
Semester Thesis

Heavy Tail Distributions

in Evolutionary Algorithms

Summer Term 2005

Fabian Gemperle
Institute of Computational Science
Department of Computer Science

ETH Zurich

Advisors: Dr. Anne Auger, Dr. Nikolaus Hansen
Professor: Prof. Dr. Petros Koumoutsakos

CONTENTS 1

Contents

1 Objectives and Hypothesis 2

2 Evolution Strategies - An Introduction 3

3 Various Distributions for Mutation 5
3.1 Overview and Notation . 5
3.2 Distribution Characteristics and Sampling 5

3.2.1 n-dimensional Gaussian Distribution 5
3.2.2 Non-spherical n-dimensional Cauchy Distribution 7
3.2.3 Spherical n-dimensional Cauchy Distribution with 1-dimensional

Norm . 9
3.2.4 Spherical n-dimensional Cauchy Distribution with n-dimensional

Norm . 11
3.2.5 Modified n-dimensional Gaussian Distributions 12

3.3 Comparison of Distributions . 16
3.4 Comparing the Distributions of Random Vector Norms 22

4 Separable Functions 26
4.1 General Remarks . 26
4.2 Rastrigin’s Function . 26

5 Empirical Tests 30
5.1 Methodology . 30
5.2 Remarks about Hypothesis Tests . 34
5.3 Test Results and Analysis . 35
5.4 Sensitivity to Parameters . 41

5.4.1 Settings . 41
5.4.2 Results . 42

6 Conclusions 47

Future Work 48

Acknowledgements 48

References 49

A Appendix 50
A.1 Matlab Source Code for (1+1)-Evolution Strategies 50

A.1.1 Non-spherical Cauchy Mutation Distribution 50
A.1.2 Spherical Cauchy Mutation Distribution with n-dimensional Norm . 50
A.1.3 Spherical Cauchy Mutation Distribution with 1-dimensional Norm . 51
A.1.4 Gaussian Mutation Distribution . 51
A.1.5 Additional Functions Needed . 52

1 OBJECTIVES AND HYPOTHESIS 2

1 Objectives and Hypothesis

In stochastic optimization procedures like Evolutionary Algorithms several probability
distributions are known for mutation – or in other words for sampling points in the search
space. Some of them are introduced in Section 3. An alternative to the frequently used
Gaussian distribution is the so-called Cauchy distribution. Evolution Strategies using
Cauchy mutation are known as ”Fast Evolution Strategies” (FES); for more details, refer
to [1]. A brief overview of Evolution Strategies in general is provided in Section 2.

Due to its heavy tails, the Cauchy distribution has different properties than the Gaussian,
such as a significantly larger norm, i.e. ”jump length”. In [1], it is argued that this pro-
perty enables Evolution Strategies employing a Cauchy mutation operator to perform
more efficiently and to escape from local minima. But empirically, increased efficiency
cannot be observed for all test functions considered. However, it is hinted in [2, sect.
4.5.] that FES in some cases benefit from another characteristic, namely its asymmetric
shape preferring mutation directions along the main axes of the search space or so-called
reference frame.

In [1], better performance with Cauchy mutation is apparent for a set of test functions
belonging to the class of separable functions which are described in Section 4. Reasons for
this behaviour remain unclear. For instance, it is not obvious what exactly is the influence
of the heavy tails and asymmetry of a multivariate Cauchy mutation distribution on the
optimization process.

The goal of this semester thesis is to identify and illustrate specific properties of Cauchy
mutation operators and their relationship to separable functions and in addition, to con-
firm the statements made by empirical tests (Section 5) comparing the performance of
miscellaneous Evolution Strategies on separable and non-separable1 functions respectively.
As a canonical example serves Rastrigin’s function.

Hypotheses:

1) Evolution Strategies using a Cauchy mutation operator in the fashion of FES de-
scribed in [1] have significantly better performance on separable functions than such uti-
lizing other types of mutation.

2) The increase in performance of Evolution Strategies employing Cauchy mutation is
caused by the heavy tails of the Cauchy distribution.

1including rotated separable functions

2 EVOLUTION STRATEGIES - AN INTRODUCTION 3

2 Evolution Strategies - An Introduction

Evolutionary Algorithms are robust optimization methods inspired by Biology. They
proceed according to the principle of mutation, recombination and selection and are in-
herently based on randomness. Optimization is done only by comparing values of the
so-called objective or fitness function and thus can be applied to black box functions. In
particular, this fact may be advantageous when dealing with complicated multi-modal ob-
jective functions which pose the characteristic problem of getting trapped in a non-global
local optimum (a well-known problem of deterministic optimization methods working with
derivatives).
In this work, only minimization in search spaces S ⊆ R

n incorporating the real-valued
representation of individuals2 is considered. So one particular problem can be stated as:

~xmin = arg min
~x∈S

f(~x) and fmin = f(~xmin) = min
~x∈S

f(~x)

where f(·) is the objective or fitness function to be minimized with n-dimensional input
~x out of the search space S.

Evolution Strategies belong to one specific type of the wide variety of Evolutionary Al-
gorithms. Evolution Strategies usually maintain a population of µ individuals during a
certain number gmax of generations3, and in every generation g produce offspring of quan-
tity λ by mutating each individual out of the population. Frequently, also recombination
is applied, but is discarded here because our focus lies on mutation operators. Then, se-
lection takes place according to a certain selection scheme: A (µ+λ)-Evolution Strategy
selects µ individuals among these λ children and µ parents whereas a (µ,λ)-Evolution
Strategy selects only from the λ children and thus is rather progressive. While the first
keeps the best solutions found so far in the current population, the latter has to store the
best solution(s) separately. Another distinction is hard versus soft selection. With hard
selection the µ best individuals among the children (and parents) are taken to survive to
the next generation whilst soft selection allows worse individuals to survive with a certain,
usually low probability.

For the sake of simplicity the population size is set to µ = 1 and the number of offspring
per generation to λ = 1 as well, viewing the (µ+λ)-Evolution Strategies just as a corre-
sponding parallel version of this (1+1)-Evolution Strategy. So in every generation, one
parent xp is compared with its only child xc obtained by mutation and the one with lower
fitness value survives and will be the parent of the next generation, i.e. hard selection is
employed. In 1-dimensional spaces, mutation is done like the following:

xc ∼ D(xp, θ) = xp + θ D(0, 1) = xp + θ ∆x

where D(µ, θ) is a random variable of a particular mutation distribution D with mean µ
and scale parameter θ. In n-dimensional spaces, scalars are replaced by vectors ~xc, ~xp

and ∆~x. D(~µ,Θ) or D(~µ, ~τ) then is an n-dimensional random vector with mean ~µ and

2synonym for solution vectors ~x ∈ S
3i.e. iterations of a while loop usually

2 EVOLUTION STRATEGIES - AN INTRODUCTION 4

covariance matrix Θ or vector ~τ of scale parameters for every component (see Section 3.2).

The scale parameter θ is referred to as the step size of the algorithm and mainly controls
the length of jumps when mutating. The optimal step size in each generation heavily
depends on the current distance to the global minimum which of course cannot be taken
into account during optimization. In general, early generations require a larger step size
to enable exploration of the search space and in addition, large step sizes are helpful
to escape local minima when being trapped. Nevertheless, towards the end of the opti-
mization process small stepsizes are necessary for proper local convergence, i.e. to reach
the desired accuracy. In [1] a self-adaptive step size is made use of, i.e. the step size is
adjusted automatically depending on the Evolution Strategy’s progress, whereas in the
”ESSS” described in [2], the step size remains constant throughout the whole optimiza-
tion process. In our empirical studies, another approach is taken: In order to prevent
the choice of step sizes from additional randomness, but nonetheless to cover the most
likely range of step sizes, a deterministic cooling scheme with a constant factor α ∈ (0, 1]
is utilized, setting the initial step size θinit to a rather too high value than would be
needed for reasonable space exploration and the final step size θfinal to a rather too low
value than would be needed to reach a certain accuracy more or less efficiently. These pa-
rameter settings vary among Evolution Strategies employing different mutation operators.

If one wishes to compare ”fairly” the performance of Evolution Strategies using mis-
cellaneous mutation distributions, each of the strategies should be provided with their
individual optimal parameters. Because this is difficult to realize, it might be helpful
to at least reduce the number of free variables of the problem like mentioned above for
θinit and θfinal. Still, some common base for comparisons is needed and in this work is
contributed by equal cooling factors α for all distributions’ step size adaptation, a fixed
maximum number gmax of generations and an identical starting position ~xinit. Detailed
information about determining those parameters is provided in Section 5.1.

As a summary serves the following algorithm in pseudo-code, implementing a (1+1)-
Evolution Strategy as used in our empirical tests. Vector ~x finally contains the position
of a local and hopefully also of the global minimum up to a tolerance tol in fitness values.

INITIALIZE gmax, θinit, θfinal, ~xinit

α := gmax
√

(θfinal/θinit)
~x := ~xinit , θ := θinit

g := 1

WHILE g ≤ gmax AND f(~x) − f(~xglobalmin) > tol DO

~x′ := ~x + θ · D(~0, In)4.

IF f(~x′) < f(~x) THEN ~x := ~x′ END

θ := α · θ
g := g + 1

END

4or D(~0,~1). In this work, random vector components are always uncorrelated and equal (Section 3.2)

3 VARIOUS DISTRIBUTIONS FOR MUTATION 5

3 Various Distributions for Mutation

3.1 Overview and Notation

In literature, a variety of different distributions is proposed as mutation operators. In the
following, some of them are presented, and in addition, a distribution is introduced that
will be useful to investigate Cauchy based Evolution Strategies. In Section 3.2 densities,
sampling methods, some properties like variance and shape are provided. Distributions
are compared by examining cuts through the joint density in Section 3.3, and a closer
look at the distribution of the resulting random vector norms is taken in Section 3.4. In
Table 1, abbreviations for frequently used terms and their mathematical representations
are given as an overview.

Abbr. Distribution RV Norm RV Section
GO Gaussian Distribution Original n-dimensional N (~µ, σ2

In) 3.2.1
GM1 Gaussian Distribution Modified 1-dimensional NM1(~µ, σ) 3.2.5
GMn Gaussian Distribution ”Modified” n-dimensional NMn(~µ, σ) 3.2.5
CO Cauchy Distribution Original n-dimensional C(~µ, ~τ) 3.2.2
CM1 Cauchy Distribution Modified 1-dimensional CM1(~µ, τ) 3.2.3
CMn Cauchy Distribution Modified n-dimensional CMn(~µ, τ) 3.2.4

Table 1: Notation for the six mutation distributions introduced in Section 3.2. The 1st

column contains the abbreviations for the combined terms of the 2nd and 3rd column
which represent the kind of distribution in general and the original dimensionality of
the norm of a particular random vector (RV) with mathematical representation given
in the 4th column. These distributions are introduced in the sections listed in the last
column.

3.2 Distribution Characteristics and Sampling

3.2.1 n-dimensional Gaussian Distribution

Scientists payed a lot of attention to the Gaussian distribution as mutator in Evolu-
tionary Algorithms, it has been analyzed in detail. In the following, some of the facts are
summarized. GO is used as abbreviation for original n-dimensional Gaussian distribution.

Sampling Method: In order to generate offspring ~xc from parents ~xp by mutation, the
following random sampling process takes place (assuming there is a function which can
return one realization N (0, 1) of a normally distributed random variable with mean 0 and
variance 1, e.g. in Matlab randn):

~xc ∼ N (~xp, Σ)

So ~xp is the mean vector and Σ the covariance matrix of the normally distributed ran-
dom vector ~xc. The simplest and usual version of Gaussian mutation operators emerges

3 VARIOUS DISTRIBUTIONS FOR MUTATION 6

in the uncorrelated case Σ = σ2
In with n-dimensional identity matrix In. Following

transformations preserve equality:

N (~xp, σ
2
In) = ~xp + σN (~0, In)

︸ ︷︷ ︸

=: ∆~x

= ~xp + σ








N (0, 1)
N (0, 1)

...
N (0, 1)








Characteristics: A random vector with covariance matrix Σ = σ2
In has n independent

components, each having the same distribution N (µ, σ2), and a spherically symmetric
shape of the joint distribution with the mean vector as its center (see Figure 2). For later
comparisons, only the density of the deviation ∆~x with distribution N (~0, In) will be of
interest, the factor σ is the standard deviation of every component and refers to the step
size of the Evolution Strategy algorithm, which has to be adapted during the optimization
process (In this work, a deterministic adaptation scheme for the step size will be used.
Self-adapting step sizes would be another variant.) Therefore, it can be excluded from
the investigation of the different random processes.

Density: The general joint density of a random vector ~x ∼ N (~µ, Σ) can be written as
follows:

pGO(~x | ~µ, Σ) =
1√

2π
n√

det(Σ)
exp(−1

2
(~x − ~µ)tΣ−1(~x − ~µ)) (1)

The joint density of ∆~x ∼ N (~0, In) is a special case of Equation 1 and simplifies to a
product of n independent 1-dimensional standard Gaussians:

pGO(~x) = pGO(~x | ~0, In) =
1√
2π

n exp(−‖~x‖2/2) (2)

This density is illustrated in Figure 1 in 1-dimensional and in Figure 2 in 2-dimensional
space.

−5 −2.5 0 2.5 5
0

0.1

0

0.2

0.3

0.4

Figure 1: 1-dimensional Cauchy (blue/dashed) and Gaussian (red/solid) density for
τ = σ = 1.

3 VARIOUS DISTRIBUTIONS FOR MUTATION 7

Figure 2: Top: 2-dimensional Cauchy (a) and Gaussian (b) density for τ = σ = 1.
Bottom: 10 equidistant contourlines between density values of 0.01 and 0.1 for 2-
dimensional Cauchy (c) and Gaussian (d) distribution for τ = σ = 1.

3.2.2 Non-spherical n-dimensional Cauchy Distribution

In [1], a heavytailed distribution as mutation operator is examined: the Cauchy distri-
bution. In its original form, it is the equivalent of the uncorrelated GO but with Cauchy
random vectors instead. Non-spherical (original) n-dimensional Cauchy distribution is
abbreviated as CO.

