day) or
placebo. The primary objective of the study was to examine the effect of the selected doses
on diastolic blood pressure (DBP).

Figure 11.3 depicts the relationship between the mean reduction in diastolic blood
pressure (based on least square means) and daily dose of the antihypertensive therapy. The
overall dose-response trend is positive. The treatment effect seems to achieve a plateau at
the 20 mg/day dose.

Figure 11.3 Mean reduction in diastolic blood pressure in the hypertension trial example

R
ed

uc
tio

n 
in

 D
B

P
 (

m
m

H
g)

 0.0

 2.0

 4.0

 6.0

 8.0

Daily dose (mg/day)

0 10 20 30 40

The data set with diastolic blood pressure measurements (HYPERTENSION data set)
can be found on the book’s companion Web site.

11.1.5 Overview
As was stated above, dose-response analysis plays an important role in both pre-clinical
and clinical evaluation of compounds. Although some of the methods discussed below can
be used in toxicological studies, this chapter focuses on a clinical setting which includes
pharmacological studies and randomized clinical trials. See Chapter 5 for a brief overview
of dose-response approaches used in toxicological studies. Also, this chapter deals mainly
with continuous endpoints (contrast and some other tests can also be used with categorical
variables). Chuang-Stein and Agresti (1997) give a general discussion of approaches to
dose-response studies with categorical endpoints.

Section 11.2 outlines general principles that need to be considered in designing
dose-ranging trials. The section describes issues arising in the design of dose-ranging studies
and discusses the choice of research hypotheses in trials with negative and positive controls.
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Section 11.3 discusses statistical procedures for addressing the first objective of
dose-response analysis, i.e., procedures for testing dose-related trends. The section reviews
both parametric and non-parametric methods. We also briefly discuss sample size
calculations in dose-ranging trials based on general contrast tests (see Section 11.3.7).

Section 11.4 deals with the second objective—it briefly introduces regression-based
approaches to examining the shape of dose-response functions, including methods based on
linear and sigmoid models. Lastly, Section 11.5 considers the third objective of
dose-response analysis and reviews approaches to finding the optimal dose based on
multiple pairwise and treatment-control comparisons. This section introduces multiplicity
adjustment procedures that are derived using the principles of closed and partition testing.
It is worth noting that, in general, dose-response analyses are performed in Phase II trials
and thus adjustments for multiplicity are not always considered. A strict control of the
Type I error rate is mandated only in registration trials.

11.2 Design Considerations

11.2.1 Types of Dose-Ranging Studies
To define dose-ranging studies, we may consider the entire class of studies that involve
multiple doses of an active compound. This broad class includes dose-escalation or
dose-titration studies (i.e., the dose could go up or down for the same trial subject),
parallel group studies (subjects are randomized to distinct dose groups) or cross-over
studies involving sequences of various dose administrations. When considering the design of
a dose-ranging study, we must first consider patient safety, especially in the early stages of
drug development. Regardless of how much in vitro or animal testing has been completed,
human subjects must be exposed to a new chemical entity on a gradual basis both in terms
of the amount of the drug to be administered as well as the duration of exposure.

11.2.2 Dose-Escalation Studies
The typical dose-ranging trials that are done initially in humans are dose-escalation trials
in which there is a single administration of a very small dose of the drug to a small number
of subjects—usually four to ten volunteers. Doses are escalated, depending on the safety
and pharmacokinetic responses of the patients, in an effort to explore the boundary of
tolerability to the drug. Such designs are often replicated using repeated administration of
a fixed dose of the drug for one- or two-week intervals, again to gradually increase exposure
and establish tolerable doses of the new compound. It is worth noting that the assignment
of subjects to dose groups in dose-escalation trials is non-random. Subjects are randomized
within each dose group but not across the groups as in parallel group designs.

We can consider having the same patients progress through the entire dose escalation or
having independent groups of volunteers for each step of the way. The choice depends on
the nature of the responses and the objectives of the trial:

• If the response is one that persists, independent groups will be required to avoid
prolonged washout periods.

• If the objective is to collect safety information on as many subjects as safely possible,
independent groups will be preferred. Of course, using the same patients throughout the
entire escalation of doses allows more direct comparisons of responses across doses and
thereby more precise estimates of parameters of interest.

• Lastly, in dose-escalation studies, we need to be prepared to deal with incomplete data
caused by dropouts, especially when the dropout is due to intolerance.
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11.2.3 Cross-Over Design
In the early stages of drug development, but after tolerability has been established as
described above, larger studies with greater sophistication can be initiated. An example of
a cross-over design that embodies elements of randomization and dose escalation is shown
in Table 11.1. A very useful aspect of the design is that, in the first period, two-thirds of
the patients receive the lower dose of the drug. As the periods of the study progress, more
patients are exposed to the higher dose, and all patients are exposed to the lower dose
before the final period.

Table 11.1 A Cross-Over Study with Three Periods

Sequence Period 1 Period 2 Period 3

1 Placebo Lower dose Higher dose
2 Lower dose Placebo Higher dose
3 Lower dose Higher dose Placebo

This design is usually appealing to clinicians because of the safety of patients inherent
in the dose escalation embedded in the cross-over periods. In addition, the use of placebo in
each period helps maintain the double-blind nature of the trial, which is usually desirable,
and allows for the separation of treatment and period effects. All of the usual
considerations need to be made when considering a cross-over versus parallel design (e.g.,
within- and between- subject variability, stability of the disease state).

11.2.4 Parallel Group Design
The most common and simple design is the controlled, randomized, parallel dose response
study. In this study design, patients are randomly allocated to one of several active dose
groups or control, most often placebo. While a placebo control leads to the most clear
interpretation of results, active controls can also be used. The parallel design is most
popular in Phase II development when larger studies are done in order to explore safety
and effectiveness of a new drug. Since the only difference between treatment groups is the
dose of the drug, the design leads to more straightforward analysis and interpretation as
will be described in subsequent sections.

11.2.5 Factorial Design
In a growing number of situations, researchers want to study the effect of more than one
aspect of the dose of a new compound on a disease state. Several examples come to mind:
the amount of the dose and the frequency of dosing (i.e., once a day or twice a day) or the
size of a bolus injection and the subsequent infusion rate of a compound. Furthermore, in
some disease states combination therapy is the norm, or at least a common phenomenon,
such as chemotherapy and antihypertensive therapy. It may be of interest to study multiple
doses of each drug in combination with each other. Obviously, such explorations of dose
response lead to factorial studies. Statisticians have long recognized the value and economy
of conducting factorial experiments, but their use in clinical trials is less common. This
may be due to the complexity (e.g., packaging and blinding clinical medications) of many
clinical trials. Such designs may be most relevant if one is interested in finding the optimal
dosing regimen for a drug or combination of drugs.

11.2.6 Choice of a Control and Research Hypothesis
Negative and positive controls play a key role in dose-ranging clinical trials. As pointed out
in many publications, a significant dose-response trend in the absence of a control group
cannot serve as evidence of a drug effect. In studies with a negative control, a significant
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dose-response relationship can be observed even if the lowest dose is less efficacious than
the control and the highest dose is generally comparable to the control.

Most commonly, dose-ranging clinical trials are designed to investigate the effect of
multiple doses of an experimental drug compared to a negative control (placebo). Placebo
is a “dummy” treatment that appears as identical as possible to the test treatment but
does not contain the test drug. As stated in the (amended) Helsinki Declaration and ICH
E10 guidance document, the use of a placebo may be justified in studies where no proven
therapeutic method exists. Using a placebo as the control may also be justified if the
disease does not cause serious harm (e.g., seasonal allergy) or when treatment may be
optional (e.g., treatment for pain or depression). However, if the disease causes mortality,
the inclusion of a placebo-controlled group may not be ethical. Even if the disease does not
cause mortality but causes irreversible morbidity, that is, the disease invariably progresses
unless treated (e.g., Type II diabetes), the inclusion of a placebo group may be unethical as
well.

11.2.7 Superiority and Non-Inferiority Testing
In comparing an experimental drug with a negative control, we hope to prove that the new
drug is superior to the negative control by a clinically meaningful amount. If μnegative is the
mean response of the negative control, and μdrug is the mean of the experimental drug, then
the drug is considered efficacious if

μdrug > μnegative + δsup,

where δsup is a prespecified non-negative quantity representing a clinically important
treatment difference for establishing superiority.

An active control is a drug which has been proven to be efficacious, typically already
approved and in use. In comparing a new (experimental) drug against an active control,
clinical researchers may hope to prove that the new drug is superior to the active control. If
μactive is the mean of the active control, then the new drug is considered efficacious if

μnew > μactive + δsup,

where δsup again represents a clinically important treatment difference.
This is done primarily in the European Union. The rationale for demanding proven

superiority before approving a drug is that, by limiting the number of drugs and thus
allocating each a large share of market, it might be possible to better negotiate a
cost-effective managed care plan.

Alternatively, clinical researchers may hope to demonstrate that the new drug is
non-inferior to the active control, i.e., show that

μnew > μactive − δnon-inf,

where δnon-inf is the so-called non-inferiority margin that defines a clinically meaningful
difference in non-inferiority trials.

This approach is often taken in the United States. In such cases, δnon-inf may be a
fraction (e.g., 50%) of the presumably known improvement the active control provides over
the negative control. For example, in the U.S., a new drug for some mild digestive disorder
might be approved if it is shown to maintain at least half the treatment effect of another
drug on the market. The rationale for approving such a drug is to let the consumers make
their own decisions, based on cost, efficacy, and side effect considerations.

In dose-ranging trial with a non-inferiority objective, in addition to the new treatment
and the active control groups, it is desirable to include a negative control group as well.
This is done to ensure assay sensitivity. It is best to proceed to compare the new drug with
the active control only after establishing that the non-inferiority trial is sensitive enough to



280 Pharmaceutical Statistics Using SAS: A Practical Guide

detect the known difference between the active and negative controls. Otherwise, clinical
researchers may fail to detect a difference between the new treatment and active control
(and conclude that the new treatment is non-inferior to the active control) simply due to
lack of power. Obviously, if there is a statistically significant difference between the new
treatment and the active control, the difference stands whether the active control is found
to be different from the placebo or not.

11.2.8 One-Sided and Two-Sided Testing
Of particular relevance when designing a study to assess a dose-response relationship is the
matter of one-sided versus two-sided testing. This issue is debated passionately by some,
but it is clear that in the vast majority of situations, the researcher has a known interest in
the direction of the desired response. This would naturally imply a one-sided alternative
with a suitable sample size to carry out the appropriate statistical test. The size of the test
also needs to be considered carefully in the design of the trial.

11.2.9 Control of Type I and Type II Error Rates
When taking a hypothesis testing approach, we must consider the importance of Type I
and Type II errors. If the response of interest is an efficacy response, then the Type I error
is of greatest interest (i.e., we do not want to conclude a drug is effective when it truly is
not). However, if the response of interest is a safety variable (e.g., QTc prolongation), the
Type II error plays a more important role (i.e., we do not want to conclude there is no
effect on safety when in fact there is). Often, this is under-appreciated and in the case of a
safety study it may be perfectly acceptable to have a larger than usual Type I error rate
such as 0.10 or 0.15 to shrink the Type II error for a limited or fixed sample size that may
be needed for a practical clinical trial.

11.3 Detection of Dose-Response Trends
It is commonly agreed that the first step in analyzing dose-response trends and more
complex problems related to dose-finding is the assessment of the overall effect of an
experimental drug. This step is essentially a screening test to determine whether or not the
drug effect exists at all.

Mathematically, the goal of the overall drug effect assessment is to test the null
hypothesis of no treatment effect. For example, in the diabetes trial example, clinical
researchers were interested in testing whether or not there was any drug-related
improvement in the response variable as the infusion rate increased. The corresponding null
hypothesis of no treatment effect is given by

H0 : μP = μD1 = μD2 = μD3 = μD4,

where μP is the mean glucose level in the placebo period and μD1, μD2, μD3, μD4 are the
mean glucose levels in the four dosing periods. The null hypothesis of no treatment effect is
typically tested against the ordered alternative. Under the ordered alternative, the response
is assumed to increase monotonically with dose:

HA : μP ≤ μD1 ≤ μD2 ≤ μD3 ≤ μD4 and μP < μD4.

In this section we will discuss statistical methods for assessing dose-related trends in the
response variable. We will begin with simple contrast tests, discuss powerful isotonic
methods (Bartholomew and Williams tests) and introduce a non-parametric approach to
testing dose-response trends.
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11.3.1 Contrast Tests
The simplest way of testing the null hypothesis of no treatment effect is based on the F
test associated with a simple ANOVA model. However, the F test is not especially powerful
in a dose-response setting because it does not take advantage of the dose order information.
The ANOVA-based approach to examining the overall drug effect can be greatly improved
if we select a contrast that mimics the most likely shape of the dose-response curve and
carries out a trend test associated with this contrast.

To define contrast tests, consider a general dose-ranging study with m doses of a drug
tested versus a placebo. Let θ0 be the true value of the response variable in the placebo
group and θ1, . . . , θm denote the true values of the response variable in the m dose groups.
The θ parameters can represent mean values of the response variable when it is continuous
or incidence rates when the response variable is binary. Further, let θ̂0, . . . , θ̂m be the
sample estimates of the θ parameters in the placebo and dose groups.

A contrast is defined by m + 1 contrast coefficients (one for each treatment group)
denoted by

c0m, . . . , cmm.

The coefficients are chosen in such a way that they add up to 0, i.e.,
m∑

i=0

cim = 0.

Contrasts are often defined with integer coefficients since the coefficients are standardized
when the test statistic is computed.

Once a contrast has been selected, the corresponding t statistic is computed by dividing
the weighted sum of the sample estimates θ̂0, . . . , θ̂m by its standard error:

t =
∑m

i=0 cimθ̂i

SE
(∑m

i=0 cimθ̂i

) .

In parallel group studies with an equal number of patients in each group (say, n), this
statistic follows a t distribution with (m + 1)(n − 1) degrees of freedom.

Popular contrast tests based on linear, modified linear, and maximin contrasts are
defined below.

Linear Contrast

The linear contrast is constructed by assigning integer scores (from 0 to m) to placebo and
m ordered doses and then centering them around 0 (Tukey et al., 1985; Rom et al., 1994).
In other words, linear contrast coefficients are given by:

cim = i − m/2.

Linear contrast coefficients for dose-ranging studies with 2, 3, and 4 dose groups are
displayed in Table 11.2.

As was noted above, each contrast roughly mimics the dose-response shape for which it
is most powerful. The linear contrast test is sensitive to a variety of positive dose-response
shapes, including a linear dose-response relationship. If the test is significant, this does not
necessarily imply that the true dose-response relationship is linear.

Secondly, the linear contrast introduced above was originally proposed for dose-response
studies with equally spaced doses and equal sample sizes across the treatment groups.
However, the same coefficients are frequently used even when these assumptions are
violated. When the doses are not equally spaced, the linear contrast essentially becomes an
ordinal contrast that ignores the actual dose levels and replaces them with ordinal scores.
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Maximin and Modified Linear Contrasts
The maximin contrast was derived by Abelson and Tukey (1963) and possesses an
interesting optimal property. The contrast maximizes the test’s power against the
worst-case configuration of the dose effects under the ordered alternative HA:

HA : θ0 ≤ . . . ≤ θm and θ0 < θm.

The maximin contrast is defined as follows:

cim =
√

i − i2

m + 1
−

√
i + 1 − (i + 1)2

m + 1
.

Along with the optimal maximin contrast, Abelson and Tukey (1963) also proposed a
simple modification of the linear contrast that performs almost as well as the maximin
contrast. The modified linear contrast (termed the linear-2-4 contrast by Abelson and
Tukey) is similar to the linear contrast. The only difference is that the end coefficients are
quadrupled and the coefficients next to the end coefficients are doubled. Unlike the
maximin coefficients, the modified linear coefficients are easy to compute and remember.

To understand the difference between the linear and maximin tests, note that, unlike the
linear tests, the maximin and modified linear tests assign large weights to the treatment
means in the placebo and highest dosing groups. As a result, these tests tend to ignore the
drug effect in the intermediate dosing groups. Although the maximin and modified linear
tests are generally more powerful than the simple linear test, they may perform poorly in
trials with non-monotonic dose-response curves.

Maximin and modified linear coefficients for dose-ranging studies with 2, 3, and 4 dose
groups are shown in Table 11.2.

Table 11.2 Linear, Modified Linear, and Maximin Contrasts in Dose-Ranging
Studies with 2, 3, and 4 Dose Groups

Contrast coefficients
Contrast Placebo Dose 1 Dose 2 Dose 3 Dose 4

2 dose groups

Linear −1 0 1
Modified linear −4 0 4
Maximin −0.816 0 0.816

3 dose groups

Linear −3 −1 1 3
Modified linear −12 −2 2 12
Maximin −0.866 −0.134 0.134 0.866

4 dose groups

Linear −2 −1 0 1 2
Modified linear −8 −2 0 2 8
Maximin −0.894 −0.201 0 0.201 0.894

Note: The linear and modified linear coefficients have been standardized.

11.3.2 Contrast Tests in the Diabetes Trial Example
Program 11.1 analyzes changes in fasting serum glucose levels between the placebo and
four dosing periods in the diabetes trial example. The raw data (DIABETES data set) used
in the program can be found on the book’s companion Web site. To account for the
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cross-over design, the program uses the MIXED procedure to fit a simple mixed model
with a fixed group effect and a random subject effect. The drug effect is assessed using the
overall F test as well as the three contrast tests introduced in this section. The contrast
coefficients included in the three CONTRAST statements are taken from Table 11.2.
Lastly, the program uses the Output Delivery System (ODS) to select relevant sections of
the PROC MIXED output.

Program 11.1 F and contrast tests in the diabetes trial example

proc mixed data=diabetes;
ods select tests3 contrasts;
class subject rate;
model glucose=rate/ddfm=satterth;
repeated/type=un subject=subject;
contrast "Linear" rate -2 -1 0 1 2;
contrast "Modified linear" rate -8 -2 0 2 8;
contrast "Maximin" rate -0.894 -0.201 0 0.201 0.894;
run;

Output from Program 11.1

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

rate 4 20.2 90.49 <.0001

Contrasts

Num Den
Label DF DF F Value Pr > F

Linear 1 21.3 151.14 <.0001
Modified linear 1 21.6 163.63 <.0001
Maximin 1 21.6 163.56 <.0001

Output 11.1 lists the test statistics and associated p-values produced by the overall F
test and the linear, modified linear and maximin tests. The test statistics are very large
and offer strong evidence against the null hypothesis of no drug effect.

11.3.3 Contrast Tests in the Asthma Trial Example
A similar SAS program can be used to analyze dose-response trends in a parallel group
setting, e.g., in the asthma trial introduced in Section 11.1. The only change that needs to
be made in Program 11.1 is deleting the REPEATED statement in PROC MIXED.
Program 11.2 carries out the overall F test and three contrast tests to analyze mean
changes in FEV1 collected in the asthma trial example. The contrast coefficients for this
four-arm trial come from Table 11.2. The raw data (ASTHMA data set) used in the
program can be found on the book’s companion Web site.
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Program 11.2 F - and contrast tests in the asthma trial example

proc mixed data=asthma;
ods select tests3 contrasts;
class dose;
model change=dose;
contrast "Linear" dose -3 -1 1 3;
contrast "Modified linear" dose -12 -2 2 12;
contrast "Maximin" dose -0.866 -0.134 0.134 0.866;
run;

Output from Program 11.2

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

dose 3 104 1.70 0.1707

Contrasts

Num Den
Label DF DF F Value Pr > F

Linear 1 104 1.86 0.1758
Modified linear 1 104 1.86 0.1760
Maximin 1 104 1.85 0.1764

Output 11.2 shows the test statistics and p-values produced by the overall F test and
the three contrast tests introduced earlier in this section. The four test statistics indicate
that the non-monotone (umbrella-shaped) dose-response relationship depicted in
Figure 11.2 is actually consistent with the null hypothesis of no drug effect. Note that, in
the presence of an umbrella-shaped dose-response curve, the contrast test statistics are
comparable in magnitude and are similar to the test statistic of the overall F test.

11.3.4 Isotonic Tests
An alternative approach to testing dose-response trends is based on isotonic methods1.
Unlike contrast tests, isotonic tests rely heavily on the assumption of a monotone
dose-response relationship. This assumption is reasonable in most dose-ranging studies
because higher doses generally produce stronger treatment effects compared to lower doses.

Two most popular isotonic tests were proposed by Bartholomew (1961) and Williams
(1971, 1972). Both of them are based on maximum likelihood estimates of the treatment
means under the monotonicity constraint and, as a result, are computationally intensive.
Due to the computational complexity of the Bartholomew test, this section will focus on
the Williams test for balanced dose-ranging studies with continuous endpoints. It is worth
noting the Williams approach can be extended to test for trends in the binary case
(Williams, 1988) or in a non-parametric setting (Shirley, 1977).

The Williams trend test is based on a comparison between the highest dose and placebo
groups under the monotonicity constraint. To be precise, the Williams test statistic Wm is
a two-sample t statistic in which the sample mean in the highest dose group is replaced

1The word isotonic is used in medical literature to describe muscular contractions. In this context, isotonic refers to a
monotonically increasing dose-response function.
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with the maximum likelihood estimate under the ordered alternative HA:

HA : μ0 ≤ . . . ≤ μm.

The Wm statistic is given by

Wm =
μ̂m − X̄0

s
√

2/n
,

where X̄0 is the regular sample mean of the response variable in the placebo group, μ̂m is
the maximum likelihood estimate of the average response in the highest dose group under
the ordered alternative, s is the pooled sample standard deviation, and n is the sample size
per group. In the balanced case, the maximum likelihood estimate μ̂m is defined as follows

μ̂m = max
[∑m

i=1 X̄i

m
,

∑m
i=2 X̄i

m − 1
, . . . , X̄m

]
.

Although the Williams statistic is similar to the two-sample t statistic, it no longer follows
a t distribution. To find the critical values of the null distribution of Wm, we need to use a
rather complicated algorithm given in Williams (1971). This algorithm is implemented in
the PROBMC function. Using this function, we have written a macro for carrying out the
Williams test in dose-ranging trials (the %WilliamsTest macro can be found on the book’s
companion Web site).

The %WilliamsTest macro has three arguments described below:

• DATASET is the data set to be analyzed.
• GROUP is the name of the group variable in the data set.
• VAR is the name of the response variable in the data set.

The macro assumes that the input data set is sorted by the group variable and the first
group is the placebo group. Note also that the Williams test was developed for parallel
group designs and thus the %WilliamsTest macro will not work with cross-over trials.

To illustrate the use of the Williams test, we will apply it to test for a monotonic
dose-related relationship in the asthma trial (see Program 11.3).

Program 11.3 Williams test in the asthma trial example

%WilliamsTest(dataset=asthma,group=group,var=change);

Output from Program 11.3

Williams statistic P-value

1.7339 0.0538

Output 11.3 displays the Williams statistic and associated p-value. The p-value is
marginally significant (p = 0.0538) and thus the true dose-response relationship in the
asthma trial is unlikely to be positive. Also, it is instructive to compare the p-value
produced by the Williams test to those produced by popular contrast tests (Output 11.2).
The Williams p-value is much smaller than the p-values listed in Output 11.2 which
indicates that in this example the Williams test is more sensitive to the dose-response
trend than the linear, modified linear, and maximin contrast tests.
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11.3.5 Jonckheere Test
So far we have discussed dose-response tests for normally or nearly normally distributed
endpoints. The assumption of normality may not be met (or may be difficult to justify) in
smaller proof-of-concepts trials in which case clinical researchers need to consider a
non-parametric test for dose-related trends.

A popular non-parametric trend test for dose-ranging studies was proposed by
Jonckheere (1954). A similar test was also described by Terpstra (1952) and, for this
reason, the Jonckheere test is sometimes referred to as the Jonckheere-Terpstra test.
Another non-parametric trend test was recently proposed by Neuhäuser, Liu, and Hothorn
(1998). This test is based on a simple modification of Jonckheere’s approach and is more
powerful than the original Jonckheere test. However, the Neuhäuser-Liu-Hothorn test is not
yet available in SAS.

The Jonckheere test is based on counting the number of times a measurement from one
treatment group is smaller (or larger) than a measurement from another treatment group
and comparing the obtained counts to the counts that would have been observed under the
null hypothesis of no drug effect. To define the Jonckheere approach, let Xij be the
measurement from the jth patient in the ith treatment group, i = 0, . . . , m. The magnitude
of response in two treatment groups, say, kth and lth groups, can be assessed in a
non-parametric fashion using the Mann-Whitney statistic Ukl. This statistic is equal to the
number of times Xkj < Xlj′ plus one-half the number of times Xkj = Xlj′ . The Jonckheere
statistic, defined for all pairwise comparisons as a sum of the Mann-Whitney statistic,
combines the information across the m + 1 groups.

T =
m∑

k=0

m∑
l=k+1

Ukl.

Once the T statistic has been computed, statistical inferences can be performed using a
normal approximation or exact methods. First, we can compute a standardized test
statistics which is asymptotically normally distributed and then find a p-value from this
normal distribution. Alternatively, a p-value can be computed from the exact distribution
of the T statistic.

The Jonckheere test is implemented in the FREQ procedure, which supports both the
asymptotic and exact versions of this test. The Jonckheere test (in its asymptotic form) is
requested by adding the JT option to the TABLES statement. To illustrate, Program 11.4
carries out the Jonckheere test to examine the dose-response relationship in the asthma
trial.

Program 11.4 Jonckheere test in the asthma trial example

proc freq data=asthma;
tables dose*change/noprint jt;
run;
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Output from Program 11.4

Statistics for Table of dose by change

Jonckheere-Terpstra Test

Statistic 2450.5000
Z 1.4498
One-sided Pr > Z 0.0736
Two-sided Pr > |Z| 0.1471

Effective Sample Size = 108
Frequency Missing = 4

Output 11.4 shows that the standardized Jonckheere statistic for testing the
dose-related trend in FEV1 changes is 1.4498. The associated two-sided p-value is fairly
large (p = 0.1471), suggesting that the dose-response relationship is not positive.

It is worth noting that PROC FREQ also supports the exact Jonckheere test. To
request an exact p-value, we need to use the EXACT statement as shown below

proc freq data=asthma;
tables dose*change/noprint jt;
exact jt;
run;

It is important to remember that exact calculations may take a very long time (even in
SAS 9.1) and, in some cases, even cause SAS to run out of memory.

11.3.6 Comparison of Trend Tests
Several authors, including Shirley (1985), Hothorn (1997) and Phillips (1997, 1998),
studied the power of popular trend tests in a dose-ranging setting, including contrast tests
(linear and maximin), Williams, Bartholomew and Jonckheere tests.

It is commonly agreed that contrast tests can be attractive in dose-ranging trials
because they gain power by pooling information across several dose groups. This power
advantage is most pronounced in cases when the shape of the dose-response curve matches
the pattern of the contrast coefficients. The contrast tests introduced in this section
perform best when the response increases with increasing dose. However, when a
non-monotonic (e.g., umbrella-shaped) dose-response curve is encountered, contrast tests
become less sensitive and may fail to detect a dose-response relationship. The same is also
true for the Jonckheere test.

The isotonic tests (Williams and Bartholomew tests) tend to be more robust than
contrast tests and perform well in dose-ranging trials with monotonic and non-monotonic
dose-response curves (as shown in Output 11.3). To summarize his conclusions about the
performance of various trend tests, Phillips (1998) stated that

specialized tests such as Williams’ and Bartholomew’s tests which are tailored to the
special ordering of dose groups are powerful against a variety of different patterns of
results, and therefore, should be used to establish whether or not there is any drug
effect.

11.3.7 Sample Size Calculations Based on Linear Contrast Tests
In this subsection, we will briefly discuss a problem that plays a key role in the design of
dose-ranging trials—calculation of the trial’s size. Consider a clinical trial with a parallel
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group design in which m doses of an experimental drug are tested against a placebo. The
same number of patients, n, will be enrolled in each arm of the trial. The total sample size,
n(m + 1), is chosen to ensure that, under a prespecified alternative hypothesis, an
appropriate trend test will have 1 − β power to detect a positive dose-response relationship
at a significance level α. Here β is the Type II error probability.

Sample size calculations for isotonic tests (Williams and Bartholomew tests) tend to be
rather complicated, and we will focus on general contrast tests introduced in
Section 11.3.1. As before, θ0 will be the true value of the response variable in the placebo
group, and θ1, . . . , θm will denote the true values of the response variable in the m dose
groups (the response can be a continuous variable or proportion). Suppose that clinical
researchers are interested in rejecting the null hypothesis of no drug effect in favor of

HA : θ0 = θ∗
0, θ1 = θ∗

1, . . . , θm = θ∗
m,

where θ∗
0, θ

∗
1, . . . , θ

∗
m reflect the assumed magnitude of the response in the placebo and m

dose groups. These values play the role of the so-called smallest clinically meaningful
difference which is specified when sample size calculations are performed in two-arm clinical
trials.

The presence of a positive dose-response relationship will be tested using a general
contrast test with the contrast coefficients c0m, c1m, . . . , cmm. Assume that the standard
deviation of θ̂i is σ/

√
n. It is easy to show that, under HA, the test statistic t, defined in

Section 11.3.1, is approximately normally distributed with mean
√

n
∑m

i=0 cimθ∗
i

σ
√∑m

i=0 c2
im

and standard deviation 1. Therefore, using simple algebra, the sample size in each arm is
given by

n =
σ2(zα/2 + zβ)2 ∑m

i=0 c2
im

(
∑m

i=0 cimθ∗
i )

2 .

EXAMPLE: Clinical trial in patients with hypercholesterolemia
A clinical trial will be conducted to study the efficacy and safety profiles of three doses of a
cholesterol-lowering drug compared to placebo. The primary trial endpoint is the reduction
in LDL cholesterol after a 12-week treatment. Clinical researchers hypothesize that the
underlying dose-response relationship will be linear, i.e.,

HA : θ0 = 0 mg/dL, θ1 = 7 mg/dL, θ2 = 14 mg/dL, θ3 = 21 mg/dL,

where θ0 is the placebo effect and θ1, θ2, and θ3 represent the drug effect in the low,
medium, and high dose groups, respectively. The standard deviation of LDL cholesterol
changes is expected to vary between 20 and 25 mg/dL. The dose-ranging trial needs to be
powered at 90% (β = 0.1) with a two-sided significance level of 0.05 (α/2 = 0.025).

Program 11.5 computes the sample size in this dose-ranging trial using the linear
contrast test with c03 = −3, c13 = −1, c23 = 1 and c33 = 3 (see Table 11.2).
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Program 11.5 Sample size calculations in the hypercholesterolemia dose-ranging trial

data sample_size;
* Mean effects in each arm;
theta0=0; theta1=7; theta2=14; theta3=21;
* Linear contrast test coefficients;
c0=-3; c1=-1; c2=1; c3=3;
alpha=0.025; * One-sided significance level;
beta=0.1;
z_alpha=probit(1-alpha);
z_beta=probit(1-beta);
do sigma=20 to 25;

sum1=theta0*c0+theta1*c1+theta2*c2+theta3*c3;
sum2=c0*c0+c1*c1+c2*c2+c3*c3;
n=ceil(sum2*(sigma*(z_alpha+z_beta)/sum1)**2);
output;

end;
proc print data=sample_size noobs;

var sigma n;
run;

Output from Program 11.5

sigma n

20 18
21 19
22 21
23 23
24 25
25 27

Output 11.5 lists the patient numbers for the selected values of σ. It is important to
remember that these numbers define the size of the analysis population. In order to
compute the number of patients that will be enrolled in each treatment group, we need to
make assumptions about the dropout rate. With a 10% drop-out rate, the sample size in
the first scenario (σ = 20) will be 18/0.9 = 20 patients per arm.

11.4 Regression Modeling
In this section we will introduce statistical methods for addressing the second objective of
dose-ranging studies, namely, characterization of the dose-response curve. While in the
previous section we were concerned with hypothesis testing, this section will focus on
modeling dose-response functions and estimation of their parameters. We will consider
approaches based on linear and sigmoid (or Emax) models.

It is important to note that the modeling approaches discussed below can be used to
study effects of either actual dose or pharmacokinetic exposure parameters (e.g., area
under the time-plasma concentration curve or maximum plasma concentration) on the
response variable of interest. When the drug’s distribution follows simple pharmacokinetic
models, e.g., a one-compartmental model with a first-order transfer rate, the exposure
parameters are proportional to the dose (this is known as pharmacokinetic
dose-proportionality). In this case, the two approaches yield similar results. However, in the
presence of complex pharmacokinetics, dose-proportionality may not hold and
exposure-response models are more informative than dose-response models.
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11.4.1 Linear Models
Here we will consider a simple approach to modeling the dose- or exposure-response
relationship in dose-ranging trials. This approach relies on linear models. Linear models
often serve as a reasonable first approximation to an unknown dose-response function and
can be justified in a variety of dose-ranging trials unless the underlying biological processes
exhibit ceiling or plateau effects. If a linear model is deemed appropriate, it is easy to fit
using PROC REG (parallel group designs) or PROC MIXED (parallel group or cross-over
designs).

As an illustration, we will fit a linear model to approximate the relationship between the
drug exposure (measured by the maximum plasma concentration of the study drug, Cmax)
and mean fasting glucose level in the diabetes trial. Program 11.6 fits a linear
repeated-measures model to the glucose and Cmax measurements in the Diabetes data set
using PROC MIXED. A repeated-measures model specified by the REPEATED statement
is used here to account for the cross-over nature of this trial. The program also computes
predicted fasting glucose levels and a confidence band for the true exposure-response
function. The predicted values and confidence intervals are requested using the
OUTPREDM option in the MODEL statement.

Program 11.6 Linear exposure-response model in the diabetes trial

proc mixed data=diabetes;
class subject;
model glucose=cmax/outpredm=predict;
repeated/type=un subject=subject;

proc sort data=predict;
by cmax;

axis1 minor=none value=(color=black)
label=(color=black angle=90 ’Glucose level (mg/dL)’)
order=(100 to 200 by 20);

axis2 minor=none value=(color=black) label=(color=black ’Cmax (ng/mL)’);
symbol1 value=none i=join color=black line=20;
symbol2 value=none i=join color=black line=1;
symbol3 value=none i=join color=black line=20;
symbol4 value=dot i=none color=black;
proc gplot data=predict;

plot (lower pred upper glucose)*cmax/overlay frame haxis=axis2 vaxis=axis1;
run;
quit;

Output from Program 11.6

Solution for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t|

Intercept 175.78 2.1279 23 82.61 <.0001
cmax -0.03312 0.003048 23 -10.87 <.0001

Output 11.6 lists estimates of the intercept (INTERCEPT) and slope (CMAX) of the
linear exposure-response model produced by PROC MIXED. The intercept represents the
baseline (placebo) effect and the slope indicates the rate at which the mean glucose
concentration decreases with increasing exposure.

Figure 11.4 depicts the predicted fasting glucose concentration as a function of Cmax
along with a series of 95% confidence intervals that form a confidence band. It is clear from
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Figure 11.4 Fasting glucose levels predicted by a linear model in the diabetes trial
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Figure 11.4 that the linear model provides a fairly poor fit to the fasting glucose data.
Most of the dots representing individual glucose measurements lie below the fitted line and
outside the confidence band. The pattern of individual measurements suggests that the
true exposure-response relationship is likely to be curvilinear.

11.4.2 Sigmoid Models
We saw in the previous subsection that linear models may not always provide an adequate
approximation to exposure-response functions. Non-linear models perform better in
practice and are generally more appealing from a clinical perspective. One way to improve
the performance of simple linear models is by applying a non-linear transformation of the
independent variable, e.g., fitting a linear model with a log-transformed AUC or Cmax.
Another popular non-linear modeling approach relies on the sigmoid model (also referred
to as the Emax model). This model describes the true treatment effect E as a sigmoid
function of drug exposure d:

E = E0 +
Emaxd

γ

dγ + dγ
50

.

In this model,

• E0 is the baseline effect at the zero exposure level.
• Emax represents the maximum possible effect of the experimental drug on the response

variable relative to baseline.
• d50 is the exposure level at half-maximal effect (sometimes called the median effective

dose). It is easy to verify that the treatment effect E is equal to E0 + Emax/2 when
d = d50.

• γ determines the steepness of the sigmoid function. The γ parameter, known as the Hill
coefficient in the pharmacodynamic literature, typically ranges between 1 and 3.

In cross-over trials, the introduced sigmoid model needs to be modified to account for
repeated measurements on the same subject. This is achieved by including a random



292 Pharmaceutical Statistics Using SAS: A Practical Guide

subject term in the model. Program 11.7 uses a sigmoid model with a random subject term
to approximate the exposure-response curve in the diabetes trial:

E = E0 − (Emax + η)d
d + d50

,

where η is a random subject term and the γ parameter is set to 1 to simplify non-linear
modeling in this small data set. Note that E is a decreasing function of d since the
experimental drug is expected to lower the glucose level. To fit this complex non-linear
model, the program relies on the NLMIXED procedure, a powerful procedure that supports
a broad class of non-linear models with random effects.

In Program 11.7, the response variable (GLUCOSE) is modeled as a non-linear function
of a fixed exposure effect (CMAX) and a random subject effect (SUB). The subject effects
are assumed to be normally distributed. The SUBJECT option in the RANDOM
statement identifies groups of related observations made on the same individual.

The initial values of the baseline and maximum effects, E0 and Emax, as well as the
median effective dose, d50, were taken from the dose-response function depicted in
Figure 11.1. The initial values of both the within-subject (INTRASUBJECT) and
between-subject (INTERSUBJECT) variances were 1.

Program 11.7 Sigmoid exposure-response model in the diabetes trial

proc nlmixed data=diabetes;
ods select ParameterEstimates;
parms e0=180 emax=60 d50=900 intrasigma=1 intersigma=1;
prediction=e0-(sub+emax)*cmax/(cmax+d50);
model glucose~normal(prediction,intersigma);
random sub~normal(0,intrasigma) subject=subject;
predict e0-emax*cmax/(cmax+d50) out=predict;

proc sort data=predict;
by cmax;

axis1 minor=none value=(color=black)
label=(color=black angle=90 ’Glucose level (mg/dL)’)
order=(100 to 200 by 20);

axis2 minor=none value=(color=black) label=(color=black ’Cmax (ng/mL)’);
symbol1 value=none i=join color=black line=20;
symbol2 value=none i=join color=black line=1;
symbol3 value=none i=join color=black line=20;
symbol4 value=dot i=none color=black;
proc gplot data=predict;

plot (lower pred upper glucose)*cmax/
overlay frame haxis=axis2 vaxis=axis1;

run;
quit;

Output from Program 11.7

Parameter Estimates

Standard
Parameter Estimate Error DF t Value Pr > |t| Alpha

e0 179.36 2.0873 47 85.93 <.0001 0.05
emax 87.1425 16.3395 47 5.33 <.0001 0.05
d50 899.75 396.02 47 2.27 0.0277 0.05
intrasigma 3.0613 148.03 47 0.02 0.9836 0.05
intersigma 101.12 24.8511 47 4.07 0.0002 0.05
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Parameter Estimates

Parameter Lower Upper Gradient

e0 175.16 183.56 0.000378
emax 54.2717 120.01 -0.00006
d50 103.05 1696.45 0.001309
intrasigma -294.73 300.85 0.003211
intersigma 51.1297 151.12 -0.00003

Output 11.6 shows estimates of the parameters of the sigmoid model. The estimated E0,
Emax, and d50 parameters are generally close to their initial values. According to the fitted
sigmoid model, the experimental drug is theoretically capable of reducing the mean glucose
level to 92 mg/dL (= 179 − 87). The half-maximal effect is achieved at the median effective
dose (D50) which is equal to 900 mg/dL. The within-subject variance (INTRASUBJECT)
is considerably smaller than the between-subject variance (INTERSUBJECT).

Figure 11.5 Fasting glucose levels (mg/dL) predicted by a sigmoid model in the diabetes trial
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Figure 11.5 displays the fasting glucose concentration predicted by the sigmoid model
with a 95% confidence band. The fitted dose-response curve has a concave shape and fits
the data well. There is no obvious pattern in the residuals and many observations fall
within the 95% confidence band around the fitted curve.

The fitted model can be used for an informal determination of doses or drug exposures
to be investigated in Phase II trials (Ruberg, 1995b). Suppose, for example, that the
objective of the diabetes trial was to reduce the glucose concentration to a “normal” level
defined as 126 mg/dL. We can see from Figure 11.5 that the lower confidence limit is below
this clinically important threshold when the maximum plasma concentration is greater
than 1200 pg/mL. Secondly, the mean glucose concentration falls below the 126 mg/dL
threshold around Cmax = 1700 pg/mL. Using this information, we could define the
minimally effective exposure level as a value between 1200 and 1700 pg/mL and effective
exposure levels as values exceeding 1700 pg/mL.
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11.5 Dose-Finding Procedures
As was indicated in Section 11.1, once a positive dose-response has been established,
clinical researchers are interested in determining the optimal dose range for their
experimental drug known as the therapeutic window. As an example, the usual adult dosage
range for prescription ibuprofen is 200 to 800 mg three or four times per day, not to exceed
3200 mg total daily. In other words, ibuprofen’s therapeutic window extends from 600 mg
to 3200 mg per day. The therapeutic window is more conservative for over-the-counter
(OTC) versions. The usual adult dosage range for OTC ibuprofen is 200 to 400 mg every
four to six hours, not to exceed 1200 mg total daily.

The therapeutic window is defined by the minimum effective dose (MED) and maximum
tolerated dose (MTD). As the name implies, the MED is chosen to ensure the efficacy of
both it and all dose levels higher than it (up to the upper limit of the therapeutic window).
Likewise, as the maximum dose, an MTD is chosen to ensure the safety of both it and all
dose levels lower than it. In the drug approval process, safety (including the determination
of the MTD) is frequently assessed through simple comparisons of adverse events across
treatment arms. The Center for Drug Evaluation and Research at the FDA is currently
studying how to provide a more detailed statistical assessment of the safety profile of a
drug by taking into account the time course or other important factors.

In this section, we will concentrate on the statistical determination of the MED in
dose-ranging studies with a placebo control, given that a safe range of doses has been
tentatively determined. For more information on simultaneous tests for identifying the
MED and MTD, see Bauer, Brannath, and Posch (2001) and Tamhane and Logan (2002).
Further, Bauer et al. (1998) describe testing strategies for dose-ranging studies with both
negative and positive controls.

11.5.1 MED Estimation under the Monotonicity Assumption
The problem of estimating the MED is often stated as a problem of stepwise multiple
testing. Clinical researchers begin with the highest dose or the dose corresponding to the
largest treatment difference and proceed in a stepwise fashion until they encounter a
non-significant treatment difference. The immediately preceeding dose is defined as the
minimum effective dose (MED).

To simplify the statement of the multiple testing problem arising in MED estimation, it
is common to make the following two assumptions known as monotonicity constraints:

• All doses are no worse than placebo.
• If Dose k is not efficacious, the lower doses (Doses 1 through k − 1) are not efficacious

either.

These assumptions are reasonable in clinical trials with a positive dose-response
relationship. However, they are not met when the true dose-response function is
umbrella-shaped and stepwise tests relying on the monotonicity assumptions break down in
the presence of non-monotone dose-response curves.

Under the monotonicity constraints, the MED estimation problem is easily expressed in
terms of sequential testing of m null hypotheses associated with the m dose levels. To define
the null hypotheses, assume that the drug’s effect is expressed as a positive shift. Further,
the observations, yij , are assumed to be normally distributed and follow an ANOVA model

yij = μi + εij ,

where μ0, . . . , μm are the true treatment means in the placebo and m dose groups and εij ’s
are residuals. Given this model, the null hypotheses used in MED estimation are displayed
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in Table 11.3. The clinically important difference is denoted by δ. When the clinically
important difference is assumed to be 0, the kth null hypothesis, HM

0k , simplifies to

μ0 = μ1 = . . . = μk.

The first null hypothesis in Table 11.3, HM
01 , states that Dose 1 is ineffective, and therefore

its rejection implies that Dose 1 is the MED. Likewise, if HM
01 is retained but HM

02 is
rejected, Dose 2 is declared the MED, etc.

Table 11.3 Null Hypotheses Used in MED Estimation under the
Monotonicity Constraint

Null hypothesis Interpretation

HM
01 : μ0 ≤ μ1 < μ0 + δ Dose 1 is ineffective

HM
02 : μ0 ≤ μ1, μ2 < μ0 + δ Doses 1 and 2 are ineffective

...
...

HM
0k : μ0 ≤ μ1, . . . , μk < μ0 + δ Doses 1, . . . , k are ineffective

...
...

HM
0m : μ0 ≤ μ1, . . . , μm < μ0 + δ All doses are ineffective

The stepwise testing approach goes back to early work by Tukey, Ciminera, and Heyse
(1985), Mukerjee, Robertson, and Wright (1987), Ruberg (1989) and others who proposed
multiple-contrast methods for examining dose-related trends. This section focuses on
stepwise contrast tests considered by Tamhane, Hochberg, and Dunnett (1996) and
Dunnett and Tamhane (1998). We can also construct stepwise testing procedures for
estimating the MED using other tests, e.g., isotonic tests described in Section 11.3. For
more information about MED estimation procedures based on the Williams test, see
Dunnett and Tamhane (1998) and Westfall et al. (1999, Section 8.5.3).

11.5.2 Multiple-Contrast Tests
The null hypotheses displayed in Table 11.3 will be tested using multiple-contrast tests. It is
important to understand the difference between multiple-contrast tests introduced here and
the tests discussed in Section 11.3 (known as single-contrast tests). As their name implies,
single-contrast tests rely on a single contrast and are used mainly for studying the overall
drug effect. Each of multiple-contrast tests discussed in this subsection actually relies on a
family of contrasts

(c0m(1), . . . , cmm(1)), (c0m(2), . . . , cmm(2)), . . . , (c0m(m), . . . , cmm(m)).

These contrasts are applied in a stepwise manner to test HM
01 , . . . , HM

0m. The k null
hypothesis, HM

0k , is tested using the following t statistic

tk =
∑m

i=0 cim(k)μ̂i − δ

SE (
∑m

i=0 cim(k)μ̂i)
,

where μ̂0, . . . , μ̂m are the sample treatment means in the placebo and m dose groups.
Assuming n patients in each treatment group, each of the t statistics follows a t
distribution with ν = (m + 1)(n − 1) degrees of freedom.

It is important to note that the contrasts can be constructed on any scale when the
clinically significant difference (δ) is 0. The contrast coefficients are automatically
standardized when the test statistic is computed. However, when δ > 0, the contrasts need
to be on the correct scale because the standardization occurs only after δ is subtracted. To
ensure the correct scale is used, the contrast coefficients are defined in such a way that
c0m(k) is negative, ckm(k) is positive and the positive coefficients add up to 1.

Popular multiple-contrast tests used in dose-finding are defined below.
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Pairwise Contrasts
The easiest way to compare multiple dose groups to placebo is to consider all possible
dose-placebo comparisons. The associated test is based on a family of pairwise contrasts.
The following coefficients are used when the Dose k is compared to placebo:

c0m(k) = −1, ckm(k) = 1

and all other coefficients are equal to 0.

Helmert Contrasts
Unlike the pairwise contrast, the Helmert test combines information across several dose
groups. Specifically, when comparing Dose k to placebo, this test assumes that the lower
doses (Doses 1 through k − 1) are not effective and pools them with placebo. The kth
Helmert contrast is defined as follows:

c0m(k) = . . . = c(k−1)m(k) = −1
k

, ckm(k) = 1.

The other coefficients are equal to 0. Helmert contrasts are most powerful when the lower
doses are similar to placebo.