Sampling Method: If a standard Gaussian random variable is divided by another
independent one, the resulting ratio obeys a Cauchy distribution with location parameter
or mean µ = 0 and scale parameter τ = 1. For Evolution Strategies, the scale parameter
τ plays the same role as the standard deviation σ in Gaussian mutation, it acts as the
step size of the algorithm for controlling the ”jump length” i.e. the width of the density
graph. However, τ 2 is not the same as the variance of a Cauchy distributed random

3 VARIOUS DISTRIBUTIONS FOR MUTATION 8

variable. CO creates random vectors having n independent Cauchy random variables as
components. Adopting the notation from the last section and using the symbols C(~µ, ~τ)
for an n-dimensional Cauchy distributed random vector with mean µi and scale parameter
τi for each of the n independent components (~µ = (µ1, µ2, ..., µn)t, ~τ = (τ1, τ2, ..., τn)t), the
sampling process can be stated as:

~xc ∼ C(~xp, ~τ) = ~xp + τC(~0,~1) = ~xp + τ∆~x

with the same scale parameter τi = τ in every component. Implementation in Matlab is
done by (whereas all of the stated random variables are independent):

~xc ∼ ~xp + τ








C(0, 1)
C(0, 1)

...
C(0, 1)








= ~xp + τ








N (0, 1)/N (0, 1)
N (0, 1)/N (0, 1)

...
N (0, 1)/N (0, 1)








Characteristics: The Cauchy density has a similar shape as the Gaussian, a peak at
mean µ and decreasing probability with increasing distance from µ. Because the Cauchy
density approaches zero so slowly as opposed to the exponentially decaying Gaussian den-
sity, its variance is infinite as stated in [3], see Figure 1. Figure 3 in Section 3.3 nicely
illustrates the difference between Cauchy and Gaussian asymptotic behaviour on a log
scale. In [1], it is argued that this property enables the Fast Evolution Strategies with
CO to perform ”larger jumps” than such with GO, which is helpful when having to es-
cape from local minima of multimodal fitness functions. This is certainly true, but not
the whole gain on success or speed-up is due to this special feature as experiments will
confirm further on.
Another important property of this type of Cauchy distribution is its spherically asym-
metric shape. That is why we call it the n-dimensional non-spherical Cauchy distribution
(CO). Figure 2 depicts the density of the 2-dimensional ∆~x ∼ C(~0,~1), a concentration
of probability mass along the main axes is apparent. Figures 3, 4 and 5 in Section 3.3
show the discrepancy of a cut along the first main axis and a cut diagonally through the
joint density in several dimensionalities. With regard to Evolution Strategies using the
CO mutation operator, this means that it is most likely to generate offspring ~xc from ~xp

in direction of the main axes, assuming a fixed norm ‖τ∆~x‖ of the shift. Conversely, the
spherically symmetric GO in Section 3.2.1 chooses each direction with same probability.

Density: In general, the joint density of a random vector ~x ∼ C(~µ, ~τ) is the product of
n independent 1-dimensional Cauchy densities:

pCO(~x | ~µ, ~τ) =
n∏

i=1

1

π

τi

τ 2
i + (xi − µi)2

=
1

πn

n∏

i=1

1

τi

1

1 + (xi−µi

τi
)2

(3)

The joint density of ∆~x ∼ C(~0,~1) is the ”standard” case of Cauchy density in Equation 3
and looks like:

pCO(~x) = pCO(~x | ~0,~1) =
1

πn

n∏

i=1

1

1 + x2
i

(4)

3 VARIOUS DISTRIBUTIONS FOR MUTATION 9

Graphs of this density in one and two dimensions are provided in Figure 1 and 2 respec-
tively.

3.2.3 Spherical n-dimensional Cauchy Distribution with 1-dimensional Norm

In order to analyze the effect of the dimension of the search space on the distribution of
the samples’ norms, in [2, sect.3], n-dimensional spherically symmetric distributions are
defined as mutation operators having a resulting random vector norm independent of the
search space dimensionality. The main idea is to sample a random direction ~v ∼ U(Sn(R))
with ‖~v‖ = 1 distributed uniformly on the n-dimensional hypersphere surface Sn(R) with
radian R – formally defined in Equation 5. The norm R is obtained by R ∼ C(0, τ), that
is 1-dimensional Cauchy distributed. Both terms multiplied, R~v, constitute the scaled
deviation τ∆~x to get ~xc from ~xp.

Sn(R) =
{
(r, α1, α2, ..., αn−2, αn−1) ∈ [0,∞)× [0, π)× [0, π)× ...× [0, π)× [0, 2π) | r = R

}

(5)
(r, α1, α2, ..., αn−1) are (hyper5)spherical coordinates – with one norm-variable and n-1
angle-variables – as utilized for sampling in [2, sect.3]. In this work, another approach is
taken to get rid of angles and to apply proper norm sampling. CM1 is the abbreviation
for spherical (modified) n-dimensional Cauchy distribution with 1-dimensional norm.

Sampling Method: Knowing that GO is spherically symmetric in the uncorrelated
case, its realizations of random vectors can be used as uniform random directions ~v after
having normalized them. The random vector norm r which actually just covers the range
[0,∞] is sampled according to r ∼ |C(0, τ)|. So the overall sampled random vector can
be written as:

~xc ∼ ~xp + r~v = ~xp + |C(0, τ)| U(Sn(1))

Implementation can be done as mentioned in the paragraph above (τ will again be the
step size):

~xc ∼ ~xp + τ |C(0, 1)| U(Sn(1)) = ~xp + τ |N1(0, 1)

N2(0, 1)
| N3(~0, In)

‖N3(~0, In)‖
New Notation: Different numerical indices at calligraphic distribution symbols indicate
that these random variables or vectors are independent whereas identical indices have
the meaning of identical realization of the random variable or vector. This is needed for
N3(~0, In) which occurs twice in the expression above. However, the individual components
in random vectors like N3(~0, In) are again independent within the vector itself.
Let a sample vector of CM1 be labelled:

CM1(~µ, τ) = ~µ + τ |C(0, 1)| U(Sn(1)) = ~µ + τ∆~x

The n-dimensional vector ~µ is the location parameter and τ the scalar scale parameter
of the 1-dimensional Cauchy norm distribution. In the Evolution Strategies’ sampling
process of CM1(~µ, τ) above, we have ~µ = ~xp and τ will be the step size.

5i.e. 3-dimensional spherical coordinates generalized to n dimensions

3 VARIOUS DISTRIBUTIONS FOR MUTATION 10

Characteristics: As its name suggests, this ”modified” distribution CM1 has attributes
of the Cauchy distribution but concurrently, it is spherically symmetric around ~µ in what-
ever dimensionality. The asymmetry due to multivariate Cauchy influence is not apparent
anymore as opposed to the CO variant in Section 3.2.2, because the direction distribu-
tion is spherical itself and only one scalar Cauchy distributed random variable is involved
for norm sampling. n-dimensional probability distributions modified in this particular
way have throughout the same distribution |C(0, τ)| on their norms independent of the
present number of dimensions n. Nevertheless, the Cauchy distributed norm maintains
the property of heavy tails.

Density: For later comparisons, we again just focus on the shift ∆~x ∼ CM1(~0, 1). Two
parts are needed to define a density for CM1(~0, 1):

• Density for |C(0, 1)|:
This can be derived from the density of the random variable C(0, 1). Sampling r
directly from |C(0, 1)| is equivalent to sampling x from C(0, 1) and then taking the
absolute value of x to get r. If one does the latter, each absolute value r is twice
as probable as the corresponding value x which can have either positive or negative
sign. So the appropriate density function of |C(0, 1)| is the doubled density of C(0, 1)
but restricted to the range r ∈ [0,∞):

p(r) =
2

π

1

1 + r2
(6)

• Density6 for U(Sn(R)) ∀R ∈ [0,∞):
A uniform density function given on a certain domain is constant on this domain
and has to sum up to 1. In our case, the domain is Sn(R), the surface of the n-
dimensional hypersphere with fixed radian R as defined in Equation 5. In [4], the
volume of Sn(R) is given by 2Rn−1πn/2/Γ(n/2), where Γ(·) is the Gamma function.
Therefore, the density qn(r, α1, α2, ..., αn−1) for U(Sn(R)) can be stated as:

qn(r, α1, α2, ..., αn−1) =
Γ(n/2)

2rn−1πn/2
1Sn(R)(r, α1, α2, ..., αn−1) (7)

where 1·(·) is an indicator function with spherical coordinates as arguments. More pre-
cisely:

1Sn(R)(r, α1, α2, ..., αn−1) =

{
1 if (r, α1, α2, ..., αn−1) ∈ Sn(R)
0 otherwise

The n-dimensional overall density follows by multiplying p(r) and qn(r, α1, α2, ..., αn−1):

p
(n)
CM1(r, α1, α2, ..., αn−1) =

2

π

1

1 + r2

Γ(n/2)

2rn−1πn/2
1Sn(r)(r, α1, α2, ..., αn−1)

6This is not a density for a random vector in n dimensions, but is a density for an (n−1)-dimensional
manifold if restricted to Sn(R) with fixed radian R.

3 VARIOUS DISTRIBUTIONS FOR MUTATION 11

Since the indicator function 1Sn(r)(r, α1, α2, ..., αn−1) has always value 1, the density term

p
(n)
CM1(r, α1, α2, ..., αn−1) does not depend on the angles α1, α2, ..., αn−1 anymore and so,

the norm r fully determines the probability independent of the direction chosen. In fact,
this holds for all spherically symmetric densities. Omitting angles and simplifying even-
tually yields:

p
(n)
CM1(r) =

2

π

1

1 + r2

Γ(n/2)

2rn−1πn/2
=

Γ(n/2)
√

π
n+2

rn−1

1

1 + r2
(8)

The term rn−1 in p
(n)
CM1(r)’s denominator causes a singularity at r = 0.

3.2.4 Spherical n-dimensional Cauchy Distribution with n-dimensional Norm

In order to analyze the behaviour of n-dimensional Cauchy mutation operators (especially
on separable functions) and to support the hypothesis stated in Section 1, one important
tool is needed: an n-dimensional spherically symmetric distribution which has the same
distribution on its norm as the n-dimensional non-spherical Cauchy distribution (CO).
Such two mutation distributions can then be compared under the condition of equal
norm distributions, i.e. they have the same probability to perform some beneficial ”large
jump” when stuck in a local minimum. What is left as a difference between these two
mutation operators, is their individual shape: Spherically symmetric versus asymmetric,
i.e. whether certain directions within the search space are preferred or not. Spherical
(modified) n-dimensional Cauchy distribution with n-dimensional norm is abbreviated as
CMn.

Sampling Method: Sampling can be done in the fashion of the last section. The only
difference is that r now is distributed like the norm of an n-dimensional non-spherical
Cauchy random vector, so r ∼ ‖C(~0, ~τ)‖.

~xc ∼ ~xp + r~v = ~xp + ‖C(~0, ~τ)‖ U(Sn(1))

Following recast excludes the step size τ from random sampling:

~xc ∼ ~xp + ‖τC(~0,~1)‖ U(Sn(1)) = ~xp + τ‖C(~0,~1)‖ U(Sn(1))

To reduce the whole sampling process to sampling normals, it is rewritten to the following
form:

~xc ∼ ~xp + τ ‖








N1(0, 1)/N2(0, 1)
N3(0, 1)/N4(0, 1)

...
N2n−1(0, 1)/N2n(0, 1)








‖ N2n+1(~0, In)

‖N2n+1(~0, In)‖

Again, the indices at the calligraphic distribution symbols are identifiers of different reali-
zations of random variables (N1(0, 1) ... N2n(0, 1)) or n-dimensional vectors with inde-
pendent components (N2n+1(~0, In)).
A sample vector of CMn shall be labelled:

CMn(~µ, τ) = ~µ + τ‖C(~0,~1)‖ U(Sn(1)) = ~µ + τ∆~x

3 VARIOUS DISTRIBUTIONS FOR MUTATION 12

Characteristics: CMn(~µ, τ) essentially adopts the properties of CM1(~µ, τ), except for the
norm r ∼ ‖C(~0, ~τ)‖ whose individual distribution is equivalent to the norm distribution
of a random vector sampled from CO. Discrepancies that arise when utilizing the norm
of an n-dimensional Cauchy vector instead of a 1-dimensional are difficult to illustrate in
the Cauchy case because the variance and also the expected norm are infinite and hence,
cannot be computed to scale the densities by a finite factor in order to be able to compare
both of them properly. However, in the next section the same modifications are applied
to GO where a variance exists and the norms can be analyzed in detail.

Density: Densities for the uniform direction and the Cauchy norm were needed to state
a density function for CMn(~µ, τ). Some effort was made to derive a closed expression for the
density of an n-dimensional Cauchy random vector’s norm distribution. Density function
transformations like convolutions to add the squares of vector components, cartesian-
to-spherical-coordinates to marginalize the norm by angles or just even computing the
marginal of an n-dimensional Cauchy distribution seems to be rather complicated – com-
putations using symbolic maths software did not produce any results. So the density
function for CMn(~µ, τ) remains unknown.

3.2.5 Modified n-dimensional Gaussian Distributions

As previously mentioned, the modifications applied to the Cauchy distributions in Sections
3.2.3 and 3.2.4 can also be deployed to the Gaussian distribution. Main ideas are imparted
in the following, but these mutation operators will not be used in our empirical tests. For
instance, the modified n-dimensional Gaussian distribution with 1-dimensional norm is
described and was empirically tested in [2].

Sampling Method: Accordingly, with notation adopted from the two sections be-
fore, alternative ways of sampling n-dimensional Gaussian random vectors NM1(~µ, σ) and
NMn(~µ, σ) respectively would be (~µ = ~xp):

• GM1 – modified n-dimensional Gaussian distribution with 1-dimensional norm:

~xc ∼ ~xp + σ|N (0, 1)| U(Sn(1)) = ~xp + σNM1(~0, 1)
︸ ︷︷ ︸

=: ∆~x

In detail:

~xc ∼ ~xp + σ |N1(0, 1)| N2(~0, In)

‖N2(~0, In)‖
• GMn – ”modified’ n-dimensional Gaussian distribution with n-dimensional norm:

~xc ∼ ~xp + σ‖N (~0, In)‖ U(Sn(1)) = ~xp + σNMn(~0, 1)
︸ ︷︷ ︸

=: ∆~x

In detail:

~xc ∼ ~xp + σ ‖N1(~0, In)‖ N2(~0, In)

‖N2(~0, In)‖

3 VARIOUS DISTRIBUTIONS FOR MUTATION 13

Though a bit more complicated, the second approach will be shown to sample as well the
usual GO described in Section 3.2.1, so NMn(~0, 1) = N (~0, In). For this reason, sampling
NMn(~0, 1) does not make sense at all in practice but for analytical purpose in the next
paragraph, it will be helpful indeed.