Reverse Helmert Contrasts
The reverse Helmert contrast test is conceptually similar to the regular Helmert test. The
reverse Helmert test combines information across doses by assuming that the lower doses
are as effective as Dose k. Thus, the kth reverse Helmert contrast are given by

c0m(k) = −1, c1m(k) = · · · = ckm(k) =
1
k

.

The remaining coefficients are equal to 0. Reverse Helmert contrasts are most powerful
when the treatment effect quickly plateaus and the larger doses are similar to the highest
dose.

Linear Contrasts

The linear contrast test assigns weights to the individual doses that increase in a linear
fashion. Dose k is compared to placebo using the following contrast:

c0m(k) = − k

2l
, c1m(k) =

1
l

(
1 − k

2

)
, . . . , ckm(k) =

k

2l
,

where

l =
k

4

(
k

2
+ 1

)
if k is even, l =

1
2

([
k

2

]
+ 1

)2

if k is odd.

and [k/2] is the largest integer in k/2. As before, the other coefficients are equal to 0.
Linear contrasts are most powerful when the MED is near the middle of the range of doses
tested in a trial.

Put simply, the Helmert, reverse Helmert and linear contrasts each correspond to
different shapes of the dose-response curve for which they are most powerful. Figure 11.6
displays the treatment effect configurations that lead to the maximum expected value of
the t statistic for each type of contrast.
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Figure 11.6 Treatment effect configurations leading to the maximum expected value of the t statistic under
the monotonicity constraint
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11.5.3 Closed Testing Procedures Based on Multiple Contrasts
In this section, we will consider the MED estimation problem from a multiple testing
perspective and focus on MED estimation procedures that control the overall Type I error
rate. As was pointed out in the introduction, control of the Type I error probability is
required in registration trials and is less common in Phase II trials.

Two general stepwise procedures for testing HM
01 , . . . , HM

0m can be constructed based on
the principle of closed testing proposed by Marcus, Peritz, and Gabriel (1976). The
principle has provided a foundation for numerous multiple tests and has found a large
number of applications in multiplicity problems arising in clinical trials. For example,
Kodell and Chen (1991) and Rom, Costello, and Connell (1994) applied the closed testing
principle to construct multiple tests for dose-ranging studies.

Very briefly, the closed testing principle is based on a hierarchical representation of a
multiplicity problem. In general, we need to consider all possible intersections of the null
hypotheses of interest (known as a closed family of hypotheses) and test each intersection at
the same significance level. After that, the results need to be combined to make inferences
about the original null hypotheses. In this case, the family of null hypotheses defined in
Table 11.3 is already a closed family and therefore closed testing procedures have a simple
sequentially rejective form.
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Two closed procedures for estimating the MED are introduced below. The first
procedure begins with the most significant dose-placebo comparison and then works
downward. For this reason, this procedure is known as the step-down procedure. Note that
the idea behind the step-down approach is that the order in which the dose-placebo tests
are examined is driven by the data. By contrast, the fixed-sequence procedure requires that
the testing sequence be specified prior to data analysis.

11.5.4 Step-Down MED Estimation Procedure
Consider the m contrast test statistics, t1, . . . , tm, and order them from the most significant
to the least significant. The ordered t statistics will be denoted by

t(1) ≥ . . . ≥ t(m).

The step-down MED estimation procedure is defined below:

• Consider the most significant t statistic, t(1), and compare it to the prespecified critical
value (e.g., two-sided 0.05 critical value) derived from the null distribution of t1, . . . , tm
with ν = (m + 1)(n − 1) degrees of freedom and correlation matrix ρ. This critical value
is denoted by c1. If t(1) exceeds c1, the corresponding null hypothesis is rejected and we
proceed to the second most significant t statistic.

• The next statistic, t(2), is compared to c2 which is computed from the null distribution
of t1, . . . , tm−1 with the same number of degrees of freedom and correlation matrix as
above (c2 is less than c1). If t(2) > c2, reject the corresponding null hypothesis and
examine t(3), etc.

• The step-down procedure terminates as soon as it encounters a null hypothesis which
cannot be rejected.

Let l be the index of the lowest dose which is significantly different from placebo. When
testing stops, the monotonicity assumption implies that the null hypotheses HM

0l , . . . , HM
0m

should be rejected and therefore Dose l is declared the MED.

11.5.5 Fixed-Sequence MED Estimation Procedure
This procedure relies on the assumption that the order in which the null hypotheses are
tested is predetermined. Let t[1], . . . , t[m] denote the a priori ordered t contrast statistics
(any ordering can be used as long as it is prespecified). The fixed-sequence procedure is
defined as follows:

• Compare t[1] to the prespecified critical value of the t distribution with ν degrees of
freedom (denoted by c). If t[1] is greater than c, the corresponding null hypothesis is
rejected and the next test statistic is examined.

• The next test statistic, t[2], is also compared to c and the fixed-sequence procedure
proceeds in this manner until it fails to reject a null hypothesis.

The dose corresponding to the last rejected null hypothesis is declared the MED.

The step-down and fixed-sequence procedures protect the Type I error rate with respect
to the entire family of null hypotheses shown in Table 11.3, given the monotonicity
constraints. To be more precise, the two procedures control the probability of erroneously
rejecting any true null hypothesis in the family regardless of which and how many other
null hypotheses are true. This is known as the control of the familywise error rate in the
strong sense.
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11.5.6 Pairwise Multiple-Contrast Test in the Hypertension Trial
To illustrate the use of stepwise tests in MED estimation, we will begin with the pairwise
contrast test. Unlike other contrast tests, the pairwise test is easy to implement in practice
because the associated correlation matrix has a very simple structure. In the balanced case,
the correlation between any two pairwise t statistics is 0.5 and, because of this property, we
can carry out the pairwise contrast test by a stepwise application of the well-known
Dunnett test.

In the following program, we will apply the step-down and fixed-sequence versions of the
Dunnett test to find the MED in the hypertension trial. First, Program 11.8 assesses the
overall drug effect in the hypertension trial using the three contrast tests defined in Section
11.3.

Program 11.8 Contrast tests in the hypertension trial

proc mixed data=hypertension;
ods select contrasts;
class dose;
model change=dose;
contrast "Linear" dose -3 -1 1 3;
contrast "Modified linear" dose -12 -2 2 12;
contrast "Maximin" dose -0.866 -0.134 0.134 0.866;
run;

Output from Program 11.8

Contrasts

Num Den
Label DF DF F Value Pr > F

Linear 1 64 8.61 0.0046
Modified linear 1 64 7.70 0.0072
Maximin 1 64 7.62 0.0075

Output 11.8 shows the test statistics and p-values of the linear, modified linear, and
maximin tests. All three p-values are very small which indicates that the response improves
in a highly significant manner with increasing dose in the hypertension trial.

Now that a positive dose-response relationship has been established, we are ready for a
dose-finding exercise. First, we will use the step-down version of the Dunnett test and then
apply the fixed-sequence Dunnett test.

11.5.7 Step-Down Dunnett Test in the Hypertension Trial
Program 11.9 carries out the step-down Dunnett test to determine the MED in the
hypertension trial with the clinically important difference δ = 0. The program uses PROC
MIXED to compute the t statistics associated with the three dose-placebo comparisons.
The statistics are ordered from the most significant to the least significant and compared to
successively lower critical values. Specifically, the critical values of the step-down procedure
are computed from the Dunnett distribution for the case of three, two, and one
dose-placebo comparisons. These critical values are found using the PROBMC function.
Note that the PROBMC function assumes a balanced case. Therefore, we computed the
average number of patients per group in the hypertension trial (17) and plugged the
number into the well-known formula for calculating degrees of freedom (4(17 − 1) = 64).
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Program 11.9 Step-down Dunnett test in the hypertension trial

ods listing close;
* Compute t statistics for three dose-placebo comparisons;
proc mixed data=hypertension;

class dose;
model change=dose;
lsmeans dose/pdiff adjust=dunnett;
ods output diffs=dunnett;

* Order t statistics;
proc sort data=dunnett;

by descending tvalue;
* Compute critical values (based on Dunnett distribution);
data critical;

set dunnett nobs=m;
format c 5.2;
order=_n_;
c=probmc("DUNNETT2",.,0.95,64,m-_n_+1);
label c=’Critical value’;

proc print data=critical noobs label;
var order dose tvalue c;
ods listing;
run;

Output from Program 11.9

Critical
order dose t Value value

1 20 2.80 2.41
2 40 2.54 2.26
3 10 1.10 2.00

Output 11.9 shows the t statistics computed in the hypertension trial and the associated
critical values of the step-down Dunnett test. The dose groups are ordered by their t
statistic and the ORDER variable shows the order in which the doses will be compared to
placebo. The following algorithm is used to determine significance of the t statistics listed
in Output 11.9.

• The most significant test statistic (t(1) = 2.80) arises when we compare the medium dose
to placebo. This statistic is greater than the critical value (c1 = 2.41) and therefore we
proceed to the next dose-placebo comparison.

• The test statistic for the high dose vs. placebo comparison (t(2) = 2.54) also exceeds the
corresponding critical value (c2 = 2.26). Due to this significant result, we will now
compare the low dose versus placebo.

• Examining the last dose-placebo comparison, we see that the test statistic (t(3) = 1.10)
is less than c3 = 2.00.

Since the last dose-placebo comparison did not yield a significant result, the medium
dose (20 mg/day) is declared the MED. The multiple comparisons summarized in
Output 11.9 enable clinical researchers to provide the following characterization of the
dose-response function in the hypertension trial. First, as was shown in Output 11.8, the
overall dose-response trend in diastolic blood pressure change is positive and highly
significant. Further, we have concluded from Output11.9 that the 20 mg/day dose is the
MED and thus the positive dose-response trend in the hypertension trial is due to
statistically significant treatment differences at the 20 mg/day and 40 mg/day dose levels.
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It is important to remember that the step-down testing approach relies heavily on the
monotonicity assumption. When this assumption is not met, the approach may lead to
results that look counterintuitive. Suppose, for example, that we conclude significance for
the low and medium doses but not for the high dose. In this case, the low dose is declared
the MED even though we did not actually reject the null hypothesis of no drug effect at
the high dose.

11.5.8 Fixed-Sequence Pairwise Test in the Hypertension Trial
Program 11.10 takes a different approach to the dose-finding problem in the hypertension
trial. It identifies the MED using the fixed-sequence version of the Dunnett test. To
understand the difference between the two approaches, recall that the step-down procedure
(see Output 11.9) compares ordered t statistics to successively lower Dunnett critical values
whereas the fixed-sequence procedure compares the same t statistics to a constant critical
value derived from a t distribution (it is the two-sided 95th percentile of the t distribution
with 64 degrees of freedom). Additionally, the fixed-sequence procedure requires that the
three tests for individual dose-placebo comparisons be ordered before the dose-finding
exercise begins. We will assume a natural testing sequence here: high dose vs. placebo,
medium dose vs. placebo, and low dose vs. placebo.

Program 11.10 Fixed-sequence pairwise test in the hypertension trial

ods listing close;
* Compute t statistics for three dose-placebo comparisons;
proc mixed data=hypertension;

class dose;
model change=dose;
lsmeans dose/pdiff adjust=dunnett;
ods output diffs=dunnett;

* Prespecified testing sequence;
data dunnett;

set dunnett;
if dose=10 then order=3;
if dose=20 then order=2;
if dose=40 then order=1;

* Order t statistics;
proc sort data=dunnett;

by order;
* Compute critical values (based on t distribution);
data critical;

set dunnett;
format c 5.2;
c=tinv(0.975,64);
label c=’Critical value’;

proc print data=critical noobs label;
var order dose tvalue c;
ods listing;
run;

Output from Program 11.10

Critical
order dose t Value value

1 40 2.54 2.00
2 20 2.80 2.00
3 10 1.10 2.00
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Output 11.10 lists t statistics for the three dose-placebo comparisons and critical
values of the fixed-sequence procedure. Note that the testing sequence is no longer
data-driven—the doses are ordered according to the prespecified rule (the ORDER variable
indicates the order in which the doses will be compared to placebo). Also, the critical
values in Output 11.10 are uniformly smaller than those shown in Output 11.9 with the
exception of the low dose vs. placebo test. This means that the fixed-sequence dose-finding
procedure is likely to find more significant differences than the step-down procedure,
provided that the prespecified testing sequence is consistent with the true dose-response
curve.

Proceeding in a stepwise fashion, we see that the test statistics associated with the two
highest doses (2.54 and 2.80) are greater than the critical value. However, the low dose is
not significantly different from placebo because its t statistic is too small. Given this
configuration of t values, we conclude that the medium dose (20 mg/day dose) is the MED.
When we compare this to Output 11.9, it is easy to see that the two MED estimation
procedures resulted in the same minimally effective dose. However, the conclusions are not
guaranteed to be the same, especially when the dose-response curve is not perfectly
monotone.

11.5.9 Other Multiple-Contrast Tests in the Hypertension Trial
The dose-finding procedures described so far relied on pairwise comparisons. Intuitively,
these procedures are likely to be inferior (in terms of power) to procedures that pool
information across dose levels. For example, consider procedures based on a stepwise
application of the Helmert or linear contrasts. In general, the problem of computing critical
values for the joint distribution of t statistics in stepwise procedures presents a serious
computational challenge, especially in the case of unequal sample sizes. This is due to the
complex structure of associated correlation matrices. Although exact numerical methods
have been discussed in the literature (see, for example, Genz and Bretz, 1999),
simulation-based approaches are generally more flexible and attractive in practice. Here we
will consider a simulation-based solution proposed by Westfall (1997).

Westfall (1997) proposed a Monte Carlo method that can be used in dose-finding
procedures based on non-pairwise contrasts. Instead of computing critical values for t
statistics as was done in Program 11.9, the Monte Carlo algorithm generates adjusted
p-values. The adjusted p-values are then compared to a prespecified significance level (e.g.,
two-sided 0.05 level) to test the null hypotheses listed in Table 11.3. The algorithm is
implemented in the %SimTests macro described in Westfall et al. (1999, Section 8.6).2

Program 11.11 calls the %SimTests macro to carry out the reverse Helmert
multiple-contrast test in the hypertension trial. Reverse Helmert contrasts were chosen
because they perform well in clinical trials in which the treatment effect reaches a
plateau and other multiple-contrast tests can be used if a different dose-relationship is
expected.

As shown in the program, to invoke the %SimTests macro, we need to define several
parameters, including the family of reverse Helmert contrasts, the treatment means in the
hypertension trial, and their covariance matrix. The parameters are specified in the
%Estimates and %Contrasts macros using SAS/IML syntax. Once these parameters have
been defined, the macro approximates adjusted two-sided p-values for the three
dose-placebo tests using 100,000 simulations.

2As this book was going to press, the methods in the %SimTests and %SimIntervals macros were being completely hard-
coded in the GLIMMIX procedure in SAS/STAT software. The methodology is described in Westfall and Tobias (2006).
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Program 11.11 Reverse Helmert multiple-contrast test in the hypertension trial

ods listing close;
* Compute treatment means and covariance matrix;
proc mixed data=hypertension;

class dose;
model change=dose;
lsmeans dose/cov;
ods output lsmeans=lsmeans;
run;

%macro Estimates;
use lsmeans;
* Treatment means;
read all var {estimate} into estpar;
* Covariance matrix;
read all var {cov1 cov2 cov3 cov4} into cov;
* Degrees of freedom;
read point 1 var {df} into df;

%mend;
%macro Contrasts;

* Reverse Helmert contrasts;
c={1 -1 0 0, 1 -0.5 -0.5 0, 1 -0.3333 -0.3333 -0.3334};
c=c‘;
* Labels;
clab={"Dose 1 vs Placebo", "Dose 2 vs Placebo", "Dose 3 vs Placebo"};

%mend;
* Compute two-sided p-values using 100,000 simulations;
%SimTests(nsamp=100000,seed=4533,type=LOGICAL,side=B);
proc print data=SimTestOut noobs label;

var contrast adjp seadjp;
format adjp seadjp 6.4;
ods listing;
run;

Output from Program 11.11

SEAdj
Contrast AdjP P

Dose 1 vs Placebo 0.2753 0.0000
Dose 2 vs Placebo 0.0425 0.0002
Dose 3 vs Placebo 0.0200 0.0002

Output 11.11 lists Monte Carlo approximations to the adjusted p-values for the three
dose-placebo comparisons as well as associated standard errors. The standard errors are
quite small which indicates that the approximations are reliable. Comparing the computed
p-values to the 0.05 threshold, we see that the highest two doses are significantly different
from placebo, whereas the low dose not separate from placebo. As a consequence, the
medium dose (20 mg/day dose) is declared the MED. This conclusion is consistent with the
conclusions we reached when applying the pairwise multiple-contrast test.

11.5.10 Limitations of Tests Based on the Monotonicity Assumption
It is important to remember that the dose-finding procedures described in the previous
subsection control the Type I error rate only if the true dose-response relationship is
monotone. When the assumption of a monotonically increasing dose-response relationship
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is not met, the use of multiple-contrast tests can result in a severely inflated probability of
false-positive outcomes (Bauer, 1997; Bretz, Hothorn and Hsu, 2003). This phenomenon
will be illustrated below.

Non-monotone dose-response shapes, known as the U-shaped or umbrella-shaped curves,
are characterized by a lower response at higher doses (see, for example, Figure 11.1). When
the dose-response function is umbrella-shaped and the true treatment difference at the
highest dose is not clinically meaningful (i.e., μm − μ0 < δ), the highest dose should not be
declared effective. However, if the remaining portion of the dose-response function is
monotone, some reasonable tests that control the Type I error rate under the monotonicity
constraint may finally declare the highest dose effective with a very high probability.

11.5.11 Hypothetical Dose-Ranging Trial Example
To illustrate, consider a hypothetical trial in which five doses of an experimental drug are
compared to placebo. Table 11.4 shows the true treatment means μ0, μ1, μ2, μ3, μ4, and μ5
as well as true standard deviation σ (the standard deviation is chosen in such a way that
σ/

√
n = 1). Assume that the clinically important treatment difference δ is 0.

Table 11.4 Hypothetical Dose-Ranging Trial

Treatment group
Placebo Group 1 Group 2 Group 3 Group 4 Group 5

n 5 5 5 5 5 5
Mean 0 0 0 2.5 5 0
SD 2.236 2.236 2.236 2.236 2.236 2.236

It can be shown that the sequential test based on pairwise contrasts (i.e., stepwise
Dunnett test) controls the familywise error rate under any configuration of true treatment
means. However, when other contrast tests are carried out, the familywise error rate
becomes dependent on the true dose-response shape and can become considerably inflated
when an umbrella-shaped dose-response function (similar to the one shown in Table 11.4)
is encountered.

Consider, for example, the linear contrast test. If linear contrasts are used for detecting
the MED in this hypothetical trial, the probability of declaring Dose 5 efficacious will be
0.651 (using a t test with 24 error degrees of freedom). To see why the linear contrast test
does not control the Type I error rate, recall that, in testing HM

05 defined in Table 11.3,
positive weights are assigned to the treatment differences μ̂4 − μ̂1 and μ̂3 − μ̂2. The
expected value of the numerator of the t-statistic for testing H05 is given by(

5
9
(0) +

3
9
(5) +

1
9
(2.5)

)
−

(
1
9
(0) +

3
9
(0) +

5
9
(0)

)
= 1.94.

As a result, the test statistic has a non-central t distribution with a positive non-centrality
parameter and thus the linear contrast test will reject the null hypothesis HM

05 more often
than it should.

The reverse Helmert contrast test, like the linear contrast test, can also have too high an
error rate when the true dose-response curve is umbrella-shaped. In the hypothetical trial
example, the probability of declaring the highest dose efficacious will be 0.377 (again, based
on a t test with 24 degrees of freedom). This error rate is clearly much higher than 0.05.
Combining the signal from the third and fourth doses into the estimate μ̂5 causes the
reverse Helmert contrast test to reject the hypothesis too often.

The regular Helmert contrast test does control the Type I error rate in studies with
umbrella-shaped dose-response curves. However, it can have an inflated Type I error rate
under other configurations. In particular, the Type I error probability can be inflated if the
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response at lower doses is worse than the response observed in the placebo group.
Figure 11.7 shows the general shapes of treatment effect configurations that can lead to
inflated Type I error rates for each type of contrast.

Figure 11.7 Treatment effect configurations that can lead to inflated Type I error rates
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The choice of which contrast test to use in dose-finding problems is thus clear:

• If a monotonically increasing dose-response relationship can be assumed, clinical
researchers need to choose contrasts according to which dose-response shape in
Figure 11.6 is expected.

• If a monotone dose-response relationship cannot be assumed, we must choose pairwise
contrasts to protect the overall Type I error probability.

11.5.12 MED Estimation in the General Case
In this section we will discuss a dose-finding approach that does not rely on the assumption
of a monotone dose-response relationship.

The closed testing principle is widely used in a dose-ranging setting to generate stepwise
tests for determining optimal doses. Here we will focus on applications of another powerful
principle known as the partitioning principle to dose finding. The advantage of the
partitioning principle is two-fold. First, as shown by Finner and Strassburger (2002), the
partitioning principle can generate multiple tests at least as powerful as closed tests.
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Secondly, the partitioning principle makes drawing statistical inferences relatively clear-cut:
the statistical inference given is simply what is consistent with the null hypotheses which
have not been rejected (Stefansson, Kim, and Hsu, 1988; Hsu and Berger, 1999).

The partitioning principle is based on partitioning the entire parameter space into
disjoint null hypotheses which correspond to useful scientific hypotheses to be proved.
Since these null hypotheses are disjoint, exactly one of them is true. Therefore, testing each
null hypothesis at a prespecified α level, e.g., α = 0.05, controls the familywise error rate in
the strong sense without any multiplicity adjustments.

To demonstrate how the partitioning principle can be used in dose finding, consider the
dose-ranging study introduced earlier in this section. This study is conducted to test m
doses of a drug versus placebo. Assume that positive changes in the response variable
correspond to a beneficial effect. Table 11.5 shows a set of partitioning hypotheses that can
be used in finding the MED.

Table 11.5 Partitioning Hypotheses for Finding the MED

Null hypothesis Interpretation

HP
00 : μ0 + δ < μ1, . . . , μm All doses are effective

HP
01 : μ1 ≤ μ0 + δ < μ2, . . . , μm Doses 2, . . . , m are effective but Dose 1 is ineffective

...
...

HP
0k : μk ≤ μ0 + δ < μk+1, . . . , μm Doses k + 1, . . . , m are effective but Dose k is ineffective

...
...

HP
0m : μm ≤ μ0 + δ Dose m is ineffective

It is easy to check that the null hypotheses displayed in Table 11.5 are mutually exclusive
and only one of them can be true. For example, if HP

0m is true (Dose m is ineffective), HP
0k

(Doses k + 1, . . . , m are effective but Dose k is ineffective) must be false. Because of this
interesting property, testing each null hypothesis at a prespecified α level controls the
familywise error rate in the strong sense at the α level. Note that the last hypothesis, HP

00,
does not really need to be tested to determine which doses are effective; however, it is
useful toward pivoting the tests to obtain a confidence set. Secondly, the union of the
hypotheses is the entire parameter space and thus inferences resulting from testing these
hypotheses are valid without any prior assumption on the shape of the dose-response curve.

As the null hypotheses listed in Table 11.5 partition the entire parameter space, drawing
useful inferences from testing HP

01, . . . , H
P
0m is relatively straightforward. We merely state

the inference which is logically consistent with the null hypotheses that have not been
rejected. Consider, for example, the hypertension trial in which four doses were tested
against placebo (m = 4). The union of HP

04 (Dose 4 is ineffective) and HP
03 (Dose 4 is

effective but Dose 3 is ineffective) is “either Dose 3 or Dose 4 is ineffective”. Thus, the
rejection of HP

03 and HP
04 implies that both Dose 3 and Dose 4 are effective.

In general, if HP
0k, . . . , H

P
0m are rejected, we conclude that Doses k, . . . , m are all

efficacious because the remaining null hypotheses in Table 11.5, namely, HP
01, . . . , H

P
0(k−1)

are consistent with this inference. As a consequence, Dose k is declared the MED.

11.5.13 Shortcut Testing Procedure
The arguments presented in the previous section lead to a useful shortcut procedure for
determining the MED in dose-ranging trials. The shortcut procedure is defined in Table
11.6.

The dose-finding procedure presented in Table 11.6 is equivalent to the fixed-sequence
procedure based on pairwise comparisons of individual doses to placebo (see Section
11.5.6). The SAS code for implementing this procedure can be found in Program 11.10.
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Table 11.6 Shortcut Testing Procedure for Finding the MED (All null hypotheses are tested at a prespecified
α level such as a two-sided 0.05 level)

Step Null hypothesis Decision rule

1 HS
0m : μm ≤ μ0 + δ If retained, there are no effective doses.

If rejected, infer μm > μ0 + δ and go to Step 2.
2 HS

0(m−1) : μm−1 ≤ μ0 + δ If retained, Dose m is the MED.
If rejected, infer μm−1 > μ0 + δ and go to Step 3.

...
...

...
k HS

0k : μk ≤ μ0 + δ If retained, Dose k + 1 is the MED.
If rejected, infer μk > μ0 + δ and go to Step k + 1.

...
...

...
m HS

01 : μ1 ≤ μ0 + δ If retained, Dose 2 is the MED.
If rejected, infer μ1 > μ0 + δ and Dose 1 is the MED.

It is important to remember that the parameter space should be partitioned in such a
way that dose levels expected to show a greater response are tested first and the set of dose
levels inferred to be efficacious is contiguous. For example, suppose that the dose-response
function in a study with four active doses is expected to be umbrella-shaped. In this case
we might partition the parameter space so that dose levels are tested in the following
sequence: Dose 3, Dose 4, Dose 2, and Dose 1. However, it is critical to correctly specify the
treatment sequence. It is shown in Bretz, Hothorn, and Hsu (2003) that the shortcut
procedure that begins at the highest dose suffers a significant loss of power when the
dose-response function is not monotone.

11.5.14 Simultaneous Confidence Intervals
Another important advantage of using the partitioning approach is that, unlike closed
testing procedures, partitioning procedures are easily inverted to derive simultaneous
confidence intervals for the true treatment means or proportions. For example, Hsu and
Berger (1999) demonstrated how partitioning-based simultaneous confidence sets can be
constructed for multiple comparisons of dose groups to a common control.

To define the Hsu-Berger procedure for computing stepwise confidence intervals,
consider the ANOVA model introduced in the beginning of Section 11.5 and let

lk = ȳk − ȳ0 − tα,νs
√

2/n

be the lower limit of the naive one-sided confidence interval for μk − μ0. Here s is the
pooled sample standard deviation and tα,ν is the upper 100αth percentile of the t
distribution with ν = 2(n − 1) degrees of freedom, and n is the number of patients per
group. The naive limits are not adequate in the problem of multiple dose-placebo
comparisons because their simultaneous coverage probability is less than its nominal value,
100(1 − α)%. To achieve the nominal coverage probability, the confidence limits l1, . . . , lm
need to be adjusted downward. The adjusted lower limit for the true treatment difference
μk − μ0 will be denoted by l∗k.

Assume that the doses will be compared with placebo beginning with Dose m, i.e., Dose
m vs. placebo, Dose m − 1 vs. placebo, etc. As before, any other testing sequence can be
used as long as it is not data-driven. A family of one-sided stepwise confidence intervals
with a 100(1 − α)% coverage probability is defined in Table 11.7.

Program 11.12 uses the Hsu-Berger method to compute one-sided confidence intervals
with a simultaneous 95% coverage probability for the treatment means in the hypertension
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Table 11.7 Simultaneous Confidence Intervals in Dose-Ranging Trials

Step Adjusted confidence limits

1 If lm > δ, let l∗m = δ and go to Step 2. Otherwise, let l∗m = lm and stop.
2 If lm−1 > δ, let l∗m−1 = δ and go to Step 3.

Otherwise, let l∗m−1 = lm−1 and stop.
...

...
k If lm−k+1 > δ, let l∗m−k+1 = δ and go to Step k + 1.

Otherwise, let l∗m−k+1 = lm−k+1 and stop.
...

...
m + 1 If all doses are efficacious, let l∗k = min(l1, . . . , lm), k = 1, . . . , m.

Note: If Dose k is not efficacious, the adjusted confidence limits l∗1 , . . . , l∗k−1 are not defined.

study3. As in Program 11.10, we will consider a testing sequence that begins at the high
dose (high dose vs. placebo, medium dose vs. placebo, and low dose vs. placebo). Also, the
clinically important reduction in diastolic blood pressure will be set to 0 (δ = 0).

Program 11.12 Simultaneous confidence intervals in the hypertension trial

ods listing close;
* Compute mean squared error;
proc glm data=hypertension;

class dose;
model change=dose;
ods output FitStatistics=mse(keep=rootmse);

* Compute n and treatment mean in placebo group;
proc means data=hypertension;

where dose=0;
var change;
output out=placebo(keep=n1 mean1) n=n1 mean=mean1;

* Compute n and treatment mean in dose groups;
proc means data=hypertension;

where dose>0;
class dose;
var change;
output out=dose(where=(dose^=.)) n=n2 mean=mean2;

* Prespecified testing sequence;
data dose;

set dose;
if _n_=1 then set mse;
if _n_=1 then set placebo;
if dose=10 then order=3;
if dose=20 then order=2;
if dose=40 then order=1;

* Order doses;
proc sort data=dose;

by order;

3Program 11.12 is based on SAS code published in Dmitrienko et al. (2005, Section 2.4).



Chapter 11 Design and Analysis of Dose-Ranging Clinical Studies 309

data dose;
set dose;
retain reject 1;
format lower adjlower 5.2;
delta=0;
lower=mean2-mean1-tinv(0.95,n1+n2-2)*sqrt(1/n1+1/n2)*rootmse;
if reject=0 then adjlower=.;
if reject=1 and lower>delta then adjlower=delta;
if reject=1 and lower<=delta then do; adjlower=lower; reject=0; end;
label lower=’Naive 95% lower limit’

adjlower=’Adjusted 95% lower limit’;
proc print data=dose noobs label;

var order dose lower adjlower;
ods listing;
run;

Output from Program 11.12

Naive 95% Adjusted
lower 95% lower

order dose limit limit

1 40 1.82 0.00
2 20 2.33 0.00
3 10 -1.26 -1.26

Output 11.12 displays the naive and adjusted confidence limits for the mean reduction
in diastolic blood pressure in the three dose groups compared to placebo as well as the
order in which the doses are compared to placebo (ORDER variable). As was explained
above, adjusted limits that result in a confidence region with a 95% coverage probability
are computed in a stepwise manner. The lower limits of the naive one-sided confidence
interval for the high and medium doses are greater than the clinically important difference
δ = 0 and thus the corresponding adjusted limits are set to 0. The mean treatment
difference between the low dose and placebo is not significant (the naive confidence interval
contains 0) and therefore the adjusted limit is equal to the naive limit. If the hypertension
trial included more inefficient dose groups, the adjusted confidence limits for those doses
would remain undefined.

11.6 Summary
This chapter reviews most important issues arising in the analysis of dose-ranging trials.
The following topics are discussed in the chapter.

• Assessment of the dose-related trend. Dose-response analysis begins with an overall
assessment of dose-related trends in the response variable. The chapter reviews
contrast-based, isotonic (Bartholomew and Williams test), and non-parametric
(Jonckheere test) approaches to testing dose-response trends.

• Estimation of the shape of the dose-response function. The next step after the
assessment of the overall drug effect is the characterization of the underlying
dose-response relationship. This is achieved by modeling dose-response functions and
estimation of their parameters The chapter introduces two dose-response models (linear
and sigmoid) that are widely used in dose-ranging trials.

• Determination of the optimal dose. The last step in dose-response analysis is the
determination of the therapeutic window defined by the minimum effective and maximum
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tolerated doses. Two popular approaches to the estimation of the minimum effective
dose (MED) are considered in the chapter. The first one, based on the principle of closed
testing, relies on a sequential application of contrast tests to determine the smallest dose
that is significantly different from placebo. The closed testing procedures control the
overall Type I error rate only if the underlying dose-response function is monotone. An
alternative approach which relies on the partitioning principle can be safely used even
when the assumption of monotonicity is not met.

Statistical methods introduced in this chapter are illustrated using examples from
cross-over and parallel group clinical trials.
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Bauer, P., Röhmel, J., Maurer, W., Hothorn, L. (1998). “Testing strategies in multi-dose

experiments including active control.” Statistics in Medicine. 17, 2133–2146.
Bretz, F., Hothorn, L.A., Hsu, J.C. (2003). “Identifying effective and/or safe doses by stepwise

confidence intervals for ratios.” Statistics in Medicine. 22, 847–858.
Chuang-Stein, C., Agresti, A. (1997). “A review of tests for detecting a monotone dose-response

relationship with ordinal response data.” Statistics in Medicine. 16, 2599–2618.
Dmitrienko, A., Molenberghs, G., Chuang-Stein, C., Offen, W. (2005). Analysis of Clinical Trials

Using SAS: A Practical Guide. Cary, NC: SAS Institute Inc.
Dunnett, C.W., Tamhane, A.C. (1998). “Some new multiple-test procedures for dose finding.”

Journal of Biopharmaceutical Statistics. 8, 353–366.
Finner, H., Strassburger, K. (2002). “The partitioning principle: a powerful tool in multiple decision

theory.” Annals of Statistics. 30, 1194–1213.
Genz, A., Bretz, F. (1999). “Numerical computation of the multivariate t probabilities with

application to power calculation of multiple contrasts.” Journal of Statistical Computation and
Simulation. 63, 361–378.

Hothorn, L.A. (1997). “Modifications of the closure principle for analyzing toxicological studies.”
Drug Information Journal. 30, 403–412.

Hsu, J.C., Berger, R.L. (1999). “Stepwise confidence intervals without multiplicity adjustment for
dose-response and toxicity studies.” Journal of the American Statistical Association. 94, 468–482.

Jonckheere, A.R. (1954). “A distribution-free K sample test against ordered alternatives.”
Biometrika. 41, 133–145.

Kodell, R.L., Chen, J.J. (1991). “Characterization of dose-response relationships inferred by
statistically significant trend tests.” Biometrics. 47, 139–146.

Marcus, R., Peritz, E., Gabriel, K.R. (1976). “On closed testing procedure with special reference to
ordered analysis of variance.” Biometrika. 63, 655–660.

Mukerjee, H., Robertson, T., Wright, F.T. (1987). “Comparison of several treatments with a control
using multiple contrasts.” Journal of the American Statistical Association. 82, 902–910.
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Relying on Rubin’s standard missing-data taxonomy, and using simple algebraic
derivations, this chapter argues that some methods that are commonly used to handle
incomplete longitudinal data are based on poor principles and are unnecessarily restrictive.
We define longitudinal clinical trial data as complete case analyses and methods based on
last observation carried forward (LOCF), for which the missing completely at random
(MCAR) assumption is required.

Because flexible software is available that can analyze longitudinal sequences of unequal
length, this chapter proposes a shift to a likelihood-based ignorable analysis that is carried
out using SAS software.
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12.1 Introduction
In a longitudinal clinical trial, each unit is measured on several occasions. It is not unusual
in practice for some sequences of measurements to terminate early for reasons outside the
control of the investigator. Any unit so affected is called a dropout. It might therefore be
necessary to accommodate the dropout in the modeling process.

When referring to the missing-value (or non-response) process we will use the
terminology of Little and Rubin (1987, Chapter 6). A non-response process is said to be
missing completely at random (MCAR) if the missingness is independent of both unobserved
and observed data. A process is said to be missing at random (MAR) if, conditional on the
observed data, the missingness is independent of the unobserved measurements. A process
that is neither MCAR nor MAR is termed non-random (MNAR). In the context of
likelihood inference, and when the parameters describing the measurement process are
functionally independent of the parameters describing the missingness process, MCAR and
MAR are ignorable, while a non-random process is non-ignorable.

Many methods are formulated as selection models (Little and Rubin, 1987) as opposed
to pattern-mixture models (PMM) (Little 1993, 1994a). A selection model factors the joint
distribution of the measurement and response mechanisms into the marginal measurement
distribution and the response distribution, conditional on the measurements. This is
intuitively appealing since the marginal measurement distribution would be of interest also
with complete data. Little and Rubin’s taxonomy is most easily developed in the selection
setting. Parameterizing and making inference about the effect of treatment and its
evolution over time is straightforward in the selection model context.

12.1.1 Incomplete Data in Clinical Trials
In the specific case of a clinical trial setting, standard methodology used to analyze
longitudinal data subject to non-response is mostly based on such methods as last
observation carried forward (LOCF), complete case analysis (CC), or simple forms of
imputation. This is often done without questioning the possible influence of these
assumptions on the final results, even though several authors have written about this topic.
A relatively early account is given in Heyting, Tolboom, and Essers (1992). Mallinckrodt
et al. (2003a,b) and Lavori, Dawson, and Shera (1995) propose direct-likelihood and
multiple-imputation methods, respectively, to deal with incomplete longitudinal data.
Siddiqui and Ali (1998) compare direct-likelihood and LOCF methods.

It is unfortunate that there is such a strong emphasis on methods like LOCF and CC,
since they are based on extremely strong assumptions. In particular, even the strong
MCAR assumption does not suffice to guarantee that an LOCF analysis is valid. On the
other hand, under MAR, valid inference can be obtained through a likelihood-based
analysis, without the need for modeling the dropout process. As a consequence, we can
simply use, for example, linear or generalized linear mixed models (Verbeke and
Molenberghs, 2000), without additional complication or effort. We will argue that such an
analysis not only enjoys much wider validity than the simple methods but in addition is
simple to conduct, without additional data manipulation using such tools as, for example, the
SAS MIXED or NLMIXED procedure. Thus, clinical trial practice should shift away from
the ad hoc methods and focus on likelihood-based, ignorable analyses instead. As will be
argued further, the cost involved in having to specify a model will arguably be mild to
moderate in realistic clinical trial settings. Thus, we promote the use of direct-likelihood
ignorable methods and argue against the use of the LOCF and CC approaches.

At the same time, we cannot avoid a reflection on the status of MNAR approaches. In
realistic settings, the reasons for dropout are varied, and it is therefore difficult to fully
justify on a priori grounds the assumption of MAR. For example, the rate of and the
reasons for dropout varied considerably across eleven clinical trials of similar design, of the
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same drug in the same indication. In one study, completion rates were 80% for drug and
placebo. In another study, two-thirds of the patients who were taking a drug completed the
study, while only one-third did so on placebo. In yet another study, 70% finished on
placebo but only 60% on drug. Reasons for dropout also varied, even within the drug arm.
For example, at low doses, more patients on drug dropped out due to lack of efficacy,
whereas at higher doses dropout that was due to adverse events was more common. At first
sight, this calls for a further shift towards MNAR models. However, some careful
considerations have to be made, the most important one of which is that no modeling
approach, whether either MAR or MNAR, can recover the lack of information that occurs
due to incompleteness of the data.

First, under MAR, a standard analysis would follow, if it would be possible to be
entirely sure of the MAR nature of the mechanism. However, it is only rarely the case that
such an assumption is known to hold (Murray and Findlay, 1988). Nevertheless, ignorable
analyses may provide reasonably stable results, even when the assumption of MAR is
violated, in the sense that such analyses constrain the behavior of the unseen data to be
similar to that of the observed data (Mallinckrodt et al., 2001a,b). A discussion of this
phenomenon in the survey context has been given in Rubin, Stern, and Vehovar (1995).
These authors argue that, in well-conducted experiments (some surveys and many
confirmatory clinical trials), the assumption of MAR is often to be regarded as a realistic
one. Second, and very important for confirmatory trials, an MAR analysis can be specified
a priori without additional work relative to a situation with complete data. Third, while
MNAR models are more general and explicitly incorporate the dropout mechanism, the
inferences they produce are typically highly dependent on the untestable and often implicit
assumptions built in regarding the distribution of the unobserved measurements given the
observed ones. The quality of the fit to the observed data need not reflect at all the
appropriateness of the implied structure governing the unobserved data. This point is
irrespective of the MNAR route taken, whether a parametric model of the type of Diggle
and Kenward (1994) is chosen, or a semiparametric approach such as in Robins, Rotnitzky,
and Scharfstein (1998). Hence in any incomplete-data setting there cannot be anything
that could be termed a definitive analysis. Based on these considerations, we recommend,
for primary analysis purposes, the use of ignorable likelihood-based methods. In many
examples, however, the reasons for dropout will be many and varied. It is therefore difficult
to justify on a priori grounds the MAR assumption. Arguably, in the presence of MNAR
missingness, a wholly satisfactory analysis of the data is not feasible.

In fact, modeling in this context often rests on strong (untestable) assumptions and
relatively little evidence from the data themselves. Glynn, Laird, and Rubin (1986)
indicated that this is typical for selection models. It is somewhat less the case for
pattern-mixture models (Little, 1993; 1994a; Hogan and Laird, 1997), although caution
should be used (Thijs, Molenberghs, and Verbeke, 2000). This awareness and the resulting
skepticism about fitting MNAR models initiated the search for methods to investigate the
results with respect to model assumptions and for methods that allow us to assess
influences in the parameters describing the measurement process, as well as the parameters
describing the non-random part of the dropout mechanism. Several authors have suggested
various types of sensitivity analyses to address this issue (Molenberghs, Kenward, and
Goetghebeur, 2001; Scharfstein, Rotnitzky, and Robins, 1999; Van Steen et al., 2001;
Verbeke et al., 2001). Verbeke et al. (2001) and Thijs, Molenberghs, and Verbeke (2000)
developed a local influence-based approach for the detection of subjects that strongly
influence the conclusions. These authors focused on the Diggle and Kenward (1994) model
for continuous outcomes. Van Steen et al. (2001) adapted these ideas to the model of
Molenberghs, Kenward and Lesaffre (1997), for monotone repeated ordinal data. Jansen
et al. (2003) focused on the model family proposed by Baker, Rosenberger, and
DerSimonian (1992, henceforth referred to as BRD).
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Thus, to explore the impact of deviations from the MAR assumption on the conclusions,
we should ideally conduct a sensitivity analysis, within which MNAR models can play a
major role, together with, for example, pattern-mixture models (Verbeke and Molenberghs,
2000, Chapters 18–20).

12.1.2 Outline
Three case studies used throughout this chapter, the exercise bike data and the mastitis in
dairy cattle data, are introduced in Section 12.2. The general data setting is introduced in
Section 12.3, as well as a formal framework for incomplete longitudinal data. A brief
overview on the problems associated with simple methods is presented in Section 12.4.
Next, methods valid under the MAR assumption are described in Sections 12.5 and 12.6,
for continuous and categorical outcomes respectively. MNAR modeling is covered in
Section 12.7, while Section 12.8 covers the aspects on sensitivity analysis.

To save space, some SAS code has been shortened and some output is not shown. The
complete SAS code and data sets used in this book are available on the book’s companion
Web site at http://support.sas.com/publishing/bbu/companion site/60622.html.

12.2 Case Studies
We will present three case studies which will be used throughout this chapter.

EXAMPLE: Exercise trial
In this heart failure study, the primary efficacy endpoint is based upon the ability to do
physical exercise. This ability is measured in the number of seconds a subject is able to ride
an exercise bike. The data collected in the study are included in the EXERCISE data set
that can be found on the book’s companion Web site. There are 25 subjects assigned to
placebo (GROUP=0) and 25 to treatment (GROUP=1). The treatment consisted of the
administration of ACE inhibitors. Four measurements were taken at monthly intervals
(TIME variable). The Y variable represents the outcome scores transformed to normality.

All 50 subjects are observed at the first occasion, whereas there are 44, 41, and 38
subjects seen at the second, the third, and the fourth visits, respectively. Individual and
mean response profiles per treatment arm are shown in Figures 12.1 and 12.2, respectively.
The percentage of patients remaining in the study after each visit is tabulated in
Table 12.1 per treatment arm.

Table 12.1 Percentage of Patients Remaining in
the Study per Treatment Arm in the Exercise Trial

Visit Placebo Treatment

1 100% 100%
2 88% 88%
3 84% 80%
4 80% 72%

EXAMPLE: Mastitis data
This example, concerning the occurrence of the infectious disease mastitis in dairy cows,
was introduced in Diggle and Kenward (1994) and reanalyzed in Kenward (1998). The
MASTITIS data set, provided on the book’s companion Web site, contains the milk yields
(in thousands of liters) of 107 dairy cows from a single herd in two consecutive years:
Yij(i = 1, . . . , 107; j = 1, 2). In the first year, all animals were supposedly free of mastitis; in
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Figure 12.1 Individual response profiles in the placebo (left panel) and treatment (right panel) groups in the
exercise trial
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Figure 12.2 Mean response profiles in the placebo (solid curve) and treatment (dashed curve) groups in the
exercise trial
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the second year, 27 became infected. Mastitis typically reduces milk yield, and the question
of scientific interest is whether the probability of occurrence of mastitis is related to the
yield that would have been observed had mastitis not occurred. A graphical representation
of the complete data is given in Figure 12.3.

EXAMPLE: Depression trial
The DEPRESSION data set available on the book’s companion Web site comes from a
clinical trial including 342 patients with post-baseline data. The Hamilton Depression
Rating Scale (HAMD17) is used to measure the depression status of the patients. For each
patient, BASVAL represents the baseline HAMD17 assessment, Y is the HAMD17 score at
Visits 4 through 8 and CHANGE is the change from baseline in the HAMD17 score at
Visits 4 through 8. The YBIN variable is a binary outcome derived from the Y variable,
i.e., Y=1 if the HAMD17 score is larger than 7, and 0 otherwise. Two treatment groups
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Figure 12.3 Scatter plots of the Year 2 milk yield versus the Year 1 milk yield (left panel) the change in milk
yield versus the Year 1 milk yield (right panel) in the mastitis example. Black dots represent Cows #4 and #5.
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(primary dose of experimental drug, TRT=1, and placebo, TRT=4) are included in the
data set.

Mean profiles of the HAMD17 changes and dropout rates in the two treatment groups
are shown in Figure 12.4.

Figure 12.4 Left panel: Mean response profiles in Treatment groups 1 (solid curve) and 4 (dashed curve) in
the depression trial. Right panel: Percentage of patients remaining in the study Treatment groups 1 and 4.
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12.3 Data Setting and Modeling Framework
Assume that for subject i = 1, . . . , N in the study a sequence of responses Yij is designed to
be measured at occasions j = 1, . . . , n. The outcomes are grouped into a vector
Yi = (Yi1, . . . , Yin)′. In addition, define a dropout indicator Di for the occasion at which
dropout occurs and make the convention that Di = n + 1 for a complete sequence. It is
often necessary to split the vector Yi into observed (Y o

i ) and missing (Y m
i ) components
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respectively. Note that dropout is a particular case of monotone missingness. In order to
have a monotone pattern of missingness, there has to exist a permutation of the
measurement components such that a measurement earlier in the permuted sequence is
observed for at least those subjects that are observed at later measurements. For this
definition to be meaningful, we need to have a balanced design in the sense of a common
set of measurement occasions. Other patterns are called nonmonotone or intermittent
missingness. When intermittent missingness occurs, it is best to use a vector of binary
indicators Ri = (Ri1, . . . , Rin)′ rather than the dropout indicator Di.

In principle, we would like to consider the density of the full data f(yi, di|θ, ψ), where
the parameter vectors θ and ψ describe the measurement and missingness processes,
respectively. Covariates are assumed to be measured but, for notational simplicity, they are
suppressed from notation.

The taxonomy, constructed by Rubin (1976), further developed in Little and Rubin
(1987), and informally sketched in Section 12.1, is based on the factorization

f(yi, di|θ, ψ) = f(yi|θ)f(di|yi, ψ), (12.3.1)

where the first factor is the marginal density of the measurement process and the second
one is the density of the missingness process, conditional on the outcomes. Factorization
(12.3.1) forms the basis of selection modeling as the second factor corresponds to the
(self-)selection of individuals into observed and missing groups. An alternative taxonomy
can be built based on so-called pattern-mixture models (Little, 1993; Little, 1994a). These
are based on the factorization

f(yi, di|θ, ψ) = f(yi|di, θ)f(di|ψ). (12.3.2)

Indeed, (12.3.2) can be seen as a mixture of different populations, characterized by the
observed pattern of missingness.