Characteristics: In order to explore an important difference between distributions with
1-dimensional norm and those with n-dimensional norm, the Gaussian distribution is
a feasible example to compare their corresponding covariance matrices focussed on the
shifts ∆~x ∼ NM1(~0, 1) and ∆~x ∼ NMn(~0, 1) = N (~0, In) respectively. Due to spherical
symmetry in both cases, the covariance matrix is diagonal and furthermore has identical
entries within the diagonal. Thus, it is sufficient to compute just the first entry of the
covariance matrix, i.e. the variance in the first random vector component, for each of the
shift’s distributions:

• ∆~x ∼ NMn(~0, 1) = N (~0, In) :
The variance in the first component N̂Mn(~0, 1) or N̂ (~0, In) just equals the first entry
of the covariance matrix Σ = In, which is 1. Referring to the first component of a
D-distributed random vector D(~µ, Θ) with parameters ~µ and Θ is done by a hat:
D̂(~µ, Θ). The particular kind of parameter Θ depends on the distribution D which
can be any of the so far introduced distributions.
Another way to approach variance would be the following:

V AR
[

N̂Mn(~0, 1)
]

~µ=~0
= E

[(

N̂Mn(~0, 1)
)2
]

def.
= E





(

‖N1(~0, In)‖ N̂2(~0, In)

‖N2(~0, In)‖

)2




= E



‖N1(~0, In)‖2

(

N̂2(~0, In)

‖N2(~0, In)‖

)2




independence
= E

[

‖N1(~0, In)‖2
]

E





(

N̂2(~0, In)

‖N2(~0, In)‖

)2




Reference [5]
= E

[
χ2

n

]
E





(

N̂2(~0, In)

‖N2(~0, In)‖

)2




Reference [5]
= n E





(

N̂2(~0, In)

‖N2(~0, In)‖

)2




︸ ︷︷ ︸

=: q for later use

∗≡ V AR
[

N̂ (~0, In)
]

def.
= 1

⇒ q = 1/n

3 VARIOUS DISTRIBUTIONS FOR MUTATION 14

where ”*” signals the equivalence of NMn(~0, 1) and N (~0, In) and different numerical
indices at calligraphic distribution symbols indicate different realizations of random
variables or vectors as supplied before.

• ∆~x ∼ NM1(~0, 1):

V AR
[

N̂M1(~0, 1)
]

~µ=~0
= E

[(

N̂M1(~0, 1)
)2
]

def.
= E





(

|N1(0, 1)| N̂2(~0, In)

‖N2(~0, In)‖

)2




= E



|N1(0, 1)|2
(

N̂2(~0, In)

‖N2(~0, In)‖

)2




independence
= E

[
|N1(0, 1)|2

]
E





(

N̂2(~0, In)

‖N2(~0, In)‖

)2




Reference [5]
= E

[
χ2

1

]
E





(

N̂2(~0, In)

‖N2(~0, In)‖

)2




Reference [5]
= 1 E





(

N̂2(~0, In)

‖N2(~0, In)‖

)2




︸ ︷︷ ︸

=: q

= q
replace q

= 1/n

Concluding, the shifts ∆~x distributed by NMn(~0, 1) = N (~0, In) and NM1(~0, 1) differ in
their variance in each component by a factor dependent on the dimensionality n of the
search space:

V AR
[

N̂Mn(~0, 1)
]

= V AR
[

N̂ (~0, In)
]

= n V AR
[

N̂M1(~0, 1)
]

If the previously mentioned step size σ (renamed to σndim for random vectors with n-
dimensional norm and σ1dim respectively for random vectors with 1-dimensional norm) is
included into the last equation, this leads to the variance of the distribution of σ∆~x:

V AR
[

σndimN̂Mn(~0, 1)
]

= V AR
[

σndimN̂ (~0, In)
]

= n V AR
[

σ1dimN̂M1(~0, 1)
]

σ2
ndimV AR

[

N̂Mn(~0, 1)
]

= σ2
ndimV AR

[

N̂ (~0, In)
]

= n σ2
1dimV AR

[

N̂M1(~0, 1)
]

In terms of standard deviations or step sizes, this yields for each component:

σndim =
√

n σ1dim (9)

3 VARIOUS DISTRIBUTIONS FOR MUTATION 15

Density: To state a density formula for ∆~x ∼ NM1(~0, 1) and ∆~x ∼ NMn(~0, 1) respec-
tively, three essentials are needed:

• Density for r ∼ ‖N (~0, In)‖:
Here, one actually asks for the distribution of an n-dimensional Gaussian random
vector’s norm. In general, a sum of squares of n standard-normally distributed
random variables, i.e. n vector components of N (~0, In), follows a χ2

n distribution
with n degrees of freedom (see [5]). Applying the square root to this χ2

n-distributed
random variable leads then to the random variable representing the norm of the
vector having accordingly a χn distribution with n degrees of freedom and density
(see [6]):

pχn
(r) =

21−n/2rn−1 exp(−r2/2)

Γ(n/2)
(10)

• Density for r ∼ |N (0, 1)|:
This is the special case of having a norm of a scalar standard Gaussian, which is
again χ-distributed, but only with n = 1 degree of freedom. According to [7], such
a distribution is of type half-normal with scale parameter θ =

√

π/2 and therefore:

pχ1(r) =

√
2√
π

exp(−r2/2) =
2√
2π

exp(−r2/2) (11)

• Density7 for U(Sn(R)) ∀R ∈ [0,∞):
In analogous manner as CM1 and using the same notation as in Section 3.2.3, the
uniform density of the direction for a fixed radian R in n-dimensional space is:

qn(r, α1, α2, ..., αn−1) =
Γ(n/2)

2rn−1πn/2
1Sn(R)(r, α1, α2, ..., αn−1)

The n-dimensional overall density for general r follows by multiplying qn(r, α1, α2, ..., αn−1)
and pχn

(r), and, qn(r, α1, α2, ..., αn−1) and pχ1(r) respectively (simplified and angles omit-
ted as in Equation 8 in Section 3.2.3):

p
(n)
GMn(r) =

21−n/2rn−1 exp(−r2/2)

Γ(n/2)

Γ(n/2)

2rn−1πn/2
=

1√
2π

n exp(−r2/2) (12)

p
(n)
GM1(r) =

2√
2π

exp(−r2/2)
Γ(n/2)

2rn−1πn/2
=

Γ(n/2)√
2
√

π
n+1

rn−1
exp(−r2/2) (13)

With these definitions, explicit coordinates ~x of a particular point in space are not needed
to compute the corresponding probability. By reason of the spherical shape, everything
can be expressed based on the norm r. p

(n)
GM1(r) has a singularity at r = 0 because of

division by rn−1. However, in p
(n)
GMn(r) the term rn−1 cancels out, and concluding by

setting r = ‖~x‖, the density of GMn given in Equation 12 is equal to the density of GO
(Equation 2) and hence, these distributions are identical.

7This is not a density for a random vector in n dimensions, but is a density for an (n−1)-dimensional
manifold if restricted to Sn(R) with fixed radian R.

3 VARIOUS DISTRIBUTIONS FOR MUTATION 16

3.3 Comparison of Distributions

In the following, various plots depicting cuts through the joint densities of shifts ∆~x given
in the last sections shall illustrate the diverse behaviour of different mutation operators,
rather focussing on directions within the search space than on norms.

In a univariate search space, this question is not further interesting because GO, GM1
and GMn, and, CO, CM1 and CMn respectively, collapse into the usual scalar densities
as shown in Figure 1 in the previous section.

For the purpose of plotting cuts through the joint multivariate densities of GO, CO, CM1
and GM1 defined by Equations 2, 4, 8 and 13, suitable straight directions (always passing
the origin) are needed.

Concerning GM1 and CM1, this problem is already resolved: The variable r in p
(n)
GM1(r)

and p
(n)
CM1(r) represents the distance from the origin along every possible direction, no

matter which one. Each cut covers two of those directions: positive and negative. Be-
cause the ”cut density” is symmetric around the origin, it is sufficient to consider just
the positive part for computations. GO’s density pGO(~x) (Equation 2) can be replaced by

p
(n)
GMn(r) (Equation 12) which is based on the variable r for the norm, too.

For CO, two directions will be compared: along the first main axis ~e1 and along the first
diagonal ~d1 without loss of generality by reason of symmetry. Corresponding parame-
trization can be achieved by:

~x = r~e1 = r(1, 0, 0, ..., 0)t and ~x = r~d1 = r(1, 1, 1, ..., 1)t/
√

n ‖~e1‖ = ‖~d1‖ = 1.

Remark: All plots belonging to this section depict graphs of density cuts, not marginals.
In addition, a log10 scale is used to point out differences in asymptotic behaviour.

Due to the logarithmic scale in Figure 3(a) showing cuts through 3-dimensional densities,
the exponential, steep decline of the Gaussian opposed to the polynomial, slow decay of
the Cauchy distributions becomes apparent, whether with or without modifications as
described in Sections 3.2.3 for Cauchy and 3.2.5 for Gaussian. A closer view of the same
situation is provided in Figure 3(b), where the gap between trajectories of the CO density
along main axis and diagonal gets obvious. The singularity at the origin associated with
the modified/spherical distribution versions is not graphed fully.

From Figure 3(a), 4(a) and (b), depicting the same graphs for 3-, 10- and 50-dimensional

spaces, it can be seen that this gap between pCO(r~e1) and pCO(r~d1) grows with the
spaces’ dimensionality. That fact is diagrammed compactly in Figure 5, charting the
ratio pCO(r ~e1)

pCO(r ~d1)
for several dimensionalities n. It also turns out, that the gap gets wider

with increasing distance from the origin, so the ”longer the jump”, the higher is the pro-
bability to mutate rather along main axes direction. Thus for CO holds: the more distant
from zero or the higher the dimensionality, the higher is the likeliness of a certain point in
space with fixed norm r to lie near a main axis rather than near a diagonal (as opposed
to spherical distributions with equally probable directions). This clearly is advantageous
when dealing with highly multimodal separable functions (Section 4) where it is beneficial

3 VARIOUS DISTRIBUTIONS FOR MUTATION 17

−10 −8 −6 −4 −2 0 2 4 6 8 10
−20

−15

−10

−5

0

5

r

(a)

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

r

(b)

CO main axis
CO diagonal
GO
CM1
GM1

CO main axis
CO diagonal
GO
CM1
GM1

Figure 3: Cuts through 3-dimensional densities on a log scale, (a) and (b) show same
graphs on different scales:
CO along first main axis ~e1 (blue/solid): log10(pCO(r~e1)) from Equation 4

CO along first diagonal ~d1 (black/dotted): log10(pCO(r~d1)) from Equation 4
GO along any direction ~v with ‖~v‖ = 1 (red/dashed): log10(pGO(r~v)) from Equation 2

CM1 (green/dash-dotted): log10(p
(n)
CM1(r)) from Equation 8

GM1 (magenta/dash-dotted): log10(p
(n)
GM1(r)) from Equation 13

3 VARIOUS DISTRIBUTIONS FOR MUTATION 18

−10 −8 −6 −4 −2 0 2 4 6 8 10
−50

−40

−30

−20

−10

0

10

r

(a)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−50

−40

−30

−20

−10

0

10

r

(b)

CO main axis
CO diagonal
GO
CM1
GM1

CO main axis
CO diagonal
GO
CM1
GM1

Figure 4: Cuts through n-dimensional densities on a log scale, for (a) n = 10 and (b)
n = 50 dimensions:
CO along first main axis ~e1 (blue/solid): log10(pCO(r~e1)) from Equation 4

CO along first diagonal ~d1 (black/dotted): log10(pCO(r~d1)) from Equation 4
GO along any direction ~v with ‖~v‖ = 1 (red/dashed): log10(pGO(r~v)) from Equation 2

CM1 (green/dash-dotted): log10(p
(n)
CM1(r)) from Equation 8

GM1 (magenta/dash-dotted): log10(p
(n)
GM1(r)) from Equation 13

3 VARIOUS DISTRIBUTIONS FOR MUTATION 19

−20 −15 −10 −5 0 5 10 15 20
0

10

20

30

40

50

60

70

r

difference
= 25.5

Figure 5: Log ratio log10

(
pCO(r ~e1)

pCO(r ~d1)

)

of CO density cuts (Equation 4) along directions

of the first main axis ~e1 and first diagonal ~d1 for several dimensionalities: n = 1
(red/solid), n = 3 (blue/dotted), n = 10 (green/dashed), n = 50 (magenta/dash-
dotted), n = 100 (black/solid).

to produce offspring preferably in main axes direction. The situation marked by arrows
in Figure 5 serves as a quantitative example: In a 3-dimensional space, we have following
density values at r = 10 resulting in their corresponding ratio:

pCO(10 ~e1) ≈ 3.193 · 10−4 and pCO(10 ~d1) ≈ 8 · 10−7

q3dim :=
pCO(10 ~e1)

pCO(10 ~d1)
≈ 102.6 ≈ 400.7 in 3 dimensions.

So at a distance of r = 10 from the origin, it is 400 times more probable to be located
on the first main axis than on the first diagonal, which is indicated with the lower arrow.
However, this ratio grows drastically when considering a 100-dimensional space (upper
arrow in Figure 5):

q100dim :=
pCO(10 ~e1)

pCO(10 ~d1)
≈ 1028.1 ≈ 1.26 · 1028 in 100 dimensions.

q3dim and q100dim themselves differ by a huge factor of ≈ 1025.5 ≈ 3.13 · 1025.

The curve tails of the spherical Cauchy density always lie in between those of the non-
spherical version along the main axis and diagonal. Like this, the mass of probability is
balanced over all directions.

An important difference between random vectors with n-dimensional norm and such with
1-dimensional norm is illustrated in Figure 6 by means of the Cauchy distributions: CO

3 VARIOUS DISTRIBUTIONS FOR MUTATION 20

−20 −10 0 10 20
−60

−50

−40

−30

−20

−10

0

10

20

r

(a)

−20 −10 0 10 20
−60

−50

−40

−30

−20

−10

0

10

20

r

(b)

Figure 6: Log cuts through n-dimensional densities for several dimensionalities n = 1
(red/solid), n = 3 (blue/dotted), n = 10 (green/dashed), n = 50 (magenta/dash-
dotted), n = 100 (black/solid):
(a) CO density log10(pCO(r~e1)) from Equation 4 along the first main axis ~e1

(b) CM1 density log10(p
(n)
CM1(r)) from Equation 8, the singularity is not graphed fully.

cut along the first main axis and CM1. Instead, a comparison of Gaussian distributions
GO and GM1 could have been drawn yielding similar conclusions. Graphs of pCO(r~e1)
in different dimensionalities n mainly differ by certain factors8 which become summands
on a log scale – illustrated in Figure 6(a). p

(n)
CM1(r)’s trajectories in n-dimensional spaces

but having fixed 1-dimensional norm exhibit different behaviour: the higher the dimen-
sionality n, the more concentrated is the mass of probability around the origin, i.e. the
steeper the curves get, which can be observed in Figure 6(b). When dealing with highly
multivariate, multimodal fitness functions, where larger steps in the advanced optimiza-
tion process are expedient to escape local minima, this property may be a disadvantage of
1-dimensional-norm mutation operators. In our empirical tests, this assertion is confirmed
for n = 5 and especially for n = 10. Conversely, local convergence performance is greatly
improved, which in empirical tests manifests itself in some runs with a comparably low
number of generations needed to reach the global minimum within a chosen tolerance if
and only if its attraction area is reached early enough during the optimization process,
i.e. when the deterministically controlled step size is large enough to enforce exploration.

Up to here, all densities have been introduced as they happen to appear due to their
particular sampling methods. As mentioned earlier, random vectors with a 1-dimensional
norm have smaller variance than random vectors with an n-dimensional norm. This
coherence was resumed in Equation 9 for Gaussians’ standard deviation. In order to

8namely π−1 per additional dimension. In diagonal cuts, these factors depend on the distance from
the origin.

3 VARIOUS DISTRIBUTIONS FOR MUTATION 21

−10 −5 0 5 10
−20

−15

−10

−5

0

5

r

(a)

−20 −10 0 10 20
−60

−50

−40

−30

−20

−10

0

r

(b)

Figure 7: Comparison of log cuts in any direction ~v with ‖~v‖ = 1 through the n-
dimensional Gaussian densities standardized to variance 1. In (a) for n = 3 and in (b)
for n = 50 dimensions.
GO (blue/dashed): log10(pGO(r~v)) from Equation 2

GM1 scaled (red/solid): log10(p
(n)
GM1(r/

√
n)/

√
n

n
) from Equation 14, the singularity is

not graphed fully.

compare the shape of GO and GM1 densities under condition of equal variance, in Figure
7 scaling is applied to p

(n)
GM1(r), such that the variance of both distributions is standardized

to 1. So instead, following density is plotted:

p
(n)
GM1(r/

√
n)/

√
n

n
(14)

To get an idea about the effect of this scaling for equal variance, it is worthwile to confer
GO and GM1 in Figures 3(a) and 7(a). In the latter, it can be seen that for the scaled
GM1 density the mass of probability is highly concentrated around the origin, whereas
for GO, its density values are larger than those of GM1 only in an intervall |r| ≈ [1, 3].
Figure 7(b) shows the same graphs for n = 50, yielding similar conclusions. So, the dif-
ference in densities of GO and GM1 near the origin also is apparent when considering
equal variances. This fact has to be accommodated when using mutation distributions
with 1-dimensional instead of usual n-dimensional norms: Because of the shifts’ smaller
variance (Equation 9) and the high concentration of probability mass at the origin, the
step size σ1dim in general has to be chosen larger to realize jumps of increased length.

Unfortunately, it is not possible to adopt quantitative findings of the Gaussian distri-
butions for the Cauchy ones because of Cauchy distributions’ undefined variance. To get
around the problem of finding individual, appropriate step sizes for CO, CMn and CM1
in the empirical tests, the step size ranges are ascertained likewise empirically instead of
inferring them properly.

3 VARIOUS DISTRIBUTIONS FOR MUTATION 22

3.4 Comparing the Distributions of Random Vector Norms

Concerning norms, this report shall illustrate differences when employing various muta-
tion operators – for more detail about this topic, refer to [2]. In the following, a summary
will be given containing the most important facts about the distributions of norms of shift
random vectors ∆~x generated by miscellaneous mutation operators introduced previously.

• ∆~x ∼ N (~0, In) ⇒ ‖∆~x‖ ∼ χn with density from Equation 10.

E [χn] =
√

2Γ((n+1)/2
Γ(n/2)

, according to [6]. For different dimensionalities n = 1, 3, 5,
10, 50, 100 the corresponding expectations are approximately 0.798, 1.596, 2.128,
3.084, 7.036 and 9.975.

• ∆~x ∼ NMn(~0, 1) ⇒ ‖∆~x‖ ∼ χn as above.

• ∆~x ∼ NM1(~0, 1) ⇒ ‖∆~x‖ ∼ χ1

E [χ1] =
√

2√
π
≈ 0.798, independent of dimensionality n.

• ∆~x ∼ C(~0,~1) ⇒ ‖∆~x‖ ∼ ‖C(~0,~1)‖ with unknown density.

E
[

‖C(~0,~1)‖
]

= ∞, similar to V AR
[

C(~0,~1)
]

= ∞ as mentioned in [3].

• ∆~x ∼ CMn(~0, 1) ⇒ ‖∆~x‖ ∼ ‖C(~0,~1)‖ as above.

• ∆~x ∼ CM1(~0, 1) ⇒ ‖∆~x‖ ∼ |C(0, 1)| with density from Equation 6.
E [|C(0, 1)|] = ∞, similar to V AR [C(0, 1)] = ∞ as mentioned in [3].

The infinite expectations of the norm ‖∆~x‖ of Cauchy random vectors clearly indicate
that on average ”much” longer shifts ∆~x are generated than by other mutation operators
like Gaussians. However, this might not be the only advantage when trying to escape
local minima. The magnitude of jump length ‖τ∆~x‖ or ‖σ∆~x‖ mainly is determined
by the externally controlled step size τ or σ of the Evolution Strategy which could be
set arbitrarily large during various phases of the optimization process. Algorithms using
self-adaptive step sizes are constrained from this point of view and are yet another reason
for the choice of a simple deterministic cooling scheme in our empirical tests.

Figure 8 illustrates the densities of the norm of a 10-dimensional random vector on a log-
scale: in (a), densities are scaled such that all of them have equal medians9, while in (b)
densities corresponding to the sampling methods in Section 3.2 are graphed10. Comparing
the norms’ distributions in Figure 8(b), the discrepancy of the exponentially decreasing
tails of Gaussian norm distributions and the heavy tails of Cauchy norm distributions
becomes obvious, no matter whether with or without modifications. The concentration of
probability mass at the origin in the case of mutation operators having a 1-dimensional
norm is apparent as well, this time considering the norm distribution instead of a cut

9suitable for comparing the shape of densities
10suitable for comparing sampling methods

3 VARIOUS DISTRIBUTIONS FOR MUTATION 23

0 10 20 30 40 50 60 70 80 90 100
−7

−6

−5

−4

−3

−2

−1

0

r

(a)

0 5 10 15 20 25 30 35 40 45 50
−7

−6

−5

−4

−3

−2

−1

0

r

(b)

CO/CMn
GO/GMn
CM1
GM1

CO/CMn
GO/GMn
CM1
GM1

Figure 8: Illustration of the norm’s distributions on a log scale, each of a 10-
dimensional random vector. (a) shows densities scaled for equal medians (≈ 11.66)
and (b) the raw densities of sampling methods introduced in Section 3.2.
GO (red/dashed) resulting in density log10(pχ10

(r)) from Equation 10
GM1 (magenta/dash-dotted) resulting in density log10(pχ1

(r)) from Equation 11
CM1 (green/dash-dotted) resulting in density log10(p(r)) from Equation 6
CO and CMn respectively (blue/solid) visualized by empirical density/histogram

3 VARIOUS DISTRIBUTIONS FOR MUTATION 24

0 2 4 6 8 10 12 14 16 18 20
−50

−40

−30

−20

−10

0

r

(a)

0 10 20 30 40 50 60 70 80 90 100
−5

−4

−3

−2

−1

0

r

(b)

Figure 9: Random vector norms’ distribution on a log scale in different dimen-
sionalities n = 1 (red/solid), n = 3 (blue/dotted), n = 10 (green/dashed), n = 50
(magenta/dash-dotted), n = 100 (black/solid):
(a) GO and GMn respectively having χ-density log10(pχn

(r)) from Equation 10
(b) CO and CMn respectively visualized by empirical densities/histograms
The n = 1 (red/solid) graphs also incorporate GM1 (density log10(pχ1

(r)) from Equa-
tion 11 plotted in (a)) and CM1 (density log10(p(r)) from Equation 6 plotted in (b))
which are invariant for all distinct dimensionalities n.

3 VARIOUS DISTRIBUTIONS FOR MUTATION 25

through the joint distribution.

Figure 9 depicts these norm densities on a log-scale for several dimensionalities n for
Gaussian (a) and Cauchy norms (b). The so-called curse of dimensionality manifests itself
for the mutation distributions employing n-dimensional norms: The higher the number
of dimensions, the more is the mode11 shifted away from zero and the more unprobable
are small distances which implies better exploration of the search space. According to
[2], the mode’s position of χn-densities is proportional to σ ·

√
n − 1. For CO, this effect

is even stronger, for instance the norm distribution’s mode of a 100-dimensional random
vector lies at about r ≈ 55 whereas for the χ100-density at r ≈ 10. However, CM1 and
GM1 remain constant for whatever dimensionality and have the mode at r = 0. So on the
one hand, mutation operators with n-dimensional norms are in need of small step sizes
τ or σ for local convergence while mutators using only 1-dimensional norms frequently
generate shifts near zero. But on the other hand, mutation operators with n-dimensional
norms automatically generate larger step sizes, while mutators with 1-dimensional norm
need artificially raised jump lengths ‖τ∆~x‖ or ‖σ∆~x‖ to enable exploration of the search
space. These facts can be accomodated by proper scaling, i.e. choosing suitable step size
ranges [τinit, τfinal] or [σinit, σfinal].

11i.e. the most probable distance r

4 SEPARABLE FUNCTIONS 26

4 Separable Functions

4.1 General Remarks

Definition of separable functions: A function f : R
n 7→ R is called separable if

∀i ∈ {1, 2, ..., n}, ∀x = (x1, ..., xi−1, xi+1, ..., xn) ∈ R
n−1 and ∀y = (y1, ..., yi−1, yi+1, ..., yn) ∈

R
n−1:

arg min
α

f((x1, ..., xi−1, α, xi+1, ..., xn) = arg min
α

f((y1, ..., yi−1, α, yi+1, ..., yn)

In the case where this arg min is not unique, the equality is in the sense of ”equal sets”.

From this definition it can be seen, that each of the n coordinates of the function can be
minimized independently. Considering a graphed cut along one particular coordinate axis
xi, i ∈ {1, 2, ..., n}, its minimum lies at the same position x̂i, wherever the cut is drawn
exactly, i.e. independent of the fixed values xj, j ∈ {1, 2, ..., n} − {i}. Topologically, for
a bivariate separable function this implies a long (possibly very narrow) valley along the
axis of x1 passing through the minimum x̂2 of the second coordinate x2 and vice versa.
The global minimum then lies in the cooresponding intersection. Having once reached
one of those valleys, it generally is more efficient to move along main axis directions in
order to proceed to the minimum in a straight forward way.

Among separable functions, various types exist such as additively decomposable or pro-
ductively decomposable functions or combinations of those like sums of separable functions
for very special cases. An n-dimensional additively decomposable function is a sum of n
univariate functions which do not depend on each other. A corresponding example will
be given in the next section. Similarly, a productively decomposable function is a product
of n univariate functions but will not be considered in this work.

4.2 Rastrigin’s Function

Rastrigin’s function is an example for an additively decomposable function having many
local minima, depicted for the 2-dimensional case in Figure 10.

frastrigin(~x) = frastrigin(x1, x2, ..., xn) =
n∑

i=1

(x2
i − 10 cos(2πxi) + 10 (15)

The cosine term rather determines local shaping, i.e. the local minima’s shape, whereas
the quadratic term mainly determines the global shape, i.e. the arrangement of the various
local minima in space. Local minima are found at almost-integer values 0, 0.9949, 1.9899,
2.9848, 3.9798, 4.9747... in each coordinate having function values 0, 0.9950, 3.9798,
8.9546, 15.9192, 24.8737... Therefore the set of local minima of the n-dimensional Rastri-
gin’s function is obtained by the cartesian product of these coordinate-wise positions and
their corresponding function values by adding up individual coordinates’ function values.
Local minima with equal function values are adjusted spherically around the origin which
is the global minimum, the more distant from the origin, the higher the function value of

4 SEPARABLE FUNCTIONS 27

Figure 10: 2-dimensional Rastrigin’s Function with the function values along z-axis
for the positive quadrant. The four quadrants are symmetric around the origin, so
every quadrant looks the same.

particular minima.

In order to assess the difficulty of the minimization problem at hand, usually the volume
VglobMin of the area sufficiently near12 to the global minimum is compared with the volume
Vsearchspace of the whole search space considered. For the n-dimensional Rastrigin’s func-
tion, which the (1+1)-Evolution Strategy of our empirical tests in Section 5 is applied to,
VglobMin is the volume of the domain having function values all smaller than the function
value of the (globally second smallest) local minimum being ≈ 0.99. This comes clear
when taking into account the strictly hard selection of a (1+1)-Evolution Strategy. The
initial point for the Evolution Strategies is always set to ~xinit = ~5 = (5, 5, ..., 5)t ∈ R

n,
which is very close to the local minimum frastrigin(4.97, 4.97, ..., 4.97) ≈ 24.87 · n. During
minimization, a (1+1)-Evolution Strategy only accepts offspring ~xc having:

frastrigin(~xc) ≤ frastrigin(~xinit) = frastrigin(5, 5, ..., 5) = 25 · n

This fact together with the spherical, steplike arrangement of local minima imply a po-
tential search space of approximatively a sphere of radian 5 around the origin.