Rubin (1976) and Little and Rubin (1987) have shown that, under MAR and mild
regularity conditions (parameters θ and ψ are functionally independent), likelihood-based
and Bayesian inferences are valid when the missing data mechanism is ignored (see also
Verbeke and Molenberghs, 2000; Molenberghs and Verbeke, 2005). Practically speaking,
the likelihood of interest is then based upon the factor f(yo

i |θ). This is called ignorability.
The practical implication is that a software module with likelihood estimation facilities

and with the ability to handle incompletely observed subjects manipulates the correct
likelihood, providing valid parameter estimates and likelihood ratio values. Dmitrienko
et al. (2005, Chapter 5) provide detailed guidelines on how to implement such analyses.
They also issue a number of cautionary remarks. An important one is that the flexibility
and ease of MAR (and hence ignorable) analyses do not rule out the option of an MNAR
mechanism to operate. These authors also focused primarily on continuous outcomes. In
this chapter, both discrete outcomes, as well as modeling approaches under MNAR, are of
primary interest.

12.4 Simple Methods and MCAR
We will briefly review a number of relatively simple methods that have been and are still in
extensive use. They have been discussed in some detail in Dmitrienko et al. (2005,
Chapter 5). We will focus on complete case analysis (CC) and last observation carried
forward (LOCF). The latter is a single or simple imputation method, which shares a
certain number of pitfalls with the other methods. Multiple imputation, on the other hand
(Section 12.5.2) is valid under MAR and therefore is discussed in Section 12.5.
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Complete Case Analysis
A complete case (CC) analysis considers only those cases for which all ni measurements
were recorded. The method is simple since it restores balance, in the sense that a
rectangular data matrix is obtained. However, the drawbacks surpass the advantages. Apart
from considerable information loss, leading to inefficient estimates and tests with less than
optimal power, often severe bias is to be expected. The method is, therefore, not
recommended. See Dmitrienko et al. (2005, Chapter 5) for details.

Last Observation Carried Forward
Alternatively, balance can be restored by substituting the last obtained measurement for
the missing ones. This technique is termed last observation carried forward (LOCF) or last
value carried forward. The practical advantages are the same as with CC, but the issues are
manifold. The technique has been discussed in detail in Dmitrienko et al. (2005, Chapter 5)
and insightful illustrations of the issues are provided in Molenberghs et al. (2004). An
important issue is that filled-in values are treated as actual data. Further, Molenberghs
et al. (2004) have illustrated that the bias resulting from this method can be both
conservative and liberal, contradicting common belief that the appeal of the method lies in
it being conservative for the assessment of treatment effect in superiority trials.

Moreover, since direct likelihood is perfectly feasible in the sense that it is valid under
MAR and easy to implement in standard software (Section 12.5), there is generally very
little reason to apply LOCF. See also Mallinckrodt et al. (2003ab).

Available Case Methods

Available case methods (Little and Rubin, 1987) use as much of the data as possible. In a
multivariate normal setting, means and variances are estimated based on the information
available for individual outcomes, while covariances are estimated using pairs of outcomes.
While this is a simple solution in this setting, the method is difficult to extend to other
settings, such as continuous data to which regression models or linear mixed models are
applied, or categorical data. Moreover, the method is still valid only under MCAR. The
reason is that the method uses moments only; in our setting, these are the first and second
moments of the multivariate normal. As such, it is a frequentist method. In the following
section, we will show that using the available information in a likelihood framework
extends validity to MAR.

12.5 MAR Methods
In this section, we give an overview of the most commonly used methods, which are valid
under the MAR assumption. See Dmitrienko et al. (2005, Chapter 5) for details.

12.5.1 Direct Likelihood Analyses
As stated earlier, likelihood-based inference is valid whenever the mechanism is MAR,
provided that the technical condition holds that the parameters describing the nonresponse
mechanism are distinct from the measurement model parameters (Little and Rubin, 1987).
The log-likelihood then partitions into two functionally independent components, one
describing the measurement model, the other one the missingness model. This implies that
likelihood-based software with facilities to handle incomplete records provides valid
inferences. Such a likelihood-based ignorable analysis is also termed likelihood-based MAR
analysis, or, as we will call it further on, a direct likelihood analysis.

Turning to SAS software, this implies that likelihood-based longitudinal analyses,
conducted by means of the MIXED, NLMIXED, and GLIMMIX procedures, are valid,
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given that the MAR assumption holds or is considered a reasonable approximation. This is
useful, even when inferences are conducted at the end of the planned measurement
sequence. An important example is the assessment of treatment effect at the end of a
clinical trial. A way to practically implement such an analysis is by specifying a sufficiently
general treatment by time-mean profile model, supplemented with an unstructured
variance-covariance structure. Appropriate use of the CONTRAST or ESTIMATE
statement then leads to the required test. Technically, the score equations take the
expected value of the incomplete measurements, given the observed ones, into account
(Beunckens, Molenberghs, and Kenward, 2005). This implies that all information on a
subject is used to assess treatment effect. If the treatment assignment is used as
randomized, the method is fully consistent with the intention-to-treat principle.

12.5.2 Multiple Imputation
Apart from direct likelihood, other methods that are valid under MAR include multiple
imputation (Rubin 1978, 1987, Rubin and Schenker 1986) (discussed here) and the
Expectation-Maximization algorithm.

The key idea of the multiple imputation (MI) procedure is to replace each missing value
with a set of M plausible values. Precisely, such values are drawn from the conditional
distribution of the unobserved values, given the observed ones. The imputed data sets are
then analyzed using standard complete data methods and software. Finally, the M
obtained inferences thus obtained must be combined into a single one by means of the
method proposed by Rubin (1978). Ample detail can be found in Dmitrienko et al. (2005,
Chapter 5).

With the availability and ease of direct likelihood, it remains to be discussed when to
use multiple imputation. First, the method can be used to conduct checks on direct
likelihood. Second, MI is really useful when there are incomplete covariates, along with
missing outcomes. Third, when several users want to conduct a variety of analyses on the
same incomplete set of data, it is sensible to provide all of them with the same multiply
imputed sets of data. Finally, multiple imputation can be used within the context of
sensitivity analysis.

The SAS MI procedure is a multiple imputation procedure that creates multiply
imputed data sets for incomplete p-dimensional multivariate data. It uses methods that
incorporate appropriate variability across the M imputations. Once the M complete data
sets are analyzed by using standard procedures, the MIANALYZE procedure can be used
to generate valid statistical inferences about these parameters by combining results for the
M complete data sets. See also Dmitrienko et al. (2005, Chapter 5).

12.5.3 The EM Algorithm
The Expectation-Maximization (EM) algorithm has been described in detail in Dmitrienko
et al. (2005, Chapter 5). It is an alternative to direct likelihood and MI, in the sense that,
in its basic form, it is valid under the same conditions. Dempster, Laird, and Rubin (1977)
provided a very general description of the algorithm, showing its use in broad classes of
missing data, latent variable, latent classes, random effects, and other data augmentation
settings.

Within each iteration, there are two steps. In the E step, the expectation of the complete
data log-likelihood is calculated. In exponential family settings, this is particularly easy
since it reduces to the calculation of complete-data sufficient statistics. In the M step, the
so-obtained function is maximized. Little and Rubin (1987), Schafer (1997), and McLachlan
and Krishnan (1997) provide detailed descriptions and applications of the EM algorithm.

While the algorithm is elegant, the basic version does not provide precision estimates
and a number of proposals have been made over the years, summarized in McLachlan and
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Krishnan (1997), to rectify this situation. A number of applications of the EM algorithm
are possible with the SAS MI procedure (Dmitrienko et al. 2005, Chapter 5).

12.6 Categorical Data
For non-Gaussian outcomes, there is no single, broadly applicable counterpart to the
multivariate normal model, within which the linear mixed model is positioned. Therefore,
it is important to carefully distinguish between three model families: marginal models,
random-effects models, and conditional models. A comprehensive introduction of these and
comparison between them has been provided in Dmitrienko et al. (2005, Chapter 5). Here,
we provide a brief overview of the marginal family, with focus on generalized estimating
equations (GEE), and put some emphasis on the random-effects family. In particular, we
emphasize the generalized linear mixed model (GLMM).

12.6.1 Marginal Models
Marginal models describe the outcomes within an outcome sequence Yi, conditional on
covariates, but neither on other outcomes nor on unobserved (latent) structures. While full
likelihood approaches exist (Molenberghs and Verbeke 2005), they are usually demanding
in computational terms, explaining the popularity of generalized estimating equations
(GEE), on which we will focus here. In their basic form, they are valid under MCAR,
which explains why weighted GEE (WGEE) have been devised to allow for extension to
the MAR framework. Whereas GEE can be fitted using the GENMOD procedure, there
also is a linearization-based version, which can be fitted with the %GLIMMIX macro or
procedure. A number of additional extensions of, and modifications to, GEE exist. They
are not considered here. See Molenberghs and Verbeke (2005) for details.

Generalized Estimating Equations

Generalized estimating equations (Liang and Zeger, 1986) are useful when scientific interest
focuses on the first moments of the outcome vector. Examples include time evolutions in
the response probability, treatment effect, their interaction, and the effect of (baseline)
covariates on these probabilities. GEE allows the researcher to use a “fix up” for the
correlations in the second moments, and to ignore the higher order moments, while still
obtaining valid inferences, at reasonable efficiency.

The GEE methodology is based on solving the equations

S(β) =
N∑

i=1

∂μi

∂β′ (A
1/2
i RiA

1/2
i )−1(yi − μi) = 0, (12.6.3)

in which the marginal covariance matrix Vi has been decomposed in the form A
1/2
i RiA

1/2
i ,

with Ai the matrix with the marginal variances on the main diagonal and zeros elsewhere,
and with Ri = Ri(α) the marginal correlation matrix, often referred to as the working
correlation matrix. Usually, the marginal covariance matrix Vi = A

1/2
i RiA

1/2
i contains a

vector α of unknown parameters which is replaced for practical purposes by a consistent
estimate.

Assuming that the marginal mean μi has been correctly specified as h(μi) = Xiβ, it can
be shown that, under mild regularity conditions, the estimator β̂ obtained from solving
(12.6.3) is asymptotically normally distributed with mean β and with covariance matrix

I−1
0 I1I

−1
0 , (12.6.4)
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where

I0 =

(
N∑

i=1

∂μi
′

∂β
V −1

i

∂μi

∂β′

)
, I1 =

(
N∑

i=1

∂μi
′

∂β
V −1

i Var(yi)V −1
i

∂μi

∂β′

)
.

In practice, Var(yi) in (12.6.4) is replaced by (yi − μi)(yi − μi)′, which is unbiased on the
sole condition that the mean was again correctly specified.

Note that valid inferences can now be obtained for the mean structure, only assuming
that the model assumptions with respect to the first-order moments are correct.

Liang and Zeger (1986) proposed moment-based estimates for the working correlation.
To this end, first define deviations:

eij =
yij − μij√

v(μij)

and decompose the variance slightly more generally as above in the following way:

Vi = φA
1/2
i RiA

1/2
i ,

where φ is an overdispersion parameter.

Weighted Generalized Estimating Equations
As stated before, GEE is valid under MCAR. To accommodate MAR missingness, Robins,
Rotnitzky, and Zhao (1995) proposed a class of weighted estimating equations. The idea of
WGEE is to weight each subject’s measurements in the GEEs by the inverse probability
that a subject drops out at that particular measurement occasion. This can be calculated as

νij = P (Di = j) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

P (Di = j|Di ≥ j) j = 2,

P (Di = j|Di ≥ j)
j−1∏
k=2

[1 − P (Di = k|Di ≥ k)] j = 3, . . . , ni,

ni∏
k=2

[1 − P (Di = k|Di ≥ k)] j = ni + 1.

In the weighted GEE approach, which is proposed to reduce possible bias of β̂, the score
equations to be solved when taking into account the correlation structure are:

S(β) =
N∑

i=1

1
νi

∂μi

∂β′ (A
1/2
i RiA

1/2
i )−1(yi − μi) = 0

or

S(β) =
N∑

i=1

n+1∑
d=2

I(Di = d)
νid

∂μi(d)
∂β′ (A1/2

i RiA
1/2
i )−1(d)(yi(d) − μi(d)) = 0,

where yi(d) and μi(d) are the first d − 1 elements of yi and μi respectively. We define ∂μi

∂β′ (d)

and (A1/2
i RiA

1/2
i )−1(d) analogously, in line with the definition of Robins, Rotnitzky, and

Zhao (1995).

A Method Based on Linearization

Both versions of GEE studied so far can be seen as deriving from the score equations of
corresponding likelihood methods. In a sense, GEE result from considering only a
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subvector of the full vector of scores, corresponding to either the first moments only (the
outcomes themselves), or to the first and second moments (outcomes and cross-products
thereof). On the other hand, they can be seen as an extension of the quasi-likelihood
principles, where appropriate modifications are made to the scores to be sufficiently flexible
and “work” at the same time. A classical modification is the inclusion of an overdispersion
parameter, while in GEE also (nuisance) correlation parameters are introduced.

An alternative approach consists of linearizing the outcome, in the sense of Nelder and
Wedderburn (1972), to construct a working variate, to which then weighted least squares is
applied. In other words, iteratively reweighted least squares (IRLS) can be used
(McCullagh and Nelder, 1989). Within each step, the approximation produces all elements
typically encountered in a multivariate normal model, and hence corresponding software
tools can be used. In case our models would contain random effects as well, the core of the
IRLS could be approached using linear mixed models tools.

Write the outcome vector in a classical (multivariate) generalized linear models fashion:

yi = μi + εi

where, as usual, μi = E(yi) is the systematic component and εi is the random component,
typically following a multinomial distribution. We assume that Var(yi) = Var(εi) = Σi. The
model is further specified by assuming

ηi = g(μi), ηi = Xiβ,

where ηi is the usual set of linear predictors, g(·) is a vector link function, typically made
up of logit components, Xi is a design matrix and β are the regression parameters.

Estimation proceeds by iteratively solving

N∑
i=1

X ′
iWiXiβ =

N∑
i=1

Wiy
∗
i , (12.6.5)

where a working variate y∗
i has been defined, following from a first-order Taylor series

expansion of ηi around μi:

y∗
i = η̂i + (yi − μ̂i)F̃

−1
i , F̃i =

∂μi

∂ηi

∣∣∣∣
β=β̃

. (12.6.6)

The weights in (12.6.5) are specified as

Wi = F ′
i Σ̃

−1
i Fi. (12.6.7)

In these equations β̃ and Σ̃ are evaluated at the current iteration step. Note that in the
specific case of an identity link, ηi = μi, Fi = Ini , and yi = y∗

i , whence a standard
multivariate regression follows.

The linearization based method can be implemented using the %GLIMMIX macro and
PROC GLIMMIX, by ensuring no random effects are included. Empirically corrected
standard errors can be obtained by including the EMPIRICAL option.

12.6.2 Random-Effects Models
Models with subject-specific parameters are differentiated from population-averaged
models by the inclusion of parameters which are specific to the cluster. Unlike the
correlated Gaussian outcomes, the parameters of the random effects and population-
averaged models for correlated binary data describe different types of effects of the
covariates on the response probabilities (Neuhaus, 1992).
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The choice between population-averaged and random-effects strategies should heavily
depend on the scientific goals. Population-averaged models evaluate the overall risk as a
function of covariates. With a subject-specific approach, the response rates are modeled as
a function of covariates and parameters, specific to a subject. In such models,
interpretation of fixed-effects parameters is conditional on a constant level of the
random-effects parameter. Population-averaged comparisons, on the other hand, make no
use of within-cluster comparisons for cluster-varying covariates and are therefore not useful
to assess within-subject effects (Neuhaus, Kalbfleisch and Hauck, 1991).

Whereas the linear mixed model is unequivocally the most popular choice in the case of
normally distributed response variables, there are more options in the case of non-normal
outcomes. Stiratelli, Laird, and Ware (1984) assume the parameter vector to be normally
distributed. This idea has been carried further in the work on so-called generalized linear
mixed models (Breslow and Clayton, 1993) which is closely related to linear and non-linear
mixed models. Alternatively, Skellam (1948) introduced the beta-binomial model, in which
the response probability of any response of a particular subject comes from a beta
distribution. Hence, this model can also be viewed as a random-effects model. We will
consider generalized linear mixed models.

Generalized Linear Mixed Models
Perhaps the most commonly encountered subject-specific (or random-effects) model is the
generalized linear mixed model. A general framework for mixed-effects models can be
expressed as follows.

As before, Yij , is the jth outcome measured for cluster (subject) i, i = 1, . . . , N ,
j = 1, . . . , ni and Yi is the ni-dimensional vector of all measurements available for cluster i.
It is assumed that, conditional on q-dimensional random effects bi, assumed to be drawn
independently from the N(0, D), the outcomes Yij are independent with densities of the
form

fi(yij |bi, β, φ) = exp
{
φ−1[yijθij − ψ(θij)] + c(yij , φ)

}
,

with η(μij) = η(E(Yij|bi)) = xij
′β + zij

′bi for a known link function η(·), with xij and zij

p-dimensional and q-dimensional vectors of known covariate values, with β a p-dimensional
vector of unknown fixed regression coefficients, with φ a scale parameter, and with θij the
natural (or canonical) parameter. Further, let f(bi|G) be the density of the N(0, G)
distribution for the random effects bi.

Due to the above independence assumption, this model is often referred to as a
conditional independence model. This assumption is the basis of the implementation in the
NLMIXED procedure. Just as in the linear mixed model case, the model can be extended
with residual correlation, in addition to the one induced by the random effects. Such an
extended model has been implemented in the SAS GLIMMIX procedure, and its
predecessor the %GLIMMIX macro. This advantage is counterbalanced by bias induced by
the optimization routine employed by GLIMMIX. It is important to realize that GLIMMIX
can be used without random effects as well, thus effectively producing a marginal model,
with estimates and standard errors similar to those obtained with GEE.

Note: The GLIMMIX procedure is experimental in SAS 9.1. There are advantages to
using both PROC GLIMMIX and the %GLIMMIX macro, as we shall see.

In general, unless a fully Bayesian approach is followed, inference is based on the
marginal model for Yi which is obtained from integrating out the random effects. The
likelihood contribution of subject i then becomes

fi(yi|β,G, φ) =
∫ ni∏

j=1

fij(yij |bi, β, φ) f(bi|G) dbi
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from which the likelihood for β, D, and φ is derived as

L(β, G, φ) =
N∏

i=1

fi(yi|β,G, φ) =
N∏

i=1

∫ ni∏
j=1

fij(yij |bi, β, φ) f(bi|G) dbi. (12.6.8)

The key problem in maximizing the obtained likelihood is the presence of N integrals
over the q-dimensional random effects. In some special cases, these integrals can be worked
out analytically. However, since no analytic expressions are available for these integrals,
numerical approximations are needed. Here, we will focus on the most frequently used
methods to do so. In general, the numerical approximations can be subdivided in those
that are based on the approximation of the integrand, those based on an approximation of
the data, and those that are based on the approximation of the integral itself. An extensive
overview of the currently available approximations can be found in Tuerlinckx et al. (2004),
Pinheiro and Bates (2000), and Skrondal and Rabe-Hesketh (2004). Finally, in order to
simplify notation, it will be assumed that natural link functions are used, but
straightforward extensions can be applied.

When integrands are approximated, the goal is to obtain a tractable integral such that
closed-form expressions can be obtained, making the numerical maximization of the
approximated likelihood feasible. Several methods have been proposed, but basically all
come down to Laplace-type approximations of the function to be integrated (Tierney and
Kadane, 1986).

A second class of approaches is based on a decomposition of the data into the mean and
an appropriate error term, with a Taylor series expansion of the mean which is a non-linear
function of the linear predictor. All methods in this class differ in the order of the Taylor
approximation and/or the point around which the approximation is expanded. More
specifically, consider the decomposition

Yij = μij + εij = h(xijβ + zijbi) + εij (12.6.9)

in which h(·) equals the inverse link function η−1(·), and where the error terms have the
appropriate distribution with variance equal to Var(Yij |bi) = φv(μij) for v(·) the usual
variance function in the exponential family. Note that, with the natural link function,

v(μij) =
∂h

∂η
(xijβ + zijbi).

Several approximations of the mean μij in (12.6.9) can be considered. One possibility is
to consider a linear Taylor expansion of (12.6.9) around current estimates β̂ and b̂i of the
fixed effects and random effects, respectively. This will result in the expression

Yi
∗ ≡ Ŵ−1

i (Yi − μ̂i) + Xiβ̂ + Zib̂i ≈ Xiβ + Zibi + ε∗
i , (12.6.10)

with Ŵi equal to the diagonal matrix with diagonal entries equal to v(μ̂ij), and for ε∗
i equal

to Ŵ−1
i εi, which still has mean zero. Note that (12.6.10) can be viewed as a linear mixed

model for the pseudo data Yi
∗, with fixed effects β, random effects bi, and error terms ε∗

i .
This immediately yields an algorithm for fitting the original generalized linear mixed

model. Given starting values for the parameters β, G, and φ in the marginal likelihood,
empirical Bayes estimates are calculated for bi, and pseudo data Yi

∗ are computed. Then,
the approximate linear mixed model (12.6.10) is fitted, yielding updated estimates for β, G,
and φ. These are then used to update the pseudo data and this whole scheme is iterated
until convergence is reached.

The resulting estimates are called penalized quasi-likelihood estimates (PQL) in the
literature (e.g., Molenberghs and Verbeke 2005), or pseudo-quasi-likelihood in the
GLIMMIX documentation because they can be obtained from optimizing a quasi-likelihood
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function which involves only first- and second-order conditional moments, augmented with
a penalty term on the random effects. The pseudo-likelihood terminology derives from the
fact that the estimates are obtained by (restricted) maximum likelihood of the
pseudo-response or working variable.

An alternative approximation is very similar to the PQL method, but is based on a
linear Taylor expansion of the mean muij in (12.6.9) around the current estimates β̂ for the
fixed effects and around bi = 0 for the random effects. The resulting estimates are called
marginal quasi-likelihood estimates (MQL). See Breslow and Clayton (1993) and Wolfinger
and O’Connell (1993) for details. Since the linearizations in the PQL and the MQL methods
lead to linear mixed models, the implementation of these procedures is often based on
feeding updated pseudo data into software for the fitting of linear mixed models. However,
it should be emphasized that the results from these fittings, which are often reported
intermediately, should be interpreted with great care. For example, reported (log)likelihood
values correspond to the assumed normal model for the pseudo data and should not be
confused with (log-)likelihood for the generalized linear mixed model for the actual data at
hand. Further, fitting of linear mixed models can be based on maximum likelihood (ML) as
well as restricted maximum likelihood (REML) estimation. Hence, within the PQL and
MQL frameworks, both methods can be used for the fitting of the linear model to the
pseudo data, yielding (slightly) different results. Finally, the quasi-likelihood methods
discussed here are very similar to the method of linearization discussed in Section 12.6.1 for
fitting generalized estimating equations (GEE). The difference is that here, the correlation
between repeated measurements is modeled through the inclusion of random effects,
conditional on which repeated measures are assumed independent, while, in the GEE
approach, this association is modeled through a marginal working correlation matrix.

Note that, when there are no random effects, both this method and GEE reduce to a
marginal model, the difference being in the way the correlation parameters are estimated.
In both cases, it is possible to allow for misspecification of the association structure by
resorting to empirically corrected standard errors. When this is done, the methods are valid
under MCAR. In case we would have confidence in the specified correlation structure,
purely model-based inference can be conducted, and hence the methods are valid when
missing data are MAR.

A third method of numerical approximation is based on the approximation of the
integral itself. Especially in cases where the above two approximation methods fail, this
numerical integration proves to be very useful. Of course, a wide toolkit of numerical
integration tools, available from the optimization literature, can be applied. Several of
those have been implemented in various software tools for generalized linear mixed models.
A general class of quadrature rules selects a set of abscissas and constructs a weighted sum
of function evaluations over those. In the particular context of random-effects models,
so-called adaptive quadrature rules can be used (Pinheiro and Bates 1995, 2000), where the
numerical integration is centered around the EB estimates of the random effects, and the
number of quadrature points is then selected in terms of the desired accuracy.

To illustrate the main ideas, we consider Gaussian and adaptive Gaussian quadrature,
designed for the approximation of integrals of the form

∫
f(z)φ(z)dz, for an known function

f(z) and for φ(z) the density of the (multivariate) standard normal distribution. We will
first standardize the random effects such that they get the identity covariance matrix. Let
δi be equal to δi = G−1/2bi. We then have that δi is normally distributed with mean 0 and
covariance I. The linear predictor then becomes θij = xij

′β + zij
′G1/2δi, so the variance

components in G have been moved to the linear predictor. The likelihood contribution for
subject i then equals

fi(yi|β, G, φ) =
∫ ni∏

j=1

fij(yij |bi, β, φ) f(bi|G) dbi. (12.6.11)
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Obviously, (12.6.11) is of the form
∫

f(z)φ(z)dz as required to apply (adaptive) Gaussian
quadrature.

In Gaussian quadrature,
∫

f(z)φ(z)dz is approximated by the weighted sum∫
f(z)φ(z)dz ≈

Q∑
q=1

wqf(zq).

Q is the order of the approximation. The higher Q, the more accurate the approximation
will be. Further, the so-called nodes (or quadrature points) zq are solutions to the Qth
order Hermite polynomial, while the wq are well-chosen weights. The nodes zq and weights
wq are reported in tables. Alternatively, an algorithm is available for calculating all zq and
wq for any value Q (Press et al., 1992).

Figure 12.5 Graphical illustration of Gaussian (left panel) and adaptive Gaussian (right panel) quadrature. The
triangles indicate the position of the quadrature points, while the rectangles indicate the contribution of each
point to the integral.
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In the case of univariate integration, the approximation consists of subdividing the
integration region in intervals, and approximating the surface under the integrand by the
sum of surfaces of the so-obtained approximating rectangles. An example is given in the
left panel of Figure 12.5, for the case of Q = 10 quadrature points. A similar interpretation
is possible for the approximation of multivariate integrals. Note that the figure immediately
highlights one of the main disadvantages of (non-adaptive) Gaussian quadrature, i.e., the
fact that the quadrature points zq are chosen based on φ(z), independent of the function
f(z) in the integrand. Depending on the support of f(z), the zq will or will not lie in the
region of interest. Indeed, the quadrature points are selected to perform well in case
f(z)φ(z) approximately behaves like φ(z), i.e., like a standard normal density function.
This will be the case, for example, if f(z) is a polynomial of a sufficiently low order. In our
applications, however, the function f(z) will take the form of a density from the
exponential family, hence an exponential function. It may then be helpful to rescale and
shift the quadrature points such that more quadrature points lie in the region of interest.
This is shown in the right panel of Figure 12.5, and is called adaptive Gaussian quadrature.

In general, the higher the order Q, the better the approximation will be of the N
integrals in the likelihood. Typically, adaptive Gaussian quadrature needs (many) fewer
quadrature points than classical Gaussian quadrature. On the other hand, adaptive
Gaussian quadrature requires for each unit the numerical maximization of a function of the
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form ln(f(z)φ(z)) for the calculation of ẑ. This implies that adaptive Gaussian quadrature
is much more time consuming.

Since fitting of generalized linear mixed models is based on maximum likelihood
principles, inferences for the parameters are readily obtained from classical maximum
likelihood theory.

12.6.3 Marginal versus Random-Effects Models
Note that there is an important difference with respect to the interpretation of the fixed
effects β. Under the classical linear mixed model (Verbeke and Molenberghs, 2000), we
have that E(Yi) equals Xiβ, such that the fixed effects have a subject-specific as well as a
population-averaged interpretation. Under non-linear mixed models, however, this does no
longer hold in general. The fixed effects now only reflect the conditional effect of covariates,
and the marginal effect is not easily obtained anymore as E(Yi) is given by

E(Yi) =
∫

yi

∫
fi(yi|bi)g(bi)dbidyi.

However, in a biopharmaceutical context, we are often primarily interested in hypothesis
testing, and the random-effects framework can be used to this effect.

Note that both WGEE and GLMM are valid under MAR, with the extra condition that
the model for weights in WGEE has been specified correctly. Nevertheless, the parameter
estimates between both are rather different. This is due to the fact that GEE and WGEE
parameters have a marginal interpretation, describing average longitudinal profiles,
whereas GLMM parameters describe a longitudinal profile, conditional upon the value of
the random effects. Let us now provide an overview of the differences between marginal
and random-effects models for non-Gaussian outcomes (a detailed discussion can be found
in Molenberghs and Verbeke 2004). The interpretation of the parameters in both types of
model (marginal or random-effects) is completely different.

Figure 12.6 Representation of model families and corresponding inference (M stands for marginal and RE
stands for random-effects). A parameter between quotes indicates that marginal functions but no direct marginal
parameters are obtained, since they result from integrating out the random effects from the fitted hierarchical
model.

model family
↙ ↘

marginal random-effects
model model

↓ ↓
inference inference
↙ ↘ ↙ ↘

likelihood GEE marginal hierarchical
↓ ↓ ↓ ↓

βM βM βRE (βRE, bi)
↓ ↓

“βM” “βM”

A schematic display is given in Figure 12.6. Depending on the model family (marginal
or random-effects), we are led to either marginal or hierarchical inference. It is important
to realize that in the general case the parameter βM resulting from a marginal model is
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different from the parameter βRE even when the latter is estimated using marginal
inference. Some of the confusion surrounding this issue may result from the equality of
these parameters in the very special linear mixed model case. When a random-effects
model is considered, the marginal mean profile can be derived, but it will generally not
produce a simple parametric form. In Figure 12.6 this is indicated by putting the
corresponding parameter between quotation marks.

12.6.4 Analysis of Depression Trial Data
Let us now analyze the clinical depression trial, introduced in Section 12.2. The binary
outcome of interest is the YBIN variable (it is equal to 1 if the HAMD17 score is larger
than 7, and 0 otherwise). The primary null hypothesis has been tested using both GEE and
WGEE (with the GENMOD procedure), as well as GLMM with adaptive and non-adaptive
Gaussian quadrature (with PROC NLMIXED) in Dmitrienko et al. (2005, Chapter 5).
Now, we will test the hypothesis using GEE based on linearization, as well as GLMM
based on the penalized quasi-likelihood method. Both methods can be fitted using the
GLIMMIX macro. Beginning with SAS 9.1, there is an experimental GLIMMIX procedure,
which can be used as well. We include the fixed categorical effects of treatment, visit, and
treatment-by-visit interaction, as well as the continuous, fixed covariates of baseline score
and baseline score-by-visit interaction. A random intercept will be included when
considering the random-effect models.

%GLIMMIX Macro for the Marginal Model
We will consider the marginal model:

Yij ∼ Bernoulli(μij), logit
(

μij

1 − μij

)
= Xiβ, (12.6.12)

where Xi is the design matrix for subject i, containing all covariates and an intercept.
Program 12.1 fits Model (12.6.12) with exchangeable working assumptions using the

%GLIMMIX macro. The macro is based on fitting the iterative procedure, outlined in
Section 12.6.1. The Generalized Linear Models shell linearizes the outcome and computes
the weights, as in (12.6.6) and (12.6.7). Specific statements that govern this procedure are
the ERROR and LINK statements. We chose the binomial error structure. The logit link is
the default for this option, but we have still chosen to specify it, for clarity. The procedure
is based on the MIXED procedure, used to solve iteratively reweighted least squares
equations (12.6.5). Virtually all statements that are available in the MIXED procedure can
be used. They are passed on, in string form, to the macro via the STMTS option. Note
that TYPE=CS, referring to compound symmetry, must be used here. For unstructured
working assumptions, we use TYPE=UN, for AR(1) this would be TYPE=AR(1), and for
independence assumptions, TYPE=SIMPLE needs to be used. One set of assumptions,
those corresponding to the PROC MIXED statement, are passed on via a separate
statement, i.e., the PROCOPT string. Note that we have inserted the EMPIRICAL option,
to ensure the empirically corrected standard errors are produced. Omitting the
EMPIRICAL option produces the model-based standard errors. We have a choice between
the updating methods that are available in the MIXED procedure.

To receive the output that would be produced by the MIXED procedure, we can use
OPTIONS=MIXPRINTLAST within the STMTS option. To study the PROC MIXED
output at each iteration, we add the MIXPRINTALL option. Arguably, the latter is
primarily useful for debugging purposes.



Chapter 12 Analysis of Incomplete Data 331

Program 12.1 %GLIMMIX macro for the linearization-based method in the depression trial example

%glimmix(data=depression, procopt=%str(method=ml empirical),
stmts=%str(

class patient visit trt;
model ybin = visit trt*visit basval basval*visit / solution;
repeated visit / subject=patient type=cs rcorr;
),

error=binomial,
link=logit);

The typical GLIMMIX output consists of tables copied from the MIXED output, as well
as some additional information. Typical output includes bookkeeping information such as
model information, dimensions, and number of observations. Since we included the RCORR
option in the REPEATED statement, the fitted correlation matrix of the measurements is
given, which is to be interpreted as the working correlation matrix. In our case, this is a
5 × 5 correlation matrix with off-diagonal elements equal to 0.3317, the exchangeable
working correlation. Output 12.1, the Covariance Parameter Estimates portion of the
output, must be interpreted with caution, though, for reasons that we will explain.

Output from Program 12.1. Covariance Parameter Estimates

Covariance Parameter Estimates

Cov Parm Subject Estimate

CS PATIENT 0.3140
Residual 0.6326

The working correlation is obtained from the usual compound-symmetry equation:

0.3140
0.3140 + 0.6326

= 0.3317.

In the following output, the residual value is copied as the extra-dispersion parameter:

Output from Program 12.1. GLIMMIX Model Statistics

GLIMMIX Model Statistics

Description Value

Deviance 746.6479
Scaled Deviance 1180.3240
Pearson Chi-Square 673.9938
Scaled Pearson Chi-Square 1065.4703
Extra-Dispersion Scale 0.6326

It is best not to use this portion of output, since it is not appropriately adapted to the
combination of generalized linear model and the repeated measures nature of the data. In
case we had used independence working assumptions, there would have been a single
covariance parameter only, which could then be considered the overdispersion parameter.
Arguably, there is little basis to do so, and it is unlikely to see almost no overdispersion
with independence and strong underdispersion with exchangeability. It might make more
sense to consider the total variance in the exchangeable case, i.e., 0.3140 + 0.6326, the
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overdispersion parameter. Similarly, it would be better to ignore the fit statistics portion of
output, copied from the MIXED procedure.

The most relevant portion of the output is the Solution for Fixed Effects table, with its
associated F tests.

Output from Program 12.1. Solution and Type 3 Tests for Fixed Effects

Solution for Fixed Effects

Visit Standard
Effect Number TRT Estimate Error DF t Value Pr > |t|

Intercept -1.2326 0.7853 168 -1.57 0.1184
VISIT 4 0.4457 1.2147 517 0.37 0.7138
...
VISIT*TRT 8 1 -0.6942 0.3810 517 -1.82 0.0690
...
BASVAL*VISIT 7 0.02439 0.05170 517 0.47 0.6373
BASVAL*VISIT 8 0 . . . .

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

VISIT 4 517 0.39 0.8128
VISIT*TRT 5 517 1.22 0.3000
BASVAL 1 168 22.17 <.0001
BASVAL*VISIT 4 517 1.79 0.1291

These estimates, with both model-based and empirically corrected standard errors, are
given in the linearization column of Table 12.2, next to the estimates for GEE and WGEE.
Clearly, the estimates under exchangeability for the linearization-based method are very
similar to those for GEE. Since we did not include the treatment as a main effect, the
output immediately produces the treatment effects at the different time points. For
instance, the estimate of the effect of treatment at the endpoint is −0.6942, with a
corresponding p value equal to 0.0690. Comparing this with the result of GEE (the p-value
of treatment effect at the last visit is 0.0633), it is clear that both are very similar.
However, when a WGEE analysis is performed, the result of this contrast changes a lot
(p-value is 0.0325).

PROC GLIMMIX for the Marginal Model
We can also use PROC GLIMMIX to fit models of a marginal type, subject-specific type,
as well as models with subject-specific effects and residual association in addition to that.
Program 12.2 relies on PROC GLIMMIX to fit a model identical to the model fitted by
Program 12.1. Even though Program 12.2 is rather different, at first sight, from
Program 12.1, the correspondence is almost immediate. Again, users of PROC MIXED for
linear mixed models will recognize that the code here is very similar to that used in PROC
MIXED. The reason is that, internally, PROC GLIMMIX calls PROC MIXED each time a
linear mixed model needs to be fitted to newly updated pseudo data.
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Table 12.2 Results of Marginal Models in the Depression Trial Example
Note: Parameter estimates (model-based standard errors; empirically corrected standard errors) for GEE,
WGEE and the linearization based method are shown. Main visit effects and interaction terms of baseline and
visit are not shown.

GEE WGEE Linearization

intercept −1.22 (0.77;0.79) −0.70 (0.64;0.86) −1.23 (0.75;0.79)
visit 4 0.43 (1.05;1.22) −0.08 (0.88;1.85) 0.45 (1.05;1.22)
visit 5 −0.48 (0.91;1.23) −0.13 (0.70;1.55) −0.47 (0.92;1.23)
visit 6 0.06 (0.86;1.03) 0.19 (0.72;1.14) 0.05 (0.86;1.03)
visit 7 −0.25 (0.89;0.91) −0.28 (0.82;0.88) −0.25 (0.89;0.91)
trt × visit 4 −0.24 (0.54;0.57) −1.57 (0.41;0.99) −0.22 (0.53;0.56)
trt × visit 5 −0.09 (0.39;0.40) −0.67 (0.21;0.65) −0.08 (0.38;0.40)
trt × visit 6 0.17 (0.34;0.35) 0.62 (0.23;0.56) 0.18 (0.34;0.35)
trt × visit 7 −0.43 (0.36;0.35) 0.57 (0.30;0.37) −0.42 (0.35;0.35)
trt × visit 8 −0.71 (0.38;0.38) −0.84 (0.32;0.39) −0.69 (0.37;0.38)
baseline 0.08 (0.04;0.04) 0.07 (0.03;0.05) 0.08 (0.04;0.04)
baseline × visit 4 0.12 (0.07;0.07) 0.24 (0.06;0.13) 0.12 (0.06;0.07)
baseline × visit 5 0.09 (0.05;0.07) 0.07 (0.04;0.08) 0.09 (0.05;0.07)
baseline × visit 6 0.01 (0.05;0.05) 0.01 (0.04;0.06) 0.01 (0.05;0.88)
baseline × visit 7 0.02 (0.05;0.05) 0.03 (0.05;0.05) 0.02 (0.05;0.05)

Program 12.2 PROC GLIMMIX for the linearization-based method in the depression trial example

proc glimmix data=depression method=rspl empirical;
class patient visit trt;
model ybin (event=’1’)=visit trt*visit basval basval*visit/dist=binary solution;
random _residual_/subject=patient type=cs;
run;

The most important option in PROC GLIMMIX is METHOD. In Program 12.2,
METHOD=RSPL specifies the PQL method based on REML for linear mixed models.
Note that, strictly speaking, the “penalized” part of PQL is absent, since there are no
random effects and hence no random-effects penalty. In this case, it is more straightforward
to think of restricted pseudo-likelihood (RPL). An overview of the other available options
is given in Table 12.3.

Table 12.3 Available Options for Specification of the Estimation Method in PROC GLIMMIX

Quasi-likelihood type Inference pseudo-data
GLIMMIX option PQL/MQL ML/REML

METHOD=RSPL PQL REML
METHOD=MSPL PQL ML
METHOD=RMPL MQL REML
METHOD=MMPL MQL ML

The CLASS statement in PROC GLIMMIX specifies which variables should be
considered as factors. Such classification variables can be either character or numeric.
Internally, each of these factors will correspond to a set of dummy variables.

The MODEL statement names the response variable and all fixed effects, which
determine the Xi matrices. By default, an intercept is added. The EVENT option
(EVENT=‘1’) specifies that the probability to be modeled is P (Yij = 1) (the probability of
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a severe infection) rather than P (Yij = 0). The SOLUTION option is used to request the
printing of the estimates for all the fixed effects in the model, together with standard
errors, t-statistics, corresponding p-values, and confidence intervals. The DIST option is
used to specify the conditional distribution of the data, given the random effects. Various
distributions are available, including the normal, Bernoulli, Binomial, and Poisson
distribution. In Program 12.2, the Bernoulli distribution is specified (DIST=BINARY).
The default link function is the natural link (in this example, it is the logit link).

The REPEATED statement of the %GLIMMIX macro corresponds to the
RANDOM= residual statement in PROC GLIMMIX. SAS refers to this as the R-side of
the random statement. It is useful to think of it as the variance-covariance matrix of the
outcome vector Yi, of which the variances follow from the mean-variance link, but the
correlation structure needs to be specified (as in GEE). When random effects are present,
this structure refers to the residual correlation, in addition to the correlation induced by
the random effects. Changing the TYPE option in the RANDOM statement to SIMPLE,
CS or UN, respectively, combined with either omission or inclusion of the EMPIRICAL
option in PROC GLIMMIX produces exactly the same results as with the %GLIMMIX
macro; i.e., the results reported in the third panel of Table 12.2.

The output form PROC GLIMMIX in Program 12.2, although structured differently
from the %GLIMMIX macro output, is largely equivalent. The fact that the empirically
corrected standard errors are produced is acknowledged:

Output of Program 12.2. Part of the Model Information

The GLIMMIX Procedure

Model Information

Fixed Effects SE Adjustment Sandwich - Classical

The fact that a marginal model (i.e., a model without random effects) is used is
acknowledged through reference to the so-called R-side covariance parameters:

Output of Program 12.2. Part of the Dimensions

Dimensions

R-side Cov. Parameters 2

PROC GLIMMIX in Program 12.2 took 11 iterations to converge. The final covariance
parameters are equivalent to the ones produced by the %GLIMMIX macro:

Output of Program 12.2. Covariance Parameter Estimates

Covariance Parameter Estimates

Standard
Cov Parm Subject Estimate Error

CS PATIENT 0.3196 0.05209
Residual 0.6469 0.03955

PROC GLIMMIX also produces the fixed-effects parameters (again equivalent, up to
numerical accuracy, to their %GLIMMIX macro counterparts) together with associated F
tests.
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Output from Program 12.2. Solution and Type 3 Tests for Fixed Effects

Solutions for Fixed Effects

Visit Standard
Effect Number TRT Estimate Error DF t Value Pr > |t|

Intercept -1.2331 0.7852 168 -1.57 0.1182
VISIT 4 0.4463 1.2146 517 0.37 0.7134
...
VISIT*TRT 8 1 -0.6939 0.3810 517 -1.82 0.0691
...
BASVAL*VISIT 7 0.02440 0.05170 517 0.47 0.6372
BASVAL*VISIT 8 0 . . . .

Type III Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

VISIT 4 517 0.39 0.8129
VISIT*TRT 5 517 1.22 0.3003
BASVAL 1 168 22.18 <.0001
BASVAL*VISIT 4 517 1.79 0.1293

Again as long as PROC GLIMMIX is experimental (as in SAS 9.1), it is a good idea to
use the %GLIMMIX macro as well. Also, having the macro as a backup may increase a
program’s chances of reaching convergence.

PROC GLIMMIX for the Random-Effects Model

PROC GLIMMIX supports the marginal and penalized quasi-likelihood methods. We will
fit the following random-effects model, using the PQL method: assume that, conditional on
subject-specific random intercepts, bi, Yij is Bernoulli distributed with mean πij , modeled as

logit(πij) = X iβ + Zibi, (12.6.13)

in which Xi is the design matrix with covariates described above, β is the vector of fixed
effects parameters, Zi is a design matrix for the random effects (in this case a row of ones),
and bi is the random intercept assumed to be normally distributed with mean 0 and
variance d.

The procedure has many more statements and options than those presented here, but we
restrict our example to the basic statements needed to fit a generalized linear mixed model.

Program 12.3 fits this random-effects model using PQL based on REML estimation for
the linear mixed models for the pseudo data.

Program 12.3 PROC GLIMMIX for the random-effects model using PQL maximization in the depression trial
example

proc glimmix data=depression method=rspl;
class patient visit trt;
model ybin (event=’1’)=visit trt*visit basval basval*visit/dist=binary solution;
random intercept/subject=patient;
run;
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Most of the statements used in Program 12.3 were described above, except for the
RANDOM statement. The RANDOM statement defines the random effects in the model,
i.e., the Zi matrices containing the covariates with subject-specific regression coefficients.
Note that when random intercepts are required (as in this example), this requirement
should be specified explicitly, which is in contrast to the MODEL statement where an
intercept is included by default. The SUBJECT option identifies the subjects in the
DEPRESSION data set. The variable in the SUBJECT option can be continuous or
categorical (specified in the CLASS statement); however, when it is continuous, PROC
GLIMMIX considers a record to be from a new subject whenever the value of this variable
is different from the previous record.

Suppose that random slopes for the time trend were to be included as well. This can be
achieved by replacing the RANDOM statement in Program 12.3:

random intercept time/subject=patient type=un;
run;

Here TYPE=UN specifies that the random-effects covariance matrix G is a general
unstructured 2 × 2 matrix. Special structures are available, e.g., equal variance for the
intercepts and slopes, or independent intercepts and slopes.

The output of Program 12.3 includes information about the fitted model and the
estimation procedure. The Residual PL estimation technique refers to PQL with REML
(restricted or residual maximum likelihood) for the fitting of the linear models for the
pseudo data:

Output of Program 12.3. Model Information

The GLIMMIX Procedure

Model Information

Data Set WORK.DEPRESSION
Response Variable ybin
Response Distribution Binary
Link Function Logit
Variance Function Default
Variance Matrix Blocked By PATIENT
Estimation Technique Residual PL
Degrees of Freedom Method Containment

The Fit Statistics portion of the output gives minus twice the residual
log-pseudo-likelihood value evaluated in the final solution, together with the information
criteria of Akaike (AIC) and Schwarz (BIC), as well as a finite-sample corrected version of
AIC (AICC). When REML estimation is used for the fitting of the linear mixed models for
the pseudo data, an objective function is maximized which is called residual log-likelihood
function, while, strictly speaking, the function is not a log-likelihood, and should not be
used as a log-likelihood. We refer to Verbeke and Molenberghs (2000, Chapters 5 and 6) for
a more detailed discussion with examples. Further, information criteria are statistics that
are sometimes used to compare non-nested models which cannot be compared based on a
formal testing procedure. The main idea behind information criteria is to compare models
based on their maximized (residual) log-likelihood value (or equivalently minimized minus
twice the log-likelihood value), while at the same time penalizing for including an excessive
number of parameters. They should by no means be interpreted as formal statistical tests
of significance. In specific examples, different information criteria can even lead to different
model selections. An example of this is given in Section 6.4 of Verbeke and Molenberghs
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(2000) in the context of linear mixed models. More details about the use of information
criteria can be found in Akaike (1974), Schwarz (1978), and Burnham and Anderson (1998).

Output of Program 12.3. Fit Statistics and Covariance Parameter Estimates

Fit Statistics

-2 Res Log Pseudo-Likelihood 3488.65
Pseudo-AIC (smaller is better) 3490.65
Pseudo-AICC (smaller is better) 3490.65
Pseudo-BIC (smaller is better) 3493.78
Pseudo-CAIC (smaller is better) 3494.78
Pseudo-HQIC (smaller is better) 3491.92
Pearson Chi-Square 400.28
Pearson Chi-Square / DF 0.58

Covariance Parameter Estimates

Standard
Cov Parm Subject Estimate Error

Intercept PATIENT 2.5318 0.5343

Next, Output 12.3 presents two tables containing estimates and inferences for the fixed
effects in the model. The reported inferences immediately result from the linear mixed
model fitted to the pseudo data in the last step of the iterative estimation procedure. From
the output, it is immediately clear the treatment effect at the last visit is clearly
insignificant (p-value is 0.1286). Comparing this with the p-value obtained after fitting
GLMM with adaptive Gaussian quadrature (p = 0.0954), we see that both yield an
insignificant effect.

Output of Program 12.3. Solutions and Type 3 Tests of Fixed Effects

Solutions for Fixed Effects

Visit Standard
Effect Number TRT Estimate Error DF t Value Pr > |t|

Intercept -1.7036 1.0607 167 -1.61 0.1101
...
VISIT*TRT 8 1 -0.8426 0.5537 518 -1.52 0.1286
...
BASVAL*VISIT 7 0.02743 0.06897 518 0.40 0.6911
BASVAL*VISIT 8 0 . . . .

Type III Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

VISIT 4 518 0.27 0.8959
VISIT*TRT 5 518 0.85 0.5141
BASVAL 1 518 18.12 <.0001
BASVAL*VISIT 4 518 1.20 0.3115
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The Covariance Parameter Estimates portion of the output lists estimates and
associated standard errors for the variance components in the model, i.e., for the elements
in the random-effects covariance matrix G. In our example, this is the random-intercepts
variance g.

Table 12.4 compares the parameter estimates and standard errors with the results
obtained by fitting GLMM with adaptive Gaussian quadrature, using PROC NLMIXED.
Obviously, there are some differences between these two methods for certain parameters.
Since both approaches are likelihood-based, validity under the MAR assumption should be
fulfilled. For PROC NLMIXED, the integral is approximated using adaptive Gaussian
quadrature, which is quite an accurate method, if a sufficient number of quadrature points
are chosen. However, PROC GLIMMIX (or %GLIMMIX macro) is based on penalized
quasi-likelihood, and thus the mean is approximated by a Taylor expansion. This
approximation can be relatively poor for random-effects models and hence the results
thereof should be treated with caution.

Table 12.4 Results of Random-Effects Models in the Depression Trial Example
Note: Parameter estimates (standard errors) for GLMM with adaptive Gaussian quadrature (AGQ) and
penalized-quasi-likelihood methods (PQL).

PQL AGQ

intercept −1.70 (1.06) −2.31 (1.34)
visit 4 0.66 (1.48) 0.64 (1.75)
visit 5 −0.44 (1.29) −0.78 (1.51)
visit 6 0.17 (1.22) 0.19 (1.41)
visit 7 −0.23 (1.25) −0.27 (1.43)
treatment × visit 4 −0.29 (0.66) −0.54 (0.82)
treatment × visit 5 −0.10 (0.53) −0.20 (0.68)
treatment × visit 6 0.33 (0.49) 0.41 (0.64)
treatment × visit 7 −0.47 (0.52) −0.68 (0.67)
treatment × visit 8 −0.84 (0.55) −1.20 (0.72)
baseline 0.10 (0.06) 0.15 (0.07)
baseline × visit 4 0.14 (0.09) 0.21 (0.11)
baseline × visit 5 0.12 (0.07) 0.17 (0.09)
baseline × visit 6 0.007 (0.07) 0.01 (0.08)
baseline × visit 7 0.03 (0.07) 0.03 (0.08)

GLIMMIX Macro for the Random-Effects Model
Although still experimental in SAS 9.1, PROC GLIMMIX can be viewed as a formal
procedure that has grown out of the %GLIMMIX macro, applied earlier for fitting
generalized estimating equations (GEE) based on linearization. In GEE, the association
between repeated measures is modeled through a marginal working correlation matrix.
Now, this correlation is modeled via the inclusion of random effects, conditional on which
repeated measures are assumed to be independent. This similarity implies that the same
macro can be used for fitting generalized linear mixed models as well. Without going into
much detail, we present in Program 12.4 the SAS code needed to repeat the previous
analysis with the %GLIMMIX macro.
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Program 12.4 %GLIMMIX macro for the random-effects model using PQL maximization in the depression
trial example

%glimmix(
data=depression,
stmts=%str(

class class patient visit trt;
model ybin = visit trt*visit basval basval*visit/solution;
random intercept/subject=patient;
parms (4) (1)/hold=2;
),

error=binomial);

The statements that appear in the STMTS statement are directly fed into the PROC
MIXED calls needed for fitting the linear mixed models to the pseudo data. Note that by
default the %GLIMMIX macro includes a residual overdispersion parameter. If the
corresponding generalized linear mixed model does not contain such a parameter, it should
explicitly be kept equal to one. This is done using the HOLD option in the PARMS
statement.

Since PROC MIXED uses REML estimation by default, Program 12.4 requests PQL
estimation based on REML fitting for the pseudo data. If ML fitting is required, this can
be specified by adding the line

procopt=%str(method=ml),

to the GLIMMIX call in Program 12.4. If MQL is required, rather than the default PQL,
this can be specified by adding the following line

options=MQL,

Without discussing the output from the %GLIMMIX macro in much detail, we here
present some output tables, which can be compared with the output from PROC
GLIMMIX (Program 12.3).

Partial Output of Program 12.4

Covariance Parameter Estimates

Cov Parm Subject Estimate

Intercept PATIENT 2.5318
Residual 1.0000

Fit Statistics

-2 Res Log Likelihood 3488.6
AIC (smaller is better) 3490.6
AICC (smaller is better) 3490.7
BIC (smaller is better) 3493.8



340 Pharmaceutical Statistics Using SAS: A Practical Guide

Solution for Fixed Effects

Visit Standard
Effect Number TRT Estimate Error DF t Value Pr > |t|

Intercept -1.7036 1.0607 167 -1.61 0.1101
...
VISIT*TRT 8 1 -0.8426 0.5537 518 -1.52 0.1286
...
BASVAL*VISIT 7 0.02743 0.06897 518 0.40 0.6911
BASVAL*VISIT 8 0 . . . .

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

VISIT 4 518 0.27 0.8959
VISIT*TRT 5 518 0.85 0.5141
BASVAL 1 518 18.12 <.0001
BASVAL*VISIT 4 518 1.20 0.3115

Output 12.4 shows that, indeed, the residual overdispersion parameter was set to one.
The obtained results are identical to the results produced by PROC GLIMMIX in
Program 12.3.

12.7 MNAR Modeling
Even though the assumption of likelihood ignorability encompasses the MAR and not only
the more stringent and often implausible MCAR mechanisms, it is difficult to exclude the
option of a more general MNAR mechanism. One solution for continuous outcomes is to fit
an MNAR model as proposed by Diggle and Kenward (1994). In the discrete case,
Molenberghs, Kenward, and Lesaffre (1997) considered a global odds ratio (Dale) model.

However, as pointed out in the introduction and by several authors (Diggle and
Kenward, 1994; Verbeke and Molenberghs 2000, Chapter 18), we must be extremely careful
with interpreting evidence for or against MNAR in a selection model context, especially in
large studies with a lot of power. We will return to these issues in Section 12.8.

12.7.1 Diggle-Kenward Model
To be consistent with notation introduced in Section 12.3, we assume a vector of outcomes
Yi is designed to be measured. If dropout occurs, Yi is only partially observed. We denote
the occasion at which dropout occurs by Di > 1, and Yi is split into the
(Di − 1)-dimensional observed component Yi

o and the (ni − Di + 1)-dimensional missing
component Yi

m. In case of no dropout, we let Di = ni + 1, and Yi equals Yi
o. The likelihood

contribution of the ith subject, based on the observed data (yi
o, di), is proportional to the

marginal density function

f(yi
o, di|θ, ψ) =

∫
f(yi, di|θ, ψ) dyi

m =
∫

f(yi|θ)f(di|yi, ψ) dyi
m, (12.7.14)

in which a marginal model for Yi is combined with a model for the dropout process,
conditional on the response, and where θ and ψ are vectors of unknown parameters in the
measurement model and dropout model, respectively.

Let hij = (yi1, . . . , yi;j−1) denote the observed history of subject i up to time ti,j−1. The
Diggle-Kenward model for the dropout process allows the conditional probability for
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dropout at occasion j, given that the subject was still observed at the previous occasion, to
depend on the history hij and the possibly unobserved current outcome yij , but not on
future outcomes yik, k > j. These conditional probabilities P (Di = j|Di ≥ j, hij , yij , ψ) can
now be used to calculate the probability of dropout at each occasion:

P (Di = j|yi, ψ) = P (Di = j|hij , yij , ψ)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

P (Di = j|Di ≥ j, hij , yij , ψ) j = 2,

P (Di = j|Di ≥ j, hij , yij , ψ) ×
j−1∏
k=2

[1 − P (Di = k|Di ≥ k, hik, yik, ψ)] j = 3, . . . , ni,

ni∏
k=2

[1 − P (Di = k|Di ≥ k, hik, yik, ψ)] j = ni + 1.

Diggle and Kenward (1994) combine a multivariate normal model for the measurement
process with a logistic regression model for the dropout process. More specifically, the
measurement model assumes that the vector Yi of repeated measurements for the ith
subject satisfies the linear regression model Yi ∼ N(Xiβ, Vi), i = 1, . . . , N . The matrix Vi

can be left unstructured or assumed to be of a specific form, e.g., resulting from a linear
mixed model, a factor-analytic structure, or spatial covariance structure (Verbeke and
Molenberghs, 2000).

In the particular case that a linear mixed model is assumed, we write (Verbeke and
Molenberghs, 2000)

Y i = Xiβ + Zibi + εi, (12.7.15)

where Y i is the n dimensional response vector for subject i, 1 ≤ i ≤ N , N is the number of
subjects, Xi, and Zi are (n × p) and (n × q) known design matrices, β is the p dimensional
vector containing the fixed effects, bi ∼ N(0, G) is the q dimensional vector containing the
random effects. The residual components εi ∼ N(0,Σi).

The logistic dropout model can, for example, take the form

logit [P (Di = j | Di ≥ j, hij , yij , ψ)] = ψ0 + ψ1yi,j−1 + ψ2yij . (12.7.16)

More general models can easily be constructed by including the complete history
hij = (yi1, . . . , yi;j−1), as well as external covariates, in the above conditional dropout model.
Note also that, strictly speaking, we could allow dropout at a specific occasion to be
related to all future responses as well. However, this is rather counter-intuitive in many
cases. Moreover, including future outcomes seriously complicates the calculations since
computation of the likelihood (12.7.14) then requires evaluation of a possibly
high-dimensional integral. Note also that special cases of model (12.7.16) are obtained from
setting ψ2 = 0 or ψ1 = ψ2 = 0, respectively. In the first case, dropout is no longer allowed to
depend on the current measurement, implying MAR. In the second case, dropout is
independent of the outcome, which corresponds to MCAR.

Diggle and Kenward (1994) obtained parameter and precision estimates by maximum
likelihood. The likelihood involves marginalization over the unobserved outcomes Yi

m.
Practically, this involves relatively tedious and computationally demanding forms of
numerical integration. This, combined with likelihood surfaces tending to be rather flat,
makes the model difficult to use. These issues are related to the problems to be discussed
next.

Apart from the technical difficulties encountered during parameter estimation, there are
further important issues surrounding MNAR based models. Even when the measurement
model (e.g., the multivariate normal model) would beyond any doubt be the choice of
preference for describing the measurement process should the data be complete, then the
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analysis of the actually observed, incomplete version is, in addition, subject to further
untestable modeling assumptions.

When missingness is MAR, the problems are less complex, since it has been shown that,
in a likelihood or Bayesian framework, it is sufficient to analyze the observed data, without
explicitly modeling the dropout process (Rubin 1976, Verbeke and Molenberghs 2000).
However, the very assumption of MAR is itself untestable. Therefore, ignoring MNAR
models is as little an option as blindly shifting to one particular MNAR model. A sensible
compromise between considering a single MNAR model on the one hand or excluding such
models from consideration on the other hand, is to study the nature of such sensitivities
and, building on this knowledge, formulate ways for conducting sensitivity analyses.
Indeed, a strong conclusion, arising from most sensitivity analysis work, is that MNAR
models have to be approached cautiously. This was made clear by several discussants to the
original paper by Diggle and Kenward (1994), in particular by Laird, Little, and Rubin. An
implication is that, for example, formal tests for the null hypothesis of MAR versus the
alternative of MNAR should be approached with the utmost caution, a topic studied in
detail by Jansen et al. (2005). These topics are taken up further in Section 12.8.

12.7.2 Implementation of Selection Models in SAS
We have developed a series of SAS programs to implement a special case of the
Diggle-Kenward approach. For the measurement process, we considered a more specific
case of model (12.7.15), with various fixed effects, a random intercept, and allowing
Gaussian serial correlation. This means the covariance matrix V i becomes

V i = dJn + σ2In + τ 2Hi, (12.7.17)

where Jn is an n × n matrix with all its elements equal to 1, In is the n × n identity matrix,
and Hi is determined through the autocorrelation function ρujk , with ujk the Euclidean
distance between tij and tik, i.e.,

Hi =

⎛⎜⎜⎜⎜⎜⎝
1 ρu12 · · · ρu1n

ρu12 1 · · · ρu2n

...
...

. . .
...

ρu1n ρu2n · · · 1

⎞⎟⎟⎟⎟⎟⎠ .

The proposed SAS implementation can easily be adapted for another form of model
(12.7.15), by just changing this V i matrix.

Program 12.7, available on the book’s companion Web site, plays the central role in
fitting the Diggle-Kenward model. The following arguments need to be provided to the
program:

• X and Z matrices that contain all X i and Zi design matrices (i = 1, . . . , N).
• Y vector of all Yi response vectors (i = 1, . . . , N).
• INITIAL is a vector of initial values for the parameters in the model.
• NSUB and NTIME are the number of subjects N and the number of time points n

respectively.

Within Program 12.7, the INTEGR module calculates the integral over the missing
data, and the LOGLIK module evaluates the log-likelihood function L(θ, ψ). Finally, the
log-likelihood function is maximized. Diggle and Kenward (1994) used the simplex
algorithm (Nelder and Mead, 1965) for this purpose and Program 12.7 relies on the
Newton-Raphson ridge optimization method (NLPNRR module of SAS/IML) since it
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combines stability and speed. However, in other analyses, it may be necessary to try several
other optimization methods available in SAS/IML.

The following NLPNRR call is used in the program:

call nlpnrr(rc,xr,"loglik",initial,opt,con);

Here, LOGLIK is the module of the function we want to maximize. The initial values to
start the optimization method are included in the INITIAL vector. The OPT argument
indicates an options vector that specifies details of the optimization process: OPT[1]=1
request maximization, and the amount of output is controlled by OPT[2]. A constraint
matrix is specified in CON, defining lower and upper bounds for the parameters in the first
two rows (d > 0, τ 2 > 0 and σ2 > 0). Finally, all optimization methods return the following
results: the scalar return code, RC, and a row vector, XR. The return code indicates the
reason for the termination of the optimization process. A positive return code indicates
successful termination, whereas a negative one indicates unsuccessful termination. That is,
the result in the XR vector is unreliable. The XR vector contains the optimal point when
the return code is positive.

Next, the program also calls the NLPFDD module, which is a subroutine that
approximates derivatives by finite differences method,

call nlpfdd(maxlik,grad,hessian,"loglik",est);

Here, again LOGLIK is the module of the log-likelihood function. The vector that defines
the point at which the functions and derivatives should be computed is EST. This module
computes the function values MAXLIK (which is in this case the maximum likelihood,
since EST is the maximum likelihood estimate) the gradient vector GRAD, and the
Hessian matrix HESSIAN, which is needed to calculate the information matrix, and thus
the standard errors STDE.

Analysis of Exercise Study Data

The program for fitting the Diggle-Kenward model is now applied to the analysis of the
exercise study data. We will fit the model under the three different missingness
mechanisms, MCAR, MAR, and MNAR. Further, we will also expand the logistic
regression for the dropout model by allowing it to depend on covariates.

To obtain initial values for the parameters of the measurement model, Program 12.5 fits
a linear mixed model to the exercise data using PROC MIXED. We assume a linear trend
within each treatment group, which implies that each profile can be described with two
parameters (intercept and slope). The error matrix is chosen to be of the form (12.7.17).
For subject i = 1, . . . , 50 on time point j = 1, . . . , 4, the model can be expressed as

Yij = β0 + β1 (groupi − 1) + β2 tj (groupi − 1) + β3 tj groupi + εij ,

where εi ∼ N(0, V i) and V i = dJ4 + σ2I4 + τ 2Hi, with

Hi =

⎛⎜⎜⎜⎜⎝
1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ

ρ3 ρ2 ρ 1

⎞⎟⎟⎟⎟⎠ .

The intercept for the placebo group is β0 + β1, and the intercept for the treatment group is
β0. The slopes are β2 and β3, respectively.
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Program 12.5 Linear mixed model in the exercise study example

proc mixed data=exercise method=ml;
class group id;
model y=group time*group/s;
repeated/type=ar(1) local subject=id;
random intercept/type=un subject=id;
run;

The parameter estimates from the fitted linear mixed model (Program 12.5) are shown
in Table 12.5 and will later be used as initial values in Program 12.7.

Table 12.5 Parameter Estimates of the Linear Mixed
Model Used as Initial Values in Program 12.7

Parameter Estimate Initial value

β0 −0.8233 −0.82
β1 0.1605 0.16
β2 0.9227 0.92
β3 1.6451 1.65
d 2.0811 2.08
τ 2 0.7912 0.79
ρ 0.4639 0.46
σ2 0.2311 0.23

Further, initial values for the parameters of the dropout model are also needed. As
mentioned before, we will fit three models in turn, under the MCAR (ψ1 = ψ2 = 0), MAR
(ψ2 = 0) and MNAR mechanisms, respectively. The initial values for these parameters are
given in Table 12.6.

Table 12.6 Initial Values for the Parameters of the Dropout Model

Dropout Mechanism

Parameter MCAR MAR MNAR MNAR + Covariate

ψ0 1 ψ̂0,MCAR ψ̂0,MAR ψ̂0,MNAR

ψ1 1 ψ̂1,MAR ψ̂1,MNAR

ψ2 1 ψ̂2,MNAR

γ 1

The parameters that will later be passed to Program 12.7 (X and Z matrices, Y and
INITIAL vectors, and NSUB and NTIME parameters) are created using PROC IML.
Program 12.6 illustrates the process of creating these variables when the missingness
mechanism is MCAR.

Program 12.6 Creating matrices, vectors and numbers necessary for Program 12.7

proc iml;
use exercise;
read all var {id group time y} into data;
id=data[,1];
group1=data[,2];
group0=j(nrow(data),1,1)-group1;
time=data[,3];
timegroup0=time#group0;
timegroup1=time#group1;
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intercept=j(nrow(data),1,1);
create x var {intercept group0 timegroup0 timegroup1}; append;
y=data[,4];
create y var {y}; append;
z=j(nrow(y),1,1);
create z var {z}; append;
beta=-0.82//0.16//0.92//1.65;
D=2.08;
tau2=0.79;
rho=0.46;
sigma2=0.23;
psi=1;
initial=beta//D//tau2//rho//sigma2//psi;
create initial var {initial}; append;
nsub=50;
create nsub var {nsub}; append;
ntime=4;
create ntime var {ntime}; append;
quit;

Program 12.7 fits the Diggle-Kenward model under the MCAR assumption. To save
space, the complete SAS code is provided on the book’s companion Web site.

Program 12.7 Diggle-Kenward model under the MCAR assumption in the exercise study example

proc iml;
use x; read all into x;
use y; read all into y;
use z; read all into z;
use nsub; read all into nsub;
use ntime; read all into ntime;
use initial; read all into initial;
g=j(nsub,1,0);
start integr(yd) global(psi,ecurr,vcurr,lastobs);
...
finish integr;

start loglik(parameters) global(lastobs,vcurr,ecurr,x,z,y,nsub,ntime,nrun,psi);
...
finish loglik;
opt=j(1,11,0);
opt[1]=1;
opt[2]=5;
con={. . . . 0 0 -1 0 .,

. . . . . . 1 . .};
call nlpnrr(rc,est,"loglik",initial,opt,con);
call nlpfdd(maxlik,grad,hessian,"loglik",est);
inf=-hessian;
covar=inv(inf);
var=vecdiag(covar);
stde=sqrt(var);
create result var {est stde}; append;
quit;

To fit the model under the mechanisms MAR and MNAR, we need to change only a few
lines in Program 12.7. For the model under MAR, we replace
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psi[1]=parameters[9];

with

psi[1:2]=parameters[9:10];

while, under the MNAR assumption, it is replaced by

psi[1:3]=parameters[9:11];

Further, under the MAR and MNAR assumptions, we add one or two columns of dots,
respectively, to the constraints matrix (CON). Parameter estimates resulting from the
model fitted under the three missingness mechanisms, together with the estimates of the
ignorable analysis using PROC MIXED, are listed in Table 12.7.

Table 12.7 Results under Ignorable, MCAR, MAR, and MNAR Assumptions with and without Covariate in
the Dropout Model (Exercise Study Example)

Dropout Mechanism

Ignorable MCAR MAR MNAR MNAR + Cov.

Par. Est. (s.e.) Est. (s.e.) Est. (s.e.) Est. (s.e.) Est. (s.e.)

β0 −0.82 (0.39) −0.82 (0.40) −0.82 (0.40) −0.83 (0.40) −0.82 (0.40)
β1 0.16 (0.56) 0.16 (0.56) 0.16 (0.56) 0.17 (0.56) 0.16 (0.56)
β2 0.92 (0.10) 0.92 (0.10) 0.92 (0.10) 0.93 (0.10) 0.92 (0.10)
β3 1.65 (0.10) 1.65 (0.10) 1.65 (0.10) 1.66 (0.11) 1.64 (0.11)

d 2.08 (0.90) 2.08 (0.91) 2.08 (0.90) 2.09 (0.85) 2.07 (0.96)
τ 2 0.79 (0.54) 0.79 (0.55) 0.79 (0.55) 0.80 (0.70) 0.79 (0.45)
ρ 0.46 (1.10) 0.46 (1.13) 0.46 (1.12) 0.44 (1.12) 0.49 (1.13)
σ2 0.23 (1.08) 0.23 (1.11) 0.23 (1.11) 0.21 (1.24) 0.25 (1.02)

ψ0 −2.33 (0.30) −2.17 (0.36) −2.42 (0.88) −1.60 (1.14)
ψ1 −0.10 (0.14) −0.24 (0.43) −0.018 (0.47)
ψ2 0.16 (0.47) −0.13 (0.54)
γ −0.66 (0.79)

−2� 641.77 641.23 641.11 640.44

Analysis of Exercise Study Data (Extended Model)
Next, we extend the Diggle-Kenward model by allowing the dropout process to depend on
a covariate (GROUP). Thus, instead of (12.7.16), we use the following model

logit [P (Di = j | Di ≥ j, hij , yij , ψ)] = ψ0 + ψ1yi,j−1 + ψ2yij + γ groupi. (12.7.18)

Program 12.7 can easily be adapted to this case. First, in the INTEGR and LOGLIK
modules, we add GROUP and GROUPI as global variables. Further, in the LOGLIK
module, the γ parameter is specified as well:

group=parameters[12];

and where the information on a particular patient is selected, we add:

groupi = xi[1,2];

Next, in the INTEGR module, we replace
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g=exp(psi[1]+psi[2]*lastobs+psi[3]*yd);

with

g=exp(psi[1]+psi[2]*lastobs+psi[3]*yd+group*groupi);

and in the LOGLIK module,

g = exp(psi[1]+yobs[j-1]*psi[2]+yobs[j]*psi[3]);

is replaced by

g = exp(psi[1]+yobs[j-1]*psi[2]+yobs[j]*psi[3]+group*groupi);

Finally, as in the MNAR program, we again add a column of dots to the constraints matrix
(CON). The initial values used are listed in Table 12.6. The results produced by the
program are displayed in Table 12.7. The results of the measurement model should be the
same under the ignorable, MCAR, and MAR assumptions. As we can see from Table 12.7,
this is more or less the case, except for some of the variance components, due to slight
numerical variation. Adding the covariate to the dropout model results in a deviance
change of 0.67, which means the covariate is not significant (p-value is 0.413). A
likelihood-ratio test for the MAR versus MNAR assumption (ψ2 = 0 or not) will not be
fully trustworthy (Jansen et al., 2005). Note that, under the MNAR assumption, the
estimates for ψ1 and ψ2 are more or less equal, but with different signs.

12.8 Sensitivity Analysis
Sensitivity to model assumptions has been reported for about two decades (Verbeke and
Molenberghs, 2000; Molenberghs and Verbeke, 2005). In an attempt to formulate an answer
to these concerns, a number of authors have proposed strategies to study sensitivity.

Broadly, we could define a sensitivity analysis as one in which several statistical models
are considered simultaneously and/or where a statistical model is further scrutinized using
specialized tools (such as diagnostic measures). This rather loose and very general
definition encompasses a wide variety of useful approaches. The simplest procedure is to fit
either a selected number of (MNAR) models which are all deemed plausible or to fit one
model in which a preferred (primary) analysis is supplemented with a number of variations.
The extent to which conclusions (inferences) are stable across such ranges provides an
indication about the belief that can be put into them. Variations to a basic model can be
constructed in different ways. The most obvious strategy is to consider various
dependencies of the missing data process on the outcomes and/or on covariates.
Alternatively, the distributional assumptions of the models can be changed.

Several publications have proposed the use of global and local influence tools (Verbeke
et al., 2001; Verbeke and Molenberghs, 2000; Molenberghs and Verbeke, 2005). An
important question is this: To what exactly are the sources causing an MNAR model to
provide evidence for MNAR against MAR? There is evidence enough for us to believe that
a multitude of outlying aspects is responsible for an apparent MNAR mechanism (Jansen
et al., 2005). But it is not necessarily believable that the (outlying) nature of the
missingness mechanism in one or a few subjects is responsible for an apparent MNAR
mechanism. The consequence of this is that local influence should be applied and
interpreted with due caution.

Further, within the selection model framework, Baker, Rosenberger, and DerSimonian
(1992) proposed a model for multivariate and longitudinal binary data, subject to
nonmonotone missingness. Jansen et al. (2003) extended this model to allow for (possibly
continuous) covariates, and developed a local influence strategy.
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Next, classical inference procedures account for the imprecision resulting from the
stochastic component of the model. Less attention is devoted to the uncertainty arising
from (unplanned) incompleteness in the data, even though the majority of clinical studies
suffer from incomplete follow-up. Molenberghs et al. (2001) acknowledge both the status of
imprecision, due to (finite) random sampling, as well as ignorance, due to incompleteness.
Further, both can be combined into uncertainty (Kenward, Molenberghs, and Goetghebeur,
2001).

Another route for sensitivity analysis is to consider pattern-mixture models as a
complement to selection models. A third framework consists of so-called shared parameter
models, where random effects are employed to describe the relationship between the
measurement and dropout processes (Wu and Carroll, 1988; DeGruttola and Tu, 1994).

More detail on some of these procedures can be found in Molenberghs and Verbeke
(2005). Let us now turn to the case of sensitivity analysis tools for selection models.

Sensitivity Analysis for Selection Models
Particularly within the selection modeling framework, there has been an increasing
literature on MNAR missingness. At the same time, concern has been growing precisely
about the fact that models often rest on strong assumptions and relatively little evidence
from the data themselves.

A sensible compromise between blindly shifting to MNAR models or ignoring them
altogether is to make them a component of a sensitivity analysis. In any case, fitting an
MNAR dropout model should be subject to careful scrutiny. The modeler needs to pay
attention, not only to the assumed distributional form of the model (Little, 1994b;
Kenward, 1998), but also to the impact one or a few influential subjects may have on the
dropout and/or measurement model parameters. Because fitting an MNAR dropout model
is feasible by virtue of strong assumptions, such models are likely to pick up a wide variety
of influences in the parameters describing the nonrandom part of the dropout mechanism.
Hence, a good level of caution is in place.

First, an informal sensitivity analysis is applied on the mastitis data. Next, the model of
Diggle and Kenward (1994) is adapted to a form useful for sensitivity analysis, whereafter
such a sensitivity analysis method, based on local influence (Cook, 1986; Thijs,
Molenberghs and Verbeke, 2000), is introduced and applied to the mastitis data.

Informal Sensitivity Analysis of the Mastitis Data

Diggle and Kenward (1994) and Kenward (1998) performed several analyses of the mastitis
data described in Section 12.2. In Diggle and Kenward (1994), a separate mean for each
group defined by the year of first lactation and a common time effect was considered,
together with an unstructured 2 × 2 covariance matrix. The dropout model included both
Yi1 and Yi2 and was reparameterized in terms of the size variable (Yi1 + Yi2)/2 and the
increment Yi2 − Yi1. Kenward (1998) carried out what we could term a data-driven
sensitivity analysis. The right panel of Figure 12.3 reveals that there appear to be two
cows, #4 and #5 (black dots), with unusually large increments. Kenward conjectured that
this might mean that these animals were ill during the first lactation year, producing an
unusually low yield, whereas a normal yield was obtained during the second year. A simple
multivariate Gaussian linear model is used to represent the marginal milk yield in the two
years (i.e., the yield that would be, or was, observed in the absence of mastitis):(

Yi1

Yi2

)
= N

((
β0

β1

)
,

(
σ2

1 σ12

σ12 σ2
2

))
. (12.8.19)
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Note that β1 represents the change in average yield between the two years. The
probability of mastitis is assumed to follow the logistic regression model:

logit [P (dropout)] = ψ0 + ψ1y1 + ψ2y2. (12.8.20)

The combined response/dropout model was fitted to the milk yields by using a program
analogous to Program 12.7, presented in Section 12.7. In addition, the MAR model
(ψ2 = 0) was fitted in the same way. These fits produced the parameter estimates displayed
in the All column of Table 12.8.

Using the likelihoods to compare the fit of the two models, we get a difference
G2 = 3.12. The corresponding tail probability from the χ2

1 is 0.07. This test essentially
examines the contribution of ψ2 to the fit of the model. Using the Wald statistic for the
same purpose gives a statistic of (−2.52)2/0.86 = 7.38, with corresponding χ2

1 probability of
0.007. The discrepancy between the results of the two tests suggests that the asymptotic
approximations on which these tests are based are not very accurate in this setting, and
the standard error probability underestimates the true variability of the estimate of ψ2.

Table 12.8 Maximum Likelihood Estimates (Standard Errors) of MAR and MNAR
Dropout Models under Several Deletion Schemes in the Mastitis Example

MAR Dropout

Parameter All (7,53,54,66,69,70) (4,5)

β0 5.77 (0.09) 5.65 (0.09) 5.81 (0.09)
β1 0.71 (0.11) 0.67 (0.10) 0.64 (0.09)

σ2
1 0.87 (0.12) 0.72 (0.10) 0.77 (0.11)

σ12 0.63 (0.13) 0.44 (0.10) 0.72 (0.13)
σ2

2 1.31 (0.20) 1.00 (0.16) 1.29 (0.20)

ψ0 −3.33 (1.52) −4.03 (1.76) −3.09 (1.57)
ψ1 0.38 (0.25) 0.50 (0.30) 0.34 (0.26)
ψ2 0 0 0

−2� 624.13 552.24 574.19

MNAR Dropout

Parameter All (7,53,54,66,69,70) (4,5)

β0 5.77 (0.09) 5.65 (0.09) 5.81 (0.09)
β1 0.32 (0.14) 0.36 (0.15) 0.64 (0.14)

σ2
1 0.87 (0.12) 0.72 (0.10) 0.77 (0.11)

σ12 0.55 (0.13) 0.38 (0.11) 0.72 (0.13)
σ2

2 1.57 (0.28) 1.16 (0.23) 1.29 (0.20)

ψ0 −0.34 (2.33) −0.55 (2.57) −3.10 (1.74)
ψ1 2.36 (0.79) 2.01 (0.82) 0.32 (0.72)
ψ2 −2.52 (0.86) −2.09 (0.98) 0.01 (0.72)

−2� 624.13 551.54 574.19

G2 for MNAR 3.12 0.70 0.0004

The dropout model estimated from the MNAR setting is as follows:

logit [P (mastitis)] = −0.34 + 2.36y1 − 2.52y2.

Some insight into this fitted model can be obtained by rewriting it in terms of the milk
yield totals (Y1 + Y2) and increments (Y2 − Y1):

logit [P (mastitis)] = −0.34 − 0.078(y1 + y2) − 2.438(y2 − y1).
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The probability of mastitis increases with larger negative increments, i.e., animals that
showed (or would have shown) a greater decrease in yield over the two years have a higher
probability of getting mastitis. The other differences in parameter estimates between the
two models are consistent with this: the MNAR dropout model predicts a smaller average
increment in yield (β1), with larger second year variance and smaller correlation caused by
greater negative imputed differences between yields.

12.8.1 Local Influence
The local influence approach, suggested by Cook (1986), can be used to investigate the
effect of extending an MAR model for dropout in the direction of MNAR dropout (Verbeke
et al., 2001).

Again we consider the Diggle and Kenward (1994) model described in Section 12.7.1 for
continuous longitudinal data subject to dropout. Since no data would be observed
otherwise, we assume that the first measurement Yi1 is obtained for every subject in the
study. We denote the probability of dropout at occasion k, given the subject was still in the
study up to occasion k by g(hik, yik). For the dropout process, we now consider an
extension of model (12.7.16), which can be written as

logit [g(hik, yik)] = logit [P(Di = k|Di ≥ k, yi)] = hikψ + ωyij , (12.8.21)

in which hik is the vector containing the history H ik as well as covariates. When ω equals
zero and the model assumptions made are correct, the dropout model is MAR, and all
parameters can be estimated using standard software since the measurement and dropout
model can then be fitted separately. If ω 
= 0, the dropout process is assumed to be MNAR.
Now, a dropout model may be found to be MNAR solely because one or a few influential
subjects have driven the analysis. To investigate sensitivity of estimation of quantities of
interest, such as treatment effect, growth parameters, or the dropout model parameters,
with respect to assumptions about the dropout model, we consider the following perturbed
version of (12.8.21):

logit [g(hik, yik)] = logit [P(Di = k|Di ≥ k, yi, Wi)] = hikψ + ωiyik, i = 1, . . . , N. (12.8.22)

There is a fundamental difference with model (12.8.21) since the ωi should not be viewed as
parameters: they are local, individual-specific perturbations around a null model. In our
case, the null model will be the MAR model, corresponding to setting ω = 0 in (12.8.21).
Thus the ωi are perturbations that will be used only to derive influence measures (Cook,
1986).

This scheme enables studying the effect of how small perturbation in the MNAR
direction can have a large impact on key features of the model. Practically, one way of
doing this is to construct local influence measures (Cook, 1986). Clearly, not all possible
forms of impact resulting from sensitivity to dropout model assumptions will be found in
this way, and the method proposed here should be viewed as one component of a
sensitivity analysis (e.g. Molenberghs, Kenward, and Goetghebeur, 2001).

When small perturbations in a specific ωi lead to relatively large differences in the
model parameters, it suggests that the subject is likely to drive the conclusions.

Cook (1986) suggests that more confidence can be put in a model which is relatively
stable under small modifications. The best known perturbation schemes are based on case
deletion (Cook and Weisberg 1982) in which the study of interest is the effect of completely
removing cases from the analysis. A quite different paradigm is the local influence approach
where the investigation concentrates on how the results of an analysis are changed under
small perturbations of the model. In the framework of the linear mixed model Beckman,
Nachtsheim, and Cook (1987) used local influence to assess the effect of perturbing the
error variances, the random-effects variances, and the response vector. In the same context,
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Lesaffre and Verbeke (1998) have shown that the local influence approach is also useful for
the detection of influential subjects in a longitudinal data analysis. Moreover, since the
resulting influence diagnostics can be expressed analytically, they often can be decomposed
in interpretable components, which yield additional insights in the reasons why some
subjects are more influential than others.

We are interested in the influence of MNAR dropout on the parameters of interest. This
can be done in a meaningful way by considering (12.8.22) as the dropout model. Indeed,
ωi = 0 for all i corresponds to an MAR process, which cannot influence the measurement
model parameters. When small perturbations in a specific ωi lead to relatively large
differences in the model parameters, then this suggests that these subjects may have a
large impact on the final analysis. However, even though we may be tempted to conclude
that such subjects drop out non-randomly, this conclusion is misguided since we are not
aiming to detect (groups of) subjects that drop out non-randomly but rather subjects that
have a considerable impact on the dropout and measurement model parameters. Indeed, a
key observation is that a subject that drives the conclusions towards MNAR may be doing
so, not only because its true data-generating mechanism is of an MNAR type, but also for
a wide variety of other reasons, such as an unusual mean profile or autocorrelation
structure. Earlier analyses have shown that this may indeed be the case. Likewise, it is
possible that subjects, deviating from the bulk of the data because they are generated
under MNAR, go undetected by this technique. This reinforces the concept that we must
reflect carefully upon which anomalous features are typically detected and which ones
typically go unnoticed.

Key Concepts
Let us now introduce the key concepts of local influence. We denote the log-likelihood
function corresponding to model (12.8.22) by

�(γ|ω) =
N∑

i=1

�i(γ|ωi),

in which �i(γ|ωi) is the contribution of the ith individual to the log-likelihood, and where
γ = (θ, ψ) is the s-dimensional vector, grouping the parameters of the measurement model
and the dropout model, not including the N × 1 vector ω = (ω1, ω2, . . . , ωN)′ of weights
defining the perturbation of the MAR model. It is assumed that ω belongs to an open
subset Ω of IRN . For ω equal to ω0 = (0, 0, . . . , 0)′, �(γ|ω0) is the log-likelihood function
which corresponds to a MAR dropout model.

Let γ̂ be the maximum likelihood estimator for γ, obtained by maximizing �(γ|ω0), and
let γ̂ω denote the maximum likelihood estimator for γ under �(γ|ω). The local influence
approach now compares γ̂ω with γ̂. Similar estimates indicate that the parameter estimates
are robust with respect to perturbations of the MAR model in the direction of non-random
dropout. Strongly different estimates suggest that the estimation procedure is highly
sensitive to such perturbations, which suggests that the choice between an MAR model and
a non-random dropout model highly affects the results of the analysis. Cook (1986)
proposed to measure the distance between γ̂ω and γ̂ by the so-called likelihood
displacement, defined by

LD(ω) = 2[�(γ̂|ω0) − �(γ̂ω|ω0)].

This takes into account the variability of γ̂. Indeed, LD(ω) will be large if �(γ|ω0) is
strongly curved at γ̂, which means that γ is estimated with high precision, and small
otherwise. Therefore, a graph of LD(ω) versus ω contains essential information on the
influence of perturbations. It is useful to view this graph as the geometric surface formed
by the values of the N + 1 dimensional vector ξ(ω) = (ω′, LD(ω))′ as ω varies throughout Ω.
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Since this influence graph can be depicted only when N = 2, Cook (1986) proposed to
look at local influence, i.e., at the normal curvatures Ch of ξ(ω) in ω0, in the direction of
some N dimensional vector h of unit length. Let Δi be the s dimensional vector defined by

Δi =
∂2�i(γ|ωi)

∂ωi∂γ

∣∣∣∣
γ=γ̂,ωi=0

and define Δ as the (s × N) matrix with Δi as its ith column. Further, let L̈ denote the
(s × s) matrix of second order derivatives of �(γ|ω0) with respect to γ, also evaluated at
γ = γ̂. Cook (1986) has then shown that Ch can be easily calculated by

Ch = 2|h′Δ′L̈−1Δh|.

Obviously, Ch can be calculated for any direction h. One evident choice is the vector hi

containing one in the ith position and zero elsewhere, corresponding to the perturbation of
the ith weight only. This reflects the influence of allowing the ith subject to drop out
non-randomly, while the others can drop out only at random. The corresponding local
influence measure, denoted by Ci, then becomes Ci = 2|Δ′

iL̈
−1Δi|. Another important

direction is the direction hmax of maximal normal curvature Cmax. It shows how to perturb
the MAR model to obtain the largest local changes in the likelihood displacement. It is
readily seen that Cmax is the largest eigenvalue of −2 Δ′L̈−1Δ, and that hmax is the
corresponding eigenvector.

Local Influence in the Diggle-Kenward Model

As discussed in the previous section, calculation of local influence measures merely reduces
to evaluation of Δ and L̈. Expressions for the elements of L̈ in case Σi = σ2I are given by
Lesaffre and Verbeke (1998), and can easily be extended to the more general case
considered here. Further, it can be shown that the components of the columns Δi of Δ are
given by

∂2�iω

∂θ∂ωi

∣∣∣∣
ωi=0

= 0,
∂2�iω

∂ψ∂ωi

∣∣∣∣
ωi=0

= −
ni∑

j=2

hijyijg(hij)[1 − g(hij)], (12.8.23)

for complete sequences (no dropout) and by

∂2�iω

∂θ∂ωi

∣∣∣∣
ωi=0

= [1 − g(hid)]
∂λ(yid|hid)

∂θ
, (12.8.24)

∂2�iω

∂ψ∂ωi

∣∣∣∣
ωi=0

= −
d−1∑
j=2

hijyijg(hij)[1 − g(hij)]

−hidλ(yid|hid)g(hid)[1 − g(hid)]. (12.8.25)

for incomplete sequences. All the above expressions are evaluated at γ̂, and where
g(hij) = g(hij , yij)|ωi=0, is the MAR version of the dropout model.

Let Vi,11 be the predicted covariance matrix for the observed vector (yi1, . . . , yi,d−1)′, Vi,22
is the predicted variance for the missing observation yid, and Vi,12 is the vector of predicted
covariances between the elements of the observed vector and the missing observation. It
then follows from the linear mixed model (12.7.15) that the conditional expectation for the
observation at dropout, given the history, equals

λ(yid|hid) = λ(yid) + Vi,12V
−1
i,11[hid − λ(hid)], (12.8.26)

which is used in (12.8.24).
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The derivatives of (12.8.26) with respect to the measurement model parameters are

∂λ(yid|hid)
∂β

= xid − Vi,12V
−1
i,11Xi,(d−1), (12.8.27)

∂λ(yid|hid)
∂α

=
[
∂Vi,12

∂α
− Vi,12V

−1
i,11

∂Vi,11

∂α

]
V −1

i,11[hid − λ(hid)] (12.8.28)

where x′
id is the dth row of Xi, and where Xi,(d−1) indicates the first (d − 1) rows Xi.

Further, α indicates the subvector of covariance parameters within the vector θ.
In practice, the parameter θ in the measurement model is often of primary interest.

Since L̈ is block-diagonal with blocks L̈(θ) and L̈(ψ), we can write for any unit vector h,
Ch = Ch(θ) + Ch(ψ). It now immediately follows from (12.8.24) that influence on θ only
arises from those measurement occasions at which dropout occurs. In particular, from
expression (12.8.24), it is clear that the corresponding contribution is large only if (1) the
dropout probability is small but the subject disappears nevertheless and (2) the conditional
mean strongly depends on the parameter of interest. This implies that complete sequences
cannot be influential in the strict sense (Ci(θ) = 0) and that incomplete sequences only
contribute only at the actual dropout time.

Implementation of Local Influence Analysis in SAS
Program 12.8 relies on SAS/IML to calculate the normal curvature Ch of ξ(ω) in ω0, in the
direction the unit vector h.

As in Program 12.7, we first need to create the X and Z matrices, Y and INITIAL
vectors, and NSUB and NTIME parameters (this can be accomplished in PROC IML using
a program analogous to Program 12.6). The initial parameters should be the estimates of
the parameters of the MAR model, fitted using a program analogous to Program 12.7.
Next, we need the INTEGR and LOGLIK modules introduced in Program 12.7. These are
called to calculate the log-likelihood function of the Diggle and Kenward (1994) model
under the MNAR assumption. This is needed for the evaluation of Δ as well as for L̈.
Program 12.8 also calls the DELTA module to calculate the Δ vector, whereas L̈ is
calculated using the NLPFDD module of SAS/IML which was introduced earlier in
Section 12.7.2. Finally, Program 12.8 created the C MATRIX data set that contains the
following normal curvatures in the direction of the unit vector hi containing one in the ith
position and zero elsewhere,

C = Ci, C1 = Ci(β), C2 = Ci(α), C12 = Ci(θ), C3 = Ch(ψ),

and the normal curvature in the direction of HMAX= hmax of maximal normal curvature
CMAX= Cmax. The C MATRIX data set can now be used to picture the local influence
measures. The complete SAS code of Program 12.8 is provided on the book’s companion
Web site.

Program 12.8 Local influence sensitivity analysis

proc iml;
use x; read all into x;
use y; read all into y;
use nsub; read all into nsub;
use ntime; read all into ntime;
use initial; read all into initial;
g=j(nsub,1,0);
start integr(yd) global(psi,ecurr,vcurr,lastobs);
...
finish integr;
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start loglik(parameters) global(lastobs,vcurr,ecurr,x,z,y,nsub,ntime,nrun,psi);
...
finish loglik;

start delta(parameters) global(lastobs,vcurr,ecurr,x,z,y,nsub,ntime,nrun,psi);
...
finish delta;

opt=j(1,11,0);
opt[1]=1;
opt[2]=5;
con={. . 0 . 0 . . ,

. . . . . . . };
call nlpnrr(rc,est,"loglik",initial,opt,con);

* Calculation of the Hessian;
...
* Calculation of the C-matrix;
...
create c_matrix var {subject ci c12i c3i c1i c2i hmax cmax};
append;
quit;

Mastitis Data
We will apply the local influence method to the mastitis data described in Section 12.2. For
the measurement process, we use model (12.8.19) and thus the covariance matrix V i is
unstructured. Since there are only two measurement occasions, Yi1 and Yi2, the components
of the columns Δi of Δ are given by (12.8.23), when both measurements are available, and
by (12.8.24) and (12.8.25), when only the first measurement is taken. In the latter case, we
need Vi,11, Vi,12, and their derivatives with respect to the three variance components σ2

1 , σ12
and σ2

2 , to calculate (12.8.26), (12.8.27), and (12.8.28). Since an incomplete sequence can
occur only when the cow dropped out at the second measurement occasion, we have that
Vi,11 = σ2

1 and Vi,12 = σ12, and thus

∂Vi,11

∂σ12
=

∂Vi,12

∂σ2
2

= 0,
∂Vi,12

∂σ2
1

=
∂Vi,12

∂σ2
2

= 0,
∂Vi,11

∂σ2
1

=
∂Vi,12

∂σ12
= 1.

If we have another form of model (12.7.15), the program can be adapted, by changing V i,
Vi,11, Vi,12, and the derivatives.

The results of the local influence analysis of the mastitis data (based on Program 12.8)
are shown in Figure 12.7 which suggests that there are six influential subjects: #7, #53,
#54, #66, #69, and #70, while #4 and #5 are not recovered. It is interesting to consider
an analysis with these six cows removed. The influence on the likelihood ratio test is a little
smaller then in the case of removing #4 and #5: G2 = 0.07 compared to G2 = 0.0004 when
removing #4 and #5 instead of the original 3.12. The influence on the measurement model
parameters under both random and non-random dropout is small for the fixed effects
parameters, but not so small for the covariance components parameters.

Local and Global Influence
Let us now discuss differences between local and global influence. It is very important to
realize that we should not expect agreement between the deletion and local influence
analyses. The latter focuses on the sensitivity of the results with respect to the assumed
dropout model, more specifically on how the results change when the MAR model is
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Figure 12.7 Index plots of Ci, Ci(θ), Ci(α), Ci(β), Ci(ψ) and of the components of the direction hmax,i of
maximal curvature in the mastitis example
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extended into the direction of non-random dropout. In Ci(β) and Ci(α) panels, little or no
influence is detected, certainly when the scale is compared to the one of Ci(ψ). This is
obvious for subjects #53, #54, #66, and #69, since all these are complete and hence
Ci(θ) ≡ 0, placing all influence on Ci(ψ). Of course, a legitimate concern is precisely where
we should place a cut-off between subjects that are influential and those that are not.
Clearly, additional work studying the stochastic behavior of the influence measures would
be helpful. Meanwhile, informal guidelines can be used, such as studying 5% of the
relatively most influential subjects.