To obtain a rough estimate of such a measure of difficulty, a Monte Carlo procedure was
carried out involving 108 samples. For every generated sample ~x ∈ [−1, 1]n, uniformly
distributed in the n-dimensional unit cube, it was checked if its function value is smaller
than 0.9: frastrigin(~x) ≤ 0.9 ⇒ ~x sufficiently near to global minimum, such ~x then were
counted. These counts divided by the total number of samples represent a measure for the
ratio VglobMin/Vsearchspace which turned out to be 1.6 · 10−4 for n = 3, 1.8 · 10−7 for n = 5
and finally 0 for n = 10 dimensions. Consequently, for such a primitive minimization
algorithm it is not very likely to attain the global minimum just by chance, especially in

12i.e. such that local minimization leads to the global minimum

4 SEPARABLE FUNCTIONS 28

higher dimensionality.

During the optimization process Evolution Strategies utilize exploration of neighbourhood
to approach the global minimum step by step. When mutating according to spherically
symmetric distributions all directions within the current neighbourhood are treated with
equal weight. However, when minimizing separable functions with mutation according to
the non-spherical Cauchy distribution which prefers main axes’ directions, certain function
properties are exploited systematically. For instance, these properties and consequences
can be illustrated at the 2-dimensional Rastrigin’s function (used will be notation from
Section 3):

−2 −1 0 1 2 3 4 5 6
−2

−1

0

1

2

3

4

5

6

global Minimum

starting point

"macro−mutation"

GO

CO

Figure 11: Track of a (1+1)-Evolution Strategy employing GO (blue line with square
markers, cyan point clouds, constant step size σ = 0.25) and CO (red line with sphere
markers, orange point clouds, constant step size τ = 0.01) mutation when minimizing
the 2-dimensional Rastrigin’s Function with ~xinit = (5, 5)t. The point clouds display
the overall generated offspring, but selected are only those indicated by larger sphere
and square markers.

Problematic is the case of being stuck and having just small step sizes τ or σ at hand.
Assuming being trapped in a particular local minimum, one strategy would be to hop
local minimum by local minimum towards the global minimum. The least distant ad-
jacent local minima always lie in main axis’ direction, separated by saddles as opposed
to the more distant local minima in diagonal direction being separated by comparably
huge peaks. So an Evolution Strategy being able to perform steps of length ≈ 1 and
having unlimited number of generations at its disposal eventually is successful in global

4 SEPARABLE FUNCTIONS 29

minimization of Rastrigin’s function. If the steps are preferably directed along main axes,
efficiency is increased which manifests itself in a lower number of generations used to
reach the global minimum. These considerations are visualized in Figure 11: Two routes
through the search space are tracked, one of a (1+1)-Evolution Strategy applying a usual
Gaussian and one applying a non-spherical Cauchy mutation operator. The step size is
kept constant and furthermore very small: σ = 0.25 for the Gaussian distribution with
the consequence that steps longer than ≈ 1 occur rather seldom and thus the algorithm
is forced to proceed to the least distant local minima one after the other as observable in
Figure 11. A lot of offspring is generated in spherical clouds, but is selected only when
situated in main axis direction. However, it is difficult to constrain a Cauchy Evolu-
tion Strategy in such a way, so its step size is chosen even smaller, namely τ = 0.01.
Looking at the corresponding route and the overall generated offspring, the preference
of main axes’ directions – especially when performing large steps - becomes obvious and
so does the increase in efficiency. In addition, a successful ”macro-mutation” with norm
τ ‖∆~x‖ ≈ τ · 300 ≈ 3 takes place which in general speeds up the optimization process.
For the sake of completeness, the number of generations used shall be given but should
not be compared quantitatively13: for the Cauchy Evolution Strategy 9189 and for the
Gaussian 82000.

Hence, comparing different mutation operators’ efficiency just based on the set of separa-
ble functions, enables the non-spherical Cauchy distribution to take advantage of a-priori
knowledge about this set of functions, i.e. auspicious directions towards the global mini-
mum are chosen preferably. In order to define a set of test functions which does not
privilege certain mutation operators in that way, the set of separable functions can be
enlarged with corresponding rotated functions having separability disturbed. In our em-
pirical tests, averaging over several runs on randomly rotated Rastrigin’s functions is done
using:

f rotatedbyΦ
rastrigin (~x) = frastrigin(Φ~x) with Φ : n × n orthogonal Matrix, Φt = Φ−1

Such random rotation matrices Φ are generated using a Gram-Schmidt-Ortho-Normali-
zation-like procedure, provided as Matlab code in appendix A.1.5. To enable every (1+1)-
Evolution-Strategy to start from the same position ~5 with frastrigin(5, 5, ..., 5) = 25 · n in
the unrotated Rastrigin’s function, ~xinit for the rotated case is set to:

~xinit = Φ−1 ~5 = Φt ~5 with

f rotatedbyΦ
rastrigin (~xinit) = frastrigin(Φ~xinit) = frastrigin(ΦΦ−1 ~5) = frastrigin(5, 5, ..., 5) = 25 · n.

13because parameters are chosen to get nice visual results rather than optimal performance

5 EMPIRICAL TESTS 30

5 Empirical Tests

5.1 Methodology

Test Function: This section shall provide empirical evidence in order to support the
hypotheses stated at the beginning of this report. As separable fitness function serves
the n-dimensional Rastrigin’s function in different dimensionalities n = 3, 5 and 10.
Rastrigin’s functions randomly rotated by matrix Φ are the corresponding non-separable
counterpart. To get an estimate for quality or performance of a certain Evolution Strategy
on those test functions, averaging over 50 subsequent runs is done, always starting from
the same position ~xinit = Φt ~5 in the search space as described in the last paragraph of
Section 4.

Measuring Performance: As a measure for performance one may consider the 50 fi-
nal fitness values obtained by 50 runs of a (1+1)-Evolution Strategy using a particular
mutation operator; either they are close to zero (global minimum attained) or to the
fitness values of other local minima (when trapped in one of those). In the case of Ras-
trigin’s function, taking into account its global shape similar to the sphere function, this
means: The lower a final fitness value, the nearer is it located to the global minimum
and therefore the better was the performance. Histogramming of these 50 values gives us
the unnormalized empirical distribution of the random variable ”Minimal Fitness Value
found by (1+1)-Evolution Strategy”. The goal then is to detect shifts between means
or medians when comparing two of those empirical distributions and for this purpose, a
Wilcoxon Ranksum Test is applied.

Another measure for performance might be the probability of success psuccess of a par-
ticular Evolution Strategy estimated on 50 runs, so: frastrigin(~xfinal) < 0.9 ⇒ count run
as successful. This results in just two ratios to be compared. The significance of such
comparisons can be verified quantitatively by employing a χ2 test of proportions.

In order to detect an increase in performance when involving a Cauchy mutation operator
based Evolution Strategy, following performances may be compared:

• The sets of 50 final fitness values found by a (1+1)-Evolution Strategy using a
Cauchy mutation operator on separable Rastrigin’s functions and on non-separable,
randomly rotated ones.

• The sets of final fitness values found by Evolution Strategies using k different muta-
tion operators on unrotated Rastrigin’s functions, but as well on rotated ones. This
results in two distinct symmetric k × k matrices with pair-wise comparisons as its
entries, for instance the p-values of pair-wise statistical tests.

Mutation Operators: In this work, k = 4 different mutation operators are investi-
gated: CO from Section 3.2.2, CMn from 3.2.4, GO from 3.2.1 and CM1 from 3.2.3). The
(1+1)-Evolution Strategies employing these diverse mutation operators were implemented

5 EMPIRICAL TESTS 31

in Matlab, the corresponding source code can be found in the appendix A.1.

Referring to the algorithm and corresponding step size adaptation scheme given in Section
2, parameters gmax, θinit and θfinal are left to determine. For Gaussian mutation θ is
renamed as σ, for Cauchy mutation as τ . The maximal number of generations allowed is
set to gmax := 50000 ·n adjusting to the raised problem complexity in higher-dimensional
spaces.

Step Size Adaptation: Following plots shall illustrate various discrepancies in in-
tervals [τinit, τfinal] = [τ0, τgmax

] arising when optimizing in different dimensionalities n
and with miscellaneous mutation operators, and therefore suggest tuning the step size
range individually. Using a log-scale for better readability, Figure 12 depicts the current
fitness values frastrigin(~xi) and step sizes τi throughout the whole optimization process
i = 0, 1, ..., gmax for four distinct Evolution Strategy runs. Figure 13 provides a more
detailed view on the selected step sizes of these four runs – put into a histogram are the
sets:

{log10(τi) | τi = αiτinit ∧ i = 1, 2, ..., gmax ∧ frastrigin(~xi) < frastrigin(~xi−1)}
The logarithm on the x-axis is needed because of the step sizes’ uniformity on the log-scale.
Similarly, the trajectory of the sequence of step sizes in Figure 12 results in a straight line
whose constant slope can be characterized by the corresponding cooling factor α.

In Figure 12, arrows indicate the step sizes at the first improvement and at the last step
which led into the global minimum’s attraction area, or at the point where the attraction
area of a particular local minimum is entered. Because the Evolution Strategy with CMn
gets stuck, local convergence takes place until the maximal number of generations is at-
tained, which gets obvious in Figure 13(d).

Due to its distribution concentrated around the origin, CM1 in general requires larger
step sizes to accomodate for that fact, which also comes clear when comparing Figures
13(a) and (b). As well, this is the reason for the shifted lines of step sizes in Figure 12(a)
and why CM1 experiences special handling in our empirical tests.

From Figures 13(a) and (c) with the CO based Evolution Strategy, it can be seen that
lower step sizes are used in higher dimensionality, which can be explained with the in-
creased shift length ‖∆~x‖ as a consequence of higher dimensionality as mentioned in
Section 3.4. Illustrated are runs on unrotated Rastrigin’s functions only, though it turned
out that intervals of selected step sizes are similar when dealing with rotated versions.

However, these single findings shall not give the impression of optimal step size intervals,
which is taken care of in Section 5.4. Same analysis was done for several hundred runs
for each of the four Evolution Strategies and for each of dimensionalities n = 3, 5 and
10. As a sensible compromise for our purposes, following parameter intervals [θinit, θfinal]
are chosen under the condition of having the same cooling factor α14 for various mutation

14i.e. θfinal/θinit = const. ∀ Evolution Strategies.

5 EMPIRICAL TESTS 32

2 4 6 8 10 12 14

x 10
4

−1

0

1

2

3

generation

(a)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

−2

−1

0

1

2

3

generation

(b)

CM1

CO

CO

CMn

Figure 12: Optimization process of one particular (1+1)-Evolution Strategy run fo-
cusing on the fitness value in current generation i and the concurrent step size utilizing
two distinct mutation operators in two different dimensionalities:
(a) Minimization of the 3-dimensional unrotated Rastrigin’s function. For mutation:
CO: log10(frastrigin(~xi)) red/solid and log10(τi) blue/dotted
CM1: log10(frastrigin(~xi)) green/dashed and log10(τi) black/dash-dotted
Notice the different intervals [τinit, τfinal]: for CO [103, 10−3] and for CM1 [104, 10−2].
(b) Minimization of the 10-dimensional unrotated Rastrigin’s function. For mutation:
CO: log10(frastrigin(~xi)) red/solid and log10(τi) blue/dotted
CMn: log10(frastrigin(~xi)) green/dashed and log10(τi) blue/dotted
Both have the same step size interval [τinit, τfinal] = [103, 10−3].

5 EMPIRICAL TESTS 33

−2 0 2 4
0

1

2

3

4

5

6

7
(a)

log
10

(stepsize)
−2 0 2 4

0

1

2

3

4

5

6

7
(b)

log
10

(stepsize)

−2 0 2 4
0

1

2

3

4

5

6

7
(c)

log
10

(stepsize)
−2 0 2 4

0

1

2

3

4

5

6

7
(d)

log
10

(stepsize)

convergence to sub−
optimal local minimum

CMn CO

CM1 CO

Figure 13: Recording of selected step sizes, i.e. when found a better fitness value,
during the optimization processes from Figure 12. On the y-axis counts are plotted
against the log10 of the selected step sizes on the x-axis.
(1+1)-Evolution Strategy on unrotated 3-dimensional Rastrigin’s function employing
(a) CO mutation
(b) CM1 mutation
(1+1)-Evolution Strategy unrotated 10-dimensional Rastrigin’s function employing
(c) CO mutation
(d) CMn mutation

5 EMPIRICAL TESTS 34

operators in a certain dimensionality n, covering with high probability all potential step
sizes for this special setting and holding a safeness margin of 100%, i.e. θinit at least
double the highest ever selected step size and θfinal at most half the lowest ever selected
step size:

• [103, 10−3] for CO, CMn and GO mutation for all n.

• [104, 10−2] for CM1 for all n.

This results in cooling factors α having 1 − α = 9 · 10−5, 6 · 10−5 and 3 · 10−5 for dimen-
sionalities n = 3, 5 and 10.

5.2 Remarks about Hypothesis Tests

Test Inputs and Assumptions: In order to compare success/failure probabilities,
which are a kind of unordered, bicategorical data representable in a 2 × 2 contingency
table, the χ2 test of proportions is an appropriate choice, making only few rather weak
assumptions15 about the data which are fulfilled certainly. Conversely, the Wilcoxon
Ranksum Test requires a continuous distribution of the data i.e. needs ordered data to
be ranked uniquely. The set of 50 final fitness values obtained by our Evolution Strategy
algorithms match this requirement, but introduce additional randomness due to local
convergence which is not of interest here. In Statistics literature, one can find ways to get
around that strong assumption, being described in the next paragraph. Hence, to get rid
of influence by local convergence, final fitness values smaller than ≈ 100 can be rounded to
the next larger integers except for successful optimization runs whose final fitness values
are set to zero. This is possible in the case of the Rastrigin’s function because of its special
properties at local minima (Section 4.2). A motivating example to proceed like this can
be found in [8, ch.5 sect.3, p.210 ff, ex.4].

Test Statistics: As χ2 test statistic the usual sum of squares of relative deviations
from category means is calculated and p-values are obtained via χ2-distribution. As its
name suggests, a ranksum test computes a test statistic based on the sum of ranks for
each group, and if the number of data values exceeds ≈ 30, it makes use of a normal ap-
proximation with certain mean and variance instead of the exact discrete distribution to
determine p-values. When testing tied data like the integer fitness values, an adjustment
of this variance is necessary, explained in detail in [8, ch.1 sect.4, p.18 ff]. In addition,
another adaptation needed for equally spaced data points like ours is the so-called con-
tinuity correction. In Matlab’s ranksum.m procedure both of these issues are taken into
account. Of course, the quality of a ranksum test suffers from ties in data because the
test statistic’s approximate normal distribution does not fit well anymore ([8, ch.1 sect.4,
p.20]). However, results are still reasonable, but less powerful.