Kenward (1998) observed that Cows #4 and #5 in the mastitis example are unusual on
the basis of their increment. This is in line with several other applications of similar
dropout models (Molenberghs, Kenward, and Lesaffre, 1997) where it was found that a
strong incremental component apparently yields a non-random dropout model. From the
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analysis done, it is clear that such a conclusion may not be well founded, since removal of
#4 and #5 leads to disappearance of the non-random component (see Table 12.8).

12.9 Summary
Analyzing incomplete (longitudinal) data, both of a Gaussian as well as of a non-Gaussian
nature, can easily be conducted under the relatively relaxed assumption of missingness at
random (MAR), using standard statistical software tools. Likelihood-based methods
include the linear mixed model and generalized linear mixed models. In addition, weighted
generalized estimating equations (WGEE) can be used as a relatively straightforward fix
up of ordinary generalized estimating equations (GEE) so that also this technique is valid
under MAR. Alternative methods which allow for ignoring the missing data mechanism
under MAR include multiple imputation (MI) and the Expectation-Maximization (EM)
algorithm. The GLIMMIX macro and PROC GLIMMIX were both presented as two useful
implementations of the generalized estimating equations approach, usefully supplementing
the more familiar GENMOD procedure. Further, the GLIMMIX tools are useful for
generalized linear mixed modeling, supplementing PROC NLMIXED. The depression trial
was used as an illustration.

These considerations imply that traditionally popular but very restricted modes of
analysis, including complete case (CC) analysis, last observation carried forward (LOCF),
or other simple imputation methods, ought to be abandoned, given the highly restrictive
assumptions on which they are based.

Of course, general missingness not at random can never be entirely excluded, and one
should therefore ideally supplement an ignorable analysis with a suitable chosen set of
sensitivity analyses. Therefore, we presented a formal selection modeling framework for
continuous outcomes, for categorical responses, and contrasted these to the
pattern-mixture framework. The general MNAR selection model of Diggle and Kenward
(1994) for the exercise bike data was fitted using SAS/IML code. Further, we showed
explicit sensitivity analysis methods. We presented a local influence analysis for the
mastitis data, supplemented with the necessary SAS/IML code. We further sketched
frameworks for incomplete binary and ordinal data, based on local influence ideas. Finally,
as a sensitivity analysis for pattern-mixture models, identifying restrictions are proposed as
a viable strategy.
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Using outcome measures that are reliable and valid is a prerequisite for quality clinical
research. In this chapter, statistical approaches for assessing the reliability and validity of
an outcome measure are presented and discussed. In addition to explanations of the general
concepts, examples from multiple clinical experiments using a variety of outcome measures
are provided.

13.1 Introduction
Adequate clinical trials require the use of valid and reliable measurements. In general, a
measure is said to be valid if it accurately reflects the concept it is intended to measure. A
measure is said to be reliable if repeated assessments of a stable subject or population using
the measure produces similar results. The establishment of the reliability and validity of a
measure is not a single test, but rather it is a summary of its psychometric properties using
multiple approaches.

Section 2.2.2 of the ICH E9 guidelines emphasizes the importance of using primary
measures that are both reliable and valid for the population enrolled in a clinical trial.
Specifically, “there should be sufficient evidence that the primary variable can provide a
valid and reliable measure of some clinically relevant and important treatment benefit in
the population described by the inclusion exclusion criteria.” In addition, the guidelines
state that when rating scales are used as primary variables, it is especially important to
address such factors as validity, inter- and intra-rater reliability, and responsiveness.

Regulatory guidance is not the only reason to use measures with adequate reliability
and validity. Both Kraemer (1991) and Leon et al. (1995) studied the relationship between
reliability and power to detect treatment differences. Kraemer assessed test-retest
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reliability while Leon et al. focused on internal consistency. Both demonstrated that large
increases in power are possible (with a fixed sample size) by using a scale with greater
reliability as opposed to a measure with low to moderate reliability. Faries et al. (2001)
showed that the impact of using a unidimensional rather than a multidimensional scale for
depression clinical trials results in the need for approximately one-third fewer subjects. Due
to overlapping symptoms in some disease states, using a scale with discriminant validity is
critical to making claims of efficacy for a particular disease state. In summary, use of a
measure without established reliability may prove unnecessarily costly (result in a larger
trial than necessary or a failed trial due to reduced power), and using a measure without
appropriate validity can severely affect the credibility of the results.

In drug development, one is often faced with the challenge of validating a measure or
selecting a measure based in part on their psychometric properties. For instance, one may
wish to use a scale that is validated as a patient-rated scale as an observer-rated scale. In
addition, one may need to create a composite variable, use a subscale, or wish to develop a
new rating scale with potential advantages over existing measures. In each of these
scenarios, the statistician is faced with the challenge of quantitatively demonstrating the
reliability and validity of the outcome measures. Even when appropriate validation for a
measure has been established, often one is interested in documenting inter-rater reliability
for the group of individuals who will be conducting a specific experiment or trial.

In this chapter we review some basic approaches for assessing the reliability and validity
of an outcome measure and provide several numerical examples using SAS. The
development of a rating scale typically starts with literature reviews, focus groups, and
cognitive interviews to help develop and refine potential items. However, the development
stage of an outcome measure is beyond the scope of this chapter. For an example of the
development of a new scale, see Cappelleri et al. (2004).

To save space, some SAS code has been shortened and some output is not shown. The
complete SAS code and data sets used in this book are available on the book’s companion
Web site at http://support.sas.com/publishing/bbu/companion site/60622.html.

13.1.1 Other Methods
The following reliability/validity methods are not discussed in detail in this chapter, but
are provided here as a reference. For cases when a value can be specified for which a
difference of less than the value is clinically non-relevant, Lin et al. (2002) discusses the use
of a total deviation index and coverage probabilities relative to the concordance correlation
coefficient (CCC). Evans et al. (2004) provides an example of using item response theory to
identify items from the Hamilton Rating Scale for Depression (HAMD) with poor
psychometric properties. Beretvas and Pastor (2003) summarize the use of mixed-effect
models and reliability generalization studies for assessing reliability. Lastly, Donner and
Eliasziw (1987) discuss sample size guidelines for reliability studies.

13.2 Reliability
Reliability is the degree to which multiple measurements on a subject agree. Typically this
includes establishing appropriate levels of inter-rater reliability, test-retest reliability, and
internal consistency. Inter-rater reliability is an assessment of the agreement between
different raters’ scores for the same subject at the same point in time. Test-retest reliability
summarizes the consistency between different measurements on the same subject over time.
Intra-rater reliability is a special case of test-retest reliability where measurements are
obtained by the same rater over time on the same subject. Internal consistency evaluates
the consistency with the items of a scale assessing the same construct. In this section we
discuss several approaches to quantitatively assessing reliability, and we provide numerical
examples using SAS.
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13.2.1 Inter-Rater Reliability
A measure is said to have inter-rater reliability if ratings by different individuals at the
same time on the same subject are similar. Inter-rater reliability is not only assessed when
validating a newly created instrument, but is also used prior to beginning a clinical trial to
quantify the reliability of the measure as used by the raters participating in the trial. In
the latter case, these evaluation sessions are used to both train and quantify inter-rater
reliability, even when a scale with established reliability is being used.

13.2.2 Kappa Statistic
The Kappa statistic (κ) is the most commonly used tool for quantifying the agreement
between raters when using a dichotomous or nominal scale, while the intraclass correlation
coefficient (ICC) or concordance correlation coefficient (CCC) are the recommended
statistics for continuous measures. The use of κ will be discussed in this section while
examples of the use of ICC and CCC are presented later (see Sections 13.2.5 and 13.2.7).

The κ statistic is the degree of agreement above and beyond chance agreement
normalized by the degree of attainable agreement above what would be predicted by
chance. This measure is superior to simple percent agreement as it accounts for chance
agreement. For instance, if two raters diagnose a set of 100 patients for the presence or
absence of a rare disease, they would have a high percentage of agreement even if they each
randomly chose one subject to classify as having the disease and classified all others as not
having the disease. However, the high agreement would likely not result in a high value
for κ.

Table 13.1 Notation Used in the Definition
of the κ Statistic

Rater B
Rater 1 Yes No Total

Yes n11 n12 n1.

No n21 n22 n2.

Total n.1 n.2 n

To define κ, consider the notation for a 2 × 2 table displayed in Table 13.1 and let
pij = nij/n, pi. = ni./n and p.j = n.j/n. The value of κ can be estimated by using the
observed cell proportions as follows:

κ =
pa − pc

1 − pc
,

where pa is given by pa =
∑

i pii and represents the observed proportion of agreement in
these data. Further, pc is defined as pc =

∑
i pi.p.i and represents the proportion of

agreement expected by chance. Confidence intervals can be computed using the asymptotic
standard deviation of κ provided by Fleiss et al. (1969):

sκ =
[
A + B − C

(1 − pc)2n

]
,

where

A =
∑

i

pii[1 − (pi. + p.i)(1 − κ)]2,

B = (1 − κ)2
∑
i �=j

pij(pi. + p.i)2,

C = [κ − pc(1 − κ)]2.
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Fleiss (1981) provided the variance of κ under the null hypothesis (κ = 0) which can be
used to construct a large sample test statistic:

sκ0 =
1√

n(1 − pc)

[
pc + p2

c −
∑

i

pi.p.i(pi. + p.i)

]1/2

.

For exact inference calculations, the observed results are compared with the set of all
possible tables with the same marginal row and column scores. See Agresti (1992) or Mehta
and Patel (1983) for details on computing exact tests for contingency table data.

EXAMPLE: Schizophrenia diagnosis example
The simplest example of inter-rater reliability study is when two raters rate a group of
subjects as to whether certain criteria (e.g., diagnosis) are met using a diagnostic
instrument. The κ statistic is the traditional approach to assessing interrater reliability in
such circumstances. PROC FREQ provides for easy computation of the κ statistic, with
inferences based on either large sample assumptions or an exact test.

Bartko (1976) provided an example where two raters classified subjects as to whether
they had a diagnosis of schizophrenia. These data, modified for this example, are displayed
in Table 13.2 and will be used to demonstrate the computation of the κ statistic in SAS.

Table 13.2 Schizophrenia Diagnosis
Example Data Set (N = 30)

Rater B
Rater A Yes No

Yes 5 3
No 1 21

Program 13.1 uses the FREQ procedure to compute the κ statistic in the schizophrenia
diagnosis example.

Program 13.1 Computation of the κ statistic

data schiz;
input rater_a $ rater_b $ num;
cards;
yes yes 5
yes no 3
no yes 1
no no 21
;

proc freq data=schiz;
weight num;
tables rater_a*rater_b;
exact agree;
run;

Output from Program 13.1

Simple Kappa Coefficient

Kappa (K) 0.6296
ASE 0.1665
95% Lower Conf Limit 0.3033
95% Upper Conf Limit 0.9559



Chapter 13 Reliability and Validity: Assessing the Psychometric Properties of Rating Scales 365

Test of H0: Kappa = 0

ASE under H0 0.1794
Z 3.5093
One-sided Pr > Z 0.0002
Two-sided Pr > |Z| 0.0004

Exact Test
One-sided Pr >= K 0.0021
Two-sided Pr >= |K| 0.0021

Sample Size = 30

Note that in this example the observed agreement is p11 + p22 = 26/30 = 86.7%.
However, a 64% agreement can be expected by chance given the observed marginals, i.e.,

1
N

∑
i

ni.n.i = 19.2/30 = 64%.

Output 13.1 shows that the estimated κ is 0.6296 with a 95% confidence interval of
(0.3033, 0.9559). This level of agreement (in the range of 0.4 to 0.8) is considered moderate,
while κ values of 0.80 and higher indicate excellent agreement (Stokes et al., 2000).
Output 13.1 also provides for testing the null hypothesis of κ = 0. By including the
EXACT AGREE statement in Program 13.1, we obtained both large sample and exact
inferences. Both tests indicate the observed agreement is greater than chance (p = 0.0004
using the z-statistic and p = 0.0021 using the exact test).

Two extensions of the κ measure of agreement, the weighted κ and stratified κ, are also
easily estimated using PROC FREQ. A weighted κ is applied to tables larger than 2 by 2
and allows different weight values to be placed on different levels of disagreement. For
example, on a 3-point scale, i.e., (0, 1, 2), a weighted κ would penalize cases where the
raters differed by 2 points more than cases where the difference was one. Both Cicchetti
and Allison (1971) and Fleiss and Cohen (1973) have published weight values for use in
computing a κ statistic. Stokes et al. (2000) provides an example of using SAS to compute
a weighted κ statistic.

When reliability is to be assessed across several strata, a weighted average of strata
specific κ’s can be produced. SAS uses the inverse variance weighting scheme. See the
PROC FREQ documentation for details.

The κ statistic has been criticized because it is a function of not only the sensitivity
(proportion of cases identified or true positive rate) and specificity (proportion of non-cases
correctly identified) of an instrument, but also of the overall prevalence of cases (base rate).
For instance, Grove et al. (1981) pointed out that with sensitivity and specificity held
constant at 0.95, a change in the prevalence can greatly influence the value of κ. Spitznagel
and Helzer (1985) noted that a diagnostic procedure showing a high κ in a clinical trial
with a high prevalence will have a lower value of κ in a population based study, even when
the sensitivity and specificity are the same. Thus, comparisons of agreement across different
studies where the base rate (prevalence) differs are problematic with the κ statistic.

13.2.3 Proportion of Positive Agreement and Proportion of
Negative Agreement

One approach to overcoming this drawback with the κ statistic is to use a pair of statistics:
the proportion of positive agreement, p+, and the proportion of negative agreement, p−.
Consider the situation where two raters classify a set of patients as having or not having a
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specific disease. The first measure, p+, is the conditional probability that a rater will give a
positive diagnosis given that the other rater has given a positive diagnosis. Similarly, p− is
the conditional probability that a rater will give a negative diagnosis given that the other
rater has given a negative diagnosis. These conditional probabilities are defined as follows

p+ = 2p11/(2p11 + p12 + p21), p− = 2p22/(2p22 + p12 + p21)

and are analogous to characterizing a diagnostic test’s sensitivity (the proportion of
patients with a disease correctly identified) and specificity (the proportion of patients
without the disease correctly identified). Note that p+ can be viewed as a weighted average
of the sensitivities computed considering each rater as the gold standard separately, and p−
can be viewed as a weighted average of the specificities computed considering each rater as
the gold standard separately. In addition, sensitivity and specificity are not even applicable
in situations where there is no gold standard test. However, p+ and p− are still useful
statistics in such situations, e.g., p+ is the conditional probability that a rater will give a
positive diagnosis given that the other rater has given a positive diagnosis.

Program 13.2 demonstrates how to compute p+, p−, and associated confidence intervals
in the schizophrenia diagnosis example. The confidence intervals are computed using
formulas based on the delta method provided by Graham and Bull (1998).

Program 13.2 Computation of the proportion of positive agreement, proportion of negative agreement, and
associated confidence intervals

data agreement;
set schiz nobs=m;
format p_pos p_neg lower_p lower_n upper_p upper_n 5.3;
if rater_a=’yes’ and rater_b=’yes’ then d=num;
if rater_a=’yes’ and rater_b=’no’ then c=num;
if rater_a=’no’ and rater_b=’yes’ then b=num;
if rater_a=’no’ and rater_b=’no’ then a=num;
n=a+b+c+d;
p1=a/n; p2=b/n; p3=c/n; p4=d/n;
p_pos=2*d/(2*d+b+c);
p_neg=2*a/(2*a+b+c);
phi1=(2/(2*p4+p2+p3))-(4*p4/((2*p4+p2+p3)**2));
phi2_3=-2*p4/(((2*p4+p2+p3)**2));
gam2_3=-2*p1/(((2*p1+p2+p3)**2));
gam4=(2/(2*p1+p2+p3))-(4*p1/((2*p1+p2+p3)**2));
sum1=(phi1*p4+phi2_3*(p2+p3))**2;
sum2=(gam4*p1+gam2_3*(p2+p3))**2;
var_pos=(1/n)*(p4*phi1*phi1+(p2+p3)*phi2_3*phi2_3-4*sum1);
var_neg=(1/n)*(p1*gam4*gam4+(p2+p3)*gam2_3*gam2_3-4*sum2);
lower_p=p_pos-1.96*sqrt(var_pos);
lower_n=p_neg-1.96*sqrt(var_neg);
upper_p=p_pos+1.96*sqrt(var_pos);
upper_n=p_neg+1.96*sqrt(var_neg);
retain a b c d;
label p_pos=’Proportion of positive agreement’

p_neg=’Proportion of negative agreement’
lower_p=’Lower 95% confidence limit’
lower_n=’Lower 95% confidence limit’
upper_p=’Upper 95% confidence limit’
upper_n=’Upper 95% confidence limit’;

if _n_=m;



Chapter 13 Reliability and Validity: Assessing the Psychometric Properties of Rating Scales 367

proc print data=agreement noobs label;
var p_pos lower_p upper_p;

proc print data=agreement noobs label;
var p_neg lower_n upper_n;
run;

Output from Program 13.2

Proportion Lower 95% Upper 95%
of positive confidence confidence
agreement limit limit

0.714 0.446 0.983

Proportion Lower 95% Upper 95%
of negative confidence confidence
agreement limit limit

0.913 0.828 0.998

It follows from Output 13.2 that in the schizophrenia diagnosis example we observed
71.4% agreement on positive ratings and 91.3% agreement on negative ratings. Using the
Graham-Bull approach with these data, we compute the following 95% confidence intervals:
(0.446, 0.983) for agreement on positive ratings, and (0.828, 0.998) for agreement on
negative ratings.

13.2.4 Inter-Rater Reliability: Multiple Raters
Fleiss (1971) proposed a generalized κ statistic for situations with multiple (more than
two) raters for a group of subjects. It follows the form of κ above, where percent agreement
is now the probability that a randomly chosen pair of raters will give the same diagnosis or
rating.

EXAMPLE: Psychiatric diagnosis example
Sandifer et al. (1968) provided data from a study in which six psychiatrists provided
diagnoses for each of 30 subjects. Subjects were diagnosed with either depression,
personality disorder, schizophrenia, neurosis, or classified as not meeting any of the
diagnoses.

Program 13.3 computes the expected agreement (pc), percent agreement (pa), kappa
statistic (κ), and a large sample test statistic for testing the null hypothesis of no
agreement beyond chance in the psychiatric diagnosis example. These statistics were
calculated using the formulas provided by Fleiss (1971):

pc =
∑

i

p2
i , pa =

1
Nr(r − 1)

⎡⎣∑
ij

n2
ij − Nr

⎤⎦ , κ =
pa − pc

1 − pc
,

Var(κ) =
2

Nr(r − 1)

∑
i p

2
i − (2r − 3) [

∑
i p

2
i ]

2 + 2(r − 2)
∑

i p
3
i

[1 −
∑

i p
2
i ]

2 ,

where N is the total number of subjects, r is the number of raters, and the subscripts i and
j refer to the subject and diagnostic category, respectively.
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Program 13.3 Computation of agreement measures

data diagnosis;
input patient depr pers schz neur othr @@;
datalines;

1 0 0 0 6 0 2 0 3 0 0 3 3 0 1 4 0 1 4 0 0 0 0 6 5 0 3 0 3 0
6 2 0 4 0 0 7 0 0 4 0 2 8 2 0 3 1 0 9 2 0 0 4 0 10 0 0 0 0 6
11 1 0 0 5 0 12 1 1 0 4 0 13 0 3 3 0 0 14 1 0 0 5 0 15 0 2 0 3 1
16 0 0 5 0 1 17 3 0 0 1 2 18 5 1 0 0 0 19 0 2 0 4 0 20 1 0 2 0 3
21 0 0 0 0 6 22 0 1 0 5 0 23 0 2 0 1 3 24 2 0 0 4 0 25 1 0 0 4 1
26 0 5 0 1 0 27 4 0 0 0 2 28 0 2 0 4 0 29 1 0 5 0 0 30 0 0 0 0 6
;
%let nr=6; * Number of raters;
data agreement;

set diagnosis nobs=m;
format pa pc kappa kappa_lower kappa_upper 5.3;
sm=depr+pers+schz+neur+othr;
sum0+depr; sum1+pers; sum2+schz; sum3+neur; sum4+othr;
pi=((depr**2)+(pers**2)+(schz**2)+(neur**2)+(othr**2)-sm)/(sm*(sm-1));
tot+((depr**2)+(pers**2)+(schz**2)+(neur**2)+(othr**2));
smtot+sm;
if _n_=m then do;

avgsum=smtot/m;
n=sum0+sum1+sum2+sum3+sum4;
pdepr=sum0/n; ppers=sum1/n; pschz=sum2/n; pneur=sum3/n; pothr=sum4/n;
* Percent agreement;
pa=(tot-(m*avgsum))/(m*avgsum*(avgsum-1));
* Expected agreement;
pc=(pdepr**2)+(ppers**2)+(pschz**2)+(pneur**2)+(pothr**2);
pc3=(pdepr**3)+(ppers**3)+(pschz**3)+(pneur**3)+(pothr**3);
* Kappa statistic;
kappa=(pa-pc)/(1-pc);

end;
* Variance of the kappa statistic;
kappa_var=(2/(n*&nr*(&nr-1)))*(pc-(2*&nr-3)*(pc**2)+2*(&nr-2)*pc3)/((1-pc)**2);
* 95% confidence limits for the kappa statistic;
kappa_lower=kappa-1.96*sqrt(kappa_var);
kappa_upper=kappa+1.96*sqrt(kappa_var);
label pa=’Percent agreement’

pc=’Expected agreement’
kappa=’Kappa’
kappa_lower=’Lower 95% confidence limit’
kappa_upper=’Upper 95% confidence limit’;

if _n_=m;
proc print data=agreement noobs label;

var pa pc;
proc print data=agreement noobs label;

var kappa kappa_lower kappa_upper;
run;
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Output from Program 13.3

Percent Expected
agreement agreement

0.556 0.220

Lower 95% Upper 95%
confidence confidence

Kappa limit limit

0.430 0.408 0.452

Output 13.3 lists the percent agreement (pa = 0.556), expected agreement (pc = 0.22),
and kappa (κ = 0.43). It also shows the 95% confidence limits for κ. The lower limit is well
above 0 and thus there is strong evidence that agreement in the psychiatric diagnosis
example is in excess of chance. As there is evidence for agreement beyond chance, as a
follow-up analysis one may be interested in assessing agreement for specific diagnoses. Fleiss
(1971) describes such analyses—computing the conditional probability that a randomly
selected rater assigns a patient with diagnosis j, given that a first randomly selected rater
chose diagnosis j. This is analogous to the use of p+ described in the previous section.

13.2.5 Inter-Rater Reliability: Rating Scale Data
The inter-rater reliability of a rating scale is a measure of the consistency of ratings from
different raters at the same point in time. The intra-class correlation coefficient (ICC) or
the concordance correlation coefficient (CCC) are the recommended statistics for
quantifying inter-rater reliability when using continuous measures. Shrout et al. (1979)
presented multiple forms of the ICC along with discussions of when to use various forms.
Here we present the statistics for estimating ICCs from a two-way ANOVA model:

Model outcome = Subjects + Raters.

We will consider the case when randomly selected raters rate each subject (ICC1) and
also the case when the selected raters are the only ones of interest (ICC2). ICC1 may be of
interest when it can be assumed the raters in a study represent a random sample of a
population for which the researchers would like to generalize to. ICC2 may be used in rater
training sessions prior to a clinical trial with pre-selected raters. The two coefficients are
defined as follows:

ICC1 =
Ms − Me

Ms + (r − 1)Me + r(Mr − Me)/n
,

ICC2 =
Ms − Me

Ms + (r − 1)Me
,

where r is the number of raters, n is the number of subjects, and Ms, Mr, and Me are the
mean squares for subjects, raters, and error, respectively.

Shrout et al. (1979) also provides formulas for estimating the variances for each form of
the ICC and a discussion of a one-way ICC when different sets of raters score each subject.
The null hypothesis of a zero ICC can be tested with an F -test given by F = Ms/Me with
(n − 1) and (r − 1)(n − 1) degrees of freedom. As the ICC statistic and the associated tests
and confidence intervals are based on summary statistics produced in a typical ANOVA,
these can be easily computed using either the GLM or MIXED procedure. The SAS library
of sample programs provides a macro that computes all versions of the ICC per Shrout’s
formulas as well as others:
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http://ftp.sas.com/techsup/download/stat/intracc.html

Further discussion of the ICC and related statistics is provided later in Section 13.2.7.

EXAMPLE: Rater training session example
We will now describe an example of a rater training session performed at the beginning of
a clinical trial. While in the previous examples a small number of raters assessed many
subjects, in this example many raters assess only a small number of subjects (often one or
two). This situation is more commonplace in clinical trials. That is, a rater training session
is a good example of this setting.

Prior to implementing an antidepressant clinical trial, Demitrack et al. (1998) assessed
the inter-rater reliability of 85 raters for the Hamilton Rating Scale for Depression
(HAMD) (Hamilton, 1960) as part of a rater training session. The HAMD total score is a
measure of the severity of a patient’s depression with higher scores indicating more severe
depression. The main goal of the session was to establish consistency in the administration
and interpretation of the scale across multiple investigational sites. From a statistical
perspective, the goals were to reduce variability (and thus increase power) by training
raters to score using the scale in a similar fashion and to identify potential outlier raters
prior to the study.

Raters independently scored the HAMD from a videotaped interview of a depressed
patient. Fleiss’ generalized κ, as described in the previous section, was used to summarize
the inter-rater reliability for this group of raters. As only one subject was assessed,
agreement was computed across items of a scale rather than across subjects. The percent
agreement now represents the probability that two randomly selected raters provided the
same rating score for a randomly selected item. The observed agreement and κ for these
data are 0.55 and 0.4.

While an overall summary of agreement provides information about the scale and raters,
it is also of importance in a multi-site clinical trial to identify raters who are outliers.
These raters have the potential to increase variability in the outcome variable and thus
reduce the power to detect treatment differences. Using the mode of the group of raters as
the gold standard, Demitrack et al. (1998) computed the percent agreement and inter-class
correlation coefficient for each rater (relative to the gold standard). Rater ICCs ranged
from 0.40 to 1.0, with only two raters scoring below 0.70. Percentage agreement was also
assessed by item in order to identify areas of disagreement for follow-up discussion.

Rater training sessions followed the discussion of the initial videotape results, and the
session concluded with raters scoring a videotape of the same patient in an improved
condition. Demitrack et al. concluded that the training did not clearly improve the
agreement of the group, though they were able to use the summary agreement statistics to
identify raters who did not score the HAMD consistent with the remainder of the group
prior to implementing the trial. While Demitrack et al. used percent agreement and ICC in
their work, the average squared deviation (from the gold standard) is another statistic that
has been proposed for use in summarizing inter-rater reliability data (Channon and Butler,
1998).

13.2.6 Internal Consistency
Measures of internal consistency assess the degree to which each item of a rating scale
measures the same construct. Cronbach’s α, a measure of the average correlation of items
within a scale, is a commonly used statistic to assess internal consistency (Cronbach, 1951):

α =
k

k − 1

[
1 −

∑
i Vi

V

]
,
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where k is the number of items, Vi is the variance of the ith item, and V is the variance of
the total score.

Cronbach’s α ranges from 0 to 1, with higher scores suggesting good internal
consistency. It is considered to be a lower bound of the scale’s reliability (Shrout, 1998).
Perrin suggested 0.7 as a minimal standard for internal consistency when making group
comparisons, with a higher standard of at least 0.90 when individual comparisons are to be
used (Perrin et al., 1997). Cronbach’s α is a function of the average inter-item correlation
and the number of items. It increases as the number of related items in the scale increases.
If α is very low, the scale is either too short or the items have very little in common (delete
items which do not correlate with the others). On the other hand, extremely high scores
may indicate some redundancy in the rating scale. Cronbach’s α can be computed using
the CORR procedure.

EXAMPLE: EESC rating scale example
Kratochvil et al. (2004) reported on the development of a new rating scale with 29 items to
quantify expression and emotion in children (EESC). Data from an interim analysis of a
validation study involving 99 parents of children with attention-deficit hyperactivity
disorder are used here to illustrate the assessment of internal consistency.

Program 13.4 uses PROC CORR for computing internal consistency and item-to-total
correlations in the EESC rating scale example. The EESC data set used in the program
can be found on the book’s companion Web site.

Program 13.4 Computation of Cronbach’s α

proc corr data=eesc alpha;
var eesc1 eesc2 eesc3 eesc4 eesc5 eesc6 eesc7 eesc8 eesc9 eesc10

eesc11 eesc12 eesc13 eesc14 eesc15 eesc16 eesc17 eesc18 eesc19 eesc20
eesc21 eesc22 eesc23 eesc24 eesc25 eesc26 eesc27 eesc28 eesc29;

run;

Output from Program 13.4

Cronbach Coefficient Alpha

Variables Alpha

Raw 0.900146
Standardized 0.906284

Cronbach Coefficient Alpha with Deleted Variable

Raw Variables Standardized Variables

Deleted Correlation Correlation
Variable with Total Alpha with Total Alpha

EESC1 0.291580 0.899585 0.281775 0.906622
EESC2 0.545988 0.895571 0.564959 0.901673
EESC3 0.591867 0.894167 0.593887 0.901158
EESC4 0.672391 0.892861 0.672410 0.899748
EESC5 0.247457 0.901908 0.240618 0.907326
EESC6 0.458779 0.896995 0.448555 0.903730
EESC7 0.478879 0.896641 0.472999 0.903300
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EESC8 0.665566 0.893793 0.675876 0.899685
EESC9 0.505510 0.896072 0.498409 0.902853
EESC10 0.651696 0.894064 0.652332 0.900110
EESC11 0.666862 0.893457 0.677098 0.899663
EESC12 0.380065 0.898422 0.395765 0.904652
EESC13 0.368793 0.898586 0.363621 0.905211
EESC14 0.623236 0.893495 0.614713 0.900785
EESC15 0.392515 0.898165 0.407936 0.904440
EESC16 0.389488 0.898200 0.396298 0.904643
EESC17 0.624384 0.894600 0.637290 0.900380
EESC18 0.485442 0.896484 0.480872 0.903162
EESC19 -.015219 0.907669 -.000957 0.911384
EESC20 0.707713 0.891929 0.710875 0.899052
EESC21 0.550139 0.895331 0.540735 0.902104
EESC22 0.639571 0.894357 0.649545 0.900160
EESC23 0.436383 0.897693 0.435663 0.903956
EESC24 0.423187 0.897806 0.424149 0.904157
EESC25 0.294496 0.901074 0.292439 0.906439
EESC26 0.313600 0.899842 0.315250 0.906047
EESC27 0.514513 0.896137 0.512612 0.902602
EESC28 0.362475 0.898664 0.367987 0.905135
EESC29 0.509206 0.896090 0.508525 0.902674

Output 13.4 provides estimates of Cronbach’s α using both raw data and items
standardized to have a standard deviation of 1.0. The standardized scores may be useful
when there are large differences in item variances. The results indicate an acceptable level
of internal consistency (α > 0.90).

The output also lists the correlation of each item to the remaining total score, as the
value of Cronbach’s α with each individual item deleted from the scale, as well as the
correlation of each item score with the remaining total score. The item-to-total correlations
were at least moderate for all items except number 19. The low item-to-total for item 19 led
to further investigation. It was found that one item (“My child shows a range of emotions”)
was being interpreted in both a positive and negative manner by different parents, leading
to the poor correlation. Thus, this item was removed in the revised version of the scale.

Despite the acceptable properties, it may still be of interest to consider a more concise
scale, one that would be less burdensome on the respondent. From Output 13.3, the
removal of any single item would not bring about a substantial change in Cronbach’s α.
Inter-item correlations (also produced by Program 13.3 but not included in the output to
save space) could be examined to make scale improvements in this situation.

The PROC CORR documentation contains another example of the computation of
Cronbach’s α.

13.2.7 Test-Retest Reliability
Test-retest reliability indicates the stability of ratings on the same individual at two
different times while in the same condition. For test-retest assessments, the retest ratings
should be taken long enough after the original assessment to avoid recall bias and soon
enough to limit the possibility of changes in the condition of the subject. For continuous
measures, Pearson’s correlation coefficient is often used to quantify the relationship
between two measures. However, as this captures only the correlation between measures,
and not whether the measures are systematically different, the ICC or CCC are preferred
measures for quantifying test-retest reliability. For instance, if the second (retest)
measurement is always 2 points higher than the first, Pearson’s correlation coefficient will
be 1 while the ICC and CCC will be reduced due to the systematic differences. Considering
these data as a scatterplot with the x and y axis representing the first and second
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measurements on the subjects, Pearson’s correlation coefficient assesses deviations from the
best fitting regression line. The CCC is a measure that assesses departures from the line of
identity (a 45 degree line). Thus, systematic departures will reduce the CCC. The closely
related ICC statistic is the proportion of the total variability in scores that is due to the
variability among subjects. Thus, an ICC close to 1 indicates that little of the variability in
scores is due to rater differences, and that thus the test-retest reliability is excellent.

The (2-way) ICC and CCC statistics are given by (Shrout and Fleiss, 1979; Lin et al.,
2002)

ICC =
Ms − Me

Ms + (m − 1)Me
, CCC =

2rs1s2

s2
1 + s2

2 + (y1 + y2)2 ,

where Ms and Me are the mean squares for subjects and error, respectively, r is Pearson’s
correlation coefficient between observations at the first and second time points, i.e., Yi1 and
Yi2, and s2

1 and s2
2 are the sample variances of the outcomes at the first and second time

points. The 95% confidence limits for ICC are given below(
FL − 1

FL + k − 1
,

FU − 1
FU + k − 1

)
,

where k is the number of occasions,

FL = F0/F1−α/2[n − 1, (n − 1)(k − 1)],

FU = F0F1−α/2[(n − 1)(k − 1), n − 1]

and F0 = Ms/Me.
Lin (1989) demonstrated that

Z =
1
2

ln
1 − CCC

1 + CCC

is asymptotically normal with mean

1
2

ln
1 − C

1 + C

and variance

1
n − 2

[
(1 − r2)C2

r2(1 − C2)
+

4C3(1 − C)μ2

r(1 − C2)2 − 2C4μ4

r2(1 − C2)2

]
,

where C is the true concordance correlation coefficient, r is Pearson’s correlation coefficient
defined above, and μ = (μ1 − μ2)/

√
σ1σ2. Confidence intervals can be formed by replacing

the parameters with their estimates.
An alternative testing approach to assessing inter-rater reliability is provided by the

Bradley-Blackwood test. This approach simultaneously tests the null hypothesis of equal
means and variances at the first and second assessments (Sanchez and Binkowitz, 1999).
The Bradley-Blackwood test statistic B, which has an F distribution with 2 and n − 2
degrees of freedom, is as follows:

B =
1

2Mr

[∑
i

D2
i − Sr

]
,

where Di = Yi1 − Yi2, and Sr and Mr are the error sum of squares and mean square error of
the regression of Di on Ai = (Yi1 + Yi2)/2.
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EXAMPLE: Sickness inventory profile example
Deyo et al. (1991) provided data on the sickness inventory profile (SIP) from a clinical trial
for chronic lower back pain. Data were obtained from 34 patients whose symptoms were
deemed unchanged in severity, with measures taken two weeks apart.

Program 13.5 computes the ICC and associated large sample 95% confidence limits. As
the ICC is computed from mean squares in an ANOVA model, it is easily computable using
output from PROC MIXED as demonstrated below.

Program 13.5 Computation of the ICC, CCC and Bradley-Blackwood test

options ls=70;
data inventory;

input patient time sip @@;
datalines;

1 1 9.5 9 1 7.3 17 1 4.0 25 1 10.1 33 1 4.6
1 2 12.3 9 2 6.1 17 2 3.6 25 2 15.7 33 2 4.3
2 1 3.6 10 1 0.5 18 1 6.6 26 1 10.2 34 1 4.6
2 2 0.4 10 2 1.0 18 2 7.0 26 2 15.2 34 2 4.3
3 1 17.4 11 1 6.0 19 1 13.8 27 1 9.5
3 2 7.4 11 2 3.1 19 2 10.1 27 2 8.2
4 1 3.3 12 1 31.6 20 1 9.8 28 1 19.1
4 2 2.2 12 2 16.6 20 2 8.3 28 2 21.9
5 1 13.4 13 1 0 21 1 4.8 29 1 5.6
5 2 6.0 13 2 2.3 21 2 2.9 29 2 10.6
6 1 4.1 14 1 25.0 22 1 0.9 30 1 10.7
6 2 3.5 14 2 12.2 22 2 0.4 30 2 13.1
7 1 9.9 15 1 3.4 23 1 8.0 31 1 8.6
7 2 9.9 15 2 0.7 23 2 2.8 31 2 6.1
8 1 11.3 16 1 2.8 24 1 2.7 32 1 7.5
8 2 10.6 16 2 1.7 24 2 3.8 32 2 5.2

;
* Intraclass correlation coefficient;
proc sort data=inventory;

by patient time;
proc mixed data=inventory method=type3;

class patient time;
model sip=patient time;
ods output type3=mstat1;

data mstat2;
set mstat1;
dumm=1;
if source=’Residual’ then do; mserr=ms; dferr=df; end;
if source=’patient’ then do; mspat=ms; dfpat=df; end;
if source=’time’ then do; mstime=ms; dftime=df; end;
retain mserr dferr mspat dfpat mstime dftime;
keep mserr dferr mspat dfpat mstime dftime dumm;

data mstat3;
set mstat2;
by dumm;
format icc lower upper 5.3;
if last.dumm;
icc=(mspat-mserr)/(mspat+(dftime*mserr));
fl=(mspat/mserr)/finv(0.975,dfpat,dfpat*dftime);
fu=(mspat/mserr)*finv(0.975,dfpat*dftime,dfpat);
lower=(fl-1)/(fl+dftime);
upper=(fu-1)/(fu+dftime);
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label icc=’ICC’
lower=’Lower 95% confidence limit’
upper=’Upper 95% confidence limit’;

proc print data=mstat3 noobs label;
var icc lower upper;
run;

* Concordance correlation coefficient;
data transpose;

set inventory;
by patient;
retain base;
if first.patient=1 then base=sip;
if last.patient=1 then post=sip;
diff=base-post;
if last.patient=1;

proc means data=transpose noprint;
var base post diff;
output out=cccout mean=mn_base mn_post mn_diff var=var_base var_post var_diff;

data cccout;
set cccout;
format ccc 5.3;
ccc=(var_base+var_post-var_diff)/(var_base+var_post+mn_diff**2);
label ccc=’CCC’;

proc print data=cccout noobs label;
var ccc;
run;

* Bradley-Blackwood test;
data bb;

set transpose;
avg=(base+post)/2; difsq=diff**2; sdifsq+difsq;
dum=1;
run;

proc sort data=bb;
by dum;

data bbs;
set bb;
by dum;
if last.dum;
keep sdifsq;

proc mixed data=bb method=type3;
model diff=avg;
ods output type3=bb1;

data bb1;
set bb1;
if source=’Residual’;
mse=ms; sse=ss; dfe=df;
keep mse sse dfe;

data test;
merge bb1 bbs;
format f p 5.3;
f=0.5*(sdifsq-sse)/mse;
p=1-probf(f,2,dfe+2);
label f=’F statistic’

p=’P-value’;
proc print data=test noobs label;

var f p;
run;
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Output from Program 13.5

Lower 95% Upper 95%
confidence confidence

ICC limit limit

0.727 0.520 0.854

CCC

0.706

F
statistic P-value

4.194 0.024

Output 13.5 shows that the ICC for the data collected in the sickness inventory profile
study is 0.727, with a 95% confidence interval of (0.520, 0.854). Landis and Koch (1977)
indicate that ICCs above 0.60 suggest satisfactory stability, and ICCs greater than 0.80
correspond to excellent stability. For reference, the CCC based on these data is 0.706, very
similar to the ICC. See Deyo (1991) for reformulations of the formula for computing the
CCC which shows the similarity between the CCC and ICC.

In addition, Output 13.5 lists the F statistic and p-value of the Bradley-Blackwood test.
The test rejects the null hypothesis of equal means and variances (F = 4.194, p = 0.024).
Thus, the Bradley-Blackwood test would seem to be contradictory to the relatively high
ICC value. However, one must consider that the various statistics are differentially sensitive
to the strength of the linear relationship, location, and scale shifts between the first and
second measurement. Sanchez et al. (1999) discussed these issues in depth and performed a
simulation study with multiple reliability measures. They conclude that the CCC comes
the closest among all the measures to satisfying all the components of a good test-retest
reliability measure. Regardless, they recommend computing estimates of scale and location
shifts along with the CCC.

13.3 Validity and Other Topics
A measure is said to be valid if it accurately reflects the concept it is intended to measure.
Assessing the validity of a measure typically includes quantifying convergent validity,
divergent validity, and discriminant validity. These three topics, which comprise the
assessment of the construct validity of an instrument, can be addressed in a quantitative
fashion and will be discussed below.

Content validity is another topic which is typically addressed in the development stage
of a measurement tool. Content validity refers to the degree to which a measure covers the
range of meanings that are part of the concept to be measured. The most common
approaches to assessing content validity are expert reviews of the clarity,
comprehensiveness, and redundancy of the measurement tool. Content validity will not be
discussed further in this chapter.

However, responsiveness, factor analysis, and minimal clinically relevant differences are
three additional topics that are discussed. Responsiveness and factor structure of a
measurement tool are two important practical concepts to assess when validating an
instrument. Establishing a minimal clinically relevant difference addresses a common need
for applied researchers designing studies using and interpreting data from studies with a
measurement tool.
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13.3.1 Convergent and Divergent Validity
Convergent validity is established by showing a strong relationship between the scale under
review and another validated scale thought to measure the same construct. Divergent
validity is the lack of correlation between the scale under review and scales thought to
assess different constructs. Pearson’s correlation coefficient is the most commonly used
statistic to quantify convergent and divergent validity. Thus, SAS can be easily used to
summarize convergent and divergent validity through the CORR procedure. A Pearson’s
correlation of at least 0.4 has been used (Cappelleri et al., 2004) as evidence for convergent
validity. Similarly, correlations less than 0.3 indicate evidence for divergent validity, with
correlations between 0.3 and 0.4 taken as no evidence to establish or dismiss convergent or
divergent validity. Confidence intervals are useful here to provide information beyond
simple point estimates.

Cappelleri et al. (2004) provides an example of the assessment of convergent and
divergent validity in assessing a new scale for self-esteem and relationships (SEAR) in
patients with erectile dysfunction. As part of the assessment of convergent/divergent
validity, they included a global quality of life scale (SF-36) in a validation study. They
hypothesized low correlations between the Confidence domain of the SEAR with physical
factors of the SF-36 and thus used these comparisons to assess divergent validity. Similarly
for convergent validity, the developers hypothesized higher correlations with SF-36 mental
health domains. Table 13.3 presents the results.

Table 13.3 Correlation of SF-36 Components with
SEAR Confidence Domain

SF-36 component Correlation

Physical Functioning 0.30
Role-Physical 0.30
Bodily Pain 0.32

Mental Health 0.44
Role-Emotional 0.45
Mental Component Summary 0.45

The correlations greater than 0.4 with the mental health measures were taken as
evidence for convergent validity while the correlations with physical domains were
borderline evidence (at least no evidence to dismiss) for divergent validity.

13.3.2 Discriminant Validity
Discriminant validity indicates the ability of a scale to distinguish different groups of
subjects. An instrument for assessing the severity of a disease should clearly be able to
distinguish between subjects with and without the corresponding diagnosis. Often,
however, many disease symptoms overlap with other diseases, such as patients diagnosed
with depression versus anxiety disorder. Thus in establishing validity of a measure for a
particular disease, ability to distinguish between a disease state with overlapping symptoms
may be extremely important. Note that there is some inconsistency in the literature
regarding the use of the term discriminant validity—with references defining this in the
same meaning as divergent validity above (for example, Guyatt and Feeny, 1991). However,
in this discussion, discriminant validity is defined as the ability to distinguish between
relevant subject groups.

Thurber et al. (2002) assessed the discriminant validity of the Zung self-rating
depression scale in 259 individuals referred to a state vocational rehabilitation service. The
Zung scale was administered as part of a test battery, including the depression subscale of
the Minnesota Multiphasic Personality Inventory-2 (MMPI-2), following a diagnostic
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interview. Using logistic regression and stepwise logistic regression (such as the LOGISTIC
procedure), they demonstrated that the Zung scale was a predictor (the strongest) of
depressed versus non-depressed individuals, as well as between individuals diagnosed with
depression or substance abuse. The Zung scale was also predictive of a diagnosis of
depression even after the forced inclusion of the MMPI-2 depression subscale into the
model.

Once the scale has been demonstrated to be predictive of a diagnosis, the ability of the
scale to predict the diagnosis for individual subject is often assessed using receiver operator
characteristic (ROC) curves. The ROC is a graph of sensitivity versus (1-specificity) for
various cutoff scores. For these data, based on a ROC curve, Thurber chose a cutoff score
of 60 on the Zung scale for identifying subjects with and without a diagnosis of depression.
With this cutoff score, sensitivity (the proportion of depressed subjects correctly identified)
was 0.57, while specificity (the proportion of subjects without depression who were
correctly identified) was 0.83. See Deyo et al. (1991) for a further discussion of ROC and an
example using changes in SIP scores (see Section 13.2.7) to predict improvement status.

13.3.3 Responsiveness
Responsiveness is the ability of an instrument to detect small but clinically important
changes. Responsiveness is often referred to as sensitivity to change and is often viewed as
part of construct validity. Because the main purpose of a clinical trial is to detect a
treatment effect, it is important to assess the responsiveness of a scale prior to using it in a
clinical trial. A scale that is not responsive may not be able to detect important treatment
changes and therefore mislead the experimenter to conclude no treatment effect. The
methods discussed above are predominantly point in time analyses (except for test-retest
reliability which focuses on stability of scores) and do not fully demonstrate that an
instrument would be effective for a clinical trial designed to detect differences in change
scores. The standardized response mean (the mean change divided by the standard
deviation in change scores) is a common unitless statistic for summarizing responsiveness
(Stratford et al., 1996). Change scores may be summarized following an intervention
expected to produce a clinically relevant change. When a control is available, effect sizes for
an effective intervention relative to the control may be compared using multiple measures.

For example, Faries et al. (2001) assessed the responsiveness of the ADHD rating scale
when administered by trained clinicians. The scale had been previously validated as a
parent scored tool. As no control group was available, the SRM was used to compare the
changes observed on the new version of the scale with other validated instruments. Results
showed the observed SRM for the clinician scored scale (1.21) was in the range of SRMs
observed from other clinician and parent measures (1.13 to 1.40). As the SRM is based on
simple summary statistics, PROC UNIVARIATE provided the information necessary for
the computation of the SRM.

Responsiveness of an instrument may also be assessed using correlations with a global
improvement scale. The global improvement question usually asks the subjects to rate the
improvement on their condition on an ordinal scale. An example of such scale would be
“very much better”, “much better”, “a little better”, “no change”, “a little worse”, “much
worse” and “very much worse”. Mean changes in the instrument scores are calculated for
subjects in each global scale response category regardless of the treatment. A monotone
increasing (or decreasing, depending on the direction of improvement) function of the mean
scores is a desirable property for a scale that is responsive to treatment. An analysis of
variance (ANOVA) can be performed to test the mean differences in the mean instrument
scores among subjects in different global scale response categories. The model should
include the change in the instrument scores as the dependent variables and the global scale
response categories as the class variable. A responsive scale should be able to discriminate
reasonably well between the response categories of a global rating scale.
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13.3.4 Identifying Subscales
It is often desired to identify subscales of a multi-item questionnaire in addition to its
overall total score. Factor analysis is a technique commonly used to explore the existence of
such subscales. It describes the covariance relationships among many items in terms of a
few underlying, but unobservable variables called factors. Each factor may correspond to a
subscale. If items can be grouped by their correlations and all items within a particular
group are highly correlated among themselves but have relatively small correlations with
items in a different group, it is feasible that each group of items represents a single
underlying construct, or a subscale.

One approach is to come up with an a priori subscale structure proposed by the experts
in that field and test the appropriateness of that structure by using the confirmatory factor
analysis. In this case, the experts should identify the subscales first and allocate the items
to each subscale based on their opinion. Then a confirmatory factor analysis model can be
used to test the fit of the model. In a confirmatory factor analysis model, the researcher
must have an idea about the number of factors and know which items load on which
factors. The model parameters are defined accordingly prior to fitting the model. For
example if an item is hypothesized to load on a specific factor, the corresponding factor
loading will be estimated and the loadings corresponding to this item on the other factors
will be set to zero. After estimating the parameters, the fit of this model is tested to assess
the appropriateness of the model. Fitting a confirmatory factor analysis model requires
some more detailed knowledge about factor analysis. Details about confirmatory factor
analysis and using the CALIS procedure to fit the model can be found in Hatcher (1994).

Another way is to use an exploratory factor analysis to identify the number of subscales
and the items that will be allocated to each subscale. As opposed to the confirmatory
factor analysis, the researcher is usually unsure about the number of factors and how the
items will load on the factors. After identifying the subscales, the experts should approve
the face validity of the subscales. Face validity is not validity in technical sense. It is not
concerned with what the test actually measures, but what it appears superficially to
measure. For example, a psychiatrist could review the items loaded on a “Sleep Problems”
subscale of a depression symptom questionnaire to see if any of those items appear to be
related to measuring sleep disturbances on a depressed patient.

Exploratory factor analysis usually involves two stages. The first is to identify the
number of factors and estimate the model parameters. There are several methods of
estimation of the model parameters. The most commonly used are the Principal
Component and Maximum Likelihood methods. As initial factors are typically difficult to
interpret, a second stage of rotation makes the final result more interpretable. A factor
rotation is carried out to look for a pattern of loadings such that each item loads highly on
a single factor (subscale) and has small to moderate loadings on the remaining factors.
This is called simple structure. Orthogonal and oblique factor rotations are two types of
transformations may be needed to achieve the simple structure. Orthogonal rotations are
appropriate for a factor model in which the common factors are assumed to be
uncorrelated and oblique to be correlated. The type of transformation (orthogonal versus
oblique) can be decided by using a graphical examination of factor loadings (whether a
rigid or nonrigid transformation make the factor loadings close to the axes). For detailed
information about factor analysis, see Johnson and Wichern (1982) and Hatcher (1994).

EXAMPLE: Incontinence Quality of Life questionnaire
Incontinence Quality of Life questionnaire (I-QOL) is a validated incontinence-specific
quality of life questionnaire that includes 22 items (Wagner et al., 1996; Patrick et al.,
1999). The I-QOL yields a total score and three subscale scores: Avoidance and Limiting
Behaviors, Psychosocial Impacts, and Social Embarrassment. For simplicity, we selected
nine of the items in two subscales to demonstrate how an exploratory factor analysis can be
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used to define two of the three subscales. The data were obtained from a pre-randomization
visit of a pharmacotherapy clinical trial for treatment of women with urinary incontinence.

Program 13.6 uses the FACTOR procedure to perform an exploratory factor analysis of
the I-QOL data (the IQOL data set used in the program can be found on the book’s
companion Web site). PROC FACTOR can be used to fit a linear factor model and
estimate the factor loadings. The SCREE option plots the eigenvalues associated with each
factor to help identify the number of factors. An eigenvalue represents the amount of
variance that is accounted for by a given factor. The scree test looks for a break or
separation between the factors with relatively large eigenvalues and those with smaller
eigenvalues. The factors that appear before the break are assumed to be meaningful and
are retained. Figure 13.1 produced by Program 13.6 indicates that two factors were
sufficient to explain most of the variability. Although the number of factors can be specified
in PROC FACTOR for the initial model, this number is just an intuitive feeling and it can
be changed in subsequent analyses based on empirical results. Even though the NFACT
option specifies a certain number of factors, the output will still include the scree plot and
the eigenvalues, with the number of factors extracted being equal to the number of
variables analyzed. However, the parts of the output related to factor loadings and the
rotations will include only the number of factors specified with the NFACT option.

The ROTATE and REORDER options are used to help interpret the obtained factors.
In order to achieve the simple structure, the VARIMAX rotation was carried out in this
example. The REORDER option reorders the variables according to their largest factor
loadings. The SIMPLE option displays means, standard deviations, and the number of
observations. Upon examination of the scree plots, eigenvalues, and the related factors, the
number of factors in the NFACT option should be changed to the appropriate level, and
then the model should be re-run. This examination may include the scree plot, eigenvalues,
and the rotated factors together. In some instances, it could be desirable to keep factors
with eigenvalues less than 1, if interpretation of these factors makes sense. The maximum
likelihood method (METHOD=ML) is useful since it provides a chi-square test for model
fit. However, as the test is a function of the sample size, for large studies the test may
reject the hypothesis of sufficient number of factors due to differences that are not clinically
relevant. Therefore it is recommended to use other goodness-of-fit indices (Hatcher, 1994).

Program 13.6 Subscale identification in the I-QOL example

proc factor data=iqol simple method=ml scree heywood reorder rotate=varimax nfact=2;
var iqol1 iqol4 iqol5 iqol6 iqol7 iqol10 iqol11 iqol17 iqol20;
ods output Eigenvalues=scree;

data scree;
set scree;
if _n_<=9;
number=_n_;

* Vertical axis;
axis1 minor=none label=(angle=90 "Eigenvalue") order=(-1 to 11 by 2);
* Horizontal axis;
axis2 minor=none label=("Number") order=(1 to 9);
symbol1 i=none value=dot color=black height=3;
proc gplot data=scree;

plot eigenvalue*number/vaxis=axis1 haxis=axis2 vref=0 lvref=34 frame;
run;
quit;
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Figure 13.1 Scree plot in the I-QOL example
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Output from Program 13.6

Initial Factor Method: Maximum Likelihood

Factor Pattern

Factor1 Factor2

IQOL6 IQOL item 6 0.79447 0.10125
IQOL11 IQOL item 11 0.77077 -0.16251
IQOL17 IQOL item 17 0.76174 0.39284
IQOL7 IQOL item 7 0.74458 0.38372
IQOL4 IQOL item 4 0.69355 -0.46179
IQOL5 IQOL item 5 0.69353 0.19886
IQOL20 IQOL item 20 0.65887 -0.20804
IQOL1 IQOL item 1 0.64754 -0.37380
IQOL10 IQOL item 10 0.64487 -0.30917

Rotated Factor Pattern

Factor1 Factor2

IQOL4 IQOL item 4 0.80996 0.19553
IQOL1 IQOL item 1 0.71412 0.22151
IQOL10 IQOL item 10 0.66487 0.26344
IQOL11 IQOL item 11 0.64271 0.45545
IQOL20 IQOL item 20 0.60014 0.34238
IQOL17 IQOL item 17 0.22891 0.82594
IQOL7 IQOL item 7 0.22394 0.80715
IQOL6 IQOL item 6 0.46518 0.65195
IQOL5 IQOL item 5 0.32498 0.64414

Output 13.6 displays selected sections of the output produced by Program 13.6. The top
portion of the output (under “Initial Factor Method: Maximum Likelihood”) presents the
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factor loadings after fitting the model with two factors (NFACT=2). All items have high
loadings on the first factor and small loadings on the second, suggesting a rotation (each
factor retained should represent some of the items). The bottom portion of Output 13.6
(under “Rotated Factor Pattern”) displays the factor loadings after the VARIMAX
rotation. The transformed factor loading structure suggests that the first factor (subscale)
should consist of Items 1, 4, 10, 11 and 20 since those items are heavily loaded on Factor 1.
Similarly the second subscale should consist of Items 5, 6, 7, and 17. At this stage, the
researcher should decide if the items that load on a given factor share some conceptual
meaning and if the items that load on different factors seem to be measuring different
constructs. In this example, the first subscale was called as Avoidance and Limiting
Behaviors, and the second one was called Psychosocial Impacts in the original version of
the I-QOL subscale creation.

13.3.5 Minimal Clinically Important Differences
Another important need is to determine the between- and within-treatment minimum
clinically important differences (MCID) for an instrument. The MCID helps clinicians
interpret the relevance of changes in the instrument scores. The within-treatment MCID is
defined as the improvement in a score with treatment at which a patient recognizes that
she or he is improved. The between-treatment MCID is the minimum difference between
two treatments that can be considered clinically relevant. One widely accepted way to
determine the MCIDs is to anchor the scale to a global rating of change scale such as the
one mentioned in the responsiveness discussion. The mean change in the measure of
interest for those subjects who rated as “a little better” could be considered as the
within-treatment MCID. The difference in the mean changes for subjects who rated as “a
little better” and who rated “no change” could be considered as the between-treatment
MCID. The between-treatment MCID can be a sound choice for the treatment difference in
order to power the clinical studies. These two MCIDs provide guidance to researchers to
interpret the change scores for the instrument. They become critical when statistically
significant differences needed to be justified as clinically relevant. The choice of a global
scale is an important step in determining the MCIDs. Global scales with items that are less
sensitive to change may yield larger MCIDs. For example, if the responses to a global scale
of improvement are “better,” “no change,” or “worse,” the MCIDs calculated using this
scale may be larger than those calculated from the global scale in the previous example.
Therefore, the differences could still be clinically important but may not necessarily be
minimum using this scale.

13.4 Summary
This chapter summarizes the importance of and methods for establishing the reliability and
validity of rating scales. Quality quantitative scientific research must include the use of
measurement tools that have been validated for the population under study. The validation
of an instrument is not a single test, but a summary of multiple psychometric properties.
That is, a scale should have acceptable levels of internal consistency, test-retest reliability,
inter-rater reliability, convergent, divergent and discriminant validity, as well as
responsiveness.

A rating scale is said to be reliable if multiple measurements on a subject agree. Aspects
of reliability presented in this chapter include internal consistency, test-retest reliability,
and inter-rater reliability. A measure is said to be valid if it accurately reflects the concept
it is intended to measure. Validity discussions included in this chapter include convergent,
divergent, and discriminant validity, as well as responsiveness and assessment of the factor
structure of the instrument.
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Throughout the chapter, multiple statistical methods for assessing the various aspects of
reliability and validity are presented. The statistical methods are presented along with
examples from clinical trials, diagnostic studies, rater training sessions, and scale validation
studies. Multiple examples include SAS code and output to facilitate understanding and
ease of application of these concepts.
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Decision analysis is a quantitative methodology for analyzing and optimizing decisions. It
has its roots in statistical decision theory as outlined by Raiffa and Schlaifer (1961). The
basic idea is to structure the decision problem, quantify uncertainties and preferences, and
then solve the resulting optimality problem. In this chapter, we will present some typical
decision problems in drug development: go/no go decisions, sample size calculations,
dose-finding studies, sequential designs, and project prioritization. The examples will be
displayed and analyzed using the dedicated Operations Research module SAS/OR, together
with optimization routines in SAS/IML, as well as the statistician’s standard SAS arsenal.

14.1 Introduction
We all make thousands of decisions every day. Decision-making is part of most areas of life.
Consequently, decision analysis has applications in many areas of society, business, and,
not least, medicine. Within the medical fields, decision analysis has, quite naturally, most
often been used in order to find the optimal strategy for diagnosing and treating patients
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Grieve is Head, Statistical Research and Consulting Center, Pfizer, United Kingdom. Stephen Senn is Professor, Department
of Statistics, University of Glasgow, United Kingdom.
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(e.g., Parmigiani, 2002, Chapters 5–6; Bertolli et al., 2003; Liu et al., 2003). The analysis is
often made for a population although attempts have been made to also include the
preferences of the individual patient (Protheroe et al., 2000; Elwyn et al., 2001). In health
economics, the benefits of a treatment are weighed against its costs, and these components
are often embedded in a decision analysis model (Cooper et al., 2002; Brown et al., 2003).

Whereas there are plenty of decision analytic applications to medical decision-making
and cost-effectiveness analysis in the literature, less has been written about such
applications to the core drug development process. One reason is probably the
confidentiality of internal company decisions. However, as identified in the FDA’s recent
Critical Path Initiative (FDA, 2004, 2006), drug development faces large and growing
problems, including increased development costs and fewer new drugs that reach the
market. One part of the solution to the industry’s productivity problem, we believe, is
through model-based approaches (FDA, 2004, p. 24) coupled with a decision analysis
(Poland and Wada, 2001; Burman et al., 2005). This chapter will give a few examples of
decision analysis applications from different parts of drug development, often promoting
but sometimes warning against their use. Special attention will be given to the use of
decision analysis during clinical development since the use of clinical trials is not only one
of the cornerstones of drug development, it is also something that adds a special structure
to the problems and thereby differentiates the decision problems in clinical development
from those in other parts of science and business.

It is important to recognize that there are many stakeholders in the process of
developing a drug and distributing it to the patients in need. It is interesting to compare
what is optimal for different stakeholders. Of course, we ought to have a system where
industry investments, regulations, evaluations by health care providers, patent laws,
guidelines, prescription habits, etc., all serve the good of the patients. The decisions of
different agents obviously interact with each other. This chapter will mainly have an
industry perspective. However, now and then we will touch upon some other perspectives
and the interaction between the interests of different stakeholders.

14.1.1 Outline
We will begin with an introductory example considering a very simplified clinical program
(Section 14.2). This example will introduce some of the ideas and notions. In Section 14.3,
we will describe the fundamentals of classical statistical decision theory. We will then be
ready to describe a number of different applications of decision analysis in drug
development:

• Go/no go problems (Section 14.4).
• Sample size calculation from a perspective of maximizing company profits (Section 14.5).
• Sequential design of clinical trials (Section 14.6).
• Finding the best dose in a dose-response study (Section 14.7).
• Project prioritization (Section 14.8).

14.2 Introductory Example: Stop or Go?
Decision trees are very useful for analyzing decision problems. The DTREE procedure can
be used to construct, plot, and evaluate such decision trees. In some cases there is an
enormous number, or even a continuum, of decision alternatives available. Such problems
can often be attacked with optimization routines and/or simulations (see Sections 14.5
and 14.7). In this section, we will introduce a very simple decision tree example, which will
be expanded in Sections 14.4 and 14.5.

A classic decision problem is whether to invest or not. In a drug development setting,
the question might be if a large and expensive Phase III program should be launched or if
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the development of the drug should be discontinued. The consequences of a discontinuation
are fairly easy to assess. There is, however, considerable uncertainty in the results of a
Phase III program, comparing a new drug candidate with the current standard therapy. To
simplify things, the result might be that the new drug is regarded to be either superior,
non-inferior (but not superior), or inferior to the active control. The new drug cannot be
marketed in case of inferiority, as regulatory approval will then not be given. Superior or
non-inferior efficacy results will both lead to marketing. However, the regulatory labeling
will be different and the market appreciation and sales are likely to be widely different.

Program 14.1 uses PROC DTREE in SAS/OR to create a decision tree for the
described go/no go problem. The STAGE1 data set describes the structure of the tree.
Each of the five rows in this data set corresponds to a branch, and the four variables define
tree characterisics such as node types and branch labels. For example, the STTYPE
variable assumes two values, D and C, that identify the decision and chance nodes,
respectively. The decision node is a decision to conduct the study or not and the chance
node is a (random) outcome of the trial (superiority, non-inferiority, or inferiority). The
OUTCOME variable specifies labels for the five branches in this decision tree.

Program 14.1 Simple go/no go problem with an efficacy outcome variable

data stage1;
length _outcome_ $6.;
input _stname_ $ _sttype_ $ _outcome_ $ _success_ $;
datalines;
Decision D No_go .
. . Go Develop
Develop C Super .
. . Noninf .
. . Infer .
;

* Trial’s outcome;
symbol1 value=triangle height=10 color=black width=3 line=1;
* Decision point;
symbol2 value=square height=10 color=black width=3 line=1;
* End nodes;
symbol3 value=none height=10 color=black width=3 line=1;
proc dtree stagein=stage1;

treeplot/graphics norc nolegend
linka=1 linkb=2 symbold=2 symbolc=1 symbole=3;
run;
quit;

The decision tree generated by Program 14.1 is displayed in Figure 14.1. This decision
tree is almost the simplest one that is meaningful. In general, decision trees that describe
the clinical development of a drug involve multiple decisions and have a lot more decision
and/or chance nodes. We will consider decision trees arising in clinical trials further in
Section 14.4. Here we will refine the tree somewhat on the consequence side.

Efficacy of a drug is not everything. Safety is also important. Assume, for example, that
the competitor drug is connected to a specific type of adverse events (AE). Our new drug
may or may not have the advantage of a considerably lower rate of these AEs, depending
on whether the same biological pathway leading to the safety problem is triggered. We will
ignore the possibility of getting a higher rate of the AE, as it is assumed that the safety
problem is zero-one. It is, however, straightforward to include a possibility of a safety
disadvantage in the analysis.
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Figure 14.1 Decision tree in the simple go/no go problem. The square node is the decision to conduct the trial
or not and the triangle node is the trial’s efficacy outcome (superiority, non-inferiority, or inferiority).

No_go 

  Go  
Super 
Noninf
Infer 

Program 14.2 produces a decision tree (Figure 14.2) which also reflects the outcome of
the adverse event comparison in the Phase III trial. The STAGE2 data set defines seven
branches and three nodes:

• DECISION (decision node): A decision to conduct the trial or not.
• DEVELOP (chance node): Outcome of the efficacy analysis (superiority, non-inferiority,

or inferiority).
• AE (chance node): Outcome of the safety analysis (superiority or equivalence).

The tree does not consider the AE comparison when the experimental drug is inferior to
the competitor drug in terms of efficacy because the inferiority outcome is assumed to
imply that regulatory approval will not be achieved.

Program 14.2 Simple go/no go problem with multiple outcome variables (efficacy and safety)

data stage2;
length _outcome_ $15.;
input _stname_ $ _sttype_ $ _outcome_ $ _success_ $;
datalines;
Decision D No_go .
. . Go Develop
Develop C Eff_super AE
. . Eff_noninf AE
. . Eff_infer .
AE C AE_super .
. . AE_equal .
;

* Trial’s outcome;
symbol1 value=triangle height=10 color=black width=3 line=1;
* Decision point;
symbol2 value=square height=10 color=black width=3 line=1;
* End nodes;
symbol3 value=none height=10 color=black width=3 line=1;
proc dtree stagein=stage2;

treeplot/graphics norc nolegend
linka=1 linkb=2 symbold=2 symbolc=1 symbole=3;
run;
quit;
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Figure 14.2 Decision tree in the simple go/no go problem with two outcome variables. The square node is the
decision to conduct the trial or not and the triangle nodes represent the trial’s efficacy outcome (superiority,
non-inferiority, or inferiority) and safety outcome (superiority or equivalence).
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14.2.1 Evaluating a Decision Tree
Structuring a problem is an essential part in solving it. In the above example, this step was
rather trivial. For a complex problem, however, it can be quite difficult to find a good
description which is as simple as possible and yet captures the essence of the problem.
Given the tree structure of a problem, the optimal decision will sometimes be evident.
However, it is often necessary to assess the consequences and uncertainties quantitatively.

In the Phase III investment decision, let us say that we can estimate the probabilities of
superiority, non-inferiority, and inferiority outcomes in a Phase III trial. This estimation of
probabilities is, of course, related to power calculations and depends on a number of
factors, such as the precise definition of non-inferiority, the assumed effect size, and
variability, etc. We will come back to such topics later and for now take the computation of
these probabilities for granted. Uncertainties in a regulatory response and sales can also be
included in a decision analysis model but we will ignore these aspects for now. We will also
ignore any other potential safety issues apart from the specific kind of AE under
consideration.

Let E+, E=, and E− denote the events of superiority, non-inferiority, and inferiority,
respectively. Similarly, denote the event of proven safety benefit of the new drug with
respect to the specified AE by S+ and the complement event (no proven safety
improvement) by S=. For the following example, let

P (E+) = 0.1, P (E=) = 0.4, P (E−) = 0.5.

We assume that the outcome for the specified AE is independent of the effect outcome and
that

P (S+) = 0.7, P (S=) = 0.3.

The independence may not, of course, be the case in practice and the joint probability of
efficacy and safety may have to be considered instead. (Compare the conditioning in a
similar situation in Program 14.4.)

Note that the probabilities given are for the different conclusions from the Phase III
program. It is quite possible that superiority cannot be concluded even if the new drug in
fact produces a better effect than the competitor. The probabilities are included in the
PROB3 data set in Program 14.3.

In order to compare the alternatives we also need to quantify the value of the possible
outcomes. Immediate discontinuation of the project is likely to mean ignorable costs and
incomes from the drug (we will not consider the possibilities of out-licensing or limited
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development). We will therefore regard the discontinuation possibility to have value 0.
Previous costs or future unavoidable costs are of no interest in the decision problem. What
matters is, of course, only the costs and gains which can be influenced by the decisions
made now or in the future.

Expected net profit is taken as the optimality criterion. A more sophisticated analysis
should consider some additional factors:

• A small expected gain from an investment may not be worth the risk of losing the
investment. The degree of risk aversion is likely to be larger in smaller companies, for
which a failure in Phase III may jeopardize the company’s survival.

• The resources (e.g., money or personnel) may be limited, forcing the company to choose
between several promising projects (see Section 14.8).

• Future cash-flows should be discounted by an appropriate rate. The discount rate should
primarily reflect the cost of capital, e.g., the interest rate paid. Some organizations
assume a higher discount rate in order to also account for the investment risk and/or
limited personnel resources. Although such high discount rates might be used as a
simplifying tool, we do not recommend them for important decisions. It is better to
explicitly model resource restrictions and risk aversion.

One way of dealing with risk is to define the utility as an appropriate concave function
of money (Raiffa, 1968, Chapter 4) and use the expected utility as the optimality criterion.
For the sake of simplicity, however, we will assume that cash-flows are discounted and that
risk aversion and resource restrictions can be ignored.

Suppose that the cost of running the Phase III program is 250 (the monetary unit in
this example can be a million of US dollars, or MUSD). An inferior drug will not be
possible to sell and therefore produces no income. Non-inferiority is enough to get some
sales but the income will be considerably higher in the case of superiority. Ignoring the
development costs, we assume the net profit, as a function of the Phase III program
outcome, to be G(·). The net profit here denotes the sales minus promotional and
manufacturing costs over the drug’s life-cycle. We will let

G(E+, S+) = 1200, G(E+, S=) = 550, G(E=, S+) = 450, G(E=, S=) = 100

and, as stated earlier, G(E−, ·) = 0.
Program 14.3 creates a decision tree for the introduced decision analysis problem. The

development costs are specified in the STAGE3 data set and the gains are included in the
PAYOFF3 data set.

Program 14.3 Evaluated decision tree in the simple go/no go problem with multiple outcome variables
(efficacy and safety)

data stage3;
length _outcome_ $10.;
input _stname_ $ _sttype_ $ _outcome_ $ _reward_ _success_ $;
datalines;
Phase3 D No_go . .
. . Go -250 Develop
Develop C Eff_super . AE
. . Eff_noninf . AE
. . Eff_inf . .
AE C AE_super . .
. . AE_equal . .
;
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data prob3;
length _event1_ _event2_ _event3_ $10.;
input _event1_ $ _prob1_ _event2_ $ _prob2_ _event3_ $ _prob3_ ;
datalines;
Eff_super 0.2 Eff_noninf 0.5 Eff_inf 0.3
AE_super 0.3 AE_equal 0.7 . .
;

data payoff3;
length _state1_ _state2_ $10.;
input _state1_ $ _state2_ $ _value_;
datalines;
Eff_super AE_super 1200
Eff_super AE_equal 550
Eff_noninf AE_super 450
Eff_noninf AE_equal 100
Eff_inf . 0
;

* Trial’s outcome;
symbol1 value=triangle height=10 color=black width=3 line=1;
* Decision point;
symbol2 value=square height=10 color=black width=3 line=1;
* End nodes;
symbol3 value=none height=10 color=black width=3 line=1;
proc dtree stagein=stage3 probin=prob3 payoffs=payoff3;

ods select parameters policy;
treeplot/graphics norc nolegend compress
linka=1 linkb=2 symbold=2 symbolc=1 symbole=3;
evaluate/summary;
run;
quit;

Output from Program 14.3

Decision Parameters

Decision Criterion: Maximize Expected Value (MAXEV)
Optimal Decision Yields: 1.5

Optimal Decision Policy

Up to Stage Phase3

Alternatives Cumulative Evaluating
or Outcomes Reward Value
----------------------------------------
No_go 0 0.0
Go -250 251.5*

Figure 14.3 displays the decision tree generated by Program 14.3, and cumulative
rewards (CR) and expected values (EV) for each branch of the tree. Output 14.3 shows
that the optimal value for the go option is +1.5 MUSD. This value is the result of a
cumulative cost (negative reward) of 250 MUSD for running the trial and an evaluated
expected value at the end node of 251.5 MUSD. The stop option has a zero value.

It should be noted that there are many possible descriptions of the same problem.
Instead of using separate chance nodes for efficacy and safety outcomes, one can, of course,
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Figure 14.3 Evaluated decision tree in the simple go/no go problem with two outcome variables. The square
node is the decision to conduct the trial or not and the triangle nodes represent the trial’s efficacy outcome
(superiority, non-inferiority, or inferiority) and safety outcome (superiority or equivalence).
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consider only one chance node with an outcome space consisting of five combined events:
{E+, S+}, {E+, S=}, {E=, S+}, {E=, S=} and {E−}. Different levels of refinement are
possible, and more or less suitable according to the situation. For example, one can average
over all possible safety outcomes and just use the probabilities for the efficacy outcomes
together with the expected gains given these outcomes, i.e.,

G(E+) = G(E+, S+)P (S+) + G(E+, S=)P (S=)

and

G(E=) = G(E=, S+)P (S+) + G(E=, S=)P (S=).

This problem formulation would be adequate at the moment. However, the simple decision
problem that we have analyzed in this section will be expanded in Section 14.4 and the
separation between efficacy and safety outcomes will then be crucial. The previous
assumption about independence of efficacy and safety results was made for convenience.
Dependence is easily treated by providing conditional probabilities in the data set specified
in the PROBIN option of PROC DTREE. This is shown in Program 14.4 (see Section 14.4)
in another situation of dependence.

Before expanding the drug development problem, we will give a short general
description of decision analysis.

14.3 The Structure of a Decision Analysis
The foundations of statistical decision theory were laid by Wald (1950) and Savage (1954).
The theory was mainly concerned with problems within statistical inference, such as
estimation and hypothesis testing, rather than with real-life decision problems. A standard
formulation (Berger, 1985; Lehmann, 1986; French and Rı́os Insua, 2000) is that θ denotes
the unknown parameter (or “state of nature”). After observing a random vector X, which
distribution is determined by θ, the decision-maker is to make a decision (take an action)
denoted by d(X). Statistical decisions may be related to accepting or rejecting a hypothesis
or to choosing a point estimate of θ. The consequences of different decisions are modeled by
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a fully specified loss function L(θ, d(X)). One may proceed by calculating the risk function

r(θ, d) = EX [L(θ, d(X))],

where the expectation is taken over the distribution of X for the parameter θ.
Since the risk function depends on the unknown parameter, it is not clear which decision

rule is optimal. Two possible criteria for optimality are the minimax and Bayes criteria
defined below.

Minimax criterion. The minimax rule chooses the decision d = d(X) that minimizes
maxθ r(θ, d).

Bayes criterion. The Bayes solution is based on a prior distribution π(θ) for θ and
chooses the decision rule that minimizes

Eθ[r(θ, d)] =
∫

r(θ, d)π(θ) dθ.

Statistical decision theory can also be applied to decision problems which we do not
necessarily think of as “statistical”, such as deciding whether to invest or not (Raiffa,
1961). In these problems the temporal order is often different from the typical statistical
problem: it is common that a decision d (e.g., a go/no go decision in a Phase III trial) has
to be taken before observing a random outcome X (e.g., trial results). The decision-maker’s
preferences are often modeled as a utility u = u(θ, d,X). To model a utility u instead of a
loss L is purely conventional as they are easily interchangeable by the relation

u = constant − L.

It is also common to see sequential decision problems. There are often several decisions
d1, d2, . . . which are to be taken. Between the decision points, more and more observations
X1, X2, . . . can be collected. Each Xk may be a random vector whose distribution is
determined by θ. The random outcome Xk can also depend on earlier decisions d1, . . . , dk−1,
as these may relate to which experiments are run. On the other hand, the decisions depend
on previously collected information, dk+1 = dk+1(X1, . . . , Xk). This structure can, at least
for simple discrete problems, be illustrated as a decision tree with a number of decision
nodes as well as chance nodes.

By writing d = {d1, d2, . . .} and X = {X1, X2, . . .}, we still have a utility function of the
form u = u(θ, d,X). Given a prior distribution for θ, say, π(θ), and using expected utility as
the optimality criterion, the problem is to find the decision strategy d which maximizes

E[u(d, X)] =
∫

u(θ, d,X)π(θ) dθ.

Backward induction is often useful to solve this problem (Bather, 2000). The minimax
optimality criterion, although sometimes fruitful for some statistical problems, is usually of
limited value in a real-life decision problem. For example, the minimax solution of the
investment problem is almost invariably not to invest. This philosophy could be parodied
as one which leads one to spend one’s life in bed for fear of being run over by a car if one
leaves the house.

A main criticism of fully Bayesian methods that rely on informative priors has been the
subjective component. Results that strongly depend on the experimenter’s prior beliefs are
likely not to be fully accepted by other stakeholders or by the scientific community. This
criticism, however, loses its strength when the conclusions are not meant to convince
individuals other than those who make the assumptions. Therefore, a semi-Bayesian
approach is reasonable: use Bayesian methods internally but classical frequentism
externally. For example, a company might use its prior opinion of the effect of a new drug
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in order to decide on how much resources, if any, to put into its development, how clinical
trials should be designed and dimensioned, etc. Still, the company may give traditional
frequentist statistical analyses to the regulatory bodies and to the scientific community
when publishing the results. As we will see, the utility may even be constructed as a
function of the result of the frequentist analysis.

The term “Decision Analysis” was coined in 1965 by Howard (Howard and Matheson,
1984, pages 3 and 97). Decision analysis is partly the application of statistical decision
theory but does also pay attention to structuring and modeling a problem. These issues are
typically more complicated than the computational optimization, given a specified model.
Good accounts of decision analysis are provided by Raiffa (1968) and in a collection of
papers edited by Howard and Matheson (1984).

14.4 The Go/No Go Problem Revisited
The go/no go example of Section 14.2, having only two available alternatives, is simplistic.
There is usually a larger set of decision alternatives. The company may try to out-license
the drug. It can decide to postpone the decision so that more information regarding the
drug’s likely effect and market potential can be collected. Even if the decision is to start a
Phase III program immediately, there are different possible designs for the program.
Important design factors are which dose(s) to use and the sample size. All these examples
may be modeled by including more decision nodes in the decision tree. In this section we
will illustrate the possibility of adding decision nodes with a problem involving the option
to purchase information regarding an important AE.

Recall from Section 14.2 that there is good hope that the new drug in the example has
an advantage over the existing therapy with respect to a certain adverse event. Assume
that a preliminary test (pretest) can be run to investigate this further. If the pretest is
positive, then it is highly likely that an AE advantage can be demonstrated in Phase III
development. A negative result, on the other hand, predicts no advantage. The question is
whether it is worth a relatively modest cost to perform the pretest? We will assume that
this investigation may be run in parallel with other necessary activities before making the
decision on whether to proceed to a Phase III program (if this were not the case, and
running the pretest would delay the project, the payoff data set should reflect that the
reward depends on the time of marketing).

One can think of a number of different investigations that could, depending on the
situation, possibly serve as pretests, e.g.:

• Use of an AE animal model.
• Studies of the binding between drug and receptor.
• A clinical trial of limited size and duration, perhaps focusing on a surrogate marker in a

selected high-risk population.

Often, the results of such investigations are not dichotomous but may be more or less
positive or negative. For simplicity, however, we assume that only two outcomes
(positive/negative) are possible.

Program 14.4 analyzes the same problem as in Program 14.3 but with the addition of the
pretest option. It is assumed that the cost of the pretest is 20 MUSD and that a positive or
negative pretest predicts that superiority with respect to the AE can be shown in Phase III
with probabilities 0.9 and 0.15, respectively. In order to be consistent with the problem
considered in Program 14.3, the probability for a positive pretest must be 0.2, since

P (S+) = P (S+ | Positive pretest) P (Positive pretest)

+ P (S+ | Negative pretest) P (Negative pretest).
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Program 14.4 Evaluated decision tree in the simple go/no go problem with two outcome variables (efficacy
and safety) and a pretest

data stage4;
length _stname_ _outcome_ _success_ $10.;
input _stname_ $ _sttype_ $ _outcome_ $ _reward_ _success_ $;
datalines;
Pretest D No_test 0 Phase3
. . Test -20 AEtest
AEtest C AEpos . Phase3
. . AEneg . Phase3
Phase3 D No_go 0 .
. . Go -250 Develop
Develop C Eff_super . AE
. . Eff_noninf . AE
. . Eff_inf . .
AE C AE_super . .
. . AE_equal . .
;

data prob4;
length _given1_ _given2_ _event1_ _event2_ _event3_ $10.;
input _given1_ $ _given2_ $ _event1_ $ _prob1_

_event2_ $ _prob2_ _event3_ $ _prob3_;
datalines;
. . AEpos 0.2 AEneg 0.8 . .
. . Eff_super 0.2 Eff_noninf 0.5 Eff_inf 0.3
No_test . AE_super 0.30 AE_equal 0.70 . .
Test AEpos AE_super 0.90 AE_equal 0.10 . .
Test AEneg AE_super 0.15 AE_equal 0.85 . .
;

data payoff4;
length _state1_ _state2_ $10.;
input _state1_ $ _state2_ $ _value_;
datalines;
Eff_super AE_super 1200
Eff_super AE_equal 550
Eff_noninf AE_super 450
Eff_noninf AE_equal 100
Eff_inf . 0
;

* Trial’s outcome;
symbol1 value=triangle height=10 color=black width=3 line=1;
* Decision point;
symbol2 value=square height=10 color=black width=3 line=1;
* End nodes;
symbol3 value=none height=10 color=black width=3 line=1;
proc dtree stagein=stage4 probin=prob4 payoffs=payoff4;

ods select parameters policy;
treeplot/graphics norc nolegend compress
linka=1 linkb=2 symbold=2 symbolc=1 symbole=3 display=(link);
evaluate/summary;
run;
quit;

Output 14.4 shows that the optimal decision path is to run the pretest and then go into
Phase III development only if the pretest is positive. Comparing the optimal values in
Output 14.3 and Output 14.4, we see running the pretest increases the expected value of
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the project from 1.5 MUSD to 16.9 MUSD. The decision tree produced by Program 14.4 is
not shown in order to save space.

Output from Program 14.4

Decision Parameters

Decision Criterion: Maximize Expected Value (MAXEV)
Optimal Decision Yields: 16.9

Optimal Decision Policy

Up to Stage Pretest

Alternatives Cumulative Evaluating
or Outcomes Reward Value
----------------------------------------
No_test 0 1.5
Test -20 36.9*

Optimal Decision Policy

Up to Stage Phase3

Cumulative Evaluating
Alternatives or Outcomes Reward Value

------------------------------------------------------------
No_test No_go 0 0.0
No_test Go -250 251.5*
Test AEpos No_go -20 0.0
Test AEpos Go -270 434.5*
Test AEneg No_go -20 0.0*
Test AEneg Go -270 205.8

It is often crucial to investigate the robustness of the conclusions. The model
parameters, especially rewards and probabilities, are typically uncertain. It is good practice
to vary the most important parameters and look at how these variations affect the analysis.
PROC DTREE is an interactive procedure and allows the user to modify the rewards with
the MODIFY statement (see Program 14.17).

However, the most powerful way of investigating robustness properties is via macro
programming. A simple SAS macro that evaluates the robustness of the decision analysis
model is given in Program 14.5. In this macro, all payoffs are scaled by a common factor f .
The output of the program (not displayed) shows that the optimal decision pattern
changes considerably when the payoff factor f is varied:

• For sufficiently small payoffs, say, f = 0.5, the expected value of a Phase III trial is
negative even if the drug has an AE advantage.

• When f = 0.8, the AE advantage would motivate a Phase III trial. However, the cost of
the pretest is too high in comparison with the information it will provide.

• In the standard scenario, f = 1.0, it is optimal to run the pretest and run a Phase III
trial if and only if the pretest result is positive.

• For f = 1.2, the pretest still gives valuable information but the optimal strategy is to go
to Phase III development directly, avoiding the pretest cost.
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• Finally, for really high payoffs (e.g., f = 1.5), it is worthwhile to run a Phase III trial
even when the pretest is negative. Since the Phase III trial will be done irrespective of
the result of the pretest, the pretest is obviously redundant in this model and with these
parameters. Thus, the analysis shows that the optimal decision is to conduct a Phase III
trial without a previous pretest. Note, however, that a pretest may help optimize the
design of the Phase III trial. If this is the case, an extended model may still show that
the pretest has value.

Program 14.5 Robustness check when varying payoffs

/* Refers to data sets from the previous program */
%macro robust(payoff_factor);

data payoff_changed;
set payoff4;
_value_=&payoff_factor*_value_;

proc dtree stagein=stage4 probin=prob4 payoffs=payoff_changed criterion=maxev;
evaluate/summary;
run;
quit;

%mend robust;

%robust(0.5);
%robust(0.8);
%robust(1.0);
%robust(1.2);
%robust(1.5);

14.5 Optimal Sample Size
The Phase III investment example resembles investment problems from other industries,
e.g., oil drilling examples described in Raiffa and Schlaifer (1961, Section 1.4.3). One
important difference is that Phase III development consists of experiments which we are to
design and whose results can be modeled with standard statistical methods. The power, or
probability of showing superiority, in one clinical trial is easily determined given the
response distributions and test method. The response distributions are typically
determined by parameters such as mean effect and standard deviation. Furthermore, these
parameters can be modeled using previous clinical (and sometimes preclinical) data (Pallay
and Berry, 1999; Burman et al., 2005).

So far, in Sections 14.2 and 14.4, we have taken the Phase III program to be fixed (if it
is run at all). The design of these trials is, however, of utmost importance and definitely a
field where statisticians have a lot to contribute. In this section we will consider one single
design feature: the trial’s sample size.

Decision analytic approaches to sample size calculations in clinical trials have been
considered in a variety of situations. General Bayesian approaches are outlined by Raiffa
and Schlaifer (1961, Section 5.6) and Lindley (1997). Claxton and Posnett (1996) as well as
O’Hagan and Stevens (2001) apply such ideas to clinical trials with health economics
objectives. Gittins and Pezeshk (2000) and Pallay (2000) discuss the sizing of Phase III
trials, considering regulatory requirements. A review of Bayesian approaches to clinical
trial sizing is provided by Pezeshk (2003).

Sample size has often been viewed as a relatively simple function of the following
parameters:

• “Least clinically relevant effect” δ.
• Standard deviation σ.
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• Power 1 − β.
• One-sided significance level α/2.

In a two-arm trial of reasonable size, so that a normal approximation is appropriate, the
total sample size is given by

n =
4 (Φ−1(1 − α/2) + Φ−1(1 − β))2

(δ/σ)2 ,

where Φ(·) is the standard normal cumulative distribution function.
The main difficulty in sample size calculations is the choice of α, β, δ, and σ. The

one-sided significance level α is conventionally set at a 2.5% level so that the two-sided size
of the test is 5% (FDA, 1998). The standard deviation σ is sometimes hard to estimate at
the planning stage and a misspecification may distort the resulting sample size
considerably. However, there is often enough data from previous smaller trials with the test
drug and from Phase III trials of other drugs with the same response variable for a
reasonably robust guess of the value of σ.

More interesting parameters are β and, even more so, the treatment effect δ. We will
start by looking at the optimal power when δ is näıvely taken as a fixed known value. After
that we will discuss δ.

The power, 1 − β, is often conventionally set at 90%. This is indeed convenient for the
statistician performing the sample size calculation as he or she does not have to consider
the context around the trial. The importance of the trial, cost of experimentation,
recruitment time and other factors are simply ignored. We argue, however, that the choice
of the sample size is often a critical business decision. A Phase III program or even a single
mortality trial will often cost in the order of 100 MUSD (DiMasi et al., 2003). Changing
the power from 80% to 90%, or from 90% to 95%, can result in a considerable increase of
the trial’s cost, sometimes tens of MUSD. In addition, and often even more important, the
time to marketing may be delayed. For such important decisions, a decision analysis
framework seems natural.

14.5.1 Optimal Sample Size Given a Fixed Effect
We will start with a very simple decision analysis model and then gradually add some
features that can increase the realism of the model. Suppose that a statistically significant
trial result in favor of the test drug will lead to regulatory approval and a subsequent
monetary gain G for the company. Think of G as the expected discounted net profit during
the whole product life-cycle, where sale costs (production, distribution, promotion, etc.) are
subtracted from the sales. In the case of a non-significant result, the drug will not be
approved and there will be no gain.

Assume that the cost for conducting a clinical trial with N > 0 patients is
C(N) = C0 + cN , where C0 is the start-up cost and c is the cost per patient. If no trial is
conducted, we have N = 0 and C(0) = 0. The trial cost and other development costs should
not be included in G. The company profit is assumed to be GI{S} − C(N), where I{S} = 1 if
the trial is statistically significant and 0 otherwise. Note that this assumption is typically
not realistic, as the magnitude of the estimated effect as well as the precision of the
estimate are likely to affect the sales. Furthermore, the times of submission, approval, and
marketing are likely to depend on N . The model can be made more realistic by
incorporating such aspects. This is partly done in Section 14.5.3 below.

Under these assumptions, the expected profit is given by

V (N) = E[GI{S} − C(N)] = Gp(N) − C(N),

where p(N) is the probability of a significant outcome, i.e., power. The values of the
parameters vary considerably depending on the drug and therapeutic area. For the sake of
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illustration, assume that the effect size δ/σ = 0.2, value of the trial G = 1000, start-up cost
C0 = 50 and cost per patient c = 0.1. Program 14.6 computes the profit function for the
selected parameter values.

Program 14.6 Computation of costs and gains in a Phase III trial

data npower;
alpha=0.05; /* Two-sided significance level */
critical=probit(1-alpha/2);
effsize=0.2; /* Effect size */
g=1000; /* Value of successful (i.e., significant) trial */
startc=50; /* Start-up cost */
c=0.1; /* Cost per patient */
do n=0 to 2000 by 10;

power=probnorm(effsize*sqrt(n/4)-critical);
egain=g*power;
cost=startc+c*n;
profit=egain-cost;
output;

end;
run;
axis1 minor=none label=(angle=90 "Utility") order=(0 to 1000 by 200);
axis2 minor=none label=("Sample size") order=(0 to 2000 by 500);
symbol1 i=join width=3 line=1 color=black;
symbol2 i=join width=3 line=20 color=black;
symbol3 i=join width=3 line=34 color=black;
proc gplot data=npower;

plot (cost egain profit)*n/overlay nolegend haxis=axis2 vaxis=axis1;
run;
quit;

Figure 14.4, generated by Program 14.6, depicts the resulting profit function. The
maximum profit is achieved at N = 1431 patients. This corresponds to the probability of a
significant outcome (power) of 96.6%.

Figure 14.4 Cost (solid curve), expected gain (dashed curve) and expected profit (dotted curve) as a function
of sample size
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It is clear that Program 14.6 relies on a fairly inefficient algorithm. It simply loops
through all values of N between 0 and 2000 to find the sample size that maximizes the
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expected net gain. A more efficient approach is to explicitly formulate this problem as an
optimization problem and utilize one of many optimization routines available in SAS. In
principle, it would have been possible to use a decision tree (i.e., PROC DTREE) for this
optimization problem. However, since so many different values of N are possible, it is more
convenient to treat it as an approximately continuous variable and use the optimization
procedure PROC NLP.

The NOPT macro in Program 14.7 calculates the optimal sample size using the NLP
procedure. The procedure maximizes the value of PROFIT (expected net gain) with
respect to the N variable (total sample size). The underlying assumptions are identical to
the assumptions made in Program 14.6, i.e., the effect size δ/σ = 0.2, value of the trial
G = 1000, start-up cost C0 = 50, and cost per patient c = 0.1.

Program 14.7 Optimal sample size

%macro nopt(effsize,g,startc,c,alpha);
proc nlp;

ods select ParameterEstimates;
max profit; /* Maximise the expected net gain */
decvar n; /* Total sample size */
critical=probit(1-&alpha/2);
power=probnorm(&effsize*sqrt(n/4)-critical);
egain=&g*power;
cost=&startc+&c*n;
profit=egain-cost;

run;
%mend nopt;
%nopt(effsize=0.2,g=1000,startc=50,c=0.1,alpha=0.05);

Output from Program 14.7

PROC NLP: Nonlinear Maximization

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 n 1431.412256 1.336471E-9

Output 14.7 shows that the optimal sample size is 1431 patients. This value is identical
to the optimal sample size computed in Program 14.6. Some robustness checks are easily
implemented by varying the assumed effect size. For example, it is easy to verify that the
optimal sample sizes for δ/σ = 0.15 and δ/σ = 0.25 are N = 2164 and N = 1018 patients,
respectively.

The model used hitherto in this subsection is generally too simplistic to be of practical
value. We will return to the uncertainty in treatment effect in Section 14.5.3 but first, in
the next subsection, comment on the number of significant trials needed for regulatory
approval.

14.5.2 The Optimal Number of Trials
Often two statistically significant trials are needed for regulatory approval. Assume that
two virtually identical trials, each of size N , should be run and that both are required to be
significant.
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The reasoning used in Section 14.5.1 can then easily be extended to give

VTwo trials(N) = G · P (Both trials are significant) − 2C(N) = Gp(N)2 − 2(C0 + cN),

which can be optimized using a slightly modified version of Program 14.6.
Provided that the two trials have equal conditions, it is optimal to have the same

sample size in both trials. Often the trials are, however, conducted in different countries
and in different populations. Costs, recruitment times, and anticipated effects may
therefore vary and non-equal sample sizes may be indicated.

The probability of achieving significant results in at least two trials is typically higher if
a fixed number of patients is divided into three trials instead of two. In fact, it is easier to
get significances in two trials and supportive results in the third (defined as a point
estimate in favor of the new drug) when three trials are run than to get significances in
both trials when two trials are run. One numerical illustration is provided by
Program 14.8. Success of the trial program is defined as all trials giving positive point
estimates and at least two trials being statistically significant at the conventional level.

Program 14.8 Optimal number of trials

data no_of_trials;
alpha=0.05;
effect=20;
sd=100;
n_tot=2000;
critical=probit(1-alpha/2);
format m n 5.0 p_sign p_supp p_success 5.3;
do m=1 to 5;

n=n_tot/m;
p_sign=probnorm(effect/sd*sqrt(n/4)-critical);
p_supp=probnorm(effect/sd*sqrt(n/4));
p_cond=p_sign/p_supp;
p_success=p_no_neg*(1-probbnml(p_cond,m,1));
output;

end;
label m=’Number of trials’

n=’Sample size’
p_sign=’Prob of significance’
p_supp=’Prob of supportive results’
p_success=’Success probability’;

keep m n p_sign p_supp p_success;
proc print data=no_of_trials noobs label;

run;

Output from Program 14.8

Number Prob of
of Sample Prob of supportive Success

trials size significance results probability

1 2000 0.994 1.000 0.000
2 1000 0.885 0.999 0.784
3 667 0.733 0.995 0.816
4 500 0.609 0.987 0.798
5 400 0.516 0.977 0.754

Output 14.8 lists several variables, including success probability when a total sample
size is divided equally in m trials (m = 1, . . . , 5). With a single trial, the probability of
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regulatory success is zero, as two significant trials are needed. Interestingly, the success
probability increases when going from two to three trials.