Test Outputs: The χ2 test finally returns a p-value representing the significance pro-
bability of having equal proportions for each group in each category16 whereas the ranksum

15advantageous: no assumptions about the data’s distribution
16usually: contingency table with groups as rows and categories as columns.

5 EMPIRICAL TESTS 35

psuccess on Rastrigin’s function
Mutation n=3 n=5 n=10
Operator unrot. rot. unrot. rot. unrot. rot.

CO 1 0.88 1 0.04 1 0
CMn 0.74 0.78 0.06 0.02 0 0
GO 0.86 0.88 0.04 0.08 0 0
CM1 0.74 0.76 0 0 0 0

Table 2: Success probabilities of 50 runs of (1+1)-Evolution Strategies with four
different mutation operators CO, CMn, GO and CM1, each for the unrotated and
randomly rotated n-dimensional Rastrigin’s function in dimensionalities n = 3, 5 and
10.

test returns the significance probability that there is no shift in the medians of two distinct
samples. If the underlying assumptions of these statistical tests are met – which is not
the case for rounded final fitness values –, it can be expected that a ranksum test takes
into account more information17 about individual samples than a χ2 test does, and hence,
p-values are more meaningful. Generally, low p-values such as 1% or less indicate a
significant deviance from the assumption of having equal sources. However, in the next
section results are presented as − log10(p); choosing an appropriate significance level is
left to the reader. For instance, a significance level of < 1% conforms to > 2 using the
notation above.

5.3 Test Results and Analysis

Table 2, Figures 14, 15 and 16 hold resulting measures of performance for each of the
considered mutation operators and dimensionalities. Averages of final fitness values are
provided in Figures’ captions.

It can be seen, that the Evolution Strategy employing the CO mutation operator always
reaches the global minimum of the the unrotated Rastrigin’s function, i.e. psuccess = 1
and single peak at globally minimal fitness value 0 in histograms. For other variants
this is never the case, rather it holds: psuccess < 1 and final fitness values are distributed
roughly normally having their mode shifted to a final fitness value > 0. The higher the
dimensionality n, the lower is psuccess and the more shifted to right are the final fitness
values in the histograms.

In the following, observed discrepancies’ significance is quantitatively verified for dimen-
sionalities n = 3, 5 and 10 individually. For each of the mutation operators, corresponding
performances on unrotated and rotated Rastrigin’s functions are compared (Table 3), and
furthermore performances of various mutation operators are compared pair-wise for un-
rotated and rotated functions separately, which then results in two 4 × 4 comparison
matrices for each n (Tables 4 - 9). P-values of the χ2 test are stated in the lower triangle
of these matrices, and p-values of the ranksum test in the upper triangle in the form

17i.e. ordering among individual samples, representing a certain distribution

5 EMPIRICAL TESTS 36

0 1 2 3 4 5 6
0

10

20

30

40

50
(a)

0 1 2 3 4 5 6
0

10

20

30

40

50
(b)

0 1 2 3 4 5 6
0

10

20

30

40

50
(c)

0 1 2 3 4 5 6
0

10

20

30

40

50
(d)

0 1 2 3 4 5 6
0

10

20

30

40

50
(e)

0 1 2 3 4 5 6
0

10

20

30

40

50
(f)

0 1 2 3 4 5 6
0

10

20

30

40

50
(g)

0 1 2 3 4 5 6
0

10

20

30

40

50
(h)

CMn

GO

CM1

CO

Figure 14: Histograms of final fitness values obtained by 50 runs of a (1+1)-Evolution
Strategy employing four different mutation operators on 3-dimensional Rastrigin’s func-
tions (left: unrotated, right: randomly rotated Rastrigin’s functions):
(a) CO on unrotated Rastrigin’s functions. Final fitness value average: 0
(b) CO on randomly rotated Rastrigin’s functions. Final fitness value average: 0.12
(c) CMn on unrotated Rastrigin’s functions. Final fitness value average: 0.26
(d) CMn on randomly rotated Rastrigin’s functions. Final fitness value average: 0.22
(e) GO on unrotated Rastrigin’s functions. Final fitness value average: 0.14
(f) GO on randomly rotated Rastrigin’s functions. Final fitness value average: 0.12
(g) CM1 on unrotated Rastrigin’s functions. Final fitness value average: 0.26
(h) CM1 on randomly rotated Rastrigin’s functions. Final fitness value average: 0.26
Stepsize range for CM1 is [τinit, τfinal] = [104, 10−2] whereas for CO, CMn and GO it
is [τinit, τfinal] = [103, 10−3].

5 EMPIRICAL TESTS 37

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50
(a)

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20
(b)

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20
(c)

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20
(d)

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20
(e)

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20
(f)

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20
(g)

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20
(h)

CO

CMn

GO

CM1

Figure 15: Histograms of final fitness values obtained by 50 runs of a (1+1)-Evolution
Strategy employing four different mutation operators on 5-dimensional Rastrigin’s func-
tions (left: unrotated, right: randomly rotated Rastrigin’s functions):
(a) CO on unrotated Rastrigin’s functions. Final fitness value average: 0
(b) CO on randomly rotated Rastrigin’s functions. Final fitness value average: 2.83
(c) CMn on unrotated Rastrigin’s functions. Final fitness value average: 2.69
(d) CMn on randomly rotated Rastrigin’s functions. Final fitness value average: 2.61
(e) GO on unrotated Rastrigin’s functions. Final fitness value average: 2.41
(f) GO on randomly rotated Rastrigin’s functions. Final fitness value average: 2.79
(g) CM1 on unrotated Rastrigin’s functions. Final fitness value average: 4.60
(h) CM1 on randomly rotated Rastrigin’s functions. Final fitness value average: 4.30
Stepsize range for CM1 is [τinit, τfinal] = [104, 10−2] whereas for CO, CMn and GO it
is [τinit, τfinal] = [103, 10−3].

5 EMPIRICAL TESTS 38

0 10 20 30 40 50 60 70
0

10

20

30

40

50
(a)

0 10 20 30 40 50 60 70
0

2

4

6

8

10
(b)

0 10 20 30 40 50 60 70
0

2

4

6

8

10
(c)

0 10 20 30 40 50 60 70
0

2

4

6

8

10
(d)

0 10 20 30 40 50 60 70
0

2

4

6

8

10
(e)

0 10 20 30 40 50 60 70
0

2

4

6

8

10
(f)

0 10 20 30 40 50 60 70
0

2

4

6

8

10
(g)

0 10 20 30 40 50 60 70
0

2

4

6

8

10
(h)

CO

CMn

GO

CM1

Figure 16: Histograms of final fitness values obtained by 50 runs of a (1+1)-Evolution
Strategy employing four different mutation operators on 10-dimensional Rastrigin’s
functions (left: unrotated, right: randomly rotated Rastrigin’s functions):
(a) CO on unrotated Rastrigin’s functions. Final fitness value average: 0
(b) CO on randomly rotated Rastrigin’s functions. Final fitness value average: 16.02
(c) CMn on unrotated Rastrigin’s functions. Final fitness value average: 16.93
(d) CMn on randomly rotated Rastrigin’s functions. Final fitness value average: 17.49
(e) GO on unrotated Rastrigin’s functions. Final fitness value average: 16.06
(f) GO on randomly rotated Rastrigin’s functions. Final fitness value average: 17.29
(g) CM1 on unrotated Rastrigin’s functions. Final fitness value average: 34.90
(h) CM1 on randomly rotated Rastrigin’s functions. Final fitness value average: 34.90
Stepsize range for CM1 is [τinit, τfinal] = [104, 10−2] whereas for CO, CMn and GO it
is [τinit, τfinal] = [103, 10−3].

5 EMPIRICAL TESTS 39

p-values rot./unrot. Rastrigin’s function
Mutation n=3 n=5 n=10
Operator χ2 ranksum χ2 ranksum χ2 ranksum

CO 1.94 1.91 ∞ 18.46 ∞ 19.50
CMn 0.19 0.19 0.51 0.37 0.00 0.09
GO 0.12 0.11 0.40 0.51 0.00 0.72
CM1 0.09 0.06 0.00 0.30 0.00 0.35

Table 3: For each of the four mutation operators, psuccess (by χ2 test) and the 50
final fitness values (by ranksum test) on unrotated n-dimensional Rastrigin’s functions
are compared with results on randomly rotated ones in dimensionalities n = 3, 5 and
10.

Mut.Op. CO CMn GO CM1
CO 0 3.91 2.19 3.91

CMn 3.96 0 0.86 0.00
GO 2.22 0.87 0 0.86
CM1 3.96 0.00 0.87 0

Table 4: Matrix for pair-wise comparisons of performance between the four mutation
operators considered on unrotated 3-dimensional Rastrigin’s functions. In the lower
triangle of the matrix p-values of χ2 tests are stated and in the upper triangle those of
ranksum tests, both in the form − log10(p).

− log10(p). Accordingly, diagonal entries are − log10(1) = 0.

P-values given in these tables confirm the statements made in previous sections and en-
able us to decide about the hypotheses stated at the beginning of this report. Following
observations support the first hypothesis in two distinct ways:

First, it can be seen from Table 3 – and taking into account averages of final fitness values
and histograms in Figures 14, 15 and 16 – that CO mutation has significantly better
performance on unrotated Rastrigin’s functions than on rotated ones in 5 and 10 dimen-
sions. In 3 dimensions discrepancy can be detected, too, but with a comparably rather
high significance level (≈ 2%). However, such differences do not occur among the three

Mut.Op. CO CMn GO CM1
CO 0 0.73 0.00 0.94

CMn 0.74 0 0.73 0.11
GO 0.00 0.74 0 0.94
CM1 0.93 0.09 0.93 0

Table 5: Matrix for pair-wise comparisons of performance between the four mutation
operators considered on randomly rotated 3-dimensional Rastrigin’s functions. In the
lower triangle of the matrix p-values of χ2 tests are stated and in the upper triangle
those of ranksum tests, both in the form − log10(p).

5 EMPIRICAL TESTS 40

Mut.Op. CO CMn GO CM1
CO 0 17.90 18.47 19.53

CMn ∞ 0 0.59 4.67
GO ∞ 0.19 0 6.36
CM1 ∞ 1.10 0.81 0

Table 6: Matrix for pair-wise comparisons of performance between the four mutation
operators considered on unrotated 5-dimensional Rastrigin’s functions. In the lower
triangle of the matrix p-values of χ2 tests are stated and in the upper triangle those of
ranksum tests, both in the form − log10(p).

Mut.Op. CO CMn GO CM1
CO 0 0.39 0.04 3.75

CMn 0.25 0 0.30 5.20
GO 0.40 0.77 0 3.72
CM1 0.81 0.50 1.38 0

Table 7: Matrix for pair-wise comparisons of performance between the four mutation
operators considered on randomly rotated 5-dimensional Rastrigin’s functions. In the
lower triangle of the matrix p-values of χ2 tests are stated and in the upper triangle
those of ranksum tests, both in the form − log10(p).

spherical mutation operators.

Second, considering comparison matrices from Tables 4, 6 and 8 for unrotated Rastrigin’s
i.e. separable functions and again taking into account final fitness values’ averages and
histograms on the left-hand side in Figures 14, 15 and 16, it becomes clear that the CO
mutation based Evolution Strategy performs significantly better than the three others em-
ploying spherical mutation operators. This manifests itself in high values for − log10(p)
in the first column (χ2 test) and in the first row (ranksum test) of comparison matrices.
The higher the dimensionality n, the more obvious is the significance of difference.

Most interesting is the comparison of CO and CMn because these two mutation operators
have exactly the same distribution of norms – which therefore cannot be a source of dif-
ference in performance – and just differ in symmetry/asymmetry of their joint densities.
Because of this fact, the second hypothesis can be rejected.

Another conclusion may be drawn from these results when comparing performances of the
Evolution Strategy employing CM1 to the three other mutation operators’ performances.
Especially in higher dimensionalities, using CM1 yields larger final fitness values (Figure
16) and so performs worse than CO, CMn and GO. This observation is confirmed by
rather high − log10(p) values in the last column (ranksum test) of comparison matrices
in Tables 8 and 9. This difference in performance cannot be a consequence of generally
too small step sizes τ because they have been adjusted a priori as described in Section
5.1. One might interprete that sampling random vectors with n-dimensional norm like
CO, CMn and GO is helpful to proceed faster to lower local minima during the whole

5 EMPIRICAL TESTS 41

Mut.Op. CO CMn GO CM1
CO 0 19.49 19.49 19.48

CMn ∞ 0 0.86 9.83
GO ∞ 0.00 0 10.04
CM1 ∞ 0.00 0.00 0

Table 8: Matrix for pair-wise comparisons of performance between the four mutation
operators considered on unrotated 10-dimensional Rastrigin’s functions. In the lower
triangle of the matrix (under diagonal with zeros) p-values of χ2 tests are stated and
in the upper triangle those of ranksum tests, both in the form − log10(p).

Mut.Op. CO CMn GO CM1
CO 0 0.72 0.50 13.10

CMn 0.00 0 0.12 12.31
GO 0.00 0.00 0 12.06
CM1 0.00 0.00 0.00 0

Table 9: Matrix for pair-wise comparisons of performance between the four mutation
operators considered on randomly rotated 10-dimensional Rastrigin’s functions. In the
lower triangle of the matrix (under diagonal with zeros) p-values of χ2 tests are stated
and in the upper triangle those of ranksum tests, both in the form − log10(p).

optimization process whereas CM1’s concentration of shifts ∆~x near the origin seems to
make it difficult to escape local minima. The same fact is apparent on rotated Rastrigin’s
functions.

As a control, let us focus on comparison matrices in Tables 5, 7 and 9 obtained when
minimizing randomly rotated Rastrigin’s i.e. non-separable functions.
Histograms on the right-hand side in Figures 14, 15 and 16 look quite similar and indeed,
all of the p-values, including those involving CO mutation, lie definitely above reasonable
significance levels except for comparisons with the CM1 mutation operator which can be
explained in the manner of the last paragraph. Thus, among performances of the three
mutation operators with n-dimensional norm considered, no significant difference is ap-
parent.