From a regulatory perspective, it is probably undesirable that sponsors divide a fixed
sample size into more than two trials without any other reason than optimization of the
probability for approval. The regulators should therefore apply such rules that do not
promote this behavior. This is a simple example of the interaction between different
stakeholders’ decision analyses.

In fact, the reason that regulators require two trials to be significant is not entirely
clear. Say that two trials are run and each is required to be significant at a one-sided 0.025
level (i.e., α = 1/40) and registration follows only when both trials are significant. This
corresponds to an overall Type I error rate of (1/40)2 = 1/1600 = 0.000625. However, if
centers, patients, and protocols are regarded as exchangeable between the two trials, then
an equivalent protection in terms of Type I error rate can be provided to the regulator
using fewer patients for equivalent overall power (Senn, 1997; Fisher, 1999; Rosenkranz,
2002; Darken and Ho, 2004). In fact, one could run two such trials and simply pool their
results together for analysis. The difference between the resulting pooled trial rule and the
conventional two-trials rule in terms of the critical values of the standard normal
distribution is illustrated in the accompanying Figure 14.5 taken from Senn (1997).

In this figure, the boundaries for significance are plotted in the {Z1, Z2} space, where Z1
is the standardized test statistic for the first trial and Z2 for the second. For the two-trials
rule we require that both Z1 > 1.96 and {Z2 > 1.96}. The resulting critical region is that
above and to the right of the dashed lines. For the pooled trial rule we require
(Z1 + Z2)/

√
2 > 3.227. The latter rule may be derived by noting that Var(Z1 + Z2) = 2 and

1 − Φ(3.227) ≈ 0.000625. The associated critical region is above and to the right of the solid
line.

Figure 14.5 Rejection regions for the pooled-trial and two-trials rules
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If we calculate power functions for the pooled- and two-trials rules as a function of the
standardized non-centrality parameter, δ� for a single trial, then this has the value
2δ�/

√
2 =

√
2δ� for the pooled-trial rule. Bearing in mind that both trials must be

significant for the two-trials rule, the power functions are

PowerTwo trials = (1 − Φ(1.96 − δ�))2

PowerPooled trial = 1 − Φ(3.227 −
√

2 δ�).

Figure 14.6 displays a plot of the two power functions. It can be seen from the figure
that the power of the pooled-trial rule is always superior to that of the two-trials rule.
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Figure 14.6 Power of the pooled-trial (solid curve) and two-trials (dashed curve) rules
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One argument for preferring two trials to such a single trial would be if the trials were
not exchangeable and had different design details either in terms of type of centers and
patients or in terms of protocol. Two trials that were both significant at a 0.025 level would
then be more impressive in terms of robustness than a single trial significant at a 0.000625
level. There is, however, no evidence that in their Phase III programs clinical trial sponsors
deliberately choose trials that differ in design nor that regulators require them to. For
regulatory thinking on this issue, see Committee for Proprietary Medicinal Products
(CPMP) (2001).

14.5.3 A Bayesian Approach to Sample Size Calculations
We have, in Section 14.5.1, looked at the optimal sample size given a fixed treatment effect
δ. However, the main problem in deciding on whether to conduct the trial at all and, in
that case, how to choose a sample size lies in the uncertainty regarding this parameter. If δ
could be objectively established with good precision at this stage, there would be little
need to conduct a clinical trial in order to estimate it. Hence, clearly we cannot insert the
true value of δ in the power formula, if we regard this as being the effect of the treatment.
It may also be misleading to insert a point estimate based on previous data, due to the
uncertainty of this estimate. It is often recommended that the sample size calculation
should be based on the “least clinically significant effect” but even this is a quantity that
cannot be established with absolute precision, since physicians may disagree between
themselves and even from time to time, as to what it is.

To decide on whether to invest in a Phase III program a clinical trial sponsor must
clearly have some sort of prior opinion about either the size of the effect that would be
important or the size that would be likely to obtain. We think that it is reasonable to try
to formalize this opinion using a Bayesian prior distribution. However, we warn here that
the solution we describe below is not fully Bayesian and may be far from optimal because
it does not model utility explicitly as a function of the treatment effect.

Fully Bayesian sample size determinations (with or without utility) have been discussed
by several authors, e.g., Lindley (1997) and Pezeshk (2003). We will, however, investigate
an approach where Bayesian decision theory is used only for in-house company decisions,
such as designing the clinical program, see, for example, Gittins and Pezeshk (2000). Solely
frequentist analyses of clinical trial results are communicated externally to regulators and
the public. This dichotomy between internal Bayesianism and external frequentism is
motivated by the stakeholder situation. The sponsor conducts the trial program in order to
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provide information to regulators and prescribing physicians on which they can base their
decisions. These stakeholders will base their decisions on the data, for convenience often
presented as frequentist confidence intervals, and possibly on their own priors. For the
sponsor, the optimal program design depends on its own prior and on the anticipated
reaction of other stakeholders. The questions to investigate are of the type: What is the
probability that the proposed design will lead to trial results that will convince regulators
to approve the marketing of our drug and convince physicians to prescribe the drug?

Program 14.9 calculates expected utilities by integrating over the prior distribution for
the treatment effect δ (integration is performed using the QUAD function of SAS/IML).
This prior distribution is assumed to be normal and its mean and standard deviation are
given by the MUE and MUSE variables, respectively (notice that the case when MUSE=0
corresponds to a model with a known treatment effect). SD is the residual standard
deviation. The value of MUE, SD, and some other parameters of the program are chosen to
facilitate the comparison with the approach described in Section 14.5.1. For example, the
effect size is centered around 0.2, the start-up cost is 50, and cost per patient is 0.1.

The program also allows for a possible non-inferior (but non-superior) result. If this
option is not applicable, let NIMARGIN=0. The maximal possible value following a
non-inferior result is given by the parameter VNIMAX and, similarly, VSUPMAX is the
maximal value of a superior result.

In addition to the options of including a prior effect distribution and/or a non-inferiority
criterion, a time delay due to increased sample size may also be included. In the model, the
maximal profit given marketing (VNIMAX or VSUPMAX) is decreased by a factor
TIMEC times the sample size.

In the DO loop in Program 14.9, the expected utility (EUTILITY) is calculated for a
number of different sample sizes (given by the vector SIZE). On the negative side,
TOT COST is the total cost for the trial and TIME FACTOR accounts for the relative
loss in value due to the time delay. PSUP and PNI are the probabilities for superiority and
non-inferiority, respectively. These are functions of the treatment effect. Given the effect,
UTILITY is the expected gain, that is, probability-weighted profit corrected for the time
delay via TIME FACTOR, minus the total cost of running the trial. QUAD is applied to
calculate the expected utility over the prior distribution for the effect.

In the model underlying the program, the trial result is important only for the regulatory
label (superior, non-inferior, or not approved). Given the label, the profit in this model is
independent of the trial result and sample size. If one is trying to apply decision analysis
on a practical Phase III sizing problem, we advise that the modeling of the profit be done
with greater care. If a better commercial model can be defined in terms of sample size and
trial results, it is often relatively straightforward to modify Program 14.9 accordingly.

Program 14.9 Expected utility when the treatment effect is uncertain

proc iml;
muE=20;
muSE=10;
sd=100;
NImargin=10;
vSUPmax=1000;
vNImax=400;
alpha=0.05;
crit=probit(1-alpha/2);
timec=0.0001;
startc=50;
c=0.1;
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size=t(do(0,2000,10));
m=nrow(size);
Eutility=j(m,1,0);
do k=1 to m;

n=size[k,1];
time_factor=max(1-timec*n,0);
tot_cost=startc+n*c;
start h(effect) global(n,muE,muSE,sd,NImargin,crit,

vSUPmax,vNImax,time_factor,tot_cost);
pSup=probnorm(effect/sd*sqrt(n/4)-crit);
pNI=probnorm((effect+NImargin)/sd*sqrt(n/4)-crit)-pSup;
utility=time_factor*(vSUPmax*pSup+vNImax*pNI)-tot_cost;
density=exp(-(effect-muE)**2/(2*muSE**2))/sqrt(2*3.14159*muSE**2);
h_out=density*utility;
return(h_out);

finish;
call quad(temp,"h",{.M .P}); /* Integrate over the real axis */
Eutility[k,1]=temp;

end;
create plotdata var{size Eutility};
append;
quit;

axis1 minor=none label=(angle=90 "Utility") order=(0 to 600 by 200);
axis2 minor=none label=("Sample size") order=(0 to 2000 by 500);
symbol1 i=join width=3 line=1 color=black;
proc gplot data=plotdata;

plot Eutility*size/haxis=axis2 vaxis=axis1 frame;
run;
quit;

Figure 14.7 Expected utility as a function of sample size
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The output of Program 14.9 is displayed in Figure 14.7. The figure depicts the
relationship between the expected utility and total sample size. Under the assumptions
made in the program, the optimal sample size is 887 patients, which is much smaller than
the optimal sample size of 1431 patients for the model considered in Section 14.5.1.
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14.5.4 Do Not Sub-Optimize!
A poor decision analysis, which ignores essential components of the problem, is often worse
than no formal decision analysis at all. As Einstein said, “Things should be made as simple
as possible — but no simpler”. We would therefore like to stress that the models presented
in Sections 14.5.1 and 14.5.3 must not be applied thoughtlessly to a practical problem.
They should be seen just as examples of how a decision model can be built and refined and
how to analyze continuous decision problems using SAS. Additional factors which may be
important in a practical situation are the demand for safety data, the relation between the
amount of Phase III data and sales, alternative investment options in terms of other drugs
in the pipeline, etc.

14.5.5 Integrating the Models
Many problems involve a number of decisions, which have to be made at different times.
Earlier decisions may lead to information that can be used as input for later decisions. This
is obvious in clinical development where the final decisions concerning the design of the
Phase III trials will be made after the analysis of a dose-finding trial (Phase IIb), which
might follow upon a proof of principle trial (Phase IIa) and so forth. Such problems,
involving sequential decisions, are often best attacked by backward induction (Bather,
2000); the analysis starts by solving the decision problems at the latest stage and then
works gradually backwards in time to reach an optimal solution of the entire sequential
problem.

The drug development decision model of Sections 14.2 and 14.4, focusing on go/no go
decisions, is naturally connected with the sample size decisions studied in the present
section. Consider for a moment the integrated decision problem with the three questions:

• Should a pretest be run?
• Should a Phase III trial be run?
• What is the optimal sample size in a Phase III trial?

The best way to solve the composite problem is by starting to analyze the latest decision.
The optimal sample size is determined for all the different scenarios, e.g.,

• Scenario 1: A positive pretest,
• Scenario 2: A negative pretest,
• Scenario 3: No pretest to be run,

and the corresponding conditional expected utility is calculated. Then, these values can be
used as rewards in a decision tree that contains only the pretest and Phase III go/no go
decisions. Similarly, PROC DTREE is working by backward induction and analyzes the
latest nodes first, taking expectation over chance nodes and maximizing over decision
nodes.

Yin (2002) analyses sample sizing in Phase II trials in light of a future go/no go decision.

14.6 Sequential Designs in Clinical Trials
Sequential design and analysis plays a natural role in clinical trials, primarily because of
the ability it gives of stopping early either if the treatment under test does not deliver the
anticipated effect, or because it is more efficacious than was thought initially. Most
sequential approaches are based on frequentist statistics (see, for example, Armitage 1975
and Whitehead 1997) and normally carried out group sequentially, as data are reviewed
and monitored on a periodic basis. There is a long tradition of criticizing such frequentist
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approaches, firstly because by focusing on the consequences of the stopping rules on the
Type I error rate they contradict the likelihood principle (Anscombe, 1963; Cornfield,
1969), and secondly because they ignore the fact that stopping is a decision whose losses
should be taken into account.

There are a number of approaches that have been looked at to determine an optimal
decision rule in a sequential context. The first is traditionally the way that sequential
decisions have been tackled and is based on backward induction (Berger, 1985).

The idea in backward induction is extremely simple and begins by considering the last
possible decision that can be made at the point that the final data that could be gathered
have been gathered. For every possible data set there is an optimal decision to be made.
For example, in the case of the comparison of two treatments: Which is the best treatment,
or Which can be recommended? Associated with the optimal decision is an expected loss in
which the expectation is based on the posterior distribution of the parameters. The
penultimate decision is considered next. Now there are three potential decisions that could
be taken for each possible data set:

• Stop and recommend the first treatment.
• Stop and recommend the second treatment.
• Continue to the final stage.

If the trial is continued, the loss, which includes the cost of the sampling required to reach
the final decision point, can be determined, as can the expected losses of each decision to
stop. Consequently, the optimal decision and its expected loss can be determined. In
principle, the process can be continued backwards in time to the first decision to be made.
Such sequential decision problems are famously difficult because

. . . if one decision leads to another, then to analyse the former, one first needs to
analyse the latter, since the outcome of the former depends on the choice of the latter
(French, 1989)

A consequence of which is that to completely solve the problem by backward induction
involves accounting for exponentially increasing numbers of potential scenarios (Berger,
1985).

The second approach taken to solving sequential decision problems is a forward
algorithm based on simulation. Before considering this approach, we will illustrate the idea
by using it to determine the optimal sample size as in Section 14.5.

Although the general decision problem formulated in Section 14.3 is seductively simple in
its formality, its practical implementation is not always so simple. For complex models the
integrations required to determine the optimal Bayes’ decision may not be straightforward
particularly in multi-parameter, non-linear problems or in sequential decision problems.

Even if the integrations necessary are analytically intractable, the Bayes solution can
easily be obtained by simulation. Recall that the Bayesian decision is obtained by
minimizing ∫

X,θ

L(θ, d(X)) p(X | θ)π(θ) dθ

If the loss function L(θ, d(X)) is available for every combination of θ and d(X), the
decision problem can be solved as follows. Assuming that the generation of random
variables from both π(X|θ) and p(θ) is possible, generate samples {θj , Xj}, j = 1, . . . , M ,
and then evaluate for each simulation the loss, L(θj , d(Xj)). An estimate of the expected
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risk can be obtained from

1
M

M∑
j=1

L(θj , d(Xj)).

Numerical optimization of the resulting estimated expected risks gives the optimal
Bayesian decision.

In the context of finding optimal sample sizes for a clinical trial discussed in
Sections 14.5.1, this approach effectively corresponds to replacing the use of the
PROBNORM function by simulation, which is hardly worthwhile. However, the same
approach allows the simple relaxation of assumptions. For example, suppose that in
Program 14.6 we wish

• To use a t-test rather than a test based on a known variance.
• To use proper prior information.

Simulation makes this very simple. Program 14.10 uses simulation to determine the
optimal sample size based on a t-statistic when prior information is available both for the
treatment effect (using a normal density) and the residual variance (using an inverse-χ2

density). Figure 14.8 plots the computed cost, gain, and utility functions.

Program 14.10 Simulating the optimal sample size using t-statistic and informative prior

data nsample;
n_sim=1000; /* Number of simulations*/
alpha=0.05; /* 2-sided significance level */
pr_eff_m=35; /* Prior mean for treatment effect */
pr_eff_s=100; /* Prior SD for treatment effect */
pr_sd=100; /* Prior expected value of residual SD */
pr_v=10; /* Number of df for prior inverse chi-square */
g=1000; /* Value of a successful (i.e., significant) trial */
startc=50; /* Start-up cost */
c=1.0; /* Cost per patient */
do n=10 to 1000 by 10;

t_df=n-2; critical=tinv(1-alpha/2,t_df);
cost=startc+c*n;
egain=0;
do i_sim=1 to n_sim;

theta=pr_eff_m+pr_eff_s*normal(0);
sigma_2=pr_v*pr_sd**2/(2*rangam(0,pr_v/2));
y=theta+sqrt(sigma_2*4/n)*normal(0);
t_statistic=y/(sqrt(sigma_2*4/n));
if t_statistic>critical then egain=egain+g;

end;
egain=egain/n_sim;
utility=egain-cost;
output;

end;
axis1 minor=none label=(angle=90 "Utility") order=(-1000 to 1000 by 500);
axis2 minor=none label=("Sample size") order=(0 to 1000 by 200);
symbol1 i=spline width=3 line=1 color=black;
symbol2 i=spline width=3 line=20 color=black;
symbol3 i=spline width=3 line=34 color=black;
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proc gplot data=nsample;
plot (cost egain utility)*n/overlay vaxis=axis1 haxis=axis2 frame;
run;
quit;

Figure 14.8 Cost (solid curve), expected gain (dashed curve), and utility (dotted curve) as a function of sample
size
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Of course since we are using simulation techniques we need not be restricted to known,
simple, convenient parametric forms for the priors. All that is required is an ability to
simulate from the priors.

14.6.1 Sequential Decision Problems
To illustrate how a simulation approach can be used to tackle some sequential decision
problems we consider the following example based on the approach taken by Carlin et al.
(1998). The context is a clinical trial in which the objective is to estimate the treatment
effect θ of a new active therapy (A) relative to placebo (P). Large negative values are
suggestive of superiority of A over P and conversely large positive values favor P. The
protocol allows for a single interim analysis. Along the lines of Freedman and Spiegelhalter
(1989), suppose that an indifference region (c2, c1) is predetermined such that

• A is preferred if θ < c2.
• P is preferred if θ > c1.
• Either treatment is acceptable if c2 < θ < c1.

At the final analysis there are two decisions available: d1 to decide in favor of A and d2
to decide in favor of P. For each decision, the loss functions given the true value of θ are:

l1(d1, θ) = s1(θ − c1), l2(d2, θ) = s2(c2 − θ),

where s1 and s2 are positive constants. These losses are negatively increasing (gains) for
correct decisions. Given the posterior at the final analysis, p(θ | X1, X2), the best decision is
determined by the smaller of the posterior expected losses:

E[l1(d1, θ) | X1, X2] = s1(E[θ | X1, X2] − c1),

E[l2(d2, θ) | X1, X2] = s2(c2 − E[θ | X1, X2]).
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By equating these losses and solving for E[θ | X1, X2], it is clear that Decision d1 will be
optimal if

E[θ | X1, X2] ≤ s1c1 + s2c2

s1 + s2
.

Otherwise Decision d2 is optimal.
At the interim analysis, in addition to Decisions d1 and d2 to stop in favor of A or P,

respectively, based on p(θ | X1), there is a further decision possible, which is to proceed to
the final analysis, to incur the extra cost (c3) of the patients recruited between the interim
and final analyses and then to make the decision.

If σ2 is known, the forward approach to the decision is algorithmically as follows:

1. Based on the prior distribution and the first stage data X1, determine the posterior
distribution p(θ | X1, σ

2).
2. Determine the expected losses s1(E[θ | X1] − c1) and s2(c2 − E[θ | X1]).
3. Let k be the number of simulatons. For i = 1 to k,

(a) Simulate θi from p(θ | X1, σ
2).

(b) Simulate data X2,i from p(X2 | θi, σ
2).

(c) Calculate s1(E[θ | X1, X2,i] − c1) and s2(c2 − E[θ | X1, X2,i]).
4. Let lfinal be the minimum of the following two quantities:

1
k

k∑
i=1

s1(E[θ | X1, X2,i] − c1),
1
k

k∑
i=1

s2(c2 − E[θ | X1, X2,i]).

5. Choose the minimum of

s1(E[θ | X1] − c1), s2(c2 − E[θ | X1]), and c3 + lfinal.

Obvious modifications need to be made if σ2 is unknown.
Implementation of this approach is shown in Program 14.11. The output of the program

(Figures 14.9 and 14.10) defines regions for the observed treatment difference at the
interim for which it is preferable to stop rather than to go on to collect more data and
conduct the final analysis.

Program 14.11 Computation of loss functions in the Bayesian sequential design problem

data interim_decision;
n_sim=10000; /* Number of simulations*/
s1=1; /* Cost associated with falsely choosing d1 (active)*/

s2=1; /* Cost associated with falsely choosing d2 (placebo)*/
s3=0.1; /* Cost associated with sampling after interim*/
n1=1; /* Sample size per group at interim */
n2=1; /* Sample size per group after interim */

sigma_2=0.5**2;/* Known sigma**2 */
c1=0; /* Upper indifference boundary (gt favours placebo)*/
c2=-0.288; /* Lower indifference boundary (lt favours treatment)*/

pr_m=0.021; /* Prior mean */
pr_sd=0.664; /* Prior standard deviation */

/* Looping over an observed treatment effect (n1 patients per group) at the interim */
do x1=-1 to 1 by 0.02;
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/* Determine posterior mean (interim) and standard deviation*/

posterior_m_1=(x1*pr_sd**2+2*pr_m*sigma_2/n1)/(pr_sd**2+2*sigma_2/n1) ;
posterior_sd_1=sqrt(1/(1/pr_sd**2+n1/(2*sigma_2)));
/* Determine losses at interim (loss_11: decision 1, loss_21: decision 2) */

loss_11=max(0,s1*(posterior_m_1-c1));
loss_21=max(0,s2*(c2-posterior_m_1));
/* Determine minimum of losses at interim */
loss_interim=min(loss_11,loss_21);

/* Initialise summation variables for future decisions */
loss_12_sum=0; loss_22_sum=0;

/* Simulate future data */
do i_sim=1 to n_sim;

/* Simulate treatment parameter from posterior at interim */
theta=posterior_m_1+posterior_sd_1*normal(0);
/* Simulate treatment effect from n2 patients on each treatment
for given theta */

x2=theta+sqrt(sigma_2*2/n2)*normal(0);
/* Determine posterior mean (final) and standard deviation*/
posterior_m_2=(x2*posterior_sd_1**2+2*posterior_m_1*sigma_2/n2)/

(posterior_sd_1**2+2*sigma_2/n2);
/* Determine losses at final (loss_12: decision 1, loss_22: decision 2) */
loss_12=s3+max(0,s1*(posterior_m_2-c1));

loss_22=s3+max(0,s2*(c2-posterior_m_2));
/* Accumulate losses */
loss_12_sum=loss_12_sum+loss_12;
loss_22_sum=loss_22_sum+loss_22;

end;

/* Calculate expected losses */

loss_12=loss_12_sum/n_sim; loss_22=loss_22_sum/n_sim;
/* Determine minimum of losses at final */
loss_final=min(loss_12,loss_22);

output;
end;
keep loss_11 loss_21 loss_12 loss_22 loss_final loss_interim x1;

axis1 minor=none label=(angle=90 "Loss") order=(0 to 0.6 by 0.2);
axis2 minor=none label=("First stage data (X1)") order=(-1 to 1 by 0.5);
symbol1 i=spline width=3 line=20 color=black;
symbol2 i=spline width=3 line=34 color=black;

symbol3 i=spline width=3 line=1 color=black;
/* Plot loss functions for interim analysis */
proc gplot data=interim_decision;

plot (loss_11 loss_21 loss_interim)*x1/overlay vaxis=axis1 haxis=axis2 frame;
run;

/* Plot loss functions for final analysis */

proc gplot data=interim_decision;
plot (loss_12 loss_22 loss_final)*x1/overlay vaxis=axis1 haxis=axis2 frame;
run;
quit;

In practice, Carlin et al. (1998) use this approach to define a series of critical values for
the posterior mean of the treatment effect for each of a number of interims. The advantage
of their approach is that the critical values can be determined a priori and there is no need
for complex Bayesian simulation during the course of the study. Kadane and Vlachos
(2002) develop an alternative approach intended, in their words, to “capitalize on the
strengths, and compensate for the weakness of both the backwards and forward strategies”.
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Figure 14.9 Loss functions for Decision 1 (dashed curve), Decision 2 (dotted curve), and minimum loss function
(solid curve) at the interim analysis
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Figure 14.10 Loss functions for Decision 1 (dashed curve), Decision 2 (dotted curve), and minimum loss
function (solid curve) at the final analysis
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They develop a hybrid algorithm that works backwards as far as is feasible, determining
the expected loss of the appropriate optimal continuation as a “callable function”. It then
proceeds using the forward algorithm from the trial’s start to where the backward
algorithm becomes applicable. This reduces the size of the space to be covered and hence
will increase efficiency. Berry et al. (2000) describe a similar strategy in the context of a
dose-response study.

14.7 Selection of an Optimal Dose
One of the most crucial decisions in the development of a new drug is which dose to use.
The situation varies between different indications. Sometimes the dose can be titrated for
each patient, sometimes the dose is individualized based on gender, body weight, genetic
constitution, and other factors. Often one looks for a one-dose-fits-all. The optimal dose is
a compromise between beneficial effects and undesired side effects. In general, both effects
and, especially, side effects, may be multi-dimensional. As a further complication, which
side effects are important may not be clear until after the Phase III program or even after
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marketing of the drug. We choose to treat only the simple situation with a one-dimensional
effect variable and a one-dimensional, well-specified type of adverse event. A practical
example of finding the optimal dose, based on decision analysis and modeling of efficacy
and safety, is provided by Graham et al. (2002).

Effects and side-effects are typically measured on different scales and defining the
optimal dose requires that they be weighted together in some way. It is, however, not
obvious how to weigh a decrease in blood pressure against a risk of severe coughing, or how
to weigh a decrease in body weight against problems with loose stools. Although such
weighting has to be subjective, there is no rational way to avoid it. Given dose-response
information for effects and adverse events, to choose a dose more or less implies at least an
implicit statement about the relative importance of the two dimensions.

On some occasions, it may occur that effects and side effects can be measured directly
on the same scale. One example is when both the effect and the side effect are measured in
terms of living and dying. Even though effects and side effects appear to be measured on
the same scale, it is not obvious that they should be weighted equally. Different causes of
death may give different opportunities for the patient to prepare for death. Even if the
outcomes are identical in almost everything, it may subjectively be harder to accept
negative events due to the treatment than similar negative events due to the natural
propagation of the disease. Furthermore, there may be a legal difference: it is easier to
blame the doctor for a treatment’s adverse effects than for the negative effects of the
untreated disease. Thus, a weighting of adverse effects relative beneficial effects is generally
needed.

Suppose that the effect is a continuous variable and the adverse effect is dichotomous.
Let E(D) be the expected effect and p(D) the probability that a patient experiences an
AE, as functions of the dose D. One reasonable utility function is the simple weighted
combination

U(D) = E(D) − kp(D).

Since it is often hard to choose a value of the weight k, it is useful to investigate the
robustness of the conclusions over a range of values of k.

A common model for the effect is the so-called Emax model

E(D) = E0 + Emax · Dγ

Dγ + EDγ
50

. (14.1)

The parameters E0, Emax and ED50 have natural interpretations as placebo response, the
maximal possible placebo-adjusted effect and the dose for which the adjusted effect is 50%
of Emax, respectively. The Hill coefficient γ is related to the steepness of the dose-response
curve around ED50.

Knowledge of the effect curve alone does not imply what the optimal dose is; safety
information is also needed. Assume a logistic model for the probability of AE as a function
of the logarithm of the dose,

p(D) =
exp(α + β log(D))

1 + exp(α + β log(D))
.

14.7.1 Models without Uncertainty
First, assume all parameters to be fixed. Here is an example:

E0 = 0, Emax = 300, ED50 = 0.3, γ = 1.0, α = −1.5, β = 2.0.

Assume also that the weight k = 1000, meaning that 0.1% AEs is equalized to one unit of
effect. Program 14.12 examines the relationship between the dose of an experimental drug
D and the expected effect E(D), adverse event probability p(D), and utility U(D).
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Program 14.12 Plot of the dose-effect, dose-Prob(AE), and dose-utility functions

/* Define model parameters and macros */
%let k=1000;
%let emax=300;
%let ed50=0.3;
%let gamma=1.0;
%let e0=0.0;
%let alpha=-1.5;
%let beta=2.0;
%macro effmodel(dose,emax,ed50,gamma,e0);

%global effout;
%let effout=&e0+&emax*&dose**&gamma/(&dose**&gamma+&ed50**&gamma);

%mend effmodel;
%macro AEmodel(logdose,alpha,beta);

%global AEout;
%let AEout=exp(&alpha+&beta*&logdose)/(1+exp(&alpha+&beta*&logdose));

%mend AEmodel;
/* Create data set for plotting */
data window;

do logd=log(0.01) to log(10.0) by log(10.0/0.01)/100;
dose=exp(logd);
%effmodel(dose=dose,emax=&emax,ed50=&ed50,gamma=&gamma,e0=&e0);
effect=&effout;
%AEmodel(logdose=logd,alpha=&alpha,beta=&beta);
AEprob=&AEout;
AEloss=&k*AEprob;
utility=effect-AEloss;
output;

end;
axis1 minor=none label=(angle=90 "Utility") order=(-300 to 300 by 100);
axis2 minor=none label=("Dose") logbase=10 logstyle=expand;
symbol1 i=join width=3 line=1 color=black;
symbol2 i=join width=3 line=20 color=black;
symbol3 i=join width=3 line=34 color=black;
proc gplot data=window;

plot (effect AEloss utility)*dose/haxis=axis2 vaxis=axis1
overlay frame vref=0 lvref=34;
run;
quit;

Figure 14.11 displays the dose-effect, dose-Prob(AE), and dose-utility functions. It is
clear that the first two functions, E(D) and p(D), are monotone functions of the dose. By
contrast, the dose-utility function is increasing on [0, D∗] and decreasing on [D∗, 10], where
D∗ is the dose that maximizes the utility function. The optimal dose, D∗, is easy to find
using PROC NLP (see Program 14.13).

Program 14.13 Computation of the optimal dose

proc nlp outest=result noprint;
max utility;
decvar dose;
%effmodel(dose=dose,emax=&emax,ed50=&ed50,gamma=&gamma,e0=&e0);
effect=&effout;
%AEmodel(logdose=log(dose),alpha=&alpha,beta=&beta);
AEprob=&AEout;
utility=effect-&k*AEprob;
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Figure 14.11 Plot of the dose-effect (solid curve), dose-Prob(AE) (dashed curve), and dose-utility (dotted
curve) functions
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data result;
set result;
format optdose effect utility 6.2 AEprob 5.3;
where _type_="PARMS";
optdose=dose;
%effmodel(dose=optdose,emax=&emax,ed50=&ed50,gamma=&gamma,e0=&e0);
effect=&effout;
%AEmodel(logdose=log(optdose),alpha=&alpha,beta=&beta);
AEprob=&AEout;
utility=effect-&k*AEprob;
label optdose="Optimal dose"

effect="Effect"
AEprob="Probability of an AE"
utility="Utility";

keep optdose effect AEprob utility;
proc print data=result noobs label;

run;

Output from Program 14.13

Optimal Probability
dose Effect Utility of an AE

0.42 175.02 137.13 0.038

Output 14.13 lists the optimal dose, expected response, utility and, finally, probability
of observing an AE at this dose. The optimal dose is D∗ = 0.42, and the associated net
utility is given by

U(D∗) = E(D∗) − kp(D∗) = 175 − 1000 × 0.038 = 137.

14.7.2 Choosing the Optimal Dose Based on Limited Data
In reality, the efficacy and safety models considered above are uncertain and have to be
estimated from the information at hand. We will assume that a relatively small
dose-finding trial (124 patients) has been run to study the efficacy and safety of five doses
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of an experimental drug. The data collected in the study (DOSE, EFF, and AE variables)
are contained in the STUDY data set available on the book’s companion Web site. The AE
variable is 1 for patients who have experienced the AE, and 0 otherwise. The EFF variable
is the observed effect. Table 14.1 displays the summary of the efficacy and safety data in
the STUDY data set.

Table 14.1 Summary of the Efficacy and Safety Data in the
Dose-Finding Trial (STUDY Data Set)

Efficacy variable
Dose

Number of
patients

Number of
AEs Mean SD

0.03 26 0 −13.7 291.8
0.1 23 0 135.6 269.3
0.3 25 1 132.6 267.0
1 26 5 293.0 328.3
3 24 10 328.4 339.1

In addition to this limited information on the new drug’s effect, there is a lot of
literature data for other drugs from the same class. Based on this, we think that we can
estimate the E0, Emax, and γ parameters of the Emax model, introduced earlier in this
section, sufficiently well. (It is assumed that the parameters are shared by all drugs in the
class.) Thus, we will take E0 = 0, Emax = 300, and γ = 1.0 as fixed. Only the potency,
described by ED50, of our new drug remains uncertain. The computations are simplified, as
only one of the four parameters in the Emax model must be estimated based on the small
in-house trial.

Before estimating the unknown parameters, ED50, α, and β, it is good to consider how
reliable the efficacy and safety models are. Even if the models fit the data well, we should
not be over-confident. For example, it is often possible to fit logit, probit, and
complementary log-log models to the same data set. Still, these models have a large
relative difference in the predicted probability of AE at very low doses. In our example, as
in many practical situations, there is not enough data to discriminate between different
reasonable types of models. A model-independent analysis is therefore a good start.

Program 14.14 calculates estimates (EFF MEAN, UTIL EST, P EST) and their
standard errors (EFF SE, UTIL SE, P SE) for mean effect, mean utility, and probability of
an AE, respectively, in each of the five dose groups. Note that, depending on the nature of
the effect and AE variables, it is plausible that they are positively or negatively correlated.
For the sake of simplicity, however, we assume independence throughout this section. This
assumption may alter the estimated standard error for the utility but is unlikely to have a
major impact on the estimated mean utility.

Program 14.14 Model-free estimates and SEs of E(D), p(D), and U(D)

%let k=1000; /* Weighting coefficient */
proc means data=study.study;

class dose;
var eff;
output out=summary_eff(where=(_type_=1)) n=n mean=mean std=std;

proc freq data=study.study;
table dose*ae/out=summary_ae(where=(ae=1));

data summary;
merge summary_eff summary_ae;
by dose;
if count=. then count=0;
n_ae=count;
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eff_mean=mean;
eff_sd=std;
keep dose n n_ae eff_mean eff_sd;

data obs_util;
set summary;
format eff_mean eff_se util_est util_se 5.1 p_est p_se 5.3;
eff_se=eff_sd/sqrt(n);
p_est=n_ae/n;
p_se=sqrt(p_est*(1-p_est)/n);
util_est=eff_mean-&k*p_est;
util_se=sqrt(eff_se**2+(&k*p_se)**2);
label dose="Dose"

eff_mean="Effect"
eff_se="Effect (SE)"
p_est="Probability of an AE"
p_se="Probability of an AE (SE)"
util_est="Utility"
util_se="Utility (SE)";

keep dose eff_mean eff_se p_est p_se util_est util_se;
proc print data=obs_util noobs label;

run;

Output from Program 14.14

Probability
Effect Utility Probability of an AE

Dose Effect (SE) Utility (SE) of an AE (SE)

0.03 -13.7 57.2 -13.7 57.2 0.000 0.000
0.10 135.6 56.2 135.6 56.2 0.000 0.000
0.30 132.6 53.4 92.6 66.2 0.040 0.039
1.00 293.0 64.4 100.7 100.6 0.192 0.077
3.00 328.4 69.2 -88.3 122.1 0.417 0.101

Output 14.14 lists the three estimated quantities (mean effect, mean utility, and
probability of an AE) along with the associated standard errors. The highest observed
utility is for dose 0.1. For this dose, the utility is significantly better than placebo (as the
z-score is 135.6/56.2 ≈ 2.42). Considering the large standard errors, however, it is hard to
distinguish between doses in a large range. The only immediate conclusion is that the
optimal dose should be higher than 0.03 and probably lower than 3.

After using a model-free approach, we proceed to fit the Emax model to the efficacy data
and logistic model to the safety data. Program 14.15 uses the NLIN and LOGISTIC
procedures, respectively, to calculate parameter estimates in the two models. The
parameter estimates are assigned to macro variables for use later.

Program 14.15 Estimating parameters and posterior distribution

data studylog;
set study;
logdose=log(dose);

%let e0=0;
%let emax=300;
%let gamma=1.0;
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proc nlin data=study outest=estED50;
ods select ParameterEstimates;
parms log_ed50=-1;
model eff=&e0+&emax*dose**&gamma/(dose**&gamma+exp(log_ed50)**&gamma);
output out=Statistics Residual=r parms=log_ed50;

data estED50;
set estED50;
if _type_="FINAL" then

call symput(’log_est’,put(log_ed50, best12.));
if _type_="COVB" then

call symput(’log_var’,put(log_ed50, best12.));
run;

proc logistic data=studylog outest=est1 covout descending;
ods select ParameterEstimates CovB;
model ae=logdose/covb;

data est1;
set est1;
if _type_=’PARMS’ then do;

call symput(’alpha_mean’,put(intercept, best12.));
call symput(’beta_mean’,put(logdose, best12.));

end;
else if _name_=’Intercept’ then do;

call symput(’alpha_var’,put(intercept, best12.));
call symput(’ab_cov’,put(logdose, best12.));

end;
else if _name_=’logdose’ then call symput(’beta_var’,put(logdose, best12.));
run;

Output from Program 14.15

The NLIN Procedure

Approx Approximate 95% Confidence
Parameter Estimate Std Error Limits

log_ed50 -1.5794 0.5338 -2.6360 -0.5228

The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -1.6566 0.3435 23.2639 <.0001
logdose 1 1.2937 0.3487 13.7647 0.0002

Estimated Covariance Matrix

Variable Intercept logdose

Intercept 0.117968 -0.05377
logdose -0.05377 0.1216

Output 14.15 lists the estimated model parameters. Note that a direct estimation of
ED50 (not shown) will result in a 95% confidence interval which contains negative values.
Such values are not plausible. As the uncertainty in the parameter estimates will be
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important later, we prefer to estimate log(ED50) rather than ED50. The estimate and
sample standard error of log(ED50) are −1.5794 and 0.5338, respectively.

The estimates of α and β in the logistic model for the probability of observing an AE
are α̂ = −1.6566 and β̂ = 1.2937, respectively. The covariance matrix is governed by

Σ =
[

0.118 −0.054
−0.054 0.122

]
.

One obvious way to consider the parameter uncertainty is to apply a Bayesian viewpoint
and consider the posterior distributions for the parameters. The posterior distribution is
proportional to the prior multiplied by the likelihood. PROC LOGISTIC and PROC NLIN
are likelihood-based procedures and the output from them can be used to get at least
rough approximations of the likelihood functions. Assuming that the priors are relatively
flat, we may take the two-dimensional normal distribution with mean[

α̂

β̂

]
and covariance matrix Σ as the approximate posterior for[

α
β

]
.

Similarly, the estimate of log(ED50) and its standard error may, to a reasonable
approximation, serve as the mean and standard deviation in a normal prior for log(ED50).

Program 14.16 uses the previously calculated macro variables to simulate utility curves
based on the posteriors for the parameters. Figure 14.12 displays a number of simulated
curves together with the simulated expected utility curve.

Program 14.16 Estimating parameters and posterior distribution

%let nsim=1000; /* Number of simulated curves */
%let ndisplay=10; /* Number of displayed individual curves */
%let doseint=100; /* Dissolution of dose scale */
%macro out_sim;

%do __cnt=1 %to &ndisplay.;
simu&__cnt.=t(util_sim[&__cnt.,]);

%end;
create simdata var{dose logdose Eutility

%do __cnt=1 %to &ndisplay.; simu&__cnt. %str( ) %end;};
append;

%mend out_sim;
%macro ind_plot;

%do __cnt=1 %to &ndisplay.;
simu&__cnt.*dose

%end;
%mend ind_plot;
/* Simulations */
proc iml;

seed=257656897;
z=normal(repeat(seed,&nsim,3));
alpha_sd=sqrt(&alpha_var);
beta_sd=sqrt(&beta_var);
ab_corr=&ab_cov/sqrt(&alpha_var*&beta_var);
alpha_sim=&alpha_mean+alpha_sd*z[,1];
beta_sim=&beta_mean+beta_sd*(ab_corr*z[,1]+sqrt(1-ab_corr**2)*z[,2]);
logED50_sd=sqrt(&log_var);
logED50_sim=&log_est+logED50_sd*z[,3];
ED50_sim=exp(logED50_sim);
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logdose=t(do(log(0.01),log(10),log(10/0.01)/&doseint));
logdosematrix=j(&nsim,1)*t(logdose);
dose=exp(logdose);
dosematrix=exp(logdosematrix);
onevector=j(1,nrow(logdose));
alpha_sim_matrix=alpha_sim*onevector;
beta_sim_matrix=beta_sim*onevector;
ED50_sim_matrix=ED50_sim*onevector;
logit=exp(alpha_sim_matrix+beta_sim_matrix#logdosematrix);
prob_sim=logit/(1+logit);
Eprob=t(j(1,&nsim)*prob_sim/&nsim);
effect_sim=&e0+&emax*dosematrix##&gamma/

(dosematrix##&gamma+ED50_sim_matrix##&gamma);
Eeffect=t(j(1,&nsim)*effect_sim/&nsim);

util_sim=effect_sim-&k*prob_sim;
Eutility=t(j(1,&nsim)*util_sim/&nsim);
/* Create data set containing simulation results */
%out_sim;
quit;

/* Display mean curve and &ndisplay individual simulation curves */
axis1 minor=none label=(angle=90 "Utility") order=(-600 to 200 by 200);
axis2 minor=none label=("Dose") logbase=10 logstyle=expand;
symbol1 i=join width=5 line=1 color=black;
symbol2 i=join width=1 color=black line=34 repeat=&ndisplay.;
proc gplot data=simdata;

plot Eutility*dose %ind_plot/overlay vaxis=axis1 haxis=axis2 vref=0 lvref=34;
run;
quit;

Figure 14.12 Plot of simulated utility functions (dashed curves) and simulated expected utility function (solid
curve)
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When one single dose has to be chosen, the expected utility is a good criterion. The
variability between the different simulated utility curves is, however, of great interest
especially when other options are possible. If the variability in optimal dose is small, there
is little reason to proceed with more than one dose. However, if the variability in utility
between doses that may be optimal is considerable, then there are arguments to bring two
or more doses to the next phase of investigations. In our example, the optimal dose is likely
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to be around 0.4, with limited uncertainty. However, recall that this analysis is dependent
on a number of assumptions, such as the logistic and Emax models, normal approximations
of the posterior, and a flat prior. In practical work, it is important to think about the
reliability of the assumptions and to assess the robustness against possible deviations from
the assumptions. For example, the optimal dose may be plotted over a range of possible
weight coefficients k.

The population model used in Program 14.16 may be refined. Individuals differ in their
response to treatment. One reason is pharmacokinetic variability. This can be modeled and
sometimes used to improve the benefit-risk relation by individualizing the dose.

14.8 Project Prioritization
An important set of decisions with which a pharmaceutical sponsor is faced is that of the
choice of drug development projects and more generally of the prioritization of the projects
chosen. This topic has been considered by a number of authors, in particular by Bergman
and Gittins (1985) but also by Senn (1996, 1997, 1998), Senn and Rosati (2002), Zipfel
(2003), and Burman and Senn (2003).

It is instructive to consider the simpler problem of deciding which drugs to develop,
since assessing the value of potential projects prior to inclusion in a portfolio may also
suggest how, if at all, those projects that are included might be prioritized. A simple
analogy, which is frequently made, is that of packing a number of objects of different values
and volumes into a suitcase so that the resulting package is as valuable as possible. The
suitcase is a metaphor for the constraints facing drug developers, the volumes of the
objects the extent to which the projects contribute individually to reaching or exceeding
the constraints and the values of the objects as the expected returns the objects will bring
to the sponsor. Put like this, the problem is one of optimization subject to constraints, and
it might be thought that linear programming, more specifically integer programming,
would be the appropriate tool for solving the problem. In fact, there are various aspects of
the problem that suggest that these techniques may be less useful than might at first sight
be supposed (this point will be taken up later) and in any case it is useful to examine
individual projects in terms of return on investment. We will review this aspect first before
returning to optimization considerations.

The simplest useful index that may be used to evaluate projects in development for the
purpose of portfolio management is the so-called Pearson Index (Pearson, 1972), which is,
effectively, a return on investment index. This calculates for a given project the expected
reward as a ratio of the expected cost. It may be defined as follows. First, we assume that
the project consists of n stages that have been optimally sequenced. Sunk costs are to be
ignored, so that at any stage we can redefine a project, for the purpose of making decisions,
as consisting of future stages only. The discounted cost of a given stage i is ci and the
conditional probability of success in that stage given that the project has reached that
stage is pi, with p0 = 1 by convention. The expected current value of the future revenue of
a successful project is r. Then the Pearson Index may be written as

PI =
r
∏n

i=1 pi −
∑n

i=1 ci

∏i−1
j=0 pi∑n

i=1 ci

∏i−1
j=0 pi

Here the denominator is the expected future cost of a project and this reflects the fact
that costs will be paid only for a given stage if it is reached and not if the project fails. The
first term in the numerator is the unconditional expected future revenue. That is, it is the
expected future revenue, r, of a successful project multiplied by the probability of success,∏n

i=1 pi. Subtracting the denominator from this term produces the expected return net of
expected costs, which is then the numerator of the Pearson Index.
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The index has the necessary property that other things being equal it will rank projects
with a favorable cost and probability architecture (Senn, 1996, 1998; Zipfel, 2003) more
highly than those with an unfavorable architecture. Other things being equal, projects that
will fail early (if they fail) are to be preferred to those that will fail late and projects with
later costs are to be preferred to those with earlier ones. An example is given by Senn
(1996).

Consider four projects, A, B, C, and D in three stages, details for which (including costs
and success probabilities) are given in Table 14.2. The value of r (reward) in all four cases
is 28. There is nothing to choose among these projects in terms of cost to see to completion
(1 + 2 + 3 = 6), nor in terms of return if successful (28 − 6 = 22), nor in terms of
probability of success (0.8 × 0.6 × 0.4 = 0.192). These figures are the same in all four cases.
However, Projects C and D have a favorable cost architecture, and Projects B and D have
a favorable probability architecture. In fact, as shown in Table 14.2, the Pearson Index
values for the four projects are 0.058 for Project A, 0.331 for Projects B and C, and 1.133
for Project D. The index indicates a ratio of 1.133/0.058 = 19.5 between Projects D and A
and thus the most attractive project (Project D) is nearly 20 times as attractive as the
least attractive one (Project A).

Table 14.2 Costs and Success Probabilities for Four Hypothetical Projects

Project
A B C D

Cost ($100m) Stage 1 3 3 1 1
Stage 2 2 2 2 2
Stage 3 1 1 3 3
Total 6 6 6 6

Success Stage 1 0.8 0.4 0.8 0.4
probability Stage 2 0.6 0.6 0.6 0.6

Stage 3 0.4 0.8 0.4 0.8
Overall 0.192 0.192 0.192 0.192

Reward ($100m) 28 28 28 28

Expected cost 5.1 4.0 4.0 2.5
Expected reward 5.4 5.4 5.4 5.4
Expected profit 0.3 1.3 1.3 2.9
Pearson Index 0.058 0.331 0.331 1.133

The three-stage example of the Pearson Index is simple enough to be solved with a hand
calculator. In a more complex situation, PROC DTREE may, of course, be useful.
Program 14.17 calculates the expected reward, i.e., the numerator in the Pearson Index, for
two of the scenarios. The original PEARSON data set gives the cost architecture for
Project A (and B). It shows that the costs of the three successive trials are in order 1, 2,
and 3, and that the tree reaches the end as soon as a trial failure is encountered. It also
gives the terminal gain 28 in case all the chance events turn out to be OK trial results.