5.4 Sensitivity to Parameters

In this section, CO’s advantage on separable functions is lighted from a somewhat different
viewpoint. The intention is to analyze the optimality of parameters θint and θfinal of our
chosen step size adaptation scheme and how final fitness values are affected.

5.4.1 Settings

A grid search approach is taken for the purpose of getting an impression about optimal
step size parameters θinit and θfinal which constitute a 2-dimensional grid space. At every

5 EMPIRICAL TESTS 42

grid point, one hundred (1+1)-Evolution Strategy runs are carried out with correspon-
ding parameters on unrotated and randomly rotated n-dimensional Rastrigin’s functions
respectively. Variables to be optimized are log10(θinit) and log10(θfinal) with constraint
gmax := 50000·n per Evolution Strategy run fixed. As objective functions to be minimized,
two possibilities are considered - the first bases primarily upon psuccess whereas the latter
is based exclusively on the average of final fitness values:

• fsuccess(log10(θinit), log10(θfinal)) = −psuccess + 10−10
∑100

i=1 frastrigin(Φ~x
(i)

final)

• ffitavg(log10(θinit), log10(θfinal)) = 1
100

∑100
i=1 frastrigin(Φ~x

(i)
final)

where Φ~x
(i)

final is the final position (rotated by matrix Φ) found in the i-th run of the

(1+1)-Evolution Strategy after having enforced full local convergence, thus points ~x
(i)

final

have frastrigin(~x
(i)

final) = 0.

Because the goal is not to determine exact optimal parameters, but rather to get a vi-
sualization of the interrelationship of [θinit, θfinal] and performance (fsuccess or ffitavg) of
Evolution Strategies, a quite coarse granularity for grid points is chosen covering most
reasonable values, namely log10(θinit) = −5,−4, ..., 10 and log10(θfinal) = −10,−9, ..., 5.
Of course, intervals having θinit < θfinal are excluded.

Three mutation operators are tested: CO, GO and CM1. Findings for a 5-dimensional
search space are presented in the next section.

5.4.2 Results

The rough shape of fsuccess(log10(θinit), log10(θfinal)) and ffitavg(log10(θinit), log10(θfinal)),
when minimizing unrotated or rotated 5-dimensional Rastrigin’s functions, is plotted in
Figures 17 to 21. Green arrows indicate optimal fitness values found by the grid search
procedure. Results are summarized in Table 10. In general, fsuccess and ffitavg cannot
be expected to have identical minima because they focus on slightly different measures
for performance which both are convenient for global optimization purposes. However,
resulting optimal parameters with respect to fsuccess and ffitavg should not lie too distant
from each other neither due to their fitness functions’ coupled base meaning18. Omitting
the negative sign, the column ”fsuccess” in Table 10 contains the ratio of successful runs.

Results in the first row in Table 10 for the CO-based Evolution Strategies on unrotated
Rastrigin’s functions are quite different from the others: fsuccess(log10(θinit), log10(θfinal)) =
−1 for a whole - approximately triangular and comparably large - area of parame-
ter points (log10(θinit),log10(θfinal)), all of them enabling their corresponding Evolution
Strategies to reach permanently the global minimum within 100 runs (Figure 17). Also,
ffitavg(log10(θinit), log10(θfinal)) = 0 for more or less the same area of parameters as fsuccess,
which results in a particular shape with a large optimal plateau at fitness value zero.

18frastrigin(~xi
final) ≤ 0.9 ⇒ ~xi

final := ~0 ⇒ frastrigin(~xi
final) = 0 ⇒

i-th run successful, i.e. increase psuccess

5 EMPIRICAL TESTS 43

−5

0

5

10

−10

−5

0

5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log
10

(τ
init

)
log

10
(τ

final
)

−f
su

cc
es

s

optimal

Figure 17: Surface plot of grid search’s fitness function (turned negative for bet-
ter visualization) −fsuccess(log10(τinit), log10(τfinal)) when minimizing unrotated 5-
dimensional Rastrigin’s functions utilizing CO mutation.

−5

0

5

10

−10

−5

0

5

0

0.02

0.04

0.06

0.08

log
10

(τ
init

)

log
10

(τ
final

)

−f
su

cc
es

s

optimal

Figure 18: Surface plot of grid search’s fitness function (turned negative for better
visualization) −fsuccess(log10(τinit), log10(τfinal)) when minimizing randomly rotated
5-dimensional Rastrigin’s functions utilizing CO mutation.

5 EMPIRICAL TESTS 44

Mut. frastrigin fsuccess(lg(θinit), lg(θfinal)) ffitavg(lg(θinit), lg(θfinal)) see
Op. kind lg(θinit) lg(θfinal) fsuccess lg(θinit) lg(θfinal) ffitavg Fig.
CO unrot. div. div. -1 div. div. 0 17
CO rot. 2 -1 -0.1 0 -1 1.67 18, 19
GO unrot. 1 -1 -0.15 0 0 1.47 20
GO rot. 0 -1 -0.13 0 0 1.37 -
CM1 unrot. 1 0 -0.04 0 0 2.91 21
CM1 rot. 0 0 -0.04 1 0 2.98 -

Table 10: Results of the grid search procedure: The 1st and 2nd column contain the
mutation operator’s name and the kind of Rastrigin’s functions (rotated/unrotated).
In the 3rd-5th columns, optimal initial and final parameter values (using a log10 abbre-
viated as ”lg”) w.r.t. fsuccess and the resulting value for fsuccess is given, and in the
6th-8th columns, the same for ffitavg.

A comparison of Figures 17 and 18, illustrating −fsuccess
19, makes clear the following:

On separable, unrotated Rastrigin’s functions, a (1+1)-Evolution Strategy employing CO
mutation is able to attain the global minimum in all of the 100 runs (psuccess = 1, i.e.
−fsuccess = 1) for various choices (τinit, τfinal) as step size parameters whereas on ran-
domly rotated Rastrigin’s functions, the smallest possible fitness value fsuccess = −1 is
never reached. Furthermore, from Figure 18 it can be seen that fitness fsuccess gets noisy
for rotated Rastrigin’s functions, but approximately decreases with increasing distance to
the optimum as opposed to Figure 17. These facts imply that CO mutation operators
on separable functions like Rastrigin’s are much more flexible with respect to parameters
τinit and τfinal – or in other words – on non-separable or rotated functions are much more
sensitive to the choice of step size parameters. Due to the coarse granularity of the grid,
no statements about the exact optimality of parameters should be made.

Fitness function fsuccess turns out to be quite noisy when utilizing CO mutation on rotated
Rastrigin’s functions or the two other mutation operators, because only few successes can
be achieved even in the optimal case. This means that larger differences in fitness for
neighboured parameter points occur frequently which makes it difficult to analyze the
global behaviour of fsuccess. The smoother ffitavg helps out in this situation, applying
a log-scale log10(ffitavg) in addition to emphasize differences at small values. This is
not practicable for CO mutation on unrotated Rastrigin’s functions because the optimal
plateau then would lie at log10(ffitavg) = −∞. But from Figure 19, it can be seen clearly
that the smallest possible fitness value ffitavg = 0 is not reached and ffitavg changes
remarkably from grid point to grid point for CO-based Evolution Strategies on rotated
Rastrigin’s functions.

As a control how Evolution Strategies employing other mutation operators react to the
choice of step size parameters, GO and CM1 mutation are tested by this grid search pro-
cedure on unrotated Rastrigin’s functions, focusing here on the less noisy ffitavg. There
are no large differences in performance apparent between unrotated and rotated Rastri-

19turned negative for better readability

5 EMPIRICAL TESTS 45

−5

0

5

10−10

−5

0

5

1

2

log
10

(τ
init

)
log

10
(τ

final
)

lo
g 10

(f
fit

av
g)

optimal

Figure 19: Log-scaled surface plot of grid search’s fitness function
log10(ffitavg(log10(τinit), log10(τfinal))) when minimizing randomly rotated 5-
dimensional Rastrigin’s functions utilizing CO mutation.

gin’s functions. From Figures 20 and 21 and taking into account optimal values given in
Table 10, it can be seen again that no perfect 100 runs occur and ffitavg is rather sensitive
to step size parameter choice compared to CO-based Evolution Strategies on separable,
unrotated Rastrigin’s functions.

Same investigations were done for the 3-dimensional Rastrigin’s function resulting in
quite similar findings, which are not provided here. However, it shall be remarked that
for each of the three considered mutation operators, there exists a step size interval
[θinit, θfinal] such that psuccess = 1 for 100 (1+1)-Evolution Strategy runs on unrotated
but as well on randomly rotated Rastrigin’s functions. This may put p-values for 3-
dimensional Rastrigin’s functions in Section 5.3 into question because not the individual
optimal parameters – which would make 100% success possible for all mutation operators
– are used for step size adaptation.

5 EMPIRICAL TESTS 46

−5

0

5

10−10

−5

0

5

1

2

log
10

(σ
init

)
log

10
(σ

final
)

lo
g 10

(
f fit

av
g) optimal

Figure 20: Log-scaled surface plot of grid search’s fitness function
log10(ffitavg(log10(σinit), log10(σfinal))) when minimizing unrotated 5-dimensional
Rastrigin’s functions utilizing GO mutation.

−5

0

5

10−10

−5

0

5

1

2

log
10

(τ
init

)
log

10
(τ

final
)

lo
g 10

(
f fit

av
g)

optimal

Figure 21: Log-scaled surface plot of grid search’s fitness function
log10(ffitavg(log10(τinit), log10(τfinal))) when minimizing unrotated 5-dimensional
Rastrigin’s functions utilizing CM1 mutation.

6 CONCLUSIONS 47

6 Conclusions

In this semester thesis, the advantage in performance of a non-spherical Cauchy mutation
operator – i.e. a particular heavy-tail distribution – in Evolutionary Algorithms on cer-
tain fitness functions was investigated. The focus was on (1+1)-Evolution Strategies with
a deterministic cooling scheme for step size adaptation (Section 2). Two different fitness
functions were considered: Rastrigin’s function as an instance of a separable function and
randomly rotated Rastrigin’s functions as corresponding non-separable counterpart.

In Section 3, various distributions for mutation were introduced and compared to each
other concentrating on the shape of their joint densities and the densities of corresponding
random vector norm distributions. Characteristics of separable functions in general and
Rastrigin’s function in more detail were provided in Section 4.

In Section 5, empirical evidence for predictions made in Sections 3 and 4 was given and fur-
thermore, enabled us to decide about the hypotheses stated in Section 1. (1+1)-Evolution
Strategies employing four different mutation operators were compared: the non-spherical
Cauchy (CO), the spherical Cauchy distribution with n-dimensional norm (CMn), the
original Gaussian (GO) and the spherical Cauchy distribution with fixed 1-dimensional
norm (CM1). Their performance on Rastrigin’s functions was measured by the final fit-
ness values and success probability obtained by 50 runs. The significance of observed
differences in performance was ascertained by ranksum and χ2 tests respectively. From
these results, the following became clear:

Evolution Strategies employing non-spherical Cauchy mutation always reached the global
minimum on the separable unrotated Rastrigin’s function, as opposed to the other three
mutation operators which generally performed worse. Such significant difference could
not be observed for non-separable rotated Rastrigin’s functions. These findings clearly
corroborate our first hypothesis. The higher the dimensionality of the underlying search
space, the more obvious were discrepancies between the non-spherical Cauchy mutation
operator and others. In particular, it can be inferred, that it is not the larger expecta-
tion of norms of non-spherical Cauchy random vectors that produce significant gain on
performance, but rather the preference of certain directions through the search space.
Therefore, the second hypothesis can be rejected.

Another difference in performance emerged for the spherical Cauchy mutation distribu-
tion with 1-dimensional norm: (1+1)-Evolution Strategies using this mutation operator
generally performed worse than such using mutators having an n-dimensional norm, inde-
pendent of the kind of fitness function, but observable especially in higher dimensionalites.

Recapitulating: Evolutionary Algorithms employing non-spherical Cauchy mutation have
advantage over other mutation operators when optimizing separable functions. For ar-
bitrary test functions however, this is not the case. The gain in performance cannot be
caused by the heavy tails of the Cauchy distribution as proposed in [1], rather it is a
consequence of the specific asymmetry of the non-spherical Cauchy density.

6 FUTURE WORK 48

Future Work

The scope of this semester thesis covers the empirical investigation of (1+1)-Evolution
Strategies employing a set of Gaussian and Cauchy mutation operators on the Rastrigin’s
function as an instance of an additively decomposable function, making use of a simple
deterministic step size adaptation scheme.

These considerations could be extended in the following ways:

• Set of test functions: Applying Evolutionary Algorithms on further separable func-
tions, likewise of other kind such as productively decomposable ones.

• Kinds of Evolutionary Algorithms: Comparing performances of various mutation
operators employed by Evolutionary Programming or general (µ + λ)-Evolution
Strategies.

• Forms of step size adaptation: Empirical testing rather emphasizing the optimality
of step size parameters of our chosen cooling scheme, but also checking self-adaptive
schemes properly.

Another open issue is the exact magnitude of the impact which raised norms of a Cauchy
random vector have on the performance of Evolutionary Algorithms without gaining ad-
vantage by asymmetry. Furthermore, findings about a closed density formula for Cauchy
random vectors’ norms are missing.

Acknowledgements

I would like to thank Prof. Dr. Petros Koumoutsakos, Dr. Anne Auger and Dr. Nikolaus
Hansen for giving me the opportunity to work out a semester thesis in the area of Bio-
Inspired Computing and Optimization, one of my favourite subjects during my studies of
Computer Science. Dealing with this topic in the scope of a semester thesis has enabled
me to widely broaden knowledge about the variety of mutation utilized in Evolutionary
Algorithms and their corresponding analysis, and learn how empirical research in Scien-
tific Computing is done properly.

Special thanks goes to Anne and Niko for advising me, Anne for providing me with
mathematical tricks and Niko especially for showing me how to tune Evolution Strategies
and for the consequent demonstration what a log-scale is intended for.

REFERENCES 49

References

[1] X. Yao and Y. Liu. ”Fast Evolution Strategies”. Control and Cybernetics,
Vol.26(No.3):pages 467–496, 1997. Polish Academy of Sciences, Systems Research
Institute.

[2] A. Obuchowicz. ”Multidimensional mutations in evolutionary algorithms based
on real-valued representation”. International Journal of Systems Science,
Vol.34(No.7):pages 469–483, June 2003. Taylor and Francis Group.

[3] E.W. Weisstein. ”Cauchy Distribution”. http://mathworld.wolfram.com/ CauchyDis-
tribution.html, 2005. MathWorld - a Wolfram Web Resource.

[4] G.P. Michon. ”Geometry and Topology - Final Answers: What is the formula for a
hyper-volume of a four-dimensional sphere?”. http://home.att.net/ numericana/an-
swer/geometry.htm, 2005. www.numericana.com - online companion for book Numer-
icana by G.P. Michon.

[5] E.W. Weisstein. ”Chi-squared Distribution”. http://mathworld.wolfram.com/ Chi-
SquaredDistribution.html, 2005. MathWorld - a Wolfram Web Resource.

[6] E.W. Weisstein. ”Chi Distribution”. http://mathworld.wolfram.com/ ChiDistribu-
tion.html, 2005. MathWorld - a Wolfram Web Resource.

[7] E.W. Weisstein. ”Half-normal Distribution”. http://mathworld.wolfram.com/ Half-
NormalDistribution.html, 2005. MathWorld - a Wolfram Web Resource.

[8] E.L. Lehmann. ”Nonparametrics - Statistical Methods Based on Ranks”. Holden-Day
inc., 1975. San Francisco.

A APPENDIX 50

A Appendix

A.1 Matlab Source Code for (1+1)-Evolution Strategies

A.1.1 Non-spherical Cauchy Mutation Distribution

function [xbest , nGen , f x s , taus , f i r s t S u c c e s s f u l S t e p s i z e , l a s t S u c c e s s f u l S t e p s i z e ,
s u c c e s s f u l S t e p s i z e s] = cauchyES1plus1 (steps izeAlpha , s t e p s i z e I n i t , x In i t ,maxGen , rotat ionMatr ix ,
fGlobMin , to l , testFuncHandle)

% inpu t arguments :
% tes tFuncHand le : f u n c t i o n to be minimized as f un c t i o n hand l e t e s t f un cHand l e
% fGlobMin : f u n c t i o n va l u e o f t h e g l o b a l minimum
% t o l : t o l e r a n c e f o r s t o p p i n g c r i t e r i o n (fx−fGlobMin > t o l)
% ro t a t i o nMa t r i x : t h e f u n c t i o n w i l l be r o t a t e d by t h i s o r t h o gona l nxn−matr ix
% maxGen : maximal number o f g e n e r a t i o n s b e f o r e g i v i n g up
% x I n i t : p o i n t (column−v e c t o r) in s ea rch space , where o p t im i z a t i o n w i l l b e g i n
% s t e p s i z e I n i t : t h e i n i t i a l v a l u e o f t h e s t e p s i z e
% s t e p s i z eA l p h a : t h e f a c t o r f o r c o o l i n g down the s t e p s i z e
% ou tpu t arguments :
% x b e s t : p o i n t in s ea rch space when t h i s a l g o r i t hm has s t opped
% nGen : number o f g e n e r a t i o n s used when t h i s a l g o r i t hms has s t opped
% f x s : l a r g e row−v e c t o r c on t a i n i n g a l l t h e f u n c t i o n v a l u e s f x o f t h e s ea rch
% taus : l a r g e row−v e c t o r c on t a i n i n g a l l s u b s e quen t s t e p s i z e s
% f i r s t S u c c e s s f u l S t e p s i z e : s t e p s i z e when the f i r s t fx−improvement occured
% l a s t S u c c e s s f u l S t e p s i z e : s t e p s i z e when the l a s t fx−improvement occured
% s u c c e s s f u l S t e p s i z e s : a l l s t e p s i z e s when fx−improvements occured

randn(’ seed ’ ,cputime) ;
[nDim , one] = s ize (x I n i t) ;
alpha = steps i z eAlpha ;
tau = s t e p s i z e I n i t ;
f x s = ones (1 ,maxGen) ;
taus = ones (1 ,maxGen) ;
s u c c e s s f u l S t e p s i z e s = ones (1 ,maxGen) ;
succStepCount = 1 ;
genCount = 1 ;
x = x In i t ; % w i l l be r o t a t e d in nex t l i n e ! ! !
fx = feval (testFuncHandle , ro tat ionMatr ix ∗x) ;

while ((genCount < maxGen+1) && (fx−fGlobMin > t o l))
de l tax = randn(nDim , 1) . / randn(nDim , 1) ;
xx = x + tau ∗ de l tax ;
fxx = feval (testFuncHandle , ro tat ionMatr ix ∗xx) ;
i f (fxx < fx)

fx = fxx ;
x = xx ;
s u c c e s s f u l S t e p s i z e s (1 , succStepCount) = tau ;
succStepCount = succStepCount + 1 ;

end ;
f x s (1 , genCount) = fx ;
taus (1 , genCount) = tau ;
tau = alpha ∗ tau ;
genCount = genCount + 1 ;

end ;
nGen = genCount−1;
f x s = fx s (1 , 1 : nGen) ;
taus = taus (1 , 1 : nGen) ;
i =1;
while ((i<nGen−1)&&(fx s (1 , i) == fx s (1 , i +1)))

i = i + 1 ;
end ;
f i r s t S u c c e s s f u l S t e p s i z e = taus (1 , i +1) ;
i=nGen ;
while ((i >1)&&(fx s (1 , i) == fx s (1 , i −1)))

i = i − 1 ;
end ;
l a s t S u c c e s s f u l S t e p s i z e = taus (1 , i) ;
xbest = x ;
s u c c e s s f u l S t e p s i z e s = s u c c e s s f u l S t e p s i z e s (1 , 1 : succStepCount −1) ;

A.1.2 Spherical Cauchy Mutation Distribution with n-dimensional Norm

function [xbest , nGen , f x s , taus , f i r s t S u c c e s s f u l S t e p s i z e , l a s t S u c c e s s f u l S t e p s i z e ,
s u c c e s s f u l S t e p s i z e s] = sphericalcauchyNdimNormES1plus1 (steps izeAlpha , s t e p s i z e I n i t , x In i t ,maxGen ,
rotat ionMatr ix , fGlobMin , to l , testFuncHandle)

% in g en e r a l a l l computa t ions are e q u i v a l e n t to cauchyES1plus1 .m ex c e p t samp l ing :

while ((genCount < maxGen+1) && (fx−fGlobMin > t o l))
% sample un i t v e c t o r onto un i t hype r sphe r e :
uni fRandDirect ion = randn(nDim , 1) ;
unitUni fRandDirect ion = uni fRandDirect ion /norm(uni fRandDirect ion) ;
% sample jump l eng th :
de l t a rad i an = norm(randn(nDim , 1) . / randn(nDim , 1)) ;
radian = tau ∗ de l t a rad i an ;

A APPENDIX 51

xx = x + radian ∗ unitUni fRandDirect ion ;
fxx = feval (testFuncHandle , ro tat ionMatr ix ∗xx) ;
. . .

A.1.3 Spherical Cauchy Mutation Distribution with 1-dimensional Norm

function [xbest , nGen , f x s , taus , f i r s t S u c c e s s f u l S t e p s i z e , l a s t S u c c e s s f u l S t e p s i z e ,
s u c c e s s f u l S t e p s i z e s] = sphericalcauchy1dimNormES1plus1 (steps izeAlpha , s t e p s i z e I n i t , x In i t ,maxGen ,
rotat ionMatr ix , fGlobMin , to l , testFuncHandle)

% in g en e r a l a l l computa t ions are e q u i v a l e n t to cauchyES1plus1 .m ex c e p t samp l ing :

while ((genCount < maxGen+1) && (fx−fGlobMin > t o l))
% sample un i t v e c t o r onto un i t hype r sphe r e :
uni fRandDirect ion = randn(nDim , 1) ;
unitUni fRandDirect ion = uni fRandDirect ion /norm(uni fRandDirect ion) ;
% sample jump l eng th :
de l t a rad i an = abs (randn/randn) ;
radian = tau ∗ de l t a rad i an ;
xx = x + radian ∗ unitUni fRandDirect ion ;
fxx = feval (testFuncHandle , ro tat ionMatr ix ∗xx) ;
. . .

A.1.4 Gaussian Mutation Distribution

function [xbest , nGen , f x s , sigmas , f i r s t S u c c e s s f u l S t e p s i z e , l a s t S u c c e s s f u l S t e p s i z e ,
s u c c e s s f u l S t e p s i z e s] = gaussES1plus1 (steps izeAlpha , s t e p s i z e I n i t , x In i t ,maxGen , rotat ionMatr ix ,
fGlobMin , to l , testFuncHandle)

% inpu t arguments :
% tes tFuncHand le : f u n c t i o n to be minimized as f un c t i o n hand l e t e s t f un cHand l e
% fGlobMin : f u n c t i o n va l u e o f t h e g l o b a l minimum
% t o l : t o l e r a n c e f o r s t o p p i n g c r i t e r i o n (fx−fGlobMin > t o l)
% ro t a t i o nMa t r i x : t h e f u n c t i o n w i l l be r o t a t e d by t h i s o r t h o gona l nxn−matr ix
% maxGen : maximal number o f g e n e r a t i o n s b e f o r e g i v i n g up
% x I n i t : p o i n t (column−v e c t o r) in s ea rch space , where o p t im i z a t i o n w i l l b e g i n
% s t e p s i z e I n i t : t h e i n i t i a l v a l u e o f t h e s t e p s i z e
% s t e p s i z eA l p h a : t h e f a c t o r f o r c o o l i n g down the s t e p s i z e
% ou tpu t arguments :
% x b e s t : p o i n t in s ea rch space when t h i s a l g o r i t hm has s t opped
% nGen : number o f g e n e r a t i o n s used when t h i s a l g o r i t hms has s t opped
% f x s : l a r g e row−v e c t o r c on t a i n i n g a l l t h e f u n c t i o n v a l u e s f x o f t h e s ea rch
% sigmas : l a r g e row−v e c t o r c on t a i n i n g a l l s u b s e quen t s t e p s i z e s
% f i r s t S u c c e s s f u l S t e p s i z e : s t e p s i z e when the f i r s t fx−improvement occured
% l a s t S u c c e s s f u l S t e p s i z e : s t e p s i z e when the l a s t fx−improvement occured
% s u c c e s s f u l S t e p s i z e s : a l l s t e p s i z e s when fx−improvements occured

randn(’ seed ’ ,cputime) ;
[nDim , one] = s ize (x I n i t) ;
alpha = steps i z eAlpha ;
sigma = s t e p s i z e I n i t ;
f x s = ones (1 ,maxGen) ;
sigmas = ones (1 ,maxGen) ;
s u c c e s s f u l S t e p s i z e s = ones (1 ,maxGen) ;
succStepCount = 1 ;
genCount = 1 ;
x = x In i t ; % w i l l be r o t a t e d in nex t l i n e ! ! !
fx = feval (testFuncHandle , ro tat ionMatr ix ∗x) ;

while ((genCount < maxGen+1) && (fx−fGlobMin > t o l))
de l tax = randn(nDim , 1) ;
xx = x + sigma ∗ de l tax ;
fxx = feval (testFuncHandle , ro tat ionMatr ix ∗xx) ;
i f (fxx < fx)

fx = fxx ;
x = xx ;
s u c c e s s f u l S t e p s i z e s (1 , succStepCount) = sigma ;
succStepCount = succStepCount + 1 ;

end ;
f x s (1 , genCount) = fx ;
sigmas (1 , genCount) = sigma ;
sigma = alpha ∗ sigma ;
genCount = genCount + 1 ;

end ;
nGen = genCount−1;
f x s = fx s (1 , 1 : nGen) ;
sigmas = sigmas (1 , 1 : nGen) ;
i =1;
while ((i<nGen−1)&&(fx s (1 , i) == fx s (1 , i +1)))

i = i + 1 ;
end ;
f i r s t S u c c e s s f u l S t e p s i z e = sigmas (1 , i +1) ;
i=nGen ;
while ((i >1)&&(fx s (1 , i) == fx s (1 , i −1)))

i = i − 1 ;
end ;
l a s t S u c c e s s f u l S t e p s i z e = sigmas (1 , i) ;
xbest = x ;
s u c c e s s f u l S t e p s i z e s = s u c c e s s f u l S t e p s i z e s (1 , 1 : succStepCount −1) ;

A APPENDIX 52

A.1.5 Additional Functions Needed

Computing Cooling Factor for Stepsize Adaptation:
function alpha = computeOptimalStepSize (maxGen , sigmaEnd , s igmaStart)

% s o l v e s t h e e qua t i on : s i gmaS ta r t ∗ a lpha ˆmaxGen = sigmaEnd
% wi th s i gmaS ta r t >> sigmaEnd and 0 << a lpha < 1
% s i gmaS ta r t = s igma 0 ; sigmaEnd = sigma maxGen

alpha = (sigmaEnd / s igmaStart) ˆ(1 / maxGen) ;

Generating Random Rotation Matrices:
function rotmatr ix = createRandomRotationMatrix (nDim)

% ro tma t r i x c on t a i n s nDim orthonormal column v e c t o r s
% randVectors c on t a i n s nDim norma l i z ed s tandard Gaussian random v e c t o r s

randVectors = randn(nDim , nDim) ;
for i =1:nDim

randVectors (: , i) = randVectors (: , i) /norm(randVectors (: , i)) ;
end ;

rotmatr ix = zeros (nDim , nDim) ;
rotmatr ix (: , 1) = randVectors (: , 1) ;

for i =2:nDim
curvec = randVectors (: , i) ;
for j =1:(i −1)

curvec = curvec − rotmatr ix (: , j) ’∗ randVectors (: , i)∗ rotmatr ix (: , j) /(rotmatr ix (: , j) ’∗ rotmatr ix (: ,
j)) ;

end ;
rotmatr ix (: , i) = curvec /norm(curvec) ;

end ;

Testfunction - Rastrigin’s Function:
function r a s t r = r a s t r i g i n s f u n c t i o n (x)

% i s a comp l i c a t ed bu t s e p a r a b l e q u a d r a t i c f i t n e s s f u n c t i o n

r a s t r = sum(x .∗ x − 10∗cos (2∗pi∗x) + 10) ;