The MODIFY statement in PROC DTREE can be used interactively to modify the
costs for the different stages. In the program, the cost of the first trial is changed from 1 to
3 and for the third trial from 3 to 1. The resulting PEARSON data set contains the
appropriate costs for trial C (and D). The PROB data set states that the probabilities of
failure are 0.2, 0.4, and 0.6 for Trials 1, 2, and 3, respectively. This is the probability
architecture for Projects A and C.
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Program 14.17 Calculaton of the expecting reward in the Pearson model

data pearson;
input _stname_ $ 1-8 _sttype_ $ 9-12 _outcome_ $ 13-22

_reward_ 23-26 _success_ $ 27-36;
datalines;

Start D No go . .
. Go -1 Stage1

Stage1 C Failure1 . .
. OK1 -2 Stage2

Stage2 C Failure2 . .
. OK2 -3 Stage3

Stage3 C Failure3 . .
. OK3 28 .

;
data prob;

input _event1_ $10. _prob1_ _event2_ $5. _prob2_;
datalines;

Failure1 0.2 OK1 0.8
Failure2 0.4 OK2 0.6
Failure3 0.6 OK3 0.4

;
proc dtree stagein=pearson probin=prob;

evaluate/summary;
save;
modify Go reward -3;
modify OK2 reward -1;
evaluate/summary;
run;
quit;

Output from Program 14.17

Decision Parameters

Decision Criterion: Maximize Expected Value (MAXEV)
Optimal Decision Yields: 1.34

Optimal Decision Policy

Up to Stage Start

Alternatives Cumulative Evaluating
or Outcomes Reward Value
----------------------------------------
No go 0 0.00
Go -1 2.34*

Decision Parameters

Decision Criterion: Maximize Expected Value (MAXEV)
Optimal Decision Yields: 0.296
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Optimal Decision Policy

Up to Stage Start

Alternatives Cumulative Evaluating
or Outcomes Reward Value
----------------------------------------
No go 0 0.000
Go -3 3.296*

The way that the Pearson Index could be used in practice would be to rank projects by
their ratios and to select them starting with the highest and proceeding as far down the list
as constraints permit. This is strongly analogous to the Neyman-Pearson lemma which
indicates that selecting points in the sample space to construct a critical region such that a
desideratum of power is maximized subject to a constraint of size (Type I error rate)
should be done by including points with the highest likelihood ratio1. For the project
selection problem, the overall research budget is analogous to the tolerated Type I error
rate, the expected return is analogous to power, and the Pearson Index to the likelihood
ratio. This brings us back to the issue of integer programming discussed previously. As is
well known in the context of hypothesis testing, for problems in which the sample space is
discrete, improved power can be delivered for a given size under suitable circumstances by
going beyond the likelihood ratio criterion. The apparently unending discussion of
“superior” alternatives to Fisher’s exact test bears witness to this. The analogy for the
portfolio selection problem would be that by going beyond the Pearson Index formulation
we might, by sacrificing a large project with a high index but replacing it by two smaller
projects with less favorable indices, end up with a more valuable portfolio. This is,
however, probably not a good idea for similar reasons to those that suggest that
“improvements” to Fisher’s exact test should not be employed. It is better to look upon
the resources available in a drug development project as having some flexibility so that by
trading projects or raising capital one could avoid such index-violating decisions.

Nevertheless, for the sake of completeness and in order to illustrate further features of
SAS, we will demonstrate the application of integer programming in a simple example
below. This should not be taken as an indication that this is necessarily the way we believe
that the portfolio management problem should be approached.

Let us look at a simple portfolio planning example using integer programming
(Program 14.18). The costs and rewards for ten project candidates are specified in the
PROJECTS data set. The budget restriction is given by the RHS variable and set to 100.
Finally, all optimization variables are binary. That is, a project is either run (ACTIVE=1)
or not run (ACTIVE=0).

Program 14.18 Integer programming to optimize portfolio

data projects;
input _id_ $6. project1-project10 _type_ $ _rhs_;
datalines;

cost 47 35 22 22 18 16 15 10 9 6 le 100
reward 95 75 40 25 22 20 46 15 30 32 max .
binary 1 1 1 1 1 1 1 1 1 1 binary .
;

1It is perhaps worth pointing out that Alan Pearson of the Pearson Index is not to be confused with Egon Pearson of the
Neyman-Pearson lemma!
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proc lp data=projects activeout=results;
proc transpose data=results out=results;
proc sort data=results;

by _name_;
proc transpose data=projects out=projects;

id _id_;
proc sort data=projects;

by _name_;
data together (rename=(_name_=Projects));

merge projects results;
by _name_;
activity=col1;
index=reward/cost;
if substr(_name_,1,7)="project";
keep _name_ cost reward index activity;

proc sort data=together;
by descending index;

proc print data=together;
run;

Output from Program 14.18

The LP Procedure

Constraint Summary

Constraint S/S Dual
Row Name Type Col Rhs Activity Activity

1 cost LE 11 100 99 0
2 reward OBJECTVE . 0 243 .

Obs Projects cost reward activity index

1 project10 6 32 1 5.33333
2 project9 9 30 1 3.33333
3 project7 15 46 1 3.06667
4 project2 35 75 0 2.14286
5 project1 47 95 1 2.02128
6 project3 22 40 1 1.81818
7 project8 10 15 0 1.50000
8 project6 16 20 0 1.25000
9 project5 18 22 0 1.22222
10 project4 22 25 0 1.13636

Output 14.18 displays some of the output from the LP procedure as well as a list of the
projects, ordered by the value of the reward/cost-index, and indicating the optimal set of
projects. The output of PROC LP states that the optimal solution gives a reward of 243 at
a cost of 99. Note, from the project list, that the fourth most profitable project (project2)
according to the index is not chosen while two projects with lower index values are
included.

We may try to change the budget restriction and study how the reward is increasing
and the optimal set of projects is changing. In our example, the optimal reward is constant,
243, for budget restriction in the interval [99, 103). It is 248 for budgets in [103, 109).
Considering risks and cost of capital, it may not be worth an additional investment of
103 − 99 = 4 to increase expected rewards by 248 − 243 = 5. However, increasing the
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budget to 109 increases the reward to 258 and, with a budget of 112, a reward of 278 is
possible. The last option corresponds to running the five projects with highest index.

Although the Pearson Index is useful, it is not perfect. Its adequacy depends on the
extent to which it captures the options facing a drug developer as regards projects in
general. The index captures the obvious option on any project as regards costs: that is to
say, to abandon projects that no longer have any chance of being successful. Other options
that it does not capture, however, include the option to revise decisions in the light of
developing market information and the option to revise investment decisions in the light of
changes in the rate of interest (Senn, 1998; Senn and Rosati, 2002). For a general
introduction to this field, see Dixit and Pindyck (1994).

14.9 Summary
Decision analysis is a general approach to decisions, based on problem structuring,
quantifying, and optimizing. In principle, it can be applied to any decision. We have seen a
number of examples from drug development, with emphasis on clinical programs and trials.
The examples range from the design of a single trial (sample size, sequential design), over
the question about optimal dose, to the design of a program and project prioritization. The
list could of course be expanded. In particular, more examples could be taken from
discovery and commercial perspectives. An attractive feature of decision analysis is that it
often promotes cross-skill cooperation and is a useful tool to facilitate mutual
understanding of each others’ ideas.

It must be stressed, however, that decision analysis must be handled with care. Within a
decision model, it is straightforward to optimize the decision. However, this decision may
be quite bad if the decision model is not a good enough model for the real problem. There
is a clear risk of getting a suboptimal decision as a result of a model that is too simplified.
On the other hand, making models too complicated gives a similar risk. It is then hard to
see through the assumptions and to assess their validity. The inherently quantitative nature
of a decision analysis may constitute a temptation to overvalue aspects that are easily
measured and ignore qualitative aspects. It is important to realize that ethics must get
priority over profit, that a project cannot always be analyzed separately from long-term
company strategy, that psychology sometimes is more important than cold rationalism.
The conclusion is that decision analysis by all means should be applied in pharmaceutical
development but that the applications should be made with care.
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backward step (optimal design computation)  

158 
balanced-across-centers allocation  224–227 
Bartholomew trend test, sample size calculations 

for  288 
baseline covariates, allocations based on   

228–233, 261–262 
Bayes criterion  393 
Bayesian sample size calculations  403–405 
Behrens-Fisher problems  119 
β-expectation tolerance intervals  89–91 
Beta regression models  172–176 

information matrix  173 
with logic link  176–181 

bias in random subject allocation  213–214 
bias-variance trade-off  12 
bin widths  48 
binary models  159–165 
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BINOMIAL option, EXACT statement (FREQ)  
244 

bioanalytical method validation 
See analytic method validation 

bioassay studies  152 
bioequivalence testing  197–204 

replicate cross-over designs  201–204 
bivariate binary Cox model  181 
bivariate probit models  181–184 
BLOCK= option, FACTORS statement (PLAN)  

216–217, 221–222 
block randomization in parallel design studies  

100–101 
block size 

balancing across centers  224–227 
constrained block designs  220–221 
permuted block designs  215, 217–219 

body weight data  99 
Bonferroni-adjusted t-test  113 
%Boost macro  22–25 

model building  27–33 
boosting  10–27 

evolution of  11 
generalized boosting algorithm  12, 13,  

22–26 
implementing in SAS  14–26 
misclassification rates and  15–16, 26, 31 
model building with  27–33 
Naive-Bayes  14 
neural network  13–14 
properties of  26–27 
weak learning algorithms  11–14 
with recursive partitioning  14–16 
with unequally weighted observations  16–17 

%BOOTSTRAP macro  147–148 
bootstrap method (prediction error)  47 
bounded-response models (Beta models)   

172–176 
with logic link  177–181 

BOUNDS statement, NLMIXED procedure  80 
Bradley-Blackwood test  373–376 
BY statement, MIXED procedure  76 

C 

c-optimality  155 
calibration curve (response function)  74–83 

back-calculated quantities and inverse 
predictions  82–83 

fitting models  74 
linear and polynomial models  75–76 
nonlinear models  76–79 

precision profiles  79–81 
calibration samples (pre-study validation)  72, 

94 
canonical covariates analysis (CCA)  33–36 
canonical discriminant analysis (CDA)  36 
categorical data, missing  322–340 

marginal models  322–324, 327, 329–335  
random-effects models  324–330, 335–340 

CC (complete case) analysis  314, 320 
CCA (canonical covariates analysis)  33–36 
CCC (concordance correlation coefficient)  363 

inter-rater reliability  369–370 
test-retest reliability  372–376 

CDA (canonical discriminant analysis)  36 
central randomization algorithms  225 
change sensitivity (responsiveness)  376, 378 
CLASS statement 

GLIMMIX procedure  333 
NPAR1WAY procedure  121 

classical error rates in sample-size analysis  238, 
239, 249–250 

classification methods for drug discovery  7–42 
boosting  10–27 
model building with boosting  27–33 
partial least squares for discrimination  33–

42 
clearance, time stationarity of  207–209 
clinical dose-ranging studies  

See dose-response studies 
clinical pharmacokinetic studies  153 

See also pharmacokinetic data analysis 
See also pharmacokinetic models with 

multiple per-patient measurements 
clinical pharmacology research, exploratory  

199–201 
clinical testing  3–4 
clinical trial allocation (randomized)  213–233 

balancing across centers  224–227 
baseline covariates  228–233, 261–262 
constrained block randomization  220–224 
permuted block randomization  214–219 

clinical trials 
incomplete data in  314–316 
longitudinal  313, 314 
optimal number of  400–403 
Phase III trials  4, 389 
sequential designs in  406–412 

closed family of hypotheses  297 
closed testing on multiple contrasts  297–298, 

305 
CMERGE variable (%OptimalDesign1)  162 
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coefficient-of-variation (CV)  79 
complete block design, randomized  100–101 
complete case (CC) analysis  314, 320 
complete randomization  214 
computation models, building   

See model building 
concordance correlation coefficient (CCC)  363 

inter-rater reliability  369–370 
test-retest reliability  372–376 

conditional independence models  325 
confidence intervals  307-309 
confirmatory bioequivalence assessment  199 
CONST1, CONST2 variables 

(%OptimalDesign1)  162 
constrained block randomization  220–224 
content validity  376 
continuous logistic models  153, 165–172 

with unknown parameters in variance   
169–172 

CONTRAST statement, MIXED procedure  
detection of dose-response trends  283–284 
monotonic dose-response relationships   

112–113 
contrast tests in dose-response studies  281–282 

asthma trial (example)  283–284 
diabetes trial (example)  282–283 
linear tests  281, 296–297, 304 
maximin tests  282 
modified linear tests  282 
multiple-contrast tests vs.  295 
sample size calculations  287–289 

control, choosing for dose-response studies  
278–279 

CONVC variable (%OptimalDesign1)  161 
convergent validity  377 
CORR procedure  371 
cost-based designs  190–192 
cost constraints, models with  190–192 
covariate-adaptive allocation  228–229 

See also minimization algorithms 
criteria for validation  73–74 
Cronbach’s alpha  370–372 
cross-over dose-response studies  278 
cross-validation  47 

See also prediction error 
generalized boosting and  22 

crucial Type I and II error rates  238, 239,  
249–253, 260–263 

%CrucialRates macro  252, 265–271 
CV (coefficient-of-variation)  79 

D 

D-optimality  155, 156 
bivariate probit models  183–184 
bounded-response models with logic link  

177–181 
four-parameter logistic model with 

continuous response  167–169 
logistic model with power variance model  

171–172 
pharmacokinetic models  187–190, 191–192 
two-parameter logistic models  160–161, 

164–165 
data, missing 

See analysis of incomplete data 
data analysis in toxicology studies  99 
Data Partition node (SAS Enterprise Miner)  64 
Data Set Attributes node (SAS Enterprise Miner)  

65 
data transformations  129 
death, data missing because of  109–110 
decision analysis  385–426 

optimal dose selection  412–421 
optimal sample size  397–406 
project prioritization  421–426 
sequential designs in clinical trials  406–412 
structure of  392–394 

decision rule  88–92 
decision trees  386–392, 394–396 

evaluating  389–392 
definite quantitative assays  70 

See also validation of analytical methods 
depression trial  317–318 

See also analysis of incomplete data 
design optimization 

See optimal experimental designs 
design region for optimal designs  157–158 
diabetes trial  282–283 
Diggle-Kenward model  340–347 

sensitivity analysis  348–350, 352–356 
direct likelihood analyses  320–321 
discovery data classification  7–42 

boosting  10–27 
model building with boosting  27–33 
partial least squares for discrimination  33–

42 
DISCRIM procedure  38–41 
discriminant analysis  59–60 
discriminant validity  377–378 
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discrimination, partial least squares (PLS) for  
33–42 

definition and theorem  34 
implementing PLS-LDA in SAS  38–41 

dispersion of two distributions, comparing   
125–129 

See also two-sample experiments 
distribution-free methods 

See nonparametric methods 
divergent validity  377 
dose-escalation studies  277 
dose linearity assessment  204–209 
dose proportionality  204–207 
dose-response studies  152, 273–310 

See also MED estimation 
See also stepwise procedures in dose-finding 

studies 
choosing hypothesis for  278–279 
contrast tests  281–284, 287–289, 295 
cross-over studies  278 
design considerations  277–280 
factorial  278 
Helmert contrasts  296 
isotonic tests  284–286 
monotonic dose-response relationships   

112–113 
Monte Carlo method  302–303 
noninferiority testing  279–280 
nonmonotone response curves  304–306 
nonmonotonic relationships  112–113 
one-sided  280 
partitioning principle  305–309 
quantal dose-response models  159–165 
regression modeling  289–294 
reverse Helmert contrasts  296, 302–303, 

304–305 
trend detection  280–289 

dose selection  412–421 
from limited data  415–421 
models without uncertainty  413–415 

dropouts  314, 318–319 
See also analysis of incomplete data 

drug development statistics  1–6 
drug discovery classification methods  7–42 

boosting  10–27 
model building with boosting  27–33 
partial least squares for discrimination   

33–42 
drug toxicity studies 

See nonclinical safety assessment 

DSCF (Dwass-Steel-Critchlow-Fligner) 
procedure  136–139, 143–144 

Dunn’s procedure vs.  139, 144 
DTREE procedure  386–387, 391–392, 396 

MODIFY statement  396, 422–423 
PROBIN option  392 
project prioritization  422–423 

%DUNN macro  135–136 
Dunnett’s t-test  113 
Dunn’s procedure  135–136, 140, 143–144 

DSCF procedure vs.  139, 144 
Miller’s method vs.  142–144 

Dwass-Steel-Critchlow-Fligner (DSCF) 
procedure  136–139, 143–144 

Dunn’s procedure vs.  139, 144 

E 

E-optimality  155 
effective dose, minimum 

See MED estimation 
effective exposure levels  293 
EM (Expectations-Maximization) algorithm  

321–322 
Emax models 

See continuous logistic models 
EMPIRICAL option, %GLIMMIX macro  324, 

330 
ensemble techniques  8, 14 
equivalence theorem  157 
error, Type I 

See Type I error rates 
error, Type II 

See Type II error rates 
error of analytical procedures  85–88 
ERROR statement, %GLIMMIX macro  330 
ESTIMATE statement, MIXED procedure  105 

monotonic dose-response relationships   
112–113 

pharmacokinetic data analysis  208 
estimating minimum effective dose 

See MED estimation 
exact Kruskal-Wallis test  133–134 
EXACT statement, FREQ procedure  286 

BINOMIAL option  244 
EXACT statement, NPAR1WAY procedure  

133–134 
WILCOXON option  133 

exercise trial  316 
See also analysis of incomplete data 

Expectations-Maximization (EM) algorithm  
321–322 
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experimental designs, optimal 
See optimal experimental designs 

exploratory clinical pharmacology research  
199–201 

exposure levels  293 

F 

F test  281 
factor analysis  376, 379–382 
FACTOR procedure  380 

NFACT option  380 
REORDER option  380 
ROTATE option  380 
SCREE option  380 
SIMPLE  380 

factorial dose-response studies  278 
factorial stratification  227 
FACTORS statement, PLAN procedure   

101–102, 216–217, 221–222 
ARM= option  221–223 
BLOCK= option  216–217, 221–222 

familywise error rate  298 
5-parameter logistic regression models  79–80 
fixed-sequence estimation for minimum 

effective dose  298, 301–302 
Fligner-Policello test  127–129 

rank-transformations and  129 
forward selection procedures  52, 55–56 
forward step (optimal design computation)  158 
4-parameter logistic regression models  76–78, 

80–81 
back-calculated quantities and inverse 

predictions  82–83 
linearity assessment  83–84 

four-parameter logistic models 
See continuous logistic models 

FPARA module  188 
%FPSTATISTIC macro  128–129 
FREQ procedure  244 

EXACT statement  244, 286 
Jonckheere test  286–287 
Kappa statistic calculations  365 
TABLES statement  286 

G 

GAM procedure  60–61 
Y= option  60 

GAUSS value, METHOD= option (NLIN)  77 
GEE (generalized estimating equations)   

322–323 
weighted (WGEE)  322–323, 329 

general optimal design problem  152–159 
generalized additive regression  60–61 
generalized boosting algorithm  12 

comparison of  13 
implementing  22–26 

generalized estimating equations (GEE)   
322–323 

weighted (WGEE)  322–323, 329 
generalized linear mixed models (GLMMs)  

325–329 
fitting  338 

Gentle AdaBoost algorithm  12–13, 22–26 
model building  27–33 

Gini Index  15–16 
See also boosting 

%GLIMMIX macro  325 
EMPIRICAL option  324, 330 
ERROR statement  330 
LINK statement  330 
marginal model (example)  330–332 
METHOD= option  333 
PARMS statement  339 
random-effects model (example)  338–340 
REPEATED statement  330, 334 
STMTS= statement  330, 338 

GLIMMIX procedure  325 
CLASS statement  333 
marginal model (example)  332–335 
MODEL statement  333–334  
random-effects model (example)  335–338 
RANDOM statement  292, 334, 336 

GLMMs (generalized linear mixed models)  
325–329 

fitting  338 
GLMPOWER procedure  257, 262 
global influence approach to sensitivity analysis  

354–356 
go/no go decisions  386–392, 394–397 
GRID parameter (%OptimalDesign1)  161 
GROUPWEIGHTS statement, POWER 

procedure  244–245 
Gumbel model  181 

H 

Helmert contrasts in dose finding  296 
reverse Helmert contrasts  296, 302–303, 

304–305 
Hill models 

See continuous logistic models 
HOLD option, PARMS statement 

(%GLIMMIX)  339 
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Hsu-Berger method  307 
hypotheses 

choosing for dose-response studies  278–279 
closed family of  297 

I 

I-optimality  156  
ICC (intraclass correlation coefficient)  363 

inter-rater reliability  369–370 
test-retest reliability  372–376 

ignorability  319 
See also analysis of incomplete data 

imbalance in subject allocation  213–214 
See also allocation in randomized clinical 

trials 
IML_SPLIT module  17–21 
incomplete data, analysis of   

See analysis of incomplete data 
influential points in training sets  48 
information matrix  154 

Beta regression models  173 
bivariate probit models  182 
bounded-response models with logic link  

179, 181 
normalized by cost  190–192 
regression model with unknown parameters 

in variance  170 
two-parameter logistic models  162 

Input Data Source node (SAS Enterprise Miner)  
64 

inter-rater reliability  362–363 
multiple raters  367–369 
rating scale data  369–370 

intermediate precision  85–88 
intermittent missingness  319 
internal consistency of outcome measures  362, 

370–372 
intra-rated reliability  362 
intraclass correlation coefficient  

See ICC 
inverse response functions  82–83 
IRLS (iteratively reweighted least squares)  324 
isotonic tests in dose-response studies  284–286 
iteratively reweighted least squares (IRLS)  324 

J 

JMP software  158 
Jonckheere test  286–287 
JT option, TABLES statement (FREQ)  286 

K 

Kappa statistic  363–365 
inter-rater reliability  367–369 
multiple rates  367–369 
proportion of positive (negative) agreement  

365–367 
Kruskal-Wallis test  131–134 

large-sample  133, 134 
nonparametric power analysis  147–149 
NPAR1WAY procedure  132–134 
power calculations in k-sample case  146 

%KWSS macro  147–149 

L 

large-sample Kruskal-Wallis test  133, 134 
Lasso shrinkage method  52 
last observation carried forward (LOCF)  313, 

314, 319–320 
Latin square design studies  99 

randomization in  101–102 
%LATINSQ macro  101–102 
LDA (linear determinant analysis)  8, 33–38 

See also partial least squares for 
discrimination 

implementing PLS-LDA in SAS  38–41 
leaps and bounds (subset algorithms)  52 
leverage value  62–63 
likelihood-based MAR analysis  320–321 
limit of detection (LOD)  93 
limits of quantification  92–93 
linear classification methods  8 
linear contrast tests  281, 296–297 

nonmonotone dose-response curves  304 
linear determinant analysis  

See LDA 
linear regression models  58–59, 75–76 

calibration curve (response function)  75–76  
in dose-response studies  289–291 
multiple linear regression  58–59 

linearity of analytical procedures  83–84 
linearization-based marginal models  323–324 
LINK statement, %GLIMMIX macro  330 
LLOQ (lower limit of quantification)  92 
local influence approach to sensitivity analysis  

350–356 
global influence vs.  354–356 

locally optimal designs  156–157 
LOCF (last observation carried forward)  313, 

314, 319–320 
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LOD (limit of detection)  93 
LOESS value, Y= option (GAM)  60 
logarithmic data transformations  129 
LOGISTIC procedure for optimal dose selection  

417–419 
logistic regression models  8, 59, 76–78 

back-calculated quantities and inverse 
predictions  82–83 

continuous models  153, 165–172 
five-parameter  79–80 
four-parameter  76–78, 80–84 
linearity assessment  83–84 
optimal design, continuous response   

165–169 
optimal design, quantal models  159–165 
optimal design, unknown parameters in 

variance  169–172 
precision profiles  80–81 
two-parameter  160–161, 164–165 
with power variance model  171–172 

logit link models  176–181 
logit models, quantal  159–165 
LogitBoost algorithm  12–13, 22–24 

model building  27–33 
longitudinal clinical trials  313, 314 

See also analysis of incomplete data 
lower limit of quantification (LLOQ)  92 
lower-tailed version of Wilcoxon Rank Sum test  

122 
LP procedure  425 

M 

MAR (missing at random) modeling  314–316, 
329 

analysis of incomplete data  320–322 
assumption of MAR  342 
direct likelihood analyses  320–321 
Expectations-Maximization (EM) algorithm  

321–322 
MNAR modeling vs.  343–347 
multiple imputation methods  321 

marginal models for missing categorical data  
322–324, 327 

%GLIMMIX macro for (example)  330–332 
GLIMMIX procedure for (example)   

332–335 
linearization-based  323–324 
random-effects models vs.  329–330 

marginal quasi-likelihood (MQL) estimates  327 

MARQUARDT value, METHOD= option 
(NLIN)  77 

mastitis data example  316–317 
See also analysis of incomplete data 

maximal procedure  221 
maximin contrast tests  282 
MAXIMIT variable (%OptimalDesign1)  162 
maximum likelihood estimates (MLEs)  155 
MCAR (missing completely at random) 

assumption  313, 314, 319 
MNAR modeling vs.  343–347 

MCID (minimal clinically important differences)  
376, 382 

MEANS procedure  128 
measurement error, analytical procedures  85–88 

profiles of  89–92 
MED (minimum effective dose) estimation  274, 

294–309 
closed testing on multiple contrasts  297 
estimation in general case  305–306 
estimation under monotonicity assumption  

294–295, 303–305 
fixed-sequence estimation  298, 301–302 
multiple-contrast tests  295–297, 299,  

302–303 
partitioning principle  305–306 
shortcut testing procedure  306–307 
simultaneous confidence intervals  307–309 
step-down estimation  298, 299–301 

merging constant  162 
METHOD= option 

GLIMMIX procedure  333 
NLIN procedure  77 
NLMIXED procedure  78 

MI (multiple imputation) methods  321 
Miller’s method for all group comparison   

140–144 
minimal clinically important differences (MCID)  

376, 382 
minimally effective exposure level  293 
minimax optimality  156, 393 
minimization algorithms (for allocation)   

229–233 
minimum effective dose (MED) estimation  

See MED estimation 
misclassification rates, and boosting 15–16, 26, 

31  
missing at random (MAR) modeling  

See MAR modeling  
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missing categorical data 
See categorical data, missing 

missing completely at random (MCAR)  313, 
314, 319 

MNAR modeling vs.  343–347 
missing data 

See analysis of incomplete data 
missing not at random 

See MNAR 
missingness 

intermittent  319 
monotone  318–319 
nonmonotone  319 

mixed-effects nonlinear regression models   
186–190 

MIXED procedure 
See also REPEATED statement, MIXED 

procedure 
BY statement 76 
CONTRAST statement  112–113, 283–284 
ESTIMATE statement  105, 112–113, 208 
monotonic dose-response relationships   

112–113 
pharmacokinetic data analysis  198, 200–208 
RANDOM statement  111, 198, 201, 207 
regression modeling for dose-response 

studies  290  
SOLUTION option  75 
trends in dose-response relationship, 

detecting  283–284 
TYPE= option  203 
WEIGHT statement  75 

MIXPRINTALL option, STMTS= statement 
(%GLIMMIX)  330 

MLEs (maximum likelihood estimates)  155 
MNAR (missing not at random)  314–316,  

340–347 
analysis of incomplete data  340–345 
MAR modeling vs.  343–347 
MCAR assumption vs.  343–347 
sensitivity analysis  348–350, 352–356 

model building  45–67 
AdaBoost algorithm  11–12 
%Boost macro  22–25 
Gentle AdaBoost algorithm  27–33 
LogitBoost algorithm  27–33 
SAS Enterprise Miner for  63–67 
statistical procedures for  58–61 
training and test sets  46–51, 61–63 
variable selection  51–58 

when observations not in training sets  61–63 
with boosting  27–33 

model prediction error  46, 47  
MODEL statement, GLIMMIX procedure   

333–334 
OUTPREDM option  75, 290 
SOLUTION option  334 

modified linear contrast tests  282 
MODIFY statement, DTREE procedure  396, 

422–423 
monotone missingness  318–319 
monotonic dose-response relationships  112–113 
monotonicity assumption, MED estimation 

under  294–295, 303–305 
Monte Carlo method for dose finding  302–303 
mortality rates  240 
MQL (marginal quasi-likelihood) estimates  327 
multi-parameter continuous logistic models 

See continuous logistic models 
multiple-contrast tests for MED estimation   

295–297, 299, 302–303 
multiple imputation (MI) methods  321 
multiple linear regression  58–59 
multivariate probit model  182 

N 

Naive-Bayes boosting  14 
negative agreement, proportion of  365–367 
neural network boosting  13–14 
NEWRAP value, TECHNIQUE= option 

(NLMIXED)  78 
NFACT option, FACTOR procedure  380 
NIPALS algorithm  34 
NLIN procedure 

fitting nonlinear models  76–78 
METHOD= option  77 
optimal dose selection  417–419 
PARAMETERS statement  77 
_WEIGHT_ statement  77 

NLMIXED procedure  77, 78–79 
BOUNDS statement  80 
conditional independence models  325 
fitting GLMM  338 
fitting nonlinear regression models  78–79  
METHOD=  option  78 
sigmoid regression models for dose-response 

curves  292 
TECHNIQUE= option  78–79 

NLP procedure  400 
optimal dose selection  414–415 
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nonclinical safety assessment  97–115 
data analysis  99 
key statistical aspects  98 
one-factor design with repeated measures  

106–113 
power evaluation in two-factor model   

102–106 
randomization  99–102 

nonclinical statistical support  2–3 
noninferiority testing (dose-response studies)  

279–280 
nonlinear models, optimal experimental designs 

for   
See optimal experimental designs 

nonlinear regression models  164–165 
calibration curve (response function)  76–79 
fitting with NLIN procedure  76–78 
fitting with NLMIXED procedure  78–79 
in dose-response studies  289, 291–294 
mixed-effects with multiple responses   

186–190 
optimal design  165–169 
optimal design, unknown parameters in 

variance  169–172 
partially nonlinear models  167 

nonmonotone dose-response curves  304–306 
nonmonotone missingness  319 
nonmonotonic dose-response relationships   

112–113 
nonparametric methods  117–149 

Kruskal-Wallis test  147–149 
one-way layout  135–144 
parametric approaches vs.  147 
power determination  144–149 
two independent samples  118–129 

nonparametric trend tests  286 
nonrandom missing data  314–316, 340–347 

sensitivity analysis  348–350, 352–356 
nonresponse process 

See MCAR assumption 
%NOPT macro  400 
normal bin width  48 
NPAR1WAY procedure  121, 124–125 

AB option  126 
Ansari-Bradley test  126–127 
CLASS statement  121 
EXACT statement  133–134 
Kruskal-Wallis test  132–134 
ODS statement  121 
VAR statement  121 
WILCOXON option  121, 133 

%NPARMCC macro  140–144 
NRRIDG value, TECHNIQUE= option 

(NLMIXED)  78 

O 

objective of analytical methods  71 
observer bias  213–214 
ODS GRAPHICS statement  61 
ODS statement, NPAR1WAY procedure  121 
one-factor ANOVA design with repeated 

measures  106–113 
one-sided dose-response studies  280 
one-way layout  129–144 

Kruskal-Wallis test  131–134, 146–149 
nonparametric multiple comparison 

procedures  135–144 
%ONEWEEK macro  108 
OPTEX procedure  158 
optimal dose selection  412–421 

from limited data  415–421 
LOGISTIC procedure  417–419 
models without uncertainty  413–415 
NLIN procedure  417–419 
NLP procedure  414–415 

optimal experimental designs  151–193 
backward step  158 
Beta regression models  172–176 
bivariate probit models  181–184 
bounded response (logit link)  177–181 
design region  157–158 
forward step  158 
general optimal design problem  152–159 
models with cost constraints  190–192 
nonlinear regression models with continuous 

response  165–169 
partially nonlinear models 167 
pharmacokinetic models with multiple per-

patient measurements  184–190 
quantal dose-response models  159–165 
regression models with unknown variance 

function parameters  169–172 
software for generating  158 

optimal sample size in decision analysis   
397–406 

%OptimalDesign1 macro  161, 167 
CMERGE variable  162 
CONST1, CONST2 variables  162 
CONVC variable  161 
GRID parameter  161 
MAXIMIT variable  162 
PARAMETER parameter  161 
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%OptimalDesign1 macro  (continued) 
POINTS parameter  161 
WEIGHTS parameter  161 

%OptimalDesign2 macro  177 
%OptimalDesign3 macro  179–181 
%OptimalDesign4 macro  183–184 
optimality 

See also D-optimality 
A-optimality  155 
c-optimality  155 
criteria  155–156 
E-optimality  155 
I-optimality  156  
minimax optimality  156, 393 
semi-Bayesian approach  393 

OPTIONS= option, STMTS= statement 
(%GLIMMIX)  330 

ORDERVARS module  53–55 
outcome measures  361–383 
outcome measures, reliability  361–376 

inter-rater reliability  362–363, 367–370 
test-retest reliability  362, 372–376 

outcome measures, validity  361, 376–382 
convergent and divergent  377 
discriminant  377–378 
responsiveness  376, 378 

outliers in training sets  48 
OUTPREDM option, MODEL statement 

(GLIMMIX)  75, 290 
OUTPUT statement, PLAN procedure  101–102 

RELRISK option  244 

P 

p-values  241 
pairwise comparisons, one-way layout  135–144 
pairwise contrasts in dose finding  296, 299 
parallel design studies  99, 278 

randomization in  100–101 
PARAM value, Y= option (GAM)  60 
PARAMETER parameter (%OptimalDesign1)  

161 
PARAMETERS statement, NLIN procedure  77 
PARMS statement, %GLIMMIX macro  339 

HOLD option  339 
partial least squares (PLS) for discrimination  

33–42 
definition and theorem  34 
implementing PLS-LDA in SAS  38–41 

partial least squares (PLS) for variable selection  
51–52 

partially nonlinear models  167 

partitioning principle to dose finding  305–306 
simultaneous confidence intervals  307–309 

pattern-mixture models (PMMs)  314, 319 
PCA (principal components analysis)  8, 33–34 
PCR (principal component regression)  51 
Pearson Index  421–424 
Pearson’s correlation coefficient  372–373 
penalized quasi-likelihood (PQL) estimates  

326–327 
permuted block randomization  214–217 

stratified  228 
with variable block size  217–219 

pharmacokinetic data analysis  197–209 
bioequivalence testing  199–204 
dose linearity assessment  204–209 
MIXED procedure  198, 200–208 
steady state  204, 207–208 

pharmacokinetic models with multiple per-
patient measurements  

optimal design  184–190 
regression models  186–187 
two-component models  184–186 
with cost constraints (example)  191–192 
without cost constraints (example)  187–190 

Phase III trials  4, 389 
PK 

See pharmacokinetic data analysis 
See pharmacokinetic models with multiple 

per-patient measurements 
placements (Fligner-Policello test)  127 
PLAN procedure 

balanced-across-centers allocation  226–227 
FACTORS statement  101–102, 216–217, 

221–222 
generating constrained randomization 

schedules  221–224 
generating Latin square design  101–102 
generating permuted block schedules   

216–217 
OUTPUT statement  101–102 
SEED= option  216 
TREATMENTS statement  101–102, 226 

plasma concentration curve (AUC)  198 
See also pharmacokinetic data analysis 
dose proportionality  204–207 

PLS (partial least squares) for discrimination  
33–42 

definition and theorem  34 
implementing PLS-LDA in SAS  38–41 

PLS (partial least squares) for variable selection  
51–52 
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PLS procedure  34, 38–41 
PMMs (pattern-mixture models)  314 
Pocock-Simon minimization algorithm  229–230 
point-in-time analyses  378 
points of influence in training sets  48 
POINTS parameter (%OptimalDesign1)  161 
polynomial regression models  76 
population-averaged models  323–324 

See also marginal models for missing 
categorical data 

positive agreement, proportion of  365–367 
power analysis 

See sample-size analysis 
power evaluation (toxicology studies)  99,  

102–106 
POWER procedure  244–245, 246 

GROUPWEIGHTS statement  244–245 
SIDES= option  245 

power variance model  171–172 
PQL (penalized quasi-likelihood) estimates  

326–327 
PQL (pseudo-quasi-likelihood) estimates   

326-327 
pre-study validation 

See validation 
See validation of analytical methods 

precision of analytical procedures  85–88 
precision profiles  79–81 
%Predict macro  25–26 
prediction error  46, 47 
%PRF1FRM macro  113 
principal component regression (PCR)  51 
principal components analysis (PCA)  8, 33–34 
PROBIN option, DTREE procedure  392 
probit models, quantal (binary)  159–160,  

181–184 
PROBNORM function  128 
project prioritization  421–426 
proportion of positive (negative) agreement  

365–367 
proportionality, dose  204–207 
pseudo-quasi-likelihood (PQL) estimates   

326–327 
psychometric properties of rating scales 

See outcome measures 

Q 

QCA mortality rates (example)  240 
quadratic regression models  76 

quadrature rules for random-effects models  
327–328 

qualitative methods  70 
QUANEW value, TECHNIQUE= option 

(NLMIXED)  78 
quantal dose-response models  159–165 
quantification, limits of  92–93 
quantitative assays, definite  70 

See also validation of analytical methods 
quantitative methods  70–71 
quasi-quantitative assays  71 
questionnaire subscales, identifying  379–382 

R 

random-effects models for missing categorical 
data  324–330 

%GLIMMIX macro for (example)  338–340 
GLIMMIX procedure for (example)   

335–338 
marginal models vs.  329–330 
quadrature rules for  327–328 

RANDOM statement, GLIMMIX procedure  
336 

SUBJECT option  292, 336 
TYPE= option  334, 336 

RANDOM statement, MIXED procedure  111 
pharmacokinetic data analysis  198, 201, 207 

randomization (toxicology studies)  98–102 
complete block design  100–101 

randomized clinical trials, allocation in  213–
233 

balancing across centers  224–227 
baseline covariates  228–233, 261–262 
complete randomization  214 
constrained block randomization  220–224 
permuted block randomization  214–219 

range of analytic procedures  92–93 
RANK procedure  100–101 
rank-transformations  129 
RANTBL function  218 
RANUNI function  100, 218 
rating scales, psychometric properties 

See outcome measures 
RCORR option, REPEATED statement 

(MIXED)  331 
Real AdaBoost 

See AdaBoost algorithm 
receiver operator characteristic (ROC) curves  

378 
recursive partition models  8 



440   Index 
 

 

recursive partitioning  12 
boosting with  14–16 

REG procedure  58–59 
ADD statement  58–59 
for forward selection  55–56 
VAR statement  58–59 

regression, ridge  52 
regression models, Beta  172–176 

with logic link  176–181 
regression models, generalized additive  60–61 
regression models, linear and polynomial   

58–59, 75–76 
in dose-response studies  289–291 
quadratic models  76 

regression models, logistic 
See logistic regression models 

regression models, nonlinear   
See nonlinear regression models 

regression models, principal component (PCR)  
51 

regression models, sigmoid  291–294 
Regression node (SAS Enterprise Miner)  66 
REGSPLIT.IML module  22 
relative quantitative assays  71 

See also validation of analytical methods 
reliability of outcome measures  361–376 

inter-rater reliability  362–363, 367–370 
test-retest reliability  362, 372–376 

RELRISK option, OUTPUT statement (PLAN)  
244 

REML (restricted maximum likelihood 
modeling)  198 

REORDER option, FACTOR procedure  380 
repeatability of analytical procedures  85 
repeated measures ANOVA  106–113 
REPEATED statement, %GLIMMIX macro  

334 
TYPE= option  330 

REPEATED statement, MIXED procedure  111 
detection of dose-response trends  112–113 
pharmacokinetic data analysis  198, 201 
RCORR option  331 
regression modeling for dose-response 

studies  290 
replicate cross-over design  201–204 
%REPMEAS49 macro  112 
reproducibility of analytical procedures  85 
research hypothesis, choosing for dose-response 

studies  278–279 

response function (calibration curve)  74–83 
back-calculated quantities and inverse 

predictions  82–83 
fitting models  74 
linear and polynomial models  75–76 
nonlinear models  76–79 
precision profiles  79–81 

responsiveness  376, 378 
restricted maximum likelihood modeling 

(REML)  198  
reverse Helmert contrasts in dose finding  296, 

302–303 
non-monotone dose-response curves   

304–305 
ridge regression  52 
robust bin width  48 
robustness of decision analysis conclusions  396 
ROC (receiver operator characteristic) curves  

378 
ROTATE option, FACTOR procedure  380 

S 

safety assessment, nonclinical   
See nonclinical safety assessment 

sample-size analysis  237–264 
classical (examples of)  243–248, 257–260 
classical error rates  238, 239, 249–250 
crucial Type I and II error rates  238, 239, 

249–253, 260–263 
decision analytic approaches  397–406 
linear contrast tests and  287–289 
macro code for automatic programming  

265–271 
statistical considerations summary  264–265 

SAS Enterprise Miner 
Assessment node  66 
boosting implementation  14 
Data Partition node  64 
Data Set Attributes node  65 
Input Data Source node  64 
model building  63–67 
Regression node  66 
Variable Selection node  64–65 
with solubility data  63–67 

SCREE option, FACTOR procedure  380 
SEED= option, PLAN procedure  216 
selection bias  213 
selectivity of analytical procedure  74 
semi-Bayesian optimality approach  393 
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sensitivity analysis 
for incomplete data  347–356 
global influence approach  354–356 
local influence approach  350–356 
MNAR  348–350, 352–356 

sensitivity functions  157 
Beta regression models  173 
bounded-response models with logic link  

181 
regression model with unknown parameters 

in variance  170–171 
two-parameter logistic models  162–164 

sensitivity to change (responsiveness)  376, 378 
sequential decision problems  393 
sequential designs in clinical trials  406–412 
sequential testing method  103–104, 106–113 
shift in location  119 
shrinkage methods  52 
SIDES= option, POWER procedure  245 
sigmoid regression models for dose-response 

curves  291–294 
SIMPLE option, FACTOR procedure  380 
%SimTests macro  302–303 
simulation of optimal sample size  407–409 
%SIMULQT macro  104–105 
simultaneous confidence intervals  307-309 
single-contrast tests 

See contrast tests in dose-response studies 
smallest clinically meaningful difference  288 
software for generating optimal designs  158 
solubility data (example)  46–47 

SAS Enterprise Miner with  63–67 
training and test sets  49–51 
variable ordering in  56–58 

SOLUTION option 
MIXED procedure  75 
MODEL statement (GLIMMIX)  334 

spatial power covariance structure  111–112 
specificity of analytical procedure  74 
SPLINE value, Y= option (GAM)  60 
SPLINE2 value, Y= option (GAM)  60 
%Split macro  17 
statistical decision theory 

See decision analysis 
statistical procedures for modeling  58–61 
statisticians, roles of  2–6 
statistics in drug development  1–6 
steady state (pharmacokinetics)  204, 207–208 
step-down Dunnett test  299–301 
step-down estimation for minimum effective 

dose  298, 299–301 

step-down procedure  298 
stepwise procedures in dose-finding studies  52, 

297–301, 302–303 
fixed-sequence pairwise test  298, 301–302 
pairwise multiple-contrast test  296, 299 
step-down Dunnett test  299–301 
step-down procedure  298 

STMTS= statement, %GLIMMIX macro  330, 
338 

MIXPRINTALL option  330 
OPTIONS= option  330 

stratified Kappa statistic  365 
stratified randomization  215, 225, 228 

factorial stratification  227 
strong learning algorithms  11 

See also boosting 
Student’s two-sample t-test  122, 123–124 
stumps 

See recursive partitioning 
subject allocation 

See allocation in randomized clinical trials 
SUBJECT option, RANDOM statement 

(GLIMMIX)  292, 336 
subject-specific models 

See random-effects models for missing 
categorical data 

subscales, identifying  379–382 
subset algorithms  52 
superiority testing (dose-response studies)   

279–280 
support vector machines  8 

T 

TABLES statement, FREQ procedure 
JT option  286 

TABULATE procedure  101–102 
Taves minimization algorithm  229, 232 
TECHNIQUE= option, NLMIXED procedure  

78–79 
NEWRAP value  78 
NRRIDG value  78 
QUANEW value  78 

test data 
See training and test sets 

test-retest reliability  362, 372–376 
therapeutic window  294 
time stationarity of clearance  207–209 
TOST assessment  199 
total error, analytical procedures  85–88 

profiles of  90–92 
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toxicology studies 
See nonclinical safety assessment 

training and test sets  46 
influential points in  48 
leverage value  62–63 
outliers in  48 
selecting  47–51 
solubility data  49–51 
when observations are not in  61–63 

TRAINTEST module  49–51 
treatment group splitting, allocation for   

221–224 
TREATMENTS statement, PLAN procedure  

101–102, 226 
trend detection in dose-response studies   

280–289 
comparison of trend tests  287 
contrast tests  281–284 
isotonic tests  284–286 
Jonckheere test  286–287 
nonparametric tests  286 

trend test (sequential testing method)  103–104 
true value 

See validation of analytical methods 
trueness of analytical procedures  85–88 
TTEST procedure  122, 123–124 
two-drug combination studies  153 
two-factor ANOVA model, power evaluation in  

102–106 
two-parameter logistic models  160–161, 162, 

164–165 
two-sample experiments  118–129 

power calculations  145–146 
similar dispersion  121–123 
unequal dispersion  123–129 

two-sided dose-response studies  280 
two-sided tests  245 
two-tailed version of Wilcoxon Rank Sum test  

122 
Type I error rates 

crucial  238, 239, 249–253, 260–263 
dose-response studies  280 
in sample-size analysis  238, 239, 241–243 
TOST assessment  199 
two-factor ANOVA models  106 

Type II error rates 
crucial  238, 239, 249–253, 260–263 
dose-response studies  280 
sample-size analysis  238, 239, 241–243 

TYPE= option 
RANDOM statement (GLIMMIX)  334, 336 

REPEATED statement (%GLIMMIX)  330 
MIXED procedure  203 

U 

U-shaped dose-response curves  304–306 
ULOQ (upper limit of quantification)  92 
umbrella-shaped dose-response curves  304–306 
unequally weighted observations, boosting with  

16–17 
upper limit of quantification (ULOQ)  92 
upper-tailed version of Wilcoxon Rank Sum test  

122 

V 

validation 
cross-validation  22, 47 
generalized boosting and  22 
samples for  72, 94 

validation of analytical methods  69–94 
accuracy and precision  85–88 
criteria for  73–74 
decision rule  88–92 
limits of  92–93 
linearity  83–85 
response function (calibration curve)  74–83 
terminology  94 

validity of outcome measures  361, 376–382 
content validity  376 
convergent and divergent  377 
discriminant  377–378 
responsiveness  376, 378 

VAR statement 
NPAR1WAY procedure  121 
REG procedure  58–59 

variable block size, permuted block designs  
217–219 

variable ordering procedure  53–58 
variable selection methods  51–58 
Variable Selection node (SAS Enterprise Miner)  

64–65 
variance components structure (VC), one-factor 

ANOVA model  110–112 

W 

weak learning algorithms  11–14 
See also boosting 

%WEEKINT macro  108 
WEIGHT statement, MIXED procedure  75 
_WEIGHT_ statement, NLIN procedure  77 
weighted generalized estimating equations 

(WGEE)  322–323, 329 



Index   443 

 

weighted Kappa statistic  365 
WEIGHTS parameter (%OptimalDesign1)  161 
WGEE (weighted generalized estimating 

equations)  322–323, 329 
WILCOXON option 

EXACT statement (NPAR1WAY)  133 
NPAR1WAY procedure  121, 133 

Wilcoxon Rank Sum test  121, 124–125 
lower-tailed version  122 
rank-transformations and  129 
two-tailed version  122 
upper-tailed version  122 

Williams trend test  284–285 
sample size calculations  288 

%WilliamsTest macro  285 

Y 

Y= option, GAM procedure  60 
PARAM value  60 
SPLINE value  60 
SPLINE2 value  60 
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